/A cackars

User’s Guide for the Terminal Interface

68020/030/EC020/EC030
Emulators/Analyzer
(HP 64748 and HP 64747)



Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and

fitness for a particular purpose.Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software
on equipment that is not furnished by Hewlett-Packard.

© Copyright 1991, 1992, 1993, 1994, Hewlett-Packard Company.

This document contains proprietary information, which is protected by copyright.
All rights are reserved. No part of this document may be photocopied, reproduced
or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject
to change without notice.

HP is a trademark of Hewlett-Packard Company.

OSF/Motif and Motif are trademarks of the Open Software Foundation in the U.S.
and other countries

UNIX (R) is a registered trademark of UNIX System Laboratories Inc. in the
U.S.A. and other countries.

Hewlett-Packard Company

P.O. Box 2197

1900 Garden of the Gods Road

Colorado Springs, CO 80901-2197, U.S.A

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by the U.S.
Government is subject to restrictions set forth in subparagraph (C) (1) (ii) of the
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304 U.S.A.
Rights for non-DOD U.S. Government Departments and Agencies are as set forth
in FAR 52.227-19(c)(1,2).




Printing History

New editions are complete revisions of the manual. The date on the title page
changes only when a new edition is published.

A software code may be printed before the date; this indicates the version level of
the software product at the time the manual was issued. Many product updates and
fixes do not require manual changes, and manual corrections may be done without
accompanying product changes. Therefore, do not expect a one-to-one
correspondence between product updates and manual revisions.

Edition 1 64748-97000, April 1991
Edition 2 64748-97004, July 1991
Edition 3 64748-97009, May 1992
Edition 4 64748-97012, December 1993

Edition 5 64748-97015, March 1994




The HP 64747 and HP 64748 Emulators

Description

The HP 64747A emulator supports the Motorola 68EC030 up to 40 MHz. The HP
64747B emulator, when used with the HP 64748C Emulation Control Card,
supports the Motorola 68030. The HP 64748A/HP 64748D emulator supports the
Motorola 68020 and 68EC020 microprocessors up to 33 MHz. The only difference
between the HP 64748A and HP 64748D is that the HP 64748D can accept
installation of 4-Mbyte SIMMs in its probe sockets and the 64748A cannot.

HP Emulator Control Card 64748B Control Card 64748C
64748 (68020/EC020) Complete support. Complete support
64747A (68EC030) Complete support. Complete support.

64747B (68030/EC030) Only MC68EC030 support. Complete support

The emulators plug into the modular HP 64700 instrumentation card cage and offer
80 channels of processor bus analysis with the HP 64794 or 64704A emulation-bus
analyzer. Flexible memory configurations are offered from zero through two
megabytes of emulation memory. High performance download is achieved through
the use of the LAN or RS-422 interface. An RS-232 port and a firmware-resident
interface allows debugging of a target system at remote locations.

For software development the HP AXCASE environment is available on SUN
SPARCsystems and HP workstations. This environment includes an ANSI standard
C compiler, assembler/linker, a debugger that uses either a software simulator or
the emulator for instruction execution, the HP Software Performance Analyzer that
allows you to optimize your product software, and the HP Branch Validator for test
suite verification.




If your software development platform is a personal computer, support is available
from several third party vendors. This capability is provided through the HP
64700’s ability to consume several industry standard output file formats.

Ada language support is provided on HP 9000 workstations by third party vendors
such as Alsys and Verdix. An Ada application developer can use the HP emulator
and any compiler that generates HP/MRI IEEE-695 to do exhaustive, real-time
debugging in-circuit or out-of-circuit.

Features

HP 64748A/64748D

» 33 MHz active probe emulator
e Support for MC68020 and MC68EC020 (probe adapter required)

HP 64747A

e 40 MHz active probe emulator
e Supports MC68ECO030
e Supports burst and synchronous bus modes

HP 64747B

* 40 MHz active probe emulator
*  Supports MC68EC030 and MC68030
e Supports burst and synchronous bus modes

Both Emulators

e Symbolic support

»  Execution (software) breakpoints

e 36 inch cable and 219 mm (8.8") x 102 mm (4") probe, terminating in PGA
package

»  Optional adapter for PQFP

» Background and foreground monitors

+ Simulated I/0O with workstation interfaces

+ Consumes IEEE-695, HP-OMF, Motorola S-Records, and Extended Tek Hex
File formats directly. (Symbols are available with IEEE-695HIReOMF
formats.)




Both Emulators (continued)

»  Multiprocessor emulation

— synchronous start of 32 emulation sessions

— cross triggerable from another emulator, logic analyzer, or oscilloscope
» Coprocessor support - allows display and modification of FPU registers
* Demo board and self test module included

Emulation-bus analyzer

» 80-channel emulation-bus analyzer

» Post-processed dequeued trace with symbols

» Eight events, each consisting of address, status and data comparators

» Events may be sequenced eight levels deep and can be used for complex
trigger qualification and selective store

Emulation memory

» Several memory configurations can be obtained (from 256 Kbyte to 8 Mbyte)
by installing optional memory modules on the emulation probe
» 4 Kbytes of dual-ported memory available if you use the background monitor
*  Mapping resolution is 256 bytes
» HP 64748 (MC68020) :
— No wait states out of dual-ported memory up to 33 MHz
— No wait states out of target memory
— No wait states out of emulation memory up to 25 MHz
— 1 wait state out of emulation memory above 25 MHz
» HP64747A (MC68EC030), and HP 64747B (MC68030/EC030):
— No wait states for target system accesses up to 25 MHz
— Three-cycle asynchronous or synchronous target accesses and two-cycle burst
accesses above 25 MHz
— Dual-port/monitor memory matches target system access speeds
— Three-cycle asynchronous or synchronous emulation memory accesses and
two-cycle burst accesses at all speeds.

Vi



vii



In This Book

This manual covers the HP 64747 and HP 64748 emulators. All information in the
manual applies to both emulators unless it is marked with the processor name
(MC68020, MC68EC020, MC68030, or MC68ECO030).

Emulator Supports . . . Also supports . . .

HP 64747A MCG68EC030 MC68030 (with MMU disabled)
HP64747B MC68030 MC68EC030

HP 64748 MC68020 MCG68EC020 (probe adapter required)

Part 1, “Quick Start,” shows you how to make some simple measurements with the
emulator, using the built-in demo program. A short chapter in this part shows you
how to fix the most common problems you might encounter when you first use the
emulator.

Part 2, “Using the Emulator,” tells you how to use all the standard emulator
commands to perform various measurement tasks with the emulator. Use this part
of the manual after you have worked through the tutorials in part 1.

Part 3, “Reference Information,” is the place you should turn to when you are
familiar with the emulator and want to make advanced measurements, such as using
the 68030 MMU, or simply want to look up detailed syntax information for a
command.

Part 4, “Installation and Service,” tells you how to install the emulator, connect it to
the target system, and verify that it works correctly.

You should read the bodkoncepts of Emulation and Analysiien you have the
chance to do so; it contains a good conceptual introduction to the emulation
process, and also describes how an emulation monitor works. ThelBd@k700

Card Cage Installation/Service Guitkdls you more about installation and
configuration of the HP 64700 Card Cage. If you have a problem with the emulator
and don't understand how to fix it, a listing for your local HP Sales and Service
office is in theSupport Services Guide

viii



Contents

Part 1

Quick Start Guide

The Emulation Process 2

Develop Your Programs 2
Configure the Emulator 2
Use the Emulator 2

Quick Start

Step 1. Install the emulator and analyzer into the Card Cage 7
Step 2. Connect the HP 64700 Card Cage to the host computer 7
Step 3. Connect the emulator to the demo board 8

Step 4. Build a program 8

Step 5. Apply power 9

Step 6. Enter commands 10

Step 7. Get command help 11

Step 8. Configure the emulator 12

Step 9. Load a program 12

Step 10. Run the program 13

Step 11. Modify memory 14

Step 12. Display memory 15

Step 13. Start and display atrace 16

Step 14. Break to monitor 17

Step 15. Reset the emulator 18




Contents

2

Troubleshooting

If the demo program won't work 20

If you don't see a prompt 20

If you see an unfamiliar prompt 21

If the emulator displays a prompt, but doesn’t respond to commands
If you can't load the demo program 22

If you can't load a program 23

If the emulator won't run the program 23

If you can't break to the monitor 24

If the emulator won't reset 24

21

Part 2

Using the MC68020/MC68EC020 or MC68030/MC68EC030

Emulator

Making Measurements 26

Using the Terminal Interface

Using the Interface 29

To apply power 30

To initialize the emulator 31

To enter commands 32

To recall commands 33

To repeat commands 33

To enable or disable command line editing 35
To editacommand 35

Togeton-linehelp 36

To display the emulator status 37

To set the date and time 37

To change the prompt 38

To check the version of the Terminal Interface software 39
To print strings on the output device 39

To insert delays in command processing 40




Contents

Building and Using Macros 42

To create macros 42
To execute a macro 43
To delete macros 43

Using Command Files 45

Building Command Files 45

Editing Command Files 46

Comments in Command Files 46

To create a command file with a text editor 46

To log a command file from a PC host 47

To log a command file on a UNIX host (emulator on different port) 48
To use a command file on a PC host 49

To use a command file on a UNIX host (emulator on different port) 50

Using the Emulator

To configure the emulator 52
To build programs 52
To load the demo program 54

Loading Programs 55

To load a program from a PC host (PC controls emulator) 55
To load a program from a UNIX host (emulator on different port) 56
To load programs over the LAN 57

Symbols 59

To load program symbols over the LAN 59
To add user symbols 61

To remove symbols 61

To display symbols 62

Accessing Processor Memory Resources 63

To display memory 63

To modify memory 64

To search memory 66

To copy memory blocks 67

To initialize display and set access modes 69

Xi



Contents

Using Processor Run Controls 70

Torun aprogram 70

To break to monitor 71
To step the processor 72
To reset the processor 74

Viewing and Modifying Processor Registers 75

To display registers 75
To modify registers 76

Using Software Breakpoints 78

To insert a software breakpoint 78
To enable a software breakpoint 79
To disable a software breakpoint 80
To remove a software breakpoint 81
To display software breakpoints 82

Using the Emulator In-Circuit 83

To install the emulation probe 83
To power-on the emulator and your system 85
To probe other types of target system sockets 85

Using The MC68030 Emulator With MMU Enabled 86

To enable the processor memory management unit (MC68030 only) 86
To view the present logical-to-physical mappings 87

To see translation details for a single logical address 88

To see details of a translation table used to map a selected logical address

Using the Analyzer

Making Basic Analyzer Measurements 92

To create an expression 92

To start a trace measurement 93

To stop a trace measurement 93

To display the trace status 94

To display the trace list 94

To define a simple trigger qualifier 94
To define a simple storage qualifier 95
To set the trigger position 96

Xii

89



Contents

Displaying the Trace List 97

To define analyzer labels 97

To delete analyzer labels 98

To display the analyzer labels 98

To change the trace format 99

To display the trace list 101

To prevent trace list header display 103

To control symbol and address display in the trace list 104
To control trace list disassembly and dequeueing 106

To change the trace depth 109

Analyzing Program Execution in the MC68030 Emulator with its
MMU Enabled 110

To program the deMMUer in a static memory system 110
To trace program execution in physical address space 111

Using the Trace Sequencer 112
To change the trace configuration 112

Using Easy Configuration 113

To create a simple expression 113

To insert a sequence term 114

To remove a sequence term 115

To reset the sequencer 115

To define a primary branch 116

To define a global restart term 117

To display the current sequencer settings 118

Using Complex Configuration 119

To assign the trigger term 119

To reset the sequencer 120

To display the current sequencer settings 121
To define trace patterns 122

To define arange qualifier 122

To create a complex expression 124

To define a primary branch term 126

To define a secondary branch term 128

To define complex storage qualifiers 129

Xiii



Contents

Setting Analyzer Clocks 132

To trace user/background code execution 132
To configure the analyzer clock 133

Using Other Analyzer Features 135

To define a prestore qualifier 135
To count states or time 136

To check trace signal activity 138
To define equates 138

To display equates 139

To delete equates 139

6 Making Coordinated Measurements

Basic Elements of Coordinated Measurements 142

To start a simultaneous program run on two emulators 144
To trigger one emulation-bus analyzer with another 145
To break to the monitor on an analyzer trigger signal 147

7 Configuring the Emulator

Memory 150

Emulation Monitor 150
Break Conditions 151
Other Configuration Items 151

Mapping and Configuring Memory 152

To assign memory map terms 152

To assign the memory map default 158

To check the memory map 158

To delete memory map terms 159

To enable one wait state for emulation memory (MC68020) 159
To enable one wait state for synchronous/burst accesses
(MC68030/MC68EC030) 160

To set the function code for memory loads 160

Xiv



Contents

To enable the processor memory management unit
(MC68030 only) 162

To select the emulation monitor 163

To set the monitor base address 165

Background monitor 165

Foreground monitor 165

To interlock monitor cycles with your cycle termination signals 166
To set foreground monitor interrupt priority 167

To set the background monitor keep-alive address
(MC68030/MC68EC030) 168

To preset the interrupt stack pointer and PC 169

Defining Break Conditions 171

To define the software breakpoint vector 171
To enable or disable break conditions 172

Setting Other Configuration Items 173

To restrict to real-time runs 173
To disable the processor cache memory 174
To disable your system interrupts 175

Mapping The Foreground Monitor For Use With The MC68030
MMU 176

To modify the MMU mappings to translate the monitor address space 1:1 177
To modify a transparent translation register to map the monitor address
Space 1:1 178

Solving Problems

If you see unexplained states in the trace list 180

If the analyzer won't trigger 180

If the emulator won't work in your system 181

If you suspect that the emulator is broken 181

If you have trouble mapping memory 182

If the demo program won't work 183

If you're having problems with DMA 183

If you're having problems with emulation reset 183

If the deMMUer runs out of resources during the loading process 184

XV



Contents

If verbose mode shows less than eight mappings but the deMMUer is

"out of resources” 184

If you only see physical memory addresses in the analyzer measurement
results 185

If the deMMUer is loaded but you still get physical addresses for some of your
address space 186

If you can't break into the monitor after you enable the MC68030 MMU 187

Part 3

Reference Information

Commands and Expressions 190

Using 68030 Memory Management

Understanding Emulation And Analysis Of The MC68030 Memory
Management Unit 192

Terms And Conditions You Need To Understand 192

Logical vs Physical 192

What are logical addresses? 193

What are physical addresses? 193

Static and dynamic system architectures 193

Static system example 193

Non-paged dynamic system example 193

Paged dynamic system example 194

Where Is The MMU? 195

Using Function Codes 196

How the MMU is enabled 196

Hardware enable 196

Software enable 197

Restrictions when using the MC68030 emulator with the MMU turned on 197
How the MMU affects the way you compose your emulation commands 198

XVi



Contents

Seeing details of the MMU Translations 199

How the emulator helps you see the details of the MMU mappings 199
Supervisor/user address mappings 201

Translation details for a single logical address 202

Address mapping details 202

Status information 203

Table details for a selected logical address 204

Using the DeMMUer 205

What part of the emulator needs a deMMUer? 205

What would happen if the analyzer didn’t get help from the deMMUer? 205
How does the deMMUer serve the analyzer? 205

Reverse translations are made in real time 206

DeMMUer options 206

Restrictions when using the deMMUer 207

Keep the deMMUer up to date 207

The target program is interrupted while the deMMUer is being loaded 207
The analyzer must be off 207

Expect strange addresses if you analyze physical memory with multiple logical
mappings 207

Resource limitations 208

Small-page/large-page modes 209

Example to show resource limitations 209

How to avoid the "out of resources" message 210

Other ways to conserve space in the deMMUer table 210

Minimize address ranges in the memory map 210

Careful use of the emulator memory map 211

What the emulator does when it loads the deMMUer 212

Dividing the deMMUer table between user and supervisor memory space 213
Using two root pointers 213

Using function codes 214

Solving Problems 215

Using the "mmu" command to overcome plug-in problems 215

Use the analyzer with the deMMUer to find MMU mapping problems 216
Failure caused by access to guarded memory 216

Failure due to system halt 217

Software breakpoint problems 217

A "can't break into monitor" example 218

XVil



Contents

10 Emulator Commands

The Command Set 222

b 223

bc 224
bnct 227
Defaults 228
bp 230

cf 235

cl 239
cmb 241
cmbt 243
cp 246
demo 248
dmmu 253
dt 255
dump 256
echo 258
equ 261
es 266
help,? 267
init 269
load 271
m 274
mac 278
map 282
mmu 286
mo 289
po 292
pv 293

r 295

reg 296
rep 298
rst 299

rx 300

s 302

ser 305
stty 308
sym 311
t 315

ta 316

Xviii



Contents

tarm 318

tcf 320

Easy Configuration 321

Complex Configuration 323

Resetting the Analyzer Configuration 325

tck 326
tcq 329
telif 331
tf 335

tg 338
tgout 341
th 343
tif 345
tinit 349
tl 351

tlhb 355
tp 357
tpat 360
tpqg 363
trng 365
ts 368
tsck 372
tsq 374
tsto 377
tx 380
ver 383
w 384

X 386

11 Expressions

ADDRESS 389
ANALYZER_EXPR 391
COMPLEX_EXPR 393
EXPR 398
SIMPLE_EXPR 405
Easy Configuration 405

XiX



Contents

12 Emulator Error Messages

Emulator error messages 410
Analyzer Error Messages 447

13 Data File Formats

Binary/Hexadecimal Trace List Format 458

No Trigger Record 459

Empty Trace Record 459
New State Data Record 460
More State Data Record 462
Trace State Record 464

New Timing Data Record 465
More Timing Data Record 468
Trace Sample Records 469

Symbol Files 471
Symbol file syntax 472

14 Specifications and Characteristics
Processor Compatibility 476
Electrical 476
HP 64747 Electrical Specifications 477
HP 64748 Electrical Specifications 484
Physical (HP 64747 and HP 64748) 490
Environmental (HP 64747 and HP 64748) 491

BNC, labeled TRIGGER IN/OUT (HP 64747 and
HP 64748) 491

Communications (HP 64747 and HP 64748) 492

XX



Contents

Part 4 Installation and Service

15 Installation and Service

To install the emulator into the HP 64700 Card Cage 499
To install the demo board external power cable 500

To remove and install plastic rivets 501

To remove and install plastic covers to access SIMM sockets on the probe 502
Top Cover 502

Bottom Cover 502

To install emulation memory modules 503

To remove emulation memory modules 505

To install the emulator probe cable 507

To connect the probe to the demo board 508

To verify the performance of the emulator 509

What is pv doing to the Emulator? 511

Troubleshooting 511

To ensure software compatibility 512

Parts List 514
What is an Exchange Part? 516

Glossary

Index

XXi



XXii



Part 1

Quick Start Guide




Part 1

The Emulation Process

The emulator is a powerful tool that can help you debug and integrate your target
system hardware and software. There are three steps to the emulation process:

Develop Your Programs

Before you can use the emulator to debug your target system, you must have a
target program to analyze. This may be developed on a host computer and
downloaded into target system ROM, or you can download programs into
emulation memory, which allows testing, debugging and modification before the
code is committed to hardware.

Configure the Emulator

Each target system has different resource requirements for memory and 1/O
locations. The emulator configuration controls allow you to adapt the emulator to
match the needs of your target system hardware and software. You usually define
this configuration once, then change it only as your target system design definition
changes.

Use the Emulator

After you configure the emulator, you can load the programs you want to test, run
them, and make various measurements to verify their functionality. The emulator
allows you to control program runs, display and modify memory and registers, and
record program execution.




Part 1

In This Part

Chapter 1, “Quick Start Guide,” tells how to set up the emulator and how to be|
making simple measurements. The chapter is organized as a practice tutorial,
that you can use the built-in demo program of the emulator to learn about em
operation.

Chapter 2, “Troubleshooting,” gives you tips on solving the more common
problems that you may find when you begin using the emulator.

If you're looking for more detailed information on emulator operation, see part




Part 1




Quick Start

How to get the emulator ready for use and make a few simple measurements




Chapter 1:Quick Start

The MC68020 and MC68030/EC030 emulators have many powerful features to
help you debug and integrate target system software and hardware. The tutorial in
this chapter will guide you through the steps of setting up the emulator and making
a few basic measurements with the built-in demonstration (demo) program. The
steps are a general guide to using the emulator, but you might not follow them
every time that you use the emulator.

You can use the tutorial in a variety of ways. You may simply want to skim the
material, then set up the emulator and use part 2 of this manual to learn about the
different tasks you can do with the Terminal Interface, or you can work through the
tutorial by following the instructions in each step. The first part of each step gives
you some general information on the command or action. You can enter the
commands given in the “Examples” part of each step to work through a
measurement using the Terminal Interface.

The tutorial (and many examples throughout this book) uses a simple demo
program. This program emulates a simple command interpreter. It has a one-byte
input buffer for commands, and recognizes the ASCII characters “A” and “B.” All
other values are considered invalid. When you input a command to the buffer, the
program calls a subroutine that interprets the command and writes a corresponding
message to an output buffer. In the tutorial examples, you will enter a command by
modifying memory, then view the results in the output buffer.

To load and run the complete demo program, your emulation system must have at
least 256K of emulation memory (obtained by installing at least one SRAM on the
emulation probe. Refer to the Installation and Service Chapter at the end of this
manual for instructions on how to install SRAM memory modules.




Chapter 1:Quick Start
Step 1. Install the emulator and analyzer into the Card Cage

Step 1. Install the emulator and analyzer into the .
Card Cage

If you purchased the MC68020/68030/EC030 emulator as a complete system, the
emulator and analyzer boards are preinstalled in the HP 64700 Card Cage at HP.
However, if you purchased the MC68020/68030/EC030 emulator and analyzer
boards separately, you must install them in the HP 64700 Card Cage before you can
use the emulator.

Install the emulator and analyzer boards according to the instructions in Chapter 15
of this manual.

If you have any questions regarding the installation that are not answered by the
instructions in Chapter 15, see tHE 64700 Series Card Cage Installation/Service
Guide

Step 2. Connect the HP 64700 Card Cage to the
host computer

To communicate with the Terminal Interface, you need to connect the HP 64700
Card Cage to a terminal or a host computer that can emulate a terminal.

Connect the emulator to a terminal, PC, or workstation by following the
instructions in thédP 64700 Series Card Cage Installation/Service Guide




Chapter 1:Quick Start
Step 3. Connect the e

mulator to the demo board

1

Step 3. Connect the emulator to the demo board

Plug the PGA male connector on the emulator probe into the PGA female
connector on the demo board, taking care to align pin A1 of each connector.

Connect power from the emulator to the demo board power socket using the cable
provided.

The emulation probe must be connected to a target system (the demo board, in this
procedure) to use the MC68020 or MC68030/MC68EC030 emulator. The emulator
needs a powered-on system with a clock oscillator to function correctly.

The demo program examples in this manual will work correctly when you use the
demo board for your target system. They may not work correctly with another
target system due to the system memory map and the emulator configuration.

See Chapter 15, “Installation and Service,” for more information on the demo board
and its power cable connections.

Step 4. Build a program

For this tutorial, you don’t need to build the demo program because it's already
resident in the emulator. When you're ready to debug a target system using your
own program, you can build the program in a format usable by the emulator by
following these steps:

Create source files in “C” or MC68020/MC68030/EC030 assembly language using
a text editor.

Translate the “C” source files to relocatable object code using a compatible C cross
compiler.

Translate the assembly source files to relocatable object files using a compatible
MC68020/MC68030/EC030 cross assembler.




Example

Chapter 1:Quick Start
Step 5. Apply power

3 Link all relocatable object files with the linker/loader to produce an absolute o

file in HP64000 (HP-OMF) format or Motorola S-record file format.

See Chapter 4, “Using the Emulator,” for more information.

To build the demo program with the HP 64870 Assembler/Linker:

as68k -h demo
as68k -h handle_msg
Id68k -h -c demo.k -0 demo.x

To build the demo program with the Microtec Research assembler/linker on a PC:

asm68k -fd -th -fcase -ft -L demo.s
asm68k -fd -th -fcase -ft -L handler.s
Ink68k -c demo.k -fi -fh -fd -fs -L -0 demo.x

Caution

Step 5. Apply power

Possible damage to the emulativhen you use the emulator with your own target
system, always turn on power to the emulator before turning on power to your
system. Otherwise, the emulator or your system might be damaged.

You must apply power to the HP 64700 Card Cage before you can use the emulator
and the Terminal Interface.

Apply power to the emulator by pressing the power ON button located on the front
panel of the HP 64700 Card Cage.




Chapter 1:Quick Start
Step 6. Enter commands

Example When you apply power to the emulator, you will see the following appear on your
terminal screen:
Copyright (c) Hewlett-Packard Co. 1987
All Rights Reserved. Reproduction, adaptation, or translation
without prior
written permission is prohibited, except as allowed under copyright
laws.
HP64700B Series Emulation System
Version: B.01.00 20Dec93
Location: Flash
System RAM:1 Mbyte
HP64748 Motorola 68020 Emulator
HP64740 Emulation Analyzer
The emulator executes the powerup initialization procedure, then presents the
Terminal Interface command prompt.
Step 6. Enter commands
To use the emulator, you enter various commands at the Terminal Interface prompt.
These commands instruct the emulator to execute some action or to report
information.
Enter a command by typing it at the Terminal Interface prompt and pressing
<RETURN?> or<Enter>. (Use the key on your system that sends a carriage return).
Example Display the emulator status:

R>es

10



Chapter 1:Quick Start
Step 7. Get command help

Step 7. Get command help

If you need to know more about a Terminal Interface command, you can use the
built-in help facilities.

» To display the maihelp menu, typehelp

The main help menu lists general syntax information for the Terminal Interface. It
also lists the various command groups that have more help information available.

» To display help information for a particular command group, tyek
<group_name>

When you request help on a command group, the Terminal Interface displays a list
of all commands in that group and a brief definition of each command.

» To display help information for a particular command, tyyep
<command_name>

Help information for a specific command includes a list of command options with
brief explanations. Some help modules also contain a series of short command
examples.

You can enter the symbol for the wordHelp.”

Examples Display main help information:

R>help

Display help information specific to the MC68020/68030/EC030 emulator:
R>help proc

11



Chapter 1:Quick Start
Step 8. Configure the emulator

Step 8. Configure the emulator

Before you use the emulator to debug your target system hardware and software,
you must configure the emulator for the way you use the MC68020 or
MC68030/EC030 processor. This includes information on memory map and
processor configuration. There are two primary commands that affect the emulator
interface to your system.

Use themap command to define memory resource usage.

The emulator contains a memory mapper that is programmed to allocate emulation
memory and control access to both emulation and target system memory. You use
themap command to define the memory ranges that you want to use.

Use thecf command and its options to set other emulator configuration items,
including processor configuration and the target system interface configuration.

Thedemocommand automatically sets the proper emulator configuration for the
demo program. Therefore, if you're using the demo program to learn about the
emulator, you won't need to make any changes to the configuration. For any other
system or program, you may need to make changes to the configuration. When you
are ready to use the emulator to debug your system, see Chapter 7, “Configuring
the Emulator.”

Step 9. Load a program

If you’re using emulation memory or your target system RAM to hold your user
code, you can download programs from a host computer. This simplifies
development; you can change your program on the host and load it into the
emulator for immediate testing and verification.

Use thdoad command to download absolute files (containing programs and/or
data) from a host computer into the emulator and target system memory.

12



Chapter 1:Quick Start
Step 10. Run the program

Thedemocommand automatically loads the demo program into emulation me
from the emulator. Therefore, if you're using the demo program to learn about
emulator, you won't need to use thad command.

Typedemoto configure the emulator and load the demo program.

To load and run the complete demo program, your emulation system must have at
least 256K of emulation memory (obtained by installing at least one SRAM on the
emulation probe. Refer to the Installation and Service Chapter at the end of this
manual for instructions on how to install SRAM memory modules.

See Chapter 4, “Using the Emulator,” for more information on loading programs.
See Chapter 10, “Emulator Commands,” for more information odeim®
command and the demo program.

Examples

Step 10. Run the program

Once you have built and loaded a program and configured the emulator, you are
ready to run the program to test its functionality.

To run a program from reset, typest
To run a program from the current program counter (PC) value,rtype:

To run a program from a specific address, typaddress>

<address>is a 32-bit expression. See <ADDRESS> in the “Expressions” chapter
for information.

Run the demo program from reset:

R>r rst

The prompt changes to U> to show processor running in user mode.

13



Chapter 1:Quick Start

Step 11. Modify memory

Step 11. Modify memory

The demo program has a global variable called Cmd_Input that is used as the
command input buffer. You can use the emulator features to modify this memory
location, which effectively enters a command for the program to interpret.

Enter the command “A” into the demo program by typmedb
demo:Cmd_Input=41

The emulator can handle symbolic address arguments, sdemasCmd_Input.
These symbols must be defined to the emulator by usirgytheommand or by
downloading a symbol table. THemo command automatically defines the correct
symbols for the demo program. See the “Symbols” section in Chapter 4 of this
manual for details.

The-db argument to then (memory) command says that the modification value
(41 hex) is to be interpreted as a byte value. (For example, if you used the argument
-dw instead, the value would be interpreted as 0041 hex.)

14



Chapter 1:Quick Start
Step 12. Display memory

Step 12. Display memory

In Step 11, you modified the command input buffer variable to an ASCII “A.” You
can view the output buffer of the program by displaying memory to verify that the
command was correctly interpreted by the program.

Display the demo program’s message output buffer in byte format by typiuti
handle_msg:Msg_Dest..Msg_Dest+1f

You will see:

000000533 43 6f 6d 6d 61 6e 64 20 41 20 65 6e 74 65 72 65

000000543 64 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

When you load a new section of program code, or modify code using the
command, you may want to verify that the code is what you expected. The
emulator allows display of memory locations in mnemonic format.

Display the message handling routine for the demo program in mnemonic format
by typing:m -dm Int_Cmd..47e

You will see:

00000042a Int_Cmd CMPI.B #$41,D0

00000042e - BEQ.W handle_msg:Cmd_A
000000432 - CMPL.B #%$42,D0

000000436 - BEQ.W handle_msg:Cmd_B
00000043a - BRA.W handle_msg:Cmd_|
00000043e andle_msg:Cmd_A LEA  handle_msg:Msg_A,A0
000000444 - MOVEQ #$00000010,D1

000000446 - BSR.W handle_msg:Print_Msg
00000044a - RTS

00000044c andle_msg:Cmd_B LEA  handle_msg:Msg_B,A0
000000452 - MOVEQ #$00000010,D1

000000454 - BSR.W handle_msg:Print_Msg
000000458 - RTS

00000045a andle_msg:Cmd_| LEA  handle_msg:Msg_l,A0
000000460 - MOVEQ #$0000000E,D1

000000462 - BSR.W handle_msg:Print_Msg
000000466 - RTS

000000468 e_msg:Print_Msg LEA  handle_msg:End_Msgs,Al
00000046e andle_msg:Again MOVE.B (A0)+,(Al)+

000000470 - DBEQ D1,handle_msg:Again
000000474 e_msg:Fill_Dest MOVE.B #$00,(Al1)+
000000478 - CMPA.W #$0553,A1
00000047c - BNE.B handle_msg:Fill_Dest
00000047e - RTS

Notice that you can mix symbols and numeric values in ranges.

15



Chapter 1:Quick Start
Step 13. Start and display a trace

When you use thalm option, the emulator disassembles the memory locations
beginning with the first address you specify. If this address is not the starting
address of an instruction, the display will be incorrect.

Step 13. Start and display a trace

Theemulation-bus analyzes a powerful tool that allows you to view the
execution of your program in real-time. You can have the analyzer trigger on a
specific state so that it captures only the information you need. That way, you
won't spend time searching through trace lists of unimportant information.

Define a simple trigger on the address value of the symbol Print_Msg by tigping:
addr=handle_msg:Print_Msg

Often, you'll want the analyzer to recognize its trigger when a certain program
location is reached. You can use either a simple address expression, or one that
includes symbols.

The analyzer doesn’t begin examining data until you start a trace.

Begin an emulation-bus analyzer trace by typing:

When you start a trace, the analyzer begins searching for the trigger specification
while saving data according to your storage specifications. Once the trigger has
been found, you can display any states that are stored.

The program code at Print_Msg is executed only when the program interprets a
command. To set up this condition, you'll need to enter a command. (The processor
must be running, enterif it isn't.)

Enter the command “B” for the sample program by typingdb
demo:Cmd_Input=42

Once you enter the command, the analyzer will find the trigger condition and fill
the trace buffer with program states.

16



Chapter 1:Quick Start
Step 14. Break to monitor

After the analyzer completes the trace measurement, you can display the trac
view the execution of the program.

4 Display the disassembled and dequeued trace list with symbols and addresses by
typing:tl -e -d -od O

You will see:
Line addr,H 68020 Mnemonic count,R seq

0 rint_Msg LEA  handle_msg:End_Msgs,Al -+
2 00000ff8 $0000 supr data long wr (ds16) 0.240uS .
3 00000ffa $0458 supr data word wr (ds16) 0.120uS .
5 sg:Again MOVE.B (A0)+,(Al)+ 0.360 uS .
=sg:Msg_B src sdata rd:$45
=End_Msgs dest sdata wr:$45
6 00000470 DBEQ D1,handle_msg:Again TAKEN 0.120uS .
13 sg:Again MOVE.B (A0)+,(Al)+ 1.040uS .
=00000514 src sdata rd:$6E
=00000534 dest sdata wr:$6E
14 00000470 DBEQ D1,handle_msg:Again TAKEN 0.120uS .

The trace list is a 512 or 1024 state deep buffer (depending on whether you time
stamp the states withq). You can selectively display portions of the buffer using
thetl command. See Chapter 5, “Using the Analyzer.”

Step 14. Break to monitor

The emulation monitor is a program that provides various emulation functions,
including register access and target system memory manipulation. The emulator
must break program execution into the monitor before executing certain emulation
commands, such as those accessing registers, or target system memory. You also
can use the break command to pause target program execution.

» Break the emulation processor into the monitor by tyging:

The prompt changes to M> to show that the processor is running in the monitor.

You can use either a foreground or background monitor. See Chapter 7,
“Configuring the Emulator,” for more information.

17



Chapter 1:Quick Start

Step 15. Reset the emulator

Step 15. Reset the emulator

When you apply power to the emulator, the initialization process leaves the
emulator in the reset state. Changing some configuration items also resets the
processor. (See Chapter 7, “Configuring the Emulator,” for more information.)

Sometimes you may want to reset the emulation processor. This may be done from
the emulator or the target system.

To reset the emulation processor from the emulator, tgpe:

The prompt will change to R>.

18



Troubleshooting

Finding out what's wrong and fixing it

19



Chapter 2:Troubleshooting
If the demo program won’t work

This chapter explains how to diagnose and solve simple problems you might
encounter when you first get started using the emulator. It doesn't explain how to
solve more complex problems or how to interpret error messages. See Part 2 of this
manual for more comprehensive problem solutions.

If the demo program won'’t work

[J Check to be sure that you have the emulator plugged into the demo board, with
power connected to the demo board from the emulator. (The demo program will not
work with target systems other than the demo board.)

[J Make sure the switches on the demo board are set to the OCE position
(Out-of-Circuit Emulation, away from TEST).

[J Make sure you initialized the emulatai(-p), and then executed themo
command to load the program and configure the emulator.

If you don’t see a prompt

[J Make sure that the power cable is connected to the Card Cage and that the front
panel power switch is ON.

[ Make sure that the communications channel settings are correct for the data
communications setup and cabling that you are using.

[J Make sure that you are using the correct data communication cable and that it is
properly connected from your terminal or host computer to the HP 64700 Series
Card Cage.

If you need more information about power or datacomm connnections, see the
HP 64700 Series Card Cage Installation/Service Gufdgu are unable to find
the source of the problem, contact your local HP Sales and Service Office for
assistance.

20



Chapter 2:Troubleshooting
If you see an unfamiliar prompt

If you see an unfamiliar prompt

The emulator uses several different characters before the prompt string to pro
status information (for example, R> means emulator reset). A complete list of
prompts is in Chapter 3, “Using the Terminal Interface.” If you are unable to fin
the problem from that information, check the following items:

To function correctly, the emulator must be plugged into a powered on target
system with a clock signal. (Apply power to the emulator before applying power to
the target system.) You must use the demo board supplied with the emulator for
the demo program.

[J Make sure your system is not holding the emulator in a wait or hold state.

[J Make sure that the emulator is properly configured for your system requirements.

See Chapter 7, “Configuring the Emulator.”

[J Make sure that the emulation monitor is configured correctly. If you want to use a

background monitor, choosémon=bg If you want to use a foreground monitor,
choosecf mon=fg. Choosecf mon=<address>to set the starting address of the
monitor.<address>must be on a 4K boundary. The foreground monitor
<address>range cannot be used by your programs.

[J Try running performance verification (pv) to verify that the emulator and emulation

controller are functioning correctly. See Chapter 15, “Installation and Service.”

If the emulator displays a prompt, but doesn’t
respond to commands

[J Make sure that you are using the correct data communications cable.

[J Make sure that the data communications switch settings (or settings made with the

stty command) are correct for the terminal or host computer and cable that you are
using.

21



Chapter 2:Troubleshooting
If you can't load the demo program

If the emulator seems to execute a command but doesn’t echo what you typed,
check the local echo switch setting or the echo setting stttheommand.

If you need more information about power or datacomm connections, see the
HP 64700 Series Card Cage Installation/Service Gufdgu are unable to find
the source of the problem, contact your local HP Sales and Service Office for
assistance.

If you can’t load the demo program

[J Make sure that the emulator is connected to the demo board, not some other system.

L] Try reinitializing the emulatoiirfit -p), then reenter théemo command.

22



Chapter 2:Troubleshooting
If you can’t load a program

If you can’t load a program

[J Make sure that the configuration is correct. See Chapter 7, “Configuring the
Emulator,” for more information.

[J Make sure that the memory map is defined correctly for your program resource
needs. See Chapter 7, “Configuring the Emulator,” for more information.

[J Make sure that the emulator is properly connected to your target system (the demo
board, in this case) and that the system is powered-on. Also, if the memory map
references target system resources, there must be target system hardware in the
ranges defined by the map.

[J Check thdoad command syntax and the absolute file format to make sure that you
are using the correct options.

[J Make sure that you are using the correct load procedure for the emulator
communications configuration. See Chapter 4, “Using the Emulator,” for examples
of different configurations and the appropriate load procedures.

If the emulator won’t run the program

[J Make sure that you have configured the emulation monitor correctly. If you want to
use a background monitor, cho@$enon=bg If you want to use a foreground
monitor, choosef mon=fg. Choosef mon=<address>to set the starting address
of the monitor<address>must be on a 4K boundary. The foreground monitor
<address>range cannot be used by your programs.

[J Check the general emulator configuration, including chip and bus configuration.
See Chapter 7, “Configuring the Emulator,” for more information.

[J Check the emulator memory map to verify that it matches the resource needs of the
program. If the program and map rely on resources in your target system, make
sure that the emulator is properly connected to a powered-on target system.

23



Chapter 2:Troubleshooting
If you can't break to the monitor

[J Check to make sure that you have correctly specified the address for the run
command.

If you can’t break to the monitor

[J Make sure that you have configured the emulation monitor correctly. If you want to
use a background monitor, cho@$enon=bg If you want to use a foreground
monitor, choosef mon=fg. Choosef mon=<address>to set the starting address
for the monitor.

[J Try initializing the emulatorikit -p), or cycle power to the emulator.

[J Run performance verificatiopy) to test the emulation controller.

If the emulator won't reset

[J Use theescommand to see if the target system is holding the processor in the reset
state.

[J Try initializing the emulatorikit -p), or cycle power to the emulator.

[J Run performance verificatiopy) to test the emulation controller.

24



Part 2

Using the MC68020/MC68EC020 or
MC68030/MCG68ECO030 Emulator

25



Part 2

Making Measurements

When you’ve become familiar with the basic emulation process (see part 1 of this

manual), you'll want to make specific measurements to analyze your software and
target system. The emulator has many features that allow you to control program

execution, view processor resources, and view program activity.

In This Part

Chapter 3, “Using the Terminal Interface,” tells you how to use the Terminal
Interface commands.

Chapter 4, “Using the Emulator,” shows you how to use the Terminal Interface
commands to control the emulation processor and make simple emulation
measurements.

Chapter 5, “Using the Analyzer,” explains how to use the emulation analyzer to
record program execution for debugging.

Chapter 6, “Making Coordinated Measurements,” shows you how to use multiple
emulators, analyzers, oscilloscopes or other measurement tools to make complex
measurements.

Chapter 7, “Configuring the Emulator,” explains how to use the Terminal Interface
commands to allocate emulation resources such as memory and how to enable and
disable certain emulator features.

Chapter 8, “Solving Problems,” explains some of the problems that you might
encounter when you use the emulator, and how to solve them.

If you're looking for a general introduction to using the emulator, see part 1.
Reference information on the emulator is in part 3.

26



Using the Terminal Interface

How to set up the emulator and enter commands in the terminal interface

27



Chapter 3:Using the Terminal Interface

The Terminal Interface provides all the commands you need to make emulation and
analysis measurements. The interface includes tools for emulator initialization,
command entry and recall, and command help.

The steps in the emulation process are as follows:

1 Develop your program as described in Chapter 4.
2 Set up the emulator hardware and software as described in Chapter 15.

3 Connect the emulator to the demo board or other system. (See Chapter 15 and
Chapter 5).

4 Apply power to the emulator.

5 Configure the emulator as needed for your system and programs. See Chapter
7.

6 Use the Terminal Interface commands to load, run and debug your programs.
See Chapters 3, 4 and 5.

28



Chapter 3:Using the Terminal Interface
Using the Interface

Using the Interface

The Terminal Interface is a command-line interface. By using the Terminal
Interface commands, you can control HP 64700 Card Cage system functions and
the emulator-specific functions.

This section tells you how to enter, recall and edit Terminal Interface comman
also explains a few system commands that you may want to use.

The Terminal Interface displays different prompts to show you the current emulator
status. The prompts are shown in the following table.

Command Prompt Meaning

c> No clock source from the emulated
system.

R> The processor is being reset from the
emulator.

r> The processor is being reset from the
emulated system.

g> The processor has granted the bus to the
emulated systenBG orBGACK is
asserted).

h> In the MC68020 emulator, either an

external device is assertiftALT, or
the processor is assertiig\LT (due to
a double bus fault). In the
MC68030/EC030 emulator, the
processor has double bus faulted.

b> No bus cycles are occurring.

u> The processor is executing a target
(user) program.

M> The processor is executing the
emulation monitor.

p> No power from the emulated system.

wW> The emulator is waiting for a CMB

READY signal. See Chapter 6.

29



Chapter 3:Using the Terminal Interface

Using the Interface

w> The processor is waiting for cycle
termination from the target system.

> The emulator is in an unknown state.
You will probably need to use thst or
init command or cycle power to
reinitialize the emulator.

Examples

To apply power

Apply power to the emulator by pressing the power ON button located on the front
panel.

Apply power to the MC68020 emulator. You will see the following appear on your
terminal screen:

Copyright (c) Hewlett-Packard Co. 1987
All Rights Reserved. Reproduction, adaptation, or translation
without prior
written permission is prohibited, except as allowed under copyright
laws.

HP64700B Series Emulation System
Version: B.01.00 20Dec93
Location: Flash
System RAM:1 Mbyte

HP64748 Motorola 68020 Emulator
HP64704 Emulation Analyzer

(The display will be slightly different for the MC68030/EC030 emulator.) The
emulator executes the powerup initialization procedure, and then presents the
Terminal Interface command prompt. See “To Initialize the Emulator.”

30



Chapter 3:Using the Terminal Interface
Using the Interface

To initialize the emulator
To do a limited initialization of the emulator, typeit

To do a complete initialization of the emulator, without verification of system
controller and memory, typeit -c

To do a complete initialization of the emulator, with verification of memory and
system controller, typénit -p

Theinit command does the following:

* Resets the memory map.

* Resets the emulation configuration items.
* Resets the break conditions.

» Clears software breakpoints.

* Reloads the background monitor.

The-c and-p options to thénit command allow a more complete initialization of
the emulator, as follows:

» Theinit -c command does a cold-start initialization, except that system
controller performance verification tests are not executed.

* Theinit -p command performs a powerup initialization, which is the same as
cycling power. This includes emulator, analyzer, host controller, and
communications port initialization, and host controller performance
verification. It breaks the LAN connection before reporting the results of the
initialization.

31



Chapter 3:Using the Terminal Interface

Using the Interface

Examples

To enter commands

Enter a command by typing it at the Terminal Interface prompt and pressing

<RETURN?> or<Enter>. (Use the key on your system that sends a carriage return).

Recall commands in the reverse of the order that they were entered by pressing
<Ctrl>R.

Combine multiple commands on one command line by separating them with
semicolonscommandl;command2;command3

Repeat a set of commands a certain number of times by typng:
<repeat_count> {<command_set>}

where<repeat_count>is an integer specifying the number of times to repeat
the set of commands listeddwommand_set>

To load the demo program, enter:

R>demo

To enter a run command, enter:

R>r

To display several memory locations in mnemonic format and display registers,
enter:

R>m -dm 0400..040f;reg

To display the emulator status and analyzer trace status, enter:

R>es;ts

To display various analyzer settings, enter:

R>tcf;tck;tsto;tg;tgout

32



Chapter 3:Using the Terminal Interface
Using the Interface

To load the demo program, then execute the commaregthree times, enter:
R>demo;rep 3 {s 1;reg}
This loads the demo program, and then causes the emulation processor to step and

display registers three times. The first step is from the current program counter
address.

To recall commands

To recall commands in the same order that they were entered<@tdss .

To recall commands in the reverse of the order that they were entered, press
<Ctrl>R.

The command line buffer allows you to recall previously entered commands to the
command line. To execute the command, prEISTURN> or <Enter>.

If you want to edit the commands that you recall from the buffer, it's easiest to use
the command line editing feature of the Terminal Interface. See “To enable
command line editing.” The command line editing feature has different recall
commands. See “To edit a command.”

To repeat commands

Repeat a set of commands a certain number of times by tygmg:
<repeat_count> {<command_set>}

where<repeat_count>is an integer specifying the number of times to repeat the
set of commands listed #tommand_set> (A <repeat_count>of 0 continues
repeating the commands until you enteCarl>c .)

33



Chapter 3:Using the Terminal Interface
Using the Interface

Example Load the demo program, then execute the commdnekgthree times:
R>demo;rep 3 {s 1;reg}
This loads the demo program, then causes the emulation processor to step and

display registers three times. The first step is from the current program counter
address.

34



Chapter 3:Using the Terminal Interface
Using the Interface

To enable or disable command line editing

1 To install the command line editing feature, tygdee

2 To remove the command line editing feature, typbed

The command line editing feature allows you to use a simple set of command
modify the command line. See “To edit a command.”

To edit a command

1 Press<Esc>to enter command editing mode. (Command line editing must be
enabled. See “To enable or disable command line editing.”)

2 Use the commands listed in the following table to edit the command line. You can
either edit an existing command or recall one to the command line<ssog]j or
<Esc>k Or, you can use the commands shown in the table to search for a
command in the buffer.

Command Action

i Insert before current character.

A Append to end of line.
dd Delete command line.
$ Move cursor to end of line.
A Move cursor to start of line.

I Move right one character.

j Fetch next command.
a Insert after current character.
X Delete current character.

Delete to end of line.

35



Chapter 3:Using the Terminal Interface
Using the Interface

Command Action

0 Move cursor to start of line.

h Move left one character.

k Fetch previous command.

r Replace current character.

/<string> Find previous command matching
<string>.

n Fetch previous command matching
<string>.

N Fetch next command matching <string>.

3 When finished editing the command, preEster> to execute the command.

To get on-line help

» Display the mairhelp menu by typinghelp

or
e Type:?

» To display help information for a particular command group, typk
<group_name>

» To display help information for a particular command, tyyep
<command_name>

If you need quick reference information about a command or a set of commands,
you can use the built-inelp facilities. You can enter tHesymbol in place of the
word “help.”

36



Chapter 3:Using the Terminal Interface
Using the Interface

Examples To display main help information, enter:

R>help

To display help information for the emulation command group, enter:

R>? emul

To display help information for the load command, enter: .

R>help load

To display the emulator status

» Display the emulator status by typires

The emulation prompts can usually tell you most information about the emulator’s
status: whether the emulator is reset, running a user program, or running in monitor.
(See “Using the Interface” for information on the different command prompts.) If
you need more information than is given by the prompt, you can use the

command.

To set the date and time

» To display the current date and time setting, tgpe:

» To set the date, typ#t <yymmdd>, whereyy is the last two digits of the yeanm
is the month, andd is the day of the month.

» To set the time, typét <hh:mm:ss>, wherehh is the hour in 24 hour formatm
is the minute of the hour, asdis the second.

37



Chapter 3:Using the Terminal Interface

Using the Interface

Examples

The HP 64700 Card Cage has a system clock that you can set usihg the
command. The clock is reset when power is cycled. You can use the system clock
for a variety of applications. For example, if you're logging the output of analyzer
traces to a printer, you might want to insertdheommand at intervals so that the
date and time will be printed with the trace listings.

Set the date to September 5, 1991:
R>dt 910905

Set the time to 1:05 P.M.:
R>dt 13:05:00

Display the date and time settings:
R>dt

Examples

To change the prompt

Change the Terminal Interface command prompt to the string givestiryg> by
typing: po -p "<string>"

The standard command prompt is ">." You can change the prompt to suit your
needs. Remember that the prompt is always preceded by a status character that
identifies the emulator state. This character is not affected when you redefine the
prompt.

The emulator prompt appears as follows when the emulator is reset:

R>

Change the prompt string to "<myemulator>":

38



Chapter 3:Using the Terminal Interface
Using the Interface

R>po -p "<myemulator>"
R<myemulator>

To check the version of the Terminal Interface
software

Typever to display the version numbers of the Terminal Interface system software
and emulator software.

The MC68020 or MC68030/EC030 emulator firmware must be used with the
correct version of the emulation system and emulation analyzer firmware. See the
paragraph titled, "To ensure software compatibility" in the Installation and Service
chapter of this manual for more information.

To print strings on the output device

Print a numeric expression or character string on the standard output device by
typing: echo <value>

where<value>may be a character string (enclosed in single or double quotes), a
numeric expression, or a series of hex codes preceded by backslash (\) characters.
(The hex codes are converted to their ASCII equivalents.)

Occasionally, you may want to print a string on the standard output device (usually
your terminal, but may be a printer or another device if you have redirected the
standard output port.) Tle=hocommand allows you to do this.

You can also use this command as a numeric calculator. The hex code character
evaluation is useful for sending control strings to your terminal.

39



Chapter 3:Using the Terminal Interface
Using the Interface

Examples Send the string "Change the switch now" to your terminal:
R>echo "Change the switch now"
For an HP 2392A terminal, send the commands to home the cursor and clear the
screen:

R>echo \1b "H" \1b "J"

Find the result of the bitwise AND operation on 08 hex and 28 hex:
R>echo 08&28

To insert delays in command processing

» To delay execution of the next operation until the next keystroke occurs (on the
standard input port), type:

» To delay execution of the next operation until the current measurement is
completed, typew -m

» To delay execution of the next operation for a time, typeNN>

where<NN> is the number of seconds that you want to delay.

Command delays are especially useful when you're using repeat loops, macros, or
command files, and you need to modify some target system condition or write
down results before the next command begins.

40



Examples

Chapter 3:Using the Terminal Interface
Using the Interface

Initialize the emulator, and then load the demo program:

R>init -c

R>demo

Now use a command repeat: start a trace, wait for trace completion, display th
resulting trace list, and then wait for any keystroke before the next iteration of
loop:

U>rep O {t;w -m;tl;w}

Cancel the repeat by typirgCtri>C .

41



Chapter 3:Using the Terminal Interface
Building and Using Macros

Building and Using Macros

Macros can simplify repetitive command sequences. You can enter the command
sequence once; then use the macro for the command sequence. Macros simplify
trace measurements that require many run and trace commands, or setting up a
particular emulator configuration each time you start a new measurement.

Example

To create macros

To create a macro referenceddname>, type:mac <name>={<cmd_list>}
where<cmd_list>is a series of Terminal Interface commands that are separated by
semicolons (;).

You can add parameters to macros. Seendmecommand in Chapter 10,
“Emulator Commands” for more information.

Define a macro that resets the emulator, loads the demo program, runs the demo
program, and then modifies the Cmd_Input buffer:

R>mac setup={rst;demo;r;m -db demo:Cmd_Input=41}

Execute the set of commands in this macro:

R>setup

List the predefined configuration macros:

R>mac

42



Chapter 3:Using the Terminal Interface
Building and Using Macros

Example

To execute a macro

To execute a macro, type the macro name at the command prompt.

To prevent command information display during macro execution, tygpe:-q

To have macros execute with complete information on the commands in the
type:mac -v

Execute the "setup" macro defined in the previous section:

R>setup

If you don’t want the commands in the macro displayed, emer-q before
entering the macro command:

R>mac -q

R>setup

Reenable command display during macro execution:

R>mac -v

To delete macros

To delete a macro given kyname>, type:mac -d <name>

To delete all macros, typstac -d *

When you're finished using a macro, you should delete it. This frees emulator
system memory for symbols, equates, and new macro definitions.

43



Chapter 3:Using the Terminal Interface
Building and Using Macros

Example Delete the macro named setup:

R>mac -d setup

44



Chapter 3:Using the Terminal Interface
Using Command Files

Using Command Files

A command file is an ASCII file containing Terminal Interface commands. You
can create command files from within the interface by logging commands to a
command file as you execute the commands. You can also create command
outside the interface with an ASCII text editor. You can send a command file t
Terminal Interface and have it execute the commands found there as if you ty
them directly at the interface command line.

With a single command file, you can implement a complete test procedure. For
example, you could start the interface and execute your command file. The
command file could load a configuration, load an absolute file, modify registers or
memory, set up a trace specification, start the program, capture the trace, and save
the trace listing to a file. (The ability to capture information from the emulator may
be limited, and depends on the host computer configuration.)

Building Command Files

To build and use a command file in the Terminal Interface, the HP 64700 Series
Card Cage must be connected to a PC, workstation, or other host computer with
secondary storage.

You can build a command file by creating a list of commands with an ASCII editor,
or by logging commands to a file during a work session. If you log commands, the
way in which you build the command file depends on the configuration of the
connection. This section shows how to build and use command files for three of the
possible setups.

Commands to be logged can be classified into two categories: those that take an
action and those that list status. Many commands fit into both categories. For
example, thésq -i <number>command deletes a trace sequence termtsthe
command lists all current trace sequencer settings.

You can use this action-status division to your advantage when logging commands.
For example, if you want to log the configuration of the emulator to a command

file, including the trace settings and so on, it's best to reassign the emulator’s
standard output to a file. Thus, the file will capture the lists output from the various
commands. The lists can be used directly for the command file. If you want to log
several action commands, it's usually best to log only the command inputs and
reassign the standard output to another port so that the output isn’t captured (trace
and memory lists, for example).

45



Chapter 3:Using the Terminal Interface
Using Command Files

Editing Command Files

Because the command file is an ASCII text file, you may use an ASCII editor to
add, modify, or remove commands.

Comments in Command Files

As with any source file, comments in command files help to explain the operation
of the command file and can also contain creation and modification information.
You can put comments in command files by using a text editor or by entering the
comment as a “command” in the interface command line entry area when logging
commands to a file. The same mechanism that allows you to enter comments
directly into the command line when logging commands also prevents the interface
from trying to execute the comment as an interface command. See “To create a
command file with a text editor” for more information.

Example

To create a command file with a text editor

Type in a series of commands in a text editor (one to a line or multiple commands
on one line, separated by semicolons) and save the file to disk.

You can create and edit command files with any text editor that will write and edit
ASCII files. To insert a comment in a command file, precede the comment text
with the# character. Anything after that character is ignored by the Terminal
Interface command interpreter.

Create the following text file using an editor and save¢bagfile:

demo # loads demo program

r # runs program

# Now give the program a command

m CMD_INPUT=41 # command "A"

m -db MSG_DEST..MSG_DEST+20 # display output buffer
# Set up a trace and execute it

tg addr=int_serv:FILL_DEST # trigger on blank fill routine
t # start a trace

m -db CMD_INPUT=42 # command "B"

tl-e # list trace with symbols and addresses
b # break

rst # reset the emulation processor

46



Chapter 3:Using the Terminal Interface
Using Command Files

To log a command file from a PC host

1 Start the terminal emulation software on your PC (such as HP AdvanceLink).

2 Enable the file logging capability of your terminal emulation software.

3 Type the series of Terminal Interface commands that you want to save to the
command file.

4 Disable the file logging capability of the terminal emulation software.

5 Edit the disk log file as needed to remove extraneous information such as command
prompts and command responses. Save the file under the name that you want to use
for the command file.

The above procedure allows you to save a series of Terminal Interface commands
in a file that you can later edit into a form suitable for use as a command file.

PERSONAL COMPUTER

(USED BOTH FOR SOFTWARE
DEVELOPMENT AND EMUIATOR CONTROL;
RUNS TERMINAL EMULATION SOFTWARE)

HP 64700 CARD
CAGE CONTAINING
EMULATOR

47



Chapter 3:Using the Terminal Interface
Using Command Files

To log a command file on a UNIX host (emulator
on different port)

Connect to the emulator using the UNdXcommand.

Begin logging commands to a file namedename>on the host by typing:
~%><filename>

Type in the series of commands that you want to save in the command file.
End command logging by typing%>
Exit cu by typing:~.

Edit the file you saved to remove command prompts, add comments or change
commands.

You can use the file redirection capabilitycofto log commands to a file on the
host.

PORT A

HP 64700 CARD
CAGE CONTAINING
EMULATOR

TERMINAL
P

UNIX HOST

48



Chapter 3:Using the Terminal Interface
Using Command Files

When you type the character duringu program executiorgu prints the host
name of your system after the tilde.

Example Connect to the emulator using:

$ cu -l /devitty01

Redirect the command inputs to a command file:
R>%>cfile

Type in the commands that you want to save in the command file. Now end input
redirection:

R>~%>

Edit the command filefile to remove command prompts and other unwanted
information.

To use a command file on a PC host

» Use the ASCII upload feature of your terminal emulation software to send the
command file to the HP 64700 Series Card Cage.

By using an ASCI!I or text upload feature built into your terminal emulation
program, you can send a command file on your PC’s disk to the emulator. You
must use an upload feature because it will ship the file out to the serial connection.
Many “disk read” or “file read” functions simply display the file’s contents on the
PC display without sending the data to the serial port.

49



Chapter 3:Using the Terminal Interface
Using Command Files

Example

To use a command file on a UNIX host (emulator
on different port)

Connect to the emulator using the UNdXcommand.

Download the command file namstilename>to the emulator by typing:
~%<filename

You can use the input redirection capabilitcotto send a file on the UNIX host to
the emulator.

Connect to the emulator:
$ cu -l /devitty01

Initialize the emulator:
R>init -c
Download the command file namefile:

R>~%<cfile

(Note: the name of your host computer will usually be printecliafter you type
the tilde (~).)

50



Using the Emulator

How to use the Terminal Interface to control the processor and view system
resources

51



Chapter 4:Using the Emulator
To configure the emulator

The emulator has many commands and features that allow you to control execution
of your program. It also has facilities for entering and recalling commands.

To configure the emulator

Set up the emulator for use by configuring it as described in Chapter 7,
“Configuring the Emulator.”

The emulator has several configuration items that adapt it to specific system
designs and program requirements. You should check the configuration and modify
it for your needs before using the emulator. This will ensure correct operation of all
emulator functions.

To build programs

Create source files in “C” or MC68020/MC68030/MC6BEC030 assembly language
using a text editor.

Translate the “C” source files to relocatable object code using a compatible C cross
compiler.

Translate the assembly source files to relocatable object files using a compatible
MC68020/MC68030/MC68ECO030 cross assembler.

Link all relocatable object files with the linker/loader to produce an absolute object
file in HP64000 (HP-OMF) format or Motorola S-record file format.

If you're planning to load programs into emulation or target system memory, you
need to have your files in a format acceptable to the emulator Terminal Interface.
Usually, this means that you'll want your files in Motorola S-record or HP64000
(HP-OMF) absolute format. The HP language tools for the HP 9000 can produce
these formats.

52



Chapter 4:Using the Emulator
To build programs

Processor C Compiler Assembler
68020/68EC020 HP 64903 HP 64870
68030/68EC030 HP 64907 HP 64874

You may use other language tools, such as the Microtec ReSearch

Intermetric&] compilers and assemblers, if they produce the Motorola S-record
format or HP64000 absolute file format. (These are the preferred formats, but the
Terminal Interface will also accept Intel hex and Tektronix hex file formats.)

Example To build the demo program with the HP 64870 Assembler/Linker:

as68k -h demo
as68k -h handle_msg
Id68k -h -c demo.k -0 demo.x

To build the demo program with the Microtec Research assembler/linker on a PC:

asm68k -fd -th -fcase -ft -L demo.s
asm68k -fd -th -fcase -ft -L handler.s
Ink68k -c demo.k -fi -th -fd -fs -L -0 demo.x

53



Chapter 4:Using the Emulator
To load the demo program

To load the demo program

Load the emulator demo program by typidgmo

The emulator contains a simple demo program that acts as a primitive command
interpreter. You can use this program to learn more about the
MC68020/MC68030/MC6E8EC030 emulator.

The demo command maps memory and sets the configuration items as needed. It
also initializes the trace vector in the vector table so that($tep) command will
work properly.

To load and run the complete demo program, your emulation system must have at
least 256K of emulation memory (obtained by installing at least one SRAM on the
emulation probe. Refer to the Installation and Service Chapter at the end of this
manual for instructions on how to install SRAM memory modules.

More information on the demo program is in Chapter 1, “Quick Start.”

54



Chapter 4:Using the Emulator
To load a program from a PC host (PC controls emulator)

Loading Programs

The Terminal Interface provides commands that allow you to move files into
emulation or target memory from a host computer through the serial or LAN ports
of the HP 64700 Card Cage.

Many different absolute file formats are supported. The primary one discussed in

this section is Motorola S-record format. If you have a host computer connected to

the same LAN as the HP 64700, you can move files in the HP64000 absolute .
format.

Theload command has other options that allow you to control the load process.
Seeload in Chapter 10, “Emulator Commands,” for details.

To load a program from a PC host (PC controls
emulator)

1 Build an absolute file in the Motorola S-record format (see “To build programs” in
this chapter).

2 Start the terminal emulation software on the PC (such as HP AdvanceLink).

3 At the Terminal Interface prompt, tydead -m

PERSONAL COMPUTER

(USED BOTH FOR SOFTWARE
DEVELOPMEN  AND EMULATOR CONTROL;
RUNS TERMINAL EMULATION SOFTWARE)

HI> 64700 CARD
CAGE CONTANING
EMULATOR

55



Chapter 4:Using the Emulator
To load a program from a UNIX host (emulator on different port)

4 Exit the terminal emulation software.
5 Atthe MS-DOS prompt, typeopy <filename> <com_port>

where<filename>is the name of the Motorola S-record file you want to load, and
<com_port>is the name of the PC communications port (COM1..COM4) to which
the emulator is connected.

6 Restart the terminal emulation software.

To load a program from a UNIX host (emulator on
different port)

1 Build an absolute file in the Motorola S-record format (see “To build programs” in
this chapter).

2 To connect to the emulator, type the command
cu -l /dev/ityXX at the HP-UX prompt .

PORT A

HP 64700 CARD
CAGE CONTAINING
EMULATOR

TERMINAL

UNIX HOS|

56



Chapter 4:Using the Emulator
To load programs over the LAN

whereXX is the device number of the UNIX system serial port connected to the
HPC emulator.

3 Type:load -im
4 Type:~%< <filename>

where<filename>is the name of the Motorola S-record file that you want to load.

To load programs over the LAN

» Use thdtp command on your local host computer to transfer files to the remote
HP 64700.

When connecting to the HP 64700's ftp interface, you can use either the

HP 64700's hostname or the Internet Protocol (IP) address (or internet address).
When you use the HP 64700’s hostname, the ftp software on your computer will
look up the internet address in the hosts table, or perhaps a name server will return
the internet address.

Examples To connect to the emulator’s ftp interface, enter the following command (use any
name and password):

$ ftp 15.35.226.210
Connected to 15.35.226.210.
220 User connected to HP64700
Name (15.35.226.210:guest):
Password (15.35.226.210:guest):
230-

NOTICE

This utility program is unsupported. It is provided at no cost.
Hewlett-Packard makes no warranty on its quality or fithess for
a particular purpose.

FTP on the HP64700 serves as a means for downloading absolute files to the
emulation environment. The file transfer can be be performed as follows:

1. The data mode type must be set to IMAGE (binary)
2. Store the file using options to indicate the file format. The following

example uses PUT as the host command for sending the file. This may be
different for your ftp implementation.

57



Chapter 4:Using the Emulator
To load programs over the LAN

put <file_name> <options>

<file_name> - host file to be loaded.

<options> - The options are preceeded by a minus (-). The available
options vary for individual emulators. All support HP OLS, Intel hex,
Motorola S-records, and Extended Tek Hex. Emulator specific options can
be viewed by issuing a Terminal Mode help for the load command.

put hpfile.X -h #to download an HP OLS file

put intelfile -i #to download an Intel Hex file

put motfile -m #to download a Motorola S-record file
put tekfile -t #to download an Extended Tek Hex file

230

To set up ftp for binary file transfers:

ftp> binary
200 Type set to |

To download the HP 64000 format absolute file into the emulator:

ftp> put program.X -h

200 Port ok

150

226-

R>

226 Transfer completed

3332 bytes sent in 0.20 seconds (16.27 Kbytes/sec)

To exit out of the ftp interface:

ftp> quit
221 Goodbye
$

58



Chapter 4:Using the Emulator
To load program symbols over the LAN

Symbols

Symbol handling adds power to your interaction with the emulator. You can use
symbols in expressions involving addresses, which frees you from memorizing the
addresses associated with the symbols.

The symbols you enter and the corresponding address information is stored in an
emulator system table. When you display memory in mnemonic form, step the
processor, or display trace results, the emulator retrieves the symbol informati
from the table and displays it. This makes the measurement results easier to r

In the Terminal Interface, you can only define global and local symbols by
downloading a symbol file from a host computer (see “To load program symbols”).
Otherwise, you can define your own (user) symbols by adding them within the
Terminal Interface (see “To add user symbols”).

To load program symbols over the LAN

Use thdtp command on your local host computer to transfer files to the remote
HP 64700.

Loading symbol files over the LAN is the same as loading absolute files over the
LAN, except that a different option is used with the "put" command in ftp.

Symbol files are ASCII files in a special format. Chapter 13, “Data File Formats,”
describes the symbol file format.

59



Chapter 4:Using the Emulator
To load program symbols over the LAN

Examples

To connect to the emulator’s ftp interface, enter the following command (use any

name and password):

$ ftp 15.35.226.210
Connected to 15.35.226.210.
220 User connected to HP64700
Name (15.35.226.210:guest):
Password (15.35.226.210:guest):
230-

NOTICE

This utility program is unsupported. It is provided at no cost.
Hewlett-Packard makes no warranty on its quality or fithess for
a particular purpose.

To set up ftp for binary file transfers:

ftp> binary
200 Type set to |

To download the symbol file into the emulator:

ftp> put program.sym -S

200 Port ok

150

226-

R>

226 Transfer completed

1789 bytes sent in 4.78 seconds (0.37 Kbytes/sec)

To exit out of the ftp interface:

ftp> quit
221 Goodbye
$

60



Chapter 4:Using the Emulator
To add user symbols

To add user symbols

Add a user symbol by typingym <name>=<address>

You can define user symbols to help you while you're making measurements. For
example, you might find that you're repeatedly entering a particular address for
memory display commands. If you define this address as a symbol, you can use the

symbol in the memory display command. Also, the symbol will be displayed in
analyzer measurements and memory mnemonic displays.

Examples

To remove symbols

To delete all symbols in the emulator’s symbol table, typet -d
To delete all user symbols, tymym -du

To delete a specific user symbol, typgm -du <symbolname>
To delete all global symbols, typgym -dg

To delete all local symbols for all modules, typgm -dI

To delete all local symbols for a specific module, tgyen -dl <modname>:

The emulator symbol table uses system memory so you might need to delete
symbols or sets of symbols to free memory while you're using the emulator. You
also might want to delete symbol sets that you're no longer using so they don’t
clutter the symbol display.

To delete the symbols for the handle_msg module in the demo program, enter:

R>sym -dl handle_msg:

61



Chapter 4:Using the Emulator

To display symbols

To delete all global symbols, enter:

R>sym -dg

Examples

To display symbols

To display all symbols in the emulator’s symbol table, tggm
To display all user symbols, typgm - u

To display a specific user symbol, tyggm -u <symbolname>
To display all global symbols, typgym -g

To display a specific global symbol, type:
sym -g :<symbolname>

To display all local symbols for all modules, typgm -|
To display all local symbols for a specific module, tygen - <modname>:

To display a specific local symbol, tymm -| <modname>:<symbolname>
To display the local symbols for the module demo in the demo program, enter:
R>sym -l demo:

To display the value of all global symbols, enter:

R>sym -g

62



Chapter 4:Using the Emulator
To display memory

Accessing Processor Memory Resources

While you are debugging your system, you may want to examine memory
resources. For example, you may need to verify that the correct data is loaded, or
check to see if a sequence of values was written correctly. Also, you may need to
modify one or more memory locations to test different data sets for a program. The

emulator has flexible memory commands that allow you to view and modify

memory as needed.

To display memory

To display a range of memory in the format set by the mode commandntype:
<address_range>

To display a range of memory in byte format, typedb <address_range>
To display a range of memory in word format, type:dw <address_range>
To display a range of memory in long word format, typed| <address_range>

To display memory in MC68020/MC68030/MC68EC030 mnemonic format, type:
m -dm <address_range>

The display mode is initialized by th& (mode) command. You can change the
display mode setting using the options shown above.

When you use thalm option, the emulator disassembles the memory locations
beginning with the first address you specify. If this address is not the starting
address of an instruction, the display will be incorrect.

Only emulation memory mapped with ite (dual-port) attribute may be displayed

or modified while a user program is running. Dual-port memory may also be
displayed while the emulator is reset. For other memory, the emulator must use the
monitor to access it. Use theeommand to begin running in the monitor.

63



Chapter 4:Using the Emulator
To modify memory

Examples Before using the following examples, reload the demo program:
R>demo
To display program memory for the main part of the demo program in the current
display mode, enter:

R>m demo:Main..EndLoop

To display the processor’s interrupt vector table in long word format, enter:

R>m -dl 0..3ff

To display the demo program’s message output buffer in byte format, enter:

R>m -db handle_msg:Msg_Dest..Msg_Dest+1f

To display the Print_Msg routine for the demo program in mnemonic format, enter:

R>m -dm handle_msg:Print_Msg..Fill_Dest+0a

To modify memory

* Modify a single memory location to a single value by typing:
<address>=<value>

» Modify a range of memory locations to a single value by typing:
<lower>..<upper>=<value>

» Modify a range of memory locations with a list of values by typing:
<lower>..<upper>=<valuel><value2>,. ..

» Change whethetrvalue>is interpreted as a byte, word, or long word data type by
adding thed<mode>parameter before the address range.

64



Chapter 4:Using the Emulator
To modify memory

The<address>parameter is an expression representing a single address location.
The<lower> and<upper> values are address expressions representing the lower
and upper boundaries of the memory area to be accessfue> represents the

data value to which the contents of memory are to be modified.

If you don't use thed<mode>parameter, the current display mode is used to
interpret the data type efvalue>. Otherwise, the display mode you specify is used
to interpret the data type. See the examples and “To Initialize Display and Set
Access Modes” for more information.

Examples To modify the byte at elf hex to 43, enter:
R>m 0Oelf=43
The above example assumes that byte mode was in effect. If not, you can add the
mode parameter:

R>m -db 0elf=43

To modify the command input buffer of the demo program to 43 hex, enter:

R>m -db demo:Cmd_Input=43

To modify the range of locations from e00 through e38 to zero, enter:

R>m 0e00..0e38=0

To modify the range of locations from 0e00 through 0e38 to "ABC", enter:

R>m -db 0e00..0e38=41,42,43

Remember that the memory modification is affected by the display mode. Suppose
that locations f00 and fO1 each contain 01. If you enter the command:

R>m -db 0f01=03

Then location fOO contains 01 and location fO1 contains 03. But, if you entered:

R>m -dw 0f00=03

65



Chapter 4:Using the Emulator

To search memory

Then location fOO will contain 00, and location fO1 will contain 03. Notice that you
refer to a word by an even address, which is the address of its most significant byte
(this is defined by the MC68020/MC68030/EC030 processor architecture).

To search memory

To search a memory range for a particular expression,dgpe:
<lower>..<upper>=<expr>

To search a memory range for a character string, $gpe:
<lower>..<upper>=<string>

To change the mode that determines matching characteristics for the search, add the
-d<mode>parameter before the address range.

Searching memory for values or character strings can help you determine whether a
program is functioning correctly. For example, in the emulator demo program, you
can enter a command, then search memory for the output message to see if the
program responded correctly.

Sometimes you expect a data value to be written to a particular memory location
during a program run. But, the program may accidentally write the value to the
wrong location. You can search memory for expression to see if the value was
written to another location.

The<lower> and<upper> values are address expressions representing the lower
and upper boundaries of the memory area to be searched.

If you're searching for character stringstring> is an ASCII string delimited by *
(accent grave) or " (double quote). Remember that if one of the characters is part of
the string, you should use the other character as a delimiter.

If you don’t use thed<mode>parameter, the current display mode is used.
Otherwise, the display mode you specify is used to determine how data is matched
during the search. See “To initialize display and set access modes” in this chapter
for more information.

66



Chapter 4:Using the Emulator
To copy memory blocks

Examples Suppose that memory location fOO contains 03 and fO1 contains 00 hex. Then the
word spanning both locations contains 0300 hex.

To search these locations for 3 hex by words, enter:

R>ser -dw 0f00..0f01=3

The search will fail since the value 3 hex doesn’t lie on a word boundary. To search
for the same value by bytes, enter:

R>ser -db 0f00..0f01=3

The match is found at address 0f00.

To search the message area of the emulator demo program for the string
“‘ommand,” enter:

R>ser -db handle_msg:Msg_A..End_Msgs="ommand"

Three matches are found.

To copy memory blocks

» Copy a memory block from an address range specifieddwer> and<upper> to
the destination address range having lower beuedtination> by typing:cp
<destination>=<lower>..<upper>

Thecp command allows you to move blocks of code or data to different locations
in memory.

<lower> and<upper> specify the lower and upper address ranges of the block that
you want to move, while thedestination>address is the starting address of the
range for the destination memory block.

Examples Suppose that you need to modify the exception vector table located in your target
system ROM. The following are the initial conditions for the memory map:

67



Chapter 4:Using the Emulator
To copy memory blocks

R>map

map 0000..0ffffh # 64 Kbytes target ROM; vector table/program code
map 10000..18fff # 32 Kbytes target RAM;program data

map 19000..19fff # Other guarded memory

map 80000..80fff # Emulation RAM (foreground monitor)

To modify the vector table, first create a new emulation memory term:

map 20000..203ff # Emulation RAM (1K block for
exception vector table)

Copy the exception table from target ROM to emulation RAM:

R>b
R>cp 20000=0..3ff

Now you can modify the table. To have the processor use the new table in
emulation RAM, enter:

R>r vbr=20000

68



Chapter 4:Using the Emulator
To initialize display and set access modes

To initialize display and set access modes

Initialize the global display mode by typingo -d<disp_mode>

where<disp_mode>is b for byte,w for word, | for long word, om for mnemonic.

Set the global access mode by typimg: -a<access_mode>

where<access_modeis b for byte,w for word, orl for long word. .

Check the mode settings by typimgo

The display mode setting affects your interaction with memory displays,
modifications, and searches. The display mode determines whether the emulator
interprets data values as bytes, words, or long words. You can use the mode
command to set the mode that you need initially. If you use the mode parameters to
the individual commands, the global display mode is changed.

The access mode has a different function. When you display or modify target
system memory or emulation memory that is not dual-port, the emulator uses the
monitor to read or write target memory locations. The access mode determines
whether the emulator uses byte, word, or longword sizing for the memory accesses.

69



Chapter 4:Using the Emulator

To run a program

Using Processor Run Controls

When you don’t use an emulator, run control can be difficult. Usually, you're
limited to starting the processor from reset, and then entering data values that
vector program execution to the routines you want to test. Reaching those routines
may be difficult or impossible if the data values are boundary conditions or the
program logic is faulty.

By using the emulator, you can run the processor from the current program counter
or any desired address. If you want to examine your system after each program
instruction, you can use ts&ommand to step through the program. You can break
to the monitor program to examine on-chip resources such as registers. You can
also reset the processor from the emulator.

To run a program

To run a program from the current program counter (PC) value,rtype:
Type:r $

To run a program from a specific address, typ@address>

To run a program from target system reset, tyjpgt

When you're ready to start a program run, either to test target system operation or
make an analyzer measurement, use {nen) command.

<address>is a 32-bit address expression. You can include function codes to
specify the memory space to which the address applies. See <ADDRESS> in
Chapter 11, “Expressions,” for more information.

Ther rst command pulses the processor reset line. The processor fetches the values
at addresses 0 and 4 and loads these values into the interrupt stack pointer and
program counter registers. It then begins running from the program counter address
value.

70



Chapter 4:Using the Emulator
To break to monitor

If the emulator is in the reset state (R> prompt)r tbemmand (with no
parameters) acts the same est. Otherwiser runs from the current program
counter value.

However, if you reset the emulator, break to the monitor, and then run the emulator,
the stack pointer and program counter values will not be initialized. Therefore, the
run will fail. Thecf rv configuration item allows you to define initial values for the
program counter and stack pointer in this instance. See Chapter 7, “Configuring the
Emulator,” for more information. Typically, you will want to put the values found

at addresses 0 and 4.

Examples To run from the demo program’s starting location, select:

R>r demo:Main

or

R>r 400

To break to monitor

» Break the emulation processor into the monitor by tyging:

The emulation monitor is a program that provides various emulation functions,
including register access and target system memory manipulation. If the emulator is
reset, it will enter the monitor before executing certain emulation commands, such
as those accessing registers, emulation memory that is not dual-port, or target
system memory. (The emulator breaks to the monitor temporarily if you enter these
commands during user program execution, unless you restrict the emulator to
real-time runs. See Chapter 7, “Configuring the Emulator,” for more information.)
You also can use the break command to pause execution of your user program.

The prompt changes to M> to show that the processor is running in the monitor.

You can use either a foreground or background monitor. See Chapter 7,
“Configuring the Emulator,” for more information.

71



Chapter 4:Using the Emulator
To step the processor

To step the processor

To step the processor one instruction from the current program counter value, type:
s

To step the processor <count> number of times from the current program counter
value, types <count>

To step the processor one instruction from an address given by <address>1type:
<address>

To step the processecount>number of times from an address given by
<address> type:s <count> <address>

To inhibit display of information about the steps, add-thearameter before the
<count>and<address>

To display only the next program counter value when the step is complete, add the
-w parameter before theeount> and<address>

Thes(step) command lets you single-step the processor through program code.
You can display registers after each step to help you locate the source of problems
or verify correct operation. You might want to modify a register, and then step the
processor to check the result.

You can specify a step courtcpunt>) to step the processor more than one
instruction. The default base is decimal. You must supply a step count if you supply
an address. Otherwise, the emulator will interpret the address as a step count.

The default base feraddress>is hex. If you omit the address, the current program
counter value is used. You can @ mean the same thing as the current program
counter value.

Both emulation monitors use the trace exception vector (located at offset 24 in the
vector table) to implement tlsgstep) command. Therefore, you must initialize this
vector properly before using the step command.

» If you're using the background monitor, the emulator may try to modify the
trace vector as needed to complete the step function. If you have trouble with

72



Chapter 4:Using the Emulator
To step the processor

this (for example, the vector table is in target ROM and the trace vector is
uninitialized) you might want to set the trace exception vector to an even value
that points to a mapped memory area. Or, you can set the vector to point at the
start of the vector table (usually address 0 unless you have relocated the vector
table by modifying the vector base register (VBR).

» If you're using the foreground monitor, the trace exception vector must point
to the TRACE_ENTRY address in the foreground monitor. In the default
foreground monitor, this address will equal the settingf afionaddr plus
800h. For example, & monaddr=100Q then the trace exception vector
should be set to 00001800h.

The emulator verifies the trace vector each time that you estarmamand.

During execution of the command, it does not recheck the value for each
instruction step. So, if you relocate the vector table by modifying the VBR, the
emulator will not recheck the trace vector in the new location. If you modify the
trace vector value after this relocation (through program execution), stepping may
fail.

The memory area used by the vector table must point to readable memory (that
which is not guarded memory). Usually, the vector will be in emulation RAM or
target RAM. The emulator modifies the trace vector to do the step, but restores the
original value when the step completes. If it is in target ROM, the emulator cannot
modify the trace vector properly. Therefore, the ROM must contain the correct
trace vector value for stepping to work correctly.

Examples To step the processor one instruction, enter:

M>s

To step the processor three instructions from the current program counter, enter:
M>s 3

To step the processor five instructions from the demo:Loop symbol in the sample
program, enter:

M>s 5 demo:Loop

To step once and disable step display, enter:

M>s -q

73



Chapter 4:Using the Emulator
To reset the processor

To step twice from the start address of the demo program and display only the
resulting program counter value, enter:

M>s -w 2 400

To reset the processor

To reset the emulation processor from the emulator, tgpe:

To reset the emulation processor, and then begin running in the emulation monitor,
type:rst -m

To reset the emulator from the target system, assert the RESET signal in your target
system.

When you apply power to the emulator, the initialization process leaves the
emulator in the reset state. Changing some configuration items also resets the
processor. (See Chapter 7, “Configuring the Emulator,” for more information.)

Sometimes you may want to reset the emulation processor prior to a program run.
Therst command allows you to do this. You can also reset the emulation
processor from the target system.

Both the MC68020 and MC68030/EC030 emulators will respond to a target system
reset. A target system reset does not reset the entire emulator. It resets only the
emulation processor.

If the emulators are running a user program when the target system reset occurs,
they behave as ifrarst command were issued.

If the MC68020 emulator is in the background monitor when the target reset
occurs, it will reenter the monitor when the reset is released. (Astifra

command were given.) The MC68030/MC68EC030 emulator behaves this way for
both the foreground and background monitors.

74



Chapter 4:Using the Emulator
To display registers

Viewing and Modifying Processor Registers

The emulator allows you to display registers to determine the results of program
execution. You can display a single register, or you can display groups of related
registers.

Sometimes, you may want to modify a register, and then run a segment of program
code to test the results.

To display registers
» To display an individual register, typeg and the register name.
» To display all registers in a class, typeg <reg_class_name>

» where<reg_class_nameis the name of a class of registers. The available
registers and register classes are shown in the following table:

Register Class Register Names

* (basic) pc, st, usp, isp, msp, cacr, caar,d0..d7, a0..a7, vbr, dfc, sfc
fpu fpcr, fpsr, fpiar, fp0..fp7

mmu (MC68030) tt0, tt1, mmusr, tc, srp, crp

OR

acu (MC68EC030) ac0, acl, acusr

The processor must be running to allow register displays. If it's running in the
monitor, the emulator does the display directly. If it's running the target system
program, the emulator forces a break to the monitor, gets the register data, and then
returns to the user program. (If you restrict the emulator to real-time rumsgthe
command isn’t allowed while you're running a user program. See Chapter 7,
“Configuring the Emulator,” for more information.)

75



Chapter 4:Using the Emulator

To modify registers

Examples

You can combine displays of multiple registers and register classes by listing all the
arguments on the same command line.

Your target system must have an active floating-point coprocessor in order to
display the fpu register class (floating-point registers in the coprocessor). If your
target system does not have a floating-point coprocessor, attempting to access an
fpu register will cause an error message to appear.

The mmu register class of the M68030 is only accessible when the mmu is enabled
(cf mmu=en). The acu register class is only accessible when the mmu is disabled
(cf mmu=dis). Registers ac0, acl, and acusr are nearly identical to tt0, tt1, and
mmusr.

To display the processor’s AO register, enter:
M>reg a0

To display the D5 and USP registers, enter:
M>reg d5 usp

To display the PC and the CCR register, enter:
M>reg pc st

(The CCR register is part of the status register st).

To modify registers

To modify a register to a new value, typsg <regname>=<value>

where<regname>is the name of a processor register, evalue>is an
expression matching the data type of the register (byte, word, or longword). (You
can’t use symbols in the expression.)

Modifying a register’s contents can help you test the effects of different program
values without the trouble of rebuilding your program code. For example, you

76



Examples

Chapter 4:Using the Emulator
To modify registers

might stop the processor at a certain point (use a software breakpoint), and then
modify a register, and run from that point to test the result.

The processor must be running to allow modifying registers. See “To Display
Registers” above for more information.

You can modify several registers on the same command line. You can also display
and modify registers on the same command line.

To modify an MMU register in the MC68030 emulation processor, the MMU must
be enabledof mmu=en).

To modify registers in the fpu class, your target system must have a floating-p
coprocessor. You can enter values into the three fpu control registers, and int
eight floating-point registers, in the hexadecimal nhumber base.

To modify the PC register to the Loop address of the demo program, enter:

M>reg pc=040e

Notice that you can't use a symbol in the expression when modifying a register.
To modify the D3 register to 0 and the A6 register to 80a5, enter:
M>reg d3=0 a6=80a5

To modify the A4 register to 4a and display the CACR and CAAR registers, enter:
M>reg a4=4a cacr caar

To modify the ttO register of the MC68030 to 00000110, enable the oimu (
mmu=en), and enter:

M>reg tt0=110

To modify the acl register of the MC68EC030 to 00000000, disable theechmu (
mmu=dis), and enter:

M>reg ac1=0

77



Chapter 4:Using the Emulator
To insert a software breakpoint

Using Software Breakpoints

Software breakpoints give you a way to stop program execution when the processor
reaches a certain instruction. Suppose that you find a problem with execution of a
certain instruction. You can set a breakpoint at that location. When the processor
reaches that location, the emulator will force a break to the monitor. You can then
display registers or memory to determine the cause of the problem.

You can insert, enable, disable or remove software breakpoints. When you insert
and enable a breakpoint, the emulator replaces the instruction at the target location
with a BKPT instruction. The BKPT acknowledge cycle is read by the emulator,
and the emulator causes a monitor break. The emulator replaces the BKPT
instruction with the original instruction when the breakpoint is hit, or when you
disable or remove the breakpoint.

Before you use breakpoints, you must choose the breakpoint vector, and enable the
breakpoints feature (with the -e bpcommand). You will normally do these

things only once for every emulation session, no matter how many breakpoints you
use. To do these things, see Chapter 7, “Configuring the Emulator.”

You should only set a software breakpoint at the first word of a program
instruction. You can set up to 32 different breakpoints at a time.

You can perform a single operation on a set of breakpoints by specifying all the
breakpoint addresses for that operation on the command line. See the examples
below.

To insert a software breakpoint

Insert a new software breakpoint at a location giverdudress>by typing:bp
<address>

When you set a software breakpoint, the emulator replaces the code at the location
you specified with a BKPT instruction. It also makes an entry in the system
breakpoint table. When the processor executes the breakpoint code, the breakpoint
is disabled, and the original code at those locations is replaced. The software
breakpoint table entry is marked as “disabled.”

78



Chapter 4:Using the Emulator
To enable a software breakpoint

The emulator uses the monitor to insert the breakpoint.

Examples Enable the software breakpoints feature by entering:

M>bc -e bp

To insert a breakpoint at the symbol Cmd_A, enter:

M>bp handle_msg:Cmd_A

To insert breakpoints at Print_Msg and Fill_Dest, enter:
M>bp handle_msg:Print_Msg Fill_Dest
The handle_msg: local symbol module specification sets the default local symbol

module. Therefore, you don't need to specify the local symbol module with
Fill_Dest.

To insert a breakpoint at address 42a, enter:

M>bp 42a

To enable a software breakpoint

» To enable an existing software breakpoint at a location givelathgyress> type:
bp -e <address>

» To enable all existing software breakpoints, tyge:e *

When a breakpoint is hit, it is disabled. If you want to reenable the breakpoint, you
use theeoption to thebp command. The emulator will search the breakpoint table
for the address you specify. If there is a breakpoint entry for that location, the entry
is marked as “enabled” and the BKPT instruction is written to memory at that
location.

79



Chapter 4:Using the Emulator
To disable a software breakpoint

Examples

The emulator uses the monitor to enable the breakpoint. Therefore, you can’t
enable a breakpoint when the emulator is reset. Usedbmmand to begin
running in the monitor.

To enable an existing breakpoint at Cmd_A, enter:
M>bp -e handle_msg:Cmd_A

To enable existing breakpoints at Print_Msg and Fill_Dest, enter:

M>bp -e handle_msg:Print_Msg Fill_Dest

To enable an existing breakpoint at address 42a hex, enter:

M>bp -e 42a

To disable a software breakpoint

To disable an existing software breakpoint at a location giveratigress> type:
bp -d <address>

To disable all existing software breakpoints, tyge:d *

Sometimes you will want to temporarily disable a software breakpoint without
removing it. Thed option to theop command lets you do this.

When you disable a software breakpoint, the emulator replaces the BKPT
instruction at the breakpoint location with the original instruction. It marks the
software breakpoint table entry as “disabled.” Then the processor won't break to
monitor when the instruction at that location is executed.

The emulator uses the monitor to disable the breakpoint. Therefore, you can't
disable a breakpoint when the emulator is reset. Used¢hemand to begin
running in the monitor.

80



Chapter 4:Using the Emulator
To remove a software breakpoint

Examples To disable an existing breakpoint at Cmd_A, enter:

M>bp -d handle_msg:Cmd_A

To disable existing breakpoints at Print_Msg and Fill_Dest, enter:

M>bp -d handle_msg:Print_Msg Fill_Dest

To disable an existing breakpoint at address 42a, enter:

M>bp -d 42a

To remove a software breakpoint

» To remove an existing software breakpoint at a location giveratdgress> type:
bp -r <address>

» To remove all existing software breakpoints, tyge:r *

When you're finished using a particular breakpoint, you should remove the
breakpoint table entry. The option to théop command lets you do this. The
original instruction is restored to memory, and the breakpoint table entry is
removed.

The emulator uses the monitor to remove the breakpoint. Therefore, you can't
remove a breakpoint when the emulator is reset. Uded¢bmmand to begin
running in the monitor.

Examples To remove an existing breakpoint at Cmd_A, enter:

M>bp -r handle_msg:Cmd_A

To remove existing breakpoints at Print_Msg and Fill_Dest, enter:

M>bp -r handle_msg:Print_Msg Fill_Dest

81



Chapter 4:Using the Emulator
To display software breakpoints

To remove an existing breakpoint at address 42a hex, enter:

M>bp -r 42a

To display software breakpoints

. » To display all existing software breakpoints, tyipe:

82



Chapter 4:Using the Emulator
To install the emulation probe

Using the Emulator In-Circuit

Out-of-circuit emulation is useful for debugging your program code. You can use
the emulation-bus analyzer and other emulator features to test and evaluate your
code.

As the design of your target system progresses, you'll want to test features of your
program that interact with your target system hardware instead of the emulation
memory.

You connect the emulator probe to your target system to do in-circuit emulatio
Then you can make analyzer measurements and have the memory display an
capabilities of the emulator to debug system problems.

To prepare the emulator for in-circuit emulation, take the following steps:

1 Study your system design, especially its memory configuration.

2 Study Chapter 7 of this manual to determine how to set configuration items for
the best results with your system.

3 Install the emulation probe in your target system.

4 Set configuration items as determined by the results of step 2.

When you use the emulator in-circuit, you need to carefully consider the
configuration of the emulator and its relationship to your system design. See
Chapter 7, “Configuring the Emulator,” for details.

Caution

To install the emulation probe

Possible damage to the emulator problee emulation probe contains devices that
are susceptible to damage by static discharge. You should take precautions before
handling the probe, to avoid damaging the internal components of the probe with
static electricity.

83



Chapter 4:Using the Emulator
To install the emulation probe

Caution Possible damage to the emulatiitake sure both your target system and emulator
power are OFF before installing the emulator probe into your target system.

Caution The emulator probe will be damaged if incorrectly instalMdke sure to align pin
Al of the probe connector with pin Al of the socket.

1 Remove the processor from your target system socket. Note the location of pin Al
on the processor and on your target system socket. Store the processor in a
protected environment (such as antistatic foam).

2 Insert the emulator probe into your target system socket. Make sure to align pin Al
of the emulator probe and your system socket.

MEMORY SLOT @

68020/68030/ECO30
EMULATOR
PROBE

PIN A1

TARGET SYSTEM

PGA SOCKET

84



Chapter 4:Using the Emulator

To power-on the emulator and your system

Caution

To power-on the emulator and your system

Possible damage to the emulat®¥idu must apply power to the emulator before
you apply power to your target system. Otherwise, the emulator may be damaged.

1 Apply power to the emulator.

2 Apply power to your target system.

To probe other types of target system sockets

following table.

Probe type HP part number
68020 PGA to PGA extender 64748-61604
68020 PGA to PQFP extender E2426-61601

68020 PGA to 68EC020 PGA adapter  64748-87602
68030/EC030 PGA to PGA extender 64747-61601

68030/EC030 PGA to PQFP surface E2406-61602
mount adapter (low profile)

68030/EC030 PGA 90° CCW rotator 64700-87620
68030/EC030 PGA 90° CW rotator 64700-87619

85

» Adapters for special target system probing needs are available, as shown in the



Chapter 4:Using the Emulator
To enable the processor memory management unit (MC68030 only)

Using The MC68030 Emulator With MMU Enabled

When you enable memory management in the MC68030 emulator, many
capabilities and features become available that are not otherwise offered. Also,
some of the features of the emulator behave differently. The remaining pages in
this chapter will help you when you are using the MC68030 emulator with the
MMU enabled. Chapter 9 provides detailed information to help you use the
MC68030 MMU most efficiently.

Note

To enable the processor memory management
unit (MC68030 only)

To turn on the MMU in the MC68030 emulation processor, ecftenmu=en

Once enabled, the MMU of the MC68030 can be set up by the operating system to
manage logical (virtual) memory in physical address space. The selection of a root
pointer and the value in the translation control register determine how the MMU of
the MC68030 will manage memory. The MMU of the MC68030 must be enabled
by this configuration question before the operating system can establish those
control values.

The target system will control the MMU during program execution by using the
/MMUDIS signal. If you disable the MMU with this configuration question, the
/MMUDIS signal from the target system will be ignored.

A foreground monitor must be used when the MMU of the MC68030 is enabled. If
the background monitor is selected when you type iofthemu=en command, the
foreground monitor will be selected automatically.

Make sure the foreground monitor is mapped to memory space that has a 1:1
translation. Refer to Chapter 7 for instructions on how to map the foreground
monitor to 1:1 address space in the MC68030 MMU.

86



Chapter 4:Using the Emulator
To view the present logical-to-physical mappings

Examples To enable the MC68030 MMU so that the operating system can set it up to manage
memory, enter the command:

M>cf mmu=en
To disable the MC68030 MMU, enter the command:
M>cf mmu=dis

To see the present state of the MMU, enter the command:

M>cf mmu .
To obtain additional information about the MMU, enter the command:

M>help ¢f mmu

To view the present logical-to-physical mappings

e Enter the commandnmu

The display will show the logical-to-physical address translations defined by the
current MMU registers and translation tables.

Examples To see all of the logical-to-physical mappings (one display line for each mapped
page), enter the command:

U>mmu
This will display translations for all function codes.

To see all of the logical-to-physical mappings for logical addresses from 0 through
Offff, enter the command:

U>mmu 0..0ffff

By default, the list of mappings you get when you include an address witimthe
command shows all mappings available through the supervisor program function
code. The first command in this set of examples did not include an address; it
showed all logical-to-physical mappings for all function codes.

87



Chapter 4:Using the Emulator
To see translation details for a single logical address

To see the logical-to-physical mapping for the page that contains logical address
40F0, enter the command:

U>mmu 40f0

To see only the mappings for supervisor space in the address range from 0 through
Offff, enter the command:

U>mmu 0..0ffff@s

To see only the mappings under the user program function code in the address
range from O through Offff, enter the command:

U>mmu 0..0ffff@up
Note that the function codes ar, up, sd, andsp.

To show all of the valid mappings in the mapping tables for selected values of the
TC, SRP, and CRP registers, ignoring the present values of those registers, enter a
command, such as:

U>mmu tc=81ff2000 srp=20800604bf9fffe7 crp=8000000200001020

Examples

To see translation details for a single logical
address

Enter the commandnmu -t <address>

To see how logical address 40F0 (in supervisor program space) is mapped through
the translation tables to its corresponding physical address, enter the command:

U>mmu -t 40f0

To see how logical address 1000 under the user program function code is mapped
through the translation tables, enter the command:

U>mmu -t 1000@up

88



Chapter 4:Using the Emulator

To see details of a translation table used to map a selected logical add ress

Examples

To see details of a translation table used to map
a selected logical address

Enter the commandnmu -t<table> <address>

Where<table> is the table level you want to see (eitads, c, d, orf, if function
codes are used), ardddress>is the logical address that uses the table at the pg
to be shown.

There may be several base addresses for Table A. This command ensures y
Table A where you want to see it.

To see the details of Table A used to map logical address 1250, enter the command:

M>mmu -ta 1250

89



90



Using the Analyzer

How to view program execution in real-time

91



Chapter 5:Using the Analyzer
To create an expression

Theemulation-bus analyzes a powerful tool that allows you to view the

execution of your program in real-time. Powerful triggering and sequencing
capability ensures that the analyzer captures only the information you need, so you
don't spend time searching through detailed trace lists for the information that's of
interest.

Making Basic Analyzer Measurements

You can use just a few analyzer commands to make most measurements, such as
these:

«  Start or stop a trace measurement.

» Display the trace status.

» Display the trace list.

» Define a simple trigger qualifier.

» Define a simple storage qualifier.

* Set the trigger position in trace memory.

The analyzer has powerful triggering, storage and trace list display capability.
These features are described in other sections of this chapter.

To create an expression

Form logical expressions by combining numeric values and logical operators to
produce a numeric result.

The simplest numeric expressions consist of numbers and radix indicators. The
radix indicators are:

Y y (binary)
Q g O o (octal)

T t (decimal)

92



Chapter 5:Using the Analyzer
To start a trace measurement
H h (hexadecimal (default))

See Chapter 11, “Expressions,” for more details on numeric expressions and the
available logic operators.

Example The following are valid numeric expressions:

1XXX0Y<<3
(340q*7)/2
0ffa"32T
52T*7a

To start a trace measurement

» Begin an emulation-bus analyzer trace by typing:

When you start a trace, the analyzer begins recording data according to your trigger
and storage specifications. When the trace is complete, or halted, you can display
the data.

To stop a trace measurement

» Halt an emulation-bus analyzer measurement by tyging:

Sometimes you need to halt a trace because an examination of the analyzer status
shows that the trace isn’'t capturing the data you expect. Then, you'll want to halt
the analyzer and reconfigure your trigger and storage terms to capture data.

93



Chapter 5:Using the Analyzer
To display the trace status

To display the trace status

Display the emulation-bus analyzer trace status by tyfsng:

The trace status display shows whether the trace is running or complete. It also
shows the current sequencer state (whether triggered or still looking for the next
sequence term) and shows the number of states captured. You will usually use this
command if you can’t display the trace because no data has been captured. The
trace status will help you find the problem.

To display the trace list

Display the trace list using the default parameters by typing:

The trace list buffer is 512 or 1024 states deep (depending on whether or not you
turn on the state/time count). You can selectively display portions of the buffer
using thetl command.

To define a simple trigger qualifier

Define a simple trigger on an address value, by typghgddr=<value>

Many times, you'll want to trigger the analyzer (begin storing states) when a certain
program location is reached. You can use either a simple address expression, or one
that includes symbols.

94



Chapter 5:Using the Analyzer
To define a simple storage qualifier

Example To trigger the analyzer when the demo program reaches the location Fill_Dest,
enter:

M>tg addr=handler:Fill_Dest

To define a simple storage qualifier

» Store only the bus cycles that reference a particular address by tgfung:
addr=<value>

If you want to store only the accesses to a certain location, you can use the trace
storage qualifier. More complex patterns of data and status qualification can be
made, as well as range specifications.

Example Measure the amount of time between writes of message characters to the Msg_Dest
area:

M>init -c

M>demo

M>tg addr=handle_msg:Msg_Dest and stat=write
Mststo addr=handle_msg:Msg_Dest..Msg_Dest+1f
M>t

M>r

M>m -db demo:Cmd_Input=41

M=t

95



Chapter 5:Using the Analyzer
To set the trigger position

Example

To set the trigger position

To position the trigger term at the start of the trace list, tgpe:
To position the trigger term at the end of the trace list, type:
To position the trigger term at the center of the trace list, tgpe:

To position the trigger in the trace list with N number of states before it tpyge:
N

To position the trigger in the trace list with N number of states after it,ttypa:N

The trigger position can help make the trace list more readable. For example, you
might want to see all the program events leading to a particular access. You can
define that access as the trigger term, and then position the trigger at the end of the
trace {p e).

The way the analyzer processes a trigger-position specification is by adding a count
to trigger recognition. For example, if you spetffe, the analyzer sets up to

capture trigger plus zero states. If you spegpify, the analyzer sets up to capture
trigger plus 511 or 1023 states (depending on whether or not you turn on state/time
count). When trigger plus count is captured, "trace complete" is shown, state
capture stops, and you can view the content of trace memory.

To position the trigger 10 states after the beginning of the trace, enter:

Mstp -b 10

96



Chapter 5:Using the Analyzer
To define analyzer labels

Displaying the Trace List

The Terminal Interface allows you to present the analysis trace buffer in the manner
most useful to you. You can rearrange the display columns or change their width.
Also, you can create custom columns that represent certain groups of analyzer
signal lines.

You can add various options to tthétrace list) command to show specific state
ranges or to specify disassembly modes.

To define analyzer labels

» To define a new analyzer trace label givercxbgme> type:tlb <name>
<lower>..<upper>

where<lower> and<upper> represent the lower and upper boundaries of the
group of analyzer signals that are to be included in the label definition.

» To define an analyzer trace label with negative polarity, tjfpen <name>
<lower>..<upper>

You can define analyzer signal labels to focus on signals of interest. For example,
you might want to define a label for a special subset of the data or address lines.

Example Suppose that you want to see the individual bytes of the data bus.

Mstlb byte0 32..39
Mstlb bytel 40..47
Mstlb byte2 48..56
Mstlb byte3 57..63

You can use th# command to add those columns to the trace list. See “To change
the trace format.”

97



Chapter 5:Using the Analyzer
To delete analyzer labels

To delete analyzer labels

* Delete the analyzer label given byame>by typing:tlb -d <name>

If a label is in use (in the trace specification or trace format), it won't be removed
until the specification or format is deleted or redefined without the label.

Example Delete the analyzertsyte Olabel (defined in the previous section):

Mstlb -d byte0

To display the analyzer labels

» To display the definition of a label given kpame>, type:tlb <name>

» To display the definition of all labels, typéh

Examples Display the default analyzer labels:

Ustlb

You will see:

#### Emulation trace labels
tlb addr 0..31

tlb data 32..63

tlb stat 64..79

98



Chapter 5:Using the Analyzer
To change the trace format

To change the trace format

» To display the analyzer input lines designateelb&BEL> , use the commantf:
<LABEL>, <BASE> [<WIDTH>]

where<BASE> specifies the radix for display (see “To Create an Expression”).

<WIDTH> is an optional parameter that is valid only for the addr field. It specifies
the width in characters (in the range 4..50) for the field.

* To display disassembled processor instruction mnemonicsprelthb thetf
command line.

» To display count information (state or time) in relative format, adddbat,r
option to the command line; or display the count in absolute format by adding the
count,aformat to the command line. The count you can make is affected by the
analyzer clock rate. See "To configure the analyzer clock" in this chapter.

» To display sequencer state change information, adsktigption to thef
command line.

» To display the current trace format, tyffe:

Thetf command options specify how data is arranged on the screen when you
display the trace list with thtt command. You can specify multiple options on the
command line. The sequence of the options on the command line determines the
sequence of the columns in the trace list display.

When you enter  command with a new set of options, the previous trace format
is destroyed and the options for the new command set the format.

Examples The default trace format is the same as that obtained by entering the command:

R>tf addr,h mne count,R seq

99



Chapter 5:Using the Analyzer
To change the trace format

View the resulting trace format:

R>init -c
R>demo
R>t
R>r
Us>tl 0..5

You will see:
Line addr,H 68020 Mnemonic count,R seq

0 00000000 $0000 supr prgm long rd (ds16) -+

1 00000002 $1000 supr prgm word rd (ds16) 0.160 uS

2 00000004 $0000 supr prgm long rd (ds16) 0.160 uS .
3 00000006 $0400 supr prgm word rd (ds16) 0.280 uS
4
5

00000400 $2E7C supr prgm long rd (ds16) 0.120 uS
00000402 $0000 supr prgm word rd (ds16) 0.200 uS

To display the addresses in decimal, data in binary, count absolute, and omit the
sequencer information, enter the command:

U>tf addr,t data,y count,a
Ustl 0.5

Line addr, T data,Y count,A
0 00  00000000000000000000000000000000 0
1 02 00010000000000000000000000000000 0.160 uS
2 04 00000000000000000000000000000000 0.320 uS
3 06 00000100000000000000000000000000 0.600 uS
4 24 00101110011111000000000000000000 0.720 uS
5 26  00000000000000000000000000000000 0.920 uS

You can also change the column order. For example, enter the commands:

U>tf count,a addr,t data,y
uU>tl 0..5

Line count,A addr, T data,Y
0 0 00 00000000000000000000000000000000
1 0.160uS 02 00010000000000000000000000000000
2 0.320uS 04 00000000000000000000000000000000
3 0.600uS 06 00000100000000000000000000000000
4
5

0.720uS 24  00101110011111000000000000000000
0.920uS 26  00000000000000000000000000000000

100



Chapter 5:Using the Analyzer
To display the trace list

To display the trace list

» To display the trace from the top of the list, tythet [<KCOUNT>]

where<COUNT> is an optional parameter specifying the number of states to be
displayed. The default is to the [a&&OUNT> value.

» To display the next group of states from the trace (those previously undisplayed),
type:tl -n [KCOUNT>]

» To display the trace list beginning with the state numbet€&WER>, type:tl
<LOWER>

» To display the trace list states beginning with the state numbe@&/ER> and
ending with the state numbered PPER>, type:tl <LOWER>..<UPPER>

» To display the complete trace buffer, typé:

Thetl command has many options that allow you to control trace display so that
you can view only the states of interest. Many trace list options can be combined to
increase the usefulness of the display.

Examples To see how the trace list options are used, you need to capture a trace in the
analyzer’'s memory. You can easily capture a trace by entering the following
commands:

R>init -c
R>demo
R>t
R>r

Display the trace starting at state 11 by entering:

Ustl 11

101



Chapter 5:Using the Analyzer
To display the trace list

You will see:
Line addr,H 68020 Mnemonic count,R seq

11 0000040e $1039 supr prgm word rd (ds16) 0.160 uS
12 00000500 $00-- supr data byte wr (ds16) 0.120 uS

13 00000410 $0000 supr prgm long rd (ds16) 0.120 uS .
14 00000412 $0500 supr prgm word rd (ds16) 0.200 uS
15 00000414 $6600 supr prgm long rd (ds16) 0.120 uS .
16 00000416 $0006 supr prgm word rd (ds16) 0.160 uS
17 00000500 $00-- supr data byte rd (ds16) 0.120uS .
18 00000418 $6000 supr prgm long rd (ds16) 0.120 uS .
19 000004la $000E supr prgm word rd (ds16) 0.200 uS
20 0000041c $6100 supr prgm long rd (ds16) 0.120 uS

Display three more states from the next states available by entering the command:

U>tl-n 3

You will see:
Line addr,H 68020 Mnemonic count,R seq

21 0000041e $000C supr prgm word rd (ds16) 0.120 uS
22 00000428 $60E4 supr prgm long rd (ds16) 0.120 uS
23 0000042a $0CO00 supr prgm word rd (ds16) 0.200 uS

Display the trace from the top by entering the command:

Ustl -t
You will see:
Line addr,H 68020 Mnemonic count,R seq
0 00000000 $0000 supr prgm long rd (ds16) -+

1 00000002 $1000 supr prgm word rd (ds16) 0.160 uS
2 00000004 $0000 supr prgm long rd (ds16) 0.120 uS

Notice that only three states are displayed. This is because you reset the count
parameter when you entered the commntanu3.
Display states 27 through 35 with the command:

Ustl 27..35

102



Chapter 5:Using the Analyzer
To prevent trace list header display

You will see:
Line addr,H 68020 Mnemonic count,R seq

27 0000040e $1039 supr prgm word rd (ds16) 0.160 uS
28 00000410 $0000 supr prgm long rd (ds16) 0.120 uS .
29 00000412 $0500 supr prgm word rd (ds16) 0.160 uS
30 00000414 $6600 supr prgm long rd (ds16) 0.160 uS .
31 00000416 $0006 supr prgm word rd (ds16) 0.120 uS
32 00000500 $00-- supr data byte rd (ds16) 0.120uS .
33 00000418 $6000 supr prgm long rd (ds16) 0.120 uS .
34 0000041a $000E supr prgm word rd (ds16) 0.200 uS
35 0000041c $6100 supr prgm long rd (ds16) 0.120 uS

To prevent trace list header display

» Disable the display of the column headers in the trace list by tytpshg:
<trace_opts>

where<trace_opts>are the other options you want for trace display.

Disabling the column headers may be useful if you are saving the display output in
a file on a host computer. Then the trace list displays can be concatenated to
produce a continuous listing without interrupting headers.

Example Capture a trace, then display it without headers:

R>init -c
R>demo
R>t

R>r

Us>tl -h 0..5

You will see:

00000000 $0000 supr prgm long rd (ds16) -+
00000002 $1000 supr prgm word rd (ds16) 0.160 uS
00000004 $0000 supr prgm long rd (ds16) 0.120 uS .
00000006 $0400 supr prgm word rd (ds16) 0.320 uS
00000400 $2E7C supr prgm long rd (ds16) 0.120 uS
00000402 $0000 supr prgm word rd (ds16) 0.200 uS

AOrWNEFO

103



Chapter 5:Using the Analyzer
To control symbol and address display in the trace list

Example

To control symbol and address display in the
trace list

To display only symbols in the address column of the trace list,ttype:
<list_opts>

To display only hexadecimal values in the address column of the trace list| type:
-a <list_opts>

To display both symbols and hexadecimal values for addresses in the address
column of the trace list, typ#:-e <list_opts>

<list_opts>above are the other trace list options that you might select.

Display of symbols in the trace list's address column makes the list much easier to
read and interpret. You must first download a symbol file to the emulator (see
Chapter 1, “Quick Start”), or define some user symbols.

When you use thee or s options, symbols are also displayed inriinmee
disassembly field for operands.

Capture a trace for the examples:

R>init -c
R>demo
R>t
R>r

Display only symbols:
U>tl -s 0..12

104



Chapter 5:Using the Analyzer

To control symbol and address display in the trace list

You will see:
Line addr,H 68020 Mnemonic count,R seq
0 $0000 supr prgm long rd (ds16) -+
1 $1000 supr prgm word rd (ds16) 0.160 uS
2 $0000 supr prgm long rd (ds16) 0.120 uS
3 $0400 supr prgm word rd (ds16) 0.320uS .
4 emo:Main $2E7C supr prgm long rd (ds16) 0.120 uS
5 $0000 supr prgm word rd (ds16) 0.200 uS
6 $1000 supr prgm long rd (ds16) 0.120 uS .
7 $13FC supr prgm word rd (ds16) 0.200 uS
8 $0000 supr prgm long rd (ds16) 0.120 uS
9 $0000 supr prgm word rd (ds16) 0.240 uS
10 $0500 supr prgm long rd (ds16) 0.120 uS

11 emo:Loop $1039

supr prgm word rd (ds16) 0.160 uS
12 md_Input $00--

supr data byte wr (ds16) 0.120 uS

Display only hexadecimal values for addresses:

M>{l -a 0..12
You will see:

Line addr,H 68020 Mnemonic count,R seq
0 00000000 $0000 supr prgm long rd (ds16) -+
1 00000002 $1000 supr prgm word rd (ds16) 0.160 uS
2 00000004 $0000 supr prgm long rd (ds16) 0.120 uS
3 00000006 $0400 supr prgm word rd (ds16) 0.320 uS
4 00000400 $2E7C supr prgm long rd (ds16) 0.120 uS
5 00000402 $0000 supr prgm word rd (ds16) 0.200 uS
6 00000404 $1000 supr prgm long rd (ds16) 0.120 uS
7 00000406 $13FC supr prgm word rd (ds16) 0.200 uS
8 00000408 $0000 supr prgm long rd (ds16) 0.120 uS
9 0000040a $0000 supr prgm word rd (ds16) 0.240 uS
10 0000040c $0500 supr prgm long rd (ds16) 0.120 uS .
11 0000040e $1039 supr prgm word rd (ds16) 0.160 uS
12 00000500 $00-- supr data byte wr (ds16) 0.120 uS

Display both symbols and hexadecimal values for addresses:

Mxtl -e 0..12

105



Chapter 5:Using the Analyzer
To control trace list disassembly and dequeueing

You will see:
Line addr,H 68020 Mnemonic count,R seq
00000000 $0000 supr prgm long rd (ds16) -+

00000002 $1000 supr prgm word rd (ds16) 0.160 uS
00000004 $0000 supr prgm long rd (ds16) 0.120 uS
00000006 $0400 supr prgm word rd (ds16) 0.320 uS
emo:Main $2E7C supr prgm long rd (ds16) 0.120 uS .
00000402 $0000 supr prgm word rd (ds16) 0.200 uS
00000404 $1000 supr prgm long rd (ds16) 0.120 uS .
00000406 $13FC supr prgm word rd (ds16) 0.200 uS
00000408 $0000 supr prgm long rd (ds16) 0.120 uS
0000040a $0000 supr prgm word rd (ds16) 0.240 uS
0000040c $0500 supr prgm long rd (ds16) 0.120 uS .
11 emo:Loop $1039 supr prgm word rd (ds16) 0.160 uS
12 md_Input $00-- supr data byte wr (ds16) 0.120uS .

Boo~NwouhrwNnro

To control trace list disassembly and dequeueing
» To disassemble the trace list, tyfed <list_opts>
» To display all bus cycles in the disassembled trace list, thyoe <list_opts>

» To display only instruction cycles in the disassembled trace list,ttypée:
<list_opts>

» To dequeue the trace list, typle:od <list_opts>
» To display the non-dequeued trace list, typean <list_opts>

» To disassemble the trace list from the lower word of a starting statetl tde:
<list_opts>

» To tell the analyzer software which operand belongs with a particular starting state,

type:
tl <list_opts> <instruction_state> <operand_state>

106



Example

Chapter 5:Using the Analyzer
To control trace list disassembly and dequeueing

where<instruction state>is an instruction state in the trace list and
<operand_state>is the first operand cycle for that instruction.

<list_opts>above are the other trace list options that you might select.

The MC68020 and MC68030/MC68ECO030 trace lists display states in the order
they were captured by the analyzer. Tdheption causes disassembly of the
trace-list content. The<options> control how the trace list is disassembled.
Option-oashows all bus cycles (instructions and operands). Oticgmows only
the instruction cycles. Optiool starts disassembly with the low word of the
specified trace list line number. Optiad dequeues the disassembled trace and
-on calls for the non-dequeued trace list.

A captured state must be a long word (having a high word and a low word. An
opcode can appear in either word (or both words). The disassembler starts wi
high word in the trace list line number you specify in your command. If the
disassembled trace list isn’'t what you expected, try usinglloption to force
disassembly to begin with the low word.

A dequeued trace list (optiend) shows operand cycles immediately following the
instructions that caused them, and suppresses unexecuted instructions. If you
choose a non-dequeued trace list (opt@n), all emulation-bus activity is shown

in the order it occurred, whether or not it was executed.

To help the dequeuer select the correct operand cycles to align with a particular
opcode, use a command suchtisl -od 50 62 which means align the operand
cycles on line 62 with the instruction on line 50. You can resynchronize the
dequeuer at any point in the display if you see a problem.

Capture a trace for the example:

R>init -c
R>demo
R>t
R>r

Display disassembled:

Ustl -d 0..12

107



Chapter 5:Using the Analyzer
To control trace list disassembly and dequeueing

You will see:

Line addr,H 68020 Mnemonic

count,R seq

0 00000000 ORI.B #$1000,D0 -+

1 00000002 $1000 supr prgm word rd (ds16) 0.160 uS
2 00000004 ORI.B #$400,D0 0.120uS .

3 00000006 $0400 supr prgm word rd (ds16) 0.280 uS
4 00000400 MOVEA.L #3$00001000,A7 0.160 uS
5 00000402 $0000 supr prgm word rd (ds16) 0.200 uS
6 00000404 $1000 supr prgm long rd (ds16) 0.120 uS .
7 00000406 MOVE.B #$00,$00000500 0.200 uS

8 00000408 $0000 supr prgm long rd (ds16) 0.120 uS .
9 0000040a $0000 supr prgm word rd (ds16) 0.200 uS
10 0000040c $0500 supr prgm long rd (ds16) 0.160 uS
11 0000040e MOVE.B $00000500,D0 0.160 uS
12 00000500 $00-- supr data byte wr (ds16) 0.120 uS

The default is all cycles displayed (-0a).

Display only instructions:

Ustl -0i 0..12
Line addr,H 68020 Mnemonic count,R seq
0 00000000 ORI.B #$1000,D0 -+
2 00000004 ORI.B #$400,D0 0.280uS .
4 00000400 MOVEA.L #$00001000,A7 0.440 uS
7 00000406 MOVE.B #$00,$00000500 0.520 uS
11 0000040e MOVE.B $00000500,D0 0.640 uS

Display part of the trace with all cycles shown and instructions dequeued:

U>tl -oda 11..30

Line addr,H 68020 Mnemonic count,R seq

11 0000040e MOVE.B $00000500,D0 0.640 uS
=00000500 src sdata rd:$00

15 00000414 BNE.W $0000041C ?TAKEN? 0.560 uS

18 00000418 BRA.W $00000428 0.400 uS

22 00000428 BRA.B $0000040E 0.560 uS

27 0000040e MOVE.B $00000500,D0 0.720 uS
=00000500 src sdata rd:$00

30 00000414 BNE.W $0000041C ?TAKEN? 0.400 uS

?TAKEN? means the dequeuer was not able to determine whether or not the branch
was taken. If you read down the trace list and decide that the branch was taken, use
thetl -d -od <Line number> command to restart disassembly at the trace list line
number of the branch destination. You will need to includedhaption if the

destination opcode is in the low word at the destination address. You may need to

108



Chapter 5:Using the Analyzer
To change the trace depth

resynchronize alignment of operand cycles with the instruction at the branch
address, as described just before the examples. TAKEN would have been shown
beside the branch if the dequeuer had determined that the branch was taken. NOT
TAKEN would have been shown if the dequeuer had determined that the branch
was not taken.

To change the trace depth

Change the analyzer trace depth from 512 to 1024 states by tygjmgne .

The analyzer's state/time counter uses half of the analyzer's state memory
resources. Therefore, when you use time cdogttime) or state count¢qg any,

etc.) the analyzer's trace depth is 512 states. You can double the trace depth by
disabling state/time counting.

109



Chapter 5:Using the Analyzer
To program the deMMUer in a static memory system

Analyzing Program Execution in the MC68030
Emulator with its MMU Enabled

Most emulation and analysis commands that require an address as part of the
command use logical addresses. When the MC68030 MMU is enabled, physical
addresses are placed on the emulation bus. The physical addresses may not be the
same as the logical addresses. The deMMUer reverse translates the physical
addresses back to logical addresses and supplies these to the analyzer so that the
analyzer can:

» accept commands expressed in source file symbols.
» display trace lists with addresses expressed in source file symbols.
» display appropriate portions of source code preceding lists of trace data.

Refer to Chapter 9 for detailed information to help you use the deMMUer more
efficiently.

To program the deMMUer in a static memory
system

Run your program to the point where you are sure the MMU is set up.
Break to the monitor program with the commamnd:

Load the deMMUer with the commarginmu -I ordmmu -Iv.

Enable the deMMUer with the commamtnmu -e

Continue execution of your target program with the command:
or restart the program with the commantkt.

110



Chapter 5:Using the Analyzer
To trace program execution in physical address space

To pick the place to load the deMMUer, you might set a software breakpoint in
your code at a point where you are sure your MMU will be set up to translate the
address space you want to analyze. When the software breakpoint is hit (emulator
running in foreground monitor), you can load the deMMUer.

Whether you continue your program or restart it, the deMMUer will have the
ability to reverse translate the physical addresses according to the MMU setup at
the time you issued the load-deMMUer command. The deMMUer will remain
loaded even if you reset the emulation processor.

If you restart your program, you can use the analyzer to see how the MMU tables
are created and how the program operates.

Address ranges will be reverse translated correctly if they are translated by th
setup of the MMU that existed when you issueddtimenu -lv command. If

context switches cause the MMU to access logical memory that was not
represented in the MMU tables when you loaded the deMMUer, incorrect logical
addresses will be provided by the deMMUer.

To trace program execution in physical address
space

Disable the deMMUer with the commarbinmu -d.

Now the analyzer will get its address information directly from the emulation
address bus. This information is useful when you want to see behavior of your
operating system.

111



Chapter 5:Using the Analyzer
To change the trace configuration

Using the Trace Sequencer

The analyzer trace sequencer is the key to powerful analyzer measurements. You
define a series of states that lead to the trigger condition and a set of conditions for
analyzer storage of bus cycles. The trace sequencer hardware uses these definitions
to control analyzer storage. Thus, you can capture only bus cycles that are relevant
to your problem. The sequencer defines a filter, effectively removing bus cycles

from the trace storage that aren’t important to the current measurement.

The sequencer operates in either easy or complex configuration. The easy
configuration has simpler setup but less power than the complex configuration.
These configurations are described in later sections.

To change the trace configuration

To change the trace configuration to easy, tigiee

To change the trace configuration to complex, tygfec

After you initialize the emulator (by cycling power, or by usingitiitecommand),
or the analyzer (witkinit ), the analyzer is reset to easy configuration.

Change the trace configuration to complex if you need to specify a trigger sequence
that includes more than four sequence states with multiway branches, or if you need
different storage qualifiers at each level of the sequence. Change the trace
configuration to easy if you need only one storage qualifier and have a simple
trigger sequence (less than four sequence terms with global restart).

112



Chapter 5:Using the Analyzer
To create a simple expression

Using Easy Configuration

You use easy configuration to set up slightly more complex trigger specifications
than theg command will allow. You don't have access to the full power of the
analyzer, but the command set is simplified.

In easy configuration, the analyzer has four sequence terms, a global restart term,
and a global storage qualifier. The branch out of the last sequence term is the
trigger.

Expressions in easy configuration are limited to simple (in)equalities of analyzer to
integer values. The analyzer does allow you to count states or time and specif
prestore qualifiers.

To create a simple expression

To define a simple expression, create one or more equalities of the form
<label>=<expr>joined by the operat@nd or one or more inequalities of the form
<label>!=<expr>joined by the operatar.

To define a range expression, create an equality of the form:
<label>=<expr>..<expr>

Simple expressions allow you to build qualifiers that have multiple conditions.
Notice that the conditions must use the same logical operators; you caatidnix
andor in an expression.

There is only one range expression available. If you try to define a second range
expression, you will see an error message.

See “To create an expression” earlier in this chapter for more information on the
<expr> parameter. See “To create analyzer labels” for more abogulaihel>
parameter.

113



Chapter 5:Using the Analyzer
To insert a sequence term

Example

Here are some valid simple expressions (using the demo program symbols and the
predefined equates):

addr=handle_msg:Print_Msg

data=41

addr=demo:Cmd_Input and stat=read
addr'=handle_msg:Cmd_B or addr!'=Cmd_|

You can’t combine thand andor logical operators, nor can you mix tued
operator with + or theor operator with=. Here are some invalid simple
expressions:

addr'=handle_msg:Cmd_A and stat!=read
data=3e or stat=write

To build these types of expressions, you must use the analyzer's complex
configuration.

Examples

To insert a sequence term

Insert a new sequence term number@ERM#> by typing:tsq -i <TERM#>

There are only four sequence terms available in easy configuration. Therefore,
<TERM#> must be in the range 1..4. If you specify a number that is already in use,
that term and succeeding terms are incremented.

Initialize the analyzer and insert a new sequence term before term 1:
R>tinit

R>tsq -i 1

Now add a term after term 2:

R>tsq -i 3

114



Chapter 5:Using the Analyzer
To remove a sequence term

Example

To remove a sequence term

Delete an existing sequence term numbefdeRM#> by typing:tsq -d
<TERM#>

You may want to delete sequence terms to remove unneeded qualifications from
the sequence specification. When you delete a sequence term, any terms above it
are decremented to fill the gap.

Suppose that you have inserted the sequence terms as given for the example
insert a sequence term” above. There are now three sequence terms, and you
to remove terms 1 and 3. Enter the commands:

R>tsq -d 1
R>tsq -d 2

Notice that you remove term 2 in the second command. This was term 3 until
removal of term 1 caused the terms to be rennumbered.

To reset the sequencer

Reset the trace sequencer by typtsq:-r

When you reset the sequencer, it is reduced to a one-term sequence that stores all
states and triggers on the first occurrence of any state. This is equivalent to the
command sequencig any;tsto any;telif never.

115



Chapter 5:Using the Analyzer
To define a primary branch

Example

handle _msg: Cmd_|

To define a primary branch

To set the primary branch qualifier for a term giverxBERM#>, type:tif
<TERM#> <simple_expr> <count>

where<count> is an optional parameter that specifies the number of times that
<expr> must occur to satisfy the branch qualifier.

To display the primary branch qualifier for a term giverxBERM#>, type:tif
<TERM#>

To display all primary branch qualifiers, typi:

You use the primary branch qualifiers to set the sequence of conditions that must be
satisfied to reach the trigger term and trigger the analyzer. For example, you might
want to have the analyzer find a certain address value, then a data read, and then
trigger on another address value. This requires three sequence terms.

Suppose that you want to trace the sequence of code from Call_Int through
Print_Msg (in the demo program) only if an "A" or "B" command occurs. You
don’t want the analyzer to store data if Cmd_| is found.

The analyzer sequencer state diagram for this measurement looks like the following:
—

2

demo: Call_Int

w handle _msg: Print_ Msg

(TRICGER = BRANCH
OUl OF TERM 2)

Set up the measurement:
R>init -c

R>demo

R>tsq -i 1

R>tif 1 addr=demo:Call_Int

116



Chapter 5:Using the Analyzer
To define a global restart term

R>tif 2 addr=handle_msg:Print_Msg
R>telif addr=handle_msg:Cmd_|
R>tp -b 20

R>t

R>r

Uil

No trace data has been captured, because no program command was entered. Enter
the commands:

U>m -db demo:Cmd_Input=41

Ustl -d -s -od -20

The symbol Call_Int is at the top of the trace list.

To define a global restart term

» To set the sequencer’s global restart term, tyghé <label>=<simple_expr>

» To display the sequencer’s global restart term, tigbié:

You use the global restart term to restart the trace measurement when a certain
condition occurs. This can be useful to filter out bus activity that isn’t relevant to
the problem. For example, you might have a hashing routine that fails for one key
value. You could define the restart term to be “not this data value,” which will
restart the analyzer for every other key except the one of interest.

See Chapter 11, “Expressions,” for more information on simple expressions.

Example See the example given in the section “To define a primary branch.”

117



Chapter 5:Using the Analyzer
To display the current sequencer settings

Example

To display the current sequencer settings

Display the current sequencer settings by typisgy:

When you use thisq command without any parameters, the emulator displays all
branch and storage qualifiers and the trigger term position.

This command is especially useful for checking your work after you define a
complicated trace specification.

The section “To define a primary branch” gives an example of a sequencer setup
for a particular measurement problem. To display that sequencer definition, enter
the command:

U>tsq

You will see:

tif 1 addr=demo:Call_Int

tif 2 addr=handle_msg:Print_Msg
tsto all

telif addr=handle_msg:Cmd_|

118



Chapter 5:Using the Analyzer
To assign the trigger term

Using Complex Configuration

Enter the commandcf -c¢

Complex configuration allows you to make analyzer measurements that require
more powerful trigger logic or need multiple storage specifications.

There are eight sequence terms in complex configuration. Each term has a primary
and secondary branch qualifier that allow branching to any other term when that
qualifier is matched. Also, each sequencer term has a unique storage qualifier.

The sequence terms are always available in complex configuration. You don’t
to insert them as you do with easy configuration.

To build expressions in complex configuration, you first assign combinations o
simple expressions to one of eight pattern variables. There is also a range variable
to specify address or data ranges. Then you assign combinations of the pattern
variables and range to a branch or storage qualifier. The expressions can include
various logical operators. For example, you may want to specify a condition
involving a specific data value, but you want to exclude that data value if it is found
within a particular address range. The complex configuration allows this.

To assign the trigger term
To assign the trigger term t0 ERM#>, type:tsq -t <TERM#>
where<TERM#> is a sequencer term number.

To display the current trigger term assignment, tigup:t

The trigger term may be any one of terms 2..8 (it cannot be term 1). The analyzer
will trigger on entry to the trigger term.

119



Chapter 5:Using the Analyzer
To reset the sequencer

Example

Move the trigger from term 2 to term 6:
R>init -c

R>tcf -

R>tsq -t 6

Capture a simple trace and display it with this trigger specification:

R>demo
R>tp ¢
R>t

R>r

Ustl -5..5

You will see:

Line addr,H 68020 Mnemonic count,R seq

00000000
00000002
00000004
00000006
00000400
00000402
00000404
00000406
00000408
0000040a

$0000 supr prgm long rd (ds16) -+
$1000 supr prgm word rd (ds16) 0.160 uS +
$0000 supr prgm long rd (ds16) 0.120uS +
$0400 supr prgm word rd (ds16) 0.280 uS +
$2E7C supr prgm long rd (ds16) 0.160 uS +
$0000 supr prgm word rd (ds16) 0.200 uS +
$1000 supr prgm long rd (ds16) 0.120uS +
$13FC supr prgm word rd (ds16) 0.200 uS
$0000 supr prgm long rd (ds16) 0.120 uS
$0000 supr prgm word rd (ds16) 0.200 uS

Notice that the sequencer changes states 7 times, one for each sequence level plus
the trigger.

To reset the sequencer

» Reset the trace sequencer by typtsq:-r

When you reset the sequencer, all primary branch qualifiers are set to jump to the
next term on any condition (except for term 8, which is set to never). All secondary
branch qualifiers are disabled. The trigger term is set to term 2, and the storage
qualifier for all sequence terms is set to all states.

120



Chapter 5:Using the Analyzer
To display the current sequencer settings

Example To reset the sequencer, enter:

M>tsq -r

To view the new trace sequence, enter:

M>tsq

The sequencer setup looks like:

tif 1 any 2
tif 2 any 3
tif 3any 4
tif 4 any 5
tif 5 any 6
tif 6 any 7
tif 7 any 8
tif 8 never
tsq -t 2

tsto 1 all
tsto 2 all
tsto 3 all
tsto 4 all
tsto 5 all
tsto 6 all
tsto 7 all
tsto 8 all
telif 1 never
telif 2 never
telif 3 never
telif 4 never
telif 5 never
telif 6 never
telif 7 never
telif 8 never

To display the current sequencer settings

» Display the current sequencer settings by typisy:

When you use thisq command without any parameters, the emulator displays all
branch and storage qualifiers and the trigger term position.

This command is especially useful for checking your work after you define a
complicated trace specification.

121



Chapter 5:Using the Analyzer
To define trace patterns

To define trace patterns

» To define a trace pattern, tygpat <PATTERN#> <simple_expr>
» To display the expression for a given trace pattern, tppe<PATTERN#>

» To display the expressions for all trace patterns, tyae:

In complex configuration, the analyzer provides eight pattern variables to which

you assign simple expressions. Then you use these patterns to build more
complicated expressions for the primary and secondary branch qualifiers.

See Chapter 11, “Expressions,” for more information on expressions.

Example Suppose that you want to trace and trigger on an access to either Cmd_A, Cmd_B
or Cmd_lI in the demo program. Enter the commands:

R>init -c

R>demo

R>tcf -

R>tpat p1 addr=handle_msg:Cmd_A
R>tpat p2 addr=Cmd_B

R>tpat p3 addr=Cmd_|

R>tg p1|p2|p3

R>t

Now you can run the demo program and enter various program commands by
modifying the Cmd_Input location. When you list the trace, the analyzer will have
triggered on the first access to any of the locations Cmd_A, Cmd_B or Cmd_|.

To define a range qualifier

» To define the range patterrio be the set of states including two expressions, type:
trng <label>=<expr>..<expr>

122



Example

Chapter 5:Using the Analyzer
To define a range qualifier

» To define the range patterrio be all states, typang any

The range qualifier can be used in analyzer storage and complex branch

qualifiers. For example, you might have a lookup table in your program, and want

to record accesses to that table in the trace list. You can define the range qualifier as
the set from the lower to upper boundaries of the lookup table.

You can create ranges for either address or data.

Suppose that you want to trigger on reads from the message storage area (M
through End_Msgs) and store only those reads. Enter the following command

R>init -c

R>demo

R>tcf -

R>trng addr=handle_msg:Msg_A..End_Msgs
R>tpat p5 stat=read

R>tg r and p5

R>tsto r and p5

R>t

R>r

U>m -db demo:Cmd_Input=41
Ustlb byte0 32..39

U>tlb bytel 40..47

U>tlb byte2 48..55

U>tlb byte3 56..63

U>tf addr,h byte2,a byte3,a
u>tl

Note that bytes alternate because each character is picked up from a different half
of a 16-bit word.

Line addr,H byte2,A byte3 A
00000502 |
00000503 o
00000504 |
00000505 m
00000506 |
00000507 n
00000508 |
00000509 .
0000050a |

O~NO U WNEFO

123



Chapter 5:Using the Analyzer
To create a complex expression

9 0000050b .

The first reads from the Msg_A storage buffer are shown in the trace lig. The
option to thdowdata label in the trace format specifies ASCII data display.

To create a complex expression

» Create a complex expression by combining trace pagérns3and the range

qualifierr using intraset and interset operators.

The rules for combining patterns and ranges are as follows:
The patterns, range and arm qualifier are divided into two disjoint sets.

<SET1>={pl,p2,p3,p4r,!r}
<SET2>={p5,p6,p7,p8,arm}

(Thearm qualifier is discussed in the section on coordinated measurements.)

You can form expressions by inserting intraset operators between members of

the same set. The operators are:

~ (intraset logical NOR)
| (intraset logical OR)

If you form an expression using these operators, the operator must remain the

same for all members of the same set. (See the examples).

You can form expressions by inserting interset operators between members of

<SET1>and<SET2>. The operators are:

and (logical and)
or (logical or)

The order in which you put the sets does not matter.

Complex expressions allow you to build more complicated trace qualifiers with

multiple conditions. Since the complex expressions are built from the trace patterns,

which contain simple expressions, you can build qualifiers with multiple logical
operators.

See Chapter 11, “Expressions,” for more information.

124



Example

Chapter 5:Using the Analyzer
To create a complex expression

Here are some valid complex expressions:

pl~p2~r
rand p5
p5 or pl

p2|pd|r
pl|p2 or p5~p6

The following expressions are invalid:

pl~p2|r
pl and p2

pl~p2 and p3 and p5 and p7
The last expression is invalid because you can't repeat different sets to exten.

expression.
If you're having trouble achieving the necessary expression, try using DeMorgan’s
Theorem. Suppose you want to trace on:

(addr=2000) NAND (data=23)
There is no NAND function in the expression syntax. But, the above is equivalent
to:

(addr'=2000) OR (data!=23)

125



Chapter 5:Using the Analyzer
To define a primary branch term

To define a primary branch term

» To define a primary branch qualifier for the term giverxBERM#>, type:tif
<TERM#> <complex_expr> [<branch_term> <count>]

where<branch_term> is an optional term number indicating the term to branch to
when the<complex_expr>is satisfied. The default is to branch to the next
higher-numbered term, except for term 8, which branches to itself.

<count>is an optional parameter that specifies the number of times that
<complex_expe must occur to satisfy the branch qualifier.

» To display the primary branch qualifier for the term giverBERM#>, type:tif
<TERM#>

» To display all primary branch qualifiers, typié:

The primary branch qualifier defines the main path from a given sequencer term to
another term (or the same term). If both the primary and secondary branch
gualifiers are satisfied simultaneously, the primary branch is taken.

Usually, you'll use the primary branch qualifiers to define a sequence of states that
must be satisfied to reach the trigger condition.

Example Suppose that there was an intermittent problem with the demo program, where the
message for command A was sometimes output when command B was entered, and
vice versa. (This isn’t a true problem in this program, but is given simply to show
the power of the complex analyzer configuration.)

126



Chapter 5:Using the Analyzer
To define a primary branch term

The following state diagram shows how the analyzer will transition from term to
term in the sequencer:

SECONDARY PRIMARY
BRANCHES SEQUENCE TERMS BRANCHES
(tolif) (+if)

READ "A" FROM

READ Cmd_Input

"B" FROM

ACCESSED
Fill_Dest
Cmd _Input
- ACCESSED

Msg_A

ACCESSED
Msg_B

TRIGGER TERM

_ QUALIFIER
(BRANCH ON ANY)

Set up the analyzer to match this state diagram:

R>init -c

R>demo

R>tcf -

R>tp e

R>tsq -t 4

R>tpat p1 addr=demo:Cmd_Input and stat=read
R>tlb byte3 56..63

R>tpat p5 byte 3

R>tpat p6 byte3

R>tpat p2 addr=handle_msg:Msg_B
R>tpat p3 addr=handle_msg:Msg_A
R>tpat p4 addr=handle_msg:Fill_Dest
R>tif 1 p1 and p5 2

R>telif 1 p1 and p6 3

R>tif 2 p2 4

R>tif 3 p3 4

R>telif 2 p4 1

R>telif 3 p4 1

127



Chapter 5:Using the Analyzer
To define a secondary branch term

Patch the code to make it fail:

M>m -db 442=05,13
M>m -db 450=05,02

Thetpat commands assign the simple expressions needed. Notice that the address
condition was assigned pd and the data conditions p& andp6—this is done so

theand qualifier can be used between the patternstdheommand sets the

trigger term to be the exit from sequencer term 4 tiftendtelif commands

define the branch conditions through the sequencer. Finallyg tenmand sets

the trigger position to the end of the trace. This allows you to see the states that lead
to an incorrect message being printed. To begin testing for the error condition, you
would start a trace with thecommand, then run the program and begin entering
various combinations of command A and command B.

To define a secondary branch term

To define a secondary branch qualifier for the term givenlisRM#>, type:telif
<TERM#> <complex_expr> [<branch_term>]

where<branch_term> is an optional term number indicating the term to branch to
when the<complex_expr>is satisfied. The default is to branch to the next
higher-numbered term, except for term 8, which branches to itself.

To display the secondary branch qualifier for the term giverltiBRM#>, type:
telif <TERM#>

To display all secondary branch qualifiers, tyipéf

The secondary branch qualifier defines an alternate path from a given sequencer
term to another term (or the same term). If both the primary and secondary branch
qualifiers are satisfied simultaneously, the primary branch is taken.

Since the secondary branch qualifier is unique for each sequence term, it is more
flexible than the global restart qualifier in easy configuration. You can use it as a
global restart by making all secondary branch qualifiers identical, and having them

128



Chapter 5:Using the Analyzer
To define complex storage qualifiers

restart the trace sequence, or you can use the secondary branch as an alternate path
to the trigger if more than one sequence of conditions is acceptable.

To define complex storage qualifiers

To define a storage qualifier for the term giverkBYERM#>, type:tsto
<TERM#> <complex_expr>

To define a global storage qualifier (applied to all states), tgfe:
<complex_expr>

To display the storage qualifier for the term giverxB¥ERM#>, type:tsto
<TERM#>

To display the storage qualifier for all terms, tyjs&o

In complex mode, there are eight storage qualifiers, one for each sequencer term.
This allows you to store only the states of interest at each level of the sequence,
which uses the trace memory more efficiently and makes the trace display easier to
read.

You can use the storage specifications with the primary and secondary branch
qualifiers to trace on “windows” of activity, such as certain program subroutines.

129



Chapter 5:Using the Analyzer
To define complex storage qualifiers

Example Suppose you wanted to see the ASCII data writes to the output area, and the
commands that caused them. A state diagram for the analyzer looks like the
following:

STORAGE PRIMARY

QUALIFIER SEQUENCE  TERMS SRANCHES

Crnd_Input and 1 TRIGGER TERM
byte 3
Msg Dest...Msg dest+1F

Msg Dest+1F

and write Msg Dest+1F and write

Cmd_Input and
B Msc Dest...Msg_Desl+1F

byte 3 ’
_ and write
Msg Dest...Msg Dest+1F
and write Msg Dest+1F and write

Now enter the commands:

R>init -c

R>demo

R>tcf -c

R>tpat p1 addr=demo:Cmd_Input
R>tpat p2 addr=handle_msg:Msg_Dest+1f
R>tlb byte3 56..63

R>tpat p5 byte3!=0

R>tpat p6 stat=write

R>trng addr=Msg_Dest..Msg_Dest+1f
R>tsto 1 p1 and p5

R>tsto 2 r and p6

R>tsto 3 p1 and p5

R>tsto 4 r and p6

R>tif 1 r and p6 2

R>tif 2 p2 and p6 3

R>tf byte3,a seq

The above commands set the sequencer to store the reads of non-zero values from
Cmd_Input (when in terms 1 and 3) and the writes of data to the MSG_DEST area
(when in terms 2 and 4). The sequencer toggles from term 1 to term 2 (or from 3 to
4) when writes to the Msg_Dest area occur, and from terms 2 to 3 (or 4 to 3) when
the last byte is written to the destination area. Also, the trace format is set to show

130



Chapter 5:Using the Analyzer
To define complex storage qualifiers

only the lower byte of the data bus and the sequencer activity (a “+” is shown in the
segcolumn when the sequencer changes states).

Enter the commands:

R>t

R>r

U>m -db demo:Cmd_Input=41
U>m -db Cmd_Input=42

U>m -db Cmd_Input=43

ustl *

You'll see the commands and the corresponding message written to the Msg
area.

131



Chapter 5:Using the Analyzer
To trace user/background code execution

Setting Analyzer Clocks

The HP 64700 Series emulator design allows up to five clock signals for emulation
and external analysis. These are J, K, L, M, and N clocks. The HP 64748 and

HP 64747 emulators generate the L clock to drive the emulation analyzer. The
other clocks are not used.

The Terminal Interface provides ttek andtsck commands to configure the clock
signals. For the emulation analyzek andtsck are provided primarily for system
initialization and control through higher-level interfaces. You can ugekhe

command to change qualification of user/background code execution. You also use
this command to specify the maximum data rate that the analyzer will see, which
affects the state/time counter.

To trace user/background code execution

To trace only user code, tygek -u
To trace only background code, typek -b

To trace both user and background code, tghe:ub

The emulation-bus analyzer has built-in qualifiers that allow you to select whether
the analyzer captures user code, background code, or both. Usually, you'll want to
trace only user code. If you're trying to solve a problem with emulator and target
system interaction, you may want to trace both user and background code. The
background code only setting is rarely useful for most emulation work.

132



Chapter 5:Using the Analyzer
To configure the analyzer clock

To configure the analyzer clock

To set the analyzer for a slow data rate (less than or equal to 16.67 MHZKype:
-sS

To set the analyzer for a fast data rate (between 16.67 and 20 MHZ)¢kyyzeF

To set the analyzer for a very fast data rate (between 20 and 25 MHz), type:
tck -s VF

The emulation-bus analyzer can capture bus cycles at data rates up to 25 MH
However, the trace state and time counters are limited to lower speeds. The
MC68020 analyzer clock is settitk -s Sby default, because the data rate is
sufficiently low at the maximum clock rate of 33 MHz.

The MC68030/EC030 analyzer clock is sefcto-s VF by default. This processor

has more complicated requirements due to the burst and synchronous access modes.
The analyzer can capture all types of bus cycles correctly up to the maximum clock
rate of 40 MHz, but cannot correctly count states or time at higher speeds for

certain bus cycle types.

The worst-case situation is one where a zero-wait state burst cycle is performed.
The analyzer clock rate for burst cycles is given by the equation:

Processor Clock Rate
(1 + number of wait statgs

Analyzer Clock Rate

To determine the correct setting for thke -s command in the MC68030/EC030
emulator, calculate the maximum data rate by using the above equation. Remember
that the emulator always inserts one wait state for all synchronous and burst
accesses to emulation memory, and also must insert one wait state for synchronous
and burst accesses to target memory when the external clock is greater than or equal
to 25 MHz. (See Chapter 7, “Configuring the Emulator,” for more information.)

Then choose the data rate option according to the data rate.

133



Chapter 5:Using the Analyzer
To configure the analyzer clock

The trace state and time count qualifiers are limited by the analyzer clock rate
settings as follows:

Example

Analyzer clock rate tck setting Valid tcq options
clock< 16.67 MHz tck-s S tcq <state>

tcq time
clock< 20 MHz tck -s F tcq <state>
clock< 25 MHz tck -s VF tcq none

Suppose that you are running the MC68030/EC030 processor at 40 MHz. You have
setcf emwait=ensince target memory requires one wait state for

synchronous/burst accesses over 25 MHz. The resulting data rate is 20 MHz, so you
enter the following commands:

R>tcq none
R>tck -s F

Note that you sdtq none Since the clock rate is between 16.67 and 20 MHz, you
could choose to count states by choosing the approfoépéptions. However, you
cannot usécq time.

134



Chapter 5:Using the Analyzer
To define a prestore qualifier

Using Other Analyzer Features

The analyzer has other features that can be used in all configurations to make trace
measurements easier to interpret or capture additional information.

» Prestore allows you to save specific trace states that are related to other events
in your trace list. For example, you might want to save the caller of a
subroutine.

»  Count qualifiers allow you to count states or time.

» Trace activity measurements allow you to see whether a particular analyz
signal is high, low or moving.

» Equates save keystrokes by allowing you to assign names to commonly u
values. The names can be used in analyzer specifications.

Example

To define a prestore qualifier

To define a prestore qualifier when you’re using easy configuration,tpgpe:
<simple_expr>

To define a prestore qualifier when you're using complex configuration,tpge:
<complex_expr>

You use the prestore qualifier to save states that are related to other routines that
you're tracing. For example, you might be tracing a subprogram, and want to see
which program called it. You specify the caller as a prestore specification.

Suppose that you want to trigger on a call to Print_Msg and prestore the command
that called Print_Msg.

Enter the commands:

R>init -c
R>demo

135



Chapter 5:Using the Analyzer
To count states or time

R>tcf -

R>trng addr=handle_msg:Mst_Dest..Msg_Dest+1f
R>tpat p1 addr=handle_msg:Print_Msg
R>tpat p5 addr=handle_msg:Cmd_A
R>tpat p6 addr=Cmd_B

R>tpat p7 addr=Cmd_|

R>tpq p5|p6|p7

R>tg p1

R>tsto r

R>t

R>r

U>m -db Cmd_Input=41

Ustl -e

To count states or time

To measure the amount of time for each analyzer storage statecdyfiae

To measure the number of occurrences of a particular bus state in easy
configuration, typetcq <simple_expr>

To measure the number of occurrences of a particular bus state in complex
configuration, type:
tcq <complex_expr>

To disable analyzer state/time counting, tyipg:none

To check the current setting of the count qualifier, tyqup:

The trace count qualifier can be used to measure time for each storage state or
occurrence counts of a particular bus state. You can display these values either
relative to the last stored state (relative mode) or relate to the trigger state (absolute
mode). You change this using tficommand. See “To Change the Trace Format”
earlier in this chapter.

136



Chapter 5:Using the Analyzer
To count states or time

The MC68020 emulator defaultsttm time. The MC68030/EC030 emulator,
because of its higher bus cycle rates, defaulitaone See “To configure the
analyzer clock.”

Example Suppose you want to count the number of writes to the Msg_Dest area in the demo
program. Enter the commands:

R>init -c

R>demo

R>tcf -

R>trng addr=handle_msg:Msg_Dest..Msg_Dest+1f
R>tpat p5 stat=write

R>tcq r and p5

R>tsto r and p5

R>tg r and p5

The above commands trigger the analyzer when a nonzero command is input and
interpreted by the command interpreter routine. The analyzer stores and counts only
write cycles to the message output area.

Enter the commands:

R>t

R>r

U>m -db demo:Cmd_Input=41
U>tf addr,H,12 mne count,a seq
Ut -e

These commands start a trace, then run the demo program and provide input.
Before displaying the trace list, the count is changed to absolute format.

When you display the trace list, the count shows the total number of writes to the
Msg_Dest area.

137



Chapter 5:Using the Analyzer
To check trace signal activity

To check trace signal activity

Display analyzer trace signal activity by typimtay:

Theta command can help you check target system operation. For each analyzer
signal line, thea command will display:

» 0Oifthe signalis low.
» 1lifthe signalis high.
« ?if the signal is moving.

Example

To define equates

Define an equate with the namAME> by typing:equ <NAME>=<expr>

Equates allow you to type an expression once and recall it for later use. Some
values for which you may want to define an equate include occurrence counts,
status values, and table offsets.

Because the emulator has symbol-handling capability, you usually won't define
equates for address values. It's usually better to download symbols from your host
computer or use theym command to define user symbols instead. That way, the
symbols will appear in the trace list. Equates can’t be shown in the trace list.

Suppose you have a two-dimensional matrix, and you often want to specify a
particular row in an analyzer command. If the matrix is 10 bytes square, you can
define an equate as follows:

M>equ rown=10
Suppose that the base address of the matrix is in the symbol mymatrix. Then, you

can specify the 22nd location in the matrix as mymatrix+22 or as
mymatrix+2*rown+2.

138



Chapter 5:Using the Analyzer
To display equates

To display equates
To display the definition of an equate nam@®AME>, type:equ <NAME>

To display the definition of all equates, typegu

To delete equates .
To delete an equate given fNAME>, type:equ -d <NAME>

To delete all equates, typsqu -d *

Equates use system memory, so you may want to delete equates you are no longer
using. This frees memory and makes the equate display easier to read.

Be sure that you want to delete all equates before usimgjthel * command.
System-defined equates are deleted if you use this command, but they will be
redefined if you initialize the emulator (with thét command or by cycling
power).

139



140



Making Coordinated Measurements

Use the Coordinated Measurement Bus to start and stop multiple emulators and
analyzers

141



Chapter 6:Making Coordinated Measurements
Basic Elements of Coordinated Measurements

Basic Elements of Coordinated Measurements

The Coordinated Measurement Bus (CMB) connects multiple emulators and allows
you to make synchronous measurements between those emulators.

For example, you might have a target system that contains an MC68020 processor
and another processor. You use HP 64700 Series emulators to replace both target
system processors, and connect the emulators using the CMB. You can run a
program simultaneously on both emulators, or you can start a trace on one
emulation analyzer when the other emulator reaches a certain program address.
These measurements are possible with the CMB.

Three signal lines are used to control interaction over the CMB.

TRIGGER This is an active low signal. It can be driven by the analyzer
associated with a particular emulator, or used by another device
on the CMB to arm the analyzer associated with that emulator.

READY This is an active high signal. It is used for synchronized start
and stop of multiple emulators. When CMB run control
interaction is enabled, all emulators must break to the monitor
upon receiving a false READY signal, and will not return to the
user program until this line is true.

EXECUTE This is an active low signal. It serves as a global interrupt
signal. On receipt of an EXECUTE signal, each emulator must
interrupt its current measurement and execute a
previously-specified run or trace measurement.

There are two lines internal to the emulator that are used for coordinated analyzer
measurements. These are TRIG1 and TRIG2. The analyzer can drive or receive
either of these signals. Also, the rear-panel BNC and the CMB TRIGGER signal
can drive or receive either of these signals.

Several different commands control and respond to these signals. By using these
commands, you can make the following types of measurements:

e  Start a program run or analyzer trace when the CMB EXECUTE signal is
driven.

» Use either the BNC trigger or CMB TRIGGER to arm (and potentially trigger)
the analyzer.

142



Chapter 6:Making Coordinated Measurements
Basic Elements of Coordinated Measurements

* Have the analyzer drive the BNC trigger or CMB TRIGGER to trigger other
instruments or emulators.

» Break the emulator into the monitor when a BNC trigger, CMB TRIGGER or
analyzer trigger occurs.

The commands used to make coordinated measurements are as follows:

Command Function

bnct Sets drivers and receivers of BNC trigger

cmb Enables/disables CMB interaction

cmbt Sets drivers and receivers of CMB trigger

rx Sets run at CMB EXECUTE address

tarm Specifies which trigger signals arm analyzer
tgout Specifies whether analyzer drives trigger signals
tx Enables/disables trace on CMB EXECUTE

X Starts a coordinated CMB measurement

This chapter shows some of the common measurements that you may want to
make. By combining the above commands in different ways, you can make more
complex measurements involving several test instruments. This can be useful for
troubleshooting multiprocessor systems or problems where the emulator isn’t
capable of making the whole measurement.

Many HP 64700 Series emulators support CMB interaction only when configured

to use a background monitor. However, the MC68020 and MC68030/EC030
emulators support the use of the CMB when configured with either a background or
foreground monitor.

To connect emulators using the CMB, seeHRe64700 Card Cage
Installation/Service Guide

143



Chapter 6:Making Coordinated Measurements
To start a simultaneous program run on two emulators

To start a simultaneous program run on two
emulators

Enable the CMB on each emulator usingdimbd -ecommand.
Reset each emulator using tsecommand.

Set the run address for the first emulator by typingaddress>
Set the run address for the second emulator by typirgddress>

Start program execution on both emulators by typing:

Before you do this procedure, both emulators must be connected via the CMB. To
connect the CMB, see titPP 64700 Series Card Cage Installation/Service Guide

The procedure for starting a simultaneous trace on two emulators is similar. For
each emulator, you should set up the trigger specification before enabling the CMB.
Then add théx -e command to enable trace on execute for each emulator. When
the EXECUTE signal is received, both emulators will begin running as specified by
therx command, and will start a trace according to the given trigger specification.

144



Chapter 6:Making Coordinated Measurements
To trigger one emulation-bus analyzer with another

To trigger one emulation-bus analyzer with
another

1 Enable the CMB on each emulator usingdim -ecommand.
2 Reset each emulator using thecommand.

3 Set up the first emulator to drive the CMB trigger.

4 Set up the second emulator to receive the CMB trigger.

5 Start a trace on each emulator usingttbemmand.

6 Start a run on each emulator usingrtltsmmand.

Before you do this procedure, both emulators must be connected via the CMB. To
connect the CMB, see titPP 64700 Series Card Cage Installation/Service Guide

In the above procedure, you set one emulation analyzer to drive the CMB trigger,
and set another to trigger on receipt of a CMB trigger. You can use the same
concepts to trigger external instruments using the BNC connector on the rear panel
of the HP 64700 Series Card Cage.

Example Assume that you have two MC68020 emulators, running out-of-circuit. The demo
program is loaded in each emulator. The following example will trigger the
analyzers in both emulators when Cmd_1 is detected in the first emulator.

Set up the first emulator by entering the commands:

R>init -c

R>demo

R>cmb -e

R>tg addr=~3&handle_msg:Cmd_|
R>tgout trigl

R>cmbt -r trigl

R>tp ¢

R>t

145



Chapter 6:Making Coordinated Measurements

To trigger one emulation-bus analyzer with another
R>b
M>

Set up the second emulator:

R>init -c
R>demo
R>cmb -e
R>cmbt -d trigl
R>tarm =trigl
R>tg arm

R>tp ¢

R>t

R>r

W>

Start the first emulator:

M>r

U>

On the second emulator, pregsnter>. Note that the second emulator is now
running:

wW>

u>

On the first emulator, type:

U>m -db Cmd_Input=44

Display the trace on the first emulator:

Ustl -e -10..10

Display the trace on the second emulator:

Ustl -e -10..10

146



Chapter 6:Making Coordinated Measurements
To break to the monitor on an analyzer trigger signal

To break to the monitor on an analyzer trigger
signal

Set the analyzer to drive a trigger signal by typiggut <signal>

where<signal>is eithertrigl ortrig2.

Set the emulator to break to monitor on receipt of the same trigger signal by typing:
bc -e <signal>

where<signal>is the same one specified in step 1.

for more information).

Specify the trigger conditions for the trace. (See Chapter 5, “Using the Analyz.

Start the trace by typing:

Start a run by typing:

The trigger signals and the analyzer trigger capabilities allow you to specify
hardware breakpoints. You can use the trigger specification to specify complex
sequences of address, data and status, and then break the program to the monitor
when the sequence is found. This is useful when you want to examine memory
locations and registers after the trigger condition but before further program
execution.

You can use a similar process to break to monitor when a BNC trigger or CMB
trigger is received. See thact andcmbt commands in Chapter 10, “Emulator
Commands.”

147



148



Configuring the Emulator

How to adapt the emulator to your system

149



Chapter 7:Configuring the Emulator

Each MC68020/MC68030/MC68ECO030 system differs in the way it configures the
processor, uses memory, and memory mapped 1/O devices. During system
development, your needs for emulator resources may change as your system design
matures. You can allocate emulator resources using Terminal Interface commands.
This resource allocation is called the emulator configuration.

Memory

The emulator must know how your system memory resources are allocated. You
can use emulation memory for some memory ranges. This is useful in the early
stages of system debugging.

In the MC68020 emulator, if your target system runs at more than 25 MHz,
emulation memory requires one wait state (except for the 4 Kbytes of dual-port
memory, which will run at 33 MHz without wait states).

In the MC68030/MC68EC030 emulator, emulation memory always requires one
wait state for synchronous and burst modes. If your target system runs at more than
25 MHz, all synchronous and burst modes, and memory accesses will require one
wait state.

The emulator also allows you to specify the function code used when loading
memory.

You can choose whether to interlock your sysBESACK signals (an&TERM for
the MC68030/MC68EC030) with internal memory terminations for emulation
memory cycles and monitor bus cycles (foreground only on the
MC68030/MC68EC030). The interlock can be enabled for only the blocks that
require it.

Emulation Monitor

The emulation monitor is used to implement some emulator features. For example,
display or modification of your target system memory or emulation memory that
isn't dual-port is done by the monitor. You can choose either a foreground or
background monitor, and the base address at which the monitor resides. (See the
bookConcepts of Emulation and Analy&is more information on foreground and
background monitors.)

If you're using the MC68020 emulator with the background monitor, the emulator
makes the background cycles visible to your target system. These cycles appear in a
4 Kbyte range that begins with the base address you set for the monitor. The

150



Chapter 7:Configuring the Emulator

MC68030/MC68EC030 emulator doesn’t make background cycles visible to your
system. You can set a “keep-alive address” from which the background monitor
will periodically read a byte visible to your system during monitor operation.

If you select a foreground monitor, you can choose the default monitor that is
resident in the emulator, or you can design a custom foreground monitor that
supports special target system needs. You can specify the interrupt priority mask to
use during foreground monitor execution.

A foreground monitor must be used when the MMU of the MC68030 is enabled. If
the background monitor is selected when you attempt to enable the MMU, the
foreground monitor will be selected, by default.

If you initialize the emulator, then break to monitor, and then try to run the
processor, the run will fail because the processor’s stack pointer and program
counter aren't initialized. A configuration item allows you to set these values for
convenience so that the above sequence will work correctly.

Break Conditions

Software and hardware breakpoints allow you to terminate your program and
the monitor.

Software breakpoints use one of the BKPT instructions (BKPT 1..7). You can
choose which instruction is used.

Other Configuration Items

The emulator allows you to restrict commands to those that won’t temporarily
interrupt user execution to perform monitor functions. This is important for some
systems that require non-stop, real-time code execution.

You can disable the processor cache memory. The emulation-bus analyzer can’t see
instructions (or data) that are fetched from cache. This can make trace displays
difficult to interpret. When you disable the cache, all instructions and data are
fetched from memory, and therefore will appear in the trace list.

You can block your target system interrupts from the processor. This can help you
troubleshoot problems with spurious interrupts or allow you to delay testing of
interrupt service routines.

151



Chapter 7:Configuring the Emulator
Mapping and Configuring Memory

Mapping and Configuring Memory

Every system allocates memory and 1/O differently, as needed by the application.
As the system design matures, memory locations and requirements may change.
For example, the initial target system design may not support external memory, but
a change in application definition may need more program code, requiring external
memory. While the design is being changed, you can develop the program using
the emulator’'s emulation memory to simulate your target system memory.

The emulator has flexible memory resources that allow you to configure the
emulator to support your needs.

To assign memory map terms

» Assign memory to a specific address range by typing:
map <range> <memory_type> <attribute>

<range>is an address range aligned on 256-byte boundaries (resolution is 256
bytes).

<memory_type>is as follows:

Type value Memory Assigned
eram Emulation RAM
erom Emulation ROM
tram Target System RAM
trom Target System ROM
grd Guarded memory

152



Chapter 7:Configuring the Emulator
Mapping and Configuring Memory

<attribute> can be:

dp to indicate that this block is to reside in the special 4-Kbyte block of dual-ported
emulation memory. (Dual-ported memory can be accessed by the host controller
without the emulation monitor program, which means that your program executes
uninterrupted during the access.)

dsi indicates that your system and emulaf@®ACKSs should be interlocked. (The
MC68030/MC68EC030 emulator also interlocks #1&RM signals when you
chooselsi.)

ci asserts th€lIN line to the MC68030/MC68ECO030 for all addresses in this
memory block, indicating that accesses to this block should not be cached. This
attribute is available only on the MC68030/MC68EC030 emulator.

(Combine multiple attributes by separating them with commas, for example:
dp.dsi.)

You need to specify the location and type of various memory regions used by your
programs and your target system. The emulator needs this information to:

»  Orient buffers for data transactions with emulation memory and your targe
system memory.

* Reserve emulation memory blocks.

» Set the type of memory blocks so that configuration items such as write to
ROM break will operate correctly.

The MC68020 and MC68030/MC68EC030 emulators have seven map terms. Your
address specifications must begin and end on 256-byte boundaries. To specify an
address beginning on a 256-byte boundary, enter an address ending in 00. To
specify an address ending on a 256-byte boundary, enter an address ending in ff.
Because of the way the emulation memory system is designed, the amount of
memory used by each map term corresponds to the nearest block size available, not
the amount of memory needed by the absolute address range to be stored.

There is one 4 Kbyte block of dual-ported emulation memory. (Dual-ported means
that the emulation controller can access memory locations without interfering with
program execution). This block can be mapped by specifyindptia¢tribute after

the map address and memory type specification. If you use a foreground monitor,
the emulator reserves this block for the monitor code.

If you specify an address range less than 4K withighattribute, all 4K is
allocated because that is the minimum block size for that memory. If you specify a

153



Chapter 7:Configuring the Emulator
Mapping and Configuring Memory

block size less than 4K and the dual-port memory is unmapped, the emulator uses
that memory to more closely match the requested address range to the block size.

In the MC68020 emulator, the dual-port memory does not require wait states, even
when you use the emulator at 33 MHz. Also, the dual-port memory is 16 bits wide.

In the MC68030/MC68EC030 emulator, the dual-port memory runs at maximum
emulator speed. The dual-port memory in this emulator is 32 bits wide.

There are also two memory sockets on the probe. This memory is not dual-ported,;
the monitor is used to read and write the locations when you display or modify
memory. The bus width for this memory is 32 bits. You can install 256 Kbyte or 1
Mbyte emulator memory modules in these sockets for the following configurations.

Installation Memory slot 0** Memory slot 1** Blocks Available
1 256K 256K 4-64K, 2-128K
% 256K M 4-64K, 2-512K
3 1M 256K 4-256K, 2-128K
4 1M 1M 4-256K, 2-512K
5 256K Empty 4-64K

6 M Empty 4-256K

7 4M 4M 4-1M, 2-2M

8 4M 1M 4-1M, 2-512K

9 4M 256K 4-1M, 2-128K
10 4M Empty 4-1M

* Installation 2 is generally not recommended; it does not allocate blocks as well as Installation 3.
** |f you look down at the component side of the probe with the cables leading towards you, memory slot
0 is to your left and memory slot 1 is to your right.

For each configuration, the “Blocks Available” indicate the minimum amount of
memory that will be allocated if you specify a map term with that block size or less.
If you need to use emulation memory, you should examine your memory usage and
install memory in the way that will maximize block usage. (See the examples on

the next page.)

154



Chapter 7:Configuring the Emulator
Mapping and Configuring Memory

If you specify thedsi attribute, the emulator waits for both the emulation memory
data to become valid and your syste®ACK to terminate an emulation memory
cycle. This makes the bus cycle length identical to that of your target system, so
that timing will be the same. If your target system does not rEX8ACK in the
address range mapped to emulation memory, don’t usksithdribute, because the
system will hang while waiting for yol@SACK. (See “To Interlock Emulator and
TargetDSACKSs for Monitor Cycles” for more information.) For the
MC68030/MC68EC030 emulator, your syst8TERM signal is also used for

cycle termination if you specify ttdsi attribute.

If you don’t specify thelsi attribute when you map a memory block, your target
systemDSACK andBERR signals (an&TERM for the MC68030/MC68EC030)
are ignored on accesses to that block.

If you specify theci attribute (MC68030/MC68EC030 emulator only), €iéN

(cache inhibit input) line is asserted for accesses to that memory block. This
prevents instructions or data from that memory block from being loaded into the
processor cache memory. If you need to disable caching for all memory accesses,
use thecf ceconfiguration item. See “To disable the processor cache memory”
this chapter.

If you want to add a term that overlaps address ranges with an existing term,
must either redefine or delete the existing term.

Some commands reset the memory mapper. These commandagré:*, cf
mon, cf monaddr. You should configure the emulator before you map memory.
Otherwise, you will need to reenter the map commands.

155



Chapter 7:Configuring the Emulator
Mapping and Configuring Memory

Example Suppose you're using the emulator in-circuit, and that there is a 12-byte 1/O port at
1c000 hex in your target system. You have ROM in your system from 0 through
ffff hex. Also, you want to use the dual-port emulation memory at 20000 hex:

R>map 1c000..1cOff tram
R>map 0..0ffff trom
R>map 20000..20fff eram dp

Remember that you must use the background monitor if you want to use the
dual-port emulation memory to store your program.

The relationship between memory ranges and the block sizes of memory is easier to
understand by looking at an example. Suppose you have Installation 1 from the
table above. Then you enter the following map commands:

R>map 0..7fff eram
R>map 20000..3f0ff eram
R>map 40000..4ffff eram
R>map 50000..500ff eram

If you haven't used the dual-port emulation RAM, the first map term that will fit is
assigned to that memory. In this example, that is the last term you defined (the
range from 50000..500ff). The entire 4 Kbyte block is reserved even though you
specified only a 256-byte range. Two 64K blocks and one 128K block are used
from the other emulation memory, leaving two 64K blocks and one 128K block.
One of the 64K blocks is used for the first map term, but 32K of that block is
unused and unavailable. The third term uses the other 64K block. The second term
uses part of the 128K block, leaving the rest unavailable.

The mapper’s resolution is independent of the block allocation. In the above
example, if you hadhap other grd and your program accessed 8000h, the
emulator would do a break on access to guarded memory.

156



Chapter 7:Configuring the Emulator
Mapping and Configuring Memory

Combinations of regular emulation memory and dual-port emulation memory may
be confusing when you look at analysis displays. Assume that you have installation
3 from the table. Suppose you reset the map, and then mapped a range covering
260 Kbytes:

R>map 0..40fff eram

The emulator will allocate one 256K block from the emulation memory modules
and will use the 4-Kbyte, dual-port memory for the rest of the range. Only one
mapper term is created (without e attribute). In the MC68020, because the
emulation memory modules are 32 bits wide and the dual-port memory is 16 bits
wide, you will see a change from 32-bit to 16-bit fetches as the processor crosses
the boundary between the two memory types.

You can use function codes when mapping memory. See “To Set the Function
Code for Memory Loads” for examples.

157



Chapter 7:Configuring the Emulator
Mapping and Configuring Memory

To assign the memory map default

To map all remaining memory to your target system RAM, typa@ other tram
To map all remaining memory to your target system ROM, tyjagx other trom

To assign all remaining memory as guarded memory spacentgpeother grd

The other map term specifies all address ranges not otherwise covered by existing
memory map terms. This can save you time in memory mapping.

Often you will want to be notified when the processor accesses a nonexistent
memory location during a program run. Usedha (quarded) term to do this. The
emulator will break to monitor and display a message when a guarded memory
access occurs.

To check the memory map

To check the current memory map, typep

158



Chapter 7:Configuring the Emulator
Mapping and Configuring Memory

To delete memory map terms

To delete a particular memory map term, typap -d <term#>

Where<term#> is in the range 1-8.

To remove all memory map terms and reset the map,mygge:d *

To enable one wait state for emulation memory
(MC68020)

If your system clock frequency is greater than 25 MHz, typemwait=en .

Otherwise, typecf emwait=dis

To check the memory wait state setting, type:
cf emwait

In the MC68020 emulator, emulation memory doesn’t require any wait states for
clock speeds under 25 MHz. For clock speeds above 25 MHz, you must enable this
configuration item, which adds one wait state to all emulation memory accesses
(except for those to the dual-port emulation memory, which will run at 33 MHz
without wait states). This ensures that emulation memory has enough time to
respond to the memory access. Otherwise, emulator operation will be erratic.

159



Chapter 7:Configuring the Emulator
Mapping and Configuring Memory

To enable one wait state for synchronous/burst
accesses (MC68030/MC68EC030)

If your target system clock frequency is greater than 25 MHz, tfgenwait=en

Otherwise, typecf emwait=dis

To check the memory wait state setting, type:
cf emwait

The MC68030/MC68EC030 emulator always requires one wait state for
synchronous and burst memory accesses to emulation memory. When the clock
speed is above 25 MHz, the emulatarstadd a wait state for synchronous and

burst mode accesses to your target system memory. You do this by sefecting
emwait=en Otherwise, emulator operation will be erratic. No wait states are
required for synchronous and burst mode accesses when the clock rate is below 25
MHz.

To set the function code for memory loads

To set the function code for memory loads that use the load commandaftype:
[fc=<FC>

where<FC> may be one of:

u—User

s—Supervisor

d—Data

p—Program

ud—User Data
up—User Program
sd—Supervisor Data
sp—Supervisor Program
x—Don'’t Care

160



Chapter 7:Configuring the Emulator
Mapping and Configuring Memory

» To check the function code setting for memory loads, tfdé

If you map memory ranges using function codes, you must use this configuration
item to set the function code type before you load programs using the load
command. This ensures that the program is loaded into the correct function code
space.

Example Suppose that you have two programs, one supervisor and the other user. You might
map the following memory ranges:

R>map 1000..1fff@s eram

R>map 1000..1fff@u eram

Now, if the programs are named super.X and user.X (HP64000 absolute format),
you would load them as follows:

R>cf Ifc=s

R>load -hbs "transfer -tb super.X"
R>cf Ifc=u

R>load -hbs "transfer -tb user.X"

(See “To Load a Program” in Chapter 1 for information on the load command.)

161



Chapter 7:Configuring the Emulator
To enable the processor memory management unit (MC68030 only)

Note

Examples

To enable the processor memory management
unit (MC68030 only)

To turn on the MMU in the MC68030 emulation processor, ecftenmu=en

Once enabled, the MMU of the MC68030 can be set up by the operating system to
manage logical (virtual) memory in physical address space. The selection of a root
pointer and the value in the translation control register determine how the MMU of
the MC68030 will manage memory. The MMU of the MC68030 must be enabled
by this configuration question before the operating system can establish those
control values.

Your target system will enable the MMU during program execution by using the
/MMUDIS signal. If you disable the MMU with this configuration question, the
/MMUDIS signal from your target system will be ignored.

A foreground monitor must be used when the MMU of the MC68030 is enabled. If
the background monitor is selected when you type iofthemu=en command, the
foreground monitor will be selected automatically.

Make sure the foreground monitor is mapped to memory space that has a 1:1
translation. Refer to the end of this chapter for instructions on how to map the
foreground monitor to 1:1 address space when using the MC68030 MMU.

To enable the MC68030 MMU so that the operating system can set it up to manage
memory, enter the command:

M>cf mmu=en

To disable the MC68030 MMU, enter the command:

M>cf mmu=dis

To see the present state of the MMU, enter the command:

M>cf mmu

To obtain additional information about the MMU, enter the command:

M>help cf mmu

162



Chapter 7:Configuring the Emulator
To select the emulation monitor

To select the emulation monitor

To select the background monitor, typemon=bg
To select the foreground monitor, tygémon=fg

To see which monitor is currently selected, tygienon

The emulation monitor is used to perform emulation functions such as display and
modification of your target system memory, emulation memory that is not
dual-port, and processor resources such as registers.

The background monitor overlays processor address space and doesn’t use any
processor memory resources. However, interrupts are disabled (including level 7)
when the emulator is running in background. This condition may not be tolerable to
some target system designs.

If you select the foreground monitor, interrupts can be enabled during monitor
execution, which may make the emulator more transparent in some applicatio
See “To Set Foreground Monitor Interrupt Priority” in this chapter.

A foreground monitor must be used when the MMU of the MC68030 is enabled. If
the background monitor is selected when you enable the MMU, the foreground
monitor will be selected, by default, and a STATUS message will appear to tell you
that the monitor type has changed.

When you select the foreground monitor, the emulator maps the 4 Kbyte block of
dual-port memory for the monitor. You can't use any portion of the range allocated
to the foreground monitor for any other purpose.

You may have two types of foreground monitors: one default, and the other
custom. The default foreground monitor is resident in the emulator, and is
automatically loaded whenever the processor leaves emulation reset. If this monitor
doesn’t meet your needs, you can modify the monitor source code (supplied with
the emulator) to create a custom monitor, and load it using tipdion to thdoad
command.

When you select a different monitor, the memory map (and the emulation
processor) is reset. First select the monitor type. Then map memory.

163



Chapter 7:Configuring the Emulator

To select the emulation monitor

If you have trouble with emulation monitor functions, you can reload the monitor.
Both the foreground and background monitors are loaded when the processor
transitions out of emulator reset.

The MC68020 and MC68030/MC68EC030 emulators differ slightly in the
implementation of the monitor configuration. The following table summarizes the
differences.

Emulator

Background monitor Foreground monitor
(cf mon=bg) (cf mon=fg)

MC68020

MC68030/MC68EC030

monaddr—sets address block fomonaddr—sets address block for
memory overlay; bus cycles to thraonitor in emulation memory
overlay are driven to target mondsi—interlocks emulation
mondsi—interlocks emulation  and monitoDSACKSs for monitor
and monitoiDSACKSs for monitor cycles

cycles monintr—allows lowering
monintr —ignored for backgroundnterrupt mask during foreground
monitor monitor execution

monaddr, mondsi, monint—not monaddr—sets address block for
available monitor in emulation memory
monkaa—set address from whichmondsi—interlocks emulation
to read a byte periodically duringand monitoDSACKSs for monitor
background operation cycles
monintr —allows lowering
interrupt mask during foreground
monitor execution
monkaa—not available

More information on emulation monitors is given in the bGokcepts of
Emulation and Analysis.

164



Chapter 7:Configuring the Emulator
To select the emulation monitor

To set the monitor base address

To set the base address for the monitor, type:
cf monaddr=<ADDRESS>

where<ADDRESS>is a hexadecimal address on a 4 Kbyte boundary
(XXXXXO000h).

To check the monitor base address, tgperonaddr

Background monitor

When you select the background monitor, the emulator uses overlay memory to
load the monitor. This overlay memory doesn’t use any processor memory space.

In the MC68020 emulator, the address, data and control strobes are driven to
target system during background monitor operation. Background write cycles
appear as reads to your system. You can relocate the background monitor (u
monaddr configuration item) so that these read cycles won't interfere with 1/0
other target system hardware.

In the MC68030/MC68EC030 emulator, ttmenaddr configuration item isn't
available. Background monitor bus cycles aren’t driven to your target system. The
monkaa (monitor keep-alive address) configuration item is provided to support
systems that require periodic bus activity. See “To set the background monitor
keep-alive address.”

Foreground monitor

For both the MC68020 and MC68030/MC68EC030 emulators, this configuration
item sets the base address where the monitor is loaded. When you select the
foreground monitor, the emulator uses the 4-Kbyte block of dual-port emulation
memory to load the monitor. It resets the memory map, then creates a map term at
the address you specify faronaddr. You can’t delete or alter this map term by

using themap command. Instead, you must change the monitor configuration by
using themon, monaddr, andmondsi configuration items.

165



Chapter 7:Configuring the Emulator
To select the emulation monitor

If the memory management feature of the MC68030 emulator is enabled, be sure
the foreground monitor is mapped 1:1. Refer to the end of this chapter for
instructions on how to map the foreground monitor to 1:1 address space.

To interlock monitor cycles with your cycle
termination signals

To interlock the emulator and your target system cycle termination signals for
monitor accesses, typef: mondsi=en

To terminate monitor accesses with only the emulator-generated cycle termination
signals, typecf mondsi=dis

To check the interlock setting for monitor accesses, tfpaondsi

When you enable interlocking, emulation monitor cycles aren’t terminated until
your target systeSACK (orSTERM for MC68030/MC68ECO030) is received.
Otherwise, the emulator-generated signals will terminate the cycle. Also, the
emulator will respond tBERR signals from your system when interlocking is
enabled.

This configuration item applies to both the background and foreground monitors on
the MC68020 emulator. In the MC68030/MC68EC030 emulator, this configuration
item is available only with the foreground monitcir fron=fg).

This configuration item affects the map term defined for the monitor.

If you enable the interloclc{ mondsi=er), and the monitor is in an address range
where yourtarget system does not reDBACK (or STERM), the emulator will
stop functioning. You will see a w> prompt indicating that the CPU is in a wait
state. Use thest command to reset the processor, and then disable the interlock.

If you setcf mondsi=dis yourDSACK andBERR signals (an8TERM for the
MC68030/MC68ECO030) are ignored during monitor accesses.

If you disable the interlock, remember that the emulator bus cycles will be visible
to your system during monitor operation (except when you use the

166



Chapter 7:Configuring the Emulator
To select the emulation monitor

MC68030/MC68EC030 background monitor). This may cause a problem if your
target system wasn't expecting these cycles. Erratic system operation may result.

To set foreground monitor interrupt priority

To select the interrupt priority level for general foreground monitor execution, type:
cf monintr=<level>

where<level>is in the range 0..7.

To check the interrupt priority level, typef: monintr

During background monitor execution, interrupts are always disabled. This may
cause problems for some systems, especially those for real-time control wher
interrupt servicing must be done immediately.

To solve this problem, you can select the foreground monitor, and then set th
interrupt priority level to one that allows your system to function correctly, yet
avoids excessive interrupt processing.

On the MC68020 emulator, this configuration item is ignored if you choose the
background monitor. On the MC68030/MC68EC030 emulator, this configuration
item isn't visible if you choose the background monitor. Both emulators block your
target system interrupts if you stti=dis. See “To Disable Target System
Interrupts.” The emulator is reset when you change the setting of this configuration
item.

At monitor entry, if the processor’s interrupt priority level was greater than the
value set bynonintr, the monitor uses the previous priority level (matnintr).
Otherwise, the priority is lowered to thenintr level.

The foreground monitor only lowers the interrupt priority to the level you specify
when it is not executing critical code (for example, on monitor entry and exit).
Otherwise, all interrupts are disabled.

167



Chapter 7:Configuring the Emulator
To select the emulation monitor

Examples

Suppose your system has a disk device driver that uses interrupt level 5, and the
service routine must be run to prevent system damage. To allow interrupts of higher
priority than level 4 to be serviced during foreground monitor execution, enter:

R>cf monintr=4

To set the background monitor keep-alive
address (MC68030/MC68EC030)

To enable the background monitor keep-alive function, type:
cf monkaa=<ADDRESS>

where<ADDRESS>is a hexadecimal address with an optional function code
(OXXXXXXXXh@fc).

To disable the background monitor keep-alive function, typetonkaa=none

To check the setting of the background monitor keep-alive function, type:
cf monkaa

The MC68030/MC68EC030 emulator implements the background monitor in a
different manner than the MC68020 emulator. The MC68020 emulator drives all
background cycles to your target system. @thmonaddr configuration item sets
the address block for those bus cycles.

The MC68030/MC68EC030 emulator does not drive background monitor cycles to
your target system. Some target systems cannot tolerate this. For example, your
system may have a watchdog timer that will time out if the background keep-alive
address isn't read periodically, or a block of dynamic RAM in your system may
need to be refreshed.

In these situations, you set ttfemonkaa configuration item to the address that
must be accessed. Then, when the emulator is in the background monitor, it will
periodically read a byte from the specified address location.

This configuration item does not appear in the MC68020 emulator.

168



Example

Chapter 7:Configuring the Emulator
To select the emulation monitor

To select the background monitor and have it periodically read a byte from address
ffff hex in user space, enter the commands:

R>cf mon=bg
R>cf monkaa=0000ffff@u

To preset the interrupt stack pointer and PC

To set the initial interrupt stack pointer and the initial program counter when the
emulator enters the monitor from reset, tygev=<RESETISP>,<RESETPC>

where<RESETISP>and<RESETPC>are both 32-bit address values in
hexadecimal. Both values must be even. These values usually should corresp
the values loaded into offsets 0 and 4 of your vector table.

To check the reset interrupt stack pointer and pc settings cfype:

Normally, if you run the emulator from reset, the processor fetches the values at
offsets 0 and 4 from the vector table and loads these values into the interrupt stack
pointer and program counter registers. It then begins running from the program
counter address value. (You run from reset by either entering the commsaid

by entering the commanidat the R> prompt.)

However, if you reset the emulator, break to the monitor, and then run the emulator,
the stack pointer and program counter values have not been initialized. Therefore,
the run will fail.

Thecf rv configuration item is provided as a convenience feature to initialize the
stack pointer and program counter to predefined values when the emulator enters
the monitor after a reset. This allows you to reset, break, and then run without
errors. (You can accomplish the same thing by usingetheommand to set the

PC and ISP values while in the monitor.)

You should set the interrupt stack pointer to the value normally contained at offset
0 of your vector table. The program counter should be set to the value contained at
offset 4 in your vector table.

169



Chapter 7:Configuring the Emulator
To select the emulation monitor

Example Assume that the memory range 7000..7fff is mappedaass and reserved as stack
space. Set the interrupt stack pointer to 7ff0 and the initial PC to 400h:

R>cf rv=71f0,400

If you now use thé command to break to the monitor, the isp is set to 7ff0 and the
pc is set to 400.

170



Chapter 7:Configuring the Emulator
Defining Break Conditions

Defining Break Conditions

The emulator supports software and hardware breakpoints. These breakpoints allow
you to break the processor to the monitor when a specified event occurs, such as
reaching a particular address or completing a trace measurement. The configuration
items and commands shown in this section allow you to control the conditions that
will cause an emulator break. Also, the “restrict to real time runs” configuration

item allows you to disable breaks for most conditions, ensuring continuous target
program executions.

To define the software breakpoint vector

To specify the BKPT vector to use for software breakpoints, tfpe:
sw=<number>

To check the current BKPT vector, typésw

<number> can be any value in the rane’. Breakpoint value 0 is not supported
by the hardware. The default settin@.is’ou should choose a vector that isn’'t used
by your target system for other purposes.

The emulator uses the BKPT instruction to implement software breakpoints. When
you define a breakpoint using thp <address>or bp -e <address>ommands,

the emulator saves the instruction at the specified address. Then it writes the BKPT
instruction at that address.

When the BKPT instruction is encountered during user program execution, the
processor executes a breakpoint acknowledge cycle; then puts the BKPT vector on
the address bus. The emulator sees this and jams a monitor entry vector onto the
data bus during the vector fetch. The processor thus enters the emulation monitor.

The monitor replaces the BKPT instruction with the instruction saved earlier, and
clears the breakpoint status.

If you change this configuration item, any active breakpoints in the emulator’s
breakpoint table are disabled.

171



Chapter 7:Configuring the Emulator
Defining Break Conditions

. Examples

To enable or disable break conditions
To enable a break condition, tye: -e <cond>
To disable a break condition, typge -d <cond>

To check the settings of the break conditions, tippe:

<cond> can be any of the followingim, bp, bnct, cmbt, trig1, trig2. All break
conditions are disabled when the emulator is initialized.

You can choose to enable or disable hardware and software breakpoints. For
example, you might want to disable the write to ROM break temporarily. (Perhaps
you need to see the next few bus cycles after the write in the trace list.) Or you
might want to enable a break when the analyzer finds its trigger condition.

To enable software breakpoints, enter:

R>bc -e bp

To disable software breakpoints and write to ROM break:

R>bc -d bp rom

To generate an analyzer trigger signal when the analyzer finds its trigger, and break
to the monitor when the trigger is generated:

R>tgout trigl
R>bc -e trigl

172



Chapter 7:Configuring the Emulator
Setting Other Configuration Items

Setting Other Configuration ltems

The emulator has a few miscellaneous configuration items:
* Restrict the emulator to real-time runs.
» Disable the processor’'s cache memory.

» Disable target system interrupts.

To restrict to real-time runs

To restrict the emulator to real-time runs, tygfart=en
To enable all emulator functions, typérrt=dis

To check the current setting of the real-time runs configuration item,dfype:

The emulator uses the emulation monitor program to implement some features,
such as register displays. When the processor executes the monitor, it is not
executing your system program. This may cause problems in systems that need
real-time program execution.

If you set theef rrt configuration item ten, the emulator will stop running user

code only with thest (reset)b (break)r (run), ands (step) commands.

Commands such asg (registers) that require a break to monitor are rejected. Also,
them (memory) command will be rejected if the address argument specifies
standard emulation memory (not dual-ported) or your target system memory.

This configuration item doesn't affect hardware breakpoints such as write to ROM,
break on analyzer trigger or guarded memory access breaks. It also doesn't affect
the emulator’s response to software breakpoints.

When you set this configuration itemdis, all commands are accepted.

173



Chapter 7:Configuring the Emulator
Setting Other Configuration Items

To disable the processor cache memory

» To disable the processor cache(s), tgbee=dis
* To enable the processor cache(s), tgpee=en

» To check the cache enable/disable setting, tfjpee

The MC68020 processor has a cache that stores the most recently used instructions.
The MC68030/EC030 processor adds a cache for recently used data.

The cache memory increases processor performance, but the emulation-bus
analyzer can't trace processor accesses to the internal cache. This may cause
confusing trace displays or failure to trigger, especially if the code is a small loop
where all the instructions and operands fit into cache and registers.

When you disable the cache(s), the processor will always access external memory.
Then the analyzer will see all bus cycles, which will improve the trace list, but
processor performance will be reduced.

When you’re more concerned about measuring processor performance, you should
enable the cache(s). If you are making analyzer measurements at the same time,
you may need to experiment to find suitable trigger combinations.

This configuration item disables the on-chip cache(s) by controllinGEh&

signal. If disabled, the emulator will assert @i8IS signal to prevent your target
system from enabling the cache(sxflEeis enabled, th€DIS signal from your

target system and the cache control register (CACR) enable bit determine whether
the cache is enabled.

If you need to disable caching only for accesses to a specific memory block, use the
ci memory map attribute (available only on the MC68030/MC68EC030 emulator).
This allows you to capture analysis information for specific memory ranges without
dramatically affecting overall system performance. See “To assign memory map
terms” in this chapter.

174



Chapter 7:Configuring the Emulator
Setting Other Configuration Items

To disable your system interrupts
Disable your system interrupts by typirgti=dis
Enable your system interrupts by typiefjti=en

Check the interrupt enable setting by typicigt

You may want to disable system interrupts if your system interrupt logic doesn’t
work correctly or isn’t finished, or you may want to disable these interrupts if the
service routines and vectors aren’t assigned. You can enable the interrupts when
you're ready to test the interrupt handling routines.

Your system interrupts are always disabled during background monitor execution.
The foreground monitor blocks all interrupts during certain critical routines such as
monitor entry.

The foreground monitor can be configured to lower the interrupt priority mask
monitor entry. See “To Set the Foreground Monitor Interrupt Priority.”

175



Chapter 7:Configuring the Emulator
Mapping The Foreground Monitor For Use With The MC68030 MMU

Mapping The Foreground Monitor For Use With
The MC68030 MMU

To use the memory management feature of the MC68030 emulator, you have to use
a foreground monitor that is mapped 1:1 (logical address = physical address). The
reason that 1:1 monitor mapping is important is that the MC68030 MMU may be
enabled or disabled at any time by your target system during execution of your
program; whether or not the MMU is enabled, the emulator must be able to enter
the foreground monitor to provide emulation features. There are two ways to map
the address range 1:1 where the foreground monitor is located:

* Modify the mapping tables in the MMU to maintain a 1:1 mapping of the
memory address space where the foreground monitor is located. Make sure the
monitor mapping is not write protected.

» Use one of the two transparent translation registers (TTO or TT1) to control the
block where the foreground monitor is located. You must remember to set the
Read/Write Mask bit (RWM) to 1. Transparent translation registers can be set
to translate only read accesses or only write accesses. To use a transparent
translation register to control the address space of the foreground monitor, both
read and write accesses must be enabled (by ignoring the R/W bit).

176



Chapter 7:Configuring the Emulator
Mapping The Foreground Monitor For Use With The MC68030 MMU

Examples

To modify the MMU mappings to translate the
monitor address space 1:1

In the operating system that sets up the MMU for your target program, set aside a
4-Kbyte address space to contain the foreground monitor.

or

After the operating system for your target program has set up the MMU, but before
you enable the MMU, modify the MMU translation tables to ensure that the
foreground monitor resides in logical address space that will be translated 1:1 to
physical address space.

When you modify the content of any MMU mapping table, remember that the
tables are located in physical address space. You must enter your modification
commands using physical addresses.

If you are mapping page sizes smaller than 4 Kbytes through the MMU mappi
tables, you will need to ensure 1:1 translations for all of the pages that contain
portions of the emulation foreground monitor.

Select an address space to contain your foreground monitor that is higher than the
address space used for your target program and I/O. This will optimize deMMUer
resources by using them first to reverse-translate your address space.

To map the foreground monitor to address space that is translated 1:1 by the MMU,
beginning at 24000H:

R>mmu 24000..24fff

The above command causes the emulator to show the present logical-to-physical
mapping of the address range occupied by the monitor. Note that the monitor’s
base address (24000 in this example) must be on a 4 Kbyte boundary (hexadecimal
number ending in 000H).

R>mmu -t 24000

The above command shows the details of the path address 24000 takes through the
MMU mapping tables to reach its corresponding physical address. Place

177



Chapter 7:Configuring the Emulator
Mapping The Foreground Monitor For Use With The MC68030 MMU

appropriate values in the path through the mapping tables to ensure that the page
containing logical address 24000 is mapped to physical space beginning at address
24000. If using a page size of 4 Kbytes or greater, you only need to map a single
page for the foreground monitor. If using a smaller page size, you will have to map
multiple pages.

Examples

To modify a transparent translation register to
map the monitor address space 1:1

Modify the value of a transparent translation register to the base address you
specified for the foreground monitor, or the first address within the range to be
occupied by the foreground monitor:

reg <transparent translation register>=<address>

Where<transparent translation register>may be TTO or TT1, andaddress>
must begin on a 4 Kbyte boundary (hexadecimal number ending in 000H)

To map the foreground monitor to 1:1 address space beginning at 0800 0000H by
using TTO, enter the commands:

R>cf monaddr=08000000
R>reg tt0=08008777

This will map 8000000..8ffffff transparently (1:1). This is a 16M block, the
smallest that can be specified in a transparent translation register.

178



Solving Problems

What to do when the emulator doesn’t respond as expected

179



Chapter 8:Solving Problems
If you see unexplained states in the trace list

Sometime during your use of the emulator, you'll encounter a problem that isn’t
adequately explained by an error message or obvious target system symptoms. This
chapter explains how to solve some of these problems.

If you see unexplained states in the trace list

[J Check to see that the sequence, storage and trigger specifications are set up to
exclude the states that you don't need.

[ ] Try using thel <instruction_state> <operand_statescommand to inform the
dequeuer which operand state belongs with the named instruction state.

[J Try using theol option to thel command to begin disassembly from the low word
of the starting state, instead of the high word.

[J Check to see if instruction or operand accesses in the range covered by the trace
could be filled from cache memory. If so, these cycles won't appear in the trace list,
which will confuse the disassembler. Either disable the cache memory entirely or
disable caching for those address ranges by addimg @teche inhibit) attribute to
those ranges in the memory map. (See Chapter 7, “Configuring the Emulator.”)

If the analyzer won't trigger

L] Instruction fetches from cache memory aren't visible to the analyzer. You can
disable the cache while using the analyzer by enteringf ttes=discommand.
Reenable the cache to improve performance when you are finished using the
analyzer.

[J When the MC68030/MC68ECO030 fetches instructions from program memory, it
addresses 32-bit longwords. These addresses are always multiples of 4 (ending in
Oh, 4h, 8h, and Ch), except for PC-relative fetches. The instruction you are trying
to trigger on may be in the high word or the low word of the long word. If you
specify trigger on a symbolic address without knowing whether that symbol is in

180



Chapter 8:Solving Problems
If the emulator won't work in your system

the high word or low word, the address may not appear on the address bus. If you
think this may be the problem, try specifying your trigger symbol as

"<symbol>-2H". This long-word correction is not necessary when you are trying to
trigger on data fetches; data is always fetched from the absolute address of the data
location.

If the emulator won’t work in your system

[J The emulator must be plugged into a powered-on target system with a clock signal
to function correctly. (Apply power to the emulator before applying power to your
target system.)

If you suspect that the emulator is broken

1 Shut off power to your target system, and then the emulator. .

2 Disconnect the emulator from your target system.

3 Connect the emulator to the demo board. Also connect the power cable from the
emulator to the demo board (See Chapter 15, “Installation and Service”).

4 Set all the demo board configuration switches to the TEST position (See Chapter
15).

5 Apply power to the emulator.

6 Typepv 1to run performance verification.

If either the emulator or analyzer fail the performance verification, check the
installation of those modules. See Chapter 15 for details. If the installation is
correct, contact your local HP Sales and Service office for assistance.

181



Chapter 8:Solving Problems
If you have trouble mapping memory

If you have trouble mapping memory

[J The emulator uses a best fit algorithm to assign memory blocks to map requests.

Since the memory block sizes available depend on the emulation memory module
installations and the use of the dual-port memory, it's possible that a 256 byte map
request may use 512 Kbytes. (The map term will be only 256 bytes.) Most systems
won't have such differences between memory block size requirements and
available memory. However, certain emulation memory module installations will
aggravate the problem.

Also, use of the dual-port memory is controlled first by monitor selection and next
by explicit selection of a dual-port term in the map. If you choose a foreground
monitor, the dual-port memory block is reserved for that purpose. If you choose a
background monitor, and don’t explicitly map a term withdpettribute, the

dual-port memory may be used to satisfy another map request. For example, if you
request a 256 byte map term and this memory block is available, it will be used to
satisfy the request since it is closest to the needed size. Or, if you request a term
that is slightly larger than another available block, the dual-port memory will be
used with another map term to satisfy the request. (For example, a 260 Kbyte
request may use one 256 Kbyte block and the 4 Kbyte dual port memory.)

On the MC68020 emulator, if dual-port memory is used with the emulation

memory module to satisfy a map request, you may see unusual behavior in the trace
list. The processor executes correctly, but you will notice a status change from 32

bit accesses (ds32) to 16-bit accesses (ds16) as the execution crosses the boundary
from the emulation memory module to the dual-port memory. (You won't see this
problem on the MC68030/MC68ECO030 emulator because the dual-port memory is
32 bits wide.) To fix this situation, map the dual-port memory explicitly to another
unused range (use thp attribute). Then the request for a 260-Kbyte block will use
memory from the emulation memory module only.

See the section “Mapping and Configuring Memory” in Chapter 7 for more
information on memory allocation.

182



Chapter 8:Solving Problems
If the demo program won’t work

If the demo program won'’t work

[J Check to be sure that you have the emulator plugged into the demo board, with
power connected to the demo board from the emulator. (The demo program will not
work with other target systems.)

[J Make sure that the switches on the demo board set to the OCE position
(Out-of-Circuit Emulation, away from TEST).

[J Make sure you initialized the emulator, then executed the demo command to load
the program and configure the emulator.

If you're having problems with DMA

[J Check to make sure that your DMA process doesn’t access memory ranges mapped
to emulation RAM ¢ram) or emulation ROMdrom). DMA to emulation memory
resources is not supported.

If you're having problems with emulation reset

[J Check to make sure that your system uses an open-collector driver to drive the
processoRESET line (this also appliesHALT on the MC68020 processor). This
line is bidirectional; the processor must be able to pull the line low.

[J Check to make sure that all critical components in your system are reset by the
RESET signal to the processor. System startup problems can arise when this rule is
violated. Suppose that your system reset circuit drives several critical system
components directly, but drives the processor through an open-collector buffer.
Suppose also that the critical components are memory-mapping circuits that locate
ROM containing the vector table at address zero for startup, then move it to a high
address range after system initialization. An emulator reset system can't drive this

183



Chapter 8:Solving Problems
If the deMMUer runs out of resources during the loading process

separate reset line. Therefore, a run after emulation reset will fail, because the
vector table is not located in the correct place.

If the deMMUer runs out of resources during the
loading process

Check the physical address ranges that will be reverse translated by the present
setup of the deMMUer. Entdmmu -Iv to see a list of those physical address
ranges. If all of the physical spaces where you have code under development are
listed, ignore the "out of resources" message.

Check to ensure that you have placed sufficient restrictions in the MMU mapping
paths to prevent reverse translating physical address space where you have no
memory.

Check your emulation memory map to make sure you have entries to support each
of the address spaces where you have code under development. Make sure those
spaces are no larger than they need to be to accommodate your program code.

Read "Using the deMMUer" in Chapter 9 for ways to make more efficient use of
deMMUer resources.

[

[

If verbose mode shows less than eight mappings
but the deMMUer is "out of resources”

Check if you are using both root pointers in your memory mapping scheme? The
deMMUer may have run out of resources for only one of the root pointers.

Check if you are using function-code mapping. The deMMUer may have run out
of resources for only one of the function-code memory spaces.

184



Chapter 8:Solving Problems
If you only see physical memory addresses in the analyzer measurement results

[J Read "Using the deMMUer" in Chapter 9 to understand how deMMUer resources
are allocated when using different root pointers or when using function-code
mappings.

If you only see physical memory addresses in the
analyzer measurement results

[J Check to see if you enabled the deMMUer with the comnadmehu -e

[J Check to see if you loaded the deMMUer with the information needed to reverse
translations made by the MMU with the commashtimu -Iv.

[J Read "Using the deMMUer" in Chapter 9 to understand how the deMMUer selects

physical address ranges to reverse translate for the analyzer.

185



Chapter 8:Solving Problems
If the deMMUer is loaded but you still get physical addresses for some of your address

space

If the deMMUer is loaded but you still get
physical addresses for some of your address
space

[J Some physical accesses are normal, especially accesses to the MMU tables and cpu
space.

[J Check to see which physical memory spaces are being reverse translated by the
deMMUer. Enter themmu -lv command to see a list of the physical address
spaces that will be deMMUed.

[J Check the setup of the MMU mapping tables. Make sure that unused address
spaces are marked with invalid descriptors in the mapping tables.

[J Check the emulation memory map. Make sure you have allocated only the memory
spaces needed to accommodate code you are developing in your map. Make sure
you have mapped the smallest spaces that you can for the code you are developing.

[J Check that the MMU had the setup you wanted to analyze when you loaded the
deMMUer. [f it was managing memory for some other MMU setup, break to the
monitor and issue tldmmu -I command again.

[J Check to see if there was a context change in the MMU during execution of your
program. If there was, the content of the root pointer may have changed for
execution of the new context. The deMMUer tables were set up to reverse translate
the MMU tables under the root pointer values that existed when you entered the
dmmu -l command. If those root pointer values change (pointing to other
translation tables), there is no way to automatically update the deMMUer. It will
continue to provide reverse translations for the setup that existed at the time you
issued thelmmu -| command. Issue tltdlnmu -l command again.

Read "Using the deMMUer" in Chapter 9 to understand how the deMMUer selects
the physical addresses it will translate.

186



Chapter 8:Solving Problems
If you can’t break into the monitor after you enable the MC68030 MMU

If you can’t break into the monitor after you
enable the MC68030 MMU

[J Enter the commanadst -m. If your MC68030 is now running in the monitor, look
at your MMU Tables or the transparent translation register that maintains 1:1
mapping for your foreground monitor. The mapping has failed. Modify your
MMU tables or the transparent translation register to obtain the 1:1 mapping for the
address space occupied by the foreground monitor.

L] If you are mapping a page size that is smaller than 4 Kbytes, make sure that you
have provided 1:1 address mappings for all of the pages that contain monitor code.

[] Refer to the end of the chapter titled, "Using 68030 Memory Management" for a
detailed example that discusses how to solve a "can't break into monitor" problem.

187



188



Part 3

Reference Information

189



Part 3

Commands and Expressions

The Terminal Interface command set is a complete operating environment for the
emulator. The command interpreter includes a rich expression-handler that allows
you to specify measurement values in terms that make sense in the domain of the
problem.

In This Part

Chapter 9, "Using 68030 Memory Management,” explains how the emulator
supports development of a virtual memory system. This chapter describes
considerations you need to understand when developing a system that uses the
MMU of the 68030.

Chapter 10, “Emulator Commands,” lists all the Terminal Interface commands.
This chapter describes the syntax and operation of each command and includes
examples of command usage.

Chapter 11, “Expressions,” describes the different types of expressions used in
Terminal Interface commands.

Chapter 12, “Messages,” lists the error and status messages you may see while
operating the Terminal Interface. Each message describes the reason why you got
that message and how to recover from the error.

Chapter 13, “Data Formats,” lists the file format for the binary trace list and the
symbol files.

Chapter 14, “Specifications,” gives the physical, electrical, environmental, and
timing specifications for both the MC68020 and MC68030/EC030 emulators.

If you're looking for a general introduction to the emulator, see part 1. Part 2
describes how to use the emulator to make measurements.

190



Using 68030 Memory Management

Understanding logical and physical emulation and analysis

191



Chapter 9:Using 68030 Memory Management
Terms And Conditions You Need To Understand

Understanding Emulation And Analysis Of The
MC68030 Memory Management Unit

You only need to read this chapter if you are using the on-chip MMU (Memory
Management Unit) of the MC68030 microprocessor. If you are using an MC68020
or MC68ECO030, or if you are using an MC68030 with its MMU disabled, you

won't need the information in this chapter.

This chapter begins with a discussion of terms and conditions you need to
understand when you are using the MC68030 emulator/analyzer with the MMU
enabled. Under these conditions, many capabilities and features become available
that are not otherwise offered. Also, some of the features you have been using
behave differently. These are discussed in this chapter.

Terms And Conditions You Need To Understand

The following paragraphs explain the differences between logical and physical
memory, and between static and dynamic virtual memory systems.

Logical vs Physical

When you develop a program, compile it or assemble it, and link it, addresses are
assigned to contain each of the bytes of the program. These addresses are logical
addresses. When the program is loaded into hardware memory so that it can be
executed by the microprocessor, it is loaded into physical address space. When you
are not using an MMU, the program is loaded into physical memory hardware at

the logical addresses assigned in the linker load map. Under these conditions, there
is no need to differentiate between logical addresses and physical addresses because
they are the same (simply addresses). When you use the MMU, it becomes
necessary to understand the difference between logical addresses and physical
addresses.

Most emulation and analysis commands that require an address as part of the
command use logical addresses. Some emulation and analysis commands will
accept either logical or physical addresses.

192



Chapter 9:Using 68030 Memory Management
Static and dynamic system architectures

What are logical addresses?

Logical addresses are the addresses that are assigned to your program code when
you develop your program. They are the addresses represented by symbols in your
symbols data base (the symbol "Main" represents a logical address).

What are physical addresses?

Physical addresses are the addresses assigned by the MMU to contain your

program. Physical addresses identify locations where you actually have memory
hardware in your target system. Physical addresses appear on the processor address
bus instead of logical addresses.

Static and dynamic system architectures

There are several design strategies where memory management can help in
developing a system or product. Three of these are described in the following
paragraphs. One shows memory management used in a static memory system. The
other two show memory management used in different dynamic memory systems.
The MC68030 emulator is designed to work in any of these system types; however,
the deMMUer which provides reverse translations to the analyzer is primarily
intended for use in static systems.

Static system example

A static system design may use the MMU simply to protect supervisor code and 1/0
space against accesses from a user program. Once a static system is initialized, it
never changes. Your HP emulator and analyzer can give you complete support for
a static memory management system. After the MMU has been set up to manage

memory in a static system, the deMMUer can be loaded with information to reverse
the MMU translations over the entire range managed by the MMU.

Non-paged dynamic system example

Assume three programmers are developing separate programs to run in a real-time
operating system environment. The programmers each write their programs to
begin at address Oh. The operating system accepts the responsibility to know where

193



Chapter 9:Using 68030 Memory Management
Static and dynamic system architectures

in physical memory space each of these programs will be located. The
programmers don’t have to worry that some additional code they write in their
programs might overwrite some of the code that was written by another
programmer. The operating system will place all of the code in available memory
space and place appropriate translation mappings in the MMU to ensure that when
the logical address for one of the programs (tasks) is present in the program
counter, the appropriate physical address will appear on the bus to access the
desired physical memory location.

Your HP emulator/analyzer can give you partial support for a non-paged, dynamic
system. When the MMU has been set up to manage memory during execution of
one of the above tasks, you can update the deMMUer to translate addresses for that
task. When that task is executing, the analyzer will be able to make trace
measurements and provide correct results. When any of the other tasks are
executing, trace measurement results will be invalid because the other tasks will
depend on different translation tables in the MMU and there is no way to
automatically update the deMMUer when execution switches from one task to
another.

Paged dynamic system example

Assume you have developed a program that occupies 10 megabytes of logical
address space. Perhaps you have only 2 megabytes of physical address space in
your system. Sitill, you want to be able to run the entire program. You set up a
specification in the MMU translation control register to divide the address space

into pages (the 68030 lets you divide the memory space into one of several page
sizes. You can choose to divide the memory into pages as small as 256 bytes or as
large as 32 Kbytes). Assume you set up the MMU to divide the memory into
1-Kbyte pages. Your program will occupy 10,000 pages of code, and 2,000 of these
pages can be contained within your physical memory space at any given time.

As your program executes, the operating system moves pages of your program code
into address space in physical memory. When execution goes beyond the addresses
contained on the presently active page, the MMU checks to see if the next logical
address is on a page that has already been placed in physical memory. Ifitis, the
MMU performs the appropriate translation for the next logical address, placing the
appropriate physical address on the bus, and execution continues. Ifitis not, the
operating system moves the page that has the next address to be executed up from
logical memory space to physical memory space, overwriting one of the pages that
had occupied physical space before. The operating system updates the translation
tables to identify the new logical address space that now occupies that 1 Kbyte of
physical memory, and program execution continues.

194



Chapter 9:Using 68030 Memory Management
Where Is The MMU?

As pages are swapped back and forth between the program (logical space) and the
physical memory, the relationship between any one logical address and its
corresponding physical address may change many times.

Your HP emulator will let you run a paged, dynamic system, but the analyzer will

not be able to provide support for such features as symbolic addresses, or display of
corresponding source files. The deMMUer cannot detect changes in the MMU
mappings. The longer the system runs, the further out of date the deMMUer will
become. Of course, the analyzer will still be able to show activity captured at
physical addresses. By experimenting with several starting points for the inverse
assembler, you can obtain a trace list with activity inverse assembled into an
equivalent assembly language listitigq).

Where Is The MMU?

The MMU is located between the CPU core and the external address bus. The
program counter always contains logical address values. When the MMU is turned
off, the program counter value is placed directly on the address bus to access an
address in physical memory. When the MMU is turned on, the MMU accepts the
logical address value and translates it (by using its translation tables) to a physical
address. The physical address from the MMU is placed on the processor addr,
bus.

195



Chapter 9:Using 68030 Memory Management
Using Function Codes

Using Function Codes

The MMU lets you use function codes as the first level within the translation tables
that map memory. It also allows separate tables to be set up for supervisor and user
access. For example, you can create one set of tables to translate addresses in
supervisor space and another set of mapping tables to translate addresses in user
space. The supervisor space can use the SRP (supervisor root pointer) or the CRP
(CPU root pointer), as you choose. The user space must use the CRP. The
supervisor memory can begin at supervisor address 0 and the user memory can
begin at user address 0. The MMU must ensure that these addresses are placed in
different physical spaces.

You can use the MMU to protect your program space from unauthorized accesses.
If you map a portion of your program through the MMU and identify it as
supervisor space, the MMU will not allow any access to that program space unless
the function code is supervisor at the time the access is attempted. Take care to
ensure that function codes are specified with addresses if the MMU will be making
the distinction (example: <address>@s).

How the MMU is enabled

The MMU depends on a hardware enable and a software enable. Both of these
enables must agree to enable the MMU before it can translate logical addresses to
physical addresses. If either one (or both) of these enables fail to enable the MMU,
it will remain disabled.

Hardware enable

The hardware enable is performed byMMUDIS signal. WherMMUDIS is
asserted, the MMU is disabled. WHdMUDIS is negated, the MMU is enabled
to translate addresses. The emulator controlIMEDIS line according to the
way you set the "mmu" configuration parameter.

If you entercf mmu=dis, theMMUDIS line is held asserted. If you enter

cf mmu=en, theMMUDIS line is directly controlled by your target system. In this
condition, your target system can hold the line high or low to enable or disable the
MMU.

196



Chapter 9:Using 68030 Memory Management
Restrictions when using the MC68030 emulator with the MMU turned on

Software enable

The software enable is performed when the operating system loads a value into the
translation control register (TC). If the enable bit of the TC register value is "e=1"
and the value in the TC register is valid, the MMU will be enabled. If the enable

bit in the TC register is "e=0", or if the value loaded into the TC register is invalid,
the MMU will be disabled.

Caution

Restrictions when using the MC68030 emulator
with the MMU turned on

There are only three restrictions: you must use a foreground monitor, it must not be
write protected, and you must map it to address space that the MMU translates 1:1
(logical=physical).

You must use a foreground monitor. The background monitor does not have the
capabilities to support the MMU functions. The foreground monitor can operate
with the MMU turned on.

You must map the monitor code to address space that the MMU translates 1:1. The
emulator executes monitor code to implement many of its emulation features.
emulator must be able to find the monitor code whether the MMU is turned on
off. By mapping the monitor into address space that has a 1:1 translation, the
monitor stays within known address space at all times, and the emulator can
find it when it needs to use it.

Be sure that no write protection exists in the MMU mapping for the monitor.

Make sure your translation tables are valid. Turning on the MMU can cause your
program or emulator to fail if the MMU tables are not set up correctly. The address
space where the program is executing can change when the MMU is turned on or
turned off. Stack space or other data spaces can move. Breakpoints that have been
set can be lost.

197



Chapter 9:Using 68030 Memory Management
How the MMU affects the way you compose your emulation commands

How the MMU affects the way you compose your
emulation commands

When you display registers, the address registers, stack pointers, and PC always
contain logical address values, even when the MMU is turned on.

If you enter a "run from address" commangdddressy, the address you enter
must be the logical address. The program counter will accept it and supply it to the
MMU for translation before it places the address on the processor bus.

Breakpoint addresses are always logical addresses. When you set a breakpoint at
an address, that address is translated by the MMU and the BKPT #7 replaces the
instruction at the appropriate physical address. When the breakpoint is executed,
the emulator restores the original instruction to the physical address, by first
translating the logical address through the MMU.

Consider what happens if you set a breakpoint at a particular address, and before
the breakpoint is hit, you update the translation tables in the MMU, changing the
mapping to the location where the breakpoint is set? This is discussed in detail
under "Solving Problems" at the end of this chapter.

If you enter a command to display memory or modify memory, your command is
directed to logical address space. If you want to display memory at a physical
address, you have to change your command. For example, the command to display
memory at address 100kh (LOOH will show you the memory content at logical
address 100H (which might be a different physical address). If you want to see the
content at physical memory address 100H, you will have to enter the command
100@a(where "a" = "absolute" = "physical").

Addresses expressed using symbols are always logical addresses. In the case of
symbols, the emulator looks in the symbol data base and finds the logical address
that corresponds to the symbol you used in your command, and it loads that logical
address into the program counter.

If you attempt to modify a memory location that is write protected by the MMU,
the access will fail. To avoid this, modify the MMU tables to remove write
protection from the memory you want to modify.

198



Chapter 9:Using 68030 Memory Management
How the emulator helps you see the details of the MMU mappings

Seeing details of the MMU Translations

The following paragraphs discuss emulator displays that help you understand
translations made by your MMU. There are three displays, each giving a different
level of detail of the MMU translations.

* The present address mappings in your MMU tables.
» The translation table entries for a single logical address.

» The contents of a single level of the translation tables pointed to by a selected
logical address.

How the emulator helps you see the details of the
MMU mappings

To see all of the logical-to-physical translations presently mapped, enter the
commandnmu. The emulator will read the present state of the translation tables
and show all of the valid mappings in those tables. The display will be similar to
the following:

U>mmu
FUNCTION  LOGICAL ADDRESS PHYSICAL ADDRESS
CODE Lower  Upper Lower  Upper
user data 0 7FFF 00000000 00007FFF
8000 FFFF 00008000 OOOOFFFF
10000 17FFF 00010000 00017FFF
18000 1FFFF 00018000 OO001FFFF

user prog 0 7FFF 00000000 OO0007FFF
8000 FFFF 00008000 OOOOFFFF
10000 17FFF 00010000 O0O0017FFF
18000 1FFFF 00018000 OOO1FFFF

supr data 0 7FFF 00000000 000O7FFF
8000 FFFF 00008000 OOOOFFFF
10000 17FFF 00010000 O0O0017FFF
18000 1FFFF 00018000 OOO1FFFF

supr prog 0 7FFF 00000000 OO0007FFF
8000 FFFF 00008000 OOOOFFFF
10000 17FFF 00010000 O0O0017FFF
18000 1FFFF 00018000 OOO1FFFF
u>

199



Chapter 9:Using 68030 Memory Management
How the emulator helps you see the details of the MMU mappings

The above listing shows function codes were included in the mapping scheme. If
function codes had not been included, the function code headings would not be
present, and only a single list of logical-to-physical address mappings would be
shown.

Note that the emulator enters the monitor to obtain the information it shows in the
MMU displays. Your user program is suspended while the emulator gathers
information for an MMU display. If there are portions of your program that should
not be interrupted during execution, insert a software breakpoint in some safe area
of your program code and run until the breakpoint is hit. Then you can safely view
the MMU mappings.

The display you get with thmmu command can show as little as one line per page
of mapped logical address space. Contiguous entries are shown on one line to
make the display more readable. Early terminations (which result in contiguous
translation of multiple pages) will also be shown on a single display line.

The display of MMU mappings will only show pages for which the system has
valid mappings. No information is given in the defauhu display for paths
designated invalid, or for paths containing illegal entries.

If your system uses a small page size and has a large physical memamputhe
command may cause your display to scroll through a long list of mappings. To
avoid a list of mappings that scrolls for a long time, include an address or address
range in yoummu command. The commamamu 0..0ffff instructs the emulator

to show the valid mappings for only the logical addresses in the range of 0 through
Offff, instead of all possible mappings.

Another way to limit the number of address ranges shown in an mmu mappings
display is to include a function code in your command (if function-code mapping is
in use). The commarmdmu 0..0ffff@u will show all of the mappings for

addresses from 0 through Offff in user address space.

The display does not take into account overrides caused by the transparent
translation registers. A status message will indicate that a transparent translation
overlapped a mapping. Use the display regiség)) command to determine the
transparent translation.

200



Chapter 9:Using 68030 Memory Management
Supervisor/user address mappings

Supervisor/user address mappings

If you are using separate supervisor and user mappings, the emulator will support
this choice and show appropriate information. The MMU has two ways of doing
this:

(1). Using SRP and CRP root pointers. When using the SRP and CPU root
pointers to provide separate user and supervisor translation mappings, no
distinction is made between program and data space.

» To see only the mappings under the SRP, use the command:
<address>[..[<address>]|@s The "@s" tells the emulator to show the
supervisor mapping for the associated logical address or address range.

» To see only the mappings under the CRP, use the command:
<address>[..[<address>]|@u

» If you do not specify a root pointer in your command in the above example, the
mappings will be shown for the SRP root pointer.

» If you specify no address, then mappings will be shown for both root pointers.

(2). Use function code lookup table level. This allows up to seven separate sets of
translation tables, each under a different function code value (although only the
following four function codes are normally used: user data, user program,
supervisor data, and supervisor program).

» To see only the mappings under a selected function code, use a comman
mmu <address>[..[<address>]|@ud
where:@ud displays mappings under user data.
@updisplays mappings under user program.
@sddisplays mappings under supervisor data.
@spdisplays mappings under supervisor program.

»  The default suffix ig@sp(supervisor program) when an address is specified in
anmmu command.

201



Chapter 9:Using 68030 Memory Management
Translation details for a single logical address

Translation details for a single logical address

To see translation details for a logical address, enter a command suchuas:
<address>. The -Dption tells the emulator to show the translation details for the
specified address. The display will show the way the logical address is mapped
through the tables to reach its corresponding physical address.

U>mmu -t 40f8H
Logical Address (hex) suprprog 0 0 0 O 4 0 F 8
Logical Address (bin) 110 0000 0000 0000 0000 0100 0000 1111 1000
Table Level FCODE Il 111 1l 1A APPP PPPP PPPP PPPP

LEVEL INDEX LOCATION CONTENTS  TBL/PAGE L/U LIMIT S CI M U WP DT
CRP 80000002 00001020 00001020 SHORT

FC 0006 00001038 0000104a 00001040 10 SHORT

A 0000 00001040 00000019 00000000 0 110 PAGE

Physical Address (hex) = 000040f8
u>

Address mapping details
The example display shows:

» The translation mapping for logical address 40f8H in supervisor program
space. Both the hexadecimal and binary values are shown for the logical
address.

e The Table Level line shows how each address bit is mapped by the translation
control register. In the example display, the 15 high-order bits are ignored by
the initial-shift. The next two bits are used as an offset into Table A. The
lowest-order 15 bits contain the offset into the physical page indicated by
Table A.

» The CRP (CPU root pointer) is used by this address mapping. Its contents
point to the function code table whose base address is 1020.

» The index used in the function code table is 6 (supervisor program space)
which points to physical address 1038. The content of this address is 104a,
indicating a short A level table located at base address 1040. The status also
indicates that this table has been used "U".

» The function code table points to Table A whose base address is 1040. The
index into Table A is 0. The content of Table A at the indexed location is 19.

202



Chapter 9:Using 68030 Memory Management
Translation details for a single logical address

This indicates that the base address of this physical page is 0. There are also a
number of status flags indicated.

» The physical address is finally calculated by adding the physical page offset to
the base address of the physical page (408 + 0 = 40f8).

Status information

Status can be assigned to an address at any point in its mapping. To interpret
status, you must OR the status information at each level of the mapping. For
example: the "M" bit shows that the content of the page indicated by Table A has
been modified (by a write or read-modify-write). This applies only to addresses in
this page. A "1" might have been shown under the "S" status bit in the FC line. It
would indicate that only supervisor accesses are allowed for this function code.
This restriction would apply to all addresses of this function code, even though S=1
only appeared at the upper level of the table.

The L/U and LIMIT status entries work together. For example, if Table A had
eight bits assigned to it (shown in the Table Level line), then there could be as
many as 256 entries in Table A, pointing to as many as 256 separate Table B’s, if
mapping through Table B had been included. You might have specified a limit of
ten Table A entries even though many more could have been specified. This limit
would be shown under LIMIT in the display. In the L/U column, L would be
shown to indicate that ten is the lower limit of valid spaces in Table A. A message
saying "Limit violation accessing Table A" would appear if you tried to offset in
Table A at some location other than the ten locations that were allowed by the

The DT (descriptor type) column may show:

e SHORT indicates this is a short format table descriptor.

 LONG indicates this is a long format table descriptor.

» PAGE indicates this is the base address of a page in physical memory.
e INVALID indicates an invalid path through the tables.

 EARLY indicates this is the base address of a page in physical memory before
the table levels in use have been exhausted.

Note that the address shown in the example display was mapped to supervisor
program space by the function code table. This is the default mapping when
function codes are used in the mapping scheme. If you wanted to see the mapping
through the tables under the user function code, you would use a command like

203



Chapter 9:Using 68030 Memory Management
Table details for a selected logical address

mmu -t 30f8@u You can add the desired function code table index to your
command to see how any address is mapped through the tables under the selected
function code (e.gy, s, ud, sd, up, sp).

Table details for a selected logical address

The lowest level of detail you might like to see is the content of one of the tables
used to map a particular logical address. You might enter a command such as:
mmu -ta 40F8 The emulator would interpret this as a command to show the
details of Table A where it is used to map logical address 40F8. There might be a
great many Table A’s, but this command will only show the Table A that is used to
map the logical address you specified in your command.

In the example display of table details:

» Table A has only four entries; only two bits in the logical address are used to
index into Table A.

» The LOCATION column shows the physical address of each indexed location
in Table A.

» The TBL/PAGE column shows the base addresses of physical pages indicated
by each location in Table A. In other mapping schemes, the contents might
have pointed to four base addresses of B tables.

» The firstindexed location in Table A shows that its associated physical page
has been accessed and modified ("U" bit and "M" bit both equal "1").

U>mmu -ta 40f8H
Logical Address (hex) suprprog O 0 0 O 4 0 F 8
Logical Address (bin) 110 0000 0000 0000 0000 0100 0000 1111 1000

Table Level FCODE I I Hil A APPP PPPP PPPP PPPP
LEVEL INDEX LOCATION CONTENTS  TBL/PAGE L/U LIMIT S CI M U WP DT
A 0000 00001040 00000019 00000000 0 110 PAGE
A 0001 00001044 00008001 00008000 0 000 PAGE
A 0002 00001048 00010001 00010000 0 000 PAGE
A 0003 0000104c 00018001 00018000 0 000 PAGE

u>

204



Chapter 9:Using 68030 Memory Management
What part of the emulator needs a deMMUer?

Using the DeMMUer

The deMMUer circuitry reverses the translations made by the MMU (translates the
physical addresses it finds on the processor buses back to their corresponding
logical addresses) before sending the addresses to the analyzer.

What part of the emulator needs a deMMUer?

Actually, the emulator doesn’t need the deMMUer; the analyzer does. It can’t

provide its full symbolic features unless it has help from the deMMUer. The

analyzer normally receives its address information directly from the processor
address bus. It uses the symbols data base created for the program loaded in
memory to cross reference the addresses it receives to the symbols and
corresponding code in your source files. When the MMU is used, logical addresses
are translated to physical addresses before they are placed on the processor address
bus. Therefore, they no longer match the symbols data base.

What would happen if the analyzer didn't get help from
the deMMUer?

The analyzer would get its address information directly from the address bus
emulation processor. It would have no way to know what translation had occu
in the MMU. Therefore, it could not trigger or qualify its trace on any symbol
defined in the symbols data base. Further, its trace list could only show you the
physical address value it found on the address bus; it would not be able to show any
symbols associated with that physical address, or any corresponding source file
lines. You would have to figure out for yourself what portion of your program
address space was executing when that physical address appeared on the bus.

How does the deMMUer serve the analyzer?

The analyer does not get its information directly from the processor address bus
when the deMMUer is turned on. Instead, the deMMUer accepts the physical
address from the processor address bus, reverse-translates it to its logical address
value, and supplies it to the analyzer. By having the logical address corresponding
to the transactions on the processor address bus, the analyzer can accept trace

205



Chapter 9:Using 68030 Memory Management
Reverse translations are made in real time

specifications expressed in source file symbols, show symbols in its trace lists, and
show the regions of the source files that were executing when the bus activity
occurred.

Reverse translations are made in real time

The deMMUer performs its reverse translations without slowing down the
measurement. For this reason, the analyzer that obtains its information from the
deMMUer is able to provide its full feature set.

DeMMUer options

» -ddisables the deMMUer. Your analyzer receives physical addresses if the
MMU is enabled. The analyzer can only show hexadecimal values for those
physical addresses. They may not correspond to the logical addresses of your
program code. Note that until the MMU is enabled in hardware and software,
addresses will be logical. Only after the MMU is enabled is there a distinction.

» -eenables the deMMUer. Your analyzer receives logical addresses translated
by the deMMUer according to the tables in place when you last loaded the
deMMUer.

* -l loads the deMMUer. The emulator will read the MMU registers and
interpret the translation tables to load the deMMUer.

» -v sets verbose mode for the deMMUer load function. A list is displayed of
the physical address ranges that will be reverse-translated by the deMMUer.

206



Chapter 9:Using 68030 Memory Management
Restrictions when using the deMMUer

Restrictions when using the deMMUer

Keep the deMMUer up to date

When you load the deMMUedihmu -1), the emulator reads the present value of

the TC, SRP, and CRP registers in the MMU, and the present translation tables, and
calculates the address translations that can be performed (all possible
physical-to-logical translations are determined during this process). Then the
emulator loads the deMMUer to reverse those translations. After the deMMUer is
loaded, any change to the MMU, its registers, or its translation tables will make the
deMMUer out of date. The only way to update for changes in the translation setup
is to load the deMMUerdimmu -I) again.

The target program is interrupted while the deMMUer is
being loaded

The emulator uses the foreground monitor to load reverse translations into the
deMMUer. Depending on the complexity of your tables, this process can take a
long time. If there are portions of your target program that must not be interrupted
for long periods of time, make sure your code is executing in safe regions before
you load the deMMUer. You might set a software breakpoint in a region of your
target program that is outside of the time-critical regions and perform the load
the deMMUer after the software breakpoint is hit.

The analyzer must be off

Your analyzer must not be making a trace when you load the deMMUer.
Otherwise, part of the trace will be based on physical addresses and the other part
will be based on logical addresses.

Expect strange addresses if you analyze physical
memory with multiple logical mappings

The deMMUer can only translate a physical address into one logical address. If

two programs both use the same physical space (such as when two programs use a
single data location), they might refer to that space by two different logical address
values (and two different logical address symbols). The deMMUer translation

RAM will be loaded with the highest logical address. This means that you might

207



Chapter 9:Using 68030 Memory Management

Resource limitations

be analyzing execution of your program and find it accesses a data space at an
address you don't recognize, even though the data may be what you expect to see.
The unexpected address will be the logical address known to the other program that
also uses this location.

Resource limitations

If you enter the commardinmu -I and your emulator performs its task and returns
a prompt to the screen, you won't need to know about the deMMUer resource
limitations. When the deMMUer is loaded without any problems, the prompt
simply shows on screen and you can proceed with your measurement. The
following information will help you deal with problems when you try to load the
deMMUer and receive a message such as "deMMUer out of resources".

The deMMUer has a table where it records ranges of physical addresses that it can
reverse translate to logical addresses. This table has eight entries, and each entry
contains a single physical address range. Normally, entries in this table are
allocated automatically, without intervention.

address..address

address..address

address..address

address..address

address..address

address..address

address..address

address..address

208



Chapter 9:Using 68030 Memory Management
Resource limitations

Small-page/large-page modes

The size of each address range in the table depends on the page size you selected in
the TC register of the MMU. If you are using the small-page mode (smaller than 4
Kbytes per page), each address range in the deMMUer table will be 2 Mbytes; up to
16 Mbytes of physical addresses can be reverse translated. If you are using the
large-page mode (4 Kbytes or more per page), each address range in the deMMUer
table will be 32 Mbytes; up to 256 Mbytes of physical addresses can be reverse
translated.

Example to show resource limitations

Consider the following program arrangement:

4M RAM

Unused 2M Peripherals | Unused 4M ROM Unused

0 4aM

14M 100M 104M

Assume a system contains memory and peripherals at three different ranges: one
from 0 to 4 Mbytes, one from 12 to 14 Mbytes, and one from 100 to 104 Mbytes.
The rest of the physical address space is unused.

If your MMU mapping tables are set up to only access memory in these ranges,
your deMMUer will load properly and you can proceed with your measuremen
If you have failed to restrict your mappings to these physical ranges, the deM
may not load completely.

When the emulator tries to load the deMMUer and finds there is more physical
memory identified in the MMU mapping tables than it can translate in its
deMMUer table, it will try to get help by reading the emulation memory map. If
the emulation memory map is arranged as follows, the deMMUer will load in a
way that ensures the physical ranges of interest will be in the deMMUer.

0..4m eram
12m..14m tram
100m..104m trom
other grd

When the emulator reads the memory map for help in loading the deMMUer, it
sorts the entries by size first and address range second. If using the small-page
mode, the smallest address range (12m..14m) will occupy term 1 in the deMMUer
translation table. Address range (0..4m) will occupy terms 2 and 3, and address

209



Chapter 9:Using 68030 Memory Management
How to avoid the "out of resources" message

range (100m..104m) will occupy terms 4 and 5. Terms 6, 7, and 8 will be assigned
to any other physical ranges encountered in the tables. You may see an "out of
resources" message because the deMMUer table might run out of space, but the
program spaces you care about will all be reverse translated. You can use the
verbose option of the deMMUer load command to make sure the program spaces
you care about will be reverse translated.

If you had been using the large page mode, your entire program would have fit
within two table entries.

How to avoid the "out of resources" message

With the above example, you could have avoided the "out of resources” message.
If you had placed invalid descriptors in your MMU tables in the paths that lead to
unused physical address ranges, or if you had used limit fields in your table
descriptors, the deMMUer would have had more than enough spaces in its
eight-entry table to reverse translate the valid address ranges.

Other ways to conserve space in the deMMUer
table

Minimize address ranges in the memory map

You can compose a memory map that allocates blocks of physical memory only
large enough to accommodate the address space occupied by code you are trying to
develop. The deMMUer algorithm will allocate spaces in its eight-entry table to
reverse translate those physical address ranges.

210



Chapter 9:Using 68030 Memory Management
Careful use of the emulator memory map

Careful use of the emulator memory map

What if you tried to accommodate the example program (repeated here for your
convenience) with the following memory map?

4M RAM

Unused 2M Peripherals | Unused 4M ROM Unused

0 4aM

14M 100M 104M

0..4m eram
100m..104m trom
map other tram

Your memory map will work fine for the emulator. The 2M of peripheral address
space will be in the space mapped to tram and the emulator will handle it correctly.
The map will not give much help to the deMMUer. The emulator will read the
memory map and assign deMMUer terms to reverse translate, as follows:

 Terms 1 and 2 to reverse translate address range 0..4m.
» Terms 3 and 4 to reverse translate address range 100m..104m.

« Terms5, 6, 7, and 8 may be used to reverse translate address ranges 4m..6m,
6m..8m, 8m..10m, and 10m..12m.

» The "out of resources" message will be displayed and the peripherals add
space will not be reverse translated.

You can get the reverse translations you need in the above example by adding one
more term to your emulation memory map: 12m..14m trom. This small map entry
will cause the emulator to reserve a term in the deMMUer table to reverse translate
your peripherals address space. Without this entry, the deMMUer will run out of
room for table entries before it gets to your peripherals address space.

Use the verbose option to the deMMUer load command to make sure all of the
memory space you need to reverse translate is loaded into the deMMUer table
(dmmu -Iv).

211



Chapter 9:Using 68030 Memory Management
What the emulator does when it loads the deMMUer

What the emulator does when it loads the
deMMUer

When the emulator loads the deMMUer, it does the following:

Reads the MMU tables and provides spaces in the deMMUer table to reverse
translate all of the valid addresses in the MMU tables.

If there are more valid physical memory addresses than can be accommodated
in the deMMUer table, the emulator reads the emulation memory map for help
in selecting appropriate address ranges to reverse translate.

Provides deMMUer table entries to reverse translate small address spaces
defined in the emulation memory map before providing table entries to reverse
translate larger address spaces.

Allocates remaining resources to reverse translate addresses beginning with the
lowest remaining address.

If there are valid physical memory addresses remaining after all available
spaces have been used in the deMMUer table, the emulator displays the "out of
resources" message.

212



Chapter 9:Using 68030 Memory Management
Dividing the deMMUer table between user and supervisor memory space

Dividing the deMMUer table between user and
supervisor memory space

Using two root pointers

If you enable use of the supervisor root pointer (SRP), you can have two sets of
MMU translation tables, one under each root pointer. The emulator divides the
deMMUer table into two equal address spaces. The first four spaces provide
reverse translations for user physical address ranges, and the last four spaces
provide reverse translations for supervisor physical address ranges.

address..addres@u

address..addres@u

address..addres@u

address..addres@u

address..addres@s

address..addres@s .
address..addres@s

address..addres@s

If you have more physical supervisor address space than can be reverse translated
by four table entries, you will receive the "out of range" message.

213



Chapter 9:Using 68030 Memory Management
Dividing the deMMUer table between user and supervisor memory space

Using function codes

If you enable use of function code addressing (FCL=1 in the TC register), the
emulator assumes you have four sets of MMU translation tables, one under each of
the following: user data, user program, supervisor data, and supervisor program.

In this case, the emulator divides the deMMUer table into four blocks, with two
entries for each of the supported function codes.

address..addres@ud

address..addres@ud

address..addres@up

address..addres@up

address..address@sd

address..address@sd

address..address@sp

address..address@sp

If you have more physical address space than can be reverse translated by two
entries under any one of the four function codes (for example three deMMUer table
entries needed for user program space), you will see the "out of resources" message.

The deMMUer will not provide any reverse translations for MMU tables under any
of the undefined function codes.

The emulator does not rigidly enforce the splitting of the resources into equal sizes
for each function code. If the emulation memory map contains entries referring to
specific function codes, they will take precedence, and may cause the deMMUer to
contain only entries of that type.

214



Chapter 9:Using 68030 Memory Management
Using the "mmu" command to overcome plug-in problems

Solving Problems

Your program and emulator may be running fine until you turn on the MMU. Then
program execution may fail. You may not be able to use features of your emulator.
How can this happen? It can happen if the MMU mapping tables are incorrect.
When the MMU turns on and starts managing memory by performing tablewalks in
tables that are invalid, pages of logical memory may overwrite your stack space,
your emulation monitor, or any other address space, making your entire system
unusable. If this happens, note where the program is executing. The stack may be
inaccessible. The monitor (with its emulation feature set) may be inaccessible. The
vector table may be placed in guarded memory. Program data space may become
inaccessible.

Using the "mmu" command to overcome plug-in
problems

Plug-in problems involving the MMU are often caused by incorrect mappings in
your translation tables. If your logical address is translated to an incorrect physical
address, themmu command can show you the details of how your logical
addresses are mapped to the wrong physical addresses.

You can also use thremu command to test your mappings before you enable t
MMU. Simply enter the commandmu.

Themmu command by itself reads all present translations in your MMU tables.

No invalid or illegal paths are shown in the listing. You can read through the

display on screen to see if all of your address ranges are represented, and if they are
mapped to appropriate space in physical memory.

When you enter theamu command, the emulator reads the MMU registers (TC,
CRP, and SRP) and MMU tables, even if the enable bit in the TC register is in the
"disable" state. If you do not have correct values in the TC, CRP, and SRP
registers, the emulator will let you specify correct values to be used when
composing the display of translations by usingttherp, and/orsrp options to the
mmu command.

215



Chapter 9:Using 68030 Memory Management
Use the analyzer with the deMMUer to find MMU mapping problems

Use the analyzer with the deMMUer to find MMU
mapping problems

If your system operates properly until you turn on the MMU, and then it fails, the
problem is most likely in the mappings used by the MMU to translate logical
addresses to physical addresses. You could go down the list of logical-to-physical
translations to see the mapping scheme used to translate each logical address to its
corresponding physical address, but normally that would take too much time. The
analyzer can help you identify the one, or few, logical addresses that are being
mapped incorrectly by the MMU. Then you can use the "mmu -t <address>"
command to look at the mapping tables used to translate those addresses.

Failure caused by access to guarded memory

If the problem is an access to guarded memory, remember that guarded memory is
guarded physical memory. You need to find the logical address that the MMU
improperly translated to guarded physical memory and then investigate the
mappings the MMU used to perform the translation.

Begin by looking at the registers display (typedg) to see the value of the logical
address in the program counter. Then use the "mmu -t <address>" command to see
the path through the tables that the MMU took when it translated that logical

address to a guarded address in physical memory. Note that the value of the
program counter may have changed after the guarded access occurred. In this case,
the present address in the program counter may map to proper physical memory.

If the present program counter address does not translate to an address in guarded
physical memory, the access to guarded memory may have been caused when your
program read or wrote to data memory before the present program counter address
appeared. Set up the analyzer to make a trace (with the deMMUer turned on) and
trigger at the logical program counter addrégs{ldr=<pc address}. Select a

center trigger so you can see activity preceding and following the triggertpoint (

c). In order to capture every transaction on the emulation bus, qualify all states for
capture {sto any).

216



Chapter 9:Using 68030 Memory Management
Software breakpoint problems

If the access occurs again just before the program counter address you used as your
trigger specification, you should be able to read back in the trace list and find one

or more addresses that could be causing the problem. Then you can try those
suspected addresses in commantsay -t <suspect_addresspto see how each of

them is mapped through the MMU tables. This should identify the error in the

MMU mapping tables.

If you find a particular address that is mapped to guarded memory, and if the
problem seems to be in Table B, you can look at the details of Table B for that
address by using a command, suchmaw -tb <address>

Failure due to system halt

If the emulator and/or target system simply stops operating, set up the analyzer to
trace with a trigger-never specificatidg (ever so that the trace will run

continuously until the system stops again. After the system halt occurs again, read
the trace list to find the addresses preceding the system halt. Use the addresses in
mmu -t <address>commands to see how the MMU maps each one to physical
memory.

Software breakpoint problems

You get the "undefined software breakpoint" message after you turn on the M
How can this happen? You set a breakpoint. The emulator saved the instruct
the breakpoint address and wrote a BKPT #7 instruction in its place. Then the
MMU changed its mappings. Now the logical address where the breakpoint is to
occur is translated to a different physical address. The breakpoint is not there. No
emulation break occurs when the logical address is translated to the new physical
address. Some different logical address will eventually be translated through the
MMU to reach the physical address where the BKPT #7 instruction is located.
When the emulator finds the BKPT #7 instruction at the address, it will have no
record of placing a breakpoint there, and no record of what the original instruction
was for that address. All the emulator can do is display the message, Undefined
software breakpoint.

You set a software breakpoint, but when the breakpoint address is hit, no software
break occurs. How can this happen? You can write-protect addresses in the MMU
mapping tables. If you have write protected the address where you set your

217



Chapter 9:Using 68030 Memory Management
A "can’'t break into monitor" example

software break point in the MMU mapping tables, then the BKPT #7 instruction
never gets written into that address when you set the software breakpoint. Because
the old instruction remains at the breakpoint address, the emulator is not able to
recognize a breakpoint at that address. Make sure that you remove any write
protection in the MMU mapping tables for addresses where you want to set
software breakpoints before you try to set them.

A "can’t break into monitor" example

The following example assumes you mapped your foreground monitor beginning at
address 4000H. You connected your emulator into your target system and ran your
target program (which set up the MC68030 MMU). You tried to break into the
emulation monitor and got the message, "Can't break into monitor."

The emulator can’t break into the monitor because it can't find the monitor. The
MMU mapped the foreground monitor to physical address space that is not a 1:1
translation from logical address space.

A variety of failure modes can happen at this point. Your emulation system may
execute unknown code, or it may simply halt.

To analyze this problem, reset into the monitor with the comnmandn.

Therst command does not change the content of the MMU mapping tables or
registers. It only disables the "enable bit" in the TC register of the MMU. Now
you can look at the translations that are performed by the MMU to find the
translation that was applied to your foreground monitor. Enter the command:

The display will show a list of the logical-to-physical address translations that will

be performed when the MMU is enabled. Find the logical address range that

contains your foreground monitor and see the physical address where it is mapped.
The physical address range needs to be the same as the logical address range for the
emulator to be able to find the monitor.

The display you get with younmu command might show the logical address
range of your foreground monitor mapped to physical addresses beginning at
COO0OH, as follows:
LOGICAL ADDRESS  PHYSICAL ADDRESS

Lower  Upper Lower  Upper

4000  4FFF 0000C000 OOOOCFFF

218



Chapter 9:Using 68030 Memory Management
A "can’t break into monitor" example

The next step in this analysis is to display the MMU mapping table for the logical
base address of the foreground monitor. You might enter the commawud:t
400Q In this example, you would see the following display of mappings:

Mmmu -t 4000
Logical Address(hex) O 0 0 O 4 0 0 O
Logical Address (bin) 0000 0000 0000 0000 0100 0000 0000 0000
Table Level AAAA AAAA BBBB BBBB CCCC PPPP PPPP PPPP

LEVEL INDEX LOCATION CONTENTS  TBL/PAGE L/U LIMIT S CI M U WP DT
CRP 00000003 00001020 00001020 U 0000 LONG

A 0000 00001020 0000000b 00001030 00001030 U 0000 0 10 LONG

B 0000 00001030 0007000a 00001040 00001040 U 0007 0 10 SHORT

C 0004 00001050 0000c009  0000c000 0 010 PAGE

Physical Address (hex) = 0000c000

In the example display, the foreground monitor whose logical address is 4000 was
placed in physical address C000. Table C points to the page containing the
foreground monitor. The base address of Table C is 00001040, and the content
used by logical address 4000 is at index 0004 whose physical address is 00001050.
The content of this address is 0000CO00H (the address of the page containing the
monitor).

To solve the problem in this example, you can obtain the needed 1:1 mapping by
modifying the content of the MMU table directly with the following command:
M>m -dI 00001050=00004009

219



Chapter 9:Using 68030 Memory Management
A "can’'t break into monitor" example

After this modification, you can get a new display of the mapping tables for logical
address 4000 to see if your modified MMU tables now map your foreground
monitor correctly. Enter the command>mmu -t 4000

Logical Address(hex) O 0O 0 O 4 0 0 O
Logical Address (bin) 0000 0000 0000 0000 0100 0000 0000 0000
Table Level AAAA AAAA BBBB BBBB CCCC PPPP PPPP PPPP

LEVEL INDEX LOCATION CONTENTS  TBL/PAGE L/U LIMIT S CI M U WP DT
CRP 00000003 00001020 00001020 U 0000 LONG

A 0000 00001020 0000000b 00001030 00001030 U 0000 0 10 LONG

B 0000 00001030 0007000a 00001040 00001040 U 0007 O 10 SHORT

C 0004 00001050 00004009 00004000 0 010 PAGE

Physical Address (hex) = 00004000

Note that in the example shown here, the MMU page size was 4 Kbytes.
Therefore, the monitor was contained on one page. If the page size had been
smaller, the 4 Kbytes of the foreground monitor would have occupied two or more
pages. You would have to modify the logical base address of each page that
contained monitor code.

The above modifications will provide the proper mapping for your system until you
rerun the portion of your target program that sets up the MMU. Then the same
problem will occur again. To fix the problem permanently, you need to modify
your target program so it provides a 1:1 mapping for the address space where the
foreground monitor is located.

220



10

Emulator Commands

Syntax and options for Terminal Interface commands

221



Chapter 10:Emulator Commands

The Command Set

This chapter describes all the commands in the HP 64747/HP 64748 Terminal
Interface. Each command description includes syntax and parameter information,
along with a description of command operation and a list of other commands that
are often used with a particular command.

222



Chapter 10:Emulator Commands
b

b = <RETURN>

Theb command issues a break to the emulator, causing it to stop executing the user
program and begin execution of the monitor program.

There are no parameters to this command.

Examples Break the emulation microprocessor into the monitor by typing:

U>b

If the emulator is in the reset state when a break occurs, it will be released from
reset and will begin execution within the emulation monitor.

See Also r (runs the user program from the current pc or a specified address)

s (steps the user program a number of instructions from the current pc or a specified
address)

223



Chapter 10:Emulator Commands

bc

bc

rom

bp

OO -

I =J <RETURN>

rom

trigl
trig2

bnet

cmbt

o /

ok

Thebc command allows you to set break conditions for the emulation system.
The parameters are as follows:

Enables the indicated break conditions (which must be specified immediately
following the-e on the command line).

Disables the indicated break conditions (which must be specified immediately
following the-d on the command line).

The optionse and-d cannot both be specified within the sameeommand.

Enable/disable emulator breaks to monitor on occurrence of a write to ROM by the
user program.

A microprocessor like the MC68020 with a pipeline architecture begins execution
of the next instruction before it completes execution of the current instruction.
Because a write to ROM cannot be detected until the bus cycle that causes it has
completed, situations will arise where instructions after the instruction that caused
the write to ROM to occur will execute.

Enable/disable recognition of software breakpoints inserted withpteemmand.

224



bnct

cmbt

trigl

trig2

Examples

Chapter 10:Emulator Commands
bc

The “breakpoints” break condition should not be disalidedd bp) while the
emulator is running user code. If this command is entered while the emulator is
running user code, and the emulator is executing code in the area where the
breakpoints are being modified, program execution may be unreliable. (Breakpoints
are modified as a result of the -d bp command because enabled breakpoints are
replaced by the original opcodes when the “breakpoints” break condition is
disabled.)

Enable/disable breaks generated by assertion bhittgrear panel BNC) signal.
Note that this signal may also drive eitherttliggl ortrig2 signals; or, it may drive
both.

Enable/disable breaks upon assertion of the CMB (Coordinated Measurement Bus)
trigger signal. Note that the CMB trigger signal may also drive eitherigtieor
trig2 signals; or, it may drive neither or both.

Enable/disable breaks generated by assertion ¢rigiie(trace trigger one) signal.
Refer to thegout, bnct, andcmbt commands for information on specifying drivers
and receivers of thieigl signal.

Enable/disable breaks generated by assertion ¢rigl2e(trace trigger two) signal.
Refer to thegout, bnct, andcmbt commands for information on specifying drivers
and receivers of thieig2 signal.

If no parameters are specified, the enable/disable status of all six break conditions is
displayed.

Display the status of all six break conditions:

M> bc

Enable breaks on write to ROM and upon assertion dfitife signal, and disable
software breakpoints and breaks generated blyigZesignal:

M> bc -e rom trig1l
M> bc -d bp trig2

You can independently enable or disable six different break conditions: write to
ROM, software breakpoints, breaks due to assertion of the BNC or CMB trigger
signals, and breaks due to the assertion of the inteigtalandtrig2 signals. This

allows you to have the emulator break to the monitor upon error conditions (such as

225



Chapter 10:Emulator Commands

bc

See Also

write to ROM or finding a software breakpoint in a piece of code it never should
have reached), or break to the monitor when an analyzer measurement has
completed.

When you use thec command, the emulator may break into the monitor while

each enable/disable is being executed. If the emulator was executing your program
when thebc command was received, it will return to your program when finished
executing the command. If you request only a display of the current break
conditions, the emulator does not break to the monitor.

A hardware reset that occurs during processing dicttemmand may result in
the particular break condition being left in an unknown state. If this occurs, a
display of the break conditions will show a question mark “?” insteaglaf-d
next to the break condition.

bnct (specify drivers and receivers of the rear panel BNC signal)

cmbt (specify drivers and receivers of the CMB trigger signal)

bp (set/delete software breakpoints)

map (specify whether memory locations are mapped as RAM or ROM)

tgout (specify whether thigigl and/ortrig2 signals are to be driven when the
analyzer finds the trigger condition)

226



Chapter 10:Emulator Commands
bnct

none

trigl

trig2

bnct

) =|| <RETURN>

-G
[ oVars

Thebnct command allows you to specify which of the intetrigll/trig2 trigger
signals will drive and/or receive the rear panel BNC trigger. You can specify the
signals individually, as an ORed condition for drive, or as an ANDed condition for
receive; or, you can specify that the signals are not to be driven or received.

The parameters are as follows:

The-d parameter indicates that the BNC port will drive the triggers, trigl and trig2,
to the emulator’s internal analyzer.

The-r parameter causes the BNC port to receive the triggers, trigl and trig2, from
the analyzer, and send them out the BNC port.

If you specifynonewith the-d option, then the rear panel BNC signal will not
drive either of the analyzer triggers. If you specibne with the-r option, the rear
panel BNC will not receive trigl or trig2 from the internal analyzer.

If trigl is specified, then the internal “trig1” signal will drive or receive the BNC
signal, depending on whether you specified-ther -r option.

If you specifytrig2, then the internal “trig2” signal will drive or receive the BNC
signal, depending on whether you specified-ther -r option.

You can also specify that both tiigl andtrig2 signals are to drive or receive
the BNC signal. To do this, place a comma between the two signals on the
command line.

227



Chapter 10:Emulator Commands
bnct

Defaults

If no options are specified, the current settingradt is displayed. Upon powerup,
bnct is set tdbnct -d none -r none

If you specify one of thed or-r options without the other, the other option is left
in the same state it was in before the command was entered.

Examples To view the currenbnct setting, type:

M> bnct

To trigger an instrument hooked to the BNC when the HP 64700 analyzer finds its
trigger, you might do the following:

M> tcf -e

M> tg addr=2000

M> tgout trigl

M> bnct -d none -r trigl

By specifying this command sequence, the external instrument will be triggered
when the emulation processor reaches the trigger pattern of address=2000.

The reverse situation is where you want to trigger the HP 64700 analyzer when an
external instrument finds its trigger. Type:

M> bnct -d trigl -r none
M> tarm =trig1l
M> tg arm

Normally, you would use this command to cross-trigger instruments. For example,
you may wish to trigger a digitizing oscilloscope connected to various timing
signals when the emulation-bus analyzer finds a certain state, or you may wish to
do the converse and trigger the HP 64700’s analyzer when an oscilloscope finds its
trigger.

You should not set up an analyzer in an emulator to both drive and receive the same
trigger signal. For example, if you issued the commépdsm, tarm =trig1,

tgout trigl, andbnct -d trigl -r trigl , then the analyzeérigl signal will become

latched in a feedback loop and will remain latched until the loop is broken. To

break the loop, you must first disable the source of the signal, and then

228



Chapter 10:Emulator Commands
bnct
momentarily disable either the drive or receive function. In this case, the commands
tgout noneandbnct -d nonewill break the loop.

See Also bc (break conditions; can be used to specify that the emulator will break into the
emulation monitor upon receipt of one of thigl/trig2 signals)

cmbt (coordinated measurement bus trigger; used to specify which internal signals
will be driven or received by the HP 64700 coordinated measurement bus)

tarm (analyzer trace arm; used to specify arming (begin to search for trigger)
conditions for the analyzer trig1/trig2 can be used to arm the analyzer)

tgout (specifies which of thgigl/trig2 signals are to be driven when the analyzer
trigger is found)

229



Chapter 10:Emulator Commands

bp

<ADDRESS>

bp

>J<RETURN>

<ADDRESS>

Thebp command is used to insert, delete, display, or modify the status of software
breakpoints.

The parameters are as follows:

The<ADDRESS>parameter allows you to specify the address location where the
software breakpoint is to be inserted. If you specify options, or-h, then the
address specifies the location of the breakpoint to be deleted, activated, or
inactivated. For these options, you may specify the charaatethe address
specifier, indicating that the operation is to be performed on all of the addresses
present in the software breakpoint table.

The default for theeADDRESS>parameter is a hexadecimal expression, however,
other numeric bases may be specified. SegARDRESS>syntax pages in
Chapter 11 for information on specifying address information.

The memory access mode for writing breakpoints is set bymah@node)

command; if the mode is set to byte access and an odd address location is specified,
an invalid instruction may be inserted for processors that expect alignment of
opcodes on even byte boundaries.

Deletes the software breakpoint(s) at the addresses specified. If the address
specified does not contain a breakpoint instruction, an error will be returned. When
the breakpoint is deleted, the original memory contents are restored, and then the
address is removed from the breakpoint table.

Enables (activates) the breakpoint(s) at the address(es) specified. This installs the
necessary breakpoint instruction in memory. If the breakpoint is already enabled,
no action is taken.

230



Examples

Chapter 10:Emulator Commands
bp
Disables (deactivates or “hits”) the breakpoint(s) at the address(es) specified. The
breakpoints remain in the breakpoint definition table and can be reset by using the
bp -e <ADDRESS>command. If the breakpoint is already disabled, no action is
taken.

If no parameters are specified, the current status of all breakpoints is displayed.
Upon powerup omit initialization, the breakpoint table is cleared and the
breakpoint feature is disabled.

The following examples use the demo program.

Assume that you need to verify that the processor is reaching the Cmd_A,
Print_Msg, and Fill_Dest routines. You can insert software breakpoints at these
addresses and run the program to each successive breakpoint. First, enable the
software breakpoint feature.

M> bc -e bp

Now define the breakpoints at the start of each routine by typing:

M> bp handle_msg:Cmd_A Print_Msg Fill_Dest

View the current breakpoint settings:
M> bp
When you run the processor and enter commands for the demo program, all the

breakpoints will be “hit” (executed by the processor) and will be disabled. You
reenable the existing breakpoints:

M> bp -e handle_msg:Cmd_A Print_Msg Fill_Dest

You could also typép -e * to reenable all breakpoints in the table. Disable the
breakpoint at Fill_Dest:

M> bp -d handle_msg:Fill_Dest

Remove the breakpoint at Print_Msg from the breakpoint table:

M> bp -r handle_msg:Fill_Dest

231



Chapter 10:Emulator Commands

bp

Disable all breakpoints in the table:

M> bp -d *

Remove all breakpoints in the table:

M> bp -r *

Disable the breakpoint feature,

M>bc -d bp

The MC68020 and MC68030/EC030 emulators use the BKPT instruction to
implement software breakpoints. Ttfesw command sets the particular version of
the BKPT instruction that is used. There are four different operations to maintain
the software breakpoint table.

Inserting Breakpoints

Specifying only an address inserts the breakpoint instruction in memory and makes

a breakpoint table entry corresponding to that address. If a software break

instruction already exists at the address specified, an error message is generated and
the currenbp command is aborted.

Enabling Breakpoints

Enabling a breakpoint at a specified address causes the system to search the
breakpoint table for that address; if it exists in the table, the breakpoint instruction
is written to memory at the corresponding address.

Disabling Breakpoints

Disabling the breakpoint for a specified address again causes a search for a
breakpoint table entry; if found, the original contents of the address (before the
breakpoint was defined) are written to the corresponding memory location. The
contents of the breakpoint table are unchanged, except to indicate that the particular
breakpoint is now inactivated.

When the breakpoint table is displayed withllpeeommand, the enable/disable
status of each breakpoint is tested by reading the memory locations in question. If a

232



Chapter 10:Emulator Commands
bp
software break instruction is found, the breakpoint is displayedaised if not,
the breakpoint is displayed disabled

Software breakpoints should not be set, enabled, disabled, or removed while the
emulator is running user code. Also, you should not disable the “breakpoints” break
condition pc -d bp) while the emulator is running user code.

If any of these commands are entered while the emulator is running user code, and
the emulator is executing code in the area where the breakpoint is being modified,
program execution may be unreliable.

The problem occurs when the software breakpoint instruction (or the original
opcode) is partially written in the emulation memory location while the emulation
processor is fetching from that location; an illegal opcode may result. This problem
does not occur when breakpoints are in target RAM because the emulation
processor breaks into the monitor to enable or disable software breakpoints.

Removing Breakpoints

Removing a breakpoint causes a search for a corresponding breakpoint table entry;
if found, the original memory contents are written to the specified address, and the
entry is removed from the breakpoint table.

When a software breakpoint instruction insertetrys executed by your
program, it is removed from memory and marédehbledin the breakpoint table.

A status message indicates that a software breakpoint was found.

If the emulator executes a software break instruction that was placed by you (either
through your compiler or via memory modification) and not bybfheommand,
an “undefined breakpoint” error message is generated.

If the emulator is executing in the user program when you define or modify
breakpoints, it may break into the monitor for each breakpoint defined or modified.
Whether or not it will do this depends on the location of the breakpoint in memory
(breaks to the monitor are required if the location is in target RAM), and whether
your particular emulator must break to the monitor for accesses to that memory
type (breaks into the monitor are not necessary if the location is in dual-port
emulation memory). If a break to the monitor is required, the emulator will return
to user program execution after breakpoint definition or modification.

In general, you should only define software breakpoints at memory locations that
contain user program instructions. If you set breakpoints at other locations, it is
unlikely that they will ever be executed. The only exception to this might be in a

233



Chapter 10:Emulator Commands

bp

See Also

case where you suspect that your program is jumping into a data block and
attempting to execute code; setting a software breakpoint in this area will allow you
to verify the problem (and stop a runaway program).

Remember that any operation which modifies memory or the memory map will
alter the existing breakpoints. For example, if you load a new program in the same
address range where breakpoints reside, the breakpoints will be destroyed.
Changing the memory map will prevent the emulator from placing new breakpoints
or enabling existing breakpoints.

You cannot define breakpoints until you have enabled them withctheebp

command. If you disable the software breakpoint feature witbahe bp

command, the breakpoints currently defined will remain in the breakpoint table, but
will be disabled and will remain in that state until the breakpoint feature is
reenabled and the specified breakpoints are reendided bpandbp -e

<ADDRESS>).

bc (enable/disable breakpoint conditions (includipg)

cf (set instruction type used for software breakpoint (only available on some
processors))

mo (defines memory access and display modedypteommand uses the currently
defined modes when writing software breakpoints into memory)

234



Chapter 10:Emulator Commands
cf

<RETURN=>

. <FUNCTION_CODE>
~——{ sw
<VALUE>

s
<ADDRESS=> }——O——{ <ADDRESS=> }—/

man

~—{ monaddr
L@—<ADDRESS>

I [
| |
| |
| |
| ~——{  moninfr |
| |
| <PRIORITY> |
| |
| |
| |
| |
| |
| |
| |
| |

\OC mondsi
Qg
-

\ dis >—/

HP 64748 (68020) ALWAYS AVAILABLE
HP 64747 (68030/ECO030) ONLY WH=N cf mon = fg

| [
| ~—{ monkaa |
| |
| <ADDRESS=> |
| |
| |
L HP 64747 (68030ECO030): ONLY WHEN cf mon = bg :

Thecf command allows you to modify various emulator specific configuration
parameters. The MC68020 and MC68030/EC030 configuration items allow you to

235



Chapter 10:Emulator Commands

cf

ce

emwait

mondsi

rrt
ti
Ifc

mmu

mon

monaddr

rv

monintr

SW

set up the emulator in a way that best suits your system needs. Many configuration
items allow you to configure the emulator to work properly with your target system.

The parameters are as follows. If you enter the configuration item name without a
setting, the current setting is displayed.

Enable/disable the instruction cache for the MC68020, or the instruction and data
caches for the MC68030/EC030.

Enable this if you are using emulation memory at clock speeds greater than 25
MHz. Otherwise disable this configuration item.

EnablesDSACK interlocking between the emulator and target system for both
foreground and background emulation monitor bus cycles on the MC68020.
EnableDSACK andSTERM interlocking between the emulator and target system
for foreground emulation monitor bus cycles on the MC68030/EC030.

Restricts the emulator to real time runs.
Enable/disable target system interrupts.
Sets the function code for the next load command.

Enables or disables the MC68030 MMU. If enabled, the /MMUDIS line and TC
register determine whether or not logical-to-physical address translations are
performed. If disabled, the emulator asserts the /MMUDIS line to prevent address
translations. This is the hardware enable for the 68030 MMU.

Chooses a foreground or background monitor. If you enable the MC68030 MMU,
the foreground monitor will be selected automatically.

Sets the base address for the foreground monitor (and maps a corresponding
memory block).Also sets the address range for which bus cycles will appear for the
background monitor in the MC68020 emulator. Not available in background on the
MC68030/EC030 emulator.

Sets the initial interrupt stack pointer and PC values when the emulator enters the
monitor from reset. Allows the emulator to run correctly if you break to monitor
after reset, and then start a run.

Lowers the interrupt priority mask during foreground monitor execution so that
target system interrupts above that level will be serviced. Not available in the
MC68030/EC030 emulator when the background monitor is selected.

Sets the form of the BKPT instruction used to implement software breakpoints.

236



Chapter 10:Emulator Commands
cf

monkaa Defines an address from which the background monitor of the MC68030/EC030
periodically reads a byte. Used to “keep-alive” circuits that depend on constant bus
activity, such as watchdog timers or dynamic RAM.

Examples To set the software breakpoint instruction to BKPT 6, enter:

M> cf sw=6

To block interrupt requests from the target system, enter:

M> cf ti=dis

To select a foreground monitor and put it at address 4000 hex, enter:

M>cf mon=fg

R>cf monaddr=4000

The default configuration of the emulator after initialization is as follows:
» Configuration items:

— HP 64748 (MC68020):
R>cf

cf ce=en

cf emwait=en
cf Ifc=x

cf mon=bg

c¢f monaddr=1000
cf mondsi=en
cf monintr=6
cf rrt=dis

cf rv=1,0ffffffff
cf sw=7

cf tizen

— HP 64747 (MC68030/EC030):
R>cf

237



Chapter 10:Emulator Commands

cf

See Also

cf ce=en

cf emwait=en

cf Ifc=x

cf mmu=dis

cf mon=bg

cf monkaa=none
cf rrt=dis

cf rv=1,0ffffffff

cf sw=7

cf tizen

» No memory map terms assigned, all other memory mapped to target RAM
(tram).
» All break conditionslfc) are disabled.

When you connect the emulator to a target system, you may want to modify all
configuration items. The modifications you make depend on your target system
requirements.

help (you can get an on line display of the configuration items for a particular
emulator by typindnelp cf. To obtain more information regarding a particular
configuration item, typéelp cf <config_item>.

Also see Chapter 7 of this manual.

238



Chapter 10:Emulator Commands
cl

o <RETURN>

= <EXPR>

You can enable command line editing to include the ability to manipulate command
text lines.

The parameters are as follows:
-d This option disables command line editing.
-e This option enables command line editing.

-l This option allows you to set the column length for the command line. This value
can be from 40 to 132 columns.

Command line editing is disabled by default.

Examples Set the number of columns in the command line to 80:

cl-180

Enable command line editing:

cl-e

Add text to the previously executed command:

<ESC> k A <additional text>

Command line editing has two typing modes. The normal command entry is input
mode. The input mode functions like normal (canonical) command entry. The
control mode allows command modification.

239



Chapter 10:Emulator Commands

cl

The commands in control mode are as follows:

Command Action

i Insert before current character.

A Append to end of line.

dd Delete command line.

$ Move cursor to end of line.

A Move cursor to start of line.

I Move right one character.

i Fetch next command.

a Insert after current character.

X Delete current character.

D Delete to end of line.

0 Move cursor to start of line.

h Move left one character.

k Fetch previous command.

r Replace current character.
/<string> Find previous command matching

<string>.
n Fetch previous command matching
<string>.
N Fetch next command matching <string>.
See Also See Chapter 3 of this manual for more information on command entry.

240



Chapter 10:Emulator Commands
cmb

;‘ <RETURN>

Thecmb command allows you to enable or disable interaction on the CMB
(Coordinated Measurement Bus). The CMB allows you to make complex
measurements involving cross-triggering of multiple HP 64700 analyzers and other
HP 64000 system instruments, and synchronous emulator runs and breaks .

The parameters are as follows:

-e The-e option enables interaction between the emulator and the Coordinated
Measurement Bus.

-d The-d option disables interaction between the emulator and the Coordinated
Measurement Bus.

If no options are supplied, the current state of CMB enable/disable is displayed.

Examples View the current state of CMB interaction:

M> cmb

Enable CMB interaction:

M> cmb -e

Disable CMB interaction:

M> cmb -d

Thecmb command only affects the ability for multiple emulators to run or break in
a synchronized fashion; the analyzer trigger capability is unaffected bynthe
command.

241



Chapter 10:Emulator Commands

cmb

See Also

Interaction Enabled

When interaction is enabled via ttrab -e command, the emulator will run code
beginning at the address specified viartheommand when the CMB /EXECUTE
(/ means active low) pulse is received.

The CMB READY line is driven false while the emulator is running in the monitor.
The line goes to the true state whenever execution switches to the user program.

Notice that if thex command is given, CMB interaction is enabled just as if a
cmb -ecommand was issued. Refer to the syntax pages fox ¢t@mmand for
further information.

Interaction Disabled

When interaction is disabled via tbeb -d command, the emulator ignores the
actions of the /IEXECUTE and READY lines. In addition, the emulator does not
drive the READY line.

rx (allows you to specify the starting address for user program execution when the
CMB /EXECUTE line is asserted)

tx (controls whether or not the emulation analyzer is started when the [EXECUTE
line is asserted)

X (pulses the /EXECUTE line, initiating a synchronous execution among emulators
connected to the CMB and enabled)

Also, see Chapter 6, “Coordinated Measurements,” for more information on CMB
operation.

242



Chapter 10:Emulator Commands
cmbt

=L
ey

none

trigl

trig2

cmbt

) =J| <RETURN>

=

LoD

ovars

Thecmbt command allows you to specify which of the intetrigfl/trig2 trigger
signals will drive and/or receive the rear panel CMB (Coordinated Measurement
Bus) trigger. You can specify the signals individually, as an ORed condition for
drive, or as an ANDed condition for receive; or, you can specify that the signals are
not to be driven and/or received.

The parameters are as follows:

The-d parameter causes the CMB to drive the trigger signals, trigl and trig2, to the
emulator’s internal analyzer.

The-r parameter causes the CMB to receive the trigger signals, trigl and trig2,
from the analyzer.

If you specifynonewith the-d option, then the CMB trigger signal will not drive
either of the analyzer triggers. If you specifynewith the-r option, the rear panel
CMB will not receive trigl or trig2 from the emulation-bus analyzer.

If trigl is specified, then the internal “trigl” signal will drive or receive the CMB
trigger signal, depending on whether you specifieddha -r option.

If you specifytrig2, then the internal “trig2” signal will drive or receive the CMB
trigger signal, depending on whether you specifieddha -r option.

You can also specify that both ttiggl andtrig2 signals are to be driven and/or
received. To do this, place a comma between the two signals on the command line.

If no options are specified, the current settingrabt is displayed. Upon powerup,
cmbt is set tacmbt -d none -r none

243



Chapter 10:Emulator Commands

cmbt

Examples

To view the currentmbt setting, type:

M> cmbt

Trigger the analyzer in another 68020 emulator connected to the CMB:

M> tcf -e

M> tg addr=demo:Loop
M> tgout trigl

M> cmbt -d none -r trigl

Set the other HP 64700 analyzer to break to monitor upon receiving the CMB
trigger:

M> cmbt -r trigl
M> bc -e cmbt

You might want to have an external instrument arm the analyzer in one emulator
which then arms a second analyzer attached through the CMB. The second
emulator then breaks to monitor when it finds its trigger condition. Use the
following command sequence in the first emulator:

M> bnct -d trigl -r none
M> tarm =trigl

M> tsq -i 3

M> tif 1 arm

M> tif 2 addr=demo:Loop
M> tgout trig2

M> cmbt -d trig2 -r none

On the second emulator, type:

M> cmbt -d trigl -r none

M> tarm =trigl

M> tsq -i 3

M> tif 1 arm

M> tif 2 addr=handle_msg:Cmd_A
M> tgout trig2

M> bc -e trig2

244



Chapter 10:Emulator Commands
cmbt
You use this command to trigger other HP 64700 analyzers and possibly HP 64000
system instruments. For example, you may wish to start a trace on another HP
64700 analyzer when the analyzer in this emulator finds its trigger; or, you may
wish to do the converse and trigger the analyzer in this emulator when another
emulation analyzer finds its trigger.

You should not set up an analyzer in an emulator to both drive and receive the same
trigger signal. For example, if you issued the commépdsm, tarm =trig1,

tgout trigl, andcmbt -d trigl -r trigl , then the analyzérigl signal will become

latched in a feedback loop and will remain latched until the loop is broken. To

break the loop, you must first disable the signal’s source, and then momentarily
disable either the drive or receive function. In this case, the comitggndsione

andcmbt -d nonewill break the loop.

See Also bc (break conditions; can be used to specify that the emulator will break into the
emulation monitor upon receipt of one of thigl/trig2 signals)

bnct (BNC trigger; used to specify which internal signals will be driven or received
by the rear panel BNC connector)

cmb (Used to enable or disable interaction on the CMB. This does not affect
whether measurement instruments can exchange triggers over the CMB; it only
controls run/break interaction between multiple emulators)

tarm (analyzer trace arm; used to specify arming (begin to search for trigger)
conditions for the analyzertrigl/trig2 can be used to arm the analyzer)

tgout (specifies which of thixrigl/trig2 signals are to be driven when the analyzer
trigger is found)

245



Chapter 10:Emulator Commands
cp

cp

<DEST_ADDR> [+(= )+ <ADDRESS> Q =||<RETURN>
<ADDRESS>

Thecp command allows you to copy a block of data from one region of memory to
another. For example, you might want copy a data table in your program to a buffer
space so you can try some of your algorithms for processing data in that buffer.

The parameters are as follows:

<DEST_ADDR> Specifies the lower boundary of the destination range. The processor specific
conventions for <ADDRESS> can be used for complete address specification
including function codes or segmentation. Refer tdeelator User's Guidéor
your particular emulator for details.

<ADDRESS> Specifies the lower, and possibly upper, memory address boundaries of the source
range to be copied. The default is a hexadecimal number; other bases may be
specified. Certain emulators allow additional processor specific addressing
information for <ADDRESS>; refer to themulator User’s Guidéor your
particular emulator for further information.

The separator between the lower and upper address boundaries is two periods (..).
Notice that no additional spaces are inserted. You can use “<ADDRESS>..” to
specify a range from the address through the next 127 bytes."

Exactly one address range must be specified.

Examples Copy the data area of the demo program to a base address of 700 hex:

M> cp 700=handle_msg:Msg_A..End_Msgs

Whencp is executed, the data from the specified range is copied to the destination
address, with the lower boundary data going to the destination address, lower
boundary + 1 to destination + 1, and so on until the upper boundary of the source
range is copied. If the source or destination addresses

246



Chapter 10:Emulator Commands

reside within the target system, the emulator will break to the background monitor
and will return to foreground after the copy is completed.

If memory mapped as guarded is encountered in the source or destination range
during the copy, the command is aborted; however, all locations modified prior to
accessing guarded memory are left in the modified state.

See Also cim (copies a memory image from the target system to emulation memory)
m (allows you to display or modify memory locations or ranges)
map (used to define the type and location of memory used by the emulator)

ser (used to search memory ranges for a specific set of data values)

247



Chapter 10:Emulator Commands

demo

Example

demo

demo <RETURN>

The MC68020 and MC68030/EC030 emulators contain a simple demo program
that allows you to learn about the Terminal Interface without the bother of writing
and loading a program.

The standard program was written in MC68000 assembly language. When the
emulator loads the program, it also defines a symbol table containing symbols from
the program. You can use these symbols when you're making measurements using
the program. The demo command also maps memory and sets the emulator
configuration.

The program emulates a simple command interpreter. It has a one-byte input buffer
for commands, and recognizes the ASCII characters “A” and “B.” All other values
are considered invalid.

When you input a command to the buffer, the program calls a subroutine that
interprets the command and writes a corresponding message to an output buffer.

There are two modules in the program. One is the main module, called demo. The
second module, which has the subroutines for printing the messages, is called
handle_msg. These files are listed here.

To load the assembly language version of the demo program, enter:

demo

248



Chapter 10:Emulator Commands
demo

*

* HP 64748 Demo Program

* This program is a simple 68000 assembler program that can be used
* to demonstrate run and trace features for the HP 64748 emulator.

* |t emulates a simple command interpreter.

*

* The program scans the location Cmd_Input looking for a non-null

* value. When it finds one, it calls a routine to determine whether

* the command is "A," "B," or an invalid command. This routine sets
* up certain parms for the output message handler, then calls the

* message handler to write a message based on the command input.
*

* Module name: demo.s

* Written: February 27, 1991
* | ast Revised: February 28, 1991
*

* Define the chip. Call it 68000 here since we don’t use any 68020-specific
* features.
chip 68000
* Int_Cmd is in the module handle_msg.
xref  Int_Cmd
* Set up the stack pointer and initial program counter for run-from-reset.

sect Table,r
org $0

dc.] Top_of_Stack
dc.l Main

* Set up the trace vector
* s0 single-stepping works
org $24
dc.l0
* The stack is declared as 16 long words, which should be more than
* sufficient since there shouldn’t be more than 3 PC'’s on the stack (plus
* whatever the emulation monitor pushes).
sect Stack,,d
Stack ds.| 16
Top_of_Stack

* The only data local to this module is the command input buffer, which
* is a single byte.

sect Data,,d
Cmd_Input dsb 1
* Main program starts here.
sect Prog,,c

* Load the user stack pointer, then clear the command input byte.

demo.s assembly source file

249



Chapter 10:Emulator Commands
demo

Main  move.l #Top_of Stack,a7
move.b #0,Cmd_Input

* Now loop, looking for a nonzero value. If found, call the message interpreter.
Loop move.b Cmd_Input,d0

bne Call_Int

bra  EndLoop
* Call to the message interpreter is a simple subroutine branch. The parameter
* is passed in dO (the command we read). When finished, clear the command
* input buffer.

Call_Int bsr Int_Cmd
move.b #0,Cmd_Input

* Branch forever.

EndLoop bra Loop
end Main

* End of demo.s

demo.s assembly source file (Cont’d)

* This module contains the message intepreter and message printing routines
* for the 64748 demo program. The main program module is demo.s.
*

* Module: handle_msg.s

* Written: February 27, 1991

* L ast Revised: February 28, 1991

* Int_Cmd must be made global so demo.s can see it.

xdef Int_Cmd

* Data local to this module are the message definitions and the message
* output buffer.

sect Data,,d

* Define the messages printed for commands A, B and invalid respectively.

Msg_A dc.b 'Command A entered’
Msg_B dc.b ’Entered B command’
Msg_| dc.b  ’Invalid command’
End_Msgs

* Message output buffer.
Msg_Dest ds.b 32

* Start program code for this module.

handle_msg.s assembly source file

250



Chapter 10:Emulator Commands
demo

sect Prog,,c

* Int_Cmd is the command interpreter routine. It is called by the main
* program loop in demo.s whenever a command is found.

Int_Cmd cmp.b #A’,dO

beq Cmd_A
cmp.b #B’,dO
beq Cmd_B
bra Cmd_l

* If "A", then load a pointer to the beginning of the "A" message into a0,

* and load the message’s length into d1. Then call the routine to print

* the message. When done, return to the caller (the main program loop in
* demo.s).

Cmd_A lea Msg_A,a0
move.l #Msg_B-Msg_A-1,d1
bsr  Print_Msg
rts

* |f "B", then load a pointer to the beginning of the "B" message into a0,

* and load the message’s length into d1. Then call the routine to print

* the message. When done, return to the caller (the main program loop in
* demo.s).

Cmd_B lea Msg_B,a0
move.l #Msg_I-Msg_B-1,d1
bsr  Print_Msg
rts

* The command isn’t recognized, so load a pointer to the beginning of the
* invalid message into a0,

* and load the message’s length into d1. Then call the routine to print

* the message. When done, return to the caller (the main program loop in
* demo.s).

Cmd_|I lea Msg_l,a0
move.l #End_Msgs-Msg_I-1,d1
bsr  Print_Msg
rts

* End of Int_Cmd

* Print_Msg handles the writing of the appropriate message to the Msg_Dest
* puffer. After the message is written, it writes nulls to the remaining
* |locations to clear them from previous commands.

* To print the message, we load a pointer to the output buffer into
*al, then do a block xfer with autoincrement addressing. When the number
* of characters specified in d1 has been moved, fall out of the Again loop.

Print. Msg lea Msg_Dest,al
Again move.b (a0)+,(al)+
dbeq di1,Again

handle_msg.s assembly source file

251



Chapter 10:Emulator Commands
demo

* Now move a null to the next location pointed to by al (which is now after
* the last character of the message. Compare the address in al to the end
* address of the message buffer, and keep repeating until all remaining

* destination buffer locations are zeroed. Then return to the caller

* (Int_Cmd in this case).

Fil_Dest move.b #0,(al)+
cmpa #Msg_Dest+32,al
bne  Fill_Dest
rts

* End of Print_Msg

* End of handle_msg.s

handle_msg.s assembly source file

CHIP 68000

LIST c¢,d,p,s,t,x
SECT Prog=$400
SECT Data=$500
SECT Stack=$f00

LOAD demo
LOAD handle_msg

demo.k linker command file

252



Chapter 10:Emulator Commands
dmmu

dmmu

Examples

dmmu

<RETURN>

Thedmmu command is used to enable or disable the deMMUer so it can translate
physical addresses it receives from the emulation bus and deliver corresponding
logical addresses to the analyzer. This command can also be used to load the
deMMUer with appropriate information to reverse the MMU translations; this is
done by reading the present MMU register values and the present MMU translation
tables in memory. Finally, you can see the present state of the deMMUer by simply
typingdmmu and pressing RETURN.

If the MMU page size is at least 4 Kbytes, the deMMUer can translate up to 256
Mbytes of physical address space. If the MMU page size is smaller than 4 Kbytes,
the deMMUer can translate 16 Mbytes of physical address space.

The parameters are as follows:

Turns off the deMMUer. Addresses on the emulation bus will be supplied directly
to the analyzer without translation.

Turns on the deMMUer. Addresses on the emulation bus will be translated
(physical to logical) before being supplied to the analyzer. Reverse translatio
will be made according to the setup that was present in the MMU at the time you
entered your lastmmu -I command.

Reads the MMU registers and MMU tables, and loads the deMMUer.

Sets the verbose mode for the deMMUer load function. The verbose mode shows a
list of the physical addresses that can be translated by the deMMUer after loading
the deMMUer. If these address translations include function codes, the function
codes are shown beside the addresses (example: 000000000..003ffffff@sp).

To enable the deMMUer to translate addresses for the analyzer:

253



Chapter 10:Emulator Commands

dmmu
M> dmmu -e
To load the deMMUer to reverse translate addresses using the current translation
tables:
M> dmmu -|
See Also mmu (display MMU translations or table information).

254



Chapter 10:Emulator Commands
dt

dt

j <RETURN>

. <yymmdd> '

<hh:mm:ss>

Thedt command allows you to set or display the current date and time stored by
the HP 64700 series emulators.

The parameters are as follows.

<yymmdd> This variable sets the datgy. are the last two digits of the current yeam specify
the current month, ardtl specify the day of the month.

If yy is greater than 50, the year is assumed to be in the 20th cddyy)y (If yy
is less than 50, the year is assumed to be in the 21st cettiyyy. (

<hh:mm:ss> This variable sets the time in 24 hour forndit specify the hounnm specify the
minutes, andsspecify the seconds. Notice that the only difference between the
date and time variables is the presence of colons; therefore, if you forget the colons
while trying to reset the time, you will change the date setting.

If no parameters are specified, the current date and time settings are displayed.

Examples Display the current date and time settings:

M> dt

Set the date to August 18, 1991:
M> dt 910818

To set the date to August 18, 1991 and the time to 11:05:00, type:
M> dt 910818 11:05:00

The emulator system date & time clock is reset when power is cycled.

255



Chapter 10:Emulator Commands

dump

dumpsynt

dump

,@ f’ - = al ) <ADDRESS=> <ADORESS> H <RETURN=>

\»C c H <HEX_CHAR> }

Thedump command allows you to dump the contents of emulation and/or target
system memory to a host file. The contents can be dumped in HP, Tektronix hex,
Intel hex, and Motorola S-record formats by specifying various options on the
command line.

The parameters are as follows.

The-h option indicates that the memory contents will be dumped in HP absolute
file format.

Specifying theb option indicates that the records will be sent in binary; this is only
valid with-h (HP file format).

If you specify-x, the records will be sent in hexadecimal; this is only valid with the
-h option (HP file format).

Specify thei option if you need to have the file transferred in Intel hex record
format. Note that the various options for HP file format transfer (suet) 45 and
-e) are invalid with this format.

Specify them option if you need to have the file transferred in Motorola S-record
format.

256



Chapter 10:Emulator Commands

dump
-t Specify thet option if you need to have the file transferred in Tektronix hex format.
-C Specifying -c along with an ASCII hexadecimal character indicates that the
character specified should be sent to the host at the end of the file upload.
<HEX_CHAR> <HEX_CHAR> is an ASCII character to be sent to the host at the end of the upload
process. The character is used to close the host file which is receiving the uploaded
data.
<ADDRESS> Specifies the lower, then upper, address boundaries of the memory range to be

dumped. The default is a hexadecimal number; other bases and expressions may be
supplied. Refer to the <EXPR> syntax pages for detalils. In addition, many
microprocessors allow special address information such as segmentation or

function codes to be specified; see the <ADDRESS> syntax pages in Chapter 11

for details.

There are no defaults; a file format and address range must be specified.

If you are uploading the file in HP file format using the HP 64g@dsfer
software, record checking is performed automatically byréimesfer protocol.

The HP 64000 format “.X” file created with a “dump -hx” command has records
that contain 136 fewer bytes of data than the file format standard allows. Because
of this, HP 64000 format “.X" files which are created withdiaenp command

may take longer to be processed by consumers of the “.X” file (depending on how
the consumer processes sequential records).

See Also load (used to load emulation memory from a host computer file)

257



Chapter 10:Emulator Commands

echo

<STRING>

<EXPR>

<nn>

echo

) = <RETURN>

Theechocommand allows you to display ASCII strings or the results of evaluated
expressions on the standard output device.

The parameters are as follows.

Any set of ASCII characters enclosed between single open quote marks (*), or
double quotes ("). Because the command buffer is limited to 256 characters, the
maximum number of characters in a string is 248.

Many keyboards (and printers) actually represent the single open quote mark
(ASCII 60 hexadecimal) as an accent grave mark. The correct character in any case
is the one encoded as ASCII 60 hexadecimal. The correct double quotation mark is
ASCII 22 hexadecimal.

A character which is used as a delimiter cannot be used within the string. For
example, the stringType "C"™ is incorrect and will return an error. The string
‘Type "C" s correct.

A valid expression (refer to the expression syntax pages for descriptions of valid
expressions). The expression will be evaluated and the result will be echoed. Note
that no delimiters are used to define the start and end of the expression.

“nn” is the hex code for any valid ASCII character. More than one character can be
echoed with a single command; each “nn” must be preceded by a backslash. A total
of 62 ASCII characters can be represented within a séofflecommand.

This capability is particularly useful for sending non-displaying control characters
to a terminal; see the examples below.

The default is to echo nothing.

258



Examples

Chapter 10:Emulator Commands
echo

To echo the string “Set S1 to OFF” to the standard output, type the following:
M> echo "Set S1 to OFF"

Alternatively, you could use the ASCII character evaluation capability to do the
same thing by typing the following:

M> echo \53 \65 \74 \20 \53 \31 \20 \74 \6f \20 \4f \46 \46

A more useful application of the backslash option is to send terminal control
characters:

M> echo \1b"H" \1b"J* \1b"&dBSet S1to OFF"

The above command sends “<ESC>H<ESC>J<ESC>&dB Set S1 to OFF” to the
terminal. On an HP 2392A this homes the cursor, clears the screen, sets the video
mode to inverse video, and writes the message “Set S1 to OFF.” Therefore, the user
would see the message “Set S1 to OFF” in inverse video at the upper left hand
corner of an otherwise blank screen. You might combine this with a macro
command as part of a procedure. For example:

M> mac PROMPT={echo "Set S1 to OFF";w}
M> PROMPT

Calculate the value of the expression (1f + 1e):

M> echo 1f+1e

You must enclose strings in single open quote marks (*) (ASCII 60 hex) or dou
quotation marks (") (ASCII 22 hex). A string not enclosed in delimiters will be
evaluated as an expression and the result will be echoed. In addition, you may
supply a backslash with a two digit hex constant; the corresponding ASCII
character(s) will be echoed.

Echoing strings or ASCII characters is particularly useful within macros, command
files, and repeats where you wish to prompt the user to perform some action during
a “wait for any keystroke” command (see syntaxwipr The expression capability

is useful as a quick calculator.

Note that all options may combined within the same echo command as long as they
are separated by spaces.

259



Chapter 10:Emulator Commands

echo

See Also

When usingechoto calculate results of expressions, remember that all operations
are carried out on 32-bit two’s complement signed integers. Results greater than 32
bits are truncated.

expr (details on what constitutes valid expressions)
mac (grouping a set of commands under a label for later execution)
rep (grouping a set of commands for immediate repetition)

w (wait command, allows user specified delays)

260



Chapter 10:Emulator Commands
equ

equ

-

<L ), [t

Gore( -0 = <Name> |

Theequcommand allows you to equate arithmetic values with names that you can
easily remember; these names can then be used in other commands to reference the
value. This is useful in defining trigger patterns for the analyzer and in other
applications.

The parameters are as follows.

<NAME> You use <NAME> to assign a character string to the expression. <NAME> must
be an alphanumeric designator no greater than 31 characters in length, beginning
with an alpha character or underscore and including only alphanumeric characters
or underscores thereafter. If <NAME> is specified without an expression, then the
existing definition for that name is displayed. If <NAME> is specifiet], and the
-d option is not given, then the definitions for all equates is displayed. However, if
-d is supplied, then the equate table is cleared.

<EXPR> An arithmetic expression to be assigned to <NAME>. The default is a hexadeq
number. See the <EXPR> syntax pages in this manual for further details.

-d The-d option allows you to delete an existing equate. If you spetigynd
<NAME>, then the named equate is deleted. If <NAME> is given ten all
equates are deleted.

261



Chapter 10:Emulator Commands

equ

Name
berr
byte

cpu

data

fod

long
mon
prog
read
rerun
sup
supdata
supprog
tbyte
three_byte
tlong
tword
user
userdata
userprog
word
write

68020/68EC020 Equates

Value
OXXXXXOXXXXXXXXXXY
OXXXXXXXXXO LXXXXXY
OXXXXXXXXXXXX1 11Xy
OXXXXXXXXXXXXXO1XY
OXXXXXXXXXXXXXXX LY
OXXXXXXXXXOOXXXXXY
OXXXXXXXXXXXXXXXOY
OXXXXXXXXXXXXXLOXY
OXXXXXXXXXXX LXXXXY
OXXXXOOXXXXXXXXXXY
OXXXXXXXXXXXXLXXXY
OXXXXXXXXXXXX101XY
OXXXXXXXXXXXX1 10Xy
OXXXXXX LOXXXXXXXXY
OXXXXXXXXX LLXXXXXY
OXXXXXXOOXXXXXXXXY
OXXXXXXO LXXXXXXXXY
OXXXXXXXXXXXXOXXXY
OXXXXXXXXXXXXO001XY
OXXXXXXXXXXXX010Xy
OXXXXXXXXX L OXXXXXY
OXXXXXXXXXXXOXXXXY

Description
Bus error cycle.
Byte transfer request (S1Z0/S1Z1).
Function code cpu space.
Function code data space.
Foreground memory cycle.
Longword transfer request (S120/SIZ1).
Emulation monitor cycle.
Function code program space.
Read cycle.
Retrying a previous bus cycle.
Function code supervisor space.
Function code supervisor data space.
Function code supervisor program space.
Cycle terminated as byte.
Three byte transfer request (SIZ0/S1Z1).
Cycle terminated as long word.
Cycle terminated as word.
Function code user space.
Function code user data space.
Function code user program space.
Word transfer request (S1Z0/SIZ1).
Write cycle.

262



Name
asyncl6
async32
async8
berr
burst0
burstl
burst2
burst3
byte

cpu

data

fod
logical
long

mon
physical
prog
read
retry

sup
supdata
supprog
sync
tablewalk
three_byte
user
userdata
userprog

Chapter 10:Emulator Commands
equ

68030/68EC030 Equates

Value
OXXXXXXO LLXXXXXXXY
OXXXXXXOOLXXXXXXXY
OXXXXXX LOLXXXXXXXY
OXXXXLOXXXXXXXXXXY
OXXXXXXOO0O0XXXXXXXY
OXXXXXXO LOXXXXXXXY
OXXXXXX LOOXXXXXXXY
OXXXXXX L LOXXXXXXXY
OXXXXXXXXXO LXXXXXY
OXXXXXXXXXXXX111XY
OXXXXXXXXXXXXXO1XY
OXXXXXXXXXXXXXXX LY
OXXOXXXXXXXXXXXXXY
OXXXXXXXXXOOXXXXXY
OXXXXXXXXXXXXXXXOY
OXXIXXXXXXXXXXXXXY
OXXXXXXXXXXXXXLOXY
OXXXXXXXXXXX LXXXXY
OXXXXOOXXXXXXXXXXY
OXXXXXXXXXXXXLXXXY
OXXXXXXXXXXXX1 01Xy
OXXXXXXXXXXXX1 10Xy
OXXXXXXXXOXXXXXXXY
OXXXXXXXXXXXXXXXXY
OXXXXXXXXX L LXXXXXY
OXXXXXXXXXXXXOXXXY
OXXXXXXXXXXXXO001XY
OXXXXXXXXXXXX010Xy

Description

Asynchronous word transfer.
Asynchronous long word transfer.
Asynchronous byte transfer.

Bus error cycle.

First long word of burst cycle.

Second long word of burst cycle.

Third long word of burst cycle.

Fourth long word of burst cycle.

Byte transfer request (S1Z0/S1Z1).
Function code cpu space.

Function code data space.

Foreground memory cycle.

Logical memory address.

Longword transfer request (S120/S1Z1).

Emulation monitor cycle.

Physical memory address.

Function code program space.

Read cycle.

Retrying a previous bus cycle.
Function code supervisor space.
Function code supervisor data space.
Function code supervisor program space.
Synchronous long-word transfer.
Searching through translation tables.
Three byte transfer request (SI1Z0/SIZ1).
Function code user space.
Function code user data space.
Function code user program space.

263



Chapter 10:Emulator Commands

equ
word OXXXXXXXXX LOXXXXXY Word transfer request (S1Z0/SIZ1).
write OXXXXXXXXXXXOXXXXY Write cycle.
If no parameters are specified, then the current table of all equates is displayed. If
<NAME> is specified, then only the equate for that particular name is displayed.
Examples You can predefine some equates to make it easier to set up the analyzer and run

specifications. For example, suppose you want to take five traces of the demo
program, with the trigger at address demo:Loop. You would like to have each trace
numbered.

Enter the following commands:

M> tg addr=demo:Loop

M> equ c=0

M> mac numtrclist={t;w -m;equ c=c+1;echo "trace # "
c;tl}

M> r

M> rep 5 numtrclist

You will see five trace lists, each sequentially numbered, displayed on screen. You
could use this feature in combination with a host logging program or redirection of
your terminal display to printer to continuously monitor operation of a system. (To
further aid your troubleshooting, you could also display the date and time of each
trace sample using tltk command.)

You can remove equates from the table either individually or all at once:

M> equ -d ¢
M> equ

Notice that the equate for the nastart has been removed. Now type:

M> equ -d *
This removes all equates, including the system-defined equates.

Multiple equates may be defined on the same command line, separated by a space.

264



Chapter 10:Emulator Commands
equ
Each equate is translated to its actual value at the time of command entry. For
example, if you specify an equateunt=21h and an expressi®@tart=2000h then
the commandg addr=start count will be entered into the systemtgsaddr=start
33. At this point, redefining the value afldr or count would not change the
address expression or the occurrence counter for the trigger.

The HP 64747/HP 64748 emulators predefine some equates that equate names to
certain processor status bit patterns. You should be careful not to delete these
equates because they are useful in specifying analyzer trace qualifiers.

The combination of a singgju command with all names and expressions cannot
exceed 255 characters. The number of equates and symbols that may be defined is
limited only by available system memory; thus, it is dependent on the number of
macros defined and on any emulator control code loaded by a high level software
interface for the emulator (such as the HP 64700 PC Interface).

See Also tg, tpat, tif, telif, and others.ggu provides an easy way to name expressions to use
in setting up trigger or branch conditions)

r, m, bp (equates may be used to specify run addresses, memory addresses, or
breakpoint addresses)

265



Chapter 10:Emulator Commands

es

Examples

See Also

es

es = <RETURN>

Theescommand displays the current status of emulation activity. It has no
parameters.

View the emulator status:

M> es

The following types of information may be displayed:

processor status—running/in monitor/reset

slow bus cycle

slow clock

emulation halted due to halt input from target system or output from processor

emulation in “wait” state due to input signal (ready, sync, DTACK) from target
system

emulation in monitor due to bus grant to the target system

The exact messages and information displayed varies slightly, depending on the
emulator in use.

The emulator will not break to the monitor to obtain information. Therefore, any
information that can only be obtained while in the monitor will not be displayed if
the emulator is not in the monitor.

ta (allows you to display activity on emulation-bus analyzer lines)

ts (allows you to display the current trace status of the emulation-bus analyzer)

266



Chapter 10:Emulator Commands
help,?

<COMMAND _
NAME>

<COMMAND _
GROUP>

Examples

=]| T
~ <RETURN>

<COMMAND_GROUP> |/

<COMMAND_NAME> | /

<COMMAND _ GROUP> I /

Thehelp (?)command lets you display syntax, description and examples for any
HP 64700 emulator Terminal Interface command. You may display a brief
description for anything from a single command to command groups or the entire
command set. Detailed information is available for single commands.

You may enter a question matknstead of typing help; it performs the same
function.

The parameters are as follows.

This option switches in the abbreviated help mode; only the expanded name of each
command is displayed next to the command.

If the name of an individual command is specified, only the detailed help
information is displayed for that command.

Specifying the name of a command group lists the commands available within
group.

If you specify "*" for <COMMAND_NAME> or <COMMAND_GROUP>,
information for all commands will be displayed.

Thehelp command without any parameters provides a list of command groups.

Display general help information listing the command groups and information
regarding the use of thelp command:

M> help

267



Chapter 10:Emulator Commands
help,?
Display the short version of the help listing:

M> ? -s

Display the same listing of commands for only one of the command groups:
M> help -s emul

Display more information about each of the available memory commands by
leaving out thes flag:

M> help emul

Display specific information for the command:

M> help m

268



Chapter 10:Emulator Commands
init

= <RETURN>

Theinit command allows you to reinitialize the emulator. Powerup, complete, and
limited initializations are available through various options.

The parameters are as follows.

-p The-p option causes a powerup initialization sequence. This initializes the
operating system, data communications, emulation and analyzer boards, and runs
extensive performance verification.

-C The-c option causes a complete initialization sequence. Everything is initialized as
defined by the powerup sequence with the exception of the performance
verification.

Examples Perform a powerup initialization sequence:

m> init -p

You will see:

Perform a complete initialization sequence, which resets the entire emulator
without executing performance verification:

m> init -c

Perform a limited initialization sequence, resetting only the emulator and analyzer:

m> init

269



Chapter 10:Emulator Commands

init

See Also

You should only use thait command if the emulator is not responsive to other
commands. If you wish to change other configuration parameters without
initializing the emulator, there are commands available for that purpose. (See
below.)

If no options are specified, a limited initialization sequence is performed. The
operating system and data communications are not affected but all of the emulation
and analysis boards are reset. For example, a limited initialization would not
change macro definitions, system date and time, or the data communications
parameters, but the emulation memory map and breakpoint list would be reset to
their default states.

Theinit -c andinit -p commands cause a loss of system memory. If these
commands are used in macros, commands that follow them will not be executed.

cf (change emulation configuration)

dt (set system date and time)

map (define the emulation memory map)
stty (set data communications parameters)

tinit (reset the analyzer to powerup defaults)

270



Chapter 10:Emulator Commands
load

load

V ;> = <RETURN=>

i

i
' E

]

loadsynt

<LOAD_OPTS>

Theload command lets you load program code into emulation or target memory.
Various file formats are supported via options to the load command.

The parameters are as follows. At least one dash (-) must be included before any
parameters are specified. It is optional to include or omit dashes for succeeding
parameters.

Specifies that the program code will be in Intel hex file format.
Specifies that the program code will be in Motorola S-record file format.

Specifies that the program code will be in Tektronix hex file format.

271



Chapter 10:Emulator Commands

load
-h

<LOAD_OPTS>

Specifies that the program code will be in HP file format. In this case, the file is
expected to be transferred using the HP 64000 Hosted Development System
transfer protocol.

Load only those portions of program code which would reside in memory mapped
to emulation memory space. (Refer to tigp command.)

Load only those portions of program code which would reside in memory mapped
to target memory space. (Refer to thap command.)

The program code will be transferred in quiet modeq lis not specified, the
emulator controller will write a “#” to the standard output for each record
successfully received and processed.

The foreground monitor will be reloaded into dual-port memory.

This allows you to download a symbol file from the host computer into the
emulator. This option is valid for HP 64700 emulators that support the use of
symbols.

This represents all options to lead command that are specific to a particular HP
64700-Series Emulator. The MC68020 and MC68030/EC030 emulators do not
support any custom load options.

When using the HP file format, the program is expected to be in binary.
When using the HP file format, the program is expected to be in hex.

When using Intel, Motorola or Tektronix file formats, this option sets up a protocol
checking scheme using ASGACK/NAK characters. If using this option, the host
should send one record at a time and wait for the emulator to return anASCI|
character between records. If the emulator returns an ABXKI instead, there has
been an error in data transmission. When the emulator receives the EOF character,
it will return only the normal emulator prompt because data transmission is
complete.

If, during the transfer, the host receivesAK for a record, it should retransmit the
record until arACK is received or until a timeout value is reached, whichever
occurs first.

You specify thef option if you are loading a custom foreground monitor into the
emulator.

In the default, at least one file format option must be specified.

272



Chapter 10:Emulator Commands

The destination of the program code is determined by the information contained in
the program file. Additional options allow you to load only target memory or
emulation memory as desired.

If a load error occurs, the current load procedure is aborted. However, records
which were successfully loaded will remain in memory.

For the MC68020 and MC68030/EC030 emulators, the function code information
in the program file must conform to the specifications of the emulation memory
mapper. For information on specifying emulator function codes, see the
<ADDRESS> syntax pages in Chapter 11. You should also refer to the manuals
supplied with your assembler or high-level language to determine how those tools
specify function codes for your processor.

When you load an absolute file, the incoming data is examined for valid records (in
the specified format). If the data being sent does not contain any valid records, the
emulator will wait forever looking for valid records. The process must be
terminated be entering a <CTRtL.>

See Also dump (allows you to transfer emulation memory contents to a host)

See Chapter 4 for instructions on loading programs using different communications
configurations.

273



Chapter 10:Emulator Commands

m

Cm )

—d }—]<DISPLAY_M0DE>[—I ]

(So)-»{ <ADDRESS> »| <RETURN>
o)

-d

<DISPLAY _
MODE>

. <ADDRESS>

Them command allows you to display and modify emulation and target system
memory. Options allow you to specify the display mode, specific address or
addresses for display or modification, and the data values to be inserted.

The parameters are as follows.
The-d option allows you to set the display mode for memory accesses.

A one-character mnemonic specifying the display mode to use in creating memory
displays. The allowable display modes are specific to the microprocessor in use;
some typical modes abe(byte),w (word) andm (mnemonic). See thmode

syntax pages to determine the correct display modes. If no display mode is
specified, the global display mode set viartttecommand is used as a default.

Specifies the address to be displayed or modified. As noted in the syntax, an
address followed by two periods and another address specifies a range of addresses
to display or modify. Address notation is specific to each microprocessor. The
MC68020 and MC68030/EC030 emulators allow the use of function codes in
specifying address information. However, for all processors the address default
representation is a hexadecimal number. SeeADBDRESS>syntax pages in

Chapter 11 for examples of correct address specifications.

If you specify only the first address of a range followed by two periods and omit
the second address of the range, 128 bytes of the range starting at the first address
specified are selected for display or modification.

274



<EXPR>

Examples

Chapter 10:Emulator Commands
m

Data value to which a particular location is to be modified. If a range of locations is
to be modified to a sequence of data values, the values must be separated by
commas. Refer to the examples for details.

At least one address must be specified. If no display mode is specified the display
mode set by thmo command is used. Data items specified in memory

modification are repeated as a group to fill the address range specified (see the
examples below for clarification). The memory <DISPLAY_MODE> defaults to

the last value specified, or the default format for the emulator in use upon powerup
initialization (varies dependent on the microprocessor being emulated).

Display the memaory range fO0 hex through f1f hex in byte format:
M> m -db 0f00..0f1f

Display the same address range in word format:

M> m -dw 0f00..0f1f

Display the range in long word format (32 bits):

M> m -dl 0f00..0f1f

Display memory contents as assembler mnemonics:

M> m -dm demo:Main..EndLoop

You can display several rows of memory at a time. Type:

M> m -db 700..7ff

Modify the contents of location 700 hex to the byte value 21 hex by typing:
M> m 700=21

Notice that the results of the memory modification are not automatically displayed.
To view the results of a modification, you enter anothe@ommand.

275



Chapter 10:Emulator Commands

m

Clear the contents of a memory range:

M>m 700..71f=00

Modify the contents of a range to some other hex value:

M> m 700..71f=21

Provide a sequence of data items for modification:

M> m 700..71f=41,42,43

If the selected address range for display or modification includes target system
memory, the emulation processor will be broken to background upon execution of
the command. After the command is complete, the processor will be returned to
foreground execution if no errors occurred.

The method of specifying address information varies among different types of
microprocessors. See the <ADDRESS> syntax pages in Chapter 11 for specific
address information for the MC68020 and MC68030/EC030. Remember that
specifying an address a particular way in one command will affect the way you
need to specify it for all commands. For example, if you use function codes in
specifying a memory map, you will also need to use function codes within the
address information for the command to display or modify those ranges of
memory.

The way the data items are handled (for modification) depends on the
<DISPLAY_MODE> in effect. For example, if the display mode is byte, and the
data items 1a, 3f, and 66 are entered as 1a3f66, the location specified will be
modified to 66 hex. If the display mode is word, the location will be modified to
3f66 hex. And if the display mode is long word, the location will be modified to
001a3f66. Note that data may be specified in decimal, octal, or binary in addition to
the hexadecimal default. (See #EEXPR> syntax pages for information on

specifying numeric bases.) Conversely, if you specify the value 33 hex for
modification in byte mode, the value 33 is entered; in word mode, the value 0033 is
entered; in long word mode, the value 00000033 is entered. In other words, if the
value supplied is shorter than the mode in effect, it is padded with leading zeros.

In mnemonic mode, the instruction disassembler assumes that the first address
location disassembled contains the first byte of an opcode; therefore, if you specify
an address location that does not contain an opcode, the memory display will be
incorrect.

276



Chapter 10:Emulator Commands

m
The <DISPLAY_MODE> parameters depend on what modes are supported by the
emulator. See the <MODE> syntax pages for details on supported display modes.

Display modes default to the last one specified. Therefore, if you would like to
examine data areas after using the mnemonic display mode, you should change the
mode.

When a sequence of data items is provided for memory modification, the sequence
is repeated until the entire range has been modified.

If symbols have been defined, either by loading a symbol file or by usisgrthe
command, these symbols can be used imtkemmand and will appear in the
mnemonic mode-¢m) memory display. The command processor retains the name
of the last module referenced. If a symbol does not contain a module name, the list
of global symbols is searched. If the symbol is not found, the list of user symbols is
searched. If the symbol is still not found, the system searches the last module
referenced. If it doesn’t find it there, the rest of the modules are searched.

See Also map (specify mapping of memory to emulation or user memory and to RAM or
ROM)

mo (specify global access and display modes)

io (display modify I/0 locations (for processors which support dedicated 1/0))

277



Chapter 10:Emulator Commands

mac

<NAME>

<COMMAND>

mac

mac

% <RETURN>

. <COMMAND>.

Themac command allows you to save a group of commands under a name of your
choice. This allows you to instantly recall that command group by typing in the
assigned name; the emulator will then preprocess the macro to expand the
commands stored therein to a normal command line; the command line is then
executed as usual.

The parameters are as follows:

The-d parameter, in conjunction with the macro <NAME>, deletes the macro
defined by <NAME>. If <NAME> is given as the character “*” then all macros are
deleted.

This represents the name you assign to the macro definition. Names can be any
combination of alphanumeric characters; however, you cannot define a macro that
has a name identical to that of another HP 64700 Terminal Interface command.

If you specify a name which is the same as a currently defined macro, that macro
will be overwritten by the new macro you define.

Certain HP 64700-Series emulators may predefine macros to aid you in setting up
configurations for certain emulation tasks, such as in-circuit emulation.

This represents one or more emulator commands, including names which are used
to define other macros. <NAME> and <COMMAND> must be separated by an
equal sign (=), and the command string must be enclosed with braces “{}.” Each
<COMMAND> must be separated from other commands by a semicolon (;).

278



Chapter 10:Emulator Commands
mac

When using command substitution, you can include pseudo-parameters in the form
of “&token&” in the macro definition. Do not include any white space between the
two “&” symbols. When you execute the macro, include the string to be substituted
for &token& as a parameter on the command line. The macro will execute using
the command expanded with the string you substituted. See the Examples section
for more information.

-q This option sets the macro expansion echo to quiet mode. In this mode, any macro
that you run will be executed without displaying the expanded command string.

-v This option sets the macro expansion echo to verbose mode. In this mode, any
macro that you run will first display the expanded command string as a comment,
and then will execute the macro.

If no parameters are supplied, the current set of macro definitions is displayed. If
only <NAME> is supplied without a command string, the macro defined by
<NAME> is displayed.

Examples Define a macro that resets the emulator, then defines the memory map, resets the
processor and breaks into the monitor, and then sets up the stack pointer:

M> mac setup={init;map 0..7fff eram;rst -m;reg usp=7000}

To execute the command, type:

M> setup

You could define another macro called “echonwait” as follows:

M> mac echonwait={echo "Set S1 to OFF";w}

Delete the macro nameetup

M> mac -d setup

Delete all macros:

M> mac -d *

Define a macro that fills an arbitrary 100-byte block range with a user-defined
value:

279



Chapter 10:Emulator Commands

mac

M> mac fill={equ start=&address&;m -db
start..start+100t=&value&}

Invoke the macro:

M> fill 50 88

In this example, 50 will be substituted for &addressé&, and 88 will be substituted
for &value&. So, addresses 50 through 150 decimal will contain the value 88.

Nested macro calls are permitted and limited only by constraints of system memory.

The commands within the macro definition are not checked for correct syntax until
the macro is executed; therefore, it is advisable to test the command string before
defining the macro.

The number of macros that can be created is limited to 100, but may be less,
depending on the complexity of the macros defined.

The length of the macro name combined with the macro definition is limited only
by the maximum HP 64700 command length of 255 characters; thus, the macro
name and definition can be a maximum of 251 characters.

A command within a macro definition cannot contain the pound sign character (#)
unless the command is enclosed in a quoted string. (Otherwise, text following the #
is interpreted as a comment.) This means there can be no matching brace at the end
of the command. Use tleehocommand to place comments in a macro definition.

Command line substitution is possible when invoking a macro. During the macro
definition, you may include pseudo-parameters which allow you to substitute
parameters, such as file names, when invoking the macro.

Pseudo-parameters are replaced on a position-dependent scheme, where the first
pseudo-parameter encountered in the macro string is replaced with the first
parameter passed into the macro. The second pseudo-parameter is replaced with the
second parameter passed into the macro, and so on.

You can define multiple pseudo-parameters in a macro using the same name for
both (or all) of them. Because pseudo-parameters are position-dependent, the first
pseudo-parameter will always be substituted with the first parameter you pass into
the macro, the second pseudo-parameter with the second parameter you pass into
the macro, and so on.

280



Chapter 10:Emulator Commands
mac

See Also rep (repeat; allows you to repeat any command, including macros)

281



Chapter 10:Emulator Commands

map

<ADDRESS>

map

<RETURN>
@ ~ <ADDRESS= ‘ ~ <ADDRESS> @

o -y e

-

Themap command allows you to map address ranges to one of five different
classes of memory. For example, you may want to specify that addresses 1000
through 2fff hex are in emulation RAM, and addresses 3000 through 3fff hex
(where your program code will reside) are in emulation ROM. Later, when your
target system hardware is prototyped, you will be able to easily modify these
specifications to indicate that the address ranges actually reside in target system
RAM or ROM.

The parameters are as follows.

The address values specify the address range to be assigned to a particular memory
type. Whenever the emulation processor accesses the range specified, it will be
directed to the memory type specified in the map. Specification of address

282



other

eram

erom

tram

trom

grd

dp

dsi

Ci

Chapter 10:Emulator Commands
map
information defaults to a hexadecimal value. The MC68020 and MC68030/EC030
emulators also allow specification of function codes. SegAIMRESS>syntax
pages in Chapter 11 for details of address specification.

The address rangeher specifies all address ranges not otherwise specified by
mapper terms. The MC68020 and MC68030/EC030 emulators restrict type
definition of the "other" range toom, tram, orgrd.

Specifyingeram indicates that the given address range is to reside in emulation
address space and act as RAM (read/write).

Specifyingerom indicates that the given address range resides in emulation address
space; it is to act as ROM (read only). Beeeommand allows you to specify that
emulation processor writes to this space or to space designated as target ROM
(trom) will cause an emulation system break.

The emulator protects emulation memory from being modified when a write to
emulation ROM occurs. (This feature may not be supported in future HP
64700-Series emulators.)

Specifyingtram indicates that the given address range lies within target system
RAM space. When the emulation processor accesses an address within this range,
the target system data buffers will be enabled by a mapper signal to complete the
transaction.

Specifyingtrom indicates that the given address range lies within target system
ROM space. As with therom parameter above, the command may be used to

set up the emulation system to break upon a write to these address ranges. In any
case, if target ROM memory is actually implemented as RAM, and the necessa
write strobes are connected to this memory, the emulator will allow the proces
overwrite the memory locations.

Thegrd parameter indicates the given address range is to be “guarded;” therefore,
the emulation system software should not know that it exists. An emulation system
break will always be generated upon accesses to guarded memory.

Use the 4 Kbyte block of dual-port emulation memory. Valid only for erom and
eram.

Interlock target system and emulation DSACKSs (only valid for erom and eram
blocks.

Inhibit caching for this memory block (only valid for the MC68030/EC030
emulator.)

283



Chapter 10:Emulator Commands

map

Examples

If the commandnap is entered with no parameters, the current memory map is
displayed.

View the memory map:

M> map

Suppose that you need to map the following ranges:

» 1000 through 1fff to supervisor program space, using dual-port emulation
RAM and interlocking DSACKs with the target system.

e 2000 through 2fff to user space using emulation RAM and interlocking
DSACKSs with the target system.

« 5000 through 7fff to user data space using target RAM and inhibiting caching.

» 8000 through 8fff to user program space using target ROM.

» All other memory is mapped as guarded.

Implement this map by entering

R> map 1000..1fff@sp eram dp,dsi
R> map 2000..2fff@u eram dsi

R> map 5000..7fff@ud tram ci

R> map 8000..8fff@up trom

Delete all map terms (reset the map):

R> map -d *

The emulation system assigns a term number to each address range specified by
you in the map command. Term numbers are assigned in ascending order of
address range. Therefore, if you map the addresses 0 through 100
(TERM_NUMBER_1) and 1000 through 1fff (TERM_NUMBER_2), then specify
another range of 300 through 3ff, TERM_NUMBER_2 will be renumbered as
TERM_NUMBER_3 and the range 300 through 3ff will become
TERM_NUMBER_2. Remember to use the assigned term number when specifying
mapper terms to be deleted by thap -d <TERM_NUMBER> command.

The memory mapper reassigns blocks of emulation memory after the insertion or
deletion of mapper terms. For example, if you modified the contents of 300 through
3ff above, deleted TERM_NUMBER_1, and displayed locations 300 through 3ff,

284



Chapter 10:Emulator Commands
map
you would notice the contents of those locations are not the same as they were
before deleting the mapper term.

The mapper address block resolution for the MC68020 and MC68030/EC030
emulators is 256 bytes. However, the block sizes for target memory and emulation
memory on a particular emulator are identical. If an address range smaller than a
multiple of the block size is entered as a map specification, the range is rounded
upwards to the nearest block size multiple.

When any map term is added or deleted the emulation processor will be reset and
held in the reset state until a break or run command is issued. The processor
remains reset in recognition of the fact that returning to execution directly after
mapper modification is most likely invalid.

Be sure to disable all breakpoinks (-d bp) before changing the map. Breakpoints

are not cleared when the memory map is changed. (Breakpoints are also not cleared
when a file is loaded, or when memory is manually modified.) After the new map

and the program are set up, you can re-enable the breakpoints by re-enabling the
breakpoints break conditiob -e bp and entering thiep -e * command. When

the list of breakpoints is displaydop], the memory is checked to verify whether

the breakpoint is still in memory.

If all mapper terms are deleted with the commauag -d *, the “other” range is
unaffected.

See Also bc (break conditions; determines whether emulator breaks to monitor upon write to
space mapped as ROM)

m (memory display/modify)
bp (set/delete software breakpoints)

Chapter 7, “Configuring the Emulator,” has a complete description of the block
allocation strategy used for the MC68020 and MC68030/EC030 emulation memory
resources.

285



Chapter 10:Emulator Commands
mmu

mmu

C mmu ~ <RETURN>

@ <ADDRESS>

<ADDRESS>

Themmu command is used to display valid logical-to-physical address

translations. You can display all of the present translations for all logical addresses,
or for only a limited range of logical addresses. Further, you can display the details
of how a single logical address is mapped through the tables to its corresponding
physical address. Finally, you can display the details of a single translation table
used by a selected logical address.

You can use thmmmu command to view the present set of valid translations, even
when the TC register and the root pointer registers are invalid. Parameters in the
mmu command let you specify values to use when none exist in these MMU
registers.

286



<ADDRESS>

crp

srp

tc

<VALUE>

Chapter 10:Emulator Commands
mmu

The parameters are as follows:

Shows the content of Table A for the logical address you included in your
command.

The address or address range specifies a logical address reference for the MMU
information to be displayed.

Shows the content of Table B for the logical address you included in your
command.

Shows the content of Table C for the logical address you included in your
command.

Lets you specify a value to be used in place of the present content of the CRP (CPU
root pointer) when reading the tables and showing the address mappings.

Shows the content of Table D for the logical address you included in your
command.

Shows the content of the function-code table for the logical address you included in
your command.

Lets you specify a value to be used in place of the present content of the SRP
(supervisor root pointer) when reading the tables and showing the address
mappings.

Shows the details of the translation through the tables for the logical address you
included in your command.

Lets you specify a value to be used in place of the present content of the TC
(translation control) register when reading the tables and showing the address
mappings.

A number to be used in place of the present value within the referenced MMU
register (TC, CRP, or SRP). This number does not overwrite the present content of
the register.

Whenmmu is used by itself, it shows a list of the valid MMU mappings. One
entry in the list is allocated for each page in the system.

287



Chapter 10:Emulator Commands

mmu

Examples

See Also

Show all of the valid logical-to-physical mappings in the MMU:
M> mmu

Show all of the logical-to-physical mappings for logical addresses in the range of
7FFO through 800F:

M> mmu 7ff0..800f

Show the table details used to translate logical address 400:

M> mmu -t 400

Show the details of Table A used to translate logical address 40FC.
M> mmu -ta 40fc

Show the present MMU mappings based on a TC register value of 81FF2000
instead of the present TC register value:

M> mmu tc=81ff2000

dmmu (Controlling the deMMUer.)

288



Chapter 10:Emulator Commands
mo

mo

= <RETURN>

Themo command allows you to modify the global access and display modes.
Access mode is defined as the type of processor data cycles used by the emulation
monitor to access a portion of user memory. Display mode is defined as the method
used to display or modify data resident in memory.

The parameters are as follows:

-a The-a parameter, in combination with a single character specifying mode type
the global access mode.

<ACCESS _ A single character used to specify the global access mode. Note that there is no

MODE> space between tha parameter and the mode specifier. The MC68020 and

MC68030/EC030 emulators allow the following access modes:
I long word (four bytes) access mode
w  word (two bytes) access mode

b byte access mode

289



Chapter 10:Emulator Commands

mo
-d

<DISPLAY_
MODE>

Examples

The-d parameter, in combination with a single character, sets the global display
mode default.

A single character used to specify the global display mode default. Note that there
is no space between tktbparameter and the mode specifier. The MC68020 and
MC68030/EC030 emulators allow the following display modes:

I long word (four bytes) display mode

w word (two bytes) display mode
b byte display mode
m mnemonic display mode

If no parameters are specified, the current settings of the display and access modes
are displayed.

To display locations Main through EndLoop in the demo program in mnemonic
format, enter:

M> m -dm demo:Main..EndLoop
For other examples of the effects of changing the display mode, see the syntax
pages for then (memory) command in this manual.

View the current settings of the access and display modes:

R> mo

Set the access mode to words:

R> mo -aw

Change the access mode to words and the display mode to long words:

R> mo -aw -dI

Change the access mode to words, and the display mode to mnemonics:

R> mo -aw -dm

290



See Also

Chapter 10:Emulator Commands
mo

Reset the access and display modes to the powerup defaults:

R> mo -ab -dw

The emulator allows you to display and access memory in several ways for memory
display and modification. You set the display and access size usimg the
command. There are two types of mode settings.

Display Mode
Display mode defines how the emulator displays or modifies memory.

The mnemonic display mode allows you to display memory disassembled into
processor instruction mnemonics usingrtheommand. If you specify mnemonic
display mode and then execute any other command that references the display
mode, the command will behave as if “byte” display mode was selected. (Such
commands include memory modifies and searches.)

Themo command only sets the initial display mode. It is changed by using the
mode option in any of the memory access commands (sucloeset).

Access Mode
Access mode defines how the emulator accesses target system memory.

The emulation monitor uses the access mode to determine whether to use byte,
word or long word instructions during accesses to target system memory and
emulation memory that is not dual-port. It doesaffect how that data is displayed
on screen, or the way in which data is interpreted for memory modification. Th
controlled by the display mode.

m (memory display/modify)
io (input/output display or modify)

291



Chapter 10:Emulator Commands
po

po

—( )
= s 7 ]

N

(N
" ) @\ Q } <STRING> T !
\“ ’ posynt

Thepo command allows you to change the system prompt characters.
The parameters are as follows:

-p The-p option allows you to change the emulator’'s command prompt to one
specified by<STRING>.

<STRING> <STRING> is any group of ASCII characters enclosed by single open quotes (‘) or
double (") quote marks. This parameter, when used-pjthilows you to specify a
new emulator command prompt.

Examples If several people use the system, you may want to define macros which reset the
prompt so each user knows who is currently using the emulator. For example:

M> mac yourid={po -p "\YOURID>"}
M> mac herid={po -p "\HERID>"}
M> mac hisid={po -p "\HISID>"}

You can redefine the emulator’'s command prompt string usingpthe

<STRING> command. Upon powerup, the emulator prompt defaults to “>.” (The
character before the string, for exampeM, U, etc., is used to indicate the

current emulator status anchist affected by redefining the prompt string.)

292



Chapter 10:Emulator Commands
pv

pv

< pv = <RETURN>
f@ = <REPEAT_COUNT>

Thepv command runs performance verification on the emulator and analyzer. The
performance verification exercises all the emulator hardware and software to high
confidence level.

The parameters are as follows:

<REPEAT _ <REPEAT_COUNT> allows you to specify the number of times to repeat the
COUNT> performance verification. This is a required parameter.

If no parameters are given, a warning message about initialization of the emulator
along with correcpv command syntax is displayed. To actually executevihe
command, you must provide a <REPEAT_COUNT> value.

Examples Executingpv with no parameters provides a warning display, along with help for
the correct syntax. Type:

M> pv

To loop through the performance verification twice, type:

M> pv 2

You should only run performance verification when the emulation protm is

plugged into a target system. You should also make sure to remove any conductive
foam or plastic pin protectors from the emulator probe, as these will cause failures
during performance verification.

When you use thev command, the emulator is initialized as if power were cycled.
Therefore, all equates, macros, memory map, configuration settings, system clock,
software breakpoints, trace specifications, and other configuration items you have
altered will be cleared. Do not use thecommand unless you can restore these
items from a host, or have documented them so you can restore their states
manually.

293



Chapter 10:Emulator Commands

pv

See Also

If pv reports failures, first check your hardware installation as documented in the
manual. If the failures persist, call your local HP Sales and Service office for
assistance. A list of offices is provided in Bgpport Serviceguide.

Note that providing multiple commands suctpad.;r is invalid; the second
command will not execute due to the system reset.

Typing in <CTRL>-C to abort thev command may result in incorrect failure
messages.

init (reinitializes the emulator)

294



Chapter 10:Emulator Commands
r

r L = <RETURN>
@ = <ADDRESS>

Ther command starts an emulation run. Execution begins at the address specified
by the <ADDRESS> parameter; if no address is specified, execution begins at the
address in the program counter.

The parameters are as follows:

<ADDRESS> Specifies the address where execution is to begin. If you sfetify processor
runs from the current program counter value. If you spesifithe processor runs
from its reset address.

If no parameters are specified, the emulation run begins at the address specified by
the processor’s current program counter contents.

Examples Load the demo program, run it, and then break to monitor:

R> demo;r;b

Run the processor from the Loop address in the demo program:

R> r demo:Loop

Although <ADDRESS> defaults to a hexadecimal number, the MC68020 and
MC68030/EC030 emulators allow specification of function codes. See the
<ADDRESS> syntax pages in Chapter 11.

See Chapter 4 for information on how the emulator handlessatrtommand.

See Also s (step; allows controlled stepping through program instructions)
rx (run only when CMB (Coordinated Measurement Bus) execute pulse is received)

X (pulse the CMB execute line if resident on the CMB)

295



Chapter 10:Emulator Commands

reg

reg

reg 7

~ " <RETURN>

<REG_NAME>

ey

<REG_CLASS>

J/

<REG_NAME>

<REG_CLASS>

<VALUE>

Thereg command allows you to display and modify emulation processor register
contents. Individual registers may be displayed or modified. Related groups of
registers may be displayed. Combinations of display and modify are permitted on
the same command line.

The parameters are as follows.

The <REG_NAME> parameter allows you to specify a single register to display or
modify.

The <REG_CLASS> parameter allows you to specify an entire group of registers
for display.

To modify a register’s contents, supply the new contents in the <VALUE> variable.
This is a numeric value. The default is hexadecimal, other number bases may be
specified. Floating point values cannot be used. Also, you cannot use symbols as
the value for modifying the PC register.

Register Class

Register Names

* (basic)

pc, st, usp, isp, msp, cacr, caar,d0..d7, a0..a7, vbr, dfc, sfc

fpu (if your target system has a |fpcr, fpsr, fpiar, fp0..fp7
floating-point coprocessor)

mmu (MC68030 only) tt0, tt1, mmusr, tc, srp, crp
OR
acu (MC68030/EC030) ac0, acl, acusr

296



Chapter 10:Emulator Commands
reg

Examples View the contents of all registers:

M> reg

Modify the contents of register DO to 50 hex:

M> reg d0=050

You can display more than one register at a time by listing all register names on the
same line:

M> reg dO st

See Also s (step; allows you to step through program execution—in combination with the
reg command, this is useful in debugging)

297



Chapter 10:Emulator Commands

rep

<COUNT>

<COMMAND>

Examples

See Also

rep

<COMMAND>

<COUNT> <RETURN>

Therep command allows you to repeat a group of commands a specified number
of times. The command list is simply a group of valid HP 64700 commands
separated by semicolons and delimited by braces.

The parameters are as follows.

An integer value specifying how many times to execute the command list. A count
of zero is a special case, meaning “repeat forever” (the repetition can be stopped by
entering <CTRL>-C, which issues a break to the emulator).

Any valid HP 64700 Emulator command, including previously defined macros,

may be specified with the options appropriate to the command. The list of
commands must be preceded by an opening brace and followed by a closing brace.
Also, the commands must be separated by semicolons. The commands will be
executed in the same order as they are specified on the command line.

Both a count and at least one command must be specified.

Suppose that you're using an ANSI terminal and want to simulate a repetitive
memory display of a certain memory range:

M> mac mem={echo \1b \5b \31 \3b \31 \48; m-db
4000..401f; w 0}

Command macros that you define usingrttee command can be used within a
command group for repetition.

No other command input will be accepted until the command group has executed
the indicated number of repetitions.

mac (allows assignment of a name to a command group for easy recall of a
specified command sequence)

298



Chapter 10:Emulator Commands
rst

Examples

rst

rst = <RETURN>

Therst command resets the emulation microprocessor. An option allows you to
specify that the processor should begin executing the emulation monitor code
immediately after the reset.

The parameters are as follows:
Causes the emulator to begin executing monitor code immediately after the reset.

The default operation is to reset and remain in the reset state.

Reset the processor and keep it in the reset state:

M> rst

Reset the processor and have it immediately commence emulation monitor
execution:

U> rst-m

If -mis not specified, the emulation processor remains in the reset state. Note
any commands which require the emulation processor to execute the monitor

for command processing will not execute while the processor is in the reset state;
these include commands sucheg

Commands or hardware signals which will take the emulator out of a reset state
includeb, r, s, and the CMB /EXECUTE pulse.

299



Chapter 10:Emulator Commands

X

<ADDRESS>

Examples

rx

% <RETURN>

= <ADDRESS>

Therx command allows you to set the starting address for synchronous CMB
(Coordinated Measurement Bus) execution.

The parameters are as follows.

The <ADDRESS> parameter specifies where to start program execution when the
CMB EXECUTE pulse is detected. If $ is specified for address, the current
program counter is used (default). The default base for <ADDRESS> is
hexadecimal; other bases can be specified with the proper extension. (Sg® the
syntax pages for supported bases.) For the MC68020 and MC68030/EC030
emulators, you may also specify function codes. See the <ADDRESS> syntax
pages in Chapter 11 for more information.

If you enter thex command without any address parameters, the current address
value setting is displayed. If no rx command has been entered since initialization of
the emulator, then the default settingd$.

View the current address setting specifieday

M> rx

Begin execution at demo:Main when the CMB-EXECUTE pulse is received:
M> rx demo:Main

Start execution at the current value of the program counter when the
CMB-EXECUTE pulse is received:

M> rx $

300



Chapter 10:Emulator Commands

If the HP 64700 emulator is connected to the CMB, and the CMB-EXECUTE pulse
is detected, followed by the CMB-READY line in the true state, the emulator will
begin execution at the address specified byxteommand. If nax command has
been issued, execution begins at the current program counter value (sa®e as

Execution will begin at the address specified>gvery time the conditions listed
above are met. For example, if you type the commad@0, the emulator will
start executing at address 100 hex every time the CMB-EXECUTE line is pulsed.

Therx command automatically turns on CMB interaction by effectively
performing the equivalent ofanb -ecommand whether or not you have done so.

See Also cmb (enables or disables CMB interaction)

X (initiates a synchronous CMB interaction by pulsing the CMB-EXECUTE line)

301



Chapter 10:Emulator Commands

S

<COUNT>

<ADDRESS>

% <RETURN>

= @ = <COUNT>
==y

Thes command allows you to single-step the emulation processor through a
program. You can specify the number of steps to execute at a single time; or, you
can direct the emulator to step continuously. In addition, you may specify the
starting address for stepping.

The parameters are as follows:

If you enter theq parameter, stepping will occur in quiet mode; that is, the
instructions and program counter are not displayed upon execution of each step.

If you enter thew parameter, stepping will be done in whisper mode; only the final
program counter value is displayed after the step is executed.

The <COUNT> parameter allows you to specify the number of steps to execute in
sequence before returning command control. For example, if you spécifyen
five instructions will be executed in sequence.

The default base for <COUNT> is decimal. Other number bases may be specified;
see theEXPR syntax pages for more information.

If you do not specify a value for <COUNT>, then a value of one (1) is assumed. If
you specify a step count of zero (0), the emulator interprets this as “step
continuously.” Continuous stepping can be aborted with the <CTRL>-C command,;
or, it will be terminated upon receipt of an emulation break condition such as a
write-to ROM.

The <ADDRESS> parameter allows you to specify the starting address for
stepping. The default is a hexadecimal value; seEXiRR syntax pages for
information on specifying other number bases. The MC68020 and
MC68030/EC030 emulators allow you to specify function codes as part of the
address. See the <ADDRESS> syntax pages for more information.

302



Chapter 10:Emulator Commands
s
If you specifys with no parameters, the processor is stepped one instruction from
the current program counter location. If you specify <COUNT> but not
<ADDRESS>, then the current program counter value is specified for
<ADDRESS>.

Examples Step one location from Main:

M> s 1 demo:Main

You can step all the way up to the READ_INPUT routine by typing:

M> s 2 demo:Main

You can also step through the program in “quiet” mode. This inhibits the display of
any information about the stepping process. Type:

M> s -q 2 demo:Main

You can step the processor and display only the final program counter value after
the step by using the “whisper” mode:

M> s -w 3 demo:Loop

Remember that you must specify a step count value if you specify an address. If
you don’t, a <CTRL>-C will abort the stepping. Type:

M> s 2000

The emulator will step 2000 times; ert&TRL>-C to abort the step function.

You can assign values to label names usinggueeommand and then use these
labels in specifying step information. For example, the number of instructions in
the command input loop is 3. Type:

M> equ readcount=3
M> s readcount demo:Loop

If the emulator was in the run state (U> prompt) executing a user program when
you request the step, it will break to the monitor program before executing the step.

303



Chapter 10:Emulator Commands

S

See Also

When the Coordinated Measurement Bus (CMB) is being actively controlled by
another emulator, the step commag)ddpes not work correctly. The emulator may
end up running in user code (NOT stepping). Disable CMB interactioln {d)

while stepping the processor.

If you substituteb for the <ADDRESS> parameter, the current program counter
value will be used as the <ADDRESS> value. The same will occur if no address
parameter is specified.

If you specify a value for <ADDRESS>, then you must specify a value for
<COUNT>. Otherwise, the address value will be interpreted as a step count; the
emulator will step the number of locations specified.

If you have loaded a symbol file or user defined symbols, you will see the module
and symbol in the output when an instruction address has a corresponding symbol.

r (run emulation processor from a specified address)

reg (view or modify processor register contents)

304



Chapter 10:Emulator Commands
ser

ser

’( -d )—-|<D|SPLAY_MODE>'_I

<EXPR>

<ADDRESS>

<RETURN>

Thesercommand allows you to search memory for a data value, a character string,
or a combination of both. For every pattern match, the starting address of the match
is displayed.

The parameters are as follows:

-d The-d operator, in combination with the <DISPLAY_MODE> parameter, allows
you to specify the display mode used for the search. As a result, you can alter the
method used by the system for interpreting the display list data and the resultant

matches.
<DISPLAY _ This is a single character specifying the display mode to be used in the search. The
MODE> MC68020 and MC68030/EC030 emulators suppdhyte), w (word), and (long
word). For more information on the <DISPLAY_MODE> parameters, saadhe
command.
<ADDRESS> You use <ADDRESS> to specify first the lower, and possibly the upper, addre

boundaries of the memory range to search for the given data pattern. <ADDRESS>
defaults to a hexadecimal number; expressions may also be provided. In addition,
the MC68020 and MC68030/EC030 emulators allow you to specify function codes.
See the <ADDRESS> pages in Chapter 11 for more details.

The two periods.() are used as a separator between the lower and upper address
boundary specifications. Notice that no additional spaces are inserted. You can use
“<ADDRESS>.." to specify the range from the address through the next 127 bytes.

<EXPR> <EXPR> is a numeric expression to be used as a reference pattern in the search.
The default is a hexadecimal number; other bases and expressions may be
specified. See the <EXPR> syntax in Chapter 11 for more information.

305



Chapter 10:Emulator Commands

ser
<STRING>

Examples

You specify <STRING> if you want to search for an ASCII character pattern. Note
that <STRING> must be bounded by single open quote marks (‘) or double quotes

(ll).
Many keyboards (and printers) actually represent the single open quote mark * as
an accent grave mark. In any case, the correct key is the one which produces a

character encoded as ASCII 60 hexadecimal. The correct double quote mark is the
character encoded as ASCII 22 hexadecimal.

If the character string you are searching for contains double quotes, you must
delimit the string with single open quotes and vice versa. For example, the string
"Type "C"™ will return an error; the strinype "C" is correct.

At least one address range and data pattern must be specified. If no display mode is
set with thed option, the current global display mode from ithecommand is
used.

Search for the string “This” in the message area of the demo program:

M> ser handle_msg:Msg_A..End_Msgs="This"

You can also combine searches for numeric values, numeric expressions, and
ASCII strings:

M> ser -db handle_msg:Msg_A..End_Msgs=20,"message",10+10

Data values in a search are interpreted according to the display mode. Search for
the same string, but change the display mode:

M> ser -dw 1000..103f=20,"MESSAGE",20

The search fails because the end of the expression was not on a word boundary.

Using the-d (display mode) option, the method of interpreting the pattern supplied
by the user can be altered. If no option is given, the display mode used is taken
from global default set by themo command.

If addresses specified in the search reside in target system memory, the emulator is
broken to the monitor and returned to the user program when the command is
completed.

306



Chapter 10:Emulator Commands
ser
You can concatenate various combinations of <STRING> and <VALUE> to form
more complex search patterns by separating the parameters with cgmmas (

See Also cp (used to copy the contents of one memory range to another)

m (used to display/modify memory locations)

307



Chapter 10:Emulator Commands

stty

< stty

stty

>

AT

CAARACTER  SIZE

S7OrR L/75

LALYD FATE

1

noparity
evenp

oddp

|

onep

zerop

1stopb

2stopb

o]
S 0]
o} ~

(¢l
S
S

1200

2400

4800

9600

19200

38400

57600

115200

230400

460800

i

INTERFACE TYFE

LATA  COMMUNICATIONS
OF LATA  TERMINAL

CARSACE RETUANS
NEW LINVE MAFFING

RIESCIS  ANLSHAKE

LOSKRADTR

XONAXOFF

£ECHO

Mo o2z

R

rs?32

a
o]
@

a
a

onlcr

oncrn

o
El

crts

—crts

cdsr

|
a
a
a
<

(e

—xon

echo

—echo

<RETURN>

308



PARITY

CHARACTER
SIZE

STOP BITS

BAUD RATE

INTERFACE
TYPE

DATA COM-
MUNICATIONS
OR DATA
TERMINAL

CARRIAGE
RETURN/
LINE FEED
MAPPING

RTS/CTS
HANDSHAKE

Chapter 10:Emulator Commands
stty
Thestty command allows you to modify the parameters of the data
communications ports without changing the configuration switch settings.

The parameters are as follows.
Parity for the serial port may be set odd, even, zero, one, or none.

The length of each character sent by the system may be set to 7 bits or 8 bits.

The number of stop bits used to terminate each character may be set to one (1) or
two (2).

The baud rate (rate at which bits are transmitted and received) may be set to one of
the following values: 300 1200 2400 4800 9600 19200 38400 57600 115200
230400 460800.

The type of interface on the serial port may be set to either RS-232 or RS-422.

RS-422 uses balanced transmission lines and therefore can achieve much higher
data rates with reliability over longer distances than RS-232. Otherwise, the
interfaces are similar.

The Serial Port may be set to operate either as Data Communications Equipment
(DCE) or as Data Terminal Equipment (DTE). This configures the handshake lines
and transmit/receive lines for the proper signal to pin relationships on the interface.

You can select several different options for terminating lines of output from the
system, depending on what is required by your hardware. The following choic
available:

onlcr—generate new-line and carriage-return on output
ocrnl—generate carriage-return and new-line on output
ocr—generate carriage-return on output

onl—generate new-line on output

The optiorcrts enables the Request To Send/Clear To Send handshake. Specifying
-crts disables this handshake.

309



Chapter 10:Emulator Commands

stty

DSR/DTR
STATUS

XON/XOFF
HANDSHAKE

ECHO

Examples

The optioncdsr enables exchange and recognition of the Data Set Ready/Data
Terminal Ready status lines. Specifyiegsr disables the exchange.

If you specifyxon, the system generates XON/XOFF (DC1/DC3 characters)
software handshaking to control the amount of data received at a given time.
Specifying-xon disables this handshake sequence.

(When the emulator’s receive buffer is full, it will send a DC3 (XOFF) character to
the host to stop transmission; when it is ready for more data, it will send a DC1
(XON) character to restart transmission.)

If you specifyechq all characters received by the emulator datacomm are echoed
back to the sending system. Specifyiaghomeans the system will not echo back
characters received.

You will normally use this with the echo settings required by your host computer
and your terminal. Most Hewlett-Packard systems will require that you enable the
echo feature, as HP host computers automatically echo characters back to data
terminal devices.

The powerup default configurations for the serial port are determined by the rear
panel configuration switches. See Hie 64700 Card Cage Installation/Service
Guidefor more information.

Display the current data communications setting for both ports:

M> stty

Set the baud rate for the serial port, port A, to 1200 baud:
M> stty A 1200

Change the baud rate back to 9600 and disable local echo on the Serial Port:
M> stty A 9600 -echo

Delete the XON/XOFF software handshake and add the RTS/CTS hardware
handshake:

M> stty A -crts -xon

310



Chapter 10:Emulator Commands
sym

( sym

<ADDRESS>
-d
-du

sym

_‘_‘ <RETURN>
@] @

)
= <SYMBOL> ®<ADDRESS> -
D

Thesym command defines, displays, or deletes symbols in the emulator.
The parameters are as follows.

The <ADDRESS> parameter specifies the value to assign to a user symbol.
The-d option deletes all symbols.

The-du option deletes user symbols. KBAME> parameter is not included, all
user symbols are deleted. KNAME> parameter is included, only user symbol
matching the entered name are deleted.

The-dg option deletes all global symbols. No option exists to delete one global
symbol.

The-dl option deletes local symbols in a module. fNAME> parameter is not
included, all local symbols are deleted for all modules<NAME> parameter is
included to specify a module name, only local symbols in the module matching the
entered name are deleted.

The-g option specifies the display of global symbols. fNAME> parameter is
not included, all global symbols are displayed.{NAME> parameter is
included, only global symbols matching the entered name are displayed.

311



Chapter 10:Emulator Commands

sym
<NAME>

Examples

This represents the symbol label to be defined or referenced. The format of the
symbol name reference is determined by the type of symbol, where:

name is a user symbol or module name

:name is a global symbol name

name: is a local module name

module:name is a symbol name in a local module.

In addition, symbols can be referenced using a “wild card” expression when
displaying and deleting names. Only one wildcard character can appear in a symbol
name. An asterisk (“*") character is used to represent zero or more characters at the
end of a symbol name. A wildcard can be used in any of the following symbol

types:

name* represents a user symbol name followed by zero or more of any character
or characters

:name* represents a global symbol name followed by zero or more of any
character or characters

module:name* represents a local module:symbol followed by zero or more of any
character or characters.

This option allows you to display local modules and symbolssMAME>
parameter is not included, all local modules are displaye&NffdME> parameter
is included, only local symbols matching the symbol name or module are displayed.

This option allows you to display user symbols. fiNMAME> parameter is not
included, all user symbols are displayed. {NAME> parameter is included, only
user symbols matching the entered name are displayed.

Thesym command without any parameters displays all of the symbols currently
defined.

Display all symbols:
M> sym

Display all global symbols:
M> sym -g

312



Chapter 10:Emulator Commands

sym
Display the global symbol Int_Cmd:
M> sym -g :Int_Cmd
Define a user symbol named “mysymbol”:
M> sym mysymbol=107h
Display a user symbol named “mysymbol”:
M> sym -u mysymbol
Display all local modules:
M> sym -I
Display symbols in the local module named handle_msg:
M> sym -| handle_msg:
Display the symbol Msg_Dest in the module handle_msg, enter:
M> sym -l handle_msg:Msg_Dest
Delete all global symbols:
M> sym -dg
Display all symbols or local modules whose names begin with “hand”:
M> sym hand*

Three types of symbols are supported: global, local, and user. Global symbols
reference addresses anywhere in memory using an absolute reference. Local
symbols also use absolute addressing but are grouped within a “module.” User
symbols are defined at the command line. Global and local symbols cannot be
defined at the command line.

The definition of a module for grouping local symbols depends on the environment
being used. For local symbols created by a high-level language, a module might be
a function, a procedure, or a separately compilable source file. When you define
local symbols through the use of a symbol file, a module, in effect, becomes a

313



Chapter 10:Emulator Commands

sym
technique to manage the symbols. It can be a mnemonic device to refer to modules,
or it can be a simple way to group local symbols into a set for display and deletion
purposes because tigm command facilitates manipulation of local symbols by
their module name.

Symbols are used like equated variables. When using symbols in expressions, only
the+ and- operators can be used immediately before and after the symbol name.
The expression can contain literals and equaigg) {(abels, but not other symbols.

When using symbols, if a symbol and an equated value have the same name, the
equated value will be used.

The symbol table can be updated in three ways:
* You can enter user symbols at the command line.
* You can update it from an external “symbol file” usinglteal -Socommand.

* You can load an absolute file (such as an Intel OMF file) which can contain
symbols as well as program code.

A “symbol file” is a text file containing user-specified symbols. See Chapter 13 for
more information.

See Also equ (used to equate names to expressions)

load (used to load a program file with symbols, or a symbol text file)

314



Chapter 10:Emulator Commands
t

Thet command starts an emulation trace.

There are no parameters.

Examples To begin a trace, enter:

M> t

Thet command (otx if making a synchronous CMB execution) must be entered to
begin a measurement. Most other trace commands are used only for specification of
triggering, sequencer, and storage parameters, or to display trace results or status.

See Also r (starts a user program run; normally will be specified after entering the
command)

th (halts a trace in process)
ts (allows you to determine the current status of the emulation analyzer)
tx (specifies whether a trace is to begin upon start of CMB execution)

x (begins synchronous CMB execution)

315



Chapter 10:Emulator Commands

ta
ta
Theta command displays activity on each of the analyzer input lines. Each signal
may be low, high, or moving. There are no parameters.

Examples Display current analyzer signal activity:

M> ta

You will see a display similar to the following:

Pod 5 =01700100 0010?7100
Pod 4 =11700710 0??00100
Pod 3 =0?72?2?7??? ?22?7?27??7
Pod 2 =11700110 00000000
Pod 1 =00000700 1??????0

You can interpret the results as follows:

Bits 15, 12, 11, 6-9, 4, 2 and 1 of Pod 5 are low, bits 14, 10, 5 and 2 are low, and
bits 13 and 3 are moving.

Bits 15, 14, 9 and 2 of Pod 4 are high, bits 12, 11, 7, 4, 3, 1 and 0 are low, and bits
13, 10, 6 and 5 are moving.

Bit 15 of Pod 3 is low; all other Pod 3 bits are moving.
Bits 9,10,14 and 15 of Pod 2 are high, bit 13 is moving; all others are low.

Bit 7 of Pod 1 is high; bits 1-6 and 10 are moving; all others are low.

The trace activity measurement is interpreted as shown in the following table.

Type of signal activity Symbol displayed
Signal is low 0
Signal is high 1
Signal is moving ?

316



Chapter 10:Emulator Commands
ta
Each pod (group of 16 lines) is displayed on a single line with bit 0 (LSB) at the far
right and bit 15 (MSB) on the far left. Each pod represents the following analyzer
bits:

Pod Emulation Analyzer Bits
1 Bits O through 15

2 Bits 16 through 31

3 Bits 32 through 47

4 Bits 48 through 63

5 Bits 64 through 79

317



Chapter 10:Emulator Commands

tarm

farm
s

trig2

always

tarm

Examples

<RETURN=>

Thetarm command allows you to specify an arming condition for the
emulation-bus analyzer. You can specify the arm condition as the assertion of the
trig1 or trig2 signals or asrm always. The arm condition may then be used in
specifying the analyzer trigger or in specifying branch conditions for the sequencer,
as well as count or prestore qualifiers.

The parameters are as follows.

The operators and!= are used to respectively indicate that the arm condition is
equal to, or not equal to, the speciftedl ortrig2 condition.

If you specifytarm =trigl as the arming condition, then the assertion of the trigl
signal will arm the analyzer. Conversely, if you spetafyn !=trigl , the analyzer

will remain armed until the trigl signal is asserted. The trigl signal can be asserted
from many sources including the analyzer itself or the rear panel BNC connector or
the CMB. Sednct, cmbt, andtgout for examples.

If you specifytrig2 as the arming condition, then the assertion of the trig2 signal

will arm the analyzer. Conversely, if you speddym !=trig2 , the analyzer will

remain armed until the trig2 signal is asserted. The trig2 signal can be asserted from
many sources including the analyzer itself or the rear panel BNC connector or the
CMB. Seebnct, cmbt, andtgout for examples.

If you specifytarm always, the analyzer is continuously armed.

If no parameters are supplied, the curtanh condition is displayed. The default
setting after powerup oinit istarm always.

View the current state ¢drm:

M> tarm

318



See Also

Chapter 10:Emulator Commands
tarm
You may want to connect an external instrument, such as a logic analyzer, to the
HP 64700 rear panel BNC port and have the external instrument trigger an
emulation-bus analyzer trace:

M> bnct -r trigl
M> tcf -c

M> tarm =trig1l
M> tg arm

This will cause the emulation-bus analyzer to trigger upon assertion of the rear
panel BNC signal. To return the analyzer to the continuously armed state:

M> tarm always

Perhaps you want the analyzer to store only states received while there is NOT a
trigger signal on the CMB (Coordinated Measurement Bus). To do this:

M> cmbt -r trig2
M> tcf -c

M> tarm !=trig2
M> tsto arm

The trig2 signal is set to receive the CMB trigger. Then the emulation-bus analyzer
configuration is set to complex (this is required to usatheparameter in

analyzer expressions). Next, settdwen condition to the logical NOT of the trig2
signal; finally, analyzer storage is qualified by #nm parameter.

bc (can be used to cause the emulator to break to monitor execution upon rec
the trigl and/or trig2 signals)

bnct (used to define connections between the internal trigl and trig2 signals and the
rear panel BNC connector)

cmbt (used to define connections between the internal trigl and trig2 signals and
the CMB trigger signal)

tgout (defines whether or not the trigl or trig2 signals are driven when the analyzer
finds the trigger state)

319



Chapter 10:Emulator Commands

tcf

Examples

tcf

tct

<RETURN=>

Thetcf command is used to set the configuration for the emulation-bus analyzer.
The parameters are as follows:

Specifying-e sets the analyzer to the easy configuration.

Specifying-c sets the analyzer to the complex configuration.

If no parameters are supplied, the current analyzer configuration is displayed. After
powerup otinit , the default analyzer configuratiorics -e.

Display the current analyzer configuration:

M> tcf

Set the analyzer to complex configuration:

M> tcf -c

There are two possible configurations for the analyzer: easy configuration

(tcf -e), and complex configurationcf -c). Below, each of the configurations is
described briefly, along with some of the commands that modify the analyzer in
each configuration. The command descriptions are not meant to be an exhaustive
list of each command’s features; refer to the syntax pages for a detailed description
of a particular command.

320



Chapter 10:Emulator Commands
tcf

Easy Configuration

When in easy configuratiotct -€), much of the complexity of the analyzer is
hidden. Some measurement power is lost. When you need the full power of the
analyzer, switch to the complex configuration.

Expressions

In easy configuration, all analyzer commands take the general form of
<command> <simple_expression>The commands that use this form tag tif,
telif, tg, tpg, andtsto. A simple expression is the information that can fit into a
single pattern or a single range (e, trng, andSIMPLE_EXPR syntax for
further information). Examples aageldr=2105 data!=15, andaddr=4012..401a

Sequencing

The easy configuration allows you to have the analyzer search for a simple
expression; when it is found, it can then search for a different simple expression.
The ability to search for one expression, then search for another expression based
on the first is known as sequencing.

In easy configuration, there are 4 sequencer terms available. Each has a primary
sequence branch, which always branches to the next sequencer term (1 to 2, 2 to 3,
and so on). The branch out of the last term defines the trigger term. A global restart
term is also available, which will return the sequencer to term 1 if found. If both the
primary branch and global restart term are satisfied simultaneously, the primary
branch is always taken in preference to the restart.

Sequencer Manipulation

The simplest sequencer control is theommand. This defines a one term

sequence with the trigger occurring upon the branch out of the term. You can
specify an occurrence count; that is, the number of times the given trigger qualifier
must be found to satisfy the trigger condition.

You can exercise greater control over the easy configuration sequencer using the
tsq command. This command allows you to insert additional sequence terms (up to
the limit of four) or delete terms.

By using thdif command, you can define the primary branch condition for each
sequence level. You can also specify an occurrence count for each branch
condition. The primary branch out of the last sequence term in the list defines the
trigger condition.

321



Chapter 10:Emulator Commands

tcf

Thetelif command specifies the global restart condition. If both a primary branch
and global restart condition are satisfied at the same time, the primary branch is
always taken. However, if the primary branch has an occurrence count greater than
one (1), and the global restart is encountered before the occurrence count is
satisfied for the primary branch, the global restart is taken, and the primary branch
occurrence count is reset to zero.

Storage Specification

You can specify which events should be stored by the analyzer usistpthe
command. This is a global storage qualifier; that is, the qualifier is identical for all
sequencer terms. Analyzer events that cause the sequencer to change states are
always stored, regardless of the storage qualifier.

State/Time Counts

You can set up the analyzer to count time between states or count occurrences of a
specific state using theq command.

Prestore

The analyzer has a two stage prestore pipeline. You set up the qualifier for this
pipeline using thépg command. When the qualifier is found, the event is stored in

the pipeline; when a real storage event is found (matchirtgtthqualifier), the

pipeline is flushed and placed into trace memory immediately prior to the storage
event. You can use the feature to observe the relationships between certain program
variables and program routines or between two program routines. (For example,

you might set a prestore state to a condition required to execute a specific routine.)

322



Chapter 10:Emulator Commands
tcf

Complex Configuration

The full analyzer capability is available to you in the complex configuratibn (

-¢). Using the multiple sequence terms, primary and secondary branch capability,
and powerful expression capability, you can make just about any conceivable
measurement.

Expressions

In complex configuration, all analyzer commands take the general form of
<command> <complex_expressionThe commands that use this form @

tif, telif, tg, tpg, andtsto. A complex expression is made up of pattern, range and
arm labels, tied together with various operators that define the specific condition.
Each of the pattern and range labels must be previously assigned to a specific
simple expression using that andtrng commands. (These two commands are
only available in the complex configuration.) So, you might define some pattern
labels and a range label as follows:

U> tpat pl addr=205a
U> tpat p5 data!=00
U> trng addr=4000..4011

And then make complex expressions as follows:

pl or p5
rand p5
pl|!r

See thec<COMPLEX_EXPR> syntax pages for details on complex expressions

Sequencing

The complex configuration allows you to have the analyzer search for a complex
expression; when it is found, it can then search for a different complex expression.

In complex configuration, there are always 8 sequencer terms. Each has a primary
sequence branch, which can branch to any sequencer term (1 to 5, 2 to 8, and so
on). A secondary branch is also available. It can branch to any sequencer term. If
both the primary branch and secondary branch are satisfied simultaneously, the
primary branch is always taken in preference to the secondary branch.

323



Chapter 10:Emulator Commands

tcf

Sequencer Manipulation

The simplest sequencer control is theommand. As in easy configuration, it

defines a two term sequence with the trigger in the second term. You can specify an
occurrence count; that is, the number of times the given trigger qualifier must be
found to satisfy the trigger condition.

You can exercise greater control over the complex configuration sequencer using
thetsq command. Although you cannot add or delete sequence terms in complex
configuration (there are always eight), you can specify the trigger term. You can
also reset the sequencer (which clears all the branch specifiers and storage
qualifiers).

By using thdif command, you can define the primary branch condition for each
sequence level. You can also specify an occurrence count for each branch
condition, and the destination term for each branch.

Thetelif command specifies the secondary branch condition, which can jump to

any sequence term. If both a primary and secondary branch condition are satisfied

at the same time, the primary branch is always taken. However, if the primary

branch has an occurrence count greater than one (1), and the secondary branch is
encountered before the occurrence count is satisfied for the primary branch, the
secondary branch is taken, and the primary branch occurrence count is reset to zero.

Storage Specification

You can specify events to be stored by the analyzer usitgtérebmmand. You

may specify different storage qualifiers for each sequence term; if you have
sequence term 5 active during execution of a particular procedure and you want to
store all of the writes while that procedure is executing, you castode qualify

writes while term 5 is activagdat p2 stat=write;tsto 5 p2.

If you don't include a term number when specifying the storage qualifier, your
storage qualifier will apply to all sequence terms.

State/Time Counts, Prestore

The state/time counting and prestore facilities are identical to those provided in the
easy configuration; however, you must specify a complex expression instead of an
easy expression in qualifying the state count or prestore.

324



Chapter 10:Emulator Commands
tcf

Resetting the Analyzer Configuration

When the analyzer configuration is changed, the entire analyzer specification is
reset. You can perform a reset back to the default sequencer setup in either
configuration by using thisq -r command.

When the trace configuration is changed, the count qualdgy i6 reset to “none”
(instead of “time”) if the clock modedk) is fast (F) or very fast (VF).

See Also tarm (used to set the analyzer arm specification; this specification can only be used
in analyzer expressions in complex configuration)

tcq (sets the expression for the trace count qualifier in either analyzer configuration)

telif (sets the global restart in easy configuration, secondary branch condition in
complex configuration)

tg (used to set a trigger expression in either analyzer configuration)
tif (sets primary branch specification in either analyzer configuration)

tpat (used to label complex analyzer expressions with a pattern name; the pattern
name is then used by the analyzer setup commands. Only valid in complex
configuration)

tpqg (specifies trace prestore qualifier in either analyzer configuration)
trng (defines a range of values to be used in complex analyzer expressions)
tsto (specifies a qualifier to be used when storing analyzer states)

tsq (used to modify the trace sequencer’'s number of terms and trigger term)

325



Chapter 10:Emulator Commands

tck

tck
fock = } <RETURN>

Thetck command allows specification of clock qualifiers, master edges and
maximum clock speed of the master clocks used for the emulation-bus analyzer.
The parameters are as follows:

b If the b option is specified, only background monitor code will be qualified into the
analyzer.

u If the u option is specified, only user code will be qualified into the analyzer. This
is the default.
Theu andb qualifiers are ORed with all of the other qualifiers specified.

S Thesoption indicates that the maximum clock speed is to be modified per a one or
two letter code immediately following.

S Specifies a clock speed of SLOW; less than or equal to 16 MHz.

F Specifies a clock speed of FAST; between 16 MHz and 20 MHz.

VF Specifies a clock speed of VERY FAST; between 20 MHz and 25 MHz.

326



CLOCK SIGNALS

Examples

Chapter 10:Emulator Commands
tck

Specifyingr indicates that the analyzer is to be clocked on the rising edge of the
indicated clock signal.

Specifyingf indicates that the analyzer is to be clocked on the falling edge of the
indicated clock signal.

Specifyingx indicates that the analyzer should be clocked on both the rising and
falling edges of the indicated clock signal.

Specifyingl indicates that the analyzer should only be clocked by other clock
signals when this clock signal is low (less positive/more negative voltage). Used as
a qualifier (example: clock on rising edge of J only if K is low).

Specifyingh indicates that the analyzer should only be clocked by other clock
signals when this clock signal is high (more positive/less negative voltage). Used as
a qualifier (example: clock on both edges of K only if J is high).

Ther, f, X, |, andh operators may be used on the following clock sigdak; L,
M orN.

If no parameters are specified, the current clock definitions are displayed. After
powerup otinit , theu option is always set. Other clock options set at initialization
depend on the particular emulator in use and whether or not there is an external
analyzer present.

Display the current settings of the master clocks after powerufritr:a

M> tck

Suppose that the target system clock rate for the MC68030/EC030 processor
MHz, andcf emwait=en The resulting data rate is 20 MHz, so you must set the
clock rate to fast, and disable the state/time counter. (See Chapter 5 for more
information.)

R> tcq none
R> tck -s F
Add tracing of background code to the current clock settings:

M> tck -ub

327



Chapter 10:Emulator Commands

tck

See Also

Thetck command is included with the system for internal system initialization and
system control through high-level software interfaces. You may also use this
command to set the analyzer data rates, which depend on the target system clock
rate and number of rate states. See the section on analyzer clocks in Chapter 5,
“Using the Analyzer,” for more information.

Changing the clock speed with the SPEED>option affects thécqg command
parameters. When speed is setS¢slow), thetcq command may either count
states or time. When speed is setRdfast), thecqg command may be used to
count states but not time. If clock speed is sewte(very fast)tcq cannot count
either states or time and should be sétdmone.

The clocking options operate on five different clock sigrial&, L, M andN.

ClocksL, M, andN are generated by the emulator; the emulation master clock
edges are set at powerup for the particular emulator being used and should not be
changed by you.

When several clock edges are specified, any one of the edges can clock the trace. If
several qualifiersl (or h) are specified, they are ORed so that the trace is clocked
when any of the qualifiers are met.

ta (display current trace signal activity. This can be useful after you have modified
the clocks for the external analyzer; you can issaecammand and verify that
you are seeing activity on the signals of interest.)

tcq (used to specify trace count qualifier for states, time, or none; maximum clock
speed set itck affect whichtcq parameters are valid)

tsck (used to define slave clock signals used by the anatgkedgfines the master
clock signals. Default mode ftsck is off on all pods.)

Also see Chapter 5, “Using the Analyzer,” for information on analyzer clock speed.

328



Chapter 10:Emulator Commands
tcq

<ANALYZER_
EXPR>

time

Examples

tcq

<RE TURN=>

Thetcq command allows you to specify a qualifier for the emulation trace tag
counter.

The parameters are as follows:

<ANALYZER_EXPR> allows you to specify an expression to be counted by the
trace tag counter. This expression consists<SIMPLE_EXPR> in analyzer

easy configuration and<COMPLEX_EXPR> in complex configuration. See the
syntax pages for expressions for specific details of analyzer expressions. In either
configuration, the expression may consist of the statggcount all states) or
none(disable trace tag counting).

The count qualifietcq arm is not permitted in any configuration.

If you specifytime rather than an analyzer expression, the trace tag counter
measures the amount of time between stored states.

Thetcq time qualifier is only available when the analyzer clock speed is set to the
slow (§) speed setting (default). If the clock speed is set to venMB3t then

trace tag counting must be turned off by specifyaggnone Refer to theck

command (analyzer clock specification) for further information.

If no parameters are given, the current count qualifier is displayed. at powerup
aftertinit initialization, the clock qualifier defaults to the stiaig time.

To view the currentcq setting, type:

R> tcq

To see the effects of counting no states, do the following:

R> init -c
R> demo

329



Chapter 10:Emulator Commands

tcq

See Also

R> tg addr=demo:Loop
R> tcq none

R> t

u>r

When you display the trace list, note the asterisks indhet field.

To count time intervals, do the following:

U> tcqtime

To change the trace listing so that the time intervals are displayed as an absolute
value relative to the trigger state instead of the last state stored, type:

U> tf addr,h mne count,a seq

When you display the trace list, the time interval is now measured relative to the

trigger state. To reset the trace format to count relative, type:

U> tf addr,h mne count,r seq

When the tag counter is active, the analyzer counts occurrences of the expression
you specify (which may includéme, noneg or simple or complex expressions,
depending on analyzer configuration. Each time a trace state is stored, the value of
the counter is also stored and the counter is reset. The tag counter shares trace
memory with stored states, so only half as many states can be captured by the
analyzer when the tag counter is active. (The analyzer can store 1024 states with
tcqg none and 512 states otherwise.)

tck (used to specify the clock source and clock parameters for the analyzer)

tp (specifies position of the trigger within the trace; notettitaaffects the
number of states the analyzer can store and therefore may affect trigger positioning)

tpat (assigns analyzer expressions to pattern names in complex configuration; the
pattern names are then used to specify qualifiers in other analyzer commands such
astcq)

trng (specifies a range of values to be used as a complex mode qualifier; this range
definition can be used as a count qualifietda)

tsg (used to manipulate the trace sequencer)

330



Chapter 10:Emulator Commands
telif

telif

EASY CONFIGURATION

(et k <RETURN>
(3p)~ <SMPLE_EXPR>

COMPLEX CONFIGURATION

telif L <RETURN>
5

QH <COMPLEX_EXPR> L
G

<BRANCH_TO_TERM>

Thetelif command allows you to set the global restart qualifier (in easy
configuration) for the emulation-bus analyzer sequencer. In complex configuration,
telif lets you set the secondary branch qualifier for each term of the emulation-bus
analyzer sequencer.

The parameters for easy configuration are as follows:

<SIMPLE_EXPR> <SIMPLE_EXPR> lets you directly specify an analyzer expression to use as a
global restart qualifier. For exampteSIMPLE_EXPR> might consist of the
expressioraddr=2000. For detailed information on specification of simple
expressions, see Chapter 11, “Expressions.”

The parameters for complex configuration are as follows:

<TERM#> <TERM#> lets you specify a sequencer term number to associate with the given
<COMPLEX_EXPR>. When you associate a term number with a complex
expression, that expression is only used as a secondary branch qualifier at the
sequencer level specified by the term number. If you speCBRM#> without an
expression, the secondary branch qualifier currently associated with that term
number is displayed.

<COMPLEX _ <COMPLEX_EXPR> allows you to specify complicated analyzer expressions
EXPR> made up of relationships between simple analyzer expressions. When you create a
complex expression, you must first assign pattern ngmiegg) to simple
expressions using thipat command. You then use the pattern names and relational
operators to create complex expressions. For example, if you wish to branch from

331



Chapter 10:Emulator Commands

telif

<BRANCH_
TO_TERM>

Examples

term 1 to term 2 wheaddress=200anddata=20 or whenaddress=200Gnd
data=42 you would use the following commands:

U> tpat p1 addr=2000 and data=20
U> tpat p2 addr=2000 and data=42
U> telif1pl|p22

The | symbol represents an intra-set OR operator. For more information on complex
expressions, operators, and pattern sets, see Chapter 11, “Expressions.”

The<BRANCH_TO_TERM> parameter allows you to indicate the branch
destination when theCOMPLEX_EXPR> is found. For example, you may wish

to have the sequencer branch from term 1 to term 3 after the expression is found.
This would be specified aslif 1 <COMPLEX_EXPR> 3. If you do not specify a
term number, the default is to increment the sequencer tellekTERM#>
<COMPLEX_EXPR> (<TERM#> + 1)).

If telif is entered with no parameters, the global restart qualifier or secondary
branch qualifiers (depending on analyzer configuration) for all sequencer levels are
displayed. Itelif is entered with only aTERM#> parameter in complex
configuration, the secondary branch qualifier for only that term number is displayed.

Upon initialization via a powerup sequence ortthie command, the secondary
branch specifiers are settadif never.

In complex configuration, KBRANCH_TO_TERM> is not specified, the default
is (KTERM#> + 1)

At sequencer term number 8, the default branch to conditioFrERM#>; that is,
branch to the same term.

To have the analyzer record the routine only when an “A” or “B” is input, do the
following:

U> tsq-i 2

U> tif 1 addr=Int_ Cmd

U> tif 2 addr=handle_msg:Print_Msg
U> telif addr=handle_msg:Cmd_|

332



See Also

Chapter 10:Emulator Commands
telif

In complex configuration, telif commands can branch to other terms. For example:

R> tcf -c

R> tpat pl addr=501a
R> tpat p2 addr=703c
R>telif 4 p2 3

R>telif 1 p1 6

Thetelif command is used as a global restart qualifier in easy configuration and a
secondary branch qualifier in complex configuration. The hierarchy &f thied

telif commands is such that either branch will be taken if found before the other;
however, if both branches are found simultaneousljftteanch is always taken
over thetelif branch.

When in easy configuration, the sequencer will restart by jumping to sequencer
term number one (1) when the expression specifigdltbyoccurs. Theelif
command allows you to specify a global restart qualifier. This means that the
analyzer will restart the sequencer when the qualifier is satisfied.

When in complex configuration, the sequencer will branch to the sequencer level
specified by th&BRANCH_TO_TERM> parameter when the expression
specified is found. There are always eight sequencer terms available. Position of
the trigger term is defined with tieg command. If both théf andtelif

expressions are satisfied simultaneouslytitheranch is taken. Otherwise,

branching occurs according to which expression is first satisfiedelihe

command allows you to branch to any sequence term from any other term.

If the tif expression for the giveriTERM#> has axCOUNT> parameter other
than one (1), the counter is reset to zero (0) ifdliebranch is taken before the
occurrence counter parameter is satisfied. For example tif d@inter parameter
is 7, and theif expression has been found five times, thenelifeexpression is
satisfied, theelif branch will be taken and thi& counter will be reset from 5 to 0.
This might cause you difficulty if you happen to hteld branching back to the
same term; your occurrence condition may or may not be satisfied.

tarm (allows you to specify that thegl ortrig2 signal will arm the analyzer.
This arm condition can then be used as part of the secondary branch qualifier)

tcf (used to select whether the analyzer is operated in easy configuration or
complex configuration)

tif (used to specify a primary branch specification for the analyzer)

333



Chapter 10:Emulator Commands

telif
tg (used to set up a simple trigger qualifier in either analyzer configuration.
Specifying thég command overrides the current sequencer specification and will
modify the existingelif qualifier stored in sequence term number 1)

tpat (used to assign pattern names to simple expressions for use in specifying
complex expressions. These complex expressions are used to ghéaiyalifiers
in analyzer complex configuration)

trng (used to set up an expression which assigns a range of values to a range
variable. This range information may be used in specifying congiéxjualifiers)

tsto (specifies a global trace storage qualifier in both easy & complex
configurations; also specifies a trace storage qualifier for each sequencer term in
complex configuration. Used to control the types of information stored by the
analyzer)

tsg (used to manipulate the trace sequencer)

334



Chapter 10:Emulator Commands
tf

tf

ok

<LABEL>

<BASE>

<WIDTH>

mne

) <RETURN=>

=,

- Q = <WIDTH>

LU .
) Tﬁy

Thetf command allows you to specify which pieces of information from the
emulation-bus analyzer trace will be displayed|krace list) commands.

~—={  mre
—={  count

The parameters are as follows:

If you specify<LABEL>, the analyzer bits associated with that label will be
displayed in a column of the trace list withABEL> as the column header.

<BASE> allows you to specify the numeric base in which <LABEL> is to display.
The choices ar¥ (binary),Q or O (octal),T (decimal),H (hexadecimal), oA
(ASCII). The specifiers are not case sensitive. In ASCII mode, non-printing
characters are displayed as periods (§BASE> is not specified, the default bas

is hexadecimal.

This option allows you to set the width of only the address field to values from 4 to
50. If your emulator supports symbols, by settwglDTH> , you can view
symbols in the address field when you display memory mnemonic.

<LABEL>, <BASE>, and<WIDTH> must each be separated by a comma (,).

If you specifymne, the disassembled mnemonic for each instruction captured by
the analyzer is displayed. To ensure correct operatiomefthe labeladdr,

data, statandextra (if applicable) must be defined according to their power up
defaults for the target processor being emulated; otherwise, incorrect disassembly
may occur.

335



Chapter 10:Emulator Commands

tf
count

seq

Examples

If you specifycount, the state or tag time counter defineddayis displayed in the
trace list. If you have designated prestore states vipgheommand, these
prestore states will be flagged in ttwunt column of the trace list.

Specifyingcount,acauses the state/time counter to display the count in absolute
mode. That is, each counter value is shown relative to the trigger state. Therefore,
states before the trigger will show as negative values and states after the trigger will
show as positive values. Prestore states do not have counts.

Specifyingcount,r causes the state/time counter to display the count in relative
mode. That is, each counter value is shown relative to the previous state. As with
count,a, prestore states do not have counts.

If you specifyseq an indicator is printed for each state which caused the sequencer
to branch from one term to another (whether the same term or a different term).

If no parameters are given, the current settings of the trace format are displayed.
Upon powerup or aftertinit command, the trace formattisaddr,H mne
count,R seq

To view the default trace format, type:

M> tf

Set the format so the address and data values are displayed in hexadecimal:

U> tf addr,H data,H

Set the format so the address is displayed in decimal and the data in binary:

U> tf addr, T data,Y

Display processor status information in binary:

U> tf addr,H mne stat,Y

To see what types of ASCII information are transferred on the least-significant byte
of the data bus, type:

U> tlb byte3 56..63
U> tf addr,H mne byte3,A

To display trace sequencer information along with a status display in hex, type:

336



Chapter 10:Emulator Commands
tf

U> tf addr,H mne stat,H seq

To display state/time counter information, type:

U> tf addr,H mne count seq

To change the counter display to count relative, type:

U> tf addr,H mne count,R seq

Varioustf format items may be concatenated as desired on the command line by
including a space between each format item.

Each format item specifies a column of the trace list display.

Changing the trace formdbes nothange the type of information captured by the
analyzer; it only specifies how the captured data should be displayed.

See Also tl (displays the current data in the trace memory of the emulation-bus analyzer
according to the specifications set uptf)y

tlb (define labels which represent groups of emulation-bus analyzer input lines;
these labels may be used to create special trace list displays by including the labels
in thetf definition)

337



Chapter 10:Emulator Commands

¢

tg

% <ANALYZER_EXPK=>

<ANALYZER_
EXPR>

<COUNT>

Examples

‘ k
@ = <COUNT=>

Thetg command sets a trigger condition for the emulation-bus analyzer.
The parameters are as follows:

<ANALYZER_EXPR> allows you to specify the expression to recognize as a
trigger. This expression consists cfaIMPLE_EXPR> in analyzer easy
configuration and aCOMPLEX_EXPR> when the analyzer is in complex
configuration. See Chapter 11, “Expressions,” for specific details of analyzer
expressions. In either configuration, the expression may consist of thestates
all (trigger on any state) ooneor never (don't trigger the analyzer).

You use thecCOUNT> parameter to specify the number of times the expression
<ANALYZER_EXPR> must occur before the trigger condition is satisfied.
<COUNT?> is specified as a decimal integer valugGIOUNT> is not specified,
the default is one (1).

If no parameters are specified, the current primary branch condition for sequencer
term 1 is displayed. Note that this is not necessarily the trigger condition,
depending on the analyzer commands leading up to this point. After powerup or
tinit initialization,tg is set tag any.

To trigger the analyzer when the Loop symbol has occurred 32 times, type:

U> tg addr=demo:Loop 32

When you start the trace and run the program, the trigger condition will be found;
line O of the trace display will show the 32nd iteration of the trigger value. To
trigger on any non-zero command in the demo program do the following:

U> tcf -c
U> tlb byte3 56..63
U> tpat p5 byte3!=00

338



Chapter 10:Emulator Commands
tg
U>tpat p1 addr=demo:Cmd_Input and stat=read
U> tg pl and p5

When you start the trace, run the program, and input a non-zero command, the
trigger condition will be found. Line 0 of the trace listing will show that the
analyzer triggered on an address with data not equal to zero.

Thetg command modifies the current analyzer sequence specification. The manner
in which the sequencer is modified is dependent upon the analyzer configuration.

If the analyzer is in easy configuratidof(-€), the sequencer is reduced to a one

term sequence triggering upon exit from term 1. The global restart qualifier is set to
never {elif never); the primary branch condition is set to the specified trigger
expressiont{f 1 <EXPR> <COUNT>).

When operating the analyzer in easy configuration, usingtb@mmand resets the
sequencer to a two term sequence with a primary branch in term number one
corresponding to the trigger condition.

If the analyzer is in complex configuratianf(-c), the sequencer is modified to
trigger upon entrance to the second sequence teqgrvt @), the secondary branch
qualifier is set to nevetdlif 2 never), and the primary branch qualifier for term
number 1 is set to the specified expressitil KEXPR> 2 <COUNT>).

In analyzer complex configuration, ti,gcommand defines simple sequence
specification and overwrites sequencer terms 1 and 2 to create the new
specification.

When the expression specified occurs the number of times specified in the
<COUNT> parameter, the analyzer has found its trigger.

The analyzer storage qualifidsto) is not affected in either configuration;
therefore, the analyzer uses the storage qualifier from the mosttstoent
command.

See Also bc (allows you to break the emulator to the monitor when various conditions occur;
you can have the emulator break upon analyzer trigger by specidpingtrigl
andbc -e trigl (or you could use the trig2 signal to perform the same function))

t (starts an emulation trace)

tarm (used to specify an analyzer arm condition; the analyzer will not trigger until
the arm condition is received if you spedifyarm)

339



Chapter 10:Emulator Commands

tg

tcf (used to specify whether the analyzer is operated in easy or complex
configuration)

tpat (used to assign pattern names to simple analyzer expressions; the pattern
names are then used in creating complex analyzer expressions which could be used
with thetg command to trigger the analyzer)

trng (used to specify a range of values for a particular group of analyzer lines; this
range may be used in specifying complex analyzer expressions for triggering the
analyzer)

tsto (specifies which states encountered by the analyzer should be stored in trace
memory)

tsg (used to manipulate the trace sequencer. Note that the sequencer’s current status
is affected by thieg command.)

340



Chapter 10:Emulator Commands
tgout

<RETURN=>

Lo
Loy

Thetgout command allows you to specify which of the internal trig1l and/or trig2
signals will be driven when the emulation-bus analyzer finds its trigger condition.

The parameters are as follows:

none If noneis specified, neither the trigl nor trig2 signals are driven when the analyzer
finds its trigger state.

trigl If trigl is specified, then the trig1 signal is driven by the analyzer when the trigger
state is found.

trig2 If trig2 is specified, then the trig2 signal is driven by the analyzer when the trigger
state is found.

To specify that both trigl and trig2 should be driven when the analyzer trigger is
found, concatenate both options with a comigaut trigl,trig2 .

If no parameters are specified, the current statigooft is displayed. Upon
powerup otinit, the default state tgout none

Examples Display the state dfjout:
M> tgout
Set the emulator so that it will break to monitor execution upon receipt of the
analyzer trigger:

M> tcf -e
M> bc -e trigl

341



Chapter 10:Emulator Commands

tgout

See Also

M> tgout trigl
M> tg addr=demo:Loop

The emulator will break to the emulation monitor when it encounters the command
input loop in the demo program.

Note that if the analyzer is receiving trigl or trig 2 viatdven command, then that
signal cannot be driven, although no error message will be displayed.

bc (allows you to specify a break to emulation monitor whengbeat condition is
satisfied)

bnct (specifies whether or not trigl and trig2 are used to drive and/or receive the
rear panel BNC connector signal line)

cmbt (specifies whether or not trigl and trig2 are used to drive and/or receive the
CMB trigger signal)

tarm (used to specify that the analyzer will be armed upon assertion or negation of
trigl or trig2)

342



Chapter 10:Emulator Commands
th

Examples

See Also

th

Theth command stops an emulation trace. This command has no parameters.

Start an emulation trace:

M> t

Stop the trace:
M> th

The analyzer will stop driving thteig1 andtrig2 signals when the trace is halted.

This may cause you difficulty in making measurements with instruments connected
to the BNC. For example, if you set the HP 64700 analyzer totdgde(tgout

trigl) when the trigger condition is found, then pipe this to the BNC connector

with bnct -d trigl, the BNC signal will be driven high when the HP 64700

analyzer finds its trigger while a trace is in progress; it will fall low when the trace
finishes.

You should start the HP 64700 trace after you have begun the external instrument’s
measurement. Otherwise, the following measurement errors may occur, depe
on the type of external instrument you are using:

» With an edge sensitive instrument, starting the instrument after the HP 64
finds the analyzer trigger will mean that the instrument never sees the
transition of therigl line and therefore never triggers.

» With a level sensitive instrument, starting the instrument after the HP 64700
finds the trigger will mean that the instrument triggers immediately; although
many states of interest have probably already passed.

If the analyzer trigger specification has not been found, you will need to ube the
command to halt the analyzer before you can display the trace list.

t (used to start an analyzer trace)

343



Chapter 10:Emulator Commands
th

ts (allows you to determine the current status of the emulation-bus analyzer)
tx (starts an analyzer trace upon receipt of the CMB execute signal)

X (starts a synchronous CMB execution)

344



Chapter 10:Emulator Commands

EASY CONFIGURATION

1if

COMPLEX CONFIGURATION

fif

<TERM#>

<SIMPLE_EXPR>

<COUNT>

-{ <TERM#=> :
ﬂ'{ <COMPLEX_EXPR>

tif
tif
<RETURN=>
L’{ <TERM#a> :
4-{ <SIMPLE_EXPR>
:
\‘ <RETURN=>

<BRANCH_TO_TERM>
<COUNT>

Thetif command allows you to set the primary branch qualifier for each term of the
emulation-bus analyzer sequencer.

Easy configuration parameters:

When you specifk TERM#>, it indicates which sequencer term’s primary bran
qualifier is to be modified with the qualifier specified in #&MPLE_EXPR>
parameter. If you specifTERM#> without an expression, thié qualifier for
that term number is displayed.

<SIMPLE_EXPR> lets you directly specify an analyzer expression to use as a

storage qualifier. For exampkeSIMPLE_EXPR> might consist of the expression
addr=2000 For detailed information on specification of simple expressions, see
Chapter 11, “Expressions.”

You use thec<COUNT> parameter to specify the number of times the expression
<SIMPLE_EXPR> must occur before the primary branch condition is satisfied.
<COUNT?> is specified as a decimal integer valugGIOUNT> is not specified,
the default is one (1).

345



Chapter 10:Emulator Commands

tif

<TERM#>

<COMPLEX_
EXPR>

<BRANCH_
TO_TERM>

<COUNT>

Complex configuration parameters:

<TERM#> lets you specify a sequencer term number to associate with the given
<COMPLEX_EXPR>. When you associate a term number with a complex
expression, that expression is used as a branch qualifier at the sequencer level
specified by the term number. If you spec&ifyERM#> without an expression, the
complex expression currently associated with that term number is displayed.

<COMPLEX_EXPR> allows you to specify complicated analyzer expressions

made up of relationships between simple analyzer expressions. When you create a
complex expression, you must first assign pattern ngmeg8) to simple

expressions using thipat command. You then use the pattern names and relational
operators to create complex expressions. For example, if you wish to branch from
term 1 to term 2 wheaddress=200&nddata=20or whenaddress=200&nd

data=42 you would use the following commands:

U> tpat p1 addr=2000 and data=20
U> tpat p2 addr=2000 and data=42
U> tif1pl|p22

The | symbol represents an intra-set OR operator. For more information on complex
expressions, operators, and pattern sets, see Chapter 11, “Expressions.”

The<BRANCH_TO_TERM> parameter allows you to indicate the branch
destination when theCOMPLEX_EXPR> is found. For example, you may wish

to have the sequencer branch from term 1 to term 3 after the expression is found.
This would be specified a$ 1 <COMPLEX_EXPR> 3. If you do not specify a

term number, the default is to increment the sequencer tével ERM#>
<COMPLEX_EXPR> (<TERM#> + 1)).

You use the«COUNT> parameter to specify the number of times the expression
<COMPLEX_EXPR> must occur before the primary branch condition is satisfied.
<COUNT?> is specified as a decimal integer valugs@IOUNT> is not specified,

the default is one (1).

If you specify the<COUNT> parameter, you must also specify a
<BRANCH_TO_TERM> parameter. If you omit theBRANCH_TO_TERM>
parameter when specifyirgfCOUNT>, the system will interpret the count as
“branch to term” information; if greater than eight (8), an error will be returned;
otherwise, you will have just specified an incorrect branch.

If tif is entered with no parameters, the primary branch qualifiers for all sequencer
levels are displayed. {if is entered with only aTERM#> parameter, the primary
branch qualifier for only that term number is displayed.

346



Examples

Chapter 10:Emulator Commands
tif
Upon initialization via a powerup sequence ortthi¢ command, the primary
branch specifiers are setttb<TERM#> any (STERM#> + 1).

In complex configuration, §EBRANCH_TO_TERM> is not specified, the default
is (K-TERM#> + 1); if <COUNT> is not specified, the default count is one (1).

At sequencer term number 8, the default branch to condittoFERM#>; that is,
branch to the same term.

Suppose that you want to trigger on the ninth character written to the output area
after 4 “A” commands have been entered.

R> init -c

R> demo

R> equ cmd_count=4

R> equ char_written=8

R> tif 1 addr=handle_msg:Cmd_A cmd_count
R> tif 2 addr=handle_msg:Again char_written
R> t

R>r

Now, enter 4 “A” commands. The trace list will show the trigger at the ninth
execution of the Again loop.

Thetelif command is used as a global restart qualifier in easy configuration and a
secondary branch qualifier in complex configuration. The hierarchy ¢f thed

telif commands is such that either branch will be taken if found before the oth
however, if both branches are found simultaneousljftteanch is always taken
instead of theelif branch.

When in easy configuration, the sequencer will increment to the next sequencer
level when the expression specifiedtibyoccurs the number of times specified by
the<COUNT> parameter. There is a maximum of four sequence levels; only one
is available at initialization. If you require more sequencer levels, you must insert
them with thesq command. (The term for which you are specifying a primary
branch for with théif command must be present in the sequence.) The branch out
of the last sequencer term constitutes the trigger.

When in complex configuration, the sequencer will branch to the sequencer level
specified by theeBRANCH_TO_TERM> parameter when the expression
specified occurs the number of times indicated ikB®UNT> parameter. There

347



Chapter 10:Emulator Commands

tif

See Also

are always eight sequencer terms available. Position of the trigger term is defined
with thetsqg command.

tarm (allows you to specify that thegl ortrig2 signal will arm the analyzer.
This arm condition can then be used as part of the primary branch qualifier)

tcf (used to select whether the analyzer is operated in easy configuration or
complex configuration)

telif (used to specify a secondary branch specification for the analyzer)

tg (used to set up a simple trigger qualifier in either analyzer mode. Specifying the
tg command overrides the current sequencer specification and will modify the
existingtif qualifier stored in sequence term number 1)

tpat (used to assign pattern names to simple expressions for use in specifying
complex expressions. These complex expressions are used to tpecifjifiers
in analyzer complex configuration)

trng (used to set up an expression which assigns a range of values to a range
variable. This range information may be used in specifying contiplgualifiers)

tsto (specifies a global trace storage qualifier in both easy and complex
configurations; also specifies a trace storage qualifier for each sequencer term in
complex configuration. Used to control the types of information stored by the
analyzer)

tsg (used to manipulate the trace sequencer)

348



Chapter 10:Emulator Commands
tinit

Examples

tinit

Thetinit command restores all trace specification items to their powerup default
values. See “Defaults.”

Thetinit command has no parameters.

To reset the analyzer parameters to the powerup defaults, type:

M> tinit

These are the powerup defaults for the trace specification:

Analyzer arm

tarm always

Trace Configuration

tcf -e
Note that if the trace configuration was complex, it is reset to easy configurati

Analyzer master clocks

tck-rL-u-s S

Trace count qualifier

tcq time

Trace format

tf addr,H mne count,R seq

349



Chapter 10:Emulator Commands
tinit
Trace trigger

tg any
tgout none
Analyzer signal line labels

#i### Emulation trace labels
tlb addr 0..31

tlb data 32..63

tlb stat 64..79

Trigger Position

tps

Trace Prestore Qualifier

tpg none

Trace sequencer (includes branch and store conditions)

tif 1 any
tsto all
telif never

Trace slave clocks

tsck-0 1
tsck -0 2
tsck -0 3
tsck -0 4
tsck-05

Trace Upon Execute

tx -d # ignore the execute signal

See Also init (used to initialize selected portions of the emulator or the entire emulator,
dependent on the options given)

350



Chapter 10:Emulator Commands
tl

tl

) <RETURN>
)
G- * T
Y @]

(e )

<LOWER_STATE>
L@» <UPPER_STATE>
- )

Thetl command allows you to display the current emulation-bus analyzer trac
information.

The parameters are as follows:

Display the top states of the trace. If you have specified the number of states to
display with the<COUNT> parameter, that number of states is displayed.
Otherwise, the default is to display the same number of states as the ldsiviasie
invoked to display part (but not all) of the trace.

Display the next states of the trace. If you have specified the number of states to
display with the<COUNT> parameter, that number of states is displayed.
Otherwise, the same number of states will be displayed as the last time ydu used
to display part (but not all) of the trace.

351



Chapter 10:Emulator Commands

tl
<COUNT>

<COUNT> allows you to specify the number of states to display witht thie-n
options.

Normally, column headers are displayed at the top of each trace list. These label the
state number, count, and each trace field specified b toenmand. Specifying
the-h option allows you to suppress printing of the column headers.

This option causes the analyzer to disassemble the content of its trace list, starting
at the trace-list line number you include in this command. This results in a trace list
that appears to be an assembly language program listing.

By specifying-o and<IALOPTS>, you can control disassembly of the trace list.
The following table lists the<l ALOPTS> supported.

Option Meaning

-od Dequeue the trace list; that is, match opcodes with the
associated operands. You can help the match of opcodes with
operands by including the line number of the first instruction
to be disassembled and the line number of its corresponding
operands in your command
(e.g.tl -d -od 50 62 meaning align operands on trace-list line
number 62 with the instruction on line number 50).

-on Don't dequeue the trace list; that is, show the list in the order
that the bus cycles appeared.

-0i Display instructions only; that is, don’t display operand
cycles as separate states.

-oa Display both instruction and operand bus states.

-ol Disassemble the trace list beginning with the low word at the
specified trace-list line number (the default is to disassemble
from the high word).

The-b option dumps the trace list in binary format using the HP 6¢a@efer
protocol. See Chapter 13, “Data File Formats,” in this manual for details on the
binary trace list format.

The-x option dumps the trace list in hexadecimal format using the HP 64000
transfer protocol. See Chapter 13, “Data File Formats,” in this manual for details
on the hexadecimal trace list format.

The-h, -d, and-o options cannot be used with eithleror -x. Also, the-b and-x
options cannot be used together.

352



<LOWER_
STATE>

<UPPER_
STATE>

<ALIGN_STATE>

Examples

Chapter 10:Emulator Commands
tl

This allows you to display symbols in the address column.
This (the default) allows display of absolute addresses in the address column.
This allows you to display symbols and absolute addresses in the address column.

The HP 64700 remembers the last option specified for the addresssfiedd dr
-6), and uses it for the netkttcommand if no other option is specified.

If you specify*, the entire trace list is displayed. Notice thaioes not recognize
displaying the entire trace as the last default count. (This helps avoid filling your
screen with lots of trace list data on subseqtiestmmands.)

If you specify<LOWER_STATE>, the trace display starts with the state on that
trace-list line number.

If you specify botkLOWER_STATE> and<UPPER_STATE>, the trace list
contains all states between the lower and upper trace-list line numbers, inclusive.

If you specify a lower state, it must be done without usingttbie-n options,
because the Terminal Interface will interpret your lower state specification as a
<COUNT> parameter. However, you can specify a range of states while using
these options; the range will be interpreted and displayed correctly.

If you specify theod option to dequeue the trace list, and you specify
<LOWER_STATE> for the first state to display, then <ALIGN_STATE> specifies
the operand associated with the instruction fetched in <LOWER_STATE>.

If no parameters are given, the trace list is displayed starting with the first state that
has not yet been displayed. The number of states displayed is identical to the
number of states displayed by the th&tommand.

For example, if the last trace list display wlagd 5, then the next command will
start the display at state 6 and display a total of five states.

The-a option is in effect by default, which causes the address field to display
absolute addresses.

The trace list also defaults to the last disassembly state used (that vga#
specified previously in & command, it will continue).

To return to the top of the trace list and disassemble instructions, type:

U> tl -td

353



Chapter 10:Emulator Commands

tl

See Also

To vary the number of states displayed, type:

U>tl-td5

To display a range of states, type

U> tl -td 20..30

To suppress display of the column headers, uséthption:

U> tl-h

To align the instruction on trace list line number 38 with the operand cycles on line
number 47, enter the command:

U> tl -d -od 38 47

You may also dump the trace list to a host computer using {feénary) or-x
(hexadecimal) options in conjunction with the HP 64ta@f0sfer software. This

allows you to perform post processing of the trace data on your host. See Chapter
13, “Data File Formats,” for details of trace list formats.

To display a trace list from a trace in progress, the trigger specification must be
satisfied. Otherwise, halt the trace with tlheommand. Entering before the

trace is halted displays the messagertigger not in memory ** .” If the

analyzer was halted before any states were captured, the messdgérace

data **” is displayed upon entry of thbcommand.

t (starts an analyzer trace)
tf (specifies the display format for the trace)
th (halts a trace in process)

tlb (defines analyzer signal line labels; these may be usédrbgpecifying the
trace list display format)

ts (allows you to determine the current status of the emulation-bus analyzer)

354



Chapter 10:Emulator Commands
tlb

tib

<LABEL>

<BIT#>

<RETURN=>

@ | <LaBEL~

<LABEL>

}<LABEL> —@— “RITe> ‘L
~( <o |

Thetlb command allows you to define new labels for emulation-bus analyzer lines,
as well as display or delete previously defined analyzer labels.

The parameters are as follows:

If you specify thed option with a <LABEL>, the named label is deleted from the
definition table. If the <LABEL> is currently used in a trace specification or in the
trace display formatf{ command), it will not be deleted until removed from all of
the specifications. If <LABEL> is given &sall labels are deleted.

Specifying-n causes the named <LABEL> to be defined with negative polarity.
That is, after label definition, one (1) bits indicate a signal lower than the threshold
voltage and zero (0) bits indicate a signal higher than the threshold voltags. If

not specified, the <LABEL> defaults to positive.

You use <LABEL> to specify a name for the group of signals indicated by
<BIT_RANGE>. <LABEL> is an alphanumeric designator; upper and lower ca
are significant. Labels can have up to 31 characters. If <LABEL> is supplied
without an option, the named label is displayed; if <LABEL> is giveh aB of

the label definitions are displayed.

<BIT#> specifies first the lower (or only), then upper, bits of the range to be
assigned to the named <LABEL>. If more than one bit is specified (creating a
range), the bit numbers are separated by two periods (..).

If no parameters are specified, the current label definitions are displayed. At
emulator powerup, or aftéinit, the only label definitions are the address, data, and
status labels needed to operate the emulation-bus analyzer. All new label
definitions default to positive polarity unless theoption is given.

355



Chapter 10:Emulator Commands

tlb

Examples

See Also

Define a label which will overlap the lower data bus byte:

M> tlb byte3 56..63

View the label definitions:

M> tlb

In the trace list, view only the output write data on the lower data byte in ASCII
format:

M> tf lowerdata,A

<BIT>..<BIT> specifies the range of analyzer lines to be associated with
<LABEL>. Note that it is not necessary to specify an upper boundary; if only one
bit number is given, itis the only one that will be associated with the given label.

The emulation-bus analyzer, dependent on the particular emulator in use, has
between 32 and 80 lines, where 0 is the least significant bit.

In emulation-bus analyzer labels, no more than 32 signal lines may be assigned to a
given label. Also, an emulation-bus analyzer label may not cross more than a
multiple of 16 boundary. For example, a label cannot be defined for emulation-bus
analyzer lines 15..32 because one multiple of 16 boundary is crossed from 15 to 16
and another boundary is crossed from 31 to 32.

Labels can be made to overlap; for example, you may wish to define a label for a
particular status line or data bit so that you can easily track its state in the trace list.

The number of labels that can be defined is limited only by system memory.

tf (used to specify the trace list formih; <LABEL> definitions can be specified
as output columns in the trace listing throughttteammand)

tpat (trace pattern definition; labels definedlim can be used in pattern definitions)

trng (trace range, used to specify a range of valid values to be used in a trace
specification; labels defined I§p may be used in defining the trace range)

356



Chapter 10:Emulator Commands
tp

tp

ip <RETURN=
<POSITION> F

Thetp command allows you to specify where the trigger state will be positioned
within the trace list.

The parameters are as follows:

-a Specifying-a along with a <POSITION> parameter indicates that the trigger is to
be placed in the trace list with <POSITION> number of states after the trigger
position to the end of the trace. That is, there will be <POSITION> number of
states between the trigger position and the end of the trace.

-b Specifying-b along with a <POSITION> parameter indicates that the trigger is to
be placed in the trace list with <POSITION> number of states before the trigger
position to the beginning of the trace. That is, there will be <POSITION> number
of states between the beginning of the trace and the trigger position.

<POSITION> <POSITION> is a decimal value from 0 to 1023 (or O to 51itdfis in effect)
specifying the number of states positioned before or after the trigger state,
depending on the option supplied.

S If you specify thes parameter, the trigger is positioned at the start of the trace list.
c If you specify thec parameter, the trigger is positioned at the center of the trace list.
e If you specify thee parameter, the trigger is positioned at the end of the trace list.

If no parameters are supplied, the current trigger position setting is displayed. Upon
powerup or aftetinit, the trigger position itp s.

Examples To display the current setting of the trigger position, type:

357



Chapter 10:Emulator Commands

tp

See Also

M> tp

To define a trigger at address demo:Loop, type:

M> tg addr=demo:Loop

When you run the program and display the trace list, note that the trigger (always
state zero (0)) will be positioned at the start of the trace.

To move the trigger to the end of the trace, type:

M>tp e

When you display the trace, note that state 1 will be empty. (You must rerun the
trace to see the changes.)

To position the trigger at the center of the trace list, type:

M> tp c

To position the trigger so that 10 states are displayed after it, type:

M> tp -a 10

When you display the trace list, note that 11 states will be displayed after the
trigger. This is within the specified accuracy of the system.

To position the trigger so that 5 states are displayed before it, type:
M>tp-b5

When you display the trace list, note that four states will be displayed before the
trigger, which again is within the system’s positioning accuracy.

If the trace tag counteicqy) is disabled, the position number specified has an
accuracy of +/- 3 states; otherwise, the accuracy is +/- 1 state.

tcq (used to specify the trace count qualifier; affects the number of states that can
be stored by the analyzer)

tg (defines the trigger expression)

tl (used to display the trace list)

358



Chapter 10:Emulator Commands
tp
tsq (used to specify the trigger position within the trace sequencer; reference the
sequencer operation when deciding where to position the trigger in the trace list, if
you want to capture all of the sequence conditions)

359



Chapter 10:Emulator Commands

tpat

tpat

COMPLEX CONFIGURATION ONLY

{ tpat L <RETURN>
G~

pl-p8

<SIMPLE_EXPR>

: 1
p2 ~| <SIMPLE_EXPR>

p3

it

pi

p5

p7

i

Thetpat command allows you to assign pattern names to simple analyzer
expressions.

The parameters are as follows:

The labelgpl throughp8 are the names assigned to each simple expressiorp (The
in the label must be lowercase.)

<SIMPLE_EXPR> lets you directly specify an analyzer expression to use as a

storage qualifier. For exampkeSIMPLE_EXPR> might consist of the expression
addr=2000 For detailed information on specification of simple expressions, see
Chapter 11, “Expressions.”

Simple expressions assigned to patterns are restricted from the standard
<SIMPLE_EXPR> definition in that you may not assign a range of values to a
given label; only one value is permitted. (However, in actual practice, it is
sometimes possible to circumvent this restriction by careful choice of don’t care
values in the expression.)

Also, patterns can be specified that encompass more bits than the number of bits
defined for the specified label. When this occurs, the upper bits are truncated.

If no parameters are given, or if the pattern name is givenadiseight of the
current pattern assignments are displayed. If one of the pattern names is given, the
expression assigned to that pattern is displayed.

360



Chapter 10:Emulator Commands
tpat
Upon entering complex configuration after powerup tmit initialization, all
eight patterns are definedtaat <pattern#> any.

Examples Set pattern assignments using the symbols Cmd_A, Cmd_B, and Cmd_1I:

M> tpat p1 addr=handle_msg:Cmd_A
M> tpat p2 addr=handle_msg:Cmd_B
M> tpat p3 addr=handle_msg:Cmd_|

To set up a trigger when any one of the above patterns will trigger the analyzer,
type:
M> tg p1|p2|p3

Set equates to trigger the analyzer on various commands received at the command
input location:

M> equ inputa=41
M> equ inputb=42
M> equ notacommand=00

To set up various pattern combinations for these equates, type:

M> tpat p1 addr=demo:Cmd_Input and data=inputa
M> tpat p2 addr=demo:Cmd_Input and data=inputb
M> tpat p3 addr=demo:Cmd_Input

M> tpat p5 data=inputa

M> tpat p6 data=inputb

M> tpat p7 data!=notacommand

M> tpat p8 data=notacommand

To ensure that a symbol is recognized on a long-word-aligned boundary:

R>tpat p1 addr=~3&demo:Loop

Thetpat command is only valid in the complex analyzer configuraticit¢).

See Also tcf (defines whether the analyzer is in easy configuration or complex configuration;
thetpat command is only valid in complex configuration)

361



Chapter 10:Emulator Commands

tpat
tcq (specifies a trace count qualifigpat patterns may be used in complex
configuration qualifier specification)

telif (specifies a secondary branch qualifier in analyzer complex configurtaédn;
patterns may be used in qualifier specification)

tg (used to specify a simple trigger in either easy configuration or complex
configurationipat patterns may be used in complex configuration trigger
specification)

tif (used to specify a primary branch qualifier in either analyzer configurgtain;
patterns may be used in complex configuration branch specifications)

tpq (specifies a trace prestore qualifigrat patterns may be used in qualifier
specification)

trng (defines a range of values on a set of analyzer input lines; this range may be
used in conjunction with the patterns definedgat in setting up complex analysis
qualifiers)

tsg (used to manipulate the trace sequencer)

tsto (used to define global storage qualifiers in both analyzer configurations; may
also be used to define storage qualifiers for each sequencer level in complex
configuration. The patterns defined ipat may be used in complex configuration
storage qualifier definition.)

362



Chapter 10:Emulator Commands
tpq

tpq

tpg

<RETURN>
g <ANALYZER_~XPR> M

Thetpg command allows you to specify a prestore qualifier for the trace.

The parameters are as follows:

<ANALYZER_ <ANALYZER_EXPR> allows you to specify the expression to be recognized as a

EXPR> prestore state. This expression consists<8IMPLE_EXPR> in analyzer easy
configuration and aCOMPLEX_EXPR> when the analyzer is in complex
configuration. See Chapter 11, “Expressions,” for specific details of analyzer
expressions. In either configuration, the expression may consist of thestates
(prestore all states) apne (disable prestore).

If no parameters are given, the current prestore qualifier setting is displayed. Upon
powerup or aftetinit initialization, the prestore qualifier defaultstpg none

Examples Display the current prestore qualifier:
R> tpq
Assume that you have three routines called wait_keyboard, wait_mouse, and

wait_tablet. All three call a routine named delay_loop. You can see which routi
called delay_loop by defining a prestore qualifier:

R> tcf -c

R> tpat pl addr=wait_keyboard
R> tpat p2 addr=wait_mouse
R> tpat p3 addr=wait_tablet

R> tpq p1|p2|p3

During the trace, the analyzer fills a two stage pipe with states that satisfy the
prestore qualifier. Each time a trace state is stored into the trace buffer, the prestore
qualifier is also stored and then cleared. Therefore, up to two prestore events may
be stored for each normal store event. The prestore events in the trace buffer will

363



Chapter 10:Emulator Commands

tpq
QUALIFIED NO ENABL=Z SH
BY tsto =
YES
STATES
= IGNORED
FLUSH PRESTORE QUEUE
TRACE STORAGE WHEN
MEMORY FLUSHED
XXXX e XXXX 1 PRESTORE
QUEUE
yyyy - yyyy 2
correspond to the most recent states that satisfied the prestore qualifier immediately
prior to a store event but following the previous store event.
Because the prestore memory shares trace memory with store events, the number of
store events recorded will be reduced by the number of prestore states recorded.
See Also tcf (specifies whether the analyzer is to operate in easy configuration or complex

configuration)

tsg (used to manipulate the trace sequencer)

tsto (used to specify a global storage qualifier for both easy configuration and
complex configuration; also used to specify individual sequence term storage

qualifiers in complex configuration)

364



Chapter 10:Emulator Commands
trng

trng

COMPLEX CONFIGURATION ONLY

frng L - <RETURN>

= <LABEL> = a = <EXPR=> = O = <EXPR=>

Thetrng command lets you specify a range of acceptable values for an analyzer
trace label.

The parameters are as follows:

any When you specifny, all possible patterns on all labels will satisfy the range
specification.
<LABEL> <LABEL> specifies the group of signal lines to which a range is assigned. These

might beaddr, data, or stat; or, they may be a label that you have defined. See the
tlb command syntax pages for information on defining labels.

<EXPR> <EXPR> allows you to specify first the lower, then upper, boundaries of the range
of patterns to be considered valid range entries. For example, to define the address
range of 2000 through 21ff hex, you would specify<BXPR> range as
2000..21ff Note the two periods used as a separator between the lower and upper
range bounds; no additional spaces are included.

Also, the first boundary specified must be less than or equal to the second bo
specified (examplarng addr=2000..21ffis correctfrng addr=21ff..2000is
incorrect). You may also specify a single value for the range (exatmgle:
addr=2000.

See Chapter 11, “Expressions,” for details on expression syntax.

Ranges can be specified that encompass more bits than the number of bits defined
for the specified label.

If no parameters are supplied, the current range definition is displayed. After
powerup otinit initialization, thetrng command is set tiong any. (Note that

trng is not directly available after analyzer initialization; the analyzer is set to easy
configuration when initialized. You must then switch to complex configuration to
accessrng.)

365



Chapter 10:Emulator Commands

trng
Thetcf -e (set trace configuration to easy) command also will tesgt In other
words, anytrng defined when the analyzer was in complex configuration is
destroyed when the analyzer is set to easy configuration; you cannot return to
complex configuration and use the tiag .

Examples Trigger the analyzer on any access to the message storage area of the demo
program:

M> tcf -c
M> trng addr=handle_msg:Msg_A..End_Msgs
M>tgr

The range of values specified togg may then be used in complex qualifiers for
the trace specification. Thieng command is only available in the analyzer’s
complex configuration (seef syntax pages).

There is no need for a not equals operator in specifying ranges, as the trace
specification commands which allow “range” as a parameter also accept "not
range" in the fornhr.

See Also tcf (sets analyzer to complex or easy configuration; analyzer must be in complex
configuration to utilize theng command)

tcq (trace state/time counter; in complex configuration, states can be counted using
the range specification)

telif (specifies the sequencer secondary branch expression; in complex
configuration, this expression can include references to the range)

tg (specifies analyzer trigger; may trigger on references to range)

tif (specifies the sequencer primary branch expression; in complex configuration,
branch expression may include range qualifier)

tpat (trace pattern definition; assigns pattern names to simple expressions for later
use in analyzer specificatioripat essentially commits only one pattern to a label;
whereadrng allows a range of values to be assigned to the range pattern)

tpg (defines trace prestore qualifier; the range specification may be used in
complex configuration prestore qualifier expressions)

tsq (trace sequencer definition)

366



Chapter 10:Emulator Commands
trng
tsto (defines trace storage qualifier; that is, specifies exactly what states are actually
to be stored by the analyzer. In complex configuration, this can include states that
fall within the specification defined kiyng)

367



Chapter 10:Emulator Commands

ts

ts

ts <RETURN>
G-

Thets command allows you to determine the current status of the emulation-bus

analyzer.

The parameters are as follows:
-w The-w option indicates that the trace status should be printed in whisper mode;

which gives an abbreviated version of the status.

If the whisper option is not specified, the long version of trace status is displayed.
Examples To view the trace status, type:

U> ts

To display the short form of the status, type:

U> ts -w

Trace Status Displays
The trace status is displayed in the following form:

---Emulation Trace Status---

(NEW) [User | CMB ] trace [complete | halted | running ]
Arm [ ignored | (not) received ]

Trigger (not) found

Arm to trigger armcount

States  visible (history ) first..last

Sequence term  term

Count remaining count

368



NEW

User

CMB

complete
halted

running

ignored
received

not received

found

not found

Chapter 10:Emulator Commands
ts

Status Display Interpretation

The first line of the trace status indicates the initiator of the trace, whether the trace
is completed, running, or halted, and whether or not this trace has been displayed.

This trace has not been displayed. leommand will clear this flag until the next
trace is started. Halting a trace that is running (as opposed to complete), marks the
trace as being NEW even though the trace may have been displayed while running.
The nextl command with no options will list the trace from the top.

The operator initiated this trace with theommand.

This trace was initiated by a /EXECUTE pulse on the CMB aftteicammand
was entered.

The trace has found its trigger and completed.
The trace was halted in response th aommand.

The trace is still running; either the complete sequencer specifications have not yet
been satisfied; or not enough qualified store states have been found to fill trace
memory.

The second line of the trace display indicates the analyzer arm status.
The arm condition specified for this trace weasn always.
The arm condition has been satisfied.

The arm condition was not satisfied. (If you specified an arm condition but didn’t
use it in trigger qualification, this will be displayed if the arm condition is not
satisfied. However, the analyzer may still find the correct trigger and complete
trace.)

The third line of the state trace display indicates the trigger status. Because of the
pipelined analyzer architecture, it is possible that the trace status may display “not
found” when in fact the trigger has been found. This will occur when not enough
states satisfying the storage specification are found to push the trigger out of the
pipeline and into trace memory. In any case, the trace will not be displayable until
the trigger is in trace memory (unless you halt the analyzer).

The trigger condition has been found.

The trigger condition has not yet been satisfied.

369



Chapter 10:Emulator Commands

ts

armcount

visible

history

first

last

term

count

The fourth line of the trace display indicates the amount of time that passed
between the arm signal and the trigger condition.

This will be from -0.04 usec to 41.94288 ms. The arm to trigger counter may
underflow or overflow, in which case “<-0.04 uS” or “>41.94288 mS” are reported,
respectively. If the arm signal was ignored, if the trigger was not found, or if the
clock setting (tck) is fast (F) or very fast (VF), the character “?” (unknown) is
displayed.

The fifth line of the display indicates the number of states displayalile by

Number of states which can be displayedlbyhis will be a number from 0 to
1024 (or 0 to 512 ifcq is active).

Number of states which can be displayed if the current trace is halted; this may
include history states which may be overwritten and thus unavailable if the current
trace runs to completion.

Number of the first state stored in trace memory, relative to the trigger state. This
will be a number from -1024 to 0 (-512 to Qdf is active). The character “?” is
displayed if the trigger state is not yet in memory.

Number of the last state stored in trace memory, relative to the trigger state. This
will be a number from -1 to 1023 (-1 to 511d§ is active). The character "?" is
displayed if the trigger state is not yet in memory.

The sixth line of the trace display indicates the current sequencer term position.

Current sequence term position (1 through 5 in easy configuration; 1 through 8 in
complex configuration). If the trace is completed or halted, the last sequence term
number is displayed. A “?" is displayed if the trace is running and the sequencer is
running too quickly for the current term number to be read.

The seventh line of the trace display indicates the count qualifier status for the
primary branch condition of the current sequence terniijfskoe further details.

Remaining number of occurrences of the primary branch qualifier needed to satisfy
the qualifier so that the primary branch will be taken. A “?” is displayed if the trace
is running and the counter is updating too quickly to be read.

Whisper Mode Trace Display

If the -w option is given, an abbreviated version of the trace status is given as
follows:

370



See Also

Chapter 10:Emulator Commands
ts

Trace run status:

R - trace running

C - trace completed

H - trace halted
Trace arm status:

A - Arm has been received

a- arm has not yet been received

X - arm signal is being ignored
Trace trigger status:

T - trace trigger has been found

t - trace trigger has not yet been found
Trace list status:

* - indicates that this trace has not been displayed

es(allows you to determine general emulator status)

t (starts a trace)

tarm (arm the analyzer based on state of the trigl and trig2 signals)

tcq (specify trace tag counter; affects number of states that the analyzer can store)
tg (specify the analyzer trigger state)

th (halt the current trace in process)

tif (specify sequencer primary branch condition and number of occurrences)

tx (specify that trace is to begin upon receiving the CMB /EXECUTE pulse)

x (begin a synchronous CMB execution)

371



Chapter 10:Emulator Commands

tsck

tsck

<RETURN>

Thetsck command allows you to specify the slave clock edges used for the
emulation-bus analyzer trace.

The parameters are as follows:

The-d option allows you to specify that the slave clock operates in demultiplexed
mode. In this mode, the lower eight channels of the analyzer pod (bits 0-7) are
latched with the slave clock and the upper eight channels (bits 8 through 15) are
replaced with the lower eight channels. In other words, the upper eight bits are
identical to the lower eight at the pod.

However, the data is not clocked into the analyzer itself until the next master clock
occurs. Therefore, if no slave clocks have occurred since the last master clock, the
data on the lower eight analyzer lines is identical to the upper eight. If one or more
slave clocks have occurred since the last master clock, the data on the lower eight
bits is the only data available to the analyzer.

When using thed option, you must specify one of thre -f, or-x options to
indicate the active edge(s) of the slave clock.

The-m option specifies that the slave clock operates in mixed mode. In the mixed
mode, the lower eight channels of the analyzer pod (bits 0-7) are latched with the
slave clock, and the master clock latches in the entire pod. Therefore, if no slave
clock has occurred since the last master clock, the data on the lower eight bits of the
pod will be clocked into the analyzer at the same time as the upper eight bits. If

372



<POD#>
r
f
X

CLOCK SIGNALS

Examples

See Also

Chapter 10:Emulator Commands
tsck

more than one slave clock has occurred since the last master clock, only the first
slave clock data will be available to the analyzer.

When using them option, you must specify one of the -f, or-x options to
indicate the active edge(s) of the slave clock.

Specifies one of five groups of analyzer input lines. These are as follows:
Indicates that the pod should latch data onitfieg edge of the slave clock.
Indicates that the pod should latch data orfalieg edge of the slave clock.
Indicates that the pod should latch datéoth edges of the slave clock.

Ther, f, andx operators may be used on the following clock sigdalk; L, M or
N. ClocksL, M, andN are generated by the emulator. ClogksdK are not used.

If you specify multiple clocks, any one of the clock edges (as defined byfthe
andx options) will clock the trace.

If you specify-o with a<POD#>, the slave clock is ignored on that pod.

If no parameters are specified, the current slave clock definitions are displayed. The
default for all slave clocks ©ff after powerup ofinit initialization.

To display the current state of the slave clock specifications, type:

M> tsck

Each analyzer pod has the capability of latching certain signals with a slave cl
instead of the master clock. (You set up the master clock witbklemmand.)
You should generally not use this command. It is provided for use by HP 64700
high-level interfaces.

ta (allows you to display active signals on the analyzer input lines; useful in
verifying that you have selected the correct clock conditions)

tck (used to define master clock signals used by the analgekdefines the slave
clock signals. Default mode fesck is off on all pods.)

373



Chapter 10:Emulator Commands

tsq

tsq

EASY CONFIGURATION

tsq «\\*’ <RETURN>

-
SR SRR

COMPLEX CONFIGURATION

—
‘ED<W\¥jiEEF%§
-t
<TERM#>

<RETURN>

Thetsq command allows you to manipulate or display the trace sequencer.
The parameters for easy configuration are:

If you specifyr, the sequencer is reset to a simple one term sequence which stores
all states and triggers on the first occurrence of any state. This is equivalent to
issuing the commands:

tg any
tsto any
telif never

Specifyingi in conjunction with &a TERM#> inserts a new sequence term at
<TERM#>. The new sequence term will use the default storage qualifier (which
can be modified with thisto command). It will also use the secondary branch
qualifier (global restart in easy configuration) specified bytéhiecommand.

If there is already a sequence term with nuni&RM#>, terms with number
<TERM#> and above will be renumberedlERM#> becomesTERM#> + 1)
to make room for the new term.

374



Chapter 10:Emulator Commands
tsq
The primary branch qualifier for the new term will be definetlif s ERM#> any
unless it is the last term in the sequence (by definition, the trigger term), in which
case the primary branch qualifier is setite&TERM#> never.

d Specifyingd in conjunction with & TERM#> deletes the term specified and
renumbers higher numbered terms downward to fill the gap.

<TERM#> <TERM#> specifies a term number in the range 1 through 4 to insert in the
sequencer-{) or remove from the sequencet)( You must insert terms in a
contiguous manner; for example, you cannot insert a term number 4 if the
sequencer only has two terms defined. Instead, you must next insert a term
numbered 1, 2 or 3.

The parameters for complex configuration are:

r If you specify-r, the sequencer is reset to an eight term sequence with the trigger
term at term number 2. The sequencer will be gstacany (store any state). All
secondary branch qualifiers are turned i <TERM#> never), and all primary
branch qualifiers will jump to the next higher numbered term on any state (
<TERM#> any (KTERM#> +1)).

t Specifying-t by itself displays the trigger term. You can define which term is to be
the trigger term by specifying along with &< TERM#>. The analyzer will trigger
on the first entrance to the term from either a primary or secondary branch.

<TERM#> <TERM#> specifies a term number in the range 2 through 8 to use as the trigger
term.

If no options are given, all of the sequencer storage and branch qualifiers are
displayed along with the trigger term position. Upon powerup ortaiter
initialization, the sequencer defaults to the following state:

tif 1 any
tsto all
telif never

In other words, the sequencer powers up with two sequence terms; the second
sequence term is the trigger term. Any state will cause a branch from the first term
to the second term; global restart is set to never and all states are stored by the
analyzer.

Switching analyzer configurations from easy to complex or vice versa also resets
the sequencer (that isf -c or tcf -€).

375



Chapter 10:Emulator Commands

tsq

Examples

See Also

View the state of the sequencer after poweruptimita

M> tsq

While still in easy configuration, insert two sequence terms:
M> tsq -i 2

M> tsq -i 3

To delete a sequence term in easy configuration, type:

M> tsq -d 3

To change the trigger term in complex configuration:

M>tcf -c
M> tsq -t5

When the analyzer is in easy configuratitu {€), the sequencer has a maximum
of four sequence terms with a minimum of one term.

If the analyzer is in complex configuratianf(-c), the sequencer always has eight
terms (although your sequencer setup may only use two terms). Any term except
term 1 can be the trigger term. Each term has a primary and secondary branch,
which can dictate progression to other sequence terms.

With microprocessors that prefetch instructions, it is often more accurate to base
trace conditions on data movement resulting from an instruction rather than the
instruction itself. When the data pattern is found, it is more likely that the
instruction executed. Such methods must be used with care; in some programs,
several different routines may execute the same data movement.

tcf (defines whether analyzer is operated in complex or easy configuration)

telif (sets global restart qualifier in easy configuration; secondary branch qualifier
in complex configuration)

tg (defines the trigger qualifier)
tif (sets the primary branch qualifier in both easy and complex configuration)

tsto (defines the analyzer global storage qualifier)

376



Chapter 10:Emulator Commands
tsto

tsto

EASY CONFIGURATION

tsto L T <RETURN=>
<SIMPLE _EXPR> M

COMPLEX CONFIGURATION

CEo .
f <TERM => { <COMPLEX_EXPR> M

Thetsto command allows you to specify a trace storage qualifier for the
emulation-bus analyzer.

The parameters for easy configuration are:

<SIMPLE_ <SIMPLE_EXPR> lets you directly specify an analyzer expression to use as a

EXPR> storage qualifier. For exampkeSIMPLE_EXPR> might consist of the expression
addr=2000 For detailed information on specification of simple expressions, see
Chapter 11, “Expressions.”

The parameters for complex configuration are:

<TERM#> <TERM#> lets you specify a sequence term number to associate with the give
<COMPLEX_EXPR>. When you associate a term number with a complex
expression, that expression is only used as a storage qualifier at the sequenc
specified by the term number. If you spe&fyERM#> without an expression, th
complex expression currently associated with that term number is displayed. If you
specify an expression without including BERM#>, the expression is used as a
global storage qualifier; that is, the storage qualifiers of all eight sequence terms are
set to the same value as the global storage qualifier you specified.

If you've specified a global storage qualifier, you can override any of the sequence
term storage qualifiers by specifying the term number along with the new qualifier.
For example, you might specify a global storage qualifiestofany; you could
override this for term 3 by specifyirtisto 3 none

<COMPLEX _ <COMPLEX_EXPR> allows you to specify complicated analyzer expressions
EXPR> made up of relationships between simple analyzer expressions. When you create a

377



Chapter 10:Emulator Commands

tsto

Example

complex expression, you must first assign pattern ngmegsg) to simple

expressions using thipat command. You then use the pattern names and relational
operators to create complex expressions. For example, if you wish to store only the
states havingddress=200Gnddata=20or the states havirgddress=200&nd

data=42 you would use the following commands:

U> tpat p1 addr=2000 and data=20
U> tpat p2 addr=2000 and data=42
U> tsto pl|p2

The “|” symbol represents an intra-set OR operator. For more information on
complex expressions, operators, and pattern sets, see Chapter 11.

If no parameters are given, the current trace storage qualifier settings are displayed.
Upon powerup or aftémit initialization, the trace storage qualifier defaulttsto

all. Using thetcf command to switch from complex configuration to easy
configuration or vice versa will also reset the storage qualifiestaall.

See Chapter 5, “Using the Analyzer,” for an example of using storage qualifiers.

The expression parameter, whethSiMPLE_EXPR> or <COMPLEX_EXPR>,
specifies the type of data to be stored by the analyzer.

If the analyzer is in easy configuratidof(-€), the expression is specified by
<SIMPLE_EXPR> and this serves as a global storage qualifier. In other words,
the same expression is used as a storage qualifier, regardless of the current
sequencer state.

If the analyzer is in complex configuratianf(-c), the expression is specified by
<COMPLEX_EXPR> and may be assigned to a sequencer state with the
<TERM#> parameter. When an expression is assigned to a specific term number,
the analyzer will only store states corresponding to the given expression when at
the given sequencer level. If RO ERM#> is given, the associated expression is
defined as global; the analyzer stores states satisfying the expression, regardless of
the sequencer level.

Remember that the analyzer only stores states for a given sequence term which
satisfy thetsto qualifier for that termwvhile at that sequencer levellf you specify
storage of items in a particular term that oafter that term has been satisfied, the
sequencer will no longer be at that level and therefore won't store the states you
specified.

378



Chapter 10:Emulator Commands

tsto

See Also tcf (used to specify whether the analyzer is in easy configuration or complex
configuration)

telif (used to specify a global restart qualifier in easy configuration; specifies a
secondary branch qualifier for each sequencer level in complex configuration)

tg (used to specify a trigger condition in either easy configuration or complex
configuration; overrides the current sequencer specification. Notg tthaes not
affecttsto; therefore, the curretdto specifications remain in effect whenevéga
command is entered)

tif (used to specify a primary branch qualifier in either analyzer configuration)

tpat (used to assign pattern names to simple analyzer expressions for use in
constructing complex analyzer expressions; these expressions can be used in
specifying storage qualifiers for th&o command)

trng (used to specify a range of values of a set of analyzer inputs; this range
information can be used in constructing complex configuration qualifiers for the
tsto command)

tsg (used to manipulate the trace sequencer)

379



Chapter 10:Emulator Commands

tx

tx
tx = =] <RETURN>

Thetx command allows you to specify that the analyzer will begin a measurement
when the CMB /EXECUTE line is asserted.
The parameters are as follows:

-e If you specify thee option, the analyzer will start a measurement upon receiving
the CMB /EXECUTE signal.

-d If you specify thed option, the analyzer will NOT start a measurement upon
receiving the CMB /EXECUTE signal.
If no options are specified, the current statx@nable/disable is displayed. Upon
powerup or after &nit , the system defaults te -e.

Examples Verify the current setting dk:

M> tx

To set up a CMB measurement such that the emulator starts running and an
analyzer measurement begins at address demo:Main whenever the CMB
/EXECUTE pulse is received, type the following commands:

M> cmbt -d none

M> tx -e

M> tg addr=demo:Main
M> rx demo:Main

If tx -e is given, enabling measurement on execute, the CMB trigger is immediately
driven true upon receiving the /EXECUTE signal. If the analyzer is not driving
either trigl or trig2, it is then started. The CMB trigger is then disabled and the HP
64700 waits for all other participants in the measurement to release the CMB

380



Chapter 10:Emulator Commands
tx

trigger. When the last instrument releases the CMB trigger, the trigger will go false;
at this point any analyzers driving trigl or trig2 will be started.

See Also cmbt (specifies whether the CMB trigger signal is driven or received by the
internal trigl and trig2 signals)

tarm (specifies the arm condition for the analyzer)

tg (specifies a trigger condition for the analyzer)

381



This page intentionally left blank.

382



Chapter 10:Emulator Commands
ver

ver

ver = <RETURN>

Thever command instructs the emulator to return the current emulator Terminal
Interface software version numbers. You should use this command when you need
to know the version number of your emulator Terminal Interface software to
compare it to th€irmware/Software Compatibility Nofer the HP64700 PC

Interface or Softkey Interface software versions.

Examples To determine the current emulator Terminal Interface software version numbers,
type:

M> ver

The system returns a display similar to the following:

Copyright (c) Hewlett-Packard Co. 1987
All Rights Reserved. Reproduction, adaptation, or translation without
prior
written permission is prohibited, except as allowed under copyright
laws.

HP64700 Series Emulation System
Version: A.00.00 20Nov87

HP64742 Motorola 68000 emulator
Version: A.00.00 20Nov87

Speed: 12.5 MHz
Memory: 126 KBytes

HP64740 Emulation Analyzer
Version: A.00.00 20Nov87

383



Chapter 10:Emulator Commands

w
w
Thew command is used to program automatic waits into macros, repeats, and
command files. Normal operation is to wait for any keystroke before executing the
next operation; optionally, the wait can be programmed for a specific time period or
for completion of a measurement in process (such as a trace).
The parameters are as follows:

<NN> Wait for NN number of seconds before proceeding.

-m Wait for completion of the current measurement before proceeding.
The default is to wait for any keystroke on the command port before proceeding.

Examples To cause the emulator to wait for any keystroke before proceeding to the next

command, type:

U>w

You might use this in a situation where you wish the operator to make a judgement
regarding some other condition before proceeding with the next measurement. For
example, if some LEDs in the target system should reach a certain state before a
measurement is made, use the basic form of the wait commgnahich will

allow the operator to verify that the LEDs have reached the proper state; then
proceed with the next command by pressing any key.

To cause the emulator to wait for 32 seconds or for any keystroke, type:

U> w 32

This might be used where you know the desired system state will be reached in a
definite amount of time (or should be reached within that time).

384



Chapter 10:Emulator Commands

w

To have the emulator wait until another measurement is completed or for any
keystroke entry, type:

U> w-m

Note that the above examples, taken exactly as shown, don’t provide you with a
useful function—they are provided only to show correct examples of command line
syntax. To use the wait command effectively, it should be applied within macros,
repeat commands, or command files.

385



Chapter 10:Emulator Commands

X
X
{ X ) = <RETURN>
Thex command allows you to initiate a synchronous CMB (Coordinated
Measurement Bus) measurement execution.

Examples To initiate a synchronous CMB measurement and have this HP 64700 emulator
participate in the measurement, type the following commands:
M> rx 2000
M> tcf -e
M> tg addr=2000
M> tx
M> x
This enables the CMB and sets the run at execute address to 2000. The analyzer
trigger is also set to 2000 hex and trace at execute is enabled. Finally, the
command is issued, initiating the coordinated execution. Other emulators on the
CMB will respond per theirx, tx, andcmb commands.
Whenx is performed, the CMB /EXECUTE line is pulsedif(trace at execute) is
enabled, an analyzer measurement will begin. If the CMB is enabled cialthe
command, a break will occur, followed by a run at execute as specifiedzy the
command.
Thex command is available whether CMB and trace at execute are enabled or not.
Specifically, theemb andtx commands control how this HP 64700 emulator will
respond when an /EXECUTE or READY is detected. ¥hemmand only
controls when this emulator will issue an JEXECUTE signal.

See Also cmb (used to enable or disable interaction with the CMB)

rx (used to specify an address to start a program run when the /EXECUTE pulse is
received from the CMB)

tx (used to specify that an analyzer measurement should begin when the
/EXECUTE pulse is received from the CMB)

386



11

Expressions

Numeric and logical expressions used in the Terminal Interface

387



Chapter 11:Expressions

This chapter includes information about these expression types:
» ADDRESS (address expressions)

« ANALYZER_EXPR (expressions in trace specifications)

» COMPLEX_EXPR (complex configuration expressions)
 EXPR (numeric expressions)

 SIMPLE_EXPR (easy configuration expressions)

The syntax, functional description, and related information is included for each
expression type.

388



Chapter 11:Expressions
ADDRESS

ADDRESS

<EXPR>

The address expression (EXPR) allows you to enter an address in a form
recognized by the MC68020 or MC68030/EC030 emulator. When you see the
address variable in various syntax diagrams, remember that it is unique to the
MC68020 and MC68030/EC030 emulators.

The <EXPR> must be a 32 bit-number. (If you supply less than 32 bits, the number
is sign-extended to 32-bits). When you don'’t specify a base, such as “y” for binary,
“0” for octal, or “t” for decimal, the default is “h” for hexadecimal. You can specify

a function code to further qualify an address. The @ symbol is required if you
specify a function code. Otherwise, it must be omitted.

Function codes can be any of the following:

u—User

s—Supervisor

d—Data

p—Program

ud—User Data
up—User Program
sd—Supervisor Data
sp—Supervisor Program
x—Don’t Care
cpu—CPU space

389



Chapter 11:Expressions

ADDRESS

Examples

See Also

Suppose you create the following memory map:

R>map 0..0fff eram
R>map 1000..1fff@d eram
R>map 1000..1fff@p eram

Now, the following memory display commands are valid:

R>m 0..0f
R>m 1000..100f@p
R>m 1000..100f@d

The following command is invalid, because the emulator can't determine which
one of the ranges (program or data) you want to reference:

R>m 1000..100f

You can specify the base with the address. For example:

100t (100 base ten)
7010 (701 base eight)
2340@sd (234 base eight in supervisor data space)

m (memory display/modify command)
map (specify mapping of memory)

mo (display or modify global access and display modes)

390



Chapter 11:Expressions
ANALYZER_EXPR

ANALYZER_EXPR

T: <SIMPLE _EXPR> 7—>
<COMPLEX EXPR>
Analyzer expressions are used in specifying triggers, time qualifiers, primary and

secondary branch conditions, prestore qualifiers, and other analyzer setup items.
There are two types of analyzer expressions, simple and complex.

In asimple expressionthe analyzer label is related to a numeric expression within
an analyzer command. These expressions are required when the analyzer is in easy
configuration {cf -€).

Some examples include:
tg addr=2000
tif 1 data=20..30

telif addr!'=3000 or data!=5

In acomplex expressionthe relationship between an analyzer label and an
expression is assigned one of eight pattern identifiers or a range label. These
patterns and the range are then used to create the actual expressions. Complex
expressions are required when the analyzer is in complex configutefien).(

Some examples include:
First we assign a pattern name:

tpat p1 addr=2000
tpat p2 addr!'=3000
tpat p5 data!=5
trng data=20..30

Then we create the actual complex expressions within the analyzer commands:

391



Chapter 11:Expressions

ANALYZER_EXPR

See Also

tg pl

tifdlr

(r specifies the range defined with theg command)
telif 1 p2 or p5 3
Any syntax diagram in this manual that indicates <ANALYZER_EXPR> means

that a simple expression is required when the analyzer is in easy configuration, and
a complex expression is required when the analyzer is in complex configuration.

See the <SIMPLE_EXPR> and <COMPLEX_EXPR> syntax pages for complete
details on each expression.

392



Chapter 11:Expressions
COMPLEX_EXPR

COMPLEX_EXPR

<COMPLEX _EXPR>

<SET1>

and <SET2>
L or
<SET2> ‘
and <SET1>

<SET1>
(restricted to one operator type in the set)

| Rl

<SET2>

(restricted to one operator type in the set)

3
p7
arm

w—
Z==

In analyzer complex configuratiottf -c) you use pattern labels, which have been
assigned to various simple expressions, to form complex expressions.

393



Chapter 11:Expressions

COMPLEX_EXPR

Pattern Labels and Ranges

You assign pattern labels to simple expressions usirtpadheommand. For
example:

tpat p1 addr=2000

tpat p2 data!=00

tpat p3 stat=dma

tpat p4 addr=2000 and data=23
tpat p5 addr!'=2105 and data!=0fc

You use thérng command to provide assign the range label:

trng data=42..44

Sets

The pattern labels, along with the range and arm specifications, are divided into two
sets.

Set 1:

pl,p2,p3,p4,r,!r
Set 2:

p5,p6,p7,p8,arm

Intraset Operations

You use intraset operators to form relational expressions between members of the
same set. The operators are:

~ (intraset logical NOR)
| (intraset logical OR)

The operators must remain the same throughout a given intraset expression. So,
you could form the following types of intraset expressions:

pl~p2~r

(Pattern 1 NOR pattern 2 NOR range.)
p2 | 'r

(Pattern 2 OR (NOT range).)

394



Chapter 11:Expressions
COMPLEX_EXPR

p5 | arm
(Pattern 5 OR arm.)
p6 ~ p8

(Pattern 6 NOR pattern 8.)

You cannotuse the intraset operators to form expressions between set 1 and set 2.
Also, remember that the intraset operator must remain the same throughout the set.
Therefore, the following examples angalid:

p2~p3|p4

(This is incorrect because the operator must remain the same throughout the set.)

p2~pS
(You cannot use intraset operators for interset operations.)

Interset Operations

You use interset operators to form relational expressions between members of set 1
and set 2. The operators are:

and (interset logical AND)
or (interset logical OR)

You can then form the following types of expressions:
(set 1 expression) and (set 2 expression)

(set 1 expression) or (set 2 expression)

The order of sets does not matter:
(set 2 expression) and (set 1 expression)

395



Chapter 11:Expressions

COMPLEX_EXPR

Combination

You can use both the intraset and interset operators to form very powerful
expressions.

pl~p2 and p5|arm
p3 or p6~p7~p8

However, you cannot repeat different sets to extend the expression. The following
is invalid:

pl~p2 and p5 and p3 and p7

DeMorgan’s Theorem and Complex Expressions

It seems that you only have a few operators to form logical expressions. However,
using the combination of the simple and complex expression operators, along with
a knowledge of DeMorgan’s Theorem, you can form virtually any expression you
might need in setting up an analyzer specification.

DeMorgan’s theorem in brief says that

A NOR B = (NOT A) AND (NOT B)

and
A NAND B = (NOT A) OR (NOT B)
The NOR function is provided as an intraset operator. HowevedAN®

function is not provided directly. Suppose you wanted to set up an analyzer trace
of the condition

(addr=2000) NAND (data=23)

This can be done easily using the simple and complex expression capabilities.
First, you would define the simple expressions as the inverse of the values you
wanted to NAND:

tpat p1 addr!'=2000
tpat p2 data!=23
Then you would OR these together using the intraset operators:

p1|p2

396



Chapter 11:Expressions
COMPLEX_EXPR

This is effectively the same as:
(NOT addr=2000) OR (NOT data=23) = (addr=2000) NAND (data=23)

If you need an intraset AND operator, you can use the same theory. Suppose you
actually wanted:

(addr=2000) AND (data=23)
First, define the simple expressions as the inverse values:

tpat p1 addr!'=2000
tpat p2 data!=23

Then you would NOR these together using the intraset operators:

pl~p2

This is effectively the same as:
(NOT addr=2000) NOR (NOT data=23) = (addr=2000) AND (data=23)

See also See the <EXPR> syntax pages for information on numeric expression
specifications. See the <SIMPLE_EXPR> syntax pages for information on the
types of simple expressions that may be assigned pattern names. See the
<ADDRESS> syntax pages for information on address specifications.

397



Chapter 11:Expressions

EXPR

EXPR

<OPERATOR> |= i)

<j = <EXPR>
o/ o/
Numeric expressions are the root of all HP 64700 Terminal Interface expression

types, including analyzer expressions, address specifications, equates, and
expressions you might want to calculate usingettft®dcommand.

The expression capability in the Terminal Interface is very powerful; you may
specify numbers in one of four different bases and use many different arithmetic
and logical operators to form more complex expressions.

Terminal Interface expressions consist of othgressiongrecursion) andalues
which may be modified by variowperators. You may change the precedence of
operators by enclosing expressions within parentheses.

Values

<VALUE>

<NUMBER>

<PATTERN>

<LABEL>

i

Values consist afiumbers (in one of four basespatterns (hexadecimal, octal, or
binary numbers that also include don't care vallabgls (only labels pointing to
other numbers or patterns, assigned byethecommand), and symbols.

Numbers are in hexadecimal, decimal, octal, or binary. You specify the base as
follows:

Yy Binary (example: 10010y)
QgOo Octal (example: 3770 or 377Q)
Tt Decimal (example: 197T)

398



Chapter 11:Expressions
EXPR

Hh Hexadecimal (example: 0A7fH) (Note that hexadecimal
numbers starting with any one of the letter digits A-F must
be prefixed with a zero; otherwise the system will return an
error message)

If you do not specify a base, numbers default to hexadecimal or decimal, depending
on the context.

All numbers used in equates, echo, address specification, analyzer expressions, and
any other specification relating to a microprocessor address, data or status value
default to hexadecimal.

Numbers used to specify repeat count values, such as in the sequence branch
commands, trigger, step, repeat command, and so on, default to decimal.

Patterns are hexadecimal, octal, or binary numbers which include don't care digits,
specified by the letteds orx. The characte? represents a pattern of all don't care
digits. For example:

1011xx11ly
0A7Xh (equivalent to 000010100111xxxxy)
2x5Q (equivalent to 010xxx101y)

You will generally use patterns only in analyzer expressions. A place where you
might want to use don’t care values is to simulate a second range variable in
complex mode specifications. For example, you might have:

trng addr=4000..4020

And you need a second rangalafa from 11 through 14 hex. Although it isn’t
perfect, you can simulate a second range by assigning the pattern label:

tpat p1 data=00010XXXy

(This actually gives a range from 10 to 17 hex.)

Note Don't care values are not allowed in expressions foe¢checommand.

Labels refer to names equated to numbers, patterns, or other expressions using the
equ command.

399



Chapter 11:Expressions

EXPR

Note

Operators

4@ (Two's Complement)
@ (One's Complement)
(Integer Multiply)
paGEED
(Integer Divide)
~C )
(Modulo)
5 7%
(Addition)
e G
@ (Subtraction)
(Shift Left)
—e{ <<

(Rotate Left)

<<<
(Shift Right)
= >>
(Rotate Right)
>>>

(Bit—wise And)
e G
(Bit—wise Exclusive Or)
e G
T D
(Logical And (Bit—wise Merge))
= &8

The expression capability includes a powerful set of operators, freeing you from the
need to calculate expressions before entering them into other expressions. All
operations are carried out on 32 bit two’s complement signed integers (values
which are not 32 bit will be padded out with zeros when expression evaluation
occurs).

The operators are listed in the diagram above and described in order of evaluation
precedence. As mentioned above, you may use parentheses in the expression to
change the order of evaluation.

If your emulator supports symbols, and you are using a symbol in an expression,
only the+ and- operators are valid before and after the symbol. For example:
-dm 100h+main-5

400



Chapter 11:Expressions
EXPR

-~ Unary two’s complement, unary one’s complement. Two’s
complement is not allowed on patterns containing don’t
care bits. This is the truth table for one’s complement:

0=>1
1=>0
X=>X

Examples:

~1x0y = Ox1Y
-1101Y = 0011Y

*| % Integer multiply, integer divide, integer modulo. These
operations are not allowed on patterns containing don’t
care bits.

Examples:
30afH*21 = 06468fH
23T%A4T=3

0fa6/2 = 07d3h

+ - Addition, subtraction. Not allowed on patterns containing
don't care bits.

Examples:

03dh+03fh = 07ch
1110Y-101Y = 1001Y

<< << Shift left, rotate left, shift right, rotate right (you must
>>>>> specify the number of locations to shift or rotate after the
operator).
Examples:

1x0Y<<1 = 1x00Y

1x0Y>>1 = 01xY

401



Chapter 11:Expressions
EXPR

1x01Y>>>1 = 100000000000000000000000000001x0Y

Oxxf0abcdH>>>4 = 0dxxfOabcH

This symbol (&) represents a bit-wise AND operation. The
truth table is:

& 0 1 X

0 0 0 0

1 0 1 X

X 0 X X
For example:

10xxy&11x1Y = 10xxY

This symbol (*) represents a bit-wise exclusive OR
operation. The truth table is:

A 0 1 X

0 0 1 0

1 1 0 X

X 0 X X
For example:

10xxY"A11x1Y = 01xxY

402



&&

Chapter 11:Expressions

EXPR

This symbol (]) represents a bit-wise inclusive OR

operation. The truth table is:

| 0 X

0 0 0

1 1 1

X 0 X
For example:

10xxY|11x1Y = 11x1Y

This symbol (&&) represents a bit-wise merge operation.

The truth table resembles:

&& 0 X
0 0 0
1 ¥ 1
X 0 X

An overlap, indicated by*ain the merge truth table, may
occur if two patterns specify different values for a pattern
bit. If an overlap occurs, the first pattern’s value for that
bit overrides the second pattern’s value.

For example:

10xxY&&11x1Y = 10x1Y

Using Expressions in Addressing and in Analyzer Expressions

You can use the expression evaluation capability to form more powerful
expressions for use in specifying addressing and analyzer expressions. For
example, suppose you want to trigger the analyzer on the access to trap vector 13.

403



Chapter 11:Expressions
EXPR

Instead of calculating the address, since you know the base address is 080 hex and
each vector is four address bytes, you can specify this as:

tg addr=(080h+(13T*4))
You could simplify the above even further using the equate command to assign
names to some of the values. For example:

equ trapvectorbase=080h

equ trapvectorlength=4
Then:

tg addr=(trapvectorbase+(13*trapvectorlength))

See also See the <ANALYZER_EXPR>, <SIMPLE_EXPR>, and <COMPLEX_EXPR>
pages for information on the use of expressions in forming analyzer expressions.

See theechoandequ command syntax pages for information on use of expressions
in expression calculation and equates.

See the <ADDRESS> syntax pages for information on use of expressions in
addressing.

404



Chapter 11:Expressions
SIMPLE_EXPR

SIMPLE_EXPR

EASY CONFIGURATION ONLY

<LABEL> ‘e‘ = <EXPR>
- e . ‘ - <rXPR>

EASY AND COMPLEX CONFIGURATION

<LABEL> }—EP@% <EXPR>

[ o> o2+ oo |

Easy Configuration

When the analyzer is in easy configuratitafi {€), sSimple expressions are used to
set up trace qualifiers for sequencer branches, triggers, state counting, and so on.
These expressions can take the following forms:

label=expression
Examples addr=2000h
data=25h+20h

stat=0110xxxxY

label!'=expression

Examples stat!=suprdata (notice that the expression can also be
equate label)

data!=00

label=expression..expression
Examples addr=4000..401

data=41..42

405



Chapter 11:Expressions

SIMPLE_EXPR

label'=expression..expression
Examples addr!=1000..1038

data!=00..40
No more than one simple expression can exist at any given time which is in the
form of a range (expr..expr).

label=expression and label=expression
Examples addr=3000 and data=41

addr=start and data=00

label!=expression or label!=expression

Examples addr!'=3000 or data!=41

Complex Configuration

In analyzer complex configuratiotef -c), you assign each simple expression a
pattern name using ttigat command. These pattern names are then combined to
form complex expressions involving relationships between multiple simple
expressions.

With the exception of these two expressions:
label=expression..expression
label!=expression..expression

all of the simple expression types can be assigned pattern natpas ioy
complex configuration. To form ranges of expressions in complex configuration,
you use thérng command.

Examples tpat p1 addr!'=3000 or data!=41
tpat p2 data=23

trng addr=1000..1038

(You don't need thé&= relation in ranges because all complex expressions provide
for the logicalnot of the range specifier.)

406



Chapter 11:Expressions
SIMPLE_EXPR

Invalid Simple Expressions

The following simple expressions are invalid in either analyzer configuration. If

you need expressions of these types, you must switch to complex configuration,
assign pattern names to subparts of these expressions, and then combine them using
the complex expression capability.

label=expression and label'=expression

This is incorrect because you must use only=thedation with theand operator.
To represent this, switch to complex configuration and do the following:

tpat p1 label=expression

tpat p5 label'=expression

Now, you would represent the above (incorrect) simple expression as a complex
expression of the form:

pland p5
label!=expression or label=expression

A similar problem exists here. You must use onlyltheelation with theor
operator. To represent this, switch to complex configuration and do one of the
following.

tpat p1 label'=expression

tpat p2 label=expression

You would represent the above (incorrect) simple expression as a complex
expression of the form:

pl|p2

You could also do this:
tpat p1 label'=expression

tpat p5 label=expression

407



Chapter 11:Expressions

SIMPLE_EXPR
Represent this in complex form as:
pl or p5
See the <COMPLEX_EXPR> syntax pages for more details on forming complex
expressions.
See also See the <EXPR> syntax pages for information on numeric expression

specifications.

408



12

Emulator Error Messages .

The following messages may be seen when using the HP Emulators that support
MC68020/MC68EC020 and MC68030/MC68EC030.

409



Chapter 12:Emulator Error Messages
IERROR 1! I/O port access not supported

This chapter contains descriptions of error and status messages that can occur while
using the Terminal Interface. The error messages are listed in numerical order, and
each description includes the cause and the action you should take to remedy the
situation.

The HP 64700-Series emulators can return messages to the display only when they
are prompted to do so. Situations may occur where an error is generated as the
result of some command, but the error message is not displayed until the next
command (or a carriage return) is entered.

The emulator can return synchronous and/or asynchronous messages after
executing commands. Synchronous messages are the result of the command being
executed. Asynchronous messages are the result of some command executed
previously (ie: software breakpoint hit).

A maximum of eight error messages can be displayed at one time. If more than
eight errors are generated, only the last eight are displayed.

21

Emulator error messages

IERROR 1! I/O port access not supported

Cause: You used the command. The MC68020 and MC68030/MC68EC030
processors do not support separate 1/O address space.

Action: Use thean command to modify memory mapped I/O ports on these
emulators.

IERROR 21! Insufficient emulation memory
Cause: You tried to map more emulation memory than is available.

Action: Check your map specification. Do not try to map more emulation memory
than is available in your system. You can install up to 2 Mbytes of memory in your
system.

410



40

61

80

84

84

Chapter 12:Emulator Error Messages
IERROR 40! Restricted to real time runs

IERROR 40! Restricted to real time runs

Cause: Thef rrt=en option is set (restrict to real time runs) and you have entered a
command that requires a temporary break to the monitor for processing (such as a
request to display target system memory locations).

Action: Break to the monitor using tbecommand, and then execute the desired
command or disable real time mode withrt=dis .
IERROR 61! Emulator is in the reset state

Cause: This message is displayed if you request an operation that requires entry
into the emulation monitor, such as display of target system memory locations
while thecf rrt=en option is set (restrict to real time runs).

Action: If the prompt is R>, indicating an emulation system reset, break to the
monitor using thé command, and then retry the command. Otherwise, disable the
real time mode witlef rrt=dis .

IERROR 80! Stack pointer is odd

Cause: You tried to modify the stack pointer to an odd value for a processor that
expects the stack to be aligned on a word boundary.

Action: Modify the stack pointer to an even value.

IERROR 84! Program counter is odd

Cause: You tried to modify the program counter to an odd value usirggthe
command. The processor expects even alignment of opcodes.

Action: Modify the program counter only to even numbered values.

IERROR 84! Program counter is odd or uninitialized
Cause: You tried to run the processor from the current PC, but the PC was od

Action: Modify the PC to an even value. See Error message 84.

411



Chapter 12:Emulator Error Messages
IERROR 140! Invalid attribute for memory type : <attribute>

140

141

142

IERROR 140! Invalid attribute for memory type : <attribute>

Cause: The memory type attributgsanddsi are valid only for emulation memory
(eram or erom memory types). You tried to assign one of these attributes to target
memory {ram ortrom).

Action: See Chapter 3 for information on the memory type attributes.

IERROR 141! Dual ported memory limited to 4K bytes

Cause: There are only 4 Kbytes of dual-port emulation memory on the emulator
probe. You tried to map an emulation memory term whose address range spanned
more than 4 Kbytes by using ttp attribute.

Action: You can:

* Reenter thenap command, using thdp attribute. Be sure to restrict the
address range to 4 Kbytes (0O..fff).

* Reenter thenap command, and use regular emulation memory. That is, omit
thedp attribute.

IERROR 142! Dual ported memory already in use

Cause: There is only one 4-Kbyte block of dual-port, emulation memory available
for mapping. You mapped this term and tried to map another usidg Hit&ribute.

Action: Decide which block of memory should be in dual-port emulation memory,
and define that block using theap command with thep attribute. Use thenap
command without thdp attribute to define the other memory block.

412



Chapter 12:Emulator Error Messages
IERROR 143! Dual ported memory in use by foreground monitor

143 IERROR 143! Dual ported memory in use by foreground monitor

There is only one 4-Kbyte block of dual-port, emulation memory available for your
use. If you select the foreground monitcirhon=fg), this block is used by the
monitor and isn’t available for mapping.

Action: Reenter the map command withoutdbeattribute, or select a background
monitor and reenter the map command withdphettribute.

144 IERROR 144! Dual ported memory not mapped to <range> for downloaded
monitor
IERROR 144! Continuing with default foreground monitor

Cause: You tried to load a custom foreground monitor, but the load failed because
the addresses in the absolute file didn't match the address range reserved for the
monitor. The emulator aborted the load and reverted to the default foreground
monitor. The<range>parameter shows the range of addresses covered by the
custom monitor definition.

Action: To use a custom foreground monitor, you must:
» Select the foreground monitaf mon=fg

» Set the foreground monitor base address:
cf monaddr=<ADDRESS>

» Load an absolute file that fits in the 4-Kbyte range that starts with
<ADDRESS>using thdoad -f command.

145 IERROR 145! Downloaded monitor spans multiple 4K byte block boundaries

Cause: You tried to load a custom foreground monitor, but the absolute file has
address records that are outside the range of a single 4-Kbyte block.

Action: Modify your custom monitor so that its code and data fit into a single
4-Kbyte block; then assemble, link, and repeat the load operation.
146 IERROR 146! Monitor must be mapped on a 4K byte boundary

Cause: You tried to change the base address of the monitor to one that doesn’t start
on a 4-Kbyte boundary (address ending in 000).

Action: Reenter thef monaddr command and specify an address that ends in 000.

413



Chapter 12:Emulator Error Messages
IERROR 150! Program counter is located in guarded memory

150 IERROR 150! Program counter is located in guarded memory

Cause: You tried to run the processor from the current PC, but the PC pointed to
guarded memory.

Action: Modify the PC to an even value that points to a valid program memory area.

151 IERROR 151! <STACK> stack pointer is odd or uninitialized

Cause: You tried to run from some address or perform a monitor operation that
required the stack name@&TACK>, but the stack was set to an odd value, which
is invalid.

Action: Use theeg command to set the stack pointer to an even value that points at

a memory region that can be used for stack operations. For the ISP (interrupt stack
pointer), you can use tleé rv command to preset the initial value when the

emulator enters the monitor from reset. (The ISP must point to a memory region

that may be used as an interrupt stack.) Or, check your program to make sure it
doesn’t modify the ISP to an odd value. If the M bit in the status register is set, the
processor uses the master stack instead of the interrupt stack. The master stack must
also have an even value.

151 IERROR 151! <STACK> stack is located in guarded memory: <address>

Cause: You tried to run from some address or perform a monitor operation that
required the stack name&TACK>, but the stack pointer points to guarded
memory, which is invalid.

Action: Use theeg command to set the stack pointer to an even value that points at

a memory region that can be used for stack operations. For the ISP (interrupt stack
pointer), you can use tloé rv command to preset the initial value when the

emulator enters the monitor from reset. (The ISP must point to a memory region

that may be used as an interrupt stack.) Or, check your program to make sure that it
doesn’t modify the ISP to an odd value. If the M bit in the status register is set, the
processor uses the master stack instead of the interrupt stack. The master stack must
also have an even value.

414



151

152

152

152

Chapter 12:Emulator Error Messages
IERROR 151! <STACK> stack is located in ROM: <address>

IERROR 151! <STACK> stack is located in ROM: <address>

Cause: You tried to run from some address or perform a monitor operation that
required the stack name&TACK>, but the stack pointer points to emulation or
target ROM, which is invalid.

Action: Use theeg command to set the stack pointer to an even value that points at

a memory region that can be used for stack operations. For the ISP (interrupt stack
pointer), you can use tleé rv command to preset the initial value when the

emulator enters the monitor from reset. (The ISP must point to a memory region

that may be used as an interrupt stack.) Or, check your program to make sure that it
doesn’t modify the ISP to an odd value. If the M bit in the status register is set, the
processor uses the master stack instead of the interrupt stack. The master stack must
also have an even value.

IERROR 152! Invalid number of bytes for word access

Cause: The access mode was set to woad-aw), but you supplied an odd
number of bytes for a memory modify.

Action: Either change the access mode to byie{ab) or supply an even number
of bytes. (Note: this message will not appear for memory mapped witp the
attribute.)

IERROR 152! Invalid number of bytes for longword access

Cause: The access mode was set to long waod-4l), but the number of bytes
you supplied for a memory modify was not a multiple of four.

Action: Either change the access mode to byte or wood-éb or mo -aw), or
supply a number of bytes that is a multiple of four. (Note: this message will not
appear for memory mapped with e attribute.)

IERROR 152! Invalid number of words for longword access

The access mode was set to long ward al), but the number of bytes you
supplied for a memory modify was not a multiple of four.

Action: Either change the access mode to byte or wood-&b or mo -aw), or
supply a number of bytes that is a multiple of four. (Note: this message will not
appear for memory mapped with e attribute.)

415



Chapter 12:Emulator Error Messages
ISTATUS 155! Trace vector modified to <address> for single stepping

155

156

156

156

ISTATUS 155! Trace vector modified to <address> for single stepping

Cause: You used tlegstep) command. The emulator modified the trace vector to
<address> so that the single step function would operate correctly.

Action: See “To step the processor” in Chapter 4 for more information.

IERROR 156! Unable to verify trace vector; vector table in guarded memory

Cause: You used thegstep) command. The emulator tried to set the trace vector to
the correct value for stepping and failed due to a guarded memory access.

Action: Check the VBR register to make sure the vector table is where you expect it
to be. You need to remap memory so that the vector table will be located in a valid
memory area. See “To step the processor” in Chapter 4 for more information.

IERROR 156! Unable to verify trace vector; vector table read failed

Cause: You used thegstep) command. The emulator tried to set the trace vector to
the correct value for stepping. It failed because the vector table region was mapped
to target RAM or ROM, and (most likely) no physical memory was located at that
address.

Action: Make sure you initialized the vector correctly in your vector table. You
need to remap memory so that the vector table will be located in a valid memory
area. See “To step the processor” in Chapter 4 for more information.

IERROR 156! Unable to set trace vector to <address>; vector table write failed

Cause: You used ttegstep) command. The emulator tried to set the trace vector to
the correct value for stepping, but failed. The most likely cause is that the vector
table is mapped to target RAMdm) but the physical memory is target ROM or
there is no memory at that address.

Action: Make sure you initialized the vector correctly in your vector table. You
need to remap memory so that the vector table will be located in a valid memory
area. See “To step the processor” in Chapter 4 for more information.

416



156

156

157

158

160

Chapter 12:Emulator Error Messages

IERROR 156! Unable to set trace vector to <address>; vector table in TROM

IERROR 156! Unable to set trace vector to <address>; vector table in TROM

Cause: You used tlegstep) command. The emulator can’t modify the trace vector
to the correct value for stepping because the vector table region is mapped to target
ROM.

Action: Make sure you initialized the vector correctly in your vector table. You
need to remap memory so that the vector table will be located in a valid memory
area. See “To step the processor” in Chapter 4 for more information.

IERROR 156! Trace vector points to unreadable memory

Cause: You used tiegstep) command. The emulator found that the trace vector
was even and in a mapped memory range; however, the processor entered an
indefinite wait state when trying to read the location pointed to by the vector. This
may be caused by a memory system failure, either in the target system or the
emulator.

Action: Make sure the VBR register table is where you expect it to be. See “To
step the processor” in Chapter 4 for more information.

ISTATUS 157! Monitor type changed to foreground monitor

Cause: You enabled the MMU via a configuration command while the background
monitor was selected. The emulator automatically changed to use the default
foreground monitor when you enabled the MMU. Only a foreground monitor can
be used when the MMU is enabled.

IERROR 158! Background monitor unavailable while MMU is enabled

Cause: You attempted to switch to the background monitor while the MMU is
enabled.

Action: Use only a foreground monitor when the MMU is enabled.

IERROR 160! MMU not enabled via configuration

Cause: You tried to use thamu ordmmu command to display MMU translation
or load the deMMUer, but the MMU has not been enabledakitimu.

Action: Enable the MMU before trying to use these commands.

417



Chapter 12:Emulator Error Messages
ISTATUS 160! MMU not enabled via TC register

160

161

162

162

ISTATUS 160! MMU not enabled via TC register

Cause: You used tlremu or dmmu command to display MMU translations or

load the deMMUer, but the MMU has not been enabled in software by setting the
enable bit in the translation control register. The MMU does not have to be enabled
in software in order to use these commands and this status is only used to warn you
that the MMU is not actually enabled yet.

ISTATUS 161! Address(es) transparently translated via TTO/TT1

Cause: You used tiemu command to display MMU address translations and one
or more addresses are also transparently translated by the processor TTO and/or
TT1 registers. Other than this status messageniie command completely

ignores transparent translations when looking up logical-to-physical address
translations. This status is only used to warn you that the MMU is currently set up
to transparently translate one or more addresses 1:1 instead of using the displayed
address translations.

IERROR 162! MMU configuration error - invalid <register> value

Cause: You tried to use themu ordmmu command to display MMU translations
or load the deMMUer, but one of MMU registers (TC, CRP or SRP) is invalid.
You will also see this message if invalid alternate register values are specified on
the command line for themu command.

Action: To solve this problem, use treg command to initialize the MMU
registers to valid values or use thenu <reg>=<value>command to display
MMU translations using alternate register values.

IERROR 162! No translation for CPU space addresses

Cause: You tried to use thenu command to display MMU translations, but the
address you specified indicated CPU space address (ie: 123@cpu). By definition,
there are no translations performed by the MMU on CPU space addresses and the
logical address is the physical address.

Action: Try some other function code space.

418



163

164

164

164

Chapter 12:Emulator Error Messages
ISTATUS 163! Out of DeMMUer resources

ISTATUS 163! Out of DeMMUer resources

Cause: You used tltenmu command to load the deMMUer but there was not
enough resouces to reverse translate all address translations defined by your
translation tables. Depending upon the MMU page size selected, the deMMUer
can reverse translate 16M or 256M physical addresses into logical addresses.

Action: See the deMMUer chapter for more information on how to make the most
efficient use of the deMMUer resources.

ISTATUS 164! Transparent addresses denoted as physical in analysis trace

Cause: You used tltsnmu command to load the deMMUer and one or more
address ranges are transparently translated via TTO/TT1 registers. The deMMUer
will reverse translate your transparently translated addresses 1:1; however, these
addresses will be tagged as physical instead of logical. Unfortunately for these
addresses, symbolic lookup is not performed on addresses tagged as physical so
you will not be able to obtain symbolic support for these addresses.

If you have specified a read or write qualification for TTO or TT1, the deMMUer

will not provide the correct translation for addresses that do not meet the read/write
qualification. Because the deMMUer cannot distinguish between read and write
cycles, the deMMUer always interprets the TTO/TT1 registers as if the read/write
mask bit is set to ignore the read/write line (RWM=1).

IERROR 164! DeMMUer has not been loaded

Cause: You used tlitnmu -e command to enable the deMMUer before it had
been loaded.

Action: Use thelmmu -le to load and enable the deMMUer.

IERROR 164! Unable to access the deMMUer while analysis trace is in process

Cause: You used tiitnmu command while an analysis trace was running.
Because thdmmu command will adversely affect the analysis data path, it can
only be used when an analysis trace is not in process.

Action: Let the current analysis trace complete or usthtbtemmand to halt the
analysis trace. Then retry the operation.

419



Chapter 12:Emulator Error Messages
IERROR 170! Monitor failure; bus grant

170

170

170

170

IERROR 170! Monitor failure; bus grant

Cause: During a monitor command, an external target system device has
monopolized the bus and the monitor is no longer responding.

Action: Wait until the processor has regained bus control, and then retry the
operation or don't let external devices monopolize the bus for extended periods of
time.

IERROR 170! Monitor failure; CPU in wait state

Cause: Request to access memory failed because the target system did not provide
cycle termination for this address; the processor is in a continuous wait state. A
continuous wait state may indicate target system problems.

Action: If this occurred during an access to emulation memory, thefsithe
memory attribute must have been used. If the target is not supposed to provide
cycle terminations for this range, delete and reenter the map term wighout

IERROR 170! Monitor failure; no target power
Cause: You do not have proper power applied to your target system or demo board.

Action: Check the connection from your emulation probe to the target system or
demo board. If using the demo board, be sure you have connected the external
power cable correctly.

IERROR 170! Monitor failure; slow clock
Cause: The target system is providing target power but no clock signal.

Action: Make sure the clock oscillator is installed correctly.

420



Chapter 12:Emulator Error Messages
IERROR 170! Monitor failure; target reset

170 IERROR 170! Monitor failure; target reset

Cause: During a monitor command, the target system ascerted (and continues to
ascert) the reset signal; the monitor is no longer responding.

Action: Prevent your target system from ascerting the reset signal when you are
using monitor commands.

170 IERROR 170! Monitor failure; halted
170 IERROR 170! Monitor failure; no bus cycles

Cause: During a monitor command, one or more target exceptions caused the
processor to stop running bus cycles.

Action: Use the emulation-bus analyzer to determine what exceptions caused the
problem and try to work around them.

170 IERROR 170! Request failed; bus error

Cause: The monitor caught a bus error exception while attempting to display or
modify memory. This can occur if the target system terminates a memory access
with a bus error.

Action: See if this bus error occurred in emulation memory; if it diddshe

memory attribute must have been used. If the target is not supposed to provide
cycle terminations for this emulation memory range, delete and reenter this map
term without thedsi attribute.

The 68030 MMU can also terminate an access with a bus error if there is no valid
address transalation. Use thenu command to verify that the address translation
tables are set up correctly.

421



Chapter 12:Emulator Error Messages
IERROR 170! Request failed; level 7 interrupt

170

170

170

175

175

IERROR 170! Request failed; level 7 interrupt

Cause: The monitor caught a non-maskable level 7 interrupt (autovector) which
was generated by the target system while the emulator was executing a monitor
command. During monitor commands, the monitor uses its own exception vector
table and attempts to block all interrupts. However, a non-maskable level 7
interrupt causes the monitor to abort the command, and restore the original vector
table and interrupt priority mask. The target system level 7 interrupt handler is not
executed.

IERROR 170! Request failed; no MC68881/882 floating point coprocessor

Cause: You entered a command to display or modify an FPU register, but the
processor generated an exception indicating there is no coprocessor in your system.

IERROR 170! Request failed; unexpected exception <vector>

Cause: The monitor detected an exception that was generated during execution of a
monitor command.

IERROR 175! Coverage not supported

Cause: Theov (memory coverage) command doesn't exist in the
MC68020/MC68EC020 and MC68030/MC68EC030 emulators because there is no
supporting hardware.

IERROR 175! Copy target image not supported

Cause: Theim (copy image memory) command doesn'’t exist in the
MC68020/MC68EC020 and MC68030/MC68EC030 emulators. Normally, this
command would be used to copy a target system memory range to emulation
memory so you could set breakpoints or patch code.

Action: To do this without theim command, save the target system memory range
to an absolute file using tleimp command. Then remap the target memory range
to emulation memory, and load the absolute file into emulation memory using the
load command. See Chapter 4 for information on saving and loading absolute files.

422



176

176

178
178

178
178

179
179

Chapter 12:Emulator Error Messages
IERROR 176! Update HP64700 firmware to version A.03.01 or newer

IERROR 176! Update HP64700 firmware to version A.03.01 or newer

Cause: The emulator has found that one or more modules of your system firmware
is too old to be compatible with the emulation firmware.

Action: Update the system firmware to the lastest release.

IERROR 176! Update HP64740 firmware to version A.02.02 or newer

Cause: The emulator has found that your analysis firmware is too old to be
compatible with the emulation firmware.

Action: Update the analysis firmware to the lastest release.

IERROR 178! Unable to run HP64747 tests without target power
IERROR 178! Unable to run HP64748 tests without target power

Cause: The demo board does not have proper power connected to it.

Action: Check the connection of the external power cable to the demo board.

IERROR 178! Unable to run HP 64747 performance verification tests
IERROR 178! Unable to run HP 64748 performance verification tests

Cause: You entered tipg command, but the emulator was unable to start
performance verification.

Action: Make sure the correct emulator probe is connected and that all cables are
secured. Make sure that the demo board is connected to the emulator probe and that
the switches on the demo board are set to the test position. Also verify that the

demo board power cable is connected to the HP 64700 Card Cage.

IERROR 179! HP 64748 M68020 probe not connected
IERROR 179! HP 64747 M68030/EC030 probe not connected

Cause: The emulator is reading an invalid identifier for the emulation probe.

Action: Make sure that the probe cables are connected correctly. Also make s
that the probe is the MC68020/MC68EC020, or the MC68030/MCE68ECO030 prom®,
as applicable. Make sure correct firmware is flashed on the control card (020
firmware for the 020 probe or 030 firmware for the 030 probe).

423



Chapter 12:Emulator Error Messages
IERROR 201! Out of system memory

201

204
205
208

300
305

307

IERROR 201! Out of system memory

Cause: Macros and equates that you have defined have used all of the available
system memory.

Action: Delete some of the existing macros¢ -d <NAME>) and equates(u
-d <NAME>), which will free additional memory.

IERROR 204! FATAL SYSTEM SOFTWARE ERROR
IERROR 205! FATAL SYSTEM SOFTWARE ERROR
IERROR 208! FATAL SYSTEM SOFTWARE ERROR

Cause: The system has encountered an error from which it cannot recover.

Action: Write down the sequence of commands that caused the error. Cycle power
on the emulator and reenter the commands. If the error repeats, call your local HP
Sales and Service office for assistance.

IERROR 300! Invalid option or operand
IERROR 305! Invalid option or operand: <option>

Cause: You have specified incorrect option to a command. <option>, if printed,
indicates the incorrect option.

Action: Use online help by typingelp <command>or ? <command> Reenter
the command with the correct syntax. See Chapter 10 for more information.
IERROR 307! Invalid expression: <expression>

Cause: You have entered an expression with incorrect syntax; therefore, it cannot
be evaluated. <expression> is the bad expression.

Action: Use online help by typirgelp gram. Reenter the expression, following
the syntax rules for that type of expression. See Chapter 10 to determine the
expression type; then see Chapter 11 to determine the correct syntax for that type.

424



308

310

311

312

Chapter 12:Emulator Error Messages
IERROR 308! Invalid number of arguments

IERROR 308! Invalid number of arguments

Cause: You either entered too many options to a command or an insufficient
number of options.

Action: Reenter the command with correct syntax. Use online help by tyging
<command> See Chapter 10 in this manual for information.

IERROR 310! Invalid address: <address>

You specified an invalid address value as an argument to a command (other than an
analyzer command). For example, you may have specified digits that don’t
correspond to the base specified, or you forgot to precede a hexadecimal letter digit
with a number (even zero (0)).

Action: Reenter the command and the address specification. Use online help by
typing help proc. See the <ADDRESS> and the <EXPRESSION> syntax pages in
this manual for information on address specifications.

IERROR 311! Invalid address range: <address_range>

Cause: You specified an invalid address range as an argument to a command (other
than an analyzer command). For example, you may have specified digits that don’t
correspond to the base specified, or you forgot to precede a hexadecimal letter digit
with a number, or the upper boundary of the range you specified is less than the
lower boundary.

Action: Reenter the command and the address specification. Use online help by
typing help proc. See the <ADDRESS> syntax pages and <EXPRESSION> syntax
pages in this manual for information on address specifications. Also, make sure that
the upper boundary specification is greater than the lower boundary specification
(the lower boundary must always precede the upper boundary on the command
line).

IERROR 312! Ambiguous address: <address>

Cause: You mapped memory using function codes, but didn’t enter a function

in an address specification for a run or trace measurement. The emulator is u

to determine which of two or more address ranges you are referring to, based on the
information you entered.

Action: Reenter the command and fully specify the address, including function
code information.

425



Chapter 12:Emulator Error Messages
IERROR 313! Missing option or operand

313

314

315

316

317

IERROR 313! Missing option or operand
Cause: You have omitted a required option to the command.

Action: Reenter the command with the correct syntax. Use online help by typing
help <cmd> See Chapter 10 in this manual for further information on required
syntax.

IERROR 314! Option conflict: <option>

Cause: You have entered a command with two options which cannot be used
together. For example, you might have entéreduk; you cannot ask for both a
binary and hexadecimal trace list dump.

Action: Reenter the command, specifying only non-conflicting options. See the
syntax information for the command in Chapter 10 of this manual to determine
which options may be used together.

IERROR 315! Invalid count: <count>

Cause: This error occurs when the emulation system expects a certain number (of
arguments, for example), but you specify a different number.

Action: Enter the number the system expects to receive.

IERROR 316! Invalid range expression: <range>

Cause: In thd command, you specified an illegal range. For example, you might
have specified -10..a

Action: Use only legitimate range numbers inttheommand (-1024..1023 with
counting off, or -512..511 with counting on); the second range value must be
greater than the first.

IERROR 317! Range out of bounds: <address range>

Cause: In thd command, you specified a range number that was greater than the
number of states available in the analyzer. For example, you might have splecified
-2048..2048the analyzer only has 1024 states.

Action: Specify range numbers between -1024 and 1023 when counting is turned
off, or between -512 and 511 when counting is turned on.

426



Chapter 12:Emulator Error Messages
IERROR 318! Count out of bounds: <number>

318 IERROR 318! Count out of bounds: <number>

Cause: You specified an occurrence count less than 1 or greater than 65§35 for
or tif. For example, you might have entetiéd any 2 69234

Action: Reenter the command, specifying a count value from 1 to 65535. For
exampletif 1 any 2 65535

319 IERROR 319! Invalid base: <base>
Cause: This error occurs if you have specified an invalid basetinagbsmmand.

Action: Enter thénelp tf or command to view the valid base options.

320 IERROR 320! Invalid label: <label>

Cause: You tried to define a label with characters other than letters, digits, or
underscores.

Action: Reenter thdb command with a label consisting only of letters, digits, or
underscores.

321 IERROR 321! Label not defined: <label>

Cause: You entered an analyzer expression in which the label was not present in the
analyzer label list. For example, if the label list inclualddr, data, andstat, you

might have entered something suclgaewerdata=24t This error also occurs if

you try to delete a label that does not exist.

Action: You can reenter the command, using one of the previously defined labels,
and adjust the expression as necessary to accommodate the fit of that label to the
analyzer input lines. You can also define a new label usintpttemmand, and

then reenter the analyzer command using the newly defined label.

427



Chapter 12:Emulator Error Messages
IERROR 400! Record checksum failure

400

401

410

411

IERROR 400! Record checksum failure

Cause: During &ransfer operation, the checksum specified in a file did not agree
with that calculated by the HP 64700.

Action: Retry thearansfer operation. If the failure is repeated, make sure that both
your host and the HP 64700 data communications parameters are configured
correctly.

IERROR 401! Records expected: <number>; records received: <number>

Cause: The HP 64700 received a different number of records than it expected to
receive during &ransfer operation.

Action: Retry theransfer. If the failure is repeated, make sure the data
communications parameters are set correctly on the host and on the HP 64700. See
theHP 64700-Series Card Cage Installation/Service Giadeetails.

IERROR 410! File transfer aborted

Cause: Atransfer operation was aborted due to a break received, most likely a
<CTRL> ¢ from the keyboard. If you typed <CTRL> c, you probably did so
because you thought the transfer was about to fail.

Action: Retry the transfer, making sure to use the correct command options. If you
are unsuccessful, make sure the data communications parameters are set correctly
on the host and on the HP 64700; then retry the operation.

IERROR 411! Severe error detected, file transfer failed
Cause: An unrecoverable error occurred duritrgrasfer operation.

Action: Retry the transfer. If it fails again, make sure the data communications
parameters are set correctly on the host and on the HP 64700. Also make sure you
are using the correct command options, both on the HP 64700 and on the host.

428



Chapter 12:Emulator Error Messages
IERROR 412! Retry limit exceeded, transfer failed

412 IERROR 412! Retry limit exceeded, transfer failed

Cause: The limit for repeated attempts to send a record duraugséer operation
was exceeded; therefore, the transfer was aborted.

Action: Retry the transfer. Make sure you are using the correct command options
for both the host and the HP 64700. The data communications parameters need to
be set correctly for both devices. Also, if you are in a remote location from the host,
line noise may cause the failure.

520 IERROR 520! Equate not defined: <name>

Cause: You tried to delete an equate that did not exist in the equate table. For
example suppose the equaded andb=2 were in the equate table. If you typed
equ -d ¢ you would receive the above error message.

Action: Useequ to display the list of named equates before deleting equates.

603 IERROR 603! Read PC failed during break
Cause: The monitor is not responding.
Action: Check your target system configuration, the emulator configuration and
memory map, or reinitialize the emulator. Then try the command sequence again.
604 IERROR 604! Disable breakpoint failed: <address>
Cause: System failure or target condition.
Action: Emulator was unable to write previously saved opcode to target memory.
Check target memory system.
605 IERROR 605! Undefined software breakpoint: <address>

Cause: The emulator has encountered a BKPT instruction in your program that was
not inserted with thbp command.

Action: You can choose one of BKPT 1 through BKPT 7 for the software
breakpoint instruction, using tleé swcommand. Otherwise, remove the

breakpoints inserted in your code before assembly and link, and then reinsert them
using thebp command. If this message was received after you enabled the MMU
of the MC68030, read "Undefined software breakpoint in Chapter 9.

429



Chapter 12:Emulator Error Messages
IERROR 606! Unable to run after CMB break

606

608

610

611

IERROR 606! Unable to run after CMB break
Cause: System failure or target condition.

Action: Run performance verificatiop¥ command), and check target system.

IERROR 608! Unable to break

Cause: This message is displayed if the emulator is unable to break to the monitor
because the emulation processor is reset, halted, or is otherwise disabled.

Action: First, look at the emulation prompt and other status messages displayed to
determine why the processor is stopped. If reset by the emulation controller, use the
b command to break to the monitor. If reset by the emulation system, release that
reset. If halted, tryst -m to get to the monitor. If there is a bus grant, wait for the
requesting device to release the bus before retrying the command. If there is no
clock input, perhaps your target system is faulty. It's also possible that you have
configured the emulator to restrict to real time runs, which will prohibit temporary
breaks to the monitor.

If this message appears after you have turned on the MMU in an MC68030
emulator, the MMU may have relocated your breakpoint to an address unknown to
the breakpoint table. Refer to Chapter 9 for more information.

IERROR 610! Unable to run

Cause: Run has failed for some reason. For example, this message will appear if
the emulator cannot write to stack, which is required to run. Usually, this error
message will occur with other error messages.

Action: Refer to the descriptions of the accompanying error messages to find out
more information about why the run failed. Look at the emulator prompt to know
the emulator status. Take a trace with the analyzer to see where the emulator is
executing.

IERROR 611! Break caused by CMB not ready

Cause: This status message is printed during coordinated measurements if the CMB
READY line goes false. The emulator breaks to the monitor. When CMB READY

is false, it indicates that one or more of the instruments participating in the
measurement is running in the monitor. No action is necessary (status only).

430



Chapter 12:Emulator Error Messages
IASYNC_STAT 613! Analyzer Break

613 IASYNC_STAT 613! Analyzer Break

Cause: Status message. No action necessary.

615 IERROR 615! Software breakpoint: <address>

Cause: This status message is displayed when a software breakpoint entered with
bp and enabled withc -e bpis encountered during a program run. The emulator
breaks to the monitor. <address> shows the address where the breakpoint was
encountered.

616 IASYNC_STAT 616! BNC trigger break

Cause: This status message will be displayed if you hate setonctand the
BNC trigger line is activated during a program run. The emulator is broken to the
monitor.

617 IASYNC_STAT 617! CMB trigger break

Cause: This status message will be displayed if you hate setcmbtand the
CMB trigger line is activated during a program run. The emulator is broken to the
monitor.

618 IASYNC_STAT 618! trigl break

Cause: This status message will be displayed if you have set the analyzer to drive
trigl upon finding the triggelc -e triglis set, and the analyzer has found the
trigger condition while tracing a program run. The emulator is broken to the
monitor.

431



Chapter 12:Emulator Error Messages
IASYNC_STAT 619! trig2 break

619 IASYNC_STAT 619! trig2 break

This status message will be displayed if you have set the analyzer ttrigéve
upon finding the triggehc -e trig2 is set, and the analyzer has found the trigger
condition while tracing a program run. The emulator is broken to the monitor.

620 IERROR 620! Unexpected software breakpoint
621 IERROR 621! Unexpected step break

Cause: System failure.

Action: Run performance verificatiop¥ command).

623 IASYNC_STAT 623! CMB execute break

Cause: This message occurs when coordinated measurements are enabled and an
EXECUTE pulse causes the emulator to run; the emulator must break before
running. This is a status message; no action is required.

624 IERROR 624! Configuration aborted

Cause: Occurs when a <CTRL> c is entered dwfimiisplay command.

625 IERROR 625! Invalid configuration value: <value>

Cause:You have entered a configuration option incorrectly, such as ¢yping
sw=44instead oftf sw=4

Action: Typehelp cf <item>for a description of configuration items and valid
values. Reenter the configuration command, specifying only the correct values.

626 IERROR 626! Configuration failed; setting unknown: <item>=<value>

Cause: Target condition or system failure while trying to change configuration
item.

Action: Try to reset. Then reenter yafirommand. Check target system, and run
performance verificatiorpyy command).

432



Chapter 12:Emulator Error Messages
IERROR 627! Invalid configuration item: <item>

627 IERROR 627! Invalid configuration item: <item>

Cause: You specified a non-existent configuration item icfteemmand. For
example, because the MC68020/MC68EC020 and MC68030/MC68EC030
emulators don’t support an internal clock, you would see this message if you
enterectf clk=int because there is mtk configuration item for your emulator.

Action: Typehelp cfto see valid items. Reenter the command, specifying only
configuration items that are supported by your emulator. Refer b $yatax
pages in Chapter 10.

628 IASYNC_STAT 628! Write to ROM break: <address>

Cause: You sdic -e romand your program attempted to write to a memory
location mapped asom orerom. The <address> parameter indicates the address
and function code at which the write occurred. The emulator breaks into the
monitor.

628 IASYNC_STAT 628! Guarded mem break: <address>

Cause: Your program attempted to read or write a memory location mapped as
guardeddrd). The <address> parameter indicates the address and function code
where the bus cycle occurred. The emulator breaks into the monitor.

628 IASYNC_STAT 628! Monitor handled target exception; <exception>

Cause: The vector base register points to the exception vector table in the
foreground monitor and the target program generated an exception that was caught
by the monitor.

630 IERROR 630! Register access aborted

Cause: Occurs when a <CTRL> c is entered during register display.

631 IERROR 631! Unable to read registers in class: <name>
Cause: The emulator was unable to read the registers you requested.

Action: To resolve this, you must look at the other status messages displayed. Most
likely, the emulator was unable to break to the monitor to perform the register read.
See message 608.

433



Chapter 12:Emulator Error Messages
IERROR 632! Unable to modify register: <register>=<value>

632

634

637

640

641

IERROR 632! Unable to modify register: <register>=<value>
Cause: The emulator was unable to modify the register you requested.

Action: To resolve this, you must look at the other status messages displayed. It's
likely that the emulator was unable to break to the monitor to perform the register
modification. See message 608.

IERROR 634! Display register failed: <register>
Cause: The emulator was unable to display the register you requested.

Action: To resolve this, you must look at the other status messages displayed. It's
likely that the emulator was unable to break to the monitor to perform the register
display. See message 608.

IERROR 637! Register class cannot be modified: <register class>

Cause: You tried to modify a register class instead of an individual register. You
can only modify individual registers.

Action: See theeg syntax pages in Chapter 10 of this manual for a list of register
names.

IERROR 640! Unable to reset
Cause: Target condition or system failure.

Action: Check target system, and run performance verificgoegmmand).

IERROR 641! Unable to reset into monitor

Cause: You have enteredsa-m command and the emulator is unable to break
into the monitor.

Action: Reload the monitorgt). (If you are using a custom foreground monitor,
use thdoad -f command to reload the monitor).

434



Chapter 12:Emulator Error Messages
IERROR 652! Break condition must be specified

652 IERROR 652! Break condition must be specified

Cause: You enterdat -eor bc -d without specifying a break condition to enable or
disable.

Action: Reenter thbec command along with the enable/disable flag and the break
condition you wish to modify.

653 IERROR 653! Break condition configuration aborted

Cause: Occurs when <CTRL> c is entered dupmdisplay.

661 IERROR 661! Software breakpoint break condition is disabled

Cause: You entered th command and options; however, the software
breakpoint break condition is disabled.

Action: Enable the software breakpoint feature Withe bp Then enter the
desired breakpoints withp.
663 IERROR 663! Specified breakpoint not in list: <address>

You tried to enable a software breakpoby (e <ADDRESS3 that was not

previously defined. <address> prints the address of the breakpoint you attempted to
enable. Insert the breakpoint into the table and memory by tgping

<ADDRESS=>

664 IERROR 664! Breakpoint list full; not added: <address>

Cause: The software breakpoint table is full. The breakpoint you just requested,
with address <address>, was not inserted.

Action: Remove breakpoints that are no longer in usehpittr <ADDRESS>.
Then insert the new breakpoint.

665 IERROR 665! Enable breakpoint failed: <address>
Cause: System failure or target condition.

Action: Check memory mapping and configuration questions.

435



Chapter 12:Emulator Error Messages
IERROR 666! Disable breakpoint failed: <address>

666

667

668

669

670

671

680

IERROR 666! Disable breakpoint failed: <address>
Cause: System failure or target condition.

Action: Check memory mapping and configuration questions.

IERROR 667! Breakpoint code already exists: <address>

You attempted to insert a breakpoint with <ADDRESS> however, there was
already a software breakpoint instruction at that location which was not already in
the breakpoint table. Your program code is apparently using the same breakpoint
instruction adp. If multiple breakpoint instructions are available on your
processor, either change those in your program code or modify the oses

with your emulator’'s configuration optionsf command). If only one instruction is
available, remove the breakpoints from your program code arigpusdnsert
breakpoints.

IERROR 668! Breakpoint not added: <address>

You tried to insert a breakpoint in a memory location which was not mapped or
was mapped as guarded memory. Insert breakpoints only within memory ranges
mapped to emulation or target RAM or ROM.

IERROR 669! Breakpoint remove aborted

Cause: Occurs when <CTRL> c is entered duribg & command.

IERROR 670! Breakpoint enable aborted

Cause: Occurs when <CTRL> c is entered duribg & command.

IERROR 671! Breakpoint disable aborted

Cause: Occurs when <CTRL> c is entered duribg ad command.

IERROR 680! Stepping failed

Cause: Stepping has failed for some reason. For example, this message will appear
if the emulator can’t modify the trace vector, which is used to implement the step
function. Usually, this error message will occur with other error messages.

Action: Refer to the descriptions of the accompanying error messages to find out
more about why stepping failed. (See error message 151.)

436



682

684

685

686

688

689

692

Chapter 12:Emulator Error Messages
IERROR 682! Invalid step count: <count>

IERROR 682! Invalid step count: <count>

Cause: You specified an non-cardinal value for a step count $rctdremand
(such as entering 22.).

Action: Reenter the step command, using only cardinal values (positive integers)
for the step count.

IERROR 684! Failed to disable step mode

Cause: System failure. Run performance verificapncommand).

IERROR 685! Stepping aborted

Cause: This message is displayed if a break was received dsiisigp)
command with a stepcount of zero (0). The break could have been due to any of the
break conditions ibc or a <CTRL> ¢ break.

IERROR 686! Stepping aborted; number steps completed: <steps completed>

Cause: This message is displayed if a break was received dsiisigip)

command with a stepcount greater than zero. The break could have been due to any
of the break conditions inc or a <CTRL> ¢ break. The number of steps completed

is displayed.

IERROR 688! Step display failed

Cause: System failure or target condition.

Action: Check memory mapping and configuration questions.

IERROR 689! Break due to cause other than step

Cause: An activity other tharstep command caused the emulator to break. This
could include any of the break conditions incecommand or a <CTRL> c break.

IERROR 692! Trace error during CMB execute
Cause: System failure.

Action: Run performance verificatiopf command).

437



Chapter 12:Emulator Error Messages
IASYNC_ STAT 693! CMB execute; run started

693

694

700

702

707

IASYNC_STAT 693! CMB execute; run started

Cause: This status message is displayed when you are making coordinated
measurements. The CMB /EXECUTE pulse has been received; the emulation
processor started running at the address specified loy tmenmand.

IASYNC_ERR 694! Run failed during CMB execute
Cause: System failure or target condition.

Action: Run performance verificatiop¥ command), and check target system.

IERROR 700! Target memory access failed

Cause: This message is displayed if the emulator was unable to perform the
requested operation on memory mapped to the target system. In most cases, the
problem results from the emulator’s inability to break to the monitor to perform the
operation. Usually there are other error messages. Refer to them to fully
understand the cause of the error.

Action: See message 608.

IERROR 702! Emulation memory access failed

Cause: This message is displayed if the emulator was unable to perform the
requested operation on memory mapped to the target system. In most cases, the
problem results from the emulator’s inability to break to the monitor to perform the
operation. Usually there are other error messages. Refer to them to fully
understand the cause of the error.

Action: See message 608.

IERROR 707! Request access to guarded memory: <address>

Cause: The address or address range specified in the command included addresses
within a range mapped as guarded memory. When the emulator attempts to access
these during command processing, the above message is printed, along with the
specific address or addresses accessed.

Action: Reenter the command and specify only addresses or address ranges within
emulation or target RAM or ROM. You can also remap memory so that the desired
addresses are no longer mapped as guarded.

438



720

721

723

724

Chapter 12:Emulator Error Messages
IERROR 720! Invalid map term number: <map term number>

IERROR 720! Invalid map term number: <map term number>

Cause: You attempted to delete a mapper term that does not exist. For example, you
may have trieadnap -d 8 but the emulator only has seven map terms. You may
have triednap -d 2 when only one mapper term has been defined.

Action: Use themap command to determine the numbers of the terms currently
mapped. Then delete the appropriate mapper term.

IERROR 721! No map terms available; maximum number already defined

Cause: You tried to add more mapper terms than are available for this emulator. For
example, with the MC68020/MC68EC020 or MC68030/MC68EC030 emulator,
there are only seven terms. If you had already defined memory types for these
terms, then tried to map another term, you would see the above error message.

Action: Either combine map ranges to conserve on the number of terms or delete
mapper terms that aren’t needed.

IERROR 723! Invalid map address range: <address range>

Cause: You specified an invalid address range as an argumeniriapgthe

command. For example, you may have specified digits that don’t correspond to the
base specified, or you forgot to precede a hexadecimal letter digit with a number, or
the upper boundary of the range you specified is less than the lower boundary.

Action: Reenter thenap command and the address specification. See the
<ADDRESS> and the <EXPRESSION> syntax pages in this manual for
information on address specifications. Also, make sure that the upper boundary
specification is greater than the lower boundary specification (the lower boundary
must always precede the upper boundary on the command line).

IERROR 724! Address not mappable: <address>

Cause: You tried to map an address range using a non-mappable function co
example, you may have entered map 1000..10ff@cpu.

Action: Enter your address using an acceptable function code. The only functi
codes that may be used in map specifications are X, sp, sd, up, up, s, u, p, and d.

439



Chapter 12:Emulator Error Messages
IERROR 725! Unable to load new memory map; old map reloaded.

725

726

730

731

732

IERROR 725! Unable to load hew memory map; old map reloaded.
Cause: There is not enough emulation memory left for this request.

Action: Reduce the amount of emulation memory requested.

IERROR 726! Unable to reload old memory map; hardware state unknown

Cause: Error occurred while trying to modify the emulation memory map.

Action: Usually there are other error messages present. Refer to their descriptions
to more fully understand the cause and action to take for this error.

IERROR 730! Invalid memory map type: <type>

Cause: You specified a memory type while mapping that is not one of the
supported typesram, erom, tram, trom, orgrd.

Action: Reenter thenap command, specifying only one of the five supported
types, listed above.

IERROR 731! Invalid memory map attribute: <attribute>

Cause: The only valid memory map attributes for the MC68020/MC68EC020
emulator arelp (dual-port memory) andsi (interlockDSACKSs). The
MC68030/MC68EC030 emulator supports these attributes awcil(teche inhibit)
attribute. For example, the following command will cause an error: “map 0..100
eram ds2”.

Action: Reenter your command, using only valid memory map attributes.

IERROR 732! Invalid memory type for 'other’ range: <type>

Cause: The memory types foap other <type>are restricted ttram, trom, or
grd. If you see the above message, you have tried to map the “other” ramgmto
or erom.

Action: Map the “other” range twam, trom, orgrd.

440



Chapter 12:Emulator Error Messages
IERROR 734! Map range overlaps with term: <term number>

734 IERROR 734! Map range overlaps with term: <term number>

Cause: You entered a map term whose address range overlaps with one already
mapped. For example, you may have entered artexpn1000..2fff eram and then
tried to enter a terrmap 2000..3fff erom

Action: Reenter the map term so that ranges do not overlap, or combine terms and
change the memory type. See the <ADDRESS> syntax pages in Chapter 11 of this

manual.
752 IERROR 752! Copy memory aborted; next destination: <address>
754 IERROR 754! Memory modify aborted; next address: <address>
756 IERROR 756! Memory search aborted; next address: <address>

Cause: One of these messages is displayed if a break occurs during processing of
thecp, m, orsercommands, respectively. The break could result from any of the
break conditions (excepp) or could have resulted from a <CTRL> c break.

Action: Retry the operation. If breaks are occurring continuously, you may wish to
disable some of the break conditions withttheommand.

800 IERROR 800! Invalid command: <command>

Cause: You entered a command that is not part of the standard Terminal Interface
command set (documented in this manual) and was not found in the currently
defined macros.

Action: Enter only commands defined in this manual or in the macro set. You can
display the macro set usingac. You can rename commands or name command
groups using thenac command.

801 IERROR 801! Invalid command group: <group hame>

Cause: This error occurs when you specify an invalid group namehelthes
<group> command.

Action: Enter thénelp command with no options for a listing of the valid group
names.

441



Chapter 12:Emulator Error Messages
IERROR 802! Invalid command format

802

807

809

812

813

814

IERROR 802! Invalid command format

Cause: This error occurs when an invalid macro is entered, for examagle,
{help:{}.

Action: See thenac command description.

IERROR 807! Macro list full; macro not added
Cause: The maximum number of macros have been defined.

Action: You must delete macros before adding any new macros.

IERROR 809! Macro buffer full; macro not added
Cause: This error occurs when the memory reserved for macros is all used up.

Action: You must delete macros to reclaim memory in the macro buffer.

IERROR 812! Invalid macro name: <name>

Cause: You tried to delete a macro that did not exist; or you tried to define a new
macro with a name containing characters other than letters, digits, or underscores.

Action: Use themac command to display the names of macros in the macro table
before deleting them witmac -d <NAME>. Define new macro names using only
letters, digits, and underscore characters.

IERROR 813! Command line too long; maximum line length: <number of
characters>

Cause: This error occurs when the command line exceeds the maximum number of
characters.

Action: Split the command line into two command lines.

IERROR 814! Command line too complex
Cause: There was not enough memory for the expressions in the command line.

Action: Split up the command line, or use fewer expressions.

442



815

816

818

820

822

Chapter 12:Emulator Error Messages
IERROR 815! Missing macro parameter: <parameter>

IERROR 815! Missing macro parameter: <parameter>

Cause: This error occurred because you did not include a parameter with the
specifiedmac command for macro expansion.

Action: Enter the command again, and include the appropriate parameter for the
macro expansion.

IERROR 816! Command line too complex
Cause: Too many expression operators are used.

Action: Split up the command line, or use fewer expressions.

IERROR 818! Command line too complex
Caue: A maximum nesting level has been exceeded for nested command execution.

Action: Reduce the number of nesting levels.

IERROR 820! Unmatched quote encountered

Cause: In entering a string, such as withettlitocommand, you didn’t properly
match the string delimiters (eitheror " ). For example, you might have entered

echo “set S1 to off

Action: Reenter the command and string, making sure to properly match opening
and closing delimiters. Note that both delimiters must be the same character. For
exampleecho “set S1 to off!

IERROR 822! Unmatched command group encountered

Cause: You entered theac or rep command group without matching braes
For examplemac test={rst -m;cforrep 2 {rst -m;map.

Action: Reenter the command, making sure to match braces around comman
want grouped into the macro or repeat. For exampéde: test={rst -m;cf}.

443



Chapter 12:Emulator Error Messages
IERROR 824! Maximum number of arguments exceeded

824

826

840

842

844

850

IERROR 824! Maximum number of arguments exceeded
Cause: You exceeded the limit of 100 arguments per command.

Action: Reduce the number of arguments in the command.

IERROR 826! Maximum argument buffer space exceeded
Cause: You exceeded the space limits for argument lists.

Action: Reenter the command with less arguments, or simplify the expressions in
the arguments.

IERROR 840! Invalid date: <date>

Cause: You specified the date format incorrectly irdtheommand.

Action: Reenter the command with the correct date format. Seé ¢coenmand
syntax pages in this manual for the correct format.

IERROR 842! Invalid time: <time>

Cause: You have incorrectly specified the time format imtleammand.
Action: Reenter the command with the correct time format. Set teenmand
syntax pages in this manual for the correct format.

IERROR 844! Invalid repeat count: <count>

Cause: You entered a non-cardinal value for the repeat countréptbemmand,
such agep 22.1 <command_group>

Action: Reenter theep command, specifying only a cardinal number (positive
integer) for the repeat count.

IERROR 850! Attempt to load code outside of allocated bounds

Cause: This error occurs when tbeé command attempts to load an absolute file
that contains code or data outside the range allocated for system code. Generally,
you will not use thécd command. Théed command is intended to be used by
high-level interfaces to the HP 64700.

444



875

876

877

878

879

Chapter 12:Emulator Error Messages
IERROR 875! Invalid syntax for global or user symbol name: <symbol>

IERROR 875! Invalid syntax for global or user symbol name: <symbol>

Cause: This error occurs when you enter a global or user symbol name with
incorrect syntax.

Action: Make sure that you enter the global or user symbol name using the correct
syntax. When specifying a global symbol, make sure that you precede the global
symbol with a colon (for examplaglb_sym). When specifying a user symbol
(created with theym command), make sure that you enter the name correctly
without a colon.

IERROR 876! Invalid syntax for local symbol or module: <symbol/module>

Cause: This error occurs when you enter a local symbol or module name with
incorrect syntax.

Action: When entering a local symbol name usingsiira command, make sure

that you specify the module name, followed by a colon, and then the symbol name
(for examplemodule:loc_syn). Make sure that you specify the module name
correctly.

IERROR 877! Symbol not found: <symbol>
Cause: This occurs when you try to enter a symbol name that doesn't exist.

Action: Enter a valid symbol name.

IERROR 878! Symbol cannot contain wildcard in this context

Cause: You tried to enter a global, local, or user symbol name using the wildcard
(*) incorrectly.

Action: When you enter the symbol name again, include the wildcard (*) at the end
of the symbol.
IERROR 879! Symbol cannot contain text after the wildcard

Cause: You tried to include text after the wildcard specified in the symbol ham
(for examplesym*text).

Action: Enter the symbol again, but don't include text after the wildcard (*).

445



Chapter 12:Emulator Error Messages
IERROR 880! Conflict between expected and received symbol information

880

881

882

IERROR 880! Conflict between expected and received symbol information

Cause: The information you supplied in a symbol definition is not what the
HP 64700 expected to receive.

Action: Make sure that all symbols in the symbol file are defined correctly. Verify
that there are no spaces in the address definitions for the symbols in the symbol file
being downloaded.

IERROR 881! Ascii symbol download failed

Cause: This error occurs because the system is out of memory.

Action: You must either reduce the number of symbols to be loaded, or free up
additional system space and try the download again.

IERROR 882! No module specified for local symbol

Cause: This error occurs because you tried to specify a local symbol name without
specifying the module name where the symbol is located.

Action: Enter the module name where the local symbol is located, followed by a
colon, and then the local symbol name.

446



Chapter 12:Emulator Error Messages
IERROR 1000! Conflicting disassembler option: <option>

1000

1001

1102

1103

Analyzer Error Messages

IERROR 1000! Conflicting disassembler option: <option>

Cause: This error occurs when you attempt to specify inverse assembly dptions (
-o<ialopts>) which are not allowed with each other (for examgblaai).

Action: Do not use conflicting inverse assembly options in the same trace list
command.

IERROR 1001! Invalid disassembler option: <option>

Cause: The ialopts> option specified with thetf-0” command is not valid. The
valid disassembler options aédisplay all bus cycles),(display only instruction
cycles)d (dequeue the trace list) (don’t dequeue the trace list), dnd
(disassemble starting with the lower word of the instruction).

Action: Use valid inverse assembly options in your command.

IERROR 1102! Invalid bit range; crosses two multiples of 16: <sig#>..<sig#>

Cause: This error occurs when defining trace labels. A trace label may not contain
trace signals crossing two 16-bit boundaries. For example, the comttamaitie

1..32 will cause this error because “name” contains signals that cross the 15-16
and 31-32 16-bit boundaries.

Action: Redefine your trace label so that no more than one 16-bit boundary is
crossed.

IERROR 1103! Invalid bit range; out of bounds: <sig#>..<sig#>

Cause: This error occurs when defining trace labels, and you have attempted to
assign non-existent trace signals to a label.

Action: Enter the trace activity command to view the trace signals present, an
only these signals when defining trace labels.

447



Chapter 12:Emulator Error Messages
IERROR 1104! Invalid bit range; too wide: <sig#>..<sig#>

1104

1105

1108

1130

IERROR 1104! Invalid bit range; too wide: <sig#>..<sig#>

Cause: This error occurs when defining trace labels, and you have attempted to
assign more than 32 trace signals to a label.

Action: Use more than one trace label to define over 32 trace signals.

IERROR 1105! Unable to delete label; used by emulation analyzer: <label>

Cause: This error occurs when you attempt to delete an emulation trace label that is
currently being used as a qualifier in the emulation trace specification or is
currently specified in the emulation trace format.

Action: Display the emulation trace sequencer specification in the configuration,
display the emulation trace patterns in the complex configuration, or display the
trace format to see where the label is used. Also, you shouldtchemhdtpq for

uses of that label. You must change the pattern or format specification to remove
the label before you can delete it.

IERROR 1108! Unable to redefine label; used by emulation analyzer: <label>

Cause: This error occurs when you attempt to redefine an emulation trace label that
is currently used as a qualifier in the emulation trace specification.

Action: Display the emulation trace sequencer specification in the easy
configuration, display the emulation trace patterns in the complex configuration, or
display the emulation trace format to see where the label is used. You must change
the pattern or format specification to remove the label before you can redefine it.

IERROR 1130! lllegal base for count display

Cause: When specifying the trace format, counts may only be displayed relative or
absolute. When counting states, the count is always displayed as a decimal number.

Action: Respecify the trace format without using a base for the count column. Also,
you can use,A” to specify that counts be displayed absolute, or you cani%e “
to specify that counts be displayed relative.

448



1131

1132

1133

1138

1139

Chapter 12:Emulator Error Messages
IERROR 1131! lllegal base for mnemonic disassembly display

IERROR 1131! lllegal base for mnemonic disassembly display

Cause: When specifying the trace format, you cannot specify a number base for the
column containing mnemonic information.

Action: Respecify the trace format without using a base for the mnemonic column.

IERROR 1132! lllegal base for sequencer display

Cause: When specifying the trace format, you cannot specify a number base for the
column containing sequencer information.

Action: Respecify the trace format without using a base for the sequencer column.

IERROR 1133! Trace format command failed; using old format

Cause: This error occurs when the trace format command fails for some reason.
Action: This error message always occurs with another error message. Refer to the
description for the other error message displayed.

IERROR 1138! lllegal width for symbol display: <width>

Cause: This error occurs when the value specified for the trace format address field
width is not valid.

Action: Enter theéf command again, and specify the width of the address field for
symbol display within the range of 4 to 55.
IERROR 1139! lllegal width for addr display, mne not specified

Cause: This error occurs when you specify a width for the address fieldfin the
command, but do not include thne option.

Action: Enter the command again, and includentine option.

449



Chapter 12:Emulator Error Messages
IERROR 1141! Symbol display unavailable without mne field

1141 IERROR 1141! Symbol display unavailable without mne field

Cause: This error occurs when you try to display symbols, but have not included
themne option to thef command.

Action: Don't try to display symbols unless thme field has already been
specified.
1202 IERROR 1202! Trigger position out of bounds: <bounds>

Cause: This error occurs when you attempt to specify a number of lines to appear
either before or after the trigger which is greater than the number of lines allowed.
The <bounds> string indicates the incorrect range you typed (not the correct limits
on the range).

Action: Be sure that the trigger position specified is within the range -1024 to 1023
(or -512 to 511 if counting is enabled).

1207 IERROR 1207! Invalid clock channel: <name>
Cause: Valid clock channels are L, M, and N.

Action: Respecify the command using valid clock channels.

1209 IERROR 1209! Operator must be “and” or “or”: <expression>

Cause: When combining trace labels to specify trace patterns (in simple expressions
or with thetpat command), an operator of either “and” or “or” must appear
between the label qualifiers.

Action: See Chapter 11 for information on valid patterns.

1210 IERROR 1210! Illegal mix of = and !=

Cause: When combining trace labels to specify patterns (in simple expressions or
with thetpat command), all labels must either be equal to values or not equal to
values.

Action: See Chapter 11.

450



Chapter 12:Emulator Error Messages
IERROR 1211! lllegal mix of and/or

1211 IERROR 1211! lllegal mix of and/or

Cause: When combining trace labels to specify patterns (in simple expressions or
with thetpat command), all label qualifiers must either be ANDed together or
ORed together. You cannot mix these operators.

Action: See Chapter 11 for more information.

1212 IERROR 1212! Conflict with overlapping label: <label>

Cause: When combining trace labels to specify patterns (in simple expressions or
with thetpat command), you cannot combine labels which are defined for common
trace signals. For example, the following easy configuration commands will result

in this errortlb low8 0..7; tlb low16 0..15; tg low8=0 and low16=1

Action: Either omit one of the overlapping labels, or redefine your labels so they do
not contain common trace signals. You could also circumvent this error by using
don't cares in the appropriate places; for the example shown in cause, you could
specify patterntg low8=0xx0xY and low16=1

1213 IERROR 1213! Illegal mix of !=/and

Cause: When combining trace labels to specify patterns (in simple expressions or
with thetpat command), labels that are not equal to values must be ORed together
so that the entire pattern specifies a “not equals” condition.

Action: See Chapter 11 for information on valid patterns.

1214 IERROR 1214! lllegal mix of =/or

Cause: When combining trace labels to specify patterns (in simple expressions or
with thetpat command), labels that are equal to values must be ANDed together so
that the entire pattern specifies an “equals” condition.

Action: See Chapter 11 for information on valid patterns.

1215 IERROR 1215! Comparator must be = or !=: <label>

Cause: When combining trace labels to specify patterns (in simple expressions or

with thetpat command), the value of the label can only be specified with the “=" or
“1=" operators.

Action: See Chapter 11 for more information.

451



Chapter 12:Emulator Error Messages
IERROR 1217! lllegal pattern name: <name>

1217

1218

1219

1221

1224

IERROR 1217! lllegal pattern name: <name>
Cause: Valid pattern names are p1 through p8.

Action: Use only valid pattern names.

IERROR 1218! lllegal comparator for range qualifier: =

Cause: When specifying a range with titmgy command, you cannot use the"!="
operator.

Action: Use the “Ir” range name.

IERROR 1219! Range cannot be combined with any other qualifier

Cause: For example, the following easy configuration command will result in this
error:tsto addr=400..4ff and data=40

Action: Do not attempt to combine labels when using range qualifiers.

IERROR 1221! Range resource in use

Cause: This error occurs when you attempt to use two different range expressions
in the “easy” configuration trace specification or when you attempt to redefine the
“complex” configuration range resource while it is currently being used as a
qualifier in the trace specification.

Action: Do not attempt to use more than one range expression in the “easy”
configuration trace specification. In the “complex” configuration, display the
sequencer specification to see where the range resource is being used and remove
it; then, you can redefine the range resource.

IERROR 1224! Sequence term number out of range: <term>

Cause: This error occurs when a sequencer qualification comtifabelif, tsq, or

tsto) specifies a non-existent sequence term. The easy configuration sequencer may
have a maximum of four sequence terms. Eight sequence terms exist in the
complex configuration sequencer.

Action: Reenter the command using an existing sequence term.

452



Chapter 12:Emulator Error Messages
IERROR 1225! Sequence term not contiguous: <term>

1225 IERROR 1225! Sequence term not contiguous: <term>

Cause: This error occurs when you attempt to insert a sequence term that is not
between existing terms or after the last term. For example, the following easy
configuration commands will result in this errti:any; tsq -i 4

Action: Be sure that the sequence term you enter is either between existing
sequence terms or after the last sequence term.

1226 IERROR 1226! Too many sequence terms
Cause: This error occurs when you attempt to insert more than four sequence terms.

Action: Do not attempt to insert more than four sequence terms.

1227 IERROR 1227! Sequence term not defined: <term>

Cause: This error occurs when you attempt to delete or specify a primary branch
expression for a sequence term number that is possible, but is not currently defined.

Action: Insert the sequence term, and respecify the primary branch expression for
that term.
1228 IERROR 1228! One sequence term required

Cause: This error occurs when you attempt to delete terms from the sequencer
when only one term exists.

Action: At least one term must exist in the sequencer. Do not attempt to delete
sequence terms when only one exists.

1234 IERROR 1234! Invalid occurrence count: <number>
Cause: Occurrence counts may be from 1 to 65535.

Action: Reenter the command with a valid occurrence count.

453



Chapter 12:Emulator Error Messages
IERROR 1239! Clock speed not available with current count qualifier

1239

1240

1241

1245

1246

IERROR 1239! Clock speed not available with current count qualifier

Cause: This error occurs when you attempt to specify a fast (F) or very fast (VF)
maximum qualified clock speed when counting titeg (ime). This error also
occurs when you attempt to specify a very fast (VF) maximum qualified clock
speed when counting states (for exanmiolg addr=400).

Action: Change the count qualifier; then reenter the command. See Chapter 5 for
more information.
IERROR 1240! Count qualifier not available with current clock speed

Cause: This error occurs when you attempt to specify the “time” count qualifier
when the current maximum qualified clock speed is fast (F) or very fast (VF). This
error also occurs when you attempt to specify a “state” count qualifier when the
maximum qualified clock speed is fast (F).

Action: Change the clock speed; then change the count qualifier. See Chapter 5 for
more information.

IERROR 1241! Invalid qualifier resource or operator: <expression>

Cause: When specifying complex expressions, you have either specified an illegal
pattern or used an illegal operator.

Action: See Chapter 11 for more information.

IERROR 1245! Range qualifier not accessible in easy configuration

Cause: This error occurs when you attempt to userthecommand in the easy
configuration.

Action: Changing into the complex configuration will allow you to usertig
command; otherwise, specify the range in easy configuration command expressions.
IERROR 1246! Pattern qualifiers not accessible in easy configuration

Cause: This error occurs when you attempt to usgp#teeommand in the easy
configuration.

Action: Changing into the complex configuration will allow you to usdphe
command; otherwise, specify the patterns in easy configuration command
expressions.

454



1248

1249

1250

1251

1253

Chapter 12:Emulator Error Messages
IERROR 1248! Range term used more than once

IERROR 1248! Range term used more than once

Cause: This error occurs when you attempt to use the range resource more than
once in a sequencer branch expression.

Action: Do not try to use the range resource more than once in a sequencer branch
expression.

IERROR 1249! Invalid qualifier expression: <expression>.

Cause: This error message is shown with the errors that occur when patterns, the
range, or the arm condition is used more than once within a set. This error message
also occurs when intraset operators are not the same. For example, the following
complex expression will result in this errptt ~ p2 | p3

Action: See Chapter 11 for more information.

IERROR 1250! Arm term used more than once

Cause: This error occurs when you attempt to use the “arm” qualifier more than
once in a sequencer branch expression.

Action: Reenter the trace command and specify the “arm” qualifier only once.

IERROR 1251! Trigger term cannot be term 1

Cause: This error occurs when you attempt to specify the first sequence term as the
trigger term. The trigger term may be any term except the first.

Action: Respecify the trigger term as any other sequence term.

IERROR 1253! Invalid pod number: <pod#>

Cause: This error message occurs when you attempt to specify a slave clock for a
non-existent analyzer pod.

Action: Use the trace activity command to display the valid pod numbers, and
only these numbers when entering commands.

455



Chapter 12:Emulator Error Messages
IERROR 1302! Trig1 signal cannot be driven and received

1302

1303

1305

IERROR 1302! Trigl signal cannot be driven and received

Cause: This error occurs when you attempt to specify the internal trigl signal as the
trace arm condition while the same analyzer’s trigger output is currently driving the
trigl signal. This error also occurs if you attempt to specify that the trigger output
drive the internal trigl signal while that signal is currently specified as the arm
condition for the same analyzer.

Action: You can either change the arm or the trigger output specification; in either
case, make sure they do not use the same internal signal.

IERROR 1303! Trig2 signal cannot be driven and received

Cause: This error occurs when you attempt to specify the internal trig2 signal as the
trace arm condition while the same analyzer’s trigger output is currently driving the
trig2 signal. This error also occurs if you attempt to specify that the trigger output
drive the internal trig2 signal while that signal is currently specified as the arm
condition for the same analyzer.

Action: You can either change the arm or the trigger output specification; in either
case, make sure they do not use the same internal signal.

IERROR 1305! CMB execute; emulation trace started

Cause: This status message informs you that an emulation trace measurement has
started as a result of a CMB execute signal (as specified bixthes Eommand).

456



13

Data File Formats

File formats for binary trace lists and symbol files .

457



Chapter 13:Data File Formats

The HP 64700 Series Emulator defines two special file formats that allow compact
representations of trace list information and symbol information. These file formats
may be useful to you if you decide to build software tools that interact with the
Terminal Interface. Both file formats are described in this chapter.

Binary/Hexadecimal Trace List Format

Thetl command supports two optionb,(binary) andx (hexadecimal) which
allow you to dump the trace list to your host for post processing.

When you request a binary trace list dump from the HP 64700 Emulator (

option), the emulator sends the data using the HP &4@@&fer protocol. You

must use an 8-bit communications channel to successfully transfer the data (HP
64700 and the host device must both be configured to send and receive eight bits).

The hexadecimal trace list dumy pption) also uses the HP 640@énsfer
protocol, but does not require an 8-bit communications channel. However, twice as
many characters will be transmitted as would be in the binary format.

Six primary trace list records may be transferred. These are:

* No Trigger Record

Empty Trace Record

* New State Data Record

* More State Data Record

* New Timing Data Record
* More Timing Data Record

Each record has at least one byte. The first byte identifies the record type.

Other fields in the record, containing one or more bytes of information, provide
additional information about the trace.

The Data Records contain secondary record structures which hold the actual trace
information. For the State Data Records, the secondary record is the Trace State
record; for the Timing Data Records, the secondary record is the Trace Sample
record.

Each record structure is accompanied by a diagram. Note that line breaks in the
diagram are not EOL characters in the record.

458



Chapter 13:Data File Formats
No Trigger Record
This section describes all record types, but the 68020 and 68030/EC030 emulators
do not use the timing data record types, because they do not support an external
analyzer.

No Trigger Record

NO TRIGGER RECORD

10000000
BYTE 1

One byte indicating that the trigger condition of the current trace is not in memory.
Trace data cannot be displayed until the trigger condition occurs and is placed in
trace memory or until the trace is halted. Therefore, this is the only record that will
be sent when the trace list is requested, because no others are available.

Empty Trace Record
EMPTY TRACE RECORD

01000000
BYTE 1

One byte indicating that the most recent trace was halted before any states were
stored. Therefore, this will be the only record sent.

459



Chapter 13:Data File Formats
New State Data Record

New State Data Record

NEW STATE DATA RECORD
‘@@@@@LHW STATE COUNT‘ START STATE #

BYTE 1 2 3—4
| LOWEST STATE # | STATE SIZE |
5—6 7
‘T\ME vALID FLacs © ARM  TIME ‘ COUNT TYPE
8-10 11
12 AND UP

(EACH IS MULTIBYTE)

One byte indicating that this is the first trace list data displayed for the current or
most recent trace.

If L=1, this is the only record being sent. Otherwise, one or more More Data
Records follow.

If H=1, this record contains the highest numbered state this trace can have.
Therefore, this is the end of the trace list. If the state count for this record is zero,
the highest numbered state can be computed by subtracting 1 from the start state.

state count

One byte indicating how many trace states are contained in this record. This will be
zero (0) if none of the requested states exist.

start state

Two bytes containing the starting state number (in the range -1024 through 1023),
most significant byte first.

lowest state

Two bytes containing the lowest state number in the entire trace list, MSB first.
Note that if the trace is halted after this record is sent, lower-numbered states may
be valid.

460



Chapter 13:Data File Formats
New State Data Record

state size

One byte indicating how many bytes of trace data will be in each trace state. This
does not include the store cause or count data bytes.

arm time

Three bytes containing the time from arm to trigger, MSB first. The lower 20 bits
contain the absolute value of the actual time, in 40 ns units.

The time alignment between HP 64700-Series emulators has a large margin of
error (+/- 100 ns) due to delay variances in the trigger paths.

The correlation between the arm time counter value and the value displayed on
screen should be as follows:

count time
0000h Arm occured an unknown amount of time after the trigger
0001h Arm occured an unknown amount of time after the trigger
0002h  -40 ns - Arm input actually came after trigger was sampled but
still caused arm state to occur before trigger
internal to the elan chip.

0003h Ons
0004h  40ns

0005h  80ns

FFFFh  2.621280 ms This is now the maximum arm to trigger interval
that can be displayed.

The highest four bits contain status flags as follows:
high nibble = XVS0

If X = 1, the arm time is invalid, either because the arm signal was ignored (e.g.,
"tarm always"), or because the state analyzer clock speed was fast or very fast (e.g.,
"xtck -s F"). The 20 bits of time value will be 0.

If V = 1, the arm counter overflowed (if S = 0) or underflowed (if S = 1). For
overflow, the 20 bits of time value contain the maximum time value, (1°20)-4,
representing 41.94288 ms. For underflow, the S flag is set (see below), and the 20
bits of time value contain the absolute value of the minimum count, -1, repres
-40 ns.

If S =1, the arm time is negative. The 20 bits of time value contain the absolut
value of the actual count.

461



Chapter 13:Data File Formats
More State Data Record

count type

One ASCII character indicating the type of count data contained in each trace state.
"T" indicates each trace state contains a time count.

"S" indicates each trace state contains a state count.

"N" indicates that no count data is available.

first trace state..last trace state

Each of these records is in the trace state format described below. Each record is n
bytes in length; n is the state size value (described above) plus one byte indicating
the reason for storage of this state and an optional two bytes with count data
information.

More State Data Record

MORE STATE DATA RECORD

[ 0OOONLHQ | STATE COUNT]| START STATE #]
BYTE 1 2 3-4

[ LOWEST STATE # (OPTIONAL) [ TRace state recoros |

5-6 7 AND UP
(5 AND UP IF NO LOWEST
STATE FIELD)
(EACH IS MULTIBYTE)

One byte indicating this is more data from the same trace as the most recent New
State Data Record.

If L=1, this is the last record sent. Otherwise, additional More Data Records follow.

If H=1, this record contains the highest numbered state in the trace; this is the end
of the trace list. If the state count for this record is zero (0), the highest numbered
state can be computed by subtracting one (1) from the start state.

If N=1, this record contains a new lowest state. The starting state number can
change if the trace is halted; if it changes, it will always become more negative. It

462



Chapter 13:Data File Formats
More State Data Record

can change a maximum of one time for a given trace list. N=1 will never occur
unless L=1.

state count

One byte indicating the number of trace states contained in this record. This will be
zero (0) if none of the requested states exist.

start state

Two bytes containing the starting state number (in the range -1024..1023), most
significant byte (MSB) first.

lowest state

Optional two bytes containing the lowest state number in the entire trace list, most
significant byte (MSB) first. These bytes are only present if the record type has
N=1.

first trace state..last trace state

Each of these records is in the trace state format described below. Each record is a
variable number of bytes in length. The length is the state size value (described
above) plus one byte indicating the reason for storage of this state and an optional
two bytes with count data information.

463



Chapter 13:Data File Formats
Trace State Record

Trace State Record

TRACE STATE RECORD

STORE REASON ‘ STATE/TIME COUNT
BYTE 1 2-3

TRACE DATA |

4 AND UP

(2 AND UP IF
NO COUNT DATA FIELD)
(EACH IS MULTIBYTE)

state type

One ASCII character indicating the reason this state was stored.

"Q" indicates this state satisfied a sequence branch qualifier (definiédbielif).
"S" indicates this state satisfied the store qualifier (definddtb)

"P" indicates this state satisfied the prestore qualifier. The count data field bytes
below will be omitted for this state. Prestore states are marked as such only if a
state or time count was specified for the trace (definadd)y

count data

Optional two bytes containing the state or time count for this state. The count value
is relative to the previous non-prestore state. These bytes are omitted if the count
type field in the New State Data Record was "N", or if this state is a prestore state
(state type field in this record is "P"). The count data is encoded as follows (first
byte is on the left):

eeeeemmm mmmmmmmm

e represents five bits of exponent.

m represents 11 bits of mantissa.

The value represented is (m*(27e)) + (2*(11+e)) - (2711)

Time counts are in 40-nanosecond units.

464



Chapter 13:Data File Formats
New Timing Data Record

trace data

Trace data for this state, most significant byte (MSB) first. The length of this trace
data is given by the state size field in the New State Data Record.

New Timing Data Record

NEW TIMING DATA RECORD

[00100LH1 [ SAMPLE COUNT | START SAMPLE #
BYTE 1 2 3-4

| LOWEST SAMPLE # | STATE SIZE
5-6 7

[7vE vap riacs | ARM_ TIME | COUNT TYPE ]
8 10 11

\ SAMPLE PERIOD |
12 15

TRACE SAMFLE RECORDS

16 AND UP

(EACH IS MULTIBYTE)

record type = 00100LH1

One byte indicating this is the first trace list data displayed for the current or most
recent trace.

If L=1, this is the only record sent. Otherwise, one (1) or more More Timing Data
Records follow.

If H=1, this record contains the highest numbered sample in the trace; this is the
end of the trace list. If the sample count field for this record is zero (0), the highest
numbered sample can be computed by subtracting one (1) from the start sample
field.

465



Chapter 13:Data File Formats
New Timing Data Record

count

FFFFh

time

sample count

One byte indicating how many trace samples are contained in this record. This will
be zero if no samples are present.

start sample

Two bytes containing the starting sample number (-1024..1023), most significant
byte (MSB) first.

lowest sample

Two bytes containing the lowest sample number in the entire trace list, MSB first.
Note that if the trace is halted after this record is sent, lower-numbered samples
may become valid.

state size

One byte indicating the number of bytes of trace data in each trace sample. Note the
relationship to the count type field.

arm time

Three bytes containing the time from arm to trigger, MSB first. The lower 20 bits
contain the absolute value of the actual time, in 40 ns units.

The time alignment between HP 64700-Series emulators has a large margin of error
(+/- 100 ns) due to delay variances in the trigger paths.

The correlation between the arm time counter value and the value displayed on
screen should be as follows:

Arm occured an unknown amount of time after the trigger
Arm occured an unknown amount of time after the trigger
-40 ns - Arm input actually came after trigger was sampled but
still caused arm state to occur before trigger
internal to the elan chip.

Ons
40 ns
80 ns

2.621280 ms This is now the maximum arm to trigger interval
that can be displayed.

466



Chapter 13:Data File Formats
New Timing Data Record

The highest four bits contain status flags as follows:
high nibble = XVS0

If X = 1, the arm time is invalid, either because the arm signal was ignored (e.g.,
"tarm always"), or because the state analyzer clock speed was fast or very fast (e.g.,
"xtck -s F"). The 20 bits of time value will be 0.

If V = 1, the arm counter overflowed (if S = 0) or underflowed (if S = 1). For
overflow, the 20 bits of time value contain the maximum time value, (1°20)-4,
representing 41.94288 ms. For underflow, the S flag is set (see below), and the 20
bits of time value contain the absolute value of the minimum count, -1, representing
-40 ns.

If S = 1, the arm time is negative. The 20 bits of time value contain the absolute
value of the actual count.
count type

One ASCII character indicating the type of count data contained in each Trace
Sample record.

"T" indicates the timing analyzer was set to transitional mode. Each Trace Sample
record contains a six byte field which contains the delta time (in nanoseconds) since
the last transition. A two-byte field containing the trace data taken at the delta time
interval is also in the Trace Sample record.

"S" indicates the timing analyzer was set to standard mode. Each Trace Sample
record contains only the two bytes of trace data.

"G" indicates the timing analyzer was set to glitch mode. Each trace sample
consists of a two-byte trace data field and a two-byte glitch data field.

sample period

Four bytes containing the number of nanoseconds (ns) between samples.

first trace sample..last trace sample

Trace Sample records of the size defined in the sample size field (note relatio
to the count type field).

467



Chapter 13:Data File Formats
More Timing Data Record

More Timing Data Record

MORE TIMING DATA RECORD

BYTE

[001ONLHO | SAMPLE COUNT [ START SAMPLE #]
1 2 3-4

[ LOWEST SAMPLE # (OPTIONAL) | TRace sawpLe Recomos |
5-6 7 AND UP

(5 AND UP IF NO LOWEST
SAMPLE FIELD)
(EACH IS MULTIBYTE)

One byte indicating this is more data from the same trace as the most recent New
Timing Data Record.

If L=1, this is the last record sent. Otherwise, additional More Timing Data Records
follow.

If H=1, this record contains the highest-numbered sample in the trace; this is the
end of the trace list. If the sample count field for this record is zero (0), the highest
numbered sample can be computed by subtracting one (1) from the start sample
field.

If N=1, this record contains a new lowest sample. The starting sample number can
change if the trace is halted; if it changes, it will always become more negative. It
can only change once for a given trace list. N=1 will only occur if L=1.

sample count

One byte indicating the number of Trace Sample records in this record. This will be
zero (0) if no Trace Samples are present (the analyzer did not find the requested
data in the last trace.)

start sample

Two bytes containing the starting sample number (in the range -1024..1023), most
significant byte (MSB) first.

468



Chapter 13:Data File Formats
Trace Sample Records

lowest sample

Optional two bytes containing the lowest sample number in the entire trace list,
most significant byte (MSB) first. These two bytes are present only if the record
type has N=1.

first trace sample..last trace sample

Trace Sample records of the size defined in the sample size field (note relationship
to the count type field).

Trace Sample Records

TRACE SAMPLE RECORD

TRANSITIONAL MODE
\ DELTA TIME
BYTE 1-6

TRACE DATA

7-8

STANDARD MODE

TRACE DATA

BYTE 1-2

GLITCH MODE
TRACE DATA | GLITCH DATA
BYTE 1-2 5—4

Trace Sample records are variant records which are components of the New Timing
Data Record and More Timing Data Record. The structure of the Trace Sample
Record depends on the count type field in the Timing Data Records.

Transitional Mode (count type = "T")
delta time

Six bytes of data defining the delta time (elapsed time) since the last transition, in
nanoseconds (ns).

469



Chapter 13:Data File Formats
Trace Sample Records

trace data

Two bytes of trace data sampled at the delta time value given.

Standard Mode (count type ="S")
trace data

Two bytes of trace data sampled at the standard sampling period (st the
command).

Glitch Mode (count type ="G")
trace data

Two bytes of trace data sampled at the standard sampling period (s&p the
command).

glitch

Two bytes indicating the occurrences of glitches on any channel.

470



Chapter 13:Data File Formats
Trace Sample Records

Symbol Files

The HP 64747/64748 emulators can load an ASCII text file containing symbol
definitions.

Three types of symbols can be defined: local, global, and user. Only local and
global symbols can be loaded from a symbol file; user symbols can only be created
with thesym command.

Global symbols are general memory references. They represent the equivalent of
“GLOBAL” or “PUBLIC" variables in compiled programs.

Local symbols are grouped by “module.” The primary purpose of a module is to
group local symbols, but can represent any arrangement of local symbols desired.
Local symbols created by a higher level language processor are defined by
implementation.

A module is usually a source file name, and symbols are function or procedure
names. In a symbol file, any organizational scheme can be used to manage local
symbols. While the module name can be equivalent to a source file name, or some
other physical or logical entity, it is not necessary. Therefore, if memory is in short
supply, you can organize the “local” symbols to allow for easy deletion of old
symbols, and loading of new symbols that reference locations of interest.

Address references for all symbol types are absolute addresses.

471



Chapter 13:Data File Formats

Symbol file syntax

Symbol file syntax

A symbol file is an ASCII text file. The format of this file is represented by:

symbol file # <RETURN>
= <WHITESPACE>

= CWHITESPACE >
= <MODULE> 7<Z>

<RETURN>
( <W IITESPACE>

<WH\TESPACE>H <ADDRESS> p

<LOCAL SYMBOL>

N~(: )| <cLoBAL SvMBOL>

% -{ <RETURN> Henc symbol ﬁ\e)
<WHITESPACE >

<WHITESPACE> This is one or more <SP> (space) or <HT> (horizontal
tab) characters or a combination of these characters.

<RETURN> This is a <LF> (line feed) or <CR><LF> (carriage
return, line feed pair); a <CR> (carriage return) alone is
not recognized.

<ADDRESS> This is a valid address specification for the emulator
being used.
<MODULE> This defines a module name.

<LOCAL SYMBOL> This is a local symbol reference. A local symbol
definition line must include, or follow, a module name,
or an error will occur when loading the file.

472



Chapter 13:Data File Formats
Symbol file syntax

<GLOBAL SYMBOL> This is a global symbol reference.

<QUALIFIER> This allows you to specify label hierarchies. Its use is
dependent on the implementation.

This is the literal colon (*:").
This is the literal period (“.").

# This is the literal pound sign (“#").

Examples Defining Local Symbols

Local symbols must include, or be preceded by, a module name reference.
Therefore, the files

#

‘main 0@p
GetAittrib:
Buffer 100@p
Pointer 120@p
#

and

#

‘main 0@p
GetAttrib:Buffer 100@p
GetAttrib:Pointer 120@p
#

will produce the same result when loaded.
After loading either symbol file, enter:

M> sym

You will see:

sym main=00000@p
sym GetAttrib:Buffer=00100@p
sym GetAttrib:Pointer=00120@p

473



Chapter 13:Data File Formats
Symbol file syntax

Naming Array Elements

You may wish to load symbols that name elements of an array to make referring to
the array elements more explicit. If your array has four elements, each element is
10h bytes long, and begins at 2000h, the symbol file will contain the following:

#

ARRAY:
E1=2000@d
E2=2010@d
E3=2020@d
E4=2030@d
#

After loading the symbol file, enter:

M> sym

You will see, at least in part:

sym ARRAY:E1=2000@d
sym ARRAY:E2=2010@d
sym ARRAY:E3=2020@d
sym ARRAY:E3=2030@d

If you no longer need the references to ARRAY elements, you can remove the
symbols with the command:

M> sym -dl ARRAY

474



14

Specifications and Characteristics

Electrical specifications and characteristics for the MC68020 and
MC68030/MC68EC030 emulators

475



Chapter 14:Specifications and Characteristics
Processor Compatibility

Processor Compatibility

HP 64747: Compatible with the Motorola MC68030 (HP64747A requires MMU be
disabled/HP 64747B supports MMU enabled) and MC68EC030 processors, and
with any processors that meet all specifications of the MC68030 or MC68EC030
processors.

HP 64748: Compatible with the Motorola MC68020 and MC68EC020 processors,
and with any processors that meet all specifications of the MC68020 or
MCG68EC020 processors.

Electrical

Maximum clock speed

HP 64747: the maximum external clock speed is 40 MHz. No wait states are
required for any memory accesses in asynchronous bus mode. In synchronous and
burst modes, emulation memory requires one wait state for all clock speeds. Target
system memory requires one wait state in synchronous and burst modes for clock
frequencies above 25 MHz.

HP 64748: the maximum external clock speed is 33 MHz. No wait states are
required for target system memory. Emulation memory requires one wait state at
speeds greater than 25 MHz. (Dual-port emulation memory will run at full rated
clock speed without wait states.)

476



Chapter 14:Specifications and Characteristics
HP 64747 Electrical Specifications

HP 64747 Electrical Specifications

HP 64747 - DC ELECTRICAL SPECIFICATIONS
(Vee=5.0 Vdet5%; GND=0 Vdc; Ta=0 to 76C
Characteristic Symbol| Min | Max | Unit

Input High Voltage WH 20 | Vec | V
Input Low Voltage v |05 08| V
Input Leakage CurrentBR,BGACK,IPLx,CDIS IN | 25| 25| pA
GNDZVin<Vce
Input High Current CBACK,CIIN,STERMBERRAVEC, liH - 0 HA

DSACKxHALT, MMUDIS - 25

CLK,RESET - 50
Input Low Current RESETCBACK,CIIN,STERM I - -1.4 | mA

CLK,BERRAVEC,DSACKx,HALT,MMUDIS - -0.25
Output High Voltage | A0-A31ASBG,D0-D31DBEN,DS, VoH | 24| - | V
IoH=-40QUA ECS,RW,STATUSREFILL,IPEND,

OCSRMC,SI1Z0-S1Z1,FCO-FC2,

CBREQC10OUT
Output Low Voltage VoL \%
loL=2.5 mA A0-A31,FCO-FC2,SIZ0-S1Z1 - 0.5
loL=3.2 mA BG,D0-D31 - 0.5
loL= 45 maA RW,RMC - 0.5
loL=5.3 mA AS DSDBEN,|IPEND - 0.5
loL=2.0 mA STATUSREFILL,CBREQCI1OUTECSOCS - 0.5
loL=9.3 mA RESET - 0.5
Power Dissipatioh | Ta=0°C Po - | 34w
Capacitance Cin - 20 | pF
Vin=0V,Ta=25"C, f=1
MHz
Load Capacitance AO-A31,FCO-FCZ,SIZO-SIZIW,R(BBREQ, CL - 100 | pF

C10uUT

All Other - 50

477




Chapter 14:Specifications and Characteristics
HP 64747 Electrical Specifications

Notes:

1 The power dissipation is an indication of how much power is drawn from the
target system by the emulator probe, not the true power dissipation of the
emulator probe.

HP 64747 - AC ELECTRICAL SPECIFICATIONS - CLOCK INPUT

Num Characteristic HP 64747 HP 64747 Unit
25MHz 40MHz
Min | Max | Min | Max
Frequency of Operation 12.% 25 25 4( MHz
1 Cycle Time 40 80 25 40 ns
2,3 | Clock Pulse Width 19 61 11.5 29 ng
4,5 | Rise and Fall Times - 4 - 2 ns

HP64747 -AC ELECTRICAL SPECIFICATIONS — READ AND WRITE CYCLES
(Vce=5.0 Vdc 5%; GND=0 Vdc; Ta=0 to 70C)

Num Characteristic HP 64747 | HP 64747 | Unit
25MHz 40MHz
Min |Max |Min Max
6 Clock High to FC,Siz&MC,C10UT,Address Valid 0 20 0 14 | ns
Clock High to IPEND Valid 0 |24 0 | 24* | ns
6A Clock High toECS,OCS Asserted 0 15 (0 10 ns
6B FC,SizeRMC,C10UT,Address Valid to NegatilifCS 3 - 3 - ns
IPEND Valid to NegatindeCS 1* - -7* - ns
7 Clock High to FC,Siz&MC,C10UT,Address, 0 40 0 25| ns
Data High Impedance
8 Clock High to FC,Siz&MC,IPEND,C10UT, O | —| 0| —| ns
Address Invalid

478



Chapter 14:Specifications and Characteristics
HP 64747 Electrical Specifications

HP64747 -AC ELECTRICAL SPECIFICATIONS — READ AND WRITE CYCLES
(Vce=5.0 Vdct 5%; GND=0 Vdc; Ta=0 to 76°C)
Num Characteristic HP 64747 | HP 64747 | Unit
25MHz 40MHz
Min |Max |Min Max
9 Clock Low toAS,DS,CBREQ Asserted 3 18 2 15 ns
9A! | AS toDS Assertion Skew (Read) 10 10 -8* 8 ns
9B'* | AS Asserted t®S Asserted (Write) 27 — 14+ —1 ns
10 ECS Width Asserted 10 — 5 —r nd
10A | OCS Width Asserted 10 —F 5 — ns
108’ | ECSOCS Width Negated 10 — 5 —F ns
11 | FC,SizeRMC,C10UT,Address Valid tS Asserted 7| — | 5| —| ns
(andDS Asserted,Read)
12 | Clock Low toAS,DS,CBREQ Negated of 18 0 15 ns
12A | Clock Low toECSOCS Negated o/ 18 0 12 ns
13 |AS,DS Negated to FC,SiR)MC,C10UT,Address Invalid 6 — 2 — | ns
14 AS (andD_S, Read) Width Asserted (Asynchronous Cycle) 70 +— (30 \— |ns
14A | DS Width Asserted, Write 30 — 18 — ns
14B | AS (andDS Read) Width Asserted (Synchronous Cycle) 30 — |18 |— |ns
15 | AS,DS Width Negated 30 — 18 —t ns
15A% | DS Negated t&\S Asserted 25| —| 16f — ns
16 | Clock High toAS DS,RW,DBEN,CBREQ High Impedance — 40 — 25 ns
17 | AS,DS Negated to RY Invalid 6* | —- | -2 | — | ns
18 | Clock High to RW High 0| 20| 0| 14| ns
20 | Clock High to RW Low 0| 20 0| 15| ns

479



Chapter 14:Specifications and Characteristics
HP 64747 Electrical Specifications

HP64747 -AC ELECTRICAL SPECIFICATIONS — READ AND WRITE CYCLES
(Vce=5.0 Vdc 5%; GND=0 Vdc; Ta=0 to 70C)
Num Characteristic HP 64747 | HP 64747 | Unit
25MHz 40MHz
Min |Max |Min Max
216 RW High toAS Asserted 7| —- 5/ — ns
225 | RAW Low to DS Asserted (Write) 47 — 24 — ns
23 | Clock High to Data Out Valid —1 20 —t 19 ns
24 Data Out Valid to Negating EdgeE 5| — | 1* | — | ns
25511 | 'AS, DS Negated to Data Out Invalid 7 — O — ns
25A%1DS Negated tOBEN Negated (Write) 70 — 1) — ns
26> | Data Out Valid tdDS Asserted (Write) 70 — ¥/ — ns
27 Data-In Valid to Clock Low (Synchronous Setup) 6* —— 66— | ns
27A | LateBERR,HALT Asserted to Clock Low (Setup) 8 — 8 — ns
28'2 | AS, DS Negated tDSACKX,BERRHALT,AVEC Negated O | 40| 0| 20| ns
(Asynchronous Hold)
28A'? | Clock Low toDSACKx,BERR,HALT ,AVEC Negated 8 70 6 40| ns
(Synchronous Hold)
29'2 | DS Negated to Data-In Invalid (Asynchronous Hold) O — |0 — s
29A12 | DS Negated to Data-In High-Impedance 4~ 40 4+~ 25 s
30'? | Clock Low to Data-In Invalid (Synchronous Hold) 8 6 —+ ns
30A1?| Clock Low to Data-In High-Impedance — | 60 | — | 30| ns
(Read followed by Write)
31> | DSACKx Asserted to Data-In Valid — | 26 | — | 12 | ns
(Asynchronous Data Setup)
31A% | DSACKx Asserted tdSACKx Valid (Skew) — 7| —| 1| ns
32 RESET Input Transition Time —t 15 — 15 Clks

480



Chapter 14:Specifications and Characteristics
HP 64747 Electrical Specifications

HP64747 -AC ELECTRICAL SPECIFICATIONS — READ AND WRITE CYCLES
(Vce=5.0 Vdc+ 5%; GND=0 Vdc; Ta=0 to 76°C)
Num Characteristic HP 64747 | HP 64747 | Unit
25MHz 40MHz
Min |Max |Min Max

33 | Clock Low toBG Asserted 0 20 O 14 ns
34 | Clock Low toBG Negated 0/ 20 0| 14 ns
35 |BR Asserted tBG AssertedRMC Not Asserted) 15 35 15 35 Clks
37 |BGACK Asserted t®G Negated 15 35 15 35 Clks
37A |BGACK Asserted tBR Negated 0/ 15 0| 15 Clks
39° | BG Width Negated 60 — 30 —: ns
39A |BG Width Asserted 600 — 30 — ns
40 | Clock Low toDBEN Negated (Read) o0 20 0O 21* ns
41 | Clock Low toDBEN Negated (Read) 00 20 0 21* ns
42 | Clock Low toDBEN Asserted (Write) 0| 20 0 21f ns
43 | Clock High toDBEN Negated (Write) 0| 20 0 21f ns
44 RMW Low to DBEN Asserted (Write) 7 — 5/ — ns
45> |DBEN Width Asserted (Asynchronous Read) 40 | — | 22 | — | ns

DBEN Width Asserted (Asynchronous Write) 80 45
45A° | DBEN Width Asserted (Synchronous Read) 5 | — 5 | — | ns

DBEN Width Asserted (Synchronous Write) 40 | — | 22 | — | ns
46 RW Width Asserted (Asynchronous Write or Read) 100 +—- —- |ns
46A | RW Width Asserted (Synchronous Write or Read) 60 —- —- |ns
47A | Asynchronous Input Setup TimdALT,BERRDSACKX) 7| —- 7** —- | ns

Asynchronous Input Setup TimE(x) 12* 12

481



Chapter 14:Specifications and Characteristics
HP 64747 Electrical Specifications

HP64747 -AC ELECTRICAL SPECIFICATIONS — READ AND WRITE CYCLES
(Vce=5.0 Vdc 5%; GND=0 Vdc; Ta=0 to 70C)

Num Characteristic HP 64747 | HP 64747 | Unit
25MHz 40MHz

Min |Max |Min Max
47B | Asynchronous Input Hold Time from Clock Low 8 —+— 6 — ns
48" | DSACKx Asserted tBERRHALT Asserted 25 14| ns
53 Data Out Hold from Clock High 3 — —  ns
55 RMW Asserted to Data Bus Impedance Change 20 |— |11 |— |ns
56 | RESET Pulse Width (Reset Instruction) 512 -+ 5§12 +— Clks
57 |BERR Negated tolALT Negated (Rerun) 0| — —1 ns
580 | BGACK Negated to Bus Driven 1] — —-  Clks
59! | BG Negated to Bus Driven 1] — —- Clks
603 Synchronous Input Valid to Clock High (Setup Time) * — 4 — ns
6112 | Clock High to Synchronous Input Invalid (Hold Time) 3 - 6 —+— ns
62 Clock Low toSTATUS,REFILL Asserted 0 20 15 ns
63 Clock Low toSTATUS,REFILL Negated 0 20 15 ns

Notes:

1 This number can be reduced to 5 nanoseconds if strobes have equal loads.
2 If the asynchronous setup time (#47) requirements are satisfi@i5a@Kx

low to data setup time (#31) aBBACKXx low toBERR low setup time (#48)
can be ignored. The data must only satisfy the data-in to clock low setup time
(#27) for the following clock cyclBERR must only satisfy the laBERR
low to clock low setup time (#27A) for the following clock cycle.

3 This parameter specifies the maximum allowable skew befd8ACKO to

DSACK1 asserted dPSACK1 toDSACKO asserted, specification #47 must

be met byDSACKO orDSACK1.

482



10

11

12

13

14

15

Chapter 14:Specifications and Characteristics
HP 64747 Electrical Specifications

This specification applies to the fiBSACKX signal asserted. In the absence

of DSACKX, BERR is an asynchronous input using the asynchronous input
setup time (#47).

DBEN may stay asserted on consecutive write cycles.

The minimum values must be met to guarantee proper operation. If this
maximum value is exceeddsi> may be reasserted.

This specification indicates the minimum high timeE&C andOCS in the

event of an internal cache hit followed immediately by a cache miss or operand
cycle.

This specification guarantees operation with the MC68881 or MC68882,

which specifies a minimum time f@S negated tAS asserted (specification

#13A in the MC68881/MC68882 User’'s Manual). Without this specification,
incorrect interpretation of specifications #9A and #15 would indicate that the
MC68030 does not meet the MC68881 requirements.

This specification allows a system designed to guarantee data hold times on the
output side of data buffers that have output enable signals gererated with
DBEN. The timing orDBEN precludes its use for synchronous read cycles

with no wait states.

These specifications allow system designers to guarantee that an alternate bus
master has stopped driving the bus when the MC68030/EC030 regains control
of the bus after an arbitration sequence.

DS will not be asserted for synchronous write cycles with no wait states.

These hold times are specified with respect to strobes (asynchronous) and with
respect to the clock (synchronous). The designer is free to use either hold time.
Synchronous inputs must meet specifications #60 and #61 with stable logic
levels for all rising edges of the clock. These values are specified relative to
the high level of the rising clock edge.

This specification allows system designers to qualify the CS of an
MC68881/MC68882 with AS (allowing 7 ns for a gate delay) and still meet

the CS to DS setup time requirement (spec 8B) of the MC68881/MC68882.
The asterisk "*" means there is some difference between the specification for
the emulator and the specification for the MC68030/ECO030 for this entry.

483



Chapter 14:Specifications and Characteristics
HP 64748 Electrical Specifications

HP 64748 Electrical Specifications

HP 64748 - DC ELECTRICAL SPECIFICATIONS

(Ve=5.0 Vdc+ 5%; GND=0 Vdc; Ta=0 to 70C)

Characteristic Symbol Min | Max | Unit
Input High Voltage WH 2.0 Ve \%
Input Low Voltage L -0.5 0.8 Y,
Input Leakage Current | BR, BGACK,IPLx In | 25 | 25 | pa
GND<VingVee
Input High Current BERRAVEC,DSACKx lH — 25 HA
CLK,RESETHALT — 50
Input Low Current RESETHALT e — -14 mA
CLK,BERRAVEC,DSACKXx — -0.25
Output High Voltage A0-A31AS BG,D0-D31DBEN,DS, Vou | 24 | —- v
loH=-40QUA ECS,RW,IPENDOCSRMC,
SIZ0-SIZ1FCO0-FC2
Output Low Voltage VoL Vv
loL =2.5mA A0-A31FCO-FC2SIZ0-SIZ1 — 0.5
loL =3.2mA BG,D0-D31 — 0.5
loL = 4.5 mA RW,RMC — | 05
loL =5.3mA AS,DSDBEN,IPEND — 0.5
loL =2.0 mA ECSQOCS — 0.5
loL = 9.3 mA RESETHALT — 0.5
Power Dissipation A=0C Pb — | 200 | mw
Ta=70C 200
Capacitance Cin — 20 pF
Vin=0V, Ta =25°C,
f=1MHz
Load Capacitance AO-AFEC0-FC2S1Z0-SI1Z1,RW CL 100 pF
All Other 50

484




Chapter 14:Specifications and Characteristics
HP 64748 Electrical Specifications

Notes:

1 The power dissipation is an indication of how much power is drawn from the
target system by the emulator probe, not the true power dissipation of the

emulator probe.

HP 64748 - AC ELECTRICAL SPECIFICATIONS - CLOCK INPUT

Num Characteristic MC68020 HP 64748 Unit
33 MHz
Min Max Min Max
Frequency of Operation 12.5 33 12.5 33 MHz
1 Cycle Time 30 80 30 80 ns
2,3 Clock Pulse Width 14 66 14 66 ns
4,5 Rise and Fall Times — 3 — 3 ns

HP 64748 - AC ELECTRICAL SPECIFICATIONS — READ AND WRITE CYCLES
(Vce=5.0 Vdcx 5%; GND=0 Vdc; Ta=0 to 70C)

Num Characteristic MC68020 | HP 64748 | Unit
33MHz

Min |Max |Min |Max
6 Clock High to FC,Size,RMC,Address Valid @ 21 D 21 ns
6A | Clock High to ECS,0CS Asserted q 10 D 10 ns
7 Clock FC,Size,RMC,Address,Data High Impedance 0 30 0 30 ns
8 Clock High to FC,Size,RMC,Address Invalid 0 — 0 —-— s
9 Clock Low to AS,DS Asserted 3 15 3 20 ns
9A! | AS toDS Assertion Skew (Read) -0 10 -12 12
9B!! | AS Asserted t®S Asserted (Write) 220 — 20 —

485



Chapter 14:Specifications and Characteristics
HP 64748 Electrical Specifications

486

HP 64748 - AC ELECTRICAL SPECIFICATIONS — READ AND WRITE CYCLES
(Vce=5.0 Vdct 5%; GND=0 Vdc; Ta=0 to 76°C)
Num Characteristic MC68020 | HP 64748 | Unit
33MHz
Min |Max |Min Max
10 |ECS Width Asserted 10 — 10 — ns
10A | OCS Width Asserted 10 — 10 — ns
10B’ | ECSPCS Width Negated 5, — 5 — ns
11 FC,SizeRMC,Address Valid td\S Asserted (anBTS 5 — 5 — | ns
Asserted,Read)
12 | Clock Low toAS DS Negated o/ 15 0 20 ns
12A | Clock Low toECSOCS Negated 0o/ 15 0 15 ns
13 | AS,DS Negated to FC,SiRMC,Address Invalid 5| —| 0| — | ns
14 | AS (andDS, Read) Width Asserted (Asynchronous Cycle) 50 — 48 | — |ns
14A | DS Width Asserted, Write 25 — 23 — ns
15 |AS,DS Width Negated 25] — 23 — ns
15A8 | DS Negated té\S Asserted 18 —| 16/ — ns
16 | Clock High toAS,DS,RMW,DBEN High Impedance — 30 — 30 ns
17 | AS,DS Negated to RY Invalid 5 | —| 0 | — | ns
18 | Clock High to RW High 0| 15| 0| 15| ns
20 | Clock High to RV Low 0 | 15 0 | 15| ns
21 | RW High toAS Asserted 5| — 5| —| ns
22 | RW Low toDS Asserted (Write) 3/ — 35 — ns
23 | Clock High to Data Out Valid —1 18 — 23 ns
25 |AS,DS Negated to Data Out Invalid 5 —- 2 — ns



Chapter 14:Specifications and Characteristics
HP 64748 Electrical Specifications

HP 64748 - AC ELECTRICAL SPECIFICATIONS — READ AND WRITE CYCLES
(Vcc=5.0 Vdc+ 5%; GND=0 Vdc; Ta=0 to 76C)
Num Characteristic MC68020 | HP 64748 | Unit
33MHz
Min |Max |Min Max
25A° | DS Negated t®BEN Negated (Write) 5 — 0 —{ ns
26 | Data Out Valid t®S Asserted (Write) 5/ — 5| — ng
27 Data-In Valid to Clock Low (Synchronous Setup) 5 41— 10— | ns
27A | LateBERR,HALT Asserted to Clock Low (Setup) 5 — 10 — | ns
28 | AS,DS Negated tDSACKx,BERRHALT,AVEC Negated O | 40| 0 30 | ns
(Asynchronous Hold)
29 DS Negated to Data-In Invalid (Asynchronous Hold) 0 — 0 — ns
29A DS Negated to Data-In High-Impedance -— 30 + 30 ns
30 | Clock Low to Data-In Invalid (Synchronous Hold) 6 - 6 —-— ns
312 | DSACKXx Asserted to Data-In Valid (Asynchronous Data Setup) —- |17 | —  |13is
31A% | DSACKXx Asserted tSACKx Valid (Skew) — | 10| —| 7| ns
32 | RESET Input Transition Time — 15 — 15 Clks
33 | Clock Low toBG Asserted 0| 20/ 0| 30 ns
34 | Clock Low toBG Negated 0 200 0 30 ns
35 | BR Asserted tBG AssertedF@Wi Not Asserted) 15 353 15 35 Clks
37 | BGACK Asserted t®G Negated 15 35 15 35 Clks
37A% | BGACK Asserted tBR Negated 0| 15 0| 15 Clks
39 | BG Width Negated 500 — 50 — ns
39A |BG Width Asserted 500 — 50 —
40 | Clock Low toDBEN Negated (Read) o 15 0 15

487



Chapter 14:Specifications and Characteristics
HP 64748 Electrical Specifications

Notes:

HP 64748 - AC ELECTRICAL SPECIFICATIONS — READ AND WRITE CYCLES
(Vcc=5.0 Vdc+ 5%; GND=0 Vdc; Ta=0 to 76C)
Num Characteristic MC68020 | HP 64748 | Unit
33MHz
Min |Max |Min Max

41 | Clock Low toDBEN Negated (Read) 00 15 0 15 ns
42 | Clock Low toDBEN Asserted (Write) 0/ 15 0| 15 ns
43 | Clock High toDBEN Negated (Write) 0/ 15 0| 15 ns
44 R Low to DBEN Asserted (Write) 5 — 5 —{ ns
45> |DBEN Width Asserted (Asynchronous Read) 30 | — | 30 | — | ns

DBEN Width Asserted (Asynchronous Write) 60 60
46 RW Width Asserted (Asynchronous Write or Read) 5 +— 5 +— Ins
47A | Asynchronous Input Setup TimdALT, BERRDSACKX) 5 | — 10: — | ns

Asynchronous Input Setup Tim{x) 5 10
47B | Asynchronous Input Hold Time from Clock Low 0 —+— 10 —+— ns
48" | DSACKx Asserted tBERRHALT Asserted 15 11 ns
53 Data Out Hold from Clock High 0 — 0 — NS
55 RIV Asserted to Data Bus Impedance Change 20 |— |10 |— |ns
56 | RESET Pulse Width (Reset Instruction) 502 - 512 1— GClks
57 | BERR Negated t6lALT Negated (Rerun) o — 2| — ng
5810 | BGACK Negated to Bus Driven 1 — 1 — Clks
59! | BG Negated to Bus Driven 1 — 1 — Clks

1 This number can be reduced to 5 nanoseconds if strobes have equal loads.

488



Chapter 14:Specifications and Characteristics
HP 64748 Electrical Specifications

If the asynchronous setup time (#47) requirements are satisfi@&@Kx

low to data setup time (#31) aBBACKXx low toBERR low setup time (#48)

can be ignored. The data must only satisfy the data-in to clock low setup time

(#27) for the following clock cyclBERR must only satisfy the laBERR

low to clock low setup time (#27) for the following clock cycle.

3 This parameter specifies the maximum allowable skew BF8ACKO to
DSACK1 asserted ddSACK1 toDSACKO asserted, specification #47 must
be met byDSACKO orDSACK1.

4  This specification applies to the fiBEACKX signal asserted. In the absence
of DSACKX, BERR is an asynchronous input using the asynchronous input
setup time (#47).

5 DBEN may stay asserted on consecutive write cycles.

6 The minimum values must be met to guarantee proper operation. If this
maximum value is exceeddsi> may be reasserted.

7  This specification indicates the minimum high timeEQ@S andOCS in the
event of an internal cache hit followed immediately by a cache miss or operand
cycle.

8 This specification guarantees operation with the MC68881, which specifies a
minimum time forDS negated t&S asserted (specification #13A in the
MC68881 User’'s Manual). Without this specification, incorrect interpretation
of specifications #9A and #15 would indicate that the MC68020 does not meet
the MC68881 requirements.

9 This specification allows a system designed to guarantee data hold times on the
output side of data buffers that have output enable signals generated with
DBEN. The timing orDBEN precludes its use for synchronous read cycles
with no wait states.

10 These specifications allow system designers to guarantee that an alternate bus
master has stopped driving the bus when the MC68020 regains control of the
bus after an arbitration sequence. L

11 This specification allows system designers to qualifCef an
MC68881/MC68882 wittAS (allowing 7 ns for a gate delay) and still meet
the CS toDS setup time requirement (spec 8B) of the MC68881/MC68882.

12 The asterisk "*" means there is some difference between the specification for

the emulator and the specification for the MC68020 for that entry.

N

489



Chapter 14:Specifications and Characteristics
Physical (HP 64747 and HP 64748)

Physical (HP 64747 and HP 64748)

Emulator Dimensions

173 mm height x 325 mm width x 389 mm depth (6.8 in. x 12.8 in. x 15.3 in.)

Cable Length

Emulator to target system, approximately 914 mm (36 inches).

Probe dimensions

Pin1 \ 219 mm (8.6") —— =
]
%Bmmi
(3.8
57 mm
(2.3
|
=
' —— 166 mm {6.6") —.-‘
29 mm l_m
(1.12%)
i — T f —)

Cables

490



Chapter 14:Specifications and Characteristics
Environmental (HP 64747 and HP 64748)

Environmental (HP 64747 and HP 64748)

Temperature

Operating, 0° to +40° C (+32° to +104° F); nonoperating, -40° C to +60° C (-40° F
to +140° F).

For the HP 64747 (MC68030/EC030), 100 Ifm of airflow over the probe is
recommended to ensure optimum performance.

Altitude

Operating, 4600 m (15 000 ft), nonoperating, 15 300 m (50 000 ft).

Relative Humidity

15% to 95%.

BNC, labeled TRIGGER IN/OUT (HP 64747 and HP
64748)

Output Drive

Logic high level with 50-ohm load >= 2.0 V. Logic low level with 50-ohm load
<=04V.

Input

74HCT132 with 135 ohms to ground in parallel. Maximum input: 5 V above Vcc;
5V below ground.

491



Chapter 14:Specifications and Characteristics
Communications (HP 64747 and HP 64748)

Communications (HP 64747 and HP 64748)

Host Port

25-pin female type “D” subminiature connector.
RS-232-C DCE or DTE to 38.4 kbaud.

RS-422 DCE only to 460.8 kbaud.

CMB Port

9-pin female type “D” subminiature connector.

492



Part 4

Installation and Service

493



Part 4

In This Part

Chapter 15, “Installation and Service,” tells you how to set up the emulator and
verify performance of the emulator. It also tells you what to do when you suspect
that there is a problem with the operation of the emulator.

When you finish installation of the emulator, go to part 1 of this manual and
perform the Quick Start procedure.

494



15

Installation and Service

495



Chapter 15:Installation and Service

HP 64748 EMULATION

CONTROL CARD

EGRESS PANEL

(P/0 HP 64748)

CABLES-1000
36",37",38"

(P/0 HP 64748)

EXTERNAL POWER

HP 64747/48 PROBE
SRAM DPTIONAL

(P/O HP 64747/48)

DEMO BOARD

(INCLUBED WITH

PROBE)

496



Chapter 15:Installation and Service

The HP 64747 and HP 64748 emulator subsystems plug into the HP 64700 C
Cage.

Equipment supplied

The HP 64747/48 package contains
+ The HP 64747/48 Active Probe emulator
e This emulator terminal interface user's guide

Support Services Information is at the back of each binder.

Tools needed

* Flat blade screw driver

Antistatic precautions

Circuit boards contain electrical components that are easily damaged by small
amounts of static electricity. To avoid damage to the emulator cards, follow these
guidelines:

» If possible, work at a static-free workstation.

» Handle the parts only by the edges; do not touch components or traces.

» Use a grounding wrist strap that is connected to the card cage chassis. There is
a ground recepticle near the serial number tag on the rear panel of the
HP 64700 card cage.

497



Chapter 15:Installation and Service

Caution

Installation Overview

When you order a complete system (an HP 64747/48 emulator in an HP 64700
Card Cage), the HP 64747/48 emulator is already installed in the card cage. The
installation procedure in this manual is provided for users that already have an HP
64700 Card Cage and want to install the HP 64747/48 emulator in the card cage, or
would like to replace parts of the emulator.

If you already have a modular HP 64700 Series Card Cage and want to remove the
existing emulator and insert an HP 64747 or HP 64748 emulator in its place, the

HP 64700 Series generic firmware and analyzer firmware may NOT be compatible,
and the software will indicate incompatibility. Instructions for updating firmware
from a PC or HP 9000 are provided in Htieé 64700 Card Cage
Installation/Servicenanual.

After hardware installation, run a performance test to verify that the emulator is
working properly. After you verify performance of the emulator, you are ready to
update software, and use the emulator.

Use this chapter to accomplish hardware removal and installation procedures,
running performance verification, and ordering parts. SedPh@4700 Series

Card Cage Installation/Servigaanual for information on system configurations,
installing product software, software updates, and ordering parts related to the card
cage. Make sure that power to the HP 64700 Card Cage is off before removing or
installing any hardware.

498



Chapter 15:Installation and Service
To install the emulator into the HP 64700 Card Cage

To install the emulator into the HP 64700 Card
Cage

1 Turn power off.
2 Remove the HP 64700 Card Cage top cover.
3 Remove the HP 64700 Card Cage side panel.

4 Install the HP 64747/48 Probe and 64748 Emulation Control Card and secure in
place with the four Egress Panel screws.

5 Connect ribbon cable from the Emulation Control Card to the analyzer card.

6 Replace the HP 64700 Card Cage side panel and top cover.

Instructions for removing and installing cards into and out of the HP 64700 Series
Card Cage are provided in tHe 64700 Installation/Servicmanual and on the

label on the bottom of the HP 64700 Card Cage. The only difference is the
firmware flashed in the Emulation Control Card.

RIBBON CABLE

HP 64748
EMULATION
CONTROL CARJ

ANALYZER
CARD
80 CHANNEL

EGRESS PANEL

CONTROL
CARD

EXTERNAL
POWER CABLE

HP 64700 \
N

CARDCAGE

HP 64747/48

64748E01

499



Chapter 15:Installation and Service
To install the demo board external power cable

. To install the demo board external power cable

1 Remove the front bezel of the HP 64700 Card Cage. Be careful because the plastic
ears are easily broken on the front bezel.

2 Connect the demo board external power cable to the front panel.

3 Route the demo board external power cable to the lower right of the HP 64700
Card Cage front panel and out of the front panel egress opening as shown in the
figure.

4 Replace the front bezel.

Instructions for removing and installing the HP 64700 Card Cage Front Bezel are
provided in theHP 64700 Card Cage Installation/Serviggnual.

FRONT BEZEL

POWER CONNECTION FOR
DEMO BOARD

BE CAREFUL NOT TO
PUT STRESS ON POWER
SWITCH EXTENDER.

500



Chapter 15:Installation and Service
To remove and install plastic rivets

To remove and install plastic rivets
Press the top of the plastic rivet head to secure in place.

Push the center shaft to remove plastic rivet.

The HP 64747/48 probe has top and bottom plastic covers that are secured in place
with plastic rivets. A package of extra plastic rivets are provided with the

HP 64747/48 emulator. The plastic rivets are secured in place by pressing the flat
part of the rivet. The plastic rivets are removed by pushing on the center shaft of the
rivet. Discard rivets that are removed and use new rivets from the package of extra
rivets. Removed rivets are difficult to reuse.

TO INSTALL RIVET
PUSH DOWN ON
RIVET HEAD

TO REMOVE RIVET:
PUSH UP ON
CENTER SHAFT

501



Chapter 15:Installation and Service
To remove and install plastic covers to access SIMM sockets on the probe

To remove and install plastic covers to access
SIMM sockets on the probe

Top Cover

1 Remove six plastic rivets to remove the top plastic cover.

2 Install in reverse order, making sure to add washers to two of the rivets shown in
the figure below.

Bottom Cover

3 Remove four plastic rivets to remove the bottom cover. Both top and bottom covers
can be removed.

4 To reinstall, secure covers in place by inserting six plastic rivets from the top
(plastic washers are installed on two of the rivets) and two plastic rivets from the
bottom as shown in the figure.

Remove top plastic cover to access the SIMM memory sockets. Remove bottom
cover only to replace a defective active probe on the exchange program.

TO INSTALL RIVET:
PUSH DOWN ON
RIVET HEAD

TO REMOVE RIVET:
PUSH UP ON
CENTER SHAFT

ADD PLASTIC
WASHERS  TO
Y THESE TWO

POSITIONS  ONLY

502



Chapter 15:Installation and Service

To install emulation memory modules

To install emulation memory modules

(Observe antistatic precautions listed on the third
page of this chapter)

1. Remove six rivets from the probe top plasic
cover by pushing the center shaft of the plas}ic
rivets.

2. Remove the top plastic cover. The bottom coy
will still be attached to the probe with two plastic
rivets.

TO INSTALL RIVET:
PUSH DOWN ON
RIVET HEAD

TO REMOVE RIVET:
PUSH UP ON
CENTER SHAFT

<0

MEMORY SLOT 0

ADD PLASTIC
WASHERS TO
THESE TWO
PQSITIONS 0N

There are three types of emulation memory

modules that can be inserted into sockets or] the TO assign memory map terms" in Chapter 7, for

probe. You can use any combination of

3. Determine placement of memory modules. Sé

more information.

0]

memory modules. Determine the total memory

you are using and which sockets you will place
the memory into. The HP 64171A memory
module is the 256-Kbyte, 35-ns SRAM; the
HP 64171B is the 1-Mbyte 35-ns SRAM; anc
the HP 64173A is the 4-Mbyte, 25-ns SRAM

503



Chapter 15:Installation and Service
To install emulation memory modules

4. Insert the emulation memory module into the 5. Secure the emulation memory module in place by
appropriate probe socket. The SRAM modulg ispushing forward so notches on the socket fit into|the
keyed and will go in only one way. holes on the memory module.

NOTE

cuTOUT
PULL BOARD
FORWARD SO
NOTCHES ON
ALIGN GROOVE AND SQOCKET FIT
NOTCH, TILT BOARD INTO HOLES
BACK SLIGHTLY AND ON BOARD

SEAT INTO GRQOVE

=)

6. Install the top plastic cover with six plastic| | 7. Secure the plastic rivets in place by pushing o
rivets. Install washers on two of the rivets as| | the head of each plastic rivet.
shown in the figure.

TO INSTALL RIVET:
7 PUSH DOWN ON
RIVET HEAD

MEMORY SLOT 0

MEMORY SLOT 1

TO REMOVE RIVET:
PUSH UP ON

CENTER SHAFT
ADD PLASTIC

WASHERS TO
THESE TwWO
POSITIONS ONLY

504



Chapter 15:Installation and Service

To remove emulation memory modules

To remove emulation memory modules

(Observe antistatic precautions)

1. Remove six rivets from the probe top plastic
cover by pushing the center shaft of the plastic

rivet.

2. Remove the top plastic cover. The bottom coy
will still be attached to the probe with two plastic
rivets.

TO INSTALL RIVET:
PUSH DOWN ON
RIVET HEAD

TO REMOVE RIVET:
PUSH UP ON
CENTER SHAFT

MEMORY SLOT O

ADD PLASTIC
WASHERS TD
THESE TWO
PGSITIONS ONLY

3. Remove the memory module by pulling th
wings of the socket and tilting the module back
Lift the memory module out.

]

TO REMOVE PULL
OUT ON METAL
WINGS OF SOCKET,

TILT BOARD BACK,

After removal of the memory module, you may

want to install another memory module in its plage.

Refer to the section “To Install Static Random

Access Memory Modules” earlier in this chapter.
Then come back here to complete the installation
process.

If you do not want to install a memory module,
proceed to the next step.

THEN LIFT OUT

505

er



Chapter 15:Installation and Service
To remove emulation memory modules

4. Install the top plastic cover with six plastic
rivets. Install washers on two of the rivets as
shown in the figure.

5. Secure the plastic rivets in place by pushing o
the head of the plastic rivet.

=)

?

MEMORY SLOT 0

ADD PLASTIC
éLi WASHERS TO
THESE TwO
POSITIONS DNLY

TO INSTALL RIVET:
PUSH DOWN ON
RIVET HEAD

TO REMOVE RIVET:
PUSH UP ON
CENTER SHAFT

506



Chapter 15:Installation and Service
To install the emulator probe cable

To install the emulator probe cable

The Probe Cables consist of three ribbon calﬂ;lesl. Secure the ribbon cable on the Emulation Control
The longest cable connects to J3 of the Card with cable clamp and two screws.
Emulation Control Card, and to J1 of the Prope.
The shortest cable connects to J1 of the
Emulation Control Card and J3 of the Probe.
The ribbon cables are held in place on the
Emulation Control Card by a cable clamp
attached with two screws. No clamp holds the
ribbon cables on the Probe.

EMULATION CAONTRAL CARD

PROBE CABLES

2. Insert the ribbon cables into the appropriate | 3. Insert the cables into the appropriate sockets pn
sockets, making sure that the clips hook into|thethe Probe.
sockets as shown.

PUSH IN ON CLIPS
SO THEY HOOK
INTO SOCKET

BDTTOM PLASTIC COVER

DEMO BOARD

507



Chapter 15:Installation and Service
To connect the probe to the demo board

To connect the probe to the demo board

Turn off emulator power.

Carefully install the probe into the demo board and connect the external power
cable to J1.

Set Demo Board switches for TEST or OCE.

Turn emulator power on.

The HP 64747/48 probe and demo board must be connected together when running
the emulator in “out of circuit” mode (not plugged into a target system), or when
making performance verification tests.

When you install the probe into the demo board, be very careful not to bend any of
the pins. The socket of the MC68020 is keyed to prevent inserting the probe into
the demo board socket incorrectly. There is no keying on the MC68030/ECO030, so
use extreme care.

After connecting the probe to the demo board, set the TEST/OCE switches. Press
each switch rocker down in direction of desired setting. Use the closed (CL)
position for all switches when running performance verification tests (TEST), and
the open (OP) position for out of circuit emulation (OCE).

SW TEST OCE
cL opP
cL  OP
cL  OP
CcL opP
cL OP
cL OP
cL oOpP
cL OoP

EMULATOR
PROBE

SN T NS NN

PIN A1

DEMO BOARD %

PGA SOCKET

508



Chapter 15:Installation and Service
To verify the performance of the emulator

To verify the performance of the emulator

1 If you have a special configuration or session in progress, save it now. This
procedure will cause your session to be lost.

2 Turn off power to the HP 64700 Card Cage.
3 Plug the emulator probe into the Demo Board.

4 Connect Demo Board power cable from the Demo Board to the HP 64700
Card Cage front panel. (See “To Install the Demo Board Power Cable”.)

5 Set all switches on the Demo Board to the TEST (CL - closed) position.
6 Turn on power to the HP 64700 Card Cage.

7 Establish communication with the emulator from your host or ASCII terminal and
obtain a prompt (such &s>).

8 Enter:pv <N> <return>

where<N> is an integer that specifies the number of times to run the set of
performance verification tests. It is sometimes necessary to enter the cotafnand
-e before running performance verification.

There are different hardware system configurations for the HP 64700 Series
system. For information on hardware configurations, refer to the HP 64700
Installation/Service manual.

Examples If you are using a LAN, you can use the telnet capability with the Terminal
Interface:

1 From your host computer enter the commaeldet <emulator_name>

2 Now enter the commangy 1

A message similar to the following should appear:

509



Chapter 15:Installation and Service
To verify the performance of the emulator

Testing: HP 64748 Motorola 68020 Emulator

PASSED:
Number of tests: 1 Number of failures: 0
Testing: HP 64740 Emulation Analyzer
PASSED:
Number of tests: 1 Number of failures: 0

Copyright (c) Hewlett-Packard Co. 1987
All Rights Reserved. Reproduction, adaptation, or translation
without prior
written permission is prohibited, except as allowed under copyright
laws.

HP64700B Series Emulation System
Version: B.01.00 20Dec93
Location: Flash
System RAM:1 Mbyte

HP64748 Motorola 68020 Emulator
HP64740 Emulator Analyzer

If you have an emulation failure, you can replace the assembly that failed through
your local Hewlett-Packard representative, and through the

Support Materials Organization (SMO). Refer to the list of replacable parts at the
end of this chapter.

When your performance verification test is complete, use the keybGaRL>d
keys to end the emulation session.

510



Chapter 15:Installation and Service
To verify the performance of the emulator

What is pv doing to the Emulator?

The performance verification procedures provide a thorough check of the
functionality of all of the products installed in the HP 64700 Card Cage. The Test
Suite for the HP 64747/48 Emulator consists of the following modules.

Test # Function Test Name
Host Tests

Reset Release Tests
Transition Tests

Dual Port Access Tests
Emulation Memory Banks Test
Analysis Interface

Demo Board

OO WNEFO

Troubleshooting

The test results for all of these modules are indicated by a simple PASS/FAIL
message. The PASS message gives a high level of confidence that all major
functions and signals are operating because it includes a loopback test that includes
read and write tests to the demo board. The demo board also stimulates inputs to
the emulator, including interrupt lin&R, BERR, etc.

A FAIL message on the other hand indicates that one or more of the tested
functions is NOT working. In this event, an HP field representative can either swap
assemblies to isolate the failure to an individual board, or replace all the major
assemblies shown in the replaceable parts list. The emulation memory modules and
plastic cover are not part of the probe assembly. The emulation memory modules
must be ordered separately and the plastic covers should be removed from the
probe assembly before replacing the probe assembly.

511



Chapter 15:Installation and Service
To ensure software compatibility

To ensure software compatibility

There are various sets of firmware resident in the assemblies contained in the

HP 64700 Card Cage. It is important to ensure that all the versions are compatible
among the products you have installed. You can determine which versions of
firmware you have by entering the terminal interfaeecommand.

There are at least three assemblies that have separate firmware in the HP 64700
Card Cage. These assemblies are:

* Host Controller card
Emulator card
* Analyzer card

If you purchased a complete Emulation/Analysis System from HP, you can be
assured that all the products contained in the HP 64700 Card Cage contain
compatible firmware at the time of sale. Software compatibility problems can occur
when you swap the host controller card, emulator card, or analyzer card from one
HP 64700 Card Cage to another, or from a recently purchased subassembly.

For example, you might purchase only the emulator subassembly (Emulation
Control Card, Probe, and interconnecting ribbon cable) and replace the original
emulator subassembly with the one you just purchased. In this case, the host
controller may contain a version of firmware that is older than required to operate
the new emulator; hence, compatibility problems can be caused by a newer
emulator. All emulators will work with the latest software versions. The emulator
software will warn you of incompatible software.

The host controller card has Flash EPROMs that can be updated with current
versions of emulator and analyzer firmware.

The latest versions of firmware for the host controller card and analyzer card along
with a program callegdrogflash are part of the B1471 software for the HP 9000
workstation and Sun SPARCsystems and the HP 64700 Option 006 software for
PCs.

When you load all your new versions of software onto your host computer, you are
now ready to load the new version of firmware from your host computer to the
assemblies that are in the HP 64700 Card Cage.

To load the new firmware, you use firegflashcommand. The progflash
command displays a list of card cages, and subassemblies in each card cage on your
system. From these lists, you can select which product to update. For information

512



Chapter 15:Installation and Service
To ensure software compatibility

on using therogflashcommand, and updating your HP 64700 Series firmware,
refer to theHP 64700 Series Card Cage Installation/Service manual

513



Chapter 15:Installation and Service
To ensure software compatibility

Parts List

Main Assembly

Component Part

New

Exchange

HP 64747A Probe and Demo Board

FG Monitor Floppy
MC68030 Probe assembly
HP 64747A/B Demo Board

HP 64747B Probe and Demo Board

FG Monitor Floppy
MC68030 Probe assembly
HP 64747A/B Demo Board
Top Plastic Cover

Bottom Plastic Cover

HP 64748A/D Probe and Demo Board

FG Monitor Floppy
MC68020 Probe assembly
HP 64748 Demo Board
Top Plastic Cover

Bottom Plastic Cover

Probe and Demo Board Generic Parts

Washer

Plastic Rivet

External Power Cable

Plastic Rivets Kit (rivets and washers)

64747-18003
64747-62107
64747-66506

64747-18004
64747-66509
64747-66506
64747-04101
64747-04102

64748-18002
64748-62101
64748-66510
64748-04101
64748-04102

3050-0300
0361-1215
5181-0201
64748-68700

64747-69507

64747-69509

64748-69101

514




Chapter 15:Installation and Service
To ensure software compatibility

Main Assembly

Component Part New Exchange
HP 64748B Emulation Control Card Subassembly
Plastic Rivet 0361-1215

Egress Panel

Bracket (used with Egress Panel)

Strain Relief Strap

Cable-100 36"

Cable-100 37"

Cable-100 38"

Emulation Control Card

(without external cable or egress panel)
Wrist strap

HP 64748C Emulation Control Card Subassembly

Egress Panel

Bracket (used with Egress Panel)
Spacer, Hex M3X6

Screw, Machine M3X8
Cable-100 36"

Cable-100 37"

Cable-100 38"

Cable Clamp

Rubber Strip

Emulation Control Card

(without external cable or egress panel)
Wrist strap

HP 64171A 256 Kbyte SRAM Module

HP 64172A 256 Kbyte SRAM Module

HP 64171B 1 Mbyte SRAM Module

HP 64172B 1 Mbyte SRAM Module

HP 64173A 4 Mbyte SRAM Module (do not use on
64748A)

Analyzer Card

34-pin ribbon cable

64748-00201
64748-01201
64748-01204
64748-61601
64748-61602
64748-61603
64748-66507

9300-1405

64748-00205
64748-01201
0515-1146

0515-0372

64748-61601
64748-61602
64748-61603
64744-01201
64744-81001
64748-66515

9300-1405

64171-66503
64172A
64171-66502
64172B
64173A

64740-66526
64708-61601

64748-69507

64748-69515

64171-69503
64172-69501
64171-69502
64172-69502
64173-69501

64740-69526

515



Chapter 15:Installation and Service
To ensure software compatibility

What is an Exchange Part?

Exchange parts are shown on the parts list. A defective part can be returned to HP
for repair in exchange for a rebuilt part.

Probe (exchange)

To replace the Probe on the exchange program, you must remove certain parts, and
return only that part considered an exchange part. When returning the Probe, you
must remove the:

e cable assembly.

» top and bottom plastic covers.
*  SRAM modules.

* demo board.

Emulation Control Card (exchange)

To replace the Emulation Control Card on the exchange program, you must remove
certain parts, and return only that part considered an exchange part. When
returning the Emulation Control Card, you must remove the:

» ribbon cable that connects the Emulation Control Card to the analyzer card.
e cable assembly.
e egress panel.

516



Glossary
Absolute file

Glossary

Absolute file

a file consisting of machine-readable instructions in which absolute
addresses are used to store instructions, data, or both. These are the
files that are generated by the compiler/assembler/linker and are loaded
into HP 64700 Series emulators.

Analyzer

an instrument that captures activity of signals synchronously with a
clock signal. An emulation-bus analyzer captures emulator bus cycle
information. An external analyzer captures activity on signals external
to the emulator. No external analyzer is supported by the MC68020
and MC68030/EC030 emulators because all analysis bits are used by
the emulation-bus analyzer.

Arm Condition

a condition that reflects the state of a signal external to the analyzer.
The arm condition can be used in branch or storage qualifiers. External
signals can be from another analyzer or an instrument connected to the
CMB or BNC.

Assembler

a program that translates symbolic instructions into object code.

Background

a memory that parallels (and overlaps) the emulation processor’s
normal address range. Entry to background can only take place under
emulator control, and cannot be reached via your target program.

517



Glossary
Background Monitor

Background Monitor

a monitor program that operates entirely in the background address
space. The background monitor can execute when target program
execution is temporarily suspended. The background monitor does not
occupy any of the address space that is available to your target program.

BNC Connector

a connector that provides a means for the emulator to drive/receive a
trigger signal to/from an external device (such as a logic analyzer,
oscilloscope, or HP 64000-UX system).

Breakpoint

a point at which emulator execution breaks from the target program and
begins executing in the monitor. (See also Software Breakpoint.)

Command File

a file containing a sequence of commands to be executed.

Compiler

a program that translates high-level language source code into object
code, or produces an assembly language program with subsequent
translation into object code by an assembler. Compilers typically
generate a program listing which may list errors displayed during the
translation process.

Configuration File

a file in which configuration information is stored. Typically,
configuration files can be modified and re-loaded to configure
instruments (such as an emulator) or programs (such as the PC
Interface).

518



Glossary
Coordinated Measurement

Coordinated Measurement

a synchronized measurement made between the emulator and analyzer,
between emulation-bus analyzer and external analyzer, or between
multiple emulators or analyzers. For example, a coordinated
measurement is made when two or more HP 64700 emulators/anal
start executing together, or break into background monitors at the same
time.

Coordinated Measurement Bus (CMB)

the bus that is used for communication between multiple HP 64700
Series emulators/analyzers or between HP 64700 emulators/analyzers
and an HP 64306 IMB/CMB Interface to allow coordinated
measurements.

Cross-Trigger

the situation in which the trigger condition of one analyzer is used to
trigger another analyzer. Two signals internal to the HP 64700 can be
connected through the BNC on the instrumentation card cage to allow
cross-triggering between the emulation-bus analyzer and other
analyzers.

DCE (Data Communications Equipment)

a specific RS-232C hardware interface configuration. Typically, DCE
is a modem.

Downloading

the process of transferring absolute files from a host computer into the
emulator.

DTE (Data Terminal Equipment)

a specific RS-232C hardware interface configuration. Typically, DTE
is a terminal or printer.

Emulation-bus Analyzer

a system component built into the HP 64700 that captures the
emulation processor’s address, data, and status information.

519



Glossary
Emulation Memory

Emulation Memory
high-speed memory (RAM) in the emulator that can be used in place of
target system memory.

Emulator

a tool that replaces the processor in your target system. The goal of the
emulator is to operate just like the processor it replaces. The emulator
gives information about the bus cycle operation of the processor and
control over target system execution. Using the emulator, you may
view contents of processor registers, target system memory, and 1/0
resources.

Emulator Probe
the assembly that connects the emulator to the target system
microprocessor socket.

Foreground

the directly addressable memory range of the emulation processor.

Foreground Monitor

a monitor program that executes in the foreground address space. When
the monitor exists in foreground, it is directly accessible by, and can
interact with, your target program.

Guarded Memory

an address range that is to be inaccessible to the emulation processor.
The emulator will generate a break and display an error message if an
access to guarded memory occurs.

Handshaking

a process that involves receiving and/or sending control characters
which indicate a device is ready to receive data, that data has been sent,
and that data has been accepted.

520



Glossary
Host Computer

Host Computer

a computer to which an HP 64700 Series emulator can be connected. A
host computer may run interface programs which control the emula
Host computers may also be used to develop programs to be
downloaded into the emulator.

Inverse Assembler

a program that translates absolute code into assembly language
mnemonics.

Linker

a program that combines relocatable object modules into an absolute
file which can be loaded into the emulator and executed.

Logical Address Space

the addresses assigned to code during the process of compiling,
assembling and linking to generate absolute files. Refer to Chapter 9
for a detailed explanation.

Macros

custom made commands that represent a sequence of other commands.
Entire sequences of commands defined in macros will be automatically
executed when you enter the macro name. Macro nesting is permitted;
this allows a macro definition to contain other macros.

Memory Mapper Term

a number assigned to a specific address range in the memory map.
Term numbers are consecutive.

Memory Mapping

defining ranges of the processor address space as emulation RAM or
ROM, target RAM or ROM, or guarded memory.

521



Glossary
Monitor Program

Monitor Program

a program executed by the emulation processor that allows the
emulation system controller to access target system resources. For
example, when you enter a command that requires access to your
system resources, the system controller writes a command code to a
storage area and breaks the execution of the emulation processor from
the target program into the monitor. The monitor program then reads
the command from the storage area and executes the processor
instructions that access the target system. After the system resources
have been accessed, execution returns to the program.

Operating System

software which controls the execution of computer programs and the
flow of data to and from peripheral devices.

Parity Setting

the configuration of the parity switches. Depending on the
configuration of the parity output switch and the parity switch, a parity
check bit is added to the end of data to make the sum of the total bits
either even or odd. A parity check is performed after data has been
transferred, and is accomplished by testing a unit of the data for either
odd or even parity to determine whether an error has occurred in
reading, writing, or transmitting the data.

Path

also referred to as a directory (for example \users\projects).

Pass Through Mode

see Transparent Mode.

PC Interface

a program that runs on the HP Vectra and IMB PC/AT compatible
computers. This is a friendly interface used to operate an HP 64700
Series emulator.

522



Glossary
Performance Verification
Performance Verification

a program that tests the emulator to determine whether the emulation
and analysis hardware is functioning properly.

Physical Address Space

the address space in hardware memory and hardware 1/O that is
accessed by the microprocessor during normal program execution.
Refer to Chapter 9 for a detailed explanation.

Prefetch
the ability of a microprocessor to fetch additional opcodes and
operands before the current instruction is finished executing.

Prestore

the storage of states captured by the analyzer that precede states which
are normally stored. If the normal storage qualifier specifies the entry
address of a function or routine, prestore can be used to identify the
callers of that function or routine.

Real-Time Execution

refers to the emulator configuration in which commands that
temporarily interrupt target program execution (for example,
display/modify target memory or processor registers) are not allowed.

Remote Configuration

the configuration in which an HP 64700 Series emulator is directly

connected to a host computer via a single port. Commands are entered

(typically from an interface program running on the host computer) and

absolute code is downloaded into the emulator through that single port.
RS-232C

a standard serial interface used to connect computers and peripherals.

Sequencer

a state machine in the analyzer that searches for execution of states in a
particular order.

523



Glossary
Single-step

Single-step

the execution of one microprocessor instruction. Single-stepping the
emulator allows you to view program execution one instruction at a
time.

Softkey Interface

the host computer interface program used in the UNIX environment.
The Softkey Interface is a friendly interface used to control HP 64700
emulators.

Software Breakpoint

an address at which a particular opcode causes program execution to
break into the monitor. The details of the software breakpoint
instruction varie among emulators. Software breakpoints are used to
stop target program execution at a particular point so that you can view
the state of the processor or target system, or you can begin stepping
through program instructions from a known location.

Software Performance Analyzer

an analyzer that measures execution of software modules, interaction
between software modules, and usage of data points and I/O ports.

Standalone Configuration

the configuration in which a data terminal is used to control the HP
64700 Series emulator, and the emulator is not connected to a host
compulter.

stderr

an abbreviation for “standard error output.” Standard error can be
directed to various output devices connected to the HP 64700 ports.

stdin

an abbreviation for “standard input.” Standard input is typically defined
as your computer keyboard.

524



Glossary
stdout
stdout

an abbreviation for “standard output.” Standard output can be directed
to various output devices connected to the HP 64700 ports.

Step
See Single-step.

Synchronous Execution

the execution of multiple HP 64700 Series emulators/analyzers at the
same time (i.e., multiple emulator start/stop).

Syntax

the order in which expressions are structured in command languages.
Syntax rules determine which forms of command language syntax are
grammatically acceptable.

Target Program

The program you are developing for your product. It is also called user
program.

Target System

the circuitry where the emulator probe is connected (typically a
microprocessor-based system under development).

Target System Memory

storage that is present in the target system.

Terminal Interface

the command interface present inside the HP 64700 Series emulators
that is used when the emulator is connected to a simple data terminal.
This interface provides on-line help, command recall, macros, and

other features which provide for easy command entry from a terminal.

Trace

a collection of states captured synchronously by the analyzer.

525



Glossary
Transparent Configuration

Transparent Configuration

the configuration in which the HP 64700 Series emulator is connected
between a data terminal and a host computer. When the emulator is in
the transparent (pass through) mode, the data terminal acts like a
normal terminal connected to the computer. In this configuration, you
can develop code on the host computer and download absolute code
into the emulator for debugging and testing.

Transparent Mode

the emulator mode in which all characters received on one port will be
copied to the other port. This mode allows a data terminal (connected to
one emulator port) to access a host computer (connected to the other
emulator port) through the emulator.

Trigger
the condition that identifies a reference state within an analyzer trace
measurement. Trigger also refers to the analyzer signal that becomes
active when the trigger condition is found.

Uploading
the transfer of emulation or target system memory contents to a host
computer.

Unlocked Exit

one of two methods used to leave the high level (Graphical or Softkey)
Interface and return to the host computer operating system. An
unlocked exit command allows you to exit the high level interface and
re-enter later with the default configuration. (See also Locked Exit.)
This is not available in the Terminal Interface.

User Program
Another name for your target program (the program you are developing
for your product.

Viewport

see Window.

526



Glossary
Wait States

Wait States

extra microprocessor clock cycles that increase the total time of a bus
cycle. Wait states are typically used when slower memory is
implemented.

Window

a specified rectangular area of virtual space shown on the display in
which data can be observed.

527



528



Index

abbreviated help mode67

absolute count (in trace listR30, 336

absolute file
formats, 256, 271
loading into memory271 - 272
loading via ftp,57 - 58

accent grave mark charact&06

access mode289, 291

access to guarded memoi283

accuracy of trigger positior358

active edges (slave clock3,72 - 373

activity, analyzer line 316 - 317

addition operator401

address
how it is affected when the MMU is 011,98
logical vs physical explained,92
mapping details of a single addreg62
mappings in the MMU, supervisor/us&01
mappings when MMU uses function cod@§1
physical in trace list, check lis1,85
translation details of single addre &8

all (analyzer keyword)338

altitude specifications491

analyzer
analyzer initialization,349 - 350
clock (master) specificatior33, 326 - 328
complex configuration,119, 323
complex configuration pattern qualifieB60 - 362
complex configuration range qualifieB65 - 367
configuration, 320 - 325
count qualifier,322, 324, 329 - 330
easy configuration321
expressions403
expressions in the complex configuratic@®23
halt trace,343 - 344

529



Index

analyzer (continued)
invalid simple expressiongl07
labels, 355 - 356
line activity, 316 - 317
master clock specificatior826 - 328
performance verification293 - 294
prestore qualifier322, 324, 363 - 364
primary branches (sequenceBy5 - 348
secondary branches (sequencéf] - 334
sequencer374 - 376
sequencing in the complex configurati@23
sequencing in the easy configurati@21
slave clocks,372 - 373
start, 315
state/time counter109
storage qualifiers377 - 379
storage specification in the complex configuratiB@4
storage specification in the easy configurati8g2
trace configuration rese825
trace list format,335 - 337
trace sequence, 12
tracing background operatio326
tracing foreground operatior326
trigger condition,338 - 340
trigger in feedback loop229, 244
trigger one analyzer with anothek45
trigger output,341 - 342
trigger position,357 - 359

AND
(bit-wise) operator 402
(interset logical) operator395

antistatic precautions497

any (analyzer keyword)338, 363

arm condition
analyzer status369
complex expressions394
cross-arming,228, 244
specifying, 318 - 319
time until trigger,370, 461, 466

530



Index

arming the analyzer318 - 319
ASCII strings, displaying on standard outp2§8
architectures of virtual memong,93 - 194

b (break) commandl7, 71, 223
background monitor165
background operation, tracin§26
bases (number398
default for step count302
labels in trace list335
baud rate, communication port309
bc (break conditions) commandy7?2, 224 - 226
binary
number base specifieB89, 398
trace list format,352, 458
bit-wise operators
AND, 402
exclusive OR,402
inclusive OR,403
merge, 403
BKPT (breakpoint vector)78, 171
block (memory mapper), re-assignment of emulation menisy,
BNC trigger signal,225, 227 - 229
bnct (BNC trigger drivers and receivers) commaay - 229
bp (breakpoint modify) commandg8 - 82, 230 - 234
branch qualifiers (sequencer)
primary, 345 - 348
secondary,331 - 334
break, 223
to monitor, 17, 71
to monitor on a trigger signall47
break conditions171
BNC or CMB trigger signals225
enabling and disablingl 72
software breakpoints225, 233
trig1 or trig2 internal signals225
write to ROM, 225
breakpoints,151
disabling, 80, 232
displaying, 82
enabling, 79, 232

531



Index

breakpoints (continued)
generally, 78
inserting, 78, 232
removing, 81, 233
vector default,171
vector defining,171

breaks
guarded memory acces233
synchronous241

bus cycles, slow266

C calculator for expression259
can't break into monitor exampl@18 - 220
cautions
apply power to emulator before target syst&,
incompatible firmware 498
protect against static discharg#3
turn OFF power before installing emulator proiBd,
verify pin 1 when installing emulator prob84
cf (emulator configuration) command2, 169, 173, 235 - 238
channels (analyzer)
demultiplexed slave clock mod8,72
mixed slave clock mode372
characteristics475 - 492
cl (command line control) comman@5, 239 - 240
clocks
configuration, 133
count states or timel.36
generally, 132
rate settings134
specifications, 476
specifying analyzer masteB26 - 328
specifying analyzer slaved72 - 373
trace user/background cod&32
cmb (coord. meas. bus enable/disable) commadd,- 242
CMB (Coordinated Measurement Bus)
enable/disable241
specifications, 492
start synchronous executioB86
trace at /EXECUTE380 - 382
trigger signal,225, 243 - 245, 380

532



cmbt (CMB trigger drivers/receivers) commarit#}3 - 245
CMD_INPUT, 14
column headers in trace list
adding new columns335
suppressing352
command files
building of, 45
building with a text editor46
comments in, 46
editing of, 46
generally, 45
log from a PC host47
log on a UNIX host 48
using on a PC host9
using on a UNIX host50
command line editing
commands,35
installing or removing,35
command processing delay$)
commands
b, 17,71
cf, 12, 238
cp, 67
cu, 48
demo, 12
dmmu, 253 - 254
echo, 39
emulator interface]12
entering, 10
help, 11, 36, 267 - 268
help for group,267
init, 31
load, 12
mac, 42 - 43
macros,278 - 281
map, 12
maximum length of command lin@80
mmu, 286 - 288
r, 13
rep, 41
repeating a group o298

Index

533




Index

commands (continued)
rst, 18, 74
s, 72
sym, 311 - 314
t, 16
tcq, 17

tg, 16
tl, 17
tsq, 45

w, 40
communications (data)
initialization, 269
setting parameters308 - 310
complex analyzer configuratior323
complex expressions] 24
generally, 119
pattern specifications360 - 362
primary branches126
range qualifiers 122
range specification365 - 367
secondary branche428
storage qualifiers]129
trace patterns122
trace sequencef,20 - 121
trigger terms,119
complex expressions96
configuration, 12
analyzer,320 - 325
data communications switche309 - 310
default, 237
emulator, 235 - 238
items, 235
trace, 112
control (CTRL) characters
¢, command abort273, 294, 298, 302
non-displaying,258
Coordinated Measurement Bus (CMB}2
coordinated measurements, enable/disab4d, - 242
copy memory blocks67, 246

534



Index

count (occurrence)136, 321, 324, 338 - 339, 345, 370
reset if secondary branch take383

count (time), 136

count qualifier, 322, 324, 329 - 330

counter, analyzer tag329

cp (copy memory) command7, 246

cross-triggering 228, 241, 244

cu command 48

data communications
configuration switches309 - 310
initialization, 269
setting port parameter808 - 310
specifications,492
data cycles, monitor access to target mema2sg
date
displaying emulation systeng7
setting emulation systen®7, 255
decimal number base specifi€&d89, 398
delimiters (string),258 - 259, 306
delta time in binary/hexadecimal trace lid§7, 469
deMMUer
command options206
detailed discussion205
how it is loaded by the emulato2,12
how to enable206
how to load reverse translation2)6
its reverse translation tabl2p8 - 209
keeping it up to date207
out of resources, things to ched&4
programming in static memory systefi,0
resource limitations208 - 209
resources used for function code@d4
resources used for two root pointe?d,3
restrictions when using207
seeing present reverse translatic?86
table, how to conserve space E10
terms allocated from memory mapl1
deMMUer/MMU chapter,191
demo (load the demo program) commatg,- 13, 54

535



Index

DeMorgan’s theorem396
demultiplexed (slave clock) mod&;72
dequeued trace, aligning opcodes/operad3,
dequeueing of trace list4,06
disassembled trace, aligning opcodes/operahdg,
disassembly of trace list406, 335, 352
display

date and time37

mode, 291

mode, definition,289

present MMU mappings199 - 200

single address mapped by MME02

trace list, 17

table details at a logical addre94
divide (integer) operator401
dmmu (reversing MMU for analyzer) commarg3 - 254
download or user program@y/1 - 272
drivers and receivers

BNC trigger signal, 227 - 229

CMB trigger signal,243 - 245

See alsotrigl and trig2 internal signals
dt (set or display system date/time) commaBid, 255
dual-port emulation memoryl54, 233
dump (upload memory) commang56 - 257
dynamic virtual memory system&93

E  EARLY defined in address mapping displ&303
easy analyzer configuratio321
generally, 113
global restart terms]17
primary branches116
reset sequencef,15
sequence termg,14 - 115
echo (display to standard output) commag#, 258 - 260, 398
edges
(analyzer clock), rising, falling, bott827
(analyzer slave clock), activ&72 - 373
emulation analyzer16
emulation break223
emulation memory map used by deMMU&09

536



Index

emulation monitor,150

break command223

breaks to the225

cycles used to access target mem@89

execute after resef99

foreground, loading272

running in (emulator statusp66

searching target memong06
emulation process step28
emulation RAM, mapping address rang282
emulation ROM, mapping address rang282
emulator

configuration, generally52, 150

displaying status informatiorg7

error message#10

in-circuit use of,83

initialization, 269 - 270

initialization options,31

installation of, 7

interface commandsl 2

performance verification293 - 294, 509

powerup, 10, 30

probe precautionsg4

prompt, changing the292

reset, 18

restrict to real-time runsl73

status,266
emulator, how it loads the deMMUe212
enabling the MMU,196
enabling the MMU in the emulatoB6
entering commands

combining, 32

options, 32

repeating,33
equ (equate names to expressions) commasdd,- 139, 261 - 265
equates 261 - 265

defining, 138

deleting, 139

displaying, 139

537




Index

eram, mapper parameter for emulation RAAS3
erom, mapper parameter for emulation ROA83
error messagest10
analyzer,447
emulator, 409 - 456
es (emulator status) commartl;, 266
escape (ESC) characters
j, edit existing command35
k, recall existing command35
example, can’t break into monito218 - 220
exclusive OR (bit-wise) operatod,02
EXECUTE (CMB signal),242, 369, 380, 386
expression calculato259
expressions
analyzer, complex configuratior323, 396
analyzer, easy configuratio321
creating, 92
creating complex expressions24
creating, in easy configuratioi,13
equating names t®61 - 265
operators,400
external timing analyzer
glitch mode, 467, 470
standard mode467, 470
transitional mode 467, 469

F  fast (F) analyzer clock speed25, 328

file formats
absolute, 256, 271
Intel hex and Tektronix hexg3
Motorola S-record 53

foreground monitor 165
mapping for MC68030 MMU,176 - 177
set interrupt priority,167
tracing, 326

formats
absolute file,256, 271
binary trace list,352, 458
hexadecimal trace lis52, 458
memory display,274
trace list, 335 - 337

538



ftp
loading absolute files57 - 58
loading symbol files 59 - 60
function codes 160, 273, 276
mapped in deMMUer resourcedl4
used in translation table496

glitch (external timing analyzer) modég7, 470
global
access and display modez39
restart qualifier,321, 331, 339, 347, 374
storage qualifier322, 378
variable, CMD_INPUT,14
grave mark characteB06
grd, mapper parameter for guarded mem@83
group (command)267
guarded memory acces?83
guarded memory access when using MMA16

H,h, hexadecimal number base specif&99
halt

emulation status266

system when using MMU217

trace, 343 - 344

trace status369
handshaking (data communication3))9
hardware enable for the MMU,96
headers in trace list

adding new columns335

suppressing352
help

abbreviated mode267

command groupll

(on-line help) commandl1, 36, 267 - 268
hexadecimal

base specifier399

number base specifieB89

trace list format, 352, 458
history, trace status370
humidity specifications491

Index

539




Index

I inclusive OR (bit-wise) operatos03
information (help),267 - 268
init (initialize the emulator) commandl, 269 - 270
initialization
analyzer,349 - 350
emulator, 269 - 270
installation
active probe to demo boar8ip8
card cage,’
demo board power cabl&00
emulator, 7
emulator active probe cabl&p7
emulator into HP 64700 Card Cagt99
equipment supplied497
overview, 498
static random access memory module83 - 504
tools needed497
interlock cycle termination signal4,66
internal signals, trigl and trig225, 227, 243, 318, 343, 380
interrupt stack pointer presetting9
interset operators395
intraset operators394
INVALID in address mapping display203
inverse values (complex analyzer expressioB8§
IP address57

J J clock (analyzer)328
K Kclock (analyzer),328

L L clock (analyzer),328

labels (trace)
defining analyzer97, 355 - 356
deleting analyzer98
displaying analyzer98
predefined,355

LAN connection
loading absolute files57 - 58
loading symbol files 59 - 60

large page mode of deMMUer define2)9

line activity (analyzer) 316 - 317

listing the present MMU mapping4,99 - 200

540



Index

load (download user programs) commad, 271 - 272
loading, 12

demo program,13
logical address

defined, 193

table details,204

translation details, to viewg8
logical operators

Seeoperators
logical-to-physical

mappings, to viewg7

translation (mmu command286 - 288
LONG defined in address mapping displ&03
L/U and LIMIT in address mapping displag03

m (memory display/modify) command4, 274 - 277
displaying options 63
modifying options,64
search options66
M clock (analyzer),328
mac (macro definition/display) commardi? - 43, 278 - 281
macros,42
creation of,42
deletion of, 43
execution of,43
limitations, 280
list predefined,42
map (memory mapper) commant®, 152, 158 - 159, 282 - 285
mapping memory282 - 285
mappings, logical-to-physical, to vievg,7
master clocks (analyzerg26 - 328
maximum
analyzer clock speed326
command line length280
mapper terms285
sequence levels in easy configurati@d,7
sequence terms in easy configurati®i@p
measurements
analyzer, starting315
coordinated 241 - 242

541



Index

memory, 150, 152
accessing resource63
assess modeg89 - 291
assign default mapl58
assign map termsl] 52
copy blocks of,67
delete map terms]59
display mode,289 - 291
displaying, 15, 63, 274 - 277
dual-port, 154
enable one wait statd,59 - 160
enable/disable caché55
loading programs into271 - 272
mapping, 12, 282 - 285
modifying, 14, 64, 274 - 277
processor cache disablingj74
search,66, 305 - 307
set function codes for load460
sockets on probe]54
type (list of), 152
upload to host file 256 - 257

memory managemeni 91l
systems supported,93 - 194

memory map, how it is used by deMMU&Q9

merge (bit-wise) operatod03

mixed (slave clock) mode372

MMU
enabled, how it affects the analyz&4,0
enabled, using the emulator witB6
how it affects command compositioh98
how it is enabled 196
(logical-to-physical translation) commangg6 - 288
mapping 1:1 for use with MC6803Q,76 - 177
mapping details of a single addre262
mapping tables modified for map monitdr77
mappings, how the emulator obtains the2ip
mappings, listing the present mappind89 - 200
mappings, modifying for monitor218 - 220
mappings, obtaining a shorter list @00
restrictions when usingl 97

542



Index

MMU (continued)
reversing its translation£53 - 254
special problems discussiof15
where is it located195
MMU/deMMUer chapter,191
mnemonic
information in the trace list335

mo (set access and display modes) commagé,- 291 .

memory display mode274
options, 69

mode
abbreviated help267
access,291
demultiplexed slave clock372
display, 291
glitch (external timing analyzery67, 470
memory access?289 - 291
memory display,289 - 291
mixed slave clock372
quiet, 272, 302
standard (external timing analyzed67, 470
transitional (external timing analyze®d67, 469
whisper, 302, 368
modulo (integer) operator01
monitor (emulation),150, 163
break, 17
break command223
breaks to the225
configuration of MC68020 and MC68EC03D64
cycles used to access target mem@8§9
execute after resef99
foreground, loading272
keep-alive address (MC68EC030)68
running in (emulator statusp66
searching target memong06
set the base addresk;5
to map 1:1 for use with MC68030 MMU
multiple traces, numbering264
multiply (integer) operator401

543



Index

N clock (analyzer),328

names
pattern, 360
values, 261 - 265

NAND operator, 396

never (analyzer keyword338

No trace data (message&54

none (analyzer keywordg30, 338, 363

NOR (intraset logical) operatoB94

NOT TAKEN in trace list, what it mean4,09

notes
access mode for writing breakpoin230
address followed by two periods as a rangj&}
address specificatior 76, 295
analyzer count qualifier cannot be arm conditid@9
analyzer should not drive and receive same siz8, 244
analyzer, "tcq time" only if "tck -s S'329
arm to trigger time alignment between emulat@&l
asterisk (*) in help comman®67
breakpoint display status checking@2
date and time are reset when power is cyckéth
date assumes year is in 20th centl®y5
display mode and memory modificatioR75
don't care values are not allowed in echo comm&99),
emulation memory block re-assignmef84
equate limits,261
equates, new values not updated in commaRés,
equates, predefine@61
init -c or -p cause system memory 0269
macros allowed within rep commandz)8
macros, predefined278
map change requires breakpoint disali85
master clock qualifiers: tck -u, tck -1326
memory display is not update@,5
memory map modification causes emulator re28§
occurrence counts in complex configurati@#6
operations are on thirty-two-bit signed intege2§9
primary and secondary branch qualifiers satisfi&8f3, 347
pv command reinitializes emulata293
range not allowed in pattern specificatioB§0
range reset when trace configuration reset to €264,

544



Index

notes (continued)
run from reset function varies with emulato295
rx command enables CMB interactia?4?2
search patterns, specifying compl&Q6
sequence term count res883
sequencer term 8 defauB32, 347
single open quote, ASCII charact@58, 306
step count must be specified with addre3®4
step does not work correctly while CMB enabl&d4
storage qualifiers and the sequen#8
storage qualifiers, globaB77
string delimiter character should not be in strig§8
strings should not contain string delimiter characB86
trace format does not affect information capturg@@y
trace list command options, mutually exclusigs?2
trace list from a specific stat853
trace states, displaying when trigger not fouddi3
trigl and trig2 can both drive/receive BN227
xon toggling with baud rates of 1200 or belo84,0
numbering multiple trace264
numbers, software versio383
numeric search in memonrg05

0,0, octal number base specifi@98
occurrence count321, 324, 338 - 339, 345, 370

reset if secondary branch take383
octal

number base specifieB89
one’s complement (unary) operatdQ1
opcodes and operands, how to align in trdd]
operators,400

| (intraset OR),124

~ (intraset NOR),124

AND (interset AND), 124

combining intraset and interse396

interset, 395

intraset, 394

OR (interset OR)124

precedence400

545



Index

OR operator

bit-wise, 403

interset logical,395

intraset logical,394

restriction in easy configuratio®07
other, mapper parameter for unmapped memd8a
out of resources

deMMUer, things to check] 84

message, how to avoi@10
overlap

bit-wise merge,403

trace labels 356

P pl-p8, trace pattern label360

PAGE defined in address mapping displa$3
page mode of deMMUer define@09
parameters, data communicatioB88 - 310
pattern

expressions398

labels, 394

names,360

qualifier (complex analyzer config.360 - 362
performance verification293 - 294
physical address

defined, 193

in trace list, check list185

tracing execution in physical spack]1
physical-logical mappings, to viev7
pipeline

analyzer architecture369

analyzer prestore322
plastic covers, removing and installing02
plastic rivets, removing and installing§01
po (specify port control) comman@8g8, 292
polarity, trace labels355
ports (data communications), setting parametg@s, - 310
position of trigger state in trac857 - 359
powerup, 10, 30, 85

initialization sequence269
precedence, operato400
predefined macros278
predefined trace label855

546



Index

prestore qualifier322, 324, 363 - 364
defining, 135
primary branches (analyzer sequencég, 345 - 348
define in easy configuratior,16
print to standard output devic89
Print_Msg, 16
probe
adapters for special target systers,
dimensions,490
emulator, 293
memory sockets154
problem solving
a discussion for the MMU215
can't break to monitor after MMU enableti37
if deMMUer is out of resources during loadint34
if only physical addresses in trace 1i$85
if out of resources with less than 8 mapping84
if the analyzer won't trigger180
if the demo program won't work?0, 183
if the emulator won't work in a target systed§1
if you have trouble mapping memorg82
if you see unexplained states in the trace i)
if you suspect the emulator is broketg81
if you're having problems with DMA183
if you're having problems with emulation resé83
processor
cache memory151
cache memory generally,74
disable cache memony,74
reset from emulator74
run controls,70
program counter presettindg.69
program counter symbol ($295
programs
building, 8, 52
loading, 12
loading from a PC hos65
loading from a UNIX hostb6
running, 13
simultaneous run on two emulatofs}4

547



Index

prompt (emulator), changind8, 292
protocol
checking, 272
(transfer), 257, 272, 352, 458
pv (performance verification) commang93 - 294

Q Q.q, octal number base specifi&98
qualifiers
analyzer count329 - 330
analyzer master clock326 - 328
analyzer pattern360 - 362
analyzer prestore] 35, 363 - 364
analyzer range365 - 367
analyzer storage377 - 379
complex storagel129
defining range patterng,22
global restart,321, 331, 339, 347, 374
sequencer primary brancB45 - 348
sequencer secondary bran@31 - 334
guestion mark (?)
break conditions display226
on-line help command?267
quick reference 36
guiet mode,272, 302
guote marks 258, 292, 306

R r (run user program) command3, 295
options, 70
radix indicators
binary, 92
decimal, 92
hexadecimal 92
octal, 92
range qualifier (complex analyzer config365 - 367
ranges,394
READY (CMB signal), 242, 386
recalling commands33
in reverse,33

548



Index

receivers and drivers
BNC trigger signal,227 - 229
CMB trigger signal,243 - 245
See alsotrigl and trig2 internal signals
record checking257
reg (register display/modify) command5, 296 - 297
registers
displaying, 75
displaying multiple, 76
introduction, 75
modifying, 76
modifying multiple, 77
relational expressions394 - 395
relational operators331, 346, 378
relative counts in trace lis830, 336
rep (repeat commands) commard®, 41, 298
canceling,41
reset, 18
break during,223
breakpoints,231
emulation microprocesso99
emulator, due to mapper modificatioB85
init command,270
occurrence count333
range qualifier and trace configuratioB66
run from, 295
sequencer374
system date and time&55
trace configuration325
trace specification349 - 350
trace tag counter330
restart (global) qualifier321, 331, 339, 347, 374
reverse translations of MMU (dmmu commang}3 - 254
ROM, break on writes t0225
root pointers both used in deMMUer resourc2s3
rotate left/right operator401
RS-422, serial port data communicatioB69
rst (reset emulation processor) commah@, 299
options, 74

549



Index

run
from a specific addres§,0
from current program counter0
from target system resefQ
restrict to real-time 173
simultaneously on two emulator§44
synchronous241

s (step the emulation processor) commas@ - 304
options, 72
sample period (external timing analyzeff7
@sddefined, 201
secondary branches (analyzer sequend2,
branch default128
semicolon (command separato®)(8, 298
sequence terms
deleting, 375
inserting, 374
inserting using easy configuratiofi14
removing using easy configuratiohl5
reset in easy configuratiod,15
sequencer (analyzery74 - 376
complex configuration 323
define global restart tern, 17
display current settingsl 18
displaying settings in complex configuratiot1
easy configuration321
primary branches345 - 348
resetting in complex configuratiord,20
secondary branch qualifier831 - 334
ser (search memory for values) commagds - 307
sets (complex config. trace spec3p4
shift left/right operator401
SHORT defined in address mapping displa93
short help,268
signals
analyzer clocks 328, 373
analyzer, defining labels fo55 - 356
arm, 370
BERR, 166
BNC trigger, 225, 227 - 229

550



Index

signals (continued)
CDIS, 174
CIIN, 153
CMB /EXECUTE, 242, 299, 369, 380, 386
CMB READY, 242, 386
CMB trigger, 225, 243 - 245
DSACK, 150, 153, 166
EXECUTE, 142
internal trigl and trig2225, 318, 343, 380
READY, 142
STERM, 150, 153, 166
TRIG1, 142
TRIG2, 142
TRIGGER, 142
trigger output,341 - 342
simple expressionsl13
single-step,72
single-step emulation process@02 - 304
slave clocks (analyzer372 - 373
demultiplexed mode372
mixed mode,372
slow (S) analyzer clock speed28 - 329
slow clock emulator statu®66
small page mode of deMMUer define209
software
enable for the MMU,197
ensuring compatibility 512
version numbers383
software breakpointsl51, 230 - 234
break condition enable/disabl225
disabling, 80, 232
displaying, 82
enabling, 79, 232
inserting, 78, 232
pv command effect on293
removing, 81, 233
@spdefined, 201

551



Index

specifications
altitude, 491
clock, 476
CMB, 492
data communications}92
humidity, 491
probe dimensions490
temperature 491
trigger in/out, 491
weight, 490
standard (external timing analyzer) modé&,7, 470
standard command prompt, changir3g,
states (trace)
maximum with/without count330
prestore,363
status,370
visible, 370
static discharge, protecting the emulator probe agaa3st,
static memory system, loadig deMMU€&r10
static virtual memory systeni,93
status
analyzer,368 - 371
emulator, 266
step, 72
storage (trace) specificatioB,77 - 379
complex configuration 324
easy configuration322
qualifier, 95
string delimiters,258 - 259, 306
string search in memong06
stty (set data communications parameters) commad8l- 310
subtraction operato401
switches, data communications configurati@89 - 310
sym (symbol) commandl4, 311 - 314
deleting options 61
displaying options 62

552



Index

symbols, 59
", character string delimite66
$, program counter295
&&, bit-wise merge, 403
* trace status371
?, on-line help,11
@, function code 389
\, hex codes39
‘, character string delimiter66
[, intraset OR124, 332, 346, 378
~, intraset NOR,124
adding user symbol$51
displaying, 62
loading file via ftp, 59 - 60
names, creating261 - 265
removing, 61
synchronous emulator executio®g86
synchronous runs and brealkil
syntax diagrams, address variat89
system
clock, 255, 293
date/time, 255
systems, virtual memory explaineti93 - 194

t (start trace) command,6, 93, 315
T,t, decimal number base specifi&98
ta (trace activity display) command38, 316 - 317
table details for a single logical addre89, 204
tag counter (analyzer329
TAKEN in trace list, what it means,09
target system
interrupts, disabling175
RAM, mapping address rangez32
ROM, mapping address rangex32
tarm (specify arm condition) comman818 - 319
tcf (set easy/complex configuration) commaddp2, 320 - 325
tck (specify master clock) commanti32 - 133, 326 - 328
tcq (specify count qualifier) commandy, 109, 136, 329 - 330
telif (specify secondary branch qualifiers) commahtiy, 128, 331 - 334
temperature specificationd91
terminal interface prompt29

553



Index

terms
analyzer sequenceB21, 323, 376
memory mapper284
tf (specify trace list format) comman@9, 335 - 337
tg (specify trigger condition) command§g, 338 - 340
tgout (specify signal driven on trigger) commardd,1 - 342
th (trace halt) command3, 343 - 344
listing traces,354
tif (specify primary branch qualifiers) commantil 6, 126, 345 - 348
time
analyzer keyword330
display, 37
setting system37, 255
tinit (trace initialization) command349 - 350
tl (trace list display) command,7, 94, 103 - 104, 106
options, 101
tlb (define labels for analyzer lines) commaid, - 98, 355 - 356
tp (trigger position in trace list) comman8d57 - 359
options, 96
tpat (complex config. trace patterns) commat22, 360 - 362
tpg (specify prestore qualifier) commant35, 363 - 364
trace
check signal activity, 138
check user/background code executi®82
display list, 94
display status94
pattern defining,122
signal activity, 138
start, 16
start measuremeng3
status,368 - 371
stop measuremenf3
vector, 73
trace configuration
easy/complex112
reset, 325
trace labels 355 - 356
defining, 97
deleting, 98
displaying, 98
predefined,355

554



Index

trace list
depth, 109
disassembly and dequeueirf)6
display, 17, 101
display of symbols and addressé€4
header suppressioi03, 352
trace list format,335 - 337
binary/hexadecimal458
mnemonics,99
modifying, 99
relative/absolute 99
tram, mapper parameter for target RARB3
transfer memory to host file256 - 257
transfer, HP 64000 utility257, 272, 352, 458
transitional (external timing analyzer) mod&7, 469
translation
details of single logical addres88
logical-to-physical (mmu command286 - 288
of single address through MML2,02
reversing (dmmu command253 - 254
table details for a logical add89
trigl and trig2 internal signal®25, 227, 243, 318, 343, 380
trigger, 16
assigning terms in complex configuratiohl9
condition, 338 - 340
cross-triggering 241
infout specifications491
"not in memory" message&354
position, 96, 357 - 359
qualifier, 94
trng (specify complex config. range) commani@?2, 365 - 367
trom, mapper parameter for target ROR83
truth tables for logical operatord00
ts (display trace status) commarsdl, 368 - 371
tsck (specify slave clocks) commargif2 - 373
tsq (manipulate trace sequencer) commatig, 114 - 115, 118 - 121, 374 - 376
tsto (specify trace storage qualifier) comma8#8, 129, 377 - 379
TTO/TT1 used to map foreground monitor 11178
two’s complement (unary) operatctD1
tx (trace on CMB /EXECUTE) comman@80 - 382

555



Index

U in LU field of address mapping displag03

@ud defined, 201

unary ones’s complement operatdf)1

unary two's complement operatetp1

undefined breakpoint erro233

undefined software breakpoint when using MM21,7
@up defined, 201

upload memory to hosg56 - 257

value expressions398
values, equating with name261 - 265
variant records469
ver (display software version numbers) commaB@i, 383
verifying performance293 - 294
version checking39
very fast (VF) analyzer clock spee825, 328 - 329
virtual memory
(mmu command)286 - 288
management191

w (wait for specified event) command0, 384 - 385
wait (in command sequence3dg4 - 385
wait state
enable for emulation memory59
enable for synchronous/burst accesdéx)
weight specifications490
whisper mode 302, 368
write to emulation ROM 283
write to target ROM,283

X (start synchronous CMB execution) commaBé6
XOR (bit-wise) operator402

Y,y, binary number base specifie398

556



Certification and Warranty

Certification

Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory. Hewlett-Packard further
certifies that its calibration measurements are traceable to the United States
National Bureau of Standards, to the extent allowed by the Bureau’s calibration
facility, and to the calibration facilities of other International Standards
Organization members.

Warranty

This Hewlett-Packard system product is warranted against defects in materials and
workmanship for a period of 90 days from date of installation. During the warranty
period, HP will, at its option, either repair or replace products which prove to be
defective.

Warranty service of this product will be performed at Buyer's facility at no charge
within HP service travel areas. Outside HP service travel areas, warranty service
will be performed at Buyer’s facility only upon HP’s prior agreement and Buyer
shall pay HP’s round trip travel expenses. In all other cases, products must be
returned to a service facility designated by HP.



For products returned to HP for warranty service, Buyer shall prepay shipping
charges to HP and HP shall pay shipping charges to return the product to Buyer.
However, Buyer shall pay all shipping charges, duties, and taxes for products
returned to HP from another country. HP warrants that its software and firmware
designated by HP for use with an instrument will execute its programming
instructions when properly installed on that instrument. HP does not warrant that
the operation of the instrument, or software, or firmware will be uninterrupted or
error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,
unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims the
implied warranties of merchantability and fitness for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive remedies. HP
shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other customer assistance agreements are
available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.



Safety

Summary of Safe Procedures

The following general safety precautions must be observed during all phases of
operation, service, and repair of this instrument. Failure to comply with these
precautions or with specific warnings elsewhere in this manual violates safety
standards of design, manufacture, and intended use of the instrument.
Hewlett-Packard Company assumes no liability for the customer’s failure to
comply with these requirements.

Ground The Instrument

To minimize shock hazard, the instrument chassis and cabinet must be connected to
an electrical ground. The instrument is equipped with a three-conductor ac power
cable. The power cable must either be plugged into an approved three-contact
electrical outlet. The power jack and mating plug of the power cable meet
International Electrotechnical Commission (IEC) safety standards.

Do Not Operate In An Explosive Atmosphere

Do not operate the instrument in the presence of flammable gases or fumes.
Operation of any electrical instrument in such an environment constitutes a definite
safety hazard.



Warning

Keep Away From Live Circuits

Operating personnel must not remove instrument covers. Component replacement
and internal adjustments must be made by qualified maintenance personnel. Do not
replace components with the power cable connected. Under certain conditions,
dangerous voltages may exist even with the power cable removed. To avoid
injuries, always disconnect power and discharge circuits before touching them.

Designed to Meet Requirements of IEC Publication 348

This apparatus has been designed and tested in accordance with IEC Publication
348, safety requirements for electronic measuring apparatus, and has been supplied
in a safe condition. The present instruction manual contains some information and
warnings which have to be followed by the user to ensure safe operation and to
retain the apparatus in safe condition.

Do Not Service Or Adjust Alone

Do not attempt internal service or adjustment unless another person, capable of
rendering first aid and resuscitation, is present.

Do Not Substitute Parts Or Modify Instrument

Because of the danger of introducing additional hazards, do not install substitute
parts or perform any unauthorized modification of the instrument. Return the
instrument to a Hewlett-Packard Sales and Service Office for service and repair to
ensure that safety features are maintained.

Dangerous Procedure Warnings

Warnings, such as the example below, precede potentially dangerous procedures
throughout this manual. Instructions contained in the warnings must be followed.

Dangerous voltages, capable of causing death, are present in this instrument. Use
extreme caution when handling, testing, and adjusting.



77 or L

4

Safety Symbols Used In Manuals

The following is a list of general definitions of safety symbols used on equipment
or in manuals:

Instruction manual symbol: the product is marked with this symbol when it is
necessary for the user to refer to the instruction manual in order to protect against
damage to the instrument.

Hot Surface. This symbol means the part or surface is hot and should not be
touched.

Indicates dangerous voltage (terminals fed from the interior by voltage exceeding
1000 volts must be marked with this symbol).

Protective conductor terminal. For protection against electrical shock in case of a
fault. Used with field wiring terminals to indicate the terminal which must be
connected to ground before operating the equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a signal common,
as well as providing protection against electrical shock in case of a fault. A terminal
marked with this symbol must be connected to ground in the manner described in
the installation (operating) manual before operating the equipment.

rame or chassis terminal. A connection to the frame (chassis) of the equipment
thich normally includes all exposed metal structures.

Alternating current (power line).

Direct current (power line).

Alternating or direct current (power line).



Caution The Caution sign denotes a hazard. It calls your attention to an operating procedure,
practice, condition, or similar situation, which, if not correctly performed or
adhered to, could result in damage to or destruction of part or all of the product.

Warning The Warning sign denotes a hazard. It calls your attention to a procedure, practice,
condition or the like, which, if not correctly performed, could result in injury or
death to personnel.




	The HP 64747 and HP 64748 Emulators
	In This Book
	Contents
	Quick Start Guide
	Quick Start
	Troubleshooting

	Using the MC68020/MC68EC020 or MC68030/MC68EC030 Emulator
	Using the Terminal Interface
	Using the Emulator
	Using the Analyzer
	Making Coordinated Measurements
	Configuring the Emulator
	Solving Problems

	Reference Information
	Using 68030 Memory Management
	Emulator Commands
	Expressions
	Emulator Error Messages
	Data File Formats
	Specifications and Characteristics

	Installation and Service
	Installation and Service

	Glossary
	Index
	Certification and Warranty
	Safety

