
HP 64746

MC68302 Emulator
Terminal Interface

User’s Guide

HP Part No. 64746-97007
Printed in U.S.A.
July 1996

Edition 4

Notice Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

© Copyright Hewlett-Packard Company 1990, 1991, 1996

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the
prior written consent of Hewlett-Packard Company. The information
contained in this document is subject to change without notice.

UNIX ® is a registered trademark in the United States and
other countries, licensed exclusively through X/Open Company
Limited.

Hewlett-Packard Company
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure
by the U.S. Government is subject to restrictions set forth in
subparagraph (C) (1) (ii) of the Rights in Technical Data and Computer
Software Clause at DFARS 252.227-7013. Hewlett-Packard Company,
3000 Hanover Street, Palo Alto, CA 94304 U.S.A. Rights for
non-DOD U.S. Government Departments and Agencies are as set forth
in FAR 52.227-19(c)(1,2).

Printing History New editions are complete revisions of the manual. The date on the
title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was issued.
Many product updates and fixes do not require manual changes, and
manual corrections may be done without accompanying product
changes. Therefore, do not expect a one-to-one correspondence
between product updates and manual revisions.

Edition 1
Edition 2
Edition 3
Edition 4

64746-97000, August 1990
64746-97005, December 1990
64746-97006, July 1991
64746-97007, July 1996

Certification and Warranty

Certification Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory.
Hewlett-Packard further certifies that its calibration measurements are
traceable to the United States National Bureau of Standards, to the
extent allowed by the Bureau’s calibration facility, and to the
calibration facilities of other International Standards Organization
members.

Warranty This Hewlett-Packard system product is warranted against defects in
materials and workmanship for a period of 90 days from date of
installation. During the warranty period, HP will, at its option, either
repair or replace products which prove to be defective.

Warranty service of this product will be performed at Buyer’s facility
at no charge within HP service travel areas. Outside HP service travel
areas, warranty service will be performed at Buyer’s facility only upon
HP’s prior agreement and Buyer shall pay HP’s round trip travel
expenses. In all other cases, products must be returned to a service
facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay
shipping charges to HP and HP shall pay shipping charges to return the
product to Buyer. However, Buyer shall pay all shipping charges,
duties, and taxes for products returned to HP from another country. HP
warrants that its software and firmware designated by HP for use with
an instrument will execute its programming instructions when properly
installed on that instrument. HP does not warrant that the operation of
the instrument, or software, or firmware will be uninterrupted or error
free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from
improper or inadequate maintenance by Buyer, Buyer-supplied
software or interfacing, unauthorized modification or misuse, operation
outside of the environment specifications for the product, or improper
site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims
the implied warranties of merchantability and fitness for a particular
purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive remedies.
HP shall not be liable for any direct, indirect, special, incidental, or
consequential damages, whether based on contract, tort, or any other
legal theory.

Product maintenance agreements and other customer assistance
agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and
Service Office.

Using this Manual

This manual has two main purposes:

It describes the HP 64746 MC68302 emulator.

It gives an introduction to using the emulator’s Terminal
Interface.

This manual also describes specific MC68302 emulator commands
which do not appear in the Terminal Interface Reference.

This manual does not tell you how to use all of the emulator and
analyzer commands. Refer to the Terminal Interface Reference.

Conventions Used Examples in this manual use the following format and conventions:

M>cf clk=ext <RETURN>

M> This represents one of the prompts shown on
screen.

cf clk=ext This represents an entry that you make.

<RETURN> This instructs you to press <RETURN>.

bold Bold type highlights commands and options.

<RETURN> versus
<ENTER>

This manual instructs you to press the <RETURN> key to execute
commands. Depending on whether you are using a terminal or
personal computer (PC), you will use either the <RETURN> or
<ENTER> key to execute the commands. The <RETURN> key on a
terminal and the <ENTER> key on a PC both perform a carriage
return, which is necessary to execute most of the HP 64700-Series
commands.

Contents

1 Introducing the MC68302 Emulator

Introduction . 1-1
Function of the MC68302 Emulator 1-1
Versions of the HP 64746 . 1-2
Features of the MC68302 Emulator 1-3

Supported Microprocessors . 1-3
Clock Speeds . 1-3
Emulation Memory . 1-3
Analysis . 1-3
Registers . 1-3
Single-Step . 1-3
Breakpoints . 1-4
Reset Support . 1-4
Real-Time Operation . 1-4

Limitations . 1-4
How the Components Communicate 1-5

Knowledge of the MC68302 1-5
Tips for Operating the Emulator 1-6

Don’t Write to Low Memory 1-6
Commands Which Stop the Processor 1-6
MC68302 Vector Table . 1-6
Memory Access Mode . 1-7
Pin Protector . 1-7
Chip Selects . 1-7
DTACK Interlock . 1-8
SCR Register . 1-8

Connecting the emulator to the target system 1-8
Connecting the probe to a PGA socket 1-8
Connecting using a QFP Probe Adapter Assembly 1-10
Connecting using the HP Wedge Probing System 1-13

Other Sources of Information . 1-16

Contents-1

2 Getting Started

Before Using the HP 64746 . 2-1
Things to Know Before You Begin 2-1

Apply Power . 2-2
About the Prompts . 2-2

If No Prompt is Displayed . 2-3
Description of the Prompts . 2-3

Initialize the Emulator . 2-5
Other Initialization Options . 2-6

Using the Help Facility . 2-6
Configure the Emulator . 2-7
Software . 2-8

Supported Absolute Files . 2-8
Assembler/Linker . 2-8
C Compiler . 2-8
Branch Validator . 2-8
About the Other Interfaces . 2-8

Example Program . 2-9
A Look at the Sample Program . 2-9
Initialize the Emulator to a Known State 2-13
Set Up the Proper Emulation Configuration 2-13

Set Up Emulation Conditions 2-13
Map Memory . 2-16
Set Up the Stack Pointer . 2-16

Transfer Code into Memory . 2-17
From a Terminal in Standalone Configuration 2-17
From a Host in Transparent Configuration 2-19

Looking at Your Code . 2-22
Familiarize Yourself with the System Prompts 2-23
Running the Sample Program 2-25
Tracing Program Execution . 2-26
For More Information . 2-30

3 Advanced Example

The Sample Programs . 3-1
Supervisor Program . 3-2
User Program . 3-4

Mapping Memory . 3-7
Loading the Sample Program . 3-9

Assembly and Linking . 3-9
Loading the Code . 3-9

2-Contents

Building a Command File . 3-11
Set Mode and Stack Pointer . 3-14
Complex Configuration Trace Example 3-14

Defining Equates . 3-17
Set the Analyzer to Complex Configuration 3-18
Define a New Analyzer Signal Label 3-18
Assign Analyzer Patterns to Expressions 3-18
Set the Primary Branch Qualifiers 3-19
Specifying What to Store . 3-19
Counting the Output Writes 3-20
Set the Trace Display Format 3-20
Make the Measurement . 3-21

Setting up an Automatic Break to Monitor 3-28
Break on Measurement Complete 3-28
Setting a Software Breakpoint 3-29
Write to ROM . 3-30
Prefetching and Effect on Break Conditions 3-30

Step, Register Display, and Memory Display Example 3-30
Defining Macros . 3-31
Using Echo to Send Escape Sequences to a Terminal 3-31
Using the Step Command . 3-32
Displaying Memory . 3-32
Displaying Registers . 3-32

Searching Memory for Strings or Numeric Expressions 3-34
What Next? . 3-35

4 Configuring the Emulator

Emulation Commands . 4-1
Configuration Commands . 4-1
Commands Used to Make a Measurement 4-1
Coordinated Measurement Commands 4-3
Analyzer Commands . 4-3
System Commands . 4-3

Displaying MC68302 Configuration Items 4-3
Using the Built-in Help Facility 4-4

Bus Arbitration (cf ba) . 4-5
Background Block
(cf bbk) . 4-6
Bus Error (cf be) . 4-6
Background Function Codes (cf bfc) 4-7
Clock Selection (cf clk) . 4-8

Contents-3

Chip Selects (cf cs[0-3]_dtk) 4-9
Drive Background Cycles (cf dbc) 4-9
/DTACK Interlock (cf dti) . 4-10
PB0/IACK7 Configuration (cf iack7) 4-11
Interrupt Mode (cf im) . 4-11
IRQ7 Mode (cf int7) . 4-12
Load Function Codes (cf lfc) 4-12
Monitor Selection (cf mon) 4-13
Bus Width (cf pdw) . 4-15
Restrict to Real-Time (cf rrt) 4-15
Supervisor Stack Pointer on Reset (cf rssp) 4-16
Software Breakpoint Trap (cf swtp) 4-17
Target System Interrupts (cf ti) 4-18
DMA Tracing (cf trc_dma) 4-19

Where to Find More Information 4-19
Configuring Other Features . 4-20

5 Concepts

Topics Covered . 5-1
MC68302 Vector Table . 5-2
Access and Display Modes . 5-2
Target System Memory Access 5-3
Break Conditions . 5-4

Software Breakpoints . 5-4
Break on Trigger Signals . 5-5

Macros . 5-5
Coordinated Measurement Bus Operation 5-7
Software Products . 5-8

Assembler/Linker . 5-8
C Cross Compiler . 5-8
HP Branch Validator . 5-8
User Interfaces . 5-8

Protecting the Emulator Probe . 5-9
Pin Protector . 5-9
Conductive Pin Guard . 5-9

Using the Analyzer . 5-10
Analyzer Clock Speed . 5-10

Equates . 5-12
Symbols . 5-15
Emulator Firmware . 5-16
Monitor Description . 5-17

4-Contents

Comparison of Foreground and Background Monitors 5-17
Using a Foreground Monitor 5-19
Sample Foreground Monitor Listing 5-20

A Syntax for the MC68302 Emulator

Notes . A-2
ADDRESS . A-3
Notes . A-6
CONFIG_ITEMS . A-7
MODE . A-9
REGISTERS . A-11
ANALYZER INPUTS . A-13
Notes . A-16

B Messages

C MC68302 Specifications and Characteristics

General Specifications . C-1
Processor Compatibility . C-1
Electrical . C-1
Physical . C-2
Environmental . C-2
Regulatory Compliance . C-3
BNC (labeled TRIGGER IN/OUT) C-3
Communications . C-3

Emulator Probe Characteristics . C-4
Unbuffered Signals . C-4
Data Inputs . C-4
Address and Function Codes C-4
Clocks . C-4
Chip Selects . C-4
Interrupts . C-4
Other Signals . C-4

Contents-5

Illustrations

Figure 1-1. HP 64746 Emulator for the MC68302 1-2
Figure 1-2. How the Components Communicate 1-5
Figure 1-3. Connecting the Probe to a PGA socket. 1-9
Figure 1-4. Connecting Using a QFP Probe Adapter Assembly. . . 1-9
Figure 1-5. Connecting Using the HP Wedge Probing System . . . 1-9
Figure 2-1. Listing of newprog.s. 2-10
Figure 2-2. Listing of newprog.s (continued). 2-11
Figure3-1. Supervisor program listing. 3-2
Figure3-2. User program listing. 3-4
Figure 3-3. Sequencer diagram. 3-16

Tables

Table 1-1. Other Sources of Information 1-11
Table 4-1. Command Groups . 4-2

6-Contents

1

Introducing the MC68302 Emulator

Introduction The topics in this chapter include:

Function of the MC68302 Emulator
Features of the MC68302 Emulator
How the Components Communicate
Tips for Operating the Emulator
Connecting the emulator to the target system
– Connecting the probe to a PGA socket
– Connecting using a 132-pin QFP Probe Adapter Assembly
– Connecting using the 144-pin HP Wedge Probing System

Other Sources of Information

Function of the
MC68302 Emulator

The MC68302 emulator is designed to replace the MC68302
microprocessor in your target system so you can control operation of
the microprocessor in your application hardware (usually referred to as
the target system). The emulator performs just like the MC68302
microprocessor, but is a device that allows you to control the MC68302
directly. The MC68302 emulator features allow you to easily debug
software before any hardware is available, and ease the process of
integrating hardware and software.

The MC68302 Emulator 1-1

Versions of the
HP 64746

Previous versions of the MC68302 emulator (HP 64746A/AL, HP
64746B/BL, HP 64746G, and HP 64746H) came with fixed amounts of
memory. The HP 64746J emulator uses the HP 64170 memory board,
which supports up to 2 Mbytes of emulation memory.

When you use the HP 64170 memory board, you will notice changes in
the memory block size, memory mapping resolution, and the
elimination of coverage measurements.

Figure 1-1. HP 64746 Emulator for the MC68302

1-2 The MC68302 Emulator

Features of the
MC68302 Emulator

Supported
Microprocessors

The HP 64746 emulator contains a Motorola 68302 microprocessor
revision B or greater.

Clock Speeds The internal clock speed of the HP 64746 emulator is at least
16.67 MHz. Your emulator may use a faster clock speed.

Emulation Memory The HP 64170 memory board provides 256 Kbytes, 512 Kbytes, 1
Mbyte, or 2 Mbytes of emulation memory. The emulator operates with
no wait states to emulation or target memory.

Up to seven ranges of memory may be configured as emulation RAM,
emulation ROM, target system RAM, target system ROM, or guarded
memory.

Analysis The analyzer (HP 64704A) supplied with the MC68302 emulator
monitors the emulation processor using an emulation analysis bus.
This analyzer performs only state analysis, and is referred to as the
emulation analyzer.

The optional external analyzer (HP 64703A) allows you to probe 16
individual lines in your target system. Thus you will have a total of 64
analysis channels (or 48 channels if you have upgraded from a HP
64742 M68000 emulator). The external analyzer lets you, for example,
to watch the chip select lines, and to distinguish internal from external
direct memory accesses. You can configure the external analyzer to
perform state or timing analysis measurements. Refer to the Analyzer
Terminal Interface User’s Guide for a complete list of analyzer features.

Registers You can display or modify the MC68302 internal register contents.
This includes the ability to modify the program counter (PC) value so
you can control where the emulator starts a program run.

Single-Step You can direct the emulation processor to execute a single instruction
or a specified number of instructions.

The MC68302 Emulator 1-3

Breakpoints You can set the emulator/analyzer interaction so the emulator will
break to the monitor program when the analyzer finds a specific state or
states, allowing you to perform post-mortem analysis of the program
execution.

You can also set software breakpoints in your program. With the
MC68302 emulator, setting a software breakpoint inserts a TRAP
instruction into your program at the desired location.

Reset Support The emulator can be reset from the emulation system under your
control, or your target system can reset the emulation processor.

Real-Time Operation Real-time signifies continuous execution of your program at full rated
processor speed without interference from the emulator. (Such
interference occurs when the emulator needs to break to the monitor to
perform an action you requested, such as displaying target system
memory.) Emulator features performed in real-time include running
and analyzer tracing.

Emulator features not performed in real-time include displaying or
modifying target system memory, loading or dumping any memory,
and displaying or modifying registers.

Limitations The emulator does not support the CPU disable mode.

Direct memory access (DMA) to emulation memory is not
permitted.

Memory coverage measurements are not supported by the HP
64746J emulator.

1-4 The MC68302 Emulator

How the
Components
Communicate

The MC68302 emulation components communicate with each other as
shown in figure 1-2. The arrows show the direction of communication.
Refer to the HP 64700-Series Emulators Hardware Installation And
Configuration manual for details on components that make up an HP
64700-Series emulation and analysis system.

Knowledge of the
MC68302

If you are designing an MC68302 target system, you probably
understand how the MC68302 microprocessor works. If you do not
have a working knowledge of this processor, you should become
familiar with this processor before continuing.

Figure 1-2. How the Components Communicate

The MC68302 Emulator 1-5

Tips for Operating
the Emulator

Note To operate the MC68302 emulator efficiently, read this section!

Don’t Write to Low
Memory

Remember that addresses $0 through $FF in the supervisor space are
reserved for the MC68302 vector table.

In particular, address $0F2 is the BAR (base address) register and $0F4
is the SCR (system control) register. If you map these addresses as part
of a data area, they may get overwritten, causing unpredictable
processor behavior.

Be especially careful not to place the stack where it could grow into
this area. For example, never place the stack at 100 hex.

Commands Which
Stop the Processor

If your target system circuitry is dependent on constant execution of
program code, you should set cf rrt=en . This will help insure that
target system damage doesn’t occur. You may also use cf dbc=en to
drive the address, data, and control strobes while the background
monitor is executing. However, remember that you can still execute the
rst, b and s commands. You should use caution in executing these
commands.

MC68302 Vector
Table

All MC68302 emulation systems require a vector table to process
system conditions, such as divide by zero or trace traps. You need to
provide such a vector table to manage these conditions. Exception
processing attempted without a vector table will cause unpredictable
results. Most of the examples shown in this manual were created
without a vector table to simplify the examples.

Remember not to map internal memory space to 0, thus overwriting the
vector table. The internal space must be mapped as target RAM (tram).
The BAR and SCR may be mapped as emulation RAM (eram), but you

1-6 The MC68302 Emulator

should use the reg (not m) command to modify or examine these
locations.

Refer to the Motorola documentation for the MC68302 microprocessor
for additional information about vector tables and exception processing.

Memory Access Mode When in 8-bit mode, byte access is always used. In 16-bit mode, either
byte or word access can be used. Use byte access mode (the default)
unless a larger size is needed. See chapter 5, "Concepts," for a
discussion of target system memory access.

Pin Protector Do not use the probe without a pin protector installed. See chapter 5,
"Concepts," for more information on protecting the emulator probe.

Chip Selects The MC68302 chip selects can be configured either to generate the
DTACK signal interally or to use an externally supplied DTACK. The
emulator looks at two things to decide which source of the DTACK it
should look for when a given chip select is active:

The chip select lines (programmed using registers BR0-BR3).
The source of DTACK for the chip select lines is determined
by the corresponding DTACK field bits (programmed using
OR0-OR3). The order in which you write these registers is
significant.

The emulator configuration (set using cf cs0_dtk through cf
cs3_dtk). The effects of the emulator configuration are
described in chapter 4.

Note Be sure that the emulator configuration and the configuration of the
chip select lines are consistent. Remember that the order in which you
write the chip select registers BR0-BR3 and OR0-OR3 is significant.

Registers OR0-OR3 contain, among other things, a base address mask
field. The base address mask is used to set the block size of the
corresponding chip select line. The emulator assumes that this register
will be programmed to map one contiguous block for the chip select

The MC68302 Emulator 1-7

line. The MC68302 processor does not enforce this rule, so you should
be careful not to map several ranges for a specific chip select.

DTACK Interlock Use the cf dti configuration item to select whether the emulator will
look for or generate the DTACK signal. See chapter 4 for details.

SCR Register The emulator does not set any bits in the System Control Register
(SCR). You should set the FRZW bit in the SCR to avoid problems
when breaking into the monitor via a watchdog timer RESET.

Connecting the
emulator to the
target system

The emulator supports connections to PGA sockets, 132-pin PQFP, and
144-pin TQFP package types for the Motorola MC68302.

Connecting the
probe to a PGA

socket

To avoid having to replace the entire probe because of a bent or broken
pin, use a pin protector (that is, an extra PGA socket) between the
probe and the target.

PGA sockets are available from Hewlett-Packard as HP part number
1200-1318. A MacKenzie Technology PGA-100M-003B1-1324 socket
should also be suitable.

See chapter 5 for some important suggestions about using the emulator
in-circuit.

Note The emulator probe requires a PGA (pin grid array) socket. Be sure to
use a PGA socket in your target system.

Follow these steps to install the probe in your target system:

1. Turn off power to the emulator and the target system.

1-8 The MC68302 Emulator

2. Take any necessary precautions to avoid static discharge.

3. Remove the MC68302 processor from the target system PGA
socket.

4. Plug the probe into a pin protector, if you have not already
done so.

5. Plug the probe into your target system.

Be sure to orient the probe correctly. Pin A1 of the PGA
matrix is at the notched corner of the probe. (Note that pin
"A1" of the PGA matrix is signal "A14." Pin numbers do not
correspond to signal numbers for the MC68302.)

Figure 1-3. Connecting the Probe to a PGA Socket.

The MC68302 Emulator 1-9

6. Turn on the emulator.

7. Turn on power to the target system.

Turning on the emulator before the target system will prevent
damage to sensitive components in the target system.

Connecting using a
132-pin QFP Probe
Adapter Assembly

If your target system uses the MC68302FE surface mount (CQFP) or
the MC68302FC surface mount (PQFP) package, you should order the
following parts:

HP E3408A PQFP/CQFP Adapter Kit which includes:

– One HP E2414A QFP Probe Adapter Assembly (includes
an HP E2414-63201 transition socket)

– Two HP 64748-87608 Motorola MC22901PQFP132
dummy parts. Additional dummy parts can be ordered.

Caution Equipment damage. The connections between the emulator probe,
probe adapter assembly, and microprocessor (dummy part) on the
target board are delicate and must be done with care. Refer to the
Operating Note supplied with the probe adapter assembly for specific
instructions when making the connection.

1. Install the "dummy" part in place of the microprocessor on
your target system. The QFP Probe Adapter Assembly
connects the dummy part to the emulator’s PGA probe.

Before connecting the emulator, a 132-pin PQFP "dummy
part" (a mechanical sample with no internal connections) must
be soldered onto the target system in place of the
microprocessor. This is necessary because the MC68302 has
no facility to three-state all of its signals. It is best to solder
the dummy part onto the target system using automated
surface mounting equipment to give more reliable probing.
Hand soldering may result in solder wicking up the leads,

1-10 The MC68302 Emulator

which can prevent the probe adapter cable assembly from
making good contact.

2. Select an orientation using the following illustration.

A QFP Probe Adapter can be installed in one of four
orientations as shown in the following illustration. This allows
flexibility in attaching the emulator probe when target system
components interfere. Select the orientation that best suits
your target system, and note the position of Pin 1 on the
microprocessor (dummy part) on your target board.

There are two labels with color coding and bar coding on the
QFP Probe Adapter; use these to ensure correct orientation
when the probe adapter is connected to the emulator. Note the
color or count the bars on the edge of the probe adapter that is
placed over the Pin 1 side of the dummy part. (For example,
Pin 1 of the dummy part may be along the side that is color
coded yellow, or along the side that has three bars.) There is a
corresponding edge on the PGA end of the probe adapter; it
has the same color code and bar code. Connect the PIN 1
SIDE of the emulator probe into the PGA end of the probe
adapter that has the same color code/bar code as is on the Pin
1 side of the microprocessor (dummy part).

3. Follow the instructions in the QFP Probe Adapter Assembly
Operating Note to install the adapter assembly.

The MC68302 Emulator 1-11

Figure 1-4. Connecting Using a QFP Adapter Assembly.

1-12 The MC68302 Emulator

Connecting using the
144-pin HP Wedge

Probing System

If your target system uses a 144-pin TQFP (thin quad flat pack)
surface-mounted integrated circuit, you should order:

HP E3438A Wedge Adapter Kit

– HP E3435A Wedge

– HP E3441A General-purpose Flexible Adapter

– HP E5347-87601 Male-to-male Header

– HP E3439A Transition Socket

– HP E3435-97001 HP Wedge Probing System User’s Guide

– Two HPE3435-87601 144-pin TQFP dummy parts

Caution Equipment damage. Ensure that the emulator probe is aligned with
the proper pins when connecting to the general-purpose flexible
adapter. Serious equipment damage can result from improper
connection. Refer to the User’s Guide supplied with the HP Wedge
Probing System for instructions on installing the 144-pin HP Wedge
probe adapter, male-to-male header, general-purpose flexible adapter,
and transition socket.

1. Install the "dummy" part in place of the microprocessor on
your target system. The QFP Probe Adapter Assembly
connects the dummy part to the emulator’s PGA probe.

Before connecting the emulator, a 144-pin TQFP "dummy
part" (a mechanical sample with no internal connections) must
be soldered onto the target system in place of the
microprocessor. This is necessary because the MC68302 has
no facility to three-state all of its signals. It is best to solder
the dummy part onto the target system using automated
surface mounting equipment to give more reliable probing.
Hand soldering may result in solder wicking up the leads,

The MC68302 Emulator 1-13

which can prevent the probe adapter cable assembly from
making good contact.

2. Select an orientation using the following illustration.

The HP Wedge Probing System can be installed in one of four
orientations as shown in the following illustration. This allows
flexibility in attaching the emulator probe when target system
components interfere. Select the orientation that best suits
your target system, and note the position of Pin 1 on the
microprocessor (dummy part) on your target board.

There are two labels with color coding and bar coding on the
general-purpose flexible adapter; use these to ensure correct
orientation when the flexible adapter is connected to the
emulator. Note the color or count the bars on the edge of the
general-purpose flexible adapter that is placed over the Pin 1
side of the dummy part. (For example, Pin 1 of the dummy
part may be along the side that is color coded yellow, or along
the side that has three bars.) There is a corresponding edge on
the other end of the general-purpose flexible adapter; it has the
same color code and bar code. Connect the PIN 1 SIDE of the
emulator probe into the end of the general-purpsoe flexible
adapter that has the same color code/bar code as is on the Pin
1 side of the microprocessor (dummy part).

3. Follow the instructions in the HP Wedge Probing System
User’s Guide to install the probing system.

1-14 The MC68302 Emulator

Figure 1-5. Connecting Using the HP Wedge Probing Sys.

The MC68302 Emulator 1-15

Other Sources of
Information

If you need other references while operating the emulator, refer to the
manuals listed in table 1-1. Note that several manuals may appear in
one binder.

Manual Description

HP 64700-Series Emulators Terminal Interface
Reference

Terminal Interface emulation, analysis, and CMB
commands used to control the emulator.

Analyzer Terminal Interface User’s Guide How to use the emulation and external analyzers.
Analysis commands are described in the Terminal
Interface Reference.

CMB User’s Guide How to use the M68302 emulator with the CMB.

M68302 Assembler/Linker User’s Guide How to assemble and link programs using the HP
64870 Cross Assembler/Linker/Librarian.

M68302 PC Interface User’s Guide How to use the emulator with a PC.

M68302 Softkey Interface User’s Guide How to use the M68302 emulator with the Softkey
Interface on a Sun or HP workstation.

Graphical User Interface User’s Guide How to use the Graphical User Interface on a Sun
or HP workstation.

MC68302 Integraged Multi-Protocol Processor
User’s Manual

Describes the M68302 microprocessor. (Motorola
part MC68302UM/AD).

HP 64700-Series Emulators Support Services If all else fails, refer to this manual to locate
information about support for your product.

Table 1-1. Other Sources of Information

1-16 The MC68302 Emulator

2

Getting Started

Before Using the
HP 64746

If you haven’t already done so, connect the emulator to the host
computer. If necessary, refer to the HP 64700-Series Emulators
Hardware Installation And Configuration manual for details. Then
return here.

Things to Know
Before You Begin

Before working the examples in this chapter, be sure you know the
following:

Know Your System Configuration

Determine which system configuration you will use (either standalone,
transparent, or remote). Refer to the HP 64700-Series Emulators
Hardware Installation And Configuration manual for additional
information.

If you are using the Remote Configuration, you must have completed
installation and configuration of a terminal emulator program which
will allow your host to act as a terminal connected to the emulator. In
addition, you must start the terminal emulator program before you can
work the examples in this chapter. Refer to the HP 64700-Series
Emulators Hardware Installation And Configuration manual and the
appropriate terminal emulator software manual (such as that for HP
AdvanceLink).

Know the Basic Concepts of Emulation

You should read and understand the concepts of emulation presented in
the HP 64700-Series Emulators System Overview manual. A brief
understanding of these concepts may help avoid questions later.

Getting Started 2-1

Apply Power

Caution POSSIBLE DAMAGE TO TARGET SYSTEM!

The emulator power must be turned on before the target system power.
An excess amount of current may be drawn out of the target system and
the target system may be damaged if the order is reversed. Likewise,
the target system should be turned off first and then the emulator.

Apply power to the emulator if you haven’t already done so. After
power is applied, the following information should be displayed.

 Copyright (c) Hewlett-Packard Co. 1987
All Rights Reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under copyright laws.

 HP64700 Series Emulation System
 Version: A.03.00 13Dec90

 HP64746A (PPN: 64746A) Motorola 68302 Emulator
 Version: A.00.03 24Jun91
 Control: HP64170A Memory Control Board

You will also see information about the amount of memory installed in
each bank on the memory control board.

If a message like the one above is not displayed, refer to the Support
Services manual.

About the Prompts Press <RETURN> to display one of these prompts:

U> (emulator is running user code)
R> (emulation processor is reset - in normal mode)
M> (emulator is running in monitor)

Upon powerup the prompt should be R>.

2-2 Getting Started

If No Prompt is
Displayed

If one of the prompts (U>, R>, or M>) is not displayed, cycle power on
the emulator. The prompt character should be an R> at this point.

If the emulator still doesn’t respond, toggle data communication
switch 4 (refer to the HP 64700-Series Emulators Installation And
Configuration manual). Cycle power on the emulator. Then press
<RETURN> again.

If one of the prompts still does not appear after you have done this,
refer to the HP 64700-Series Emulators Support Services manual for
information about how to resolve this problem. The Support Services
manual contains a list of Hewlett-Packard Sales and Service Offices
that you can use to contact your HP Representative.

Note One of these prompts must appear before you can continue.

Note All HP 64700-Series commands must be entered using lower case
letters. Follow each of the commands by pressing <RETURN> on
your terminal (or <ENTER> on your personal computer) unless
instructed otherwise.

Do not place spaces before or after ".." and "="; doing so will result in
an "Invalid option or operand" error.

Description of the
Prompts

The prompts for the emulator are:

c> The c> prompt means that the emulator is in
external clock mode (set using cf clk=ext) and
is waiting for a clock signal from the target
system. If the target power has not been

Getting Started 2-3

applied do so now. Then press <RETURN>.
The R> prompt should be present now.

R> The processor is being held reset from the
emulator.

r> The processor is being held reset, but not from
the emulator.

h> The processor is halted.

g> The bus has been granted for direct memory
access (DMA).

w> A memory cycle has started but has not
completed. This is caused when no device has
issued a termination signal (DTACK or BERR)
to the processor.

W> This indicates the emulator is waiting for the
CMB ready signal.

M> The emulator is executing in the monitor.

b> No external bus cycles are occurring. Usually
the emulator can determine why this is the case
and will display the prompt such as w>, c>, or
r> to indicate the cause of no bus cycles. If no
reason can be determined, the b> prompt will
be displayed. One possibility is that a STOP
instruction was executed.

2-4 Getting Started

Initialize the
Emulator

If you plan to use the MC68302 emulator to follow the exercises in this
chapter, verify that no one else is using the emulator.

Caution POSSIBLE LOSS OF INFORMATION!

It is important that you verify that no one else is using the emulator at
this time. If you or someone else is operating the MC68302 emulator
in a standalone configuration controlled by a data terminal, and have
entered a program into memory by manually modifying the memory
locations, this information will be lost during the initialization process.

To display the available initialization options, enter:

M>help init

 init - reinitialize system

 init - limited initialization; resets emulation and analysis products
 but not environment (macros, equates, date & time, etc.)
 init -c - complete initialization; does not run system memory
 integrity tests
 init -p - powerup initialization; run from reset with complete
 system verification tests

Notice that the init command performs the following:

Resets the emulation configuration items.
Resets the break conditions.
Clears software breakpoints.

The init command does not clear macros or equates (logical
expressions).

To initialize the emulator, enter:

M>init
 #Limited initialization completed

Getting Started 2-5

Other Initialization
Options

The -c and -p options to the init command allow you to perform a more
complete initialization of the emulator. The init -c command performs
a cold-start initialization, except that performance verification tests are
not executed. The init -p command performs a powerup initialization,
which is also referred to as a cold-start initialization. This process
includes emulator, analyzer, system controller, communications port,
and performance verification initialization.

Using the Help
Facility

If you need quick reference information about a command or a set of
commands, you can use the built-in help facilities. For example, to
display the help menu, enter:

R>help

 help - display help information

 help <group> - print help for desired group
 help -s <group> - print short help for desired group
 help <command> - print help for desired command
 help - print this help screen

 --- VALID <group> NAMES ---
 gram - system grammar
 proc - processor specific grammar

 sys - system commands
 emul - emulation commands
 trc - analyzer trace commands
 xtrc - external trace analysis commands
 * - all command groups

You can enter the ? symbol in place of the word "help." If you want to
display information about the emulation command group, enter:

R>? emul

 emul - emulation commands

 b......break to monitor cp.....copy memory mo.....modes
 bc.....break condition dump...dump memory r......run user code
 bp.....breakpoints es.....emulation status reg....registers
 cf.....configuration io.....input/output rst....reset
 cim....copy target image load...load memory rx.....run at CMB execute
 cmb....CMB interaction m......memory s......step
 map....memory mapper ser....search memory

To display information for a single command, type help (or ?) and the
command name. For example:

2-6 Getting Started

R>help load

 load - download absolute file into processor memory space

 load -i - download intel hex format
 load -m - download motorola S-record format
 load -t - download extended tek hex format
 load -S - download symbol file
 load -h - download hp format (requires transfer protocol)
 load -a - reserved for internal hp use
 load -e - write only to emulation memory
 load -u - write only to target memory
 load -o - data received from the non-command source port
 load -s - send a character string out the other port
 load -b - data sent in binary (valid with -h option)
 load -x - data sent in hex ascii (valid with -h option)
 load -q - quiet mode
 load -p - record ACK/NAK protocol (valid with -imt options)
 load -c <file> - data is received from the 64000. file name format is:
 <filename>:<userid>:absolute

Configure the
Emulator

You may want to change the default emulator configuration items
before proceeding. To do this, refer to chapter 4 for detailed
information. When you are finished, return here.

Getting Started 2-7

Software

Supported Absolute
Files

Supported absolute file formats that you can download into the target
system include, HP, Intel hex, Motorola S-records, and Tektronix hex.
To download executable code in HP format you must use the HP
64700-Series MC68302 Emulator PC Interface or Softkey Interface.

Assembler/Linker Assembly language support for the MC68302 includes:

HP 64870 HP 9000-based M68000
Assembler/Linker/Librarian . (This assembler generates code
for the M68000, M68008, M68010, MC68302, M68332, and
M68020 processors. The product number for Apollo
computers is HP B1423 .)

C Compiler High-level language support for the MC68302 includes:

HP 64902 HP 9000-based M68000 C Compiler (Product
number B1421 for Apollo computers)

Branch Validator Branch analysis support includes:

HP B1419 HP Branch Validator

About the Other
Interfaces

HP provides easy-to-use emulator interfaces for the following host
computers:

Personal computers
HP 9000 Series 300 workstations
HP 9000 Series 700 workstations
Sun workstations

These interfaces provide menu-driven access to emulator commands,
disassembly, high-level source code debugging, and many other
features to make your job easier.

2-8 Getting Started

Example Program The rest of this chapter will lead you through a basic, step by step
tutorial designed to familiarize you with the use of the HP 64700
emulator for the 68302 microprocessor. When you have completed this
chapter, you will be able to perform these tasks:

Set up an emulation configuration for out of circuit emulation
use.

Map memory.

Transfer a small program into emulation memory.

Use run/stop controls to control operation of your program.

Use memory manipulation features to alter the program’s
operation.

Use analyzer commands to view the real time execution of
your program.

A Look at the
Sample Program

The sample program "COMMAND_READER" used in this chapter is
shown in figure 2-1. The program is a primitive command interpreter.

Data Declarations

INPUT_POINTER and OUTPUT_POINTER define the address
locations of an input area and an output area to be used by the program.
MESSAGE_A, MESSAGE_B and INVALID_INPUT are the
messages used by the program to respond to various command inputs.

Initialization

The locations of the input and output areas are moved into address
registers for use by the program. Next, the CLEAR routine clears the
command byte (the first byte location pointed to by the input area
address - 3000 hex).

Getting Started 2-9

Command line: as68k -Lh newprog.s
Line Address
1 CHIP 68000
2
3 SECTION DATA,,D
4
5 00000000 0000 3000 INPUT_POINTER DC.L 00003000H
6 00000004 0000 4000 OUTPUT_POINTER DC.L 00004000H
7
8 00000008 5448 4953 2049 MESSAGE_A DC.B ’THIS IS MESSAGE A’
 5320 4D45 5353
 4147 4520 41
9 00000019 5448 4953 2049 MESSAGE_B DC.B ’THIS IS MESSAGE B’
 5320 4D45 5353
 4147 4520 42
10
11 0000002A 494E 5641 4C49 INVALID_INPUT DC.B ’INVALID COMMAND’
 4420 434F 4D4D
 414E 44
12
13
14 SECTION PROG,,C,P
15
16 00000000 2479 0000 0000 R INIT MOVE.L INPUT_POINTER,A2
17 00000006 2679 0000 0004 R MOVE.L OUTPUT_POINTER,A3
18
19
20 0000000C 14BC 0000 CLEAR MOVE.B #00H,(A2)
21
22 00000010 1012 READ_INPUT MOVE.B (A2),D0
23 00000012 0C00 0000 CMP.B #00h,D0
24 00000016 67F8 BEQ READ_INPUT
25
26 00000018 0C00 0041 PROCESS_COMM CMP.B #41H,D0
27 0000001C 6700 000E BEQ COMMAND_A
28 00000020 0C00 0042 CMP.B #42H,D0
29 00000024 6700 0014 BEQ COMMAND_B
30 00000028 6000 001E BRA UNRECOGNIZED
31
32 0000002C 103C 0011 COMMAND_A MOVE.B #11H,D0
33 00000030 207C 0000 0008 R MOVE.L #MESSAGE_A,A0
34
35 00000036 6000 001A BRA OUTPUT
36 0000003A 103C 0011 COMMAND_B MOVE.B #11H,D0
37 0000003E 207C 0000 0019 R MOVE.L #MESSAGE_B,A0
38
39 00000044 6000 000C BRA OUTPUT
40 00000048 103C 000F UNRECOGNIZED MOVE.B #0FH,D0
41 0000004C 207C 0000 002A R MOVE.L #INVALID_INPUT,A0
42
43 00000052 224B OUTPUT MOVE.L A3,A1
44

Figure 2-1. Listing of newprog.s.

2-10 Getting Started

Read_Input

This routine continuously reads the byte at location 3000 hex until it is
something other than a null character (00 hex); when this occurs, the
PROCESS_COMM routine is executed.

Process_Comm

Compares the input byte (now something other than a null) to the
possible command bytes of "A" (ASCII 41 hex) and "B" (ASCII 42
hex), then jumps to the appropriate set up routine for the command
message. If the input byte does not match either of these values, a
branch to a set up routine for an error message is executed.

Command_A, Command_B, Unrecognized

These routines set up the proper parameters for writing the output
message: the number of bytes in the message is moved to the D0
register and the base address of the message in the data area is moved
to address register A0.

Output

First the base address of the output area is copied to A1 (this preserves
A3 for use in later program passes). Then the CLEAR_OLD routine

Line Address
45 00000054 123C 0020 CLEAR_OLD MOVE.B #20H,D1
46
47 00000058 2A4B MOVE.L A3,A5
48 0000005A 1AFC 0000 CLEAR_LOOP MOVE.B #00H,(A5)+
49 0000005E 0441 0001 SUBI #01H,D1
50 00000062 66F6 BNE CLEAR_LOOP
51
52 00000064 12D8 LOOP MOVE.B (A0)+,(A1)+
53 00000066 0440 0001 SUBI #01H,D0
54 0000006A 66F8 BNE LOOP
55 0000006C 4EFA FF9E JMP CLEAR
56
57
58 END

Figure 2-2. Listing of newprog.s (continued).

Getting Started 2-11

writes nulls to 32 bytes of the output area (this serves both to initialize
the area and to clear old messages written during previous program
passes).

Finally, the proper message is written to the output area by the LOOP
routine. When done, LOOP jumps back to CLEAR and the command
monitoring process begins again.

Using the various features of the emulator, we will show you how to
load this program into emulation memory, execute it, monitor the
program’s operation with the analyzer, and simulate entry of different
commands utilizing the memory access commands provided y the HP
64700 command set.

2-12 Getting Started

Initialize the
Emulator to a
Known State

To initialize the emulator to a known state for this tutorial:

Note It is especially important that you perform the following step if the
emulator is being operated in a standalone mode controlled by only a
data terminal. The only program entry available in this mode is
through memory modification; consequently, if the emulator is
reinitialized, emulation memory will be cleared and a great deal of
tedious work could be lost.

1. Verify that no one else is using the emulator or will have need
of configuration items programmed into the emulator.

2. Initialize the emulator by typing the command:
R> init -p

Set Up the Proper
Emulation
Configuration

Set Up Emulation
Conditions

To set the emulator’s configuration values to the proper state for this
tutorial, do this:

1. Type:
R> cf

You should see the following configuration items displayed:
R>cf
 cf ba=en
 cf trc_dma=dis
 cf bbk=0

Getting Started 2-13

 cf bfc=sp
 cf be=dis
 cf clk=int
 cf dbc=en
 cf dti=dis
 cf lfc=x
 cf mon=bg
 cf rrt=dis
 cf rssp=9
 cf swtp=0
 cf ti=dis
 cf im=nor
 cf int7=lev
 cf iack7=pb0
 cf pdw=16
 cf cs0_dtk=int
 cf cs1_dtk=ext
 cf cs2_dtk=ext
 cf cs3_dtk=ext

Note The individual configuration items won’t be explained in this example;
refer to chapter 4 of this manual and the Reference manual for details.

2. If the configuration items displayed on your screen don’t
match the ones listed above, here is how to make them agree:

For each configuration item that does not match, type:
R> cf <config_item>=<value>

For example, if you have the following configuration items
displayed (those in bold indicate items different from the list
above):

cf ba=en
cf bat=dis
cf bbk=0
cf be=dis
cf bfc=sp
cf clk=ext
cf dbc=dis
 .
 .
 .

To make these configuration values agree with the desired
values, type:

R> cf clk=int
R> cf dbc=en

3. Let’s go ahead and set up the proper break conditions.

2-14 Getting Started

Type:
R> bc

You will see:
bc -d bp #disable
bc -d rom #disable
bc -d bnct #disable
bc -d cmbt #disable
bc -d trig1 #disable
bc -d trig2 #disable

For each break condition that does not match the one listed,
use one of the following commands:

To enable break conditions that are currently disabled, type:
R> bc -e <breakpoint type>

To disable break conditions that are currently enabled, type:
R> bc -d <breakpoint type>

For example, if typing bc gives the following list of break
conditions:

(items in bold indicate improper values for this example)
bc -d bp #disable
bc -d rom #disable
bc -d bnct #disable
bc -d cmbt #disable
bc -e trig1 #enable
bc -e trig2 #enable

Type the following commands to set the break conditions
correctly for this example:

R> bc -e rom

(this enables the write to ROM break)
R> bc -d trig1 trig2

(this disables break on triggers from the analyzer)

4. To avoid problems later while modifying and displaying
memory locations, type:

R> mo -ab -db

This sets the access and display modes for memory operation
to byte. (If they are left at the default mode of word, the
memory modification and display examples will not function
correctly.)

Getting Started 2-15

Map Memory The high-speed emulation memory can be mapped at a resolution of 1
kilobyte.

Emulation memory allows you to store programs and data used in
development before target system memory is available. For this
example, you will need to map some of the memory blocks to various
type designators. Do the following:

Type:

R> map 1000..1fff eram
R> map 2000..2fff erom
R> map 3000..5fff eram
R> map 0fff000..0ffffff tram

Set Up the Stack
Pointer

After emulator initialization, the "reset supervisor stack pointer"
configuration item (cf rssp) and the supervisor stack pointer are set to
an odd value. Since you cannot run the emulator when the supervisor
stack pointer is odd, you must set up the supervisor stack pointer
register to contain an even value. You can do this by using the reg
command to modify the supervisor stack pointer, or you can change the
reset supervisor stack pointer configuration item (as shown below).
The value you assign to the rssp configuration item is placed into the
supervisor stack pointer on the entrance to the emulation monitor from
an emulation initiated RESET state (the R> prompt).

For this example, we will define the stack pointer within one of the
areas mapped earlier.

2-16 Getting Started

Type:

R>cf rssp=5000
R>b

This defines register A7 (the supervisor stack pointer) as 5000 hex.
The stack will grow downward in memory from this location; for
purposes of our example, it will not grow far enough to interfere with
the output area for the program defined at 4000 hex. (The 68302
emulator does not provide stack checking hardware or software to
guard against program destruction from an overgrown stack; your
program must provide such protection.)

To get the "M>" prompt shown in the next section, type:

R>b
M>

Transfer Code
into Memory

From a Terminal in
Standalone

Configuration

To transfer code into memory from a data terminal running in
standalone mode, you must use the modify memory commands. This is
necessary because you have no host computer transfer facilities to
automatically download the code for you (as you would if you were
using the transparent configuration or the remote configuration.)

To minimize the effects of typing errors, you will modify only one row
of memory at a time in this example. Do the following:

Getting Started 2-17

Note Make sure that you have modified the memory access mode default to
byte as instructed earlier, before you proceed with memory
modification. If you are in doubt, type mo at the prompt. If you see mo
-ab -db, your setup is fine. Otherwise, type mo -ab -db at the prompt
to set the memory display and modification modes.

1. Enter the data information for the program by typing the
following commands:

M> m 1000..100f=00,00,30,00,00,00,40,00,54,48,49,53,20,49,53,20
M> m 1010..101f=4d,45,53,53,41,47,45,20,41,54,48,49,53,20,49,53
M> m 1020..102f=20,4d,45,53,53,41,47,45,20,42,49,4e,56,41,4c,49
M> m 1030..1038=44,20,43,4f,4d,4d,41,4e,44

If you make a mistake, enable command line editing by typing:
M> cl -e

The commands for command line editing are described in the
"Command Entry" chapter of the Terminal Interface Reference. You
can see a summary of the editing commands by typing:

M> help cl

1. You should now verify that the data area of the program is
correct by typing:

M> m 1000..1038

You should see:
001000..00100f 00 00 30 00 00 00 40 00 54 48 49 53 20 49 53 20
001010..00101f 4d 45 53 53 41 47 45 20 41 54 48 49 53 20 49 53
001020..00102f 20 4d 45 53 53 41 47 45 20 42 49 4e 56 41 4c 49
001030..001038 44 20 43 4f 4d 4d 41 4e 44

If this is not correct, you can correct the errors by re-entering
only the modify memory commands for the particular rows of
memory that are wrong.

For example, if row 1000..100f shows these values:
001000..00100f 00 30 00 00 00 40 00 54 48 49 53 20 49 53 20 20

you can correct this row of memory by typing:
M> m 1000..100f=00,00,30,00,00,00,40,00,54,48,49,53,20,49,53,20

Or, you might need to modify only one location, as in the
instance where address 100f equals 32 hex rather than 20 hex.
Type:

M> m 100f=20

2-18 Getting Started

2. Enter the program information by typing the following
commands:

M> m 2000..200f=24,79,00,00,10,00,26,79,00,00,10,04,14,0bc,00,00

(note the third from last term -- hex letters must be preceded
by a digit)

M> m 2010..201f=10,12,0c,00,00,00,67,0f8,0c,00,00,41,67,00,00,0e
M> m 2020..202f=0c,00,00,42,67,00,00,14,60,00,00,1e,10,3c,00,11
M> m 2030..203f=20,7c,00,00,10,08,60,00,00,1a,10,3c,00,11,20,7c
M> m 2040..204f=00,00,10,19,60,00,00,0c,10,3c,00,0f,20,7c,00,00
M> m 2050..205f=00,2a,22,4b,12,3c,00,20,2a,4b,1a,0fc,00,00,04,41
M> m 2060..206f=00,01,66,0f6,12,0d8,04,40,00,01,66,0f8,4e,0f9,00,00-
M> m 2070..2071=20,0c

You should now verify that the program area is correct by
typing:

M> m 2000..2071

You should see:
002000..00200f 24 79 00 00 10 00 26 79 00 00 10 04 14 bc 00 00
002010..00201f 10 12 0c 00 00 00 67 f8 0c 00 00 41 67 00 00 0e
002020..00202f 0c 00 00 42 67 00 00 14 60 00 00 1e 10 3c 00 11
002030..00203f 20 7c 00 00 10 08 60 00 00 1a 10 3c 00 11 20 7c
002040..00204f 00 00 10 19 60 00 00 0c 10 3c 00 0f 20 7c 00 00
002050..00205f 00 2a 22 4b 12 3c 00 20 2a 4b 1a fc 00 00 04 41
002060..00206f 00 01 66 f6 12 d8 04 40 00 01 66 f8 4e f9 00 00
002070..002071 20 0c

If this is not correct, you can correct the errors by re-entering
only the modify memory commands for the particular rows of
memory that are wrong.

For example, if row 2000..200f shows the values
002000..00200f 24 79 00 10 00 26 79 00 00 10 04 14 bd 00 00 00

you can correct this row of memory by typing:
M> m 2000..200f=24,79,00,00,10,00,26,79,00,00,10,04,14,0bc,00,00

From a Host in
Transparent

Configuration

The method provided in this example assumes that you are using the
Hewlett-Packard’s 68000 Cross Assembler/ Linker/Loader (HP product
number 64870 if you are using an HP Series 9000 computer). In
addition, you must have the HP 64000 transfer software running on
your host.

If you are using another assembler, you may be able to adapt the
methods below to load your code into the emulator (refer to the HP
64700 Terminal Interface User’s Reference manual for help).

Getting Started 2-19

If you are not able to transfer code from your host to the emulator using
one of these methods, use the method described previously under
"From a Terminal in Standalone Mode", as it will work in all cases.
However, transferring code using host transfer facilities is easier and
faster than modifying memory locations, especially for large programs.

1. First, you must establish communications with your host
computer through the transparent mode link provided in the
HP 64700. Enable the transparent mode link by typing:

M> xp -e

If you then press <RETURN> a few times, you should see:

login:
login:
login:

This is the login prompt for the host system. (Your prompt
may differ depending on how your system manager has
configured your system.)

2. Log in to your host system and start up an editor such as "vi".
You should now enter the source code for the sample program
shown at the beginning of the chapter. When finished, save
the program to filename "newprog.s".

Note If you need help learning how to log in to your host system or use other
features of the system, such as editors, refer to the host documentation
(for an HP-UX host, read the HP-UX Concepts and Tutorials guides)
or ask your system administrator.

3. Assemble your code with the 68000 Cross Assembler using
the command:

$ as68k -Lh newprog.s newprog.lis

This will generate an expanded listing with cross reference
table of all the symbols used. If any assembly errors were
reported, re-edit your file and verify that the code was entered
correctly (compare to the listing at the beginning of the
chapter).

2-20 Getting Started

4. Link the program to the correct addresses.

Using your editor, create a linker command file called "newprog.cmd":
NAME newprog
LIST C,D,O,P,S,T,X
ORDER PROG,DATA
SECT DATA=1000H
SECT PROG=2000H
LOAD newprog.o
END

Now link using the command using the command:

$ ld68k -c newprog.cmd -Lh
Now it’s time to transfer your code into the emulator. Do the following:

1. Disable the transparent mode so that your terminal will talk
directly to the emulator. Type:

$ <ESC>g xp -d

The "<ESC>g" sequence temporarily toggles the transparent
mode so that the emulator will accept commands; "xp -d" then
fully disables the transparent mode.

2. Load code into the emulator by typing:

M> load -hbo
transfer -tb newprog.X<ESC>g (NOTE: DO NOT
TYPE CARRIAGE RETURN!)

The system will respond:

##
M>

load -hbo tells the emulator to load code expected in HP
binary file format and to expect the data from the other port
(the one connected to the host). It then puts you in
communication with the host; you then enter the transfer
command to start the HP 64000 transfer utility. Typing
"<ESC>g" tells the system to return to the emulator after
transferring the code. The "##" marks returned by the system
indicates that the emulator loaded two records from the host.

3. At this point you should examine a portion of memory to
verify that your code was loaded correctly. Type:

M> m 1000..1038

You should see:

Getting Started 2-21

001000..00100f 00 00 30 00 00 00 40 00 54 48 49 53 20 49 53 20
001010..00101f 4d 45 53 53 41 47 45 20 41 54 48 49 53 20 49 53
001020..00102f 20 4d 45 53 53 41 47 45 20 42 49 4e 56 41 4c 49
001030..001038 44 20 43 4f 4d 4d 41 4e 44

If your system does not match, verify that you entered the
source code and linker command file correctly.

Looking at Your
Code

Now that you have loaded your code into memory, you can display it in
mnemonic format. Type:

M> sym start=2000
M> m -dm 2000..206d

You will see:
 0002000 start MOVEA.L 0001000,A2
 0002006 - MOVEA.L 0001004,A3
 000200c - MOVE.B #000,[A2]
 0002010 - MOVE.B [A2],D0
 0002012 - CMPI.B #000,D0
 0002016 - BEQ.B 0002010
 0002018 - CMPI.B #041,D0
 000201c - BEQ.W 000202c
 0002020 - CMPI.B #042,D0
 0002024 - BEQ.W 000203a
 0002028 - BRA.W 0002048
 000202c - MOVE.B #011,D0
 0002030 - MOVEA.L #000001008,A0
 0002036 - BRA.W 0002052
 000203a - MOVE.B #011,D0
 000203e - MOVEA.L #000001019,A0
 0002044 - BRA.W 0002052
 0002048 - MOVE.B #00f,D0
 000204c - MOVEA.L #00000102a,A0
 0002052 - MOVEA.L A3,A1
 0002054 - MOVE.B #020,D1
 0002058 - MOVEA.L A3,A5
 000205a - MOVE.B #000,[A5]+
 000205e - SUBI.W #00001,D1
 0002062 - BNE.B 000205a
 0002064 - MOVE.B [A0]+,[A1]+
 0002066 - SUBI.W #00001,D0
 000206a - BNE.B 0002064
 000206c - JMP 000200c[PC]

2-22 Getting Started

Familiarize
Yourself with the
System Prompts

Note The following steps are not intended to be complete explanations of
each command; the information is only provided to give you some idea
of the meanings of the various command prompts you may see and
reasons why the prompt changes as you execute various commands.

You should gain some familiarity with the HP 64700 emulator
command prompts by doing the following:

1. Ignore the current command prompt. Type:
M> rst

You will see:

R>

The rst command resets the emulation processor and holds it
in the reset state. The "R>" prompt indicates that the
processor is reset.

2. Type:
R> r 2000

You will see:
U>

The r (run) command causes the emulation processor to begin
executing from the current program counter address or from
the specified address.

The "U>" prompt indicates that the emulation processor is
running in foreground, rather than in the monitor. When you
have a program loaded into memory, this prompt indicates
that the processor is running a user program.

Getting Started 2-23

Note This prompt (U>) will be displayed if there is user code to run, or if
you try to run the processor and no breaks occur.

3. To cause the emulator to begin executing in the monitor, enter:
U> b

You will see:
M>

The b (break) command causes the emulation processor to
stop execution of whatever it is doing and begin executing in
the emulation monitor. The newly displayed "M>" prompt
indicates that the emulator is running in the monitor.

To view all of the possible emulator prompts (emulation status
characters), enter:

M>help proc

2-24 Getting Started

Running the
Sample Program 1. Type:

M> r 2000

The emulator changes state from background to foreground
and begins running the sample program from location 2000
hex.

Note The default number base for address and data values within HP 64700
is hexadecimal. Other number bases may be specified. Refer to the
"Expressions" chapter of the HP 64700 Terminal Interface Reference
manual for further details.

2. Let’s look at the registers to verify that the address registers
were properly initialized with the pointers to the input and
output areas. Type:

U> reg

You will see:
 reg pc=00000000 st=2700 d0=00000000 d1=00000000 d2=00000000 d3=00000000
 reg d4=00000000 d5=00000000 d6=00000000 d7=00000000 a0=00000000 a1=00000000
 reg a2=00000000 a3=00000000 a4=00000000 a5=00000000 a6=00000000 a7=00005000
 reg usp=00000000 ssp=00005000 bar=bfff scr=00000f00

Notice that A2 contains 3000 hex; A3 contains 4000 hex.

3. Verify that the input area command byte was cleared during
initialization.

Type:
U> m -db 3000

You will see:
003000..003000 00

The input byte location was successfully cleared.

Getting Started 2-25

4. Now we will use the emulator features to make the program
work. Remember that the program writes specific messages to
the output area depending on what the input byte location
contains. Type:

U> m 3000=41

This modifies the input byte location to the hex value for an
ASCII "A". Now let’s check the output area for a message.

U> m 4000..401f

You will see:
004000..00400f 54 48 49 53 20 49 53 20 4d 45 53 53 41 47 45 20
004010..00401f 41 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

These are the ASCII values for MESSAGE_A.

Repeat the last two commands twice. The first time, use 42
instead of 41 at location 3000 and note that MESSAGE_B
overwrites MESSAGE_A. Then try these again, using any
number except 00, 41, or 42 and note that the
INVALID_INPUT message is written to this area.

Tracing Program
Execution

Now let’s use the emulation analyzer to trace execution of the program.
Suppose that you would like to start the trace when the analyzer begins
writing data to the message output area. You can do this by specifying
an analyzer trigger upon encountering the address 4000 hex.
Furthermore, you might want to store only the data written to the
output area. This can be accomplished by modifying what is known as
the "analyzer storage specification".

2-26 Getting Started

Note For this example, you will be using the analyzer in the easy
configuration, which simplifies the process of analyzer measurement
setup. The complex configuration allows more powerful
measurements, but requires more interaction from you to set up those
measurements. Such examples will be covered in later chapters. For
more information on easy and complex analyzer configurations and the
analyzer, refer to the HP 64700 Analyzer User’s Guide and the User’s
Reference.

Now, let’s set the trigger specification. Type:

M> tg addr=4000

Do you remember how to get the "M>" prompt? Type "b" to break
from the running prompt "U>" to the monitor prompt "M>". The
commands in this section will also work if you type them at the "U>"
prompt.

To store only the accesses to the address range 4000 through 4011 hex,
type:

M> tsto addr=4000..4011

Let’s change the data format of the trace display so that you will see the
output message writes displayed in ASCII format:

M> tf addr,h data,A count,R seq

Start the trace by typing:

M> t

You will see:
Emulation trace started

To start the emulation run, type:

M> r 2000

Now, you need to have a "command" input to the program so that the
program will jump to the output routines (otherwise the trigger will not
be found, since the program will never access address 4000 hex). Type:

U> m 3000=41

To display the trace list, type:

U> tl 0..34

Getting Started 2-27

You will see:
 Line addr,H data,A count,R seq
 ----- ------ ------ --------- ---
 0 004000 .. --- +
 1 004001 .. 1.880 uS .
 2 004002 .. 1.880 uS .
 3 004003 .. 1.840 uS .
 4 004004 .. 1.880 uS .
 5 004005 .. 1.880 uS .
 6 004006 .. 1.880 uS .
 7 004007 .. 1.880 uS .
 8 004008 .. 1.880 uS .
 9 004009 .. 1.880 uS .
 10 00400a .. 1.880 uS .
 11 00400b .. 1.840 uS .
 12 00400c .. 1.880 uS .
 13 00400d .. 1.880 uS .
 14 00400e .. 1.880 uS .
 15 00400f .. 1.880 uS .
 16 004010 .. 1.880 uS .
 17 004011 .. 1.880 uS .
 18 004000 TT 28.00 uS .
 19 004001 HH 1.880 uS .
 20 004002 II 1.840 uS .
 21 004003 SS 1.880 uS .
 22 004004 .. 1.880 uS .
 23 004005 II 1.880 uS .
 24 004006 SS 1.880 uS .
 25 004007 .. 1.880 uS .
 26 004008 MM 1.880 uS .
 27 004009 EE 1.880 uS .
 28 00400a SS 1.840 uS .
 29 00400b SS 1.880 uS .
 30 00400c AA 1.880 uS .
 31 00400d GG 1.880 uS .
 32 00400e EE 1.880 uS .
 33 00400f .. 1.880 uS .
 34

If you look at the last lines of the trace listing, you will notice that the
analyzer seems to have stored only part of the output message, even
though you specified more than the full range needed to store all of the
message. The reason for this is that the analyzer has a storage pipeline,
which holds states that have been acquired but not yet written to trace
memory. To see all of the states, halt the analyzer by typing:

U> th

You will see:
Emulation trace halted

Now display the trace list:

U> tl 0..34

You will see:

2-28 Getting Started

 Line addr,H data,A count,R seq
 ----- ------ ------ --------- ---
 0 004000 .. --- +
 1 004001 .. 1.880 uS .
 2 004002 .. 1.880 uS .
 3 004003 .. 1.840 uS .
 4 004004 .. 1.880 uS .
 5 004005 .. 1.880 uS .
 6 004006 .. 1.880 uS .
 7 004007 .. 1.880 uS .
 8 004008 .. 1.880 uS .
 9 004009 .. 1.880 uS .
 10 00400a .. 1.880 uS .
 11 00400b .. 1.840 uS .
 12 00400c .. 1.880 uS .
 13 00400d .. 1.880 uS .
 14 00400e .. 1.880 uS .
 15 00400f .. 1.880 uS .
 16 004010 .. 1.880 uS .
 17 004011 .. 1.880 uS .
 18 004000 TT 28.00 uS .
 19 004001 HH 1.880 uS .
 20 004002 II 1.840 uS .
 21 004003 SS 1.880 uS .
 22 004004 .. 1.880 uS .
 23 004005 II 1.880 uS .
 24 004006 SS 1.880 uS .
 25 004007 .. 1.880 uS .
 26 004008 MM 1.880 uS .
 27 004009 EE 1.880 uS .
 28 00400a SS 1.840 uS .
 29 00400b SS 1.880 uS .
 30 00400c AA 1.880 uS .
 31 00400d GG 1.880 uS .
 32 00400e EE 1.880 uS .
 33 00400f .. 1.880 uS .
 34 004010 AA 1.880 uS .

As you can see, all of the requested states have been captured by the
analyzer. By the way, you may be wondering why the analyzer has
"doubled up" the message written on both bytes of the data bus. This
occurred because we were using byte write accesses to the requested
address; the output data was repeated on both the lower and upper bytes
of the data bus.

Getting Started 2-29

For More
Information

Chapter 3 contains additional information about using the emulator. If
you want detailed information about emulation commands, refer to the
Terminal Interface Reference.

2-30 Getting Started

3

Advanced Example

In the previous chapter, "Getting Started", you learned how to load
code into the emulator, how to modify memory and view a register, and
how to perform a simple analyzer measurement. This chapter will
discuss in more detail how to use the emulator. Some of the topics
discussed discussed in this chapter build upon others; therefore,
proceed through the chapter by working through each topic
sequentially and not by jumping randomly from topic to topic.

The Sample
Programs

The last chapter looked at a primitive command interpreter; that is, it
wrote various messages to an output buffer depending on the character
you inserted in the input buffer. That program executed only in the
68302 processor’s supervisor state.

This chapter uses a modified version of the program from chapter 2. It
performs exactly the same function; however, the program now
changes between supervisor and user states.

The supervisor program performs most of the initialization
routines and reads the input buffer, looking for a command.
When a command is entered, the program changes to the user
state.

The user program determines which command was entered
and writes the appropriate output message. A software trap
then returns execution to the supervisor program.

The programs are listed and described on the following pages.

Notice that the supervisor and user programs are assembled and linked
separately; this is necessary in order to load the programs correctly.

Advanced Example 3-1

Supervisor Program The supervisor program used in the following examples is shown in
figure 3-1.

Variable Declaration

The supervisor program declares the following pointers:

Pointer to the input area at location 400 hex.

First location of the user program (1000 hex).

Command line: as68k -Lh supprog.s
Line Address
1 CHIP 68000
2
3 ;SUPERVISOR SECTION
4 SECT DATA ,,D,D
5 ORG 2000H
6
7 00002000 0000 0400 INPUT_POINTER DC.L 00000400H
8 00002004 0000 1000 USER_LOCATION DC.L 00001000H
9 00002008 0000 00BC TRAP_POINTER DC.L 000000BCH
10 0000200C 0000 0FF0 STACK_POINTER DC.L 00000FF0H
11
12 SECT PROG,,C,P
13 ORG 1000H
14
15 00001000 2478 2000 INIT MOVE.L INPUT_POINTER,A2
16 00001004 2E78 200C MOVE.L STACK_POINTER,A7
17 00001008 2C78 2008 MOVE.L TRAP_POINTER,A6
18 0000100C 2CBC 0000 1028 MOVE.L #RETURNTOSUP,(A6)
19
20 00001012 14BC 0000 CLEAR MOVE.B #00H,(A2)
21
22 00001016 1012 READ_INPUT MOVE.B (A2),D0
23 00001018 0C00 0000 CMP.B #00h,D0
24 0000101C 67F8 BEQ READ_INPUT
25
26 0000101E 2F38 2004 JUMPTOUSER MOVE.L USER_LOCATION,-(A7)
27 00001022 3F3C 0000 MOVE.W #0000H,-(A7)
28 00001026 4E73 RTE
29
30 00001028 2F3C 0000 1012 RETURNTOSUP MOVE.L #CLEAR,-(A7)
31 0000102E 3F3C 2000 MOVE.W #2000H,-(A7)
32 00001032 4E73 RTE
33 END

Figure 3-1. Supervisor program listing.

3-2 Advanced Example

Trap pointer, which is the location of the trap vector used to
return to the supervisor state (0bc hex).

Supervisor stack pointer (0ff0 hex).

INIT

The initialization routine moves the input area pointer to a register for
future use in addressing the input port. The stack pointer register is
initialized. Then, the trap vector 0BC hex is loaded with the address of
the RETURNTOSUP routine.

CLEAR

The CLEAR routine prepares the program for input by initializing the
input port value to a null character (00 hexadecimal).

READ_INPUT

This routine continuously reads the input port until a non-zero value is
read, indicating the presence of a command value.

JUMPTOUSER

As soon as a non-zero value is read from the input port, the
JUMPTOUSER routine pushes onto the stack the location of the user
program and a status register value that indicates a user program state.
The RTE instruction is then executed, which loads the status register
and program counter with the values on the stack and begins execution
at the new program counter value. With the values just pushed on, the
processor will be executing in the user program after this routine
completes.

RETURNTOSUP

This routine is executed whenever the user program terminates by
executing a TRAP #0FH instruction. Specifically, when the user
program executes the TRAP #0FH, the address of RETURNTOSUP is
loaded into the program counter from the trap vector at 0BC hex, and
execution begins in the RETURNTOSUP routine. In the
RETURNTOSUP routine, the address of the CLEAR routine is pushed

Advanced Example 3-3

onto the stack, along with an appropriate status register value. The RTE
instruction is executed, causing the values pushed onto the stack to be
loaded into the status register and program counter. This causes
execution to continue in the CLEAR routine (described above).

User Program The user program used in the following examples is shown in figure
3-2.

Command line: as68k -Lh usrprog.s
Line Address
1 CHIP 68000
2
3 ;USER PROGRAM SECTION
4
5 SECT DATA,,D,D
6 ORG 2000H
7
8 00002000 0000 0500 OUTPUT_POINTER DC.L 00000500H
9
10 00002004 5448 4953 2049 MESSAGE_A DC.B ’THIS IS MESSAGE A’
 5320 4D45 5353
 4147 4520 41
11
12 00002015 5448 4953 2049 MESSAGE_B DC.B ’THIS IS MESSAGE B’
 5320 4D45 5353
 4147 4520 42
13
14 00002026 494E 5641 4C49 INVALID_INPUT DC.B ’INVALID COMMAND’
 4420 434F 4D4D
 414E 44
15
16
17 SECT PROG,,C,P
18 ORG 1000H
19
20 00001000 2678 2000 INIT MOVE.L OUTPUT_POINTER,A3
21
22 00001004 0C00 0041 PROCESS_COMM CMP.B #41H,D0
23 00001008 6700 000E BEQ COMMAND_A
24 0000100C 0C00 0042 CMP.B #42H,D0
25 00001010 6700 0014 BEQ COMMAND_B
26 00001014 6000 001E BRA UNRECOGNIZED
27
28 00001018 103C 0011 COMMAND_A MOVE.B #11H,D0
29 0000101C 207C 0000 2004 MOVE.L #MESSAGE_A,A0
30 00001022 6000 001A BRA OUTPUT

Figure 3-2. User program listing.

3-4 Advanced Example

Variable Declaration

The user program declares one pointer, which is the pointer to the
output port base location at 500 hex. Three strings are also declared;
these are the messages that will be written to the output port whenever
a command input is processed.

INIT

This routine moves the output pointer value to an address register for
future use in the program.

PROCESS_COMM

When the routine arrives here, the non-zero value read into the input
port is still available in the D0 data register. PROCESS_COMM
performs a series of comparisons to determine whether the command in
register D0 is "A", "B" or an unrecognized command. Once this is
resolved, the routine branches to one of the setup routines to prepare
for message output.

31
32 00001026 103C 0011 COMMAND_B MOVE.B #11H,D0
33 0000102A 207C 0000 2015 MOVE.L #MESSAGE_B,A0
34 00001030 6000 000C BRA OUTPUT
35
36 00001034 103C 000F UNRECOGNIZED MOVE.B #0FH,D0
37 00001038 207C 0000 2026 MOVE.L #INVALID_INPUT,A0
38
39 0000103E 224B OUTPUT MOVE.L A3,A1
40
41 00001040 123C 0020 CLEAR_OLD MOVE.B #20H,D1
42 00001044 2A4B MOVE.L A3,A5
43
44 00001046 1AFC 0000 CLEAR_LOOP MOVE.B #00H,(A5)+
45 0000104A 0441 0001 SUBI #01H,D1
46 0000104E 66F6 BNE CLEAR_LOOP
47
48 00001050 12D8 LOOP MOVE.B (A0)+,(A1)+
49 00001052 0440 0001 SUBI #01H,D0
50 00001056 66F8 BNE LOOP
51
52 00001058 4E4F TRAPTOSUP TRAP #0FH
53 END

Figure 3-2. User program listing (continued).

Advanced Example 3-5

COMMAND_A, COMMAND_B, UNRECOGNIZED

One of these routines will be executed, depending on the comparisons
made in PROCESS_COMM. Each routine moves the length of the
appropriate message into the D0 register (which will be used as a
counter for the number of bytes to be moved). Also, each routine
moves the location of the appropriate message into the A0 register.

OUTPUT

This routine begins the output by first setting up some pointer values
and an output buffer length (20 hex, resident in D1). The
CLEAR_LOOP routine then writes null characters to all of the output
buffer locations. This insures that previous messages are erased from
the output buffer.

LOOP then performs byte moves using the values of the A0 (message
source pointer) and the A1 register (output buffer pointer) to determine
the locations of the source and destination. When all of the bytes have
been moved (indicated by the value of D0), the loop terminates.

TRAPTOSUP

When LOOP is complete, execution should return to the supervisor
program and resume reads of the input buffer. TRAPTOSUP does this
by simply executing a TRAP #0F instruction. The processor will fetch
the new execution address from the trap vector region, switch to the
supervisor state, and begin execution. (The specific return location is
the RETURNTOSUP routine in the supervisor module.)

Note This set of programs should not be construed as a complete example of
user/supervisor state switching for the 68302. It relies on simplicity,
and the fact that various pointer and data values are retained during the
state switch. In an actual programming example, you would probably
want to push the values of all registers onto a stack before making a
state switch, then recover those values after the switch.

3-6 Advanced Example

Mapping Memory For this example, you will need to specify more information in the
memory map to allow correct loading of the program. The information
required tells the memory mapper that a certain range resides within
supervisor memory space or user memory space. To map memory for
this program, type the following commands:

R> map -d *
R> map 100..0fff@d eram
R> map 1000..2fff@s erom
R> map 1000..2fff@u erom

The first command deletes all currently defined mapper terms.

The second command defines an emulation RAM data area (to be used
by either the supervisor or user program) from 100 to fff hexadecimal.
Notice that this data area was not placed at 0--supervisor writes in the
range 0 to ff could change the exception vector table and the SCR and
BAR registers.

The third and fourth commands define supervisor (@s) and user (@u)
program/data areas as emulation ROM from address 1000 to 2fff
hexadecimal. The emulation memory mapper can differentiate between
the supervisor and user address spaces. Now, whenever you specify
an address in the range 1000 to 2fff hex, you must also include the
function code; otherwise, the address will be ambiguous. Refer to
chapter 4 of this manual for further information on specifying function
codes as part of the memory map.

You will usually need to map an area of memory for the 68302’s
internal dual-port RAM. Be sure to map this space above the vector
table. Map this space as target RAM:

R> map 0fff000..0ffffff@s tram

To help you find accidental accesses to other parts of memory, map all
other addresses to guarded memory:

R> map other grd

You can specify even more detailed load information. For example,
you might wish to define 1000 to 1fff as a supervisor program space,
and 2000 to 2fff as a supervisor data space. To enter such a map, you
would type (do not type this right now):

R> map 1000..1fff@sp erom
R> map 2000..2fff@sd erom

Advanced Example 3-7

However, if you do this, the supervisor data and program modules will
need to be separated, modified (to declare symbols defined in one
module and used in the other as globals and externals, respectively),
linked, and loaded separately. The cf lfc
command specifies the function code area where each module is loaded.

Note When memory ranges are overlaid using function code specifiers, you
need to have a separately linked module for each different function
code specifier. (This is because linkers do not typically understand
function codes and overlapping address errors would occur when
attempting to link modules to the same address range.)

When different address ranges are mapped with different function code
specifiers (no overlapping ranges), your program modules may exist in
one absolute file; however, you will have to use multiple load
commands - one for each function code specifier. This is necessary to
load the various sections of the absolute file into the appropriate
function code qualified mapper ranges. When you do this, be sure that
"other" is mapped as target RAM. (If "other" is mapped as guarded,
guarded memory access errors, from the attempt to load the absolute
file sections that are outside the function code specified range, can
prevent the absolute file sections that are inside the function code
specified range from being loaded.)

For details on all of the different possible function code specifiers, refer
to Appendix A, which contains syntax information specific to the
68302 emulator.

3-8 Advanced Example

Loading the
Sample Program

Assembly and
Linking

You are now ready to load the sample program. You must first
assemble and link it using the available host tools.

If you are using the transparent configuration, connect to your host by
typing:

xp -e

If you are using the HP 64870 68000 Assembler/ Linker/Librarian,
assemble and link using the following commands:

$ as68k -Lh userprog.s
$ as68k -Lh supprog.s
$ ld68k -c userprog.cmd -Lh
$ ld68k -c supprog.cmd -Lh

Use the following linker command files:
$ cat userprog.cmd
NAME userprog
LIST C,D,O,P,S,T,X
ORDER PROG,DATA
SECT DATA=1000H
SECT PROG=2000H
LOAD userprog.o
END

$ cat supprog.cmd
NAME supprog
LIST C,D,O,P,S,T,X
ORDER PROG,DATA,A5
SECT PROG=1000H
SECT DATA=2000H
SECT A5=2000H
LOAD supprog.o
END
$

Loading the Code Now to load your files. The example in this chapter uses the HP
9000/HP-UX based transfer utility. You can use this method or any
that fits your situation; refer to Chapter 2 and the load command
information in the Reference for examples of other file load methods.
The important difference in this load procedure is that you need to

Advanced Example 3-9

properly configure the emulator so that each module will end up in the
proper supervisor or user space.

If you need to change directories to get to your program files, do so
now.

Otherwise, type:

<ESC>g xp -d

to return to the emulator command prompt.

Now, load the supervisor module by typing:

M> cf lfc=s

This command (configure load function code) tells the emulator that
subsequent load commands should load code into memory ranges
mapped as supervisor.

Now type:

M> load -hbo
transfer -tb supprog.X<ESC>g (do NOT press
return)

You will see:

##
M>

To load the user module, type the following:

M> cf lfc=u

This tells the emulator that subsequent load commands should load
code into memory ranges mapped as user space.

Type:

M> load -hbo
transfer -tb userprog.X<ESC>g (again, do NOT
press return)

You will see:

##
M>

3-10 Advanced Example

Your code is now loaded into memory and is ready to use. To log off
the host computer, type:

M> xp -e

Hit return until you see a prompt and type:

$ <CTRL>d

Now type:

<ESC>g xp -d

which will return you to the emulator command prompt.

Note If you see the message "hpuadownload in_HP64000_format," you
pressed <RETURN> after entering the transfer command. Repeat the
load and transfer commands exactly as shown above.

Building a
Command File

If you are using a computer with a terminal emulator, find out if the
terminal emulator has the ability to log displays to a disk file and
upload ASCII disk files to the datacomm port. If your terminal
emulator has this ability, you can easily build a command files to save a
considerable amount of time whenever you need to reload the
emulator’s code, data, or configuration information.

Note The HP 64700 Terminal Interface also supports command files from a
host in transparent mode using the po -f command. That command is
not described here; refer to the Reference for an example.

Now, follow the steps below to build a command file which will load
your emulator’s code by modifying memory.

First, you need to get the memory contents into a disk file so that you
can manipulate them. Enable the file logging capability of your
terminal emulator to create a file called comfile.txt. (If you need help

Advanced Example 3-11

with this function, refer to the manual for your terminal emulator.)
Then, type the following commands:

M> m -dl 2000..200f@s
0002000..000200f@s 00000400 00001000 000000bc 00000ff0

M> m -dl 1000..1033@s
0001000..000100f@s 24782000 2e78200c 2c782008 2cbc0000
0001010..000101f@s 102814bc 00001012 0c000000 67f82f38
0001020..000102f@s 20043f3c 00004e73 2f3c0000 10123f3c
0001030..0001033@s 20004e73

M> m -dl 2000..2034@u
0002000..000200f@u 00000500 54484953 20495320 4d455353
0002010..000201f@u 41474520 41544849 53204953 204d4553
0002020..000202f@u 53414745 2042494e 56414c49 4420434f
0002030..0002037@u 4d4d414e 44000000

M> m -dl 1000..1059@u
0001000..000100f@u 26782000 0c000041 6700000e 0c000042
0001010..000101f@u 67000014 6000001e 103c0011 207c0000
0001020..000102f@u 20046000 001a103c 0011207c 00002015
0001030..000103f@u 6000000c 103c000f 207c0000 2026224b
0001040..000104f@u 123c0020 2a4b1afc 00000441 000166f6
0001050..000105b@u 12d80440 000166f8 4e4f4e4f

Now you can close the disk log file. Your disk log file contains the
code for the supervisor data, supervisor program, user data, and user
program regions. Note that to enter the proper address ranges, you will
need to know the starting and ending addresses of each block you want
to manipulate. Your linker output listing should contain this
information.

You will need to edit the disk file so that all of the memory dump
information is actually expressed as a memory modification command.
Use an ASCII text editor (or a word processor with ASCII
import/export capability) to create the file shown below from the file
comfile.txt.

m -dl 0002000..000200f@s=00000400,00001000,000000bc,00000ff0
m -dl 0001000..000100f@s=24782000,2e78200c,2c782008,2cbc0000
m -dl 0001010..000101f@s=102814bc,00001012,0c000000,67f82f38
m -dl 0001020..000102f@s=20043f3c,00004e73,2f3c0000,10123f3c
m -dl 0001030..0001033@s=20004e73
m -dl 0002000..000200f@u=00000500,54484953,20495320,4d455353
m -dl 0002010..000201f@u=41474520,41544849,53204953,204d4553
m -dl 0002020..000202f@u=53414745,2042494e,56414c49,4420434f
m -dl 0002030..0002037@u=4d4d414e,44000000
m -dl 0001000..000100f@u=26782000,0c000041,6700000e,0c000042
m -dl 0001010..000101f@u=67000014,6000001e,103c0011,207c0000
m -dl 0001020..000102f@u=20046000,001a103c,0011207c,00002015
m -dl 0001030..000103f@u=6000000c,103c000f,207c0000,2026224b
m -dl 0001040..000104f@u=123c0020,2a4b1afc,00000441,000166f6
m -dl 0001050..000105b@u=12d80440,000166f8,4e4f4e4f

3-12 Advanced Example

Notice that you do not have to modify the "load function code"
configuration item. This method is completely different than loading
memory with the load command. Instead, the function code is
explicitly specified in memory modification commands.

Now you can execute your command file. Make sure that the emulator
is running in the monitor ("M>" prompt), or is running. To get to the
monitor, type b.

Note If the emulator is reset, it will not be able to display or modify target
system memory. Although that does not affect this particular example,
you should keep this information in mind when you build command
files which access target system memory.

To load your command file, simply use the ASCII upload feature of
your terminal emulator and specify comfile.txt as the file to upload.
You will see each line read in by the emulator and executed as a
command.

You can do this with virtually any command that prints the current
settings when executed. The output of many commands, such as map
and tpat, can be used in a command file without any modification.

You can avoid error messages by using the appropriate "clear"
command at the beginning of a command file. For example, if your
command file contains map commands, include the command map -d
* to delete any existing mapper terms.

Again, you can use your terminal emulator’s ASCII upload facilities to
load this file into the emulator.

To build a command file to completely configure your emulator, you
would simply enable disk logging as you start configuration and turn it
off when you’re finished. Then you can edit the command file.
However, be sure to completely understand the procedure you will use;
otherwise, you might spend a lot of time editing a command file
because of logged mistakes.

Advanced Example 3-13

Note We strongly recommend that you use your terminal emulator’s logging
feature to record the commands you enter in the example which
follows. Doing so will save you a lot of work if for any reason you
need to start over.

Set Mode and
Stack Pointer

Set the memory display mode to byte to avoid problems later in the
examples:

M> mo -db

Also, the supervisor stack pointer must be modified to be able to run
the emulator. Type:

M> rst
R> cf rssp=00000ff0
R> b

Now the supervisor stack pointer will be initialized to the value
00000ff0 hex.

You could also modify the supervisor stack pointer as follows:

M> reg ssp=0ff0

This modifies the supervisor stack pointer register directly to the value
00000ff0. However, by using the cf rssp command, you will
automatically set the stack pointer every time the emulator enters the
monitor from an emulation reset.

Complex
Configuration
Trace Example

This example will make a more sophisticated trace measurement using
the analyzer’s complex configuration capabilities. In this example, the
sequencer will be used to look for execution of several of the routines
in the two programs and to trigger the analyzer finding the last routine.

3-14 Advanced Example

The analyzer will be set up so that execution between certain states is
stored until the trace list is filled.

This example will be using several different analyzer and emulator
commands to make a complete measurement. This is intended to give
you a complete context for the use of each command, rather than
presenting the commands independently.

Note This example will not explain all of the analyzer’s sequencer
capabilities. Instead, refer to the Analyzer User’s Guide for a complete
tutorial on analyzer operation.

When setting up complex analyzer measurements, you will generally
use the following procedure to draw a sequencer diagram.

First, draw a sequencer diagram which shows all eight of the
analyzer sequencer terms.

Next, fill in the primary and secondary branch qualifiers.

Finally, write down the analyzer storage qualifiers for each
sequencer level.

With the completed diagram, you can set up the analyzer measurement
quickly and accurately.

In the sequencer diagram shown in figure 3-3, several branches and
store conditions are set up.

The analyzer always enters the sequencer at term 1.

It will branch from term 1 to term 2 when data of any value except zero
is read from the INPUT_POINTER location while in the supervisor
state. Notice that the expression is additionally qualified with the
supervisor data status. This is done because the analyzer does not
allow you to specify function codes in addresses; the additional status
qualifier makes sure that the sequencer searches for the supervisor
access to the INPUT_POINTER location and not a user access. No
states are stored before or after the branch; however, any expression

Advanced Example 3-15

which satisfies a branch will always store, regardless of the storage
qualifier.

A branch from term 2 to term 3 will happen when the analyzer sees
execution of the JUMPTOUSER routine. Notice that the address is
qualified with a status of supervisor program space. Again, no states
are stored except the branch condition.

A branch from term 3 to term 4 will happen when the analyzer sees
execution of the PROCESSCOMM routine. The address is qualified
with a status of user program space. After the branch, the analyzer will
store all states in the range 500 through 511 hex with data not equal to
zero. (The sequencer will specifically look for the message writes to
the output area.)

A branch from term 4 to term 5 occurs when the analyzer sees the
TRAPTOSUP routine. Now all states are stored because the trace
should contain the states that show the processor pick up the exception
vector information.

Figure 3-3. Sequencer Diagram.

3-16 Advanced Example

A branch from term 5 to term 6 (the trigger term) happens when the
analyzer sees the execution of the RETURNTOSUP routine. No states
are stored.

Finally, the sequencer branches back to term 2 when a non-zero value
is read from the input port by the supervisor program. The sequencer
process is repeated from this point onward.

Terms 7 and 8 are not used in this example. Also, there are no
secondary branch conditions, so they are left at the default of telif never.

Defining Equates Use the equ command to assign names to specific patterns. This
should aid you in setting up the analyzer specification. First, look at
the default equate list. Type:

M> equ

You can see that several "equates" have been predefined. This occurred
during emulator initialization. These equates allow you to specify
various processor status qualifiers without having to remember the
specific bit patterns associated with each status. For example, you can
specify a status qualifier of "supervisor program" with stat=supprog.

Now set up the equates for the input port address, the program routine
names, and a "null data" value of 00 hex. Type:

M> equ inputpointer=400
M> equ nulldata=00
M> equ jumptouser=101e

Verify the new equates by typing:

M> equ

Symbols are can be used like equates for addresses, but they also are
shown by name in the trace listings.

M> sym processcomm=1004@u
M> sym traptosup=1058@u
M> sym returntosup=1028@s

Verify the symbols by typing:

M> sym

Advanced Example 3-17

Set the Analyzer to
Complex

Configuration

Before you set up the analyzer qualifiers, you need to set the analyzer
to the complex configuration. Type:

M> tcf -c

(For specific information on the capabilities of the analyzer’s complex
configuration, refer to the Analyzer User’s Guide and the Reference
manuals.)

Define a New
Analyzer Signal Label

Now you need to set up an analyzer label for the lower byte of the data
bus. Type:

M> tlb lowerdata 40..47

This enables you to qualify byte operations (such as the input port read
or the output port writes) without concern about what the patterns are
on the upper byte of the bus.

Assign Analyzer
Patterns to

Expressions

Now, since the analyzer is in complex configuration, you need to
assign pattern numbers to the specific analyzer expressions you want to
use for branching. (The complex configuration does not allow you to
specify these expressions directly in the branch (tif command); instead,
you assign pattern names to expressions, then use the pattern names in
the tif command to form more complex expressions.) Type:

M> tpat p1 addr=inputpointer and stat=supdata
M> tpat p2 addr=jumptouser and stat=supprog
M> tpat p3 addr=processcomm and stat=userprog
M> tpat p4 addr=traptosup and stat=userprog
M> tpat p5 addr=returntosup and stat=supprog

Use the range variable to qualify storage of data written to the output
area. Assign a range to this variable using the trng command. Type:

M> trng addr=500..511

Finally, one pattern is needed that has data not equal to zero. Set this
pattern not equal to the nulldata equate defined earlier. Type:

M> tpat p6 lowerdata!=nulldata

You can verify all of the pattern assignments by typing:

M> tpat

3-18 Advanced Example

 tpat p1 addr=inputpointer and stat=supdata
 tpat p2 addr=jumptouser and stat=supprog
 tpat p3 addr=processcomm and stat=userprog
 tpat p4 addr=traptosup and stat=userprog
 tpat p5 addr=returntosup and stat=supprog
 tpat p6 lowerdata!=nulldata
 tpat p7 any
 tpat p8 any

Set the Primary
Branch Qualifiers

Now you can set up the primary branch qualifiers which specify how
the analyzer sequencer will branch from term to term when certain
expressions are found. Type:

M> tif 1 p1 and p6 2
M> tif 2 p2 3
M> tif 3 p3 4
M> tif 4 p4 5
M> tif 5 p5 6
M> tif 6 p1 and p6 2

Now you can specify the trigger term. Type:

M> tsq -t 6

You can check all of the primary branch qualifiers by typing:

M> tif

 tif 1 p1 and p6 2
 tif 2 p2 3
 tif 3 p3 4
 tif 4 p4 5
 tif 5 p5 6
 tif 6 p1 and p6 2
 tif 7 any 8
 tif 8 never

Specifying What to
Store

As you can see from the sequencer diagram, you only want to store
certain items depending on the state of the sequencer. The analyzer’s
complex configuration allows you to specify different storage qualifiers
for each trigger state. Since nothing is to be stored for the majority of
the sequencer terms, you can use one command to set all storage
qualifiers to none. Then, you can redefine the storage qualifiers for the
individual terms during which trace states are to be stored. For
example, type:

M> tsto none

View this by typing:

M> tsto

Advanced Example 3-19

 tsto 1 none
 tsto 2 none
 tsto 3 none
 tsto 4 none
 tsto 5 none
 tsto 6 none
 tsto 7 none
 tsto 8 none

Now you can set the storage qualifiers for the terms that need to
change. Type:

M> tsto 4 r and p6
M> tsto 5 all

Check the storage qualifier changes:

M> tsto

 tsto 1 none
 tsto 2 none
 tsto 3 none
 tsto 4 r and p6
 tsto 5 all
 tsto 6 none
 tsto 7 none
 tsto 8 none

Counting the Output
Writes

You can set the analyzer’s trace tag counter to count the number of
writes to the output area. Since a range variable was defined for the
storage qualifier, you can use this to count the number of writes to the
output range. Type:

M> tcq r

Set the Trace Display
Format

To display the trace with address and mnemonic information, along
with the data (output writes), in ASCII format, and the output write
count, type:

M> tf addr,h mne lowerdata,A count,A

The trace list display will have address displayed in hex, data
disassembled into 68302 mnemonic instructions, the lower byte of the
data bus displayed in ASCII, and the state count displayed absolute
(relative to the beginning of the trace rather than the previous state).

Make the
Measurement

Now you can make the measurement. First, start the trace by typing:

3-20 Advanced Example

M> t
 Emulation trace started

Then, start the emulation run:

M> r 1000@s

Notice that you need to specify the function code specifier since two
different function code ranges (user and supervisor) share the same
numeric addresses.

Note If you see any error messages at this point, check that you entered all of
the code, data, equates, and analyzer expressions correctly.

You will need to provide some input to the input port; otherwise, the
analyzer will never trigger (because the sequencer will never pass term
1). Type:

U> m 400@d=41
U> m 400@d=42
U> m 400@d=43

This puts an "A" command, a "B" command, and an unrecognized
command into the input port. Now display the trace list:

U> tl -etd 30

Advanced Example 3-21

 Line addr,H 68302 Mnemonic,H lowerdata,A count,A
 ----- ------ ----------------------------------- ----------- ---------
 0 000400 41 sdata rd byte A 0
 1 00101e MOVE.L ******,-[A7] ROM / 0
 2 sscomm CMPI.B #**,D0 ROM . 0
 3 000500 54 udata wr byte T 19
 4 ptosup TRAP #f ROM N 19
 5 001050 MOVE.B [A0]+,[A1]+ ROM . 19
 6 001052 SUBI.W #00001,D0 ROM . 19
 7 002005 48 udata rd byte ROM . 19
 8 000501 48 udata wr byte H 20
 9 001054 0001 uprog rd word ROM . 20
 10 001056 BNE.B 0001050 ROM f 20
 11 ptosup TRAP #f ROM N 20
 12 001050 MOVE.B [A0]+,[A1]+ ROM . 20
 13 001052 SUBI.W #00001,D0 ROM . 20
 14 002006 49 udata rd byte ROM I 20
 15 000502 49 udata wr byte I 21
 16 001054 0001 uprog rd word ROM . 21
 17 001056 BNE.B 0001050 ROM f 21
 18 ptosup TRAP #f ROM N 21
 19 001050 MOVE.B [A0]+,[A1]+ ROM . 21
 20 001052 SUBI.W #00001,D0 ROM . 21
 21 002007 53 udata rd byte ROM . 21
 22 000503 53 udata wr byte S 22
 23 001054 0001 uprog rd word ROM . 22
 24 001056 BNE.B 0001050 ROM f 22
 25 ptosup TRAP #f ROM N 22
 26 001050 MOVE.B [A0]+,[A1]+ ROM . 22
 27 001052 SUBI.W #00001,D0 ROM . 22
 28 002008 20 udata rd byte ROM . 22
 29 000504 20 udata wr byte . 23

This isn’t what you would expect to see. (You expect to see the
lowerdata column with unbroken strings of each message, and you also
expect to see the TRAP vector pickup.) If you look carefully at the
trace listing, you will see that the TRAP #f instruction is repeated
several times, but the processor keeps repeating instructions from the
LOOP routine in the program and doesn’t switch states to supervisor
when the TRAP is encountered.

The reason for the repeated TRAP instruction is the prefetch feature of
the 68302 processor. The processor is continually prefetching the
TRAP #f instruction, but not executing it because of the BNE.B back to
location 1050 hex. The reason this instruction keeps appearing in the
trace list is because the HP 64700’s emulation analyzer does not
provide "de-queuing" of the instruction pipeline; that is, it records all
instructions that appear on the bus and cannot differentiate between a
prefetched instruction and one which was actually executed. Many
more states are stored than expected, because the first prefetch of the
TRAP #f instruction causes the sequencer to increment to term 5,
which has a storage qualifier of tsto all. So, as a result of the prefetch,

3-22 Advanced Example

many side effects have occurred which present a different trace list than
expected.

One of the easiest ways to fix this problem, at least during the
debugging and integration stages of your project, is to insert a NOP
instruction at the end of each routine in your code. Then, if you set up
the sequencer branch for the first instruction of the next routine, the
NOP is the instruction prefetched at the end of the previous routine and
therefore won’t cause a sequencer branch (unless, of course, you set up
the sequencer to branch on the NOP or its address in memory). To do
this with the sample program, first display the end of the user program
routine:

U> m 1050..1059@u

 0001050..0001059@u 12 d8 04 40 00 01 66 f8 4e 4f

Now, insert a NOP instruction where the TRAP #f is and move TRAP
#f to the next higher memory location. (NOP is 4e71 hex; TRAP #f is
4e4f hex.)

U> m -dw traptosup=4e71,4e4f

Now verify the change:

U> m -db 1050..105b@u

 0001050..000105b@u 12 d8 04 40 00 01 66 f8 4e 71 4e 4f

You need to modify the traptosup symbol to reflect the new location of
the TRAPTOSUP routine. Type:

U> sym traptosup=105a

You must also reenter the commands where the symbol is used! This is
because an equate is translated at the time of command entry, rather
than at the time of measurement.

U> tpat p4

 tpat p4 addr=traptosup and stat=userprog

U> tpat p4 addr=traptosup and stat=userprog

Repeat the measurement:

U> t

Advanced Example 3-23

 Emulation trace started

U> m 400@d=41
U> m 400@d=42
U> m 400@d=43
U> tl -etd 30

 Line addr,H 68302 Mnemonic,H lowerdata,A count,A
 ----- ------ ----------------------------------- ----------- ---------
 -1 0000be 1028 sdata rd word . 0
 0 ntosup MOVE.L #********,-[A7] ROM / 0
 1 000400 42 sdata rd byte B 0
 2 00101e MOVE.L ******,-[A7] ROM / 0
 3 sscomm CMPI.B #**,D0 ROM . 0
 4 000500 54 udata wr byte T 19
 5 000501 48 udata wr byte H 20
 6 000502 49 udata wr byte I 21
 7 000503 53 udata wr byte S 22
 8 000504 20 udata wr byte . 23
 9 000505 49 udata wr byte I 24
 10 000506 53 udata wr byte S 25
 11 000507 20 udata wr byte . 26
 12 000508 4d udata wr byte M 27
 13 000509 45 udata wr byte E 28
 14 00050a 53 udata wr byte S 29
 15 00050b 53 udata wr byte S 30
 16 00050c 41 udata wr byte A 31
 17 00050d 47 udata wr byte G 32
 18 00050e 45 udata wr byte E 33
 19 00050f 20 udata wr byte . 34
 20 000510 42 udata wr byte B 35
 21 ptosup TRAP #f ROM N 35
 22 00105c 07e1 unused prefetch ROM . 35
 23 000fd6 105c sdata wr word . 35
 24 000fd2 0004 sdata wr word . 35
 25 000fd4 0000 sdata wr word . 35
 26 0000bc 0000 sdata rd word . 35
 27 0000be 1028 sdata rd word . 35
 28 ntosup MOVE.L #********,-[A7] ROM / 35

Now the desired states seem to have been captured, including the
pickup of the TRAP vector from 0bc hex (states 26 and 27 in the trace
list). However, the message written from the first command entry
("MESSAGE A") is missing. The sequencer trigger was actually the
last term in the sequence (term 6); and since the trigger position in the
trace list was the first state in trace memory, states occurring previous
to the trigger were discarded. You can modify the trigger position in
memory and run another trace so these states will be retained.

3-24 Advanced Example

 Type:

U> tp -b 30
U> t

 Emulation trace started

U> m 400@d=41

Are you getting tired of typing this information over and over? Use
command line editing to enter the data this time:

cl -e

Now type <ESC> k k to see the line you just entered. Type $ to move
the cursor to the end of the line. Type r2 to replace the 1 with a 2:

U> m 400@d=42

Press <RETURN> to enter that line. Type <ESC> k $ r 3 to get:

U> m 400@d=43

Now type:

U> tl -etd
 Line addr,H 68302 Mnemonic,H lowerdata,A count,A
 ----- ------ ----------------------------------- ----------- ---------
 -27 000400 41 sdata rd byte A -35
 -26 00101e MOVE.L ******,-[A7] ROM / -35
 -25 sscomm CMPI.B #**,D0 ROM . -35
 -24 000500 54 udata wr byte T -16
 -23 000501 48 udata wr byte H -15
 -22 000502 49 udata wr byte I -14
 -21 000503 53 udata wr byte S -13
 -20 000504 20 udata wr byte . -12
 -19 000505 49 udata wr byte I -11
 -18 000506 53 udata wr byte S -10
 -17 000507 20 udata wr byte . -9
 -16 000508 4d udata wr byte M -8
 -15 000509 45 udata wr byte E -7
 -14 00050a 53 udata wr byte S -6
 -13 00050b 53 udata wr byte S -5
 -12 00050c 41 udata wr byte A -4
 -11 00050d 47 udata wr byte G -3
 -10 00050e 45 udata wr byte E -2
 -9 00050f 20 udata wr byte . -1
 -8 000510 41 udata wr byte A 0
 -7 ptosup TRAP #f ROM N 0
 -6 00105c 07e1 unused prefetch ROM . 0
 -5 000fca 105c sdata wr word . 0
 -4 000fc6 0004 sdata wr word . 0
 -3 000fc8 0000 sdata wr word . 0
 -2 0000bc 0000 sdata rd word . 0
 -1 0000be 1028 sdata rd word . 0
 0 ntosup MOVE.L #********,-[A7] ROM / 0

 1 000400 42 sdata rd byte B 0
 2 00101e MOVE.L ******,-[A7] ROM / 0

Advanced Example 3-25

Now you see the first message; but, you don’t have the entire message
set.

To see the full symbol name in the "addr" column of the trace display,
change the trace format by typing:

U> tf addr,h,14 mne lowerdata,A

This increases the width of the address column, and eliminates the
count column to make room on an 80-column display.

Display a greater range of the trace list by typing:

U> tl -ed -30..100
 Line addr,H 68302 Mnemonic,H lowerdata,A
 ----- -------------- ----------------------------------- -----------
 -28
 -27 000400 41 sdata rd byte A
 -26 00101e MOVE.L ******,-[A7] ROM /
 -25 processcomm CMPI.B #**,D0 ROM .
 -24 000500 54 udata wr byte T
 -23 000501 48 udata wr byte H
 -22 000502 49 udata wr byte I
 -21 000503 53 udata wr byte S
 -20 000504 20 udata wr byte .
 -19 000505 49 udata wr byte I
 -18 000506 53 udata wr byte S
 -17 000507 20 udata wr byte .
 -16 000508 4d udata wr byte M
 -15 000509 45 udata wr byte E
 -14 00050a 53 udata wr byte S
 -13 00050b 53 udata wr byte S
 -12 00050c 41 udata wr byte A
 -11 00050d 47 udata wr byte G
 -10 00050e 45 udata wr byte E
 -9 00050f 20 udata wr byte .
 -8 000510 41 udata wr byte A
 -7 traptosup TRAP #f ROM N
 -6 00105c 07e1 unused prefetch ROM .
 -5 000fca 105c sdata wr word .
 -4 000fc6 0004 sdata wr word .
 -3 000fc8 0000 sdata wr word .
 -2 0000bc 0000 sdata rd word .
 -1 0000be 1028 sdata rd word .
 0 returntosup MOVE.L #********,-[A7] ROM /
 1 000400 42 sdata rd byte B
 2 00101e MOVE.L ******,-[A7] ROM /
 3 processcomm CMPI.B #**,D0 ROM .
 4 000500 54 udata wr byte T
 5 000501 48 udata wr byte H
 6 000502 49 udata wr byte I
 7 000503 53 udata wr byte S
 8 000504 20 udata wr byte .
 9 000505 49 udata wr byte I
 10 000506 53 udata wr byte S
 11 000507 20 udata wr byte .
 12 000508 4d udata wr byte M
 13 000509 45 udata wr byte E
 14 00050a 53 udata wr byte S

3-26 Advanced Example

 15 00050b 53 udata wr byte S
 16 00050c 41 udata wr byte A
 17 00050d 47 udata wr byte G
 18 00050e 45 udata wr byte E
 19 00050f 20 udata wr byte .
 20 000510 42 udata wr byte B
 21 traptosup TRAP #f ROM N
 22 00105c 07e1 unused prefetch ROM .
 23 000fc4 105c sdata wr word .
 24 000fc0 0004 sdata wr word .
 25 000fc2 0000 sdata wr word .
 26 0000bc 0000 sdata rd word .
 27 0000be 1028 sdata rd word .
 28 returntosup MOVE.L #********,-[A7] ROM /
 29 000400 43 sdata rd byte C
 30 00101e MOVE.L ******,-[A7] ROM /
 31 processcomm CMPI.B #**,D0 ROM .
 32 000500 49 udata wr byte I
 33 000501 4e udata wr byte N
 34 000502 56 udata wr byte V
 35 000503 41 udata wr byte A
 36 000504 4c udata wr byte L
 37 000505 49 udata wr byte I
 38 000506 44 udata wr byte D
 39 000507 20 udata wr byte .
 40 000508 43 udata wr byte C
 41 000509 4f udata wr byte O
 42 00050a 4d udata wr byte M
 43 00050b 4d udata wr byte M
 44 00050c 41 udata wr byte A
 45 00050d 4e udata wr byte N
 46 00050e 44 udata wr byte D
 47 traptosup TRAP #f ROM N
 48 00105c 07e1 unused prefetch ROM .
 49 000fbe 105c sdata wr word .
 50 000fba 0004 sdata wr word .
 51 000fbc 0000 sdata wr word .
 52 0000bc 0000 sdata rd word .
 53 0000be 1028 sdata rd word .
 54 returntosup MOVE.L #********,-[A7] ROM /
 55

Even though you asked for display of states -30 through 100 in the
trace list, only states -28 through 54 were displayed, because the
analyzer has not captured any more data satisfying the storage
specifications. You can try modifying location 400 in the data space
with several values; display the trace after each modify. The trace
display memory will fill up with additional states every time the
complete sequencer branch specification is satisfied.

Refer to the Analyzer User’s Guide for more information regarding
analyzer measurements.

Advanced Example 3-27

Setting up an
Automatic Break
to Monitor

By using the bc command, you can set the emulator to break to the
monitor upon finding certain conditions, such as a write to ROM, a
software breakpoint, or a specific condition found by the analyzer.

Break on
Measurement

Complete

Suppose you have found that the first value input to the input port is
handled correctly by the sample program, but the next value input
causes the program to "run away" and destroy memory. You can
modify the measurement set up from the complex configuration trace
example to capture only one trace, then break the emulator to monitor
so that memory contents are not destroyed by the runaway program.
(Note: the program does not actually have such a bug; assume it might
for purposes of this example.)

First, set up the analyzer to drive the trig1 signal (internal to the HP
64700 emulator) upon finding the trigger condition:

U> tgout trig1

Now, set the emulator break conditions such that the emulator will
break to monitor upon receiving the trig1 signal:

U> bc -e trig1

Start the measurement:

U> t
 Emulation trace started

U> r 1000@s
U> m 400@d=41

!ASYNC_STAT 618! trig1 break

M>

The analyzer finds the trigger condition and asserts the trig1 signal; the
emulator then recognizes that the break condition is true and breaks the
emulator to monitor execution.

You may also have the emulator break upon receiving the trig2 signal,
a trigger signal from the CMB (Coordinated Measurement Bus), or the
BNC trigger line (allowing you to break the emulator when an external
instrument finds its trigger condition.) Refer to the HP 64700
Terminal Interface Reference and the CMB User’s Guide for more

3-28 Advanced Example

information on using the various trigger signals to break emulator
execution.

Setting a Software
Breakpoint

Another way to stop program execution is to set a software breakpoint.
Using the bc and bp commands, you can insert TRAP instructions into
your code and have the emulator break to the monitor upon execution
of the inserted TRAP. Selection of one of the 16 different TRAP
instructions for insertion is managed by the cf swtp command; see
Chapter 4 of this manual. Once the breakpoint is found, you can
examine memory locations, registers, and so on, without worry that
further program execution will destroy the state of the machine.

First, you must enable the software breakpoint feature:

M> bc -e bp

Now, insert a breakpoint at the location of the RETURNTOSUP
routine in the supervisor program:

M> bp returntosup

The emulator controller saves the state of the instruction at location
1028 (returntosup) and overwrites the information there with a TRAP
instruction. Now, start the program run:

M> r 1000@s
U> m 400@d=41

!ASYNC_STAT 615! Software breakpoint: 0001028@sp

M>

When the breakpoint is executed, the status message shown above is
displayed. At this time, the emulator restores the original contents of
the breakpoint location and disables the breakpoint in the breakpoint
list. You can reenable the breakpoint using the command bp -e
returntosup. Refer to the Reference manual for further information on
software breakpoints.

Advanced Example 3-29

Note In the 68302 emulator, all read accesses to the software breakpoint
TRAP vector location preceded by a supervisor data write will cause
the emulator to break into background. However, only the read
associated with the TRAP instruction will cause a proper transfer to
monitor. All other accesses will result in undefined execution.
Therefore, if software breakpoints are enabled, the TRAP vector should
not be accessed by any instruction other than a TRAP. Note that this
includes boot-up code that attempts to perform a checksum over the
vector table area. The status of the emulator may become undefined,
and the monitor program may become unusable.

Write to ROM You can also have the emulator break to the monitor upon attempts to
write to memory space mapped as ROM. Simply enter the command
bc -e rom. All current HP 64700 emulators will prevent the processor
from actually writing to memory mapped as emulation ROM; however,
they cannot prevent writes to target system RAM locations which are
mapped as ROM, even though the write to ROM break is enabled.

Prefetching and
Effect on Break

Conditions

Since the 68302 emulator prefetches instructions, it is possible that an
additional instruction may execute after the one which originally
caused the break condition. If this does occur, the additional
instruction was already in the processor’s instruction pipeline; the
emulator has no way of aborting the execution of that instruction.

Step, Register
Display, and
Memory Display
Example

Suppose you would like to set up a measurement that displays
information for each execution of the sample program’s LOOP routine.
You want to step through the routine so that each pass of the loop is
executed, then the processor’s registers are displayed, and the output
buffer area is displayed. You also want to label each display, and you
do not want the display to scroll.

3-30 Advanced Example

Note This example assumes that you are using an HP 2392A data terminal or
any HP data terminal which uses equivalent control escape sequences.
If you are not using such a terminal, you can modify the escape
sequences in the example to work with your terminal. Refer to the
reference manual for your data terminal.

Defining Macros To set up this measurement, you’ll define several different macros, then
assemble them into one macro which runs the entire measurement and
display sequence. The mac command allows you to assemble several
HP 64700 commands under one name and store them away for later
execution.

The first macro you define will set up initial conditions for the looping
sequence by inserting a breakpoint at the LOOP routine location, then
running the processor to that breakpoint by supplying a "command" to
the input area. Type:

M> mac runtoloop={bc -e bp;bp 1050@u;r
1000@s;m 400@d=41}

You must also define an equate which predefines a value used for
numbering iterations through the LOOP routine on the output display:

M> mac defcount={equ loopcount=0}

Using Echo to Send
Escape Sequences to

a Terminal

Before you display the first measurement, you want to clear the
terminal screen. Type:

M> mac clrscreen={echo \1b "H" \1b "J"}

This macro will echo the sequence <ESC>H<ESC>J to the terminal,
which will home the cursor and clear display memory.

You can echo any hex character between 0 and 255 decimal by using
\nn, where nn is the hex representation of that character. Any printing
ASCII characters can be echoed by enclosing them in single or double
quote marks.

Advanced Example 3-31

Using the Step
Command

The step command allows you to step the emulation processor through
individual instructions or groups of instructions.

Now, define a macro which steps the processor through the loop. Since
there are three instructions in the loop, use 3 as the step count for the s
(step) command. Type:

M> mac steploop={s 3 1050@u}

The step count is always the value immediately after the command. If
no other parameters are specified, the processor is stepped from the
current program counter value. In this case, you want to step from the
beginning of the loop routine, so supply that address as the second
parameter.

Note You need to be careful not to confuse the step count and the step
address; if you happen to supply an address as a step count, the
emulator will attempt to step through that many instructions.

Displaying Memory One of the things you want is a display of the output memory area. Set
this up as follows:

M> mac dispoutput={m -db 500..51f@d}

Now you can set up the full combination of displays. You want the
step display at the top of the screen, the register display in the middle,
and the output area display at the bottom. Set up the step display as
follows:

M> mac dispstep={echo \1b "H";echo "LOOP # "
loopcount;equ loopcount=loopcount+1;
steploop}

The dispstep macro homes the cursor, then echoes the words "LOOP #
" along with the current value of the loopcount (defined by defcount as
zero). Then, the loopcount is incremented, and you step through the
loop.

3-32 Advanced Example

Displaying Registers You can display processor registers in groups or individually. You
want to display the entire register set, so use the reg command without
any parameters.

To define the register display, type:

M> mac dispreg={echo \1b "&a8r0C";echo
"PROCESSOR REGISTERS";reg}

Here, the cursor is moved to row 8, column 0 of the display. The
words "PROCESSOR REGISTERS" are echoed on the display; then,
the register set is displayed.

To define the memory display, type:

M> mac dispmem={echo \1b "&a16r0C";echo
"OUTPUT PORT DISPLAY";dispoutput}

With this macro, the cursor is moved to row 16, column 0; the words
"OUTPUT PORT DISPLAY" are echoed to the display; then the
memory is displayed.

Now, you need a macro to assemble these into one. Type:

M> mac runit={runtoloop; defcount;
clrscreen;rep 17 {dispstep;dispreg; dispmem}}

The initial loop counter value is defined, then the screen is cleared.
Next, the step/register/memory display sequence is repeated 17 times
(which happens to be the number of bytes written by the loop).

Verify all of the macros by typing:

M> mac

 mac runtoloop={bc -e bp;bp 1050@u;r 1000@s;m 400@d=41}
 mac defcount={equ loopcount=0}
 mac clrscreen={echo \1b "H" \1b "J"}
 mac steploop={s 3 1050@u}
 mac dispoutput={m -db 500..51f@d}
 mac dispstep={echo \1b "H";echo "LOOP # " loopcount; equ loopcount=loopcount+1;
steploop}
 mac dispreg={echo \1b "&a8r0C";echo "PROCESSOR REGISTERS";reg}
 mac dispmem={echo \1b "&a16r0C";echo "OUTPUT PORT DISPLAY";dispoutput}
 mac runit={defcount;clrscreen;rep 17 {dispstep;dispreg;dispmem}}

Your macros should match the ones defined here (unless you needed to
modify the escape sequences to work with a terminal incompatible with
the HP 2392A).

To run the macros, type:

Advanced Example 3-33

M>runtoloop
 # bc -e bp ; bp 1050@u ; r 1000@s ; m
400@d=41
!ASYNC_STAT 615! Software breakpoint:
0001050@up
M>runit

As the macros execute, you can watch the processor instruction steps,
the changing register values, and the changing output memory region.

Searching
Memory for
Strings or
Numeric
Expressions

The HP 64700 emulator provides you with tools that allow you to
search memory for data strings or numeric expressions. For example,
you might want to know exactly where a string is located, so that you
can define an equate pointing to that string. To locate the position of
the string "THIS IS MESSAGE A" in the user data area of the sample
program, type:

M> ser 1000..2fff@u="THIS IS MESSAGE A"

 pattern match at address: 0002004@u

You can also find numeric expressions. For example, you might want
to find all of the TRAP instructions in the user code. Since a TRAP
instruction begins with 4e hex, you can search for that value:

M> ser -db 1000..105b@u=4e

 pattern match at address: 0001050@u
 pattern match at address: 0001058@u
 pattern match at address: 000105a@u

(Note: this search assumes that all of the breakpoints inserted during
the tutorials in this chapter were enabled with bp -e *.)

You can then use the memory display to narrow down the selection:

M> m 1050..105f@u

 0001050..000105f@u 4e 40 04 40 00 01 66 f8 4e 71 4e 4f 00 00 00 00

3-34 Advanced Example

Two TRAP instructions are here; one at location 1050 hex, the other at
location 105a hex. The instruction at location 1058 hex is actually a
NOP.

What Next? For more tutorial information:

On the analyzer, refer to the Analyzer User’s Guide.

On coordinated measurements using the CMB, refer to the
CMB User’s Guide.

For reference information, with examples showing command context,
refer to the Reference manual.

Advanced Example 3-35

Notes

3-36 Advanced Example

4

Configuring the Emulator

This chapter shows how you can configure the HP 64746 MC68302
emulator for your particular measurement needs.

Emulation
Commands

Emulator commands fall into several groups. To fully understand the
emulator configuration, you need to understand the different command
groups and how they relate to the emulator configuration. See table
4-1 for the list of commands in each group while you read about these
groups.

Configuration
Commands

These commands are generally referred to as "configuration items," and
are used to configure the emulator. The emulator response to certain
processor actions can also be configured. These commands are
described in this chapter.

Commands Used to
Make a Measurement

Several of the emulator commands do not configure the emulator.
They either simply start an emulator program run or other
measurement, begin or halt an analyzer measurement, or allow you to
display the results of such measurements. Some of these commands
are used in the examples in chapters 2 and 3. The Terminal Interface
Reference contains detailed information about all of these commands.

Configuring the Emulator 4-1

Configuration Make a
Measurement

Coordinated
Measurements

Analyzer System

bc
cf

map

b
bp
cov
es
io
m
r

reg
rst
s
t
th
tl

bnct
cmb
cmbt

rx
tx
x

ta
tarm
tcf
tck
tcq
telif
tf
tg

tgout
tif

tinit
tlb
tp

tpat
tpq
trng
ts

tsck
tsq
tsto
xttd
xteq
xtgq
xtm
xtmo
xtsp
xtt
xttq
xtv

cim
cl
cp
dt

dump
echo
equ
help
init
lcd
load
mac
mo
po
pv
rep
ser
stty
sym
ver
w
xp

Table 4-1. Command Groups

4-2 Configuring the Emulator

Coordinated
Measurement

Commands

These commands determine how the emulator interacts with other
measurement instruments, such as external analyzers, or other HP
64700-Series emulators connected together by the coordinated
measurement bus (CMB). These commands are described in the CMB
User’s Guide and in the Terminal Interface Reference.

Analyzer Commands The analyzer configuration commands are those commands which
specify the type of measurement the analyzer is to make. Some of the
analyzer commands are described earlier in this manual. You can refer
to the Analyzer Terminal Interface User’s Guide and the Terminal
Interface Reference for more information.

System Commands The system commands are used to set the emulator data
communications protocol, load or dump contents of emulation
memory, and set up command macros. These commands are described
earlier in this manual and in the Terminal Interface Reference.

Displaying
MC68302
Configuration
Items

Use the cf command to configure the MC68302 emulator. To view the
current emulator configuration settings, enter:

M>cf
 cf ba=en
 cf trc_dma=dis
 cf bbk=0
 cf bfc=sp
 cf be=dis
 cf clk=int
 cf dbc=en
 cf dti=dis
 cf lfc=x
 cf mon=bg
 cf rrt=dis
 cf rssp=9
 cf swtp=0
 cf ti=dis
 cf im=nor
 cf int7=lev
 cf iack7=pb0
 cf pdw=16

Configuring the Emulator 4-3

 cf cs0_dtk=int
 cf cs1_dtk=ext
 cf cs2_dtk=ext
 cf cs3_dtk=ext

Using the Built-in
Help Facility

To display information about the cf command, enter:

M>help cf

 cf - display or set emulation configuration

 cf - display current settings for all config items
 cf <item> - display current setting for specified <item>
 cf <item>=<value> - set new <value> for specified <item>
 cf <item> <item>=<value> <item> - set and display can be combined

 help cf <item> - display long help for specified <item>

 --- VALID CONFIGURATION <item> NAMES ---
 ba - en/dis bus arbitration
 trc_dma - en/dis/tag emulation analysis of the bus arbitration cycles
 bbk - select memory block during background operation
 bfc - select function codes during background operation
 be - en/dis /BERR to/from target system
 clk - select int/ext clock source
 dbc - en/dis drive of background cycles to the target system
 dti - en/dis /DTACK interlock
 lfc - select function codes for file loading
 mon - selection of a foreground or background monitor
 rrt - en/dis restriction to real time runs
 rssp - set SSP when monitor is entered from emulation reset
 swtp - select trap for software breaks
 ti - en/dis of target system interrupts
 im - nor/ded mode of target system interrupts
 int7 - lev/edge mode of IRQ7 interrupt
 iack7 - pb0/iack7 iack7 pin is pb0 or iack 7
 pdw - 8/16 processor configuration for data bus width
 cs0_dtk - int/ext internal or external /DTACK for chip selects 0
 cs1_dtk - int/ext internal or external /DTACK for chip selects 1
 cs2_dtk - int/ext internal or external /DTACK for chip selects 2
 cs3_dtk - int/ext internal or external /DTACK for chip selects 3

Detailed information about each of these configuration items can be
obtained by specifying the name of the item. For example, to learn
about the ba item, type the following:

R>help cf ba

 Bus Arbitration configuration

4-4 Configuring the Emulator

 cf ba=en enable
 cf ba=dis disable

 When bus arbitration is enabled the /BR and /BGACK
 signals driven from the target system to the emulator
 will respond in the same manner as they would respond
 if the CPU were present.
 When bus arbitration is disabled the /BR signal
 driven from the target system will be ignored
 by the emulator. The emulator will not drive an
 active level on /BG and the address, data and control
 signals will not be placed in a tristate condition.

Bus Arbitration (cf ba) The ba (bus arbitration) configuration item defines how your emulator
responds to bus request signals from the target system.

M> cf ba=en

When bus arbitration is enabled, the /BR (bus request) and /BGACK
(bus grant acknowledge) signals from the target system are responded
to exactly as they would be if the target processor was present. In other
words, if the emulation processor receives a /BR from the target
system, it will respond by asserting /BG and will set the various
processor lines to tri-state at the end of the current cycle. The target
system should then assert /BGACK to complete acquisition of the
processor bus. /BR is then released by the target; /BG is negated by the
processor. When /BGACK is negated by the target, the emulation
processor restarts execution.

Note You cannot perform DMA (direct memory access) transfers between
your target system and emulation memory at any time; the 68302
emulator does not support such a feature. You may, however, do
accesses to the processor’s internal memory.

M> cf ba=dis

When you disable bus arbitration by entering the above command, the
emulator ignores the /BR and /BGACK signals from the target system.
The emulation processor will never drive the /BG line true; nor will it
place the address, data and control signals into the tri-state mode.

Enabling and disabling bus master arbitration can be useful to you in
isolating target system problems. For example, you may have a
situation where the processor never seems to execute any code. You

Configuring the Emulator 4-5

can disable bus arbitration using cf ba=dis to check and see if faulty
arbitration circuitry in your target system is contributing to the problem.

See also the section on cf trc_dma.

Background Block
(cf bbk)

The bbk (background block) configuration item allows you to specify
what memory address will be driven to the target system on address
lines A23-A16 during emulation background monitor accesses. These
lines will only be driven if you have configured the emulator to drive
upper addresses during background monitor operation using the cf
dbc=en option.

If you have set the emulator to use a foreground monitor using the cf
mon=fg..xxxxxx@f option, the bbk configuration option is still valid
because the emulation processor executes a few bus cycles in the
background monitor before the transition to the foreground monitor.

For example you might want your target system to see that accesses are
occurring in the range 05xxxx hexadecimal while the emulator is
operating in background. By typing

M> cf bbk=05

the emulator will drive the value 05 hex on the upper address lines
during every background monitor access.

You should use the address block configuration option to set up an
address which will not interfere with your target system circuitry, such
as memory management units or cache memory. Note that this is still
important even when using a foreground monitor, since the emulator
does spend a few cycles in the background monitor during the
transition to the foreground monitor.

Bus Error (cf be) The be (bus error) configuration item allows you to define how the
emulator will respond to a /BERR (low bus error) signal asserted by the
target system during an emulation memory cycle.

be=en connects the target system /BERR to the emulator /BERR signal
so that the emulation processor will terminate the current emulation
memory cycle and will begin executing your bus error handler if your
target system asserts the /BERR signal during an emulation memory
cycle.

4-6 Configuring the Emulator

Note You must interlock the target system /DTACK (data transfer
acknowledge) with the emulation system /DTACK using the cf dti=en
configuration option; otherwise, the emulator will not respond correctly
to the /BERR signal from the target system.

be=dis disconnects the emulator /BERR from the target.

Background
Function Codes (cf

bfc)

The bfc (background function codes) configuration option lets you
select the function code state that will be driven to your target system
during emulator background monitor cycles. These function codes will
only be driven to the target system if you set the cf dbc option to cf
dbc=en. If you have elected to use a foreground monitor with the cf
mon=fg option, this option is still valid because the emulator spends a
few cycles in the background before the transition to the foreground.

You can select one of four possible function code states to be driven to
the target system during background monitor cycles. These are:

M> cf bfc=sp

The function code for supervisor program cycles will be driven to the
target system. This is function code 110 binary (FC2-FC0,
respectively).

M> cf bfc=sd

The function code for supervisor data access cycles will be driven to
the target system. This is function code 101 binary (FC2-FC0,
respectively).

M> cf bfc=up

The function code for user program cycles will be driven to the target
system. This is function code 010 binary (FC2-FC0, respectively).

M> cf bfc=ud

The function code for user data access cycles will be driven to the
target system. This is function code 001 binary (FC2-FC0,
respectively).

The setting you choose for your situation is dependent on your
particular system. Generally, you want to choose a function code that

Configuring the Emulator 4-7

will not cause target system hardware such as memory management
units to behave in an unpredictable manner.

Clock Selection
(cf clk)

The clk (clock) option allows you to select either the external target
system clock or the emulator’s internal clock as the emulator clock
source.

M> cf clk=int

You can select the emulator’s internal 16 MHz oscillator using the
above command.

M> cf clk=ext

You can specify that the emulator use the emulator probe’s clock input
as the clock source. This clock must conform to the specifications for
the 68302 microprocessor. The maximum clock speed with the HP
64746 emulator is 16.67 MHz.

You should always select the external clock option when using the
emulator in-circuit to ensure that the emulator is properly synchronized
with your target system.

Note Executing the cf clk=int command (even if already using the internal
clock) will drive the emulator into the reset state and hold it in that state
(R> prompt).

4-8 Configuring the Emulator

Chip Selects
(cf cs[0-3]_dtk)

The MC68302 chip selects can be configured either to generate the
DTACK signal internally or to use an externally supplied DTACK.
The emulator looks at two things to decide which source of the
DTACK it should look for when a given chip select is active:

The chip select lines (programmed using registers BR0-BR3).
The source of DTACK for the chip select lines is determined
by the corresponding DTACK field bits (programmed using
OR0-OR3). The order in which you write these registers is
significant.

The emulator configuration (set using cf cs0_dtk through cf
cs3_dtk).

Note Be sure that the emulator configuration and the configuration of the
chip select lines are consistent. Remember that the order in which you
write the chip select registers BR0-BR3 and OR0-OR3 is significant.

If csx_dtk=int , an active signal on chip select x causes the /DTACK
signal to be driven to the target system and the emulator will not drive
/DTACK to the processor.

If csx_dtk=ext, an active signal on chip select x causes the /DTACK
signal to be driven to the processor. The source of this /DTACK signal
is determined by the /DTACK interlock configuration.

See also the section on /DTACK interlock in this chapter.

Drive Background
Cycles (cf dbc)

The dbc (drive background cycles) option allows you to select whether
or not the emulator will drive the target system bus on all background
monitor cycles.

If you have elected to use a foreground monitor with the cf mon=fg
command, emulator foreground monitor cycles will appear at the target
interface exactly as if they were bus cycles caused by any target system
program.

M> cf dbc=en

Configuring the Emulator 4-9

You can enable background cycle drive to the target system by entering
the above command. All of the emulation processor’s address, data
and control strobes are driven during background cycles.

The value driven on the upper 8 bits (A23-A16) of the address bus is
selected by the configuration command cf bbk=xx; the value driven on
the function code lines is selected by the configuration command cf
bfc=xx (see above for descriptions of these two configuration items).

Background write cycles will appear as read cycles to the target system
if the dbc option is enabled.

M> cf dbc=dis

If you specify the above command, background monitor cycles are not
driven to the target system. When you select this option, the emulator
will appear to the target system as if it is between bus cycles while it is
operating in the background monitor.

The dbc option is used to avoid target system interaction problems.
For example, your target system memory refresh scheme may depend
on the constant repetition of bus cycles, or you may be using a
watchdog timer (which resets the system after no bus cycles occur in a
specified time period). Using the dbc option will help avoid problems
in either case.

/DTACK Interlock
(cf dti)

The dti (/DTACK interlock) option allows you to specify the source of
the /DTACK (cycle termination) signal. /DTACK interlock applies
only to situations where the MC68302 does not provide an internal
/DTACK.

When /DTACK interlock is enabled (dti=en), the target system (if
there is one) is expected to provide a /DTACK signal. Accesses to
emulation memory will not be terminated until the target system
provides a /DTACK. If background cycles are being driven to the
target system, then the target system must provide a /DTACK signal to
terminate background memory cycles.

When /DTACK interlock is disabled (dti=dis), emulation memory and
background memory accesses are terminated by a /DTACK signal
generated by the emulator.

4-10 Configuring the Emulator

When the emulator is not operating in a target system, all externally
provided /DTACK cycles are terminated by an emulator-generated
/DTACK signal.

If a /BERR signal occurs during an emulation memory cycle when cf
be=en (bus error response enabled), then the cycle will be terminated
and the emulation processor will begin executing the bus error handler.

If you have enabled background monitor drive to the target system with
the cf dbc=en configuration option, and if /DTACK is interlocked (cf
dti=en), then the target system must provide a /DTACK signal as if it
were a normal user program access to emulation memory.

See also the section on chip selects in this chapter.

Note If you are not operating the emulator in-circuit, all emulation and
background monitor accesses are completed by the emulator generated
DTACK signal, regardless of the setting of the cf dti configuration
option.

PB0/IACK7
Configuration (cf

iack7)

When the PB0/IACK7 pin is used as an interrupt acknowledge line (cf
iack7=iack7), the emulator blocks emulator-generated level 7 interrupt
acknowledges to the target system.

When the PB0/IACK7 pin is used as a port B peripheral pin (cf
iack7=pb0), the emulator does not affect the pb0 line.

Interrupt Mode (cf im) In normal mode (cf im=nor), the interrupt inputs to the processor are
encoded on IPL2, IPL1, and IPL0.

In dedicated mode (cf im=ded), IPL2 becomes IRQ7, IPL1 becomes
IRQ6, and IPL0 becomes IRQ1. Use cf int7 to choose whether to
interrupt on a falling edge or on a low level.

Configuring the Emulator 4-11

IRQ7 Mode (cf int7) This configuration item only applies when cf im=ded.

In level mode (cf int7=lev), interrupt 7 will happen when IRQ7 is low.
In edge mode (cf int7=edge), a change from high to low on IRQ7
causes an interrupt 7.

Load Function Codes
(cf lfc)

The lfc (load function codes) configuration item determines how the
emulator will interact with the load command when loading your
program files.

R>help cf lfc

 Selection of function code for file loading

 cf lfc=x function codes unmapped
 cf lfc=s load file in supervisor space
 cf lfc=u load file in user space
 cf lfc=p load file in program space
 cf lfc=d load file in data space
 cf lfc=sp load file in supervisor program space
 cf lfc=sd load file in supervisor data space
 cf lfc=up load file in user program space
 cf lfc=ud load file in user data space

 Select the function code pattern that specifies
 the function code range that the ’load’ command
 uses to load files.
 This configuration must be used if 68302 function
 codes are part of the memory map.

Parameter Descriptions

cf lfc=x No function codes are mapped. This is the
default.

cf lfc=s This configures the emulator so that subsequent
load commands will address only terms
specified as supervisor space.

cf lfc=u This configures the emulator so that subsequent
load commands will address only terms
specified as user space.

cf lfc=p When you enter a load command, the file will
be loaded into memory ranges designated as
"program" space.

4-12 Configuring the Emulator

cf lfc=d When you enter a load command, the file will
be loaded into memory ranges designated as
"data" space.

cf lfc=sp When you enter a load command, the file will
be loaded into memory ranges designated as
"supervisor program" space.

cf lfc=sd When you enter a load command, the file will
be loaded into memory ranges designated as
"supervisor data" space.

cf lfc=up When you enter a load command, the file will
be loaded into memory ranges designated as
"user program" space.

cf lfc=ud When you enter a load command, the file will
be loaded into memory ranges designated as
"user data" space.

Monitor Selection
(cf mon)

The mon (monitor) configuration item allows you to choose between a
foreground monitor, which you must load into the emulator, or the
background monitor, which resides in the emulator.

The emulation monitor is the program that handles communication
between the emulation controller and the emulation processor. For
example, when you ask for a register display, the emulator execution
breaks out of the user program into the monitor, where 68302
instructions store the register contents in an array of memory locations.
When all register contents are stored, emulator execution returns to
your program.

The background monitor provided with the emulator offers the greatest
degree of transparency to your target system (that is, your target system
should generally be unaffected by monitor execution). However, in
some cases you may require an emulation monitor tailored to the
requirements of your system. In this case, you will need to use a
foreground monitor linked into your program modules. See chapter 5
of this manual for more information on foreground monitors.

M> cf mon=bg

Configuring the Emulator 4-13

The command above selects the use of the built-in background monitor.
A memory overlay is created and the background monitor is loaded
into that area. You can use the configuration items cf dbc, cf bbk, and
cf bfc to specify how the emulator will drive the target system during
background monitor execution.

Note When stepping through program execution and an interrupt occurs
while the emulator is executing in background, another step command
looks as though it causes the same instruction to execute. Actually, the
instruction does not execute because the interrupt occurs before the
instruction is executed.

M> cf mon=fg..XXXXXX@f

The command above selects the use of your foreground monitor, where

XXXXXX defines an hexadecimal address where the monitor
will be located. (Note: this will not load the monitor, it only
specifies its location). Choose the address as follows:
– If you are not using the HP 64170 memory board, the

address should be on a 2-kbyte boundary.
– If you are using the HP 64170 with 256-kbyte memory

modules, the address should be on a 2-kbyte boundary.
– If you are using the HP 64170 with 1-Mbyte memory

modules, the address should be on an 8-kbyte boundary.
 @f defines an optional function code specifier to further
qualify the monitor location. You may only use x (no
function code) or s (supervisor space). If you do not specify a
function code, the default is x.

Remember that you must assemble and link your foreground monitor
starting at the 2 kilobyte boundary specified in the command above. If
you specified a function code in the monitor location specifier, you
need to use the cf lfc=s or cf lfc=x command before loading the
monitor to ensure that it is loaded at the correct location.

4-14 Configuring the Emulator

Note If you intend to use a foreground monitor, the monitor must be loaded
before attempting to load any information into target system memory.

A memory mapper term is automatically created when you execute the
cf mon=fg command to reserve 2 kilobytes of memory space for the
monitor.

The memory map is reset any time cf mon=fg is entered. It is only
reset when the cf mon=bg command is entered if the emulator is not
already configured to use the background monitor.

Bus Width (cf pdw) When out of circuit, this configuration item sets the processor bus
width. The two possibilities are cf pdw=8 and cf pdw=16.

When in circuit, the target system BUSW pin overrides this
configuration item.

Restrict to Real-Time
(cf rrt)

The rrt (restrict to real-time) option lets you configure the emulator so
that commands which temporarily cause the emulator to break to the
monitor will be rejected by the emulator command interpreter.

M>help cf rrt

 Restrict to Real Time Runs

 cf rrt=en enable
 cf rrt=dis disable

 When enabled and while the emulator is running the user program, any
 command that requires a break to the monitor will be rejected except
 ’rst’, ’b’, ’r’ or ’s’.
 When disabled, commands that require a break to the monitor will
 always be accepted.

When you enable the "restrict to real-time" option with the command cf
rrt=en , you can restrict the emulator to accept only commands that
don’t cause temporary breaks to the monitor.

Only the following emulator run/stop commands will be accepted:

rst (Resets the emulation processor.)

b (Breaks processor to background monitor until you enter
another command.)

Configuring the Emulator 4-15

r (Runs the emulation processor from a given location.)

s (Steps the processor through a section of code, and returns to
monitor after each step.)

Commands which cause the emulator to temporarily break to the
monitor and return, such as reg, m (for target memory display), and
others, will be rejected by the emulator.

Caution POSSIBLE DAMAGE TO TARGET SYSTEM!

IF COMMANDS THAT STOP THE PROCESSOR WILL
DISRUPT TARGET SYSTEM OPERATION, READ THIS!

If your target system circuitry is dependent on constant execution of
program code, you should set this option to cf rrt=en . This will help
insure that target system damage doesn’t occur. However, remember
that you can still execute the rst, b and s commands. You should use
caution in executing these commands.

Also consider using cf dbc=en to drive the address, data, and control
strobes while the background monitor is executing.

When the "restrict to real-time" option is disabled, all commands,
regardless of whether or not they require a break to the emulation
monitor, are accepted by the emulator.

Supervisor Stack
Pointer on Reset (cf

rssp)

The rssp (register supervisor stack pointer) configuration item allows
you to specify a value to which the supervisor stack pointer will be set
upon the first transition from emulation reset into the emulation
monitor.

R> cf rssp=XXXXXXXX

Where XXXXXXXX is a 32-bit hexadecimal even address. The
supervisor stack pointer will be set to this value upon entry to the
emulation monitor after an emulation reset. This address should reside
in an otherwise unused emulation or target system RAM area.

4-16 Configuring the Emulator

Note We recommend that you use this method of configuring the supervisor
stack pointer. Without a stack pointer, the emulator is unable to make
the transition to the run state, step, or perform many other emulation
functions. However, using this option does not preclude you from
changing the stack pointer value or location within your program; it
just sets the initial conditions to allow a run to begin.

For example, to set the stack pointer to 000000ff0 hex, type:

R> cf rssp=00000ff0

Now, if you break the emulator to monitor using the b command, the
stack pointer will be modified to the value 00000ff0 hex.

Note A target system reset which occurs during background monitor
operation will not affect the supervisor stack pointer value.

Note When a foreground monitor is used, the reset value of the supervisor
stack pointer must be at least six bytes away from a guarded memory
area. If the reset value of SSP is not six bytes away from a guarded
area, a "Stack is in guarded memory" error will occur when you attempt
to run the program.

Software Breakpoint
Trap (cf swtp)

The swtp (software trap) configuration item allows you to specify
which of 16 software trap instructions implemented by the 68302
should be used when you insert a software breakpoint with the bp
command.

M> cf swtp=xx

Executing the above command with xx as one of the values 00 through
0f specifies the particular software trap instruction to be used for the
software breakpoints feature.

Configuring the Emulator 4-17

For example, suppose cf swtp=0f; when you define a software
breakpoint at some address, the opcode at that address is replaced by
the TRAP #0FH instruction.

When a TRAP #0FH instruction is executed, the emulator breaks into
the monitor. Since the system controller knows the locations of
defined software breakpoints, it can determine whether the TRAP
#0FH was generated by an enabled software breakpoint or a TRAP
#0FH instruction in the user program.

If the TRAP #0FH instruction was inserted as a software breakpoint,
the TRAP #0FH instruction is replaced by the original opcode. A
subsequent run or step command will execute from this address.

If the TRAP #0FH instruction is part of the user program, an
"undefined breakpoint" message is displayed. To continue program
execution, you must run or step from the user program’s TRAP #0FH
vector address.

When you change the value assigned to the swtp configuration item,
any software breakpoints currently defined with the bp command are
disabled (since the software trap instructions currently in memory may
differ from the new value you have specified).

Target System
Interrupts (cf ti)

The ti (target system interrupts) configuration item allows you to
specify whether or not the emulation processor responds to interrupts
generated by the target system.

M> cf ti=en

When you enable target system interrupts with the above command, all
target system interrupts generated when the processor is executing your
user program are recognized by the emulation processor.

If you are using the built-in background monitor, target system
interrupts are always ignored during background execution. If you are
using a foreground monitor, whether or not target system interrupts are
recognized during monitor execution is dependent on the
implementation of your monitor. See chapter 5 for further information
on foreground monitors.

M> cf ti=dis

You can disable the recognition of all target system interrupts by the
emulator by entering the above command.

4-18 Configuring the Emulator

DMA Tracing
(cf trc_dma)

When DMA tracing is enabled (cf trc_dma=en), the analyzer will
capture analyzer states during external or internal DMA bus cycles.
The analyzer state can be generated only if the processor states are
actually being driven on the external DMA cycle.

When DMA tracing is disabled (cf trc_dma=dis), the analyzer will not
capture any external or internal DMA, bus cycles.

When DMA tagging is enabled (cf trc_dma=tag), a single emulation
analyzer state will be generated each time an external bus arbitration
sequence occurs.

Where to Find
More Information

Due to the architecture of the HP 64700-Series Emulators, there are a
wide variety of items that affect how the emulator interacts with your
system, controller, and other measuring instruments. If you need more
information, refer to the following:

Analyzer Terminal Interface User’s Guide

This manual describes how to use the analyzer in the Terminal
Interface.

CMB User’s Guide

This manual describes how to use the Coordinated
Measurement Bus.

Terminal Interface Reference

This manual contains detailed descriptions and syntax
diagrams for all HP 64700-Series Terminal Interface
commands. Also included are error messages and other
pertinent information.

The built-in help messages for each configuration item

Configuring the Emulator 4-19

Configuring Other
Features

Some other emulator features that you can configure (not using the cf
command) include:

Memory
Access and Display Modes
Break Conditions
Software Breakpoints
Coordinated Measurement Bus Operation

4-20 Configuring the Emulator

5

Concepts

Topics Covered MC68302 Vector Table

Access and Display Modes

Target System Memory Access

Break Conditions

Macros

Coordinated Measurement Bus Operation

Software Products

In-Circuit Emulation

Using the Analyzer

Equates

Replacing Firmware in the Emulator

Foreground and Background Monitors

Concepts 5-1

MC68302 Vector
Table

All MC68302 emulation systems require a vector table to process
system conditions, such as divide by zero or trace traps. You need to
provide such a vector table to manage these conditions. Exception
processing attempted without a vector table will cause unpredictable
results. Most of the examples shown in this manual were created
without a vector table to simplify the examples.

The MC68302 vector table is different from the M68000 vector table in
that it includes the processor’s BAR and SCR registers at $0F2 and
$0F4.

Refer to the Motorola documentation for the MC68302 microprocessor
for additional information about vector tables and exception processing.

Access and
Display Modes

When using the HP 64746 emulator, you can set the access mode to
bytes, or words. The display mode can be set to mnemonics, bytes,
words, or long words (4 bytes).

To display the current access and display modes, enter:

M>mo
 mo -ab -dm

If the result shown above appears, the access mode is set to "bytes" and
the display mode is set to "mnemonics."

To change the access mode to word format, enter:

M>mo -aw -dm

To change the display mode to byte format, you can either use the mo
command to modify the current setting, or execute a "memory display"
command in the form:

M>m -db 300

The display mode is then automatically set to "byte." All successive
commands will be displayed in byte format.

5-2 Concepts

You should always do accesses in byte mode when the processor is
running in 8 bit mode (set by cf pdw=8 when out of circuit, or by the
BUSW pin when in circuit).

To display additional information about the mode command, enter:
M>help mo

Target System
Memory Access

Target memory accesses by the emulator are accomplished by causing
the monitor to read target memory, then placing the data so that it is
accessible by the emulation controller. When the emulator is executing
in the monitor, the target system is "locked out." Because of this,
special hardware is used to access the target system at the appropriate
time.

The choice of an access mode is provided by the emulator to
accommodate memory devices which must be accessed using a
particular bus size. The emulator access mode to target system
memory can be bytes, or words. The default access mode is bytes. The
emulator will access target system memory using whatever mode is
currently set.

When using word access mode, if the target system bus requires a
smaller bus width, an error message will be displayed. However, since
target system bus widths for a particular memory range cannot be
determined until the bus cycle occurs, target system memory write
operations may disrupt the monitor, causing the emulator to be put in
an unknown state. If this happens, resetting the emulator (using the rst
command) should restore the monitor.

Because of the restraints listed here, Hewlett-Packard recommends that
you use byte access mode unless a larger size is needed. If you need to
write to devices that require a larger bus size, use word mode.
However, performance increases are hardly noticeable when using a
larger access mode.

Concepts 5-3

Break Conditions If break conditions are enabled, when a specified break condition
occurs the emulator will break to the monitor. If break conditions are
disabled, when a specified break condition occurs the emulator will not
break into the monitor. The bc command is used to set break
conditions.

Possible break conditions include:

bp (software breakpoints)
rom (write to ROM)
bnct (BNC trigger signal)
cmbt (CMB trigger signal)
trig1 (trig1 signal)
trig2 (trig2 signal)

Some examples follow. The Terminal Interface Reference contains
additional information about break conditions.

To display current break conditions, enter:

M>bc

The bc command lets you configure the emulator’s response to various
emulation system and external events.

Software Breakpoints The bp command allows you to insert software traps in your code
which will cause a break to the emulation monitor when encountered
during program execution. To enable the insertion and use of software
breakpoints by the bp command, enter:

M>bc -e bp

Note that any breakpoints that existed before you entered this command
are not reenabled. You must do that explicitly by using the bp
(breakpoint) command.

To disable use of software breakpoints, enter:

M>bc -d bp

Any breakpoints which previously existed in memory are disabled, but
are not removed from the breakpoint table.

5-4 Concepts

Note Software breakpoints should not be set, cleared, enabled, or disabled
while the emulator is running user code. If any of these commands are
entered while the emulator is running user code, and the emulator is
executing code in the area where the breakpoint is being modified,
program execution may be unreliable.

Break on Trigger
Signals

Each HP 64700-Series emulator provides four different trigger signals
which allow you to selectively start or stop measurements depending
on the signal state. These are the bnct (rear panel BNC input), cmbt
(CMB trigger input), and trig1 and trig2 signals (provided by the
analyzer).

You can configure the emulator to break to the monitor upon receipt of
any of these signals. For example, to have the emulator break to
monitor upon receipt of the trig1 signal from the analyzer, enter:

M>bc -e trig1

(In this situation, you must also configure the analyzer to drive the
trig1 signal upon finding its trigger by entering tgout trig1).

To enable the breakpoint and BNC trigger conditions, enter:

M>bc -e bp bnct

To disable the BNC trigger break condition, enter:

M>bc -d bnct

To display additional information about break conditions, refer to the
Terminal Interface Reference. You can also enter:

M>help bc

Concepts 5-5

Macros To create your own macros, follow this syntax:

mac <macro_name>={command 1;command 2}

You can use more than two commands in a macro definition. Refer to
the HP 64700-Series Emulators Terminal Interface Reference for
details about the mac command.

For example, with a program already loaded in memory, you could
define a macro to:

Display the MC68302 emulator status.
Display registers.
Start the emulator running the program.
Trace program activity.
Halt the trace.
Display the trace list.
Observe the trace status.

All of these functions would be performed automatically when you
execute the macro. For example (enter the brackets also):

M>mac go302={es;t;r;reg;th;tl;ts}

While the emulator is executing in the monitor (the prompt is M>), to
execute the macro, enter:

M>go302

Observe the commands execute as you defined them in the macro.

To display additional information about the mac command, enter:

M>help mac

5-6 Concepts

Coordinated
Measurement Bus
Operation

The Coordinated Measurement Bus (CMB) connects multiple
emulators together and allows you to make synchronous measurements
between those emulators. You can determine whether the MC68302
emulator will participate in a coordinated measurement using the cmb
command. For example:

To display the current setting of the CMB, enter:

M>cmb

To enable CMB interaction, enter:

M>cmb -e

To disable CMB interaction, enter:

M>cmb -d

The cmb command does not affect operation of the HP 64700
emulation analyzer cross-triggering. Refer to the CMB User’s Guide
for additional information about operating the emulator with the CMB
and making measurements.

To display additional information you can enter:

M>help cmb

Concepts 5-7

Software Products

Assembler/Linker HP 64870 HP 9000-based M68000 Assembler/Linker/Librarian . (This
assembler generates code for the M68000, M68008, M68010,
MC68302, M68332, and M68020 processors. Also available for Apollo
computers as B1423.)

C Cross Compiler The HP 64902 68000 C Cross Compiler can be used to compile
high-level C programs, and operates on the HP 9000 Series 300 and
Series 800 host computers. (Also available for Apollo computers as
B1421.)

HP Branch Validator The HP Branch Validator operates on the HP 9000 Series 300 host
computer, and can be used to analyze and quantify the level of testing
on your product.

User Interfaces At least two other interfaces are available for using the HP 64746
emulator, depending on what type of host computer you are using.

Softkey Interface

The HP 64746 MC68302 Softkey Interface allows you to operate your
HP 64746 emulator using a softkey-driven interface on the HP 9000
Series 300 or Sun SPARCsystem host computer. You can also
configure your HP 64700-Series emulator into a measurement system
to make coordinated measurements with HP 64000-UX emulators.

PC Interface

The HP 64746 MC68302 PC Interface allows you to operate your HP
64746 emulator on a personal computer using a menu-driven interface.
The PC Interface allows you to transfer (download) absolute files from
a PC into the emulator in standalone mode.

5-8 Concepts

Protecting the
Emulator Probe

The HP 64746 MC68302 emulator can be operated in-circuit
(connected to a target system) or out-of-circuit.

Note The emulator probe requires a PGA (pin grid array) socket.
Connecting the emulator is much easier if you use a PGA socket in
your target system.

If you would like to use a PQFP package, see chapter 1.

Pin Protector The emulation probe has a pin protector that prevents damage to the
probe when inserting and removing the probe from the target system
microprocessor socket. Do not use the probe without a pin protector
installed. If the probe is installed on a densely populated circuit board,
there may not be enough room to accommodate the plastic shoulders of
the probe socket. If this occurs, another pin protector may be stacked
onto the existing pin protector.

To order additional pin protectors, contact your local HP Sales and
Service Office listed in the Support Services manual. You may also
use a socket such as the McKenzie Technology
PGA-100M-003B1-1324 for a pin protector.

Conductive Pin Guard HP emulators are shipped with a conductive plastic or conductive foam
pin guard over the target system probe pins. This guard is designed to
prevent impact damage to the pins and should be left in place while you
are not using the emulator. However, when you do use the emulator,
either for normal emulation tasks, or to run performance verification on
the emulator, you must remove this conductive pin guard to avoid
intermittent failures due to the probe lines being shorted together.

Concepts 5-9

Caution POSSIBLE DAMAGE TO EMULATOR PROBE!

Always use the pin protectors and guards as described above. Failure
to use these devices may result in damage to the probe pins. Replacing
the probe is expensive. If damage occurs, the entire probe and cable
assembly must be replaced because of the wiring technology employed.

Using the Analyzer Your MC68302 emulator can use either an emulation analyzer (Model
64704A), and or an external analyzer (Model 64703A).

The emulation analyzer captures emulator bus cycle information
synchronously with the processor clock signal. When a trace is taken, a
collection of the captured states is stored in the analyzer.

The external analyzer captures activity on signals that are external to
the emulator. This typically includes signals in a target system. The
external analyzer provides 16 external trace signals and two external
clock inputs. The external analyzer can be used as an extension to the
emulation analyzer. In addition, it can be used independently as a state
analyzer, or as a timing analyzer. However, to use the external
analyzer as a timing analyzer, you must have either a personal
computer running the HP 64746 MC68302 PC Interface or an HP 9000
Series 300 host computer running the HP 64746 Softkey Interface.

For additional information about operating the analyzer terminal
interface, refer to the Analyzer Terminal Interface User’s Guide.

Analyzer Clock Speed To display the current analyzer clock speed setting, enter:

M>tck
 tck -r L -u -s S

You can configure the analyzer to operate at various clock speeds using
the following commands:

M>tck -s VF (for speeds greater than 20 MHz)

5-10 Concepts

M>tck -s F (for speeds greater than 16 MHz but less than 20MHz)

M>tck -s S (for speeds less than 16 MHz)

For the MC68302, the analyzer speed should always be tck -s S.

If you try to execute one of these commands, and the system displays
an error message indicating the clock speed is not available with the
current count qualifier, enter:

M>tcq none

Then try executing the command again.

The analyzer clock runs at one-fourth of the processor clock speed.
Thus if the processor is running at 16 MHz, the analyzer will run at 4
MHz. The analyzer state counter cannot be used at analyzer clock
speeds greater than 20 MHz. The analyzer time counter is turned off
by default because it cannot be used at clock speeds greater than 16
MHz.

If you want to use the analyzer counter, you can:

Cut the clock speed in half.
Slow the bus clock using an external clock.

Concepts 5-11

Equates Equates are logical expressions. The equ command allows you to
equate arithmetic values to names that you choose. Names can be used
in other commands when referencing the value. Equates are commonly
used to define trigger patterns for the emulation or external analyzers
(as trace qualifiers). Equates for common status values are predefined.

For the MC68302 emulator, the following equates are defined when the
emulator is powered up.

M>equ
Equates
 equ bclr=0xxxxxxxxxxxxxx0xy
 equ berr=0xxxxxxxxx0xxxxxxy
 equ bgd=0xxxxxxxy
 equ byte=0xxxxxxx0y
 equ cs0=0xxxxxxxxxx0xxxxxy
 equ cs1=0xxxxxxxxxxx0xxxxy
 equ cs2=0xxxxxxxxxxxx0xxxy
 equ cs3=0xxxxxxxxxxxxx0xxy
 equ data=0xxx01xxxy
 equ ded_int1=0xx0xxxxxxxxxxxxxy
 equ ded_int6=0x0xxxxxxxxxxxxxxy
 equ ded_int7=0xxxxxxxxxxxxxxxy
 equ dma=0x1xxxxxxy
 equ ext_cyc=0xxxxx0xxy
 equ ext_dma=0xxxxxxxxxxxxxxx0y
 equ fgd=1xxxxxxxy
 equ grd=0xxxxxxx0xxxxxxxxy
 equ int_cyc=0xxxxx1xxy
 equ int_dma=0xxxxxxxxxxxxxxx1y
 equ intack=0xx111xxxy
 equ nor_int1=110xxxxxxxxxxxxxy
 equ nor_int2=101xxxxxxxxxxxxxy
 equ nor_int3=100xxxxxxxxxxxxxy
 equ nor_int4=11xxxxxxxxxxxxxy
 equ nor_int5=10xxxxxxxxxxxxxy
 equ nor_int6=1xxxxxxxxxxxxxy
 equ nor_int7=0xxxxxxxxxxxxxy
 equ nor_no_int=111xxxxxxxxxxxxy
 equ not_dma=0x0xxxxxxy
 equ pb10_h=0xxxx1xxxxxxxxxxxy
 equ pb10_l=0xxxx0xxxxxxxxxxxy
 equ pb11_h=0xxx1xxxxxxxxxxxxy
 equ pb11_l=0xxx0xxxxxxxxxxxxy
 equ pb8_h=0xxxxxx1xxxxxxxxxy
 equ pb8_l=0xxxxxx0xxxxxxxxxy
 equ pb9_h=0xxxxx1xxxxxxxxxxy
 equ pb9_l=0xxxxx0xxxxxxxxxxy
 equ prog=0xxx10xxxy
 equ read=0xxxxxx1xy
 equ rom=0xxxxxxxx0xxxxxxxy
 equ sup=0xx1xxxxxy
 equ supdata=0xx101xxxy
 equ supprog=0xx110xxxy
 equ user=0xx0xxxxxy
 equ userdata=0xx001xxxy
 equ userprog=0xx010xxxy

5-12 Concepts

 equ word=0xxxxxxx1y
 equ write=0xxxxxx0xy

You can add, observe, delete and modify logical expressions using the
equ command. How to use the equ command is described in the
following paragraphs.

These logical expressions are used to define values for the emulation
analyzer label "stat" (for 8-bit equates) and "extra" (for 16-bit equates).
For example, the following two equations are equal:

stat=data

stat=0xxxxxxxxxxxx0xy

The "y" indicates the number is binary.

Note Use the label stat for 8-bit equates. Use the label extra for 16-bit
equates.

Note The 16-bit equates and extra label will not exist on 48-channel
analyzers. If you upgraded an M68000 emulator to the MC68302
emulator, you have a 48-channel analyzer.

You can see a summary of which equates apply go with "stat" and
which go with "extra" by typing:

help proc

You can define other expressions using the equ command. Some
examples of using the equ command are shown in the following
paragraphs.

To define a logical expression for running from the start of a program
located at address 0, enter:

M>equ start=0

Concepts 5-13

Verify that the start equate was added to the list of equates.

M>equ *

You could put the analyzer in complex mode, then use the "start"
equate in defining a trigger pattern for the emulation analyzer. For
example:

M>tcf -c

M>tpat p1 addr=start

This command defines pattern 1 to be the address equal to the value of
"start." You could then have the analyzer trigger on p1 using the
command tg p1.

In "easy" mode, you could just specify tg addr=start.

Note You should not delete any of the predefined equates unless you know
they are not going to be needed. Each time you cycle power on the
emulator, or execute an init command, any predefined equates that
were deleted will be automatically defined again.

To delete a defined equate (for example, "start"), enter:

M>equ -d start

To verify that the "start" equate was deleted from the list of equates,
enter:

M>equ

For additional information about equates and using the emulation or
external analyzer, refer to the Terminal Interface Reference (for
command descriptions) and the Analyzer Terminal Interface User’s
Guide.

5-14 Concepts

Symbols Symbols, like equates, are logical expressions. If you use a symbol in
place of an equate for an address, the symbol name will be displayed in
the address column of the trace list.

For example, you can define a symbol "EntryPoint":

M>sym EntryPoint=1050

You can display the values of all currently defined symbols by typing:

M>sym
 sym EntryPoint=0001050

To display a trace list with symbols, use the -e option:

M>tl -e

Any access to location 1050 hex will now be shown with the address
"EntryPoint" rather than "1050."

Concepts 5-15

Emulator Firmware This emulator uses flash ROMs, which can be reprogrammed from an
appropriately equipped personal computer. Instructions on how to
reprogram the ROMs will accompany the firmware update.

If you need to determine what version of firmware is loaded into the
emulator, type:

M>ver

 Copyright (c) Hewlett-Packard Co. 1987
All Rights Reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under copyright laws.

 HP64700 Series Emulation System
 Version: A.02.02 24Jan90

 HP64746A (PPN: 64746A) Motorola 68302 emulator
 Version: A.02.02 05Jul90
 Speed: 16.67 MHz
 Memory: 126 KBytes

 HP64740 Emulation Analyzer with External State/Timing Analyzer
 Version: A.02.00 29Jun89

5-16 Concepts

Monitor
Description

The monitor program is the interface between the emulation system
controller and the target system. The emulation system controller
contains a microprocessor which accepts and executes emulation,
system, and analysis commands. The monitor operates in the
background emulator mode.

The monitor program allows emulation commands to access target
system resources. Access to the target system can only be
accomplished through the emulation processor. For example, if you
enter a command to modify target system memory, the monitor
program will execute instructions that write the new value into target
system memory.

When the emulation system controller recognizes that an emulation
command needs to access target system resources, it writes a command
code to the communications area, then breaks into the monitor. The
monitor reads the command code (and any associated parameters), then
executes the appropriate MC68302 instructions to access target system
resources.

By using and modifying the optional foreground monitor, you can
provide an emulation environment which is customized to the needs of
a particular target system.

Comparison of
Foreground and

Background Monitors

An emulation monitor is required to service certain requests for
information about the target system and the emulation processor. For
example, when you request a register display, the emulation processor
is forced into the monitor. The monitor code has the processor dump
its registers into certain emulation memory locations, which can then
be read by the emulator system controller without further interference.

Background Monitors

A background monitor is an emulation monitor which overlays the
processor’s memory space with a separate memory region. Entry into
the monitor is normally accomplished by jamming the monitor
addresses onto the processor’s address bus during an INT7 vector fetch.

Usually, a background monitor will be easier to work with in starting a
new design. The monitor is immediately available upon powerup, and
you don’t have to worry about linking in the monitor code or allocating

Concepts 5-17

space for the monitor to use the emulator. No assumptions are made
about the target system environment; therefore, you can test and debug
hardware before any target system code has been written. All of the
processor’s address space is available for target system use, since the
monitor memory is overlaid on processor memory, rather than
subtracted from processor memory. Processor resources such as
interrupts are not taken by the background monitor.

However, all background monitors sacrifice some level of support for
the target system. For example, when the emulation processor enters
the monitor code to display registers, it will not respond to target
system interrupt requests. This may pose serious problems for complex
applications that rely on the microprocessor for real-time, non-intrusive
support. Also, the background monitor code resides in emulator
firmware and can’t be modified to handle special conditions. Likewise,
entrance to the background monitor pulls on the MC68302 fr2 pin and
thus stops processor DMA and processor-internal DRAM refresh.

Foreground Monitors

A foreground monitor may be required for more complex debugging
and integration applications. A foreground monitor is a block of code
that runs in the same memory space as your program. You link this
monitor with your code so that when control is passed to your program,
the emulator can still service real-time events, such as interrupts or
watchdog timers. For most multitasking, interrupt intensive
applications, you will need to use a foreground monitor.

You can tailor the foreground monitor to meet your needs, such as
servicing target system interrupts. However, the foreground monitor
does use part of the processor’s address space, which may cause
problems in some target systems. You must also properly configure
the emulator to use a foreground monitor (see chapter 4); and, you
must link the monitor with your other program code. Note that the first
part of the monitor should not be modified.

5-18 Concepts

Using a Foreground
Monitor

You will need to follow several steps to use a foreground monitor:

Modify the ORG statement to piont to the base address where
the monitor will be loaded. Load the monitor at any 2-Kbyte
boundary (except 0, which is the vector table location). If you
are using an HP 64170 memory board with 1-Mbyte SIMMs,
use an 8-Kbyte boundary.

Assemble and link the monitor to your program.

Configure the emulator with cf mon=fg..XXXXX. This will
create a memory map entry for the monitor.

Set up a stack pointer for the monitor using cf rssp.

Load the monitor and program into the emulator.

If you will be using the s command to single step through your
code, you must modify the TRACE exception vector at 24 hex
to point to the TRACE_ENTRY routine in the monitor.

Concepts 5-19

Sample Foreground
Monitor Listing

This sample foreground monitor program is written to be used with the
HP 64870 or B1423A 68000 Cross Assembler. This is the same
monitor program used with the HP 64742 68000 Emulator.

The sample foreground monitor program is just a place to start; you
will need to modify it to meet your special needs.

SECT 14

;;;
;
; EMULATION FOREGROUND MONITOR FOR 64746 EMULATOR.
; THIS MONITOR VERSION IS USED WITH THE MICROTEC LANGUAGE
; SYSTEM.
;
;;;
;
; @(mktid) Product_Numb Product_Description..................... A.00.00 DDMMMYY
HH:MM:SS status....
;
;;;
; THE EMULATION FOREGROUND MONITOR IS THE VEHICLE BY WHICH THE
; FOLLOWING EMULATOR FUNCTIONS ARE EFFECTED IF THE 64746
; EMULATOR IS CONFIGURED TO OPERATE WITH A FOREGROUND MONITOR:
; READ/WRITE TARGET SYSTEM MEMORY
; DISPLAY/MODIFY 68302 REGISTERS
; EXECUTE USER PROGRAM
; BREAK AWAY FROM USER PROGRAM
;
; THE 64746 FOREGROUND MONITOR MUST START ON A 2K BYTE BOUNDARY
; OTHER THAN 0H. THE DESIRED 2K BYTE BOUNDARY SHOULD BE SPECIFIED
; IN THE "ORG" STATEMENT AT THE START OF THE MONITOR. THE SAME
; 24 BIT ADDRESS MUST BE SPECIFIED IN THE EMULATOR CONFIGURATION
; QUESTION "cf mon=fg..XXXXXX". IN THIS MANNER, COMMUNICATION
; BETWEEN THE FOREGROUND MONITOR AND THE EMULATOR OPERATING SOFTWARE
; CAN BE ESTABLISHED.
;
; THE FIRST FEW SECTIONS OF THE FOREGROUND MONITOR CANNOT BE
; MODIFIED AND THEIR LOCATION WITH RESPECT TO THE START OF THE
; FOREGROUND MONITOR CANNOT BE ALTERED. THESE INCLUDE THE FOLLOWING:
; MONITOR VECTOR TABLE
; MONITOR VARIABLES
; KEY MONITOR ENTRY ROUTINES
;
; THE MONITOR VECTOR TABLE IS USED EXCLUSIVELY BY THE EMULATOR
; TO TRANSITION INTO THE FOREGROUND MONITOR FROM RESET, FROM
; SOFTWARE BREAKPOINTS, OR FROM EMULATION GENERATED BREAKS LIKE
; THE BREAK COMMAND OR A WRITE TO ROM. THE MONITOR VECTOR IS NOT
; A REPLACEMENT FOR THE TARGET SYSTEM’S EXCEPTION VECTOR TABLE.
;
; THE MONITOR VARIABLES SECTION CONTAINS FOUR PARTS.
; THE FIRST PART IS A GROUP OF VARIABLES THAT ACT AS THE
; COMMUNICATIONS PATH BETWEEN THE FOREGROUND MONITOR AND THE
; EMULATOR CONTROLLER. THE SECOND SECTION HOLDS A COPY OF THE
; 68302 REGISTERS WHICH ARE STORED WHEN ENTERING THE FOREGROUND MONITOR.
; THE THIRD SECTION IS THE XFER_BUF WHICH IS A BUFFER TO HOLD DATA
; WHICH IS TRANSFERRED BETWEEN THE EMULATOR CONTROLLER AND TARGET
; SYSTEM MEMORY. THE BK_STACK IS A STACK USED BY THE MONITOR
; WHEN IT IS IN A BACKGROUND STATE FOR A FEW BUS CYCLES UPON
; TRANSITION TO THE FOREGROUND MONITOR. THE STAT(1:4) VARIABLES

5-20 Concepts

; ARE A HOLDING AREA FOR THE EXTRA STACK INFORMATION THAT OCCURS
; WHEN A BUS ERROR OR ADDRESS ERROR HANDLER IS DIRECTED INTO THE MONITOR.
;
; THE KEY MONITOR ENTRY ROUTINES ARE BK_RESET_ENTRY, INT_ENTRY,
; SW_ENTRY, INMON_INT_ENTRY, AND INMON_TRACE_ENTRY. THESE ROUTINES INVOLVE
; A BRIEF STOP IN THE BACKGROUND MONITOR AND THEREFORE CANNOT BE
; MODIFIED OR MOVED WITH RESPECT TO THE START OF THE MONITOR.
;
;

; TO PERFORM SINGLE STEPPING WITH THE FOREGROUND MONITOR, THE
; "TRACE" VECTOR IN THE EXCEPTION VECTOR TABLE MUST POINT TO
; "TRACE_ENTRY" IN THE FOREGROUND MONITOR.
;
;;

; ORG XXXXX ; START MONITOR ON 2K BOUNDARY OTHER THAN ZERO

MONITOR_START

;;;;;;;;;;;;;;;;;;;;;;;;
; MONITOR VECTOR TABLE ;
;;;;;;;;;;;;;;;;;;;;;;;;

; ---RESET---
 DC.L BK_STACK
 DC.L 0258H

; --- MARK SPACE ---
 DC.L 0
 DC.L 0
 DC.L 0
 DC.L 0
 DC.L 0
 DC.L 0
 DC.L 0
 DC.L 02B2H ;TRACE ENTRY AFTER STEP
 DC.L 0
 DC.L 0

MONITOR_REGISTERS

CURRENT_PC
PCH DC.W 0
PCL DC.W 0
PSTAT DC.W 0
 DC.W 0 ;ALIGNMENT SPACER
PREGS
PD0 DC.L 0
PD1 DC.L 0
PD2 DC.L 0
PD3 DC.L 0
PD4 DC.L 0
PD5 DC.L 0
PD6 DC.L 0
PD7 DC.L 0
PA0 DC.L 0
PA1 DC.L 0
PA2 DC.L 0
PA3 DC.L 0
PA4 DC.L 0

Concepts 5-21

PA5 DC.L 0
PA6 DC.L 0
PA7 DC.L 0
PUSP DC.L 0

; END OF MONITOR_REGISTERS ;

; --- INTERRUPT MONITOR ENTRY ---
 DC.L 266H

;;;
; TRAP VECTORS (SOFTWARE BREAKPOINT VECTOR) ;
;;;
 DC.L 029EH
 DC.L 029EH
 DC.L 029EH
 DC.L 029EH
 DC.L 029EH
 DC.L 029EH
 DC.L 029EH
 DC.L 029EH
 DC.L 029EH
 DC.L 029EH
 DC.L 029EH
 DC.L 029EH
 DC.L 029EH
 DC.L 029EH
 DC.L 029EH
 DC.L 029EH

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; END OF MONITOR VECTOR TABLE ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;
; MONITOR VARIABLES ;
;;;;;;;;;;;;;;;;;;;;;

STADJVAR DC.W 0 ;ALIGNMENT SPACER
 DC.W 0 ;ALIGNMENT SPACER

CMD_CONTROL DC.W 3 ;VARIABLE TO TELL WHO IS IN CONTROL MONITOR OR EMULATOR
 ;’1’ INDICATES COMMAND PENDING
 ;’2’ INDICATES COMMAND IN PROGRESS
 ;’3’ INDICATES COMMAND COMPLETE
CMD_RESULT DC.W 0 ;’0’ INDICATES NO PROBLEM
 ;’1’ INDICATES ILLEGAL SR ON ENTRY
CMD_TYPE DC.W 0 ;’1’ INDICATES ’ARE-YOU-THERE’
 ;’2’ INDICATES MONITOR EXIT
 ;’4’ INDICATES TARGET MEMORY WRITES
 ;’8’ INDICATES TARGET MEMORY READS
TARG_START DC.L 0 ;START ADDRESS TO LOAD EMULATION MEMORY
TARG_BYTES DC.W 0 ;NUMBER OF BYTES TO TRANSFER
 ;IF BIT 15 HIGH, DO WORD TRANSFERS
STEP_ENTRY DC.W 0
LAST_ENTRY DC.W 0
STEP_MODE DC.W 0

5-22 Concepts

; --- MARK SPACE ---
 DC.W 0
 DC.L 0
 DC.L 0
 DC.L 0
 DC.L 0
 DC.L 0
 DC.L 0
 DC.L 0
 DC.L 0
 DC.L 0
 DC.L 0
 DC.L 0
 DC.L 0
 DC.L 0
 DC.L 0
 DC.L 0
 DC.L 0
 DC.L 0
 DC.L 0

XFR_BUF DS.W 136
 DS.W 16
BK_STACK

STAT1 DC.W 0
STAT2 DC.W 0
STAT3 DC.W 0
STAT4 DC.W 0

;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; END OF MONITOR VARIABLES ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; KEY MONITOR ENTRY ROUTINES ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

BK_RESET_ENTRY
 MOVE.W #01H,0D2H
 DC.W 04EF9H
 DC.L BK_RESET_PROCESS
 NOP

INT_ENTRY
 MOVE.B #008H,0F4H *CLEAR SCR IPA BIT
 MOVE.L D0,PD0
 MOVE.B STEP_ENTRY+1,D0 *POLL IOB REGISTER, BG CONTROL BIT
 AND.B #0FH,D0 *CHECK IF SWBK ENTRY
 BTST #03H,D0
 BEQ NO_SWBK_ENTRY
 MOVE.L PD0,D0
 ADDQ.L #6,A7 *FIX THE SYSTEM STACK POINTER
 DC.W 04EF9H
 DC.L SW_ENTRY-MONITOR_START
NO_SWBK_ENTRY
 MOVE.L PD0,D0
 MOVE.W #02H,0D2H
 DC.W 04EF9H
 DC.L MON_ENT

Concepts 5-23

 NOP

SW_ENTRY
 NOP
 NOP
 NOP
 NOP
 MOVE.L D0,PD0
 MOVE.W 0D4H,D0
 BEQ NO_STEP_FIX
 MOVE.L PD0,D0
 ADDQ.L #6,A7 *FIX THE SYSTEM STACK POINTER
NO_STEP_FIX
 MOVE.L PD0,D0
 MOVE.W #03H,0D2H
 DC.W 04EF9H
 DC.L MON_ENT
 NOP

INMON_TRACE_ENTRY
 ADDQ.L #6,A7 ;ADJUST STACK POINTER TO IGNORE STACKING FOR TRACE
 MOVE.W #0BH,0D0H ;INDICATES A STEP HAS OCCURRED.
 JMP SW_ENTRY

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; END OF KEY MONITOR ENTRY ROUTINES ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;
;;;;;;;; MONITOR OPERATING ROUTINES ;;;;;;;;;;;;;;;;
;;

; SOFTWARE IN MONITOR AND OPERATING VERIFICATION
; THIS ROUTINE IS USED TO TELL THE EMULATOR CONTROLLER
; IF THE EMULATOR IS OPERATING IN THE MONITOR AND IS
; READY TO ACCEPT COMMANDS.

SW_IN_MON
 MOVE.W #3,CMD_CONTROL
 BRA MON_LOOP

; MONITOR EXIT ROUTINE
; THE MONITOR EXIT ROUTINE PERFORMS THE TRANSITION FROM FOREGROUND
; MONITOR OPERATION TO EXECUTION OF THE USERS PROGRAM

START_EXIT
 MOVE SR,D0 ;CHECK THAT 68302 IS IN
 BTST #13,D0 ;SUPERVISOR MODE
 BNE EXIT_OK
 MOVE.W #0FH,LAST_ENTRY ;FLAG THE PROBLEM
 BRA MON_LOOP ;GO BACK TO MONITOR LOOP
EXIT_OK
 MOVE.L PUSP,A0
 MOVE.L A0,USP ;RESTORE USER STACK POINTER
 MOVEM.L PREGS,D0-D7/A0-A7 ;RESTORE REGISTERS
 MOVE PCL,-(SP) ;PUSH PCL
 MOVE PCH,-(SP) ;PUSH PCH
 MOVE PSTAT,-(SP) ;PUSH STATUS
 MOVE #3,CMD_CONTROL
 RTE ;RETURN TO USERS PROGRAM

5-24 Concepts

; END OF THE MONITOR EXIT ROUTINE

; WRITE TARGET MEMORY ACCESS ROUTINE
; THIS ROUTINE WRITES DATA TO TARGET SYSTEM MEMORY.
; THE DATA WAS LOADED INTO THE ’XFER_BUF’ BY THE EMULATION CONTROLLER.
; THE STARTING ADDRESS OF THE WRITE PROCESS WAS LOADED INTO
; ’TARG_START’ BY THE EMULATION CONTROLLER. THE LOWER BYTE OF THE
; ’TARG_BYTES’ VARIABLE CONTAINS THE NUMBER OF BYTES OF DATA WHICH
; WILL BE WRITTEN TO TARGET MEMORY. IF BIT 11 OF THE ’TARG_BYTE’
; FIELD IS SET THEN THE ACCESS MODE TO TARGET MEMORY IS WORDS. IF
; BIT 11 IS NOT SET THEN THE ACCESS MODE IS BYTES. THE ’TARG_BYTE’
; VARIABLE WAS SET BY THE EMULATION CONTROLLER.
;

TARG_MEM_WR
 MOVE.L TARG_START,A0
 MOVE.L #XFR_BUF,A1
 MOVE.W TARG_BYTES,A2
 CMP.W #00800H,A2
 BPL TARG_WORD_WR

TARG_BYTE_WR
 AND.W #007FFH,TARG_BYTES
T_BYTE_LP_WR
 MOVE.B (A1)+,D0
 MOVE.B D0,(A0)+
 NOP
 SUB.W #1,TARG_BYTES
 BEQ TARG_WR_ACC_DONE
 BRA T_BYTE_LP_WR

TARG_WORD_WR
 AND.W #007FFH,TARG_BYTES
T_WORD_LP_WR
 MOVE.W (A1)+,A2
 MOVE.W A2,(A0)+
 SUB.W #2,TARG_BYTES
 BEQ TARG_WR_ACC_DONE
 BRA T_WORD_LP_WR
TARG_WR_ACC_DONE
 MOVE.W #3,CMD_CONTROL
 BRA MON_LOOP

; END OF WRITE TARGET MEMORY ACCESS ROUTINE

; READ TARGET MEMORY ACCESS ROUTINE
; THIS ROUTINE READS DATA FROM TARGET SYSTEM MEMORY.
; THE DATA IS STORED IN THE ’XFER_BUF’.
; THE STARTING ADDRESS OF THE READ PROCESS WAS LOADED INTO
; ’TARG_START’ BY THE EMULATION CONTROLLER. THE LOWER BYTE OF THE
; ’TARG_BYTES’ VARIABLE CONTAINS THE NUMBER OF BYTES OF DATA WHICH
; WILL BE READ FROM TARGET MEMORY. IF BIT 11 OF THE ’TARG_BYTE’
; FIELD IS SET THEN THE ACCESS MODE TO TARGET MEMORY IS WORDS. IF
; BIT 11 IS NOT SET THEN THE ACCESS MODE IS BYTES. THE ’TARG_BYTE’
; VARIABLE WAS SET BY THE EMULATION CONTROLLER.
;

TARG_MEM_RD

Concepts 5-25

 MOVE.L TARG_START,A0
 MOVE.L #XFR_BUF,A1
 MOVE.W TARG_BYTES,A2
 CMP.W #00800H,A2
 BPL TARG_WORD_RD

; PROCESS IN BYTES

TARG_BYTE_RD
 AND.W #007FFH,TARG_BYTES
T_BYTE_LP_RD
 MOVE.B (A0)+,D0
 MOVE.B D0,(A1)+
 SUB.W #1,TARG_BYTES
 BEQ TARG_RD_ACC_DONE
 BRA T_BYTE_LP_RD

;; PROCESS IN WORDS

TARG_WORD_RD
 AND.W #007FFH,TARG_BYTES
T_WORD_LP_RD
 MOVE.W (A0)+,D0
 MOVE.W D0,(A1)+
 SUB.W #2,TARG_BYTES
 BEQ TARG_RD_ACC_DONE
 BRA T_WORD_LP_RD

TARG_RD_ACC_DONE
 MOVE.W #3,CMD_CONTROL
 BRA MON_LOOP

; END OF READ TARGET MEMORY ACCESS ROUTINE

;;;;;;;;;;;;;;;;;;;
;; MONITOR ENTRY ;;
;;;;;;;;;;;;;;;;;;;

MON_ENT
 ;LOOK FOR BREAK WHILE
 ;ALREADY IN THE MONITOR
 CMP.L #MONITOR_START,2(A7) ;STACK ADDRESS LESS THAN
 BMI BREAK_OK ;MONITOR_START
 CMP.L #MONITOR_END,2(A7) ;STACK ADDRESS GREATER THAN
 BPL BREAK_OK ;MONITOR_END
 RTE ;ALREADY IN THE MONITOR

BREAK_OK
 MOVE (SP)+,PSTAT ;SAVE STATUS REGISTER PRIOR TO ENTRY
 MOVE (SP)+,PCH ;SAVE PC PRIOR TO ENTRY
 MOVE (SP)+,PCL ;STACK IS AS IT WAS BEFORE
INT_JUMP_ENTRY
 MOVEM.L D0-D7/A0-A7,PREGS ;SAVE REGISTERS
 MOVE SR,D0 ;VERIFY SUPERVISOR MODE OPERATION
 BTST #13,D0
 BNE MODE_OK
 MOVE.W #10H,LAST_ENTRY ;FLAG THE PROBLEM
 BRA MON_LOOP ;GO TO MONITOR LOOP

MODE_OK
 MOVE.L USP,A0 ;SAVE USER STACK POINTER

5-26 Concepts

 MOVE.L A0,PUSP
 MOVE.W #3,CMD_CONTROL
; SET STATUS REGISTER AS IT WAS
; PRIOR TO MONITOR ENTRY
; MOVE.W PSTAT,D0
; OR #0F8FFH,D0
; MOVE.W SR,D1
; AND D1,D0
; MOVE.W D0,SR
 JMP MON_LOOP

; MONITOR CONTROL LOOP
; THE FOREGROUND MONITOR WAITS IN THIS LOOP UNTIL THE EMULATOR
; CONTROLLER REQUESTS AN ACTION BY SETTING CMD_CONTROL TO 1
;

MON_LOOP
 MOVE.W CMD_CONTROL,D0
 CMP.W #1,D0 ;COMMAND HAS BEEN REQUESTED
 BEQ COMMAND_REQUEST
 BRA MON_LOOP

; COMMAND_REQUEST
; WHEN A COMMAND HAS BEEN REQUESTED, THIS ROUTINE DETERMINES THE
; TYPE OF COMMAND REQUESTED AND INITIATES THE APPROPRIATE ACTION

COMMAND_REQUEST
 MOVE.W #0,CMD_RESULT ;CLEAR OUT RESULT VARIABLE
 MOVE.W #2,CMD_CONTROL ;SET TO INDICATE COMMAND PROCESSING STARTED
 MOVE.W CMD_TYPE,D0
 CMP.W #1,D0 ;IN MONITOR OPERATION VERIFICATION
 BEQ SW_IN_MON
 CMP.W #2,D0 ;START MONITOR EXIT PROCESS
 BEQ START_EXIT
 CMP.W #4,D0 ;PERFORM TARGET MEMORY ACCESS WRITES
 BEQ TARG_MEM_WR
 CMP.W #8,D0 ;PERFORM TARGET MEMORY ACCESS READS
 BEQ TARG_MEM_RD
 BRA ILL_CTRL_REQ

;;;
; COMMAND ERROR LOOP
ILL_CTRL_REQ
 BRA ILL_CTRL_REQ
;;;

; FG_RESET_ENTRY IS THE ENTRY ROUTINE THAT A RESET: INITITAL PC
; IN THE USERS EXCEPTION VECTOR TABLE SHOULD POINT TO IF THE
; USER WANTS THE EMULATOR TO VECTOR TO THE FOREGROUND MONITOR
; FROM TARGET SYSTEM RESETS.
; THIS ROUTINE CLEARS OUT THE REGISTERS D7-D0 AND A6-A0.
; THE STATUS REGISTER IS SET TO 2700H.
; THE PC IS SET TO JUMP_ENTRY
; THE A7 REGISTER, THE SUPERVISOR STACK POINTER AND THE USER
; STACK POINTER ARE SET TO THE VALUE OF THE SSP AS THE EMULATOR
; IS RELEASED FROM TARGET RESET.

FG_RESET_ENTRY
 MOVE.W #01H,LAST_ENTRY ;SET ENTRY CAUSE
 MOVE.L #JUMP_ENTRY,CURRENT_PC ;SET COPY OF PC
 MOVE.W #2700H,PSTAT ;SET STATUS
 CLR.L PD0 ;CLEAR REGISTERS

Concepts 5-27

 CLR.L PD1
 CLR.L PD2
 CLR.L PD3
 CLR.L PD4
 CLR.L PD5
 CLR.L PD6
 CLR.L PD7
 CLR.L PA0
 CLR.L PA1
 CLR.L PA2
 CLR.L PA3
 CLR.L PA4
 CLR.L PA5
 CLR.L PA6
 MOVE.L A7,PA7 ;SET EMULATOR COPY OF SSP
 MOVE.L A7,USP ;SET USP TO SAME AS SSP
 MOVE.L A7,PUSP ;SET EMULATOR COPY OF USP
 BRA MON_LOOP

BERR_ENTRY
 MOVE.W #04H,LAST_ENTRY
 BRA SPECIAL_ENTRY
ADDR_ERR_ENTRY
 MOVE.W #05H,LAST_ENTRY
 BRA SPECIAL_ENTRY
ILL_INST_ENTRY
 MOVE.W #06H,LAST_ENTRY
 BRA MON_ENT
ZERO_D_ENTRY
 MOVE.W #07H,LAST_ENTRY
 BRA MON_ENT
CHK_I_ENTRY
 MOVE.W #08H,LAST_ENTRY
 BRA MON_ENT
TRAPV_ENTRY
 MOVE.W #09H,LAST_ENTRY
 BRA MON_ENT
PRIV_V_ENTRY
 MOVE.W #0AH,LAST_ENTRY
 BRA MON_ENT
TRACE_ENTRY
 MOVE.W #0BH,STEP_ENTRY
 MOVE.W #0BH,LAST_ENTRY
 BRA MON_ENT
EMUL_1010_ENTRY
 MOVE.W #0CH,LAST_ENTRY
 BRA MON_ENT
EMUL_1111_ENTRY
 MOVE.W #0DH,LAST_ENTRY
 BRA MON_ENT
JUMP_ENTRY
 MOVE.W #0EH,LAST_ENTRY
 BRA INT_JUMP_ENTRY

BK_RESET_PROCESS
 MOVE.W #0,CMD_RESULT
 MOVE.W #2700H,PSTAT ;SET STATUS
 BRA MON_LOOP

; SPECIAL ENTRY IS EXECUTED WHEN THE MONITOR IS ENTERED FROM A BERR
; OR AN ADDRESS ERROR. INFORMATION STACKED AS A RESULT OF THE
; BERR OR ADDRESS ERROR IS SAVED IN STAT1, STAT2, STAT3 AND STAT4.

5-28 Concepts

SPECIAL_ENTRY
 MOVE (SP)+,STAT1 ;PULL & SAVE EXCEPTION STATUS.
 MOVE (SP)+,STAT2 ;PULL & SAVE ACCESS ADDRESS HIGH.
 MOVE (SP)+,STAT3 ;PULL & SAVE ACCESS ADDRESS LOW.
 MOVE (SP)+,STAT4 ;PULL & SAVE INSTRUCTION REGISTER.
 BRA MON_ENT

MONITOR_END

Concepts 5-29

Notes

5-30 Concepts

A

Syntax for the MC68302 Emulator

The Terminal Interface Reference describes the syntax for commands
which are common to all HP 64700-series emulators.

This chapter contains information about syntax items that are specific
to the MC68302 emulator. These include:

ADDRESS

CONFIGURATION ITEMS

MODE

REGISTERS

ANALYZER INPUTS

Syntax for the MC68302 Emulator A-1

Notes

A-2 Syntax for the MC68302 Emulator

ADDRESS

Summary Address specifications in run and memory modification

Syntax

Description The MC68302 emulator provides the capability to specify function
code information in addition to the numerical address. This allows you
to specify separate regions of memory for user and supervisor program
and data space.

All address specifications are of the form:

<EXPR>@FC

Expressions are defined in the Terminal Interface Reference. For
address specifications, any number specified in the expression defaults
to hexadecimal unless specifically identified as another base.

The @ symbol is required if you specify a function code. Otherwise, it
must be omitted.

ADDRESS A-3

The function code (FC) may be any one of the following:

Function Code Description

u User

s Supervisor

d Data

p Program

ud User Data

up User Program

sd Supervisor Data

sp Supervisor Program

x don’t care

A-4 ADDRESS

Examples These are some examples of correct address specifications, both with
and without function codes, shown in the context of the m (memory)
command:

M>m 400..40f@sd
 0000400..000040f@sd 08 08 08 01 08 00 0c 01 00 00 08 01 00 08 01 01

M>m 200..20f@d
 0000200..000020f@d 00 00 00 00 04 08 0c 01 08 00 00 00 08 00 0d 01

M>m 400..40f@up
 0000400..000040f@up 08 00 08 00 09 00 00 01 00 00 0c 00 09 08 01 00

M>m 000..00f
 0000000..000000f 00 00 80 00 11 08 88 09 08 00 08 00 0c 00 0d 00

In the last memory display, we can specify part of the range 0 through
1ffh without specifying a function code, because no other range
numerically overlaps this range.

Related Commands Refer to the <EXPR> command in the Terminal Interface Reference
for additional information about specifying expressions.

ADDRESS A-5

Notes

A-6 ADDRESS

CONFIG_ITEMS

Summary Emulator configuration items

Syntax cf <item name>=<value>

Description The MC68302 emulator has several dedicated configuration items
which allow you to specify the emulator interaction with the target
system and the rest of the emulation system. These items are:

ba Enables or disables bus arbitration.

bbk Use with dbc to define A23-A16 during
background monitor execution.

be Enables or disables emulation processor
response to target system /BERR signal.

bfc Defines function code values during
background monitor execution.

clk Selects the internal or external emulation clock.

cs0_dtk-cs3_dtk Selects internal or external /DTACK for chip
select.

dbc Enables or disables driving signals to the target
system during background monitor execution.

dti Enables or disables /DTACK interlock.

iack7 Selects configuration for IACK7 pin.

im Selects normal (IPL) or dedicated (IRQ)
interrupt mode.

int7 When im=ded, selects level mode or edge mode
for IRQ7 interrupts.

CONFIGURATION ITEMS A-7

lfc Selects a function code for file loading.

mon This selects a foreground or background
monitor.

pdw Selects 8/16-bit processor data bus width.

rrt Restricts the emulator to real-time runs.

rssp Sets SSP value upon reset.

swtp Selects which trap instruction to use.

ti Enables or disables target system interrupts.

trc_dma Enables or disables tracing of DMA cycles, or
enables generation of an analyzer state for each
bus arbitration sequence.

Explanations of selected configuration items are included in chapter 4.

Examples To display the current configuration item settings, enter:

M>cf

To select an external clock source, enter:

M>cf clk=ext

Related Commands help cf

Refer to the cf command in the Terminal Interface Reference. Also,
refer to chapter 4 of this manual for information about each
configuration item.

A-8 CONFIGURATION ITEMS

MODE

Summary Memory access/display modes

Syntax

Description Each emulator allows you to access memory in several different ways
for memory display and modification. The size of the access is set
using the mo command. There are two types of mode settings.

Display Mode

Display mode defines how the emulator displays or modifies memory.
The MC68302 emulator allows the following access modes:

l long word (four bytes)

w word (two bytes) display mode

b byte display mode

m mnemonic display mode

The mnemonic display mode allows you to display memory
disassembled into processor instruction mnemonics using the m
command. If you specify mnemonic display mode and then perform a
memory modification, search for a value, or execute any other
command that references the display mode, the command will behave
as if "byte" display mode were in effect.

Access Mode

Access mode defines how the emulator accesses target system memory.
The MC68302 emulator allows the following access modes:

w word (double byte) access mode

b byte access mode

MODE A-9

The emulation monitor uses the access mode to determine whether to
use byte or word instructions during target system memory accesses,
such as for memory modification or display. (It does not affect how
that data is displayed on screen. That is controlled by the display
mode.)

Defaults At powerup or after init , the default access and display modes are set to
w (word).

Examples These are some examples of the different display modes using the
memory display command:

R>m -dm 1000..101f@u
 0001000@u init MOVEA.L 0002000,A3
 0001004@u process_comm CMPI.B #041,D0
 0001008@u - BEQ.W 0001018
 000100c@u - CMPI.B #042,D0
 0001010@u - BEQ.W 0001026
 0001014@u - BRA.W 0001034
 0001018@u - MOVE.B #011,D0
 000101c@u - MOVEA.L #000002004,A0

R>m -db 1000..101f@u
 0001000..000100f@u 26 78 20 00 0c 00 00 41 67 00 00 0e 0c 00 00 42
 0001010..000101f@u 67 00 00 14 60 00 00 1e 10 3c 00 11 20 7c 00 00

R>m -dw 1000..101f@u
 0001000..000100f@u 2678 2000 0c00 0041 6700 000e 0c00 0042
 0001010..000101f@u 6700 0014 6000 001e 103c 0011 207c 0000

R>m -dl 1000..101f@u
 0001000..000100f@u 26782000 0c000041 6700000e 0c000042
 0001010..000101f@u 67000014 6000001e 103c0011 207c0000

Related Commands help mo

Refer to the mo command in the Terminal Interface Reference for
additional information about using the "mode" command.

A-10 MODE

REGISTERS

Summary MC68302 register designators

Description The reg command allows you to display individual processor registers
or groups of registers defined by a <REG_CLASS> identifier.

The MC68302 emulator supports the display and modification of these
register classes:

* This represents all of the MC68302 registers.

302 This class represents various MC68302 (BAR,
SCR, CR) and serial interface registers.

idma This represents the IDMA controller registers.

interrupt This class represents the interrupt controller
registers.

pio These represent the port data and control
registers.

chip_sel These represent the chip select registers.

tmr These represent the timer registers.

scc These represent all of the serial communication
controllers.

sccn These represent the registers for each serial
communication controller.

Examples To display the basic set of MC68302 registers, enter:

REGISTERS A-11

M>reg
 reg pc=00000000 st=2700 d0=00000000 d1=00000000 d2=00000000 d3=00000000
 reg d4=00000000 d5=00000000 d6=00000000 d7=00000000 a0=00000000 a1=00000000
 reg a2=00000000 a3=00000000 a4=00000000 a5=00000000 a6=00000000 a7=00000009
 reg usp=00000000 ssp=00000009 bar=bfff scr=00000f00

To display the MC68302 interrupt registers, enter:
M>reg interrupt
 reg gimr=0000 ipr=0000 imr=0000 isr=0000

Related Commands help reg

Type help reg to see a list of the registers you may display.

Refer to the reg command in the Terminal Interface Reference for
additional information about displaying and modifying registers.

A-12 REGISTERS

ANALYZER
INPUTS

Analyzer Input Line
(address field)

Signal Name Description

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
AD8
AD9
AD10
AD11
AD12
AD13
AD14
AD15
AD16
AD17
AD18
AD19
AD20
AD21
AD22
AD23

A(0)
A(1)
A(2)
A(3)
A(4)
A(5)
A(6)
A(7)
A(8)
A(9)
A(10)
A(11)
A(12)
A(13)
A(14)
A(15)
A(16)
A(17)
A(18)
A(19)
A(20)
A(21)
A(22)
A(23)

Address Lines 1-23

ANALYZER INPUTS A-13

Analyzer Input Line
(status field)

Signal Name
or Equate Name

Description

AD24 stat(0)
AD25 stat(1)
AD26 stat(2)
AD27 stat(3)
AD28 stat(4)
AD29 stat(5)
AD30 stat(6)
AD31 stat(7)

AD32
AD33
AD34
AD35
AD36
AD37
AD38
AD39
AD40
AD41
AD42
AD43
AD44
AD45
AD46
AD47

byte/word
read/write
in_cyc/ext_cyc
FC0
FC1
FC2
dma
bgd/fgd

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15

6800 (8-bit) mode
Processor read/write
Processor IAC
Function code bit 0
Function code bit 1
Function code bit 2
Internal or external DMA (low)
Background/foreground monitor. Becomes analyzer
qualifier FG_H.

Processor data lines 0-15

A-14 ANALYZER INPUTS

Analyzer Input Line
(extra field)

Equate Name Description

AD48
AD49
AD50
AD51
AD52
AD53
AD54
AD55
AD56
AD57
AD58
AD59
AD60
AD61
AD62
AD63

int_dma/ext_dma
bclr
cs3
cs2
cs1
cd0
berr
grd
rom

pb8_l/pb8_h
pb9_l/pb9_h

pb10_l/pb10_h
pb11_l/pb11_h

-

These bits are available only on 64-channel analyzers.
They are not available on 48-channel analyzers.

Note that these inputs are accessed via the "extra" label.

External DMA_L
Processor BCLR_L
Processor CS3
Processor CS2
Processor CS1
Processor CS0
Processor BERR_L
GRDAC_L
ROMAC_L
Processor PB8
Processor PB9
Processor PB10
Processor PB11
Target IPL0
Target IPL1
Target IPL2

ANALYZER INPUTS A-15

Notes

A-16 ANALYZER INPUTS

B

Messages

These messages may appear while using the HP 64746 MC68302
emulator. Messages are listed in numerical order.

Error messages numbered 200 and above are common to all HP
64700-Series emulators and are listed in the Terminal Interface
Reference.

1 I/O port access not supported

See Terminal Interface Reference.

2 Invalid word access for odd address

Word accesses are allowed only for even addresses.

3 Invalid word access for odd number of bytes

Specify an even number of bytes for a word access, or use
byte access instead (use mo -ab).

20 Attempt to change foreground monitor map term

See Terminal Interface Reference.

21 Insufficient emulation memory

You need to map a smaller area of emulation memory.

40 Restricted to real time runs

See Terminal Interface Reference.

61 Emulator is in the reset state

See Terminal Interface Reference.

Messages B-1

62 Reset encountered while in monitor

The emulator encountered a target system reset while
running in the motor.

80 Stack pointer is odd

See Terminal Interface Reference.

81 Stack is in guarded memory

See Terminal Interface Reference.

82 Stack is in target ROM

See Terminal Interface Reference.

83 Stack is in emulation ROM

See Terminal Interface Reference.

84 Program counter is odd

See Terminal Interface Reference.

107 Monitor failure; bus error

See Terminal Interface Reference.

140 Supervisor stack pointer not initialized

Use reg ssp=value to set the SSP. If you type cf
rssp=value, the SSP will be re-initialized automatically
whenever the emulator is reset.

141 Foreground monitor operating in USER mode

The foreground monitor must be run in supervisor mode.

142 Supervisor stack in guarded memory at xxxxxxxx

You need to map the supervisor stack to emulator or target
RAM. Remember to place the supervisor stack where it
will not collide with the vector table.

143 Supervisor stack is in ROM at xxxxxxxx

B-2 Messages

You need to map the supervisor stack to emulator or target
RAM. Remember to place the supervisor stack where it
will not collide with the vector table.

145 BERR occurred during background operation

One possible cause is that you are not driving background
cycles to the target system, and a watchdog timer went off.

146 BERR during background access to supervisor stack

A BERR occurred while the monitor was looking at the
stack to determine the PC value (this happens just after
breaking into the monitor).

147 RESET during background operation

The target was reset while the emulator was operating in
background mode.

148 cf int7 must be lev if cf im=nor

The target system interrupt mode is set to normal, so there
is no such thing as IRQ7. Either set cf int7=lev or cf
im=ded.

149 register modify would cause chip select address decode
conflict

The chip select register modify you just attempted would
cause two or more chip selects to be enabled and
overlapping.

150 bar register must not map internal memory to 0

If internal memory were mapped to 0, the vector table
along with the BAR and SCR registers would be
overwritten.

Messages B-3

151 HP 64170A has missing memory module:
bank <bank number>

Make sure the HP 64170 memory board has at least one
memory module installed in bank 0. It is not required for
bank 1 to have a memory module. This must be corrected
for the emulator to function correctly.

An example showing an empty bank (bank 1), viewed
with the ver command, is:

HP 64746 (PPN: 64746A) Motorola 68302 Emulator
 Version: A.00.03 24Jun91
 Control: HP64170A Memory Control Board
 Memory: 0 KBytes
 Bank 0: HP64171A/C 256 KByte Memory Module
 Bank 1: Empty
 Bank 2: Empty
 Bank 3: Empty

152 HP 64170A has mixed memory modules:
banks 0, <bank number>

The memory modules loaded on the memory board can be
256 Kbyte modules or 1 Mbyte modules, but not a
combination of both types. Mixing the two types of
memory modules is not allowed. This must be corrected
for the emulator to function correctly.

An example showing an invalid mixing of modules,
viewed with the ver command, is:

HP 64746 (PPN: 64746A) Motorola 68302 Emulator
 Version: A.00.03 24Jun91
 Control: HP64170A Memory Control Board
 Memory: 0 KBytes
 Bank 0: HP64171A/C 256 KByte Memory Module
 Bank 1: HP64171B/D 1024 KByte Memory Module
 Bank 2: Empty
 Bank 3: Empty

153 HP 64170A has unrecognized memory module:
bank <bank number>

The HP 64170 memory board has detected an unusable
memory module. Verify that a memory module is installed
in the bank in question. If the correct memory module is
installed, or if there is no memory module installed, a

B-4 Messages

hardware fault may be present. This must be corrected for
the emulator to function properly.

An example showing an unrecognized memory module,
viewed with the ver command, is:

HP 64746 (PPN: 64746A) Motorola 68302 Emulator
 Version: A.00.03 24Jun91
 Control: HP64170A Memory Control Board
 Memory: 0 KBytes
 Bank 0: HP64171A/C 256 KByte Memory Module
 Bank 1: Unrecognized Memory Module
 Bank 2: Empty
 Bank 3: Empty

154 Unable to find emulation memory

The emulator cannot determine which emulation memory
board is installed. This is a hardware fault, and must be
corrected for the emulator to function correctly. Contact
your HP Representative.

Error messages numbered 200 and above are common to all HP
64700-Series emulators and are listed in the Terminal Interface
Reference.

Messages B-5

Notes

B-6 Messages

C

MC68302 Specifications and Characteristics

General
Specifications

This chapter lists the specifications and characteristics for the
HP 64746 MC68302 emulator/analyzer with external analyzer, and for
the HP 64746 emulator probe.

Processor
Compatibility

The HP 64746 is compatible with the Motorola 68302 microprocessor
with clock speeds up to 20.0 MHz, and any other microprocessors that
comply with the specifications of the Motorola 68302. The HP 64746
supports the MC68302 in either 8 or 16 bit mode. CPU disable mode
is not supported.

Electrical

Maximum Clock Speed

The maximum external clock speed is at least 20 MHz for the HP
64746 emulator. No wait states are required for emulation or target
system memory. (The internal clock speed is 16 MHz.)

Power

The emulator draws an additional 40 milliamps from the target system
when operating at 16.67 MHz.

Inputs/Outputs

The emulator loads the processor lines with an additional 50
picofarads, except for the clockout signal, which is 20 picofarads.

MC68302 Specifications and Characteristics C-1

Physical

Emulator Dimensions

325 mm width x 125 mm height x 354 mm depth (12.8 in. x 4.9 in. x
14 in.).

Note Dimensions are for general information only. If dimensions are
required for building special enclosures, contact your HP sales
representative.

Emulator Weight

HP 64746: 6.7 kg (14.7 lb). With external analyzer: 7.2 kg (15.9 lb).
(Any component used in suspending the emulator must be rated for 65
lb capacity.)

Cable Length

Emulator to target system, approximately 600 mm (2 feet).

Environmental

Temperature

Operating, 0 to +40 C (+32 F to +131 F); nonoperating, -40 C to +70 C
(-40 F to +158 F).

Altitude

Operating, 4600 m (15 000 ft); nonoperating, 15 300 m (50 000 ft).

Relative Humidity

15% to 95%.

C-2 MC68302 Specifications and Characteristics

Regulatory
Compliance

Safety Approvals

Self-certified to UL 1244, IEC 348, CSA 556B.

BNC (labeled
TRIGGER IN/OUT)

Output Drive

Driven active high only = +2.4 V into a 50 ohm load.

Input

Input signal must drive approximately 4 mA at 2 V. Edge sensitive.
Minimum pulse width is approximately 25 ns.

Communications

Host Port
25-pin female type "D" subminiature connector.
RS-232-C DCE or DTE to 38.4 kbaud.
RS-422 DCE only to 460.8 kbaud.

Auxiliary Port
25-pin female type "D" subminiature connector.
RS-232-C DCE only to 19.2 kbaud.

CMB Port
9-pin female type "D" subminiature connect.

MC68302 Specifications and Characteristics C-3

Emulator Probe
Characteristics

These specifications are for an emulator with a clock speed of 16.67
MHz.

Unbuffered Signals The following signals are unbuffered to the target system: /RESET,
/HALT, PB1-PB11, PA0-PA15, RXD1, TXD1, RCLK1, TCLK1,
/CD1, /CTS1, /RTS1, BRG1, BCLR, /RMC, IAC.

Data Inputs One 74FCT245A load per bit plus 50 pf capacitance.

Address and
Function Codes

One 74FCT245A load per bit plus 50 pf capacitance.

Clocks One 74ACT load per bit plus 20 pf capacitance.

Chip Selects One 74FCT244A load per bit plus 50 pf capacitance.

Interrupts One F load per bit plus a 3.3K pullup and 50 pf capacitance.

Other Signals /FRZ, /AVEC, BUSW are 74ALS inputs plus 50 pf capacitance.

/DTACK, /BR, /BG, /BGACK have a 5 ns pal path to the processor.

/UDS, /LDS, /AS, R/W have a 5 ns pal path to the processor plus a
3.3K pullup and 50 pf capacitance.

Bus Error is either connected to the target system unbuffered or totally
disconnected from the target.

C-4 MC68302 Specifications and Characteristics

The emulator specifications for "worst case" and "typical" are a
function of loading in the target system. Actual performance may be
worse than "worst case" if the loading is above Motorola specifications
for the processor.

Processor Emulator
Worst Typical

Num Description Unit Symbol Min Max Min Max Min Max

1 Clock Period MHz f 8 16.7 8 16.7 - -

2,3 Clock Pulse Width ns Tcvc 60 125 60 125 - -

4,5 Clock Rise and Fall times ns Tcr,Tcf - 5 - 5 - -

5a EXTAL to CLK0 Delay ns Tcd 2 11 16 29 18 -

6 Clock High to FC, Addr valid ns Tchfcadv - 45 9 59 5 40

7 Clock High to addr, data - Z ns Tchadz - 50 - - - -

8 Clock High to addr, fc invalid ns Tchafi 0 - 0 - 0 -

9 Clock High to AS, DS asserted ns Tchsl 3 30 5 50 8 23

11 Addr, FC valid to AS,DS (READ)
AS (WRITE) asserted

ns Tafcvsl 15 - 13 - 20 -

12 Clock low to AS,DS negated ns Tslsh - 30 - 35 - 20

13 AS,DS negated - Addr,FC invalid ns Tshafi 15 - 12 - 20 -

14 AS,(DS read) width asserted ns Tsl 120 - 110 - - 120

14A DS width asserted (write) ns Tdsl 60 - 50 - 60 -

15 AS,DS width Negated ns Tsh 60 - 55 - 65 -

16 Clock High to Control Bus Z ns Tchcz - 50 - 50 - 50

17 AS,DS negated to R/W invalid ns Tshrh 15 - 5 - 10 -

MC68302 Specifications and Characteristics C-5

18 Clock High to RW high ns Tchrh - 30 - 40 - 30

20 Clock High to RW low ns Tchrl - 30 - 40 - 30

21 Addr, FC valid to RW low ns Tafcvfl 15 - 10 - 20 -

22 RW low to DS asserted write ns Trlsl 30 - 25 - 32 -

23 Clock low to Data Out valid ns Tcldo - 30 - 40 - 35

25 AS,DS negated to data invalid ns Tshdoi 15 - 10 - 16 -

26 Data Out to DS asserted write ns Tdosl 15 - 10 - 16 -

27 Data Valid to Clock low (setup) ns Tdicl 7 - 21 - 15 -

28 AS,DS negated to DTACK negated ns Tshdah 0 110 0 90 0 100

29 AS,DS negated to Data in (hold) ns Tshdii 0 - 0 - 0 -

30 AS,DS negated to BERR negated ns Tshdeh 0 - 0 - 0 -

31 DTACK asserted to data in-setup ns Tdaldi - 50 43 - 49 -

32 Halt, Reset input transition ns Trhr,
Trhf

- 150 - 150 - <150

33 Clock High to BG asserted ns Tchgl - 30 - 45 - 40

34 Clock High to BG negated ns Tchgh - 30 - 60 - 40

35 BR asserted to BG asserted clks Tbrlgl 2.5 4.5 2.5 4.5 2.5 4.5

36 BR negated to BG negated clks Tbrhgh 1.5 2.5 1.5 2.5 1.5 2.5

37 BGACK asserted to BG negated clks Tgalgh 2.5 4.5 2.5 4.5 2.5 4.5

37A BGACK asserted to BR negated ns/
clks

Tgalbrh 10 1.5 20 1.5 10 1.5

38 BG asserted to high Z ns Tglz - 50 - 50 - 50

C-6 MC68302 Specifications and Characteristics

39 BG width negated clks Tgh 1.5 - 1.5 - 1.5 -

44 AS,DS negated to AVEC negated ns Tshvph 0 50 0 30 0 40

46 BGACK width low clks Tgal 1.5 - 1.5 - 1.5 -

47 Async input setup time ns Tasi 10 - 20 - 15 -

48 BERR asserted to DTACK asserted ns Tbeldal 10 - 20 - 15 -

53 Data Out hold from clock high ns Tchdoi 0 - 0 - 0 -

55 RW asserted to Data bus change ns Trldbd 0 - 0 - 0 -

56 HALT,RST pulse width clks Thrpw 10 - 10 - 10 -

57 BGACK negated to AS,DS,RW drive clks Tgasd 1.5 - 1.5 - 1.5 -

57A BGACK negated to FC driven clks Tgafd 1 - 1 - 1 -

58 BR negated to AS,DS,RW driven clks Trhsd 1.5 - 1.5 - 1.5 -

58A BR negated to FC driven clks Trhfd 1 - 1 - 1 -

60 Clock high to BCLR asserted ns Tchbcl - 30 - 45 - 35

61 Clock high to BLCR negated ns Tchbch - 30 - 45 - 35

62 Clock low to RMC asserted ns Tclrml - 30 - 45 - 35

63 Clock high to RMC negated ns Tchrmh - 30 - 45 - 35

64 RMC negated to BG asserted ns Trmhgl - 30 - 45 - 35

"High Z" or "Z" means high impedance.

MC68302 Specifications and Characteristics C-7

Notes

C-8 MC68302 Specifications and Characteristics

Index

/DTACK interlock, 4-10

A absolute files, 2-8
HP, 2-8
Intel hex, 2-8
Motorola S-records, 2-8
Tektronix hex, 2-8

access mode, A-9
address lines driven during background, 4-6
address ranges

overlaying, 3-7
address syntax, A-3
addresses, reserved, 1-6
analyzer

branch qualifiers, 3-15
break on measurement complete, 3-28
clock speed, 5-10
complex configuration, 3-14, 3-18
configuration, 2-27
configuration commands, 4-3
display larger trace list range, 3-26
display trace list, 3-21
effect of 68302 prefetch on, 3-22
fixing prefetch problem, 3-23
function codes, 3-15
global storage qualifiers, 3-19
halting, 2-28
labels, 5-13
number of channels, 5-13
pattern names, 3-18
pipeline, 2-28
primary branch qualifier, 3-19
range variables, 3-18
secondary branch qualifier, 3-17
sequencer, 3-14
signal labels, 3-18

Index-1

analyzer (cont.)
starting the trace, 3-21
storage qualifiers, 3-15, 3-19
storage specification, 2-26/2-27
storing execution between certain states, 3-15
trace, 2-26
trace list display, 2-27
trace list format, 2-27
trace tag counter, 3-20
trigger position, 3-24
trigger specification, 2-26
trigger term specification, 3-19

analyzer inputs, A-13
analyzer label "stat", 5-13
analyzer trace

starting, 2-27
analzyer

storage qualifiers, 3-14
assembler/linker/librarian, 2-8
assembling programs, 2-20

B b Command, 2-24, 3-14
background

address driven, 4-6
driving target system during, 4-9

background function codes driven, 4-7
background monitor, 5-17

selecting, 4-13
BAR register, 1-6/1-7
bc Command, 2-14, 3-28/3-30, 5-4
before using the emulator, 2-1
BERR signal, 4-6
BNC characteristics, C-3
BNC trigger signal

break on receipt, 3-29
bp command, 3-29, 5-4
BR0-BR3 registers, 4-9
BR0-BR3 registers, 1-7
break

BNC trigger, 3-29
CMB trigger, 3-29
conditions, 3-28

2-Index

break (cont.)
defining, 3-28
effect of processor prefetch, 3-30
emulator, 3-14
on trigger signal, 3-28
software breakpoints, 3-29
software breakpoints TRAP instruction, 4-17
trig1 signal, 3-28
trig2 signal, 3-29
write to ROM, 3-30

break conditions, 5-4
building command files, 3-11
bus arbitration

configure emulator’s response, 4-5
bus arbitrations

using configuration to isolate target problem, 4-6
bus error response by emulator, 4-6
bus width, 4-15, 5-3

C cautions
equipment damage, 1- 10, 1-13
possible damage to target system, 2-2, 4-16
possible loss of information, 2-5
possible damage to emulator probe, 5-10

cf ba command, 4-5
cf bbk command, 4-6
cf be command, 4-6
cf bfc command, 4-7
cf clk command, 4-8
cf Command, 2-13, 4-3
cf csx_dtk command, 4-9
cf dbc command, 4-9
cf dti command, 4-10
cf iack7 command, 4-11
cf im command, 4-11
cf int7 command, 4-12
cf lfc command, 3-10, 4-12
cf mon command, 4-13
cf pdw, 5-3
cf pdw command, 4-15
cf rrt command, 4-15
cf rssp Command, 2-17, 3-14, 4-16

Index-3

cf swtp command, 3-29, 4-17
cf ti command, 4-18
cf trc_dma command, 4-19
changing trigger position in trace list, 3-24
characteristics

BNC, C-3
communications, C-3
electrical, C-1
emulator, C-1
environmental, C-2
physical, C-2

characteristics of emulation probe, C-4
chip selects, 1-7, 4-9
clock selection for microprocessor, 4-8
CMB, 5-7
CMB trigger signal

break on receipt, 3-29
combined measurements, 3-30
combining commands with macros, 3-31
combining measurements

set initial conditions, 3-31
combining multiple macros, 3-32
command files

building, 3-11
complete emulator configuration, 3-13
loading, 3-13

command help, 2-6
command prompts, 2-23
commands

analysis, 1-16
analyzer configuration, 4-3
b, 2-24, 3-14
b (break), 2-24
bc, 2-14, 3-28/3-30, 5-4
bp, 3-29, 5-4
cf, 2-13, 4-3
cf ba, 4-5
cf bbk, 4-6
cf be, 4-6
cf bfc, 4-7
cf clk, 4-8

4-Index

commands (cont.)
cf csx_dtk, 4-9
cf dbc, 4-9
cf dti, 4-10
cf iack7, 4-11
cf im, 4-11
cf int7, 4-12
cf lfc, 3-10, 4-12
cf mon, 4-13
cf pdw, 4-15
cf rrt, 4-15
cf rssp, 2-17, 3-14, 4-16
cf swtp, 3-29, 4-17
cf ti, 4-18
cf trc_dma, 4-19
cmb, 5-7
configuration, 4-1
echo, 3-31
emulation, list of, 4-1
equ, 3-17, 3-23, 3-31, 5-12
help, 2-6
init, 2-13
init (initialize), 2-5
load, 2-21, 3-10
m, 2-18, 2-25, 3-12, 3-21
mac, 3-31/3-32
map, 2-16, 3-7
measurement, 4-1
mo, 3-14
r, 2-23, 2-25, 3-21
r (run), 2-23
reg, 2-25, 3-32
rep, 3-33
repeating, 3-33
rst, 2-23, 3-14
s, 3-32
ser, 3-34
system, 4-3
t, 2-27
tcf, 3-18
tcq, 3-20

Index-5

commands (cont.)
tf, 2-27, 3-20
tg, 2-27
tgout, 3-28
th, 2-28
tif, 3-19
tl, 2-27, 3-21
tlb, 3-18
tp, 3-24
tpat, 3-18, 3-23
trng, 3-18
tsq, 3-19
tsto, 2-27, 3-19

communications characteristics, C-3
comparison of foreground/background monitors, 5-17
complex analyzer configuration, 3-18
conductive pin guard

emulation probe, 5-9
configuration

/DTACK interlock, 4-10
address driven during background, 4-6
analyzer, 4-3
background cycles driven to target, 4-9
bus arbitration, 4-5
bus error response by emulator, 4-6
bus width, 4-15, 5-3
chip selects, 1-7, 4-9
clock selection, 4-8
displaying, 4-3
DMA tracing, 4-19
for getting started, 2-13
function codes driven during background, 4-7
interrupt mode, 4-11
IRQ7 mode, 4-12
measurement commands, 4-1
monitor selection, 4-13
PB0/IACK7, 4-11
processor to emulator/target system, 4-3
program load function codes, 4-12
restrict to real-time runs, 4-15
supervisor stack pointer, 4-16

6-Index

configuration (cont.)
syntax, A-7
system, 4-3
target system interrupts enable/disable, 4-18
TRAP instruction for breakpoint, 4-17
with command files, 3-13

configuration commands, 4-1
configuration items, A-7
connections

PGA socket, 1-8
QFP or PQFP, 1-10
target system, connecting to, 1-8
TQFP, 1-13

controlling terminal
with escape sequences, 3-31

coordinated measurement bus operation, 5-7
counting states, 3-20
coverage measurement not supported, 1-2
create macros, 5-5

D data terminal
escape sequences, 3-31

define logical expressions, 5-12
Defining a stack pointer, 2-16
defining analyzer patterns, 3-18
defining equates, 3-17
defining macros, 3-31
defining ranges, 3-18
display mode, A-9
display mode for memory, 3-14
display trace

format, 3-20
displaying

configuration, 4-3
larger trace list range, 3-26
macro definitions, 3-33
memory, 2-25, 3-32
registers, 2-25, 3-32
trace list, 2-27, 3-21

DMA limitations, 4-5
driving background cycles to target system, 4-9

Index-7

DTACK interlock
needed for correct bus error response, 4-7

DTACK signal, 1-7, 4-9
dummy part, 1-10, 1-13

E echo
display measurement headers, 3-32

echo command, 3-31
echoing escape sequences, 3-31
effect of prefetch on analyzer, 3-22
electrical characteristics, C-1
emulation

components, 1-5
emulation probe

conductive pin guard, 5-9
pin protector, 5-9

emulator
bus error response, 4-6
characteristics, C-1
configuration, 2-13
initialization, 2-13
purpose, 1-1
running, 3-21
specifications, C-1

emulator features, 1-3
analyzer, 1-3
breakpoints, 1-4
clock speeds, 1-3
emulation memory, 1-3
processor reset control, 1-4
register display/modify, 1-3
restrict to real-time runs, 1-4
single-step processor, 1-3
supported microprocessors, 1-3

emulator limitations and restrictions, 4-5
emulator reset, 3-14
enable/disable target system interrupts, 4-18
environmental characteristics, C-2
equ command, 3-17, 3-23, 3-31
equates

16-bit, 5-13
defining, 3-17

8-Index

equates (cont.)
dynamic modification in macros, 3-32
evaluated at command entry, 3-23
predefined, 5-12
predefined status, 3-17
predefining value for counter, 3-31
reentering other commands when modified, 3-23

equates for tag0-3, 5-12
equating values to labels, 3-17
error messages, B-1
errors

invalid option or operand, 2-3
escape sequences

for terminal, 3-31
using echo to send, 3-31

expressions
searching for, 3-34

extra label, 5-13

F fixing prefetch problem w/analyzer, 3-23
foreground monitor, 5-18

address requirements, 4-14
interrupts during, 4-18
listing, 5-20
selecting, 4-13
transition to, 4-6/4-7

format for trace display, 3-20
fr2 signal, 5-18
function codes

memory mapping, 3-7
function codes, A-4

analyzer, 3-15
driven during background, 4-7
for loading programs, 3-10
for program loads, 4-12
need for separately linked modules, 3-8

G global storage qualifiers, 3-19

Index-9

H halting the analyzer, 2-28
help command, 2-6
host computers

command files, 3-11

I information help, 2-6
init Command, 2-13
initialization options, 2-5
initialize emulator, 2-5
Initializing the Emulator, 2-13
inserting software breakpoints, 3-29
interlock /DTACK, 4-10
interrupts

enable/disable from target system, 4-18
invalid option or operand error, 2-3

L labeling analyzer signals, 3-18
limitations

DMA, 4-5
linking programs, 2-21
list of emulation commands, 4-1
load Command, 2-21, 3-10
loading programs, 3-9
loading programs, 2-17

changing function code for load, 3-10
for Standalone Configuration, 2-17
for Transparent Configuration, 2-19
function codes, 4-12
link supervisor/user modules separately, 3-1
load command, 2-21
transfer, 3-9
transfer utility, 2-19

logical expressions, 5-12

M m Command, 2-18, 2-25, 3-12, 3-21
mac command, 3-31/3-32
macros

combining several, 3-32
defining, 3-31
display current definitions, 3-33
nesting, 3-33

map Command, 2-16, 3-7

10-Index

measurement commands, 4-1
measurements

combinations, 3-30
memory

internal, 4-5
mapping, 1-6

memory display, 2-25, 3-32
mnemonic format, 2-22

memory display mode, 3-14
memory mapping, 3-7

for different function codes, 3-7
for getting started program, 2-16
function codes, 3-7

memory modification, 3-12, 3-21
memory, low, 1-6
messages, B-1
mnemonic display format, 2-22
mo command, 3-14
mode

access, A-9
display, A-9
syntax, A-9

modifying equates, 3-32
modifying memory, 3-12
monitor

selecting, 4-13
watchdog timer reset, 1-8

monitors
background, 5-17
comparison of foreground/background, 5-17

multiple instruction steps, 3-32
multiple measurements, 3-30

N naming groups of analyzer signals, 3-18
naming values, 3-17
nesting macros, 3-33
NOP instruction

to fix prefetch problem, 3-23
numeric expressions

searching for, 3-34

Index-11

O OR0-OR3 registers, 4-9
OR0-OR3 registers, 1-7
order for turning on equipment, 2-2

orientation diagram
HP Wedge probing system, 1-14
QFP probe adapter, 1-11

overlaid address ranges, 3-7

P personal computer (PC), 1-2
physical characteristics, C-2
pin protector

emulation probe, 5-9
PQFP probe, 1-10, 1-13
predefined equates for display counter, 3-31
predefined status equates, 3-17
predefining supervisor stack pointer, 4-16
prefetch

effect on break, 3-30
fixing analyzer problem with, 3-23

prefetch effect on analyzer, 3-22
prerequisites for using the emulator, 2-1
primary branch qualifiers, 3-19
probe adapter assembly, 1-10, 1-13
probe characteristics, C-4
processor

register displays, 3-32
single-step, 3-32

processor clock selection, 4-8
processor compatibility, C-1
program loads, 2-17
program tracing, 2-26
programs

load function codes, 4-12
prompts, 2-3

emulator command, 2-23
running in monitor, 2-24
running user code, 2-23

purpose of the emulator, 1-1

Q QFP probe, 1-10, 1-13

12-Index

R r Command, 2-23, 2-25, 3-21
real-time runs

restricting emulator to, 4-15
reg Command, 2-25, 3-32
Register Display, 2-25
register displays, 3-32
registers

modifying BAR and SCR, 1-7
registers syntax, A-11
rep command, 3-33
repeating commands or command groups, 3-33
reset

emulator, 3-14
resolution, memory, 2-16
restrict to real-time runs, 4-15

permissible commands, 4-15
target system dependency, 4-16

RFI, C-3
rotation of

QFP adapter assembly, 1-11, 1-14
TQFP probing system, 1-11, 1-14

rst Command, 2-23, 3-14

S s command, 3-32
sample programs

assembling, 2-20
for getting started, 2-9
linking, 2-21
loading user/supervisor, 3-9
supervisor program, 3-2
user program, 3-4
user/supervisor switching, 3-1

saving commands in a command file, 3-11
SCR register, 1-6/1-8
searching for strings or expressions, 3-34
selecting emulation monitor, 4-13
sequencer, 3-14

primary branch qualifier, 3-15
primary branch qualifiers, 3-19
secondary branch qualifier, 3-15, 3-17

ser command, 3-34
single-step microprocessor, 3-32

Index-13

software breakpoints, 5-4
enable, 3-29
how managed, 3-29
inserting, 3-29

software breakpoints (cont.)
read accesses to software breakpoint TRAP vector, 3-30
selection of TRAP instruction, 4-17
to break emulator, 3-29
TRAP instruction, 3-29
undefined, 4-18

sources of information, 1-16
spaces, 2-3
specifications

emulator, C-1
stack is in guarded memory, error message, 4-17
stack pointer

defining, 3-14
defining supervisor, 4-16
definition for emulation, 2-16

starting a trace, 2-27
starting an emulation run, 3-21
starting the analyzer, 3-21
step microprocessor, 3-32
storage qualifier, 2-27, 3-14
storage qualifiers, 3-15, 3-19

global, 3-19
strings

searching for, 3-34
supervisor stack pointer

predefining, 4-16
required for proper operation, 4-17

symbols, 5-15
syntax, A-1

address, A-3
registers, A-11

system commands, 4-3

T t Command, 2-27
target system

connecting the emulator probe, 1-8
target system dependency on executing code, 4-16

14-Index

target system interrupts
enable/disable, 4-18

tcf command, 3-18
tcq command, 3-20
terminal

escape sequences, 3-31
tf Command, 2-27, 3-20
tg Command, 2-27
tgout command, 3-28
th Command, 2-28
tif command, 3-19
tl Command, 2-27, 3-21
tlb command, 3-18
tp command, 3-24
tpat command, 3-18, 3-23
trace display format, 3-20
trace list

displaying larger range, 3-26
trace list display, 2-27, 3-21
trace list format, 2-27
trace tag counter, 3-20
tracing program execution, 2-26
transfer

absolute files, 5-8
transfer utility, 2-19, 3-9
TRAP instruction

selecting for software breakpoints, 4-17
trig1 signal

break on receipt, 3-28
trig2 signal

break on receipt, 3-29
trigger patterns, 5-12
trigger position in trace list, 3-24
trigger signals

break upon, 5-5
trigger term specification for analyzer, 3-19
trng command, 3-18
tsq command, 3-19
tsto Command, 2-27, 3-19
turning on the emulator, 2-2

U undefined breakpoint, 4-18

Index-15

V vector table, 1-6, 5-2

W watchdog timer, and monitor problems, 1-8
write to ROM break, 3-30

16-Index

	Using this Manual
	Contents
	Introducing the MC68302 Emulator
	Getting Started
	Advanced Example
	Configuring the Emulator
	Concepts
	Syntax for the MC68302 Emulator
	Messages
	MC68302 Specifications and Characteristics
	Index

