
HP 64732

H8/510 Emulator
Terminal Interface

User’s Guide

HP Part No. 6 4732-97003
Printed in U.S.A.
February 1993

Edition 2

Notice Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or
for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability
of its software on equipment that is not furnished by
Hewlett-Packard.

 Copyright 1991,1992,1993, Hewlett-Packard Company.

This document contains proprietary information, which is
protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to
another language without the prior written consent of
Hewlett-Packard Company. The information contained in this
document is subject to change without notice.

UNIX is a registered trademark of UNIX System Laboratories Inc.
in the U.S.A. and other countries.

Torx is a registered trademark of Camcar Division of Textron, Inc.

LCA is a trademark of Xilinx Inc.

Hewlett-Packard Company
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure
by the U.S. Government is subject to restrictions set forth in
subparagraph (C) (1) (ii) of the Rights in Technical Data and
Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA
94304 U.S.A. Right for non-DOD U.S. Government Department
and Agencies are as set forth in FAR 52.227-19(c)(1,2).

Printing History New editions are complete revisions of the manual. The date on
the title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was
issued. Many product updates and fixes do not require manual
changes, and manual corrections may be done without
accompanying product changes. Therefore, do not expect a
one-to-one correspondence between product updates and manual
revisions.

Edition 1 64732-97000, April 1991

Edition 2 64732-97003, February 1993

Using This Manual

This manual is designed to give you an introduction to the
HP 64732 H8/510 Emulator. This manual will also help define
how these emulators differ from other HP 64700 Emulators.

This manual will:

give you an introduction to using the emulator

explore various ways of applying the emulator to
accomplish your tasks

show you emulator commands which are specific to the
H8/510 Emulator

This manual will not:

tell you how to use each and every emulator/analyzer
command (refer to the User’s Reference manual)

Organization

Chapter 1 An introduction to the H8/510 emulator features and how they can
help you in developing new hardware and software.

Chapter 2 A brief introduction to using the H8/510 Emulator. You will load
and execute a short program, and make some measurements using
the emulation analyzer.

Chapter 3 How to plug the emulator probe into a target system.

Chapter 4 Configuring the emulator to adapt it to your specific measurement
needs.

Appendix A Using a foreground monitor program; advantages and
disadvantages.

Appendix B H8/510 Emulator Specific Command Syntax

Appendix C H8/510 Emulator Specific Error Messages

Table of Contents

1 Introduction to the H8/510 Emulator

Purpose of the H8/510 Emulator 1-1
Features of the H8/510 Emulator 1-3

Supported Microprocessors . 1-3
Clock Speeds . 1-3
Emulation memory . 1-3
Analysis . 1-3
Registers . 1-4
Single-Step . 1-4
Target System Interface . 1-4
Breakpoints . 1-4
Reset Support . 1-4
Real Time Operation . 1-4
Easy Products Upgrades . 1-5

Limitations, Restrictions . 1-5
DMA Support . 1-5
Monitor Break at Sleep/Standby Mode 1-5
Watch Dog Timer in Background 1-5
Reset Output Enable Bit . 1-5

2 Getting Started

Before You Begin . 2-2
A Look at the Sample Program 2-3
Using the Help Facility . 2-6
Initialize the Emulator to a Known State 2-7
Set Up the Proper Emulation Configuration 2-8

Set Up Emulation Conditions 2-8
Map Memory . 2-10

Transfer Code into Emulation Memory 2-11
Transferring Code from a Terminal In Standalone
Configuration . 2-11
Transferring Code From A Host, HP 64700 In Transparent
Configuration . 2-13

Looking at Your Code . 2-16

Contents-1

Familiarize Yourself with the System Prompts 2-17
Running the Sample Program 2-18
Stepping Through the Program 2-20
Tracing Program Execution . 2-21
Using Software Breakpoints . 2-24

Displaying and Modifying the Break Conditions 2-24
Defining a Software Breakpoint 2-25

Searching Memory for Strings or Numeric Expressions 2-26
Making Program Coverage Measurements 2-26

3 Using the H8/510 Emulator In-Circuit

Installing the Target System Probe 3-2
Pin Guard . 3-2
Target Sytem Adaptor . 3-3
Pin Protector . 3-3
Installing the Target System Probe 3-3

Target System Interface . 3-6

4 Configuring the H8/510 Emulator

Types of Emulator Configuration 4-1
Emulation Processor to Emulator/Target System 4-1
Commands Which Perform an Action or Measurement . . . 4-1
Coordinated Measurements 4-2
Analyzer . 4-2
System . 4-2

Emulation Processor to Emulator/Target System 4-3
cf . 4-3
cf ba . 4-4
cf clk . 4-5
cf dbc . 4-5
cf drst . 4-6
cf mode . 4-7
cf mon . 4-8
cf nmi . 4-9
cf rrt . 4-10
cf rsp . 4-11
cf tbusrel . 4-12
cf trfsh . 4-12
cf trst . 4-12
Memory Mapping . 4-13
Break Conditions . 4-15

2-Contents

Restrictions and Considerations 4-16
Monitor Break at Sleep/Standby Mode 4-16
Watch Dog Timer in Background 4-16
Reset Output Enable Bit . 4-16
Address Error and Register Values 4-16

A Using the Optional Foreground Monitor

Comparison of Foreground and Background Monitors A-1
Background Monitors . A-1
Foreground Monitors . A-2

An Example Using the Foreground Monitor A-3
Select A Monitor Suitable to Your Application A-3
Modify Location Declaration Statement A-3
Configure the Emulator . A-4
Set a Stack Pointer . A-5
Load the Program Code . A-5

Single Step and Foreground Monitors A-6
Limitations of Foreground Monitors A-6

Synchronized measurements A-6

B H8/510 Emulator Specific Command Syntax

CONFIG_ITEMS . B-2
ACCESS MODE and DISPLAY MODE B-5
ADDRESS . B-6
io Command . B-7
Register Classes and Names . B-8

C H8/510 Emulator Specific Error Messages

Index

Illustrations

Figure 1-1. HP 64732 Emulator for the H8/510 Processor 1-2
Figure 2-1. Sample Program Listing 2-4
Figure 3-1. Installing Probe into the Target System 3-4
Figure 3-2. Dimension of the Target System Adaptor 3-5

Contents-3

Notes

4-Contents

1

Introduction to the H8/510 Emulator

Introduction The topics in this chapter include:

Purpose of the H8/510 Emulator

Features of the H8/510 Emulator

Purpose of the
H8/510 Emulator

The HP 64732 H8/510 mulator is designed to replace the H8/510
microprocessor in your target system so you can control operation
of the microprocessor in your application hardware (usually
referred to as the target system). The H8/510 emulator performs
just like the H8/510 microprocessor, but is a device that allows you
to control the H8/510 directly. These features allow you to easily
debug software before any hardware is available, and ease the task
of integrating hardware and software.

Introduction to the H8/ 510 Emulator 1-1

Figure 1-1. HP 6 4732 Emulator for the H8/510 Processor

1-2 Introduction to the H8/ 510 Emulator

Features of the
H8/510 Emulator

Supported
Microprocessors

HITACHI HD6415108F (H8/510) microprocessor is supported.
An adaptor is provided to connect the emulator probe to your
target system.

Clock Speeds Maximum clock speed is 10 MHz (system clock).

Emulation memory The HP 64732 H8/510 emulator is used with one of the following
Emualtion Memory Cards.

HP 64726A 128K byte Emulation Memory Card
HP 64727A 512K byte Emulation Memory Card
HP 64728A 1M byte Emulation Memory Card

The emulation memory can be configured into 256 byte blocks. A
maximum of 16 ranges can be configured as emulation RAM
(eram), emulation ROM (erom), target system RAM (tram), target
system ROM (trom), or guarded memory (grd). The H8/510
emulator will attempt to break to the emulation monitor upon
accessing guarded memory; additionally, you can configure the
emulator to break to the emulation monitor upon performing a
write to ROM (which will stop a runaway program).

Analysis The HP 64732 H8/510 emulator is used with one of the following
analyzers which allows you to trace code execution and processor
activity.

HP 64703 64-channel Emulation Bus Analyzer and
16-channel State/Timing Analyzer
HP 64704 80-channel Emulation Bus Analyzer

The Emulation Bus Analyzer monitors the emulation processor
using an internal analysis bus. The HP 64703 64-channel
Emulation Bus Analyzer and 16-channel State/Timing Analyzer
allows you to probe up to 16 different lines in your target system.

Introduction to the H8/ 510 Emulator 1-3

Registers You can display or modify the H8/510 internal register contents.
This includes the ability to modify the program counter (PC) and
the code page register (CP) values so you can control where the
emulator starts a program run.

Single-Step You can direct the emulation processor to execute a single
instruction or a specified number of instructions.

Target System
Interface

You can set the interface to the target system to be active or
passive during background monitor operation.

Breakpoints You can set the emulator/analyzer interaction so the emulator will
break to the monitor program when the analyzer finds a specific
state or states, allowing you to perform post-mortem analysis of the
program execution. You can also set software breakpoints in your
program using the bp command. This feature is realized by
inserting a special instruction into user program. One of undefined
opcodes (1B hex) is used as software breakpoint instruction. Refer
to the "Using Software Breakpoints" section of "Getting Started"
chapter for more information.

Reset Support The emulator can be reset from the emulation system under your
control; or your target system can reset the emulation processor.

Real Time Operation Real-time signifies continuous execution of your program at full
rated processor speed without interference from the emulator.
(Such interference occurs when the emulator needs to break to the
monitor to perform an action you requested, such as displaying
target system memory.) Emulator features performed in real time
include: running and analyzer tracing. Emulator features not
performed in real time include: display or modify of target system
memory; load/dump of any memory, display or modification of
registers, and single step.

1-4 Introduction to the H8/ 510 Emulator

Easy Products
Upgrades

Because the HP 64700 Series development tools (emulator,
analyzer, LAN board) contain programmable parts, it is possible to
reprogram the firmware and some of the hardware without
disassembling the HP 64700A Card Cage. This means that you’ll
be able to update product firmware, if desired, without having to
call an HP file representative to your site.

Limitations,
Restrictions

DMA Support Direct memory access to emulation memory is not allowed.

Monitor Break at
Sleep/Standby Mode

When the emulator breaks into the emulation monitor, sleep or
software standby mode is released.

Watch Dog Timer in
Background

Watch dog timer suspends count up while the emulator is running
in background monitor.

Reset Output Enable
Bit

The RSTOE (Reset output enable bit) is used to determine
whether the H8/510 processor outputs reset signal when the
processor is reset by the watchdog timer. However, the HP 64732
emulator ignores the configuration of the RSTOE, and works as it
is configured with cf drst command.

Introduction to the H8/ 510 Emulator 1-5

Notes

1-6 Introduction to the H8/ 510 Emulator

2

Getting Started

Introduction This chapter will lead you through a basic, step by step tutorial
designed to familiarize you with the use of the HP 64700 emulator
for the H8/510 microprocessor. When you have completed this
chapter, you will be able to perform these tasks:

Set up an emulation configuration for out of circuit
emulation use

Map memory

Transfer a small program into emulation memory

Use run/stop controls to control operation of your
program

Use memory manipulation features to alter the program’s
operation

Use analyzer commands to view the real time execution of
your program

Use software breakpoint feature to stop program
execution at specific address

Search memory for strings or numeric expressions

Make program coverage measurements

Getting Started 2-1

Before You Begin Before beginning the tutorial presented in this chapter, you must
have completed the following tasks:

1. Completed hardware installation of the HP 64700
emulator in the configuration you intend to use for your
work:

Standalone configuration

Transparent configuration

Remote configuration

2. If you are using the Remote Configuration, you must have
completed installation and configuration of a terminal
emulator program which will allow your host to act as a
terminal connected to the emulator. In addition, you must
start the terminal emulator program before you can work
the examples in this chapter.

3. If you have properly completed steps 1 and 2 above, you
should be able to hit < RETURN> (or < ENTER> on
some keyboards) and get one of the following command
prompts on your terminal screen:

U>
R>
M>

If you do not see one of these command prompts, retrace
your steps through the hardware and software installation
procedures outlined in the manuals above, verifying all
connections and procedural steps. If you are still unable
to get a command prompt, refer to the HP 64700 Support
Services Guide. The guide gives basic troubleshooting
procedures. If this fails, call the local HP sales and service
office listed in the Support Services Guide.

In any case, you must have a command prompt on your
terminal screen before proceeding with the tutorial.

2-2 Getting Started

A Look at the
Sample Program

The sample program "COMMAND_READER" used in this
chapter is shown figure 2-1. The program emulates a primitive
command interpreter.

Data Declarations

INPUT_POINTER and OUTPUT_POINTER define the address
locations of an input area and an output area to be used by the
program. MESSAGE_A, MESSAGE_B and INVALID_INPUT
are the messages used by the program to respond to various
command inputs.

Initialization

The locations of the input and output areas are moved into address
registers for use by the program. Next, the CLEAR routine clears
the command byte (the first byte location pointed to by the input
area address - fc00 hex).

READ_INPUT

This routine continuously reads the byte at location fc00 hex until
it is something other than a null character (00 hexadecimal); when
this occurs, the PROCESS_COMM routine is executed.

PROCESS_COMM

Compares the input byte (now something other than a null) to the
possible command bytes of "A" (ASCII 41 hex) and "B" (ASCII 42
hex), then jumps to the appropriate set up routine for the
command message. If the input byte does not match either of these
values, a branch to a set up routine for an error message is
executed.

COMMAND_A, COMMAND_B, UNRECOGNIZED

These routines set up the proper parameters for writing the output
message: the number of bytes in the message is moved to the R6
register and the base address of the message in the data area is
moved to address register R0.

Getting Started 2-3

1000 1 .SECTION SAMPDATA,DATA,LOCATE=H’1000
1000 FC00 2 INPUT_POINTER .DATA.W H’FC00
1002 FD00 3 OUTPUT_POINTER .DATA.W H’FD00
 4
1004 5448495320495320 5 MESSAGE_A .SDATA "THIS IS MESSAGE A"
100C 4D45535341474520
1014 41
1015 5448495320495320 6 MESSAGE_B .SDATA "THIS IS MESSAGE B"
101D 4D45535341474520
1025 42
1026 494E56414C494420 7 INVALID_INPUT .SDATA "INVALID COMMAND"
102E 434F4D4D414E44
 8
2000 9 .SECTION SAMPPROG,CODE,LOCATE=H’2000
2000 5FFE40 10 INIT MOV.W #STACK,R7
2003 1D100082 11 MOV.W @INPUT_POINTER,R2
2007 1D100283 12 MOV.W @OUTPUT_POINTER,R3
 13
200B D20600 14 CLEAR MOV.B #H’00,@R2
 15
200E D20400 16 READ_INPUT CMP.B #H’00,@R2
2011 27FB 17 BEQ READ_INPUT
 18
013 D20441 19 PROCESS_COMM CMP.B #H’41,@R2
2016 2707 20 BEQ COMMAND_A
2018 D20442 21 CMP.B #H’42,@R2
201B 2709 22 BEQ COMMAND_B
201D 200E 23 BRA UNRECOGNIZED
 24
201F 5611 25 COMMAND_A MOV.B #H’11,R6
2021 581004 26 MOV.W #MESSAGE_A,R0
2024 200C 27 BRA OUTPUT
 28
2026 5611 29 COMMAND_B MOV.B #H’11,R6
2028 581015 30 MOV.W #MESSAGE_B,R0
202B 2005 31 BRA OUTPUT
 32
202D 560F 33 UNRECOGNIZED MOV.B #H’0F,R6
202F 581026 34 MOV.W #INVALID_INPUT,R0
 35
2032 AB81 36 OUTPUT MOV.W R3,R1
2034 5D0020 37 CLEAR_OLD MOV.W #H’0020,R5
 38
2037 C10600 39 CLEAR_LOOP MOV.B #H’00,@R1+
203A AD0C 40 ADD #-1,R5
203C 26F9 41 BNE CLEAR_LOOP
 42
203E A381 43 MOV.B R3,R1
2040 C085 44 OUTPUT_LOOP MOV.B @R0+,R5
2042 C195 45 MOV.B R5,@R1+
2044 AE0C 46 ADD #-1,R6
2046 26F8 47 BNE OUTPUT_LOOP
2048 20C1 48 BRA CLEAR
 49
FE00 50 .SECTION STACKAREA,STACK,LOCATE=H’FE00
FE00 0040 51 .RES.B H’40
FE40 52 STACK
 53
 54 .END

Figure 2-1. Sample Program Listing

2-4 Getting Started

OUTPUT

First the base address of the output area is copied to R1 (this
preserves R3 for use in later program passes). Then the
CLEAR_OLD routine writes nulls to 32 bytes of the output area
(this serves both to initialize the area and to clear old messages
written during previous program passes).

Finally, the proper message is written to the output area by the
OUTPUT_LOOP routine. When done, OUTPUT_LOOP jumps
back to CLEAR and the command monitoring process begins
again.

Using the various features of the emulator, we will show you how
to load this program into emulation memory, execute it, monitor
the program’s operation with the analyzer, and simulate entry of
different commands utilizing the memory access commands
provided by the HP 64700 command set.

Getting Started 2-5

Using the Help
Facility

If you need a quick reference to the Terminal Interface syntax, you
can use the built-in help facilities. For example, to display the top
level help menu, type:

R> help

You can type the ? symbol instead of typing help. For example, if
you want a list of commands in the emul command group, type:

R> ? emul

To display help information for any command, just type help (or ?)
and the command name. For example:

R> help load

 help - display help information

 help <group> - print help for desired group
 help -s <group> - print short help for desired group
 help <command> - print help for desired command
 help - print this help screen

 --- VALID <group> NAMES ---
 gram - system grammar
 proc - processor specific grammar

 sys - system commands
 emul - emulation commands
 trc - analyzer trace commands
 * - all command groups

 emul - emulation commands

 b......break to monitor cp.....copy memory mo.....modes
 bc.....break condition dump...dump memory r......run user code
 bp.....breakpoints es.....emulation status reg....registers
 cf.....configuration io.....input/output rst....reset
 cim....copy target image load...load memory rx.....run at CMB execute
 cmb....CMB interaction m......memory s......step
 cov....coverage map....memory mapper ser....search memory

2-6 Getting Started

Initialize the
Emulator to a
Known State

To initialize the emulator to a known state for this tutorial:

Note It is especially important that you perform the following step if the
emulator is being operated in a standalone mode controlled by
only a data terminal. The only program entry available in this
mode is through memory modification; consequently, if the
emulator is reinitialized, emulation memory will be cleared and a
great deal of tedious work could be lost.

1. Verify that no one else is using the emulator or will have
need of configuration items programmed into the
emulator.

2. Initialize the emulator by typing the command:

R> init -p

 load - download absolute file into processor memory space

 load -i - download intel hex format
 load -m - download motorola S-record format
 load -t - download extended tek hex format
 load -S - download sysmbol file
 load -h - download hp format (requires transfer protocol)
 load -a - reserved for internal hp use
 load -e - write only to emulation memory
 load -u - write only to target memory
 load -o - data received from the non-command source port
 load -s - send a character string out the other port
 load -b - data sent in binary (valid with -h option)
 load -x - data sent in hex ascii (valid with -h option)
 load -q - quiet mode
 load -p - record ACK/NAK protocol (valid with -imt options)
 load -c <file> - data is received from the 64000. file name format is:
 <filename>:<userid>:absolute

Getting Started 2-7

Set Up the Proper
Emulation
Configuration

Set Up Emulation
Conditions

To set the emulator’s configuration values to the proper state for
this tutorial, do this:

1. Type:

R> cf

You should see the following configuration items
displayed:

cf ba=en
cf clk=int
cf dbc=en
cf drst=dis
cf mode=ext
cf mon=bg
cf nmi=en
cf rrt=dis
cf rsp=9
cf tbusrel=en
cf trfsh=en
cf trst=en

Note The individual configuration items won’t be explained in this
example; refer to Chapter 4 of this manual and the User’s Reference
manual for details.

2. If the configuration items displayed on your screen don’t
match the ones listed above, here is how to make them
agree:

For each configuration item that does not match, type:

R> cf <config_item>=<value>

2-8 Getting Started

For example, if you have the following configuration items
displayed (those in bold indicate items different from the
list above):

cf ba=en
cf clk=ext
cf dbc=en
cf drst=dis
cf mode=ext
cf mon=bg
cf nmi=en
cf rrt=en
cf rsp=9
cf tbusrel=en
cf trfsh=en
cf trst=en

To make these configuration values agree with the desired
values, type:

R> cf clk=int
R> cf rrt=dis

3. Now, you need to set up stack pointer.
Type:

R> cf rsp=0fe40

4. Let’s go ahead and set up the proper break conditions.
Type:

R> bc

You will see:

bc -d bp #disable
bc -d rom #enable
bc -d bnct #disable
bc -d cmbt #disable
bc -d trig1 #disable
bc -d trig2 #disable

For each break condition that does not match the one
listed, use one of the following commands:

To enable break conditions that are currently disabled,
type:

R> bc -e <breakpoint type>

To disable break conditions that are currently enabled,
type:

Getting Started 2-9

R> bc -d <breakpoint type>

For example, if typing bc gives the following list of break
conditions:

bc -d bp #disable
bc -d rom #disable
bc -d bnct #disable
bc -d cmbt #disable
bc -e trig1 #enable
bc -e trig2 #enable

(items in bold indicate improper values for this example)

Type the following commands to set the break conditions
correctly for this example:

R> bc -e rom

(this enables the write to ROM break)

R> bc -d trig1 trig2

(this disables break on triggers from the analyzer)

Map Memory The emulation memory can be configure as you desire. You can
define emulation memory as emulation RAM, emulation ROM,
target RAM, target ROM or guarded memory. For this example,
map the address 0 hex through 2fff hex as emulation ROM, and
fc00 hex through feff hex as emulation RAM.

Type:

R> map 0..2fff erom
R> map 0fc00..0feff eram

To verify that memory blocks are mapped properly, type:

R> map
You will see:

 # remaining number of terms : 14
 # remaining emulation memory : 1c500h bytes
 map 000000..002fff erom # term 1
 map 00fc00..00feff eram # term 2
 map other tram

2-10 Getting Started

Transfer Code
into Emulation
Memory

Transferring Code
from a Terminal In

Standalone
Configuration

To transfer code into emulation memory from a data terminal
running in standalone mode, you must use the modify memory
commands. This is necessary because you have no host computer
transfer facilities to automatically download the code for you (as if
you would if you were using the transparent configuration or the
remote configuration.) To minimize the effects of typing errors,
you will modify only one row of memory at a time in this example.
Do the following:

1. Enter the data information for the program by typing the
following commands:

R> m 1000..100f=0fc,00,0fd,00,54,48,49,53,20,49,53,20,4d,45,53,53
R m 1010..101f=41,47,45,20,41,54,48,49,53,20,49,53,20,4d,45,53
R> m 1020..102f=53,41,47,45,20,42,49,4e,56,41,4c,49,44,20,43,4f
R> m 1030..1034=4d,4d,41,4e,44

(note the hex letters must be preceded by a digit)

You could also type the following line instead:

R> m 1000=0fc,00,0fd,00,"THIS IS MESSAGE ATHIS IS MESSAGE BINVALID COMMAND"

2. You should now verify that the data area of the program is
correct by typing:

R> m 1000..1034

You should see:

If this is not correct, you can correct the errors by
re-entering only the modify memory commands for the
particular rows of memory that are wrong.

001000..00100f fc 00 fd 00 54 48 49 53 20 49 53 20 4d 45 53 53
001010..00101f 41 47 45 20 41 54 48 49 53 20 49 53 20 4d 45 53
001020..00102f 53 41 47 45 20 42 49 4e 56 41 4c 49 44 20 43 4f
001030..001034 4d 4d 41 4e 44

Getting Started 2-11

For example,if row 1000..100f shows these values:

you can correct this row of memory by typing:

R> m 1000..100f=0fc,00,0fd,00,54,48,49,53,20,49,53,20,4d,45,53,53

Or, you might need to modify only one location, as in the
instance where address 100f equals 55 hex rather than 53
hex. Type:

R> m 100f=53

3. Enter the program information by typing the following
commands:

4. You should now verify that the program area is correct by
typing:

R> m 2000..2049

You should see:

If this is not correct, you can correct the errors by
re-entering only the modify memory commands for the
particular rows of memory that are wrong.

001000..00100f 0fc 00 00 0fd 00 54 48 49 53 20 49 53 20 4d 45 53

M> m 2000..200f=5f,0fe,40,1d,10,00,82,1d,10,02,83,0d2,06,00,0d2,04
M> m 2010..201f=00,27,0fb,0d2,04,41,27,07,0d2,04,42,27,09,20,0e,56
M> m 2020..202f=11,58,10,04,20,0c,56,11,58,10,15,20,05,56,0f,58
M> m 2030..203f=10,26,0ab,81,5d,00,20,0c1,06,00,0ad,0c,26,0f9,0a3,81
M> m 2040..2049=0c0,85,0c1,95,0ae,0c,26,0f8,20,0c1

002000..00200f 5f fe 40 1d 10 00 82 1d 10 02 83 d2 06 00 d2 04
002010..00201f 00 27 fb d2 04 41 27 07 d2 04 42 27 09 20 0e 56
002020..00202f 11 58 10 04 20 0c 56 11 58 10 15 20 05 56 0f 58
002030..00203f 10 26 ab 81 5d 00 20 c1 06 00 ad 0c 26 f9 a3 81
002040..002049 c0 85 c1 95 ae 0c 26 f8 20 c1

2-12 Getting Started

Transferring Code
From A Host,
HP 64700 In
Transparent

Configuration

The method provided in this example assumes that you are running
an HP 64869 H8/500 Assembler/Linkage Editor on an
HP 9000/300 computer running the HP-UX operating system. In
addition, you must have the HP 64000 transfer software running
on your host.

If you are not using an HP 64869 H8/500 Assembler/Linkage
Editor, you may be able to adapt the methods below to load your
code into the emulator (refer to the HP 64700 User’s Reference
manual for help).

If you are not able to transfer code from your host to the emulator
using one of these methods, use the method described previously
under "Transferring Code From A Terminal In Standalone Mode",
as it will work in all cases. However, transferring code using host
transfer facilities is easier and faster than modifying memory
locations, especially for large programs.

1. First, you must establish communications with your host
computer through the transparent mode link provided in
the HP 64700. Type:

R> xp -s 02a

This sets the second escape character to "*".(The first
escape character remains at the HP 64700 powerup default
of hex 01b, which is the ASCII < ESC> character.) The
sequence "< ESC> *" toggles the transparent mode
software within the HP 64700 for the duration of one
command (that is, any valid line of HP 64700 commands
(not exceed 254 characters) concatenated by semicolons
and terminated by a < carriage return>). Refer to the
User’s Reference manual for more information on the xp
command.

Enable the transparent mode link by typing:

R> xp -e

If you then press < RETURN> a few times, you should
see:

login:
login:
login:

Getting Started 2-13

This is the login prompt for an HP-UX host system. (Your
prompt may differ depending on how your system manager
has configured your system.)

2. Log in to your host system and start up an editor such as
"vi". You should now enter the source code for the sample
program shown at the beginning of the chapter. When
finished, save the program to filename "sampprog.src".

Note If you need help learning how to log in to your HP-UX host system
or use other features of the system, such as editors, refer to the
HP-UX Concepts and Tutorials guides and your HP-UX system
administrator.

3. Assemble your code with the following command.

$ h8asm sampprog

If any assembly errors were reported, re-edit your file and
verify that the code was entered correctly.

4. Link the program to the correct addresses and generate
absolute file with the following command.

$ h8lnk sampprog

5. Convert the SYSROF absolute file generated above into
HP format with the following command. This is needed to
load the file into the emulator. Refer to the HP 64732
Softkey Interface Users’ Guide for more details.

$ h8cnvhp -x sampprog

An HP format absolute file sampprog.X will be generated.

Now it’s time to transfer your code into the emulator. Do the
following:

1. Disable the transparent mode so that your terminal will
talk directly to the emulator. Type:

$ <ESC>* xp -d

2-14 Getting Started

The "< ESC> *" sequence temporarily toggles the
transparent mode so that the emulator will accept
commands; "xp -d" then fully disables the transparent
mode.

2. Load code into the emulator by typing:

R> load -hbo
transfer -rtb sampprog.X<ESC>* (NOTE: DO NOT
TYPE CARRIAGE RETURN!)

The system will respond:

##

R>

load -hbo tells the emulator to load code expected in HP
binary file format and to expect the data from the other
port (the one connected to the host). It then puts you in
communication with the host; you then enter the transfer
command to start the HP 64000 transfer utility. Typing
"< ESC> *" tells the system to return to the emulator after
transferring the code. The "# # " marks returned by the
system indicates that the emulator loaded two records
from the host.

3. At this point you should examine a portion of memory to
verify that your code was loaded correctly.

Type:

R> m 1000..1034

You should see:

If your system does not match, verify 1) that you entered
the source code correctly; 2) that you entered the linker
parameters correctly.

001000..00100f fc 00 fd 00 54 48 49 53 20 49 53 20 4d 45 53 53
001010..00101f 41 47 45 20 41 54 48 49 53 20 49 53 20 4d 45 53
001020..00102f 53 41 47 45 20 42 49 4e 56 41 4c 49 44 20 43 4f
001030..001034 4d 4d 41 4e 44

Getting Started 2-15

Looking at Your
Code

Now that you have loaded your code into emulation memory, you
can display it in mnemonic format. Type:

R> m -dm 2000..2049
You will see:

 002000 - MOV:I.W #fe40,R7
 002003 - MOV:G.W @1000,R2
 002007 - MOV:G.W @1002,R3
 00200b - MOV:G.B #00,@R2
 00200e - CMP:G.B #00,@R2
 002011 - BEQ 0200e
 002013 - CMP:G.B #41,@R2
 002016 - BEQ 0201f
 002018 - CMP:G.B #42,@R2
 00201b - BEQ 02026
 00201d - BRA 0202d
 00201f - MOV:E.B #11,R6
 002021 - MOV:I.W #1004,R0
 002024 - BRA 02032
 002026 - MOV:E.B #11,R6
 002028 - MOV:I.W #1015,R0
 00202b - BRA 02032
 00202d - MOV:E.B #0f,R6
 00202f - MOV:I.W #1026,R0
 002032 - MOV:G.W R3,R1
 002034 - MOV:I.W #0020,R5
 002037 - MOV:G.B #00,@R1+
 00203a - ADD:Q.W #-1,R5
 00203c - BNE 02037
 00203e - MOV:G.B R3,R1
 002040 - MOV:G.B @R0+,R5
 002042 - MOV:G.B R5,@R1+
 002044 - ADD:Q.W #-1,R6
 002046 - BNE 02040
 002048 - BRA 0200b

2-16 Getting Started

Familiarize
Yourself with the
System Prompts

Note The following steps are not intended to be complete explanations
of each command; the information is only provided to give you
some idea of the meanings of the various command prompts you
may see and reasons why the prompt changes as you execute
various commands.

You should gain some familiarity with the HP 64700 emulator
command prompts by doing the following:

1. Ignore the current command prompt. Type:

*> rst

You will see:

R>

The rst command resets the emulation processor and
holds it in the reset state. The "R> " prompt indicates that
the processor is reset.

2. Type:

R> r 2000

You will see:

U>

The r command runs the processor from address 2000 hex.

3. Type:

U> b

You will see:

M>

Getting Started 2-17

The b command causes the emulation processor to "break"
execution of whatever it was doing and begin executing
within the emulation monitor. The "M> " prompt
indicates that the emulator is running in the monitor.

Running the
Sample Program 4. Type:

M> r 2000

The emulator changes state from background to
foreground and begins running the sample program from
location 2000 hex.

Note The default number base for address and data values within HP
64700 is hexadecimal. Other number bases may be specified.
Refer to the Tutorials chapter of this manual or the HP 64700
User’s Reference manual for further details.

5. Let’s look at the registers to verify that the address
registers were properly initialized with the pointers to the
input and output areas. Type:

U> reg

You will see:

Notice that R2 contains fc00 hex; R3 contains fd00 hex.

 reg pc=2011 cp=00 sr=0704 dp=00 ep=00 tp=00 br=00 r0=0000 r1=0000 r2=fc00
 reg r3=fd00 r4=0000 r5=0000 r6=0000 r7=fe40 fp=0000 sp=fe40 mdcr=c1

2-18 Getting Started

6. Verify that the input area command byte was cleared
during initialization.

Type:

U> m -db 0fc00

You will see:

00fc00..00fc00 00

The input byte location was successfully cleared.

7. Now we will use the emulator features to make the
program work. Remember that the program writes
specific messages to the output area depending on what
the input byte location contains. Type:

U> m 0fc00=41

This modifies the input byte location to the hex value for
an ASCII "A". Now let’s check the output area for a
message.

U> m 0fd00..0fd1f

You will see:

These are the ASCII values for MESSAGE_A.

Repeat the last two commands twice. The first time, use
42 instead of 41 at location fc00 and note that
MESSAGE_B overwrites MESSAGE_A. Then try these
again, using any number except 00, 41, or 42 and note that
the INVALID_INPUT message is written to this area.

 00FD00..00FD0f 54 48 49 53 20 49 53 20 4d 45 53 53 41 47 45 20
 00FD10..00FD1f 41 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Getting Started 2-19

Stepping Through
the Program 8. You can also direct the emulator processor to execute one

instruction or number of instructions. Type:

M> s 1 2000;reg

This command steps 1 instruction from address 2000 hex,
and displays registers. You will see:

Notice that PC contains 2003 hex.

9. To step one instruction from present PC, you only need to
type s at prompt. Type:

M> s;reg

You will see:

 002000 - MOV:I.W #fe40,R7
 PC = 002003
 reg pc=2003 cp=00 sr=0708 dp=00 ep=00 tp=00 br=00 r0=1035 r1=fd0f r2=fc00
 reg r3=fd00 r4=0000 r5=0044 r6=0000 r7=fe40 fp=0000 sp=fe40 mdcr=c1

 002003 - MOV:G.W @1000,R2
 PC = 002007
 reg pc=2007 cp=00 sr=0708 dp=00 ep=00 tp=00 br=00 r0=1035 r1=fd0f r2=fc00
 reg r3=fd00 r4=0000 r5=0044 r6=0000 r7=fe40 fp=0000 sp=fe40 mdcr=c1

2-20 Getting Started

Tracing Program
Execution

Now let’s use the emulation analyzer to trace execution of the
program. Suppose that you would like to start the trace when the
analyzer begins writing data to the message output area.You can
do this by specifying analyzer trigger upon encountering the
address fd00 hex.Furthermore, you might want to store only the
data written to the output area. This can be accomplished by
modifying what is known as the "analyzer storage specification".

Note For this example, you will be using the analyzer in the easy
configuration, which simplifies the process of analyzer
measurement setup. The complex configuration allows more
powerful measurements, but requires more interaction from you to
set up those measurements. For more information on easy and
complex analyzer configurations and the analyzer, refer to the HP
64700 Analyzer User’s Guide and the User’s Reference.

Now, let’s set the trigger specification. Type:

M> tg addr=0fd00
To store only the accesses to the address range fd00 through fd11
hex, type:

M> tsto addr=0fd00..0fd11
Let’s change the data format of the trace display so that you will
see the output message writes displayed in ASCII format:

M> tf addr,h data,A count,R seq
Start the trace by typing:

M> t
You will see:

Emulation trace started

To start the emulation run, type:

M> r 2000
Now, you need to have a "command" input to the program so that
the program will jump to the output routines (otherwise the trigger
will not be found, since the program will never access address fd00
hex). Type:

U> m 0fc00=41

Getting Started 2-21

To display the trace list, type:

U> tl 0..34
You will see:

If you look at the last lines of the trace listing, you will notice that
the analyzer seems to have stored only part of the output message,
even though you specified more than the full range needed to store
all of the message. The reason for this is that the analyzer has a
storage pipeline, which holds states that have been acquired but
not yet written to trace memory. To see all of the states, halt the
analyzer by typing:

U> th
You will see:

Emulation trace halted

 Line addr,H data,A count,R seq
 ----- ------ ------ --------- ---
 0 00fd00 .. --- +
 1 00fd01 .. 10.00 uS .
 2 00fd02 .. 10.00 uS .
 3 00fd03 .. 10.00 uS .
 4 00fd04 .. 10.00 uS .
 5 00fd05 .. 10.00 uS .
 6 00fd06 .. 10.60 uS .
 7 00fd07 .. 10.00 uS .
 8 00fd08 .. 10.00 uS .
 9 00fd09 .. 10.00 uS .
 10 00fd0a .. 10.00 uS .
 11 00fd0b .. 10.00 uS .
 12 00fd0c .. 10.60 uS .
 13 00fd0d .. 10.00 uS .
 14 00fd0e .. 10.00 uS .
 15 00fd0f .. 10.00 uS .
 16 00fd10 .. 10.00 uS .
 17 00fd11 .. 10.00 uS .
 18 00fd00 T. 152.5 uS .
 19 00fd01 H. 12.12 uS .
 20 00fd02 I. 11.48 uS .
 21 00fd03 S. 12.12 uS .
 22 00fd04 .. 12.08 uS .
 23 00fd05 I. 12.12 uS .
 24 00fd06 S. 11.48 uS .
 25 00fd07 .. 12.12 uS .
 26 00fd08 M. 12.08 uS .
 27 00fd09 E. 11.52 uS .
 28 00fd0a S. 12.08 uS .
 29 00fd0b S. 12.12 uS .
 30 00fd0c A. 12.08 uS .
 31 00fd0d G. 11.52 uS .
 32 00fd0e E. 12.08 uS .
 33 00fd0f .. 12.12 uS .
 34

2-22 Getting Started

Now display the trace list:

U> tl 0..34
You will see:

As you can see, all of the requested states have been captured by
the analyzer.

 Line addr,H data,A count,R seq
 ----- ------ ------ --------- ---
 0 00fd00 .. --- +
 1 00fd01 .. 10.00 uS .
 2 00fd02 .. 10.00 uS .
 3 00fd03 .. 10.00 uS .
 4 00fd04 .. 10.00 uS .
 5 00fd05 .. 10.00 uS .
 6 00fd06 .. 10.60 uS .
 7 00fd07 .. 10.00 uS .
 8 00fd08 .. 10.00 uS .
 9 00fd09 .. 10.00 uS .
 10 00fd0a .. 10.00 uS .
 11 00fd0b .. 10.00 uS .
 12 00fd0c .. 10.60 uS .
 13 00fd0d .. 10.00 uS .
 14 00fd0e .. 10.00 uS .
 15 00fd0f .. 10.00 uS .
 16 00fd10 .. 10.00 uS .
 17 00fd11 .. 10.00 uS .
 18 00fd00 T. 152.5 uS .
 19 00fd01 H. 12.12 uS .
 20 00fd02 I. 11.48 uS .
 21 00fd03 S. 12.12 uS .
 22 00fd04 .. 12.08 uS .
 23 00fd05 I. 12.12 uS .
 24 00fd06 S. 11.48 uS .
 25 00fd07 .. 12.12 uS .
 26 00fd08 M. 12.08 uS .
 27 00fd09 E. 11.52 uS .
 28 00fd0a S. 12.08 uS .
 29 00fd0b S. 12.12 uS .
 30 00fd0c A. 12.08 uS .
 31 00fd0d G. 11.52 uS .
 32 00fd0e E. 12.08 uS .
 33 00fd0f .. 12.12 uS .
 34 00fd10 A. 12.08 uS .

Getting Started 2-23

Using Software
Breakpoints

You can stop program execution at specific address by using bp
(software breakpoint) command. When you define a software
breakpoint to a certain address, the emulator will replace the
opcode with one of undefined opcode (1B hex) as software
breakpoint instruction. When the emulator detects the special
instruction, user program breaks to the monitor, and the original
opcode will be placed at the breakpoint address. A subsequent run
or step command will execute from this address.

If the special instruction was not inserted as the result of bp
command (in other words, it is part of the user program), the
"Undefined software breakpoint" message is displayed.

Note You can set software breakpoints only at memory locations which
contain instruction opcodes (not operands or data). If a software
breakpoint is set at a memory location which is not an instruction
opcode, the software breakpoint instruction will never be executed
and the break will never occur.

Note Because software breakpoints are implemented by replacing
opcodes with the software breakpoint instruction, you cannot
define software breakpoints in target ROM. You can, however,
copy target ROM into emulation memory by cim command when
you are using the background monitor. (Refer to HP 64700
Terminal Interface User’s Reference manual.)

Displaying and
Modifying the Break

Conditions

Before you can define software breakpoints, you must enable
software breakpoints with the bc (break conditions) command. To
view the default break conditions and change the software
breakpoint condition, enter the following commands.

M> bc

2-24 Getting Started

bc -d bp #disable
bc -e rom #enable
bc -d bnct #disable
bc -d cmbt #disable
bc -d trig1 #disable
bc -d trig2 #disable

M> bc -e bp

Defining a Software
Breakpoint

Now that the software breakpoint is enabled, you can define
software breakpoints. Enter the following command to break on
the address of the OUTPUT_LOOP label.

M> bp 2032

Run the program and verify that execution broke at the
appropriate address.

M> r 2000

U> m 0fc00=41

!ASYNC_STAT 615! Software break point: 002032

M> reg

Notice that PC contains 2032.

When a breakpoint is hit, it becomes disabled. You can use the -e
option to the bp command to reenable the software breakpoint.

M> bp

###BREAKPOINT FEATURE IS ENABLED###
bp 002032 #disabled

M> bp -e 2032

M> bp

###BREAKPOINT FEATURE IS ENABLED###
bp 002032 #enabled

M> r 2000

U> m 0fc00=41

!ASYNC_STAT 615! Software breakpoint: 002032

M> bp

###BREAKPOINT FEATURE IS ENABLED###
bp 002032 #disabled

reg pc=2032 cp=00 sr=0700 dp=00 ep=00 tp=00 br=00 r0=1004 r1=fd11 r2=fc00
reg r3=fd00 r4=0000 r5=0041 r6=0011 r7=fe40 fp=0011 sp=fe40 mdcr=c1

Getting Started 2-25

Searching
Memory for
Strings or
Numeric
Expressions

The HP 64700 Emulator provides you with tools that allow you to
search memory for data strings or numeric expressions. For
example, you might want to know exactly where a string is loaded.
To locate the position of the string "THIS IS MESSAGE A" in the
sample program. Type:

M> ser 0..1fff="THIS IS MESSAGE A"

pattern match at address: 001004

You can also find numeric expressions. For example, you might
want to find all of the BEQ instructions in the sample program.
Since a BEQ instruction begins with 27 hex, you can search for that
value by typing:

M> ser -db 2000..2049=27

pattern match at address: 002011
pattern match at address: 002016
pattern match at address: 00201b

Making Program
Coverage
Measurements

In testing your program, you will often want to verify that all
possible code segments are executed. With the sample program, we
might want to verify that all of the code is executed if a command
"A", command "B", and an unrecognized command are input to the
program.

To make this measurement, we must first reset the coverage status.

M> cov -r

2-26 Getting Started

Note You should always reset the coverage status before making a
coverage measurement. Any emulator system command which
accesses emulation memory will affect the coverage status bit,
resulting in measurement errors if the coverage status is not reset.

Now, run the program and input the three commands:

M> r 2000

M> m 0fc00=41

M> m 0fc00=42

M> m 0fc00=43

Make the coverage measurement:

U> cov 2000..2049
percentage of memory accessed: % 100.0

You’re now finished with the "Getting Started" example. You can
proceed on with using the emulator and use this manual and the
HP 64700 Terminal Interface User’s Reference manual as needed to
answer your questions.

Getting Started 2-27

Notes

2-28 Getting Started

3

Using the H8/510 Emulator In-Circuit

When you are ready to use the H8/510 Emulator in conjunction
with actual target system hardware, there are some special
considerations you should keep in mind.

installing the emulator probe

properly configure the emulator

We will cover the first topic in this chapter. For complete details
on in-circuit emulation configuration, refer to Chapter 4.

In-Circuit Emulation 3-1

Installing the
Target System
Probe

Caution The following precautions should be taken while using the H8/510
Emulator. Damage to the emulator circuitry may result if these
precautions are not observed.

Power Down Target System. Turn off power to the user target
system and to the H8/510 Emulator before inserting the user plug
to avoid circuit damage resulting from voltage transients or
mis-insertion of the user plug.

Verify User Plug Orientation. Make certain that Pin 1 of the target
system adaptor and Pin 1 of the user plug are properly aligned
before inserting the user plug in the socket. Failure to do so may
result in damage to the emulator circuitry.

Protect Against Static Discharge. The H8/510 Emulator contains
devices which are susceptible to damage by static discharge.
Therefore, operators should take precautionary measures before
handling the user plug to avoid emulator damage.

Protect Target System CMOS Components. If your target system
includes any CMOS components, turn on the target system first,
then turn on the H8/510 Emulator; when powering down, turn off
the emulator first, then turn off power to the target system.

Pin Guard HP 64732 H8/510 emulator is shipped with a non-conductive pin
guard over the target system probe. This guard is designed to
prevent impact damage to the pins and should be left in place while
you are not using the emulator.

3-2 In-Circuit Emulation

Target Sytem Adaptor The HP 64732 emulator is shipped with a target system adaptor.
The adaptor allows you to connect the emulation probe to your
target system which is designed for the QFP package of H8/510
microprocessor.

Pin Protector The HP 64732 emulator is shipped with a short pin protector that
prevents damage to the target system adaptor when inserting and
removing the emulation probe. Do not insert the probe without
using a pin protector.

Installing the Target
System Probe 1. Attach the adaptor to your target system. You can use a

M2 screw to help attaching the adaptor to the target
system.

2. Install the emulation probe using the short pin protector
as shown in Figure 3-1.

Note You can order additional target system adaptor and a short pin
protector with part No. 64732-61613 and 64732-61614,
respectively.

Note You can use optional parts; a long pin protector and a pin extender
to avoid conjunction with the emulation probe and target system
components. Part No. are 64732-61615 and 64732-61616,
respectively. Contact your local HP sales representative to
purchase optional parts.

In-Circuit Emulation 3-3

Figure 3-1. Installing Probe into the Target System

3-4 In-Circuit Emulation

Figure 3-2. Dimension of the Target System Adaptor

In-Circuit Emulation 3-5

Target System
Interface

MD2 MD1 MD0 /NMI /STBY

A23-A16

A15-A0

3-6 In-Circuit Emulation

D15-D0

D7-D0

Q E /AS /RD /RFSH

In-Circuit Emulation 3-7

/LWR /HWR

/WAIT

/BACK /BREQ

3-8 In-Circuit Emulation

P33-P37 P4 P5 P6 P8

AVcc AVss

In-Circuit Emulation 3-9

Notes

3-10 In-Circuit Emulation

4

Configuring the H8/510 Emulator

In this chapter, we will discuss:

how to configure the HP 64700 emulator for H8/510
microprocessor to fit your particular measurement needs.

some restrictions of HP 64700 emulator for H8/510
microprocessor.

Types of Emulator
Configuration

The HP 64700 Emulator is different from other HP emulators
(such as those in the HP 64000-UX system) in that there are
several different classes of configuration commands.

Emulation Processor
to Emulator/Target

System

These are the commands which are generally thought of as
"configuration" items in the context of other HP 64000 emulator
systems. The commands in this group set up the relationships
between the emulation processor and the target system, such as
determining how the emulator responds to requests for the
processor bus. Also, these commands determine how the
emulation processor interacts with the emulator itself; memory
mapping and the emulator’s response to certain processor actions
are some of the items which can be configured.

These commands are the ones which are covered in this chapter.

Commands Which
Perform an Action or

Measurement

Several of the emulator commands do not configure the emulator;
they simply start an emulator program run or other measurement,
begin or halt an analyzer measurement, or allow you to display the
results of such measurements.

Configuring the Emulator 4-1

These commands are covered in the examples presented in earlier
manual chapters; they are also covered in the HP 64700 Terminal
Interface: User’s Reference manual.

Coordinated
Measurements

These commands determine how the emulator interacts with other
measurement instruments, such as external analyzers, or other HP
64700 emulators connected via the CMB (Coordinated
Measurement Bus).

These commands are covered in the HP 64700 CMB User’s Guide
and in the HP 64700 Terminal Interface: User’s Reference Manual.

Analyzer The analyzer configuration commands are those commands which
actually specify what type of measurement the analyzer is to make.

Some of the analyzer commands are covered earlier in this manual.
You can also refer to the HP 64700 Terminal Interface: Analyzer
User’s Guide and the HP 64700 Terminal Interface: User’s Reference
manual.

System This last group of commands is used by you to set the emulator’s
data communications protocol, load or dump contents of
emulation memory, set up command macros, and so on.

These commands are covered earlier in this manual and in the
manual titled HP 64700 Terminal Interface: User’s Reference.

4-2 Configuring the Emulator

Emulation
Processor to
Emulator/Target
System

As noted before, these commands determine how the emulation
processor will interact with the emulator’s memory and the target
system during an emulation measurement.

cf The cf command defines how the emulation processor will respond
to certain target system signals. It also defines the type of
emulation monitor to be used and optionally defines the location
of that monitor in emulation memory.

To see the default configuration settings defined by the cf
command, type:

M> cf
You will see:

cf ba=en
cf clk=int
cf dbc=en
cf drst=dis
cf mode=ext
cf mon=bg
cf nmi=en
cf rrt=dis
cf rsp=9
cf tbusrel=en
cf trfsh=en
cf trst=en

Let’s examine each of these emulator configuration options, with a
view towards how they affect the processor’s interaction with the
emulator.

Configuring the Emulator 4-3

cf ba The ba (bus arbitration) configuration item defines how your
emulator responds to bus request signals from the target system
during foreground operation. The /BREQ signal from the target
system is always ignored when the emulator is running the
background monitor.

M> cf ba=en
When bus arbitration is enabled, the /BREQ (bus request) signal
from the target system is responded to exactly as it would be if only
the emulation processor was present without an emulator. In other
words, if the emulation processor receives a /BREQ from the
target system, it will respond by asserting /BACK and will set the
various processor lines to tri-state. /BREQ is then released by the
target; /BACK is negated by the processor, and the emulation
processor restarts execution.

Note External DMA (Direct Memory Access) device is prohibited from
accessing to emulation memory.

M> cf ba=dis
When you disable bus arbitration by entering the above command,
the emulator ignores the /BREQ signal from the target system. The
emulation processor will never drive the /BACK line true; nor will
it place the address, data and control signals into the tri-state mode.

Enabling and disabling bus master arbitration can be useful to you
in isolating target system problems. For example, you may have a
situation where the processor never seems to execute any code.
You can disable bus arbitration using cf ba= dis to check and see if
faulty arbitration circuitry in your target system is contributing to
the problem.

4-4 Configuring the Emulator

cf clk The clk (clock) option allows you to select whether the emulation
processor’s clock will be sourced by your target system or by the
emulator.

M> cf clk=int
You can select the emulator’s internal 10 MHz system clock using
the above command.

M> cf clk=ext
You can specify that the emulator should use the clock input to the
emulator probe from the target system as the system clock. You
must use a clock input conforming to the specifications for the
H8/510 microprocessor.

Note The HP 64732 H8/510 emulator can operate upto 10 MHz system
clock.

Note Executing this command will drive the emulator into the reset state.

cf dbc The dbc (drive background cycles) option allows you to select
whether or not the emulator will drive the target system bus on
background cycles.

If you have selected to use a foreground monitor with the cf
mon= fg command, emulator monitor cycles will appear at the
target interface exactly as if they were user program cycles.

M> cf dbc=en

You can enable background cycle drive to target system by entering
the above command. Emulation processor’s address and control
strobes (except /LWR and /HWR) are driven during background
cycles.

Background write cycles won’t appear to the target system. (/LWR
and /HWR signals are always "high" when the dbc option is
enabled.)

Configuring the Emulator 4-5

M> cf dbc=dis

If you specify the above command, background monitor cycles are
not driven to the target system. When you select this option, the
emulator will appear to the target system as if it continuously
between bus cycles while it is operating in the background monitor.

You use the dbc option to avoid target system interaction
problems. For example, your target system interaction scheme may
depend on the constant repetition of bus cycles. In such case, using
the dbc option will help avoid the problem.

Note Refresh cycles are always driven to the target system regardless of
this configuration.

Note Executing this command will drive the emulator into the reset state.

cf drst The drst (drive reset) configuration item allows you to specify
whether or not the mulator drives the /RES signal to the target
system during emulation reset or reset by the Watchdog Timer.

M> cf drst=dis
The above command configures the emulator not to drive the reset
signal to the target.

M> cf drst=en
The emulator will drive the reset signal to the target system during
emulation or watchdog timer reset or reset by the Watchdog Timer.

To drive the reset signal, the emulator must be configured to
respond to the target reset with the cf trst= en command.

4-6 Configuring the Emulator

Caution To drive the reset signal to the target system, the driver of reset
signal on your target system must be an open collector or open
drain. Otherwise, enabling this configuration may result in damage
to target system or emulation circuitry.

Note The RSTOE (Reset output enable bit) is used to determine
whether the H8/510 processor outputs reset signal when the
processor is reset by the watchdog timer. However, the HP 64732
emulator ignores the configuration of the RSTOE, and works as it
is configured with cf drst command.

cf mode The mode (cpu operation mode) configuration item defines
operation mode in which the emulator works.

M> cf mode=ext
 The emulator will work using the mode setting by the target

system. The target system must supply appropriate input to MD0,
MD1 and MD2. If you are using the emulator out of circuit when
ext is selected, the emulator will operate in mode 1.

M> cf mode=<mode_num>

When < mode_num> is selected, the emulator will operate in
selected mode regardless of the mode setting by the target system.

Valid < mode_num> are following:

< mode_num> Description

1 The emulator will operate in mode 1. (expanded
minimum mode with 8 bit data bus)

2 The emulator will operate in mode 2. (expanded
minimum mode with 16 bit data bus)

Configuring the Emulator 4-7

3 The emulator will operate in mode 3. (expanded
maximum mode with 8 bit data bus)

4 The emulator will operate in mode 4. (expanded
maximum mode with 16 bit data bus)

Note Executing this command will drive the emulator into the reset state.

cf mon The mon (monitor) configuration item allows you to choose
between a foreground monitor supplied by you or the background
monitor supplied with the emulator.

The emulation monitor is the program that handles
communication between the emulation controller and the
emulation processor. For example, when you ask for a register
display, the processor is broken to the monitor, executes some code
to store its register contents in an array of memory locations, then
returns to executing your program.

The background monitor provided with the emulator offers the
greatest degree of transparency to your target system (that is, your
target system should generally be unaffected by monitor
execution). However, in some cases you may require an emulation
monitor tailored to the requirements of your system. In this case,
you will need to use a foreground monitor linked into your
program modules. See Appendix A of this manual for more
information on foreground monitors.

M> cf mon=bg
You select the use of the built-in background monitor through the
above command. A memory overlay is created and the background
monitor is loaded into that area.

M> cf mon=fg..XXXXXX
You select the use of your foreground monitor using this command.

XXXXXX defines an hexadecimal address where the monitor will
be located. (Note: this will not load the monitor, it only specifies its
location). You can define the location on a 2 kbyte boundary

4-8 Configuring the Emulator

(address ending in 000 hex or 800 hex) of 000800 hex through
0fff800 hex. (When you are using the emulator in mode1 or mode2,
000800 hex through 00f000 hex is available.) 000000 hex and
00f800 hex are not available as the location.

Remember that you must assemble and link your foreground
monitor starting at the 2 kbyte boundary specified in the command
above. You must also load the monitor into emulation memory.

Note If you intend to use a foreground monitor, the monitor must be
loaded before attempting to load any information into target
system memory.

Note When you use the foreground monitor, the trace exception vector
in the target system must point to TRACE_ENTRY in the
foreground monitor to use single step command. (Refer to
Appendix A of this manual.)

A memory mapper term is automatically created when you execute
the cf mon= fg command to reserve 2 kilobytes of memory space
for the monitor.

The memory map is reset any time cf mon= fg is entered. It is only
reset when cf mon= bg if the emulator is not already configured to
use the background monitor.

cf nmi The nmi (non maskable interrupt) configuration item determines
whether or not the emulator responds to NMI signal from the
target system during foreground operation.

M> cf nmi=en
Using the above command, you can specify that the emulator will
respond to NMI from the target system.

M> cf nmi=dis
The emulator won’t respond to NMI from the target system.

Configuring the Emulator 4-9

If you are using the background monitor, the emulator does not
accept any interrupt during background execution. NMI , /IRQ1,
/IRQ2 and /IRQ3 are latched last one during in background, and
such interrupts will occur when context is changed to foreground.
/IRQ0 and internal interrupts are ignored during in background
operation.

Note Executing this command will drive the emulator into the reset state.

cf rrt The rrt (restrict to real time) option lets you configure the
emulator so that commands which cause the emulator to break to
monitor and return to the user program will be rejected by the
emulator command interpreter.

M> cf rrt=en
You can restrict the emulator to accepting only commands which
don’t cause temporary breaks to the monitor by entering the above
command. Only the following emulator run/stop commands will
be accepted:

rst (resets emulation processor)

b (breaks processor to background monitor until you enter another
command)

r (runs the emulation processor from a given location)

s (steps the processor through a piece of code -- returns to monitor
after each step)

Commands which cause the emulator to break to the monitor and
return, such as reg, m (for target memory display), and others will
be rejected by the emulator.

4-10 Configuring the Emulator

Caution If your target system circuitry is dependent on constant execution
of program code, you should set this option to
cf rrt= en . This will help insure that target system damage doesn’t
occur. However, remember that you can still execute the rst, b and
s commands; you should use caution in executing these commands.

M> cf rrt=dis
When you use this command, all commands, regardless of whether
or not they require a break to the emulation monitor, are accepted
by the emulator.

cf rsp The rsp (reset stack pointer) configuration item allows you to
specify a value to which the stack pointer and stack page register
will be set upon the transition from emulation reset into the
emulation monitor.

R> cf rsp=XXXXXX
where XXXXXX is a 24-bit even address, will set the stack pointer
and stack page register to that value upon entry to the emulation
monitor after an emulation reset.

You cannot set rsp at the following location.

Odd address
Internal I/O register area

When you are using the foreground monitor, rsp should be defined
in an emulation or target system RAM area which is not used by
user program.

For example, to set the stack pointer to 0fe00 hex, type:

R> cf rsp=0fe00
Now, if you break the emulator to monitor using the b command,
the stack pointer will be modified to the value 0fe00 hex.

Configuring the Emulator 4-11

Note Without a stack pointer, the emulator is unable to make the
transition to the run state, step, or perform many other emulation
functions. However, using this option does not preclude you from
changing the stack pointer value or location within your program;
it just sets the initial conditions to allow a run to begin.

cf tbusrel The tbusrel (trace bus release cycles) configuration item defines
whether or not the emulator traces bus release cycles.

M> cf tbusrel=en
When you enable this item with the above command, each time bus
release occurs, one emulation analyzer state will be generated to
recognize the bus release cycle.

M> cf tbusrel=dis
When disabled, no analyzer state will be generated at the
occurrence of bus release. Therefore, any bus release cycle will be
ignored by the analyzer.

cf trfsh The trfsh (trace refresh cycles) configuration item defines whether
or not the emulator traces refresh cycles.

M> cf trfsh=en
When you enable this item with the above command, the analyzer
will trace refresh cycles.

M> cf trfsh=dis
When disabled, the analyzer will ignore refresh cycles.

cf trst The trst (target reset) configuration item allows you to specify
whether or not the emulator responds to /RES and /STBY signals
by the target system during foreground operation. While running
the background monitor, the emulator ignores /RES and /STBY
signals, otherwise the emulator status is "waiting for the target
system reset (prompt is T>)". (You can see the emulator status
with es command.)

 M> cf trst=en
When you enable target system reset with the above command, the
emulator will respond to /RES and /STBY input during foreground
operation.

4-12 Configuring the Emulator

M> cf trst=dis
When disabled, the emulator won’t respond to /RES and /STBY
input form the target system.

Note Executing this command will drive the emulator into the reset state.

Memory Mapping Before you begin an emulator session, you must specify the
location and type of various memory regions used by your
programs and your target system (whether or not it exists). You do
this for several reasons:

the emulator must know whether a given memory location
resides in emulation memory or in target system memory.
This allows the emulator to properly orient buffers for the
given data transfer.

the emulator needs to know the size of any emulation
memory blocks so it can properly reserve emulation
memory space for those blocks.

the emulator must know if a given space is RAM
(read/write), ROM (read only), or doesn’t exist. This
allows the emulator to determine if certain actions taken
by the emulation processor are proper for the memory
type being accessed. For example, if the processor tries to
write to a emulation memory location mapped as ROM,
the emulator will not permit the write (even if the memory
at the given location is actually RAM). (You can
optionally configure the emulator to break to the monitor
upon such occurrence with the bc -e rom command.) Also,
if the emulation processor attempts to access a non
existent location (known as "guarded"), the emulator will
break to the monitor.

You use the map command to define memory ranges and types for
the emulator. The HP 64732 H8/510 emulator memory mapper
allows you to define up to 16 different map terms; each map term
has a minimum size of 256 bytes. If you specify a value less than 256
byte, the emulator will automatically allocate an entire block. You

Configuring the Emulator 4-13

can specify one of five different memory types (erom, eram, trom,
tram, grd).

For example, you might be developing a system with the following
characteristics:

input port at 0f000 hex

output port at 0f100 hex

program and data from 2000 through 6fff hex

Suppose that the only thing that exists in your target system at this
time are input and output ports and some control logic; no
memory is available. You can reflect this by mapping the I/O ports
to target system memory space and the rest of memory to
emulation memory space. Type the following commands:

R> map 0f000..0f100 tram

R> map 2000..6fff eram

remaining number of terms : 14
remaining emulation memory : 1a800h bytes
map 002000..006fff eram # term 1
map 00f000..00f1ff tram # term 2
map other tram

As you can see, the mapper rounded up the second term to 256
bytes block, since those are minimum size blocks supported by the
H8/510 emulator.

Note You should map all memory ranges used by your programs before
loading programs into memory. This helps safeguard against loads
which accidentally overwrite earlier loads if you follow a map/load
procedure for each memory range.

For further information on mapping, refer to the examples in
earlier chapters of this manual and to the HP 64700 Terminal
Interface User’s Reference manual.

4-14 Configuring the Emulator

Break Conditions The bc command lets you configure the emulator’s response to
various emulation system and external events.

Write to ROM

If you want the emulator to break into the emulation monitor
whenever the user program attempts to write to a memory region
mapped as ROM, enter:

M> bc -e rom
You can disable this function by entering:

M> bc -d rom
When disabled, the emulator will not break to the monitor upon a
write to ROM; however, it will not modify the memory location if
the memory at that location is actually RAM.

Software Breakpoints

The bp command allows you to insert software traps in your code
which will cause a break to the emulation monitor when
encountered during program execution. If you want to enable the
insertion and use of software breakpoints by the bp command,
enter:

M> bc -e bp
To disable use of software breakpoints, type:

M> bc -d bp
Any breakpoints which previously existed in memory are disabled,
but are not removed from the breakpoint table.

Trigger Signals

The HP 64700 emulator provides four different trigger signals
which allow you to selectively start or stop measurements
depending on the signal state. These are the bnct (rear panel BNC
input), cmbt (CMB trigger input), trig1 and trig2 signals (provided
by the analyzer).

You can configure the emulator to break to the monitor upon
receipt of any of these signals. Simply type:

M> bc -e <signal>

Configuring the Emulator 4-15

For example, to have the emulator break to monitor upon receipt
of the trig1 signal from the analyzer, type:

M> bc -e trig1
(Note: in this situation, you must also configure the analyzer to
drive the trig1 signal upon finding its trigger by entering tgout
trig1).

Restrictions and
Considerations

Monitor Break at
Sleep/Standby Mode

When the emulator breaks into the monitor, sleep or software
standby mode is released. For example, if you use the reg command
at sleep mode, the emulator processor will go into normal state and
start execution.

Watch Dog Timer in
Background

Watch dog timer suspends count up while the emulator is running
in background monitor.

Reset Output Enable
Bit

The RSTOE (Reset output enable bit) is used to determine
whether the H8/510 processor outputs reset signal when the
processor is reset by the watchdog timer. However, the HP 64732
emulator ignores the configuration of the RSTOE, and works as it
is configured with cf drst command.

Address Error and
Register Values

In operation of the H8/510 microprocessor, the Stack Pointer must
always contain an even value. If the Stack Pointer is odd, you will
see the following error message when you breaks into the monitor.

Address error occurred while in monitor

In this case, the values of the following registers will be unreliable.

Stack Pointer (SP)
Code Page Register (CP)
Status Register (SR)

4-16 Configuring the Emulator

A

Using the Optional Foreground Monitor

By using and modifying the optional Foreground Monitor, you can
provide an emulation environment which is customized to the
needs of a particular target system.

Comparison of
Foreground and
Background
Monitors

An emulation monitor is required to service certain requests for
information about the target system and the emulation processor.
For example, when you request a register display, the emulation
processor is forced into the monitor. The monitor code has the
processor dump its registers into certain emulation memory
locations, which can then be read by the emulator system controller
without further interference.

Background Monitors A background monitor is an emulation monitor which overlays the
processor’s memory space with a separate memory region. Entry
into the monitor is normally accomplished by jamming the monitor
addresses onto the processor’s address bus.

Usually, a background monitor will be easier to work with in
starting a new design. The monitor is immediately available upon
powerup, and you don’t have to worry about linking in the monitor
code or allocating space for the monitor to use the emulator. No
assumptions are made about the target system environment;
therefore, you can test and debug hardware before any target
system code has been written. All of the processor’s address space
is available for target system use, since the monitor memory is
overlaid on processor memory, rather than subtracted from
processor memory. Processor resources such as interrupts are not
taken by the background monitor.

Using A Foreground Monitor A-1

However, all background monitors sacrifice some level of support
for the target system. For example, when the emulation processor
enters the monitor code to display registers, it will not respond to
target system interrupt requests. This may pose serious problems
for complex applications that rely on the microprocessor for
real-time, non-intrusive support. Also, the background monitor
code resides in emulator firmware and can’t be modified to handle
special conditions.

Foreground Monitors A foreground monitor may be required for more complex
debugging and integration applications. A foreground monitor is a
block of code that runs in the same memory space as your program.
You link this monitor with your code so that when control is
passed to your program, the emulator can still service real-time
events, such as interrupts or watchdog timers. For most
multitasking, interrupt intensive applications, you will need to use
a foreground monitor.

You can tailor the foreground monitor to meet your needs, such as
servicing target system interrupts. However, the foreground
monitor does use part of the processor’s address space, which may
cause problems in some target systems. You must also properly
configure the emulator to use a foreground monitor (see Chapter 3
and the examples in this appendix); and, you must link the monitor
with your other program code.

A-2 Using A Foreground Monitor

An Example Using
the Foreground
Monitor

In the following example, we will illustrate how to link a
foreground monitor with the sample program from Chapter 2. By
using the emulation analyzer, we will also show how the emulator
switches from state to state using a foreground monitor.

Select A Monitor
Suitable to Your

Application

The H8/510 emulator is provided with two foreground monitor
programs. When you are using the emulator in the minimum
mode, use fm510min.src monitor program. When you are using
the emulator in the maximum mode, use the fm510max.src
monitor program.

For this example, we will use the fm510min.src monitor program,
and will locate the monitor at 8000 hex; the sample program will be
located at 2000 hex with its data at 1000 hex.

Modify Location
Declaration Statement

To use the monitor, you must modify the .SECTION statement just
after the first comment section of the monitor program listing. You
should see the line below:

LOCATE_ADRS: .EQU H’8000 ;start monitor on 2k boundary
 .SECTION fm510min,CODE,LOCATE=LOCATE_ADRS

You can specify the monitor location by modifying this label
LOCATE_ADRS. For example, if you want locate the monitor
program at 6000 hex, make above line to as below:

LOCATE_ADRS: .EQU H’6000 ;start monitor on 2k boundary
 .SECTION fm510min,CODE,LOCATE=LOCATE_ADRS

Notice that the .SECTION statement is indented from the left
margin; if it is not indented, the assembler will attempt to interpret
the .SECTION as a label and will generate an error when
processing the address portion of the statement. You can load the
fm510min.src monitor on a 2k byte boundary of 00800 hex through
0f000 hex. When you are going to use fm510max.src, you can load
it on a 2k byte boundary of 00800 hex through 0fff800 hex except
0f800 hex.

In this example, we will locate the monitor at 8000 hex. Therefore,
you don’t have to modify the monitor program.

Using A Foreground Monitor A-3

You can also specify monitor location when you link it. If you
prefer this way, do the following:

Change .EQU statement and .SECTION statement just
after the first comment section into comment line by
inserting ";" at the first column of these lines.
Make the next two lines (.EQU statement and .SECTION
statement which doesn’t have LOCATE keyword)
effective by deleting ";" at the first column of these lines.
Specify the monitor location when you link the monitor
program. To do this, you can use the START linker
subcommand like this:

$h8lnk

:INPUT sampprog,fm510min

:OUTPUT testfg

:START fm510min(8000)

:EXIT

Configure the
Emulator

Before configuring the emulator, you should initialize the emulator
to a known state. Type:

M> init -p

You need to tell the emulator that you will be using a foreground
monitor and allocate the memory space for the monitor. This is all
done with one configuration command. To locate the monitor on a
2k boundary starting at 8000 hex, type:

R> cf mon=fg..8000

To see the new memory mapper term allocated for the foreground
monitor, type:

R> map

remaining number of terms : 15
remaining emulation memory : 1f800h bytes
map 0008000..00087ff eram # term 1
map other tram

Notice that a 2k byte block from 8000 through 87ff hex was
mapped.

A-4 Using A Foreground Monitor

Now, you need to map memory space for the sample program.
Type:

R> map 0..2fff erom

R> map 0fc00..0feff eram

Set a Stack Pointer You need to set up the stack pointer for use by the foreground
monitor. The foreground monitor use the stack when transit from
foreground monitor to user program. You can use the cf rsp
command to define the stack pointer location; the stack pointer
will be initialized on each transition from emulation reset to the
monitor. Type:

R> cf rsp=0fe40

Load the Program
Code

Now it’s time to load the sample program and monitor. Link the
sample program provided in chapter 2 and monitor program into
absolute file named testfg.abs, and covert it into HP format
absolute file named testfg.X. In the example shown, we’re loading
the program from a host with the emulator in Transparent
Configuration. If you’re using the standalone configuration with a
data terminal, you will need to enter the data using the m
command. (You can get the data from your assembly listings.) See
Chapter 2 for information.

Load the program by typing:

R> load -hbs "transfer -tb testfg.X"
############

You can also load the sample program and the monitor separately.
In this case, you don’t have to link the sample program with the
monitor.

Before we forget, let’s initialize the stack pointer by breaking the
emulator out of reset:

R> b
Now you can run the sample program with the following command:

M> r 2000

Using A Foreground Monitor A-5

Single Step and
Foreground
Monitors

To use the s command to step through processor instructions with
either of the monitors listed in this chapter, you must modify the
processor’s exception vector table. The entry that you must modify
is the trace exception vector. The vector must point to the
identifier TRACE_ENTRY in the foreground monitor. You can
know the location of TRACE_ENTRY from the assemble listing
generated by the assembler.

Limitations of
Foreground
Monitors

Synchronized
measurements

You cannot perform synchronized measurements over the CMB
when using a foreground monitor. If you need to make such
measurements, set the foreground/background configuration
option to cf mon= bg.

A-6 Using A Foreground Monitor

B

H8/510 Emulator Specific Command Syntax

The following pages contain descriptions of command syntax
specific to the H8/510 emulator. The following syntax items are
included (several items are part of other command syntax):

< CONFIG_ITEMS> . May be specified in the cf
(emulator configuration) and help cf commands.

< DISPLAY_MODE> . May be specified in the mo
(display and access mode), m (memory), and ser (search
memory for data) commands. The display mode is used
when memory locations are displayed or modified.

< ADDRESS> . May be specified in emulation commands
which allow addresses to be entered.

< Register Classes and Names> . May be specified in the
reg (register) command.

H8/510 Emulator Specific Command Syntax B-1

CONFIG_ITEMS

Summary H8/510 emulator configuration items.

Syntax

B-2 H8/510 Emulator Specific Command Syntax

Description The H8/510 emulator has several dedicated configuration items
which allow you to specify the emulator’s interaction with the
target system and the rest of the emulation system. These items
are:

ba Enable/disable bus arbitration with target system.

clk Select internal/external clock source.

dbc Enable/disable to drive background cycles to
target system.

drst Enable/disable to drive emulation reset to target
system.

mode Determine emulator processor operation mode.

mon Select background or foreground monitor.

nmi Enable/disable NMI (non maskable interrupt)
from target system.

rrt Restrict emulator to real time runs.

rsp Specify system stack pointer value to load upon
each transition from emulation reset to the
monitor.

tbusrel Enable/disable tracing bus release cycles.

trfsh Enable/disable tracing refresh cycles.

trst Enable/disable target system reset.

Complete explanations of all configuration items are given in
chapter 4 of this manual.

H8/510 Emulator Specific Command Syntax B-3

Examples To select an external clock, type:

M> cf clk=ext
You can obtain the status of configuration items by typing the item
name without a value. You can also specify multiple configuration
items on the same line. Type:

M> cf mon=fg..08000 rrt=dis clk

clk=int

Here, we changed to a foreground monitor located at address 8000
hex, disabled the real-time runs restriction, and ask processor clock
source. Notice that items which are changed do not have status
printed; you could explicitly request the new status by repeating the
configuration item on the command line after the change but
without a value. For example:

R> cf mon=fg..2000 mon

cf mon=fg..2000

Related information Refer to the cf syntax pages in the User’s Reference manual. Also,
refer to chapter 4 of this manual for complete information about
each configuration item.

B-4 H8/510 Emulator Specific Command Syntax

ACCESS MODE
and DISPLAY
MODE

Summary Specify the memory display format or the size of memory locations
to be modified.

Syntax

 b Byte. Memory is displayed in a byte format, and
when memory locations are modified, bytes are
changed.

w Word. Memory is displayed in a word format,
and when memory locations are modified, words
are changed.

m Mnemonic. Memory is displayed in mnemonic
format; that is, the contents of memory locations
are inverse-assembled into mnemonics and
operands. When memory locations are
modified, the last non-mnemonic display mode
specification is used. You cannot specify this
display mode in the ser (search memory for
data) command.

Defaults The < DISPLAY_MODE> and the < ACCESS_MODE> are b at
power up initialization. Display mode specifications are saved;
that is, when a command changes the display mode, the new
display mode becomes the current default.

H8/510 Emulator Specific Command Syntax B-5

Note When the < ACCESS_MODE> is w, modifying target memory will
fail if you try to modify memory from an odd address or with data
which byte count is odd. Therefore, it is recommended to use the
emlator with the default < ACCESS_MODE> (b).

Related Information Refer to the mo syntax information in the User’s Reference manual
for further information on use of the mode command.

ADDRESS

Summary Address specification used in emulation commands.

Description The < ADDRESS> parameter used in emulation commands is
specified in 24 bits address information.

Examples m 1000

m 20000..200ff

B-6 H8/510 Emulator Specific Command Syntax

io Command

Syntax

Summary The io command accesses devices on the target system with
MOVFPE/MOVTPE instruction.

Restrictions
The io command accesses target system memory regardless
of memory mapping.
Address range cannot be specified in io command.

H8/510 Emulator Specific Command Syntax B-7

Register Classes
and Names

Summary H8/510 register designators.

Description The following register classes and names are used with the
display/modify registers commands in H8/510 emulator.

* (Basic) Class

Register name Description

pc
cp
sr
dp
ep
tp
br
r0
r1
r2
r3
r4
r5
r6
r7
r7
fp
sp
mdcr

Program counter
Code page register
Status register
Data page register
Extended page register
Stack page register
Base register
Register R0
Register R1
Register R2
Register R3
Register R4
Register R5
Register R6
Register R6
Register R7
Frame pointer
Stack pointer
Mode control register

B-8 H8/510 Emulator Specific Command Syntax

sys Class System control registers

Register name Description

rfshcr
wcr
arbt
ar3t
mdcr
sbycr
brcr

Refresh control register
Wait control register
Byte are top register
3 state area top register
Mode control register
Software stand-by control register
Bus relaese control register

intc Class Interrupt control registers

ipra
iprab
iprc
iprd
nmicr
irqcr

Interrupt priority register A
Interrupt priority register B
Interrupt priority register C
Interrupt priority register D
NMI control register
IRQ control register

dtc Class Data transfer controller registers

dtea
dteb
dtec
dted

DT enable register A
DT enable register B
DT enable register C
DT enable register D

H8/510 Emulator Specific Command Syntax B-9

port Class I/O port registers

Register name Description

p1ddr
p2ddr
p3ddr
p4ddr
p5ddr
p6ddr
p8ddr
p1dr
p2dr
p3dr
p4dr
p5dr
p6dr
p7dr
p8dr

Port 1 data direction register
Port 2 data direction register
Port 3 data direction register
Port 4 data direction register
Port 5 data direction register
Port 6 data direction register
Port 8 data direction register
Port 1 data register
Port 2 data register
Port 3 data register
Port 4 data register
Port 5 data register
Port 6 data register
Port 7 data register
Port 8 data register

frt1 Class Free running timer 1 registers

frtcr1
frtcsr1
frc1
ocra1
ocrb1
icr1

Timer control register
Timer control/status register
Free running counter
Output compare register A
Output compare register B
Input capture register

B-10 H8/510 Emulator Specific Command Syntax

frt2 Class Free running timer 2 registers

Register name Description

frtcr2
frtcsr2
frc2
ocra2
ocrb2
icr2

Timer control register
Timer control/status register
Free running counter
Output compare register A
Output compare register B
Input capture register

frt3 Class Free running timer 3 registers

frtcr3
frtcsr3
frc3
ocra3
ocrb3
icr3

Timer control register
Timer control/status register
Free running counter
Output compare register A
Output compare register B
Input capture register

tmr Class Timer registers

tcr
tcsr
tcora
tcorb
tcnt

Timer control register
Timer control/status register
Timer constant register A
Timer constant register B
Timer counter

wdt Class Watchdog timer registers

wdtcsr
wdtcnt
rstcsr

Timer control/status register
Timer counter
Reset control/status register

H8/510 Emulator Specific Command Syntax B-11

sci1 Class Serial communication interface 1 registers.

Register name Description

rdr1
tdr1
smr1
scr1
ssr1
brr1

Receive data register
Transmit data register
Serial mode register
Serial control register
Serial status register
Bit rate register

sci2 Class Serial communication interface 2 registers.

rdr2
tdr2
smr2
scr2
ssr2
brr2

Receive data register
Transmit data register
Serial mode register
Serial control register
Serial status register
Bit rate register

adc Class A/D converter registers

addra
addrb
addrc
addrd
adcsr
adcr

A/D data register A
A/D data register B
A/D data register D
A/D data register D
A/D control/status register
A/D control register

B-12 H8/510 Emulator Specific Command Syntax

C

H8/510 Emulator Specific Error Messages

The following pages document the error messages which are
specific to the HP 64732 H8/510 emulator. The cause of the error is
described, as well as the action you must take to remedy the
situation.

Message 140 : Stack pointer not initialized

Cause

This error occurs when you attempt to execute user program (with
r or s command) without set up the stack pointer. You will see this
error message only when you are operating with the foreground
monitor. When you are using the backgorund monitor, another
error message will be reported.

Action

Set up the stack pointer with cf rsp command. Refer to chapter 3 of
this manual for more information.

Message 141 : Stack is in I/O registers

Cause

This error occurs when you attempt to execute user program after
you set up the stack pointer at internal I/O register area.

H8/510 Emulator Specific Error Me ssages C-1

Action

Set up the stack pointer at proper location with cf rsp command.
Refer to chapter 3 of this manual for more information.

Message 144 : Invalid address for run or step in minimum mode

Cause

This error occurs when you attempt to run or step from address
other than page 0 during the emulator operates in minimum mode.

Message 145 : Code page register not writable in minimum mode

Cause

This error occurs when you attempt to modify the Code Page
Register during the emulator operates in miminum mode.

Message 147 : Address error occured while in monitor

Cause

This error occurs when you break into the monitor while the Stack
Pointer contains an odd value.

C-2 H8/510 Emulator Specific Error Me ssages

Index

A address error 4-16
ADDRESS syntax B-6
Analyzer

configuration 2-21
configuration commands 4-2
halting 2-22
pipeline 2-22
storage specification 2-21
trace 2-21
trace list display 2-22
trace list format 2-21
trigger specification 2-21

Analyzer trace
starting 2-21

B b Command 2-17
Background monitor A-1
bc Command 2-9, 2-24, 4-15
Before using the emulator 2-2
bp Command 2-24, 4-15
Break

write to ROM 4-15
Break condition 2-24
Breaks 4-15
Bus arbitration

configure emulator’s response 4-4
using configuration to isolate target problem 4-4

Bus release cycles
enable/disable tracing bus release cycles 4-12

C cf ba Command 4-4
cf clk Command 4-5
cf Command 2-8, 4-3
cf dbc Command 4-5
cf drst Command 4-6
cf mode Command 4-7
cf mon Command 4-8

Index-1

cf nmi Command 4-9
cf rrt Command 4-10
cf rsp Command 4-11
cf tbusrel Command 4-12
cf trfsh Command 4-12
cf trst Command 4-12
cim Command 2-24
Clock selection for microprocessor 4-5
Command help 2-6
Command prompts 2-17
Command syntax, specific to H8/510 emulator B-1
Commands

analyzer configuration 4-2
b 2-17
bc 2-9, 2-24, 4-15
bp 2-24, 4-15
cf 2-8, 4-3
cf ba 4-4
cf clk 4-5
cf dbc 4-5
cf drst 4-6
cf mode 4-7
cf mon 4-8
cf nmi 4-9
cf rrt 4-10
cf rsp 4-11
cf tbusrel 4-12
cf trfsh 4-12
cf trst 4-12
cim 2-24
configuration 4-1
coordinated measurement 4-2
cov 2-26
es 4-12
help 2-6
init 2-7
io B-7
load 2-15
m 2-11, 2-19
map 2-10, 4-14
measurement 4-1

2-Index

Commands (cont’d)
r 2-17 - 2-18
reg 2-18
rst 2-17
s 2-20
ser 2-26
system 4-2
t 2-21
tf 2-21
tg 2-21
th 2-22
tl 2-22
tsto 2-21
xp 2-13

Comparison of foreground/background monitors A-1
CONFIG_ITEMS syntax B-2
Configuration

analyzer 4-2
breaks 4-15
bus arbitration 4-4
clock selection 4-5
displaying 4-3
drive background cycles to target 4-5
drive emulation reset to target 4-6
enable/disable target interrupts 4-9
enable/disable target system reset 4-12
enable/disable to trace bus release cycles 4-12
enable/disable to trace refresh cycles 4-12
for getting started 2-8
foreground/background monitor 4-8
measurement commands 4-1
memory mapping 4-13
microprocessor operation mode 4-7
processor to emulator/target system 4-1, 4-3
restrict to real-time runs 4-10
stack pointer 4-11
system 4-2
types of 4-1

Coordinated measurement commands 4-2
cov Command 2-26
Coverage measurement 2-26

Index-3

D Displaying
configuration 4-3
memory 2-19
registers 2-18
trace list 2-22

DMA limitations 4-4

E E clock synchronous target access B-7
Emulator

configuration 2-8
initialization 2-7
purpose 1-1

Emulator features 1-3
analyzer 1-3
breakpoints 1-4
clock speeds 1-3
emulation memory 1-3
processor reset control 1-4
register display/modify 1-4
restrict to real-time runs 1-4
single-step processor 1-4
supported microprocessors 1-3

Emulator limitations 1-5
DMA support 1-5
Reset Output Enable bit 1-5, 4-16
Sleep/standby mode 1-5

Emulator limitations and restrictions 4-4
Emulator specific command syntax B-1
Emulator status 4-12
es Command 4-12

F Foreground monitor
address requirements 4-9
to use single step command 4-9

Foreground monitors A-2
example of using A-3
select an appropriate monitor A-3
single-step processor A-6

H Halting the analyzer 2-22
Help 2-6
help Command 2-6

4-Index

I Information help 2-6
init Command 2-7
Initializing the Emulator 2-7
Installing target system probe

target system probe 3-2
Interrupts

enable/disable from target system 4-9
io Command B-7
io Command (syntax) B-7

L Limitations
DMA 4-4
monitor break at sleep mode 4-16
monitor break at standby mode 4-16
Watch dog timer in background 4-16

load Command 2-15
Loading programs 2-11

for Standalone Configuration 2-11
for Transparent Configuration 2-13
load command 2-15
transfer utility 2-13

M m Command 2-11, 2-19
map Command 2-10, 4-14
Measurement commands 4-1
Memory Display 2-19

mnemonic format 2-16
Memory mapping 4-13

defining memory type to emulator 4-13
for getting started program 2-10
sequence of map/load commands 4-14

Memory search 2-26
Mnemonic display format 2-16
Monitor

select foreground/background monitor 4-8
Monitors

background A-1
comparison of foreground/background A-1

MOVFPE instruction B-7
MOVTPE instruction B-7

N non-conductive pin guard
target system probe 3-2

Index-5

P pin protector 3-3
Predefining stack pointer 4-11
Prerequisites for using the emulator 2-2
Processor clock selection 4-5
Program loads 2-11
Program tracing 2-21
Prompts

emulator command 2-17
Purpose of the Emulator 1-1

R r Command 2-17 - 2-18
Real-time runs

restricting emulator to 4-10
refresh cycles

enable/disable tracing refresh cycles 4-12
reg Command 2-18
Register class B-8
Register Display 2-18
Register name B-8
Restrict to real time runs 4-10

permissible commands 4-10
target system dependency 4-11

rst Command 2-17

S s Command 2-20
Sample programs

for getting started 2-3
ser Command 2-26
Single step 2-20

in foregorund monitor A-6
Sleep mode

unavailable commands 4-16
Software breakpoints 2-24, 4-15

defining in target ROM 2-24
Stack pointer 4-16

predefining 4-11
Standby mode

unavailable commands 4-16
Starting a trace 2-21
Storage qualifier 2-21
Syntax (command), specific to H8/510 emulator B-1
System commands 4-2

6-Index

T t Command 2-21
target system adaptor 3-3
Target system dependency on executing code 4-11
Target system interrupts

enable/disable 4-9
Target system probe

cautions for installation 3-2
installation 3-2
installation procedure 3-3
non-conductive pin guard 3-2

Target system reset 4-12
tf Command 2-21
tg Command 2-21
th Command 2-22
tl Command 2-22
Trace list display 2-22
Trace list format 2-21
Tracing program execution 2-21
Transfer utility 2-13
Transparent mode 2-13
Trigger signals

break upon 4-15
tsto Command 2-21
Types of configuration 4-1

W Watch dog timer
in background monitor 4-16

X xp Command 2-13

Index-7

Notes

8-Index

	Using This Manual
	Table of Contents
	Introduction to the H8/510 Emulator
	Getting Started
	Using the H8/510 Emulator In-Circuit
	Configuring the H8/510 Emulator
	Using the Optional Foreground Monitor
	H8/510 Emulator Specific Command Syntax
	H8/510 Emulator Specific Error Messages
	Index

