HP 64731 70322/70320 Emulator Terminal Interface

User's Guide

HP Part No. 64731-97004 Printed in U.S.A. March 1993

Edition 3

Notice	Hewlett-Packard makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.
	Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is not furnished by Hewlett-Packard.
	© Copyright 1988,1989,1993, Hewlett-Packard Company.
	This document contains proprietary information, which is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced or translated to another language without the prior written consent of Hewlett-Packard Company. The information contained in this document is subject to change without notice.
	HP is a trademark of Hewlett-Packard Company.
	UNIX is a registered trademark of UNIX System Laboratories Inc. in the U.S.A. and other countries.
	V25 [™] is trademark of NEC Electronics Inc.
	Hewlett-Packard Company P.O. Box 2197 1900 Garden of the Gods Road Colorado Springs, CO 80901-2197, U.S.A.
	RESTRICTED RIGHTS LEGEND Use, duplication,or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013. Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304 U.S.A. Rights for non-DOD U.S.Government Departments and Agencies are as set forth in FAR 52.227-19(c)(1,2).

Printing History	New editions are complete revisions of the manual. The date on the title page changes only when a new edition is published.								
	A software code n version level of th issued. Many pro changes and, man accompanying pro one-to-one corres revisions.	hay be printed before the date; this indica e software product at the time the manua duct updates and fixes do not require ma ual corrections may be done without oduct changes. Therefore, do not expect a spondence between product updates and	ites the il was nual i manual						
	Edition 1	64731-90901, August 1988	E0888						
	Edition 2	64731-97000, June 1989							
	Edition 3	64731-97004, April 1993							

Using this Manual

This manual will show you how to use the HP 64731 (70322/70320) emulator with the firmware resident Terminal Interface.

This manual will:

- Show you how to use emulation commands by executing them on a sample program and describing their results.
- Show you how to configure the emulator for your development needs. Topics include: restricting the emulator to real-time execution, selecting a target system clock source, and allowing the target system to insert wait states.
- Show you how to use the emulator in-circuit (connected to a target system).
- Describe the command syntax which is specific to the 70322/70320 emulator.

This manual will not:

■ Describe every available option to the emulation commands; this is done in the *HP 64700 Emulators Terminal Interface: User's Reference.*

Organization

- **Chapter 1** Introduction to the 70322/70320 Emulator. This chapter briefly introduces you to the concept of emulation and lists the basic features of the HP 64731 70322/70320 emulator.
- **Chapter 2** Getting Started. This chapter shows you how to use emulation commands by executing them on a sample program. This chapter describes the sample program and how to: load programs into the emulator, map memory, display and modify memory, display registers, step through programs, run programs, use software breakpoints, search memory for data, and perform coverage tests on emulation memory.
- **Chapter 3 Emulation Topics**. This chapter shows you how to: restrict the emulator to real-time execution, use the analyzer trigger to cause breaks, and run the emulator from target system reset.
- **Chapter 4** In-Circuit Emulation Topics. This chapter shows you how to: install the emulator probe into a target system, select a target system clock source, allow the target system to insert wait states, and use the features which allow you to debug target system ROM.
- Appendix A 70322/70320 Emulator Specific Command Syntax. This appendix describes the command syntax which is specific to the 70322/70320 emulators. Included are: emulator configuration items, address syntax, display and access modes.

Contents

1 Introduction to the 70322/70320 Emulator

Introduction
Purpose of the Emulator
Features of the 70322/70320 Emulator
Supported Microprocessors
Clock Speeds
Emulation Memory1-3
Analysis
Registers
Single-Step
Breakpoints
Reset Support
Configurable Target System Interface
Background Emulation Monitor
Real-Time Operation1-4

2 Getting Started

Introduction
Before You Begin
A Look at the Sample Program
Using the "help" Facility
Becoming Familiar with the System Prompts
Initializing the Emulator
Other Types of Initialization
Mapping Memory
Which Memory Locations Should be Mapped? 2-9
Getting the Sample Program into Emulation Memory 2-10
Standalone Configuration
Transparent Configuration
Remote Configuration
For More Information
Displaying Memory In Mnemonic Format 2-14
Stepping Through the Program
Displaying Registers 2-15

Contents -1

Combining Commands 2-16
Using Macros 2-17
Command Recall
Repeating Commands
Modifying Memory 2-18
Specifying the Access and Display Modes
Searching Memory for Data 2-19
Breaking into the Monitor
Using Software Breakpoints
Displaying and Modifying the Break Conditions 2-22
Defining a Software Breakpoint
Using the Analyzer
Predefined Trace Labels
Predefined Status Equates
Specifying a Simple Trigger
For a Complete Description
Copying Memory
Testing for Coverage 2-27
Resetting the Emulator

3 Emulation Topics

Introduction
Prerequisites
Execution Topics
Restricting the Emulator to Real-Time Runs
Default Physical to Logical Run Address Conversion 3-3
Setting Up to Break on an Analyzer Trigger
Making Coordinated Measurements
Monitor Option Topics
Background Monitor
Locating the Monitor
Selecting Microprocessor
Selecting Accept Or Ignore Target System Reset
Other Topics
Detecting Illegal Opcodes

4 In-Circuit Emulation Topics

Introduction	-1
Prerequisites	-2
Installing the Emulator Probe into a Target System4-	2
Execution Topics	-4

2- Contents

Specifying the Emulator Clock Source
DMA Cycles
Monitor Operation
Emulator Probe Signal Topics
Allowing the Target System to Insert Wait States
Target ROM Debug Topics
Using Software Breakpoints with ROMed Code
Coverage Testing ROMed Code
Modifying ROMed Code
Electrical Characteristics
Target System Interface 4-10
Restrictions And Considerations
Interrupts While Executing Step Command 4-15
DMA Operation
Load/Modify Operation to Internal ROM 4-15
Tracing Internal RAM/SFR Access Cycles

A 70322/70320 Emulator Specific Command Syntax

ACCESS_MODE		 •		•	•	•	•	•	•	•		•	•	•	•		A-2
ADDRESS		 •															A-4
CONFIG_ITEMS																	A-6
DISPLAY_MODE	Ξ																A-11
REGISTERS		 •															A-13

Index

Illustrations

Figure 1-1 The HP 64731A Emulator for 70322/70320		•	. 1-2
Figure 2-1 Sample Program Listing			. 2-3
Figure 4-1 Installing into a 70322 PLCC type socket .		•	. 4-3

Tables

Table 4-1 Electrical Specifications															. 4		8
-------------------------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-----	--	---

4- Contents

Introduction to the 70322/70320 Emulator

Introduction	The topics in this chapter include:							
	Purpose of the emulator							
	■ Features of the emulator							
	_							
Purpose of the Emulator	The HP 64731 70322/70320 emulator is designed to replace the 70322/70320 microprocessor in your target system to help you debug/integrate target system software and hardware. The emulator performs just like the processor which it replaces, but at the same time, it gives you information about the bus cycle operation of the processor. The emulator gives you control over target system execution and allows you to view or modify the contents of processor registers, target system memory, and I/O resources.							

Introduction 1-1

1

Figure 1-1 The HP 64731A Emulator for 70322/70320

1-2 Introduction

Features of the 70322/70320 Emulator	This section introduces you to the features of the emulator. The chapters which follow show you how to use these features.
Supported Microprocessors	The 84 pin PLCC version of 70322/70320 microprocessor is supported.
Clock Speeds	The emulator runs with an internal clock speed of 8 MHz (system clock), or with target system clocks from 4-16 MHz.
Emulation Memory	The HP 64731A emulator is used with one of the following Emulation Memory Cards. HP 64726 128K byte Emulation Memory Card HP 64727 512K byte Emulation Memory Card
	You can define up to 16 memory ranges (at 256 byte boundaries and at least 256 bytes in length). The monitor occupies 4K bytes lieaving 124K, 508K bytes of emulation memory which you may use. You can characterize memory ranges as emulation RAM, emulation ROM, target system RAM, target system ROM, or as guarded memory. The emulator generates an error message when accesses are made to guarded memory locations. You can configure the emulator so that writes to memory defined as ROM cause emulator execution to break out of target program execution.
Analysis	The analyzer supplied with the emulator, also known as the <i>emulation analyzer</i> captures emulator bus cycle information. The emulation analyzer captures bus cycle states synchronously with the emulation clock.
Registers	You can display or modify the 70322/70320 internal register contents.
Single-Step	You can direct the emulation processor to execute a single instruction or a specified number of instructions.

Introduction 1-3

Breakpoints	You can set up the emulator/analyzer interaction so that when the analyzer finds a specific state, emulator execution will break to the background monitor.
	You can also define software breakpoints in your program. The emulator uses the 70322/70320 BRK 3 instruction to provide software breakpoints. When you define a software breakpoint, the emulator places an BRK 3 instruction at the specified address; after the BRK 3 instruction causes emulator execution to break out of your program, the emulator replaces the original opcode.
Reset Support	The emulator can be reset from the emulation system under your control, or your target system can reset the emulation processor.
Configurable Target System Interface	You can configure the emulator so that it honors target system wait requests when accessing emulation memory.
Background Emulation Monitor	The monitor program runs in background, the emulator mode in which foreground operation is suspended so that the emulation processor can be used for communication with the emulation controller. The background monitor does not occupy any processor address space.
Real-Time Operation	Real-time operation signifies continuous execution of your program without interference from the emulator. (Such interference occurs when the emulator temporarily breaks to the monitor so that it can access register contents or target system memory or I/O.)
	You can restrict the emulator to real-time execution. When the emulator is executing your program under the real-time restriction, commands which display/modify registers, display/modify target system memory or I/O, or single-step are not allowed.

1-4 Introduction

Getting Started

Introduction

This chapter will lead you through a basic, step by step tutorial designed to familiarize you with the HP 64731 emulator for the 70322/70320 microprocessor.

This chapter will:

- Describe the sample program used for this chapter's examples.
- Show you how to use the "help" facility.
- Show you how to use the memory mapper.
- Show you how to enter emulation commands to view execution of the sample program. The commands described in this chapter include:
 - displaying and modifying memory
 - stepping
 - displaying registers
 - defining macros
 - searching memory
 - running
 - breaking
 - using software breakpoints
 - copying memory
 - testing coverage.

Before You BeginBefore beginning the tutorial presented in this chapter, you must
have completed the following tasks:1. Completed hardware installation of the HP64700 emulator
in the configuration you intend to use for your work:- Standalone configuration
- Transparent configuration
- Remote configuration
- Local Area Network configuration
References: HP 64700 Series Installation/Service manual

- 2. If you are using the Remote configuration, you must have completed installation and configuration of a terminal emulator program which will allow your host to act as a terminal connected to the emulator. In addition, you must start the terminal emulator program before you can work the examples in this chapter.
- 3. If you have properly completed steps 1 and 2 above, you should be able to hit < RETURN> (or < ENTER> on some keyboards) and get one of the following command prompts on your terminal screen:
- U>
- R>
- M>

If you do not see one of these command prompts, retrace your steps through the hardware and software installation procedures outlined in the manuals above, verifying all connections and procedural steps.

In any case, you **must** have a command prompt on your terminal screen before proceeding with the tutorial.

A Look at the Sample Program

The sample program used in this chapter is listed in figure 2-1. The program transfers message data to another memory area.

FILE: ~o/64731/sampprog HEWLETT-PACKARD: 70320 Assembler LOCATION OBJECT CODE LINE SOURCE LINE 1 "70320" 2 PROG 3 START 4 0000 B80000 3 START MOV AW,#0000H 0003 BB0000 MOV BW, OFFSET MESSAGE 0006 B108 CL,8 AL,[BW] 5 MOV 6 LOOP 7 0008 8A07 MOV 000A 88870002 MOV [BW+200H],AL 8 000E 43 INC BW 000F FEC9 0011 75F5 9 DEC CL 10 LOOP BNZ 0013 EBFE 11 END END BR 12 DATA 13 0000 7550443730 "uPD70320" 14 MESSAGE ASC 15 COMN 16 17 DISPLAY ASC 0000 2020202020 18 END Errors= 0

Using the "help" Facility

The HP 64700 Series emulator's Terminal Interface provides an excellent help facility to provide you with quick information on the various commands and their options. From any system prompt, you can enter "help" or "?" as shown below.

help - display help information

```
help <qroup>
                       - print help for desired group
 help -s <group>
                      - print short help for desired group
 help <command>
                      - print help for desired command
 help
                      - print this help screen
--- VALID <group> NAMES ---
 gram - system grammar
proc - processor specific grammar
          - system commands
 sys
 emul
          - emulation commands
 trc
          - analyzer trace commands
          - external trace analysis commands
 xtrc
          - all command groups
```

Commands are grouped into various classes. To see the commands grouped into a particular class, you can use the help command with that group. Viewing the group help information in short form will cause the commands or the grammar to be listed without any description. For example, if you want to get some information for group gram, enter "**help gram**". Following help information should be displayed.

```
gram - system grammar
--- SPECIAL CHARACTERS ---
# - comment delimiter ; - command separator Ctl C - abort signal
{} - command grouping "" - ascii string '' - ascii string
Ctl R - command recall Ctl B - recall backwards
--- EXPRESSION EVALUATOR ---
number bases: t-ten y-binary q-octal o-octal h-hex
repetition and time counts default to decimal - all else default to hex
operators: () ~ * / % + - << <<< >>> > & ^ | &&
```

2-4 Getting Started

Help information exists for each command. Additionally, there is help information for each of the emulator configuration items.

Becoming Familiar with the System Prompts

A number of prompts are used by the HP 64700 Series emulators. Each of them has a different meaning, and contains information about the status of the emulator before and after the commands execute. These prompts may seem cryptic at first, but there are two ways you can find out what a certain prompt means if you are not familiar with it.

Using "help proc" to View Prompt Description

The first way you can find information on the various system prompts is to look at the **proc** help text.

Address format Memory address20 IO addresses16 bi	- bit physical or 32 bit t address	t (seg:off)]	logical address
Emulation Status R - emulator in res U - running user pr M - running monitor W - waiting for CMB s - processor in st ? - unknown state	Characters et state c ogram r program h to become ready g op mode b	- no target - target sys - processor - bus grante - no bus cyc	system clock stem reset active halted ed cles
Equates for Analy extmemfetch - exter extmemrd - exter dmaack - dma a dmamtom - dma m msextmemrd - macro msiramrd - macro msiramwr - macro msiromrd - macro mssfrrd - macro mssfrwr - macro mos - macro	zer Label stat nal mem fetch nal mem read nal mem write cknowledge emory to memory serv ext mem read serv ext mem write serv int ram read serv int ram write serv int rom read serv sfr read serv sfr read serv sfr write nitor	firstop - grd - hldack - iord - iowr - iramrd - refresh - sfrrd - sfrwr - wrrom -	first opecode guarded access hold acknowledge interrupt ack io read io write int ram read int ram write refresh sfr read sfr write write to rom

Using the Emulation Status Command (es) for Description of Current Prompt

When using the emulator, you will notice that the prompt changes after entering certain commands. If you are not familiar with a new prompt and would like information about that prompt only, enter the **es** (emulation status) command for more information about the status of the emulator.

U>es

N70322--Running user program

Initializing the If you plan to follow this tutorial by entering commands on your emulator as shown in this chapter, verify that no one else is using Emulator the emulator. To initialize the emulator, enter the following command: R>init # Limited initialization completed The init command with no options causes a limited initialization, also known as a warm start initialization. Warm start initialization does not affect system configuration. However, the init command will reset emulator and analyzer configurations. The init command: ■ Resets the memory map. Resets the emulator configuration items. Resets the break conditions. Clears software breakpoints.

2-6 Getting Started

	The init command does not:	
	 Clear any macros. Clear any emulation memory locations; mapper terms are deleted, but if you respecify the mapper terms, you will find that the emulation memory contents are the same. 	
Other Types of Initialization	There are two options to the init command which specify other types of initializations. The -p option specifies a powerup initialization, also known as a cold start initialization. The cold start initialization sequence includes the emulator, analyzer, system controller, and communications port initialization; additionally, performance verification tests are run.	
	The -c option also specifies a cold start initialization, except that performance verification tests are not run.	
Mapping Memory	Depending on the memory board, emulation memory consists of 128K or 512Kbytes, mappable in 256 byte blocks. The monitor occupies 4K bytes, leaving 124K or 508K bytes of emulation memory which you may use. The emulation memory system does not introduce wait states.	

The memory mapper allows you to characterize memory locations. It allows you specify whether a certain range of memory is present in the target system or whether you will be using emulation memory for that address range. You can also specify whether the target system memory is ROM or RAM, and you can specify that emulation memory be treated as ROM or RAM.

Note

Target system access to emulation memory is not allowed. Target system devices that take control of the bus (for example, coprocessors or external DMA controllers) cannot access emulation memory.

Blocks of memory can also be characterized as guarded memory.

Guarded memory accesses will generate "break to monitor" requests. Writes to ROM will generate "break to monitor" requests if the **rom** break condition is enabled. Memory is mapped with the **map** command. To view the memory mapping options, enter:

M>help map

map - display or modify the processor memory map

map map <ad map oth map -d map -d</ad 	draddr> <type> er <type> <term#> *</term#></type></type>	 display the current map structure define address range as memory type define all other ranges as memory type delete specified map term delete all map terms
VALID	<pre><type> OPTIONS</type></pre>	
eram -	emulation ram	
erom -	emulation rom	
tram -	target ram	
trom -	target rom	
grd -	guarded memory	

Enter the **map** command with no options to view the default map structure.

M>map

remaining number of terms : 16
remaining emulation memory : 1b000h bytes
map other tram

2-8 Getting Started

Which Memory Locations Should be Mapped?

Typically, assemblers generate relocatable files and linkers combine relocatable files to form the absolute file. The linker load map listing will show what memory locations your program will occupy in memory. A linker load map listing for the sample program is shown below.

HP 64000+ Linker

FILE/PROG NAME	PROGRAM	DATA	COMMON	ABSOLUTE
sampprog.R	00001000	00001200	00001400	
next address XFER address = 00000000 De Current working directory = Absolute file name = sampp Total number of bytes loade	00001014 efined by DEF /users/whoe rog.X ed = 00000024	00001208 FAULT ever/work	00001408	

From the load map listing, you can see that the sample program occupies three address range. The program area, which contains the opcodes and operands which make up the sample program, occupies locations 1000H through 1014H. The data area, which contains the ASCII values of the messages the program transfers, is occupies locations 1200H through 1207H. The destination area, which contains the command input byte and the locations of the message destination, occupies locations 1400H through 1407H.

Since the program writes to the destination locations, the mapper block of destination area should not be characterized as ROM memory. Enter the following command to map memory for the sample program, and display the memory map.

R>map 1000..10ff erom
R>map 1200..12ff erom
R>map 1400..14ff eram
R>map

# rem # rem	aining aining	number o emulatio	f terms n memory	Z	: 13 : 1ad	00h	bytes
map	001000.	.0010ff	erom	#	term	1	
map	001200.	.0012ff	erom	#	term	2	
map	001400.	.0014ff	eram	#	term	3	
other	tram						

When mapping memory for your target system programs, you may wish to characterize emulation memory locations containing programs and constants (locations which should not be written to) as ROM. This will prevent programs and constants from being written over accidentally, and will cause breaks when instructions or commands attempt to do so (if the **rom** break condition is enabled).

Getting the Sample Program into Emulation Memory	This section assumes you are using the emulator in one of three configurations:
	1. Connected only to a terminal, which is called the <i>standalone</i> configuration. In the standalone configuration, you must modify memory to load the sample program.
	2. Connected between a terminal and a host computer, which is called the <i>transparent</i> configuration. In the transparent configuration, you can load the sample program by downloading from the "other" port.
	3. Connected to a host computer and accessed via a terminal emulation program (for example, the terminal window of the PC Interface). Configurations in which the emulator is connected to, and accessed from, a host computer are called <i>remote</i> configurations. In the remote configuration, you can load the sample program by downloading from the same port.
Standalone Configuration	If you are operating the emulator in the standalone configuration, the only way to get the sample program into emulation memory is by modifying emulation memory locations with the m (memory display/modification) command.

2-10 Getting Started

You can enter the sample program into memory with the **m** command as shown below.

```
R>m -db 1000=0b8,0,0,0bb,0,12,0b1,8
R>m -db 1008=8a,7,88,87,0,2,43,0fe
R>m -db 1010=0c9,75,0f5,0eb,0fe
R>m -db 1200=75,50,44,37,30,33,32,30
R>m -db 1400..1407=20
```

After entering the opcodes and operands, you would typically display memory in mnemonic format to verify that the values entered are correct (see the example below). If any errors exist, you can modify individual locations. Also, you can use the **cp** (copy memory) command if, for example, a byte has been left out, but the locations which follow are correct.

R>m -dm 1000..1013

001000	b80000	MOV	AW,#0000H
001003	bb0012	MOV	BW,#1200H
001006	b108	MOV	CL,#08H
001008	8a07	MOV	AL,BYTE PTR [BW]
00100a	88870002	MOV	BYTE PTR 200H[BW],AL
001003	43	INC	BW
00100f	fec9	DEC	CL
001011	75£5	BNE	1008H
001013	ebfe	BR 1	.013H

Note

Be careful about using this method to enter programs from the listings of relocatable source files. If source files appear in relocatable sections, the address values of references to locations in other relocatable sections are not resolved until link-time. The correct values of these address operands will not appear in the assembler listing.

Transparent Configuration

If your emulator is connected between a terminal and a host computer, you can download programs into memory using the **load** command with the **-o** (from other port) option. The **load** command will accept absolute files in the following formats:

- HP absolute.
- Intel hexadecimal.
- Tektronix hexadecimal.
- Motorola S-records.

The examples which follow will show you the methods used to download HP absolute files and the other types of absolute files.

HP Absolutes

Downloading HP format absolute files requires the **transfer** protocol. The example below assumes that the **transfer** utility has been installed on the host computer (HP 64884 for HP 9000 Series 500, or HP 64885 for HP 9000 Series 300).

Notice that the transfer command on the host computer is terminated with the $\langle ESCAPE \rangle g$ characters; by default, these are the characters which temporarily suspend the transparent mode to allow the emulator to receive data or commands.

R>load -hbo <RETURN> <RETURN>
\$ transfer -rtb sampprog.X <ESCAPE>g

R>

2-12 Getting Started

Other Supported Absolute Files

The example which follows shows how to download Intel hexadecimal files, but the same method (and a different **load** option) can be used to load Tektronix hexadecimal and Motorola S-record files as well.

R>load -io <RETURN> <RETURN>
\$ cat ihexfile <ESCAPE>g

```
#####
Data records = 00003 Checksum error = 00000
R>
```

Remote Configuration

If the emulator is connected to a host computer, and you are accessing the emulator from the host computer via a terminal emulation program, you can also download files with the **load** command. However, in the remote configuration, files are loaded from the same port that commands are entered from. For example, if you wish to download a Tektronix hexadecimal file from a Vectra personal computer, you would enter the following commands.

R>load -t <RETURN>

After you have entered the **load** command, exit from the terminal emulation program to the MS-DOS operating system. Then, copy your hexadecimal file to the port connected to the emulator, for example:

C:\copy thexfile com1: <RETURN>

Now you can return to the terminal emulation program and verify that the file was loaded.

For More Information For more information on downloading absolute files, refer to the **load** command description in the *HP 64700 Emulators Terminal Interface: User's Reference* manual.

Displaying Memory In Mnemonic Format

Once you have loaded a program into the emulator, you can verify that the program has indeed been loaded by displaying memory in mnemonic format.

R>m -dm 1000..1013

001000	b80000	MOV AW,#0000H
01003	bb0012	MOV BW,#1200H
001006	b108	MOV CL,#08H
01008	8a07	MOV AL, BYTE PTR [BW]
00100a	88870002	MOV BYTE PTR 200H[BW],AL
01003	43	INC BW
00100f	fec9	DEC CL
01011	75£5	BNE 1008H
01013	ebfe	BR 1013H

If you display memory in mnemonic format and do not recognize the instructions listed or see some illegal instructions or opcodes, go back and make sure the memory locations you are trying to display have been mapped. If the memory map is not the problem, recheck the linker load map listing to verify that the absolute addresses of the program agree with the locations you are trying to display.

2-14 Getting Started

Stepping Through the Program

The emulator allows you to execute one instruction or a number of instructions with the s (step) command. Enter the **help s** to view the options available with the step command.

R>help s

s - step emulation processor s - step one from current PC s <count> - step from current PC s <count> \$ - step from current PC s <count> <addr> - step from addr s -q <count> <addr> - step from addr, quiet mode s -w <count> <addr> - step from addr, whisper mode --- NOTES ---STEPCOUNT MUST BE SPECIFIED IF ADDRESS IS SPECIFIED! If <addr> is not specified, default is to step from current PC. A <count> of 0 implies step forever.

A step count of 0 will cause the stepping to continue "forever" (until some break condition, such as "write to ROM", is encountered, or until you enter < CTRL > c). The following command will step from the first address of the sample program.

R>s 1 0:1000

00000:01000 b80000 MOV AX,#0000H PC = 00000:01003

Displaying Registers

The step command shown above executed a MOV AW,# 0 instruction. Enter the following command to view the contents of the registers.

M>reg

reg ps=0000 pc=1003 psw=f002 aw=0000 bw=0bf8 cw=0000 dw=0000 sp=07f8 bp=0014 reg ix=00f0 iy=0000 ds0=0000 ds1=0000 ss=0000

The register contents are displayed in a "register modify" command format. This allows you to save the output of the **reg** command to a command file which may later be used to restore the register contents. (Refer to the **po** (port options) command description in the *Terminal Interface: User's Reference* for more information on command files.)

You can also display peripheral control block registers or certain classes of peripheral registers. Refer to the "70322/70320 Emulator Specific Command Syntax" appendix for more information on the peripheral register names and classes.

Combining Commands More than one command may be entered in a single command line if the commands are separated by semicolons (;). For example, you could execute the next instruction(s) and display the registers by

M>**s;reg**

entering the following.

00000:01003 bb0012 MOV BW,#1200H PC = 00000:01006 reg ps=0000 pc=1006 psw=f002 aw=0000 bw=1200 cw=0000 dw=0000 sp=07f8 bp=0014 reg ix=00f0 iy=0000 ds0=0000 ds1=0000 ss=0000

2-16 Getting Started

Using Macros Suppose you want to continue stepping through the program, displaying registers after each step. You could continue entering **s** commands followed by **reg** commands, but you may find this tiresome. It is easier to use a macro to perform a sequence of commands which will be entered again and again.

Macros allow you to combine and store commands. For example, to define a macro which will display registers after every step, enter the following command.

M>mac st={s;reg}

Once the **st** macro has been defined, you can use it as you would any other command.

M>st

s;reg 00000:01006 b108 MOV CL,#08H PC = 0000:01008 reg ps=0000 pc=1008 psw=f002 aw=0000 bw=1200 cw=0008 dw=0000 sp=07f8 bp=0014 reg ix=00f0 iy=0000 ds0=0000 ds1=0000 ss=0000

 $\begin{array}{ll} \textbf{Command Recall} \\ \textbf{The command recall feature is yet another, easier way to enter} \\ commands again and again. You can press < CTRL> r to recall the commands which have just been entered. If you go past the command of interest, you can press < CTRL> b to move forward through the list of saved commands. To continue stepping through the sample program, you could repeatedly press < CTRL> r to recall and < RETURN> to execute the st macro. \\ \end{array}$

Repeating Commands The **rep** command is also helpful when entering commands repetitively. You can repeat the execution of macros as well commands. For example, you could enter the following command to cause the **st** macro to be executed four times.

M>rep 4 st

```
# s;reg
00000:01008 8a07
                           MOV AL, BYTE PTR [BW]
PC = 00000:0100a
reg ps=0000 pc=100a psw=f002 aw=0075 bw=1200 cw=0008 dw=0000 sp=07f8 bp=0014 reg ix=00f0 iy=0000 ds0=0000 ds1=0000 ss=0000
# s;req
00000:0100a 88870002
                           MOV BYTE PTR 0200H[BW],AL
PC = 00000:0100e
reg ps=0000 pc=100e psw=f002 aw=0075 bw=1200 cw=0008 dw=0000 sp=07f8 bp=0014
reg ix=00f0 iy=0000 ds0=0000 ds1=0000 ss=0000
# s;reg
00000:0100e 43
                           INC BW
PC = 00000:0100f
reg ps=0000 pc=100f psw=f002 aw=0075 bw=1201 cw=0008 dw=0000 sp=07f8 bp=0014
reg ix=00f0 iy=0000 ds0=0000 ds1=0000 ss=0000
# s;reg
00000:0100f fec9
                           DEC CL
PC = 00000:01011
reg ps=0000 pc=1011 psw=f002 aw=0075 bw=1201 cw=0007 dw=0000 sp=07f8 bp=0014
reg ix=00f0 iy=0000 ds0=0000 ds1=0000 ss=0000
```

Modifying Memory

The preceding step and register commands show the sample program is executing transfer message data to destination area. Use the \mathbf{m} (memory) command to modify the source message data bytes.

M>m 1200=41,42,43,44,45,46,47,48

To verify that above data has been written to 1200H, enter the following command.

```
M>m -db 1200..1207
```

001200..001207 41 42 43 44 45 46 47 48

When memory was displayed in byte format earlier, the display mode was changed to "byte". The display and access modes from previous commands are saved and they become the defaults.

Specifying the Access and Display Modes

There are a couple different ways to modify the display and access modes. One is to explicitly specify the mode with the command you are entering (e.g., m -db 1200). The **mo** (display and access mode) command is another way to change the default mode. For example, to display the current modes, define the display mode as "word", and redisplay 1200H, enter the following commands.

M>mo

mo -ab -db

2-18 Getting Started

	M>mo -dw M>m 1200
001200001200 4241	
	To continue the rest of program
M>r	
	Display the DISPLAY memory locations (destination of the message, 1400H) to verify that the program moved the correct ASCII bytes. At this time we want to see correct byte value, so "-db" option (display with byte) is used.
	M>m -db 14001407
001400001407 41 42 43 4	4 45 46 47 48
Searching	The ser (search memory for date) command is another way to

SearchingThe ser (search memory for data) command is another way to
verify that the program did what it was supposed to do.Memory for Data

M>ser 1200..1207="FG "

pattern match at address: 001205

If any part of the data specified in the **ser** command is not found, no match is displayed (No message displayed).

Breaking into the Monitor	You can use the break command (b) command to generate a break to the background monitor. While the break will occur as soon as possible, the actual stopping point may be many cycles after the break request (depend on the type of instruction being executed and whether the processor is in a hold state). U> b M>
Note	If DMA transfer is in progress with BURST transfer mode, the emulator can break into monitor after such DMA transfers are completed.
Using Software Breakpoints	Software breakpoints are handled by the 70322/70320 BRK 3 instruction. When you define or enable a software breakpoint (with the bp command), the emulator will replace the opcode at the software breakpoint address with a breakpoint interrupt instruction (BRK 3).
Note 📫	You must only set software breakpoints at memory locations which contain instruction opcodes (not operands or data). If a software breakpoint is set at a memory location which is not an instruction opcode, the software breakpoint instruction will never be executed and the break will never occur.

2-20 Getting Started

Caution

Software breakpoints should not be set, enabled, disabled, or removed while the emulator is running user code. If any of these commands are entered while the emulator is running user code, and the emulator is executing code in the area where the breakpoint is being modified, program execution may be unreliable.

Note

Because software breakpoints are implemented by replacing opcodes with the BRK 3 instructions, you cannot define software breakpoints in target ROM. You can, however, copy target ROM into emulation memory (see the "Target ROM Debug Topics" section of the "In-Circuit Emulation" chapter).

When the emulator detects a vector fetch from the BRK 3 interrupt vector area (in other words, the BRK 3 instruction has executed or vector area is read from user program), it generates a break to background request. Since the system controller knows the locations of defined software breakpoints, it can determine whether the BRK 3 interrupt was generated by an enabled software breakpoint or by a BRK 3 interrupt instruction in your target program.

If the BRK 3 interrupt was generated by a software breakpoint, execution breaks to the monitor, and the breakpoint interrupt instruction (BRK 3) is replaced by the original opcode. A subsequent run or step command will execute from this address.

If the BRK 3 interrupt was generated by a BRK 3 interrupt instruction in the target system, execution still breaks to the monitor, and an "undefined breakpoint" status message is displayed. To continue with program execution, you must run or step from the target program's breakpoint interrupt vector address.

Displaying and Modifying the Break Conditions

Before you can define software breakpoints, you must enable software breakpoints with the **bc** (break conditions) command. To view the default break conditions and change the software breakpoint condition, enter the bc command with no option. This command displays current configuration of break conditions.

M > bc

bc	-d	bp #disable
bc	-e	rom #enable
bc	-d	bnct #disable
bc	-d	cmbt #disable
bc	-d	trigl #disable
bc	-d	trig2 #disable

To enable the software break point feature enter

M>bc -e bp

Defining a Software Breakpoint

Now that the software breakpoint feature is enabled, you can define software breakpoints. Enter the following command to break on the address of the **LOOP** (address 1000H) label.

M>**bp 1000** M>**bp**

bp 001008 #enabled

Run the program, and verify that execution broke at the appropriate address.

M>r 0:1000

!ASYNC_STAT 615! Software breakpoint: 00000:01008

M>st

s;reg 00000:0100a 8a07 MOV AL,BYTE PRT [BW]R PC = 00000:0100a reg ps=0000 pc=100a psw=f686 aw=0041 bw=1200 cw=0008 dw=9f65 sp=38bb bp=28e9 reg ix=00f1 iy=8577 ds0=0000 ds1=0000 ss=0000

2-22 Getting Started
When a breakpoint is hit, it becomes disabled. You can use the **-e** option to the **bp** command to re-enable the software breakpoint.

M>**bp**

BREAKPOINT FEATURE IS ENABLED
bp 001008 #disabled

M>**bp** -e 001008 M>**bp**

BREAKPOINT FEATURE IS ENABLED
bp 001008 #enabled

M>r 1000

!ASYNC_STAT 615! Software breakpoint: 00000:01008

M>**bp**

```
### BREAKPOINT FEATURE IS ENABLED ###
bp 001008 #disabled
```

Using the Analyzer

Predefined Trace Labels

Three trace labels are predefined in the 70322/70320 emulator. You can view these labels by entering the **tlb** (trace label) command with no options.

M>tlb

Emulation trace labels
tlb addr 0..19
tlb data 20..35
tlb stat 36..46

Getting Started 2-23

Predefined Status Equates

Common values for the 70322/70320 status trace signals have been predefined. You can view these predefined equates by entering the **equ** command with no options.

M>equ

###	Equates ###
equ	dmaack=0xxx0xxxxxxxy
equ	dmamtom=0xxxxx011011y
equ	extmemfetch=0xxxxx001001y
equ	extmemrd=0xxxxx001011y
equ	extmemwr=0xxxxx001101y
equ	firstop=0xxxxxxxxxx0y
equ	grd=0x0xxxxxxxxxy
equ	hldack=0xxxx0xxxxxxy
equ	intack=0xxxxx000001y
equ	iord=0xxxxx000011y
equ	iowr=0xxxxx000101y
equ	iramrd=0xxxxx110001y
equ	iramwr=0xxxxx110101y
equ	iromrd=0xxxxx010001y
equ	mon=0xxxxxxxxxy
equ	msextmemrd=0xxxxx101001y
equ	msextmemwr=0xxxxx101101y
equ	msiramrd=0xxxxx100001y
equ	msiramwr=0xxxxx100101y
equ	msiromrd=0xxxxx010011y
equ	mssfrrd=0xxxxx100011y
equ	mssfrwr=0xxxxx100111y
equ	refresh=0xxxxx010101y
equ	sfrrd=0xxxxx110011y
equ	sfrwr=0xxxxx110111y
equ	wrrom=0xx0xxxxxxxxy

These equates may be used to specify values for the **stat** trace label when qualifying trace conditions.

Specifying a Simple Trigger

The **tg** analyzer command is a simple way to specify a condition on which to trigger the analyzer. Suppose you wish to trace the states of the program after the read of a "E" (45H) ascii data from the source data area. Enter the following commands to set up the trace, run the program, issue the trace, and display the trace status. (Note that the analyzer is to search for a lower byte read of 45H because the address is even.)

2-24 Getting Started

M>tg data=0xx45 M>t M>r 0:1000

Emulation trace started

U>ts

--- Emulation Trace Status ---NEW User trace complete Arm ignored Trigger in memory Arm to trigger ? States 396 (396) -140..255 Sequence term 2 Occurrence left 1

> The trace status now shows that the trigger condition has been found, and that 396 states have been stored in trace memory. Enter the following command to display the first 20 states of the trace.

U>tl -t 20

Line	addr,H	7032x mnemonic,H	xbits,H	count,R	seq
0	01204	45H, mem read (ext) 0000		+
1	00089	45xxH, refresh	0000	0.960 uS	
2	0100a	INSTRUCTIONopcode unavail	able 0000	0.280 uS	
3	0100e	43H, fetch (ext) 0000	2.760 uS	
4	0100f	fexxH, fetch (ext) 0000	2.000 uS	
5	01010	c9H, fetch (ext) 0000	2.000 uS	
б	0008a	c9H, refresh	0000	0.960 uS	
7	0100e	INC BW	0000	2.280 uS	
8	01404	45H, mem write (ext) 0000	0.760 uS	
9	0100f	DEC CL	0000	1.240 uS	
10	01011	75xxH, fetch (ext) 0000	0.760 uS	
11	01012	f5H, fetch (ext) 0000	2.000 uS	
12	0008b	f5xxH, refresh	0000	0.960 uS	
13	01011	BNE 1008H	0000	2.280 uS	
14	01013	ebxxH, fetch (ext) 0000	0.760 uS	
15	01014	feH, fetch (ext) 0000	2.000 uS	
16	01015	00xxH, fetch (ext) 0000	2.000 uS	
17	0008c	00H, refresh	0000	0.960 uS	
18	01016	00H, fetch (ext) 0000	3.040 uS	
19	01017	00xxH, fetch (ext) 0000	2.000 uS	

Line 0 in the trace list above shows the state which triggered the analyzer. The trigger state is always on line 0. To list the next lines of the trace, enter the following command.

Getting Started 2-25

Line	addr,H	7032x mnemonic,H	xbits,H	count,R	seq
20	0008d	00xxH, refresh	0000	1.960 uS	
21	01008	8aH, fetch (ex	t) 0000	3.040 uS	
22	01009	07xxH, fetch (ex	t) 0000	2.000 uS	
23	0100a	88H, fetch (ex	t) 0000	2.000 uS	
24	0008e	88H, refresh	0000	0.960 uS	
25	01008	MOV AL, BYTE PTR [BW]	0000	0.280 uS	
26	0100b	87xxH, fetch (ex	t) 0000	2.760 uS	
27	0100c	00H, fetch (ex	t) 0000	2.000 uS	
28	0100d	02xxH, fetch (ex	t) 0000	2.000 uS	
29	0008f	02xxH, refresh	0000	0.960 uS	
30	01205	46xxH, mem read (ex	t) 0000	3.040 uS	
31	0100a	MOV BYTE PTR 0200H[BW],AL	0000	1.240 uS	
32	0100e	43H, fetch (ex	t) 0000	0.760 uS	
33	0100f	fexxH, fetch (ex	t) 0000	2.000 uS	
34	00090	feH, refresh	0000	0.960 uS	
35	01010	c9H, fetch (ex	t) 0000	3.040 uS	
36	0100e	INC BW	0000	1.240 uS	
37	01405	46xxH, mem write (ex	t) 0000	0.760 uS	
38	0100f	DEC CL	0000	1.240 uS	
39	01011	75xxH, fetch (ex	t) 0000	0.760 uS	•

For a Complete Description

For a complete description of the HP 64700 Series analyzer, refer to the HP 64700 Emulators Terminal Interface: Analyzer User's Guide.

2-26 Getting Started

U>tl

Copying Memory

The **cp** (copy memory) command gives you the ability to copy the contents of one range of memory to another. This is a handy feature to test things like the relocatability of programs, etc. This also useful to save result of data to another locations. To save transfered data to another memory area.

U>cp 1420=1400..1407 U>m 1420..1427

001420..001427 41 42 43 44 45 46 47 48

Testing for Coverage	For each byte of emulation memory, there is an additional bit of emulation RAM used by the emulator to provide coverage testing. When the emulator is executing the target program and an access is made to a byte in emulation memory, the corresponding bit of coverage memory is set. With the cov command, you can see which bytes in a range of emulation memory have (or have not) been accessed.
	For example, suppose you want to determine how extensive some test input is in exercising a program (in other words, how much of the program is covered by using the test input). You can run the program with the test input and then use the cov command to display which locations in the program range were accessed.
	The examples which follow use the cov command to perform coverage testing on the sample program. Before performing coverage tests, reset all coverage bits to non-accessed by entering the following command.

U>cov -r

Getting Started 2-27

Set software breakpoint at 1008 (as in earlier), and run the program from the start address (00000:01000H) and use the **cov** command to display how much of the program is accessed.

```
U>rst
R>cov -r
R>bp -e 1008
R>r 1000
```

coverage list - list of address ranges accessed
001000..00100d

percentage of memory accessed: % 66.6

Now run the rest of programs.

M>r

U>cov -a 1000..1014

coverage list - list of address ranges accessed 001000..001014 percentage of memory accessed: % 100.0

Resetting the

To reset the emulator, enter the following command.

Emulator

U>**rst**

R>

The emulator is held in a reset state (suspended) until a **b** (break), **r** (run), or **s** (step) command is entered. A CMB execute signal will also cause the emulator to run if reset.

The **-m** option to the **rst** command specifies that the emulator begin executing in the monitor after reset instead of remaining in the suspended state.

R>**rst -m** M>

2-28 Getting Started

Emulation Topics

Introduction

Many of the topics described in this chapter involve the commands which are unique to the 70322/70320 emulator such as the **cf** command which allows you to specify emulator configuration. A reference-type description of the 70322/70320 emulator configuration items can be found in the "70322/70320 Emulator Specific Command Syntax" appendix.

This chapter will:

- Describe how to run in real-time, how to specify the default interpretation of physical run addresses, and how to break on an analyzer trigger. These topics are related to program execution in general.
- Describe how to locate the monitor, These topics are related to the monitor options.
- Describe how to do other things which do not fall into the categories mentioned above: how to specify a run from reset.

Prerequisites	Before performing the tasks described in this chapter, you should be familiar with how the emulator operates in general. Refer to the <i>Concepts of Emulation and Analysis</i> manual and the "Getting Started" chapter of this manual.
Execution Topics	The descriptions in this section are of emulation tasks which involve program execution in general.
Restricting the Emulator to Real-Time Runs	By default, the emulator is not restricted to real-time runs. However, you may wish to restrict runs to real-time to prevent accidental breaks that might cause target system problems. Use the cf (configuration) command to enable the rrt configuration item.
	R>cf rrt=en
	When runs are restricted to real-time and the emulator is running user code, the system refuses all commands that cause a break except rst (reset), r (run), and b (break to monitor).
	Because the emulator contains dual-port emulation memory,

commands which access emulation memory are allowed while runs are restricted to real-time.

3-2 Emulation Topics

The following commands are not allowed when runs are restricted to real-time:

- **reg** (register display/modification).
- **m** (memory display/modification) commands that access target system memory.
- io (I/O display/modification).
- **s** (step).

The following command will disable the restriction to real-time runs and allow the system to accept commands normally.

R>cf rrt=dis

Default Physical to Logical Run Address Conversion

The run and step commands allow you to enter addresses in either logical form (segment:offset, e.g., 0F000:0FFFF) or physical form (e.g., 0FFFFF).

When a physical address (non-segmented) is entered with either a run or step command, the emulator must convert it to a logical (segment:offset) address. By default, a physical run address is converted such that the low 16 bits of the address become the offset value. Use the **cf** (configuration) command with the **rad** (run address default conversion) configuration item to specify that the low 4 bits of the physical address become the offset. The physical address is right-shifted 4 bits to yield the segment value.

R>cf rad=maxseg

phys_addr = (phys_addr >> 4):(phys_addr & 0xf)

To reconfigure so that the low 16 bits of the physical address become the offset value, enter the following command. The physical address is right-shifted 4 bits and ANDed with 0F000H to yield the segment value.

R>cf rad=minseg

phys_addr =
((phys_addr >> 4) & 0xf000):(phys_addr & 0xffff)

Emulation Topics 3-3

If you use logical addresses other than the two methods shown above, you must enter run and step addresses in logical form.

Setting Up to Break on an Analyzer Trigger

The analyzer may generate a break request to the emulation processor. To set up to break on an analyzer trigger, follow the steps below.

Specify the Signal Driven when Trigger is Found

Use the **tgout** (trigger output) command to specify which signal is driven when the analyzer triggers. Either the "trig1" or the "trig2" signal can be driven on the trigger.

R>tgout trig1

Enable the Break Condition

Enable the "trig1" break condition.

R>bc -e trig1

After you specify the trigger to drive "trig1" and enable the "trig1" break condition, set up the trace, issue the t (trace) command, and run the program.

Making Coordinated
MeasurementsCoordinated measurements are measurements made between
multiple HP 64700 Series emulators which communicate via the
Coordinated Measurement Bus (CMB). Coordinated
measurements can also include other instruments which
communicate via the BNC connector. A trigger signal from the
CMB or BNC can break emulator execution into the monitor, or it
can arm the analyzer. An analyzer can send a signal out on the
CMB or BNC when it is triggered. The emulator can send an
EXECUTE signal out on the CMB when you enter the x (execute)
command.

3-4 Emulation Topics

Coordinated measurements can be used to start or stop multiple emulators, start multiple trace measurements, or to arm multiple analyzers.

As with the analyzer generated break, breaks to the monitor on CMB or BNC trigger signals are interpreted as a "request to break". The emulator looks at the state of the CMB READY (active high) line to determine if it should break. It does not interact with the EXECUTE (active low) or TRIGGER (active low) signals.

For information on how to make coordinated measurements, refer to the HP 64700 Emulators Terminal Interface: Coordinated Measurement Bus User's Guide manual.

Monitor Option Topics	The monitor is a program which is executed by the emulation processor. It allows the emulation system controller to access target system resources. For example, when you enter a command that requires access to target system resources (display target memory, for example), the system controller writes a command code to a communications area and breaks the execution of the
	emulation processor into the monitor. The monitor program then reads the command from the communications area and executes the processor instructions which access the target system. After the monitor has performed its task, execution returns to the target program.
	It does not take up any processor address space and does not need to be linked to the target program. The monitor resides in

dedicated background memory.

Emulation Topics 3-5

Backgro	ound Monitor	Some things to be aware of when using the background monitor are:
		■ Guarded memory accesses can occur if no vector table is loaded and the vector table area, 0-3FFH, is mapped as "guarded memory". (If locations 0-3FFH are not mapped, the "map other grd" command specifies these locations as guarded memory.)
		■ Halt instructions will cause "processor halted" emulation status (the "h> " prompt is shown). A subsequent break command, followed by a run or step command, causes the halt instruction to be executed again.
Locatin	g the Monitor	The default emulator configuration locates the monitor at 000000H. You can relocate the monitor to any 4K byte boundary. The location of the background monitor may be important since background cycles are always visible to the target system. Use the cf (configuration) command with the loc configuration item to specify the location of the monitor.
		R>cf loc=20000
		Any valid physical address may be specified when relocating the monitor; however, the monitor address range will be placed on the 4K byte boundary at or below the address specified (for example, the monitor is placed at 20000H after the command shown above).
N		Relocating the monitor causes all memory mapper terms to be

removed.

3-6 Emulation Topics

SelectingThe HP 64731 70322/70320 emulator have capability to emulateMicroprocessorThe HP 64731 70322/70320 emulator have capability to emulate70320 (ROMless version) microprocessor and 70322 (incorporates
internal ROM) microprocessor. You can select either
microprocessor. To select 70320 microprocessor.

R>cf proc=70320

Upon power up, 70322 microprocessor is selected.

Changing microprocessor cause all memory mapper terms to be removed.

Selecting Accept Or Ignore Target System Reset

The 70322/70320 emulator can respond or ingore target system reset. You can ignore reset from target system completely by specifing "**cf urst= dis**". In this configuration emulator ignore any reset from target system. Specifying "**cf urst= en**", this is a default configuration, make the emulator to respond to reset from target system. In this configuration, emulator will accept reset and execute from reset vector (0FFFF0H) as same manner as actual microprocessor after reset is inactivated

Note

This configuration item is true while either running in user program or running in monitor program. If enabled by entering "cf urst= en", emulator will respond to target system reset while running in monitor program.

Emulation Topics 3-7

Other Topics	This section describes how other emulation tasks, which did not fit into the previous groupings, are performed.
Detecting Illegal Opcodes	Illegal opcode detection is handled by the processor's own detection mechanism. An illegal opcode interrupt will cause execution to be diverted to the address contained in the interrupt vector table. This address should point to your interrupt service routine.
	You must prepare illegal opcode interrupt service routine in your program.
Note	You should prepare illegal opcode interrupt service routine in your program code and set appropriate vector.

3-8 Emulation Topics

In-Circuit Emulation Topics

Introduction

Many of the topics described in this chapter involve the commands which relate to using the emulator in-circuit, that is, connected to a target system.

This chapter will:

- Describe the issues concerning the installation of the emulator probe into target systems.
- Show you how to install the emulator probe.
- Describe how to set up the emulator to use a target system clock and how to allow DMA accesses to emulation memory. How you can relocate background monitor program. These topics are related to program execution in general.
- Describe how to use software breakpoints with ROMed code, how to perform coverage testing on ROMed code, and how to test patches to ROMed code. These topics relate to the debugging of target system ROM.
- Describe the ACcharacteristics and the target system interface
- Describe some of restrictions and considerations.

In-Circuit Emulation 4-1

Δ

Prerequisites	Before performing the tasks described in this chapter, you should be familiar with how the emulator operates in general. Refer to the <i>Concepts of Emulation and Analysis</i> manual and the "Getting Started" chapter of this manual.
Installing the Emulator Probe into a Target System	The emulator probe has a PLCC connector. The emulator probe is also provided with a non-conductive pin protector to protect the delicate gold-plated pins of the probe connector from damage due to impact. Since the protector is non-conductive, you may run performance verification with no adverse effects when the emulator is out-of-circuit.
Caution 👘	Protect against static discharge. The emulation probe contains devices that are susceptible to damage by static discharge. Therefore, precautionary measures should be taken before handling the microprocessor connector attached to the end of the probe cable to avoid damaging the internal components of the probe by static electricity.
Caution	Make sure target system power is OFF. Do not install the emulator probe into the target system microprocessor socket with power applied to the target system. The emulator may be damaged if target system power is not removed before probe installation.

4-2 In-Circuit Emulation

Figure 4-1 Installing into a 70322 PLCC type socket

In-Circuit Emulation 4-3

Execution Topics	The descriptions in this section are of emulation tasks which involve program execution in general.
Specifying the Emulator Clock Source	The default emulator configuration selects the internal 8 MHz (system clock speed) clock as the emulator clock source. You can configure the emulator to select an external target system clock source in the range of 4-16 MHz. You can use external clock or crystal to generate system clock as actual microprocessor does. Use the cf (configuration) command and the clk configuration item to specify that the emulator use a target system clock.
	R>cf clk=ext
	To reconfigure the emulator to use its internal clock oscillator, enter the following command.
	R>cf clk=int
DMA Cycles	Cycles from the emulation processor's internal DMA controller is allowed to access emulation memory. If DMA controller is programmed to transfer with Burst mode , the emulator can not break in monitor until transfers are completed. With other DMA mode, emulator breaks into the monitor (background) upon request, however, DMA transfers are continued. DMA cycles are sent to the analyzer.
Note	Target system DMA controller access to emulation memory is not allowed. Only internal DMA controller can access emulation memory as it's transfer object.

4-4 In-Circuit Emulation

Note

External (target system) DMA controller execution cycles can be traced when following conditions are met.

A. Address and data signals can be read by the emulator. In other words, those signals must reach to emulator probe and timing specification comply with specification of DMA cycles of 70322/70320 microprocessor.

B. Control signals (such as /MREQ, R/W, etc) can be read by the emulator.

Monitor Operation

The 70322/70320 emulator is background type emulator, so that any memory space is not required to perform emulator functions. However, the emulator performs some functions (such as display/modify target system memory) by executing monitor program. It is very important to know where the monitor program is running, since the monitor operation is always visible to target system. Upon power up, the background monitor resides address range 00000H through 00FFFH. Since the monitor operation is always visible to target system, if your target system have memory or some memory mapped I/O devices on the area, it may be problem. In such case, you can relocate monitor program address to another location if desired. You can relocate each 4K byte boundary.

To see default monitor operation address ...

TYPE: tck-ub

This allow the emulation analyzer to trace monitor operation including your program operation.

Now, trace the monitor operation by entering "t" (trace) command and display analysis trace by entering "tl" (trace list display) command.

In-Circuit Emulation 4-5

The monitor program reside 00000H through 00FFFH memory space.

Now, let's relocate monitor location to 20000H by issuing "**cf loc= 20000**". And trace monitor operation as did earlier. Analysis trace display should resemble:

Line	addr,H	7032x mnemonic,H			xbits,H	count,R	seq
0	0011a	00H, refre	sh	MON	0000		+
1	20326	2eH, fetch	(ext)	MON	0000	3.000 uS	
2	20327	81xxH, fetch	(ext)	MON	0000	2.000 uS	
3	20328	3eH, fetch	(ext)	MON	0000	2.000 uS	
4	0011b	3exxH, refre	sh	MON	0000	1.000 uS	
5	20326	CMP PS:WORD PTR 00	с4Н,#0100Н		0000	0.280 uS	
б	20327				0000	2.000 uS	
7	20329	c4xxH, fetch	(ext)	MON	0000	0.720 uS	
8	2032a	00H, fetch	(ext)	MON	0000	2.000 uS	
9	2032b	00xxH, fetch	(ext)	MON	0000	2.000 uS	
10	0011c	00H, refre	sh	MON	0000	1.000 uS	
11	2032c	01H, fetch	(ext)	MON	0000	3.000 uS	
12	2032d	74xxH, fetch	(ext)	MON	0000	2.000 uS	
13	2032e	02H, fetch	(ext)	MON	0000	2.000 uS	
14	0011d	02xxH, refre	sh	MON	0000	1.000 uS	
15	200c4	00H, mem r	ead (ext)	MON	0000	3.000 uS	
16	200c5	03xxH, mem r	ead (ext)	MON	0000	2.000 uS	•
17	2032f	ebxxH, fetch	(ext)	MON	0000	2.000 uS	
18	0011e	ebH, refre	sh	MON	0000	1.000 uS	
19	2032d	BE 0331H			0000	0.280 uS	

As you can see, monitor program is relocated to 20000H (physical address).

Emulator Probe Signal Topics	The descriptions in this section are of emulation tasks which involve emulator probe signals while in background or while accessing emulation memory.
Allowing the Target System to Insert Wait States	High-speed emulation memory provides no-wait-state operation. However, the emulator may optionally respond to the target system ready lines while emulation memory is being accessed. Use the cf (configuration) command with the rdy configuration item to cause emulation memory accesses to honor target system ready signals. R> cf rdy=lk

4-6 In-Circuit Emulation

When the ready relationship is locked to the target system, emulation memory accesses honor ready signals from the target system (wait states are inserted if requested).

To reconfigure so that emulation memory accesses do not honor target system ready signals, enter the following command.

R>cf rdy=unlk

When the ready relationship is not locked to the target system, emulation memory accesses ignore ready signals from the target system (no wait states are inserted).

Target ROM Debug Topics	The descriptions in this section are of emulation tasks which involve debugging target ROM. The tasks described below are made possible by the cim (copy target system memory image) command. The cim command allows you to read the contents of target memory into the corresponding emulation memory locations. Moving target ROM contents into emulation memory is the key which allows you to perform the tasks described below. For example, if target ROM exists at locations 400H through 0A38H, you can copy target ROM into emulation memory with the following commands. R>map 4000bff erom R>cim 4000a38
Using Software Breakpoints with ROMed Code	You cannot define software breakpoints in target ROM memory. However, you can copy target ROM into emulation memory which does allow you to use software breakpoints.
	Once target ROM is copied into emulation memory, software breakpoints may be used normally at addresses in these emulation memory locations. R>bc -e bp

R>bp 440

In-Circuit Emulation 4-7

Coverage Testing ROMed Code	Coverage testing (as described in the "Getting Started" chapter) can only be performed on emulation memory. However, if you wish to perform coverage tests on code in target system ROM, you can copy target ROM into emulation memory and perform the coverage tests on your ROMed code.
	Once target ROM is copied into emulation memory, coverage testing may be done normally at addresses in these emulation memory locations.
	U> cov -a 4000a38
Modifying ROMed Code	Suppose that, while debugging your target system, you begin to suspect a bug in some target ROM code. You might want to fix or "patch" this code before programming new ROMs. This can also be done by copying target system ROM into emulation memory with the cim (copy target memory image) command. Once the contents of target ROM are copied into emulation memory, you can modify emulation memory to "patch" your suspected code.

Electrical	The AC characteristics of the HP 64731A emulator are listed in the
Characteristics	following table.

		uPD703	22,70320	HP 64731 A	
Characteristic	Symbol	Min	Max	Typical	Unit
CLKOUT Width Low,High	twkh twkl	0.5T-15		0.5T-25	ns
CLKOUT Rise and FAll Time	t _{KR} ,t _{KF}		15	25	ns
Address Valid to Data-in Valid (Read)	t _{DADR}		(n+1.5)T-90	(n+1.5)T-120	ns

4-8 In-Circuit Emulation

		uPD703	22,70320	HP 64731 A	
Characteristic	Symbol	Min	Max	Typical	Unit
CLKOUT Width Low,High	t _{WKH} t _{WKL}	0.5T-15		0.5T-25	ns
MREQ Asserted to Data-in Valid(Read)	t _{DMRD}		(n+1)T-75	(n+1)T-105	ns
MSTB Asserted to Data-in Valid(Read)	t _{DMSD}		(n+ 0.5)T-75	(n+0.5)T-105	ns
IOSTB Asserted to Data-in Valid(Read)	t _{DISD}		(n+1)T-90	(n+1)T-120	ns
READY Setup Time	t _{SCRY}		(n-1)T-100	(n-1)T-130	ns
HLDRQ Setup Time	t _{SHQK}		30	60	ns
INTP0-INTP2,DMARQ0-DMARQ Setup Time	tsiqk		30	60	ns
POLL Set up Time	t SPLK		30	60	ns
INT Setup Time	t _{SIR K}		30	60	ns

Table 4-1 Electrical Specifications(Cont'd)

T: Cycle Time

n: Wait-State Count

In-Circuit Emulation 4-9

Target System Interface

P0(0:6)

These signals are connected to 74HCT125 and 74HCT573 and 100K ohm pull-down register.

P0(7)/CLKOUT This signal is connected to 74HCT125 and 74HCT573 and 10K ohm pull-up register in process with PORT mode. In other case, this signal is connected to 74FCT244 and 10K ohm pull-up register.

P1(0)

This signal is connected tp 74HCT14 and 10K ohm pull-up register.

4-10 In-Circuit Emulation

These signals are connected to 74HCT125 and 10K ohm pull-up register.

P1(3:6)

P1(1:2)

These signals are connected to 74HCT449 and 100K ohm pull-down register.

This signal is connected to 74HCT125.

P2(0:7)

These signals are connected to 74HCT449 and 100K ohm pull-down register.

In-Circuit Emulation 4-11

These signals are connected to LM339 and 1000p farad condenser.

This signal is connected to MUX-16ET through 1.96K ohm series register and 31.36K ohm pull-down register and 1000p farad condenser.

These signals are connected to 74HCT645 and 100K ohm pull-down register.

These signals are connected to 74HCT245 and 100K ohm pull-down register.

Vth

D0-D7

A0-A7

4-12 In-Circuit Emulation

PT(0:7)

In-Circuit Emulation 4-13

This signal is connected to 74HCT125 and 100K ohm pull-down register.

RESET

CTS0

This signal is connected to 74HCT14 and 10K ohm pull-up register.

EA

This signal is connected to 74HCT125 and 10K ohm pull-up register.

4-14 In-Circuit Emulation

Restrictions And Considerations

Interrupts While Executing Step Command	While executing user program code in stepping, interrupts (include NMI, non-maskable interrupt) are suspended. If the interrupt and certain instruction execution which can not be interrupted occur simultaneously, the interrupt will be ignored completely.
Note K	You should not use step command when if target system can generates interrupt. It's possible to be ignored interrupts.
DMA Operation	In case of the 70322/70320 microprocessor, internal ROM/RAM area can not become source/destination of DMA operation. External memory is accessed instead. However, the 70322/70320 emulator accesses internal ROM/RAM area as DMA operation source or destination.
	For example, in case of actual processor (70322), if DMA operation from internal ROM area to target I/O is executed, external memory which is overlapping to internal ROM become data source. However, in case of the emulator, internal ROM becomes source instead.
Load/Modify Operation to Internal ROM	When you load the program to internal ROM area, the emulator stores to the internal ROM area. In addition, the emulator performs write operation to the target system. If your target system have memory on address area where the internal ROM resides, the emulator write to the memory when you load the code to internal ROM. This is true when you issue the command which performs the write operation to internal ROM (ie. "m" modify memory command).

In-Circuit Emulation 4-15

Tracing Internal RAM/SFR Access Cycles

The address information when accessing internal RAM/SFR area, only lowest 8 bit is correct. Other higher 12 bit address information is unstable.

If your program accesses internal RAM/SFR, emulation trace display shows you such cycles. However, displayed address information of internal RAM/SFR access cycle may differ from one you expect. In such case, only least 8 bit is certain. Rest 12 bit of address information may be unreliable (have no meaning).

4-16 In-Circuit Emulation

70322/70320 Emulator Specific Command Syntax

The following pages contain descriptions of command syntax specific to the 70322/70320 emulator. The following syntax items are included (several items are part of other command syntax):

- <ACCESS_MODE>. May be specified in the mo (display and access mode), m (memory), and io (I/O port) commands. The access mode specifies which resource you intend to access when resources are overlapped.
- ADDRESS>. May be specified in emulation commands which allow addresses to be entered.
- <CONFIG_ITEMS>. May be specified in the cf (emulator configuration) and help cf commands.
- < DISPLAY_MODE>. May be specified in the mo (display and access mode), m (memory), io (I/O port), and ser (search memory for data) commands. The display mode is used when memory locations are displayed or modified.
- <REG_NAME> and <REG_CLASS>. May be specified in the reg (register) command.

Emulator Specific Command Syntax A-1

ACCESS_MODE

Summary This configuration item have special meaning to the HP 64731 70322/70320 emulator. When your target microprocessor is 70322, there is internal ROM on chip. This internal ROM and internal RAM/SFR (Special Function Registers) can overlap. In such situation, you can specify which resource you want to access to.

Syntax

FunctionThe < ACCESS_MODE> for the 70322/70320 emulator has a
special meaning. The 70322 microprocessor have internal ROM
(16 Kbyte) and internal RAM, SFR (Special Function Register) on
memory space. The internal ROM and internal RAM/SFR can
overlap each other. Upon reset, Internal ROM and internal
RAM/SFR overlaps, since the IDB register is set to FFH (internal
RAM start at FFE00H physical address). In such situation, you
can specify the emulator to access which resource (internal ROM
or internal RAM/SFR).

Note

This configuration item has no meaning when you select 70320 microprocessor because 70320 does not incorporate ROM on chip, or internal RAM/SFR do not overlap with internal ROM. This configuration has meaning only when you select 70322 microprocessor and internal RAM/SFR overlap with internal ROM.

Parameters

 i Access Internal RAM/SFR. Select internal RAM/SFR as object of command you requested. Setting this mode allow you to access (display/modify) internal RAM/SFR when it overlap with the internal ROM.
 b Access Internal ROM. Select internal ROM as object of command you requested. Setting this mode allow you to access (display/modify) internal ROM when it overlap with the internal RAM.

Caution

This configuration item also affects the destination of load command. You must set this to "i" when you load your programs into internal ROM. Otherwise, if set to "b", your programs will be loaded into internal RAM/SFR. Keep this in your mind when loading programs into internal ROM. Since the emulator's default is "b" you must modify this configuration item to "i" prior to loading the program into internal ROM.

Defaults The < ACCESS_MODE> is **b** at power up initialization. Access mode specifications are saved; that is, when a command changes the access mode, the new access mode becomes the current default.

Related Commands mo (specify display and access modes)

Emulator Specific Command Syntax A-3

ADDRESS

Summary Address specifications used in emulation commands.

Function The < **ADDRESS>** parameter used in emulation commands may be specified as a logical address or as a physical address (though a physical address in a run or step command is converted to a logical address by the emulation system).

Parameters < **SEGMENT**>

This expression is the segment portion of the logical address. The value specified is placed in the 70322/70320 PS register before running or stepping.

< OFFSET>

This expression is the offset portion of the logical address. The value specified is placed in the 70322/70320 PC register before running or stepping.

< PHYS_ADDR>

This expression is a physical address in the 70322/70320 address range. In run and step commands, the emulation system converts this physical address to a logical address as specified by the **rad** (run address default) configuration item (see the **< CONFIG_ITEM>** description).

A-4 Emulator Specific Command Syntax

Expressions are defined in the HP 64700 Emulators Terminal Interface: User's Reference manual.

- **Defaults** If no number base is specified, values entered are interpreted as hexadecimal numbers.
- **Examples** The examples below show logical addresses being used in the run and step command as compared to physical addresses.

M>s 2 Offff:0
 ffff:0000 ea00f400f0 JMP FAR PTR ff400
 f000:f400 b800f0 MOV AW,#f000
 PC = f000:f403
M>s 2 Offff0
 f000:fff0 ea00f400f0 JMP FAR PTR ff400
 f000:f400 b800f0 MOV AW,#f000
 PC = f000:f403

Related Commands r (run command)

s (step command)

< **CONFIG_ITEMS**> (70322/70320 specific items specified with the **cf** command)

Emulator Specific Command Syntax A-5

CONFIG_ITEMS

Summary 70322/70320 emulator configuration items.

Function The < **CONFIG_ITEMS**> are the 70322/70320 specific configuration items which can be displayed/modified using the **cf** (emulator configuration) command. If the "= " portion of the syntax is not used, the current value of the configuration item is displayed.

Parameters

clk	Clock Source. This configuration item allows you to specify whether the emulator clock source is to be internal (int , provided by the emulator) or external (ext , provided by the target system). The internal clock speed is 8 MHz (system clock, CLKOUT). The emulator will operate at external clock speed from 4-16 MHz (entered clock or crystal frequency connected).
rdy	Allow Target Ready Signals to Insert Wait States. This configuration item allows you to specify whether the emulator should honor target system ready signals on accesses to emulation memory. Setting rdy equal to lk specifies that target ready signals be honored on emulation memory accesses. Setting rdy equal to unlk specifies that target ready signals be ignored on emulation memory accesses.
loc	Monitor Location. This configuration item allows you to specify the location of the monitor program. The monitor may be located on any 4K byte boundary. If the < ADDRESS> specified is not on a 4K boundary, the 4K boundary below the address is used. The location of background monitors may be important because background cycles of the 70322/70320 emulator are always visible to the target system. In default, the monitor is located on 00000H through 00FFFH (physical address).

Note

If your target system have some circuitry which monitors bus activities to detect illegal access to resources, You may need to relocate monitor address.

rrt

rad

Restrict to Real-Time Runs. This configuration item allows you to specify whether program execution should take place in real-time or whether commands should be allowed to cause breaks to the monitor during program execution. To restrict execution to real-time, set **rrt** equal to **en**. To allow breaks to the monitor during program execution, set **rrt** equal to **dis**. When runs are restricted to real-time, commands which access target system resources (display registers, step, or display/modify target system memory or I/O) are not allowed.

Physical to Logical Run Address Conversion.
This configuration item allows you to specify the default method in which the emulation system will convert physical addresses specified in run and step commands to logical addresses. Setting rad equal to maxseg specifies that the low nibble of the physical address become the offset value; the high four nibbles become the segment value. Setting rad equal to minseg specifies that the low four nibbles of the physical address become the offset value; the offset value; the high nibble of the physical to minseg specifies that the low four nibbles of the physical address become the offset value; the offset value; the high nibble and three hex zeros will become the segment value.

Microprocessor selection. This configuration item specifies microprocessor to be emulated. 70320 or 70322 are available for microprocessor name. If you select 70322 as a microprocessor to be emulated, 16K byte of emulation memory will be mapped automatically as internal ROM area (however, this does not appear as mapper term). Therefore, rest 108K byte is available for emulation memory. If you select 70320 as target microprocessor, amount of 124K byte emulation memory is available.

Specify whether accept or ignore reset signal from target system. If you specify **en** for this configuration item, emulator accept target system reset signal and execution will start from reset vector address as actual microprocessor does. This is true while running background monitor. If disabled with specifying **dis**, emulator always ignore target system reset signal regardless of foreground (executing user program) or background (executing monitor program). Reset signal from target system will be ignored completely.

Emulator Specific Command Syntax A-9

urst

proc

Defaults The default values of the configuration items are listed below.

cf clk=int cf rdy=unlk cf loc=0FF800 cf rrt=dis cf rad=minseg cf proc=70322 cf urst=en

Related Commands help

You can get an on line help information for particular configuration items by typing:

R>help cf < CONFIG_ITEM>

A-10 Emulator Specific Command Syntax

DISPLAY_MODE

Summary Specify the memory display format or the size of memory locations to be modified.

Syntax

Function The < **DISPLAY_MODE**> specifies the format of the memory display or the size of the memory which gets changed when memory is modified.

Parameters

b	Byte . Memory is displayed in a byte format, and when memory locations are modified, bytes are changed.
W	Word . Memory is displayed in a word format, and when memory locations are modified, words are changed.
d	Double Word . Memory is displayed in a double word format, and when memory locations are modified, double words are changed.
m	Mnemonic . Memory is displayed in mnemonic format; that is, the contents of memory locations are inverse-assembled into mnemonics and operands. When memory locations are modified, the last non-mnemonic display mode specification is used. You cannot specify this

display mode in the **ser** (search memory for data) command.

Defaults The < **DISPLAY_MODE**> is **b** at power up initialization. Display mode specifications are saved; that is, when a command changes the display mode, the new display mode becomes the current default.

Related Commands mo (specify access and display modes)

m (memory display/modify)

io (I/O display/modify)

ser (search memory for data)

A-12 Emulator Specific Command Syntax

REGISTERS

Summary 70322/70320 register designators. Table A-1 shows all available register class names and register names.

< REG_CLASS>

- < REG_NAME> Description
- *(All basic registers)

ah, al, awBASIC registers.bh, bl, bwch, cl, cwdh, dl, dwsp, bp, ix, iyds0, ds1, sspc, ps, psw

port(Port registers)

p0	Port 0	
pm0	Port 0 mode	(Write Only)
pmc0	Port mode control	(Write Only)
p1	Port 1	
pm1	Port 1 mode	(Write Only)
pmc1	Port 1 mode control	(Write Only)
p2	Port 2	
pm2	Port 2 mode	(Write Only)
pmc2	Port 2 mode control	(Write Only)
pt	Port T	(Read Only)
pmt	Port T mode	

intr(Interrupt registers)

intm	External interrupt mode
ems0	External interrupt macro service control 0
ems1	External interrupt macro sercice control 1
ems2	External interrupt macro sercice control 2
exic0	External interrupt request control 0
exic1	External interrupt request control 1
exic2	External interrupt request control 2
ispr	In service priority

cri(Serial I/F registers)

rxb0	Recieve buffer 0	(Read Only)
txb0	Transmit buffer 0	(Write Only)
srms0	Serial recieve macro service control	o10
stms0	Serial transmit macro service cont	rol 0
scm0	Serial mode 0	
scc0	Serial control 0	
brg0	Baud rate grnerater 0	
sce0	Serial error	(Read Only)
seic0	Serial error interrupt request cont	rol 0
sric0	Serial recieve interrupt request co	ntrol 0
stic0	Serial transmit interrupt request control 0	
rxb1	Recieve buffer 1	(Read Only)
txb1	Transmit buffer 1	(Write Only)
srms1	Serial recieve macro service control	ol 1
stms1	Serial transmit macro service cont	rol 1
scm1	Serial mode 1	
scc1	Serial control 1	
brg1	Baud rate grnerater 1	
sce1	Serial error	(Read Only)
seic1	Serial error interrupt request cont	rol 1
sric1	Serial recieve interrupt request co	ntrol 1
stic1	Serial transmit interrupt request c	ontrol 1

A-14 Emulator Specific Command Syntax

tmr(Timer registers)

tm0	Timer 0
md0	Modulo/Timer 0
tm1	Timer 1
md1	Modulo/Timer 1
tmc0	Timer control 0
tmc1	Timer control 1
tmms0	Timer unit macro service control 0
tmms1	Timer unit macro service control 1
tmms2	Timer unit mcro service control 2
tmic0	Timer unit interrupt request control 0
tmic1	Timer unit interrupt request control 1
tmic2	Timer unit interrupt request control 2

dma(DMA control registers)

dmac0	DMA control 0
dmam0	DMA mode 0
dmac1	DMA control 1
dmam1	DMA mode 1
dic0	DMA interrupt request control 0
dic1	DMA interrupt request control 1

Proc(Processor status register)

stbc	Standby control
rfm	Refresh mode
wtc	Wait control
flag	User flag
prc	Processor control
tbic	Timer base interrupt control
idb	Internal data area base

Function The < **REG_CLASS**> names may be used in the **reg**(register) command to display a class of 70433 registers.

The < **REG_NAME**> names may be used with the **reg** command to either display or modify the contents of 70433 registers.

Refer to your 70433 use's manual for complete details on the use of the 70433 registers.

Related Commands reg (register display/modify)

Function The < **REG_CLASS**> names may be used in the **reg** (register) command to display a class of 70322/70320 registers.

The **< REG_NAME>** names may be used with the **reg** command to either display or modify the contents of an 70322/70320 register.

Refer to your 70322/70320 user's manual for complete details on the use of the 70322/70320 registers.

Related Commands reg (register display/modify)

A-16 Emulator Specific Command Syntax

Index

Α	absolute files, downloading, 2-12 access internal RAM/SFR trace, 4-10 access mode, specifying, 2-18 ACCESS_MODE syntax, A-2 ADDRESS syntax, A-4 analyzer status predefined equates, 2-24 assemblers, 2-9
В	 b (break to monitor) command, 2-20 background monitor, 3-5 things to be aware of, 3-6 bc (break conditions) command, 2-22 BNC connector, 3-4 break conditions, 2-22 after initialization, 2-6 break on analyzer trigger, 3-4 breakpoints See software breakpoints bus masters note on target system accesses of emulation memory, 2-8
С	cf (emulator configuration) command, 3-1 characterization of memory, 2-7 checksum error count, 2-13 cim (copy target system memory image) command, 4-8 clk (clock source) emulator configuration item, 4-4 clk, emulator configuration, A-7 clock source external, 4-4 internal, 4-4 CMB (coordinated measurement bus), 3-4 CMOS target system components, protecting, 4-3 cold start initialization, 2-7 combining commands on a single command line, 2-16 command files, 2-16

command groups, viewing help for, 2-4 command recall, 2-17 command syntax, specific to 70320/70322 emulator, A-1 commands combining on a single command line, 2-16 CONFIG_ITEMS syntax, A-6 configuration clk, A-7 See also emulator configuration loc, A-7 proc, A-9 rad, A-8 rdy, A-7 rrt. **A-8** urst, A-9 configuration (hardware) remote, 2-10 standalone, 2-10 transparent, 2-10 configuration, installing the emulator, 2-2 coordinated measurements, 3-4 coprocessors note on target system access of emulation memory, 2-8 cov (reset/display coverage) command, 2-27 coverage testing, 2-27 on ROMed code, 4-8 cp (copy memory) command, 2-27

- D display mode, specifying, 2-18 DISPLAY_MODE syntax, A-11 DMA cycles, 4-4 DMA operation restriction, 4-10 downloading absolute files, 2-12 dual-port emulation memory, 3-2
- E emulation analyzer, 1-3 emulation memory after initialization, 2-7 dual-port, 3-2 note on access by target system, 2-8

size of, **2-7** emulation RAM and ROM, 2-7 emulator feature list, 1-3 purpose of, 1-1 emulator configuration after initialization, 2-6 on-line help for, 2-5 emulator configuration items clk, **4-4** loc, **3-6** rad, 3-3 rdy, 4-7 rrt. **3-2** emulator probe installing, 4-2 emulator specific command syntax, A-1 equates predefined for analyzer status, 2-24 eram, memory characterization, 2-9 erom, memory characterization, 2-9 es (emulator status) command, 2-6 escape character (default) for the transparent mode, 2-12 EXECUTE (CMB signal), 3-5

F file formats, absolute, **2-12**

- G getting started, 2-1 getting started, prerequisites, 2-2 grd, memory characterization, 2-8 guarded memory accesses, 2-8 to vector table area, 3-6
- H halt instructions continuing after break to background monitor, 3-6 hardware installation, 2-2 help facility, using the, 2-4 help information on system prompts, 2-5 HP absolute files, downloading, 2-12
- I illegal opcode detection, **3-8** in-circuit emulation, **4-1**

init (emulator initialization) command, 2-6 initialization, emulator, 2-6 cold start. 2-7 warm start, 2-6 installation, hardware, 2-2 Intel hexadecimal files, downloading, 2-13 internal ROM load/modify, 4-10 L labels (trace), predefined, 2-23 linkers, 2-9 load (load absolute file) command, 2-12 load map, 2-9 load/modify internal ROM, 4-10 loc (monitor location) emulator configuration item, 3-6 loc, emulator configuration, A-7 local bus masters note on target system accesses of emulation memory, 2-8 locating the monitor, **3-6** logical run address, conversion from physical address to, 3-3 lower byte accesses, 2-24 Μ m (memory display/modification), 2-11 m (memory display/modification) command, 2-18 macros after initialization, 2-7 using, 2-17 map (memory mapper) command, 2-8 mapping memory, 2-7 memory displaying in mnemonic format, 2-14 dual-port emulation, **3-2** memory characterization, 2-7 memory map after initialization, 2-6 memory, emulation note on access by target system, 2-8

mo (specify display and access modes) command, 2-18

memory, mapping, 2-7

modifying ROMed code, 4-9

monitor background, 3-5 locating the, 3-6 monitor location relocation, 4-5 monitor program, 3-5 monitor program memory, size of, 2-7 Motorola S-record files, downloading, 2-13 0 on-line help, using the, 2-4 Ρ physical run address, conversion to logical run address, 3-3 predefined equates, 2-24 predefined trace labels, 2-23 prerequisites for getting started, 2-2 probe cable See emulator probe proc, emulator configuration, A-9 processor selection, 3-7 prompts, 2-5 help information on, 2-5 using "es" command to describe, 2-6 R rad (physical run address default) emulator config. item, 3-3 rad, emulator configuration, A-8 RAM mapping emulation or target, 2-8 rdy (target system wait states) emulator configuration item, 4-7 rdy, emulator configuration, A-7 READY (CMB signal), 3-5 real-time runs commands not allowed during, 3-3 commands which will cause break, 3-2 restricting the emulator to, 3-2 recalling commands, 2-17 reg (register display/modification) command, 2-15 register commands, 1-3 **REGISTERS** syntax, A-13 relocatable files, 2-9 relocate monitor location, 4-5 remote configuration, 2-10 rep (repeat) command, 2-17 reset

Index -5

target system, **3-7** reset (emulator) commands which cause exit from, **2-29** ROM debug of target, **4-8** mapping emulation or target, **2-8** writes to, **2-8** rrt (restrict to real-time) emulator configuration item, **3-2** rrt, emulator configuration, **A-8** rst (reset emulator) command, **2-29** run address, conversion from physical address, **3-3**

S s (step) command, **2-15**

sample program description, 2-3 load map listing, 2-9 loading the, 2-10 select microprocessor, 3-7 ser (search memory) command, 2-19 simple trigger, specifying, 2-24 single byte interrupt (SBI), 2-20 software breakpoints, 2-20 after initialization, 2-6 defining, 2-22 using with ROMed code, 4-8 standalone configuration, 2-10 stat (emulation analyzer status) trace label, 2-24 static discharge, protecting the emulator probe against, 4-2 syntax (command), specific to 70320/70322 emulator, A-1

T target system RAM and ROM, 2-9

target system reset accept,ignore, **3-7** Tektronix hexadecimal files, downloading, **2-13** tg (specify simple trigger) command, **2-24** tgout (trigger output) command, **3-4** tl (trace list) command, **2-25** tlb (display/modify trace labels) command, **2-23** trace internal RAM/SFR access, **4-10** trace labels, predefined, **2-23** tram, memory characterization, **2-9**

```
transfer utility, 2-12
transparent configuration, 2-10
transparent mode, 2-12
trig1 and trig2 internal signals, 3-4
trigger
break on, 3-4
specifying a simple, 2-24
TRIGGER (CMB signal), 3-5
trom, memory characterization, 2-9
ts (trace status) command, 2-24
```

- U urst, emulator configuration, A-9
- W wait states, allowing the target system to insert, 4-7 warm start initialization, 2-6
- X x (execute) command, 3-4

Notes