
HP 64730

H8/570 Emulator
Softkey Interface

User’s Guide

HP Part No. 6 4730-97005
Printed in U.S.A.
February 1993

Edition 2

Notice Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or
for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability
of its software on equipment that is not furnished by
Hewlett-Packard.

 Copyright 1992,1993, Hewlett-Packard Company.

This document contains proprietary information, which is
protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to
another language without the prior written consent of
Hewlett-Packard Company. The information contained in this
document is subject to change without notice.

UNIX is a registered trademark of UNIX System Laboratories Inc.
in the U.S.A. and other countries.

Torx is a registered trademark of Camcar Division of Textron, Inc.

LCA is a trademark of Xilinx Inc.

Hewlett-Packard Company
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure
by the U.S. Government is subject to restrictions set forth in
subparagraph (C) (1) (ii) of the Rights in Technical Data and
Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA
94304 U.S.A. Right for non-DOD U.S. Government Department
and Agencies are as set forth in FAR 52.227-19(c)(1,2).

Printing History New editions are complete revisions of the manual. The date on
the title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was
issued. Many product updates and fixes do not require manual
changes, and manual corrections may be done without
accompanying product changes. Therefore, do not expect a
one-to-one correspondence between product updates and manual
revisions.

Edition 1 64730-97002, May 1992

Edition 2 64730-97005, February 1993

Using This Manual

This manual will show you how to use the HP 64730 H8/570
Emulator with the Softkey Interface. This manual will also help
define how these emulators differ from other HP 64700 Emulators.

This manual will:

Show you how to use emulation commands by executing
them on a sample program and describing their results.
Show you how to configure the emulator for your
development needs. Topics include: restricting the
emulator to real-time execution, and selecting a target
system clock source.
Show you how to use the emulator in-circuit (connected to
a target system).

This manual will not:

Show you how to use every Softkey Interface command
and option; the Softkey Interface is described in the
Softkey Interface Reference.

Organization

Chapter 1 Introduction to the H8/570 Emulator. This chapter briefly
introduces you to the concept of emulation and lists the basic
features of the H8/570 emulator.

Chapter 2 Getting Started. This chapter shows you how to use emulation
commands by executing them on a sample program. This chapter
describes the sample program and how to: load programs into the
emulator, map memory, display and modify memory, display
registers, step through programs, run programs, set software
breakpoints, search memory for data, and use the analyzer.

Chapter 3 Debugging ISP Functions. This chapter shows you how to use the
emulator to debug your ISP functions. This chapter describes how
to: load ISP functions into the emulator, display ISP memory,
display ISP registers, step through ISP functions, run ISP functions,
and use the analyzer.

Chapter 4 "In-Circuit" Emulation. This chapter shows you how to install the
emulator probe into a target system and how to use the "in-circuit"
emulation features.

Chapter 5 Configuring the Emulator. This chapter shows you how to restrict
the emulator to real-time execution, select a target system clock
source, allow background cycles to be seen by the target system.

Chapter 6 Using the Emulator. This chapter describes emulation topics
which are not covered in the "Getting Started" chapter.

Appendix A H8/570 Softkey Interface Specific Syntax. This appendix describes
specific syntax to the H8/570 Softkey Interface.

Conventions Example commands throughout the manual use the following
conventions:

bold Commands, options, and parts of command
syntax.

bold italic Commands, options, and parts of command
syntax which may be entered by pressing softkeys.

normal User specified parts of a command.

$ Represents the HP-UX prompt. Commands
which follow the "$" are entered at the HP-UX
prompt.

< RETURN> The carriage return key.

Notes

Contents

1 Introduction to the H8/570 Emulator

Introduction . 1-1
Purpose of the H8/570 Emulator 1-1
Features of the H8/570 Emulator 1-3

Supported Microprocessors . 1-3
Clock Speeds . 1-3
Emulation memory . 1-3
Analysis . 1-3
Registers . 1-4
Single-Step . 1-4
Target System Interface . 1-4
Breakpoints . 1-4
Reset Support . 1-4
Real-Time Execution . 1-4
Easy Products Upgrades . 1-5
Features for ISP debug . 1-5

Limitations, Restrictions . 1-6
DMA Support . 1-6
Sleep and Software Stand-by Mode 1-6
Watch Dog Timer in Background 1-6
ISP Microprogram Modify . 1-6
Symbolic Information for ISP Functions 1-6
RAM Enable Bit . 1-6

2 Getting Started

Introduction . 2-1
Before You Begin . 2-2

Prerequisites . 2-2
A Look at the Sample Program 2-2
Sample Program Assembly . 2-6
Linking the Sample Program 2-6
Generate HP Absolute file . 2-6

Entering the Softkey Interface . 2-7
From the "pmon" User Interface 2-7

Contents-1

From the HP-UX Shell . 2-8
Using the Default Configuration 2-9

On-Line Help . 2-9
Softkey Driven Help . 2-9
Pod Command Help . 2-10

Loading Absolute Files . 2-11
Displaying Symbols . 2-12

Global . 2-12
Local . 2-13

Displaying Memory in Mnemonic Format 2-14
Display Memory with Symbols 2-15

Running the Program . 2-15
From Transfer Address . 2-16
From Reset . 2-16

Displaying Memory Repetitively 2-16
Modifying Memory . 2-16
Breaking into the Monitor . 2-17
Using Software Breakpoints . 2-18

Enabling/Disabling Software Breakpoints 2-19
Setting a Software Breakpoint 2-20
Displaying Software Breakpoints 2-20
Clearing a Software Breakpoint 2-21

Running the Program to A Specified Address 2-22
Displaying Registers . 2-22
Stepping Through the Program 2-23
Using the Analyzer . 2-24

Specifying a Simple Trigger 2-24
Displaying the Trace . 2-25
Displaying Trace with Time Count Absolute 2-27
Displaying Trace with Compress Mode 2-28
Changing the Trace Depth 2-29
For a Complete Description 2-29

Exiting the Softkey Interface . 2-29
End Release System . 2-29
Ending to Continue Later . 2-29
Ending Locked from All Windows 2-30
Selecting the Measurement System Display or
Another Module . 2-30

2-Contents

3 Debugging ISP Functions

Sample Program with Small ISP Functions 3-2
Sample Program Locations . 3-5
Assembling the Sample Program 3-6
Assembling the Sample ISP Functions 3-6
Converting Your ISP Functions 3-6

Entering the Softkey Interface . 3-7
Loading Absolute Files . 3-7
Looking at Your ISP Code . 3-8
Controlling ISP Execution . 3-10
Stepping ISP Function . 3-11
Displaying/Modifying ISP Registers 3-12
Using the Analyzer to Debug ISP Functions 3-13

Tracing ISP Execution . 3-13
Tracing CPU/ISP Execution 3-15

4 In-Circuit Emulation

Prerequisites . 4-1
Installing the Target System Probe 4-2

Target System Adaptor . 4-3
Pin Protector . 4-3
Installing the Target System Probe 4-3
Optional Pin Extender . 4-3

Target System Interface . 4-4
In-Circuit Configuration Options 4-5
Running the Emulator from Target Reset 4-6

5 Configuring the Emulator

Introduction . 5-1
General Emulator Configuration 5-3

Micro-processor clock source? 5-3
Enter monitor after configuration? 5-3
Restrict to real-time runs? . 5-4

Memory Configuration . 5-6
Mapping Memory . 5-6

Emulator Pod Configuration . 5-8
Processor operation mode? . 5-8
Enable bus arbitration? . 5-9
Enable NMI input from the target system? 5-10
Enable /RES input from the target system? 5-10

Contents-3

Drive emulation reset to the target system? 5-11
Drive background cycles to the target system? 5-11
Break ISP into halt state on CPU break? 5-12
Reset value for stack pointer? 5-12

Debug/Trace Configuration . 5-13
Break processor on write to ROM? 5-13
Trace CPU or ISP operation by emulation analyzer 5-14
Trace background or foreground operation? 5-16
Trace refresh cycles? . 5-17
Trace bus release cycles? . 5-17

Simulated I/O Configuration . 5-17
Interactive Measurement Configuration 5-17
External Analyzer Configuration 5-18
Saving a Configuration . 5-18
Loading a Configuration . 5-19

6 Using the Emulator

Introduction . 6-1
Features Available via Pod Commands 6-2
Using a Command File . 6-3
Debugging C Programs . 6-4

Displaying Memory with C Sources 6-4
Displaying Trace with C Sources 6-4
Stepping C Sources . 6-5

E clock synchronous instructions 6-5
Limitations, Restrictions . 6-6

DMA Support . 6-6
Sleep and Software Stand-by Mode
Watchdog Timer . 6-6
Address Error and Register Values 6-6
ISP Microprogram Modify . 6-6
Symbolic Information for ISP Functions 6-6
RAM Enable Bit . 6-6

Storing Memory Contents to an Absolute File 6-7
Coordinated Measurements . 6-7
Register Names and Classes . 6-8
Using the Format Converter . 6-14

4-Contents

A H8/570 Softkey Interface Specific Syntax

break . A-2
display isp_memory . A-4
display trace . A-6
run . A-8
step . A-9

Illustrations

Figure 1-1. HP 64730 Emulator for the H8/570 Emulator 1-2
Figure 2-1. Sample Program Listing 2-3
Figure 2-2. Linkage Editor Subcommand File 2-6
Figure 2-3. Softkey Interface Display 2-8
Figure 3-1. Sample Program with ISP 3-3
Figure 3-2. Sample ISP Function 3-5
Figure 4-1. Installing the Emulation Probe 4-4

Contents-5

Notes

6-Contents

1

Introduction to the H8/570 Emulator

Introduction The topics in this chapter include:

Purpose of the H8/570 emulator.

Features of the H8/570 emulator.

Purpose of the
H8/570 Emulator

The H8/570 emulator is designed to replace the H8/570
microprocessor in your target system to help you debug/integrate
target system software and hardware. The emulator performs just
like the processor which it replaces, but at the same time, it gives
you information about the bus cycle operation of the processor.
The emulator gives you control over target system execution and
allows you to view or modify the contents of processor registers,
target system memory.

Introduction 1-1

Figure 1-1. HP 6 4730 Emulator for the H8/570 Emulator

1-2 Introduction

Features of the
H8/570 Emulator

This section introduces you to the features of the emulator. The
chapters which follow show you how to use these features.

Supported
Microprocessors

HITACHI HD6475708F (H8/570) microprocessor is supported.

Clock Speeds Maximum external clock speed is 12 MHz (system clock). Internal
clock of the emulator is 10 MHz.

Emulation memory The HP 64730 H8/570 emulator is used with one of the following
Emulation Memory Cards.

HP 64726 128K byte Emulation Memory Card
HP 64727 512K byte Emulation Memory Card
HP 64728 1M byte Emulation Memory Card

The emulator uses 4K bytes of emulation memory, and the rest of
emulation memory is available for user program. You can define
up to 15 memory ranges (at 128 byte boundaries and at least 128
byte in length). You can characterize memory ranges as emulation
RAM, emulation ROM, target system RAM, target system ROM,
or as guarded memory. The emulator generates an error message
when accesses are made to guarded memory locations. You can
also configure the emulator so that writes to memory defined as
ROM cause emulator execution to break out of target program
execution.

Analysis The HP 64730 H8/570 emulator is used with one of the following
analyzers which allows you to trace code execution and processor
activity.

HP 64703 64-channel Emulation Bus Analyzer and
16-channel State/Timing Analyzer
HP 64704 80-channel Emulation Bus Analyzer

The Emulation Bus Analyzer monitors the emulation processor
using an internal analysis bus. The HP 64703 64-channel

Introduction 1-3

Emulation Bus Analyzer and 16-channel State/Timing Analyzer
allows you to probe up to 16 different lines in your target system.

Registers You can display or modify the H8/570 internal register contents.
This includes the ability to modify the program counter (PC) and
code page register (CP) so you can control where the emulator
begins executing a target system program.

Single-Step You can direct the emulation processor to execute a single
instruction or a specified number of instructions.

Target System
Interface

You can set the interface to the target system to be active or
passive during background monitor operation. (See the
"Emulator Pod Configuration" section of the
"Configuring the Emulator" chapter for further details.)

Breakpoints You can set the emulator/analyzer interaction so that when the
analyzer finds a specific state, emulator execution will break out of
the user program into the monitor.

You can also define software breakpoints in your program. The
emulator uses one of H8/570 undefined opcode (1B hex) as
software breakpoint interrupt instruction. When you define a
software breakpoint, the emulator places the breakpoint interrupt
instruction (1B hex) at the specified address; after the breakpoint
interrupt instruction causes emulator execution to break out of
your program, the emulator replaces the original opcode. Refer to
the "Using Software Breakpoints" section of "Getting Started"
chapter for more information.

Reset Support The emulator can be reset from the emulation system under your
control; or your target system can reset the emulation processor.

Real-Time Execution Real-time execution signifies continuous execution of your
program without interference from the emulator. (Such
interference occurs when the emulator temporarily breaks into the
monitor so that it can access register contents or target system
memory.) Emulator features performed in real time include:
running and analyzer tracing.

1-4 Introduction

Emulator features not performed in real time include: display or
modify of target system memory; load/dump of any memory,
display or modification of registers, and single step.

Easy Products
Upgrades

Because the HP 64700 Series development tools (emulator,
analyzer, LAN board) contain programmable parts, it is possible to
reprogram the firmware and some of the hardware without
disassembling the HP 64700A Card Cage. This means that you’ll
be able to update product firmware, if desired, without having to
call an HP file representative to your site.

Features for ISP
debug

The ISP (Intelligent Subprocessor) is a programmable internal
peripheral device of the H8/570 processor. The HP 64730A
emulator provides useful features to debug ISP functions.

ISP Funct ion Load

You can load your ISP functions into the microprogram memory
and SCM (Sequence Control Matrix) of the emulator.

Execution Control

You can direct the ISP to run, halt, or execute a specified number
of instructions.

Memory Display

You can display the contents of ISP microprogram memory in
mnemonic format.

Register Display

You can display/modify the contents of H8/570 ISP registers.

Analysis

You can direct the emulator to monitor the execution of CPU
program or ISP functions, or both of them.

Introduction 1-5

Limitations,
Restrictions

DMA Support Direct memory access to H8/570 emulation memory is not
permitted.

Sleep and Software
Stand-by Mode

When the emulator breaks into the emulation monitor, H8/570
microprocessor sleep or software stand-by mode is released and
comes to normal processor mode.

Watch Dog Timer in
Background

Watch dog timer suspends count up while the emulator is running
in background monitor.

ISP Microprogram
Modify

The contents of ISP microprogram memory cannot be modified by
emulation commands. To modify your ISP program, you need to
re-assemble/link your program, and load it into the emulator.

Symbolic Information
for ISP Functions

The H8/570 Softkey Interface does not support symbolic
information for ISP functions. No symbolic information for ISP
functions is dispalyed in ISP memory display and trace listing.

RAM Enable Bit The internal RAM of H8/510 processor can be enabled/disabled by
RAME (RAM enable bit). However, the H8/570 emulator
accesses emulation RAM even if the internal RAM is disabled by
RAME.

1-6 Introduction

2

Getting Started

Introduction This chapter will lead you through a basic, step by step tutorial
designed to familiarize you with the use of the HP 64730 emulator
with the Softkey Interface.

This chapter will:

Tell you what must be done before you can use the
emulator as shown in the tutorial examples.

Describe the sample program used for this chapter’s
example.

This chapter will show you how to:

Start up the Softkey Interface.

Load programs into emulation and target system memory.

Enter emulation commands to view execution of the
sample program.

Getting Started 2-1

Before You Begin

Prerequisites Before beginning the tutorial presented in this chapter, you must
have completed the following tasks:

1. Connected the emulator to your computer. The HP 64700
Series Installation/Service manual show you how to do this.

2. Installed the Softkey Interface software on your computer.
Refer to the HP 64700 Series Installation/Service manual
for instructions on installing software.

3. In addition, you should read and understand the concepts
of emulation presented in the Concepts of Emulation and
Analysis manual. The Installation/Service manual also
covers HP 64700 system architecture. A brief
understanding of these concepts may help avoid questions
later.

You should read the Softkey Interface Reference manual to
learn how to use the Softkey Interface in general. For the
most part, this manual contains information specific to the
H8/570 emulator.

A Look at the Sample
Program

The sample program used in this chapter is listed in Figure 2-1.
The program emulates a primitive command interpreter. The
sample program is shipped with the Softkey Interface and may be
copied from the following location.

/usr/hp64000/demo/emul/hp64730/cmd_rds.src

Data Declarations

The "Table" section defines the messages used by the program to
respond to various command inputs. These messages are labeled
Msg_A,Msg_B, and Msg_I.

2-2 Getting Started

 .GLOBAL Init, Msgs, Cmd_Input
 .GLOBAL Msg_Dest

WCR .EQU H’FF48

 .SECTION Table,DATA
Msgs
Msg_A .SDATA "Command A entered"
Msg_B .SDATA "Entered B command"
Msg_I .SDATA "Invalid Command"
End_Msgs

 .SECTION Prog,CODE
;***
;* Sets up the stack pointer and the Wait-state
;* controller.
;***
Init MOV.W #Stack,R7
 MOV.B #H’f0,@WCR
;***
;* Clear previous command.
;***
Read_Cmd MOV.B #0,@Cmd_Input
;***
;* Read command input byte. If no command has
;* been entered, continue to scan for input.
;***
Scan MOV.B @Cmd_Input,R0
 BEQ Scan
;***
;* A command has been entered. Check if it is
;* command A, command B, or invalid.
;***
Exe_Cmd CMP.B #H’41,R0
 BEQ Cmd_A
 CMP.B #H’42,R0
 BEQ Cmd_B
 BRA Cmd_I
;***
;* Command A is entered. R1 = the number of
;* bytes in message A. R4 = location of the
;* message. Jump to the routine which writes
;* the messages.
;***
Cmd_A MOV.W #Msg_B-Msg_A-1,R1
 MOV.W #Msg_A,R4
 BRA Write_Msg
;***
;* Command B is entered.
;***
Cmd_B MOV.W #Msg_I-Msg_B-1,R1
 MOV.W #Msg_B,R4
 BRA Write_Msg
;***
;* An invalid command is entered.
;***

Figure 2-1. Sample Program Listing

Getting Started 2-3

Initialization

The program instructions at the Init label initializes the stack
pointer and the wait state controller.

Reading Input

The instruction at the Read_Cmd label clears any random data or
previous commands from the Cmd_Input byte. The Scan loop
continually reads the Cmd_Input byte to see if a command is
entered (a value other than 0 hex).

Cmd_I MOV.W #End_Msgs-Msg_I-1,R1
 MOV.W #Msg_I,R4
;***
;* Message is written to the destination.
;***
Write_Msg MOV.W #Msg_Dest,R5
Again MOV.B @R4+,R3
 MOV.B R3,@R5+
 SCB/EQ R1,Again
;***
;* The rest of the destination area is filled
;* with zeros.
;***
Fill_Dest MOV.B #0,@R5+
 CMP.W #Msg_Dest+H’20,R5
 BNE Fill_Dest
;***
;* Go back and scan for next command.
;***
 BRA Read_Cmd

 .SECTION Data,COMMON
;***
;* Command input byte.
;***
Cmd_Input .RES.B H’1
 .RES.B H’1
;***
;* Destination of the command messages.
;***
Msg_Dest .RES.B H’3E
 .RES.W H’80 ; Stack area.
Stack

 .END Init

Figure 2-1. Sample Program Listing (Cont’d)

2-4 Getting Started

Processing Commands

When a command is entered, the instructions from Exe_Cmd to
Cmd_A determine whether the command was "A", "B", or an
invalid command.

If the command input byte is "A" (ASCII 41 hex), execution is
transferred to the instructions at Cmd_A.

If the command input byte is "B" (ASCII 42 hex), execution is
transferred to the instructions at Cmd_B.

If the command input byte is neither "A" nor "B", an invalid
command has been entered, and execution is transferred to the
instructions at Cmd_I.

The instructions at Cmd_A, Cmd_B, and Cmd_I each load register
R1 with the length of the message to be displayed and register R4
with the starting location of the appropriate message. Then,
execution transfers to Write_Msg which writes the appropriate
message to the destination location, Msg_Dest.

After the message is written, the instructions at Fill_Dest fill the
remaining destination locations with zeros. (The entire destination
area is 20 hex bytes long.) Then, the program branches back to
read the next command.

The Destination Area

The "Data" section declares memory storage for the command
input byte, the destination area, and the stack area.

This program emulates a primitive command interpreter.

Getting Started 2-5

Sample Program
Assembly

The sample program is written for and assembled with the HP
64869 H8/500 Assembler/Linkage Editor. The sample program
was assembled with the following command below(which assumes
that /usr/hp64000/bin is defined in the PATH environment
variable).

$ h8asm -debug cmd_rds.src <RETURN>

Linking the Sample
Program

The sample program can be linked with following command and
generates the absolute file. The contents of "cmd_rds.k" linkage
editor subcommand file is shown in figure 2-2.

$ h8lnk -subcommand= cmd_rds.k <RETURN>

Generate HP
Absolute file

To generate HP Absolute file for the Softkey Interface, you need to
use "h8cnvhp" absolute file format converter program. To generate
HP Absolute file, enter following command:

$ h8cnvhp cmd_rds <RETURN>

You will see that cmd_rds.X, cmd_rds.L, and cmd_rds.A are
generated.

Refer to Chapter 6 of this manual for more detail of h8cnvhp
converter.

Note You need to specify "debug" command line option to both
assembler and linker command to generate local symbol
information. The "debug" option for the assembler and linker
direct to include local symbol information to the object file.

debug
input cmd_rds
start Prog(1000), Table(2000), Data(0FC00)
outpur cmd_rds
print cmd_rds
exit

Figure 2-2. Linkage Editor Subcommand File

2-6 Getting Started

7Entering the
Softkey Interface

If you have installed your emulator and Softkey Interface software
as directed in the HP 64700 Series Emulators Softkey Interface
Installation Notice, you are ready to enter the interface. The
Softkey Interface can be entered through the pmon User Interface
Software or from the HP-UX shell.

From the "pmon"
User Interface

If /usr/hp64000/bin is specified in your PATH environment
variable, you can enter the pmon User Interface with the following
command.

$ pmon <RETURN>

If you have not already created a measurement system for the
H8/570 emulator, you can do so with the following commands.
First you must initialize the measurement system with the
following command.

MEAS_SYS msinit <RETURN>

After the measurement system has been initialized, enter the
configuration interface with the following command.

msconfig <RETURN>

To define a measurement system for the H8/570 emulator, enter:

make_sys emh8 <RETURN>

Now, to add the emulator to the measurement system, enter:

add <module_number> naming_it h8 <RETURN>

Enter the following command to exit the measurement system
configuration interface.

end <RETURN>

If the measurement system and emulation module are named
"emh8" and "h8" as shown above, you can enter the emulation
system with the following command:

emh8 default h8 <RETURN>

Getting Started 2-7

If this command is successful, you will see a display similar to figure
2-3. The status message shows that the default configuration file
has been loaded. If the command is not successful, you will be
given an error message and returned to the pmon User Interface.
Error messages are described in the Softkey Interface Reference
manual.

For more information on creating measurements systems, refer to
the Softkey Interface Reference manual.

From the HP-UX Shell If /usr/hp64000/bin is specified in your PATH environment
variable, you can also enter the Softkey Interface with the following
command.

$ emul700 <emul_name> <RETURN>

The "emul_name" in the command above is the logical emulator
name given in the HP 64700 emulator device table
(/usr/hp64000/etc/64700tab).

 HPB3059-19301 A.04.00 15June92
 H8/570 SOFTKEY USER INTERFACE

 A Hewlett-Packard Software Product
 Copyright Hewlett-Packard Co. 1992

 All Rights Reserved. Reproduction, adaptation, or translationwithout prior
 written permission is prohibited, except as allowed undercopyright laws.

 RESTRICTED RIGHTS LEGEND

 Use , duplication , or disclosure by the Government is subject to
 restrictions as set forth in subparagraph (c) (1) (II) ofthe Rights
 in Technical Data and Computer Software clause at DFARS52.227-7013.
 HEWLETT-PACKARD Company , 3000 Hanover St. , Palo Alto, CA94304-1181

 STATUS: Loaded configuration file____________________________________...R....

 run trace step display modify break end ---ETC--

Figure 2-3. Softkey Interface Display

2-8 Getting Started

If this command is successful, you will see a display similar to figure
2-3. The status message shows that the default configuration file
has been loaded. If the command is not successful, you will be
given an error message and returned to the HP-UX prompt. Error
messages are described in the Softkey Interface Reference manual.

Using the Default
Configuration

The default emulator configuration is used with the following
examples.

The address range 0 hex through 7FFF hex is mapped as emulation
ROM, and F680 hex through FE7F hex as emulation RAM. The
emulator operates in mode 1.

On-Line Help There are two ways to access on-line help in the Softkey Interface.
The first is by using the Softkey Interface help facility. The second
method allows you to access the firmware resident Terminal
Interface on-line help information.

Softkey Driven Help To access the Softkey Interface on-line help information, type
either "help" or "?" on the command line; you will notice a new set
of softkeys. By pressing one of these softkeys and < RETURN> ,
you can cause information on that topic to be displayed on your
screen. For example, you can enter the following command to
access "system command" help information.

? system_commands <RETURN>

The help information is scrolled on to the screen. If there is more
than a screenful of information, you will have to press the space bar
to see the next screenful, or the < RETURN> key to see the next
line, just as you do with the HP-UX more command. After all the
information on the particular topic has been displayed (or after
you press "q" to quit scrolling through information), you are
prompted to press < RETURN> to return to the Softkey Interface.

Getting Started 2-9

Pod Command Help To access the emulator’s firmware resident Terminal Interface help
information, you can use the following commands.

display pod_command <RETURN>

pod_command ’help m’ <RETURN>

The command enclosed in string delimiters (", ’, or ^) is any
Terminal Interface command, and the output of that command is
seen in the pod_command display. The Terminal Interface help
(or ?) command may be used to provide information on any
Terminal Interface command or any of the emulator configuration
options (as the example command above shows).

 ---SYSTEM COMMANDS & COMMAND FILES---

 ? displays the possible help files
 help displays the possible help files

 ! fork a shell (specified by shell variable SH)
 !<shell cmd> fork a shell and execute a shell command

 cd <directory> change the working directory
 pwd print the working directory
 cws <SYMB> change the working symbol - the working symbol also
 gets updated when displaying local symbols and
 displaying memory mnemonic
 pws print the working symbol

 <FILE> p1 p2 p3 ... execute a command file passing parameters p1, p2, p3

 log_commands to <FILE> logs the next sequence of commands to file <FILE>
 log_commands off discontinue logging commands
 name_of_module get the "logical" name of this module (see 64700tab.net)

 --More--(22%)

2-10 Getting Started

Loading Absolute
Files

The "load" command allows you to load absolute files into
emulation or target system memory. If you wish to load only that
portion of the absolute file that resides in memory mapped as
emulation RAM or ROM, use the "load emul_mem" syntax. If you
wish to load only the portion of the absolute file that resides in
memory mapped as target RAM, use the "load user_mem" syntax.
If you want both emulation and target memory to be loaded, do not
specify "emul_mem" or "user_mem". For example:

load cmd_rds <RETURN>

Normally, you will configure the emulator and map memory before
you load the absolute file; however, the default configuration is
sufficient for the sample program.

 Pod Commands
 Time Command
 10:00:00 help m

 m - display or modify processor memory space
 m <addr> - display memory at address
 m -d<dtype> <addr> - display memory at address with display option
 m <addr>..<addr> - display memory in specified address range
 m -dm <addr>..<addr> - display memory mnemonics in specified range
 m <addr>.. - display 128 byte block starting at address A
 m <addr>=<value> - modify memory at address to <value>
 m -d<dtype> <addr>=<value> - modify memory with display option
 m <addr>=<value>,<value> - modify memory to data sequence
 m <addr>..<addr>=<value>,<value> - fill range with repeating sequence
 --- VALID <dtype> MODE OPTIONS ---
 b - display size is 1 byte(s)
 w - display size is 2 byte(s)
 m - display processor mnemonics

 STATUS: H8/570--In monitor ISP halted________________________________...R....
 pod_command ’help m’

 run trace step display modify break end ---ETC--

Getting Started 2-11

Displaying
Symbols

When you load an absolute file into memory (unless you use the
"nosymbols" option), symbol information is loaded. Both global
symbols and symbols that are local to a source file can be displayed.

Global To display global symbols, enter the following command.

display global_symbols <RETURN>

Listed are: address ranges associated with a symbol and the offset
of the symbol within the minimum value of these global symbols.

 Global symbols in cmd_rds
 Static symbols
 Symbol name Address range Contents Segment Offset
 Cmd_Input 0FC00 0000
 Init 01000 0000
 Msg_Dest 0FC02 0002
 Msgs 02000 0000

 Filename symbols
 Filename
 cmd_rds.src

 STATUS: H8/570--In monitor ISP halted________________________________...R....
 display global_symbols

 run trace step display modify break end ---ETC--

2-12 Getting Started

Local When displaying local symbols, you must include the name of the
source file in which the symbols are defined. For example,

display local_symbols_in cmd_rds.src:
<RETURN>

Listed are: address ranges associated with a symbol and the offset
of that symbol within the start address of the section that the
symbol is associated with.

 Symbols in cmd_rds.src:
 Static symbols
 Symbol name Address range Contents Segment Offset
 Again 01036 0032
 Cmd_A 0101D 0019
 Cmd_B 01025 0021
 Cmd_I 0102D 0029
 Cmd_Input 0FC00 0000
 Data 0FC00 0000
 End_Msgs 00002031
 Exe_Cmd 01013 000F
 Fill_Dest 0103D 0039
 Init 01000 0000
 Msg_A 02000 0000
 Msg_B 02011 0012
 Msg_Dest 0FC02 0002
 Msg_I 02022 0024
 Msgs 02000 0000
 STATUS: cws: cmd_rds.src:__...R....
 display local_symbols_in cmd_rds.src:

 run trace step display modify break end ---ETC--

Getting Started 2-13

Displaying
Memory in
Mnemonic Format

You can display, in mnemonic format, the absolute code in
memory. For example to display the memory of the "cmd_rds"
program,

display memory Init mnemonic <RETURN>

Notice that you can use symbols when specifying expressions. The
global symbol Init is used in the command above to specify the
starting address of the memory to be displayed.

 Memory :mnemonic :file = cmd_rds.src:
 address data

 01000 5FFD40 MOV:I.W #FD40,R7
 01003 15FF4806F0 MOV:G.B #F0,@FF48
 01008 15FC000600 MOV:G.B #00,@FC00
 0100D 15FC0080 MOV:G.B @FC00,R0
 01011 27FA BEQ 0100D
 01013 4041 CMP:E.B #41,R0
 01015 2706 BEQ 0101D
 01017 4042 CMP:E.B #42,R0
 01019 270A BEQ 01025
 0101B 2010 BRA 0102D
 0101D 590010 MOV:I.W #0010,R1
 01020 5C2000 MOV:I.W #2000,R4
 01023 200E BRA 01033
 01025 590010 MOV:I.W #0010,R1
 01028 5C2011 MOV:I.W #2011,R4
 0102B 2006 BRA 01033

 STATUS: H8/570--In monitor ISP halted_________________________________...R....
 display memory Init mnemonic

 run trace step display modify break end ---ETC--

2-14 Getting Started

Display Memory with
Symbols

If you want to see symbol information with displaying memory in
mnemonic format, the H8/570 emulator Softkey Interface provides
"set symbols" command. To see symbol information, enter the
following command.

set symbols on <RETURN>

As you can see, the memory display shows symbol information.

Running the
Program

The "run" command lets you execute a program in memory.
Entering the "run" command by itself causes the emulator to begin
executing at the current program counter address. The "run from"
command allows you to specify an address at which execution is to
start.

 Memory :mnemonic :file = cmd_rds.src:
 address label data

 01000 :Init 5FFD40 MOV:I.W #FD40,R7
 01003 15FF4806F0 MOV:G.B #F0,@FF48
 01008 cmd:Read_Cmd 15FC000600 MOV:G.B #00,@FC00
 0100D cmd_rds:Scan 15FC0080 MOV:G.B @FC00,R0
 01011 27FA BEQ cmd_rds.src:Scan
 01013 cmd_:Exe_Cmd 4041 CMP:E.B #41,R0
 01015 2706 BEQ cmd_rds.sr:Cmd_A
 01017 4042 CMP:E.B #42,R0
 01019 270A BEQ cmd_rds.sr:Cmd_B
 0101B 2010 BRA cmd_rds.sr:Cmd_I
 0101D cmd_rd:Cmd_A 590010 MOV:I.W #0010,R1
 01020 5C2000 MOV:I.W #2000,R4
 01023 200E BRA cmd_rd:Write_Msg
 01025 cmd_rd:Cmd_B 590010 MOV:I.W #0010,R1
 01028 5C2011 MOV:I.W #2011,R4
 0102B 2006 BRA cmd_rd:Write_Msg

 STATUS: H8/570--In monitor ISP halted_________________________________...R....
 set symbols on

 run trace step display modify break end ---ETC--

Getting Started 2-15

From Transfer
Address

The "run from transfer_address" command specifies that the
emulator start executing at a previously defined "start address".
Transfer addresses are defined in assembly language source files
with the .END assembler directive (i.e., pseudo instruction). For
example, the sample program defines the address of the label Init
as the transfer address. The following command will cause the
emulator to execute from the address of the Init label.

run from transfer_address <RETURN>

From Reset The "run from reset" command specifies that the emulator begin
executing from target system reset(see "Running From Reset"
section in the "In-Circuit Emulation" chapter).

Displaying
Memory
Repetitively

You can display memory locations repetitively so that the
information on the screen is constantly updated. For example, to
display the Msg_Dest locations of the sample program repetitively
(in blocked byte format), enter the following command.

display memory Msg_Dest repetitively blocked
bytes <RETURN>

Modifying Memory The sample program simulates a primitive command interpreter.
Commands are sent to the sample program through a byte sized
memory location labeled Cmd_Input . You can use the modify
memory feature to send a command to the sample program. For
example, to enter the command "A" (41 hex), use the following
command.

modify memory Cmd_Input bytes to 41h <RETURN>

Or:

modify memory Cmd_Input strings to ’A’
<RETURN>

2-16 Getting Started

After the memory location is modified, the repetitive memory
display shows that the "Command A entered" message is written to
the destination locations.

Breaking into the
Monitor

The "break" command allows you to divert emulator execution
from the user program to the monitor. You can continue user
program execution with the "run" command. To break emulator
execution from the sample program to the monitor, enter the
following command.

break <RETURN>

 Memory :bytes :blocked :repetitively
 address data :hex :ascii
 0FE02-09 43 6F 6D 6D 61 6E 64 20 C o m m a n d
 0FE0A-11 41 20 65 6E 74 65 72 65 A e n t e r e
 0FE12-19 64 00 00 00 00 00 00 00 d
 0FE1A-21 00 00 00 00 00 00 00 00
 0FE22-29 00 00 00 00 00 00 00 00
 0FE2A-31 00 00 00 00 00 00 00 00
 0FE32-39 00 00 00 00 00 00 00 00
 0FE3A-41 00 00 00 00 00 00 00 00
 0FE42-49 00 00 00 00 00 00 00 00
 0FE4A-51 00 00 00 00 00 00 00 00
 0FE52-59 00 00 00 00 00 00 00 00
 0FE5A-61 00 00 00 00 00 00 00 00
 0FE62-69 00 00 00 00 00 00 00 00
 0FE6A-71 00 00 00 00 00 00 00 00
 0FE72-79 00 00 00 00 00 00 00 00
 0FE7A-81 00 00 00 00 00 00 00 00

 STATUS: H8/570--Running user program_________________________________...R....
 modify memory Cmd_Input bytes to 41h

 run trace step display modify break end ---ETC--

Getting Started 2-17

Using Software
Breakpoints

Software breakpoints are provided with one of H8/570 undefined
opcode (1B hex) as breakpoint interrupt instruction. When you
define or enable a software breakpoint, the emulator will replace
the opcode at the software breakpoint address with the breakpoint
interrupt instruction.

When software breakpoints are enabled and emulator detects the
breakpoint interrupt instruction (1B hex), it generates a break to
background request which as with the "processor break" command.
Since the system controller knows the locations of defined software
breakpoints, it can determine whether the breakpoint interrupt
instruction (1B hex) is a software breakpoint or opcode in your
target program.

If it is a software breakpoint, execution breaks to the monitor, and
the breakpoint interrupt instruction is replaced by the original
opcode. A subsequent run or step command will execute from this
address.

If it is an opcode of your target program, execution still breaks to
the monitor, and an "Undefined software breakpoint" status
message is displayed.

When software breakpoints are disabled, the emulator replaces the
breakpoint interrupt instruction with the original opcode.

Up to 32 software breakpoints may be defined.

Note You must only set software breakpoints at memory locations which
contain instruction opcodes (not operands or data). If a software
breakpoint is set at a memory location which is not an instruction
opcode, the software breakpoint instruction will never be executed
and the break will never occur.

2-18 Getting Started

Note Because software breakpoints are implemented by replacing
opcodes with the undefined opcode (1B hex), you cannot define
software breakpoints in target ROM. You can, however, use the
Terminal Interface cim command to copy target ROM into
emulation memory (see the Terminal Interface: User’s Reference
manual for information on the cim command).

Note Software breakpoints should not be set, cleared, enabled, or
disabled while the emulator is running user code. If any of these
commands are entered while the emulator is running user code,
and the emulator is executing code in the area where the
breakpoint is being modified, program execution may be unreliable.

Enabling/Disabling
Software Breakpoints

When you initially enter the Softkey Interface, software
breakpoints are disabled. To enable the software breakpoints
feature, enter the following command.

modify software_breakpoints enable <RETURN>

When software breakpoints are enabled and you set a software
breakpoint, the breakpoint interrupt instruction (1B hex) will be
placed at the address specified. When the special code is executed,
program execution will break into the monitor.

Getting Started 2-19

Setting a Software
Breakpoint

To set a software breakpoint at the address of the Cmd_I label,
enter the following command.

modify software_breakpoints set Cmd_I
<RETURN>

After the software breakpoint has been set, enter the following
command to cause the emulator to continue executing the sample
program.

run <RETURN>

Now, modify the command input byte to an invalid command for
the sample program.

modify memory Cmd_Input bytes to 75h <RETURN>

A message on the status line shows that the software breakpoint
has been hit. The status line also shows that the emulator is now
executing in the monitor.

Displaying Software
Breakpoints

To display software breakpoints, enter the following command.

display software_breakpoints <RETURN>

The software breakpoints display shows that the breakpoint is
inactivated. When breakpoints are hit they become inactivated.
To reactivate the breakpoint so that is "pending", you must reenter
the "modify software_breakpoints set" command.

2-20 Getting Started

Clearing a Software
Breakpoint

To remove software breakpoint defined above, enter the following
command.

modify software_breakpoints clear Cmd_I
<RETURN>

The breakpoint is removed from the list, and the original opcode is
restored if the breakpoint was pending.

To clear all software breakpoints, you can enter the following
command.

modify software_breakpoints clear <RETURN>

 Software breakpoints :enabled
 Address label status
 00102D cmd_rd:Cmd_I inactivated

 STATUS: H8/570--In monitor ISP halted Software break: 000102d______...R....
 display software_breakpoints

 run trace step display modify break end ---ETC--

Getting Started 2-21

Running the
Program to A
Specified Address

Enter the following command to run the program and break into
monitor before execution of the instruction at the Again label.

run until Again <RETURN>
An message on the emulator status line shows that a software
breakpoint has been hit. The status line also shows that the
emulator is executing in the monitor.

This command is realized by setting a software breakpoint to the
specified address. Therefore, you need to notice that the same
limitations as the software breakpints are applied to this command.

Displaying
Registers

Enter the following command to display registers. You can display
the basic registers class, or an individual register.

display registers <RETURN>

 Registers

 Next_PC 001036
 CP 00 TP 00 DP 00 EP 00 SR 0708 < > MDCR C1
 PC 1036 SP FD40 FP 0000 BR 00
 R0 0075 R1 000E R2 0000 R3 0064 R4 2022 R5 FC02 R6 0000 R7 FD40

 STATUS: H8/570--In monitor ISP halted Software break: 0001036_______...R....
 display registers

 run trace step display modify break end ---ETC--

2-22 Getting Started

You can use "register class" and "register name" to display registers.
Refer to "Register Names and Classes" section in chapter 5.

Stepping Through
the Program

The step command allows you to step through program execution
an instruction or a number of instructions at a time. Also, you can
step from the current program counter or from a specific address.
To step through the example program from the address of the
software breakpoint set earlier, enter the following command.

step <RETURN>, <RETURN>, <RETURN>, ...
You can continue to step through the program just by pressing the
< RETURN> key; when a command appears on the command
line, it may be entered by pressing < RETURN> .

Enter the following command to cause sample program execution
to continue from the current program counter.

run <RETURN>

 Registers

 Next_PC 001038
 CP 00 TP 00 DP 00 EP 00 SR 0700 < > MDCR C1
 PC 1038 SP FD40 FP 0000 BR 00
 R0 0075 R1 000E R2 0000 R3 0049 R4 2023 R5 FC02 R6 0000 R7 FD40

 Step_PC 001038 MOV:G.B R3,@R5+
 Next_PC 00103A
 CP 00 TP 00 DP 00 EP 00 SR 0701 < > MDCR C1
 PC 103A SP FD40 FP 0000 BR 00
 R0 0075 R1 000E R2 0000 R3 0049 R4 2023 R5 FC03 R6 0000 R7 FD40

 Step_PC 00103A SCB/EQ R1,cmd_rds.sr:Again
 Next_PC 001036
 CP 00 TP 00 DP 00 EP 00 SR 0701 < > MDCR C1
 PC 1036 SP FD40 FP 0000 BR 00
 R0 0075 R1 000E R2 0000 R3 0049 R4 2023 R5 FC03 R6 0000 R7 FD40

 STATUS: H8/570--Stepping complete____________________________________...R....
 step

 run trace step display modify break end ---ETC--

Getting Started 2-23

Using the Analyzer HP 64700 emulators contain an emulation analyzer. The
emulation analyzer monitors the internal emulation lines (address,
data, and status). Optionally, you may have an additional 16 trace
signals which monitor external input lines. The analyzer collects
data at each pulse of a clock signal, and saves the data (a trace
state) if it meets a "storage qualification" condition.

Specifying a Simple
Trigger

Suppose you want to trace program execution after the point at
which the sample program reads the "B" (42 hex) command from
the command input byte. To do this, you would trace after the
analyzer finds a state in which a value of 42xxh is read from the
Cmd_Input byte. The following command makes this trace
specification.

trace after Cmd_Input data 42xxh status read
<RETURN>

The message "Emulation trace started" will appear on the status
line. Now, modify the command input byte to "B" with the
following command.

modify memory Cmd_Input bytes to 42h <RETURN>

The status line now shows "Emulation trace complete".

Notice that the data was specified with the don’t care bits (xx).
When a byte access is performed, the data appears on the upper 8
bit of analyzer data bus.

H8/570 Analysis Status Qualifiers

The status qualifier "read" was used in the example trace command
used before in this chapter. The following analysis status qualifiers
may also be used with the H8/570 emulator.

2-24 Getting Started

Note You need to specify the "exec" status qualifier to trigger the
analyzer by an execution cycle.

Displaying the Trace The trace listings which follow are of program execution on the
H8/570 emulator. To display the trace, enter:

display trace <RETURN>

Qualifier Description Status Bits (36..63)
-------- ------------------------------- -----------------------------------
backgrnd Background cycle xxxx xxxx xxxx xxx0 0xxx xxxx xxxxB
brelease Bus release cycle xxxx xxxx xxxx xxx0 x11x xxxx xxxxB
byte Byte Access xxxx xxxx xxxx xxx0 x10x xxxx xx1xB
cpu CPU cycle xxxx xxxx xxxx xxx0 x101 1xxx xxxxB
data Data access xxxx xxxx xxxx xxx0 x10x xxxx x1xxB
dtc DTC cycle xxxx xxxx xxxx xxx0 x101 0xxx xxxxB
exec Instruction execution cycle xxxx xxxx xxxx xxx0 x01x xxxx xxxxB
fetch Program fetch cycle xxxx xxxx xxxx xxx0 x101 1xxx x001B
foregrnd Foreground cycle xxxx xxxx xxxx xxx0 1xxx xxxx xxxxB
grd Guarded memory access xxxx xxxx xxxx xxx0 x10x x011 xxxxB
io Internal I/O access xxxx xxxx xxxx xxx0 x10x xxx0 xxxxB
isp Memory cycle by ISP xxxx xxxx xxxx xxx0 xx00 1xxx xxxxB
ispexec ISP instruction execution cycle xxxx xxxx xxxx x0xx xxxx xxxx xxxxB
memory Memory access xxxx xxxx xxxx xxx0 x10x xxx1 xxxxB
read Read cycle xxxx xxxx xxxx xxx0 x10x xxxx xxx1B
refresh Refresh cycle xxxx xxxx xxxx xxx0 x000 1xxx xxxxB
word Word Access xxxx xxxx xxxx xxx0 x10x xxxx xx0xB
write Write cycle xxxx xxxx xxxx xxx0 x10x xxxx xxx0B
wrrom Write to ROM cycle xxxx xxxx xxxx xxx0 x10x x101 xxx0B

 Trace List Offset=0
 Label: Address Data Opcode or Status time count
 Base: symbols hex mnemonic w/symbols relative
 after :Cmd_Input 4240 42xx read mem byte 200 nS
 +001 :cmd_rds.:+00011 F2FF INSTRUCTION--opcode unavailable 120 nS
 +002 :cmd_rds.:+00014 4127 4127 fetch mem 80. nS
 +003 cmd_rds.:Exe_Cmd FBFF CMP:E.B #41,R0 120 nS
 +004 :cmd_rds.:+00016 0640 0640 fetch mem 200 nS
 +005 :cmd_rds.:+00015 F6FF BEQ cmd_rds.sr:Cmd_A 80. nS
 +006 :cmd_rds.:+00018 4227 4227 fetch mem 120 nS
 +007 :cmd_rds.:+00017 F2FF CMP:E.B #42,R0 80. nS
 +008 :cmd_rds.:+0001A 0A20 0A20 fetch mem 200 nS
 +009 :cmd_rds.:+00019 FAFF BEQ cmd_rds.sr:Cmd_B 120 nS
 +010 :cmd_rds.:+0001C 1059 1059 fetch mem 80. nS
 +011 cmd_rds.sr:Cmd_B 0E59 xx59 fetch mem 400 nS
 +012 :cmd_rds.:+00026 0010 0010 fetch mem 200 nS
 +013 cmd_rds.sr:Cmd_B F2FF MOV:I.W #0010,R1 120 nS
 +014 :cmd_rds.:+00028 5C20 5C20 fetch mem 80. nS
 STATUS: H8/570--Running user program Emulation trace complete______...R....
 display trace

 run trace step display modify break end ---ETC--

Getting Started 2-25

Line 0 (labeled "after") in the trace list above shows the state which
triggered the analyzer. The trigger state is always on line 0. The
other states show the exit from the Scan loop and the Exe_Cmd
and Cmd_B instructions. To list the next lines of the trace, press
the < PGDN> or < NEXT> key.

The resulting display shows Cmd_B instructions, the branch to
Write_Msg and the beginning of the instructions which move the
"Entered B command " message to the destination locations.

To list the previous lines of the trace, press the < PGUP> or
< PREV> key.

 Trace List Offset=0
 Label: Address Data Opcode or Status time count
 Base: symbols hex mnemonic w/symbols relative
 +015 :cmd_rds.:+00028 FEFF MOV:I.W #2011,R4 120 nS
 +016 :cmd_rds.:+0002A 1120 1120 fetch mem 80. nS
 +017 :cmd_rds.:+0002C 0659 0659 fetch mem 200 nS
 +018 :cmd_rds.:+0002B F6FF BRA cmd_rd:Write_Msg 120 nS
 +019 :cmd_rds.:+0002E 000E 000E fetch mem 80. nS
 +020 cmd_rd:Write_Msg 225D xx5D fetch mem 400 nS
 +021 :cmd_rds.:+00034 FC02 FC02 fetch mem 200 nS
 +022 cmd_rd:Write_Msg FEFF MOV:I.W #FC02,R5 120 nS
 +023 cmd_rds.sr:Again C483 C483 fetch mem 80. nS
 +024 cmd_rds.sr:Again F4FF MOV:G.B @R4+,R3 120 nS
 +025 :cmd_rds.:+00038 C593 C593 fetch mem 80. nS
 +026 :cmd_rds.:+0003A 07B9 07B9 fetch mem 400 nS
 +027 cmd_rds.sr:Msg_B 0745 xx45 read mem byte 200 nS
 +028 :cmd_rds.:+00038 F7FF MOV:G.B R3,@R5+ 120 nS
 +029 :cmd_rds.:+0003C F9C5 F9C5 fetch mem 400 nS

 STATUS: H8/570--Running user program Emulation trace complete______...R....
 display trace

 run trace step display modify break end ---ETC--

2-26 Getting Started

Displaying Trace with No Symbol

The trace listing shown above has symbol information because of
the "set symbols on" setting before in this chapter. To see the trace
listing with no symbol information, enter the following command.

set symbols off

As you can see, the analysis trace display shows the trace list
without symbol information.

Displaying Trace with
Time Count Absolute

Enter the following command to display count information relative
to the trigger state.

display trace count absolute <RETURN>

 Trace List Offset=0
 Label: Address Data Opcode or Status time count
 Base: hex hex mnemonic relative
 after 0FC00 4240 42xx read mem byte 200 nS
 +001 01011 F2FF INSTRUCTION--opcode unavailable 120 nS
 +002 01014 4127 4127 fetch mem 80. nS
 +003 01013 FBFF CMP:E.B #41,R0 120 nS
 +004 01016 0640 0640 fetch mem 200 nS
 +005 01015 F6FF BEQ 0101D 80. nS
 +006 01018 4227 4227 fetch mem 120 nS
 +007 01017 F2FF CMP:E.B #42,R0 80. nS
 +008 0101A 0A20 0A20 fetch mem 200 nS
 +009 01019 FAFF BEQ 01025 120 nS
 +010 0101C 1059 1059 fetch mem 80. nS
 +011 01025 0E59 xx59 fetch mem 400 nS
 +012 01026 0010 0010 fetch mem 200 nS
 +013 01025 F2FF MOV:I.W #0010,R1 120 nS
 +014 01028 5C20 5C20 fetch mem 80. nS

 STATUS: H8/570--Running user program Emulation trace complete______...R....
 set symbols off

 run trace step display modify break end ---ETC--

Getting Started 2-27

Displaying Trace with
Compress Mode

If you want to see more executed instructions on a display, the
H8/570 emulator Softkey Interface provides compress mode for
analysis display. To see trace display with compress mode, enter
the following command:

display trace compress on <RETURN>

 Trace List Offset=0
 Label: Address Data Opcode or Status time count
 Base: hex hex mnemonic absolute
 after 0FC00 4240 42xx read mem byte ------------
 +001 01011 F2FF INSTRUCTION--opcode unavailable + 120 nS
 +002 01014 4127 4127 fetch mem + 200 nS
 +003 01013 FBFF CMP:E.B #41,R0 + 320 nS
 +004 01016 0640 0640 fetch mem + 520 nS
 +005 01015 F6FF BEQ 0101D + 600 nS
 +006 01018 4227 4227 fetch mem + 720 nS
 +007 01017 F2FF CMP:E.B #42,R0 + 800 nS
 +008 0101A 0A20 0A20 fetch mem + 1.0 uS
 +009 01019 FAFF BEQ 01025 + 1.1 uS
 +010 0101C 1059 1059 fetch mem + 1.2 uS
 +011 01025 0E59 xx59 fetch mem + 1.6 uS
 +012 01026 0010 0010 fetch mem + 1.8 uS
 +013 01025 F2FF MOV:I.W #0010,R1 + 1.9 uS
 +014 01028 5C20 5C20 fetch mem + 2.0 uS

 STATUS: H8/570--Running user program Emulation trace complete______...R....
 display trace count absolute

 run trace step display modify break end ---ETC--

 Trace List Offset=0
 Label: Address Data Opcode or Status time count
 Base: hex hex mnemonic absolute
 after 0FC00 4240 42xx read mem byte ------------
 +001 01011 F2FF INSTRUCTION--opcode unavailable + 120 nS
 +003 01013 FBFF CMP:E.B #41,R0 + 320 nS
 +005 01015 F6FF BEQ 0101D + 600 nS
 +007 01017 F2FF CMP:E.B #42,R0 + 800 nS
 +009 01019 FAFF BEQ 01025 + 1.1 uS
 +013 01025 F2FF MOV:I.W #0010,R1 + 1.9 uS
 +015 01028 FEFF MOV:I.W #2011,R4 + 2.1 uS
 +018 0102B F6FF BRA 01033 + 2.5 uS
 +022 01033 FEFF MOV:I.W #FC02,R5 + 3.3 uS
 +024 01036 F4FF MOV:G.B @R4+,R3 + 3.5 uS
 +027 02011 0745 xx45 read mem byte + 4.20 uS
 +028 01038 F7FF MOV:G.B R3,@R5+ + 4.32 uS
 +030 0FC02 4545 45xx write mem byte + 4.92 uS
 +031 0103A F5FF SCB/EQ R1,01036 + 5.00 uS

 STATUS: H8/570--Running user program Emulation trace complete______...R....
 display trace compress on

 run trace step display modify break end ---ETC--

2-28 Getting Started

As you can see, the analysis trace display shows the analysis trace
lists without fetch cycles. With this command you can examine
program execution easily.

If you want to see all of cycles including fetch cycles, enter
following command:

display trace compress off <RETURN>

The trace display shows you all of the cycles the emulation analyzer
have captured.

Changing the Trace
Depth

The default states displayed in the trace list is 256 states. To
change the number of states, use the "display trace depth"
command.

display trace depth 512 <RETURN>

Now the states displayed in the trace list is changed to 512 states.

For a Complete
Description

For a complete description of using the HP 64700 Series analyzer
with the Softkey Interface, refer to the Analyzer Softkey Interface
User’s Guide.

Exiting the
Softkey Interface

There are several options available when exiting the Softkey
Interface: exiting and releasing the emulation system, exiting with
the intent of reentering (continuing), exiting locked from multiple
emulation windows, and exiting (locked) and selecting the
measurement system display or another module.

End Release System To exit the Softkey Interface, releasing the emulator so that other
users may use the emulator, enter the following command.

end release_system <RETURN>

Ending to Continue
Later

You may also exit the Softkey Interface without specifying any
options; this causes the emulator to be locked. When the emulator
is locked, other users are prevented from using it and the emulator

Getting Started 2-29

configuration is saved so that it can be restored the next time you
enter (continue) the Softkey Interface.

end <RETURN>

Ending Locked from
All Windows

When using the Softkey Interface from within window systems, the
"end" command with no options causes an exit only in that window.
To end locked from all windows, enter the following command.

end locked <RETURN>
This option only appears when you enter the Softkey Interface via
the emul700 command. When you enter the Softkey Interface via
pmon and MEAS_SYS, only one window is permitted.

Refer to the Softkey Interface Reference manual for more
information on using the Softkey Interface with window systems.

Selecting the
Measurement System

Display or Another
Module

When you enter the Softkey Interface via pmon and MEAS_SYS,
you have the option to select the measurement system display or
another module in the measurement system when exiting the
Softkey Interface. This type of exit is also "locked"; that is, you can
continue the emulation session later. For example, to exit and
select the measurement system display, enter the following
command.

end select measurement_system <RETURN>
This option is not available if you have entered the Softkey
Interface via the emul700 command.

2-30 Getting Started

3

Debugging ISP Functions

The HP 64730 H8/570 emulator is equipped with commands for
debugging ISP functions. You can direct the ISP to run, halt, or
execute a specified number of instructions. The analyzer allows
you to monitor the execution of your program, or ISP functions, or
both of them.

In this chapter, we use a sample program and learn how to use the
emulator to debug the ISP functions. When you have completed
this chapter, you will be able to perform these tasks:

Load ISP functions into the emulator

Use run/stop controls to control operation of your ISP
functions

Use register display command to view the contents of ISP
registers

Use analyzer commands to view the real time execution of
your ISP functions

Debugging ISP Funct ions 3-1

Sample Program
with Small ISP
Functions

In the "Getting Started" chapter, we looked at a sample program
which functioned as a primitive command interpreter. It wrote
various messages to an output buffer, depending on the character
you inserted in the input buffer.

In this chapter, we use a modified version of the "Getting Started"
program. It still performs the same function, but works with a
small ISP function. The ISP function takes charge of the transfer
of the messages. Once a command is written to the input buffer,
the sample program determines the message to be written and pass
the source address to an ISP register. The ISP function starts to
transfer the message when an ISP flag is cleared by the program.
When the transfer is finished, the program goes back to read the
next command. Figure 3-1 lists the sample program and Figure 3-2
lists the sample ISP functions.

Processing Commands

The instructions at Cmd_A, Cmd_B, and Cmd_I each load ISP data
register 2 with the length of the message to be written and ISP data
register 0 with the starting location of the message. Then,
execution transfers to Write_Msg which loads the destination
address into the ISP data register 1.

The ISP starts transferring a message by clearing an ISP flag. The
program will wait the completion of the transfer.

ISP Funct ion 0

ISP function 0 performs data transfer from a specified address to a
destination address. ISP data register 0 is used to contain the
source address. ISP data register 1 is used to contain the
destination address. When the ISFL (Interrupt Status Flag) 0 is
cleared, the function starts transferring data.

ISP Funct ion 1 and 2

Function 1 and 2 are dummy functions.

3-2 Debugging ISP Funct ions

 .GLOBAL Init,Msgs,Cmd_Input
 .GLOBAL Msg_Dest

WCR .EQU H’FF48
ISP_DR0 .EQU H’FEC0
ISP_DR1 .EQU H’FEC2
ISP_DR2 .EQU H’FEC4
ISP_ISFL .EQU H’FEB1
ISP_ICSR .EQU H’FF19

 .SECTION Table,DATA
Msgs
Msg_A .SDATA "Command A entered"
Msg_B .SDATA "Entered B command"
Msg_I .SDATA "Invalid Command"
End_Msgs

 .SECTION Prog,CODE
;***
;* Sets up the stack pointer and the Wait-state
;* controller. Enables the ISP.
;***
Init MOV.W #Stack,R7
 MOV.W #H’f0,@WCR
 BCLR.B #5,@ISP_ICSR
;***
;* Clear previous command.
;***
Read_Cmd MOV.B #0,@Cmd_Input
;***
;* Read command input byte. If no command has
;* been entered, continue to scan for input.
;***
Scan MOV.B @Cmd_Input,R0
 BEQ Scan
;***
;* A command has been entered. Check if it is
;* command A, command B, or invalid.
;***
Exe_Cmd CMP.B #H’41,R0
 BEQ Cmd_A
 CMP.B #H’42,R0
 BEQ Cmd_B
 BRA Cmd_I
;***
;* Command A is entered. R1 = the number of
;* bytes in message A. R4 = location of the
;* message. Jump to the routine which writes
;* the messages.
;***
Cmd_A MOV.W #Msg_B-Msg_A,@ISP_DR2
 MOV.W #Msg_A,@ISP_DR0
 BRA Write_Msg
;***
;* Command B is entered.
;***

Figure 3-1. Sample Program with ISP

Debugging ISP Funct ions 3-3

Cmd_B MOV.W #Msg_I-Msg_B,@ISP_DR2
 MOV.W #Msg_B,@ISP_DR0
 BRA Write_Msg
;***
;* An invalid command is entered.
;***
Cmd_I MOV.W #End_Msgs-Msg_I,@ISP_DR2
 MOV.W #Msg_I,@ISP_DR0
;***
;* Message is written to the destination.
;***
Write_Msg MOV.W #Msg_Dest,@ISP_DR1
;***
;* Clear ISFL0 to start the DMA.
;***
 BCLR.B #0,@ISP_ISFL
Wait_ISP BTST.B #0,@ISP_ISFL
 BEQ Wait_ISP
;***
;* The rest of the destination area is filled
;* with zeros.
;***
Fill_Dest MOV.W @ISP_DR1,R5
Fill_Loop MOV.B #0,@R5+
 CMP.W #Msg_Dest+H’20,R5
 BNE Fill_Loop
;***
;* Go back and scan for next command.
;***
 BRA Read_Cmd

 .SECTION Data,COMMON
;***
;* Command input byte.
;***
Cmd_Input .RES.B H’1
 .RES.B H’1
;***
;* Destination of the command messages.
;***
Msg_Dest .RES.B H’3E
 .RES.W H’80 ; Stack area.
Stack

 .END Init

Figure 3-2. Sample Program with ISP (Cont’d)

3-4 Debugging ISP Funct ions

Sample Program
Locations

The sample program is written for the HP 64869 H8/500
Assembler/Linkage Editor. The sample ISP function is written for
Hitachi ISP Assembler. The sample programs are shipped with the
Softkey Interface, and may be copied from the following locations.

/usr/hp64000/demo/emul/hp64730/cmd_rds2.src

/usr/hp64000/demo/emul/hp64730/ispsamp.mar

.program sample;

.SCM;
 func0/R, func1/R, func0/R, func2/R;
.end;

/* Function 0
 * dr0: source address
 * dr1: destination address
 * dr2: loop counter
 * isfl0: DMA starts when CPU sets this flag to 0 */
.function func0, ar0;
init: out() 1, isfl0;
 next (isfl0) $, label;
label: next() loop;
loop: read.b dr0, mab next(!c) $, labelS;
labelS: add.w 0, #1, dr0;
 write.b dr1, mab next(!c) $, labelD;
labelD: add.w 0, #1, dr1;
 sub.w 0, #1, dr2 next(!z) loop2, exit;
loop2: next() loop;
exit: next() init;
.end;

.function func1, ar1;
loop1: mov.w #3, dr3;
 mov.w #0, dr3;
 next() loop1;
.end;

.function func2, ar2;
loop2: mov.w #4, dr4;
 mov.w #0, dr4;
 next() loop2;
.end;
.end;

Figure 3-2. Sample ISP Function

Debugging ISP Funct ions 3-5

Assembling the
Sample Program

You can assemble and link the sample program with the following
commands:

$ h8asm -debug cmd_rds2.src <RETURN>

$ h8lnk -subcommand=cmd_rds2.k <RETURN>

$ h8cnvhp cmd_rds2 <RETURN>

In the above command, cmd_rds2.k is a linkage editor command
file, and its contents is as follows:

debug
input cmd_rds2
start Prog(1000), Table(2000), Data(0FC00)
output cmd_rds2
print cmd_rds2
exit

Assembling the
Sample ISP Functions

You can assemble the sample ISP functions by HITACHI ISP
Assembler. Refer to the manual provided with the tool for
information on the usage of the ISP assembler.

Converting Your ISP
Functions

The HITACHI ISP Assembler generates absolute file in
Motorola-S records. To load the file into the emulator, you need
to convert the file format with the xlate utility provided with the
Softkey Interface. The utility converts the Motorola format into
HP format which can be consumed by the Softkey Interface.

Suppose that you assembled the sample ISP function with the
HITACHI ISP Assembler, and got an absolute file with filename
"ispsamp.mot". To convert the file format, enter the following
command:

$ xlate -tmot ispsamp.mot <RETURN>

An HP absolute file ispsamp.X is generated.

3-6 Debugging ISP Funct ions

Entering the
Softkey Interface

Start the Softkey Interface with the following command:

$ emul700 <emul_name> <RETURN>
If you have been working with the emulator and the Softkey
Interface is already running, please "end release" the interface and
restart it. You should follow the steps to ensure that the emulator
will work as described in the examples below.

Loading Absolute
Files

Load the sample program with the following command:

load cmd_rds2 <RETURN>
To load ISP functions, the ISP must be in the halt state. Halt the
ISP with the following command:

break with_isp <RETURN>
Load the sample ISP function:

load isp_memory ispsamp <RETURN>

Note The only way to modify ISP microprogram memory is loading ISP
functions with the load command. You cannot modify the memory
with any emulation commands.

Debugging ISP Funct ions 3-7

Looking at Your
ISP Code

Now that you have loaded the sample ISP function into the
emulator, you can display it in mnemonic format. To display the
ISP microprogram memory from address 0, type:

display isp_memory 0 <RETURN>
You will see:

The contents of ISP microprogram memory is displayed in
mnemonic format. The first column shows the address in the
microprogram memory. The second column is the number of the
function to which each instruction belongs. If this field shows "??",
the address is not used by any functions defined in the SCM. The
third column is the instruction at the address.

You can also display instructions which belong to a specified
function. For example, to see only instructions of function 0, enter:

display isp_memory function 0 <RETURN>

 ISP memory
 address func mnemonic
 000 00 OUT () 1,ISFL0
 NEXT () 004
 001 01 MOV.W #0003,DR3
 NEXT () 00E
 002 02 MOV.W #0004,DR4
 NEXT () 010
 003 ?? NEXT () 000
 004 00 NEXT (ISFL0) 004,005
 005 00 NEXT () 006
 006 00 READ.B DR0,MAB
 NEXT (!C) 006,007
 007 00 ADD.W 0,#0001,DR0
 NEXT () 008
 008 00 WRITE.B DR1,MAB
 NEXT (!C) 008,009
 009 00 ADD.W 0,#0001,DR1

 STATUS: H8/570--In monitor ISP halted_________________________________........
 display isp_memory 0

 run trace step display modify break end ---ETC--

3-8 Debugging ISP Funct ions

Note The H8/570 Softkey Interface does not support symbolic
information for ISP functions. Symbolic information for ISP
functions is not displayed in memory display and trace listing.

 ISP memory :function
 address func mnemonic
 000 00 OUT () 1,ISFL0
 NEXT () 004
 004 00 NEXT (ISFL0) 004,005
 005 00 NEXT () 006
 006 00 READ.B DR0,MAB
 NEXT (!C) 006,007
 007 00 ADD.W 0,#0001,DR0
 NEXT () 008
 008 00 WRITE.B DR1,MAB
 NEXT (!C) 008,009
 009 00 ADD.W 0,#0001,DR1
 NEXT () 00A
 00A 00 SUB.W 0,#0001,DR2
 NEXT (!Z) 00C,00D
 00C 00 NEXT () 006
 00D 00 NEXT () 000

 STATUS: H8/570--In monitor ISP halted_________________________________........
 display isp_memory function 0

 run trace step display modify break end ---ETC--

Debugging ISP Funct ions 3-9

Controlling ISP
Execution

Reset the emulator with the following command:

reset <RETURN>
Run the ISP with the following command:

run isp <RETURN>
The status message will be displayed as follows:

STATUS: H8/570--Running in monitor

The ISP started execution from current ISP address by the run
command. The emulator breaks into the monitor when the
command is used while the emulator is in the reset state.

Halt the ISP with the following command:

break with_isp <RETURN>

STATUS: H8/570--In monitor ISP halted

The break with_isp command breaks the emulator into the
monitor, and halts the ISP.

Run the sample program from the Init label:

run from Init <RETURN>
The ISP is enabled by the sample program, and starts execution.
Now break the execution into the monitor:

break <RETURN>

STATUS: H8/570--In monitor ISP halted

By default, the ISP is halted when the emulator breaks into the
monitor. You can configure the emulator not to halt the ISP on
emulation break. Refer to Chapter 5 of this manual.

3-10 Debugging ISP Funct ions

Stepping ISP
Function

You can direct the emulator to execute one or specified number of
ISP instructions. Before you step through the ISP function, display
the ISP memory from address 0:

display isp_memory 0 <RETURN>
Now, step the sample ISP function. Type:

step isp <RETURN>, <RETURN>, <RETURN>,...
You will see a similar display to the following:

You will see a left bracket (<) at the beginning of a line in the
memory display. This shows that the instruction at the line was
executed by the step command. You may also see a right bracket
(>) at an another line. This shows that the instruction at the line
will be executed next.

You can also step through instructions of a specified function.

For example, to step through the function 1, enter:

step isp function 1 <RETURN>, <RETURN>,
<RETURN>,....

Every time you enter the above command, the emulator will run
the ISP until an instruction of the specified function is executed.

 ISP memory
 address func mnemonic
 000 00 OUT () 1,ISFL0
 NEXT () 004
 001 01 MOV.W #0003,DR3
 NEXT () 00E
 > 002 02 MOV.W #0004,DR4
 NEXT () 010
 003 ?? NEXT () 000
 < 004 00 NEXT (ISFL0) 004,005
 005 00 NEXT () 006
 006 00 READ.B DR0,MAB
 NEXT (!C) 006,007
 007 00 ADD.W 0,#0001,DR0
 NEXT () 008
 008 00 WRITE.B DR1,MAB
 NEXT (!C) 008,009
 009 00 ADD.W 0,#0001,DR1

 STATUS: H8/570--In monitor ISP halted_________________________________........
 step isp

 run trace step display modify break end ---ETC--

Debugging ISP Funct ions 3-11

Displaying/
Modifying ISP
Registers

You can display/modify ISP registers. Registers are grouped in
several "register classes." For example, to display ISP data
registers, use the ISPDR register class as follows:

display register ISPDR <RETURN>

You can use the "register name" to display/modify registers. For
example, to modify ISP data register 31, use the DR31 register
name as follows:

modify register DR31 to 0 <RETURN>

Note
Modifying registers in the ISPSCM register class is not allowed
while the ISP is running. Displaying and modifying registers in the
ISPDR register class is not allowed while the ISP is running.

Refer to the Chapter 6 of this manual for the list of register classes
and names.

 Registers

 ISPDR DR0 2011 DR1 FC13 DR2 0000 DR3 0003
 DR4 0000 DR5 FF7F DR6 FFFF DR7 FFFF
 DR8 FFFF DR9 FFFF DR10 FFFF DR11 FFFF
 DR12 FFFF DR13 FFFF DR14 FFFF DR15 FFFF
 DR16 FFFF DR17 FFFF DR18 FFFF DR19 FFFF
 DR20 FFFF DR21 FFFF DR22 FFFF DR23 FFFF
 DR24 FFFF DR25 FFFF DR26 FFFF DR27 FFFF
 DR28 FFFF DR29 FFFF DR30 FFFF DR31 FFFF

 STATUS: H8/570--In monitor ISP halted_________________________________........
 display register ISPDR

 run trace step display modify break end ---ETC--

3-12 Debugging ISP Funct ions

Using the
Analyzer to Debug
ISP Functions

Tracing ISP Execution You can configure the emulator to trace execution of the CPU, or
ISP, or both of them. To configure the emulator to trace only
execution of ISP, type:

modify configuration <RETURN>
Answer the configuration questions as follows:

Micro-processor clock source? internal
Enter monitor after configuration? yes
Restrict to real-time runs? no
Modify memory configuration? no
Modify emulator pod configuration? no
Modify debug/trace options? yes
Break processor on write to ROM? yes
Trace CPU or ISP operation by emulation analyzer? isp
Trace refresh cycles by emulation analyzer? no
Modify simulated I/O configuration? no
Modify interactive measurement specification? no
Configuration file name? trace_isp

To start the trace when the instruction at ISP address 6 hex, enter
the following command:

trace after ispaddr 6 <RETURN>
Run the sample program:

run from Init <RETURN>
Modify memory to let the ISP function jump to the address
specified by the trace command.

modify memory Cmd_Input bytes to 41h <RETURN>
Now display the trace list:

display trace <RETURN>

set symbols on <RETURN>
You will see a display similar to the following:

Debugging ISP Funct ions 3-13

The first column in the mnemonic field shows address of ISP
microprogram memory. The second column is function number of
the instruction. The third column is the mnemonic of the
instruction executed.

As you can see in the above trace listing. the analyzer was triggered
by an instruction at address 6.

You also can use ISP function number for trace specification. For
example, to trace only execution of ISP function 0, enter:

trace after ispaddr 6 only ispfunc 0 <RETURN>

modify memory Cmd_Input bytes to 41h <RETURN>

 Trace List Offset=0 More data off screen (ctrl-F, ctrl-G)
 Label: Address Data Opcode or Status time count
 Base: symbols hex mnemonic w/symbols relative
 after F2FF 006 00 READ.B DR0,MAB ------------
 NEXT (!C) 006,007
 +001 FA1D 011 02 NEXT () 002 120 nS
 +002 FA1D 007 00 ADD.W 0,#0001,DR0 80. nS
 NEXT () 008
 +003 FAFF 001 01 MOV.W #0003,DR3 120 nS
 NEXT () 00E
 +004 431D 008 00 WRITE.B DR1,MAB 80. nS
 NEXT (!C) 008,009
 +005 :Msgs 431D 43xx isp read mem byte 120 nS
 002 02 MOV.W #0004,DR4
 NEXT () 010
 +006 FBFB 008 00 WRITE.B DR1,MAB 80. nS
 NEXT (!C) 008,009
 +007 0000 00E 01 MOV.W #0000,DR3 120 nS

 STATUS: H8/570--Running user program Emulation trace complete______........
 display trace

 run trace step display modify break end ---ETC--

3-14 Debugging ISP Funct ions

As you can see, only instructions of ISP function 0 were traced.

Tracing CPU/ISP
Execution

To trace execution of both CPU and ISP, configure the emulator as
follows:

modify configuration <RETURN>
Micro-processor clock source? internal
Enter monitor after configuration? yes
Restrict to real-time runs? no
Modify memory configuration? no
Modify emulator pod configuration? no
Modify debug/trace options? yes
Break processor on write to ROM? yes
Trace CPU or ISP operation by emulation analyzer? both
Trace refresh cycles by emulation analyzer? no
Modify simulated I/O configuration? no
Modify interactive measurement specification? no
Configuration file name? trace_both

To trace all states after the instruction at Write_Msg label is
executed, enter:

trace after cmd_rds2.src:Write_Msg status
exec <RETURN>

modify memory Cmd_Input bytes to 41h <RETURN>

 Trace List Offset=0 More data off screen (ctrl-F, ctrl-G)
 Label: Address Data Opcode or Status time count
 Base: symbols hex mnemonic w/symbols relative
 after FA1D 006 00 READ.B DR0,MAB 200 nS
 NEXT (!C) 006,007
 +001 FAFA 007 00 ADD.W 0,#0001,DR0 200 nS
 NEXT () 008
 +002 0000 008 00 WRITE.B DR1,MAB 200 nS
 NEXT (!C) 008,009
 +003 4300 008 00 WRITE.B DR1,MAB 200 nS
 NEXT (!C) 008,009
 +004 F3FF 008 00 WRITE.B DR1,MAB 200 nS
 NEXT (!C) 008,009
 +005 FEC2 009 00 ADD.W 0,#0001,DR1 200 nS
 NEXT () 00A
 +006 :Msg_Dest 4343 43xx isp write mem byte 200 nS
 00A 00 SUB.W 0,#0001,DR2
 NEXT (!Z) 00C,00D

 STATUS: H8/570--Running user program Emulation trace complete______........
 trace after ispaddr 6 only ispfunc 0

 run trace step display modify break end ---ETC--

Debugging ISP Funct ions 3-15

The examples in this chapter is not complete description of each
ISP debug commands. Refer to Appendix A of this manual for
more detail.

 Trace List Offset=0 More data off screen (ctrl-F, ctrl-G)
 Label: Address Data Opcode or Status time count
 Base: symbols hex mnemonic w/symbols relative
 after cmd_rd:Write_Msg FEFF INSTRUCTION--opcode unavailable 80. nS
 004 00 NEXT (ISFL0) 004,005
 +001 07FC 011 02 NEXT () 002 120 nS
 +002 :cmd_rds2:+0004A 07FC 07FC fetch mem 80. nS
 004 00 NEXT (ISFL0) 004,005
 +003 F7FF 001 01 MOV.W #0003,DR3 120 nS
 NEXT () 00E
 +004 0215 004 00 NEXT (ISFL0) 004,005 80. nS
 +005 :cmd_rds2:+0004C 0215 0215 fetch mem 120 nS
 002 02 MOV.W #0004,DR4
 NEXT () 010
 +006 F2FF 004 00 NEXT (ISFL0) 004,005 80. nS
 +007 FFFF 00E 01 MOV.W #0000,DR3 120 nS
 NEXT () 00F
 +008 FEB1 004 00 NEXT (ISFL0) 004,005 80. nS

 STATUS: H8/570--Running user program Emulation trace complete______........
 trace after cmd_rds2.src:Write_Msg status exec

 run trace step display modify break end ---ETC--

3-16 Debugging ISP Funct ions

4

In-Circuit Emulation

Many of the topics described in this chapter involve the commands
which relate to using the emulator in-circuit, that is, connected to a
target system.

This chapter will:

Describe the issues concerning the installation of the
emulator probe into target systems.

Show you how to install the emulator probe.

We will cover the first topic in this chapter. For complete details
on in-circuit emulation configuration, refer to the "Configuring the
Emulator" chapter.

Prerequisites Before performing the tasks described in this chapter, you should
be familiar with how the emulator operates in general. Refer to
the HP 64700 Emulators: Concept of Emulation and Analysis
manual and the "Getting Started" chapter of this manual.

In-Circuit Emulation 4-1

Installing the
Target System
Probe

Caution DAMAGE TO THE EMULATOR CIRCUITRY MAY RESULT
IF THESE PRECAUTIONS ARE NOT OBSERVED. The
following precautions should be taken while using the H8/570
emulator.

Power Down Target System. Turn off power to the user target
system and to the H8/570 emulator before inserting the user plug
to avoid circuit damage resulting from voltage transients or
mis-insertion of the user plug.

Verify User Plug Orientation. Make certain that Pin 1 of the target
system adaptor and Pin 1 of the user plug are properly aligned
before inserting the user plug in the socket. Failure to do so may
result in damage to the emulator circuitry.

Protect Against Static Discharge. The H8/570 emulator contains
devices which are susceptible to damage by static discharge.
Therefore, operators should take precautionary measures before
handling the user plug to avoid emulator damage.

Protect Target System CMOS Components. If your target system
includes any CMOS components, turn on the target system first,
then turn on the H8/570 emulator; when powering down, turn off
the emulator first, then turn off power to the target system.

4-2 In-Circuit Emulation

Target System
Adaptor

The HP 64730 emulator is shipped with a target system adaptor.
The adaptor allows you to connect the emulation probe to your
target system which is designed for the QFP package of H8/570
microprocessor.

Pin Protector The HP 64730 emulator is shipped with a short pin protector that
prevents damage to the target system adaptor when inserting and
removing the emulation probe. Do not insert the probe without
using a short pin protector.

Installing the Target
System Probe 1. Attach the adaptor to your target system. You can use a

M2 screw to help attaching the adaptor to the target
system.

2. Install the emulation probe using the pin protector as
shown in Figure 4-1.

Note You can order additional target system adaptor and short pin
protector with part number 64732-61613 and 64732-61614,
respectively. Contact your local HP sales representative to
purchase additional adaptor and protector.

Optional Pin Extender If the target system probe is installed on a densely populated circuit
board, there may not be a enough room to accommodate the
plastic shoulders of the probe. If this occurs, you can use optional
long pin protector and pin extender to avoid the conjunction with
the target system components. Order the long pin protector and
the pin extenders with part number 64732-61615 and 64732-61616,
respectively.

In-Circuit Emulation 4-3

Target System
Interface

Refer to the H8/570 Terminal Interface User’s Guide for
information on the target system interface of the emulator.

Figure 4-1. Installing the Emulation Probe

4-4 In-Circuit Emulation

In-Circuit
Configuration
Options

The H8/570 emulator provides configuration options for the
following in-circuit emulation issues. Refer to Chapter 5 for more
information on these configuration options.

Using the Target System Clock Source

You can configure the emulator to use the external target system
clock source.

Enabling Bus Arbitration

You can configure the emulator to enable/disable bus arbitration.

Enabling NMI from the Target

You can configure the emulator to accept/ignore NMI from the
target system.

Enabling /RES from the Target

You can configure the emulator to accept/ignore /RES from the
target system.

Enabling /RES Output to the Target

You can configure the emulator to drive the /RES on emulation
reset or watchdog timer reset.

Selecting Visible/Hidden Background Cycles

Emulation processor activity while executing in background can
either be visible to target system (cycles are sent to the target
system probe) or hidden (cycles are not sent to the target system
probe).

In-Circuit Emulation 4-5

Running the
Emulator from
Target Reset

You can specify that the emulator begins executing from target
system reset. When the target system /RES line becomes active
and then inactive, the emulator will start reset sequence
(operation) as actual microprocessor.

At First, you must specify the emulator responds to /RES signal by
the target system (see the "Enable /RES input from the target
system?" configuration in Chapter 4 of this manual).

To specify a run from target system reset, select:

run from reset <RESET>

The status now shows that the emulator is "Awaiting target reset".
After the target system is reset, the status line message will change
to show the appropriate emulator status.

4-6 In-Circuit Emulation

5

Configuring the Emulator

Introduction The H8/570 emulator can be used in all stages of target system
development. For instance, you can run the emulator
out-of-circuit when developing target system software, or you can
use the emulator in-circuit when integrating software with target
system hardware. Emulation memory can be used in place of, or
along with, target system memory. You can use the emulator’s
internal clock or the target system clock. You can execute target
programs in real-time or allow emulator execution to be diverted
into the monitor when commands request access of target system
resources (target system memory, register contents, etc.)

The emulator is a flexible instrument and it may be configured to
suit your needs at any stage of the development process. This
chapter describes the options available when configuring the
H8/570 emulator.

The configuration options are accessed with the following
command.

modify configuration <RETURN>
After entering the command above, you will be asked questions
regarding the emulator configuration. The configuration questions
are listed below and grouped into the following classes.

General Emulator Configuration:

– Specifying the emulator clock source
(internal/external).

– Selecting monitor entry after configuration.

– Restricting to real-time execution.

Configuring the Emulator 5-1

Memory Configuration:

– Mapping memory.

Emulator Pod Configuration:

– Selecting the processor operation mode.

– Enabling emulator bus arbitration.

– Enabling NMI input from the target system.

– Enabling /RES input from the target system.

– Enabling driving emulation reset to the target system.

– Allowing the emulator to drive background cycles to
the target system.

– Allowing the emulator to halt the ISP on emulation
break.

– Selecting the reset value for the stack pointer.

Debug/Trace Configuration:

– Enabling breaks on writes to ROM.

– Selecting the trace mode.

– Specifying tracing of foreground/background cycles.

– Enabling tracing refresh cycles.

– Enabling tracing bus release cycles.

Simulated I/O Configuration: Simulated I/O is described in the
Simulated I/O reference manual.

Interactive Measurement Configuration: See the chapter on
coordinated measurements in the Softkey Interface Reference
manual.

External Analyzer Configuration: See the Analyzer Softkey
Interface User’s Guide.

5-2 Configuring the Emulator

General Emulator
Configuration

The configuration questions described in this section involve
general emulator operation.

Micro-processor
clock source?

This configuration question allows you to select whether the
emulator will be clocked by the internal clock source or by a target
system clock source.

internal Selects the internal clock oscillator as the
emulator clock source. The emulators’ internal
clock speed is 10 MHz (system clock).

external Selects the clock input to the emulator probe
from the target system. You must use a clock
input conforming to the specifications for the
H8/570 microprocessor. The maximum external
clock speed is 12 MHz (system clock).

Note Changing the clock source drives the emulator into the reset state.
The emulator may later break into the monitor depending on how
the following "Enter monitor after configuration?" question is
answered.

Enter monitor after
configuration?

This question allows you to select whether the emulator will be
running in the monitor or held in the reset state upon completion
of the emulator configuration.

How you answer this configuration question is important in some
situations. For example, when the external clock has been selected
and the target system is turned off, reset to monitor should not be
selected; otherwise, configuration will fail.

When an external clock source is specified, this question becomes
"Enter monitor after configuration (using external clock)?" and the
default answer becomes "no".

Configuring the Emulator 5-3

yes When reset to monitor is selected, the emulator
will be running in the monitor after
configuration is complete. If the reset to
monitor fails, the previous configuration will be
restored.

no After the configuration is complete, the
emulator will be held in the reset state.

Restrict to real-time
runs?

If it is important that the emulator execute target system programs
in real-time, you can restrict to real-time runs. In other words,
when you execute target programs (with the "run " command), the
emulator will execute in real-time.

no The default emulator configuration disables the
real-time mode. When the emulator is executing
the target program, you are allowed to enter
emulation commands that require access to
target system resources (display/modify: registers
or target system memory). If one of these
commands is entered, the system controller will
temporarily break emulator execution into the
monitor.

yes If your target system program requires real-time
execution, you should enable the real-time mode
in order to prevent temporary breaks that might
cause target system problems.

5-4 Configuring the Emulator

Commands Not Allowed when Real-Time Mode is Enabled

When emulator execution is restricted to real-time and the
emulator is running user code, the system refuses all commands
that require access to processor registers or target system memory.
The following commands are not allowed when runs are restricted
to real-time:

Register display/modification.

Target system memory display/modification.

Internal I/O registers display/modification.

Load/store target system memory.
If the real-time mode is enabled, these resources can only be
displayed or modified while running in the monitor.

Breaking out of Real-Time Execution

The only commands which are allowed to break real-time
execution are:

reset
run
break
step

Configuring the Emulator 5-5

Memory
Configuration

The memory configuration questions allows you to map memory.
To access the memory configuration questions, you must answer
"yes" to the following question.

Modify memory configuration?

Mapping Memory The H8/570 emulator contains high-speed emulation memory (no
wait states required) that can be mapped at a resolution of 128
bytes.

The memory mapper allows you to characterize memory locations.
It allows you specify whether a certain range of memory is present
in the target system or whether you will be using emulation
memory for that address range. You can also specify whether the
target system memory is ROM or RAM, and you can specify that
emulation memory be treated as ROM or RAM.

Blocks of memory can also be characterized as guarded memory.
Guarded memory accesses will generate "break to monitor"
requests. Writes to ROM will generate "break to monitor"
requests if the "Enable breaks on writes to ROM?" configuration
item is enabled (see the "Debug/Trace Configuration" section
which follows).

The memory mapper allows you to define up to 16 different map
terms.

Note Target system accesses to emulation memory are not allowed.
Target system devices that take control of the bus (for example,
DMA controllers) cannot access emulation memory.

5-6 Configuring the Emulator

Note The default emulator configuration maps location 0 hex through
7FFF hex as emulation ROM, and location F680 hex through
FE7F hex as emulation RAM. You cannot delete the term for the
internal RAM (F680 hex through FE7F hex).

Note The emulator uses 4K bytes of emulation memory, and the rest of
the emulation memory is available for user program.

When mapping memory for your target system programs, you may
wish to characterize emulation memory locations containing
programs and constants (locations which should not be written to)
as ROM. This will prevent programs and constants from being
written over accidentally, and will cause breaks when instructions
attempt to do so.

Note You should map all memory ranges used by your programs before
loading programs into memory. This helps safeguard against loads
which accidentally overwrite earlier loads if you follow a map/load
procedure for each memory range.

Configuring the Emulator 5-7

Emulator Pod
Configuration

To access the emulator pod configuration questions, you must
answer "yes" to the following question.

Modify emulator pod configuration?

Processor operation
mode?

This configuration defines operation mode in which the emulator
works.

external The emulator will work using the mode setting
by the target system. The target system must
supply appropriate input to MD0, MD1 and
MD2. If you are using the emulator out of
circuit when "external" is selected, the emulator
will operate in mode 1.

When mode_1 through mode_6 is selected, the emulator will
operate in selected mode regardless of the mode setting by the
target system.

Selection Description

mode_1 The emulator will operate in mode 1. (expanded
minimum mode with 16 bit data bus)

mode_3 The emulator will operate in mode 3. (expanded
maximum mode with 16 bit data bus)

mode_4 The emulator will operate in mode 4. (expanded
minimum mode with 8 bit data bus)

mode_5 The emulator will operate in mode 5. (expanded
maximum mode with 16 bit data bus)

mode_6 The emulator will operate in mode 6. (expanded
maximum mode with 8 bit data bus)

5-8 Configuring the Emulator

Enable bus
arbitration?

The bus arbitration configuration question defines how your
emulator responds to bus request signals from the target system
during foreground operation. The /BREQ signal from the target
system is always ignored when the emulator is running the
background monitor. This configuration item is only available for
the H8/570 emulator.

yes When bus arbitration is enabled, the /BREQ
(bus request) signal from the target system is
responded to exactly as it would be if only the
emulation processor was present without an
emulator. In other words, if the emulation
processor receives a /BREQ from the target
system, it will respond by asserting /BACK and
will set the various processor lines to tri-state.
/BREQ is then released by the target; /BACK is
negated by the processor, and the emulation
processor restarts execution.

Note You cannot perform DMA (direct memory access) transfers
between your target system and emulation memory by using DMA
controller on your target system; the H8/570 emulator does not
support such a feature.

no When you disable bus arbitration, the emulator
ignores the /BREQ signal from the target
system. The emulation processor will never
drive the /BACK line true; nor will it place the
address, data and control signals into the
tri-state mode.

Enabling and disabling bus master arbitration can be useful to you
in isolating target system problems. For example, you may have a
situation where the processor never seems to execute any code.
You can disable bus arbitration to check and see if faulty
arbitration circuitry in your target system is contributing to the
problem.

Configuring the Emulator 5-9

Enable NMI input
from the target

system?

This configuration allows you to specify whether or not the
emulator responds to NMI (non-maskable interrupt request) signal
from the target system while user program is running.

yes The emulator will respond to the NMI request
from the target system.

no The emulator will not respond to the NMI
request from the target system.

The emulator does not accept any interrupt while it is running in
monitor. NMI is latched last one during in monitor, and such
interrupt will occur when context is changed to user program.
/IRQ0 and internal interrupts are ignored during in monitor
operation.

Enable /RES input
from the target

system?

This configuration allows you to specify whether or not the
emulator responds to /RES and /STBY signals by the target system
during foreground operation.

While running the background monitor, the emulator ignores
/RES and /STBY signals except that the emulator’s status is
"Awaiting target reset". (see the "Running the Emulation from
Target Reset" section in the "In-Circuit Emulation" chapter).

yes The emulator will respond to /RES and /STBY
input during foreground operation.

no The emulator will not respond to /RES and
/STBY input from the target system.

Note If you specify that the emulator will drive the /RES signal to the
target system during emulation reset or by the overflow of
Watchdog Timer, the emulator should be configured to respond to
the /RES input to the target system.

5-10 Configuring the Emulator

Drive emulation reset
to the target system?

This question is asked when you answer "yes" to the previous
question. This configuration allows you to select whether or not
the emulator will drive the /RES signal to the target system during
emulation reset and reset by the Watchdog timer.

 no Specifies that the emulator will not drive the
/RES signal during emulation reset and reset by
the Watchdog timer. The configuration of
RSTOE (Reset output enable bit) is ignored.

yes The emulator will drive an active level on the
/RES signal to the target system during
emulation reset and reset by the Watchdog timer.

This configuration option is meaningful only when the emulator is
configured to respond to the /RES input to the target system.
Refer to the "Enable /RES Input from Target?" configuration in
this chapter.

Caution To drive the reset signal to the target system, the driver of reset
signal on your target system must be an open collector or open
drain. Otherwise, answering "yes" to this configuration may result
in damage to target system or emulation circuitry.

Drive background
cycles to the target

system?

This configuration allows you specify whether or not the emulator
will drive the target system bus on background cycles.

no Background monitor cycles are not driven to the
target system. When you select this option, the
emulator will appear to the target system as if it
is between bus cycles while it is operating in the
background monitor.

yes Specifies that background cycles are driven to
the target system. Emulation processor’s
address and control strobes (except /HWR and
/LWR) are driven during background cycles.

Configuring the Emulator 5-11

Background write cycles won’t appear to the
target system.

Note Memory cycles by the ISP are driven to the target system while the
emulator is in the monitor.

Break ISP into halt
state on CPU break?

This configuration allows you to select whether the emulator halts
the ISP when the emulator breaks into the monitor.

yes The emulator halts the ISP when the "break"
command is issued.

no The emulator doesn’t halt the ISP when the
"break" command is issued. You can halt the
ISP by specifying the "with_isp" syntax in the
"break" command.

Reset value for stack
pointer?

This question allows you to specify the value to which the stack
pointer (SP) and the stack page register (TP) will be set on
entrance to the emulation monitor initiated RESET state (the
"Emulation reset" status).

The address specified in response to this question must be a 24-bit
hexadecimal even address.

You cannot set this address at the following location.

Odd address
Internal I/O register address

5-12 Configuring the Emulator

Note We recommend that you use this method of configuring the stack
pointer and the stack page register. Without a stack pointer and a
stack page register, the emulator is unable to make the transition
to the run state, step, or perform many other emulation functions.
However, using this option does not preclude you from changing
the stack pointer value or location within your program; it just sets
the initial conditions to allow a run to begin.

Debug/Trace
Configuration

The debug/trace configuration questions allows you to specify
breaks on writes to ROM, and specify that the analyzer trace
foreground/background execution, and bus release cycles. To
access the trace/debug configuration questions, you must answer
"yes" to the following question.

Modify debug/trace options?

Break processor on
write to ROM?

This question allows you to specify that the emulator break to the
monitor upon attempts to write to memory space mapped as
ROM. The emulator will prevent the processor from actually
writing to memory mapped as emulation ROM; however, they
cannot prevent writes to target system RAM locations which are
mapped as ROM, even though the write to ROM break is enabled.

yes Causes the emulator to break into the emulation
monitor whenever the user program attempts to
write to a memory region mapped as ROM.

no The emulator will not break to the monitor
upon a write to ROM. The emulator will not
modify the memory location if it is in emulation
ROM.

Configuring the Emulator 5-13

Note The wrrom trace command status options allow you to use "write
to ROM" cycles as trigger and storage qualifiers. For example, you
could use the following command to trace about a write to ROM:
trace about status wrrom < RETURN>

Trace CPU or ISP
operation by

emulation analyzer

This configuration allows you to select the trace mode. The
emulation analyzer can trace execution of CPU or ISP or both of
them.

cpu The emulation analyzer doesn’t trace ISP
execution. The following is a sample trace
listing of this trace mode.

isp The emulation analyzer traces only ISP
execution and memory cycles by the ISP. The
following is a sample listing of this trace mode.

 Trace List Offset=0
 Label: Address Data Opcode or Status time count
 Base: hex hex mnemonic relative
 after 01016 F2FF INSTRUCTION--opcode unavailable ------------
 +001 0101A 2706 2706 fetch mem 320 nS
 +002 01012 15FC 15FC fetch mem 400 nS
 +003 01012 F5FF MOV:G.B @FC00,R0 80. nS
 +004 01014 0080 0080 fetch mem 200 nS
 +005 01016 27FA 27FA fetch mem 320 nS
 +006 01018 4041 4041 fetch mem 280 nS
 +007 0FC00 0041 00xx read mem byte 200 nS
 +008 01016 F2FF BEQ 01012 120 nS
 +009 0101A 2706 2706 fetch mem 280 nS
 +010 01012 15FC 15FC fetch mem 400 nS
 +011 01012 F5FF MOV:G.B @FC00,R0 120 nS
 +012 01014 0080 0080 fetch mem 200 nS
 +013 01016 27FA 27FA fetch mem 280 nS
 +014 01018 4041 4041 fetch mem 320 nS

 STATUS: H8/570--Running user program Emulation trace complete______........
 display trace

 run trace step display modify break end ---ETC--

5-14 Configuring the Emulator

The first column in the mnemonic field shows
address of ISP microprogram memory. The
second column is function number of the
instruction. The third column is the mnemonic
of the ISP instruction executed.

both The emulation analyzer traces both CPU and
ISP execution. The following is a sample listing
of this trace mode.

 Trace List Offset=0 More data off screen (ctrl-F, ctrl-G)
 Label: Address Data Opcode or Status time count
 Base: hex hex mnemonic relative

 after 0600 000 00 OUT () 1,ISFL0 ------------
 NEXT () 004
 +001 0600 001 01 MOV.W #0003,DR3 120 nS
 NEXT () 00E
 +002 F6FF 004 00 NEXT (ISFL0) 004,005 80. nS
 +003 15FC 002 02 MOV.W #0004,DR4 120 nS
 NEXT () 010
 +004 15FC 004 00 NEXT (ISFL0) 004,005 80. nS
 +005 F5FF 00E 01 MOV.W #0000,DR3 120 nS
 NEXT () 00F
 +006 FFFF 004 00 NEXT (ISFL0) 004,005 80. nS
 +007 0080 010 02 MOV.W #0000,DR4 120 nS
 NEXT () 011
 +008 0080 004 00 NEXT (ISFL0) 004,005 80. nS

 STATUS: H8/570--Running user program Emulation trace complete______........
 display trace

 run trace step display modify break end ---ETC--

Configuring the Emulator 5-15

Trace backgr ound or
foreground
operation?

This question is asked when you answer "cpu" or "both" to the
previous question. This question allows you to specify whether the
analyzer trace only foreground emulation processor cycles, only
background cycles, or both foreground or background cycles.
When background cycles are stored in the trace, all but mnemonic
lines are tagged as background cycles.

foreground Specifies that the analyzer trace only foreground
cycles. This option is specified by the default
emulator configuration.

background Specifies that the analyzer trace only background
cycles. (This is rarely a useful setting.)

both Specifies that the analyzer trace both foreground
and background cycles. You may wish to specify
this option so that all emulation processor cycles
may be viewed in the trace display.

 Trace List Offset=0 More data off screen (ctrl-F, ctrl-G)
 Label: Address Data Opcode or Status time count
 Base: hex hex mnemonic relative
 after FFFF 004 00 NEXT (ISFL0) 004,005 ------------
 +001 2706 00F 01 NEXT () 001 120 nS
 +002 0101A 2706 2706 fetch mem 80. nS
 004 00 NEXT (ISFL0) 004,005
 +003 F7FF 011 02 NEXT () 002 120 nS
 +004 FFFF 004 00 NEXT (ISFL0) 004,005 80. nS
 +005 15FC 001 01 MOV.W #0003,DR3 120 nS
 NEXT () 00E
 +006 01012 15FC 15FC fetch mem 80. nS
 004 00 NEXT (ISFL0) 004,005
 +007 01012 F5FF MOV:G.B @FC00,R0 120 nS
 002 02 MOV.W #0004,DR4
 NEXT () 010
 +008 0080 004 00 NEXT (ISFL0) 004,005 80. nS
 +009 01014 0080 0080 fetch mem 120 nS

 STATUS: H8/570--Running user program Emulation trace complete______........
 display trace

 run trace step display modify break end ---ETC--

5-16 Configuring the Emulator

Trace refresh cycles? You can direct the emulator to trace refresh cycles or not.

yes When you enable tracing refresh cycles, the
analyzer will trace refresh cycles.

no The analyzer will not trace refresh cycles.

Trace bus release
cycles?

You can direct the emulator to send bus release cycle data to
emulation analyzer or not to send it.

yes When you enable tracing bus release cycles, bus
release cycles will appear as one analysis trace
line.

no Bus release cycles will not appear on analysis
trace list (display).

Simulated I/O
Configuration

The simulated I/O feature and configuration options are described
in the Simulated I/O reference manual.

Interactive
Measurement
Configuration

The interactive measurement configuration questions are
described in the chapter on coordinated measurements in the
Softkey Interface Reference manual. Examples of coordinated
measurements that can be performed between the emulator and
the emulation analyzer are found in the "Using the Emulator"
chapter.

Configuring the Emulator 5-17

External Analyzer
Configuration

The external analyzer configuration options are described in the
Analyzer Softkey Interface User’s Guide.

Saving a
Configuration

The last configuration question allows you to save the previous
configuration specifications in a file which can be loaded back into
the emulator at a later time.

Configuration file name? < FILE>

The name of the last configuration file is shown, or no filename is
shown if you are modifying the default emulator configuration.

If you press < RETURN> without specifying a filename, the
configuration is saved to a temporary file. This file is deleted when
you exit the Softkey Interface with the "end release_system"
command.

When you specify a filename, the configuration will be saved to two
files; the filename specified with extensions of ".EA" and ".EB".
The file with the ".EA" extension is the "source" copy of the file,
and the file with the ".EB" extension is the "binary" or loadable
copy of the file.

Ending out of emulation (with the "end" command) saves the
current configuration, including the name of the most recently
loaded configuration file, into a "continue" file. The continue file is
not normally accessed.

5-18 Configuring the Emulator

Loading a
Configuration

Configuration files which have been previously saved may be
loaded with the following Softkey Interface command.

load configuration <FILE> <RETURN>
This feature is especially useful after you have exited the Softkey
Interface with the "end release_system" command; it saves you
from having to modify the default configuration and answer all the
questions again.

To reload the current configuration, you can enter the following
command.

load configuration <RETURN>

Configuring the Emulator 5-19

Notes

5-20 Configuring the Emulator

6

Using the Emulator

Introduction In the "Getting Started" chapter, you learned how to load code into
the emulator, how to modify memory and view a register, and how
to perform a simple analyzer measurement. In this chapter, we will
discuss in more detail other features of the emulator.

This chapter discusses:

Features available via "pod_command".

Limitations and restrictions of the emulator.

Register classes and names.

Debugging C Programs

Accessing target system devices using E clock

synchronous instruction.

This chapter shows you how to:

Store the contents of memory into absolute files.

Make coordinated measurements.

Use a command file.

Use the file format converter.

Using the Emulator 6-1

Features Available
via Pod
Commands

Several emulation features available in the Terminal Interface but
not in the Softkey Interface may be accessed via the following
emulation commands.

display pod_command <RETURN>

pod_command ’<Terminal Interface command>’
<RETURN>

Some of the most notable Terminal Interface features not available
in the softkey Interface are:

Copying memory.

Searching memory for strings or numeric expressions.

Performing coverage analysis.

Refer to your Terminal Interface documentation for information
on how to perform these tasks.

Note Be careful when using the "pod_command". The Softkey Interface,
and the configuration files in particular, assume that the
configuration of the HP 64700 pod is NOT changed except by the
Softkey Interface. Be aware that what you see in
"modify configuration" will NOT reflect the HP 64700 pod’s
configuration if you change the pod’s configuration with this

command. Also, commands which affect the communications
channel should NOT be used at all. Other commands may confuse
the protocol depending upon how they are used. The following
commands are not recommended for use with "pod_command":

stty, po, xp - Do not use, will change channel operation and hang.
echo, mac -Usage may confuse the protocol in use on the channel.
wait -Do not use, will tie up the pod, blocking access.
init, pv -Will reset pod and force end release_system.
t - Do not use, will confuse trace status polling and unload.

6-2 Using the Emulator

Using a Command
File

You can use a command file to perform many functions for you,
without having to manually type each function. For example, you
might want to create a command file that loads configuration,
loads program into memory and displays memory.

To create such a command file, type "log" and press TAB key. You
will see a command line "log_commands" appears in the command
field. Next, select "to" in the softkey label, and enter the command
file name "sample.cmd". This set up a file to record all commands
you execute. The commands will be logged to the file sample.cmd
in the current directory. You can use this file as a command file to
execute these commands automatically.

Suppose that your configuration file and program are named
"cmd_rds". To the load configuration:

load configuration cmd_rds <RETURN>
To load the program into memory:

load cmd_rds <RETURN>
To display memory 1000 hex through 1020 hex in mnemonic
format:

display memory 1000h thru 1020h mnemonic
Now, to disable logging, type "log" and press TAB key, select "off",
and press Enter. The command file you created looks like this:

load configuration cmd_rds
load cmd_rds
display memory 1000h thru 1020h mnemonic

If you would like to modify the command file, you can use any text
editor on your host computer.

To execute this command file, type "sample.cmd", and press Enter.

Using the Emulator 6-3

Debugging C
Programs

Softkey Interface has following functions to debug C programs.

Including C source lines in memory mnemonic display
Including C source lines in trace listing
Stepping C sources

The following section describes such features.

Displaying Memory
with C Sources

You can display memory in mnemonic format with C source lines.
For example, to display memory in mnemonic format from address
_main with source lines, enter the following commands.

display memory _main mnemonic <RETURN>

set source on <RETURN>
You can display source lines highlighted with the following
command.

set source on inverse_video on <RETURN>
To display only source lines, use the following command.

set source only <RETURN>

Specifying Address with Line Numbers

You can specify addresses with line numbers of C source program.
For example, to set a breakpoint to line 20 of "main.c" program,
enter the following command.

modify software_breakpoints set main.c: line
20 <RETURN>

Displaying Trace with
C Sources

You can include C source information in trace listing. You can use
the same command as the case of memory display. For example, to
display trace listing with source lines highlighted, enter the
following command.

display trace <RETURN>

set source on inverse_video on <RETURN>

6-4 Using the Emulator

Stepping C Sources You can direct the emulator to execute a line or a number of lines
at a time. For example, to step one line from address _main, enter
the following command.

step source from _main <RETURN>
To step 1 line from the current line, enter the following command.

step source <RETURN>
You can specify the number of lines to be executed. To step 5 lines
from the current line, enter the following command.

step 5 source <RETURN>

E clock
synchronous
instructions

You can access target system devices in synchronization with the
E clock. To do this, use the following commands:

display io_port

modify io_port

The emulator will access the device using the MOVFPE/MOVTPE
instruction.

Using the Emulator 6-5

 Limitations,
Restrictions

DMA Support Direct memory access to H8/570 emulation memory is not
permitted.

 Sleep and Software
Stand-by Mode

When the emulator breaks into the monitor
(foreground/background), the H8/570 sleep or software stand-by
mode is released and comes to normal processor mode.

Watchdog Timer When the emulator breaks into background, the emulation
processor’s watchdog timer suspends count up in background
cycles.

Address Error and
Register Values

In operation of the H8/570 microprocessor, the Stack Pointer must
always contain an even value. If the Stack Pointer is odd, you will
see the following error message when you breaks into the monitor.

Address error occurred while in monitor

In this case, the values of the following registers will be unreliable.

Stack Pointer (SP)
Code Page Register (CP)
Status Register (SR)

ISP Microprogram
Modify

The contents of ISP microprogram memory cannot be modified by
emulation commands. To modify your ISP program, you need to
re-assemble/link your program, and load it into the emulator.

Symbolic Information
for ISP Functions

The H8/570 Softkey Interface does not support symbolic
information for ISP functions. No symbolic information for ISP
functions is dispalyed in ISP memory display and trace listing.

RAM Enable Bit The internal RAM of H8/510 processor can be enabled/disabled by
RAME (RAM enable bit). However, the H8/570 emulator
accesses emulation RAM even if the internal RAM is disabled by
RAME.

6-6 Using the Emulator

Storing Memory
Contents to an
Absolute File

The "Getting Started" chapter shows you how to load absolute files
into emulation or target system memory. You can also store
emulation or target system memory to an absolute file with the
following command.

store memory 1000h thru 1042h to absfile
<RETURN>

The command above causes the contents of memory locations 1000
hex through 1042 hex to be stored in the absolute file "absfile.X".
Notice that the ".X" extension is appended to the specified
filename.

Coordinated
Measurements

For information on coordinated measurements and how to use
them, refer to the "Coordinated Measurements" chapter in the
Softkey Interface Reference manual.

Using the Emulator 6-7

Register Names
and Classes

The following register names and classes may be used with
"display/modify registers" commands.

Summary H8/570 register designators. All available register class names and
register names are listed below.

BASIC Class

Register name Description

 PC
CP
SR
DP
EP
TP
BR
R0
R1
R2
R3
R4
R5
R6
R7
R7
FP
SP
MDCR

Program counter
Code page register
Status register
Data page register
Extended page register
Stack page register
Base register
Register R0
Register R1
Register R2
Register R3
Register R4
Register R5
Register R6
Register R6
Register R7
Frame pointer
Stack pointer
Mode control register

6-8 Using the Emulator

SYS Class System control registers

Register name Description

WCR
MDCR
SBYCR
RAMCR
SYSCR1

Wait control register
Mode control register
Software stand-by control register
RAM control register
System control register 1

INTC Class Interrupt control registers

IPRA
IPRAB
IPRC
IPRD

Interrupt priority register A
Interrupt priority register B
Interrupt priority register C
Interrupt priority register D

DTC Class Data transfer controller registers

DTEA
DTEB
DTEC
DTED

DT enable register A
DT enable register B
DT enable register C
DT enable register D

ADC Class A/D converter registers

ADDRA
ADDRB
ADDRC
ADDRD
ADCSR
ADCR

A/D data register A
A/D data register B
A/D data register D
A/D data register D
A/D control/status register
A/D control register

Using the Emulator 6-9

PORT Class I/O port registers

Register name Description

 P1DDR
P5DDR
P6DDR
P8DDR
P9DDR
P10DDR
P11DDR
P12DDR

Port 1 data direction register
Port 5 data direction register
Port 6 data direction register
Port 8 data direction register
Port 9 data direction register
Port 10 data direction register
Port 11 data direction register
Port 12 data direction register

P1DR
P5DR
P6DR
P7DR
P8DR
P9DR
P10DR
P11DR
P12DR

Port 1 data register
Port 5 data register
Port 6 data register
Port 7 data register
Port 8 data register
Port 9 data register
Port 10 data register
Port 11 data register
Port 12 data register

PWM Class PWM timer registers

 TCR
TSR
ODL
ODR0
ODR1
ODR2
OCR0
OCR1
OCR2
TMR

Timer control register
Timer status register
Output data latch
Output data register 0
Output data register 1
Output data register 2
Output compare register 0
Output compare register 1
Output compare register 2
Timer

6-10 Using the Emulator

WDT Class Watchdog timer registers

Register name Description

WDTCSR
WDTCNT
RSTCSR

Timer control/status register
Timer counter
Reset control/status register

SCI Class Serial communication interface registers.

RDR
TDR
SMR
SCR
SSR
BRR

Receive data register
Transmit data register
Serial mode register
Serial control register
Serial status register
Bit rate register

ADC Class A/D converter registers

ADDRA
ADDRB
ADDRC
ADDRD
ADCSR
ADCR

A/D data register A
A/D data register B
A/D data register C
A/D data register D
A/D control/status register
A/D control register

Using the Emulator 6-11

ISPSCM Class ISP SCM

Register name Description

 AR0
AR1
AR2
:
:
AR9
AR10
AR11

ISP address register 0
ISP address register 1
ISP address register 2
:
:
ISP address register 9
ISP address register 10
ISP address register 11

ISPDR Class ISP data registers

DR0
DR1
DR2
DR3
:
:
DR30
DR31

ISP data register 0
ISP data register 1
ISP data register 2
ISP data register 3
:
:
ISP data register 30
ISP data register 31

ISPF Class ISP flags

ICF
IOF0
IOF1
IOF2
EGF
ISF

Interconnction flag
Input/output flag 0
Input/output flag 1
Input/output flag 2
Edge flag
Interrupt status flag

6-12 Using the Emulator

ISPC Class ISP control registers

Register name Description

 IEF
IOIEF
CLE
EVER
IPR
ICSR
REDGE
FEDGE
SYSCR8
SYSCR9
SYSCR10

Interrupt enable flag
I/O interrupt enable flag
Clear enable register
Event enable register
ISP page register
ISP control status register
Rising edge enable register
Falling edge enable register
System control register 8
System control register 9
System control register 10

Using the Emulator 6-13

Using the Format
Converter

Description The format converter is a program that generates HP format files
from a HP 64869 format file. This means you can use available
language tools to create HP 64869 format file, then load the file
into the emulator.

Synopsis To execute the converter program, use the following command:

$ h8cnvhp [options] <file_name>

< file_name> is the name of HP 64869 format file without suffix.
The converter program will read the HP 64869 format file (with
.abs suffix). It will generate the following HP format files:

HP Absolute file (with .X suffix)
HP Linker symbol file (with .L suffix)
HP Assembler symbol file (with .A suffix)

Options THe following options are available:

-x create the absolute file

-l create the linker symbol file

-a create the assembler symbols files. The HP
64869 format file must contain local symbol
information.

Example Suppose that you have the following file:

sample.abs (HP 64869 format file)

You can generate HP format files from this file with the following
command:

$ h8cnvhp sample <RETURN>

6-14 Using the Emulator

A

H8/570 Softkey Interface Specific Syntax

This appendix describes specific syntax of H8/570 Softkey Interface.

Items explained in this appendix includes:

Syntax of break command

Syntax of display isp_memory command

Syntax of display trace command

Syntax of run command

Syntax of step command

The explanation in this appendix is addendum to the Softkey
Interface Reference manual. Refer to the manual for complete
description of each command.

H8/570 Specific Syntax A-1

break This command causes the emulator to leave user program
execution and begin executing in the monitor.

Syntax

Function The behavior of break depends on the state of the emulator:

running Break diverts the processor from
execution of your program to the
emulation monitor. The ISP execution
is halted if you specify the with_isp
syntax, or you configure the emulator to
halt the ISP on break.

reset Break releases the processor from reset,
and diverts execution to the monitor.
The ISP is held at the halt state.

running in monitor The break command does not perform
any operation to the processor. The ISP
is halted if you specify the with_isp
syntax, or you configure the emulator to
halt the ISP on break.

In monitor ISP halted The break command does not perform
any operation.

Parameters

with_isp This allows you to halt the ISP. By default,
you don’t have to specify this parameter to
halt the ISP. When you configure the
emulator not to halt the ISP on emulation
break, you need to specify this parameter to
halt the ISP.

A-2 H8/570 Specific Syntax

Example

break <RETURN>

break with_isp <RETURN>

Related Commands

help break

modify configuration

run

step

H8/570 Specific Syntax A-3

display
isp_memory

Displays the contents of the ISP microprogram memory in
mnemonic format.

Syntax

Function display isp_memory can display the contents of the ISP
microprogram memory in mnemonic format. You can specify a
function number to display instructions of an ISP function.

Note No symbolic information is displayed in ISP memory display.

Parameters

< ISP_ADDR> The start address to be displayed.

function This allows you to specify a function number
to be displayed.

Examples

display isp_memory 0 <RETURN>
The result of this command may resemble:

A-4 H8/570 Specific Syntax

 ISP memory
 address func mnemonic
 000 00 OUT () 1,ISFL0
 NEXT () 004
 001 01 MOV.W #0003,DR3
 NEXT () 00E
 002 02 MOV.W #0004,DR4
 NEXT () 010
 003 ?? NEXT () 000
 004 00 NEXT (ISFL0) 004,005
 005 00 NEXT () 006
 006 00 READ.B DR0,MAB
 NEXT (!C) 006,007
 007 00 ADD.W 0,#0001,DR0
 NEXT () 008
 008 00 WRITE.B DR1,MAB
 NEXT (!C) 008,009
 009 00 ADD.W 0,#0001,DR1

 STATUS: H8/570--In monitor ISP halted_________________________________........
 display isp_memory 0

 run trace step display modify break end ---ETC--

H8/570 Specific Syntax A-5

display trace This command displays the contents of the trace buffer.

Syntax

A-6 H8/570 Specific Syntax

Function You can specify to display CPU instruction or ISP instructions or
both of them.

Parameters

cpu_cycles_only When you configure the emulator to trace
both of CPU and ISP cycles, the display may
too complex to find information you need.
In this case, you can display only CPU cycles
by specifying this option.

isp_cycles_only displays ISP cycles only.

both_cycles displays both of CPU cycles and ISP cycles.

disassemble_by_memory_contents

Use data in memory to disassemble the trace
data. By default, the emulator disassembles
by data in the trace buffer to display the
trace listing. Therefore, if you specify the
exec status for the store condition, the
emulator cannot disassemble the trace data.
When this option is specified, the emulator
can disassemble the trace even if the exec is
specified for store condition. This would be
useful when you don’t have to see any
memory cycles.

disassemble_by_trace_data

Use data in the trace buffer to disassemble.

Note When you specify the disassemble_by_memory_contents syntax,
the emulator may need to suspend user program execution to see
the contents of target memory.

H8/570 Specific Syntax A-7

run This command causes the emulator to execute a program or ISP
function.

Syntax

Function The run isp command causes the ISP to start execution.

Parameters

isp Allows you to cause the ISP to start execution.

 until Allows you to cause the ISP to start execution,
and halts the execution after the instruction at
the specified address is executed.

Examples

run isp

run isp until 12

A-8 H8/570 Specific Syntax

step The step command allows you sequential analysis of program
instructions by causing the emulation processor or ISP to execute a
specified number of instructions.

Syntax

Function You can step ISP instructions. You also can step through
instructions of a specified ISP function.

Parameters

isp Allows you to step ISP instructions.

 function Allows you to step through instructions of a
specified ISP functions. When you specify
this option, the emulator runs the ISP until
an instruction of the specified function is
executed. Instructions of other functions are
also executed until the emulator halts ISP
after an instruction of the specified function
is executed.

H8/570 Specific Syntax A-9

Notes

A-10 H8/570 Specific Syntax

Index

A absolute file, loading 2-11
absolute files

storing 6-7
address error 6-6
analyzer

configuring the external 5-18
features of 1-3
status qualifiers 2-24
using the 2-24

assemble
ISP function 3-6

assembling the getting started sample program 2-6

B background cycles
tracing 5-16

blocked byte memory display 2-16
break command

ISP 3-10
breakpoint interrupt instruction

software breakpoints 2-18
breaks 1-4

break command 2-17, A-2
guarded memory accesses 5-6
software breakpoints 1-4, 2-18
write to ROM 5-13
writes to ROM 5-6

bus arbitration
using configuration to isolate target problem 5-9

C C program
debugging 6-4
displaying in mnemonic memory display 6-4
displaying in trace listing 6-4

cautions
installing the target system probe 4-2

characterization of memory 5-6
cim, Terminal Interface command 2-19

Index-1

clearing software breakpoints 2-21
clock source

external 5-3
internal 5-3

command file
creating and using 6-3

compress mode,trace display 2-28
configuration options

background cycles to target 5-11
drive emulation reset to target 5-11
enable /BREQ input 5-9
enable NMI input 5-10
honor target reset 5-10
in-circuit 4-5
processor mode 5-8
trace bus release cycles 5-17
trace refresh cycles 5-17

convert SYSROF absolute file to HP Absolute 2-6
converter, h8cnvhp 2-6
coordinated measurements 5-17, 6-7
copy memory 6-2
coverage analysis 6-2

D data registers
ISP 3-12

Debugging C programs 6-4
device table file 2-8
display command

ISP A-4
ISP memory 3-8
ISP registers 3-12
memory mnemonic 2-14
memory mnemonic with symbols 2-15
memory repetitively 2-16
registers 2-22, 6-8
software breakpoints 2-20
symbols 2-12
trace 2-25, A-6

drive emulation reset to target 5-11

2-Index

E E clock 6-5
emul700, command to enter the Softkey Interface 2-8, 2-30
emulation analyzer 1-3, 2-24
emulation memory

loading absolute files 2-11
note on target accesses 5-6
RAM and ROM 5-6
size of 5-6

emulator
before using 2-2
device table file 2-8
DMA support 1-6, 5-9
features of 1-3
ISP microprogram modify 1-6, 6-6
limitations 1-6, 6-6
memory mapper resolution 5-6
prerequisites 2-2
purpose of 1-1
RAM enable bit 1-6
running from target reset 4-6
sleep mode 1-6, 6-6
software stand-by mode 1-6, 6-6
supported microprocessor package 1-3
Symbolic Information for ISP Functions 1-6, 6-6
target system 1-4
watch-dog timer 1-6

emulator configuration 2-9
break processor on write to ROM 5-13
clock selection 5-3
loading 5-19
monitor entry after 5-3
restrict to real-time runs 5-4
saving 5-18
stack pointer 5-12
trace background/foreground operation 5-16

Emulator features
clock speeds 1-3
emulation memory 1-3
supported microprocessors 1-3

emulator limitations
DMA support 6-6

Index-3

RAM enable bit 6-6
watchdog timer 6-6

END assembler directive (pseudo instruction) 2-16
end command 2-29, 5-18
exit, Softkey Interface 2-29
external analyzer 2-24

configuration 5-18
external clock source 5-3

F features of the emulator 1-3
file extensions

.EA and .EB, configuration files 5-18
file format

converting 3-6
foreground operation

tracing 5-16
function number 3-8, 3-11

G getting started 2-1
prerequisites 2-2

global symbols 2-14
displaying 2-12

grd, memory characterization 5-6
guarded memory accesses 5-6

H h8cnvhp, converter 2-6
halt

ISP 3-10
hardware installation 2-2
help

on-line 2-9
pod command information 2-10
softkey driven information 2-9

I in-circuit configuration options 4-5
in-circuit emulation 4-1, 5-1
installation

hardware 2-2
software 2-2

installing target system probe
See target system probe

interactive measurements 5-17
internal clock source 5-3

4-Index

internal I/O register display/modify 6-8
interrupt

NMI 5-10
ISP 1-5

assemble 3-6
converting file format 3-6
data registers 3-12
debugging 3-1
display memory A-4
function number 3-8
halt 3-10, A-2
halting on CPU break 5-12
memory display 3-8
registers 3-12
run 3-10, A-8
SCM 3-8, 3-12
step 3-11, A-9
symbols 3-9
trace 3-13, 5-14

ISP assembler 3-6
ISP function

step 3-11

L limitations of the emulator 1-6, 6-6
linking the getting started sample program 2-6
loading absolute files 2-11
loading emulator configurations 5-19
local symbols, displaying 2-13
locked, end command option 2-30
logging of commands 6-3

M mapping memory 5-6
measurement system 2-30

creating 2-7
initialization 2-7

memory
characterization 5-6
copying 6-2
ISP 3-8
mapping 5-6
mnemonic display 2-14
mnemonic display with C sources 6-4

Index-5

mnemonic display with symbols 2-15
modifying 2-16
repetitively display 2-16
searching for strings or expressions 6-2

memory characterization 5-6
memory mapping

ranges, maximum 5-6
sequence of map/load commands 5-7

microprocessor package 1-3
mnemonic memory display 2-14
modify command

configuration 5-1
ISP registers 3-12
memory 2-16
software breakpoints clear 2-21
software breakpoints set 2-20

module 2-30
module, emulation 2-7
monitor

breaking into 2-17
MOVFPE instruction 6-5
MOVTPE instruction 6-5

N non-maskable interrupt 5-10
nosymbols 2-12
notes

"debug" option must need to generate local symbol information 2-6
config. option for reset stack pointer recommended 5-13
default mapping of memory 5-7
DMA to emulation memory not supported 5-9
map memory before loading programs 5-7
pod commands that should not be executed 6-2
refresh cycles are always driven to target 5-12
selecting internal clock forces reset 5-3
setting software bkpts. while running user code 2-19
software breakpoint locations 2-18
software breakpoints and ROM code 2-19
target accesses to emulation memory 5-6
write to ROM analyzer status 5-14

O on-line help 2-9
out-of-circuit emulation 5-1

6-Index

P PATH, HP-UX environment variable 2-6/2-8
pin extender 4-3
pin protector 4-3
pmon, User Interface Software 2-7, 2-30
pod_command 2-10

features available with 6-2
help information 2-10

predefining stack pointer 5-12
prerequisites for using the emulator 2-2
processor operation mode 5-8
purpose of the emulator 1-1

R RAM, mapping emulation or target 5-6
real-time execution 1-4

commands not allowed during 5-5
commands which will cause break 5-5
restricting the emulator to 5-4

register display/modify 2-22
registers 1-4, 6-8

classes 2-22
ISP 3-12

release_system
end command option 2-29, 5-18/5-19

repetitive display of memory 2-16
reset (emulator)

running from target reset 4-6
reset(emulator) 1-4
reset(emulator), running from target reset 2-16
restrict to real-time runs

emulator configuration 5-4
ROM

mapping emulation or target 5-6
writes to 5-6

run command 2-15
ISP 3-10, A-8

run from target reset 4-6

S sample program
description 2-2

sample program, linking 2-6
saving the emulator configuration 5-18
SCM 3-8, 3-12

Index-7

simulated I/O 5-17
single-step 1-4
softkey driven help information 2-9
Softkey Interface

entering 2-7
exiting 2-29
on-line help 2-9

software breakpoints 1-4, 2-18
clearing 2-21
displaying 2-20
enabling/disabling 2-19
setting 2-20

software installation 2-2
stack pointer 6-6

required for proper operation 5-13
stack pointer,defining 5-12
status qualifiers 2-24
step

ISP 3-11
step command 2-23, 3-11

ISP A-9
with C program 6-4

string delimiters 2-10
symbols

ISP 3-9
symbols, displaying 2-12
system overview 2-2

T target memory, loading absolute files 2-11
target reset

running from 4-6
target system adaptor 4-3
target system probe

cautions for installation 4-2
installation 4-2
installation procedure 4-3

Terminal Interface 2-10
trace

background operation 5-16
bus release cycles 5-17
depth 2-29
display 2-25, A-6

8-Index

display with C source lines 6-4
display with compress mode 2-28
display with time count absolute 2-27
ISP 3-13
mode 3-13
refresh cycles 5-17

trace mode 5-14
transfer address, running from 2-16
trigger state 2-26
trigger, specifying 2-24

U undefined software breakpoint 2-18
user (target) memory, loading absolute files 2-11

V visible background cycles 5-11

W window systems 2-30
write to ROM break 5-13

X xlate utility 3-6

Index-9

Notes

10-Index

	Using This Manual
	Contents
	Introduction to the H8/570 Emulator
	Getting Started
	Debugging ISP Functions
	In-Circuit Emulation
	Configuring the Emulator
	Using the Emulator
	H8/570 Softkey Interface Specific Syntax
	Index

