HP 64146

7700 Series Emulator Softkey Interface

User's Guide

HP Part No. 64146-97005 Printed in U.S.A. February 1994

Edition 2

Notice	Hewlett-Packard makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.
	Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is not furnished by Hewlett-Packard.
	© Copyright 1994, Hewlett-Packard Company.
	This document contains proprietary information, which is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced or translated to another language without the prior written consent of Hewlett-Packard Company. The information contained in this document is subject to change without notice.
	AdvanceLink, Vectra and HP are trademarks of Hewlett-Packard Company.
	IBM and PC AT are registered trademarks of International Business Machines Corporation.
	MS-DOS is a trademark of Microsoft Corporation.
	MELPS is a registered trademark of Mitsubishi Electric Corporation.
	Hewlett-Packard Company P.O.Box 2197 1900 Garden of the Gods Road Colorado Springs, CO 80901-2197, U.S.A.
	RESTRICTED RIGHT LEGEND Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph (C) (1) (ii) of the Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013. Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304 U.S.A. Rights for non-DOD U.S.Government Departments and Agencies are as set forth in FAR 52.227-19(C)(1,2)

Printing History	New editions are complete revisions of the manual. The date title page changes only when a new edition is published.				
	A software co version level o Many product manual correc changes. Ther between product	de may be printed before the date; this indicates the of the software product at the time the manual was issued. t updates and fixes do not require manual changes, and etions may be done without accompanying product refore, do not expect a one-to-one correspondence uct updates and manual revisions.			
	Edition 1	64146-97002, August 1992			
	Edition 1	64146-97005, February 1994			

Using This Manual

This manual introduces you to the HP 64146A/B 7700 Series Emulator as used with the Softkey Interface.

This manual:

- Shows you how to use emulation commands by executing them on a sample program and describing their results.
- Shows you how to use the emulator in-circuit (connected to a target system).
- Shows you how to configure the emulator for your development needs. Topics include: restricting the emulator to real-time execution, selecting a target system clock source.

This manual does not:

Show you how to use every Softkey Interface command and option; the Softkey Interface is described in the Softkey Interface Reference.

For the most part, the HP 64146A and HP 64146B emulators all operate the same way. Differences of between the emulators are described where they exist. Both the HP 64146A and HP 64146B emulators will be referred to as the "HP 64146A/B 7700 Series emulator" or "7700 Series emulator". In the specific instances where HP 64146B emulator differs from HP 64146A emulator, it will be described as "HP 64146B emulator".

Organization

Chapter 1	Introduction to the 7700 Series Emulator. This chapter briefly introduces you to the concept of emulation and lists the basic features of the 7700 Series emulator.
Chapter 2	Getting Started. This chapter shows you how to use emulation commands by executing them on a sample program. This chapter describes the sample program and how to: load programs into the emulator, map memory, display and modify memory, display registers, step through programs, run programs, set software breakpoints, search memory for data, and use the analyzer.
Chapter 3	"In-Circuit" Emulation. This chapter shows you how to install the emulator probe into a target system and how to use the "in-circuit" emulation features.
Chapter 4	Configuring the Emulator. This chapter shows you how to restrict the emulator to real-time execution, select a target system clock source, allow background cycles to be seen by the target system.
Chapter 5	Using the Emulator. This chapter describes emulation topics which are not covered in the "Getting Started" chapter.
Appendix A	Using the Foreground Monitor. This appendix describes the advantages and disadvantages of foreground and background monitors and how to use foreground monitors.
Appendix B	Using the Format Converter. This appendix describes the usage of the file format converter.

Conventions	Example commands throughout the manual use the following conventions:				
	bold	Commands, options, and parts of command syntax.			
	bold italic	Commands, options, and parts of command syntax which may be entered by pressing softkeys.			
	normal	User specified parts of a command.			
	\$	Represents the HP-UX prompt. Commands which follow the "\$" are entered at the HP-UX prompt.			
	<return></return>	The carriage return key.			

Notes

Contents

1 Introduction to the 7700 Series Emulator

2

Introduction
Purpose of the 7700 Series Emulator
Supported Microprocessors
Features of the 7700 Series Emulator
Clock Speed
Emulation memory 1-5
Analysis
Foreground or Background Emulation Monitor 1-6
Register Display and Modification
Single-Step
Breakpoints
Real Time Operation
Coverage Measurements
Reset Support
Watch Dog Timer
Limitations, Restrictions
Access to Internal RAM
Trace Internal RAM
DMA Support
Watch Dog Timer in Background
Step Command with Foreground Monitor
Step Command and Interrupts
Emulation Commands in Stop/Wait Mode 1-10
Stack Address
Getting Started
String Starter

Introduction
Before You Begin
Prerequisites
A Look at the Sample Program
Sample Program Assembly
Linking the Sample Program
Generate HP Absolute file

Contents-1

Entering the Softkey Interface	. 2-8
From the "pmon" User Interface	. 2-8
From the HP-UX Shell	. 2-9
On-Line Help	2-10
Softkey Driven Help	2-10
Pod Command Help	2-11
Configuring the Emulator	2-12
Loading Absolute Files	2-14
Displaying Symbols	2-14
Global	2-14
	2-15
Displaying Memory in Mnemonic Format	2-16
Displaying Memory with Symbols	2-17
Running the Program	2-18
Displaying Memory in Blocked Format	2-18
Modifying Memory	2-19
Breaking into the Monitor	2-20
Using Software Breakpoints	2-20
Enabling/Disabling Software Breakpoints	2-22
Setting a Software Breakpoint	2-22
Clearing a Software Breakpoint	2-23
Stepping Through the Program	2-24
Displaying Registers	2-24
Using the Analyzer	2-26
Specifying a Simple Trigger	2-26
Displaying the Trace	2-27
Displaying Trace with Time Count Absolute	2-28
Changing the Trace Depth	2-29
Using the Storage Qualifier	2-29
7700 Series Analysis Status Qualifiers	2-30
Restriction of the Analyzer	2-31
Trace of Internal RAM	2-31
For a Complete Description	2-31
Exiting the Softkey Interface	2-32
End Release System	2-32
Ending to Continue Later	2-32
Ending Locked from All Windows	2-32
Selecting the Measurement System Display or Another Module	2-32
"In-Circuit" Emulation	

2-Contents

3

Prerequisites		•	•		. 3-1
Installing the Target System Probe					. 3-2
In-Circuit Configuration Options					. 3-3
Configuring the Emulator					
Introduction				 	. 4-1
General Emulator Configuration					. 4-3
Micro-processor clock source?					. 4-3
Enter monitor after configuration?					. 4-4
Restrict to real-time runs?					. 4-5
Emulator Reconfiguration					. 4-5
Micro-processor group?					. 4-6
Processor mode?				 	. 4-9
Modify value for Stack Pointer (SP)?					. 4-9
Memory Configuration					4-10
Is speed of input clock faster than					
16 MHz?					4-10
Monitor type?					4-11
Mapping memory					4-13
Emulator Pod Configuration					4-16
Target memory access size?					4-16
Respond to target system interrupts?					4-17
Enable watchdog timer?					4-17
Debug/Trace Configuration					4-18
Break processor on write to ROM?					4-18
Trace background or foreground operation?					4-18
Trace refresh cycles by emulation analyzer?					4-19
Trace DMA cycles by emulation analyzer?					4-19
Trace HOLD/HLDA cycles by emulation analyzer?					4-19
Replace 16-bit addresses with symbolic references?					4-20
Simulated I/O Configuration					4-20
Interactive Measurement Configuration					4-20
External Analyzer Configuration					4-21
Saving a Configuration					4-21
Loading a Configuration					4-21
<u> </u>	-				

5 Using the Emulator

4

Introduction	-1
Sample Program	-2
Internal RAM and SFR	-2
Loading the Sample Program	-2

Contents-3

Running the Example
Features Available via Pod Commands
Debugging C Programs
Displaying Memory with C Sources
Displaying Trace with C Sources
Stepping C Sources
Displaying Memory in Various Data Type
Using a Command File
Storing Memory Contents to an Absolute File
Coordinated Measurements
Limitations, Restrictions
Access to Internal RAM
Trace Internal RAM
DMA Support
Watch Dog Timer in Background
Step Command with Foreground Monitor
Step Command and Interrupts
Emulation Commands in Stop/Wait Mode
Stack Address

A Using the Foreground Monitor

Introduction
Comparison of Foreground and Background Monitors
Background Monitors
Foreground Monitors
An Example Using the Foreground Monitor
Assemble and Link the Monitor
Modifying Location Declaration Statement
Modifying the Emulator Configuration
Load the Program Code
Running User Program
Limitations of Foreground Monitors
Step Command
Synchronized Measurement

B Using the Format Converter

How to Use	the	Co	nve	ert	er											. B-1
Specification	ıs			•												. B-2

Illustrations

Figure 1-1. HP 64146 Emulator for MELPS 7700 Series	1-2
Figure 2-1. Connecting the Emulation Pod	2-3
Figure 2-2. Sample Program Listing	2-4
Figure 2-3. Linkage Editor Command File	2-7
Figure 2-4. Softkey Interface Display	2-9
Figure 4-1. Chip Group and Type for Configuration	4-7

Tables

Table 1-1. Supported Microprocessors			. 1-3
Table 2-1. Chip Group and Chip Type for Configuration			2-13

Contents-5

Notes

6-Contents

Introduction to the 7700 Series Emulator

Introduction	The topics in this chapter include:						
	 Purpose of the 7700 Series Emulator 						
	 Features of the 7700 Series Emulator 						
Purpose of the 7700 Series Emulator	The HP 64146A/B 7700 Series Emulator is designed to replace the MELPS 7700 Series microprocessor in your target system so you can control operation of the processor in your application hardware (usually referred to as the <i>target system</i>). The emulator performs just like the MELPS 7700 Series microprocessor, but is a device that allows you to control the MELPS 7700 Series directly. These features allow you to easily debug software before any hardware is available, and ease the task of integrating hardware and software.						
Note	In this manual, MELPS 7700 Series is referred to as 7700 Series.						

Introduction 1-1

1

Figure 1-1. HP 64146 Emulator for MELPS 7700 Series

1-2 Introduction

Supported Microprocessors

A list of the supported 7700 Series microprocessors is shown in Table 1-1. You need to purchase appropriate emulation pod and emulation processor.

Pro	cessor	Clock	Emulation Processor	Emulation Pod
======= M37700/1	M2-xxxFP/SP M2AxxxFP/SP SFP/SP SAFP/SP	8 16 8 16	M37700SAFP	M37700T-HPD
M37700/1	M4-xxxFP/SP M4AxxxFP/SP S4FP/SP S4AFP/SP	8 16 8 16	M37700S4AFP	
M37702/3	M2-xxxFP/SP M2AxxxFP/SP S1FP/SP S1AFP/SP	8 16 8 16	M37702S1AFP	M37702T-HPD
M37702/3	M4-xxxFP/SP M4AxxxFP/SP S4FP/SP S4AFP/SP	8 16 8 16	M37702S4AFP	+
M37702	M6LxxxFP	8	M37702S1BFP	M37702TL-HPD HP 641466-61002 (64146B)
M37702/3	M2BxxxFP/SP S1BFP/SP	25 25 25	M37702S1BFP	M37702TB-HPD HP 64146-61001
M37702/3	M4BxxxFP/SP S4BFP/SP M6BxxxFP	25 25 25 25	M37702S4BFP	+ (64146A) HP 64146-61002 (64146B)
 M37704/5	M2-xxxFP/SP M2AxxxFP/SP S1FP/SP S1AFP/SP	8 16 8 16	M37704S1AFP	M37704T-HPD
M37704	M3BxxxFP M3BxxxFP	25 25 25	M37704M4BFP	M37704TB-HPD
M37710	M4BxxxFP S4BFP	25 25 25	M37710M4BFP	M37710TL-HPD
M37720	S1FP S1AFP	8 16	M37720S1AFP	M37720T-HPD
M37730	S2FP/SP S2AFP/SP	 8 16	M37730S2AFP	+ M37730T-HPD

Table 1-1. Supported Microprocessors

Introduction 1-3

M37732	S4FP/SP S4AFP/SP	8 16	M37732S4AFP	M37732T-HPD
M37780	STJ/FP	16	M37780STJ	M37780T-HPD
M37781	M4TxxxJ/FP E4TxxxJ/FP	16 16	M37781M4TJ	M37781T-HPD
 M37795	SJ STJ	8 8	M37795SJ	M37795T-HPD
M37796	E4-xxxJ E4TxxxJ	8 8	M37796E4J	

Table 1-1. Supported Microprocessors (Cont'd)

The HP 64146A emulator is provided with the following items.

- HP 64146-61001 emulation pod with M37702S1BFP emulation processor
- Adaptor for M37703 processor

The HP 64146B emulator is provided with the following items.

- HP 64146-61002 emulation pod with M37702S1BFP emulation processor
- Adaptor for M37703 processor

As you can see from Table 1-1, the HP 64146A/B emulator can emulate M37702/3M2 and M37702/3S1 processor by default. These emulation pods can be used with clock up to 25 MHz. Also, HP 64146B emulator can emulate M37702 M6L processor using default emulation pod, HP 64146-61002.

To emulate other processors of 7700 Series, you need to purchase appropriate emulation pod and/or emulation processor.

The HP 64146A/B #001 emulator is provided with no emulation pod. You need to purchase appropriate emulation pod and emulation processor listed in Table 1-1.

To purchase emulation pod or emulation processor, contact the address listed in the manual provided with your emulation pod.

1-4 Introduction

The list of supported microprocessors in Table 1-1 is not necessarily complete. To determine if your microprocessor is supported or not, contact Hewlett-Packard.

This section introduces you to the features of the emulator. The chapters which follow show you how to use these features.
The HP 64146-61001 and HP 64146-61002 emulation pods generate internal clock of 1 MHz. These emulation pods can be used with target system clock up to 25 MHz.
The emulator can run with no wait state up to 25 MHz. When clock is faster than 16 MHz, you can use the emulator with one of the following methods.
Insert one wait state by the RDY signal. The emulator can be configured to generate the RDY signal. Also, the emulator accepts RDY signal from the target system.
 Use the high speed access mode of the emulator. The emulator can run with no wait state. However, there is a limitation in the mapping of the emulation memory in this mode. Refer to Chapter 4 of this manual for more detail.
The HP 64146A/B 7700 Series emulator is used with one of the following Emulation Memory Cards.
 HP 64726A 128K byte Emulation Memory Card HP 64727A 512K byte Emulation Memory Card HP 64728A 1M byte Emulation Memory Card HP 64729A 2M byte Emulation Memory Card The emulation memory can be configured into 256 byte blocks. A maximum of 16 ranges can be configured as emulation RAM (eram), emulation ROM(erom), target system RAM (tram), target system ROM

Introduction 1-5

emulator will attempt to break to the emulation monitor upon accessing guarded memory; additionally, you can configure the emulator to break to the emulation monitor upon performing a write to ROM (which will stop a runaway program).

Analysis The HP 64146A/B 7700 Series emulator is used with one of the following analyzers which allows you to trace code execution and processor activity.

- HP 64704 80-channel Emulation Bus Analyzer
- HP 64703 64-channel Emulation Bus Analyzer and 16-channel State/Timing Analyzer
- HP 64794A/C/D 80-channel 8K/64K/256K Emulation Bus Analyzer

The Emulation Bus Analyzer monitors the emulation processor using an internal analysis bus. The HP 64703 64-channel Emulation Bus Analyzer and 16-channel State/Timing Analyzer allows you to probe up to 16 different lines in your target system.

Foreground or Background Emulation Monitor

When you power up the emulator, or when you initialize it, the background monitor is used by default. You can also configure the emulator to use a foreground monitor. Before the background and foreground monitors are described, you should understand the function of the emulation monitor program.

The Function of the Monitor Program

The monitor program is the interface between the emulation system controller and the target system. The emulation system controller uses its own microprocessor to accept and execute emulation, system, and analysis commands. The monitor program is executed by the emulation processor.

The monitor program makes possible emulation commands which access target system resources. (The only way to access target system resource is through the emulation processor.) For example, when you enter a command to modify target system memory, it is the execution of monitor program instructions that cause the new values to be written to target system memory.

1-6 Introduction

The Background Monitor

On emulator power-up, or after initialization, the emulator uses the background monitor program. The background monitor does not occupy processor address space.

The Foreground Monitor

You can configure the emulator to use a foreground monitor program. When a foreground monitor is selected it executes in the foreground emulator mode. The foreground monitor occupies processor memory space and executes as if it were part of your program.

- **Register Display and Modification** You can display or modify the 7700 Series internal register contents. This includes the ability to modify the program counter (PC) and the program bank register (PG) values so you can control where the emulator starts a program run.
 - **Single-Step** When you are using the background monitor, you can direct the emulation processor to execute a single instruction or a specified number of instructions.

Breakpoints You can set the emulator/analyzer interaction so the emulator will break to the monitor program when the analyzer finds a specific state or states, allowing you to perform post-mortem analysis of the program execution. You can also set software breakpoints in your program. This feature is realized by inserting BRK instructions into user program. Refer to the "Using Software Breakpoints" section of "Getting Started" chapter for more information.

Real Time Operation Real-time signifies continuous execution of your program at full rated processor speed without interference from the emulator. (Such interference occurs when the emulator needs to break to the monitor to perform an action you requested, such as displaying target system memory.) Emulator features performed in real time include: running and analyzer tracing. Emulator features not performed in real time include: display or modify of target system memory; load/dump of target memory, display or modification of registers, and single step.

Introduction 1-7

Coverage Measurements	Coverage memory is provided for the processor's external program memory space. This memory allows you to perform coverage measurements on programs in emulation memory.
Reset Support	The emulator can be reset from the emulation system under your control; or your target system can reset the emulation processor.
Watch Dog Timer	You can configure the emulator to disable the watch dog timer.

1-8 Introduction

Limitations, Restrictions

Access to Internal RAM	Modifying internal RAM or SFR suspends user program execution.
Trace Internal RAM	Read data from the internal RAM or SFR is not traced correctly by the emulation analyzer.
Note	 Write data is also not traced correctly, when the following conditions are met: The emulator is used with the M37795 emulation pod. The processor is operating in the memory expansion or microprocessor mode with 8 bit external bus.
DMA Support	Direct memory access to emulation memory is not allowed.
Watch Dog Timer in Background	Watch dog timer suspends count down while the emulator is running in background monitor.
Step Command with Foreground Monitor	Step command is not available when the emulator is used with a foreground monitor.
Step Command and Interrupts	When an interrupt occurs while the emulator is running in monitor, the emulator fails to do the first step operation. The emulator will display the mnemonic of the instruction which should be stepped, but the instruction is not actually executed. The second step operation will step the first instruction of the interrupt routine.

Introduction 1-9

Emulation Commands in Stop/Wait Mode	When the 7700 microprocessor is in the stop or wait mode, emulation commands which access memory or registers will fail. You need to break the emulator into the monitor to use these commands. Once you break the emulator into the monitor, the stop or wait mode will be released.
Stack Address	In some versions of 7700 microprocessor, the stack can be located in Bank FF. However, the HP 64146A/B 7700 Series emulator doesn't support the feature. The stack must be located in Bank 0.

1-10 Introduction

Getting Started

Introduction

This chapter will lead you through a basic, step by step tutorial designed to familiarize you with the use of the HP 64146A/B 7700 Series emulator with the Softkey Interface.

This chapter will:

- Tell you what must be done before you can use the emulator as shown in the tutorial examples.
- Describe the sample program used for this chapter's example.

This chapter will show you how to:

- Start up the Softkey Interface.
- Load programs into emulation and target system memory.
- Enter emulation commands to view execution of the sample program.

2

Getting Started 2-1

Before You Begin

Prerequisites	Before beginning the tutorial presented in this chapter, you must have completed the following tasks:
	1. Connected the emulator to your computer. The <i>HP</i> 64700 Series Installation/Service manual shows you how to do this.
	 Installed the Softkey Interface software on your computer. Refer to the <i>HP 64700 Series Installation/Service</i> manual for instructions on installing software.
	 In addition, you should read and understand the concepts of emulation presented in the <i>Concepts of Emulation and</i> <i>Analysis</i> manual. The <i>Installation/Service</i> manual also covers HP 64700 system architecture. A brief understanding of these concepts may help avoid questions later.
	 Connected the emulator to the emulation probe as shown in Figure 2-1.
Caution	Turn off power of the emulator before inserting the cables to the emulation pod to avoid circuit damage.

Figure 2-1. Connecting the Emulation Pod

A Look at the Sample Program

The sample program used in this chapter is listed in Figure 2-2. The program emulates a primitive command interpreter. The sample program is shipped with the Softkey Interface and may be copied from the following location.

/usr/hp64000/demo/emul/hp64146/cmd_rds.a77

Data Declarations

The "TABLE" section defines the messages used by the program to respond to various command inputs. These messages are labeled **Msg_A,Msg_B**, and **Msg_I**.

Initialization

The program instruction at the **Init** label initializes the stack pointer.

Getting Started 2-3

	.DP .DT .PIIB	0 0 Init
	.PUB	Msgs
	. PUB	Cmd_Input
	.FOD	Mag_Dest
• * * * * * * * * * * * * * * *	.SECTION	BUFFER
; Command input ;*********	byte. *****	*****
Cmd_Input: ;*************	.BLKB *******	1 **********
; Destination o: ;*************	f the command me: *****	ssages. *********************************
Msg_Dest:	.BLKB .BLKB	20H 100H
Stack:		
	.SECTION	TABLE
Msgs:	DVTT	UTUTO TO MECONOR N/
Msg_A: Msg B:	.BYTE	'THIS IS MESSAGE A'
Msg_I:	.BYTE	'INVALID COMMAND'
	.SECTION .DATA	SAMPPROG 8
	. INDEX	16
;************************************	**************************************	* * * * * * * * * * * * * * * * * * * *
;***************	******	* * * * * * * * * * * * * * * * * * * *
Init:	LDX TXS SEM	#Stack
;**********	****	* * * * * * * * * * * * * * * * * * * *
; Clear Previous	s command. *******	* * * * * * * * * * * * * * * * * * * *
Clear_Input:	LDA STA	B,#00H B,DT:Cmd_Input
;*************************************	**************************************	**************************************
; continue to so	can for it. ****	no command has been entered,
Scan:	LDA	A,DT:Cmd_Input
	CMP BEQ	A,#00H Scan
	.INDEX	8
; A command has	heen entered '	The destination area is
; cleared.	****	*****
	SEP	Х
Clear_Output:	LDX	#00H
Clear_Loop:	STA INX	#20n B,DT:Msg_Dest,X
	DEY BNE	Clear_Loop

Figure 2-2. Sample Program Listing

2-4 Getting Started

• • • • • • • • • • • • • • • • • • • •	.INDEX	16		
; check if the c	mand	LS COmmand A, Command B,		
:*************************************	**************	* * * * * * * * * * * * * * * * * * * *		
,	CLP	х		
Process Cmd:	CMP	A.#41H		
	BEO	Cmd A		
	CMP	A,#42H		
	BEQ	Cmd_B		
	BRA	Cmd_I		
;*************	*****	* * * * * * * * * * * * * * * * * * * *		
; Command A is e	entered. $A = the$	e number of bytes in		
; message A. X	= location of th	he message. Jump to the		
; routine which	writes the messa	age.		
(md J.	ג	л #11u		
cliiu_A•	LDA	HMSG A		
	BRA			
; * * * * * * * * * * * * * * *	****	*****		
; Command B is e	entered.			
;*************	* * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *		
Cmd_B:	LDA	A,#11H		
	LDX	#Msg_B		
	BRA	Output		
;**************************************	************	* * * * * * * * * * * * * * * * * * * *		
; An invalid com	mand is entered			
ind T.				
cliid_1.	LDA	HMSG I		
: * * * * * * * * * * * * * * * *	******	**************************************		
, Wessage is written to the destination $Y = location of$				
; the destination area.				
;**************************************				
Output:	LDY	#Msg_Dest		
	MVN	0,0		
;**************************************				
; Go back and scan for next command.				
; ^ ^ <i>~</i> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 	· · · · · · · · · · · · · · · · · · ·			
	BKA	ciear_input		

.END

Figure 2-2. Sample Program Listing (Cont'd)

Reading Input

The instruction at the **Clear_Input** label clears any random data or previous commands from the **Cmd_Input** byte. The **Scan** loop continually reads the **Cmd_Input** byte to see if a command is entered (a value other than 0 hex).

Getting Started 2-5

Processing Commands

When a command is entered, the **Clear_Output** routine clears the destination area. Then, the instructions from **Process_Cmd** to **Cmd_A** determine whether the command was "A", "B", or an invalid command.

If the command input byte is "A" (ASCII 41 hex), execution is transferred to the instructions at **Cmd_A**.

If the command input byte is "B" (ASCII 42 hex), execution is transferred to the instructions at **Cmd_B**.

If the command input byte is neither "A" nor "B", an invalid command has been entered, and execution is transferred to the instructions at **Cmd_I**.

The instructions at **Cmd_A**, **Cmd_B**, and **Cmd_I** each load accumulator A with the length of the message to be displayed and index register X with the starting location of the appropriate message. Then, execution transfers to **Output** which writes the appropriate message to the destination location, **Msg_Dest**.

After the message is written, the program branches back to read the next command.

The Destination Area

The "BUFFER" section declares memory storage for the command input byte, the destination area, and the stack area.

Sample Program Assembly	The sample program is written for and assembled/linked with Mitsubishi RASM77 Assembler and LINK77 Linkage Editor.	
	The sample program was assembled with the following command. \$ rasm77 -s cmd_rds.a77	
Linking the Sample Program	The sample program can be linked with the following command and generates the absolute file. The contents of "cmd_rds.lnk" linkage editor subcommand file is shown in Figure 2-3.	
	· · · · · · · · · · · · · · · · · · ·	

cmd_rds

, SAMPPROG=C000 TABLE=C100 BUFFER=100 ,-s -ms

Generate HP Absolute file	To generate HP Absolute file for the Sofktey Interface, you need to us "m77cnvhp" absolute file format converter program. The m77cnvhp converter is provided with the Softkey Interface. To generate HP Absolute file, enter following command:	
	<pre>\$ m77cnvhp cmd_rds <return></return></pre>	
	You will see that cmd_rds.X, cmd_rds.L, and cmd_rds.A are generated. These are sufficient throughout this chapter.	
Note	You must specify -s option when you assemble and link your program. If this option isn't speicified, symbol file (.sym file) won't be generated, and the format converter cannot convert your program.	

Getting Started 2-7

Entering the Softkey Interface	If you have installed your emulator and Softkey Interface software as directed in the <i>HP 64700 Series Emulators Softkey Interface Installation Notice</i> , you are ready to enter the interface. The Softkey Interface can be entered through the pmon User Interface Software or from the HP-UX shell.	
From the "pmon" User Interface	If /usr/hp64000/bin is specified in your PATH environment variable, you can enter the pmon User Interface with the following command.	
	\$ pmon <return> If you have not already created a measurement system for the 7700 Series emulator, you can do so with the following commands. First you must initialize the measurement system with the following command.</return>	
	MEAS_SYS msinit <return></return>	
	After the measurement system has been initialized, enter the configuration interface with the following command.	
	msconfig <return> To define a measurement system for the 7700 Series emulator, enter:</return>	
	make_sys emm77 <return> Now, to add the emulator to the measurement system, enter:</return>	
	add <module_number> naming_it m77 <return> Enter the following command to exit the measurement system configuration interface.</return></module_number>	
	end <return> If the measurement system and emulation module are named "emm77" and "m77" as shown above, you can enter the emulation system with the following command:</return>	
	emm77 default m77 <return></return>	
	If this command is successful, you will see a display similar to Figure 2-4. The status message shows that the default configuration file has been loaded. If the command is not successful, you will be given an error message and returned to the pmon User Interface. Error messages are described in the <i>Softkey Interface Reference</i> manual.	

For more information on creating measurements systems, refer to the *Softkey Interface Reference* manual.

From the HP-UX Shell

If **/usr/hp64000/bin** is specified in your PATH environment variable, you can also enter the Softkey Interface with the following command.

\$ emul700 <emul_name> <RETURN>

The "emul_name" in the command above is the logical emulator name given in the HP 64700 emulator device table (/usr/hp64000/etc/64700tab).

If this command is successful, you will see a display similar to Figure 2-4. The status message shows that the default configuration file has been loaded. If the command is not successful, you will be given an error message and returned to the HP-UX prompt. Error messages are described in the *Softkey Interface Reference* manual.

Figure 2-4. Softkey Interface Display

Getting Started 2-9

On-Line Help	There are two ways to access on-line help in the Softkey Interface. The first is by using the Softkey Interface help facility. The second method allows you to access the firmware resident Terminal Interface on-line help information.	
Softkey Driven Help	To access the Softkey Interface on-line help information, type either "help" or "?" on the command line; you will notice a new set of softkeys. By pressing one of these softkeys and <return>, you can cause information on that topic to be displayed on your screen. For example, you can enter the following command to access "system</return>	
SYSTEM COMMANDS & COM	MAND FILES	
? help	displays the possible help files displays the possible help files	
! ! <shell cmd=""> cd <directory> pwd cws <symb></symb></directory></shell>	<pre>fork a shell (specified by shell variable SH) fork a shell and execute a shell command change the working directory print the working directory change the working symbol - the working symbol also gets updated when displaying local symbols and displaying memory mnemonic</pre>	
pws	print the working symbol	
<file> p1 p2 p3</file>	execute a command file passing parameters pl, p2, p3 see "COMMAND FILES EXAMPES" below for more detail	
log_commands to <file> log commands off</file>	logs the next sequence of commands to file <file> discontinue logging commands</file>	
name_of_module	get the "logical" name of this module (see 64700tab.net)	

--More--(20%)

command" help information.

? system_commands <RETURN>

The help information is scrolled on to the screen. If there is more than a screenful of information, you will have to press the space bar to see the next screenful, or the <RETURN> key to see the next line, just as you do with the HP-UX **more** command. After all the information on the particular topic has been displayed (or after you press "q" to quit scrolling through information), you are prompted to press <RETURN> to return to the Softkey Interface.

2-10 Getting Started

Pod Command Help

To access the emulator's firmware resident Terminal Interface help information, you can use the following commands.

display pod_command <RETURN>
pod_command 'help m' <RETURN>

Pod Commands Command Time 10:00:00 help m m - display or modify processor memory space display memory at address
 display memory at address with display option
 display memory in specified address range
 display memory mnemonics in specified range m <addr> m -d<dtype> <addr> m <addr>..<addr> m -dm <addr>..<addr> m <addr>... - display 128 byte block starting at address A m <addr>=<value> - modify memory at address to <value> m -d<dtype> <addr>=<value> - modify memory with display option
m <addr>=<value>,<value> - modify memory to data sequence
m <addr>..<addr>=<value>,<value> - fill range with repeating sequence --- VALID <dtype> MODE OPTIONS --b - display size is 1 byte(s)
w - display size is 2 byte(s) m - display processor mnemonics STATUS: M37700--Running in monitor_ run trace step display modify break end ---ETC--

The command enclosed in string delimiters (", ', or ^) is any Terminal Interface command, and the output of that command is seen in the pod_command display. The Terminal Interface help (or ?) command may be used to provide information on any Terminal Interface command or any of the emulator configuration options (as the example command above shows).

Getting Started 2-11

Configuring the Emulator

You need to configure the emulator for this tutorial. To configure the emulator, type the following command to get into the configuration session.

modify configuration <RETURN> Trace the following answer to configure the emulator. Details of each question will be described later.

Micro-processor clock source? internal Enter monitor after configuration? yes Restrict to real-time runs? no Reconfigure emulator? yes Micro-processor group? <chip group> Micro-processor type? <chip type>

> Select the chip group and chip type you are going to emulate. Appropriate chip group and chip type are listed in Table 2-1.

If your processor is not listed in Table 2-1, refer to chapter 4 of this manual for information on configuring the emulator.

Processor node? **single** Modify reset value for Stack Pointer? **no** Modify memory configuration?

When you are going to emulate a processor which have no internal RAM, answer "yes" to this question, and map 100 hex through FFF hex as emulation RAM. Refer to chapter 4 of this manual for information on memory mapping.

When you are going to emulate a processor which have internal RAM, answer "no" to this question.

```
Modify emulator pod configuration? no
Modify debug/trace options? no options? no
Modify simulated I/O configuration? no
Modify interactive measurement specification? no
Configuration file name? cmd_rds
```

2-12 Getting Started
<chip_name></chip_name>	Processor	<chip_name></chip_name>	Processor
7700M2	M37700M2-xxxFP M2AxxxFP M37701M2-xxxSP M2AxxxSP	7704M2	M37704M2-xxxFP M2AxxxFP M37705M2-xxxSP M2AxxxSP
7700M4	M37700M4-xxxFP	7704M3	M37704M3BxxxFP
	M4AXXXFP M37701M4-XXXSP M4AXXYSP	7704M4	M37704M4BxxxFP
7700S	MIALADI M37700SFP SAFP M37701SSP SASD	7704S1	M37704S1FP S1AFP M37705S1SP S1ASP
770004	-+	7710M4	M37710M4BxxxFP
770054	M37700S4FP S4AFP M27701S4SP	7710S4	M37710S4BFP
	S4ASP	7720S1	M37720S1FP S1AFP
7702M2	7702M2 M37702M2-xxxFP M2AxxxFP M2BxxxFP M37703M2-xxxSP M2AxxxSP M2AxxxSP	7730S2	M37730S2FP S2AFP S2SP S2ASP
7702M4	M37702M4-xxxFP	773254	M37732S4FP S4AFP
м	M4AXXXFP M4BXXXFP M37703M4-XXXSP	7780S	M37780STJ STFP
	M4AXXXSP M4BXXXSP	7781M4	M37781M4TxxxJ M4TxxxFP
7702M6	M37702M6BxxxFP M6LxxxFP	7781E4	M37781E4TxxxJ B4TxxxFP
770281	M37702S1FP S1AFP S1BFP	7795S	-+ M37795SJ STJ
	S1BSP	7796E4	M37796E4-xxxJ E4TxxxJ E4TxxxFD
770284	M37702S4FP S4AFP S4BFP M37703S4SP S4ASP S4BSP		+

Table 2-1. Chip Group and Chip Type for Configuration

Loading Absolute Files

The "load" command allows you to load absolute files into emulation or target system memory. If you wish to load only that portion of the absolute file that resides in memory mapped as emulation RAM or ROM, use the "load emul_mem" syntax. If you wish to load only the portion of the absolute file that resides in memory mapped as target RAM, use the "load user_mem" syntax. If you want both emulation and target memory to be loaded, do not specify "emul_mem" or "user_mem". For example:

load cmd_rds <RETURN>

Displaying Symbols

When you load an absolute file into memory (unless you use the "nosymbols" option), symbol information is loaded. Both global symbols and symbols that are local to a source file can be displayed.

Global To display global symbols, enter the following command.

display global_symbols <RETURN> Listed are: address ranges associated with a symbol.

Global symbols Static symbols Symbol name Cmd_Input Init Msg_Dest Msgs	in cmd_rds	Addr	cess range 000100 00C000 000101 00C100	Segment		Offset 0000 0000 0001 0000
Filename symbol Filename cmd_rds.a77	.S					
STATUS: M3770 display global	0Running symbols	in monitor_				R
run trace	step	display	modif	iy break	end	ETC

2-14 Getting Started

Local When displaying local symbols, you must include the name of the source file in which the symbols are defined. For example,

display local_symbols_in cmd_rds.a77:
<RETURN>

Symbol name	Address range Segment	Offset
Cear_Input	00C005	0005
Clear_Loop	00C019	0019
Clear_Output	00C015	0015
Cmd_A	00C02D	002D
Cmd_B	00C034	0034
Cmd_I	00C03B	003B
Cmd_Input	000100	0000
Init	00C000	0000
Msg_A	00C100	0000
Msg_B	00C111	0011
Msg_Dest	000101	0001
Msg_I	00C122	0022
Msgs	00C100	0000
Output	00C040	0040
Process_Cmd	00C023	0023
STATUS: M37700Running	g in monitor	RR
display local_symbols_ir	1 cmd_rds.a77:	

Displaying Memory in Mnemonic Format

You can display, in mnemonic format, the absolute code in memory. To display memory in mnemonic format from the address of label **Init**, enter the following command:

display memory Init mnemonic options m0x0
<RETURN>

You need to specify the values of M flag and X flag at the staring address of mnemonic memory display. When the inverse-assembler encounters an instruction which changes M flag and/or X flag (SEM, CLM, SEP X, etc..), the value set by the instruction is used to continue disassembling memory contents.

Note

When you use *<*PGUP> or *<*PREV> key to see the previous lines of memory display, disassembled mnemonic may not be accurate.

000000	A22102 9A	LDX #0221H TXS			
00C004	F8	SEM			
00C005	42A900	LDA B,#00H			
00C008	428D0001	STA B,0100H			
00C00C	AD0001	LDA A,0100H			
00C00F	C900	CMP A,#00H			
00C011	F0F9	BEQ 00C00CH			
00C013	E210	SEP #10H			
00C015	A200	LDX #00H			
00C017	A020	LDY #20H			
00C019	429D0101	STA B,0101H,X			
00C01D	E8	INX			
00C01E	88	DEY			
00C01F	D0F8	BNE 00C019H			
00C021	C210	CLP #10H			
דאדדופי א	137700Pupp	ing in monitor			P
1. 1.	manna Trait	nomonia ontiona m	0.140	 	····

2-16 Getting Started

Displaying Memory with Symbols

You can include symbol information in memory display.

set symbols on <RETURN>

Note

The "set" command is effective only to the window in which the command is invoked. You need to use this command at each window.

00C003	• 1111 (9A	TXS	#022111	
00C004		F8	SEM		
00C005	:Clear_Input	42A900	LDA	в,#00н	
00C008		428D0001	STA	B,DT:0100H	
00C00C	cmd_rds:Scan	AD0001	LDA	A,DT:0100H	
00C00F		C900	CMP	А,#00Н	
00C011		F0F9	BEQ	cmd_rds.a77:Scan	
00C013		E210	SEP	#10H	
00C015	Clear_Output	A200	LDX	#00H	
00C017		A020	LDY	#20H	
00C019	c:Clear_Loop	429D0101	STA	B,DT:0101H,X	
00C01D		E8	INX		
00C01E		88	DEY		
00C01F		D0F8	BNE	cmd_r:Clear_Loop	
00C021		C210	CLP	#10н	
0	27700 Dunning	in monitor			D
siAius· M	s on	III MONICOL			
Set Symbol	5 011				

Running the Program	The "run" command lets you execute a program in memory. Entering the "run" command by itself causes the emulator to begin executing at the current program counter address. The "run from" command allows you to specify an address at which execution is to start. For example to run the sample program from the address of Init label, run from Init <return></return>
Note	The run from transfer_address command is not available in the 7700 Series Softkey Interface.
Displaying Memory in Blocked Format	You can display memory locations in blocked format. For example, to display the Msg_Dest locations of the sample program in blocked byte format, enter the following command.
	display memory Msg_Dest repetitively blocked bytes <return></return>

Modifying Memory

The sample program simulates a primitive command interpreter. Commands are sent to the sample program through a byte sized memory location labeled **Cmd_Input**. You can use the modify memory feature to send a command to the sample program. For example, to enter the command "A" (41 hex), use the following command.

modify memory Cmd_Input $bytes\ to\$ 41h <RETURN> Or:

modify memory Cmd_Input string to 'A'
<RETURN>

(Single character strings are allowed in expressions.)

As you can see, the memory display is automatically updated, and shows that the "THIS IS MESSAGE A" message is written to the destination locations.

address	data		-:he	ex								:;	asc	cii	L		
000101-08	54	48	49	53	20	49	53	20	Т	ŀ	ΙI		S		Ι	S	
000109-10	4D	45	53	53	41	47	45	20	М	E	E S	5	S	А	G	Е	
000111-18	41	00	00	00	00	00	00	00	A				•				
000119-20	00	00	00	00	00	00	00	00					•				
000121-28	00	00	00	00	00	00	00	00					•				
000129-30	00	00	00	00	00	00	00	00					•				
000131-38	00	00	00	00	00	00	00	00									
000139-40	00	00	00	00	00	00	00	00					•				
000141-48	00	00	00	00	00	00	00	00					•				
000149-50	00	00	00	00	00	00	00	00									
000151-58	00	00	00	00	00	00	00	00									
000159-60	00	00	00	00	00	00	00	00									
000161-68	00	00	00	00	00	00	00	00									
000169-70	00	00	00	00	00	00	00	00									
000171-78	00	00	00	00	00	00	00	00									
000179-80	00	00	00	00	00	00	00	00					•				
STATUS: M3770)Run	ning	user	prog	ram												.R
display memory	Cmd_I	nput	bytes	to to	41h												

Note

Modifying/displaying internal RAM or SFR suspends user program execution. This is because the emulator uses internal RAM and SFR of emulation processor to perform emulation. However, you can configure the emulator so that write cycles are performed to both internal RAM (or SFR) and emulation memory. If you do this, you can display the data written to emulation memory without suspending user program execution. Refer to chapter 4 and chapter 5 of this manual for more details.

Breaking into the Monitor

The "break" command allows you to divert emulator execution from the user program to the monitor. You can continue user program execution with the "run" command. To break emulator execution from the sample program to the monitor, enter the following command.

break <RETURN>

Using Software Breakpoints

Note

Software breakpoints are provided with an 7700 Series BRK instruction. When you define or enable a software breakpoint, the emulator will replace the opcode at the software breakpoint address with a BRK instruction.

You must set software breakpoints only at memory locations which contain instruction opcodes (not operands or data). If a software breakpoint is set at a memory location which is not an instruction opcode, the software breakpoint instruction will never be executed and the break will never occur.

2-20 Getting Started

Because software breakpoints are implemented by replacing opcodes with BRK instructions, you cannot define software breakpoints in target ROM.

Note

Software breakpoints should not be set, cleared, enabled, or disabled while the emulator is running user code. If any of these commands are entered while the emulator is running user code, and the emulator is executing code in the area where the breakpoint is being modified, program execution may be unreliable.

When software breakpoints are enabled and emulator detects a fetching the BRK instruction, it generates a break to background request which as with the "processor break" command. Since the system controller knows the locations of defined software breakpoints, it can determine whether the BRK instruction is software breakpoints or opcode in your target program.

If it is a software breakpoint, execution breaks to the monitor, and the BRK instruction is replaced by the original opcode. A subsequent run or step command will execute from this address.

If the BRK instruction is opcode of your target program, execution still breaks to the monitor, and an "Undefined software breakpoint" status message is displayed.

When software breakpoints are disabled, the emulator replaces the special code with the original opcode.

Up to 32 software breakpoints may be defined.

Enabling/Disabling Software Breakpoints

When you initially enter the Softkey Interface, software breakpoints are disabled. To enable the software breakpoints feature, enter the following command.

modify software_breakpoints enable <RETURN> When software breakpoints are enabled and you set a software breakpoint, the 7700 BRK instruction will be placed at the address specified. When the BRK instruction is executed, program execution will break into the monitor.

Setting a Software
BreakpointTo set a software breakpoint at the address of the Cmd_I label, enter
the following command.

modify software_breakpoints set
cmd_rds.a77:Clear_Output <RETURN>

Notice that when using local symbols in expressions, the source file in which the local symbol is defined must be included.

After the software breakpoint has been set, enter the following commands to display memory and see if the software breakpoint was correctly inserted.

display memory Init **mnemonic options m0x0** <RETURN>

Memory :mnemonic :file = cmd_rds.a77: address label data LDX #0221H A22102 00C000 :Init 000003 9A TXS 00C004 F8 SEM 42A900 00C005 :Clear_Input LDA B,#00H 00C008 428D0001 STA B,0100H 00C00C cmd_rds:Scan AD0001 LDA A,0100H 00C00F C900 CMP A,#00H 00C011 F0F9 BEQ cmd_rds.a77:Scan 00C013 E210 SEP #10H 00C015 Clear_Output 0000 BRK 00C017 A020 LDY #20H 00C019 c:Clear_Loop 429D0101 STA B,0101H,X 00C01D INX Ε8 00C01E 88 DEY 00C01F D0F8 BNE cmd_r:Clear_Loop 00C021 C210 CLP #10H STATUS: M37700--Running in monitor_ ..R... display memory Init mnemonic options m0x0 ---ETC-run trace step display modify break end

2-22 Getting Started

As you can see, the software breakpoint is shown in the memory display with an asterisk, and the instruction at the address is replaced with a BRK instruction.

Note

When a software breakpoint is inserted, the mnemonic in memory display may not be accurate.

Enter the following command to run the sample program again.

run **from** Init <RETURN> Now, modify the command input byte to an invalid command for the sample program.

modify memory Cmd_Input bytes to 75h <RETURN>

You will see the address field of a line is inversed. The inversed address field shows that the Program Counter is now at the address.

A message on the status line shows that the software breakpoint has been hit. The status line also shows that the emulator is now executing in the monitor.

When software breakpoints are hit, they become inactivated. To reactive the breakpoint so that is "pending", you must reenter the "modify software_breakpoints set" command.

Clearing a Software Breakpoint

To remove software breakpoint defined above, enter the following command.

modify software_breakpoints clear cmd_rds.a77:Clear_Output <RETURN> The breakpoint is removed from the list, and the original opcode is restored if the breakpoint was pending.

To clear all software breakpoints, you can enter the following command.

modify software_breakpoints clear <RETURN>

Stepping Through the Program	The step command allows you to step through program execution an instruction or a number of instructions at a time. Also, you can step from the current program counter or from a specific address. To step through the example program from the address of the software breakpoint set earlier, enter the following command.
	step <return>, <return>, <return>, You will see the inverse-video moves according to the step execution. You can continue to step through the program just by pressing the <return> key; when a command appears on the command line, it may be entered by pressing <return>.</return></return></return></return></return>
Note 😱	When the emulator performs step execution, all memory access is performed by byte access.
Displaying Registers	Enter the following command to display registers. You can display the basic registers class, or an individual register.

display registers <RETURN>

2-24 Getting Started

Following list shows the register names and class that may be used with the "display registers" commands.

Description
Program Counter
Program Bank Register
Data Bank Register
Stack Pointer
Processor Status Register
Accumulator A
Accumulator B
Index Register X
Index Register Y
Direct Page Register

When you enter the "step" command with registers displayed, the register display is updated every time you enter the "step" command.

step <RETURN>, <RETURN>, <RETURN>

Enter the following command to cause sample program execution to continue from the current program counter.

run <RETURN>

Using the Analyzer	HP 64700 emulators contain an emulation analyzer. The emulation analyzer monitors the internal emulation lines (address, data, and status). Optionally, you may have an additional 16 trace signals which monitor external input lines. The analyzer collects data at each pulse of a clock signal, and saves the data (a trace state) if it meets a "storage qualification" condition.
Specifying a Simple Trigger	Suppose you want to trace program execution after the point at which the sample program execute the Cmd_A routine. To do this The following command makes this trace specification.
	<pre>trace after cmd_rds.a77:Cmd_A status exec<return></return></pre>

2-26 Getting Started

The message "Emulation trace started" will appear on the status line. Now, modify the command input byte to "A" with the following command.

modify memory Cmd_Input bytes to 41h <RETURN>
The status line now shows "Emulation trace complete".

Displaying the Trace

The trace listings which follow are of program execution on the 7700 Series emulator. To display the trace, enter:

Trace	List	Off	set=0						
Label	Address	Data		Opo	code or	Status	:	time co	unt
Base:	symbols	hex		mner	monic w	/symbol	S	relati	ve
after	cmd_rds.a7:Cm	d_A A9FH	INS.	TRUCTION	opcode	e unava	ilable -		
+001	:cmd_rds:+000	02E A211	-	A211H	opcode	fetch	mx	6.00	uS
+002	:cmd_rds:+000	02F A211	LDX	#C100H				2.0	uS
+003	:cmd_rds:+000	030 C100)	C100H	opcode	fetch		6.00	uS
+004	:cmd_rds:+000	032 0C80)	0C80H	opcode	fetch		8.00	uS
+005	:cmd_rds:+000	032 0C80) BRA	cmd_rds	.a:Outpu	ıt		2.0	uS
+006	cmd_rds.a7:Cm	d_B 11A9)	11A9H	opcode	fetch		6.00	uS
+007	cmd_rds.a:Out	put 01A()	01A0H	opcode	fetch		8.00	uS
+008	cmd_rds.a:Out	put 01A() LDY	#0101H				2.0	uS
+009	:cmd_rds:+000	042 5401	-	5401H	opcode	fetch		6.00	uS
+010	:cmd_rds:+000	043 5401	. MVN	00н,00н				2.0	uS
+011	:cmd_rds:+000	044 0000)	0000H	opcode	fetch	mx	6.00	uS
+012	:cmd_rds:+000	046 BD80)	BD80H	opcode	fetch	mx	8.00	uS
+013	:Msgs	4854	Ł	4854H	data re	ead	mx	10.0	uS
+014	:Msg_Dest	5454	ł	54xxH	data w	rite	mx	8.00	uS
STATUS	5: M37700R	unning user	progra	am Em	ulation	trace	complete	R	
displ	lay trace								
			-						
run	trace	step disp	o⊥ay		modify	brea	ik end	ETC	

display trace <RETURN>

Line 0 (labeled "after") in the trace list above shows the state which triggered the analyzer. The trigger state is always on line 0. To list the next lines of the trace, press the *<*PGDN> or *<*NEXT> key.

Trace	e List	Offset	=0				
Label	Address	s Data	Op	code or Status	5	time cou	int
Base:	symbols	s hex	mne	monic w/symbol	S	relativ	re
+015	:cmd_rds:+000	002 5448	xx48H	data write	mx	4.00	uS
+016	:cmd_rds:+000	002 5349	5349H	data read	mx	8.00	uS
+017	:cmd_rds:+000	0003 4949	49xxH	data write	mx	8.00	uS
+018	:cmd_rds:+000	004 4953	xx53H	data write	mx	4.00	uS
+019	:cmd_rds:+000	0004 4920	4920H	data read	mx	8.00	uS
+020	:cmd_rds:+000	005 2020	20xxH	data write	mx	8.00	uS
+021	:cmd_rds:+000	006 2049	xx49H	data write	mx	4.00	uS
+022	:cmd_rds:+000	006 2053	2053H	data read	mx	8.00	uS
+023	:cmd_rds:+000	007 5353	53xxH	data write	mx	8.00	uS
+024	:cmd_rds:+000	008 5320	xx20H	data write	mx	4.00	uS
+025	:cmd_rds:+000	0008 454D	454DH	data read	mx	8.00	uS
+026	:cmd_rds:+000	0009 4D4D	4DxxH	data write	mx	8.00	uS
+027	:cmd rds:+000	000A 4D45	xx45H	data write	mx	4.00	uS
+028	:cmd_rds:+000	00A 5353	5353H	data read	mx	8.00	uS
+029	:cmd_rds:+000	000в 5353	53xxH	data write	mx	8.00	uS
STATU disp	JS: M37700F play trace	Running user pro	gram Em	ulation trace	complete		•••
rur	n trace	step display		modify brea	ık end	ETC-	

The resulting display shows MVN instruction moves the "THIS IS MESSAGE A" message to the destination locations.

To list the previous lines of the trace, press the <PGUP> or <PREV> key.

Displaying Trace with
Time Count AbsoluteEnter the following command to display count information relative to
the trigger state.

display trace count absolute <RETURN>

2-28 Getting Started

Trace	e List	Offset=0						
Labe!	L: Address	Data	Op	code or Status			time co	ount
Base	symbols	hex	mne	monic w/symbols			absolı	ite
+015	:cmd_rds:+000002	5448	xx48H	data write	mx	+	84.0	uS
+016	:cmd_rds:+000002	5349	5349H	data read	mx	+	92.0	uS
+017	:cmd_rds:+000003	4949	49xxH	data write	mx	+	100.	uS
+018	:cmd_rds:+000004	4953	xx53H	data write	mx	+	104.	uS
+019	:cmd_rds:+000004	4920	4920H	data read	mx	+	112.	uS
+020	:cmd_rds:+000005	2020	20xxH	data write	mx	+	120.	uS
+021	:cmd_rds:+000006	2049	xx49H	data write	mx	+	124.	uS
+022	:cmd_rds:+000006	2053	2053H	data read	mx	+	132.	uS
+023	:cmd_rds:+000007	5353	53xxH	data write	mx	+	140.	uS
+024	:cmd_rds:+000008	5320	xx20H	data write	mx	+	144.	uS
+025	:cmd_rds:+000008	454D	454DH	data read	mx	+	152.	uS
+026	:cmd_rds:+000009	4D4D	4DxxH	data write	mx	+	160.	uS
+027	:cmd_rds:+00000A	4D45	xx45H	data write	mx	+	164.	uS
+028	:cmd_rds:+00000A	5353	5353H	data read	mx	+	172.	uS
+029	:cmd_rds:+00000B	5353	53xxH	data write	mx	+	180.	uS
STATU disp	JS: M37700Runni play trace count ab	ng user progra psolute	ım En	ulation trace co	mplete		· F	R
ru	n trace ste	ep display		modify break	end		ET(2

Changing the Trace Depth

The default states displayed in the trace list is 256 states. To change the number of states, use the "display trace depth" command.

display trace depth 512 <RETURN> You can see the states more than 256 states by using the above command.

Using the Storage Qualifier

You can use storage qualifier to trace only states with specific conditions. Suppose that you would like to trace only states which write the messages to the **Msg_Dest** area. To accomplish this, you can use the "trace only" command like following.

trace after Msg_Dest status write only range
Msg_Dest thru +20h status write <RETURN>
Only accesses to address Msg_Dest through Msg_Dest+20h will be
stored in the trace buffer.

Modify the command input byte with the following command, and display trace display with time count relative.

modify memory Cmd_Input bytes to 41h <RETURN>
display trace count relative <RETURN>

Label	: Address	Data	Op	code or Status		time co	unt
Base:	symbols	hex	mne	monic w/symbols		relati	ve
after	:Msg_Dest	0088	00xxH	data write	mx		
+001	:cmd_rds:+000002	D000	XX00H	data write	mx	56.00	uS
+002	:cmd_rds:+000003	0088	00xxH	data write	mx	56.00	uS
+003	:cmd_rds:+000004	D000	xx00H	data write	mx	56.00	uS
+004	:cmd_rds:+000005	0088	00xxH	data write	mx	56.00	uS
+005	:cmd_rds:+000006	D000	xx00H	data write	mx	56.00	uS
+006	:cmd_rds:+000007	0088	00xxH	data write	mx	56.00	uS
+007	:cmd_rds:+000008	D000	xx00H	data write	mx	56.00	uS
+008	:cmd_rds:+000009	0088	00xxH	data write	mx	56.00	uS
+009	:cmd_rds:+00000A	D000	xx00H	data write	mx	56.00	uS
+010	:cmd_rds:+00000B	0088	00xxH	data write	mx	56.00	uS
+011	:cmd_rds:+00000C	D000	xx00H	data write	mx	56.00	uS
+012	:cmd_rds:+00000D	0088	00xxH	data write	mx	56.00	uS
+013	:cmd_rds:+00000E	D000	xx00H	data write	mx	56.00	uS
±014	:cmd_rds:+00000F	0088	00xxH	data write	mx	56.00	uS

7700 Series Analysis Status Qualifiers

The status qualifier "write" was used in the example trace command used above. The following analysis status qualifiers may also be used with the 7700 Series emulator.

Qualifier	<u>Status bits (4047)</u>	Description
backgrnd	x1xx xxxx	Background cycle
byte	xx1x 1x1x	Byte access
cpu	xx11 xxxx	CPU cycle
data	xx1x 10xx	Data access
dma	xx10 xxxx	DMA cycle
exec	xx11 01xx	Execution Cycle
fetch	xx11 11x1	Fetch cycle
foregrnd	x0xx xxxx	Foreground cycle
hold	xx01 xxxx	HOLD cycle
mx	1xxx xxxx	Value of MX signal
read	xx1x 1xx1	Read cycle
ref	xxx00 xxxx	Refresh cycle

2-30 Getting Started

Restriction of the Analyzer

Trace of Internal RAM

The HP 64146A/B emulator **cannot** trace data which is read from internal RAM or SFR. Such data always appears FF hex in the trace listing. This is because the emulator uses the internal RAM and SFR of the emulation processor to perform emulation. Data read from internal

The following section describes restrictions of the analyzer of the 7700

As an example, trace the accesses to the Cmd_Input.

RAM or SFR does not appear on the data bus.

trace after cmd_rds.a77:Scan status exec
<RETURN>

Label	Address	Data	Opcode or Status	time cou	int
aftor	and rdg 277.Sapp	ULEX 0.0 ND	INSTRUCTION or code up available	relativ	ve
±001	.cmd rds:+00000F	C901	CONTROCTIONOpcode dilavariabit	ε	119
+001	·Cmd Input	C901 FFFF	vyEFU data read	- 4 00	119
+002	:cmd rds:+00000F	ਸਤਸਤ		2 0	115
+004	:cmd_rds:+000010	F000	FOODH opcode fetch m	z 6.00	115
+005	:cmd_rds:+000011	F000	BEO and rds a77:Scan	2 0	115
+005	:cmd_rds:+000012	E2E9	E2F9H opcode fetch	6 00	115
+007	:cmd rds:+000014	A210	A210H opcode fetch	8.00	uS
+008	cmd rds a77:Scan	00AD	00ADH opcode fetch	8.00	uS
+009	cmd rds.a77:Scan	00AD	LDA A.DT::Cmd Input	2.0	uS
+010	:cmd rds:+00000E	C901	C901H opcode fetch m	c 6.00	uS
+011	Cmd Input	FFFF	xxFFH data read m	ς 4.00	uS
+012	:cmd rds:+00000F	FFFF	CMP A,#00H	2.0	uS
+013	:cmd_rds:+000010	F000	F000H opcode fetch m	c 6.00	uS
+014	:cmd_rds:+000011	F000	BEQ cmd_rds.a77:Scan	2.0	uS
STATU: trace	5: M37700Runnin e after cmd_rds.a77	g user p :Scan	rogram Emulation trace comple	eteR.	

Series emulator.

As you can see in line 11 of the trace listing, data read from internal RAM (which should be 00 hex) appears FF hex.

For a Complete Description

For a complete description of using the HP 64700 Series analyzer with the Softkey Interface, refer to the *Analyzer Softkey Interface User's Guide*.

Exiting the Softkey Interface	There are several options available when exiting the Softkey Interface: exiting and releasing the emulation system, exiting with the intent of reentering (continuing), exiting locked from multiple emulation windows, and exiting (locked) and selecting the measurement system display or another module.
End Release System	To exit the Softkey Interface, releasing the emulator so that other users may use the emulator, enter the following command. end release_system <return></return>
Ending to Continue Later	You may also exit the Softkey Interface without specifying any options; this causes the emulator to be locked. When the emulator is locked, other users are prevented from using it and the emulator configuration is saved so that it can be restored the next time you enter (continue) the Softkey Interface. end <return></return>
Ending Locked from All Windows	 When using the Softkey Interface from within window systems, the "end" command with no options causes an exit only in that window. To end locked from all windows, enter the following command. end locked <return></return> This option only appears when you enter the Softkey Interface via the emul700 command. When you enter the Softkey Interface via pmon and MEAS_SYS, only one window is permitted. Refer to the <i>Softkey Interface Reference</i> manual for more information on using the Softkey Interface with window systems.
Selecting the Measurement System Display or Another Module	When you enter the Softkey Interface via pmon and MEAS_SYS , you have the option to select the measurement system display or another module in the measurement system when exiting the Softkey Interface. This type of exit is also "locked"; that is, you can continue the emulation session later. For example, to exit and select the measurement system display, enter the following command. end select measurement_system <return> This option is not available if you have entered the Softkey Interface via the emul700 command.</return>

2-32 Getting Started

"In-Circuit" Emulation

Introduction The emulator is *in-circuit* when it is plugged into the target system. This chapter covers topics which relate to in-circuit emulation. This chapter will: Describe the issues concerning the installation of the emulator probe into target systems. Show you how to install the emulator probe. Show you how to use features related to in-circuit emulation. Prerequisites Before performing the tasks described in this chapter, you should be familiar with how the emulator operates in general. Refer to the HP

Before performing the tasks described in this chapter, you should be familiar with how the emulator operates in general. Refer to the *HP* 64700 *Emulators: System Overview* manual and the "Getting Started" chapter of this manual.

In-Circuit Emulation 3-1

Installing the Target System Probe

Caution	POSSIB emulatio static dis before ha the probe probe by	LE DAMAGE TO THE EMULATOR PROBE. The n probe contains devices that are susceptible to damage by charge. Therefore, precautionary measures should be taken andling the microprocessor connector attached to the end of e cable to avoid damaging the internal components of the static electricity.
Caution	POSSIB system p target sy socket w	LE DAMAGE TO THE EMULATOR. Make sure target ower is OFF before installing the emulator probe into the stem. Do not install the emulator probe into the processor ith power applied to the target system.
Caution	DAMAC NOT IN connecto emulatio socket so	GE TO THE EMULATOR WILL RESULT IF THE PROBE IS STALLED CORRECTLY. Make sure pin 1 of probe or is aligned with pin 1 of the socket. When installing the n probe, be sure that the probe is installed into the processor to that pin 1 of the connector aligns with pin 1 of the socket.
Note	When you then turn first, then	ou use the emulator in-circuit, turn ON the target system first, ON the emulator. Likewise, turn OFF your target system In turn OFF the emulator.

3-2 In-Circuit Emulation

In-Circuit Configuration Options

The 7700 Series emulator provides configuration options for the following in-circuit emulation issues. Refer to the "Configuring the Emulator" for more information on these configuration options.

Using the Target System Clock Source

You can configure the emulator to use the external target system clock source.

Note

Your target system **must** have a clock generation circuit. The emulation pod cannot generate clock signal using a ceramic (or quartz crystal) resonator.

Target Memory Access Size

You can configure the emulator to access target system memory by byte access or word access to perform emulation commands.

Respond to Target System Interrupts

You can configure the emulator whether or not the emulator responds to interrupt signals from the target system during foreground operation.

Note

You may need to set up switches inside the emulation pod to accept target system interrupt signals. Refer to the manual provided with your emulation pod.

Notes

3-4 In-Circuit Emulation

Configuring the Emulator

Introduction

Your 7700 Series emulator can be used in all stages of target system development. For instance, you can run the emulator out-of-circuit when developing your target system software, or you can use the emulator in-circuit when integrating software with target system hardware. You can use the emulator's internal clock or the target system clock. Emulation memory can be used in place of, or along with, target system memory. You can execute target programs in real-time or allow emulator execution to be diverted into the monitor when commands request access of target system resources (target system memory, register contents, etc).

The emulator is a flexible instrument and may be configured to suit your needs at any stage of the development process. This chapter describes the options available when configuring the HP 64146A/B emulator.

The configuration options are accessed with the following command.

modify configuration <RETURN> After entering the command above, you will be asked questions regarding the emulator configuration. The configuration questions are listed below and grouped into the following classes.

General Emulator Configuration:

- Specifying the emulator clock source (internal/external).
- Selecting monitor entry after configuration.
- Restricting to real-time execution.

Configuring the Emulator 4-1

Δ

Emulator Reconfiguration:

- Selecting microprocessor to be emulated.
- Selecting CPU operation mode.
- Defining the reset value of the stack pointer.

Memory Configuration:

- Enabling the high speed access mode
- Selecting the background or foreground emulation monitor.
- Mapping memory.

Emulator Pod Configuration:

- Selecting target memory access data size.
- Enabling interrupts from the target system.
- Enabling watch dog timer.

Debug/Trace Configuration:

- Enabling breaks on writes to ROM.
- Enabling tracing refresh cycles.
- Enabling tracing DMA cycles.
- Enabling tracing HOLD/HLDA cycles.
- Enabling 16bit symbol display.
- Defining the DT register value for symbol display.

Simulated I/O Configuration: Simulated I/O is described in the *Simulated I/O* reference manual.

Interactive Measurement Configuration: See the chapter on coordinated measurements in the *Softkey Interface Reference* manual.

4-2 Configuring the Emulator

External Analyzer Configuration: See the *Analyzer Softkey* Interface User's Guide. **General Emulator** The configuration questions described in this section involve general emulator operation. Configuration Micro-processor This configuration question allows you to select whether the emulator will be clocked by the internal clock source or by a target system clock clock source? source. internal Selects the internal clock oscillator as the emulator clock source. The internal clock is provided from the emulation pod. In the case of HP 64146-61001 or HP 64146-61602 emulation pod, the clock speed is 1 MHz. When you use an emulation pod with clock faster than 16 MHz, you need to select the high speed access mode to run the emulator with no wait state. If the high speed access mode is not selected, one wait state is inserted by the emulator. external Selects the clock input to the emulator probe from the target system. You must use a clock input conforming to the specifications for the 7700 Series microprocessor. The HP 64146A/B emulator runs with no wait state with target system clock up to 16 MHz. When clock is faster than 16 MHz, you need to select the high speed access mode to run the emulator with no wait state. If the high speed access mode is not selected, one wait state is

inserted by the emulator.

Configuring the Emulator 4-3

Note 🥵	Your target system must have a clock generation circuit. The emulation pod cannot generate clock signal using a ceramic (or quartz crystal) resonator.			
Note	Changing the cloc emulator may late following "Enter	ck source drives the emulator into the reset state. The er break into the monitor depending on how the monitor after configuration?" question is answered.		
Enter monitor after configuration?	This question allo in the monitor or emulator configur	ows you to select whether the emulator will be running held in the reset state upon completion of the ration.		
	How you answer situations. For ex the target system otherwise, configu	this configuration question is important in some ample, when the external clock has been selected and is turned off, reset to monitor should not be selected; uration will fail.		
	When an external "Enter monitor af default answer be	clock source is specified, this question becomes ter configuration (using external clock)?" and the comes "no".		
	yes	When reset to monitor is selected, the emulator will be running in the monitor after configuration is complete. If the reset to monitor fails, the previous configuration will be restored.		
	no	After the configuration is complete, the emulator will be held in the reset state.		

Restrict to real-time The "restrict to real-time" question lets you configure the emulator so that commands which cause the emulator to break to monitor and runs? return to the user program are refused. All commands, regardless of whether or not they no require a break to the emulation monitor, are accepted by the emulator. When runs are restricted to real-time and the yes emulator is running the user program, all commands that cause a break (except "reset", "break", "run", and "step") are refused. For example, the following commands are not allowed when runs are restricted to real-time: Display/modify registers. Display/modify internal RAM or SFR. Display/modify target system memory. Load/store target system memory Caution If your target system circuitry is dependent on constant execution of program code, you should restrict the emulator to real-time runs. This will help insure that target system damage does not occur. However, remember that you can still execute the "reset", "break", and "step" commands; you should use caution in executing these commands. **Emulator** The emulator reconfiguration questions allows you to reconfigure the emulator for your system. Type of the processor, processor operation Reconfiguration mode and reset value for the stack pointer will be configured here. To access the emulator reconfiguration questions, you must answer "yes" to the following question. Reconfigure emulator?

Configuring the Emulator 4-5

Micro-processor group?	This configuration going to emulate.	n item allows you to select the processor you are
	7700	When you are going to emulate M37700xx or M37701xx, select this item.
	7702	When you are going to emulate M37702xx or M37703xx, select this item.
	7704	When you are going to emulate M37704xx or M37705xx, select this item.
	7720	When you are going to emulate M37720xx or M37710xx,select this item.
	7730	When you are going to emulate M37730xx or M37732xx, select this item.
	7790	When you are going to emulate M37795xx, M37796xx, M37780xx or M37781xx, select this item.
	When you select of	one of these groups, you will see the following

question.

Micro-processor type (xxxx group)?

Select the chip you are going to emulate.

Note

If your processor is not included in the above groups, select "**othe**r" in this question and answer to the following questions.

Usually, the previous question set up internal memory addresses automatically. However, when your processor is not supported by the previous question, you must configure the following questions by yourself.

4-6 Configuring the Emulator

<chip_name></chip_name>	Processor	<chip_name></chip_name>	Processor
7700M2	M37700M2-xxxFP M2AxxxFP M37701M2-xxxSP M2AxxxSP	7704M2	M37704M2-xxxFP M2AxxxFP M37705M2-xxxSP M2AxxxSP
7700M4	M37700M4-xxxFP	7704M3	M37704M3BxxxFP
	M4AXXXFP M37701M4-XXXSP M4AXXXSP	7704M4	M37704M4BxxxFP
7700s	M4AXXXSP 	7704S1	M37704S1FP S1AFP M37705S1SP S1ASP
	-+	7710M4	M37710M4BxxxFP
770054	M37700S4FP S4AFP	7710S4	M37710S4BFP
	M3770IS4SP S4ASP -+	7720S1	M37720S1FP S1AFP
7702M2	M37702M2-xxxFP M2AxxxFP M2BxxxFP M37703M2-xxxSP M2AxxxSP M2BxyySP	7730S2	M37730S2FP S2AFP S2SP S2ASP
7702M4	M37702M4-xxxFP M4AxxxFP M4BxxxFP M37703M4-xxxSP M4AxxxSP M4AxxxSP	773254	M37732S4FP S4AFP
		7780S	M37780STJ STFP
		7781M4	M37781M4TxxxJ M4TxxxFP
7702M6	M37702M6BxxxFP M6LxxxFP -+	7781E4	-+ M37781E4TxxxJ E4TxxxFP
7702S1	M37702S1FP - S1AFP S1BFP M37703S1SP - S1ASP S1BSP	77958	M37795SJ STJ
		7796E4	M37796E4-xxxJ E4TxxxJ E4TxxxFP
7702S4	M37702S4FP S4AFP S4BFP M37703S4SP S4ASP S4BSP		-∔

Figure 4-1. Chip Group and Type for Configuration

Configuring the Emulator 4-7

SFR area start address? SFR area end address? Second SFR area start address? Second SFR area end address?

Specify the start address and end address of internal SFR of your processor. These addresses can be defined on 16 byte boundaries.

If your processor has only one SFR area, specify the same value as the first one for the "Second SFR ..." questions.

Internal RAM area start address? Internal RAM area end address? Second internal RAM area start address? Second internal RAM area end address?

Specify the start address and end address of internal RAM of your processor. These addresses can be specified on 16 byte boundaries. If your processor has no internal RAM, enter 0 as start address and end address of internal RAM area. If your processor has only one SFR area, specify the same value as the first one for the "Second internal RAM ..." questions.

Internal ROM area start address? Internal ROM area end address?

Specify the start address and end address of internal ROM of your processor. These addresses can be defined on 16 byte boundaries. If your processor has no internal ROM, enter 0 as start address and end address of internal ROM area.

Processor mode register address?

Specify the address of processor mode register. This is needed to manage processor operation modes.

4-8 Configuring the Emulator

Processor mode? This configuration defines operation mode of the processor.

single	The emulator will operate in single-chip mode.
expand8	The emulator will operate in memory expansion mode with 8 bit data width.
expand16	The emulator will operate in memory expansion mode with 16 bit data width.
proc8	The emulator will operate in microprocessor mode with 8 bit data width.
proc16	The emulator will operate in microprocessor mode with 16 bit data width.

Note

You may need to set up a switch inside the emulation pod in addition to this configuration. Refer to the manual provided with your emulation pod.

Modify value for Stack Pointer (SP)?

Reset value for the stack pointer is automatically set up to the end of internal RAM area. When the processor you select has no internal RAM, it is set up to FFF hex. If you would like to change the value, answer "yes" to this question.

Reset value for Stack Pointer (SP)?

This question allows you to specify the value to which the stack pointer (SP) will be set on entrance to the emulation monitor initiated RESET state. The address specified in response to this question must be a 16-bit hexadecimal address.

This address should be defined in RAM area (internal RAM, target RAM or emulation RAM) which is not used by user program. When the emulator breaks to the background monitor, the background monitor uses 5 bytes of stack area.

Configuring the Emulator 4-9

Caution

Without a stack pointer, the emulator is unable to make the transition to the run state, step or perform many other emulation functions.

Memory The memory configuration questions allows you to select the monitor type and to map memory. To access the memory configuration Configuration questions, you must answer "yes" to the following question. Modify memory configuration? Is speed of input This question allows you to configure the emulator for clock clock faster than (internal/external) faster than 16 MHz. 16 MHz? When the clock speed is equal or slower than no 16 MHz, select this answer. The emulator runs with no wait state. yes When the clock speed is faster than 16 MHz, select this answer. You will be asked the following question.

Enable high speed access mode for emulation memory?

When clock speed is faster than 16 MHz, the emulator can run with no wait state by selecting the "**high speed access mode**." If you don't select the high speed access mode, the emulator inserts one wait state.

4-10 Configuring the Emulator

yes Enables the high speed access mode of the emulator. In the high speed access mode: The emulator can run with no wait state up to 25 MHz. you can map the emulation memory only to the following address ranges. Monitor **Available location** Memory 128K Background 000000H-01F7FFH 128K Foreground 000000H-01FFFFH 512K Background 000000H-07F7FFH 512K Foreground 000000H-07FFFFH 1**M** Background 000000H-0FF7FFH 1M Foreground 000000H-0FFFFH 2M Background 000000H-1FF7FFH 2M Foreground 000000H-1FFFFFH no Select the normal mode. In the normal mode: • You can define up to 16 different map terms which can be placed wherever you like. (Refer to "Mapping memory" section in this chapter.) The emulator generates the /RDY signal, and inserts one wait state for all memory access. Note Changing this configuration will reset the memory map, Monitor type? The monitor type configuration question allows you to choose between a foreground monitor (which is supplied with the emulation software but must be assembled, linked, converted, and loaded into emulation memory) or the background monitor (which resides in the emulator). The emulation monitor is a program that is executed by the emulation processor. It allows the emulation system controller to access target

Configuring the Emulator 4-11

system resources. For example, when you enter a command that requires access to target system resources, say a command to display target system memory, the system controller writes a command code to the monitor communications area and breaks execution of the emulation processor from the user program into the monitor program. The monitor program then reads the command from the communications area and executes the 7700 Series instructions which read the contents of the target system memory locations. After the monitor has completed its task, execution returns to the user program.

The *background monitor*, resident in the emulator, offers the greatest degree of transparency to your target system (that is, your target system should generally be unaffected by monitor execution). However, in some cases you may require an emulation monitor tailored to the requirements of your system. In this case, you will need to use a foreground monitor linked into your program modules. See the "Using the Foreground Monitor" appendix for more information on foreground monitors.

background Selects the use of the background monitor. When you select the background monitor and the current monitor type is "foreground", you are asked the following question.

Reset map (change of monitor type requires map reset)?

This question must be answered "yes" to change the monitor type.

foreground Specifies that a foreground monitor will be used. Foreground monitor programs are shipped with the Softkey Interface. When you select a foreground monitor, you will be asked additional questions.

Reset map (change of monitor type requires map reset)?

This question must be answered "yes" or else the foreground monitor will not be selected.

4-12 Configuring the Emulator
Monitor address?

The default configuration specifies a monitor address of 0b800 hex. The monitor base address must be located on a 2K byte boundary other than internal RAM and Special Function Register area; otherwise, configuration will fail.

Monitor filename?

This question allows you to specify the name of the foreground monitor program absolute file. Remember that the foreground monitor must already be assembled and linked starting at the 2K byte boundary specified for the previous "Monitor address?" question.

The monitor program will be loaded after you have answered all the configuration questions; therefore, you should not link the foreground monitor to the user program. If it is important that the symbol database contain both monitor and user program symbols, you can create a different absolute file in which the monitor and user program are linked. Then, you can load this file after configuration.

Mapping memory The emulation memory consists of 128K/512K/1M/2M bytes, mappable in 256 byte blocks. You can define up to 16 different map terms.

The memory mapper allows you to characterize memory locations. It allows you specify whether a certain range of memory is present in the target system or whether you will be using the emulation memory for that address range. You can also specify whether the target system memory is ROM or RAM, and you can specify that emulation memory be treated as ROM or RAM.

Note

You cannot map Internal RAM and SFR as guarded.

Configuring the Emulator 4-13

Note	Target system accesses to emulation memory are not allowed. Target system devices that take control of the bus (for example, external DMA controller) cannot access emulation memory.
Caution	The default emulator configuration maps location C000 hex through FFFF hex as emulation ROM. This must be needed when you use the 7700 Series internal ROM. You don't have to map internal RAM area since the emulator uses internal RAM of the emulation processor. When you answered "yes" to the "Reset map (change of monitor type requires map reset)?" question , you must map again for memory space where internal ROM is located as emulation ROM.
	Blocks of memory can also be characterized as guarded memory. Guarded memory accesses will generate "break to monitor" requests. Writes to ROM will generate "break to monitor" requests if the "Enable breaks on writes to ROM?" configuration item is enabled (see the "Debug/Trace Configuration" section which follows).
	To map memory for the sample program, enter the following mapper commands: delete all <return> 0c000h <i>thru</i> 0ffffh <i>emulation rom</i> <return> end <return> When menning memory for your target system programs, you may</return></return></return>

when mapping memory for your target system programs, you may wish to characterize emulation memory locations containing programs and constants (locations which should not be written to) as ROM. This will prevent programs and constants from being written over accidentally, and will cause breaks when instructions attempt to do so.

Note

You should map all memory ranges used by your programs **before** loading programs into memory. This helps safeguard against loads which accidentally overwrite earlier loads if you follow a **map/load** procedure for each memory range.

Internal RAM and SFR

The emulator uses internal RAM of emulation processor to emulate user program. When you direct the emulator to display the contents of internal RAM or SFR area, the emulator breaks to the monitor and the monitor program reads the contents of memory. Therefore, execution of user program is suspended to perform your direction. However, you can configure the emulator so that write cycles are performed to both internal RAM (or SFR) and emulation memory. In this case, you can display the data written to emulation memory without suspending program execution.

To use this feature, you need to map these area to emulation RAM (eram). When you do this, you can display the contents of emulation memory with "display memory" command without suspending user program execution. You still can display the contents of internal RAM by specifying "fcode i" syntax in "display memory" command.

For example, to see the contents of address 100 hex in internal RAM, you can do both of the following:

display memory fcode none 100h (This command accesses emulation memory) display memory fcode i 100h (This command accesses internal RAM of emulation processor.)

Configuring the Emulator 4-15

Note 😱	When you specify "fcode", the "fcode" becomes the new default to display memory. That is, once you specify "fcode i", you need to specify "fcode none" to display emulation memory.
	When you don't map the internal RAM and SFR area to emulation RAM (when you don't copy the contents to emulation memory), you can access the internal RAM and SFR without specifying "fcode" syntax.
Note	The contents of emulation memory is updated only when user program writes data to internal RAM (or SFR). Therefore, the contents of emulation memory may be different from the actual value of internal RAM. Especially, you should pay a close attention when seeing flags of SFR.
Note	When you modify memory, the emulator breaks to the monitor, and writes data to internal RAM or SFR. Therefore, user program is suspended when modifying internal RAM or SFR.
Emulator Pod Configuration	To access the emulator pod configuration questions, you must answer "yes" to the following question.
	Modify emulator pod configuration?
Target memory access size?	This question allows you to specify the types of cycles that the emulation monitor use when accessing target system memory. When an emulation command requests the monitor to read or write target

4-16 Configuring the Emulator

	system memory locations, the monitor will either use byte or word instructions to accomplish the read/write.	
	byte	Specifies that the emulator will access target system memory by byte accesses.
	word	Specifies that the emulator will access target system memory by word accesses.
Respond to target system interrupts?	This configuration allows you to specify whether or not the emulator responds to interrupt signals from the target system during foreground operation.	
	yes	The emulator will respond to interrupt signals from the target system.
	no	The emulator will not respond to interrupt signals from the target system.
Note 🙀	You may need to set up switches inside the emulation pod to accept interrupts from the target system. Refer to the manual provided with your emulation pod.	
Enable watchdog timer?	This question allows you to enable/disable the watchdog timer interrupt.	
	no	Disables the watchdog timer interrupt. This may useful in early stage of your program development.
	yes	Enables the watchdog timer interrupt.

Configuring the Emulator 4-17

Debug/Trace Configuration	The debug/trace of on writes to ROM foreground/backg the trace/debug co following question Modify debug/tra	configuration questions allows you to specify breaks I, and specify that the analyzer trace round execution, and bus release cycles. To access onfiguration questions, you must answer "yes" to the n. ce options?
Break processor on write to ROM?	This question allo monitor upon atte The emulator will memory mapped writes to target sy even though the v	www.you to specify that the emulator break to the empts to write to memory space mapped as ROM. I prevent the processor from actually writing to as emulation ROM; however, they cannot prevent estem RAM locations which are mapped as ROM, write to ROM break is enabled.
	yes	Causes the emulator to break into the emulation monitor whenever the user program attempts to write to a memory region mapped as ROM.
	no	The emulator will not break to the monitor upon a write to ROM. The emulator will not modify the memory location if it is in emulation ROM.
Trace background or foreground operation?	d or This question allows you to specify whether the analyzer trace on foreground emulation processor cycles, only background cycles, or both foreground or background cycles.	
	foreground	Specifies that the analyzer trace only foreground cycles. This option is specified by the default emulator configuration.
	background	Specifies that the analyzer trace only background cycles. (This is rarely a useful setting.)
	both	Specifies that the analyzer trace both foreground and background cycles. You may wish to specify

this option so that all emulation processor cycles may be viewed in the trace display.

Trace refresh cycles by emulation analyzer?	This question is a "Micro-processor	sked only when the 7720 processor is selected in group?" configuration question.
	You can direct the analyzer or not to	e emulator to send refresh cycle data to emulation send it.
	yes	Enables the emulator to trace refresh cycles.
	no	Refresh cycles will not appear on analysis trace list.
Trace DMA cycles by emulation analyzer?	This question is a "Micro-processor	sked only when the 7720 processor is selected in group?" configuration question.
	You can direct the analyzer or not to	e emulator to send DMA cycle data to emulation send it.
	yes	When you enable tracing DMA cycles, DMA cycles will appear as one analysis trace line.
	no	DMA cycles will not appear on analysis trace list.
Trace HOLD/HLDA cycles by emulation analyzer?	You can direct the emulation analyze	e emulator to send HOLD/HLDA cycle data to er or not to send it.
	yes	When you enable tracing HOLD/HLDA cycles, these cycles will appear as one analysis trace line.
	no	HOLD/HLDA cycles will not appear on analysis trace list.

Configuring the Emulator 4-19

Replace 16-bit addresses with symbolic references?

You can direct the emulator whether or not to display symbols in 16bit addresses in mnemonic field of memory and trace display.

no	Symbols are displayed only in 24bit addresses of mnemonic field.
yes	Symbols are displayed both in 16 and 24bit addresses of mnemonic field. When you select this answer, you are asked the following question.

Data bank register value for symbolic references?

Since symbols have 24bit value, you need to specify the value of the upper 8bit which will be used to display symbols in 16bit addresses. The value specified in this question will be combined with the 16bit value in mnemonic field, and symbols are displayed using the value.

Simulated I/O Configuration	The simulated I/O feature and configuration options are described in the <i>Simulated I/O reference</i> manual.
Interactive Measurement Configuration	The interactive measurement configuration questions are described in the chapter on coordinated measurements in the <i>Softkey Interface</i> <i>Reference</i> manual. Examples of coordinated measurements that can be performed between the emulator and the emulation analyzer are found in the "Using the Emulator" chapter.

4-20 Configuring the Emulator

External Analyzer Configuration	The external analyzer configuration options are described in the Analyzer Softkey Interface User's Guide.
Saving a Configuration	The last configuration question allows you to save the previous configuration specifications in a file which can be loaded back into the emulator at a later time.
	Configuration file name? <file></file>
	The name of the last configuration file is shown, or no filename is shown if you are modifying the default emulator configuration.
	If you press <return> without specifying a filename, the configuration is saved to a temporary file. This file is deleted when you exit the Softkey Interface with the "end release_system" command.</return>
	When you specify a filename, the configuration will be saved to two files; the filename specified with extensions of ".EA" and ".EB". The file with the ".EA" extension is the "source" copy of the file, and the file with the ".EB" extension is the "binary" or loadable copy of the file.
	Ending out of emulation (with the "end" command) saves the current configuration, including the name of the most recently loaded configuration file, into a "continue" file. The continue file is not normally accessed.
Loading a Configuration	Configuration files which have been previously saved may be loaded with the following Softkey Interface command.
	load configuration <file> <return></return></file>

Configuring the Emulator 4-21

This feature is especially useful after you have exited the Softkey Interface with the "end release_system" command; it saves you from having to modify the default configuration and answer all the questions again. To reload the current configuration, you can enter the following command.

load configuration <RETURN>

4-22 Configuring the Emulator

Using the Emulator

Introduction

In the "Getting Started" chapter, you learned how to load code into the emulator, how to modify memory and view a register, and how to perform a simple analyzer measurement. In this chapter, we will discuss in more detail other features of the emulator.

This chapter discusses:

- Internal RAM and SFR of 7700 Series.
- Features available via "pod_command".
- Debugging C Programs

• Limitations and restrictions of the emulator. This chapter shows you how to:

- Use sequential trigger feature of the analyzer.
- Store the contents of memory into absolute files.
- Make coordinated measurements.
- Use a command file.

Sample Program	In the "Getting Started" chapter, we looked at a sample program which functioned as a primitive command interpreter. In this section, we will use the same program.
Internal RAM and SFR	As described in chapter 2 and chapter 4, the emulator breaks into the monitor when displaying internal RAM or SFR. However, you can configure the emulator so that write cycles are performed to both internal RAM (or SFR) and emulation memory. In this case, you can display the data written to emulation memory without suspending user program execution. To perform this, you need to map the internal RAM area and SFR area to emulation memory. Enter memory mapping screen with "modify configuration" command, and map 100H through 27FH to emulation RAM.
	100h thru 27fh emulation ram <return> end <return></return></return>
Loading the Sample Program	The sample program is loaded with the following command.
	load cmd_rds <return></return>
Running the Example	Enter the following command to cause the emulator to run the sample program.
	run from Init <return> Modify the command input byte to "A" to let the program write the message to the Destination area.</return>
	modify memory fcode i Cmd_Input byte to 41h <return> Notice that you need to specify "fcode i" syntax to access internal RAM. If you specify "fcode none" syntax, the data you entered is written to emulation memory. In this case, the program will never write the message, since user program reads data only from internal RAM.</return>

5-2 Using the Emulator

Now, let's display the message written to the destination area.

display memory fcode i Msg_Dest blocked byte
<RETURN>

The above command displays the contents of internal RAM. Sample program is suspended, and the monitor reads the internal RAM.

To display the data copied to emulation memory, enter the following command.

display **memory fcode none** Msg_Dest <RETURN> The above command displays the contents of emulation memory. When user program writes data to internal RAM or SFR, it is written to emulation memory simultaneously. You can display this data in emulation memory without suspending user program execution.

The contents of emulation memory is updated only when user program writes data to internal RAM (or SFR). Therefore, the contents of emulation memory may be different from the actual value in internal RAM (or SFR). Especially, you should pay a close attention when seeing flags of SFR,

Note

Notice that user program is still suspended, when you modify internal RAM or SFR.

Once you specify "fcode", it becomes the new default to access memory.

Using the Emulator 5-3

Features Available via Pod Commands	Several emulation features available in the Terminal Interface but not in the Softkey Interface may be accessed via the following emulation commands.
	<pre>display pod_command <return> pod_command '<terminal command="" interface="">' <return> Some of the most notable Terminal Interface features not available in the softkey Interface are: Copying memory. </return></terminal></return></pre>
	 Searching memory for strings or numeric expressions.
	 Performing coverage analysis.
	Refer to your Terminal Interface documentation for information on how to perform these tasks.
Note	Be careful when using the "pod_command". The Softkey Interface, and the configuration files in particular, assume that the configuration of the HP 64700 pod is NOT changed except by the Softkey Interface. Be aware that what you see in "modify configuration" will NOT reflect the HP 64700 pod's configuration if you change the pod's configuration with this command. Also, commands which affect the communications channel should NOT be used at all. Other commands may confuse the protocol depending upon how they are used. The following commands are not recommended for use with "pod_command":
	 stty, po, xp - Do not use, will change channel operation and hang. echo, mac -Usage may confuse the protocol in use on the channel. wait -Do not use, will tie up the pod, blocking access. init, pv -Will reset pod and force end release_system. t - Do not use, will confuse trace status polling and unload.

Debugging C Programs	Softkey Interface has following functions to debug C programs.
	 Including C source lines in memory mnemonic display Including C source lines in trace listing Stepping C sources Display memory in various data type The following section describes such features.
Displaying Memory with C Sources	You can display memory in mnemonic format with C source lines. For example, to display memory in mnemonic format from address _main with source lines, enter the following commands.
	display memory _main <i>mnemonic</i> <return> set source on <return> You can display source lines highlighted with the following command.</return></return>
	set source on inverse_video on <return> To display only source lines, use the following command.</return>
	set source only <return></return>
	Specifying Address with Line Numbers
	You can specify addresses with line numbers of C source program. For example, to set a breakpoint to line 20 of "main.c" program, enter the following command.
	<pre>modify software_breakpoints set main.c: line 20 <return></return></pre>
Displaying Trace with C Sources	You can include C source information in trace listing. You can use the same command as the case of memory display. For example, to display trace listing with source lines highlighted, enter the following command.
	display trace <return> set source on inverse_video on <return></return></return>

Using the Emulator 5-5

Stepping C Sources	You can direct the emulator to execute a line or a number of lines at a time. For example, to step one line from the beginning of function main , enter the following command.
	step source from _main <return> To step 1 line from the current line, enter the following command.</return>
	step source <return> You can specify the number of lines to be executed. To step 5 lines from the current line, enter the following command.</return>
	step 5 source <return></return>
Displaying Memory in Various Data Type	You can display the contents of memory in various data types. For example, to display character type data "strings[0]" through "strings[20], enter the following command.
	display data _strings thru +20 char <return> To display 16 bit integer data "int_data", enter the following command.</return>
	display data _int_data
	_
Using a Command File	You can use a command file to perform many functions for you, without having to manually type each function. For example, you might want to create a command file that loads configuration, loads program into memory and displays memory.

To create such a command file, type "log" and press TAB key. You will see a command line "log_commands" appears in the command field. Next, select "to" in the softkey label, and enter the command file name "sample.cmd". This set up a file to record all commands you execute. The commands will be logged to the file sample.cmd in the current directory. You can use this file as a command file to execute these commands automatically.

Suppose that your configuration file and program are named "cmd_rds". To load configuration:

load configuration cmd_rds <RETURN> To load the program into memory:

load cmd_rds <RETURN>

5-6 Using the Emulator

	To display memory C000 hex through C020 hex in mnemonic format:
load configuration cmd_rds load cmd_rds display memory 0c000h thru	display memory 0c000h thru 0c020h mnemonic Now, to disable logging, type "log" and press TAB key, select "off", and press Enter . The command file you created looks like this:
	0c020h mnemonic
	If you would like to modify the command file, you can use any text editor on your host computer. To execute this command file, type "sample.cmd", and press Enter .
Storing Memory Contents to an Absolute File	The "Getting Started" chapter shows you how to load absolute files into emulation or target system memory. You can also store emulation or target system memory to an absolute file with the following command.
	store memory 0c000h thru 0c047h to absfile <return></return>
	The command above causes the contents of memory locations C000 hex through C047 hex to be stored in the absolute file "absfile.X". Notice that the ".X" extension is appended to the specified filename.
Coordinated Measurements	For information on coordinated measurements and how to use them, refer to the "Coordinated Measurements" chapter in the <i>Softkey Interface Reference</i> manual.

Limitations, Restrictions Access to Internal Modifying internal RAM or SFR suspends user program execution. RAM Trace Internal RAM Read data from the internal RAM or SFR is not traced correctly by the emulation analyzer. Note Write data is also not traced correctly in the following case: ■ The emulator is used with the M37795 emulation pod. And: • The processor is operating in the memory expansion or microprocessor mode with 8 bit external bus. **DMA Support** Direct memory access to emulation memory is not allowed. Watch Dog Timer in Watch dog timer suspends count up while the emulator is running in background monitor. Background **Step Command with** Step command is not available when the emulator is used with foreground monitor. **Foreground Monitor** Step Command and When an interrupt occurs while the emulator is ruuning in monitor, the emulator fails to do the first step operation. The emulator will display Interrupts the mnemonic of the instruction which should be stepped, but the instruction is not actually executed. The second step operation will step the first instruction of the interrupt routine.

5-8 Using the Emulator

Emulation Commands in Stop/Wait Mode	When the 7700 microprocessor is in the stop or wait mode, emulation commands which access memory or registers will fail. You need to break the emulator into the monitor to use these commands. Once you break the emulator into the monitor, the stop or wait mode will be released.	
Stack Address	In some versions of 7700 microprocessor, the stack can be located in Bank FF. However, the HP 64146A/B emulator doesn't support the feature. The stack must be located in Bank 0.	

Using the Emulator 5-9

Notes

5-10 Using the Emulator

Using the Foreground Monitor

Introduction

By using and modifying the optional foreground monitor, you can provide an emulation environment which is customized to the needs of a particular target system.

The foreground monitors are supplied with the emulation software and can be found in the following path:

/usr/hp64000/monitor/*

The monitor programs are named **fm7700b.a77**.

Comparison of Foreground and Background Monitors

An emulation monitor is required to service certain requests for information about the target system and the emulation processor. For example, when you request a register display, the emulation processor is forced into the monitor. The monitor code has the processor dump its registers into certain emulation memory locations, which can then be read by the emulator system controller without further interference.

Using A Foreground Monitor A-1

Background Monitors

A *background* monitor is an emulation monitor which overlays the processor's memory space with a separate memory region. Entry into the monitor is normally accomplished by jamming the monitor addresses onto the processor's address bus.

Usually, a background monitor will be easier to work with in starting a new design. The monitor is immediately available upon powerup, and you don't have to worry about linking in the monitor code or allocating space for the monitor to use the emulator. No assumptions are made about the target system environment; therefore, you can test and debug hardware before any target system code has been written. All of the processor's address space is available for target system use, since the monitor memory is overlaid on processor memory, rather than subtracted from processor memory. Processor resources such as interrupts are not taken by the background monitor.

However, all background monitors sacrifice some level of support for the target system. For example, when the emulation processor enters the monitor code to display registers, it will not respond to target system interrupt requests. This may pose serious problems for complex applications that rely on the microprocessor for real-time, non-intrusive support. Also, the background monitor code resides in emulator firmware and can't be modified to handle special conditions.

Foreground Monitors A *foreground* monitor may be required for more complex debugging and integration applications. A foreground monitor is a block of code that runs in the same memory space as your program. Foreground monitors allow the emulator to service real-time events, such as interrupts or watchdog timers, while executing in the monitor. For most multitasking, interrupt intensive applications, you will need to use a foreground monitor.

You can tailor the foreground monitor to meet your needs, such as servicing target system interrupts. However, the foreground monitor does use part of the processor's address space, which may cause problems in some target systems. You must also properly configure the emulator to use a foreground monitor (see the "Configuring the Emulator" chapter and the examples in this appendix).

A-2 Using A Foreground Monitor

An Example Using the Foreground Monitor	In the following example, we will illustrate how to use a foreground monitor with the sample program from the "Getting Started" chapter. By using the emulation analyzer, we will also show how the emulator switches from state to state using a foreground monitor.	
	For this example, we will locate the monitor at b800 hex; the sample program will be located at c000 hex with the message table at c100 hex and the command input, message destination, and stack locations at 27f hex.	
	<pre>\$ cp /usr/hp64000/monitor/fm7700b.a77 . <return></return></pre>	
Assemble and Link the Monitor	You can assemble, link and convert the foreground monitor program with the following commands.	
	<pre>\$ rasm77 -s fm7700b.a77 <return> \$ link77 fm7700b <return> Enter -s as command parameter.</return></return></pre>	
	\$ m77cnvhp fm7700b <return> If you haven't already assembled ,linked, and converted the sample program, do that now. Refer to the "Getting Started" chapter for instructions on assembling, linking, and converting the sample program.</return>	
Modifying Location Declaration Statement	You may need to modify the foreground monitor program to adjust it to your needs.	
	Monitor Address	
	You can load the monitor "fm7700b.a77" at any base address on a 2K	

You can load the monitor "fm/700b.a7/" at any base address on a 2K byte boundary except internal RAM and SFR area. To relocate the monitor, you must modify the "LOCATE_ADRS" label statement near the top of the monitor listing to point the base address where the monitor will be loaded. You will see the statement in the monitor listing as follows:

Using A Foreground Monitor A-3

LOCATE_ADRS	.EQU	0B800H	<pre>start monitor on 2k boundary in bank 0</pre>
			;rather than sfr/iram area
PROCMODEREG	.EQU	0005EH	<pre>;processor mode register;s address</pre>

For example, if you want to locate the monitor at a000 hex, you may change the address "0B800H" to "0A000H".

Processor Mode Register Address

You may need to modify the .EQU statement at the PROCMODEREG label. This value defines the location of processor mode register. If your processor has processor mode register at address other than 5e hex, modify this value to appropriate value. The following list shows the address of processor mode register.

Processor	Processor Mode Register Address	Processor	Processor Mode Register Address
7700M2 7700S 7700M4 7700S4 7702M2 7702S 7702M4 7702S4	5e 5e 5e 5e 5e 5e 5e 5e 5e	7704M2 7704S1 7720S1 7730S2 7732S4 7795S 7796E4	5e 5e 5e 5e d8 d8 d8 d8
		·	

Modifying the Emulator Configuration

The following assumes you are modifying the default emulator configuration (that is, the configuration present after initial entry into the emulator or entry after a previous exit using "end release_system"). Enter all the default answers except those shown below.

Modify memory configuration? yes

You must modify the memory configuration so that you can select the foreground monitor and map memory.

Monitor type? foreground

Specifies that you will be using a foreground monitor program.

Reset map (change of monitor type requires map reset)? yes

You must answer this question as shown to change the monitor type to foreground.

Monitor address? 0b800h

Specifies that the monitor will reside in the 2K byte block from b800 hex through bfff hex.

Monitor file name? fm7700b

Enter the name of the foreground monitor absolute file. This file will be loaded at the end of configuration.

Mapping Memory for the Example

When you specify a foreground monitor and enter the monitor address, all existing memory mapper terms are deleted and a term for the monitor block will be added. Add the additional term to map memory for the sample program and, map other area as target RAM.

0c00h0 thru 0dfffh emulation rom <RETURN>
default target ram <RETURN>
end <RETURN>

If your processor has no internal RAM, map 0 hex through 2ff hex as emulation RAM.

See the "Mapping Memory" section of the "Configuring the Emulator" chapter for more information.

Modify emulation pod configuration ? yes

You need to modify the emulation pod configuration to select your processor.

Select chip (group)? <chip group> Select chip ? <chip type>

Select the processor you are going to emulate.

Configuration file name? fmconfig

If you wish to save the configuration specified above, answer this question as shown.

Load the ProgramNow it's time to load the sample program. You can load the sample
program with the following command:

load cmd_rds <RETURN>

Running User
ProgramBefore running the user program, you should initialize the stack pointer
by breaking the emulator out of reset.

break <RETURN> To run the sample program from address **Init**, enter the following command:

run from Init <RETURN> Now you can use the emulator with the foreground monitor.

A-6 Using A Foreground Monitor

Limitations of Foreground Monitors	Listed below are limitations or restrictions present when using a foreground monitor.
Step Command	Step command is not available when you are using the emulator with a foreground monitor.
Synchronized Measurement	You cannot perform synchronized measurements over the CMB when using a foreground monitor. If you need to make such measurements, select the background monitor type when configuring the emulator.

Using A Foreground Monitor A-7

Notes

A-8 Using A Foreground Monitor

Using the Format Converter

How to Use the Converter

The format converter is a program that generates HP format files from MELPS 7700 Hex format file and its symbol file. This means you can use available language tools to create MELPS 7700 Hex format file, then load the file into the emulator using the format converter.

To execute the converter program, use the following command:

\$ m77cnvhp [-q] <file_name> <RETURN>

<file_name> is the name of MELPS 7700 Hex format file without suffix. The converter program will read the MELPS 7700 Hex format file (with .hex suffix) and the symbol file (with .sym suffix). It will generate the following HP format files:

- HP Absolute file (with .X suffix)
- HP Linker symbol file (with .L suffix)
- HP Assembler symbol files (with .A suffix)

When the -q option is specified, warning messages are suppressed.

Suppose that you have the following two files:

sample.hex (MELPS 7700 Hex format file) sample.sym (Symbol file) You can generate HP format files from these two files with the following command:

\$ m77cnvhp sample <RETURN>

Note

The converter uses both .hex file and .sym file. You need to direct your assembler and linker to generate .sym file.

Specifications The following are specifications of the format converter.

- Label names and Symbol names must be 15 and less characters in length.
- File name must be 14 and less characters in length.
- Up to 10000 sections can be handled.
- Up to 1000 functions can be handled.
- If a label name or symbol name contains "?", it will be replaced with "_".

Note

When you convert files which contain no local symbols, the assembler symbol files (.A file) won't be generated. In this case, you will see an error message when you load the program into the emulator. However, this error will cause no damage on your operation.

B-2 Using the Converter

Index

Α	absolute file, loading 2-14
	absolute files
	storing 5-7
	analyzer
	7700 Series status qualifiers 2-30
	configuring the external 4-21
	restriction 2-31
	storage qualifier 2-29
	using the 2-26
	assemble
	assembling the sample program 2-7
	assembling the getting started sample program 2-7
В	background cycles
	tracing 4-18
	background monitor 4-12, A-2
	selecting 4-11
	blocked byte memory display 2-18
	breaks
	break command 2-20
	guarded memory accesses 4-14
	software breakpoints 2-20
	write to ROM 4-18
C	C program
•	debugging 5-5
	displaying in mnemonic memory display 5-5
	displaying in trace listing 5-5
	caution statements
	emulator cannot run without a stack pointer 4-10
	internal memory must be assigned as emulation memory 4-14
	pin alignment of emulator probe 3-2
	real-time dependent target system circuitry 4-5
	static discharge, protect emulator probe from 3-2
	target power must be OFF when installing probe 3-2
	cautions
	turn off the emulator to connect the pod 2-2

Index-1

characterization of memory 4-13 clearing software breakpoints 2-23 clock source external 4-3 internal **4-3** command file creating and using 5-6 comparison of foreground/background monitors A-1 configuration for sample program 2-12 configuration options enable interrupt inputs 4-17 in-circuit 3-3 processor mode 4-9 configuring the emulator for sample program 2-12 convert absolute file to HP Absolute 2-7 converter, m77cnvhp 2-7 coordinated measurements 4-20, 5-7 copy memory 5-4 coverage analysis 5-4

D Debugging C programs 5-5 device table file 2-9 display command data 5-5 memory blocked 2-18 memory mnemonic 2-16 registers 2-24 symbols 2-14 trace 2-27 display data 5-6 displaying 16bit symbols 4-20 DMA controllers external 4-14

E emul700, command to enter the Softkey Interface 2-9, 2-32 emulation analyzer 2-26 emulation memory 5-2 loading absolute files 2-14 mapping internal RAM area 4-15 note on target accesses 4-14

2-Index

RAM and ROM characterization 4-13 size of **4-13** emulation monitor 4-11 background 4-12 Emulation pod 1-4 ordering information 1-4 Emulation processor 1-4 ordering information 1-4 Emulator before using 2-2 configuration 4-1 device table file 2-9 limitations 5-8 prerequisites 2-2 probe installation into target system 3-2 purpose 1-1 emulator configuration break processor on write to ROM 4-18 clock selection 4-3 enable high speed access mode 4-10 enable watchdog timer 4-17 loading 4-21 monitor entry after 4-4 monitor type selection 4-11 processor mode register address 4-8 respond to target system interrupts 4-17 restrict to real-time runs 4-5 saving 4-21 select chip 4-6 set up internal RAM address 4-8 set up internal ROM address 4-8 set up internal SFR address 4-8 stack pointer 4-9 target memory access size 4-16 trace background/foreground operation 4-18 trace DMA cycles 4-19 trace HOLD/HLDA cycles 4-19 trace refresh cycles 4-19 emulator configuration display 16bit symbols 4-20 Emulator features 1-5

Index-3

analyzer 1-6 breakpoints 1-7 clock speed 1-5 coverage measurements 1-8 emulation memory 1-5 foreground and background monitor 1-6 high speed access mode 1-5 processor reset control 1-8 register display/modify 1-7 restrict to real-time runs 1-7 single-step processor 1-7 Emulator limitations 1-9 Access to Internal RAM 1-9, 5-8 DMA support 1-9, 5-8 emulation command fails in stop/wait mode 1-10, 5-9 modifying memory 4-16 stack must be in bank 0 1-10, 5-9 step command with foreground monitor 1-9, 5-8 step fails when an interrupt exists 1-9, 5-8 trace internal RAM 1-9, 5-8 watch dog timer 1-9, 5-8 enable high speed access mode emulator configuration 4-10 enable watchdog timer emulator configuration 4-17 end command 2-32, 4-21 exit, Softkey Interface 2-32 external analyzer 2-26 configuration 4-21 external clock source 4-3

F file extensions

.EA and .EB, configuration files **4-21** foreground monitor **A-2** defining processor mode register address **A-4** defining the location **A-3** example of using **A-3** location of shipped files **A-1** modify location declaration statement **A-3** selecting **4-11** using the foreground monitor **A-1** foreground monitor address **4-13**

4-Index

foreground operation tracing 4-18 format converter **B-1** G getting started 2-1 prerequisites 2-2 global symbols displaying 2-14 guarded memory accesses 4-14 н hardware installation 2-2 help on-line **2-10** pod command information 2-11 softkey driven information 2-10 high speed access mode 1-5, 4-10 L in-circuit configuration options 3-3 in-circuit emulation 3-1 installation hardware 2-2 software 2-2 interactive measurements 4-20 internal clock source **4-3** internal RAM **4-15**, **5-2** copying to emulation memory 2-20 L limitations of the emulator 5-8 link linking the sample program 2-7 linking the getting started sample program 2-7 loading absolute files 2-14 loading emulator configurations 4-21 local symbols 2-22 local symbols, displaying 2-15 locked, end command option 2-32 logging of commands 5-6 Μ M flag

to display memory in mnemonic format **2-16** m77cnvhp, converter **2-7** mapping memory **4-13** measurement system **2-32**

Index-5

creating 2-8 initialization 2-8 memory blocked display 2-18 characterization 4-13 copying 5-4 mapping 4-13 mnemonic display 2-16 mnemonic display and M flag, X flag 2-16 mnemonic display with C sources 5-5 mnemonic display with symbols 2-17 modifying 2-19 searching for strings or expressions 5-4 memory display with 16bit symbols 4-20 memory mapping maximum number of terms 4-13 sequence of map/load commands 4-15 mnemonic memory display 2-16 specify M flag and X flag 2-16 with symbols 2-17 modify command configuration 4-1 memory 2-19 software breakpoints clear 2-23 software breakpoints set 2-22 module 2-32 module, emulation 2-8 monitor breaking into 2-20 monitor (emulation) 4-11 background 4-12, A-2 comparison of foreground/background A-1 foreground A-2 monitor program 1-6 background 1-7 foreground 1-7 monitor type, selecting 4-11 monitors foreground, specifying the filename 4-13

6-Index
- .sym file is needed to convert a program 2-7 converting files with no symbols B-2 display memory mnemonic with software breakpoints 2-23 displaying SFR 4-16, 5-3 fcode becomes the default if once specified 4-16 Files needed to convert your program B-1 function code becomes new default when specified 5-3 map memory before loading programs 4-15 memory access with step execution 2-24 modifying internal RAM suspends program execution 2-20 pod commands that should not be executed 5-4 run from transfer address 2-18 select chip 2-12 selecting internal clock forces reset 4-4 set command and its effect 2-17 setting up emulation pod for target interrupts 3-3 Setting up the pod to accept target interrupts 4-17 software breakpoint cmds. while running user code 2-21 software breakpoints not allowed in target ROM 2-21 software breakpoints only at opcode addresses 2-20 target accesses to emulation memory 4-14 target system must have clock circuit 3-3, 4-4 turn on target system before turn on the emulator 3-2 user program suspended when modifying internal RAM 5-3
- 0 on-line help 2-10

Ρ

PATH, HP-UX environment variable 2-8 - 2-9 pmon, User Interface Software 2-8, 2-32 pod command 2-11 features available with 5-4 help information 2-11 predefining stack pointer 4-9 prerequisites for using the emulator 2-2 probe cable installation 3-2 processor mode register defining the location A-4 processor operation mode 4-9 Purpose of the Emulator 1-1

Index-7

Ν nosymbols 2-14

notes

R RAM

mapping emulation or target 4-13 real-time execution restricting the emulator to 4-5 register display/modify 2-24 registers classes 2-24 names 2-25 release_system end command option 2-32, 4-21 - 4-22 respond to target system interrupts emulator configuration 4-17 restrict to real-time runs emulator configuration 4-5 permissible commands 4-5 target system dependency 4-5 ROM mapping emulation or target 4-13 writes to 4-14 run command 2-18

S sample program

description 2-3 for chapter 5 5-2 saving the emulator configuration 4-21 select chip emulator configuration 4-6 set command symbols on 2-17 set up internal RAM address emulator configuration 4-8 set up internal ROM address emulator configuration 4-8 set up internal SFR address emulator configuration 4-8 set up processor mode register address emulator configuration 4-8 SFR 4-15, 5-2 copying to emulation memory 2-20 simulated I/O 4-20 softkey driven help information 2-10 Softkey Interface

8-Index

entering 2-8 exiting 2-32 on-line help 2-10 software breakpoints 2-20 clearing 2-23 enabling/disabling 2-22 setting 2-22 software installation 2-2 stack pointer 1-10, 5-9 stack pointer, defining 4-9 static discharge, protect the emulator probe from 3-2 status qualifiers (7700 Series) 2-30 step command 2-24 with C program 5-5 stop mode 1-10 storage qualifier 2-29 string delimiters 2-11 supported microprocessors 1-3 symbol in memory display 2-17 symbols display 16bit symbols 4-20 symbols, displaying **2-14** system overview 2-2

T target memory

RAM and ROM characterization 4-13 target memory access size emulator configuration 4-16 target memory, loading absolute files 2-14 target system dependency on executing code 4-5 Terminal Interface 2-11 trace display with C source lines 5-5 trace DMA cycles emulator configuration 4-19 trace HOLD/HLDA cycles emulator configuration 4-19 trace listing with 16bit symbols 4-20 trace refresh cycles

Index-9

emulator configuration **4-19** trace, displaying the **2-27** trace, displaying with time count absolute **2-28** trace, reducing the trace depth **2-29** tracing background operation **4-18** trigger state **2-27** trigger, specifying **2-26**

- U undefined software breakpoint 2-21 user (target) memory, loading absolute files 2-14
- wait mode 1-10 watchdog timer enable/disable by emulator configuration 4-17 window systems 2-32 write to ROM break 4-18
- X X flag

to display memory in mnemonic format 2-16

10-Index