
Host Independent Microprocessor
Development Systems
A new archi tecture makes i t possib le to use th is fami ly of
emulators wi th workstat ions, mainframes, or personal
computers . The cab l ing techno logy and chass is des ign
inprove per formance and usabi l i ty .

by Arnold S. Berger

HP 64700 SERIES EMULATORS are a new family of
products representing the latest stage in the evolu
tion of the HP 64000 Microprocessor Development

System, introduced in 1979. The original family of prod
ucts, which is still going strong, was designed around a
cluster of development stations sharing a local disc memory
and printer. This cluster uses an optimized version of the
HP-IB as its LAN core, and is a very efficient hardware and
software integration environment for small engineering
teams. In fact, many of today's concepts in distributed com
puting networks were first applied when the HP 64000
system was introduced.

As microprocessors became more complex, the develop
ment environment shifted to larger teams of software en
gineers working on small to medium-size mainframe com
puters, such as the Digital Equipment Corporation VAXâ„¢
and the HP 9000 Series 500. Hewlett-Packard responded
to this trend with the introduction, in 1985, of the HP
64000 Hosted Development System. This system permits
an existing HP 64000 cluster to be linked to the mainframe
computer with the high-speed HP-IB file transfer capability,
while the software cross-development tools remain resident
on the host mainframe. Individual HP 64000 development
stations can be operated under remote control via the ter
minals on the host machine.

However, the industry trends in software engineering
were pointing towards more open software development
environments. The large software development teams, now
writing software for 32-bit microprocessors with address
ranges measured in gigabytes, needed environments that
could best be serviced by HP-UX (Hewlett-Packard's ver
sion of AT&T's UNIX operating system), while the small
teams were moving towards software development on HP
Vectra-class computers.

Hewlett-Packard responded to the needs of the large
teams with the introduction, in 1986, of the HP 64000-UX
family of hardware and software-based products. Work was
also in progress to develop a family of products that could
satisfy the needs of the single engineer or small develop
ment team, without the proprietary technology of the orig
inal HP 64000 Logic Development System. We recognized
that the IBM PC/AT and the Microsoft MS-DOS" operating
system had become de facto computing standards for the
engineering community and that a product offering was
needed for these systems. In addition, we had the enviable

position of being able to start with a clean slate, using the
knowledge gained through the evolution of the original
families of products.

Host Independence
During the investigation phase of this project, the entire

design team went on the road to visit customers. Both our
installed base of customers and customers who did not
have any of the HP 64000 products were visited. In all,
some 35 companies who design products containing em
bedded microprocessors were surveyed to determine the
set of features that were considered most appropriate for
a personal-computer-based microprocessor development
system. The HP 64000-PC Personal Integration Environ
ment, based on the HP 64700 Series emulators/analyzers,
is the result of our effort to bring a microprocessor develop
ment system to the personal-computer-based engineering
team.

Early in the HP 64700 product definition phase we
realized that expanding the product definition to include
the requirement of host independence would free the prod
uct from dependence on a particular computer or operating

Fig. 1 . These HP 64742 A Emulators for the MC68000 micro
p rocesso r a re members o f t he HP 64700 Ser ies . They a re
ava i lab le wi th DIP or PGA cabl ing. HP 64700 emulators are
hos t independent and can opera te w i th works ta t ions or per
sonal computers.

DECEMBER 1988 HEWLETT-PACKARD JOURNAL 45

© Copr. 1949-1998 Hewlett-Packard Co.

system and broaden the environment in which it could
function effectively. At the lowest level, host independence
implies a totally self-contained microprocessor emulation
vehicle. The emulator contains its own local controller,
which has sufficient on-board operating software to relieve
the remote computer of all base-level control functions.
All commands to the new HP 64700 Series emulators are
constructed from simple ASCII character strings.

The emulator communicates with its controller over a
standard-protocol, serial network. The world beyond its
RS-232-D/RS-422 port is understood to be an 80-character-
by-24-line "dumb" terminal. File transfers using industry
standard formats are accepted. Thus, any host computer
(or terminal) can control an HP 64700 Series product, mak
ing it useful for a variety of tasks, from code development
through field service applications.

Host independence also means that the product can be
used as easily with workstations such as the HP 9000 Series
350, with mainframe computers such as the DEC VAX, and
with personal computers, such as the HP Vectra PC. Any
cross-development software that produces an industry
standard file format can create object files for use by HP
64700 systems.

The initial product offering consisted of four products:
the HP 64742A/L 68000 Emulator, the HP 64753A/L Z80
Emulator, the HP 64764A/L 80186 Emulator, and the HP
64765A/L 80188 Emulator.

Follow-on products include emulators for the 8086/8088
microprocessor families and popular microcontrollers.
Table I is a listing of microprocessors and microcontrollers
supported at the time this article appears. Fig. 1 is a photo
of the HP 64742A Emulator.

Table I
HP 64700 Series Emulators

Emulation
Before going any further it might be instructive to review

what an emulator is and how it operates. Fig. 2 is a block
diagram of the major components of the emulation system.
Every emulator contains a duplicate of the processor that
is being emulated, which is called the target processor. The
system being designed around the target processor is called
the target system. The emulation processor resides on the

run control board within the emulator and is connected to
the processor socket in the target system via line driver
buffers and a target system cable. The emulation processor,
typically a high-speed version of the target system proces
sor, forms the core of the run control board. Surrounding
the emulation processor are basically three functional cir
cuit blocks:
â€¢ Run control
â€¢ Memory and memory mapping
â€¢ Analysis bus interface.

The run control circuitry controls the operation of the
emulation processor so that the user can always maintain
control of the emulator. Since each microprocessor has a
different internal architecture, the run control circuitry
must be tailored to provide the interface to the host control
system. Run control affects operations such as single-step
ping, sharing interrupt signals with the target system, sig
naling the analyzer, keeping the host controller aware of
the status of the emulation processor, and so on.

The emulator contains its own internal emulation mem
ory, which can be used as a substitute for the memory,
RAM, and ROM that will eventually be in the target system.
This memory can be located anywhere in the address space
of the emulation processor. Mapping of the memory and
its designation as RAM, ROM, or guarded are handled by
the mapping circuitry, which provides a translation func
tion between the address being output by the emulation
processor and the address being supplied to the emulation
memory array.

The analysis bus interface provides the link between the
signals traversing the address, data, and status buses of the
emulation processor, the emulation bus analyzer, and the
state/timing analyzer. The analyzers will be discussed later
in this article.

Two other system blocks, the host controller and the
analysis system, are not shown in Fig. 2. The host controller
works with the run control system, memory subsystem,
and analysis system to provide the coordination of all the
complex tasks going on within the emulator. It interfaces
with the user to convert commands to proper operational

Analysis
Bus

Interface

" s ' o o
Ã: = c o
o Â£ u - g

0 e n
1 <

Address. Data.
Status Cable

Driver
and

Receivers

Cable to

Target

Emulation Bus

Run Control
and Processor To Host

Fig. 2 . Major components o f the emulat ion system.

46 HEWLETT-PACKARD JOURNAL DECEMBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

sequences. The host controller also interfaces indepen
dently with the state timing analyzer, emulation bus
analyzer, and memory subsystems. This enables the host
controller to communicate with emulation memory and
read and write to it while the emulation processor con
tinues to run the user's code. Likewise, the state timing
analyzer or the emulation bus analyzer can be set up or
unloaded without stopping the emulator. This type of ar
chitecture is called dual-bus, referring to the two indepen
dent processor buses (emulation and host control) within
the emulator.

Design Goals
As stated earlier, the entire R&D team undertook an ex

tensive series of customer visits. The purpose of these visits
was to focus on the features that were most important to
users of microprocessor emulation systems. The two most
important features were ease of use and transparency.

Every engineer wants products that are easy to use. The
key for a design team is to make the product operate in a
straightforward manner without compromising the func
tionality needed to solve complex measurement problems.
Functionality, at least for development systems, has two
aspects. First, the emulator must provide a comprehensive
set of system analysis and processor control functions. Sec
ond, as important as the feature set is the transparency of
the emulator. An emulator is supposed to behave as if the
target microprocessor chip is plugged into the socket in
the user's target system. When the performance of the
emulator differs from how the target microprocessor would
behave, then the transparency of that emulator is com
promised.

The HP 64700 emulators have the same high degree of
transparency as their predecessors. For the initial HP 64700
products, in-circuit operation is full-speed, with zero wait
states in the target system or emulation memory. For the
Z80, this is 10 MHz, and for the 80186/88 and the 68000,
12 MHz.

Special care was taken to match the timing and paramet
ric performance of each emulator to those of the target
processor. Operation from power-on or system reset is con
sistent with the target processor chip. Overall, care was
taken to see that when differences do occur, as they must
in some design environments, the HP 64700 Series per
forms in a manner consistent with a user's expectations.

To meet the ease of use and transparency design goals

for the HP 64700 Series, it was necessary for the design
team to address three critical areas: a new architecture for
the emulation subsystem, a new chassis configuration, and
new cabling technology.

System Architecture
Many possible architectures can be employed in

emulator design. The HP 64700 Series uses a dual-bus ar
chitecture (Fig. 3), with a foreground or background monitor
to permit the user to control the microprocessor emulation
in the target system.

The dual-bus architecture has been the heart of the HP
64000 family of products since its introduction in 1979.
What makes the architecture of the HP 64700 Series new
is the addition of the hybrid monitor. The hybrid monitor,
residing either in foreground or background, is a major
departure from the original HP 64000 family design.

The monitor is the control program that the emulation
microprocessor is running when it is not explicitly running
the user's program. The monitor program is very similar
to the small programs often supplied with single-board
computers. Typically 2K to 3K bytes in size, the monitor
handles reading and modifying memory, internal registers,
I/O ports, and so on.

Single-stepping and software breakpoints are also han
dled by the monitor program. While the use of the monitor
is easily understandable, its integration within the emu
lator plays an important role in the emulator's range of
useful applications.

Complex applications typically require the use of a fore
ground monitor. This monitor is a block of code that runs
in the same address space (foreground) as the user's own
program. It is linked with the user's run-time code at assem
bly time so that when control of the emulation processor
is switched from the user program to the monitor program,
real-time system events can still be serviced. These events,
such as multiple interrupts and watchdog timers, are very
difficult to handle properly with other monitor implemen
tations. The foreground monitor is often the architecture
of choice for complex multitasking environments.

Background monitors are easier to use when trying to
get a new design off the ground. The monitor is present in
a background or shadow memory, and control is transferred
to this monitor by remapping (called "jamming") the
monitor instructions from the background address space
directly to the emulation processor. This type of monitor

Memory
Mapper

Emulation
Memory

Target System

E m u l a t i o n E m u l a t i o n
Memory

Bus

Ã Logic Analyzer
Probe

External
State/Timing

Analysis
Datacom

Coordinated Measurement Bus

User
Host

Logic Analyzers,
Scopes, Other

Instrumentation

HP 64000-UX
Emulators,
Analyzers

Other
HP 64700

Series
Fig. 3. HP 64700 emulator system
architecture.

DECEMBER 1988 HEWLETT-PACKARD JOURNAL 47

© Copr. 1949-1998 Hewlett-Packard Co.

makes no assumptions about the user's environment. The
emulation processor can always enter the monitor when
instructed to do so. Problems arise from this architecture
when it becomes necessary to keep a user's target system
alive while the emulator is running in background. The
new HP 64700 emulators, such as those for the 8018X and
68000 processors, solve this problem by offering the best
of both worlds. Once the user answers a simple configura
tion question, either the emulation system will operate
with the monitor in background, or by assembling and
linking the monitor with the run-time code, the user will
have the advantages of a foreground monitor. A more com
plete discussion of foreground and background monitors
can be found in reference 1.

Cabling
In keeping with the twin goals of transparency and ease

of use, the design of the cable to the target system became
a major focus. The cable has to be small, light, flexible,
and long, so the user can plug it into a target system where
the microprocessor socket is not readily accessible. The
signal that starts at the emulator and exits at the target
system must look like the signal that would be present if
the target processor chip itself were present. Since these
cables experience a great deal of mechanical stress over
the life of the product and its application in target systems,
they have to be rugged.

We approached this design task in two ways. A member
of the team did an experimental and theoretical study of
the electrical performance needed for the emulator to meet
its design goal. The objective was to make the signal fidelity
in the cable essentially independent of the length of the
cable. Another team was working with an outside cable
manufacturer to realize the mechanical features needed in
the cable.

The length of the cable is important because in the major
ity of real-world target systems, the microprocessor socket
is not easily accessible to the emulation cable, and it isn't
always possible, either mechanically or electrically, for the
user to have a convenient extender card with the processor
socket easily accessible. Since the transit time through the
cable is set by the speed of light, the length of the cable
for each emulator is set by the maximum operating speed
of the processor being emulated and its timing require
ments.

A cable design evolved that borrows heavily from exist
ing oscilloscope technology. However, an oscilloscope typ
ically has between two and eight signals to deal with. The
Motorola 68000 microprocessor has 64 pins, of which
roughly 60 must maintain high signal fidelity. The cable
technology is considered proprietary, so further details can
not be given here. However, the results are easily demon
strated.

Fig. 4 illustrates the signal fidelity achievable with the
new cable technology. Fig. 4a is the trace from a signal
propagating along a standard ribbon-type cable, 12 inches
long, of the type commonly used for connection to a target
system. The upper trace is the source end and the lower
trace is the exit end of the cable. It is clear that the lower
trace exhibits significant undershoot and ringing. Signals
such as this would probably lead to erroneous data and

inconsistent performance, since correct operation would
depend upon how much design margin was available in
the user's target system. Fig. 4b is a 1.5-meter length of the
controlled-impedance cable used in the HP 64700 Series.
The signal fidelity is vastly superior, although some degree
of rise time degradation does occur. Since each cable used
within the HP 64700 Series is optimized for full-speed
operation of the processor in the target system, the effects
of cable propagation delay and rise time degradation can
be minimized. Also, the clock signals to and from the pro
cessor are buffered at the target end of the cable with a
small, surface-mounted line driver circuit. In processors
such as the Z80, 8086, and 68000, this is not absolutely
essential since these processors do not have their own in
ternal oscillator circuitry. The 80186 processor does have
an on-chip oscillator that would not function at all if it
needed to drive the added capacitance of the cable. In this
case, the buffer circuitry provides the oscillator function
and drives a clean signal back to the emulator. With this
design a Z80 emulator can operate at 10 MHz with no wait
states with a one-meter-long cable. The shortest cable of
the initial products is 18 inches long, and is designed to
be used with an 80186/80188 processor operating at clock
speeds up to 16 MHz.

Achieving these levels of performance results in a cable
that is expensive to manufacture and test. This would trans
late to customer dissatisfaction with the product if this

3 0 . 0 0 0 n s e c

C h . 1 - 2 . 0 0 0 v o l t s / d i v
C h . 2 = 2 . 0 8 0 v o l t s / d i v
T i m e b a s e = 1 0 . 0 n s e c / d i v

O f f s e t = 2 . 0 0 0 v o l t s
O f f s e t = 0 . 0 0 0 v o l t s
D e l a y = :ec

3 0 . 0 0 0 n s e c

(b)

C h . 1 = 2 . 0 0 0 v o l t s / d i v
C h . 2 = 2 . 0 0 0 v o l t s / d i v
T i m e b a s e = 1 0 . 0 n s e c / d i v

O f f s e t = 2 . 0 0 0 v o l t s
O f f s e t = 0 . 0 0 0 v o l t s
D e l a y = 3 0 . 0 0 0 n s e c

Fig . 4 . (a) S igna ls a t the source end (upper t race) and ex i t
end (lower t race) o f a s tandard r ibbon- type cable 12 inches
l ong , (b) S igna l s a t t he sou rce end (uppe r t r ace) and ex i t
end (lower t race) of a 1 .5-meter length of the contro l led- im
pedance cab le used in the HP 64700 Ser ies .

48 HEWLETT-PACKARD JOURNAL DECEMBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

performance led to a mechanically fragile cable design.
Considerable effort also went into making the cable
mechanically rugged and flexible. During the product's de
velopment, a special test fixture was designed to flex the
cable through thousands of bending cycles, typical of how
these cables are stressed in real environments.

Chassis
During our customer visits we found that one of our

customers had suspended an HP 64000 Development Sys
tem from the ceiling by steel cables to get it close to the
target system processor, which was located in the topmost
circuit card in a six-foot-high equipment bay. The HP 64000
is about the size of a large workstation computer and this
was obviously not optimal for mechanical, safety, and con
venience reasons. Thus, we saw the need for a chassis that
could be easily brought close to the system under develop
ment.

The chassis for HP 64700 Series emulators is designed
for minimum size. Holes are placed around the perimeter
of the chassis to hold two handles, which can be used for
standing or suspending the emulator closer to the target
system (see Fig. 5). These handles, dubbed the "skyhooks"
by a member of the design team, permit the emulator to
adjust to any desired mechanical configuration.

Data Transfer
Since the HP 64700 Series uses an industry-standard

serial interface structure, the speed at which files and infor
mation can be exchanged between the emulator and the
host computer is a significant issue. The HP 64700 can
transmit and receive files at burst rates up to 450 kilobaud
using the synchronous RS-422 channel (imbedded in an
otherwise standard RS-232-D port) with hardware hand
shaking. However, raw bandwidth is useless unless it can
be coupled with an equally fast method of loading the files
into the processor's memory space. This file transfer link
has been optimized so that a realizable system transfer rate
in the range of 100 to 150 kilobaud is obtained. This in
cludes the overhead of file formats and file error correction
software. Actual file transfer rate measurements have been
made. A 256K-byte file was repeatedly downloaded to the
emulation memory of each of the HP 64700 emulators.
Table II lists the transfer times for three of the initial prod
ucts.

Table I I
HP 64700 Series Emulator 256K-Byte File Transfer Time

Emulator Time (seconds)

H P 6 4 7 5 3 A (Z 8 0) 1 4
H P 6 4 7 6 4 A (8 0 1 8 6) 2 0
H P 6 4 7 4 2 A (6 8 0 0 0) 2 6

However, it should noted that this is a special 8-bit binary
transfer mode. Files in ASCII or hexadecimal format would
load at approximately one half to two thirds of these rates.
Buffered interface circuits are currently being designed for
use with the HP 9000 Series 300 and HP Vectra Personal
Computers (IBM PC/AT compatibles) so that the maximum
download speed capabilities can be realized.

O p e r a t i n g M o d e s
An additional RS-232-D interface is also included with

the emulators. This second port allows the emulator to be
operated, together with a terminal, from a single drop of a
mainframe computer, or in conjunction with a PROM pro
grammer. The HP 64700 emulator can be placed in a pass-
through mode so that the terminal can effectively com
municate with the host computer. When the appropriate
escape sequences are given, the emulator will intercept
and execute those commands intended for it. The transpar
ent mode also allows several emulators to be serially con
nected to each other and to a single host control port. After
each emulator is assigned a unique serial address code, it
can then be individually controlled by the host.

An emulator can be used in a stand-alone mode, that is.
without target hardware. Used this way, it is much like a
single-board computer. The stand-alone mode is a very
efficient way to develop the embedded code that the final
product will eventually be controlled by, even though it
may be too early in the design cycle for any real target
system hardware. Eventually, of course, it becomes neces
sary to begin turning on the target system hardware and
integrating it with the various software modules that have
been and still are being developed for it. At this point the
emulator must be able to plug into the target system and
substitute for the microprocessor that will be used in the
final product.

Analysis
An important feature of the HP 64700 Series is the power

of its internal emulation bus analysis and external state
and timing analysis. The heart of the analysis system is
the logic analyzer on a chip used in the HP 165X family
of logic analyzers.2 Internal analysis of the emulation pro
cessor's address, data, and status buses is a standard fea
ture, and an additional 16 external channels of 25-MHz
state analysis and 100-MHz timing analysis are available
as an option. The external channels can be either tightly
or loosely coupled to the internal channels, depending

Fig. 5. Handles at tach to the HP 64700 emulator chassis for
s tanding or suspending the emulator c lose to the target sys
tem.

DECEMBER 1988 HEWLETT PACKARD JOIJRNAI 49

© Copr. 1949-1998 Hewlett-Packard Co.

upon the requirements of the measurement.
The features and applications of the HP 64700 internal

analyzer include:
â€¢ Eight levels of sequencing for complex program flow

tracking
â€¢ Address, data, or status range resources
â€¢ Prestore queue for variable access tracking
â€¢ Time tagging for instruction execution measurements
â€¢ 1024-state-deep memory (512 states with time tagging)
â€¢ Powerful set of store qualification resources
â€¢ Selectable trigger resources
â€¢ Code coverage memory for reliability metrics.

Environments
An emulator is only one part of a microprocessor de

velopment system. Also required is a comprehensive soft
ware environment that will support the microprocessor of
choice. The HP 64000-PC Personal Integration Environ
ment provides the required environment. Since the
hardware is host independent, any assembler or compiler
that can output one of several industry-standard object file
formats, such as Intel Hexadecimal File Format, Motorola
Hexadecimal S-Record File Format, Extended Tektronix
Hexadecimal File Format, and Hewlett-Packard Absolute
File Format, can be used. However, to access the complete
development system environment the user is encouraged
to use software tools that also produce compatible symbol
table information for use by HP-approved, high-level de
buggers and HP-supported interfaces.

The supported interfaces, initially targeted for HP Vectra
Personal Computers and HP 9000 Series 300 workstations,
provide a window environment for code development and
hardware/software integration. On the HP Vectra PC, the
window environment is coupled with an inverted-tree
command line structure. The inverted-tree structure is the
interface most familar to users of the popular spreadsheet
programs. This structure allows complex measurement se
quences to be constructed from ever-descending levels of

options until the final structure of the command is estab
lished. At each level a brief explanation line is provided
for each command option. The user selects the option pos
sibilities using the cursor keys or the first letter of the
command option. This type of interface is often called
noun-driven, since only noun descriptors are used to
traverse the tree.

Windows can be set up and customized for various infor
mation displays. Register information, memory contents,
high-level source code, assembly code, and analyzer trace
information can coexist in different windows and be called
up for full display. In addition, a terminal window can be
invoked. This window allows direct access to the host in
dependent, ASCII command set of the HP 64700 system.
Fig. 6 shows this user interface for an MC68000 emulator
(HP 64742A).

One of the most challenging chores for the user is the
proper structuring of the triggering, tracing, and storing
conditions required to build complex measurement struc
tures. The window interface opens up to reveal a straight
forward menu construct. Simply filling in the menu fields
automatically builds the analyzer's measurement se
quence.

On HP 9000 Series 300 Computers the interface is mod
eled after the original HP 64000 syntax-directed softkey
structure. This consistency permits an HP 64700 Series
emulator to operate from the same environment as a com
panion HP 64000-UX emulator.

Mult iprocessor Emulation
Multiprocessor systems are becoming the norm, rather

than the exception, in the design of products with embed
ded microprocessors. Industrial robots, telecommunica
tions networks, and aircraft are just a few examples of such
applications. The HP 64700 Series contains a special mea
surement and control structure called the coordinated mea
surement bus, or CMB. The CMB interface is a 9-pin D-type
connector on the rear of the instrument. Up to 32 emulators

tne nax_disc 7
ine true 1

tort displayÂ» Â« <MX_4i*c * 1) Â« 16);
tatic int nun discs, delay;
tatic int free levelO];

1 11H HHflfl HHNn HMMH HnHn HHflfl Rnnn Rill
11BB BBBB BBBB BBBB BBBB BBBB BBBB BB11
1CCC CCCC CCCC CCCC CCCC CCCC CCCC CCC1
DDDD DDDD DDDD DDDD DDDD DODO DDDD DDDD
1111 1111 1111 1111 1111 1111 1111 1111

8812SC ADDQ.L Â«4, ft?
88125Ã̈ HOUE.U MMc[A6),-[A?l
881260 898c supr pros

8.488 uS
8.528 uS
8.488 uS

! > T A T I Ã Ã - M M R u n n i m j u s e r I T - , -
Systen Register Processor Breakpoint* Hmoi'y Config Analysis

A c t i v e D e l e t e E r a s e L o a d O p e n S t o r e U t i l i t y Z o o * F ig . 6 . Use r i n te r f ace f o r an HP
6 4 7 4 2 A E m u l a t o r , s h o w i n g t h e
window capabi l i ty .

50 HEWLETT-PACKARD JOURNAL DECEMBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

C o m m u n i c a t i o n s
T o F r o m H o s t

Fig. 7. Emulation in a robotics appl icat ion of a mult iprocessor
array.

can be connected via this port, using inexpensive insula
tion-displacement ribbon cable, with a total separation dis
tance of 50 meters. The CMB allows any grouping of
emulators to participate in a coordinated measurement.
This measurement can include synchronous starts and stops,
internal or external analyzers coupled to multiple trigger
sources, or triggering by activity occurring at another, re
mote emulator. Each emulator can be controlled by the
same host computer or by independent hosts. Thus, for
example, in a system with multiple processors accessing
a common memory, fault conditions leading to an errone
ous data transfer can be traced by triggering the analyzers
of the two emulators at the detection of the fault, using the

external state timing analyzer to look at bus activity, and
breaking the emulators to the background state to prevent
any system or code corruption.

Fig. 7 is a simplified schematic diagram of one possible
multiprocessor configuration, a complex industrial robot
ics application. The robot has communications links that
allow it to share status and task programming information
with other computers. Usually, satellite processors handle
the peripheral chores, while a powerful central processor
such as a 32-bit 68020 coordinates overall operation. In
the example shown, each peripheral processor (such as an
80186) is replaced by a separate HP 64764A/L Emulator.
These emulators are linked to each other via the CMB and
to a 68020 emulator via the CMB/IMB link in the HP 64120A
card cage. The entire system is controlled by an HP 9000
Model 350 workstation computer, and each emulator ap
pears as a session on the high-resolution display. The HP
64120A card cage is linked to the Model 350 via the HP-IB
(IEEE 488/IEC 625), and the HP 64700 emulators communi
cate via the RS-232-D/RS-422 serial link. With this config
uration, some or all of the processors can be started or
stopped simultaneously. Program flow events occurring in
one part of the system can trigger analyzers somewhere
else and perhaps shut down the system to prevent damage
from, say, a robot arm out of control.

Acknowledgments
I would like to thank the members of the HP 64700

hardware team â€” John Hansen, Stan Bowlin, Don Logelin,
Steve Peurifoy, Steve Kootstra, Jim Majewski, Bobby Self,
Mike McCarthy, Bob Wardwell, and Andy Rodgers â€” for
their creative efforts in making this product family a reality.
Brad Harper and Bob Dockey helped to make the emulators
manufacturable and, ultimately, sellable. Also, I want to
thank Bill Fischer for helping to keep the sometimes tenu
ous hardware/software interface under control. Finally, I
want to thank John Romano for providing an atmosphere
that encouraged creative and outspoken engineers to do
their best work.

References
1. A.S. Berger, "Foreground/Background Monitor Increases De
velopment-System Transparency," Persona/ Engineering and in
strumentation News, Vol. 5. no. 2, 1988, p. 39.
2. Electronic Products, August 15, 1987.

DECEMBER 1988 HEWLETT-PACKARD JOURNAL 51

© Copr. 1949-1998 Hewlett-Packard Co.

Host Independent Emulator Software
Architecture
Bui l t into the f i rmware of the HP 64700 Ser ies host
independent emulators is an ent i re microprocessor
development system.

by Wil l iam A. Fischer, Jr .

FOR A MICROPROCESSOR EMULATOR, the system
software is a significant portion of the overall design.
HP 64700 Series emulators have, for the first time,

an entire microprocessor development system built into
firmware. This firmware lays the groundwork for future
emulator design.

When a silicon manufacturer releases a new micropro
cessor, it is important that emulation support be available
in a timely fashion. The present HP 64000-UX Advanced
Integration Environment offers more than 40 different mi
croprocessor emulators. A flexible software architecture
was developed for the HP 64700 Series that also supports
many different emulators. This article will discuss the HP
64700 software architecture. It will be shown how the soft
ware architecture improves the emulation development en
vironment and how users benefit with easy-to-use, flexible
emulation interfaces.

Software Architecture Overview
The HP 64700 software has a layered architecture. The

layers consist of the processor specific drivers, the generic
firmware, the terminal interface, the RS-232-D/RS-422 com
munication channel, the programmatic interface, and the
host interface (see Fig. 1). The software layers have well-
defined interfaces that permit easy communication be
tween layers. These interfaces facilitated design and im
plementation without unnecessary concern for the detailed
design of the other software layers.

The system design started with the terminal interface.
The requirement for host independence (see article, page
45) necessitated development of an easy-to-use interface
that connects to a simple ASCII terminal. The needs of the
terminal interface user were some of the key system design
concerns.

The terminal interface is supported by the generic and
processor-specific firmware layers. The generic firmware
layer is used by all emulation products. The processor-spe
cific layer customizes the emulation product for a specific
microprocessor. The terminal interface firmware is primar
ily generic, but commands for specific processors can be
added.

The user interface residing on the host computer makes
use of the terminal interface to perform its functions. Some
terminal interface commands use an option mode to im
prove system performance by reducing the information
passed over the RS-232-D/RS-422 communication channel.

The programmatic interface is the layer between the ter

minal interface and the host user interface. It resides on
the host computer and consists of a library of C function
calls that access the entire functionality of the emulation
system. The programmatic interface is ported to multiple
hosts and allows connection of user interfaces of different
flavors including high-level software debuggers.

Terminal Interface
The terminal interface provides for communication be

tween the emulation system and the outside world. Termi
nal interface commands are designed to be atomic, each
performing only one function. Command names are one to
five characters in length and form easily remembered
mnemonic abbreviations of the emulation functions. Com
mand options provide extra flexibility for the command
functions. Command operands are used when additional
data is required by the function.

For example, to display registers the simple command
reg is used. With no operands, the command displays the
entire register set. A single register can be displayed by
following the command with an operand, the register name,
as in reg pc. To modify a register the command might be
used as follows: reg pc=lOOh.

The terminal interface command set consists of nearly
100 commands. Almost half of these commands are used
to access the functionality of the emulation analyzer (see
article, page 45). The other commands provide functionality

Host User Interfaces

Programmatic Interface
Host

Computer

RS-232-D/RS-422
Communication
Channel

Terminal Interface

Generic Firmware

Processor-Specific
Firmware

Emulator

F ig . 1 . The HP 64700 emu la to r so f twa re has a l aye red a r
chitecture.

52 HEWLETT-PACKARD JOURNAL DECEMBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

for memory display, software breakpoints, emulation mem
ory and target memory loading, stepping, running, and sys
tem functions.

To help the user with the sheer number of commands
that must be remembered, the HP 64700 terminal interface
contains an extensive help system. The help system pro
vides detailed descriptions and uses for all commands.
User access to the commands is simple and hierarchical
so that users can work their way from generic help, through
a listing of command groups, and finally to more thorough
help for an individual command. See Fig. 2 for a display
of help commands.

Terminal interface system commands are also available
for displaying the time and date, controlling the communi
cation port, and running performance verification tests.
The HP 64700 Series also allows the user to define system

macros, groupings of commands that can be executed by
a user-defined name.

Firmware Structure
The firmware consists of generic core code and a set of

processor-specific drivers and functions. This division al
lows easy partitioning of firmware tasks. The generic core
code is universal. Only the processor-specific functions are
developed for each new emulator. This minimizes the over
all development time for a new microprocessor emulator.

The goals of the firmware design were to create maximum
flexibility in the generic core code, total isolation of the
processor-specific functions, and minimization of the pro
cessor-specific functions. Maximum flexibility allows the
system to accommodate emulation of most conceivable
types of processors. The total isolation of processor-specific

R>help

help - display help information

help <group>

help -s <group>

help <command>

help

- print help for desired group

- print short help for desired group

- print help for desired command

- print this help screen

-- VALID <group> NAMES ---

gram - system grammar

proc - processor specific grammar

sys - system commands

emul - emulation commands

* - all command groups

R>help emul

emul - emulation commands

b break to monitor

be break condition

bnct. . .bnct signal

bp breakpoints

cf configuration

cim. . . .copy target image load. . .load emul memory

cmb. . . .CMB interaction m memory

cmbt. . .cmbt signal map. . . .memory mapper

cov. . . . coverage

cp copy memory

dump. . .dump memory

es emulation status

io input/output

mo modes

r run user code

reg. . . . registers

rst reset

rx run at CMB execute

s s t e p

ser. . . .search memory

x. . . .emit CMB execute

R>help m

display or modify processor memory space

m <addr>

m -d<dtype> <addr>

m <addr>. .<addr>

m -dm <addr>. .<addr>

m <addr>. .

m <addr>=<value>

display memory at address

display memory at address with display option

display memory in specified address range

display memory mnemonics in specified range

display 128 byte block starting at address A

modify memory at address to <value>

m -d<dtype> <addr>=<value> - modify memory with display option

m <addr>=<value> , <value> - modify memory to data sequence

m <addr>. .<addr>=<value>,<value> - fill range with repeating sequence

- VALID <dtype> MODE OPTIONS -

w - display size is 2 byte(s)

b - display size is 1 byte(s)

1 - display size is 4 byte(s)

m - display processor mnemonics

Fig . 2 . A typ ica l HP 64700 h ierar
chical help faci l i ty d isplay.

DECEMBER 1988 HEWLETT-PACKARD JOURNAL 53

© Copr. 1949-1998 Hewlett-Packard Co.

functions means that the firmware for a given emulator
resides by itself in ROM on the processor-specific hardware
board and that the functions are separately compiled. Most
of the functionality of the firmware is in the generic code,
reducing the quantity of processor-specific code needed
for a new emulator.

The generic commands can be extended. An emulator
may need a special command not developed in the original
design. The processor-specific firmware can insert a new
command into the generic command set or a host interface
can download new commands via RS-232-D/RS-422. This
makes the firmware extremely flexible for future but yet
unknown emulation requirements.

Separating the generic core functionality from the proces
sor-specific functionality means that the basic emulation
functionality is handled by the generic core code, which
makes calls to low-level drivers that are resident in the
emulator ROM. The generic core code handles the parsing
of commands and the basic emulator control. Calls are
made to the processor-specific drivers whenever communi
cation with the emulation hardware is needed to complete
a function. For example, the user enters a command to
display memory (m O..20h). The generic core code parses
the command and passes the ASCII string (O..20h) to an
emulation function that converts the string to an actual
address. The generic core code then passes the address to
a processor-specific function that interacts with the emula
tion hardware to read memory and return the memory val
ues. The generic core code will then display the value in
the proper format.

The processor-specific functions are accessed through a
table consisting of function calls. Other tables provide in
formation about processor-specific registers, configuration
items, the memory mapper, and error code information.

The data structures are also separated into generic and
processor-specific pieces of information. Because of pro
cessor differences, each requires processor-specific data
structures. Some of these processor differences include ad
dress, data, and registers. Functions that must differ for
each emulator include emulation status, configuration, and
miscellaneous functions.

Address
Physical address ranges differ widely with processor

types. For example, the Zilog Z80 microprocessor has a
16-bit address range, the Intel 8086 has a 20-bit address
range, and the Motorola MC68000 has a 24-bit address
range. In addition, address mnemonics differ. The Intel
family uses a segmentoffset structure while the Motorola
family uses a linear address space. Also, some processors
like the MC68000 and the TMS 320C25 use the concept of

multiple address spaces. For example, the MC68000 uses
function codes to distinguish between user and supervisor
space. These function codes become a logical extension to
the address. See Fig. 3 for specific examples.

To handle the varying complexities of processor address
es, the concept of an address object was developed. An
address object is a processor-specific structure that repre
sents a location in the processor's address space. The ad
dress object structure contains all the pertinent information
about that processor's address (see Fig. 4). The generic
firmware never handles a specific address type but instead
only passes pointers to these address objects. The lower-
level processor-specific drivers interpret the address, trans
lating ASCII string to address object, address object to ASCII
string, address object to physical address, physical address
to address object, or program counter to address object as
appropriate. Adding an integer to an address object is
another lower-level driver function.

Data
Data sizes also vary between processors. The MC68000

can access data lengths of 1, 2, or 4-byte words. The Intel
8086 can access data as 1 or 2 bytes but the data must be
displayed in a swapped order compared with the MC68000.
Since most processors access data as multiples of single
bytes, data input and display are handled generically as
an array of bytes. The ordering of the byte data for display
and interpretation is left up to the processor-specific func
tions to specify for the particular processor being emulated.

It is also important to control the type of cycle that is
used to access the data. The 8086, for example, can access
data as bytes or words, and it may be necessary for
peripheral devices to see the proper type of data access.
The mode (mo) command is used to select the access mode
for data. The options of this command are processor-spe
cific and are handled in the drivers that access the data.
These processor-specific access modes are defined in one
of the processor-specific tables.

Similarly, it is important to display the data in the form
that is most understandable to the user. Typical ways of
displaying data are in bytes, words, or mnemonics. Again,
the mode command is used to set the default for these
processor-specific attributes. Alternatively, commands
such as memory (m) and search memory (ser) permit the
user to input an override option to change the display mode
for that command and the default.

Registers
Every processor has its own set of registers. The register

names vary, as do their lengths and functions. In addition,
the registers may be read only, write only, or read-write.

Processor

Z80

MC68000

80186

TMS320C25

Address Example

1000

10000@sp

1000:23a5

1000@p

Address Type

linear

linear with function codes

segment : of f set

linear with function codes

note: (3 indicates function code follows

sp = supervisor program space for the MC68000

p = program space for TMS320C25

F ig . 3 . Add ress rep resen ta t i ons
for var ious processors.

54 HEWLETT-PACKARD JOURNAL DECEMBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

Some can reside in memory and others in I/O space.
Processor-specific tables are created for each emulator

that fully define the valid register names, sizes, read/write
status, and register grouping information.

Configuration
Each emulator requires a different set of configuration

parameters. These configure the emulation hardware to
provide the type of functionality that the user wants. Users
need to decide if they want to use the target system clock
or the internal emulation clock, or they might need to
switch between a foreground monitor and a background
monitor (see article, page 45). These configuration parame
ters are extremely important for normal functionality, and
provide the flexibility for an emulator to work in a wide
variety of target systems.

Each emulator establishes its own table of function calls
for configuration parameters. The table contains the config
uration name, the function to be called for that configura
tion, and the configuration help functions.

Status
An emulator must be able to control the transition to

various states and determine the state in which it is cur
rently residing. An emulator has three basic states: running
user code, running in monitor, and static reset. The method
each emulator uses to enter these various states can vary
greatly from a simple toggle of a control bit located at a
defined address in the controller's memory space to multi
ple writes to the hardware.

Determining the current status of an emulator may be as
simple as reading a single hardware status bit or as complex
as interrogating the monitor for detailed information. Pro
cessor-specific functions control the state transitions and
read the current system state.

A d d r e s s O b j e c t L e n g t h = 3
W o r d 1 = h i g h 8 b i t s o f a d d r e s s
W o r d 2 = l o w 1 6 b i t s o f a d d r e s s
W o r d 3 = f u n c t i o n c o d e

F ig . 4 . Address ob jec t s t ruc tu re fo r the MC68000 p rocessor .

Miscellaneous
Each processor has its own instruction mnemonics. An

inverse assembler is provided in firmware for each
emulator. Also, functions are provided for loading the emu
lation monitor, the code that actually communicates with
the target processor.

Host Interfaces
Host interfaces are programs resident on the host com

puter that provide the user's view of the HP 64700 Series
emulators. Because emulation control firmware is resident
in ROM on the emulator, it is reasonable and efficient to
develop multiple host interfaces for each emulator.

Currently, host interfaces are supported for two different
hosts: the HP 9000 Series 300 and the HP Vectra PC and
IBM PC/AT compatibles. Two different interfaces are sup
ported on the Series 300: an emulator interface using the
same syntax-directed softkey design as the original HP
64000 and a new high-level software debugger. The inter
face on the HP Vectra PC provides a friendly emulation
interface with a flexible windowing display system (see
Fig. 6 on page 50). A timing analyzer interface is provided
on the HP Vectra PC using a graphical display (see Fig. 5).
All host interfaces provide a syntax-directed command
structure, displays of emulator output, and an integrated
symbolic package.

Programmatic Interface
The programmatic interface is the starting point for all

host software. The programmatic interface is a library of C

Sanpie Period (180 ns] 1.888 us/diu 518.88 ns x to tine trig
Magnification I 4x1 Magnify about Ixl 8.8 us x to o
c u r s o r n o v e s [x l 1 8 . 8 8 n s / c l k

x o

* > _ _ _ \ Â ¿ â € ” f

Pod3â€”

Â«â€¢â€” > IJliTLTLitLr JllruTJTLnJTIlJUl
P o d S >

PotÃ³ > i

P o d ? > wmnnjir^^
PodB >

STATUS: H68880 â€” Running in Monitor
B e g i n H a l t S p e c S y s t e n U t i l i t y

Trace ConfÃete Fig. 5 . HP 64700 t iming analyzer
i n t e r f a c e (o r t h e H P V e c t r a P e r
sonal Computer .

DECEMBER 1988 HEWLETT- PACKARD JOURNAL 55

© Copr. 1949-1998 Hewlett-Packard Co.

function calls. A host interface program gains access to the
emulation system via these calls.

The programmatic interface provides functionality for
memory and I/O accesses, run control, register display and
modification, software breakpoints, the coordinated mea
surement bus, and error message control. The programmat
ic interface hides the emulator's functional idiosyncrasies
from the host interfaces. Thus, the designers of host inter
faces do not need to understand the complete emulator
behavior, greatly simplifying their task.

The programmatic interface also handles command and
error message synchronization. The HP 64700 emulators
will only respond with information such as data, an error
message, or a status message in response to an entered
terminal command. Updates of information are also re
turned after a null command (a simple carriage return).
The only time the user receives information without re
questing it is on power-up, when the copyright message and
emulator hardware configuration and firmware revisions
are sent. This methodology greatly simplifies the handling
of information returned from the emulator.

The information returned from the HP 64700 Series can
be either synchronous or asynchronous. A memory com
mand, for example, returns the contents of the requested
memory locations. If an invalid address is entered, an error
message is generated and displayed. Both of these informa
tion types are synchronous with the last command entered.

A software breakpoint command (bp) establishes a condi
tion that could result in the generation of an asynchronous
message. The software breakpoint command replaces an
instruction in the target memory space with the processor's
software trap instruction. When that trap instruction is
executed in the user's program, the control of the target
processor is transferred to the emulation monitor program.
The emulation control firmware, executing on the control
processor, determines that a software breakpoint occurred,
and a message is displayed indicating this. The software
breakpoint will most likely occur long after the original
software breakpoint command was entered. Because of this,
the software breakpoint message will be returned with data
from another command. This type of message is termed
asynchronous.

The status and error commands are separated into syn
chronous and asynchronous buffers by the programmatic
interface. Host interfaces can access these two buffers for
display and error evaluation purposes.

The programmatic interface, like the firmware, uses the
concept of an address object. The processor-specific depen
dencies are manipulated by a library that together with an
expression evaluator and a symbol package evaluates all ex
pressions of address objects. This permits the programmat
ic software to handle the expression in a generic fashion.

The programmatic interface also provides substantial
control of the HP 64700 emulation analyzer. The terminal
interface handles analyzer control with a large set of ele
mental commands. Simple analyzer control is easy, but
setting up a complex analysis sequence requires the user
to allocate all the analyzer resources manually. This re
quires an intimate understanding of the analyzer hardware
and its programming model. The programmatic interface
uses an expression tree with a validation function to deter

mine if the analyzer contains enough resources to perform
the measurement.

The programmatic interface also includes the communi
cation port drivers. For MS-DOS these port drivers control
the standard RS-232-D/RS-422 port on the HP Vectra PC
and provide high-speed communication at up to 460
kilobaud using a new buffered interface card (HP 6403 7A).
A communication port configuration file is read to associate
a logical emulator name with a physical communication
port on the host computer.

The PC Interface
The host user interface for PCs provides the user with a

friendly windowing environment. Commands are entered
by single keystrokes or command selection using the cursor
keys. The PC interface takes the commands from the user
and builds a set of data structures. These data structures
are passed to the programmatic interface. The program
matic interface validates the data structures and generates
the appropriate terminal interface commands. The com
mands are passed to the port drivers which send them to
the HP 64700 emulator via an RS-232-D/RS-422 communi
cation channel.

The data generated by the HP 64700 Series is received
via the RS-232-D/RS-422 drivers. It is then processed by
the programmatic interface and the data is put into data
structures. The PC interface translates the data structures
into ASCII for display in one of the windows.

Summary
The layered software interface for the HP 64700 emula

tors has succeeded in reducing the development time for
new emulation products. The software contains well-
defined interfaces that simplify software communication
between layers. The terminal interface layer provides a
host independent interface that is also used by all the host
interfaces. Incorporating the entire emulation functionality
in firmware has permitted easy development of more than
one host interface, providing an emulation system that can
be used as a hardware/software integration tool , a high-level
software debugger, or a timing analyzer.

Acknowledgments
Much thanks goes to the software architects who devoted

so many hours to the development of this system: Eric Kuzara,
Jeff Downs, Cheryl Brown, Beth Vail Jones, Mike Gardner,
Harold Shaw, Steve Warntjes, Rick Nygaard, Manfred
Arndt, and Todd Bailey. A special thanks is given to John
Romano who successfully guided us through this project.

56 HEWLETT-PACKARD JOURNAL DECEMBER 1988

© Copr. 1949-1998 Hewlett-Packard Co.

	A High-Speed Optical Time-Domain Reflectometer with Improved Dynamic Range
	Technical Risk Reduced by Joint Development Effort
	Complementary Correlation Optical Time-Domain Reflectometry
	Optical Component Design for a Correlation-Based Optical Time-Domain Reflectometer
	Signal-to-Noise Ratio for Detection Using a PIN Diode
	Data Processing in the Correlating Optical Time-Domain Reflectometer
	Optical Time-Domain Reflectometer User Interface Design
	Printing on Plain Paper with a Thermal Inkjet Printer
	Host Independent Microprocessor Development Systems
	Host Independent Emulator Software Architecture
	Expanded Memory for the HP Vectra ES Personal Computer
	LIM EMS 3.2 and 4.0
	Expanded versus Extended Memory
	Generalization of the Redfield-Kunz Treatment of Quadrature Phase Time Data

