
HP 64700 Emulators
Terminal Interface Analyzer

User's Guide

HP 64700 Emulators
Terminal Interface:
Analyzer User's Guide

Flio- HEWLETT
~~ PACKARO

Edition 1

64740-90909E1187
Printed in U.S.A. 11/87

Notice

Hewlett-Packard makes no warranty of any kind with
regard to this material, including, but not limited to, theim
plied warranties of merchantability and fitness for a par
ticular purpose. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in
connection with the furnishing, performance, or use of this
material.

Hewlett-Packard assumes no responsibility for the use or
reliability of its software on equipment that is not furnished by
Hewlett-Packard.

© Copyright 1987, Hewlett-Packard Company.

This document contains proprietary information, which is
protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to
another language without the prior written consent of Hewlett
Packard Company. The information contained in this document is
subject to change without notice.

AdvanceLink, Vectra and HP are trademarks of Hewlett-Pack
ard Company.

IBM and PC AT are registered trademarksofInternational Busi
ness Machines Corporation.

MS-DOS is a trademark of Microsoft Corporation.

UNIX is a registered trademark of AT&T.

Torx is a registered trademark of Cam car Division of Textron, Inc.

Logic Systems Division
8245 North Union Boulevard
Colorado Springs, CO 80918, U.S.A.

Printing History

New editions are complete revisions of the manual. The dates on
the title page change only when a new edition is published.

A software code may be printed before the date; this indicates the
version level ofthe software product at the time the manual was
issued. Many product updates and fIxes do not require manual
changes and, conversely, manual corrections may be done
without accompanying product changes. Therefore, do not expect
a one to one correspondence between product updates and manual
revisions.

Edition 1 11/87 64740-90909E1187

Using this Manual

This manual will show you how to use the HP 64700 series
analyzer with the fIrmware resident Terminal Interface.

This manual will:

• Briefly introduce the analyzer and its features.

• Show you how to use the analyzer in its simplest, power-up
condition. From there, it will progressively show you how and
why you would use additional trace commands.

• Show you how to use the external analyzer.

• Show you how to cross-trigger between the emulation
analyzer and the external analyzer.

• Show you how to specify analyzer clocks.

• Show you how to save the analyzer configuration in a COID

mandfile.

This manual will not:

• Show you how to use the analyzer with the PC Interface; this
is done in the HP 64700 Emulators PC Interface: Analyzer
User's Guide.

• Show you how to use the analyzer with the Softkey Interface;
this is done in the HP 64700 Emulators Softkey Interface:
Analyzer User's Guide.

• Describe all analyzer commands options in alphabetical order;
this is done in the HP 64700 Emulators Terminal Interface:
User's Reference.

• Show you how to use the external timing analyzer. Timing
analysis is only available when using host computer interfaces
such as the PC Interface or the Sotkey Interface. Refer to the
appropriate host computer interface Analyzer User's Guide.

• Show you how to cross-trigger the analyzers of multiple HP
64700 Series emulators over the Coordinated Measurement

Organization

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Bus (CMB); this is done in the HP 64700 Emulators Terminal
Interface: CMB User's Guide.

Introducing the HP 64700 Series Analyzer. This chapter lists
the basic features of the analyzer. The following chapters show
you how to use these features.

Getting Started. This chapter shows you how to use the
analyzer from its simplest power-up condition to making simple
sequence specifications.

Accessing Full Analyzer Capability. This chapter shows you
how to access and use the full power and capability of the HP
64700 Series analyzer (more powerful sequencing and the use
complex expressions).

Using the External Analyzer. This chapter shows you how to
use the external analyzer as part of the emulation analyzer or as
an independent state analyzer.

Making Coordinated Measurements. This chapter shows you
how to use the analyzer trigger condition to break the emulator

Chapter 6

and how to cross-trigger between the emulation analyzer and the
external analyzer.

Special Analyzer Topics. This chapter shows you how to name
and qualify analyzer clock sources. It shows you how to use slave
clocks to demultiplex data on analyzer trace signals. It also shows
you how to save and retrieve analyzer command specifications to
and from command files.

Contents

Chapter 1 Introducing the HP 64700 Series Analyzer

Overview ... 1-1
Analyzer Features 1-1

Simple Measurements 1-3
Trace Storage, Prestore, and Count 1-3
Sequencer .. 1-3
Simple Commands for Common Measurements 1-3
External Analysis 1-3
Coordinated Measurements 1-4
Other Features 1-4

Chapter 2 Getting Started

Introduction ... 2-1
Prerequisites .. 2-2
The Sample Program 2-2

Description of the Sample Program 2-2
Before You Can Use the Analyzer 2-5

Map Memory 2-5
Load the Program 2-6

Contents-'

Run the Program 2-6
The Default Trace Specification 2-6

Initializing the AnalyzerCtinit) 2-7
Starting the Trace (t) 2-7
Halting the Trace (th) 2-7
Displaying the Trace Status (ts) 2-7
Displaying the Trace (tl) 2-8

Expressions in Trace Commands 2-10
Tokens .. 2-10
Trace Labels 2-11
Predefmed Trace Labels 2-11
Values .. 2-11
Predefmed Equates for Emulation Analyzer Status 2-13
Expression Examples 2-14

Changing the Trace Format (to 2-14
Specifying a Simple TriggerCtg) 2-16

Specifying an Occurrence Count 2-18
Specifying Storage Qualifiers (tsto) 2-19
Prestoring States (tpq) 2-20

Qualifying Prestore States 2-20
TurningOffPrestore 2-21

Changing the Count QualifierCtcq) 2-22
Using the Sequencer (tsq) 2-23

Resetting the Sequencer (tsq -r) 2-24
The Default Sequencer Specification 2-24
Simple Trigger and the Sequencer 2-25
Primary and Secondary Branch Expressions (tif, telti) ... 2-26
Inserting Sequence Terms (tsq -i) 2-29
Deleting Sequence Terms (tsq -d) 2-29

Changing the Trigger Position(tp) 2-30
Tracing a Program as it Starts Up 2-32

Contents-2

Chapter 3 Accessing Full Analyzer Capability

Introduction ... 3-1
Prerequisites .. 3-2
''Easy'' and "Complex" Configuration Differences 3-2

Sequence Terms and the Trigger 3-2
Primary Branch Expressions 3-3
Secondary Branch Expressions 3-3
Storage Qualifiers . 3-3
Complex Expressions 3-3

Commands that Change in the "Complex" Configuration 3-7
The Sample Program 3-12

Before You Can Use the Analyzer 3-12
Switching into the "Complex" Configuration (tcf -c) 3-12
The Default Sequencer Specification (tsq -r) 3-13
Specifying a Simple Trigger (tg) 3-14
U sing the Sequencer in the "Complex" Configuration 3-16

Hints to Make Setting Up the Sequencer Easy 3-17
Tracing "Windows" of Activity 3-23
Isolating and Tracing Specific Conditions 3-28

Chapter 4 Using the External Analyzer

Introduction ... 4-1
Before You Can Use the External Analyzer 4-1

Connecting the Analyzer Probe Lines to the Target System 4-2
Specifying External Trace Signal Threshold Voltages 4-8
Defming External Trace Labels 4-8
Selecting the External Analyzer Mode ., 4-9

Aligned with Emulation Analyzer 4-9
Independent State Analyzer 4-10

Contents-3

Chapter 5

Chapter 6

Contents-4

Independent State Analyzer Commands (xt, xtarm, ...) ... 4-10
Specifying the Independent Analyzer Clock Source 4-11

Independent Timing Analyzer4-11
External Analyzer Specifications 4-12

Making Coordinated Measurements

Introduction ... 5-1
Specifying an Arm Condition 5-2
Driving Signals When the Trigger is Found 5-3

Breaking on an Analyzer Trigger 5-5
Cross-Arming Between Emulation and External Analyzers .. 5-6

Cross-Triggering . 5-7

Special Analyzer Topics

Introduction ... 6-1
Displaying Trace Activity (ta) 6-1
Specifying the Analyzer Clock Source (tck) 6-2

Tracing Background Execution 6-2
Selecting Clock Signals 6-3
Specifying the Maximum Qualified Clock Speed 6-4
Qualifying Clocks (tck -1, -h) 6-5

Using Slave Clocks for Demultiplexing (tsck) 6-6
Mixed Clocks 6-7
True Demultiplexing 6-9

Saving Trace Specifications in Command Files 6-9
Example ... 6-9

Contents-5

III ustrations

Figure 1-1. Block Diagram ofHP 64700 Series Analyzer 1-2
Figure 2-1. Pseudo-Code Algorithm of Sample Program 2-3
Figure 2-2. Sample Program Listing 2-4
Figure 2-3. The Default Sequencer Specification 2-24
Figure 2-4. Specifying Primary and Secondary Branches ... 2-27
Figure 3-1. "Complex" ConfIguration Sample Program 3-8
Figure 3-2. "Complex" ConfIguration Default Sequencer ... 3-14
Figure 3-3. Simple Trigger in "Complex" ConfIguration 3-16
Figure 3-4. Flowchart of Hypothetical Program 3-18
Figure 3-5. Drawing the Sequencer Diagram 3-20
Figure 3-6. Tracing a ''Window'' of Activity 3-24
Figure 3-7. Sequencer to Isolate Sample Program Bug 3-31
Figure 4-1. Assembling the Analyzer Probe 4-2
Figure 4-2. Attaching Grabbers to Probe Wires 4-3
Figure 4-3. Removing Cover to Emulator Connector 4-4
Figure 4-4. Connecting the Probe to the Emulator 4-5
Figure 4-5. Connecting Probe to the Target System 4-7
Figure 5-1. Coordinated Measurements 5-4
Figure 6-1. QualifIed Clocks 6-4
Figure 6-2. Mixed Clock Demultiplexing 6-6
Figure 6-3. Slave Clocks 6-7
Figure 6-4. True Demultiplexing 6-8

Contents-6

1

Introducing the HP 64700 Series Analyzer

Overview

Analyzer Features

This manual describes the HP 64700 Series analyzer. Each HP
64700 Series emulator contains an internal emulation analyzer.
Your emulator may optionally contain an external analyzer.

The emulation analyzer captures emulator bus cycle information
synchronously with the processor's clock signal. A trace is a collec
tion ofthese captured states. The trigger state specifies when the
trace measurement is taken. The external analyzer captures ac-
ti vity on signals external to the emulator, typically other target
system signals.

The analyzer commands are the same in every emulator; conse
quently, this manual is shipped with every HP 64700 Series
emulator. A block diagram of the analyzer is shown in figure 1-1.

This chapter lists basic features of the HP 64700 Series analyzer.
The chapters which follow show you how to use these features.

Introduction 1·1

I HP 64700 SERIES EMULATOR

A
EMULATOR PROBE

-"-< EMUlATION
.... .. PROCESSOR

- EMULATON TRACE SIGNALS
(Multiple of 16 trace signals
as required by the emulator)

V
EMULATION ANALVZER TRACE MEMORY
May use: (Up to 1824

• Simple normal storage
Measurements II' states, prestore

• Sequencer states, and
• Full Copability counts.)

COORDINATED
MEASUREMENT
BUS (CMS) COORDINATED

M£ASUREMENTS
See the aking
Coordinated Ana-
lyzer Measurements"

BNC .r chapter.)
CONNECTOR

Q.OCK
INPUT (J) EXTERNAL AtW..YlER

EXTERNAL ANALYZER
May operote as: TRACE MEMORY
• Extension of (External dolo PROBE (16 TRACE SIGNALS) Emulator Analyzer
• Independent State II' Storage.) .. Analyzer
• Independent Timing Q.OCK

INPUT (K)
Analyzer

Figure 1·1. Block Diagram of HP 64700 Series Analyzer

Introduction 1·2

Simple Measurements

Trace Storage,
Prestore, and Count

Sequencer

Simple Commands
for Common

Measurements

External Analysis

The default condition of the analyzer allows you to perform a
simple measurement by entering a single "trace" command. You
can enter additional trace commands to qualify when execution
should be traced and which bus cycle states should be stored.

The analyzer can store up to 1024 states in trace memory. These
states can be normal storage states or prestore states (states
which precede normal storage states). A count may be associated
with normal storage states; you can specify that the analyzer
count in either time or the occurrences of some state. When
counts are specified, only 512 states can be stored.

You can use the analyzer to search for a particular sequence of
states. The sequencer, which makes this possible, has several
levels (also called sequence terms). Each level of the sequencer
can search for two states at a time. When one of these states is
found, the sequencer branches to another sequence term. The
term that is branched to depends on which state is found fIrst.

When the emulator is powered up or initialized, the analyzer is set
up in its "easy" configuration. The "easy" configuration hides
much of the complexity of the analyzer and makes it easier to use;
it allows you to make simple measurements without requiring a
thorough knowledge of the analyzer. You can access the full
capability of the analyzer via a command to select the "complex"
configuration.

Your HP 64700 Series emulator may optionally contain an exter
nal analyzer. The external analyzer provides 16 external trace
signals and two external clock inputs. You can use the external

Introduction 1·3

Coordinated
Measurements

Other Features

Introduction 1·4

analyzer as an extension to the emulation analyzer, as an inde
pendent state analyzer, or as an independent timing analyzer.

When multiple HP 64700 Series emulators are connected via the
Coordinated Measurement Bus (CMB), you can use the analyzer
to trigger the analyzers of other emulators. You can also use the
analyzer to trigger instruments connected to the BNC port. Con
versely, the analyzer may be triggered by other emulators and in
struments.

Also, if your emulator contains an external analyzer being used
as an independent analyzer, coordinated measurements may take
place between the emulation analyzer and the external analyzer.

The list above is only a basic description of the HP 64700 Series
analyzer features. The chapters which follow show you how to use
these features.

Getting Started

Introduction

2

This chapter shows you how to use the emulation analyzer from
making simple measurements to searching for a sequence of
states. It does not describe how to access or use the full capability
of the analyzer (see the chapter on "Accessing Full Analyzer
Capability").

This chapter:

• Describes the sample program on which example measure
ments are made.

• Describes the default, power-up condition of the analyzer (in
cluding how to: initialize the analyzer, start the trace measure
ment, halt the trace, display the trace status, display the trace,
and change the format of the trace listing).

• Describes expressions allowed in trace commands.

• Shows you how to specify a simple trigger.

• Shows you how to specify a storage qualifier.

• Shows you how trace prestore is used.

• Shows you how to change the count qualifier.

• Shows you how to use the sequencer.

• Shows you how to change the position of the trigger state in
the trace.

Getting Started 2-1

Prereq u isites

The Sample
Program

Description of the
Sample Program

Getting Started 2-2

Before reading the examples in this chapter you should already
know how the emulator operates. You should know what the
various emulator prompts mean, and you should know how to use
the emulation commands. Refer to the appropriate Terminal/n
terface: Emulator User's Guide manual to learn about the
emulator; then, return to this manual.

The sample program is used to illustrate analyzer examples. The
sample program is written in assembly language so the disas
sembled trace listings will be more meaningful.

The examples in this chapter have been generated using an 80186
(HP 64764) emulator. The sample program is written in 80186 as
sembly language.

It is not important that you know the 80186 assembly language;
however, you should understand what the various sections of the
program do and associate these tasks with the labels used in the
program.

You are encouraged to rewrite the sample program in the assemb
ly language appropriate for your emulator. Then, you can use
your analyzer to perform the examples shown in this chapter. Of
course, the output of your commands will be different than those
shown here.

A pseudo-code algorithm of the sample program is shown in
figure 2-1.

AGAIN:
Initialize the stack pointer.
Save the two previous random numbers.
Call the RAND random number generator subroutine.
Test the two least significant bits of the previous

If OOB then goto CALLER_D.
If 01B then goto CALLER_l.
If lOB then goto CALLER_2.
If llB then goto CALLER_3.

Call the WRITE NUMBER subroutine.
Goto AGAIN (repeat program).
Call the WRITE NUMBER subroutine.
Goto AGAIN (repeat program).
Call the WRITE NUMBER subroutine.
Goto AGAIN (repeat program).
Call the WRITE NUMBER subroutine.
Goto AGAIN (repeat program).

random number.

WRITE NUMBER: Write the random number to a 256 byte data area, using the second
previous random number as an offset into that area.
RETURN from subroutine.

RAND: Pseudo-random number generator which returns a random number
from O-OFFH.
RETURN from subroutine.

Figure 2-1. Pseudo-Code Algorithm of Sample Program

The sample program is not intended to represent a real routine.
The program uses four different callers of the WRITE _ NUM
BER subroutine to simulate situations in real programs where
routines are called from many different places. An example later
in this chapter will show you how to use the analyzer to determine
where a routine is called from.

An assembler listing of the sample program is shown in figure 2-
2. It is provided so that you can see the addresses associated with
the program labels. The program area, which contains the in
structions to be executed by the microprocessor, is located at
400H. The RESULTS area, to which the random numbers are
written, is located at 500H. The area which contains a variable
used by the RAND subroutine and the locations for the stack is lo
cated at 600B.

Getting Started 2-3

FILE: anly.S HEWLETT-PACKARD: 80186 Assembler

LOCATION OBJECT CODE LINE SOURCE LINE

1 "80186"
2 ORG 400H
3 ASSUME DS:ORG,ES:ORG
4

0400 B80000 5 START MOV AX,SEG RAND_SEED
0403 8ED8 6 MOV DS,AX
0405 8EDO 7 MOV SS,AX
0407 B80000 8 MOV AX,SEG RESULTS
040A 8ECO 9 MOV ES,AX
040C BCFE06 10 MOV SP,OFFSET STACK

11 '" The next three instructions move the second
12 '" previous random number into DI (offset to
13 '" RESULTS area).

040F 8AC7 14 AGAIN MOV AL,BH
0411 25FFOO 15 AND AX,#OFFH
0414 8BF8 16 MOV DI,AX

17 .. Previous random # moved to BH.
0416 8AFB 18 MOV BH,BL

19 .. RAND returns random number in AX.
0418 E83300 20 CALL RAND

21 .. Current random # moved to BL.
041B 8AD8 22 MOV BL,AL
041D 8AE7 23 MOV AH,BH

24 .. The following instructions determine which
25 .. caller calls WRITE_NUMBER (depends on last
26 .. two bits of the previous random number).

041F DODC 27 RCR AH,l
0421 7207 28 JC ONE THREE
0423 DODC 29 RCR AH,T
0425 7216 30 JC CALLER 2
0427 E90700 31 JMP CALLER=:O
042A DODC 32 ONE_THREE RCR AH,l
042C 7215 33 JC CALLER 3
042E E90600 34 JMP CALLER-l

35 .. The WRITE NUMBER routine is called from four
36 .. different places . The program is repeated
37 ... after the subroutine return.

0431 E81400 38 CALLER_O CALL WRITE_NUMBER
0434 EBD9 39 JMP AGAIN
0436 90 40 NOP
0437 E80EOO 41 CALLER_l CALL WRITE_NUMBER
043A EBD3 42 JMP AGAIN
043C 90 43 NOP
043D E80800 44 CALLER_2 CALL WRITE NUMBER
0440 EBCD 45 JMP AGAIN-
0442 90 46 NOP
0443 E80200 47 CALLER_3 CALL WRITE_NUMBER
0446 EBC7 48 JMP AGAIN

Figure 2·2. Sample Program Listing

Getting Started 2·4

49 .. The WRITE NUMBER routine writes the random
50 .. number to-the RESULTS area. The second
51 .. previous number is the offset in this area.

0448 2688900005 52 WRITE_NUMBER MOV RESULTS[DIJ,BL
044D C3 53 RET

54 .. The RAND routine generates a pseudo-random
55 .. number from O-OFFH, and leaves the result
56 .. in AX.

044E B86D4E 57 RAND MOV AX,#4E6DH
0451 26 F 72EOO06 58 IMUL RAND SEED
0456 153903 59 ADC AX,#339H
0459 7301 60 JNC PAST_INC
045B 42 61 INC DX
045C 26A30006 62 PAST_INC MOV RAND_SEED,AX
0460 8BC2 63 MOV AX,DX
0462 25FFOO 64 AND AX,#OFFH
0465 C3 65 RET

66
67 ORG 500H
68 .. Random numbers written to this area.

0500 69 RESULTS DBS OFFH
70
71 ORG 600H
72 ,. Variable used in RAND subroutine.

0600 0100 73 RAND_SEED DW 1
0602 74 DDS 3FH
06FE 75 STACK DWS 1 ; Stack area.

76 END

Errors= 0

Figure 2·2. Sample Program Listing (Cont'd)

Before You Can
Use the Analyzer

Map Memory

R)map 400 .. 7ff eram

Before you can use the analyzer to perform measurements on the
sample program, you must map memory and load the sample
program.

The program, destination, and stack areas of the sample program
were ORGed at addresses 400R, 500R, and 600R, respectively.
Therefore, map the range from 400R through 7ffH to emulation
memory before loading the program, as shown in the command
below.

To display the resulting memory map:

Getting Started 2·5

R>map
remaining number of terms : 15
remaining emulation memory : If400h bytes
map 00400 .. 007ff eram # term 1
map other tram

Load the Program

Run the Program

R>r 400
U>

The Default Trace
Specification

Getting Started 2·6

Mapping memory is described in more detail in your Terminal In
terface: Emulator User's Guide.

Absolute files, in a number of different file formats, can be loaded
into an HP 64700 Series emulator in a number of different ways.
Refer to the Terminal Interface: E mulator User's Guide for infor
mation on loading programs into the emulator.

To start the emulator executing the example you would enter the
run command below.

The address 400H is the start address of the sample program and
the "U > "prompt shows that the emulator is executing the "user"
sample program.

After the emulator is powered-up or initialized, the analyzer is in
its simplest configuration. The default condition will trigger on
any state, and store all captured states. You can simply issue a
trace command (t) to trace the states currently executing.

Initializing the
Analyzer (tinit)

U>tinit

Starting the Trace (t)

U>t
Emulation trace started

Halting the Trace (th)

Displaying the Trace
Status (ts)

U>ts

To be sure that the analyzer is in its default or power-up state, or
to reset the analyzer to its default state, you can enter the tinit
(trace initialization) command.

Enter the t (trace) command to tell the analyzer to begin monitor
ing the states which appear on the trace signals. You will see a
message which confIrms that a trace is started.

The th (trace halt) command allows you to halt a trace measure
ment. When the th command is entered, the message "Emulation
trace halted" is displayed.

Enter the ts (trace status) command to view what the analyzer is
doing (or what the analyzer has done if the trace has completed).

Emulation Trace Status
NEW User trace complete
Arm ignored
Trigger in memory
Arm to trigger?
States 512 (512) O .. 511
Sequence term 2
Occurrence left 1

The fIrst line of the emulation trace status display shows that the
user trace has been "completed"; other possibilities are that the
trace is still "running" or that the trace has been "halted". The
word "NEW" indicates that the most recent trace has not been dis
played. The word "User" indicates that the trace was taken in

Getting Started 2-7

response to a tcommand; the other possibility is that a "CMB" ex
ecute signal started the trace.

The "Arm ignored" line shows that the arm condition, which can
be used to qualify trace measurements, is ignored. Consequently,
the "Arm to trigger" time is not meaningful and a question mark
is displayed. (The "Making Coordinated Measurements" chapter
explains arm conditions.)

The trigger state (indicated by state number 0) has been stored in
trace memory, as well as the 511 states which follow the trigger.
Because the default trigger condition is any state, the first state
after the t command becomes the trigger state. Because all cap
tured states are stored, the next 511 states are stored in the trace.

The "sequence term" and "occurrence left" items are explained
later.

Displaying the Trace Use the tl (trace list) command to display the trace data.

U>tl O .• 20
Line add r, H

0 00434
1 00448
2 006fc
3 00448
4 00449
5 0044a
6 0044c
7 0044e
8 00450
9 00536

10 0044d
11 006fc
12 00434
13 00436
14 00434
15 00438
16 0040f
17 00410
18 0040f
19 00412
20 00411

Getting Started 2·8

(tl)

8018x mnemonic,H count,R seq
------------------------------------ ---------

dgebH, opcode fetch +
8826H, opcode fetch 0.960 uS
0434H, mem write 0.560 uS

MOV ES:BYTE PTR 0500H[DI],BL 0.120 uS
0.280 uS

009dH, opcode fetch 0.120 uS
c305H, opcode fetch 0.560 uS
6db8H, opcode fetch 0.520 uS
264eH, opcode fetch 1.080 uS
xx94H, mem write 0.560 uS

RET 0.120 uS
0434H, mem read 0.840 uS
dgebH, opcode fetch 0.800 uS
e890H, opcode fetch 0.560 uS

JMP SHORT 040fH 0.120 uS
OOOeH, opcode fetch 0.400 uS
8axxH, opcode fetch 0.680 uS
25c7H, opcode fetch 0.560 uS

MOV AL,BH 0.120 uS
OOffH, opcode fetch 0.400 uS

AND AX,#OOffH 0.160 uS

The first column on the trace list contains the line number. The
trigger is always on line O.

The second column contains the address information associated
with the trace states. Addresses in this column may be locations
of instruction opcodes on fetch cycles, or they may be sources or
destinations of operand cycles.

The third column shows mnemonic information about the emula
tion bus cycle. The disassembled instruction mnemonic is shown
for instruction cycles. The data and mnemonic status ("dgebH, op
code fetch", for example) are shown for bus cycles. In the 80186
emulator, the mnemonic information is already disassembled
(i.e., assembly language mnemonics are shown); in other
emulators, like the 68000, you must use the ·d option to the tl com
mand to view the mnemonic information in disassembled form.

The fourth col umn shows the cotmt information (time is counted
by default). The "R" indicates that each COtmt is relative to the
previous state.

The fIfth column contains information about the sequencer. The
" + " on line 0 indicates the state satisfied a branch condition (in
this case, a trigger condition).

An important thing to notice about the trace list above involves
lines 7,13, and 15. These states show opcode fetches for instruc
tions which are not executed because of a transfer of execution to
other addresses. This can happen with microprocessors like the
80186 and the 68000 because they have pipe lined architectures or
instruction queues which allow them to prefetch the next instruc
tions before the current instruction is finished executing.

You can enter the help tl command to see the other options avail
able when displaying a trace.

Getting Started 2·9

Expressions in
Trace Commands

any/all
never/none
arm

label=<value>
label!=<value>

So far, the default trace specifications have been used, and you
have not entered any expressions. Expressions are used in com
mands which qualify the trace. This section describes the expres
sions which may be used in trace commands. Expressions may be
specified in the following forms (the pound sign, #, appears before
comments):

special tokens

label=<value> and label=<value> ...
label!=<value> or label!=<value>
label=<value> .. <value>

this condition
not this condition
this range

label !=<value> .. <value> # not this range

Note

Note

Tokens

Getting Started 2·10

If you wish to specify an expression such as "label = <value>
and label! = < value>", you must configure the analyzer so that
you have access to its full capability.

Only one range resource is available. You can, however, use this
range (or "not this range") in more than one trace command.

The tokens any or all specify any or all conditions; you can use
these tokens interchangeably. The tokens never or none specify
false conditions; they are used to turn off qualifiers. The never
and none tokens may also be used interchangeably. The arm
token represents a condition external to the analyzer. Arm condi
tions are described in the "Making Coordinated Measurements"
chapter.

Trace Labels

Predefined Trace
Labels

U)tlb
Emulation trace
tlb addr 0 .. 19
tlb data 20 .. 35
tlb stat 36 .. 46

U)xtlb
External trace
xtlb xbits O .. 15

Values

Labels shown in the fonns above may be predefined trace labels or
labels which you defme with the tlb (trace label) command or the
xtIb (external trace label) command if you have an external
analyzer. Trace labels can be up to 31 characters long.

To see the trace labels which have been predefmed, enter the tlb
(trace label) command with no options and the xtlb (external
trace label) command with no options (if an external analyzer is
present).

labels

labels

The labels addr, data, stat, and xbits are predefined. The addr
label represents the trace signals (0 through 19) which monitor
the emulation processor's address pins. The data label represents
the trace signals (20 through 35) which monitor the emulation
processor's data pins. The stat label represents the trace signals
(36 through 46) which monitor other emulation processor signals.
The xbits label represents the external trace signals. The defmi
tions ofthe address, data, and status bits are different for each
emulator.

Values are a series of Is, Os, or don't cares (x). Don't cares are not
allowed in ranges or decimal numbers. A value of all don't cares
may be represented by a question mark (?).

Constants

A value may be specified as a constant in any of the following
number bases. (Constants with no base specified are assumed to
be hexadecimal numbers.)

Getting Started 2·11

Getting Started 2-12

• Hexadecimal (base H or h). For example: 6eh, 9xH, om, or
Ocfh. (The leading digit of a hexadecimal constant must be 0-
9.)

• Decimal (base T or t, for base "ten"). For example: 27t or 99'1'.
(Don't cares are not allowed in decimal numbers.)

• Binary (base Y or y). For example: llOly, 01011 Y, or
OxxlOxxlly. (The leading digit of a binary constant must be 0
or 1. Do not use the characters "B" or "b" to specify the base of
binary numbers because they will be interpreted as
hexadecimal numbers; for example, lB equals 27 decimal.)

• Octal (base Q, q, 0, or 0). For example: 7770, 6432q, or
7xx3Q. (The leading digit of an octal constant must be 0-7.)

Operators

When specifying values, constants can be combined with the fol
lowing operators (in descending order of precedence):

.,

*,1, %

+ . ,

«, «<,
», »>

&

&&

Unary two's complement, unary one's
complement. The unary two's comple
ment operator is not allowed on constants
containing don't care bits.

Integer multiply, divide, and modulo.
These operators are not allowed on con
stants containing don't care bits.

Addition, subtraction. These operators
are not allowed on constants containing
don't care bits.

Shift left, rotate left, shift right, rotate
right.

Bitwise AND.

Bitwise exclusive or, XOR.

Bitwise inclusive OR.

Logical A.J.'\JDlhit-wise merge. When bits
are different, the first value overrides the
second; e.g., 10xxy && llxly = = 10xly.

Note

Predefined Equates
for Emulation

Analyzer Status

U)equ
Equates ###
equ bus=lxxxxxxxxxxy

All operations are carried out on 32-bit numbers.

Refer to the Terminal Interface: User's Reference description of
exprforoperator truth tables.

The equ (specify equates) command allows you to equate values
with names. Equates for common status values are predefmed.
To view the names equated with common analysis status, enter
the equ command with no options. (These status equates are also
listed in the help proc information.)

Bus cycle.
equ coproc=OxxxxxxOxxxxy
equ dma=Oxxxxxlxxxxxy
equ grd=Oxxxxlxxxxxxy
equ hlt=OxxxxxxxxlOOy
equ instr=Oxxxxxxxxxxy
equ inta=Oxxxxxxxxllly
equ ior=OxxxxxxxxllOy
equ iow=OxxxxxxxxlOly
equ mr=Oxxxxxxxx010y

Coprocessor cycle.
DMA cycle.
Guarded memory access.
Halt acknowledge cycle.
Executed instruction state.
Interrupt acknowledge cycle.
I/O port read cycle.
I/O port write cycle.
Memory read cycle.

equ mw=OxxxxxxxxOOly
equ of=OxxxxxxxxOlly
equ proc=OxxxxxOxxxxxy
equ rom=Oxxxlxxxxxxxy

Memory write cycle.
Opcode fetch.
Processor (not DMA) cycle.
Access to ROM cycle.

These predefmed equates may be used to specify values for the
stat trace label. For example:

stat=bus

is the same as:

stat=Oxxxxxxxxxxy

Getting Started 2-13

Expression Examples

Changing the
Trace Format (tf)

U>help tf

Refer to the appropriate Terminal Interface: E mulator User's
Guide for information on the status signals for your HP 64700
series emulator.

Some example trace command expressions follow.

addr=500 and data=30 and stat=mr
addr=400+5*20t and data=O
stat=OxxlOy
addr=520 .. 532
stat!=OxxlOy or stat!=Oxlxxy

You can change the format of the trace information with the tf
(trace format) command. Use the help tf command to review the
options available.

tf - specify trace display format

tf - display current format
tf <label>,<base>
tf mne

- display the label in the specified base

tf count
tf count,a
tf count,r
tf seq
tf mne <label>,<base>

- disassembled mnemonic
- count, absolute (relative to
- count, absolute (relative to
- count, relative to preceding
- sequencer state change

count count,r seq

trigger)
trigger)
state

- multiple fields may be specified
tf addr,H mne count,r seq - default format

--- VALID <label> NAMES
any <label> defined via the tlb or xtlb command

--- VALID <base> OPTIONS
Y or y = binary T or t = decimal
H or h = hexadecimal Q, q, 0, or 0 = octal
A or a = ascii
<base> defaults to hex if not specified

Getting Started 2·14

U>tf

The tf command primarily allows you to arrange the columns of
trace information in a clifferent manner. However, notice that you
can include any trace label in the trace. (This is especially useful
with the external analyzer.) Also, notice that the trace label infor
mation can be displayed in various number bases, and that counts
can be displayed relative or absolute. To display the default trace
format, enter the tf command with no options.

tf addr,H mne count,R seq

The following trace format command will move the sequencer in
formation to the flrst column, add the status information in binary
format, and delete the count column.

U>tf seq addr,h stat,y mne
U>tl

Line seq addr.H stat,Y 8018x mnemonic,H

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

00414
00416
00414
00418
00416
0041a
00418
0041c
0044e
006fc
0044e
00450
00452
00451
00454
00452
00456
00600
00458
0045a
00456

11000010011
11000010011
01000010011 MOV
11000010011
01000010011 MOV
11000010011
01000010011 CALL
11000010011
11000010011
11000010001
01000010011 MOV
11000010011
11000010011
01000010011 IMUL
11000010011
01000010011

f88bH, opcode fetch
fb8aH, opcode fetch

DI,AX
33e8H, opcode fetch

BH,BL
8aOOH, opcode fetch

NEAR PTR 044eH
8ad8H, opcode fetch
6db8H, opcode fetch
041bH, mem write

AX,#4e6dH
264eH, opcode fetch
2ef7H, opcode fetch

ES:WORD PTR 0600H
0600H, opcode fetch

11000010011 3915H, opcode fetch
11000010010 0119H, mem read
11000010011 7303H, opcode fetch
11000010011 4201H, opcode fetch
01000010011 ADC AX,#0339H

Notice that the number oflines specllied in the last tl (trace list)
command become the default.

Enter the following command to return to the default trace format.

U>tf addr,h mne count,r seq

Getting Started 2-15

Specifying a
Simple Trigger (tg)

The tg (specify simple trigger) command allows you to specify
when the analyzer should begin storing states. For example, sup
pose you want to look at the execution of the sample program after
the AGAIN label, and therefore, you would like to begin storing
states after the AGAIN address occurs. To do this you could enter
the tg command shown below and display the trace.

U>tg addr=40f
U>t

Emulation trace started
U>ts

--- Emulation Trace Status
NEW User trace complete
Arm ignored
Trigger in memory
Arm to trigger?
States 512 (512) O .. 511
Sequence term 2
Occurrence left 1

U>tl
line addr,H 8018x mnemonic,H

0 0040f 8axxH, opcode
1 00410 25c7H, opcode
2 0040f MOV Al,BH
3 00412 OOffH, opcode
4 00411 AND AX,HOOffH
5 00414 f88bH, opcode
6 00416 fb8aH, opcode
7 00414 MOV DI,AX
8 00418 33e8H, opcode
9 00416 MOV BH,Bl

10 0041a 8aOOH, opcode
11 00418 CAll NEAR PTR 044eH
12 0041c 8ad8H, opcode

fetch
fetch

fetch

fetch
fetch

fetch

fetch

fetch
13 0044e 6db8H, opcode fetch
14 006fc 041bH, mem write
15 0044e MOV AX,H4e6dH
16 00450 264eH, opcode fetch
17 00452 2ef7H, opcode fetch
18 00451 IMUl ES:WORD PTR 0600H
19 00454 0600H, opcode fetch
20 00452

count,R seq

+
0.520 uS
0.120 uS
0.440 uS
0.120 uS
0.400 uS
0.560 uS
0.120 uS
0.400 uS
0.160 uS
0.400 uS
0.120 uS
0.400 uS
0.960 uS
0.560 uS
0.120 uS
0.400 uS
0.560 uS
0.280 uS
0.240 uS
0.160 uS

In the trace list above, line 0 shows the beginning of the program
loop and line 11 shows the call of the RAND subroutine. The dis
assembled mnemonics on lines 15 and 18 show instructions which
are executed in the RAND subroutine.

Getting Started 2·16

As you can see in the trace status display, 512 analyzer states are
saved in the trace list. To display the "next" lines in a trace list,
enter the tl (trace list) command with no options.

U>tl
Line add r, H 8018x mnemonic,H count,R seq

------------------------------------ ---------
21 00456 3915H, opcode fetch 0.400 uS
22 00600 5cgeH, mem read 0.800 uS
23 00458 7303H, opcode fetch 0.560 uS
24 0045a 4201H, opcode fetch 0.520 uS
25 00456 ADC AX,#0339H 3.680 uS
26 00459 JAE SHORT 045cH 0.560 uS
27 0045c a326H, opcode fetch 0.240 uS
28 0045c a326H, opcode fetch 0.960 uS
29 0045e 0600H, opcode fetch 0.560 uS
30 0045c MOV ES:0600H,AX 0.120 uS
31 0045d 0.120 uS
32 00460 c28bH, opcode fetch 0.280 uS
33 00600 9680H, mem write 0.680 uS
34 00460 MOV AX,DX 0.160 uS
35 00462 ff25H, opcode fetch 0.400 uS
36 00464 c300H, opcode fetch 0.520 uS
37 00462 AND AX ,#OOffH 0.160 uS
38 00466 f006H, opcode fetch 0.400 uS
39 00465 RET 0.280 uS
40 00468 0001H, opcode fetch 0.240 uS
41 006fc 041bH, mem read 0.560 uS

In the trace list above you see the last few instructions executed by
the RAND subroutine (the RET is the last instruction). To see the
instructions executed upon return from the RAND subroutine,
enter the tl command again.

U>tl
Line add r, H 8018x mnemonic,H count,R seq

------------------------------------ ---------
42 0041b 8axxH, opcode fetch 0.800 uS
43 0041c 8ad8H, opcode fetch 0.560 uS
44 0041b MOV BL,AL 0.12~ uS
45 0041e dOe7H, opcode fetch 0.4 JS
46 0041d MOV AH,BH O. It:, ' .. uS
47 00420 72dcH, opcode fetch 0.400 uS
48 0041f RCR AH,l 0.120 uS
49 00422 d007H, opcode fetch 0.440 uS
50 00421 JB SHORT 042aH 0.120 uS
51 00424 72dcH, opcode fetch 0.400 uS
52 00423 RCR AH,l 0.280 uS
53 00426 e916H, opcode fetch 0.280 uS
54 00425 JB SHORT 043dH 0.120 uS
55 00428 0007H, opcode fetch 0.400 uS
56 0043d e8xxH, opcode fetch 0.960 uS
57 0043e 0008H, opcode fetch 0.560 uS
58 0043d CALL NEAR PTR 0448H 0.120 uS
59 00440 cdebH, opcode fetch 0.400 uS
60 00448 8826H, opcode fetch 0.960 uS
61 006fc 0440H, mem write 0.520 uS
62 00448 MOV ES:BYTE PTR 0500H[DI],BL 0.160 uS

The instructions shown in the trace list above decide which caller
will call the WRITE _NUMBER subroutine. Line 58 shows the

Getting Started 2·17

U>tl
Line addr,H

63 00449
64 0044a
65 0044c
66 0044e
67 00450
68 0051d
69 0044d
70 006fc
71 00440
72 00442
73 00440
74 00444
75 0040f
76 00410
77 0040f
78 00412
79 00411
80 00414
81 00416
82 00414
83 00418

disassembled mnemonic of the instruction which calls the
WRITE_NUMBER subroutine. The address information shows
that the caller is CALLER_2. Line 62 shows the MOV instruc
tion associated with the WRITE_NUMBER subroutine. To
view the remaining instruction cycles of the WRITE_NUMBER
subroutine, enter the tl command again.

8018x mnemonic,H count,R seq
------------------------------------ ---------

0.280 uS
009dH, opcode fetch 0.120 uS
c305H, opcode fetch 0.560 uS
6db8H, opcode fetch 0.520 uS
264eH, opcode fetch 1.080 uS
5fxxH, mem write 0.560 uS

RET 0.120 uS
0440H, mem read 0.840 uS
cdebH, opcode fetch 0.800 uS
e890H, opcode fetch 0.520 uS

JMP SHORT 040fH 0.160 uS
0002H, opcode fetch 0.400 uS
8axxH, opcode fetch 0.680 uS
25c7H, opcode fetch 0.560 uS

MOV AL,BH 0.120 uS
OOffH, opcode fetch 0.400 uS

AND AX,#OOffH 0.160 uS

MOV

f88bH, opcode fetch 0.400 uS
fb8aH, opcode fetch 0.520 uS

DI,AX 0.160 uS
33e8H, opcode fetch 0.400 uS

Line 69 in the trace list above shows the RET instruction as-
sociated with the WRITE _NUMBER subroutine. Line 68 shows
the random number 5FH is written to address 51DH.

The bus cyele data contains "don't cares" when bytes are read or
written. Lower byte writes are made to even addresses, and
upper byte writes are made to odd addresses.

Line 77 shows the AGAIN address associated with the next loop
of the program.

Specifying an
Occurrence Count

When specifying a simple trigger, you can inel ude an occurrence
count. The occurrence count specifies that the analyzer trigger on
the Nth occurrence of some state. For example, to trigger the
analyzer when the address 40FH occurs a hundred times, enter
the command below.

Getting Started 2·18

U>tg addr=40f 100

Specifying
Storage Qualifiers
(tsto)

U>tsto addr=500 .. 5ff

U>t

The default base for an occurrence count is decimal. You may
specify occurrence counts from 1 to 65535.

By default, all captured states are stored; however, you can
qualify which states get stored with the tsto (trace storage
qualifier) command. For example, to store only the states which
write random numbers to the RESULTS area, enter the following
command.

Issuing the trace command and then listing the trace will result in
a display similar to the one shown below.

Emulation trace started
U>tl

Line addr,H 8018x mnemonic,H count,R seq
------------------------------------ ---------

0 0040f INSTRUCTION--opcode unavailable +
1 0055a xx16H, mem write 31. 48 uS
2 0050b 11xxH, mem write 34.44 uS
3 00516 xx45H, mem write 36.48 uS
4 00511 dbxxH, mem write 36.48 uS
5 00545 10xxH, mem write 35.40 uS
6 005db 8fxxH, mem write 34.72 uS
7 00510 xxbOH, mem write 35.40 uS
8 0058f 39xxH, mem write 35.00 uS
9 005bO xxe2H, mem write 36.48 uS

10 00539 afxxH, mem write 34.44 uS
11 005e2 xx85H, mem write 35.40 uS
12 005af 9cxxH, mem write 36.48 uS
13 00585 35xxH, mem write 35.00 uS
14 0059c xx3bH, mem write 36.24 uS
15 00535 c1xxH, mem write 35.40 uS
16 0053b 45xxH, mem write 36.48 uS
17 005c1 7dxxH, mem write 36.48 uS
18 00545 11xxH, mem write 36.20 uS
19 0057d eOxxH, mem write 36.20 uS
20 00511 3fxxH, mem write 35.00 uS

Getting Started 2·19

Presto ring States
(tpq)

Qualifying Prestore
States

Getting Started 2·20

Notice that the trigger state Oine 0) is included in the trace list;
trigger states are always stored.

This trace shows that the last two hex digits of the address in the
RESULTS area are the same as the random number which gets
written two states earlier (see the data in the "mnemonic" column
of the trace list). This is expected because the sample program
writes the current random number using the second previous ran
dom number as an offset into the RESULTS area.

Suppose you find a bug in a subroutine, but you determine that
the problem is actually due to something set up by the calling
routine. Suppose also that the subroutine is called from a variety
of places in your program. Prestore can be used to determine
where the subroutine is called from when the bug occurs.

Prestore allows you to save up to two states which precede a nor
mal store state. Prestore is turned offby default. However, you
can use the tpq command to specify a prestore qualifier.

You can use a prestore qualifier to find out which caller calls the
WRITE_NUMBER subroutine in the sample program. Because
you know the CALL assembly language instruction is used to call
a subroutine, you can qualify prestore states as states whose data
equals the CALL opcode.

U>tpq data=Oe8xx
U>t

Emulation trace
U>tl

Line add r, H

-1 00434
0 0040f
1 00430
2 00443
3 005d4
4 00430
5 00437
6 0057f
7 0043a
8 00431
9 005cd

10 00430
11 00437
12 005a4
13 00430
14 00437
15 00591
16 0043a
17 00431
18 005b9
19 00436

started

8018x mnemonic,H count,R seq
------------------------------------ ---------
INSTRUCTION--opcode unavailable p res to re
INSTRUCTION--opcode unavailable +

e800H, opcode fetch prestore
e8xxH, opcode fetch prestore
xxcdH, mem write 31. 48 uS
e800H, opcode fetch prestore
e8xxH, opcode fetch prestore
a4xxH, mem write 36.20 uS

INSTRUCTION--opcode unavailable prestore
e8xxH, opcode fetch prestore
91xxH, mem write 35.00 uS
e800H, opcode fetch prestore
e8xxH, opcode fetch prestore
xxb9H, mem write 36.48 uS
e800H, opcode fetch prestore
e8xxH, opcode fetch prestore
74xxH, mem write 36.24 uS

INSTRUCTION--opcode unavailable prestore
e8xxH, opcode fetch prestore
8exxH, mem write 34.96 uS
e890H, opcode fetch prestore

The prestore state immediately preceding each write state shows
the address of the caller.

The analyzer uses the same resource to save prestore states as it
does to save count tags. Consequently, the "prestore" string is
shown in the "count" column of the trace list. Notice that the time
counts are relative to the previous normal storage state. Turning
off the count qualifier does not tum off prestore; however, the
"prestore" string cannot be seen in the "count" column of the trace
list.

States which satisfy the prestore qualifier and the storage
qualifier at the same time are stored as normal states.

Turning Off Prestore When you do not wish to have prestored states saved in the trace,
you can turn off the prestore feature with the following tpq (trace
prestore qualifier) command.

U>tpq none

Getting Started 2·21

Changing the
Count Qualifier
(tcq)

U>tg addr=5c2
U>tsto addr=5c2

U>tcq
tcq time

Getting Started 2-22

Suppose now that you are interested in only one address in the
RESULTS area. You wish to see how many loops ofthe program
occur between each write of a random number to this address.
You can use the tcq (trace count qualifier) command to count a
state which occurs once on each loop of the program. For ex
ample, let the address of interest be 5C2H. The following com
mands set up the sequencer so that only this state is stored in the
trace.

In the analyzer's default state, the count qualifier is time, which
means that the time between states in the trace is saved. Enter
ing the tcq command with no options shows the current count
qualifier.

Specify the count qualifier as the AGAIN address (40FH) which
gets executed once on each program loop. Then, start the trace
and list the trace.

U>tcq addr=40f
UHf addr,h mne count,r count,a
U>t

Emulation trace
U>tl

Line add r, H

0 005c2
1 005c2
2 005c2
3 005c2
4 005c2
5 005c2
6 005c2
7 005c2
8 005c2
9 005c2

10 005c2
11 005c2
12 005c2
13 005c2
14 005c2
15 005c2
16 005c2
17 005c2
18 005c2
19 005c2
20 005c2

started

8018x mnemonic,H count,R count,A
------------------------------------ --------- ---------

xx75H, mem write 0
xx2bH, mem write 92 92
xx90H, mem write 166 258
xxeaH, mem write 124 382
xxb7H, mem write 140 522
xxbfH, mem write 274 796
xxd3H, mem write 124 920
xx44H, mem write 364 1284
xx33H, mem write 1256 2.540e03
xx8dH, mem write 478 3.018e03
xxe5H, mem write 148 3.166e03
xx78H, mem write 274 3.440e03
xxecH, mem write 272 3.712e03
xx5dH, mem write 1062 4.774e03
xxa2H, mem write 610 5.384e03
xxd2H, mem write 540 5.924e03
xx46H, mem write 746 6.670e03
xx17H, mem write 434 7.104e03
xxe8H, mem write 756 7.860e03
xx44H, mem write 682 8.542e03
xx78H, mem write 192 8.734e03

The trace listing shown above shows that the program executes a
variable number of times for each time that a random number is
written to 5C2H. The command which follows will change the
trace format back to its previous specification.

U>tf addr,h mne count,r seq

Using the
Sequencer (tsq)

The sequencer is a state machine that searches for a particular se
quence of states. The sequencer has several levels, called se
quence terms. Each sequence term can search for two states at a
time, and the primary state may have an occurrence count
specified. If the primary state occurs the number of times
specified, the sequencer branches to the next term; if the secon
dary state is found before the primary state occurs the number of

Getting Started 2·23

Resetting the
Sequencer (tsq or)

U>tsq -r
u>tsq

times specified, the sequencer branches back to the first term.
The same secondary branch condition is used for all sequence
terms, and secondary branches are always back to the first term;
therefore, the secondary branch is called the global restart.

To reset the sequencer to its default, power-up state use the -r op
tion to the tsq (trace sequencer) command. To display the default
sequencer specification, enter the tsq command with no options.

t if 1 any
tsto all
tel if never

Any state will cause a branch out of term 1.
Store all states.
Global restart turned off.

The Default
Sequencer

Specification

SECONDARY BRANCHES

telif never

(NO SECONDARY
BRANCHES)

After power-up, initialization, or sequencer reset, the sequencer
consists of one term (see figure 2-3).

PRIMARY BRANCHES

TERM 1
tit 1 any

(PRIMARY BRANCH ON Nf(STATE)

(lRlGGER - BRANCH OUT OF TERM 1)

tsto oR

(ALL CAPTURED STATES ARE STORED)

Figure 2-3. The Default Sequencer Specification

Getting Started 2·24

Simple Trigger and
the Sequencer

It may be helpful to think of the tif (primary branch expression)
command as a conditional statement. For example, "If (some
state occurs), then branch".

Because sequence term 1 is the last term and a branch out of the
last term constitutes the trigger, the primary branch expression
(any) of term 1 specifies the trigger condition. The expression
any says that any captured trace state will cause a branch. There
fore, the trigger will occur immediately after the t (trace) com
mand is issued (if instructions are being executed).

The tsto (trace storage qualifier) command specifies that all cap
tured states are stored. The trace storage qualifier is a global;
that is, it applies to all sequence terms. In addition to states which
satisfy the trace storage qualifier, any state which causes a
branch is stored in trace memory. Also, prestore states can be
saved before states which satisfy the trace storage qualifier.

The telif command is used to specify the secondary branch expres
sion for every sequence term; this expression is called the global
restart. It may be helpful to think of the telif command as an "else
i£" conditional statement. For example, "Else if (some state occurs
before) then branch to term 1".

The global restart in the default sequencer specification is never.
This means no trace state can cause a secondary branch.

You have already seen how the tsto command is used. You will
learn how to use the tif and telif commands later in this chapter.

The simple trigger command used previously in this chapter has
the following effect on the sequencer:

U>tg addr=40f # If address of 40FH occurs once, then trigger.
U>tsq

tif 1 addr=40f
tsto all
tel if never

Notice that only the primary branch expression of the fIrst se
quence term (the trigger condition) is different than the default se
quencer specification. The address 40FH is the AGAIN address of
the sample program, the fIrst address of the sample program loop.

Getting Started 2-25

Primary and
Secondary Branch

Expressions (tif, telif)

U>tif 1 addr"'443

U>tif 2 addr"'5c2

U>tel if addr"'40f

U>tsq
tif 1 addr=443
t if 2 add r=5c2
tsto all
telif addr=40f

Getting Started 2·26

A trace state whose address equals 40FH will trigger the
analyzer, causing trace memory to be fIlled with states and stop.

When the tg command is entered with no options, the primary
branch expression of the fIrst sequence term is displayed. This is
the trigger condition only when one term exists in the sequencer.

You can use sequence terms to trace a specifIc combination of
events. For example, CALLER_3 can be used to write any ran
dom number, but suppose you want to trace only the situation
where CALLER_3 is used to write a random number to address
5C2H. You can set up the sequencer so that it fIrst searches for
CALLER_3 by specifying the address ofCALLER_3 as the
primary branch expression of the fIrSt sequence term.

After CALLER_3 is found, the sequencer should then search for
the write to address 5C2H. You can do this by specifying the ad
dress 5C2H as the primary branch expression of the second se
quence term.

However, if the program jumps to AGAIN before the write to
5C2H, you know that CALLER_3 is not used to write the ran
dom number this time, and the sequencer should start over. You
can specify the global restart expression to do this.

If the write to address 5C2H occurs before the program executes
the instruction at AGAIN, the sequencer will take a primary
branch out of the last term and trigger the analyzer. The result
ing sequencer specillcation is shown below.

The sequencer specifIcation above is represented in figure 2-4.
The primary branch expression of the fIrSt sequence term is the

SECONDARY BRANCHES

telif addr-4ef

(asE IF PROGRAM

BEGINS TO EXECUTE
"AGAIN" BEORE A
RANDOM NUMBER IS
WRITTEN TO 5C2H,

THEN RESTART THE

SEQUENCE.)

address associated with CALLER_3 (443H). The primary
branch expression for the second sequence term is the specific
write condition we would like to trace; it is also the trigger condi
tion. The primary branch out of the second term constitutes the
trigger.

TERM 1

TERM2

PRIMARY BRANCHES

tit 1 oddr-443

(IF "CAUER_3" OCCURS,
BRANCH TO TERM2)

tit 2 oddr=5C2
(IF RANDOM NUMBER IS WRITTEN TO
SC2H, THEN TRIGGER)

(TRIGGER = BRANCH OUT OF TERM2)

tato all

(ALL CAPTURED STATES ARE STORED)

Figure 2-4. Specifying Primary and Secondary Branches

The sequencer works like this: After the trace is started, the first
sequence term searches for the CALLER_3 address. When the
CALLER _ 3 state is found, the sequencer branches to term 2.
Now, the second sequence term searches for the address 5C2H. If
address 5C2H is found before the state which satisfies the secon
dary branch expression (the AGAIN address), the analyzer is trig
gered, causing the analyzer memory to be filled with states before
the analyzer stops. If the AGAIN address occurs before the
primary branch (in either the first or second terms), the sequencer
branches back to the first sequence term. The following com
mands start the trace and display the trace status.

Getting Started 2-27

U>t
Emulation trace started

U>ts
--- Emulation Trace Status
NEW User trace complete
Arm ignored
Trigger in memory
Arm to trigger?
States 512 (512) 0 .. 511
Sequence term 3
Occurrence left 1

U>tl
Line add r, H

0 005c2
1 0044d
2 006fc
3 00446
4 00448
5 00446
6 0044a
7 0040f
8 00410
9 0040f

10 00412
11 00411
12 00414
13 00416
14 00414
15 00418
16 00416
17 0041a
18 00418
19 0041c
20 0044e

Getting Started 2-28

The "Sequence term" line of the trace status display shows the
number of the term the sequencer was in when the trace com
pleted. Because a branch out of the last sequence term con
stitutes the trigger, the number displayed is what would be the
next term (3 in the preceding example) even though that term is
not defmed. If the trace is halted, the sequence term number just
before the halt is displayed; otherwise, the current sequence term
number is displayed. If the current sequence term is changing too
quickly to be read, a question mark (?) is displayed.

The "Occurrence left" line of the trace status display shows the
number of occurrences remaining before the primary branch can
be taken out of the current sequence term. If the occurrence left is
changing too quickly to be read, a question mark (?) is displayed.

Listing the trace will result in the following display.

8018x mnemonic,H count,R seq
------------------------------------ ---------

xx75H, mem write +
1NSTRUCT10N--opcode unavailable 0

0446H, mem read 0
c7ebH, opcode fetch 0
8826H, opcode fetch 0

JMP SHORT 040fH 0
009dH, opcode fetch 0
8axxH, opcode fetch 1
25c7H, opcode fetch 0

MOV AL,BH 1
OOffH, opcode fetch 0

AND AX,#OOffH 0
f88bH, opcode fetch 0
fb8aH, opcode fetch 0

MOV D1,AX 0
33e8H, opcode fetch 0

MOV BH,BL 0
8aOOH, opcode fetch 0

CALL NEAR PTR 044eH 0
8ad8H, opcode fetch 0
6db8H, opcode fetch 0

Inserting Sequence
Terms (tsq -j)

U>tsq -; 2

U>tsq

Remember, the primary branch out of the last term con·
stitutes the trigger. Also, a primary branch always advances to
the next higher term. A secondary branch from any term is al
ways made back to the fIrst sequence term (global restart).

The sequencer may have a total of 4 terms. You can insert se
quence terms with the tsq (trace sequencer) command using the·i
(insert) option. For example, to insert a sequence term before the
second term, enter the following command.

Enter the tsq command with no options to display the resulting se
quencer specifIcation.

tif 1 addr=443
tif 2 any # Inserted term.
tif 3 addr=5c2
tsto all
tel if never

U>tsq -; 4

U>tsq
tif 1 addr=443
tif 2 any

You can also use the tsq ·i command to add sequence terms. For
example, to add a fourth sequence term, enter the following com
mand.

Enter the tsq command with no options to display the resulting se
quencer specifIcation.

tif 3 addr=5c2
tif 4 any # Added term.
tsto all
tel if never

Deleting Sequence
Terms (tsq -d)

You delete sequence terms using the ·d option to the tsq (trace se
quencer specifIcation) command. For example, to delete the
terms which were just inserted, enter the following commands.

Getting Started 2·29

U>tsq -d Z
U>tsq -d 3

U>tsq
tif 1 addr=443
tif 2 addr=5c2
tsto all
tel if addr=40f

Changing the
Trigger Position
(tp)

U>tp
tp s

Getting Started 2-30

Mter a term is deleted, the remaining terms are renumbered; this
is why the third term is deleted above instead of the fourth (which
no longer exists after the tsq -d 2 command). Enter the tsq com
mand with no options to verify that the sequencer is as it was
before inserting and deleting terms.

The preceding trace specification caused the analyzer to fill trace
memory with the states which followed the trigger. The reason
the trigger appears at the start of the trace list is because ofthe
current trigger position specification. To see the current trigger
position specification, enter the tp (trigger position) command
with no options.

The trigger position default is s, which specifies that the trigger
appears at the start ofthe trace. You can also specify that the trig
ger appear in the center of the trace with the c option, or that the
trigger appear at the end ofthe trace with the e option; additional
ly, you can specify a certain number of states to appear before (-b)
or after (-a) the trigger in the trace. For example, changing the
trigger position so that 10 states appear before the trigger in the
trace and reissuing the trace will result in the trace list which fol
lows.

U>tp -b 10
U>t

Emulation trace
U>tl

Line add r, H

-11 00444
-10 00443
-9 00446
-8 00448
-7 006fc
-6 00448
-5 00449
-4 0044a
-3 0044c
-2 0044e
-1 00450
0 005c2
1 0044d
2 006fc
3 00446
4 00448
5 00446
6 0044a
7 0040f
8 00410
9 0040f

U>

started

8018x mnemonic,H count,R seq
------------------------------------ ---------

0002H, opcode fetch
INSTRUCTION--opcode unavailable 0

c7ebH, opcode fetch 0
8826H, opcode fetch 0
0446H, mem write 0

MOV ES:BYTE PTR 0500H[DIJ,BL 0
0

009dH, opcode fetch 0
c305H, opcode fetch 0
6db8H, opcode fetch 0
264eH, opcode fetch 0
xx75H, mem write 0 +

RET 0
0446H, mem read 0
c7ebH, opcode fetch 0
8826H, opcode fetch 0

JMP SHORT 040fH 0
009dH, opcode fetch 0
8axxH, opcode fetch 1
25c7H, opcode fetch 0

MOV AL,BH 1

Notice that the top of the trace is not exactly 10 lines before the
trigger. The actual trigger position is within +/-1 state of the
number specified if counting states or time; otherwise, the actual
trigger position is within + /- 3 states of the number specified.

Getting Started 2-31

Tracing a Program
as it Starts Up

If a background monitor is being used, you can trace the program
as it starts up by breaking to background, starting the trace, and
running the program as shown by the commands below.

U>tinit
U>b
M>t

Emulation trace started
M>r 400
U>tl -t 20

Line addr,H 8018x mnemonic,H count,R seq
------------------------------------ ---------

0 00400 00b8H, opcode fetch +
1 00402 8eOOH, opcode fetch 0.520 uS
2 00400 MOV AX,#OOOOH 0.160 uS
3 00404 8ed8H, opcode fetch 0.400 uS
4 00403 MOV OS,AX I 0.280 uS
5 00406 b8dOH, opcode fetch 0.240 uS
6 00405 MOV SS,AX I 0.160 uS
7 00408 OOOOH, opcode fetch 0.400 uS
8 00407 MOV AX,#OOOOH 0.120 uS
9 0040a c08eH, opcode fetch 0.440 uS

10 0040c febcH, opcode fetch 0.520 uS
11 0040a MOV ES,AX I 0.160 uS
12 0040e 8a06H, opcode fetch 0.400 uS
13 0040c MOV SP,#06feH 0.120 uS
14 00410 25c7H, opcode fetch 0.400 uS
15 0040f MOV AL,BH 0.280 uS
16 00412 OOffH, opcode fetch 0.280 uS
17 00411 AND AX,#OOffH 0.120 uS
18 00414 f88bH, opcode fetch 0.400 uS
19 00416 fb8aH, opcode fetch 0.560 uS

U>

Getting Started 2·32

3

Accessing Full Analyzer Capability

Introduction This chapter:

• Introduces the terms "complex configuration" and "easy con
figuration" to represent the analyzer configurations which
respectively allow access to the full capability (as described in
this chapter) and the capability provided with the easy-to-use
configuration (as described in the "Getting Started" chapter).

• Describes the trace commands which are different in the "com
plex" configuration. Also describes how expressions are dif
ferent in the "complex" configuration.

• Describes the sample program used for the examples in this
chapter.

• Shows you how to configure the analyzer so that you have ac
cess to its full capability.

• Describes the sequencer upon entry into the "complex" con
figuration and how to reset the sequencer to this state.

• Describes the sequencer after a "simple trigger" specification.

• Shows you how to use the sequencer in the "complex" con
figuration.

Accessing Full Analyzer Capability 3·1

Prereq u isites

"Easy" and
"Complex"
Configuration
Differences

Sequence Terms and
the Trigger

Before reading the examples in this chapter you should already
know how the emulator operates. You should know what the
various emulator prompts mean, and you should know how to use
the emulation commands. Refer to the appropriate Terminal In
terface: E mulator User's Guide to learn about the emulator; then,
return to this manual.

You should also know how the analyzer operates in its limited
capability configuration (refer to the "Getting Started" chapter).

The analyzer configuration which allows you to access its full
capability is called the "complex" configuration. The easy-to-use
configuration (as described in the previous chapter) is called the
"easy" configuration. The differences between the two configura
tions are as follows.

In the "easy" configuration, you can insert or delete terms from
the sequencer, and the branch out of the last sequence term con
stitutes the trigger. The simple trigger command (tg) sets up a
one term sequencer, and the expression specified with the tg com
mand becomes the primary branch expression of the fIrst se
quence term.

In the "complex" configuration, there are always eight terms in
the sequencer. Any of the sequence terms except the fIrst may be
specifIed as the trigger term. In the "complex" configuration,
entry into the trigger term constitutes the trigger. The simple
trigger command (tg) sets the primary branch expression of se
quence term 1, and specifies the second sequence term as the trig
gerterm.

Accessing Full Analyzer Capability 3-2

Primary Branch
Expressions

Secondary Branch
Expressions

Storage Qualifiers

Complex Expressions

In the "easy" configuration, primary branches are always made to
the next higher sequence term.

In the "complex" configuration, primary branches may be made to
any sequence term.

In the "easy" trace configuration, the secondary branch expres
sion is a global restart. In other words, the secondary branch ex
pression applies to all sequence terms, and the branch is always
back to the first sequence term.

In the "complex" configuration, secondary branch expressions
may be specified for each sequence term. Also, secondary
branches can be made to any sequence term.

In the "easy" configuration, the trace storage qualifier is "global"
and applies to all sequence terms.

In the "complex" trace configuration, a storage qualifier is as
sociated with each sequence term; however, the tsto command
still allows you to specify storage qualifiers globally.

In the "complex" configuration, up to eight patterns and one range
are used in trace commands wherever expressions were used in
the "easy" configuration. Patterns and ranges are equal to "easy"
configuration expressions. The additional capability allowed in
the "complex" configuration is that these patterns may be used in
combinations to specify more complex expressions.

Specifying Trace Patterns

Use the help tpat command to see how trace patterns may be
specified.

Accessing Full Analyzer Capability 3-3

U>help tpat

tpat - set and display pattern resources

tpat
tpat <pattern>
tpat <pattern>
tpat <pattern>
tpat <pattern>
tpat <pattern>

- display all patterns
- display named patterns

<label>=<value> - equals pattern
<label>!=<value> - not equals pattern
<label>=<value> and <label>=<value>
<label>!=<value> or <label>!=<value>

--- VALID <pattern> NAMES ---
p1 through p8 - defining patterns 1 through 8

--- VALID <label> NAMES ---
label - labels defined via tlb command

--- NOTE ---
the analyzer mode must be complex to use this command

Up to eight trace patterns can be specified with the tpat (trace pat
tern) command. The trace pattern names are pI, p2, ... , pS.

The expression associated with a trace pattern can be the
keywords all, any, none, or never, or the expression may be
trace labels equated to values (which can be ANDed together) or
trace labels not equal to values (which can be ORed together). Ex
amples of valid pattern specifications follow.

U>tpat p1 addr=5Z0 and data=Oxxaa and stat=mw
U>tpat p5 addrl=5cZ or datal=Oxx3x or statl=mr

U>help trng

The values which are associated with trace labels are the same as
described in the "Getting Started" chapter.

Specifying a Trace Range

Use the help trng command to fmd out how the trace range
resource may be specified. The range name is r, and !r specifies
"not in range".

trng - set or display range pattern

trng - display range
trng <label>=<value> .. <value> - define range

--- VALID <label> NAMES ---
label - labels defined via tlb command

--- NOTE ---
the analyzer mode must be complex to use this command

Accessing Full Analyzer Capability 3·4

U>trng addr=500 .. 5ff
U>trng data=0080 .. 008f

U>tsto p1 I p2 I p3 I r
U>tsto p5 - p6 - arm
u>tsto p1 I p2 - p3

Again, values may be specified as described in the "Getting
Started" chapter. Examples of valid range specifications follow.

Combining Resources

The eight patterns (p1..p8), the range (rfor "in range" or!r for
"not in range"), and the arm qualifier (described in the "Making
Coordinated Measurements" chapter) are grouped into the two
sets shown below.

Set 1: pI, p2, p3, p4, r, and !r.

Set 2: p5, p6, p7, p8, and arm.

Resources within a set may be combined using one of the intraset
operators, I (OR) or - (NOR). Examples of some valid and invalid
intraset combinations follow.

!ERROR 1249! Invalid qualifier expression: - p3

U>tsto p1 - p2 - p5

This expression is invalid because you cannot use both I (OR) and -
(NOR) operators within the same set.

!ERROR 1249! Invalid qualifier expression: p5

This expression is invalid because you cannot combine resources
from different sets with the I (OR) or - (NOR) operators.

The two sets can be combined with the and and or interset (be
tween set) operators. Interset operators are also called global set
operators.

The intraset (within a set) operators c-, I) are evaluated fIrst; then,
the interset operators are evaluated. You cannot use interset
operators on patterns in the same set. Examples of some valid
and invalid combinations of the two sets follow.

Accessing Full Analyzer Capability 3·5

U>tsto p1 - p2 and p5 I p6
U>tsto p3 I p4 I lr or p7
U>tsto p8 - arm and p1 - p2
U>tsto p1 and p2

!ERROR 1249! Invalid qualifier expression: p2

U>tsto p1 & p2 or p5 & p6

This set combination is invalid because pI and p2 are in the same
set.

Note that "pI - pI" is allowed; this type of expression may oc
casionally be useful if you are running out of pattern resources
and wish to specify a logical Nar of some existing pattern. For ex
ample, consider the following commands:

tpat pI addr=O
t if I pI
tif 2 pI - pI

The primary branch of term 2 will be taken when "addr! = 0".

Limitations of Combining Patterns

Only the OR (I) and NOR n logical operators are available as in
traset operators. However, you can create the AND and NAND
operators by applying DeMorgan's law (the "I" character is used to
represent a logical NOT):

AND A and 8 = /(/A and /8) NOR
NAND /(A and 8) = /A or /8 OR

For example, suppose you want to specify the following storage
qualifier:

lERROR 12411 Invalid qualifier resource or operator: &

The error occurs because the & operator is not a valid intraset
operator. If the specifications for the trace patterns are:

tpat pI addr=5ff
tpat p2 data=39xx and stat=mw
tpat p5 addr=500
tpat p6 data=Oxx39 and stat=mw

Accessing Full Analyzer Capability 3·6

U>tpat p1 addrl=5ff

You can enter an equivalent expression to the one which caused
the error by making the following changes to the trace patterns
and using the NOR n operator in the tsto command.

U>tpat p2 datal=39xx or statl=mw
U>tpat p5 addrl=500
U>tpat p6 datal=Oxx39 or statl=mw
U>tsto p1 - p2 or p5 - p6

Commands that
Change in the
"Complex"
Configuration

Changing the trace configuration will affect the following trace
commands. In a few cases, the options of the affected trace com
mand are different. However, in most cases, the only difference is
that complex expressions are used where easy configuration ex
pressions were used before.

• tcq (Trace Count Qualifier) -- Options are the same. Complex
expressions are used.

• telif (Secondary Branch Expressions) -- Different options. In
the "easy" configuration, the secondary branch expression is a
"global restart". It applies to all sequence terms and causes
branches back to the first sequence term. In the "complex"
configuration, you can specify secondary branch expressions
for each sequence term and the branch may be to any se
quence term. Complex expressions are used.

• tg (Simple Trigger) -- Options are the same. Complex expres
sions are used.

• tif(Primary Branch Expressions) -- Different options. In the
"easy" configuration, primary branches are always to the next
sequence term. In the "complex" configuration, primary
branches may be to any sequence term. (The number of the
destination term must be specified before the occurrence
count.) Complex expressions are used.

Accessing Full Analyzer Capability 3·7

• tpq (Trace Prestore Qualifier) -- Options are the same. Com
plex expressions are used.

• tsq (Trace Sequencer Specification) -- Different options. In the
"easy" configuration, you can insert or delete terms. A branch
out of the last sequencer term constitutes the trigger. In the
"complex" configuration, you cannot insert or delete sequence
terms. Eight terms are always in the sequencer. Any term
but the fIrst can be designated as the trigger term. (No expres
sions are involved.)

• tsto (Trace Storage Qualifier) -- Different options. In the
"easy" configuration, the trace storage qualiller is global, that
is, it applies to all sequence terms. In the "complex" configura
tion, storage qualillers are associated with each sequence
term (though you can specify that one storage qualifier applies
to all terms). Complex expressions are used.

FILE: srnd.S HEWLETT-PACKARD: 80186 Assembler

LOCATION OBJECT CODE LINE SOURCE LINE

1 "80186"
2 ORG 400H
3 ASSUME DS:ORG,ES:ORG
4

0400 B80000 5 START MOV AX,SEG RAND_SEED
0403 8ED8 6 MOV DS,AX
0405 8EDO 7 MOV SS,AX
0407 B80000 8 MOV AX,SEG RESULTS
040A 8ECO 9 MOV ES,AX
040C BC3A08 10 MOV SP,OFFSET STACK

11 .. CX used as a counter for the random numbers written.
040F B9FF04 12 MOV CX,#4FFH
0412 8AC7 13 AGAIN MOV AL,BH
0414 25FFOO 14 AND AX,#OFFH

15 .. 01 contains the offset to the RESULTS area (3rd
16 .. previous random number).

0417 8BF8 17 MOV DI,AX
18 .. BH contains the previous random number.

0419 8AFB 19 MOV BH,BL
041B E83EOO 20 CALL RAND

21 .. RAND returns the random number in AX.
22 .. BL contains the current random number.

041E 8AD8 23 MOV BL,AL
0420 8AE7 24 MOV AH,BH

Figure 3-1. "Complex" Configuration Sample Program

Accessing Full Analyzer Capability 3-8

0422 DODC
0424 7207
0426 DODC
0428 7216
042A E90700
042D DODC
042F 7215
0431 E90600

0434 E83DOO
0437 E90FOO
043A E83700
043D E90900
0440 E83100
0443 E90300
0446 E82BOO
0449 49

044A 75C6

044C B9FF04

044F B8FF05
0452 50
0453 B80005
0456 50

0457 E82000
045A EBB6

045C B86D4E
045F 26F72E0006
0464 153903
0467 7301
0469 42
046A 26A30006
046E 8BC2
0470 25FFOO
0473 C3

25 * The instructions which follow determine which
26 * caller calls WRITE_NUMBER (depends on the last
27 * two bits of the previous random number).
28 RCR AH,l
29 JC ONE THREE
30 RCR AH,T
31 JC CALLER 2
32 JMP CALLER-O
33 ONE_THREE RCR AH,l-
34 JC CALLER 3
35 JMP CALLER-1
36 * The WRITE NUMBER routine is called from four
37 * different-places. After the subroutine return,
38 * the program checks how many random numbers have
39 * been written.
40 CALLER_O CALL
41 JMP
42 CALLER_1 CALL
43 JMP
44 CALLER_2 CALL
45 JMP
46 CALLER 3 CALL
47 TEST - DEC
48 • If the counter is not
49 * random numbers.

WRITE NUMBER
NEAR P'TR TEST
WRITE NUMBER
NEAR PTR TEST
WRITE NUMBER
NEAR ll'TR TEST
WRITE NUMBER
CX -
zero, continue

50 JNZ AGAIN

to write

51 * The counter is zero. Sort the random numbers
52 * in the RESULTS area.
53 MOV CX,#4FFH ; Reset counter.
54 * Push the "high address" and "low address"
55 * parameters expected by the QSORT routine.
56 MOV AX,OFFSET RESULTS+OFFH
57 PUSH AX
58 MOV AX,OFFSET RESULTS
59 PUSH AX
60 * Call the QSORT routine.
61 CALL NEAR PTR QSORT
62 JMP AGAIN ; Repeat program.
63

64 *--
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

* The RAND subroutine generates a pseudo-random
* number from O-OFFH. The result is left in
* register AX.
*--

RAND MOV
IMUL
ADC
JNC
INC
MOV
MOV
AND
RET

AX,#4E6DH
RAND SEED
AX,#339H
PAST INC
DX -
RAND SEED,AX
AX ,DX
AX,#OFFH

Figure 3·1. "Complex" Config. Sample Program (Cont'd)

Accessing Full Analyzer Capability 3·9

0474 2688900005
0479 C3

047A 8BEC
047C 8B7E04
047F 8B7602

0482 3BFE
0484 7C3A

0486 8A04

0488 47

0489 46
048A 3A04
048C 7E06
048E 3BFE
0490 7E15
0492 EBF5

0494 4F
0495 3A05
0497 7CFB

0499 3BFE
049B 7EOA

80 *--
81
82
83

* The WRITE NUMBER subroutine writes the random
,. number to-the RESULTS area. The second previous
,. random number is the offset in this area.

84 .--
85
86 WRITE NUMBER
87 -
88

MOV
RET

RESULTS[DI],BL

89 *--
90
91
92

,. The QSORT subroutine is passed the high and low
,. addresses of some area of bytes to be sorted on
* the stack.

93 *--
94
95 QSORT
96
97
98

MOV
MOV
MOV

BP,SP
DI,[BP+4]
SI,[BP+2]

; 01 = high index.
; SI = low index.

99 ,. The following section splits the area to be sorted
100 ,. into two areas. QSORT will be called to sort each
101 • of these smaller areas.
102
103 ,. If high index is less than low index, then sort
104 ,. is done.
105 OVER CMP DI,SI
106 JL DONE
107 ,. AL = dividing value (from low index).
108 MOV AL,[SI]
109 • (Increment allows DEC_HIGH loop to work first
110 ,. time through.)
111 INC 01
112 ,. Move low index up until it points to a value
113 • greater than the dividing value.
114 INC LOW INC SI
115 - CMP AL,[SI]
116 JLE DEC HIGH
117 CMP DI,SI
118 JLE OUT
119 JMP INC LOW
120 * Move high index down until it points to a value
121 • less than or equal to the dividing value.
122 DEC_HIGH DEC 01
123 CMP AL,[DI]
124 JL DEC HIGH
125 • If high index is less than or equal to low index,
126 * the area is split; do not swap values.
127 CMP DI,SI
128 JLE OUT
129 ,. If high index is greater than low index, swap
130 ,. values and move indexes a!ain.

0490 8A24 131 MOV AH, SI~
049F 8A15 132 MOV DL, 01
04Al 8814 133 MOV [SI ,0

Figure 3·1. "Complex" Config. Sample Program (Cont'd)

Accessing Full Analyzer Capability 3·10

04A3 8825
04A5 EBE2

04A7 8B7602

04AA 8A15
04AC 8814
04AE 8805

04BO 8B5604
04B3 52
04B4 47
04B5 57
04B6 4F
04B7 4F
04B8 57
04B9 56
04BA E8BDFF
04BD E8BAFF
04CO C20400

0500

0600 0100
0602
083A

Errors= 0

134
135

MOV rDI],AH
JMP INC LOW

136 ,.. SI =
137 OUT
138 ,.. Swap
139

low address (needed to swap dividing value).
MOV SI,[BP+2]

dividing value and high index value.
MOV DL'~DI]

140
141

MOV [SI ,DL
MOV [DI ,AL

142
143 ,..
144 ,.
145 '"
146 ,.

The area is now split into two smaller areas.
The last high index value is the middle of the
two areas. The high and low addresses for the
second QSORT call are pushed first.

147
148
149
150
151
152
153
154
155
156
157

DX,[BP+4]
DX Push high.
DI
DI
DI
DI
DI

Push middle + 1.

Push middle - 1.
Push low.

158 DONE
159

MOV
PUSH
INC
PUSH
DEC
DEC
PUSH
PUSH
CALL
CALL
RET

SI
QSORT
QSORT
4 Pop values on return.

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

*--
'" The 256 byte long RESULTS area is where the random
,. numbers are written and are the locations which
.. get sorted. The area at 600H contains the stack.
.--

ORG 500H
• Random numbers written to this area.
RESULTS DBS OFFH

ORG
,. Variable used in RAND
RAND_SEED DW

DDS
STACK DWS

END

600H
subroutine.
1
8EH
1 Stack area.

Figure 3-1. "Complex" Config. Sample Program (Cont'd)

Accessing Full Analyzer Capability 3-11

The Sample
Program

Before You Can Use
the Analyzer

R)map 800 .. 0bff eram
R)map

The sample program used to ill ustrate the use of the analyzer in
the "complex" configuration is the same as the example used in
the "Getting Started" chapter, except that after a certain number
of random numbers are written, a quicksort routine sorts the ran
dom numbers. After the random numbers are sorted, the
program runs again. The sample program listing is shown below.

You must map memory, load the program, and run the program
as was done in the previous chapter. The only difference is that
another block of emulation memory must be mapped since the
stack takes up more space.

remaining number of terms : 14
remaining emulation memory : lfOOOh bytes
map 00400 .. 007ff eram # term 1
map 00800 .. 00bff eram # term 2
map other tram

Switching into
the "Complex"
Configuration (tcf
-c)

U)tcf -c

To enter the "complex" analyzer configuration, use the ·e option
to the tef(trace configuration) command. This will cause the
analyzer to be initialized to its default "complex" configuration
state.

The tef·e command will place the analyzer back into the "easy"
configuration. Changing the analyzer configuration to "easy" will
reset the trace pattern specifications, the trigger position, and the
count and prestore qualifiers.

Accessing Full Analyzer Capability 3-12

The Default
Sequencer
Specification (tsq
-r)

U>tsq
tif 1 any 2
tif 2 any 3
tif 3 any 4
tif 4 any 5
tif 5 any 6
tif 6 any 7
tif 7 any 8
tif 8 never
tsq -t 2
tsto 1 all
tsto 2 all
tsto 3 all
tsto 4 all
tsto 5 all
tsto 6 all
tsto 7 all
tsto 8 all
tel if 1 never
tel if 2 never
tel if 3 never
tel if 4 never
tel if 5 never
telif 6 never
tel if 7 never
tel if 8 never

After entering the "complex" analyzer configuration, the sequen
cer is in its default state. The tsq (trace sequencer specification)
command with no options will display the sequencer.

If the tsq information scrolls off your screen, you may wish to dis
play the sequencer specifications with a combination of other dis
play commands; for example, you could enter the tif, telif, tsto,
and tsq ·t commands to display the same information.

There are eight terms in the "complex" configuration sequencer.
By default, the primary branch expression for each term (except
term 8) is any, the secondary branch expression for each term is
never, and the storage qualifier for each term is all. The trigger
term is the second sequence term. This sequencer specification
will result in the same trace data as the default sequencer
specification in the "easy" configuration (except that there will be
more sequencer branches after the trigger). A diagram of the
default sequencer specification is shown in figure 3-2.

Accessing Full Analyzer Capability 3·13

SECONDARY BRANCHES PRIMARY BRANCHES
tsto 1 011

telif 1 never
TERM 1

tif 1 ony 2

tsq -t 2 (TRIGGER TERM)

telif 2
TERM2

never

tsto 2 011

tif 2 ony 3

telif 3
TERM3

never

tsto 3 all

tif 3 any 4

tel if
TERM4

4 never

tsto 4 all
tif 4 any 5

tel if 5
TERMS

never

tsto 5 all

tif 5 any 6

telif 6
TERM6

never

tsto 6 all

tif 6 any 7

telif 7
TERM7

never

tsto 7 all

tif 7 any 8

telif
TERM8

8 never

tsto 8 all

(ALL STATES STORED)

Figure 3·2. "Complex" Configuration Default Sequencer

Specifying a
Simple Trigger (tg)

Using the tg (simple trigger) command in the "complex" con
figuration will cause the first two sequence terms to be modified.
The pattern specified in the tg command becomes the primary
branch expression of the first sequence term. The primary and
secondary branch expressions of the second sequence term are set
to never, and this term is specified as the trigger term. The secon
dary branch expression of the fIrSt sequencer term is also set to
never.

Accessing Full Analyzer Capability 3·14

U>tpat p1 addr=412
U>tg p1
U>tsq

tiflp12
tif 2 never
t if 3 any 4
t if 4 any 5
t if 5 any 6
t if 6 any 7
t if 7 any 8
tif 8 never
tsq -t 2
tsto 1 all
tsto 2 all
tsto 3 all
tsto 4 all
tsto 5 all
tsto 6 all
tsto 7 all
tsto 8 all
tel if 1 never
tel if 2 never
tel if 3 never
tel if 4 never
tel if 5 never
tel if 6 never
tel if 7 never
tel if 8 never

The result of the tg command in the "complex" configuration is
the same as in the "easy" configuration, and equivalent tg com
mands (where the pattern is the same as the "easy" configuration
expression, and the storage qualifiers are the same) will yield
identical traces in each ofthe trace configurations.

As in the "easy" configuration, the tg command with no options
will display the primary branch expression of the fIrst sequence
term. This will only be the trigger condition when the second se
quence term is the trigger term.

The commands below specify a simple trigger and display the
resulting sequencer. A diagram of this sequencer speciflcation is
shown in fIgure 3-3.

Accessing Full Analyzer Capability 3-15

SECONDARY BRANCHES

telif 1 never
TERM 1

telif 2 never
TERM2

PRIMARY BRANCHES

tit 1 p1 2

(PRIMARY BRANCH ON ADORESS=412)

tsq -t 2 (TRIGGER TERM)

tit 2 never

(REMAINING SEOUENCE TERMS ARE NOT

SHOWN SINCE NO BRANCHES ARE MADE TO THEM.)

Figure 3-3. Simple Trigger in "Complex" Configuration

Using the
Sequencer in the
"Complex"
Configuration

This section contains three examples of setting up the sequencer:

• The fIrst example shows the general steps to follow when set
ting up the sequencer in the complex confIguration. Labels
from a hypothetical program are used to illustrate the steps in
volved.

• The second example shows how to set up the sequencer to
trace "windows" of program activity. The sequencer is set up
to trace activity in the RAND subroutine of this chapter's
sample program.

• The third example shows how to use the sequencer to isolate
and trace specifIc conditions. The analyzer is used to fInd the
cause of a "bug" in this chapter's sample program.

Accessing Full Analyzer Capability 3-16

Hints to Make
Setting Up the

Sequencer Easy

When you become experienced at using the "complex" configura
tion, you will be able to simply enter the trace commands for the
measurement you want. Until then, following the steps listed
below may make it easier for you to set up the sequencer.

1. Write down the sequencer algorithm.

2. Draw the sequencer diagram.

3. Defme the trace patterns (tpat) and range (trng).

4. Specify the primary and secondary branch expressions (tif,
telit').

5. Specify the trigger term (tsq ·t X)

6. Specify the storage qualifiers (tsto).

Generally, you will always follow steps 3 through 6 when setting
up the sequencer in the "complex" configuration. In reality, you
will probably perform steps 1 and 2 at the same time, but here the
algorithm is explained before the sequencer diagram is presented.
Once you become experienced with how the sequencer works, you
may be able to visualize steps 1 and 2 without having to write any
thing down.

Write Down Sequencer Algorithm

It is a good idea to write down what you want the sequencer to do.
A sequence term can be used to "search" for some trace state; this
is a sequence term with a primary branch expression but no secon
dary branch expression.

A sequence term can also be used for conditional branching; this is
a sequence term with both primary and secondary branch expres
sions. If some trace state occurs, then go to sequence term X
(primary branch). Else, if another trace state occurs before the
first, go to term Y (secondary branch).

Either branch may be to any sequence term. If a state satisfies
both the primary and secondary branch expressions, the primary

Accessing Full Analyzer Capability 3·17

PROCESS'

PROCESSJ

branch will be taken. Also, occurrence counts may only be
specified with primary branch expressions.

The following examples are based on a hypothetical program
whose flowchart is shown in figure 3-4.

Suppose there is a problem in the hypothetical program. You can
identify two situations which cause this problem, but you are not
quite sure as to why the problem occurs, and you would like to
trace the program execution around either of these situations.

The first situation which causes the problem is when
TRIG_STATE_I occurs in PROCESS_I. The second situation
is when TRIG_STATE_2 occurs in PROCESS_2 (which may
or may not be called after PROCESS_I). Either state can occur
in both processes and in other processes in the program loop; the

THE PROBLEM WILL ARISE IN "PROCESS '"
IF "TRIG STATE 1" OCCURS. ("TRIG STATE 2"
MAY ALSO OCCUR IN THIS PROCESS-:-) -

CONDITIONAL SUBROUTING CALL

SUBROUTING RETURN

OTHER PROCESSES TAKE PLACE
IN THE PROGRAM LOOP.

PROCESS2

THE SAME PROBLEM WILL
ARISE IN "PROCESS_2"
WHEN "TRIG STATE 2"
OCCURS. (,'TRIG STATE 1"
MAY ALSO OCCUR HERE.)

Figure 3-4. Flowchart of Hypothetical Program

Accessing Full Analyzer Capability 3-18

problem will only arise when the specific state occurs in the
specific process. The sequencer should take the following steps.

Step 1: First of all, you want the sequencer to search for
PROCESS_I.

Step 2: After PROCESS_l is found, you want the sequencer to
search for TRIG_STATE_l until PROCESS_l exits. If
TRIG_STATE_l is found before PROCESS_I_EXIT, the se
quencer should trigger the analyzer. If PROCESS_l exits
before TRIG_STATE_l is found, the sequencer should go on
and search for the next problem situation.

Step 3: After PROCESS_l exits, you want to search for
PROCESS_2. IfPROCESS_3 occurs fIrst, then you know
PROCESS_2 was not called, and the problem situation did not
occur in this loop of the program. The sequencer should go back
and search for the next occurrence of PROCESS _1. If
PROCESS_2 is found before PROCESS_3, the sequencer
should go on and look for the state which identifies the problem
in PROCESS_2.

Step 4: IfPROCESS_2 is called, you want to search for
TRIG_STATE_2. IfPROCESS_3 occurs before
TRIG_STATE_2, you know PROCESS_2 has exited and that
the problem situation did not occur in this loop of the program.
The sequencer should go back and search for the next occurrence
ofPROCESS_l. IfTRIG_STATE_2 is found before
PROCESS_3, the sequencer should trigger the analyzer.

Step 5: If the trigger condition is found in steps 2 or 4, the se
quencer should trigger the analyzer by branching to the trigger
term. There should be no branches out of the trigger term.

Accessing Full Analyzer Capability 3·19

Term_l :

Term_2:

A pseudo-code algorithm of the sequencer follows.

If (PROCESS_l occurs)
Then go to Term 2.

If (TRIG_STATE_l occurs before PROCESS_l_EXIT)
Then trigger the analyzer, i.e., go to Term 5.

Else if (PROCESS l_EXIT occurs before TRIG_STATE=l)
Then go to Term 3.

If (PROCESS_2 occurs-before PROCESS_3)
Then go to Term 4.

Else if (PROCESS 3 occurs before PROCESS_2)
Then go to Term 1.

If (TRIG_STATE_2 occurs before PROCESS_3)
Then trigger the analyzer, i.e., go to Term 5.

Else if (PROCESS_3 occurs before TRIG_STATE_2) -
Then go Term_l.

Analyzer is triggered on entry.
No branches are made from this term.

SECONDARY BRANCHES PRIWARY' BRANCHES

ELSE. F ''PROCESS _1_ EXIT"',
GO 10 TERM3.

ELSE. F ''PROCESS _~',
TtEN RESTMT THE SEQUENCER.

ELSE, IF -PROCESS _ J-,
THEN RESTMT THE SEQUENCER.

SEARCH FOR -PROCESS_1~.

wt£N FooN), GO TO TERM2.

(DO NOT STORE STATES UNTIl
"PROCESS_1- IS FCUlD.)

IF -TRlG_STATE_1", TtEN

TRIGGER THE NW.Yl£R.

IF -PROCESS _2", IS FQUN),

GO 10 TERM4.

IF -TRlG_STATE_2", TtEN

TRIGGER THE NW.YlER.

(ENTRY INTO TERMS CONSnTUTES
THE T'RIOOER. THERE SHOULD BE
NO PRIMR'Y' OR SECONIWff
BRAHaES FROM THIS TERM.)

(REWlNNG SEQUENCE TERMS NO SHOWN
SINCE NO BRANCHES ME MADE 10 no.)

Figure 3·5. Drawing the Sequencer Diagram

Accessing Full Analyzer Capability 3·20

U>tpat pI addr=448
U)tpat p2 addr=5ff
U>tpat p3 addr=490
U)tpat p4 addr=4c2
U)tpat p5 addr=4fO
U>tpat p6 addr=5fe

U>tif 1 pI
U>tif 2 p2 5
U>telif 2 p3 3
U>tif 3 p4
U>telif 3 p5 1
U>tif 4 p6
U>telif 4 p5 1
U>tif 5 never
U>telif 5 never

and

and

Draw Sequencer Diagram

After you have listed (or while you are listing) the steps you want
the sequencer to take, draw a state diagram of the sequencer as it
would follow those steps. For example, the sequencer diagram for
the steps listed above is shown in figure 3-5.

Define the Trace Patterns

When you know which states the sequencer is to look for, specify
those states in trace patterns. Consider whether or not you will be
using global set operators (and or or) with any of the patterns; if
so, make sure those patterns are in different sets. Below are the
tpat specifications to be used in the sequencer above.

PROCESS 1.
data=Of7xx and stat=mw # TRIG STATE 1.

PROCrSS 1 nIT.
PROCESS-2-:-
PROCESS-3.

data=Oxxf7 and stat=mw # TRIG_STATE_2.

Specify Primary and Secondary Branch Expressions

After the trace patterns are dermed, you are ready to specify the
primary and secondary branch expressions of the sequence terms
using the tif and telif commands.

Specify the Trigger Term

From the sequencer diagram in figure 3-4, you can see that entry
into the fifth term constitutes the trigger. The trigger term is
specified with the ·t option to the tsq command as shown below.

Accessing Full Analyzer Capability 3·21

U>tsq -t 5

U>tsto all
U>tsto 1 none

U>tp c

U>tsq
tif 1 pi 2
tif 2 p2 5
tif 3 p4 4
tif 4 p6 5
tif 5 never
tif 6 any 7
tif 7 any 8
tif 8 never
tsq -t 5
tsto 1 none
tsto 2 all
tsto 3 all
tsto 4 all
tsto 5 all
tsto 6 all
tsto 7 all
tsto 8 all
telif 1 never
telif 2 p3 3
telif 3 p5 1
telif 4 p5 1
telif 5 never
telif 6 never
telif 7 never
tel if 8 never

Specify Storage Qualifiers

Since each sequence term may have a storage qualifier, storage
qualifier specification is part of the sequencer setup. Suppose, in
the example above, that you do not wish to store states while sear
ching for PROCESS_l but that you wish to store all states after
PROCESS_l is found. The commands below will do this.
Remember, states which cause sequencer branches are stored
regardless of the trace storage qualifier.

The command which follows will cause the trigger state to appear
in the center of the trace.

To view the resulting sequencer setup, enter the tsq command
with no options.

Accessing Full Analyzer Capability 3·22

Tracing "Windows"
of Activity

U>tsq -r

U>equ Rand=45c
U>equ RandRet=473
U>equ QsortCall=457

One common use for the "complex" configuration sequencer is to
trace "windows" of execution or, perhaps, to eliminate "windows"
of execution from traces. For example, suppose you wish to trace
only the execution within a certain range of addresses. These ad
dresses could be a subroutine or perhaps they are just the addres
ses of instructions in which you are interested.

A simple windowing sequencer specification would consist of a
window enable term, a window disable term, and perhaps a trig
ger term (if you wish to trigger on a condition other than the
enable or disable terms). Only the states which occur between the
window enable condition and the window disable condition are
stored.

To trace only the execution of the sample program's RAND sub
routine, you would set up the sequencer specification so that the
first address of the RAND subroutine is the window enable term
and the address of the RAND subroutine's "return" instruction is
the window disable term. Suppose also that you wish to trigger
when the QSORT routine is called. The diagram of the sequencer
to do this is shown in figure 3-6.

Enter the following commands to set up the sequencer. First of
all, reset the sequencer.

Next, equate the addresses to be used in the sequencer branch ex
pressions to easily recognizable names. The address of the win
dow enable condition, the frrst address of the RAND subroutine, is
45CH. The address of the window disable condition, the RAND
subroutine's "return" instruction, is 473H. The address of the trig
ger condition, the address of the call to QSORT, is 457H. Use the
equ command, as shown below, to specify the equates.

Accessing Full Analyzer Capability 3·23

SECONDARY BRANCHES

ELSE. IF THE "QSORT"

ROUBlE IS CAU..ED
THEN TRIGGER.

"TRIGGER" - ENTRY
.. TO TERM.1.

WINDOW
ENAEl.E TERM

TERM 1

TERM2

TERM3

PRIMARY BRANCHES

IF "RANI)" (WNlOW ENAEl.E), THEN GO
TO TERM2. (DO NOT STORE WHILE
S£ARCHINC FOR THIS CONDITION.)

S£ARCH FOR ADDRESS Of THE "RAND"
SUElROUnNE 's "RETURN" INSTRUCTION.

(STORE STATES ONLY MILE S£ARCtINC
FOR THIS CONDITION.)

CONTINUE SEARCHING FOR THE
WINDOW ENABLE COIOTION.

Figure 3·6. Tracing a "Window" of Activity

U>tpat p1 addr=Rand
U>tpat pl addr=RandRet
U>tpat p3 addr=QsortCall

U>tif 1 pI
U>tel if 1 p3 3
U>tif 2 pl 1
U>tif 3 pI 1 l
U>tsq -t 3

Specify trace patterns that equal these addresses.

WINDOW ENABLE.
WINDOW DISABLE.
TRIGGER CONDITION.

Specify the primary and secondary branch expressions, and
specify the trigger term.

Notice that the primary branch expression ofthe trigger term (3)
is two occurrences of the Rand address. Ordinarily, you might ex
pect to use any state as the condition on which to continue search
ingfor the window enable. However, since the RAND subroutine

Accessing Full Analyzer Capability 3·24

U)tsto none
U)tsto 2 all

U)tcq time
U)tp -b 10

is located after the QSORT call, prefetches from the Rand address
would be interpreted as window enable conditions. Two
prefetches from the Rand address occur: one before the QSORT
call, and one after. The primary branch condition of the trigger
term causes the sequencer to continue searching for the window
enable condition after the two prefetches from the Rand address.

Specify the storage qualifiers so that states are stored only while
searching for the window disable condition. The fIrst command
below specifies all storage qualifiers to be none. The second com
mand specifies that all states be stored while searching for the
window disable condition.

Enter the following commands to specify that time be counted (so
that the count column in the trace contains useful information)
and to place the trigger position 10 states below the top of the
trace.

Accessing Full Analyzer Capability 3-25

U>tsq
tif 1
tif 2
tif 3
tif 4
tif 5
tif 6
tif 7
tif 8
tsq -t
tsto 1
tsto 2
tsto 3
tsto 4
tsto 5
tsto 6
tsto 7
tsto 8
tel if
tel if
tel if
tel if
tel if
tel if
tel if
tel if

pi 2
p2 1
pi 1 2
any 5
any 6
any 7
any 8
never
3
none
all
none
none
none
none
none
none

1 p3 3
2 never
3 never
4 never
5 never
6 never
7 never
8 never

Enter the tsq command with no options to display the sequencer
specification.

Accessing Full Analyzer Capability 3·26

Starting the trace, waiting for the measurement to complete, and
displaying the trace will result in the following information.

U)t
Emulation trace started

U)tl -t 50
Line add r, H 8018x mnemonic,H count,R seq

------------------------------------ ---------
-11 0046c 0600H, opcode fetch
-10 0046a INSTRUCTION--opcode unavailable 0.120 uS

-9 0046b INSTRUCTION--opcode unavailable 0.160 uS
-8 0046e c28bH, opcode fetch 0.280 uS
-7 00600 Of39H, mem write 0.640 uS
-6 0046e MOV AX,DX 0.160 uS
-5 00470 ff25H, opcode fetch 0.400 uS
-4 00472 c300H, opcode fetch 0.560 uS
-3 00470 AND AX, #OOffH 0.120 uS
-2 00474 8826H, opcode fetch 0.400 uS
-1 00473 RET 0.280 uS +
0 00457 INSTRUCTION--opcode unava il ab 1 e 22.80 uS +
1 0045c 6db8H, opcode fetch 23.70 mS +
2 0045c 6db8H, opcode fetch 5.440 uS +
3 00838 041eH, mem write 0.520 uS
4 0045c MOV AX,#4e6dH 0.160 uS
5 0045e 264eH, opcode fetch 0.400 uS
6 00460 2ef7H, opcode fetch 0.560 uS
7 0045f IMUL ES:WORD PTR 0600H 0.240 uS
8 00462 0600H, opcode fetch 0.280 uS
9 00460 0.120 uS

10 00464 3915H, opcode fetch 0.440 uS
11 00600 Of7fH, mem read 0.800 uS
12 00466 7303H, opcode fetch 0.560 uS
13 00468 4201H, opcode fetch 0.520 uS
14 00464 ADC AX,#0339H 3.920 uS
15 00467 JAE SHORT 046aH 0.560 uS
16 0046a a326H, opcode fetch 0.280 uS
17 0046a a326H, opcode fetch 0.960 uS
18 0046c 0600H, opcode fetch 0.520 uS
19 0046a MOV ES:0600H,AX 0.120 uS
20 0046b 0.160 uS
21 0046e c28bH, opcode fetch 0.280 uS
22 00600 4e4dH, mem write 0.680 uS
23 0046e MOV AX,DX 0.120 uS
24 00470 ff25H, opcode fetch 0.400 uS
25 00472 c300H, opcode fetch 0.560 uS
26 00470 AND AX,#OOffH 0.120 uS
27 00474 8826H, opcode fetch 0.400 uS
28 00473 RET 0.280 uS +
29 0045c 6db8H, opcode fetch 21. 72 uS +
30 00838 041eH, mem write 0.520 uS
31 0045c MOV AX,#4e6dH 0.160 uS
32 0045e 264eH, opcode fetch 0.400 uS
33 00460 2ef7H, opcode fetch 0.520 uS
34 0045f IMUL ES:WORD PTR 0600H 0.280 uS
35 00462 0600H, opcode fetch 0.280 uS
36 00460 0.120 uS
37 00464 3915H, opcode fetch 0.400 uS
38 00600 4e4dH, mem read 0.840 uS

Accessing Full Analyzer Capability 3·27

Isolating and Tracing
Specific Conditions

U>b
M>

There is a ''bug'' in this chapter's sample program. Occasionally,
after the 256 bytes of the RESULTS area have been sorted by the
QSORT subroutine, you will see a byte out of order in the last
eight or so bytes ofthe area. You can see what happens by setting
software breakpoints before and after the QSORT routine is ex
ecuted, running the program, and displaying memory.

First of all, break to the monitor.

Now, defme a macro called sort which will:

• Set a breakpoint at an address inside the QSORT subroutine,
say 489H (instead of the fIrst couple addresses of the routine
so that prefetches at the end of the WRITE_NUMBER
routine are not interpreted as entries into QSORT).

• Run the program until that breakpoint is hit (so you know the
contents in the RESULTS area are about to be sorted).

• Set another breakpoint at the AGAIN address.

• Run the program until the AGAIN address is hit (the contents
ofthe RESULTS area should be sorted at this point).

• Display the contents of the results area.

The following mac command accomplishes the items listed above.

M>mac sort={bp -e 489;r;w l;bp -e 412;r;w l;m -db 500 .. 5ff}

Accessing Full Analyzer Capability 3·28

M>bc -e bp
M>bp 489
M>bp 412
M>sort

Enable software breakpoints with the be (emulator break condi
tions) command, and execute the sort macro.

bp -e 489;r;w l;bp -e 412;r;w l;m -db 500 .. 5ff
waiting for 1 second
waiting for 1 second
00500 .. 0050f 80 80 81 83 83 85 88 89 8e 8f 8f 92 92 92 93 94
00510 .. 0051f 95 97 97 99 9a 9a 9b 9b 9b 9d 9d 9d 9d aO aO aO
00520 .. 0052f a1 a2 a2 a2 a4 a5 a6 a8 a8 aa aa ab ac ad af af
00530 .. 0053f af b3 b4 b4 b4 b6 b7 b7 b7 b9 ba bb bb bc be cO
00540 .. 0054f cO c1 c2 c2 c3 c4 c7 c7 c8 c8 c9 ca cc cd cd dO
00550 .. 0055f dl dl d2 d2 d3 d4 d4 d6 d8 d9 d9 db dc df eO e1
00560 .. 0056f e2 e4 e4 e5 e6 e6 e6 e8 ea ea ec ec fO fO fO f2
00570 .. 0057f f4 f4 f4 f6 f6 f6 f8 fb fc fd fd fe 01 02 03 04
00580 .. 0058f 06 07 07 08 09 Ob De Oe 11 13 13 14 15 18 18 19
00590 .. 0059f 1e 1e 20 21 22 23 24 25 26 26 27 28 28 2c 2c 2c
005aO .. 005af 2c 2f 2f 31 31 32 32 32 33 33 34 35 35 36 37 37
005bO .. 005bf 3e 3e 3e 3f 41 43 44 45 46 46 47 47 48 48 48 49
005cO .. 005cf 4a 4a 4b 4b 4c 4d 4d 4d 4d 4d 4e 4e 4f 50 52 55
005dO .. 005df 56 56 56 57 58 58 59 5a 5a 5c 5e 5f 61 61 63 66
005eO .. 005ef 67 68 68 69 6a 6a 6a 6b 6b 6c 6d 6e 6e 6f 6f 6f
005fO .. 005ff 70 70 71 73 74 78 7a 7a 7b 7c 7c 7d 7e 7f 7f 39

!ASYNC STAT 615! Software breakpoint: 0000:0489
!ASYNCSTAT 615! Software breakpoint: 0000:0412

Look carefully at the last several bytes of the RESULTS area.
You may notice that a byte is out of order. Ifnot, execute the sort
macro, and look at the display again. Sometimes, the program
works correctly; other times, you will see a byte out of order.

The memory display shows that the QSORT routine works for the
most part, which makes you suspect that the problem occurs on
the final write to the RESULTS area. To verify this, you might set
up the sequencer to trigger on any event, store only the address
following the return from QSORT (to the main program), and
prestore writes to the last eight bytes of the RESULTS area.

Accessing Full Analyzer Capability 3·29

M>r
U>tg any
U>tpat p1 addr=45a
U>tsto p1
U>trng addr=5f8 .. 5ff
U>tpq r
U>t

Emulation trace started
U>w -m

waiting for analysis measurements to complete ...
U>tl

Line addr,H 80l8x mnemonic,H count,R seq

a
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

00428
005fd
005fc
0045a
005ff
005ff
0045a
0045a
005ff
005ff
0045a
005ff
005ff
0045a
0045a
005ff
005f8
0045a
005ff
005ff

1672H, opcode fetch
3dxxH, mem write
xx23H, mem write
b6ebH, opcode fetch
ObxxH, mem write
ObxxH, mem write
b6ebH, opcode fetch

JMP SHORT 0412H
e4xxH, mem write
40xxH, mem write
b6ebH, opcode fetch
6fxxH, mem write
6fxxH, mem write
b6ebH, opcode fetch

JMP SHORT 0412H
f8xxH, mem write
xx60H, mem write
b6ebH, opcode fetch
39xxH, mem write
39xxH, mem write

+
prestore
prestore
4.977 mS
prestore
prestore
23.10 mS
0.680 uS
p res to re
prestore
46.88 mS
prestore
prestore
23.33 mS
0.680 uS
prestore
prestore
46.88 mS
prestore
prestore

From the previous trace, you see that the fmal writes made in the
QSORT subroutine are indeed improper values for that part of the
RESULTS area. Displaying additional lines of the trace shows
you there are common bad values written to 5FFH. You can set
up a trace to trigger on one of the common bad writes to 5FFH,
and store all the states which lead up to this event. The resulting
trace may show you what is wrong with the program.

The sequencer specification which follows will trigger on a write
of 39xxH to 5FFH. There is nothing special about the value
39xxH; it was just a common bad value when this example was
generated. You may see other bad values being written to 5FFH,
and you should trace on them instead. The sequencer algorithm
to capture the events which lead to a fmal QSORT write of 39xxH
to 5FFH is listed below.

1. Search for the beginning of the QSORT routine. (The fIrst
occurrence of the INC_LOW address assures that the

Accessing Full Analyzer Capability 3·30

SECONDARY BRANCHES

ELSE. F FRST INSTRUClION

AfTER "QSORT" RETURN
THEN RESTART.

ELSE. F /lit(VALUE OTHER
THAN 39H IS WRITTEN TO
5fFH, GO IW:K AND S£ARa4
NEXT WRITE OF 39M TO 5fFH.

QSORT routine is actually entered; this eliminates
prefetches of the QSORT address from being interpreted as
entry into the routine.)

2. If a write of 39H to address 5FFH occurs, this mayor may
not be the trigger event -- another condition must be tested
(see 3). Else, if the QSORT routine exits before a write of
39H to 5FFH occurs, the trigger event has not occurred in
this loop of the program; in this case, the sequencer should
restart.

3. A write of39H to 5FFH has occurred. If the QSORT
routine exits without any other value being written to
5FFH, this is the trigger event. Else, if a write of some
value other than 39H is made to 5FFH, the previous write

PRIMARY BRANCHES

S£AROt FOR ''INC_LOW''

("aSORT" ENTERED).

IF A WRITE OF 39H 10 5f'FH OCCURS,

THEN GO 10 TERM3.

IF THE FIRST INSTRUCTION AFTER
"aSORT" RETURN OCCURS, THEN WRITE
OF 39H WAS THE lAST -- GO 10
TRIGGER TERM.

TRIGGER TERM

(THERE SHOULD BE NO PRIMRV OR SECOtIDNfY

BRANCH OUT OF THE TRIGGER TERM.)

Figure 3-7. Sequencer to Isolate Sample Program Bug

Accessing Full Analyzer Capability 3-31

U>tsq -r
U>tpq none

U>tpat p1 addr=489

is not the event to trigger on, and the sequencer should go
back to searching for writes of 39H to 5FFH.

The corresponding sequencer diagram is shown in figure 3-7.

The commands to set up the sequencer, display the sequencer,
issue the trace, and display the trace are shown below. Since we
are interested in the instructions which occur before the trigger,
the trigger position is specified such that only 10 states are stored
after the trigger state.

U>tpat p2 addr=5ff and data=39xx and stat=mw
U>tpat p3 addr=45a
U>tpat p4 addr=5ff and stat=mw
U>tpat p5 datal=39xx

U>tif 1 pI
U>tif 2 p2
U>tel if 2 p3 1
U>tif 3 p3
U>telif 3 p4 and p5 2
U>tif 4 never
U>telif 4 never
U>tsq -t 4

U>tsto none
U>tsto 2 all
U>tsto 3 all
U>tsto 4 all

Accessing Full Analyzer Capability 3·32

U)tsq
tif 1 pl 2
tif 2 p2 3
tif 3 p3 4
tif 4 never
tif 5 any 6
tif 6 any 7
tif 7 any 8
tif 8 never
tsq -t 4
tsto 1 none
tsto 2 all
tsto 3 all
tsto 4 all
tsto 5 none
tsto 6 none
tsto 7 none
tsto 8 none
tel if 1 never
te 1 if 2 p3 1
tel if 3 p4 and
te 1 if 4 never
tel if 5 never
tel if 6 never
te 1 if 7 never
tel if 8 never

U)tp -a 10
U)t

p5 2

Emulation trace started
U)w -m

waiting for analysis measurements to complete ...
U)tl -19

Line addr,H 8018x mnemonic,H count,R seq

-19 004c2 OOOOH, opcode fetch 0.560 uS
-18 004cO RET #0004H 0.120 uS
-17 004c4 ffffH, opcode fetch
-16 00822 04cOH, mem read

0.400 uS
0.560 uS

-15 004cO 04c2H, opcode fetch
-14 004c2 OOOOH, opcode fetch
-13 004cO RET #0004H

1. 080 uS
0.560 uS
0.120 uS

-12 004c4 ffffH, opcode fetch 0.400 uS
-11 00828 04cOH, mem read 0.560 uS
-10 004cO 04c2H, opcode fetch

-9 004c2 OOOOH, opcode fetch
-8 004cO RET #0004H

1.080 uS
0.520 uS
0.160 uS

-7 004c4 ffffH, opcode fetch 0.400 uS
-6 0082e 04cOH, mem read 0.560 uS
-5 004cO 04c2H, opcode fetch 1.080 uS
-4 004c2 OOOOH, opcode fetch 0.520 uS
-3 004cO RET #0004H 0.160 uS
-2 004c4 ffffH, opcode fetch
-1 00834 045aH, mem read

0.400 uS
0.520 uS

0 0045a b6ebH, opcode fetch 1.080 uS +

Accessing Full Analyzer Capability 3·33

U>tl -210
Line addr,H

-210 0048e
-209 00492
-208 00490
-207 00494
-206 004a7
-205 004a8
-204 004a7
-203 004aa
-202 00824
-201 004aa
-200 004ac
-199 00600
-198 004ac
-197 004ae
-196 004bO
-195 005ff
-194 004ae
-193 004b2
-192 00600
-191 004bO

By continuing to list the trace lines before the trigger (tl
<line_number>),you will eventually come across thesequen
cer branch prior to the trigger.

8018x mnemonic,H count,R seq
------------------------------------ ---------
CMP or,sr 0.160 uS

f5ebH, opcode fetch 0.400 uS
JLE SHORT 04a7H 0.120 uS

3a4fH, opcode fetch 0.400 uS
8bxxH, opcode fetch 0.680 uS
0276H, opcode fetch 0.560 uS

MOV Sr,WORD PTR 02H[BPJ 0.120 uS
158aH, opcode fetch 0.400 uS
05ffH, mem read 0.840 uS

MOV OL,BYTE PTR [OlJ 0.400 uS
1488H, opcode fetch 0.120 uS
xx39H, mem read 0.840 uS

MOV BYTE PTR [SlJ,OL 0.400 uS
0588H, opcode fetch 0.120 uS
568bH, opcode fetch 1.080 uS
39xxH, mem write 0.560 uS +

MOV BYTE PTR [OlJ ,AL 0.120 uS
5204H, opcode fetch 1.240 uS
xx7eH, mem write 0.520 uS

MOV OX,WORO PTR 04H[BPJ 0.160 uS

From these lines of the trace list, you can see that the instructions
at addresses 4AAH and 4ACH are the ones that cause the
problems. These are the instructions associated with the OUT
section of the QSORT subroutine. They are used to swap the
dividing value and the value at the high index after a segment of
the list to be sorted is split. You can see that the high index is ad
dress 600H, which it should never be. However, looking back at
the program you see that the increment of the high index so that
DEC_HIGH works the fIrst time through will cause problems
when the JLE OUT instruction gets executed in the INC_LOW
loop. Changing the program in the following manner will fIx the
problem (notice the instructions surrounded by the n#n charac
ter).

Accessing Full Analyzer Capability 3-34

*--
.. The QSORT subroutine is passed the high and low
'" addresses of some area of bytes to be sorted on
.. the stack.
*--

QSORT BP,SP MOV
MOV
MOV

DI,[BP+4] ; 01 = high index.
SI,[BP+2] ; SI = low index.

.. The following section splits the area to be sorted

.. into two areas. QSORT will be called to sort each
'" of these smaller areas .

.. If high index is less than low index, then sort
'" is done.
OVER CMP

JL
'" AL = dividing value

MOV

DI,SI
DONE

(from low index).
AL,[SI]

'" (Increment allows DEC_HIGH loop to work
.. time through.)

first

"'#### The following instruction deleted. ##########
'" INC 01
"'##

.. Move low index up until it points to a value
'" greater than the dividing value.
INC LOW INC SI

- CMP AL,[SI]

"'#### The following instruction is changed. #######
JLE NEXT

"'##

CMP DI,SI
JLE OUT
JMP INC_LOW

"'#### The following instruction is new. ###########
NEXT INC 01
'"##

'" Move high
'" 1 ess than
DEC_HIGH

index down until it points to a value
or equal to the dividing value.

DEC 01
CMP AL, [OIl
JL DEC HIGH

.. If high index is less than or equal to low index,
'" the area is split; do not swap values.

CMP DI,SI
JLE OUT

'" If high index is greater than low index, swap
'" values and move indexes alain.

MOV AH, SI~
MOV DL, 01
MOV [SI, 0
MOV [01 ,AH

Accessing Full Analyzer Capability 3-35

JMP INC LOW
'" SI = low
OUT

address (needed to swap dividing value).
MOV S1,[BP+2]

.. Swap dividing ~g~ue angL~~i8~lindex value.
MOV [SI ,D[
MOV [01 ,AL

.. The area is now split into two smaller areas.
'" The last high index value is the middle of the
.. two areas. The high and low addresses for the
.. second QSORT call are pushed first.

MOV DX,[BP+4]
PUSH OX Push high.
INC 01
PUSH 01 Push middle + 1.
DEC 01
DEC 01
PUSH 01 Push middle - 1.
PUSH SI Push low.
CALL QSORT
CALL QSORT

DONE RET 4 Pop values on retu rn .

Accessing Full Analyzer Capability 3·36

4

Using the External Analyzer

Introduction

Note

Before You Can
Use the External
Analyzer

Your HP 64700 Series analyzer may optionally contain 16 exter
nal trace signals. These trace lines allow you to analyze addition
al target system signals. The external analyzer may be con
figured as an extension to the emulation analyzer, as an inde
pendent state analyzer, or as an independent timing analyzer.

The external analyzer's independent timing mode cannot be used
from the Terminal Interface. A host computer interface is neces
sary to provide timing analysis. Consequently, independent
timing analysis is not described in this manual. Refer to the ap
propriate host computer interface analyzer manual (either the
PC Interface: Analyzer User's Guide or the Softkey Interface:
Analyzer User's Guide).

There are several things to do before you can use the external
analyzer:

Using the External Analyzer 4-1

Connecting the
Analyzer Probe Lines
to the Target System

18 WIRE

CONNECTOR

• Connect the analyzer probe to signals of interest in your tar-
get system.

• Specify threshold voltages of external trace signals.

• Label the external trace signals.

• Select the external analyzer mode.

The following steps must be taken to connect the analyzer probe
to the target system:

1. Assemble the analyzer probe.

2. Connect the probe to the emulator.

3. Connect the probe wires to the target system.

RIBBON CABLE

o~
a

KEY

Figure 4·1. Assembling the Analyzer Probe

Using the External Analyzer 4·2

Assembling the Analyzer Probe

The analyzer probe is a two-piece assembly, consisting of ribbon
cable and 18 probe wires (16 data channels and the J and K clock
inputs) attached to a connector. Either end of the ribbon cable
may be connected to the 18 wire connector, and the connectors are
keyed so they may only be attached one way. Align the key of the
ribbon cable connector with the slot in the 18 wire connector, and
firmly press the connectors together. (See figure 4-1.)

Each of the 18 probe wires has a signal and a ground connection.
Each probe wire is labeled for easy identification. Thirty-six grab
bers are provided for the signal and grotmd connections of each of
the 18 probe wires. The signal and grotmd connections are at
tached to the pin in the grabber handle. (See figure 4-2.)

CONNECTING PIN

GRABBER HANDLE

GROUND

Figure 4-2. Attaching Grabbers to Probe Wires

Using the External Analyzer 4-3

TABS/

Connecting the Probe to the Emulator

The external analyzer probe is attached to a connector under the
snap-on cover in the front upper right corner of the emulator.
Remove the snap-on cover by pressing the side tabs toward the
center of the cover; then, pull the cover out. (See figure 4-3.)

SNAP-ON COVER

Figure 4-3. Removing Cover to Emulator Connector

Each end of the ribbon cable connector is keyed so that it can be
connected to the emulator in only one way. Align the key ofthe
ribbon cable connector with the slot in the emulator connector,
and gently press the ribbon cable connector into the emulator con
nector. (See figure 4-4.)

Using the External Analyzer 4-4

Note Check for bent connector pins before connecting the analyzer
probe to the emulator.

SLOT

Figure 4-4. Connecting the Probe to the Emulator

Using the External Analyzer 4·5

Caution ,
Connecting Probe Wires to the Target System

Tum OFF target system power before connecting analyzer probe
wires to the target system. The probe grabbers are difficult to
handle with precision, and it is extremely easy to short the pins
of a chip (or other connectors which are close together) with the
probe wire while trying to connect it.

You can connect the grabbers to pins, connectors, wires, etc., in
the target system. Pull the hilt of the grabber towards the back of
the grabber handle to uncover the wire hook. When the wire hook
is around the desired pin or connector, release the hilt to allow the
tension of the grabber spring to hold the connection. (See figure 4-
5.)

Using the External Analyzer 4·6

HP PART NO. 10024A
__ --- I.C. CLIP

Figure 4-5. Connecting Probe to the Target System

Using the External Analyzer 4-7

Specifying External
Trace Signal

Threshold Voltages

R)xtv -1 ECl -h ECl

Defining External
Trace Labels

R)xt1b iodata 0 .. 7
R)xt1b ioaddr 8 .. 11
R)xt1b iostat 12 •. 14
R)xt1b intr 15

The external analyzer probe signals are divided into two groups:
the lower byte (channels 0 through 7 and the J clock), and the
upper byte (channels 8 through 15 and the K clock). You can
specify a threshold voltage for each of these groups. The default
threshold voltages are specified with the keyword TIL which
translates to 1.4 volts.

Use the xtv (threshold voltage for external trace signals) com
mand to specify different threshold voltages. The·l option to xtv
allows you to specifY threshold voltages for the lower group. The·
u option allows you to specifY threshold voltages for the upper
group. Voltages may be in the range from -6.4 volts to 6.35 volts
(with a 50m V resolution); you may also use the keywords TIL,
CMOS (which translates to 2.5 volts), or ECL (which translates
to -1.3 volts). The command below specifies ECL threshold vol
tages for all external trace signals.

Deflning external trace labels is not something you must do
before you can use the external analyzer; however, it is something
you may wish to do to make specifying qualifiers easier. External
trace labels may be used in any of the external analyzer modes.

One external trace label has been predefined, xbits. This label is
associated with all 16 external trace signals. This label appears
in the default trace format and listing.

If you wish to derme external trace labels to further break down
the external signals, use the xtlb (external trace label) command
as shown below.

You may change the trace listing format (xtf or tf) to include ex
ternal trace labels after they have been defined.

Using the External Analyzer 4·8

Selecting the
External Analyzer

Mode

R>xtmo -5

R>xtmo -e

Aligned with
Emulation
Analyzer

By default, on power-up or after trace initialization (tinit), the ex
ternal analyzer is aligned with the emulator. In this mode, you
have 16 external trace signals which are clocked with the same
signal(s) as the emulation analyzer. The external trace signals
may be used to capture target system signals synchronized with
the emulation clock.

The external analyzer may also operate as an independent state
analyzer, or it may operate as an independent timing analyzer if a
host computer interface program is used. In the Terminal Inter
face, use the xtmo (external trace mode) command to select the in
dependent state mode or to re-select the emulation mode. The-s
option to xtmo is used to select the independent state analyzer
mode.

To re-select the emulation analyzer extension mode, use the -e op
tion to the xtmo command.

When xtmo -e is specified (which is the defaul t), the external
analyzer becomes an extension ofthe emulation analyzer. In
other words, they operate as one analyzer. The only external
trace commands allowed in this mode are xtv, xtlb, and xtmo.
You can, however, display the help text for the other external
trace commands. The external labels may be referenced in emula
tion trace commands in this mode.

External trace signal data is captured on the trace clock specified
in the tck (trace clock source) command. You should not use the
external J and K signals to clock the emulation trace; however,

Using the External Analyzer 4-9

Independent
State Analyzer

Independent State
Analyzer Commands

(xt, xtarm, ...)

you may wish to use these signals to qualify the emulation trace
clock (refer to the "Qualifying Clocks" section of the "Special
Analyzer Topics" chapter.)

When xtmo -s is specified, the external analyzer operates as an
independent state analyzer. The independent state analyzer is
identical to the emulation analyzer, except that only 16 bits of
analysis are available. Your HP 64700 Series emulator now con
tains two state analyzers; two sets of analyzer resources (trace
memory, patterns, qualifiers, etc.) are available, one for the
emulation analyzer and one for the independent state analyzer.

When the independent state analyzer mode is selected, you can
use one analyzer to arm the other. You can specify the arm condi
tion as a qualifier, perhaps as the trigger condition (cross-trigger
ing). (Refer to the "Making Coordinated Measurements" chapter
for more information on cross-triggering.)

When you use the external analyzer as an independent state
analyzer, a whole new set of external trace commands become
available. Every trace command (except for the trace activity, ta,
and trace initialization, tinit, commands) is duplicated for the in
dependent state analyzer and prefixed with an x. For example,
the following commands become available in the independent
state mode: xt, xtarm, xtcf, xtck, xtcq, xtelif, xtg, xth, xtif, xtl,
xtIb, xtp, xtpat, xtpq, xtrng, xts, xtsck, xtsq, and xtsto. These
commands operate identically to their counterpart emulation
analyzer commands.

Using the External Analyzer 4·10

Specifying the
Independent

Analyzer Clock Source

Independent
Timing Analyzer

Note

The clock source for the independent state analyzer is specified
with the xtck (external trace clock) command. The independent
state analyzer may be clocked with target system clock signals
connected to the JCL and KCL external clock inputs. (Refer to the
"Selecting Clock Signals" section of the "Special Analyzer Topics"
chapter).

Independent Analyzer Slave Clocks

You can specify slave clocks for the external analyzer with the
xtsck (external trace slave clock) command. Specifying slave
clocks is the same for the external analyzer as it is for the emula
tion analyzer; refer to the "Using Slave Clocks for Demultiplex
ing" section of the "Special Analyzer Topics" chapter.

When xtmo -t is specified, the external analyzer operates as an in
dependent timing analyzer.

The external analyzer's independent timing mode cannot be used
from the Terminal Interface. A host computer interface is neces
sary to provide timing analysis. Consequently, independent
timing analysis is not described in this manual. Refer to the ap
propriate host computer interface analyzer manual (either the
PC Interface: Analyzer User's Guide or the Softkey Interface:
Analyzer User's Guide).

Using the External Analyzer 4·11

External Analyzer
Specifications

• ThresholdAccuracy = +/- 50 mY.

• Dynamic Range = + /- 10 V about threshold setting.

• Minimum Input Swing = 600 m V pp.

• Minimum Input Overdrive = 250 m V or 30% of threshold set-
ting, whichever is greater.

• Absolute Maximum Input Voltage = +/- 40 V.

• Probe Input Resistance = lOOK ohms +/- 2%.

• Probe Input Capacitance = approximately 8 pF.

• Maximum + 5 Probe Current = 0.650 A.

• +5 Probe Voltage Accuracy = +5.0 +/-5%.

External State Analyzer Specifications

• Data Setup Time = IOnS min.

• Data Hold Time = 0 nS min.

• Qualifier Setup Time = 20 nS min.

• Qualifier Hold Time = 5 nS min.

• Minimum Clock Width = IOnS

• Minimum Clock Period:

- No Tagging Mode = 40 nS (25 Mhz clock).

- Event Tagging Mode = 50 nS (20 MHz clock).

- Time Tagging Mode = 60 nS (16 MHz clock).

• Minimum Time from Slave Clock to Master Clock = 10 nS.

• Minimum Time from Master Clock to Slave Clock = 50 nS.

Using the External Analyzer 4·12

5

Making Coordinated Measurements

Introduction Coordinated measurements are measurements synchronously
made in multiple emulators or analyzers. Coordinated measure
ments can be made between HP 64700 Series emulators which
communicate over the Coordinated Measurement Bus (CMB).
Coordinated measurements can also be made between an
emulator and some other instrument connected to the BNC con
nector. These types of coordinated measurements, that is,
measurements which involve signals external to an HP 64700
Series emulator, are described in the Coordinated Measurement
Bus Operating Manual.

This chapter will describe coordinated measurements which are
made internal to an HP 64700 Series emulator and which involve
the HP 64700 Series analyzer. The types of coordinated measure
ments involving the analyzer which can be made internal to an
HP 64700 series emulator are:

• Breaking into the monitor on an analyzer trigger.

• Using the emulation analyzer to arm the external analyzer (in
an independent mode).

• Using the external analyzer (in an independent mode) to arm
the emulation analyzer.

The last two instances above are referred to as cross-arming.
When arm conditions are used to trigger an analyzer, cross-trig
gering takes place. Cross-triggering is a subset of cross-arming.

Making Coordinated Measurements 5-1

Specifying an Arm
Condition

R)tarm
tarm always

R)tarm =trig 1

R)xtarm 1=trig2

R)tg arm

Arm conditions may also be used to qualify primary and secon
dary branches, as well as storage or prestore qualifiers.

An arm condition may not be used as a count qualifier.

By default, the analyzer is always armed. This means that the
analyzer arm condition is always true. The tarm (trace arm con
dition) command is used to specify or display the arm condition.
The tarm command with no options will display the current arm
condition.

There are two internal signals, trigl and trig2, which may be
specified as the arm condition. You can specify that the arm con
dition be true when one of these two signals is true (= trigl or
= trig2) or when one of these two signals is false (! = trigl or
! = trlg2). The command below will arm the emulation analyzer
when trigl is true.

The xtarm (external trace arm condition) command is used to
specify the external analyzer arm condition when in the inde
pendent state or independent timing modes. The command below
will cause the external analyzer to be armed when the trig2 sig
nal is false.

The keyword arm may be used to specify primary and secondary
branch qualifiers, as well as storage or prestore qualifiers. The
keyword arm may not be used to specify a count qualifier. For ex
ample, to trigger the emulation analyzer when it becomes armed,
enter the command below.

Making Coordinated Measurements 5-2

Driving Signals When
the Trigger is Found

R>tgout
tgout none

R>tgout trig1

Arm Condition Status

The ts (trace status) command displays information on the arm
condition. If the tarm condition is specified as always, the mes
sage "Arm ignored" is displayed. If the tarm condition is specified
as one of the internal signals, either the message "Arm not
received" or "Arm received" is displayed. The display indicates if
the arm condition happened any time since the most recent trace
started, even if it happened after the trace was halted or became
complete.

The "Arm to trigger" line displays the amount of time between
the arm condition and the trigger. The time displayed will be
from 0.04 uS to 41.943 mS, less than 0.04 uS, or greater than
41.943 mS. If the arm signal is ignored or the trigger is not in
memory, a question mark (?) is displayed.

The default condition of the analyzer specifies that neither the
emulation analyzer nor the external analyzer will drive the inter
nal trigl or trig2 signals when the trigger is found. The tgout
command is used to specify that these signals be driven when the
emulation analyzer trigger is found. The tgoutcommand with no
options will display the signal which is currently being driven
when the trigger is found (or none if no signal is driven when the
trigger is found).

The signals which may be driven when the trigger is found are the
internal signals trigl and trig2. These signals may be received by
the CMB or BNC TRIGGER lines, the emulator break, or the arm
condition of the external analyzer. The following command will
cause the trig! signal to be driven when the emulation analyzer
trigger is found.

The xtgout command is used to specify which signal (trig! or
trig2) is to be driven when the external analyzer trigger is found.

Making Coordinated Measurements 5·3

FROM CUB::

INTERfW. SIGNALS
trig 1

trig2

~. lcrnbtT =, ~~,
(-r I d) trig2
.---------+-----~~

(THE CUB AND BNC TRIGGERS
CAN EITHER DRIVE IN1ERtW..
SIGNALS OR RECENE THEM.
FOR MORE INFORMATION. REFER
TO THE "COORDINATED W£ASUR
WENT BUS USER' S GUIDE".)

torm -trig 1
6--I-_-J

I-trig 1

torm -trig2

!-trig2

tgout trigl

EMUlATION ANALYZER
ARM CONDITION

EMUlATION ANALYZER
TRIGGER OUTPUT

t-+-tgout...J. -:trig2---1r.....----.
TO EMUlATOR 4--------'
BR£AI(

NOTES:
- ENTERING THE COIAtANO SHOWN

WIll a..osE THE SWITCH.
ONLY ONE CONDITION MAY BE
USED TO ARM AN AfW.ZER.
AN AtW..VZER'S TRIGGER OUT
PUT CAN DRIVE BOTH t<ITERtW..
SIGNALS.

xtann -trig 1
6--I-_-J

!-trigl

bc_ trig1

Figure 5·1. Coordinated Measurements

Making Coordinated Measurements 5·4

EXTERNM.. ANALYZER
ARM CONDITION

EXTERNM.. ANALYZER
TRIGGER OUTPUT

•

R>xtgout trig2

Breaking on an
Analyzer Trigger

R>tg any
R>tgout trigl
R>bc -e trigl
R>r 400
U>t

Emulation trace started
U>es

The keyword none is again used to specify that no signal should
be driven. The command below specifies that trig2 be driven
when the external analyzer trigger is found.

A diagram of the internal signals and the commands which may
be used to drive them or to arm an analyzer with them are shown
in figure 5-1. This diagram is only intended to show logical con
nections, and does not represent actual circuitry inside the
emulator.

The be (break conditions) command is used to enable or disable
the conditions which may break the emulator into the monitor.
The internal signals trigl and trig2 may be used to cause breaks
to background. Therefore, to cause an analyzer trigger to break
the emulator, you must specify that the analyzer drive one of the
internal signals when the trigger is found, and enable a break on
that internal signal. For example, the commands below will
cause the emulation analyzer trigger to break the emulator.

80l86--Running in monitor
--in normal mode

1 ASYNC_STAT 6181 trigl break
M>

After the break occurs, the analyzer will stop driving the trig line
that caused the break. Therefore, iftrigl is used both to break
and to drive the CMB TRIGGER (for example), TRIGGER will go
true when the trigger is found and then will go false after the
emulator breaks. However, iftrigl is used to cause the break and

Making Coordinated Measurements 5·5

Cross-Arming
Between
Emulation and
External Analyzers

R>xtmo -5
R>xtgout trig1
R>tarm =trigl

R>tif 1 arm
R>tif 2 addr=40f
R>r 400

U>t
Emulation trace started

U>xt
External trace started

trig2 is used to drive the CMB TRIGGER, TRIGGER will stay
true after the trigger until the trace is halted or until the next
trace starts.

Cross-arming between the emulation analyzer and the external
analyzer is a matter of specifying that one analyzer drive one of
the internal signals (trig! or trig2) and then specifying that the
other analyzer be armed on that signal. For example, to cause the
external analyzer to arm the emulation analyzer, the commands
below are entered.

It is often important to start the analyzer which receives a signal
before the analyzer which drives the signal. For example, if you
start the analyzer which drives a signal fIrst, the signal mayal
ready be driven before you start the analyzer which receives the
signal. The receiving analyzer will most likely capture states
which execute long after the condition which caused the signal to
be driven.

Making Coordinated Measurements 5-6

R>xtmo -s
R>tgout tri!fl
R>xtarm =tng1

R>xtif 1 arm
R>xtif 2 xbits=87
R>r 400

U>xt
External trace started

U>t
Emulation trace started

Cross-Triggering

R>xtmo -s
R>xtgout trig1
R>tarm =trigl
R>tg arm

U>t
Emulation trace started

U>xt
External trace started

To cause the emulation analyzer to arm the external analyzer,
enter the commands below.

Cross-triggering is a special case of cross arming in which the arm
condition triggers the analyzer. The commands below will cause
the emulation analyzer to trigger after it is armed by the external
analyzer trigger condition.

Making Coordinated Measurements 5-7

Notes

Making Coordinated Measurements 5·8

6

Special Analyzer Topics

Introduction

Displaying Trace
Activity (ta)

This chapter describes analyzer topics which are not specifically
related to the "easy" or "complex" configurations, the external
analyzer, or coordinated measurements. The analyzer topics
which fall into this category are listed below and described in this
chapter.

• Displaying trace activity.

• Specifying the analyzer clock source.

• Slave clocks and demultiplexing.

• Saving trace specifications in command files.

The ta (trace activity) command allows you to display the current
status of the analyzer trace signals. The trace activity display al
lows you to view the status of trace signals at any time, regardless
of whether a pending trace is completed or not. An example of the
ta command and its output is shown below.

Special Analyzer Topics 6·1

U>ta
Pod 3
Pod 2
Pod 1
External Pod

01100100 100?000?
11011101 ????????
01??1??? 00000000
0010?1?? 010??001

Specifying the
Analyzer Clock
Source (tck)

R>tck
tck -r L -u -s S

Tracing Background
Execution

R>tck -b
R>tck

tck -r L -b -s S

Special Analyzer Topics 6-2

The trace signals are displayed in sets of sixteen. Pod 1 repre
sents emulation analyzer trace signals 0 through 15 (the least sig
nificant bit is on the right). Pod 2 and Pod 3 represent emulation
trace signals 16 through 31 and 32 through 48, respectively. Ex
ternal Pod represents the external analyzer trace signals.

A trace signal is displayed as a low (0) when it is below the
threshold voltage (as specified by the xtv command), high (1)
when it is above the threshold voltage, or moving (?).

The emulation and external analyzers have default clock source
values. Use the tck (trace clock) command to specify or display
the clock used for the emulation analyzer. The xtck (external
trace clock) command is used to specify or display the clock used
for the external analyzer. Entering the tck command with no op
tions will display the current emulation trace clock specification.

By default, the analyzer traces user (that is, foreground) code; this
is specified by the -u option to the tck command. However, it is
possible to trace background code; this is specified by the·b option
to the tck command.

R>tck -ub
R>tck

tck -r L -ub -s S

Selecting Clock
Signals

Notice that the userlbackground option is a switch in the clock
specification. Changing the option as shown above does not affect
the rest of the trace clock specification. It is also possible to trace
both user and background code; this is accomplished by specifying
both options in a single tck command.

Three tck options may be used to select analyzer clock sources:

-r Specifies that the clock should take place on the rising edge
of the signal(s) which follow.

-f Specifies that the clock should take place on the falling
edge of the signal(s) which follow.

-x Specifies that the clock should take place on both edges of
the signal(s) which follow.

Five clock signals may be selected:J, K, L, M,andN. ClocksJ
and K are the external clock inputs available when your emulator
contains an external analyzer. The external clock inputs should
not be used to clock the emulation analyzer; however, it may oc
casionally be useful to use the external clock signals to qualify the
emulation trace (see the "Qualifying Clocks" discussion below).

The L, M, and N clock signals are generated by the emulator.
Typically, the L clock is the emulation clock derived by the
emulator, the N clock is used as a qualifier to provide the
userlbackground tracing options (-u and -b) to tck, and the M
clock is not used.

When several clocks are specified, they are ORed; that is, each sig
nal specified will clock the analyzer.

Special Analyzer Topics 6-3

CLOCK

QUALIFYING
CLOCK

QUALIFIED
CLOCK

Specifying the
Maximum Qualified

Clock Speed

Special Analyzer Topics 6-4

SInS (3 MHz)

I <lenS I (2SUHz)

n n n
Figure 6-1. Qualified Clocks

The maximum qualified clock rate is the repetition rate of all
specified clock signals (see figure 6-1). You are allowed to select
the maximum qualified clock speed of the analyzer; however,
there are tradeoff's involving the trace count qualifier to be con
sidered. You select the maximum qualified clock speed with the
s option to the tck command. There are three maximum speeds
that can be specified:

• Slow (tck -s S). Slow specifies a maximum qualified clock rate
of 16 MHz. When S is selected, there are no restrictions on the
trace count qualifier.

• Fast (tck -s F). Fast specifies a maximum qualified clock rate
of20 MHz. When "F" is selected, the trace count qualifier
may be used to count states but not time.

Qualifying Clocks (tck
-I, -h)

Note

• Very Fast (tck -s VF). Very fast specifies a maximum
qualified clock rate of25 MHz. When "VF" is selected, the
trace count qualifier may not be used at all (in other words,
tcq none).

The selected clock signals may be qualified with other clock sig
nals; that is, the selected signals may only clock the analyzer
when the qualifying clock signal is true. Clock signals are
qualified by using the -l and -h options to the tck command. The-l
option is used to specify a qualifying signal which only allows the
trace to clock when this signal is lower than the threshold voltage.
The -h option is used to specify a qualifying signal which only al
lows the trace to clock when this signal is higher than the
threshold voltage. Anysignal,J, K, L, M,or N, maybe used to
qualify other signals.

If several clock qualifiers are specified, the analyzer will be clock
ed if anyone is true. This applies to the userlbackground
qualifier as well. If you wish to use one of the external clocks as
the only qualifier, you must tum off the userlbackground
qualifier; in other words, tck -ub.

Qualifier Setup and Hold Times of the External Analyzer

Qualifier setup time is approximately 25 nanoseconds when the
external analyzer is aligned with emulation analyzer (xtmo -e).
Qualifier setup time is approximately 20 nanoseconds when the
external analyzer operates as an independent state analyzer
(xtmo os). Qualifier hold time is approximately 5 nanoseconds.

Special Analyzer Topics 6-5

Using Slave Clocks
for
Demultiplexing
(tsck)

SLAVE CLOCK

MASTER CLOCK k
r

There are two modes of demultiplexing that can be set for each 16-
bit pod: mixed clocks and true demultiplexing.

Emulation trace slave clocks are specified with the tsck (trace
slave clock) command. External analyzer slave clocks are
specified with the xtsck (external trace slave clock) command.
(Master clocks are specified by the tck and xtck commands.) By
default, the slave clocks are turned OFF, as may be specified by
the -0 option to the tsck command.

Rising edges (-r), falling edges (of), or both edges (-x) of clocks J, K,
L, M, or N may be specified as the slave clock.

----..
L{)

I
co

~7

16 TRACE SIGNALS
I

I SLAVE LATCH
~----------~,---~

----..
f'.
I

<:9

~7
(POD)

I
MASTER
LATCH

Figure 6-2. Mixed Clock Demultiplexing

Special Analyzer Topics 6-6

Mixed Clocks The mixed clock mode is specified with the -m option to the tsck
command. In this mode, the lower 8 channels of the pod (bits 0-7)
are latched with the slave clock, and the master clock gates the en
tire pod (see figure 6-2).

MASTER
CLOCK

SLAVE
CLOCK

If no slave clock has appeared since the last master clock, the data
on the lower 8 bits of the pod will be latched at the same time as
the upper 8 bits. Ifmore than one slave clock has appeared since
the last master clock, only the first slave data will be available to
the analyzer (see figure 6-3).

~ ,---I --->t
~ ,

DATA LATCHED ON ~ FOLLOWING SLAVE
FIRST SLAVE CLOCK CLOCKS IGNORED
AFTER LAST MASTER
CLOCK

Figure 6·3. Slave Clocks

Special Analyzer Topics 6·7

SLAVE CLOCK

MASTER CLOCK

EXAMPLE TIMING:

8 TRACE SIGNAlS

SLAVE LATCH

MASTER (POD)
LATCH

AO-AO -~(ADDRESS)>--~(DATA)>---

SLAVE CLOCK •
MASTER CLOCK •

Figure 6-4. True Demultiplexing

Special Analyzer Topics 6-8

True Demultiplexing

Saving Trace
Specifications in
Command Files

Example

The true demultiplexing mode is specified with the -d option to
the tsck command. In this mode, the lower 8 channels of the pod
(bits 0-7) are latched with the slave clock; the upper 8 channels
also get data from signals 0-7, but they are clocked with the
master clock. Thus, the analyzer gets two copies of bits 0-7. The
slave clock latches the data for bits 0-7, and the master clock then
gates the entire pod into the analyzer (see figure 6-4).

If no slave clock has appeared since the last master clock, the data
on the lower 8 bits of the pod will be the same as the upper 8 bits.
If more than one slave clock has appeared since the last master
clock, only the first slave data will be available to the analyzer.

If you are using your emulator in the transparent configuration
(in other words, the emulator is connected between a terminal and
a host computer), you can save trace specifications to command
files on the host computer.

The following example makes several assumptions:

• A host computer running HP -UX (which you are currently
logged in to).

• The terminal is connected to port B, and the host computer is
connected to port A.

• The analyzer is in the "complex" configuration, and you have
a trace configuration which you wish to save.

Because you may wish to save trace specifications at any time, it
is a good idea to create a macro containing the commands used to
save the trace specification.

Special Analyzer Topics 6·9

U)mac tsave=fpo -0 a; echo "cat> tspec";w 1; tcf; tpat; trng; tsq; tpq; tcq; tp;
echo "#+#"; echo \04; po -0 b}

Special Analyzer Topics 6·10

The commands which make up the tsave macro do the following
things:

po -0 a;

echo "cat> tspec";

wI;

tcf; tpat;
trng; tsq; tpq;
tcq; tp;

echo "# + #";

echo \04;

po -0 b;

This command specifies that standard out
put be sent to port A, in this case, the host
computer.

This command will open a file on the host
computer. This file will receive the out
put of the trace display commands which
follow.

This command causes the emulation sys
tem to wait for one second to ensure that
the "cat> tspec" command has time to
set up on the host.

These commands send the current trace
specification to the standard output.

This command sends the "# + #" com
mand file terminator string to the stand-
ard output. The terminator string is used
when you use the command file to
respecify the trace.

This command sends a < CTRL > d end of
file character to the host computer to
close the "tspec" file.

This command specifies that standard out
put be sent to port B, in this case, the ter-
minal.

After the macro has been defmed, you can save the current trace
specification by entering the name of the macro as you would any
other command.

U>tsave
po -0 a;echo "cat> tspec";w 1;tcf;tpat;trng;tsq;tpq;tcq;tp;echo "#+#";echo

\04; po -0 b
U>

After tsave has executed, there exists a file called "tspec" on the
host computer which contains the trace specification. To use the
command file to load the trace specification enter the po (port con
trol) command with the -s option.

U>po -s ·cat tspec·

waiting for 1 second
tcf -c
tpat p1 addr=489
tpat p2 addr=5ff and data=39xx and stat=mw
tpat p3 addr=45a
tpat p4 addr=5ff and stat=mw
tpat p5 data!=39xx
tpat p6 addr=5fe and data=Oxxf7 and stat=mw
tpat p7 any
tpat p8 any
trng addr=5f8 .. 5ff
tif 1 p1 2
t if 2 p2 3
t if 3 p3 4
tif 4 never
t if 5 any 6
t if 6 any 7
t if 7 any 8
tif 8 never
tsq -t 4
tsto 1 none
tsto 2 all
tsto 3 all
tsto 4 all
tsto 5 none
tsto 6 none
tsto 7 none
tsto 8 none
tel if 1 never
te 1 if 2 p3 1
telif 3 p4 and p5 2
tel if 4 never
tel if 5 never
tel if 6 never
tel if 7 never
tel if 8 never
tpq none
tcq time
tp -a 10

#+#
U>

Special Analyzer Topics 6·11

Notes

Special Analyzer Topics 6·12

Index

A absolute count display, 2·15
absolute files, loading, 2-6
addr (predefmed trace label), 2·11
analyzer probe

assembling, 4·3
connecting to the emulator, 4·4
connecting to the target system, 4·6

arm condition, specifying, 5-2

B background execution, tracing, 6·2
bases (number), 2·11
be (break conditions) command, 3·29
BNCconnector, 5·1
branch expression

primary, 2·25/2·26
secondary, 2·25/2·26

C clock speed, maximum qualified, 6·4
clocks

master, 6·7
qualifying, 6·5
See also: slave clocks
specification, 6·2

CMB (coordinated measurement bus), 5·1
CMOS (keyword for specifying threshold voltages), 4·8
command files

saving trace specifications, 6·9
terminator string, 6·10

complex configuration
defmition, 3·2
how trace commands change, 3·7

configuration
See: trace configuration

coordinated measurements, 1·4

Index·1

Index-2

defmition,5-1
count qualifier, 2-22
counts

displaying relative or absolute, 2-15
See also: occurrence counts

cross-arming, 5-1, 5-6
cross-triggering, 5-1, 5-7

D data (predefmed trace label), 2-11
De Morgan's law, 3-6
demultiplexing

mixed clocks mode, 6-7
true demultiplexing mode, 6-9
using slave clocks for, 6-6

disassembly, 2-9

E easy configuration
defmition,3-2

EeL (keyword for specifying threshold voltages), 4-8
emulation analyzer

defmition,l-l
emulator prompts, 2-2
emulator status lines, predefined equates for, 2-13
equ (specify equates) command, 2-13, 3-23
equates, predefmed for emulator status, 2-13
expression operators, 2-12
expressions, 2-10

in the complex configuration, 3-3
external analyzer, 1-3

clock specification, 6-2
defmition, 1-1
extension to emulation analyzer, 4-9
independent state analyzer, 4-10
independent state commands, 4-10
independent timing analyzer, 4-11
selecting the mode, 4-9
setup and hold times, 6-5
slave clocks, 6-6
specifications, 4-12
timing mode unavailable in Terminal Interface, 4-1

trace trigger output, 5-3
using, 4-1

F features ofthe analyzer, 1-1
format of trace list, 2-14

G global restart, 2-24/2-25
global set operators, 3-5
grabbers

connecting to analyzer probe, 4-3

H halting the trace, 2-7
hold times for external analyzer, 6-5

initializing the analyzer, 2-7
instruction queues, 2-9
intersetoperators, 3-5
intrasetoperators, 3-5
isolating program bugs, 3-28

L labels
See: trace labels

listing the trace, 2-8
loading absolute files, 2-6

M mac (macros) command, 3-28,6-9
mapping memory, 2-5
master clocks, 6-7
memory mapping, 2-5
mixed clocks demultiplexing mode, 6-7
mnemonic information, 2-9

N number bases, 2-11

o occurrence counts, 2-18
operators

expression, 2-12
interset, 3-5
intraset, 3-5

Index-3

Index-4

P patterns (trace), 3-3
defming, 3-21
limitations of combining, 3-6

pipelined architecttrre, 2-9
po (port control) command, 6-10
predefmed equates for emulator status, 2-13
predefmed trace labels, 2-11
prestore, 2-20
prestore qualifier, 2-20
primary branch expression, 2-2512-26

difference between easy and complex configmation, 3-3
probe

See: analyzer probe
prompts, 2-2

Q qualified clock speed
maximum, 6-4

qualifier
clock,6-2
count,2-22
prestore, 2-20
primary branch, 2-25
secondary branch, 2-25
simple trigger, 2-16
slave clock, 6-6
storage, 2-19

R range (trace), 3-4
relative count display, 2-15
run command (r), 2-6

S secondary branch expression, 2-25/2-26
difference between easy and complex configmation, 3-3

sequence terms, 2-23
defmition, 1-3
difference between easy and complex configmation, 3-2

sequencer, 1-3
algorithm, 3-17
default specification, 2-24
default specification in the complex configmation, 3-13

deleting terms, 2·29
drawing the diagram, 3·21
hints for setting up in the complex configuration, 3·17
inserting terms, 2·29
resetting, 2·24
simple trigger specification, 2·25
using, 2·23

setup times for external analyzer, 6·5
simple measurements, 1·3
simple trigger

in the complex configuration, 3·14
in the easy configuration, 2·16

slave clocks, 6-6
specifications of external analyzer, 4·12
starting the trace, 2·7
startup, tracing a program on, 2·32
stat (predefmed trace label), 2·11
status

See: trace status
status lines, predefmed equates for, 2·13
storage (trace), 1·3
storage qualifier, 2·19

difference between easy and complex configuration, 3·3

T t (start trace) command, 2·7
ta (trace activity) command, 6·1
tarm (trace arm condition) command, 5·2
tcf(trace configuration) command, 3·12
tck (trace clock) command, 6-2
tcq (trace count qualifier) command, 2·22

in the complex configuration, 3·7
telif (secondary branch expression) command, 2·25/2·26

in the complex configuration, 3·7
terminator string for command files, 6·10
tf (trace format) command, 2·14
tg (simple trigger) command

in the complex configuration, 3·7, 3·14
tg (specify simple trigger) command, 2·16
tgout (trace trigger output) command, 5·3
th (trace halt) command, 2·7

Index-S

Index-6

threshold voltages, specifying, 4-8
tif(primary branch expression) command, 2-25/2-26
tif(primary branch expressions) command

in the complex configuration, 3-7
tinit (trace initialization) command, 2-7
tl (trace list) command, 2-8
tp (trigger position) command, 2-30
tpat (trace patterns) command, 3-3
tpq (trace prestore qualifier) command, 2-20

in the complex configuration, 3-8
trace

clock specification, 6-2
count qualifier, 2-22
displaying activity, 6-1
halting the, 2-7
listing format, 2-14
listing the, 2-8
patterns (in complex configuration), 3-3
prestore qualifier, 2-20
range (in complex configuration), 3-4
saving specifications in command files, 6-9
starting the, 2-7
storage qualifier, 2-19
trigger output, 5-3
trigger position, 2-30

trace configuration
complex or easy, 3-2
selecting complex, 3-12

trace format
default, 2-15

trace labels
defIning external, 4-8
predefIned,2-11

trace status, 2-7
trig1 and trig2 internal signals, 5-2
trigger

breaking to the monitor on, 5-5
defInition, 1-1
difference between easy and complex configuration, 3-2
driving signals when found, 5-3

easy configuration, 2·25
simple complex configuration specification, 3·14
specifying a simple, 2·16

trigger condition, 2·25
trigger position, 2·30

accuracy of, 2·31
trigger term, 3·2
trng (trace range) command, 3·4
ts (trace status) command, 2·7

arm information, 5·3
occurrence left information, 2·28
sequence term information, 2·28

tsck (trace slave clock) command, 6·6
tsq (trace sequencer specification) command

in the complex configuration, 3·8
tsto (trace storage qualifier) command, 2·19

in the complex configuration, 3·8
TIL (keyword for specifying threshold voltages), 4·8

V values in trace expressions, 2·11
voltages, specifying threshold, 4·8

W w(wait)command,3·29,6·10
windows of activity, using the analyzer to trace, 3·23

X xbits (predefined external trace label), 2·11
xtarm (external trace arm condition) command, 5-2
xtck (external analyzer clock) command, 4·11
xtck (external trace clock) command, 6·2
xtgout (external trace trigger output) command, 5·3
xtlb (external trace label) command, 4·8
xtmo (external trace mode) command, 4·9
xtsck (external trace slave clock) command, 6·6
xtv (threshold voltage for external trace signals), 4·8

Index-7

Notes

Index-8

F/iUW HEWLETT
~~ PACKARD

Hewlett-Packard
Printed in the USA

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	xBack

