
User's Guide

HP 64430
68030 Emulation

HP 64430

68030
Emulator

User's Guide

F//pi9. HEWLETT
a:~ PACKARO

HP Part No. 64430-97008
Printed In U.S.A.
June 1991

Edition 3

',;

Certification and Warranty

Certification

Warranty

Hewlett-Packard Company certifies that this product met its
published specifications at the time of shipment from the factory.
Hewlett-Packard further certifies that its calibration measurements
are traceable to the United States National Bureau of Standards, to

the extent allowed by the Bureau's calibration facility, and to the
calibration facilities of other International Standards Organization
members.

This Hewlett-Packard system product is warranted against defects
in materials and workmanship for a period of 90 days from date of
installation. During the warranty period, HP will. at its option,
either repair or replace products which prove to be defective.

Warranty service of this product will be performed at Buyer's
facility at no charge within HP service travel areas. Outside HP
service travel areas, warranty service will be performed at Buyer's
facility only upon HP's prior agreement and Buyer shall pay HP's
round trip travel expenses. In all other cases, products must be
returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall
prepay shipping charges to HP and HP shall pay shipping charges
to return the product to Buyer. However, Buyer shall pay all
shipping charges, duties. and taxes for products returned to HP
from another country. HP warrants that its software and firmware
designated by HP for use with an instrument will execute its
programming instructions when properly installed on that
instrument. HP does not warrant that the operation of the
instrument, or software, or firmware will be uninterrupted or error
free.

Limitation of Warranty The foregoing warranty shall not apply to defects resulting from
improper or inadequate maintenance by Buyer, Buyer-supplied . , ;
software or interfacing, unauthorized modification or misuse, · i

operation outside of the environment specifications for the :1.-

product, or improper site preparation or maintenance. ""'1tl
No other warranty is expressed or implied. HP specifically
disclaims the implied warranties of merchantability and fitness for
a particular purpose.

Exclusive Remedies The remedies provided herein are buyer's sole and exclusive
remedies. HP shall not be liable for any direct, indirect, special,
incidental, or consequential damages, whether based on contract,
tort, or any other legal theory.

·r

Product maintenance agreements and other customer assistance
agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and
Service Office.

Notice

Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or
for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability
of its software on equipment that is not furnished by
Hewlett-Packard.

©Copyright 1990, 1991 Hewlett-Packard Company.

This document contains proprietary information, which is
protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to
another language without the prior written consent of
Hewlett-Packard Company. The information contained in this
document is subject to change without notice.

UNIX is a registered trademark of UNIX System Laboratories Inc.
in the U.S.A. and other countries.

TORX is a registered trademark of the Camcar Division of
Textron, Inc.

Hewlett-Packard Company
Logic Systems Division
8245 North Union Boulevard
Colorado Springs, CO 80920, U.S.A.

RESTRICTED RIGHTS LEGEND. Use, duplication, or
disclosure by the U.S. Government is subject to restrictions set
forth in subparagraph (C) (1) (ii) of the Rights in Technical Data
and Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA
94304

Printing History

New editions are complete revisions of the manual. The date on
the title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was
issued. Many product updates and fixes do not require manual
changes, and manual corrections may be done without
accompanying product changes. Therefore, do not expect a
one-to-one correspondence between product updates and manual
revisions.

Edition 1
Edition 2

Edition 3

64430-97000, February 1990
64430-97007, February 1991

64430-97008, June 1991

Electromagnetic Interference

What Is
Electromagnetic
Interference?

Reducing the Risk
Of EMI

All types of electronic equipment are potential sources of
unintentional electromagnetic radiation which may cause
interference with licensed communication services. Products which
utilize digital waveforms such as any computing device are
particularly characteristic of this phenomena and use of these
products may require that special care be taken to ensure that
Electromagnetic Interference (EMI) is controlled. Various
government agencies regulate the levels of unintentional spurious
radiation which may be generated by electronic equipment. The
operator of this product should be familiar with the specific
regulatory requirement in effect in his locality.

The HP 64000-UX has been designed and tested to the
requirements of the Federal Republic of Germany VDE 0871
Level A They have been licensed with the German ZZF as Level
A products (FTZ C-112/82). These specifications and the laws of
many other countries require that if emissions from these products
cause harmful interference with licensed radio communications,
that the operator of the interference source may be required to
cease operation of the product and correct the situation.

1. Ensure that the top cover of the HP 64120A
Instrumentation Cardcage is properly installed and that all
screws are tight (do not over tighten).

2. When using a feature set which includes cables that egress
from the chassis slot of the HP 64120A, insure that the
knurled nuts and ferrules, or brackets that ground the
cable shields are clean and tight (do not over-tighten). The
68030 Emulator cables have exposed shields that must
make contact with the cable clamp.

Reducing
Interference

3. During times of infrequent use, disconnect the 68030
Emulator and cables from the card cage and the target
system.

4. Use only shielded coaxial cables on the four external BNC
connectors on the rear of the HP 64120A.

5. Use only the shielded IMB cable supplied with the HP
64120A for connection to additional HP 64120A
Instrumentation Cardcages.

6. Use only shielded cables on the IEEE 488 interface
connector to the host computer.

In the unlikely event that emissions from the HP 64000-UX System
result in electromagnetic interference with other equipment, you
may use the following measures to reduce or eliminate the ;;;/j
interference. ~

1. If possible, increase the distance between the emulation
system and the susceptible equipment.

2. Rearrange the orientation of the chassis and cables of the
emulation system.

3. Plug the HP 64120A into a separate power outlet from the
one used by the susceptible equipment (the two outlets
should be on different electrical circuits).

4. Plug the HP 64120A into a separate isolation transformer
or power line filter.

You may need to contact your local Hewlett-Packard sales office
for additional suggestions. Also, the U.S.A. Federal
Communications Commission has prepared a booklet entitled How ~.,,J
to Identify and Resolve Radio - TV Interference Problems which may
be helpful to you. This booklet (stock #004-000-00345-4) may be

Manufacturer's
Declarations

U.S.A. Federal
Communications

Commission

Federal Republic of
Germany

purchased from the Superintendent of Documents, U.S.
Government Printing Office, Washington. D.C. 20402 U.S.A.

Warning - This equipment generates, uses, and can radiate radio
frequency energy and if not installed and used in accordance with
the instructions manual, may cause interference to radio
communications. Operation of this equipment in a residential area
is likely to cause interference in which case the user at his own
expense will be required to take whatever measures may be
required to correct the interference.

Wenn Ihr Gerat in der Bundesrepublik Deutschland einschl.
Westerlin betrieben wird, senden Sie bitte die beiliegende
Postkarte ausgefiillt an Ihr zustandiges Fernmeldeamt.

Notes

Safety

Summary of Safe
Procedures

The following general safety precautions must be observed during
all phases of operation, service, and repair of this instrument.
Failure to comply with these precautions or with specific warnings
elsewhere in this manual violates safety standards of design.
manufacture, and intended use of the instrument. Hewlett-Packard
Company assumes no liability for the customer's failure to comply
with these requirements.

Ground The Instrument

To minimize shock hazard, the instrument chassis and cabinet must
be connected to an electrical ground. The instrument is equipped
with a three-conductor ac power cable. The power cable must
either be plugged into an approved three-contact electrical outlet.
The power jack and mating plug of the power cable meet
International Electrotechnical Commission (IEC) safety standards.

Do Not Operate In An Explosive Atmosphere

Do not operate the instrument in the presence of flammable gases
or fumes. Operation of any electrical instrument in such an
environment constitutes a definite safety hazard.

Keep Away From Live Circuits

Operating personnel must not remove instrument covers.
Component replacement and internal adjustments must be made
by qualified maintenance personnel. Do not replace components
with the power cable connected. Under certain conditions,
dangerous voltages may exist even with the power cable removed.
To avoid injuries, always disconnect power and discharge circuits
before touching them.

Designed to Meet Requirements of IEC Publication 348

This apparatus has been designed and tested in accordance with
IEC Publication 348, safety requirements for electronic measuring
apparatus, and has been supplied in a safe condition. The present

Warning

instruction manual contains some information and warnings which
have to be followed by the user to ensure safe operation and to
retain the apparatus in safe condition.

Do Not Service Or Adjust Alone

Do not attempt internal service or adjustment unless another
person, capable of rendering first aid and resuscitation, is present.

Do Not Substitute Parts Or Modify Instrument

Because of the danger of introducing additional hazards, do not
install substitute parts or perform any unauthorized modification
of the instrument. Return the instrument to a Hewlett-Packard
Sales and Service Office for service and repair to ensure that safety
features are maintained.

Dangerous Procedure Warnings

Warnings, such as the example below, precede potentially
dangerous procedures throughout this manual. Instructions
contained in the warnings must be followed.

Dangerous voltages, capable of causing death, are present
in this Instrument. Use extreme caution when handling,
testing, and adjusting. ·

Safety Symbols Used
In Manuals

\...,, LL
&
i

J
OR @ -

L
(J:)

rh OR .J_

The following is a list of general definitions of safety symbols used
on equipment or in manuals:

Instruction manual symbol: the product is marked with this symbol
when it is necessary for the user to refer to the instruction manual
in order to protect against damage to the instrument.

Hot Surface. This symbol means the part or surface is hot and
should not be touched.

Indicates dangerous voltage (terminals fed from the interior by
voltage exceeding 1000 volts must be marked with this symbol).

Protective conductor terminal. For protection against electrical
shock in case of a fault. Used with field wiring terminals to indicate
the terminal which must be connected to ground before operating
the equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a
signal common, as well as providing protection against electrical
shock in case of a fault. A terminal marked with this symbol must
be connected to ground in the manner described in the installation
(operating) manual before operating the equipment.

Frame or chassis terminal. A connection to the frame (chassis) of
the equipment which normally includes all exposed metal
structures.

Alternating current (power line).

Direct current (power line).

Alternating or direct current (power line).

Note i

Caution I

Warning

The Note sign denotes important information. It calls your
attention to a procedure, practice, condition, or similar situation
which is essential to highlight.

The Caution sign denotes a hazard. It calls your attention to an
operating procedure, practice, condition, or similar situation,
which, if not correctly performed or adhered to, could result in
damage to or destruction of part or all of the product.

The Warning sign denotes a hazard. It calls your attention to
a procedure, practice, condition or the like, which, if not
correctly performed, could result in injury or death to ..,,,,.,
personnel.

Notice

Caution ' Conductive foam or plastic over emulator pins may cause erratic
operation.'

The emulator user assembly pins are covered during shipment with
either a conductive foam wafer or a conductive plastic pin
protector. This is done for two reasons:

• to protect the user interface circuitry within the emulator
from electrostatic discharge (ESD),

• to protect the delicate gold plated pins of the probe
assembly from damage due to impact.

Because the protection devices are conductive, the emulator may
not function correctly during normal operation or option_test
performance verification. You should remove the foam or plastic
device before using the emulation or analysis system or before
running option_ test performance verification.

When you're not using the emulator, replace the foam or plastic
assembly to retain protection for the probe pins and protection
from ESD.

Notes

Using this Manual

Organization

Chapter 1 "Introducing The 68030 Emulator" contains a brief description of
the 68030 emulator.

Chapter 2 "Installing Emulation Hardware" tells how to install the 68030
emulation system hardware into the instrumentation cardcage. It
explains how to make a measurement system. This chapter also
tells how to connect the emulator to your target system.

Chapter 3 "Getting Started" steps you through the emulation process from
creating an example program to performing measurements on the
execution of that program in emulation.

The "Getting Started" chapter discusses preparing your program
modules and the files that are generated by assembling, compiling,
and linking programs. See the appropriate cross assembler/linker
and compiler manuals for more detailed information.

Chapter 4 "Configuring Your Emulator" shows how to:

Chapter 5

• Access the emulation configuration questions.
• Load configuration files from a previous emulation session.

It also describes each configuration option in detail.

"DeMMUer - What It Is And How It Works" describes:

• What the deMMUer is.
• How the deMMUer operates.
• When to use the deMMU er.
• Restrictions you need to observe when using the

deMMUer.

Chapter 6 "Target System Interface" describes the 68030 signals and how the
emulator interacts with those signals. It also gives guidelines for
using the emulator with a target system and tells you how the
emulator interacts with your target system.

Chapter 7 "The Emulation Monitor Program" describes the emulation
monitor program and tells how to modify it for your system
requirements.

Chapter 8 "Using Custom Coprocessors" describes how to make a custom
coprocessor register format file and how to modify the emulation
monitor so that your emulation system can display and modify
coprocessor registers.

Chapter 9 "Using Simulated I/0 And Simulated Interrupts" describes how to
set up your emulator to use host I/O resources to simulate target
system I/O and how to use the simulated interrupt features.

Chapter 10

Appendix A

Appendix B

"How The Emulator Works" describes the implementation of
many emulator features. Understanding the emulator helps you use v""'1llfl
it more effectively and can help you solve problems.

"Emulation Error Messages" describes most error messages you
might encounter and tells how to correct the errors.

"Timing Comparisons" lists timing comparisons between 68030
processors and the HP 64430 Emulator. It also gives the DC
electrical specifications for the HP 64430 Emulator.

Understanding
The Examples

This manual assumes that you are using the User-Friendly
Interface Software (HP 64808S), which is started with the
HP 64000-UX pmon command. This means that the manual will
show you how to enter HP 64000-UX system commands (edit,
compile, assemble, link, msinit, msconfig, etc.) by telling you to
press various softkeys.

If you are not using "pmon," you will find the User
Interface;HP-UX Cross Reference appendix of the 68030
Emulation Reference Manual especially useful. The cross reference
table shows you how the "pmon" softkeys translate into commands
that can be entered from the HP-UX prompt.

The examples in this manual use the following structure:

copy display to trcfilel

copy display to

trcfilel

Softkeys appear in bold italic type in
examples. Commands appear in bold in text.
You will not be prompted to use the
---ETC--- softkey to search for the
appropriate softkey template. Three softkey
templates are available at the HP 64000-UX
system monitor level.

This is the name of a file, which you must
type in. There are no softkeys for this type of
selection since it is variable. However, a
softkey prompt such as <FILE> will appear
as a softkey selection.

For most commands, you must press the Return (or Enter) key
before the command is executed.

Notes

Contents

1 Introducing The 68030 Emulator

Overview
Safety Considerations
Purpose of the 68030 Emulator
Emulator Features

Software Debugging .
Symbols
Real-Time Operation
Clock Speed
Emulation Memory
Analysis ..
Registers
Single-Step
Breakpoints
Reset Support
Memory Management
Custom Coprocessors Support
Function Codes
Foreground or Background Emulation Monitor
Out-of-Circuit or In-Circuit Emulation

Manual Coverage

2 Installing Your Emulator

Overview
Introduction
Safety Considerations ...
Preinstallation Inspection
Installing Your Emulation System Hardware

Installation Instructions
Turn Off Power
Remove The Card Cage Cover

.1-1

.1-1

.1-1

.1-2

.l-2

.1-2

.1-2

.1-2

.1-2

.1-3

.1-3

.1-3

.1-4

.1-4

.1-4

.1-4

.1-4

.1-5

.1-5

.1-6

.2-1

.2-1

.2-3

.2-4

.2-5

.2-5

.2-6

.2-6
Connect The Emulator Pod Cables To The Emulator
Boards2-7
Install Boards Into The Card Cage2-8

Contents-1

2-Contents

Secure The Pod Cables
Reins tall Card Cage Access Cover

Installing the Emulator Probe In the Target System
Ins tall Software
Installing 68030 Emulation Software Updates
Turning On the HP 64120A

3 Getting Started

Overview
Introduction
Emulation System Used For Examples
Make A Subdirectory For Your 68030 Project .
Initialize And Configure Your Measurement System
Prepare Your Program Modules

Create The Absolute File In Your Subdirectory
Use The Absolute File In The Demo Directory

Prepare The Emulation System
Access The Emulation System
Modify The Default Emulation Configuration
Load Emulation Memory

Use The Emulator
Display The Source File
Symbol Handling

Displa~ing Global Symbols
Displaying Local Symbols

Display Memory
Adding Symbols To The Memory Display .
Adding Source-File Lines To The Memory Display
Modify Memory
Run From The Transfer Address
Display Registers
Use The Step Function
Stepping Through The Program In Memory
Trace Processor Activity ..
Use Software Breakpoints
Using Simulated I/O
Ending The Emulation Session

Using Command Files
Use The DeMMUer
End Of DeMMUer Demonstration

.2-9

.2-9

.2-9
. 2-12
. 2-12
. 2-13

.3-1

.3-1

.3-1

.3-2

.3-4

.3-6

.3-8

.3-8

.3-9

.3-9
. 3-10
. 3-11
. 3-12
. 3-12
. 3-13
. 3-14
. 3-15
. 3-19
. 3-20
. 3-21
. 3-22
. 3-23
. 3-24
. 3-26
. 3-27
. 3-29
. 3-32
. 3-35
. 3-37
. 3-37
. 3-38
. 3-40

4 Answering Emulation Configuration Questions

Overview
Introduction
Running Emulation
Modify the Configuration File

Selecting Real-Time/ Nonreal-Time Run Mode
Enabling Emulator Monitor Functions
Reset Into the Monitor
Enabling Emulator Use of Software Breakpoints
Selecting the Software Breakpoint Instruction Number
Defaulting the Stack Pointer For the Background Monitor
Select To Block ECS, OCS Signals During Background

.4-1

.4-1

.4-2

.4-2

.4-3

.4-4

.4-5

.4-7

.4-7

.4-8

Monitor Cycles
Choose To Perform Periodic Foreground Accesses
Selecting Address for Periodic Foreground Access
Enabling the Foreground Monitor
Interlock or Provide Termination for the Foreground
Monitor
Using Custom Coprocessors
Specifying The Custom Coprocessor File
Modifying a Memory Configuration . . .
Break on Write to ROM
Selecting to Block BERR on Non-interlocked Emulation
Memory

Mapping Memory
Memory Map Display Organization.
Memory Map Definition.
Emulation Monitor Program Memory
Requirements

Using The Map Command
Using the map_overlay Command
Memory Mapping Example
Using the modify Command

Modify Defined_ Codes.
Modify <ENTRY>.
Modify Default.

Deleting Memory Map Entries
Modify the DeMMUer Configuration

Ending The Mapping Session ...
Modifying The Emulation Pod Configuration
Configuring for In-circuit Emulation Session

.4-8

.4-8

.4-9

.4-9

.4-9
. 4-10
. 4-10
. 4-11
. 4-12

. 4-12

. 4-13

. 4-14

. 4-15

. 4-16

. 4-16

. 4-19

. 4-21

. 4-23

. 4-23

. 4-25

. 4-26
.. 4-27
.. 4-27
. . 4-28
.. 4-28
.. 4-29

Contentg,.3

4-Contents

Enabling DMA Transfers
Enabling DMA Transfers Into Emulation Memory .
CPU Clock Rate Determination of Wait States .. .
Disabling On-chip Cache
Enabling MMU For Use During Emulation Session
Modifying Simulated I/O Configuration
Modifying Simulated Interrupt Configuration
Naming The Configuration File

5 DeMMUer ·'What It Is And How It Works

Overview
Introduction
What The DeMMUer Is
How The DeMMUer Operates .
When To Use The DeMMUer ..
When To Turn Off The DeMMUer ..
Unable to Do Reverse-Address Translations .
When To Start The DeMMUer

. 4-29

. 4-30

. 4-30

. 4-31

. 4-31 """'

. 4-32

. 4-32

. 4-32

. .5-1

. .5-1

.. 5-2
.5-2
.5-3
.5-4
.5-4

. .5-5
Startup With The Emulator5-5
Used Emulator without DeMMUer, Want To Use It Now .. 5-5

How To Turn On And Turn Off The DeMMUer . . .5-5
Turn On/Off By Using Configuration Questions .. 5-6
Turn On/Off By Setting The Analysis Mode5-6

DeMMUer Configuration Setup5-7
How To Access The DeMMUer Configuration Display .. 5-8

6 Target System Interface

Overview ..
68030 Signals

CLK ...
A(31-0) .
FC2-FCO
R/W ...
CBREQ .
RMC ...
SIZO-SIZl
CIOUT .
AS
DS,DBEN
ECS, OCS
D(31-0) ...

.6-1

.6-1

.6-2

.6-2

.6-2

.6-2

.6-2

.6-3

.6-3

.6-3

.6-3

.6-4

.6-4

.6-4

DSACKl-DSACKO
BERR
HALT,AVEC
STERM
CIIN ..
CBACK
BG ...
IP END
STATUS, REFILL .
BR.BGACK
IPL2-IPLO
CDIS, MMUDIS .
RESET
vcc ' ... '

Emulation And Target System DSACK and STERM Signals
Interlocking Emulation Memory and Target DSACK and
STERM Signals .
DSACK and STERM Signal Problems In Target Systems

Use Of Open Collector Drivers
Early Removal Of DSACK Signals
Isolating The DSACK Problem

Using the Vector Base Register .
Using the Internal 68030 Caches

Cache Control
Analysis with Cache
Using Breakpoints With Caches Enabled

Target Memory Breakpoints
Emulation Memory Breakpoints ...

Function Codes For Reserved Address Space
Enabling/Disabling BERR
Using DMA
Using the Run From ... Until Command
Using the Foreground Monitor

Loading the Monitor
Resetting Into the Monitor .

.6-5

.6-5

.6-5
.. 6-5
. .6-6

.6-6

.6-6

.6-6

.6-7

.6-7

.6-7

.6-7
. .6-8
. .6-8
.. 6-8

.. 6-8

. 6-10

. 6-10

. 6-10

. 6-11

. 6-11

. 6-12

. 6-12

. 6-13

. 6-13

. 6-14

. 6-14

. 6-15

. 6-16

. 6-16

. 6-19

. 6-21

. 6-21

. 6-21
Memory Access Timing Issues .

33 MHz 68030 Microprocessor
. 6-23
..... 6-23

HP 64430 68030 Emulation System
Loading An Absolute File .
Debugging Plug-in Problems

Review the Configuration

. 6-23

. 6-24
'6-25
. 6-25

Contents·5

6-Contents

Use the Internal Analyzer
Use the Status Messages
Run Performance Verification (PV)

If All Else Fails

7 The Emulation Monitor Programs

Overview
Introduction
Comparison of Foreground and Background Monitors

Background Monitors
Foreground Monitors

Choose a Foreground or Background Monitor
When to Use the Background Monitor
When to Use the Foreground Monitor .. .
Customizing the Monitor Programs

The Break Function and the Emulation Monitor
Emulation Monitor Description

The Exception Vector Table
Emulation Monitor Entry Point Routines

MONITOR ENTRY
SWBK ENTRY
JSR ENTRY
RESET ENTRY .. .
EXCEPTION ENTRY

Emulation Command Scanner
Emulation Command Execution Modules

ARE YOU THERE - -
EXIT_MONITOR
SYNCH_START_ENABLE
COPY_MEMORY
COPY_ALT_REG
MON_ALT_REGISTERS
SIMINT ENABLE .
SIMINT DISABLE
SIM_INTERRUPT

Using and Modifying the Foreground Monitor
Modifying The Exception Vector Table ...
Continuing Target System Interrupts While in the
Emulation Monitor
Sending User Program Messages to the Display

Monitor Memory Requirements

. 6-26

. 6-27

. 6-27

. 6-27

""" .7-1
.7-1
.7-2
.7-2
.7-3
.7-3
.7-3
.7-4
.7-5
.7-5
.7-5
.7-6
.7-6
.7-7
.7-7 ."""" .7-7
.7-7
.7-7
.7-8
.7-8
.7-8
.7-8
.7-8
.7-9
.7-9
.7-9
.7-9
.7-9

. 7-10

. 7-10

. 7-11

""" . 7-15
. 7-16
. 7-18

Linking the Emulation Foreground Monitor
Loading the Emulation Monitor
Using Reset Into Foreground Monitor

8 Using Custom Coprocessors

Overview
Introduction
The Custom Register Format File

Address Specification
Size Specification
Name Specification
Register Set Display Specification

Emulation Monitor Changes
Defining a Coprocessor Register Buffer
Modifying the MON_CPU_REGISTERS Table
Modifying The MON_ALT_REGISTERS Table
Writing Coprocessor Copy Routines

Answering Emulation Coprocessor Configuration
Questions

9 Using Simulated 1/0 And Simulated Interrupts

. 7-19

. 7-19

. 7-19

.8-1

.8-1

.8-2

.8-3

.8-3

.8-4

.8-4

.8-7

.8-7

.8-8

.8-8

.8-9

. 8-10

Overview 9-1
Configuring Simulated I/O9-1

Restrictions On Simulated I/0 .9-4
Simulated Interrupts 9-4

How Does a Simulated Interrupt Function? .9-5
Simulated Interrupts Versus Real Interrupts .9-7
Simulated Interrupt Configuration . 9-7
Restrictions On Simulated Interrupts9-9

Modifying The Monitor To Use Simulated Interrupts . 9-10

10 How The Emulator Works

Overview
Introduction
Are You There Function?
The Run Command . . .

Run From Command
Run Until Command

. 10-1

. 10-1

. 10-1

. 10-2

. 10-3

. 10-4

Contents-7

a-Contents

Run From ... Until Command
Software Breakpoints

Setting A Software Breakpoint
Executing A Software Breakpoint
Executing A Run Command After Executing A Software
Breakpoint

run
run from ADDR

Single Stepping With Foreground Monitor
Single Stepping With Background Monitor
Target Memory Transfers

Displaying Target Memory
Copying from Target System Memory
Modifying Target Memory
Copying to Target System Memory

Displaying the CPU Registers
Modifying the CPU Registers

A Emulation Error Messages

68030 Emulation Error Messages
Attempt to read guarded memory, addr = XXXX .
Attempt to write guarded memory, addr = XXXX
cannot break into monitor
Could not disable breakpoint at address XXXX
Could not enable breakpoint at address XXXX
monitor did not respond to exit request
No breakpoint exists at address XXXX
(no termination) message in tracelist
no memory cycles
Reset (with capital 11 R 11) •

reset (with lower case 11 r11)

running
running in monitor
slow dev at a= XXXX (YY)

SRU Error Messages

. 10-4

. 10-5

. 10-6

. 10-6

. 10-7

. 10-7

. 10-8

. 10-8
10-10
10-11
10-13
10-15
10-15
10-16
10-16
10-17

. A-1

. A-1

. A-1

. A-1

. A-2

. A-3

. A-3
A-4

. A-4

. A-4

. A-4

. A-4
A-5
A-5
A-5
A-6

B Timing Comparisons

Introduction . B-1 """""'

Index

Introducing The 68030 Emulator

Overview

Safety
Considerations

Purpose of the
68030 Emulator

This chapter gives the following information:

• Safety considerations for your emulator.
• Purpose of the 68030 emulator.
• Features of the 68030 emulator.
• Information in this manual.

The HP 64000-UX Microprocessor Development Environment,
with the HP 64430 Emulation Subsystem. is a Class 1 instrument
(provided with a protective earth terminal) and meets safety
standard IEC 348, "Safety Requirements for Electronic Measuring
Apparatus." This Class I instrument meets Hewlett-Packard Safety
Class I and was shipped in a safe condition. Review both the
instrument and the manual for safety markings and instructions
before operation. Read and become familiar with the "Safety
Summary," which follows the Certification/Warranty page of this
manual. in addition to the items listed in chapter 2.

The 68030 emulator replaces the 68030 microprocessor in your
target system so you can control operation of the microprocessor
in your application hardware (called the target system). The 68030
emulator acts like the 68030 microprocessor, but allows you to
control the 68030 directly.

Introduction 1 ·1

I Emulator Features

Software Debugging The HP 64430 Real-Time Emulator for 68030 microprocessors is a
powerful tool for both software and hardware designers. You can
debug software without a target system by using the HP 64430
Emulator's emulation memory (up to 2 Mbytes).

Symbols Symbolic debugging lets you debug programs using the same
symbols that you defined in your source code. You can use symbols
to specify addresses in software breakpoints. single-stepping by
opcode, and run-from and run-until commands.

Real· Time Operation In real-time mode, your program runs at full rated processor speed
without interference from the emulator. (Such interference occurs
when the emulator needs to break to the monitor to perform an
action you requested, such as displaying target system memory.)

Emulator features performed in real time include: running and
analyzer tracing. "'1JI
Emulator features not performed in real time include:

• display or modify of target system memory
• load/dump of target memory
• display or modification of registers.

Clock Speed You can use the emulator's internal 20 MHz clock or an external
clock from 20 to 33.33 MHz with no wait states added to target
memory.

Emulation Memory During emulator configuration, you assign blocks of memory to
physical address ranges. This is called memory mapping. If the
MMU is enabled. you must know the system's physical memory
arrangement.

1 ·2 Introduction

Dual-ported memory allows you to display or modify physical
emulation memory without halting the processor.

Flexible memory mapping lets you define address ranges over the
entire 4 Gbyte address range of the 68030. You can assign

Analysis

Registers

Single-Step

emulation or target system memory in 256-byte blocks. Blocks can
be defined as:

• Emulation; RA\1 or ROM, interlocked, synchronous,
asynchronous with a data port width of 8-bits, 16-bits or
32-bits.

• Target; RAM or ROM, bus error blocked, cache disabled,
burst mode blocked.

• Guarded access.

See the "Answering Emulation Configuration Questions" chapter
for information on memory mapping.

The 68030 emulator will attempt to break to the emulation
monitor on accessing guarded memory. You can configure the
emulator to break to the emulation monitor on a write to ROM.

The integrated emulation bus analyzer provides real-time analysis
of bus cycle activity. You can define break conditions based on
address and data bus cycle activity.

When the MMU is enabled, analysis data is physical addresses only,
with no symbols. When the deMMUer is enabled, the analyzer can
see logical addresses and can display symbols.

Analysis functions include trigger, storage, count, and context
directives. The analyzer can capture up to 2047 events, including all
address, data, and status lines.

Commands for the HP 64430 emulator and HP 64404 and
HP 64405 integrated analyzers are integrated, making it easy to
make both emulation and analysis measurements.

You can display or modify the 68030 CPU register contents. For
example, you can modify the program counter (PC) value to
control where the emulator starts a program run. You also can
display or modify the 68030 MMU register contents.

You can direct the emulation processor to execute a single
instruction or several instructions. (If a foreground monitor is
selected, the target system trace vector must point to
MONITOR_ENTRY in the foreground monitor code for single
step to function properly. See "Single Stepping with Foreground

Introduction 1 ·3

I

I Breakpoints

Reset Support

Memory Management

Custom
Coprocessors

Support

Function Codes

1 ·4 Introduction

Monitor" and "Single Stepping with Background Monitor"
paragraphs in chapter 10 for information.)

You can set the emulator/analyzer interaction so the emulator will
break to the monitor program when the analyzer finds a specific
state or states, allowing you to perform postmortem analysis of the
program execution. You also can set software breakpoints in your
program. With the 68030 emulator. setting a software breakpoint
inserts a 68030 BKPT instruction into your program at the desired
location. You can select any one of the eight 68030 software
breakpoint instructions to be used by the emulator.

The emulator can be reset from the emulation system under your
control. Or, your target system can reset the emulation processor.

Memory can be accessed either logically or physically, depending
on whether the emulator deMMUer is configured to be active or
inactive. The on-chip Memory Management Unit (MMU) of the
68030 translates logical (virtual) addresses to physical addresses
that are placed on the processor address bus. The deMMUer
hardware filters the physical address bus to the analyzer. When the
deMMUer is disabled, it passes the data through unchanged
(physical). Symbols. which are in logical memory, are not
meaningful when the deMMUer is disabled. If the deMMUer is
configured with MMU information and some ranges of interest, it
can track table walks. Tracking ·the table walks allows the
deMMUer to maintain a cache of physical to logical translations.
By filtering the physical trace data and substituting logical
addresses, the analyzer can then show this logical data with symbols.

The 68030 emulator does not contain an on-board floating point
processor and does not support for custom coprocessors in the
background monitor mode. It does support custom coprocessors
when operating in the foreground monitor mode. In foreground
monitor mode, the custom coprocessor instructions can be
disassembled in trace displays. You also can display and modify the
custom coprocessor registers.

The HP 64430 emulator supports the 68030 function codes.
Emulation memory can be mapped to any of the functional address

Foreground or
Background

Emulation Monitor

Out-of-Circuit or
In-Circuit Emulation

spaces (CPU, supervisor or user, program or data, or undefined).
Function codes can be used to qualify addresses specified in
commands.

The 68030 emulator comes with both a foreground and a
background monitor. This allows you to choose the monitor that
best supports your development needs:

• Not using the target system resources but having full
logical/physical support with the background monitor.

• Ha'oing full interrupt handling and custom coprocessor
support with the foreground monitor.

The emulation monitor is a program that is executed by the
emulation processor. It allows the emulation controller to access
target system resources. For example, when you display target
system memory, the monitor program reads the target memory
locations and send their contents to the emulation controller.

The monitor program can execute in foreground, the mode in which
the emulator operates as would the target processor. The
foreground monitor occupies processor address space and acts as if
it were part of the target program.

The monitor program also can execute in background. In this mode,
foreground operation is suspended so that the emulation processor
can be used to access target system resources. The background
monitor does not occupy processor address space.

The HP 64430 emulator can be used for both out-of-circuit
emulation and in-circuit emulation. The emulator can be used in
multiple emulation systems using other HP 64000-UX
Microprocessor Development Environment emulators.

Introduction 1 ·5

I

I Manual Coverage

1 ·6 Introduction

This manual tells you how to operate the HP 64430 emulator for
the 68030 processor. The manual also gives 68030 emulator
specific information. The 68030 Emulation Reference Manual has
more information about using 32-bit emulation, including detailed ""'1JI
syntactic descriptions of the emulation commands. Detailed
operating information for the HP 64404 and HP 64405 integrated
analyzers is in the Analysis Reference Manual for 32-Bit
Microprocessors and the 68030 Analysis Specifics manual.

2

Installing Your Emulator

Overview

Introduction

This chapter:

• Reviews the safety considerations for installation.
• Provides preinstallation inspection instructions.
• Shows you how to configure boards in the HP 64120A

Instrumentation Cardcage.
• Shows you how to install the emulation system hardware.
• Shows you how to connect the emulation probe cable to

your target system.
• Shows you how to turn on the HP 64120A

Instrumentation Cardcage.

If you are installing your HP 64000-UX components as a new
installation. see the HP 64000-UX Installation and Configuration
Manual for instructions on installing the HP 64120A
Instrumentation Cardcage. Also, refer to the preinstallation
instructions given in this section. Then install the emulation system
as instructed in this chapter.

Figure 2-1 identifies some key features of the HP 64120A
Instrumentation Cardcage. The labels used in this figure are used
throughout this manual. Note the location of the power switch. For
more information on the hardware configuration, see the
Installation and Configuration Manual.

Installation 2·1

I

I

2·2 Installation

C=::J

........
~

::sJ

C> SELF TESTS
INDICATORS _ _,

••
EXTERNAL

IMB EXTENDER
CONNECTOR

LOAD ADDRESS HP-IB CONNECTOR
SWITCHES ANO XFT

SWITCHES

POWER ON

POWER SWITCH

POWER CONNECTOR

FUSE

VOLTAGE SELECT

Figure 2·1. Instrumentation Cardcage Features

PASSED

INDICATOR

Safety
Considerations

Warning

Warning

The HP 64000-lJX Microprocessor Development Environment
with the HP 64430 Emulation System is a Class 1 instrument
(provided with a protective earth terminal) and meets safety
standard IEC 348, "Safety Requirements for Electronic Measuring
Apparatus." This Class I instrument also meets Hewlett-Packard
Safety Class I requirements and was shipped in a safe condition.

You should review both the instrument and manual for safety
markings and instructions before operation. Read and become
familiar with the "Safety Summary," printed following the
Certification/Warranty page of this manual, and the additional
items listed below.

SHOCK HAZARD! DO NOT ATTEMPT TO DISRUPT
PROTECTIVE GROUND!
Any interruption of the power cord protective conductor
(third prong of power cord plug) inside or outside the
HP 64120A Instrumentation Cardcage or disconnection of
the protective earth terminal in the power source (wall
outlet) Is likely to make the HP 64000-UX Microprocessor
Development Environment DANGEROUS! Intentional
Interruption of the power cord protective conductor is
prohibited.

SHOCK HAZARD! ONLY QUALIFIED PERSONNEL SHOULD
SERVICE.
Any adjustment, maintenance, or repair of the opened
Instrument must ONLY be done by QUALIFIED PERSONNEL
aware of the HAZARDS Involved.

Installation 2-3

I

I
Warning

Pre installation
Inspection

2·4 Installation

0 SHOCK HAZARD! DO NOT USE IF SAFETY FEATURES
HAVE BEEN IMPAIRED.
If the safety features of the Instrument have been damaged
or defeated, the Instrument shall not be used until repairs
are made which restore the safety features. The safety
features of the Instrument could be disabled In the following
instances:

1. The instrument shows vlslble damage.

2. The instrument falls to perform correct measurements.

3. The instrument has been shipped or stored under
unfavorable environmental conditions. Refer to the Service
Supplement portion of this manual for Information on the
environmental specifications of storage and shipment.

Unpack all emulation system circuit boards, cables, pod, and
related equipment. Carefully inspect the equipment for shipping
damage. If you find any damage, please contact your nearest
Hewlett-Packard Sales/Service Office as soon as possible.

Make sure that you received everything that you ordered. If any
equipment is missing, please contact your nearest Hewlett-Packard
Sales/Service Office as soon as possible.

Installing Your
Emulation System
Hardware

Warning

This section tells you how to install your emulation hardware into
the HP 64120A Instrumentation Cardcage.

SHOCK HAZARD! INSTALLATION SHOULD ONLY BE
PERFORMED BY QUALIFIED PERSONNEL.
Any installatlon, servicing, adjustment, maintenance, or
repair of this product must be performed only by qualified
personnel. Make sure power is off prior to performing any of
the installation instructions given below.

Installation Follow these instructions to install the Emulation System and
Instructions related equipment:

Warning

Caution I

SHOCK HAZARD! HAVE YOU READ THE SAFETY
SUMMARY?
Read the safety summary at the front of this manual before
installation or removal of the Emulation Subsystem.

Damage to cards and cage.' Power to the HP 64120A
Instrumentation Cardcage must be removed before installation or
removal of option cards (emulation, etc.) to avoid damage to the
option cards and the development environment.

Installation 2-5

I

I

2-6 Installation

Turn Off Power

Turn OFF power to the HP 64120A Instrumentation Cardcage.
(See figure 2-1 for the location of the power switch on the
HP 64120A Instrumentation Cardcage.)

Remove The Card Cage Cover

The HP 64120A Instrumentation Cardcage access cover is secured
by four screws on the top of the instrumentation cardcage. See
figure 2-2. Loosen the four screws, and remove the access cover.

ACCESS SCREWS

Figure 2-2. Removing the Cardcage Access Cover

Connect The Emulator Pod Cables To The Emulator Boards

There are six cables from the emulation pod that connect to
various cards in the card cage. Connect these cables as follows:

1. Connect the two 44-conductor cables from tl\e pod to the
Emulator Control Board (HP 64430-66512). It does not
matter which of the 44-conductor cables are connected to
each of the 44-pin connectors.

2. Connect the 50-conductor cable from the pod to the
Emulator Control Board (HP 64430-66512).

3. If you are not using the DeMMUer board. connect the
three 64-conductor cables from the pod to the Analysis
Bus Generator (ABG) board following the yellow, red, and
brown color dots for proper connections.

If you are using the DeMMUer board, connect the three
64-conductor cables from the pod to the DeMMUer board
following the yellow1 red, and brown color dots.

The pod cables connected to the ABG board (64411A) or the
DeMMUer board (64431A) are protected by a plastic cover. After
connecting the three 64 position cables to the applicable board,
fasten the plastic cable cover to the board using four screws. See
figure 2-3. Use a Torx TX 6 screwdriver.

Figure 2·3. ABG Protective Plastic Cable Cover

Installation 2· 7

I

I
Caution I

Install Boards Into The Card Cage

Install the circuit boards by sliding each circuit board into the
circuit board guide slots. As you face the front of the HP 64120A
Instrumentation Cardcage, the component side of the boards ...,,,J
should face the right side of the instrumentation cardcage. Align
the connector at the bottom of the board with the motherboard
connector at the bottom of the card cage, then push down until the
board seats in the motherboard connector. Be sure the ejector
handles are horizontal when the board is se,::-:d.

Possible cable damage.' Be careful to avoid scraping the cables or
individual wires with the backs of the printed circuit boards. This
will strip insulation from the cables and cause short circuits.

INTERCONNECT BOARD

64405

2-8 Installation

64411
ANAL'r'31S BUS

GENERATOR BOARD
OR 64431

DEMMUER BOARD 64430

EMULATOR CONTROL

BOARD

INTERMODULE

'--~ BUS {IMS) CABLE

~POWER BUS
CABLE

64120A ICC

FRONT

Figure 2-4. Board lnstallatlon Into Cardcage

Installing the
Emulator Probe In
the Target System

Caution '

The circuit boards need four adjacent card cage slots. Install the
boards as follows:

1. Install the boards in the card cage in the order shown in
figure 2-4.

2. Install the Interconnect Board across the three analysis
boards. See figure 2-4.

3. Install the power bus cable between the top left edges of
the deMMUer board or the analysis bus generator and the
emulator control board.

Secure The Pod Cables

Each pod cable has a metal ferrule for strain relief. Snap the
ferrule into a cable clamp on the instrumentation cardcage. If your
instrumentation cardcage does not have cable clamps, you can
order them from Hewlett-Packard.

Reinstall Card Cage Access Cover

Reinstall the card cage access cover and fasten it with the
hold-down screws.

Possible damage to emulation probe.' Protect against static discharge.'
The emulation probe contains devices that can be damaged by
static discharge. Therefore, you should take precautions before
handling the microprocessor connector to avoid damaging the
internal probe components with static electricity.

Installation 2·9

I

Caution I

I
Caution I

Caution '

2·1 O Installation

Possible damage to emulation pod.' Do not install the emulation
probe into the processor socket with power applied to the target
system. Otherwise, the pod may be damaged.

When installing the emulation probe, be sure the probe is inserted
into the processor socket so that pin Al of the emulation probe
aligns with pin Al end of the processor socket. The emulator might
be damaged if the probe is incorrectly installed.

Possible damage to target system! Protect your CMOS target system
components.' If your system includes any CMOS components-turn
on the HP 64120A Instrumentation Cardcage first, then turn on
the target system. Also. turn off the target system first, then the
development emironment.

The emulation probe has a pin protector that prevents damage to
the probe when not in use (see figure 2-4). Do not use the probe
without a pin protector. If the emulation probe is being installed
on a densely loaded circuit board, there may not be enough room
for the probe. If this occurs, another pin protector may be stacked
onto the existing pin protector.

To install the microprocessor connector in a target system with a
Pin Grid Array (PGA) socket (see figure 2-5), proceed as follows:

Possible damage to PG A pins.' Protect PG A pins from damage! To
avoid damaging the PGA (Pin Grid Array) probe connector pins,
use an insertion/extraction tool (such as Augat P;N TX 8136-13)
for removing the PGA probe connector.

1. Remove the 68030 processor from the target system
processor PGA socket.

PROBE ASSEMBLY A 1

Figure 2·5. Installing Emulation Probe Into PGA Socket

2. Store the 68030 processor in a protected environment
(such as antistatic foam). Note the location of pin Al on
both the microprocessor connector and the target system
socket.

3. Install the active probe into the target system processor
socket.

Installation 2·11

I

Install Software

Installing 68030
Emulation
Software Updates

2-12 lnstallatlon

See the Installation Notice that you received with your
HP 64000-UX media for complete software installation
instructions.

After installing a new copy of the 68030 Emulation Software on a
system, cycle the power off and then back on for all cardcages
containing 68030 emulators. This updates and initializes all
emulation software data structures. Run msinit before you begin
your next emulation session. Refer to chapter 3 for a description of
msinit.

When you install a different revision of the 68030 emulator
software, delete all existing ".EB" emulation configuration files.
Emulation configuration file names are suffixed by ··.EA" and
".EB." The ".EA" file is created when you end a "modify
configuration" session. You can edit this file to modify your
configuration without going through the "modify configuration" ""1JI
process during an emulation session. If you do modify it, delete the
existing ".EB" file. The ".EB" file is created from an original ".EA"
file. It becomes the executable file that the emulation software
looks for when you load your emulation configuration file. So you
need to delete this file after updating your emulation software,
since the new software may have changed something that is in the
old ".EB" file. If there is no ".EB" file, the emulation software will
use the ".EA" file to build a new one. You need not do anything
with the ".EA" file. Questions that are answered in that file but are
no longer in the configuration questions are ignored. New
questions added to the configuration that are not answered in the
".EA" file are assigned the default answer in the created ".EB" file.
You may want to go through the "modify configuration" process
and answer all the questions to make sure that your ''.EA" file is
current after you update your emulation software.

Note

Turning On the
HP 64120A

Caution I

If you installed your HP 64430 emulation software as an update,
remove the HP-OMF format absolute files from the demo
directory with the command:

rm /usr/hp64000/demo/emul32/hp64430/*.X

Note that this is a capital X, not a small x.

Figure 2-1 shows the power switch for the HP 64120A
Instrumentation Cardcage.

Possible damage ro target system.' Protect your CMOS target system
components.' If your system includes any CMOS components-turn
on the HP 64120A Instrumentation Cardcage first, then turn on
the target system. Also, turn off the target system first, then the
development emironment.

Turn the cardcage power on. Three green LED's are "isible from
the front of the cardcage as seen in figure 2-1. All three should be
illuminated to show proper operation of the development
environment. If all three LED's do not light up, see the HP 64120A
Instrumentation Cardcage Service Manual for information on
correcting any problems.

Installation 2·13

I

Notes

2•14 lnstallatlon

Getting Started

Overview

Introduction

Emulation System
Used For
Examples

3

This chapter tells you how to:

• Create a subdirectory in which you can store 68030 related
files.

• Initialize and define a measurement system.
• Assemble, compile, and link the emulation monitor and

demonstration programs by using a makefile.
• Access the emulation system from the pmon softkeys.
• Modify the default emulation configuration and map

memory by loading a configuration file.
• Run an emulation session.

This chapter gives an overview of the emulation process. Through
example, it shows what you must do to prepare your system for
emulation and how to make simple measurements. Work all
exercises in the order presented. Then you will understand basic
emulator operation.

The examples in this manual were developed with an emulation
system that includes the components listed below.

• HP 64430SX Emulation System (includes Analyzer)
• HP 64874 Cross Assembler/Linker for MC68030
• HP 64907 68030 C Cross Compiler

Getting Started 3·1

I

I Make a
Subdirectory For
Your 68030 Project

Note

3·2 Getting Started

If you do not have the Cross Assembler/Linker and C Cross
Compiler specified above, you can still do the procedures in this
chapter. Executable forms of the demonstration programs are
supplied with your product software.

Before you start a new project, make a subdirectory for the project.
This enables you to keep your files for each project separate from
other files. Follow these rules:

• The subdirectory name must have from one to fourteen
characters. If it has more than fourteen characters, all
characters after the fourteenth character are truncated.

• Any characters may be used in the name. Avoid conflict
with special characters used in the HP-UX system software
by restricting your subdirectory names to alphanumeric "'1tJll
characters and the underscore (_) character.

• Upper and lower case alphabetic characters are significant.
For example, "FILENAi\1E" is different from "filename."

The path /usr/hp64000/bin must be added to the PATH parameter
in your ".profile" file to execute HP 64000-UX commands as given
in the examples in this manual. Otherwise, you must type the entire
path name for HP 64000-UX commands, for example,
/usr/hp64000/bin/pmon instead of pmon.

Do the following to make a subdirectory for your 68030 project:

1. Log in to the system using your login and password. """""'

2. Enter pmon Return. This accesses the HP 64000-UX
system monitor. The HP 64000-UX system monitor is
softkey driven. You should see softkey labels displayed on
your screen.

3. Press the ···ETC··· softkey repetitively until the makedir
softkey appears as an option on the softkey label line.

4. Press the makedir softkey and type in the name you wish to
use for your directory (the name em68030 is used
throughout this manual). Press the Return key on the
keyboard.

makedir ern68030 <RETURN>

You now have a subdirectory named em68030.

Whenever you log in to your system to work on the 68030 project,
you should change to this directory (using the chng_dir softkey). If
you do most of your work on the 68030 project, you can modify
your ".profile" file to change to this directory whenever you log in.
If the permissions are set so that you can alter your ".profile" file,
add the line "cd $HOME/em68030" to your ".profile" file. You will
then be in the new subdirectory when you log in. If the permissions
are set so that you cannot modify your ".profile" file, see your
HP-UX system administrator. The examples in this manual use the
chng_dir command to change directories.

Getting Started 3.3

I

Initialize And
Configure Your
Measurement
System

Note

Note

3·4 Getting Started

If you have already initialized the instrumentation cardcage and
defined your measurement system, skip this section and go to the
one titled "Prepare Your Program Modules."

See the Measurement System manual for the HP 64000-UX
Microprocessor Development Environment for detailed
information on initializing and configuring measurement systems.
The following procedure gives you an overview of the initialization
and configuration process.

To initialize your HP 64120A Instrumentation Cardcage and
configure your 68030 emulation system, do the following:

1. Press MEAS_SYS.

The MEAS_SYS softkey is displayed after you enter the
HP 64000-UX system monitor by executing the pmon command.

You are now in the measurement_system application. The
softkeys displayed at this level enable you to initialize and
configure your measurement system.

2. Press msinit Return.

If you have only one system in your instrumentation ~
cardcage, the softkey label line will disappear and the
message "Working" will appear on the STATUS line.
After a few seconds, the message "Hit return to continue"

will appear under the STATUS line. Press Return. The
message will disappear and the softkey labels will return.

If you have more than one system in your instrumentation
cardcage, the softkey label line will disappear and the
message ''Working" will appear on the STATUS line.
After a short time, a list of boards in the card cage may be I
displayed on the screen. Messages may appear on screen
asking you to identify the boards in the different systems.
After you have identified any boards requested by the
system, the message "Hit return to continue" will appear
under the ST A TUS line. Press Return. The message will
disappear and the softkey labels will return.

3. Press msconfig Return.

The screen now displays the module(s) available to be
assigned (top of the screen) to a measurement system
(middle of the screen).

4. Enter make_sys emul683k Return.

5. Press add. If your 68030 emulator is the only system in the
instrumentation cardcage, it will be assigned as module 0
as shown at the top of the display. If more than one system
is in the instrumentation cardcage, the 68030 system
module number may be different from 0. Identify the
module number of the 68030 emulator shown at the top of
the display and type it in from the keyboard. Press
name_it, type in em68030 from the keyboard, and press
Return. The command line will appear as follows:

add 0 naming_it em68030

6. Press end Return.

This command exits the measurement configuration mode
and returns to the measurement system level.

7. Press -GOBACK- to exit the measurement system level and
return to the HP 64000-UX system monitor.

Getting Started 3.5

I
Prepare Your
Program Modules

Note

3-6 Getting Started

The 68030 Emulation module is now defined as module em68030
in the measurement system (shown in the center of the screen).

Program modules must be assembled or compiled and then linked
to create an absolute file. The emulator must be configured with a
memory map that allocates memory to the addresses used by the
program. Then the absolute file can be loaded into the emulator.

Memory mapping is done for the demonstration programs in this
chapter by loading a configuration file supplied with your
demonstration software. Chapter 4 describes memory mapping.
This manual doesn't describe the assembly and compile
procedures. See your assembler;1inker;1ibrarian and compiler
manuals for detailed instructions.

Executable files with names ending in ".X" (capital X) were created
in HP-OMF format. If you installed your HP 64430 emulation
software as an update, or if you intend to use executable files in
IEEE format, remove the HP-OMF format absolute files from the
demo directory with the command:

rm /usr/hp64000/derno/ernul32/hp64430/*.X

Be sure to use capital X, not a small x, in the above command.

If you have the HP 64874 68030 Assembler;Linker and the
HP 64907 68030 C Cross Compiler, create the absolute file by
following instructions in the paragraph titled, "Create the Absolute
File In Your Subdirectory."

If your system does not have the Assembler/Linker and C Cross
Compiler specified above, you can still perform the demonstration
emulation procedures in this manual. Follow the instructions in """""'
the paragraph "Use the Absolute File In The Demo Directory."

Note

The absolute file is composed of the following source program
modules:

simint.c

towers.c

Simulated interrupt routines for the
demonstration program.

The demonstration program. This program I
solves the popular "'Towers of Hanoi" brain
teaser puzzle. The program demonstrates many
features of the emulator, including simulated I/O
and simulated interrupts.

entry.s and os.s These two programs together define a virtual
system by mapping the 68030 MMU.

If you have a system printer, you can print the simint.c and towers.c
demonstration programs with the command:

lp towers.c sirnint.c

Or, you can look at the files on-line with the commands:

more towers.c
more simint.c

The READ ME file in the demo directory tells more about the
demonstration files and their use. To view the READ ME file,
enter the command:

!more
/usr/hp64000/demo/ernul32/hp64430/README

Getting Started 3·7

I

Create the Absolute
File In Your

Subdirectory

Use the Absolute Fiie
In The Demo Directory

3·8 Getting Started

The demonstration programs are installed in the directory
/usr/hp64000/demo/emul32/hp64430. Copy these programs to your
subdirectory by using the command:

copy /usr/hp64000/demo/emul32/hp64430/*
em68030

Now enter your subdirectory by using the following command:

cd em68030

There is a makefile in the demonstration directory. Use the
following commands to have the makefile create the absolute file
for the getting started procedure:

make clean

Your display will show some files being removed from your
directory. These files were built to support the absolute file when it
was resident in the demonstration directory.

Now, create a complete set of absolute files in your directory by
entering the command:

make

During execution of the make file, you will see two "Warning"
messages appear on screen. These messages refer to symbols and a
variable in the spmt_demo.c source file. Both Warning messages
are normal. They involve a source file that won't be used in this
manual.

When execution of the make file is complete, go to the paragraph
titled "Preparing The Emulation System."

If you do not have the HP compiler and linker specified earlier, you
can use the absolute file in the directory
/usr/hp64000/demo/emul32/hp64430. To use this absolute file, you
must change to that directory. (If you copied the file to your
directory, the pathnames in the SRU symbol database would be
incorrect.) To change directories, press the chng_dir softkey and ""1t/I
enter the directory pathname /usr/hp64000/demo/emul32/hp64430.
The command line should appear as follows:

cd /usr/hp64000/demo/emul32/hp64430

Prepare the
Emulation System

Access the Emulation
System

Press the Return key. You should now be in the 68030 demo
subdirectory. You can verify this by executing the HP-UX pwd
(print working directory) command.

To prepare the emulation system, you do the following:

l. Normally, you might connect the emulator probe into your
target system (for in-circuit emulation). You will not do
this for the getting started procedure in this chapter.

2. Access the emulator through the MEAS_SYS application.

3. Modify the default emulator configuration to match your
system requirements. You can do this by using the modify
configuration command or by loading a configuration file.
You'll use the second method in this chapter.

4. Load your absolute file into emulation memory (or target
system memory when used).

The following procedures use the emulator in out-of-circuit mode
(no target system). Chapter 6 discusses target system plug-in issues.

Access your emulation system as follows:

l. Press MEAS_SYS.

2. Press emul683k em68030 Return.

You are now in the emulation system application. The emulation
softkeys are displayed at the bottom of your screen.

Getting Started 3·9

I

I

Modify the Default
Emulation

Configuration

When you start the emulator software, the default emulation
configuration is loaded. You need to modify this configuration to
create one that supports your demonstration programs. The
demonstration directory contains a configuration file to make
these modifications for you. Load the demonstration configuration
file using the command:

load configuration config Return

Figure 3-1 lists the demonstration configuration file. The
configuration file defines the emulation memory map, and answers
the emulation configuration questions.

This is the configuration file for the HP 64430 68030 Emulator/Analyzer
demonstration software.
If blocks of memory are mapped noncontiguously the emulator allocates chunks
in multiples of 4k bytes.
#################################f###

BEGIN MEMORY MAP
modify default guarded
modify valid codes none
Map 124k-memory for all prog and canst sections to RAM.
map OOH thru OlefffH emulation ram asynchronous width32
Map 12k memory for the emulation monitor to RAM.
map 020000H thru 022fffH emulation ram asynchronous width32
Map 32k memory for the stack.
map 07fff8000H thru 07fffffffH emulation ram asynchronous width32
Map BBk memory for all data sections.
map OfffeaOOOH thru OffffffffH emulation ram asynchronous width32
END MEMORY MAP

Enable polling for simulated I/O? yes
Function code data space ? none
Sirnio control address l? systemic buf
Enable polling for simulatea interrupts? yes
Function code data space ? none
Simulated interrupt control address? sim int ca
Maximum delay (in milliseconds) for simulated interrupt?
Restrict to real-time runs? no
Enable emulator use of the monitor? yes
Reset into the monitor? yes
Enable emulator use of INT7? yes
Enable user IPEND line during emulator breaks? no
Enable emulator use of software breakpoints? yes
Software BKPT instruction number (0 .. 7)? 7

3000

Figure 3-1. Demonstration Configuration Fiie

3·1 o Getting Started

Default stack pointer for background? 07ffffff8h
Perform periodic foreground accesses while in monitor? no
Address for periodic foreground access? O
Enable foreground monitor? yes
Interlock or provide termination for foreground? terminate
Any custom registers? no
Name of custom register format file?
Break processor on write to ROM? no
Block BERR on non-interlocked emulation memory? no
In-circuit emulation session? no
Enable OMA transfers? yes
Enable OMA transfers into emulation memory? no
CPU clock rate faster than 25 MHz? no
Disable on-chip cache? yes
MMU enabled during session? no
Sirnio control address 2? SIMIO CA TWO
Sirnio control address 3? SIMIO-CA-THREE
Sirnio control address 4? SIMIO-CA-FOUR
Sirnio control address 5? SIMIO-CA-FIVE
Sirnio control address 6? SIMIO-CA-SIX
File used for standard input? 7dev/sirnio/keyboard
File used for standard output? /dev/sirnio/display
File used for standard error? /dev/sirnio/display
Block ECS, OCS signals during background monitor cycles? yes

Figure 3·1. Demonstration Configuration File (Cont'd)

Note

Load Emulatlon
Memory

When the emulator finishes loading the memory mapper and
background monitor, the STATUS line will show that the
emulation processor is Reset. The emulator is ready for use.

You have two configuration files named "config" in your directory.
File config.EB is a binary file used by the emulator. File conflg.EA
is an ASCII file that you can edit on your host system.

You are ready to begin an emulation session. Before you make any
measurements, you must load memory with your program. To load
emulation memory with the demo program, enter the command:

load memory towers

Getting Started 3·11

I

I

Use the Emulator This section shows some simple emulator commands. Work
through the examples in the sequence shown here. Otherwise, the
displays you see may not be the same as those shown in the manual.
After you have done the examples, you can execute other
commands to understand the emulator's operation. See the 68030
Analysis Specifics User's Guide and the Reference Manual for 16-
and 32 -Bit Internal Analysis for detailed information on the
emulator's analysis features.

Note

Display The Source
File

The displays you see on your system may be different from those
shown in this manual. This depends on the type of terminal or
workstation you are using.

The display source_file command shows the source file on screen.
Enter the following command to see the source file of the
demonstration program.

display source_file towers.c Return

You should see a display similar to the following on screen.

Source File :
file = towers.c

/* LSD:@(#) 0.02 01Feb91
!• @(mktid) (A.01.10 01Feb91)
!•
!•
!•
/•
!•
!•
!•
!•
!•
/•
/•
!•
!•
!•

•/
This program demonstrates the solution to the popular •/
"Towers of Hanoi" brain teaser puzzle. The puzzle consists •/
of 3 pegs and a number of discs of different diameters which •/
fit over the pegs. The discs are ordered by their diameter, •/
largest on the bottom, on one peg. The object is to move •/
all of the discs from one peg to another such that they end •/
up in the same order on the new peg using the minimum number •/
of moves. Only one disc can be moved at a time, and a larger •/
disc may never be placed on top of a smaller disc. •/

The solution can be visualized using "display simulated io"
command. The number of discs is selected by responding to
the input request using the "modify keyboard_to_simio"

•/
•/
•/
•/

STATUS: M68030--Reset.,..-______________________
display source_file towers.c

run trace set step display modify end ---ETC--

3·12 Getting Started

Symbol Handling

Note

You can use the UP and DOWN cursor keys and the NEXT and
PREY keys to scroll or page through the source file. You can also
move to a new area of the source file by using the Iine_number
token for the display source_tile command. Even though no line
numbers appear in the source file listing, the source file display will
reposition to place the line number you specify at the top of the
screen.

When you load a program for the first time, the emulator uses the
Symbolic Retrieval Utilities (SRU) to build a symbol database for
each module. This database associates symbol names and symbol
type information (not data types) with logical addresses. You will
see a message on screen showing the module for which the
database is being built.

Once a symbol database is created for a particular module, it does
not need to be rebuilt unless the module is changed. You can
rebuild modules using the srubuild utility (see the HP 64000-UX
System User's Guide). If you reenter emulation without building
symbols, the emulator software automatically rebuilds portions of
the symbol database as you reference symbols in modified modules.

You must use the -a and -p options when using srubuild to ensure
proper handling of 68030 addresses. For example:

srubuild -a 68030 -p 64430 [options]
<filename> [buildfile]

Otherwise, srubuild will assume the object file is a 68000 object
file, and will incorrectly truncate addresses.

Global symbol information is immediately available for the file
that you loaded. To obtain local s~mbol information. you need to
specify the module that contains the symbols.

You can use the symbol names instead of addresses when entering
expressions as part of an emulation command. Therefore, you don't
have to remember segment:offset information to make a
measurement. Also, the emulator can display symbols as part of a
measurement, using the set symbols on command. This helps you
relate the measurement to your original program.

Getting Started 3·13

I

I

Global symbols in
Procedure symbols
Procedure name

towers

The 68030 emulator can read absolute files in HP-OMF or
IEEE-695 format. For more information on SRU. refer to the
HP 64000-UX System User's Guide. Additional information on
symbol entry syntax is in the --SYMB-- syntax pages of the 68030
Emulator Reference.

When you load an absolute file into memory (unless you use the
"nosymbols" syntax), symbol information is also loaded. You can
display global symbols and symbols that are local to a source file.

You can set the current working symbol using the cws command.

cws <symbol>

To see the name of the current working symbol, type:

pws <symbol>

Displaying Global Symbols

The display global_symbols command displays global (externally
defined) symbols in the program modules you have loaded in
memory. To display global symbols, enter the command:

display global_symbols

You should see a display similar to the following on your screen.

fflush
oufsync
-dbl to str

Address range
-------0,......0005BOO - 00005BB7

Segment Off set
libc ------ OOF2

-doprnt-
-doscan
-exec funcs
-filbuf
-findbuf
-flsbuf

memccpy
-startup
-wrtchk
-xflsbuf
atexit
atof

00005ECE - 00005FOB
00003724 - 00003Cll
00003F38 - 00004F79
00004F02 - 00005280
00001E82 - OOOOlEAl
000058E4 - 00005AOO
00005082 - 00005E23
00005BB8 - 00005CE5
0000610C - 00006207
000009AE - OOOOOAE5
00005E24 - 00005ECO
00005CE6 - 00005081
00001E50 - 00001E81
00002B3E - 00002BC3

libc 04CO
libc 01E8
libc OOAC
libc 0000
libc 0032
libc 0000
libc 0374
libc OlAA
libc 0000
env 0000
libc 0416
libc 0208
libc 0000
libc OC9A

STATUS: M68030--Reset _____________________ ~········
display global_symbols

run trace set step display modify end ---ETC--

3·14 Getting Started

Note

symbols in towers(module)
Procedure symbols

You can use the UP and DOWN cursor keys and the NEXT and
PREV keys to scroll or page through the global symbols listing.

Displaying Local Symbols

You can view local symbols of a file or module using the display
local_symbols_in command. Enter the following command to view
the demonstration program's local symbols:

display local_symbols_in towers

If you were working with files compiled in HP-OMF format (the
files with ".X" file name extensions in the demo directory), you
would need to specify towers.c: in the above command. You use the
".c" file extension to specify C language files and the ".s" file
extension to specify assembly language files.

An equivalent command is:

display local_symbols_in towers(module)

Procedure name Address range Segment Offset
ask for number ---------------..,,0~000120C - 00001389 prog
init display 00001610 - 000016c5 prog
main- 00001162 - 00001205 prog
move disc 00001582 - 00001609 prog
pause 00001390 - 000013C5 prog
place disc 00001524 - 0000157B prog
remove disc 00001400 - 00001510 prog
show dTscs 000013CC - 000014C9 prog
towers 000016CC - 00001743 prog

Static symbols

------------ OOBO
04B4
0006
0426
0234
03C8
0374
0270
0570

Symbol name Address range Segment Offset
blank disc ----------------~F=FFEA334 - FFFEA34J data ------------ 0184
disc Ievel FFFEA1C8 - FFFEA1E3 data 0018
disc-word FFFEA344 - FFFEA3B3 data 0194

STATUS: M68030--Reset ___ •.•.....
display local_symbols_in towers

run trace set step display modify end ---ETC--

Getting Started 3·15

I

I
Symbols in simint(module)
Procedure symbols

To display the local symbols in the simint.c module, which was
linked with towers.c to form the executable, type:

display local_symbols_in simint

Procedure name
disable int
enable Int

Address range
~~~~~~~~o""'oooooso - oooooo6I 

Segment 
simint 
simint 
simint 

Off set 
0020 
0006 
0038 sim int handler 

Static symbols 
Symbol name 
sim int ca 
sim-ints serviced 
trapl4 -

Filename symbols 
Filename 
simint.c 

00000036 - 00000049 
00000068 - 00000081 

Address range Segment 
FFFEAlAC - FFFEAlAF data 
FFFEA1A8 - FFFEAlAB data 
OOOOOOB8 - OOOOOOBB 

Off set 
~~~~~~- 0004 

0000
0000

STATUS: M68030--Reset ,,
display local_symbols_~i-n~s-i_m_i_n~t~~~~~~~~~~~~~~~~~~~~

run trace set step display modify end ---ETC--

3·16 Getting Started

Line number symbols are available in the IEEE-695 file format. To
display these, type:

display local_symbols_in towers."towers.c":

Symbols in towers(module)."towers.c":
Source reference symbols
Line range ~~~~~~~~~~ Address range Segment Offset
#1-#128 00001162 - 00001171' prog ~~~~~~ 0006
#129-#130 00001172 - 00001177 prog 0016
#131-#133 00001178 - 0000117B prog OOlC
#134-#135 0000117C - 00001181 prog 0020
#136-#137 00001182 - 0000118B prog 0026
#138-#139 0000118C - 0000118F prog 0030
#140-#140 00001190 - 00001197 prog 0034
#141-#141 00001198 - 0000119B prog 003C
#142-#142 0000119C - 00001190 prog 0040
#143-#144 0000119E - OOOOllBl prog 0042
#145-#146 000011B2 - 000011B5 prog 0056
#147-#150 000011B6 - 000011C9 prog 005A
#151-#152 OOOOllCA OOOOllDF prog 006E
#153-#158 OOOOllEO - OOOOllEl prog 0084
#159-#159 000011E2 - 000011E3 prog 0086

STATUS: M68030--Reset...--,..~~-...,,,..,.-~~~....,,....~~~~~~~~~~~~~-········
display local_symbols_in towers."towers.c":

run trace set step display modify end ---ETC--

Getting Started 3·17

I

I

The SRU enforces symbol hierarchy. For example, there is a
symbol named towers which is a module, and another symbol
named towers which is a procedure in that module. To display the
s:vmbols for the towers procedure, type:

display local_symbols_in towers.towers

Symbols in towers(module).towers(procedure)
Procedure special symbols
Procedure special name ---..,..,.. Address range _ Segment ------ Offset
ENTRY 000016CC prog 0570
EXIT 00001742 prog 05E6
TEXTRANGE 000016CC - 00001743 prog 0570

STATUS: M68030--Reset ______________________ ...•...•
display local_symbols_in towers.towers

run trace set

3·18 Getting Started

step display modify end

Another way to specify this is by typing:

display local_symbols_in
towers(module).towers(procedure)

---ETC--

You can display local symbols for any symbol displayed in the
global symbol listing. You cannot display symbol information for
symbols that are created dynamically on the stack during runtime.
For example, the procedure towers in towers.c has a variable called
ret_ val. The command

display local_symbols_in
towers.towers.rat val

will fail, since ret_ val is dynamically created. But, if you declare
ret_ val to be a static variable, the build process assigns a specific
address location to this variable. SRU can then access this variable
as a local symbol subordinate to the tower procedure in towers.c.

Display Memory

Memory :mnemonic :file
address data

00001162 4E560000
00001166 2FOB
00001168 2FOA
0000116A 45ED800C
0000116E 47FA0220
00001172 4EB90000+
00001178 42AD8008
0000117C 60000068
00001180 4E71
00001182 48780001
00001186 4EB80DEE
0000118A 588F
0000118C 42AD8010
00001190 42A7
00001192 4EBA047C
00001196 588F

The display memory command enables you to view the contents of
either emulation or target memory locations. Enter the command:

display memory main mnemonic

The first address listed in the display is 1162h, the address
corresponding to the local symbol main in the towers program.
Use the UP and DOWN cursor keys and the NEXT and PREV keys
to scroll or page through the memory display.

towers (module) . "towers. c" :

LINK.W
MOVE.L
MOVE.L
LEA
LEA
JSR
CLR.L
BRA.W
NOP
PEA
JSR
ADDQ.L
CLR.L
CLR.L
JSR
ADDQ.L

A6,#$0000
A3,-(A7)
A2,-(A7)
($800C ,AS) ,A2
(S 0 2 2 0 , PC) , A3
$00000036
($8008,AS)
$000011E6

$00000001
$00000DEE
#4,A7
($8010,AS)
-(A7)
($047C,PC)
#4,A7

STATUS: M68030--Reset~~~~~~~~~~~~~~~~~~~~~~········
display memory main mnemonic

run trace set step display modify end ---ETC--

Getting Started 3·19

I

I

Adding Symbols To
The Memory Display

You can use the set symbols command to obtain memory display
that shows address values in terms of symbols defined in the
towers.c source file. Enter the following command:

set symbols on Return

Memory : mnemonic : file = towers (module) . "towers. c" :
address label data

00001162 !towers.main 4E560000
00001166 2FOB
00001168 2FOA
0000116A 45ED800C
0000116E 47FA0220
00001172 4EB90000+
00001178 42AD8008
0000117C 60000068
00001180 4E71
00001182 48780001
00001186 4EB80DEE
0000118A 588F
0000118C 42AD8010
00001190 42A7
00001192 4EBA047C
00001196 588F

LINI<.W
MOVE.L
MOVE.L
LEA
LEA
JSR
CLR.L
BRA.W
NOP
PEA
JSR
ADDQ.L
CLR.L
CLR.L
JSR
ADDQ.L

A6,#$0000
A3,-(A7)
A2,-(A7)
($800C,AS),A2
(proJtowers.pause,PC),A3
simin.enable int
($8008,AS) -
progJmain+$0084

:mon stub+$0001
sys.clear screen
#4,A7 -
($8010,AS)
-(A7)
(tow.init display,PC)
#4,A7 -

STATUS: M68030--Reset __ ~········
set symbols on

run trace set

Note

3·20 Getting Started

step display modify end ---ETC--

Symbols can also be displayed when you are viewing memory
formats of absolute, binary, and real, as well as mnemonic.

Adding Source-File
Lines To The Memory

Display

You can use the set source command to obtain memory displays
that show lines of source-file content preceding the assembly
language code it emitted. Enter the following command:

set source on Return

Memory :mnemonic :file= towers(module)."towers.c":
address label data

124 static void towers();
125 static int ask_for_number();
126
127
128

00001162
00001166
00001168
0000116A
0000116E

129
130

00001172
131
132
133

main()
{
I towers.main 4E560000

2FOB
2FOA
45ED800C
47FA0220

#ifdef INTERRUPTS
enable int () ;

- 4EB90000+
#endif

LINK.W
MOVE.L
MOVE.L
LEA
LEA

JSR

run continuous = FALSE;

A6,#$0000
A3,-(A7)
A2, -(A7)
($800C ,AS) ,A2
(proltowers.pause,PC),A3

simin.enable int

STATUS: M68030--Reset~~~~~~~~~~~~~~~~~~~~~~~-········
set source on

run trace set step display modify end ---ETC--

Getting Started 3·21

I

I

Modify Memory You can modify emulation memory locations mapped as either
RAM or ROM. The speed of the towers demonstration program is
controlled by the variable loc_delay. You will set the value of
loc_delay to 0 so that the program runs at maximum speed. To
watch the memory display change as the variable is modified, you ""'1111

Memory :long words
address

00001744-50
00001754-60
00001764-70
00001774-80
00001784-90
00001794-AO
000017A4-BO
000017B4-CO
000017C4-00
00001704-EO
000017E4-FO
000017F4-00
00001804-10
00001814-20
00001824-30
00001834-40

will display an area in memory repetitively, then modify the
memory. Enter the following command:

display memory loc_delay long repetitively

You should see a display similar to the following on your
workstation screen. The loc_delay variable is the first long word on
the screen. Its value is 000001F4 in the illustration.

:blocked :repetitively
data :hex :ascii

000001F4 09095075 7A7A6C65 20776974 Pu zzle wit
68202564 20646973 63732063 616E2062 h %d dis cs can b
6520736F 6C766564 20696E20 25642060 e solved in %d m
6F766573 2E202020 20200AOO OAOA4578 eves. Ex
65637574 65202760 6F646966 79206B65 ecute 'm edify ke
79626F61 72645F74 6F5F7369 60696F27 yboard_t o simio'
20746865 6E20656E 74657220 6F6E6520 then en ter one
6F662074 68652066 6F6C6C6F 77696E67 of the f ollowing
3AOA094E 75606265 72206F66 20646973 : .. Numbe r of dis
63732074 6F207573 65205B31 20256450 cs to us e [l-%d]
OA092730 2720746F 20657869 74207072 o o I 0 I to exit pr
6F677261 600A0927 43272074 6F207275 ogram .. ' C' to ru
6E20636F 6E74696E 756F7573 6C792075 n contin uously u
73696E67 206C6173 74206E75 60626572 sing las t number
20656E74 65726564 OAOA003F 00256400 entered ••. ? • %d.
20696E76 616C6964 20726570 65617420 invalid repeat

STATUS: M68030--Reset
display memory loc_delay long repetitively

run trace set step display modify end ---ETC--

3·22 Getting Started

""

\..,,

Memory :long words
address

00001744-50
00001754-60
00001764-70
00001774-80
00001784-90
00001794-AO
000017A4-BO
000017B4-CO
000017C4-00
00001704-EO
000017E4-FO
000017F4-00
00001804-10
00001814-20
00001824-30
00001834-40

Enter the command:

modify memory long loc_delay to O

Note that the first long word in the display (memory location
loc_delay) now shows a long word value of OOOOOOOOh.

:blocked :repetitively
data :hex :ascii

00000000 09095075 7A7A6C65 20776974 Pu zzle wit
68202564 20646973 63732063 616E2062 h %d dis cs can b
6520736F 6C766564 20696E20 25642060 e solved in %d m
6F766573 2E202020 20200AOO OAOA4578 oves. Ex
65637574 65202760 6F646966 79206B65 ecute 'm odify ke
79626F61 72645F74 6F5F7369 60696F27 yboard t o simio'
20746865 6E20656E 74657220 6F6E6520 then en ter one
6F662074 68652066 6F6C6C6F 77696E67 of the f ollowing
3AOA094E 75606265 72206F66 20646973 : .. Numbe r of dis
63732074 6F207573 65205B31 20256450 cs to us e [l-%d]
OA092730 2720746F 20657869 74207072 .. , 0, to exit pr
6F677261 600A0927 43272074 6F207275 ogram .. ' C' to ru
6E20636F 6E74696E 756F7573 6C792075 n contin uously u
73696E67 206C6173 74206E75 60626572 sing las t number
20656E74 65726564 OAOA003F 00256400 entered •.• ? • %d.
20696E76 616C6964 20726570 65617420 invalid repeat

STATUS: M68030--Reset
modify memory long loc_delay to 0

run trace set

Run From The
Transfer Address

step display modify end ---ETC--

You have used some of the display and modify features of the
emulator. Now you are ready to run the demonstration program
and try some run-time features. Enter the command:

run from transfer address

The STATUS line displays "M68030--Running." This shows that
the demonstration program is executing.

Getting Started 3·23

I

I

Display Registers

M68030 Registers

NextPC OOOOOC18 SFC
D0-07 00000092 00000001
AO-A6 OOOOOOFF FFFEA057

USP 7FFFFFF8
MSP 7FFFFFF8 STATUS

*ISP 7FFFFDEC
CACR

The display registers command enables you to look at the 68030's
CPU registers and the on-board MMU registers. Enter the
command:

display registers cpu

The contents of the following 68030 CPU registers are displayed on
the screen:

program counter (NextPC)
source function code register (SFC)
destination function code register (DFC)
data registers (DO-D7)
address registers (AO-A6)
user stack pointer (USP)
vector base register (VBR)
cache address register (CAAR)
master stack pointer (MSP)
interrupt stack pointer (ISP)
status register (STATUS)
cache control register (CACR)

0 MOT RSV 0 DFC 0 MOT RSV 0
00000092 000058E4 OOOOOOFF 00000000 00000064 00000000
FFFEA484 FFFEA574 FFFEA054 FFFF21A8 7FFFFDFO

i to s m i x n z v ,C CAAR 00000000
2708 0 0 1 0 7 0 1 0 0 0 VBR 00000000

wa dbe fd ed ibe fi ei
0000 0 0 0 0 0 0 0

STATUS: M68030--Running _____________________ ."" ".
display registers cpu

run trace set step display modify end ---ETC--

3·24 Getting Started

M68030 Registers

NextPC OOOOOC18 SFC
00-07 00000092 00000001
A0-A6 OOOOOOFF FFFEA057

USP 7FFFFFF8
MSP 7FFFFFF8 STATUS

*ISP 7FFFFDEC
CACR

NextPC OOOOOC18 SFC
00-07 00000092 00000001
AO-A6 OOOOOOFF FFFEA057

USP 7FFFFFF8
MSP 7FFFFFF8 STATUS

*ISP 7FFFFDEC
CACR

STATUS: M68030--Running
break

load store copy

Press the break softkey, then press Return.

The registers display is updated and the status line now reads
"STATUS: '.\-168030--Running in monitor." If a display registers
command has been executed in the current emulation session, the
registers display is updated whenever a break occurs.

0 MOT RSV 0 OFC 0 MOT RSV 0
00000092 000058E4 OOOOOOFF 00000000 00000064 00000000
FFFEA484 FFFEA574 FFFEA054 FFFF21A8 7FFFFOFO

1 to s m i x n z v c CAAR 00000000
2708 0 0 1 0 7 0 1 0 0 0 VBR 00000000

wa dbe fd ed ibe fi ei
0000 0 0 0 0 0 0 0

0 MOT RSV 0 DFC 0 MOT RSV 0
00000092 000058E4 OOOOOOFF 00000000 00000064 00000000
FFFEA484 FFFEA574 FFFEA054 FFFF21A8 7FFFFOFO

1 to s m i x n z v c CAAR 00000000
2708 0 0 1 0 7 0 1 0 0 0 VBR 00000000

wa dbe fd ed ibe fi ei
0000 0 0 0 0 0 0 0

in monitor

break reset ---ETC--

Getting Started 3·25

I

I

Use The Step
Function

M68030 Registers

NextPC OOOOOC18 SFC
DO-D7 00000092 00000001
AO-A6 OOOOOOFF FFFEA057

USP 7FFFFFF8
MSP 7FFFFFF8 STATUS

*ISP 7FFFFDEC
CACR

PC 00000400 Opcode
NextPC 00000406 SFC

DO-D7 00000092 00000001
AO-A6 OOOOOOFF FFFEA057

USP 7FFFFFF8
MSP 7FFFFFF8 STATUS

*ISP 80000000

The step function enables you to step through your program
opcode by opcode. Each time the step command is executed, one
program instruction is executed. Enter the command:

step from transfer_address

The register display is updated after each step. The second entry on
the display shows an additional line. The address of the instruction
executed by the step command and the executed instruction are
displayed on the first line of the new register display entry. The
step feature is a powerful tool for debugging programs because it
shows the register acthity for each executed instruction.

0 MOT RSV 0 DFC 0 MOT RSV 0
00000092 000058E4 OOOOOOFF 00000000 00000064 00000000
FFFEA484 FFFEA574 FFFEA054 FFFF21A8 7FFFFDFO

1 to s m i x n z v c CAAR 00000000
2708 0 0 1 0 7 0 1 0 0 0 VBR 00000000

wa dbe fd ed ibe fi ei
0000 0 0 0 0 0 0 0

LEA :TopOfStack,A7 4FF98000
0 MOT RSV 0
00000092 000058E4
FFFEA484 FFFEA574

1 to s m i
2708 0 0 1 0

DFC 0 MOT RSV 0
OOOOOOFF 00000000 00000064 00000000
FFFEA054 FFFF21A8 7FFFFDFO

x n z v c CAAR 00000000
7 0 1 0 0 0 VBR 00000000
ed ibe fi ei

CACR 0000
wa dbe f d

0 0 0 0 0 0 0

STATUS: M68030--Running in monitor ...•....
step from transfer address -----------------

run trace set

3·26 Getting Started

step display modify end ---ETC--

Enter the command:

step

Notice that the emulator executes the instruction stored in the
NextPC memory location. Press Return several times. The
emulator executes one instruction each time you press Return.

The step command allows you to specify a number of steps. This is
useful when stepping through program structures such as delay
loops. Enter the command:

step 25

Stepping Through
The Program In

Memory

Notice that the screen is updated with register information each
time a program step is executed. While the step command is
executing, the status line displays the message "MC68030--Steps
left #n" where n is the number of steps remaining. You can use the
NEXT and PREV keys and the UP and DOWN keys to look at
register information that has scrolled off the screen.

You can use the step function to watch each of your pro gram
instructions as they execute. Enter the commands:

display memory main mnemonic Return

set source off Return

step from main Return

Your display should appear as in the following illustration.

Memory :mnemonic :file = towers (module) . "towers. c":
address label

00001162 I towers.main
00001166
00001168
0000116A
0000116E
00001172
00001178
0000117C
00001180
00001182
00001186
0000118A
0000118C
00001190
00001192
00001196

data
4E560000
2FOB
2FOA
45ED800C
47FA0220
4EB90000+
42AD8008
60000068
4E71
48780001
4EB80DEE
588F
42AD8010
42A7
4EBA047C
588F

LINK.W
MOVE.L
MOVE.L
LEA
LEA
JSR
CLR.L
BRA.W
NOP
PEA
JSR
ADDQ.L
CLR.L
CLR.L
JSR
ADDQ.L

A6 1 #$0000
A3,-(A7)
A2,-(A7)
($800C,A5),A2
(proltowers.pause,PC),A3
simin.enable int
($8008,AS) -
proglmain+$0084

:mon stub+SOOOl
sys.clear screen
#4 1 A7 -
($8010,AS)
-(A7)
(tow.init display,PC)
#4 1 A7 -

STATUS: M68030--Running in monitor~~~~~~~~~~~~~~~~-····
step from main

run trace set step display modify end ---ETC--

The highlighted line on your screen (not highlighted on the
illustration above) is the "next PC" line indicated by the program
counter of the emulation processor. Enter the command:

step Return

Getting Started 3·27

I

I

The former "next PC" instruction was executed and the new next
PC is now highlighted on screen.

When the "next PC" is in a portion of memory that is presently off
screen, the display window shifts to show it. Enter the command:

step 4 Return

Memory :mnemonic :file= simint(module)."simint.c":
address label data

00000036 s.enable int 4E560000
0000003A - 70FF
0000003C 2B408004
00000040 4E71
00000042 4ESE
00000044 4E71
00000046 4E71
00000048 4E75
0000004A 4E71
0000004C 4E71
0000004E 4E71
00000050 .disable int 4E560000
00000054 42AD8004
00000058 4E71
OOOOOOSA 4E5E
OOOOOOSC 4E71

LINK.W
MOVEQ
MOVE.L
NOP
UNLK
NOP
NOP
RTS
NOP
NOP
NOP
LINK.W
CLR.L
NOP
UNLK
NOP

A6,#SOOOO
#$FFFFFFFF,DO
DO, ($8004 ,AS)

A6

A6,#SOOOO
($8004,AS)

A6

STATUS: M68030--Running in monitor _________________
step 4

run trace set

3·28 Getting Started

step display modify end ---ETC--

The last step shifted the display window beyond the instructions
that had been on screen. The new next PC is shown at the top of
the display (highlighted on your screen, but not in the above
illustration).

Trace Processor
Activity

Trace List
Label: Address
Base: symbols
-0007 sysstac+00007FEA
-0006 sysstac+00007FEC
-0005 sysstac+00007FEE
-0004 sysstac+00007FE8
-0003 sysstac+00007FEE
-0002 sysstac+00007FEA
-0001 sysstac+00007FEC
trigger ltowers+00000004
+0001 pr,main+00000002
+0002 pr main+00000006
+0003 sysstac+00007FEC
+0004 prlmain+OOOOOOOA
-ooos sysstac+00007FE8
.;.0006 sysstac+00007FE4
+0007 prlmain+OOOOOOOE

STATUS: M68030--Running
display trace

run trace set

The trace function enables you to watch each cycle on the
processor bus as it occurs. The following examples illustrate some
simple uses of the trace function. For more information, see the
Analysis Reference Manual for 32-Bit Microprocessors and the 68030
Analysis Specifics User's Guide.

Enter the command:

trace TRIGGER_ON a= long_aligned main

This traces all activity on the bus for 1023 bus cycles before and
1023 bus cycles after the address labeled "main" occurs. The
STATUS line will display "Trace in process." Enter the command:

run from main

After the STATUS line shows "Trace complete," enter the
command:

display trace

The trace list is displayed with the trigger state shown in the center
of the screen. Notice the lines prior to the trigger state. The
address field shows that these lines represent emulation monitor
execution and stack accesses. User program activity is displayed
starting with the trigger state (towers+00000004h).

Mode:logical address
Opcode or Status time count

mnemonic w/symbols relative
s----0000 supr data long wr log addr 10.Bus
$1162---- supr data word wr log addr O.BOus
$----007C supr data word wr log addr 10.Bus
$2708---- supr data word rd log addr 19.Bus
$----007C supr data word rd log addr 0.44us
s----0000 supr data long rd log addr 0.44us
$1162---- supr data word rd log addr 0.44us
$4E714E56 supr pr gm long rd log addr 0.68us
$00002FOB supr pr gm long rd log addr 0.48us
$2FOA45ED supr prgm long rd log addr 0.52us
$7FFFFFFC supr data long wr log addr 0.44us
$800C47FA supr pr gm long rd log addr 0.44us
$00001390 supr data long wr log addr 0.44us
$FFFEA1B4 supr data long wr log addr 0.56us
$02204EB9 supr pr gm long rd log addr 0.44us

Trace complete •• e I I I I I

step display modify end ---ETC--

Getting Started 3-29

I

I
Trace List
Label: Address
Base: symbols
trigger ltowers+00000004

=progltowers.main
•0001 =prlmain+00000004
+0002 pr main+00000006

=pr main+00000008
+0003 sysstac+00007FEC
+0004 =prlmain+OOOOOOOC
+0005 sysstac+00007FE8
+0006 sysstac+00007FE4
+0007 =prlmain+OOOOOOlO
+0008 ~r main+00000012
+0009 jsimint+ooooooo4

=simin.enable int
+0010 sysstac+00007FEO
+0011 =enable +00000004

The address is displayed in terms of source-file symbols plus
hexadecimal offsets. The data values in the default trace list are
displayed as hexadecimal numbers. The emulator also can display
values in assembly language mnemonics with symbols. Enter the
commands:

display trace disassemble_from_line_number o

Note that in the updated trace display, the trigger line (line 0) is
the first line in the trace display. Address towers+00000004h
corresponds to the main label in the demonstration program. The
instruction LINK.Wis the second instruction in the long word at
the trigger address in the example program.

NOP
LINK.W
MOVE.L
MOVE.L
LEA

$7FFFFFFC
LEA

$00001390
$FFFEA1B4

JSR
$00000036

NOP
LINK,W

$00001178
MOVEQ

Mode:logical address
Opcode or status

mnemonic w/symbols

A6,#SOOOO
A3,-(A7)
A2, -(A7 I
($800C,A5),A2

supr data long wr log addr
(proltowers.pause,PC),A3

supr data long wr log addr
supr data long wr log addr

simin.enable int
supr prgm Tong rd log addr

A6,#SOOOO
supr data long wr log addr

#$FFFFFFFF,DO

time count
relative

0.68us

0.48us
0.52us

0.44us
0.44us
0.44us
0.56us
O. 44us
0.56us
0.64us

0.48us
0.44us

STATUS: M68030--Running Trace complete
display trace disassemble from line number o ~~~~~~~~

run trace set step display modify end ---ETC--

3-30 Getting Started

Trace List
Label: Address
Base: symbols
trigger ltowers+00000004

=progltowers.main
=sysstac+00007FEC

+0001 =prlmain+00000004
=sysstac+00007FEB

+0002 prlmain+00000006
=sysstac+00007FE4
=prlmain+OOOOOOOB

+0004 =pr main+OOOOOOOC
+0007 =pr main+OOOOOOlO

=sysstac+00007FEO
+0009 =simin.enable int

=sysstac+00007FDC
+0011 =enable +00000004
+0012 enable-+00000006

The preceding trace list shows the order of activity that occurred
on the emulation bus. When the processor fetches an instruction
and places it in its queue, that instruction is captured and placed in
trace memory. Before the execution of that instruction, there will
be bus cycles from the execution of instructions that were fetched
earlier and placed in the queue. There may be additional fetches of
instructions to be executed later. Finally, you will see the bus
cycles from the execution of the instruction you were watching.
The effects of the processor queue makes trace lists hard to read.

The analysis software has an option that replaces bus cycle
execution with a logical view of program execution. Enter the
command:

display trace disassemble_from_line_number 0
dequeued Return

Mode:logical address
Opcode or Status

mnemonic w/symbols
NOP
LINK.W A6,#$0000

wr:S7FFFFFFC
A3,-(A7)

wr:$00001390
A2,-(A7)

time count
relative

0.6Bus

stck sdata
MOVE.L
dest sdata

MOVE.L
dest sdata

LEA
LEA
JSR

stck sdata
LINK.W
stck sdata

MOVEQ
MOVE.L

wr: $ FFFEA1B4
($BOOC,AS),A2
(proltowers.pause,PC),A3
simin.enable int

wr: $00001178 -
A6,#SOOOO

wr:$7FFFFFEC
#$FFFFFFFF,DO
DO, ($8004,AS)

o. 4 Bus

0.52us

O.BBus
l.44us

l.20us

0.92us
0.4Bus

STATUS: M6B030--Running Trace complete~~~~~~~~········
display trace disassemble from line_number O dequeued

run trace set step display modify end ---ETC--

The above trace list aligns instructions with their operands.
suppresses the display of unused prefetches, and adds information
to clarify the execution of traced code.

Getting Started 3·31

I

I

You also can display the source program lines that correspond to
the assembly code in the trace list. Enter the command:

display trace source on inverse_video on

The display is updated with the source code line displayed in
inverse video immediately before the related assembly code.
(Inverse video is not shown in this manual illustration.)

Trace List Mode:logical address
Opcode or Status w/ Source Lines

mnemonic w/symbols
Label: Address time count

relative
0.68us

128 ##############################

Base: symbols
trigger ltowers+00000004 NOP

+0001

+0002

+0004

##########towers.c - line
static void towers();
static int ask_for_number();

main()
{
=progltowers.main
=sysstac+00007FEC
=prlmain+00000004
=sysstac+00007FE8

prlmain+00000006
=sysstac+00007FE4
=pr,main+00000008
=pr main+OOOOOOOC

LINK.W
stck sdata

MOVE.L
dest sdata

MOVE.L
dest sdata

LEA
LEA

1 thru

A6,#$0000
wr:$7FFFFFFC

A3,-(A7)
wr: $00001390

A2,-(A7)
wr:$FFFEA1B4

($800C, AS) ,A2
(proJtowers.pause,PC),A3

0.48us

0.52us

0.88us

STATUS: M68030--Running Trace complete _______
display trace source on inverse video on

run trace set

Use Software
Breakpoints

3·32 Getting Started

step display modify end ---ETC--

You can use the UP and DOWN cursor keys or the NEXT and
PREV keys to scroll or page through the trace listing. You can copy
the trace list to the printer or a file as well.

The modify software_ breakpoints command lets you set software
breakpoints in your program code. This useful feature lets you
break program execution at the point you select. You can then
examine register values, display or modify memory locations, and
perform other operations before continuing execution of your
program.

When you set a breakpoint, the emulator replaces the code at the "'1111
memory location you specify with a 68030 BKPT instruction. Enter
the command:

break

Note

You are now running in the emulator monitor program. Enter the
command:

modify software_breakpoints set one shot
towers.ask for number

The emulator replaces the instruction at the address referenced by
the symbol ask_for_number (0000120CH) with a BKPT 7
instruction. The address specified in the command must be the first
address of an opcode. Enter the command:

display memory towers.ask for number
mnemonic

Remember to use the command form "towers.c: ask for number" - - -
above if you used the HP-OMF format demonstration program
instead of the IEEE format file.

The display shows a BKPT 7 instruction at address 0000120CH.
The asterisk"*" shown to the left-hand side of this line indicates an
active software breakpoint has been set for it.

Memory :mnemonic :file= towers(module)."towers.c":
address label data

165 /***** Towers routines *****/
166
167
168
169

0000120C
0000120E
00001212
00001216
0000121A
00001220
00001222
0000122A

170
171
172

static int ask for number(num)
int *num; - -
{
ask for numb 484F

000048E7
3E38242E
00082000
0680FFFF+
2440
47FB8170+
49FB8170+

BKPT
ORI.B
MOVE.W
ORI.B
ADDI. L
MOVEA.L
LEA
LEA

char err charl,err char2;
int last:num,ret_val;

#7
#$48E7,DO
libciatof+$058A,D7
#$200D,AO
#$FFFF82DC 1 DO
DO,A2
(lilprintf.printf,PC),A3
(libclputs.puts,PC) 1 A4

STATUS: M68030--Running in monitor Trace complete~~~~~~~········
display memory towers.ask_for_number mnemonic

run trace set step display modify end ---ETC--

Getting Started 3.33

I

I

Enter the command:

run from transfer address

The demonstration program runs from the transfer_address
(_main) until the BKPT instruction is executed. The BKPT
instruction forces a break into the emulation monitor. The status
line displays the message, "STATUS: Software breakpoint hit at
address = 120CH".

The inverse video of the source lines runs together with the
highlighting of the "next PC" line. To avoid confusion, enter the
command:

set source on inverse video off

After breaking into the emulation monitor, the emulator replaces
the BKPT instruction with the original contents of the memory
location. Notice that the instruction LINK.Wis now displayed at
address 120CH in the memory listing.

Memory :mnemonic :file= towers(module)."towers.c":
address label data

165 /***** Towers routines *****/
166
167
168
169

0000120C
00001210
00001214
00001218
0000121A
00001220
00001222
0000122A

170
171
172

static int ask for number(num)
int *num; - -
{
ask_for_numb 4E560000

48E73E38
242E0008
2000
0680FFFF+
2440
47FB8170+
49FB8170+

LINK.W
MOVEM.L
MOVE.L
MOVE.L
ADDI.L
MOVEA.L
LEA
LEA

char err charl,err char2;
int last:num,ret_val;

A6,#SOOOO
D2-D6/A2-A4 1 -(A7)
($0008,A6) 1 D2
AS,DO
#$FFFF82DC,DO
D0 1 A2
(lilprintf.printf,PC),A3
(libclputs.puts,PC),A4

STATUS: M68030--Running in monitor
set source on inverse_video off

Trace complete~~~~~~~········

run trace set

3-34 Getting Started

step display modify end ---ETC--

To continue execution of your program from the point the break
occurred. enter the command:

run

Notice that the status line now reads "M68030··Running."

Using Simulated 1/0

Simulated I/O display
display is open

Refer to Chapter 10 for a description of how the software
breakpoint function is implemented in the 68030 emulator. Refer
to Chapter 2 of the 68030 Emulation Reference Manual for the
software breakpoint command syntax.

The demonstration program uses simulated I/O for both entering
parameters and displaying the solution to the towers of Hanoi
problem. To display the simulated I/O screen, enter the command:

display simulated_io

Your screen should look like the following display.

Simulated I/O command: read
Return code: OOH

Execute 'modify keyboard to simio' then enter one of the following:
Number of discs to use [l-7]
'0' to exit program
'C' to run continuously using last number entered

?

STATUS: M68030--Running
display simulated io

run trace set step

trace complete _______

display modify end ---ETC--

Getting Started 3.35

I

Simulated I/O display
display is open

1
4444

55555
666666

7777777

1
4444
55555
666666
7777777

Peg 0

The keyboard must be assigned to simulated I/O before you can use
it to specify the number of discs to be used in the program. Enter
the command:

modify keyboard_to_simio

The keyboard is now assigned to simulated I/0 and is available to
the demonstration program. Enter the number 7 and press Return.

The program then uses simulated I/0 to display the solution to the
problem:

Simulated I/O command: write
Return code: OOH

Peg 1

22
333

22
333

Peg 2

Solution for Towers with 7 discs.

STATUS:

suspend

Move #6: Move disk 2 from peg 1 to peg 2
O simulated interrupts have been serviced.

M68030--Running trace complete~~~~~~~········

To return control of the keyboard to the host system. press the
suspend softkey. The normal emulation softkeys will be restored.

For more information on simulated I/O, see chapter 4 and the
Simulated l!O Operating Manual supplied with your HP 64000-UX
system.

3·36 Getting Started

Ending The
Emulation Session

Using Command
Files

To end the emulation session, enter the command:

end release_system

The system will return to the MEAS_SYS application level.

This completes your introduction to the 68030 emulation system. I
You have used a make file to assemble and compile program
modules, and link your program modules. Then you have used
some some basic emulator features. For more detailed operational
information, refer to the information contained in the other
chapters of this manual and the 68030 Emulation Reference
Manual. See the Analysis Reference Manual for 32_Bit
Microprocessors and the 68030 Analysis Specifics User's Guide for
detailed information on the analysis features provided in the
emulator.

A command file is a file that contains a series of commands that
accomplish a particular function. Command files are ideal for
initializing and accessing the emulation system. Once the file is
created, all you rteed to do is type the file name and press Return.
The commands in the file will be executed, allowing you to enter
your emulation session easily. Refer to the chapter "Creating and
Using Command Files" in the HP 64000- U X User's Guide for
detailed information on command files.

Getting Started 3.37

Use The DeMMUer

3-38 Getting Started

Use this procedure only if:

• You have a deMMUer in your emulation/analysis system
hardware.

• Your system design uses the 68030 MMU.

This section shows how the deMMUer translates physical
addresses that are created by the 68030 MMU into logical
addresses for use by the internal analyzer. For more detailed
information on DeMMUer operation, refer to the 68030 Internal
Analyzer User's Guide.

The internal analyzer needs logical addresses to interpret
commands you specify using source file symbols and segment
names, and to provide trace lists that show address values using the
names of symbols and segments defined in the source file.

Enter the commands to reactivate the system and prepare it for this
demonstration:

emul683k em68030
load configuration virtual
load memory physical os

The "os" program is a short operating system script that sets up the
68030 MMU to manage memory for this demonstration program.
It allocates 1 megabyte of physical memory for the emulator. It also
sets up the deMMUer to match the MMU configuration defined in
the file "os.s."

In this operating system script, physical memory maps 1: 1 to logical
memory. Thus, addresses do not change when the MMU is
enabled. Mapping the memory 1:1 is not required for emulator
operation, but simplifies this example. Enter the command:

set analysis mode logical

This command turns on the deMMUer so that it will supply logical
addresses to the analyzer. Notice that you can select the storage of
either logical or physical addresses with this command. You will """'1!11
find logical address information most useful when developing
application programs, and physical address information most
useful when developing operating systems. The analyzer memory

~

Trace List
Label: Address
Base: symbols
-0007
-0006
-0005
-0004
-0003
-0002
-0001
trigger entry.reset
+0001 :entry+00000004
+0002 OOOFOEFB
+0003 OOOFOEFA
+0004 OOOFOEFC
+0005 OOOFOEFE
+0006 OOOFOEFB
+0007 OOOFOEFE

STATUS: M68030--Running
run from entry(static)

run trace set

cannot store both logical and physical addresses for each state in
trace memory. That is why you make this selection before you start
the trace.

Start the analyzer and run the operating system program "os" by
entering the commands:

trace
display trace symbols on
run from entry(static)

The "entry" symbol used in the last command is a symbol in the
data base of the "os" program. This starts the "os" program at the
appropriate point. Your screen should look like the following
display.

Mode:logical address
Opcode or Status time count

mnemonic w/symbols relative

$00000EBO supr pr gm long rd log addr ------------
$00000A74 supr prgm long rd log addr 0.36us
$2700---- supr data word wr log addr 406.ms
$----OOOF supr data long wr log addr ll.6us
$0000---- supr data word wr log addr O. 72us
$----0000 supr data word wr log addr ll.5us
$2700---- supr data word rd log addr 21. lus
$----0000 supr data word rd log addr 0.40us

Trace complete~~~~~~~~·

step display modify

Enter the commands:

break
load memory towers

end ---ETC--

The above command loads the towers program logically through
the monitor. (This requires a few minutes.)

Getting Started 3.39

I

Trace List
Label: Address
Base: symbols

When the program has loaded, enter the following commands:

trace TRIGGER_ON a= long_aligned main
run from transfer address

The program will run about 15 seconds before the analyzer finds its "'1IJI
trigger pointer and captures a trace.

display trace disassemble_from_line_number 0
display trace source on inverse_video on

In the resulting display, you can see lines of source code (shown in
inverse video on your screen), followed by the states in the trace
memory that were emitted by those source lines. The trigger line in
the display shows the beginning of execution in the towers
program. This program will run as it did before you used memory
management. The deMMUer will translate addresses as needed to
allow symbols to be used in analyzer commands, and to allow
symbolic addresses to be shown in analyzer trace lists.

Mode:logical address
Opcode or Status w/ source Lines

mnemonic w/symbols
trigger ltowers+00000004 NOP

time count
relative

0.40us
128 ##############################

+0001
+0002
+0003

+0004
+0005
+0006

##########towers.c - line
static void towers();
static int ask_for_number();

main()
{
=progltowers.main

sysstac+00007FCB
=prlmain+00000004
pr main+00000006

=pr main+OOOOOOOS
sysstac+00007FC4

=prlmain+OOOOOOOC
sysstac+00007FCO

LINK.W
SOOOOOADA

MOVE.L
MOVE.L
LEA

$7FFFFFFO
LEA

$FFFEAD7C

1 thru

A6,#$0000
supr data long wr log addr

A3,-(A7)
A2, -(A7)
I $800C,A5) ,A2
su~r data long wr log addr

(proitowers.pause,PC),A3
supr data long wr log addr

0.40us
O. 4 Ous
0.44us

0.40us
0.40us
o. 40us

STATUS: M68030--Running Trace complete _______ ,
display trace source on inverse_video on

run trace set

End Of DeMMUer
Demonstration

3-40 Getting Started

step display modify end ---ETC--

To end this demonstration (and the emulation session), enter the
command:

end release_system

The system will return to the MEAS_SYS application level.

4

Answering Emulation Configuration Questions

Overview

Introduction

This chapter:

• Explains each emulation configuration question.

• Describes how to configure the emulator for compatibility
with your 68030 target system.

• Describes how to map 68030 system memory to emulation
and target system memory resources.

You configure the 68030 emulator within the emulation
application. When you run emulation for the first time, a default
configuration file is loaded. You can modify this file to match your
needs by answering a series of emulation configuration questions.
After modif)ing the emulation configuration, you can save it to a
file. You can then load this file each time you enter emulation.

Your answers to the configuration questions define:

• how the 68030 emulator is configured
• how resources are shared between the emulator and your

target system
• how the emulator and target system interact
• what operations are enabled in the emulation environment.

The configuration questions cover the following emulation
configuration items:

• Selecting real time or nonreal-time run mode.
• Enabling breaks to the emulation monitor.
• Selecting whether to reset into the emulation monitor or

Configuring The Emulator 4·1

I

Running Emulation

Modify the
Configuration File

4·2 Configuring The Emulator

to use the user reset exception vector.
• Configuring the foreground and background monitors.
• Enabling and selecting the software breakpoint instruction.
• Configuring custom coprocessor functions.
• Configuring memory. "'1tJI
• Configuring the emulator pod.
• Configuring simulated I/O and interrupts.
• Naming your emulation configuration command file.

The command sequence to run emulation depends on how you
configured your emulation system and what you named it. This
chapter, uses the example names from chapter 3, "Getting
Started." To run emulation, do the following:

1. Press MEAS SYS.

2. Press emul683k em68030 Return.

To modify the configuration, enter the command:

modify configuration

A series of questions are displayed on your workstation screen.
Your answers to these questions define the configuration of the
emulation hardware and software for a specific application. Each
question has a default response. This chapter shows additional
options in parentheses. You select the default response by pressing
the Return key. Other responses are selected by pressing the
appropriate softkey or by typing in an appropriate response, and
then pressing Return. If you ar-e modifying an existing emulation ""'1IJI
configuration file, the default responses are the ones stored in that
configuration file.

Note

Selecting Real· Time/
Non real· Time Run

Mode

Caution I

If you need to return to a previous question, press the RECALL
softkey. Each time you press RECALL, the emulator backs up by
one configuration question. You may then make any corrections
needed.

Possible damage co circuitry! When the emulator detects a guarded
memory access or other illegal condition, or when you execute a
command that causes a break into the monitor, the emulator stops
executing the user program and enters the emulation monitor. If
you have circuitry in your target system that can be damaged
because the emulator is not executing your code, you should use
caution. Restrict the emulator to run in real-time mode only. Do
not execute commands that cause breaks to the emulation monitor.

Real-time refers to the continuous execution of your 68030
program without interference from the development environment
except as specified by you. All commands that cause momentary
breaks to the emulation monitor are disabled. Momentary breaks
are breaks asserted by the emulation software which momentarily
diverts 68030 execution to the emulation monitor, then resume
execution of your program. In real-time run mode, you can execute
any command that does not cause a break to the emulation
monitor. Commands requiring target memory or register accesses
are disabled when a user program is running. You can only execute
these commands while running in the emulation monitor. An
attempt to execute a run/step from <ADDR> command while
executing the user program in real time causes a break to the
emulation monitor.

If the emulator is not restricted to real-time run mode, all selected
emulation functions are enabled. Commands requiring access to

Configuring The Emulator 4·3

I

Enabling Emulator
Monitor Functions

Reset into the monitor?
Enable emulator use of INT7?

target memory, logical memory with the MMU, or registers cause a
break to the emulation monitor if a user program is running.

All real-time interference can be avoided by disabling the
emulation monitor functions. You can select this option later in
the configuration questions.

no

yes

Restrict to real-time runs? no (yes)

All selected emulator functions are enabled. The
emulation system can break to the monitor
whenever a command requiring breaks is
executed.

Target memory and register accesses are
disabled when a user program is running.

The next question asks you if you want to enable emulator use of
the monitor. If you answer yes, all emulation commands and
features implemented by the emulation monitor are enabled. If you
answer no, the next question asked is "Modify memory
configuration?" and configuration questions that refer to functions ..,,,J
requiring the emulation monitor will not be asked. They will be set
to the following default values:

Software BK.PT instruction number (0 .. 7)?
Default stack pointer for background?

no
no
7

Offffffffh
yes
no
no

Block ECS, OCS signals during background monitor cycles?
Perform periodic foreground accesses while in monitor?
Enable foreground monitor?

4·4 Configuring The Emulator

If the emulation monitor is not loaded, all emulation functions that
require the monitor are disabled, and their associated softkeys are
turned off. The functions that require the emulation monitor are:

• automatic reset to monitor
• break
• copy target (logical memory with MMU enabled)
• copy registers
• display target (logical memory with MMU enabled)
• display registers

Reset Into the Monitor

Note

yes

no

• emulator use of software breakpoints
• load logical memory
• modify target (logical memory with MMU enabled)
• modify registers
• run from/until <ADDR>
• set break_on
• step
• store target memory (logical memory with MMU enabled)

Enable emulator use of the monitor? yes (no)

All emulation commands and features
implemented with the emulation monitor are
enabled.

Configuration questions that refer to functions
requiring the emulation monitor are not asked.
If no emulation monitor is loaded, all commands
and features requiring the emulation monitor
are disabled and their associated softkeys are
turned off. If you enable the MMU (in a later
question), only direct physical memory accesses
will succeed because logical address accesses are
made through the monitor. The next question
asked is "Modify memory configuration?"

If you answered no to the previous question, the following question
will not be displayed.

The next question lets you select whether the emulation reset
command resets the processor into the emulation monitor or to
the memory location specified by the user reset exception vector.
This question only affects reset commands entered from the
workstation keyboard or processor reset on entry to the emulation
module. It doesn't affect reset signals generated by your target
system.

Reset into the monitor? yes (no)

Configuring The Emulator 4·5

I

Note

4·6 Configuring The Emulator

yes

no

The emulation reset command resets the
processor into the emulation monitor. The
user-defined reset vector and initial stack
pointer are ignored.

The emulation reset command causes the
processor to fetch the user-defined reset vector
and begin execution from that address.

Enable emulator use of INT7? yes (no)

The emulation break function uses the level 7 interrupt autovector
(INT7) processor resource to interrupt the user program and enter
the emulation monitor program. This question lets you enable or
disable the emulation break function, as required for your target
system. If your target system cannot share INT7 with the emulator,
you need to answer no to this question.

yes

no

All selected emulation functions are available.

All emulation break signals to the processor are
disabled. The only ways to enter the monitor
program are:

• user program jumps to the monitor

• executed exception vector points to the foreground
monitor

• software breakpoint is executed

• reset command with reset-to-monitor function
enabled.

If you answered no to the previous question, this question will not
be displayed on your screen.

Enable user IPEND line during emulator
breaks? no (yes)

Enabling Emulator
Use of Software

Breakpoints

Selecting the
Software Breakpoint
Instruction Number

Note

no

yes

The interrupt pending signal (IPEND) is
blocked (driven high) for emulator driven
interrupts. Target system generated interrupts
cause the IPEND signal to be unblocked (driven
low).

Any interrupt sends the interrupt pending signal
(IPEND) to the target system.

Software breakpoints must be enabled to allow the language I
system to pass messages into the background monitor. The next
question lets you specify whether the emulator can use the 68030
BKPT instructions for software breaks. The modify
software_breakpoints set and run until commands are disabled if
you answer no to this question. You should answer no only if your
target system must use all eight 68030 BKPT instructions.

yes

no

Enable emulator use of software breakpoints?
yes (no)

The emulator software breakpoint functions are
enabled.

Emulator use of software breakpoints is disabled.

The following question lets you specify which of the eight 68030
BKPT instructions the emulator uses to execute software breaks
into the emulation monitor.

If you answered no to the previous question, this question will not
be displayed on your screen.

Software BKPT instruction number (0 .• 7)? 7
(<number>)

Configuring The Emulator 4·7

I

Defaulting the Stack
Pointer For the

Background Monitor

Select To Block ECS,
OCS Signals During
Background Monitor

Cycles

Choose To Perform
Periodic Foreground

Accesses

Note

4-8 Configuring The Emulator

This question allows you to set the address to be used to exit the
background monitor if the monitor is entered from reset. The
default value (Offffffffh) is not valid. So, you must select and enter
the correct value in answer to this question, or disable the reset
into monitor.

yes

no

Default stack pointer for background?
Offffffffh (<addr>)

Block ECS, ocs signals during background
monitor cycles? yes(no)

Blocks the ECS and OCS signals to the target
system during background monitor execution.

Passes the ECS and OCS signals to the target
system during background monitor execution.
This makes the processor look as though it is
executing out of cache.

This question determines whether the background monitor
generates keepalive cycles. The keepalive function causes a
periodic read cycle at a specified address. Some target systems need
to see continuous cycles. When the background monitor is
executing, AS, DS, and DBEN signals are blocked.

If you answer no to this question, the next question is not asked.

Perform periodic forenround accesses while
in monitor? no (yes) ~ "'1Jlll

Selecting Address for
Periodic Foreground

Access

Note

Enabling the
Foreground Monitor

Interlock or Provide
Termination for the

Foreground Monitor

If you answer no to the previous question, this question will be not
be asked.

Address for periodic foreground access? 0
(<addr>)

This question allows you to select the foreground monitor. The
foreground monitor may be loaded by the background monitor. If
you choose the foreground monitor, only the load memory
command (of all the commands that require the monitor) is
allowed. The foreground monitor can operate without disabling
any interrupts, and it allows user-defined coprocessor support. The
foreground monitor does use target resources, and does not allow
physical memory access when you enable the MMU in the
configuration. If you answer no to this question, the sequence will
skip to the ·'Modify memory configuration?" q ues ti on.

Enable foreground monitor? no (yes)

This question allows you to choose whether the foreground
monitor CPU space cycles will be terminated immediately as an
asynchronous cycle, or if the cycles will be interlocked with the
target system cycles.

Interlock or provide termination for
foreground? terminate (intrlck)

Configuring The Emulator 4·9

I

I

Using Custom
Coprocessors

Note

Specifying The
Custom Coprocessor

File

Note

Custom register access is supported only with the foreground
monitor enabled, except for MMU registers. Both foreground and
background monitors support MMU registers display and
modification.

The 68030 emulator can access floating point processors, memory
management units, and other coprocessors in your target system.
You can both display and modify coprocessor register sets. To use
custom coprocessors with the emulator, you must provide a custom
register format file defining the coprocessor register set. You also
must modify the emulation monitor program as described in
chapter 8. This must be done before you modify the emulation
configuration.

yes

no

Any custom registers? no (yes)

The emulator can access the custom
coprocessors that you have defined in a custom
register format file.

Use of custom coprocessors is disabled.

If you answered yes to the question "Any custom registers?," the
following question will be displayed.

Name of custom register format file?
(<FILE>)

4·1 O Configuring The Emulator

Modifying a Memory
Configuration

Note

The default answer is NULL. The MMU is supported internally.
There is an example custom register format file provided with your
emulation software. The example is at
/usr/hp64000/inst/emul32/0410/0204/custom_spec. If you are using
custom coprocessors. you must enter the full pathname of the
custom register format file that you made for these coprocessors.

When you begin your initial emulation session you must configure
(map) the memory space you will be using. The configuration you
need depends on your user program and on the configuration of I
your target system, if one is available. As your system design
matures, your memory map requirements probably will change. As
your requirements change, you will need to modify your
configuration file.

The following questions let you review and modify the memory
configuration.

If you answer no to the "Modify memory configuration?" question.
the sequence will skip to the "Modify emulator pod
configuration?" question.

yes

no

Modify memory configuration? no (yes)

You can modify the memory map and deMMUer
configuration. The current memory map is
displayed. Memory configuration is explained in
the following sections.

Skips the memory configuration. A no response
configures memory as specified by the current
emulation configuration file. If you select no, the
next question is "Modify emulator pod
configuration?"

Configuring The Emulator 4·11

Break on Write to
ROM

Selecting to Block
BERR on

Non-interlocked
Emulation Memory

yes

no

Break processor on write to ROM? yes (no)

A break to the monitor occurs if the processor
attempts to write to a memory location mapped
as emulation or target ROM.

Breaks are not generated when the processor
attempts to write to memory locations mapped
as ROM.

If write operations to emulation memory mapped as ROM are
attempted during program execution, the contents of emulation
memory are not modified. Write operations resulting from
emulator commands that modify memory (for example: load and
modify) will modify the contents of emulation memory locations
mapped as ROM if the MMU is disabled or it is a physical access.

Write operations to target memory mapped as ROM may or may " JI
not alter memory contents. depending on your target system ~

hardware.

yes

Block BERR on non-interlocked emulation
memory? no (yes)

Bus errors (BERR) that occur during emulation
memory cycles (if the address is configured as
non-interlocked) are blocked. This allows the
monitor or other user program to run in a
memory space not usually allowed by the target " .~
system hardware. This does not prevent retry ,_,.
operations.

4·12 Configuring The Emulator

Note

no All bus error signals (BERR) are transmitted to
the processor.

Mapping Memory

After you answer the question "Break processor on write to
ROM?," the emulation memory map is displayed. The processor
memory space required for your applications must be mapped to
emulation memory, target memory, or guarded memory. I
Emulation memory is memory that is in the emulator pod. Target
memory is memory that is in your target system. Memory mapped
as guarded is memory that, under normal conditions, should not be
accessed by your target system. Any reference to the address space
mapped as guarded memory will cause an emulation memory
break. The following error message is displayed:

STATUS: 68030--Running in monitor Guarded access a= <ADDR> (<FC>)

where < FC > is a two letter mnemonic describing the function
code of <ADDR>.

For emulation to work correctly, the memory mapper must be
programmed to correspond to emulation memory and target
system memory resources. The memory mapper allows you to
divide the processor's address space into blocks that can be
individually configured to have any of the following attributes:

• Emulation memory; RAM or ROM; synchronous;
interlocked; or asynchronous with 8-bit, 16-bit, or 32-bit
width.

• Target memory; RA..t\1 or ROM; bus error blocked; cache
disabled; burst mode blocked.

• Guarded memory.

The memory map specifies memory regions in physical address
space, not logical address space. If your system uses the MMU, you
must know which physical addresses are used.

During emulation, the memory mapper monitors the address bus
and provides the attributes for the address present at any given

Configuring The Emulator 4·13

I

time. The emulator hardware uses this information to control the
data flow between the emulation processor and memory resources.

Memory Map Display Organization. Figure 4-1 shows the
default memory map display. Each entry line shows the entry
number, address range starting and ending values, function code of
the address range, attributes of the entry, and overlay definition.
The overlay definition shows the number of the entry being
overlaid, and the address in the memory map entry being overlaid
that corresponds to the starting address of the overlay entry.

Mapping memory: Function codes = OFF
ENTRY START END ATTRIBUTES OVERLAY

1

STATUS:

end

map

OH FFFFFFFFH TARGET RAM (CS)

Mapping emulation memory, default mapping: guarded _____ ... R

map_over modify delete display deMMUer end

Figure 4·1. Default Memory Map Display

Softkey labels are displayed for the memory mapper commands.
You can:

• add new map entries
• overlay existing map entries
• modify existing entries (including the default mapping

attributes)
• modify the deMMUer configuration
• delete currently defined entries

4·14 Configuring The Emulator

Note

• end the map definition session.

The following sections describe these commands.

Memory Map Definition. The memory map partitions the
processor address range into blocks defined as emulation RAM or
ROM, target RAM or ROM, or guarded (illegal) space. Each entry
defines a particular address range as one of five memory types.

Memory entries can be further defined by function code.
Emulation memory also can be assigned cycle type of synchronous, I
interlocked, or asynchronous with a bit width of 8, 16, or 32. Based
on the cycle type, emulation memory returns the appropriate
signals to the 68030 processor.

Any address range not defined by an entry is mapped to the
memory default. The addresses you enter are physical addresses.

The memory mapper has a resolution of 256 (O .. ffH) bytes. When
the mapper software processes the inputs, it rounds the entry range
to integral multiples of 256 bytes. The final range includes all
specified memory space, plus the remainder of any 256-byte blocks
that were partially specified.

If the end address of a specified address range is the same as the
first address of a 256-byte memory block (for example: lOOh,
xxxxxxOOh, and so on), the end address value is rounded down one
byte (for example: to Offh, xxxxxxffh. and so on).

This can cause a problem if you specify an address range with the
same start and end address corresponding to the first address of a
256-byte memory block. If you enter the command:

map lOOh thru lOOh emulation ram

the error message "ERROR: Lower address in range greater than
upper address" is displayed. The emulator rejects this command
because the ending address (when rounded down to Offh) is less
than the starting address (lOOh).

Configuring The Emulator 4-15

I

Emulation memory is displayed and loaded directly by the
emulation software using the memory port assigned to the host
processor. If you enable the MMU, logical addresses are loaded
using the emulation monitor. Physical addresses are still done
using the host port. Any attempt by the 68030 CPU to write to
memory mapped as emulation ROM will not change the contents
of that memory location.

When target memory is specified for a given address range, all
memory cycles using that address range access the target system.
All memory load and display operations for your target system are
done by using the emulation monitor.

Multiple processor address ranges can be overlaid onto the same
physical emulation memory by using the map_overlay command.
Overlaying applies only to emulation memory. The emulator
cannot overlay target system memory resources.

Emulation Monitor Program Memory Requirements. You
must know some information about the emulation monitor
(delivered as part of your emulator software package) before you
link the monitor program and map memory space. Chapter 7 "'1JI
describes the emulation monitor, including memory requirements
for the program. See the paragraphs titled "Emulation Monitor
Memory Requirements" in chapter 7.

Using The Map Command

All memory map entries have an address range and attributes that
specify the type of memory in the selected address range. A specific
function code and address width (port size) can be assigned to a
memory map entry. You map memory by using the map command.

4·16 Configuring The Emulator

map

<ADDR>

emulation

target

burst

guarded

Mapper blocks are entered using the following command syntax:

fcode <F_CODE>

thru <ADDR> <RETURN>

synchronous

osynchornous width 8

width 16

width 32

coche_dis berr _en

where:

fcode

<ADDR>

guarded

lets you assign a function code to a memory map
entry. The function codes enabled for your
particular configuration are displayed on
softkeys after you press the fcode key. If you
specify modify defined_ codes none, the fcode
attribute is disabled and the softkey is not
displayed. You can specify user-defined function
codes by typing in the numeric value of the
function code. See the section in this chapter on
the modify defined_ codes command for more
information.

defines a pattern of up to 32 bits that specifies a
particular memory location. That bit pattern can
be entered as a binary, octal, hexadecimal, or
decimal number.

designates an address range that is not expected
to be accessed. Any processor access to a

Configuring The Emulator 4·17

I

location within such a range will cause a break in
program execution. No emulation memory is
consumed by an address range specified as
guarded.

""' emulation designates memory supplied by the emulation
system.

rom designates memory that cannot be modified by

I
the 68030 processor. Emulation memory that is
actually RAM but is mapped as ROM performs
as ROM during emulation. The host can read
and write to ROM.

ram designates memory that can be read from or
written to without restriction.

interlocked designates that the memory entry is defined to
interlock cycles with your target system.

synchronous designates that the memory entry is defined for

'-' synchronous cycle access.

asynchronous designates that the memory entry is defined for
asynchronous cycle access.

width8 defines the memory map entry to be an 8-bit
data port.

widthl6 defines the memory map entry to be a 16-bit data
port.

width32 defines the memory map entry to be a 32-bit data
port.

target designates memory supplied by your target
system. Mapping an address range to target
space doesn't consume any emulation memory.

"""' burst enables the burst mode access.

4·18 Configuring The Emulator

cache dis disables caching for an address range.

berr en enables bus errors for the entry.

The first <ADDR> of a range specification should be the starting
address of a block boundary. If an address inside a memory block
area is entered, the system converts this address to the starting
address of the block prior to its mapping. Leading zeros may be
deleted if the most significant digit is numeric.

The minimum map entry size is 256 bytes. The maximum size is the
number of available blocks.

Using the map_ overlay Command

When making a memory map, you can enter "overlay" addresses in
emulation memory hardware blocks. With this feature, you can
cause a single block to function as if it were several different
blocks, each corresponding to a different set of addresses. Memory
overlaying applies only to emulation memory. The emulator can't
overlay map terms in the target system.

Map overlays are entered using the following command syntax:

map _overlay 1---~-----------,--~ <ADDR > thru ram

fcode <F_CODE> ram

over 1---~-----------.--~ <ADDR> <RETURN>

fcode <f" _CODE>

Map_overlay command parameters have the same definitions as
those listed for the map command parameters.

There are some restrictions imposed on the map overlay function
by the physical structure of emulation memory. Emulation memory
consists of 4K byte blocks of memory as figure 4-2 shows. The
memory mapper hardware has a resolution of 256 bytes, the
minimum map entry size.

Configuring The Emulator 4·19

I

I
4K BYTE

MEMORY

BLOCK

PHYSICAL

BLOCK

0

1

2

3 . . .
c
D

E

F

} 256 BYTES

... VALID OVERLAY

ILLEGAL OVERLAY

OVERLAY

ADDRESS

0

1

2

3

. . .
c
D

E

F

Address of overlay end address to be overlaid must be

mopped to the same 256 byte block.

Figure 4-2. Overlay Addressing Within Physical Blocks

When specifying a memory address, the two least significant digits
in a hexadecimal address (see figure 4-3) specify the address within
the 256 byte entry. The third least significant digit specifies one of
16 256-byte entries within the 4K byte physical memory block.

Ix xx xx JYJZ zl

I L Addc"s Locotioc w;th;c 256 Byte Block

Location of 256 Byte Block within
4K Physical Memory Block

Address of 4K Physical Memory Block

Figure 4-3. Hexadecimal Address Bit Definition

When overlaying memory, the address of the memory overlay and
the address of the memory location must be mapped to the same
256 byte block in the 4K byte physical memory block. That is, the
third least significant hexadecimal digit in the specified addresses
must be identical. For example, the command:

4-20 Configuring The Emulator

map_overlay fcode SUPER_DATA Of00f800h thru
Of00f8ffh rom over fcode SUPER PROG 0002800h

is valid. But, the command:

map_overlay fcode SUPER DATA Of00f800h thru
Of00f8ffh rom over fcode SUPER PROG 0002a00h

is not valid. An attempt to execute the last command would cause
the error message "Offset for overlay does not match emulation
address" to be displayed.

Memory Mapping Example

The following example shows how to map memory for a target I
system with some memory installed. This example shows how to
use the map and map_ overlay commands. Before you define the
new memory map, delete all entries in the current map. Enter the
commands:

delete all
modify defined codes all

The memory map display will look like figure 4-4. Notice that one
entry is still displayed. You cannot delete the CPU _SPACE

Mapping memory: Function codes = ON
ENTRY START END FC ATTRIBUTES OVERLAY

1 OH FFFFFFFFH (CS) TARGET RAM

STATUS: Mapping emulation memory, default mapping: guarded _____ ... R

modify defined_codes all

map map_over modify delete display deMMUer end

Figure 4·4. Sample Overlay Mapping #1

Configuring The Emulator 4·21

I
Mapping memory:

ENTRY START

1 OH
2 18000000H
3 OH

4 FOOOOOOH
5 OH

6 FOOOOOOH
7 OH

mapping to target RAM. This address space is required for
vectored exception processing.

CPU_SPACE must be mapped to target memory so that vectored
exceptions will not interfere with emulation functions.

Add the following entries to the memory map:

map fcode USER DATA O thru Offffh emulation
ram asynchronous width32

map fcode USER PROG 18000000h thru 1800ffffh
emulation rom asynchronous width32
map fcode SUPER_DATA O thru 3ffh target rom
burst cache dis berr en

map fcode SUPER_PROG O thru 3ffh target rom
burst cache dis berr en
map fcode SUPER PROG OfOOOOOOh thru
OfOOOfffh emulation ram asynchronous width32

Function codes = ON
END FC ATTRIBUTES OVERLAY

FFFFH (UD) EMUL RAM [32 bits]
1800FFFFH (UP) EMUL ROM [32 bits]

3FFH (SD) TARGET ROM [burst/berr]

FOOOFFFH (SO) EMUL RAM [32 bits] FOOOOOOH (6)
3FFH (SP) TARGET ROM [burst/berr]

FOOOFFFH (SP) EMUL RAM [32 bits] FOOOOOOH
FFFFFFFFH (CS) TARGET RAM

STATUS: Mapping emulation memory, default mapping: guarded~~~~~···R

map overlay f code
PROG OfOOOOOOh

map map_over

SUPER_DATA OfOOOOOOh thru OfOOOfffh ram

modify delete display deMMUer

over

end

Figure 4·5. Sample Overlay Mapping #2

4·22 Configuring The Emulator

fcode SUPER

map_overlay fcode SUPER_DAXA Of OOOOOOh thru
OfOOOfffh ram over fcode SUPER PROG
OfOOOOOOh

The memory map resulting from these commands looks like figure
4-5. This is a typical 68030 memory map.

The map entries correspond to the following address spaces:

1. User application data space
2. User application program space
3. Exception vector table space
4. Emulation monitor data space
5. Exception vector table space
6. Emulation monitor program space
7. CPU SPACE

The emulation monitor data space (entry 4) has been overlaid onto
the emulation monitor program space. This enables the 68030
processor to access data locations in the emulation monitor. The
overlay is indicated in the OVERLAY column of the memory map
display for entry 4. The "(6)" shows that entry 4 is overlaid onto
entry 6. The address fOOOOOOH is the address in entry 6 that
corresponds to the starting address of entry 4.

Using the modify Command

The modify command lets you modify the memory map. The
modify defined_codes command lets you selectively enable or
disable the 68030 function code signals (FCO through FC2). The
modify <ENTRY> command lets you modify the range, attributes.
fcode, and overlay parameters of a memory map entry. The modify
default command lets you change the default memory parameters.

Modify Defined_ Codes. The modify defined_ codes command
lets you selectively enable or disable the 68030 function code
signals. The following diagram shows the command syntax:

modify defined_codes ...___.,. all <RETURN>

none

Configuring The Emulator 4·23

I

where:

all

I
none

4·24 Configuring The Emulator

enables the memory mapper to use all three
function code lines (FCO through FC2) in
mapping memory. If you select all, you can
specify any of the eight function code states
except CPU_ SP ACE. The function codes
SUPER_PROG, SUPER_DATA,
USER_PROG, AND USER_DATAcan be
entered from softkeys. The remaining function
codes must be entered as numeric values.
Function code 3 is user definable. Function
codes 0 and 4 are reserved for use by the
processor manufacturer. Function code 7
specifies CPU address space. If you enter fcode
3, USER_RSVD is displayed in the FUNCTION
CODES column of the memory display. If you
enter fcode 0 or 4, MOT_RSVD is displayed in
the FUNCTION CODES column.

disables all three function code lines. When you
select none, the emulator memory mapper
ignores the function code lines and monitors
only the 32-bit address bus during emulation.
With none selected, the fcode parameters are
not available in the emulation commands. The
FUNCTION CODES column is deleted from
the memory map display.

modify

range

attributes

fcode

overlay

Modify <ENTRY>. The modify <ENTRY> command lets you
modify the range, attributes, fcode, and overlay parameters of an
existing memory map entry. The command syntax is shown in the
following diagram:

<ENTRY>

burst

guarded

remove

Icade

where:

range

attributes

<RETURN>

synchronous

asynchronous width 8

width 16

width 32
interlocked

coche_dis berr _en

<F_CODE> <ADDR>

lets you specify a new range for the memory map
entry (<ADDR> thru <ADDR>).

lets you change the entry to:

emulation memory, RAM or ROM, interlocked,
synchronous, asynchronous with a data port
width of 8-bits, 16-bits, or 32 bits

target memory, RAM or ROM, bus error
blocked, cache disabled, burst mode blocked

guarded

Configuring The Emulator 4·25

I

I
modify default

fcode

overlay

lets you modify the function code address
mapping for the entry. The available selections
depend on the definition of the defined_codes
parameter.

lets you remove an overlay from an entry. The
entry is converted to the physical address
corresponding to address specified in the entry.
Or, you can change the function code or address
range of the address space being overlaid.

Modify Default. Any address ranges that are not mapped when
you end the mapping session are assigned the memory attribute
specified as the default. Initially, the system assigns all unmapped
memory to guarded memory. The default attribute can be set to
target RAM, target ROM, or guarded by using the modify default
command. The following diagram shows the command syntax:

target

guarded

where:

target

guarded

ram

rom

designates memory supplied by your target
system. When default is mapped to target, the
attributes are set to: caches enabled, burst
enabled, and BERR enabled.

designates an address range that is not expected
to be accessed. Any processor access to a
location within such a range will cause a break to
the monitor.

4-26 Configuring The Emulator

delete

Deleting Memory Map Entries

Any memory map entry can be removed by using the delete
command (except the default CPU _SPACE entry). The syntax for
the delete command is shown in the following diagram:

all

Modify the DeMMUer
Configuration

You can modify the DeMMUer configuration while in the "modify
memory configuration" environment. To modify the deMMUer
configuration you must press the deMMUer softkey. The
configure_deMMUer label will appear on the command line. Press
the Return key. The display will look like figure 4-6. The
deMMUer is described in chapter 5 and in the 68030 Internal
Analysis User's Guide.

deMMUer configuration

deMMUer hardware disabled

Translation Control - OOOOOOOOH
<e sre f cl ps is tia tib tic tid>

0 0 0 0

Virtual Address start - OOOOOOOOH

Root Descriptor Type -Invalid Descriptor

Range List -
A
B
c
D

Start End
undefined range
undefined range
undefined range
undefined range

STATUS: Configuring DeMMUer ___________________ .. , R
configure_deMMUer

range enable disable set display return

Figure 4·6. Modify DeMMUer Configuration Display

Configuring The Emulator 4·27

I

I
Modifying The
Emulation Pod
Configuration

Note

Ending The Mapping Session

Exit the memory map configuration session by pressing the end
softkey followed by Return.

The following question asks you whether you want to modify the
current emulation pod configuration.

If you answer no to the "Modify emulator pod configuration?"
question, the sequence will skip to the "Modify simulated I/O
configuration?" question.

no

yes

Modify emulator pod configuration? no (yes)

The emulator pod configuration questions are
skipped and the emulation module uses the
current pod configuration. The emulator will
skip to the ''Modify simulated I/0
configuration?" question. The default pod
configuration is as follows:

In-circuit emulation session'? no

Disable on-chip cache yes

MMU enabled during session no

You must answer the following configuration
questions to reconfigure the emulator pod.

4·28 Configuring The Emulator

Configuring for
In-circuit Emulation

Session

Note

Enabling OMA
Transfers

Note

If you answer no to the "In-circuit emulation session?" question,
the sequence will skip to the "Disable on-chip cache?" question.

In-circuit emulation session? no (yes)

no The emulator is configured out-of-circuit. The
internal 20 MHz clock is selected. This question
has no other action than to control whether
clock or DMA questions are asked next. The
question does not force the emulator to be used
either in- or out-of-circuit.

yes The emulator is configured in-circuit, operating
with target hardware. As such the emulator may
be adjusted to the target system by controlling
the DMA and clock rate. The target system must
provide a clock.

If you answer no to the "Enable DMA transfers?" question, the
sequence will skip to the "CPU clock rate faster than 25 MHz?"
question.

no

Enable DMA transfers? no (yes)

Bus requests are blocked to the processor. The
processor ignores the BR and BG ACK input
signals and does not respond with BG.

Configuring The Emulator 4-29

I

I
Enabling OMA
Transfers Into

Emulation Memory

Note

CPU Clock Rate
Determination of Wait

States

yes Bus requests are passed to the processor. If the
AS, address, and data lines are active at the
processor pins during DMA cycles, the analyzer "· .~.
will capture those states. The processor responds ~
normally to the assertion of the BR (Bus
Request) and BG ACK (Bus Grant
ACKnowledge) signals.

If you answered no to the previous question, this question is not
displayed on your screen.

Enable DMA transfers into emulation memory?
no (yes) ~

no DMA transfers to memory addresses mapped as
emulation memory are disabled.

yes DMA transfers to memory addresses mapped as
emulation memory are enabled. The DMA
device must generate all required control signals
(AS, DS, R/W, SIZ, and so on) and meet the
68030 timing specifications.

CPU clock rate faster than 25 MHz? no (yes)

no If the clock rate is less than or equal to
25.0 MHz, all emulation memory accesses will
occur with four wait states.

4-30 Configuring The Emulator

Disabling On-chip
Cache

Enabling MMU For
Use During Emulation

Session

yes If the clock rate is greater than 25.0 MHz, six
wait states will be inserted for emulation
memory and interlocked emulation memory
accesses.

Disable on-chip cache? yes (no)

no If the cache is left enabled by answering no to
this question and is also enabled by the target
system hardware, the analyzer may not show all
memory accesses (the analyzer cannot detect
cache hits). A no answer improves system
performance but much analysis capability is lost.

yes The processor caches are disabled. You must
answer yes to this question to use all analysis
features.

The enable (E) bits of the CPU CACR register
must be set by the target software for the caches
to be enabled.

The 68030 has both program and data cache with separate enables
in the CACR. See chapter 6, "Target System Interface," for more
information regarding the on-chip cache.

no

yes

MMU enabled during session? no (yes)

The emulator disables the internal MMU.

If the MMU is enabled, the keywords logical and
physical are meaningful for memory access. The

Configuring The Emulator 4-31

I

I
Modifying Simulated

1/0 Configuration

Modifying Simulated
Interrupt

Configuration

Naming The
Configuration File

deMMUer configuration (described during
memory configuration) will be loaded. The
target system must enable the MMU hardware
and initialize the translation tables, root
pointers, and so on.

The simulated I/O subsystem must be set up by answering a series
of configuration questions. These questions enable simulated I/O,
set the control addresses, and define files used for standard I/O.

Modify simulated I/O configuration? no (yes)

Answering yes to this question prompts a series of simulated 1/0
questions. To learn how to answer these questions, see chapter 9.
For more information about simulated I/O, see the Simulated I/O
Reference Manual.

Answering no to this question bypasses all other simulated I/O
questions.

You enable simulated interrupts by answering a series of
configuration questions.

Modify simulated interrupt configuration? no
(yes)

If you answer yes, the simulated interrupts questions will be asked.
If you answer no. the questions will be skipped. You use simulated
interrupts while the emulator is out-of-circuit to test software that
depends on the occurrence of preemptive interrupts. Chapter 9
tells how to configure your system for simulated interrupts.

This question lets you name a file containing the emulation
configuration information you have just entered. The configuration
file is stored on disc and can be recalled for use during a future
emulation session.

configuration file name?

Type in the filename you want and press Return.

4·32 Configuring The Emulator

Note

Note

If you press Return without entering a name, the current
emulation session will be configured as you specified in your
answers. The information will be saved as the new default emulator
configuration. To restore the original default file, you must
reinitialize the HP 64120A Cardcage.

If you assign a new name to the configuration file and you are using
a command file to enter your emulation session, remember to
modify your command file to change the name of your emulation I
configuration file. (See the HP64000-UXUser's Guide for more
information on command files).

Emulator configuration files are slot dependent. Use of a given
configuration file on one emulator and subsequent reuse on an
emulator in another cardcage slot will result in the message "Bad
Module File." This message means that the configuration file
specified was not associated with the current emulator. The
message is displayed as a warning only. The emulator software will
automatically rebuild the configuration file with correct cardcage
slot information for the current emulator.

Configuring The Emulator 4·33

Notes

I

4.34 Configuring The Emulator

5

DeMMUer - What It Is And How It Works

Overview

Introduction

Note

This chapter:

• Describes what the deMMUer is.
• Tells how the deMMUer operates.
• Describes when to use the deMMUer.
• Describes when not to use the deMMUer.
• Describes the conditions under which the deMMUer will

not perform reverse-address translations.
• Describes the restrictions associated with deMMUer

operation.
• Describes when to start the deMMUer.
• Tells how to turn the deMMUer on and off.
• Describes the deMMUer configuration setup.
• Tells how to access the deMMUer configuration display.

You will need to read this chapter only if you are using the MMU
of the 68030 and you have the deMMUer board for the internal
analyzer. If you are not using the 68030 MMU active mode, no
address translations occur, and you can ignore this information.

For more information on the deMMUer, see the 68030 Internal
Analyzer User's Guide, especially for detailed instructions on how to
set up the deMMUer.

DeMMUer Operating Information 5·1

I

I

What The
DeMMUer Is

How The
DeMMUer
Operates

The DeMMUer has hardware and software that improves the
display of trace data when the 68030 MMU is active. Without the
DeMMUer, the analyzer only has access to the physical bus, so only
physical addresses would be displayed (no symbols or source
references). The deMMUer tracks MMU table walks to get the
latest logical-to-physical translation information. Thus, the
deMMUer can effectively translate the physical addresses to logical
addresses. Then the analysis display software can lookup symbols
for the addresses, and do source referencing.

The on-chip Memory Management Unit (MMU) of the 68030
translates logical (virtual) addresses to physical addresses that are
placed on the processor address bus. The deMMUer translates the
physical addresses back to logical addresses in real-time. The
deMMU er tracks only the physical addresses in the ranges
specified in the deMMUer configuration display.

The physical address from the 68030 MMU is an input to the
deMMUer. The deMMUer contains a set of translation tables like
those in the 68030 MMU. The deMMUer translation tables
provide the reverse function of the translation tables in the MMU.
(Given a physical address, they look up the logical address from
which it was derived.) The deMMUer outputs the logical address
corresponding to the physical address from the MMU.

Whenever the 68030 MMU performs a table search, the deMMUer
detects the event and follows MMU activity to build a
corresponding set of tables for its reverse-address translations.

If you have the deMMUer running from the time you start the
68030 MMU, the deMMUer will have current translations to
reverse each translation performed by the MMU.

5·2 DeMMUer Operating Information

Note i

When To Use The
DeMMUer

Be sure to flush the address translation cache (ATC) of the MMU
before enabling the :\1MU. Otherwise, out-of-date translations
(logical to physical) may reside in the ATC. There is no command
in the 68030 emulator/analyzer to flush the ATC. You can include
an option to the command that loads the TC register or loads the
root pointer to ensure that the ATC is flushed after reset.

For addresses for which the deMMUer has no translation. it
supplies the physical address that was output by the 68030 MMU,
and tags it as a physical address. The analyzer will show this address
in its trace list. but it cannot show any symbol associated with this
address. Nor can it recognize any trace commands occurring on this
address if those commands are specified using source-file symbols.

You need to use the deMMUer when the 68030 MMU is active,
and you want to use any of these features during emulation:

• You want the trace list to show the assembly language
activity captured during a trace. The inverse assembler
needs sequential logical addresses to find the next piece of
program information. Physical addresses probably will be
non-sequential when crossing a page boundary.

• You want to use a trace specification that will be satisfied
when a certain source file event occurs. To do this, you
enter the source file symbol that identifies that event.
Basic trigger/store/count features are not supported for
code in physical addresses. The symbols in a file are always
logical. In a dynamic environment, the relationship
between an instruction or data location and its physical
address may not be constant while running a program.

• You want the trace list to show address values in terms of
the symbol names assigned in the source files. Symbol and

DeMMUer Operating Information 5·3

I

I When To Turn Off
The DeMMUer

Unable to Do
Reverse-Address
Translations

source line referencing operates because a symbol or
source line resides at a particular logical address. The
language tools establish that relationship. The source
referencing knows nothing about physical addresses.

• You want to perform high-level analysis on the program
you are developing by using such tools as the HP Software
Performance Measurement Tool (SPMT). High-level
analysis tools, such as SPMT, gather data based on logical
address information. These tools have no facilities for
performing physical-to-logical address translations.

Turn off the deMMUer when you want to trace activity that shows
the addresses within physical memory. This information may be
useful when you are analyzing the behavior of an operating system.

There are two conditions under which the deMMUer will not
perform reverse-address translations:

• If the root pointers use page descriptor DT fields. Here, no
table searches will occur. Physical addresses will equal
logical addresses plus the offset given in the root pointer.

• If the two root pointer Descriptor Type (DT) fields are
different types (for example, one short and the other long),
and both root pointers are used, the deMMUer will not
work because it has resources for only one root pointer
definition. The 68030 Internal Analyzer User's Guide ""1fl
describes how to select a root pointer type. See that
section for suggestions on handling this problem.

5·4 DeMMUer Operating Information

When To Sta~ The

~
DeMMUer

Startup With The
Emulator

Used Emulator
without DeMMUer,

Want To Use It Now

\..
How To Turn On
And Turn Off The
DeMMUer

Note

You can start the deMMUer and the 68030 MMU simultaneously,
or you can turn on the deMMUer after the MMU has been
operating. The following paragraphs discuss each case:

The best time to start the deMMUer is just before beginning a run
of program. The deMMUer flushes its reverse translations as part
of the processor reset procedure. This ensures that the translation
tables within the deMMUer contain no old translations. Then the
deMMUer waits to detect the first table search performed by the
68030 processor. Logical address information is available
immediately after reset. All table searches are monitored, keeping
the deMMlJer physical-to-logical address translations up to date.

If you configured and enabled the deMMUer before running your
program, the deMMuer may be turned on (by configuration or by
the set analysis mode logical command) later, and will contain the
current reverse translations.

There are two ways to turn on and turn off the deMMUer: one is by
setting the analysis mode, and the other is by invoking the
emulation configuration set of questions. Each is described below.

You may turn on the deMMUer and still have only physical
address information. The deMMUer can only supply logical
address information after you have (1) enabled the MMU of the
68030 processor, (2) set up a valid deMMUer configuration, and
(3) enabled the deMMUer. The 68030 Internal Analyzer User's
Guide explains how to set up the deMMUer configuration display
and enable the deMMUer. You will always have logical addresses
when the 68030 MMU is off.

DeMMUer Operating Information 5·5

I

I

Turn On/Off By Using
Configuration

Questions

Turn On/Off By
Setting The Analysis

Mode

Invoke the emulation configuration questions by using the modify
configuration command. Proceed through the questions until the
following configuration question is presented, then answer it yes:

Modify memory configuration?

In the memory mapping display, enter the following command:

configure_deMMUer

In the deMMUer configuration display, enter the following
command:

enable deMMUer

Though you have activated the deMMUer, it will still provide
physical address information for analysis until it has been loaded
with a valid configuration.

Once turned on, the deMMUer will track the MMU activity, and
update its translation tables each time the MMU makes a change
to its translation tables. Note that the MMU is turned on or off by
another emulation configuration question that appears after the i... ...

memory mapping display: ~

MMU enabled during session? yes

To turn off the deMMUer, enter the command:

disable deMMUer

Then only physical addresses will be supplied to the analyzer.
Therefore, only the physical analysis mode will be available.

You can turn on the deMMUer from within an emulation session.
You must have enabled the 68030 MMU, and have a valid value in
the Translation Control (TC) register of the deMMUer
configuration. You also must enable the deMMUer in the
configuration. Enter the command:

set analysis mode logical

This turns on the deMMUer, providing logical addresses to the "'1tJI
analyzer. The analyzer uses these addresses to perform symbol
searches to satisfy trace specifications and show symbols in trace
lists.

5·6 DeMMUer Operating Information

DeMMUer
Configuration
Setup

set analysis mode physical

This turns off the deMMUer. Physical addresses will be supplied to
the analyzer. The trace lists will show the physical addresses, but
the analyzer will not accept or display source file symbols.

Figure 5-1 shows the deMMUer default configuration display. You
must set up this configuration with valid entries before the
deMMUer can perform its reverse address translations. Setup
instructions for the 68030 deMMUer are in the 68030 Internal
Analyzer User's Guide.

deMMUer configuration

deMMUer hardware disabled

Translation Control - ooooooooH
<e sre fcl ps is tia tib tic tid>

0 0 0 0

Virtual Address start - OOOOOOOOH

Root Descriptor Type -Invalid Descriptor

Range List -
A
B
c
D

start End
undefined range
undefined range
undefined range
undefined range

STATUS: Configuring DeMMUer ___________________ ... R
configure_deMMUer

range enable disable set display return

Figure 5-1. DeMMUer Configuration Display

DeMMUer Operating Information 5-7

I

I

How To Access
The DeMMUer
Configuration
Display

Invoke the emulation configuration questions by using the modify
configuration command. Proceed through the questions until the
following configuration question is presented:

Modify memory configuration? yes

In the memory mapping display, enter the following command:

configure_deMMUer

In the deMMUer configuration display, you can turn the
deMMUer on or off and define values and ranges to be used by the
deMMUer during its operation. The procedures you follow to
make these entries are discussed in the 68030 Internal Analyzer
User's Guide.

When you are finished configuring the deMMUer, return to the
memory mapping display by using the return command. With a
valid configuration setup, the deMMUer can do its reverse address ...,,,,J
translations.

5·8 DeMMUer Operating Information

6

Target System Interface

Overview

68030 Signals

This chapter provides information on:

• 68030 pins and how the emulator pod interacts with those
pins.

It also provides information on the appropriate use of the
following emulator and processor features when you use the
emulator with a target system (in-circuit emulation):

~=.,,.-

• Emulation and target system DSACK and STERM signals
• Vector base register
• The internal 68030 caches
• Using function codes for displaying and modifying

reserved address space
• Enabling/disabling the bus error signal (BERR)
• Using DMA
• Using the run from ... until command
• Using the emulation foreground monitor
• Memory access timing issues
• Loading absolute files.

Read this chapter before you try to use the emulator with your
target system.

The following section discusses each 68030 signal and how the pod
interacts with each one. For a summary of the timing, AC, and DC
specifications of the 68030 emulator see appendix C. This section
shows the emulator/target electrical interface for each signal. The
interface diagram is either with the signal definition or is
referenced to a signal that has an identical interface. All interface
circuitry is on the active probe.

Target System Interface 6·1

I

I

CLK The clock signal line is unbuffered to the 68030 processor so that
synchronous timing relationships are maintained. The emulator
presents a greater load to the clock signal than the 68030
processor. For the timing specifications given in appendix C to be . ,.
valid, the clock signal must meet the rise and fall time of -.,,,,.
specifications 4 and 5 in appendix C.

CLK---- 68030

CLK
1/0

A(31 ·0) The 68030 address bus is not buffered to the target system. The
emulator loads these signals, which reduces the amount of
capacitance they can drive.

68030 f--~-...-~~~t----A31-A0

I 1H<50µA
I IL <250µA
C1N<30pf

FC2-FC0
R/W
CBREQ

RMC

SIZ1, SIZ0
CIOUT

FC2·FCO The Function Code (FC2-FCO) lines are not buffered to the target
system. The emulator loads these signals so that the amount of
capacitance they can drive is reduced. The emulator/target
electrical interface is the same as shown for the address bus.

R/W The Read/Write line is not buffered to the target system. The
emulator loads this signal so that the amount of capacitance it can
drive is reduced. The emulator/target electrical interface is the
same as shown for the address bus.

CBREQ The Cache Burst Request line is not buffered to the target system.
The emulator loads this signal so that the amount of capacitance it

6·2 Target System Interface

can drive is reduced. The emulator/target electrical interface is the
same as shown for the address bus.

RMC The Read-Modify-Write Cycle line is not buffered to the target
system. The emulator loads this signal, which reduces the amount
of capacitance it can drive. The emulator/target electrical interface
is the same as shown for the address bus.

SIZO·SIZ1

CIOUT

AS

The Size signal lines are not buffered to the target system. The
emulator loads these signals so that the amount of capacitance they
can drive is reduced. The emulator/target electrical interface is the
same as shown for the address bus.

The Cache Inhibit Out signal line is not buffered to the target
system. The emulator loads this signal so that the amount of
capacitance it can drive is reduced. The emulator/target electrical
interface is the same as shown for the address bus.

The 68030 Address Strobe signal line is buffered by the emulator at
the target interface. AS is driven to the target when the processor is
running, unless the emulator is in the background monitor, or the
bus has been relinquished. The AS signal from the target system is
treated as an input during DMA so that emulation memory and the
analyzer can see those cycles.

Buffering the AS signal causes a signal delay. This delav may be
significant in some systems, but in a system that has AS heavily
loaded, it may not even be noticeable.

68030

PAL

7ns

+5VDC

Target System Interface 6·3

I

I

OS, DBEN The 68030 Data Strobe and Data Buffer Enable i!g_nal lines are
buffered by the emulator at the target interface. DS and DBEN are
driven to the target when the processor is running unless the
emulator is in background monitor, or the bus has been
relinquished. Buffering these signals delays them slightly. ""11

68030

5VDC

10K

DS, >----- DBEN

ECS, OCS The 68030 External Cycle Start and Operand Cycle Start signal
lines are buffered by the emulator prior to going to the target
interface. ECS and OCS are driven to the target when the
processor is running unless the emulator is in background monitor
(when they are optionally driven), or when the bus has been
relinquished. Buffering these causes a signal delay. The
emulator/target electrical interface for these signals is the same as
shown for the DS signal.

0(31 ·0) The data bus is buffered between the 68030 and the target
interface. The buffers only drive the target system during write
cycles mapped to target memory, or during read cycles in OMA
that are mapped to emulation memory. The processor receives the
data from the target system when a read cycle is mapped to target
memory during normal program operation. The emulator requires
more setup time than the processor because the data bus lines are
buffered.

+SVDC

1 0K FCT245A

031-00 68030

6·4 Target System Interface

DSACK1 ·DSACKO The Data Transfer and Size Acknowledge signals are buffered
between the target system and the 68030. The target system signal
is only sent to the processor during normal cycles mapped to target
memory, during interlocked emulation memory cycles, or during
foreground data space cycles. During all interlocked or monitor
cycles and during emulation jams, the DSACK once asserted, is
forced to a 32-bit access. During interlocked emulation memory
cycles, the target DSACK signals are not allowed until emulation
memory has valid data. The emulator requires more setup time
than the processor because the DSACK lines are buffered.

BERA

HALT,AVEC

STEAM

DSACKO
DSACK1 PAL

BERR
HALT

AVEC

7ns 68030

The Bus Error signal is buffered between the target system and the
68030. The BERR signal can be blocked from going to the
processor during target cycles and/or emulation memory cycles. It
is always blocked during monitor and other special emulation
cycles.

If HALT and BERR are asserted simultaneously, the BERR signal
is not treated as a bus error; but as a retry. Retry cycles are never
blocked by the emulator. The emulator/target electrical interface is
the same as shown for the DSACK signals.

The Halt and Autovector signals are not blocked by the emulator.
The emulator/target electrical interface for these signals is the
same as shown for the DSACK signals.

The Sjnchronous Termination signal is buffered between the
target system and the 68030. The target system signal is only sent to
the processor during normal cycles mapped to target memory,
during interlocked emulation memory cycles, or during interlocked
foreground data space cycles. During interlocked emulation
memory cycles, the target STERM signal is not allowed until

Target System Interface 6-5

I

I

emulation memory has valid data. The emulator needs more setup
time than the processor because the STERM signal line is buffered.

+3.25VDC +3.25VDC

+5VDC
261

3.83K
ST ERM
CllN 68030
CBACK

261 -

-3.25VDC

CllN The Cache Inhibit In signal is buffered between the target system
and the processor. The emulator doesn't block it. The
emulator/target electrical interface for these signals is the same as
shown for the STERM signal.

CBACK The Cache Burst Acknowledge signal is buffered between the
target system and the processor. The signal is blocked except
during normal target cycles mapped to allow bursting. The
emulator/target electrical interface is the same as shown for the
STERM signal.

BG The Bus Grant signal is buffered between the processor and the
target system. The signal is blocked when DMA is disabled.

IPEND

6-6 Target System Interface

68030
GAL
1 Ons

BG
IPEND

STATUS
REFILL

The Interrupt Pending signal is buffered between the processor and
the target system. The signal is blocked during interrupts caused by
the emulator break facility. You can configure the signal blocking.
See chapter 4 for configuration information.

STATUS, REFILL The emulator doesn't block the Microsequencer Status and Pipe
Refill signals. The emulator/target electrical interface for these
signals is the same as shown for the BG signal.

BR, BGACK The Bus Request and Bus Grant Acknowledge signals are buffered
between the target system and the processor. These signals are
blocked when DMA is disabled.

IPL2-IPLO

68030
GAL
1 Ons

BR
BGACK
IPL2-IPLO
CDIS
MMUDIS

The Interrupt Priority Level signals are buffered between the target I
system and the processor. These signals are blocked while the
emulator is in the background monitor. The emulator foreground
monitor can delay interrupt handling. This is because the
emulation monitor is itself an interrupt handler, and maskable
interrupts are normally disabled during execution of the monitor.
Maskable interrupts can be enabled during execution of some parts
of the emulation monitor by customizing the emulation monitor
code for the specific application. For further information on the
emulation monitor and how to customize the code refer to chapter
7. The emulator/target electrical interface for these signals is the
same as shown for the BR signal.

CDIS, MMUDIS The Cache Disable and MMU Disable signals can be blocked by
the emulator. Whether these signals are blocked is determined by
the emulator configuration (see chapter 4 for more information).
The emulator/target electrical interface for these signals is the
same as shown for the BR signal.

Target System Interface 6·7

I

RESET The Reset signal is not buffered by the emulator, although the
emulator can drive this signal because it is an open collector signal.

+5VOC

I GAL I 1 ________ _

VCC The emulator monitors the target system VCC to determine when
the emulation pod is connected to an active system. The target
system interface is disabled until VCC is detected. The current
draw from the target VCC is a few milliamps.

Emulation And
Target System
DSACKand
STERM Signals

Interlocking
Emulation Memory
and Target DSACK

and STERM Signals

6·8 Target System Interface

If your target system memory requires wait states, vou should
interlock the emulation memorv DSACK and STERM signals with
the target system DSACK and STERM signals. Then accesses to
emulation and target memory will show system performance
similar to that of the processor only.

"-'

Note

AS

Target

DSACK

Emulation

Memory

DSACK

When operating the emulator at 25 MHz, four wait states will be
added even if the target system responded with a zero-wait-state
termination during interlock operation. At 33 MHz, the emulator
adds six wait states to emulation memory accesses.

If target system memory requires wait states, the first target
memory access after an emulation memory access mav fail if you
don't interlock emulation and target DSACK and STERM signals.
See the timing diagram in figure 6-1.

3

4

2

1. An access to emulation memory.

2. Emulation memory DSACKs terminate cycle properly.

3. Access to target memory.

4. Target DSACKs from emulation memory accesses (1) prematurely

terminate the cycle before correct data is available from

target memory.

Figure 6·1. Memory Access Timing, No DSACK Interlock

Use the following rules to decide whether to interlock emulation
and target DSACK and STERM signals.

• If the target system generates DSACK and STERM signals
for all emulation memory address ranges, interlock the
emulation and target DSACK and STERM signals.

• If the target system does not generate DSACK and

Target System Interface 6·9

I

I

DSACK and STERM
Signal Problems In

Target Systems

6·1 o Target System Interface

STERM signals for a range of emulation memory, do not
interlock the emulation and target DSACK and STERM
signals.

• If there is no target system (out-of-circuit emulation). you ""'1li
cannot interlock DSACK and STERM signals.

Each block of emulation memory can be individually interlocked
during emulation configuration.

Many target systems violate 68030 DSACK and STERM signal
specifications. These violations are usually marginally acceptable
to the 68030 CPU in the target system, but cause problems for the
emulator. They usually cause improper data fetches from memory
and cause target system failure with the emulator installed.

Use Of Open Collector Drivers

A common problem is the use of open-collector drivers on the
DSACK and STERM lines. DSACK and STERM lines often have
pullup resistors that pull the signals high at the termination of a
memory cycle.

Improper values for pullup resistors can cause slow signal pullup.
The signals may interfere with the next cvcle. The pullup resistor
value is too large to return DSACK and STERM to a proper high
level before the next cycle begins. The still low DSACK and
STERM signals terminate the second cycle prematurely, causing
improper data fetches by the CPU.

Early Removal Of DSACK Signals

Some target system designs do not follow the 68030 specification
that states that the DSACK signals must not be removed prior to
the negation (low to high transition) of the address strobe at the
end of a cycle. In the simplest case, this causes "no DSACK"
messages in the trace list and inverse assembly failure. The:,__ __
emulator may fail completely depending on how early the DSACK
signal is removed prior to address strobe transition.

Using the Vector
Base Register

Isolating The DSACK Problem

If you suspect that your target system may have either of the
preceding problems, use a timing analyzer to help isolate the
problem. Trace the CPU clock, address strobe, data strobe, and the
DSACK signals during the failing cycle. (Use the BNC's on the
back of the HP 64120 cardcage to drive the trigger, if possible.)
Examine the results and compare your findings to the electrical
specifications of the 68030 processor and the HP 64430 emulator.

The 68030 CPU gets exception vectors from the exception vector
table at the address contained in the Vector Base Register (VBR).

The 68030 emulator uses a jamming technique for breaks and I
software breakpoints. Therefore, most monitor functions don't
need the value of the VBR. The vector table may be located
anywhere without adversely affecting emulator operation.

When you use the foreground monitor, the single-step feature does
need the trace exception vector (VBR + 24H). If you use this
feature, make sure that the trace exception vector always points to
the monitor (MONITOR_ENTRY).

The monitor can handle various exceptions by displaying a status
message, entering a loop within the monitor, then waiting for user
intervention. These exceptions include Bus Error, Address Error,
Divide by zero, and so on. If you use these exceptions, you must
maintain the exception vector table so that the vectors always point
to the appropriate monitor location.

Target System Interface 6-11

I

Using the Internal
68030 Caches

Cache Control

6-12 Target System Interface

Using the internal 68030 caches affects several emulator functions.

When the emulator is operating out-of-circuit, the "Disable
on-chip cache?" configuration question has a different
interpretation than when plugged into a target system.

• When out-of-circuit, a "no" answer to the "Disable
on-chip cache?" configuration question forces the CDIS
signal high within the pod.

• When in-circuit, a "no" answer connects the target system
CDIS signal to the emulator CPU's CDIS input, allowing
the emulator to track target system CDIS.

In both cases, a "yes" answer forces CDIS low within the emulator.

If the target system uses the internal 68030 caches, the caches must
be enabled by answering "no" to the "Disable on-chip cache'?"
configuration q ues ti on.

Recall that the target system CDIS must be high, and bit zero of
the Cache Control Register (CACR) must be set to 1 to enable the
instruction cache. Bit 8 of the CACR must be set to 1 to enable
the data cache. You can set bits· 0 and 8 of the CACR as follows:

MOVEQ.L
MOVEC

$#11,DO
DO,CACR ;software enable cache

Enabling the caches affects analysis trigger, store, count, and
Global Context functions. Some program read states may be
missing from the trace list.

The caches are not frozen on entry to the foreground monitor. The
cache contents are overwritten.

If you set a breakpoint for an address currently contained in cache,
the breakpoint isn't recognized until the CPU fetches from that ~
address in main memory again. The run until command is similarly
affected, because the command implementation uses breakpoints.

Analysis with Cache

Using Breakpoints
With Caches Enabled

The 32-bit internal analyzer can capture any cycle that occurs
external to the 68030 CPU. When caches are enabled, read cycles
may occur only internal to the CPU. This is true with tight program
loops and with high performance code segments that are frequently
locked in cache. Since the analyzer cannot capture internal cycles,
it cannot display these cycles in the trace list. This can result in
missing trace data and high-level source lines, and even improper
disassembly. The analyzer also will miss the occurrence of trigger,
store, count, sequence or context patterns if they occur only as
internal cycles.

In general, any program segment that executes from cache will
generate some external cycles (the major exception is timing
loops). Sometimes you can select trigger and store patterns that
correspond to external cycles. If there are normally no external
cycles, try to place "markers" in the cached code so that the code
will generate an external cycle for analysis purposes.

You can disable the cache for pages of target memory when
mapping memory. This improves the analysis trace list.

Since the analyzer contains a high precision cycle-to-cycle timer.
you can usually examine the trace list to find where cache execution
occurred.

Sometimes, breakpoints do not appear to be functioning properly
when the instruction cache is enabled. This can happen when you
are using the run until command as well as breakpoint commands.

Consider the following code segment (a simple software timing
loop), and assume that the cache is enabled:

Address Code

1000
1002
1004
1006
1008
lOOA
lOOC

RE LOOP NOP
NOP
NOP
NOP
NOP
SUBQ.L #1,DO
BNE RE LOOP

decrement loop counter
reloop if not o

Because the instruction cache is enabled, no external memory
cycles are generated for addresses lOOOH thru lOOCH after their
initial load into cache. Breakpoints set at any cache resident

Target System Interface 6·13

I

I

6·14 Target System Interface

address may never be encountered, because the CPU does not
generate an external program read cycle to memory and therefore
never "sees" the breakpoint.

Target Memory Breakpoints

Breakpoints set in target system memory differ from those set in
emulation memory. If the breakpoint address is mapped to target
system memory, the monitor must intervene to set the breakpoint.
Execution of the monitor overwrites cache locations previously
occupied by the user program. When the emulation monitor is
exited, the user program is fetched again from memory, breakpoint
included. This results in normal breakpoint beha'vior.

Emulation Memory Breakpoints

This problem is worse when the breakpoint address is mapped to
emulation memory. The host can set breakpoints in dual-port
emulation memory without using the emulation monitor. Thus,
setting a breakpoint won't clear the cache and force a refetch of the
newly specified breakpoint.

For breakpoints to function properly out of emulation memory,
you need to clear the cache before setting or resetting the
breakpoint. Do the following before setting a breakpoint:

1. Break to the emulation monitor program.

2. Display CPU registers.

3. Modify CACR bit C to 1 and then to 0.

4. Set the breakpoint or enter the run until command.

5. Exit the monitor by executing a run command.

When the breakpoint is hit, you can remove it from cache by
adding 68030 instructions to the emulation monitor that will set
and clear the CACR C bit.

The preceding comments also apply to disabling software
breakpoints.

Function Codes
For Reserved
Address Space

When you enable function codes during a memory mapping
session, the display and modify commands use the function codes
specified in the command. When function codes are disabled, all
memory references in commands assume function code 0.

Some target systems do not use function codes to differentiate
between user and supervisor space or program and data space.
They do decode the ··reserved" address spaces (function codes 0, 3
and 4) to generate interrupts or inhibit DSACK generators. You
can customize the emulation monitor to allow the use of a nonzero
function code for the display, modify, load, and store emulator
commands.

To modify the monitor, change two assembly statements in the
monitor "COPY" routine as shown in the following listing:

**

command 2 access user memory
*
**
COPY
* copy parameters from CPU space (SFC and DFC were setup by MONITOR_LOOP)

* copy byte count from parameter slot 1
MOVES.L PARMl,00

* copy source address from parameter slot 2
MOVES.L PARM2,AO

>>> * copy source function code from parameter slot 3
>>> * MOVES.L PARM3,Dl

>>> * force user data function code
>>> MOVES.L #2,Dl

* copy destination address from parameter slot 4
MOVES.L PARM4,Al

>>> * copy destination function code from parameter slot 5
>>> * MOVES.L PARM5,D2

>>> * force supr data function code
>>> MOVES.L #5,D2

* copy access mode from parameter slot 6
MOVES.L PARM6,D3

Target System Interface 6·15

I

I

Enabling/Disabling
BEAR

Using OMA

6·16 Target System Interface

Modifications to the emulation monitor code for nonzero function
code access to target system memory include adding the two new
source lines shown in lower-case and commenting out 2 lines as
shown in the listing. Arrows (> > >) show the added and modified
lines.

The 68030 emulator allows the bus error (BERR) signal to be
received or not received during accesses to emulation memory.

If the target system generates bus errors for emulation ~v
address ranges, set the emulator configuration to block BERR.
This would normally occur if DSACK or STERM signals are not
generated for emulation memory accesses.

If the target system generates DSACK or STERM signals for
emulation memory accesses, then it probably does not generate
BERR for these cycles. Here, BERR indicates a failure, and should • ,.JI
be enabled in the emulator. ~

If any devices share the 68030 bus and can perform DMA, then
DMA should normally be enabled. This enables the CPU to receive
the Bus Request (BR) signal, generate a Bus Grant (BG) response
signal, and receive the Bus Grant Acknowledge (BG ACK)
response from the bus requester. Figure 6-2 shows the handshake
sequence for DMA transfers.

If DMA is disabled, the CPU will not receive the bus request
signal, and will not allow DMA cycles. This would be desirable to
characterize system performance in a situation where DMA could
not occur.

If you have enabled DMA, you can enable or disable DMA to/from
emulation memory.

BR

2
BG

BGACK -----~ 3 4 ___ _

1. External device requests the bus.

2. The 68030 indicates that the bus will be granted.

3. External device indicates that the bus is in use.

4. External device relinquishes the bus.

Figure 6-2. OMA Bus Request/Bus Grant Timing

If DMA to emulation memory is enabled, the DMA hardware can
read from or write to emulation memory. If DSACK or STERM
signals are interlocked, the target system supplies the DSACK or
STERM signals for these accesses. The DMA master must
generate cycles that conform to 68030 timing requirements.

If DSACK or STERM signals are NOT interlocked, then no
DSACK or STERM signals are returned to the target system. This
will hang the DMA hardware if DSACK or STERM signals are
required for cycle termination.

If DMA to emulation memory has been disabled, the DMA cycle is
permitted, but no information will be written to, or read from
emulation memory. See the timing diagram in figure 6-3.

Target System Interface 6·17

I

I
1.

2.

3.
4.

BR

2
BG

BGACK -----~ 3

AS

OMA device requests

The 68030 indicates

OMA device indicates

OMA device generates

occurs normally.

target
memory

write

the bus.

that bus

that the

a write

emulation
memory

read

emulation
memory

write

will be relinquished.

bus is in use.

with a target memory

target
memory

reod

address. This

8

cycle

5. OMA device generotes a read with on emulation memory address. This cycle

does not return valid doto since OMA to emulation memory is disabled.

6. OMA device generates a write with on emulation memory address. This cycle

does not modify emulation memory since OMA to emulation memory is disabled.

7. OMA device generates o read with a target memory address. This cycle occurs

normally.

B. OMA transaction is complete.

Figure 6-3. OMA Timing Diagram, OMA Disabled

6·18 Target System Interface

Using the Run
From ... Until
Command

You must use the run command properly to avoid serious, stack
related problems in the target system software.

A primary cause of target system "failure" is the incorrect setup or
restoration of the stack when you use the run command. A
common situation is for parameters to be placed on the stack prior
to calling a procedure. (Parameter stacking code including the
actual procedure call is usually called the ''calling sequence.")
Suppose that a procedure PROCl expects the stack frame shown
in figure 6-4.

2000H

Uninitialized Area

(data values unknown)

2020H

Figure 6·4. Example Stack Frame

Target System Interface 6-19

I

6-20 Target System Interface

Often, PROCl will access the stacked parameters by referencing
parameter requests to the stack pointer. This means that parameter
"A" is at address A7+12, parameter "B" at address A7 +8, etc.

If the parameters are not stacked, and/or the return address is not "'1Jll
present, then the usual parameter references A7+12, A7 +8, etc.
may reference uninitialized stack areas. A'.,o, the return address
used by PROCl will be incorrect. This wul usually cause a software
failure both within PROCl (because the parameter values are
wrong) and on exit from PROCl (because the return address was
not set properly). Depending on emulator memory mapping, the
"stack" areas referenced by A7+12, etc. may fall within guarded
memory area, causing in a g)larded memory access message.

Executing the command run from PROCl prior to stacking the
parameters and setting the return address is one case where this
could happen. Problems also occur if a run from <address>
command is executed and CPU registers, or memory locations are
not properly initialized for the code to be executed at <address>.

Using the command run until also can cause problems. This is
different from the run from case in that software problems may
occur on a subsequent run command after the until condition is
satisfied. If a run command is executed after executing the until
breakpoint, no problems should result, because the CPU will
continue the user program from the point where it stopped. If a
run from command is executed after the until breakpoint, the
stack, CPU registers and memory locations may be improperly set
for the code to be executed at the run from address.

These situations cannot be corrected within the feature set of the
emulator. You must be aware of your software requirements, and
the mechanism used to implement the run command. Chapter 10
explains how the run command works.

Using the
Foreground
Monitor

Loading the Monitor

Resetting Into the
Monitor

Follow these rules when you load the emulation monitor:

• Both program and data spaces of the monitor must be
mapped to RAM instead of ROM. The monitor transfer
buffer and many monitor "'housekeeping" variables must
be read and write accessible, and must therefore be
mapped to RAM.

In addition, parts of the monitor must write to other
monitor program locations. Since writes to ROM are
always blocked, the program and data sections of the
monitor must be mapped to RA\.1.

• The emulation monitor is executed in response to a level 7
interrupt. Therefore, it is always executed within
supervisor space and must be located in supervisor space.
If the supervisor/user function code bit is not in use, this
restriction does not apply.

The emulation software recognizes only program symbols. In the
monitor, the symbol addresses are assumed to be associated with
the SUPR_PROG function code (since the monitor is an interrupt
routine). Thus, when the host writes control information to, or
reads information from the monitor, it must use the SUPR_PROG
function code.

The "reset into monitor" facility of the emulator uses internal
jamming circuitry to supply both an initial stack pointer and an
initial program counter to the CPU. These values correspond to
the values of monitor symbols SP _TEMP and RESET_ENTRY
respectively. If you're using the background monitor, the initial
stack pointer must be defined since stacking is done in the
foreground monitor.

Target System Interface 6-21

I

I

6·22 Target System Interface

Jamming from reset occurs only if the emulator caused the reset via
the reset softkey. If the target system asserts the CPU reset signal,
the jamming circuitry is disabled and startup from reset occurs
normally, with stack pointer and program counter values beingI ..
supplied from memory system addresses 0-7.,

The setting of the initial stack pointer value is critical to proper
system operation. SP_ TEMP is provided only as a small temporary
stack for monitor use. So the stack may overflow easily once a run
from ... command is given, and the target system program begins
execution. Parts of the monitor may be overwritten if the
SP TEMP stack overflows.

To ensure proper operation, either extend the SP_ TEMP stack to
meet target system requirements, or modify the SP_ TEMP value to
point to the usual target system stack. Do this by including an
"equate" statement in the monitor, while commenting out the
normal SP_ TEMP label in the monitor. For example:

SP TEMP EQU <target system stack address>

Another solution is to be certain that software execution started by
the run from ... command initializes the stack pointers to values
appropriate to the target system.

When the emulator is in a reset condition, one of two messages
appears on the emulator status line above the softkeys. If the word
"Reset" appears, the emulator caused the present reset condition.
The presence of a lower case "reset" means that the target system is
presently asserting the CPU reset signal. You can have the 68030
emulator enter the emulation monitor when a run command is
issued after "Reset." (Jamming occurs only if the reset signal is
asserted by the emulator.) The emulator ignores the initial
program counter and initial stack pointer vector. Instead, the
jamming circuitry supplies these values based on the current
location of the monitor.

You may have problems if the target system does some hardware
and/or software initializations on reset. If "reset into monitor" is
used, these initializations are not done before monitor execution is
begun.

Memory Access
Timing Issues

Access time is the interval during a 68030 microprocessor read
cycle beginning when the 68030 microprocessor places an address
on the address bus and ending when valid data is present on the
microprocessor's data pins.

Appendix C contains tables listing timing comparisons between the
MC68030 processor and the HP 64430 emulator.

33 MHz 68030 For a 33 MHz 68030 microprocessor running at maximum speed in
Microprocessor synchronous mode with no wait states:

HP 64430 68030
Emulation System

Access Time = Cycle Time + Clock Pulse Width - Specification 6 -
Specification 27

• Spec. 6 = Clock High to FC,Size,RMC,CIOUT,Address I
Valid= 14 ns (max)

• Spec. 27 = Data-in Valid to Clock Low (Synchronous
Setup)= 1 ns (min),

• Cycle Time= 30 ns (min),
• Clock Pulse Width = 14 ns (min).

Therefore:

Access Time (max)= 30 ns +14ns -14 ns -1 ns = 29 ns

For the HP 64430 68030 emulation system, the emulator adds the
following delay:

Data lines buffered with a 74FCT A245 = 5 ns (max)

An easy way to calculate the maximum access time allowed by the
emulator is to use the timing comparison tables provided in
appendix C of this manual. The relevant worst case specifications
for the emulator are as follows:

*Access Time (max) = Cycle Time+ Clock Pulse Width -
Specification 6 - Specification 27

*Specification 27 includes value added because of data line
buffering shown above.

• Spec. 6 = 14 ns (max)

Target System Interface 6-23

I

Loading An
Absolute File

6·24 Target System Interface

• Spec. 27 = 6 ns (min)
• Cycle Time= 30 ns (min)
• Clock Pulse Width = 14 ns (min)

Therefore:

Access Time (max) = 30 ns + 14 ns -14 ns -6 ns = 24 ns

When an absolute file is generated, it often has various "'sections"
containing code or data:

CODE

DATA

CODE

0000H

0FFFH

1000H

2FFFH

3000H

3FFFH

Absolute File Test.X

A memory map resembling that shown below might normally be
generated:

Address Range Attribute Function Code

OOOOH - OFFFH EMULRAM SUPR_PROG

lOOOH - 2FFFH EMULRAM SUPR DATA

3000H - 3FFFH EMULRA.t\1 USER PROG

default = guarde~
Note that upon execution of the following command, a guarded
access will occur:

load memory Test.x fcode SUPR_PROG Return

This is because the load mechanism attempts to load the entire file '-ti
using the SUPR_PROG function code. In Test.X (with the
memory map above), address range OOOOH - OFFFH is mapped to
emulation memory when the function code is SUPR_PROG. The

Debugging Plug-in
Problems

Review the
Configuration

remaining address ranges of Test.X are mapped to GUARDED
memory when the function code is SUPR_PROG. This is because
the default is set to GUARDED, and there are no mapping
definitions for SUPR_PROG covering the remaining address
ranges of Test.X.

Similar symptoms would be observed with either of the following
commands:

load memory Test.x fcode SUPR_DATA
load memory Test.x fcode USER_PROG

The load memory ... command loads all memory areas present in a
given absolute file. (Guarded, as well as target and emulation
memory.)

The load memory emulation ... command loads only those areas
mapped to emulation memory in a particular absolute file.

Thus, to properly load Test.X, you would use the following three
commands:

load memory emulation Test.x fcode SUPR PROG
load memory emulation Test.x fcode SUPR DATA
load memory emulation Test.x fcode USER PROG

The load memory target ... command loads only those areas
mapped to target memory in a given absolute file.

When you connect the emulator to a target system, the emulator
operation becomes more complex. More hardware has been added
to the system. You must be knowledgeable about the target system
resources. This section is a guide to isolating problems that you
encounter when connecting the emulation pod to a target system.

If the target system has tight timing specifications, the emulator
may cause some signals to violate either the emulator or the target
system timing requirements.

An incorrect configuration file can cause improper operation.
Review the configuration file to ensure that all questions are

Target System Interface 6·25

I

I Use the Internal
Analyzer

6·26 Target System Interface

answered correctly for your target system. If you are not sure how
to answer a question, see chapter 4 and sections of this chapter for
details concerning configuration and information about the target
system interface. The command "!more <configfilename> .EA"
can be used to view the entire configuration file.

Target systems that can operate without the emulation pod usually
can start with the default configuration file. Use this file whenever
you start a new emulation session. The default configuration
enables all target system signals, maps all memory as target RAl\1
and does not load the emulation monitor. Make sure that the
target system operates correctly by using the internal analyzer and
indications from the target system. Isolate plug-in failures with the
default configuration before attempting to use configurations that
use emulation memory or the emulation monitor. Once the default
configuration works properly, add emulation memory and an
emulation monitor.

The internal analyzer can be used with any configuration without
interfering with emulation. It passively monitors each processor
bus cycle. Analyzer data can be displayed without disrupting the
emulation process. You can use the analyzer to verify the proper
program and target system hardware operation.

Debugging plug-in failures with the internal analyzer should start
with a trace TRIGGER_ ON a= Oh specification before allowing
the processor to run. This will capture all bus cycles starting with
the reset address. Particular attention should be given to the bus
size bit (B) and the data field of the first few cycles. The analyzer's
triggering capability can be used to capture conditions that are
caused by a failed interface. Use the trace TRIGGER_ ON
<failure_condition> specification. These conditions are usually
incorrect code branches or status conditions such as halt or
shutdown.

Failures that occur only during specific operations such as a CPU
space address or a particular place in memory can be debugged
using the analyzer's capability to drive a rear panel BNC output or '"·ii
the Intermodule Bus (IMB). The trigger condition should be set up ~
for the bus cycle in error and the trigger should be enabled to drive
the BNC or IMB. These outputs can then be used with
measurement tools such as timing analyzers or oscilloscopes that

Use the Status
Messages

Run Performance
Verification (PV)

If All Else Fails ...

monitor the target system. When observing the data, remember
that the trigger pulse actually occurs between one and two CLK
cycles after the end of the bus cycle.

Appendix C lists the emulation status line messages and their
causes. Many conditions are not displayed unless no bus cycles
have occurred for more than 250 milliseconds. If your system
normally creates conditions that result in the 68030 not generating
a bus cycle for more than 250 milliseconds, then the status message
related to that condition can be ignored. Status messages such as
"Write to ROM fc= <code>," "halted" and "slow device
fc= <code>" provide address or status information that can be
used by the analyzer as a trigger specification.

Refer to the HP 64430 HP-UX Hosted 68030 Emulator Service
Manual for instructions for running performance verification on
the emulation system.

Sometimes the system will malfunction though the emulator is
configured correctly and the target and monitor programs are
loaded. This is frequently due to foreground monitor interaction
with the target software and/or hardware.

In the software category. check that it is appropriate to disable
interrupts while in the foreground monitor. Some systems with
delta time interrupt structures for real-time clocks, operating
system functions, and so on, will crash if the delta time interrupt is
not serviced within a preset time limit. You can customize the
foreground monitor to enable or disable interrupts as required. See
the "Continuing Target System Interrupts While In The Emulation
Monitor" section of chapter 7.

You can disable the normal target system function of the level 7
(NMI) interrupt through vector table modifications, and some
additional foreground monitor code.

Ensure that the target program is not accidentally overwriting the
foreground monitor or vice versa. You can use the analyzer to

Target System Interface 6·27

I

I

6·28 Target System Interface

examine software behavior. This is an effective way to solve
emulation problems. Obtain a listing of the foreground monitor
and the target program, and use the analyzer to verify proper
operation of both.

Set the analyzer to trigger on the foreground monitor entry point
(MONITOR_ENTRY), with the trigger position set to the center
of the trace. Then you can examine CPU acti'vity surrounding the
foreground monitor entry. Observe the stacking activity of the level
7 interrupt, as well as emulator generated jam cycles. This will help
you decide whether the foreground monitor is being initiated
properly.

Ensure that the foreground monitor exits and returns to the
normal program properly. Set the analyzer to trigger on the
foreground monitor exit point (EXIT_MON), and observe the
unstacking as a result of the RTE instruction. Be sure that the
stack contents have not been corrupted, and that the program
returns to the expected location.

Remember that the use of any foreground monitor function will
affect the timing of target programs, and may cause hardware and
software anomalies.

7

The Emulation Monitor Programs

Overview

Introduction

This chapter:

• Explains why you need an emulation monitor program.
• Compares the foreground and background emulation

monitor programs.
• Suggests when to use either a foreground and background

monitor.
• Explains how the break function is related to the

emulation monitor.
• Describes the foreground emulation monitor program.
• Tells how to customize the foreground monitor.
• Lists the foreground monitor memory requirements.
• Describes the foreground monitor linking requirements.
• Lists the rules for loading the foreground monitor.

See chapter 6, "Target System Interface," and chapter 10, "How the
Emulator Works," for more information about the emulation
monitor and its interactions with the host computer and your
target system.

The emulation monitor program implements many emulator
functions. These are:

• Read/write target memory.
• Display/modify 68030 registers.
• Display/modify coprocessor registers.
• Execute user program.
• Break from user program by:

- analyzer generated break
- keyboard break
- software breakpoint

Emulation Monitor 7·1

I

I

Comparison of
Foreground and
Background
Monitors

Background Monitors

7·2 Emulation Monitor

- jump from user program
- memory access violation break.

• Reset into monitor.
• Single step by opcode.
• Coordinated emulation start.

An emulation monitor satisfies certain requests for information
about the target system and the emulation processor. For example.
when you request a register display, the emulation processor is
forced into the monitor. The monitor code has the processor dump
its registers into certain memory locations. The emulator system
controller reads these without further interference.

A background monitor is an emulation monitor that overlays the
processor's memory space with a separate memory region. Entry
into the monitor is done by jamming the monitor addresses onto
the processor's data bus.

Usually, a background monitor will be easier to work with in
starting a new design. The monitor is immediately available on
powerup. You don't have to worry about linking the monitor code
or allocating space for the monitor to use the emulator. No
assumptions are made about the target system environment.
Therefore, you can test and debug hardware before you write any
target system code. All processor address space is available for
target system use, because the monitor memory is overlaid on
processor memory, not subtracted from it.

All background monitors sacrifice some level of support for the
target system. For example, when the emulation processor enters
the monitor to display registers, it will not respond to target system
interrupt requests. This may pose serious problems for complex
applications that rely on the microprocessor for real-time,
non-intrusive support. Also, the background monitor code can't be
modified to handle special conditions.

Foreground Monitors

Choose a
Foreground or
Background
Monitor

When to Use the
Background Monitor

A foreground monitor may be needed for more complex debugging
and integration applications. A foreground monitor is a block of
code that runs in the same memory space as your program.
Foreground monitors allow the emulator to service real-time
events, such as interrupts or watchdog timers, while executing in
the monitor. For most multitasking, interrupt intensive
applications, you will need to use a foreground monitor.

You can tailor the foreground monitor to meet your needs, such as
servicing target system interrupts. The foreground monitor does
use part of the processor's address space, which might cause
problems in some target systems. You also must configure the
emulator to use a foreground monitor. (See chapter 4, "Answering
Emulation Configuration Questions.")

You may link the foreground monitor with your code. Linking the
monitor separately is preferred. Then you can download the
monitor before the rest of your program. Linking monitor
programs separately is more work initially. It can improve
efficiency later, because you can load it separately during the
configuration process at the beginning of a session.

Most conventional emulators use either a background or
foreground monitor as the emulation control program. The
emulator designer makes the appropriate compromises regarding
the emulator's transparency and chooses one type of monitor or
another in implementing the emulator.

Because the emulator supports an on-chip MMU and has full
virtual system support, it supports both background and
foreground monitors. You choose a monitor based on the
development stage and nature of the target system.

You should usually use the background monitor during the early
stage of hardware development where full functionality of the
target's interrupt, bus error, and other asynchronous events is not
yet needed. The background monitor has the advantage of being

Emulation Monitor 7·3

I

I
When to Use the

Foreground Monitor

7·4 Emulation Monitor

easy to use. It can enable the emulator to be a stimulus for help in
turning on the target hardware without requiring full target system
functionality. For example, the display/modify target memory
feature can be used to stimulate the target's memory interface and
help you troubleshoot any defects in that circuitry. All the "'111
emulator would show while in background is the bus cycle
referencing the target address. By using an external timing analyzer
(for example the HP 16500A), you can monitor the target's signal
behavior during that cycle and find any problem(s).

Another feature of the background monitor (that is not in the
foreground monitor) is the display/modify physical memory. The
function requires that the on-chip MMU be temporarily turned off
so that logical and physical addresses are identical. This is not
possible during foreground operation since the foreground
monitor is running as part of the virtual system.

If the target system hardware is close to completion, then
foreground monitor operation is more desirable. The emulator
runs in a more transparent mode than with background. Interrupts,
bus errors, and all other exceptions can be handled by the target ~ ·""
system software as if the emulator were not present. All emulation ..,..,
and analysis functions are available to the user. You can change the
monitor source code to fit the particular application. Messages
relating to certain events can be added and displayed on the
emulation terminal, and target programs can jump to the monitor.
You can display or modify coprocessor registers by adding the
proper code to the monitor program.

In systems that use the 68030's on-chip MMU, external memory in
the target system and emulation memory are accessed as physical
addresses. Because the emulation host communicates with the
emulation monitor through the logical space, and due to the
paging and swapping nature of the 68030 MMU, the foreground
monitor does not need to be mapped to emulation memory.
Additional emulator hardware allows linking the foreground
monitor in the logical space with the rest of the target code where
the eventual physical location is defined at run time. The special
data area of the monitor, where the host communication happens,
is in memory mapped to the untranslated CPU space of the
processor. This makes it easier to install and use the foreground
monitor.

Customizing the
Monitor Programs

The Break
Function and the
Emulation Monitor

Emulation Monitor
Description

Note

You can't customize the background monitor.

The source code for the foreground monitor comes with the
HP 64430 and can be modified to best fit the target application.
Another section of this chapter tells you how to customize the
monitor.

The emulation break circuitry uses the NMI (INT7) resource of the
processor to interrupt the user program and enter the emulation
monitor. A break can be generated for an illegal memory reference,
a bus condition that the analysis card detects, a request by the
emulation software, or from the keyboard.

This section covers both foreground and background monitors, but
you can't access symbols or entry points in the background monitor.

The emulation monitor has the following major sections:

• The processor exception vector look-up table.
• The entry points into the monitor.
• The emulation command scanner.
• The command execution modules.

The following paragraphs discuss each section.

Emulation Monitor 7·5

I

I

The Exception Vector
Table

Note

Emulation Monitor
Entry Point Routines

7·6 Emulation Monitor

The emulation foreground monitor is entered through processor
exceptions. The monitor contains pseudo instructions that load the
vector table with the addresses of the monitor exception handlers.
The monitor exception table predefines some 68030 exception
vectors for your convenience. '..J
The emulation monitor program has all exception vectors (except
RESET and MONITOR SINGLE STEP) contained in comment
fields. This allows you to supply the addresses for custom exception
routines. If you have not written any exception handlers, you
should remove the comment delimiters(*) from those provided in
the monitor. This enables the processor to use the exception vector
table that comes with the monitor program.

If your application has a RESET handler, modify the reset vector
in the monitor to point to the user reset handler. Also, you must
disable the reset-to-monitor function. Do this by modifying the
emulation configuration. You must answer no to the configuration
question "Reset into the monitor?." See chapter 4 for details.

The monitor's exception vector table is ORG'ed to OH, and is not
relocatable as is the rest of the monitor. When configuring the
emulator, be sure to map the first block of memory (OH) to
supervisor_data emulation ram. Otherwise, locate the vector table
in ROM in the target system. Refer to the section in this chapter
titled "Loading the Emulation Monitor" for details on mapping
the emulation monitor into memory.

The emulation monitor entry point routines provide input handler
routines for the various entry paths. There are six separate paths
for monitor entry. Each path is distinguished from the others by a
unique ENTRY_ID code, which is stored on entry into the
monitor. The emulation monitor entry point routines are
MONITOR_ENTRY, SWBK_ENTRY, JSR_ENTRY,
RESET_ENTRY, and EXCEPTION_ENTRY.

MONITOR_ENTRY

MONITOR_ENTRY is the entry point for breaks from the user's
program. On a break to MONITOR_ ENTRY, the 68030 PC and
status register should be placed on the stack as is normally done
when an exception occurs. The monitor saves the processor's
registers and restores the interrupt mask (if you have modified
your monitor to enable this function). The emulation monitor then
executes the command scanner routines.

SWBK ENTRY

SWBK_ENTRY is the entry point into the emulation monitor
when a software breakpoint (that is, a BKPT instruction inserted in
your code by the HP 64000-UX system) occurs.

JSR_ENTRY

Use the JSR_ENTRY (foreground monitor only) entry point if you
want your target program to jump directly into the emulation I
monitor. If running in supervisor mode, you can use the instruction
"JSR JSR_ ENTRY" to jump to the emulation monitor. If the
68030 processor is running in user mode, use a trap exception. The
trap vector should point to MONITOR_ENTRY.

RESET _ENTRY

RESET_ENTRY is the entry point when the 68030 processes the
reset exception. RESET _ENTRY sets up a default stack and
initializes the processor's registers to default values.

EXCEPTION_ENTRY

A set of exception entry points (foreground monitor only) give
status messages for the ten exception vectors after reset. These
exception vectors are for your convenience and may be deleted or
modified. For more information, see the foreground monitor
source program and the section in this chapter titled "Modifying
The Exception Vector Table."

Emulatlon Monitor 7·7

I

Emulation Command
Scanner

Emulation Command
Execution Modules

7·8 Emulation Monitor

The emulation command scanner normally rests in an idle loop
labeled MONITOR_ LOOP. The host repeatedly examines the
system global MONITOR_ CONTROL. If bit 15 is zero, the idle
loop is resumed. If bit 15 is one, there is a command, and the
program branches to the appropriate command routine.

The host sets bit 15 of MONITOR_ CONTROL, the monitor
program clears it. The lower byte of MONITOR_ CONTROL
contains a command number. The command table is searched for
this number. If there is a match, a command entry point is retrieved
from the table and the command will be executed. Otherwise, the
program will return to the idle loop. The command is complete
when bit 15 of MONITOR CONTROL is set to zero.

The Emulation Monitor command execution modules are
ARE_YOU_THERE, EXIT_MONITOR, COPY_MEMORY,
COPY_ALT_REG, MON_ALT_REGISTERS,
SYNCH_ ST ART _ENABLE, SIM_ INT _ENABLE,
SIM_INT_DISABLE, and SIMlJLATED_INTERRUPT.

ARE_YOU_THERE ..,,,,,,

The host (the HP 64000-UX system) uses ARE_ YOU_ THERE to
determine whether the processor is executing in the monitor or in
the target system code. It also can pass an ASCII message to be
displayed on the host system status line.

EXIT _MONITOR

EXIT_MONITOR reloads the processor's register image and exits
to the user's program.

SYNCH_START_ENABLE

SYNCH_START_ENABLE delays EXIT. The monitor loops until
it receives an emulator status bit that indicates a synchronized start
among multiple emulators. Then it executes EXIT. Any command
will abort the wait loop. "'111

COPY _MEMORY

COPY_MEMORY moves data between the monitor parameter
block areas and target system memory. This routine is used to
modify and display target system memory.

COPY _ALT _REG

COPY_ALT_REG reads from and writes to coprocessor registers.

MON_AL T _REGISTERS

MON_AL T_REGISTERS is a jump table that contains the
address offset of the coprocessor register load/unload routine for
each of the eight possible coprocessors.

The MON _ALT _REGISTERS table should be set up to contain
the load routine names - the table start. Offsets from the start of
the table are stored so the entries will fit in 16 bits.

SIMINT _ENABLE

SIMINT_ENABLE is a user defined simulated interrupt function
that allows you to implement interrupt driven code on an emulator
that is out of circuit. This function must set the local simulated
interrupt enable flag TRUE and store SIM_INTS_ TRUE at
SIM_INT_ CONTENTS to reenable simulated interrupts on exit. If
simulated interrupts are not disabled on entry to the monitor, the
break softkey will not work.

SIMINT _DISABLE

SIMINT_DISABLE is a user defined simulated interrupt function
that allows you to disable interrupt driven code on an emulator
that is out of circuit. This command must set the local simulated
interrupt enable flag FALSE and store SIM_INTS_FALSE at
SIM_INT_ CONTENTS to keep simulated interrupts disabled on
exit. If simulated interrupts are not disabled on entry to the
monitor, the break softkey will not work.

Emulation Monitor 7·9

I

I

Using and
Modifying the
Foreground
Monitor

Caution I

7-1 O Emulation Monitor

SIM INTERRUPT

SIM_INTERRUPT is a user defined simulated interrupt function
that allows you to implement interrupt driven code on an emulator
that is out-of-circuit. Usually, you'll have this routine branch to ""11/J
your interrupt handler by way of a trap instruction. When the
command is complete, the host processor expects the processor to
be in the monitor.

A standard foreground emulation monitor source file comes with
each emulation system. You must assemble and link this file before
using it. Typically, you'll assemble the monitor and link it with the
user program to form one software module. Then you load this
module into memory.

You can modify the foreground monitor to suit a particular target
system or to expand the monitor's capabilities. Some foreground
monitor functions won't work until you remove the comment
delimiters from the code for those functions. If you modify the
foreground monitor, you must maintain the communication
protocol between the monitor and the emulation software.

Possible loss of work session.' System may become unusable. Your
customized portion of the emulation monitor must not exit the
monitor program. Exiting the monitor will destabilize the system
and make it unusable.

You should not change any parts of the monitor other than those
described in the following paragraphs. Changes in other sections
may cause some features to stop working due to stack
modifications, or because the information that is passed to and
from the various sections has been affected.

Caution '

Note

Modifying The
Exception Vector

Table

For most systems. the foreground monitor supplied with your
emulator enables all emulation features to operate. Some systems
need a custom monitor program to maximize the emulator's
effectiveness. So, the emulator comes with a monitor source
program, which is thoroughly commented. The comments describe
each standard routine so that you can easily make your
modifications.

Possible loss of origi,nal monitor source program.' Do not modify the
original monitor source program. You should copy the monitor
source program to your subdirectory before making any
modifications. Do not modify the copy supplied with your
emulation system software. You should keep that copy as a backup.

If you haven't already done so, copy the emulation monitor to your
subdirectory with the command:

cp /usr/hp64000/monitor/mon_68030.s
men 68030.s

You must execute the command "chmod 666 mon_68030.s" on the
file before you modify it. It originally has "read-only" permissions.

You should now modify the copy in your subdirectory.

After you modify the monitor, be sure to reassemble and relink it.

Find the following program block in the emulation monitor:

* ORG $000 0: reset
* DC.L SP TEMP
* DC.L RESET ENTRY

* ORG SOOS 2: bus error
DC.L EXCEPTION_ENTRY

Emulatlon Monitor 7·11

I

* ORG SOOC 3: address error
* DC.L EXCEPTION ENTRY

* ORG $010 4: illegal instruction
DC.L EXCEPTION ENTRY

* ORG $014 5: divide by zero
* DC.L EXCEPTION ENTRY

* ORG $018 6: CHK instruction
* DC.L EXCEPTION ENTRY

* ORG $01C 7: TRAPV
DC.L EXCEPTION ENTRY

* ORG $020 8: privilege violation
DC.L EXCEPTION ENTRY

* ORG $024 9: monitor single-step entry
* DC.L MONITOR ENTRY

* ORG $024 9: trace
* DC.L EXCEPTION ENTRY

* ORG $028 10: "A" Line
* DC.L EXCEPTION ENTRY

* ORG $02C 11: "F" Line
* DC.L EXCEPTION ENTRY

* ORG $030 12: unassigned and reserved by Motorola
DC.L EXCEPTION ENTRY

I
* ORG $034 13: coprocessor protocol violation
* DC.L EXCEPTION ENTRY

* ORG $038 14: stack frame format error
* DC.L EXCEPTION ENTRY

* ORG $03C 15: uninitialized interrupt
* DC.L EXCEPTION ENTRY

* ORG $040 16: unassigned and reserved by Motorola
* DC.L EXCEPTION ENTRY

* ... other unassigned reserved entries

* ORG $05C 23: unassigned and reserved by Motorola
* DC.L EXCEPTION ENTRY

* ORG $060 24: spurious interrupt
* DC.L EXCEPTION_ENTRY

* ORG $064 25: interrupt level 1 autovector
DC.L EXCEPTION ENTRY

* ORG $068 26: interrupt level 2 autovector
* DC.L EXCEPTION ENTRY

* ORG $06C 27: interrupt level 3 autovector
* DC.L EXCEPTION_ENTRY

* ORG $070 28: interrupt level 4 autovector
* DC.L EXCEPTION ENTRY

* ORG $074 29: interrupt level 5 autovector
* DC.L EXCEPTION_ENTRY

* ORG $078 30: interrupt level 6 autovector
* DC.L EXCEPTION ENTRY

* ORG $07C 31: interrupt level 7 autovector
* DC.L EXCEPTION_ENTRY

7-12 Emulation Monitor

L

* ORG $080 32: TRAP #0
* DC.L EXCEPTION ENTRY

* ... other TRAP #n entries

* ORG $0BC 4 7: TRAP #15
DC.L EXCEPTION ENTRY

* ORG $0CO 4S: floating point coprocessor unordered condition
* DC.L EXCEPTION ENTRY

* ORG $0C4 49: floating point coprocessor inexact result
* DC.L EXCEPTION ENTRY

* ORG socs 50: floating point coprocessor divide by zero
* DC.L EXCEPTION ENTRY

* ORG SOCC 51: floating point coprocessor underflow
* DC.L EXCEPTION ENTRY

* ORG $ODO 52: floating point coprocessor operand error
DC.L EXCEPTION ENTRY

* ORG $0D4 53: floating point coprocessor overflow
DC.L EXCEPTION ENTRY

* ORG $ODS 54: floating point coprocessor signaling Not a Number
* DC.L EXCEPTION ENTRY

* ORG $0DC 55: unassigned and reserved by Motorola
* DC.L EXCEPTION ENTRY

* ORG $0EO 56: PMMU configuration error
* DC.L EXCEPTION ENTRY

* ORG $0E4 57: PMMU illegal operation
* DC.L EXCEPTION ENTRY

Now use your editor to remove the comment delimiters(*) from
the start of each line of code (except the second 0 R G $24
statement) to make your program look as follows:

ORG $000
DC.L SP TEMP
DC.L RESET ENTRY

O: reset

ORG SOOS 2: bus error
DC.L EXCEPTION ENTRY

ORG SOOC 3: address error
DC.L EXCEPTION ENTRY

ORG $010 4: illegal instruction
DC.L EXCEPTION_ENTRY

ORG $014 5: divide by zero
DC.L EXCEPTION_ENTRY

ORG SOlS 6: CHK instruction
DC.L EXCEPTION ENTRY

ORG $01C 7: TRAPV
DC.L EXCEPTION ENTRY

ORG $020 S: privilege violation
DC.L EXCEPTION_ENTRY

ORG $024 9: monitor single-step entry
DC.L MONITOR ENTRY

Emulation Monitor 7·13

I

ORG S024 9: trace
DC.L EXCEPTION ENTRY

ORG $028 10: "A" Line
DC.L EXCEPTION ENTRY

ORG $02C 11: "F" Line
DC.L EXCEPTION ENTRY

ORG $030 12: unassigned and reserved by Motorola
DC,L EXCEPTION ENTRY

ORG $034 13: coprocessor protocol violation
DC.L EXCEPTION ENTRY

ORG $038 14: stack frame format error
DC.L EXCEPTION ENTRY

ORG $03C 15: uninitialized interrupt
DC.L EXCEPTION ENTRY

ORG $040 16: unassigned and reserved by Motorola
DC.L EXCEPTION ENTRY

... other unassigned reserved entries

ORG $05C 23: unassigned and reserved by Motorola
DC.L EXCEPTION ENTRY

ORG $060 24: spurious interrupt
DC.L EXCEPTION_ENTRY

ORG $064 25: interrupt level 1 autovector

I
DC.L EXCEPTION ENTRY

ORG $068 26: interrupt level 2 autovector
DC.L EXCEPTION ENTRY

"""
ORG $06C 27: interrupt level 3 autovector

DC.L EXCEPTION ENTRY

ORG $070 28: interrupt level 4 autovector
DC.L EXCEPTION ENTRY

ORG $074 29: interrupt level 5 autovector
DC.L EXCEPTION ENTRY

ORG $078 30: interrupt level 6 autovector
DC.L EXCEPTION_ENTRY

ORG $07C 31: interrupt level 7 autovector
DC.L EXCEPTION ENTRY

ORG $080 32: TRAP #0
DC.L EXCEPTION_ENTRY

... other TRAP #n entries

ORG $0BC 47: TRAP #15
DC.L EXCEPTION_ENTRY

ORG $0CO 48: floating point coprocessor unordered condition
DC.L EXCEPTION_ENTRY

ORG $0C4 49: floating point coprocessor inexact result
DC.L EXCEPTION_ENTRY

ORG $0C8 50: floating point coprocessor divide by zero
DC.L EXCEPTION ENTRY

ORG $0CC 51: floating point coprocessor underflow
DC.L EXCEPTION_ENTRY

ORG SODO 52: floating point coprocessor operand error
DC.L EXCEPTION ENTRY

7-14 Emulation Monitor

ORG $004 S3: floating point coprocessor overflow
DC.L EXCEPTION ENTRY

ORG $008 S4: floating point coprocessor signaling Not a Number
DC.L EXCEPTION ENTRY

ORG SOOC SS: unassigned and reserved by Motorola
DC.L EXCEPTION ENTRY

ORG SOEO S6: PMMU configuration error
DC.L EXCEPTION ENTRY

ORG SOE4 S7: PMMU illegal operation
DC.L EXCEPTION ENTRY

Continuing Target
System Interrupts

While in the
Emulation Monitor

End your editing session, making sure that you save your changes.

By removing the comment delimiters from this section of the
monitor, you have made the exception vector table usable. The
table provides all addresses that the monitor needs to operate.

You can restore the processor interrupt mask to its pre-break
value to enable target system interrupts while in the monitor. You
must edit the monitor program if you want to enable interrupts
while running in the monitor.

Under the MONITOR_ ENTRY label, you will find a commented
section that describes reenabling the interrupts.

MONITOR ENTRY
* return from exception if already in the monitor

TAS MONITOR SEMAPHORE
BPL.B BREAK OK

RTE

BREAK OK
* block interrupts

ORI.W #BLOCK_INTERRUPTS<INT_MSK_SHIFT,SR

Comment the instruction ORI.W
#BLOCK_INTERRUPTS<INT_MSK_SHIFT,SR to use the
interrupts while in the monitor. Be sure to save your changes.

Emulation Monitor 7-15

I

I

Sending User
Program Messages

to the Display

Note This option is available only with the foreground monitor.

The PUT MONITOR MSG routine in the emulation monitor - -
provides a way to send messages to the display status line. To use
this feature, you must:

1. Define the message in your user code.

2. Set a trap vector to point to the PUT_MONITOR_MSG
routine.

3. Initiate the appropriate trap. This will cause a ''message
breakpoint" and leave the processor running in the
monitor.

4. If you want to continue execution of your user program.
your program should pop one long word off the stack to
clean up the stack after the trap.

Below is an example program implementing the "message
breakpoint."

**

* PUT MONITOR MSG is entered if you set up a trap vector
to point to-it. The purpose of PUT MONITOR MSG is to send a

* monitor message to the emulator, even if tne request is not
in supervisor space.

*
*

*
*
*
*

*
*
*
*

The protocol for using PUT_MONITOR_MSG is as follows:

1) Set a TRAP #n vector to point to PUT MONITOR MSG.
2) Push the address of the message onto-the stack.

The message must be in data space.
3) Initiate the appropriate trap. This will cause a

"message breakpoint", and leave the processor running
in the monitor.

4) If you continue the run, your program should pop
one long word off the stack to clean up.

**

7-16 Emulation Monitor

PUT MONITOR MSG
* return from

TAS
BPL.B
RTE

PUT MON MSG OK

exception if already in the monitor
MONITOR SEMAPHORE
PUT_MON=MSG_OK

* biock-interrupts
ORI.W #BLOCK_INTERRUPTS<INT MSK SHIFT,SR

* save registers
MOVEM.L DO-D7/AO-A6,PREGS
MOVEC SFC,AO
MOVE.L AO,SFC REG
MOVEC DFC,AO-
MOVE.L AO,DFC_REG

* read emulator status register
MOVEQ #FC CPU SPACE,DO
MOVEC DO,SFC -
MOVEC DO,DFC
MOVES.L EMUL_STATUS,DO

* clear low in monitor bit
BCLR -#LINMON,DO
MOVES.L DO,EMUL_STATUS

* if a supervisor space break (- 8 because memory reference BTST is a byte op)
BTST #SUPRVISOR STATE-8,(SP)
BEQ,B USER FRAME-

PUT MON MSG 1
* put supervisor data function code into message parameter area

MOVE.L #FC_SUPER_DATA,MON_MSG_FC

* save message address from below trap frame on stack
MOVE.L (FOUR WORD SIZE*2,SP),MONITOR MESSAGE
BRA.B FINISH MESSAGE -

USER FRAME
* else stack is in user data space
* put user data function code into message parameter area

MOVE.L #FC_USER_DATA,MON_MSG_FC

* get user stack pointer
MOVE.L #FC USER DATA,DO
MOVEC DO,SFC -
MOVE USP,AO

* save message address from top of stack
MOVES,L (AO),DO
MOVE.L DO,MONITOR_MESSAGE

FINISH MESSAGE
* set message pending bit and set why_there to MON MSG RECVD

MOVEQ #FC CPU SPACE,DO
MOVEC DO,SFC -
MOVEC DO,DFC
MOVES.W MONITOR CONTROL,DO
BSET #MON MSG PEND,DO
MOVEQ #MON-MSG-RECVD,Dl
BFINS Dl,DO{WHY THERE START:WHY THERE WIDTH}
MOVES.W DO,MONITOR_CONTROL - -

BRA.W MONITOR MAIN

**

Emulatlon Monitor 7-17

I

Monitor Memory
Requirements

The emulation system divides emulation memory into 256-byte
blocks. Each 256-b~te block begins on an even address multiple of
lOOH.

MODULE SUMMARY

MODULE

men 68030

SECTION:START

The relocatable program area of the emulation monitor requires
approximately 3900 bytes of memory. You can check the exact
value by examining the MODULE SUMMARY section of the linker
listing file (see below). You can see, in this example, that the
emulation monitor begins at address lOOH and ends at address
1023H. The program takes up OA6B hexadecimal locations of
memory. The value OF23H is approximately 3900 decimal.
Therefore, the emulation monitor can be mapped into 16 256-byte
blocks of memory.

SECTION:END FILE

9:00000000 9:00000000 /hp/emul32/processor/m68030
/monitor/men 68030.o

mon_prog:OOOOOlOO

men data:OOOOOB6C

:00000024

mon_prog:OOOOOB6B

men data:00001023

:00000027

These memory requirements assume that the blocks each start on a
256-byte boundary and that you're using the standard emulation
monitor. To check the memory requirements for the emulation
monitor being used, check the linker listing file.

The monitor program must reside in supervisor space. See the
section "Loading The Emulation Monitor" in this chapter for
details.

7-18 Emulation Monitor

Linking the
Emulation
Foreground
Monitor

Loading the
Emulation Monitor

Using Reset Into
Foreground
Monitor

The emulation foreground monitor must be assembled and linked
before it can be used by the emulation system. It can be linked with
the target system code to produce one absolute file or it can be
linked by itself.

Follow these rules when you load the emulation monitor:

1. Data space of the monitor must be mapped as RAM as
opposed to ROM. The monitor transfer buffer and many
monitor "housekeeping" variables must be read and write
accessible, and must, therefore be mapped as RAM.

In addition, parts of the monitor must write to other
monitor program locations. Since writes to ROM are
always blocked, the program and data sections of the
monitor must be mapped to RA\1.

2. The emulation monitor is executed in response to a level 7
interrupt. Therefore, it is always executed within
supervisor space and must be located in supervisor space.
If the supervisor/user function code bit is not in use, this
restriction does not apply.

The emulation software recognizes only program symbols. For the
monitor, the symbol addresses are assumed to be associated with
the SUPR_PROG function code (since the monitor is an interrupt
routine). When the host writes control information to, or reads
information from the monitor, it must use the special data space
located in CPU space.

If reset into the foreground monitor is specified as an option
during emulation configuration (refer to chapter 4), some
memory-either target or emulation-must be mapped to OH
SUPR PROG.

Emulation Monitor 7·19

I

Notes

7·20 Emulatlon Monitor

8

Using Custom Coprocessors

Overview

Introduction

Note

This chapter:

• Discusses the requirements for using custom coprocessors.
• Describes the custom coprocessor format file.
• Tells how to modify the emulation monitor for use with

custom coprocessors.
• Explains the emulation configuration questions related to

custom coprocessors.

Only the foreground monitor supports custom register access
(except for the MMU registers). Both the foreground and
background monitors support display and modification of MMU
registers.

The 68030 emulator can access floating point coprocessors and
other coprocessors in your target system. You can both display and
modify coprocessor register sets.

To use custom coprocessors with the emulator, you must:

• Provide a custom register format file defining the
coprocessor address, size, and name and defining the
register display format.

Custom Coprocessors 8·1

I

I
The Custom
Register Format
File

8·2 Custom Coprocessors

• Modify the emulation monitor program to include a
storage buffer for the coprocessor registers. read/write
routines to access coprocessor registers, and a pointer to
the coprocessor read/write routines.

• Specify the custom register format file to the emulator
during emulation configuration.

An example custom register format file comes with your emulation
software. This file is named:

/usr/hp64000/inst/emul32/0410/0204/
custom_spec

Read/write routines for the MMU are in the emulation monitor
program.

A custom register format file must specify the coprocessor you
want to use with emulation. This file specifies:

• Which coprocessors should be used.

• The coprocessor space in which the coprocessors are
located.

• Size of the register buffer for data transfers.

• Display format for each coprocessor.

• What register names are available for register modifies.

This file is read when the emulation configuration file is processed. , ""'
For each coprocessor register set defined in the file, the following ~
items must appear in the order specified:

1. the coprocessor address
2. the coprocessor size

Address Specification

Size Specification

3. the coprocessor name
4. the display spec

You may place comments in C language format (enclosed by"/*"
and"*/") or blank lines before or after any register set, as well as
between the specification fields. You can specify C language format
include files using a control line of the form:

#include "filename"

or

#include <f ilenarne>

where the register set description could be placed in the include
file. The quotes and brackets do not correspond to search paths.
Instead the filename must be the full pathname for the include file.

Include files simplify your custom register specification file and
allow you to remove a register set from the specification file.

Figure 8-1 (at the end of this section) lists a sample custom register
specification file. Figures 8-2 and 8-3 show how the same file could
be written using an include file and include command lines.

The address specification is of the form:

ADDR=n

where n is the coprocessor identification code that defines the
coprocessor space. The address must be a number between 0 and 7,
inclusive. If two register sets in the format file have the same
address, only the last specified register set is used. The first register
set is ignored. ADDR=O is reserved for the MMU. The address
specified for the "fpu" coprocessor must match the external FPU
coprocessor identification code.

The size specification is of the form:

SIZE=n

where n is the size (in bytes) of the register set transfer buffer. The
transfer buffer is used to move the register contents between the

Custom Coprocessors 8·3

I

I

Name Specification

Register Set Display
Specification

8·4 Custom Coprocessors

emulation monitor and the host system. This number must be
between 0 and 1020, inclusive.

The coprocessor name specification is of the form:

NAME=" string"

where string is a unique name for the coprocessor. If the name is
not unique, any previous register specs with the same name will be
ignored. The string must contain only alphanumeric characters.
Register set names are available on softkeys during display, copy,
and modify commands. Register set names are also placed in the
header of the register display if the coprocessor set is active during
the display.

Enclose the register set display specification by two lines as follows:

DISPLAY START
<display specification>

DISPLAY END ~

The DISPLAY_START and the DISPLAY_END lines cannot
have any trailing blanks. Any statements within these lines will
generate the register display. These lines also define register names
for the modify command. Register specifications have the form:

NAME %OFFSET.WIDTH

where:

NA\1E

OFFSET

WIDTH

is the name used for the register in the display
and modify commands.

is the index into the register buffer (in bytes) to
the location of the register contents.

is the register width (in bytes).

All other text and white space in the register specification is
presented in the display exactly as specified in the format file.

/***/
/* COPROCESSOR DISPLAY FORMAT SPECIFICATIONS */
/***/

/* This file contains the display format specifications for all coprocessors */
/* configured for this system. It may contain up to 7 other coprocessor */
/*specifications. */
/* *I
/* The entry below describes the format for an 68882 fpu, and is used */
/* as an example. There are several pieces of data which MUST be supplied */
/* for each specification: */
/* *I
/* ADDR=n, where n is in the range 0-7. This is the coprocessor id-code */
/* for the current entry. Please note that ADDR=O is reserved for */
/* the MMU, and that all ADDR designations should appear only */
/* once in this file. *I
/* *I
/* SIZE=n, where 0 < n < 1020 bytes. SIZE describes the number of bytes */
/* in the monitor register buffer the user has defined for this */
/* coprocessor. */
/* *I
/* NAME=" string", where "string" is the UNIQUE name of the current *I
/* coprocessor. The name is made up of alphanumeric characters */
/* only. This name will show up on a softkey when */
/* attempting to display/modify registers within emulation. */
/* *I
/* DISPLAY START marks the start of the display format spec for the */
/* current coprocessor. */
/* *I
/* DISPLAY END marks the end of the display spec, and also the end */
/* of the information for the current coprocessor. A new speci- */
/* fication may follow each DISPLAY_END. */
/* *I
/* Within the bounds of DISPLAY START and DISPLAY END is the information */
/* needed to generate the dispiay for each coprocessor. Each register */
/* description contains a name field and a register format field. The format */
/* field is in the form: */
I* *I
/* %OFFSET.WIDTHr, where OFFSET is the index into the register buffer */
/* defined in the monitor (in bytes), and WIDTH is the width of*/
/* the register (also in bytes). All other text, white space, */
/* etc, are preserved in the display. */

/************************************/
/* EXAMPLE 68882 FPU SPECIFICATION */
/************************************/

ADDR=l
SIZE=108
NAME="fpu"

/* the fpu id-code (special: set by configuration) */
/* number of bytes in the fpu register buffer */
/* name of the fpu coprocessor (do not change) */

DISPLAY START
FP0-%00. 12r
FP2 %24.12r
FP4 %48.12r
FP6 %72.12r

DISPLAY_END

FPl
FP3
FPS
FP7

%12 .12r
%36.12r
%60.12r
%84.12r

FPCR %96.4r
FPSR %100.4r

FPIAR %104. 4r

/*Other custom coprocessor display formats follow ... */

Figure 8-1. Sample Custom Register Specification Fiie

Custom Coprocessors 8-5

I

I

/***/
!• COPROCESSOR DISPLAY FORMAT SPECIFICATIONS •/
/***/

!• This file contains the display format specifications for all
/* configured for this system. It may contain up to 7 other
/* specifications.

coprocessors
coprocessor

!•
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
!•
/*
/*
/*
/*
/*
/*
/*
!•
/*
/*
/*
!•
/*
!•
/*
/•
!•
/*

The entry below describes the format for an 68881 fpu, and
as an example. There are several pieces of data which MUST be
for each specification:

is used
supplied

ADDR=n,

SIZE=n,

where n is in the range 0-7.
for the current entry. Please
the MMU, and that all ADDR
once in this file.

This is the coprocessor id-code
note that ADDR=O is reserved for
designations should appear only

where O < n < 1020 bytes. SIZE describes the number of bytes
in the monitor register buffer the user has defined for this
coprocessor.

NAME=" string", where
coprocessor.
only. This
attempting to

"string" is the UNIQUE name of the current
The name is made up of alphanumeric characters

name will show up on a softkey when
display/modify registers within emulation.

DISPLAY START marks the start of the display format spec for the
current coprocessor.

DISPLAY END marks the end of the display spec, and also the end
of the information for the current coprocessor. A new speci­
fication may follow each DISPLAY_END.

Within the bounds of DISPLAY START and DISPLAY END is the information
needed to generate the dispiay for each coprocessor. Each register
description contains a name field and a register format field. The format
field is in the form:

%OFFSET.WIDTHr, where OFFSET is the index into the register buffer
defined in the monitor (in bytes), and WIDTH is the width of
the register (also in bytes). All other text, white space,
etc, are preserved in the display.

#include "/users/em68030/custom_spec/fpu_spec"

Figure 8·2. Custom Reg. Spec. Fiie Using Include Flies

8·6 Custom Coprocessors

*/
*/
*/
•/
*/
*/
*/
*/
*/
•/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
•/
*/
•/
*/
*/
*/
•/
*/
*/
*/
*/
•/
*/
*/

/************************************/
(* EXAMPLE 68882 FPU SPECIFICATION */
/************************************/
ADDR=l /• the fpu id-code (special: set by configuration) •/
SIZE=l08 /• number of bytes in the fpu register buffer •/
NAME="fpu" /• name of the fpu coprocessor (do not change) •/

DISPLAY START
FP0-%00.12r FPl %12.12r FPCR %96.4r
FP2 %24.12r FP3 %36.12r FPSR %100.4r
FP4 %48.12r FPS %60.12r FPIAR %104.4r
FP6 %72.12r FP7 %84.12r

DISPLAY_END

Figure 8-3. Custom Reg. Spec. Include Fiie fpu_spec

Emulation Monitor
Changes

Defining a
Coprocessor

Register Buffer

To access coprocessor register sets, you must change the emulation
monitor. You must declare a register buffer for storing the
coprocessor register values, modify two table entries, and provide
register buffer read/write routines for each coprocessor register set
that the emulation monitor will access.

A coprocessor register buffer must be allocated in the emulation
monitor for each custom coprocessor you use with the emulator.
The emulator uses this buffer to save register values read from or
written to the custom coprocessor. An example buffer
(MMU _REGS) is declared in the emulation monitor program.

MMU REGS
SRP-REG DC.L 0

DC.L 0
CRP REG DC.L 0

DC.L 0
TC REG DC.L 0
TTO REG DC.L 0
TTl-REG DC.L 0
MMUSR REG DC.W 0

Find this declaration in the emulation monitor program and insert
your custom coprocessor register buffer declarations immediately
after it. For example, if you are using an MC68882 coprocessor in
your target system, you might add the following register buffer
declaration:

FPU 882 REGS
FP REG -
CONTROL REG
STATUS REG
IADDR REG
FPU_8B2_END

DS.L 24
DC.L 0
DC.L 0
DC.L 0

Custom Coprocessors 8-7

I

I

Modifying the
MON_CPU_

REGISTERS Table

Modifying The
MON_AL T _REGISTERS

Table

8-8 Custom Coprocessors

After declaring your register buffers, you need to modify the
MON CPU REGISTERS table. This table has entries labeled - -
"COPROC_REG_n," where n is the coprocessor identification
number. The coprocessor identification numbers specified in the
format file must have their corresponding table entry point to a ~
buffer that will be used to transfer the register data to and from the
monitor. These are the buffers that you declared in the previous
section. The default MON CPU REGISTERS table is as follows:

MON CPU REGISTERS

COPROC REG 0
COPROC-REG-1
COPROC-REG-2
COPROC-REG-3
COPROC-REG-4
COPROC-REG-5
COPROC-REG-6
COPROC-REG-7

DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L

- -

MMU REGS
0 -
0
0
0
0
0
0

For example, if you want to add an FPU in your target system at
coprocessor address 1, you might want to modify the
MON CPU REGISTERS table as follows: - -

MON CPU REGISTERS

COPROC REG 0
COPROC-REG-1
COPROC-REG-2
COPROC-REG-3
COPROC-REG-4
COPROC-REG-5
COPROC-REG-6
COPROC-REG-7

DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L

MMU 851 REGS
FPU-882-REGS
0 - -
0
0
0
0
0

The second table you must change is under the symbol
"MON_ALT_REGISTERS." This table has entries labeled
"COPROC_LOAD_n," where n is the coprocessor identification
number. These entries point to a coprocessor's read/write routine.
The emulation monitor gives an example read/write routine
(FPU _881_ COPY) for use with an external FPU. The default
MON ALT REGISTERS table is as follows: - -
MON_ALT_REGISTERS

COPROC LOAD 0
COPROC-LOAD-1
COPROC-LOAD-1
COPROC-LOAD-2
COPROC-LOAD-3
COPROC-LOAD-4
COPROC-LOAD-5

DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W

MMU COPY-MON ALT REGISTERS
INVALID CP ID-MON ALT REGISTERS
INVALID-CF-ID-MON-ALT-REGISTERS
INVALID-CF-ID-MON-ALT-REGISTERS
INVALID-CF-ID-MON-ALT-REGISTERS
INVALID-CF-ID-MON-ALT-REGISTERS
INVALID:cP:ID-MON:ALT:REGISTERS

Writing Coprocessor
Copy Routines

COPROC LOAD 6
COPROC-LOAD-7

DC.W
DC,W

INVALID CP ID-MON ALT REGISTERS
INVALID:cP:ID-MON:ALT:REGISTERS

If you want to use a FPU in your target system as in the previous
example, you would modify the MON_ALT_BUFFER table as
follows:

MON ALT REGISTERS

COPROC LOAD 0
COPROC-LOAD-1
COPROC-LOAD-1
COPROC-LOAD-2
COPROC-LOAD-3
COPROC-LOAD-4
COPROC-LOAD-5
COPROC-LOAD-6
COPROC-LOAD-7

DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W

MMU COPY-MON ALT REGISTERS
FPU-882 COPY~MON-ALT REGISTERS
INVALID-CP ID-MON ALT REGISTERS
INVALID-CP-ID-MON-ALT-REGISTERS
INVALID-CP-ID-MON-ALT-REGISTERS
INVALID-CP-ID-MON-ALT-REGISTERS
INVALID-CP-ID-MON-ALT-REGISTERS
INVALID-CP-ID-MON-ALT-REGISTERS
INVALID:cP:ID-MON:ALT:REGISTERS

where FPU _882_ COPY is the copy routine you have written for
your FPU registers.

The coprocessor copy routine must both read from and write to the
coprocessor registers. If the emulation monitor symbol
"MON_ COMMAND" contains the value "6," then the routine
should perform a read into the register data buffer specified above.
If the symbol = 7, the routine should write the register set using
the values in the register data buffer.

The following listing shows an external FPU read/write routine
(FPU _882_ COPY). The external FPU copy routine is an example
of how to write a copy routine.

**

FPU 881 COPY is an example routine that transfers the FPU registers
* to/rrom-the FPU 881 REGS data area. This code is commented out since

there is no coprocessor in the emulator as shipped.
*

FPU 881 COPY may be used as an example load/unload routine for
* other coprocessors.

*

*

If this code is activated by uncommenting it, then an entry of the form

COPROC LOAD 1 DC.W FPU_881_COPY-MON_ALT_REGISTERS

should be placed in the MON_ALT_REGISTERS table above.

The block that defines FPU 881 REGS in the data segment must also be
uncommented and an entry placed in the appropriate COPROC_REG_n
variable e. g.

COPROC_REG_l DC.L FPU 881 REGS

Custom Coprocessors 8·9

I

I

*
**
*FPU 881 COPY

- CMPI.W
BEQ.B

#READ ALT REGISTERS,MON COMMAND
FPU 8Sl READ -

*
*FPU 881 WRITE

*

*
*
*
*

local-copy of FPU data -- FPU
LEA FPU 881 REGS,AO
FSAVE -(SP) -
FMOVEM.X (AO)+,FPO-FP7
FMOVEM.L (AO)+,CONTROL/STATUS/IADDR
FRESTORE (SP)+
BRA.W LOOP REENTRY

*FPU 881 READ
** FPU -= local

LEA
copy of FPU data
FPU 88l_END,AO

* FSA VE
FMOVEM.L

* FMOVEM.X

-(SP)
CONTROL/STATUS/IADDR,-(AO)
FPO-FP7,-(AO)

FRESTORE (SP)+
* BRA.W LOOP REENTRY

**
*
*
*

*
*

Custom coprocessor register load/unload routines (if any) should
be inserted into the monitor here. Please note that the default
coprocessor id for the assembler is 1. In order for the assembler
to generate the correct code for other ids, the assembler flag
"FOPT ID=n", n=0-7, should be set appropriately.

**

Answering
Emulation
Coprocessor
Configuration
Questions

8·1 O Custom Coprocessors

After you modify the emulation monitor, you must assemble it and
link it with your user file.

The final step in setting up custom coprocessors is to answer the
emulation configuration questions relating to custom coprocessors.
In the default emulation configuration, you will be asked the
question:

Any custom registers?

Answer yes to enable use of custom coprocessors.

If you answered "yes" to the above question, the next question will
be:

Name of custom register format file?

k. Jj .···.
~

Enter the full pathname of your custom register format file.

Answer the remaining emulation configuration questions and save
your changes to a configuration file. Now you can run emulation
using custom coprocessors.

Chapter 4 gives a complete description of the emulation
configuration questions.

Custom Coprocessors 8·11

I

Notes

I

8·12 Custom Coprocessors

9

Using Simulated 1/0 And Simulated Interrupts

Overview

Note

\... Configuring
Simulated 1/0

This chapter:

• Tells you how to configure simulated I/O, with a section
on simulated I/O restrictions.

• Discusses simulated interrupts, including:

- How simulated interrupts function.

- Simulated interrupts versus real interrupts.

- Simulated interrupt configuration.

• Explains how to modify the monitor to use simulated
interrupts.

Simulated I/0 will work with either the foreground or the I
background monitor. Simulated interrupts will work only with the
foreground monitor. When you enable the MMU, all addresses
used for the simulated I/O configuration must be mapped
transparently. In a target system, it is expected that I/O space will
be mapped transparently.

The simulated I/O subsystem must be set up by answering a series
of configuration questions. Your answers to these questions enable
simulated I/O, set the control addresses, and define files used for
standard I/O.

Simulated 1/0 & Interrupts 9·1

I

Detailed information on using simulated I/O is in the
HP 64000-UX Simulated //0 Reference Manual.

Modify simulated I/O configuration? yes (no)

no Answering no skips the simulated I/0 questions. ·"""""
The current simulated I/0 configuration is
unchanged.

yes Answering yes enables you to modify the
simulated I/O configuration. The following
questions are asked.

9·2 Simulated 1/0 & Interrupts

no

Enable polling for simulated I/O? no (yes)

Prevents the emulation software from reading
the control address for simulated I/O commands.
Answering no to this question will disable
simulated I/O while maintaining the current
simulated I/O configuration. Later, when you
need to enable simulated I/O, you can do so
without having to reenter control addresses or
the file names for standard input, standard """""
output, and standard error output. Answering no
skips the remaining simulated I/0 questions.

yes The emulation software will frequently read the
control address to see if the user program has
requested any simulated I/O commands.
Answering yes prompts the following questions:

Function code data space? none (SUP DATA)
(USR_DATA)

This question asks you to specify the data space where the simio
control addresses are located.

If during memory configuration, you specified modify
defined_ codes none, you should use the default answer (none) here.

If you specified modify defined_ codes all, you should select
SUP _DATA or USR_DATA as appropriate for your system.

If you specified modify defined_codes prog_data, you should select
USR_DATA.

Simio control address 1? SIMIO CA ONE
(<Addr>)
Simio control address 2? SIMIO CA TWO
(<Addr>)
Simio control address 3? SIMIO CA THREE
(<Addr>)
Simio control address 4? SIMIO CA FOUR
(<Addr>)
Simio control address S? SIMIO CA FIVE
(<Addr>)
Simio control address 6? SIMIO CA SIX
(<Addr>)

The symbol SIMIO_CA_ONE is the default symbol associated
with the first simulated I/O Control Address. The default symbol
may be replaced with any valid symbol or an absolute address. If a
symbol is specified, polling of that control address will not begin
until you load a file containing that symbol. If an absolute address
is specified, polling of that address will begin immediately.

The control address must be loaded into memory space assigned as
RAM. User programs will run faster if the control address is in
emulation memory. Using target RA1VI causes a break to the
monitor program when the control address is polled for simulated
I/0 commands or data.

The following questions assign the files associated with the three
reserved file names "stdin," "stdout," and "stderr."

File used for standard input? /dev/simio/keyboard (<FILE>)
File used for standard output? /dev/simio/display (<FILE>)
File used for standard error? /dev/simio/display (<FILE>)

The default answers for these questions are as shown.

These files are not opened until Open (90H) is called with the file
names "stdin," "stdout," and "stderr." These files allow easy
redirection of input and output from the keyboard or display to a
file or device without modifying the user program. (The compiler
standard I/O libraries may open some or all reserved files
automatically if simulated I/O is used. See the documentation on
the simulated I/O libraries for the compiler you are using.)

Simulated 1/0 & Interrupts 9·3

I

I

Restrictions On
Simulated 1/0

Simulated
Interrupts

9-4 Simulated 1/0 & Interrupts

Restrictions on the use of simulated I/O are:

• There is a limit of 12 open files at any time.

• There can be only four active simulated I/O processes at
any time.

• When using the MMU, all simulated I/O control addresses
must be mapped 1:1.

• When using the MMU, the memory for simulated I/O
must be accessible in the supervisor state of the processor.

Since any open simulated I/O file is associated with a file
descriptor, opened files are independent of the control address. Up
to 12 files can be opened with a single control address (CA). A
total of six control addresses are allowed so that you can execute
simulated I/O commands concurrently. Remember, a maximum of
12 simulated I/O files (between the six control addresses) may be
open at any time.

Simulated interrupts allow out-of-circuit testing of software that
depends on the occurrence of preemptive interrupts. You enable
the simulated interrupt facility by writing the value Offh to the
simulated interrupt control address. The control address is defined
during emulation configuration. The simulated interrupt facility
generates approximately six interrupts per second, depending on
what other emulation activities are occurring concurrently (such as
simulated I/O and display updates).

You can use simulated interrupts to test applications such as a
preemptive scheduler in a multitasking system or interrupt driven
I!O. Interrupt driven I/O can be simulated by executing simulated
I/O commands when a simulated interrupt occurs.

An interrupt is a request by an external device that causes the
processor to temporarily suspend normal execution to service the

How Does a
Simulated Interrupt

Function?

interrupting device. Normal execution resumes after the device has
been serviced. Interrupts are asynchronous to normal program
execution. To simulate this action out-of-circuit, the emulation
software running on the host system acts as the external device
requesting service.

There are only two ways that the emulation software can interrupt
the emulator. The first is to reset the processor in the emulator.
Since a reset flushes the current instruction counter, the processor
can't continue program execution. Therefore, reset is not usable
for simulated interrupts. The second way to interrupt the emulator
is to break to the monitor. This is the method used to implement
simulated interrupts. So the emulation monitor must be loaded to
use simulated interrupts.

The simulated interrupt begins when a value of Offh is written into
the simulated interrupt control address. The emulation software
polls this address just as it polls simulated I/O control addresses.
When emulation finds the value Offh at the simulated interrupt
control address, it breaks to the monitor.

The monitor saves all registers during the monitor entry sequence.
It then loops, waiting for a command. The emulation software then
sends a simulated interrupt command to the monitor. The default
monitor contains only a stub that immediately signals completion.

However, a simulated interrupt is user definable. To create a I
simulated interrupt, you must modify the emulation monitor.
Include the interrupt code needed to perform the actions you want
when an interrupt occurs. Be aware of the time constraints
discussed in the following section "Simulated Interrupts Versus
Real Interrupts." A typical action is a TRAP instruction, which
vectors to your interrupt handler. See the example program given
in figure 9-1. This feature is not available without modifying the
monitor. For information on modifying the monitor for simulated
interrupts, see the section of this chapter titled "Modifying the
Monitor to Use Simulated Interrupts."

After the interrupt is serviced, emulation sends the exit monitor
command to the monitor. The exit monitor routine restores the
registers that were saved on entry to the monitor, which continues
normal program execution at the point where it was interrupted.

Simulated 1/0 & Interrupts 9·5

I

**
* This is a simulated interrupt test program. The vector for
* TRAP f14 is pointed to INT HANDLER. The SIM INTERRUPT command
* of the monitor must be modified to execute a-TRAP #14. Notice
* that the SMIINT CA is enabled, then a delay loop is executed,
* then SIMINT CA Is disabled. INT HANDLER increments the location
* COUNTER to provide a count of the number of interrupts tha occurred.
* NOTE
* Simulated interrupts must be enabled in the emulator configuration
* and the control address must be set to SIMINT CA. To observe the
* number of interrupts occuring, use the following command:
*
* display memory COUNTER thru COUNTER+7 blocked long repetitively

*
*
*
*
*
*
*
*
*
*
*
*

**

SIMINT CA

COUNTER

START

LOOP

ENDl

INT_HANDLER

CHIP 68030

XDEF START,ENDl,INT HANDLER
XDEF LOOP,SIMINT_CA7COUNTER

SECTION INTR DATA

DC.L

DC.L

ORG
DC.L

0

0

038H
INT_HANDLER

SECTION INTR PROG

MOVE.L

MOVE.B
MOVE.L
SUBQ.L
BNE
MOVE.B
BRA.B

ADDQ.L
RTE
END START

#0,COUNTER

#OFFH,SIMINT CA
#OFFFFFFFH,DO
#1,DO
LOOP
#0,SIMINT CA
ENDl -

#1,COUNTER

;set up a memory location to
; be the control address.
;set up a memory location that
; the program writes to.

;TRAP #14
;Notice that the address of the

interrupt handler routine is
; contained in the vector address
; for a TRAP #14.

;Clear the contents of the counter
; address.
;Enable simulated interrupts.
;Set up a delay counter value.
;Delay for a while.

;Disable simulated interrupts now.
;Continuous loop.

;This is the interrupt handler
; routine.
;Increment the contents of COUNTER.
;Return from exception.
;Define the transfer address so that

you may run or step from
transfer address.

Figure 9-1. Simulated Interrupt Test Program

9·6 Simulated 1/0 & Interrupts

Simulated Interrupts
Versus Real Interrupts

Simulated Interrupt
Configuration

There are some important differences between simulated
interrupts and real interrupts. A simulated interrupt handler must
return within a fixed amount of time. The simulated interrupt
configuration specifies the maximum time that emulation should
wait for an interrupt handler to finish. If the interrupt handler does
not complete within the specified time, emulation forces a break to
the monitor, reports a failure, and terminates the simulated
interrupt. It is not always possible to wait for simulated I/O to
complete an interrupt handler.

The emulation software may appear to do several things
concurrently:

• Polling up to six simulated I/O control addresses.
• Polling a simulated interrupt control address.
• Updating a display.

But, a single HP-UX task does each of these emulation tasks
sequentially. This means that the simulated interrupt must
complete before any other tasks can begin. This is why the
simulated interrupt handler has limited execution time. If the
handler is allowed to run indefinitely, the emulation program can
be "locked up."

The final difference between simulated interrupts and real
interrupts is that a simulated interrupt cannot occur while a
simulated interrupt is being handled or while the emulator is
executing in the monitor.

The simulated interrupt facility is not available in real time mode.
If real time mode is enabled, the simulated interrupt configuration
questions are not presented. When real-time mode is disabled, the
command line displays the question:

Modify simulated interrupt configuration? no
(yes)

Press Return for the default (no) response. Press yes Return to
modify the simulated interrupt configuration.

If you answer no, the questions will be skipped. If you answer yes,
the simulated interrupt questions will be asked. These are:

Enable polling for simulated interrupts? no
(yes)

Simulated 1/0 & Interrupts 9·7

I

I

no

yes

if you select no, emulation does not poll the
control address and never causes a simulated
interrupt.

if yes is entered, the configuration questions are
asked:

Function code data space ? none (SUP_DATA)
(USR_DATA)

This question asks you to specify the data space for the simulated
interrupt control address.

If during memory configuration, you specified modify
defined_ codes none, you should use the default answer (none) here.

If you specified modify defined_codes all, you should select
SUP _DATA or USR_DATA as appropriate for your system.

If you specified modify defined_codes prog_data, you should select
USR_DATA.

Simulated interrupt control address?
SIMINT CA (<Addr>)

Enter the value of the simulated control address in response to this
question. The value may be a symbolic value or a numeric value.
The default is the symbolic value SIMINT _CA

9-8 Simulated 1/0 & Interrupts

If you are not linking the emulation monitor program with your
target system program, you must be careful when using a symbolic
control address such as SIMINT _CA

The monitor program will store the location of the control address
each time that it executes. If you modify your program, then reload
the program without loading the monitor, the symbolic control
address might be changed. The monitor program will not recognize
the change unless you reload it.

If you do not reload the monitor when you load the target system
program, you must ORG the control address to a specific location. """""
If you ORG the address, modify the "Simulated interrupt control .
address" configuration question to point to the new address.

Restrictions On
Simulated Interrupts

Also, you can link the monitor with your program. Then the
monitor recognizes any new address because it loads with your
program.

A similar situation occurs if you modify the control address
configuration question. If you are running your program, then
modify the configuration, you must reload your program (and the
monitor). Otherwise, the system software does not recognize the
new control address and may write to an unknown address.

Maximum delay (in milliseconds) for
simulated interrupt? 25 (<NUMB>)

Your answer specifies the time, in milliseconds, to allow a
simulated interrupt handler to execute before concluding that the
handler has failed. (The emulator will then break to the monitor.)

The default time is 25 milliseconds. This time is approximately
equal to the time required to initiate a simulated interrupt and
check for its completion on an HP 9000. Though the resolution of
this specification is one millisecond, the effective resolution is
approximately 15 milliseconds. This is due to the time that is
required to check for completion. For example. changing the
maximum delay from 25 milliseconds to 26 milliseconds probably
won't affect execution. Emulation does not always wait for the
maximum delay. If the interrupt handler completes any time before
the maximum delay time, emulation forces an immediate return to
the interrupted code.

The input to this question must be in the range of 1 through 10000.
Therefore, the maximum delay is 10 seconds. This upper limit
prevents "locking up" emulation by an interrupt handler that fails
to terminate.

If the user's interrupt handler routine exceeds the maximum delay
allowed, the following error message appears: "ERROR: Simulated
interrupt failed to complete."

Restrictions on the use of simulated interrupts are:

• The background monitor doesn't support simulated
interrupts.

Simulated 1/0 & Interrupts 9-9

I

I

Modifying The
Monitor To Use
Simulated
Interrupts

• When using the MMU, all simulated interrupt control
addresses must be mapped 1:1.

• When using the MMU, memory for simulated interrupts
must be accessible from the processor's supervisor state.

The user defined simulated interrupt function allows you to
implement interrupt driven code on an emulator that is out of
circuit. This command typically branches to your interrupt handler
with a TRAP instruction. It must set the boolean variable
SIM_INTS_ENABLED to TRUE and copy the control address to
SIM_INT _CA Then the monitor can disable simulated interrupts
on entry. Otherwise, the break softkey will not function.

The monitor program must be modified before you can use the
simulated interrupt feature. Find the block of code shown in figure
9-2 in the monitor program.

The TRAP #14 instruction will service the interrupt routine. You ~ ... ,lj
must uncomment the instruction. Or, if you want to use a different ...,,
instruction. you must put it in the same area of the monitor as the
TRAP #14 instruction. If you use another TRAP or different
instruction, you must be sure that the routine will be found by the
monitor. For example, if you use the TRAP #14 instruction, you
must make sure that the address information for your exception
routine is in the vector table at address 038h.

When you finish editing the monitor, be sure to save your changes.
You must reassemble and relink the monitor to use the simulated
interrupts feature.

9·1 O Simulated 1/0 & Interrupts

\.,

\.,

*
*
*
*
*
*

*
*

*

*
*
*
*
*

COMMAND 9 .•. USER DEFINED SIMULATED INTERRUPT FUNCTION

THE USER DEFINED SIMULATED INTERRUPT FUNCTION ALLOWS THE USER TO
IMPLEMENT INTERRUPT DRIVEN CODE ON AN EMULATOR WHICH IS OUT OF
CIRCUIT. THIS COMMAND WILL TYPICALLY CAUSE A BRANCH TO THE USERS
INTERRUPT HANDLER VIA A TRAP INSTRUCTION. THIS COMMAND MUST SET
THE BOOLEAN SIM INTS ENABLED TO TRUE AND COPY THE CONTROL ADDRESS
TO SIM INT CA SO THE-MONITOR CAN DISABLE SIMULATED INTERRUPTS ON
ENTRY.- IF-SIMULATED INTERRUPTS ARE NOT DISABLED ON ENTRY TO THE
MONITOR, THE break SOFTKEY WILL NOT WORK.

THE 64000 WILL SET UP MONITOR CMD BUF; SCR ADDR TO Simulated
interrupt control address and issue COMMAND 8009H.

WHEN THE COMMAND IS COMPLETE, THE 64000 EXPECTS THE PROCESSOR
TO BE IN MONITOR.

SIM INTERRUPT

*

*

*

*
*

*

A NON-ZERO VALUE INDICATES THAT SIMULATED INTERRUPTS ARE ENABLED
MOVE.B #OFFH,SIM_INTS_ENABLED

STORE OFFH AT SIM INT CONTENTS TO KEEP SIMULATED INTERRUPTS ENABLED
MOVE.B #OFFH~SIM=INT_CONTENTS

STORE THE INTERRUPT CONTROL ADDRESS THAT WAS PASSED BY THE 64000
MOVE.L SRC ADDR,DO
MOVE.L DO,SIM_INT_CA

INSTRUCTIONS TO BRANCH TO THE USERS INTERRUPT HANDLER GO HERE
THIS WILL TYPICALLY BE A TRAP INSTRUCTION.

TRAP #14

JMP LOOP REENTRY

Figure 9·2. Simulated Interrupt Function Code

Simulated 1/0 & Interrupts 9·11

I

Notes

9·12 Simulated 1/0 & Interrupts

10

How The Emulator Works

Overview

Introduction

Note

Are You There
Function?

This chapter describes how the following emulator functions work:

• The are vou there monitor function.
• The run command.
• Software breakpoints.
• Single stepping with foreground monitor.
• Single stepping with background monitor.
• Target memory transfers.
• Displaying CPU registers.
• Modifying CPU registers.

This chapter will help you understand how the emulator works and
how it interacts with your target system. This information and that
in chapter 6, "Using the Emulator," can help you use the emulator
more effectively and avoid problems that can occur when you use
the emulator with a target system.

The algorithms described apply to both background and
foreground monitors unless otherwise specified.

The host computer uses the "are_you_there" monitor function to
see whether the 68030 CPU is executing the monitor. It is used

How Emulatlon Works 10·1

I

I
The Run
Command

10·2 How Emulation Works

mostly to display the ·'running" and "'running in monitor" status
line messages.

It also makes sure that a break request (level 7 interrupt) resulted
in a successful entry to the monitor. The host computer issues '1tttlJI
break requests for all emulation functions requiring the monitor. If ·.
the break fails, the host computer cannot complete the specified
command, and displays a "cannot break into monitor" message.

The following algorithm describes how the are_you_there function
works:

1. The host computer writes the value 8000h (bit 15 = 1) to
the monitor data location MONITOR_ CONTROL.

2. If the emulation monitor is executing, and has completed a
previous command, it executes an idle loop. In the idle
loop, the monitor is waiting for a user command or for the
host to make an "exit monitor" request.

If the idle loop is executing and MONITOR_ CONTROL is
set to 8000h by the host, the monitor clears bit 15
(MONITOR_ CONTROL = 0), and returns to the idle """""
loop.

If the 68030 CPU is executing in the user program, bit 15
is not cleared, leaving MONITOR_ CONTROL set to
8000h.

3. The host computer reads monitor data location
MONITOR_ CONTROL.

If bit 15 of MONITOR_ CONTROL = 0, the monitor is executing.
If bit 15 of MONITOR_ CONTROL = 1, the user program is
executing.

The run command starts execution of your user program. The
command allows you to run from a specified address, run until a
specified address is executed, or run from a start address until a

Run From Command

specified address. The following algorithms describe how the run
command is implemented.

When you execute the command run from
{SUPERVISOR_STATE I USER_STATE} <address>, the
following algorithm is executed.

1. The host computer initiates a break to the monitor (level 7
interrupt).

2. The host verifies that the 68030 CPU is executing in the
monitor. If the monitor is not executing, the error message
·'cannot break into monitor" is displayed.

3. The host modifies the monitor copy of the return address
obtained on entry to the monitor from the level 7
interrupt. It sets the return address to the value specified
in the run command.

4. The host modifies the monitor copy of the CPU status
register obtained on entry to the monitor from the level 7
interrupt.

a. If the command specifies "SUPERVISOR_STATE,"
the host sets the SUPERVISOR/USER bit to 1
(supervisor) so that the 68030 CPU will execute in
supenisor mode on exit from the monitor.

b. If the command specifies "USER_STATE," the host
sets the SUPERVISOR/USER bit to 0 (user) so that
the 68030 CPU will execute in user mode on exit from
the monitor.

5. The host returns (RTE) to the user program from the
monitor by writing the "exit monitor" command (value
8001H) to monitor variable MONITOR_ CONTROL.

6. The host verifies that the 68030 CPU has exited the
monitor. If the emulator monitor is still executing, the
error message "monitor did not respond to exit request" is
displayed.

How Emulatlon Works 10·3

I

Run Until Command When you execute the command run until <address>. the
following algorithm is executed:

1. The host computer initiates a break to the monitor (level 7
interrupt).

""" ,., The host verifies that the 68030 CPU is executing in the '-•

emulation monitor. If the monitor is not executing, the
error message "cannot break into monitor" is displayed.

3. The host computer reads the 16-bit word at <address>
and saves it internally.

4. The host inserts a BKPT instruction at <address>. The
breakpoint is marked internally as a one-shot breakpoint.

5. The host returns (RTE) to the user program from the
monitor by writing the "exit monitor" command (value
8001H) to MONITOR_ CONTROL.

6. The host verifies that the 68030 CPU has exited the,
monitor. If the emulator monitor is still executing, the
error message "monitor did not respond to exit request" is
displayed.

Run From ... Until When you execute the command run from

Command {SUPERVISOR_STATE I USER_STATE} <addressl> until

I
<address2>, the following algorithm is executed:

1. The host computer initiates a break to the monitor (level 7
interrupt).

2. The host verifies that the 68030 CPU is executing in the
emulation monitor. If the monitor is not executing, the
error message "cannot break into monitor" is displayed.

3. The host computer reads the 16-bit word at <address2>

""' and saves it internally.

4. The host inserts a BKPT instruction at < address2 >. The
breakpoint is marked internally as a one-shot breakpoint.

10·4 How Emulatlon Works

Software
Breakpoints

5. The host modifies the monitor copy of the return address
obtained on entry to the monitor. It sets the address to the
value <addressl> specified in the run command.

6. The host modifies the monitor copy of the CPU status
register obtained on entry to the monitor.

a. If the command specifies "SUPERVISOR_STATE,"
the host sets the SUPERVISOR/USER bit to 1
(supervisor). Then the 68030 CPU will execute in
supervisor mode on exit from the monitor.

b. If the command specifies "USER_STATE," then the
host sets the SUPERVISOR/USER bit to 0 (user).
Then the 68030 CPU will execute in user mode on exit
from the monitor.

7. The host returns (RTE) to the user program from the
monitor by writing the "exit monitor" command (value
8001H) to MONITOR_ CONTROL.

8. The host verifies that the 68030 CPU has exited the
monitor. If the emulator monitor is still executing, the
error message "monitor did not respond to exit request" is
displayed.

The following sections describe how the software breakpoint I
function is implemented in the 68030 emulator. Software
breakpoints can be inserted into your program to help in
debugging. The run until command also uses software breakpoints.

How Emulatlon Works 10-5

I

Note

Setting A Software
Breakpoint

Executing A Software
Breakpoint

10·6 How Emulatlon Works

When you use the foreground monitor, the exception vector table
is referenced only for permanent breakpoints, which use the trace
exception vector (VBR + 24h). If one-shot breakpoints are working
correctly, but permanent breakpoints fail, ensure that the trace "'1IJI
exception vector properly references the monitor (memory
location MONITOR_ENTRY).

When you execute the command modify software_breakpoint set
{permanent I oneshot} <bkpt_addr>, the system executes the
following algorithm:

1. The host computer initiates a break to the monitor (level 7
interrupt).

2. The host verifies that the 68030 CPU is executing in the
emulation monitor. If the monitor is not executing, the
error message "cannot break into monitor" is displayed.

3. The host reads the 16-bit word at < bkpt_addr > and saves "'111
it in ORIG_INST in host system memory.

4. The host inserts the BKPT instruction at <bkpt_addr>.

5. The host returns (RTE) to the user program from the
monitor by writing the "exit monitor" command (value
8001H) to MONITOR_ CONTROL.

6. The host verifies that the emulation monitor was exited,
and issues an error message if not.

When the 68030 CPU executes the BKPT instruction specified
during emulation configuration, the following events occur:

1. Emulation circuitry detects the occurrence of a BKPT
instruction and responds by jamming into the emulation
monitor at SWBK_ENTRY.

Note

Executing A Run
Command After

Executing A Software
Breakpoint

Only the BK.PT instruction specified during emulator
configuration is recognized by the emulator.

2. The host detects that a breakpoint was executed and issues
the message "breakpoint hit at address XXXX."

3. The host restores the original instruction saved in
ORIG_INST to <bkpt_addr>.

4. The emulation monitor enters the idle loop, waiting for a
user command.

When you specify a run command after executing a software
breakpoint, the following events occur:

run

1. The host computer determines if the last BK.PT instruction
detected is permanent or one-shot.

2. If the breakpoint is one-shot, the emulation monitor
returns (RTE) to the user program to begin execution at
address BK.PT ADDR.

3. If the breakpoint is permanent, the 68030 CPU is
instructed to single-step the instruction at BKPT_ADDR
and return to the monitor.

4. The host computer reads the emulation monitor variable
MONITOR_ CONTROL to make sure that the emulator is
executing the emulation monitor. If the emulator is not
executing in the monitor, the message "cannot break into
monitor" is displayed and the run command is aborted.

How Emulation Works 10-7

I

I Single Stepping
With Foreground
Monitor

10·8 How Emulation Works

5. The host resets the breakpoint and returns (RTE) to the
user program as described in steps 2 through 6 of the
"Setting A Software Breakpoint" section.

run from ADDA

The host computer determines if the last BKPT instruction
executed was permanent or one shot.

1. If the breakpoint is one-shot, the emulation monitor
returns* (RTE) to the user program and begins execution
at address ADDR.

2. If the breakpoint is permanent and the "run from" address
is equal to the breakpoint address BKPT_ADDR, the
68030 CPU is instructed to single-step the instruction at
BKPT ADDR and return to the emulation monitor.

3. The host resets the breakpoint as described in steps 2
through 4 of the "Setting A Software Breakpoint" section
and then returns* (RTE) to the user program. User
program execution begins at ADDR. ""'111
*The stack is modified so that the RTE instruction in the
monitor will return to address ADDR, rather than the
address originally contained on the stack.

The following algorithm describes implementation of the
single-step function in the foreground monitor. The single-step
function uses the trace exception vector in the exception vector
table. If this vector (VBR + 24h) is set incorrectly, single stepping
will fail.

When the user executes a step command, the following events
occur:

1. The host computer initiates a break to the emulation
monitor program by a level 7 interrupt.

2. The host computer reads the emulation monitor variable
MONITOR_ CONTROL to verify that the emulator is
executing the emulation monitor. If the emulator is not

\..,,
executing in the monitor, the message "cannot break into
monitor" is displayed and the step command is aborted.

3. The host instructs the monitor to set the trace bits in the
68030 microprocessor status register (Tl= 1, TO=O). This
enables the 68030 trace function.

4. If the user specified a "from <address>" the host sets the
program counter value on the return stack to <address>.
Thus, on returning from the monitor to the user program,
program execution will begin at <address>.

5. The host initiates a return (RTE) to the user program
from the monitor.

6. The 68030 CPU executes a single instruction, and takes the
trace exception that reenters the monitor at

\..,, MONITOR_ENTRY. Note that the trace exception vector
(VBR+24h) must reference MONITOR_ENTRY for this
to function correctly.

7. The host verifies that the emulator is executing in the
monitor as described in step 2.

8. The host tells the monitor to clear the trace bits in the

I
68030 microprocessor status register (Tl = 0, TO = 0).
This disables the 68030 trace function.

9. The emulation monitor enters an idle loop, waiting for a
user command.

How Emulatlon Works 10·9

I

Single Stepping
With Background
Monitor

10·1 O How Emulation Works

The following algorithm describes how the single-stepping function
is implemented in the background monitor.

When the user executes a step command, the following events
occur:

1. The host computer initiates a break to the emulation
monitor program by using a level 7 interrupt.

2. The host computer reads the emulation monitor variable
MONITOR_ CONTROL to verify that the emulator is
executing the emulation monitor. If the emulator is not
executing in the monitor, the message "cannot break into
monitor" is displayed and the step command is aborted.

3. The host puts the emulator in "single step" mode by
setting a control bit (STEP) to 1.

4. If the user specified a "from <address>" the host sets the
program counter value on the return stack to <address>.
On returning from the monitor to the user program,
program execution will begin at <address>.

5. The host returns (RTE) to the user program from the
monitor.

6. The STEP bit, being set to l, initiates a BREAK action
after one instruction has been executed. This forces the
CPU to reenter the monitor at MONITOR_ENTRY.

7. The host verifies that the emulator is executing in the
monitor as described in step 2.

8. The emulation monitor enters an idle loop, waiting for a
user command.

"""

"""

Target Memory
Transfers

The following section describes the two modes the emulator uses
to transfer data to and from target memory. In the automatic mode,
the emulation monitor always attempts to longword align the
transfer. Due to the dynamic bus sizing facility of the 68030, this
alignment improves total transfer time with 8 and 16-bit memory
systems, but is most effective with 32-bit memory systems. You can
tune this algorithm to meet specific target system requirements.

Alternately, the display/modify command can be issued so that all
transfers can be made in a "byte," "word," or "longword" mode.

The "auto" mode is described below:

1. At the beginning of the transfer, the monitor examines the
lower two bits of the initial target system address to be
read from or written to.

a. If bit 0 of this address is 1, the monitor transfers a
single byte to or from the target system using a
MOVES.B instruction. Following this, the target
system address is incremented by one to reflect the
next address to be transferred.

b. If bit 0 of the initial target system address is 0, the byte
transfer and address increment does not occur.

This first step aligns the target system address to a word
address, where bit 0 of the address is 0.

2. The monitor examines bit 1 of the target system address.

a. If bit 1 of this address is 1, the monitor transfers a
single word to or from the target system using a
MOVES.W instruction. Then, the target system address
is incremented by two to reflect the next address to be
transferred.

b. If bit 1 of the initial target system address is 0, the word
transfer and address increment does not occur.

This step aligns the target system address to a longword
address, where bits 1 and 0 of the address are 0.

How Emulatlon Works 10-11

I

I

10·12 How Emulation Works

3. The target system address is now longword aligned; that is,
address bits 1 and 0 are both 0. The bulk of the transfer is
then carried out using longword transfers. The operation
of the transfer up to this point is summarized below.

Starting Transfer Description
Address Bits

1 0

1 1 a. Copy a byte to longword align
b. Increment target address by 1
c. Copy a longword
d. Increment target address by 4
e. Repeat steps "c" and "d"

1 0 a. Copy a word to longword align
b. Increment target address by 2
c. Copy a longword
d. Increment target address by 4
e. Repeat steps "c" and "d"

0 1 a. Copy a byte to word align
b. Increment target address by 1
c. Copy a word to longword align
d. Increment target address by 2
e. Copy a longword
f. Increment target address by 4
g. Repeat steps "e" and "f'

0 0 a. Copy a longword
b. Increment target address by 4
c. Repeat steps "a" and "b"

4. After each longword transfer, the monitor examines the
number of bytes remaining in the transfer. If the number is
0, the transfer is complete, and the monitor returns to the
idle loop. If the number of bytes remaining to be copied is
less than 4 prior to a longword transfer, longword transfers
are no longer used, and control passes to monitor code
that finishes the remaining bytes (3, 2 or 1) of the
transaction.

Displaying Target
Memory

a. If 3 bytes remain, a word transfer followed by a byte
transfer is executed.

b. If 2 bytes remain, a single word is transferred.

c. If a single byte remains, a byte is transferred. This
monitor function is summarized below.

Number of Bytes Transfer Description
Remaining

4 a. Copy a longword
b. Increment target address by 4
c. Return to monitor idle loop

3 a. Copy a word
b. Increment target address by 2
c. Copy a byte
d. Increment target address by 1
e. Return to monitor idle loop

,., a. Copy a word ...
b. Increment target address by 2
c. Return to monitor idle loop

1 a. Copy a byte
b. Increment target address by 1
c. Return to monitor idle loop

0 a. Return to monitor idle loop

When you execute a display memory command with an address
range mapped to target system memory, the emulation monitor
reads the specified areas of target memory. Then it copies the
memory locations to an internal monitor buffer for transfer to the
host computer. This process is as follows:

1. The host computer initiates a break to the monitor (level 7
interrupt).

2. The emulation monitor enters the idle loop, waiting for a
host command. The idle loop is at monitor program
symbol MONITOR_LOOP.

How Emulation Works 10·13

I

I

10-14 How Emulatlon Works

3. The host computer detects that the 68030 CPU is
executing in the emulation monitor. If the CPU is not
executing in the monitor, the host issues the error message
"cannot break into monitor."

4. The host computer writes the memory transfer parameters
to designated monitor locations listed as follows:

Description Monitor Location

Number of bytes to read PARMl

Starting address of target system read PARM2

Function codes for target system read PARM3

Starting address of monitor data PARM4
buffer write

Function codes for monitor data PARMS
buffer write

Access mode PARM6

The monitor data buffer begins at monitor data symbol
MON_XFR_BUF and is always referenced with the
CPU_SPACE function code for the foreground monitor.

5. The host writes the "read user memory" command
(8003H) to '.\10NITOR_ CONTROL. The monitor exits the
idle loop and begins execution at monitor program symbol
COPY.

6. The monitor sets up the transfer according to the six
parameters listed above. Then it copies target system
memory values to the monitor data buffer using the
algorithm described in the previous section. See the
emulation monitor listing for details. Look at the monitor
code following monitor program symbol COPY.

Copying from Target
System Memory

Modifying Target
Memory

7. The host computer detects that the transfer has completed
by observing a value of OOOOH in MONITOR_ CONTROL.
The host then reads and displays the information in the
monitor data buffer. If the display memory command
requested more data bytes than the monitor transfer buffer
can hold, the host computer sets up a new transfer for the
remaining information by repeating the steps beginning
with step 4.

8. The host computer initiates a return (RTE) to the user
program from the monitor by writing the "exit monitor"
command (8001H) to MONITOR_ CONTROL. This
operation does not occur if the display memory command
was issued while executing in the emulation monitor.

The algorithm for copying data from target memory is identical
with that used when displaying target memory.

When you execute a modify memory command with an address
mapped to target system memory, the emulation monitor writes to
the specified areas of target memory, copying data from the
emulation monitor data buffer. The data in the emulation monitor
buffer is put there by the host computer. The process for modifying
target memory is as follows:

1. The host computer initiates a break to the emulation
monitor (a level 7 interrupt).

2. The monitor enters the idle loop, waiting for a command
from the host computer. The idle loop is at monitor
program symbol MONITOR_LOOP.

3. The host computer detects that the 68030 CPU is
executing in the emulation monitor. If the CPU is not
executing in the monitor, the host issues the error message
"cannot break into monitor."

4. The host writes the memory transfer parameters to the
designated monitor P ARMl through P ARM6.

How Emulation Works 10·15

I

I
Copying to Target

System Memory

Displaying the
CPU Registers

10·16 How Emulation Works

5. The host writes the "write user memory" command
(8004H) to MONITOR_ CONTROL. This causes the
monitor to exit the idle loop and begin execution at
monitor program symbol COPY.

6. The monitor sets up the transfer according to the six
· parameters listed above. Then it copies monitor data

buffer values to the target system memory using the target
memory transfer algorithm described previously. See the
emulation monitor listing for additional details. Look at
the monitor code following monitor program symbol
COPY.

7. The host determines that the transfer has completed by
observing a value ofOOOOH in MONITOR_ CONTROL. If
the modify memory command supplied more data bytes
than could be held by the monitor transfer buffer, the host
sets up a new transfer for the remaining information by
repeating the steps beginning with step 4.

8. The host initiates a return (RTE) to the user program "· .~
from the monitor by writing the "exit monitor" command ~
(8001H) to MONITOR_ CONTROL. This does not occur if
the modify memory command was issued while executing
in the emulation monitor.

The algorithm for copying data to target system memory is
identical with that used when modifying target memory.

When you execute a display registers cpu command, the following
algorithm is executed:

1. The host computer initiates a break to the monitor (a level
7 interrupt). "'111

2. The emulation monitor enters the idle loop, waiting for a
command from the host computer. The idle loop is at
monitor program symbol MONITOR_LOOP.

Modifying the
CPU Registers

3. The host detects that the 68030 CPU is executing in the
emulation monitor. If the CPU is not executing in the
monitor, the host issues the error message "cannot break
into monitor." The "are_you_there?" function is used to
see whether the monitor is executing.

4. The host reads and displays the register image save area
that was constructed on entry into the monitor. (This is the
monitor data area starting with symbol PCH and ending
with DFCT.)

5. The host initiates a return (RTE) to the user program
from the emulation monitor by writing the "exit monitor"
command (8001H) to MONITOR_ CONTROL. This does
not occur if the display registers cpu command was issued
while executing in the emulation monitor.

When you execute a modify registers cpu <regname> to <value>
command, the following algorithm is executed:

1. The host computer initiates a break to the emulation
monitor (a level 7 interrupt).

2. The monitor enters the idle loop, waiting for a command
from the host computer. The idle loop is at monitor
program symbol MONITOR_LOOP.

3. The host detects that the 68030 CPU is executing in the
monitor. If the CPU is not executing in the monitor, the
host issues the error message "cannot break into monitor."
The "are_you_there?" function is used to see whether the
monitor is executing.

4. The host writes the modified register value to the
corresponding location in the register image save area
constructed on entry to the monitor. (This is the monitor
data area starting with symbol PCH and ending with
DFCT.)

How Emulation Works 10·17

I

I

10·18 How Emulatlon Works

5. The host initiates a return (RTE) to the user program
from the monitor by writing the "exit monitor" command
(8001H) to MONITOR_ CONTROL. This operation does
not occur if the modify registers cpu command was issued
while the CPU was executing in the monitor.

6. When exiting the monitor, the register image save area is
read to reload all CPU registers with their original values
on initial entry to the monitor (see monitor program
symbol RTN3). Since the modify registers command
changes values in the register image save area, these new
values are loaded in the CPU registers on exit from the
monitor.

A

Emulation Error Messages

68030 Emulation
Error Messages

Attempt to read
guarded memory,

addr = XXXX

Attempt to write
guarded memory,

addr = XXXX

This appendix lists the 68030 emulator error messages with
descriptions of the error and information on how to correct the
error, when appropriate. This list describes the most serious
emulation errors that you may encounter. The messages are in
alphabetical order.

The processor tried to read a memory location mapped as
"guarded." The offending address is displayed in the XXXX field.

The processor tried to modify a memory location mapped as
"guarded." The offending address is displayed in the XXXX field.

cannot break into The host expects to find the CPU executing the monitor, but the
monitor "are_you_there?" function shows otherwise. This message occurs

after issuing a command that normally causes a break to the
monitor.

If SUPERVISOR_PROG and SUPERVISOR_DAT A areas are
not overlaid for the emulation monitor, the ·'are_you_there?"
function cannot function properly, resulting in this error message.
If function codes are not in use, mapping overlays are not required.

To find the problem, define an analysis trace to trigger on the
acknowledge cycle for the level 7 interrupt:

trace trigger_on a= Offffffffh s= fcode
CPU SPACE

Error Messages A·1

I

I Could not disable
breakpoint at

address XXXX

A-2 Error Messages

If the analyzer does not trigger, then it is likely that no level 7
interrupt was generated by the emulator. Check that the "Enable
emulator use of INT7?" configuration question has been answered
"yes." If so, a hardware error has occurred or the CPU is in a Reset,
halt or DMA state. Then the CPU will not respond to the level 7 """1111
interrupt immediately.

The trace list should show an emulator generated jam cycle.
MONITOR_ENTRY should be the address supplied by these
cycles. Compare the trace list of the monitor entry point to a
monitor listing. Ensure that the monitor has not been
inadvertently overwritten. Be sure that the monitor area is overlaid
with SUPERVISOR DATA and SUPERVISOR PROGRAM - -
space (not necessary if function codes are turned off).

Check to see that the monitor enters, and stays in the monitor idle
loop. If interrupts are enabled in the monitor, an external interrupt
routine may be exiting the monitor and not returning properly. Or,
ifthere are frequent interrupts, the "are_you_there'?" function may
be timing out.

Next, define a trigger on the "are_you_there?" monitor command:

trace trigger_on a= MONITOR_CONTROL d=
8000xxxxH s= access READ

The address and data specifications may differ, depending on the
address of MONITOR_ CONTROL and the memory system's
width.

Ensure that the "are_you_there?" function in the monitor
(ARE_ THERE) is functioning properly by observing the trace
after capturing the condition where MONITOR_ CONTROL is
read as 8000H. Compare this trace to the monitor listing.

The host tried to clear a breakpoint in target system memory, but
the emulator could not break to the monitor to clear the
breakpoint.

Could not enable
breakpoint at

address XXXX

monitor did not
respond to exit

request

The host tried to set a breakpoint in target system memory, but the
emulator could not break into the monitor to set the breakpoint.
This message also occurs when attempting to set a breakpoint in
target ROM, but does not occur when setting a breakpoint in
emulation RAM or ROM. Trying to set a breakpoint in a guarded
area of memory also will cause this error message.

The host expected to find the CPU executing somewhere other
than in the monitor, but the "are_you_there" monitor function
shows otherwise. This message occurs after issuing a command that
causes a return to the user program from the monitor. (For
example: display registers while the user program is executing, or
"run" while in the monitor, and so on).

IfSUPERVISOR_PROG and SUPERVISOR_DATAareas are
not overlaid for the emulation monitor, the "are_you_there?"
function cannot function properly, resulting in this error message.
If function codes are not in use, mapping overlays are not required.

To find the problem, define a trace to trigger on the ''exit monitor"
command. This can be done with the following trace specification:

trace trigger_on a= MONITOR_CONTROL
d= SOOlxxxxH s= access READ

Note that the address and data specifications may differ. depending
on the address of MONITOR_ CONTROL, and the width of the
memory system being referenced.

If the monitor is not executing (in an interrupt routine or
elsewhere) at the time of an "exit monitor" command, the
command cannot be recognized. This error message is displayed
after a timeout.

Observe the exit mechanism from the monitor, and compare the
trace to the monitor listing. Be certain that the monitor has not
been inadvertently overwritten.

Once the monitor is exited, make sure that the user program
executes properly. If the user program returns to the monitor
immediately after the "exit monitor" command is issued, this
message appears.

Error Messages A·3

I

I

No breakpoint exists
at address XXXX

(no termination)
message in tracelist

no memory cycles

You tried to clear a breakpoint at an address for which no
breakpoint was previously specified. The emulation system is only
aware of breakpoints set by the modify software_breakpoints set ...
command. If you used a modify memory ... command to set the
breakpoint, or if the breakpoint was in the absolute code loaded ""1lfl
into the emulator, you can't clear such breakpoints using modify
software_breakpoints clear ... commands.

A particular CPU cycle was terminated by LBERR or LHAL T
instead of the usual termination by DSACKs or STERM.

This message also can be a clue that the target system is "iolating
the MC68030 specification that specifies that the DSACK signals
must not be negated before address strobe is negated by the CPU.
This is the case because the analyzer uses a derivative of address
strobe as an analysis clock. If DSACKs are high prior to the
low-to-high transition of address strobe, a "no DSACK" message
can result.

The emulator has not received a low-to-high or high-to-low """""'
transition on the address strobe for at least 25-30 ms. This message
most often appears when executing from cache, if there are no
external cycles for long periods of time.

Any de"ice that drives address strobe will inhibit the message,
including the emulator 68030, DMA devices, and coprocessors. For
example, if a DMA mechanism does not drive address strobe, this
message may appear after the specified timeout. (Note that bus

. cycles where address strobe is not driven cannot be captured by the
analyzer.)

This message is simply a warning that address strobes are
infrequent.

Reset (with capital The CPU is being reset by the emulator.
"R")

reset (with lower case
"r")

A-4 Error Messages

The CPU is being reset by target system hardware.

running

running in monitor

slow dev at a= XXXX:
(VY)

The emulator is running in a user program.

The emulator is running in the monitor.

The CPU is trying to run a bus cycle, but the cycle has not
completed after approximately 25 ms. This means that although
the CPU asserted address strobe (set it low), the addressed memory
(1/0 device, etc.) has not yet returned DSACKs, STERM, BERR,
and/or HALT as appropriate.

The XXXX field above is the address of the attempted cycle, and
the YY field is the function code applied to the cycle according to
the following table:

YY Field Value Meaning

SD Supervisor Data

SP Supervisor Program

UD User Data

UP User Program

RO Reserved Address Space 0

R3 Reserved Address Space 3

R4 Reserved Address Space 4

cs CPU Space

Note that this message is simply a warning that the current cycle is I
taking an unusually long time to complete.

Error Messages A·S

I

SRU Error
Messages

A·6 Error Messages

See the chapter titled "Using SRU" in the HP 64000-UX System
User's Guide for information on error and warning messages
generated during the SRU build process.

B

Timing Comparisons

Introduction This appendix contains tables that list:

• Timing comparisons between the MC68030 and the HP
64430 emulator.

• DC electrical specifications for the HP 64430.

MC68030/HP 64430 Timing Comparisons

13.5 AC ELECTRICAL SPECIFICATIONS -- CLOCK INPUT

Num Characteristic 33.33 MHz15 HP64430 Unit

Min Max Min Max

Frequency of 0.E_eration 20 33 20 33 Mhz

1 Cycle Time 30 80 30 80 ns

2,3 Clock Pulse Width 14 66 14 66 ns

4,5 Rise and Fall Times --- 3 --- 3 ns

MC68030 electrical specifications reprinted courtesy Motorola, Inc.

Timing Comparisons B·1

I

MC68030/HP 64430 Timing Comparisons

13.6 AC ELECTRICAL SPECIFICATIONS -- READ AND WRITE CYCLES

(Vee= 5.0 Vdc +/- 5~; GND = 0 Vdc; T.\ = 0 to 70 C)

Num Characteristic 33.33 MHz15 HP64430 Unit

Min Max Min Max
--

6 Clock High to FC, Size, RMC, CI OUT Address Valid 0 14 0 14 ns
Clock High to !PEND Valid 0 14 0 24 ns

6A Clock High to ECS, OCS Asserted 0 12 0 15 ns

--
6B FC, Size, RMC, CIOUT Address Valid to Negating 3 --- 3 --- ns

ECS --
!PEND Valid to Negating ECS 3 --- -1 --- ns

--
7 Clock High to FC, Size, RMC, CI OUT, Address, Data 0 30 0 30 ns

High Impedance
--

8 Clock High to FC, Size, RMC, !PEND, CIOUT, 0 --- 0 --- ns
Address Invalid

--
9 Clock Low to AS, DS, CBREQ Asserted 2 10 2 15 ns

9A1 - -
AS to DS Assertion Skew (Read) -8 8 -8 8 ns

9B14 - -
AS Asserted to DS Asserted (Write) 22 --- 22 --- ns
--

10 ECS Width Asserted 8 --- 7 --- ns
--

lOA OCS Width Asserted 8 --- 7 --- ns

10B7

ECS, OCS Width Negated 5 --- 5 --- ns

-- -
11 FC, Size..i.__BMC, CIOUT, Address Valid to AS Asserted

(and DS Asserted, Read) _ 5 --- 5 --- ns

I
IP END to AS Asserted (and DS Asserted, Read) 5 --- -1 --- ns

--
12 Clock Low to AS, DS, CBREQ Negated 0 10 0 15 ns

12A Clock Low to ECS/OCS Negated 0 15 0 16 ns

-- --
13 AS, DS Negated to FC, Size, RMC, CIOUT, Address 5 --- 5 --- ns

Invalid

8·2 Timing Comparisons

MC68030/HP 64430 Timing Comparisons

13.6 AC ELECTRICAL SPECIFICATIONS -- READ AND WRITE CYCLES

(Vee= 5.0 Vdc +/- 5%; GND = 0 Vdc; TA= 0 to 70 C)

Num Characteristic 33.33 MHz15 HP64430 Unit

Min Max Min Max
- -

14 AS (and DS, Read) Width Asserted (Asynchronous 45 --- 43 --- ns
Cycle)

14A11
-
DS Width Asserted. Write 23 --- 21 --- ns
- -

14B AS (and DS Read) Width Asserted (Synchronous 23 --- 21 --- ns
Cycle)
--

15 AS. DS Width Negated 23 --- 21 --- ns

15A8 - -
DS Negated to AS Asserted 18 --- 18 --- ns

-- ---
16 Clock High to AS, DS, R1W, DBEN, CBREQ High --- 30 --- 30 ns

Impedance
-- -

17 AS, DS Negated to R1W Invalid 5 --- 3 --- ns
-

18 Clock High to R;W High 0 15 0 15 ns
-

20 Clock High to R1W Low 0 15 0 15 ns

216 - -
R;W High to AS Asserted 5 --- 5 --- ns

..,..,6 - -.... R;W Low to DS Asserted (Write) 35 --- 35 --- ns

23 Clock High to Data Out Valid --- 14 --- 19 ns
-

24 Data Out Valid to Negating Edge of AS 3 --- 3 --- ns

256.ll --
AS, DS Negated to Data Out Invalid 5 --- 5 --- ns

~5A9.ll - --
DS '.\legated to DBEN Negated (Write) 5 --- 5 --- ns

266.11 -
Data Out Valid to DS Asserted (Write) 5 --- 5 --- ns

27 Data-In Valid to Clock Low (Synchronous Setup) 1 --- 6 --- ns I ----
27A Late BERR, HALT Asserted to Clock Low (Setup) 3 --- 10 --- ns

Timing Comparisons B-3

MC68030/HP 64430 Timing Comparisons

13.6 AC ELECTRICAL SPECIFICATIONS -- READ AND WRITE CYCLES

(Vee= 5.0 Vdc +/- 5%; GND = 0 Vdc; TA= 0 to 70 C)

Num Characteristic 33.33 MHz15 HP 64430 Unit

Min Max Min Max
-- ------2812 AS, DS Negated to DSACKx, BERR, HALT, A VEC 0 30 0 18 ns
Negated (Asynchronous Hold)

28A12 Clock Low to DSACKx, BERR, HALT, A VEC 6 50 6 43 ns

Negated (Synchronous Hold)

2912 -
DS Negated to Data-In Invalid (As}nchronous Hold) 0 --- 0 --- ns

29A12 -
DS Negated to Data-In High Impedance --- 30 --- 27 ns

3012 Clock Low to Data-In Invalid (Synchronous Hold) 6 --- 6 --- ns

30A12 Clock Low to Data-In High Impedance (Read followed --- 45 --- 35 ns
by Write)

,.,
31"' DSACKx Asserted to Data-In Valid (As}nchronous --- 20 --- 20 ns

Data Setup)

31A3 DSACKx Asserted to DSACKx Valid (Skew) --- 5 --- 5 ns

32 RESET Input Transition Time --- 1.5 --- 1.5 Cl ks
-

33 Clock Low to BG Asserted 0 15 0 24 ns
-

34 Clock Low to BG Negated 0 15 0 24 ns
- - --

35 BR Asserted to BG Asserted (RMC Not Asserted) 1.5 3.5 1.5 3.5 Cl ks
-

37 BGACKAsserted to BG Negated 1.5 3.5 1.5 3.5 Cl ks

I
-

37A BG ACK Asserted to BR Negated 0 1.5 0 1.5 Cl ks

396
-
BG Width Negated 45 --- 43 --- ns
-

39A BG Width Asserted 45 --- 43 --- ns
--

40 Clock High to DBEN Asserted (Read) 0 18 0 19 ns
--

41 Clock Low to DBEN Negated (Read) 0 18 0 19 ns

8·4 Timing Comparisons

MC68030/HP 64430 Timing Comparisons

13.6 AC ELECTRICAL SPECIFICATIONS -- READ AND WRITE CYCLES

(Vee= 5.0 Vdc +/- 5%; GND = 0 Vdc; TA= 0 to 70 C)

Num Characteristic 33.33 MHz15 HP64430 Unit

Min Max Min Max
--

42 Clock Low to DBEN Asserted (Write) 0 18 0 19 ns
--

43 Clock High to DBEN Negated (Write) 0 18 0 19 ns
- --

44 R/\V Low to DBEN Asserted (Write) 5 --- 5 --- ns

455
--
DBEN Width Asserted (Asynchronous Read) 30 --- 28 --- ns
DBEN Width Asserted (Asynchronous Write) 60 --- 58 --- ns

459
--
DBEN Width Asserted (Synchronous Read) 5 --- 5 --- ns
DBEN Width Asserted (Synchronous Write) 30 --- 28 --- ns

-
46 R/W Width Asserted (As~nchronous Write or Read) 75 --- 75 --- ns

-
46A R;W Width Asserted (Synchronous Write or Read) 45 --- 45 --- ns

47A Asvnchronous Input Setup Time (HALT, BERR, "') .. --- 9 --- ns

DSACKx) --
Asynchronous Input Setup Time (IPLx) "') .. --- 12 --- ns

47B Asynchronous Input Hold Time from Clock Low 6 --- 6· --- ns

484 DSACKx Asserted to BERR, HALT Asserted --- 18 --- 16 ns

53 Data Out Hold from Clock High "') .. --- 2 --- ns
-

55 R/W Asserted to Data Bus Impedance Change 15 --- 12 --- ns

56 RESET Pulse Width (Reset Instruction) 512 --- 512 --- Cl ks
-- --

57 BERR Negated to HALT Negated (Rerun) 0 --- "') --- ns ..
5310 BG ACK Negated to Bus Driven 1 --- 1 --- Clks

5910 -
BG Negated to Bus Driven 1 --- 1 --- Cl ks

6013 Synchronous Input Valid to Clock High (Setup Time) 2 --- 4 --- ns I
61 13 Clock High to Synchronous Input Invalid (Hold Time) 6 --- 6 --- ns

Timing Comparisons B·5

I

MC68030/HP 64430 Timing Comparisons

13.6 AC ELECTRICAL SPECIFICATIONS -- READ AND WRITE CYCLES

(Vee= 5.0 Vdc +/- 5%; GND = 0 Vdc; TA= 0 to 70 C)

Num Characteristic 33.33 MHz15 HP64430 Unit

Min Max Min l\fax

62 Clock Low to STATUS, REFILL Asserted 0 15 0 25 ns

63 Clock Low to STATUS, REFILL Negated 0 15 0 25 ns

MC68030 electrical specifications reprinted courtesy Motorola, Inc.

8·6 Timing Comparisons

NOTES:

1. This number can be reduced to 5 nanoseconds if strobes
have equal loads.

2. If the asynchronous setup time (#47A) requirements are
satisfied, the DSACKx low to data setup time (#31) and
DSACKx low to BERR low setup time (#48) can be
ignored. The data must only satisfy the data-in to clock low ~. Jj
setup time (#27) for the following clock cycle and BERR ~
must only satisfy the late BERR low to clock low setup
time (#27 A) for the following clock cycle.

3. This parameter specifies the maximum allowable skew
between DSACKO to DSACKl asserted or DSACKl to
DSACKO asserted; specification #47A must be met by
DSACKOorDSACKl.

4. This specification applies to the first DSACKx signal
asserted. In the absence of DSACKx, BERR is an
asynchronous input using the asynchronous input setup
time (#47A).

5. DBEN may stay asserted on consecutive write cycles.
6. The minimum values must be met to guarante~oper

operation. If this maximum value is exceeded, BG may be
reasserted.

7. This specification indicates the minimum high time for
ECS and OCS in the event of an internal cache hit
followed immediately by a cache miss or operand cycle.

8. This specification guarantees operation with the
MC68881!MC68882, which specifies a minimum time for
DS negated to AS asserted (specification #13A in the

~
Motorola MC68881/MC68882 User's Manual). Without
this specification, incorrect interpretation of specifications
#9A and #15 would indicate that the MC68030 does not
meet the MC6888l;MC68882 requirements.

9. This specification allows a system designer to guarantee
data hold times on the output side of data buffers that have
output enable signals generated with DBEN. The timing
on DBEN precludes its use for synchronous read cycles
with no wait states.

10. These specifications allow system designers to guarantee
that an alternate bus master has stopped driving the bus
when the MC68030 regains control of the bus after an
arbitration sequence.

11. DS will not be asserted for synchronous write cycles with
no wait states.

12. These hold times are specified with respect to strobes
(asynchronous) and with respect to the clock

\...,, (synchronous). The designer is free to use either hold time.
13. Synchronous inputs must meet specifications #60 and #61

with stable logic levels for all rising edges of the clock.
These values are specified relative to the high level of the
rising clock edge.

14. This specification allows system designers to qualify the CS
signal of an MC68881/MC68882 with AS (allowing 7ns for
a gate delay) and still meet the CS to DS setup time
requirement (specification 88) of the MC68881/MC68882.

15. The clock signal used during test has 5ns of rise time and
5ns of fall time. For system implementations that have less
clock rise and fall times, the clock pulse width minimum
should be commensurately longer so that: system
(t2+(t4+ts/2)) is =or greater than minimum ti/2 and
system (t3+(t4+ts/2)) is =or greater than minimum ti/2.

I ~

Timing Comparisons B· 7

' HP 64430 DC Electrical Specifications

(Vee= 5.0 Vdc +/- 5o/c; GND = 0 Vdc; TA= 0 to 70 C)

Characteristic Symbol Min Max Unit

Input High Voltage Vm 2.0 Vee v

Input Low Voltage VrL -0.5 0.8 v
- -- --

Input Leakage BR, BGACK, IPLx, MMUDIS, CDIS, Iin -2.5 2.5 uA
Current

GND = or < Vin =
or< VCC

Input High Current __ CBACK, CIIN, STERM Im --- 0 uA
BERR, A VEC, DSACKx HAL_I --- 25

CLK,RESET --- 50

Input Low Current RESET, CBACK. CIIN, STERM lrL --- -1.4 mA
CLK, BERR, A VEC, DSACKx, HALT --- -0.25
-- -----

Output High Voltage AO-A31, AS, BG, DO-D31, DBEN, DS. ECS VoH 2.4 --- v
loH = -400uA R1W, STATUS, REFILL, !PEND, OCS. RMC

SIZO-SIZl, FCO-FC2. CBREQ, CIOUT

Output Low Voltage VoL v
loL = 2.5mA AO-A31, FCO-FC2, SIZO-SIZl --- 0.5
loL = 3.2 mA BGJ?~ --- 0.5
loL = 4.5mA _CBREQ, R;W R~ --- 0.5
IoL = 5.3 mA AS. DS, DBEN, IPENJ2 --- 0.5
loL = 2.0 mA STATUS, REFILL, CIOUT, ECS OC_§ --- 0.5
IoL = 9.3 mA RESET --- 0.5

Power Dissipation TA=OC PD --- 0 w
TA= 70 q --- 0

I
Capacitance (VIN = OV, TA = 25 C, f = lMHz) Cin --- 20 pF

Load Capacitance CL --- 100 pF

--- 50

B·S Timing Comparisons

Index

A absolute files, loading, 6-24
accessing the emulation system, 3-9
address range overlays, 4-16
address specification, custom register, 8-3
address translation cache (ATC), flushing, 5.3
analysis with cache enabled, 6-13
analyzer, 6-26. 6-27
analyzer, debugging plug-in failures, 6-26
analyzer, use for debugging, 6-26
are you there function, how it works, 10-1
asterisk in memory display, 3.33

B background, 1-5
background ~onitor, 7-2

. background monitor, defaulting stack pointer for, 4-8
BERR. enabling/disabling, 6-16
BKPT 7 shown in memory display, 3-33
block size, 4-15
blocking target BERR during emulation memory cycles, 4-12
break function, breaking into the monitor, 7-5
break on write to ROM, 1-3
breakpoints, 1-4
bus cycle, 6-26 • 6-27
bus cycle, none for more than 250 milliseconds, 6-27
bus size bit (B), 6-26

C cache control, 6-12
caches, using the, 6-12
card cage access cover, removing the, 2-6
code branches, incorrect, 6-26
command modules, emulation monitor, 7-8
command scanner, 7 -8
comparison of foreground/background monitors, 7-2
configuration file name, 4-32
configuration file, .EA, 2-12
configuration file, .EB. 2-12
configuration file, starting with the default, 6-26

lndex-1

I

I
2-lndex

configuration file, viewing, 6-26
configuration file, what to do after modifying, 2-12
configuration file, incorrect, 6-26
configuration, deMMUer, 4-27
configuration, review, 6-25
configuring simulated I/O, 9-1
connecting the emulator pod to your target system, 2-9
continuing target system interrupts while in the emulation
monitor, 7-15
controlling flow of data and code, 4-13
coprocessor configuration questions, 8-10
coprocessor copy routine, 8-9
coprocessor register buffer, emulation monitor, 8-7
copying from target memory, how it works, 10-15
copying the demonstration programs to your subdirectory, 3-8
copying to target system memory, how it works, 10-16
cpu registers, modifying, how it works, 10-17
custom coprocessor, register set display specification, 8-4
custom coprocessors support, 1-4
custom coprocessors, modifying configuration for, 4-10
custom register address specification, 8-3
custom register format file, 8-2
custom register format file, specifying, 4-10
custom register name specification, 8-4
custom register size specification, 8-3
custom registers, emulation monitor changes, 8-7
customizing the emulation monitor, 7-10

D debugging plug-in failures with analyzer, 6-26
debugging plug-in problems, 6-25
debugging, use status messages, 6-27
default response to emulation configuration questions, 4-2
defaulting stack pointer for background monitor, 4-8
deleting memory map entries, 4-27
deMMUer:

addresses for which it has no translation, 5-3
how it operates, 5-2
how to access the deMMUer configuration display, 5-8
how to turn off, 5-5
how to turn on, 5-5
startup with the emulator, 5-5
turn on/off by setting the analysis mode, 5-6

E

turn on/off using emulation configuration questions, 5-6
what it is, 5-2
when to start, 5-5
when to turn off, 5-4
when to use, 5-3

deMMUer configuration. 4-27
dequeued trace list, how to obtain, 3-31
dequeued trace lists, 3-31
display memory with source _file symbols, 3-20
display of trace list dequeued, how to obtain, 3-31
display source-file command, how to use, 3-12
displaying cpu registers, how it works, 10-16
displaying global symbols, 3-14
displaying local symbols, example, 3-15
displaying memory, 3-19
displaying registers, 3-24
displaying source lines in memory displays, 3-21
displaying target memory, how it works, 10-13
dividing the processor address space, 4-13
DMA enable/disable, 6-16
DMA transfers into emulation memory, 4-30
DMA transfers. enabling, 4-29
DSACK and STERM, interlocking emulation memory and
target, 6-8
DSACK signal problems, open collector drivers on DSACK
line. 6-10
DSACK signal problems, early removal of DSACK signals, 6-10
DSACK signal problems, isolating the problem, 6-11
DSACK signal problems, target system, 6-10
DSACK signals, using, 6-8

.EA configuration file, 2-12

.EA file, 6-26

.EB configuration files, 2-12
emulation configuration, modifying the default, 3-10
emulation features:

custom coprocessors support, l-4
foreground or background monitor, 1-5
function codes, 1-4
memory management, 1-4
out-of-circuit or in-circuit emulation, l-5

emulation memory, 4-16

lndex-3

I

I
4-lndex

emulation memory breakpoints with cache enabled, 6-14
emulation memory display operations, 4-16
emulation memory load operations, 4-16
emulation memory, loading, 3-11
emulation monitor:

foreground or background, 1-5
monitor, 1-5

emulation monitor changes for custom coprocessors, 8-7
emulation monitor description, 7-5
emulation monitor entry point routines, 7-6
emulation monitor functions, enabling, 4-4
emulation monitor memory requirements, 4-16
emulation monitor, coprocessor register buffer, 8-7
emulation monitor, loading, 6-21, 7-19
emulation pod configuration, modifying, 4-28
emulation system components, example system, 3-1
emulation system hardware, installing, 2-5
emulation system, accessing, 3.9
emulation system, preparing, 3-8
emulator, its purpose, 1-1
emulator features:

breakpoints, 1-4
processor reset control, 1-4
register display/modify, 1-3
restrict to real-time runs, 1-2
single-step processor, 1-3

emulator pod cables, connecting to the emulator boards, 2-7
emulator pod, connecting to the target system, 2-9
emulator use of int7, enabling, 4-6
emulator use of software breakpoints, enabling, 4-7
enabling the foreground monitor, 4-9
ending the emulation session, 3.37
ending the mapping session, 4-28
entering mapper blocks, 4-16
entering mapper blocks, syntax, 4-17
entry point routines, emulation monitor, 7-6
error messages, A·l
examples, emulation system used for, 3-1
exception vector table, 7-6
EXCEPTION_ENTRY emulation monitor routine, 7-7

F

executing a software breakpoint, how it works, 10-6
external hardware features of the instrumentation card cage, 2-1

failures, plug-in, 6-26
flush the address translation cache, 5-3
foreground, 1-5
foreground monitor, 7-3
foreground monitor, enabling, 4-9
foreground monitor, interlock or provide termination for, 4-9
function codes, 1-4

G getting started procedure, 3-1
guarded memory access, 4-3

H halt, 6-26

J

L

hardware installation instructions. 2-5
highlighted Next PC instruction in memory, 3-27
how does a simulated interrupt function, 9-5
HP64000 file format, 3-15

I/O operations, 4-16
IEEE-695 file format, 3-17
illegal conditions, 4-3
initializing and configuring your measurement system, 3-4
inspecting the equipment, 2-4
installing boards into the card cage, 2-8
installing emulation system hardware, 2-5
installing hardware. instructions, 2-5
installing software, 2-12
installing software updates, 2-12
instructions on installing hardware, 2-5
interlock the foreground monitor, 4-9
interlocking emulation memory DSACK and STERM and target
DSACK and STERM, 6-8
ipend, enabling target line during emulator breaks, 4-6
isolate problems, 6-25

JSR_ENTRY emulation monitor routine, 7-7

leading zeros, 4-19
linker listing file, example, 7-18
linking the emulation foreground monitor, 7-19
loading emulation memory, 3-11
loading the emulation monitor, 6-21, 7-19

lndex-5

I

I
6-lndex

logical (virtual) address to physical address translation, 5-2
logical format for trace lists, 3-31

M making a subdirectory for your 68030 project, 3-2
mapper blocks, syntax for entering, 4-17
mapping display softkey labels, 4-14
mapping memory, 4-13
memory access timing issues, 6-23
memory default, 4-15
memory display, adding source-file symbols, 3-20
memory displays with source-file code shown, 3-21
memory management, 1-4
memory map definition, 4-15
memory map display entries, 4-14
memory map example, 4-21
memory when using the step function, 3-27
MMU table walks, deMMUer tracking, 5-2
modify default memory, 4-26
modify defined_codes, 4-23
modify memory configuration?, 4-11, 4-29
modifying a memory configuration, 4-11
modifying memory, 3-22
modifying target memory, how it works, 10-15
modifying the cpu registers, how it works, 10-17
modifying the default emulation configuration, 3-10
modifying the emulation monitor exception vector table, 7-11
modifying the emulation monitor to use simulated interrupts, 9-10
modifying the memory map, 4-23
modifying the MON_ALT_BUFFER table, 8-8
modifying the MON_AL T_REGISTERS table, 8-8
monitor (emulation):

background, 7-2
comparison of foreground/background, 7-2
foreground, 7-3

monitor message routine, example, 7-16
MONITOR_ENTRY emulation monitor routine, 7-7
MONITOR_ENTRY, foreground monitor label, 1-3
msinit, 2-12

N name specification, custom register, 8-4
naming the configuration file, 4-32
NMI, 7-5
nosyrnbols, 3-14

0 on-chip cache disabling, 4-31
operational overview, 3-1

P partitioning the processor address space, 4-15
performance, 6-27

R

physical address to logical address translation, 5-2
plug-in failures, 6-26
plug-in problems. debugging, 6-25
pod cable, securing, 2-9
preinstallation inspection, 2·4
preparing the emulation system, 3-8
preparing your program modules, getting started, 3-6
problems, isolate, 6-25
purpose of the emulator, 1-1

real-time runs, 1-2
real-time/nonreal-time run mode, selecting, 4.3
register display/modify, 1·3
register set display specification, custom coprocessor, 8-4
removing the development environment card cage access cover, 2-6
reserved address space, using function codes with, 6-15
reset control, 1-4
RESET_ENTRY emulation monitor routine, 7-7
resetting into the monitor. 4-5, 6-21
restoring the processor interrupt mask. 7-15
restrict to real-time runs. 1-2
restrictions on using simulated I/0, 9-4
restrictions on using simulated interrupts, 9-9
run command after a software breakpoint, how it works, 10-7
run command, how it works, 10-2
run from ... until command, how it works, 10-4
run from ... until command, using, 6-19
run from command, how it works, 10-3
run until command, how it works, 10·4
running from the transfer address, 3-23

lndex-7

I

s

I
T

8-lndex

safety considerations, 1-1, 2-3
securing the pod cable, 2-9
sending messages from the user program to the emulator
display, 7-16
shutdown, 6-26
simulated I/O, configuring, 9-1
simulated I/O, restrictions on using, 9-4
simulated interrupt, how they function, 9-5
simulated interrupts, 9-4
simulated interrupts, modifying the monitor to use, 9-10
simulated interrupts, restrictions on using, 9-9
single stepping with background monitor, how it works, 10-10
single stepping with foreground monitor, how it works, 10-8
single-step processor, 1-3
size specification, custom register, 8-3
software breakpoint instruction number selection, 4-7
software breakpoint, setting, 10-6
software breakpoint, shown in memory display, 3-33
software breakpoints, 1-4, 10-5
software breakpoints, using, 3-32
source lines shown in memory displays, 3-21
source_file display, how to obtain, 3-12
SRU (Symbolic Retrieval Utilities), 3-13, A-6
srubuild, 3-13
stack pointer for background monitor, defaulting, 4-8
starting address of a block boundary, 4-19
status conditions, incorrect, 6-2·6
status messages, use for debugging, 6-27
step function, using, 3-26
stepping through program memory display, 3-27
STERM signals, using, 6-8
SWBK_ENTRY emulation monitor routine, 7-7
symbol handling, 3-13
symbolic debugging, 1-2
symbols, 1-2
symbols, how to add to memory display, 3-20

table search, 5-2
target memory, 4-16
target memory breakpoints with cache enabled, 6-14
target memory display operations, 4-16
target memory load operations, 4-16

target memory transfers, how they work, 10-11
target memory, copying from, how it works, 10-15
target memory, modifying, how it works, 10-15
target system, l·l
target system interface, 6-1
target system memory, copying to, how it works, 10-16
target system program interrupt, 7-5
target system, connecting to the emulator pod, 2·9
terminate the foreground monitor, 4-9
timing issues, memory access, 6-23
trace list dequeuing, example, 3-31
tracing processor activity, 3-29
transfer address, running from, 3-23
translation tables, 5-2
translation, logical (virtual) address to physical address, 5-2
translation, physical address to logical address, 5-2
trigger pulse, 6-27

U unpacking the equipment, 2-4
using breakpoints with caches enabled, 6-13
using simulated I/O, example, 3-35
using the emulation monitor, 6-21
using the emulator, 3-12
using the modify memory map command, 4-23

V vector base register, use of, 6-11

W writing coprocessor copy routines, 8-9

I
lndex-9

Notes

1 O-lndex

F//dl HEWLETT
.:~PACKARD

Hewlett-Packard
Printed in the USA

