
User's Guide

HP 64430
68030 Internal Analysis

HP 64430

68030
Internal Analyzer

User's Guide

Use this manual with the16-Bit and
32-Bit Analysis Reference Manual.

F//'d9 HEWLETT
~~ PACKARO

HP Part No. 64430·97005
Printed in U.S.A.
December 1990

Edition 2

> - ; {'1. -- -~: f (~ ., •.
' . ;!,.

,,,, fi.:>iJ ii
"L'. j t,.

L--

Notice Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or
for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability
of its software on equipment that is not furnished by
Hewlett-Packard.

© Cop~Tight 1990, Hewlett-Packard Company.

This document contains proprietary information, which is
protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to
another language \\-ithout the prior written consent of
Hewlett-Packard Company. The information contained in this
document is subject to change \\-ithout notice.

UNIX is a registered trademark of AT&T in the U.S.A. and in
other countries.

Torx is a registered trademark of Camcar Division of Textron, Inc.

Hewlett-Packard Company
Logic Systems Division
8245 North Union Boulevard
Colorado Springs, CO 80920, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure
by the U.S. Government is subject to restrictions set forth in
subparagraph (C) (1) (ii) of the Rights in Technical Data and
Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA
94304

Printing History

• . , .: ' l ,·) ~.t 'j

;;c~. i:'..iH,, J!.~r

New editions are complete revisions of the manual. The date on
the title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was
issued. Many product updates and fixes do not require manual
changes, and manual corrections may be done without
accompanying product changes. Therefore, do not expect a
one-to-one correspondence between product updates and manual
revisions .

Edition 1 64430-97002,February1990

Edition 2 64430-97005, December 1990

Electromagnetic Interference

What Is
Electromagnetic
Interference?

All types of electronic equipment are potential sources of
unintentional electromagnetic radiation which may cause
interference with licensed communication services. Products which
utilize digital waveforms such as any computing device are
particularly characteristic of this phenomena and use of these
products may require that special care be taken to ensure that
Electromagnetic Interference (EMI) is controlled. Various
government agencies regulate the levels of unintentional spurious
radiation which may be generated by electronic equipment. The
operator of this product should be familiar with the specific
regulatory requirement in effect in his locality.

The HP 64000-UX has been designed and tested to the
requirements of the Federal Republic of Germany VDE 0871
Level A They have been licensed with the German ZZF as Level
A products (FTZ C-112/82. These specifications and the laws of
many other countries require that if emissions from these products
cause harmfull interference with licensed radio communications,
that the operator of the interference source may be required to
cease operation of the product and correct the situation.

Reducing the Risk
Of EMI

lL'I! .. ' ..

1. Ensure that the top cover of the HP 64120A
Instrumentation Cardcage is properly installed and that all ""1JI
screws are tight (do not over tighten).

2. When using a feature set which includes cables that egress
from the chassis slot of the HP 64120A, insure that the
knurled nuts and ferrels, or brackets that ground the cable
shields are clean and tight (Do not overtighten). The
EEPROM Programmer cable has an exposed shield that
must make contact with the cable clamp.

3. During times of infrequent use, disconnect the EEPROM
Programmer and cables from the card cage and the target
system.

4. Use only shielded coaxial cables on the four external BNC
connectors on the rear of the HP 64120A

5. Use only the shielded IMB cable supplied \\'ith the
HP 64120A for connection to additional HP 64120A
Instrumentation Cardcages.

6. Use only shielded cables on the IEEE 488 interface
connector to the host computer.

Reducing
Interference

In the unlikely event that emissions from the HP 64000-UX System
result in electromagnetic interference with other equipment, you
may use the follo\\-ing measures to reduce or eliminate the
interference.

1. If possible, increase the distance between the emulation
system and the susceptible equipment.

2. Rearrange the orientation of the chassis and cables of the
emulation system.

3. Plug the HP 64120A into a separate power outlet from the
one used by the susceptible equipment (the two outlets
should be on different electrical circuits).

4. Plug the HP 64120A into a separate isolation transformer
or power line filter.

You may need to contact your local Hewlett-Packard sales office
for additional suggestions. Also, the U.S.A. Federal
Communications Commission has prepared a booklet entitled How
to Identify and Resolve Radio - 1V Interference Problems which may
be helpful to you. This booklet (stock #004-000-00345-4) may be
purchased from the Superintendent of Documents, U.S.
Government Printing Office, Washington, D.C. 20402 U.S.A.

Manufacturer's
Declarations

U.S.A. Federal
Communications

Commission

Federal Republic of
Germany

I. r••

l .iI'

Warning - This equipment generates, uses, and can radiate radio
frequency energy and if not installed and used in accordance with
the instructions manual, may cause interference to radio
communications. Operation of this equipment in a residential area
is likely to cause interference in which case the user at his own
expense will be required to take whatever measures may be
required to correct the interference.

Wenn Ihr Geraet in der Bundesrepublik Deutschland einschl.
West-Berlin betrieben wird, senden Sie bitte beiliegende Postkarte
ausgefuellt an Ihr zustaendiges Fernmeldeamt.

Safety

Summary of Safe
Procedures

Ground The
Instrument

Do Not Operate In An
Explosive

Atmosphere

Keep Away From Live
Circuits

Do Not Service Or
Adjust Alone

The following general safety precautions must be observed during
all phases of operation, service, and repair of this instrument.
Failure to comply with these precautions or with specific warnings
elsewhere in this manual violates safety standards of design,
manufacture, and intended use of the instrument. Hewlett-Packard
Company assumes no liability for the customer's failure to comply
with these requirements.

To minimize shock hazard, the instrument chassis and cabinet must
be connected to an electrical ground. The instrument is equipped
with a three-conductor ac power cable. The power cable must
either be plugged into an approved three-contact electrical outlet
or used with a three-contact to two-contact adapter with the
grounding wire (green) firmly connected to an electrical ground
(safety ground) at the power outlet. The power jack and mating
plug of the power cable meet International Electrotechnical
Commission (IEC) safety standards.

Do not operate the instrument in the presence of flammable gases
or fumes. Operation of any electrical instrument in such an
environment constitutes a definite safety hazard.

Operating personnel must not remove instrument covers.
Component replacement and internal adjustments must be made
by qualified maintenance personnel. Do not replace components
with the power cable connected. Under certain conditions,
dangerous voltages may exist even with the power cable removed.
To avoid injuries, always disconnect power and discharge circuits
before touching them.

Do not attempt internal service or adjustment unless another
person, capable of rendering first aid and resuscitation, is present.

Do Not Substitute
Parts Or Modify

Instrument

Dangerous Procedure
Warnings

Warning 0

Because of the danger of introducing additional hazards. do not
install substitute parts or perform any unauthorized modification
of the instrument. Return the instrument to a Hewlett-Packard
Sales and Service Office for service and repair to ensure that safety • ,Ji
features are maintained. ..,,,,,

Warnings, such as the example below, precede potentially
dangerous procedures throughout this manual. Instructions
contained in the warnings must be followed.

Dangerous voltages, capable of causing death, are present
in this instrument. Use extreme caution when handling,
testing, and adjusting.

Safety Symbols
Used In Manuals

OR

rh OR _j_

The following is a list of general definitions of safety symbols used
on equipment or in manuals:

Instruction manual symbol: the product is marked with this symbol
when it is necessary for the user to refer to the instruction manual
in order to protect against damage to the instrument.

Indicates dangerous voltage (terminals fed from the interior by
voltage exceeding 1000 volts must be marked with this symbol).

Protective conductor terminal. For protection against electrical
shock in case of a fault. Used with field wiring terminals to indicate
the terminal which must be connected to ground before operating
the equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a
signal common, as well as providing protection against electrical
shock in case of a fault. A terminal marked -with this symbol must
be connected to ground in the manner described in the installation
(operating) manual before operating the equipment.

Frame or chassis terminal. A connection to the frame (chassis) of
the equipment which normally includes all exposed metal
structures.

Alternating current (power line).

Direct current (power line).

Alternating or direct current (power line).

Note

Caution I

Warning

The Note sign denotes important information. It calls your
attention to a procedure, practice, condition, or similar situation
which is essential to highlight.

The Caution sign denotes a hazard. It calls your attention to an
operating procedure, practice, condition, or similar situation,
which, if not correctly performed or adhered to, could result in
damage to or destruction of part or all of the product.

The Warning sign denotes a hazard. It calls your attention to
a procedure, practice, condition or the like, which, If not
correctly performed, could result in injury or death to
personnel.

Using This Manual

Organization

Chapter 1

Chapter 2

Chapter 3

This manual is intended to be used with the 16/32-Bit Internal
Analyzer Reference Manual, which discusses aspects about this
analyzer regardless of where it is installed. The information
provided in this manual discusses information that applies only
when the internal analyzer is installed in an HP 68030
Emulation/Analysis system.

When you do the examples in the 16-/32-Bit Internal Analyzer
Reference Manual, some of the manual display contents may be
different from what you see on screen. The 16-/32-Bit Internal
Analyzer Reference Manual was written using the 68020 to
generate trace lists. Differences between the 68020 and 68030
account for some differences you -will see.

Discusses difficulties you will encounter when tracing activity
generated by the 68030 processor because of its prefetching and its
use of an instruction pipeline. This chapter shows steps you can
take to overcome the difficulties when you are taking a trace, and it
shows you how to simplify the task of reading trace lists of
processor activity.

Discusses problems you will encounter when you try to make
pres tore measurements of the activity generated by the 68030
processor during a program run. This chapter will help you
recognize these problems and overcome them when you are
making prestore measurements.

Shows you how to use status values to qualify your trace
commands, and how to read status information when it's displayed
in your trace lists. An example at the end of this chapter shows you
how status information can be used to obtain a trace list of
processor activity when the 68030 responds to an interrupt.

Chapter 4 Discusses the way the analyzer solves two problems that are
encountered when using 68030 memory management: (1) viewing
the logical-to-physical address mappings performed by the MMU,
and (2) supplying logical addresses (derived by reverse-translating •. ."'111
physical addresses) that the analyzer can use to interpret ~

source-file symbols when performing measurements, and when
showing source-file symbols in trace lists. Read this chapter only if
you are using the MMU of the 68030.

Chapter 5 Shows an example procedure where the 68030 MMU is set up and
the deMMUer is configured to provide analysis in a system using
the memory management capabilities of the 68030 processor.

Chapter 6 Shows you how to obtain and read dequeued trace lists. Normal
trace list dequeuing is discussed, and examples are shown. Finally,
this chapter shows you how to recognize errors in dequeued trace
lists, and how you can correct these errors if they occur.

Chapter 7 Contains two sets of new pages: one to describe the copy MMU
command syntax, and the other to describe the display MMU
command syntax. These new commands support the features that
let you view the details of address mappings when you have
activated the memory-management feature of the 68030.

This chapter also contains a set of replacement pages for the
display trace command, whose syntax is shown in Chapter 15 of the
16-/32-Bit Internal Analyzer Reference Manual. This is the only
command that is different from the commands shown in the
reference manual. The differences in this command syntax are the
additional command tokens used to support trace list dequeuing.

Contents

l Overcoming Problems With Prefetch And Pipeline

What Is Meant By Prefetching And Pipeline?
Reading Prefetch/Pipeline Trace Lists .. .

Unused Prefetches
Fetching Two Instructions In One Cycle
Equivalent Addresses In The Trace List .

Program And Data Fetches In 68030
When To Use The "long_aligned" Feature
Avoiding Triggering, Enabling. Or Disabling On
Unused Prefetches
Using "in_procedure" In Place Of "long_ aligned"

Cache Discussion
Program Cache

Disabling
Burst

Data Cache ..
Analysis Effects

2 Overcoming Problems In Prestore Traces

.1-1

.1-2

.1-3

.1-4

.1-5

.1-6

.1-6

.1-6

.1-7

.1-9

.1-9

.1-9
. 1-10
. 1-10
. 1-11

What Are Prestore Measurements?2-1
Module-Call And Variable-Access Common Problem . . .2-2
Problems When Prestoring Calls To A Program Module .2-4
Prestoring To Find Instructions That Access Variables .2-8

3 The Status Specification

Using Status In Trace Commands
fcode
access .. .
addr mode
cycle_ type .
size
bus_control

Reading Analyzer Status In Trace Lists
Reading Mnemonic Status Values .

.3-1

.3-2

.3-4

.3-4

.3-5

.3-6

.3-7

.3-8

.3-8

Contents·1

j.

' ,.

L

j . ';

tQiiContents

4

Reading Absolute Status Values ...
Example Triggering On Interrupt Status

Logical And Physical Analysis

The Mapping-Tables Problem And Its Solution
The Problem Of Seeing How Addresses Are Mapped ..
How To See The Overall Logical-To-Physical Mappings
For A Root Pointer .
How To See The Table Details For Mapping A Specific
Logical Address
Interpreting The MMU Tables Display
Mapping Using Function Codes
Error Messages Unique To mmu_tables Displays
Troubleshooting INVALID Mappings

The Symbols Problem And Its Solution
The Problem Of Cross Referencing Symbols In Logical
Memory To Addresses In Physical Memory .
When Should I Start The DeMMUer?

Startup With The Emulator
The Emulator Was Running Without The DeMMUer,
And Now I Want To Use It

How To Turn On And Turn Off The DeMMUer
Turn On/Off By Using Emulation Configuration
Questions
Turn On/Off By Setting The Analysis Mode . . .

Description Of The DeMMUer Configuration Display
How To Obtain Information Needed To Configure
The DeMMUer
How To Access The DeMMUer Configuration Display .
How To Enter (Or Delete) A Range Of Addresses For
The DeMMUer To Follow
How To Enter A New Value For The Translation
Control Register
How To Select A Root Pointer Descriptor_ Type
How To Enter Upper Address Bits In The Virtual
Address Start Field
How Does The DeMMUer Work?
When Do I Need To Use The DeMMUer? .. .
When Do I Need To Turn Off The DeMMUer?
Under What Conditions Will The DeMMUer
Fail To Work?

. 3-16

. 3-17

.4-2

.4-2

.4-2

.4-4

.4-4

.4-6

.4-6

.4-8
.. 4-10

. 4-10

. 4-10

. 4-10

. 4-11

. 4-11

. 4-11

. 4-12

. 4-13

. 4-15

. 4-16

. 4-17

. 4-18

. 4-20

. 4-21

. 4-22

.4-23 ~

. 4-23

. 4-24

L

5 Example Procedure Using DeMMUer In Memory Management

The Initial Conditions .5-1
Access The Emulator . .5-2
Turn Off The DeMMUer . .5-2
Turn On The 68030 MMU .5-3
Load The Operating System And Get MMU Information .5-3
Set Up The DeMMUer Configuration .5-4
Viewing The Execution Of "os" .5-7
Load The Application Program . 5-13

6 Dequeued Trace Lists

How To Turn On And Turn Off The Dequeuer .6-1
When Do I Want A Dequeued Trace List? .6-2
What Does A Dequeued Trace List Show? .6-3
Dequeued Trace List Examples . .6-4

Short Jump;Branch Example6-4
Stack Push And Pop Example .6-6
Operands From 8-Bit Memory Example .6-8
Exceptions And Interrupts Example 6-10

Problems You May See When Using The Dequeuer . 6-12
Bus Cycles In The Trace List . . . 6-12
Jumps (JMP and JSR) 6-14
Branch - Was It Taken Or Not? 6-16
Correcting Branches ?TAKEN? In Trace List . 6-17

7 Analyzer Commands

New Pages
Replacement Pages
copyMMU .

Syntax ..
Function .
Examples
Parameters

display MMU
Syntax ..
Function ..
Examples .
Parameters

display trace
Syntax ...

. 7-1

....... 7-1
copyMMU-1
copyMMU-1
copyMMU-1
copyMMU-1
copyMMU-4

. display MMU-1

. display MMU-1

. display MMU-1

. display MMU-1

. display MMU-4

.. display trace-I

. . display trace-1

Conter.ttat3

Index

Illustrations

c4-Contents

Function ..
Examples .
Parameters

. display trace-1

. display trace-1

. display trace-4

Figure 1-1. Pipeline Diagram Of The 68030 1-2
Figure 1-2. Trace List Showing Pipeline And Prefetch .1-3

Figure 2-1. Finding Modules Calling show_discs
Figure 2-2. Error In Which Modules Called
show discs
Figure 2-3. Setup To Avoid Storing Unused
Prefetches .
Figure 2-4. Prestore Module Calls (No Unused
Prefetch)
Figure 2-5. Detecting Who Accessed Variables
Figure 2-6. Trace List Showing Who Accessed
Variables

.2-3

.2-3

.2-5

.2-5

.2-7

.2-7

Figure 3-1. Command Syntax For s = fcode .3-3
Figure 3-2. Command Syntax Fors= access .3-4
Figure 3-3. Command Syntax Fors= addr_mode .3-4
Figure 3-4. Command Syntax Fors= cycle_type .3-5
Figure 3-5. Command Syntax Fors= size3-6
Figure 3-6. Command Syntax Fors= bus_control .3-7
Figure 3-7. Composition Of Trace List Status Display .3-9
Figure 3-8. Details Of Trace List Status Displays . 3-10
Figure 3-9. Setup To Trigger On An Interrupt . 3-17
Figure 3-10. Trace List Showing Trigger On
Interrupt . 3-18

Figure 4-1. Basic Mappings For A Root Pointer
Figure 4-2. How Logical Address 0 Is Mapped .
Figure 4-3. Valid MMU Mappings Using Function
Codes

.4-3 t""'1Jll

.4-4

.4-7

Figure 4-4. Example Of Mapping An Address Using
Fcode .4-7
Figure 4-5. Using mmu_tables To Track Invalid
Mapping
Figure 4-6. Address Mapping Details In Table A
Figure 4-7. DeMMUer Configuration Display

.. 4-9

. .4-9

. 4-13

Figure 5-1. MMU Registers Display5-4
Figure 5-2. DeMMUer Configuration Setup .5-6
Figure 5-3. Trace List Showing Execution Of "os" .5-8
Figure 5-4. Trace List Resynchronized On Line 10 .. 5-9
Figure 5-5. Trace List Resynchronized On Line 20 . 5-10
Figure 5-6. Trace List Res~nchronized On Line 36 . 5-11
Figure 5-7. Trace List Showing First Table Walk . 5-12
Figure 5-8. Trace List Showing Entry To Towers . . 5-14

Figure 6-1. Short Jump Example, Not_Dequeued .6-5
Figure 6-2. Short Jump Example, Dequeued .6-5
Figure 6-3. Stack Push And Pop Example,
Not_Dequeued6-7
Figure 6-4. Stack Push And Pop Example,
Dequeued .6-7
Figure 6-5. Operands From 8-Bit Memory,
Not_Dequeued6-9
Figure 6-6. Operands From 8-Bit Memory,
Dequeued6-9
Figure 6-7. Exceptions And Interrupts,
Not_Dequeued 6-10
Figure 6-8. Exceptions And Interrupts, Dequeued . 6-11
Figure 6-9. Problem Of Bus Cycles In Trace List . 6-13
Figure 6-10. Example Of Bus Cycles Fixed In
Trace List . 6-13
Figure 6-11. Example Of Uncertain Jumps In
Trace List . 6-15
Figure 6-12. Uncertain Jumps Fixed In Trace List . 6-15
Figure 6-13. Example Branches ?Taken? In
Trace List . 6-17
Figure 6-14. Not-Dequeued Trace To Solve
Branch ?Taken? 6-18

Conte~

Tables

6-Contents

Table 3-1. Function Code "fcode" Specifications 3-2
Table 3-2. Definition Of Analyzer Status Bits 3-16

Table 4-1. Key To The MMU TABLES Display . . .4-5
Table 4-2. Definition Of The TC Register
Mnemonics . 4-14

Table 6-1. Shorthand Notation In Dequeued
Trace Lists .6-4
Table 6-2. Notations Following Exceptions
Defined . 6-11

1

Overcoming Problems With Prefetch And
Pipeline

What Is Meant By
Prefetching And
Pipeline?
(See figure 1-1.)

This chapter discusses the difficulties involved with making traces
of activity generated by the 68030 processor because of its
prefetching, and its use of an instruction pipeline. These features
create special problems to overcome when you are trying to take
traces and read trace lists of activity generated by the processor.
This chapter shmvs steps you can take to overcome the problems
when you are taking a trace, and it shows you how to simplify the
task of reading trace lists of processor activity.

This chapter also discusses analysis problems encountered when
the instruction and data caches are enabled and in use.

The 68030 prefetches instructions from memory (that is, it fetches
the instructions before it is ready to execute them). It will prefetch
these instructions from the instruction cache if the instructions are
resident there and the instruction cache is active, or it will prefetch
the instructions from external memory. The instruction stream is
fetched in 32-bit long words. The upper 16 bits normally enter the
pipeline directly while the lower 16 bits are held in the "hold"
register. The hold register is then used as the source for the
pipeline. Sixteen-bit words are decoded and executed while they
are 'Within the instruction pipeline. The pipelined architecture of
the 68030 allows instructions to be loaded, decoded, and executed
simultaneously. This increases the performance of the processor,
but it makes analysis of processor activity difficult because there is
a delay between the time an instruction is fetched (the instruction
appears on the bus) and the time it is executed (the resulting
operand cycles appear on the bus).

Prefetch/Plpellne 1 ·1

I- -I

I ,------------------1 I
I MC 68030 I

I I 16...LJ... _1'. I ' I _j_-v LOAD DECODE -v EXECUTE I

I -v I ' I
3~1.J',. " i> I '

16
I

TT H I : 7 1-v I :
I ~ I :
I HOLD I ' -v

I INSTRUCTION PIPELINE L __________________ J:
I
I

I

~
I

CACHE I

I

I I

L --~

Reading
Prefetch/Pipeline
Trace Lists
(See figure 1-2.)

. 1-2 Prefetch/Plpellne

MEMORY BUS
.,

Figure 1-1. Plpellne Diagram Of The 68030

We are used to reading a trace list that shows an instruction
followed by the activity resulting from execution of that
instruction. We don't see that order in trace lists made from the
68030. Instead, we may see an instruction fetch, then acthity
generated by execution of instructions that were fetched earlier,
then prefetches of instructions to be executed in the future, and
finally, the execution of the instruction of interest (denoted by its
operand cycles).

Figure 1-2 shows the difficulty of reading trace lists made from
processors that prefetch instructions and use an instruction
pipeline. Trace memory line number +0004 contains an
instruction. It requires an add to be performed. Notice that the
resulting operand cycles of the add instruction are not performed
until trace memory line numbers +0007 and +0008. The activity
on lines +0005 and +0006 have nothing to do with the instruction
on line +0004. They are simply instruction prefetches that were

\..,

L

pushed into the pipeline after the instruction on line +0004 was
fetched, and before it was executed.

Unused Prefetches Sometimes, instructions are prefetched and placed in the pipeline,
and never executed at all. For example, this may happen when
there is a branch instruction at the end of a function, just before
the entry to a new function. When the program nears the end of
the function that has the branch instruction, the processor
prefetches the entry to the next function (because of its close
location in memory). When the branch instruction is executed, the
next function is not entered, but instead, execution jumps back to
some point specified by the present function. When the processor
branches, it flushes the content of its pipeline and begins execution
at the "branch-to" address.

The problem the analyzer has with this operation is that it records
the fetch of the entry to the new function because it appeared on
the bus. If your trace specification simply says trigger a trace or
enable a context when this entry address appears, then your trace

Trace List
Label: Address Opcode or status time count
Base: symbols mnemonic w/symbols relative
-0002 move .+00000000 LINK.W A6,#$0000 0.24us
-0001 i:stack+oooo7F40 $000011E8 supr data long wr (ds32) 0.16us
trigger move .+00000004 MOVE.L A2 1 -(A7) 0.20us

~move .+00000006 LEA ($000051BO,PC) 1 A2
+0001 s"'istac'K+00007F3C $7FFFFF60 supr data long wr (ds32) 0.28us
+0002 move .+00000008 $81700000 supr prgm long rd (ds32) 0.20us
+0003 s:stack+00007F38 $FFFEA194 supr data long wr (ds32) 0.28us
+0004 = move .+OOOOOOOE ADDQ.L #1, ($8010,A5) 0.36us
+0005 =-move-.+00000012 JSR ($FE78,PC) 0.56us
+0006 =-move-.+00000016 MOVE.L ($**** 1 A6) 1 -(A7) 0.28us
+0007 toweri.:move num $00000005 supr data long rd (ds32) 0.20us
+0008 towers.:move-num $00000006 supr data long wr (ds32) 0.24us
+0009 show .+00000000 MOVEM.L rm=$3C38,-(A7) 0.28us
+0010 i:stack+oooo7F34 $00001092 supr data long wr (ds32) 0.20us
+0011 -show_ .+00000004 MOVE.L A5,00 O.l6us

STATUS: M68030--Running Trace complete ... R
display trace disassemble from line -number -2

run trace set step display modify end ---ETC--

Figure 1-2. Trace List Showing Plpellne And Prefetch

Prefetch/Plpellne 1 ·3

Fetching Two
Instructions In One

Cycle

1 ·4 Prefetch/Plpellne

will be triggered or your context will be enabled, even though that
new function may not be active.

Figure 1-2 shows an example trace list with an unused prefetch on
line +0006. The "MOVE.L" instruction was prefetched by the • A
processor and placed in the pipeline, but it was never executed. ...,,.,
That's because the instruction that was prefetched before it was a
JSR. When the JSR was executed, it caused the program to jump
to a new address and flush the MOVE.L instruction from the
pipeline. (Note that the MOVE.L instruction contains asterisks in
the trace list because the end of the instruction was not prefetched
before the JSR was executed, and the pipeline was flushed.)

Another performance feature of the 68030 involves the processor's
32-bit data bus and 16-bit instruction format. To maximize data
bus performance, the 68030 always fetches 32-bits of information
when filling its instruction pipeline (figure 1-1). Because 68030
instructions are 16-bit words, the 68030 may fetch two 1-word
instructions in a single bus cycle from a single address.

Equivalent Addresses
In The Trace List

To help when reading the address column of a trace list, the inverse
assembler emits an equivalent address for each instruction it finds
in the low word of a long word. This is done to help you identify
where the instruction resides in program memory. Equivalent
addresses are addresses that never appeared on the address bus.
Equivalent addresses are identified in the trace list by equals signs
(=) that precede them. In figure 1-2, trace memory line numbers
+0004, +0005, and +0006 all show equivalent addresses in their
address column entries. The associated instructions were found in
the low words of the 32-bit long words fetched from program
memory. You cannot trigger or enable/disable directly on
equivalent addresses because they never appear on the emulation
bus. In order to trigger or enable/disable on an equivalent address,
include the "long_ aligned" feature in your trace command.

When a program fetch contains two instructions, the inverse
assembler emits two lines for display in the trace list, one for each
instruction. Refer to the trigger line in figure 1-2. The address of
the second instruction (low word opcode) begins ·with an equals
sign (=xxxxxxxx). This indicates that it is an equivalent address
emitted by the inverse assembler to identify the memory location of
the associated instruction. Notice that no trace line number or
time/state count is shown beside this instruction in the trace list.

Prefetch/Plpellne 1 ·5

Program And Data
Fetches In 68030

When To Use The
11long_aligned11

Feature

Avoiding Triggering,
Enabling, Or

Disabling On Unused
Prefetches

1 ·6 Prefetch/Plpellne

The addressing scheme that the 68030 uses when it addresses
program instructions is different from the one it uses when it
addresses data locations. Because of the differences, you'll need to b.. .JI
use a different approach when composing a trace specification that ..,,.,
is activated on program addresses from the approach you use when
composing a trace specification activated on data addresses.

When the 68030 addresses locations in program memory:

1. It always addresses and fetches 32-bit words. These
addresses are always multiples of 4, ending in Oh, 4h, Sh,
and Ch (except as noted in 3 below).

2. Sixteen-bit instructions may be found in either the high
word or low word (or both) of a 32-bit long word.

3. PC-relative fetches from program space will occur at the
absolute address of the operand.

When the 68030 addresses locations in data memory:

It always places the absolute address of the data location on the
address bus.

The function of "long_ aligned" changes the specified symbolic or
numeric address to the corresponding long-word address by setting
the lower two address bits to 0. Always use long_ aligned with
symbols representing addresses in 32-bit program memory to
ensure that you are specifying an address that will occur on the bus.
If the instruction's address places it in 8-bit or 16-bit memory, you
can ignore the long_aligned feature. Never use the long_aligned
feature with symbols representing addresses in data memory.

The entry address to the next function is always prefetched at the
exit of the function that resides immediately before it in memory
(assuming no padding exits between the two functions). To avoid
triggering a trace or enabling/disabling a context on an unused ..,,.;J
prefetch of a function-entry address, you can use "long_ aligned
<functionname> +6" in your trace command. This will guarantee
that you won't trigger or enable/disable on an unused prefetch of
the entry to your function. If you use this method for enabling and

Using 11in_procedure11

In Place Of
11long_aligned 11

disabling, you will miss up to three words of the function entry, but
these words are typically only stack-frame initialization
instructions.

If you are using the Hewlett-Packard 68030 "C" Compiler and using
its debug option, the compiler will insert padding between each of
the functions (padding is a series of no-op instructions inserted
ahead of each function name). The no-ops will be prefetched at
the end of a function so the specification of"< functionname > +6"
will not be necessary. When using this compiler, you can define
your specifications to be met on the "long_ aligned" address of the
function entry, without concern that the function-entry address
might appear in an unused prefetch.

The default operation of the "in_procedure" feature does much of
the work required to avoid unused prefetches of module entry
addresses. Processor-specific corrections are included in the
"in_procedure" algorithm to ensure that the analyzer will avoid
enabling on unused prefetches of entries to functions.

The debug option of the Hewlett-Packard 68030 "C" Compiler
inserts no-op instructions ahead of function entry and function exit
addresses to ensure that these entries and exits will not appear in
unused prefetches. If you are using this compiler, the prefetch
correction provided by the "in_procedure" algorithm is
unnecessary, and it should be turned off. Turn it off by entering
the following command:

in_procedure_otTset none

If not using the above compiler, the use of the "in_procedure"
algorithm will avoid the problems of enabling and triggering on
unused prefetches of entries to a function, but in_procedure won't
help you prevent disabling a context on an unused prefetch of the
exit of a function. The exit address may also appear in an unused
prefetch. If it does, your context enable period may be ended
prematurely, even though the function on which you enabled is still
active. For debugging purposes, you may wish to add three no-op
instructions (any three instructions that do not affect the
functional results) at the end of your function, just preceding the
exit instruction. In this way, the no-ops will be prefetched instead

Prefetch/Plpellne 1 ·7

1 ·8 Prefetch/Plpellne

of the exit instruction, and you will be able to obtain a full-length
enable period in your context.

In the "towers.c" example program listed in the reference manual
for the internal analyzer, there are two places that contain programi
instructions named "rts_prefetch = O". These are only activated ~
when the towers.c file is compiled on other than the
Hewlett-Packard 68030 "C" Compiler. These are no-op
instructions placed at the end of functions in towers.c. They were
added to overcome a problem that occurred when the 68030
prefetched the exit address of the associated function and caused
the analyzer to prematurely end context-enable periods. These
no-op instructions moved the exit addresses far enough away so
that they were no longer prefetched before execution of branch
instructions. Before "rts_prefetch = O" was used, some activity
generated during execution of the function was missed because the
context enabling on that function would disable when the exit
address appeared in an unused prefetch.

Refer to the manual for the Hewlett-Packard 68030 "C" Compiler
for details of how the debug option affects the compiled code.

Cache Discussion

Program Cache

The 68030 uses two 256-byte caches to store recently used
instructions and data. By keeping recently used instructions and
data in on-chip caches, the 68030 can access these items if they are
used again without having to initiate external bus cycles.

When the 68030 is operating with its caches enabled, analysis of
processor acthity is limited because the analyzer can only trace
activity on the external buses and no bus cycles are performed to
fetch instructions or read data in these caches. Therefore,
transactions involving the caches will either be incomplete or will
not appear at all in the trace lists.

The program cache stores recently used instructions, making them
available to be fetched again if they are needed again. When the
68030 fetches an instruction, it checks to see if that instruction is
already in the program cache, and if it is, it loads the instruction
into its pipeline and does not perform any external bus cycles.

If the analyzer is making a trace at this time, it will miss the cached
instructions because they never appear on the buses.

Dlsabllng

Usually, you will want to disable the on-chip caches of the 68030
when tracing processor execution of a program. In this way, all of
the instructions executed by the 68030 \\ill be fetched on the
processor memory bus and can be captured in the analyzer trace.

There are two ways you can use to disable the on-chip caches. You
may prefer one method over the other, depending on your mode of
operation.

You may want to disable cache activity during program
development so that you can see all of the activity performed by
your processor. To completely disable the on-chip caches, invoke
the emulation configuration questions by entering modify
configuration, and proceed to the following questions:

Modify emulator pod configuration? yes

Disable on-chip cache? yes

Prefetch/Plpellne 1 ·9

Data Cache

1-1 o Prefetch/Plpellne

To re-enable the on-chip caches, invoke the emulation
configuration questions by entering modify configuration, and
proceed to the following questions:

Modify emulator pod configuration? yes

Disable on-chip cache? no

Occasionally, you may want to enable the caches to allow your
program to execute quickly, except when certain portions of the
program are executing. You can go to the memory mapping
portion of the configuration questions and specify that caches ..vill
be disabled only when executing within certain ranges of target
memory. You cannot disable the caches within selected ranges of
emulation memory.

Burst

Bursting is the name assigned to the operation performed by the
68030 when it re..vTites the content of an entire line (four long
words) in the cache. The way the analyzer indicates that a burst has
taken place is to make the address column show the address of the ""· .. ~
long word that was requested by the processor, blank the display in ~
the data column, and show "(burst)" in the status column of the
trace list.

You can disable burst operations within selected address ranges in
target memory by entering the required specifications in your
memory map (emulation memory does not support the bursting
feature). You can also turn off the burst capability for the entire
program by turning off the caches.

The data cache is the same size as the program cache (16 quad long
words). It can be enabled or disabled by the same emulation
configuration question that enables or disables the program cache.
It can be enabled or disabled for selected areas of target system
memory (not emulation memory) by using command options
available in the memory map.

"""'

Analysis Effects

If the data cache is enabled during a trace, and if you are making a
measurement that watches changes in a selected data variable, your
trace will show only the first value read, and the new values that are
written. All of the reads from that data variable will be performed
using the on-chip cache and will not be seen in your trace list
because no bus cycles will occur.

Prefetch/Plpellne 1 ·11

Notes

1•12 Prefetch/Plpellne

2

Overcoming Problems In Prestore Traces

What Are Prestore
Measurements?

This chapter discusses problems that will be encountered when you
try to make pres tore measurements of the activity generated by the
68030 processor during a program run. Pres tore measurements are
used frequently to capture a series of calls to program modules,
and to capture a series of read and/or write accesses to program
variables. Calls to modules and accesses to program variables have
problems in common, and problems that are unique to each kind of
measurement. This chapter will help you recognize these problems
and overcome them when you are making prestore measurements.

Pres tore measurements store events of interest in the trace
memory, and store transactions related to those events in the
pres tore memory. A trace list derived from a pres tore
measurement will show states that are numbered (events of
interest), and states that are identified by "pstore" (related events)
in the trace memory line number column.

The numbered states are executions that met the STORE
qualification. The "pstore" states are events that occurred before
the stored states; they failed to meet the STORE qualification,
but did meet the "pstore" qualification.

When a state meets the STORE qualification. it is stored in the
trace memory, and the present content of the "pstore" register is
stored in the prestore memory. When a trace list is prepared at the
end of a pres tore measurement, each transaction stored in the trace
memory is preceded in the list by the last state that was stored in
the pres tore memory before the store-qualified state was found.

Prestore 2·1

Module-Call And
Variable-Access
Common Problem

2·2 Prestore

Each "pstore" state is expected to be the function call or read/write
instruction that caused the next store-qualified state to occur, but
that's not exactly what gets prestored in a 68030 trace
measurement. The 68030 performs a prefetch from program
memory after it fetches, but before it executes, the function-call or
read/write instruction. The prefetched instruction usually meets
the prestore qualification and replaces the function-call or
read/write instruction in the pres tore memory. When entry to the
function or access of the variable finally occurs (the store-qualified
state), the prestore memory saves the instruction that replaced the
function-call or read/write instruction in the prestore memory.

The actual instruction that made the call or accessed the variable
will rarely appear in a trace list. Even so, by reading the address of
the prestored event, you can identify the code module that was
active when the function was called or the read/write was initiated.
By taking a new trace of activity using specifications such as:

TRIGGERl a= <address of prestored state>

STOREl any_state

you can quickly find the function-call or variable-access instruction.
It will appear in the trace list just before the state that was
prestored in the first measurement.

The remainder of this chapter discusses details you need to know
to overcome the difficulties involved with prestoring calls to a
program module and prestoring to find instructions that access
variables.

Trace Specification

GLOBAL CONTEXT
TRIGGER POSITION
PRE STORE

all activity
center of trace
on s= PROGRAM READ

A/14 D/16 S/15

TRIGGER!

STOREl

a= long_aligned towers.c:ask for number

a= long_aligned towers.c:show discs

COUNTl time

STATUS: M68030--Running Trace complete~~~~~~~~···R,,,,

run trace set step display modify end ---ETC--

Figure 2·1. Finding Modules Calling show_dlscs

Trace List
Label: Address
Base: symbols
trigger PROGl/towers.c:_main.+00000090

=tower:ask for number.+00000000
pstore tower:main.whileLoopl+OOOOOOlA

=tower:main.whileLoopl+OOOOOOlC
+0001 !towers.c:show_discs.+00000000
pstore towers.:_pause.break4+00000004
+0002 ltowers.c:show_di~cs.+00000000
pstore = towers.c: move disc.+00000016
+0003 towers.c:show aiscs.+00000000
pstore towers.:_pause7break4+00000004
+0004 ltowers.c:show_di~cs.+00000000
pstore = towers.c: move disc.+00000016
+0005 towers.c:show discs.+00000000
pstore towers.: pause7break4+00000004
+0006 !towers.c:show discs.+00000000
STATUS: M68030--Running
display trace

run trace set step

Opcode or Status
mnemonic w/symbols

time count
relative
0.56us RTS

LINK.W
JSR
PEA
MOVEM.L
MOVE.L
MOVEM.L
MOVE.L
MOVEM.L
MOVE.L
MOVEM.L
MOVE.L
MOVEM.L
MOVE.L
MOVEM.L

A6,#$****
(A3)
$****

311.ms

rm=$3C38,-(A o
($75,AO,D4.L l.12s
rm=$3C38,-(A o
($****,A6),- 29.6us
rm=$3C38,-(A 0.72us
($75,AO,D4.L l.35s
rm=$3C38,-(A O
($****,A6),- 10.6us
rm=$3C38,-(A 0.72us
($75,AO,D4.L 2.02s
rm=$3C38,-(A o

Trace complete~~~~~~~~···R .••.

display modify end ---ETC--

Figure 2·2. Error In Which Modules Called show_dlscs

Prestore 2·3

Problems When
Prestoring Calls
To A Program
Module

2·4 Prestore

The prestore capability of the analyzer is useful when you want to
obtain a list of the modules that call a subroutine. This list will
show each of the calling modules. You can see how often each , .. Al
calling module makes a call, and observe the order of calls made by ..,,,.,
the calling modules.

Figures 2-1and2-2 make a prestore measurement to find the
modules that call the show_discs function in the towers.c program.
There appear to be at least three modules that call the show_discs
function. Actually, one of the calls shown in the trace list
(towers.c:_pause.break4) is not really a call at all.

The problem of prefetching has affected the content of the trace
list in figure 2-2. The module entry address appeared on the
emulation bus in an unused prefetch during the measurement. The
analyzer stored the unused prefetch of the module entry address,
and prestored the last program read to occur before the unused
prefetch. The trace list shows several entries to the module that
were actually unused prefetches, preceded by opcodes that weren't
even close to module calls. This creates confusion when trying to
read a trace list to find out who is calling the module.

The displays shown in figures 2-3 and 2-4 illustrate a way to get
around this problem of having your trace list filled with
meaningless pres tores preceding unused prefetches. Simply change
your store specification to ensure that module execution has
already begun by storing an address of "long_ aligned
module_entry+6". Now you won't have to worry about storing
unused prefetches of the module entry.

Instead, you'll have to worry about prestoring the first opcode in
the called module, and completely missing the calling module. To
get around this problem, further qualify your pres tore specification
to prevent any opcodes from being stored if they are within the
address range of the called module. In this way, the pres tore
memory will contain the last program read from the calling ~·. Ai
module, and not the first opcode from the called module. You may ..,,,.,
still want to make a new trace to see which opcode in the calling
module actually made the call, but at least you'll know the identity
of the calling module.

Trace Specification A/12 0/16 S/15

GLOBAL CONTEXT
TRIGGER POSITION
PRE STORE

TRIGGERl

STOREl

COUNTl

all activity
center of trace
on a= Ieng aligned not range towers.c:show discs
towers.c:snow_discs end s= PROGRAM READ -

a= long_aligned towers.c:ask_for_number

a= long_aligned towers.c:show discs+6

time

thru

STATUS: M68030--Running
display trace_specification

Trace halted~~~~~~~~~···R .•..

run trace set step display modify end ---ETC--

Figure 2·3. Setup To Avoid Storing Unused Prefetchea

Trace List
Label: Address
Base:
trigger
pstore
+0001
pstore
+0002
pstore
+0003
pstore
+0004
pstore
+0005
pstore
+0006
pstore
+0007
STATUS:
display

run

symbols
PROGl/towers.c:_main.+00000090
tower:main.whileLoopl+OOOOOOlA
towers.c:show discs.+00000004
towers.c: move disc.+00000014
towers.c:show aiscs.+00000004
towers.c: move disc.+00000014
towers.c:show discs.+00000004
towers.c: move disc.+00000014
towers.c:show aiscs.+00000004
towers.c: move disc.+00000014
towers.c:show aiscs.+00000004
towers.c: move disc.+00000014
towers.c:show discs.+00000004
towers.c: move disc.+00000014
towers.c:show discs.+00000004

M68030--Running
trace

trace set step

Opcode or Status time count
mnemonic w/symbols relative

$4E754E56 supr prgm o
$4E934878 supr prgm l.54s
$20000680 supr prgm O
$FE782F2E supr prgm l.12s
$20000680 supr prgm o
$FE782F2E supr prgm l.42s
$20000680 supr prgm O
$FE782F2E supr prgm l.42s
$20000680 supr prgm 0
$FE782F2E supr prgm l.69s
$20000680 supr prgm 0
$FE782F2E supr prgm l.4ls
$20000680 supr prgm O
$FE782F2E supr prgm l.4ls
$20000680 supr prgm o
Trace halted~~~~~~~~~···R ••••

display modify end ---ETC--

Figure 2·4. Preatore Module Calla (No Unused Prefetch)

Preatore 2·5

2·6 Prestore

Figures 2-3 and 2-4 show an example that corrects the problems of
figures 2-1 and 2-2. This time, only valid calls to the show_ discs
module are stored. The store specification ensures that execution
has begun in show_discs. The pres tore specification in this
measurement uses the "not range" capability of the analyzer to "'1JI
prevent any address within the range of the called function from
being stored in the prestore memory. Therefore, the content of the
prestore memory is the last opcode prefetched from the range of
the calling module.

The above algorithm assumes the first few instructions in the
show_discs module are stack-frame initialization instructions, with
no looping involved. If the module is a simple function with no
parameters, and if it also contains looping constructs, this method
will not help.

If you are using the Hewlett-Packard 68030 "C" Compiler with its
debug option, the compiler will insert padding in the form of no-op
instructions ahead of each function name. This makes most of the
preceding precautions unnecessary because only valid calls to the
show_discs module will be stored. You \Vill still need to use the
"not range" capability in your prestore specification to keep the
analyzer from prestoring one of those no-ops.

Trace Specification A/13 D/16

GLOBAL CONTEXT
TRIGGER POSITION
PRE STORE

TRIGGERl

all activity
center of trace
on s= PROGRAM READ

a= long_aligned towers.c:ask_for_number

S/15

STOREl

COUNTl

a= range towers.c:free_level thru towers.c:free_level+3*4-1

time

STATUS:
display

run

M68030--Running
trace_specification

trace set step

Trace complete~~~~~~~~-···R· ,,,

display modify end ---ETC--

Figure 2·5. Detecting Who Accessed Variables

Trace List
Label: Address Opcode or Status
Base: symbols mnemonic w/symbols
pstore towers.:init display.continues ADDQ.L #1,03

=towers.c:init display,forTest6 MOVEQ #$00000003,DO
+0003 itowers.c:_free_level+OOOOOOOB $00000003 supr data long wr (ds32)
pstore init di.functionExitB+00000002 CMPI.B #$5E,AO
+0004 DATATm6802/towers.c:free_level $00000000 supr data long wr (ds32)
pstore towe:remove disc.functionExit5 MOVE.L (A7)+,D3

= remove.functionExit5+00000002 MOVEA.L (A7)+,A2
+0005 DATAlm6802/towers.c:free level $00000000 supr data long wr (ds32)
pstore towers.c:_place disc.+00000028 MOVE.W (AO), -(A6)

=towers.c: place-disc.+0000002A LSL.L #4,DO
+0006 !towers.cl free-level+00000004 $00000003 supr data long rd (ds32)
pstore towers.c: place-disc.+00000044 MOVE.B - (AO) , - (A6)

=towers.c:-place-disc.+00000046 OR.B -(AO) I DO
+0007 ltowers.cl_free=level+00000004 $00000003 supr data long rd (ds32)
pstore tower:place disc.functionExit6 MOVE.L (A7)+,D3
STATUS: M6B030--Running Trace complete ... R
display trace

run trace set step display modify end ---ETC--

Figure 2·6. Trace List Showing Who Accessed Variables

Prestore 2·7

Prestoring To Find
Instructions That
Access Variables

2-8 Prestore

A typical use for the "pres tore" capability is to find out which
functions are accessing variables. You may have a variable that is
getting wrong information written into it during a program run. If
you have several places in your code that write to this variable,
you'd like to see which one of these places is writing the bad data.
A pres tore measurement can quickly give you a trace list showing
the accesses to the variable and the prestored write instructions.

Figures 2-5 and 2-6 show a trace specification and trace list used to
pres tore a series of reads and writes to a range of variables. The
prestore measurement was made using the towers.c program which
appears in the internal analyzer reference manual.

In figure 2-5, the trace specification was set up to store all accesses
in the range of the free _level array. No steps were taken to avoid
capturing unused prefetches of the array variables because these
are data locations. Unused prefetches are only a problem in
program memory.

Figure 2-6 shows the desired reads and writes to the variables. The
pres tore memory failed to retain the actual read and write ""1111
instructions that caused the variables to be accessed. The prestore
memory was affected by processor prefetching. Each prestored
state was one or two instructions after the read or write instruction
that caused the variable to be accessed, but the prestored state did
identify the area of program that accessed the variable. The actual
read or write instructions can easily be seen in a trace list by
making a new "STORE_ ON any_state" trace, if desired, as was
explained earlier in this chapter.

The display width of figure 2-6 was not great enough to include the
time count column because a very wide space was allocated to
display of the address information. To observe the time count
column in such a situation, you can use the Control-f and
Control-g ("' f and "'g) keyboard keys.

3

The Status Specification

Using Status In
Trace Commands

This chapter shows you how to use status values in your trace
commands, and how to read status information in your trace lists.
An example at the end of this chapter shows you how status
information can be used to obtain a trace list showing how the
68030 processes an interrupt.

The entries available for specifying measurement parameters on
status conditions are specific to the 68030 processor. These specific
68030 status conditions are discussed in the following paragraphs.

You can qualify measurement parameters on states found on any
(or all) of the processor status buses and status bits. You can also
qualify measurement parameters on states found on status bits
generated by the emulator. The following pages show details of the
status qualifications available. The status bits are listed in table
3-2, later in this chapter.

If you know which status specifications you want to identify,
you can type in their names without identifying the name of the
associated bus or group where they reside. This will save space in
your command line. The individual specification will be recognized
by the analyzer whether or not you include the name of the status
bus or group where the identifier resides. Example:

trace TRIGGER_ ON s= fcode PROGRAM access READ

is the same as

trace TRIGGER_ ON s= PROGRAM READ

Status Specification 3·1

IDENTIFIER

SPACEO
USER DATA
USER PROG
SPACE3
SPACE4
SUPER DATA
SUPER PROG
CPU SPACE
DATA
PROGRAM

The following paragraphs show you how the analyzer can process
your status specifications. Specifications for the status states can be
entered in any order on the command line.

fcode When you enter a specification involving fcode, your specification ~
must be met by the three bits of the processor function code.
Figure 3-1 shows the command syntax for entry of a function code
specification. Refer to table 3-1 for definitions of the function
codes available.

Table 3·1. Function Code "fcode" Specifications

FC2-FCO CYCLE TYPE

0 Undefined, Reserved
1 User data space
2 User program space
3 Undefined. Reserved
4 Undefined, Reserved
5 Supervisor data space
6 Supervisor program space
7 CPU space

1or5 Either user or supervisor data space
2 or 6 Either user or supervisor program space

3·2 Status Specification

s=

not fcode SPACE©

USER_DATA

USER_PROG

SPACE3

SPACE4

SUPER_DATA

SUPER_PROG

CPU SPACE

DATA

PROGRAM

Figure 3·1. Command Syntax Fors= fcode

Status Specification 3·3

s=

access Figure 3-2 shoW!..!.he command syntax used to enter a specification
involving the R/W and RMC bits of the 68030 processor.

s= ~
not access READ

READ MOD WRITE

WRITE

Figure 3-2. Command Syntax Fors= access

addr _mode Figure 3-3 shows the command syntax used to enter a specification
involving the physical11ogical signal generated by the emulator.

not --- addr mode ~---.1 log

phys

Figure 3·3. Command Syntax Fors= addr_mode

3·4 Status Specification

s=

cycle_type Figure 3-4 shows the command syntax used to enter a specification
involving the BURST signal generated by the emulator, and the
STERM, DSACKO, and DSACKl status bits of the 68030
processor.

not 1---......._ __ cycle_type WIDTH32

WIDTH16

WIDTHS

NO_ TERM

STERM

BURST

Figure 3-4. Command Syntax Fors= cycle_type

Status Specification 3.5

size

s=

Figure 3-5 shows the command syntax used to enter a specification
involving the transfer size bits SIZO and SIZl of the 68030
processor.

not size WORD

BYTE

LONG

Figure 3·5. Command Syntax Fors= size

3·6 Status Specification

s=

bus_control Figure 3-6 shows the command svntax used to enter a specification
invol\ing the bus-control bits TABLESEARCH, RETRY, BERR,
and DMA which are emulator-generated signals. The DMA
transactions are detected by the 68030 emulator. This status
specification allows ANDing several selections because the
bus_control selections represent individual status bits.

not

RETRY

TABLESEARCH

Figure 3-6. Command Syntax Fors= bus_control

Status Specification 3·7

Reading Analyzer
Status In Trace
Lists

Reading Mnemonic
Status Values

3·8 Status Specification

The following paragraphs show you how to read and interpret
processor status in absolute hexadecimal values, and in the
mnemonic display forms presented in the trace lists of the 68030
internal analyzer.

Figures 3-7 and 3-8 \\-ill help you read the content of the trace list
that shows status information in mnemonic form. The following
lines show examples of mnemonic status information:

user data long log wr (ds32)

user prgm long phys rd (ds32)

The above statements are composed of the notations available in
the internal analyzer, as outlined in figure 3-7. The interpretation
of each of these notations is shown in figure 3-8. The two example
lines above were composed from notations in blocks A, C, E, and
G.

BLOCK A

rsvd sp 0
user data BLOCKF
user prgm
addr sp 3 avec
rsvd sp 4

!"--'.
unknown

supr data
BLOCKC BLOCKD BLOCKE r----'

illegal
supr prgm
table search byte wr log

r-1 word r--< rd !"--'. phys
3byte rd_rmc BLOCKG

BLOCKB r---<
long wr_rmc ds32

cpu space dsl6
bkptO ack r-' ds8
cpO < cpreg > cir sync
intl ack burst

1
BLOCKH

berr
retry

Figure 3-7. Composition Of Trace List Status Display

Status Specification 3-9

TABLESEARCH

1
1
1
1
1
1
1
1
0

BLOCK A:

This block shows the results of function-code decoding,
according to the following table:

FC2 FCl FCO Inverse Assembler Display

0 0 0 rsvd sp 0
0 0 1 user data
0 1 0 user prog
0 1 1 addr sp 3
1 0 0 rsvd sp 4
1 0 1 supr data
1 1 0 supr prog
1 1 1 cpu space (see also block B)
x x x table search

BLOCKB:

These displays result from decoding address information during
CPU space cycles (FC2-0 = 1 llB). If none of following are true,
"cpu space <NO.>" appears (where "<NO.>" is determined by
CPU space address bits A19 thru A16).

"bkptO ack"

Displayed when CPU address bits A19-A16 = OOOOB and CPU
function codes FC2-FCO = lllB. The breakpoint number
acknowledged (0-7) is decoded from CPU address bits A4-A2.

Figure 3·8. Details Of Trace List Status Displays

3·1 o Status Specification

tJ

A4-AO

OOOOx
OOOlx
OOlOx
0011x
OlOOx
OlOlx
lOOlx
0111x
lOOxx
1010x
1011x
llOxx
lllxx

BLOCK B: (cont'd)

"cpX <cpreg> cir" (X can be 0 thru 7)

Displayed when CPU address bits A19-A16 = OOlOB, and
CPU function codes FC2-FCO = 111B. This cycle corresponds to
an access to a "coprocessor interface register" (cir). The ID of the
coprocessor being accessed (0-7) is decoded from address bits
15-13. The" <cpreg>" field is decoded from CPU address bits
A4-AO according to the following table:

Inverse Assembler Display Coprocessor Register

cpX response cir Response
cpX control cir Control

cpX save cir Save
cpX restore cir Restore
cpX op word cir Operation Word

cpX command cir Command
cpX rsvdO cir (Reserved)

cpX condition cir Condition
cpX operand cir Operand
cpX reg sel cir Register Select
cpX rsvd 1 cir (Reserved)

cpX inst addr cir Instruction Address
cpX op addr cir Operand Address

"into ack"

Displayed when CPU address bits A19-A16 = llllB and
CPU function codes FC2-FCO = 1 llB. The interrupt number
being acknowledged (0-7) is decoded from CPU address bits
A3-Al.

Figure 3·8. Details Of Trace List Status Displays (Cont'd)

Status Specification 3-11

SIZl

0
1
1
0

RMC

1
1
0
0

BLOCKC:

This block shows the results of decoding the CPU SIZl and SIZO
signals according to the following table:

SIZO Inverse Assembler Display

1 byte
0 word
1 3byte
0 long

BLOCKD:

This block shows the results of decoding the CPU R;W and RMC
signals according to the following table:

R;W Inverse Assembler Display

0 wr
1 rd
0 wr rmc
1 rd rmc

Figure 3·8. Details Of Trace List Status Displays (Cont'd)

3·12 Status Specification

BLOCKE

This block shows the results of decoding the emulator-generated
physical;1ogical status bit according to the following table:

physical/logical

1
0

BLOCKF:

Inverse Assembler Display

phys
log

One of two messages is output by this block when DSACKl,
DSACKO, STERM, and BERR CPU signals and the BURST and
retry signals from the emulator are all l.

"avec"

Autovector is displayed if these signals are observed all high for an
interrupt-acknowledge cycle, indicating that a low value on the
CPU A VEC input was the probable cause for the termination of
this bus cycle.

"unknown"

Displayed if these signals are observed all high for any cycle other
than an interrupt acknowledge cycle. This indicates that the
inverse assembler was unable to determine the cause for
termination of the bus cvcle, and usually is the result of the
DSACKl and DSACKO signals going high prior to the low-to-high
transition of the CPU AS signal. (This is usually a violation of
68030 CPU and/or emulator electrical specification #28.) This
message indicates you may have a hardware timing problem.
Contact the HP Sales/Service Office.

Figure 3·8. Details Of Trace List Status Displays (Cont'd)

Status Specification 3·13

BURST STERM

1 1
1 1
1 1
1 1
1 0
0 0
x 0

BERR

1
0
1

BLOCKG:

This block shows the results of decoding the CPU STERM,
DSACKl, and DSACKO, signals and the emulator-generated
BURST signal according to the following table:

DSACKl DSACKO Inverse Assembler Display

1 1 (see blocks F and H)
1 0 ds8
0 1 ds16
0 0 ds31
1 1 sync
1 1 burst
? ? illegal (if?? is 00, 01, or 10)

When "illegal" appears, more than one of the following signals was
asserted at the time the bus cycle was terminated: DSACKO,
DSACKl, STERM. This is usually a violation of 68030 CPU
and/or emulator electrical specification #28, #60, or #61. This
message indicates you may have a hardware timing problem.
Contact the HP Sales/Service Office.

BLOCKH:

This block shows the results of decoding the emulator-generated
BERR and RETRY signals, according to the following table:

RETRY Inverse Assembler Display

0 retry
1 berr
1 (see blocks F and G)

Figure 3-8. Details Of Trace List Status Displays (Cont'd)

3·14 Status Specification

'""'

In addition to the above status decoding, displayed values for a
particular data cycle are also shown differently, depending on the
size of the data bus, as indicated by the DSACK lines. Although
shown graphically by the display, the data bus width is also
indicated by the presence of "ds32", "ds16" or "ds8." Note the
transfer size is independent of the data bus size.

An STERM cycle transfers 32 bits of data (one long word).

During burst cycles, the 32-bit address of the long word requested
by the processor is shown in the address column (addresses of the
other three long words are not sho'Wn). No data is shown with the
burst address.

Examples:

-
data FC2-FCO SIZl-SIZO R;W DSACKl -DSACKO,

(function codes) (transfer size) (read/write) STERM, BURST
BERR,RETRY

01 supr data long rd (ds8)
0123 supr data long rd (ds16)
01234567 supr data long rd (ds32)
Olxx supr data byte rd (dsl6)
xx23 supr data word rd (dsl6)
Olxxxxxx supr data byte rd (ds32)
xx23xxxx supr data byte rd (ds32)
xxxx45xx supr data byte rd (ds32)
xxxxxx67 supr data byte rd (strm)

supr data long rd (brst)

Figure 3-8. Details Of Trace List Status Displays (Cont'd)

Status Specification 3-15

Reading Absolute
Status Values

When the "display trace absolute" option is selected within the
trace list, four-digit, hexadecimal values replace disassembled
information. These values can be used in conjunction with normal
disassembly to learn more about a particular cycle. Table 3-2 .c ~,.
identifies the meaning of each bit in the status values. Figure 3-9 ..,,.,
will help you interpret the meanings of status displays in absolute,
hexadecimal values.

Table 3·2. Definition Of Analyzer Status Bits

BIT Definitions

0
1
2
3
4
5
6
7

T ABLESEARCH signal generated by the emulator. Indicates a table search cycle.
phvsical/logical signal generated by the ell).ulator.
RETRY signal generated by the emulator.
BURST signal generated by the emulator. Indicates burst cycle.
SIZO signal from 68030.
SIZl signal from 68030.
BERR (LBERR) signal generated by the emulator.
HCPDMA signal generated by the emulator. When this status bit is high, a DMA cycle
has occurred. More precisely, this bit is high between the high-to-low transition of
LBG and the low-to-high transition of LBGACK, indicating cycles where a device other
than the 68030 CPU is the bus master. Note also that if address strobes occur between
the two signal transitions mentioned above, no cycles with this status will appear in the
trace list.

8 FCO signal from 68030.
9 FCl signal from 68030.
10 FC2 signal from 68030.
11 DSACKO signal from 68030.
12 DSACKl signal from 68030.
13 R/W signal from 68030.
14 RMC signal from 68030.
15 STERM signal from 68030.

3·16 Status Specification

Example
Triggering On
Interrupt Status

Trace Specification

Figures 3-9 and 3-10 show an example of how the status
information can be used in a specification to trace a processor
interrupt. The status of the 68030 processor is always
"CPU_SPACE" when an interrupt is recognized. The address bus
always carries all ''fs", except for the least-significant hexadecimal
digit. Its value will indicate the level of the interrupt.

A/15 0/16 S/15

GLOBAL CONTEXT all activity
TRIGGER POSITION center of ~race

TRIGGERl a= Offfffffxh s= CPU SPACE

STOREl any_state

COUNTl time

STATUS: M68030--Running in monitor
display trace_specification

run trace set step

Trace complete _______ ... R

display modify end ---ETC--

Figure 3·9. Setup To Trigger On An Interrupt

Status Specification 3·17

Trace List Mode:logical data
Label: Address Opcode or Status time count
Base: hex mnemonic relative
-0007 OOOOOlOA $0000 supr prgm word rd log addr (dsl6) 0.40us
-0006 00000100 $7000 supr prgm long rd log addr (dsl6) 0.60us
-0005 00000102 $0640 supr prgm word rd log addr (ds16) 0.40us

"""
-0004 00000104 $0001 supr prgm long rd log addr (dsl6) 0.40us
-0003 00000106 $4EFA supr prgm word rd log addr (dsl6) 0.36us
-0002 00000108 $FFFA supr prgm long rd log addr (dsl6) 0.44us
-0001 OOOOOlOA $0000 supr prgm word rd log addr (dsl6) 0.36us
trigger FFFFFFFF $ int7 ack byte rd log addr (avec) 0.44us
+0001 OOOOCF7C $2000---- supr data word wr log addr (ds32) 0.92us
+0002 0000007C $0000Cl00 supr data long rd log addr (ds32) 0.36us
+0003 OOOOCF7E $----0000 supr data long wr log addr (ds32) 0.36us
+0004 OOOOCFSO $0106---- supr data word wr log addr (ds32) 0.40us
+0005 OOOOClOO $4AF90000 supr prgm long rd log addr (ds32) 0.36us
+0006 OOOOCF82 $----007C supr data word wr log addr (ds32) 0.48us
+0007 OOOOC104 $CD8F6A02 supr prgm long rd log addr (ds32) O .,36us
STATUS: M68030--Running in monitor Trace complete
display trace

run trace set step display modify end ---ETC--

Figure 3·10. Trace List Showing Trigger On Interrupt

3·18 Status Specification

4

Logical And Physical Analysis

Read this chapter only if you are using the on-chip Memory
Management Unit (MMU) of the 68030. If the 68030 MMU is not
enabled, you won't need the information in this chapter.

Two problems arise when you use the MMU of the 68030:

1. The processor sets up tables that it uses to map addresses
in logical memory to addresses in physical memory. This
mapping process can be difficult to use because you can't
see the details of these tables and how they manage their
address mappings.

2. The analyzer cross references the symbols you used in your
source files to addresses in logical (virtual) memory that
contain the corresponding code. The analyzer is unable to
cross reference symbols in your source-file to addresses in
physical memory. Therefore, physical address values can
only be expressed in numerics when they are used in
analyzer specifications and shown in trace lists.

Both of the above problems are solved by analyzer features that are
discussed in this chapter. The solution to seeing how logical
addresses are mapped through the tables to physical addresses is
discussed first in this chapter. The remaining portion of this
chapter is devoted to discussing the solution for cross referencing
source-file symbols to physical addresses.

MMU Table Searches And DeMMUer Information 4·1

The
Mapping-Tables
Problem And Its
Solution

Note

The Problem Of
Seeing How

Addresses Are
Mapped

How To See The
Overall

Logical-To-Physical
Mappings For A Root

Pointer

The following paragraphs discuss the features that let you see how
the 68030 uses tables to map addresses in logical memory to
addresses in physical memory. You can see a list of all present
address mappings. These paragraphs also show you how to see the
detailed mapping structure for any logical address you choose.

The mmu_mappings and mmu_tables features discussed below
only work when you are using the background monitor of your
emulator. The memory accesses that are required to support these
features are not implemented in the foreground monitor.

When the 68030 is using its MMU to map memory through table
searches, there are two kinds of information you might need to see:

l. The overall logical-to-physical address mappings under a
particular root pointer (figure 4-1).

2. The details of the mapping tables used to map a specific
logical address (figure 4-2).

Each of the above topics of information is discussed in the
following paragraphs.

The host program can read the address mappings and provide a
display like the one shown in figure 4-1. To obtain a list of address
mappings for a particular root pointer, enter a command such as:

display mmu_mappings root_ptr CRP

You can select mmu_mappings for the CRP, SRP, or any root •
pointer value of your choice (e.g., root_ptr 080000002000f4000h). ...,.,

4·2 MMU Table Searches And DeMMUer Information

VALID M68030 MMU MAPPINGS:
LOGICAL ADDRESS PHYSICAL ADDRESS
Lower Upper Lower Upper

0 FFFF 00010000 OOOlFFFF
10000 lFFFF 00020000 0002FFFF
20000 2FFFF 00030000 0003FFFF
91000 91FFF OOOAOOOO OOOAOFFF
94000 94FFF OOODOOOO OOODOFFF
FOOOO FFFFF OOOFOOOO OOOFFFFF

7FFFOOOO 7FFFFFFF 00040000 0004FFFF
FFEOOOOO FFEOFFFF 00068000 00077FFF
FFEllOOO FFEllFFF 00070000 00070FFF
FFFEOOOO FFFEFFFF 00050000 0005FFFF
FFFFOOOO FFFFFFFF 00060000 0006FFFF

STATUS: M68030--Running in monitor
display mmu_mappings root_ptr CRP

Trace complete _______

run trace

Note

set step display modify end ---ETC--

Figure 4·1. Basic Mappings For A Root Pointer

If you enter a root pointer value instead of specifying either the
CRP or SRP, you'll also need to specify the value of the TC
register. Refer to the detailed explanation of the TC register later
in this chapter.

display mmu_mappings root_ptr 080000002000f4000h
translation_ control 8c0c440h

Your display will show one line of information for each mapped
block of addresses. If you are using a small page size such as 256
bytes per page, your display may be several screens long. In this
case, you may want to view just a portion of the mmu_mappings
list. You can begin the list at any desired logical address, ignoring
all of the lower (preceding) addresses (e.g., show_map_from
logical_address 08000000h). You can also scroll the display
window using the up/down arrow keys of your keyboard.

MMU Table Searches And DeMMUer Information 4.3

M68030 MMU TABLES:
LOGICAL ADDR(hex)

(bin)
[Table Level]

0 0 0 0 0 0 0 0
0000 0000 0000 0000 0000 0000 0000 0000
AAAA AAAA AAAA BBBB CCCC PPPP PPPP PPPP

LEVEL
CRP

BASE
ADDR INDEX LOCATION

--STATUS---
L/U LIMIT S CI M U WP DT

L 0000 SHORT
A
B
PAGE

OOOF4000
OOOFBOOO
00010000

OH OOOF4000
OH OOOF8000

CONTENTS
80000002 OOOF4000

OOOF8002
00010001

0 0 SHORT
0 0 0 0 EARLY

STATUS: M68030--Running in monitor Trace complete _______
display mmu_tables root_ptr CRP logical_address o

run trace set step display modify end ---ETC--

Figure 4·2. How Logical Address o Is Mapped

How To See The
Table Details For

Mapping A Specific
Logical Address

Interpreting The MMU
Tables Display

The host program can read the details of the mapping for a
particular logical address and provide a display like the one shown
in figure 4-2. To obtain a display of the mapping for a particular
logical address, enter a command such as:

display mmu_tables root_ptr CRP logical_address 0

The display will show you the path taken through the tables to map
the logical address in your command to its corresponding physical
address. The last entry in an mmu_tables display might point to a
page in physical memory where the code for the logical address you
specified resides. Early terminations and indirect terminations
may also show in the mmu_tables display, depending on techniques
used in your operating system.

The content of an MMU TABLES: display is interpreted in Table
4-1 of this chapter.

4·4 MMU Table Searches And DeMMUer Information

Table 4·1. Key To The MMU TABLES Display

MMU TABLES NOTATION MEANING

LOGICAL ADDR(hex) The logical address whose mapping is shown on the display.

LOGICAL ADDR(bin) The binary value of the logical address - shown so that you can
see how each of its bits is distributed among the table maps.

[Table Level] FCODE=Func. Code (MOT RSV=Motorola RSV), A= Table
A, B=Table B, C=Table C, D=Table D, P=Page, I= Ignore.

LEVEL CRP=CPU root pointer, SRP=Supervisor root pointer, your
own root value, A= Table A, B=Table B, C=Table C, D=Table
D, IND=indirection, PAGE=page in physical memory where
code for logical address resides.

BASEADDR Base address of the table specified in the preceding table or root
pointer, plus the index.

INDEX LOCATION Index is expressed both in its logical value and its absolute value.

CONTENTS The hexadecimal content of the root pointer or specified location
in the table. Interpretation of the content is next in the table.

LIU Interpretation of the value under LIMIT (L= lower, U =upper).

LIMIT Unsigned index limit.

--STATUS--- The status bits.
s S= 1 when only supervisor access is allowed to this address.

CI CI= 1 when the cache is inhibited during access to this address.
M M= 1 when the content of the page where this address resides has

been modified by a write or read-modify-write instruction.
u U = 1 when the associated address has been accessed.

WP WP= 1 when the associated address is write protected.

DT Descriptor type of the associated table or root pointer. May be
SHORT, LONG, PAGE, EARLY termination, or INVALID.

MMU Table Searches And DeMMUer Information 4·5

Mapping Using
Function Codes

Error Messages
Unique To

mmu_tables Displays

Figure 4-3 shows an example of an MMU Mappings display for a
68030 processor that is using the function codes as its first level in
the memory mapping process. The analyzer adds"Function Code"
headings above each separate block of addresses to identify the
addresses governed by each function code.

Figure 4-4 shows an example of an MMU Tables display that tracks
the mappings that apply to a single address through a set of tables
that begin with function-code mapping.

The following error messages will only appear when you are using
an active MMU, expecially examining its operating details with the
mmu_tables and mmu_mappings displays:

ERROR: Invalid translation control value.
ERROR: Invalid translation control (sre) value.
ERROR: Invalid translation control (fcl) value.
If one of the three error messages above appear, they indicate that
the TC register value that governs this mapping is incorrect. Two
of the messages further specify that the "sre" or "fcl" components of " .J
the translation control register contain the problem. Refer to the """""
detailed explanation of the TC register later in this chapter.

ERROR: Invalid root pointer value. This message appears when
the root pointer value you selected to govern this mapping is
incorrect.

ERROR: Root pointer does not match function code value. If you
are using the supervisor root pointer (SRP), your function code
selections must always be in supervisor regions: SUPER_PROG,
or SUPER_DATA This message indicates that you combined the
SRP with a non-supervisor function code.

ERROR: Invalid table level. This message indicates that you've
asked for a table level that the emulator/analyzer can't find because
the translation to that table is undefined. Either you have asked to
see a table that is not activated according to your translation
control register value, or an invalid condition in the mapping of the "1J
MMU tables has occurred before the path gets to the level you
requested.

4·6 MMU Table Searches And DeMMUer Information

VALID M68030 MMU MAPPINGS:
LOGICAL ADDRESS PHYSICAL ADDRESS
Lower Upper Lower Upper

Function Code = USER DATA
ED124000 ED127FFF 80000000
ED128000 ED12BFFF 80000000
ED138000 ED13BFFF 80000000
ED13COOO ED13FFFF 80000000
ED164000 ED167FFF 80000000
ED168000 ED16BFFF 80000000
ED170000 ED173FFF 80000000
FOOOOOOO FOFFFFFF FFOOOOOO
F4000000 F4FFFFFF FFOOOOOO
F6000000 F6FFFFFF FFOOOOOO
F8000000 F8FFFFFF FEOOOOOO
FFOOOOOO FFFFFFFF FEOOOOOO

Function Code = USER PROG
0 FFFFFFFF 00000000

80003FFF
80003FFF
80003FFF
80003FFF
80003FFF
80003FFF
80003FFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FEFFFFFF
FE.FFFFFF

FFFFFFFF

STATUS: M68030--Running in monitor
display mmu_mappings root_ptr CRP

OED124000h

Trace complete-....___,,.,.,,.,,,..,,...___,...,,...,,..,,...~········
show_map_from fcode USER DATA logical_address

run trace set step display modify end ---ETC--

Figure 4·3. Valld MMU Mappings Using Function Codes

M68030 MMU TABLES:
LOGICAL ADDR(hex) MOT RSV 0 0 2 0 0 0 0 0 0

(bin) 000 0000 0010 0000 0000 0000 0000 0000 0000
(Table Level] FCODE AAAA BBBB cc cc CDDD DDPP PPPP PPPP pp pp

BASE --STATUS---
LEVEL ADDR INDEX LOCATION CONTENTS L/U LIMIT S CI M u WP DT
CRP 80000002 FFFFlOOO L 0000 SHORT
FCODE FFFFlOOO OH FFFFlOOO
A FFFF1020 OH FFFF1020
B FFFF1060 2H FFFF1068
c FFFFlOAO OH FFFFlOAO
PAGE 3C400000

STATUS:
display

M68030--Running in monitor
mmu_tables root_ptr CRP

run trace set step

FFFF1022 0 0 SHORT
FFFF1062 0 0 SHORT
FFFF10A2 0 0 SHORT
3C400001 0 0 0 0 EARLY

Trace complete.....,.,,..,,....,...........,...,....,,..,,...,,..,,... ·•••••••
fcode USER_DATA logical_address 02000000h

display modify end ---ETC--

Figure 4·4. Example Of Mapping An Address Using Fcode

MMU Table Searches And DeMMUer Information 4·7

Troubleshooting
INVALID Mappings

ERROR: Attempt to read guarded memory, addr = <physical
address>. This message appears when the logical address you
selected is mapped to a non-existent physical address. You will
need to review the table structure leading up to this invalid
address. Perhaps your operating system created this invalid ""1fl
mapping. If your table structures seem correct, you may want to
invoke the memory-mapping portion of your emulation
configuration and map memory to support the address that
generated this message.

The following paragraphs show you how to detect and troubleshoot
invalid address mappings in translation tables. Figure 4-5 is an
MMU Tables display for logical address 0. It shows that an invalid
condition exists in Table A at its base address OFFFF14AOH.

Figure 4-6 displays the details of the address mappings in Table A,
beginning with its base address OFFFF14AOH. The first eight
entries in Table A are invalid.

With the above information, you can use the "modify memory"
capability of the emulator to write correct contents into the first • ~
eight locations in Table A (address OFFFF14AOH needs contents ...,,
that correctly identify the next level in the mapping scheme, Table
B, Page, etc.). In the case of figures 4-5 and 4-6, the following
command would write a correct value:

modify memory long physical OFFFF14AOH to 8000FC02H,
FFFF13SOH

4·8 MMU Table Searches And DeMMUer Information

~

M68030 MMU TABLES1
LOGICAL ADDR(hex)

(bin)
[Table Level]

BASE
LEVEL ADDR INDEX

SUPER PROG
110

FCODE

LOCATION

0 0 0 0 0 0 0 0
0000 0000 0000 0000 0000 0000 0000 0000
AAAA BBBB CCCC CDDD DDPP PPPP PPPP PPPP

--STATUS---
CONTENTS L/U LIMIT S CI M u WP DT

CRP 80000002 FFFFlOOO L 0000 SHORT
FCODE FFFFlOOO 6H FFFF1018 FFFF14A3 0 0 LONG
A FFFF14AO OH FFFF14AO 00000000 INVALID
PAGE

STATUS: M68030--Running in monitor Trace complete~..--.-..-.,..,....-~~········
display mmu_tables root_ptr CRP fcode SUPER PROG logical_address Oh

run trace set step display modify end ---ETC--

Figure 4-5. Using mmu_tables To Track Invalid Mapping

M68030 MMU TABLES: Show Level A
LOGICAL ADDR(hex) SUPER PROG 0 0 0 0 0 0 0 0

(bin) 110 0000 0000 0000 0000 0000 0000 0000 0000
(Table Level] FCODE AAAA BBBB cc cc CDDD DDPP pp pp pp pp PPPP

--STATUS--- TABLE
INDEX LOCATION CONTENTS L/U LIMIT s CI M U WP DT ADDR

OH FFFF14AO 00000000 00000000 INVALID
lH FFFF14A8 00000000 00000000 INVALID
2H FFFF14BO 00000000 00000000 INVALID
3H FFFF14B8 00000000 00000000 INVALID
4H FFFF14CO 00000000 00000000 INVALID
SH FFFF14C8 00000000 00000000 INVALID
6H FFFF14DO 00000000 00000000 INVALID
7H FFFF14D8 00000000 00000000 INVALID
SH FFFF14EO 8000FC02 FFFF1360 L 0000 0 0 0 SHORT FFFF1360
9H FFFF14E8 8000FC02 FFFF1360 L 0000 0 0 0 SHORT FFFF1360
AH FFFF14FO 8000FC02 FFFF1360 L 0000 0 0 0 SHORT FFFF1360

STATUS: M68030--Running in monitor Trace complete •.••••••
display mmu tables root_ptr CRP fcode SUPER PROG logical address Oh

show_table_level A

run trace set step display modify end ---ETC--

Figure 4·6. Address Mapping Detalls In Table A

MMU Table Searches And DeMMUer Information 4.9

The Symbols
Problem And Its
Solution

The Problem Of
Cross Referencing
Symbols In Logical

Memory To
Addresses In

Physical Memory

When Should I Start
The DeMMUer?

The following paragraphs discuss how the emulator can place
physical addresses on the emulation bus, and the analyzer can
accept symbols defined for addresses in logical memory and
cross-reference them to those physical addresses.

The Problem: Symbols are used by the analyzer to identify
addresses. The emulator cross references the symbols you defined
in your source files with the addresses where the related code is
stored in logical (virtual) memory. The relationship of the symbols
to addresses works fine until you turn on the Memory Management
Unit (MMU) of the 68030. The MMU translates logical addresses
to physical addresses and places the physical addresses on the
processor address bus. The analyzer has no way to cross reference
logical address symbols to physical addresses so it can't use symbols.

The Solution: The deMMUer translates the physical addresses
back to logical addresses and supplies these reverse-translated
addresses to the analyzer. The analyzer ignores addresses on the
emulation bus when the MMU is enabled; it uses the addresses it .. ,j
receives from the deMMUer. "'-'

The remaining pages of this chapter show you how to set up the
HP 68030 deMMUer Analysis Bus Generator (deMMUer) to
supply logical addresses to the internal analyzer when the 68030
MMU is placing physical addresses on the emulation bus. These
pages also describe how the deMMUer operates, and restrictions
you should observe when using the deMMUer.

You can start the deMMUer at the same time as the 68030 MMU
starts, or you can turn on the deMMUer after the MMU has been
operating. Each case is discussed in the following paragraphs:

Startup With The Emulator

The best time to start the deMMUer is just before beginning a run ... A
of program. The deMMUer flushes its reverse translations as part,
of the processor reset procedure. This ensures that the translation
tables within the. deMMUer contain no old translations. Then the
deMMUer waits to detect the first table search performed by the

4·1 O MMU Tabla Searches And DaMMUer Information

How To Turn On And
Turn Off The

DeMMUer

Note

68030 processor. Logical addresses are available from the
deMMUer immediately after reset. All table searches are
monitored, keeping the deMMUer physical-to-logical address
translations up to date.

The Emulator Was Running Without The DeMMUer, And
Now I Want To Use It

You can enable the deMMUer any time during operation of the
68030 Emulator/Analyzer, and it will output current logical address
translations. The physical-to-logical reverse translations are built
up and maintained from reset, even when the deMMUer is disabled
(outputting physical addresses).

There are two ways to turn on and turn off the deMMUer: one is by
setting the analysis mode, and the other is by invoking the
emulation configuration set of questions. Each is described below.

You may turn on the deMMUer and still have only physical
address information. The deMMUer can only translate physical
addresses to logical addresses after you have (1) enabled the MMU
of the 68030 processor, (2) set up a valid deMMUer configuration,
and (3) enabled the deMMUer. The way to set up the deMMUer
configuration and enable the deMMUer is discussed later in this
chapter.
You will not need address translations when the 68030 MMU is off.

Turn On/Off By Using Emulation Configuration Questions

Invoke the emulation configuration questions by using the modify
configuration command. Proceed through the questions until the
following configuration questions can be answered:

Modify memory configuration? yes

In the memory mapping display, enter the following command:

MMU Table Searches And DeMMUer Information 4·11

configure_deMMUer

In the deMMUer configuration display, enter the following
command:

enable_ deMMU er

Even though you have activated the deMMUer, it will still provide
physical address information for analysis until it has been loaded
with a valid configuration (discussed next in this chapter).

Once turned on, the deMMUer will track the MMU activity, and
update its translation tables each time the MMU makes a change
to its translation tables. (Note that the MMU is turned on or off
by a different emulation configuration question that appears after
the memory mapping display:

"MMU enabled during session? yes"

disable_deMMUer

This turns off the deMMUer. Only physical addresses will be
supplied to the analyzer. Therefore, only the physical analysis "'·,. ..
mode will be available. ...,.,

Turn On/Off By Setting The Analysis Mode

If you have the 68030 MMU enabled, and you have a valid value in
the TC register of the deMMUer configuration, and you have
enabled the deMMUer, then you can turn on the deMMUer from
within an emulation session, by entering the following commands:

set analysis mode logical

This turns on the deMMUer, pro.,,iding logical addresses to the
analyzer. The analyzer uses these addresses to perform symbol
searches to satisfy trace specifications and show symbols in trace
lists.

set analysis mode physical

This turns off the deMMUer. Physical addresses from the 68030 """"'
MMU will be supplied to the analyzer. The trace lists will show the
physical addresses, but the analyzer will not accept or display
source-file symbols.

4·12 MMU Table Searches And OeMMUer Information

Description Of The
DeMMUer

Configuration Display

deMMUer configuration

deMMUer hardware enabled

The deMMUer configuration display is shown in figure 4-7. You
must set up this configuration with valid entries before the
deMMUer can perform its reverse address translations. Setup
instructions are described later in this chapter.

Figure 4-7 shows a typical display rather than a default display.
The component parts of the deMMUer configuration display are
described in the following paragraphs.

Figure 4-7 shows the deMMUer hardware is enabled. The
deMMUer will follow changes in the 68030 MMU. If the
deMMUer were disabled, only physical addresses from the 68030
MMU would be supplied to the analyzer.

Translation Control - 82CF5000H

<e sre fcl

1 1 0

ps is

4 Kb 15

tia tib tic

5

tid>

* deMMUer cannot follow changes in ignored address bits

Virtual address start - 00000000

Root Descriptor Type -> long Descriptor

Range List -

A

B

c
D

Start

00000000

10000000

ocoooooo

End

00010000

10800000

OC040000

undefined range

STATUS: Configuring DeMMUer ___________________ ... R

_range __ enable __ disable __ set_ display __ return_--------

Figure 4·7. DeMMUer Configuration Display

MMU Table Searches And DeMMUer Information 4·13

The content of the 68030 Translation Control (TC) register is
shown. It is decoded in this display so you can see its 68030 MMU
mnemonics. The mnemonics are defined in table 4-2.

Virtual Address start - You can enter an address pattern here in • ,j
cases where a number of upper address bits are being ignored by ..,,.,

Table 4·2. Definition Of The TC Register Mnemonics

TC Register Identifier Definition And Description

e 68030 MMU Address Translation Enabled.
1 = MMU enabled to translate addresses from logical to physical.
0= MMU disabled. Logical addresses= physical addresses. Note that
the 68030 MMU can be disabled by hardware, and by the MMUDIS pin.

sre Supervisor Root Pointer Enable.
1 = 68030 supervisor root pointer enabled to point to supervisor
function code translation table.
0 = 68030 supervisor root pointer disabled. Both user and supervisor
accesses will use the translation table defined by the CRP.

fcl Function Code Lookup.
1 = first level in address translation table structure is indexed by the
function code.
0 = function codes are not part of translation process. The first level of
translation tables within the translation table structure is indexed by the
bits identified by tia.

ps Physical Memory Page Size.
Figure 4-1 shows page size is 4 kilobits. The least significant 12 address
bits are not translated to find a page in physical memory.

is Initial Shift.
This is the number of upper address bits ignored during table searches.

tia - tid Address Translation Table Indexes
Numbers of logical address bits used as indexes for each level of the
translation tables (not including optional level indexed by function
codes).

4·14 MMU Table Searches And OeMMUer Information

How To Obtain
Information Needed

To Configure The
DeMMUer

the 68030. These upper address bits will be used instead of the
values of the ignored bits to determine which symbols the analyzer
will show on its display. For example, if the 68030 is ignoring
upper address bits 31 and 30, those logical address bit values are
not detectable by the deMMUer. Therefore, the deMMUer will
assume the bits are 0 unless specified by the Virtual Address Start
field. If you know that all executions are being performed in the
logical address space whose upper bits 31and30 are 01, then enter
40000000H in this field.

Root Descriptor Type - This tells the deMMUer whether the
descriptor types in the root pointers are short format, long format,
or page descriptors. Only one of these formats can be selected
even though there are two root pointers. Refer to How To Select
A Root Pointer Descriptor Type later in this chapter.

Range - Up to four ranges of physical memory can be defined for
the deMMUer to translate. Three ranges were defined in the
example display. The ranges must begin and end on 64K byte
boundaries. A range can have any size from 64K bytes through 4
megabytes (starting and ending on 64K byte boundaries).

You will need to enter valid information into the deMMUer
configuration before the deMMUer can translate physical
addresses to logical addresses. Some of the information you will
need to set up the deMMUer configuration is present in the 68030
MMU: the value in the translation control register, and the
descriptor type of the root pointer. There are two ways to obtain
this inforamtion:

1. Start the system with internal analysis set to trigger on the
first table search. Then when the 68030 does its first table
search, you can look at the trace list a few states before the
trigger and see what value was written into the TC register
of the MMU. You will want to write the same value into
the TC register of the deMMUer.

2. In some cases, the MMU is enabled long before the first
table search, and its TC register and root pointer will have
already been automatically set up. In these cases, you can
select

MMU Table Searches And DeMMUer Information 4-15

How To Access The
DeMMUer

Configuration Display

display registers mmu

Here you can see the present value of the TC register of
the MMU, and also the Root Pointer Descriptor Type.
Copy these values. You will need to enter them in the TC ..,,,J
register and Root Pointer Descriptor Type fields of the
deMMUer configuration.

When you have the value of the translation control register in the
68030 MMU, and you know the root pointer descriptor type, you
are ready to access the deMMUer configuration and set up the
fields in the display.

Some of the information you will need to enter into the deMMUer
configuration display is information specific to use of the
deMMUer. The way to obtain this information is discussed later
in this chapter.

Invoke the emulation configuration questions by using the modify
configuration command. Proceed through the questions until the
following configuration questions can be answered:

Modify memory configuration? yes

In the memory mapping display, enter the following command:

configure_ deMMUer

In the deMMUer configuration display, you can turn the
deMMUer on or off and define values and ranges to be used by the
deMMUer during its operation. The procedures you follow to
make these entries are discussed in the following paragraphs.

When you are finished configuring the deMMUer, return to the
memory mapping display by using the return command. With a
valid configuration setup, the deMMUer will be able to perform its
reverse address translations.

4·16 MMU Table Searches And DeMMUer Information

How To Enter
(Or Delete) A Range

Of Addresses For
The DeMMUer To

Follow

Note

Access the deMMUer configuration display, and enter the
following commands:

range A <value> thru <value>
range B <value> thru <value>

These commands tell the deMMUer which ranges of physical
addresses to translate to logical addresses. You may not want the
entire range of physical addresses to be translated to logical
addresses. The deMMUer will only perform translations of
addresses within the physical address ranges you specify here.

You can enter up to four physical address ranges. Each range can
be as small as 64K bytes, or as large as 4 megabytes. The ranges
will be rounded up to 64K byte boundaries, automatically. The
maximum range of physical addresses that the deMMUer can
translate is 16 megabytes. If you try to enter a single range larger
than 4 megabytes, the present range specification will not change,
and an error message will be displayed on the STATUS line.

You can delete a range specification by entering a command such
as:

range A clear

This restores the entry to the default condition: "undefined range".

If the values of 68030 MMU registers TIO and Til are changed by
your program during a run, they may identify ranges of addresses to
be untranslated within ranges that you defined in the deMMUer
configuration to be translated. The deMMUer has no way of
detecting changes to TIO and Til. As a result, if such changes
occur, the deMMUer will continue to output logical addresses that
are not 1:1 mappings of the physical addresses which are
guaranteed by the TIO and TTl registers.

MMU Table Searches And OeMMUer Information 4·17

How To Enter A New
Value For The

Translation Control
Register

Access the deMMUer configuration display, and enter the
following commands:

set TC_register <enter the desired value>

The deMMUer will check to make sure you entered a valid value
for the translation control register. If your entry is valid, the
deMMUer \\-ill accept it. If not valid, the translation control
register will not accept it, and the following message will be
displayed on the STATUS line:

ERROR: Invalid value for TC_register.

The follo\\-ing information shows you the format for entry of a
value in the translation control register:

~ E I SRE/FCL I PS I IS I TIA I TIB I TIC I TID ~

E can be 8 or 0.
8 = TC_register enabled.
0 = TC_register disabled.
1 through 7 and 9 through 15 are undefined.

SRE:FCL can be 0 through 3.
0 = SRE disabled. FCL disabled.
1 = SRE disabled, FCL enabled.
2 = SRE enabled, FCL disabled.
3 = SRE enabled, FCL enabled.
4 through 15 are undefined.

PS can be any number from 8 through 15.
8 = 8 bits will address vvithin a 256-byte page size.
9 = 9 bits mil address mthin a 512-byte page size.
10 = 10 bits mil address mthin alK-byte page size.
11 = 11 bits mil address mthin a 2K-byte page size.
12 = 12 bits mil address mthin a 4K-byte page size.
13 = 13 bits vvill address mthin a SK-byte page size.

4-18 MMU Table Searches And DeMMUer Information

14 = 14 bits will address within 16K-byte page size.
15 = 15 bits will address within 32K-byte page size.
7 through 7 are undefined.

IS can be any number from 0 through 15.
n = the first n high-order bits will be ignored in
the logical address when indexing into the
translation tables.

TIA is the number of bits used to index in the first table (or second
table if FCL is used to index into the first table).

TIB is number of bits used to index into the tables indicated by TIA

TIC is number of bits used to index into the tables indicated by TIB.

TID is number of bits used to index in the tables indicated by TIC.

In a valid number, the following is true:
PS + IS + TIA + TIB + TIC + TID = 32.
This ensures that every bit in the address either addresses a byte on
the page, is part of the index at some level of the address table, or is
ignored by "IS".

When TIA, TIB, or TIC is 0, all the subsequent field values are
ignored.

The following is an example of a valid number:

82A68800H
8 =enabled
2=SRE enabled, FCL disabled
A= lK page size
6=first 6 high-order bits are ignored for the index.
8=next 8 high-order bits are used to index into the
first level of translation tables (TIA).

8=next 8 high-order bits are used to index into the
second level of translation tables (TIB).
O=no translation tables this deep. The page
address resides in the preceding level of tables.
Subsequent digits (for TID in this example) are
ignored.
H=the value is expressed as a hexadecimal number.

MMU Table Searches And DeMMUer Information 4·19

How To Select A Root
Pointer

Descriptor_ Type

The root pointer contains the address of the top level table of the
translation tree. The address can be in one of three formats: short,
long, or page. To inform the deMMUer which of the three formats
is used by the address in the root pointer, access the deMMUer ~ _j
configuration display and enter the following command: ...,,

set descriptor_type <short, page, or long>

If you select short, the deMMUer assumes the first table in the
translation table tree contains short format descriptors. The 68030
multiplies the address bit field being translated at this level by four
to access the next level in the translation table. Short format
descriptors must be long-word aligned.

If you select long, the deMMUer assumes the first table in the
translation table tree contains long format descriptors. The 68030
multiplies the address bit field being translated at this level by eight
to access the next level in the translation table. Long format
descriptors must be quad-word aligned.

If you select page, the deMMUer can be turned off. This is because
the address translation is no more than an offset added to the
logical address to obtain the physical address. No table searches
will occur when the DT is page. This means that translation tables
within the deMMUer will never be updated. The physical
addresses will simply be passed through the deMMUer without
translation.

In the case where page is selected, use the offset feature available
in the trace specification and in the trace list of the analyzer to add
the required offset to values in your trace specification, and to
obtain correct addresses in your trace lists.

In the case where the 68030 MMU has one descriptor type in its
CRP root pointer and a different descriptor type in its SRP root
pointer, use the following information as a guide when selecting
the appropriate descriptor for the deMMUer root pointer
descriptor type:

1. If one of the root pointer descriptor types is page, select ~. .Jt
the type specified for the other root pointer.,

4·20 MMU Table Searches And DeMMUer Information

How To Enter Upper
Address Bits In The

Virtual Address Start
Field

2. If one of the root pointer descriptor types is short and the
other is long, select one of the following two options:

a. Pick the root pointer that points to the code you want
to analyze (either user or supervisor code), and use the
descriptor type that is assigned to that root pointer.
Accesses governed by the other root pointer will not
provide correct logical address information

b. Use function-code lookup at the first level of indexing
into the translation tables. In this way, the root
pointer descriptor type will not affect operation. The
root pointer descriptor type is only used when the
deMMUer calculates the index into the first level of
translation tables.

Access the deMMUer configuration display, and enter the
following command:

set virtual_address <enter the desired value>

This is your virtual address start value. You can enter it using any
of the four number bases (binary, octal, decimal, or hexadecimal).
This field defines the values of the logical address bits that are
being ignored by the Initial Shift field.

There may be a problem when using Initial Shift to ignore some
upper address bits, and then using Virtual Address Start to specify
values for the ignored bits. The deMMUer cannot detect changes
in the ignored bits during a run of the program. If your program
resides in two or more logical address ranges (identified by
different bits in the ignored set of bits), the output of the
deMMUer will be incorrect when execution is in one of the
unspecified ranges. The assumption was made that the ignored bits
would remain constant during a run of program.

MMU Table Searches And DeMMUer Information 4·21

How Does The
DeMMUer Work?

Note

The physical address from the 68030 MMU is supplied as an input
to the deMMUer. The deMMUer contains a set of translations
like those in the 68030 MMU. The deMMUer translations provide
the reverse function of the translations in the MMU (given a "· ~
physical address, they look up the logical address from which it was ..,,.,
derived). The deMMUer outputs the logical address
corresponding to the physical address from the 68030 MMU.

Each time the 68030 MMU performs a table search, the deMMUer
detects the event and follows MMU activity to build a
corresponding reverse-address translation.

If you have the deMMUer enabled from the time you start the
68030 MMU, the deMMUer will have current translations to
reverse each of the translations performed by the MMU. This is
true whether you select trace lists with physical or logical addresses.

Be sure to flush the address translation cache (ATC) of the MMU
before enabling the MMU. Otherwise, out-of-date translations
(logical to physical) may reside in the ATC. There is no facility in
the 68030 emulator/analyzer to flush the ATC. You can include an ""111
option to the command that loads the TC register or loads the root
pointer to ensure that the ATC is flushed after reset.

For addresses that the deMMUer has no translation, it supplies the
physical address that was output by the 68030 MMU, and tags it as
being a physical address (places a "p" in front of it in the Address
column of the trace list). The analyzer will show this address in its
trace list, but it will not be able to show any symbol associated with
this address, nor will it be able to recognize any trace commands
occurring on this address if those commands are specified using
source-file symbols.

4·22 MMU Table Searches And DeMMUer Information

When Do I Need To
Use The DeMMUer?

When Do I Need To
Turn Off The

DeMMUer?

You need to use the deMMUer when the 68030 MMU is active,
and you want to use any of the following features during analysis of
a program:

1. You want the trace list to show the assembly language
form of the activity it captured during a trace. The inverse
assembler requires sequential logical addresses in order to
look up the next piece of program information. Physical
addresses will probably be non-sequential when crossing a
page boundary.

2. You want to enter a trace specification that will be met
when a certain source-file event appears during a trace.
To do this, you enter the name of the source-file symbol
that identifies that event. Basic trigger/store/count
features are not supported for code in physical addresses.
In a dynamic environment, the relationship between an
instruction or data location and its physical address may
not be constant throughout the running of a program.

3. You want the trace list to show address values in terms of
the symbol names assigned in the source files. Symbol and
source line referencing operates on the fact that a symbol
or source line resides at a particular logical address. That
relationship is established with the language tools. The
source referencing has no knowledge of physical addresses.

4. You want to perform high-level analysis on the program
you are developing by using such tools as the HP Software
Performance Measurement Tool (SPMT). High-level
analysis tools, such as SPMT, gather data based on logical
address information. These tools have no facilities for
performing physical-to-logical address translations.

Turn off the deMMUer when you want to trace acthity that shows
the addresses within the physical memory. This information may
be useful when you are analyzing the behavior of your operating
system.

MMU Table Searches And DeMMUer Information 4·23

Under What
Conditions Will The

DeMMUer Fail To
Work?

There are three conditions under which the deMMUer will fail to
perform reverse-address translations correctly:

1. If the root pointers use page descriptor DT fields. In this
case, no table searches will occur. Physical addresses '.Vill "'1fl
equal logical addresses plus the offset specified in the root
pointer.

2. If the two root pointer DT fields are different types (for
example, one short and the other long), and both root
pointers are used, the deMMUer will fail to work because
the deMMUer has facilities for only one root-pointer
definition. Refer to How To Select A Root Pointer
Descriptor Type earlier in this chapter for suggestions
concerning how to handle this problem.

3. If Level A is the first table to be accessed (you are not
using function-code lookup), then the first "n" low-order
bits in the root pointer (CRP and SRP registers) table
address must be 0. During the boot-up routine, the root
pointer table address is normally loaded just before the TC le ""'

register is loaded and enabled in the 68030 MMU; make ~
sure the low-order "n" bits of the root pointer table address
are 0.

How to calculate the value of "n" in 3 above:

a. If the root pointer DT value is SHORT, then
"n" = 2 + the value of TIA in the TC register.
Example: If TIA = 8 bits, then "n" = 10.
This means the bottom 10 bits of the root pointer table
address must be O's.

b. If the root pointer DT value is LONG, then
"n" = 3 + the value of TIA in the TC register.
Example: If TIA = 8 bits, then "n" = 11.
This means the bottom 11 bits of the root pointer table
address must be O's.

4·24 MMU Table Searches And DeMMUer Information

5

Example Procedure Using DeMMUer In Memory
Management

The Initial
Conditions

This procedure shows you how to set up and use the 68030 MMU
and the deMMUer of the internal analyzer to manage code in a
virtual system and supply the corresponding logical addresses to
the internal analyzer. The internal analyzer must have logical
addresses in order to accept commands specified using source-file
symbols and segment names, and provide trace lists that show
addresses in terms of the symbols and code segments being traced.

The "os" and "towers" programs which are supplied with your
emulation/analysis software are used in this example. If you are
using your system to develop a different operating system or
application program, change the entries you make accordingly.

To begin. the 68030 MMU must be hardware-enabled so that the
operating system can activate it and set it up. The emulator will
hardware-enable the 68030 MMU when you follow the procedure
described in the paragraph titled "Turn On The 68030 MMU" in
this chapter. If you are running this demonstration with your
emulator connected to a target system, make sure vour target
system has not asserted the MMU disable pin (MMUDIS) of the
68030.

deMMUer Example 5·1

Access The
Emulator

Turn Off The
DeMMUer

5·2 deMMUer Example

If you're not already in your emulation session, gain access to it,
and load the emulation configuration with commands similar to
the following:

<meas_ sys> em68030 Return

load configuration preconfig Return

This configuration allocates 1 megabyte of physical memory for the
emulator.

The configuration "preconfig" begins with the deMMUer hardware
disabled, and the fields of the deMMUer configuration in their
boot-up states. To ensure that this initial condition exists, invoke
the emulation configuration questions and answer them as follows:

modify configuration Return

Proceed to the memory mapping question and answer it as follows:

Modify memory configuration? yes Return

Go to the memory map and enter:

configure_ deMMUer Return

With the deMMUer configuration on screen, enter the following
command:

disable_deMMUer Return

This disables the deMMUer hardware. Now exit the deMMUer
configuration display, and the memory mapping configuration by
using the following commands:

return Return

end Return

Turn On The
68030 MMU

\...,. Load The
Operating System
And Get MMU
Information

This is done next in the emulation configuration questions. This
provides the 68030 MMU hardware enable. It must be done so
that the operating system will be able to activate it and set it up.
Enter the following commands:

Modify emulator pod configuration? yes Return

Accept the next two questions with their present answers, and
make sure the third question is answered as follows:

MMU enabled during session? yes Return

Accept the rest of the questions in the configuration set of
questions. Assign the file name "preconfig" to this configuration
file (if not already assigned) by using the following command:

Configuration file name? / .. your directory .. /preconfig Return

Now load and run the operating system program "os". The "os"
program is a small operating system routine that performs the
software-enable and loads appropriate values in the 68030 MMU
so it can perform table searches and manage memory. Use the
following commands:

reset Return

load memory physical os Return

The "os" program is a short operating-system script that sets up the
68030 MMU to manage memory for this demonstration program.

In "os", physical memory is mapped 1:1 to logical memory. As a
result, addresses do not change when the MMU is enabled.
Mapping the memory 1:1 is not required for operation of the
emulator, but it serves to simplify this example.

deMMUer Example 5·3

Set Up The
DeMMUer
Configuration

M68030 Registers :mmu

NextPC OOOF0040 SFC
D0-07 00000011 00000000
AO-A6 00010000 00000000

USP OOOFOFOO
MSP OOOFOFOO STATUS

*ISP OOOFOEF4
CACR

SRP 30C05180FDDFFFFF
CRP 80000002000F4000

Use the following commands to run "os":

trace Return

run from entry Return

When the STATUS line of the display shows Trace complete, "os"
will have done its work.

Now gather the information you need to set up the deMMUer
configuration. This information is available in the setup of the
68030 MMU. Enter the following commands:

display registers mmu Return

See figure 5-1. Copy the values of the TC register and the CRP
root pointer descriptor. You will need to use these same values in
the deMMUer configuration:

0 MOT RSVD DFC 0 MOT RSVD
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 OOOFOSOO 00000000

i to s m i x n z v c CAAR 00000000
2000 0 0 l 0 0 0 0 0 0 0 VBR 00000000

wa dbe fd ed ibe fi ei
0011 0 0 0 0 l 0 l

L/U LIMIT OT TABLE ADDR
u 30CO INVALID FDDFFFF
L 0000 SHORT OOOF400

l s w i m t n TTO FFFF0777
MMUSR 0200 0 0 0 0 0 l 0 0 TTl FFFF0777

sre fcl ps is tia tib tic tid
TC 80COC440 l 0 0 4 Kb 0 c 4 4 0

STATUS1 M68030--Running Trace complete _______

Figure 5·1. MMU Registers Display

5·4 deMMUer Example

TC register value = 80COC440H

CRP =SHORT

Now you have enough information to set up the deMMUer
configuration display. Again, invoke the emulation configuration
questions, and access the deMMUer configuration display, as
follows:

modify configuration Return

Go to the memory mapping question, and answer it as follows:

Modify memory configuration? yes Return

Go to the memory map and enter:

configure_ deMMU er Return

With the information you obtained from the MMU register
display, enter the following deMMUer configuration commands:

set TC_register 80c0c440h Return

set descriptor_type short Return

The above two values are the ones you copied from the MMU
registers display. Now enter the next two commands to complete
the deMMUer configuration:

range A OOh thru Offlllh Return

enable_deMMUer Return

Your display should look like that shown in figure 5-2. Range A is
assigned to have the same range of addresses as those mapped to
emulation memory because you want address translations in all
areas of program execution. The last command enables the
hardware of the deMMUer.

Now you are finished setting up the emulation configuration to
support memory management. Use the following commands:

return Return

end Return

deMMUer Example 5·5

deMMUer configuration

deMMUer hardware enabled

Translation Control - 80COC440H

<e

1

sre fcl

0 0

ps is

4 Kb 0

tia tib tic tid>

12 4 4

Virtual address start - OOOOOOOOH

Root Descriptor Type ->Short Descriptor

Range List -

A

B

c
D

Start

OOOOOOOOH

End

OOOFFFFFH

undefined range

undefined range

undefined range

STATUS: configuring DeMMUer~~~~~~~~~~~~~~~~~~~···R
enable deMMUer

_range~ _enable __ disable_ ~set display __ return_ ~~~- -~~~

5·6 deMMUer Example

Figure 5-2. DeMMUer Configuration Setup

Accept the rest of the questions with their present answers. Name
this configuration "testconfig" by answering the last configuration
question as follows:

Configuration file name? / .. your directory .. /testconfig Return

In the future, when making tests for this operating system and
application program, you can simply load configuration testconfig,
and your MMU and deMMUer \\'ill be properly set up.

Viewing The
Execution Of 11os11

The next series of trace lists show execution of the operating
system script that was used to set up the 68030 MMU. These trace
lists also show important considerations you need to know in order
to read trace lists made when the 68030 MMU is managing
memory and the deMMUer is supplying logical addresses to the
internal analyzer.

set analysis mode logical Return

This command turns on the deMMUer (by pro'<iding its software
enable) so that it will supply logical addresses to the analyzer for
storage in its trace memory. The "mode" command token is only
available when the deMMUer is hardware enabled, which is why
you haven't seen it before.

Notice that you can select the storage of either logical or physical
addresses with this command. You will find logical address
information most useful when developing application programs,
and physical address information most useful when developing
operating systems. The analyzer memory cannot store both logical
and physical addresses for each state in trace memory; that is why
you make this selection before you start the trace.

You have to reload the operating system program into the
emulation system because the emulation memory configuration has
been changed since the program was loaded last. Enter the
following commands:

reset Return

load memory physical os Return

deMMUer Example 5·7

Trace List
Label: Address
Base: symbols
-0007
-0006
-0005
-0004
-0003
-0002
-0001
trigger ABlentry.s:reset
+0001 abs 00000004
+0002 ABSISTACKTOP
+0003 abs OOOFOF02
+0004 abs OOOFOF04
+0005 abs OOOFOF06
+0006 ABSISTACKTOP
+0007 abs OOOFOF06

STATUS: M68030--Running
run from entry

run trace set

Start the analyzer and re-run the operating system program "os".
These commands will trace "os" using addresses suppllied by the
deMMUer. Enter the following commands:

trace Return

display trace symbols on Return

run from entry Return

The "entry" symbol used in the last command is a symbol in the
data base of the "os" program. This starts the "os" program running
at the appropriate point. See figure 5-3.

Mode:logical address
Opcode or Status time count

mnemonic w/symbols relative

$00000E2A supr prgm long rd log addr ------------$00000AOO supr prgm long rd log addr o. 4 Ous
$2700---- supr data word wr log addr 338.ms
$----OOOF supr data long wr log addr 12.2us
$0000---- supr data word wr log addr 0.60us
$----0000 supr data word wr log addr 12.lus
$2700---- supr data word rd log addr 21.4us
$----0000 supr data word rd log addr 0.40us

Trace complete ,, .a

step display modify end ---ETC--

Figure 5·3. Trace List Showing Execution Of "os"

5·8 deMMUer Example

\..,

Trace List
Label: Address
Base: symbols
+0010 PR!entry.s:entry
+0011

=e:entry+00000006
+0012 e:entry+00000008
+0013 e:entry+OOOOOOOC

=e:entry+OOOOOOOE
+0014

=e:entry+00000012
+0015 e: entry+00000014
+0016 e: entry+00000014
+0017 e:entry+00000018
+0018 e:entry+OOOOOOlC
+0019

=PROGl/os.s:_main
+0020 e:entry+00000020

Enter the following command:

display trace disassemble_from_line_number 10 Return

See figure 5-4. The command used to obtain this display
resynchronized the inverse assembler after a program transfer
occurred. The reason this was necessary is that the inverse
assembler may lose synchronization when the processor performs a
program transfer, such as a jump, call, loop, return, fault, or
interrupt.

Notice the instruction on trace memory line 19. The root pointer
must always start on a page boundary.

MOVEA.L

MOVEA.L
$000F0800

MOVE
BFCLR

MOVE
MOVE.W
MOVE.W
MOVEC
JSR

LEA
ORI.B

Mode:logical address
Opcode or status

mnemonic w/symbols
#$000FOFOO I A7

#$000F0800,AS
supr prgm long rd log addr

SR,DO
00{21:03}

DO,SR
#$0011,DO
#$0011,DO
DO,CACR
PROGl/os.s:_main

DATlos.s:ROOTPTR,AO
#$F9,-(A2)

time count
relative

0.60us
0.48us

0.48us
0.52us

0.48us

0.60us
o.sous
0.44us
0.52us
0.88us

0.52us

STATUS: M68030--Running Trace complete _______________ .•. R •...
display trace disassemble from line number 10

run trace set step display modify end ---ETC--

Figure 5·4. Trace List Resynchronized On Line 1 O

deMMUer Example 5·9

Enter the following command:

display trace disassemble_from_line_number 20 low_word Return

See figure 5-5. In the trace list shown in figure 5-5, the inverse
assembler lost synchronization due to the JSR instruction on line
19. The inverse assembler had to be resynchronized on the low
word of the long-word stored in trace memory line number 20. If
the "low_word" token had not been used in the above command,
inverse assembly would have begun with the high-word (by
default), and would have produced an incorrect inverse assembly.
(Compare line 20 with trace memory line 20 in figure 5-4 where
inverse assembly did begin on the high word.)

Trace List Mode1logical address
Labels Address Opcode or Status time count
Base: symbols mnemonic w/symbols relative
+0020 0.52us

=PROGl/os.s:_main LEA DATlos.s:ROOTPTR,AO
+0021 abs OOOFOEFC $000F0022 supr data long wr log addr 0.40us
+0022 01 main+00000002 $000F0800 supr prgm long rd log addr 0.40us
+0023 o:-main+00000006 PMOVE.Q (AO) ,CRP 0.44us
+0024 o:-main+OOOOOOOA LEA DATAios.s:MMUCTL,AO 0.52us
+0025 DATios.s:ROOTPTR $80000002 supr data long rd log addr 0.60us
+0026 ROOTPTR+00000004 $000F4000 sulr data long rd log addr 0.40us
+0027 01 _main+OOOOOOOA LEA DATA os.s:MMUCTL,AO 0.60us
+0028 0.44us

=o: main+OOOOOOlO PMOVE.L (AO) ,TC
+0029 0.48us

=o: main+00000014 LEA $00010000,AO
+0030 o:-main+00000016 $00010000 supr prgm long rd log addr 0.52us
+0031 DATAlos.s:MMUCTL $80COC440 supr data long rd log addr 0.40us

STATUS: M68030--Running Trace complete ... R
display trace disassemble from line _number 20 low_word

run trace set step display modify end ---ETC--

Figure 5·5. Trace List Resynchronized On Line 20

5·1 O deMMUer Example

Enter the following command:

display trace disassemble_from_line_number 36 low_word Return

See figure 5-6. In the trace list shown in figure 5-6, the inverse
assembler was resynchronized on the low word of the long-word
stored in trace memory line number 36. The event that caused the
inverse assembler to lose synchronization was the operating system
enabling the 68030 MMU. As in the preceding illustration,
execution started with the instruction beginning in the low word
following the event.

Figure 5-6 shows the end of the "os" program. When the operating
system script "os" supplied in this demonstration has finished
setting up the MMU, it executes an infinite loop.

Trace List
Label: Address

symbols

Mode:logical address
Opcode or Status time count

relative
0.60us

Base:
+0036

+0037
+0038
+0039
+0040
+0041
+0042

+0043
+0044

+0045
+0046

=o: main+00000014 LEA
o:-main+00000016 $00010000
o:-main+OOOOOOlA PTESTR
PROGlg/os.s:SELF JMP

pOOOF4000 $000FSOOA
pOOOF8004 $00020001

abs OOOF0044 MOVE.B
abs OOOF0046 incomplete

PROGlg/os.s:SELF JMP
abs OOOF0044 MOVE.B
abs OOOF0046 incomplete

PROGlg/os.s:SELF JMP
abs OOOF0044 MOVE.B
abs OOOF0046 incomplete

mnemonic w/symbols

$00010000,AO
supr prgm long rd log addr

#6, (AO) ,#7
($FFFE,PC)

supr data long rd phys add
supr data long rd phys add

- (A2) , - (A4)
cycle: /0044/????/

($FFFE,PC)
- (A2) , - (A4)

cycle: /0044/????/
($FFFE,PC)
- (A2) , - (A4)

cycle: /0044/????/

0.48us
0.44us
0.48us
l.52us
0.64us
0.84us

0.4Sus
0.44us

0.44us
0.44us

STATUS: M68030--Running Trace complete _______ ... R
display trace disassemble_from_line_number 36 low_word

run trace set step display modify end ---ETC--

Figure 5·6. Trace List Resynchronized On Line 36

deMMUer Example 5·11

Use the "page-up" key on your keyboard to view the display in
figure 5-7. This display shows the table walk that preceded the
execution shown in figure 5-6.

Table searches are always performed in physical memory. Note the , .~
letter "p" preceding each address shown as part of the table walk ..,,,
(trace memory lines 32 through 35). When the deMMUer is
supplying logical addresses and encounters a physical address for
which it has no translation, it shows the physical address from the
68030 MMU, and precedes it \\ith the letter "p". The analyzer
cannot show any symbols that are associated with physical
addresses.

Trace List
Label: Address

symbols

Mode:logical address
Opcode or Status time count

Base:
+0023
+0024
+0025
+0026
+0027
+0028

+0029

+0030
+0031
+0032
+0033
+0034
+0035

01 main+00000006 PMOVE,Q
o:-main+OOOOOOOA LEA
DATjos.s:ROOTPTR $80000002
ROOTPTR+00000004 $000F4000
o: main+OOOOOOOA LEA

=o:_main+OOOOOOlO PMOVE.L

=o: main+00000014
o:-main+00000016
DATAjos.s:MMUCTL

pOOOF4000
pOOOF4002
pOOOF803C
pOOOF803E

LEA
$00010000
$80COC440
$000F8002
$----800A
$000F0001
$----0009

mnemonic w/symbols
(AO) ,CRP
DATAjos.s:MMUCTL,AO

supr data long rd log addr
suir data long rd log addr

DATA os.s:MMUCTL,AO

(AO) ,TC

$00010000,AO
supr prgm long rd log addr
supr data long rd log addr
table walk long rd (strm)
table walk word wr (strm)
table walk long rd (strm)
table walk word wr (strm)

relative
0.44us
0.48us
0.60us
0.40us
0.60us
0.48us

0.48us

0.52us
0.40us
2.60us
0.60us
0.40us
0.88us

STATUS: M68030--Running Trace complete~~~~~~~········
display trace disassemble_from_line_number 36 low_word

run trace set step display modify end ---ETC--

Figure 5-7. Trace List Showing First Table Walk

5·12 deMMUer Example

Load The
Application
Program

Now that the MMU and deMMUer are both set up to perform
memory management and address translations, it is time to load
your application program. Enter the following command:

break Return

load memory towers Return

The above command causes the towers program to be loaded
logically through the monitor. (This requires several minutes.)
The reason "reset" was not used here is that it would shut down the
MMU. The MMU must manage the loading, as well as the
running, of the application program.

trace TRIGGER_ ON a= long_aligned main Return

run from transfer_address Return

The program will run about 15 seconds before the analyzer finds its
trigger point and captures a trace.

display trace disassemble_from_line_number 0 Return

display trace source on inverse_ video on symbols on Return

See figure 5-8.

deMMUer Example 5·13

Trace List Mode:logical address
Opcode or Status Label: Address time count

relative
0.40us

128 ##############################

Base: symbols mnemonic w/symbols
trigger 000010E8 NOP

+0001
+0002

+0003

+0004
+0005

##########towers.c - line
static void towers()1

1 thru

static int ask_for_number()1

main()
{

OOOOlOEA
7FFFFFC8

OOOOlOEE
OOOOlOFO
000010F2
7FFFFFC4

LINK.W
$00000A5C

MOVE.L
MOVE.L
LEA

$7FFFFFFO

A6, #$0000
supr data long wr log addr (strm)

A3,-(A7)
A2,-(A7)
($800C ,AS) ,AO

supr data long wr log addr (strm)

0.40us
0.40us

0.48us

0.40us
0.40us

STATUS: M68030--Running Trace complete~~~~~~~········
display trace source on inverse_video on

run trace set step display modify end ---ETC--

Figure 5-8. Trace List Showing Entry To Towers

5·14 deMMUer Example

In this display, you can see lines of source code (shown in inverse
video on your screen), followed by the states in the trace memory
that were emitted by those source lines and executed in your
emulation system.

The trigger line in figure 5-8 shows the beginning of execution in
the towers program. This program will run just like it did before
you set out to use memory management. The deMMUer will
provide all of the translations required to allow symbols to be used
in your commands, and to allow S}mbolic addresses to be shown in
analyzer trace lists.

6

Dequeued Trace Lists

How To Turn On
And Turn Off The
Dequeuer

This chapter shows you how to obtain and read the contents of
dequeued trace lists provided by the 68030 internal analyzer.
Normal trace list dequeuing is discussed, and examples are shown.
Finally, this chapter shows you how to recognize occasions when
the dequeuer makes an incorrect assumption, and how you can use
dequeuer command tokens to correct the trace list in these events.

The information available from the processor is not sufficient to
determine the logical behavior of the processor at all times. If a
portion of your dequeued trace list makes no sense, you may have
to read the "not-dequeued" trace to determine exactly what the
processor did. The dequeuer offers control selections (discussed in
this chapter) that you can use to correct your trace list if the
dequeuer makes an incorrect assumption.

Turn on the dequeuer by using the "dequeued" softkey in a
command such as:

display trace disassemble_from_line_number 44 dequeued

With the dequeuer on, the trace list shows a logical display of the
activity that was executed. The operands are aligned with the
instructions that caused them to occur. An operand is shown as a
single data value, regardless of how many bus cycles were used to
transfer that data value. All of the unused prefetches are
eliminated from the trace list.

Dequeued Trace Lista 6·1

When Do I Want A
Dequeued Trace
List?

6·2 Dequeued Trace Lists

Turn off the dequeuer by using the "not_dequeued" softkey in a
command such as:

display trace disassemble_from_line_number 81 not_ dequeued

With the dequeuer off, the trace list shows the content of every bus ...,,J
cycle, regardless of whether or not that bus cycle was part of a
program execution. The bus cycles are shown in the order they
occurred. That means instructions may appear in the list several
bus cycles before the data transactions they cause.

You'll want to dequeue your trace list when you want to see the
order of program execution. The dequeued trace list presents a
logical display of activity. It is is easier to read and understand.
You'll want to see a "not_ dequeued" trace list if you need to see
each bus cycle performed by the processor.

What Does A
Dequeued Trace
List Show?

A dequeued trace list shows a high-level view of the activity
performed by the processor. It does this by performing the
following tasks on the content of the trace memory:

• Align operands with the instructions that caused the
operand cycles (i.e. group data transfers with the
instructions that caused them to occur).

• Display operands in their logical forms (one data operand,
regardless of how many bus cycles were used to transfer
that operand).

• Determine whether or not conditional branches were
taken, and place TAKEN or NOT TAKEN in the trace list
beside each branch.

• Prevent display of unexecuted program fetch cycles.

• Display exception stack frames in logical format
(condensing the information that is transferred by bus
cycles when an exception is taken).

Dequeued Trace Lists 6·3

Dequeued Trace
List Examples

Short Jump/Branch
Example

6·4 Dequeued Trace Lists

Figures 6-1 through 6-8 show trace lists that have not been
dequeued followed by trace lists of the same area of memory after
they have been dequeued. These examples show how the dequeuer " .. ·Ji
selects information and presents it in a dequeued trace list. .._.,

Table 6-1 shows notations used in dequeued trace lists to describe
transactions.

Table 6·1. Shorthand Notation In Dequeued Trace Lists

Shorthand Notation Definition

sdata supervisor data
udata user data
sprog supervisor program
uprog user program
dest destination
src source
stck stack push or pop
addr indirect address fetch for pre-indexed

or post-indexed addressing mode

Notice in figure 6-1 that the bus cycles at address 1018H (lines 7
and 8) are shown twice following the branch on line 5. This is
because the destination address of the branch had already been
prefetched into the queue before the branch instruction was
recognized. The processor flushes its queue when it takes a jump
or branch. The unused prefetch and the fetch of the branch
destination both appear in the "not_ dequeued" trace list.

Figure 6-2 shows the same area of trace as figure 6-1, but shmvs
only one occurrence of the destination address of the branch. The
dequeuer recognized the unused prefetch and suppressed it so that
only the activity that was actually part of the execution is shown in
the trace list. """"

Notice the "TAKEN" notation on line 5 of the dequeued trace list.
It informs you of the disposition of the BNE.B instruction.

\.,,

Trace List
Label: Address
Base: hex
trigger 00001000
+0001 00001006
+0002 00001008
+0003 OOOOlOOE
+0004 00001010
+0005 00001014

+0006
+0007
+0008
+0009
+0010
+0011
+0012

00001016
oooocooo
00001018
00001018
OOOOlOlE
OOOOC004
00001020
00001024
00001026

LEA
MOVEQ
MOVE.L
CMP.L

$0000COOO
BNE.B
ADDQ.L

$00001234
MOVE.L
MOVE.L
CMP.L

$0000000E
$0000C008

BNE.B
MOVE.W

Mode:logical address
Opcode or Status

mnemonic
$0000EOOO,A7
#$0000000E,Dl
#$00000200,DO
$0000COOO,DO

supr prgm long rd log addr (ds32)
$00001018
#4 I Dl

supr data long rd log addr (ds32)
Dl,SOOOOC004
Dl,$0000C004
$0000C008,Dl

supr data long wr log addr (ds32)
supr prgm long rd log addr (ds32)

$0000102A
#$0019,Dl

time count
relative

0.52us
0.40us
0.48us
0.44us
0.44us
0.44us

0.36us
0.36us
0.40us
0.40us
0.40us
O. 32us
0.48us

STATUS: M68030--Running Trace complete ________
display trace disassemble_from line number O

_run ___ trace_ set _step_ display __ modify __ end __ ---ETC--

Figure 6·1. Short Jump Example, Not_Dequeued

Trace List Mode:logical address
Label: Address Opcode or Status time count
Base: hex mnemonic relative
trigger 00001000 LEA $0000EOOO,A7 0.52us
+0001 00001006 MOVEQ #$0000000E,Dl o. 4 Ous
+0002 00001008 MOVE.L #$00000200,DO 0.48us
+0003 OOOOlOOE CMP.L $0000COOO,DO 0.44us

oooocooo src sdata rd:$00001234
+0005 00001014 BNE.B $00001018 TAKEN 0.88us
+0008 00001018 MOVE.L Dl,$0000C004 l.12us

OOOOC004 dest sdata wr:$OOOOOOOE
+0009 0000101E CMP.L $0000C008,Dl 0.40us

oooocooa src sdata rd:$00004000
+0012 00001024 BNE.B $0000102A TAKEN l.20us
+0015 0000102A MOVE.L Dl 1 $0000C004 l.08us

OOOOC004 dest sdata wr:$OOOOOOOE
+0017 00001030 MOVE .B $0000COOC,D4 a.sous

oooocooc src sdata rd: $04

STATUS: M68030--Running Trace complete _______ ~····
display trace disassemble_from line number o dequeued

_run ___ trace __ set ___ step_ display __ modify __ end __ ---ETC--

Figure 6·2. Short Jump Example, Dequeued

Dequeued Trace Lists 6·5

Stack Push And Pop
Example

6-6 Dequeued Trace Lists

A stack push and pop are shown in figures 6-3 and 6-4. The
dequeued trace list shows the stack push as an operand of the JSR
instruction (line 10 + 2, figure 6-4). The stack pop is shown as an
operand of the RTS instruction (line 17 + 1, figure 6-4). This is
the logical representation of what the processor did during
execution, and it eliminates a lot of bus cycles that were used to
accomplish the push and pop operations (line 10 + 1 through line
20, figure 6-3).

\._.,

Trace List Mode:logical address
Label: Address Opcode or Status time count
Base: hex mnemonic relative
+0010 00001020 MOVE.L 00 1 -(A7) 0.48us

00001022 JSR $00001052
+0011 oooocooo $FFFFFFFB supr data long rd log addr (ds32) 0.32us
+0012 00001024 $00001052 supr prgm long rd log addr (ds32) 0.36us
+0013 OOOOOFFC SFFFFFFFB supr data long wr log addr (ds32) 0.44us
+0014 00001050 MOVE.B 06,00 0.36us

00001052 MOVE.L ($0004 ,A7) I 07
+0015 OOOOOFF8 $00001028 supr data long wr log addr (ds32) 0.36us
+0016 00001056 BPL.B $0000105A 0.36us
+0017 00001058 NEG.L 07 0.40us

0000105A RTS
+0018 OOOOOFFC $FFFFFFFB supr data long rd log addr (ds32) o.32us
+0019 0000105C BHI.B SOOOOlOCO 0.56us

0000105E BHI.B $000010C2
+0020 OOOOOFF8 $00001028 supr data long rd log addr (ds32) o.52us

STATUS: M68030--Running Trace complete I I I I I I I I

display trace disassemble from line number 10

- run -- - trace --set ___ step_ display __ modify __ end __ ---ETC--

Figure 6·3. Stack Push And Pop Example, Not_Dequeued

Trace List
Label: Address
Base: hex
+0010 00001020

OOOOOFFC
00001022
OOOOOFF8

+0011 oooocooo
+0014 00001052

OOOODFFC
+0016 00001056
+0017 00001058

0000105A
OOOOOFF8

+0021 00001028
+0022 0000102E

oooocooo
+0024 00001034

MOVE.L
dest sdata

JSR
stck sdata

$FFFFFFFB
MOVE.L

ere sdata
BPL.B
NEG.L
RTS

stck sdata
AODA.L
MOVE.L
dest sdata

MOVE.L

Mode:logical address
Opcode or Status

mnemonic
OO,-(A7)

wr:$FFFFFFFB
$00001052

wr:$00001028
supr data long rd log addr (ds32)

($0004,A7) 1 D7
rd:$FFFFFFFB

$0000105A NOT TAKEN
07

rd:$00001028
#$00000004,A7
07,$0000COOO

wr:$00000005
$0000C004 1 -(A7)

time count
relative

0.48us

0.32us
1. 16us

0.72us
0.40us

l.84us
0.40us

o.88us

STATUS: M68030--Running Trace complete _______ ~········
display trace disassemble from_line_number 10

_run ___ trace __ set ___ step_ display __ modify __ end __ ---ETC--

Figure 6·4. Stack Push And Pop Example, Dequeued

Dequeued Trace Lists 6·7

Operands From 8-Bit
Memory Example

6·8 Dequeued Trace Lists

The "not_dequeued" trace shows that several bus cycles were used
to form an instruction because it was contained in 8-bit memory
(lines 6 through 11, figure 6-5). The operand cycles caused by
execution of that instruction are shown on lines 16 and 17 of figure
6-5. The "dequeued" trace list (figure 6-6) shows the instruction, """"""
and on the next line, its operand (lines 6 and 6 + 1). A dequeued
trace list shows the logical activity that was executed by the
processor, regardless of the number of bus cycles required to
transact that activity.

Trace List Mode:logical address
Label: Address Opcode or status time count
Base: hex mnemonic relative
+0006 ' 00004006 MOVE.W $00004230,DO 0.36us

l,,
+0007 00004007 $39 supr prgrn byte rd log addr (ds8) 0.36us
+0008 00004008 $00 supr prgrn long rd log addr (ds8) 0.44us
+0009 00004009 $00 supr prgrn 3byte rd log addr (ds8) 0.36us
+0010 0000400A $42 supr prgrn word rd log addr (ds8) 0.36us
+0011 0000400B $30 supr prgrn byte rd log addr (ds8) o. 32us
+0012 0000400C ADDI.W #$0040,DO 0.48us
+0013 00004000 $40 supr prgm 3byte rd log addr (ds8) o. 32us
+0014 0000400E $00 supr prgm word rd log addr (ds8) 0.36us
+0015 0000400F $40 supr pr gm byte rd log addr (ds8) 0.36us
+0016 00004230 $00 supr data word rd log addr (ds8) 0.36us
+0017 00004231 $00 supr data byte rd log addr (ds8) 0.36us
+0018 00004010 CMP.W $00004238,DO 0.32us
+0019 00004011 $79 supr prgm 3byte rd log addr (ds8) 0.36us
+0020 00004012 $00 supr prgm word rd log addr (ds8) 0.36us

STATUS: M68030--Running Trace complete
display trace disassernble_from -line number 6

~run~- _trace~ ~set~- ~step~ display __ modify_ ~end~- ---ETC--

Figure 6·5. Operands From B·Blt Memory, Not_Dequeued

l,, Trace List Mode:logical address
Label: Address Opcode or Status time count
Base: hex mnemonic relative
+0006 00004006 MOVE.W $00004230,DO 0.36us

00004230 src sdata rd: $0000
+0012 0000400C ADDI.W #$0040,DO 2. 32us
+0018 00004010 CMP.W $00004238,DO 2.08us

00004238 src sdata rd:$OOOO
+0024 00004016 BLT.W $00004020 ?TAKEN? 2.2ous
+0030 0000401A ADD.W $0000423C,DO 2.l6us

0000423C src sdata rd:$0405
+0036 00004020 MOVE.W D0,$00004230 2.40us

00004230 dest sdata wr:$0445
+0044 00004026 BRA.W $00004006 2.0ous
+0054 00004006 MOVE.W $00004230,DO 3.76us

00004230 src sdata rd:$0445
+0060 0000400C ADDI.W #$0040, DO 2.2ous
+0066 00004010 CMP.W $00004238,DO 2.00us

STATUS: M68030--Running Trace complete~~~~~~~~········
display trace disassernble_from_line_nurnber 6 dequeued

~run~- _trace~ ~set~- ~step~ display __ modify_ ~end~- ---ETC--

Figure 6·6. Operands From B·Blt Memory, Dequeued

Dequeued Trace Lista 6·9

Exceptions And
Interrupts Example

Notice the trace lists showing exceptions and interrupts (figures 6-7
and 6-8). Exceptions and interrupts require many bus cycles to
process them correctly. The dequeuer recognizes exceptions and

Trace List
Label: Address
Base: hex
+0006 00001014

+0007
+0008
+0009
+0010
+0011
+0012
+0013

+0014
+0015
+0016
+0017
+0018

+0019
+0020
+0021
+0022
+0023
+0024

00001016
OOOOD006
00001018
OOOOCFF8
00000080
OOOOCFFA
OOOOCFFC
00001060
00001062
OOOOCFFE
00001066
0000106A
OOOOCFF8
0000106C
0000106E
OOOOCFFC
OOOOCFF8
OOOOCFFE
OOOOCFFA
OOOOCFFC
00001014

interrupts and suppresses all of the extraneous bus-cycle " ,,.
information, showing just the logical flow resulting from the ~

exception or interrupt. Compare lines 6 through 24 in figures 6-7
and 6-8.

Line 6 is the TRAP instruction. The next three lines are
unexecuted prefetches. The trap handler is on line 13. The RTE is
on line 16. Line 24 returns to address 1016H (1014H was fetched
because it is the high word address where 1016H resides, but it is
not shown in the dequeued trace list at line 24 because it is not
executed at this point).

Notice the additional information supplied to clarify processor
activity in the dequeued trace. An exception line such as

Mode:logical address
Opcode or status

TRAP
ADDI. L

s----2222
$00000032
$2700---
$00001060
$----0000
$1016----

MOVEQ
MOVE.L

$----0080
MOVE.L
RTE

mnemonic
#0
#$00000032,DO

supr data word rd
supr prgm long rd
supr data word wr
supr data long rd
supr data long wr
supr data word wr

log
log
log
log
log
log

addr
addr
addr
addr
addr
addr

(ds32)
(ds32)
(ds32)
(ds32)
(ds32)
(ds32)

#$00000000,Dl
($00,A7,Dl.L),DO

supr data word
($0004,A7),DO

wr log addr (ds32)

$27000000 supr data long rd log addr (ds32)
MOVE.L (A7),DO
incomplete instr.: /202F/????/

$10160080 supr data long rd log addr
$2700---- supr data word rd log addr
$----0080 supr data word rd log addr
$----0000 supr data long rd log addr
$1016---- supr data word rd log addr

TRAP #0

(ds32)
(ds32)
(ds32)
(ds32)
(ds32)

time count
relative
0.44us

0.36us
0.36us
0.52us
0.36us
0.36us
0.32us
0.36us

0.44us
0.36us
0.56us
0.36us
0.44us

0.36us
0.48us
0.36us
0.36us
0.36us
0.52us

STATUS: M68030--Running Trace complete ,,,,,,,,
display trace disassemble from line number O -------~

_run __ trace __ set __ step_ display __ modify __ end_ ---ETC--

Figure 6·7. Exceptions And Interrupts, Not_Dequeued

6·1 o Dequeued Trace Lists

""'

"**EXCEPTION** TRAP #0" will be included in a dequeued
trace list to describe the type of exception detected. Additional
information relevant to the exception will be shown following the
"**EXCEPTION** line. The notations in these information lines
are defined in table 6-2.

Table 6·2. Notations Following Exceptions Defined

Notation Definitions

PSW processor status word
PC program counter
FMT format word (format of transfer status register)
VEC exception vector fetch

Trace List Mode:logical address
Label: Address Opcode or Status
Base: hex mnemonic
trigger 00001000 LEA $00000000,A7
+0001 00001006 NOP
+0002 00001008 MOVE.W $00000004,00

00000004 src sdata rd: $1111
+0003 OOOOlOOE MOVE,W $00000006,01

00000006 src sdata rd: $2222
+0006 00001014 TRAP #0
+0009 **EXCEPTION** TRAP #0

OOOOCFFS PSW=$2700 PC=$00001016 FMT=$0080
00000080 VEC=$00001060

+0013 00001060 MOVEQ #$00000000,01
00001062 MOVE.L ($00,A7,0l.L),OO
OOOOCFFS src sdata rd:$27000000

+0015 00001066 MOVE.L ($0004,A7),00
OOOOCFFC src sdata rd: $10160080

+0016 0000106A RTE
+0020 OOOOCFFS PSW=$2700 PC=$00001016 FMT=$0080
+0024 00001016 AOOI.L #$00000032,00
+0026 0000101C AOOI.L #$00000032,01

time count
relative

0.56us
0.40us
0.44us

0.44us

l.20us
l.24us

l.40us

a.sous

0.56us
l.64us
l.60us
a.sous

STATUS1 M68030--Running Trace complete ,,,,,,,,
display trace disassemble_from_line_number O dequeued --------------

__ run __ trace __ set __ step_ display __ modify __ end_ ---ETC--

Figure 6·8. Exceptions And Interrupts, Dequeued

Dequeued Trace Lists 6·11

Problems You
May See When
Using The
Dequeuer

Bus Cycles In The
Trace List

Note

6·12 Dequeued Trace Lista

The following paragraphs discuss problems you may see in
dequeued trace lists. Each paragraph shows you how to recognize
the problem, and how to correct it in your trace list.

When you see a line with bus-cycle width identifiers (ds8), (dsl6),
or (ds32), you are seeing bus cycles instead of logical, dequeued
information. When bus cycles appear in the dequeued trace list, it
usually means the dequeuer is not aligning operands and
instructions correctly. To obtain correct alignment of operands
and instructions, issue a new "disassemble_from" command and use
the "align_data_from_line" token to re-synchronize inverse
assembly, as described in the following command:

display trace disassemble_from_line_number <instructionline>
dequeued align_data_from_line <dataline>

Where:
<instructionline> =the number of the line containing the
instruction with the incorrect operand.
< dataline > = the number of the line containing the correct
operand.

You can use as many new "disassemble_from" and "align_ data"
commands as you like. The inverse assembler will remember all of
the specified points and correct the trace list accordingly.

Perhaps you are looking at bus cycles that resulted from
instructions that were executed before the location you specified in
your earliest "disassemble_from" command. Dequeuing begins
with the line number you specified and proceeds forward from < ~

there, but never backward. """""'

Bus cycles may appear in the first few lines after the beginning of
the inverse assembled portion of your trace list. These are usually

Trace List Mode:logical address
Label: Address Opcode or Status time count
Base: hex mnemonic relative
+0009 OOOOlOlC MOVE.B ($0010,A0) 1 ($FFFE,Al) 0.32us

~
00002000 src sdata rd: $00
00002002 dest sdata wr:$00

+0012 00002000 $00------ supr data byte rd log addr (ds32) l.OSus
+0013 00002002 $----00-- supr data byte wr log addr (ds32) O. 32us
+0014 00001022 MOVE.B ($01,AO,D3.W),($FF,Al,D3.L) 0.36us

00002002 src sdata rd:$00
00002002 dest sdata wr:$00

+0015 00002010 $00------ supr data byte rd log addr (ds32) 0.44us
+0017 00002000 $00------ supr data byte wr log addr (ds32) O. 72us
+0019 0000102S MOVE.B ($01,AO,A3.W*4),($FF,Al,A3.L*2) 0.6Sus

00002005 src sdata rd: $02
00002003 dest sdata wr:$02

+0021 0000102E MOVE.B $0000200S,$0000201S a.sous
0000200S src sdata rd: $11

STATUS: M6S030--Running Trace complete
display trace disassemble_from line _number 9 dequeued

__ run ____ trace ____ set _____ step __ display __ modify ___ end ___ ---ETC--

Figure 6·9. Problem Of Bus Cycles In Trace List

~ Trace List Mode:logical address
Label: Address Opcode or Status time count
Base: hex mnemonic relative
+0009 0000101C MOVE.B ($0010,AO),($FFFE,Al) O. 32us

00002010 src sdata rd:$00
00002000 dest sdata wr:$00

+0014 00001022 MOVE.B ($01,AO,D3.W),($FF,Al,D3.L) 1.76us
00002002 src sdata rd: $00
00002002 dest sdata wr:$00

+0019 0000102S MOVE.B ($01,AO,A3.W*4),($FF,Al,A3.L*2) 1.S4us
00002005 src sdata rd:$02
00002003 dest sdata wr:$02

+0021 0000102E MOVE.B $0000200S,$0000201S a.sous
0000200S src sdata rd: $11
0000201S dest sdata wr: $11

+0026 00001034 MOVE.B $0000200S,$0000201S 1.ssus
0000200S src sdata rd: $11
0000201S dest sdata wr:$11

STATUS: M6S030--Running Trace complete ..•.••..
display trace disassemble from line_number 9 dequeued align_data_from_l1ne 15

__ run ____ trace ____ set _____ step __ display __ modify ___ end ___ ---ETC--

Figure 6·1 o. Example Of Bus Cycles Fixed In Trace List

Dequeued Trace Lists 6·13

Jumps (JMP and JSR)

6·14 Dequeued Trace Lists

operand cycles from instructions that occurred before the line
specified in your "disassemble_from" command.

Figure 6-9 is a dequeued trace list that shows some bus cycles,
indicating a dequeuer error. The designer was able to recognize
that the operand on line 15 belongs with the instruction on line 9.
Lines 9+ 1 through 13 are operand cycles caused by instructions
that occurred before line 9. By using the command "display trace
disassemble_ from_ line_ number 9 dequeued align_ data_ from_ line
15", dequeuing is corrected in the inverse assembled trace list
(figure 6-10).

The trace list may show disassembly beginning one word before the
actual destination of a jump, or you may see meaningless
disassembly follo\\ing a jump. You may also see unaligned cycles
in the trace list follo\\ing a jump.

In cases where the destination address of a jump is stated clearly in
the code, disassembly will resume at the correct address after the
jump. If the destination address of a jump is not stated clearly in
the code (such as in register-indirect addressing mode),
disassembly will begin on the even address in the long word at the ""'1JiJ
destination of the jump. If the jump destination is an even word,
disassembly \\ill be correct. If the jump destination is an odd word,
disassembly will not be correct.

Try disassembling the trace from a new point. Use the "low_ word"
token if the activity is obtained from 32-bit memory. Use a new
trace list line number if the acti'>ity is from 16-bit or 8-bit memory.

Figure 6-11 shows a jump instruction on line 1. The destination of
the jump is on line 3 + 1. The state on line 3 is the high word at
the 32-bit address where the jump destination resides. By using the
''low_ word" token, this error is corrected in figure 6-12. The
"low word" token could be used in a new command to correct the
error on line 16. The inverse assembler would remember both
corrected locations and produce a correct trace list.

Notice that the dequeued trace list shows the values of DO, Dl, and ~ ... ,JI
D2 on one line following the MOVEM.L instruction. ~

\...,

Trace List
Label: Address

Mode:logical address
Opcode or Status

Base: hex mnemonic
trigger 00001000 LEA $0000101A,AO
+0001 00001006 JMP (AO)
+0003 00001018 Illegal Coprocessor Instruction: $FFFF

#$00000032,DO
+0005
+0006

+0008
+0013
+0014
+0016

+0018
+0019

000010 lA ADDI. L
00001020 ADDI.L
00001026 MOVEM.L
OOOOCOOO D0=$00000064
0000102E JMP
00001000 LEA
00001006 JMP

#$00000032, DO
DO-D2,$0000COOO
Dl=$00000000 D2=$00000000
$00001000
$0000101A,AO
(AO)

Coprocessor Instruction: $FFFF
#$00000032,DO
#$00000032,DO
DO-D2,$0000COOO
Dl=$00000000 D2=$00000000

00001018 Illegal
0000101A ADDI.L
00001020 ADDI.L
00001026 MOVEM.L
OOOOCOOO D0=$000000C8

time count
relative
0.52us
0.40us
l.OOus

o.80us
0.48us

0.88us
l.84us
0.40us
l.OOus

o.8ous
0.48us

STATUS: M68030--Running Trace complete ________________ ..•..•..
display trace disassemble from line_number O dequeued

__ run ____ trace ____ set _____ step __ display __ modify ___ end ___ ---ETC--

Figure 8·11. Example Of Uncertain Jumps In Trace List

Trace List Mode:logical address
Label: Address Opcode or Status time count
Base: hex mnemonic relative
trigger 00001000 LEA $0000101A,AO 0.52us
+0001 00001006 JMP (AO) 0.40us
+0003 0000101A ADDI.L #$00000032,DO 0,52us
+0005 00001020 ADDI.L #$00000032,DO o.0ous
+0006 00001026 MOVEM.L DO-D2,$0000COOO 0.48us

oooocooo D0=$00000064 Dl=$00000000 D2=$00000000
+0008 0000102E JMP $00001000 o.88us
+0013 00001000 LEA $0000101A,AO l.84us
+0014 00001006 JMP (AO) 0.40us
+0016 00001018 Illegal Coprocessor Instruction: $FFFF l.OOus

0000101A ADDI.L #$00000032, DO
+0018 00001020 ADDI.L #$00000032,DO 0.80us
+0019 00001026 MOVEM.L DO-D2,$0000COOO 0.48us

oooocooo D0=$000000C8 Dl=$00000000 D2=$00000000
+0021 0000102E JMP $00001000 0.88us

STATUS: M68030--Running Trace complete •••••..•
display trace disassemble_from_line_number 3 low_word de~qu ___ e_u_e~a----------

__ run ____ trace ____ set _____ step __ display __ modify ___ end ___ ---ETC--

Figure 8·12. Uncertain Jumps Fixed In Trace List

Dequeued Trace Lists 8·15

Branch· Was It
Taken Or Not?

6·16 Dequeued Trace Lists

The trace list in figure 6-13 shows a branch and ?TAKEN? on line
5. The notation "?TAKEN?" indicates the dequeuer couldn't
determine whether or not the branch had been taken.

Usually the dequeuer can tell whether or not a branch was taken by ...,J
looking for a change in the sequence of addresses in the execution
that follows the branch. In these cases, the dequeuer will place
"TAKEN" or "NOT TAKEN" in the trace list beside the branch
instruction, and it will dequeue the trace list that follows the
branch.

In figure 6-13, the dequeuer could not determine whether the
branch on line 5 was taken or not because the same address
sequence would be fetched whether or not the branch was taken.

When a short, forward branch is taken (branch to an address that is
only a few addresses higher than the address of the branch
instruction), the dequeuer may not be able to tell if the branch was
taken. When the dequeuer is unsure whether or not a branch was
taken, it assumes that the branch was not taken. It also assumes
the instructions immediately following the branch were executed
after falling through the branch. This produces a correct trace list
if the branch was not taken.

If the branch was taken, the dequeuer may produce an incorrect
trace list. After making the wrong assumption about the branch,
the dequeuer will try to find memory operands for instructions that
were never executed. This may produce a trace list in which
instructions are aligned 'With the wrong operands. Bus cycles may
also appear in the list. Sometimes the bus cycles will not appear
for several instructions after the branch marked ?TAKEN?.

To determine whether or not a branch marked ?TAKEN? was
actually taken, see if there are memory operands in the trace list
that indicate the adjacent fetches were executed. Look for bus
cycles in the trace list. You may need to look at the associated
"not_ dequeued" trace list (figure 6-14) to determine the values of
the condition codes used by the branch instruction.

Correcting Branches
?TAKEN? In Trace

List

Trace List
Label: Address
Base: hex
trigger 00001000 LEA
+0001 00001006 MOVEQ
+0002 00001008 MOVE.L
+0003 OOOOlOOE CMP.L

If you find that a branch marked ?TAKEN? was actually taken,
you can correct your trace list as follows:

1. Find the trace list line number containing the address of
the branch destination. For 32-bit wide memory,
determine if the high word or low word contains the
branch destination.

2. Issue a "display trace disassemble_from ... " command to
restart inverse assembly at the address of the branch
destination. If necessary, include an
"align_data_from_line" token to resynchronize the
instructions and data in your trace list.

Mode:logical address
Opcode or Status time count

mnemonic relative
$0000EOOO,A7 0.52us
#$0000000E,Dl 0.40us
#$00000200,DO 0.48us
$0000COOO,DO 0.44us

oooocooo src sdata rd:$00001234
+0005 00001014 BNE.B $0000101E ?TAKEN? o.88us

00001016 MOVE.L #$00005678,02
+0008 0000101C ADDQ.L #4, Dl l.12us

0000101E MOVE.L Dl,$0000C004
OOOOC004 de st sdata wr:$0000000E

+0010 00001024 CMP.L $0000C008,Dl 0.80us
oooocoo0 src sdata rd:$00004000

+0012 0000102A BNE.B $00001030 ?TAKEN? 0.68us
+0014 0000102C MOVE.W #$0019, Dl 0.76us
+0015 00001030 MOVE.L Dl,$0000C004 0.56us

STATUS: M68030--Running Trace complete
display trace disassemble -from_line_number O dequeued

_run __ trace __ set __ step_ display __ modify __ end_ ---ETC--

Figure 6·13. Example Branches ?Taken? In Trace List

Dequeued Trace Lista 6·17

Trace List
Label: Address
Base: hex
trigger 00001000
+0001 00001006
+0002 00001008
+0003 OOOOlOOE
+0004 00001010
+0005 00001014

+0006
+0007
+0008

+0009
+0010
+0011
+0012

00001016
oooocooo
00001018
0000101C
0000101E
00001020
00001024
OOOOC004
0000102A

LEA
MOVEQ
MOVE.L
CMP.L

$0000COOO
BNE.B
MOVE.L

$00001234
$00005678

ADDQ.L
MOVE.L

$0000C004
CMP.L

$0000000E
BNE.B

Mode:logical address
Opcode or Status

mnemonic
$0000EOOO,A7
il$0000000E,Dl
11$00000200, DO
$0000COOO,DO

supr prgm long rd log addr (ds32)
$0000101E
ll$00005678,D2

supr data long rd log addr (ds32)
supr prgm long rd log addr (ds32)

#4,Dl
Dl,$0000C004

supr prgm long rd log addr (ds32)
$0000C008,Dl

supr data long wr log addr (ds32)
$00001030

time count
relative
0.52us
0, 40us
o. 48us
0.44us
0.44us
0.44us

0.36us
0.36us
o. 40us

0.40us
0.40us
0.32us
0.36us

STATUS: M68030--Running Trace complete..,,....------~··, •.•••
display trace disassemble_from line_number O not_dequeued

_run trace __ set __ step_ display __ modify __ end_ ---ETC--

Figure 6·14. Not-Dequeued Trace To Solve Branch ?Taken?

6-18 Dequeued Trace Lists

7

Analyzer Commands

New Pages

Replacement
Pages

This chapter contains pages that supplement the syntax pages in
Chapter 15 of the 16- And 32-Bit Internal Analysis Reference
Manual. Some of the pages in this chapter are new pages, and
some are replacement pages for corresponding syntax pages. You
can leave the syntax pages of this chapter in this manual so that you
can compare the differences b~tween this analyzer and the analyzer
described in the reference manual, or you can take the pages out of
this chapter and use them to replace the corresponding pages in
the reference manual.

The copy MMU and display MMU pages in this chapter are new.
They show the new command structures required to support this
analyzer's ability to display MMU address mappings.

The display trace pages in this chapter are different from the
corresponding syntax pages in the reference manual. The only
differences in the display trace command syntax are caused by the
addition of command tokens that are needed for trace list
dequeuing.

Analyzer Commands 7·1

Notes

7·2 Analyzer Commands

copy MMU

Note

Syntax The syntax of the copy mmu_tables and copy mmu_mappings
commands are shown in two diagrams in this section.

Function The copy mmu_mappings and copy mmu_tables commands allow
you to obtain copies of the present MMU mappings under a
selected root pointer, and copies of the path that maps any selected
logical address to its physical address. The copy mmu_mappings
and copy mmu_tables commands can send electronic copies to be
produced on a printer, stored in an HP-UX file, or processed by an
HP-UX command of your choice.

The mmu_mappings and mmu_tables features only work when you
are using the background monitor of your emulator. The memory
accesses that are required to support these features are not
implemented in the foreground monitor.

Examples copy mmu_tables root_ptr CRP logical address 0 to mytables

copy mmu_tables root_ptr CRP fcode USER_DATA
logical_address 02000000H show _table_level FCODE to printer
noh~ader

copy mmu_tables root_ptr 01 lB translation_control 82CFSOOOH
Iogical_address 02000000H show_table_level B

copy MMU 1

copy mmu_mappings

copy

CRP

SRP

<VALUE>

fcode

to

2 copy MMU

mmu_mappings root _ptr

translation control <ADDR>

--EXPR--

SUPER PROG logical_ address

SUPER DATA

USER PROG

USER DATA

CPU SPACE

<FCODE>

printer

<HP UX COMMAND PRECEDED
AND FOLLOWED BY '!'>

<HP UX FILE NAME>

show_mop_from

<ADDR>

--EXPR-- 1-------~

<RETURN>

no header

noappend

no header

copy mmu_tables

copy

CRP

SRP

<VALUE>

fcode

to

mmu tables root_ptr

tronslotion _control <ADDR>

--EXPR--

FCODE

SUPER_DATA logicol _address <ADDR>

USER PROG

USER_OATA --EXPR--

CPU SPACE

<FCODE>

show_ table_ level FCODE

A

B

c

D

printer

<HP_UX COMMAND PRECEDED
AND FOLLOWED BY '!'>

noheoder

<HP_ UX FILE NAME>

nooppend

noheoder

copy MMU 3

Parameters

4 copy MMU

<ADDR> This prompts you to enter an address expression.
Refer to the a/d/s EXPRESSION syntax diagram """"""
in the 16- and 32-Bit Internal Analysis manual .
for HP 64400-Series analyzers for details.

CRP CPU Root Pointer.

fcode Use this to specify which function code you want
to begin your mmu_mappings list, or
mmu_tables display.

logical_address The address in logical (virtual) memory space.

mmu_mappings The list of mappings that show the logical
address ranges and their corresponding physical
address ranges.

mmu tables

noappend

no header

printer

root_ptr

The path taken through the tables to show how a
selected logical address is mapped to its "'1fl
corresponding physical address, or by adding
"show_table_level", the details ofa table's
content within a narrow address range.

Use this to overwrite an existing file. If you copy
to a file, the default routine will append your
information to the existing file instead of
overwriting the file.

This allows you to turn off storage of the header
information in your copy to save space.

Use this to direct your copy to be made on the
system printer.

Use this to introduce the source of the root
pointer descriptor.

show_map_from Use this to specify the logical address (with or
without function code) where you want your
mapping list or tables display to begin.

show table - -
level

SRP

to

translation
control

<VALUE>

Use this to specify the table level that you want
to examine in detail in your mmu_tables copy.

Supervisor Root Pointer

This allows you to specify whether your copy is
to be sent to the system printer, to an HP-UX
file, or be included as part of an HP-UX
command.

Use this to specify a value for the translation
control register. This is required when you
specify your own value for the root pointer.

Root pointer value to be used instead of the
CRP or SRP. You must also specify the value of
the translation control register when you specify
your own root pointer value.

copy MMU 5

Notes

6 copy MMU

display MMU

Note

Syntax The syntax of the display mmu_mappings and display mmu_tables
commands are sho\\-n on two diagrams in this section.

Function

Examples

The display mmu_mappings command calls up a display that shows
all of the ranges of logical addresses that are presently mapped to
physical addresses by the MMU. If the first level of your adddress
mappings uses function codes, the mmu_mappings display will be
separated into blocks of addresses under function-code headings.

The display mmu_tables command calls up a display that shows the
path used to map one logical address to its corresponding location
in physical memory. You specify the logical address and your
display will show you the corresponding mapping tables. The
mmu_tables display can be used to troubleshoot mapping
problems that appear in display mmu_mappings lists (identified by
"INVALID" notations in the lists).

The mmu_mappings and mmu_tables features only work when you
are using the background monitor of your emulator. The memory
accesses that are required to support these features are not
implemented in the foreground monitor.

display mmu_tables root_ptr CRP logical_address 0

display mmu_tables SRP root_ptr fcode SUPER PROG
logical_address OAlOOOH

display mmu_mappings root_ptr CRP show_map_from fcode
USER_DATA logical address 2000H

display MMU 1

display mmu_mappings I

display

CRP

SRP

<VALUE>

fcode

2 display MMU

mmu_mappings root_ptr

translation control

SUPER PROG

SUPER DATA

USER_PROG

USER_DATA

CPU SPACE

<FCODE>

<RETURN>

show_map_from

<ADDR>

--EXPR--

<ADDR>

--EXPR-- 1-------

display mmu_tables

display mmu tables root_ptr

CRP

SRP

<VALUE> translation control <ADDR>

<RETURN>
--EXPR--

fcode SUPER_PROG ,__~~--.show _table_level FCODE

SUPER DATA logical_ address <ADDR>

USER_PROG

USER DATA --EXPR--

CPU_SPACE

<FCODE>

show table level FCODE - -

A

B

c

D

Parameters

display MMU 3

<ADDR> This prompts you to enter an address expression.
Refer to the a/d/s Expression syntax diagram in
the 16- and 32-Bit Internal Analysis manual for

""'
HP 64400-Series analyzers for details.

CPU SPACE Identifies function code value 7H.

CRP CPU Root Pointer.

fcode Use this to specify which function code you want
to begin your mmu_mappings list, or
mmu_tables display.

<FCODE> This prompts you to press any softkey that has a
function-code identifier, or enter a
Motorola-reserved function code value, if
desired.

logical_address The address in logical (virtual) memory space.

mmu_mappings The list of mappings that show the logical -..I
address ranges and their corresponding physical
address ranges.

mmu_tables The path taken through the tables to show how a
selected logical address is mapped to its
corresponding physical address, or by adding
"show_table_level", the details ofa table's
content within a narrow address range.

root_ptr Use this to introduce the source of the root
pointer descriptor.

show_map_from Use this to specify the logical address (with or
without function code) where you want your
mapping list or tables display to begin.

""' show_table Use this to specify the table level that you want -
level to examine in detail in your mmu_tables display.

4 dlsplay MMU

SRP Supervisor Root Pointer.

SUPER DATA Identifies function code value SH.

SUPER PROG Identifies function code value 6H.

translation
control

USER DATA

USER PROG

Use this to specify the value for the translation
control register. This is required when you
specify your own value for the root pointer.

Identifies function code value lH.

Identifies function code value 2H.

display MMU 5

Notes

6 display MMU

display trace

Syntax The syntax of the display trace command is shown in three
diagrams in this section. The first diagram shows the overall
syntax. The next two diagrams show details of the <TRACE
ABSOLUTE> and <TRACE DISASSEMBLE> breakdowns.

display trace <TRACE_SPECIFICATION>

display trace_ specification >-----------------~- <RETURN>

<TRACE ABSOLUTE, ETC> sequence_ definitions

<TRACE DISASSEMBLE, ETC> bnc_port_setup

Function

Examples

analysis_ groups

intermodule_ bus_ setup

The display trace command is used to obtain a trace list showing
information in the form desired (assembly language, selected
column widths, etc). The display trace_specification command
shows the present setup of the analyzer and associated functions on
screen.

display trace disassemble_from_line_number l

display trace symbols on width address 12

display trace 1

<TRACE ABSOLUTE>

display

count

offset_ by

width

2 display trace

<TRACE_ SPECIFICATION>

<TRACE DISASSEMBLE, ETC>

trace

hex

mnemonic

relative

absolute

--EXPR--

address

mnemonic

symbols

default

<SYMBOL

WIDTH>

<TRACE DISASSEMBLE>

display <TRACE SPECIFICATION> <RETURN>

<TRACE ABSOLUTE, ETC>

trace <TRACE MEMORY LINE NUMBER> ~-------__,,,.

context status on

off

disassemble from line number

<TRACE MEMORY LINE NUMBER> f--<---------~---.

pre store

NOT£ I

high_word all _cycles auto off

low word instructions _only on

NOTE:
1 . Only if in

presto re
mode not _dequeued

dequeued align_ data_ from_line <LINE#>

display trace 3

Parameters

4 display trace

absolute

address

align_data_from_
line

all_cycles

analysis_
groups

auto

This allows you to obtain a display of the
present trace memory content in absolute
numbers.

Used to set the width of the address column
displayed in the trace list.

Use this to correct data-alignment problems
if you see any in a dequeued trace list. If you
see that the dequeuer has aligned data with
the wrong instructions, use this token to
select the correct data alignment by
specifying the line that should begin a data
realignment (align_data_from_line 36).
Refer to Chapter 6 for further information.

Used to specify that all cycles should be
included in the inverse-assembled
information shown in the trace list.

This allows you to move the display window
to the first part of the trace_specification
where the trigger, store, count, context, and
trigger_position specifications are shown.

This allows you to obtain automatic inverse
assembly from the same point in your trace
list after each new trace execution. Inverse
assembly always begins with the line at the
top of the screen. If you made a trace and
used "disassemble from line number - - -
-0006", line -0006 would be at the top of your
screen. With "auto on", each time you
execute a new trace, the data will be inverse
assembled, beginning with line -0006 at theii
top of the screen. There is a risk associated .._,
with this feature. If you leave "auto on", and
roll the display to place a different line at the
top of the screen (line +0002, for example),

binary

bnc_port_
setup

context status

count

default

and then trace again, disassembly will begin
with line +0002, instead of -0006 at the top
of the screen. The inverse assembler
assumes that the first word it encounters is
an opcode, and it begins inverse assembly on
that basis. If line +0002 does not begin with
an opcode, you'll get invalid inverse
assembly. If you are making a series of traces
and rolling the display from one point to
another between the traces, you may want to
select "auto off'.

Selects display of the states of the individual
status bits.

This allows you to move the display window
to the portion of the trace_specification that
shows the present setup of the BNC ports.

Only available after you have made a trace in
either the "one_analysis_group" or
"three_ analysis _groups" softkey interface.
Used to turn on or turn off the display of
context_status lines in your copy of the trace
!is t.

This allows you to obtain a count in the
"time count" column that shows time
measurements either "relative" to the time
since the most recent time stamp, or
"absolute" time since the capture of the
trigger state.

Used to set the display width of the
associated parameter to its default width.

display trace 5

dequeued Use this to obtain a trace list showing the
activity that the 68030 processed during the
trace. Unused prefetches are eliminated

"""
from this display, and data transactions are
aligned with the instructions that caused
them to occur.

disassemble Use this to set the inverse-assembler to -
from line - begin operation on the opcode located at the
number specified line number. You can select

high_ word or low_word to begin
inverse-assembly at the desired address
within a long word. You can have
inverse-assembly include information from
all_cycles, or limit information to a list of the
opcodes by selecting instructions_only.

--EXPR-- This parameter is shown under the a/d/s
EXPRESSION syntax diagram.

find This feature is used to find occurrences of
....,,,

any event you specify. For example, you can
find all occurrences of address lOOOh in the
trace list, if desired.

hex Use this to obtain a copy of status
information expressed in hexadecimal values
of the status bits.

high_word Use this to have inverse-assembly begin with
the opcode in the high word of the long word
located in the specified trace-memory line
number.

6 display trace

intermodule_
bus_setup

instructions_
only

<LINE #>

low word

mnemonic

not_dequeued

off

This allows you to obtain a display showing
the present setup of the signals of the
intermodule bus. This is only available when
using the analyzer in systems composed of
two or more modules.

This causes the trace list to contain only
those lines that show an instruction opcode.

This prompts you to enter a trace memory
line number where you want your trace list
display to begin or where you want your
dequeuer to begin alignment of data (data
alignment can never begin on a line earlier
than the line specified to begin inverse
assembly).

This causes inverse-assembly to begin with
the opcode stored in the low word of the
long word at the specified trace memory line
number.

This allows you to obtain a display of the
trace memory content with the data
information inverse-assembled.

Use this entry to select an inverse-assembled
trace listing in the order that information
appeared on the external processor buses
during the trace. This listing includes all
transactions (unused prefetches, etc).

Used to turn off display of the associated
parameter.

display trace 7

offset_by This allows you to offset all address
expressions by any --EXPR-- selection, or by
the address where a source-file symbol was

""'
stored. For example, you can offset the
addresses by the starting address of a
selected function.

on Used to turn on display of the associated
parameter.

only Used to obtain a trace-list display of a
"source only" trace list.

presto re Used to begin inverse assembly with the
prestored state associated with a particular
trace-memory line number.

relative This is the default selection. In time count,
it shows elapsed time since capture of the
preceding state in the trace memory. In state '•

count, it shows number of qualified states

""" counted since the last count value was listed.

sequence_ This allows you to position the display
definitions window in the trace_specification to begin

with the location that shows the present
setup of the sequence.

status This allows you to have your trace display
show status information in binary values or
hexadecimal values of the status bits, or in
mnemonic descriptions of the meanings of
the bits.

symbols This allows you to specify a selected portion
of display width for showing the names of

""'
the symbols in the trace list.

8 display trace

tabs are

trace

trace
specification

width

This allows you to select any desired number
of spaces to be represented by each tab when
showing lines from a source file. Use this
selection to aid readability of the source file
information.

This allmvs you to obtain a display of the
present content of the trace memory. With
no parameters selected, you will get a display
composed according to your most recent
display trace command. You can add
parameters to obtain any desired format in
your display.

This allows you to obtain a display of the
present trace specification setup. You can
position the display window to show the
analysis_groups, sequence_definitions, or
the bnc_port_setup, or the
intermodule_bus_setup specification, as
desired.

This allows you to control the amount of
display space allocated to the
"address column", the "mnemonic column",
and to the symbols shown in either column
in the trace list. Use this key to get more
columns on display, or to allow more
information to be shown in a particular
column in your trace list. The default softkey
allo"W'S you to return the associated column
to the normal width allocation.

display trace 9

Notes

10 display trace

Index

A

B

c

= sign in trace list, 1-5

access. 3-4
access to variables in prestore traces, 2-2
activity dequeued in trace list, 6-1
addr (in dequeued trace lists), 6-4
addr_mode selections in status specification, 3-4
address equivalent in trace list, 1-5
address symbols, how the MMU affects these, 4-10
address value preceded by letter "p", 4-22
address with prepended "p" in trace list, 5-12
address, how logical is mapped to physical, 4-4
"align_data_from_line" token, how to use, 6-12
analyzer commands, 7-1
application program won't load in managed memory, 5-13
assembly language trace list, how to obtain, 4-23
avoiding disable on prefetch of exit, 1-7
avoiding enable/trigger on unused prefetch, 1-7
avoiding unused prefetches in prestore trace, 2-4

branch dequeuing incorrect in trace list, 6-16
?BRANCH? shows in trace list, 6-16
branching effects, 1-3
bus cycles in dequeued trace lists, 6-12
bus_control, 3-7

call to modules causing pres tore problems, 2-2
calling module in a prestore trace, 2-2
command syntax, 7-1
conditions when starting to configure deMMUer, 5-1
configuration created to setup deMMUer, 5-6
configuration of deMMUer, discussion of the, 4-13
configuration of deMMUer, where is the information, 4-15
copy mmu_tables/mmu_mappings command syntax, 5-1
CRP root pointer descriptor, where to find it, 5-4
cycle_ type, 3-5

lndex-1

2-lndex

D data and program fetches in 68030, 1-6
definition of prestore measurements, 2-1
definitions of status bits, 3-16
deMMUer configuration display, details of the, 4-13
deMMUer configuration display, how to access it, 4-16
deMMUer configuration, how to gain access, 5-5
deMMUer configuration, how to set it up, 5-5
deMMUer configuration, where is information for setup, 4-15
deMMUer control from emulation configuration, 4-11
deMMUer discussion, 4-1
deMMUer example usage, 5-1
deMMUer hardware disable, 5-2
deMMUer initial conditions, 5-1
deMMUer on, but I get no logical addresses, 4-11
deMMUer ranges overridden by TIO and TTl, 4-17
deMMUer root pointer descriptor type, 4-20
deMMUer setup information, where to get it, 5-4
deMMUer setup made from emulation configuration, 5-6
deMMUer TC register, how to enter a value. 4-18
deMMUer turned on by setting analysis mode, 4-12
deMMUer virtual address start field, 4-21
deMMUer, conditions under which it will fail, 4-24
deMMUer, how it works, 4-22
deMMUer, how to provide the hardware enable, 5-5
deMMUer, how to provide the software enable, 5-7
deMMUer, how to specify ranges to follow, 4-17
deMMUer, how to turn it on and off, 4-11
deMMUer, providing the software enable, 5-7
deMMUer, when to start it, 4-10
deMMUer, when to use it, 4-23
deMMUer, when you need to turn it off, 4-23
dequeued display of operands from 8-bit memory, 6-8
dequeued trace list showing exceptions and interrupts, 6-10
dequeued trace list, what it shows, 6-3
dequeued trace lists, 6-1
dequeuer problems, 6-12
dequeuer, how to turn on and off, 6-1
descriptor type for deMMUer root pointer, 4-20
dest (in dequeued trace lists), 6-4
disable on prefetch of exit, 1-7
"disassemble_from_line_number" command, how to use it, 6-12

disabling the deMMUer hardware, 5-2
disassembly wrong in trace list, how to fix it, 5.9
disassembly, where it begins after a jump, 6-14
display mmu_tables/mmu_mappings command syntax, 7-1
display registers for deMMUer setup information, 4-15
display trace command syntax, 7-1

E enabling the 68030 MMU hardware, 5.3
enabling the software of the deMMUer, 5.7
equals sign "=" in trace !is t, 1-5
equivalent addresses in trace list, 1-5
error messages unique to use of MMU, 4·6
error messages used by mmu_tables display, 4-6
example of exceptions and interrupts in dequeued trace list, 6-10
example of operands from 8-bit memory in dequeued trace list, 6·8
example of short jump in dequeued trace list, 6-4
example of stack push and pop in dequeued trace list, 6-6
example setup and use of deMMUer, 5-1
example triggering on interrupt status, 3-17
example unused prefetch, 1-4
exceptions in dequeued trace list, 6-10
exit prefetched, causing disable, 1· 7

F fcode, 3·2
fetch of two opcodes, 1-5
finding the desired pres tore state, 2-5
flushing the ATC before enabling the MMU, 4·22
function code mapping in MMU, 4-6

H hardware disable of deMMUer, 5-2
hardware enable of 68030 MMU, 5.3
hardware enabling the deMMUer. 5.5
how "long_ aligned" modifies address symbols, 1·6
how the 68030 fetches program and data, 1-6
how to avoid enable/trigger on unused prefetch, 1-7
how to turn on the dequeuer, 6-1

information available for setting up deMMUer, 5.4
information dequeued in trace lists, 6-1
"in_procedure" used in place of "long_ aligned", 1·7
instructions that access variables, 2·8
interrupt status used by trigger, 3-17
interrupts in dequeued trace list, 6·10

lndex·3

4-lndex

INVALID in mmu_mappings, how to troubleshoot, 4-8
Invalid translation control value error, 4-6
inverse assembly is wrong, what may fix it?, 5.9

J JMP and JSR problems in dequeued trace lists, 6-14
jump shown in dequeued trace list, 6-4

L left and right shift of trace list, 2-8
loading your program in managed memory, 5-13
logical address, table details for mapping, 4-4
logical-physical analysis comparison, 4-1
logical-to-physical mappings, displaying, 4-2
logical/physical displays, how to select, 5-7
logical/physical status specifications, 3-4
long root pointer descriptor type, 4-20
long_ aligned module entry+6, 2·4
"long_ aligned" replaced by "in_procedure", l-7
"long~aligned", when to use it, 1·6
"low_ word" token, when to use it, 6-14

M memory management discussion, 4-l
missing the calling module in a pres tore trace, 2-4
MMU ATC flushing before startup, 4-22
MMU hardware enable, 5.3
MMU map displays, 4-l
MMU tables for a selected logical address, 4-4
MMU tables, definitions of the display elements, 4.4
MMU tables, problem of seeing mappings, 4-2
MMU tables/mappings, how function codes are shown, 4-6
MMU, how it affects use of symbols, 4-10
MMU, seeing the overall list of mappings, 4-2
MMU, special error messages, 4-6
MMU, when to start up the deMMUer, 4-10
mmu_mappings, 4-2
mmu_mappings display, how to position it, 4.3
mmu_tables, 4-4
mnemonic status values in trace lists, 3-8
module-call problems in prestore traces, 2·2
MOT RSV, defined in table 4-1, 4.4
moving trace list left and right, 2-8
multiple "disassemble_from" commands, 6-12

N no-op used to avoid prefetch of exit, 1-8
NOT TAKEN shown in trace list, 6-3
not_range used in pres tore specification, 2-6

0 only called module in prestore trace, 2-4
operands from 8-bit memory, dequeued example, 6-8
operating system "os" and what it does, 5.3
operating system example, trace lists of, 5.7

P "p" ahead of address in Address column or trace list, 4-22, S-12
page root pointer descriptor type, 4-20
"phys" shown in trace list, 4-22
physical address. how it is noted in a trace, 5-12
physical-logical analysis comparison, 4·1
physicalt1ogical displays, how to select, 5.7
physical;1ogical status specifications, 3.4
pipeline discussion, l·l
pipeline flush, 1·3
prefetch and pipeline discussion, 1·1
prefetch discussion, 1·1
prefetches in prestore trace lists, 2-4
pres tore specification with "not_range", 2·6
pres tore trace problems, 2·2
pres tore traces described, 2-1
prestoring instructions that access variables, 2-8
problem dequeuing branches in trace lists, 6-16
problems in dequeued trace lists, 6-12
program and data fetches.in 68030, 1·6
program fetch with two opcodes, 1·5
program won't run correctly in managed memory, 5-13
push and pop example in dequeued trace list, 6-6

R reading trace lists with prefetch and pipeline, 1·2
reads/writes to variables in prestore traces, 2·2
resynchronizing the inverse assembler, 5.9
right and left shift of trace list, 2-8
root pointer descriptor type in deMMUer, 4-20

s "s=" specifications described, 3·1
"sdata" (in dequeued trace lists), 6-4
short root pointer descriptor type, 4-20
size, 3-6
SPMT analysis, requirement for obtaining, 4-23

lndex-5

6-lndex

"sprog" (in dequeued trace lists), 6-4
"src" (in dequeued trace lists), 6-4
stack push and pop in dequeued trace list, 6-6
starting the deMMUer, 4-10 , A
status (absolute) in trace lists, 3-16 ...,,
status (mnemonic) in trace lists, 3-8
status interrupt used by trigger, 3-17
status specification, 3-1
status-bit definitions, 3-16
"stck" (in dequeued trace lists), 6-4
s~mbols in trace specifications, requirements to obtain, 4-23
symbols, how to use them with the MMU, 4-10
syntax of analyzer commands, 7-1

T table details for mapping a logical address, 4-4
TAKEN shown in trace list, 6-3
TC register of deMMUer, how to enter a value, 4-18
TC register value, where to find it, 5-4
trace commands using status, 3-1
trace list showing status, 3-8
trace list with wTong inverse assembly, why?, 5-9
trace list, advantages of dequeuing, 6-3
trace list, how it shows physical addresses, 5-12
trace list, left and right shift, 2-8
trace lists made of "os" execution, 5-7
trace lists with prefetch and pipeline, 1-2
trace lists, correcting the dequeued form, 6-12
trace lists, dequeued, 6-1
trace specifications using s=, 3-1
traces using prestore, 2-1
tracing for deMMUer configuration information, 4-15
trigger on interrupt status example, 3-17
troubleshooting INVALID addresses in mmu_mappings, 4-8
turning on the dequeuer, 6-1
two different root pointers, how to select the right one, 4-20
two opcodes in program fetch, 1-5

U "udata" (in dequeued trace lists), 6-4
unused prefetches, 1-3
unused prefetches in prestore trace, 2-4
"uprog" (in dequeued trace lists), 6-4
use of "long_ aligned", 1-6

v

using "in_procedure" in place of "long_ aligned", 1-7
using "not range" in prestore specification, 2-6

value of TC register defined, 4-18
variable access problems in prestore traces, 2-2
variable accesses found by prestoring, 2·8
virtual address start field in deMMUer, 4-21

W when to use "long_aligned", 1-6
writes/reads to variables in prestore traces, 2·2

lndex-7

Notes

a-Index

Ff/~ HEWLETT
~·ea PACKARD

Hewlett-Packard
Printed in the USA

