
CASE SOLUTIONS FOR MICROPROCESSORS

HP 64430

68030 Emulator
Reference

OesignCenter

HP 64430

68030
Emulator

Reference Manual

F//jj9 HEWLETT
~e.. PACKARD

HP Part No. 64430-97001
Printed in U.S.A.
February 1990

Edition 1

Certification and Warranty

Certification

Warranty

Hewlett-Packard Company certifies that this product met its
published specifications at the time of shipment from the factory.
Hewlett-Packard further certifies that its calibration measurements
are traceable to the United States National Bureau of Standards, to
the extent allowed by the Bureau's calibration facility, and to the
calibration facilities of other International Standards Organization
members.

This Hewlett-Packard system product is warranted against defects
in materials and workmanship for a period of 90 days from date of
installation. During the warranty period, HP will, at its option,
either repair or replace products which prove to be defective.

Warranty service of this product will be performed at Buyer's
facility at no charge within HP service travel areas. Outside HP
service travel areas, warranty service will be performed at Buyer's
facility only upon HP's prior agreement and Buyer shall pay HP's
round trip travel expenses. In all other cases, products must be
returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall
prepay shipping charges to HP and HP shall pay shipping charges
to return the product to Buyer. However, Buyer shall pay all
shipping charges, duties, and taxes for products returned to HP
from another country. HP warrants that its software and firmware
designated by HP for use with an instrument will execute its
programming instructions when properly installed on that
instrument. HP does not warrant that the operation of the
instrument, or software, or firmware will be uninterrupted or error
free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from
improper or inadequate maintenance by Buyer, Buyer-supplied
software or interfacing, unauthorized modification or misuse,
operation outside of the environment specifications for the
product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically
disclaims the implied warranties of merchantability and fitness for
a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer's sole and exclusive
remedies. HP shall not be liable for any direct, indirect, special,
incidental, or consequential damages, whether based on contract,
tort, or any other legal theory.

Product maintenance agreements and other customer assistance
agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and
Service Office.

Notice Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or
for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability
of its software on equipment that is not furnished by
Hewlett-Packard.

©Copyright 1990 Hewlett-Packard Company.

This document contains proprietary information, which is
protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to
another language without the prior written consent of
Hewlett-Packard Company. The information contained in this
document is subject to change without notice.

HP and HP-UX are trademarks of Hewlett-Packard Company

UNIX is a registered trademark of AT&T.

Hewlett-Packard Company
Logic Systems Division
8245 North Union Boulevard
Colorado Springs, CO 80920, U.S.A.

Printing History New editions are complete revisions of the manual. The date on
the title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the ..j
version level of the software product at the time the manual was
issued. Many product updates and fixes do not require manual
changes, and manual corrections may be done without
accompanying product changes. Therefore, do not expect a
one-to-one correspondence between product updates and manual
revisions.

Edition l 64430-97001, February 1990

Safety

Summary of Safe
Procedures

The following general safety precautions must be observed during
all phases of operation, service, and repair of this instrument.
Failure to comply with these precautions or with specific warnings
elsewhere in this manual violates safety standards of design,
manufacture, and intended use of the instrument. Hewlett-Packard
Company assumes no liability for the customer's failure to comply
with these requirements.

Ground The Instrument

To minimize shock hazard, the instrument chassis and cabinet must
be connected to an electrical ground. The instrument is equipped
with a three-conductor ac power cable. The power cable must
either be plugged into an approved three-contact electrical outlet
or used with a three-contact to two-contact adapter with the
grounding wire (green) firmly connected to an electrical ground
(safety ground) at the power outlet. The power jack and mating
plug of the power cable meet International Electrotechnical
Commission (IEC) safety standards.

Do Not Operate In An Explosive Atmosphere

Do not operate the instrument in the presence of flammable gases
or fumes. Operation of any electrical instrument in such an
environment constitutes a definite safety hazard.

Keep Away From Live Circuits

Operating personnel must not remove instrument covers.
Component replacement and internal adjustments must be made
by qualified maintenance personnel. Do not replace components
with the power cable connected. Under certain conditions,
dangerous voltages may exist even with the power cable removed.
To avoid injuries, always disconnect power and discharge circuits
before touching them.

Warning I

Do Not Service Or Adjust Alone

Do not attempt internal service or adjustment unless another
person, capable of rendering first aid and resuscitation, is present.

Do Not Substitute Parts Or Modify Instrument

Because of the danger of introducing additional hazards, do not
install substitute parts or perform any unauthorized modification
of the instrument. Return the instrument to a Hewlett-Packard
Sales and Service Office for service and repair to ensure that safety
features are maintained.

Dangerous Procedure Warnings

Warnings, such as the example below, precede potentially
dangerous procedures throughout this manual. Instructions
contained in the warnings must be followed.

Dangerous voltages, capable of causing death, are present
In this Instrument. Use extreme caution when handling,
testing, and adjusting.

~

Safety Symbols Used
In Manuals

_L
OR @

(-1)

rh OR ..L

The following is a list of general definitions of safety symbols used
on equipment or in manuals:

Instruction manual symbol: the product is marked with this symbol
when it is necessary for the user to refer to the instruction manual
in order to protect against damage to the instrument.

Indicates dangerous voltage (terminals fed from the interior by
voltage exceeding 1000 volts must be marked with this symbol).

Protective conductor terminal. For protection against electrical
shock in case of a fault. Used with field wiring terminals to indicate
the terminal which must be connected to ground before operating
the equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a
signal common, as well as providing protection against electrical
shock in case of a fault. A terminal marked with this symbol must
be connected to ground in the manner described in the installation
(operating) manual before operating the equipment.

Frame or chassis terminal. A connection to the frame (chassis) of
the equipment which normally includes all exposed metal
structures.

Alternating current (power line).

Direct current (power line).

Alternating or direct current (power line).

Note

Caution I

Warning

The Note sign denotes important information. It calls your
attention to a procedure, practice, condition, or similar situation
which is essential to highlight.

The Caution sign denotes a hazard. It calls your attention to an
operating procedure, practice, condition, or similar situation,
which, if not correctly performed or adhered to, could result in
damage to or destruction of part or all of the product.

The Warning sign denotes a hazard. It calls your attention to
a procedure, practice, condition or the like, which, If not
correctly performed, could result in injury or death to
personnel.

Using This Manual

Organization

Chapter 1

Chapter 2

This manual provides detailed reference for the 68030 emulator
commands. The detailed syntax descriptions apply to the emulator
functions only. See the Analysis Reference Manual pr 32-Bit
Micro pocessors for detailed descriptions of analysis commands.

Introducing 68030 Emulation contains brief functional and
physical descriptions of the emulation system and descriptions of
basic emulation features. It also contains information on
transparency and real-time emulation mode considerations.

Emulation Command Syntax describes the emulation commands
in detail with command descriptions, command syntax diagrams,
and examples

Appendix A User Interface/HP-DX Cross Reference translates the HP
64000-UX system softkeys into commands that can be entered
from the HP-UX prompt.

Appendix B Using Control Characters And Other Commands describe the use
of control characters in the emulation session, and HP-UX and
HP 64000-UX system commands available in an emulation session.

Understanding The Examples

This manual assumes that you are using the User-Friendly J
Interface Software (HP 64808S) which is activated by executing the .
HP 64000-UX pmon command.This means that the manual will
show you how to enter HP 64000-UX system commands (edit,
compile, assemble, link, msinit, msconfig, etc.) by telling you to
press various softkeys.

If you are not using "pmon", you will find the User
Interface/HP-DX CROSS REFERENCE appendix of the this
manual especially useful. The cross reference table will show you
how the "pmon" softkeys translate into commands that can be
entered from the HP-UX prompt.

The examples provided throughout this manual use the following
structure:

PRESS edit module.S

PRESS or press

edit

module.S

This means you should enter a command by """"
selecting the softkeys and/or typing in any
file names or other variables which are not
provided in the softkey selections.

Softkeys will appear in bold type. Usually
you will not be prompted to use the
---ETC--- softkey to search for the
appropriate softkey template. Three softkey
templates are available at the HP 64000-UX
system monitor level.

This is the name of a file which you must
type in. Softkeys are not provided for this
type of selection since it is variable.
However, a softkey prompt such as <FILE>
will appear as a softkey selection. 'J

For most commands, you must press the Return (or Enter) key
before the command is actually executed.

Contents

l Introducing 68030 Emulation

Introduction
What Is An Emulation System?

Physical Description
Functional Description ...

Emulator Transparency .
Functional Transparency.
Timing Transparency ...
Electrical Transparency.

Independent Operation . .
Emulation Probe

What Tasks DoesThe Emulator Do?
Does The Emulation System Run Interactively

With Other HP 64000-UX Modules?

. 1-1

...... 1-2

...... 1-2

. 1-2
. .1-3
. .1-3
. .1-3
. .1-3
.. l-3
. .1-4

.1-4

What Effect Does The Emulator Have On Your Program?
.1-6
.1-6
.1-6
.1-7

Real-Time Mode Vs. Nonreal-Time Mode
Real-Time Mode Capabilities
Real-Time Mode Restrictions

What Is Happening While Your Program Is Running?
During Target Program Execution
During Emulation Monitor Program Control

How Does The Emulator Affect Your
Microprocessor System?

What Are The Steps To Using The Emulator?
Preparing The Software . .
Preparing The Emulator
Using The Emulator

. 1-7
.1-8
.1-8
.1-9

.1-9
. 1-10
. 1-10
. 1-10
. 1-10

Contents-1

2-Contents

2 Emulation Command Syntax

Overview
Syntax Conventions
Command Summary .
at execution
break
copy
copy display
copy global_symbols .
copy help ..
copy loc _ sym . . .
copy memory . . .
copy mmu_tables
copy registers . . .
copy sw_breakpoints
copy trace
copy trace_specification
display
display address_ translation .
display global_symbols
display local_symbols
display memory . . .
display mmu _tables
display registers ...
display simulated_io .
display sw _breakpoints
display trace
display trace_ specification
execute ..
--EXPR--
halt
help ..
load ..
modify .
modify analysis
modify configuration
modify keyboard_ to_ simio
modify memory . .
modify mmu_tables .. .
modify registers
modify sw _breakpoints

.2-1

.2-2

.2-3

.2-4

.2-6

.2-7
. 2-11
. 2-12
. 2-13
. 2-14
. 2-15
. 2-19
. 2-21
. 2-23
. 2-25
. 2-26
. 2-27
. 2-29
. 2-31
. 2-32
. 2-33
. 2-37
. 2-39

. . 2-41

.. 2-42
. 2-44
. 2-45
. 2-46
. 2-48
. 2-50
. 2-51
. 2-52
. 2-55

. . 2-57
. 2-58
. 2-59
. 2-60
. 2-64
. 2-66
. 2-68

\.,,
Illustrations

Tables

reset
run .
set .
set analysis
set bnc _ports
set emulation_para- meter
set intermodule bus ...
set <VAR> .
step .. .
store .. .
--SYMB-­
trace
wait ...

A User Interface Software/HP-DX Cross Reference

B Using Control Characters And Other Commands

. 2-71

. 2-72

. 2-74

. 2-75

. 2-76

. 2-77

. 2-79

. 2-80

. 2-82

. 2-84

. 2-87

. 2-89

. 2-90

Using Control Characters B-1
Other Control Characters And Commands You Can Use B-2

Figure 1-1. Steps to Using the Emulator 1-11

Table 2-1. Emulation Command List2-3
Table A-1. User lnterface/HP-UX Cross Reference . A-1

Contents-3

Notes

4-Contents

1

L Introducing 68030 Emulation

Introduction

L

This chapter answers the following questions:

• What is an emulation system?

• What does an emulator enable you to do?

• Does the emulator system run interactively with other
HP 64000-UX Microprocessor Development Environment
modules

• Does using an emulator have an effect on your program?

• What is happening while your program is running?

• What does the emulator do to your microprocessor
system?

• What are the steps in using the emulator?

Introducing 68030 Emulation 1·1

What Is An
Emulation System?

Physical Description

Functional
Description

The 68030 emulation system is a separate functional module within
the HP 64000-UX Microprocessor Development Environment.
The emulation system consists of several hardware modules, the
emulation software, and technical manuals. The following
hardware modules make up a typical 68030 emulation system:

• The emulation subsystem for your microprocessor.

• Integrated analysis board.

• Integrated analysis expansion board.

• Analvsis interconnect board.

• Processor specific analysis bus generator board.

• Processor active probe.
The emulation system may be used interactively with other
HP 64000-UX emulation and analysis systems for more
sophisticated measurements.

The purpose of the emulator is to aid in the development of your
(target system) hardware and software design. You can use
emulation during development of your system to ensure that the
hardware and software being developed will work together. The
emulator can be used in-circuit, alone, or with other products to
debug your target system hardware and to integrate your software
program modules with your target system hardware as you progress
through the design phase.

1-2 Introducing 68030 Emulation

~

Emulator Transparency

To properly perform its function, the emulator must look like the
microprocessor which will eventually control your system, as seen
by your target system hardware. The function, signal quality, signal
timing, loading, drive capacity, and other factors at the plug-in
connector should be indistinguishable from the same factors that
would be present if the actual processor were being used. This
characteristic is referred to as transparency.

Functional Transparency. Functional transparency refers to the
ability of the emulator to function in the same way as your
processor would when the emulator is connected to your target
system. Total functional transparency requires that the emulator
execute your program, generate outputs, and respond to inputs
exactly as the actual target processor would. At the same time, the
emulator must be able to give you complete and immediate
information about the clock-by-clock operation of your target
system. HP 64000-UX 32-bit emulators are designed to perform
their functions with minimum impact on functional transparency.

Timing Transparency. Timing transparency refers to the timing
relationships between signals at your target system plug-in. The
timing relationships of signals at the emulation probe are designed
to be as close as possible to the microprocessor it replaces in your
system.

Electrical Transparency. Electrical transparency refers to the
electrical characteristics of the emulator target plug pins compared
to the pins of the actual target processor. These characteristics
include such things as rise and fall times, input loading, output
drive capacity, and transmission line considerations. The electrical
parameters at the emulation target plug pins are designed to be as
close as possible to the microprocessor it replaces in your target
system.

Independent Operation

The emulation and analysis functions operate independent of the
HP 64000-UX operating system. That is, once the emulation and
analysis equipment has been configured and set into operation, the
equipment can operate without interaction from the operating

Introducing 68030 Emulation 1-3

What Tasks Does
The Emulator Do?

system. This is accomplished by using a multiprocessor system for
controlling the operation of the emulation system and the
HP 64000-UX operating system.

Emulation Probe

The emulator allows you to replace the microprocessor in your
target system with a device which performs like the
microprocessor, but which can be controlled by you from the
development station. This is done through the emulation pod and
active probe which is part of the cable extending from the
emulation pod. The active probe contains the emulation
microprocessor that drives your target system. The active probe is
plugged into your target system microprocessor socket.

The tasks facilitated by an emulator are software debug, hardware
debug, and hardware and software integration. These tasks are
implemented by means of the following basic emulator features:

• Program Loading and Execution. Your code developed on
the HP 64000-UX using the editor, compilers, assembler,
and linker, or valid code developed on other systems and
transferred to the HP 64000-UX host can be loaded into
memory by means of the emulator and executed in the
emulation environment.

• Run/Stop Controls. Programs may be run from address or
symbolic locations. Emulation can be stopped by breaking
into the emulation monitor or by resetting the
microprocessor.

• Memory Display/Modification. You can display locations
or blocks of memory and modify any memory locations
that can be changed.

• Global and Local Symbols Display. You can display and
find the addresses associated with your program's global
and local symbols while in emulation.

1 ·4 Introducing 68030 Emulation

L

• Internal Resource Display/Modification. Allows you to
display internal resources of the processor, such as
registers, and to modify them, if desired.

• Analysis (with optional integrated analyzer boards).
Allows you real time observation and display of activity on
the emulation processor bus.

• Program Stepping. Allows you to execute code
instruction-by-instruction, gaining access to the internal
machine states between instructions.

• Resource Mapping. Allows you to use emulation memory,
target memory, or both by defining the characteristics of
the blocks of memory.

• Memory Characterization. You can assign emulation
memory as ROM or RAM. You can test "ROM" code
without using ROM hardware.

• Breakpoint Generation. You can transfer program
execution to an emulation monitor routine on the
occurrence of a particular machine state or range of states.

• Clock Source Selection. Provides internal clock
generation, for out-of-circuit execution.

Introducing 68030 Emulation 1-5

Does The
Emulation System
Run Interactively
With Other
HP 64000-UX
Modules?

What Effect Does
The Emulator
Have On Your
Program?

The HP 64000-UX Microprocessor Development Environment
allows the use of emulation and analysis features in an interactive
manner between an emulator and other modules. These modules
can be other emulators or analyzers. Interaction allows the
integration of development work on designs, more elaborate and
detailed analysis of a design, or both. The supported capabilities
include:

• Simultaneous initiation of multiple measurements.

• Using the results of one measurement to control another.

• Coordinating execution of a program with the initiation of
a measurement.

The effect that the emulator has on your program depends upon
the emulator operating mode you select for execution. The
emulator never permanently alters your program, but it may affect
the execution of your program.

Real-Time Mode Vs. Depending upon the emulator operation selected for execution,
Nonreal-Time Mode the emulator operates in one of two modes: real-time or

nonreal-time. Real-time refers to the continuous execution of your
target system program without interference from the host (except
as instructed by you, and then, only for specific operations).

Interference occurs when a break to the emulation monitor is
initiated either by you or automatically. The emulation monitor is
a program which enables you to access the internal registers and
memory of the microprocessor.

1-6 Introducing 68030 Emulation

Real-Time Mode
Capabilities

Real-Time Mode
Restrictions

Caution '

Whenever the emulator is running under control of the emulation
monitor, it is no longer executing your program in real time. The
emulation monitor for your emulator is described in the 68030
Emulator User's Guide.

Features that typically can be performed in real-time mode are
listed below.

run, some display, some modify, specify,
execute, trace, load trace, stop_trace

Some features cannot be performed in real-time mode. These
features require breaking into the emulation monitor.

DAMAGE TO TARGET SYSTEM CIRCUITRY. When the
emulator detects a guarded memory access or other illegal
condition, or when you request an access to memory which causes
the emulator to break into the emulation monitor, the emulator
stops executing your application code and enters the monitor. If
you have circuitry that can be damaged because the emulator is not
executing your application code, you should exercise special
caution. You should configure the emulator to be restricted to
real-time mode, and you should not break into the emulation
monitor.

The features that cannot be performed in real-time mode, but
require breaking into the monitor are, typically, the following:

• Target memory accesses--display, copy, load, modify, and
store.

• Logical emulation memory assesses with MMU enabled.

• Register accesses--display, copy, and modify.

• Software breakpoints--set and reset.

Introducing 68030 Emulation 1 ·7

What Is
Happening While
Your Program Is
Running?

During Target
Program Execution

The features listed above can be accessed while the emulator is
configured for real-time mode by causing a break into the
emulation monitor. You can cause a break when you:

• Use the break softkey.

• Cause an analysis break (for example; display registers).

• Cause a memory break (for example; attempt to access
guarded memory or write to ROM).

• Cause a software break (that is; set a software breakpoint
and do a run that finds the breakpoint).

During normal execution of your program, the emulation
processor in the emulation pod generates address information for

each cycle. One function of this hardware differentiates between
your target system and emulation resources based on the address. If
the pod identifies a target system resource with the current address,
the data path buffers between your target system and the emulator
processor are enabled. If the address has been mapped to
emulation resource space, the data path buffers between the
emulation processor and the emulation bus resources are enabled.

As your program runs, the integrated analysis circuitry observes the
activity on the emulation analysis bus. Under your control, the
analyzer can be instructed to store this program flow. The
information can be displayed later without interrupting the .J
real-time flow of the program.

1-8 Introducing 68030 Emulation

During Emulation
Monitor Program

Control

How Does The
Emulator Affect
Your
Microprocessor
System?

The main emulation functions of the emulator are achieved by
seizing control of the emulation processor from your program and
transferring control to the emulation monitor so that it can extract
the processor's internal information. The emulation monitor
program provides the link between the emulation processor and
the HP 64000-UX operating system.

The emulation monitor is actually constructed of a number of
separate routines. Some of these routines are executed
automatically whenever the monitor program is entered. These
routines extract the internal processor information that existed at
the time of entry. This information can then be displayed on the
station screen for examination by the operator. If, for instance, the
monitor program was entered after the execution of a program
instruction, the internal machine state that existed at that time
would be available.

The goal of the emulator is to look just like the microprocessor
which will eventually control your system, as seen by your target
system hardware. At the same time, it must be capable of giving
you complete and immediate insight into the clock-by-clock
operation of the system. The function, signal quality, signal timing,
loading, drive capacity, and other factors at the plug-in pins should
be indistinguishable from the same factors that would be present if
the actual processor were being used. This characteristic is referred
to as transparency. The 68030 Emulator User's Guide discusses
emulation functions that may affect your target system operation.

Introducing 68030 Emulation 1 ·9

What Are The
Steps To Using
The Emulator?

Preparing The
Software

Preparing The
Emulator

There are three steps to the emulation process (See figure 1-1):

• Preparing the software.

• Preparing the emulator.

• Using the emulator.

Preparing the software consists of creating and entering a program,
assembling or compiling the program, and linking the assembled or
compiled modules. This process is not covered in this manual.
Refer to the appropriate Assembler/Linker or Compiler Manual
for more information.

Preparing the emulator consists of properly initializing and
defining a measurement system to the HP 64000-UX operating
software. This task is covered in the HP 64000-UX Measurement
System Operating Manual. After the emulator is properly defined,
you configure the emulator for your particular application.
Configuration is discussed in the 68030 Emulator User's Guide.

Using The Emulator Using the emulator consists of loading your absolute code into the
emulator (provided when programs are linked), and then using the
features of the emulator to observe the program as it runs, display
the contents of the registers and/or memory and to debug your
hardware and software. Using the emulator is covered in this
manual and the 68030 Emulator User's Guide.

1-1 O Introducing 68030 Emulation

1. PREPARING THE SOFTWARE 2. PREPARING THE EMULATOR

ASSEMBLER
OR

COMPILER

}
create and
enter o
program

}
form relocatable
code for the

microprocessor

initialize and
define a

measurement
system

enter
emulation

load
configuration previous measurement

link the
relocatable
programs .___ ______ , }

not needed if
continuing a

absolute riles ·

3. USING THE
EMULATOR

lood absolute_ files
run
trace TRIGGER_ON <AODR
display memory
display registers

• • •
end

clock source?
real time runs?
mapper questions

• • •

configuration

file

Figure 1 ·1 Steps to Using the Emulator

Introducing 68030 Emulation 1 ·11

Notes

1-12 Introducing 68030 Emulatlon

2

'-.,.. Emulation Command Syntax

Overview This chapter:

• Describes the conventions used in the syntax diagrams in
this manual.

• Gives a summary of emulation commands.

• Gives a detailed description of each emulator command.

Emulation Command Syntax 2-1

Syntax
Conventions

(~_)

0

The conventions used in the command syntax diagrams shown in
this chapter are as follows:

This symbol indicates a command keyword entered by pressing a
softkey. The keyword is shown as it appears in the command line
and may not be the same as the softkey label.

Rectangular boxes contain either prompts indicating that
parameters must be entered from the keyboard or references to
additional syntax diagrams. Softkey prompts are enclosed by the
"<"and">" symbols and are shown exactly as they appear on the
softkey label. --EXPR-- and --SYMB-- are also prompts, but allow
you to access "expression help" softkeys. You can return to the
ncrmal set of emulation softkeys by pressing --NORMAL··. Syntax
diagrams for --EXPR-- and --SYMB-- are included in this chapter.

Reference to additional syntax diagrams may be shown in upper or
lower case characters without delimiters.

Circles are used to denote operators and delimiters used in
expressions and command lines.

Whenever keywords entered from softkeys appear in text or
examples, they are shown in bold type, i.e. copy. Command
parameters entered from the keyboard are shown in standard type.

2·2 Emulation Command Syntax

L
Command
Summary

A summary of emulation commands is given in table 2-1. Detailed
descriptions of each command are given in the remainder of this
chapter.

Table 2-1. Emulatlon Command List

at execution
break
copy display
copy global symbols
copy help -
copy local_symbols
copy memory
copy mmu tables
copy regTsters
copy sw breakpoints
copy trace*
copy trace specification*
display address translation
display global_symbols

display local symbols
display memory
display mmu tables
display regTsters
display simulated io
display sw breakpoints
display trace*
display trace specification*
execute -
expressions
halt
help
load configuration
load memory
load trace_specification

modify analysis
modify configuration
modify keyboard to simio
modify memory - -
modify mmu tables
modify regTsters
modify sw breakpoints
reset -
run
set
step
store
symbol
trace*
wait

* These commands are described
Microprocessors.

in the Analysis Reference Manual for 32-Bit

Note Some command parameters shown in the following syntax
diagrams may not be available when you are running emulation.
What softkeys are available to you depends on how you configure
the emulator for your emulation session.

For example, if you have not configured simulated 1/0 to be used
during your session and you enter the command:

display

the sim_io softkey will be not be an option on the softkey label
line. Your answers to other emulation configuration questions also
affect the softkey labels available to you. Only softkeys that are
enabled for your emulation configuration are displayed.

Emulatlon Command Syntax 2-3

at execution

Syntax

run

trace

Function At_execution is used to prepare a run or trace command for
execution. This command is used in conjunction with the execute
command. If the processor is not reset, at_ execution run causes a
break from your program, and initializes the monitor to the default
address or to the specified address. An execute command then
causes the run to occur. Once an execution has occurred, the run
specification is removed and cannot be repeated without
respecifying the run.

at execution trace causes the trace hardware to be initialized with
the given trace specification. An execute command then causes the
trace to be executed. A trace specification is not removed and can
be reexecuted without another at execution trace command.
at_execution trace and at_execution run can be used with a single
execute command initiating both the run and the trace, and starting
any other analyzers that are connected to the intermodule bus
(IMB).

A trace command cancels an at_ execution trace command. A run
or step command cancels a at_ execution run command. The
at_execsoftkey label is displayed only with multiple module
systems.

Default Value none

Example at_execution run from START
at_ execution trace TRIGGER_ ON a= 1234h

2·4 Emulatlon Command Syntax

See Also: • Execute syntax (In this chapter)

• Emulation configuration (Chapter 4 in the 68030
Emulator User's Guide).

• Operating In the Measurement System (in the
HP64000-UXUser's Guide).

Emulation Command Syntax 2-5

break

Syntax

(break),__ ____ .,..l<RETURN>I

Function Breakcauses the processor to be diverted from execution of your
program to the emulation monitor program.

The breaksoftkey is not displayed if the emulation monitor is not
loaded.

Default Value none

Example break

2-6 Emulatlon Command Syntax

copy

copy

Note

Syntax

registers 1-------

troce_specification

help

<FILE>

nooppend no header

printer

HP_UX_CMD

~----------~---i<RETURN>

The mmu_tables option is not implemented in this software
version.

Emulation Command Syntax 2-7

Function The copy command copies selected information to your system
printer, to a listing file, or pipes it to an HP-UX filter.

Default Values Depending on what information is selected, defaults may be the
options selected for the previous execution of the display command.

Parameters

display

<FILE>

global_symbols

help

HP-UXCMD

2-8 Emulatlon Command Syntax

display enables you to copy the information
currently displayed on the screen to the
selected destination.

<FILE> prompts you for the name of the
listing file where the specified information is
to be copied.

global_symbolsenables you to copy a list of
all global symbols in memory to the selected
destination.

help enables you to copy the contents of the ,.J
emulation help files to the selected
destination. The keyword "help" is not
available on the softkeys. It must be typed in
from the keyboard. After help is typed in, the
emulation help filenames are displayed on
the softkeys.

HP-UX CMD represents an HP-UX filter or
pipe you wish to route the output of the copy
command to. HP-UX commands must be
preceded by an exclamation point(!). An
exclamation point following the HP-UX
command causes command line execution to
be continued after execution of the HP-UX
command. Emulation is not affected when
using an HP-UX command that is a shell .. Ji
intrinsic. """

local_symbols_in

memory

mmu tables

noappend

no header

printer

registers

sw _breakpoints

to

local_symbols_in enables you to copy a list
of local symbols in a specified source file to
the selected destination.

memory enables you to copy the contents of
memory to the selected destination.

mmu_tables, when a part of your software
version, enables you to copy the MMU table
information to the selected destination.

noappend causes the copied information to
overwrite any existing file with the same
name specified by <FILE>. Ifnoappend is
not specified, the default operation is to
append the copied information to the end of
an (existing) file.

noheader specifies that the information be
copied without headings.

printer specifies your system printer as the
destination device for the copy command.
NOTE: Before you can specify printer as the
destination device, you must first define
PRINTER as a shell variable.
$ PRINTER=lp
$export PRINTER

registers enables you to copy the contents of
the various register sets to the selected
destination.

software_breakpoints enables you to copy
the current software breakpoint table to the
selected destination.

to enables you to specify the destination of
the copied information. to must be included
in the command line.

Emulation Command Syntax 2-9

trace trace enables you to copy all of, or a portion
of, the current trace listing to the selected
destination.

trace_ specification trace _specification enables you to copy all
of, or a portion of, the trace specification to
the selected destination.

2-1 O Emulation Command Syntax

The exclamation point is the delimiter for
HP-UX commands.

An exclamation point must precede all
HP-UX commands. A trailing exclamation
point to return to command line execution is
optional.

If an exclamation point is part of the HP-UX
command, a backslash (\) must be used to
escape the exclamation point(\!).

copy display

Syntax

display

Function The copy display command copies the information currently
displayed on the screen.

Default Value none

Examples copy display to printer
copy display to trcfilel

Emulation Command Syntax 2·11

copy
global_symbols

Syntax

global_ symbols

Function The copy global_symbols command copies the global symbols
defined for the current absolute file. Global symbols are those that
are declared to be global (XDEF) in the source file. They include
procedure names, variables, constants, and file names. When the
copy global_symbols command is used, the listing will include the
symbol name, logical address, segment containing the symbol, and
the symbol's offset from the start of the segment.

Default Value None

Examples copy global_symbols to printer
copy global_symbols to symbols noheader

2·12 Emulation Command Syntax

c

copy help

Syntax

help (?)

Function The copy help command copies the contents of a specified help
file. The help command is not displayed on the softkeys. It must be
typed in from the keyboard. A question mark (?) may be
substituted for the keyword help in the command string.

Default Value none

Examples copy help system_commands to printer
copy ? trace to trc _ cmd

Parameters

HELP FILE HELP _FILE is the name of the help file you
wish to copy. After you type help from the
keyboard, the help file names are available
on the softkeys.

Emulation Command Syntax 2-13

copy loc_sym

Syntax

---.Ci oca I_ sym bo Is_ in)1---•-I - -SYM B- - ,_, ----

Function The copy local_symbols_in command copies the local symbols in a
specified source file or scope, their addresses, their relative
segment, and offset.

Default Value none

Example copy local_symbols_in sample.s: to printer

Parameters

--SYMB--

2·14 Emulation Command Syntax

--SYMB-- represents the source file that
contains the local symbols to be listed. See
--SYMB-- syntax diagram.

copy memory

Syntax

<ADDR>

fcode

to_memoryi--~~~~~~~~~~~~~~~-A_D_D_R__, <RETURN>

!code <F CODE>

short

long

absolute word

blocked byte

binory

offset_by --EXPR--

Function The copy memory command copies the contents of the specified
memory location or series of locations.

Memory can be copied to the system printer, to a listing file, to
another area of memory, or piped to an HP-UX filter. When
copying to another area of memory, the destination memory
locations must be in target RAM or emulation memory mapped as
RAM or ROM.

Emulation Command Syntax 2·15

The memory contents can be listed either in mnemonic, binary,
hexadecimal, or real number format. In addition, the memory
addresses can be listed offset by a value which allows the
information to be easily compared to the program assembly listing.

Default Values Initial values are the same as specified by the command "display
memory 0 blocked words offset_ by O".

Defaults are to values specified in the previous display memory
command.

Examples copy memory fcode SUPER_PROG START thru
START+3ffH mnemonic to printer

Parameters

copy memory fcode SUPER_DATA 0 thru lOOH,
fcode SUPER PROG START thru START+5
blocked long to memlist

copy memory fcode SUPER_PROG 1000thru13ffh
to_memory fcode USER_PROG 2000h

absolute

<ADDR>

binary

blocked

fcode

<F CODE>

absolute specifies that the memory listing be
formatted in a single column.

<ADDR> is a combination of numeric
values, symbols, operators, and parentheses
specifying a memory address or offset value.
See --EXPR-- syntax diagram.

binary specifies that the contents of memory
locations be displayed as binary values.

blocked specifies that the memory listing be
formatted in multiple columns.

fcodeenables you to specify a function code
along with the address expression as part of
the memory access specification.

<F _CODE> is a prompt for the function
code. The function code map be specified as

2·16 Emulation Command Syntax

a number or as a defined function code
mnemonic on the softkeys.

long long specifies that the memory values be
copied as long word values.

When used with the real parameter, long
specifies that memory be copied in a 64-bit
real number format.

mnemonic mnemonic causes the memory listing to be
formatted in assembly language instruction
mnemonics with associated operands. When
specifying mnemonic format, you should
specify a starting address that corresponds to
the first word of an opcode to ensure that
the listed mnemonics are correct.

offset_by offset_by enables you to specify an offset that
is subtracted from each of the actual

l,,
absolute addresses before the addresses and
the corresponding memory contents are
listed. The value of the offset (--EXPR--)
can be selected such that each module in a
program appears to start at address OOOOH.
The memory contents listing will then
appear similar to the assembly or compiler
listing.

real real specifies that the memory values in the
listing be formatted as real numbers.

short short is used with real to specify that
memory values be listed as 32-bit real
numbers.

thru thru enables you to specify that a range of
memory locations be copied.

to_memory to_memory enables you to copy a block of
memory to another location in memory.

Emulation Command Syntax 2-17

words words specifies that the memory listing be
copied as word values.

A comma (,) appearing immediately after """"'
memory in the command line will cause the
current copy memory command to be
appended to the preceding display memory
command, resulting in the data specified in
both commands being copied to the specified
destination in the current command. The
data will be formatted as specified in the
current command. The comma is also used
as a delimiter between values when
specifying multiple memory addresses.

Function codes are an important part of the memory access
specification, along with the address expression. The function code
(if stated explicitly) precedes the associated address expression, and
may bespecified as a number or one of the defined function code
mnemonics (e.g., SUPER_PROG, USER_DATA).

Memory configuration allows different modes for function codes:
they may be enabled (full use of function codes), disabled (no use
of function codes), or partially disabled (only PROGRAM/DATA
spaces are recognized). If the function codes are disabled (even
partially), the unused function code bits are masked off and
ignored during the memory access.

2-18 Emulation Command Syntax

copy mmu_tables

mmu_tobles

Note

Syntax

cpu_rooLptr <TBUNDEX> <TBUNOEX>

supr _rooLptr

<TBLINDEX> <TBL_INOEX>

The mmu_tables option is not implemented in this software
version.

Function The copy mmu_tables command copies the contents of the
specified MMU table.

The specified MMU table can be copied to the system printer, to a
listing file, or piped to an HP-UX filter.

Default Values none

Examples copy mmu_tables cpu_root_ptr OCH OlH
copy mmu_tables 81808F10H 2 036H

Emulation Command Syntax 2-19

Parameters

Note

cpu_root_ptr

<ROOT VAL>

supr_root_ptr

<TBL INDEX>

cpu_root_ptr indicates that the root pointer
to be displayed is in the CPU root pointer •. ~.
register (CPR). ""111'

<ROOT VAL> is the number used to
indicate the root pointer value to be used for
the table access.

supr_root_ptr indicates that the root pointer
to be displayed is in the supervisor root
pointer register (SRP).

<TBL INDEX> is the index into the MMU
table. Each successive index offsets into the
entry list pointed to by the previous indices.

Refer to the Motorola MC68030 Enhanced 32-Bit Microprocessor
User's Manual for more information on root pointers.

2-20 Emulation Command Syntax

L

L

copy registers

Syntax

----.(registers)1-~,----------..,.....--------------------,....--­

~ <REG_ SET>rl 4ffaet_by)-+j--EXPR--~

Function The copy registers command copies the current contents of the
processor/coprocessor's various register sets. This process does not
occur in real time. The emulation system must be configured for
nonreal-time run mode if the registers are to be listed while the
processor is running.

The listed value of the CPU program counter can be offset from
the actual value by a number which allows the register information
to be easily compared to the assembled listing.

When a custom coprocessor is specified, the coprocessor register
set is appended to the CPU registerset listing.

Default Values Initially cpu registers with 0 offset; thereafter last copy registers
command specification.

Examples copy registers mmu to reglist

Parameters

copy registers cpu offset_by lOfOh to printer

--EXPR-- --EXPR-- is a combination of numeric
values, symbols, operators, and parentheses
specifying an offset value to be subtracted
from the program counter. See --EXPR-­
syntax diagram.

Emulation Command Syntax 2-21

offset_by

<REG SET>

2·22 Emulation Command Syntax

offset_byenables you to specify an offset that
is subtracted from the actual cpu program
counter address before the program counter
value is copied. The value (--EXPR--) of the J
offset can be selected such that the program
counter address will match the current
instruction's address in the assembler or
compiler listing.

<REG_SET> specifies the name of the
register set to be displayed. The
register set names may be selected from
softkeys. All custom coprocessor
names defined in your custom register
specification file are displayed. The name
cpu specifies that the 68030's internal cpu
registers be displayed. The name fpu is
reserved for the emulator's internal 68881
floating point processor, if used.

L

L

copy
sw _breakpoints

Syntax

---i>~(sw _breakpoints)1--~,.----,-----------------..,...---

~ffset by n.--<-A_D_D-R>-~

Function The copy sw_breakpoints command copies the currently defined
software breakpoints and their status. If the emulation session is
continued from a previous session, then the listing includes any
previously defined breakpoints. The column marked status
indicates whether the breakpoint is pending or inactivated. When
in the pending state, a breakpoint causes the processor to enter the
emulation monitor upon execution of that breakpoint. Breakpoints
that have been defined as one shot are listed as inactivated after
they have been executed. Entries that show an inactive status can
be reactivated by executing the modify sw _breakpoints set
command.

Default Value none

Examples copy sw_breakpoints to printer

Parameters

copy sw_breakpoints offset_by OfOOOh to breaklist
noheader

<ADDR> <ADDR> is a combination of numeric
values, symbols, operators, and parentheses
specifying an offset from the listed software
breakpoint address. See --EXPR-- syntax
diagram.

Emulation Command Syntax 2-23

offset_ by

2-24 Emulation Command Syntax

offset_ by allows you to offset the listed
software breakpoint address value from the
breakpoint's actual address. By subtracting
the offset value from the breakpoint's actual J
address. the system can cause the listed
address to match that given in the assembler
or compiler listing.

copy trace

Function The copy trace command enables you to copy all of, or a portion of
the current trace listing to the selected destination.

See the Analysis Reference Manual pr 32-Bit Microp-ocessors for a
detailed description of the copy trace command

Emulation Command Syntax 2·25

copy
trace_ specification

Function The copy trace_specificationcommand enables you to copy all of,
or a portion of your trace specification to the selected destination.

See the Analysis Reference Manual.for 32-Bit Microprocessors for a
detailed description of the copy trace_specification command.

2·26 Emulation Command Syntax

display

Syntax

display memory 1--~~~~~--<RETURN>

registers 1-------

trace

sw_breakpoints

global_symbols

locaLsymbols

trace_specification

simulated_io

address_translation

mmu_tables 1------

Note The address_translation and mmu_tables options are not
implemented in this software version.

Function The display command displays selected information on your
workstation screen. You can use the UP and DOWN cursor keys,
The NEXT and PREV keys, and in some cases, the LEFT and
RIGHT cursor keys to view the displayed information.

Default Values Depending on what information is selected, defaults may be the
options selected for the previous execution of the display command.

Emulation Command Syntax 2·27

Parameters

address translation address_translation allows you to display a
logical to physical address translation.

global_ symbols global_symbols enables you to display a list
of all global symbols in memory.

local_symbols_in local_symbols_in enables you to display a list
of local symbols in a specified source file.

memory memory enables you to display the contents
of memory.

mmu tables mmu_tables allows you to display mmu
translation tables.

registers registers enables you to display the contents
of the microprocessor registers.

simulated io simulated_io enables you to display the data
being written to the simio display buffer.

sw _breakpoints sw _breakpoints enables you to display the
current software breakpoint table.

trace trace enables you to display the current trace
listing.

trace_specification trace_specificationallows you to display
your current trace specification, starting at
optionally defined points.

2·28 Emulation Command Syntax

..,j

""

display
address translation

\.., -

Syntax

address_ translation <ADDR>

Note

fcode <F _CODE>

Function The display address_translation command displays the physical
address that is mapped to the logical address specified.

This option is not available in this software version. When it
becomes available, the MMU must be correctly initialized for this
feature to function.

Default Value none

Example display address_translation fcode USER_DATA OFOlOOCOOH

Parameters

<ADDR> <ADDR> is a combination of numeric
values, symbols, operators, and parentheses
specifying a logical address. See --EXPR-­
syntax diagram.

Emulatlon Command Syntax 2·29

fcode

<F CODE>

2-30 Emulation Command Syntax

fcodeenables you to specify the function
code for the address to be translated. If the
MMU does not use the function codes, this
value will be ignored. If the MMU does use ..j
the function codes, cfode can be specified to .·
get a physical translation.

<F _CODE> is a prompt for the function
code. The function code may be specified as
a number or as a defined function code
mnemonic on the softkeys.

display
global_ symbols

Syntax

----<>-(global_ symbols)>---

Function The display global_ symbols command displays the global symbols
defined for the current absolute file. Global symbols are those that
are declared to be global (XDEF) in the source file. They include
procedure names, variables, constants, and file names. When the
display global_symbols command is used, the listing will include
the symbol name, logical address, segment containing the symbol,
and the symbol's offset from the start of the segment.

Default Value none

Example display global_symbols

Emulation Command Syntax 2·31

display
local_symbols

Syntax

-+(1ocal_symbols_in)1---Jo.,.I --SYMB-- ~I----

Function The display local_symbols_in command displays the local symbols
in a specified source file or scope, their addresses, their relative
segment, and offset.

Default Value none

Example display local_symbols_in towers.c:

Parameters

--SYMB--

2·32 Emulation Command Syntax

--SYMB-- represents the source file that
contains the local symbols to be listed. See
--SYMB-- syntax diagram.

display memory

Syntax

mnemonic

real short

long

absolute word

blocked byte

binary

offseLby --EXPR-- repetitively

Function The display memory command displays the contents of the
specified memory location or series of locations. The memory
contents can be listed in mnemonic, binary, hexadecimal, or real
number format. In addition, the memory addresses can be listed
offset by a value which allows the information to be easily
compared to the program listing.

Default Values Initial values are the same as specified by the command "display
memory 0 blocked word offset_ by O".

Default for "logical" or "physical" addresses is "logical" to start, then
the last one called for in a command thereafter.

Emulation Command Syntax 2-33

Other defaults are to values specified in previous display memory
command.

Each of the memory access commands has a separate function code
default to be used when a function code is valid, but not explicitly
specified.

Examples display memory fcode SUPER_PROG START mnemonic
offset_by lfOOh

Parameters

display memory fcode USER_DATA 0 thru lOOH, fcode
USER_PROG STARTthru START+S blocked word

absolute

<ADDR>

binary

blocked

fcode

<F CODE>

logical

absolute specifies that the memory listing be
formatted in a single column.

<ADDR> is a combination of numeric
values, symbols, operators, and parentheses
specifying a memory address or memory
offset value. See --EXPR-- syntax diagram.

binary specifies that the contents of memory
locations be displayed as binary values.

blocked specifies that the memory listing be
formatted in multiple columns.

fcodeenables you to specify a function code
along with the address expression as part of
the memory access specification.

<F _CODE> is a prompt for the function
code. The function code may be specified as
a number or as a defined function code
mnemonic on the softkeys.

logical specifies that the address space to beJ
displayed is logical space.

2-34 Emulation Command Syntax

long long specifies that the memory values be
displayed as long word values.

When used with the real parameter, long
specifies that memory be displayed in a
64-bit real number format.

mnemonic mnemonic causes the memory listing to be
formatted in assembly language instruction
mnemonics with associated operands. When
specifying mnemonic format, you should
specify a starting address that corresponds to
the first word of an opcode to ensure that
the listed mnemonics are correct.

offset_by offset_by enables you to specify an offset that
is subtracted from each of the actual
absolute addresses before the addresses and
the corresponding memory contents are
listed. The value of the offset (--EXPR--)
can be selected such that each module in a
program appears to start at address OOOOH.
The memory contents listing will then
appear similar to the assembly or compiler
listing.

physical physical specifies that the address space to
be displayed is physical space.

real real specifies that the memory values in the
listing be formatted as real numbers.

repetitively repetitively causes the system to repetitively
update the memory listing displayed on your
screen.

~
short short is used with real to specify that

memory values be listed as 32-bit real
numbers.

Emulation Command Syntax 2-35

thru

words

thruenables you to specify that a range of
memory locations be displayed. Only 16 lines
of information can be displayed on the
screen at one time. Use the UP and DOWN
cursor keys, and the NEXT and PREV keys
to view additional memory locations.

words specifies that the memory listing be
displayed as word values.

A comma(,) appearing immediately after
memory in the command line will cause the
current "display memory" command to be
appended to the preceding "display memory"
command, resulting in the data specified in
both commands being displayed. The data
will be formatted as specified in the current
command.

The comma is also used as a delimiter
between values when specifying multiple ""1fl
memory addresses.

Function codes are an important part of the memory access
specification, along with the address expression. The function
code (if stated explicitly) precedes the associated address
expression, and may be specified as a number or one of the defined
function code mnemonics (e.g., SUPER_PROG, USER_DATA).

Memory configuration allows different modes for function codes:
they may be enabled (full use of function codes), disabled (no use
of function codes), or partially disabled (only PROGRAM/DATA
spaces are recognized). If the function codes are disabled (even
partially), the unused function code bits are masked off and
ignored during the memory access.

2-36 Emulatlon Command Syntax

display
mmu tables

mmu_tables

Syntax

cpu_rooLptr <TBUNDEX> <TBUNDEX>

supr _rooLptr

<TBUNDEX> <TBUNDEX>

Function The display mmu_tables command displays the translation table
entries at a given level. The tables will be indexed from the given
root pointer using the index values. These values will not be
checked for validity (that is, if an index goes past the end of that
level, this will not be an error if the resulting value is a table entry).

Note This option is not available in this software version. When it
becomes available, this option is not present with the foreground
monitor.

Default Values none

Examples display mmu_tables cpu_root_ptr OCH OIH
display mmu_tables 81808FIOH 2 036H

Emulation Command Syntax 2-37

Parameters

Note

cpu_root_ptr

<ROOT VAL>

supr_root_ptr

<TBL INDEX>

cpu_root_ptr indicates that the root pointer
to be displayed is in the CPU root pointer , .A
register (CPR). ...,,,

<ROOT_ VAL> is the number used to
indicate the root pointer value to be used for
the table access.

supr_root_ptr indicates that the root pointer
to be displayed is in the supervisor root
pointer register (SRP).

<TBL_INDEX> is the index into the MMU
table. Each successive index offsets into the
entry list pointed to by the previous indices.

Refer to the Motorola MC68030 Enhanced 32-Bit Microprocessor
User's Manual for more information on root pointers.

2-38 Emulation Command Syntax

display registers

Syntax

--+(registers)1-~---------~~--------------~-­

~ <REG_ SET>>--1 4ff,et_by)--j HEXPRH~
Function The display registers command displays the current contents of the

processor/coprocessor's various register sets. If a step has just been
executed, the mnemonic of the last instruction is also displayed.
This process does not occur in real time. The emulation system
must be configured for nonreal-time run mode if the registers are
to be displayed while the processor is running.

The displayed value of the CPU program counter can be offset
from the actual value by a number which allows the register
information to be easily compared to the assembler listing.

When a custom coprocessor is specified, the coprocessor register
set is appended to the CPU registerset listing.

Default Values Offset is initially O; thereafter previous value.

Example display registers cpu

Emulation Command Syntax 2-39

Parameters

--EXPR--

offset_by

<REG SET>

2-40 Emulatlon Command Syntax

--EXPR-- is a combination of numeric
values, symbols, operators, and parentheses . ..A
specifying an offset value to be subtracted ...,,,
from the program counter. See --EXPR--
syntax diagram.

offset_byenables you to specify an offset that
is subtracted from the actual cpu program
counter address before the program counter
value is displayed. The value (--EXPR--) of
the offset can be selected such that the
program counter address will match the
current instruction's address in the
assembler or compiler listing.

<REG_SET> specifies the name of the
register set to be displayed. The
register set names may be selected from
softkeys. All custom coprocessor
names defined in your custom register
specification file are displayed. The name
cpu specifies that the 68030's internal cpu
registers be displayed. The name fpu is
reserved for the emulator's internal 68881
floating point processor, if used.

display
simulated io

Syntax

---1>.i(simulated io }-

Function The display simulated_io command displays the information being
written to the simulated 1/0 display buffer on your screen. Refer to
the HP 64000-UX Simulated 110 Re jrence Manual and chapter 8 of
the 68030 Emulator User's Guide for detailed information about
using simulated I/O.

Default Value none

Example display simulated_io

Emulation Command Syntax 2-41

display
sw_breakpoints

Syntax

-----..C sw _breakpoints)1--~-----------------~--

4ffset _by n.___<_A_D_DR_>____,~
Function The display sw_breakpoints command displays the currently

defined software breakpoints and their status. If the emulation
session is continued from a previous session, then the listing
includes any previously defined breakpoints. The column marked
status indicates whether the breakpoint is pending or inactivated.
When in the pending state, a breakpoint causes the processor to
enter the emulation monitor upon execution of that breakpoint.
Breakpoints that have been defined as one_shot are listed as ...,J
inactivated after they have been executed. Entries that show an
inactive status can be reactivated by executing the "modify
sw _breakpoints set" command.

Default Value none

Examples display sw _breakpoints
display sw_breakpoints offset_by lOOOH

Parameters

<ADDR>

2-42 Emulatlon Command Syntax

<ADDR> is a combination of numeric
values, symbols, operators, and parentheses
specifying an offset value for the breakpoint
address. See --EXPR-- syntax diagram.

offset_by offset_by allows you to offset the listed
software breakpoint address value from the
breakpoint's actual address. By subtracting
the offset value from the breakpoint's actual
address, the system can cause the listed
address to match that given in the assembler
or compiler listing.

Emulation Command Syntax 2-43

display trace

Function The display trace command enables you to display all of, or a . j
portion of the current trace listing. 'fttrt1'

See the Analysis Reference Manual for 32-Bit Microprocessors for a
detailed description of the display trace command.

2-44 Emulatlon Command Syntax

display
trace_ specification

Function The display trace_specification command enables you to display all
of, or a portion of your trace specification.

See the Analysis Reference Manual pr 32-Bit Micropocessors for a
detailed description of the display trace_specitication command.

Emulation Command Syntax 2-45

execute

Syntax

execute t------c------------.,-~< RETURN>

repetitively

Function The execute command starts a trace measurement. The execute
softkey label is replaced with the halt softkey label when a
measurement is in progress. If emulation is participating in a
system measurement through cross-triggered analysis or the
emulation start function (at_ execution run or at_ execution trace),
then the system measurement is initiated. Otherwise, the execute
command is not available.

A measurement can be executed repeatedly by issuing the execute """""'
repetitively command. This restarts the current measurement after
each completion, until the user issues a halt command. The execute
command starts all modules participating in a system measurement
when issued from any one of the modules. If an emulator is started
as part of a measurement, it continues running and cannot be
started again by subsequent executions unless an at_execution run
command is again issued.

The execute softkey is displayed only when multiple modules are
present in a system and some IMB interaction is requested
(cross-triggered analysis or emulation start function).

Examples execute
execute repetitively

2·46 Emulation Command Syntax

See Also: • At_ execution command (in this chapter)

• Emulation configuration (chapter 4 of the 68030 Emulator
User's Guide)

• The "Operating in the Measurement System" section of
the HP 64000-UX User's Guide.

Emulation Command Syntax 2-47

,.-EXPR--

Syntax

<NUMBER>

---SYMB--- 1--~-----

start

end

<OP>

Function An expression is a combination of numeric values, symbols,
operators, and parentheses specifying an address, data, status, or
any of several other value types used in the emulation commands.

Default Value none

Examples 05fxh (not valid for all commands)
DISP BUF + 5

Parameters

SYMB _ TBL + (OFFSET I 2)
START
prog.s: line 15 end

<NUMBER> <NUMBER> is a numeric value in binary,
octal, decimal, or hexadecimal base.

2-48 Emulation Command Syntax

<OP>

mod
*
I
&

+

--SYMB--

start

end

()

<OP> is an algebraic or logical operand.
<OP> may be (in order of precedence):

(modulo)
(multiple)
(divide)
(logical and)
(plus)
(minus)
(logical or)

--SYMB-- is a symbolic reference to an
address or address range, file, or other value.
Symbols may be HP-UX paths, referenced
line numbers in a file, file segments (prog,
data, common), or global and local symbols.

start specifies that the starting address of the
symbol range be used as the referenced
location in the command. This parameter is
useful with symbols that reference an address
range rather than a single word value.

end specifies that the last address in a symbol
range be used as the referenced location in
the command. This parameter is useful with
symbols that reference an address range
rather than a single word value.

Parentheses may be used in expressions. For
every opening parenthesis, a closing
parenthesis must exist.

Algebraic negation (minus)

logical negation (NOT)

Emulation Command Syntax 2-49

halt

(

Syntax

halt)1----------->l<RETURN>I

Function The halt command stops the measurement currently executing and
turns off the repetitively option. When the halt command is
executed, some or all of the systems involved may have completed
their measurement. The halt softkey is displayed only during a
trace, or during an execution (in the place of the execute softkey).

The halt command affects measurements caused by both trace and
execute commands. If emulation is entered with a measurement in
progress, the halt command will stop that measurement even if
emulation is not interacting in the measurement.

Example halt

2-50 Emulation Command Syntax

help

L Syntax

help (?) HELP FILE <RETURN>

Function The help command enables you to request information about
system and emulation features during your emulation session.
Typing "help" or "?" from the keyboard causes softkey labels to be
displayed, listing the areas on which you may receive help. Press
the softkey for the area you are interested in, and then press the
return key. The system will list the information to the screen using
the HP-UX more utility.

The help command is not displayed on the softkeys. It must be
typed in from the keyboard. A question mark (?) may be
substituted for the keyword "help" in the command string.

Default Value none

Examples help system_commands
? trace

Parameters

HELP FILE HELP _FILE is the name of the help file you
wish to display. After you type "help" from
the keyboard, the help file names can be
entered from the softkeys.

Emulatlon Command Syntax 2-51

load

load

Syntax

memory >--~------......,,....."*! <FILE>
~--~

logical

physical

fcode <F _CODE>

at <ADDR> no_update

troce_specificotion ,....,.._-------~- <FILE>
'-------'

with_trace_doto

symbols <FILE>

no_updote

Function The load memory command transfers absolute code from the host
system disc into target system RAM or emulation memory. The
destination of the absolute code is determined by the memory
configuration map which was set up during emulation
configuration and the address specified during linking.

You can force the absolute code to be loaded to a location in
memory other than the address specified during linking by using
the at <ADDR> parameter. When using at <ADDR>, the
absolute code is loaded in memory beginning at the specified
addess. For example, if you specify "at2000h", you are effectively
specifying an offset of + 2000h for your code.

2-52 Emulation Command Syntax

Note This feature should not be used if your code uses absolute
addressing. Absolute addresses and symbol values in your program
are not modified. This may result in run-time errors or unexpected
behavior.

The load configuration command reloads an emulation
configuration that you saved previously.

The load trace_specification command reloads a trace specification
that you saved previously. If you saved the trace specification with
trace data, you can use the display command to access and display
the previously stored trace data. You can execute the previously
stored trace specification using the trace again or execute
commands.

Default Value For the load memory command, all memory is in the default
function code space.

Examples load memory logical sort

Parameters

load configuration config3
load trace_specification trace3

at

configuration

fcode

<FILE>

at lets you load absolute code to a location
in memory other than the address specified
during linking.

configuration specifies that a configuration
file created by a modify configuration
command be loaded.

fcode enables you to specify a function code
along with the address expression as part of
the memory access specification.

<FILE> is the pathname of the absolute
file to be loaded from the system disk into

Emulation Command Syntax 2-53

target system RAM, emulation memory, or
the trace memory (.TR files are assumed)
containing a previously stored trace
specification and trace listing.

""' <F CODE> <F _CODE> is a prompt for the function
code. The function code map be specified as
a number or as a defined function code
mnemonic on the softkeys.

logical logical specifies that the address space to be
loaded is logical space.

memory memory specifies that an absolute file is to
be loaded into emulation or target memory.

no update noupdate suppresses rebuilding of the
symbol data base when loading an absolute
file newer than its associated symbol data
base. The default operation is to rebuild the
symbol database.

"" physical physical specifies that the address space to
be loaded is logical space.

symbols symbols specifies that the symbols for the
specified file are to be loaded.

trace _specification trace_specification enables you to load a
specified trace file previously generated
using the store trace command.

with_trace_data with_trace_data specifies that the trace data
be loaded along with the trace specification,
if the trace data was stored.

-

""'
2·54 Emulatlon Command Syntax

modify

Note

Syntax

modify memory 1-------,,.--.t<RETURN>

registers 1--------

configuration 1----~

sw_breokpoints

analysis

keyboord_to_simio

mmu_tobles 1-----~

The mmu_tables option is not implemented in this software
version.

Function The modify command is used to review or edit the configuration, to
modify the contents of memory (as integers or as real numbers), to
modify the contents of the processor registers, and to modify the
analysis trace command or portions of the analysis trace
specification. You can also use the modify command to modify
software breakpoints.

Default Value none

Emulation Command Syntax 2·55

Parameters

analysis analysis allows you to change any part of
your analysis trace specification, or trace

.J command.

configuration configuration enables you to review and
modify (if necessary) the current emulation
configuration.

memory memory enables you to modify the contents
of selected memory locations.

mmu tables mmu_table~ when a part of your software
version, enables you to modify the selected
MMU table information.

registers registers is used to modify the contents of
one or more of the various register sets.

sw _breakpoints sw _breakpoints sets or clears software ...J breakkpoints used with the emulator break
function.

trace command trace_command brings the last trace
command back to the command line for
editing.

2-56 Emulatlon Command Syntax

L

modify analysis

Function The modify analysis command lets you change any part of your
analysis trace specification or trace command.

See the Analysis Reference Manual pr 32-Bit Microp"Ocessors for a
detailed description of the modify analysis command.

Emulation Command Syntax 2-57

modify
configuration

Syntax

-------11>.i(configuration)1---

Function The modify configuration command enables you to review and edit
the current emulation configuration. Each of the configuration
questions is presented with the response previously entered. The
prior response can be entered as displayed by pressing the return
key, or modified as necessary and then entered by pressing the
return key.

Default Value none

Example modify configuration

2-58 Emulation Command Syntax

c

modify
keyboard_ to_ simio

Syntax

-------,1>~(keyboard_ to_ simio)t----

Function The modify keyboard_to_simio command activates the keyboard to
interact with your program through the HP 64000-UX simulated
1/0 software. While the keyboard is activated for simulated 1/0, its
normal interaction with emulation is disabled. The emulation
softkeys are blanked and the single softkey suspend is displayed on
your screen. Pressing suspend and then the return key deactivates
keyboard simulated 1/0 and returns the keyboard to normal
emulation mode. Refer to the HP64000-UXSimulated 1/0
Re jrence Manual and chapter 8 of the 68030 Emulation User's
Guide for detailed information about simulated 1/0.

Default Value none

Example modify keyboard_to_simio

Emulation Command Syntax 2-59

modify memory

Syntax

memory

byte

word logical fcode <F _CODE>

long physical

thru <ADDR>

long logical fcode <F _CODE>

short physical

<ADDR>

thru <ADDR>

Function The modify memory command enables you to modify the contents
of selected memory locations. The command can modify the
contents of each memory location in a series to an individual value
or the contents of all of the locations in a memory block to a single
or repeated sequence of values.

Function codes are an important part of the memory access
specification, along with the address expression. The function code
(if stated explicitly) precedes the associated address expression, and
may be specified as a number or one of the defined function code
mnemonics (e.g. SUPER_PROG, USER_DATA).

2-60 Emulation Command Syntax

Note If the specified address range is too small to contain the new data,
the emulator will modify as many locations as is required to
contain the new data, beginning with the starting address you
specified.

New data value lists will be repeated as needed to fill up the
specified address ranges. Any left-over values will modify address
locations after the last address in the specified address range.

Default Values Each of the memory access commands has a separate function code
default to be used when a function code is valid, but not explicitly
specified.

Examples modify memory word logical fcode SUPER_DATA OOAOh to 1234h
modify memory word fcode USER_DATA DAT Al

Parameters

to OE3h , Olh , 08h
modify memory real long TEMP to 0.5532E-8

<ADDR>

byte

fcode

<F CODE>

<ADDR> is a combination of numeric
values, symbols, operators, and parentheses
specifying a memory address. See --EXPR-­
syntax diagram.

byte specifies that the memory values be
modified as byte values.

fcode enables you to specify a function code
along with the address expression as part of
the memory access specification.

<F _CODE> is a prompt for the function
code. the function code map be specified as a
number or as a defined function code
mnemonic on the softkeys.

Emulation Command Syntax 2·61

logical logical specifies that the address space to be
modified is in logical space.

long long specifies that the memory values be .J modified as long word values.

When used with the real parameter, long
specifies that memory be modified as a 64-bit
real number value.

physical physical specifies that the address space to
be modified is in physical space.

real real specifies that the memory values be
modified as real number values.

<REAL#> <REAL#> prompts you to enter a value in
real number format.

short short is used with real to specify that

""'
memory values be modified as 32-bit real
number values.

thru thruenables you to specify that a range of
memory locations be modified.

to to enables you to specify the values to which
the selected memory locations will be
changed.

word word specifies that the memory locations be
modified as word values.

commas(,) are used as delimiters between
values when modifying multiple memory
addresses.

-.J

2-62 Emulation Command Syntax

Description A series of memory locations can be modified by specifying the
address of the first location in the series to be modified (--EXPR--)
and the list of the values (--EXPR--) to which the contents of that
location and the succeeding locations are to be changed. The first
value listed replaces the contents of the specified memory location,
the second value replaces the contents of the next location in the
series, and so on until the list has been exhausted. If only one
number or symbol is specified, only the single address indicated is
modified. When more than one value is listed, the value
representations must be separated by commas.

An entire block of memory can be modified such that the contents
of each location in the block is changed to the single specified
value, or to a single or repeated sequence. This type of memory
modification is achieved by entering the limits of the memory block
to be modified (--EXPR-- thru --EXPR--) and the value or list of
values (--EXPR--, ... , --EXPR--) to which the contents of all
locations in the block are to be changed.

Function codes are an important part of the memory access
specification, along with the address expression. The function code
(if stated explicitly) precedes the associated address expression, and
may be specified as a number or one of the defined function code
mnemonics (e.g., SUPER_PROG, USER_DATA).

Memory configuration allows different modes for function codes:
they may be enabled (full use offunction codes), disabled (no use
of function codes), or partially disabled (only PROGRAM/DATA
spaces are recognized). If the function codes are disabled (even
partially), then the unused function code bits are masked off and
ignored during the memory access.

Emulation Command Syntax 2-63

modify
mmu tables

mmu_tobles

<TBUNDEX>

Note

Syntax

<ROOLVAL>

cpu_rooLptr <TBL_INDEX>

supr _rooLptr

<VALUE>

<TBUNDEX> <TBUNDEX>

This option is not available in this version of software. When it
becomes avalable, the option is not present with the foreground
monitor.

Function The modify mmu_tablescommand allows you to modify an MMU
translation table entry (modify physical memory). The tables will
be indexed from_the given root pointer using the index values. The
index values may overstep the bounds for a valid table level.

Default Values

none

Examples modify mmu_tables cpu_root_ptr 4 to 02DF12COOOH

2·64 Emulatlon Command Syntax

Parameters

<ROOT VAL>

<TBL INDEX>

to

<VALUE>

<ROOT_ VAL> is the number used to
indicate the root pointer value to be used for
the table access.

<TBL_INDEX> is the index into the MMU
table. Each successive index offsets into the
entry list pointed to by the previous indices.

to enables you to specify the values to which
the selected table entry will be changed.

<VALUE> is a numeric values that you set
the table entry to.

Emulation Command Syntax 2·65

modify registers

Syntax

<REG> <VALUE> 1--~-

<REG SET>

Function The modify register command is used to modify the contents of one
or more registers in the processor/corpocessor's register set. The
entry for <REG> determines which register is modified.

Register modification cannot be performed during real time
running of the processor. A break must be performed to gain
access to the registers.

Default Value none

Examples modify registers cpu DO to 9H
modify registers cpu AO to lOOlb, Al to 1023h

Parameters

<REG>

<REG_SET>

2-66 Emulation Command Syntax

<REG> represents the name of the register
to be modified. The possible entries for
<REG> are displayed on softkey labels.

<REG_SET> specifies the name of the
register set to be displayed. The
register set names may be selected from
softkeys. All custom coprocessor
names defined in your custom register

to

<VALUE>

specification file are displayed. The name
cpu specifies that the 68030's internal cpu
registers be displayed. The name fpu is
reserved for the emulator's internal 68881
floating point processor, if used.

to enables you to specify the values to which
the selected registers will be changed.

<VALUE> is a combination of numeric
values, symbols, operators, and parentheses
specifying an register value. See--EXPR-­
syntax diagram.

Emulation Command Syntax 2-67

modify
sw_breakpoints

sw _breakpoints

Syntax

set all

one_shot entry 1---., <ENTRY> >---~-<

permanent l'----------.--0ot <ADDR>

clear f_code <F _CODE>

disable

one_shot ,__ _____ ...,

ermonent >-------

Function Software breakpoints enables the emulator to "break on execution"
of a specified address. Any valid address (number, label or
expression) may be specified as a breakpoint. Valid addresses
identify the first word of valid instructions.

Operation of the program can be resumed after the breakpoint by
either a run or step command.

Default Values none

Examples modify sw _breakpoints clear fcode USER_ PROG
1099h ' 1234h

modify sw_breakpoints set fcode SUPER_PROG
one_shot LOOPlEND, LOOP2END

modify sw_breakpoints clear entry 1
modify sw_breakpoints disable entry 2

2-68 Emulation Command Syntax

Parameters

<ADDR>

all

clear

disable

<F CODE>

one shot

permanent

<ADDR> is a combination of numeric
values, symbols, operators, and parentheses
specifying a software breakpoint address. See
--EXPR-- syntax diagram.

If used with the set parameter, all causes all
breakpoint entries to be reactivated (set to
pending). If used with the clear parameter,
all causes all entries to be cleared and the
memory locations are restored to their
original values. all also enables you to
disable all entries or to change all entries to
one-shot or permanent mode.

clear clears the specified breakpoint address
<ADDR> and restores the original
contents of the memory location.

disable deactivates the selected breakpoint
entry.

<F _CODE> is a prompt for the function
code. If used, the function code must be
specified using one of the defined function
code mnemonics on the softkeys.

one_shot causes the breakpoint to be set for
one execution. On execution, the breakpoint
is deactivated and the original contents of
the memory location is restored. one_shot is
also used to modify the mode of existing
entries.

permanent causes the breakpoint to be set
until you clear or disable it. The breakpoint
can be repeatedly executed. permanent is
also used to modify the mode of existing
entries.

Emulation Command Syntax 2·69

set

2· 70 Emulation Command Syntax

set enables you to set software breakpoints
in your program.

Commas(,) are used as delimiters between
specified breakpoint values.

reset

Syntax

(reset)1----------•l<RETURN>I

Function The reset command suspends target system operation and
reestablishes initial operating parameters, such as reloading
control registers. The reset signal is latched when the reset
command is executed and is released by the run command.

When the processor is released from reset by a run command, one
of two operations will occur, depending on the answer to the
reset_to_monitor question in configuration:

Default Value none

Example reset

• Reset_to_monitor enabled: the processor will reset into
the monitor, ignoring any user-defined reset vector.

• Reset_to_monitor disabled: the processor will vector into
the reset handler defined by the user reset vector.

Emulation Command Syntax 2· 71

run

run

Syntax

,___, _________ __,, ______ ~~-------------.......-<RETURN>

from 1--~--->---~ <ADDR> until <t_CODE> <ADDR>

<t _CODE>

transfer _address>------~

Function If the processor is in a reset state, run will cause the reset to be
released, and if a "from" address is specified the processor will be
directed to that address. If the processor is running in the monitor,
the run command causes the processor to exit into your program. , j
The program can either be run from a specified address ...,,,.,
(--EXPR--), from the address currently stored in the processor's
program counter, or from a label specified in the program.

The program will run until the until address is encountered and
then break to the monitor. The until "<ADDR>" specification
also causes a software breakpoint to be set up at the address
requested.

Default Value If the address (--EXPR--) option is omitted, the emulator will
begin program execution at the current address specified by the
processor's program counter.

Examples run
run from 810H
run from USER STATE START until LOOP 1
run until SUPERVISOR_STATE LOOP _1

2-72 Emulation Command Syntax

Parameters

<ADDR>

<F CODE>

from

transfer address

until

<ADDR> is a combination of numeric
values, symbols, operators, and parentheses
specifying a memory address. See --EXPR-­
syntax diagram.

<F _CODE> is a prompt for the function
code. If used, the function code must be
specified using one of the defined function
code mnemonics on the softkeys.

from is used to specify the address from
which program execution is to begin.

transfer_address is the starting address of
the program you loaded into emulation or
target memory. The transfer_ address is
defined in the linker map.

until is used in defining a software
breakpoint on which to break execution of
your program.

Emulation Command Syntax 2-73

set

Syntax

set analysis t------~-. <RETURN>

bnc_ports

emulation parameters

intermodule bust----

<VAR>

Function The set command is used to change the configuration for analysis,
the bnc ports, or the intermodule bus; to modify emulation
timeout; or to set up environmental variables.

Default Value none

2-74 Emulation Command Syntax

set analysis

Function The set analysis command lets you change your pres tore or
GLOBAL_ CONTEXT specification, set your trigger_position and
analysis break condition, or change your analysis softkey interface.

See the Analysis Rejrence Manual pr 32-Bit Microp-ocessors for a
detailed description of the set analysis command.

Emulation Command Syntax 2·75

set bnc _ports

Function The set bnc_ports command lets you change any portion of your J
bnc port configuration.

See the Analysis Reference Manual! or 32-Bit Microprocessors for a
detailed description of the set bnc _ports command.

2·76 Emulation Command Syntax

set
emulation_para­

\.,, meter

Note

Syntax

<VALUE>

Function The set emulation_parameter command lets you change either of
the two emulation timeout values.

The default values for card_cage_timeout and monitor_timeout
will work in the vast majority of applications. These settings
should be modified with great care.

Default Values 45 (card_cage_timeout, in seconds)
200 (monitor_timeout, in milliseconds)

Examples set emulation_parameter card_cage_timeout = 60
set emulation_parameter monitor_timeout = 800

Parameters

<VALUE> <VALUE> is an integer specifying the new
value for an emulation parameter. The units
for <VALUE> are either seconds or
milliseconds, depending on the type of
parameter; seconds for card_cage_timeout,
milliseconds for monitor timeout.

Emulation Command Syntax 2· 77

card_cage_time-out card_cage_timeoutspecifies the length of
time, in seconds, that is allowed for a request
to the emulator to complete. The only time
this parameter should be increased is if you ..J
see the error message "HP I/O failed" on the
STATUS line during normal emulation
operation.

monitor time-out monitor_timeoutspecifies the length of
time, in milliseconds, that is allowed for a
request to the emulator to complete.
Normally, all monitor functions (such as
read/write target memory) should complete
in less than 200 ms. However, if the monitor
is accessing a very slow device in the target
system, the value of monitor_timeout may
need to be increased. The monitor timeout
value may also be set in the emulation
monitor data area (refer to chapter 7).

=

2-78 Emulation Command Syntax

Equal (=) signs are used to indicate that the ""1111
emulation parameter is to be set to
<VALUE>.

set
intermodule bus

Function The set intermodule_ bus command lets you change any part of
your intermodule bus (IMB) configuration.

See the Analysis Reference Manual f>r 32-Bii MicroP'ocessors for a
detailed description of the set intermodule_ bus command.

Emulation Command Syntax 2· 79

set <VAR>

Syntax

<VAR> <VALUE>

Function The set <VAR> command lets you set up "environmental"
variables (aliases) for use within a particular emulation session.
For example, if the following command is entered:

set x = /users/guest/test

then, at any later time, "Sx" may be used as an alias for
"/users/guest/test", hence:

load memory emulation $x/myfile

A <VALUE> that contains embedded spaces must be enclosed
within quotation marks. Also, any HP-UX environmental
variables that were defined and exported prior to the emulation
session may be used.

Default Values none

Examples set emuldir = /users/<yourlogon>/emul683k
set dispmem =display memory lOOOh thru lOffh"

Allowing you to use:

cd $emuldir
$dispmem blocked word

2-80 Emulation Command Syntax

•
"""'

Parameters

<VAR>

<VALUE>

=

<VAR> is a user-definable environmental
variable name, consisting of a string of
letters, and/or digits.

<VALUE> is the alias assigned to the
environmental variable (<VAR>),
consisting of a string of letters, and/or digits.

Equal (=) signs are used to indicate that the
environmental variable <VAR> is to be set
to <VALUE>.

Emulation Command Syntax 2-81

step

step

Syntax

<#STEPS> from <ADOR>

<F CODE>

tronsfer oddress >-------~

Function The step command allows program instructions to be sequentially c J
analyzed by causing the emulation processor to execute a specified ...,,,
number of instructions. The contents of the processor registers, the
contents of trace memory, and the contents of emulation or target
memory can be displayed after each step command has been
completed.

Default Values If no value is entered for <NUMBER> of times, only one
instruction is executed each time the return key is pressed.
Multiple instructions can also be executed by holding down the
return key.

If the from address (--EXPR-- or transfer_address) option is
omitted, stepping begins at the next address.

Examples step Return
step from fcode SUPERVISOR_STATE 810h
step 20from fcode USER_STATE OAOh

2-82 Emulation Command Syntax

Parameters

<ADDR>

<F CODE>

from

<NUMBER>

transfer address

c

<ADDR> is a combination of numeric
values, symbols, operators, and parentheses
specifying a memory address. See --EXPR-­
syntax diagram.

< F _CODE> is a prompt for the function
code. If used, the function code must be
specified using one of the defined function
code mnemonics on the softkeys.

from is used to specify the address from
which program stepping is to begin.

<NUMBER> determines how many
instructions will be executed by the step
command. The number of instructions to be
executed can be entered in binary (B),
decimal (D), octal (0, or Q), or hexadecimal
(H) notation.

transfer_address is the starting address of
the program you loaded into emulation or
target memory. The transfer_address is
defined in the linker map.

Emulatlon Command Syntax 2-83

store

Syntax

store memory

logical

physical

<ADDR>

to_ file <FILE> <RETURN>

Function The store command is used to store the contents of specific
memory locations into an absolute file (.X file), or to store the
trace specification, with or without trace data, into a trace file (.TR
file).

Default Value None

Examples store memory logical fcode USER_PROG 800h thru 20ffh
to_file temp2

Parameters

store trace_specification to_file trclst

--EXPR-- --EXPR-- is a combination of numeric
values, symbols, operators, and parentheses
specifying a memory address. See --EXPR-­
syntax diagram.

2-84 Emulation Command Syntax

fcode

<F CODE>

<FILE>

fcode enables you to specify a function code
along with the address expression as part of
the memory access specification.

<F_CODE> is a prompt for the function
code. The function code map be specified as
a number or as a defined function code
mnemonic on the softkeys.

<FILE> is a prompt for the identifier for
the absolute file or trace file in which data is
to be stored.

logical logical specifies that the selected memory
locations to be stored are in logical space.

memory memory specifies that the selected memory
locations be stored in the specified file.

physical physical specifies that the selected memory
locations to be stored are in logical space.

thru thru enables you to specify that memory
ranges be stored.

to file to_file must be used in the store memory
command to separate the memory location
specifications from the file identifier
(<FILE>).

trace_specification trace_specification specifies that the current
trace specification data be stored in the
specified file.

with_trace_data with_trace_data specifies that the trace data
be stored along with the trace specification.

Commas(,) are used to separate memory
expressions in the command line.

Emulation Command Syntax 2-85

Description <FILE> determines the name under which the absolute or trace
file is to be stored. The store command creates a new file having
the specified name as long as there is no absolute file presently on
the disc with that name. In the case where a file represented by the , . ..I
<FILE> variable already exists, the system asks whether the old ""1/lf
file is to be deleted. If the response is yes, the new file replaces the
old one. If the response is no, then the store command is canceled
and no data is stored. The transfer address of the absolute file is set
to zero.

2-86 Emulatlon Command Syntax

~-SYMB--

--SYMB--

<FILE>

Note

Syntax

line <LINE>

segment >---~~~~-- <SEGMNT>

<SCOPE>

If no default file has been defined by executing the display
local_symbols_in or load memory commands, a source file name
(<FILE>) must be specified with the first local symbol in a
command line. The specified file is then used as the default file for
subsequent symbols in that command line until a new source file
name is specified. When the command is executed, the default file
name returns to the file name specified in the last display
local_symbuls_in command (if one has been executed) or the last
load memory command.

Function --SYMB-- is a symbolic reference to an address or address range,
file, or other value. Symbols may be HP-UX paths, referenced line
numbers in a file, file segments (prog, data, common), or global
and local symbols.

Default Value Last file specified in a "display local_symbols_in" command. If
display local_symbols_in has not been executed in the current
emulation session, default is the last file specified in a load memory
command, or none if a file has not been loaded.

Emulation Command Syntax 2-87

Examples module.S : line 5
keybd.S : scankeys.LOOPl
segment "DATA\"

Parameters

<FILE>

line

<LINE>

<SCOPE>

segment

<SEGMNT>

<SYMBOL>

2-88 Emulatlon Command Syntax

<FILE> is an HP-UX path specifying a
source file. If no file is specified, the default
file is assumed, if one exists.

linespecifies that the following value is a
line number.

<LINE> prompts you to enter a line
number.

<SCOPE> prompts you to enter the
identifier of the portion of the program
where the specified symbol is defined or
active.

segment indicates that the following string
specifies a program segment (prog, data,
common) in the source file.

<SEGMNT> prompts you to enter a
program segment.

<SYMBOL> prompts you to enter a
symbol name.

A colon (:)separates the HP-UX path
specifier from the line, segment or symbol
specifier. If no path specifier precedes:, then
the default file is assumed for line or
segment, and <SYMBOL> is assumed to be
a global symbol.

trace

Function The trace command allows you to trace program execution using
the HP 64404 and HP 64405 Integrated Analyzers.

See the Analysis Reference Manual jJr 32-&t Micropocessors for a
detailed description of the display trace command.

Emulation Command Syntax 2·89

wait

wait

Syntax

<TIMER> <RETURN>

measurement complete

stepping_ complete

Function The wait command is a delay command. Delay commands are
enhancements that allow flexible use of command files (although
delays are also available outside of command files). Command
delays give the emulation system and target processor time to
reach some condition or state before bringing in the next
command. The delay commands may be included in command files.

The wait command is not displayed on the softkeys. You must type
the command from the keyboard. After you type "wait", the wait
command parameters are displayed on the softkeys.

Default Value Waiting for Ctrl c

2-90 Emulatlon Command Syntax

Note

Examples

Parameters

if "set intr "'c" has not been executed on your system, replace Ctrl c
with the backspace key in the following examples and parameter
definitions.

wait

wait 6

wait measure­
ment_ complete

wait measure­
ment_ complete
or20

measure­
ment_complete

stepping_ complete

<TIME>

emulator waits for Ctrl c before accepting
the next command.

emulator waits for Ctrl c or 6 seconds before
accepting the next command.

emulator waits for Ctrl c or for a pending
measurement to complete. If no
measurement is in progress, wait will be
satisfied immediately.

emulator waits for Ctrl c, for a pending
measurement to complete, or 20 seconds
(whichever occurs first) before accepting the
next command.

measurement_complete causes the system to
wait for a measurement in progress to
complete before the next command is
executed.

stepping_ complete causes the system to wait
for the currently executing stepping
command to complete before executing
another command.

<TIME> is the number of seconds you
insert for your delay.

Emulation Command Syntax 2-91

Notes

2-92 Emulatlon Command Syntax

A

~ User Interface Software/HP-UX Cross Reference

Table A-1. User lnterface/HP-UX Cross Reference

USER INTERFACE HP-UX

COMMAND OPTION COMMAND OPTION

assemble asm

list -1
no list -n
expand -e
no code -t
xref -x
output -o
verbose -v
list to >
print I SPRINTER

cat cat

anychar ?
anystrng *

chng_dir cd

User lnterface/HP-UX Cross Reference A-1

Table A-1. User lnterface/HP-UX Cross Refer. (Cont'd)

USER INTERFACE HP-UX

COMMAND OPTION COMMAND OPTION

compile comp

list -I
no list -n
expand -e
no code -t
xref -x
output -0

verbose -v
list to >
print I SPRINTER

copy cp

anychar ?
anystrng *

date&time date

edit Defined by the variable "EDITOR"

recover -r
Readonly -R

lifcopy lifcp

binary -b
anychar ?
anystrng *
trans lat -t
raw -r

A-2 User lnterface/HP-UX Cross Reference

Table A-1. User lnterface/HP-UX Cross Refer. (Cont'd)

USER INTERFACE HP-UX

COMMAND OPTION COMMAND OPTION

lifinit lifinit

vol name -n

liflis t lifts

long -1
list to >
print I SPRINTER

lifremv lifrm

lifrenam lifrename

link Ink

list to -1
print I SPRINTER
xref -x
output -0

no_map -n
no_ovlp -C

User lnterface/HP-UX Cross Reference A-3

Table A-1. User lnterface/HP-UX Cross Refer. (Cont'd)

USER INTERFACE HP-UX

COMMAND OPTION COMMAND OPTION

list dir Is

File type -F
time mod -t
use time -u
reverse -r
all -a
Recurse -R
anychar ?
anystrng *
list to >
print I SPRINTER
long -1

log log_ commands

to to
off off

makedir mkdir

manual man

keyword -k
list to >
print I SPRINTER

move mv

anychar ?
anystrng *
force -f

A-4 User lnterface/HP-UX Cross Reference

Table A-1. User lnterface/HP-UX Cross Refer. (Cont'd)

USER INTERFACE HP-UX

COMMAND OPTION COMMAND OPTION

msconfig msconfig

msinit msinit

search -s

msstat msstat

opt_test opt

prom_prg prom_prg

removdir rmdir

1emove rm

anychar ?
anystrng *
force -f
recurse -r
interact -i

shell !

<system_ name> <system_name>
(for example e386) (for example e386)

User lnterface/HP-UX Cross Reference A-5

Table A-1. User lnterface/HP-UX Cross Refer. (Cont'd)

USER INTERFACE HP-UX

COMMAND OPTION COMMAND OPTION

tarchive tar

add r
update u
extract x
create c
table t
anychar ?
anystrng *
no dir 0

file/dev f<device>
verbose v
prsvmode p
mar know m

A-6 User lnterface/HP-UX Cross Reference

B

\...., Using Control Characters And Other Commands

Using Control
Characters

The following control characters can be used in HP 64000-UX:

• CTRL b recalls commands starting from the first command
you entered. You can continue pressing these keys to
observe commands previously executed.

• CTRL c is an interrupt, and stops processing of the current
command. In Option Test, this has no effect (this is
different from most HP 64000-UX interfaces, and is set
this way so that the HP 64000-UX hardware is never left in
an unknown state).**

• CTRL d stops all tests and exits HP 64000-UX features.**

• CTRL e clears the command line from the cursor location
to the end of the line.

• CTRL f rolls the diagram left while in emulation.

• CTRL g rolls the diagram right while in emulation.

• CTRL l refreshes (redraws) the display.

• CTRL q resumes scrolling of information on the screen
(that was stopped with CTRL s).

• CTRL r recalls commands from the previous command
you entered (scrolling through the commands toward the
first command). You can continue pressing these keys to
observe commands previously executed.

Using Control Characters B-1

Other Control
Characters And
Commands You
Can Use

B-2 Using Control Characters

• CTRL s temporarily stops scrolling of information on the
screen (resume with CTRL q).

• CTRL u clears the command line.**

• CTRL \(backslash) stops all tests and exits HP 64000-UX
features.**

• Tab moves the cursor to the next word on the command
line.

• Shift Tab moves the cursor back one word on the
command line (this is for HP terminals only).

** Depends on actual stty settings.

Other control characters and commands you can use are listed
below:

• #is used to include comments in files. All characters after
the"#" are ignored when the file is executed.

• help or? displays the possible help files.

• ! forks an HP-UX shell (using the SSHELL environment
variable).

• cdchanges directory for the present HP-UX shell.
,.

• <FILE> pl p2 p3executes a command file and passes • j
three parameters. """1

• log_commands to <FILE> puts commands you execute
into a file that you specify.

• wait pauses a command file until you press CTRL c
(SIGnal_INTerrupt).

• wait measurement_ complete pauses a command file until
the measurement is complete, or until CTRL c (SIG _INT).

• wait <TIME> pauses a command file until <TIME> (in
number of seconds) has passed, or until CTRL c is pressed.

Using Control Characters B-3

Notes

B-4 Using Control Characters

Index

A

B

c

--EXPR-- syntax, 2-48
--SYMB-- syntax , 2-87

analysis , 1-5
at_ execution syntax

syntax, at_execution command, 2-4

break command syntax , 2-6
break syntax

syntax, break command , 2-6
breakpoint generation, 1-5

clock source selection, 1-5
command summary, emulation , 2-3
command syntax

--EXPR--, 2-48
--SYMB-- , 2-87
at_ execution, 2-4
break, 2-6
copy, 2-7
copy display, 2-11
copy global_ symbols, 2-12
copy local_symbols_in, 2-14
copy memory, 2-15
copy mmu_tables, 2-19
copy registers , 2-21
copy sw _breakpoints , 2-23
copy trace , 2-25
copy trace_specification, 2-26
display, 2-27
display address_ translation , 2-29
display global_ symbols, 2-31
display local_symbols, 2-32
display memory, 2-33
display mmu_tables, 2-37
display registers , 2-39
display simulated_io, 2-41

lndex-1

2-lndex

command syntax (cont'd)
display sw _breakpoints , 2-42
display trace , 2-44
display trace_specification, 2-45
execute, 2-46
halt, 2-50
help, 2-13, 2-51
load, 2-52
modify , 2-55
modify analysis , 2-57
modify configuration, 2-58
modify keyboard_to_simio, 2-59
modify memory , 2-60
modify mmu_tables, 2-64
modify registers , 2-66
modify sw _breakpoints , 2-68
reset, 2-71
run, 2-72
set, 2-74
set analysis , 2-75
set bnc _ports , 2-76
set emulation parameter , 2-77
set intermodule_ bus , 2-79
set VAR , 2-80
step, 2-82
store, 2-84
trace, 2-89
wait, 2-90

control characters, using, B-l
copy display syntax

syntax, copy display command, 2-11
copy global_ symbols syntax

syntax, copy global_symbols command, 2-12
copy help command syntax, 2-13
copy local_symbols_in command syntax, 2-14
copy memory command syntax, 2-15
copy mmu_tables command syntax, 2-19
copy registers command syntax, 2-21
copy sw_breakpoints command syntax, 2-23
copy syntax, 2-7

syntax, copy command , 2-7

copy trace command , 2-25
copy trace_specification command, 2-26

D damage to target system circuitry, 1-7
display address_translation command syntax, 2-29
display command syntax, 2-27
display global_symbols command syntax, 2-31
display local_symbols_in command syntax, 2-32
display memory command syntax, 2-33
display mmu_tables command syntax, 2-37
display registers command syntax, 2-39
display simulated _io command syntax, 2-41
display sw_breakpoints command syntax, 2-42
display trace command , 2-44
display trace_specification command, 2-45

E electrical transparency
transparency, electrical, 1·3

emulation probe, 1-4
emulation system, physical description, 1-2
emulator effects on user program , 1-6
execute command syntax, 2-46
expression syntax , 2-48

F functional description of emulator, 1-2
functional transparency

transparency, functional, 1-3

H halt command syntax , 2-50
hardware modules, emulation system, 1-2
help command syntax, 2-51
how the emulator affects the target system, 1-9

interactive measurements, 1-6
interactive operation with other modules , 1-6
internal processor resources display/modify, 1-5

L load command syntax, 2-52

~
M memory characterization , 1-5

memory display/modification, 1-4
microprocessor replacement probe , 1·4
modify analysis command , 2-57
modify command syntax , 2-55

lndex-3

4-lndex

modify configuration command syntax , 2-58
modify keyboard_to_simio command syntax, 2-59
modify memory command syntax , 2-60
modify mmu_tables command syntax, 2-64
modify registers command syntax , 2-66
modify sw _breakpoints command syntax , 2-68

0 operational independence from host system, 1-3

P physical description, emulation system, 1-2
preparing the emulator, 1-10
preparing the software , 1-10
program loading, 1-4
program stepping , 1-5

R real-time mode capabilities, 1-7
real-time mode restrictions, 1-7
real-time vs. non-real-time mode, 1-6
reset command syntax, 2-71
resource mapping, 1-5
run command syntax, 2-72
run/stop controls , 1-4

S set analysis command syntax, 2-75
set bnc_ports command syntax, 2-76
set command syntax, 2-74

T

set emulation parameter command syntax , 2-77
set intermodule_bus command syntax, 2-79
set VAR command syntax , 2-80
step command syntax , 2-82
store command syntax , 2-84
symbol display, global and local, 1-4
symbol syntax , 2-87
syntax conventions , 2-2
systen commands available in emulation , B-2

timing transparency
transparency, timing, 1-3

trace command , 2-89
transparency to target system, 1-3

U using the emulator, 1-10
using the emulator, steps to, 1-10

W wait command syntax , 2·90
what happens during program execution, 1-8
what is an emulation system , 1-2

lndex-5

Notes

6·1ndex

Ff/'jj'9 HEWLETT
~J.!atl PACKA~D
Printed In U.S.A.

