
HP64000
Logic Development
System

Model 64819AF
C/64000

. Compiler Supplement
68000/68008/68010

F//QW HEWLETT
~~PACKARD

CERTIFICATION
Hewlett-Packard Company certifies that this product met its published specifications at the
time of shipment from the factory. Hewlett-Packard further certifies that its calibration
measurements are traceable to the United States National Bureau of Standards, to the extent
allowed by the Bureau's calibration facility, and to the calibration facilities of other
international Standards Organization members.

WARRANTY
This Hewlett-Packard system product is warranted against defects in
materials and workmanship for a period of 90 days from date of
installation. During the warranty period, HP will, at its option, either
repair or replace products which prove to be defective.

Warranty service of this product will be performed at Buyer's facility
at no charge within HP service travel areas. Outside HP service travel
areas, warranty service will be performed at Buyer's facility only upon
HP's prior agreement and Buyer shall pay HP's round trip travel
expenses. In all other cases, products must be returned to a service
facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay
shipping charges to HP and HP shall pay shipping charges to return the
product to Buyer. However, Buyer shall pay all shipping charges, duties,
and taxes for products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with
an instrument will execute its programming instructions when properly
installed on that instrument. HP does not warrant that the operation of
the instrument, or software, or firmware will be uninterrupted or error
free.

UMIT ATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from
improper or inadequate maintenance by Buyer, Buyer-supplied software or
interfacing, unauthorized modification or misuse, operation outside of
the environment specifications for the product, or improper site
preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES.
HP SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER
LEGAL THEORY.

ASSISTANCE
Product maintenance agreements and other customer assistance agreements are available for
Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

CW&A 11/83

C/64000

Compiler Supplement

68000/68008/68010

C> COPYRIGHT HEWLETT-PACKARD COMPANY 1983, 1984
LOGIC SYSTEMS DIVISION

COLORADO SPRINGS, COLORADO, U.S.A.

ALL 8.IGHTS 8.EIE& VED

Printing History

Each new edition of this manual incorporates all material updated since
the previous edition. Manual change sheets are issued between editions,
allowing you to correct or insert information in the current edition.

The part number on the back cover changes only when each new edition is
published. Minor corrections or additions may be made as the manual is
reprinted between editions. Vertical bars in a page margin indicate the
location of reprint corrections.

First Printing March 1983 (P/N 64819-90901)
Second Edition May 1984 (P/N 64819-90902)

ii

C/ 64000 Compiler Supplement
68000/68008/68010

Table of Contents

Chapter I: C/64000 Compiler

Introduction
C Program Design
How to Implement a Program

The Source File
Producing Programs for the 68008 Processor
Linking·····~···
Linking Example
Program-Level Variable Addressing
Position Independent Code and Data
Emulation of C Programs ...•.......

Chapter 2: C/64000 Programming

Programming Considerations
Introduction
Register Allocation
Stack Pointer Initialization
Functions and Parameters Passing
Value Returning Functions
Static Data Area•.•.
Dynamic Memory Allocation, Heap Initialization
Interrupt Handling .•...•.•.....•.....

Special Options for the 68000 Compiler
INTERRUPT
OPTIMIZE
SEPARATE
TRAP

Addressing Options
BASE PAGE
FAR
COMMON
CALL ABS LONG
CALL ABS SHORT
CALL-PC SHORT
CALL-PC-LONG
LIB ABS LONG
LIB ABS SHORT - -LIB PC SHORT
LIB PC LONG

User Defined Operators
General
Operations That May Be Redefined
Parameters For User Defined Operations

Pass 2 Errors

iii

1-1
1-1
1-1
1-2
1-3
1-4
1-5
1-8

1-10
1-10

2-1
2-1
2-1
2-2
2-3
2-3
2-4
2-4
2-7
2-7
2-7
2-7
2-9
2-9
2-9
2-9

2-10
2-10
2-10
2-10
2-10
2-11
2-11
2-11
2-11
2-11
2-12
2-12
2-12
2-13
2-15

C/64000 Compiler Supplement
68000/68008/68010

Table of Contents (Cont'd)

Chapter 3: Run-time Library Specifications
Introduction . 3-1
Dynamic Memory Allocation•................................... 3-1

INITllEAP . 3- 2
NEW .. 3-2
DISPOSE .. 3-3
M.ARK tee e e e e e e e e e e e e e e e e e e • e e e e e e e e e e e e e e e e e e e • e e e e e e 9 e e e e e e e e e e I I 3-3
RELEASE .. I. I ••••• 3-4
MEMERR ••.• 3-5

32-bit Arithmetic .. 3-7
Zunsmult - Unsigned 32-bit multiply 3-7
Zmult - Signed 32-bit multiply 3-8
Zunsdiv - Unsigned 32-bit divide 3-8
Zdiv - Signed 32-bi t divide .•.................................... 3-9
Zmodu - Unsigned 32-bit modulus 3-9
Zmods - Signed 32-bit modulus 3-10
Dunsmult - Unsigned 32-bit multiply with overflow check 3-10
Dmult - Signed 32-bit multiply with overflow check 3-11

Error Routines .. 3-12
Zerror - error message formatter 3-12
ENTRY - Upper Case Entry Point•............ 3-13
entry - Lower Case Entry Point 3-14

Floating Point Operation .. 3-15

Appendix A:
Run-Time Error Descriptions .. A-1

List of Tables

1-1. Relocatable Library Files 1-4

2-1. Pass 2 Errors . 2-15

iv

Chapter 1
C/64000 COMPILER

INTRODUCTION

This compiler supplement is an extension of the C/64000 Compiler
Reference Manual. It contains processor-dependent compiler information
for use with 68000, 68008, and 68010 microprocessors.

NOTE

All references to the 68000 microprocessor in this
manual are equally applicable to the 68010 micro­
processor unless otherwise noted.

Descriptions of compiler features, options, and their uses are
A discussion of run-time libraries required by the 68000 code
is included. In addition, a brief discussion of the
capabilities, and limitations of C program development
emulator is provided.

C PROGRAM DESIGN

supplied.
generator
features,

using the

C programs should be designed to be as processor- and implementation­
independent as possible, yet certain concessions must be made when the
processor has unique characteristics. For example, most large-mainframe
computer implementations have enough memory to allocate a stack area and
a heap for dynamic memory allocation with no prompting by the user. For
the 68000, the user must specify the location of the stack, and if
needed, the location of a memory pool for dynamic allocation routines.
The following sections describe subjects related to programming and com­
piling C/64000 programs for the 68000 processor.

HOW TO IMPLEMENT A PROGRAM

The usual process of software generation is as follows:

a. Create source program files using the editor.
b. Compile source programs.
c. Link the relocatable files.
d. Emulate the absolute file.
e. Debug as necessary.

This chapter will provide insight into each of these processes.

1-1

C/64000 Compiler Supplement
68000/68008/68010

THE SOURCE FILE

The C/64000 compiler takes as input a program source file created with
the editor. The basic form of a source file is:

"c ..
"68000"

/*C PROGRAM*/

When source file editing is complete, the file is ready for compilation.
Notice in the example form that the first line of the source program
specifies the name of the language, and the second line specifies the
name of the processor. These two lines must always be present.

There are five possible forms of compiler output: a relocatable file, a
listing file (if specified), an assembly language source file (if
specified), an assembly symbol file, and a compiler symbol file. These
output files are described in the following paragraphs.

Relocatable file:

Listing file:

Assembly file:

1-2

If no errors were detected in the source file
(called FILENAME:source), a relocatable file
(called FILENAME:reloc) will be created. This
file will be used by the linker to create an ex­
ecutable absolute file.

If a listfile is specified, a listing file con­
taining source lines with line numbers, program
counter, level numbers, errors and expanded code
(if specified) will be generated.

If the ASM FILE option is turned on anywhere in
the source file, an assembly file (called
ASM68000:source) will be created. This file
will contain the C source as comments and the
assembly language produced. This file may be
assembled with the 68000 assembler.

There is only one ASM68000 source file per
userid. On multistation systems this means that
when two 68000 compilations are done simul­
taneously in the same userid and both sources
contain the $ASM FILE$ option, only one of the
compilations will-build the ASM68ooo file.

C/64000 Compiler Supplement
68000/68008/68010

Assembly symbol file: If no errors were detected in the file (called
FILENAME:source), an assembly symbol file (cal­
led FILENAME:asmb sym) will be created. This
file contains information about symbols that
were defined in the source file and is used by
the various HP 64000 analysis tools during the
debugging stage. The :asmb sym file may be sup­
pressed by using the $ASMB SYM OFF$ compiler
directive. -

Compiler symbol file: If the compiler was executed using "options com­
p sym", a compiler symbol file (called
FILENAME:comp sym) will be created. The file
contains additional high-level information about
symbols defined in the source file and is used
by the HP 64000 high-level analysis tools during
the debugging stage.

PRODUCING PROGRAMS FOR THE 68008 PROCESSOR

When compiling a program for the 68008 processor, the second line of the
source file must contain the special compiler directive "68008" as shown
below.

11 68008"

/* C PROGRAM */

When linking for the 68008, all modules must be compiled or assembled
using the "68008" directive or the linker will produce an error. In
particular, the user must specify the 68008 run-time library file names,
A5 LIB:L68oo8, etc., as opposed to the 68000 library files. Refer to
"Linking" in the paragraphs below.

When compiling for the 68008 processor, the compiler produces exactly
the same instructions as for the 68000 processor. The only difference
is the relocatable files are identified as being for an 8-bit processor
as opposed to a 16-bit processor. This attribute only affects the
operation of the PROM Programmer.

1-3

C/64000 Compiler Supplement
68000/68008/68010

LINKING

After all program modules have been compiled (or assembled), the modules
may be linked to form an executable absolute file. The compiler
generates calls to a set of library routines for commonly used opera­
tions such as input/output, signed and unsigned multiply and divide for
32-bit numbers, dynamic memory allocation, real number processing, etc.
These routines must be linked with the program modules.

These routines are provided in three libraries for the 68000 and three
other libraries for the 68008 processor. The names of the library
relocatable files and a description of their functions is given in Table
1-1. The library files in userid L68000 should be linked with modules
compiled for the 68000 processor while the library files in userid
L68008 should be linked with modules compiled for the 68008 processor.

A5_LIB and ABS LIB define the same routines and are identical in func­
tion. The differ only in the method used for accessing their own global
variables. REAL_LIB does not access program level variables.

You may replace one or more of the routines in the libraries with your
own version simply by specifying your own replacement routines at link
time.

Library File Name

A5 LIB:L68ooo
A5=LIB:L68008

ABS LIB:L68ooo
ABS-LIB:L68oo8

REAL LIB:L68ooo
REAL-LIB:L68oo8

1-4

Table 1-1. Relocatable Library Files

Global Variable
Addressing Mode

A5 relative
(i.e. $COMMON$)

absolute
(i. e . FAR)

N/A {no global
variables used)

Functions Provided

Dynamic memory allocation,
32-bit arithmetic, string
operations, range checking,
program starting and ending.

Same as A5 LIB except for
global variable addressing
mode.

Real number operations.

C/ 64000 Compiler Supplement
68000/68008/68010

LINKING EXAMPLE

The linker is called and the questions asked by the linker should be
answered as follows:

link

Object files: MODULE1,MODULE2,USER_LIB

Library files: A5_LIB:L68ooo

Load addresses: PROG,DATA,COMN,A5=0004000H,0002000H,OOOOOOOH,OOOOOOOH

Absolute file name: PROGRAM

Any object files that are meant to replace files in library files
A5 LIB:L68ooo, ABS LIB:L68ooo, or REAL LIB:L68ooo should be contained in
the library "USER LIB" above.

The numbers specified for the PROG, DATA, COHN, and A5 values have the
following meaning.

PROG - Specifies the starting location of the "program" relocatable
memory area. Machine instructions and constant data are
normally stored in the PROG area.

The value of PROG must be an even address. In the above,
PROG is set to 4000H so the emulator will load the absolute
file at 4000H. Note that, in general, the address speicified
in PROG is not the entry point where the emulator will begin
execution of the absolute module.

1-5

C/64000 Compiler Supplement
68000/68008/68010

DATA - Specifies the starting location of the DATA relocatable
memory area. Program-level variables (i.e. any variable
defined at the program level of a C program) are normally
the DATA area.

The value of DATA must be an even address. In the example
above, the linker will combine the DATA segments from each
of the relocatable files above into one and load it into ad­
dress 2000H.

COMN - Specifies the starting location of the COMN relocatable
memory area. The compiler never allocates data to the COMN
area. The COMN area is seldom used. It is meant to provide
for a FORTRAN-like sharable common area.

A5 - Specifies the value that will be contained in the 68000 ad­
dress register A5. A5 is a register used by the compiler
for accessing program level variables when the $COMMON$ com­
piler option is in effect. Refer to the section on program­
level variable addressing which follows.

The value of A5 must be an even address. A5 should be set
to the value that will actually be loaded into address
register 5 at run time.

The following diagram shows how the absolute file would look in memory
after linking and loading. It is assumed that the value 2000H will be
loaded into register A7 to define the beginning address of the hardware­
maintained user stack.

When library routines from the library A5 LIB: L68000 are required they
will be linked at the end of the last user-=-relocatable PROG and/or DATA
areas.

1-6

High Memory

A5_LIB:L68ooo code

USER LIB code -
r,

MODULE2 code

MODULEl code

unused

A5 LIB:L68ooo
static data

USER LIB static data -

MODULE2 static data

MODULE! static data

Stack will begin here
and grow downward

Low Memory

C/64000 Compiler Supplement
68000/68008/68010

4000H

2000H

1-7

C/64000 Compiler Supplement
68000/68008/68010

PROGRAM-LEVEL VARIABLE ADDRESSING

The compiler can use any one of three addressing modes to access any
particular program-level (i.e. not defined within a C routine) variable.
The compiler options COMMON, BASE PAGE, and FAR are used to select the
program-level variable addressing mode in the following manner.

$COMMON$ specifies that affected variables are accessed using
Address Register Indirect With Displacement mode. The ad­
dress register used is A5. This is the default addressing
mode.

$BASE_PAGE$ specifies that affected variables are accessed using
Absolute Short Address mode.

FAR specifies that affected variables are accessed using
Absolute Long Address mode.

The addressing option, COMMON, BASE PAGE, or FAR, that is in effect when
the first C statement is encountered in a source file controls the ad­
dressing mode for all program-level variables defined within that
program. After the first C statement, the options COMMON, BASE_PAGE,
and FAR only affect the addressing of external variables. Consider the
following example.

"68000"
int a;
FAR
extern int b;
int c;
main()
{
a=O; /* a accessed w/Address Register Indirect With Displacement mode */
b=O; /* b accessed w/Absolute Long Address mode */
c=O; /* c accessed w/Address Register Indirect With Displacement mode*/
}

In the example above, the $COMMON$ option, by default, is in effect when
the first C statement is encountered. Therefore all program-level vari­
ables defined in this program (i.e. a and c) will be accessed in the
$COMMON$ mode in this program. Note that FAR, specified after the
first C statement, affects only the externally defined variable b.

The $COMMON$ option causes affected variables to be accessed using the
A5+d addressing mode. In this case, d is a 16-bit displacement which
occupies two bytes of memory in the machine instruction. The displace­
ment is first sign extended to 32 bits and then added to the contents of
A5 to produce the effective address of the variable. The 16 bit dis­
placement value allows a maximum of 64k bytes to be accessed in the DATA
area. Because the 16-bit displacement is sign extended, the area of
memory that can be accessed is +/- 32k bytes on either side of the
address contained in A5.

1-8

C/64000 Compiler Supplement
68000/68008/68010

The linker calculates the displacement value, d, of an A5+d variable
reference in the following way. The A5 value, specified at link time,
is subtracted from the actual address of the referenced variable. The
result, truncated to 16 bi ts, becomes the displacement value. The
linker will report an error if the calculated displacement is greater
than 32767 or less than -32768.

The library routine Zstartprogram contained in AS_LIB or ABS_LIB sets
the value of A5 to OOOOOOOH. The linker initially sets its A5 value to
OOOOOOOH. By default then, the program may access memory locations in
the range OOOOOOOH through 0007FFFH for positive displacement values and
OFF8000H through OFFFFFFH for negative displacement values assuming a
24-bit address width. If one desires to locate the DATA area outside of
the above ranges, one must specify a new value for A5 at link time and
also link to an assembly language routine which executes code to load A5
with the same new value.

The $BASE_PAGE$ option causes affected variables to be accessed using
the Absolute Short Address mode. In this case, a 16-bit absolute ad­
dress is contained in two bytes of memory in the machine instruction.
The 16-bit address is sign extended to 32 bits to produce the effective
address of the variable. The 16-bit address allows a maximum of 64k
bytes to be accessed in the DATA area. Because the 16-bit address is
sign extended, the accessible memory locations are in the range OOOOOOOH
through 0007FFFH for positive values and OFF8000H through OFFFFFFH for
negative values assuming a 24-bit address width. The linker will report
an error if the actual address of the referenced variable is outside
these ranges.

The FAR options causes affected variables to be accessed using the
Absolute Long Address mode. In this case, a 32-bit absolute address is
contained in four bytes of memory in the machine instruction. The
32-bit address is the same as the effective address. This mode allows
any location in memory to be accessed but at the cost of longer code and
slower execution.

One may access a particular variable using different modes from dif­
ferent modules. For example, one module may define a global variable
with the $COMMON$ option in effect and access that variable using AS+d
mode within that module. Another module may declare the same variable
external with the $BASE PAGE$ or FAR option in effect and access the
variable using Absolute-Short or Absolute Long mode. Of course, when
using $COMMON$ or $BASE PAGE$, the actual address of the variable must
always be within the range that is accessible using AS+d or absolute
short addressing modes respectively.

1-9

C/ 64000 Compiler Supplement
68000/68008/68010

POSITION INDEPENDENT CODE AND DAT A

Several compiler options are available to the user to help him control
the 68000 addressing modes used by the compiler when it generates code.
The options are described in Chapter 2 under the heading Addressing
Options. With these options it is possible for the user to postpone the
determination of the load addresses for code and data until run time.
This can be useful in a multiprogramming environment where dynamic
memory mapping is required but the hardware to do it is not available.

If either the $CALL PC SHORT$ or the $CALL PC LONG$ option is used and
either the $LIB PC SHORT$ or the $LIB PC LONG$ option is used, the ex­
ecutable code generated by the compiler - will be position independent,
and may be loaded anywhere in memory at run time. However, the 1 inker
requires that an address be specified for FROG, and the emulation loader
will always load the absolute file generated by the linker at that ad­
dress for emulation purposes.

If the $COMMON$ option is used before the first C statement, all
references to program level variables (variables in the static data
block) will be accessed using the Address Register Indirect Plus
Displacement addressing mode. The address register used will be A5.
The executable code generated by the compiler will be position indepen­
dent and may be loaded anywhere in memory at run time. Also, the data
relocatable area may be located anywhere in memory run time. However,
the linker requires that addresses be specified for DATA and A5. The
emulation loader will always load the data portion of the absolute file
at the location specified for DATA.

If the user loads the code to a different location, then, for correct
execution, the user must insure that difference, DATA - AS, specified at
link time is equal to the difference of the actual run time location of
the data area minus the actual run time value of AS.

The $COMMON$ option is ON by default at compiler initialization time.
To cause the compiler to use absolute addressing for program level vari­
ables use the $BASE PAGE$ option or the FAR option immediately after
the "68000" line. -

EMULATION OF C PROGRAMS

After all modules have been compiled (or assembled) and linked, the ab­
solute file may be executed using the emulation facilities of the Model
64000. The emulator should be initialized with the memory mapped as it
will be used in the target system.

A program that is designed to be executed in read-only-memory (ROM) may
be compiled with the 68000 C compiler. The $SEPARATE$ option described
in the C/64000 Reference Manual is ignored by the 68000 C Compiler. C
programs compiled for the 68000 are always compiled as if the $SEPARATE$
option is ON. Thus, RAM data will always be counted under the DATA
counter, while code and constants are always counted under the FROG
counter.

1-10

Cf 64000 Compiler Supplement
68000/68008/68010

Each C absolute file must have an entry point. In C, the function
"main" or "MAIN" is used as the entry point of a C program. Although
many C programs may be linked to form one absolute file, only one C
program should contain the function "main" or "MAIN". When the C com­
piler encounters the declaration of the function "main" or "MAIN", an
external reference to the library routine "entry" or "ENTRY" will be
generated. The routines "entry" and "ENTRY" are contained in both
A5 LIB: L68000 and ABS LIB: L68000 libraries. To execute a C absolute
file in the emulator when the emulator is in the "running in monitor"
state, issue the command:

run from entry

or

run from ENTRY

depending on whether
entry point function.

II • II main or "MAIN" has been used as the name of the

Program execution begins in the library routine ENTRY, where the run­
time environment for the program may be initialized. The library
routines "entry" and "ENTRY" initialize registers A5 and A6 to all
zeros, and load A7 with the highest address of a 256-word stack. The
user may write his own ENTRY routine to initialize the environment in
some other way. This is most often required when the user needs more
than 256 words for the stack. After the run-time environment is in­
itialized, control is transferred to the function "main" or "MAIN" and
the program begins execution. If the program runs to completion, con­
trol will return to the ENTRY routine and the message "End of Program"
will be displayed on the status line of the CRT.

Alternatively, the user may turn the $ENTRY$ option OFF at the beginning
of each C program. With the $ENTRY$ option OFF, no external reference
to either library entry routine is generated. In this case, the user is
responsible for run-time environment initialization. Normally, for
emulating C programs, the $ENTRY$ option should be left ON to provide a
fail-safe method for doing run-time environment initialization.

When executing code on the emulator, if a run time error occurs, a jump
to the monitor will be generated and a message will be displayed on the
status line indicating the error and, in many cases, the address where
the error occurred.

NOTE

It is important to remember that during emulation of
C/64000 programs, a C program may be debugged sym­
bolically (using global symbols in the source
program) or by source program line numbers of the
form: #n, where n is the source line number of an
executable C line.

1-11

C/64000 Compiler Supplement
68000/68008/68010

1-12

Chapter 2
C/64000 PROGRAMMING

PROGRAMMING CONSIDERATIONS

INTRODUCTION

This chapter describes the run-time environment for 68000 C/64000
programs. Although some parts of the run time environment are not
necessary for every C program, the programmer should become familiar
with the information supplied in order to be able to use it when the
structure of a 68000 program does require it. The specific areas to be
discussed are stack pointer initialization, multiple module programs,
heap initialization for use with the dynamic memory routines (NEW,
DISPOSE, MARK, and RELEASE) and interrupt processing with C programs.

REGISTER ALLOCATION

The 68000 has eight data (D) registers and eight address (A) registers.
The 68000 makes use of all 16 registers. Addresses are computed only in
the A registers while data values are computed only in the D registers.
Data registers 0 through 6 are used for expression evaluations. Data
register 7 is the function value return register. In other words, if
the value of a function is 4 bytes or less, the value will be returned
in D7. Address registers 5, 6, and 7 are permanently allocated by the
compiler for specific tasks. The user must never destroy the addresses
contained in these registers.

A7 is the stack pointer; it always points to the last item on the stack.
A6 is the local frame pointer. It always points to the highest address
of the data area of the currently executing function.

The LINK and UNLK instructions are used by the compiler with A6 and A7
to maintain a linked list of local data areas for nested procedure
calls.

A5 is the static data pointer. If the $COMMON$ option is used to access
variables anywhere in the program, then A5 must be initialized to the
same value that was specified for A5 at link time. If the $COMMON$ op­
tion is never used (remember that $COMMON$ is ON by default), then
register A5 will not be used by the compiler. If the $COMMON$ is used
for accessing program-level variables, use the library A5 LIB:L68000
when linking. If either $BASE PAGE$ or FAR is used for accessing
global variables, use the librarY ABS LIB:L68000 when linking.

2-1

C/64000 Compiler Supplement
68000/68008/68010

STACK POINTER INITIALIZATION

The stack pointer (Address Register 7) is a hardware register maintained
by the processor. Prior to use, however, it must be initialized to the
highest address of the stack.

The libraries A5 LIB:L68ooo and ABS LIB:68ooo contain routines for
default runtine environment initialization called entry and "ENTRY".
When a C program containing function "main" or "MAIN" is compiled with
the $ENTRY$ option ON ($ENTRY$ is ON by default), an external reference
will be made to "entry" or "ENTRY". When the compiled program is linked
with library A5 LIB or ABS LIB, the linker will select the appropriate
routine, "entry'' or "ENTRY", for default run-time environment in­
itialization. These routines set registers A5 and A6 to all zeros, and
load the address of a 256-word stack into register A7. If a larger
stack is needed, or if other initialization is required, the user must
provide his own entry routine. An example of a run-time environment in­
itialization routine that replaces ENTRY in library A5_LIB or ABS LIB is
as follows:

1 "68000"
2 GLOBAL ENTRY
3 ENTRY
4 MOVEA.L #0,A5
5 MOVEA.L #O,A6
6 LEA Zstack,A7
7 JSR MAIN[PC]
8 JMP Zendprogram[PC]
9 EXTERNAL MAIN

10 EXTERNAL Zendprogram
11 DATA
12 DS.W 2500
13 Zs tack DS.W 1
14 END ENTRY

When this program is assembled and listed as an object file during the
linking process, it will replace the routine called ENTRY in library
A5 LIB or ABS LIB. Registers A5 and A6 are cleared to all zeros and
register A7 is- loaded with the highest address of a 2500-word stack (in
this example). Zendprogram is a routine in libraries A5 LIB and ABS LIB
that can be called to display the message "End of Program" on the status
line of the CRT when the program run is completed. Zendprogram returns
control to the emulation monitor; therefore, there is no RTS instruction
after it is called. Note that MAIN is spelled with capital letters as
is ENTRY. If , in the C program declaring MAIN, lower-case letters are
used, then in the example above, MAIN and ENTRY should also be spelled
with lower-case letters. Note also that the stack must begin and end on
an even address.

2-2

FUNCTIONS AND PARAMETERS PASSING

C/ 64000 Compiler Supplement
68000/68008/68010

All parameters are passed on the stack. An array is passed by pushing
its address on the stack. A value of 4 bytes or less is passed by push­
ing the value on the stack. Structures larger than four bytes have
their addresses pushed on the stack like reference parameters. Then at
the function entry, the large structures are copied into the local data
area of the function. The local data of the function is also allocated
on the stack at the function entry point with the link instruction.

If a parameter is a byte, it is placed in the most significant byte of
the word on the stack with the least significant byte untouched.
Parameters that are two words long are pushed one word at a time, with
the word which is uppermost in memory pushed first.

Parameters are normally passed from right to left, i.e., the right-most
parameter is pushed first. If the $FIXED PARAMETERS$ option is ON, the
parameters are passed from left to right as in Pascal. When calling a
Pascal procedure or function from a C program, be sure that the
$FIXED PARAMETERS$ option is ON when the procedure or functi,on is
declared as an external function in the C program.

After all the parameters are pushed, the function is called. After
function call, the compiler generates code to pop the parameters off the
stack.

VALUE RETURNING FUNCTIONS

If the value returned is larger than four bytes, the calling routine
passes the address of a temporary local variable that will hold the
function result. This address is passed after the last parameter and
immeadiately before the function is called. When incrementing the stack
pointer after the call, the pointer to the temporary variable is also
removed.

Care must be taken when calling a function indirectly through a pointer
when the function returns a value larger than four bytes. In this case,
one must always use the fun ct ion result in some way. If this is not
done, the compiler will fail to pass the address of the temporary result
area and the code will not work properly.

2-3

C/64000 Compi1er Supplement
68000/68008/68010

STATIC DATA AREA

The static data area is composed of the static data areas of all the
separately compiled C modules. Usually, the static data area is a
single continuous block of memory but this need not be the case. It is
possible, when linking, to locate the DATA (or PROG) areas of the
various modules in several separate areas of memory.

The $COMMON$, $BASE PAGE$, and FAR compiler options control the ad­
dressing mode used by the 68000 to access the variables in the static
data area. Usually, the programmer specifies that all variables in all
modules be accessed using the same addressing mode but this need not be
the case. It is possible for one module's variables to be accessed with
one mode and a different module's variables to accessed with a different
mode. It is also possible for a single variable to be accessed using
different modes in different modules. See the section on Program-level
variable addressing in Chapter 1 for more information.

DYNAMIC MEMORY ALLOCATION HEAP INITIALIZATION

Pascal defines several memory management routines that can also be used
in C programs. However, the standard names are unknown to the C com­
piler, so they must be declared in any C program in which they are used.
Since these routines are written in Pascal, they should be dP-clared with
the $FIXED_PARAMETERS$ option ON so that parameters will be passed left
to right.

Before using the library routines NEW and MARK, the block of memory that
you wish to have managed as a dynamic memory allocation pool (the heap)
must be initialized by calling the external library procedure:

INITHEAP(start address,Length in_bytes)
long * start_address;
long Length_in_bytes;

The procedure INITHEAP must be used as declared above. Start address
should point to the smallest address of the memory block to be used, and
it must be an even address. Length_in_bytes must be an even value.

2-4

C/64000 Compiler Supplement
68000/68008/68010

For example, if the block to be used is located in memory from 4000H to
5FFFH, the initialization should appear as follows:

#define HEAPSIZE

$ORG OX4000$
long heapstart;
$END ORG$

OX2000

$FixED PARAMETERS ON$
extern INITHEAP();

$FIXED_PARAMETERS OFF$

INITHEAP(&heapstart,(long)HEAPSIZE);

NEW is used to obtain a block of memory from heap and should be used as
declared below:

NEW(ppblock,numbytes;)
type **ppblock;
unsigned long numbytes;

On return, *ppblock will contain a pointer to the block which has been
allocated. The number of bytes, numbytes, must be even to ensure proper
alignment.

DISPOSE will return a block to the heap that wa~ previously obtained by
a call to NEW and should be used as declared below:

DISPOSE(ppblock,numbytes)
type **ppblock;
unsigned long numbytes;

Only blocks which have been previously allocated by NEW should be
DISPOSEd and the amount returned should be the same as the amount
allocated.

2-5

C/64000 Compiler Supplement
68000/68008/68010

Example:

$FIXED PARAMETERS ON$
extern NEW () ;
extern DISPOSE();

$FIXED PARAMETERS OFF$
struct block {

long il, i2;
struct block *next;

} *pblock;

NEW(&pblock,(long)sizeof(struct block));

DISPOSE(&block,(long)sizeof(struct block));

MARK will set its parameter to the address of a location on the heap and
should be used as declared below:

MARK(ppmark)
long **ppmark;

When the pointer is later RELEASEd:

RELEASE(ppmark)
long **ppmark;

everything which has been allocated by calls to NEW since MARK will be
DISPOSEd. The user may have any number of MARKs.

Example:

2-6

$FIXED PARAMETERS ON$
extern MARK();
extern RELEASE();
extern NEW () ;

$FIXED PARAMETERS OFF$
long *pmark;

MARK(&pmark);

NEW(...) ;

RELEASE(&pmark);

C/64000 Compiler Supplement
68000/68008/68010

Twelve bytes of heap space are used when the heap space is initialized.
Twelve bytes of heap space are also used each time the heap is marked.
When NEW is called, the minimum memory allocated is 8 bytes, even if
fewer bytes are required.

Items must be allocated in an even number of bytes. The user must en­
sure that NEW and DISPOSE always pass even sizes.

INTERRUPT HANDLING

Interrupt handling routines may be written in C using the INTERRUPT op­
tion. Additionally, code produced by the compiler is safely interrup­
table as long as the interrupt driven process saves and restores the
registers and returns with a return from exception (RTE) instruction.
The compiler does not automatically generate the interrupt vectors for
procedures defined as interrupt procedures.

SPECIAL OPTIONS FOR THE 68000 COMPILER

The following options have special functions for the 68000 compiler.

INTERRUPT
Default OFF
All functions defined while the $INTERRUPT$ option is ON will be
suitable for use as interrupt routines. On entry to the function, all
registers will be saved on the stack. On exit, the registers will be
restored and RTE is used to return instead of the normal RTS.
$INTERRUPT$ functions may not be called and they may not have para­
meters. The value of $INTERRUPT$ applies at the function heading. It
is the user's responsibility to set up the interrupt vectors to point to
the appropriate $INTERRUPT$ functions.

OPTIMIZE
Default OFF
When $OPTIMIZE$ is OFF, storing indirectly or into an external will
cause the contents of remembered registers to be forgotten because there
is a possibility that their contents will be incorrect. If $OPTIMIZE$
is ON, these registers will not be forgotten. It is possible that the
code generated will be incorrect, although in most cases it will be cor­
rect. An example which produces incorrect code is shown on the follow­
ing page.

2-7

C/64000 Compiler Supplement
68000/68008/68010

"C"

"68000"

$8ASE_PAGE$

long i,j,k,l;

long * ip;

p()

{

p

LINK A6,#0

i p = &i;

LEA

MOVE. L

j = 3;

MOVE.L

k = 2;

MOVE.L

clear:

i = j + k;

clear01

MOVE.L

ADD.L

MOVE.L

•ip = k;

MOVEA.L

MOVE.L

i;

MOVE.L

UNLK

RTS

DATA

st at icOO_O

OC.L

OC.L

OC.L

OC.L

OC.L

PROG

Ep

GLOBAL

staticOO_D,AO

AO,static00_0+00010H

#3,static00_0+00004H

#2,static00_0+00008H

static00_0+00004H,00

static00_0+00008H,OO

00,staticOO_O

staticOO_D+OOO!OH,Al

static00_0+00008H,[Al]

00,staticOO_O+OOOOCH

A6

0

0

0

0

0

EQU $-1

Ep

GLOBAL

GLOBAL

GLOBAL

GLOBAL

GLOBAL ip

GLOBAL p

End of compilation, number of errors= O

If $OPTIMIZE$ is ON, L will be assigned 5 instead of 2. Errors may also
occur if two externals and/or absolutes refer to the same address.

2-8

C/ 64000 Compiler Supplement
68000/68008/68010

Another optimization occurs when $OPTIMIZE$ is ON; forward jumps will be
assumed to be within 128 bytes. This saves two bytes for each forward
jump. If the la be 1 is out of range, an error (number 1200) will be
given in pass 3. If this occurs, turn $OPTIMIZE OFF$ around the line
that caused the error. Normally, programs may be compiled with
$OPTIMIZE ON$ without fear of generating incorrect code.

SEPARATE
Default OFF
SEPARATE has no effect for the 68000. PROG and DATA are always
separate.

TRAP
Default -1
When a function heading is encountered in the source, the value of TRAP
will be checked. If it is a value from 0 to 15, the function will be
declared as a TRAP function. For the option $TRAP=5$ a function name
will be assigned the trap value 5. When any calls to this function are
encountered in the source, the compiler will generate a TRAP 5 instruc­
tion rather than a JSR instruction. Trap functions may have parameters
like any other function. After the value of TRAP has been assigned to a
function name, the value of TRAP is set to -1. The trap number used
where the function is declared global must be the same one used where
the function is declared external. The compiler generates a call to
Zentertrap at the entry point of a trap function. Trap functions return
via the RTE instruction. It is the user'c responsibility to set up the
trap vectors to point to the appropriate TRAP functions. TRAP functions
may not return a value.

ADDRESSING OPTIONS

The following three options allow the user to control the addressing
mode for any variables defined as extern as well as the entire program
level data block. One and only one of these options is always ON. The
option that is ON when the first C statement is encountered by the com­
piler shall control the addressing mode of all the program-level vari­
ables defined in that program. After the first C statement, the options
only affect extern variables.

If the $COMMON$ option is used ($COMMON$ is ON by default), link with
library A5_LIB:L68ooo. Otherwise, link with the library ABS LIB:L68ooo.

BASE_PAGE
Default OFF
All external variables defined while $BASE PAGE$ is ON will be accessed
by the absolute short addressing mode. The linker will report an error
if a base page variable is linked to an address outside the range
OOOOOOOH through 0007FFFH or OFF8000H t!1rough OFFFFFFH. Insert
$BASE_PAGE$ before the first C statement if absolute short addressing is
desired for locally defined program level variables.

2-9

C/64000 Compiler Supplement
68000/68008/68010

FAR
Default OFF
All external variables defined while FAR is ON will be accessed by the
absolute long addressing mode. Insert FAR before the first C statement
if absolute long addressing is desired for locally defined program level
variables.

COMMON
Default ON
All external variables defined when $COMMON$ is ON will be accessed with
the address register indirect plus displacement mode. The address
register will be A5. Insert $COMMON$ (or nothing since $COMMON$ is ON
by default) before the first C statement if A5+d addressing is desired
for locally defined program level variables.

The linker will report an error if the calculated displacement is
greater than 32767 or less than -32768. The displacement is equal to
the actual address of the referenced variable minus the A5 value that
was specified to the linker.

The following four options allow the user to control the addressing
modes for calling functions. One and only one of these options is al­
ways on. The addressing mode used to call a function is determined by
the setting of the options when the function heading is encountered.

CALL_ABS_LONG
Default OFF
Functions defined while $CALL_ ABS_ LONG$ is ON will be called with the
absolute long addressing mode.

CALL_ABS_SHORT
Default OFF
Functions defined while $CALL ABS SHORT$ is ON will be called with the
absolute short addressing mode. The linker will report an error if an
attempt is made to call a function with the absolute short addressing
mode if the function is not assigned an address within the range
OOOOOOOH through 0007FFFH or OFF8000H through OFFFFFFH.

CALL_PC_SHORT
Default ON
Functions defined while $CALL PC SHORT$ is ON will be called using the
program counter plus displacement addressing mode. The linker will
report an error if an attempt is made to call such a function whose dis­
placement from the current program counter is greater than +- 32K bytes.

2-10

CALL_PC_LONG
Default OFF

C/64000 Compiler Supplement
68000/68008/68010

Functions defined while $CALL PC LONG$ is ON will be called using the
program counter plus displacement-+ index addressing mode. This option
should be used only when necessary because loading the index portion for
each call is inefficient.

The following four options allow the user to control the addressing
modes used for calling predefined functions. They are similar to the
previous four options, but they are applied to each function call in­
dividually. One and only one of these options is always ON.

LIB_ABS_LONG
Default OFF
Calls to predefined functions encountered while LIB_ABS_LONG is ON
will use the absolute long addressing mode.

LIB_ABS_SHORT
Default OFF
Calls to predefined functions encountered while LIB_ABS_SHORT is ON
will use the absolute short addressing mode. The linker will report an
error if an attempt is made to call a predefined function with the short
absolute mode and the address of the function is not in the range
OOOOOOOH through 0007FFFH or OFF8000H through OFFFFFFH.

LIB_PC_SHORT
Default ON
Calls to predefined functions encountered while $LIB PC SHORT$ is ON
will use the program counter plus displacement addressing mode. The
linker will report an error if an attempt is made to call such a func­
tion and the displacement from the call is greater than +-32K bytes.

LIB_PC_LONG
Default OFF
Calls to predefined functions encountered while $LIB PC LONG$ is ON will
use the program counter plus displacement plus index addressing mode.
This option should be used only when necessary, because loading the in­
dex for each call is inefficient.

2-11

C/64000 Compiler Supplement
68000/68008/68010

USER-DEFINED OPERATORS

GENERAL

C/64000 allows the user to redefine the meaning of certain operators.
User defined operators are created by using the option: $USER_DEFINED$
during the declaration of a user type. The option, when used, applies
to the next type definition encountered.

For user defined operators, the compiler will not generate in-line code
to perform the operations; instead, it will generate calls to user
provided run-time routines. The run-time routine names will be a com­
posite of the user's type name and the operation being performed:
TYPENAME OPERATION. The fil·st eleven char.acters of the user's type name
are concatenated with an underscore and three characters identifying the
operation.

OPERATIONS THAT MAY BE REDEFINED

The following is a list of operators that can be redefined associated
with the routine that the compiler will create for the operation.

Operation Symbol Run-time Routine

1. Add + <typename>_ADD

2. Negate <typename>_NEG

3. Subtract <typename>_ SUB

4. Multiply * <typename>_MUL

5. Divide I or DIV <typename>_DIV

6. Modulus MOD <typename>_MOD

7. Equal Comparison = <typename>_EQU

8. Not Equal Comparison <> <typename>_NEQ

9. Less Than or Equal <= <typename>_LEQ
to Comparison

10. Greater Than or Equal >= <typename>_ GEQ
to Comparison

11. Less Than Comparison < <typename>_ LES

12. Greater Than Comparison > <typename>_ GTR

2-12

C/ 64000 Compiler Supplement
68000/68008/68010

The compiler will provide the user with a Store routine. The 68000
compiler will use a multi-byte move loop for types larger than four
bytes, or a regular move for types smaller than four bytes.

PARAMETERS FOR USER DEFINED OPERATIONS

For the 68000, the parameters are passed on the stack as follows:

1) The address of the first operand is pushed on the stack.

2) The address of the second operand is pushed on the stack.

3) The address of the result is pushed on the stack if the result
is larger than four bytes. Otherwise, the compiler expects the
result to be returned in data register 7,

Negate has only one operand and a result.

Relational operations will not pass an address for the result. Instead,
a Boolean value should be returned in data register 7 as follows:

True:
False:

D7 set to 1
D7 set to 0

User routines may be written in C. For example:

USER MUL (OPERAND2,0PERAND1)
USER *OPERANDl, *OPERAND2;

Short USER LES (OPERAND2,0PERAND1)
USER *OPERANDl, *OPERAND2;

NOTE

All parameters are passed by reference (VAR
parameters). Functions with result values
smaller than five bytes return the result value
in o·r. The parameter order above may be
reversed by using the $FIXED_PARAME1'ER$ option.

2-13

C/64000 Compiler Supplement
68000/68008/68010

The following example is an expanded listing demonstrating use of
a user type.

"C"

EXTERNAL mat 1

EXTERNAL mat2

EXTERNAL mat3

EXTERNAL flag

EXTERNAL entry

"68000"

SBASE_PAGES

#define MAXSIZE 5

SUSER_DEFINEDS

struct

int mat [MAXSIZE] [MAXSIZE];

int mat (5 J [5 J ;

short nrows,ncolumns;

typedef MATRIX;

extern MATRIX matl,mat2,mat3;

extern int flag;

main()

main

LINK A6,#-52

mat1 = mat2 + mat3 * mat1;

PEA mat3

PEA mat 1

PEA -52[A6]

JSR MATR!X_MUL [PC]

ADDA.L #12,A?

PEA mat2

PEA -52[A6]

PEA mat1

JSR MATRIX_ADD[PC]

ADDA.L #12,A?

flag = mat != mat2;

PEA mat1

PEA mat2

JSR MATR I X_NEQ [PC]

ADDQ.L #8,A?

MO\IE.W 07,flag

UNLK A6

RTS

Emain EQU $-1

GLOBAL Emain

EXTERNAL

EXTERNAL

EXTERNAL

GLOBAL

MATRIX_AOD

MATRIX_MUL

MATRIX_NEQ

main

End of compilation, number of errors= 0

2-14

C/64000 Compiler Supplement
68000/68008/68010

PASS 2 ERRORS

Pass 2 errors will be displayed on the screen with the message:

LINE # <line number>--PASS2 ERROR # <Pass2 error number>

In addition, if a listing file has been indicated for the compilation,
the compiler will indicate pass 2 errors where they occurred in the
listing. It will also list the meaning of each error.

Pass 2 error numbers will always be >=1000. Errors with numbers between
1000 and 1099 are fatal errors. Errors with numbers >=1100 are non-fatal
errors.

Pass 2 will stop generating code after a fatal pass 2 error. If a list­
ing file has been indicated for the compilation, pass 3 will give you a
listing with errors. Non-fatal errors are output to the display and to
the listing file (if one exists), but compilation continues after ap­
propriate action has been taken to correct the error. A list of pass 2
errors is given in Table 2-1.

Table 2-1. Pass 2 Errors

1000 - "Out of memory"
The 68000 code generator has run out of memory, break up your program
and recompile. This error can also occur if there is a bug in the
compiler itself. If you feel that you have not used up the entire
symbol table, contact Hewlett-Packard.

1001 - "This error can't possibly occur #1"
Contact Hewlett-Packard.

1002 - "Size error"
A size larger than the maximum size allowed for a type has been
detected.

1003 - "This error can't possibly occur #2"
Contact Hewlett-Packard.

1004 - "Type error"
An operation with an incorrect type of operand has been detected; for
example, a negation of an unsigned value.

1005 - "Unimplemented feature"
You have used a feature of C that has not been implemented in the
68000 code generator.

1006 - "Compiler error. Contact Hewlett-Packard"
This error should never occur. Please report this error to
Hewlett-Packard as soon as possible.

2-15

C/64000 Compiler Supplement
68000/68008/68010

Table 2-1. Pass 2 Errors (Cont'd)

1008 - "All data registers are active"
Even though the 68000 has 8 data registers,
write an expression that will require more.
and recompile.

1009 - "All address registers are active"

it is still possible to
Break up the expression

The compiler computes addresses in address registers AO - A4. You
have succeeded in writing an expression that requires computation of
more than 5 addresses. Break up the expression and recompile.

1100 - "Bounds error 11

An attempt was made to store a value into a result which was too
small; for example assigning 300 to a byte. This error will occur if
the $RANGE$ option is on.

1103 - "Interrupt procedure must not have parameters"
An interrupt procedure cannot have parameters.

1104 - "Interrupt procedure call not allowed"
An interrupt routine can only be accessed through an interrupt vec­
tor, since it will return with an RTE instead of an RTS.

1105 - "Data size too large"
More than 32K bytes of data have been allocated for this procedure.

1106 - "Trap or interrupt routine may not be a function"
Only procedures may be trap or interrupt routines.

1107 - "Data counter overflow"
The DATA section has become larger than 32K bytes.

1108 - "Trap number must be 0 to 15"
The 68000 has 16 trap vectors numbered 0 to 15.

1113 - "Program counters do not agree"
If this error occurs before any other error then it means there is a
bug in the compiler - contact Hewlett-Packard. If this error occurs
with some other error, ignore it.

1200 - "Long range error; turn off OPTIMIZE for this line"
The compiler has tried to generate an 8-bit jump where a 16-bit jump
is required. Turn off the OPTIMIZE option around the source line
where the error is reported, and recompile.

2-16

Chapter 3
RUN-TIME LIBRARY SPECIFICATIONS

INTRODUCTION

This chapter describes the 68000 run-time libraries A5_LIB:L68000,
A5 LIB:L68008, ABS LIB:L68000, ABS LIB:L68008, REAL LIB:L68000, and
REAL LIB: L68oo8. when linking, use the library files -in userid L68000
if you have compiled your programs with "68000" in the source file. Use
the the library files in userid L68008 if 11 68008" is in the source file.

A5 LIB and ABS LIB define the same routines and are identical in func­
tion. The difference is that A5_LIB uses the A5+d (i.e. $COMMON$) ad­
dressing mode to access its own program-level variables while ABS LIB
uses the absolute long (i.e. FAR) addressing mode.

Usually, programmers use one access method, COMMON, BASE_PAGE, or FAR in
all separately compiled modules of a program. In this case, if you use
$COMMON$ ($COMMON$ is ON by default) for accessing program-level vari­
ables, link to A5 LIB. Otherwise, if your program uses $BASE PAGE$ or
FAR, use ABS_LIB. If you mix accessing modes, you can use either
library. If you use A5 LIB, you must insure that the run-time value of
A5 is equal to the value of A5 specified at link time.

The following paragraphs describe library routines that are called when
operations encountered by the C compiler for which there is no 68000 in­
struction. Descriptions of some of the more useful predefined Pascal
routines are also included.

3-1

C/64000 Compiler Supplement
68000/68008/68010

DYNAMIC MEMORY ALLOCATION

The dynamic memory allocation routines that are required for Pascal may
also be used in C programs. However, they are unknown to the C compiler
and must be declared external.

INITHEAP

Specifications for this routine are as follows:

Library: A5_LIB and ABS_LIB

Purpose: Initialize a block of memory as a memory pool or
"heap".

Declaration: extern short HEAP[4000]; /*4000 byte heap*/
$FIXED PARAMETERS ON$
extern-INITHEAP();
$FIXED_PARAMETERS OFF$

Calling Sequence: INITHEAP(&HEAP,(long) sizeof (HEAP);

3-2

Parameters: The first parameter is the address of a block of
memory. The second parameter, which must be passed
as a long integer, is the length of the heap in
bytes.

Return Value: none.

Remarks: 12 bytes of the heap will be used to initialize the
heap. INITHEAP is written in Pascal.

NEW

C/ 64000 Compiler Supplement
68000/68008/68010

Specifications for this routine are as follows:

Library: A5_LIB and ABS LIB Purpose: Allocate a block of
memory from the heap.

Declaration: $FIXED PARAMETERS ON$
extern -NEW();
$FIXED_PARAMETERS OFF$

Calling Sequence: NEW(&POINTER,(long) sizeof (*POINTER);

Parameters: The first parameter must be the address of a point­
er. The second parameter is the number of bytes of
memory required, and it must be passed as a long
integer.

Return Value: There is no return value but the first parameter
will contain the address of the allocated block of
memory.

Remarks: A minimum of 8 bytes is allocated even if fewer than
8 bytes are required. The number of bytes of memory
being allocated must be even.

DISPOSE

Specifications for this routine are as follows:

Library: A5_LIB and ABS_LIB

Purpose: Deallocate a block of memory.

Declaration: $FIXED PARAMETERS ON$
extern -DISPOSE ()
$FIXED_PARAMETERS OFF$

Calling Sequence: DISPOSE(&POINTER,(long) sizeof (*POINTER);

Parameters: The first parameter oust be the address of a point­
er. The pointer contains the address of the block
of memory that is to be disposed. The second parame­
ter is the number of bytes of memory being disposed.
It must be passed as a long integer.

Return Value: none.

Remarks: The number of bytes of memory being disposed must be
even.

3-3

C/64000 Compiler Supplement
68000/68008/68010

MARK

Specifications for this routine are as follows:

Library: A5_LIB and ABS_LIB

Purpose: Mark the state of the heap in a pointer variable.

Declaration: extern MARK();

Calling Sequence: MARK(&POINTER);

Parameters: The parameter is the address of the pointer variable
where the state of the heap is to be stored.

Return Value: There is no return value but the contents of the pa­
rameter will be set to the address representing the
state of the heap.

Remarks: POINTER should not be modified until
RELEASE(&POINTER); has been executed.

RELEASE

Specifications for the routine are as follows:

Library: A5_LIB and ABS LIB

Purpose: Restore heap to the state contained in the pointer
variable parameter.

Declaration: extern RELEASE();

Calling Sequence: RELEASE(&POINTER);

3-4

Parameters: The parameter is the address of the pointer variable
where the state of the heap was previously marked.

Return Value: none.

Remarks: POINTER must have been set by a previous call to
MARK.

MEMERR

C/ 64000 Compiler Supplement
68000/68008/68010

Specifications for this routine are as follows:

Library: A5_LIB and ABS_LIB

Purpose: When an error occurs, MEMRR is called to display an
appropriate message on the status line of the dis­
play. The possible errors are:

0: Heap length too small. INITHEAP was called incor­
rectly or the value passed as the heap length
was too small.

1: Heap has not been initialized. INITHEAP was not called
before the first call to NEW, DISPOSE, MARK, or
RELEASE.

2: No free space in current mark. Space may exist in
previous marks but is not available to NEW until
those marks are released.

3: No block large enough to allocate. Smaller fragmented
blocks may exist.

4: Pointer variable points outside of heap. DISPOSE or
RELEASE was called with garbage for an address.

5: No free space in heap. All the memory is used.

6: Unable to mark, no block large enough. Each mark
requires 12 bytes of the heap. There was no
block of 12 or more bytes available.

7: Attempt to release mark that does not exist. RELEASE was
called with a pointer containing an address that
was not the result of a call to MARK.

Declaration: MEMERR(ERROR NUMBER);
short ERROR_NuMBER;

Calling Sequence: not applicable.

Parameters: The parameter is a byte representing the number of
the error.

3-5

C/64000 Compiler Supplement
68000/68008/68010

3-6

Return Value: none. Control is not returned to user program.

Remarks: The supplied version of MEMERR is shown below. It
transfers control to the emulator monitor by call­
ing Zerror after storing the address of a message in
MONITOR_MESSAGE. The user must supply his own ver­
sion of MEMERR when his software is executed without
the emulator.

"68000"
GLOBAL MEMEHR
EXTERNAL MONITOR MESSAGE,Zerror

*MONITOR MESSAGE is a global variable in the 68000 emulator
*monitor~ It is used to store the address of an ASCII
*message that the monitor is supposed to write on the status
*line of the display.
*Zerror is called to transfer control to the monitor for the
*purpose of displaying an error message on the status line
*of the display. Zerror also converts a binary address into
*ASCII and stores it in the error message.

ME ME RR

MOVE.B 4 [A7] ,DO
MOVEA.L A6,Al
CMPI.B #4,DO
BNE.S NOT 4
MOVEA.L [Al] ,Al

NOT 4
t\DDI. B #030H,DO

MOVE.B DO,ERROR
LEA MESSAGE,AO
MOVE.L AO,MONITORE MESSAGE -

MOVE.L 4[Al] ,DO
JMP Zerror[PC]

JMP $[PC]

DATA
MESSAGE DC.B END MESSACE-MESSAGE-1

ASC "Mem;ry error #"
ERROR ASC " at
END MESSAGE

;Fetch the error number.

;Is the error number 4?
;Branch if error is not 4.
;Error 4 means address
;where error occurred is
;in a different place.

;Make error number into
;ASCII char.
;Store char in message.
;Get addr of error msg.
;Store it for monitor.
;Store it for monitor.
;Addr where error occurred.
;Convert addr and display
;message.
;Endless loop if monitor
;returns.

;Converted to "n at xxxx

32-bit Arithmetic

C/64000 Compiler Supplement
68000/68008/68010

The 68000 does not have instructions for doing 32-bit multiplies and
divides. When the compiler encounters a 32-bi t multiply, divide, or
modulus operation one of the following routines is called.

Zunsmult - Unsigned 32-bit multiply

Specifications for this routine are as follows:

Library: A5_LIB and ABS_LIB

Purpose: Multiply two 32-bit unsigned numbers yielding a
32-bit unsigned result.

Declaration: not applicable.

Calling Sequence: RESULT = LEFT FACTOR * RIGHT_FACTOR;

Parameters: Two 32-bit unsigned values are pushed onto the
stack. The left factor is pushed first followed by
the right factor. The parameters are popped off the
stack before returning.

Return Value: 32-bit unsigned value in data register D7.

Remarks: If this routine is to be replaced, note that the
replacement routine must pop the parameters off the
stack before returning. When the $DEBUG$ option is
ON the compiler will generate a call to Dunsmult in­
stead of Zunsmult.

3-7

C/64000 Compiler Supplement
68000/68008/68010

Zmult - Signed 32-bit multiply

Specifications for this routine are as follows:

Library: A5_LIB and ABS_LIB

Purpose: Multiply two 32-bit signed numbers yielding a 32-bit
signed result.

Declaration: not applicable.

Calling Sequence: RESULT = LEFT FACTOR * RIGHT_FACTOR;

Parameters: Two 32-bit signed values are pushed onto the stack.
The left factor is pushed first followed by the
right factor. The parameters are popped off the
stack before returning.

Return Value: 32-bit signed value in data register D7.

Remarks: If this routine is to be replaced, note that the
replacement routine must pop the parameters off the
stack before returning. When the $DEBUG$ option is
ON the compiler will generate a call to Dmult in­
stead of Zmult.

Zunsdiv - Unsigned 32-bit divide

Specifications for this routine are as follows:

Library: A5_LIB and ABS LIB

Purpose: Divide one 32-bit unsigned number by another 32-bit
unsigned number yielding a 32-bit unsigned result.

Declaration: not applicable.

Calling Sequence: RESULT = LEFT_FACTOR / RIGHT_FACTOR;

3-8

Parameters: Two 32-bit unsigned values are pushed onto the
stack. The left factor is pushed first followed by
the right factor. The parameters are popped off the
stack before returning.

Return Value: 32-bit unsigned value in data register D7.

Remarks: If this routine is to be replaced, note that the
replacement routine must pop the parameters off the
stack before returning. If division by zero is at­
tempted a zero division exception is initiated.

C/ 64000 Compiler Supplement
68000/68008/68010

Zdiv - Signed 32-bi t divide

Specifications for this routine are as follows:

Library: A5_LIB and ABS LIB

Purpose: Divide one 32-bit signed number by another 32-bit
signed number yielding a 32-bit signed result.

Declaration: not applicable.

Calling Sequence: RESULT = LEFT FACTOR / RIGHT_FACTOR;

Parameters: Two 32-bit signed values are pushed onto the stack.
The left factor is pushed first followed by the
right factor. The parameters are popped off the
stack before returning.

Return Value: 32-bit signed value in data register D7.

Remarks: If this routine is to be replaced, note that the
replacement routine must pop the paremeters off the
stack before returning. If division by zero is at­
tempted a zero division exception is initiated.

Zmodu - Unsigned 32-bit modulus

Specifications for this routine are as follows:

Library: A5_LIB and ABS LIB

Purpose: Divide one 32-bit unsigned number by another 32-bit
unsigned number yielding a 32-bit unsigned modulus.

Declaration: not applicable.

Calling Sequence: RESULT = LEFT_FACTOR 3 RIGHT_FACTOR;

Parameters: Two 32-bit unsigned values are pushed onto the
stack. The left factor is pushed first followed by
the right factor. The parameters are popped off the
stack before returning.

Return Value: 32-bit unsigned value in data register D7.

Remarks: If this routine is to be replaced note that the
replacement routine must pop the parameters off the
stack before returning. If division by zero is at­
tempted a zero division exception is executed.

3-9

C/ 64000 Compiler Supplement
68000/68008/68010

Zmods - Signed 32-bit modulus

Specifications for this routine are as follows:

Library: A5_LIB and ABS LIB

Purpose: Divide one 32-bit signed number by another 32-bit
signed number yielding a 32-bit signed modulus.

Declaration: not applicable.

Calling Sequence: RESULT = LEFT_FACTOR 3 RIGHT_FACTOR;

Parameters: Two 32-bit signed values are pushed onto the stack.
The left factor is pushed first followed by the
right factor. The parameters are popped off the
stack before returning.

Return Value: 32-bit signed value in data register D7.

Remarks: If this routine is to be replaced note that the
replacement routine must pop the parameters off the
stack before returning. If division by zero is at­
tempted a zero division exception is executed.

Dunsmult - Unsigned 32-bit multiply with overflow check

Specifications for this routine are as follows:

Library: A5_LIB and ABS_LIB

Purpose: Multiply two 32-bit unsigned numbers yielding a
32-bit unsigned result. If overflow occurs an over­
flow exception is initiated by executing the TRAPV
instruction.

Declaration: not applicable.

Calling Sequence: RESULT = LEFT FACTOR * RIGHT_FACTOR;

3-10

Parameters: Two 32-bit unsigned values are pushed onto the
stack. The left factor is pushed first followed by
the right factor. The parameters are popped off the
stack before returning.

Return Value: 32-bit unsigned value in data register D7.

Remarks: If this routine is to be replaced note that the
replacement routine must pop the parameters off the
stack before returning. When the $DEBUG$ option is
ON the compiler will generate a call to Dunsmult in­
stead of Zunsmult.

C/ 64000 Compiler Supplement
68000/68008/68010

Dmult - Signed 32-bit multiply with check for overflow

Specifications for this routine are as follows:

Library: A5_LIB and ABS_LIB

Purpose: Multiply two 32-bit signed number yielding a 32-bit
signed result. If overflow occurs an overflow ex­
ception is initiated by executing the TRAPV
instruction.

Declaration: not applicable.

Calling Sequence: RESULT = LEFT_FACTOR * RIGHT_FACTOR;

Parameters: Two 32-bit signed values are pushed onto the stack.
The left factor is pushed first followed by the
right factor. The parameters are popped off the
stack before returning.

Return Value: 32-bit signed value in data register D7.

Remarks: If this routine is to be replaced note that the
replacement routine must pop the parameters off the
stack before returning. When the $DEBUG$ option is
ON the compiler will generate a call to Dmult in­
stead of Zmult.

3-11

C/64000 Compiler Supplement
68000/68008/68010

Error Routines

Zerror - error message formatter

Specifications for this routine are as follows:

Library: A5_LIB and ABS_LIB

Purpose: Converts an address in DO to ASCII, stores the ASCII
address into the message pointed to by
MONITOR MESSAGE and transfers control to the
emulator monitor to display the message on the
status line of the display.

Declaration: not applicable.

Calling Sequence: not applicable; called by MEMERR only.

3-12

Parameters: DO contains
MONITOR MESSAGE
message.

the address
contains the

to be
address

converted.
of an error

Return Value: none. Control is not returned to the calling
program.

Remarks: The supplied version of Zerror is shown below. It
transfers control to the emulator monitor by calling
the monitor entry point JSR ENTRY. Zerror must be
modified or replaced for reporting errors when ex­
ecuting without the emulator.

"68000"
GLOBAL Zerror
EXTERNAL MONITOR MESSAGE,JSR ENTRY

*JSR ENTRY is the entry point of the emulator monitor.
*MONITOR MESSAGE contains the address of the message.
*
Zerr or

LOOP

MOVEA.L
CLR.L
MOVE.B
ADDQ.B
ADDA.L
MOVE.B

MOVE.B
AND.B
ADDI.B
CMPI.B

MONITOR_MESSAGE,AO
Dl

;address of message

[AO] ,Dl
#1,Dl
Dl,AO
#6,D2

#15,Dl
DO,Dl
#30H,Dl
#39H,Dl

;message length
;for predecrement mode
;1 byte after end of message
;# of addr characters

;mask 4 lowest bits

;30H is zero ASCII
;bigger than 9?

DIGIT

BLE.S
ADDQ.B

MOVE.B
LSR.L
SUBQ.B
BNE.S
JSR
JMP $[PC]
END

DIGIT
#7,Dl

Dl, - [AO]
#4,DO
#1,D2
LOOP
JSR ENTRY

ENTRY - Upper Case Entry Point

;no

C/64000 Compiler Supplement
68000/68008/68010

;yes, must be A-F

;store char in message
;shift to next char
;done everything?
;no
;yes, display message

Specifications for this routine are as follows:

Library: A5_LIB and ABS LIB

Purpose: Allows the linker to define the label "ENTRY" as the
absolute file entry point. A default run-time en­
vironment is initialized. A5 and A6 are cleared to
all zeros, and A7 is set to the highest address of a
256-word stack.

Declaration: not applicable.

Calling Sequence: not applicable.

Parameters: none.

Return Value: none.

Remarks: When executing the absolute file in the emulator the
command "run from ENTRY" will initialize the run­
time environment to default values and start the
program executing at function "MAIN". If a dif­
ferent run-time environment is required then the
user must provide his own version of "ENTRY". Upon
return from function "MAIN" the message "end of
program" will be displayed on the Status line of the
display.

3-13

C/64000 Compiler Supplement
68000/68008/68010

entry - Lower Case Entry Point

Specifications for this routine are as follows:

Library: A5_LIB and ABS LIB

Purpose: Allows the linker to define the label "entry" as the
absolute file entry point. A default run-time en­
vironment is initialized. A5 and A6 are cleared to
all zeros, and A7 is set to the highest address of a
256-word stack.

Declaration: not applicable.

Calling Sequence: not applicable.

3-14

Parameters: none.

Return Value: none.

Remarks: When executing the absolute file in the emulator the
command "run from entry" will initialize the run­
time environment to default values and start the
program executing at function "main". If a dif­
ferent run-time environment is required then the
user must provide his own version of "entry". Upon
return from function "main" the message "end of
program" will be displayed on the status line of the
display.

C/ 64000 Compiler Supplement
68000/68008/68010

Floating Point Operations

Floating point numbers, type float and type double, are implemented as
IEEE floating point numbers. The library REAL_LIB:L68000 contains func­
tions for manipulating IEEE floating point numbers. The C compiler
handles operations on items of type float or type double by generating
calls to value returning functions in this library.

Calls to the following functions are generated automatically by the C
compiler whenever a floating point operation is encountered in the
source. When the $SHORT_ARITH$ option is ON, the compiler will generate
a call to the function expecting 32-bit IEEE format parameters. When
the $SHORT ARITH$ option is OFF, the compiler will generate a call to
the function expecting 64-bi t IEEE format parameters. Note that the
functions expecting 32-bit IEEE format parameters cannot be replaced
with functions written in the C language. C functions with parameters
of type float expect to receive those parameters as type double, but the
compiler treats the functions in REAL LIB specially, allowing float type
parameters to be passed without converting them to type double.

Zlongreal_add - double addition

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Add two 64-bit IEEE floating point numbers returning
a 64-bit IEEE floating point sum.

Calling Sequence: SUM = LEFT_TERM + RIGHT_TERM;

Parameters: The addresses of two 64-bit IEEE floating point
values are pushed onto the stack. The address of
the left term is pushed first followed by the ad­
dress of the right term.

Return Value: The address of the 64-bi t sum is pushed onto the
stack immediately after the second parameter.

Remarks: The parameters are popped off the stack by the call­
ing program.

3-15

C/64000 Compiler Supplement
68000/68008/68010

Zreal_add - float addition

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Add two 32-bit IEEE floating point numbers returning
a 32-bit IEEE floating point sum.

Calling Sequence: SUM = LEFT_TERM + RIGHT_TERM;

Parameters: Two 32-bit floating point values are pushed onto the
stack. The left term is pushed first followed by
the right term.

Return Value: The 32-bi t floating point sum is returned in data
register D7.

Remarks: The parameters are popped off the stack by the call­
ing program. This function cannot be replaced with
a function written in the C language, because para­
meters of type float are passed by the C compiler as
type double.

Zlongreal_sub - double subtraction

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Subtract one 64-bit IEEE floating point number from
another returning a 64-bit IEEE floating point
difference.

Calling Sequence: DIFFERENCE = LEFT TERM - RIGHT_TERM;

3-16

Parameters: The addresses of two 64-bit IEEE floating point
values are pushed onto the stack. The address of
the left term is pushed first followed by the ad­
dress of the right term.

Return Value: The address of the 64-bit difference is pushed onto
the stack immediately after the second parameter.

Remarks: The parameters are popped off the stack by the call­
ing program.

C/64000 Compiler Supplement
68000/68008/68010

Zreal_sub - float subtraction

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Subtract one 32-bit IEEE floating point number from
another returning a 32-bit IEEE floating point
difference.

Calling Sequence: DIFFERENCE = LEFT_TERM - RIGHT_TERM;

Parameters: Two 32-bit floating point values are pushed onto the
stack. The left term is pushed first followed by
the right term.

Return Value: The 32-bit floating point difference is returned in
data register D7.

Remarks: The parameters are popped off the stack by the call­
ing program. 1rl1is function cannot be replaced with
a function written in the C language because para­
meters of type float are passed by the C compiler as
type double.

Zlongreal_mul - double multiplication

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Multiply two 64-bit IEEE floating point numbers
returning a 64-bit IEEE floating point product.

Calling Sequence: PRODUCT = LEFT_FACTOR * RIGHT_FACTOR;

Parameters: The addresses of two 64-bit IEEE floating point
values are pushed onto the stack. The address of
the left factor is pushed first followed by the ad­
dress of the right factor.

Return Value: The address of the 64-bit product is pushed onto the
stack immediately after the second parameter.

Remarks: The parameters are popped off the stack by the call­
ing program.

3-17

C/64000 Compiler Supplement
68000/68008/68010

Zreal_mul - float multiplication

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Multiply two 32-bit IEEE floating point numbers
returning a 32-bit IEEE floating point product.

Calling Sequence: PRODUCT = LEFT_FACTOR * RIGHT_FACTOR;

Parameters: Two 32-bit floating point values are pushed onto the
stack. The left factor is pushed first followed by
the right factor.

Return Value: The 32-bit floating point product is returned in
data register D7.

Remarks: The parameters are popped off the stack by the call­
ing program. This function cannot be replaced with
a function written in the C language because para­
meters of type float are passed by the C compiler as
type double.

Zlongreal_div - double division

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Divide one 64-bit IEEE floating point number by
another returning a 64-bit IEEE floating point
quotient.

Calling Sequence: QUOTIENT = LEFT FACTOR / RIGHT_FACTOR;

3-18

Parameters: The addresses of two 64-bit IEEE floating point
values are pushed onto the stack. The address of
the left factor is pushed first followed by the ad­
dress of the right factor.

Return Value: The address of the 64-bi t quotient is pushed onto
the stack immediately after the second parameter.

Remarks: The parameters are popped off the stack by the call­
ing program.

Zreal_div - float division

C/64000 Compiler Supplement
68000/68008/68010

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Divide one 32-bit
another returning
quotient.

IEEE floating point number by
a 32-bit IEEE floating point

Calling Sequence: QUOTIENT = LEFT_FACTOR / RIGHT_FACTOR;

Parameters: Two 32-bit floating point values are pushed onto the
stack. The left factor is pushed first followed by
the right factor.

Return Value: The 32-bi t floating point quotient is returned in
data register D7.

Remarks: The parameters are popped off the stack by the call­
ing program. This function cannot be replaced with
a function written in the C language because para­
meters of type float are passed by the C compiler as
type double.

Zlongreal_neg - double negate

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Negate a 64-bit IEEE floating point number.

Calling Sequence: RESULT = -TERM;

Parameters: The address of the 64-bi t value to be negated is
pushed onto the stack.

Return Value: The address of the 64-bit result is pushed onto the
stack immediately after the para.meter.

Remarks: The parameters are popped off the stack by the call­
ing program.

3-19

C/64000 Compiler Supplement
68000/68008/68010

Zreal_neg - float negate

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Negate a 32-bit IEEE floating point number.

Calling Sequence: RESULT = -TERM;

Parameters: The 32-bit value to be negated is pushed onto the
stack.

Return Value: The 32-bit result is returned in data register D7.

Remarks: The parameters are popped o r't' t-.h·"; stack by the call­
ing program. This function ;:_· .• ;·mot be replaced with
a function written in the C language because para­
meters of type float are passed by the C compiler as
type double.

Zlongreal_ equ - Compare i terns of type double for equality

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Compare two 64-bit IEEE floating point numbers for
equality.

Calling Sequence: LEFT TERM == RIGHT_Tl~RM;

3-20

Parameters: The addresses of two 64-bit IEEE floating point
values are pushed onto the stack. The address of
the left term is pushed first followed by the ad­
dress of the right term.

Return Value: If the condition is false, the low order byte of
data register D7 is set to zero. Otherwise, the low
order byte of D7 is set to OFFH.

Remarks: The calling program will pop the parameters off the
stack.

C/ 64000 Compiler Supplement
68000/68008/68010

Zreal_equ - Compare items of type float for equality

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Compare two 32-bit IEEE floating point numbers for
equality.

Calling Sequence: LEFT TERM == RIGHT_TERM;

Parameters: Two 32-bit IEEE floating point values are pushed
onto the stack. The left term is pushed first fol­
lowed by the right term.

Return Value: If the condition is false, the low order byte of
data register 07 is set to zero. Otherwise, the low
order byte of 07 is set to OFFH.

Remarks: The parameters are popped off the stack by the call­
ing program. This function cannot be replaced with
a function written in the C language because para­
meters of type float are passed by the C compiler as
type double.

Z1ongrea1_neq - Compare i terns of type double for inequality

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Compare two 64-bit IEEE floating point numbers for
inequality.

Calling Sequence: LEFT TERM != RIGHT_TERM;

Parameters: The addresses of two 64-bit IEEE floating point
values are pushed onto the stack. The address of
the left term is pushed first followed by the ad­
dress of the right term.

Return Value: If the condition is false, the low order byte of
data register 07 is set to zero. Otherwise, the low
order byte of 07 is set to OFFH.

Remarks: The calling program will pop the parameters off the
stack.

3-21

C/64000 Compiler Supplement
68000/68008/68010

Zreal_neq - Compare items of type float for inequality

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Compare two 32-bi t IEEE floating point numbers for
inequality.

Calling Sequence: LEFT TERM != RIGHT_TERM;

Parameters: Two 32-bit IEEE floating point values are pushed
onto the stack. The left term is pushed first fol­
lowed by the right term.

Return Value: If the condition is false, the low order byte of
data register D7 is set to zero. Otherwise, the low
order byte of D7 is set to OFFH.

Remarks: The parameters are popped off the stack by the call­
ing program. This function cannot be replaced with
a function written in the C language because para­
meters of type float are passed by the C compiler as
type double.

Zlong real_les - Compare i terns of type double for less than

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Compare two 64-bit IEEE floating point numbers for
less than.

Calling Sequence: LEFT TERM < RIGHT_TERM;

3-22

Parameters: The addresses of two 64-bi t IEEE floating point
values are pushed onto the stack. The address of
the left term is pushed first followed by the ad­
dress of the right term.

Return Value: If the condition is false, the low order byte of
data register D7 is set to zero. Otherwise, the low
order byte of D7 is set to OFFH.

Remarks: The calling program will pop the parameters off the
stack.

C/64000 Compiler Supplement
68000/68008/68010

Zreal_les - Compare i terns of type float for less than

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Compare two 32-bit IEEE floating point numbers for
less than.

Calling Sequence: LEFT TERM < RIGHT_TERM;

Parameters: Two 32-bit IEEE floating point values are pushed
onto the stack. The left term is pushed first fol­
lowed by the right term.

Return Value: If the condition is false, the low order byte of
data register D7 is set to zero. Otherwise, the low
order byte of D7 is set to OFFH.

Remarks: The parameters are popped off the stack by the call­
ing program. This function cannot be replaced with
a function written in the C language because para­
meters of type float are passed by the C compiler as
type double.

Zlongreal_gtr - Compare items of type double for greater than

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Compare two 64-bi t IEEE floating point numbers for
greater than.

Calling Sequence: LEFT TERM > RIGHT_TERM;

Parameters: The addresses of two 64-bit IEEE floating point
values are pushed onto the stack. The address of
the left term is pushed first followed by the ad­
dress of the right term.

Return Value: If the condition is false, the low order byte of
data register D7 is set to zero. Otherwise, the low
order byte of D7 is set to OFFH.

Remarks: The calling program will pop the parameters off the
stack.

3-23

C/64000 Compiler Supplement
68000/68008/68010

Zreal_gtr - Compare items of type float for greater than

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Compare two 32-bit IEEE floating point numbers for
greater than.

Calling Sequence: LEFT TERM > RIGHT_TERM;

Parameters: Two 32-bi t IEEE floating point values are pushed
onto the stack. The left term is pushed first fol­
lowed by the right term.

Return Value: If the condition is false, the low order byte of
data register D7 is set to zero. Otherwise, the low
order byte of D7 is set to OFFH.

Remarks: The parameters are popped off the stack by the call­
ing program. This function cannot be replaced with
a function written in the C language because para­
meters of type float are passed by the C compiler as
type double.

Zlongreal_leq - Compare i terns of type double for less than or equal to

specifications for this function are as follows:

Library: REAL LIB

Purpose: compare two 64-bit IEEE floating point numbers for
less than or equal to.

Calling Sequence: LEFT TERM <= RIGHT TERM

3-24

Parameters: The addresses of two 64-bit IEEE floating point
values are pushed onto the stack. The address of the
left term is pushed first followed by the address of
the right term.

Return Value: If the condition is false, the low order byte of
data register D7 is set to zero. Otherwise, the low
order byte of D7 is set to OFFH.

Remarks: The calling program will pop the parameters off the
stack.

C/64000 Compiler Supplement
68000/68008/68010

ZreaJ_leq - Compare i terns of type float for less than or equal to

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Compare two 32-bit IEEE floating point numbers for
less than or equal to.

Calling Sequence: LEFT TERM <= RIGHT_TERM;

Parameters: Two 32-bit IEEE floating point values are pushed
onto the stack. The left term is pushed first fol­
lowed by the right term.

Return Value: If the condition is false, the low order byte of
data register D7 is set to zero. Otherwise, the low
order byte of D7 is set to OFFH.

Remarks: The parameters are popped off the stack by the call­
ing program. This function cannot be replaced with a
function written in the C language because para­
meters of type float are passed by the C compiler as
type double.

ZJongreaJ_geq - Compare i terns of type double for greater than or equal to

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Compare two 64-bit IEEE floating point numbers for
greater than or equal to.

Calling Sequence: LEFT_TERM >= RIGHT_TERM;

Parameters: The addresses of two 64-bit IEEE floating point
values are pushed onto the stack. The address of the
left term is pushed first followed by the address of
the right term.

Return Value: If the condition is false, the low order byte of
data register D7 is set to zero. Otherwise, the low
order byte of D7 is set to OFFH.

Remarks: The calling program will .pop the parameters off the
stack.

3-25

C/64000 Compiler Supplement
68000/68008/68010

Zreal_geq - Compare items of type float for greater than or equal to

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Compare two 32-bit IEEE floating point numbers for
greater than or equal to.

Calling Sequence: LEFT_TERM >= RIGHT_TERM;

Parameters: Two 32-bit IEEE floating point values are pushed onto
the stack. The left term is pushed first followed by
the right term.

Return Value: If the condition is false, the low order byte of
data register 07 is set to zero. Otherwise, the low
order byte of 07 ios set to OFFH.

Remarks: The parameters are popped off the stack by the call­
ing program. 1'his function cannot be replaced with a
function written in the C language because para­
meters of type float are passed by the C compiler as
type double.

Zlongreal_float - Convert long to double

Specifications for this function are as follows:

3-26

Library: REAL LIB

Purpose: Convert a long integer to a 64-bit IEEE floating
point number.

Parameters: The 32-bit integer value to be converted is pushed
onto the stack.

Return Value: The address of the 64-bit IEEE floating point result
is pushed onto the stack immediately after the
parameter.

Remarks: The parameters are popped off the stack by the call­
ing program.

C/ 64000 Compiler Supplement
68000/68008/68010

Zreal_float - Convert long to float

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Convert a long integer to a 32-bit IEEE floating
point number.

Parameters: The 32-bit integer value to be converted is pushed
onto the stack.

Return Value: The 32-bit IEEE floating point result is returned
in data register 07.

Remarks: The parameters are popped off the stack by the
calling program.

Zlongreal_trunc - Convert double to long

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Convert a 64-bit IEEE floating point number to a
32-bit integer by truncation.

Parameters: Th to be converted is pushed onto the stack.

Return Value: The 32-bit integer result is returned in data regist­
er 07.

Remarks: The parameters are popped off the stack by the call­
ing program.

3-27

C/64000 Compiler Supplement
68000/68008/68010

ZreaJ_trunc - Convert float to long

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Convert a 32-bit IEEE floating point number to a
32-bit integer by truncation.

Parameters: The 32-bit floating point value to be converted is
pushed onto the stack.

Return Value: The 32-bit integer result is returned in data regist­
er D7.

Remarks: The parameters are popped off the stack by the call­
ing program. This function cannot be replaced with a
function written in the C language because parameters
of type float are passed by the C compiler as type
double.

ZreaJ_extend - Convert float to double

Specifications for this function are as follows:

3-28

Library: REAL LIB

Purpose: Convert a 32-bit IEEE floating point number to a
64-bit IEEE floating point number.

Parameters: The 32-bi t floating point value to be converted is
pushed onto the stack.

Return Value: The address of the 64-bit IEEE floating point result
is pushed onto the stack immediately after the
parameter.

Remarks: The parameters are popped off the stack by the call­
ing program. This function cannot be replaced with a
function written in the C language because parameters
of type float are passed by the C compiler as type
double.

C/64000 Compiler Supplement
68000/68008/68010

Zreal_contract - Convert double to float

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Convert a 64-bit IEEE floating point number to a
32-bit IEEE floating point number.

Parameters: The address of the 64-bit IEEE floating point number
to be converted is pushed onto the stack.

Return Value: The 32-bit IEEE floating point result is returned in
data register D7.

Remarks: The parameters are popped off the s calling program.

The following functions are callable but must be declared as external
functions.

Zlongreal_abs - Absolute Value

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Obtain the absolute value of a 64-bit IEEE floating
point number.

Declaration: extern double Zlongreal_abs();

Calling Sequence: X = Zlongreal_abs (Y);

Parameters: The address of a 64-bi t IEEE floating point value
whose absolute value is to be taken is pushed onto
the stack.

Return Value: The address of the 64-bi t IEEE f result value is
pushed onto the stack immediately after the
parameter.

Remarks: The parameters are popped off the stack by the call­
ing program.

3-29

C/64000 Compiler Supplement
68000/68008/68010

Zlongreal_atan - Arctangent

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Compute the arctangent of the 64-bit IEEE floating
point parameter.

Declaration: extern double Zlongrea-

Calling Sequence: X = Zlongreal_atan (Y);

Parameters: The address of a 64-bit IEEE floating point arctan­
gent result is pushed onto the stack.

Return Value: The address for the 64-bit IEEE
arctangent result is pushed onto
mediately after the parameter.

floating point
the stack im-

Remarks: The parameters are popped off the stack by the call­
ing program.

Zlongreal_ cos - Cosine

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Compute the cosine of a 64-bit IEEE floating point
value measured in radians.

Declaration: extern double Zlongreal_cos ();

Calling Sequency: X = Zlongreal_cos (Y);

3-30

Parameters: The address of a 64-bit IEEE floating point value is
pushed onto the stack. The uni ts of the parameter
are radians.

Return Value: The address for the 64-bit Ieee floating point
cosine result is pushed onto the stack immediately
after the parameter.

Remarks: The parameters are popped off the stack by the call­
ing program.

C/64000 Compi1er Supplement
68000/68008/68010

Zlongreal_exp - Exponential

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Compute the exponential of a 64-bit IEEE floating
point value.

Declaration: extern double Zlongreal_exp ();

Calling Sequence: X = Zlongreal_exp (Y);

Parameters: The address of a 64-bit IEEE floating point value is
pushed onto the stack.

Return Value: The address for the 64-bit IEEE floating point ex­
ponential result is pushed onto the stack immediate­
ly after the parameter.

Remarks: The parameters are popped off the stack by the call­
ing program.

Zlongreal_ln - Natural logarithm

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Compute the natural logarithm of a 64-bit IEEE
floating point value.

Declaration: extern double Zlongreal_ln ();

Calling Sequence: X = Zlongreal_ln (Y);

Parameters: The address of a 64-bit IEEE floating point value is
pushed onto the stack.

Return Value: The address for the 64-bit IEEE floating point

immediately after the parameter.

Remarks: The parameters are popped off the stack by the call­
ing program.

3-31

C/64000 Compiler Supplement
68000/68008/68010

Zlongreal_sin - Sine

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Compute the sine of a 64-bit IEEE floating point
value measured in radians.

Declaration: extern double Zlongreal_sin ();

Calling Sequence: X = Zlongreal_sin (Y);

Parameters: The address of a 64-bit IEEE floating point value is
pushed onto the stack.

Return Value: The address of the 64-bit IEEE floating point sine
result is pushed onto the stack immediately after
the parameter.

Remarks: The parameters a.re popped off the stack by the call­
ing program.

Zlongreal_round - Round a floating point number

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Round a double floating point value to a long
integer.

Declaration: extern long Zlongreal_round ();

Calling Sequence: I = Zlongreal_round (Y);

3-32

Parameters: The address of a 64-bit IEEE floating point value is
pushed onto the stack.

Return Value: A 32-bi t integer representing the rounded value is
returned in data register D7.

Remarks: The parameter is popped off the stack by the calling
program.

Zlongreal_sqrt - Square root

C/64000 Compiler Supplement
68000/68008/68010

Specifications for this function are as follows:

Library: REAL LIB

Purpose: Compute the square root of the parameter using
Newton's method.

Declaration: extern double Zlongreal_sqrt ();

Calling Sequence: X = Zlongreal_sqrt (Y);

Parameters: The address of a 64-bit IEEE floating point value is
pushed onto the stack.

Return Value: The address for the 64-bit IEEE floating point
square root result is pushed onto the stack im­
mediately after the parameter.

Remarks: The parameters are popped off the stack by the call­
ing routine.

3-33

C/64000 Compiler Supplement
68000/68008/68010

3-34

Appendix A
Run-time Error Descriptions

When emulating with the monitor linked in, run-time errors will be dis­
played on the status line. The program will jump to the monitor and the
message:

68000---running in monitor eeeeeeeeeeeeeeeeeeeee at XXXXXX

where: XXXXXX represents the next address after the call to the error
routine, and eeeeeeeeeeeeeeeeeeeeeis an explanation of the error.
Following is a list of possible run-time errors.

This error occurs when DEBUG is ON. An arithmetic operation caused an
overflow.

A division by zero was detected.

The processor attempted to execute an illegal opcode.

An error occurred during dynamic memory allocation (NEW, DISPOSE, MARK,
and RELEASE}. X indicates errors as follows:

0: Heap length too small (call INITHEAP with larger number for size
of heap}.

1: Heap has not been initialized (call INIHEAP before first use of
NEW or MARK.

2: No free space in current mark. Space may exist in previous marks
but is not available to the keyword NEW.

3: No block large enough to allocate but smaller blocks may exist.

A-1

C/64000 Compiler Supplement
68000/68008/68010

4: Pointer variable points outside of heap.

5: No free space in heap.

6: Unable to mark, no block large enough.

7: Attempted to release mark that does not exist.

The address shown with a memory error gives the call to the memory
routine, not the call to the error routine. The error number X is passed
as a byte parameter to MEMERR.

Not actually an error; this message is displayed when the program ter­
minates. No address is given. Zendprogram is jumped to instead of being
called.

A-2

Index

The following index lists important terms and concepts of this manual
along with the location(s} where they can be found. The numbers to the
right of the listings indicate the following manual areas:

* Chapters - References to chapters appear as "Chapter X", where
"X" represents the chapter number.

* Appendixes - References to appendixes appear as "Appendix Y"
where "y" represents the letter designator of appendix.

* Figures/Tables - References to figures or tables are represented
by the capital letter "F" or "T" followed by the appropriate
number.

* Other entries in the index - Other entries in the index have
their location indicated by page number.

a

A5 LIB:L68000/68008 library ...•...•..........•..... 1-3, 2-2, Chapter 3
ABS LIB:L68000/68008 library .••.••.....••..••••.•.• 1-3, 2-2, Chapter 3
AbsO'lute file format ... 1-3
Addressing Options

$B.ASE_PAGE$...•..................•.•.......•...•••••..•.••••••. 2-10
$CALL_ ABS_ LONG$ • . • • • . . • . • • . . • • . • . • . . • . • . • . • . . . • . • • • . . • . • • 2-11
$CALL_ ABS_ SHORT$. • • • • . • • • • . • • . . . • . . • • • • . . . • . • . • • • • • 2-11
$CALL_ PC_ LONG$ • • • . • • • . . • . . • . • • • . • • • . . • . . . • • • • . • • • • 2-11
$CALL_PC_SHORT$.•••.•.•.•...•.••...•••.....••...•..•.••..••.••• 2-10
$COf.!MON$. . • • . . • • . . • . . • • . . • . . . • 2-10
$F.AR • • . . • • . • . . . • . • . • • . • • . . • • • . • • • • . • • . • . . • • . • • • . . • • . . 2-10
$LIB ABS LONG$ • • . • • . • . . . • . • . • . . . • . • • . . • • . 2-11
$LIB=ABS=SHORT$•.•...•.•.••....•.•••.•••....•..••••••..•... 2-11
LIB_PC_LONG .. 2-11
$LIB PC SHORT$ • • • . . 2-11

Arithmetic - routines . • • • . • . . . • . . . • • • . • • . . • • . . • • • Chapter 3
Assembly file . 1-2
Assembly symbol file ... 1-3

b

$BASE_PAGE$ option ... 2-9

I-1

C/64000 Compiler Supplement
68000/68008/68010

c

C program design . 1-1
$CALL ABS LONG$ opt ion . 2-10
$CALL -ABS SHORT$ opt ion . 2-1 O
$CALL-PC LONG$ option .. 1-5, 2-10
$CALL-PC-SHORT$ option 1-5, 2-11
$COMMON$-option •.. 1-5, 2-1, 2-10
Compiler symbol file . 1-3

d

Divide-by-zero error .. Appendix A
Dispose routing••...................................... 3-3
Dynamic memory allocation 2-4, 3-2

e

Emulation .. 1-5
End-of-Program message Appendix A
$ENTRY$ ($entry$) option•.............. 1-6, 3-13, 3-14
Error messages . 2-16

f

FAR opt ion . 2-10
$FIXED PARAMETERS$ opt ion . 2-3
Floating point operations•................... 3-15
Function handling . 2-3

h

Heap initialization 2-4

Illegal Instruction error Appendix A
Implementing a Program . 1-1
INITHEAP routine . • . 3-2
Interrupt handling . 2-7
$INTERRUPT$ opt ion . 2-7

I-2

Libraries

C/ 64000 Compiler Supplement
68000/68008/68010

A5 LIB:L68ooo 1-3, 2-2, Chapter 3
ABS LIB:L68ooo 1-3, 2-2, Chapter 3
REAL LIB:L68ooo 1-3, Chapter 3

$LIB ABS LONG$ option • . 2-12
$LIB-ABS-SHORT$ option .. 2-12
$LIB-PC LONG$ option ...•.. 2-12
$LIB-PC-SHORT$ option•...................... 2-12
Linking - • . • 1-4
Linking example .. 1-5
Listing file ... 1-2

m

MAIN (main) routine•......... 1-6
MARK routine ... 3-4
MEMERR routine . • 3-5
Memory error .. Appendix A

n

NEW routine .. 3-3

0

Operators, user-defined . • . . • . . 2-13
$OPTIMIZE$ opt ion . • • . • . 2-7
Overflow error•................................ Appendix A

p

Parameter passing•...........................•........... 2-3
Parameters, user-defined operators•.. 2-13
Pass2 Errors . 2-15
Producing programs for the 68008 processor ..•.•..•................. 1-3
Program-level variable addressing ...•.............................. 1-8

I-3

C/64000 Compiler Supplement
68000/68008/68010

r

REAL_LIB:L68ooo library 1-3, Chapter 3
Redefinable operators ... 2-13
Register allocation .. 2-1
RELEASE routine .. 3-4
Relocatable file ... 1-2
Relocatable library files .. 1-4
Run-time Errors ... Appendix A

s

$SHORT ARITH$ option . 3-15
Source -file .. 1-2
Special Options

$INTERRUPT$... 2-7
$OPTIMIZE$. 2 - 7
$SEPARATE$.. 2-9
$TRAP$.. 2-9

Stack pointer initialization 2-2
Static data area ... 2-4

t

$TRAP$ option ...•.. 2-9

u

User routines ... 2-13

v

Value returning functions .. 2-3

z

Zerror routines ... 3-12

I-4

64819-90902, MAY 1984
Replaces: 64819-90901, March 1983

HEWLETT
FIACKARO PRINTED IN U.S.A.

	0001
	0002
	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	A-01
	A-02
	I-01
	I-02
	I-03
	I-04
	xBack

