
HP 3000 Computer Systems

Systems Programming Language
textbook

r//flW HEWLETT
~~PACKARD

------/

HP 3000 Computer Systems

Systems Programming Language
Textbook

Part No. 30000-90025
Product No. 32100A

HEWLETT iffe PACKARD

5303 STEVENS CREEK BVLD., SANTA CLARA, CALIFORNIA, 95050

Printed in U.S.A. 6/76

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied. reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright© 1976 by HEWLEr-PACKARO COMPANY

ii

LIST OF EFFECTIVE PAGES I

The List of Effective Pages gives the most recent date on which the technical material on any given page was altered. If
a page is simply re-arranged due to a technical change on a previous page, it is not listed as a changed page. Within the
manual, changes are marked with a vertical bar in the margin.

Pages Effective Date Pages Effective Date

Title . Jun 1976 3-3 to 3-4 Sep 1976
ii Jun 1976 3-5 to 3-18 . Jun 1976
iii to iv Jan 1977 4-1 to 4-22 . Jun 1976
v Jun 1976 5-1 to 5-25 . Jun 1976
vi . Jan 1977 6-1 to 6-32 . Jun 1976
vii to xiii Jun 1976 7-1 to 7-2 Jun 1976
xv to xvi Jun 1976 7-3 to 7-5 Jan 1977
1-1 Jun 1976 7-6 to 7-12 . Jun 1976
1-2 Sep 1976 8-1 to 8-4 Jun 1976
1-3 to 1-6 Jun 1976 8-5 to 8-8 Oct 1976
1-7 Jan 1977 8-9 to 8-17 . Jun 1976
1-8 Jun 1976 A-1 to A-3 . Jun 1976
1-9 Sep 1976 B-1 Jun 1976
1-10 to 1-11 Jun 1976 C-1 to C-2 Jun 1976
2-1 to 2-19 . Jun 1976 D-1 to D-21 Jun 1976
3-1 to 3-2 Jun 1976

JAN 1977 iii

PRINTING HISTORY

New editions incorporate all update material since the previous edition. Update packages, which are issued between
editions, contain additional and replacement pages to be merged into the manual by the customer. The date on the title
page and back cover changes only when a new edition is published. If minor corrections and updates are incorporated,
the manual is reprinted but neither the date on the title page and back cover nor the edition change.

First Edition Jun 1976
Update Package #1 Sep 1976
Update Package #2 Oct 1976
Update Package #3 . Jan 1977
Update Incorporated Sep 1977

JAN 1977 iv

PREFACE

SPL/3000, Hewlett-Packard's systems programming language for the HP 3000 Computer System,
is a high-level, machine-dependent programming language. SPL/3000 is designed for writing
compilers, operating systems, and other systems software.

The Systems Programming Language Textbook is an introduction to the structure and uses of
SPL. The textbook is written for the reader who has at least one year of programming e:x;peri
ence with high-level and assembly-level programming languages.

Other publications which the reader should have available include:

Systems Programming Language Reference Manual (HP 30000-90024)

The authoritative reference source on questions of syntax and semantics about SPL.

General Information Manual (HP 30000-90008)

An integrated presentation of the features and capabilities of the software developed
for the HP 3000 Series II Computer System.

MPE Commands Reference Manual (HP 30000-90009)

The authoritative reference source for commands to the MPE Operating System.

MPE Intrinsics Reference Manual (HP 30000-90010)

The authoritative reference for internal procedures of the MPE Operating System.

MPE Segmenter Reference Manual (HP 30000-90011)

The authoritative reference source for using the Segmenter.

Machine Instruction Set Reference Manual (HP 30000-90022)

The authoritative reference source for the machine instructions.

System Reference Manual (HP 30000-90020)

The authoritative reference on the organization of the HP 3000 Series II Computer
System hardware.

v

This manual applies in its entirety to the HP 3000 Series II Computer System. Information in
the manual may also be used with pre-Series II systems if the following changes are noted.

• Pre-Series II systems use three word representations of LONG data.

• Delete the following machine instruction mnemonics:

DISP PSDB

IXIT PSEB

LDEA RCLK

LOCK QASL

LSEA QASR

LST SCLK

MAES SDEA

MDS SSEA

MFDS SST

MTDS UNLK

PCN

• Add the following machine instruction mnemonics:

l\Inemonic

SIRF

TSB::VI

Function

Set external interrupt reference flag.

Test and set bit in memory.

For your convenience, these differences are noted in the manual.

JAN 1977 vi

Format

6

3b

PREFACE

INTRODUCTION

SECTION I ENVIRONMENT OF AN HP 3000 PROCESS

THE CODE DOMAIN OF A PROCESS

THE DATA AREA OF A PROCESS

HOW HARDWARE REGISTERS ARE USED

Memory Reference Instructions

The Stack

Indexing

Procedure Calls and Exits

EVALUATING AN EXPRESSION

SUMMARY OF PROCESS ENVIRONMENT

Virtual Memory for Code

Dynamic Allocation of Local Storage

Relocatability

Protection

Re-entrant Code

EXERCISES FOR SECTION I

SECTION II BASIC ELEMENTS OF SPL/3000

CONSTANTS

IDENTIFIERS

DELIMITERS

COMMENTS

vii

CONTENTS

iii

xi

1-2

1-3

1-5

1-5

1-5

1-7

1-7

1-7

1-9

1-9

1-9

1-9

1-9

1-9

2-1

2-2

2-2

2-2

DECLARATIONS

Initialization

Global Address Mode

ARITHMETIC EXPRESSIONS

Arithmetic Operators

Absolute Value

Type Transfer Functions

Primaries

Bit Functions

ASSIGNMENT STATEMENTS

Multiple Assignments

Deposit Fields

EXAMPLE 2-1. SUM AVERAGE

Input/Output

Listing

PROGRAM ORGANIZATION

EXAMPLE 2-2. COMMAND INTERPRETER

Input/Output

Listing

EXERCISES FOR SECTION II

SECTION III TRANSFER OF CONTROL

LABELS

Position of Labels

GOTO STATEMENT

LOGICAL EXPRESSIONS

Logical Constants

Logical Variables

Logical Operators

Forming Logical Expressions

Type Tran sf er Functions

ASSIGNMENT OF LOGICAL EXPRESSIONS

IF STATEMENT

Format 1

Format 2

IF Conditions

Nested IF Statements

viii

2-3

2-3

2-3

2-4

2-4

2-6

2-6

2-7

2-7

2-10

2-11

2-11

2-12

2-12

2-13

2-13

2-15

2-15

2-15

3-1

3-2

3-2

3-2

3-3

3-3

3-3

3-6

3-7

3-7

3-8

3-8

3-9

3.9

3-10

IF EXPRESSIONS IN ASSIGNMENT STATEMENTS 3-11

EXAMPLE 3-1. DATA VERIFICATION 3-12

Input/Output 3-12

Listing 3-12

EXERCISES FOR SECTION III

SECTION IV LOOPING CONSTRUCTS

EQUATE DECLARATION

DEFINE DECLARATION

INDEX REGISTER

ARRAYS

Array Declarations

Array Storage Allocation

Array Initialization

Accessing Array Elements

FOR STATEMENT

Basic Form

Alternate Form

Cautions in the Use of FOR Statements

EXAMPLE 4-1. INTEGER SORT

In put /Output

Listing

DO UNTIL ST A TEMENT

WHILE DO ST A TEMENT

EXAMPLE 4-2. TABLE SEARCH

Input/Output

Listing

SWITCH STATEMENT

CASE ST A TEMENT

EXAMPLE 4-3. INTEGER CALCULATOR

Input/Output

Listing

EXERCISES FOR SECTION IV

SECTION V BYTES, POINTERS, MOVE, AND SCAN

BYTES

Byte Variables

ix

4-1

4-2

4-2

4-3

4-3

4-4

4-5

4-6

4-6

4-7

4-8

4-8

4-9

4-9

4-10

4-11

4-12

4-13

4-13

4-13

4-14

4-15

4-16

4-16

4-17

5-1

5-1

BYTES (cont.)

Byte Arrays 5-2

Byte Type Transfer Functions 5-4

POINTERS 5-4

Pointer Declaration 5-4

Accessing Through Pointers 5-5

Indexed Pointers 5-7

Type Compatability with Pointers 5-7

MOVE STATEMENTS 5~

MOVE WORDS STATEMENTS 5-9

Left-Right versus Right-Left Move 5-10

Stack Decrement Operand 5-10

Variations on Move Words 5-11

MOVE BYTES STATEMENT 5-12

MOVE BYTES WHILE STATEMENT 5-13

Condition Codes on MOVE (bytes) WHILE 5-14

EXAMPLE 5-1. SYMBOL TYPE SORTER 5-15

Input/Output 5-15

Listing 5-15

SCAN STATEMENTS 5-16

SCAN WHILE STATEMENT 5-17

TESTING BYTES AND STRINGS 5-19

EXAMPLE 5-2. MARK DELIMITER CHARACTER 5-20

Input/Output 5-21

Listing 5-21

EXERCISES FOR SECTION V

SECTION VI PROCEDURES AND SUBROUTINES

PROCEDURES

Attributes of a Procedure

A Typical Procedure

Declaring Procedures

Calling Procedures

Procedure Functioning

RETURN STATEMENT

EXAMPLE 6-1. DATA COMPRESSION

Input/Output

x

6-1

6-2

6-2

6-4

6-6

6-7

6-11

6-11

6-11

EXAMPLE 6-1. DATA COMPRESSION (cont.)

Listing

FUNCTION PROCEDURES

EXAMPLE 6-2. FACTORIAL COMPUTATION

Input/Output

Listing

RECURSIVE PROCEDURES

6-12

6-13

6-15

6-15

6-15

6-16

Re-entrant Code and Recursion 6-17

Option Forward 6-18

EXAMPLE 6-3. BINARY TO DECIMAL CONVERSION 6-19

Output

Listing

INTRINSICS

SUBROUTINES

Declaration of Subroutines

Invoking Subroutines

EXAMPLE 6-4. MATRIX MANAGEMENT

Listing

EXERCISES FOR SECTION VI

SECTION VII DATA ACCESS CONCEPTS

SPECIAL INTEGER CONSTANTS

Based Integer Constants

Composite Integer Constants

DOUBLE AND LONG DATA TYPES

Type Double

Type Long

DECLARATIONS

Base Register Reference

Indexed Identifier Reference

Variable Reference

OWN Variables

ARRAYS

Bounded Arrays

Equivalenced Arrays

Array Summary

POINTERS

xi

6-20

6-20

6-20

6-21

6-21

6-23

6-26

6-26

7-1

7-1

7-2

7-3

7-3

7-4

7-5

7-5

7-6

7-6

7-6

7-7

7-7

7-11

7-13

7-14

SIMPLE VARIABLES

EXPLICIT ST ACK ACCESS

Base Register Reference

TOS-Top of Stack

Stacked Parallleters(*)

7-14

7-15

7-15

7-15

7-16

EXERCISES FOR SECTION VII

SECTION VIII ASSEMBLE STATEMENTS

SYNTAX OF ASSEMBLE STATEMENTS 8-1

MNEMONICS FORMATS 8-2

Conventions Used 8-2

Forlllat 1 8-3

Forlllat 2 8-4

Forlllat 3 8-4

Forlllat 4 8-5

Forlllat 5 8-6

Forlllat 6 8-6

Forlllat 7 8-7

Forlllat 8 8-7

Forlllat 9 8-8

Forlllat 10 8-8

USES OF THE ASSEMBLE STATEMENT 8-9

Alphabetic Listing of Instructions 8-10

EXAMPLE 8-1. DECIMAL TO HEX CONVERSION 8-14

Input/Output 8-14

Listing 8-15

EXERCISES FOR SECTION VIII

APPENDIX A ASCII CHARACTER SET A-1

APPENDIX B RESERVED WORDS B-1

APPENDIX C BRIEF SUMMARY OF COMMANDS C-1

APPENDIX D ANSWERS TO EXERCISES D-1

INDEX

xii

FIGURES

Figure 1-1. Current Code Segment Registers
Figure 1-2. Data Stack Registers

Table 6-1.
Table 7-1.

TABLES

Re-entrant and Recursive Code Differences
Summary of Array Types

xiii

1-3
1-4

6-18
7-13

INTRODUCTION

SPL/3000 has many features normally found only in applications languages such as ALGOL or PL/l:
free-form structure, arithmetic and logical expressions, high-level statements with unlimited nesting
(e.g., IF, FOR, SWITCH, CASE, DO-UNTIL, WHILE-DO, MOVE, SCAN, Assignment, and Compound
statements), recursive procedures and subroutines, and variables and arrays of many different data
types (byte, integer, logical, real, double integer, and long real).

Yet, SPL/3000, unlike any application language, allows the programmer to operate directly on hard
ware registers, perform branches based on hardware status, extract/deposit/shift bit fields, and
generate any sequence of hardware machine instructions (all in the midst of high-level constructs).

This textbook introduces the reader to most SPL/3000 features. It is organized according to pro
gramming functions - from simple constructs to difficult - therefore, it should be read from
beginning to end. Throughout the textbook complete example programs are listed and explained;
these programs illustrate the topics discussed in the sections and should be studied carefully. Small
examples of one or two lines are also provided; in many cases, the analysis is left to the reader. In
addition, each section ends with a set of exercises to test comprehension. (Answers are provided in
Appendix D.)

The topics covered in this textbook are:

Section I: Environment of a HP 3000 Process

Section II: Basic Elements of SPL/ 3000

Section III: Tran sf er of Control

Section IV: Looping Constructs

Section V: Bytes, Pointers, Move and Scan

Section VI: Procedures and Subroutines

Section VII: Data Access Concepts

Section VIII: Assemble Statement

xv

Appendices contain the following information:

A. ASCII Character Set

B. Reserved Words

C. Brief Summary of Commands

D. Answers to Exercises

vVhen you have mastered this textbook you should use the System Programming Language manual
as your main source of information, since it contains a complete description of SPL/ 3000 and
describes many special cases not covered in the textbook.

xvi

SECTION I
Environment of an HP 3000 Process

An SPL/ 3000 process is the unique execution of a program. If the same program is run by several
users, it becomes several processes. If the same user runs the same program several times, each
execution is a distinct process. All of the users on a system, therefore, can be executing the same
program, but each execution has its own process. All the processes use the same copy of the program
code, but each has its own data area. For example, if all users were running the BASIC/3000
Interpreter, their processes would overlap as follows:

Process 2
Data

BASIC/3000
Interpreter

Code

1-1

Process 4
Data

An SPL/3000 process consists of a code domain (some machine instructions that it can execute) and
a data area called a "stack," and is run under control of the operating system. The code and data in
HP 3000 are always separated logically. The code domain consists of segments which may be shared
among several processes (for example, the code segments of the SPL/3000 compiler can be shared).
The data stack is unique to the process and cannot be accessed by any other user's process.

The operating system (MPE/3000) schedules and dispatches a process for execution in competition
with all other processes according to its priority.

THE CODE DOMAIN OF A PROCESS

All machine instructions within HP 3000 are organized into variable-length segments which are
accessed through a hardware-known table. Since the hardware detects references to segments which
are not in main memory, the code domain of a process is not limited to the size of main memory.
At any one time there can be up to 256 different code segments defined in the system. Segments
are brought from disc into main memory as needed. At any particular moment a process can be
executing one and only one code segment. The process "escapes" from its current code segment
by using a Procedure Call (PCAL) instruction. A PCAL can reference procedures in different
code segments from the current one and cause control to transfer to a different code segment.

The current code segment of a process is defined by three hardware address registers:

PB-Program base register

PL-Program limit register

P-Program counter

Contains the absolute address of the starting location
of the segment in main memory.

Contains the absolute address of the last location of the
code segment.

Contains the absolute address of the instruction currently
being executed.

The relationship of the three current code segment registers is shown in Figure 1-1. The central
processor checks all instructions to insure that they stay within the bounds of the current code
segment. All addresses within a current code segment are relative to these registers. The oper
ating system can relocate the segment anywhere in main memory: only the three registers have
to be changed to define the segment's locations.

1-2

""
Program base register (PB)

Program counter (P)

Low memory

Instructions
and constants

------------?•t-- - - - - - .._,

Program limit register (PL)

High memory

PB is the addressing base register; its
absolute address is set by the operating
system.

P changes as each instruction is executed

PL is the addressing limit register; its
address is set by the operating system.

Figure 1-1. Current Code Segment Registers

THE DATA AREA OF A PROCESS

Each process has a completely private storage area for its data. This storage area is called a stack
or a data segment. When the process is executing, its stack must be in main memory. A stack
is delimited by two stack addressing registers:

DL-Data limit register Contains the absolute address of the first word of main
memory available in the stack.

Z-Stack limit register Contains the absolute address of the last word of main
memory available in the stack.

Between DL and Z, there are separate and distinct areas set off by three other stack addressing
registers:

DB-Data base register Contains the absolute address of the first location of the
direct address global area of the stack.

Q-Stack marker register Contains the absolute address of the current stack marker
being used within the stack.

S-Top of stack register Contains the absolute address of the top element of the
stack. Manipulated by hardware to produce a last-in,
first-out stack. (The top four items are kept in hardware
registers.)

1-3

The relationship of the five stack addressing registers is shown in Figure 1-2. Each process is
also described by a status register (containing its segment number and status) and a program
accessed, one-word index register used for array indexing and other computing functions.

There is only one set of these hardware registers; their content is established for a process when
it starts executing.

__... Low memory
Data limit register (DL)--.-

User managed
array space

Data base register (DB) ..
Global variables

(first 256 locations
is primary DB area)

Global arrays
(secondary DB area)

A~

Procedure
Parameters

Stack Marker
Stack maker register (0).

-- Local storage and
current computation

Top of stack register (S)
not accessible

Stack limit register (Z) _.

High memory

~

DL can be changed for user by operating system.

DB is addressing base register set by operating system.

~

Q changes with each procedure call and exit.

S can change with each instruction.

Z is addressing limit register which can be changed
for user by operating system when he overflows.

Instructions are provided to access all regions indicated in this diagram (exr,ept S to Z). The four top of stack
registers are not shown.

Figure 1-2. Data Stack Registers

1-4

HOW HARDWARE REGISTERS ARE USED

The hardware registers we have described (DL, Z, DB, Q, and S) are imposed on the main
memory by the hardware to define the bounds of a process.

In the succeeding paragraphs, we show how these registers are referenced by the HP 3000
instruction set.

Memory Reference Instructions

In many conventional computers a memory reference instruction consists of an opcode (LOAD,
STOR, ADD, etc.) and an address. The address is usually an absolute location or a location
relative to a fixed hardware boundary. In HP 3000, memory reference instructions specify
an address relative to one of the hardware registers and have direct addressing ranges of

P register

±255 locations

DB register

+255 locations

Q register

+127 locations
-63 locations

S register

-63 locations

Any memory reference instruction specifies a displacement within the range of one of these
registers. This location is used as the operand; if another address is required, it is implicitly
assumed to be the top of stack (S - 0).

To address beyond this range, the programmer specifies indirect addressing in the instruction
and a location containing a DB or self-relative address. This allows him to access any area in
the stack except that area between Sand Z which is undefined (the DL to DB area is accessed
by going indirect through a negative DB relative address).

The basic addressing mode in HP 3000 is word addressing (each word equals 16 bits). Also
provided are instructions to load and store bytes (half words equal to 8 bits) and double words
(32 bits).

The Stack

Many HP 3000 instructions use the top of the stack (the absolute address in the S register)
as an implicit operand. The S register is constantly changing in a last-in, first-out manner such
that data is "pushed" onto the stack or "popped" off the stack. "Push" and "pop" can be
explained as follows:

1-5

PUSH

LOAD DB + 0 is a typical push operation. It causes the address in the S register to increment
and then loads the contents of location DB + 0 into that address. The S relative addresses of
all other items in the top of the stack are effectively decremented by one.

DB+O 25 25

S-1 0 0 S-2

S-0 2 2 S-1

25 S-0

(before) (after)

LOAD DB+ 0

POP

STORE DB+ 0 is a typical pop operation. It stores the contents of S - 0 in location DB+ 0
and then decrements the address in S. This effectively increments the S relative addresses of all
items by one.

S-2

S-1

S-0

)

.... 25

It If Alf ~
))

0 0

2 2

25 I---

(before) (after)

STOR DB+ 0

Note that after the "Pop," S - 0 contains the value 2, not 25.

DB+ 0

S-1

S-0

Sixty-four of the HP 3000 instructions are called stack-ops, because they implicitly refer
to the top items in the stack. A typical stack-op instruction is ADD, which adds the top two
words in the stack (S - 0, S - 1), pops the operands, and pushes the result.

S-1 ~ b_d S-0

S-0

(before) (after)

ADD

1-6

Because no bits are used for an operand address, stack-ops are very compact; in fact, they can
be packed two per 16-bit word and allow HP 3000 to provide hardware operations for a broad
range of hard ware data types:

byte 8 bits

integer 16 bit signed

double integer - 32 bit signed

16 bit positive logical

floating-point 32 bit (6. 9 digits accuracy)

The firmware or software provides long floating-point arithmetic (64 bit) in Series II systems
and long floating-point arithmetic (48 bit) in pre-Series II systems.

Indexing

The index register is a 16-bit data register which is accessible to the program. One use of the
index register is for element indexing. When indexing is specified in memory reference in
structions, the number in the index register specifies the element desired relative to the zero
element (direct or indirect). The HP 3000 hardware provides true element indexing. If a
double word is being accessed, the hardware doubles the index before adding it to the effective
address and for byte indexing, the byte subscript value is added to the effective byte address.

Procedure Calls and Exits

The Q register plays an important part in the Procedure Call (PCAL) and Procedure Exit (EXIT)
instructions. Whenever a procedure is called, a four-word stack marker is loaded onto the top
of the stack. These four words preserve the state of the machine at the time of the call. The Q
and S registers are changed to the top of this stack marker so that the procedure has a unique
area for local storage allocation and addressing.

When the procedure exits, the stack marker (found by looking at Q - 0 to Q - 3) is used to
restore the machine to its previous state (reset P, Q, X, and Status). All of this environment
set-up and resetting is done by the two hardware instructions PCAL and EXIT.

EVALUATING AN EXPRESSION

Here is a typical HP 3000 expression:

A-(B*(C+D))

NOTE: *means multiply.

Assume that A, B, C, and Dare integer variables in DB relative locations and that the result is
to be stored in a variable Rat DB+ 0. One way to evaluate this expression using the stack is

JAN 1977 1-7

1. LOAD DB+ 1

LOAD DB+ 2

LOAD DB+ 3

LOAD DB+ 4

2. ADD
(C + D)

DB+O

+l

+2

+3

+4

S-0

(Stack before 1)

457

30

10

22

" / "

(Stack before 2)

RESULT

A

B

c
D

S - 3 457 Value of A

S-2

S-1

S-0

30

10

22

Value of B

Value of C

Value of D

3. MPY (Stack before 3)
(B*(C+D))

4. SUB
(A - (B * (C + D)))

5. STOR DB+ 0
(R :=(A - (B * (C + D)));

,,
"

457 S - 2 Value of A

30 S - 1 Value of B

32 S - 0 Value of (C + D)

S-1

S-0

S-0

DB+O

+1

+2

+3

+4

S-0

1-8

(Stack before 4)

14574
~

(Stack before 5)

1 -503]

(Final stack)
...

-503

457

30

10

22

! y

Value of A

Value of (B * (C + D))

Value of (A - (B * (C + D)))

RESULT (A - (B * (C + D)))

A

B

c
D

SUMMARY OF PROCESS ENVIRONMENT

Because of the many functions provided by the hardware and software, a HP 3000 process
has many important services available to it.

Virtual Memory for Code

Since a process can reference procedures in up to 255 code segments without knowing
whether they are present in main memory (the hardware checks for absence of code segments
when they are referenced by the PCAL-EXIT instructions), programs are not unduly limited by
the physical size of main memory. This ability constitutes a virtual memory for code based on
variable length segmentation.

Dynamic Allocation of Local Storage

Local storage required by procedures is addressed relative to the Q register. Since the Q register
is updated whenever a procedure is entered, local storage need not be allocated until then. Also,
since Q is reset to its previous value when the procedure exits, this temporary storage is deleted.
As a result, the amount of data storage required is kept to a dynamic minimum by the hardware.

Relocatability

Since all user instructions address relative to hardware registers, code and data segments can be
relocated anywhere in memory simply by moving the information and setting the registers to
new values. This provides great flexibility for the operating system.

Protection

Since the hardware checks that instructions stay within the bounds of the user's code and data
segments, automatic protection is provided between user processes and the system. HP 3000
has other protection mechanisms (such as privileged versus user mode) which ensure that it
maintains ultimate control.

Re-entrant Code

Since code is never modified during execution in HP 3000, it is all naturally re-entrant. This
means that when a process is interrupted while executing, the system can allow another process
to execute the same code. This is the primary advantage of re-entrant code; it eliminates the
need for multiple copies of programs and reduces swapping between disc and main memory.

1-9

EXERCISES FOR SECTION I

1. How is a process different from a program?

2. What are the two main components of a process?

3. Explain the major difference between treatment of code and data in the HP 3000.

4. Label these diagrams with the appropriate register names. Describe briefly the function of
each register.

Low
address

High
address FUNCTION:

code segment data segment

REGISTER USED TO ADDRESS

5. Match the addressing range limits shown below with the registers listed. (More than one
limit value may be associated with a single register. Limit values may be used more than
once.)

REGISTERS

p

DL
DB
Q
s
z

ADDRESS LIMITS

1-10

+255
-255
+127
-127
+63
-63
+31
-31
not used for addressing

6. Complete the stack diagrams provided to show the contents of the stack after each
specified instruction has been executed

Assume A = 3, B = 1, C = 3, D = 1

LOAD A LOAD B SUB LOAD C LOAD D ADD

s s s s s s

7. Write the expression which was evaluated in problem number 6.

Use * for multiply
- for subtract
+ for add and

() to show which operation is done first.

s

MPY

8. For each of these capabilities, which feature of HP 3000 hardware makes the capability
possible:

a) Automatic relocatability?

b) Protection for each user's code and data space?

c) All code re-entrant?

1-11

SECTION 11
Basic Elements of SPL / 3000

This section introduces the building blocks from which SPL/3000 programs are made: constants,
identifiers, delimiters, declarations, operators, expressions, and assignments. Once these concepts
are understood it is possible to see how programs are structured in SPL/3000.

CONSTANTS

A constant is a fixed value of some specific type. The following are valid constants:

Constant

1056.21

1056

-539

%342

"ABDN"

"Now is the TIME."

.1023E6

.105621E4

Type

Decimal real number

Decimal integer number

Decimal integer number

Octal (base 8) integer number

String constant

String constant

Decimal real number= .1023 x 106

Decimal real number (same value as first example,
since E4 means "x 104 ")

This list illustrates the three basic types of constants: integers (positive and negative, octal or
decimal), real numbers (fractions with optional base ten exponent), and strings (sequences of
characters). If the quote character(") is to appear within a string, it must be represented by a
pair of quotes(" ")since the quote character is used to delimit strings.

Integer constants are 16-bit signed integers that can range from -32768 to +32767. Real con
stants require 32 bits and can range from -1077 to +10 77 (8.63616)x 10-78 <= INI <= 1.1579x1077

)

with 6. 9 digits of accuracy. There are several other SPL/ 3000 data types: bytes-8 bits, long
real-64 bits,* logical-16 bit unsigned, and double integer-32 bits signed.

Two other constant forms:

%(2)010110 (binary)
%(16)0AE9 (hexadecimal)

*48 bits in pre-Series II systems.

JAN 1977 2-1

IDENTIFIERS

Identifiers are the names used in an SPL/3000 program to represent various syntactic entities.
Identifiers consist of up to 15 characters (uppercase alphabetic or numeric) and must begin with
an uppercase alphabetic character:

Valid Identifiers

INVOICES

NUMBER'OF'WOMEN (Note: ' is the only special character allowed within an identifier.j

ENTRY73

A29765

Invalid Identifiers

9ABC

Z1234567890123456789

AB%9B

{truncated to Zl2345678901234}

'ABC

If lowercase letters are used, they are upshifted by the compiler to uppercase form by the com
piler. Identifiers longer than 15 characters are truncated on the right. Certain combinations
of characters are reserved words; they cannot be used as identifiers because they have predefined
meaning within SPL/3000. A list of reserved words appears in Appendix B.

DELIMITERS

A blank character is generally recognized as a delimiter in SPL/3000, except for the occurrence
of a blank in a character string. Thus, an identifier is delimited by one or more blanks on each
end: ... AN'IDENTIFIER In special contexts, characters other than blank can also serve
as delimiters. For example, semicolons are used to delimit statements and colons can delimit a
label.

COMMENTS

Comments can be embedded in a program in two ways: 1) through the COMMENT statement,
or 2) through the use of < < > >. The COMMENT statement consists of the reserved word
COMMENT followed by any number of characters delimited by a semi-colon (;).

COMMENT THIS is a COMMENT;

COMMENT

THIS COMMENT

GOES ON FOR

SEVERAL LINES;

2-2

The<<>> characters can be used anywhere in a program (except within an identifier), and
the characters between<< and>> will be ignored by the compiler.

<<THIS IS A COMMENT>>

<<lowercase letters are NOT lJPSHIFTED in comments>>

DECLARATIONS

A declaration defines the attributes of an identifier before it is used in the program. All
identifiers in SPL/3000 (except labels) must be declared and can be declared only once in
a main program. A declaration generally consists of a reserved word specifying the attributes,
followed by a list of identifiers (optionally set to initial values) that are separated by commas
and delimited by a semi-colon. In this section we will only discuss two of the simplest declara
tions: simple integer variables and real variables.

INTEGER A, B, C39, DUMMY;

REAL SINTL,

NUMEXTENTS;

The first example above declares four variables of type integer; the second example declares
two variables of type real. The type indicates what type of arithmetic to perform on the variable
(integer for INTEGER and floating-point for REAL) and how much storage to allocate (one
word for each INTEGER variable and two for each REAL).

Initialization

Variables can be given initial values (when they are declared) through this simple construct:

Valid
INTEGER A := 2098, B := 4048, C := 8096;

REAL XlO := 101.93, FGH, LINK;

Invalid
INTEGER A:= B := C := 2;

REAL 2.93, 3.25;

Any identifier in the list can be followed by :=and.a constant; this results in the variable having
the value when the program is first executed. (Note that FGH and LINK are declared but not
initialized.)

Global Address Mode

When variables are declared in the main program they are called global variables. Global
variables are assigned consecutive locations (relative to the DB register) as they are declared.
The number of words assigned is determined by the data type. Global variables can be refer
enced throughout the program. Variables with a more limited scope can also be declared (with
in a procedure); these variables are known as local variables and are discussed in Section VI.

2-3

EXAMPLE OF GLOBAL ADDRESS ASSIGNMENT

BEG IN <<start of program>>

INTEGER I, <<location DB+ 0 not initialized>>

J,

K := 11;

REAL XIX;

INTEGER BUS;

END. <<end of program>>

ARITHMETIC EXPRESSIONS

<<location DB+ 1 not initialized>>

<<location DB + 2 set to 11> >

<<location DB+ 3 (2 words)>>

Arithmetic expressions combine identifiers, constants, parentheses, and operators (", *, /, MOD,
+, -) to represent a sequence of mathematical operations. All operators, except the unary + and
-, require an operand on each side-either a single value, such as a constant, or a variable or
another expression enclosed in parentheses.

Valid Expressions

+C

A + B - CDG * 2. 53

A- BC I FR

-(A+ B) * C

-B *(-A)

Invalid Expressions

*A+C/"D

A(C + D)

A*-D

A*+D

An expression defines a single value which is its result; what is done with that value depends on
where the expression occurs. In the most common case, an expression is assigned to a variable:

A := (A+ B) * (C + D);

Arithmetic Operators

Arithmetic operators are symbols which are used in SPL/3000 to indicate the performance of
some arithmetic operation. The operators are ranked in an order of precedence to determine
the relative order in which operations are executed (when there are no overriding parentheses).
When operations are of the same rank, execution proceeds from left to right. The rank, from
highest to lowest precedence, is as follows:

2-4

Rank 1 : Bit functions (extract, concatenate, shift)
Perform bit functions on one-, two-, or three-word quantities.

Rank 2: Unary plus and minus(+,-).

Rank 3: "' Exponentiation
Raises a value to a specified power.

Rank 4: *Multiplication
Multiplies two values to produce a result.

I Division
Divides one value by another to produce a result.

MOD Modulo
Divides one value by another and retains the remainder as the result (allowed
only for one-word quantities-not real).

Rank 5: +Addition
Adds two values to produce a result.

- Subtraction
Subtracts one value from another to produce a result.

Bit extracts and concatenates are defined for one-word quantities only. Bit shifts are defined
for one, two, or three words.

All other operations (except MOD) are defined for all data types with these exceptions: double
integers can only be added and subtracted and exponentiate is not available with logical values.

The order in which operations are performed is determined by the hierarchy:

A-B+C
L-c__j

result

A+B*C
~

result

(A+ B) * C
y I

result

A-B+C*D"'E

1T_Y
result

A A (B - C) * D I E MOD F A G

I IY, ! I 1
result

Operations of the same rank are performed from left
to right.

Operations of different rank are performed according
to their position in the hierarchy of operators (highest
rank first).

Operations enclosed in parentheses take precedence
over operators outside of parentheses, even those of
higher rank.

Left to right order is maintained until an operator
occurs that is of lower rank than the next operator
or the next item is in parentheses.

2-5

Absolute Value

When an expression is enclosed by backslashes (\expression\), the result is the absolute value
of the expression:

\A + B I C\ - D A 2

Type Transfer Functions

SPL/3000 does not allow type mixing in expressions. A particular operator can be executed
only if both of its operands are of the same type. When a conflict occurs, it is necessary to
convert the type of one of the values by means of type transfer functions.

NOTE: Exponentiate allows real raised to an integer power and long real raised
to an integer power.

A function is a subroutine or procedure that returns a value. Type transfer functions take a
value of one type and return an equivalent value of another type; many of these functions are
provided by hardware. The result of a type transfer is temporary (effective only for the
immediate use of the value); the original contents of variables are not changed by type transfer.
Not all possible transformations are provided; in some cases, two functions must be used.

• Convert an integer (double, byte, logical or long) expression to type real:

REAL U) (where j is any expression resulting in type integer, double, or long)

• Convert a real expression to type double (see section VI) and truncate:

FIXT (r) (where r is any expression resulting in type real)

• Convert a real expression to type double and round:

FIXR (r)

• Convert a double (or byte or logical) expression to type integer:

INTEGER (d) (where dis any expression resulting in type double, byte. or
logical)

• Convert a real expression to type integer:

INTEGER (FIXT(r)) <<fix and truncate>>
INTEGER (FIXR(r)) <<fix and round>>

All operands of an expression need not be converted to one type-only the pair surrounding
each operator:

Assume that A, B, C, Dare integers and M, N, 0, Pare real.

REAL(A + B) * M + P

INTEGER (FIXR(N I 0)) +INTEGER (FIXR(M IP))+ C

M * REAL(A + B +INTEGER (FIXR(P)))

2-6

Primaries

Primaries are those items which can be operated upon by the arithmetic operators:

Constants

Simple variables

Array elements (Section IV)

An expression in parentheses (arithmetic expression)

The absolute value of an expression \arithmetic expression\

An assignment statement in parentheses (see "Assignment Statements" in this section)
the value assigned to the variable is also used in the expression to follow.

Function designators:
Type Transfer Functions
Bit Functions (this section), and
Function Subroutines and Procedures (see section VI)

Bit Functions

Functions that perform bit-level operations can be used in arithmetic expressions. Bit functions
are performed before other operators. In SPL/ 3000 expressions the three types of bit functions
are

• Bit extraction (one word quantities only)

• Bit concatenation (one word quantities only)

• Bit shifts (one, two, and three word quantities)

BIT EXTRACTION

Bits are extracted to isolate a contiguous bit field from the 16 bits of a one-word value. The
result is a right-justified value of type integer with the most significant bits set to zero. Primaries
are not altered. The maximum field that can be extracted in a single operation is 15 bits. The
format consists of a primary followed by a period and an extract field in parentheses:

primary . (left bit : field length)

In this example, two bits are extracted from %125 starting at bit 8:

primary = %12 5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

result= %1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

%125.(8:2)

primart f l
left bit

field length

2-7

NOTE: Remember that bits are numbered from the left (most significant bits)
starting with zero (0):

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BIT CONCATENATION

Concatenation permits the formation of a new value by extracting a bit field from one word
and depositing it at a specified position in another word.

The format is

primary CAT primary (left deposit bit: left extract bit : field length)

left deposit bit Indicates which bit position in the first primary (to the left of CAT) to
deposit the field extracted from the second primary.

left extract bit Indicates at which bit in the second primary to begin extracting the bit
field.

field length Indicates how many contiguous bits to extract from the secondary
primary.

Concatenation is performed on temporary quantities; the original primaries (if variables) are
not altered. Note that the primaries themselves can be bit functions.

In this example, four bits are extracted from YBCD starting at bit 4 and are deposited in XBCD
starting at bit 8. The other 12 bits of XBCD are carried over unchanged and the original values
of XBCD and YBCD are unaltered.

XBCD CAT YBCD (8:4:4)

XBCD YBCD

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1011000110 1 1 1 0 1 1 0010111100 0 ii 0 0 1

~ ..------'=-------
10110001111 1 1 0 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

result

2-8

BIT SHIFTS

A bit shift performs a hardware shift (logical, arithmetic, or circular) upon a quantity in the
stack. The format is

primary & shift op (count)

primary is a primary of any type.

count is an arithmetic expression specifying how many bits are to be shifted.

shift op is one of the following hardware opcodes:

Single Word LSL (logical shift left, 16-bit quantity)
LSR (logical shift right, 16-bit quantity)
ASL (arithmetic shift left, sign preserved)
ASR (arithmetic shift right, sign preserved)
CSL (circular shift left)
CSR (circular shift right)

Double Word DASL (double arithmetic shift left, 32-bit quantity)
DASR (double arithmetic shift right)
DLSL (double logical shift left)
DLSR (double logical shift right)
DCSL (double circular shift left)
DCSR (double circular shift right)

Triple Word TASL (triple arithmetic shift left)
TASR (triple arithmetic shift right)
TNSL (triple normalizing shift left)

Four Word QASL (quadruple arithmetic shift left)
QASR (quadruple arithmetic shift right)

NOTE: SPL/3000 does not check for type compatibility in bit shifts. If a double
word shift is performed on a single word primary (or other unmatched
combinations), other words in the stack will be shifted also.

The difference between logical, arithmetic, and circular shifts can be explained as follows:

• Logical shifts fill with zero bits as they shift left or right.

• Arithmetic shifts preserve the sign bit on a left shift (and fill with zeros) and
propagate the sign bit on a right shift (fill with the sign bit).

• Circular shifts have no fill bit; bits that are shifted off one end are shifted on at
the other end.

2-9

This example shows the difference in practice:

AKS23 & LSR(3)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10110001111 1 1 0 1 1

AKS23

AKS23 & ASR(3)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1011000111 1 1 1 0 1 1

AKS23 & CSR(3)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10110001111 1 1 0 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0001011000 1 1 1 1 1 1

result

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1111011000 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0111011000 1 1 1 1 1 1

In all cases, the original contents of AKS23 remain unchanged.

ASSIGNMENT STATEMENTS

An SPL/3000 statement is an order to perform some action. The purpose of an assignment
statement is to assign a value (determined by an expression) to a variable. These are typical
assignment statements:

A:=A+l;

B :=(A+ C) I (N + 365 * NUM "2);

The general form is

variable := expression;

where variable and the result of the expression must match in type to the extent that they
use the same size quantity (1, 2 or 3 words) (type byte is compatible with one-word quantities)
and

·= means "is replaced by"

terminates the statement

Assignment statements have two special forms: multiple assignments and deposit fields.

2-10

Multiple Assignments

variable := variable := :=expression ;

For example the form

A := B := C := N * 2;

assigns the result of the expression to three variables.

Deposit Fields

A deposit field specifies a bit field of the variable into which the result of the expression is to
be stored:

variable . (left deposit bit : field length) := expression;

For example, A.(8:2), and B2.(5:5). The number of bits required for the field is taken from
the result of the expression (least significant bits) and deposited in the variable starting at the
bit position specified. In this example, eight bits from the result of the expression are deposited
in PAT starting at bit 0. (PAT contains %65137 before the deposit.)

PAT. (0:8) :=expression;

0 1 0 0 1 1 1 0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0

New value of PAT Result of expression

All bits in the deposit variable (PAT) which are not part of the deposit subfield remain un
changed. When deposit fields are used with multiple assignments, only the leftmost variable
can have a deposit.

EXAMPLES OF ASSIGNMENT STATEMENTS

Bit Operations: INTEGER RSLT, DWORD, ANS, MPX, COMP;

RSLT := DWORD.(0:8) + %60;

ANS.(0:4) := MPX & LSR(3);

COMP:= MPX CAT DWORD(l4:0:2);

Arithmetic Operations: INTEGER CHAR, DATA, SLOPE;
REAL YPOINT, YVALUE, XPOINT, XVALUE, DELTA, DATA;

CHAR:= DATA MOD 8 + %60;

YPOINT := YVALUE +REAL (SLOPE) * (XPOINT - XV ALUE);

DATA:= SLOPE* INTEGER (FIXR(DELTA));

2-11

EXAMPLE 2-1. SUM AVERAGE

This example solves a simple computational problem; it inputs two numbers, computes their
sum and average and outputs the results. Example 2-1 illustrates the use of declarations,
arithmetic expressions and assignment statements.

Example 2-1 uses several constructs which have not been covered yet:

Item

BYTE

ARRAY

Input/Output

ENTER VALUES
12,24
SUM = 3 6
AVG = 18
ENTER VALUES
-5 0 '5 0
SUM = 0
AVG = 0
ENTER VALUES
-32768,+32767
SUM - - 1
AVG = 0

Description

Indicates attribute "character"

A linear vector of elements of same type

2-12

Reference

Section V

Section IV

Listing

BEGIN <<EXAMPLE 2-1. SUM-AVERAGE>>
COMMENT:

INPUT TWO INTEGER VALUES. COMPUTE THEIR SUM AND AVERAGE.
OUTPUT THE RESULTS.
NOTE: "INPUT" AND "OUTPUT" ARE DUMMY PROCEDURES WHICH SIMULATE
INPUT, OUTPUT, AND CONVERSION - THEY ARE NOT PART OF SPL/3000;

BYTE ARRAY ENTR < 0: 11): = .. ENTER VALUES";
BYTE ARRAY LSUMC0:5>:="SUM - ";
BYTE ARR A Y LA VG C 0 : 5 > : = ''A VG - '' ;
INTEGER AVALUE,

BVALUE,
SUM,
AVG;

<<END OF DECLARATIONS>>
OUTPUTCENTR>; <<WRITE HEADING>>
INPUTCAVALUE,BVALUE>; <<READ T~O NUMBERS>>
SUM:=AVALUE+BVALUE; <<COMPUTE SUM>>
AVG:=SUM/2; <<COMPUTE INTEGER AVERAGE>>
OUTPUTCLSUM,SUMl; <<WRITE LABEL AND SUM>>
OUTPUTCLAVG,AVGl; <<WRITE LABEL AND AVERAGE>>

END <<SUM AVERAGE>>.

PROGRAM ORGANIZATION

A program is an organized collection of SPL/3000 declarations and statements designed to
solve a specific problem. The structure of a program is shown in the following diagram:

BEGIN

Data Declarations I } global head

Program Procedure Group I
Statements I } main body

END.

The global head consists of data declarations (INTEGER, REAL, and all other data to be used
in the program) and then the procedure group (declarations of subroutines, procedures, and
system intrinsic routines). Procedures are a variety of subroutine with special properties that
make them almost as independent as programs. They are declared in the global head and then
are called by statements in the main body or by statements within procedures themselves.
Intrinsics are operating system procedures which can be called by user programs.

The main body consists of one or more statements such as assignment statements, for loop
statements, etc. Statements are orders to perform some action; they are executed sequentially
as written (unless one of the statements instructs otherwise). Statements are normally terminated
by a semi-colon (;).

2-13

It is often useful to treat a group of statements as a single statement. In SPL/3000, any set of
statements which is preceded by a BEGIN and followed by an END is called a compound
statement and is treated as a unit. The BEGIN-END pairs act as parentheses-they define the
collected statements as a unit (a single statement). A compound statement is similar in form to
a complete program, but declarations are not allowed within compound statements.

Compound statements can be nested to whatever depth is necessary (the statements of a com
pound statement can themselves be compound statements).

Valid Compound Statements

BEGIN

A:= l;

B := 2;

END;

BEGIN

A:= 1;

BEGIN

B := 2;

c := 3;

D :=A+ B + C;

END;

z := z + 1;

END;

Invalid Compound Statements

BEGIN

INTEGER A; <<declaration not allowed in compound statements>>

A:= A+ J;

END;

The following example shows all the entries used in a program.

global { data dee.
head proc. group

main
body { statement

BEGIN

{ INTEGER I, J := 9;
~ PROCEDURE P(A); VALUE A; INTEGER A;
l I:= 2 +A;

{ P(2 * J) ; <<procedure call>>

END.

2-14

EXAMPLE 2-2. COMMAND INTERPRETER

This next example shows a moderately complicated SPL/3000 program containing many data
declarations, three subroutines (GETCOMMAND, SKIPBLANKS, and ERROR), a large
procedure (CMNDSRCH), and a main body. The program is a command interpreter that
reads a command image, determines which command has been entered, and calls a procedure
to handle the command. ·

The command interpreter accepts command images from an input device, skips initial blanks,
interprets the next four characters as a command name, and searches a table to see if it is valid.
If the command is valid, the command interpreter picks up a procedure call to the appropriate
procedure and executes it.

NOTE: The command interpreter uses elements of SPL/3000 which are discussed
later in the textbook. You may want to refer back to this example after
reading each succeeding section.

Input/Output

STJB,A001,ENGR,WX
FEB 1 7-0810 JOB# 0026

JB ID, JOB -2 6
JOB#0026 SPOOLING IN

LOCT,JOB-7
JOB#0007 UNDEFINED

HOLD,JOB-9
SP AC , PR I NT ER - 1
REPEAT,PRINTER-1

ERR 0
REPT ,PRUHER-1
RSTT,PRINTER-1
RELS,JOB-9
JB ID, 0

JOB #0009
JOB #0011
JOB #0015
JOB#0026

Listing

SPOOL! NG OUT
I /0 WA IT
EXEC UT I NG
SPOOL I NG I[~

BEGIN <<EXAMPLE 2-2. COMMAND INTERPRETER>>
BYTE ARRAY IMAGEC0:81);
ARRAY WORDBUFC*)=lMAGE;
I NT EGER LE NG TH,

ER CODE;
BYTE POINTER IMAGPTR:=@IMAGE;
BY TE ARR A Y EB U F < 0 : 3) : = " ERR '" ;
ARRAY MNEM<0:41>:=7.100000,7.000001, <<STOPPER>>

" ALT R" , .. BK LG " , ''BK S P" , " DL T D " , " D LT J " , < < l > >
"DRIN","DSPL","HOLD","JBID","LIST", <<6>>

2-15

"LOCT","RELS","REPT","RSTT","SPAC", <<11>>
"STAT","STJB","STOP","STRT", <<16>>
7.077777,7.177777 <<STOPPER>>; <<20>>

LABEL READ;
DEFINE PROCHEAD = COPERANDPTR,ERRORCODE>;

VALUE OPERANDPTR;
BYTE POINTER OPERANDPTR; <<ADR COMMAND OPERAND>>
INTEGER ERRORCODE; <<ERROR NUMBER RETURN>>
OPTION EXTERNAL
#;

DEFINE DUPLICATE = ASSEMBLE<DUP>#;
PROCEDURE ALTR PROCHEAD; <<CHANGE JOB PRIORITY>>
PROCEDURE BKLG PROCHEAD; <<DISPLAY QUEUED JOBS>>
PROCEDURE BKSP PROCHEAD; <<BACKSPACE DEVICE>>
PROCEDURE DLTD PROCHEAD; <<DELETE DEVICE OUTPUT>>
PROCEDURE DLTJ PROCHEAD; <<CANCEL JOB>>
PROCEDURE DRIN PROCHEAD; <<DRAIN PHYSICAL DEVICE>>
PROCEDURE DSPL PROCHEAD; <<DISPLAY SYSTEM INFORMATION>>
PROCEDURE HOLD PROCHEAD; <<PREVENT EXECUTION OF A JOB OR JOBS>>
PROCEDURE JBID PROCHEAD; <<DISPLAY JOB INFORMATION>>
PROCEDURE LIST PROCHEAD; <<MESSAGE LISTING CONTROL>>
PROCEDURE LOCI PROCHEAD; <<LOCATE A JOB IN THE SYSTEM>>
PROCEDURE RELS PROCHEAD; <<RELEASE HELD JOB O~ JOBS>>
PROCEDURE REPT PROCHEAD; <<REPEAT CURRENT 1/0 OPERATION>>
PROCEDURE RSTT PROCHEAD; <<ABORT AND RESTART CURRENT OPERATION>>
PROCEDURE SPAC PROCHEAD; <<SINGLE SPACE DEVICE>>
PROCEDURE STAT PROCHEAD; <<DISPLAY ACTIVITY STATUS>>
PROCEDURE STJB PROCHEAD; <<START A JOB>>
PROCEDURE STOP PHOCHEAD; <<STOP ALL OP£RATIONS>>
PROCEDURE STRT PROCHEAD; <<START OPERATIONS>>
LOGICAL PROCEDURE CMNDSRCH;
BEGIN <<BINARY SEARCH FOR COMMAND MNEMONIC>>
INTEGEH N1:=0, N2:=20, K=X;
BYTE ARRAY Tl<0:3>=Q;
LABEL NEXT,LESSL,FOUND,EXIT;

MOVE Tl:=IMAGPTR,C4l; <<TRANSFER COMMAND MNEMONIC>>
NEXT : I F N 1 + 1 = N2 T HE N RE TUR N; < < N 0 T FO U ND > >

K:=CNl+N2l&LSR<l>; <<FIND TABLE MIDPOINT>>
ASSEMBLE C ODUP; LDD MNEM, I, X; DCMP); <<COMPARE fYiNEMONiCS > >

IF = THEN GOTO FOUND;
IF < THEN GOTO L~SSL;
Nl::K; <<MOVE LOWER TABLE LIMIT UP>>
GOTO NEXT;

LESSL: N2::K; <<MOVE UPPER TABLE LIMIT DOWN>>
GOTO NEXT;

FOUND: ASSEMBLE< LOAD P+ l ,X); <<LOAD CORRESPOND I NG PCAL>>
GOTO EXIT;
ASSEMBLE<

PCAL ALTR; PCAL BKLG; PCAL BKSP; PCAL DLTD; PCAL DLTJ;
PCAL DRIN; PCAL DSPL; PCAL HOLD; PCAL JBID; PCAL LIST;
PCAL LOCI; PCAL RELS; PCAL REPT; PCAL RSTT; PCAL SPAC;
PCAL STAT; PCAL STJB; PCAL STOP; PCAL STRT

<<END ASS2MBLE>>);

2-16

EXIT: CMNDSRCH:=TOS; <<RETURN PCAL INSTRUCTION>>
END <<CMNDSRCH>>;
SUBROUTINE GETCOMMAND;
BEGIN

@IMAGPTR:=@IMAGE; <<RESET POINTER TO START OF BUFFER>>
WORDBUF: =C 8/1.15 ,8/i.15 l; <<RETURN,RETURN>>
MOVE WORDBUFCl):=WORDBUF,C40); <<SET IMAGE TO RETURNS>>
I NP UT (I MAGE) ; < <R EA D A C OM MA ND > >

END <<GETCOMMAND>>;
SUBROUTINE SKIPBLANKS;
BEGIN

SCAN IMAGPTR WHILE 7.6440,l;
IF CARRY THEN ASSEMBLECDEL,ZERO); <<BLANK LINE - RETURN 0>>
@IMAGPTR:=TOS; <<RETURN POINTER OR 0>>

END <<SKIPBLANKS>>;
SUBROUTINE ERROR (NUMBR);

VALUE NUMBR;
I NT EGER NUMBR;

OUTPUT<EBUF,NUMBR>; <<PRINT DIAGNOSTIC>>
<<START OF MAIN CODE>>
READ: GETCOMMAND;

SKIPBLANKS;
IF @IMAGPTR=0 THEN GO TO HEAD; <<BLANK LINE>>
TOS:=CMNDSRCH; <<GET APPROPRIATE PCAL>>
DUPLICATE;
IF TOS=0 THEN BEGIN

ERROR<*>; <<ERR 0 -INVALID COMMAND>>
GOTO READ;

END;
@IMAGPTR:=@IMAGPTR+4; <<SET POINTER BEHIND MNEMONIC>>
SKIPBLANKS; <<LOCATE OPERAND STRING>>
TOS:=@IMAGPTR; <<PASS POINT~R BY VALUE, 0 IF NO OPRNDS>>
TOS:=@ERCODE; <<PASS ERROR CODE BY REFE~ENCE>>
ASSEMBLE<XEQ 2); <<CALL PROCEDURE>>
DEL; <<REMOVE PCAL INSTRUCTION FROM STACK>>
IF ERCODE>0 THEN ERROR<ERCODE>;
GOTO READ; <<READ ANOTHER Sh.TEMENT>>

END <<COMMAND INTERPRETER>>.

2-17

EXERCISES FOR SECTION II

1. Some of these declarations contain errors. Change those which are invalid so that they will
be valid SPL/ 3000 declarations:

a) INTEGER I, J := 100, K;

b) REAL NUMBER, INTEGER SUM:= O;

c) INTEGER A := 123.456, TESTER := % 6412;

d) REAL ZED := B := C := O;

e) INTEGER INTEGERB := % 102;

f) INTEGER 7BETA ="A";

g) INTEGER BIGGE := 35767;

h) SAM:= O;

i) REAL BEGIN := 1.414;

j) INTEGER $MIKE:= 1;

2. Assume these declarations:

BEGIN

REAL NUMBER:= 123.45, CRUNCHER:= 456.67, TOTAL;

INTEGER I:= 3, K := 6, J := -1, SUM, TEMP,M;

Some of the assignment statements that follow contain errors. Change those which are
invalid so that they will be valid SPL/ 3000 assignments:

a) SUM :=I+ NUMBER I 2;

b) TOTAL:=\ (NUMBER - 2 - CRUNCHER)\ I (3.1417 /2.);

c) TEMP:= K +<<ADD M TO SUM>>SUM - I;

d) TEMP : = (I + J) - K <<SUBTRACT AND SA VE> ;

e) TOTAL:= REAL (I+ J) AK/\ CRUNCHER* REAL (TEMP)\;

f) TOTAL:= NUMBER** 2 +CRUNCHER** 2;

g) TEMP := K * SUM :=I+ K + J;

h) SUM := M MODS

2-18

3. Assume these declarations:

BEGIN

LOGICAL NBITS := % 177777, Rl := 0, R2 := 0, R3 := 0, R4 := 0, R5 := O;

LOGICAL AB :="AB", CD :="CD", EF := "EF";

What is the result in each of the assignment statements below?

a) Rl.(1:4) := NBITS;

b) R2 :=AB CAT CD (8:8:8);

c) R3 :=(AB CAT CD(0:0:8)) CAT (CD CAT EF(0:0:8)) (8:8:8);

d) R4.(15:1) := AB.(8:8) + AB.(0:8);

e) R5.(13:3) := % 423.(13:3) + NBITS.(4:3) + % 100000.(0:3);

4. Assume these declarations:

BEGIN

INTEGER AB :="AB",

RA := 0, RB := 0, RC := 0, RD := 0, RE := O;

What is the octal result in each of these assignment statements?

a) RA:= ((AB.(8:8) + 3) & LSL(8) CAT AB(8:0:8)) & CSL(8);

b) RB.(8:8) := -1.(0:1) & ASR(8);

c) RC:= "1".(13:3) &LSL(3) + "2".(13:3) & LSL(3) + "3".(13:3) & LSL(3);

d) RD.(15:1) :=RE :=AB & CSR(8) CAT "Z"(l3:13:3);

5. Reorder the lines of code shown below to restructure the program correctly.

REAL PROCEDURE RAND; OPTION EXTERNAL;

REAL ANS, X := 1.414, Z := .256;

BEGIN

ANS := RAND * X - Z;

END.

6. What are the five components of an SPL/3000 program?

7. Which of the five program components cannot be omitted from a program?

8. What is a compound statement? How is it treated by the SPL/3000 compiler?

2-19

SECTION 111
Transfer of Control

In this section these topics related to transfer of control are introduced:

• Labels

• GO TO Statement

• Logical Expressions

• Logical Assignment

• IF Statement

• IF Assignments

LABELS

In order for one statement to refer to another it must be able to identify that statement. In
SPL/3000, labels are used to identify statements.

A label must always be followed by a colon (:) to separate it from the statement that it identifies.
Here are some typical uses of labels:

START: BEGIN

A:=B+l;

B := C * 2;

END;

STOP: ABCOND := O;

(labels are underlined with dashes for illustration)

Labels are declared in the data declaration portion of the program. One label can be used to
identify only one statement in the program. The format of a label declaration is

LABEL list of identifiers ;

For example,

LABEL START, STOP;

LABEL SPIN;

3-1

NOTE: Labels do not have to be declared in SPL/3000 unless the programmer
prefers to declare them for consistency and documentation. When they
are not declared, labels declare themselves when they are used.

Position of Labels

In general, the position of a label is valid if it precedes or follows a statement:

Valid Label Position

~!~~T_: A := B;

IF A< B THEN START2: X := Z;

BEGIN

START3: A := B;

X := Z;

STOP:

END;

Invalid Label Position

A := B + C * ST ART: X + 1;
- - - --

A := B + C * (~T3-~.'~: X := Z + 2 * X);

GOTO STATEMENT

The GOTO statement transfers control to a location somewhere in the program specified by a
label. The labeled statement can occur before or after the GOTO and can itself be a GOTO
statement. GO label, GOTO label, and GO TO label are equivalent formats.

For example,

GOTO LINKSPOT; <<or GO TO or GO>>

LINKSPOT: A :=A+ C;

LOGICAL EXPRESSIONS

A logical expression is similar in form to an arithmetic expression-it consists of logical con
stants, logical variables, logical functions, and logical operators. The purpose of a logical
expression is to evaluate certain conditions and relations to produce a value which can be
interpreted either arithmetically (as a positive number) or logically (as TRUE or FALSE).
A logical expression is not a statement of fact but rather an assertion that may be true or
false at any given time.

3-2

Logical Constants

Logical quantities in SPL/3000 are 16-bit positive integers. Operations on logical values are
provided by the hardware for addition, subtraction, multiplication, division, complement, and
comparison. A logical value is considered TRUE if its integer value is odd, FALSE if its value
is even (that is, only the last bit is checked when the result of a logical expression is used to
make a decision).

Logical constants are TRUE, FALSE, or any integer constant.

Use of TRUE and FALSE is equivalent to the numeric values -1 and 0 (177777 8 and 000000 8).

Logical Variables

An identifier is declared to be type LOGICAL by means of a declaration:

LOGICAL A:= "Z.", <<initialized>>

B :=TRUE,

C, <<not initialized>>

D := %17;

Whenever a logical identifier is used in the program, the compiler recognizes that it is type
LOGICAL and is designed for logical values and arithmetic. Logical variables can be initialized
in the same manner as integer and real variables, as shown in the preceding example.

Logical Operators

Logical operators have the following hierarchy (those at the top of the list are performed first
in the absence of overriding parentheses; when operators have equal rank, execution occurs from
left to right):

Rank 1: NOT Unary one's complement
Primaries (see "Forming Logical Expressions")

Rank 2: * Logical multiply
I Logical divide
MOD Logical modulo (remainder)

Rank 3: + Logical add
- Logical subtract (no unary logical minus)

Rank4: =,>,<,<>,>=,<=
Algebraic or logical comparison
Byte Testing (see Section V).

Rank 5: LAND Logical conjunction

Rank 6: XOR Logical exclusive or

Rank 7: LOR Logical inclusive or
Integer range check (a<= b <= c)

3-3

UNARY COMPLEMENT

NOT is an operator which requires only one operand. The value of each bit of the operand is
changed in a one's complement fashion. (All one bits are reset to zero, and all zero bits are set
to one.)

LOGICAL ARITHMETIC

Logical arithmetic (+, -, *, /, MOD) assumes that the 16-bit operands are always unsigned
numbers. A logical value can range from 0 to 65,535 decimal (0 to 1 77777 octal), but has no
sign. A signed integer, on the other hand, can be positive or negative, but (since it has only
15 bits for magnitude) can only range from 0 to 32,767 (and 0 to -32,768). The following
example shows the difference between the logical and integer interpretations of a 16-bit pattern.

1777773
octal
value

+65535
logical
interpretation

-1
integer
interpretation

Thus, the same binary pattern can have two interpretations, a logical value and an integer value.
This diagram shows how the logical and integer number lines overlap:

LOGICAL NUMBER LINE

0 +32,767 +32,768 +65,535

INTEGER NUMBER LINE

0 +32,767 -32,768 0

(Two's complement)

Patterns that would be negative integers if used as integer numbers are treated as very large
logical values, and vice versa. For exact details on all types of arithmetic consult the HP 3000
hardware documentation.

RELATIONAL OPERATORS

There are two types of relational comparisons in SPL/3000-logical and algebraic. Logical
compares are formed by placing one of the relational operators between two logical quantities.
Algebraic compares are formed by placing one of the relational operators between two
arithmetic expressions:

logical relation logical

arithmetic relation arithmetic

3-4

The possible relations are: equal(=), less than(<), greater than(>), not equal(<>), less than
or equal(<=), and greater than or equal(>=). Logical compares use the LCMP instruction to
perform a 16-bit comparison which treats the sign bit as a data bit. Algebraic compares use one
of three instructions (CMP, DCMP, FCMP) to perform comparisons taking into account the sign
bit (negative numbers are considered to be smaller than positive numbers). The difference can
be seen in this example:

1777778 LCMP 1 < <177777 8 is greater>>

177777 8 CMP 1 <<1 is greater (since 177777 8 = -1)>>

The result of a compare is a TRUE or FALSE value (-1or0):

100 > 5 ~TRUE (-1)

100 < 5 ~FALSE (0)

BYTE TESTING

SPL/ 3000 logical expressions allow the testing of bytes (characters) for various conditions. The
complete set of byte testing and comparing facilities is discussed in Section V. Elements of
the set allow testing when a string equals another string and when a particular byte is of a
particular type (alphabetic, numeric, or other). The result is always TRUE or FALSE.

For example,

INBUF ="/*"LOR INBUF ="AB" <<STRING COMPARISONS>>

CHAR= ALPHA <<Is CHAR alphabetic?>>

CHAR < > NUMERIC< <Is CHAR not numeric?>>

RANGE COMPARISON

The following format tests whether a particular integer expression lies within a range determined
by two other integer expressions:

a<= b <= c

a, b, and c are integer expressions.

The result is TRUE (-1) only if bis both less than or equal to c and greater than or equal to a.
In all other cases the result is FALSE (0). This test is performed by the CPRB (compare range
and branch) instruction which uses the index register.

10 <= 20 <= 30 ~TRUE (-1)

10 <= 5 <= 30 ~FALSE (0)

3-5

Forming Logical Expressions

Logical expressions are formed by combined logical primaries, logical operators, and true/false
tests on arithmetic expressions. Primaries can be any of the following:

Constants - TRUE LOR 23

Logical variables - ABC/ Q39

Logical bit operations - ABC & LSR(2) I 3

Logical expressions in parentheses (ABC+ 2) / 3

Logical primaries preceded by NOT- NOT ABC
NOT ((ABC+ 2) I 3)
NOT (ABC & LSR(2))

Logical assignment statements -ABC+ (ABC:= ABC LOR CBA)

NOTE: The value is assigned to the variable and used in the expression to follow.

Tests on arithmetic expressions (e.g., relational operators or compare range test) can also be used
in logical expressions as primaries:

(100 <= A<= 200) LAND (0 <= B <= 23)

(2 < A) LOR (B < = 3)

The primaries in a logical expression are evaluated from left to right with execution following
the hierarchy of operators (high rank before low rank.)

In general, the result of a logical expression is left as a one-word operand on the top of the stack.
An exception is when a relational operator is encountered in which case the value of -1
(TRUE) or 0 (FALSE) is left on the top of the stack. Another exception is when the result of
a relational operator is used to make a decision in a conditional branch (see "IF Statement");
in this case nothing is left in the stack and the statu.s register is examined for the result.

For example (assume logical variables in all cases),

Valid

(A LOR B) LAND C * (N23 < N24) ,__ ____ , I I I

A+ B = C LAND D

~
NOT A MOD B LOR C = D LAND E

T I Y I
I

NOT ((A MOD B LOR C = D) LANDE) I I I',~ I
I

3-6

Invalid
A*LANDB

A (BLAND C)

-A LAND B

Type Transfer Functions

Logical expressions can be used in arithmetic expressions by converting them with type transfer
functions:

REAL (logical expression)
INTEGER (logical expression)
DOUBLE (logical expression)
BYTE (logical expression)

BYTE and INTEGER do not change the 16-bit value of the logical expression; it merely says to
use it as an integer value. DOUBLE expands the 16-bit logical result into a 32-bit positive
double integer. REAL floats the value to a 32-bit floating point.
Arithmetic expressions can be used in logical expressions by converting them to type logical
with type transfer functions

LOGICAL (integer expression)

LOGICAL (double integer expression) {leaves 32 bit value; special case; see Systems
Programming Language manual}

LOGICAL (FIXR (real expression))

LOGICAL (FIXT (real expression))

LOGICAL (byte expression)

ASSIGNMENT OF LOGICAL EXPRESSIONS

Logical expressions can be assigned to one-word variables (type logical, integer, and byte) with
an assignment statement:

LOGICAL EXIT, LASTRECORD, COMMAND, ANS;

INTEGER LOLIMIT, DATA, HILIMIT, DELTA;

EXIT := LASTRECORD LOR NOT (LOLIMIT <=DATA<= HILIMIT);

COMMAND :=DATA< DELTA

ANS:= LOGICAL (DELTA)+ COMMAND* EXIT;

DATA:= (EXIT:= %60) +(ANS:= FALSE) LOR (%170707 LAND COMMAND);

3-7

IF STATEMENT

When logical expressions are used with the IF statement, they give the programmer a very
powerful tool for changing the order of execution on the basis of what happens during
execution. The IF statement chooses which of two statements to execute based on whether
a certain condition is true. For example,

IF LASTRECORD LOR NOT (LOLIMIT <=DATA<= HILIMIT)

THEN

BEGIN

END

ELSE

EXIT :=TRUE;

LASTVALUE :=DATA;

HILIMIT :=DATA;

There are two formats for the IF statement:

Format 1

IF condition THEN statement; <<Format 1>>

IF condition THEN statement

ELSE statement; <<Format 2> >

condition consists of logical expressions and/or machine-dependent tests

statement is any SPL/3000 statement including compound statements (BEGIN-END)
and IF statements (unlimited nesting of IF statements is allowed)

In this case, control is transferred to the statement following the THEN if the condition is TRUE.
If the condition turns out to be FALSE, control falls through to the first statement following
the IF statement.

IF THEN statement ;

!
---- CONTINUE: - - -

For example,

IF A< B THEN NX :=A+ B;

IF NOT (FINAL LOR SUSPICIOUS) THEN

BEGIN

TEST'DONE := FALSE;

GO TO AGAIN;

END;

3-8

Format 2

In this case, there are two alternative statements within the IF statement. If the condition
turns out to be TRUE, control transfers to the statement following THEN; if the condition
turns out to be FALSE, control transfers to the statement following ELSE.

IF THEN statement

false ELSE statement;

CONTINUE: - - -

When the statement chosen is complete, execution continues with the first statement following
the IF statement.

Valid
IF A< B THEN XA := XA +A

ELSE XA := XA + B;

IF TESTV AR THEN Y := Y + 1

ELSE IF EXTRATEST THEN Y := Y -1;

Invalid

IF TEST THEN A :=A+ B; ELSE A :=A - B;

< <; should not precede ELSE>>

IF Conditions

The conditions which are used in IF statements to make decisions are composed of two items:
logical expressions and branch words. Logical expressions have been covered already; branch
words are hardware-dependent branch conditions:

Branch Word

CARRY

NOCARRY

OVERFLOW

NOVERFLOW

IABZ

DABZ

IXBZ

DXBZ

Carry bit on

Carry bit off

Overflow bit on

Overflow bit off

True Condition

Increment TOS (S - 0). True if result is zero.

Decrement TOS (S - 0). True if result is zero.

Increment Index Register. True if result is zero.

Decrement Index Register. True if result is zero.

3-9

See Section IV

Branch Word

<

<=

>
<>

>=

True Condition

Condition code equals 1

Condition code equals 2

Condition code equals 1 or 2

Condition code equals 0

Condition code equals 0 or 1

Condition code equals 0 or 2

Logical expressions and branch words can be combined using two special branch operators:
OR and AND. AND has precedence over OR except that this can be overruled by using paren
thesis around the OR:

IF (CARRY OR OVERFLOW) AND A= 0 THEN

OR and AND generate branch instructions such as BCC, and BOV. They never generate
arithmetic instructions such as LOR and LAND. All parts of the condition may not be executed
every time, since OR and AND branch out of the condition as soon as the truth value of the
condition is determined.

For details on the implications of branch words (overflow, DXBZ, condition codes, etc.) consult
the hardware documentation.

Nested IF Statements

IF statements can be nested to any level; they are evaluated in the following manner: the
innermost THEN is paired with the closest following ELSE and pairing proceeds outwards.

IF condition

I THE~F condition

I THEN

l
IF condition

[
THEN statement

ELSE statement

ELSE statement;

<<NO OUTERMOST ELSE PART>>

<<COMPOUND STATEMENTS CAN BE USED TO OVERRIDE STANDARD
PAIRING>>

3-10

Valid IF Statements

IF A> B THEN C := A;

IF A> B THEN C := B ELSE C := A;

IF B LOR C LAND NOT D THEN GO TO START

ELSE GO TO FINISH;

IF OVERFLOW AND N = 0 THEN

BEGIN

NO:= 255;

GO TO RESTART;

END

ELSE

BEGIN

N:=N-1;

GO TO START;

END;

Invalid IF Statements

IF A> B THEN A:= B; ELSE B :=A; <<invalid;>>

IF A> B THEN A:= B ELSE B :=A ELSE XY :=A+ B;<<too many ELSES>>

IF CARRY LAND A = 0 THEN N := N + 1; <<incorrect use of LAND>>

IF EXPRESSIONS IN ASSIGNMENT STATEMENTS

A powerful use of logical expressions and branch words is in the Expression IF construct. This
construct uses a condition (the same rules apply as in IF statements) to choose between two
alternative expressions:

variable :=IF condition THEN expression ELSE expression

If the condition results in a TRUE value, the expression after THEN is assigned to the variable;
if the condition results in a FALSE value, the expression after ELSE is assigned to the variable.
Both the THEN part and ELSE part are required. The expressions can be any valid SPL/3000
expressions, including arithmetic expressions, logical expressions and IF expressions. Both
expressions must result in data constructs of the same word size (byte assumed to be word).
IF expressions can also be used in the middle of other expressions:

A:= B * C +(IF A= 0 THEN N ELSE A);

Valid IF Expressions

N := IF A> B THEN A ELSE B;

M :=IF X = Z + 26 THEN X * Z ELSE X/Z;

MAN:= A* B +(IF 15 <= N <= 25 THEN N ELSE O);

3-11

Invalid IF Expressions

N :=IF A< B THEN A; <<MJSSING ELSE>>

N := IF A < B THEN IF A < C THEN A ELSE B ELSE C
ELSE D; <<TOO MANY ELSES>>

EXAMPLE 3-1. DATE VERIFICATION

This program illustrates the use of the IF and GOTO statements to verify that a given date
(month, day, year) is valid. The date is entered from the keyboard in the form mm, dd, yy
(where mm= month, dd =day, yy =year of century). mm is checked for the range 1 <=mm
<= 12; dd is checked for range according to month, including a check for February and Leap
Year.

Input/Output

ENTER A DATE MM,DD,YY
07,15,71
GOOD DATE
ENTER A DATE MM,DD,YY
00' 15 '42
WRONG INPUT
ENTER A DATE MM,DD,YY
02, 29, 84
GOOD DATE
ENTER A DATE MM,DD,YY
09 ,3 0' 85
GOOD DA TE
ENTER A DATE MM,DD,YY
04,31,95
WRONG INPUT

Listing

BEGIN <<EXAMPLE 3-1. DATE VERIFICATION>>
COMMENT:

THIS PROGRAM CHECKS A DATE FOR VALIDITY. CTHE DATA INPUT
FORMAT IS MM DD YY • >
EXAMPLES: FEBRUARY 29 IS A VALID DATE ONLY FOR LEAP YEARS, AND
SEPTEMBER 31 IS NEVER A VALID DATE.
NOTE: "INPUT" AND "OUTPUT" ARE DUMMY PROCEDURES WHICH SIMULATE
INPUT, OUTPUT, AND CONVERSION - THEY ARE NOT PART OF SPL/3000;

BYTE ARRAY GOODMSGC0:8>:="GOOD DATE";
BYTE ARRAY ERRORMSGC0:10)::"WRONG INPUT";
BYTE ARRAY HEADC0:20l:="ENTER A DATE MM,DD,YY";
INTEGER MO NTH,

DAY,
YEAR,
LIMIT;

3-12

LABEL ERROR,DAYCHECK;
<<END OF DECLARATIONS>>

DAY CHECK:

OUTPUTCHEAD); <<PRINT HEADING>>
INPUTCMONTH,DAY,YEAR); <<READ DATE>>
IF NOTCl<=MONTH<=l2)0RCrAY<=0>0RCYEAR<0) THEN GOTO ERROR;
IF MONTH=2 THEN <<FEB IS SPECIAL CASE>>

BEGIN
LIMIT::lF YEAR MOD 4=0 THEN 29 <<LEAP YEAR>>

ELSE 28;
GOTO DAYCHECK;

END;
LIMIT:=IFCMONTH=9lORCMONTH=4>0RCMONTH=6>0RCMONTH=ll>THEN 30

ELSE 31;

IF l<=DAY<=LIMIT THEN
OUTPUTCGOODMSG> <<VALID DATE>>

ELSE
ERROR: OUTPUTCERRORMSG>; <<PRINT ERROR MESSAGE>>
END <<DATE VERIFICATION>>.

3~3

EXERCISES FOR SECTION III

1. Identify those statements containing invalid label positions.

a) SECTIONl : Y :=A* B + X; SECTION2: C :=A" 2 + B" 2;

b) Z := (X + Y) + SECTION3: (X - Y);

c) IF FLAG THEN DOIT: Z := -Z;

d) BEGIN X := O; Y := O; START: IF TOTAL> 10.El 7 THEN GO QUIT; END;

e) BEGIN

TEMP:= 1./A + B;

IF A< 0 THEN GO AGAIN;

END; STOP:

2. Rewrite the collection of statements below into an equivalent program section that
eliminates as many labels as possible.

LOOP:

COMPUTEl:

COMPUTE2:

COMPUTE3:

ENDLOOP:

IF TESTWORD > 0 THEN GOTO COMPUTEl;
IF TESTWORD = 0 THEN GOTO COMPUTE2;
IF TESTWORD < 0 THEN GOTO COMPUTE3;

Y :=A+ B + C;
GO TO ENDLOOP;

Y := l./A + B + C;
GO TO ENDLOOP;

Y :=A* B * C;

COUNT:= COUNT+ 1;
IF COUNT<= 10 THEN GOTO LOOP;

3. Single word values (16 bit) in the HP 3000 can be type INTEGER or LOGICAL. In
the following exercise specify the INTEGER interpretation, LOGICAL interpretation and
TRUE/FALSE interpretation by completing the table provided.

OCTAL
NUMBER AS DECIMAL INTEGER AS DECIMAL LOGICAL TRUE/FALSE

177777

000001

000377

000000

177776

100000

000003

000004

000005

000006

3-14

4. Mark the following logical expressions to show the order of evaluation. Assume that all
variables are type Logical.

Sample: A LAND B +NOT D

I I y

a) A LOR BLAND C LORD

b) NUMBER < > 0 LAND NUMBER * SCALE <= MAX

c) X + Y / (Y - 5) *NUMBER LAND %77

d) A* B <>NOT D/C

5. Assume these declarations:

BEGIN
REAL Z;
LOGICAL A, B, C, RESULT;
INTEGER D, E, F;

Identify the invalid logical assignment statements among those below:

a) A:= B OR C;

b) A:= B LOR C;

c) A := B AND C;

d) A := B LAND C;

e) RESULT:= FIXR(Z)//B;

f) A := B + LOGICAL (D MOD 8 + NOT E * 2 / F * 3);

g) RESULT :=A> BLAND B # C;

h) A:= D + E;

i) RESULT:= CLORA:= B;

j) RESULT:= A+ B < D * E;

k) RESULT:= NOT A.(6:3) LOR (A:= BLAND %177);

6. Assume these declarations:

LOGICAL A, B, C;
INTEGER D, E, F;

Examine the logical expressions given below. Rewrite those which are invalid, using type
transfer functions where required, to produce syntactically correct logical expressions.

a) A= B LORD<> %52

b) D=ELANDF<D

c) C MOD D + F

d) C LOR D < > F /E

3-15

NOTE: In the following exercises you must construct SPL/3000 statements to
perform a given task. In order to make the exercises fun as well as
meaningful each test will involve selecting a "secret agent" based on
specific criteria. The exercises are arranged to give you practice in con
structing IF statements of varying form.

The table below indicates the variable names, data types and codes that
you will need to interpret the selection criteria of the individual exercises.

Secret Agent Characteristic Table

V ALUES-(RANGE)
or

CHARACTERISTIC VARIABLE TYPE [CODES] REMARKS

SERIAL NUMBER ID
AGE AGE
HEIGHT HT
WEIGHT WT
COLOR EYES EYES

SEX SEX

OCCUPATION COVER JOB

LANGUAGE LANG

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

LOGICAL

INTEGER

INTEGER

0-100
21-150
48-84
80-250
1-BROWN
2-BLUE
3-GREEN
4-GRAY
5-0THER
TRUE= MALE
FALSE = FEMALE
0-STUDENT
1-ATHLETE
2-ENGINEER
3-TEACHER
4-BUSINESSMAN
5-SPY (DOUBLE AGENT)
6-PLUMBER
7-ARTIST
8-SCIENTIST
9-SERVANT
0-RUSSIAN
1-CHINESE
2-AMERICAN SLANG
3-SPANISH
4-SWAHILI
5-ENGLISH
6-POLISH
7-LATVIAN
8-ARABIC
9-GERMAN

YEARS
INCHES
LBS

Example: Test only the variables AGE and EYES. If the value of age is between 21 and
25 and the code for blue eyes is present then transfer to a label called
FOUNDONE. If either test condition fails transfer to a label called NEXT.

Solution: IF (21 <=AGE<= 25) AND EYES= 2 THEN GOTO FOUNDONE

ELSE GOTO NEXT;

3-16

7. Construct SPL/ 3000 statements to perform tests based on the four sets of criteria below.
Use the values specified for each variable to construct each test. In cases where no entry
is shown the variable need not be tested.

ID AGE HEIGHT WEIGHT EYES SEX COVER LANGUAGE
a) 30 or less 5' 6" M Student Am slang

b) 30-70 5' 2'' 90-110 Blue F Servant/ Latvian
artist/
teacher

c) above 50 21-24/ 6' 7" above 190 {Brn or M} Athlete/ Swahili/
37-50 but not scientist German

both

d) 45-50 (Brn0~d Ml (Businessma~Rand Russian l
Blu and F SPY and Chinese

8. Assume that as a result of the last exercise no agent was found who possessed all of the capa
bilities required. Write a sequence of statements that will select the most qualified candidate.
Assume that each successful test has a point value of one. Unsuccessful tests have a point
value of zero. Accumulate the total point value for each agent being tested for each of the
selection criteria in Exercise #7.

9. Assume that an agent is required who has the largest number of necessary conditions listed
below. The conditions are in priority order, such that, if an agent fails to meet any condi
tion he is not even checked for the next. Each criteria from lowest priority to highest has
an increasing point value. Each test is worth a point; perform the tests and return the total
(failure to first test returns O; passing 5 tests returns 5). (Hint-use nested IF assignment
statement.)

Most important
Selection Criteria

Least important

LANGUAGE SEX HEIGHT WEIGHT AGE EYES COVER
a) RUSSIAN MALE (5' 9"-6' 3") 160-210 21-35 BLUE SPY

SEX AGE HEIGHT WEIGHT EYES COVER LANGUAGE
b) FEMALE 21-25 4'10"-5'5" 95-120 GRAY TEACHER SWAHILI

10. Examine the two IF statement constructs shown below and determine the appropriate values
of X required to complete the truth tables provided.

Assume: INTEGER X; LOGICAL Ll, L2;

Case I

x := 0

IF Ll THEN BEGIN

IF L2

THEN X := 1

END

ELSE X := 2;

Case II

3-17

X := O;

IF Ll THEN

IF L2

THEN X := 1

ELSE X := 2;

Table I Table II

3-18

L 1 L2 X

~
I: I: I I

SECTION IV
Looping Constructs

This section covers some topics related to looping operations:

• Compile-time constants (EQUATE)

• Abbreviations (DEFINE)

• Indexing (index register)

• Sets of data which can be indexed (arrays)

• Looping control (FOR, DO-UNTIL, and WHILE-DO statements)

• Computed transfers (SWITCH and CASE)

EQUATE DECLARATION

An EQUATE declaration assigns an integer value to an identifier. EQUATE is only a compile
time convenience; it does not allocate any storage, but merely provides a form of abbreviation
for constants. When an equated identifier is used, the appropriate constant is substituted in its
place. When EQUATEs are used instead of actual constants, programs can be changed simply;
instead of replacing every occurrence of a constant, only the EQUATE declaration need be
changed. The format of an EQUATE declaration is

EQUATE list of equates;

Each item in the equate list is an identifier followed by "=" and an integer constant expression
consisting of operators (+, -, *, /), parentheses, integers, and previously defined equates.
Normal rules of precedence apply to the operators. The value defined by the expression is
assigned to the identifier.

Valid EQUATE Declarations

EQUATE X = 1, Y = X + 1, Z = Y + 1;

EQUATE T = Z / 2 - 3 + X, N = (T + 3) * Z;

A:= (X + Y) * (T - N); <<USE OF EQUATES IN ASSIGNMENT>>

Invalid EQUATE Declarations

EQUATE A= B = C = 4; <<multiple equate assignments not permitted>>

In the preceding valid EQUATEs X, Y, Z, T, and N equal 1, 2, 3, - 1, and 6 respectively.

4-1

EQUATE is not used for address equivalencing in SPL/3000 as it is in some languages. The
conventions for referencing identifiers to specific addresses are covered in Section VII.

DEFINE DECLARATION

A DEFINE declaration assigns a block of text to an identifier. Whenever the identifier is used
in the program thereafter, the assigned text replaces the identifier (except in comments). The
format of a DEFINE declaration is

DEFINE list of definitions ;

Each definition is constructed as follows:

identifier= text#

A DEFINE is invoked by inserting the identifier into the program where its corresponding text
will make sense. DEFINEs can be nested; that is, defined identifiers can be used in the text of
subsequent defines. Also, DEFINEs can be used anywhere, even in other declarations. For
example,

DEFINE I = A, B, C, D, E #;
INTEGER I;

INTEGER A, B, C, D, E ;

The two declarations on the left have the same effect as the declaration on the right. A good
example of a DEFINE occurs in Example 2-2 where it is used to abbreviate a long, repeated
procedure declaration.

INDEX REGISTER

The index register is a 16-bit program-accessed register which can be used as a subscript for
arrays and pointers, as a simple arithmetic register, and as a FOR loop variable. In addition, the
index register is used by several specialized instructions (IXBZ, DXBZ, CPRB, TBX, MTBX,
SCAN, TNSL, PLDA, PSTA, LLSH). The index register can be used as a variable in SPL/3000
programs by declaring a variable of type LOGICAL, INTEGER, or BYTE and equivalencing it
to the hardware index register. The equivalencing is done by following the identifier in the
declaration by the sequence "=X." For example,

INTEGER INDX = X;

LOGICAL X = X;

Xis not a reserved word which always means the index register; it can be used as an identifier
to mean anything the programmer desires. X has a reserved meaning only if it occurs after an
equals sign(=) in a declaration such as the above. Thus, the declaration below has nothing to
do with the index register; it merely declares a simple variable that happens to be named X:

INTEGER X;

4-2

All variables which are referenced to the index register will have the same value in a program.
Since the index register is used implicitly in all array indexing and many other constructs of
SPL/3000, the contents of variables equivalenced to the index register can change dynamically.
The current value of the index register is the last value established there. The compiler does
not save the value of variables referenced to the index register (except that tlie hardware saves
the index register contents upon procedure entry and restores it upon procedure exit). The
programmer must maintain the integrity of variables equivalenced to the index register if he
desires consistent results.

ARRAYS

An array is a block of contiguous storage which is treated as an ordered sequence of "variables"
having the same data type. These "variables" are accessed using a single identifier to denote the
array and a subscript number to denote the particular "variable" (element) within the array.
Thus array elements are sometimes called subscripted variables.

SPL/3000 provides one-dimensional arrays (only one subscript is allowed,) in all data types
(integer, logical, real, byte, long, double). Significant facts about SPL/3000 arrays are that sub
scripting automatically uses the index register to indicate the element number (since this is
what the hardware provides); that there is no compile-time or run-time bounds checking (it is
possible to access an array element beyond the declared bounds of the array); that arrays can be
given initial values during declaration (but are not automatically initialized to any default value
such as O); and that arrays can be located in any region of the user's domain which can be
addressed relative to the DB, Q, S, or P registers.

Several advanced array features are covered in Section VII: explicit address referencing, unde
fined bounds, and explicit storage allocation.

Array Declarations

Arrays and their attributes, must be declared. The declaration determines the array's identifier,
data type, bounds (number of elements), and initial values. The format for global arrays is:

type ARRAY declaration list ;

type is INTEGER, LOGICAL, or REAL (also BYTE, DOUBLE, and
LONG - to be covered later); default type is LOGICAL;

declaration list is a list of elements of the form:

identifier (lower bound : upper bound)

lower bound and upper bound are integer constant expressions
(-32768 <=integer<= +32767); the upper bound must not be
less than the lower bound.

4-3

For example,

Valid ARRAY Declarations

INTEGER ARRAY SORT (0:9), SILT (-5:22);

REAL ARRAY RESULTS (10:20);

LOGICAL ARRAY SINCERE (-7:-2);

ARRAY TRUTH'TABLE (1000:1100);

Invalid ARRAY Declarations

ARRAY SOME (5:-5); <<UPPER BOUND LESS THAN LOWER>>

Array Storage Allocation

For each array that is declared, a location in primary DB (DB + 0 to DB + 255) is allocated for
a data label (address) which points to the zero element of the array (the element with subscript
0). Then enough space is allocated in the secondary DB area (DB+ 256 and above) to accom
modate the elements defined by the array bounds. (Integer and logical arrays use the same
number of words as they have elements; real arrays use two words for each element.) The data
label is set to point at the zero element of the space allocated. If 0 is not within the declared
bounds of the array, the data label actually points to a location that is not part of the array.
The example below shows the space allocated for the declaration of four arrays in an SPL/3000
main program.

EXAMPLE OF SPACE ALLOCATION

Declarations

BEGIN

INTEGER ARRAY ADATA (0:15);

REAL ARRAY TPZD (-5:10);

LOGICAL ARRAY TABLE (10:20);

BYTE ARRAY DBUFR (0:80);

END.

NOTE: Byte addresses are inflated by a
factor of two in order to allow
true element indexing.
See Section V for details.

4-4

Primary
DB

Secondary
DB

,-4

I

Allocations

ADATA (0) address 1--1

TP ZD (0) address ~

TABLE (0) address 1-i ~

DBUFR (0) address
/

A
0 1...i

ADATA
15

-5
TPZD 0 l...,._J ,...._

10

10
TABLE

20

0
DBUFR

80

In the diagrams of this book secondary DB is shown as starting at DB+ 4008 (256 10) for
purposes of illustration. In actual practice the base of DB is adjusted by the compiler and the
loader so that no space is wasted in DB.

Array Initialization

Array declarations can be used to initialize array elements with constants. Only the last array
of any declaration list can be initialized. The format used to initialize an array is as follows:

identifier (bound : bound) := list of initial values

list of initial values consists of a series of constants and repeat groups (lists of constants
which have been enclosed in parentheses and preceded by a decimal
repetition factor) separated by commas.

Repetition factors allow large arrays to be initialized without writing out all the constants. For
example, the two declarations below are equivalent. The repetition factor in the first causes
the constants in parentheses to be used three times to fill the array.

INTEGER ARRAY A(0:8) := 3(1,5,10); =INTEGER ARRAY A(0:8) := 1,5,10,1,5,10,1,5,10;

Array elements are initialized from smallest to largest subscript and initialization will be partial
(low subscripts only) if there are not enough constants to fill the entire array. Repetition factors
cannot be nested. For example,

REAL ARRAY DTALOG (-1:3) := 1.,3.,4.7;

This means that DTALOG (-1) = 1.0, DTALOG (0) = 3.0, DTALOG (1) := 4.7, DTALOG (2)
is undefined, and DTALOG (3) is undefined.

Arrays of all data type~ can be initialized:

Valid Array Initialization

ARRAY A(l :10) := 1,2,3,4,5,6,7 ,8,9,10;

ARRAY N(5:10),MNM(-5:25) := "ABCDE", TRUE,5,93;

INTEGER ARRAY BOYS(l00:150) := 10(1,2,3,4,5);

INTEGER ARRAY GIRLS(l:150) := 5("AB", '' ", 25), 100(%77);

Invalid Array Initialization

INTEGER ARRAY MEN(0:5) := 6(36), WOMEN(0:5) := 6(32);
<<only last array can be initialized>>

When strings are used to initialize and array, the bytes of the string are taken from left to right
until exhausted. If an odd number of bytes is used to initialize a word array then the next
byte is initialized to a blank character to fill out the word.

4-5

Accessing Array Elements

A specific array element is accessed by specifying the array identifier followed by a subscript
(index) in parentheses. The index can be any expression or assignment statement which results
in an integer, logical, or byte value. The zero element of an array can be specified most
efficiently by using the identifier without an index.

identifier (index)

identifier <<ZERO ELEMENT>>

The index value is loaded into the index register and used to reference the array element. The
hardware provides true element indexing for byte, word, and double word elements. That is,
the value in the index register specifies the element offset (plus or minus) from the zero element
of the array, not the word offset. The memory reference instructions take into account the size
of the element (1h, 1, or 2 words) when performing indexing. The hardware does not, however,
perform any bounds checking to insure that the indexed element lies within the declared bounds
of the array. For example,

A:= NEW(N);

B := NEW(I :=I+ 1);

C := NEW(N) + NEW(N + 1);

D := NEW(20 + NEW(lO));

E :=NEW; <<ZERO ELEMENT>>

F := NEW(O); <<ZERO ELEMENT>>

IF STUFF(X + Z + (N * 2) / (N * 3)) = 0 THEN A := X;

SAMPLE ARRAY

BEGIN

INTEGER ODDSUM := O;

INTEGER ARRAY DATA (1:5) := 5,4,3,2,1;

<<START MAIN CODE>>

ODDSUM := DATA(l) + DATA(3) + DATA(5);

END.

FOR STATEMENT

A frequent operation in computing is the repetition of some calculation, incrementing a key
variable each time the calculation is performed. In SPL/3000 there are several constructs to
provide repetition or looping. The FOR statement is one of these; it is used to repeatedly
execute one or more statements. Each time the sequence is executed, an integer count variable
is incremented or decremented until some predefined limit is exceeded. The FOR statement
in SPL/3000 is very machine-dependent because it makes use of special-purpose looping in
structions (MTBA, TBA, MTBX, TBX). The other two methods of looping in SPL/3000 (DO
UNTIL and WHILE-DO) are less machine-dependent and more general, but do not provide
automatic incrementing or decrementing of a count variable.

4-6

Basic Form

Although there are four different formats of the FOR statement, the following one is basic:

FOR integer var := initial expr STEP step expr UNTIL limit expr DO statement;

integer var is any variable of type integer (including variables equivalenced to the
index register);

initial expr, are arithmetic expressions resulting in one-word quantities.
step expr,
limit expr

statement is any statement including a compound statement.

When the FOR statement is entered the first time, the value of initial expr, step expr, and limit
expr are calculated. Initial expr is stored into integer var and the other two values are kept on
the top of the stack. Then the integer variable is tested to check whether it exceeds the
limit value. If not, the statement after DO is executed. Each time the statement is executed,
the step value is added to the integer variable, which is then tested against the limit. When the
integer variable exceeds the limit, execution falls through to the statement following the FOR
statement. A negative step value branches when the variable is less than the limit. For example,

BEGIN

INTEGER I, MAX, RANGE, SUM:= 0,

A := 2, B := 4, C := 5, FOFI;

<<START FOR STATEMENT>>

FOR I:= MAX STEP-RANGE/4 UNTIL MAX-RANGE

DO BEGIN

END.

FOFI := A*I"2+B*I+C;

SUM := SUM + FOFI;

END;

FOR I := 3 STEP 1 UNTIL LIM DO A(I) := I*2;

FOR J := X + Y STEP A UNTIL B DO NUM(J) := A*B;

FOR K := N STEP 1 UNTIL STOP DO

BEGIN

NUl\1 (K) := NUM (K) + 1;

IF NUM(K) <APPOINT THEN

NUM(K) := NUM(K)/2;

A := NUM(K) + APPOINT

END;

4-7

Alternate Forms

If the "STEP step ex pr" part of the FOR statement is left out, a step value of one is assumed:

FOR integer var := initial expr UNTIL limit expr DO statement;

For example,

FOR I := 3 UNTIL LIM DO A(I) := I*2;

If the integer variable is preceded by an asterisk(*), the loop statement is executed once before
testing the integer variable. This guarantees that the loop statement is executed at least once,
even if it would fail on the initial test:

FOR * integer var := initial expr STEP step expr UNTIL limit expr DO statement;

FOR * integer var := initial expr UNTIL limit expr DO statement;

For example,

FOR* I:= 1STEP1 UNTIL LIM DO SUM:= SUM+ NARN(I);

FOR * SAMPLE := AVERAGE UNTIL LAST

DO BEGIN

RESULT:= RESULT+ DATA(SAMPLE) *SCALE/ TOTAL;

SCALE : = SCALE I 2;

END;

FOR statements can be nested as deeply as the programmer desires. That is, the loop statement
of a FOR statement can be (or contain) another FOR statement. Example 4-1 has a good
example of two-level nesting of FOR statements.

Cautions in the Use of FOR Statements

FOR loops in SPL/3000 are very machine-dependent and use specialized machine instructions
(TBA, TBX, MTBA, MTBX). These instructions require that certain control values (final value,
step value, and address of the loop variable) remain in the stack during execution of the loop
statement. After the range of the loop has been completely executed, the modify-test-and
branch instruction (MTBA or MTBX) expects the control values to be on the top of the stack.
If they have been displaced from their expected position, the behavior of the loop control
operations is unpredictable.

Therefore, it would be prudent for the beginning SPL/3000 programmer to observe the
following rules.

• Do not use the stack explicitly within the loop statement without restoring any
changes made because this makes it impossible for the compiler to keep track of
the control values in the stack. (Do not refer to TOS, S relative variables, or
stacked parameters; these are further described in Section VII.)

• Enter FOR statements only from the beginning. Never branch into the loop
statement.

4-8

• Exit FOR statements only at the end, except for PCALs.

• Do not modify the index register in any way (without also restoring it) within the
loop statement if a variable equivalenced to the index register is being used as the
loop control variable. (The compare range construct is a little-known implicit use of
the index register: A<= B <= C. Use of this construct or subscripted variables with
in the loop statement will cause unpredictable results if the loop variable is also the
index register.)

The WHILE-DO statement and DO-UNTIL statement provide alternatives to the FOR statement
that are safer for the beginning programmer to use.

EXAMPLE 4-1. INTEGER SORT

This program uses FOR loops, EQUATES, and arrays to perform a simple sort on SIZE (9)
integer values (6 characters, signed or unsigned decimal, or octal). The program converts each
number entered to binary, and sorts the values using a straight-forward, ripple sort method.
After the values are sorted, they are output (in readable form).

Input/Output

ENTER 10 INTEGER VALUES
123
+987
-32 768
0
+32 76 7
90
-87
-2
1
17
OUTPUT DATA
-32 768
-87
-2
0
1
1 7
90
123
987
32767

4-9

ENTER UP TO 10 NUMBERS, OR IE
-1
642
~100

9999
0
123
45
/E

OUTPUT DATA
-1
J
45
54
123
642
9999

Listing

BEGIN <<EXAMPLE 4-1. INTEGER SORT>>
COMMENT:

THIS PROGRAM WILL ORDER AN INTEGER ARRAY WITH SUBSCRIPTS
RUNNING FROM ZERO TO "SIZE". THE ARRAY ELEMENTS WILL BE
ORDERED ALGEBRAICALLY - SMALLEST VALUE TO LARGEST VALUE.
NOTE: "INPUT" AND "OUTPUT" ARE DUMMY PROCEDURES WHICH SIMULATE
INPUT, OUTPUT, AND CONVERSION - THEY ARE NOT PART Or SPL/3000;

EQUATE SIZE=9;
BYTE ARRAY ASCIIBUFC0:23>:="ENTER 10 INTEGER VALUES ";
BYTE ARRAY OUTC0:ll>:="OUTPUT DATA";
INTEGER ARRAY SORTC0:SIZE>;
INTEGER SAVE,

J,K,
TEMP;

<<END OF DECLARATIONS>>

COMMENT:

•
'

OUTPUTCASCIIBUF>; <<OUTPUT INSTRUCTIONS>>
FOR J:=0 UNTIL SIZE DO <<INPUT DATA LOOP>>
INPUTCSORTCJ>>; <<INPUT A VALUE>>

ORDER THE ARRAY

FOR K:=0 STEP 1 UNTiL SIZE-I DO <<OUTER LOOP>>
FOR J:=K+l STEP 1 UNTIL SIZE DO <<INNER LOOP>>

IF SORTCK> > SORTCJ) THEN <<NOT IN ORDER>>
BEGIN

SAVE: =SORT CK); <<EXCHANGE VALUES>>
SORTCK>:=SORTCJ>;
S ORT CJ) : =SA VE ;

END;
OUTPUTCOUT>; <<PRINT HEADING>>
FOR K:=0 UNTIL SIZE DO <<OUTPUT LOOP>>
OUTPUTCSORT<K>>; <<PRINT A VALUE>>

E~D <<INTEGER SORT>>.

4-10

DO UNTIL STATEMENT

The DO UNTIL statement allows the programmer to execute repeatedly a specified statement
(including compound statements) until a specified condition is true. The condition is evaluated
and checked after each execution of the statement. The format is

DO statement UNTIL condition ;

statement is any SPL/3000 statement including a compound statement or another
DO UNTIL statement.

condition is a sequence of logical expressions and branch words connected exactly
as in IF conditions. (See Section III.)

Normally, the loop statement is a compound statement containing at least one statement that
modifies one of the variables in the condition. Since the condition is tested after execution,
the statement always is executed at least once. When the condition is false, execution transfers
to the first statement following the DO UNTIL statement. The following diagram shows this
sequence:

DO

L.BEGIN +----
+statement

statement

false

For example,

LOGICAL ARRAY A (0:19);

BYTE ARRAY STRING (0:71);

INTEGER SUB := -1, I := 0, J;

DO SUB := SUB+ 1 UNTIL STRING(SUB) < > "O";

DO BEGIN

STRING(I) := "X";

I := I+l;

END

UNTIL I= 72;

I:= -1;

DO J := A(I := I+l) UNTIL I> 18;

4-11

WHILE DO STATEMENT

The WHILE DO statement allows the programmer to repeatedly execute a statement as long as
a specified condition is true. The condition is always evaluated and tested before executing the
loop statement. The format is

WHILE condition DO statement ;

statement is any SPL/3000 statement including a compound statement or another
WHILE DO,

condition is any sequence of logical expressions and branch words connected as in
IF conditions, except that the "true" sense of IABZ, DABZ, IXBZ, and
DXBZ is reversed for this statement only.

The logical value (true or false) of the condition is determined before each execution of the
loop statement. The statement is executed as long as the result is true. Since the condition is
checked first, the statement is not executed at all if the condition is initially false. When the
condition is false, execution transfers to the next statement following the WHILE DO state
ment. The following diagram shows this sequence:

WHILE

For example,

BEGIN
statement

statement
END;

INTEGER I := -10, MAX, FCTR := 1;

false

INTEGER ARRAY SQR(1:49), DATA (-10:50);

WHILE DATA (I)< MAX AND I< 50 DO I:= I+l;

WHILE FCTR <= 49 DO

BEGIN

SQR(FCTR) := FCTR "2;

FCTR := FCTR+l;

END;

4-12

EXAMPLE 4-2. TABLE SEARCH

This example illustrates the use of the WHILE DO statement in a table search application.
Dummy part numbers and stock quantities are kept as constants in an integer array for purposes
of simplicity. The program requests a part number from the terminal and inputs the number.
If the binary number does not compare to any part numbers in the inventory, the message NOT
IN INVENTORY is printed. If the number corresponds to an inventory item, the quantity
associated with the number is printed and the program loops back to the beginning. The user
in puts /E to terminate the program.

Input/Output

ENTER A PART NUMBER C20100c:PN<:20109)
20109
44 ON HAND
ENTER A PART NUMBER C20100<:PN<:20109)
20101
1000 ON HAND
ENTER A PART NUMBER C20100<=PN<=20109)
20105
144 ON HAND
ENTER A PART NUMBER C20100<=PN<:20109)
20199

NOT IN INVENTORY
ENTER A PART NUMBER C20100<=PN<=20109)
20100
12 ON HAND

Listing

BEGIN <<EXAMPLE 4-2. TABLE SEARCH>>
COM~1E NT:

THE PROGRAM INPUTS A PART NUMBER (20100<=PN<=20109), SEARCHES
A TABLE FOR THE PART, AND PRINTS THE QUANTITY ON HAND. AN
ERROR MESSAGE IS WRITTEN IF THE PART NUMBER IS NOT IN THE
INVENTORY TABLE.
NOTE: "INPUT" AND "OUTPUT" ARE DUMMY PROCEDURES WHICH SIMULATE
INPUT, OUTPUT, AND CONVERSION - THEY ARE NOT PART OF SPL/3000;

BYTE ARRAY NO'PART C0:16>:=" NOT IN INVENTORY";
BYTE ARRAY OUTBUF C0:8>:=" ON HAND";
BYTE ARRAY HEADC0:37>:="ENTER A PART NUMBER C20100<=PN<=20109)";
INTEGER ARRAY INVE~TORY C0:20>:= <<PART NUMBER,QUANTITY>>

4-13

20103, 12,
20109,44,
20103 '79'
20105,144,
20106,0,
20101, 12100,
20104,3,
20107,0,
20102,20,
20108,10,

- 1;

INTEGER PART,!;
<<END OF DECLARATIONS>>

OUTPUTCHEAD); <<PRINT H~ADING>>
INPUTCPART); <<READ A PttRT NUMBER>>
1:=0; <<INITIALIZE SUBSCRIPT>>
WHILECPART<>INVENTORYCl))ANDCINVENTORYCI)<>-1) DO 1:=1+2;
IF INVE~TORYCI>=-1 THEN <<PART NOT IN LIST>>

END <<TABLE SEARCH>>.

SWITCH STATEMENT

OUTPUT C NO' PART)
ELSE

OUTPUT<INVENTORYCI+l>,OUTBUF>;

The purpose of a SWITCH is to transfer execution to one of several labeled statements within
a program. A SWITCH is first declared and then invoked (through an indexed GOTO statement).
A SWITCH invocation differs from a simple GOTO in that there are several destination state
ments to choose from, not just a single statement. The format of a SWITCH declaration is

SWITCH identifier := list of labels ;

The SWITCH declaration defines an identifier to represent an ordered set of labels. Each label
in the list (from left to right) is assigned a number from 0 to N - 1 (where N is the number of
labels) which indicates the position of the label in the list. Note that the SWITCH declaration
implicitly defines the list of label identifiers as labels; they need not be further defined in a
LABEL declaration. For example,

SWITCH SW:= LO,Ll,L2,L3;

The labels defined in the SWITCH declaration identify various statements in the body of the
program (see Section III). A switch of program control to one of these labeled statements is
accomplished by using a GOTO statement with the switch identifier and an index. The format
is

GOTO switch (index);

GOTO * switch (index);

switch is a previously declared switch identifier.

index is an arithmetic expression, logical expression, or assignment statement with a
one-word result.

* specifies no bounds checking (this overrides checking done to insure that the
index references a valid label in the range of the switch; an invalid index value
executes a statement that is not one of the predetermined branches, often
with unpredictable results).

NOTE: Any valid form of the GO construction can be used (GO, GOTO, GO TO).

4-14

The index is evaluated to an integer value and control is transferred to the switch label specified
by that number. If the index falls outside the range of the switch declaration and the *option
is not used, control transfers to the next statement following the GOTO statement. When the *
option is used, bounds checking code is omitted. This produces a more efficient program, but
is only safe when the programmer is certain that the indexes will be in bounds. For example,

SWITCH SW := LO, Ll, L2, L3;

GOTO SW(A + B I 2);

GOTO * SW(A * B);

LO: statement; <<INDEX= O>>

Ll: statement;< <INDEX= 1> >

L2: statement; <<INDEX= 2>>

L3: statement; <<INDEX= 3>>

CASE STATEMENT

The purpose of a CASE statement is to select one of a set of statements for execution by using
an index into a list of statements. The first statement has index 0 and the others are ordinal
numbers (1, 2, 3, ...). After the execution of the specified statement, control transfers to the
statement following the CASE statement. The format of a CASE statement is

CASE ex pr OF body;

CASE * expr OF body;

expr is an arithmetic expression with a one-word result which specifies the statement
number desired.

body is a compound statement (a series of statements enclosed by a BEGIN-END pair).

* specifies no bounds checking (as in SWITCH, this overrides checking and allows an
expression value that can index out of the CASE body.

4-15

If the * option is not specified and the expression value does not specify a statement within the
CASE body, no statement in the CASE body is executed and control transfers to the statement
following the CASE body. For example,

INTEGER I,N;

CASE I OF BEGIN

N := 3;

; <<NULL statement; NO ACTION, BUT HOLDS PLACE>>

N := 5;

N := 2;END;

EXAMPLE 4-3. INTEGER CALCULATOR

This program uses a CASE statement to simulate a single accumulator calculator capable of
performing arithmetic functions with integer values (-32768 ~I ~ +32767). The program
inputs a special character and an integer number. The character determines the function to
be performed:

value entry (.)
addition (+)
subtraction (-)
mutliplication (*)
division (/)

The actual binary value of the function character is adjusted downward to be used as an index
into the CASE statement. When the operation is complete, the contents of the accumulator
are output.

Input/Output

INTEGER CALCULATOR
., 453
ANS = 453
*,5
ANS - 2265 -
-,22
ANS = 2243
1,20
ANS = I 12
/,2
ANS - 56 -
-,42
ANS - 14 -
#,46
ENTRY ERROR
., 46
ANS = 46
-,535
ANS = -489
I

4-16

Listing

BEGIN <<EXAMPLE 4-3. INTEGER CALCULATOR>>
COMMENT:

INTEGER CALCULATOR - SINGLE ACCUMULATOR
INTEGER ARITHMETIC OPERATIONS MAY BE PERFORMED BY ENTERING
AN OPERATOR CHARACTER FOLLOWED BY AN INTEGER NUMBER. THE
OPERATOR CHARACTERS ARE:

• LOAD ACCUMULATOR
+ ADD

SUBTRACT
* MULTIPLY
I DlVIDE
T TERMINATE

NO CHECK IS MADE FOR ARITHMETIC OVERFLOW CONDITIONS.
NOTE: "INPUT" AND "OUTPUT" ARE DUMMY PROCEDURES WHICH SIMULATE
INPUT, OUTPUT, AND CONVERSION - THEY ARE NOT PART OF SPL/3000;

BYTE ARRAY MSGC0: 17>:="INTEGER CALCULATOR";
BYTE ARR A Y ERR < 0 : 1 0) : = .. ENTRY ERR OR" ;
BYTE ARRAY ANSWC0:5>:= .. ANS - ";
BYTE ASC;
INTEGER ACCUM:=0,

OPERAND: =0,
INDEX;

LABEL FUNCTION,
EXIT;

<<END OF DECLARATIONS>>

FUNCTION:
OUTPUT<MSG>; <<PRINT HEADING MESSAGE>>

INPUTCASC,OPERAND>; <<READ OPERATOR AND VALUE>>
IF ASC="T .. THEN GOTO EXIT; <<TERMINATE>>
IF 7.52<=ASC<=%57 THEN <<VALID OPERATOR>>

INDEX:=ASC-7.52
ELSE <<INVALID OPERATOR>>

BEGIN
OUT PUT< ERR); <<ERR OR>>
GOTO FUNCTION; <<RESTART>>

END;
CASE INDEX OF <<INDEX BY OPERATION>>

BEG! N
ACCUM:=ACCUM*OPERAND; <<*FOR MULTIPLY>>
ACCUM:=ACCUM+OPERAND; << + FOR ADD>>
<<NULL STATEMENT>>; << , NO OPERATION>>
ACCUM:=ACCUM-OPERAND; << - FOR SUBTRACT>>
ACCUM:=OPERAND; << • FOR LOAD ACCUMULATOR>>
ACCUM:=ACCUM/OPERAND; << I FOR DIVIDE>>

END;
OUTPUTCANSW,ACCUM>; <<PRINT LABEL AND ACCUMULATOR>>
GOTO FUr~CTION; <<RESTART>>

EXIT: END <<INTEGER CALCULATOR>>.

4-17

EXERCISES FOR SECTION IV

1. Identify the invalid EQUATE declarations.

a) EQUATE BROWN= 1, BLUE= 2, GREEN= 3, GRAY= 4, OTHER= 5;

b) EQUATE BIGNUMBER = l.73El5;

c) EQUATE XSQUARE = 144"2;

d) EQUATE PI= 31417;

e) EQUATE ARRAYLIMIT = "(0:100)";

f) EQUATE X = 2, Y = X * 3, Z = X + Y, W = (Z * Z - X) IX+ Y;

g) EQUATE NEGLIMIT = -144, POSLIMIT = \ NEGLIMIT \;

h) EQUATE LETTERS= "AB";

i) EQUATE Z = X + Y, X = 2, Y = X * 3;

2. Identify the invalid array declarations.

a) INTEGER ARRAY SAM (0, 10) := 0, 1, 2, 3, 4, 5, 6, 7, 8, 9;

b) REAL ARRAY ALPHA (-99:0);

c) ARRAY ATANK (0:8) := '~ NOW IS THE TIME";

d) LOGICAL ARRAY (0:4) := "ABCDEFGHIJ";

e) REAL ARRAY BETA (1:10) := 10(0.0), GAMMA (1:10) := 10(0.0);

f) LOGICAL ARRAY LETTERS (1:6) =OUTPUT DATA;

g) INTEGER ARRAY Nl (0:4), N2 (0:4), N3 (0:4), N4 (0:4) := 4 (0.0);

h) REAL ARRAY RESULT (0:100) := 10(10(0.0));

i) LOGICAL ARRAY EQUATE (0:6) := 7(FALSE);

j) INTEGER ARRAY SMALL (0:100) := 100(0, 1, 2, 3, 4, 5, 6, 7, 8, 9);

3. Determine whether each of these statements is true or false.

a) Arrays must always contain a zero element.

b) Array bounds must not be negative.

c) Integer arrays can be initialized with string constants.

d) Subscripts for arrays must be constants.

e) HP 3000 hardware permits arrays to be accessed outside their defined bounds.

4. Examine the following assignment statements.

INTEGER ARRAY NUMBER (0:10);

NUMBER (0) :=NUMBER (0) + 1; <<SOLUTION 1>>

NUMBER:= NUMBER+ 1; <<SOLUTION 2>>

4-18

a) Do both statements achieve the same result?

b) If so, which solution is the most efficient? Why?

5. Write an equivalent declaration for the logical array DAT A replacing the equate identifiers
with integer constant bounds.

EQUATE MIDPOINT= 52,

RANGE= 75,

LOWER= MIDPOINT - RANGE,

UPPER= MIDPOINT+ RANGE;

ARRAY DATA (LOWER: UPPER);

6. Refer to the tables in the back of this book and EQUATE the bit values of the appropriate
ASCII characters to the following identifiers.

BLANK

RETURN

LINEFEED

NULL

7. In the program below, change the extract bit from 5 to 7 and the bit field length from 4 to
3 by replacing one line.

EQUATE S = 5, L = 4;

X :=ITEM' A.(S:L)+

ITEM'B. (S:L)+

ITEM'C. (S:L)+

ITEM'D.(S:L)+

ITEM'E. (S :L)+

ITEM'F. (S:L);

8. Use the DEFINEs given to rewrite the statements shown below in expanded form. Substitute
the defined string when the define identifier is invoked.

a) DEFINE RANGE=<= DATA<=#;

IF 5 RANGE 20 OR X RANGE Y THEN X := X + 1;

b) DEFINE INIT = 1, 3, 5, 7, 9, 11, 13#;

ARRAY ONE (0:7) := INIT;

ARRAY TWO (0:7) := INIT;

c) DEFINE AVAIL= (0:2)#,

STAT = (2:6)#,

SEG = (8:8)#;

IF LINK. AV AIL = 1 AND LINK. ST AT <4 THEN LINK. SEG := 0;

4-19

9. The declarations and statements shown below were written by a programmer who liked to
abbreviate certain reserved words. In specific cases he also thought that THEN really meant
ASSIGN and ELSE was more appropriately called OTHERWISE. Use the DEFINE state
ment to transform the programmer's abbreviations into the correct reserved words.

EQ LO = 1, HI = 50;

INT ARY BUF (LO:HI);

DEF SUB= (15)#;

LOG RESULT;

BEGIN

RESULT := IF BUF SUB ASSIGN 10

OTHERWISE 20;

10. For this array declaration, compute the DB address of the zero element. (The value the
SPL/3000 compiler will place into the array data label). Assume array space allocation
starts at DB + 256 (decimal).

ARRAY TOTAL (100:199);

11. Use a FOR statement to find the smallest, largest and average value of an integer array.
Assume all values are positive.

EQUATE N = 99;

INTEGER ARRAY AGE (O:N);

12. a) Select the correct value of the index variable after completion of the FOR statement.

FOR INDEX := 1 UNTIL N DO <<statement>>;

Select one. (N - 1) (N) (N + 1)

b) In the above exercise is the value of the index variable available to the programmer at
the completion of the loop.

13. Determine the number of times each statement marked with a star (*) will execute.

Assume: INTEGER I, X = X; LOGICAL N;

INTEGER ARRAY A(O:lO);

a) X := 5;

LOOP: IF DXBZ THEN GOTO NEXT;

A(X) := O; *
GOTO LOOP;

NEXT:

b) I := 7

DO

A (I := I + 1) := 0 *
UNTIL LOGICAL (I);

4-20

c) N := O;

WHILE (N := N + 1 <= 10)

DO A(N) := O; *
d) N := O;

WHILE (N := N + 1) <= 10

DO A(N) := O; *
14. A frog is 500 inches from a wall. With each jump he makes, he jumps half of the remaining

distance to the wall. Write an SPL/3000 program to determine the minimum number of
jumps he must take until his distance from the wall is less than .025 inches. (Use a WHILE
statement to solve the problem.)

15. Examine the SWITCH declaration and invocation shown and the switch index values pro
vided. Determine which statement label is associated with each value of the index
(INDEX).

16.

SWITCH SELECT := FIRST, SECOND, THIRD;

GOTO SELECT (INDEX);

NEXT: next statement;

FIRST: statement;

SECOND: statement;

THIRD: statement;

a) INDEX= 0

b) INDEX= 3

c) INDEX= -1

d) INDEX= 2

True or False?
The body of a CASE statement can

a) contain another CASE statement. T/F

b) not contain a SWITCH invocation. T/F

c) contain a null statement. T/F

d) contain a procedure call statement. T/F

e) not contain a compound statement. T/F

f) contain a FOR statement. T/F

17. A program which prints mailing labels reads an individual's title, name, and address. In
order to save storage space, the titles have been coded.

O="MR,._,._"
1 ="MRS,._"
2 ="MISS"
3 =not used
4 ="DR A,._" ("' represents a blank)

4-21

Write a CASE statement which uses the title code (TITLE) to select the actual 4-character
title. Store the characters selected in a type double (32 bit) variable called PREFIX (e.g.,
PREFIX := "MR"""). (Double integer variables are explained in Section VII.)

Assume: DOUBLE PREFIX; INTEGER TITLE;

4-22

SECTION V
Bytes, Pointers, Move, and Scan

This section presents a class of statements that is very machine-dependent - the MOVE and SCAN
statements. In many cases proper use of these statements requires a knowledge of explicit stack
access on the part of the programmer as these statements use the stack for temporary arguments
and results. Since the MOVE and SCAN statements use byte data types and pointers, these two
concepts are discussed first.

BYTES

A byte is one-half of a word - 8 bits. SPL/3000 provides facilities for the manipulation of byte
variables, arrays, constants, and pointers. Each byte is treated as an 8-bit quantity and can
represent numeric or ASCII character data. Because the hardware provides true byte addressing
(including element indexing for bytes), two distinct bytes can often be packed conveniently
into a single memory word. The following constants can be stored in a byte:

%377
12
%(16)A2 (See Section VII; this is base 16.)
"..._!\.."
"%"
%(2)10011101 (See Section VII; this is base 2.)
FALSE

Byte Variables

Each single byte variable is allocated one word of storage in the primary DB area. References
to the variable always refer to the left-most byte of the word (bits 0-7); the other bits are not
used. The declaration format is

BYTE identifier list ;

identifier list consists of a series of identifiers, each optionally followed by an
initialization:

identifier := constant

If the constant requires more than eight bits for its representation, a warning message is given
and the variable is initialized with the least significant eight bits, (the rightmost) of the constant.
This constant is stored in the left half of the word allocated for the variable; the right half is
filled with zeros. For example,

5-1

BYTE CHAR :="A", B := "B", C;

0 78 15

DB+O

DB+l

DB+2

A

B

undefined

0

0

CHAR

B

c

Byte Arrays

A byte array is an ordered sequence of bytes (packed two per word) in a contiguous area of
memory and a byte address (data label) that points to the zero element (byte) of that array.
Any byte in the array can be accessed by using the array identifier and a subscript value which
identifies the byte desired. The declaration format is

BYTE ARRAY declaration list;

declaration list is a list of declarations, each composed of an identifier followed by
a pair of bounds in parentheses and an optional initialization.

bounds is a pair of integers that specify the element numbers of the lower and
upper bytes of the array (upper bound must not be less than the lower);
the format is

(lower bound : upper bound)

The number of bytes in the array is (upper bound - lower bound + 1).

initialization is similar to that for integer and real arrays; the constants are packed
into the array, starting with the lowest byte (lower bound), eight bits
per element. Only the least significant eight bits of each list element
are used. Only the last array in a particular list can be initialized. Un
initialized arrays are not filled with any default value.

For example,

BYTE ARRAY MESSAGE (0:10),

ANSWER (-10:10),

QUESTION (0:5) :="WHERE?";

BYTE ARRAY INFO (-10 :99) := 20("X"),20("Y"),20("Z"),

20("Z"),20(%377),10(0);

When a byte array is declared, a data label is allocated in the primary DB area; this contains a byte
address which points to the space allocated for the body of the array in the secondary DB area.
For consistency, SPL/ 3000 aligns byte arrays so that the zero element is always on a whole word
address. Bytes are packed two per word. The amount of space allocated for a byte array of n
elements is (n + 1)/2. Therefore, an array of 10 elements requires 5 words while an array of 11
elemeents require 6 words. If the lower bound is odd, the space required equals (n + 2)/2.

5-2

BYTE ARRAY QUESTION (0:5) :="WHERE?"

Address Contents

DB+O 10008

DB+ 4008 w H

E R

E ?

Meaning

QUESTION (byte address)

QUESTION (0), QUESTION (1)

QUESTION (2), QUESTION (3)

QUESTION (4), QUESTION (5)

The data labels (addresses) for byte arrays have a format different from data labels for other
arrays. Bits 0-14 contain a word address relative to DB, while bit 15 specifies the left or right
half of the word. Bit 15 equal to 0 refers to the left byte (bits 0-7 of the word) and bit 15
equal to 1 refers to the right byte (bits 8-15 of the word). The byte address must be shifted
right one bit to produce the address of the word in which the byte is located. Effectively,
byte addresses are word addresses inflated by a factor of two with an extra bit added for byte
address resolution.

Data elements in byte arrays can be accessed by using subscripted array identifiers. These sub
script values uniquely identify single bytes in an array and appear enclosed in parentheses
following the array identifier.

CHAR(5)
MESSAGE <<IMPLIES ZERO ELEMENT>>
QUESTION (VAR + 3)

The compiler emits code to place the subscript value (byte element number) in the index register.
Bits 0-14 of the index register then specify to the hardware the word offset (plus or minus) from
the zero element of the array and bit 15 specifies which byte of the word is addressed.

HP 3000 provides many instructions which aid in the accessing and manipulation of bytes:

Load and Store Bytes (LDB, STB)

Test byte (BTST)

Immediate operands (LDI, LDNI, CMPI, CMPN, ADDI, SUBI, MPYI, DIVI, ORI, XORI,
ANDI, LDXI, LDXN, ADXI, SBXI)

Move bytes (MVB)

Move bytes while (MVBW)

Scan bytes while (SCW)

Scan bytes until (SCU)

Compare bytes (CMPB)

5-3

Byte Type Transfer Functions

When bytes are used in an expression, they are actually operated upon by INTEGER arithmetic;
the hardware does not provide byte arithmetic. When byte values are mixed with other data
types in an expression, it is necessary to use the type transfer functions.

The function BYTE causes the result of an integer or logical expression to be treated as type byte:

BYTE (integer expression)

BYTE (logical expression)

The function INTEGER causes the result of a byte expression to be treated as type integer:

INTEGER (byte expression)

The function LOGICAL causes the result of a byte expression to be treated as type logical:

LOGICAL (byte expression)

The function REAL floats a byte expression value into a real number:

REAL (byte expression)

POINTERS

A pointer is a type of variable which contains the 16-bit address of another data item in the
program. The 16 bits of the pointer represent the address of a variable; when the pointer is
used in an expression it creates an automatic indirect reference to the variable (the object of
the pointer).

A pointer is very similar to the data label (address) which is allocated in primary DB for an
array. In both cases the address can be indexed by specifying an element subscript and indexing
is done relative to the location specified by the address (the zero element). Pointers, however,
do not have any array space allocated to them and are more general-purpose in use.

While the data label of an array always points to the same location (the zero element of the body
of the array), a pointer can be made to point to different data items during the life of a program.
That is, the address in a pointer variable can be changed during the program so that the pointer
can be used for many different purposes.

Pointer Declaration

Pointer identifiers are declared before use, just like every other identifier in an SPL/3000 pro
gram. The format is

type POINTER pointer list ;

type

pointer list

is either BYTE, LOGICAL, INTEGER, REAL, DOUBLE, or LONG.
(The default type is LOGICAL.)

is a sequence of identifiers separated by commas. Each identifier may
be optionally followed by an initialization:

identifier := @variable } @means the address of the data
identifier := @array element item in this context

5-4

Each pointer is allocated a location in the primary DB area and the address of the data item
pointed to is stored in that location (if the pointer is initialized). In this context only, the com
piler converts byte addresses to word addresses and vice versa. For example,

LOGICAL LSIMPVAR;

BYTE ARRAY BARY(0:79); INTEGER ARRAY IARY(0:5); REAL ARRAY RARY(0:3);

BYTE POINTER CHAR,

FIRST:= @BARY,

LAST:= @BARY(79);

INTEGER POINTER TESTVAL := @IARY(5),

NEXTNO;

POINTER BOOLl, <<LOGICAL ASSUMED>>

BOOLZ := @LSIMPVAR;

REAL POINTER X :=@RARY,

Y,

Z·
'

Accessing Through Pointers

A pointer can be used in three contexts (assume these declarations).

INTEGER A, DATA:= -1, SAM:= 300, B := 7;
INTEGER POINTER IP :=@DATA;

• A pointer can be used anywhere the object of the pointer could be used; this generates
an automatic indirect reference to the object through the pointer.

A:= IP ;<<A= -1>>

A IP DATA

addr. of DATA l·•---:_ __ -1 __

• A pointer can be used on the left side of assignment statement to change the value of
the object of the pointer. This also generates an automatic indirect reference to the
object through the pointer.

IP:= SAM+ B; <<DATA= 307>>

DATA IP result of expression

addr.ofDATA l-•--0

5-5

• A pointer can be preceded by an@ to refer to the actual contents of the pointer (the data
label), not the object of the pointer. This generates a direct reference to the pointer itself.

A:= @IP; <<A= address of DATA>>

A IP

D~ addr.ofDATA

@IP:= @A; <<IP= address of A>>

IP result of expression

D--1 __ a_d_dr_._o_f _A __

Here is an example that shows a pointer being used to check every third character of an input
buffer until it finds one that is equal to "A". Remember that<> means "is not equal to".

BYTE ARRAY INPUTSTRING(0:80);

BYTE POINTER CHAR := @INPUTSTRING;

LABEL CONTINUE;

CONTINUE: IF CHAR<> "A"
THEN

BEGIN
@CHAR := @CHAR + 3;
GO TO CONTINUE;

END;

Pointers can be changed by using @ and assigning a new address. When @ is used with a pointer,
it refers to the contents of the pointer (not the object of the pointer). But when @ is used with
any other variable, it refers to the address of the data item, not its contents. The following
short example shows both uses:

INTEGER AV AL, BV AL;

INTEGER POINTER DATAPTR :=@AVAL; <<INITIALIZE TO ADDRESS OF AVAL>>

INTEGER SUM;

SUM:= @DATAPTR + @BVAL;

<<SUM NOW EQUALS THE TOTAL OF TWO ADDRESSES: THAT CONTAINED
IN DATAPTR-THE ADDRESS OF AVAL-AND THE ADDRESS OF BVAL>>

There are many possible combinations of operations that are possible using pointers, variables,
and@.

LOGICAL VAR;
POINTER PT1,PT2;

PTl := PT2;
PTl := @PT2;
@PTl := @PT2;
@PTl := PT2;

<<object of PT2 is stored into object of PTl>>
<<address in PT2 is stored into object of PTl> >
<<address in PT2 is stored into PTl>>
<<object of PT2 is stored into PTl> >

5-6

PTl :=VAR;
PTl :=@VAR;
@PTl := @VAR;
@PTl :=VAR;

<<value of VAR is stored into object of PTl>>
<<address of VAR is stored into object of PTl>>
<<address of VAR is stored into PTl> >

VAR:= PTl;
VAR:= @PTl;

Indexed Pointers

<<value of VAR is stored into PTl> >

<<object of PTl is stored into VAR>>
<<address in PTl is stored into VAR>>

Pointer variables can be indexed in the same manner as arrays to reference data items. The sub
script specified is applied as an element index (plus or minus) relative to the address in the
pointer. The original contents of the pointer are not changed by any indexing done with it.
For example,

REAL ARRAY DATA(0:5);

REAL POINTER PNTR := @DATA(l);

~r------- DATA

DATA(O) DATA(l) DATA(2) DATA(3) DATA(4) DATA(5)

PNTR(-1) PNTR(O) PNTR(l) PNTR(2) PNTR(3) PNTR(4)

t._ ___ PNTR

The short example above (where every third byte of an input buffer was searched for the
character "A") can be written equivalently using an indexed pointer. In this case the contents
of the pointer are not changed during program execution.

BYTE ARRAY INPUTSTRING(0:80);

BYTE POINTER CHAR := @INPUTSTRING;

INTEGER SUB := O;

LABEL CONTINUE;

CONTINUE: IF CHAR(SUB) <>"A"

THEN

Type Compatibility With Pointers

BEGIN

SUB:= SUB+ 3;

GO TO CONTINUE;

END;

When a pointer is referenced, the object of the pointer is always treated as if it were of the same
type as the pointer. This allows any data area to be accessed on 8, 16, 32, or 48-bit boundaries
using byte, integer, real or long pointers. Thus, a logical array can be accessed as if it were a

5-7

byte array (8 bits at a time instead of 16) by using a byte pointer which contains a byte address
pointing to the zero element of the logical array. The same storage can be accessed as a real
array (32 bits at a time) by using a real pointer. Pointers whose types denote double word data
types contain word addresses but are indexed two words at a time by the hardware to provide
true element indexing. For example,

LOGICAL ARRAY LAR(0:5);

BYTE POINTER BPT := @LAR; <<BYTE ADDRESS OF LAR(O)>>

REAL POINTER RPT := @LAR; <<WORD ADDRESS OF LAR(O), 2 WORD INDEXING>>

STORAGE

BPT I (O) 1(1) I (2) I (3) I (4) I (5) I (6) I (7) I (8) 1(9) I (10) I (ll) I

LAR 1(0) I (1) I (2) I (3) I (4) I (5)

RPT I (O) I (1) 1(2)

STORAGE ACCESS

Within declarations, pointers can be initialized to any type of object; the compiler adjusts the
address of the object to the type of the pointer (if necessary). That is, word addresses are con
verted to byte addresses and vice versa.

When the value of a pointer is changed dynamically, however, the compiler does no compatability
adjusting. Thus, any value stored into a pointer during execution of the program is assumed to
be a correct address for that type of pointer. For example, if the address of a byte variable is
stored into an integer pointer, the byte address is assumed to be the word address of an integer
data item when the pointer is used. Unless the byte address is shifted right one bit, this address
will be incorrect and may cause a memory bounds violation. (Word addresses are converted to
byte addresses by shifting left one bit.) For example,

LOGICAL LVR;

BYTE BVR;

LOGICAL POINTER LPT;

BYTE POINTER BPT;

<<CORRECT OPERATIONS>>

@LPT := @LVR; <<address of LVR stored into LPT>>

@BPT := @BVR; <<address of BVR stored into BPT>>

@LPT := @BVR & ASR(l); <<address of BVR converted to word address and
stored in LPT> >

@BPT := @LVR & ASL(l); <<address of LVR converted to byte address and
stored in BPT> >

<<INCORRECT OPERATIONS>>

@LPT := @BVR; <<byte address stored in word pointer>>

@BPT := @LVR; <<word address stored in byte pointer>>

5-8

MOVE STATEMENTS

The SPL/3000 MOVE statements provide high-level access to the hardware move-group instruc
tions:

MOVE (move words)

MVB (move bytes)

MVBW (move bytes while alphabetic and/or numeric, with/without upshifting)

The MOVE statements allow the programmer to move data from one location to another within
his program. The statements require a specific destination (array or pointer), a source (array,
pointer, or constants), and a count or move condition to determine the quantity of data trans
ferred. This information is placed in the stack before the move instruction executes. During the
data transfer operation the count and addresses are repeatedly modified by the move instruction;
at the end of the operation they reflect the status of the completed transfer. All temporary
values associated with the move are deleted from the stack at the end of the operation unless the
optional stack decrement operand is used to specify otherwise.

MOVE WORDS STATEMENT

This statement moves a specified number of contiguous words from a source location to a
destination location. The format is

MOVE ,(count), sdec;
{

non-byte array (index) } { non-byte array (index) }

non-byte pointer (index) non-byte pointer (index)

destination source

non-byte pointer (index) is a reference through a pointer of any type other than byte
(logical, integer, real, long, or double); (index) is optional.
If no index is present, transfer starts with the data value in
dicated by the pointer.

non-byte array (index) is a reference to an array element of any non-byte type. If
(index) is absent, the transfer starts with the zero element of
the array.

sdec is the optional stack decrement operand; it determines the
number of words to delete from the stack after moving data:

sdec = 0, leave destination address, source address, and count.

sdec = 1, leave destination address and source address.

sdec = 2, leave destination address only.

default (blank) = 3, delete all values, leave none.

count is an integer number of words to be moved (count> 0 means
move from left to right, count < 0 means move from right to
left, and count= 0 means move no words at all).

5-9

Left-Right versus Right-Left Move

The difference between a left-right move (count> 0) and a right-left move (count< 0) is shown
in the following diagrams:

Left to Right (count= +4);
~

Low II.....---~I -_.I -_. -------.ri *
addr;sses I + I I I I E I : I It I

Source Destination

Right to Left (count = -4):

Low
addresses

I I I It
.. q

Destination

Stack Decrement Operand

t
Source

High
addresses

I

High
addresses

I

The MOVE (words) statement causes three temporary values to be loaded onto the stack before
executing the MOVE instruction:

S-2

S-1

S-0

destination address

source address

word count

After the move operation is complete, destination and source address point to the next word
(not moved or overlayed) and can be examined, stored, or left in the stack for use by a sub
sequent MOVE or SCAN statement. The sdec operand is then used to delete 0, 1, 2, or all 3
of the parameters from on the stack. A blank sdec field generates an automatic sdec of 3-
delete all three values from the stack. Count always equals 0 and can safely be deleted
(sdec = 1). The sdec mechanism is used for all move-scan statements. The temporary values
left on the stack appear as follows:

if sdec = 0

S-2 destination

S-1 source

S-0 0 count

if sdec = 2

S-0 ~ destination

5-10

S-1

S-0

S-0

if sdec = 1

destination

source

if sdec = 3

The parameters left on the top of the stack can be saved in the following way (assume sdec = 0):

COUNT:= TOS; - <<TOS IS A RESERVED WORD THAT MEANS>>
<<TOP OF STACK.>>

@SOURCE := TOS; <<ADDRESSES CAN BE SAVED IN POINTER>>
<<VARIABLES. THIS EN ABLES>>

@DESTINATION:= TOS; <<THE PROGRAMMER TO REFERENCE>>
<<THE DATA ITEMS LATER.>>

TOS is a reserved word that always refers to the current top of stack (the data at location S - 0).
Use of TOS in the example statements above causes the values to be popped off the stack, (S
is decremented) and stored in the locations specified:

COUNT := TOS;

@SOURCE := TOS;

@DESTINATION := TOS;

S-2

S-1

S-0

S-1

S-0

S-0

(Stack before)

0

(Stack before)

8
(Stack before)

I I
(Stack after)

S-0 I I

destination address

source address

count

destination address

source address

destination address

Instead of saving these temporary values it is possible to reuse them in a subsequent move
operation by leaving them on the stack and specifying asterisk(*) in place of the appropriate
part of the MOVE (words) statement. For example,

MOVE DATA (4) := DATAB (4), (4), 2; <<Moves 4 words, leaves only the>>
<<destination address on stack.>>

MOVE* := DATAC(3), (6); <<Moves 6 words from DAT AC into DATA>>
<<starting where previous move left off.>>

In the MOVE (words) statement, only one of the addresses can be a stacked value.

Variations on Move Words

There are additional variations on MOVE (words) which are described in the Systems Pro
gramming Language manual. One variation allows moving a list of constants into an array
or to a location specified by a pointer. The format is

5-11

. . ·- {''string'' } .
MOVE destmatzon .- (number list) , sdec ,

string can be any string constant.

number list is a list of numerical constants with optional repeat factors
(described under initialization of arrays in Section IV).

sdec and destination are the same as in the MOVE (words) statement discussed previously.

There is no count field in this variation because the constant list implicitly specifies the count
to be used. The compiler stores the constants required by this statement in the code generated
for the program. This statement is very useful for dynamic initialization of arrays:

MOVE DBUF := (5(0,1,2,3,4),10,20,99);

MOVE* := (10(0,1,2,3,4)),l;

Examples of MOVE (words) Statements

LOGICAL ARRAY DBUF(O:lOO),CBUF(O:lOO);

LOGICAL POINTER DMARK;

INTEGER WCOUNT;

MOVE DBUF(WCOUNT/10) := "$123.45",2; <<LEAVE DESTINATION>>

@DMARK := TOS; <<SAVE DESTINATION ADDRESS>>

DBUF := O; <<PUT 0 IN ZERO ELEMENT OF DBUF>>

MOVE DBUF(l) := DBUF,(WCOUNT),2; <<ZERO DBUF;LEAVE DESTINATION>>

MOVE*:= (1,3,4,7,9,11,23); <<USE STACKED DESTINATION ADDRESS>>

MOVE CBUF := DBUF,(101);

MOVE BYTES STATEMENT

Moving bytes is very similar to moving words-with two exceptions: the destination/source
addresses are byte addresses and the count is a number of bytes, not a number of words. There
are two formats:

MOVE
J byte array (index) l l ~yte pointer (index) J

destination

J byte array (index) l l ~yte pointer (index) J , (count), sdec ;

source

5-12

{

byte array (index) } { ''string'' }
MOVE ~yte pointer (index) := (number list) , sdec;

(index)

*
(count)

sdec

is optional where shown,

means the address is already stacked,

is the number of bytes to move (positive means a left-to-right move; negative
means a right-to-left move; 0 means no move),

(stack decrement operand) is the same as that discussed with move words.

When constants are used as the source operand they are moved into the destination one byte
at a time. With a string constant, one character is moved to each destination byte from the
source string. With a number list, the rightmost (least significant) 8 bits of each source
number are moved into each destination byte. With these exceptions, the MOVE (bytes)
statement works the same way as the MOVE (words) statement (in terms of stacked values,
count sign, sdec, etc.). For example,

BYTE ARRAY HERE(0:8),
THERE(3:13);

MOVE THERE(13) := HERE(6), (-5);

HERE 0 1 2 3 4 5 6 7 8

IAIBlclnlEIFIGIHII I
~ ~

-----~~~~~--

lxlxlxlxlxlxJcJnJEJFf Gl
THERE 3 4 5 6 7 8 9 10 11 12 13

MOVE BYTES WHILE STATEMENT

The MOVE (bytes) WHILE statement moves bytes from one location to another as long as the
character being moved is of a specified type (alphabetic and/or numeric). Also, lowercase
alphabetic characters can be upshifted as they are moved. The format is

{

byte array (index) } { byte array (index) }
MOVE ~yte pointer (index) := ~yte pointer (index) WHILE cond, sdec ;

destination source

(index) is optional where shown,

* means a stacked address,

cond specifies the conditions for continuing the move:
A Move while character is alphabetic
AN Move while character is alphabetic or numeric
AS Move while character is alphabetic and upshift lowercase
N Move while character is numeric
ANS Move while character is alphabetic (upshift lowercase) or numeric

sdec is the stack decrement operand; in MOVE (bytes) WHILE there are only two
values loaded onto the stack (source and destination addresses; no count-the
test condition is a part of the physical MVBW instruction). The default value
is sdec = 2 or delete both values.

5-13

After the characters have been moved and a stop condition has occurred, the source and destin
ation addresses point to the next character not moved in the source and destination buffers. It
is essential to save at least the destination address, since this is the only way the programmer
can determine the number of characters actually moved. The mechanism for saving these values
is the same as with MOVE (words) and MOVE (bytes), except that there are only two of them:

if sdec = 0 if sdec = 1 if sdec = 2

S - 1 r----1 destination
S - 0 L==::j source S - ~ ~ destination S-0~

Assume that sdec = 0:

@SOURCE := TOS;

@DESTINATION := TOS;

(Stack before)

S - 1 II destination address

S - 0 ~ source address

(Stack before)

S - 0 I I destination address

(Stack after)

S-0 I I

Condition Codes on MOVE (bytes) WHILE

At the termination of a MOVE (bytes) WHILE statement the condition code is set to show
the type of the last character examined (but not moved):

SPECIAL
ALPHA
NUMERIC

CCL(<)
CCE (=)
CCG (>)

These conditions can be checked using an IF statement.

IF< THEN ELSE ;

Examples of MOVE (bytes) WHILE

< <Exanwle One>>

BYTE ARRAY SORC(0:8) := "AlQRT5*B4";

BYTE ARRAY DEST(O:ll) := 12("X");

MOVE DEST:= SORC WHILE AN;

5-14

SORC 0 1 2 3 4 5 6 7 8

A 1 Q R T 5 * B 4

move terminates on special character *

DEST

0 1 2 3 4 5 6 7 8 9 10 11

<<Example Two>>

BYTE ARRAY STMT (0:79), WORD (0:79);

BYTE POINTER SORCPTR, DESTPTR;

LABEL FIXNUMBER, FIXSPECIAL;

MOVE WORD := STMT WHILE A,O;

@SOURCPTR := TOS; <<SAVE SOURCE ADDRESS>>

@DESTPTR := TOS; <<SAVE DESTINATION ADDRESS>>

IF >THEN GO TO FIXNUMBER <<CHECK TYPE OF TERMINATING
CHARACTER>>

ELSE GOTO FIXSPECIAL;

FIXNUMBER: - - - - - - - - - -;

FIXSPECIAL: - - - - - - - - - -;

EXAMPLE 5-1. SYMBOL TYPE SORTER

This program first fills a buffer with characters from the terminal. Then numeric and alphabetic
fields are moved to separate buffers with upshifting of all lowercase alphabetic characters. When
the program finds a special character, it stops processing the input string buffer, outputs the two
print buffers and terminates. This illustrates the MOVE (bytes) WHILE statement (with/without
upshifting), pointers, and use of@ to specify addresses.

Input/Output

INPUT AN ASCII STRING
ABCDEFGHIJKLMNOPQRSTUVWXYZ01234567890!"#$%&'C)ASDFGHJ1234567
ABCDEFGHIJKLMNOPQRSTUVWXYZ
01234567890
INPUT AN ASCII STRING
ABCDEF123GHIJKL456MNOPQRS789TUVWXYZ0
ABCDEFGHIJKLMNOPQRSTUVWXYZ
12345 67890

5-15

INPUT AN ASCII STRING
126CRANKSHAFT0014932#
ffiA NKSHAFT
1260014932

Listing

BEGIN <<EXAMPLE 5-1. SYMBOL TYPE SORTER>>
COMMENT:

THE PROGRAM INPUTS AN ASCII DATA RECORD <LENGTH <= 72
CHARACTERS>. ALPHABETIC AND NUMERIC CHARACTERS ARE MOVED
TO SEPARATE BUFFERS FOR OUTPUT. CALL LOWER CASE ALPHABETIC
CHARACTERS ARE UPSHIFTED AND MOVED.) WHEN A SP~CIAL
CHARACTER IS FOUND, PROCESSING STOPS AND BOTH BUFFERS ARE
OUTPUT.
NOTE: ••INPUT" AND .. OUTPUT" ARE DUMMY PROCEDURES WHICH SIMULATE
INPUT, OUTPUT, AND CONVERSION - THEY ARE NOT P~RT OF SPL/3000;

BYTE A R RAY R E Q S T < 0 : 2 0) : = " I NP U T A N AS C I I S IR I NG " ;
BYTE ARRAY DATAC0:72):=73(7.15);
BYTE ARRAY ALPHADATAC0:72>:=73C" ">;
BYTE ARRAY NUMBRDATAC0:72l:=73C" ");
BYTE POINTER D~NTR::@DATA,

LABEL SCA NR;

APNTR:=@ALPHADATA,
NPNTR:=@NUMBRDATA;

<<END OF DECLARATIONS>>
OUTPUTCREQST>; <<RE~UEST RECORD INPUT>>
INPUTCDATA>; <<READ RECORD>>

SCANR: MOVE APNTR:=DPNTR WHIL~ AS,0; <<MOVE ALPHABETIC-UPSHIFT>>
@DP NTR: =TOS;
@APNTR:=TOS;
MOVE NPNTR::DPNTR WHILE N,0; <<MOVE NUMERIC>>
@DPNTR:=TOS;
@ NP NT R : : T OS ;
IF = THEN GOTO SCANR; <<LAST CHARACTER ALPHABETIC>>
OUTPUTCALPHADATA); <<PRINT ALPHA STRING>>
OUTPUTCNUMBRDATA>; <<PRINT NUMBER STRING>>

END <<SYMBOL TYPE SORTER>>.

SCAN STATEMENTS

The purpose of a SCAN statement is to examine a contiguous string of bytes while looking for
a specified character without actually moving any data. When the statement ends, pointers and
indicators are left to show what was found and where. In SPL/3000 there are two SCAN
statements:

SCAN Until Statement (SCU Instruction)

SCAN While Statement (SCW Instruction)

5-16

SCAN UNTIL STATEMENT

The SCAN UNTIL statement scans a string of contiguous bytes from left-to-right until a test
character or a terminal character is found. The format is

{

byte array (index) }
SCAN ~yte pointer (index) UNTIL testword , sdec ;

(index) is optional.

* means the data address is already stacked.

testword is a constant, variable (integer, logical), or "char char" that determines the
test conditions and is interpreted as follows:

terminal character test character

0 7 8 15

sdec is the stack decrement operand and operates as in move statements (the default
is sdec = 2 since there are two temporary values used in this statement).

When the scan operation completes, the carry bit of the status register reflects the terminating
conditions. CARRY indicates that the terminal character was found by the scan. NO CARRY
indicates that the test character was found. This can easily be tested with an IF statement:

IF CARRY THEN ELSE ;
IF NOCARRY THEN ELSE ;

CAUTION: Any arithmetic operation done between the scan and the testing of
CARRY can change the setting of CARRY.

The stack decrement operand determines what values are left on the stack. Note that the scan
operation updates the byte address to point to the byte that met the condition but does not
change the testword.

if sdec = 0

S - 1 byte addr.

S - 0 testword

Sample SCAN UNTIL Operation

BYTE POINTER PTR;

if sdec = 1 if sdec = 2

S - 0 I byte addr. I S-0~

BYTE ARRAY CHAR (0:30) := "AAAAAAAAAAAAAOAAAAAAAAAAAAAAAA";

SCAN CHAR UNTIL "Z0",1;

@PTR := TOS;

5-17

Steps in Operation:

1. The source byte address and the testword are
loaded onto the stack.

2. The SCU instructions tests the source bytes and
increments the byte address.

3. When a match is found the stacked address points
to the matching byte.

4. CARRY is set if the terminal character is found,
NO CARRY if the test character is found.

5. The testword is popped off (sdec = 1) but the
address of the matching byte is left.

6. The address of the match is popped off and stored
in PTR.

Another Sample of SCAN UNTIL

BYTE ARRAY INPUT (0:79);

LOGICAL DOT'DOLLAR := %27044; << .$>>

LABEL PROCS;

byte address

S-+ z l 0

addr. of match-char

S-+ z l 0

s~I address of match

s~I

SCAN INPUT UNTIL DOT'DOLLAR, 1; <<SCAN FOR PERIOD OR$>>

IF CARRY THEN GOTO PROCS;

SCAN* UNTIL ".X";

PROCS: - - - - - - - - - - - - - - -

SCAN WHILE STATEMENT

<<PERIOD(.) FOUND, PROCESS IT>>

<<START SCAN ON$ AND LOOK>>

<<FOR XOR PERIOD>>

This variation of the SCAN statement examines a string of bytes as long as all the characters
found match the test character. The scan is terminated when a character which does not
match the test character is found or when the terminal character is found. The format is

{

byte pointer (index) }
SCAN ~yte array (index) WHILE testword, sdec ;

testword is a one-word variable or constant and has this format:

terminal character test character

0 7 8 15

sdec is as before (default is 2 to pop 2 values.)

The operation of SCAN WHILE is similar to that of SCAN UNTIL. The parameters are located
on the stack. Upon completion, the byte address points to the first byte that does not match;
CARRY is set if the terminal character was found; the condition code is set to indicate the
type of the unmatching character:

5-18

special
alphabetic
numeric

(CCL,<)
(CCE,=)
(CCG,>)

In order to determine how many characters were scanned or where the scan stopped, it is
necessary to retain the byte address on the stack (sdec = 0 or 1).

Sample SCAN WHILE

<<Example One>>

BYTE POINTER PTR;

BYTE ARRAY CHARS;

SCAN CHARS WHILE ".O" ,1;

@CPTR := TOS;

<<Example Two>>

<<SCAN WHILE 0 OR UNTIL PERIOD IS FOUND>>

<<SAVE MISMATCH ADDRESS>>

BYTE ARRAY BUFR (0:100);

BYTE POINTER BPNTR := @BUFR;

LOGICAL CRBLNK := %6440;

LABEL LINEEND;

@BPNTR := @BUFR(3);

<<CARRIAGE RETURN, BLANK>>

SCAN BPNTR(2)WHILE CRBLNK,1; <<SCAN UNTIL FIRST NON-BLANK OR CR>>

IF CARRY THEN GOTO LINEEND; <<CHECK FOR CARRIAGE RETURN>>

@BPNTR := TOS; <<SAVE ADDRESS OF NON-BLANK CHARACTER>>

LINEEND: -

TESTING BYTES AND STRINGS

In an SPL/3000 logical expression it is possible to compare two strings of bytes to determine
if a relation between them is true or false. The instruction actually used is the Compare Bytes
instruction (CMPB) and the format is very similar to MOVE and SCAN. The byte strings are
compared, one character at a time, at their numeric values. The format is

{

byte array (index) }
~yte pointer (index) re lop

STRING ONE

!
byte array (index), (count) l
byte pointer (index), (count)
*,(count)
"string"
(number list)

STRING TWO

5-19

, sdec

Where all parameters are as described for moves and scans (stack contains address of string one,
address of string two, and count). The default for sdec is 3 (pop all three temporary values),
and relop specifies a relation between string one and string two(=,<> (not equal),>,>=,<=).

The bytes of the two strings are compared one at a time until a comparison fails or the count
reaches 0. The result of a comparison is a TRUE value if the strings match when the count
reaches O; otherwise, the result is FALSE. At the end of a byte comparison the addresses point
to the first pair of characters that do not meet the comparison. These addresses can be saved
using sdec, but this is only feasible if the addresses are not destroyed by something else done in
the logical expression.

IF TARGET= "BOB SMITH",O THEN NUM'CHARS := O;

ELSE BEGIN NUM'CHARS := TOS; <<COUNT INS - O>>

END;

TEMPl := TOS;

TEMP2 := TOS;

<<ADDRESS OF STRING TWO>>

<<ADDRESS OF STRING ONE>>

Another construction allows testing single bytes in logical expressions to determine whether
they are of a particular type. The format is

{

byte array (index) } { _ } { ALPHA }
byte poi~ter (index) <; NUMERIC
byte varzable SPECIAL

means ''is type.''

< > means "is not type."

ALPHA means character is an upper and lower case letter (A to Zand a to z).

NUMERIC means character is a digit (0 through 9).

SPECIAL means character is any other character.

The result of a byte test is a TRUE or FALSE.

For example,

BYTE CHAR;

IF CHAR = ALPHA THEN

ELSE ;

EXAMPLE 5-2. MARK DELIMITER CHARACTERS

This program illustrates the use of the SCAN and MOVE statements. The user inputs a single
character to be used as a delimiter. The user then inputs a character string to be tested; the
program scans the test string and marks each occurrence of the delimiter character with a
marker character (I) below it.

The MOVE statement is used to initialize buffers only; two methods of setting up a MOVE are
shown - one using byte data labels and the other using pointers.

5-20

Input/Output

INPUT A DELIMITER CHARACTER

INPUT A CHARACTER STRING
1234567890*ABCDEF***!"#Si.&'C)=<>?*@+,./7GHIJKLMNO**PQRSTUV**ZXC********

I III I II II IIIIIIII
INPUT A DELIMITER CHARACTER
E
INPUT A CHARACTER STRING
NOW IS THE TIME FOR ALL GOOD MEN TO COME TO THE AID OF THE PARTY!

I I I I I I

Listing

BEGIN <<EXAMPLE 5-2. MARK DELIMITER CHARACTERS>>
COMMENT:

THIS PROGRAM MARKS THE APPEARANCE OF A DELIMITER CHARACTER
WITHIN A SOURCE ASCII STRING.
NOTE: "INPUT" AND "OUTPUT" ARE DUMMY PROCEDURES WHICH SIMULATE
INPUT, OUTPUT, AND CONVERSION - THEY ARE NOT PART OF SPL/3000;

INTEGER CHARPTR=S,
TESTWORD:=0;

~TE ARRAY STRINGC0:7l):="INPUT A DELIMITER CHARACTER";
BYTE ARRAY MARKERC0:7l):="INPUT A CHARACTER STRING";
BYTE POINTER STRINGADR:=@STRING, <<CSTRINGADR)=ADDRESS OF STRING>>

MARKERADR:=@MARKER, <<CMARKERADR)=ADDRESS OF MARKER>>
MARKPOI NT;

LABEL LOOP;

LOOP:

OUTPUTCSTRING); <<PRINT DELIMITER REQUEST>>
INPUT<STRING); <<INPUT DELIMITER CHARACTER>>
TESTWORD.C8:8):=STRING; <<NULL,TESTCHARACTER>>
STRING:=0; <<ZERO STRING BUFFER>>
MOVE STRINGCl) := STR1NG,C71);
OUTPUTCMARKER); <<PRINT STRING REQUEST>>
INPUT<STRING>; <<INPUT TEST STRING>>
MARKERADR:=" "; <<BLANK MARKER BUFFER>>
MOVE MARK ERA DR (1) : = MARK ERi\DR, < 71);
TOS:=@STRINGADR; <<SET UP STACK FOR SCAN>>

SCAN* UNTIL TESTWORD,l; <<SCAN FOR DELIMITER>>
<<NULL CHARACTER TERMIN~TES>>

IF NOCARRY THEN <<DELIMITER FOUND>>
BEGIN <<COMPUTE MARKER ADDRESS>>
@MARKPOINT:=@MARKERADR+CCHARPTR-@STRING~DR);
~lARKPOI NT: ="I"; <<PUT MARKER IN BUFFER>>
CHARPTR::CHARPTR+l; <<BUMP STRING ADDRESS>>
GOTO LOOP;

END;
DEL; <<DELETE STRING ADDRESS>>
OUTPUTCMARKER); <<OUTPUT MARKERS>>

END <<CHARACTER MARKER>>.

5-21

EXERCISES FOR SECTION V

1. Identify the invalid BYTE declarations.

a) BYTE A := %101;

b) BYTE ARRAY ASCIIBUF (0:3) :="AB", -1, "Z";

c) BYTE CHARS := "AB";

d) BYTE ARRAY STRl (0:3) := "ABCD", STR2 (0:3) := "EFGH";

e) BYTE BIGNO := 12.34;

f) BYTE FLAG :=TRUE;

g) BYTE ARRAY COMPOSITE (0:5) := 100, "A", %14, "234";

h) BYTE ONE := "1 ",TWO := "2";

i) BYTE ARRAY BIGSTRING (0:9) :="****ERROR NUMBER****";

j) BYTE W, X, Y, Z, LAMBDA:= "L";

2. Describe the results of the three assignment statements by filling in the tables provided.

BYTE ARRAY ASCII (0:3) := "ABCD";
BYTE ARRAY NULL (0:3) := 4(0);
LOGICAL WORD := O;
WORD := ASCII;
NULL := ASCII;
TOS := ASCII;

WORD ARRAY NULL

I

TOS

3. Write the SPL/3000 statements to concatenate bytes A and Band place the result in
0 7 8 15

WORD, such that WORD= f A B

BYTE A := "A", B :~ "B";

LOGICAL WORD;

4. How many words of storage does this declaration allocate?

INTEGER INDEX = X;

5. For each of the octal byte addresses below, convert the address to a word address and then
back to a byte address. Is the result always the same as the original byte address?

5-22

Byte Address Word Address Final Byte Address

Address 1 %1023

Address 2 %1460

Address 3 %2577

Hint: A byte address is converted to a word address by dividing by 2; a word address is
converted to a byte address by multiplying by 2.

6. How many words of storage are allocated for these pointer declarations?

a) BYTE POINTER INBUF := @ ASCIIBUF;

b) REAL POINTER DECNO;

c) INTEGER POINTER FIXIT;

d) LOGICAL POINTER STICK:=@ TABLE;

e) LOGICAL POINTER INDEX= X;

7. Which of the following constants will fit into a single byte (8 bits) without truncation?

a) -1

b) "-1"

c) %377

d) 27.3E-6

e) "$"

8. Evaluate the following statements and compute the result stored in TOT AL.

INTEGER TOTAL, FIXNO := -1;

BYTE A:= 37, B := 144, C := 3;

TOTAL:= (A+ BYTE (FIXNO) + B) * C;

9. Assume this declaration:

INTEGER ARRAY SAM (1:10) := 1, 2, 3, 4, 5, 6, 7, 8, 9, 10;

Declare an integer pointer IPNTR that points to the first element of array SAM.

10. Assume these declarations:

INTEGER ARRAY NUMBER (0:9)' := 1, 2, 3, 4, 5, 6, 7, 8, 9, 10;

INTEGER POINTER NPNTR :=@NUMBER;

What is the result of executing each of these statements?

a) NPNTR := NPNTR + 1;
b) NPNTR(l) := NPNTR(2) + NPNTR(3) + NPNTR(4) + NPNTR(5);
c) @NPNTR := @NPNTR + 7;
d) @NPNTR := @NUMBER;
e) NPNTR := @NUMBER(9);

5-23

11. Write SPL/3000 statements to fill each word of an integer array BUFF with a binary
pattern of alternating 1 and 0 bits (e.g., 101010). Use a MOVE statement to
solve the problem.

Assume:

INTEGER ARRAY BUFF (0:99);

12. Examine the MOVE statement and data declarations shown below. Supply the appropriate
stack decrement operand for the MOVE statement, and write the additional statements
required to save the final source address in INPNTR and the final destination address in
OUTPNTR.

LOGICAL ARRAY INBUF (0 :1000),

OUTBUF (0:1000);

LOGICAL POINTER INPNTR, OUTPNTR;

MOVE OUTBUF := INBUF, (128), sdec;

13. Write a statement to move characters from SOURCEBUF to DESTBUF until a non
alphabetic character is found. Use an additional statement to make certain that
SOURCEBUF contains a non-alphabetic character before the move by storing an asterisk
(*)into the buffer as the last character.

Assume:

BYTE ARRAY SOURCEBUF (0:80),

DESTBUF (0:80);

14. Rewrite the solution to exercise 13. After the move has completed, compute the number
of characters actually moved, and store the value in an integer variable (COUNT). Deter
mine the type of character which terminated the move. Set a logical variable (NUMBER)
to true if the character was numeric, otherwise set it to false.

Assume:

BYTE ARRAY SOURCEBUF (0:80),

DESTBUF (0:80);

INTEGER COUNT;

LOGICAL NUMBER;

15. Assume a byte array STRING starts at DB+ %1000 (byte address) and contains the following:

t
DB+ 1000

For the execution of this SCAN statement

SCAN STRING UNTIL ".E", O;

5-24

the stack contains

S-1 I %1000 I (DB relative byte address)

S-0 .E

How does the stack appear after the execution of the SCAN statement?

16. Write a statement to determine whether the content of byte array DATA is the string "END
OF INPUT". If that is the content, set the logical variable FLAG to true.

Assume:

BYTE ARRAY DATA (0:11);

LOGICAL FLAG:= FALSE;

5-25

SECTION VI
Procedures and Subroutines

This section discusses two types of SPL/3000 subprogram units: procedures and subroutines. The
PCAL and SCAL machine instructions provide entry to procedures and subroutines, respectively;
EXIT and SXIT provide for returning to the point of the call.

PROCEDURES

A procedure in SPL/3000 has all the attributes of a conventional subroutine, but is much more
powerful. Functionally, a procedure is a contiguous block of machine instructions which is
called (with parameters) to perform a specific function. The power and importance of pro
cedures in the HP 3000 cannot be overstressed. They are the organizational principles behind
code, data and system control:

• Saving/Restoring Environment

The calling environment is saved in the stack when a procedure is called and restored
when a procedure exits.

• Local variables

Each procedure called has a unique Q register setting when it executes. This makes it
possible to allocate and address local data variables in the Q+ area of the stack.

• Dynamic Temporary storage

The Q register is given a fresh setting whenever a procedure is entered and reset when
the procedure exits.

• Segmentation

Code segments consist of one or more procedures. The Procedure Call instruction
allows control to be transferred from segment to segment.

• Virtual Memory

The Procedure Call instruction automatically causes an absence trap if the requested
procedure is in a segment that is not present in main memory (the operating system
then makes the segment present). If the segment is already present, the instruction
directly transfers to the procedure. This provides a virtual memory for code.

6-1

• Code Sharing

Since code cannot be modified, it is re-entrant and can be shared (used by several
processes concurrently). All procedures are referenced through a system-defined code
segment table. Thus all users can concurrently access the same copy of a common
procedure (such as the sine or cosine function).

• System Control

The functions of the operating system are provided by procedures called Intrinsics. A
privileged mode bit and an uncallable bit are examined by the PCAL and EXIT instruc
tions to restrict access to these Intrinsics.

Attributes of a Procedure

Each procedure can have many different attributes. Some of the most common are

• Type

If a procedure is typed, it returns a value of a specified type (integer, real, etc.) in place
of its name (in an expression).

• Parameters

Variables, arrays, constants, labels, pointers, and other procedures can be passed to a
procedure as parameters. For each parameter, either a copy of the parameter value or
the address of the parameter is passed to the procedure in the Q- area of the stack.

• Local Variables

Procedures can declare local variables that are known only within the procedure and are
allocated space in the Q+ area when the procedure is called. Thus, they occupy space
only when a procedure call is active. All items that can be declared in the main program
(except for procedures) can also be declared within procedures. Another type of data
construct - the own variable - is known only within a procedure, but is allocated in the
DB area and thus has a value throughout the life of a process.

• Main Body

The main body (or code) of a procedure can consist of any sequence of statements,
including calls to procedures. Recursion - procedures calling themselves -is allowed.

A Typical Procedure

Suppose we have a procedure named BLANKBUF whose purpose will be to fill a buffer (array)
with ASCII blanks.

• What data does BLANKBUF need?

The address of the buffer to be filled and the number of words to blank, minus one.

• What data must BLANKBUF return?

Only the filled buff er.

6-2

• How would a call to BLANKBUF look?

BLANKBUF (ARRAY , 30) ; ----------- -._..-
Procedure Buffer Number

name address of words

• How would these two parameters be received?

They are loaded onto the stack before the call to BLANKBUF. An address is loaded for
the buffer and a constant is loaded for the number of words.

• How does BLANKBUF know about its parameters?

All of the parameters of a procedure are defined when the procedure is declared.
Following is part of the declaration of BLANKBUF:

PROCEDURE BLANKBUF (BUFFER, COUNT);

VALUE COUNT;

LOGICAL ARRAY BUFFER;

INTEGER COUNT;

BUFFER and COUNT are called formal parameters. When the procedure is called, each
formal parameter must be matched by an actual parameter compatible with the type
specified for a formal parameter. Above, the address of a logical array is expected in
place of BUFFER and an integer constant value is expected in place of COUNT.

• Where does BLANKBUF get the blank characters to use for filling the buffer?

BLANKBUF declares a local variable (BLANKWORD) which is initialized with two
blanks. This follows the specification of parameters:

PROCEDURE BLANKBUF (BUFFER, COUNT);

VALUE COUNT;

LOGICAL ARRAY BUFFER;

INTEGER COUNT;

BEGIN

LOGICAL BLANKWORD := %20040;

• How does BLANKBUF perform the blank fill?

The statements to perform the function of the procedure follow the local variable
declarations. The procedure declaration is terminated by an END;. Here is the com
plete declaration of BLANKBUF:

PROCEDURE BLANKBUF (BUFFER, COUNT);

VALUE COUNT; LOGICAL ARRAY BUFFER;

INTEGER COUNT;

BEGIN

LOGICAL BLANKWORD := %20040; <<blank, blank>>

BUFFER:=BLANKWORD;

MOVE BUFFER (1) :=BUFFER, (COUNT-1);

END <<END BLANKBUF>>;

6-3

Declaring Procedures

As was seen in the BLANKBUF example, a procedure must be declared in order to specify ex
actly what it is to do and what local variables it needs. The parameters must be specified in
sufficient detail to enable the compiler to generate proper code for calls upon the procedure.

The declaration of procedures occurs in the declaration part of a main program, after all the
data declarations. (Procedures cannot be declared locally-within other procedures.) A pro
cedure declaration has two parts: a head and a body.

Elements of the procedure head, in required order of appearance:

Syntactic Element

type

PROCEDURE name

formal parameters

value part

specification part

option part

Explanation

If a procedure is typed, it is a function procedure and returns a value
of the specified type (byte, integer, logical, real, double, long). Func
tions are discussed later in this section.

The name is the name which is used to call the procedure; it can be any
valid identifier.

The formal parameters are dummy identifiers separated by commas
and enclosed in parentheses. These identifiers have meaning only with
in the procedure (they may duplicate global identifiers) and assume
the values of the actual (calling) parameters when the procedure is
invoked. A semi-colon must follow the rightmost parenthesis.

Parameters can be passed either by value or by reference. Those to be
passed by value must appear in a list after the word VALUE. When a
parameter is called by value, a copy of the actual parameter value is
loaded into the stack. This location can be accessed by the procedure
with Q minus addressing. Although the local copy of the value can be
changed, the contents of the original actual parameter remain unchanged.
When a parameter is passed by reference (the default case), the address
of the parameter is loaded onto the stack and the procedure references
the data indirectly through it. This means that the procedure can
modify the original contents of the actual parameter.

The specification part must include the type of every formal parameter
(including those called by value). Variables, arrays, pointers, labels, and
procedure names can be passed as actual calling parameters. There is
no parameter checking with calls to procedures passed as parameters.
The form of specification is the same as a declaration, except that
arrays are specified without bounds. (For special considerations in
specifications, see Systems Programming Language (HP 03000-90002)

The option part specifies special options of the procedure. The most
common options are

OPTION FORWARD; Allows two or more procedures to
call each other. (See "Recursive
Procedures.'')

OPTION EXTERNAL; Allows procedures to be compiled
separately. (See "Intrinsics.")

6-4

OPTION VARIABLE; Allows procedures to be called with a
variable number of parameters. (See
"Intrinsics.")

All options are described fully in Systems Programming Language.

Elements of the procedure body:

BEGIN

data group

statements

END;

The data group contains any data declarations local to the procedure.
These declarations are allocated space in the Q+ area of the stack and,
thus, can only be referenced within this procedure. All of the SPL/3000
structures can be declared locally except for procedures. A procedure
can be declared within another procedure only if its procedure body
(code) is external (OPTION EXTERNAL). Since intrinsics are external
system procedures they can be declared within procedures. Subroutines
can be declared in procedures. Local arrays are allocated Q+ locations
and are addressed indirectly through a Q+ data label; they cannot be
initialized since the space for them is not allocated until the procedure
is called. Note that calling parameters can be used in declarations (for
example, to specify variable bounds for an array; see Section VII).
The following example shows what space would be allocated on the
stack when a procedure called RUN is entered:

Procedure

PROCEDURE RUN;

BEGIN

INTEGER A;
Q--7

Q + 1
POINTER P; Q + 2
LOGICAL ARRAY LAR(0:4); Q + 3

Q+4

END;

Stack

A

p

pointer to zero
element of LAR

LAR(O)

LAR(l)

LAR(2) LAR

LAR(3)

LAR(4)

The body of a procedure consists of SPL/3000 statements. These
statements can reference the formal parameters, entities declared local
to this procedure, and all globally declared entities (except subroutines).

6-5

If we review the first example procedure (BLANKBUF) we can see the parts described above:

<<HEAD>>

<<NO TYPE>>

PROCEDUREBLANKBUF<<NAME>>

(BUFFER,COUNT) ; <<FORMAL PARAMETERS>>

VALUECOUNT;<<VALUEPART>>

LOGICAL ARRAY BUFFER ; <<SPECIFICATION PART>>

INTEGER COUNT ;

<<EMPTY OPTION PART>>

<<BODY>>

BEGIN

LOGICAL BLANK WORD := %20040 ; <<DAT A GROUP>>

BUFFER:=BLANKWORD;<<STATEMENTS>>

MOVE BUFFER(l) := BUFFER,(COUNT-1);

END; <<END DECLARATION>>

All parts of the procedure head are optional except for PROCEDURE name. The data group is
an optional part of the body. In addition, if there is no data group (no local declarations) and
only one statement in the rest of the body, the BEGIN-END pair can be omitted.

Calling Procedures

Procedures can be called by the main program, by other procedures, or by themselves. There
are two methods of calling a procedure. One is in a Procedure Call statement; the other is in
an expression (typed procedures only). This second use is discussed later in this section under
"Functions." The Procedure Call statement has the following format:

name (actual parameter list);

name is the identifier of the procedure to be called.

actual parameter list is a list of actual parameters separated by commas that correspond
(one-to-one) in type with the formal parameters of the procedure.
VALUE parameters can be constants, identifiers, expressions, or
assignment statements. Reference parameters can be identifiers
only, not constants. The compiler generates code to determine
the value or address of each actual parameter in turn and leave
them on the stack.

If there are no parameters, the entire parenthetic unit is omitted. When assignment statements
are used as parameters, the result of the expression is stored in the variable specified and also
left on the stack as a parameter.

It is possible to specify that a parameter has already been placed in the stack by the user. This
is done by specifying an asterisk (*) in place of the parameter. Details of this are covered in
Systems Programming Language.

6-6

These statements transfer control to the procedure named with the parameters properly loaded
into the stack. When the called procedure exits (reaches the final END or a RETURN state
ment), control returns to the statement following the procedure call statement. For example,

-----------•~PROCEDUREBLANKBUF

BLANKBUF (OUTBUF,36);
BEGIN

OUTBUF(5) := ".";

l ___________ END;

Procedure Functioning

Entering and exiting a procedure follows a very machine-dependent sequence in SPL/3000.
First, the parameters or their addresses are loaded onto the stack in the order they occur in
the parameter list. Then a PCAL instruction is executed. The PCAL instruction addresses
through a Segment Transfer Table (in the code segment) and either:

1. Transfers to the start of a procedure in the current code segment, or

2. Uses a Segment Transfer Table entry and a Code Segment Table entry to locate the
code segment which contains the procedure and then transfers control to the start
of the procedure. (The Code Segment Table is a hardware-referenced, system-wide
table which is maintained by the operating system.)

During the execution of the PCAL instruction, a four-word stack marker is placed on the stack
and the contents of the Q register are changed to point to a fresh area on the top of the stack.
The stack marker preserves the definition of the environment at the time of the PCAL and has
the following format:

Calling
Parameter
Storage

Stack Marker

I Q- 5

Q-4

Q- 3 X REGISTER

!
Q- 2 RELATIVE P

Q -1 STATUS

l S,Q DELTA Q

Stack available for
local data storage {

6-7

Previous contents of index (X) register
(restored on exiting).

PB relative return address.

Previous contents of STATUS (restored
on exiting).
Value to be subtracted from Q to obtain
previous Q on exit.

The procedure's instructions are executed until an EXIT instruction occurs (generated by final
END of a procedure or a RETURN statement). EXIT uses the stack marker to return to the
point of the call and reset the environment. The contents of the Q, P, status, and index registers
are restored. Parameters can be deleted from the stack or left.

The following sample program shows how the complete process of calling and exiting a pro
cedure occurs. The lines are numbered so that they can be referred to from the explanation.
The letters (A, B, C, ...) mark the chronological path during execution of the program. The
explanation will follow this path.

1 BEGIN <<SAMPLE PROCEDURE DECLARATION AND CALL>>

2 <<GLOBAL DATA DECLARATION>>

3 LOGICAL ARRAY DATA (0:128);

4 <<PROCEDURE DECLARATION>>

5 PROCEDURE BLANKBUF (BUFFER,COUNT);

6 VALUE COUNT;

7 LOGICAL ARRAY BUFFER;

8 INTEGER COUNT;

9 BEGIN

10 <<LOCAL VARIABLE>>

D 11 LOGICAL BLANKWORD := %20040;

12 <<STATEMENTS>>

13 BUFFER (0) := BLANKWORD;

14 MOVE BUFFER (1) :=BUFFER (0), (COUNT-1);

E 15 END;

A 16 <<START OF MAIN PROGRAM>>

17 <<INVOKE PROCEDURE>>

BC 18 BLANKBUF (DATA,128);

F 19 <<RETURN FROM PROCEDURE>>

20 END <<END OF PROGRAM>>.

Sequence of Execution Address Contents

A At the start of the main program (line DB + 0
16). Note that an artificial stack

400

marker is created for the program so
that at the end of the program it can
EXIT back to the operating system. DB+ 400

8 ~

x
p

STATUS

(DB + 6058) Q,S DELTA Q

6-8

)

Meaning

Address of 0
element of DAT A

)
DATA

array elements

Initial
Stack
Marker

Sequence of Execution

B Before the procedure call, the
parameters are loaded into the stack:

4008 =address of DATA

2008 = 12810 =COUNT

Address

DB+O

Q

Q + 1

(DB + 60 7 8) S, Q + 2

c Execution of the PCAL instruction
(line 18) causes a stack marker to be
loaded onto the stack and the contents
of P and Q to be changed. Execution
now continues with the body of the
procedure (line 9). The index register
(X) is not changed; it can be used to
pass a parameter.

DB+O

Q- 5

Q-4

Q-3

Q-2
Q-1

(DB+ 6138) S,Q - 0

D Code within the procedure first
allocates and initializes location
Q + 1 for the local variable
(BLANKWORD, line 11). This
is done by loading a constant from
the code segment onto the stack.
The procedure stores a copy of
BLANKWORD through the array
parameter (address) in location
Q - 5, sets up the addresses and
count required by MOVE, and
executes a MOVE instruction to
fill the DAT A array with blanks.

6-9

DB+O

DB+ 400

Q-5

Q-4

Q

Q + 1

S-2

S-1

S-0

.4'

/

,,
~

Contents

~

4008

2008

"' J

4008

2008

x
p

STATUS

DELTA Q = 6

4008

blank/blank

i.,..

"

4008

2008

blank/blank

401

400

199

Meaning

} Stack Marker

Address of 0
element DAT A

Count parameter
(by VALUE)

}
Initial Stack
Marker

}
Calling
Parameters

Procedure Call
Stack Marker

l f DATA array

}
Initial Stack
Marker

}

Procedure Call
Stack Marker

BLANKWORD

destination

source

word count

Sequence of Execution Address Contents Meaning

After the MOVE completes, it decre- DB + 0
ments the stack by three words. This
is just before the EXIT.

(DB+ 6138) Q

s

~
"

4008

2008

x
p

STATUS

DELTA Q

blank/blank

y

}
Initial Stack
Marker

} Parameters

Stack Marker

BLANKWORD

E At this point, an EXIT from the
procedure returns control to the
main program as follows:

DB+O 4008

~ .r ~

DB+ 400
}DATA array

(DB + 6058) S,Q }
Initial Stack
Marker

Action Effect

S is moved back to Q Procedure data stack deleted.

Q is decremented by delta Q (Q changed Re-establish base of calling procedure or
from DB + 6138 to DB + 6058) program stack.

Reset registers and delete values from stack. Previous state of machine registers is restored
status register +- status and the stack marker is deleted from the stack.
P register+- P +PB (return addr.) (S points to last parameter.)
index register +- index

Number of parameter words pushed on the Calling program's stack restored to condition
stack for the call are deleted. (This may be which existed prior to the procedure call.
overridden to return values in the stack.)

F At this point, an EXIT from the main program through the initial stack marker returns
control to the operating system.

6-10

RETURN STATEMENT

The RETURN statement is used to generate additional EXIT points within the body of a pro
cedure. The final END of the procedure also generates an EXIT. The format of a RETURN
statement is

RETURN count;

count is the number of words by which the stack is to be decremented. If count is not
specified, the decrement value equals the number of words used to pass the actual
parameters to the procedure. (Note that count is in addition to the stack marker
which is always deleted on EXIT.)

The optional count in RETURN allows the programmer to leave some or all of the calling
parameters on the stack after exiting. The final END of the procedure declaration does not
allow this option. A use of RETURN to save parameters is shown in this example:

<<main program>>

NOW (5, 6.7, 92);

TEMP:=TOS;<<SAVEPARAMETER>>

PROCEDURE NOW (A, B, C);

VALUE A, B, C;

INTEGER A, C;

REALB;

BEGIN

RETURN 3;

END;

EXAMPLE 6-1. DATA COMPRESSION

Q-7

Q-6

Q-5

Q-4
Q-3

Q-2

Q-1

S,Q

S-0

Stack on entry

5

6.7

92

Index

Relative P

STATUS

Delta Q

Stack after
RETURN 3

5

Calling
Parameters

Stack
Market

A

This program demonstrates the use of a procedure to compress input records by deleting blanks
and comments. (All comments are enclosed in quotes.) The procedure uses both the MOVE
(byte) WHILE and SCAN UNTIL statements; the parameters for moving and scanning remain
in the stack and are modified when necessary. The main program's task is to input the data, call
the procedure, and output the results.

Input/Output

ENTER A DATA RECORD
12 "RECORD NUMBER" 4/13 "MONTH/YR" W-6475-Q "ITEM NO" 342 "QUANTITY"
124I13 W-64 75-Q3 42
CHARACTER COUNT= 17

6-11

ENTER A DATA RECORD
"TEST NO" 465 "SAMPLE LOT" A-241 "HARDNESS" 8
465A -2418
01ARACTER COUNT = 9
ENTER A DATA RECORD
"ITEM NUMBER" 347-572-568 "DEVELOPED" 4/17 "MANUFACTURED BY" SAMCO
347-572-5684/l 7SAMCO
(}{ARACTER COUNT = 20
ENTER A DATA RECORD
"TRANSACTION RECORD" EXCHANGE "ITEM" BICYCLE .. PRICE" $56.48 "DATE" 8/23
EXCHANGEBICYCLE$56.488/23
OiARACTER COUNT = 25

Listing

BEGIN <<EXAMPLE 6-1. DATA COMPRESSION>>
COMMENT:

THIS PROGRAM INPUTS AN ASCII RECORD <MAXIMUM LENGTH 72
CHARACTERS), CALLS A- DATA COMPRESSION PROCEDURE, AND OUTPUTS
THE PACKED RESULT.
NOTE: "INPUT" AND "OUTPUT" ARE DUMMY PROCEDURKS WHICH SIMULATE
INPUT, OUTPUT, AND CONVERSION - THEY ARE NOT PART OF SPL/300Z:

BYTE ARRAY IN<0:72):=73C7.15>;
BYTE ARRAY OUT<0:72>:=73C" ">;
BYTE ARRAY HEADMSGC0:19>:="ENTER A DATA RECORD";
BYTE ARRAY LABLC0:17>:="CHARACT[R COUNT= ";
INTEGER PKD 'CNT;
PROCEDURE COMPRESSCINBUF,OUTBUF,COUNT>;

BYTE ARRAY INBUF, OUTBUF;
INTEGER COUNT;

BEG!~
COMMENT:

THIS PROCEDURE COMPRESSES INPUT DATA RECORDS BY ELIMINATING
BLANKS AND ALL COMMENTS ENCLOSED IN QUOTATION MARKS. THE
INPUT BUFFER CONTAINS A RECORD TERMINATED BY A RETURN. A
PACKED OUTPUT BUFFER AND A CHARACTER COUNT ARE RETURNED TO THE
CALLING PROGRAM.;

BYTE POINTER SCHAR=S,
DCHAR=S-1;

LAB EL MOVER,
EXIT;

TOS:=@OUTBUF; <<SET DESTINATION ADDRESS>>
TOS:=@INBUF; <<SET SOURCE ADDRESS>>

MOVER: MOVE *==* WHILE AN,0; <<MOVE WHILE NOT SPECIAL>>
IF SCHAR=i.40 THEN <<BLANK>>

BEGIN
@SCHAR:=@SCHAR+l; <<SKIP SOURCE BLANK>>
GOTO MOVER;

END;
IF SCHAR=i.15 THEN GOTO EXIT; <<RETURN>>

6-12

IF SCHAR<>%42 THEN <<NOT " MARK - VALID SPECIAL CHARACTER>>
BEGIN

DCHAR:=SCHAR; <<MOVE CHARACTER>>
@DCHAR:=@DCHAR+l; <<INCH DESTINATION>>
@SC HAR: =@SC HAR+ 1; <<I NCR SOURCE>>
GOTO MOVER;

~ND;
@SCHAR:=@SCHAR+l; <<SKIP OPENING SOURCE " >>

SCAN * UNTIL %6442, 1; <<SCAN FOR NEXT SOURCE " >>

IF NOCARRY THEN <<QUOTE MARK FOUND>>
BEGIN

@SCHAR::@SCHAR+l; <<SKIP CLOSING SOURCE " >>
GOTO MOVER;

END;
EXIT: COUNT:=@DCHAR-@OUTBUF; <<COMPUTE CHARACTER COUNT>>
END <<COMPRESS>>;

<<END OF DECLARATIONS>>
OUTPUTCHEADMSG>; <<OUTPUT HEADING>>
INPUTCIN); <<READ ASCII RECORD>>
COMPRESSCIN,OUT,PKD'CNT>; <<PROCEDURE CALL>>
OUTPUTCOUT); <<OUTPUT COMPRESSED RECORD>>
OUTPUTCLABL,PKD'CNT); <<PRINT LABEL AND CHARACT~R COUNT>>

END <<MAIN PROGRAM>>.

FUNCTION PROCEDURES

Function procedures are simply those procedures assigned a type (INTEGER, LOGICAL, BYTE,
REAL, LONG, DOUBLE) when they are declared. When these procedures are used in an expres
sion, they return a value of the specified type in place of their name. (The result is actually
returned in the top of the stack and can thus be used in the rest of the expression.)

It is essential that a function assign a value to its name somewhere within the body of the pro
cedure. Failure to assign a value to the function name causes a zero value to be returned. There
fore, the procedure name should occur on the left side of an assignment statement at some point.
For example,

BEGIN
INTEGER NUM := 108, NIX;
INTEGER PROCEDURE VAL(A,B,C); <<FUNCTION DECLARATION>>

VALUE A,B,C;
INTEGER A;B,C;

VAL := (A+B)*C;
<<MAIN PROGRAM>>

NIX:= NUM/VAL(4,5,6); <<THIS IS EQUIVALENT TO THE STATEMENT:>>
<<NIX:= NUM/((4+5)*6);

END.

6-13

The method by which the function value is returned in the stack follows:

Function procedures require a place in the
stack to return the value set into the func
tion name. The required space is allocated
automatically (immediately preceding the
function parameters) and is set to zero.
Space allocation is large enough to contain
the type of return value specified by the
function type of the procedure.

Stack Upon
Address Procedure Entry

DB+O

0

4

5

6

S,Q

Stack After
Address Procedure Exit

When the procedure exits, the stack marker DB+ 0
and the actual parameter, are deleted from

108

the stack. The value returned, however, is
left on the top of stack where it may be used
to facilitate expression evaluation.

Q

s

6-14

54

Meaning

NUM variable
NIX variable

initial stack
marker

space for function
return value

l value parameters

I
procedure call
stack marker

J

Meaning

NUM variable
NIX variable

initial stack marker

returned function
value

EXAMPLE 6-2. FACTORIAL COMPUTATION

This program uses a function procedure to supply the factorial values required to compute the
number of permutations (different arrangements) of seven items taken three at a time according
to the formula:

where

n! = n*(n-l)*(n-2)* *(l)
O! = 1

The function procedure in this example has limited general usage since it does not check for
overflow and would, therefore, return an incorrect result for factorials of numbers greater than
seven.

The input/output example shows the declaration and use of function procedures and the use of
a WHILE statement to compute the factorial.

Input/Output

PERMUTATIONS OF 7 ITEMS TAKEN 3 AT A TIME=210

Listing

BEGI~ <<EXAMPLE 6-2. FACTORIAL COMPUTATION>>
COMMENT:

THIS PROGRAM CALLS A FUNCTION PROCEDURE TO COMPUTE THE
FACTORIAL VALUES REQUIRED TO DETiRMINE THE NUMBER OF
DIFFERENT ARRANGEMENTS CPERMUTATIONS) OF N THINGS TAKEN
R AT A TIME.
PERMUTATIONS= N!/(N-R)!
NOTE: "INPUT" AND "OUTPUT" ARE DUMMY PROCEDURES WHICH SIMULATE
INPUT, OUTPUT, AND. CONVERSION - THEY ARE NOT PART OF SPL/3000;

BYTE ARRAY PLABLC0:4l>:="PERMUTATIONS OF 7 IT~MS ",
"TAKEN 3 AT A TIME=";

INTEGER N: = 7,
H:=3,
PERMUTATIONS;

INTEGER PROCEDURE FACTORIALCNUMBR);
VALUE NU~lBR;
INTEGER NUMBR;

BEGIN
COMMENT:

THIS FUNCTION PROCEDURE COMPUTES FACTORIAL VALUES.
N! = NCN-i)CN-2)(N-3) ••• <l> WHERE 0! = l
NO CHECKING IS MADE FOR POSSIBLE OJiRFLOWS RESULTING
FROM REPEATED INTEGER ~ULTIPLICATION. ;

6-15

INTEGER PROD:=l;
WHILE NUMBn>0 DO <<MULTIPLICATION LOOP>>

BEGIN
PROD:=PROD*NUMBR;
NUMBR: = l~UMBR- 1;

END;
FACTORIAL:=PROD; <<RETUHN THE FACTORIAL VALUE>>

END <<FACTORIAL>>;
<<END OF DECLARATIONS>>

PERMUTATIONS:=FACTORIAL(N)/FACTORIAL<N-R);
OUTPUT<PLABL,PERMUTATIONS>; <<OUTPUT ANSWER>>

END <<MAIN PROGRAM>>.

RECURSIVE PROCEDURES

A procedure is recursive if it can be called at any time in a program even though an indefinite
number of previous calls to the same procedure are still active (have not exited yet). Recursive
procedures are capable of calling themselves. Recursion pertains to operations which are
inherently repetitive. The result of each operation is usually dependent upon the result of the
previous repetition. The following procedure is recursive:

INTEGER PROCEDURE FACTORIAL (I);

VALUE I; INTEGER I;

FACTORIAL:= IF I= 0THEN1 ELSE I* FACTORIAL(l -1);

This function procedure calculates the factorial of an integer value (factorial n = n! = n*(n - l)*
(n -2)* ... *(l)) by subtracting one from the integer and calling itself again until the integer
parameter equals one. Then it returns to itself repeatedly (carrying out the multiplications on
the way) until the final result has been found.

This factorial procedure is an example of direct recursion. Recursion can also occur indirectly:
procedure A calls procedure B which then calls A again. Eventually A exits back to B which
exits back to A. For example,

First call to
~main)

Exit

(J
First call to Exit

(J Second call to Exit

Recursion provides a simple and elegant means of handling indefinite nesting. One of the most
common occurrences of indefinite nesting is in the construction of compilers for programming
languages. For example, expressions within parentheses can occur within other expressions in
most programming languages. Evaluation of parenthetical expressions can be easily handled
using recursive techniques. When the expression analysis procedure encounters a left parenthesis
it saves the accumulated partial result and calls itself recursively to handle the expression within
the parentheses. When the inner expression has been evaluated, the procedure exits back to
itself and continues evaluating the outer expression.

6-16

Consider the following construction from a hypothetical programming language and assume
that ex pr is the procedure that evaluates expressions (down arrows indicate procedure calls, up
arrows indicate procedure exits):

Recursive Levels

0 (2 * 3 * (2 + 3 + (4 I 2)) =::} 42

•
l 1

t t
1 [2*3 = 6] * [6*7 = 42]

t
2 [2+3=5] + [5+2=7]

+
3 [4/2 = 2]

Compilers which are written to analyze programs in this manner are called recursive-descent
compilers. They allow very powerful programming languages to be developed because of their
inherent generality and nesting capability. The compilers are written modularly with analysis
procedures for each portion of the language syntax (declarations, array declarations, statements,
FOR statements, expressions, etc.). Each procedure attempts to recognize a single type of
syntactic entity. A procedure is called when it is known that the next item in the program must
be an entity of that type (for example, a condition clause must follow the IF in an IF statement).
The SPL/3000 compiler is a recursive-descent compiler.

Re-entrant Code and Recursion

Re-entrant code and recursion are related topics (re-entrant code is required to implement
recursion efficiently). Code is re-entrant if it can be used at any time, even if it is entered before
a previous use of it has completed. When code is re-entrant it can be shared among many users,
thus eliminating the need for duplicate copies in memory. The simplest way to guarantee that
code will be re-entrant is not to modify any of the locations in the code. This can be done by
separating the code from the data. In the HP 3000 this is automatic, since code and data are
separated into different segments and no instructions modifying the code segment are available
to the user. All information that must be modified is kept in the user's data segment and each
user executing shared code has his own data segment.

However, more than re-entrant code is required for recursion. Recursion also requires that each
call upon a procedure allocate fresh temporary storage and retain a clear trail back to all previous
calls within the same program. In HP 3000 these requirements are met by the PCAL and EXIT
instructions. PCAL creates fresh local storage when it establishes the new Q register setting and
stack marker. The stack marker saves the environment of the previous call and is used by the
EXIT instruction to restore the previous environment when the current call is completed. Thus
all procedures in SPL/ 3000 are inherently recursive with no special effort required on the part
of the programmer.

6-17

Table 6-1 summarizes the differences between re-entrant and recursive code:

Table 6-1. Re-entrant and Recursive Code Differences

Requires

Re-entrant Code

Non-modified code

Separate data storage for each program that

calls the code. All information pertinent to

the call is saved in this data area (temporaries,

return address, etc.).

Recursive Code

Re-entrant code (for efficiency)

Fresh allocation of local temporary storage
for each call upon the code. Previously allo

cated storage must be retained unaltered.

Clear trail back to all previous active pro

cedure calls within the program.

Option Forward

Provides

Code which can be shared by different

programs at the same time. (Within a

program, only one call to the procedure

can occur before the matching exit.)

Code which can be called at any point

within a program, even when previous

calls from the same program are still

active.

Indirect recursion presents an interesting syntactic requirement in SPL/3000, since everything
must be declared before it is used. For example, if procedure A calls procedure B which calls
procedure A again, B must be declared before A (since A calls B). But, on the other hand, A
must be declared before B (since B calls A). The dilemma is resolved by the option forward
construction in a dummy procedure declaration.

main

First call to l) Exit

First call to (J Exit

Second call to (J Exit

The procedure head is declared first, followed by the words OPTION FORWARD. The forward
option indicates that the complete definition of the procedure (the head plus th_e body) will
occur later. After all such procedures have been documented with "dummy declarations" and
forward options, the complete declarations of these procedures can follow in any order. Since
all parameters have been declared, the compiler has enough information on the procedures to
allow other procedures to call them. For example,

6-18

PROCEDURE PROCl; OPTION FORWARD; <<dummy declaration>>

PROCEDURE PROC2; OPTION FORWARD; <<dummy declaration>>

PROCEDURE PROCl; IF X = (Y := (Y + 1) THEN PROC2; <<complete declaration>>

PROCEDURE PROC2; IF X = (Z := (Z + 1) THEN PROCl; <<complete declaration>>

EXAMPLE 6-3. BINARY TO DECIMAL CONVERSION

Recursion is very useful in operating system functions and language compilers. However, these
are complex examples, not appropriate in a textbook. Recursion can be simply used in the
conversion of numbers from octal to decimal. The method used divides the octal number by
128 (decimal 10) repeatedly until the result is O; the remainders read in reverse order are the
decimal digits of the converted number:

5268 = ?10
428

128 /5268 2 5248
2 34210

3
128 /428

4 368
4

0
128 /3;-

0 3
3

This program calls a procedure to convert a binary number (16-bit positive integer) into decimal
digits and output the results. The procedure divides a binary number by 10 10 . The remainder
is converted to an ASCII numeric character and is saved in the stack. If the quotient is not
equal to zero, the procedure calls itself with the quotient as a parameter. The ASCII characters
(remainders) are saved in the stack in order of increasing significance-least significant first, most
significant last. When the quotient finally equals zero, the procedure outputs the last computed
remainder (the most significant digit) and exits to itself. Each time the procedure exits, another
digit is output. When the entire number has been output, the program terminates. The follow
ing diagram shows the levels of recursion involved in coverting 526 (octal) to decimal:

Levels of Recursion

Main Program

t L526

Main Program

OUTPUT 2 JEXIT 1 s call
128

8 = 428 rem= 2

2nd call l ~228 = 38 rem = 4 OUTPUT 4 J EXIT

s I J
3rd call ll~s = 0 rem= 3 OUTPUT 3 EXIT

The main program is set up to convert a specific number (5268) but it could easily be generalized
to handle any positive integer.

6-19

Output

342

Listing

BEGIN <<EXAMPLE 6-3. BINARY TO DECIMAL CONV~RSION>>
COMMENT:

THE MAIN PROGRAM CALLS A RECURSIVE PROCEDURE TO CONVERT A
BINARY NUMBER TO D~CIMAL AND OUTPUT THE RESULT.
NOTE: "INPUT" AND "OUTPUT" ARE DUMMY PROCEDURES WHICH SIMULATE
INPUT, OUTPUT, AND CONVERSION - THEY ARE NOT PART OF SPL/3000;

LOGICAL OCTN0:=7.526;
PROCEDURE CONDECCNUMBER>;

VALUE NUMBER;
LOGICAL NUMBER;

BEGIN
COfYIME NT:

BINARY TO DECIMAL CONVERSION PrtOC~DURE
THE OCTAL NUMBER IS DIVIDED BY 10 AND THE REMAINDER IS MADE
INTO AN ASCII CHARACTEH. IF THE QUOTIENT IS NOT ZERO, THE
PROCEDURE CALLS ITSELF. BEFORE EACH EXIT, THE LAST COMPUTED
CHARACTER IS OUTPUT.;

BYTE CHAR;
LOGICAL QUOT;

QUOT:=NUMBER/10; <<COMPUTE QUOTIENT>>
CHAR:=7.60+NUMBER MOD 10; <<COMPUTE REMAINDER IN ASCII>>
IF QUOT <> 0 THEN CONDECCQUOT>; <<FINISHED?>>
OUTPUT<CHAR>; <<OUTPUT LAST DIGIT COMPUTED>>

END; <<CONDEC>>
<<END OF DECLARATIONS>>

CONDECCOCTNO>; <<INVOKE PROCEDURE>>
END <<MAIN PROGRAM>>.

INTRINSICS

Intrinsics are compiled procedures that are supplied to users of HP 3000 as part of the Multi
programming Executive (MPE/3000). These procedures provide file access and utility functions.
(Intrinsics are described in the MPE/3000 reference manual.)

The programmer could declare his intrinsics procedures as ordinary procedures by adding the
EXTERNAL option to the head of each procedure and deleting the body. EXTERNAL means
that the procedure body (code) is linked to the main program by the operating system after
compilation. Writing out the complete head for some intrinsics can be very time-consuming, so
a shortcut is provided in SPL/3000. SPL/3000 provides simple interface to intrinsics because
SPL/3000 itself provides no construct for input and output. Any system-known intrinsics
(such as those described in the MPE/3000 reference manual) can be declared in a user program
by using the INTRINSIC declaration:

INTRINSIC intrinsic procedure list;

each intrinsic is identified by its name.

6-20

INTRINSIC declarations occur in the procedure group of the main program or the data group
of a procedure declaration. The programmer must actually know the declaration format for
each intrinsic, since he needs to know the type of the procedure and the number/type of
parameters in order to call the intrinsic correctly.

Since many procedures (especially intrinsics) have a large number of parameters that may not
all be required for every call, a method has been provided for specifying a variable number of
actual parameters. This is done by including OPTION VARIABLE in the option part of the
procedure head. The compiler generates code (when the procedure is called) to provide the
procedure with a parameter bit mask in location Q - 4 (also Q - 5 if more than 16 parameters).
If an actual parameter is missing; for example, NOW(A,,C); the corresponding bit in the mask
is set to zero (0). The correspondence is from right to left (the rightmost bit-bit 15-corresponds
to the rightmost parameter). In the procedure call, the occurrence of a right parenthesis before
the parameter list is filled implies that the rest of the parameters are missing. When the pro
cedure is entered, it is the responsibility of the procedure to examine the bit mask. Parameters
always occur in the same Q- addresses; missing parameters have useless data in their locations.

SUBROUTINES

In SPL/3000, the subroutine is a simpler and less powerful form of subprogram than the pro
cedure. Subroutines can have parameters, can be typed functions, and can be called recursively.

However, subroutines are implemented with different hardware instructions (SCAL and
SXIT). SCAL does not provide a four-word stack marker as PCAL does; this accounts for
all of the advantages/disadvantages of subroutines: ·

• Values in the Q and index registers remain unchanged.

• A P relative return address is placed on the top of stack.

• All parameters are referenced relative to the S register and labels cannot be passed as
parameters.

• Subroutines cannot have local variables.

• Subroutines must be located in the same segment as the caller since SCAL and SXIT
do not bridge segment boundaries.

• Subroutines can be entered and exited faster than procedures since there is much less
work for the instructions to do. (The machine environment is neither saved nor restored).

• Subroutines can be declared within procedures (while procedures cannot) and can
reference procedure-local variables (since Q is not changed when a subroutine is called).

• Subroutines, like procedures, can address all global variables since DB is not effected by
calling them.

Declaration of Subroutines

Subroutines can be declared in a main program (global subroutines) or within a procedure
(local subroutines).

6-21

Global subroutines can be called only within the main program (not from within procedures
since procedures need not be in the same segment as the main program). Global subroutine
declaration must appear after procedure declarations:

BEGIN

data group

intrinsics

and

procedures

subroutines

main body

END.

Local subroutines can be called only from the procedure in which they are declared. They are
declared in the body of the procedure, after any local data declarations, but before the state
ments of the body:

procedure head

BEGIN

data declarations

subroutine decl.

statements

END;

The declaration format of a subroutine is identical to that of a procedure, except that there is
no option part and no local data group:

head

type

SUBROUTINE

name

formal parameters

value part

specification part

body { statement (possibly compound)

6-22

For example,

INTEGER SUBROUTINE S(A,B,C);

VALUE A,B,C;

INTEGER A,B,C;

s := (A A 2) + (B * C);

Invoking Subroutines

Subroutines are invoked by using their identifier in a subroutine call statement and replacing
the formal parameters with actual parameters:

identifier (parameter list) ;

Parameters can be stacked (asterisk-*) just as with procedures.

Function subroutines are invoked by using them within an expression:

NIX:= S(4,5,6) + S(l00,20,1);

Here is a complete program showing the format of subroutine declarations and invocations:

subroutine
declaration

subroutine
call

BEGIN <<USE A SUBROUTINE TO SET AN ARRAY TO ZERO>>

INTEGER ARRAY ADATA(0:50);

INTEGER I; <<INDEX FOR USE IN SUBROUTINE>>

SUBROUTINE ZERO(ARRY,HISUB);

VALUE HISUB;

INTEGER HISUB;

INTEGER ARRAY ARRY;

BEGIN
I:= 0; <<SET INITIAL VALUE INTO SUBSCRIPT>>

WHILE I <= HISUB DO

BEGIN

ARRY(I) := O;

I:=I+l;

END;

END <<ZERO>>;

{

' <<END OF DECLARATIONS>>

ZERO(AD AT A,50); <<CALL SUBROUTINE>>

END <<MAIN PROGRAM>>.

6-23

Subroutine Functioning

The characteristics of subroutines are determined by the functioning of the SCAL and SXIT
instructions, which work in this manner:

SCAL

1. Upon invocation of a subroutine, the parameters are loaded onto the stack and an
SCAL is executed.

2. SCAL loads P + 1 (the return address) onto the stack and branches to a relative
address within the current code segment.

3. All parameters are referenced using S relative addressing. Since the top of stack
changes constantly, the S relative addresses of the parameters also change constantly.

SXIT

1. When the SXIT is executed, the current top of stack value is used as the P relative
return address.

2. Note that since Sis constantly changing, it is possible for the subroutine to use an
incorrect return address if the subroutine has explicitly modified the stack.

The process above can be seen in the following example. Assume we have a subroutine SW
which receives two integer values, exchanges them, and exits, leaving them on the stack.

6-24

BEGIN

INTEGER A,B;

SUBROUTINE SW(Y,Z);

VALUE Y,Z;

INTEGER Y,Z;

BEGIN

ASSEMBLE(

END;

LOADS - 2 <<Y>>;

LOADS - 2 <<Z>>;

STOR S - 4 <<Y>>;

STOR S - 2 <<Z>>;

RETURN O;);

<<MAIN PROGRAM>>

SW(25,10);

A:= TOS;

B := TOS;

END.

NOTE: All parameters in the subroutine
stack are S relative addresses.
Since the current top of stack
changes constantly, the addresses
of the variables change also.

S-2

S-1

S-0

Stack
On Subroutine Entry

25

10
p

y

z
Return Address

After first instruction (LO AD S - 2 < <Y> >)

S-3 25 y

S-2 10 z
S-1 p Return Address

S-0 25

After second instruction (LOADS - 2 <<Z>>)

S-4 25 y

S- 3 · 10 z
S-2 p Return Address

S-1 25

S-0 10 LOAD S-2

After third instruction (STOR S - 4 <<Y>>)

S-3

S-2

S-1

S-0

10

10
p

25

y

z
Return Address

After fourth instruction (STOR S - 2 <<Z>>)

S-2 mo Y
s -1 25 z
S - 0 P Return Address

S-1

S-0

After RETURN 0

LiOl
~

After (A := TOS) and (B := TOS)

DB+ 0 I 25 I A

DB+ 1 [10 l B

S-0
1 1

The natures of the SCAL and SXIT instructions .make subroutines much less flexible and power
ful! than procedures. Subroutines cannot have local variables; the only variables available to a
subroutine are parameters and DB relative and Q relative (local subroutines only) variables. Also,
the user must not explicitly modify the stack within a subroutine without immediately correcting
for any changes. All subsequent parameters addressing may be incorrect and Smay not point to
the return address when SXIT is executed.

EXAMPLE 6-4. MATRIX MANAGEMENT

This program contains a subroutine that maps a user-specified two-dimensional subscript pair
into a linear integer array. The user can request the subroutine to read or store a single value
on each call. The subroutine checks for incompatible parameters. The main program provides
FOR LOOP indexing to fill a 3 by 3 identity matrix. This example illustrates the declaration,
invocation, and simple nature of most subroutines. This example manipulates data in memory
and has no input/output.

Listing

BEGIN <<EXAMPLE 6-4. MATRIX MANAGEMENT>>
COMMENT:

THE MAll~ PROGRAM USES THE SUBROUTINE ••MATRIX" TO INITIALIZE
A 3X3 IDENTITY MATRIX.

1 0 0
0 1 0
0 eJ 1

NOTE: "INPUT" AND "OUTPUT" ARE DUMMY PROCEDURES WHICH SIMULATE
INPUT, OUTPUT, AND CONVERSION - THEY ARE NOT PART OF SPL/3000;

INTEGER ARRAY NUMBRSC0:8>;
BYTE ARR A Y ERR C eJ : 5) : =" ERR OR " ;
INTEGER DATA,I,J,SUB,CONTL:=l;
LABEL EXIT;
SUB ROUT I NE MATRIX C DATA' ARRi~ Y, MAXROW ,MAXC OL, l OFLAG, NUMBER, ROW, COL);

VALUE MAXROW,MAXCOL,ROW,COL;
INTEGER ARRAY DATA'ARRAY;
I NT EGER MAX R 0 W , MA X C OL , I 0 FL AG , NU MB ER , R 0 W , COL ;

BEGIN
COMMENT:

ARRAY MANAGEMENT SUBROUTINE
ALLOWS A LINEAR ARRAY TO BE ACCESSED AS A 2 DIMENSIONAL ARRAY
USING ROW A~D COLUMN SUBSCRIPTS. ALL SUBSCRIPTS MUST BE
NON-NEGATIVE. THE CALLING PROGRAM MUST PROVIDE THE DATA ARRAY
NAME , MAX I MU ['i VALUES FOR R 0 W A ND C 0 LUM N S UBS CR I PT S , I I 0 C 0 NT R OL
FLAG, NUMBER BEING PROCESSED, AND THE ROW AND COLUMN FOR THE
CURRENT OPERATION. CMINIMUM ROW AND COLUMN SUBSCRIPTS ARE
ASSUMED TO BE ZERO).

IOFLAG <0 RETRIEVE THE VALUE
IOFLAG >0 STORE THE VALUE
IOFLAG =0 RETURNED TO INDICATE ERROR CONDITION .

' IF NOTC0<=ROW<=MAXR0W) OR NOTC0<=COL<=MAXCOL) OR CIOFLAG=0)
THEN <<REQUEST INVALID>>

BEG! N
IOFLAG:=0; <<SET ERROR RETURN>>
RETURN;

END;
SUB:=ROW*CMAXROW+l>+COL; <<COMPUTE SUBSCR IN LINEAR ARRAY>>
IF IOFLAG<eJ THEN NUMBER::DATA'ARRAYCSUB) <<RETRIEVE VALUE>>

ELSE DATA'ARRAYCSU8):=NUMBER; <<STORE VALUE>>
END; <<MATRIX SUBROUTINE>>
<<END OF DECLARATIONS>>

6-26

FOR I:=0 UNTIL 2 DO <<INDEX ROWS>>
FOR J:=0 UNTIL 2 DO <<INDEX COLUMNS>>

BEGIN
DATA:=IF I=J THEN 1 ELSE 0; <<SELECT VALUE>>
MAT R I X C NUMB RS , 2 9 2 , CONT L , DAT A , I , J) ; <<ST ORE A VALUE > >
IF CONTL=0 THEN <<INVALID REQUEST>>

END;
EXIT: END <<MA IN PROGRAM>>.

BEGIN
OUTPUT C ERH); <<JUT PUT ERROR MESSAGE>>
GOTO EXIT; <<TERM! NATE>>

END;

6-27

EXERCISES FOR SECTION VI

1. Complete the diagram below by drawing the stack marker that would be created by a pro
cedure call instruction. Assume that this procedure passes three single word parameters that
are shown on the stack and that the procedure call instruction is about to be executed.

DL = 34630

DB= 34630

Q = 40200

s = 40206

z = 42316

PB= 35000
p = 35123 (PCAL)

PL= 357621

x = 000001

STATUS= 004076

(40200) Q--*

(40206) s--*

)

PREVIOUS STACK
1------_.,, MARKER ------------
-----}LOCAL VARIABLES

}
PARAMETERS

1------1 (3 WORDS)
1-------.1

2. Complete the diagram below by drawing the stack as it would appear after a procedure exit
operation. Values for all registers are given as well as values for the stack marker. Assume
in this case an EXIT (1) operation is about to be executed. This instruction will leave 2
single word values on the stack. Show the new values of all registers affected by the EXIT
(1) instruction.

DL = 30000 PB= 002000

DB= 30000 p = 002216

Q = 31011 PL= 002500

s = 31015 x = 177777

z = 32000 STATUS = 004437

(31011) Q--*

(31015) s--*

6-28

~)PREVIOUS STACK
~MARKER

000001
000140
002037
000011

}PARAMETERS
(3 WORDS)

STACK MARKER

)

LOCAL VARIABLES
AND TEMPORARIES

3. The following procedure declarations contain at least one error. Make the corrections
required by re-writing or re-arranging the declarations.

a) PROCEDURE SAM(X, Y, Z);

VALUEX;

INTEGER Y,Z;

BEGIN

Z := X + Y;

END;

b) PROCEDURE FIXIT (A,B,X);

VALUE A,B;

OPTION FORWARD;

REALA,B,X;

_ c) REAL PROCEDURE BIGGEST (X,Y);

VALUE X, Y REAL X, Y;

BIGGEST :=IF X < Y THEN Y ELSE X;

4. Write a simple procedure to move words. Three parameters will be supplied:

FROM - a logical array (by reference)

DEST - a logical array (by reference)

COUNT - a signed integer (by value)

5. The declarations below illustrate a main program and several subprograms (procedures and
subroutines). Using the table provided indicate with a checkmark where each variable may
be legally referenced. Then indicate the scope of addressability for each variable listed
(GLOBAL/LOCAL).

a) BEGIN <<MAIN PROGRAM>>
INTEGER X; REAL Y;

PROCEDURE ALPHA;
BEGIN

INTEGER A; REAL B;

END;

[PROCEDURE BETA;
BEGIN

INT:EGER I, REAL J, LOGICAL K;

l
END;

END <<MAIN PROGRAM>>

6-29

VARIABLE MAIN PROCEDURE ALPHA PROCEDURE BET A TYPE

x
y

A

B

I

J

K

b) BEGIN<<MAIN PROGRAM>>
REAL A,B;

PROCEDURE THING;
BEGIN

INTEGER I,J;

SUBROUTINE SAM;
BEGIN

END;

[SUBROUTINE FIXIT;
BEGIN

END;

END;

END <<MAIN PROGRAM>>.

PROCEDURE
VARIABLE MAIN THING

A

B

I

J

SUBROUTINE
SAM

SUBROUTINE
FIXIT TYPE

6. A procedure whose purpose is to plot X - Y points must be able to scale floating-point values.
Write a subroutine for this purpose; it receives two real parameters by value (a floating-point
number and a scale factor). Multiply the floating-point number by the scale factor, convert
the result to a 16 bit integer (use rounding), and return the result to the calling procedure in
the hardware index register. (Assume the calling procedure contains the local declaration
INTEGER X = X;.)

6-30

7. Write a REAL function procedure that will convert degrees to radians. The function will
accept a single real parameter by value (angle in degrees) and return the result (Radians)
in the function name.

Angle in Radians = Angle in Degrees * . 0174 5 3

8. Each of the three subroutines shown contains an error. Circle the statements in error and
explain why they are incorrect.

a) REAL SUBROUTINE ANS (A,B);

VALUE A,B; REAL A,B;

BEGIN

INTEGER X = X;

IF X > 0 THEN ANS := A + B

ELSE ANS := A - B;

END;

b) SUBROUTINE EVALUATE (DATA, GOODRANGE);

REAL DATA, GOODRANGE;

OPTION EXTERNAL;

c) SUBROUTINE MOVER (SOURCE, DEST, COUNT);

BEGIN

ARRAY SOURCE, DEST;

INTEGER COUNT;

MOVE DEST :=SOURCE, (COUNT);

END;

9. Examine the code shown below. Determine the numeric value of RESULT at point @ and

at point @ .

BEGIN

INTEGER A := 1,

B := 2,

c := 3,

RESULT;

PROCEDURE SUMUP;

BEGIN

INTEGER A := 10,

B := 20,

c := 30;

RESULT:= A+ B + C;

END;

RESULT :=A+ B + C; ..._.@
SUMUP; @

END.

6-31

10. What value is returned by the function procedure shown below? Assume A= 3, B = 4,
c = 5.

LOGICAL PROCEDURE VERIFY (A,B,C);

INTEGER A,B,C;

BEGIN

LOGICAL RESULT;

RESULT:= IF A<= B <= C THEN 5 ELSE 4:

END;

11. Rewrite the procedure shown to remove any existing errors.

PROCEDURE COMPUTE (X,Y);

BEGIN

VALUE X;

INTEGER X,Y;

Y := XMOD 8;

END;

6-32

SECTION VII
Data Access Concepts

This section discusses these SPL/ 3000 data access concepts:

• Based and Composite Integers

• Double and Long Data Types

• Base Register Reference in declarations

• Indexed Identifier Reference in declarations

• Variable Reference in declarations

• Own variables

• Advanced array declarations

• Advanced pointer declaration

• Advanced variable declaration

• Explicit stack access

SPECIAL INTEGER CONSTANTS

There are two more convenient forms of representing integer constants in SPL/3000: based
integers, and composite integers.

Based Integer Constants

SPL/3000 allows the programmer to use any number base from 2 through 16 in his constants.
Decimal numbers (base 10) are represented without a special symbol (123, -567, 79). Octal
numbers (base 8) are represented by putting a % before the digits (%234, %444, %77, %102).

All other bases are represented in the following manner:

sign% (base) number

sign is+,-. (If the sign is omitted the constant is assumed to be positive.)

base is the number's base value (2 through 16).

number is any legal number in that base (A, B, C, D, E, Fare used to represent 10, 11,
12, 13, 14, 15, in number systems with bases greater than 10).

7-1

If the number is greater than 16 bits, it is truncated on the left. For example,

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

%(16) 12A7 0 0 0 1 0 0 1 0 1 0 1 0 0 1 1 1

%(9) 238 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1

%(4) 230 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0

%(16) ABCD 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1

-%(8) 473 1 1 1 1 1 1 1 0 1 1 0 0 0 1 0 1

Composite Integer Constants

Composite integers are composed of bit fields; these bit fields are concatenated from left to
right and the result is right-justified.

A composite integer is represented as follows:

[bit field list]

bit field list is a list of bit fields separated by commas.

bit field is of the form n/i

n is the number of bits in the field (an integer constant),

is an integer constant (decimal, based, or composite) to be used in the field.

NOTE: Composite integer definitions can be nested.

The integer to the right of the slash (/) is truncated on the left to the size specified by n (number
of bits).

The following diagram shows how a composite integer is constructed from right-to-left:

[3/2,5/%17,5/[2/3,3/4]]

\ I t t
010 t J....1 ~

I~ t ,111 0 0,
I

-----~~ 0000100111111100 --..--

• 0 fill during right justification of the connected bit fields.

Composite integers are very convenient for constructing constants from several small bit fields.
Bit field lengths can be equated to symbolic identifiers to document the use (or meaning) of
each subfield. One of the most common needs for this capability is in the construction of
special floating-point constants because real numbers are composed of fields:

I s I E

0 1 9 10

F

7-2

31

S =sign
E =exponent
F =fraction

When composite integers are used as type real, they are not floated. The example below shows
composite integers used to build the largest and smallest positive real numbers:

EQUATE

SIGN= 1,

EXPONENT = 9,

FRACTION = 22;

<<BIT FIELDS OF A REAL NUMBER>>

<<1 SIGN BIT>>

<<9 EXPONENT BITS>>

<<22 FRACTION BITS>>

REAL LARGEST := [SIGN /0, EXPONENT /%777, FRACTION /1 7777777D] E,

SMALLEST:= [SIGN/0, EXPONENT/0, FRACTION/1] E,

ZERO:= [SIGN/0, EXPONENT/O, FRACTION/O]E;

DOUBLE AND LONG DATA TYPES

In addition to BYTE, INTEGER, LOGICAL, and REAL data types, SPL/3000 has two other
data types:

DOUBLE - double-word integers

LONG - quadruple word floating-point numbers**

Both data types can be used wherever a type is required, for example, in constants, simple
variables, expressions, pointers, arrays, typed procedures, typed subroutines, and
parameters. The programmer should be aware that hardware to do LONG arithmetic
is optional on pre-Series II systems. If the hardware is not installed, use of LONG
arithmetic results in calls to system procedures for each operation. All Series II systems
have the firmware to do LONG arithmetic.

Type Double

Double integers are 32-bit signed integers which can range in magnitude from -2,14 7 ,483,648
to +2,147,483,647.

Any integer constant followed by a Dis treated as a 32-bit signed integer:

123 D

-7779 D

1234567890 D

[2/211,15[31%(2)101,12/0] ,10/123] D

%(2)01111011110111101111 D

%(16) 1023ABCD D

In declarations, DOUBLE can be used wherever other types can be used:

DOUBLE A,B,C,D; <<SIMPLE VARIABLE>>
DOUBLE ARRAY NOW (0:10);
DOUBLE POINTER NAW;
DOUBLE PROCEDURE NEW (A,B);DOUBLE A,B;

NEW:= A+ B;

**Triple word floating-point numbers in pre-Series II systems.

JAN 1977 7-3

The SPL/3000 programmer cannot mix double integers with other data types. Therefore, type
transfer functions are used to create type compatibility within expressions where variable types
must be mixed:

REAL (D) <<CONVERT DOUBLE TO REAL>>

DOUBLE (I) <<CONVERT INTEGER TO DOUBLE>>

DOUBLE (L) <<CONVERT LOGICAL TO DOUBLE>>

DOUBLE (B) <<CONVERT BYTE TO DOUBLE-RESULT IS ALWAYS POSITIVE>>

INTEGER (D) <<CONVERT DOUBLE TO INTEGER>>

FIXT (R) <<TRUNCATE REAL TO DOUBLE>>

FIXR (R) <<ROUND REAL TO DOUBLE>>

The only arithmetic operations defined for double integers are bit shifts, addition and subtraction.

Type Long

Long floating-point numbers are 64-bit numbers with 32 more bits of fraction than REAL
numbers. Long numbers can range from -10 77 to +10 77 (8.6362 x 10-78 <=1N\<=1.1579 x 1077)

with 16.5 digits of decimal accuracy (versus 6.9 digits for REAL).**

LONG constants are indicated by the letter L and have this format:

fractional part L power

fractional part is a signed or unsigned decimal fraction (with decimal point) or decimal
integer (no decimal point).

power is a signed or unsigned decimal integer which specifies the power of ten
to be multiplied by the fractional part.

For example:

137 L 20

123456789 L-2

-100 L 7

-55.678329 L 1

In declarations, LONG can be used anywhere that other types can be used:

LONG NEW := 1.2345678910 L 23,

OLD;

LONG ARRAY THEN (5:15); <<4 words per element>>

LONG POINTER SAW;

LONG PROCEDURE FIND(N,M);

LONGN,M;

FIND := (N*M) + (N/M);

*7For pre-Series II systems: Long floating-point numbers are 48-bit numbers with 16 more bits of
fraction than REAL numbers. Long numbers can range from -1077 to +1077 (8.6362x10-78

<= i N <= 1.1579 x 10 77) with 11. 7 digits of decimal accuracy (versus 6.9 digits for REAL).

7-4 JAN 1977

As with DOUBLE, type mixing is not allowed in expressions, so type transfer functions are
provided:

LONG (R) <<CONVERT REAL TO LONG>>

LONG (D) <<CONVERT DOUBLE TO LONG>>

REAL (L) <<CONVERT LONG TO REAL>>

An exception is that a long value can be exponentiated to an integer power without type
transfer. For example (assume LONG L):

L := L "2;

DECLARATIONS

Many of the powerful features of SPL/3000 are extensions to the declaration facility. In
Section IV we saw how simple variables of type byte, logical, or integer could be equivalenced
to the index register by following the identifier declaration with = X.

LOGICAL INDX = X;

BYTE BINDX = X;

INTEGER X = X;

This same mechanism is used to provide other types of address equivalencing or register-relative
references in declarations to allow the programmer to control exactly where each data item is
to be located. Options are employed to re-use, relabel, and retype storage which is already
allocated. One location or block of locations can be associated with several identifiers (of
differing data types) in the same program. For example, an array can be filled as words by
accessing it with an integer array identifier and manipulated as bytes by referencing it as a byte
array.

The general mechanisms (base register reference, indexed identifier reference, variable reference,
and OWN variables) will be discussed first. Then we will see how they apply in practice to the
declaration of array, pointers, and simple variables.

Base Register Reference

To assign data items explicitly to register-relative locations (when declaring them) follow the
identifier with a register name and an offset:

JAN 1977

identifier= DB+ usi255

identifier = Q + usil 27

identifier = Q - usi63

identifier= S - usi63

usi means an unsigned integer that is less than or equal to the number that follows.

usi255 (0 to 255) usil27 (0 to 127) usi63 (0 to 63)

7-5

Pointers, and simple variables can all be address referenced by using base register reference in
declarations. (Arrays can also be register referenced; see the SPL/3000 reference manual.) No
new space is allocated when this is done-the space may already be allocated to some other
identifiers. The result is to access the specific location(s) assigned to an identifier when that
identifier is used. For example,

INTEGER A= DB+ 30;

Indexed Identifier Reference

In SPL/ 3000 the programmer can specify that the zero element of a new array is to coincide
with some previously-defined array or pointer element, instead of having new space allocated
for it. This is accomplished in the declaration by following the identifier with an indexed
reference to an array or pointer:

identifier= ident (index)

(index) is optional.

Thus, two arrays of different type can overlap in the actual data locations they occupy. Since
no new space is allocated when using indexed identifier reference, initialization is not provided.

For example,

INTEGER ARRAY REUSE(*)= POINT (6);

Variable Reference

The programmer can specify the location of a data item relative to the location of a previously
defined identifier by following the identifier in the declaration with the identifier of another
data item plus a signed word offset:

identifier= identifier ± integer

integer is optional and is the number of words offset from the location of the referenced
identifier.

Whenever the new identifier is used, the location relative to the referenced identifier is accessed.

INTEGER INTB, A = INTB + 2;

OWN Variables

Local arrays, pointers, and simple variables can be declared type OWN. This is done by preceding
the complete local declaration with the reserved word OWN. The space for the data item is
allocated in the DB area, not in the Q area. This means that the contents of OWN data items are
retained between calls to a procedure. Strict local variables (allocated Q+), disappear when a
procedure exits. If OWN variables are initialized, they are only initialized once at the beginning
of the program.

7-6

OWN variables are like global variables, except that they are recognized only within the pro
cedure where they are declared. They allow a procedure to keep data in local storage through
out the execution of a process, regardless of the number of times the procedure is invoked
(called and exited).

ARRAYS

The type of array discussed in Section IV is only one of the many types of arrays that are pro
vided in SPL/3000. These other arrays use the declaration facilities just described and can be
classified as follows:

Bounded Arrays (defined bounds)
Indirect (this is the type covered in Section IV)
Direct
P Relative
Local OWN
Dynamic Local

Equivalenced Arrays (undefined bounds)

Before discussing these arrays, it is necessary to describe the difference between direct and
indirect. HP 3000 memory reference instructions can directly address a limited range of
register-relative addresses; the address can be contained in the instruction itself.

If more data items are required, they must be addressed indirectly through a data label located
within one of these register-relative ranges:

P - 255 to P + 255

DB + 0 to DB + 2 55

Q+OtoQ+l27

Q- 0 to Q - 63

S - 0 to S - 63

Bounded Arrays

An array is bounded if it has defined upper and lower bounds (as did the arrays discussed in
Section IV). For example,

INTEGER ARRAY SUMS (0:10);

A fixed number of unique locations (determined by the bounds) is allocated for each bounded
array. There are five types of bounded arrays:

Indirect

Direct

P Relative

Local OWN

Dynamic Local

7-7

BOUNDED, INDIRECT ARRAYS

These are the normal (default) type of arrays. They can be either global (declared in the main
program) or local (declared in a procedure) and can be of any data type (BYTE, LOGICAL,
INTEGER, REAL, DOUBLE, or LONG). In both cases they are accessed indirectly through a
pointer to the zero element (in the DB+ or Q+ directly addressible area). The actual data space
is allocated outside the area for pointers and simple variables and is determined by the upper
and lower bound; the size of the array does not change during execution. Global arrays can be
initialized, but local arrays cannot.

Here is an example which shows the space allocated_:

BEGIN

INTEGER X,Y,Z;

INTEGER ARRAY A(O:lO);

PROCEDURE B(C);

VALUE C; INTEGER C;

BEGIN

INTEGER ARRAY N(O:lO);

END;

DB +O

DB+ 1

DB +2

DB+ 3

DB+ 400

Q-0~

allocated Q + 1 ~
END.

BOUNDED, DIRECT ARRAYS

upon DB + 500,Q + 2 ~
procedure

entry

s

Stack

4008

)' Iii'
~

: l

500g

x
y

z
A(address)

}

Space for
array A

}
Stack
marker

N(address)

l
Space for
local
array N

These arrays differ from bounded, indirect arrays in only one way: they are allocated space in
the areas which can be accessed without indirection. Each element is accessible independently;
there is no pointer for the whole array. These arrays are accessed more efficiently but at the
expense of using up the limited range of direct, register-relative locations. The method for
declaring a bounded, direct array is to follow the identifier and bounds by either= DB (for
global) or= Q (for local):

identifier (bounds)= DB

identifier (bounds)= Q

The words required by the elements of the array are allocated contiguously, starting with the
next available DB or Q location, provided that the zero element of the array falls in the direct
addressing area. If the array uses all of the remaining primary DB or Q space, no more simple
variables or pointers can be declared. The array is accessed using direct memory reference
instructions indexing from a zero element. Note that this does not necessarily limit the size of
a direct array:

7-8

BEGIN

INTEGER A,B,C;

ARRAY DIR'LOG (0:1000) =DB;

<<MAIN BODY>>

END.

P RELATIVE LOCAL ARRAYS

DB+O
!1

~

DB+ 1008

,/

DB+ 20628

S,Q

1001
elements

of
DIR'LOG

~
)

"' "

} declarations

0 element
(DIRE'LOG(O))

Local arrays of any type which are to contain only constants can be declared to be P relative.
These arrays must have fixed bounds and must be initialized. Space is allocated in the code
stream of the procedure for them and is filled with the initial values when compiled. These
arrays can only be read, never changed. Indirect pointers are generated only if references to
the array are out of direct range (P ± 255). P relative indirect references are self-relative (the
offset is added/subtracted to the location containing the address). ,

The format is

identifier (bounds) = PB := initialization

The array must be fully initialized when compiled, since it can not be modified during execution.
For example,

PROCEDURE
BEGIN
ARRAY MSG (0:25)=PB:="ABCDEFGHIJKLMNOPQRSTUVWXYZ";

A:= MSG(lO); <<WITHIN DIRECT RANGE>>

~
l :~ MSG(20); <<OUT OF RANGE>~

~
,{

A'
END;

7-9

Code Segment

A B

c D

E F

w x
y z

code {
LOAD P-20,X ~rect

_(
LOAD P+2,I,X

BRANCH

-500 D
Indirect I

self-relative
address

OWN LOCAL ARRAYS

An OWN array is a bounded array which belongs to a specific procedure but is located in the
secondary DB area and is accessed indirectly through a Q relative pointer. OWN arrays can be
accessed only by the procedure in which they are declared or by procedures to which the
declarer passes the array as a calling parameter. OWN arrays can be of any type and are declared
by specifying the reserved word OWN before a normal array declaration:

OWN type ARRAY name (lower: upper) := initialization;

The array space is allocated when the process begins execution and remains throughout the life
of the process. A Q relative pointer is allocated by the procedure each time it is entered. This
structure is shown below:

DB+O

DB+ 400

Q
s

8

/
OWN ARRAY

\ addr. of OWN ARRAY

DYNAMIC LOCAL ARRAYS

} Primary DB storage

l Secondary DB storage

} 4 word Procedure Call Stack Marker

Local pointer to own array

Since local arrays are allocated in the stack relative to Q+ each time a procedure is entered,
there is no necessity for their bounds to be constants. Therefore, in SPL/3000, local arrays
can have variables as bounds; the procedure contains code which evaluates the bounds and
allocates space for the array when the procedure is entered. The size of the array is fixed only
for this one execution of the procedure; next time the procedure is called the array bounds
can be completely different. The format is

type ARRAY identifier (simple var : simple var);

simple var can be a global variable or a parameter variable of type integer, logical,
or byte.

These arrays are always accessed indirect through a pointer allocated Q+. Therefore, this type
of array cannot be initialized. For example,

7-10

BEGIN

PROCEDURE DOSOMETHING(M,N);

INTEGER M,N;

BEGIN

INTEGER ARRAY LOC(M:N);

END;

DOSOMETHING(O :10);

END.

Equivalenced Arrays

DB+ 0

Q-5
Q-4

Q-0

Q+ 1

DB+403,Q + 2

S,Q + 12

Stack after
procedure sets up

local array

~"f' l

0

10

403

11
elements
of LOC

M

N

Stack
marker

DB address of LOC(O).

space
for
LOC

An equivalenced array is one which reuses space already allocated to other data items.
Equivalenced arrays are declared vvith undefined bounds (they can have no new space
allocated for them since they have no defined size) and are referenced to previously de
fined data items. By using equivalencing, one block of storage can be associated with several
identifiers, each of a different data type. For example, a buffer can be filled as words by
accessing it through an integer array identifier and manipulated as bytes by referencing it as
a byte array.

The address of the zero element of an unbounded array can be specified by equivalencing the
array to a previously defined identifier. An array declared in this manner takes its addressing
convention (direct/indirect) from the convention established for the identifier to which it is
equivalenced.

7-11

These arrays can be global or local, but they cannot be initialized. The general form of their
declaration is to replace the bounds with an asterisk (*) and follow the identifier by an
equivalence:

{

array (index) }
type ARRAY name(*)= pointer (index)

identifier ± integer

If the referenced item is a direct array or a variable, the result is a direct array whose zero
element is the location specified. A pointer cell is therefore not allocated. For example,

BEGIN

INTEGER A := 0;

ARRAY DRAW (0:5) =DB; <<Bounded, direct>>

INTEGER ARRAY !DRAW(*)= DRAW; <<Equivalenced, direct>>

DOUBLE ARRAY DA(*)= A+ 7; <<Equivalenced, direct>>

END.
DB+ 0

+1

+2

+3

+4

+5

+6

DB+ 7

Q,S
" J,

0 INTEGER A

+-DRAW (O),IDRAW(O).

6

elements

of

DRAW

DA (0)
v

)

If the referenced item is a pointer or an indirect array, the result array is indirect. Indirect
addressing requires a data label (address). An equivalenced array can share the data label
already established for the referenced array if

1. The new array is equivalenced to the zero element of referenced array, and

2. The new array and the referenced array have compatible data types; that is,
they both must use byte data labels (both byte) or word data labels (both
non-byte).

In all other cases, a separate data label address is allocated and initialized for the newly
declared array. For example,

7-12

BEGIN
POINTER P;
BYTE ARRAY CHAR (0:71); <<Bounded indirect>>
BYTE ARRAY BUF (*)=CHAR; <<Unbounded indirect>>
BYTE ARRAY INPT (*) = CHAR(5); <<Unbounded, indirect-not 0 element new

data label>>
ARRAY OUTP (*)=CHAR; <<Unbounded, indirect-not same address type, new

data label>>
DOUBLE ARRAY DOUB (*) = P; <<Unbounded, indirect-0 element, uses pointer

cell as data label>>

END.

Array Summary

DB+O

+l

+2

+3

DB+ 400 8

word address

byte address

byte address

word address

72 elements
of CHAR

P, address of DOUB(O)(user established)

address of CHAR,BUF

address of INPT(O)

address of OUTP(O)

.... CHAR(O),BUF(O),OUTP(O).

~INPT(O)

Table 7-1 summarizes the types of arrays discussed in this manual.

Table 7-1. Summary of Array Types

Specify address Specify address
Allocate array Allocate a of pointer of 0 element Can be

Bounded arrays space? pointer cell? explicitly? explicitly? initialized?

Indirect YES, new space YES, in DB+ or NO, next NO, allocated in YES, if global
ARRAY BOX(0:25); 0+ Cell available cell next available

space

Direct YES, new space NO, 0 element is NO, no pointer NO, allocated in YES, if global
ARRAY BOX(0:25)=DB; directly accessed exists. next available

space

P Relative YES, new space If array is refer- NO, set in code NO, allocated in MUST be com-
ARRAY BOX(0:25)=PB:=25(0); in code enced out of if needed available code pletely initialized

P±255 range. space

Local OWN YES, new space YES, Q+ cell NO, next Q+ NO, allocated in YES
OWN ARRAY BOX(0:25); cell secondary DB

Dynamic Local YES, allocated YES, upon pro- NO, allocated NO, array is NO, space not
ARRAY BOX(M,N); dynamically in cedure entry in Q allocated in allocated until

procedure stack available Q+ proc. entry

Equivalenced Arrays (Undefined Bounds)

Equivalenced NO, re-uses DIRECT-NO NO, if needed, YES, by NO, no new
ARRAY BOX(*)=RAR(7); space --------- pointer is allo- reference space

INDIRECT-YES cated in DB+ or
if needed Q+

7-13

POINTERS

Pointers can be declared locally or globally and can be initialized or unitilized (see Section V).
To review, the format is:

type POINTER identifier :=@indexed array or pointer ;

The next available DB+ or Q+ cell is allocated for the pointer and the DB-relative address
specified by the indexed identifier is stored in the location

Local pointers can be declared OWN (allocated in the global area but accessed only by the
procedure where declared); OWN pointers can be initialized or unitialized:

OWN POINTER P;

OWN BYTE POINTER QUICK:= NOW(15);

As with arrays, global and local pointers can be equivalenced to previously allocated locations
using base register reference or variable reference. New locations are not allocated for equiva
lenced pointers; they re-use allocated space: There are two declaration formats:

• Variable Reference

type POINTER name = identifier ± n;

• Base Register Reference

(

DB+ ml
type POINTER name = ~ ~;

S-q

The specified location is accessed indirectly as a word or byte address (depending on type of
pointer) whenever the pointer is used.

SIMPLE VARIABLES

Simple variables of all types can be declared globally or locally. Simple variables of types byte,
logical, and integer can be equivalenced to the index register. In addition, all simple variable
types can be equivalenced to specific locations (without allocating any new space) by using base
register reference or variable reference. The formats are

• Variable Reference

type name = identifier ± m;

• Base Register Reference

(

DB+ n l
type name = Q + P

Q-q
S-r

7-14

The specified location is accessed whenever the declared variable identifier is used. Variables
declared in this manner cannot be initialized since, like equivalenced arrays, they reuse space
that is allocated to other variables or arrays.

Local simple variables are declared own by preceding the type with OWN:

OWN INTEGER A,B := 3;

EXPLICIT STACK ACCESS

Sometimes an SPL/3000 program can refer explicitly to the top of stack area:

Base Register Reference

TOS-Top of Stack

Stacked Parameters (*)

Base Register Ref ere nee

When a variable referenced to an S relative location is accessed, the stack is accessed. It is
important to remember that these accesses are made by means of memory ref ere nee instruc
tions. In other words, if a variable is loaded onto the stack from location S - 5, the location
S - 5 is not "popped" off the stack. Within a single statement (such as an assignment state
ment), the compiler guarantees that all references to S relative variables are made to the same
location. In other words, the compiler adjusts the S relative addresses as things are pushed
and popped. This does not hold for compound statements, nor if TOS is used.

TOS-Top of Stack

When the reserved identifier TOS is used, it refers to the current top of stack. If TOS occurs
on the left side of an assignment statement the effect is to eliminate the normal store at the
completion of an expression and to leave the result on the top of stack.

When TOS occurs in an expression the code uses the current top of stack contents for the next
operand instead of loading a new value. For example,

TOS := 2;

TOS := 3;

TOS := TOS + TOS;

<<LOAD IMMEDIATE 2>>

<<LOAD IMMEDIATE 3>>

<<ADD>>

<<TOS NO\V EQUAL 5 NOT 6>>

TOS is not a variable identifier. Use of TOS never loads or creates a new value on the stack;
it merely tells the compiler to perform the indicated arithmetic operation with whatever is in
the stack at the moment. Since the stack is used (implicitly) to evaluate an expression, the
value of the current top of stack varies with each data operation. Programmers who use the
TOS construction within an expression must know how the expression will be evaluated in
order to determine what the top of stack (TOS) will contain when its value is used.

7-15

The following simple case demonstrates the dangers involved in using TOS:

TOS := %77;

B.(0:16) := TOS.(10:4); <<EXTRACT IS DONE FROM B NOT %77>>

The value of Bis loaded onto the stack (to prepare for the deposit) before performing the
expression, changing the value of TOS from its expected value (%77) and leading to unpre
dictable results.

In general, whenever TOS is used in a program, the programmer should investigate the code
that is generated to insure that the expected sequence of events will occur.

Stacked Parameters(*)

The asterisk character(*) can be used in place of some parameters in procedure and subroutine
call statements and in place of some address values in move-scan statements. The asterisk
indicates that the value has already been loaded onto the stack.

In procedure calls, if one parameter is stacked, all parameters to the left of it must be stacked.
For example

Invalid PROC(A,B, *);

Valid PROC(*, *,C);

This mechanism requires additional preparation for use with typed procedures or subroutines.
The programmer must push a zero value of the proper type onto the stack for the returned
result before he loads the first stacked parameter.

In a MOVE or SCAN statement the addresses can sometimes be specified as stacked arguments
by using *. In this case the compiler allows the second parameter to be stacked even if the
first is not (the compiler loads the first, then switches S - 0 for S - 1). In move words only one
of the addresses can be stacked.

7-16

EXERCISES FOR SECTION VII

1. Represent the following binary number as based integer values in the bases indicated.

11111110 1100 01012

(base)

a) 2

b) 4

c) 8

d) 16

2. Represent the following based integer values as binary numbers.

a) %(2) 101101111

b) %(4) 132113

c) %7742

d) %(16) AC6F

3. a) Without using composite integers, construct octal constants which have the specified
fields. The notation (starting bit position : field length) is used to describe the bit fields.

For example,

Bit Field

0:8
8:8

Contents

%377
%123

~ %177523

The first field starts at bit 0 and is 8 bits long. This field contains 377 8. The second
field starts at bit 8 and is also 8 bits long. This field contains 1238. The single word
octal constant %177523 is the composite result of these two fields.

Form single word octal constants from these bit field specifications.

BIT FIELD CONTENTS OCTAL NUMBER

(0:3) 4
(3:5) 5
(8:4) 178

(12:4) 10s

(0:5) 23g
(5:8) 1378

(13:3) 2

(0:8) 10010
(8:8) 25510

7-17

b) In this exercise use composite integers to form constants from the following bit field
specifications.

BIT FIELD CONTENTS COMPOSITE INTEGER

(0:3) 4
(3:5) 5
(8:4) l 7g

(12:4) 108

(0:5) 23g
(5:8) 137g

(13:3) 2

(0:8) 10010
(8:8) 25510

4. Use composite integers to form testwords (Terminal character: Test character) for the
SPL/ 3000 SCAN statement based on the following specifications.

a) Test character = ASCII Carriage Return
Terminal character= ASCII Line Feed

b) Test character = ASCII End of Text
Terminal character = ASCII Bell

NOTE: A table of standard ASCII characters is provided in Appendix A.

5. Write the minimum SPL/3000 code required to test three bit fields of the logical variable
DATA. (Use composite integers.)

Bit field

(0:2)

(5:1)

(9:3)

Value

1

0

5

If all the bit fields specified have the values shown in the table,
set DATA to TRUE, otherwise set DATA to FALSE.

6. Fill in the appropriate table entries with the names of the type transfer functions available
to convert a data item from one type to another. (Some entries may remain blank.)

From

LONG

REAL.

DOUBLE

INTEGER

LOGICAL

BYTE

LONG REAL DOUBLE

7-18

To
INTEGER LOGICAL BYTE

7. Write the code required to convert a long data value (DATA), to an integer, and store the
result in an integer SHORT. (Use rounding in the conversion process.)

Assume the following declarations:

LONG DATA; INTEGER SHORT;

8. Select the most appropriate data types for the variables specified. Use minimum core space
in your selection. Create identifiers and initialized declarations for each item.

7f = 3.14159

Eulers Constant = . 577215664901533

radius = 3959

gallons = 18627235

Winn's Constant= -4.537269537 x 1023

Planck's Constant= 6.62559 x 10- 27

9. For each of the data types in the chart below, fill in the number of bits used, the largest
possible decimal number, and the smallest possible decimal number. Choose your answers
from among these choices:

#of bits

16
32

(ILLEGAL TYPE)
48

TYPE

BYTE

LOGICAL

INTEGER

REAL

DOUBLE

TRIPLE

LONG

32
8

16

#OF BITS

Largest10

(ILLEGAL TYPE)
255

+2147483647
+65535

(11.7 digits)+l0 77

+32767
(6.9 digits)+l077

LARGEST10

Smallest10

-2147483648
(11.7 digits)-10 77

-32768
0

(6.9 digits)-10 77

(IL LEG AL TYPE)
0

SMALLEST10

10. Write a procedure which computes the average value of the elements of an integer array and
returns the result to the calling program in the index register. (Remember that the value of
the index register is "restored" on exit.) The procedure receives two parameters-an integer
array by reference and an integer element count by value.

Hint: Q-3
Q-2
Q-1

Q-0

Index

Relative P

Status

delta Q

7-19

11.. How many total words of memory are used by these declarations?

BEGIN

LOGICAL ARRAY HELLO'MESSAGE (0:35) :=" ***HELLO***";

BYTE ARRAY INBUF (*) = HELLO'MESSAGE;

INTEGER ARRAY SCRATCH(*)= INBUF;

END

12. Some of these array rl.eclarations contain errors. Make changes where required to correct each
statement error.

a) BYTE ARRAY INBUF (0:71) :="***ERROR NUMBER***";

b) INTEGER ARRAY NUMBER (0:9) =DB:= "1234567890";

c) BYTE ARRAY ALPHA (0:6) =NUMBER;

d) LOGICAL ARRAY DATA (0:6) =PB;

e) REAL ARRAY BIGNO (*)=DB;

f) BYTE ARRAY CHARSTRING (0:7) =PB:= "RESULTS ";

g) INTEGER ARRAY TOTAL(*)= NUMBER:= %77,123,-1;

h) BYTE ARRAY STRINGCHAR (0:3) = Q := "ABCD";

i) ARRAY SAM (1 :6) =DB := 0,1,2,3,4,5,6;

13. Write a REAL function procedure which sums the contents of a dynamic local array and
returns the result in its name. This procedure will be passed an integer number (by value).
Use this parameter as the upper bound for the dynamic local array (assume the lower bound
is always 0.) The dynamic local array is filled by a procedure called GETDATA:

GETDATA (ARRY, SIZE);

VALUE SIZE; INTEGER SIZE; REAL ARRAY ARRY;

<<ARRY IS THE DYNAMIC LOCAL ARRAY AND
SIZE IS THE SIZE OF THE ARRAY>>

Assume procedure GETDATA is declared in the main program.

14. Write a procedure TIME'STAMP which will be called by another procedure (COMPUTE) to
collect performance data. COMPUTE calls TIME'STAMP every time it is entered (and
passes TIME'STAMP an initial time) and again just before it exits (to pass TIME'STAMP
a final time). The current clock readings are passed to TIME'ST AMP as a double integer by
value. TIME'STAMP must save the initial time (first call of a pair) until the final time is
passed in the second call. TIME'STAMP then computes the elapsed time between the two
calls and saves the result in a double own array of 100 elements. TIME'STAMP collects
100 elapsed times to fill the own array and then calls procedure WRITETAPE to write the
array on a tape:

WRITET APE(ARR Y);

DOUBLE ARRAY ARRY;

OPTION EXTERNAL;

7-20

After emptying the own array, TIME'STAMP resets itself to collect 100 more elapsed time
values (200 calls).

Write the procedure TIME'STAMP in SPL/3000.

15. Assume that the following statement has executed completely.

MOVE BUFB := BUFA WHILE A,O;

Write the declarations and statement which would be required to transfer the non-alphabetic
character in BUF A (which terminated the move) to the character position in BUFB immedi
ately following the moved string. Leave all the move addresses unmodified in the stack (i.e.,
do not use a move bytes statement.) Hint: Use equivalenced pointers.

16. In the program below, insert the statements required to "stack" the parameters needed by
the call to integer procedure SAM. Start inserting after the comment <<START OF MAIN
PROGRAM>>.

BEGIN <<DECLARATIONS>>

BYTE ARRAY STRING (0:71);

REAL NUMBER := 1.2345; DOUBLE BIGWORD := 978633D;

INTEGER ZERO:= 0, SMALL:= -1;

INTEGER PROCEDURE SAM (A, B, C, D);

VALUE B, C, D; BYTE ARRAY A;

DOUBLE B; REAL C; INTEGER D;

BEGIN

END;

<<START OF MAIN PROGRAM>>

TOS :=SAM(*,*,*, SMALL); <<CALL INTEGER PROCEDURE SAM>>

END.

NOTE: Without stacked parameters, the call to SAM would be:
TOS :=SAM (STRING, BIG WORD, NUMBER, SMALL);.

1 7. a) How many words of storage are allocated as a result of these declarations

INTEGER I := 1;

LOGICAL L = I;

BYTE B = L;

b) Using the declarations from Exercise 1 7a determine the values of variables I, L and B
after execution of the following statements. The answers shouid take variable type into
account.

7-21

B := 5;

I:= 10;

L := INTEGER (B) + I;

I:= L -21;

Results

I=

L= _____ _

B= ______ _

7-22

SECTION VI 11
ASSEMBLE Statements

The ASSEMBLE statement allows the programmer to generate any HP 3000 machine code he
chooses. To use this statement, therefore, the reader must be familiar with the machine instructions
as described in the HP 3000 hardware documentation. The same mnemonics described there are
used in SPL/3000. 1

Although the ASSEMBLE statement should seldom be required, there are several areas where the pro
grammer will find it useful:

• Access to otherwise inaccessible instructions (e.g., XCH, SIO, TBC)

• Additional code optimization

• Implementation of a special sequence of instructions not generated by any high-level
SPL/3000 construction

NOTE: Example 2-2 in Section II shows an ingenious use of ASSEMBLE statements to
execute (XEQ instruction) a PCAL instruction loaded onto the stack.

SYNTAX OF ASSEMBLE STATEMENT

An ASSEMBLE statement consists of the reserved word ASSEMBLE followed by a list of in
structions in a set of parentheses. Each instruction consists of an optional label (plus colon)
and mnemonic. Instructions are separated by semicolons. Each mnemonic of the instruction
set is specified in one of nine formats (depending upon the type of operands required). The
format of an ASSEMBLE statement is

ASSEMBLE (instruction; instruction; ; instruction);

instruction consists of an optional label (Section III) followed by a mnemonic and its
arguments:

label: mnemonic; mnemonic;

1 BCC (branch on condition code) is replaced by six opcodes specifying the particular branch
conditions:

BL
BE
BLE

Branch if less than
Branch if equal
Branch if less than or equal

BG
BNE
BGE

8-1

Branch if greater than
Branch if not equal
Branch if greater than or equal

Here is an ASSEMBLE statement and an equivalent high-level sequence:

<<High-level>> <<Assemble>>

ASSEMBLE(

STAX, DECX;

PUT: STOR ARY, I, X;

BR GET);

<<assume integer X equivalenced to Index Register>>

X := TOS -1;

PUT: ARY(X) := TOS;

GO TO GET;

<<MNEMONICS NEED NOT BE PLACED ONE PER LINE, BUT THAT IS OFTEN
THE MOST READABLE FORM>>

MNEMONIC FORMATS

There are nine mnemonic formats designed for different instructions:

Format 1: Memory reference instructions

Format 2: Stack ops

Format 3: Bit shifts
Bit tests
Test and branches

Format 4: Immediates
Extract/deposit
Push/set registers

Format 5: Read switch register
Link list search
Privileged load/store

Format 6: Pause/halt
Exchange DB
Execute
I/0 instructions

Format 7: Calls/exits
Boolean immediates
S register arithmetic
X register immediate arithmetic
Load double from program
Load label
Test and set bits in memory

Format 8: Moves, scans, and compare bytes

Format 9: Constant definition

Format 10: Extended precision arithmetic
Decimal arithmetic

Conventions Used

The mnemonic formats are described using the following conventions:

8-2

Item Explanation

I Indirection

x Index register

Capital 1. Opcodes
letters 2. Literals, options, and other non-variable items

Italics Variable items or classes of items

[] Pick one item from within the brackets; the entire item is optional

{ } Pick one item from within the brackets; one item is required.

Format 1

la
LOAD label id

variable id
LDX

DB+ usi255
LRA P + usi255
CMPM

P - usi255
ADDM

Q + usi127
[,I] [,X]

SUBM
MPYM

Q - usi63
S - usi63

lb LDB
LDD variable id
STOR DB+ usi255
STB Q + usi127 [,I] [,X]
STD Q - usi63
INCM S - usi63
DECM

le {label id } BR P + usi255 [,I] [,X]
P - usi255 ! DB + usi255 l

BR
Q + usil27

,I [,X]
Q - usi63
S - usi63

ld I BL l BE
(label id

} rLE l l P + usi3l [,I]
BG
BNE

P - usi31

BGE

le rA l { label id

} MTBA
P + usi255

TBX
P - usi255

MTBX

8-3

where

variable id is a simple variable, pointer, or array identifier, (indirection is not supplied
automatically).

usi is an unsigned integer less than or equal to the number following.

label id is a label which is used to label a statement within the range of the instruction.

For example,

ASSEMBLE(STB S - 1, I, X; DECM VAR);

Format 2

stackop

or

stack op, stack op

In the first case the compiler fills in the second half of the instruction word with a NOP.

The legal stackops are as follows:

NOP DNEG XCH FLT NOT
DELB DXCH INCA FCMP OR
DDEL CMP DECA FADD XOR
XROX ADD XAX FSUB AND
INCX SUB ADAX FMPY FIXR
DECX MPY ADXA FDIV FIXT
ZERO DIV DEL FNEG INCB
DZRO NEG ZROB CAB DECB
DCMP TEST LDXB LCMP XBX
DADD STBX STAX LADD ADBX
DSUB DTST LDXA LSUB ADXB
MPYL DFLT DUP LMPY
DIVL BTST DDUP LDIV

For example,

ASSEMBLE(DDUP, DELB; STAX);

Format 3

3a IABZ
IXBZ
DXBZ
BCY
BNCY { Wbel }
CPRB P ± usi31 [,I]
DABZ * ± usi31
BOV
BNOV
BRO

\ BRE

8-4

In these branch instructions, the address can be specified as a label or a P relative address (P±
or*± are the same thing). If the label location is not within 31 locations of P (P ± 31), the
compiler tags this as an error; indirection is not supplied automatically within an ASSEMBLE
statement.

3b ASL
ASR
LSL
LSR
CSL
CSR
SCAN
TASL
TASR
TNSL
DASL usi63 [,X]
DASR
DLSL
DLSR
DCSL
DCSR
TBC
TRBC
TSBC
TCBC
QASL
QASR

usi63 is a shift count or number of bits less than or equal to 63. For example,

ASSEMBLE(LSL 1; BRE QUIT);

Format 4

4a LDI
LDXI
CMPI
ADDI
SUBI
MPYI
DIVI
PSHRt
LDNI
LDXN
CMPN
SETRt

usi255

4h { EXF } usi15 : usi15
DPF

For example,

ASSEMBLE (LDI 255; ADDI 5; EXF 7:9);

8-5

t = a privileged instruction for
some registers

Format 5

RSW
LLSHt
PLDAt
PSTAt
LSEAt
SSEAt
LDEAt
SDEAt
IXITt
LOCKt
PCNt
UNLKt

For example,

Format 6

ASSEMBLE (RSW; PLDA; ... LLSH; ... PSTA);

PAUS
SED
XCHD
SMSK
RMSK
XEQ
SIO
RIO
WIO
TIO
CIO usil5
CMD
SIN
HALT
LST
PSDB
DISP
PSEB
SCLK
RCLK
SST

For example,

ASSEMBLE (XEQ 4);

t = a privileged i.nstrudioP

All of these instructions except XEQ and RMSK are privileged.

8-6

Format 7

PCAL
SCAL
EXIT
SXIT
ADXI
SBXI
LLBL
LDPP
LDPN
ADDS
SUBS
ORI
XORI
ANDI

usi255

PCAL procedure identifier
SCAL (user must load label onto stack)
LLBL procedure identifier

For example,

ASSEMBLE (PCAL READ; SCAL LOOPER; ... ORI %377);

Format S

Sa (MOVE)
MVB }
CMPB J

[PB]

If item two is empty, a DB relative move is assumed.
If item three is empty, the stack decrement is 3.

Sb

MVBW

A
N
AN
AS
ANS

If item three is empty, the stack decrement is 2.

Sc (MVBL t l [O l MVLBt 'i
sew '
scu '2

8-7

tPrivileged instruction.

If item two is missing, the stack decrement is 2. For example,

ASSEMBLE (SCW, l);

ASSEMBLE (MVBW AN, O);

ASSEMBLE (CMPB PB, 1);

8d I MABSt l MTDSt
MDSt
MFDSt

0
1
2
3
4

Format 9

5 for MABS and
MDS

CON constant list

This format is actually a psuedo-mnemonic for constant generation; it is not a hardware
instruction.

CON stores a series of constants in the code starting at the current location. In addition to all
numerical and string constants, P relative address constants can be created by listing label
identifiers (this is used to create addresses for indirect references). The CON instruction itself
can be labeled so that other instructions can reference the constants symbolically.

ASSEMBLE(

BR P + 1, I;

CON LABELNAME);

ASSEMBLE (TAB: CON "ABCDEFGH";

LDB TAB, X;);

Format 10

lOa DMUL
DDIV
EADD
ESUB
EMPY
EDIV
ENEG
ECMP
DMPY

lOb { g~~g} [~]

8-8

If item 2 is 0, 2 words are deleted from the stack.
If item 2 is 1 or empty, 4 words are deleted from the stack.

lOc r o l
CVDB l l J

If item 2 is 0, 2 words are deleted from the stack.
If item 2 is 1 or empty, 3 words are deleted from the stack.

lOd ADDD
SUED
MPYD
CMPD
SLD
NSLD
SRD

If item 2 is 0, no words are deleted from the stack.
If item 2 is 1, 2 words are deleted from the stack.
If item 2 is 2 or empty, 4 words are deleted from the stack.

lOe

CVDA [1BS [f O }J]
NABS '\ 1

If 0 is specified, 1 word is deleted from the stack.
If 1 is specified, 3 words are deleted from the stack.
If neither 0 nor 1 is specified, 3 words are deleted from the stack.
If ABS is specified, the target sign will be negative if the source
is negative; otherwise, the target will be unsigned.
If NABS is specified, the target will be unsigned.
If neither ABS nor NABS is specified, the target sign will be the
same as the source.

USES OF THE ASSEMBLE STATEMENT

The ASSEMBLE statement does not provide automatic indirection when references to identifiers
are out of range of a particular instruction; out of range conditions are flagged as errors. It is
the programmer's responsibility to specify indirect addressing and provide an indirect address
(using the CON psuedo-op).

These are certain hardware instructions that do not require an argument (SCAN, TNSL) even
though one is specified in the format syntax. The compiler accepts them with or without an
argument (the argument is ignored if not needed and the compiler substitutes a zero to allow
for future hardware use.

8-9

Alphabetical Listing of Instructions

Mnemonic Function Format

ADAX Add A to X 2
ADBX Add Bto X 2
ADD ~dd. 2
ADDD Decimal add lOd
ADDI Add immediate 4a
ADDM Add memory la
ADDS Add to S 7
ADXA Add Xto A 2
ADXB Add X to B 2
ADXI Add immediate to X 4a
AND And, logical 2
ANDI Logical AND immediate 7
ASL Arithmetic shift left 3b
ASR Arithmetic shift right 3b
BCC Branch on Condition Code ld
BCY Branch on carry 3a
BE Branch on equals
BG Branch on greater than
BGE Branch on greater than or equal

See BCC
BL Branch on less than
BLE Branch on less than or equal
BNE Branch on not equal
BNCY Branch on no carry 3a
BNOV Branch on no overflow 3a
BOV Branch on overflow 3a
BR Branch le
BRE Branch on TOS even 3a
BRO Branch on TOS odd 3a
BTST Test byte on TOS 2
CAB Rotate ABC 2
CIO Control I/0 6
CMD Command 6
CMP Compare 2
CMPB Compare bytes 2
CMPD Compare decimal lOd
CMPI Compare immediate 4a
CMPM Compare memory la
CMPN Compare negative immediate 4a
CPRB Compare range and branch 3a
CSL Circular shift left 3b
CSR Circular shift right 3b
CVAD Convert ASCII to packed decimal lOb
CVBD Convert binary to packed decimal lOb
CVDA Convert packed decimal to ASCII lOe
CVDB Convert packed decimal to binary lOc
DABZ Decrement A, branch if zero 3a
DADD Double add 2
DASL Double arithmetic shift left 3b
DASR Double arithmetic shift right 3b
DCMP Double compare 2
DCSL Double circular shift left 3b

8-10

Mnemonic Function Format

DCSR Double 9ircular shift right 3b
DDEL Double delete 2
DDIV Double divide lOa
DDUP Double duplicate 2
DECA Decrement A 2
DECB Decrement B 2
DECM Decrement memory lb
DECX Decrement X 2
DEL Delete A 2
DELB Delete B 2
DFLT Double float 2
DISP Dispatch 6
DIV Divide 2
DIVI Divide immediate 4a
DIVL Divide Long 2
DLSL Double logical shift left 3b
DLSR Double logical shift right 3b
DMPY Double logical multiply lOa
DMUL Double multiply lOa
DNEG Double negate 2
DPF Deposit field 4b
DSUB Double subtract 2
DTST Test double word on TOS 2
DUP Duplicate A 2
DXBZ Decrement X, branch if zero 3a
DXCH Double exchange 2
DZRO Double push zero 2
EADD Extended-precision floating point add lOa
ECMP Extended-precision floating point compare lOa
EDIV Extended-precision floating point divide lOa
EMPY Extended-precision floating point multiply lOa
ENEG Extended-precision floating point negate lOa
ESUB Extended-precision floating point subtract lOa
EXF Extract field 4b
EXIT Procedure and interrupt exit 7
FADD Floating add 2
FCMP Floating compare 2
FDIV Floating divide 2
FIXR Fix and round 2
FIXT Fix and truncate 2
FLT Float 2
FMPY Floating multiply 2
FNEG Floating negate 2
FSUB Floating subtract 2
HALT Halt 6
IABZ Increment A, branch if zero 3a
INCA Increment A 2
INCB Increment B 2
INCM Increment memory lb
INCX Increment index 2
IXBZ Increment X, branch if zero 3a
IXIT Interrupt exit 5
LADD Logical add 2

8-11

Mnemonic Function Format

LCMP Logical compare 2
LDB Load byte lb
LDD Load double lb
LDEA Load double word from extended address 5
LDI Load immediate 4a
LDIV Logical divide 2
LDNI Load negative immediate 4a
LDPN Load double from program, negative 7
LDPP Load double from program, positive 7
LDX Load Index la
LDXA Load X onto stack 2
LDXB Load X into B 2
LDXI Load X immediate 4a
LDXN Load X negative immediate 4a
LLBL Load Label 7
LLSH Linked list search 5
LMPY Logical multiply 2
LOAD Load la
LOCK Lock resource 5
LRA Load relative address la
LSEA Load single word from extended address 5
LSL Logical shift left 3b
LSR Logical shift right 3b
LST Load from system table 6
LSUB Logical subtract 2
MABS Move using absolute address 8
MDS Move using data segment 8
MFDS Move from data segment 8
MOVE Move words 8a
MPYD Decimal Multiply lOd
MPY Multiply 2
MPYI Multiply immediate 4a
MPYL Multiply Long 2
MPYM Multiply memory la
MTBA Modify, Test, Branch, A le
MTBX Modify, Test, Branch, X le
MTDS Move to data segment 8
MVB Move bytes 8a
MVBL Move from DB+ to DL+ Be
MVBW Move bytes while Sb
MVLB Move from DL+ to DB+ Sc
NEG Negate 2
NOP No operation 2
NOT One's complement 2
NSLD Normalizing shift left decimal lOd
OR Or, logical 2
ORI Logical OR immediate 7
PAUS Pause 6
PCAL Procedure call 7
PCN Push CPU number 5
PLDA Privileged load from absolute address 5
PSDB Pseudo interrupt disable 6
PSEB Pseudo interrupt enable 6
PSHR Push registers 4a

8-12

Mnemonic Function Format

PSTA Privileged store into absolute address 5
RCLK Read clock 6
RIO Read I/0 6
QASL Quadruple arithmetic shift left 3b
QASR Quadruple arithmetic shift right 3b
RMSK Read Mask 6
RSW Read Switch register 5
SBXI Subtract immediate from X 7
SCAL Subroutine Call 7
SCAN Scan bits 3b
SCLK Store clock 6
scu Scan until Sc
sew Scan while Sc
SDEA Store double word into extended address 5
SED Set enable/disable external interrupts 6
SETR Set registers 4a
SIN Set interrupt 6
SIO Start I/0 6
SLD Shift left decimal lOd
SMSK Set Mask 6
SRD Shift right decimal lOd
SSEA Store single word into extended address 5
SST Store in system table 6
STAX Store A into X 2
STB Store byte lb
STBX Store B into X 2
STD Store double lb
STOR Store la
SUB Subtract 2
SUBD Subtract decimal lOd
SUB! Subtract immediate 4a
SUBM Subtract memory la
SUBS Subtract from S 7
SXIT Subroutine exit 7
TASL Triple arithmetic shift left 3b
TASR Triple arithmetic shift right 3b
TBA Test, branch, A le
TBC Test bit and set condition code 3b
TBX Test, branch, X le
TCBC Test and complement bit and set CC 3b
TEST Test TOS 2
TIO Test I/0 6
TNSL Triple normalizing shift left 3b
TRBC Test and reset bit, set condition code 3b
TSBC Test, set bit, set condition code 3b
UNLK Unlock resource 5
WIO Write I/0 6
XAX Exchange A and X 2
XBX Exchange B and X 2
XCH Exchange A and B 2
XCHD Exchange DB 6
XEQ Execute 6
XOR Exclusive OR, logical 2
XORI Logical Exclusive OR immediate 7

S-13

Mnemonic

ZERO
ZROB
ZROX

Function

Push zero
Zero B
Zero X

EXAMPLE 8-1. DECIMAL TO HEX CONVERSION

Format

2
2
2

This program reads a decimal or octal number, converts the number to binary, uses an ASSEMBLE
Statement to convert the binary number to ASCII hexadecimal digits, and outputs the resulting
hexadecimal value.

The machine language portion performs these functions:

• Isolates four binary bits

• Tests the value to determine whether the digit is represented by 0-9 or A-F and adds
an appropriate number to the original value to form the corresponding ASCII character

• Stores characters right to left in the buffer, shifts the binary word right four bits,
and repeats the operation (steps 1, 2, and 3) until all four hexadecimal digits have
been determined

• Loads the stack with the array address.

• Makes a procedure call to output the results

This program illustrates the first five formats of ASSEMBLE mnemonics:

Format 1: Memory reference

Format 2: Stack ops [not packed stack op]

Format 3: Branches

Format 4: Immediates

Format 5: PCAL - logic functions

Input/Output

E:NTER A VALUE
g

0008
t:NTER A VALUE
16
0010

ENTER A VALUE
1274
04FA

ENTER A VA LUE
324 7

0CAF
ENTER A VALUE
79
004F

8-14

Listing

BEGIN <<EXAMPLE 8-1. DECIMAL TO HEX CONVERSION>>
COMMENT:

THIS PROGRAM INPUTS A DECIMAL INTEGER, CONVERTS ITS BINARY
VALUE TO HEXADECIMAL, AND OUTPUTS THE HEX EQUIVALENT.
CONE HEX DIGIT REPRESENTS FOUR BINARY BITS.)
0000 = 0 1010 = A • • • •
1001 = 9 1111 = F
NOTE: .. INPUT" AND "OUTPUT" ARE DUMMY PROCEDURES WHICH SIMULATE
INPUT, OUTPUT, AND CONVERSION - THEY ARE NOT PART OF SPL/3000;

BYTE ARRAY DATAMSGC0:13)::"~NTER A VALUE";
BYTE ARRAY HEXC0:4>:=" ";
LOG I CAL B I N ;
LABEL NEXTD IG IT;
<<END OF DECLARATIONS>>

OUTPUTCDATAMSGl; <<REQUEST DATA VALUE>>
INPUTCBIN>; <<READ DECIMAL NUMBER>>
ASSEMBLEC

LDXI 4; <<SET LOOP INDEX>>
LOAD BIN; <<PLACE BINARY NUM9ER ON STACK>>

NEXTDIGIT: DUP; <<COPY>>
ANDI 7.17; <<ISOLATE LOW ORDER 4 BITS>>
DUP; <<COPY>>
CMPI 10; <<COMPARE VALUE TO 1121>>
BL P+2; <<BRANCH IF LESS THAN 10>>
ADDI 7.7; <<ADD 7.67 IF DIGIT IS A-F>>
ADDI 7.60; <<ADD 7.60 IF DIGIT IS 0-9>>
SIB HEX,I,X; <<STORE HEX DIGIT IN ARRAY RT TO LFT>>
LSR 4; <<SHIFT BINARY NUMBER RT ONE HEX DIGIT>>
DXBZ P+2; <<STOP CONVERSION IF INDEX=0>>
BR NEXTDIGIT; <<CONVERT ANOTHER DIGIT>>
<<END OF CONVERSION LOOP - OUTPUT HEX NUMBER>>
LOAD HEX; <<LOAD STARTING ADDR OF ARRAY>>
LSR 1; <<CONVERT TO WORD ADDRESS>>
PCAL OUTPUT; <<CALL PROCEDURE>>

<<END ASSEMBLE>>);
END <<DECIMAL TO HEX CONVERSION>>.

8-15

EXERCISES FOR SECTION VIII

Note: LOAD means "load TOS from memory",

LDXI means "load Index Register with constant",

STO R means "store TOS into memory."

Consult the HP 3000 Reference Manual (HP 03000-90019) for details.

1. Assume these declarations:

INTEGER IA := 5,

IB := 4,

IC:= 3;

INTEGER POINTER IPTR :=@IA;

LOGICAL LA := 2,

LB:= 1;

BYTE ARRAY STRING (0:3) := "ABCD";

Examine the following ASSEMBLE statements and complete
the diagrams to show the contents of the stack after each
ASSEMBLE statement has been executed. (Use scratch paper
to record intermediate results.)

a) ASSEMBLE (LDXI 1; <<Load index register immediate>>

LOAD IA, X;

LOAD STRING;

LOAD IPTR;

LOAD IPTR, X;

LOAD IPTR, I, X);

S-6 --------
S-5

1--------......i

S-4 --------
S-3

1---------~

S-2
1--------~

S-1
S-0

8-16

DB+O

1

2

3

4

5

6

400

5

4

3

0

2

1

1000

A B

c D

b) ASSEMBLE (LOAD STRING;

LOAD IC:

S-4
S-3
S-2
S-1
S-0

LOAD S-0, I;

STOR S- 3;

LOAD LB, I)

1-------1

t--------1

t-----------1

2. Assume these declarations:

LOGICAL COUNTER, MASK;

PROCEDURE OUTPUT;

LABEL NEXT;

Identify the invalid instructions below:

BR DB+ 40;

INCM COUNTER;

NEXT: DIV, DELB;

ZERO;

ASL 32;

RSW, DUP;

PCAL OUTPUT;

MVBWS;

ORI MASK;

BCYNEXT;

3. Select the non-privileged instruction mnemonics:

SIO
XEQ

HALT
XCHD

RSW
PLDA

PSHR
CMD

8-17

EXF
DPF

Decimal
Graphic Value

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

" 34
35
$ 36
% 37

APPENDIX A
ASCII Character Set

Octal
Value Comments

0 Null
1 Start of heading
2 Start of text
3 End of text
4 End of transmission
5 Enquiry
6 Acknowledge
7 Bell

10 Backspace
11 Horizontal tabulation
12 Line feed
13 Vertical tabulation
14 Form feed
15 Carriage return
16 Shift out
17 Shift in
20 Data link escape
21 Device control 1
22 Device control 2
23 Device control 3
24 Device control 4
25 Negative acknowledge
26 Synchronous idle
27 End of transmission block
30 Cancel
31 End of medium
32 Substitute
33 Escape
34 File separator
35 Group separator
36 Record separator
37 Unit separator
40 Space
41 Exclamation point
42 Quotation mark
43 Number sign
44 Dollar sign
45 Percent sign

A-1

Decimal Octal
Graphic Value Value Comments

& 38 46 Ampersand
39 47 Apostrophe

(40 50 Opening parenthesis
) 41 51 Closing parenthesis

* 42 52 Asterisk
+ 43 53 Plus

44 54 Comma
45 55 Hyphen (Minus)
46 56 Period (Decimal)

I 47 57 Slant
0 48 60 Zero
1 49 61 One
2 50 62 Two
3 51 63 Three
4 52 64 Four
5 59 65 Five
6 54 66 Six
7 55 67 Seven
8 56 70 Eight
9 57 71 Nine

58 72 Colon
59 73 Semicolon

< 60 74 Less than
61 75 Equals

> 62 76 Greater than
? 63 77 Question mark
@ 64 100 Commerical at
A 65 101 Uppercase A
B 66 102 Uppercase B
c 67 103 Uppercase C
D 68 104 Uppercase D
E 69 105 Uppercase E
F 70 106 Uppercase F
G 71 107 Uppercase G
H 72 110 Uppercase H
I 73 111 Uppercase I
J 74 112 Uppercase J
K 75 113 Uppercase K
L 76 114 Uppercase L
M 77 115 Uppercase M
N 78 116 Uppercase N
0 79 117 Uppercase 0
p 80 120 Uppercase P
Q 81 121 Uppercase Q
R 82 122 Uppercase R
s 83 123 Uppercase S
T 84 124 Uppercase T
u 85 125 Uppercase U
v 86 126 Uppercase V
w 87 127 Uppercase W
x 88 130 Uppercase X
y 89 131 Uppercase Y

A-2

Decimal Octal
Graphic Value Value Comments

z 90 132 Uppercase Z
[91 133 Opening bracket
\ 92 134 Reverse slant
] 93 135 Closing bracket

94 136 Circumflex
95 137 Underscore
96 140 Grave accent

a 97 141 Lowercase a
b 98 142 Lowercase b
c 99 143 Lowercase c
d 100 144 Lowercased
e 101 145 Lowercase e
f 102 146 Lowercase f
g 103 147 Lowercase g
h 104 150 Lowercase h

105 151 Lowercase i
j 106 151 Lowercase j
k 107 152 Lowercase k
1 108 154 Lowercase 1
m 109 155 Lowercase m
n 110 156 Lowercase n
0 111 157 Lowercase o
p 112 160 Lowercase p
q 113 161 Lowercase q
r 114 162 Lowercase r
s 115 163 Lowercases
t 116 164 Lowercase t
u 117 165 Lowercase u
v 118 166 Lowercase v
w 119 167 Lowercase w
x 120 170 Lowercase x
y 121 171 Lowercase y
z 122 172 Lowercase z
{ 123 173 Opening (left) brace
I 124 174 Verical line
} 125 175 Closing (right) brace

126 177 Tilde
127 177 Delete

A-3

APPENDIX B
Reserved Words

The following symbols have special meaning in SPL/3000 and thus, cannot be used as identifiers:

ABSOLUTE
ALPHA
AND
ARRAY
ASSEMBLE
BEGIN
BYTE
CARRY
CASE
CAT
CHECK
COMMENT
DABZ
DDEL
DEFINE
DEL
DELB
DO
DOUBLE
DXBZ

ELSE
END
ENTRY
EQUATE
EXTERNAL
FALSE
FIXR
FIXT
FOR
FORWARD
GLOBAL
GO
GOTO
IABZ
IF
INTEGER
INTERNAL
INTERRUPT
INTRINSIC
IXBZ

B-1

LABEL
LAND
LOGICAL
LONG
LOR
MOD
MODD
MOVE
NOCARRY
NOT
NOVERFLOW
NUMERIC
OF
OPTION
OR
OVERFLOW
OWN
POINTER
PRIVILEGED
PROCEDURE

PUSH
REAL
RETURN
SCAN
SET
SPECIAL
STEP
SUBROUTINE
SWITCH
THEN
TO
TOS
TRUE
UN CALLABLE
UNTIL
VALUE
VARIABLE
WHILE
XOR

APPENDIX C
Brief Summary of Commands

Before the compiler commands can be used, the programmer must enter the operating system and
the SPL/3000 compiler itself.

OPERATING SYSTEM COMMANDS

The operating system (MPE/3000) is accessed using the :HELLO command (on-line terminal
mode) or the :JOB command (batch mode). These two commands require specification of a
job name, a user and account pair, and necessary passwords. The command for accessing the
SPL/3000 compiler is :SPL with optional parameters specifying source file, object file, list
file, and editing. The object code generated by the SPL/3000 compiler is prepared using the
:PREP command (or by the compiler with :SPLPREP which compiles and prepares) and is
executed using the :RUN command (or by the compiler with :SPLGO which compiles, pre
pares, and runs). All of these commands are treated in detail in the MPE/3000 reference
manual.

COMPILER COMMANDS

Commands to the compiler are specified by a $ in the first column followed by a command
word, a space, and a list of parameters separated by commas. The most common command
is the $CONTROL command; its parameters, in simplified form, are as follows:

$CONTROL

LIST

NO LIST

WARN

NOWARN

MAP

parameter list

Send each source record to the list file.

Send only invalid source records and error messages to the list
file.

Send warning messages and the records causing them to the list
file.

Do not send warning messages to the list file.

Send a symbol table dump to the list file after each procedure
or main body.

C-1

ERRORS= ddd Set the maximum severe-error count to ddd; exceeding this
number terminates compilation (0 <= ddd <= 999).

CODE Send record of actual code emitted (in octal) to the list file at
appropriate points.

NOCODE Do not sent code listing to the list file.

ADR After each declaration, if the LIST command is in effect, send
the address mode and location of each variable to the list file.

INNERLIST Send an innerlist of code emitted for each statement to the list
file if the LIST command is in effect.

MAIN= program-name Establish program-name (up to 8 alphanumeric characters,
starting with alpabetic).

NOTE: A NOLIST parameter "turns off" ADR and INNERLIST if they are
in effect.

Default Conditions

LIST, WARN, ERRORS= constant, NOCODE, MAIN= OB'

MAP, ADR, and INNERLIST are off at the beginning of a compilation.

A $CONTROL command overrides parameters of previous $CONTROL commands. Thus,
parts of a program can be listed while others are not.

C-2

APPENDIX D ..
Answers to Exercises

ANSWERS TO SECTION I EXERCISES

1. A process is the unique execution of a program by a particular user at a particular time.

2. Code segments and data segment.

3. Code cannot be modified; therefore, it is re-entrant and can be shared by several users.

Data can be modified; therefore, each user process has a private data storage area.

4. code

--- +-PB

+-P

---+-PL

data

--- +-DL

+-DB

+-Q

+-S

---- +-Z

Each register listed has a special addressing function.

5. p

DL

DB

Q

s
z

REGISTER

PB
p
PL
DL
DB
Q
s
z

+255,-255

not used for addressing

+255

+127,-63

-63

not used for addressing

USED TO ADDRESS

Start of code segment
Currently executing instruction
End of code segment
Start of data segment
First word of stack global area
Current stack marker
Current top of stack location
End of data segment

D-1

6. LOAD A LOADB SUB LOADC LOADD ADD MPY

2

3 2 3 2

s 3 s 1 s 2 s 3 s 1 s 4 s 8

7. (A - B) * (C + D)

8. a) Addressing relative to registers.

b) Bounds checking of each effective address against limit register contents by hardware.

c) Code segments cannot be modified.

D-2

ANSWERS TO SECTION II EXERCISES

Note: [] indicates section corrected. There may be other correct solutions.

1. a) INTEGER I, J := 100, K: Correct statement as is.

b) REAL NUMBER[;] INTEGER SUM:= O;

c) INTEGER A:= [123], TESTER := %6412;

d) REAL ZED[:= 0, B := 0, C := O];

e) INTEGER INTEGERB:= % 102; Correct statement as is.

f) INTEGER [BETA] :="A";

g) INTEGER BIGGE := [32767] ; or DOUBLE BIGGE := 35767;

h) INTEGER SAM := O;

i) REAL [BEGINER] := 1.414;

j) INTEGER [MIKE] := 1;

2. a) SUM:= I+ [INTEGER (FIXR (NUMBER))] I 2;

b) Correct statement as is.

c) Correct as is.

d) TEMP : = (I + J) - K <<SUBTRACT AND SA VE> [>] ;

e) Correct statement as is.

f) TOTAL:= NUMBER ["] 2 +CRUNCHER ["] 2;

g) TEMP:= K * [(SUM:= I+ K + J)];

h) SUM := M MOD [] 8 [;]

3. a) Rl = %7 4000

b) R2 ="AD"= %040504

c) R3 = "CE"= %041504

d) R4 = %1

e) R5=%6

4. a) RA= "AE" = %40505

b) RB= %0

c) RC= %60

d) RD = 0, RE = "BB" = %41102

D-3

5. BEGIN

REAL ANS, X := 1.414, Z := .256;

REAL PROCEDURE RAND; OPTION EXTERNAL;

ANS := RAND * X - Z;

END.

6. BEGIN

Data Group

Procedure Group

Statements

END.

7. BEGIN}
END.

a null program

8. A compound statement is actually a group of SPL/3000 statements (separated by semi
colons) surrounded by a BEGIN - END pair. The compiler treats this statement group as
a single statement unit.

D-4

ANSWERS TO SECTION III EXERCISES

1. a) valid

b) invalid

c) valid

d) valid

e) invalid

2. LOOP: IF TESTWORD > 0 THEN Y :=A+ B + C

ELSE

3.

IF TESTWORD = 0 THEN Y := 1./A + B + C

ELSE

Y :=A* B * C;

COUNT:= COUNT +1;

IF COUNT<= 10 THEN GOTO LOOP;

NUMBER8 AS INTEGER 1 0 AS LOGICAL10

177777 -1 65535

000001 +l 1

000377 +255 255

000000 0 0

177776 -2 65534

100000 -32768 32768

000003 +3 3

000004 +4 4

000005 +5 5

000006 +6 6

4. a) A LOR BLAND C LORD
I I

b) NUMBER < > 0 LAND NUMBER * SCALE <= MAX
I I I I
I I I I

c) X + Y / (Y - 5) *NUMBER LAND %77

:

y

D-5

TRUE/FALSE

TRUE

TRUE

TRUE

FALSE

FALSE

FALSE

TRUE

FALSE

TRUE

FALSE

d) A* B <>NOT DIC

L ~
5. a) Illegal statement - OR is legal only in branching conditions such

IF, WHILE and DO. (IF B OR C THEN GO QUIT;).

b) Legal statement.

c) Illegal statement - AND is legal only in branching conditions (see answer a).

d) Legal statement.

e) Illegal statement - FIXR results in a type double result, the expression is therefore mixed.

f) Illegal statement - NOT is illegal in arithmetic expressions.

g) Illegal statement - #is invalid operator.

h) Legal statement.

i) Illegal statement - RESULT := C LOR (A := B); is legal however.

j) Illegal statement - mixed expression.

k) Legal statement.

6. a) Valid expression.

b) Valid expression.

c) Invalid expression - C MOD LOGICAL (D) + LOGICAL (F).

NOTE: an alternative may be INTEGER (C) MOD D + F. However in this case
an integer rather than a logical divide is used.

d) Valid expression.

NOTE: The solutions presented as answers to these exercises are not necessarily
unique nor are they always the optimum one. They are only examples
of correct solutions.

7. a) IF AGE<= 30 AND HT= 66 AND SEX AND JOB= 0 AND LANG= 2 THEN
<<STATEMENT>>

b) IF 30 <= ID<= 70 AND HT = 62 AND 90 <= WT<= 110 AND EYES = 2
AND NOT SEX AND (JOB= 3 OR JOB= 7 OR JOB= 9) AND LANG= 7 THEN
<<STATEMENT>>

c) IF ID> 50 AND (21 <=AGE<= 24 OR 37 <=AGE<= 50) AND HT= 79
AND WT> 190 AND (EYES= 1 XOR SEX) AND (JOB= 1 OR JOB= 8) AND
(LANG= 4 OR LANG= 9) THEN <<STATEMENT>>

d) IF 45 <=AGE<= 50 AND ((EYES= 1 AND SEX) OR (EYES= 2 AND NOT SEX))
AND ((JOB= 4 AND LANG= 0) OR (JOB= 5 AND LANG= 1)) THEN
<<STATEMENT>>

D-6

8. a) PTS := O;

IF AGE<= 30 THEN PTS := PTS + 1;

IF HT= 66 THEN PTS := PTS + 1;

IF SEX THEN PTS := PTS + 1;

IF JOB= 0 THEN PTS := PTS + 1;

IF LANG= 2 THEN PTS := PTS + l;

<<END OF TEST>>

b) PTS := O;

IF 30 <= ID<= 70 THEN PTS := PTS + 1;

IF HT= 62 THEN PTS := PTS + 1;

IF 90 <= WT <= 110 THEN PTS := PTS + 1;

IF EYES = 2 THEN PTS := PTS + 1;

IF NOT SEX THEN PTS := PTS + 1;

IF JOB = 9 OR JOB = 7 OR JOB = 3 THEN PTS := PTS + 1;

IF LANG= 7 THEN PTS := PTS + 1;

<<END OF TEST>>

c) PTS := O;

IF ID> 50 THEN PTS := PTS + 1;

IF 21 <= AGE <= 24 OR 37 <= AGE <= 50 THEN PTS := PTS + 1;

IF HT= 79 THEN PTS := PTS + 1;

IF WT> 190 THEN PTS := PTS + 1;

IF EYES = 1 XOR SEX THEN PTS := PTS + 1;

IF JOB= 1 OR JOB= 8 THEN PTS := PTS + 1;

IF LANG= 4 OR LANG= 9 THEN PTS := PTS + 1;

<<END OF TEST>>

d) PTS := O;

IF 45 <=AGE<= 50 THEN PTS := PTS + 1;

IF (EYES= 1 AND SEX) OR (EYES= 2 AND NOT SEX) THEN PTS := PTS + 1;

IF (JOB= 4 AND LANG= 0) OR (JOB= 5 AND LANG= 1) THEN PTS := PTS + l;

<<END OF TEST>>

D-7

9. a) PTS := IF LANG = 0

THEN IF SEX

THEN IF 69 <=HT<= 75

THEN IF 160 <=WT<= 210

THEN IF 21 <= AGE <= 35

THEN IF EYES = 2

[

THEN IF JOB= 5

[
THEN 7

ELSE 6

ELSE 5

ELSE 4

ELSE 3

ELSE 2

ELSE 1

ELSE O;

b) PTS :=IF NOT SEX

THEN IF 21 <= AGE <= 25

r
THEN IF 58 <= HT <= 65

r
THEN IF 95 <= WT <= 120

THEN IF EYES = 4

THEN IF JOB = 3

[

THEN IF LANG= 4

[
THEN 7

ELSE 6

ELSE 5

ELSE 4

ELSE 3

ELSE 2

ELSE 1

ELSE O;

10. CASE I

X :=O;

IF Ll THEN BEGIN

IF L2

THEN X := 1

END

ELSE X := 2;

CASE II

X :=O;

IF Ll THEN

IF L2

THEN X := 1

LELSE x := 2;

The innermost THEN is paired with the closest following ELSE and pairing proceeds out
ward. This default association can be overridden by using BEGIN-END pairs to separate
statements.

D-8

Table I Table II

Li L1 x Li L1 x
T T 1 T T 1

T F 0 T F 2

F T 2 F T 0

F F 2 F F 0

D-9

ANSWERS FOR SECTION IV EXERCISES

1. a) Valid

b) Illegal real number

c) Illegal operation

d) Valid

e) Illegal - strings not allowed.

f) Valid

g) Illegal - absolute value not allowed.

h) Illegal - strings not allowed.

i) Illegal - X and Y undefined when Z is declared.

2. a) Invalid - , in bounds.

b) Valid

c) Valid

d) Invalid - no name.

e) Invalid - only last array can be initialized.

f) Invalid - equals instead of replacement (:=)and no quotes around string.

g) Invalid - real constant cannot be used to initiate integer.

h) Invalid - nested repeat groups not allowed.

i) Invalid - reserved word cannot be used as identifier.

j) Invalid - too many elements.

3. a) False

b) False

c) True

d) False

e) True

4. a) Yes.

b) The second solution is more efficient. Use of an explicit subscript (even 0) always
specifies use of the Index Register. Since the subscript is 0 in this case it makes no
sense to cause the Index Register to be loaded with 0.

5. ARRAY DATA (-23: 127);

6. EQUATE BLANK= %40,

RETURN= %15,

LINEFEED= %12,

NULL= O;

7. EQUATES=7,L=3;

D-10

8. a) IF 5 <=DATA<= 20 OR X <=DATA<= Y THEN X := X + 1;

b) ARRAY ONE (0:7) := 1, 3, 5, 7, 9, 11, 13;
ARRAY TWO (0:7) := 1, 3, 5, 7, 9, 11, 13;

c) IF LINK.(0:2) = 1 AND LINK.(2:6) < 4 THEN LINK.(8:8) := O;

9. DEFINE EQ =EQUATE#, INT= INTEGER#, ARY= ARRAY#, DEF= DEFINE#,
LOG= LOGICAL#, ASSIGN= THEN#, OTHERWISE= ELSE#;

10. The address of the zero element is computed by subtracting the lower subscript from the
first address assigned to the array.

Address of zero element = (first word address of array) - (lower subscript value)

(DB + 256) - 100

DB+ 156

To address arrays the computer hardware uses the address of the zero element to which is
added the value of the index register.

For example:

Effective address = Address of zero element + Index register

156 + 100

256

11. EQUATE N = 99;

INTEGER ARRAY AGE (O:N);

INTEGER YOUNG, OLD, AVERAGE, SUM := 0, I;

YOUNG:= OLD :=AGE; <<INITIALIZE>>

FOR I := 0 UNTIL N DO

BEGIN

IF YOUNG> AGE (I) THEN YOUNG := AGE (I);

IF OLD< AGE (I) THEN OLD:= AGE (I);

SUM:= SUM+ AGE (I);

END;

AVERAGE := SUM/(N + l);

12. a) (N + 1)

b) Yes.

13. a) 4 times

b) 2 times (I = 9, which is odd or true.)

c) Infinite loop. N + 1<=10 is true (-1) or false (0).
In either case the value assigned to N will always be less than 10.

d) 10 times

D-11

14. BEGIN

INTEGER JUMPS := 1;

REAL DISTANCE:= 500.;

WHILE .025 <=(DISTANCE:= DISTANCE/2.) DO JUMPS:= JUMPS+ 1;

END.

15, a) INDEX= 0 label is FIRST

b) INDEX = 3 label is NEXT (index out of bounds)

c) INDEX= -1 label is NEXT (index out of bounds)

d) INDEX= 2 label is THIRD

16. a) True
b) False

c) True
d) True

17. CASE TITLE OF

BEGIN

PREFIX := "MR A A";

PREFIX :="MRS"";

PREFIX := "MISS";

<<NULL>>;

PREFIX :="DR",.,"

END;

e) False
f) True

D-12

ANSWERS TO SECTION V EXERCISES

1. a) Valid

b) Valid

c) Invalid - too many characters.

d) Invalid - only one array can be initialized.

e) Invalid - real number not allowed.

f) Valid

g) Valid

h) Valid

i) Warning -too many characters.

j) Valid

2. WORD ARRAY NULL

A EEB
3. WORD.(0:8) :=A; or

WORD.(8:8) := B;
TOS.(0:8) :=A;
TOS.(8:8) := B;
WORD :=TOS;

There are many other solutions.

4. None - INDEX is equivalenced to the hardware Index Register.

5. Byte Address Word Address

Address 1 %1023 %411

Address 2 %1460 %630

Address 3 %2577 %1277

6. a) 1 word

b) 1 word

c) 1 word

d) 1 word

e) Invalid - No words.

7. a) no

b) no

c) yes

d) no

e) yes

D-13

TOS

I- A

Final Byte Address

%1022

%1460

%2576

8. TOTAL:= (37 -1+144) * 3;
TOTAL := 540;

Result is not truncated since integer arithmetic is used for bytes.

9. INTEGER POINTER IPNTR := @SAM(l);

10. a) The contents of NUMBER(O) are incremented by one to a value of 2.

b) The contents of NUMBER(2), NUMBER(3), NUMBER(4), and NUMBER(5) are added
together and the sum (18) replaces the previous contents of NUMBER(l).

c) The contents of the pointer location NPNTR are increased by a value of 7. NPNTR now
points to NUMBER(7);

d) The contents of NPNTR are restored to the address of NUMBER(O);

e) The address of NUMBER(9) is stored in the location NUMBER(O);

11. BUFF := %125252;
MOVE BUFF(l) :=BUFF, (99);

12. MOVE OUTBUF := INBUF, (128), 1;
@ INPNTR := TOS;
@ OUTPNTR := TOS;

13. SOURCEBUF (80) := "*";
MOVE DESTBUF := SOURCEBUF WHILE A;

14. SOURCEBUF (80) := "*";
MOVE DESTBUF := SOURCEBUF WHILE A, 1;
NUMBER := IF> THEN TRUE ELSE FALSE;
COUNT:= TOS; <<SAVE LAST DESTINATION ADDRESS>>
COUNT := COUNT - @ DESTBUF;

15. ~ S - 1 %1004 (DB relative address)

S-0 .E

16. IF DATA= "END OF INPUT" THEN FLAG:= TRUE;

D-14

ANSWERS TO SECTION VI EXERCISES

1
.J..,

(40200)

(40206)

(40212)

2. DL = 30000

DB= 30000

Q = 31000

s = 31004

z = 32000

PREV
Q-+

PREV
S-+

1
124

4076
Q, S-+ 12

PB= 002000
p = 002140

PL= 002500

x = 000001

STATUS= 002037

3. a) INTEGER X, Y, Z;
X was not specified.

b) PROCEDURE FIXIT (A, B, X);
VALUE A, B;
REAL A, B, X;
OPTION FORWARD;

) PREVIOUS STACK MARKER

} LOCAL VARIABLES

} PARAMETERS (3 WORDS)

INDEX
REL. P (P-PB + 1)
STATUS REG.

(31000) Q-+
)

(31004) s-+ }

PREVIOUS STACK
MARKER

TWO WORDS LEFT
ON STACK BY
EXIT 1.

Option part must not precede specification part.

c) VALUE X, Y; REAL X, Y;
Semi-colon was missing between Y and REAL; note that BEGIN-END are not required
in a one statement procedure.

D-15

4. PROCEDURE MOVEWORDS (FROM, DEST, COUNT);
VALUE COUNT; INTEGER COUNT;
LOGICAL ARRAY FROM, DEST;
BEGIN

MOVE DEST := FROM, (COUNT);
END;<<MOVEWORDS>>

5. a) VARIABLE MAIN PROCEDURE ALPHA PROCEDURE BETA

x v' ~

y v v
A /
B ./

I

J

K

b)
VARIABLE MAIN

PROCEDURE
THING

A v' v
B ./ ./

I ./

J t/

6. SUBROUTINE SCL (VREAL, SCALE);
VALUE VREAL, SCALE;
REAL VREAL, SCALE;

SUBROUTINE
SAM

,/

./

./

,/

X :=INTEGER (FIXR(VREAL *SCALE));

7. REAL PROCEDURE RAD (DEGREE);
VALUE DEGREE;
REAL DEGREE;

RAD:= DEGREE* .017453;

8. a) REAL SUBROUTINE ANS (A, B);
VALUE A, B; REAL A, B;
BEGIN

<INTEGER X = X)
IF X > 0 THEN ANS := A + B

ELSE ANS :=A - B;
END;

No local declarations are allowed in a subroutine.

b) SUBROUTINE EV ALU ATE (DATA, GOODRANGE);
REAL DATA, GOODRANGE;

(QPTIONAL EXTERNA0)

,/

./

,/

,/

./

SUBROUTINE
FIXIT

,/

/

TYPE

GLOBAL

GLOBAL

LOCAL

LOCAL

LOCAL

LOCAL

LOCAL

TYPE

GLOBAL

GLOBAL

LOCAL

LOCAL

Option External is not valid in a subroutine. (Subroutines may not be compiled without
a main program or procedure to contain them.)

D-16

c) SUBROUTINE MOVER (SOURCE, DEST, COUNT);
BEGIN
ARRAY SOURCE, DEST;
INTEGER COUNT·

MOVE DEST :=SOURCE, (COUNT);
END; -

The subroutine parameter specifications are incorrectly placed. They should be located
before the BEGIN.

9. Point @ RESULT is 6.

Point® RESULT is 60.

10. No value was stored in the function name (VERIFY). The default return is 0 or logical
FALSE.

11. PROCEDURE COMPUTE (X, Y);
VALUE X;
INTEGER X, Y;

Y := XMOD 8;

The parameter specifications were incorrectly placed following BEGIN. Since this is a single
statement procedure, BEGIN and END are optional.

D-17

ANSWERS TO SECTION VII EXERCISES

1. (base)

a) 2 %(2)1111111011000101

b) 4 %(4)33323011

c) 8 %177305

d) 16 %(16)FEC5

2. a) 0 000 000 101 101111

b) 0 000 011110 010 111

c) 0 000 111111100 010

d) 1010110 001101111

3. a) %102770
%115372
%062377

b) [3/4, 5/5, 4/%1 7' 4/%10]
[5/%23, 8/%137, 3/2]
[8/100, 8/255]

4. a) [8/%12, 8/%15]

b) [8/7, 8/3]

5. DATA:= IF (DATA LAND [2/3, 3/0, 1/1, 3/0, 3/7, 4/0]) = [2/1, 3/0, 1/0, 3/0, 3/5, 4/0]
THEN TRUE ELSE FALSE;

6. TO
FROM LONG REAL DOUBLE INTEGER LOGICAL BYTE

LONG - REAL

REAL LONG - FIXR
FIXT

DOUBLE LONG REAL - INTEGER

INTEGER REAL DOUBLE -

LOGICAL REAL DOUBLE INTEGER

BYTE REAL DOUBLE INTEGER

7. SHORT:= INTEGER (FIXR (REAL (DATA)));

8. REAL PI:= 3.14159;
LONG EULERS'CONSTANT := .57721566490 L;
INTEGER RADIUS := 3959;
DOUBLE GALLONS := 18627235 D;
LONG WINN'SCONSTANT := -4.537269537L23;
REAL PLANCK:= 6.62559E-27;

D-18

LOGICAL

LOGICAL BYTE

- BYTE

LOGICAL -

I

9. TYPE #OF BITS LARGEST10

BYTE 8 255
LOGICAL 16 65535
INTEGER 16 +32767
REAL 32 (6.9 DIGITS)+10 77

DOUBLE 32 2147483647
TRIPLE ILLEGAL TYPE ILLEGAL TYPE
LONG 48 (11.7 DIGITS)+l0 77

10. PROCEDURE AVERAGE (NUMBRS, COUNT);
VALUE COUNT;
INTEGER ARRAY NUMBRS;
INTEGER COUNT;
BEGIN
INTEGER INDX = 0,

X=X;
x :=-1;

SMALLEST10

0
0

-32768
(6.9 DIGITS)-10 77

-2147483648
ILLEGAL TYPE

(11.7 DIGITS)+l0 77

WHILE (X := X + 1) <=COUNT DO INDX := INDX + NUMBRS (X);
INDX := INDX/COUNT;
END;

11.

39 WORDS TOT AL =

12. a) Valid

b) Valid

DATA LABELS DATA STORAGE

1
1
1

36
0
0

c) BYTE ARRAY ALPHA(*)= NUMBER;

HELLO'MESSAGE
INBUF
SCRATCH

d) LOGICAL ARRAY DATA (0:6) =PB:= "DATA GOES HERE";

e) REAL ARRAY BIGNO (O:N) =DB;

f) Valid

h) INTEGER ARRAY TOTAL(*)= NUMBER;

i) BYTE ARRAY STRINGCHAR (0:3) = Q;

j) ARRAY SAM (1 :7) =DB := O,l,2,3,4,5,6;

13. REAL PROCEDURE SUMIT (UPPER);
VALUE UPPER;
INTEGER UPPER;
BEGIN

REAL ARRAY TOT AL (0 : UPPER);
INTEGER I, SUMIT := O;
GETDATA (TOTAL, UPPER+ l);
FOR I := 0 UNTIL UPPER DO
SUMIT := SUMIT +TOTAL (I);

END;

D-19

14. PROCEDURE TIME'STAMP (TIME);
VALUE TIME;
DOUBLE TIME;
BEGIN

OWN DOUBLE ARRAY ELAPSED'TIME (0:99);
OWN DOUBLE START'TIME;
OWN INTEGER SUB := O;
OWN LOGICAL PAIR:= FALSE;

IF PAIR THEN BEGIN <<START & END TIME RECEIVED>>
ELAPSED'TIME (SUB):= TIME-START'TIME;
SUB:= SUB+ 1;

END
ELSE START'TIME :=TIME; <<SAVE START TIME>>

PAIR:= NOT PAIR; <<COMPLEMENT START-END SWITCH>>
IF SUB= 100 THEN BEGIN

WRITETAPE (ELAPSED'TIME); <<output data>>
SUB:= O;

END;
END <<TIME'STAMP>>;

15. BYTE POINTER SORC = S - 0,
DEST= S -1;
MOVE BUFB := BUFA WHILE A, O;
DEST := SORC;

16. TOS :=ZERO; <<PUSH ZERO FOR INTEGER RESULT>>
TOS :=@STRING; <<PUSH BYTE ARRAY ADDRESS>>
TOS := BIGWORD; <<PUSH DOUBLE WORD VALUE>>
TOS :=NUMBER; <<PUSH REAL VALUE>>

17. a) 1 word

b) I=-11
L = TRUE(l 77765)
B = %377

D-20

ANSWERS FOR SECTION VIII EXERCISES

1. a) S - 4 4

S-3 1000

S-2 0

S-1 2

S-0 4

b) S- 3 0

S-2 1000

S-1

S-0

2. BR DB+ 40;
RSW, DUP;
MVBWS;
ORI MASK;

3. RSW
EXF
XEQ
DPF
PSHR

3

4

D-21

INDEX

NOTE: Special symbols are listed at the end with cross references to alphabetic entries.

A

A, 3-9. See also TOS, S register
Abbreviations, 4-1, 4-2
Absence traps, 6-1
Absolute values (1), 2-6
Accuracy, 2-1, 7-4
Actual parameters, 6-6

variable number of, 6-21
ADD, 1-6, 1-8
Addition(+), 3-3, 2-5
Address

byte, 4-4
conversion of, 5-5, 5-8
pointer contains, 5-4
shifting, 5-8
variable, 5-6
zero element, 4-4

Addressing
byte, 1-5
double, 1-5
indirect, 1-5
ranges, 1-5
relative, 1-2, 1-5, 1-9
word, 1-5

Address references, 7 -5
Algebraic compares, 3-4
ALPHA (reserved word), 5-20
Alphabetic, 5-13, 7-1
AND, 3-10. See also LAND
Arithmetic expressions, 2-4-2-10

assignment of, 2-4, 2-10
in example, 2-12
operators in, 2-4

Arithmetic shifts, 2-9
ARRAYS, 4-3-4-6

accessing elements of, 4-6
advanced feature of, 7-7
bounded, 7-7, 7-8

ARRAYS (cont.)
bounds checking of, 4-3
byte, 5-2, 5-3
declaration of, 4-4
direct, 7-8
dynamic local, 7-10
equivalenced, 7-11
example use of, 4-9, 4-13
indirect, 7-7
initializing, 4-3, 4-5
location of, 4-3
one-dimensional, 4-3
overlapping, 7-6
own local, 7-6, 7-10
pointer versus, 5-4
P-relative local, 7-9
storage allocation for, 4-4
summary of, 7-13
types of, 7-13
variable bounds, 6-5
zero element of, 4-4

ASCII characters, 5-1, A-1-A-3
Assignment statements, 2-10

actual parameter, as, 6-6
example of, 2-12
IF, 3-11
logical, 3-7

Asterisk (*)
array deciaration and, 7-12
byte comparison and, 5-19
CASE statement and, 4-15
FOR statement and, 4-6
GOTO statement and, 4-14
MOVE bytes statement and, 5-13
MOVE (bytes) WHILE statement and, 5-13
MOVE statement and, 5-11
SCAN UNTIL statement and, 5-17
SCAN WHILE statement and, 5-18
SWITCH and, 4-14

Average, 2-12

B

Back slashes (\), 2-6
Based integer constants, 7 -1
Base register references, 7 -5

pointer use of, 7-14
simple variable use of, 7-14
stack accessing using, 7-15

BCC, 3-10
BEGIN

starting compound statement with, 2-14
starting procedure body with, 6-5
starting program with, 2-13

Bit fields
concatenation of, 7-2
use of, in composite integer, 7-2

Bit functions, 2-5, 2-7-2-10. See Extract;
Concatenate

Bounded arrays, 7-7
direct, 7-8
indirect, 7-8

Bounds
array, 4-3
byte array, 5-2
checking, 1-9

array, 4-6
CASE, 4-15
indexed GOTO, 4-14
SWITCH, 4-14

P-relative arrays have fixed, 7 -9
undefined array, 7 -11

BOV, 3-10
Branch operators, 3-10
Branch words, 3-9
BYTE, 5-1

arrays of type, 5-1, 5-2
type transfer function, 5-4
variables of type, 5-1

Bytes, 1-7, 2-1, 5-1
addressing, 4-4, 5-1-5-3, 5-12
comparing, 5-19, 5-20
moving, 5-12-5-15
scanning, 5-16-5-19
size of, 2-10, 3-7
subscripting for, 5-2
testing, 3-5, 5-19, 5-20
type transfer with, 5-4

c

Calculator, 4-16
CARRY, 3-9

CARRY (cont.)
SCAN UNTIL, 5-17
SCAN WHILE, 5-18

CASE statement, 4-15, 4-16
CAT, 2-8
Characters, ASCII, 5-1, A-1-A-3
Circular shifts, 2-9
Circumflex ("). See Exponentiate
CMP, 3-5
CMPB, 5-19
Code (instructions)

bounds checking of, 1-2
no modification of, 6-17
registers for, 1-3
relative addressing for, 1-2
segments of, 1-2, 1-9, 6-1
separation from data of, 6-17
sharing of, 6-17

Code Segment Table (CST), 6-2, 6-7
Colon(:)

use of, in concatenate, 2-8
use of, in deposit, 2-11
use of, in extract, 2-7
use of, in label position, 3-1
MPE/3000 commands begin with, C-1

Colon-equals(:=)
assignment statement uses, 2-10
byte arrays initialized with, 5-2
byte variables initialized with, 5-1
logical assignment uses, 3-7
move bytes statement uses, 5-12
move bytes while statement uses, 5-12
MOVE statement uses, 5-9
pointers initialized with, 5-14
switch declaration uses, 4-14

Comma (,) , 2-3
Commands, 2-15, C-1, C-2
Comments(<<>>), 2-2, 2-3
Commercial at(@)

actual contents of pointer specified with, 5-6
address of variable specified with, 5-6
example use of, 5-15
pointer initialized with, 5-4

Compare range and branch. See CPRB
Comparing, 3-4, 5-19
Compilers

commands of, C-1
recursion and, 6-16, 6-17

Composite integer constants, 7-2
Compound statement, 2-14, 4-15
Computer, Conventional, 1-5
Concatenate, 2-8
Condition code, 3-10, 5-13, 5-14, 5-18
Conditions, 3-8, 3-11, 4-11, 4-12
Conjunction. See LAND; AND
Constants, 2-1

Constants (cont.)
ASSEMBLE, 8-8
based integer, 7-1
composite integer, 7-2
logical, 3-3
special integer, 7-1

Control, Transfer of, 3-1
GOTO statement provides, 3-2
CASE statement provides, 4-15
SWITCH statement provides, 4-14

Conventions, ASSEMBLE, 8-2
Conversion programs, 6-19, 8-12

See also Type transfer functions
Count, 5-9, 5-12
Count variable, 4-6
CPRB, 3-5, 4-2
CST. See Code Segment Table

D

D
indicates DOUBLE constant use, 7-3

DABZ, 3-9
reverse sense of, 4-12

Data
access concepts for, 7-1
compression of, 6-11
declaration of, 6-4
registers, 1-3
segments of, 1-3
separated from code; 6-17
types of, 1-7
verification of, 3-12

Data base register. See DB
Data groups, 6-5
Data labels, 4-4, 5-2-5-4
Data limit register. See DL
DB area

as location of global variables, 2-3
direct arrays in, 7 -8
own variables in, 7 -6
secondary, 4-4

DB register, 1-3
addressing range reiative to, 1-5
reference, 7-5

DCMP, 3-5
Decimal, 2-1

constants, 7-1
conversion, 6-19

Declaration, 2-3
example of, 2-12
extensions to, 7-5
global, 2-13
of labels, 3-1

Declaration (cont.)

not allowed in compound statements, 2-14
not required for labels, 3-2

Decrement, 3-9
Default

array, 7-8
command conditions, C-2

DEFINE
declaration, 4-2
invocation, 4-2

Defined bounds, 7 -7
Delimiters, 2-2, 5-20
Delta Q, 6-10
Deposit, 2-11
Destination

move bytes, 5-12, 5-13
move bytes while, 5-13, 5-14
move words, 5-19-5-12

Differing data types
in equivalence, 7-11

Direct addressing, 7 -7
with@, 5-6
with bounded arrays, 7-8

Division (/), 2-5, 3-3
DL, 1-3

area between DB and, 1-5
diagram of, 1-4

DO. See FOR statement; DO UNTIL statement;
WHILE DO statement

Dollar signs($), Compiler commands start with, C-1
DOUBLE, 3-7, 7-3

arithmetic operations, 2-5, 7 -4
conversion to, 2-6
declaration, 7 -3
range of, 7-3
shifts, 2-9

DO UNTIL statement, 4-11
DXBZ, 3-9, 4-2

reverse sense of, 4-12
Dynamic

address in pinter, 5-8
local arrays, 7 -10
temporary storage, 6-1

E

Elements
of byte array, 5-3
pointer indexing for, 5-7

ELSE, 3-8, 3-9, 3-11
END

in procedure body, 6-5
terminates compound statement with semicolon, 2-14
terminates program with period, 2-13

Equals sign(=)
in DEFINE, 4-2
in direct arrays, 7-8
in EQUATE, 4-1
in equivalencing, 4-2, 7-5
in indexed identifier reference, 7-6
in P-relative array declaration, 7-9
in variable reference, 7 -6

EQUATE, 4-1, 4-9
Equivalencing, 7-5-7-11
Example Programs

2-1 Sum average, 2-12
2-2 Command interpreter, 2-15
3-1 Data verification, 3-12
4-1 Integer sort, 4-9
4-2 Table search, 4-13
4-3 Integer calculator, 4-16
5-1 Symbol type sorter, 5-15
5-2 Mark delineator character, 5-20
6-1 Data compression, 6-11
6-2 Factorial computation, 6-15
6-3 Binary to decimal conversion, 6-19
6-4 Matrix management, 6-26
8-1 Decimal to hex conversion, 8-14

Exclusive OR. See XOR
Execution order, 2-13
EXIT, 1-7, 1-9, 6-1, 6-2, 6-8, 6-10

and recursion, 6· 17
from procedure, 6-7
generated by RETURN, 6-11

Exponentiation ("), 2-5
LONG to integer, 7-5
type mixing allowed in, 2-5, 2-6

Expression. See also Arithmetic expressions;
Logical expressions; Expression IF assignment

Expression IF assignment, 3-11
EXTERNAL. See OPTION EXTERNAL
Extract, 2-7

F

Factorial, 6-15
FALSE, 3-2-3-11, 5-20
FCMP, 3-5
File access, 6-20
FIXR, 2-6, 3-7
FIXT, 2-6, 3-7
Floating-point arithmetic, 1-7, 7-2.

See REAL; LONG
Formal parameters, Subroutine, 6-23
Format 1 (of IF), 3-8
Format 2 (of IF), 3.9
FOR statement, 4-6-4-9, 6-26

alternate forms of, 4-8

FOR statement (cont.)

basic form of, 4-7
cautions in use of, 4-8
entering, 4-8
example use of, 4-9
exiting, 4-9
machine-dependence of, 4-8
STEP, 4-8

FORWARD. See OPTION FORWARD
Function, 2-6

example use of, 6-15
procedures, 6-13

H

Hardware operations, 3-3
Hierarchy, 3-3, 3-6

I

IABZ, 3-9
reversed in WHILE-DO, 4-12

Identifiers, 2-2, 4-3
IF expressions, 3-11
IF statements, 3-8-3-11

branch words, 3-9
Format 1, 3-8
Format 2, 3-9
hardware condition, 3-9
in example, 3-12
nesting, 3-10

Inclusive OR. See LOR; OR
Increment, 3-9
Index register. See X
Indexing

byte, 1-7
double, 1-7
elements, 1-7
GO TO, 4-14
identifier reference, 7-6
POINTER, 5-7

Indirection, 7-7
in bounded arrays, 7-8
in OWN arrays, 7-10
not automatic, in ASSEMBLE, 8-5, 8-8
in pointers, 5-4, 5-5

Initialization, 2-3, 3-3
of arrays, 4-5
of byte arrays, 5-2
dynamic, with MOVE, 5-12
not with indexed identifier reference, 7-6
of OWN arrays, 7-6
of POINTERS, 5-4

Initialization (cont.)
of P-relative arrays, 7-9
strings in, 4-5

Instruction, 7-15. See also Machine instruction
INTEGER, 1-7

constants, 2-1
corrected to byte, 5-4
declaration, 2-3
DOUBLE, 7-3
number line, 3-4
range, 3-5
special constants, 7-1
type transfer functions, 2-6
variables, 2-3
versus logical, 3-4

Input/output, 6-20
INTRINSIC, 2-13, 6-2

declaration, 6-20, 6-21
IXBZ, 3-9, 4-2

reversed in WHILE DO, 4-12

L

L
indicate long constant with, 7-4

Labels
in ASSEMBLE, 8-2
LABEL declaration, 3-1, 3-2
in SWITCH, 4-14

LAND, 3-3, 3-10
LCMP, 3-5
Left-right versus right-left move, 5-10, 5-17
Limit checking

in FOR statement, 4-7
Limited resourse

directly addressable locations are 7 -8
LLSH, 4-2
LOAD, 1-6, 1-8
Local arrays

dynamic, 7-10
OWN, 7-6
P-relative, 7-9

Local storage
allocation, 1-7
deletion of, 1-9
dynamic, 1-9

Local subroutines, 6-23
Local variable, 6-2, 6-9
Logical, 1-7, 2-1

compare, 3-4
constants, 3-3
convert from byte to, 5-4
expressions, 3-2-3-7, 3-9
no exponentiation, 2-5

Logical (cont.)

number line, 3-4
operators, 3-3-3-5
shifts, 2-9
type transfer, 3-7
value range, 3-4
variables, 3-3

Long, 1-7, 2-1, 7-3, 7-4
Looping, 4-1, 4-6, 4-11, 4-12
LOR, 3-3, 3-10

M

Machine code, 8-1
Machine-dependence, 5-1

and FOR statement, 4-6, 4-8
and procedure, 6-7

Machine instructions
access of, through ASSEMBLE, 8-3-8-14
alphabetic listing of, 8-8-8-14
function of, 8-8-8-14

Main body, 2-13
Matrices, 6-26. See also Arrays
Memory reference instructions, 1-5
Memory, Virtual. See Virtual memory
Mnemonics, 8-1

alphabetic list of, 8-8- 8-14
formats of, 8-2

MOD (modulo), 2-5, 3-3
MOVE (bytes) statement, 5-12
Move (bytes) WHILE statement, 5-13, 5-15, 6-11
MOVE instruction, 5-9
MOVE statements, 5-9, 5-20
Move words, 5-9

variations on, 5-11
Moving constants, 5-11
MPE/3000, 1-2

commands of, C-1
intrinsics and, 6-20
sets register, 1-3, 1-4

MPY, 1-8
MTBA, 4-6, 4-8
MTBX, 4-2, 4-6, 4-8
Multiple assignment, 2=11
Multiplication (*), 3-3
MVB instruction, 5-9
MVBW instruction, 5-9

N

Negative step value, in FOR, 4-7
Nesting, 2-14

of composite integers, 7-2

Nesting (cont.)
of DEFINES, 4-2
of FOR statements, 4-8
of IF statements, 3-8, 3-10, 3-11
recursion and, 6-16
of repetition factors, 4-5

New space, not for equivalenced arrays, 7-11
NOCARRY, 3-9
NOP Fills in stackops, 8-4
NOT, 3-3, 3-4
Null statement, CASE can contain, 4-16
Number base, 7-1
NUMERIC, 5-13

as reserved word, 5-20

0

Octal, 2-1, 7-1
One's complement. See NOT
Operating system. See MPE/3000
Operators

arithmetic, 2-4
unary, 2-5

Optimization, using ASSEMBLE for, 8-1
OPTION EXTERNAL, 6-4, 6-20
OPTION FORWARD, 6-4, 6-18
Option part, 6-4, 6-5
OPTION VARIABLE, 6-4, 6-21
OR, 3-10. See also LOR
Organization

program, 2-13
OVERFLOW, 3-9
OWN, 7-6

arrays, 7-10
pointers, 7-14
simple variables, 7-15

p

P (register), 1-2, 1-3, 6-9
addressing range, relative to, 1-5
diagram of, 1-3
and EXIT, 6-10
local arrays, relative to, 7 -9
and procedures, 6-7
and subroutines, 6-21

Parameters, 6-2, 6-9
actual, 6-3
deleting, with RETURN, 6-11
and EXIT, 6-10
formal, 6-3
S-relative, 6-21
stacked, 7-16

Parameters (cont.)
and subroutine, 6-21

Parentheses (), 2-5
PB, 1-2, 7-9

diagram of, 1-3
PCAL, 1-2-1-4, 1-7, 1-9, 4-9, 6-1, 6-7, 6-9, 6-17
Percent(%), use in based integer, 7-1
Period(.)

in deposit, 2-11
in extract, 2-7
terminate program, 2-13

Permutations, 6-15
PL, 1-3

diagram of, 1-3
PLDA, 4-2
Pointers, 5-4

accessing through, 5-5
and base register reference, 7-14
changing, 5-6
declaration of, 5-4
example of, 5-15
indexing of, 5-7
OWN, 7-14
space allocated to, 5-4
and type compatibility, 5-4
and variable reference, 7-14

Pop, 1-6
Position of labels, 3-2
Precedence, 2-4, 3-3, 3-6, 4-1
Primaries, 2-7, 3-6
Privileged mode, 1-9, 6-2
Procedure, 2-15, 6-1-6-21

attributes of, 6-2
calling, 6-6
d~claration of, 6-4
dummy declaration of, 6-18
and dynamic storage, 6-1
example of, 6-2, 6-11
function, 6-13, 7-16
functioning of, 6-7
and local variables, 6-1, 6-3
main body, 6-2, 6-5
optional portions of, 6-6
parameters of, 6-2-604
recursive, 6-16-6-20
restores environment, 6-1
re-entrant, 6-2
saves environment, 6-1
and segmentation, 6-1
and sharing, 6-2
typed, 6-2, 6-4. See also PCAL; EXIT

Procedure call instruction. See PCAL
PROCEDURE CALL statement, 6-6
Procedure exit instruction. See EXIT
Procedure group, 2-13

Procedure head, 6-4
Process, 1-1

bounds of, 1-5
contents of, 1-2
difference between program and, 1-1
environment of, 1-9
registers of, 1-4

Program organization, 2-13
Program base register. See PB
Program counter. See P
Program limit register. See PL
Protection, 1-9
PSTA, 4-2
Push, 1-6

Q

Q, 1-3, 6-1, 6-9
addressing range, relative to, 1-5
changes with procedure call/exit, 1-4, 1-7
diagram of, 1-4
and direct arrays, 7-8
and EXIT, 6-10
and register reference, 7-5
and stack marker, 6-7
unchanged by SCAL, 6-21

Q, Delta, 6-7
Q minus area, 6-2, 6-4
Q plus area, 6-5

R

Range
checking, 3-3, 3-5
DOUBLE, 7-3
of instructions, 8-9
of INTEGER, 2-1
of LOGICAL, 3-4
of LONG, 7-4
of REAL, 2-1

Read-only arrays, 7-9
REAL

constants, 2-1
declarations, 2-3
type transfer function, 2-6
variables, 2-3

Recursion, 6-16-6-20
example of, 6-19
indirect, 6-16, 6-18

Re-entrant code, 1-9
and recursion, 6-17, 6-18
and sharing, 1-9

Re-entrant codes (cont.)
reduces swapping, 1-9

Reference (parameters), 6-4
Registers, 1-2. See also P; PB; PL; DB; DL; Z; Q; S;

STATUS; X
use of, 1-5

Relations(=,<,>,<=,>=,<>), 3-3-3-5
Relative P saved on stack, 6-7
Relocatability, 1-9

requires relative addressing, 1-9
of segments, 1-9

Relops (relational operators),
comparing bytes with, 5-19

Repetition, 4-6. See also Looping
Repetition factors, 4-5
Reserved words, 2-2, 2-3

list of, B-1
and X, 4-2

Results
for logical expression, 3-6

Return address
for procedure, 6-7
for subroutine, 6-21, 6-24

RETURN statement, 6-7, 6-8, 6-11
Ripple sort, 4-9
Rules for statement, 4-8

s

S register, 1-3
addressing range of, 1-5
and EXIT, 6-10

and FOR, 4-8
changes to, 1-6
diagram of, 1-4
reference to, 7-5
relative addressing of, 6-24, 7-15
and subroutine parameters, 6-21

SCAL, 6-1, 6-21, 6-24
SCAN, 4-2, 5-16, 5-20
SCAN UNTIL statement, 5-17, 6-11
SCAN WHILE statement, 5-18
scu, 5-16
sew, 5-i6
Sdec. See Stack decrement operand
Secondary DB, 4-4
Segmentation, 6-1
Segments. See also Code; Data

Absence of, 1-9
Bounds checking of, 1-9
Relocatability of, 1-9

Segment transfer table (S'IT), 6-7
Semicolon (:)

terminates COMMENT, 2-2

Semicolon(:) (cont.)
terminates declaration, 2-3
terminates statements, 2-10, 2-13

Separation, Code and data, 6-17
Shifts, 2-9
Single word shifts, 2-9
Software, LONG is implemented by, 7 -3
Sort, 4-9, 5-15
Source

in move bytes, 5-12, 5-13
in move bytes while, 5-13, 5-14
in move words, 5-9-5-12

Space allocation
for base register reference, 7 -6
for byte array, 5-2
for indexed identifier reference, 7 -6
for pointer, 5-4, 5-5
for return value, 6-14

SPECIAL (reserved word), 5-20
Specification part, 6-4, 6-23
SPL/3000

building blocks of, 2-1
commands of, C-1
design of, iii
features of, xiii
Workbook, xiv

Square brackets, 7 -2
Stack, 1-3. See also Data segment; Top of stack

explicit access of, 5-1, 7-15
and expressions, 1-7
and FOR, 4-8
functions of, 1-5
hardware registers, 1-3
and MOVE, 5-9, 5-10
and subroutine, 6-25

Stack decrement operand, 5-9-5-20
Stack limit register. See Z
Stack marker, 6-7, 6-9. See also Q register
Stack ops, 1-6

ASSEMBLE format of, 8-4
compactness of, 1-7

Stack pointer register. See S
Statements, 2-13. See also ASSEMBLE statement;

ASSIGNMENT statement; CASE statement;
Compound statement; DO UNTIL statement;
FOR statement; MOVE {bytes) statement;
MOVE (bytes) WHILE statement; MOVE (words)
statement; PROCEDURE CALL statement;
RETURN statement; SCAN UNTIL statement;
SCAN WHILE statement; SWITCH statement;
WHILE DO statement

STATUS register, 1-4, 6-7, 6-10
STEP. See FOR statement
STOR, 1-6, 1-8
Storage

for arrays, 4-4

Storage (cont.)
control of location, 7 -5
re-using, 7 -5

String constants, 2-1, 4-5. See BYTE
STT. See Segment Transfer Table
Sub, 1-8
Subroutines, 2-15, 6-1, 6-21-6-27

declaration, 6-21, 6-22
declaration in procedures, 6-5, 6-21
entry /exit speed, 6-21
example, 6-26
functioning, 6-24
global, 6-23
local, 6-23
no local variables in, 6-21
must be in same segment as caller, 6-21
and stack parameters, 7 -16

Subscripts, 4-3
array, 4-6
byte array, 5-2, 5-3
pointer, 5-7

Subtraction(-), 2-5, 3-3
SWITCH declaration, 4-14
Symbol type sorter, 5-15
Systems Programming Language. See SPL/3000
SXIT, 6-1, 6-21, 6-24

T

Table search, 4-13
TBA, 4-6, 4-8
TBX, 4-2, 4-6, 4-8
Temporary storage, 6-1, 6-17
Testword

SCAN UNTIL, 5-17
SCAN WHILE, 5-18

THEN, 3-8, 3-9, 3-11
TNSL, 4-2
Top of stack (S-0, TOS), 1-5, 6-13. See Stack; TOS

as implicit operand, 1-5
as subroutine return address, 6-21

Top of stack register. See S
TOS (top of stack) 7-15, 3-9. See also Top of stack; S

dangers with, 7-16
and FOR, 4-8
and MOVE, 5-11.

Triple word shifts, 2-9
TRUE, 3-2-3-11, 5-20
Typed

array, 4-3
pointer, 5-4
procedure, 6-2, 6-6, 6-13
subroutine, 6-23

Type compatibility, 2-9
in assignment, 2-10, 3-7
and pointers, 5-7

Type mixing, Exceptions to the rule of, 2-6
Type transfer functions, 5-4, 7-4, 7-5

complete table of, D-18

u

Unary NOT, 3-3, 3-4
Unary plus/minus, 2-5
Uncallable bit, 6-2
Undefined bounds, 7-11
Unsigned integer (usi), 7-5
UNTIL. See SCAN UNTIL statement;

DO UNTIL statement; FOR statement
U pshifting, 5-13

v

Value (parameters), 6-4, 6-23
VARIABLE. See OPTION VARIABLE
Variable reference, 7-6, 7-14
Variable, Simple, 7-14

base register reference, 7-14
declaration of, 2-3
equivalenced to X, 4-2
form of, 2-2
local array bounds can be, 6-5, 7-10
loop, 4-6, 4-7
variable reference with, 7-14

Virtual memory, 1-9, 6-1

w

WHILE. See SCAN WHILE statement;
WHILE DO statement

WHILE DO statement, 4-12, 4-13, 6-15

x

X (index register), 1-4, 1-7, 6-9
and array indexing, 4-6, 5-3
definition, 4-2
and DXBZ, 3-9
equivalenced to variable, 7-5
and EXIT, 6-10
and FOR statement, 4-7, 4-9
instructions using, 4-2
and IXBZ, 3-9
and pointer indexing, 5-7

X (index register) (cont.)

and range check, 3-5
is not a reserved word, 4-2
saved on stack, 6-7
unchanged by SCAL, 6-21

XOR, 3-3

z

Z, 1-3
diagram of, 1-4

Zero element, 4-4, 4-6, 5-2

Index of Special Characters

See Extract; Deposit
See Division

< < > > See COMMENT
See Semicolon
See Comma

*

+
[]
()

\
&

=,<,>,
<=,>=,
<>

*
@

%

See Replacement operation
See Exponetiate
See Multiplication
See Subtraction; Unary plus/minus
See Addition; Unary plus/minus
See Square brackets
See Parentheses
See Absolute value
See Shifts
See Colon

See Condition codes; Relations
See Equals
See Asterisk
See Commercial at
See Percent

READER COMMENT SHEET
HP 3000 Computer Systems

Systems Programming Language
Textbook

30000-90025 Jan 1977

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.

Please use additional pages if necessary.

Is this manual technically accurate?

Are the concepts and wording easy to understand?

ls the format of this manual convenient in size,
arrangement, and readability?

Comments:

FROM:

Name

Company

Address

Yes D No 0 (If no, explain under Comments, below.)

Yes D No D (If no, explain under Comments, below.)

Yes 0 No D (If no, explain or suggest improvements
under Comments, below.)

FOLD

FOLD

BUSINESS REPLY MAIL
No Postage Necessary if Mailed in the United States. Postage will be paid by

Publications Manager
Hewlett-Packard Company
General Systems Division
5303 Stevens Creek Boulevard
Santa Clara, California 95050

FOLD

Fl RST CLASS
PERMIT NO. 1020
SANTA CLARA
CALIFORNIA

FOLD

PartNo.30000-90025
Printed in U.S.A. 6/76
Update #3 Incorporated 9/77

/

rj,fl'I HEWLETT
~~PACKARD

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	A-01
	A-02
	A-03
	B-01
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	replyA
	replyB
	xBack

