
HP 3000 Computer Systems

Systems Programming Language
reference manual

F'//flW HEWLETT
~~PACKARD

Part No. 30000-90024
Product No. 32100A

HP 3000 Computer System

Systems Programming
Language

r//09 HEWLETT
~e.. PACKARD

Reference Manual

19420 Homestead Road, Cupertino, California 95014

Printed in U.S.A. 2/84

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER­
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor­
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright© i976-i984 by HEWLETT-PACKARD COMPP,NY

ii

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date of the current edition and of any pages changed in updates to that edition.
Within the manual, any page changed since the last edition is indicated by printing the date the changes were made
on the bottom of the page. Changes are marked with a vertical bar in the margin. If an update is incorporated when
an edition is reprinted, these bars are removed but the dates remain. No information is incorporated into a reprinting
unless it appears as a prior update.

First Edition Jun 1976
Second Edition Sep 1976
Third Edition Feb 1984

iii

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which are issued between editions, contain
additional and replacement pages to be merged into the manual by the customer. The date on the title page and back
cover of the manual changes only when a new edition is published. When an edition ls reprinted, all the prior updates
to the edition are incorporated. No information is incorporated into a reprinting unless it appears as a prior update.
The edition does not change.

The software product part number printed alongside the date indicates the version and update level of the software
product at the time the manual edition or update was issued. Many product updates and fixes do not require manual
changes, and conversely, manual corrections may be done without accompanying product changes. Therefore, do not
expect a one to one correspondence between product updates and manual updates.

First Edition Jun 1976
Second Edition . Sep 1976
Update# 1 Incorporated Dec 1976
Update# 2 Feb 1977
Update # 2 Incorporated . Dec 1977
Third Edition Feb 1984 o • • • • • • • • • 32100A.08.04

iv

PREFACE I

This publication is the reference manual for the HP 3000 Computer System Systems Programming
Language (SPL).

This publication contains the following sections:

Section I

Section II

Section III

Section IV

Section V

is an introduction to SPL source format and the HP 3000 Computer System.

describes SPL data storage formats, SPL constants, identifiers, arrays, and
pointers.

describes the global declarations.

describes arithmetic and logical expressions, assignment, MOVE, and SCAN
statements.

describes the various program control statements including GO TO,DO, WHILE,
FOR, IF, CASE, procedure call, subroutine call, and RETURN statements.

Section VI - describes the machine level constructs including the ASSEMBLE statement (to
use any machine instruction), the DELETE statement, the PUSH statement
(for saving registers), and the SET statement (for setting registers).

Section VII - describes the subprogram units (procedures, intrinsics, and subroutines) and the
local declarations.

Section VIII - discusses some of the more common MPE intrinsics for performing input/
output.

Section IX

Section X

discusses the various compiler commands.

discusses the MPE commands used to compile, prepare, and execute an SPL
source program together with some introductory material on using the Seg­
menter.

Appendix A - lists the ASCII character set.

Appendix B - lists the reserved words in SPL.

Appendix C - describes how to build your own intrinsic file.

Appendix D - lists the MPE Operating System intrinsic procedures.

Appendix E - lists the diagnostic messages which can be generated by the SPL compiler.

v

Appendix F - explains how to call SPL from other languages.

Other publications which should be available for reference when using this manual are:

Systems Programming Language Textbook (30000-90025)

MPE Commands Reference Manual (30000-90009)

MPE Intrinsics Reference Manual (30000-9001 O)

MPE Segmenter Reference Manual (30000-90011)

Machine Instruction Set Reference Manual (30000-90022)

System Reference Manual (30000-90020)

Compiler Library Reference Manual (30000-90028)

EDIT/3000 Reference Manual (03000-90012)

vi

NOTATION

[]

italics

underlining

superscript C

return

linefeed

CONVENTIONS USED IN THIS MANUAL I

DESCRIPTION

An element inside brackets is optional. Several elements stacked inside a pair of brackets means
the user may select any one or none of these elements.

Example: ~ J user may select A or B or neither

When several elements are stacked within braces the user must select one of these elements.

Example: { i} user must select A or B or C.

Lowercase italics denote a parameter which must be replaced by a user-supplied variable.

Example: CALL name
name one to 15 alphanumeric characters.

Dialogue: Where it is necessary to distinguish user input from computer output, the input is
underlined.

Example: NEW NAME? ALPHAl

Control characters are indicated by a superscript C

Example: ye

return in italics indicates a carriage return

linefeed in italics indicates a linefeed

A horizontal ellipsis indicates that a previous bracketed element may be repeated, or that elements
have been omitted.

vii

Section I Page
SPL STRUCTURE
Introduction to SPL . l-1
Conventions 1-1
Source Format 1-1
Delimiters . 1-2
Comments 1-2
Program Structure 1-3

Program . 1-4
Subprogram . 1-5

Introduction to Hardware Concepts 1-6
Code Segments 1-6
Data Segments 1-9

Procedures . 1-11
Subroutines 1-11
Intrinsics 1-12
Compound Statements . 1-13
Entry Points . 1-13

Section II Page
BASIC ELEMENTS
Data Storage Formats 2-1

Integer Format 2-1
Double Integer Format 2-1
Real Format . 2-2
Long Format . 2-3
Byte Format 2-4
Logical Format . 2-4

Constant Types 2-5
Integer Constants 2-5
Double Integer Constants 2-5
Based Constants 2-6
Composite Constants 2-7
Equated Integers . 2-8
Real Constants . 2-8
Long Constants 2-10
Logical Constants 2-11
String Constants 2-11

Identifiers 2-12
Arrays 2-12
Pointers 2-13
Labels . 2-15
Switches . 2-16

Section III Page
GLOBAL DATA DECLARATIONS
Types of Declaractions 3-1
Simple Variable Declarations 3-2
Array Declaration 3-4
Pointer Declaration 3-11

ix

CONTENTS

Label Declaration . 3-15
Switch Declaration 3-15
Entry Declaration . 3-16
Define Declaration and Reference 3-17
Equate Declaration and Reference 3-18
DAT ASEG Declaration . 3-19

Section IV Page
EXPRESSIONS, ASSIGNMENT, AND SCAN
STATEMENTS
Expression Types 4-1
Variables 4-2

TOS 4-3
Address @ and Pointers 4-3
Absolute Addresses 4-4

Function Designator . 4-4
Bit Operations 4-6

Bit Extraction 4-6
Bit Concatenation . 4-7
Bit Shifts . 4-8

Arithmetic Expressions 4-11
Sequence of Operations 4-12
Type Mixing . 4-13

Logical Expressions 4-13
Sequence of Operations 4-16
Type Mixing 4-16
Comparing Byte Strings 4-17

Condition Clauses . 4-19
IF Expressions 4-21
Assignment Statement . 4-22
MOVE Statement 4-25
MOVEX Statement 4-28
SCAN Statement . 4-30

Section V Page
PROGRAM CONTROL STATEMENTS
Program Control 5-1
GO TO Statement 5-2
DO Statement . 5-4
WHILE Statement 5-5
FOR Statement 5-6
IF Statement 5-8
CASE Statement 5-10
Procedure Call Statement 5-11

Stacking Parameters 5-12
Missing Parameters in Procedure Calls 5-13
Passing Labels as Parameters 5-13
Passing Procedures as Parameters 5-14

Subroutine Call Statement 5-18
RETURN Statement . 5-20

I CONTENTS (continued)
i

Section VI Page
MACHINE LEVEL CONSTRUCTS
ASSEMBLE Statement 6-1
Delete Statement 6-14
PUSH Statement 6-15
SET Statement . 6-16
WITH Statement . 6-17

Section VII
PROCEDURES, INTRINSICS, AND
SUBROUTINES

Page

Subprogram Units 7-1
Procedure Declaration 7-2

Data Type . 7 -4
Parameters . 7 -4
Options. 7 -6

OPTION UNCALLABLE 7 -6
OPTION PRIVILEGED 7-6
OPTION EXTERNAL 7-6
OPTION CHECK . 7-6
OPTION VARIABLE 7-6
OPTION FORWARD 7-7
OPTION INTERRUPT 7-7
OPTION INTERNAL 7-7
OPTION SPLIT 7-7

Local Declarations . 7 -7
OWN Variables 7-7
Local Simple Variable Declarations 7-7

Standard Local Variables 7 -8
OWN Simple Variables 7-10
EXTERNAL Simple Variables 7-10

Local Array Declarations 7-11
Standard Local Arrays 7-11
OWN Arrays 7-15
EXTERNAL Arrays 7-16

Local Pointer Declarations 7-17
Standard Local Pointers 7-17
OWN Pointers . 7-19
EXTERNAL Pointers 7-20

Label Declarations 7-20
Switch Declarations 7-21
Entry Declaration . 7-22
Define Declaration and Reference 7 -22
Equate Declaration and Reference 7-23

Procedure Body . 7 -24
Intrinsic Declarations . 7-25
Subroutine Declaration 7-26

Section VIII Page
INPUT/OUTPUT
Introduction to Input/Output 8-1

Opening a New Disc File 8-2
Reading a File in Sequential Order 8-4
Writing Records into a File in

Sequential Order 8-7

x

Updating a File 8-9
Numeric Data Input/Output 8-11
File Equations 8-11

Section IX Page
COMPILER COMMANDS
Compiler Format 9-1
Use and Format of Compiler Commands 9-2
$CONTROL Command 9-6
$IF Command 9-12
$SET Command . 9-13
$TITLE Command 9-14
$PAGE Command . 9-15
$EDIT Command 9-16

Merging . 9-16
Checking Sequence Fields 9-17
Editing 9-18

$SPLIT $NOSPLIT Command 9-20
$COPYRIGHT Command 9-20
Cross Reference Listing . 9-20
$INCLUDE 9-21

Section X Page
MPE COMMANDS
MPE Commands . 10-1
Specifying Files for Programs 10-2
Specifying Files as Command Parameters 10-3

System-Defined Files 10-3
User Pre-Defined Files 10-3
New Files 10-4
Old Files 10-4
Input/Output Sets . 10-4
Specifying Files by Default 10-5

Compiling, Preparing, and
Executing SPL Source Programs 10-5

: SPL Command . 10-6
:RUN SPL.PUB.SYS Command 10-8
Entering Program Source Interactively 10-9
: SPLPREP Command 10-9
: SPLGO Command . 10-10
:PREP Command 10-11
:PREPRUN Command 10-12
: RUN Command . 10-14

Using External Procedure Libraries 10-14
Relocatable Libraries 10-14

Creating and Maintaining
Relocatable Libraries 10-15

Segmented Libraries ~ 10·-17
Creating and Maintaining

Segmented Libraries 10-17

Appendix A Page
ASCII CHARACTER SET A-1

Appendix B Page
RESERVED WORDS B-1

Appendix C Page
BUILDING AN INTRINSIC FILE C-1

Appendix D Page
MPE INTRINSICS D-1

Title Page

Code Segment Registers 1-7
Sample Segmented Program 1-8
Data Stack Registers 1-10
Accessing Array Elements 3-5
Sample Global Array Declarations 3-12
Pointers and Addresses 4-4
Bit Extraction 4-7
Bit Concatenation . 4-8
Bit Shift Operations •..................... 4-10
Passing a Label as a Parameter 5-15
Instruction Formats 6-2

Title Page

Global Array Declaration Summary 3-10
Comparison of DO, WHILE, and FOR Statements ... 5-7
Machine Instruction Mnemonics 6-9
Procedures vs Subroutines 7-28
Common Input/Output Intrinsics 8-1
Compiler Command Summary 9-5
MPE Commands 10-1
System Defined Files 10-3

xi

CONTENTS (continued}

Appendix E Page
COMPILER ERROR MESSAGES E-1

Appendix F Page
CALLING SPL FROM OTHER LANGUAGES F-1

ILLUSTRATIONS

Title Page

Delete Statement 6-14
Opening a New Disc File . 8-3
FREAD Intrinsic Example 8-5
FWRITE Intrinsic Example 8-8
FUPDATE Intrinsic Example 8-10
Symbol Map 9-8
$CONTROL CODE Output 9-9
$CONTROL ADR Output 9-10
$CONTROL INNERLIST Output 9-11
Cross Reference Listing 9-21
BUILDINT Output C-2

TABLES

Title Page

New Files . 10-4
Old Files . 10-4
SPL Compiler File Designators 10-5
PARM Values 10-8
BUILDINT Error Messages C-3
Summary of MPE Intrinsics D-1
SPL Compiler Error Messages E-1

11u11rii•1
SPL STRUCTURE :I 1 I

1-1. INTRODUCTION TO SPL

SPL (Systems Programming Language for the HP 3000 Computer System) is a high-level, machine
dependent programming language that is particularly well suited for the development of compilers,
operating systems, subsystems, monitors, supervisors, etc.

SPL has many features normally found only in high-level languages such as PL/I or ALGOL: free-form
structure, arithmetic and logical expressions, high-level statements (IF, FOR, GOTO, CASE, DO­
UNTIL, WHILE-DO, MOVE, SCAN, procedure call, assignment, and compound statements), recur­
sive procedures and subroutines, and variables and arrays of six data types (byte, integer, logical,
double integer, real, and long real). In addition, IF, FOR, CASE, DO-UNTIL, and WHILE-DO
statements can be indefinitely nested within each other and themselves. These features significantly
reduce the time required to write programs and make them much easier to read and update.

In addition, SPL provides machine-level constructs that insure the programmer has complete control
of the machine when he needs it. These constructs include direct register references; branches based on
actual hardware conditions; bit extracts, deposits, and shifts; delete statements; register push/set
statements; and an ASSEMBLE statement to generate any sequence of machine instructions.

1-2. CONVENTIONS

In the HP 3000, the bits of a word are numbered from left to right starting with bit 0. Thus, the sign, or
most significant, bit of a single word is bit 0 and the least significant bit is bit 15.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1-3. SOURCE PROGRAM FORMAT

An SPL source program can contain both program text and compiler commands in 80 column records.
Program text is entered in free format in columns 1-72. A statement is terminated with a semicolon(;)
and may continue to successive lines without an explicit continuation indicator. Statement labels are
identifiers followed by a colon (:) preceding the statement. For example,

ST ART: SCAN BUF WHILE TEST;

Any compilation is bracketed by BEGIN and END statements. A period is required after the final
END. For example,

BEGIN
INTEGER I;
I:= 2*373+ 275;

END.

1-1

Compiler commands are denoted by a$ in column 1 and may be interspersed with program text lines.
However, unlike program text lines, compiler commands which are to be continued must contain an
ampersand(&) as the last non-blank character of the line. If using EDIT/3000 to enter text, you must
explicitly enter a space following the ampersand and before pressing return. In addition, the continua­
tion lines must contain a $ in column 1. For example,

$CONTROL LIST,SOURCE,WARN,MAP,&
$CODE,LINES= 36

A compiler command line must never be separated from its continuation line by a program text line.
Refer to section IX for a discussion of all the SPL compiler commands.

1-4. DELIMITERS

Blanks are always recognized as delimiters in SPL, except within character strings (see paragraph
2-17 for the format of string constants). Therefore, blanks cannot be embedded in the following items:

Reserved words (see Appendix B).
Identifiers

<<
>>

assignment
start of a comment
end of a comment

Special characters can also act as delimiters:

Punctuation : ; , . "
Relational Operators = < >
Par en theses ()
Operators + - * I!\
Brackets []

1-5. COMMENTS

A comment is used to document a program but has no effect upon the functioning of the program
itself;that is, a comment does not generate any code.

1-2

where

comment

is any sequence of ASCII characters except a semicolon in Format 1 and > > in Format 2. The ASCII
character set is listed in Appendix A.

Format 1 is equivalent to a null statement and can be used anywhere a statement or declaration is
expected. Format 2 can be used anywhere in a program except in an identifier.

The characters within a comment are ignored by the compiler; they are not upshifted (changed_ to
uppercase) if lowercase.

When the special character'!' is encountered outside a comment, define, or string, the rest of the
source line following the exclamation point will be regarded as a comment.

1-6. PROGRAM STRUCTURE

SPL is a block structured language which takes advantage of the virtual memory scheme of the HP
3000 to provide program segmentation as a user option. Thus, by using procedures and segmentation,
the programmer can organize his program such that the entire program does not have to reside in
memory at the same time. The system automatically gets procedure segments from auxiliary memory
and loads them into main memory when necessary.

Additionally, SPL uses the stack architecture of the HP 3000 to handle both global and local variables.
Global variables may be referenced anywhere in the program except in procedures where a local
V8:riable has the same identifier. Local variables are allocated memory locations upon entering a
procedure and can only be referenced within the procedure in which they are declared. The memory
locations assigned to local variables are released when the procedure is exited. When one procedure
calls another procedure, the local variables of the calling procedure are not available to the called
procedure unless they are passed as parameters; however, their memory locations are saved so that
upon returning to the original procedure, the local variables contain the same values as before the
procedure call.

1-3

Similarly, both global and local subroutines are allowed in SPL. However, unlike global variables,
global subroutines can only be called within the main program and not within a procedure. Local
subroutines may be called only within the procedure in which they are declared.

The SPL compiler accepts either complete programs or subprograms as source input. A program
consists of both -declarations and a main body of executable statements. The declaration portion may
contain variable, procedure, intrinsic, and/or global subroutine declarations.

A subprogram consists of only the declaration portion and does not contain a main body. In a
subprogram compilation, global declarations (that is, declarations for variables which can be refer­
enced throughout the entire program) do not allocate any space and global subroutines are ignored if
present. A subprogram compilation generates code for procedures and local subroutines only and must
be linked to a separately compiled main program before being executed.

For example,

PROCEDURE B(Al:

INTEGER A:
A:= At-1;

StJBROUTINE C<A);
INTEGER: A;·
·A:=·B(A):

1-7. PROGRAM

< < procedure declaration>>

<<global subro~~ine .declia!ratfon>>

main
program

I

A program is an organized collection of declarations and statements designed to solve a specific
problem. A main program consists of global data declarations and subroutines and a main body ..

'}jie form for ·a,program, is:.

BEGIN
['globql d~ta declarations]
· [pr~cedzi,rf:;sl intrin~fcs]

· ['global-subroutine$]
(main-body]
END.

where

global data declarations
are statements defining the attributes of the global identifiers used in the program (see section III).

procedures/ intrinsics
are statements which define all the procedures and intrinsics used in the program (see section VII). A
procedure definition includes data declarations for parameters and local variables followed by the
executable statements of the procedure.

global-subroutines
are the subroutines used by the main program:

main-body
is a sequence of statements separated by semicolons

statement [; ... ;statement]

statement
is an executable statement.

The program elements must be in the order shown above.

For example,

BEGIN
INTEGER A:= O,B,C:= 1;
PROCEDURE N(X,Y,Z);

INTEGER X,Y,Z;
X:=X*(Y+Z);

FOR B:= 1 UNTIL 20 DO
N(A,B,C);

END.

1-8. SUBPROGRAM

<<global data declaration>>
<<procedure>>
<<local data declaration>>

<<main program>>

A subprogram is a portion of a program which can be compiled by itself but must be linked to a main
program for execution. A $CONTROL SUBPROGRAM compiler command is used before the subprog­
ram text to put the compiler in subprogram mode. See section IX for the compiler commands used to
link a subprogram to a main program for execution.

The form of a subprogram is the same as a program except that a subprogram does not have a main
body.

1-5

where

global data declarations
are statements defining the attributes of the global identifiers used in the program (see section III).

procedures/intrinsics
are statements which define all the procedures and intrinsics used in the program (see section VII). A
procedure definition includes data declarations for the parameters and local variables followed by the
executable statements of the procedure.

global-subroutines
are the subroutines used by the main program. The global-subroutines can be omitted since the
compiler ignores them in subprogram compilations.

For example,

$CONTROL SUBPROGRAM
BEGIN

INTEGER N,M,O; <<does not allocate space>>
EQUATE A:= 101, B:=202;
PROCEDURE C;

BEGIN

END;
PROCEDURE D;

BEGIN

END;
END.

1-9. INTRODUCTION TO HP 3000 HARDWARE CONCEPTS

A process is the unique execution of a program. If the same program is run by several users, it becomes
several processes. If the same user runs the program several times, each execution is a distinct process.
A process consists of a code domain (the machine instructions of the program) and a data.area called a
"stack." The code and data in the HP 3000 are always separated logically. The code may always be
shared, but the data stack cannot. The MPE Operating System schedules and dispatches a process for
execution. See the MPE General Information Manual for a further discussion of processes and the
stack.

1-10. CODE SEGMENTS

All machine instructions within the HP 3000 are organized into variable length segments accessed
through a hardware-known table called the Code Segment Table (CST). Since the hardware detects
references to segments which are :n.ot in main memory, the code domain of a process is not limited to

1-6

the size of main memory. Segments are brought from disc into main memory as needed. A process can
execute only one code segment at a time. The process "escapes" from its current code segment by
executing a Procedure Call (PCAL) instruction. A PCAL can reference procedures in different code
segments from the current one and cause control to_be transferred to a different code segment. A PCAL
instruction is generated by ~ither a function designator (see paragraph 4-6) or a procedure call
statement (see paragraph 5-8).

The current code segment of a process is defined by three hardware address registers:

1. PB -Program Base register. Contains the absolute address of the starting location of the segment
in main memory.

2. PL - Program Limit register. Contains the absolute address of the last location of the code
segment.

3. P- Program counter. Contains the absolute address of the instruction currently being executed.

The relationship of the three current code segment registers is shown in figure 1-1. The central
processor checks all instructions to insure that they stay within the bounds of the current code
segment. All addresses within a current code segment are relative to these registers. The operating
system can relocate the segment anywhere in main memory; only the three registers have to be
changed to define the segment's locations.

Program Base
Register (PB)

Low Memory

Instructions
and constants

Program counter (P) ~------------1

Program Limit
register (PL) High Memory

PB is the addressing base register; its absolute
address is set by the operating system.

P changes as each instruction is executed.

PL is the addressing limit register; its address is
set by the operating system.

Figure 1-1. Code Segment Registers

Code segmentation is controlled by using the SEGMENT parameter on $CONTROL commands (see
section IX). The segment name stays in effect until another segment name is specified. For procedures,
the $CONTROL SEGMENT command must precede the procedure declaration of the first procedure in
the segment. If a new segment is to be specified for the main program, the $CONTROL SEGMENT
command follows the procedure and intrinsic declarations and precedes the global subroutines and
main body. Global subroutines must be in the same segment as the main body. See figure 1-2 for a
sample SPL program which has two procedures in one segment and a global subroutine with the main
body in another.

1-7

00000 0
00000 0
00000 1
00000 1
00000 1
00000 1
00000 1
00000 t
00000 1
00000 1
00000 1
00000 1
00.000 1
00000 1
00000 1
00000 t
00000 1
00000 1
00000 1
00000 1
00000 1
00006 1
00006 '
00006 1
00006 1
00006 1
OOOOb 1
00010 t
00013 1
00013 2
00022 2
00026 2
00027 2
00027 '·

SCONT~OL USLINIT,MAIN:MAINLINE
BEGIN

INTEGER LENGTH,TIMEs
ARRAY_BUFFERC0:35)J
INTRI~SIC PRINT,READJ

$CONTFOL SEG~ENT:PROC'A'SEG
PROCEDURE PROC'A(LEN)1
VALUE LENJ
INTEGER LENJ
PR I N T C BUFFER , •I: EN , 0) '

PPOCEDURE PROC'BCLEN):
VALUE LENS
INTEGER LENJ
PRINT(8UFFEP,•LEN,\320)J

SCONTROL SEGMENT:MAINLINESEG

SUBROlTTINE PEAO'A'LINEJ
LE~GTH:=PEADCBUFFER,•72)s

<<

LOOP:

RE.:AD" A "J,INE;
IF LENGTH <> 0 THEN

BEGIN

>>

IF ((TIMEi:TI~~+1) MOD 2)=0 THF,N PRoc•AcLENGTH)
ELSE PROC'BCLENGTH)J

GO TO LOOP,
END:

END.

MAINLINESF.G
NAME
HAINLINE
PEAD
PROC'A
PROC'B
TEPMINATE'
SEGMENT Lr:NGTH

PROC"A'SEG
NAME
PROC"B
PRINT
PROC'A
SEG~ENT LENGTH

()

1

STT CODE ENTRY
1 0 6
2
3
4
5

40

STT CODE ENTRY
1 0 0
3
2 6 6

20

Figure 1-2. Sampie Segmented Program

1-8

SEG

?
1
1
?

SEG

?

1-11. DATA SEGMENTS

Each process has a completely private storage area for its data. This storage area is called a stack or a
data segment. When the process is executing, its stack must be in main memory. A stack is delimited
by two stack addressing registers:

1. DL - Data Limit register. Contains the absolute address of the first word of main memory
available in the stack.

2. Z -Stack limit register. Contains the absolute address of the last word of main memory available
in the stack.

Between DL and Z, there are separate and distinct areas set off by three other stack addressing
registers:

1. DB - Data Base register. Contains the absolute address of the first location of the direct address
global area of the stack.

2. Q -Stack marker register. Contains the absolute address of the current stack marker being used
within the stack.

3. S -Top-of-stack register. Contains the absolute address of the top element of the stack. Manipu­
lated by hardware to produce a last-in, first-out stack. The top four words may be kept in hardware
registers.

The relationship of the five data addressing registers is shown in figure 1-3. Each process is also

described by a status register that contains its segment number and status, and a program-accessed,
one-word index register used for array indexing and other computing functions.

There is only one set of these hardware registers; their content is established for a process when it
starts executing.

1-9

Data Limit register----.
(DL)

Data Base register----.
(DB)

~

Stack marker ___,

register (Q)

Top of Stack ---~
register (S)

Stack limit register----.
(Z)

Low Memory

User managed
array space

Global variables

Procedure
Parameters

Stack
Marker

Local storage
and current
computation

not accessible

High Memory

~~

DL can be changed for user by the operating
system.

DB is the addressing base register set by
operating system.

Q changes with each procedure call and exit.

S can change with each instruction.

Z is the addressing limit register which can be
changed for the user by the operating system
when overflow occurs.

Figure 1-3. Data Stack Registers

Instructions are provided to access all regions indicated in this diagram except S to Z. The four
top-of-stack registers are not shown.

In the HP 3000, memory reference instructions specify an address relative to one of the hardware
registers. Each register has its own addressing range as indicated below:

+ -

P register 255 255

DB register 255 *****

Q register 127 63

***** .___s __ re_g_i_s_te_r ____________________ _____ 6_3~-·J

1-10

Note that the DB register cannot be directly addressed with a negative range and that the S register
cannot be addressed with a positive range. The DB negative area can be accessed through indirect
addressing and indexing. The S positive area is undefined since S points to the top of the stack.

Any memory reference instruction specifies a displacement within the range of one of these registers.
This location is used as the operand; if another address is required, it is implicitly assumed to be the
top of stack (S- 0).

The basic addressing mode in the HP 3000 is word addressing (one word= 16 bits); however, there are
also instructions to load· and store bytes (half words - 8 hits) and doublewords (32 bits).

Many HP 3000 instructions use the top of the stack (the absolute address in the S register) as an
implicit operand. For example, the ADD instruction always uses the values in S- 0 and S- 1 for its
operands. The S register is constantly changing in a last-in, first-out manner such that data is
"pushed" onto the stack or "popped;' off the stack.

1-12. PROCEDURES

A procedure is a self-contained section of code which is called to perform a function. Some of the
features of procedures are:

• Procedures can be passed parameters (either call-by-value or call-by-reference).

• Procedures can declare local variables and reference global variables.

• Procedures can return a value.

• Procedures can call themselves.

• Procedures can be called from either procedures or the main body.

• Procedures can have local subroutines (sections of code which can only be called from within the
procedure).

Procedure declarations precede the main body of the program and contain the local declarations and
the procedure body.

For example, a procedure to compute N factorial is

INTEGER PROCEDURE FACT(N); VALUE N; INTEGER N;
BEGIN

FACT:= IF N=O THEN 1
ELSE N*FACT(N- 1);

END;

For a complete explanation of procedure declarations, see section VII.

1-13. SUBROUTINES

An SPL subroutine is a simpler and less powerful section of code than the procedure. Subroutines can
have parameters, can be typed functions and can be called recursively. A subroutine is called with an

1-11

SCAL instruction instead of a PCAL instruction. SCAL does not provide a 4-word stack marker to save
the environment; therefore,

• Values in the Q and index registers remain unchanged.

• A PB-relative return address is placed on the top of the stack.

• Subroutines cannot have local variables.

• Subroutines must be located in the same segment as the caller since the SCAL and SXIT
instructions do not bridge segment boundaries.

• Subroutines can be entered and exited faster than procedures since there is much less work for the
instructions to do.

• Subroutines can be declared within procedures and can reference procedure-local variables.

Global subroutines can be called only within the main body. Global subroutine declarations must
appear after the procedure and intrinsic declarations.

Local subroutines can be called only from the procedure in which they are declared. They are declared
in the body of the procedure, after any local da'ta declarations, but before the executable statements of
the procedure body. For a complete description of subroutine declarations, see section VII.

1-14. INTRINSICS

An intrinsic is a procedure which has previously been defined, either as part of the MPE Operating
System or in a user's own intrinsic file. The advantage of using intrinsics is that you do not have to
include the complete procedure in your program, but merely declare the name of the intrinsic in an
intrinsic declaration.

MPE intrinsics are available to:

•
•
•
•
•
•
•
•
•
•
•
•
•
•

Access and alter files .
Manage program Ii braries .
Obtain date, time, and accounting information .
Determine job status .
Determine device status .
Obtain device file information .
Transmit messages .
Insert comments in command stream .

Perform ASCII/binary number conversion .

Perform input/output on job/session standard devices .

Obtain system timer information .

Obtain the user's access mode and attributes .

Search arrays and format parameters .

Execute MPE commands programmatically.

Intrinsics must be declared with an intrinsic declaration (See section VII). Appendix C shows how to
build your own intrinsic file. Appendix D contains a hst of the MPE intrinsics. Refer to the MPE
Intrinsics Reference Manual for a complete description of the system intrinsics.

1-15. COMPOUND STATEMENTS

BEGIN and END are used as a delimiting pair and are matched much like parentheses. Within the
body of a main program or a procedure, a BEGIN-END pair can be used to combine several statements
into one compound statement. Compound statements are useful in IF, FOR, CASE, DO-UNTIL, and
WHILE-DO statements.

where

statement
is any SPL executable statement (including compound statements).

For example,

IF A<B THEN
BEGIN

A:=B;
B:=D;
E:=F

END;

Note that a semicolon is not required before the END statement. Ifit is included, it is a null statement.

1-16. ENTRY POINTS

Both main programs and procedures can have multiple entry points. The first executable statement of
a main program or procedure is an implicit entry point. Alternate entry points are labeled statements
whose labels are declared in an entry declaration (see paragraph 3-7 for the format of an entry
declaration). An entry point cannot be the object of a GO TO statement.

1-13

A program may be started at an alternate entry point with a parameter on the :RUN or :PREPRUN
command. An alternate entry point for a procedure is equivalent to another name for the procedure
that can be called with the same formal parameters. Local variables are set up and initialized
regardless of which entry point is used. For example, assume the following program has been compiled
and prepared (:SPLPREP) and the program file is $0LDPASS.

BEGIN
ENTRY Pl,P2,P3;

Pl: A:= 100;

P2: A:=200;

P3: A:=300;

END.

To start execution at P2, use the command

:RUN $0LDPASS,P2

1-14

I 11 J111.Jii BASIC ELEMENTS .I 11 I

2-1. DATA STORAGE FORMATS

SPL processes six types of data: integer, double integer, real, long (extended precision real), byte, and
logical. Each data type has its own representation in memory. The following paragraphs describe the
data types and discuss the manner in which they are stored in memory.

2-2. INTEGER FORMAT

Integers are whole numbers containing no fractional part. Integer values are stored in one 16-bit
computer word. The leftmost bit (bit 0) represents the arithmetic sign of the number (1= negative,
0= positive). The remaining 15 bits represent the binary value of the number. Integer numbers are
represented in two's complement form and range from - 32768 to + 32767.

Decimal
Value

+32767

+ 1
0
1
2

-32768

I o 1 2 3 4 5

I t ______ sign bit

6 7

2-3. DOUBLE INTEGER FORMAT

Two's
Complement

%077777

%000001
%000000
%177777
%177776

%100000

8 9 10 11 12 13 14 15

value
15-bits

When you wish to use integer values with magnitudes greater than the integer format allows, you may
use double integers. Double integers use 2 computer words for a total of 32 hits. The leftmost bit of the

2-1

first word (bit 0) is the sign bit (1= negative, 0= positive). The remaining 31 bits represent the binary
value of the number. Double integer numbers are represented in two's complement form and range
from -2,147,483,648 to+ 2,147,483,647.

Word 1 Word 2

lol I I I I I I I I I I I I I H lol I I I I I I I I I I I I I H
1 t!:= sign bit

2-4. REAL FORMAT

value
31-bits

Real numbers are represented in memory by 32 bits (two consecutive 16-bit words) with three fields.
The fields are the sign, the exponent, and the mantissa. The format is that known as excess 256 -­
exponents are biased by + 256. Thus, a real number consists of:

Sign(S)
Bit 0 of the first word (positive= 0, negative= 1). A value X and its negative, -X, differ only in the
sign bit.

Exponent(E)
Bits 1 through 9 of the first word. The exponent ranges from 0 to 777 octal (511 decimal). This
number represents a binary exponent, biased by 400 octal (256 decimal). The true exponent is
E- 256; it ranges from - 256 to + 255.

Fraction(F)
A binary number of the form 1.xxx, where xxx is represented by 22 bits, stored in bits 10 through
15 of the first word and all of the second word. Note that the 1. is not actually stored, there is an
assumed 1. to the left of the binary point. Floating-point zero is the only exception - it is
represented by all 32 bits being zero.

The range of the magnitude of non-zero real values is from 8.63617* 10-7s to 1.157921 * 10-77
• Real

numbers are accurate to 6.9 decimal places.

The internal representation for real numbers is:

Word 1 Word 2

I o!i I I I I I I I I 9 l1q I I I 115
1 I 0 I I I I I I I I I I I I I I 1151

I + ~~- exponent
L___ 9-bits

sign bit

fraction I
22-bits

The formula for computing the decimal value of a floating-point representation is:

Decimal value = (-1)8 * F * 2rn-256)

2-2

which is equivalent to:

Decimal value = (- 1)8 * (1.0 + (xxx * 2-22
)) * 2<E-256

>

For ~xample, 7 .0 is represented as

1.

I ol 11 o!ol oiololol1iol1I1 I o!ololol lolol oloiol oioio!o lo !olo io!o!oio I
I 0 11 9110 15 0 151 t ·... exponent • ,.. fraction

~---- sign bit

Sign (S) = 0 (positive)

Exponent (E) = 402 (octal) = 258 (decimal)

Fraction (F) = 1.11 (binary) = (1 x 2°) + (1 x 2-1
) + (1 x 2-2

)

1 + 112 + 1/4
= 1. 7 5 (decimal)

So, the decimal value of the real value is:

(-1) 0 x 1.75 x 2< 258 - 256) = 1 x 1.75 x 22

1.75 x 4
7.0

*NOTE: Throughout this discussion the following changes apply to Pre-Series II Systems: Long numbers are
48 bits (three words) accurate to 11.7 decimal places. The decimal value of a floating point repre­
sentation of a long value is (-l)s * (1.0 + (xxx * 2-38)) * 2<E-256)

2-3

2-6. BYTE FORMAT

Character strings are stored using byte format. Character values are represented by 8-bit ASCII codes,
two characters packed in one 16-bit computer word. The number of words used to represent a character
value depends on the actual number of characters in the string. Appendix A shows the ASCII
characters and their octal codes.

The internal representation of byte values is:

I 0 1 2 3 4 5 6 7 I 8 9 10 11 12 13 14 15

, .. character .. , character
8-bits 8-bits

2-7. LOGICAL FORMAT

Logical values are stored in one 16-bit computer word. They are treated as unsigned integer values
ranging from 0 to 65,535. A value is considered true if it is odd and false if it is even (i.e., only bit 15 is
checked). When a value is set to TRUE, a word of all ones is used(% 177777). A value set to FALSE is
all zeros.

The internal representation of a logical value is:

0 1 2 3 4 5 6 7 8

value
16-bits

2-4

9 l.10 1 n 12 13 14 15

2-8. CONST ANT TYPES

Constants are literal values that stand for themselves. There are two basic types of constants in SPL:
numeric constants and string constants.

Numeric constants are broken dmvn into five types:

1. Integer (16 bits - includes 1 sign bit)

2. Double integer (32 bits - includes 1 sign bit)

3. Real (32 bit floating point)

4. Long (64 bit floating point)

5. Logical (16 bits - no sign bit)

String constants are made up of ASCII characters which are packed two 8-bit characters to a word.

In SPL, constants are merely bit patterns that occupy a given number of bits. A given 16-bit pattern
can have many constant interpretations (two characters, an integer, a logical value, etc.). Note that
hardware instructions provide arithmetic capability for all of the constant types mentioned here.

2-9. INTEGER CO~STANTS

Integers are signed whole numbers containing no fractional part. Decimal integer constants use the
decimal digits 0 through 9. They can contain a leading plus(+) or minus (-)sign. A number without a
leading sign is positive. The range of an integer constant is from - 32768 to+ 32767.

The form of a decimal integer constant is,

[sign] integer

where

sign
is+ or - .

integer
is a string of the digits 0 through 9.

For example,

0
12345
-31766
+ 12384

2-10. DOUBLE INTEGER CONSTANTS

Double integers are signed whole numbers containing no fractional part. Decimal double integer
constants use the decimal digits 0 through 9 followed by a D. They can contain a leading plus(+) or

2-5

minus (-)sign. A number without a leading sign is positive. The range of a double integer constant is
from -2,147,483,648 to +,2,147,483,647. The form of a decimal double integer constant is:

[sign] integer D

where

sign
is+ or -

integer
is a string of the digits 0 through 9.

For example,

-123456D
+99999999D

312735D
0 D

2-11. BASED CONSTANTS

SPL allows you to use any base from 2 (binary) through 16 (hexadecimal) in constants. A based
constant can contain a leading sign and/or a trailing type designator. A leading per cent sign (%)
denotes a based constant. The base is enclosed in parentheses following the per cent sign. If a base is
not specified, the constant is octal (base 8). The letters A,B,C,D,E, and F represent the values
10,11,12,13,14, and 15 respectively in bases greater than 10. If a type designator is used with a base
greater than 10, a space must precede the type designator.

The form of a based constant is:

[sign] % [(base)] integer [type-designator]

where

sign
is+ or - .

base
is any integer between 2 and 16. If the% is used without a base being specified, base 8 (octal) is
assumed.

integer
is a string of digits, where digit is between 0 and base- 1.

type-designator
is D,E, or L for DOUBLE, REAL, respectively. If a type-designator is not specified, the
constant will be a single-word constant which can be used as type INTEGER, LOGICAL, or BYTE.

For REAL'~,~]S\ based constants, the bit pattern of the based integer is used directly as a right
justified real n~imb~~ - it is not converted to floating point form. A leading minus sign will generate

2-6

the two's complement form of single-word and type DOUBLE based constants, but will only reverse
the sign bit for REAL and LONG based constants.

For example,

+%777
-%(2)10101010
%(16)ABC D
%(16)ABCD

<<type DOUBLE>>
<<single-word>>

2-12. COMPOSITE CONSTANTS

Composite constants are a convenient way of representing specific bit patterns for tables and special
numbers such as the lowest possible real number. A composite constant consists of a series of bit fields
separated by commas which is enclosed in brackets ([]). Each bit field contains a field length and an
unsigned integer value separated by a slash. The integer value may be an unsigned composite integer;
thus, composite integers may be nested within a composite constant. Composite constants may contain
a leading sign and/or a trailing type designator.

The form of a composite constant is:

[sign] composite-integer [type-designator]

where

sign
is+ or - .

composite-integer
is of the form:

[lengt}J,lvalue, ... ,lengthivalue]

length

NOTE

The brackets [] in this case are literal symbols which are part of
the syntax for composite integers - they do not represent the
symbols used to denote optional items in this manual.

is an unsigned non-zero decimal, based, composite, or equated integer constant. The sum of the lengths
for a composite constant cannot exceed the number of bits used to represent the constant type. If the
sum of the lengths is greater than 16, a type-designator is required.

value
is any unsigned decimal, based, composite, or equated integer constant. Type-designators are not
allowed.

type-designator
is D,E, or L for DOUBLE, REAL, or LONG respectively. If a type-designator is not specified, the
constant will be a single-word constant which can be used as type INTEGER, LOGICAL, or BYTE.

2-7

Composite constants are formed by left-to-right concatenation of binary bit fields. Within each bit
field, unspecified leading bits are set to zero and bits exceeding the field size are truncated on the left.
The resulting composite integer is right justified with leading bits set to zero. If a minus sign is used
with a single-word or a type DOUBLE composite constant, the two's complement will be generated. If a
minus sign is used with a REAL or LONG composite constant, the sign bit will be reversed and the
other bits will be unchanged - no conversion to floating point form occurs with composite constants.

For example,

[32/l]D
[32/1] E

-[32/l]D
-[32/l]E

[3/2, 121°/o 5252]
[2/211,15/[3flo (2)101,12/0] ,10/123] D

-[3/2,121°/o 5252]

2-13. EQUATED INTEGERS

= % 00000000001
= % 00000000001
= % 37777777777
= % 10000000001
= %25252
= % 720000173
= %152526

Equated integers are used to assign an integer value to an identifier for compile-time only. An equated
integer does not allocate any storage, but merely provides a form of abbreviation for constants. When
an equated identifier is used, the appropriate constant is substituted in its place. When Equate
declarations are used instead of actual constants, programs can be changed simply; instead of replac­
ing every occurrence of a constant, only the EQUATE declaration need be changed. An equated
integer reference may be preceded by a plus (+) or minus (-) sign. The value assigned to an identifier
in an EQUATE declaration must be a single-word value; however a D may be used after the identifier
to convert the single-word value to a double-word value whose first word is all zeros. If a Dis used, a
space must separate the identifier from the D.

The form of an equated integer constant is

[sign] identifier [D]

where

sign
is+ or - .

identifier
is a legal SPL identifier which has been declared in an EQUATE declaration (see paragraph 3-9).

2-14. REAL CONSTANTS

Real constants are represented by an integer part, a decimal point, and a decimal fraction. Either the
integer part or the decimal fraction may be omitted (but not both) to indicate a zero value for that part
only. A leading plus (+) or minus (-) sign may be used. A number without a sign is positive. The
constant can contain a scale factor to indicate a power of ten by which the value is multiplied.

The forms of a real constant are

Format 1: [sign] based/composite-· integer E

2-8

Format 2: [sign] decimal-number [E [sign] power]

Format 3: [sign] decimal-integer E [sign] power

where

sign
is either + or - .

based/composite-integer
is any unsig~1ed based or composite integer constant.

decimal-number
is of one of the following three forms:

n.n
n .

. n
(n being an unsigned decimal integer).

power
is an unsigned decimal integer constant.

decimal-integer
is an unsigned decimal integer constant.

Real numbers are accurate to 6.9 decimal digits of magnitude (0 can be represented exactly). The
absolute value of non-zero real numbers can range from 8.63617 x 10-18 to 1.157921 x 10 77

• The E
construct is used to indicate the scaling factor, if any. For example, 2.5E- 2 means 2.5 x 10-2

•

Note that when a composite or based integer is used, there is no power after the E, and that the Eis
required to indicate a real value. The bit pattern created for the integer is used directly as a
right-justified real number; it is not converted to floating-point form. This construct is useful for
creating special floating-point constants such as the smallest positive number. When the base is
greater than 10, a space must precede the E.

For example,

+ 1.234
-.2024
- l.105E-21
lOE-20
% (4)321000E
% (2)1111011110111E
[3/5,5/273,20/% (16)102AB39] E

Some examples of invalid real constants are

+10.E
E-21
2E-

<<missing power>>
<<missing decimal-number>>
<<missing power>>

2-9

2-15. LONG CONSTANTS

Long constants are represented by an integer part, a decimal point, and a decimal fraction. Either the
integer part or the decimal fraction may be omitted (but not both) to indicate a zero value for that part
only. A leading plus (+) or minus (-) sign may be used. A number without a sign is positive. The
constant can contain a scale factor to indicate a power of ten by which the value is multiplied.

The forms of a long constant are

Format 1:· [sign] based/composite-integer L

Format 2: [sign] decimal-number [L [sign] power]

Format 3: [sign] decimal-integer L [sign] power

where

sign
is either + or - .

based/composite-integer
is any unsigned based or composite integer constant.

decimal-number
is of one of the following three forms:

n.n
n .

. n
(n being an unsigned decimal integer).

power
is an unsigned decimal integer constant.

dee imal-integer
is an unsigned decimal integer constant.

Long numbers are accurate to 16.5*decimal digits of magnitude (0 can be represented exactly). The
absolute value of non-zero long numbers can range from 8.636168555094445 x 10-18 to
1.157920892373162 x 10

11
· The L construct is used to indicate the scaling factor, if any. For example,

2.5L- 2 means 2.5 x 10-2
•

Note that when a composite or based integer is used, there is no power after the L, and that the Lis
required to indicate a long value. The bit p~t.tern created for the integer is used directly as a
right-justified long number; it is not converted to floating-point form. This construct is useful for
creating special floating-point constants such as the smallest positive number. When the base is
greater than 10, a space must precede the L.

For example,

9321.678975L 72
- .111015L-27
% (8)3777777777L

* 11. 7 with pre-Series II Systems

2-10

2-16. LOGICAL CONSTANTS

Logical constants are 16-bit positive integers. Hardware operations on logical values are defined for
addition, subtraction, multiplication, division, and comparison.

Logical values can be represented by any of the following:

1. TRUE
2. FALSE
3. integer

where

TRUE and FALSE
are SPL Reserved words.

integer
is any (single word) decimal, based, composite, or equated integer.

A logical value is considered true if its value is odd, false if its value is even (i.e., only bit 15 is
checked). When the reserved words TRUE and FALSE are used, they are equivalent to the integer
values -1 (all ones) and 0 (all zeros) respectively. Since logical values are always assumed to be
positive, they range from 0 to+ 65,535. When negative integers are used as logical values, they are
interpreted as large positive numbers (e.g., -1 equals % 177777).

2-17. STRING CONSTANTS

A string constant is a sequence of one or more ASCII characters bounded by quote marks ("). Each
character is converted to its 8-bit representation and the characters are packed two per word.

The form of a string constant is

"character-string"

where

character-siring
is a sequence of ASCII characters (see Appendix A).

A character string can contain from 1 to 127 ASCII characters. A quote (") is represented within a
character string by a. pair of quotes ("") to avoid ambiguity with the string terminator.

For example,

"THE CHARACTER "" IS A QUOTE MARK."
"A NORMAL STRING WOULD LOOK LIKE THIS"
"lowercase letters are not UPSHIFTED in strings"

2-11

2-18. IDENTIFIERS

Identifiers are symbols used to name data and code constructs in an SPL program. They consist of
uppercase letters and numbers, and are assigned uses by declarations. There is no implicit typing for
identifiers.

The form of an identifier is

letter [letter' digit-string]

where

letter
is a letter of the alphabet (A-Z).

letter' digit-string
is a string of letters (A-Z), digits (0-9), and apostrophes (').

An identifier always starts with a letter and may contain from 1to15 characters (letters, digits, and
apostrophes). Identifiers larger than 15 characters are truncated on the right (A123456789012345 =
A12345678901234). Lowercase letters are allowed, but are always converted to uppercase form (Aabc

= AABC). If the listing device has upper and lowercase characters, a lowercase identifier is printed in
lowercase, but SPL does not differentiate it from an uppercase identifier with the same characters.
The attributes of an identifier are determined by a declaration, not by the form of the identifier.

Reserved words are combinations of characters that cannot be used as identifiers, since they have
implied meanings in the language. (See Appendix B for a list of SPL reserved words).

For example,

MATRIX
A""B
AN'IDENTIFIER
MAT123
x

2-19. ARRAYS

An array is a block of contiguous storage which is treated as an ordered sequence of variables having
the same data type. These variables are accessed using a single identifier to denote the array and a
subscript number to tfenote the particular variable (element) within the array. Array elements are
sometimes called subscripted variables.

SPL allows one-dimensional arrays (only one subscript is permitted) in all data types (integer, logical,
real, byte, long, and double). Subscripting automatically uses the index register to indicate the
element number. Bounds checking is not done at either compile-time or run-time: Arrays can be
initialized but do not have a default initialization value. Arrays can be located in any region of the
user's domain which can be addressed relative to the DB, Q, S, ,or P registers. Values in P-relative
arrays are constants which cannot be changed at run-time.

2-12

2-20. POINTERS

A pointer is a type of variable which contains the 16-bit address of another data item in the program.
The 16 bits of the pointer represent the address of a variable. A pointer can be changed dynamically to
point to different data items during program execution. Pointers are declared in a pointer declaration
(see paragraph 3-4 for global pointer declarations and paragraph 7-24 for local pointer declarations).

There are four contexts in which pointers can be used:

1. Anywhere that the object of the pointer could be used; this generates an automatic indirect
reference to the object of the pointer.

2. On the left side of an assignment statement to change the value of the object of the pointer.

3. A pointer can be preceded by an@ to refer to the actual contents of the pointer (the data label), not
the object of the pointer.

4. A pointer can implicitly reference the LST and SST instructions. (Privileged mode only.) The
pointer reference must always be subscripted and cannot be preceded by'@'. MAP indicates this
addressing scheme by ST+ number as shown in the example below. Refer to the Machine Instruc­
tions Set manual for more detailed information.

00000100
00001000
00002000
00002100

00000 0 $CONTROL INNERLIST,MAP,ADR
00000 0 BEGIN
00000 1
00000 1

DB+OOO
00003000 00000 1 !i~~Jtt~J(g1'if~lt•isT~.%fi:

00004000

IDENTIFIER

CONSOLE
SYS GLOB
TERMINATE

00004 1

00000 LDXI,074
00001 LDI ,000
00002 LST ,000
00003 STOR DB 000
END.
00004 PCAL,052

CLASS

SIMP. VAR.
POINTER
PROCEDURE

TYPE

INTEGER
INTEGER

For example, assume the following data declarations

INTEGER A,B:=7;C:=300,DATA:=-1;
INTEGER POINTER PTR:=@DATA;

2-13

021474
021000
030000
051000

000000

ADDRESS

DB+OOO
?l~~~\QQl:

01.05
01.05
02.45
03.15

14.90

These declarations initialize the variables B, C, and DATA and set up PTR as a pointer to DATA as
shown below.

A

7 B

300 c
t------·

c -1 DATA

PTR

Now, consider the statement

A:=PTR;

This statement assigns the object of the pointer PTR (i.e., DATA) to A.

-1 A

7 B

300 c

C -1
t--------

DATA

PTR

Using the pointer on the left side of an assignment statement can change the value of the object of the
pointer.

PTR:=B+C;

The object of the pointer PTR (i.e., DATA) is assigned the value of B+ C.

-1 A

7 B

300 c

C 307
t----------1

DATA

PTR

2-14

Preceding the pointer variable with an@ references the address contained in the pointer instead of the
value of the object of the pointer. Using this construct on the right side of an assignment statement
assigns the DB-relative address of the object of the pointer to a variable. For example,

A:=@PTR;

A is assigned the address contained in PTR (that is, the address of DATA).

DB-relative
A

address of DATA

7 B

300 c

c 307 DATA

PTR

To change the pointer to point to a different data item, use the@ construct on the left side of an
assignment statement as shown below.

@PTR:=@A;

This statement changes PTR to point to A instead of DATA.

DB-relative
A address of DAT A

7 B

300 c

307 DATA

PTR

2-21. LABELS

Labels are used to identify statements for transfer of control and for documentation purposes. A label
must always be followed by a colon (:) to separate it from the statement that it identifies. For
consistency and documentation, labels may be declared with a label declaration; however, it is not
necessary to do so since labels declare themselves automatically when they are used. A label can be
used to identify only one statement within the scope of the identifier; that is, the same label can be
used to identify two different statements as long as the statements are not both in the main body or
both in the same procedure.

2-22. SWITCHES

The purpose of a switch is to transfer control to one of several labeled statements within a program. A
switch is first declared with a switch declaration (see paragraph 3-6 for the format of a switch
declaration). The switch declaration defines an identifier to represent an ordered set oflabels. Each
label in the list (from left to right) is assigned a number from 0 ton- 1 (where n is the number oflabels)
which indicates the position of the label in the list. A switch of program control is accomplished by
using a GO TO statement with the switch identifier and an index. The index is evaluated to an integer
value and control is transferred to the switch label specified by that number. Bounds checking on the
index to insure that the value has a corresponding labeled statement is optional. See paragraph 5-2 for
the form of the GO TO statement.

For example,

BEGIN
INTEGER INDX;
REAL A,B;
SWITCH SW:= Ll,L2,L3,L4;

INDX:=-1;
LOOP: INDX:= INDX+ l;

GO TO SW(INDX);
Ll: A:=B;

GO TO LOOP;
L2: B:=A;

GO TO LOOP;
L3: A:=A+B;

GO TO LOOP;
L4: B:=A+B;

END.

2-16

1111111.111 GLOBAL DATA DECLARATIONS _I

111
I

3-1. TYPES OF DECLARATIONS

A declaration defines the attributes of an identifier before it is used in a program or procedure. All
identifiers in SPL programs (with the exception of labels) must be explicitly declared once only within
a single program or procedure. There are two possible levels of declarations in SPL:

Global (in a main program)
Local (in procedures)

Globally declared identifiers can be accessed throughout a program (even within procedures) and their
declarations are grouped together at the beginning of the program. Locally declared identifiers can be
accessed only within the procedure where declared and their declarations are grouped together at the
beginning of the procedure body. This section covers global data declarations only; refer to section VIl
for local declarations.

Global data declarations immediately follow the opening BEGIN as shown below.

Global data declarations are composed of the following types of declarations (which are described
individually later in this section):

• global simple variable declarations
• global array declarations
• global pointer declarations
• label declarations
• switch declarations
• entry declarations
• define declarations
• equate declarations

Global data identifiers (simple variables, arrays, and pointers) are either allocated space-in the stack
or use space in the stack allocated to another identifier. Normally, the next available DB-relative
location is allocated for the identifier. However, a register-relative or identifier-relative location may
be specified in the declaration to override the default allocation. In this case, the referenced location is
used without being allocated. When using identifier or register references, the compiler only checks
that the resulting address is within the direct address range of the register being used. You must
insure that this location does not exceed the bounds of your data stack when the identifier is referenced

3-1

at execution time. Additionally, when using a reference identifier, you must declare it before using it
as a reference identifier. For example, the declarations:

INTEGER A,B,C;
LOGICAL D= A+ 2;

indicate that Dis a LOGICAL simple variable using the same location as the INTEGER variable C.
The syntax for register and identifier references is described in the appropriate paragraphs for the
type of indentifier (simple variable, array, or pointer) in this section. Data identifiers which are
register or identifier referenced cannot be initialized.

3-2. SIMPLE VARIABLE DECLARATIONS

A simple variable declaration specifies the type, addressing mode, storage allocation, and initializa­
tion value for identifiers to be used as single data items. The type assigned to a variable determines
the amount of space allocated to the variable and the set of HP 3000 instructions which can operate on
the variable.

Two methods can be used to link global variables to variables in separately compiled procedures. The
first method is to use the GLOBAL attribute in the global variable declaration and the EXTERNAL
attribute in the local variable declaration (see paragraph 7-19). The identifiers in both declarations
must be the same and the MPE Segmenter is responsible for making the correct linkages. (See the
MPE Segmenter Subsystem Reference Manual for a discussion of the Segmenter.) The second method is
to include dummy global declarations at the beginning of subprogram compilations. All global
declarations must be included, even for identifiers not referenced in the subprogram, and they must be
in the same order as in the main program. It is possible, although not recommended, to use different
identifiers for the same variable, but you are responsible for keeping them straight. The second
method is faster and requires less space in the USL (User Subprogram Library) files, but does not
protect you against improper linkages.

rip of;a ,g~qbal 1:$iipplij11 ~iabl~
it

where

type
specifies the data type of the variables in the declaration. The type may be INTEGER, LOGICAL,
BYTE, DOUBLE, REAL, or LONG.

variabk-declaration
can be any of the following forms:

variab/,e [:= initial-value]
variab/,e = register [sign offset]
variable = reference-identifier [sign offset]

variab/,e
is a legal SPL identifier.

initial-value
is an SPL constant to be used as the value of the variab/,e when program execution begins.

register
specifies the register to be used in a register reference. The register may be DB, Q, S, or X.

sign
is+ or - .

offset
is an unsigned decimal, based, composite, or equated integer constant.

reference-identifier
is any legal SPL identifier which has been declared as a data item except DB,PB,Q,S, or X.

Form 1 of the variable declaration allocates the next available DB-relative location(s) for the variable.
The amount of space allocated depends on the variable type. If an initial value is specified, the variable
is initialized when execution starts. If the constant used for the initial-value is too large, it is truncated
on the left, except string constants which are truncated on the right. If no initial-value is specified, the
variable is not initialized.

Form 2 of the variable declaration equivalences a variable either to the index register (X) or to a
location relative to the contents of one of the base registers (DB, Q, or S). Since the index register is 16
bits, only variables of type INTEGER, LOGICAL, and BYTE may be equivalenced to this register.

Form 3 of the variable declaration equivalences a variable to a location relative to another variable.
The reference-identifier must be declared first. For example, the declarations

LOGICAL A;
INTEGER B= A+ 5;

equivalence B to the location 5 words past the location of A. Simple variables which are address
referenced to arrays use either the location of the zero element of the array (if direct), or the location of
the pointer to the zero element of the array (if indirect). Note that ifthe reference-identifier is an array,
only the zero element may be used in a variable reference of a simple variable declaration. In any case,
the final address must be within the direct address range.

DB, PB, Q, S, and X cannot be used as the identifier on the right side of an equals sign in a variable
declaration, because they are interpreted as register references instead of variable references. For
example, consider the declaration

INTEGER A,B,C,DB,D= DB+ 2;

3-3

The variable D is equivalenced to the location 2 cells past the cell to which the DB register points -
not 2 cells past the location assigned to the variable DB.

The legal combinations of registers, signs, and offsets are shown below

Register Sign Offset

DB + 0 to 255

Q + 0 to 127

Q - 0 to 63

s - 0 to 63

x none none

3-3. ARRAY DECLARATION

An array declaration specifies one or more identifiers to represent arrays of subscripted variables. An
array is a block of contiguous storage which is treated as an ordered sequence of"variables" having the
same data type. Each "variable" or element of the array is denoted by a unique subscript (SPL provides
one-dimensional arrays only). An array declaration defines the following attributes of an array:

• The bounds specification (if any) which determines the size of the array and the legitimate range of
indexing.

• The data type of the array elements.

• The storage allocation method.

• The initial values, if desired.

• The access mode (direct or indirect).

There are two types of access modes used for arrays: indirect and direct. An indirect array uses a
pointer to the zero element of the array. Addressing an indirect array eiement uses both indirect
addressing and indexing. If the array is a BYTE array, the pointer contains a DB-relative byte
address. For all other data types, the pointer contains a DB-relative word address. A direct array uses
a location within the direct address range of one of the registers (DB, Q, or S) as the zero element of the
array and then uses indexing to address a specific array element. Figure 3-1 illustrates the differences
between direct and indirect arrays.

The area in the stack between DB and the initial value of Q is divided into two areas: Primary DB
Storage and Secondary DB Storage. The Primary DB area is used for global storage of simple
variables, direct arrays, and pointers to indirect global arrays. The Secondary DB area is used for
global storage of indirect arrays. The Primary DB area cannot normally extend past DB+ 255. The
only exception is when the last global data declaration is for a DB-relative direct array whose zero

3-4

Index Register

3

Cl c:
')(
ID
"C
c:

lndiNct Alray

@A

.. A(O) -

... A(3) -

Direct Array

A(O)

...

I ____ IJ

Figure 3-1. Accessing Array Elements

3-5

Primary DB

Secondary DB

Primary DB

element falls between DB+ 0 and DB+ 255. Since the index register is used to address array elements,
the array may extend past DB+ 255. The Secondary DB area immediately follows the Primary DB area
regardless of the size of the Primary DB area.

There are two methods which can be used to link global arrays to arrays in separately compiled
procedures. The first method is to use the GLOBAL attribute in the global array declaration and the
EXTERNAL attribute in the local array declaration (see paragraph 7-23). The identifiers in both
declarations must be the same and the Segmenter is responsible for making the correct linkages. The
second method is to include dummy global declarations at the beginning of subprogram compilations.
All global declarations must be included, even for identifiers not referenced in the subprogram, and
they must be in the same order as in the main program. It is possible, although not recommended, to
use different identifiers for the same array, but you are responsible for keeping them straight. The
second method is faster and requires less space in the USL (User Subprogram Library) files, but does
not protect you against improper linkages.

where

GLOBAL
is used for arrays which are referenced in procedures compiled separately.

type
specifies the data type of the array. The type can be INTEGER, LOGICAL, BYTE, DOUBLE, REAL, or
LONG. If not specified, the array is type LOGICAL.

global-array-dee
is one of the following forms:

1. array-name(lower:upper) [=DB]

This form is used for an uninitialized array with defined bounds. If= DB is not specified, the
array is indirect and the next available DB Primary location is allocated for the pointer to the
zero element of the array. Storage for the array itself is allocated in the Secondary DB area. If
=DB is specified, the array is direct and the next available n cells in the DB Primary area are
allocated for the array (where n is the number of locations required to store the array). The
zero element of the array must be within the direct address range whether or not it is actually
an element of the array. For example, consider the declaration:

INTEGER ARRAY A(-20:-lO)=DB;

The next available DB primary location is allocated to A(- 20), but all indexing is done
relative to A(O) even though it is not an actual element of the array. The address which AW)
vwuld have if it were in the array must be between DB+ 0 and DB+ 255.

3-6

2. array-name(@)= DB [+ offset]

This form is used for an indirect array with undefined bounds. If no offset is specified, the next
available Primary DB location is used, without being allocated, as the pointer to the zero
element of the array. If an offset is specified, then that DB-relative cell is used, without being
allocated, as the pointer to the zero element. In either case, space is not allocated for the array
in the Secondary DB area nor is initialization allowed.

3. array-name(*)= DB [+ offset]

This form is used for a direct array with undefined bounds. If no offset is specified, the next
available Primary DB location is used,)Vithout being allocated, as the zero element of the
array. If an offset is specified, then that DB-relative location is used, without being allocated,
as the zero element of the array. In either case, space is not allocated for the array nor is
initialization allowed.

*4. array-name(@) [=register sign offset]

This form is used for an indirect array with undefined bounds whose pointer is Q or S-relative.
If a base-register reference is not specified, the next available DB cell is allocated for the
pointer to the zero element of the array. If a base -register reference is specified, then that
Q-relative or S -relative cell is used, without being allocated, as the pointer to the zero element
of the array. Space is not allocated for the array nor is initialization allowed.

5. array-name()
This form can be used for an indirect array with undefined bounds. The next available DB cell
is allocated for the pointer to the zero element of the array. Space is not allocated for the array
nor is initialization allowed. This form is equivalent to array-name(@) without a base-register
reference.

6. array-name() = register sign offset

This form is used for direct arrays with undefined bounds which are Q-relative or S-relative.
The specified cell is used as the zero element of the array; however, space for the array is not
actually allocated and the array cannot be initialized.

7. array-name() = reference-identifier [sign offset]

This form is used for an indirect array with undefined bounds whose pointer is Q- or S-relative.
If a base-register reference is not specified, the next available DB cell is allocated for the
pointer to the zero element of the array. If a base-register reference is specified, then that
Q-relative or S-relative cell is used, without being allocated, as the pointer to the zero element
of the array. Space is not allocated for the array nor is initialization allowed.

INTEGER B(*)= A+ 10;

would not be allowed because the direct address range for the DB register is 0 to 255. If the
array is direct, the referenced location is used as the zero element of the array. !ft.he array is
indirect, the referenced location is used as the pointer to the zero element except when either
the array or the reference-identifier (but not both) is type BYTE, in which case the next
available DB-cell is allocated for the pointer to the zero element. Space is not allocated for the

3-7

array nor can the array be initialized. DB, PB, Q, S, and X cannot be used as the reference­
identifer because they are interpreted as register references instead.

8. array-name() = reference-identifier (index)

This form is used for equivalencing one array to another array. The reference-identifier may be
either an array or a pointer variable and must be declared first. If the reference-identifier is a
direct array, the array is a direct array whose zero element is the location of the referenced
array element. If the reference-identifier is an indirect array or a pointer variable, the array is
indirect. In this case, the next available DB cell is allocated for the pointer to the zero element
of the array if a non-zero index is specified or if either the array or the reference-identifier (but
not both) is type BYTE; otherwise, both use the same location for the pointer to the zero
element. In any case, space is not allocated for the equivalenced array nor can the equiva­
lenced array be initialized. DB, PB, Q, S, and X cannot be used as the reference-identifier
because they are interpreted as register references instead.

*Forms 4 through 8 are not allowed if the word GLOBAL is included in the declaration.

array-name
is a legal SPL identifier.

reference-identifier
is any legal SPL identifier except DB,PB,Q,S, or X which has been declared as a data item.

register
specifies the base register in a register reference. The register may be either Q or S.

sign
is+ or - .

offset
is an unsigned decimal, based, composite, or equated integer constant within the direct address range
as shown below:

initialized-global-array
is of the form:

Register

DB

Q

Q

s

arra,y-name(lower:upper) [=DB]

Sign Offset

+ 0 to 255

+ 0 to 127 I

- 0 to 63

- 0 to 63

value-group[) ... ,value .. group]

3-8

lower
specifies the lower bound of the array. It can be any decimal, based, composite, or equated
single-word integer constant or constant expression.

upper
specifies the upper bound of the array. It can be any decimal, based, composite, or equated
single-word integer constant or constant expression.

index
indicates the element of the referenced array to be used as the reference location. The index can
be any decimal, based, composite, or equated single-word integer constant.

ualue-group
is either of the following:

initial-value
repetition-factor (initial-value [, ... ,initial-value]

initial-value
is any SPL numeric or string constant.

repetition-factor
specifies the number of times the initial value list will be used to initialize the array elements. The
repetition-factor can be any unsigned non-zero decimal, based, composite, or equated single-word
integer constant.

Global arrays with defined bounds can be initialized. Initialization consists of a:= followed by a list of
numerical constants or strings. A group of constants can be surrounded by parentheses and preceded
by a repetition factor ·(n) to specify that the constants in parentheses are to be used n times in
initializing the array before going on to the next item in the list. These repeat groups cannot be nested.
Elements are initialized starting with the lowest subscript and continuing up until the constant list is
e~hausted. The initialization list cannot contain more values than there are elements in the array. If
the constant used for the initial value is too large, it is truncated on the left except string constants
which are truncated on the right. Ifno initial value is specified, the variable is not initialized. Only the
last array in a declaration list can be initialized.

Table 3-1 summarizes the syntax and meanings for the various forms of global array declarations.
Figure 3-2 shows a series of array declarations with the locations assigned to the identifiers.

3-9

Table 3-1. Global Array Declaration Summary

OFFSET ADDRESSING POINTER ZERO ELEMENT
FORM RANGE MODE LOCATION LOCATION

id(low:up) Indirect next DB (A) Sec. DB (A)

id(low:up)=DB Direct Primary DB (A)

id(@)= DB Indirect next DB C(next DB)

id(@)= DB+ offset 0-255 Indirect DB+ offset C(DB+offset)

id(*)= DB Direct Primary DB

id(*)= DB+ offset 0-255 Direct DB+ offset

id(@) Indirect next DB (A) C(next DB)

id(@)= Q+offset 0-127 Indirect Q+offset C(Q+offset_)

id(@)= Q-offset 0-63 Indirect Q-offset C(Q-offset)

id(@)= S-offset 0-63 Indirect S-offset C(S-offset)

id(*) Indirect next DB (A) C(next DB)

id(*)=id Note 1 Note 2 Note 3

id(*)= id+ offset Note 4 Direct id+ offset

id(*)= id-offset Note 4 Direct id-offset

id(*)=id(index) Note 5 Note 6 id(index)

id(*)= Q+offset 0-127 Direct Q+offset I

id(*)= Q-offset 0-63 Direct Q-offset

id("")= S-offset 0-63 Direct S-offset

Legend

(A) - Storage is allocated for the designated pointer or array.

C() - The contents of the location in parentheses is the address of the zero element of the array.

id - identifier

low - lower bound

up - upper bound

3-10

NOTES

1. If the right side id is a direct array or a simple variable, the
addressing mode is direct. If the right side id is an indirect
array or a pointer variable~ the addressing mode is indirect.

2. If the addressing mode is indirect, both identifiers use the
same pointer location unless one id is type BYTE and the
other is not, in which case, the next available DB-cell is
allocated for the pointer.

3. The zero element is in the same location as the right side id
(or its zero element if the right side id is an array).

4. The offset must result in an effective address within the
direct address range of the base register which the right side
id uses.

5. If the right side id is a direct array, the left side id is direct; if
the right side id is a pointer variable or an indirect array, the
left side id will be indirect.

6. If the addressing mode is indirect, the next available DB-cell
is allocated for the pointer if:

a. a non-zero index is specified.
and/or

b. one of the two identifiers is type BYTE and the. other is
not.

Otherwise, both identifiers use the same pointer location. If the
addressing mode is direct, there is no pointer.

3-4. POINTER DECLARATION

A pointer declaration defines an identifier as a "pointer" - a single word quantity used to contain the
DB-relative address of another data item -the object of the pointer. A pointer declaration defines the
following attributes of a pointer:

• The data type.
• The storage allocation method.
• The initial address to be stored in the pointer (optional).

When the pointer is accessed, the object is accessed indirectly through the pointer address. The object
is assumed to be, or is treated as if it were, the type of the pointer.

There are two methods which can be used to link global pointers to pointers in separately compiled
procedures. The first method is to use the GLOBAL attribute in the global pointer declaration and the
EXTERNAL attribute in the local pointer declaration (see paragraph 7-27). The identifiers in both
declarations must be the same and the Segmenter is responsible for making the correct linkages. The
second method is to include dummy global declarations at the beginning of subprogram compilations.

3-11

00001000 00000 0 SCUNTROL ADR
00002000 00000 0 HEGIN
00004000 00000 1 ARRAY A(O:tO),A0(0:10):=11C%17);

DB+OOO
DBtOOl

00005000 00001 1 REAL ARRAY A1C0:10):
DBH>02

00006000 00001 1 REAL ARRAY A2(0:10):DB:
DIH003

00007000 00001 1 REAL ARRAY A3(@):DH;
DtHO 31

00008000 00001 1 Rl-.:AL AR HAY A4(@):0B+5;
DB+OOS

00009000 00001 1 RlAL ARRAY A5(*)=DB;
08+031

00010000 00001 1 REAL ARRAY A6(*)=0B+b;
DB+006

00011000 00001 1 RE:AL ARRAY A7C@);
OEH031

00012000 00001 1 REAL ARRAY A8C@):Q+3;
Q +003

00013000 00001 1 REAL ARRAY A9C@):Q•3:
Q -003

00014000 00001 1 REAL ARRAY AlO(~)=S-2;

s -002
00015000 00001 1 REAL ARRAY A11C*l;

DB+032
OOOlbOOO 00001 REAL ARRAY A12(*)=At:

DB+002
00017000 00001 1 REAL APRAY A13C*l=A1+4:

DIHOOb
00018000 00001 1 REAL ARRAY A14(*)=A2•i:

DB+002
00019000 00001 1 REAL ARRAY A15C*l=A1(5):

DB+033
00020000 00001 HEAL ARHAY A16(*):Q+3:

Q +003
00021000 00001 1 HEAL AR~AY A17C*l=Q•3:

Q -003
00022000 00001 1 REAL ARRAY A18(4):S•2:

s -002
00023000 00001 1 BYTE ARRAY A19C*)=AO:

08+034
00061000 00001 1 END.
PRIMA~Y DB STORAGE=%035: SECONDARY DB STORAGE:%00054
NO. r':RRORS=OOO: NO. WARNINGS=OOO
PROCESSOR TIME:0:00:02: ELAPSED TIME:O:OO:OB

Figure 3-2. Sample Global Array Declarations

3-12

All global declarations must be included, even for identifiers not referenced in the subprogram, and
they must be in the same order as in the main program. It is possible, although not recommended, to
use different identifiers for the same pointer, but you are responsible for keeping them straight. The
second method is faster and requires less space in the USL (User Subprogram Library) files, but does
not protect you against improper linkages.

where

GLOBAL
is used for pointers referenced in procedures compiled separately.

pointer-dee
is one of the following:

1. pointer-name [:= @reference-identifier [(index)]]

This form allocates the next available DB cell for the pointer variable. If the :=@reference­
identifier is used, the pointer is initialized to the address of the reference-identifier or array­
element if an index is included. The reference-identifer must be declared first.

NOTE

Global pointers can only be initialized to point to identifiers
which have been declared to be DB-relative, either explicitly or
implicitly. They cannot be initialized to point to identifiers which
have been register referenced to the Q, S, or X registers. Thus, the
following is not allowed:

INTEGER A=Q+l; POINTER B:=@A;

However, you can use an assignment statement (see paragraph
4-20) to dynamically set the pointer to such a variable unless it
was equivalenced to the index register.

2. pointer-name = reference-identifier [sign offset]

This form is used to equivalence a pointer variable to a location relative to another identifier.

3-13

Space is not allocated for the pointer nor can the pointer be initialized. The resulting address
for the pointer variable must be within the direct address range of the base register which the
reference-identifier uses.

3. pointer-name = register [sign offset]

This form is used to equivalence a pointer variable to a location relative to a base-register.
Space is not allocated for the pointer nor can the pointer be intitialized. The resulting address
for the pointer variable must be within the direct address range of the specified base-register.

4. pointer-name = offset

This form is used only in privileged mode. It is the offset in System DB. The pointer reference
must always be subscripted and cannot be preceded by '@'.

type

specifies the data type of the pointer variables in the declaration. The type can be INTEGER,
LOGICAL, BYTE, DOUBLE, REAL, or LONG.

pointer-name
is a legal SPL identifier.

reference-identifier
is any legal SPL identifier which has been declared as a data item except DB,PB,Q,S, or X.

register
specifies the base register in a register reference. The register can be DB, Q, or S.

sign
is+ or - .

offset
is an unsigned decimal, based, composite, or equated integer within the direct address range as shown
below.

Register Sign Offset

DB + 0 to 255

Q + 0 to 127

Q - 0 to 63

s - 0 to 63

ST
(system table) + > = 0

index
indicates the array element whose address the pointer will be initialized to contain. The index can be
any decimal, based, composite, or equated single-word integer constant.

Pointers are initialized with addresses of other variables or constants. The method is to follow the
pointer with : =@ and a data reference (simple variable, pointer element, or array element) or : =
constant. The address of the specified data item, adjusted to the address type of the pointer, is stored
in the cell allocated for the pointer. BYTE pointers contain DB-relative byte addresses, whereas al1
other types of pointers contain DB-relative word addresses.

3-14

See "Pointers" (paragraph 2-20) for methods of referring to and through pointers. Pointers can be
indexed like arrays and can contain word or byte addresses.

Pointers can be declared with all data types; if no type is specified, type LOGICAL is assumed. The
type determines what data type the object of the pointer is assumed to have. This allows objects
declared with one type to be accessed as another data type by accessing them through pointers.

Pointers which are not address referenced are allocated the next available DB-relative location and
can be initialized. Pointers which are referenced use the address of the referenced item or the specified
register relative location and cannot be initialized.

3-5. LABEL DECLARATION

A label declaration specifies that an identifier will be used in the program as a label to identify a
statement. Labels are referenced when it is necessary to transfer control to a specific statement; they
need not be declared explicitly unless the programmer wishes.

where

label
is a legal SPL identifier.

Labels are used to identify statements as follows:

LABEL Ll;

Ll:A:=B;

The syntax for labeled statements is given in paragraph 1-3. In SPL, a label implicitly declares itself
when it is used to identify a statement, as the object of a GO TO statement, or in a switch declaration.
It need not be explicitly declared in a label declaration except as desired for documentation purposes.
See "GO TO Statement" (paragraph 5-2) and "Switch Declaration" below for use of labels.

3-6. SWITCH DECLARATION

A switch declaration relates an identifier to an ordered set of labels. The switch is accessed as a
computed (or indexed) GO TO statement. The purpose of a switch is to allow selective transfer of
control to any of the statements identified by the labels in the switch declaration.

3-15

where

switch-name
is a legal SPL identifier.

label
identifies the statement to which control is transfered when the switch is invoked.

Only one switch-name can be declared in each switch declaration. Associated with each label in the
label list from left-to-right is an ordinal integer from 0 ton- 1, where n is the number of labels in the
list. This integer indicates the position of the label in the list. Each position in the list must contain a
label; null elements are not allowed. When the switch-name is referenced (see "GO TO Statement" in
paragraph 5-2), the value of an integer subscript determines which label is selected from the list.
Bounds checking in this selection is optional. Entry points are not allowed in switch declarationR
Switch labels may not occur in subroutines.

3-7. ENTRY DECLARATION

The purpose of a global entry declaration is to specify multiple entry points to a main program beyond
the implicit entry point which is the first statement of the program. Each entry identifier must occur
somewhere in the body as a statement label, but cannot be the oQ_iect of a GO TO.

where

label
identifies the statement to be used as an alternate entry point.

By specifying the entry point to the operating system, the program can be started at other than its
natural beginning. See "Entry Points" in paragraph 1-16.

3-16

For example, here is a sample entry declaration:

ENTRY Pl,P2,P3;

3-8. DEFINE DECLARATION AND REFERENCE

A define declaration assigns a block of text to an identifier. Whenever the identifier is used in the
program thereafter, the assigned text replaces the identifier. This provides a convenient abbreviation
mechanism to avoid repeating long constructs that are used many times throughout a program.

where

identifier
is a legal SPL identifier.

text
specifies the block of text to be substituted when the define is invoked. The text can be any sequence of
ASCII characters; however,# can be used only within a string.

A define identifier can be referenced anywhere except within an identifier, string, or constant. The
text should make sense when inserted where the define is referenced.

At declaration time, a define has no effect on the compilation of the program. It has effect only in the
context where it is referenced. For this reason, undeclared identifiers can appear in defines; they need
to have been declared only when the define is referenced. Similarly, the define text is checked for
syntax errors in the context where it is referenced, not where it is declared.

Define declarations can be nested (define identifiers can be used in other definitions), but they cannot
be recursive (a define identifier appearing within its own text), since this leads to infinite nesting
when the define is referenced.

The number sign (#) terminates a define text only if it is not contained in a string. For example, the
string "ABCD# "# is valid text terminated by the second #. Incomplete comments cannot appear in
DEFINEs.

Only one block of text can be assigned to a particular identifier.

For example, here are some sample define declarations and references:

DEFINE l=ARRAY B(O:l)#;
INTEGER I; <<INTEGER ARRAY B(O:l);>>

3-17

DEFINE SUM=A+B+C+D+E#;
J:=SUM; <<J:=A+B+C+D+E;>>

3-9. EQUATE DECLARATION AND REFERENCE

An equate declaration assigns an integer value (determined by an expression of integer constants and
other equates) to an identifier. The equate mechanism is only a documentation and maintenance
convenience; it does not allocate any run-time storage, but merely provides a form of consistent
identification for constants. When an equate identifier is used, the appropriate constant is substituted
in its place. When equates are used instead of actual constants, programs can be updated easily;
instead of replacing every occurrence of a constant, only the equate declaration is changed.

where

identifier
is a legal SPL identifier.

equate-expression
can be either one of or a combination of two forms:

[sign] unsigned-integer [operator unsigned-equate-expr]

(equate-expression)

sign
is+ or - .

unsigned-integer
is an unsigned decimal, based, composite, or equated single-word integer constant.

operator
is + ,- ,*, or /.

unsigned-equate-expr
is an unsigned equate-expression.

The value to be assigned to an equate identifier is determined by an equate expression. Equate
expressions consist of operators (* ,/,+ ,--·), unsigned integers (including previously defined equated
integers), and parentheses. Evaluation of the expression proceeds from left to right, except that
multiplication and division (* /) are done before addition and subtraction (+ ,-) and expressions in

parentheses are done before the operators that surround them. The value of an equate expression must
fit in a single-word or it will be truncated on the left. Since equate identifiers can be used in equate
expressions, a series of related equate declarations can be set up such that changing only the first
changes all the rest.

Equate identifiers can be used anywhere in the program that an integer or unsigned integer constant
is allowed.

For example, here are some sample equate declarations and references:

EQUATE M= 1,N= M+ 1,P= N+ l;
EQUATE T=20*P/(20-P+M);
J:= 136*T;

<<M= 1, N=2, P=3, T=3, J=408>>

3-10. DATASEG DECLARATION

The DATASEG declaration is intended for privileged users requiring an extra data segment (defined
as split-stack mode, section 8-1). It ensures the reliability of the generated split-stack code by
limiting the declared variables to explicit DB-relative offsets. Only simple variables, arrays, and
pointers are permitted as DATASEG declarations; no GLOBAL, EXTERNAL, or OWN declarations
are allowed. A variable declaration without an offset will be assigned the next available offset.

The variables defined within the DATASEG declaration are used in conjunction with the MOVEX
instruction and the WITH statement, as detailed in section 4-21A and 6-5 respectively.

where

dataseg-name
is an SPL identifier,

3-19

dataseg#
is an integer constant or integer constant expression,

type
may be INTEGER, LOGICAL, BYTE, DOUBLE, REAL, or LONG,

dataseg-uariable
is a legal SPL identifier,

dataseg-offset
is the dataseg-variable followed by a sign (+, -)
and an integer constant.

3-20

EXPRESSIONS, ASSIGNMENT, IUllUJ.•I
_____ AN_D_S--'--C_A_N _S_TA_T_EM_E_N_TS___. I IV I

4-1. EXPRESSION TYPES

An expression is a sequence of operations upon constants, variables, and indexed items which results
in a single value of a specified data type. If the data type is logical, the expression is a logical
expression and logical operators are allowed within it. If the data type is numeric (i.e., byte, integer,
double, real, or long), the expression is an arithmetic expression and arithmetic operators are used
within it. An IF expression allows a choice to be made between two expressions of the same word size
based on hardware or software conditions.

Within SPL expressions, only variables of the same data type can appear on either side of an operat~r.
That is, an integer can be multiplied by an integer, but not by a real. The only exception to this rule is
the exponentiate operator (A) in arithmetic expressions; real and long data items can be exponentiated
to integer powers. In all other cases, the combination of differing data types can only be accomplished
through type transfer functions. For example, the function FIXR converts an expression of type real
into one of type double and rounds the result to the closest integer:

FIXR(real-expression)

A corresponding function, FIXT, converts real to double and truncates the result:

FIXT(real-expression)

Type transfer functions are not available for all possible transformations. The following table shows
which transfers are provided and which functions should be used in each Gase. In some cases, it may be
necessary to specify nested type transfer functions (e.g., to convert from real to integer, either
INTEGER(FIXR(real-expression)) or INTEGER(FIXT(real-expression))).

FROM TO

LONG REAL DOUBLE INTEGER LOGICAL BYTE

Long ------ REAL

Real LONG ------ FIXR
FIXT

Double LONG REAL ------ INTEGER LOGICAL

Integer REAL DOUBLE ------ LOGICAL BYTE

Logical REAL DOUBLE INTEGER ------ BYTE

Byte REAL DOUBLE INTEGER LOGICAL ------

4-1

4-2. VARIABLES

A variable is one of the items which can occur in expressions. Each variable, whether it is a simple
variable, an array element, a pointer reference, or the top of the stack, is associated with one data item
of a specific type. The address of any data item can be used as an integer variable since it is a 16-bit
signed quantity.

where

data-item
is a simple-variable, array-name, or pointer-name.

index

specifies an offset. The index is either an expression or an assignment statement of type integer,
logical, or byte. If an index is not specified with an array-name, a pointer-name, or ABSOLUTE, then
zero is assumed.

TOS
is the Top Of Stack

identifier

is a simple-variable, array-name, pointer-name, label, or procedure-name whose DB- or PB-relative
address is used as an integer value.

ABSOLUTE

is used to denote an absolute memory location. To use this construct, you must have privileged mode
(PM) capability.

The three most common types of variables occurring in all data types are the simple variable, the
array reference, and the pointer reference. Array and pointer references specify an element by means
of a subscript or index; the index must always be a one-word value (byte, integer, or logical). The index
value specifies an element index, not a word index. It is loaded into the index register and used in an

indexed memory reference instructioti. Note that this may change the value of the condition code. If
no index is specified, the reference is to the zero element, which is more efficient than explicitly
specifying 0 as the index since the index register is not used.

4-3. TOS

TOS is a reserved symbol that always refers to the top of the stack; it can be used anywhere a variable
can be used. When TOS is used on the left side of an assignment statement (TOS:=expression), the
normal store operation is omitted and the result is left on the top of the stack. If TOS occurs in an
expression, the contents of the top of the stack are used as the next operand. TOS must be used
carefully, since the compiler does not keep track of the number of elements pushed onto the stack prior
to encountering TOS. The data type ofTOS is determined by context; it takes the type of the expression
or other operand. Thus, in one context TOS might refer to the top word, in another the top four words.
Note that TOS does not refer to the same memory location from one statement to the next, since Sis
constantly changing. The default type for TOS is integer. A general rule for determining the effect of
TOS is to assume that TOS is a variable and then delete all LOAD and STOR operations for TOS. For
example,

TOS:=7;
A:=TOS+6;

<<LOAD 7>
<<A:=13>>

4-4. ADDRESSES(@) AND POINTERS

When@ precedes a simple variable, it specifies that the DB-relative address of the simple variable is
desired. All addresses are signed, one-word integers and are treated as such in expressions. When @
precedes an array identifier, it refers to the DB- or PB-relative address of the zero element of the array
(whether direct or indirect). When@ precedes an array reference (identifier(index)), it refers to the
DB- or PB-relative address of the array element. When@ precedes a pointer identifier, it refers to the
address contained within a pointer cell; when an index is specified, @ refers to the address of the data
element relative to the zero element pointed at by the pointer. For example,

BEGIN
INTEGER A;
INTEGER ARRAY B(O: 10);
POINTER P:=@B(5);

A:= @A; <<A assigned address of A>>
A:=@P; <<A assigned address of B(5)>>
A:=@B; <<A assigned address of B(O)>>

END.

If the @ construct is used on the left of an assignment operator, it must be used with either a
pointer-name or an array-name of an indirect array and an index cannot be specified. This usage.
changes the address which the pointer contains. For arrays, this means that there is a new zero
element. For example,

@A:=@A(l);

would make A(l) the new A(O). For pointer variables, the statement:

@P:=@B;

changes P to point to the location assigned to B. The various combinations using the @ construct and
pointers are summarized in figure 4-1.

4-3

POINTER Pl,P2;
LOGICAL VAR;

Pl:=P2;
Pl:=@P2;
@Pl:=@P2;
@Pl:=P2;
Pl:= VAR;
Pl:=@VAR;
@Pl:=@VAR;
@Pl:= VAR;
VAR:= Pl;
VAR:=@Pl;

<<The object of P2 is stored into the object of Pl>>
<<The address in P2 is stored into the object of Pl>>
<<The address in P2 is stored into Pl>>
<<The object of P2 is stored into Pl>>
<<The value of VAR is stored into the object of Pl>>
<<The address of VAR is stored into the object of Pl>>
<<The address of VAR is stored into Pl>>
<<The value of VAR is stored into Pl>>
<<The object of Pl is stored into VAR>>
<<The address in Pl is stored into VAR>>

Figure 4-1. Pointers and Addresses

4-5. ABSOLUTE ADDRESSES

The ABSOLUTE construct can only be executed in privileged mode. It provides access to the contents
of an absolute memory location. The address (index) is loaded into the index register. If ABSOLUTE
appears on the left side of an assignment statement (ABSOLUTE(index):=expression), a PSTA
(privileged store) instruction is generated which stores the top of the stack (expression) in the absolute
memory location specified by the index register. If ABSOLUTE appears within an expression, a PLDA
(privileged LOAD) instruction is generated which loads onto the stack the contents of the absolute
location specified by the index register. For example,

LOGICAL Ll,L2,L3;
INTEGER Al,A2,A3= X;

Ll:= ABSOLUTE(Al * A2);
ABSOLUTE(L2):= Al+ 5;
ABSOLUTE(A3):=Al+5; <<A3 is the index register>>
Ll:= ABSOLUTE(ABSOLUTE(3));
Ll:= ABSOLUTE(A3);

4-6. FUNCTION DESIGNATOR

Function designators are another of the possible components of an expression. A function designator
specifies a function (a typed procedure or subroutine) to be executed and a list of actual parameters
(values or addresses) to be passed to the function. The function returns a value of the appropriate data
type to the place in the expression where it was called.

4-4

where

name
is the name of the function procedure or subroutine to be executed.

identifier
is a simple-variable, array-name, pointer-name, procedure-name, or label. Th(· DB- or PB-relative
address is passed to the function. PB-relative arrays cannot be passed as parameters. An identifier
must be used if the formal parameter is not used in a VALUE statement witLin the procedure or
subroutine.

index
specifies an array or pointer element. The index is an expression or an assignment statement of type
INTEGER, LOGICAL, or BYTE. If an index is not specified for an array or pointer, then zero is
assumed.

arithmetic-expression logical-expression and assignment-statement
are evaluated and the result is passed as a call-by-value parameter. The forms for these items are
described fully later in this section.

The function procedure or subroutine must have been previously declared (see "Procedure Declara­
tion" and "Subroutine Declaration" in section VII). The actual parameters must match the formal
parameters one-to-one as specified in the declaration; correspondence is checked left-to-right. An
actual parameter may be omitted only if OPrION VARIABLE has been specified in the procedure
declaration.

4-5

A stacked parameter is specified by an asterisk (*) to indicate that you have already loaded the
necessary address or value onto the stack. Labels cannot be stacked. If any parameter is stacked, all
parameters to its left must also be stacked. In addition, functions require that a 1-, 2-, or 4-word zero
(depending on the function type) be pushed onto the stack before the function parameters to reserve
space for the return value. Normally, the compiler provides this zero automatically; however, if
stacked parameters are used, you must arrange for this zero. For example,

INTEGER PROCEDURE COMPUTE(N);VALUE N; ... ;
ASSEMBLE (ZERO);
TOS:=A;
B:= COMPUTE(*)+ 1000;

For more details on calling procedures and subroutines, see "Procedure Call Statement" and "Sub­
routine Call Statement" in paragraphs 5-8 through 5-13.

Procedure calls use the PCAL instruction and subroutine calls use the SCAL instruction.

4-7. BIT OPERATIONS

Bit operations can be used in any type of expression. Bit extraction is the extraction of a contiguous bit
field starting at a particular bit position. Bit concatenation consists of extracting a bit field from a
specified position in one quantity and depositing it at a specified position in another quantity. Bit
shifts allow values to be shifted left or right, arithmetically, circularly, or logically. All bit operations
are performed on copies of the specified quantities so that the original variables remain unchanged.

A simple-variable of type BYTE is stored in bits 0-7. However, before performing a bit operation, the
value is loaded onto the stack into bits 8-15. Therefore, bit operations using BYTE simple-variables
should use bits 8 through 15 instead of 0 through 7.

Bit extraction and concatenation are defined for one-word quantities only. Bit shifts are provided for
one-, two-, three-, and four-word quantities. See "Assignment Statement" later in this section for bit
deposit.

4-8. BIT EXTRACTION

The purpose of bit extraction is to isolate a contiguous bit field from the 16 bits of a one-word value.
The result is a right justified value with leading bits set to zero. The maximum field that can be
extracted in a single operation is 15 bits. Bit extraction uses the EXF (extract field) instruction.
Extraction starts with the bit of the source specified by left-source-bit and continues to the right for the
number of bits indicated by length, wrapping around to bit 0, if necessary.

4-6

where

source
is a single-word integer, logical, or byte primary from which the bits are extracted. Refer to para­
graphs 4-11 and 4-14 for the definition of primary.

left-source-bit
specifies the bit of the source word at which the extraction begins. The left-source-bit is any unsigned
decimal, based, composite, or equated integer constant from 0 to 15 inclusive.

length
specifies the number of bits to be extracted. The length is any unsigned decimal, based, composite, or
equated integer constant from 1 to 15 inclusive.

See figure 4-2 for a sample bit extraction.

4-9. Bit Concatenation (Merging)

Concatenation permits the formation of a new value by extracting a bit field from one word and
depositing it at a specified position in another word. The left-dest-bit indicates in which bit position of
the destination primary to deposit the field extracted from the source primary. The left-source-bit
indicates at which position in the source primary to begin extracting the bit field. The length indicates
how many contiguous bits to extract and subsequently deposit. Bit concatenation uses both the EXF
(extract field) and DPF (deposit field) instructions which are described in the Instruction Set Reference
Manual.

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Al 0 I 1 0 0 I 1 1 I 1 I 0 I o 1 l 1 1 0 I 1 I 0 I 1 I o I

A (8:3) =I 0 0 I 0 I ol 0 0 o I 0 I o I o I 0 o I 0 0 I 1 d

Figure 4-2. Bit Extraction

A CAT. B(8:4::2)''.:·

A CAT %23(6:11:5) .
· %(16)69A2 CAT ·%(l6)ABCD .(8:4:4) ..

4-7

where

source
specifies the item from which bits are extracted. The source is a single-word integer, logical, or byte
primary (defined under "Arithmetic Expressions" and ''Logical Expressions" later in this section).

destination
specifies the value into which bits are deposited. The destination is a single-word integer, logical, or
byte primary (defined under "Arithmetic Expressions" and "Logical Expressions" later in this section).

left-source-bit
specifies the starting bit position of the bit extraction. It is an unsigned decimal, based, composite, or
equated integer constant whose value is between 0 and 15 inclusive.

left-dest-bit
specifies the starting bit position of the bit deposit. It is an unsigned decimal, based, composite, or
equated integer constant whose value is between 0 and 15 inclusive.

length
specifies the numbe;:- of bits to be copied. The length is an unsigned decimal, based, composite, or
equated integer constant whose value is between 1 and 15 inclusive.

See figure 4-3 for a sample bit concatenation.

A B

0 0 1 0 1 0 0 1 0 1 0 0 0 1

A CAT 8(8:4:2) I 1 I 0 I 1 I 0 I 0 I 0 I 1 I 1 I 0 I 0 I 1 I 0 I 1 I 1 I 1 I 0 I
0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 4-3. Bit Concatenation

4-10. BIT SHIFTS

In the bit shifts, the shift-op is a mnemonic for a hardware shift operation. Consult the hardware
documentation for complete details. In general, logical shifts fill with zero bits as they shift left or
right; arithmetic shifts preserve the sign bit on a left shift, and fill with zeros, and propagate the sign
bit on a right shift (in other words, fill with the sign bit); and circular shifts do not have a fill bit (that
is, bits shifted off one end are shifted in at the other end). SPL does not perform type or word size tests.
If a multiple-word shift is specified, you are responsible for ensuring that the proper number of words
(2, 3, or 4) is on the stack. Note that if the shift count is not a constant less than 64, the index register is
used.

4-8

where

operand
is an arithmetic or logical primary of any SPL type (see "Arithmetic Expressions" and "Logical
Expressions" later in this section).

shift-op
specifies the shift operation to be performed. The shift-op is one of the following: LSL, LSR, ASL, ASR,
CSL,CSR,DASL,DASR,DLSL,DLSR,DCSL,DCSR,TASL,TASR,TNSL,QASR,orQASL.

shift-count
specifies the number of bits to be shifted. The shift-count is an integer expression (described in
"Arithmetic Expressions" later is this section).

See figure 4-4 for some sample bit shift operations.

4-9

A

A & LSL(3)

A

A & LSR(3)

A

A & ASL(J)

A

A & ASR(3)

A

A & CSL(3)

A

A & CSR(3)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
1y1 0 I 0 I I I 1 I 0 I 0 lolo/I

lost

I 0 I 0 I

0

0

0 I I I 1 I 0 I 0 I 0 0 0 I

0 0 0 0 0 0 0

0 0 0 0 0

lost

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0

Figure 4-4. Bit Shift Operations

4-10

I 0 I 0 I 0 I
lost

0

0

lost

0

4-11. ARITHMETIC EXPRESSIONS

An arithmetic expression is a sequence of operations upon numeric data which results in a single­
value of a specific data type. Execution of operators occurs left-to-right unless higher precedence
operators or parentheses are encountered. Type mixing of operands across operators is not allowed, but
type transfer functions are provided. Primaries, the basic components of an arithmetic expression, can
be constants, variables, bit expressions, arithmetic expressions in parentheses or backward slashes
(absolute value), function designators, or assignment statements in parentheses.

where

sign
is+ or - .

operator
is + ,- ,*,/,A, or MOD.

primary
is one of the following:

variable
constant
bit operation
(arithmetic expression)
'-arithmetic expression'­
function-designator
(assignment statement)

NOTE

Allowable exponentiation combinations are:

integer A integer
real A real
real A integer
long A long
long A integer

4-11

variable
designates an item whose value is determined at execution time and can be dynamically changed. The
form of a variable is described earlier in this section.

constant
designates a value which is established at compile-time and cannot change during execution. The
various constant types and their forms are described in section II.

bit-operation
is a bit-extraction, bit-concatenation, or bit-shift as described earlier in this section. The value used in
the expression is the result obtained after performing the bit-operation.

function-designator
specifies a call to a procedure which returns a value. The form of a function-designator is described
earlier in this section.

assignment-statement
specifies that an expression is to be evaluated and the result assigned to a variable or variables before
being used in the evaluation of the outer expression. The form of the assignment-statement is described
later in this section.

4-12. SEQUENCE OF OPERATIONS

Arithmetic operations are ranked in order of precedence to determine the relative order in which
operations are executed. Higher precedence operations are performed first. When operations are of the
same rank, execution proceeds from left to right. The ranks, from highest to lowest, are:

1. Bit operations
Expressions in parentheses
Expressions in backward slashes (absolute value)
Function designators
Assignment statements in parentheses

(value assigned to variable and left on the stack)

2. Exponentiation (A, circumflex character)
(defined for integer, real, and long data, plus real to integer power and long to integer power)

3. Multiply (*) and divide(/) for integer, real, byte, double, and long data.
Modulo (MOD) or remainder for integer, byte, and double data.

4. Addition (+) and subtraction (-) for integer, real, byte, double, and long data.

The order in which operations are performed is determined by this rank. For example,

A-B+C
LC__J

Operators of the same rank are performed from left to right.

result

4-12

A+B*C

L__JJ
result

(A+B)*C

L2_J
result

A-B+C*D E

T_Y
result

A (B-C)*D/E MOD F G

~ T

Operators of different rank are performed according to their posi­
tion in the hierarchy of operators (highest rank first).

Operators enclosed in parentheses take precedence over operators
outside of parentheses, even those of higher rank.

Left-to-right order is maintained until an operator occurs that is
of lower rank than the next operator or the next item is in
parentheses.

result

4-13. TYPE MIXING

Mixing of data types across operands is not allowed in SPL, except that real and long values can be
exponentiated to integer powers. Type transfer functions are available to handle conflicts (see "Ex­
pression Types" earlier in this section).

The type of operands determines the type of both the operation result and the operator used. Integer
operations are used when the operands are of type byte.

4-14. LOGICAL EXPRESSIONS

Logical expressions are evaluated in the same manner as arithmetic expressions. However, logical
expressions use more and different operators; allow only data of type LOGICAL and provide special
constructs, such as byte comparisons. The result of a logical expression is a logical value which can be
interpreted as a 16-bit unsigned integer or as true (odd) or false (even). The truth value of a logical
expression can be used to make decisions (see "IF Statement" in paragraph 5-6). Logical primaries can
be logical constants, variables, bit expressions, expressions in parentheses, functions, or assignment
statements in pareptheses, or the complement of any logical primary. The operators LAND (~ogical
AND) and LOR (Logical OR) should not be confused with AND and OR as used in the IF Statement.

4-13

where

operator
is LOR (Logical OR), XOR (Logical Exclusive OR), or LAND (Logical AND).

4-14

relational-operator
is>,<,=,<>,>=, or<=.

logical-operator
is +,-,/,MOD,**,!/, or MODD.

byte-compare
is a comparison of a byte array with another byte array, a string constant or constants, or a test of the
character type of a byte variable. See paragraph 4-17.

lower-value
is the lower bound of a range comparison. The lower-value is an integer expression.

test-value
is the value which is tested for being within the range of the lower and upper values. The test-value is
an integer expression.

upper-value
is the upper bound of a range comparison. The upper-value is an integer expression.

"Lesstn.an
~s·. ;tJ.ian or .equal to:

· ~qu~l,. to.. .
Notequalto
Greater than

4-15

The purpose ot a logical expression is to evaluate certain conditions and relations to produce a value
which can be interpreted either arithmetically (as a 16-bit positive number) or logically (as either
TRUE or FALSE). A logical expression is not a statement of fact, but an assertion that may be true or
false at any given time.

Logical quantities in SPL are 16-bit positive integers (see paragraph 2-7). A logical value is true if its
integer value is odd, false if its value is even (that is, only bit 15 is checked). The reserved words TRUE
and FALSE are equivalent to the numeric values -1 and 0 (% 177777 and% 000000) respectively.

In general, the result of a logical expression is left as a full word operand on the top of the stack. This
result is either a -1 or 0 when a relational operator is encountered. However, when the result of a
relational operator is used in a condition clause to make a decision (see IF Statement), the result is not
left on the stack but the condition code in the status register is set.

4-15. SEQUENCE OF OPERATIONS

Logical operations are ranked in order of precedence to determine the order in which the operations
are performed. Higher precedence operations are performed first. When operations are of the same
precedence, execution proceeds from left-to-right. All operands and results are type LOGICAL,
unless otherwise noted. There are seven ranks of operations as shown below:

1. Logical bit operation
Logical-expression in parentheses
Logical function-designator
Logical assignment statement in parentheses
NOT (unary one's complement)

2. * (Logical multiply, one-word result)
(Logical divide, one-word dividend) I

MOD (Logical modulo or remainder, one-word dividend) Note: The MOD and MODD op-

(Logical multiply, result is type double) / eratio~~ divim: the ~ividend by **
II
MODD

(L · 1 d" "d d" "d d · d bl) the divisor, discarding the quo-
ogica IVI e, IVI en IS type OU e tient and yielding the remainder

(Logical modulo or remainder, dividend is type double) as the result. See example with
the assignment statement, para­

3. + (Logical addition)
(Logical subtraction)

4. Algebraic and logical comparisons (= , < >, < ,>, < = ,> =)
Byte comparisons and tests

5. LAND (Logical and)

6. XOR (Logical exclusive or)

7. LOR (Logical inclusive or)
Integer range test (su,ch as, I < = J < = K)

4-16. TYPE MIXING

graph 4-20.

You cannot mix data types across operands in SPL; however, type transfer functions are available to
handle conflicts. In logical expressions, logical operands are used except when the both operands are
arithmetic and the result is logical (compares, byte tests, and range tests). See paragraph 4-1 for the
type transfer functions.

4-16

4-17. COMPARING BYTE STRINGS

Logical expressions provide a mechanism for comparing byte strings to determine whether a particu­
lar relation between them is true or false. The test is made using the CMPB (compare bytes)
instruction. The byte strings are compared, byte by byte, using their numeric values until the
compared bytes are unequal or until a specified number of comparisons has been made. If the specified
relation (< ,> ,= ,<= ,>=, or<>) holds, the result is TRUE (-1); otherwise, it is FALSE (0).

The form of a byte-compare is one of the following:

byte-reference relational-operator byte-reference ,(count) [,stack-decrement]

byte-reference relational-operator *PB,(count) [,stack-decrement]

byte-reference relational-operator string-constant [,stack-decrement]

byte-reference relational-operator (value-group, ... , value-group) [,stack-decrement]

byte-variable {= } {ALPHA }
<> NUMERIC

SPECIAL

EXAMPLES:

where

A<B,(5),2
B(5) >= *PB,(5)
* <= "ABC"
A<> NUMERIC

byte-reference
is one of the following:

1. arraY.-name [(index)]
2. pointer-name [(index)]
3. *

array-name
is an identifier declared in an array declaration.

pointer-name
is an identifier declared in a pointer declaration.

index
is either an expression or an assignment statement of type integer, logical, or byte. If an index is not
specified, then zero is assumed.

count
is the number of bytes to compare. The count is an integer expression. A positive count specifies
left-to-right comparison and a negative count specifies right-to-left.

4-17

stack-decrement
indicates how many words to delete from the stack after the compare. The stack-decrement is an
unsigned integer constant between 0 and 3 inclusive. If not specified, a stack-decrement of 3 is used.

value-group
is either of the following:

constant
repetition-factor (constant [, ... ,constant]-)

repetition-factor
specifies the number of times the constant list is used before going to the next value-group. The
repetition-factor is an unsigned decimal, based, composite, or equated single-word integer constant.

The string to the left of the relational operator can be specified by a byte pointer or array reference
(DB-relative only) or a stacked DB byte address(*)~ The asterisk specifies that you have already loaded
the byte address onto the stack. ·

The string to the right of the relational operator can be specified by a byte pointer or array reference
(DB- or PB-relative), a stacked DB address(*), a stacked PB address (*PB), a string constant, or a list
of constants in parentheses.

The absolute value of the count specifies how many bytes to compare. A positive count specifies
left-to-right comparison while a negative count specifies right-to-left comparison.

The stack-decrement specifies how many values to delete from the stack at the end of the compare
operation. If a stack-decrement is not specified, all three values are deleted. The contents of the stack
during the comparison are shown below:

S-2

S-1

S-0

first address

second address

count

Byte comparisons can be passed by-value as parameters to procedures and subroutines; however, some
extra requirements apply:

1. If a stack-decrement is allowed but not specified and the byte-comparison is not the last actual
parameter, the byte-comparison must be enclosed in parentheses. For example,

P(A,(B< C,(3)),2);

2. Byte comparisons which use stacked values must be enclosed in parentheses and all parameters to
the left must be stacked prior to stacking the values to the byte-comparison. For example,

P(* ,(*= * ,(5)));

4-18

4-18. CONDITION CLAUSES

Condition clauses are used in IF expressions, IF statements, DO statements, and WHILE statements.
Two types of operands are used in condition clauses: logical-expressions and hardware branch words.
Both types of operands result in a value of true or false. These operands can be combined using AND
and OR. If two items are combined with OR, the result is true if either item is true or if both items are
true. If two items are combined with AND, the result is true only if both items are true. AND has
higher precedence than OR, but you can use parentheses around OR'ed expressions to override this
precedence. Parentheses cannot be used around items combined with AND.

where

condition-term
is either of the following:

condition-primary
(condition-primary [OR condition-primary] ... OR condition-primary)

condition-primary
is either true or false. The condition-primary is one of the following:

branch-word
logical-expression

branch-word
is one of the following: CARRY, NOCARRY, OVERFLOW, NOVERFLOW, IABZ, DABZ, IXBZ,
DXBZ,=,<>,<,>,<=, or>=.

4-19

The hardware branch words test the Status Register, the Index Register, or the Top of Stack as shown
below:

OR and AND generate branch instructions instead of arithmetic ANDs and ORs. All parts of a
condition are not always executed since OR·and AND branch out of the condition as soon as the truth
value of the condition is determined. For example, if a series of items is joined by ANDs and the first
item is false, the whole condition is false so the remaining items are not checked.

NOTE

The CARRY and OVERFLOW bits are cleared after being tested.
The Condition Code, Index Register, and TOS are unaffected by
being tested.

Extreme care must be taken when using the SPL condition clause to check condition codes returned
from intrinsics. The IF>, IF< constructs are only correct if no machine instruction that sets
condition code is executed between the setting and checking the condition code. The LDX, XCH,
STAX instructions, for example, are all used when SPL indexes into arrays. All of these modify the
condition code.

if<> then quit(O);

00021
00022
00023
00024
00025
00026
00027

LOAD P+OOO
ZERO, NOP
ADDS, 016
LDI, 000
PCAL~ , .. · Q,9() .

rh.STA:X',;'.
STOR PB 001,1,X

The IF statement in the above example does not test the condition code for the F'OPEN procedure. It
reflects the condition code set by the XCH. STAX instruction.

4-20

4-19. IF EXPRESSIONS

Expressions are used to determine values to be used in statements. The IF expression consists of a
condition-clause and two alternative expressions. The condition-clause is a combination of logical
expressions and hardware branch words which results in a true or false value. The two expressions
must be of the same word size (byte is treated as one word). If the condition-clause is true, the value of
the IF expression is the value of the expression after the THEN; if the condition-clause if false, the
value of the IF expression is the value of the expression after the ELSE. The definition of condition­
clause is given earlier in this section.

where

condition-clause
determines which value to use as the value of the expression. The form of a condition-clause is
described earlier in this section.

true-value
is the value of the expression if the condition-clause is true.

false-value
is the value of the expression if the condition-clause is false .

. 4-21

4-20. ASSIGNMENT STATEMENT

'l'he assignment statement stores the result of an expression evaluation into a variable of the same
size. Multiple assignments allow the same result to be stored in several variables. Bit deposits allow a
one-word result to be stored into a variable starting at a specific bit position.

where

variable
designates the item(s) to which the value of the expression is assigned. The form of a variable is
described earlier in this section.

left-deposit-bit
specifies the starting bit position of a bit deposit. The left-deposit-bit is an unsigned decimal, based,
composite, or equated integer constant between 0 and 15 inclusive.

length
specifies the number of bits to be stored. The length is an unsigned decimal, based, composite, or
equated integer constant between 1 and 15 inclusive.

expression
is evaluated to determine the value to store into the variable(s) on the left of the assignment operator.
The expression is an arithmetic or logical-expression whose result is the same word size, although not
necessarily the same data type, as the variable(s).

The result of the expression evaluation is stored in the variable(s) specified on the left side of the
assignment operator(:=) or(_). Blanks cannot be embedded between the colon and the equals sign of
an assignment operator. The result must be the same word size, but not necessarily the same data
type, as the assignment variable. Type BYTE is treated as a one-word quantity.

When a deposit field is specified, the expression result must be a one-word quantity. The rightmost n
bits of the result, where n is the deposit field length, are stored in the variable starting with the bit
position specified. Note that only the leftmost assignment can be a deposit field.

4-22

An assignment statement can be used as a term in an expression. In this case, the result of the
expression in the assignment statement is first stored into the variable(s) and then used as the value of
the term in the outer expression. For example, the statement:

J:= K+ (I:= I+ 1)- M;

is equivalent to the sequence of statements:

I:= I+ 1;
J:=K+I-M;

Note that a semicolon is not used to terminate an assignment statement used within an expression.

Assignment statements canals? be used as array or pointer subscripts and as call-by-value parame­
ters to procedures and subroutines. Array subscripts on the left side of an assignment statement can be
evaluated either before or after the expression on the right side of the assignment statement depend­
ing on the complexity of the subscript. Therefore, you should avoid changing the value of a variable on
the right side of an assignment statement if the variable is used as a subscript on the left of the
assignment statement. For example,

A(l):= B(I:= I+ 1);

is not evaluated the same as:

A(I+ 0):= B(I:= I+ 1);

In the first case, I is incremented and then used as the subscript for both Band A. In the second case,
the original value of I is used as the subscript of A. In general, if a subscript which is used on the left
side of an assignment statement is evaluated without using the top of the stack, the evaluation of the
subscript is done just prior to storing the value in the array element. Subscripts in this category
include:

For example,

Simple variables
Increment by one
Decrement by one
Addition of zero
Subtraction of zero

A(I:= I+ 1):= B(I:= I+ 2);

is evaluated as:

I:= I+ 1;
I:= I+ 2;
A(l):= B(l);

(l)
(I:= I+ 1)
(I:= I-1)
(I:= I+ 0)
(I:= I- 0)

Note that ifthe left-side subscript is itself an assignment statement, it is executed before the right side
of the outer assignment statement is evaluated even though the subscript used to determine the
element being stored into may not be evaluated until afterwards. However, if the left side subscript

4-23

uses the top of.the stack, the evaluation of the right side expression does not effect the value of the left
side subscript. For example,

A(l:= I+ 2):= B(I:= I+ 1);

is evaluated the same as:

I:= I+ 2;
I:= I+ 1;
A(I- 1):= B(I);

If in doubt, you can use the $CONTROL INNERLIST option to check the code which the compiler
generates (see paragraph 9-2).

The following examples illustrate the use of assignment statements involving type DOUBLE data
and the logical operators**,//, and MODD:

LOGICAL Ll:= 20000, L2:= 2, L3:= 3;
DOUBLE Dl;
Dl:= Ll**L2 << Dl:= 40000D >>
L4:= Dl//L3 << L4:= 13333 >> ;
L5:= DI MODD L3 << L5:= 1 >>

Product
Quotient
Remainder

Care should be taken to ensure that the result of the logical operators I I and MODD is a one-word
quantity. Any other result causes an integer overflow.

4-24

4-21. MOVE STATEMENT

The MOVE statement moves words or bytes from one location to another. The locations can be either
DB- or PB-relative. Move operations do not change the contents of the source. There are three types of
move operations corresponding to the three types of hardware move instructions:

• Move words (MOVE, MVBL, and MVLB)
• Move bytes (MVB)
• Move bytes while alphabetic and/or numeric with or without upshifting (MVBW)

The MOV~ statement can also perform as an arithmetic function by returning the number of bytes or
words moved. In this case, it can be used anywhere an integer function is appropriate; however, no
stack-decrement is allowed in order to avoid possible corruption of the stack with the use of expressions.

where

destination
specifies the starting location to be stored into. The destination is one of the following:

array-name[(index)]
pointer-name[(index)]

*

source
specifies the starting location of the item to be copied. The source is either of the following:

array-name[(index)]
pointer-name[(index)]

NOTE

Destination and source addresses are byte addresses for byte
moves and word addresses for word moves.

array-name
is an identifier declared in an array declaration.

pointer-name
is an identifier declared in a pointer declaration.

index
is either an expression or an assignment statement of type integer, logical, or byte. If an index is not
specified, then zero is assumed.

count
is the number of bytes or words to move. The count is an integer expression. A positive count specifies
left-to-right move and a negative count specifies right-to-left.

stack-decrement
indicates how many words to delete from the stack after the move. The stack-decrement is an unsigned
integer constant between 0 and 3 inclusive for a MOVE and between 0 and 2 inclusive for a MOVE
WHILE. If not specified, a stack-decrement of 3 is used for a MOVE and 2 for a MOVE WHILE.

value-group-list
is either of the following:

value-group
value-group, value-group-list

value-group
is either of the following:

constant
repetition-factor (constant [, ... ,constant])

repetition-factor
specifies the number of times the constant list is used before going to the next value-group. The
repetition-factor is an unsigned decimal, based, composite, or equated single-word integer constant.

condition
specifies the criteria for continuing the move to the next character. The condition is one of the
following: A,N ,AS, AN, or ANS.

4-26

The move statements in SPL are machine dependent because they are based on specific hardware
instructions.

The first reference after the MOVE is the destination; the item after the assignment operator(:=) is
the source. INTEGER, REAL, LONG, and DOUBLE arrays use the move words instructions whereas
BYTE arrays use the move bytes instructions. When the source is a string or a list of constants, the
constants are generated in the code stream and moved from there. The syntax for the list of constants
is the same as for a list of constants used to initialize an array in an array declaration.

Where * or *PB appears in place of an address, the DB- or PB-relative address must have been
previously loaded onto the stack by the user. The source can be PB-relative except when the
MOVE ... WHILE statement is used. The destination cannot be PB-relative. If both addresses are
stacked, a byte move is assumed.

The count is an integer expression that specifies the number of words or bytes to move; a positive count
indicates a left-to-right move and a negative count indicates a right-to-left move. At the completion of
the move, the count equals zero and the addresses have been changed to point to the character fol­
lowing the last character moved.

After the move operation is complete, destination and source address point to the next word (not moved
or overlayed) and can be examined, stored, or left in the stack for use by a subsequent MOVE or SCAN
statement. The stack-decrement operand is then used to delete 0, 1, 2, or all 3 of the parameters from
the stack. A blank stack-decrement field generates an automatic stack-decrement of 3 -delete all three
values from the stack. Count always equals 0 and can safely be deleted (sdec = 1). The stack-decrement
mechanism is used for all move-scan statements.

The following code sample illustrates the use of the stack-decrement operand to return the number of
words or bytes moved.

BEGIN

INTEGER LEN;
BYTE ARRAY BUFF (0:20);
MOVE BUFF:="ABCDEFGHIJKLMN0",2; < <2=RETAIN DESTINATION ADDRESP­
LEN:=TOS-LOGICAL(@BUFF);

END

4-27

The stacked values used by the move words and move bytes instructions are shown below:

S-2

S-1

S-0

destination address

source address

count

The stacked values used for a move bytes while instruction are:

S-1 c=-=J destination address

S-0 ~ source address

In a MOVE ... WHILE statement, the condition specifies the condition for continuing the move to the
next character. The conditions are shown below:

A Current character is alphabetic
N Current character is numeric
AS Current char'."3,...+~:ff is alphabetic; upshift if lower case
AN Current character is alphabetic or numeric
ANS Current character is alphabetic or numeric; upshift if lower case

WARNING

The normal checks and limitations that apply to the standard
users in MPE are bypassed in privileged mode. It is possible for a
privileged mode program to destroy system integrity, including
the MPE operating system software itself. Hewlett-Packard can­
not be responsible for system integrity when programs written by
users operate in privileged mode.

4-21A. MOVEX STATEMENT

The MOVEX instruction is intended specifically for privileged users requiring extra data segments
(see section 8-1, split-stack mode). It facilitates the writing of high-level code increasing its reliability.
This instruction performs word moves only, not byte moves. Three machine instructions relating to
data segments are generated, depending on the move. They are as follows:

MFDS Move from extra data segment to stack
MTDS Move to extra data segment from stack
MDS Move between extra data segments

4-28

If the move is confined to a single data segment, a DB-relative MOVE is generated. Please refer to
section 3-10 for information about DATASEG declarations.

where

destination and source
specify the starting location of the words to be moved (source), and the starting location where the
words will be stored (destination). Locations must be one of the following:

Either DB-relative pointers (for MFDS and MTDS), DATASEG or DATASEG-relative identifiers (for
static XDS moves), or integer expressions (for dynamically calculated XDS numbers). In the latter
case, DATASEG~relative identifiers are not permitted in the expression.

offset
(Optional) The beginning offset into the XDS. It can be either a constant or an integer expression that
is valid within any containing $SPLIT or WITH. An offset is not permitted when the pointer is
DB-relative (as opposed to DATASEG-relative).

length
is the number of words to be moved.

stack-decrement
is an unsigned integer constant indicating how many words to delete from the stack after the move. The
default value is 5 for MFDS and MTDS, and 4 for MDS. For any extra data segment move, the maximum
value is 7. If a stack-decrement larger than 3 is specified for a DB-relative move, a warning is generated
and 3 is used.

4-29

4-22. SCAN STATEMENT

The SCAN statement is used to search for either of two specified characters (the test and terminal
characters) in a contiguous string of bytes without actually moving any data. When the statement ends,
pointers and indicators are left to show what was found and where. The scan statements in SPL are
machine-dependent because they are based on specific hardware instructions. There are two scan
operations corresponding to the two hardware scan instructions:

• Scan until a test character is found (SCU instruction).
• Scan while a test character is found (SCW instruction).

The SCAN statement can also be used as an arithmetic function to return the number of bytes or words
scanned. In this case, it can be used anywhere an integer function is appropriate; however, no
stack-decrement is allowed in order to avoid pos~ible corruption of the stack with the use of expressions.

where

byte-reference
is one of the following:

array-name [(index)]
pointer-name [(index)]

*

array-name
is an identifier declared in an array declaration.

pointer-name
is an identifier declared in a pointer declaration.

4-30

index
is either an expression or an assignment statement of type integer, logical, or byte. If an index is not
specified, then zero is assumed.

testword
is one of the following:

A decimal, based, composite, or equated single-word integer constant.
A simple-variable of type INTEGER or LOGICAL.
rrtest-character"
rrterminal-character test-character"

*
terminal-character
is any ASCII character. Note that" is represented by "".

test-character
is any ASCII character. Note that" is represented by 'm.

stack-decrement
indicates how many words to delete from the stack after the SCAN. The stack-decrement is an
unsigned integer constant between 0 and 2 inclusive. If not specified, a stack-decrement of 2 is used.

The byte-reference which specifies where to start scanning can be a byte array reference, a byte pointer
reference, or an asterisk (*) to indicate that the DB-relative address is already on the stack. PB­
relative arrays cannot be scanned. If either an array or pointer reference is specified, the address is
loaded onto the stack.

The testword is an integer or logical simple variable, an integer constant, or a one- or two-character
string where the first character (bits 0 through 7) specifies the terminal~character and the second
character (bits 8 through 15) specifies the test-character. If no terminal-character is specified, bits 0
through 7 are zero-filled. In both cases, each byte in the two-character string is tested against both the
test and terminal characters.

In a SCAN UNTIL, the scan continues until either the test-character or the terminal-character is
found. In a SCAN WHILE, the scan continues until a byte is found that matches the terminal­
character or does not match the test-character. The carry bit in the status register is set to 0 after a scan
to indicate that the test-character was found; it is set to 1 to indicate the terminal-character was found.
This bit can be tested with the IF statement:

IF CARRY THEN ... ;
IF NOCARRY THEN ... ;

The carry bit is cleared after being tested. The stack-decrement specifies how many words to delete
from the stack after the scan operation. The stack-decrement is very important in a scan operation
because when the scan terminates, the address of the terminating byte can be left in the stack. The
stack for a SCAN UNTIL or a SCAN WHILE appears as shown below:

S-1 [I byte address

S-0 C=.=J testword

4-31

A stack-decrement of 1 deletes the testword but leaves the byte address which can be saved as follows:

SCAN'STOP:= TOS;

An empty stack-decrement field generates a stack-decrement of 2 and leaves the stack as it was before
the scan statement.

The following code sample illustrates the SCAN UNTIL operation. After the last statement shown~ the
pointer is pointing to the first "O" character.

BYTE POINTER PTR;
BYTE ARRAY CHAR (0:30) := ''AAAAAAAAAAAAAOAAAAAAAAAAAAAAAA'';
SCAN CHAR UNTIL "ZO" ,1;
@PTR:=TOS;

In the SCAN WHILE example below, the address of PTR will point to the first non-'A' character.

BYTE POINTER PTR;
BYTE ARRAY CHAR (0:30) : = "AAAAAAAAAAAAAAOAAAAAAAAAAAAAAAA";
SCAN CHAR WHILE "ZA" ,l;
@PTR:=TOS;

4-32

l
lUIMi'I

.....____P_Ro_o_RA_M_co_N_T_Ro_L_s_TA_T_EM_E_N_Ts~_ I v
1

5-1. PROGRAM CONTROL

Program execution normally proceeds sequentially from statement to statement. By using control
statements, you can alter this sequence by transferring control to another statement, by executing a
group of statements (a procedure or a subroutine) and then returning to the original flow, or by
repeating a pre-determined group of statements. Statements in a program to which control is to be
passed are labeled by identifiers preceding the statement. A colon(:) is used to separate the label from
the statement. Procedures and subroutines are named by identifiers in declarations (see section VII).

This section covers the following control statements:

• GO TO statement

• DO statement

• WHILE statement

• FOR statement

• IF statement

• CASE statement

• Procedure call statement

• Subroutine call statement

• RETURN statement

5-1

5-2. GO TO STATEMENT

The GO TO statement is used to transfer control to a labeled statement. There are two forms of the GO
TO statement: the unconditional form and the indexed form. When an unconditional GO TO statement
is executed, control is transferred to the statement specified. An indexed GO TO statement is used to
invoke a switch to selectively transfer to one of several statements.

where

label
identifies the statement to which control is transferred. The label is an identifier which is used to label
a statement other than an entry-point.

switch-name
identifies the switch to be invoked. The switch-name is an identifier which has been declared in a
switch declaration.

index
indicates which label in the switch declaration is to be used. The index is an expression or assignment
statement whose result is a single-word value.

The three forms GO, GOTO, and GO TO are equivalent. In an indexed GO TO statement, bounds
checking is performed on the index value unless an asterisk (*) is used before the switch-name.

The object of a GO TO statement in the main-body must be a global label or switch-name and the object
of a GO TO statement in a procedure or subroutine must be a local label or switch-name. You cannot
use a GO TO statement to transfer into a procedure and you can only use a GO TO statement to
transfer out of a procedure if the label has been passed to the procedure as a parameter. Switches
cannot be passed as parameters.

Switches are invoked using an indexed GO TO statement; the index is an integer value that specifies
the label desired. Labels in a switch declaration are numbered consecutively starting with 0. Nor­
mally, if the index value is less than zero or greater than the number oflabels minus one, control is
transferred to the statement following the GO TO statement. However, if the asterisk option is
specified, bounds checking is not performed and invalid indexes cause unpredictable results. When a
switch is invoked, the index value is stored in the index register.

5-2

NOTE

A switch cannot be invoked within a subroutine nor can any
labels assigned to a switch appear in a subroutine.

5-3

5-3. DO STATEMENT

The DO statement is used to repeatedly execute a statement until a specified condtion-clause becomes
true. When the condition-clause is true, control is transferred to the next statement after the DO
statement.

where

loop-statement
is the statement which is executed each pass through the loop. The loop-statement may be either a
simple or compound statement including another DO statement.

condition-clause
determines whether or not to execute the loop-statement another time. See paragraph 4-18 for the form
of a condition-clause.

Note that a semicolon is not used to separate the loop-statement from the reserved word UNTIL.

After the loop-statement is executed, the condition-clause is evaluated and tested. If the condition­
clause is false, the loop-statement is executed again; if the condition-clause is true, control is trans­
ferred to the statement following the DO statement. The condition-clause is evaluated and tested after
each execution of the loop-statement (the loop-statement is always executed at least once).

5-4

5-4. WHILE STATEMENT

The WHILE statement is used to repeatedly execute a statement as long as a specified condition-clause
is true. The WHILE statement differs from the DO statement in that the condition-clause is tested
before executing the loop-statement instead of after and the condition-clause must be true for the
loop-statement to be executed instead of false. When the condition-clause is false, control is transferred
to the statement following the WHILE statement.

where

condition-clause
determines whether or not to execute the loop-statement. See paragraph 4-18 for the form of a
condition-clause.

loop-statement
is the statement which is executed each pass through the loop while the condition-clause is true. The
loop-statement may be either a simple or compound statement including another WHILE statement.

The condition-clause is always tested before executing the loop-statement. Thus, if the condition-clause
is false on the first pass, the loop-statement will not be executed at all. The condition-clause consists of
logical-expressions and hardware branch words as described in paragraph 4-18. However, the follow­
ing branch words have different meanings when used in a WHILE statement:

IABZ
DABZ
IXBZ
DXBZ

Increment TOS. Execute loop-statement if TOS is non-zero.
Decrement TOS. Execute loop-statement if TOS is non-zero.
Increment the index register. Execute loop-statement if the index-register is non-zero.
Decrement the index register. Execute loop-statement ifthe index-register is non-zero.

5-5

5-5. FOR STATEMENT

The FOR statement is used to repeatedly execute a statement, changing an integer test-variable by a
specified amount each time, until the test variable exceeds a specified limit. The FOR statement uses
hardware loop control instructions which require special stack markers so you should be very careful
when performing your own stack manipulation within a FOR statement.

where

test-variable
is the variable which is altered by the step-value each pass through the loop and is tested for exceeding
the ending-value. The test-variable is an integer simple-variable.

starting-value
is the value assigned to the test-variable before the first pass through the loop. The starting-value is an
INTEGER, LOGICAL, or BYTE expression.

step-value
is the amount by which the test-variable is changed each time the loop is executed. The step-value is an
INTEGER expression. If omitted, a step-value of 1 is used.

ending-value
is the value against which the test-variable is tested each pass through the loop to determine whether
or not to execute the loop-statement again. The ending-value is an integer expression.

loop-statement
is the statement which is executed each pass through the loop. The loop-statement may be either a
simple or compound statement including another FOR statement.

The starting-value, step-value, and ending-value are calculated once upon entry into the FOR state­
ment. The starting-value is stored into the test-variable and tested before the loop-statement is first
executed. After each execution of the loop-statement, the variable is changed by the step-value and
compared with the ending-value. If the step-value is positive and the test-variable is less than or equal
to the ending-value, the loop-statement is executed again. If the test-variable is greater than the
ending-value, control is transferred to the statement after the FOR statement. For negative step­
values, the loop is executed again if the test-variable is greater than or equal to the ending-value. After
the FOR statement is executed, the test-variable contains the value which exceeds the ending-value.

5-6

Thus, the statement:

FOR J:= 1 UNTIL 10 DO ... ;

executes the loop-statement 10 times and J has a value of 11 when the loop is completed.

You can use an asterisk (*) after FOR to specify that the loop-statement is to be executed once without
testing the test-variable against the ending-value. This guarantees that the loop-statement is executed
at least once even if the starting-value is past the ending-value.

CAUTIONS in the Use of FOR Statements

If the test-variable is equivalenced to the index register, the TBX and MTBX instructions are used for
loop-control; otherwise, the TBA and MTBA instructions are used. Since all of these instructions use
values placed in the stack, if you alter the stack during the execution of the loop-statement, unpredict­
able results may occur. Additionally, if you exit a FOR statement, for example, with a GO TO or
RETURN, from within the loop-statement, the test-variable address, the step-value, and the ending­
value are left on the stack. If the index register is used as the test-variable, any operation within the
loop-statement which changes the index register, such as array referencing, can destroy the loop
control.

Therefore, it would be prudent for the SPL/3000 programmer to observe the following rules.

• Do not use the stack explicitly within the loop statement without restoring any changes made
because this makes it impossible for the compiler to keep track of the control values in the stack.
(Do not refer to TOS, S-relative variables, or stacked parameters; these are further described in
Section VII.)

• Enter FOR statements only from the beginning. Never branch into the loop statement.

• Exit FOR statement~ only at the end, except for PCALs.

• Do not modify the index register in any way (without also restoring it) within the loop statement if a
variable equivalenced to the index register is being used as the loop control variable. (The compare
range construct is a little-known implicit use of the index register: A <= B <= C. Use of this
construct or subscripted variables within the loop statement will cause unpredictable results ifthe
loop variable is also the index register.) Executing a CASE statement embedded in a FOR loop will
modify the index register.

Table 5-1. Comparison of DO, WHILE, and FOR Statements

COMPARISON OF DO, WHILE, AND FOR STATEMENTS

DO STATEMENT

The condition-clause is evaluated and tested after the loop-statement is executed.
The loop-statement is repeated if the condition-clause is false.
The loop-statement is always executed at least once.

WHILE STATEMENT

The condition-clause is evaluated and tested before the loop-statement is executed.
The loop-statement is executed if the condition~clause is true.
The loop-statement is not always executed at least once.

FOR STATEMENT
The test-variable is checked before the loop-statement is executed.
The loop-statement is executed if the test-variable is less than or equal to the ending-value
(for positive step-values) or greater than or equal to the ending-value (for negative step­
values).
The loop-statement is always executed at least once if an asterisk is specified after the
reserved word FOR.

5-7

5-6. IF STATEMENT

The IF statement is used either to execute one of two alternative statements or to execute or skip a
single statement based on whether a condition-clause is true or false.

where

condition-clause
determines whether or not to execute the true-branch. The form of a condition-clause is described in
paragraph 4-18.

true-branch
is the statement which is executed if the condition-clause is true. The true-branch may be either a
simple or a compound statement including another IF statement.

false-branch
is the statement which is executed if the condition-clause is false. The false-branch may be either a
simple or compound statement including another IF statement.

There are two forms of the IF statement: single-branch and double-branch. The single-branch IF
statement is used when the two alternatives are to execute a statement or not to execute a statement.
If the condition-clause is true, the statement is executed and control proceeds to the statement after
the IF ~tatement, unless the true-branch has tranferred to another statement with a statement such as
a GO TO or RETURN. If the condition-clause is false, the true-branch statement is not executed and
control is transferred to the statement after the IF statement. For example,

IF A<B THEN NX:=A+B;
IF NOT (FINAL LOR LAST) THEN

BEGIN
TEST'DONE:= FALSE;
GO TO AGAIN

END;

The double-branch IF statement is used to select one of two alternative statements. If the condition­
clause is true, the true-branch statement is executed. If the condition-clause is false, control i~

5-8

transferred to the false-branch statement. When the selected statement has been executed, control is
transferred to the statement after the IF statement except when a transfer has been executed from the
selected statement with, for example, a GO TO or RETURN statement. Some sample double-branch IF
statements are shown ·below:

IF A<B THEN XA:=XA+A
ELSE XA:= XA+ B;

IF TESTV AR THEN Y:= Y + 1
ELSE IF EXTRATEST THEN Y:=Y-1;

IF TEST THEN A:= A+ B ELSE A:= A- B:

Note that you cannot use a semicolon between the true-branch and the reserved word ELSE.

IF statements can be indefinitely nested. The innermost THEN is paired with the closest following
ELSE and pairing proceeds outward. For example,

IF condition-clause
THEN

IF condition-clause

{

T~~~ondition-clause
I THEN true-branch

ELSE false-branch
ELSE false-branch;

In the above example, the outermost IF statement is a one-branch IF statement.

As noted in paragraph 4-18, logical expressions and/or branch words can be combined using AND and
OR to form a condition-clause. These connectors should not be confused with the logical connectors
LAND and LOR which are used within logical expressions. If two items are combined with OR, the
result is true if either item is true or if both items are true. If two items are combined with AND, the
result is true only if both items are true. AND has higher precedence than OR, but you can use
parentheses around OR'ed expressions to override this precedence. Parentheses cannot be used around
items combined with AND.

5-9

~7. CASESTATEMENT

The CASE statement is used to select one of a set of statements for execution by using an index value
into a compound statement. The statements of the compound statement are assigned index values
consecutively starting with 0 and incrementing by 1. After the selected statement has been executed,
control is transferred to the statement after the CASE statement unless a transfer is executed in the
selected statement such as a GO TO or RETURN statement.

where

index
determines which statement to execute. The index is an INTEGER, LOGICAL, or BYTE expression.

statement
is any simple or compound executable statement including another CASE statement. Null statements
are allowed.

Bounds checking on the index value is normally performed to insure that the index is between 0 and
n-1 inclusive (where n is the number of statements in the body of the CASE statement). However, if
you do not want bounds checking to be performed, you can specify an * before the index. If the asterisk
option is specified, an invalid index will cause unpredictable results.

To transfer control immediately to the next statement, use a null statement in the case body. For
example,

CASEJOF
BEGIN

A:= 100;
; <<NULL statement; NO ACTION, BUT HOLDS PLACE>>
C:=200

END;
If J equals 0, statement A:= 100 will be executed.
If J equals 1, control is transferred to the statement after the CASE statement.
If J equals 2, the statement C:=200 is executed.
If J 2:3, then the next statement following the CASE statement is executed.

The GASE statement uses the index _register to store the index value.

5-10

5-8. PROCEDURE CALL STATEMENT

The procedure call statement is used to transfer control to a previously declared procedure and pass a
list of actual parameters to it. When a procedure is completed, control normally returns to the
statement following the call; however, the procedure can override this return (see "Passing Labels as
Parameters", paragraph 5-11).

where

procedure-name
identifies the procedure to which control is transferred. The procedure-name is an identifi.er which has
been declared either in a procedure-declaration as a procedure-name or entry-point or in an intrinsic­
declaration.

actual-parameter
is one of the following:

identifier

identifier[(index)]
arithmetic-expression
logical-expression
assignment-statement

*

identifies a call-by-reference parameter. The following items can be passed: simple-variables, array­
names, pointer-names, procedure-names, entry-points, and labels.

index
denotes an array or pointer element. The index is an expression or an assignment statement of type
INTEGER, LOGICAL, or BYTE and can only be specified for array-names and pointer-names. If an
index is not specified, the zero elBment is used.

arithmetic-expression, logical-expression, and assignment-statement
are evaluated to pass a value as a call-by-value parameter. The forms for these items are described in
paragraphs 4-11 through 4-17 and 4-20.

5-11

The* is used to indicate that you have already put the parameter onto the stack. See paragraph 7-4 for
a discussion of the correspondence between the actual-parameters in a procedure-call and the formal­
parameters in a procedure-declaration.

If a function procedure is called using a procedure call statement instead of a function-designator in an
expression, the return value is deleted from the stack upon returning to the calling routine unless the
procedure overrides the normal return.

Two types of parameter passing are allowed in SPL: by reference and by value. A call-by-reference
parameter places an address onto the stack. A data item (simple-variable, array-element, or pointer­
element) which is passed by reference can have its value changed in the calling environment by
changing its value in the procedure. A call-by-value parameter is passed by evaluating the parameter
at the time of the procedure call and placing this value onto the stack. If a parameter is passed by
value, changes to the parameter value in the procedure will not alter the value of the parameter in the
calling environment.

When a procedure call statement is executed, the actual parameters are loaded onto the stack and a
PCAL instruction is executed. The PCAL instruction places a four-word stack marker onto the stack,
changes the Q-register to point to the top of this stack marker, and transfers control to the entry-point
of the procedure. The stack marker contains the following information:

Q-3 Index Register

Q-2 Return address

Q-1 Status Register

Q-0 delta Q

The return address is P+ 1- PB where P is the value of the P register when the PCAL instruction is
executed and PB is the base register for the code segment. The delta Q is the number of words between
the new value of Q and the previous value of Q.

Because of the stack architecture, recursive procedures (that is, procedures which call themselves) are
allowed.

5-9. STACKING PARAMETERS

Stacked parameters may be either call-by-reference or call-by-value. For call-by-reference parameters,
you must put the address of the actual-parameter onto the stack. For example,

TOS:=@A;

For call-by-value parameters, you must put the value of the actual-parameter onto the stack. For
example,

TOS:=l+2;

If any parameter is stacked, all parameters to its left must also be stacked. For example,

P(* ,* ,B,C);

5-12

Labels cannot be stacked. Before stacking parameters for a call to a function procedure, you must push
a one-,two-,or four-word zero, depending on the data type of the function, onto the stack for the return
value. This zero is generated automatically if no parameters are stacked. For example, assume P is a
REAL procedure which has two call-by-reference parameters. The following steps are needed if you
want to stack the parameters:

TOS:=OD;
TOS:=@A;
TOS:=@B;
P(* ,*);

5-10. MISSING PARAMETERS IN PROCEDURE CALLS

If the procedure is declared with OPTION VARIABLE, parameters can be omitted from the actual­
parameter list by leaving a comma to hold their place or by using a right parenthesis to terminate the
list if you want to omit the parameters at the end of the formal-parameter list. For example, consider
the procedure declaration:

PROCEDURE P(A,B,C,D,E,F); ... ;OPTION VARIABLE; ...

To pass only the first parameter, use a procedure call such as

P(R);

To pass the first and last parameters, use a procedure call such as

P(Rl,,,,,R2);

If you want to omit all parameters, you can use either of the following:

P; or PO;

The called procedure is responsible for checking the existence of actual parameters. See paragraph 7-9
for a discussion of how to perform this checking.

5-11. PASSING LABELS AS PARAMETERS

Labels may be passed to procedures as call-by-reference parameters to allow control to transfer to a
place other than the normal return address upon completion. Unlike other call-by-reference parame­
ters, however, a label is passed as a three-word label descriptor. If a label is passed to several levels of
procedure calls (such as A calls B which calls C), the label descriptor allows you to transfer to the label
without executing an EXIT instruction for each procedure through which the label was passed; only
the first procedure which received the label parameter is exited. This technique can be very useful for
error processing.

The label descriptor contains the following information:

EXIT Instruction

Label address

Q

5-13

The first word of the label descriptor is an exit instruction to exit the first procedure to which the label
is passed. The second word is the address of the label. The third word is the value of the Q register upon
entry to the first procedure to which the label is passed.

When a transfer to a label which was passed as a parameter is executed, the following steps are
performed:

1. The label descriptor is put on the top of the stack.

2. The Q register is reset to the value in TOS (which is the value it had upon entry to the first
procedure).

3. The label address is stored in Q- 2 (the return address location for the first procedure).

4. The exit instruction on the top of the stack is executed to effectively exit the first procedure
and transfer control to the label.

The following situation is illustrated in figure 5-1:

a. The main body calls procedure A and passes the label L as a parameter.

b. Procedure A calls procedure B and passes an integer variable I by-value and the label L as
parameters.

c. While in procedure B, a transfer to L is executed -

1. The label descriptor is loaded onto the stack.

2. The Q register is reset to Q (A).

3. The address of Lis stored into Q- 2 overriding the normal return address from A back to the
main body.

4. The EXIT instruction in S- 0 is executed to:
1. Reset Q to the main body value.
2. Delete the stack marker for A and the label descriptor passed to A.
3. Tranfer control to L.

If the first procedure is a function procedure, the space for the return value is left on the stack should
you not perform a normal return, but transfer to a place other than where the call was made.

5-12. PASSING PROCEDURES AS PARAMETERS

Procedures may be passed to other procedures as call-by-reference parameters. The Load Label (LLBL)
instruction is used to load the external address of the procedure onto the stack. When calling a
procedure which was passed as a parameter, the parameters are assumed to be call-by-reference. To
pass call-by-value parameters to such a procedure, you must stack them before calling the procedure
and use the* in the procedure call. A procedure which has been declared with OPTION VARIABLE
requires a special technique for being passed to another procedure and then called. Such procedures

5-14

a

Q,S _,..

A(L);

EXIT3

ADDRESS OF l

QA

x

RETURN ADDRESS

STATUS

.6.Q

LABEL
DESCRIPTOR

STACK
MARKER

b

Q,s-.

8(1,L);

EXIT 3

ADDRESS OF L

QA

x

RETURN ADDRESS

STATUS

AQ

I

EXIT3

ADDRESS OF L

QA

x

RETURN ADDRESS

STATUS

.6.Q

Figure 5-1. Passing a Label as a Parameter

5-15

.J Q
'\

j
\

!) Q

LABEL
DESCRIPTOR

STACK
MARKER

A

PARAMETERS

STACK
MARKER

8

c

'1.

Q _.,.

s ----

EXIT 3

ADDRESS OF L

QA

x .
RETURN ADDRESS

STATUS

AO

I

EXIT 3

ADDRESS Of L

QA

x

RETURN ADDRESS

STATUS
-

AO

EXIT 3

ADDRESS OF L

QA

}
IJ a

"

2.

LABEL
DESCRIPTO

STACK
MARKER

A

PARAMETE

R

____..,

RS

\
STACK
MARKER \

Jo B

s ___..,

EXIT3

ADDRESS OF L

QA

x

RETURN ADDRESS

STATUS

AO

EXIT 3

ADDRESS OF L

3.

EXIT 3 }~BE
DESC

L
RI PTOR ADDRESS OF L

l'-1

STAC K
KE MAR

J.I QA

QA

x

0-2 ADDRESS OF L
....

R
STATUS

~---

Q AO

S~ EXIT3

Figure 5-1. Passing a Label as a Parameter (Continued)

5-16

} LABEL
DESCRIPTOR

STACK
MARKER

require a bit mask in Q- 4, and Q- 5 if there are more than 16 formal parameters. If you call such a
procedure you must generate your own bit mask. For example, consider the declarations:

PROCEDURE P(A,B); ... ;OPrION VARIABLE; ...
PROCEDURE Pl(F); PROCEDURE F;

If P is passed as an actual parameter to Pl, such as:

Pl(P);

Then, a call to P within Pl would look like

F(A,B,3);

where 3 is the bit mask indicating that both paramet~rs are present. Since the last parameter is a
constant instead of an address reference, a warning message is issued. An alternative method is to
stack all parameters and the bit mask:

TOS:=@A;
TOS:=@B;
TOS:=3;
F(* ,*);

For further discussion of OPTION VARIABLE procedures, see paragraph 7-10.

5-17

5-13. SUBROUTINE CALL STATEMENT

The subroutine call statement is used to invoke a previously declared subroutine and pass a list of
actual parameters to it. When a subroutine is completed, control normally returns to the state­
ment following the call; however, the subroutine can override this return. A global subroutine can
branch to a label in the main body and a local subroutine can branch to a label in the procedure
body.

where

subroutine-name
identifies the subroutine to which control is transferred. The subroutine-name is an identifier which
has previously been declared in a subroutine declaration.

actual-parameter
is one of the following:

identifier[(index)]
arithmetic-expression
logical-express ion
assignment-statement

*

identifier
identifies a call-by-reference parameter. The following items can be passed: simple-variables, array­
names, pointer-names, procedure-names, and entry-points.

index
denotes an array or pointer element. The index is an expression or assignment statement of type
INTEGER, LOGICAL, or BYTE and can only be specified for array-names and pointer-names. If an
index is not specified, the zero element is used.

arithmetic-expression, logical-expression, and assignment-statement
are evaluated to pass a value as a call-by-value parameter. The forms for these items are described in
paragraphs 4-11 through 4-17 and 4-20.

The* is used to indicate that you have already put the parameter onto the stack. See paragraph 7-4 for
a discussion of the correspondence between the actual parameters in a subroutine call and the formal
parameters in a subroutine declaration.

5-18

Note that a label cannot be passed as a parameter to a subroutine nor can parameters be omitted
(OPTION VARIABLE cannot be specified for a subroutine). Alternate entry points are not allowed in
subroutines.

If a function subroutine is called using a subroutine call statement instead of a function-designator in
an expression, the return value is deleted from the stack upon returning to the calling routine unless
the subroutine overrides the normal return.

When a subroutine call statement is executed, the actual parameters are loaded onto the stack and an
SCAL instruction is executed. (SCAL may be replaced with an LRA and a BR.) The SCAL instruction
puts the return address onto the stack and transfers control to the subroutine entry-point. The
Q-register is not changed - all parameters are addressed using S-negative addressing. Recursive
subroutines (that is, subroutines which call themselves) are allowed.

The discussion in paragraphs 5-9 and 5-12 conncerning stacking parameters and passing procedures
as parameters applies to subroutines as well as procedures except that labels and subroutines cannot
be passed as parameters to a subroutine.

5-19

5-14. RETURN STATEMENT

The RETURN statement is used to exit a procedure or subroutine at some place other than the last
END of the body. Additionally, the RETURN statement can be used to leave some or all of the
parameters on the stack after returning to the point of call.

where

count
indicates how many words to delete from the stack. The count is an unsigned decimal, based,
composite, or equated integer constant.

A RETURN statement within a procedure generates an EXIT instruction, whereas a RETURN
statement within a subroutine generates an SXIT instruction. Multiple RETURN statements within a
single procedure or subroutine are allowed. You can also use a RETURN statement in the main-body
of a program to terminate the program.

If a count is not specified, all parameters are deleted from the stack. If the count equals n, then only the
top n words are deleted. If the count equals 0, all parameters are left on the stack. Note that count is a
word count and not a parameter count. You can specify a count greater than the number of words
passed as parameters; however, you should be very careful that you only delete values you want to
delete.

The calling program must know how many parameters will be left on the stack upon returning
because it must take care of them (examine, save, or delete them). INTEGER, LOGICAL, and BYTE
values use one word; DOUBLE and REAL values use two words; labels use three words; and LONG
values use four words. Call-by-reference parameters (except labels) use one word.

5-20

I
iiHl!.!.11

L----__ MA_c_H_1 N_E_L_Ev_E_L _co_N_s_TR_u_c_Ts____._ I vi
1

6-1. ASSEMBLE STATEMENT

The ASSEMBLE statement is used to generate code by specifying the mnemonics for the hardware
instructions. Instructions within an ASSEMBLE statement can be labeled, and control can be trans­
ferred tothese labeled instructions from outside the ASSEMBLE statement .. Additionally, identifiers
which are outside the ASSEMBLE statement can be referenced within the statement, but any indirect
references or indexing must be explicitly specified.

where

label
identifies the instruction. The label is an SPL identifier.

instruction
indicates a machine instruction to be executed or a pseudo-op to generate a constant. The instruction
conforms to one of the ten formats shown in figure 6-1.

The following conventions are used in the instruction formats:

I Indirection

x Index Register or Indexing

label id A statement or instruction label within addressing range.

variable id A data item identifier within addressing range.

USl An unsigned integer less than or equal to the integer specified. For
example usi255 means an unsigned integer between 0 and 255
inclusive.

6-1

Format 1

la
LOAD label id

LDX
variable id

LRA
DB+ usi255
P + usi255

CMPM P- usi255
ADDM

Q + usi127
[,I] [,X]

SUBM
MPYM

Q - usi63
S - usi63

lb LDB
LDD variable id
STOR DB+ usi255
STB Q + usi127 [,I] [,X]
STD Q- usi63
INCM S - usi63
DECM

le {label id

} BR P + usi255 [,I] [,X]
P - usi255

{DB+ usi255}
BR

Q + usi127
,I [,X]

Q - usi63
S - usi63

ld BL
BE

{ label id

}
BCC BLE

group BG
P + usi31 [,I]

BNE
P - usi31

BGE

1TBA } {label id

} MTBA
TBX

P + usi255

MTBX
P - usi255

Figure 6-1. Instruction Formats

6-2

where

variable id is a simple variable, pointer, or array identifier, (indirection is not supplied
automatically).

usi is an unsigned integer less than or equal to the number following.

label id is a label which is used to label a statement within the range of the instruction.

For example,

ASSEMBLE(STB S - 1, I, X; DECM VAR);

Format 2

stackop

or

stack op, stack op

In the first case the compiler fills in the second half of the instruction word with a NOP.

The legal stackops are as follows:

NOP
DELB
DDEL
XROX
INCX
DECX
ZERO
DZRO
DCMP
DADD
DSUB
MPYL
DIVL

For example,

DNEG
DXCH
CMP
ADD
SUB
MPY
DIV
NEG
TEST
STBX
DTST
DFLT
BTST

ASSEMBLE(DDUP, DELB; STAX);

Format 3
3a IABZ

IXBZ
DXBZ
BCY
BNCY
CPRB
DABZ
BOV
BNOV
BRO
BRE

{

label }
P ± usi3l
* ± usi3l

[,I]

XCH
INCA
DECA
XAX
ADAX
ADXA
DEL
ZROB
LDXB
STAX
LDXA
DUP
DDUP

FLT
FCMP
FADD
FSUB
FMPY
FDIV
FNEG
CAB
LCMP
LADD
LSUB
LMPY
LDIV

Figure 6-1. Instruction Formats (Continued)

6-3

NOT
OR
XOR
AND
FIXR
FIXT
INCB
DECB
XBX
ADBX
ADXB

In these branch instructions, the address can be specified as a label or a P relative address (P±
or*± are the same thing). If the label location is not within 31 locations of P (P ± 31), the
compiler tags this as an error; indirection is not supplied automatically within an ASSEMBLE
statement.

3b ASL
ASR
LSL
LSR
CSL
CSR
SCAN
TASL
TASR
TNSL
DASL usi63 [,X]
DASR
DLSL
DLSR
DCSL
DCSR
TBC
TRBC
TSBC
TCBC
QASL
QASR

usi63 is a shift count or number of bits less than or equal to 63. For example,

ASSEMBLE(LSL 1; BRE QUIT);

Format 4

4a LDI
LDXI
CMPI
ADDI
SUBI
MPYI
DIVI
PSHRt
LDNI
LDXN
CMPN
SETRt

usi255

4
h { ~;; } usi15 : usi15

For example,

ASSEMBLE (LDI 255; ADDI 5; EXF 7:9);

t = a privileged instruction for
some registers

Figure 6-1. Instruction Formats (Continued)

6-4

Format 5

RSW
LLSHt
PLDAt
PSTAt
LSEAt
SSEAt
LDEAt
SDEAt
IXITt
LOCKt

1

.
PCNt
UNLKt

For example,

Format 6

ASSEMBLE (RSW; PLDA; ... LLSH; ... PSTA);

PACTS
SED
XEQ
SIO
RIO
WIO
TIO usil5
CIO
CMD
SIN
HALT
LST
SST

XCHD
SMSK
RMSK
PSDB
DISP
PSEB
SCLK
RCLK

miniop-5

For example,

ASSEMBLE (XEQ 4);

t = a privileged instruction

All of these instructions except XEQ and RMSK are privileged.

Figure 6-1. Instruction Formats (Continued)

6-5

l

Format 7

PCAL
SCAL
EXIT
SXIT
ADXI
SBXI
LLBL
LDPP
LDPN
ADDS
SUBS.
ORI
XORI
ANDI

usi255

PCAL procedure identifier
SCAL (user must load label onto stack)
LLBL procedure identifier

For example,

ASSEMBLE (PCAL READ; SCAL O; ... ORI %377);

Format 8

Ba {MOVE}
MVB
CMPB

[PB] UJ
If item two is empty, a DB relative move is assumed.
If item three is empty, the stack decrement is 3.

Sb

MVBW J ~ AN

l AS
ANS

If item three is empty, the stack decrement is 2.

*Be { MVBLt} [Ol MVLBt ' 1 sew '
scu '2 J ,3

tPrivileged instruction.

Figure 6-L Instruction Formats (Continued)

If item two is missing, the stack decrement is 3. For example,

ASSEMBLE (sew' 1);

ASSEMBLE (MVBW AN, O);

ASSEMBLE (CMPB PB, 1);

*8d { MABSt} MTDSt
MDSt
MFDSt

r-~ l

~ for MABS anJ
._ MDS

*If there is no stack-decrement, the default is equal to the number of parameters.

Format 9

CON constant list

This format is actually a psuedo-mnemonic for constant generation; it is not a hardware
instruction.

CON stores a series of constants in the code starting at the current location. In artdition to all
numerical and string constants, P relative address constants can be created by listing label
identifiers (this is used to create addresses for indirect references). The CON instruction itself
can be labeled so that other instructions can reference the constants symbolically.

ASSEMBLE(

BRP+l,I;

CON LABELNAME);

ASSEMBLE (TAB: CON "ABCDEFGH";

LDB TAB, X;);

Format 10

lOa DMUL
DDIV
EADD
ESUB
EMPY
EDIV
ENEG
ECMP
DMPY

lOb { g~g } [~]

Figure 6-1. Instruction Formats (Continued)

6-7

If item 2 is 0, 2 words are deleted from the stack.
If item 2 is 1 or empty, 4 words are deleted from the stack.

lOc r 0 1

CVDB l l J

If item 2 is 0, 2 words are deleted from the stack.
If item 2 is 1 or empty, 3 words are deleted from the stack.

lOd ADDD
SUBD
MPYD
CMPD
SLD
NSLD
SRD

If item 2 is 0, no words are deleted from the stack.
If item 2 is 1, 2 words are deleted from the stack.
If item 2 is 2 or empty, 4 words are deleted from the stack.

lOe

If 0 is specified, 1 word is deleted from the stack.
If 1 is specified, 3 words are deleted from the stack.
If neither 0 nor 1 is specified, 3 words are deleted from the stack.
If ABS is specified, the target sign will be negative if the source
is negative; otherwise, the target will be unsigned.
If NABS is specified, the target will be unsigned.
If neither ABS nor NABS is specified, the target sign will be the
same as the source.

Figure 6-1. Instruction Formats (Continued)

A list of the mnemonics with their meanings is shown in table 6-1. For a complete description of the
instructions, refer to the Machine Instruction Set Reference Manual.

6-8

Table 6-1. Machine Instruction Mnemonics

ALPHABETIC LISTING OF INSTRUCTIONS

MNEMONIC FUNCTION FORMAT

ADAX Add A to X 2
ADBX Add B to X 2
ADD Add 2
ADDO Decimal add 10d
ADDI Add immediate 4a
ADDM Add memory 1a
ADDS Add to S 7
ADXA Add X to A 2
ADXB Add X to B 2
ADXI Add immediate to X 4a
AND And. logical 2
ANDI Logical AND immediate 7
ASL Arithmetic shift left 3b
ASR Arithmetic shift right 3b
BCC Branch on condition code 1d

r
Branch on equals 3a

BG Branch on greater than
BGE Branch on greater than or equal

BCC BL Branch on less than

BLE Branch on less than or equal

BNE Branch on not equal

BCY Branch on carry
BNCY Branch on no carry 3a
BNOV Branch on no overflow 3a
BOV Branch on overflow 3a
BR Branch 1c
BRE Branch on TOS even 3a
BRO Branch on TOS odd 3a
BTST Test byte on TOS 2
CAB Rotate ABC 2
CIO Control 1/0 6
CMD Command 6
CMP Compare 2
CMPB Compare bytes 2
CMPD Compare decimal 10d
CMPI Compare immediate 4a
CMPM Compare memory 1a
CMPN Compare negative immediate 4a
CPRB Compare range and branch 3a
CSL Circular shift left 3b

CSR 0; ... r- •• 1~ r-h;f+ ,..;r"lht 3b vllvUIQI 0111\l ll~lll

CVAD Convert ASCII to packed decimal 10b

CVBD Convert binary to packed decimal 10b
CVDA Convert packed decimal to ASCII 10e

CVDB Convert packed decimal to binary 10c
DABZ Decrement A. branch 1f zero 3a
DADD Double add 2
DASL Double arithmetic shift left 3b
DASR Double arithmetic shift right 3b
DCMP Double compare 2
DCSL Double circular shift left 3b
DCSR Double circular shift right 3b

6-9

Table 6-1. Machine Instruction Mnemonics (Continued)

ALPHABETIC LISTING OF INSTRUCTIONS

MNEMONIC FUNCTION FORMAT

DDEL Double delete 2
DDIV Double divide 10a
DDUP Double duplicate 2
DECA Decrement A 2
DECB Decrement 8 2
DECM Decrement memory 1b
DECX Decrement X 2
DEL Delete A 2
DELB Delete B 2
DFLT Double float 2
DISP Dispatch 6
DIV Divide 2
DIVI Divide immediate 4a
DIVL Divide long 2
DLSL Double logical shift left 3b
DLSR Double logical shift right 3b
DMPY Double logical multiply 10a
DMUL Double multiply 10a
DNEG Double negate 2
DPF Deposit field 4b
DSUB Double subtract 2
DTST Test double word on TOS 2
DUMP Load soft dump program
DUP Duplicate A 2
DXBZ Decrement X, branch if zero 3a
DXCH Double exchange 2
DZRO Double push zero 2
EADD Extended-precision floating point add 1 Oa
ECMP Extended-precision fioating point compare 10a
EDIV Extended-precision floating point divide 10a
EMPY Extended-precision floating point multiply 10a
ENEG Extended-precision floating point negate 10a
ESUB Extended-precision floating point subtract 10a
EXF Extract field 4b
EXIT Procedure and interrupt exit 7
FADD Floating add 2
FCMP Floating compare 2
FDIV Floating divide 2
FIXR Fix and round 2
FIXT Fix and truncate 2
FLT Float 2
FMPY Floating multiply 2
FNEG Floating negate 2
FSUB Floating subtract 2
HALT Halt 6
HIOP Halt 1/0 program
IABZ Increment A, branch if zero 3a
INCA Increment A 2
INCB Increment B 2
INCM Increment memory 1b
INCX Increment index register 2
INIT Initialize 1/0 channel

iXBZ Increment X, branch if zero 3a
IXIT Interrupt exit 5

6-10

Table 6-1. Machine Instruction Mnemonics (Continued)

ALPHABETIC LISTING OF INSTRUCTIONS

MNEMONIC FUNCTION FORMAT

LADD Logical add 2
LCMP Logical compare 2
LOB Load byte 1b
LOO Load double 1b
LDEA Load double word from extended address 5
LOI Load immediate 4a
LDIV Logical divide 2
LONI Load negative immediate 4a
LDPN Load doubie from program, negative 7
LOPP Load double from program, positive 7
LOX Load Index 1a
LDXA Load X onto stack 2
LDXB Load X into B 2
LDXI Load X immediate 4a
LDXN Load X negative immediate 4a
LLBL Load Label 7
LLSH Linked list search 5
LMPY Logical multiply 2
LOAD Load 1a
LOCK Lock resource 5
LRA Load relative address 1a
LSEA Load single word from extended address 5
LSL Logical shift left 3b
LSR Logical shift right 3b
LST Load from system table 6
LSUB Logical subtract 2
MABS Move using absolute address s
MCS Memory controller read status
MOS Move using data segment s
MFDS Move from data segment s
MOVE Move words Sa
MPY Multiply 2
MPYD Decimal Multiply 10d
MPYI Multiply immediate 4a
MPYL Multiply long 2
MPYM Multiply memory 1a
MTBA Modify, test, branch, A 1e
MTBX Modify, test, branch, X 1e
MTDS Move to data segment s
MVB Move bytes Sa
MVBL Move from DB+ to DL+ Sc
MVBW Move bytes while Sb
MVLB Move from DL+ to DB+ Sc
NEG Negate 2
NOP No operation 2
NOT One's complement 2
NSLD Normalizing shift left decimal 10d
OR OR, logical 2
ORI Logical OR immediate 7
PAUS Pause 6
PCAL Procedure call 7
PCN Push CPU number 5
PLDA Privileged load from absolute address 5
PSDB Pseudo interrupt disable 6

6-11

Table 6-1. Machine Instruction Mnemonics (Continued)

ALPHABETIC LISTING OF INSTRUCTIONS

MNEMONIC FUNCTION FORMAT

PSEB Pseudo interrupt enable 6
PSHR Push registers 4a
PSTA Privileged store into absolute address 5
QASL Quadruple arithmetic shift left 3b
QASR Quadruple arithmetic shift right 3b
RCCR Read system clock
RCLK Read clock 6
RIO Read 1/0 6
RIOA Read 1/0 adapter
RIOC Read 1/0 channel

RMSK Read mask 6
RSW Read switch register 5
SBXI Subtract immediate from X 7
SCAL Subroutine call 7
SCAN Scan bits 3b
SCLK Store clock 6
SCLR Set system clock limit
scu Scan until 8c
sew Scan while Be
SDEA Store double word into extended address 5
SEO Set enable/disable external interrupts 6
SEML Semaphore load
SETR Set registers 4a

SIN Set interrupt 6

SINC Set system clock interrupt
SIO Start 1/0 6
SIOP Start 1/0 channel program
SIRF Set internal interrupt reference flaq 6
SLD Shift left decimal 10d
SMSK Set mask 6
SRO Shift right decimal 10d
SSEA Store single word into extended address 5
SST Store in system table 6
STAX Store A into X 2
STB Store byte 1b
STBX Store B into X 2
STD Store double 1b
STOR Store 1a
STRT Programmatic warm start

SUB Subtract 2
SUBD Subtract decimal 10d
SUB! Subtract immediate 4a
SUBM Subtract memory 1a
SUBS Subtract from S 7
SXIT Subroutine exit 7
TASL Triple arithmetic shift left 3b
TASR Triple arithmetic shift right 3b
TBA Test, branch, A 1e
TBC Test bit and set condition code 3b
TBX Test, branch, X 1e
TCBC Test and complement bit and set CC 3b
TEST Test TOS 2
TIO Test 1/0 6
TNSL Triple normalizing shift left 3b

TOFF Hardware timer off
TON Hardware timer on

6-12

Table 6-1. Machine Instruction Mnemonics (Continued)

ALPHABETIC LISTING OF INSTRUCTIONS

MNEMONIC FUNCTION FORMAT

TRBC Test and reset bit, set condition code 3b
TSBC Test, set bit, set condition code 3b
TSBM Test and set bit in memory 3b
UNLK Unlock resource 5
WIO Write 1/0 6
WIOA Write 1/0 adapter
WIOC Write 1/0 channel
XAX Exchange A and X 2
XBX Exchange B and X 2
XCH Exchange A and B 2
XCHD Exchange DB 6
XEQ Execute 6
XOR Exclusive OR, logical 2
XORI Logical exclusive OR, immediate 7
ZERO Push zero 2
ZROB Zero B 2
ZROX Zero X 2

6-13

6-2. DELETE STATEMENT

The delete statement allows you to delete words from the stack without using the ASSEMBLE
statement.

The mnemonics have the same meanings as in the ASSEMBLE statement:

DEL Delete the top of stack (S- 0) and decrement the S-register by 1.

DELB Delete the contents of S-1 by storing S- 0 into it and decrement the S-register by 1.

DDEL Delete the contents of S- 0 and S-1 and decrement the S-register by 2.

See figure 6-2 for the effect of the delete statement on the stack.

BEFORE DEL AFTER DEL

S-2

S-1 EB 7 S-1

6 S-0

S-0 5

BEFORE DELB AFTER DELB

S-2 EB S-1 S-0

7 S-1

6

S-0 5

BEFORE DDEL AFTER DDEL

S-2 S-0 7

S-1

Figure o-2. Delete Statement

6-14

6-3. PUSH STATEMENT

The PUSH statement puts the contents of any or all of the registers onto the stack using the PSHR
instruction.

where

register
is one of the following hardware registers: S,Q,X,STATUS,Z,DL, DB, or SBANK.

If more than one register is specified, they are stacked in the order shown below (regardless of the
order in which they are listed in the PUSH statement):

REGISTER

s
Q
x

STATUS
z

DL
DB

SBANK

Thus, if you use the statement:

PUSH(STATUS,X,DL);

The stack would look like:

S-2 Index Register

S-1 Status Register

S-0 Relative DL

VALUE STACKED

S- DB (relative S before PSHR instruction)
Q- DB (relative Q)
Index Register
Status Register
Z- DB (relative Z)
DL- DB (relative DL)
DB (absolute address - 2 words)
Stack Bank

Privileged mode is required to push either DB or SBANK.

6-15

6-4. SET STATEMENT

The SET statement is used to set the contents of any or all registers using values taken from the stack.
The SETR instruction is used to perform this operation:

where

register
is one of the following hardware registers: S,Q,X,STATUS,Z,DL,DB, or SBANK.

Privileged mode is required to set SBANK, DB, DL, Z, and parts of the Status register. If you are not in
privileged mode and you set the STATUS register, only the Traps Enabled bit, the Carry and Overflow
bits, and the Condition Code are set. The rest of the STATUS register is not altered.

Before using a SET statement, the appropriate values must be loaded onto the stack. If more than one
register is specified, they are taken from the stack in the following order (regardless of the order in
which they are listed in the SET statement):

REGISTER

SBANK
DB
DL
z

STATUS
x
Q
s

VALUE TAKEN FROM THE STACK

Stack Bank
DB (absolute address - 2 words)
DL- DB (relative DL)
Z- DB (relative Z)
Status Register
Index Register
Q-DB (relative Q)
S- DB (relative S)

Relative addresses in the stack are added to the absolute value of DB before setting the registers. The
values are deleted from the stack by the SETR instruction.

Note that the order in which the registers are set is the reverse of the order in which they are pushed.
This reversal is consistent with the last-in, first-out stack architecture of the HP 3000.

6-16

6-5. WITH STATEMENT

The WITH statement is intended specifically for privileged users running in split-stack mode (see the
final paragraph of section 8-1). It performs a syntactic check to ensure that only split-stack compatible
code is generated. Reliability is increased by limiting the code inside a WITH statement to certain
DB-relative offsets. The variables used inside the WITH block must have been declared inside a
corresponding DATASEG declaration, or be Q- or S-relative, unless a move is also included. The only
form of move allowed inside the WITH statement is the MO VEX between data segments (see Section
4-21A), where the variables used may have been declared in any DATASEG declaration. Checking will
be performed as for OPTION SPLIT (see Section 7-13A).

The form of the WITH statement is:

WITH dataseg-name DO

BEGIN

END;

where

dataseg-name
is an SPL identifier.

The actual switching of data segments is left up to the SPL/3000 programmer.

6-17

PROCEDURES, INTRINSICS, iijfr!.'I
AND SUBROUTINES I VII I

7-1. SUBPROGRAM UNITS

There are three types of subprogram units in SPL: procedures, intrinsics, and subroutines. Procedures
and intrinsics are identical except for their location and how they are declared in a program.
Subroutines are less powerful than procedures and intrinsics and use different hardware instructions
to call and exit. The declarations for procedures and intrinsics follow the global data declarations and
precede any global subroutine declarations as shown below.

Local subroutine declarations are within the procedure body following the other local declarations in
the procedure declaration and preceding the executable statements of the procedure body.

7-1

7-2. PROCEDURE DECLARATION

A procedure declaration defines an identifier as a procedure and specifies what attributes the proce­
dure will have:

• Data type of result for function procedures.
• Type and number of formal parameters.
• Options (external body, variable number of parameters,etc.).
• Local variables.
• Statements of the procedure body.

Procedures are called by means of the identifier and a list of actual parameters. Procedure
declarations are not allowed within other procedures unless they are declared without a body (that
is, OPTION EXTERNAL).

where

type
indicates that the procedure is a function procedure which returns a value of the specified data type.
The type is INTEGER, LOGICAL, BYTE, DOUBLE, REAL, or LONG.

procedure-name
is an SPL identifier used to identify the procedure.

formal-parm
is an SPL identifier which is used as a local identifier to reference an actual rarameter.

value-part
indicates which formal parameters are to be passed by-value. All parameters which are not specified in
the value-part are passed by-reference. The value-part is of the form: VALUE formal-parm
[, ... ,formal-parm J;

s pee ificatio n-pa rt
indicates the characteristics of each formal parameter. The specification-part is of the form: specifica­
tion [; ... ;specification];

specification
is one of the following:

type formal-parm [, .. .,formal-parm]
[type] ARRAY formal-parm [, .. .,formal-parm]
LABEL formal-parm [,. . .,formal-parm]
[type] POINTER formal-parm [, ... ,formal-parm]
[type l PROCEDURE formal-parm [, .. .,formal-parm]

7-2

aption-part
specifies which options are to be in effect. The option-part is of the form: OPTION option [, ... ,option]

option
is UNCALLABLE, PRIVILEGED, EXTERNAL, CHECK level, VARIABLE, FORWARD, INTER­
RUPT, or INTERNAL. Each option is described fully below, starting with paragraph 7-5.

level
is an unsigned decimal, based, composite, or equated integer constant between 0 and 3 inclusive.

procedure body
is one of the following:

1. statement
2. BEGIN

[local-data-declarations]
[external-procedure/ intrinsic-declarations]
[local-subroutine-declarations]
statement [; ... ; statement]
END

statement
is any executable SPL statement (see Sections IV through VI).

local-data-declarations
include any or all of the following (intermixed in any order):

define declaration(s)
equate declaration(s)
local simple variable declaration(s)
local array declaration(s)
local pointer declaration(s)
label declaration(s)
switch declaration(s)
entry declaration(s)

external-procedure/intrinsic-declarations
are intrinsic declarations and procedure declarations for external procedures, intermixed in any order.

local-subroutine-declarations
are local subroutine declarations (described fully later in this section).

A procedure is a self-contained section of code which is called to perform a function. Procedures are
hardware-dependent in SPL - they are called using the PCAL instruction and return using the EXIT
instruction; the PRIVILEGED and UNCALLABLE options are hardware-defined and checked; and
local variables can be allocated relative to the Q-register since it is set to a fresh area of the stack by
the PCAL instruction. Because of the hardware capability provided for procedures, they can be called
recursively (that is, a procedure can call itself). For the syntax and semantics of calling procedures, see
"Function Designator" in paragraph 4-6 and "Procedure Call Statement" in paragraph 5-8. Multiple
entry points for procedures are covered under "Entry Declaration" in paragraph 7-30.

7-3

7-3. DATA TYPE

If a data type is specified for a procedure, that procedure is a function and can be called within
expressions .. It returns a value of the type specified by assigning the value to its name somewhere
within the procedure body in an assignment statement. For details on calling functions, see "Function
Designator" in paragraph 4-6.

If a data type is not specified, the procedure does not return a value and cannot be called as a function.

7-4. PARAMETERS

The formal parameters (if any) of a procedure must be fully specified as to type and whether each is
call-by-value or call-by- reference. The formal parameters can then be used within the procedure body
as if they were locally declared identifiers. When the procedure is called, an actual parameter is
supplied for each dummy (formal) parameter. Up to 31 formal parameters can be specified for each
procedure.

Simple variables, arrays, labels, pointers, and procedures can be passed as parameters. Simple
variables and pointers can be passed by value or by reference; procedures, labels, and arrays are
passed by reference only.

The VALUE list specifies which parameters are to be passed by value; parameters not listed in the
VALUE list are passed by reference. When a parameter is called by value, the value of the actual
parameter is specified by an expression and is loaded onto the stack. Value parameters are handled
exactly as local variables from that point on; any changes to them are limited to the scope of the
procedure. For reference parameters, the address of the parameter is loaded onto the stack instead of a
value; changes to reference parameters can change the value of the actual parameter outside the
procedure.

The VARIABLE option allows a variable number of parameters to be passed (see "Options," paragraph
7-7).

Actual parameters (when the procedure is called) can be constants, expressions, simple variables,
array references, pointer references, procedure identifiers, label identifiers, or stacked values (* in
place of a parameter indicates that the parameter value or address has been loaded onto the stack by
the user; see "Procedure Call Statement" in paragraph 5-8 for details).

If the formal parameter is a simple variable, it is passed the address (call-by-reference) or actual value
(call-by-value) of a data item. If the formal parameter is an array, it is passed the address of the zero
element. Thus, all arrays, even direct arrays, are effectively passed as indirect arrays. If the formal
parameter is a pointer, it is passed the addresss (call-by-reference) or contents (call-by-value) of the
pointer. Parameters are stored in Q- 3- n to Q- 4 where n is the number of words required for
parameter storage (maximum 60). Call-by-reference parameters, except labels, use one word. IN­
TEGER, LOGICAL, and BYTE values also use one word; DOUBLE and REAL values use two words:
labels use three words; and LONG values use four words.

7-4

Table 7-1 shows what actual parameters can be passed to what formal parameters (a blank space
indicates an error condition):

Actual
Parameter

Constant

Expression

Simple Variable
Identifier

Array
Reference

Pointer
Reference

Procedure
Identifier

Label Identifier

*
(stacked)

NOTE

If the actual-parameter is a byte array and the formal-parameter
is an array with a different data type, the byte address is con­
verted to a word address by arithmetically right shifting the byte
address by one bit. Thus, the maximum byte address is
DB+ 32767 (which equals DB+ 16383 words). Additionally, the
array in the procedure begins on a word boundary regardless of
whether or not the starting byte of the actual-parameter starts on
a word boundary.

Table 7-1. Parameters Passed to Formal Parameters

Formal Parameter

Simple Simple
Pointer By Pointer By

Variables Variables Arrays
Reference Value

Procedures
By Reference By Value

Warning (uses Must be Warning (uses Warning (uses Warning (uses
1 word as same word 1 word as 1 word as 1 word as
address) size. address) address) address)

Must be
same word
size.

OK Must be OK, loads ad- OK, load ad-
same word dress of simple dress of simple
size. variable variable

OK Must be OK OK
same word
size.

OK Must be OK OK OK
same word
size.

OK

OK OK OK OK OK OK

7-5

Labels

OK

7-5. OPTIONS

The option part of a procedure declaration consists of the reserved word OPTION followed by a list of
option words separated by commas and terminated by a semi-colon. The meaning of the various
options are discussed in the following paragraphs.

7-6. OPTION UNCALLABLE. This option causes the "uncallable" bit to be turned on in the
Segment Transfer Table entry for the procedure. The uncallable bit is examined by the PCAL instruc­
tions to restrict access to procedures that specify this option. Uncallable procedures can only be called
by code executing in privileged mode. If this option is not specified, the procedure is callable.

7-7. OPTION PRIVILEGED. This option causes the procedure to be run in privileged mode,
assuming that the person running the program is allowed to execute in privileged mode by the
operating system. If this option is not specified, the procedure runs in user mode.

7-8. OPTION EXTERNAL. This option specifies that the procedure body (or code) exists
external to the program being compiled. The procedure body is not included in the declaration and is
linked to the main program later by the operating system. If you need to refer to a procedure compiled
separately, you must include an OPTION EXTERNAL declaration for the procedure which indicates
to the compiler the type and number of parameters. Intrinsics are the only procedures not requiring a
procedure declaration (see "Intrinsic Declaration" in paragraph 7-34). When procedures are compiled
separately (to be called later as option EXTERNAL), they can use the EXTERNAL-GLOBAL
mechanism to establish data linkages.

7-9. OPTION CHECK. This option is provided for option external procedure declarations
which will subsequently be called as externals by other programs. The option specifies how much
checking is done by the operating system between the option external declaration in the calling
program and the actual procedure declaration as compiled. At PREP time, errors from RL and USL
procedures are detected. At RUN time, errors from SL procedures are detected.

If this option is not specified, no checking is performed. Otherwise, the smaller of the two levels, the
level specified in the calling program and the level specified in the external procedure, is used to
determine the level of checking. Intrinsics determine their level of checking, never the caller. The
check values are:

0 - no checking

1 - check procedure type only.

2 - check procedure type and number of parameters.

3 - check procedure type, number of parameters and type of each parameter.

7-10. OPTION VARIABLE. This option specifies that the procedure can be called with a
variable number of actual parameters. The compiler generates code (when the procedure is called) to
provide the procedure with a parameter bit mask in location Q- 4 (also Q- 5 if more than 16
parameters). If an actual parameter is missing (for example, NOW(A,,C)), the corresponding bit in the
mask is set to zero. The correspondence is from right to left with the rightmost bit (bit 15) correspond­
ing to the right parameter. In the procedure call, the occurrence of a right parentheses before the
parameter list is filled, implies that the rest of the parameters are missing. When the procedure is
entered, it is the responsibility of the procedure to examine the bit mask. Parameters always occur in
the same Q- address, but missing parameters have garbage in their locations.

7-6

7-11. OPTION FORWARD. This option specifies that the complete procedure declaration will
be introduced later in the program. FORWARD is used to circumvent contradictions incurred by
recursion when a procedure calls itself indirectly. Procedures must be declared before being refer­
enced.

7-12. OPTION INTERRUPT. This option specifies that the procedure is an external interrupt
procedure. The structure and uses of interrupt routines are covered in the HP 3000 Multiprogramming
Executive Operating System (MPE) manuals.

7-13. OPTION INTERNAL. A procedure with this option cannot be called from another seg­
ment. This makes processing of the procedure more efficient for the loader subsystem and allows more
than one segment to have a procedure with the same name. INTERNAL procedures cannot be moved
to another segment or called from a procedure in another segment. This option applies to code segments
that are put into the SL only. See the MPE Segmenter Reference Manual, Section 3.

7-13A. OPTION SPLIT. This option is intended specifically for privileged users running in
split-stack mode to improve the reliability of the generated split-stack code (see section 8-1). When a
procedure specifies this option, generation of the following instructions or declarations will result in an
error.

• Local indirect (DB-relative) arrays
• OWN variables
• Q-relative LRA's (generated when assigning to a pointer the address of an indexed element of a

local array)

7-14. LOCAL DECLARATIONS

Procedures can declare local variables that are known only within the procedure and are normally
allocated space in the Q+ area when the procedure is called. Thus, they occupy space only when the
procedure is called and are deleted when the procedure exits. As indicated in the syntax, all declara­
tion types are allowed within procedures with thes~ comments:

• Procedures declared within procedures must be OPTION EXTERN AL.

• Data declarations (simple variables, arrays, pointers) must be of the ''local" form (see the appro-
priate paragraphs in this section).

There are 127 words available for storage of local variables for each procedure. All simple variables,
pointers, direct arrays, and pointers to indirect arrays, must fit in 127 words. Indirect arrays can
extend past this range as long as the pointer to the zero element is within range.

7-15. OWN VARIABLES. OWN variables are a special variety of local variable; they are
allocated space in the DB area rather than on the top of the stack. If initialization is specified, they are
initialized at the beginning of the program, not every time the procedure is called. Since they are
allocated in the global area, they are not deleted when a procedure exists, but are still in existence, with
their l~.st value, when the procedure is called again. However, they are directly accessible only by the
procedure in which they are declared. OWN variables can be simple variables, pointers, or arrays.

7-16. LOCAL SIMPLE VARIABLE DECLARATIONS

A simple variable declaration specifies the data type, addressing mode, storage allocation, and
initialization value for identifiers to be used as single data items. The data type assigned to a variable
determines the amount of space allocated to the variable and the set of machine instructions which can
operate on the variable.

7-7

There are three types oflocal simple variable declarations: standard, OWN, and EXTERNAL. Stand­
ard simple variable declarations can allocate Q-relative storage each time the procedure is called or
can specify the use of a location relative to a base register or another variable. OWN variable
declarations allocate DB-relative storage at the beginning of the program. EXTERNAL variable
declarations link global variables in a separately compiled main program to variables in a procedure;
the global variables must be declared with the GLOBAL attribute.

There are two methods which can be used to link globai variables to variables in separately compiled
procedures. The first method is to use the GLOBAL attribute in the global variable declaration <see

paragraph 3-2) and the EXTERNAL attribute in the local variable declaration. The identifiers in both
declarations must be the same and the Segmenter is responsible for making the correct linkages. The
second method is to include dummy global declarations at the beginning of subprogram compilations.
All global declarations must be included, even for identifiers not referenced in the subprogram, and
they must be in the same order as in the main program. It is possible, although not recommended, to
use different identifiers for the same variable, but you are responsible for keeping them straight. The
second method is faster and requires less space in the USL (User Subprogram Library) files, but does
not protect you against improper linkages.

7-17. STANDARD LOCAL VARIABLES. A standard local variable declaration specifies iden­
tifier(s) which can either be allocated storage each time the procedure is called or which use locations
relative to base registers or other identifiers. Local variables cannot be referenced outside the
procedure in which they are declared.

where

type

specifies the data type of the variables in the declaration. The type may be INTEGER, LOGICAL,
BYTE, DOUBLE, REAL, or LONG.

variable-declaration
is one of the following forms:

variable [:= initial-value]
variable = register [sign offset]
variable = reference-identifier [sign offset]

variable
is a legal SPL identifier.

reference-identifier
is any legal SPL identifier which has been declared as a data item except DB,PB,Q,S, or X.

initial-value
is an SPL constant to be used as the value of the variable when the procedure is called.

register
specifies the register to be used in a register reference. The register may be DB, Q, S, or X.

7-8

sign
is+ or - .

offset
is an unsigned decimal, based, composite, or equated integer constant.

Form 1 of the variable declaration allocates the next available Q-relative location(s) for the variable.
The amount of space allocated depends on the variable type. If an initial value is specified, the variable
is initialized when the procedure is called. If the constant used for the initial value is too large, it is
truncated on the left except string constants which are truncated on the right. If no initial value is
specified, the variable is not initialized.

Form 2 of the variable declaration equivalences a variable either to the index register (X) or to a
location relative to the contents of one of the base registers (DB, Q, or S). Since the index register is 16
bits, only variables of type INTEGER, LOGICAL, and BYTE may be equivalenced to the Index
register (X).

Form 3 of the variable declaration equivalences a variable to a location relative to another variable.
The reference-identifier must be declared first. For example, the declarations

LOGICAL A;
INTEGER B= A+ 5;

equivalence B to the locatiop 5 cells past the location of A. Simple variables which are address
referenced to arrays use either the location of the zero element of the array (if direct) or the location of
the pointer to the zero element of the array (if indirect). Note that ifthe reference-identifier is an array,
only the zero element may be used in a variable reference of a simple variable declaration. In any case,
the final address must be within the direct address range.

DB, PB, Q, S, and X cannot be used as the identifier on the right side of an equals sign in a variable
declaration, because they are interpreted as register references instead of variable references. For
example, consider the declaration

INTEGER A,B,C,DB,D= DB+ 2;

The variable Dis equivalenced to the location 2 cells past the cell to which the DB register points -
not 2 cells past the location assigned to the variable DB.

The legal combinations of registers, signs, and offsets are shown below

Register Sign Offset

DB + 0 to 255

Q + 0 to 127

Q - 0 to 63

s - 0 to 63

x none none

7-9

7-18. OWN SIMPLE VARIABLES. OWN simple variables are allocated space in the DB­
relative area instead of the Q-relative area. Thus, an OWN variable retains its value from one
execution of the procedure to the next. However, the variable can only be referenced within the
procedure in which it is declared. If an OWN variable is initialized, it is initialized only at the start of
the program instead of each time the procedure is called.

where

type
specifies the data type of the variables in the declaration. The type may be INTEGER, LOGICAL,
BYTE, DOUBLE, REAL, or LONG.

variable
is a legal SPL identifier.

initial-value
is an SPL constant to be used as the value of the variable when the procedure is called.

7-19. EXTERNAL SIMPLE VARIABLES. An EXTERNAL simple variable declaration is
used to link global variables for referencing in procedures compiled separately from the main program.
The identifiers must be the same used in the global declaration and the GLOBAL attribute must have
been specified.

where

type
specifies the data type of the variables in the declaration. The type may be INTEGER, LOGICAL,
BYTE, DOUBLE, REAL, or LONG.

variable
is a legal SPL identifier.

7-10

7-20. LOCAL ARRAY DECLARATIONS

An array declaration specifies one or more identifiers to represent arrays of subscripted variables. An
array is a block of contiguous storage which is treated as an ordered sequence of "variables" having the
same data type. Each "variable" or element of the array is denoted by a unique subscript; note that
SPL provides one-dimensional arrays only. An array declaration defines the following attributes of an
array:

• The bounds specification (if any) which determines the size of the array and the legitimate range of
indexing.

• The data type of the array elements.

• The storage allocation method.

• The initial values, if desired. Note that arrays local to a procedure cannot be initialized unless they
are PB-relative.

• The access mode (direct or indirect).

There are two types of access modes used for arrays: indirect and direct. An indirect array uses a
pointer to the zero element of the array. Addressing an indirect array element uses both indirect
addressing and indexing. If the array is a BYTE array, the pointer contains a DB-relative byte
address. For all other data types, the pointer contains a DB-relative word address. A direct array uses
a location within the direct address range of one of the registers (DB, Q, or S) as the zero element of the
array and then uses indexing to address a specific array element.

There are three types oflocal array declarations: standard, OWN, and EXTERNAL. A sta~dard local
array declaration can allocate Q-relative storage each time the procedure is called, PB-relative
storage, or can specify the use of a location relative to a base register or another data item. OWN array
declarations allocate DB-relative storage at the beginning of the program. EXTERNAL array declara­
tions link global arrays in a separately compiled main program to arrays in a procedure. The global
arrays must be declared with the GLOBAL attribute.

There are two methods which can be used to link global arrays to arrays in separately compiled
procedures. The first method is to use the GLOBAL attribute in the global array declaration (see
paragraph 3-3) and the EXTERNAL attribute in the local array declaration. The identifiers in both
declarations must be the same and the Segmenter is responsible for making the correct linkages. The
second method is to include dummy global declarations at the beginning of subprogram compilations.
All global declarations must be included, even for identifiers which are not referenced in the subprog­
ram, and they ~ust be in the same order as in the main program. It is possible, although not
recommended, to use different identifiers for the same array, but you are responsible for keeping them
straight. The second method is faster and requires less space in the USL (User Subprogram Library)
files, but does not protect you against improper linkages.

7-21. ST AND ARD LOCAL ARRAYS. A standard local array declaration specifies identifier(s)
which can be allocated storage each time the procedure is called, stored in the code segment, or which
use locations relative to base registers or other data items. Local arrays cannot be referenced outside
the procedure in which they ar~ declared.

7-11

where

type
specifies the data type of the array. The type can be INTEGER, LOGICAL, BYTE, DOUBLE, REAL, or
LONG. If not specified, the array is type LOGICAL.

local-array-dee
is one of the following forms:

1. array-name(lower:upper) [= Q]

This form is used for an uninitialized array with defined bounds. If = Q is not specified, the
array is indirect and the next available Q-relative location is allocated for the pointer to the
zero element of the array. If= Q is specified, the array is direct and the next available n cells in
the Q+ area are allocated for the array, where n is the number of locations required to store
the array. The zero element of the array must be within the direct address range whether or
not it is- actually an element of the array. For example, consider the declaration:

INTEGER ARRAY A(- 20:- 10)= Q;

The next available Q-relative location is allocated to A(- 20), but all indexing is done relative
to A(O) even though it is not an actual element of the array. The .address which A(O) would
have if it were in the array must be between Q-63 and Q+ 127.

2. array-name(variable-lower: variable-upper)

This form is used for an indirect array with variable bounds. The bounds are evaluated each
time the procedure is called and storage is allocated accordingly at execution time. The array
cannot be initialized.

3. array-name(@)= Q

This form is used for an indirect array with undefined bounds. The next available Q-relative
location is used, without being allocated, as the pointer to the zero element of the array. Space
is not allocated for the array nor is initialization allowed.

4. array-name(*)= Q

This form is used for a direct array with undefined bounds. The next available Q-relative
location is used, without being allocated, as the zero element of the array. Space is not
allocated for the array nor is initialization allowed.

5. array-name(@) [=register sign offset]

This form is used for an indirect array with undefined bounds whose pointer is DB, Q, or

7-12

S-relative. If a base-register-reference is not specfied, the next available Q-relative cell is
allocated for the pointer to the zero element of the array. If a base-register reference is
specified, then that DB-, Q-, or S-relative cell is used, without being allocated, as the pointer to
the zero element of the array. Space is not allocated for the array nor is initialization allowed.

6. array-name(*)

This form can be used for an indirect array with undefined bounds. The next available
Q-relative cell is allocated for the pointer to the zero element of the array. Space is not
allocated for the array nor is initialization allowed. This form is equivalent to array-name(@)
without a base-register reference.

7. array-name(*) = register sign offset

This form is used for direct arrays with undefined bounds which are DB-, Q-, or S-relative. The
specified cell is used as the zero element of the array; however, space for the array is not
actually allocated and the array cannot be initialized.

8. array-name(*) = reference-identifier [sign offset]

This form is used for. equivalencing an array to a location relative to another identifier. The
reference identifier may be a simple variable, a pointer variable, or another array and must be
declared first. The array is a direct array except when the reference-identifier is an indirect
array or a pointer variable and no offset is specified. If an offset is specified, the resulting
address must be within the direct address range. For example, if A is at location Q+ 125, then
the declaration

INTEGER B(*)= A+ 10;

would not be allowed because the direct address range for the Q register is -63to+127. If the
array is direct, the referenced location is used as the zero element of the array. If the array is
indirect, the referenced location is used as the pointer to the zero element except when either
the array or the reference-identifier, but not both is type BYTE, in which case the next
available Q-relative cell is allocated for the pointer to the zero element. Space is not allocated
for the array nor ~an the array be initialized. DB, PB, Q, S, and X cannot be used as the
reference-identifer because they are interpreted as register references instead.

9. array-name(*) = reference-identifier (index)

This form is used for equivalencing one array to another array. The reference-identifier may be
either an array or a pointer variable and must be declared first. If the reference-identifier is a
direct array, the array is a direct array whose zero element is the location of the referenced
array element. If the reference-identifier is an indirect array or a pointer variable, the array is
indirect. In this case, the next available Q-relative cell is allocated for the pointer to the zero
element of the array when a non-zero index is specified or when either the array or the
reference-identifier (but not both) is type BYTE; otherwise, both use the same location for the
pointer to the zero element. In any case, space is not allocated for the equivalenced array nor
can the equivalenced array be initialized. DB, PB, Q, S, and X cannot be used as the
reference-identifier because they are interpreted as register references instead.

array-name
is a legal SPL identifier.

7-13

reference-identifier
is any legal SPL identifier which has been declared as a data item except DB,PB,Q,S, or X.

register
specifies the base register in a register reference. The register may be DB, Q, or S.

sign
is+ or - .

of]set
is an unsigned decimal, based, composite, or equated integer constant within the direct address range
as shown below:

constant-array-dee
is of the form:

Register

DB

Q

Q

s

Sign

+

+

-

-

Offset

0 to 255

0 to 127

0 to 63

0 to 63

array-name(lower:upper) = PB := value-group[, ... ,value-group]

lower
specifies the lower bound of the array. It can be any decimal, based, composite, or equated single-word
integer constant or constant expression.

upper
specifies the upper bound of the array. It can be any decimal, based, composite, or equated single-word
integer constant or constant expression.

variable-lower
specifies the lower bound of a variable bounds array. The variable-lower is an INTEGER, LOGICAL, or
BYTE simple variable.

variable-upper
specifies the upper bound of a variable bounds array. The variable-upper is an INTEGER, LOGICAL,
or BYTE simple variable.

index
indicates the element of the referenced array to be used as the reference location. The index can be any
decimal, based, composite, or equated single-word integer constant.

value-group
is either of the following:

1. initial-value
2. repetition-factor (initial-value [, ... ,initial-value]

7-14

initial-value
is any SPL numeric or string constant.

repetition-factor
specifies the number of times the initial value list will be used to initialize the array elements. The
repetition-factor can be any unsigned non-zero decimal, based, composite, or equated single-word
integer constant.

Local PB-arrays with defined bounds must be initialized. Initialization consists of a:= followed by a
list of numerical constants or strings. A group of constants can be surrounded by parentheses and
preceded by a repetition factor (n) to specify that the constants in parentheses are to be used n times
before going on to the next item in the list. These repeat groups cannot be nested. Elements are
initialized starting with the lowest subscript and continuing up until the constant list is exhausted.
The initialization list must not contain more values than there are elements in the array. If the
constant used for the initial value is too large, it is truncated on the left except string constants which
are truncated on the right. Ifno initial value is specified, the array element is not initialized. Only the
last array in a declaration list can be initialized.

A PB-relative array allocates storage in the code segment for an array of constants. The entire
PB-relative array must be initialized and cannot be changed during execution. PB-relative arrays can
only be accessed within the procedure in which they are declared and they cannot be passed as
parameters.

7-22. OWN ARRAYS. OWN arrays are allocated space in the DB-relative area instead of the
Q-relative area. Thus, an OWN array retains its values from one execution of the procedure to the
next. However, the array can only be referenced within the procedure in which it is declared. An OWN
array can be passed as a parameter, however. An OWN array must have defined bounds and may be
initialized.

where

own-dee
is of the form: array-name(lower:upper)

ow n-dec-initial
is of the form: array-name(lower:upper)[:= value-group, ... ,value-group]]

array-name
is a legal SPL identifier.

7-15

lower
specifies the lower bound of the array. It is a decimal, based, composite or equated single-word integer
constant.

upper
specifies the upper bound of the array. It is a decimal, based, composite, or equated single-word integer
constant.

value-group
is either of the following:

1. initial-value
2. repetition-factor (initial-value [, ... ,initial-value]

initial-value
is an SPL numeric or string constant.

repetition-factor
specifies the number of times the initial value list will be used to initialize the array elements. The
repetition-factor can be any unsigned non-zero decimal, based, composite, or equated single-word
integer constant.

7-23. EXTERNAL ARRAYS. An EXTERNAL array declaration is used to link global arrays to
arrays in procedures compiled separately from the main program. The array-names must be the same
as used in the global declarations and the GLOBAL attribute must have been specified.

where

type
specifies the data type of the array. The type may be INTEGER, LOGICAL, BYTE, DOUBLE, REAL,
or LONG. If not specified, the array is LOGICAL.

array-name
is a legal SPL identifier.

Array bounds are not specified in an EXTERNAL array declaration. An asterisk(*) is used to signify a
direct array and an @ is used for an indirect array.

7-16

7-24. LOCAL POINTER DECLARATIONS

A pointer declaration defines an identifier as a "pointer" - a single word quantity used to contain the
DB-relative address of another data item - the object of the pointer. A pointer declaration defines the
following attributes of a pointer:

• The data type of the object of the pointer.
• The storage allocation method.
• The initial address to be stored in the pointer (optional).

When the pointer is accessed, the object is accessed indirectly through the pointer address. The object
is assumed to be (or treated as if it were) the type of the pointer.

As with simple variables and arrays, there are three types of local pointer declarations: standard,
OWN, and EXTERNAL. The standard pointer declaration can allocate the next available Q-relative
cell or specify a location relative to a base register or another data item to be used as the pointer
location. OWN pointer declarations allocate a DB-relative cell for each pointer at the beginning of
program execution. EXTERNAL pointer declarations link global pointers in a separately compiled
main program to a pointer in a procedure (the global pointers must be declared with the GLOBAL
attribute).

There are two methods which can be used to link global pointers to pointers in separately compiled
procedures. The first method is to use the GLOBAL attribute (see paragraph 3-4) in the global pointer
declaration and the EXTERNAL attribute in the local pointer declaration. The identifiers in both
declarations must be the same and the Segmenter is responsible for making the correct linkages. The
second method is to include dummy global declarations at the beginning of subprogram compilations.
All global declarations must be included, even for identifiers not referenced in the subprogram, and
they must be in the same order as in the main program. It is possible, although not recommended, to
use different identifiers for the same pointer, but you are responsible for keeping them straight. The
second method is faster and requires less space in the USL (User Subprogram Library) files, but does
not protect you against improper linkages.

7-25. STANDARD LOCAL POINTERS. A standard local pointer declaration specifies iden­
tifier(s) which can either be allocated storage each time the procedure is called or which use locations
relative to base registers or other identifiers. Local pointers cannot be referenced outside the procedure
in which they are declared. See section 4-4 for examples and information about addresses and pointers.

H;;: ;~;,· '>·>·~.:~

HllNTEGER'A ~.:t
~t :'. ... , :':> ,'· . . : : ,·, ·;,. ,·> .. / .. ;"!: /~

. ilBYTE POINTER' Pi=.
<i'JINTEGE~.· A~RAY1 iN(o~io.
JilNTEGER POINTER PN: : N~5);: , . ,
<'POINTER P3= DB+ 2,.Jl4,P5:=@A,P6:=B;i

;· l

7-17

where

pointer-dee
is one of the following:

1. pointer-name [:= @reference-identifier [(index)]]

This form allocates the next available Q-relative cell for the pointer variable. If the
:=@reference-identifier is used, the pointer is initialized to the address of the reference­
identifier or array-element if an index is included. The reference-identifer must be declared
first.

2. pointer-name = reference-identifier [sign offset]

This form is used to equivalence a pointer variable to a location relative to another identifier.
Space is not allocated for the pointer nor can the pointer be initialized. The resulting address
for the pointer variable must be within the direct address range of the base register which the
reference-identifier uses.

3. pointer-name = register [sign offset]

This form is used to equivalence a pointer variable to a location relative to a base-register.
Space is not allocated for the pointer nor can the pointer be intitialized. The resulting address
for the pointer variable must be within the direct address range of the specified base-register.

4. pointer-name = offset

This form is used only in privileged mode. It is the offset in System DB. The pointer reference
must always be subscripted and cannot be preceded by~@'.

type
specifies the data type of the pointer variables in the declaration. The type can be INTEGER,
LOGICAL, BYTE, DOUBLE, REAL, or LONG.

pointer-name
is a legal SPL identifier.

reference-identifier
is any legal SPL identifier which has been declared as a data item except DB,PB,Q,S, or X.

register
specifies the base register in a register reference. The ref(ister can be DB, Q, or S.

sign
is+ or - .

7-18

offset
is an unsigned decimal, based, composite, or equated integer within the direct address range as shown
below.

Register Sign Offset

DB + 0 to 255

Q + 0to127

Q - 0 to 63

s - 0 to 63

ST + > = 0
(system table)

index
indicates the array element whose address the pointer will contain. The index can be any decimal,
based, composite, or equated single-word integer constant.

Pointers are initialized with addresses of other variables or constants. The method is to follow the
pointer with : =@; and a data reference (simple variable, pointer element, or array element or : =
constant). The address of the specified data item, adjusted to the address type of the pointer, is stored in
the cell allocated for the pointer. BYTE pointers contain DB-relative byte addresses, whereas all other
types of pointers contain DB-relative word addresses.

See "Pointers" (paragraph 2-20) for methods of referring to and through pointers. Pointers can be
indexed like arrays and can contain word or byte addresses.

Pointers can be declared with all data types; if no type is specified, type LOGICAL is assumed. The
type determines what data type the object of the pointer is assumed to have. This allows objects
declared with one type to be accessed as another data type by accessing them through pointers.

Pointers which are not address referenced are allocated the next available Q-relative location and can
be initialized. Pointers which are referenced use the address of the referenced item or the specified
register relative location and cannot be initialized.

7-26. OWN POINTERS. OWN pointers are allocated space in the DB-relative area instead of
the Q-relative area. Thus, an OWN pointer retains its value from one execution of the procedure to the
next. However, the pointer can be referenced only within the procedure where it is declared. An OWN
pointer cannot be initialized.

OWN· P()INTER PTR; ·. ,
0"1)1 ~EAL }>()INTER ~PrR1,RPfR2;. 1

7-19

where

type
specifies the data type of the objects of the pointers in the declarations. The type may be INTEGER,
LOGICAL, BYTE, DOUBLE, REAL, or LONG. If not specified, type LOGICAL is assumed.

pointer-name
is a legal SPL identifier.

7-27. EXTERNAL POINTERS. An EXTERNAL pointer declaration is used to link global
pointers for referencing in procedures compiled separately from the main ·program. The identifiers
must be the same as used in the global declarations and the GLOBAL attribute must have been
specified.

where

type
specifies the data type of the objects of the pointers in the declaration. The type may be INTEGER,
LOGICAL, BYTE, DOUBLE, REAL, or LONG. If not specified, type LOGICAL is assumed.

pointer-name
is a legal SPL identifier.

7-28. LABEL DECLARATIONS

A label declaration specifies that an identifier is used in the program as a label to identify a statement.
Labels are referenced when it is necessary to transfer control to a specific statement; they need not be
declared explicitly unless the programmer wishes.

7-20

where

label
is a legal SPL identifier.

Labels are used to identify statements as follows:

LABEL Ll;

Ll:A:=B;

The syntax for labeled statements is given in paragraph 1-3. In SPL, a label implicitly declares itself
when it is used to identify a statement, as the object of a GO TO statement, or in a switch declaration.
It need not be explicitly declared in a label declaration except as desired for documentation purposes.
See "GO TO Statement" (paragraph 5-2) and ''Switch Declaration" (below) for use of labels.

7-29. SWITCH DECLARATIONS

A switch declaration relates an identifier to an ordered set of labels. The switch is accessed as a
computed (indexed) GO TO statement. The purpose of a switch is to allow selective transfer of control
to any of the statements identified by the labels in the switch declaration.

where

switch-name
is a legal SPL identifier.

label
identifies the statement to which control is transfered when the switch is referenced.

Only one switch-name can be declared in each switch declaration. Associated with each label in the
label list, from left-to-right, is an ordinal integer from 0 to n-1, (where n is the number oflabels in the
list). This integer indicates the position of the label in the list. Each position in the list must contain a
label - null elements are not allowed. When the switch is referenced by a GO TO statement (see
paragraph 5-2), the value of an integer subscript determines which label is selected from the list.
Bounds checking in this selection is optional. Entry points are not allowed in switch declarations.
Switch labels may not occur in subroutines.

7-21

7-30. ENTRY DECLARATION

The purpose of a local entry declaration is to specify multiple entry points to a procedure beyond the
implicit entry point which is the first statement of the procedure. Each entry identifier must occur
somewhere in the body as a statement label, but cannot be the object of a GO TO.

where

label
identifies the statement to be used as an alternate entry point.

By substituting an entry point label for the procedure-name in a function designator or a procedure
call statement, the procedure can be entered at an alternate entry point. Refer to paragraph 4-6 for the
form of a function designator and paragraph 5-8 for the form of a procedure call statement.

7-31. DEFINE DECLARATION AND REFERENCE

A define declaration assigns a block of text to an identifier. Thereafter, when the identifier is used in
the program, the assigned text replaces the identifier. This provides a convenient abbreviation
mechanism to a void repeating long constructs used many times in a program.

where

identifier
is a legal SPL identifier.

7-22

text
specifies the block of text to be substituted when the define is referenced. The text can be any sequence
of ASCII characters; however,# can only be used within a string.

A define reference may occur anywhere except within an identifier, string, or constant. The text should
make sense when inserted where the define is referenced.

At declaration time, a ~efine has no effect on the compilation of the program. It has effect only in the
context where it is referenced. For this reason, undeclared identifiers can appear in defines as long as
they have been declared when the define is referenced. Similarly, the define text is checked for syntax
errors in the context where it is referenced, not where it is declared.

Define declarations can be nested, that is, define identlfiers can be used in other definitions, but they
cannot be recursive, that is, a define identifier must not appear within its own text, since this leads to
infinite nesting when the define is referenced.

The number sign (#) terminates a define text only if it is not contained in a string. For example, the
string "ABCD# "# is valid text terminated by the second #. Incomplete comments cannot appear in
DEFINEs.

Only one block of text can be assigned to a particular identifier.

For example, here are some sample define declarations and references.

DEFINE I= ARRAY B(O:l)#;
INTEGER I; <<INTEGER ARRAY B(O:l);>>
DEFINE SUM=A+B+C+D+E#;
J:=SUM; <<J:=A+B+C+D+E;>>

7-32. EQUATE DECLARATION AND REFERENCE

An equate declaration assigns an integer value determined by an expression of integer constants and
other equates, to an identifier. The equate mechanism is only a documentation and maintenance
convenience; it does not allocate any. run-time storage, but merely provides a form of consistent
identification for constants. When an equate identifier is used, the appropriate constant is substituted
in its place. When equates are used instead of actual constants, programs can be updated easily;
instead of replacing every occurrence of a constant, only the equate declaration is changed.

•• • .• "t

. '·EQUATRj:BELL=,= 7,cR:=%,15;.
E:QUATE.,N~.l~;M=,N+ 5.0; ·. ·

7-23

where

identifier
is a legal SPL identifier.

equate-expression
can be either one of or a combination of two forms:

[sign] unsigned-integer [operator unsigned-equate-expr]

(equate-expression)

sign
is+ or - .

unsigned-integer
is an unsigned decimal, based, composite, or equated single-word integer constant.

operator
is + , - , *, or I.

unsigned-equate-expr
is an unsigned equate-expression.

The value to be assigned to an equate identifier is determined by an equate expression. Equate
expressions consist of operators (* ,/,+ ,-), unsigned integers, including previously defined equated
integers, and parentheses. Evaluation of the expression proceeds from left to right, except that
multiplication and division (*,/) are done before addition and subtraction(+,-) and expressions in
parentheses are done before the operators that surround them. The value of an equate expression must
fit in a single-word or it will be truncated on the left. Since equate identifiers can be used in equate
expressions, a series of related equate declarations can be set up such that changing only the first
changes all the rest.

Equate identifiers can be used anywhere in the program that an integer or unsigned integer constant
is allowed.

For example, here are some sample equate declarations and references:

EQUATE M= 1,N= M+ 1,P= N+ 1;
EQUATE T= 20*P/(20- P+ M);
J:= 136*T;

<<M= 1, N=2, P=3, T=3, J=408>>

7-33. PROCEDURE BODY

The procedure body consists of the local declarations and the statements of the procedure, preceded by
a BEGIN and terminated by an END;. The body can contain any executable SPL statements. If the
body does not contain any local declarations and only one statement, the BEGIN-END ,pair can be
omitted. The end of the body generates an EXIT instruction; additional exits can be generated using
the RETURN statement (see "RETURN Statement", paragraph 5-14).

7-24

EXAMPLES

PROCEDURE BLANKBUF <<Name>>
(BUFFER, COUNT); <<Formal Parameters>>
VALUE COUNT; <<Value part>>
LOGICAL ARRAY BUFFER; <<Specification>:::­
INTEGER COUNT; <<Specification>>
<<Empty Option Part>>

<<Procedure-Body>>
BEGIN

LOGICAL BLANKWORD := "";<<Data Group>>
BUFFER:= BLANKWORD; <<Statements>>
MOVE BUFFER(!):= BUFFER,(COUNT);

END; <<End Procedure Declaration>>

<<Sample Function and Call>>
BEGIN

INTEGER NUM:= 108,NIX;
INTEGER PROCEDURE V AL(A,B,C); <<Function Declaration>>

VALUE A,B,C;
INTEGER A,B,C;

VAL:= (A+ B)*C;
<<Main Program>>

NIX:=NUM/VAL(4,5,6); <<Equivalent to NIX:=NUM/((4+5)*6);>>
END. .

<<OPTION FORWARD example>>
PROCEDURE PROCl; OPTION FORWARD; <<Dummy declaration>>
PROCEDURE PROC2; OPTION FORWARD; <<Dummy declaration>>

PROCEDURE PROCl; <<Real declaration>>
IF X=(Y:=Y+ 1) THEN PROC2;

PROCEDURE PROC2; <<Real declaration>>
IF X= (Z:= Z+ 1) THEN PROCl;

7-34. INTRINSIC DECLARATIONS

An intrinsic declaration specifies that one or more of the system-provided procedures (intrinsics) will
be used by the program. Intrinsics are pre-compiled procedures supplied to SPL programmers for
performing input/output, file access, and utility functions as part of the Multiprogramming Executive
(MPE). SPL provides a simple interface to intrinsics because SPL does not have built-in constructs for
input/output as provided by FORTRAN, BASIC, COBOL, and other high-level languages. Input and
output of data in SPL programs must be performed with the MPE file system intrinsics. The user can
also declare intrinsics from his own intrinsic file.

7-25

where

file
is any valid random-access file of the operating system.

procedure-name
is the name of an intrinsic procedure.

Unless an intrinsic file is specified, the procedure names in an intrinsic declaration must be included
in an installation-defined intrinsic file. The SPL compiler searches the file for the intrinsic name and,
ifit is found, inserts the declaration for the intrinsic into the program. The declaration is equivalent to
an OPTION EXTERNAL procedure declaration (see "Procedure Declaration", paragraph 7-2) and
specifies the procedure's parameters, etc. Operating System intrinsics are described in the MPE
Intrinsics Reference Manual. These intrinsics are called like normal external procedures.

The programmer can specify his own intrinsic file in parentheses. In this case, the compiler searches
for the procedure name and declaration in the file specified, rather than in the system file. Appendix C
describes how to build intrinsic files.

7-35. SUBROUTINE DECLARATION

A subroutine declaration defines an identifier as a subroutine and specifies what attributes the
subroutine will have:

• Data type of result for function subroutines.
• Type and number of formal parameters.
• Statements of the subroutine body.

Subroutines are called by the identifier and a list of actual parameters. Subroutines can be declared
either globally or locally, but global subroutines cannot be accessed locally. Local declarations are not
allowed within subroutines.

7-26

where

type
indicates that the procedure is a function procedure that returns a value of the specified data type. The
type is INTEGER, LOGICAL, BYTE, DOUBLE, REAL, or LONG.

subroutine-name
is an SPL identifier used to identify the subroutine.

formal-parm
is an SPL identifier which is used as a local identifier to reference an actual-parameter.

value-part
indicates which formal parameters are to be passed by-value. All parameters which are not specified in
the value-part are passed by-reference. The value-part is of the form: VALUE formal-parm
[, ... ,formal-parm];

specification-part
indicates the characteristics of each formal parameter. The specification-part is of the form: specifica­
tion [; ... ;specification]

specification
is one of the following:

type formal-parm [, ... ,formal-parm]
[type] ARRAY formal-parm [, ... ,formal-parm]
[type] POINTER formal-parm [, ... ,formal-parm]
[type] PROCEDURE formaY-parm [, ... ,formal-parm]

statement
is an executable SPL single or compound statement (see sections IV through VI).

Subroutines have the same parameter conventions as procedures except that options such as VARIA­
BLE, EXTERNAL, and CHECK are not provided and subroutines cannot be passed labels. Sub­
routines can have a data type and can be functions just as procedures can. The subroutine body
consists of an executable SPL statement, including a compound statement, but cannot contain declara­
tions. Global subroutines can reference global variables and local subroutines can reference both local
and global variables. Subroutines can be called recursively. Subroutines are called using the SCAL
or LRA and BR instructions and return using the SXIT instruction. For details on calling subroutines,
see "Function Designator" (paragraph 4-6) and "Subroutine Call Statement" (paragraph 5-13).

NOTE

You must not explicitly modify the stack within a subroutine
without immediately correcting for any changes. All subsequent
parameter addressing may be incorrect and S may not point to the
return address when SXIT is executed.

7-27

EXAMPLES:

INTEGER SUBROUTINE S(A,B,C);
VALUE A,B,C;
INTEGER A,B,C;
S:= (A- 2)+ (B*C);

SUBROUTINE ZERO (ARRY,HISUB);
VALUE HISUB;
INTEGER HISUB;

INTEGER ARRAY ARRY;

BEGIN
I:= O; <<global variable>>
WHILE I<= HISUB DO

BEGIN
ARRY(l):= O;
I:= I+ 1;

END;
END;

Table 7-1. Procedures vs. Subroutines

PROCEDURES

Parameters

Functioris

Preserves calling environment and establishes
its own environment

Local variables

High overhead

Aiiows for efficient segmentation

Can be called from any procedure or from
outer block

SUBROUTINES

Parameters

Functions

Executes within the calling environment

No local variables

Very low overhead - extremely fast

Must rewrite to segment subroutines

If declared in the outer block, callable only from
outer block

If declared in a procedure, callable only from
that procedure

7-28

SECTION Vllll' iiJifrlii
1..---______ IN_P_U_T/_OU_T_P_UT___,_I VIII I

8-1. INTRODUCTION TO INPUT/OUTPUT

To perform input/output in SPL, you must call MPE intrinsics directly since SPL does not have any
input/output statements. This section presents examples of some of the ·more common input/output
intrinsics. For a complete description of all the system intrinsics, refer to the MPE Intrinsics Reference
Manual. For a complete discussion of MPE file commands, refer to the MPE Commands Reference
Manual.

Below is a list of some of the more common input/output intrinsics and their names.

FOPEN

READ

REA DX

FREAD

FREADDIR

PRINT

FWRITE

FWRITEDIR

FUPDATE

FCLOSE

FCHECK

FCONTROL

FSPACE

Table 8-1. Common Input/Output Intrinsics

Opens a file

Reads an ASCII string from the job/session input device ($STDIN)

Reads an ASCII string from the job/session input device ($STDINX)

Reads a logical record from a sequential file on any device to the user's data stack

Reads a logical record from a direCt access file to the user's data stack

Prints character string on job/session list device

Writes a logical record from the user's stack to a sequential file on any device

Writes a logical record from the user's stack to a direct access disc file

Updates a logical record residing in a disc file

Closes a file

Requests details about file input/output errors

Performs control operations on a file or terminal device

Spaces forward or backward on a file

All input/output is performed on a word basis using two bytes per word. Although you can pass a byte
array to a system intrinsic, the address is converted to a word address and a warning message issued.
To avoid this, you can use array equivalencing:

BYTE ARRAY BUF(0:71);
ARRAY WBUF(*)= BUF;

For all non-input/output operations, you would use BUF, (for example, to prepare the buffer for
writing), whereas for all calls to the input/output intrinsics, you would pass WBUF.

8-1

SPLIT-STACK OPERATIONS: During normal operation, the DB register points to the user process
stack. Some operations with extra data segments require that DB be set to the base of the extra data
segment while DL and all other data registers remain associated with the stack. When a process is
operating in this mode, it is said to have a split stack. Several of the MPE intrinsics deal with DB in this
manner; however, you need not be concerned with the mechanics of the operation because, while the
stack is "split", only system code is executing. It is possible, however, if you are a privileged mode user,
to force your process to operate in split-stack mode explicitly. If you do this, you must recognize that
some of the normal callable intrinsics may not be called when DB does not point to the stack. Such
intrinsics, if called by a privileged process in split-stack mode, can result in system failures. If you are
not a privileged mode user, you need not concern yourself with this restriction and you may assume that
intrinsics will not operate in split-stack mode unless otherwise stated.

WARNING

The normal checks and limitations that apply to the standard
users in MPE are bypassed in privileged mode. It is possible for a
privileged mode program to destroy system integrity, including
the MPE operating system software itself. Hewlett-Packard can­
not be responsible for system integrity when programs written by
users operate in privileged mode.

8-2. OPENING A NEW DISC FILE

(Please refer to the MPE Intrinsics Reference Manual for details on the FOPEN procedure.)

Figure 8-1 contains an SPL program which opens two files: a card reader file and a new disc file.

The second FOPEN call in figure 8-1

OUT:= FOPEN (OUTPUT,% 4,% 101, 128);

opens the new disc file. The parameters specified are

forrnaldes ignator DATAONE, which is contained in the byte array OUTPUT

{options %4, for which the bit pattern is as follows:

0 1 2 3 4 5 6 7 8 9 10 15

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

4

The above bit pattern specifies the following file options:

Domain: New file, no search of system or job temporary file directory is
necessary. Bits (14:2) = 00.

ASCII/Binary: ASCII. Bit (13:1) = 1.

8-2

aoptions % 101, for which the bit pattern is as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

1 0 1
The above bit pattern specifies the following access options:

Access Type: Write access only. Bits (12:4)= 0001 Exclusive: Exclusive
access. Bits (8:2)= 01.

All other parameters are omitted from the FOPEN intrinsic call.

PAGE noo1 HEWLETT-PACKARD 32100A.05el SPL/3000 TUE, OCT 7, 1975t 10:30 AM

$CONTROL USLINIT
BEGIN

BYTE ARRAY INPUT<0:6) :a:ttJNFILE 11 1
BYTE ARRAY DEV(0:4) 1= 11 CARD "I
BYTE ARRAY OUTPUT<0:7>:= 11 DATAO'IE •q
ARRAY BUFFERCO:l27)1
INTEGER INtOUTtLGTHI

00001000 00000 0
00002000 00000 0
00003000 00000 1
00004000 00005 1
00005000 00004 l
00006000 00005 1
00007000 00005 1
00008000 00005 1
00009000 00005 1
00010000 00005 1
00011000 00005 1
00012000 00005 l
00013000 00005 l
00014000 00012 1
00015oon 00013 I
00016000 00013 2
00017000 00015 2

INTRINSIC FOPEN,FREAD1FWRITE,FCLOSE,PRINT•FILE•INFO,QUITI

<< END OF DfCLARATIONS >>

IN:=FOPENCINPUT,%S,,40•DEVll
IF < THEN

BEGIN
PRINTtFILEtJNFOCINl I
QlJJTCl)I

ENDI 00018000 00017 2
00019noo 00011 1
00020000 00017 1
00021000 00030 1
00022000 00031 l
00023000 00031 2
00024000 00033 2
00025000 00035 2
00026000 00035 1
00027000 00035 1
0002enoo 00035 1
00029000 00043 l
00030000 00044 1
00031000 00044 2
00032000 00046 2
00033000 00050 2
00034000 00050 l
oooJsnoo 00051 1
00036000 00051 1
00037000 00056 1
0003AOOO 00057 l
00039000 00057 2
00040~00 00061 2
00041000 00063 2
00042000 00063 l
00043000 00063 1

COPY•LOOP:
LGTH::FREAD<INtBUFFER,40)1
IF < THEN

BEGIN
PRINT•FILE•INFO<INll
QUIT< 3 >I

ENOI
IF > THEN GO ENn•OF•FILEI

FWRITECOUTtBUFFF.RtLGTHtOll
IF <> THEN

BEGIN
PRINT•FILE•INFO(OUTll
QUIT C4l I

END1

GO COPY•LOOPI

END•Of'FILES
00044000 00066 1
00045000 00066 1
00046000 00066 1
00047000 00072 1
00048000 00073 l
00049000 00073 2
ooosonoo 0001s 2
00051000 00077 2
00052000 00077 1 ENO.

PRIMARY DB STORAGE=I0071
NO. FR~ORS•OOOI
PROCESSOR TIMEsOIOOI031

FCL0SECOUTt%lltOll
IF < THEN

BEGIN
PRINT•FILE•INFOCOUT>J
QUITC5)1

ENDI

SECONDARY DB STORAGE:a:I00213
NO. WARNINGS•OOO
ELAPSED TIME•Ol00144

Figure 8-1. Opening a New Disc File

8-3

«CARD READER»
<<CHECK FOR ERROR>>

«PRINT ERROR>>
<<ARORT>>

«READ A CAR[)»
<<CHECK FOR ERROR>>

«PRINT ERROR»
<<ABORT>>

<<CHECK FOR EOF>>

<<COPY CARD TO DISC>>
<<CHECK FOR ERROR>>

«PRINT ERROR»
«ABORT>>

<<CONTINUE COPYING>>

<<MAKE PERMANENT>>
<<CHECK FOR ERROR>>

«PRINT ERROR»
«ABORT>>

Once the file is opened, the file number (used by other file system intrinsics when referencing this file)
is returned to the variable OUT.

The condition code is checked with the

IF< THEN

statement. If the condition code is CCL, signifying that the FOPEN request was denied, the next four
statements, starting with the BEGIN statement are executed.

PRINT'FILE'INFO(OUT);

calls the PRINT'FILE'INFO intrinsic, which prints a FILE INFORMATION DISPLAY on the stand­
ard list device, enabling you to determine the error number returned by FOPEN. The parameter
(OUT) specifies the file number returned through the FOPEN intrinsic. If the file was not opened
successfully, OUT= 0, where 0 specifies that the FILE INFORMATION DISPLAY will reflect the
status of the file referenced in the last call to FOPEN. See the MPE Intrinsics Reference Manual for a
discussion of the FILE INFORMATION DISPLAY.

The QUIT intrinsic call

QUIT(2);

aborts the process. The parameter (2) is an arbitrary user-supplied number. When a QUIT intrinsic is
executed, this number is printed as part of the resulting abort message, allowing you to determine, in
the case of multiple QUIT intrinsic calls in a program, which specific QUIT call was executed.

NOTE

The QUIT intrinsic causes MPE to close all files with no change.
Thus, new files are deleted, old files are saved and assigned to the
same domain to which they belonged previously.

8-3. READING A FILE IN SEQUENTIAi"' ORDER

(Please refer to the MPE Intrinsics Reference Manual for details on the FREAD procedure.)

To read records, or portions of records, from a file in sequential order, you use the FREAD intrinsic.

When the FREAD intrinsic executes, a logical record pointer advances to the next record. Then, the
next time the FREAD intrinsic is called, the next record is read. Even if a portion of a record is read, a
subsequent FREAD ignores the unread portion of the last record (because the logical record pointer
has advanced) and begins reading the next record.

NOTE

The logical record pointer is a number kept by MPE to indicate
the next sequential record to be accessed in a file.

8-4

PAGE nool HEWLETT-PACKARD 32100A.05.l SPL/3000 TUEt OCT 7, 1975t 10:30 AM

00001000 00000 0 $CONTROL USLINIT
00002000 00000 0 BEGIN
00003()00 00000 1 BYTE ARRAY INPUTl016)1•"INFILE "I
00004000 00005 1 BYTE ARRAY DEV(014ll="CARO "I
00005000 00004 1 BYTE ARRAY OUTPUT(017)1= 110ATAO~E "' 00006000 00005 1 ARRAY BUFFER<O:l27>1
00007000 00005 1 INTEGER INtOUTtLGTHI
ooooenoo 00005 1
00009000 00005 1 INTRINSIC FOPENtFREA01FWRITE1FCLOSEtPRINT•FILE•INF01QUITI
00010000 00005 1
00011000 00005 1 << END OF DECLARATIONS »
00012000 00005 l
ooo 13noo 00005 1 IN:=FOPEN<INPUT~~5tt401DEV>I «CARD READER»
00014000 00012 1 IF < THEN <<CHECK FOR ERROR>>
0001snon 00013 1 BEGIN
00016000 00013 2 PRINT•FILE•INFO<IN>I «PRINT ERROR»
00017000 00015 2 QUIT <l >I «ABORT>>
00018000 00017 2 ENDI
oo019nOo 00017 1
00020000 00017 l OUTl=FOPEN<OUTPUTt%4t%10ltl28)1 <<NEW DISC FILE>>
000211'100 00030 1 IF < THEN <<CHECK FOR fRROR>>
00022000 00031 l BEGIN
000231'100 00031 2 PRINT•FILf•INFOCOUT>I «PRINT ERROR»
000241)00 00033 2 QUIT<?> I «ABORT>>
00025000 00035 2 ENfH
0002MOO 00035 1
000271)00 00035 l
00028000 00035 1
000291'100 00043 1
00030nOO 00044 1
000J1noo 00044 2
00032000 00046 2
00033000 00050 2
00034000 oooso l
00035000 00051 1
00036000 00051 l
00037000 00056 1
0003MOO 00057 1
00039000 00057 2
ooo4o_noo 00061 2
00041000 00063 2
00042000 00063 1
000431}00 00063 1 GO COPY•LOOP• <<CONTINUE COPYING>>
00044000 00066 l
00045000 00066 1 END•OFtFILEI
00046000 00066 l FCLOSE<OUTtllltO>I <<MAKE PERMANENT>>
00047000 00072 1 IF < THEN <<CHECK FOR ERROR>>
00048000 00073 1 BEGIN
00049000 00073 2 PRINT•FILE'lNFO<OUT>• «PRINT ERROR»
00050000 00075 2 QUIT(5)1 «ABORT>>
00051000 00077 2- ENDI
00052f:t00 00077 l END.

PRIMARY DB STORAGE=l0071 SECONDARY DB STORAGE=I00213
NO. FR~ORS•OOO• NO. WARNINGSsOOO
PROCESSOR TIME:OIOOI031 ELAPSED TlME•Ol00144

Figure 8-2. FREAD Intrinsic Example

8-5

The program shown in figure 8-2 reads a card file. The FREAD statement

LGTH:= FREAD(IN ,BUFFER,40);

reads a record from the card reader file designated by the variable IN (the file number was assigned to
IN when the FOPEN intrinsic opened the file) and transfers this record to the array BUFFER in the
stack. The statement reads up to 40 words from the record, then returns a positive value to LGTH
which indicates the actual length of the information transferred.

If an error occurs during execution of the FREAD intrinsic, a condition code of CCL is returned. The
statement

IF< THEN

checks the condition code and, if the condition code is CCL, the next four statements are executed. The
PRINT'FILE'INFO intrinsic call causes a FILE INFORMATION DISPLAY to be printed on the output
device so that you can determine the error number returned by FREAD, and the QUIT intrinsic aborts
the process.

When the end-of-file is encountered on the card file, a condition code of CCG is returned. The
statement

IF > THEN GO END'OF'FILE;

checks for this condition code and, when it occurs, transfers program control to the label
END'OF'FILE. If the end-cf~file condition is not encountered, the FWRITE statement is executed and
the

GO COPY'LOOP;

statement transfers program control back to the beginning of the copy loop. The FREAD intrinsic is
called again and the next record is read.

8-6

8-4. WRITING RECORDS INTO A FILE IN SEQUENTIAL ORDER

(Please refer to the MPE Intrinsics Reference Manual for details on the FWRITE procedure.)

To write records, or portions of records, from your buffer to a file in sequential order, you use the
FWRITE intrinsic.

When the FWRITE intrinsic executes, the logical record pointer advances to the next record. Then, the
next time the FWRITE intrinsic is called, information i~ written into the next record position. When
information is written to a file composed of fixed-length records (and buffering is not specified in the
FOPEN call), the file system will pad all short records with binary zeros for a binary file, or ASCII
blanks for an ASCII file to bring the records up to the fixed length required. If nobuff was specified in
FOPEN, automatic buffering is not provided by MPE.

The FWRITE statement in figure 8-3

FWRITE(OUT,BUFFER,LGTH,0);

writes a record from the array BUFFER into the disc file designated by the variable OUT.' The file
number was assigned to OUT when the FOPEN intrinsic opened the file. The length of the record is
specified by LGTH. LGTH was assigned its value when the FREAD intrinsic read the record and
transferred it to BUFFER, so in this case the same number of words being read from the card reader
are being written to the disc.

The control parameter is specified as 0, which specifies that no carriage control code is included in the
record. Carriage control, of course, is not necessary for a disc file but the parameter is included because
all of FWRITE's parameters are required.

A condition code of CCE signifies that the FWRITE request was granted. The statement

IF<> THEN

checks for a "not equal" condition code and, if CCG or CCL is returned, the next four statements are
executed. The PRINT'FILE'INFO intrinsic causes a FILE INFORMATION DISPLAY to be printed
on the output device, enabling you to determine the error number returned by FWRITE. The QUIT
intrinsic aborts the process.

If CCE is returned, the next four statements are not executed, the GO COPY'LOOP statement is
executed, and the FREAD and FWRITE intrinsic calls are repeated until FREAD detects the end of
the card file.

8-7

PAGE noo1 HEWLETT-PACKARD 32100A.os.1 SPL/3000 TUE. OCT 7, 1975t 10:30 AM

SCONTROL USLINIT
BEGIN

BYTE ARRAY INPUT<Ol,,)la:"INFILE "'
BYTE ARRAY DEV(014)1= 11 CARO "I
BYTE ARRAY OUTPUT<0:7>:= 11 DATAO~E "I
ARRAY BUFFER<0:127>•
INTEGER INtOUT,LGTH•

00001000 00000 0
00002000 00000 0
00003000 00000 1
00004000 00005 1
00005000 000.04 1
00006000 00005 1
00007000 00005 l
00008000 00005 1
00009000 00005 1
00010000 00005 1
00011000 00005 1
000120.00 00005 1
00013000 00005 l
00014000 00012 1
00015000 00013 1
00016000 00013 2
00017000 00015 2
00018000 00017 2
00019000 00017 l
00020000 00017 1
00021000 00030 1
00022000 00031 1
00023000 00031 2
00024000 00033 2
00025000 00035 2

INTRINSIC FOPENtFREADtFWRITE,FCLOSE,PRINT•FILE•INFOtOUITI

00026000 00035 1
00027000 00035 1
00028000 00035 l
00029000 00043 1
00030000 00044 l
00031000 00044 2
00032000 00046 2
00033000 00050 2
00034000 00050 l
00035000 00051 1
00036000 00051 1
00037000 00056 1
0003ROOO 00057 1
00039000 00057 2
00040~00 00061 ?
00041000 00063 2
00042000 00063 1
00043000 00063 1

<< END OF DfCLARATIONS >>

IN:=FOPEN<INPUTtl5tt40tDEV>I
IF < THEN .

BEGIN
PRINT•fILE•INFO<INl I
QUIT<lll

ENOC

0UTl=FOPEN<OUTPUTt~4t~l0ltl28)1
IF < THEN

BEGIN
PRINT•Fllf•INFOCOUTlS
QUIT (?l S

END•

GO COPY•LOOPI

END•OF•FILES
00044000 00066 1
00045000 00066 1
00046000 00066 1
00047000 00072 1
00048000 00073 1
00049000 00073 2
00050000 00075 2
00051000 00077 2
00052000 00077 1 END.

PRIMARY DB STORAGE=~007•
NO. FR~ORS•OOOI
PROCESSOR TIME•OIOOl031

FCLOSE<OUT,llltO>I
IF < THEN

BEGIN
PRINT•FILE•INFO<OUT)I
QUIT (5) I

ENDI

SECONDARY DB STORAGEc~oo213
NO. WARNINGS•OOO
ELAPSED TIME•Ol00144

Figure 8-3. F\VRITE Intrinsic Example

8-8

«CARD READER»
<<CHECK FOR ERROR>>

«PRINT ERROR»
«AAORT»

<<NEW DISC FILE>>
<<CHECK FOR FRROR>>

«PRINT ERROR»
«ABORT»

<<CONTINUE COPYING>>

<<MAKE PERMANENT>>
<<CHECK FOR ERROR>>

«PRINT ERROR»
«ABORT»

8-5. UPDATING A FILE

(Please refer to the MPE Intrinsics Reference Manual for details on the FUPDATE procedure.)

To update a logical record of a disc file, you use the FUPDATE intrinsic.

The FUPDATE intrinsic affects the logical record (or block for NOBUF files) last accessed by any
intrinsic call for the file named, and writes information from a buffer in the stack into this record. Note
that the record number is not supplied in the FUPDATE intrinsic call; FUPDATE automatically
updates the last record referenced in any intrinsic call. ·

The file containing the record to be updated must have been opened with the update aoption specified
in the FOPEN call and must not contain variable-length records.

Figure 8-4 contains a program that opens an old disc file and updates records in the file. The update
information (employee number) is entered from a terminal (the program was run interactively) into a
buffer in the stack, then the contents of the buffer are used to update the record.

The statement

LGTH:= FREAD(DFILEl,BUFFER,128);

reads an employee record from the file specified by DFILEl into the array BUFFER in the stack.

The statement

FWRITE(LIST,BUFFER,-20,%320);

then displays this record on the terminal ($STDLIST has been opened with the FOPEN intrinsic and
the resulting file number was assigned to LIST).

The statement

DUMMY:= FREAD(IN ,BUFFER(30),5);

reads an employee number, entered on the terminal ($STDIN has been opened with the FOPEN
intrinsic and the resulting file number was assigned to IN), into word 30 of the array BUFFER.

The statement

FUPDATE(DFILEl,BUFFER,128);

then calls the FUPDATE intrinsic to update the last record accessed in the file specified by DFILEl.
The contents of BUFFER (including the employee number entered from the terminal) are written into
this record. Up to 128 words are written.

If the FUPDATE request was granted, a CCE condition code results. The statement

IF <> THEN FILERROR(DFILEl,9);

checks for a "not equal" condition code and, if such is the case, calls the error-check procedure
FILERROR. The procedure FILERROR prints a FILE INFORMATION DISPLAY on the terminal,
enabling you to determine the error number returned by FUPDATE, then aborts the programs's
calling process.

8-9

PAGE nonl HEWLETT-PACKARD 32100A.05.l SPL/3000 T~Et OCT 7, 1975t 10132 AM

$CONTROL USLINIT
BEGIN

BYTE ARRAY DATAl C0:7) 1= 11 DATAONE "'
ARRAY RUFFERCOl127)1
INTEGER DFILEltLGTHtDUMMYtIN,LIST•

00001000 00000 0
00002000 00000 0
00003000 00000 1
00004000 00005 1
oooosnoo oooos 1
00006000 00005 1
00001noo oooos l
OOOOAnoo 00005 l
oooo9noo oooos 1
0001onoo 00005 l
00011000 00000 l
00012noo 00000 l
00013non 00000 l
00014f'>OO 00000 2
00015000 00002 2
00016f'>OO 00004 2
00017000 00000 1
0001~000 00000 1
00019000 onooo 1
00020000 00000 1
00021noo 00011 1
00022noo 00015 l
00023noo 00015 1
000?4f'>OO 00024 1
0002soon 00030 l
00026000 OOOJO 1
00027000 00040 1

INTRINSIC FOPENtFREADtFUPOATE,FLOCKtFUNLOCKiFCLOSEt
PRINT•FILE•INFO,QUITtFWRITEtFREAOJ

PROCEDURE FILERRORCFILENO,QUIT~O>I
VALUE QUITNOI
INTEGER FILENO,QUITNO•
BEGIN

PRINT•FILE•INFO<FlLENO)I
Qun (QUITNO> I

ENDS

<<END OF DECLARATIONS>>

DFILEl:=FOPENCDATAlt~Stl345tl2A>I
IF< THEN FILERRORCOFILElel)I

IN::FOPENCtl244)1
IF< THEN FILERRORCINt2>1

LISTl=FOPENC,~614t~l>I
IF< THEN FILERROR<LISTt1>1

0002enon 00044 1
00029noo 00044 1
0003onon 00044 l
000J1noo 00047 1
00032noo 00053 1
00033000 00053 1
oo034noo 00061 1
00035000 00065 1
oo036non 00010 I
00037000 00070 l
oooJenoo 00015 1
00039000 00101 1
00040~00 00101 1
00041000 00110 l
00042000 00114 l

UPOATE•LOOP:

00043000 no11s l
00044noo 0011s l
00045000 00121·1
00046000 00125 1
00047000 00125 l
ooo4enoo 00121 1
00049000 00133 l
ooosonoo 00133 l

FLOCK <DFILEl t l >'
IF< THEN FILFRRORCDFILEl,~)I

LGTHl=FREAOCDFILEltBUFFER,128>1
IF< THF.N FILERRORCOFILEl,511
IF > THEN GO ENO•OF•FILEI

FWRITECLISTtBUFFERt•20tl32011
IF<> THEN FILERROR<LIST,6>1

DUMMYl•FREADCIN,BUFFERC30>t511
IF< THEN FILER~ORCIN,711
IF > THEN GO ENOtOF•FILEi

FUNLOCK<DFILEl>I
IF<> THEN FILERRORCDFILElt911

GO UPDATE•LOOPI

END•OF•FILEI
FUNLOCKCOFILEl>I

00051000 00140 l
00052000 00140 1
00053000 00140 1
00054000 00142 1
00055000 00146 l
00056000 00146 1
00057000 00151 l
00058000 00155 1 END.

IF<> THEN FILERRORCOFILEltlO>I

FCLOSECOFILEltOtOll
IF< THEN FILERRORCDFILEltllll

PRIMARY OR ST0RAGE•I007•
NO. F'RRORS•OOO•
PROCF-SSOR TIME•OIOOl031

SECONDARY DB STORAGE•I00204
NO. WARNINGS•OOO
ELAPSED TIME•Ol00117

Figure 8-4. FUPDATE Intrinsic Example

8-10

<<OLD DISC FILE>>
<<CHECK FOR fRROR>>

«SSTOIN»
<<CHECK FOR ERROR>>

«SSTDLIST»
<<CHECK FOR ERROR>>

<<LOCK FILE/SUSPEND>>
<<CHECK FOR ERROR>>

<<GfT EMPLOYEE RECD>>
<<CHECK FOR FRROR>>
<<CHECK FOR EOF>>

<<EMPLOYEE NAME>>
<<CHECK FOR ERROR>>

«EMPLOYEE NUMBER»
<<CHECK FOR ERROR>>

<<ALLOW OTHER ACCESS>>
<<CHECK FOR ERROR>>

<<CONTINUE UPDATE>>

<<ALLOW OTHER ACCESS>>
<<CHECK FOR ERROR>>

<<DISP•NO CHANGE>>
<<CHECK FOR ERROR>>

J

8-6. NUMERIC DATA INPUT/OUTPUT

There are several intrinsics available for converting integer data for transfer between an ASCII file
and the data stack. These intrinsics are as follows:

• ASCII - Converts 16-bit binary number to ASCII representation.

• DASCH - Converts 32-bit binary number to ASCII representation.

• BINARY - Converts an ASCII numeric string to a 16-bit binary numeric.

• DBINARY - Converts an ASCII numeric string to a 32-bit binary number.

(Please refer to the MPE Intrinsics Reference Manual for a complete description of these intrinsics.)

For handling floating point numbers, refer to the EXTIN' and INEXT' procedures in the Compiler
Library Reference Manual.

8-7. FILE EQUATIONS

The standard attributes of files used by an SPL program can be modified through the use of the
MPE :FILE command.

NOTE

Read the discussion of files in the MPE Commands Reference
Manual before attempting to change file attributes with the
:FILE command.

The specifications in a :FILE command do not take effect until the compiled program is running and
the referenced file is opened. The :FILE command specifications hold throughout the entire program
unless superseded by another :FILE command or revoked by a :RESET command. At job or session
termination, however, all :FILE commands are cancelled.

8-11

11u111.111 COMPILER COMMANDS· 1 IX I

9.0 COMPILER FORMAT

A compiler listing presents three groups of numbers preceding the program statements. The first group
shows the Editor line numbers of the listing file in decimal format. The second column of five numbers
indicates the machine instruction code reference which is RBM-relative. The third set gives the
BEGIN-END count, or level.

The BEGIN-END count is useful information for program debugging in locating BEGIN-END pair
mismatches. This is the third group of numbers listed in a compile. It indicates the nesting level of the
statements that follow the BEGIN or END. The count starts at zero and is incremented by one after
each BEGIN statement; it is decremented by one after each END statement. Since the last END
statement ends the compile process, the BEGIN-END count is never decremented to zero.

NOTE

Pressing CONTROL-Y during a compilation causes the current
line number to be displayed along with the number of errors and
warnings.

EDITOR line number

l
1
2
1
2
3
4
5
6
7
8
9

10
11
12

3
4

code offsets

i
00000
00000
00000
00000
00000
00000
00000
00000
00000
00004
00004
00004
00004
00004
00004
00006

BEGIN-END count

+ 0 ,.BEGIN
]_..¥ $INCLUDE XXX
1 INTEGER I;
1 ,.BEGIN

>"' 2 ,.....BEGIN
3_........... --BEGIN
4...----- -----BEGIN

Arrows indicate where
BEGIN-END count is
incremented or decremented

5 ...c---------- -------BEG IN
6 ...----------- I = 9 9 9 ;

6 --------END ;
5 ..---------- --- END •

---- I

4 .-------: -END;
3,. ... -:_-END;

2 ... :.:-:fim:
l:""' I := 99;
1 END. ~global data area size

!PRIMARY DB STORAGE=%001; SECONDARY DB STORAGE=%OOOOOI
NO. ERRORS=OOOO;
PROCESSOR TIME=O:OO:Ol;

NO. WARNINGS=OOOO
ELAPSED TIME=0:00:06

9-1

9-1. USE AND FORMAT OF COMPILER COMMANDS

In general, compiler options such as source input merging, listing, format specification, or warning
message suppression are determined by default settings assigned by the compiler. However, the user
can override these settings and select different options by issuing compiler commands. These com­
mands take effect only after access to the compiler is established. They are directed only to the
compiler and are not effective during program execution.

Compiler commands differ in both function and format from compiler language source statements, and
thus are not considered true SPL statements even though they are part of~he source program file. The
SPL compiler commands do conform, however, to the general formats for other HP 3000 language
translators such as FORTRAN, COBOL, and RPG. For each function used by more than one language
translator, the same command name is used and, in most cases, the same command parameters also
apply.

where

command-name
specifies the compiler command. The command-name is one of the following: CONTROL, IF, SET,
TITLE, PAGE, EDIT, TRACE or COPYRIGHT.

parameter
specifes an option of the compiler command. The form of a parameter is dependent on the command­
name and is discussed with the appropriate command. In general a parameter is one of the following:

character-string
symbolic-name
keyword [=sub-parameter]

The first dollar sign ($) is required and must be in column 1. The second dollar sign is optional. If
specified, the command is not transmitted to the newfile if a newfile is created during compilation. The
command-name must follow the first$ (or second$ if present) without any intervening spaces. The list
of parameters is separated from the command-name by one or more spaces. Within the list, parameters
are separated from each other by commas. Spaces are allowed before and after the parameters. The
parameter list may continue through column 72 of the source record-

9-2

The sequence field (columns 73-80) of a record containing a compiler command is not part of the
command; however, it may be used for sequence checking during editing and merging operations as
described later under the EDIT command.

NOTE

Only upper-case letters, numbers, and special characters are used
in compiler commands. When lower-case letters are entered as
part of a command, the compiler interprets them as their upper­
case equivalent except within character strings as defined below.

A character-string consists of a sequence of ASCII characters enclosed in quotation marks("). Blank
characters may be included in the string and null strings are allowed. Quotation marks within a string
are entered as two adjacent quotation marks,("") to distinguish them from the quotation marks that
begin and end the string.

A keyword is a reserved word with respect to a given command; they are described under the
appropriate commands. A sub-parameter is a character-string, a symbolic name, or a decimal number.

Comments may be included within any command. A comment is generally used to document the
purpose of coding or to make notations about program logic. A comment is not interpreted as part of
the command, and has no effect upon compilation. It is syntactically treated as a space and can appear
in either of the following locations:

• Following the command-name, separated from it by at least one space.
• Preceding or following any parameter in the parameter list.

A comment cannot be embedded within a parameter; for instance, it cannot appear within a keyword,
preceding or following an equals sign, or within a quoted string. Furthermore, a comment cannot be
continued from one record to the next.

A comment can contain any ASCII character. The comment must begin with two adjacent less-than
signs (<<) and terminate with two adjacent greater-than signs (>>). Since adjacent greater-than
signs terminate a comment, they cannot appear within the comment itself. The comment may
continue through column 72.

The following examples illustrate various ways in which comments can be included in compiler
commands.

1. Following the command-name:

$PAGE <<PAGE EJECT,NO TITLE CHANGE.>>

2. Following the last parameter in a parameter list:

$SET Xl=ON,X2=0N,X3=0N<<SWITCHES 1-3 ON.>>

3. Embedded within the parameter list:

$SET Xl=ON,X2=0N,<<LAST SW OFF>>X3=0FF

When the length of a command exceeds one physical record (source card or entry line), the user can
enter an ampersand(&) as the last non-blank character of this record and continue the command on

9-3

the next record. This is called a continuation record. The text portion of the continuation record, in
turn, must begin with a dollar sign ($) in column 1. Even when a command begins with double dollar
signs, its continuation records still begin with only a single dollar sign. When EDIT/3000 is used to
enter a source program containing compiler command continuation records, a space must be entered
after the ampersand so the ampersand is not interpreted as an EDIT/3000 continuation line.

NOTE

A compiler command record must never be separated from its
continuation record by an SPL source record.

In continuing a command onto another record, you cannot divide a primary command element (a
command-name, keyword, subparameter - including strings, or comment) - no primary element is
allowed to span more than one line.

When the compiler encounters a command containing one or more continuation records, each continu­
ation record is concatenated to the preceding record beginning with the character following the $; each
$ and continuation ampersand is replaced by a space.

The following command is continued onto a second record:

$CONTROL LIST,SOURCE,WARN,MAP,&
$CODE,LINES= 36

It is interpreted as:

$CONTROL LIST,SOURCE,WARN,MAP, CODE,LINES= 36

Even though a comment cannot be divided over more than one line, extensive commentary text
requiring several lines can be entered by enclosing it within separate comments that each occupy one
line.

The following command includes commentary text spread over three lines:

$CONTROL NOWARN <<WARNING MESSAGES ON TRIVIAL ERRORS>>&
$ <<WILL NOT BE LISTED, BUT MESSAGES ON>>&
$ <<FATAL ERRORS WILL APPEAR.>>

A command does not take effect until all of its parameters have been interpreted. Thus, a command
that suppresses source listing output does not affect the listing of any continuation records within the
command itself. Parameters are interpreted from left-to-right. In some cases, parameters may be
redundant or supersede previous parameters within the same command. In other cases, certain
parameters are allowed only once within a command.

In the following command, the redundant parameters LIST and NOLIST each appear twice:

$CONTROL LIST,NOLIST,NOLIST,LIST

Because the final redundant parameter in any $CONTROL command always takes effect, the above
command is equivalent to:

$CONTROL LIST

A summary of the compiler commands for SPL appears in table 9-1.

9-4

COMMAND

$CONTROL

$IF

$SET

$TITLE

$PAGE

$EDIT

$COPYRIGHT

$SPLIT

$NOSPLIT

$INCLUDE

Table 9-1. Compiler Command Summary

PURPOSE

Restricts access to listfile; suppresses source text, object code, and symbol table
listing; suppresses warning messages; sets maximum number of lines listed per
page; sets maximum number of severe errors allowed; starts a new segment;
initializes the USL file; lists mnemonics for code generated; assigns a name to the
outer block; allows subprogram compilation; makes outer block privileged;
makes outer block uncallable; lists address mode and displacement of variables
declared.

Interrogates software switches for conditional compilation.

Sets software switches for conditional compilation.

Establishes or changes paqe title on listing.

Establishes or changes page title, and ejects page.

Specifies editing options during merging such as, omitting sections of old source
program and re-numbering sequence fields.

Specifies copyright information to be copied to the list, USL, and program files.

Enables split-stack checking.

Disables split-stack checking.

Permits inclusion of text from another file into the SPL source file.

9-5

9-2. $CONTROL COMMAND

When you call the compiler without specifying a $CONTROL command, the following default options
are in effect:

The compiler is given unrestricted access to listfile.

All source records passed to the compiler by its editor are listed unless the listfile and primary
input file (normally the textfile) are assigned to the same terminal.

Warning messages are listed.

Listing of the symbol table is suppressed.

Listing of the object code generated is suppressed.

The number of lines appearing on each printed page (output to listfile) is a maximum of 60.

The maximum number of severe errors allowed before compilation is terminated is 100.

SPL is called in the program mode, as opposed to subprogram mode.

The segment name is SEG'.

The outer block name is OB'.

The mnemonic listing is suppressed.

The USL (User Subprogram Library) file is not initialized unless it is a new file.

Callable, non-privileged outer block.

The above default options can be overridden by entering the $CONTROL compiler command. This
command allows you to restrict access to the listfile, suppress source record listings, produce object
code and symbol table listings, change the maximum number of lines per printed page, and otherwise
alter the normal compiler control options.

where

parameter
specifies an option of the $CONTROL command. A parameter is one of the following: LIST, NO LIST,

9-6

SOURCE, NOSOURCE, WARN, NOWARN, MAP, NOMAP, AUTOPAGE, CODE, NOCODE, LINES
= nnnn, ERRORS = nnn, USLINIT, DEFINE, SEGMENT = segname, ADR, INNERLIST, MAIN =
program-name, UNCALLABLE, PRIVILEGED, or SUBPROGRAM [(procedure-name[*] [,procedure­
name[*]] ...)].

Each parameter in the parameter list specifies a different option as described below. Unless otherwise
noted, each parameter can appear in a $CONTROL command placed anywhere in the source input.
Each parameter remains in effect until explicitly cancelled by an opposing parameter (for example,
NOLIST cancelling LIST), or until the compilation terminates. In any $CONTROL command, at least
one parameter must be specified. Within the parameter list, the parameters can appear in any order. In
the descriptions below, default parameters are shown in /1'?_

Allows the compiler unrestricted access to the listfile, permitting the SOURCE, MAP, CODE, and
LINES parameters to take effect when issued. The LIST parameter remains in effect until a $CON­
TROL command specifying NOLIST is encountered.

NO LIST
Allows only source records that contain errors, appropriate error messages, and subsystem initiation
and completion messages to be written to the listfile. NOLIST remains in effect until a $CONTROL
command specifying LIST appears.

15Ufi@j1
Requests listing of all source records, as edited by the compiler's editor, while LIST is in effect. When
the compiler is called with listfile and the primary input file assigned to the same terminal,
NOSOURCE is initially the default. In all other cases SOURCE is the default.

NOSOURCE
Suppress the listing of source text, cancelling the effect of any previous SOURCE parameter.
NOSOURCE remains in effect until SOURCE is subsequently encountered.

bWMB
Permits the reporting of doubtful minor error conditions in the source input. These reports are
transmitted to the listfile in the form of a warning message. The WARN parameter remains in effect
until a $CONTROL command specifying the NOW ARN parameter is encountered.

NOWARN

NOTE

NOLIST does not suppress warning messages - they are sup­
pressed solely by NOWARN.

Suppresses warning messages. The NOW ARN parameter remains m effect until a $CONTROL
command specifying WARN appears.

MAP
Requests printing of user-defined symbols and their addresses following the source text listing if LIST
is in effect. Reference parameters are flagged with an 'R'. The MAP parameter remains in effect until a
NOMAP parameter is encountered. Figure 9-1 shows a sample symbol map.

IMBI
Suppresses printing of symbol map of user-defined symbols thereby cancelling any previous MAP
parameter. The NOMAP option remains in effect until a MAP parameter is encountered.

9-7

00001000 00000 0 l $CONTROL MAPj
00002000 00000 0 BEGIN
00003000 00000 1 I NT EG ER I , J : = 1'B
00004000 00000 1 REAL RI, R2;
00005000 00000 I ARRAY A<0: 10);
00006000 00000 1 Rl :=R2:=20E9;
00007000 00004 1 FOR 1:=0 UNTIL J DO
00008000 00011 1 A (I) : = 2* I;

00009000 00022 1 END.

IDENTIFIER CLASS TYPE ADDRESS

A ARRAY LOGICAL DB+006
I SIMP· VAR· INTEGER DB+000
J SIMP. VAR. INTEGER DB+001
RI SIMP· VAR· REAL DB+002
R2 SIMP. VAR. REAL DB+004
TERMINATE' PROCEDURE

PRIMARY DB STORAGE=%007;
NO. ERRORS=000;
PROCESSOR TIME=0:00:00;

SECONDARY DB STORAGE=%00013
NO· WARNINGS=000
ELAPSED TIME=0:01:16

END OF PROGRAM

Figure 9-1. Symbol Map

AUTOPAGE
Causes a page eject whenever a procedure declaration is the first token found on a line. If the
declaration is preceded by "COMMENT" or"<<" no page eject will be issued; however, if the embedded
"declaration" occurs on the second or later line of a comment, one will be issued. Similarly, any
documentation placed before the procedure declaration will appear on the preceding page.

CODE
Requests listing of object code generated following the listing of the source text if LIST is in effect. The
CODE parameter remains in effect until the NOCODE parameter is encountered. Figure 9-2 shows a
sample CODE listing.

Suppresses listing of object code, thereby cancelling the effect of any previous CODE parameter. The
NOCODE parameter remains in effect until a CODE parameter is encountered.

LlNES=nnnn
Limits the number of lines printed on listfile to nnnn lines per page. Whenever the next line sent to
listfile would overflow the line count (nnnn), the page is ejected and the standard page heading and
two blank lines are printed at the top of the page, followed by the line to be transmitted. A page
heading and its following two blank lines are counted against the total line count, nnnn. The

g..g

00001000 00000 0 $CONTROL CODE
00002000 00000 0 BEGIN
00003000 00000 1 I NT EGER I, J : = HH
00004000 00000 1 REAL Rl, R2;
00005000 00000 1 ARRAY AC 0 : 1 0 H

[00006000 00000 1 R 1: =R2: =20E9;]
00007000 00004 1 FOR 1:=0 UNTIL J DO
00008000 00011 1 AC I): =2*U
00009000 00022 1 END. ,,
00000 [034013 004600 161004 l61002J000600 051000 171000
00010 041001 050004 140010 044212 100 57 5 021002 111000
00020 057006 052404 000000

PRIMARY DB STORAGE=%007;
NO. ERRORS=00eu
PROCESSOR TIME=0:00:00;

SECONDARY DB STORAGE=%00013
NO. WARNINGS=000
ELAPSED TIME=0:00:55

END OF PROGRAM

Figure 9-2. $CONTROL CODE Output

021001
1"31000

subparameter nnnn is an integer ranging from 10 to 9999. The LINES=nnnn parameter remains in
effect until another LINES= nnnn parameter appears. If this parameter is omitted, the default value
assigned is:

60 lines per page for devices other than terminals.
32767 lines per page for terminals.

ERRORS=nnn
Sets the maximum number of severe errors allowed during compilation to nnn; if this limit is
exceeded, compilation terminates and the uslfile is unchanged. If the limit specified has already been
exceeded when the ERRORS= nnn parameter is encountered, compilation terminates. If the ER­
RORS= nnn parameter is omitted, nnn is set to 100 by default.

USLINIT
Initializes the uslfile to empty status prior to generation of object code. If you do not specify a uslfile or
if you specify a uslfile whose contents are obviously incorrect, the compiler automatically initializes
the uslfile to empty status whether or not USLINIT is specified.

DEFINE
Causes the bodies of DEFINEs to be written out to a disc file, thereby increasing the amount of symbol
table space available to the compiler. The $CONTROL option must be invoked before any DEFINEs are
declared.

9-9

00001000
00002000
00003000

00004000

00005000

00006000
00007000
00008000
00009000
PRIMARY

00000 0
00000 0
00000 1

00000 1

00000

$CONTROL ADR
BEGIN

INTEGER I,J:=lCH I DB+0111111 l----- 1

_DB+001 ~J
REAL Rl, R2.:

DB+002
DB+004

ARRAY AC0: 10>.:
DB+006

00000 R1:=R2:=20E9.:
00004 FOR 1:=0 UNTIL J DO
00011 ACI>:=2*I.:
00022 1 END.

DB STORAGE=%007.:
NO. ERRORS=000.:

SECONDARY DB STORAGE=%00013
NO. WARNINGS=000

PROCESSOR TIME=0:00:00.: ELAPSED TIME=0:01:05

END OF PROGRAM

Figure 9-3. $CONTROL ADR Output

SEGMENT= segname
Starts a new segment with the specified segname. The segname can consist of up to 15 alphanumeric
characters starting with an alphabetic character. Apostrophes are allowed within the segname except
as the first character. The segname stays in effect until explicitly overridden by another $CONTROL
SEGMENT or compilation terminates. For a main-body which is to be in a segment by itself, the
$CONTROL SEGMENT should be placed after the procedure and intrinsic declarations and before the
global subroutines and main-body. See figure 1-2 for a sample program using this parameter.

ADR
After each declaration, a record is sent to the listfile if LIST is in effect showing the addressing mode
and displacement of the declared variables. This option is turned off by NOLIST. Figure 9-3 shows a
sample compilation with ADR specified.

INNERLIST
After each statement line, the mnemonics for unoptimized code generated by the compiler are sent to
the listfile if LIST is in effect. In addition to the mnemonic, the octal value and approximate execution
time in microseconds of each instruction are shown. This option is turned off by NOLIST. Figure 9-4
shows a sample INNERLIST output. NOTE: Some address and constant initialization is resolved in
later passes of the compiler and segffienter, so the machine code displayed does not always reflect the
exact machine code executed. (The times shown on the listing are sample times only and are not
accurate for any specific HP3000 model.)

MAIN= program-name
Assigns the specified program-name to the main program. The format for program names is the same
as for segment names. Starting with page 2, the program-name is listed in columns 13-27 of the
heading.

9-10

00001000 e0000
00002000 00000
000e3000 00000
00004000 00000
00005000 00000
00006000 00000

0
0
1
l
1
I

I $CONTROL INNERLIST
BEGIN

INTEGER I,J:=t0;
REAL Rl, R2;
ARRAY AC0:10)J

Rl:=R2:=20E9;
00000 LDPP,000 034000 03.68
00001 DDUP, NOP 004600 02·80
00002 STD DB 004 . 161004 04.03
00003 STD DB 002 Mnemonics 161002 Time 04· 03

00 0 0 7 0 0 0 (0 0 0 0 41 t FOR I : = 0 UNTIL J DO / \,,......_.. _ __,
\-1000041 lzrno, NOP I ~10006001 l01 .. 4ed

Instruction 00005 STOR DB 000 Instruction 051000 02· 63
Address 0~006 LRA DB 000 (Octal) 171000 01.92

00007 LDI 1001 021001 01·05
00010 LOAD DB 001 041001 02·28

00008000 00011 1 A(!):=2*U
r?.0011 TBA P+ 002 050002 0s.00
00012 ER P+ 000 140000 03.50
00015 LDI ,002 021002 e I· 05
00016 MPYM DB 000 1 11000 08-23
00017 LDX DB 000 131000 02.28
00020 STOR DB 006,1,x 057006 02-63
00021 MTE.A P- 000 052400 08-00

00009000 00022 1 END.
00022 PCAL,052 000000 2s.00

PRIMARY DB STORAGE=%00?; SECONDARY DB STORAGE=%00013
NO. ERROR.S=000; NO. WARNINGS=000
PROCESSOR TIME=0:00:00; ELAPSED TIME=0:02:47

Figure 9-4. $CONTROL INNERLIST Output

UN CALLABLE
Makes the outer block entry point uncallable except by code running in privileged mode. If used, this
parameter must be specified at the beginning of the source file.

PRIVILEGED
Makes the code segment containing the outer block privileged. If used, this parameter must be specified
before the first BEGIN. NOTE: Hewlett-Packard cannot be responsible for system integrity when
programs written by users operate in privileged mode.

SUBPROGRAM [(procedure-name[*] [, ... ,procedure-name[*]])]
Places the compiler in subprogram mode. If used, this parameter must be specified at the beginning of
the program. If no parameters are specified, all of the procedures in the merged source program are
compiled, but the outer block or main program if present is not compiled.

If procedure parameters appear, only those procedures specified are compiled. All others are skipped.
In addition, procedure-names which are followed by an asterisk(*) are compiled with LIST, CODE,
and MAP options on. Those without an* are compiled but not listed. The asterisk mechanism is
overridden by explicit CONTROL commands specifying LIST, ADR, etc.

The default mode for compilation is program mode.

Even in subprogram mode, global declarations and OPTION FORWARD and OPTION EXTERNAL
procedure declarations must be included in the source file, if they are to be referenced by the
procedures being compiled. The compiler includes these items in its symbol table, but does not allocate

9-11

any space. All INTERNAL procedures and secondary entry points should be declared OPTION
FORWARD.

Compiler commands are recognized at any point in the source file. For segmented programs, the
segmentation scheme should be preserved in the subprogram mode. The compiler gives procedures the
last segment name declared and links each procedure to all other procedures in the same USL file
which have the same segment name, even those resulting from a previous compilation. The compiler
also automatically CEASEs any existing procedures in the file with the same procedure-name as the
one currently being compiled, except for INTERNAL procedures. See the MPE Segmenter Subsystem
Reference Manual for a discussion of CEASE.

EXAMPLES:

$CONTROL SUBPROGRAM
$CONTROL SUBPROGRAM(PROC1,PROC2*)

The default parameters of $CONTROL are:

LIST
WARN
NO MAP
ERRORS= 100
NOCODE
SEGMENT=SEG'

MAIN= OB'
program mode
ADR off
INNERLIST off
LINES= 60 (except for terminals)
USL file not initialized
CALLABLE, non-privileged outer block.

The following $CONTROL command requests unrestricted access to the listfile, listing of all source
text, symbol table information, and object code, suppression of warning messages but not of error
messages. By default, the maximum number of lines per printed page is limited to 60, the maximum
number of errors allowed is 100, the uslfile is not initialized to empty status, and SPL is in program
mode.

$CONTROL LIST,SOURCE,MAP,CODE,NOWARN

The following $CONTROL command illustrates the default values for the command parameters. It
produces the same effect as if no $CONTROL command were entered:

$CONTROL LIST,SOURCE,WARN,NOMAP,NOCODE,LINES= 60,ERRORS= 100

9-3. $IF COMMAND (CONDITIONAL COMPILATION)

Generally, when you submit a program to the compiler, you want the entire program compiled.
However, occasionally, you may only want to have a portion of the program compiled. You can request
such conditional compilation by delimiting the source code to be compiled (or omitted) with a series of
$IF compiler commands. These $IF commands, interrogate any of ten switches, XO through X9,
inclusive. You can set these switches by using the $SET command described in paragraph 9-4. When
the condition specified in the $IF command is true, all source records are compiled until the next $IF
command is encountered which is false. When the condition specified is false, all source records are
omitted until a $IF command which is true is executed. However, $EDIT, $PAGE, and $TITLE
commands are never ignored.

9-12

where

n
specifies which switch is to be tested. It is any digit between 0 and 9 inclusive.

Spaces are not allowed between the X and the digit n.

A $IF command can appear anywhere in the source text. The appearance of a $IF command always
terminates the influence of any preceding $IF command. When a $IF command is entered without a
parameter, it has the same effect as an $IF command whose condition is true. That is, the text
following the command is compiled and any previous $IF command is cancelled.

The source text is listed regardless of whether or not it is compiled if the $CONTROL command LIST
and SOURCE options are in effect.

The textfile-masterfile merging operation and transmission of merged/edited text to the newfile are not
affected by $IF commands. Merging and editing are described in the discussion of the $EDIT com­
mand.

An example illustrating the use of the $IF command is presented together with the $SET command
discussion below.

9-4. $SET COMMAND (SOFTWARE SWITCHES FOR CONDITIONAL
COMPILATION)

When the compiler is first called, all ten switches (XO-X9) are turned off. You can turn them on and off
again with the $SET command.

9-13

where

n

indicates which switch is to be set. It can be any digit between 0 and 9 inclusive.

A $SET command can appear anywhere in the source text. If a $SET command is encountered which
does not have a parameter list, all ten switches are turned off.

In the following source text, switches X4 and X5 are set on and interrogated with the results indicated
by the comments:

$SET X4=0N, X5=0N <<SET SWITCHES X4 AND X5 ON>>

$IF X5=0N <<REQUESTS COMPILATION OF SOURCE BLOCK 1>>

(SOURCE BLOCK 1)

$IF X5=0FF
$

(SOURCE BLOCK 2)

$IF
$

(SOURCE BLOCK 3)

<<REQUESTS THAT SOURCE BLOCK 2 BE IGNORED>>&
<<BY CANCELLING PREVIOUS $IF COMMAND>>

<<CANCELS PREVIOUS $IF COMMAND SO THAT>>&
<<SOURCE BLOCK 3 IS COMPILED>>

9-5. $TITLE COMMAND (PAGE TITLE IN STANDARD LISTING)

On each page of output listed during compilation, a standard heading appears. Positions 29 through
132 of this heading are reserved for a titl~, usually describing the page content, optionally specified
with the $TITLE command.

9-14

Each string parameter is a character string bounded by quotation marks that is combined with any
other strings specified to form the title. In forming the title, the strings are stripped of their delimiting
quotation marks and they are then concatenated left-to-right. The entire parameter list can specify up
to 104 characters, including sp8;ces within the strings but excluding delimiters and spaces between the
strings. If the title contains fewer than 104 characters, the unused portion is filled to the right with
spaces. If no string parameters are present in the $TITLE command, or if no $TITLE command or
$PAGE command with a title specification is entered, the title portion of the heading is blank. When a
new $TITLE command is encountered, it supersedes any previously specified title from that point on.

When a $TITLE command is interpreted and the NO LIST parameter of the $CONTROL command is
in effect, title specification or replacement occurs even when the $TITLE command appears within the
range of an $IF command whose relation is evaluated as false.

9-6. $PAGE COMMAND (PAGE TITLE AND EJECTION)

You can specify a program title (as with the $TITLE command) together with page ejection by entering
the $PAGE command. This allows varied listing formats. For example, individual sections of the
program can be listed starting on a new page, and each section can have its own descriptive title.

Each string parameter has the same format, meaning, result, and constraints as in the $TITLE
command. If no parameter is specified in the $PAGE command, the previous title, if any, remains in
effect.

9-15

If the LIST parameter of the $CONTROL command is in effect when a $PAGE command is encoun­
tered, the following steps take place:

1. A page eject is generated.

2. The standard page heading including the new title, if one is specified, is printed followed by two
blank lines.

If a new title is not specified, the standard heading with the old title is printed followed by two blank
lines.

If the LIST parameter is not in effect, the new title replaces any previous title, but no printing or page
ejecting occurs. The new title appears when LIST is put into effect.

The $PAGE command itself is never listed.

9-7. $EDIT COMMAND (SOURCE TEXT MERGING AND EDITING)

You can request the following merging and editing operations:

• Merge corrections or additional source text on textfile with an existing source program and
commands on masterfile to produce a new source program and commands. This new input is
compiled and optionally copied to newfile, which can be saved for recycling through an MPE :FILE
command.

• Check source-record sequence numbers for ascending order.

• Omit sections of the old source program during merging.

• Re-number the sequence fields of the records in the new, merged source program.

The editing done by the compiler is limited to linear source text modification. Extensive or more
sophisticated editing is possible with the HP 3000 text editor, EDIT/3000.

9-8. MERGING

You can specify merging simply by using actual file names for the textfile, masterfile, and (optionally)
newfile parameters of the MPE :SPL command when the compiler is called. A sample merging
operation is shown below; however, for a complete description of the :SPL command see paragraph
10-11.

To specify merging of a textfile TFILE with a masterfile MFILE, you could enter the following :SPL
command:

:SPL TFILE,, ,MFILE ,NFILE

The merged source text is copied to the newfile NFILE, with the object code and listing output written
to the default files $NEWPASS and $STDLIST respectively.

9-16

Prior to merging, the records in both textfile and masterfile must be arranged in ascending order
according to the value of the seauence field on any record, or the sequence fields must be blank. The
order of sequencing is based on the ASCII Collating Sequence as shown in Appendix A. There are no
restrictions regarding blank sequence fields; the sequence fields of some or all of the records in either
the textfile or masterfile, or both files, can be blank, and such records can appear anywhere in either
file.

The merging operation is also based on ascending order of sequence fields according to the ASCII
Collating Sequence. During merging, the sequence fields of the records in both files are checked for
ascending order. If their order is improper, the offending records are skipped during merging and
appropriate diagnostic· messages are sent to the listfile. During each comparison step in merging, one
record is read from each file and these records are compared with one of three results:

1. If the values of the sequence fields of the masterfile and the textfile are equal, then the textfile
record is compiled and, optionally, passed to the newfile; the masterfile record is ignored; and one
more record is read from each file for the next comparison.

2. If the value of the sequence field of the masterfile record is less than that of the textfile record, the
masterfile record is compiled and, optionally, passed to the newfile; the textfile record is retained for
comparison with the next masterfile record; and the next masterfile record is read.

3. If the value of the sequence field of the textfile record is less than that of the masterfile record, the
textfile record is compiled and, optionally, passed to the newfile; the masterfile record is retained for
comparison with the next textfile record; and the next textfile record is read.

During merging, a record with a blank sequence field is assumed to have the same sequence field as
that of the last record with a non-blank sequence field read from the same file, or as a null sequence
field, if no record with a non-blank sequence field has yet been encountered in the file. Thus, a group of
one or more records with blank sequence fields residing on the masterfile are never replaced by records
from the textfile; they can only be deleted through use of the $EDIT command as explained below.

Records from the masterfile that are replaced during merging and thus neither compiled nor sent to
the newfile are not listed during compilation.

When an end-of-file condition is encountered on either the textfile or the masterfile, merging termi­
nates, except for the continuing influence of an unterminated VOID parameter in an $EDIT command,
as discussed later. At this point, the subsequent records on the remaining file are checked for proper
~equence, compiled, and, optionally, passed to the newfile. However, masterfile records within the
range of a VOID parameter are neither compiled nor sent to the newfile.

The sequence field values of records transmitted to the newfile are not normally changed by the
merging operation. However, you can request the assignment of new sequence characters by using the
$EDIT command.

9-9. CHECKING SEQUENCE FIELDS

The presence of a masterfile during compilation implicitly requests the checking of source records for
proper sequence. Thus, when you specify both a textfile and a masterfile as input files for the compiler,
or when you specify a masterfile alone, sequence-checking is done on both files. But when you specify a
textfile as the only input file, sequence checking is not performed. Therefore, when you want to have

9-17

your input sequence-checked without merging two input files, you can read the input from either the
textfile or the masterfile and use $NULL for the other file. For example,

:SPL SOURCE,,$NULL

9-10. EDITING

Editing operations during merging consist of omitting sections of the old source program residing on
the masterfile and/or renumbering the sequence fields of the new, merged source program residing on
the new file. Both of these operations are requested through the $EDIT command.

where

parameter
specifies an option of the $EDIT command. The parameter is one of the following: VOID= sequence­
value, SEQNUM= sequence-number, NOSEQ, or INC= incnumber.

The parameters are discussed individually below. The parameters can be specified in any order.

VOID= sequence-value
Requests the compiler to bypass during merging all records on the masterfile whose sequence fields
contain a value less than or equal to the sequence-value, plus any subsequent records with blank
sequence fields. This parameter remains in effect until a ma.sterfile record with a sequence field -value
higher than the sequence-value is encountered. The VOID parameter is initially disabled when the
compiler is invoked. The sequence-value is either a legal sequence number of from one to eight digits or
a character string. If the sequence-value is less than eight characters, SPL left-fills with ASCII zeros
and sequence character strings with spaces. NOTE: $EDIT VOID in $INCLUDE files must reference
lines in the INCLUDEd file only.

SEQNUM =sequence-number
Requests re-numbering of the merged source records on the newfile, beginning with the value specified
by the sequence-number. This value replaces the sequence-number of the next record sent to the
new file. The sequence-number of each succeeding record is incremented according to the value
specified by the INC parameter or its default as described below. If the SEQNVM=sequence-number
parameter is present but a newfile does not exist, the re-numbering request is ignored. If this

· parameter is present and the newfile exists, the re-numbering request remains in effect until an
$EDIT command with the NOSEQ parameter is encountered. When the merged output is listed,
records actually transmitted to the newfile appear with blank sequence fields. The re-sequencing
request is initially disabled when the compiler is called. The sequence-number is a legal sequence­
number of from one to eight digits. If less than eight digits, the SPL compiler left-fills with ASCII
zeros.

9-18

NOSEQ
Suspend re-numbering of merged records on the newfile; the current sequence numbers are retained. If
neither SEQNUM nor NOSEQ are specified, NOSEQ takes effect by default until superseded by
SEQNUM.

INC= incnumber
Sets the increment by which records sent to the newfile are renumbered if SEQNUM is in effect. The
increment is specified by incnumber, which is a value ranging from 1 through 99999999. Notice,
however, that very large increments are of limited value since they may cause the eight-digit
sequence-number to overflow. Re-numbering only occurs ifSEQNUM is specified or the last parameter
is not overridden by a NOSEQ parameter, and a newfile exists. IfSEQNUM is specified but INC is not,
the sequence-number is incremented by the default value of 1000 for each succeeding record. This
default value applies until an INC parameter specifying a new value is encountered.

$EDIT commands are normally input from the textfile. You can input them from the masterfile, but
this procedure is not recommended since any $EDIT command containing a VOID parameter on the
masterfile could void its own continuation records. $EDIT commands themselves are never sent to the
newfile; thus, the $$EDIT ... form of the command, while permitted, is redundant.

While sequence fields are allowed, and usually necessary, on records containing $EDIT commands,
continuation records for such commands should have blank sequence fields.

During merging, a group of one or more masterfile records with blank sequence fields are never
replaced by lines from the textfile; they can only be deleted by an $EDIT command with a
VOID= sequence-value parameter at least as great as the last non-blank sequence field preceding the
group. In this case, the entire group of masterfile records with blank sequence number fields is deleted.

Since voided records are never passed to the uslfile or newfile, their sequence is never checked, and
they never generate an out-of-sequence diagnostic message.

A VOID parameter does not affect 'records in the textfile.

Any masterfile record replaced by a textfile record is treated as if voided, except that following records
with blank sequence fields are not also voided. If a replaced record would have been out-of-sequence,
the textfile record that replaces it produces an out-of-sequence diagnostic message.

In general, whenever a record sent to the newfile has a non-blank sequence field lower in value than
that of the last record with a non-blank sequence field, a diagnostic message is printed.

For example, suppose you want to merge text input from the standard input device (default for textfile
is $STDIN) with an old program on the file OLDPROG, creating new source input on the file
NEWPROG and you want to re-number the merged source records on NEWPROG beginning with the
value 50, incrementing the sequence number of each subsequent record by 10. After logging on, you
would enter:

:SPL ,,,OLDPROG,NEWPROG

$EDIT SEQNUM= 50,INC= 10

9-19

(New text or corrections to be merged with old program.)

9-11. $SPLIT /$NOSPLIT COMMANDS

The $SPLIT and $NOSPLIT commands are intended for privileged users in split-stack mode to delimit
an area of code to be checked for split-stack errors (see section 8-1). These commands perform the same
function as OPTION SPLIT. However, OPTION SPLIT is effective for an entire procedure, while
$NOSPLITcan be used to reset $SPLIT. (Please see OPTION SPLIT, 7-13A.)

9-12. $COPYRIGHT COMMAND

You can specify copyright information which is transmitted to the USL and program files by using the
$COPYRIGHT command.

Each string parameter· is a character string bounded by quotation marks that is combined with any
other strings specified to form the copyright information copied to the USL and program files. The
$COPYRIGHT command must precede the outer block BEGIN. The maximum number of characters is
510.

9-13. CROSS REFERENCE LISTING

To obtain a cross reference listing of the identifiers used in an SPL program, run the CROSSREF
program~ Use file equations for the formal designators LIST and TEXT for the list file and text file
respectively. Figure 9-5 shows a sample CROSSREF output. The listing shows, for each identifier, the
sequence number of each record in the source program in which the identifier occurs.

*The CROSSREF program is available through the HP 3000 Contributed Library package offered by HP
Computer Systems Division. Contact your local HP Sales Office for more information.

9-20

:FILE LIST=$STDLIST
:FILE TEXT=SPLFX
:RUN CROS.SREF.PUB.SYS

5.p.L. cnoss REFERENCE TABLE--- AUG 9, 1971! VERSION

SPLEX.PUB.GNOMON
MON, JAN 26, 1976, 3: 26 PM

NTJMBER. OF CARD IMAGES=9. NUMBER OF SYMBOLS=5· NUMBER OF REFERH1CE~)=?.

A <ARRAY>
0000s0e0 0e00s000

<INTEGER) 1

0~003000 0e0010e0 0000e000 00008000

J <INTEGER>
00003000 000~7000

Rl <REAL>

R2 <nEAL>
00004000 00006000

Figure 9-5. Cross Reference Listing

9-14. $INCLUDE COMMAND

The $INCLUDE command permits inclusion of text from another file into the SPL source file.

The form of the $INCLUDE command is:

$INCLUDE filename;

EXAMPLE:

$INCLUDE Myfile;

where

filename
is the fully qualified name of the file to be included. The Included file may contain other $INCLUDEs to
a maximum of 10. INCLUDE files are treated as unnumbered files; $EDIT VOID in Included files must
reference lines in the INCLUDEd file only.

9-21

10-1. MPE COMMANDS

'IUU!.1!1
MPE COMMANDS!! x I

Communication with the MPE Operating System is initiated through commands. Commands are
requests issuesd to MPE to perform various functions external to an SPL source program. For
example, commands are used to initiate and terminate batchjobs and interactive sessions, compile and
execute source programs, call various MPE subsystems, and obtain job/session status information.
Commands can be entered through any standard input file such as a card reader file or a terminal file.
Commands which you will use most often with SPL programs are summarized in table 10-1. A
complete description of all MPE commands is in the MPE Commands Reference Manual ..

Table 10-1. MPE Commands

COMMAND FUNCTION

:JOB Initiates a batch job

:HELLO Initiates an interactive session

:FILE Specifies characteristics of a file

:BUILD Creates a new file

:PURGE Deletes a file from the system

:CONTINUE Disregards batch job error condition

:SPL Compiles an SPL source program

:SPLPREP Compiles and prepares an SPL source program

:SPLGO Compiles, prepares, and executes an SPL source program

:PREP Prepares a compiled program

:PREPRUN Prepares and executes a compiled program

:RUN Executes a prepared program

:EOD Signifies the end of data

:EOJ Terminates a job

:BYE Terminates a session

In general, the form of of an MPE command is:

:command [parameter-list]

In interactive mode, the colon is prompted by MPE; however, in batch mode, you must provide the
colon in column 1 of the command record.

10-1

The parameter-list can contain zero, one, or more parameters that specify files, values, and options for
the command. The end of each parameter in a list is signified by a delimiter. A delimiter is a character
that separates one item from another. Delimiters consist of commas, semicolons, equal signs, or other
punctuation marks.

A space must separate the command from the parameter-list; however, the command must im­
mediately follow the colon without any intervening spaces.

The meanings of parameters in some commands are determined by their positions in the parameter­
list. For example, in an :SPL command:

:SPL textfile,uslfile,listfile,masterfile,newfile

the parameters are positional and their positions in the list designate their meanings. The omission of
an optional positional parameter from a parameter-list is signified by adjacent delimiters, as shown
below:

:SPL textfile,,listfile

When parameters are omitted from the end of a list, no adjacent delimiters are required as shown in
the example by the omission of masterfile and newfile.

10-2. SPECIFYING FILES FOR PROGRAMS

Both the SPL compiler and the MPE Operating System read input from and write output to files
handled through the MPE file facility. For example, the compiler reads source code from a textfile,
writes object code to an object file (uslfile), produces listings to a listfile, and performs editing and
merging operations using an old masterfile for input and a newfile for output. Each file has a formal
file designator. You are responsible for equating actual file designators to these formal file designators
in one of three ways.

1. By naming the files as positional parameters in the MPE commands to compile, prepare, and
execute.

2. By omitting optional parameters from the MPE compilation, preparation, or execution command,
thus allowing default file designators to be in effect.

3. By using MPE :FILE commands to equate the formal file designators to the actual file designators.
If you use this method, you must call the compiler with the MPE :RUN command using a PARM=
parameter signifying which files are present, as described later. This method can only be used for
compilation and not for preparation or execution.

You can also use MPE :FILE commands to equate the formal file designators for your execution-time
files to actual file designators. See the MPE Commands Reference Manual for a complete description of
the :FILE command.

10-2

10-3. SPECIFYING FILES AS COMMAND PARAMETERS

You can name the following types of files as parameters in a compilation, preparation, or execution
command:

• System Defined Files
• User Pre-defined Files
• New Files
• Old Files

10-4. SYSTEM-DEFINED FILES. System-defined file designators indicate those files that
MPE uniquely identifies as standard input/output files for a job/session. These files are shown in table
10-2.

10-5. USER PRE-DEFINED FILES. A user pre-defined file is any file that was previously
defined or redefined in a :FILE command. In other words, it is a back-reference to that :FILE
command. In compilation, preparation, or execution commands, the actual file designator of this type
of file is the formal file designator preceded by an asterisk to indicate that it was previously defined.
For example,

:FILE S= MYTEXT
:FILE LP;DEV=LP
:SPL *S,,*LP

ACTUAL FILE
DESIGNATOR

$STDIN

$STDINX

$STDLIST

$NULL

Table 10-2. System-Defined Files

DEVICE/FILE REFERENCED

A filename indicating the standard job or session input file (from which the job
or session is initiated). For a job, this is typically a card reader; for a session
this typically indicates a terminal. Input data records in the $STDIN file
should not contain a colon in position one, since this indicates the end of the
source input. Use the :EOD command to indicate the physical end of a source
program. (The same command is used to indicate the end of a data file.)

Equivalent to $STDIN, except that MPE/3000 command records (those with a
colon in position one) encountered in a data file are read without indicating the
end of data. (However, the commands :JOB, :DATA, :EOJ, and :EOD are
exceptions that always indicate the end of data and are never read as data.)

A filename indicating the standard job or session listing file corresponding to
the particular job or session input device being used. (For each potential job/
session input device, a'. -'user with MPE/3000 System Supervisor capability
designates a corresponding job/session listing device during system con-
figuration.) The job or session listing device is customarily a printer for a batch
job and a terminal for a session.

The name of a non-existent "ghost" file that is always treated as an empty
file. When referenced as an input file by a program, that program receives only
an end of data indication upon first access. When referenced as an output
file, the associated write request is accepted by MPE/3000 but no physical
output is actually performed. Thus, $NULL can be used to discard unneeded
output from an executing program.

10-3

10-6. NEW FILES. New files are files that have not yet been created, and are being created for
the first time by the current batch job or interactive session. New files can have actual file designators
as shown in table 10-3.

Table 10-3. New Files

FORMAL FILE DEFAULT FILE
FILE PURPOSE DESIGNATOR DESIGNATOR

Textfile Contains source program, correction text to be SPLTEXT $STDIN
merged, and/or compiler subsystem
commands.

Listfile Destination of listing output. SPLLIST $STD LIST

Us/file Destination of object program code. SPLUSL $NEW PASS

Masterfi/e Old source program to be merged and edited SPLMAST $NULL
with new text input from textfi/e.

Newfile New source program resulting from (optional) SPLNEW $NULL
merging of textfile and masterfile.

Progfile Destination of executable object program. None $NEWPASS

10-7. OLD FILES. Old files are existing files in the system. They may be named by the
designators shown in table 10-4.

Table 10-4. Old Files

ACTUAL FILE
DESIGNATOR FILE REFERENCED

$0LDPASS The name of the temporary file last closed as $NEWPASS.

filereference Any other old file to which you have access. It may be a job/session
temporary file created in the current or a previous program in the current job/
session, or a permanent file saved by any program in any job/session. The
format is the same as filereference, noted in table 10-5.

10-8. INPUT/OUTPUT SETS. All of the preceding actual file designators can be classified as
those used as input parameters (input set) and those used as output parameters (output set). These sets
are defined as follows:

INPUT SET
$ST DIN
$STDINX
$0LDPASS
$NULL

* formaldes ignato r
file reference

The job/session input file.
The job/session input file with commands allowed.
The last file passed.
A constantly-empty file that will produce an end-of-file condition
whenever it is read.
A back-reference to a previously defined file.
A file name, and perhaps account and group names and a
lock word.

OUTPUT SET
$STD LIST
$0LDPASS
$NEWPASS
$NULL
* formaldesignator
filereference

The job/session listing file.
The last file passed.
A new temporary file to be passed.
A constantly-empty file.
A back-reference to a previously defined file.
A file name, and perhaps account and group names and a
lock word.

10-9. SPECIFYING FILES BY DEFAULT

When you omit an optional file parameter from a compilation, preparation, or execution command,
MPE assigns one of the members of the input or output sets by default. The file designator assigned
depends on the specific command, parameter, and operating mode as noted later in this section. The
default file designators are shown in table 10-5.

Table 10-5. SPL Compiler File Designators

ACTUAL FILE
DESIGNATOR FILE REFERENCED

$NEWPASS A temporary disc file that can be passed automatically to any succeeding
MPE/3000 command within the same job or session which references it by the
filename $0LDPASS. (Passing is explained in the compilation, preparation,
and execution command examples.) Only one such file can exist in the job or
session at any one time. (When $NEWPASS is closed, its name is changed to
$0LDPASS automatically, and any previous file named $0LDPASS is deleted.)

filereference Any other new file to which you have access. Unless you specify otherwise,
this is a temporary file, residing on disc, that is destroyed upon termination of
the program. If no :FILE command specifies otherwise, any such SPL files
are closed as job/session temporary files, saved until the end of the job/
session, and then are purged. If closed as permanent files (by specifying
SAVE in a :FILE command), they are saved until you purge them. Typically,
this format consists of a file name containing up to eight alphanumeric char-
acters, beginning with a letter. In addition, other elements (such as a group
name, account name, or lockword) can be specified. The complete rules
governing the filereference format are contained in the MPE Commands
Reference Manual.

10-10. COMPILING, PREPARING, AND EXECUTING SPL SOURCE
PROGRAMS

The commands used for compilation, preparation, and execution of SPL source programs are:

:SPL
or Compiles a source program.

:RUN SPL.PUB.SYS

10-5

:SPLPREP

:SPLGO
:PREP

:RUN

:PREPRUN

10-11. :SPL COMMAND

Compiles and prepares a source program.

Compiles, prepares, and executes a source program.
Prepares source programs which have been compiled into a
USL file.

Executes programs that have been compiled and prepared
(and therefore exist on program files).

Prepares and executes programs compiled into USL files.

The :SPL command compiles an SPL source program.

where

textfile
is the name of an input file from which the source program is to be read. If omitted, the program will be
read from the standard input file $STDIN. Do not use the designator SPLTEXT for this parameter.

uslfile

is the name of the USL (User Subprogram Library) file on which the object program is to be written. If
this parameter is included in an :SPL command, it must indicate a file previously created in one of two
ways:

1. By saving a USL file with a :SAVE command from a previous compilation.

2. By creating a new file with a :BUILD command and designating it as a USL file with a file code of
1024 or USL. For example,

:BUILD MYUSL;CODE= 1024 or :BUILD MYUSL;CODE= USL

If the uslfile is omitted, the default file $0LDPASS is used. Do not use the designator SPLUSL for this
parameter.

listfile

is the name of the file to which the program listing is to be sent. If omitted, the default file $STDLIST
is assigned. Typically $STDLIST is the terminal in a session or the line printer in batch. Do not use the
designator, SPLLIST for this parameter.

10-6

masterfile
is the name of a file to be optionally merged with textfile and written onto a file named newfile. If
masterfile is omitted, no merging takes place. Do not use the designator SPLMAST for this parameter.

new file
is the name of a file on which the re-sequenced records from the textfile and the masterfile are
optionally merged. When newfile is omitted, no newfile is created. Do not use the designator SPLNEW
for this parameter.

All parameters of an :SPL command are optional. However, direct interactive input is not recom­
mended since it is impossible to correct an error after pressing the carriage return key. To create
source files, use the HP 3000 Text Editor (See the EDIT/3000 Reference Manual).

quoted string
is a list of compiler commands enclosed in single or double quotes in the format described in section 9-1.

INFO =parameter

The INFO keyword on the SPL, SPLPREP, and SPLGO commands allows compiler commands to be
added to a program without changing the source. These commands logically precede any other source.
On the listing, these commands have a sequence field ofINFO= to indicate their source as illustrated in
the example below. These compiler commands read from the quoted string are not sent to newfile.

:SPL EXAMPLE;INFO="$CONTROL MAP$CONTROL INNERLIST 11

PAGE 0001 HP32100A.08.02 [4W] (C) HEWLETT-PACKARD COMPANY 1982

IN FO= 00000 0
IN FO= 00000 0

1
2
3
4

5

00000 0
00000 1
00000 1
00000 1

00002 1

IDENTIFIER

I
TERMINATE'

$CONTROL MAP
$CONTROL INNERLIST
BEGIN
INTEGER I;

I : = 99;
00000
00001

END.
00002

LDI ,143
STOR DB 000

PCAL,052

CLASS TYPE

SIMP. VAR.
PROCEDURE

INTEGER

021143
051000

01. 05
03.15

000000 14.90

ADDRESS

DB+OOO

PRIMARY DB STORAGE=%001;
NO. ERRORS=OOOO;
PROCESSOR TIME=O:OO:Ol;

SECONDARY DB STORAGE=%00000
NO. WARNINGS=OOOO
ELAPSED TIME=0:00:05

END OF PROGRAM

10-7

10-12. RUN SPL.PUB.SYS COMMAND

An alternative way to call the SPL compiler is by using the :RUN command. Before using the :RUN
command, you must use file equations for the files normally specified on the :SPL command. The
formal file designators are:

SPLTEXT
SPLLIST
SPLUSL
SPLMAST
SPLNEW

(textfile)
(listfile)
(uslfile)
(master/He)
(newfile)

PARAMETERNUM

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Table 10-6. PARM Values

FILES PRESENT

None
textfile
listfile
listfile, textfile
us/file
us/file, textfile
us/file, listfile
us/file, listfile, textfile
masterfile
masterfile, textfile
masterfile, listfile
masterfile, listfile, textfile
masterfile, us/file
masterfi/e, us/file, textfi/e
masterfile, us/file, listfile
masterfile, us/file, listfile, textfile
newfile
newfi/e, textfile
newfile, listfile
newfile, listfile, textfi/e
newfile, us/file
newfile, us/file, textfile
newfile, us/file, listfile
newfile, us/file, listfile, textfile
newfi/e, masterfi/e
newfi/e, masterfi/e, textfile
newfile, masterfile, listfile
newfile, masterfile, listfi/e, textfile
newfi/e, masterfile, us/file
newfi/e, masterfi/e, us/file, textf ile
newfile, masterfile, us/file, listfile
newfi/e, masterfi/e, us/file, listfi/e, textfi/e

10-8

Thus, to compile from the file MYSOURCE and send the listing to the line printer, you would use

:FILE SPLTEXT= MYSOURCE
:FILE SPLLIST;DEV =LP

before using the :RUN command.

Additionally, you must specify a PARM=parameternum parameter on the :RUN command to indicate
which files are present unless the default values are used. The value is between 0 and 31 as shown in
table 10-6. Basically, the low order five bits in parameternum represent the five files which can be
specified as shown below:

11 12 13 14 15

new file masterfile uslfile listfile textfile

For example, to invoke the compiler with the textfile and listfile present, you would use the command:

:RUN SPL.PUB.SYS;PARM=3;INF0="$CONTROL NOLIST"

10-13. ENTERING PROGRAM SOURCE INTERACTIVELY

If you do not specify a textfile when compiling in session mode, you must enter the program source
from the terminal. You are prompted for each source line with a greater-than sign (>). Each program
unit (procedure, subroutine, or main body) is compiled as it is completed. To exit from the compiler,
enter :EOD in response to the prompt character >.

10-14. :SPLPREP COMMAND

The :SPLPREP command compiles and prepares an SPL source program.

:SPLPREP MYSOU:RCE,MYP:RQG,*LJ>' ,
:SP:LPREP MYt)OURCE,,,MAST

10-9

where

textfile, listfile, masterfile, newfile, quoted string
have the same meanings as described under the :SPL command.

progfile
is the name of the file on which the prepared program is written. If this parameter is included, it must
reference a file created in one of two ways:

1. By using the :BUILD command with a filecode of 1029 or PROG. For example,

:BUILD PROGF;CODE= 1029

or

:BUILD PROGF;CODE= PROG

2. By specifying a non-existent file in the parameter, in which case a temporary file of the correct size
and type will be created. To save the file for future jobs/sessions, you must use the :SA VE
command after preparation.

If the progfile parameter is omitted, the default file $NEWP ASS is assigned. This file is renamed
$0LDPASS upon completion.

All :SPLPREP parameters are optional.

10-15. :SPLGO COMMAND

The :SPLGO command compiles, prepares, and executes an SPL source program.

where

textfile, listfile, masterfile, newfile, quoted string
all have the same meaning as described under the :SPL command.

All :SPLGO parameters are optional.

10-10

10-16. :PREP COMMAND

The :PREP command prepares source programs that have been compiled into a USL file.

where

uslfile
is the name of the USL file onto which the program file has been compiled.

progfile
is the name of the program file onto which the prepared program is to be written. This file must be
created in one of two ways:

1. By creating a new file with the :BUILD command using a filecode of 1029 or PROG, as follows:

:BUILD PROGF;CODE= 1029

or

:BUILD PROGF;CODE=PROG

2. By specifying a non-existent file in this parameter, in which case a temporary file of the correct
size and type will be created. To save this file for future jobs/sessions, you must use the :SAVE
command.

Both the uslfile and the progfile parameters are required in a :PREP command.

ZERO DB
is a request to set the initially defined DL-DB and DB-Q (initial) areas of the stack to zero.

PMAP
is a request to list certain information about the prepared program.

segsize
specifies a maximum size for the stack area in words. The segmenter normally establishes this value,
but you can use this value to override the Segmenter's estimate.

10-11

stacksize
When a process is created by the system, the user is allocated MAXDATA words of virtual memory,
but only stacksize words in main memory. The main memory space is expanded as required. This
parameter allows you to override the Segmenter estimate.

dlsize
the DL-DB area size to be initially assigned to the stack. If not specified, MPE will estimate the value
for each program.

caplist
the capability-class attributes associated with your program. The default values are BA (batch access)
and IA (interactive access).

filename
the name of a relocatable procedure library to be searched to satisfy external references during
program preparation. If not specified, no library is searched.

10-17. :PREPRUN COMMAND

The :PREPRUN command prepares and executes programs that have been compiled into USL files.

where

uslfile
is the name of the USL file on which the program has been compiled.

entry-point
specifies the entry-point where execution is to begin. If not specified, execution begins at the primary
entry-point.

NOPRIV
is a request to place a privileged program in non-privileged mode. If not specified, a privileged program
executes in privileged mode.

10-12

PMAP
is a request to list certain information about the prepared program.

DEBUG
is a request to set a breakpoint on the first executable instruction of the program for entering debug
commands. Refer to the MPE DEBUG/ STACK DUMP Reference Manual.

LMAP
is a request to list certain information about the loaded program.

ZERO DB
is a request to set the initially defined DL-DB and DB-Q (initial) areas to zero.

segsize
specifies the maximum stack area (Z- DL) size permitted, in words. This value is normally set by the
Segmenter, but you can use this parameter to override the Segmenter estimate.

parameternum
is a value that can be passed to your program as a general parameter for control or other purposes. If
not specified, a zero is passed.

stacksize
When a process is created by the system, the user is allocated MAXDATA words of virtual memory but
only stacksize words in main memory. The main memory is expanded as required. This parameter
allows you to override the Segmenter estimate. If not specified, the stacksize is determined by the
Segmenter for each individual program.

dlsize
is the size of the DL-DB area to be initially assigned to the stack. If not specified, it is established by
MPE.

filename
is the name of a relocatable procedure library to be searched to satisfy external references during
program preparation. If not specified, no library is searched.

library
specifies the order in which segmented procedure libraries are to be searched to satisfy external
references during segmentation. The library can be either G (Group first), P (Public group first), or S
(System first). If not specified, the System library is searched first.

cap list
specifies the capability-class attributes associated with your program. If not specified, BA (Batch
Access) and IA (Interactive Access) are used.

NOCB
Requests that the file system not use stack segment (PCBX) for its control blocks, even if sufficient
space is available. This permits you to expand your stack (via the DLSIZE or ZSIZE intrinsics) to the
maximum possible limit at a later time, but causes the File Management System to operate more
slowly for this program.

NOTE

You should only use this parameter if the program absolutely
requires the largest stack possible.

10-13

10-18. :RUN COMMAND

The :RUN command executes a program that has been compiled and prepared into a program file.

where

progfile
is the name of the file which contains the compiled and prepared program to be executed.

The other parameters have the same meaning as shown with the :PREPRUN command.

10-19. USING EXTERNAL PROCEDURE LIBRARIES

Compiled SPL programs are stored in files called User Subprogram Libraries (USL's) that reside on
disc. In any particular USL, each compiled program unit exists as a Relocatable Binary Module
(RBM). To prepare a program, and any program unit it references, for execution, the MPE Segmenter
selects the appropriate RBM's from the USL and binds them into linked segments written on a
program file. For more information on the Segmenter, USL's and RBM's, refer to the MPE Segmenter
Subsystem Reference Manual.

When you prepare and run programs in SPL, it is possible to reference external procedures in
procedure libraries. You can build, modify, and maintain two types of procedure libraries within your
log-on group and account: Relocatable Libraries (RL's) and Segmented Libraries (SL's).

10-20. RELOCATABLE LIBRARIES

A Relocatable Library (RL) is a specially formatted file that is searched at program preparation time
to satisfy references to external procedures called by your program. Within such libraries, these
procedures are placed in a single segment and linked to your program. Within such libraries, these
procedures exist in RBM form (as they would on a USL). When a program is prepared, these
procedures are placed in a single segment and linked to your program in the resulting p:rogram file.

For example, to specify that an RL named RLPROC be searched during preparation of a program from
the USL file USLl to the program file PROGl, you would enter the following :PREP command:

:PREP USLl,PROGl;RL=RLPROG

10-14

10-21. CREATING AND MAINTAINING RELOCATABLE LIBRARIES. To create and
maintain relocatable libraries, you must access the Segmenter by entering the MPE :SEGMENTER
command.

where

listfile
is an ASCII file from the output set (the formal designator is SEGLIST) to which is written any listable
output generated by the Segmenter commands. The designator SEGLIST should not be used as the
actual file designator. If the listfile is omitted, the standard job/session list device ($STDLIST) is
assigned by default.

If you are in an interactive session, the Segmenter prompts you with a dash(-). Once the Segmenter is
accessed, the following commands are used to create and maintain an RL:

-BUILDRL
Creates a permanent, formatted RL file.

-USL
References the USL file from which the procedure is to be obtained.

-RL
Identifies an existing RL.

-ADDRL
Adds a procedure to the currently identified RL.

-PURGERL
Deletes a procedure from an RL.

-LISTRL
Lists information concerning the currently identified RL.

where

filereference

is the file name of the new RL, optionally including group and account identifiers.

records

is the total maximum capacity of the file, specified in terms of 128-word, binary logical records.

10-15

extents
is the total number of disc extents that can be dynamically allocated to the file as logical records are
written to it. The size of each extent is determined by the records parameter value divided by the
extents parameter value. The extents value must be between 1 and 16 inclusive.

where

filereference
is the name and optional group and account names, of the USL file to be manipulated.

where

filereference
is the name, plus optional group and account names, of the RL to be modified.

where

name
is the name of the procedure to be added to the RL. This name is called the primary entry-point of the
RBM containing the procedure.

index
is an integer further identifying the RBM. The index may be used when the currently-managed USL
contains more than one active RBM of the same name. lfindex is omitted, a value of zero is assigned.

10-16

where

rlspec
is either UNIT or ENTRY. UNIT is used to delete the procedure identified by name. ENTRY is used to
delete the entry-point identified by name. If rlspec is omitted, ENTRY is used.

name
if rlspec is UNIT, name is the name of the procedure to be deleted. If rlspec is ENTRY, name is the
name of the entry-point to be deleted.

Refer to the MPE Segmenter Subsystem Reference Manual for further discussions of these Segmenter
commands.

10-22. SEGMENTED LIBRARIES

Segmented libraries (SL's) are specially formatted files that are searched at program run time to
satisfy references to external procedures. These libraries, like program files, contain procedures in
segmented (prepared) form. An individual procedure may exist in a segment containing many other
procedures. When a procedure is referenced, the segment containing it is loaded with your program.
Since the segmentation is not altered when different programs reference procedures in an SL, these
procedures may be shared concurrently by other programs.

To specify that an SL file in your group account be searched, add the keyword parameter LIB= library
in the :RUN command as follows:

:RUN PROGl;LIB=G

10-23. CREATING AND MAINTAINING SEGMENTED LIBRARIES. To create and main-
tain segmented libraries, you must first access the Segmenter by entering the MPE :SEGMENTER
command.

where

listfile
is an ASCII file from the output set (the formal designator is SEGLIST) to which is written any listable
output generated by the Segmenter commands. The designator SEGLIST should not be used as the
actual file designator. If the listfile is omitted, the standard job/session list device ($STDLIST) is
assigned by default.

10-17

If in an interactive session, you are prompted wit!?- a dash (-) for Segmenter commands. Once the
Segmenter is accessed, the following commands are used to create and maintain an SL:

-BUILDSL
Creates a permanent, formatted SL file.

-SL
Identifies an existing SL file.

-ADDSL
Adds a procedure to the SL file currently being managed.

-PURGE SL
Purges an entry-point from a segment in an SL, or the entire segment from the SL.

-LISTSL
Lists the procedures in the currently managed SL file.

In addition, the -USL and -LISTUSL Segmenter commands can be used as discussed under "Relocata­
ble Libraries" (paragraph 10-20).

where

filereference
is a file whose local name is SL, plus optional group and account names.

records

NOTE

You can create an S~ file with a local name other than SL, but
such a file cannot be searched by the :RUN co.mmand.

is the total maximum file capacity, specified in terms of 128-word binary logical records.

extents
is the total number of disc extents that can be dynamically allocated to the file as logical records are
written to it. The size of each extent is determined by the records parameter value divided by the
extents parameter value. The extents value must be an integer between 1 and 16 inclusive.

10-18

where

filereference
is the name of the SL to be modified, optionally including group and account names.

where

name
is the name of the segment to be added to the SL.

PMAP
indicates that a listing describing the prepared segment will be produced on the listfile device specified
in the :SEGMENTER command. If PMAP is omitted, the prep·ared segment is not listed.

where

units pee
is either ENTRY or SEGMENT. ENTRY is used to delete the entry-point identified by name.
SEGMENT is used to delete the segment identified by name. If neither ENTRY nor SEGMENT is
specified, ENTRY is used.

name
is the name of the entry-point or segment to be deleted.

For further descriptions of these Segmenter commands, see the MPE Segmenter Subsystem Reference
Manual.

10-19

.....__ ________ A_s_c_n_c_H_A_R_A_C_T_E_R_S_E_T__.I ~H:
1

•
11

i
BYTE POSITION BYTE POSITION

CH-AR Left Right Dec. CHAR Left Right Dec.

NUL 000000 000000 0 @ 040000 000100 64
SOH 000400 000001 1 A 040400 000101 65
STX 001000 000002 2 B 041000 000102 66
ETX 001400 000003 3 c 041400 000103 67
EOT 002000 000004 4 D 042000 000104 68
ENO 002400 000005 5 E 042400 000105 69
ACK 003000 000006 6 F 043000 000106 70
BEL 003400 000007 7 G 043400 000107 71
BS 004000 000010 8 H 044000 000110 72
HT 004400 000011 9 I 044400 000111 73
LF 005000 000012 10 J 045000 000112 74
VT 005400 000013 11 K 045400 000113 75
FF 006000 000014 12 L 046000 000114 76
CR 006400 000015 13 M 046400 000115 77
so 007000 000016 14 N 047000 000116 78
SI 007400 000017 15 0 047400 000117 79

OLE 010000 000020 16 p 050000 000120 80
DC1 010400 000021 17 Q 050400 000121 81
DC2 011000 000022 18 R 051000 000122 82
DC3 011400 000023 19 s 051400 000123 83
DC4 012000 000024 20 T 052000 000124 84
NAK 012400 000025 21 u 052400 000125 85
SYN 013000 000026 22 v 053000 000126 86
ETB 013400 000027 23 w 053400 000127 87
CAN 014000 000030 24 x 054000 000130 88
EM 014400 000031 25 y 054400 000131 89

SUB 015000 000032 26 z 055000 000132 90
ESC 015400 000033 27 [055400 000133 91
FS 016000 000034 28 \ 056000 000134 92
GS 016400 000035 29 l 056400 000135 93
RS 017000 000036 30 ~ 057000 000136 94
us 017400 000037 31 - 057400 000137 95

SPACE 020000 000040 32 060000 000140 96
! 020400 000041 33 a 060400 000141 97
" 021000 000042 34 b 061000 000142 98
021400 000043 35 c 061400 000143 99
$ 022000 000044 36 d 062000 000144 100
% 022400 000045 37 e 062400 000145 101
& 023000 000046 38 f 063000 000146 102
I 023400 000047 39 g 063400 000147 103
(024000 000050 40 h 064000 000150 104
) 024400 000051 41 i 064400 000151 105
* 025000 000052 42 j 065000 000152 106
+ 025400 000053 43 k 065400 000153 107

026000 000054 44 I 066000 000154 108
026400 000055 45 m 066400 000155 109
027000 000056 46 n 067000 000156 110

I 027400 000057 47 0 067400 000157 111
0 030000 000060 48 p 070000 000160 112
1 030400 000061 49 q 070400 000161 113
2 031000 000062 50 r 071000 000162 114

3 031400 000063 51 s 071400 000163 115
4 032000 000064 52 t 072000 000164 116
5 032400 000065 53 u 072400 000165 117
6 033000 000066 54 v 073000 000166 118
7 033400 000067 55 w 073400 000167 119
8 034000 000070 56 x 074000 000170 120
9 034400 000071 57 y 074400 000171 121
: 035000 000072 58 z 075000 000172 122

035400 000073 59 { 075400 000173 123
< 036000 000074 60 I 076000 000174 124

I

= 036400 000075 61
> 037000 000076 62

} 076400 000175 125

- 077000 000176 126
? 037400 000077 63 DEL 077400 000177 127

A-1

I wrn1.1t1 RESERVED WORDS -I
8

I

The following symbols have special meaning in SPL/3000 and thus, cannot be used as identifiers:

ABSOLUTE ELSE LAND REAL
ALPHA END LOGICAL RETURN
AND ENTRY LONG SCAN
ARRAY EQUATE LOR SET
ASSEMBLE EXTERNAL MOD SPECIAL
BEGIN FALSE MODD SPLIT
BYTE FIXR MOVE STEP
CARRY FIXT MO VEX SUBROUTINE
CASE FOR NOCARRY SWITCH
CAT FORWARD NOT THEN
CHECK GLOBAL NOVERFLOW TO
COMMENT GO NUMERIC TOS
DABZ GOTO OF TRUE
DATASEG IABZ OPTION UN CALLABLE
DDEL IF OR UNTIL
DEFINE INTEGER OVERFLOW VALUE
DEL INTERNAL OWN VARIABLE
DELB INTERRUPT POINTER VIRTUAL
,DO INTRINSIC PRIVILEGED WHILE
DOUBLE IXBZ PROCEDURE WITH
DXBZ LABEL PUSH XOR

B-1

BUILDING AN INTRINSIC FILE If H~1 •1i

The program BUILDINT is used to build or change intrinsic disc files. The program uses formal
designators INTDECL and OUT for input and list output files respectively. The default files are
$STDIN and $STDLIST. The intrinsic data file is opened as SPLINTR.

The command to execute the program is

:RUN BUILDINT.PUB.SYS

The input data consists of SPL procedure head declarations (OPTION EXTERNAL is required) and
optional commands.

Without commands, the procedure head declarations are added to the intrinsic file.

Commands have the following purposes:

$PURGE

$REMOVE

$BUILD

Removes all entries from the intrinsic file.

Removes all entries which follow this command, until a $BUILD.
Input has the same format as for adding entries.

Adds all subsequent input entries to the intrinsic file. $BUILD is
required only if $REMOVE is used.

Any input data which is not a procedure head terminates input. At this point, the program prints a
formatted list of all intrinsics and terminates.

For example,

:PURGE MYFILE
:BUILD MYFILE
:FILE SPLINTR= MYFILE
:RUN BUILDINT.PUB.SYS
INTEGER PROCEDURE M(A,B,C); VALUE A; INTEGER A,B;LOGICAL C;
OPTION EXTERNAL; PROCEDURE COMP(N,M'); VALUE N,M'; DOUBLE N;REAL M';
OPTION EXTERNAL;
PROCEDURE BYT(L,M,N,0); LABEL L; PROCEDURE M; BYTE ARRAY N;
LOGICAL POINTER O; OPTION EXTERNAL;
:EOD

See the next page for the formatted output for this file.

C-1

PAGE 0002 HEWLETT•PACKARD

TYPE
N NONE
L LOGICAL
I INTEGER
B BYTE
D DOUBLE
R REAL
E EXTENDED

NAME TYPE OPTIONS

0 BYT N 0E

t.:> COMP N 0E
M I 0E

NO. ERRORS•000

0.1,2,3
E
v
I
u

#PAR

SPL INTRINSIC BUILDER

OPTIONS
LEVEL OF CHECKING
EXTERNAL
VARIABLE
INTERRUPT
UNCALLABLE

COLUMN 1
V VALUE
R REFERENCE

PARAMETERS

PARAMETERS
COLUMN 2

T SEE TYPE

1 2 3 4 5
4 RNL RNT RBA RLP

6 7 8 9 10 11 12 13 14

2 VOS VRS
3 VIS RIS RLS

Figure C-1. BUILDINT Output

15

s
A
p
T
L

16

COLUMN 3
SIMPLE VARIABLE
ARRAY
POINTER
PROCEDURE
LABEL

17 18 19 20

MESSAGE

DECLARED TWICE

EXPECTS A SEMICOLON

EXPECTS IDENTIFIER

EXPECTS NUMBER

FORWARD OPTION IS
ILLEGAL

ILLEGAL SYMBOL

INTERRUPT PROCEDURE
MUST NOT HAVE PARAMETER

MISSING SPECIFICATION

NUMERIC SYMBOL NOT
ALLOWED

READ ERROR

SPECIFICATION DOES NOT
CORRESPOND

SUBROUTINES NOT
ALLOWED

TOO MANY PARAMETERS

TOO MANY OR ILLEGAL
ATTRIBUTES

VALUE SPECIFICATION
DOES NOT CORRESPOND

Table C-1. BUILDINT Error Messages

MEANING

The identifier in question is not
unique.

Only a comma or a semicolon
is legal at this point.

An identifier is the only legal
symbol at this point.

The CHECK option has been
specified but no legal check
level follows.

The FORWARD option
has been specified in a context
where it is illegal.

A left bracket, asterisk, or slash
has been encountered, none of
which are acceptable.

An interrupt procedure has
been declared with a param­
eter; a parameter is illegal in
this context.

A formal parameter has not
been given a type specification.

A fraction has been encoun­
tered which is not acceptable.

An error occurred while reading
from the input file.

There is no formal parameter
with the name used in this
specification.

Subroutines are illegal in the
intrinsic file.

There are more than 31 formal
parameters.

A specification for an identifier
was made with more than one
type or more than one class.

A value specification exists
for a non-existent formal
parameter.

C-3

ACTION

Correct to unique
identifier.

Rewrite the intrinsic
without subroutines.

Reduce the number of
formal parameters.

Either include the formal
parameter or remove
the value specification.

IN*MM MPE INTRINSICS :, 0 I

Table D-1. Summary of MPE Intrinsics

INTRINSIC PURPOSE CAPABILITY REQUIRED
NAME

ACCEPT Accepts (and completes) a request received by the Standard
preceding GET intrinsic call. (Used only with DS/3000.)

ACTIVATE Activates a process. Process Handling

ADJUSTUSLF Adjusts directory space in a USL file. Standard

ALTDSEG Alters the size of an extra data segment. Data Segment Management

ARITRAP Enables or disables internal interrupt signals from all Standard
hardware arithmetic traps.

ASCII Converts a number from binary to ASCII code. Standard

BINARY Converts a number from ASCII to binary code Standard

CALENDAR Returns the calendar date. Standard

CAUSE BREAK Requests a session break. Standard

CLEANUSL Deletes inactive entries from USL file. Standard

CLOCK Returns the actual time. Standard

CLOSE LOG Closes access to the logging facility. LG Capability

COMMAND Executes an MPE command programmatically. Standard

CREATE Creates a process. Process Handling

CREATE Provides ability to assign $STDIN and $STDLIST Process Handling
PROCESS to any file.

CTRANSLATE Converts a string of characters from EBCDIC to ASCII Standard
or from ASCII to EBCDIC.

DASCll Converts a value from double-word binary to ASCII code. Standard

DATELINE Returns date and time information. Standard

DBI NARY Converts a number from ASCII code to a double- Standard
word binary value.

DEBUG Calls the DEBUG facility. Standard

D-1

Table D-1 Summary of MPE Intrinsics (Continued)

INTRINSIC PURPOSE CAPABILITY REQUIRED

NAME

DLSIZE Changes size of DL to DB area. Standard

DMOVIN Copies block from data segment to stack. Data Segment Management

DMOVOUT Copies block from stack to data segment. Data Segment Management

EXPANDUSLF Changes length of a USL file. Standard

FATHER Requests Process Identification Number (PIN of Process Handling
father process.

FCARD Drives the HP 7260A Optical Mark Reader. Standard

FCHECK Requests details about file input/output errors. Standard

FCLOSE Closes a file. Standard

FCONTROL Performs control operations on a file or terminal device. Standard

FDELETE Deactivates a R 10 record. Standard

FD EV ICE Adds control directives to a spooled device file. Standard
CONTROL

FERRMSG Returns message corresponding to FCHECK error Standard
number.

FFILEINFO Provides access to file information. Standard

FGETINFO Requests access and status information about a file. Standard

FINDJCW Searches Job Control Word (JCW) table for specified Standard
JCW.

FLOCK Dynamically locks a file. Standard

FMTCALEN Formats Ccliendar date. Standard
DAR

FMTCLOCK Formats time of day. Standard

FMTDATE Formats calendar date and time of day. Standard

FOP EN Opens a file. Standard

FPO INT Resets the logical record pointer for a sequential disc Standard
file.

FREAD Reads a logical record from a sequential file (on any Standard
device) to the user's data stack.

FREAD Reads a logical record beginning at a point prior to Standard

BACKWARD the current record printer.

FREADDIR Reads a logical record from a direct access file to the Standard
user's data stack.

D-2

Table D-1 Summary of MPE Intrinsics (Continued)

INTRINSIC
PURPOSE CAPABILITY REQUIRED

NAME

FREADLABEL Reads a user file label. Standard

FREADSEEK Prepares, in advance, for reading from a direct-access Standard
file.

FREEDSEG Releases an extra data segment. Data Segment Management

FREELOCRIN Frees all local Resource Identification Numbers (RIN's) Standard

from allocation to a job.

FRELATE Determines if a file pair is interactive or duplicative. Standard

FRENAME Renames a disc file. Standard

FSETMODE Activates or de-activates file-access modes. Standard

FSPACE Spaces forward or backward on a file. Standard

FUN LOCK Dynamically unlocks a file. Standard

FUPDATE Updates a logical record residing in a disc file. Standard

FWRITE Writes a logical record from the user's stack to a sequen- Standard
tial file (on any device).

FWRITEDIR Writes a logical record from the user's stack to a direct- Standard
access disc file.

FWRITELABEL Writes a user file label. Standard

GENMESSAGE Accesses MPE message system. Standard

GET Receives the next request from a remote master program. Standard
(Used only with DS/3000.)

GETDSEG Creates an extra data segment. Data Segment Management

GETJCW Fetches contents of system job control word (JCW). Standard

GETLOCRIN Acquires local RI N's. Standard

GETORIGIN Determines source of process activation call. Process Hand I ing

GETPR IOR ITY Changes the priority of a process. Process Handling

GETPRIVMODE Dynamically enters privileged mode. Privileged Mode

GETPROCID Requests PIN of a son process. Process Handling

D-3

Table D-1 Summary of MPE Intrinsics (Continued)

INTRINSIC
PURPOSE CAPABILITY REQUIRED

NAME

GETPROCINFO Requests status information about a father or son Process Handling

process.

GETUSERMODE Dynamically returns to non-privileged mode. Privileged Mode

INITUSLF Initializes a USL file to the empty state. Standard

IODONTWAIT Initiates completion operations for an 1/0 request. Privileged Mode

IOWAIT Initiates completion operations for an 1/0 request. Privileged Mode

KILL Deletes a process. Pocess Handling

LOADPROC Dynamically loads a library procedure. Standard

LOCKGLORIN Locks a global RIN. Standard

LOCKLOCRIN Locks a local RIN. Standard

LOCRINOWNER Identifies process locking a local RI N. Standard

MAIL Tests mailbox status. Process Handling

MYCOMMAND I Parses (delineates and defines parameters) for user- Standard
supplied command image.

OPEN LOG Provides access to a logging facility. LG Capability

PAUSE Suspends calling process for a specified number of Standard

seconds.

PCHECK Returns an integer code specifying the completion status Standard

of the most recently executed DS/3000. (Used only with
DS/3000.)

PC LOSE Terminates program-to-program communication with a Standard

remote slave program. (Used only with DS/3000.)

PCONTROL Exchanges tag fields with a remote slave program. (Used Standard

only with DS/3000.)

POP EN Initiates program-to-program communication with a Standard

remote slave program. (Used only with DS/3000.)

PREAD Requests a block of data from a remote slave program. Standard

(Used only with DS/3000.)

PRINT Prints character string on job/session list device. Standard

PRINTFI LE INFO Prints file information display. Standard

D-4

Table D-1 Summary of MPE Intrinsics (Continued)

INTRINSIC
PURPOSE CAPABILITY REQUIRED

NAME

PRINTOP Prints a character string on the Operator's Console. Standard

PRINTOPREPL Y Prints a character string on the Operator's Console and Standard
solicits a reply.

PROCTIME Returns a process' accumulated central processor time. Standard

PT APE Accepts input from paper tapes which do not contain Standard
X-OF F control characters.

PUTJCW Puts value of a given JCW in JCW table. Standard

PWRITE Sends a block of data to a remote slave program. Standard

QUIT Aborts a process. Standard

OUITPROG Aborts the user process structure. Standard

READ Reads an ASCII string from the job/session input device Standard
($STDIN).

READX Reads an ASCII string from the job/session input device Standard
($STDINX).

RECEIVEMAI L Receives mail from another process. Process Handling

REJECT Rejects the request received by the preceding GET Standard
intrinsic call. (Used only with DS/3000.)

RESETCONTROL Resets terminal to accept CONTROL Y signal. Standard

RESETDUMP Disables the abort stack analysis facility. Standard

SEARCH Searches an array for a specified entry or name. Standard

SENDMAIL Sends mail to another process. Process Handling

SETDUMP Enables the abort stack analysis facility. Standard

SETJCW Sets the value of the system job control word (JCW). Standard

STACKDUMP Dumps selected parts of stack to file. Standard

SUSPEND Suspends a process. Process Handling

SWITCH DB Switches DB register pointer. Privileged Mode

TERMINATE Terminates a process. Standard

TIMER Returns job or session timer bit count. Standard

UNLOADPROC Dynamically unloads a library procedure.

UNLOADGLORIN Unlocks a global RIN. Standard

D-5

Table D-1 Summary of MPE Intrinsics (Continued)

INTRINSIC
PURPOSE CAPABILITY REQUIRED

NAME

UNLOCKLOCRIN Unlocks a local R IN. Standard

WHO Returns user attributes. Standard

WRITE LOG Writes a record to a logging file. LG Capability

XARITRAP Arms or disarms the software arithmetic trap. Standard

XCONTRAP Arms or disarms the CONTROL-Y trap. Standard

XLIBTRAP Arms or disarms the library trap. Standard

XSYSTRAP Arms or disarms the system trap. Standard

ZSIZE Changes size of Z to DB area. Standard

D-6

COMPILER ERROR MESSAGES [~H:f.I~

Table E-1. SPL Compiler Error Messages

MESSAGE MEANING ACTION

ARITHMETIC RIGHT SHI FT Compiler has issued an ASR to None, unless word
EMITTED convert a byte address to a address is supposed to

word address. be greater than DB+
16383 in which case the
ASR causes an error.

BEGIN END DO NOT MATCH When END. encountered, there Check your code and
were more BEGINs than ENDs. correct.

CASE STATEMENT The number of cases in a CASE Check your code;
OVERFLOW statement exceeds 256. decrease the number of

cases.

CONVERSION ERROR An illegal type conversion was Check manual for legal
attempted. type conversions; note

that types cannot be
mixed in arithmetic
operations.

DECLARATION NOT A subroutine may not have Check the subroutine
ALLOWED IN SUBROUTINE declarations. code and move decla-

rations to main program
or procedure.

DECLARATION OUT OF Declarations must be ordered Check the order;
ORDER as: data, procedures, sub- correct.

routines.

DECLARED TWICE An identifier has been declared Check declarations;
twice at the same level. correct.

DEFINE TOO LARGE A DEFINE declaration has too Check declaration,
many characters in its de- reduce to 511 charac-
script ion. ters excluding extrane-

ous blanks.

DISPLACEMENT OUT OF The displacement is too large Displacement varies
RANGE or has the wrong sign for the with addressing mode:

addressing mode. DB+ 255
0+127;0-63

DISPLACEMENT TOO LARGE The displacement is too s - 63
large for the addressing mode. p + 255; p - 255

EXCEEDED MAXIMUM INCLUDEs are nested to a level Checkyourcode;decrease

INCLUDE DEPTH greater than 10. the nesting level of INCLUDEs.

EXPECTS ALPHA The next symbol must be an Check code; change to
alphabetic character. alphabetic character.

EXPECTS ARRAY IDENTIFIER Only an array identifier is legal Check code; use array
in this context. identifier.

Table E-1. SPL Compiler Error Messages (Continued)

MESSAGE MEANING ACTION

EXPECTS ASTERISK An asterisk is expected in this Check code; use
context. asterisk.

EXPECTS BOUNDS An array dee la ration of this Check code; enter
type·requires bounds. bounds.

EXPECTS CONSTANT A constant is expected in this Check code: correct.
context; for example, as a par-
tial word designator.

EXPECTS DOLLAR A$ command with continuation Correct by entering $ at
symbol is not followed by beginning of continua-
image with $ in column 1. ti on line or deleting

continuation symbol.

EXPECTS EQUAL An equals sign is expected Check code and enter
in this context. = where expected.

EXPECTS FILE Filename expected. but not Check your code and

found. correct.

EXPECTS IDENTIFIER ldent1f1er name not found. Check your code and
REFERENCE correct.

EXPECTS INTEGER VARIABLE Only as integer variable is Check code. correct.
legal in this context

EXPECTS LABEL A label must appear in this Check code. correct
context.

EXPECTS OR OR was expected but not Check your code and
found. correct.

EXPECTS OPTIOf\J P., $ command has an illegal Check command, car-

command or is followed by an rect.
illegal parameter.

EXPECTS POINTER Only a pointer is legal in this Check code, correct.
context.

EXPECTS REFERENCE A value parameter is passed to Check parameters and
PARAMETER a procedure that expects a specifications; correct.

parameter passed by refer-
ence.

EXPECTS RELATIONAL A relational operator is ex- Check code, correct by
pected at this point. including relational

operator (= .<> .< ,< =,

>.>=)

EXPECTS RELATIONAL OR Either a comma or a relational Check code, correct
COMMA operator is expected in this by including comma or

I
context relational operator (=,

l <>.<.<=.>.>=) as
appropriate j

E-2

Table E-1. SPL Compiler Error Messages (Continued)

MESSAGE MEANING ACTION

EXPECTS SYMBOL No symbol where a symbol, Check code, include
such as an identifier, is symbol.
expected.

EXPECTS UNDEFINED An array declaration of this type Check declaration,

BOUNDS requires an asterisk (*). include *

EXPECTS VARIABLE Only a variable is allowed in Check code, correct.
this context.

FILENAME TOO LONG Filename is greater than 8 Check your code and

characters shorten name

ILLEGAL ADDRESS MODE The specified address mode 1s Address mode relative

not legal 1n this context to OB, 0, S, or PB must
be changed.

ILLEGAL ADDRESS STORE An attempt has been made to Change to (<1 PTR:=n or

store into a non-existent PTR(1):=n
pointer: for example:
((1 PTR(1): = 0

ILLEGAL ASSEMBLE An error occurred in an Check the statement:
STATEMENT ASSEMBLE statement. correct.

ILLEGAL ATTRIBUTE Attribute inconsistent with Check the specif1cat1on:
identifier: e.g, LONG LABEL. correct.

ILLEGAL BOUNDS The bounds for this array Check that bounds are

SPECIFICATIONS declaration are invalid. *, (a or integer constant.

ILLEGAL CLASS Symbol class (POINTER, Check the symbol:

ARRAY, etc.) incorrect in correct the symbol

context. class.

ILLEGAL CONST ANT This symbol is not a valid Check the constant,

constant. enter a valid constant.

ILLEGAL DYNAMIC BOUNDS The dynamic bounds must be Correct as indicated.

either an integer formal param-
eter or a global integer.

ILLEGAL EXTERNAL An error occurred in an exter- Check the declaration

VARIABLE nal variable declaration or in its and also the procedure
use. where it is used: correct

ILLEGAL FORMAL The attributes specified for this Check the parameter:
PARAMETER formal parameter are not correct.

valid.

ILLEGAL GLOBAL EXTERNAL An error has occurred in a Check declarations:
VARIABLE global or an external variable correct.

declaration.

E-3

Table E-1. SPL Compiler Error Messages (Continued)

MESSAGE MEANING ACTION

ILLEGAL IDENTIFIER The reference identifier for this Check the deciaration:
REFERENCE declaration is incorrect. reference identifier

must be declared first.
ILLEGAL INITIALIZATION The initialization list for this Make sure that list con-

array is invalid. tains only numeric
values or strings

ILLEGAL IF STATEMENT This IF statement contains an Check the statement,
error correct.

ILLEGAL IN SPLIT- An error was detected inside a Check WITH and
STACK MODE WITH statement or with OPTION OPTION SPLIT in manual.

SPLIT or $SPLIT.

ILLEGAL ITEM IN The item is either not declared Check declarations.
EXPRESSION or is of the wrong class. include if necessary,

otherwise correct.

ILLEGAL LEFT PARENTHESIS A left parenthesis has been Remove the paren-
used in a context where 1t 1s thesis.
illegal.

ILLEGAL MODE IN THIS An address mode (relative to Change to a mode that
CONTEXT DB. 0. S. or PB) cannot be is legal in this context.

used in this context

ILLEGAL OPERATOR An operator 1s used that 1s not Valid operators are ·.
recognized by the compiler •• .. +.-.MOD.MOOD.

=.<.<>.<=>.>=.
LANO, LOR. XOR.

ILLEGAL OWN The 1nit1al1zat1on list for an OWN Check: correct the list
INITIALIZATION array is invalid. to include only numbers

and strings

ILLEGAL OWN VARIABLE An error occurred in an OWN Check the OWN
variable declaration or in its variable declaration
use. and also where it is

used: correct.

ILLEGAL P.ARAMETER This parameter contains an Check the parameter:
illegal item. correct.

ILLEGAL S-RELATIVE The displacement to S is either Correct the address to
ADDRESS positive or less than - 63. fall within range S-0

through S-63.

EXPECTS WHILE OR UNTIL The reserved word WHILE or Check code, include
UNTIL is missing. WHILE or UNTIL.

EXPECTS (ji The compiler expects an @ as Check code, include (ci.

the next symbol in this context.

ERROR IN CATENATE A catenate expression must be Check expression and
EXPRESSION of the form (L M:N) where L. M. correct.

ar.d N are integer constants.

Table E-1. SPL Compiler Error Messages (Continued)

MESSAGE MEANING ACTION

ERROR IN PARTIAL WORD A partial word designator must Check code; correct
DESIGNATOR be of the form (M:N) where M form of partial vvord

and N are integer constants. designator.

ERROR IN SHIFT An illegal mnemonic follows the Change mnemonic to a
DESIGNATOR &. valid shift identifier.

ERROR IN USL FILE ·USL file contains a bad entry. Check source for errors;
Compilation terminates. correct and try again.

ERROR OVERFLOW Maximum number of errors has Default maximum= 100
been generated. errors; change with

$CONTROL command.

FORWARD PROCEDURE Forward and actual procedure Check declarations and
DECLARATION declarations do not match. correct.
INCOMPATIBLE

ILLEGAL SEGMENTATION A $CONTROL SEGMENT card Change the card to
is within a procedure. appear outside the

procedure.

ILLEGAL STATEMENT A statement cannot begin with Check the class, and if
BEGINNER this class; possibly is an un- undeclared variable,

declared variable. declare it.

ILLEGAL STATEMENT A statement must be term1- Correct the terminator.
TERMINATOR nated by END or a semicolon.

ILLEGAL STRING A string is expected in this Enclose the string in
context but there are no quote quotes.
marks.

ILLEGAL SYMBOL Not an ASCII character valid Check and enter a valid
for SPL. ASCII character accept-

able to SPL.

ILLEGAL TO STACK Parameter must not be loaded Correct so that par am-
PARAMETER directly to stack in this context eter is not stacked'.

or stack will be out of order.

ILLEGAL TRACE CARD A $TRACE card is either in Check the $TRACE
the wrong position or contains card and move or cor-
an error. rect as appropriate.

ILLEGAL TRACE The identifier being traced is of Change class to
IDENTIFIER a class that cannot be traced. SIMPLE VARIABLE,

ARRAY, POINTER,
LABEL. or PROCEDURE.

ILLEGAL TYPE A type mismatch has occurred Check the types and
in an arithmetic operation. change to matching

types.

E-5

Table E-1. SPL Compiler Error Messages (Continued)

MESSAGE MEANING ACTION

ILLEGAL TYPE TRANSFER The type of the operand may Check the statement

I not be converted to the type of and correct to avoid
the object in SPL. type mismatch.

ILLEGAL USE OF PB BYTE Byte cannot be loaded from Correct code so
ARRAY a PB byte array since the load attempt is not made to

byte instruction is not PB- load byte from PB byte
relative. array.

ILLEGAL VARIABLE Form of variable is not valid. Check variable and
insure that it starts with
letter.

ILLEGAL X ON OR OFF Parameter on $IF command is Check $IF parameter
invalid; may be XO through X9 and correct.
= ON or OFF only.

ILLEGAL X REGISTER Either the type or the ciass of the Change type and/or
REFERENCE: variable referencing the x class to that of a one-

register is illegal. word V3riable

INDEX [\JCH ALLOWED An attempt was made to index Change declaration to
a simple variable. array or remove index.

INITIAL:ZA TION OUT OF An array has been initialized Either change the array
RANGE with a list that is larqer than the size or decrease the list.

array size.

INTEGER OVERFLOW A constant expression resulted Check constants used
in an integer overflow in expressions for a

resulting value greater
than 32767 or less than
-32767

INVALID BRANCH EMITTED Compiler has emitted a bad Check label range;
branch in ASSEMBLE state- change to indirect
ment: probably label out of branch.
range.

INVALID BYTE INITIALIZATION The initialization list of a byte Check byte array and
array is incorrect. its initialization list:

correct.

INVALID COMMENT Comment has been used in an Check code: either
illegal context. move or remove

comment.

INVALID EXPONENT An exponent expression con- Check the expression:
PARAMETER tains an error. correct.

INVALID NUMBER Either the field is not numeric Check field and range
or the number is out of range in of number: correct.
this context.

I

INVALID OPERATOR The mnemonic in ASSEMBLE Check code for invalid

J l MNEMONIC statement not identifiable. instruction mnemonic:
correct.

E-6

Table E-1. SPL Compiier Error M~ssages (Continued)

MESSAGE MEANING ACTION

INVALID SDEC Stack decrement (SDEC) field Check range for this
in statement such as MOVE SDEC constant and
or SCAN is out of range. correct.

INVALID SUBSCRIPT An index must be an integer Check expression used
expression. as index; correct.

LABEL IN ASSEMBLE A label referenced in an Check statement; either
STATEMENT MUST OCCUR ASSEMBLE statement cannot include label or remove

be found. reference.

LOCAL DECLARATION Too many local declarations; Check and remove
OVERFLOW up to 127 words allowed. extra declarations.

LOCAL INITIALIZATION MUST A local array can be initialized Check array declara-
BE PB only in PB mode. tion; change mode to

PB, or make array
global.

LOGICAL COMPARE Issued when a logical com- Warning that compare
EMITTED pare always gives the same such as L> = 0 is always

result. true, L< 0 always false
if L is logical variable.

MAY NOT GO TO ENTRY A GO TO statement may not Check GO TO; change
transfer to an entry label. label.

MAY NOT TRACE EXTERNAL Trace can only be made on Check TRACE; change
LABEL label in program unit being label to one in current

compiled. program unit.

MAXIMUM REPEAT FACTOR The largest repeat factor al- Check initialization list;
8191 lowed in an initialization list is lower repeat factor.

8191.

MISSING ASSIGNMENT An assignment operator must Check code; include
OPERATOR appear in this context. assignment operator.

MISSING BEGIN The compiler expects a BEGIN Check code; include
as the next symbol. BEGIN.

MISSING CCF This ASSEMBLE instruction Check code; include
requires a CCF specification. CCF specification.

MISSING COLON A colon (:) must appear in this Check code; include
context. colon.

MISSING COMMA A comma (,) is expected in this Check code; include
context. comma.

MISSING DO A DO must appear in this Check code; include
context. DO.

MISSING ELSE An ELSE must appear in this Check code; include
context. ELSE.

E-7

Table E-1. SPL Compiler Error Messages (Continued)

MESSAGE MEANING ACTION

MISSING EXPONENT A valid exponent must follow a Check code; enter valid

I caret (A). exponent.

MISSING FORMAL A specification is made for a Check code; include
PARAMETER non-existent formal parameter. formal parameter or

delete specification.

MISSING LEFT PARENTHESIS A left parenthesis is expected Check code; include
in this context. left parenthesis.

MISSING OF A CASE statement does not Check CASE statement;
contain the word OF. include OF.

MISSING RIGHT BRACKET A right bracket is only accept- Check code and
able symbol at this point. include right bracket.

MISSING RIGHT A right parenthesis 1s expected Check code; include
PARENTHESIS at this point. right parenthesis.

MISSING SEMICOLON A semicolon (;) or other sep- Check code: include
arator is required in this context. semicolon.

MISSING SLASH A slash 1s the only acceptable Check code: include
symbol at this point. slash.

MISSING SPECIFICATION There is no specification for a Check code: include
formal parameter. specification for formal

parameter.

MISSING SUBPROGRAM A procedure specified in a Check code: correct
$CONTROL SUBPROGRAM name in command or
command cannot be found. include procedure.

MISSING THEN A THEN must appear in this Check code: include
context word THEN.

MISSING UNTIL An UNTIL must appear in this Check code: include
context. word UNTIL.

MULTIPLE FORWARD There is more than one forward Check declarations;
DECLARATION declaration for this procedure. remove redundant for-

ward declaration.

MULTIPLE SPECIFICATIONS A formal parameter is specified Check code; remove
more than once. extra formal parameter.

MUST BE DB Only DB-relative addressing is Check address; correct
allowed in this context. to DB-relative.

MUST BE DB OR Q Only DB-relative or 0-relative Check address; correct
addressing allowed in this to DB-relative or Q-

context. relative.

MUST BE DOUBLE OR Only a double-word or logical Check variable; change
LOGICAL variable is allowed in this to double or logical.

context

E-8

Table E-1. SPL Compiler Error Messages (Continued)

MESSAGE MEANING ACTION

MUST BE INTEGER TYPE The only valid type for this Check code; use
construct is integer. integer.

MUST BE INTEGER, LOGICAL A one-word quantity is ex- Check code; correct to
OR BYTE pected in this context. use one-word quantity.

MUST BE LOCAL Action allowed only for local is Check code; correct
being performed on global variable.
variable.

MUST BE TYPE BYTE Syr;;bol must be type byte in Check symbol; correct
this context. if illegal or change to

type byte.

MUST BE TYPE LOGICAL Oniy a logical variable can Check expression;
appear in a Boolean expression. change to logical

variable.

MUST BE TYPE PROCEDURE In this context, procedure must Check code; change to
be typed. typed procedure.

MUST BE VALUE FORMAL A reference parameter is not Check parameter;
PARAMETER legal in this context. change to formal

parameter.

NESTED PROCEDURE NOT A procedure declaration is Check code; remove
ALLOWED within another procedure. procedure dee laration

for other procedure.

NESTED REPEAT Repeat factor inside a repeat Check code.
FACTOR factor is not allowed.

NOT END OF COMMENT Two greater-than symbols are If intended as comment,
separated by one or more remove blanks so sym-
blanks. bols are adjacent (> >).

NOT INTRINSIC FILE A file specified as an intrinsic Check file name:
file in INTRINSIC statement is change to name of in-
not an intrinsic file. trinsic file.

NOT ON INTRINSIC FILE Procedure referenced in an Check procedure name
INTRINSIC declaration is not on and intrinsic file;
the intrinsic file. change name or in-

elude intrinsic in file.

OUT OF RANGE BRANCH An ASSEMBLE statement con- Check statement;
tain s branch that is beyond change range of
range of direct branch. branch or use in-

direct addressing.

PARAMETER NOT ALLOWED Interrupt procedure that should Check procedure;
have no parameters has a remove parameter.
parameter.

PARAMETER NUMBER A procedure call has an in- Check procedure;
INCOMPATIBLE correct number of parameters. change number of

parameters accordingly.

E-9

Table E-1. SPL Compiler Error Messages ·(Continued)

MESSAGE MEANING ACTION

PARAMETER OUT OF RANGE This parameter exceeds the Displacements may be:
maximum allowable displace- DB+ 255, O+ 127, 0-63,

I ment for this address mode. S- 63, P+ 255, P- 255.

PARAMETER OVERFLOW There are more than 31 param- Reduce number of
eters in this procedure. parameters to 31 or

fewer.

PARTIAL WORD ILLEGAL A partial word designator is Break into several store
HERE not allowed in multiple store. statements to allow bit

deposit.

PRIMARY DB OVERFLOW A variable cannot be assigned Correct to address
with a DB-relative address within accepted bounds
greater than 255. or total is possibly by removing

greater than 907 words. declarations.

PRIMARY 0 OVERFLOW Variable cannot be assigned Correct assignment to
with 0-relative address greater address within accept-
tha1~ 127. able bounds.

PROCEDURE TOO LARGE The number of instructions in Decrease number of in-
this procedure exceeds the structions in procedure
limit. or increase segment

size.

RECURSIVE DEFINE Invoking this DEFINE statement Check text of DEFINE
would result in infinite loop. statement for 1dent1fier

being defined.

RESERVED SYMBOL Cannot define a constant or Check definition; omit
REDEFINED reserved word. reserved word or

symbol.

SDEC TOO LARGE Stack decrement in an ASSEM- Check statement;
BLE statement is larger than reduce stack decre-
largest allowed value. ment to acceptable

value for context.

SECONDARY DB OVERFLOW There are too many declara- Check code, and
tions in the outer block. reduce the number of

declarations.

SEMICOLON NOT ALLOWED A semicolon (;) cannot be Remove semicolon.
used in this context.

SEQUENCE ERROR Input files contain images that Check input files;

are out of order. correct order.

SIZE INCOMPATIBILITY Parameter passed to a pro- Check parameter size
cedure has wrong number of in procedure, and cor-

words. rect call.

SORT TABLE OVERFLOW Table used to sort map output Symbol table map can-
is full (over 1162 procedures/ l not be produced.
symbols, 1912 globals)

E-10

Table E-1. SPL Compiler Error Messages (Continued)

MESSAGE MEANING ACTION

STRING TOO LARGE This string exceeds 128 Reduce string size to
characters. acceptable limit.

SYMBOL TABLE ERROR Some entries in the symbol Symbol table map can-
table are no lonqer valid. not be produced.

SYMBOL TABLE OVERFLOW The compiler limit for the Reduce number of sym-
number of symbols has been bols in program and
exceeded. recompile.

STACK OVERFLOW MAY BE If stack overflow occurs and 0 Separate into two in-
IRRECOVERABLE and S set in same instruction, structions; e.g, SET (0),

process may terminate SET (S), not SET (0,S).

SUBPROGRAM TABLE Overflow in table where sub- Reduce number or size
OVERFLOW program names to be compiled of names to total of 252

are stored. characters plus 1 extra
for each name

SUBPROGRAM & USLINIT This compilation specifies both Compile an outer block
subprogram and USLINIT. before preparing the
resulting in no outer block program file.

TOO MANY USL Too many procedure calls in- Reduce the number of
HEADERS side code block. procedure calls.

TRACE HEADER TOO LARGE Too many symbols being Reduce number of sym-
traced resulting in table bols to be traced.
overflow

TYPE INCOMPATIBILITY In arithmetic statement, two Change one or both
operands of different type are operands so that they
combined are the same type

(REAL, LONG, etc.)

TYPE PROCEDURE STORE A procedure name can appear Check procedure
OUT OF RANGE on the left-hand side of a name; correct name or

replacement operator (:=)only remove statement.
within the scope of the proce-
dure with the same name.

UNDECLARED IDENTIFIER An identifier used 1n a state- Declare identifier or
ment has not been dee la red 1n chc111ge identifier name
a declaration. to a declared identifier.

USL FILE OVERFLOW The USL file is full Build larger USL file;
recompile.

(cl NOT ALLOWED An ((1 is not legal in this context. Remove ((1.

E-11

CALLING SPL FROM lijHJihiij
L.....--_____ o_T_HE_R_LA_N_G_U_A_G_Es___._ I F I

There are a number of things to consider when writing SPL procedures that are to be called from other
languages. Not all languages pass parameters in the same way and some have restrictions as to their
ability to call function procedures, OPTION VARIABLE, and so forth. This note summarizes these
restriction for BASIC, COBOL, COBOL II, and FORTRAN.

There are two ways to pass a parameter to a procedure: by REFERENCE and by VALUE. Passing a
parameter by reference means that the 16-bit ADDRESS of the variable is passed on the stack; the
called procedure refers to this parameter via indirect memory reference instructions (LOAD Q-n, I and
STOR Q-n, I). Passing a parameter by value means that the actual contents of the variable (1, 2, or 4
words) are passed on the stack; the called procedure refers to this parameter via direct memory
reference instructions (LOAD Q-n and STOR Q-n). As a result, if the called procedure modifies a
call-by-reference parameter, the caller's variable is modified; for call-by-value parameters, only the
"temporary" copy in Q-minus storage is changed (the caller's version retains its old value).

OPTION VARIABLE is a facility that provides the ability to call a procedure with a varying number of
parameters. The called procedure will expect a "bit mask" in Q-4 (and Q-5 if there are more than 16
parameters) with bits set indicating which parameters are present. Parameters are always passed in
the same Q-minus addresses; the Q-minus locations for parameters which are omitted have undefined
values. It is up to the called procedure to examine the bit mask and to access only those parameters
which are passed on any particular call.

A function procedure is one which returns a value in place of its name; it therefore can be called from an
expression and the value that it returns will be used in the expression. This value is stored in the stack
just before (lower address) the parameters to the procedure. It is the responsibility of the caller to
dispose of or use the return value properly. An example of such a procedure is the BIN ARY intrinsic.

Because the various languages have differing capabilities for dealing with the various aspects of
procedure calls, the SPL coder needs to be aware of what each language does. Below are summarized the
things that need to be considered for each language.

COBOL

- All parameters are passed as WORD addresses (call-by-reference). There is one exception: you can
pass the MPE file number for a file opened with the OPEN verb by passing the FD-name to a
procedure; this is passed as a 16-bit integer by value.

- COBOL has no way of coping with the return value of a function procedure; an extra value will be left
on the stack which will disrupt program execution. Do not call function procedures from COBOL.

- There is no way for COBOL to generate the bit msk required by OPTION VARIABLE procedures, so
these cannot be called either. Since it is impossible to pass a parameter from COBOL by value, you
can't generate the bit mask yourself.

F-1

- The following illustrates how the COBOL data types map to SPL data types:

COMPUTATIONAL
1-4 digits
5-9 digits

COMPUTATIONAL-3

DISPLAY

INTEGER
DOUBLE

SPL has no PACKED DECIMAL capability; you must access this as a
byte array and generate the machine instructions yourself. Note that
COBOL passes a WORD address for this; you will need to use an
equivalenced byte array.

Passed as LOGICAL (array). You will usually want to equivalence a
byte array to the passed parameter and access the data this way.

Note that COBOL has no equivalent of REAL or LONG.

FORTRAN

- FORTRAN passes all parameters by reference unless the parameter is enclosed in backslashes, in
which case it is passed by value. You may use a constant or expression in a call; if it is not enclosed in
backslashes, a temporary cell is created and the address of the cell is passed.

- FORTRAN may call function procedures normally (external function).

- If you are calling an OPTION VARIABLE procedure, you must calculate the bit mask required and
pass it as a constant by value as the LAST (or last two) parameter(s). See below for form of the bit
mask.

- The following illustrates how FORTRAN data types map to SPL data types:

INTEGER/INTEGER*2 INTEGER

INTEGER*4 DOUBLE

REAL REAL

DOUBLE PRECISION LONG

CHARACTER*n BYTE ARRAY

- When calling an intrinsic, you should name the intrinsic in a SYSTEM INTRINSIC statement. Then
FORTRAN will take care of the OPTION VARIABLE mask, passing of parameters by reference or
value, and so on.

F-2

BASIC

- BASIC passes all parameters by reference. There is no way to override this; if you pass a constant or
expression, a temporary cell is created and the address of the cell is passed.

- BASIC, like COBOL, can't handle the return value from a function procedure. Likewise, it has no
ability to generate an OPTION VARIABLE bit mask. Because all parameters are call-by-reference,
you cannot generate a proper bit mask.

- BASIC passes a parameter type descriptor just in front of (lower memory address) the first parameter.
The called procedure may use this or ignore it - see the BASIC Interpreter reference manual for
details. This descriptor does not interfere with the normal addresses of the parameters.

- The following illustrates how BASIC data types map to SPL data types:

REAL/undeclared REAL

LONG LONG

INTEGER INTEGER

String (x$) BYTE ARRAY

Please keep in mind that the default constant in BASIC is type-REAL. To pass an integer, you must
either store the value into an integer variable and pass the variable or use the following construct:

DEF INTEGER FNl(N)=N

CALL proc(FNI(4))

This will pass the 4 as an integer instead of a real number.

Arrays and strings have physical and logical length information stored in the -2 and -1 elements of
the array. (See the Basic Interpreter Reference Manual.) The point to note here is that if you change
the length of a string or array, you must update the logical length so that BASIC knows what you did.
Two-dimensional arrays and string arrays have length information at the beginning of each major
dimension or string element.

(See below for a discussion on converting byte addresses to word addresses.)

COBOL II

- Much like FORTRAN, COBOL II passes all parameters by reference unless the parameter is enclosed
in backslashes, in which case it is passed by value.

- All parameters are passed as WORD addresses unless an@ is used in front of the parameter name, in
which case a BYTE address is passed.

F-3

- If you are calling a function procedure, an extension to the CALL statement (the GIVING clause, as
in CALL proc USING parm GIVING value) allows you to pick up the return value; you MUST use this
construct if you are calling a function procedure (even if you have no use for the return value) so that
the stack is decremented properly.

- As with FORTRAN, you can generate the bit mask for OPTION VARIABLE procedures by passing it
by value as the last parameter(s).

- COBOL II allows you to call intrinsics via the CALL INTRINSIC statement, relieving you of
worrying about value v. reference, byte addressing, the OPTION VARIABLE mask, and so forth.

- The data types are precisely the same as for COBOL, above.

OPTION VARIABLE mask

The OPTION VARIABLE MASK IS ONE WORD AT Q-4 (or two words at Q-5 and Q-4 ifthere are more
than 16 parameters) that describes which parameters are present. The RIGHTMOST bit (bit 15 in
HP3000 nomenclature) corresponds to the rightmost (last) parameter; bit 14 refers to the next-to-last,
and so forth on back to the first parameter. A 1 bit means the parameter is present; 0 means that the
parameter was omitted and it should not be accessed.

For example, suppose we have the following procedure head:

PROCEDURE upshift(string,length,result);
VALUE length;
BYTE ARRAY string;
INTEGER length,result;
OPTION VARIABLE;

and we wish to call this from FORTRAN. What would be the proper CALL statement? Since there are
three parameters, the last three bits of the mask would be used. If all parameters were included, the call
would look like this:

CALL UPSHIFT(CHARSTRING, LEN ,!RESULT, %7L)

If, for example, the last parameter (RESULT) were omitted, the call would be:

CALL UPSHIFT(CHARSTRING, LEN , 0 , %6L)

The zero as the third parameter is required as a place holder.

Byte to word address conversion

It is sometimes desirable (or necessary) to convert a passed byte address to a word address (so that the
array can be passed to the file system intrinsics, for example). You will find that if you attempt to
equivalence a word array back to a passed byte array you will get a warning "ARITHMETIC RIGHT
SHIFT EMITTED!' What this is saying is that the SPL compiler is emitting an ASR 1 instruction to
convert the byte address to a word address, and you are being warned because this is not always the

F-4

correct thing to do. The reason for this is that it is_ possible to have byte addresses that point to the
DB-minus area (in fact, BASIC does this all the time) but it is impossible to tell if an address is in the
DB-minus area or is simply a very large DB-plus byte address without looking at the registers. Here is a
foolproof procedure that will generate the proper word address given any byte address provided that the
byte address is not odd.

INTEGER PROCEDURE wordadr(byteadr);
ARRAY;
BYTE byteadr;
BEGIN

INTEGER SO=S; <<Address ofS>>
tos:=tos:=@byteadr & LSR(l); <<Logical divide by 2>>
IF tos>@SO then tos.(0:1):=1; <<lfin DB-minus, fix sign>>
wordadr: =tos

END; <<wordadr>>

Sample call:

PROCEDURE sample(string);
BYTE ARRAY string;
BEGIN

POINTER stringp; <<Word pointer>>
@stringp; =wordadr(string);

F-5

A

ABSOLUTE addressing, 4-2, 4-4
Absolute value, 4-12
Actual-parameter, 4-5, 5-11 - 5-19
Addition, 4-12, 4-16
Addresses, 4-3
Addressing range, register, 1-10, 1-11, 3-4
ALPHA,4-17
AND, 4-13, 4-19, 5-9
Arithmetic expression, 4-5, 4-11, 4-13
Arithmetic operators, 4-11, 4-12, 4-13
Array, 2-12, 3-4 - 4-11, 7-11 - 7-16
ASCII character set, A-1
ASSEMBLE statement, 6-1 - 6-13
Assignment statement, 4-5, 4-11, 4-12, 4-22 - 4-24
AUTOPAGE, 9-8

B

Based constant, 2-6
BEGIN statement, 1-1
Bit operations,

concatenation, 4-7, 4-8
deposit, 4-22
extraction, 4-6, 4-7
shift, 4-8 - 4-10

Byte comparison, 4-15, 4-17, 4-18
Byte address conversion, Appendix F
Byte format, 2-4

c
Call by reference, 5-12, 5-13
Call by value, 5-12, 5-13, 7-2
CARRY, 4-19, 4-20, 4-29
CASE statement, 5-1, 5-10
Character string, 2-11
CHECK, OPTION, 7-6
Code segmentation, 1-6 - 1-8
Comments; 1-2 5 9-3
Compiler commands, 1-2, 9-2 - 9-21
Composite constant, 2-7
Compound statement, 1-13
Concatenation, bit, 4-7, 4-8
Condition clauses, 4-19, 4-20, 4-21, 5-4, 5-5, 5-7, 5-8, 5-9
Constants

based, 2-6
composite, 2-7
double integer, 2-5
equated integer, 2-8
integer, 2-5

Constants
logical, 2-11

long, 2-10
real, 2-8, 2-9
string, 2-11

Control, program, 5-1 - 5-20
CONTROL-Y, 9-1

INDEX I

$CONTROL command, 9-6 -9-12
$CONTROL SEGMENT, 1-7, 1-8, 9-10
$CONTROL SUBPROGRAM, 1-5, 1-6, 9-11
$COPYRIGHT command, 9-20
Cross reference, 9-20

D

DABZ, 4-19, 4-20, 5-5
Data item, 4-2
DATASEG Declaration, 3-19
Data segment, 1-9 -1-11
DB register, 1-9, 1-10, 1-11, 6-15, 6-16
Declarations, global

array, 3-1, 3-4 -- 3-11, 3-13
define, 3-1, 3-17
entry, 3-1, 3-16
equate, 3-1, 3-18, 3-19
label, 3-1, 3-15
pointer, 3-1, 3-11, 3-13 - 3-15
simple variable, 3-1, 3-2, 3-3, 3-4
switch, 3-1, 3-15, 3-t6

Declarations, local
arrays, 7-11 - 7-16
pointers, 7-17 - 7-20
simple variable, 7-7 - 7-10

Define declaration, 3-17, 3-18, 7-3, 7-22
DEFINE, 9-9
DELETE statement, 6-14
Delimiters, 1-2
Deposit, bit, 4-22
Digit, 2-5, 2-6
Direct array, 3-4 - 3-8, 3-10, 3-11, 3-12, 7-12, 7-13
Division, 4-12, 4-16
DL register, 1-9, 1-10, 6-15, 6-16
DO statement, 5-1, 5-4, 5-7
Double integer constant, 2-5
Double integer format, 2-1, 2-2
DXBZ, 4-19, 4-20, 5-5

E

$EDIT command, 9-6 - 9-19
ELSE part, 4-20, 4-21, 5-6, 5-7
Ending value, 5-6, 5-7

Index-1

INDEX (continued)

END statement, 1-1
Entry point, 1-13, 1-14, 3-16, 3-17, 5-11, 7-22
Equated integer constant, 2-8, 3-18, 7-23, 7-24
Error messages, C-3, E-1 - E-11
Exponentiation, 4-11, 4-12
Expression

arithmetic, 4-5, 4-11 - 4-13
IF, 4-20, 4-21
logical, 4-5, 4-13 - 4-18
types, 4-1, 4-11

EXTERNAL attribute, 3-2, 3-6, 3-11, 3-13, 7-10, 7-11,
7-16, 7-20

EXTERNAL, OPTION, 7-6
Extraction, bit, 4-6, 4-7

F

FALSE, 2-11, 4-16
File equations, 8-11
FOPEN intrinsic, 8-2 - 8-4
FOR statement, 5-1, 5-6, 5-7
Formal designator, 10-4, 10-5
Format, data, 2-1 - 2-4
Format, source, 1-1
FORWARD, OPTION, 7-7
FREAD intrinsic, 8-4 - 8-6
Function designator, 4-4, 4-11
FUPDATE intrinsic, 8-9 - 8-10
FWRITE intrinsic 8-7 - 8-8

G

Index register, 1-9, 3-3, 3-4, 3-5, 3-7, 3-8, 3-14, 4-2, 4-4,
4-8, 4-20, 5-2, 5-10, 6-15, 6-16

Indirect array, 3-4 - 3-8, 3-10, 3-11, 3-12, 7-12, 7-13
Initialization

array, 3-8, 3-9, 7-14, 7-15, 7-16
pointer, 3-13, 3-15, 7-18, 7-19
simple variables, 3-3, 7-8, 7-9, 7-10

Instruction formats, 6-1 - 6-13
Integer constant, 2-5
Integer format, 2-1
INTERNAL, OPTION, 7-7
INTERRUPT, OPTION, 7-7
Intrinsic, 1-5, 1-6, 1-12, 7-25, 7-26, C-1 -C-3, D-1 - D-4
IXBZ, 4-19, 4-20, 5-5

L

Labels, statement, 1-1, 2-15, 5-2, 5-3, 5-13 - 5-16, 7-20,
7-21

LAND, 4-13, 4-14, 4-16, 5-9
Local variables, 1-3, 1-11
Logical constant, 2-11
Logical expression, 4-5, 4-13 - 4-18
Logical format, 2-4
Logical operators, 4-14, 4-15
Long constant, 2-5, 2-10
Long format, 2-3, 2-4
Loop statement, 5-4 -5-7
LOR, 4-13, 4-14, 4-16, 5-9

M

GLOBAL attribute, 3-2, 3-6, 3-11, 3-13, 7-10, 7-11, 7-16. Main body, 1-5
MODD, 4-16
MOD, 4-12, 4-16
Modulo, 4-12, 4-16

7-20
Global data declarations, 1-5, 1-6, 3-1 - 3-19
Global variables, 1-3, 1-11, 3-1 - 3-19
GO TO statement, 5-1, 5-2, 5-3

H

Hexadecimal constants, 2-6

I

IABZ, 4-19, 4-20, 5-5
$IF command, 9-12
IF expressions, 4-20, 4-21
IF statement, 5-1, 5-8, 5-9
Identifier, 2-12
$INCLUDE command, 9-21
Index

ABSOLUTE, 4-2
array, 3-5, 3-8, 3-9, 3-10, 4-2, 4-5
pointer, 3-13, 3-15, 4-2, 4-5
switch, 2-15, 5-2

MOVE statement, 4-25-4-27
MOVEX statement, 4-28
MPE commands, 10-1-10-19
Multiplication, 4-12, 4-16

N

Names, 2-12
NOCARRY, 4-19, 4-20, 4-29
NOVERFLOW, 4-19, 4-20
NUMERIC, 4-17
Numeric data I/0, 8-11

0

Octal constants, 2-6
Operators

arithmetic, 4-11, 4-12, 4-13
logical, 4-14, 4-15

Index-2

Operators
relational, 4-15, 4-17

OPTION CHECK, 7 -6
EXTERNAL, 7-6
FORWARD, 7-7
INTERNAL, 7-7
INTERRUPT, 7 -7
PRIVILEGED, 7-6
SPLIT, 7-7
UNCALLABLE, 7-6
VARIABLE, 4-5, 5-13, 5-14, 5-17, 5-19, 7-2, 7-4, 7-6

Options, procedure, 7-2, 7-3, 7-6, 7-7
OR, 4-13, 4-19, 5-9
OVERFLOW, 4-19, 4-20
Own variables, 7-7, 7-10, 7-15, 7-19

p

$PAGE command, 9-15
Parameters, 4-4 - 4-16, 5-11- 5-20 7-2 7-4 7-5
Precedence, operation, 4-12, 4-13 ' ' '
PB addressing, 4-17
PB register, 1-7
PL register, 1-7
Pointer, 2-13, 2-14, 3-11, 3-13-3-16, 4-2,4-3, 7-17 -7-19
Power, 2-9, 2-10
P register, 1-7
:PREP command, 10-11
: PREPRUN command, 10-12
Primary DB, 3-4 - 3-6
PRIVILEGED, OPTION, 7-6
Procedure, 1-3, 1-5, 1-6, 1-11, 5-11 - 5-17, 7-2 - 7-25
Procedure call statement, 5-1, 5-11 - 5-17
Procedure name, 5-11
Program, 1-4
Program file, 10-1, 10-4, 10-6, 10-9, 10-11, 10-14
PUSH statement, 6-15

Q

Q register, 1-9, 1-10, 5-12 - 5-17 5-19 6-15 6-16 7-4
7-6-7-9,7-11-7-15,7-18,7-19 ' ' ' '

R

Range test, 4-14, 4-16
READ intrinsic, 8-2
Real constant, 2-5, 2-8, 2-9
Real format, 2-2, 2-3
Reference, call by, 5-12, 5-13
Reference-identifier, 3-3, 3-7, 3-8 3-13 3-14 7-8 7-9

7-13, 7-14, 7-18, 7-19 ' ' ' ' '
Registers, 1-7, 1-9, 1-10, 1-11, 6-15, 6-16
Relational operators, 4-15, 4-17
Relocatable libraries, 10-14 - 10-17
Reserved words, B-1

Index-3

INDEX (continued)

RETURN statement, 5-1, 5-20
:RUN command, 1-14, 10-14

s
SBANK register, 6-15, 6-16
SCAN statement, 4-30
Secondary DB, 3-4 - 3-6
Segment, 1-6 -1-11
Segmented libraries, 10-17 -10-19
Segmenter, 10-14 - 10-19
Sequence numbers, 9-17
$SET command, 9-13
SET statement, 6-16
Shift, bit, 4-8 - 4-10
Simple variable, 3-2, 3-3, 3-4, 7-7 - 7-10
:SPL command, 10-6, 10-7
:SPLGO command, 10-10
: SPLPREP command, 10-9 - 10-10
S register, 1-9, 1-10, 1-11, 6-15, 6-16
SPECIAL, 4-17
Specification, parameter, 7-2, 7-27, 7-28
SPLIT, OPTION, 7-7
SPLIT ST ACK, 8-2
$SPLIT command, 9-20
Stack decrement, 4-17, 4-18, 4-26, 4-27
Stacking parameters, 4-4 - 4-6, 5-12, 5-13
Stack marker, 5-12 - 5-16
Starting value, 5-6, 5-7
Statement, 1-1, 1-5, 1-13
Status register, 4-20, 4-29, 5-12, 6-15, 6-16
Step value, 5-6, 5-7
String constant, 2-11
Subprogram, 1-4, 1-5, 1-6, 7-1
Subroutine, 1-4, 1-5, 1-6, 1-11, 7-26 - 7-28
Subroutine call statement, 5-1, 5-18
Subscripts, array, 2-12, 4-2, 4-23, 4-24
Subtraction, 4-12, 4-16
Switch, 2-16, 5-2, 5-3, 7-21
Symbol map, 9-7

T

Terminal character, 4-28, 4-29
Test character, 4-28, 4-29
Test vairable, 5-6, 5-7
Testword, 4-28, 4-29
THEN part, 4-20, 4-21, 5-6, 5-7
$TITLE command, 9-14
Top of stack (TOS), 1-10, 1-11, 4-2, 4-3
TRUE, 2-11, 4-16
Two's complement, 2-1
Type, data, 2-1, 3-2, 3-15, 7-4
Type designator, 2-6, 2-7, 2-9, 2-10
Type mixing, 4-13, 4-16
Type transfer functions, 4-1

INDEX (continued)

u
UN CALLABLE, OPTION, 7 -6
USL file, 3-2, 10-2, 10-4, 10-6, 10-7, 10-10, 10-11, 10-12

10-14, 10-15

v
Value, call by, 5-12, 5-13, 7-2
VARIABLE, OPTION, 7-6
Variable simple, 3-2, 3-3, 3-4, 4-2, 7-7 - 7-10

Index-4

w
WHILE statement, 5-1, 5-5, 5-7
WITH statement, 6-17

x
XOR, 4-14, 4-16

z
Z register, 1-9, 1-10, 6-15, 6-16

c

I
i

I

'

READER COMMENT SHEET

HP 3000 Computer System

System Programming Language
Reference Manual

30000-90024 Feb 1984

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.

Please use additional pages if necessary.

Is this manual technically accurate? Yes D No D (If no, explain under Comments, below.)

Are the concepts and wording easy to understand? Yes r1 No r1 (If no, explain under Comments, below.) LI LI

Is the format of this manual convenient in size, Yes D No D (If no, explain or suggest improvements
arrangement, and readability? under Comments, below.)

Comments:

FROM:

Name

Company

Address

FOLD FOLD --·

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1070 CUPERTINO,CALIFORNIA

POSTAGE WILL BE PAID BY ADDRESSEE

Publications Manager
Hewlett-Packard Company
Computer Language Lab
19420 Homestead Road
Cupertino, California 95014

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

--FOLD FOLD

Part No. 30000-90024
E0284
Printed in U.S.A. 2/84

r//"09 HEWLETT
~~PACKARD

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	A-01
	B-01
	C-01
	C-02
	C-03
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	F-01
	F-02
	F-03
	F-04
	F-05
	Index-01
	Index-02
	Index-03
	Index-04
	replyA
	replyB
	xBack

