HP 3000 Computer Systems [/7) HEWLETT

PACKARD

MPE V Intrinsics
Reference Manual

HP 3000 Computer Systems

MPE V INTRINSICS

Reference Manual

U2 packaro

19447 PRUNERIDGE AVENUE, CUPERTINO, CA 95014

Part No. 32033-90007 Printed in U.S.A. 02/86
E0286

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO
THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for inciden-
tal or consequential damages in connection with the furnishing, performance or use of this
material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All
rights are reserved. No part of this document may be photocopied, reproduced or trans-
lated to another language without the prior written consent of Hewlett-Packard
Company.

Copyright (c) 1985,1986 by HEWLETT-PACKARD Company

ii

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date of the current edition, and lists the dates of all
changed pages. Unchanged pages are listed as "ORIGINAL". Within the manual, any
page changed since the last edition is indicated by printing the date the changes were made
on the bottom of the page. Changes are marked with a vertical bar in the margin. If an
update is incorporated when an edition is reprinted, these bars and dates remain. No in-
formation is incorporated into a reprinting unless it appears as a prior update.

First Edition JAN 1985
Second Edition. FEB 1986
Effective Pages Date

ALLo o oo FEB 1986

1ii

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which are issued be-
tween editions, contain additional and replacement pages to be merged into the manual by
the customer. The date on the title page and back cover of the manual changes only when
a new edition is published. When an edition is reprinted, all the prior updates to the edi-
tion are incorporated. No information is incorporated into a reprinting unless it appears as
a prior update.

The software date code number printed alongside the date indicates the version level of the
software product at the time the manual edition or update was issued. Many product up-
dates and fixes do not require manual changes, and conversely, manual corrections may be
done without accompanying product changes. Therefore, do not expect a one-to-one
correspondence between product updates and manual updates.

First Edition « «+JAN1985E/F.00.00 G.00.00, G.O1.00
Second EditionFEB1986G.0200

v

MPE V MANUAL PLAN

INTRODUCTORY LEVEL:

INS&’R'MAE' bnu'on GUIDE E GUIDE ‘ﬁe
Manual SER N TOR
sonaaass "‘ 33-80009 ‘“ 3-90021

STANDARD USER LEVEL:

MPE V COMMANDS MPE V INTRINSICS MPE vV UTIUTIES
Reference Reference Reference
Manugl : Mgnual Manual
32033-90006 32033-90007 32033-90008

SEGMENTER DEBUG/STACK DUMP FILE SYSTEM
Reference Reference Reference
Manual Manual Manual
30000-9001 1 30000-90012 30000-90236

ADMINISTRATIVE LEVEL:

MPE V SYSTEM OPERATION
& RESOURCE MANAGEMENT
Reference Manual
32033~-90005

SUMMARY LEVEL:
9

MPE
R GUIDE
‘“%-90049

There are many more manuals applicable to the HP 3000. A complete list may be found in
every issue of the MPE V Communicator. Please contact your System Manager.

CONVENTIONS USED IN THIS MANUAL

NOTATION DESCRIPTION

COMMAND Commands are shown in CAPITAL LETTERS. The names must con-
tain no blanks and be delimited by a non-alphabetic character
(usually a blank).

KEYWORDS Literal keywords, which are entered optionally but exactly as
specified, appear in CAPITAL LETTERS .

parameter Required parameters, for which you must substitute a value, ap-
: pear in bold italics.

parameter Optional parameters, for which you may substitute a value, appear
in standard italics.

[] An element inside brackets is optional. Several elements stacked in-
side a pair of brackets means the user may select any one or none of
these elements.
Example: lé g ::" user may select A or B or neither.

When brackets are nested, parameters in inner brackets can only be

specified if parameters in outer brackets or comma place-holders

are specified.

Example: [parmll,parm2l,parm311]1 may be entered as:

parml,parm2 ,parm3 or
parml, ,parm3 or

ssparm3 , etc.

{1} When several elements are stacked within braces the user must
select one of these elements.
Ezample: { A} user must select A or B.
{B}
An ellipsis indicates that a previous bracketed element may be
repeated, or that elements have been omitted.

user input In examples of interactive dialog, user input is underlined.
Example: NEW NAME? ALPHA1

superscriptc Control characters are indicated by a superscriptc. Example: '
(Press Y and the CNTL key simultaneously.)

C.) (C___indicates a terminal key. The legend appears inside.
<KCOMMENT>> Programmer’s comments in listings appear within << >> .
XX Comment XX Editor’s comments appear in this form.

vi

CONTENTS

Section . Page
PREFACE e XV
Section I
INTRODUCTION TO MPE INTRINSICS
INTRINSIC CALLS s e s e e s 1-1
Calling Intrinsics From SPL. 1-1
Procedure Declarations 1-2
Intrinsic Declarations 1-2
Implementing Intrinsic Calls., 1-2
Calling Intrinsics From Languages Other ThanSPL 1-4
INTRINSIC CALL ERRORS 1-5
MPE INTRINSICS AND THEIR FUNCTIONS 1-7
OPTIONAL CAPABILITIES e e . 1-7

Section I1
INTRINSIC DESCRIPTIONS

INTRINSIC NAME 2-1
SYNTAX. . . . e 2-1
FUNCTIONAL RETURN 2-2
PARAMETERS 2-3
CONDITION CODES e e e s s s 2-3
SPECIAL CONSIDERATIONS. e . 2-3
Required Capability 2-3
Split-Stack Operations e 2-4
ADDITIONAL DISCUSSION et d . 2-4
ABORTSESS s 2-5
ACTIVATE o 2-7
ADJUSTUSLF s 2-9
ALTDSEG 2-11
ARITRAP. . . . e 2-13
ASCII . . . o e 2-14
BEGINLOG e 2-16
BINARY . . . s 2-18
CALENDAR 2-19
CAUSEBREAK 2-20
CLEANUSL. e 2-21
CLOCK o . 2-23
CLOSELOG 2-24
COMMAND, 2-26
CREATE 2-27
CREATEPROCESS e e s 2-32
CTRANSLATE e 2-36
DASCIL o 2-38
DATELINE 2-40
DBINARY e e e e e 2-41
DEBUG o 2-42
DILSIZE, 2-43
DMOVIN . . 2-45

Vil

CONTENTS (Continued)

INTRINSIC DESCRIPTIONS (Continued) Page
DMOVOUT e e e e e, 2-47
ENDLOG e e e 2-49
EXPANDUSLF o e e 2-51
FATHER e e 2-53
FCARD e e 2-54
FCHECK e e e 2-58
FCLOSE. e 2-65
FCONTROL e e e e s e 2-68
FDELETE e 2-74
FDEVICECONTROL o e e e 2-75
FERRMSG e e e e e e 2-84
FFILEINFO. s e 2-85
FGETINFO e ... 2-88
FINDICW. e e e 2-96
FINTEXIT e s e e e 2-98
FINTSTATE s e e e e 2-99
FLABELINFO e e, 2-101
FLOCK e e e 2-103
FLUSHLOG. e e e e e e 2-106
FMTCALENDAR. e e e e 2-108
FMTCLOCK e e e e e 2-109
FMTDATE e e e 2-110
FOPEN e e 2-111
FPARSE. e e 2-130
FPOINT e e e 2-133
FREAD e e 2-135
FREADBACKWARD oo 2-137
FREADDIR e e 2-139
FREADLABEL e 2-141
FREADSEEK e 2-143
FREEDSEG. e 2-144
FREELOCRIN e 2-145
FRELATE e e 2-146
FRENAME e 2-148
FSETMODE. e 2-150
FSPACE. e e 2-153
FUNLOCK e e e e e e 2-155
FUPDATE e 2-156
FWRITE e e e e 2-158
FWRITEDIR e 2-164
FWRITELABEL e 2-166
GENMESSAGE e 2-167
GETDSEG e 2-171
GETINFO. e 2-173
GETICW e e 2-17S§
GETLOCRIN e 2-176
GETORIGIN e 2-177
GETPRIORITY 2-178
GETPRIVMODE 2-180
GETPROCID e e e e 2-181
GETPROCINFO 2-182

CONTENTS (Continued)

INTRINSIC DESCRIPIIONS (Continued) Page
GETUSERMODE oo ie e 2-184
INITUSLFE. . . . o o o o e e e e e e e e e e s 2-185
IODONTWAITo it e e 2-186
IOWAIT. . . . o o e e e e e e e s e 2-188
JOBINFO . . . o o oo e e e e e e e s e e 2-190
KILL . . o o o e e e e e e e e 2-194
LOADPROC . . . o o v e e e e 2-195
LOCKGLORIN o ot e e s e s s 2-196
LOCKLOCRIN o o i e s e s s s s s 2-198
LOCRINOWNER o oot e e e s e e 2-200
LOGINFO. o e e e e s e 2-201
LOGSTATUS . . .« o o e e e e e e e e e e s e e e 2-204
MAIL o e e e e 2-206
MYCOMMAND o o e e e e 2-208
OPENLOG o o et e e e e e e e e e 2-211
PAUSE . . . o o o e e e e e e e 2-213
PRINT . . o o o e e e e e e e e e e s e 2-214
PRINTFILEINFO o o o s e e s e e e e e 2-216
PRINTOP . . . o o o o e e e e e e e e e e e s s s e s 2-217
PRINTOPREPLY et e e e s e e e e 2-218
PROCINFO o o e e e e e e e s e s s e s s 2-220
PROCTIME . . . o . o o et e e e e e e e s e s 2-223
PTAPE o ot e e e e e 2-224
PUTICW . . o o e e e e e e s e s s s e 2-226
QUIT . . . e e e e e e 2-228
QUITPROG o o e i e e e e e e e e e e e e e e e e e 2-229
READ. . . . o o e e e 2-230
READX . . o o o o e e e e e 2-232
RECEIVEMAIL. o o e e e e s e 2-234
RESETCONTROL o o vt it i s e s e e e e e 2-236
RESETDUMP. . . .« o ot e e e e e e e s e s e s s e 2-237
SEARCH . . . o o o e e e e e e 2-238
SENDMAIL o o e e e e e e 2-239
SETDUMP o o o e e e e e e e e 2-241
SETICW . o o o e e e e e e e e e e e 2-242
STACKDUMP o e e s e e s e e 2-243
STARTSESS. . .« o o o o e e e e e e 2-245
SUSPEND. . . . o o o e e e e e e 2-248
SWITCHDB o ot e e e e e e e s e e s e 2-250
TERMINATE . . o o o o e e e e e e s e s e 2-251
TIMER . . . o o o o e 2-252
UNLOADPROC. o oo e i it i e e e e e e e e 2-253
UNLOCKGLORIN ot e i s e e e s e 2-254
UNLOCKLOCRIN o o e e s s s s e 2-255§
WHO . . . 2-256
WRITELOG. . . . o o oo e e e e 2-260
XARITRAP 2-262
XCONTRAP . . . o o o s s s 2-264
XLIBTRAP e 2-266
XSYSTRAP o e e 2-267
ZSIZE . . o o 2-268

X

CONTENTS (Continued)

Section III Page
OPTIONAL CAPABILITIES
PRIVILEGED MODE CAPABILITY 3-1
Permanently Privileged Programs., 3-1
Temporarily Privileged Programs. 3-2
Entering Privileged Mode. 3-3
Entering Non-Privileged Mode 3-5
Movingthe DB Pointer e 3-S5
Scheduling Processes e 3-5
DATA SEGMENT MANAGEMENT CAPABILITY. 3-9
Creating an Extra Data Segment 3-10
Deleting an Extra Data Segment 3-21
Transferring Data From an Extra Data Segment tothe Stack 3-21
Transferring Data from the Stack to an Extra Data Segment 3-21
Changing the Size of an Extra Data Segment. 3-22
PROCESS HANDLING CAPABILITY. i i i e 3-22
Processes e e e 3-23
Organization of User Processes. v ... 3-23
Active and Suspended Process Substates 3-24
Creating and Activating Processes i e 3-24
Suspending Processes o o v h e e e e e e e e, 3-29
Deleting Processes. v v v v v e e e e e e e e e e 3-29
Interprocess Communication e e e e 3-31
Testing Mailbox Status., 3-32
Sending Mail 3-32
Receiving (Collecting) Mail 3-33
Avoiding Deadlocks. 3-34
Rescheduling Processes e 3-34
Determining Source of Activation 3-35
Determining Father Process. 3-335
Determining Son Processes e 3-36
Determining Process Priority and State. 3-36
RESOURCE MANAGEMENT. 3-37
Inter-Job Level (Global) RINs 3-38
Acquiring Global RINs, 3-38
Releasing Global RINs 3-39
Locking and Unlocking Global RINs 3-39
Interprocess (Local) Level RINs 3-43
AcquiringLocal RINs s 3-43
Locking and Unlocking Local RINs 3-43
Identifying Local RIN Owners. 3-44
FreeingLocal RINs 3-45
USER LOGGING e, 3-45
How User Logging Works. e 3-46
User Logging Procedures 3-50
Suggested Log File Uses. 3-51

CONTENTS (Continued)

Section IV Page
ACCESSING AND ALTERING FILES
FILE DEVICE RELATIONSHIPS et e it e e s 4-2
Non-Sharable Device ACCESS v v v i v i e e e e e e e e 4-2
File DOMAINS . . . « v v v v e e e e e e e e e e e e e e e 4-2
Openinga File 4-3
Files on Non-Sharable Devices v v v v v v v i v v v 4-4
HOW TO USEFILES o e e e e e e e e s e e e e s e 4-5
Internal Operations for File Accessing o . o oL 4-35
Parsing and Validating File Designators 4-15
Openinga NewDisc Fileo 4-17
OpeninganOldDisc File 4-20
Opening a File on a Device Other Than Disc. e e e e e e e e e 4-22
Using FREAD and FWRITE with $STDIN and $STDLIST. 4-23
Opening $STDIN. e e 4-25
Opening $STDLIST o o i et e 4-25
CLOSING FILES. o ot e e e e e e s s e e e e e e e 4-28
Closing a New File asa Temporary File 4-28
Closing a New File asa Permanent File 4-31
WRITING A FILE SYSTEM ERROR-CHECK PROCEDURE 4-33
USING FERRMSG o o o e e e e e e e s e e e e s e e e e 4-33
USING THE IOWAIT INTRINSIC o o e e e e e e e e e e 4-35
DECLARING ACCESS-MODE OPTIONS 4-38
Section V
OTHER APPLICATIONS OF MPE INTRINSICS
DYNAMIC LOADING AND UNLOADING OF LIBRARY PROCEDURES 5-2
Dynamic Loading e e e e 5-3
Pynamic Unloading. o e e 5-3
SEARCHING ARRAYS et e e et e e e e e e e e 5-4
FORMATTING COMMAND PARAMETERS. 5-5
EXECUTING MPE COMMANDS PROGRAMMATICALLY 5-11
DETERMINING THE USER’S ACCESS MODE AND ATTRIBUTES. 5-12
IDENTIFYING A JOB OR SESSION WITH JOBINFO 5-14
CONVERTING NUMBERS FROM BINARY CODE TO ASCII STRINGS 5-16
CONVERTING NUMBERS FROM AN ASCII NUMERIC STRING TO
ABINARY CODED VALUE i ittt e i et 5-20
TRANSLATING CHARACTERS WITH THE CTRANSLATE INTRINSIC. 5-22
TRANSMITTING PROGRAM 1/0 FROM JOB/SESSION I/O DEVICES. 5-23
Reading Input from the Job/Session Input Device 5-23
Writing Output to the Job/Session List Device 5-25§
Writing Output to the System Console 5-26
Writing Output to the System Console and Requestinga Reply 5-26
SUSPENDING THE CALLING PROCESS o v v v 5-26
REQUESTING A PROCESSBREAK 5-27
TERMINATING APROCESS o it 5-21
ABORTING APROCESS e e e e e 5-28
ABORTING A PROGRAMo oo o o e e e 5-28
CHANGING STACK SIZES v o oo e e e s e e 5-30

X1

CONTENTS (Continued)

OTHER APPLICATIONS OF MPE INTRINSICS (Continued) Page
Changing the DLto DB Area Size 5-31
Changing the Zto DB Area Size 5-37

ENABLING AND DISABLING TRAPS 5-37
Arithmetic Traps 5-38

Standard Traps. 5-39
Extended Precision Floating Point Traps. 5-39
Commercial Instruction Traps, .. 5-40
Library Trap 5-42
System Trap. L, 5-44
CONTROL-Y Traps o o oo s s e s, 5-46

TIME AND DATE INTRINSICS $-49
Obtaining System Timer Information. 5-50
Obtaining the Current Time 5-50
Obtaining the Calendar Date 5-52
Obtaining Process Run Time 5-52
Formatting Calendar Date and Time Information 5-52

JOBCONTROL WORDS 5-53

INTERPROCESS COMMUNICATION 5-54

USER-DEFINED JOB CONTROL WORDS v o . 5-55

MPE MESSAGE FACILITY e s s, 5-56
Message Catalog., 5-56
MAKECAT Program, 5-57
Using GENMESSAGE to Insert Parameters in Messages 5-59

APPLICATION MESSAGE FACILITY i, 5-59

Appendix A

MPE DIAGNOSTIC MESSAGES

RUN-TIME MESSAGES s s, A-1

USER MESSAGES A-10

OPERATOR MESSAGES s A-10

SYSTEM MESSAGES, A-10

FILE INFORMATION DISPLAY A-12

Appendix B

DEVICE CHARACTERISTICS
Card Reader, B-1
Line Printer. B-1
Magnetic Tape L B-2
Line Printer and Tesminal Carriage-Control Codes B-2
End-of-File Indication B-2
Terminals B-3
Using the FCARD Intrinsic With the HP 7260A Optical Mark Reader B-3
ASCII and Column Image Reading Formats B-4

Xi1

ILLUSTRATIONS

Title Page
Calling the PRINTOP Intrinsic From SPL 1-4
Using Numeric Values as Parametersin an Intrinsic Call 1-4
Condition Code Checks 1-7
Foptions Bit Summary e e 2~-95
Aoptions Bit Summary L L L e e, 2-95
Carriage Control SUmMmAry e 2-163
Error Codes Returned for PROCINFO 2-221
Information Options for PROCINFO i i . 2-222
Using the GETPRIVMODE and GETUSERMODE Intrinsics (Program DSINIT) 3-4
Master Queue Structure L 3-7
Using the GETDSEG and DMOVOUT Intrinsics (Program DSINIT) 3-12
Creating and Activating Two Son Processes (Program DSBOSS). 3-13
Using the GETDSEG and DMOVIN Intrinsics (Program DSACCS) 3-14
Using the CREATE and ACTIVATE Intrinsics (Program PROG) 3-26
Process Deletion L e 3-30
Using the LOCKGLORIN and UNLOCKGLORIN Intrinsics o o v ... 3-40
BOOKFILE e e e, 3-41
User Logging Facility 3-47
File Access Interface for New Disc Files 4-7
Directory File Name and Label Address Pointer 4-8
File Access Interface for Old Disc Files o v i i i, 4-9
Device Allocation Flowchart o i it i 4-13
Openinga New Disc File e 4-19
Openingan Old Disc File 4-21
Opening a File on a Device Other Than Disc 4-24
Opening $STDIN and $STDLIST e s, 4-27
Closing a New File asa Temporary File 4-30
Closing a New File asa Permanent File 4-32
Error-Check Procedure Example, 4-34
Using the IOWAIT Intrinsic o it e 4-37
Using the MYCOMMAND Intrinsic (Program UTILY) 5-6
Using the WHO Intrinsic o o 0 vttt i e st e 5-13
Using the ASCITIntrinsic 0 o e e s e, 5-17
Using the DASCITIntrinsic 0 v v i et e e s s s, 5-19
Using the BINARY Intrinsic o, 5-21
Using the PRINT and READ Intrinsics 0 v v v e e e s, 5-24
Using the QUIT Intrinsic 5-29
Expanding and Contracting the DLto DB Area v v v v .. 5-32
Using the DLSIZE Intrinsic (Program DLAREA) 5-33
Changing the DL to DB Area Size (Program DLAREA) 5-36
Using the XARITRAP Intrinsic (Program ATRAP) 5-41
Using the XCONTRAP Intrinsic (Program CONTY) 5-49
Using the TIMER INtrinsic o v vt it e e s s, 5-351
FMTCALENDAR, FMTCLOCK, and FMTDATE Intrinsics Example 5-53
GENMESSAGE Intrinsic Example, 5-61
FCARD Intrinsic Example P B-5

X111

TABLES

Title Page
Compatible Data Types o i e e e e e 1-5
Summary of MPE Intrinsics L 1-9
Item Values Returned by CREATEPROCESS 2-34
File System Error Codes o i i e e e e 2-59
Item Values Returned by FFILEINFO« o v i e e e 2-86
Item Values Returned by FLABELINFO 2-103
Carriage-Control Directives v it b e e e e e e 2-161
Item Values Returned by JOBINFO o 2-193
Item Values Returned by LOGINFO v i i, 2-203
Device-Dependent Restrictions Lo e e e e 4-11
Classification of DEVICES v v v v v v e e e e e e e e e e e e e e e e e e e 4-12
"PROGRAM TYPE" Error MESSAZES« o v v v v v vt it i v e e e e e e e e e A-5
"INTRINSIC" Error Message Numbers o v v v v v v vt i v e e it e e e A-35
"RUN-TIME" Error MESSAZES« ¢« v v v v v e e e e e e e e e e e e e e e A-7
"CREATE" Error MESSAZES v v v v v v e e e et e e e e e e e e e e e e e A-T7
YACTIVATE" Error MESSAZES v v v v e e it e et i e e e e e e e e e e e e e A-7
"SUSPEND" Error MESSAZES . . .« o o v v v e v e e e e e et e et e e e e e e e e e A-7
"MYCOMMAND" Error MESSAZES . . .« v v v v v v e v o et e et e e e e e e e e e A-8
"LOCKGLORIN" Error MeSSAZES« v v« v e v v et e e e e e e e e e e e e e e e e A-8
"LOADER" Error Messages and Warnings o v v v v vt v v b e e e e e A-8
System MESSAZES v o e A-10

X1v

PREFACE

This manual documents the system-supplied intrinsics available with MPE (Multi-
Programming Executive) on the HP 3000. It documents the intrinsics on the MPE V
operating system and includes all changes and enhancements through the G.02.00 release
of MPE. To assist you in locating information, a brief description of each section in this
manual follows:

Section I INTRODUCTION TO MPE INTRINSICS
An overview of MPE V intrinsics, how to invoke them, their functions,
and the optional capabilities required by system users to perform selec—
ted functions.

Section II INTRINSIC DESCRIPTIONS
A detailed description of all MPE intrinsics, including the syntax,
parameters, and condition codes for each. When applicable, functional
returns, special considerations, and references to additional sources of
information are included. The FLABELINFO, FPARSE, LOGINFQO, and
GETINFO intrinsics are new effective with the G.02.00 release of MPE.
They are documented in this section.

Section III OPTIONAL CAPABILITIES
MPE functions which must be performed by users with specifically as-
signed optional capabilities.

Section IV ACCESSING AND ALTERING FILES
Background information on the MPE file system, including descriptions
of some typical file-related operations performed with MPE intrinsics.

Section V OTHER APPLICATIONS OF MPE INTRINSICS
How to perform the various functions available to users with MPE in-
trinsics. Examples of program dialogs are included for reference.

Appendix A MPE DIAGNOSTIC MESSAGES
The different types of interactive messages you might encounter while
using MPE intrinsics.

Appendix B DEVICE CHARACTERISTICS
Details on how to alter the operation of specific peripheral devices using
MPE intrinsics. The characteristics of several types of devices including
terminals, printers, card readers, and magnetic tape are discussed.

This manual replaces the First Edition of the MPE V Intrinsics Manual (32033-90007).
Some additional sources of information you might find helpful include:

e MPE V System Operation and Resource Management Reference Manual
(32033-90005).

¢ MPE V Commands Manual (32033-90006).
e MPE V Utilities Reference Manual (32033-90008).

¢ MPE File System Reference Manual (30000-90236).

Xv

INTRODUCTION TO MPE INTRINSICS

Many programs use procedures or subroutines to handle recurring tasks. In the Multi~-Programming
Executive (MPE, the HP 3000 operating system), many of these tasks are performed through a set of
system-supplied procedures known as intrinsics. Since these intrinsics must always be available to
MPE, they are also always available to any process on the system (a process is the basic executable en-
tity in MPE). A process is not a program itself, but the unique execution of a program by a par-
ticular user at a particular time.

Most intrinsics are coded in SPL/3000 (Systems Programming Language for the HP 3000 Computer
System) and are defined by a procedure declaration consisting of :

e A procedure head, containing the procedure name and type, parameter definitions, and other in—
formation about the procedure.

e A procedure body, containing executable statements and declarations local to this procedure.

As part of their function, several intrinsics also return values to the processes that invoke them.
These intrinsics are called type procedures.

Intrinsics are no different from procedures you may write yourself, except that the code is invisible to
you, and they are declared (in SPL) with the INTRINSIC statement rather than the PROCEDURE
statement.

INTRINSIC CALLS

Intrinsic calls programmatically invoke MPE intrinsics (that is, from within a program). In SPL
programs (refer to "Calling Intrinsics From SPL" in this section), you can write the intrinsic calls ex~
plicitly or through procedure statements. Some languages, such as BASIC, COBOLII, FORTRAN,
and Pascal, allow the option of directly calling MPE intrinsics. Within these languages the compiler
will make calls to the intrinsics for you when you use input/output statements of the languages.
Other languages such as APL, COBOL, and RPG will not allow direct calls. Within these languages
intrinsic calls must be made through a subroutine written in a language that allows direct calls or
through language commands that do the calls for you.

All MPE intrinsics are treated as external procedures by user programs. External linkages from user
programs are satisfied when the user programs are segmented (via the :PREP command) and allocated
residence in memory (at :RUN time). Refer to the MPE Segmenter Reference Manual
(30000-90011) for a discussion of segments, segmentation, and allocation.

Calling Intrinsics From SPL

Before an intrinsic can be called from an SPL program, it must be declared at the beginning of the
program. The intrinsic can be declared in the same manner as any other SPL procedure or in an in-
trinsic declaration statement.

1-1

Introduction To MPE Intrinsics

PROCEDURE DECLARATIONS. To declare an intrinsic as an SPL procedure add the EXTERNAL
option to the procedure head and delete the procedure body. The EXTERNAL option means that the
procedure body (code) is linked to the main program by the operating system after compilation. An
example of calling the DBINARY intrinsic as a procedure follows:

XXHE ADXX

double XKTYPEXX

PROCEDURE DBINARY KKNAME %k
(dval,string,length); %XFORMAL PARAMETERSXX
value length; ¥KVALUE PARTXxX
double dval; XXSPECIFICATION PARTXX

byte array string;

integer length;

option external; XKOPTION PARTXX
XXBODY %X

INTRINSIC DECLARATIONS. Writing the complete head for some intrinsics can be very time-
consuming, so a shortcut is provided in SPL/3000. Since SPL/3000 provides no construct for input
and output, it provides a simple interface for intrinsics. This interface is the INTRINSIC declaration.
The INTRINSIC declaration can be used with any system-known intrinsics defined in this manual.
The format of the INTRINSIC declaration statement is:

INTRINSIC intrinsicname,intrinsicname, . . . ,intrinsicname;

In the intrinsicname list, you name all intrinsics to be called within your program. When more than
one intrinsic is named, the names must be separated by commas. For example, to use the INTRINSIC
declaration statement to declare the FOPEN, FREAD, F WRITE, and FCLOSE intrinsics, enter:

INTRINSIC FOPEN,FREAD,FWRITE,FCLOSE;

Regardless of whether an intrinsic is declared as a procedure or in an INTRINSIC declaration state-
ment, you must know the number and type of parameters the intrinsic uses in order to call it correct-
ly. Parameters can be passed to a procedure (intrinsic) either "by reference” or "by value". When a
parameter is passed by reference, its address in the caller’s data area is made available to the called
procedure. If the variable is changed by the called procedure, the storage in the caller’s data area is
updated. When a parameter is passed by value, the called procedure receives a local (private) copy of
the actual data value. If the called procedure changes this private copy, the corresponding variable in
the calling routine remains unchanged.

IMPLEMENTING INTRINSIC CALLS. You call an intrinsic in your program exactly as you would
call any SPL procedure, by entering the intrinsic name, followed by a parameter list enclosed in
parentheses. These parameters must follow the positional format shown in each intrinsic description
in Section II and must be separated by commas. For example, a call to the FREAD intrinsic could be
written as:

FREAD(FN,TAR, TC);
If the Option Variable notation (0-V) appears in the intrinsic syntax as shown in Section II, some of

the intrinsic parameters are optional. However, since all intrinsic parameters are positional, you
must indicate a missing parameter within a parameter list by omitting the parameter itself, but

1-2

Introduction To MPE Intrinsics

retaining the preceding and following commas. For example, if the second parameter of an FOPEN
call is omitted, you would write:

FOPENCFILENAME, ,3);

When the first parameter is omitted from a list, this is indicated by following the left parenthesis
with a comma. Omitting one or more parameters from the end of a list is indicated by simply writing
the terminating right parenthesis after the last parameter.

Input parameters, in some intrinsic calls, are passed to the intrinsic as words whose individual bits or
fields of bits signify certain functions or options. Bit (0:1) is the high order (that is, most sig-
nificant), left-most bit. Throughout this manual, bit groups are denoted using the standard SPL
notation. Thus, bits (13:3) indicates bits 13, 14, and 15. In cases where some of the bits within a
word are described in this manual as "reserved for MPE", you are advised to set such bits to zero.
This will help ensure the compatibility of your current program with future releases of MPE.

Output parameters, in some cases, are passed by an intrinsic to words referenced by a calling
program. Bits within these words described as "reserved for MPE" are set to zero by the system unless
otherwise noted in the discussion of the particular parameter.

To call an intrinsic from an SPL program, follow the steps listed below:

1. Refer to the intrinsic description in Section II to determine the parameter types and their posi-
tions in the parameter list.

2. Declare variables or arrays to be passed as parameters, by type, at the beginning of the
program.

3. Include the name of the intrinsic in an INTRINSIC declaration statement.
4. Issue the intrinsic call at the appropriate place in your program.
For example, the description of the PRINTOP intrinsic is shown in Section II as:

LA 1v Iv
PRINTOP(message,length ,control);

The bold italics used for message, length, and control signify that these are required para-
meters. (Optional parameters are signified by standard italics.)

The mnemonics LA, IV, and IV over message, length, and control denote logical array (para-
meters are logical unless otherwise specified), integer by value, and integer by value, respectively.
Refer to the beginning of Section II for a description of all mnemonics.

The array name to be used as the message parameter must be declared as an array at the beginning of
the program. Similarly, the variables for Zength and control must be declared as integers.

Figure 1-1 shows the intrinsic PRINTOP being called from an SPL program after being declared with
the INTRINSIC declaration statement. MESSAGE is an array, and the variables LENGTH and CONTROL
are integers. The percent sign (%) means the value (60) is to be treated as octal. The string is treated
as 2 decimal value if it begins with a plus sign, a minus sign, or a number.

Figure 1-2 shows the same intrinsic being called with numeric values instead of symbolic identifiers
being specified for the parameters length and control.

1-3

Introduction To MPE Intrinsics

$CONTROL USLINIT
<< USING THE INTRINSIC DECLARATION STATEMENT >>
BEGIN
ARRAY MESSAGE(0:9):="MESSAGE TO OPERATOR ";
INTEGER LENGTH,CONTROL;
INTRINSIC PRINTOP;
LENGTH:=10;
CONTROL : =%603
PRINTOP (MESSAGE , LENGTH, CONTROL) 3
END.

Figure 1-1. Calling the PRINTOP Intrinsic from SPL

$CONTROL USLINIT
<< USING NUMERIC VALUES AS PARAMETERS >>
BEGIN
ARRAY MESSAGE(0:9):='"MESSAGE TO OPERATOR '";
INTRINSIC PRINTOP;
PRINTOP(MESSAGE,10,%60);
END.

Figure 1-2. Using Numeric Values as Parameters in an Intrinsic Call

Calling Intrinsics From Languages Other Than SPL

Direct calls to intrinsics are allowed in some languages. These languages include BASIC, COBOLII,
FORTRAN, and Pascal. To implement a call in these languages follow the steps used for calling an
intrinsic from SPL. APL, COBOL, and RPG do not allow direct calls; to call an intrinsic from these
languages you must call the intrinsic through a subroutine written in a language that allows direct
calls. Additionally since most intrinsics are written in SPL, when a call is made from a program not
written in SPL, careful consideration must be taken to ensure proper mapping of data types. Table
1-1 provides a listing of compatible data types between the languages that allow direct intrinsic calls
and SPL. For more information on calling intrinsics from languages other than SPL refer to the ap-
propriate language reference manual.

1-4

Introduction To MPE Intrinsics

Table 1-1. Compatible Data Types

SPL BASIC COBOLII FORTRAN PASCAL
Integer | Integer Computational Integer/ Defined in the range
1-4 Digits Integerkx2 -32768..32767
Logical | No Equivalent Display Logical Boolean, or defined in
the range -32768..32767
Byte String (x$) Display Character/ |Char
Characterxn
Double No Equivalent Computational Integerx4 Integer
5-9 Digits
Real Real No Equivalent Real Real
Long Long No Equivalent Long Long real

INTRINSIC CALL ERRORS

Some intrinsics alter the "condition code" which is stored in two bits (6:2) in the Status Register.
These two bits have four states which are assigned as follows:

00 Is CCG, or Condition Code Greater Than (2).
01 Is CCL, or Condition Code Less Than ().

10 Is CCE, or Condition Code Equal (=).
11 Undefined.

Since bits (6:2) of the Status Register are affected by many instructions, check for condition codes
immediately upon return from an intrinsic, as in the " IF" statements in Figure 1-3. A condition
code is always CCG, CCL, or CCE, and has the general meaning indicated below. The specific mean-
ing depends upon the intrinsic called (refer to Section II for a description of these meanings). For a
more detailed discussion of condition codes, refer to the Machine Instruction Set Reference Manual
(30000-90022).

Condition Code State

CCE

CCG

SPL Branch Word

General Meaning

Condition Code Equal. This generally indicates that the
request was granted.

Condition Code Greater Than. A special condition oc-
curred, but may not have affected the execution of the
request. (For example, the request was executed, but
default values were assumed as intrinsic call
parameters.)

1-5

Introduction To MPE Intrinsics

Condition Code State SPL Branch Word General Meaning

CCL ¢ Condition Code Less Than. The request was not grant-
ed, but the error condition may be recoverable. Beyond
this condition code, some intrinsics provide additional
error information to the program through their return
values or reference parameters.

Two types of errors may occur when an intrinsic is executed. The first, denoted by the CCG or CCL
condition codes, is generally recoverable (control returns to the calling program), and is known as a
condition code error. The second type is an abort error, which occurs when a calling program passes
illegal parameters to an intrinsic, or does not have the capability demanded by the intrinsic. An
abort error terminates the calling process.

“Soft interrupts" are interrupts generated by software events, where the CPU is interrupted from
processing and the operating system switches execution to an interrupt procedure. This sequence of
events is known as a trap. A soft interrupt within MPE means that when 1I/O completes, the CPU
will be interrupted. Scheduling information for the process that initiated the 1I/O will be updated and
the next time the process runs it will trap to a predetermined interrupt procedure. Intrinsic (system)
traps are handled by a special procedure designed for that purpose. Normally, if an intrinsic causes
the trap to be invoked, the system trap handler aborts the user program. You may, however, write a
procedure into your program to be used instead of the default system trap handler in case of an abort
error. This method will permit you to recover from such errors in certain cases. For more informa-
tion on implementing traps, refer to Section V, "OTHER APPLICATIONS OF MPE INTRINSICS".

When a program is aborted in a batch job, MPE removes the job from the system unless a :CONTINUE
command, defined in the MPE V Commands Reference Manual (32033-90006), precedes the com-
mand which causes the error. If the program is aborted in an interactive session, MPE returns control
to the terminal. Abort error messages are described in Appendix A, "MPE DIAGNOSTIC
MESSAGES".

When an intrinsic is invoked by a process and the DB register is pointing to the DB area in the user’s
stack, a bounds check takes place. This is done to ensure that all parameters in the intrinsic call
reference addresses lie between the DL and S addresses in the stack (prior to the intrinsic call). If an
address outside of these boundaries is referenced, an abort error occurs, or, in the case of file systems
intrinsics, the condition code is set to CCL and the program continues.

When an intrinsic is invoked by a process running in Privileged Mode and the DB register points to a
data segment (i.e. the intrinsic is operating in split-stack mode), the results depend on the particular
intrinsic. Most intrinsics abort immediately in this case. Others are allowed to execute following a
bounds check that ensures that all parameters in the intrinsic call reference addresses that lie within
the data segment. Any boundary violation results in an abort error. Additional special actions taken
by a particular intrinsic are described in the "Special Considerations" discussion of that intrinsic in
Section II.

Figure 1-3 illustrates the use of condition code checks in a program. If the condition code is CCE,

the program displays "MESSAGE TRANSMITTED". For CCL, the message "1/0 ERROR OCCURRED" is
displayed, and the program terminates normally.

1-6

Introduction To MPE Intrinsics

$CONTROL USLINIT
<< CONDITION CODE CHECKS >>
BEGIN
ARRAY MESSAGE(0:9):='"MESSAGE TO OPERATOR '';
ARRAY OKBUF (0:9):="MESSAGE TRANSMITTED ';
ARRAY ERRBUF(0:9):="'1/0 ERROR OCCURRED '";
INTRINSIC PRINTOP,PRINT;
PRINTOP(MESSAGE,10,%60);
IF = THEN
PRINTC(OKBUF ,10,%60);
GOTO STOP;
IF < THEN
PRINT(ERRBUF,9,%60);
STOP:
END.

Figure 1-3. Condition Code Checks

MPE INTRINSICS AND THEIR FUNCTIONS

MPE intrinsics allow you to access and alter files, request various utility functions, and access and
manage system resources. When intrinsics are used with certain optional capabilities, it is possible to
manipulate processes, data segments, and system resources. To help you determine what tasks you
can accomplish with MPE intrinsics, refer to Table 1-2, which lists each intrinsic, its purpose, and
the capability needed to use it.

OPTIONAL CAPABILITIES

Users with standard MPE capabilities can perform most functions available through the operating sys-
tem. There are some functions, however, which can only be performed by users with certain optional
capabilities. These optional capabilities are assigned by the System Manager when creating the user’s
account. The System Manager can alter the capabilities for any account, group, or user on the system
with the :ALTACCT, :ALTGROUP, or :ALTUSER command.

Since many intrinsics require additional capabilities to work, the program which calls them must be
prepared with these capabilities specified. The creator of the program must have a capability to as-
sign it to a program. The user need not have a specific capability to run a program, but in order to
run the program, it must reside in a group with the specific capability.

The MPE optional capabilities, and what they allow you to do, are explained below.

1-7

Introduction To MPE Intrinsics

The Process Handling (PH) capability allows you to programmatically:
e Create and delete processes.

e Activate and suspend processes.

e Send "mail" between processes.

e Change the scheduling of processes.
e Obtain information about existing processes.

The Data Segment Management (DS) capability allows you to create and access extra data segments
from processes during a job or session.

The Multiple Resource Identification Number (MR) capability allows you to simultaneously lock as
many global Resource Identification Numbers (RINs) as desired.

The Privileged Mode (PM) capability allows you to access all areas of the system and use all features
of the hardware. With this capability you may access all system tables and invoke all system instruc-
tions, including those in the privileged central processor unit (CPU) instruction set. In short, this
capability allows you to use the computer on the same terms as the operating system itself.

CAUTION

The normal checks and limitations that apply to stan-
dard users in MPE are bypassed in Privileged Mode. It is
possible for a Privileged Mode program to destroy file in-
tegrity, including the MPE operating system software it-
self. Hewlett-Packard will investigate and attempt to
resolve problems resulting from the use of Privileged
Mode code. This service, which is not provided under
the standard service contract, is available on a time and
materials billing basis. Hewlett-Packard will not sup-
port, correct, or attend to any modification of the MPE
operating system software.

The User Logging (LG) capability provides a flexible transaction-logging capability which allows you
to journalize additions and modifications to your data bases and subsystem files. User Logging permits
you to journalize on either tape or disc. If the data base is lost, the logging tape or disc file can be
used to recover the lost transactions.

Programmatic Sessions (PS) capability allows programmatic creation of sessions on any terminal on the
system (available on G.01.00 release or later). '

1-8

Introduction To MPE Intrinsics

The Volume Set Usage (UV) or Create Volumes (CV) capabilities allows you to maintain files on
private disc volumes. If your file group has been structured to use the Private Volumes Subsystem,
MPE checks to determine if your home volume set is mounted when you create a new disc file with
the FOPEN intrinsic. Similarly, when you close and save a disc file with the FCLOSE intrinsic, it is
automatically stored on your home volume set if your account is structured with either of these
capabilities. (Refer to the MPE V System Operation and Resource Management Reference Manual
(32033-90005), for more information on Private Volumes.) Optional capabilities are discussed in
more detail in Section III.

Table 1-2. Summary of MPE Intrinsics

INTRINSIC NAME PURPOSE CAPABILITY REQUIRED
ABORTSESS Aborts the specified session from the system. Standard
ACTIVATE Activates a process. Process Handling (PH)
ADJUSTUSLF Adjusts directory space in a USL file. Standard
ALTDSEG Alters the size of an extra data segment. Data Segment
Management (DS)
ARITRAP Enables or disables internal interrupt signals from Standard
all hardware arithmetic traps.
ASCIl Converts a one -word binary number to a numeric Standard
ASCIl string.
BEGINLOG Marks the beginning of a user logging transaction. User Logging (LG) and
System Supervisor (OP)
BINARY Converts a number from an ASCI string to a binary Standard
word.
CALENDAR Returns the calendar date. Standard
CAUSEBREAK Places a session in BREAK mode. Standard
CLEANUSL Deletes inactive entries from a USL file. Standard
CLOCK Returns the actual time according to system timer. Standard
CLOSELOG Closes access to the user logging facility. User Logging (LG) and
System Supervisor (OP)
COMMAND Executes an MPE command programmatically. Standard
CREATE Creates a process. Process Handling (PH)
CREATEPROCESS Creates a process and can assign $STDIN and Process Handling (PH)
$STDLIST to any file.

1-9

Introduction To MPE Intrinsics

Table 1-2. Summary of MPE Intrinsics (Continued)

INTRINSIC NAME

PURPOSE

CAPABILITY REQUIRED

CTRANSLATE

DASCII

DATELINE

DBINARY

DEBUG

DLSIZE

DMOVIN

DMOVOUT

ENDLOG

EXPANDUSLF

FATHER

FCARD

FCHECK

FCLOSE

FCONTROL

FDELETE

FDEVICECONTROL

FERRMSG

FFILEINFO

FGETINFO

Converts a string of characters between EBCDIC
and ASCIl or between EBCDIK and JIS (KANA 8).

Converts a double -word (32 -bit) binary number to
an ASCIi string.

Returns the current date and time.

Converts a number from an ASCIl string to a
double -word binary value.

Invokes the DEBUG facility.
Expands or contracts the area between DL and DB.

Copies data from an extra data segment into the
stack.

Copies data from the stack to an extra data seg-
ment.

Marks the end of a user logging transaction.

Changes length of a USL file.

Requests the Process Identification Number (PIN) of
father process.

Drives the HP 726 0A Optical Mark Reader.
Requests details about file input/output errors.
Closes a file.

Performs control operations on a file or device.
Deactivates a Relative /0 (RIQ) record.

Provides control operations to a printer or a
spooled devicefile.

Returns message corresponding to FCHECK error
message.

Provides access to file information.

Requests access and status information about a
file.

Standard

Standard

Standard

Standard

Standard
Standard

Data Segment
Management (DS)

Data Segment
Management (DS)

User Logging (LG) and
System Supervisor (OP)

Standard

Process Handling (PH)

Standard
Standard
Standard
Standard
Standard

Standard

Standard

Standard

Standard

Introduction To MPE Intrinsics

Table 1-2. Summary of MPE Intrinsics (Continued)

INTRINSIC NAME

PURPOSE

CAPABILITY REQUIRED

FINDJCW

FINTEXIT

FINTSTATE

FLABELINFO

FLOCK

FLUSHLOG

FMTCALENDAR

FMTCLOCK

FMTDATE

FOPEN

FPARSE

FPOINT

FREAD

FREADBACKWARD

FREADDIR

FREADLABEL

FREADSEEK

FREEDSEG

FREELOCRIN

FRELATE

FRENAME

Searches Job Control Word Table for named JCW.
Causes return from user’s interrupt procedure.

Enables/disables the software interrupt facility for
a calling process.

Returns information from the file label of a disc file.

Dynamically locks a file.
(If locking more than one file.)

Flushes contents of user logging memory buffer to
logging file.

Formats specified calendar date.

Formats specified time of day.

Formats specified calendar date and time of day.
Opens a file.

Parses/validates file designators.

Sets the logical record pointer for a disc file.
Reads logical record from file to user’s stack.

Reads logical record backward from current record
pointer. Data is presented as if read forward.

Reads a specific logical record from a direct access
file to the user’s data stack.

Reads a user file label.

Moves a record from a disc file to a buffer in an-~
ticipation of a FREADDIR intrinsic call.

Releases an extra data segment.
Frees all local Resource Identification Numbers
(RINs) from allocation to a job.

Determines if file pair is interactive, duplicative, or
both.

Renames a disc file.

Standard
Standard

Standard

Standard

Standard
(Multiple RIN (MR))

User Logging (LG) and
System Supervisor (OP)

Standard
Standard
Standard
Standard
Standard
Standard
Standard

Standard

Standard

Standard

Standard

Data Segment

Management (DS)

Standard

Standard

Standard

1-11

Introduction To MPE Intrinsics

Table 1-2. Summary of MPE Intrinsics (Continued)

INTRINSIC NAME

PURPOSE

CAPABILITY REQUIRED

FSETMODE

FSPACE

FUNLOCK

FUPDATE

FWRITE

FWRITEDIR

FWRITELABEL

GENMESSAGE

GETDSEG

GETINFO

GETJCW

GETLOCRIN

GETORIGIN

GETPRIORITY

GETPRIVMODE

GETPROCID

GETPROCINFO

GETUSERMODE

INITUSLF

IODONTWAIT

IOWAIT

JOBINFO

Activates or deactivates file access modes.

Moves a physical record pointer forward or
backward on a tape or disc file.

Dynamically unlocks a file.
Updates (writes) a logical record in a disc file.

Writes a logical or physical record or portion of a
record from user’s stack to a file on any device.

Writes a specific logical record from the user’s
stack to a disc file.

Writes a user file label.

Accesses the MPE message system.

Creates an extra data segment.

Gets info/parm values from :RUN command or
CREATEPROCESS intrinsic.

Returns the value of the system-defined Job
Control Word, JCW.

Acquires local RINs.

Determines source of activation call for process.
Changes the priority of a process.

Dynamically enters Privileged Mode.

Requests PIN of a son process.

Requests status data on a father or son process.

Dynamically returns to non-Privileged Mode.

Initializes a USL file to the empty state.

Initiates completion operations for an I/0 request.

initiates completion operations for an I/0 request.

Returns job/session related information.

Standard

Standard

Standard
Standard

Standard

Standard

Standard
Standard

Data Segment
Management (DS)

Standard

Standard

Standard

Process Handling (PH)
Process Handling (PH)
Privileged Mode (PM)
Process Handiing (PH)
Process Handling (PH)
Privileged Mode (PM)
Standard

Privileged Mode (PM)
Privileged Mode (PM)

Standard

Introduction To MPE Intrinsics

Table 1-2. Summary of MPE Intrinsics (Continued)

INTRINSIC NAME

PURPOSE

CAPABILITY REQUIRED

KILL

LOADPROC

LOCKGLORIN

LOCKLOCRIN

LOCRINOWNER

LOGINFO

LOGSTATUS

MAIL

MYCOMMAND

OPENLOG

PAUSE

PRINT

PRINTFILEINFO

PRINTOP

PRINTOPREPLY

PROCINFO

PROCTIME

PTAPE

PUTJCW

QuUIT

QUITPROG

READ

Deletes a son process.

Dynamically loads a library procedure.

Locks a global RIN.

Locks a local RIN.

Determines PIN of a process locking a local RIN.
Obtains information from user logging buffer.
Provides information about an opened user logging
file.

Tests mailbox status.

Parses (delineates and defines parameters for
user -supplied command image.

Provides access to the user logging facility.

Suspends process for a specific number of seconds
Prints character string on job/session list device.

Prints a file information display on a job/session list
device.

Prints a character string on the System Console.

Prints a character string on the System Console
and solicits a reply.

Provides access to process information.
Returns the accumulated CPU time for a process.

Copies input from paper tapes which do not contain
X -OFF control characters to a disc file.

Assigns the value of a particular JCW in JCW Table.
Ahorts a process.
Aborts the entire user process structure.

Reads an ASCH string from $STDIN into an array.

Process Handling (PH)
Standard
Standard
Standard
Standard

User Logging (LG) and
System Supervisor (OP)

User Logging (LG) and
System Supervisor (OP)

Process Handling (PH)
Standard

User Logging (LG) and
System Supervisor (OP)
Standard

Standard

Standard

Standard

Standard

Standard
Standard

Standard

Standard
Standard
Standard

Standard

1-13

Introduction To MPE Intrinsics

Table 1-2. Summary of MPE Intrinsics (Continued)

INTRINSIC NAME

PURPOSE

CAPABILITY REQUIRED

READX

RECEIVEMAIL

RESETCONTROL

RESETDUMP

SEARCH

SENDMAIL

SETDUMP

SETJCW

STACKDUMP

STARTSESS

SUSPEND

SWITCHDB

TERMINATE

TIMER

UNLOADPROC

UNLOCKGLORIN

UNLOCKLOCRIN

WHO

WRITELOG

XARITRAP

XCONTRAP

XLIBTRAP

XSYSTRAP

ZSIZE

Reads an ASCII string from $STDINX into an array.

Receives mail from another process.

Resets terminal to accept CONTROL -Y signal.

Disables the abort stack analysis facility.

Searches an array for a specified entry or name.

Sends mail to another process.

Enables the stack analysis facility.

Sets bits in the system Job Control Word, JCW.

Dumps seilected parts of stack to file.

Initiates a session on the specified terminal.

Suspends a process.

Switches DB register pointer.

Terminates a process.

Returns system timer information.
Dynamically unloads a library procedure.
Unlocks a global RIN.

Unlocks a local RIN.

Returns information about a user.

Writes a record to a logging file.

Enables or disables the user -written software
arithmetic trap.

Enables or disables the CONTROL -Y trap.
Enabies or disables the software library trap.
Enables or disables the system trap.

Aiters current Z to DB area.

Standard

Process Handling (PH)

Standard

Standard

Standard

Process Handling (PH)

Standard

Standard

Standard

Programmatic Sessions
(PS)

Process Handling (PH)

Privileged Mode (PM)

Standard

Standard

Standard

Standard

Standard

Standard

User Logging (LG) and
System Supervisor (OP)

Standard

Standard

Standard

Standard

Standard

1-14

INTRINSIC DESCRIPTIONS

This section contains descriptions of all MPE intrinsics, arranged alphabetically. Each intrinsic de-
scription provides the intrinsic name, describes the call, defines parameters, explains condition codes,
and where applicable gives information on the functional return, special considerations, and areas of
additional discussion.

INTRINSIC NAME

Following the intrinsic name, you will find its assigned number and a brief summary of its function.
The intrinsic number is useful in determining error diagnosis and for implementing trap procedures.
Several intrinsics may have the same number (e.g. BEGINLOG, ENDLOG, and WRITELOG) since they are
really the same procedure with alternate entry points. Other intrinsics have no number at all, be-
cause they will not abort and therefore do not need an intrinsic number for error diagnosis.

SYNTAX

The syntax area contains the complete intrinsic call description, enclosed in a box. The intrinsic call
descriptions are in the format shown below:

0-v Iv Lv
ACTIVATE (pin,susp);

Required parameters, such as pin, are shown in bold italies. Optional parameters, such as susp,
are shown in standard italics. The mnemonics which appear over the parameters indicate their
type, and whether it must be passed by reference (the default), or by value. (Refer to Section I for a
discussion of passing parameters by reference and by value.) For example IV, which appears over
pin, indicates that the parameter is an integer variable which must be passed by value. The
mnemonics have the following meanings:

BA Byte array v Integer by value

BP Byte pointer L Logical by reference
D Double by reference LA Logical array

DA Double array LV Logical by value

DV Double by value 0-p Option privileged

I Integer by reference 0-v Option variable

IA Integer array R Real

In addition to the mnemonics shown over the parameters, the mnemonic 0-V is shown for some intrin-
sics to denote '"option variable". Option variable means that the intrinsic contains optional
parameters and a complete call to this intrinsic need only specify the optional parameters desired by

2-1

Intrinsic Descriptions

the programmer. Additionally, 0-P is shown for those intrinsics (i.e. GETPRIVMODE) which can only
be called when running in Privileged Mode. The ACTIVATE intrinsic, for example, contains two
parameters: ptn, which is a required integer that must be passed by value; and susp, an optional
logical that, if included in the intrinsic call, must be passed by value. Additionally, the intrinsic is
option variable, which restates that some parameters (susp in this instance) are optional.

NOTE

If a byte array is passed to a parameter which requires a
logical array, SPL will convert it to a logical array by
shifting one bit to the right. Because of addressing
modes inherent in the HP 3000 architecture, this shift
can cause the wrong half bank of memory to be ad-
dressed, possibly resulting in the process aborting with a
bounds violation. SPL will print a warning message
when this condition occurs. This condition can be
avoided by setting a byte array equivalent to a logical
array for the message parameter.

FUNCTIONAL RETURN

Certain intrinsics return a value to the calling program ("type procedures"). A type procedure
returns the value of a specified type (e.g. integer, real) in place of its name. (The result is actually
returned to the top of stack and thus can be used in the rest of the expression). If the intrinsic is not
a type procedure, this portion of the intrinsic description is omitted. The symbol " :=" is the SPL as-
signment identifier which means "is assigned the value of " or "receives the value of". This conven-
tion is used throughout this section for consistency. It should not be interpreted that the value would
be unavailable in languages other than SPL. The intrinsic call description format for type procedure
intrinsics is illustrated below with the READ intrinsic:

I LA Iv
length:=READ(message ,expectedl);

The READ intrinsic returns the positive length of the input actually read to an integer variable. The
type, (e.g. integer, double), is signified by a mnemonic above the descriptive word. Thus, the READ
intrinsic is in effect an integer procedure, message is a required logical array, and expectedl is a
required integer parameter which must be passed by value.

A program using an intrinsic that returns a value may choose to omit the assignment (that is, the
return variable is not required). The compiler will generate code to cause the return value to be
deleted if a variable is not specified. Thus, the following examples are both legal calls of the READ
intrinsic:

LEN: =READ(MESS,20); %k User program may access LEN XxX

READ(MESS, 20D %% Return variable unavailable XX

2-2

Intrinsic Descriptions
PARAMETERS

All parameters are described. In the intrinsic call description, required parameters are shown in bold
italics, and optional parameters are shown in large (12-point) standard italics. Within the
text of this manual, this distinction is not shown for required and optional parameters, and all para-
meters are shown in small (10-point) standard italics.

For some parameters certain bit settings have particular meanings; when significant these bit settings
and their meanings will be noted. In other instances, (e.g. with logical parameters), many different
values will have the same result (i.e. setting bit (15:1)=1 has the same interpretation as entering
TRUE). For more information on the various options for a given parameter type refer to the Systems
Programming Language Reference Manual (30000-90024).

Bit groups are denoted using the standard SPL notation. Thus bit (15:1) indicates bit 15; bits (0:3)
indicates bits 0, 1, and 2. Bit 15 is on the right and is the least significant bit.

CONDITION CODES

Condition codes are included for each intrinsic. (Refer to "Intrinsic Call Errors" in Section I for a
detailed description of the meaning and use of condition codes.)

SPECIAL CONSIDERATIONS

The special considerations portion of the description is omitted unless the intrinsic requires some spe-
cial circumstances for proper execution. Therefore, unless explicitly stated the intrinsic does not:

e Operate in split-stack mode.
e Require special capabilities.

¢ Require a privileged call.

Required Capability

When you run a program file, the file system checks your group capabilities to see if you can access
the file. Also, the capability of the program file (established at PREParation time) is checked against
the capability of the group in which the file resides. If the capability of the file does not exceed the
capability of the group, the program executes. Additional capability checking, however, is done if
the program calls an intrinsic. Some intrinsics require that the program file and the user have suffi-
cient capability to call them. If an intrinsic requires a special capability, it will be noted in the dis-
cussion of that intrinsic. Optional capabilities are discussed in Sections I and HI.

Intrinsic Descriptions

Split-Stack Operations

During normal operation, DB (the Data Base register) points to the user’s process stack. Some opera-
tions with extra data segments require that DB be set to the base of the extra data segment, while DL
(the Data Limit register) and all other data registers (Z, the stack limit register; Q, the stack marker
register; and S, the top of stack register) remain associated with the stack. When a process is operat -
ing in this mode it is said to have a split-stack. When accessing some parts of the operating system
which use extra data segments, you are considered to be operating in split-stack mode, implicitly. It
is also possible, if you are a privileged user, to force your process to operate in split-stack mode ex-
plicitly by calling the SWITCHDB intrinsic.

You should be aware, however, that it is possible for a privileged user to inadvertently destroy the
operating system when operating in split-stack mode. Operating safely in split-stack mode requires
extensive knowledge of the compiler: specifically, how the compiler assigns storage. For example,
during normal operation, DB-relative variables point to the user’s stack, but to different locations
during split-stack mode operation. Thus, it is possible to unintentionally change data in areas which
are normally reserved for MPE. Refer to the System Programming Language Textbook
(30000-90025) for more information on the process stack .

When a process is operating in split-stack mode, whether implicitly or explicitly, you must recognize
that some of the intrinsics you can normally call may not be called when DB does not point to the
stack. Such intrinsics, if called by a privileged process while the DB register is not set to the user’s
stack, can result in a system failure. If you are a normal user, (not operating in Privileged Mode),
you need not concern yourself with this restriction, and you can assume that unless it is stated other—
wise, an intrinsic will not operate in split-stack mode. However, if you have Privileged Mode
capability, exercise extreme caution when calling intrinsics which operate in split~stack mode.

CAUTION

The normal checks and limitations that apply to users
with standard (default) capabilities are bypassed in
Privileged Mode. It is possible for a Privileged Mode
program to destroy file integrity, including the MPE
operating system software itself. Hewlett-Packard will,
upon request, investigate and attempt to resolve
problems resulting from the use of Privileged Mode
code. This service, which is not provided under the
standard Service Contract, is available on a time and
materials billing basis. Hewlett-Packard will not sup-
port, correct, or attend to any modification of the MPE
operating system software.

ADDITIONAL DISCUSSION

Where applicable, the "Additional Discussion” section will reference parts of this or other
Hewlett-Packard manuals for additional information on the use of a particular intrinsic.

2-4

ABORTSESS

INTRINSIC NUMBER 196

Aborts the specified session from the system. (Available only on version G.01.00 and later.)

SYNTAX

v DV 1A
ABORTSESS(jsid,jsnum,errorstat);

ABORTSESS provides programmatic access to the functions of the :ABORTJOBcommand. The caller of
ABORTSESS must have :ABORTJOB rights to the specified session. :ABORTJOB rights can be dis-
tributed with the :ALLOW command, or the : JOBSECURITY can be set low.

PARAMETERS

Jjsid integer by value (required)
Indicates the type of Command Interpreter (CI) process. If an earlier
STARTSESS call was successful, the value returned is 1; if unsuccessful, the
value is 0. When the value returned to jsid is 1, jsid and jshum can be
used as input to JOBINFO to check on the attributes of the session.

Jjsrum double by value (required)
A 32-bit value which, when used with jsid, uniquely identifies the session.

errorstat integer array (required)

A two-element array in which the status of the call is returned. The second
element is reserved for future use, and will always contain a zero. The
first element will contain a zero if no errors occurred. If an error occurs
one of the following error values is returned in the first element:

Error No. Meaning
| Job security too high, or job is not yours.
2 Job does not exist.
3 Job is being introduced and cannot be aborted when in the
INTRO state.

CONDITION CODES

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

ABORTSESS requires the caller to be allowed :ABORTJOB via the :ALLOW command, have Account
Manager (AM) or System Manager (SM) capabilities, or that the : JOBSECURITY be set low.

2-5

ADDITIONAL DISCUSSION

MPE V Commands Manual (32033-90006).

2-6

Activates a process.

ACTIVATE

INTRINSIC NUMBER 104

SYNTAX
0-v Iv
ACTIVATE(pin,susp);

After a process has been created, it must be activated in order to run. Once activated, the process
runs until it is suspended or deleted. A newly created process can only be activated by its father. A
process that has been suspended (with the SUSPEND intrinsic) can be reactivated by its father, or any
of its sons, as specified in the susp parameter of the ACTIVATE and SUSPEND intrinsics.

The operating system guarantees that there will be no process switching (to some other process) be-
tween activation of the called process and suspension of the calling process.

The ACTIVATE intrinsic aborts the calling process (and possibly the entire job/session) if :

1. The group in which the program file resides does not have Process Handling (PH) capability, or
the program was not prepared with Process Handling capability.

2. The required parameter pin is omitted.

3. A request to activate the father would result in activation of a job or session main process or a

system process.

PARAMETERS

pin

susp

integer by value (required)

Process Identification Number (PIN). An integer specifying the PIN for
the son or father process to be activated. The PIN number to activate a
father process is always zero. The called process must always be expecting
an activation from the caller as noted in the discussion of the SUSPEND and
CREATE intrinsics.

logical by value (optional)
A word that specifies one of the following:

e The calling process is to be suspended while the called process is ac-
tivated and commences execution.

e The called process is to be activated by the operating system but will
not commence execution immediately. Instead, control is returned to
the calling process which will continue execution.

When susp is omitted or is zero, the calling process remains active. When
susp i1s specified (and not zero), the calling process is suspended. The bits
(14:2) of susp specify the anticipated source of the call that later will
reactivate the calling process.

Bit (15:1) Father activation bit.

=0 The process does not expect to be activated by its father.

=1 The process expects to be activated by its father.

Bit (14:1) Son activation bit.

=0 The process does not expect to be activated by one of its sons.
=1 The process expects to be activated by one of its sons.

If both bits=1, the suspended process can be activated by either its father or
one of its sons.

Bits (0:14) Reserved for MPE and should be set to zero.

Default: Calling process remains active.

CONDITION CODES

CCE

CCG

CCL

Request granted. Called process is activated. The calling process is
suspended if susp was specified.

The called process is already active. The calling process is suspended if susp
was specified.

Request denied because the called process was not expecting activation by
this calling process, an illegal pin parameter was specified, or the susp pa-
rameter was specified improperly.

SPECIAL CONSIDERATIONS

Split-stack calls permitted.

Process Handling (PH) capability required.

ADDITIONAL DISCUSSION

"Creating an Extra Data Segment" and "Creating and Activating Processes" in Section III.

2-8

ADJUSTUSLF

INTRINSIC NUMBER 83

Adjusts directory space in a USL file.

SYNTAX

I Iv Iv
errnum:=ADJUSTUSLF (usl fnum,records);

The ADJUSTUSLF intrinsic moves the start of the information block forward or backward on a User
Subprogram Library (USL) file, thereby increasing or decreasing, respectively, the space available for
the file directory block. This does not change the overall length of the file. This intrinsic is intended
for programmers writing compilers. Refer to the MPE Segmenter Reference Manual (30000-90011)
for a discussion of USLs, the ADJUSTUSLF intrinsic, information blocks, and directory blocks.

FUNCTIONAL RETURN

errnum integer
Returns an error number if an error occurs. If no error occurs, no value is
returned. The error number returned corresponds to the following errors:

Error No. Meaning
0 The file specified by uslfnum was empty, an unexpected
end-of -file was encountered when reading the uslfnum,
or an unexpected end -of -file was encountered when writ-
ing on the uslfnum.

1 Unexpected input/output error occurred.

4 Your request attempted to exceed the maximum file
directory size (32,768 words).

5 Insufficient directory space.
6 Insufficient space was available in the USL file informa-
tion block.

2-9

PARAMETERS

uslfnum integer by value (required)
A word supplying the file number of the USL file (as returned by FOPEN).

records integer by value (required)
A word supplying the signed record count. If records is greater than zero,
the information block is moved toward the end-of -file in the USL file, in-
creasing the space available for the directory block and decreasing the space
available for the information block. If records is less than zero, the infor-
mation block is moved toward the start of the USL file, decreasing the
directory block space and increasing the information block space.

CONDITION CODES

CCE Request granted.
CCG Not returned by this intrinsic.
CCL Request denied. An error number was returned to errornum indicating the

reason for this failure.

ADDITIONAL DISCUSSION

MPE Segmenter Reference Manual (30000-90011).

2-10

ALTDSEG

INTRINSIC NUMBER 134

Alters the size of an extra data segment.

SYNTAX

Lv Iv I
ALTDSEG(index ,inc,size);

The ALTDSEG intrinsic alters the current size of an extra data segment. ALTDSEG can be used to
reduce the storage required by the segment when it is moved into main memory, then used again to
expand storage as required, thus allowing more efficient use of memory.

Expansion and contraction is accomplished in even multiples of four words, which are rounded up.
For example:

Present Segment Change Value (inc) New Segment
Size (Words) (Words) Size (Words)
128 -3 128
128 -4 124
128 +1 132
128 +3 132
128 +4 132

When a data segment is created through GETDSEG sufficient virtual space is allocated by the system to
accommodate the original length of the data segment. This virtual space is allocated in increments of
pages, where the number of words per page is set when the system is configured (typically 512
words/page). For example, creation of a data segment with a length of 600 words would result in
two virtual pages being allocated for the data segment (space for 1024 words).

In no case may ALTDSEG increase the size of a data segment to exceed the virtual space originally allo-
cated through GETDSEG. On version G.00.00 and later when GETDSEG is called in non-Privileged
Mode, the ALTDSEG intrinsic must also be called in non-Privileged Mode. When GETDSEG is called in
Privileged Mode, the ALTDSEG intrinsic must be called in Privileged Mode.

PARAMETERS

index logical by value (required)
A word containing the logical index of the extra data segment, obtained
from the GETDSEG call.

ine integer by value (required)

The value, in words, by which the data segment is to be changed. A posi-
tive integer value requests an increase, and a negative integer value
requests a decrease.

size integer (required)
A word to which the new size of the data segment is returned after in-
crementing or decrementing occurs.

CONDITION CODES

CCE Request granted.

CCG Request not fully granted. An illegal decrement requesting a new total
segment size of zero or less, or an illegal increment requesting a new size
greater than the virtual space originally assigned by GETDSEG, was at-
tempted. In the first case, the current size remains in effect. In the
second case, the size of the virtual space is granted and this size is returned
through the size parameter.

CCL Request denied because an illegal index parameter was specified.

SPECIAL CONSIDERATIONS

Data Segment Management (DS) capability required.

ADDITIONAL DISCUSSION

"Changing the Size of an Extra Data Segment" in Section III.

2-12

ARITRAP

INTRINSIC NUMBER 51

Enables or disables internal interrupt signals from all hardware arithmetic traps.

SYNTAX

Lv
ARITRAP(state);

When a user process begins execution, all internal arithmetic user traps are enabled. That is, if an
arithmetic error occurs in the user process, it is aborted in the trap mechanism. The possible inter-
rupts listed below are collectively called the arithmetic user traps:

Integer Overflow.

Floating Point Overflow.
Floating Point Underflow.
Integer Divide By Zero.
Floating Point Divide By Zero.
Double Precision Overflow.
Double Precision Underflow.

Double Precision Divide By Zero.
Decimal Overflow.

Invalid ASCII Digit.

Invalid Decimal Digit.

Invalid Source Word Count.
Invalid Decimal Operand Length.
Decimal Divide By Zero.

e ¢ & o & & &
e & & o ¢ o O

The traps may be collectively enabled/disabled with the ARITRAP intrinsic call.

The ARITRAP intrinsic always clears the overflow indicator (bit (4:1)) located in the caller’s status
word.

PARAMETERS

state logical by value (required)
A word in which bit (15:1) specifies whether arithmetic traps are enabled
or disabled. The settings for bit (15:1) are as follows:
=0 Arithmetic traps are disabled.

=] Arithmetic traps are enabled.

Bits (0:15) are reserved for MPE and should be set to zero.

CONDITION CODES

CCE Request granted. The arithmetic traps were originally disabled.
CCG Request granted. The arithmetic traps were originally enabled.
CCL Not returned by this intrinsic.

ADDITIONAL DISCUSSION

"Enabling and Disabling Traps" in Section V.

2-13

ASCII

INTRINSIC NUMBER 63

Converts a one-word binary number to a numeric ASCII string.

SYNTAX

I LV Iv BA
numchar :=ASCI | (word ,base,string);

Any 16-bit binary number can be converted to a different base and represented as a numeric charac-
ter ASCII string by using the ASCII intrinsic call.

FUNCTIONAL RETURN

numchar integer
The number of characters in the resulting string.

PARAMETERS
word logical by value (required)
The number to be converted to an ASCII string.
base integer by value (required)
One of the following integers indicating octal or decimal conversion:
8 Octal conversion (pads with zeros).
10 Decimal conversion (left-justified).
-10 Decimal conversion (right-justified).
If any other number is entered in this parameter, the intrinsic causes the
user process to abort.
string byte array (required)

A byte array into which the converted value of word is placed. This array
must be long enough to contain the result. No result, however, will exceed
six characters. For octal conversion (base = 8), six characters, including
leading zeros, are always returned in string. In octal conversions, the
length returned by ASCII is the number of significant (right-justified)
characters in string (excluding leading zeros). If word = 0, the length
(numchar) returned by ASCIIis 1.

For decimal conversions, word is considered as a 16-bit, two’s complement
integer ranging from -32768 to +32767. If the value of word = 0, only
one zero character is returned in string. The length (numchar) returned by
ASCII is the total number of characters in string (including the sign). If
word = 0, the length returned by ASCII is 1.

2-14

For decimal left-justified conversions (base =10), leading zeros are removed
and the numeric ASCII result is left-justified in string. Thus, the most
significant digit (or the "-" sign) is in string(0), the next most significant
digit is in string(1), and so on.
For decimal right-justified conversions (base = -10), the result is right-
justified in string. Thus, the least significant digit is in string(0), the next
least significant digit is in string(~1), and so on.
For right-justified conversions, the byte array into which the converted
value is to be placed must specify the right-most byte into which data is to
go. For example, if string is a 10-byte array declared as:

BYTE ARRAY STRING(0:9);

Then it must be specified in the ASCII intrinsic call as follows (for right
justification):

NUMCHAR : =ASCT I (WORD, -10,STRING(9));

The result will be right-justified in string, with the right-most digit of the
result contained in the last (right-most) byte of string.

CONDITION CODES

The condition code remains unchanged.

ADDITIONAL DISCUSSION

"Converting Numbers from Binary Code to ASCII Strings" in Section V.

2-15

BEGINLOG

NO INTRINSIC NUMBER ASSIGNED

Marks the beginning of a user logging transaction.

SYNTAX

D LA I I I
BEGINLOG(index ,data,len ,mode ,status);

The BEGINLOG intrinsic posts a special record to the user logging file to mark the beginning of a logi-
cal transaction. When BEGINLOG is used, the logging memory buffer is flushed to ensure that the
record gets to the logging file. BEGINLOG can also be used to post data to the logging file by using the
data parameter. This use of BEGINLOG performs the same function as the WRITELOG intrinsic.

PARAMETERS

index double (required)
The parameter returned from OPENLOG that identifies the user’s access to
the logging system.

data : logical array (required)
An array in which the actual information to be logged is passed. A log
record contains 128 words of which 119 words are available to the user.
Thus, the most efficient use of logging file space is to structure arrays with
lengths in multiples of 119 words.

len integer (required)
The length of the data in data. A positive integer indicates words, and a
negative integer indicates bytes. If the length is greater than 119 words (or
238 bytes), the information in data will be divided into two or more physi-
cal log records.

mode integer (required)
An integer which specifies whether you want your process impeded by the
logging process if the logging buffer is full. If it is not possible to log the
transaction and the mode is set to NOWAIT, the BEGINLOG intrinsic will
return an indication via status that the request was not completed. The
following integers are valid for this parameter:
0 Specifies WAIT.
1 Specifies NOWAIT.

sfatus integer (required)

One of the following integers that the logging system uses to return infor-
mation on the status of the intrinsic call to the user:

Message No. Meaning

0 No error occurred for this call.

1 User requested NOWAIT mode and thé logging process is
busy.

2 Parameter out of bounds in logging intrinsic.

3 Requgst to open or write to a logging process that is not
running.

4 Incorrect index parameter passed to a logging intrinsic.

5 Incorrect mode parameter passed to a logging intrinsic.

6 User request denied because logging process is suspended.

7 Illegal capability. Must have User Logging (LG) and
System Supervisor (OP) capabilities to use a logging
intrinsic.

8 Incorrect password passed to a logging intrinsic.

9 Error occurred while writing to the logging file.

10 Invalid DST passed to logging system intrinsic.

12 System is out of disc space, logging cannot proceed.

13 No more logging entries.

14 Invalid access to logging file.

15 End-of-file on user logging file.

16 Invalid logging identifier.

CONDITION CODES

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

User Logging (LG) and System Supervisor (OP) capabilities required.

ADDITIONAL DISCUSSIORN

"User Logging" in Section III.

2-17

BINARY

INTRINSIC NUMBER 62

Converts a number from an ASCII string to a binary word.

SYNTAX

I

binequ :=BINARY (string,length);

BA Iv

FUNCTIONAL RETURN

bineqv

PARAMETERS

string

length

integer
The binary equivalent of the numeric string.

byte array (required)

Contains the octal or signed-decimal number (ASCII characters) to be con-
verted. If the character string in this array begins with a percent sign (%),
it is treated as an octal value. The string is treated as a decimal value if it
begins with a plus sign, a minus sign or a number. Leading blanks are not
allowed, and are treated as illegal characters.

integer by value (required)

An integer representing the length (number of bytes) in the byte array con-
taining the ASCII-coded value. If the value of length is O, the intrinsic
returns O to the calling process. When the value of length is negative, the
intrinsic causes the user process to abort.

CONDITION CODES

CCE

CCG

CCL

Successful conversion. A one-word binary value is returned to the user’s
process.

A word overflow, possibly resulting from too many characters (string
number too large), occurred in the word (bireqv) returned.

An illegal character was encountered in the byte array specified by string.
For example, the digits 8 or 9 were specified in an octal value.

ADDITIONAL DISCUSSION

"Converting Numbers from an ASCII Numeric String to a Binary Coded Value" in Section V.

2-18

Returns the calendar date.

SYNTAX

CALENDAR

INTRINSIC NUMBER 43

L
date : =CALENDAR;

FUNCTIONAL RETURN

date logical

The calendar date is returned in the format:

Bits (7:9) ~ The day of the year.

Bits (0:7) - The year of the century.

CONDITION CODES

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

Split-stack calls permitted.

ADDITIONAL DISCUSSION

"Obtaining the Calendar Date" in Section V.

CAUSEBREAK

INTRINSIC NUMBER 56

Places a session in BREAK mode.

SYNTAX

CAUSEBREAK 3

Using the CAUSEBREAK intrinsic will interrupt an interactive session. While not applicable in jobs,
the CAUSEBREAK intrinsic is the programmatic equivalent to pressing in a session. Execution
of the process can be resumed where the interruption occurred by entering the command:

:RESUME

CONDITION CODES

CCE Request granted.

CCG Not returned by this intrinsic.

CCL Request denied because the intrinsic was not called from an interactive
session.

SPECIAL CONSIDERATIONS

Split-stack calls permitted.

ADDITIONAL DISCUSSION

"Requesting a Process Break " in Section V.

2-20

CLEANUSL

NO INTRINSIC NUMBER ASSIGNED

Deletes inactive entries from a USL file.

SYNTAX

I Iv BA
filenum: =CLEANUSL (uslfnum,filename) ;

CLEANUSL deletes all inactive entries from currently managed USL files and returns the file number
of the new USL file. The condition code, therefore, must be tested immediately on return from the
intrinsic. Unpredictable results occur if an error number is used as a file number.

FUNCTIONAL RETURN

filenum integer
The new file number. If an error occurs, filenum is one of the following
error numbers:

Error No. Meaning
0 Unexpected end-of -file (EOF) marker on either the old
or the new USL file.
1 Unexpected I/0O error on either the old or the new USL
file.
7 Unable to open new USL file.
12 Invalid USL file.
PARAMETERS
uslfrum integer by value (required)
A word supplying the file number of the file.
filename byte array (required)

The name to be given to the cleaned file. The array must end with a
blank, but it can be all blanks. If the array is all blanks, it deletes the in-
active entries.

2-21

CONDITION CODES

CCE Request granted. The new file number is returned.
CCG Not returned by this intrinsic.
CCL Request denied. An error number is returned to filenum.

ADDITIONAL DISCUSSION

MPE Segmenter Reference Manual (30000-90011).

2-22

CLOCK

INTRINSIC NUMBER 44

Returns the actual time according to the system timer.

SYNTAX

D
time:=CLOCK;

FUNCTIONAL RETURN

time double
A double-word containing the actual time, as monitored by the system
timer. The first word contains the hour of the day and the minute of the
hour; the second word contains seconds and tenths of seconds as follows:
Word 1:
Bits (8:8) - The minute of the hour.
Bits (0:8) - The hour of the day.
Word 2:
Bits (8:8) - The tenths of seconds.

Bits (0:8) - The seconds.

CONDITION CODES

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

Split-stack calls permitted.

ADDITIONAL DISCUSSION

"Time and Date Intrinsics” in Section V.

2-23

CLOSELOG

INTRINSIC NUMBER 212

Closes access to the user logging facility.

SYNTAX

D

CLOSELOG(index ,mode ,status);

I

Effective with the G.02.00 version of MPE, the number of users and log entries are independent of
the number of times the OPENLOG/CLOSELOG intrinsics are called within an application. A logging
buffer entry is obtained and the user count is incremented only if this is the first OPENLOG call for
this user. A counter is used to keep track of the number of times a user has called OPENLOG and
CLOSELOG. The counter is incremented for every OPENLOG and decremented for every CLOSELOG.
This is done to ensure the entry in LOGBUFF is released only if this is the last CLOSELOG call for this

user (i.e. counter=0).

PARAMETERS
index

status

double (required)
The parameter returned from OPENLOG that identifies your access to the
logging facility.

integer (required)

An integer used to indicate whether your process should be suspended if
your request for service cannot be completed immediately. The following
integers are valid for this parameter:

0 Specifies WAIT.

1 Specifies NOWAIT.

integer (required)
An integer which indicates one of the following status conditions:

Message No. Meaning

0 No error occurred for this call.

1 User requested NOWAIT mode and the logging process is
busy.

2 Parameter out of bounds in logging intrinsic.

3 Requ.est to open or write to a logging process that is not
running.

4 Incorrect index parameter passed to a logging intrinsic.

5 Incorrect mode parameter passed to a logging intrinsic.

6 User request denied because logging process is suspended.

2-24

10
12
13
14
15

16

CONDITION CODES

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

Illegal capability. Must have User Logging (LG) and
System Supervisor (OP) capabilities to use a logging
intrinsic.

Incorrect password passed to a logging intrinsic.

Error occurred while writing to the logging file.

Invalid DST passed to logging system intrinsic.

System is out of disc space, logging cannot proceed.

No more logging entries.

Invalid access to logging file.

End-of-file on user logging file.

Invalid logging identifier.

User Logging (LG) and System Supervisor (OP) capabilities required.

ADDITIONAL DISCUSSION

"User Logging" in Section III.

2-25

COMMAND

INTRINSIC NUMBER 68

Executes an MPE command programmatically.

SYNTAX

BA

COMMAND(comimage ,error ,param) ;

I I

User-defined commands (UDCs) cannot be used with the COMMAND intrinsic.

PARAMETERS

comimage

byte array (required)

Contains an ASCII string of not more than 278 characters consisting of a
command and parameters, terminated by a carriage return. The carriage
return character (%15) must be the last character of the command string.
No prompt character, however, should be included in this string. The com-
image array will be altered by the COMMAND intrinsic (lowercase characters
in it will be shifted to uppercase), and will be returned to the caller in
uppercase.

integer (required)

A word to which any error code set by the command is returned. This is
the same error code that would appear on a job/session list device if the
command was part of an input stream, i.e. a Command Interpreter rather
than file system error code. If no error occurs, error returns zero. If an
MPE warning was detected, a negative number is returned (for example,
" -383" is returned if CIWARN 383is detected).

integer (required)

A word to which the number (index) of the erroneous parameter is return-
ed. If no parameters are in error, param returns zero. If there are errors,
param may be zero or some positive integer. In the case where an error
refers to a file system problem, param is the file system error code.

CONDITION CODES

CCE

CCG

CCL

Request granted although a Command Interpreter warning may have been
detected.

An executor-dependent error, such as an erroneous parameter, prevented
execution of the command. The numeric error code is contained in error.

The command with the error terminated before executing completely.

Request denied. The command was an undefined command.

ADDITIONAL DISCUSSION

"Executing Commands Programmatically" in Section V.

2-26

CREATE

INTRINSIC NUMBER 100

Creates a process.

SYNTAX

o-v BA BA I Iv LV v
CREATE (progname ,entryname ,pin,param, flags,stacksize,

Iv 1v LV v
dlsize,maxdata,priorityclass,rank);

If a running process, has Process Handling capability, it can request the creation of a son process by
calling the CREATE intrinsic. The CREATE intrinsic loads the program to be run by the new process
into virtual memory, creates the new process as the son of the calling process, initializes its data
stack, schedules the process, and returns the new Process Identification Number (PIN) to the request-
ing process. The CREATE intrinsic will achieve only partial completion if the circumstances described
below exist.

The process is not created and a PIN of zero is returned if one of the following conditions exist:

e The stacksize is less than 512 (decimal) and is not -1.

o The dlsize is less than 0 and is not -1.

o The maxdata is less than or equal to 0, and is not ~-1.

e The stack space required exceeds maxdata. The disize may have been modified by the intrinsic to
satisfy Condition 2 under CCG. The DB global size value is the sum of the primary DB plus the
secondary DB values (found on the compiler listing) or the total DB given at program preparation
time by the program map (PMAP).

e An illegal value (a nonexistent subqueue) was specified for the priorityclass parameter.

The process is not created and the PIN is unchanged if one of the following conditions exist:

e The program file of the creating process does not have Process Handling (PH) capability.

¢ A required parameter (progname or pin) is omitted.

¢ A reference parameter was not within the required range.

The request is granted and the process is created with maxdata allowed if :

e The maxdata exceeds the configured maxdata, where maxdata is either the value passed as a pa-
rameter, or a value recomputed by the Loader under Condition 1 of CCG.

The request is granted and the process is created if :

e The stack space exceeds the maximum stacksize defined during system configuration. The
dlsize may have been modified to satisfy Condition 2 under CCG.

2-27

PARAMETERS

progname

entryname

flags

The request is denied and a PIN of zero is returned if :
e The progname is illegal.

o The entryname is illegal.

byte array (required)

Contains a string, terminated by a blank, specifying the name, and option-
ally, the account and group of the file containing the program to be run.
If the program has a lockword, the lockword must be specified.

byte array (optional)

Contains a string, terminated by a blank, specifying the declared entry
point (label) in the program where execution is to begin when the process is
activated. The primary entry point in the program can be specified by set-
ting the array equal to a blank character alone.

Default: The primary entry point is used.

integer (required)

A word in which the PIN of the new process is returned to the requesting
process. This PIN is used in other intrinsics to reference the new process.
The PIN can range from 1 to 1024. If an error is detected, a PIN of zero is
returned to the requesting process.

integer by value (optional)

A word used to transfer control information to the new process. Any in-
struction in the outer block of code in the new process can access this in-
formation in location Q-4 of the stack.

Default: Word is filled with zeros.

logical by value (optional)
A word whose bits specify the loading options:

Bit (15:1) - ACTIVE bit.
=0 The calling process is not activated when the new process terminates.

=1 MPE reactivates the calling process (father) when the new process
terminates.

Default: (15:1)=0

2-28

Bit (14:1) - LOADMAP bit.

=0 No map is produced.

=1 A listing of the allocated (loaded) program is produced on the job/ses-
sion list device. This map shows the Code Segment Table (CST) entries
used by the new process.

Default: (14:1)=0

Bit (13:1) - DEBUG bit.

This bit is ignored if the user is nonprivileged and the new process requires

Privileged Mode. It is also ignored if the user does not have read/write ac-

cess to the program file of the new process.

=0 The breakpoint is not set.

=1 DEBUG is called at the first executable instruction of the new process.

Default: (13:1)=0

Bit (12:1) - NOPRIV bit.

=0 The program is loaded in the mode specified when the program file was
prepared.

=] The program is loaded in non-Privileged Mode.
Default: (12:1)=0

Bits (10:2) - LIBSEARCH bits.
These bits denote which libraries are to be searched for the program.

=00 Search the System Library.
=01 Search the Account Public Library, followed by System Library.

=10 Search the Group Library first, then the Account Public Library, and
finally the System Library.

Default: (10:2)=00

Bit (9:1) - NOCB bit.
If you are using a large stack set (9:1)=1.

=0 Control blocks may be established in the Process Control Block
Extension (PCBX) area.

=1 The file system control blocks are established in an extra data segment.

Default: (9:1)=0

2-29

stacksize

dlsize

maxdata

Bits (7:2) - These bits are reserved for MPE and should be set to zero.

Bits (5:2) - STACKDUMP bits.

These bits control the enabling/disabling of the mechanism by which the
stack is dumped in the event of an abort.

=00 Stackdump mechanism enabled only at father level.

=01 Stackdump mechanism is enabled unconditionally.

=10 Same as (5:2)=00.

=11 Stackdump mechanism disabled unconditionally for new process.
Default: (5:2)=00

Bit (4:1) - Reserved for MPE and should be set to zero.

Bit (3:1) - DL to QI bit. (This bit is used only when bits (5:2)=01.)

=0 This portion of the stack will not be dumped.

=] Causes the portion of the stack from DL to QI to be dumped.

Default: (3:1)=0

Bit (0:3) - Reserved for MPE and used only when (5:2)=01.

integer by value (optional)

An integer denoting the number of words assigned to the local stack area
bounded by the initial Q and Z registers. A value of -1 indicates that the
MPE Segmenter is to assign default values. Specifying -1 is equivalent to
omitting the parameter.

Default: The same as that specified in the program file.

integer by value (optional)

An integer denoting the number of words in the user-managed stack area
bounded by the DL and DB registers. A value of -1 indicates that the MPE
Segmenter is to assign default values. This is equivalent to omitting the
parameter.

Default: The same as that specified in the program file.

integer by value (optional)

The maximum size allowed for the process stack in words. When specified,
this value overrides the one established at program preparation time. A

value of -1 indicates that the MPE Segmenter is to assign default values.

Default: If not specified in either the intrinsic call or the program file,
MPE assumes that the stack will remain the same size.

2-30

priorityclass

rank

logical by value (optional)

A string of two ASCII characters describing the priority class in which the
new process is scheduled. Standard users (nonprivileged) can reschedule
processes into any of the five subqueues except the AS queue. However this
function is limited by the maximum priority assigned to the account by the
System Manager. Users who have Privileged Mode capability can schedule
processes into the AS subqueue, as well as any of the others. A process in
the linear queue AS or BS will not give up CPU voluntarily. Therefore, it
could loop infinitely and prevent other processes from accessing the CPU.

Default: The same as the priority of the calling process.

integer by value {optional)

This parameter is used only for backward~compatibility with pre-MPE IV
operating systems. This parameter is ignored on versions G.00.00 and
later.

CONDITION CODES

CCE

CCG

CCL

Request granted. The new process has been created.

Request granted. The maxdata and/or disize parameters given were illegal
but other values were assigned as follows:

1. If the maxdata specified exceeds the maximum Z-DL allowed by the
configuration, the configured maximum value is assigned.

2. If the area from Base to DB is not zero, then the DL area pads this
area to round it up to 128,

Request denied because the progname or entryname specified does not exist.

SPECIAL CONSIDERATIONS

Process Handling (PH) capability required.

ADDITIONAL DISCUSSION

“Creating an Extra Data Segment" and "Creating and Activating Processes" in Section III.

2-31

CREATEPROCESS

INTRINSIC NUMBER 101

Creates a process and can assign $STDINand $STDLIST to any file.
SYNTAX

o-v I I BA IA LA
CREATEPROCESS (error,pin ,progname ,itemnums ,items);

CREATEPROCESS entails a superset of the CREATE intrinsic and is designed to be more flexible and ex~
tendable than CREATE. The CREATEPROCESS intrinsic not only creates a process, it also allows you to
assign the system-defined files, $STDINand $STDLIST, to any file when the process is created. You
are not limited to system-defined defaults for $STDINand $STDLIST. If the intrinsic is called with
the error parameter omitted, an invalid address for parameter error is returned. In split-stack mode,
the calling process will be aborted.

PARAMETERS

error integer (required)
An integer indicating type of success or failure. A minussign (-) preceding
the returned value indicates that the associated message is a warning. An
error terminates the intrinsic call while a warning means the call will con-
tinue. The Job Control Word (JCW) should be checked before continuing.
The following is a list of the possible values returned:

Message No, Meaning

0 Process created as requested.

1 Caller lacks Process Handling (PH) capability.

2 Required parameter (other than error) omitted.

3 Parameter address (other than error) out of bounds.

4 Out of system resources (e.g. PCBs, DSTs).

5 Process not created because an invalid itemnums was
specified.

6 Unable to create process because progname does not
exist.

7 Unable to create process because entry name does not ex-

ist or is invalid.
8 Process not created because progname is invalid.

-9 Process created with default stacksize from the program
file (specified stacksize was < 512).

2-32

itemums

items

-10 Process was created with default dlsize from the
program file (specified disize was < 0).

-11 Process created with default maxdata from the program
file (specified maxdata was < 0).

-12 Process created with disize rounded up to next 128-word
multiple.

-13 Process created with maxdata decreased to configuration
maximum.

-14 Process created with maxdata increased to dlsize+glob-

size+stacksize (globsize is defined to be primary DB
space+secondary DB space).

15 Process not created because dlsize+globsize+stacksize was
> configured maximum stacksize.

16 Process not created because "hard" load error occurred
(for example, I/0 error reading the program file).

17 Process not created because an illegal value was specified
for priority class.

18 Unable to create process because specified $STDIN could
not be opened.

19 Unable to create process because $STDLIST could not be
opened.
20 Process not created because string to be passed to new

process was invalid (pointer without length, length
without pointer, or length exceeds stack size of calling
process).

integer (required)
An integer in which the PIN of the newly created process is returned. If
there is an error in creating the new process, i.e. parameter error > 0, a
zero is returned.

byte array (required)

A byte array containing a string, terminated by any nonalphanumeric
character other than a period (.) or a slash (/), which specifies the name of
the program file to be run by the new process.

integer array (optional)

An array containing the item numbers (in any order) of the options you
want to use in creating a new process. This array must contain a zero as its
last element to indicate the end of the option list. (Refer to Table 2-1.)

logical array (optional)

An array containing the items (in the same order as the item numbers in
itemnums), to be used in creating the new process. (Refer to Table 2-1.)

2-33

Table 2-1. Item Values Returned by CREATEPROCESS

The Item Numbers in the array ifemnums indicate the options to be applied in creating the new
process. The corresponding items in the array items give the information necessary for each op-
tion to be used.

Itemnumber

0

1

10

11

12

Items
Indicates the end of the option list.

A pointer to a byte array containing the name of the entry point in the program
where the new process is to begin execution. The name is specified as a string of
characters terminated by a blank.

An integer containing a parameter to be passed to the new process (accessed
through location Q-4 of the outer block).

A logical value containing the load option flags to be used in loading the program
file for the new process. This parameter has the same definition as the flags pa-
rameter of the CREATE intrinsic.

An integer specifying the initial stack size (Q-Z).
An integer specifying the initial dlsize (DL-DB) for the new process.
An integer specifying the maximum stack size for the new process (i.e. maxdata).

A string of two ASCII characters specifying the priority class in which the new
process is to be scheduled (AS, BS, CS, DS, or ES). Selecting AS or BS can cause
performance degradation since the process will wholly own the CPU.

A pointer to a byte array containing the definition of a file to be used as $5TDIN
for the new process. (See Notes 1 & 2.)

A pointer to a byte array containing the definition of a file to be used as
$STDL IST for the new process. (See Notes 1 & 3.)

A logical value indicating that the process has suspended and its anticipated
source of reactivation. Specification of this parameter causes the newly created
process to be activated immediately. The meanings of the individual bit fields of
this parameter are as follows:

Bit (15:1) Father activation bit.
=1 The process expects to be activated by its father.
=0 The process does not expect to be activated by its father.

Bit (14:1) Son activation bit.
=1 The process expects to be activated by one of its sons.
=0 The process does not expect to be activated by one of its sons.

A pointer to a byte array containing a string of information to be passed to the
new process. The length of the string is specified in Item Number 12. (See Note
4.)

An integer specifying the length in bytes of the string specified with Item
Number 11. (See Note 4.)

2-34

Table 2-1. Item Values Returned by CREATEPROCESS (Continued)

1.

NOTES

If Item Numbers 8 or 9 are not specified, the default $STDIN and $STDLIST will be used
in creating the new process. These defaults are the current $STDIN and $STDLIST files
for the creating (father) process.

Item Number 8 indicates that the corresponding item in the item array is the address of a
byte array which contains the definition of the file to be used as $STDIN for the new
process. This byte array must contain an ASCII string (terminated by a carriage return)
which is the right-hand side of a file equation specifying the file to be used as $STDIN
(i.e. everything after the " :FILE formaldesignator=" portion of the file equation).

Item Number 9 indicates that the corresponding item in the item array is the address of a
byte array which contains the definition of the file to be used as $STDLIST for the new
process. This array is defined as above for $STDIN.

Item Numbers 11 and 12 indicate that a string is to be passed to the new process. This
string will be placed just after the global area of the new process stack. A DB relative
value byte pointer to the string in the new process stack will be placed at the Q-5 of the
stack (where Q is the initial value of the Q-register at activation time) and the length of
the string in bytes will be placed at Q-6. If no string is specified to be passed to the new
process, Q-5 and Q-6 will both contain 0.

CONDITION CODES

CCE

CCL

CCG

No error.
Unsuccessful.

Successful call, however a warning might have been returned to error.

SPECIAL CONSIDERATIONS

Process Handling (PH) capability required.

ADDITIONAL DISCUSSION

“Creating and Activating Processes" in Section III.

2-35

CTRANSLATE

INTRINSIC NUMBER 61

Converts a string of characters between EBCDIC and ASCII, or between EBCDIK and JIS (KANA3S).

SYNTAX

0-v Iv

CTRANSLATE (code ,instring ,outstring ,stringlength,table);

BA BA Iv BA

The CTRANSLATE intrinsic is used for character code translating. Translation can occur between the
standard computer character codes or with an optional user-defined code permitting you to obtain
character code conversions within programs of your own design.

EBCDIK is a Hewlett-Packard-specific (Japanese) version of EBCDIC.

KANAS is an 8-bit JIS (Japanese International Standard, JISCII, a Japanese version of USASCII)

code.

PARAMETERS
code

instring

outstring

stringlength

integer by value (required)
An integer identifying a specific translation to be used as follows:

0 The user-supplied table specified in the fable parameter.
1 EBCDIC to ASCII.

2 ASCII to EBCDIC.

3 Reserved for future use.

4 Reserved for future use.

5 EBCDIK to JIS (KANAS).

6 JIS (KANAZS) to EBCDIK.

byte array (required)
The string of characters to be translated.

byte array (optionai)

A byte array to which the translated character string is returned. If an
outstring is not specified, all translation will occur within instring. The in-
string and outstring parameters may specify the same array.

integer by value (required)
A positive integer specifying the length (in bytes) of instring.

2-36

table byte array (required when code=0, otherwise optional)

A byte array to be used as the translation table. The contents of table, and
the order of these contents, define the translation process. The length of
table may be as large as 256 bytes, but it needs to be only as large as the
largest numeric value of any source byte in instring. The table array is con-
structed such that each byte in table corresponds to a byte value in the
source string to be translated. For example, the first byte in zable gives the
code to be substituted for source bytes whose value is 0.

CONDITION CODES

CCE Request granted. Translation performed successfully.
CCG Not returned by this intrinsic.
CCL Request denied because an error occurred.

ADDITIONAL DISCUSSION

"Translating Characters With the CTRANSLATE Intrinsic" in Section V.

2-37

DASCII

INTRINSIC NUMBER 75

Converts a double-word (32-bit) binary number to an ASCII string.

SYNTAX

1 DV IV BA
numchar : =DASC1 1 (dword ,base ,string);

A 32-bit double-word binary number can be converted to a different base and represented as a
numeric character ASCII string by 1ssuing the DASCI I intrinsic call.

FUNCTIONAL RETURN

numchar integer
The number of characters in the resulting string.

PARAMETERS
dword double by value (required)

A double-word value indicating the number to be converted to ASCII code.
base integer by value (required)

One of the following integers indicating octal or decimal conversion:

8 Octal conversion.
10 Decimal conversion (left-justified).

If any other number is entered in this parameter, the intrinsic causes the

user process to abort.
string byte array (required)

The byte array into which the converted value is placed. This array must
be long enough to contain the result. No result will exceed 11 characters.

For octal conversion (base=8), 11 characters, including leading zeros, are
always returned in string, showing the octal representation of dword. The
length (numchar) returned by DASCII is the number of significant (right-
justified) characters in sfring, excluding leading zeros. If dword=0, the
length returned by DASCIIis 1.

For decimal conversions (base=10), dword is considered as a 32-bit, two’s
complement integer ranging from -2,147,483,648 to +2,147,483,647.
Leading zeros are removed and the result is left-justified in string. If the
value of dword is negative, the first byte of the string returned contains a
minus sign. If dword=0, only one 0 is returned to string. The string array
can contain up to 11 characters, including the sign. If dword=0, the length
returned by DASCIIis 1.

2-38

CONDITION CODES

The condition code remains unchanged.

ADDITIONAL DISCUSSION

"Converting Numbers from Binary Code to ASCII Strings" in Section V.

2-39

DATELINE

NO INTRINSIC NUMBER ASSIGNED

Returns the current date and time.

SYNTAX
BA
DATELINE(datebuf);
PARAMETERS
datebuf byte array (required)

A 27-~character byte array which contains the date and time information
in the format:

FRI, MAY 27, 1983, 12:06 PM

CONDITION CODES

The condition code remains unchanged.

ADDITIONAL DISCUSSION

None.

2-40

DBINARY

INTRINSIC NUMBER 74

Converts a number from an ASCII string to a double-word binary value.

SYNTAX

D

BA IV
dval : =DBINARY (string,length);

FUNCTIONAL RETURN

dval

PARAMETERS

string

length

double (optional)
The converted double-word binary value.

byte array (required)

Contains the octal or signed decimal number (in ASCII characters) to be
converted. If the character string in this array begins with a percent sign
(%), it is treated as an octal representation, if the string begins with a plus
sign, a minus sign, or a number, it is treated as a decimal representation.
Leading blanks are not allowed, and are treated as illegal characters.

integer by value (required)

An integer representing the length (number of bytes) in the string contain-
ing the ASCII-coded value. If the value of length is O, the intrinsic returns
0 to the calling process. If the value of length is less than O, the intrinsic
causes the user process to abort.

CONDITION CODES

CCE

CCG

CCL

Successful conversion. A double-word binary value is returned to the
program.

A word overflow, possibly resulting from too many characters (string
number too large), occurred in the word returned.

An illegal character was encountered in string. For example, the digits 8
or 9 were specified in an octal value.

ADDITIONAL DISCUSSION

"Converting Numbers from an ASCII Numeric String to a Binary Coded Value" in Section V.

2-41

DEBUG

INTRINSIC NUMBER 99

Invokes the DEBUG facility.
SYNTAX

DEBUG;

PARAMETERS

None.

CONDITION CODES

The condition code remains the same.

ADDITIONAL DISCUSSION

MPE Debug/Stack Dump Reference Manual (30000-90012).

2-42

DLSIZE

INTRINSIC NUMBER 135

Expands or contracts the area between DL and DB.

SYNTAX

I Iv
dldbsize:=DLSIZE(size);

This intrinsic causes the area between DL and DB to be expanded or contracted within the stack seg-
ment. All current information within the area is saved on expansion. If contracting, data in the area
which is to be contracted is lost. A request for contraction less than the initial DL size of the area
causes the initial DL size to be granted and CCL to be returned. If the size requested causes the stack
to exceed the maximum size permitted by the stack area (Z-DL), only this maximum is granted.

All addressing within the DL-to-DB area is DB-relative "negative" indexing. Therefore, SPL is the
only language which can access this area for you. If you wish to access this area in SPL, please note
that the original data is not moved relative to DB on expansion or contraction of the area. For ex-
ample, if a variable is located at DB-10 before an expansion, it will be at DB-10 after the expansion.

FUNCTIONAL RETURN

dldbsize integer (optional)
The size actually granted. This value is a negative quantity except on error
condition CCL when it is possible to have a positive value returned.

PARAMETERS

size integer by value (required)
A negative integer representing the new size of the DL-to-DB area. A size
of 0is permitted and resets the DL-to-DB area to the original value assign-
ed when the process was created (initial DL). (This is the only way to con-
tract the DL-to-DB area.) The size granted will be an absolute value
which is rounded up so that the distance between the beginning of the seg-
ment and DB is a multiple of 128 words.

CONDITION CODES

CCE Request granted. The value returned is at least as large as the value
requested.
CCG Requested size exceeded maximum limit allowed. The maximum limit al-

lowable is granted and its size is returned.
CCL An illegal size parameter was specified. The size parameter was a positive

integer. The original area size, assigned when the stack segment was
created, is granted.

2-43

ADDITIONAL DISCUSSION

"Changing the DL to DB Area Size" in Section V.

2-44

DMOVIN

INTRINSIC NUMBER 132

Copies data from an extra data segment into the stack.

SYNTAX

LvVv IV Iv LA
DMOVIN(index ,disp ,number ,location);

A process can copy data from an extra data segment into the stack by issuing the DMOVIN intrinsic
call. A bounds check is initiated by the intrinsic on both the extra data segment and the stack to en-
sure that the data is taken from within the data segment boundaries and moved to an area within the
stack boundaries. For example, in the diagram shown below, to move four words from locations 422
through 425 of the data segment whose index is 21, to DB+40 through DB+43 of the stack, the in-
trinsic call would be:

DMOVIN(21,422,4,ARAC10));

The index is 21 (refer to GETDSEG); displacement (disp) within the data segment is 422; the number
of words to move into the stack is 4; and the DB relative location to begin transferring the data is the
address of ARAC10). If ARAC10) is at DB+40, the end result will be the four words moved to DB+40
through DB+43 within the stack, as shown below:

STACK DATA SEGMENT

DL (GETDSEG INDEX=21)
DB 0

ARA(Q)

ARA(1) .

ARA (10) DB+40 042503 422 042503

41 045501 - 423 045501
42 047113 << 424 047113
43 040522 425 040522
Q
S
7 12000

2-45

PARAMETERS
index

disp

location

logical by value (required)
A word containing the logical index of the extra data segment, obtained
from a GETDSEG intrinsic call.

integer by value (required)

The displacement of the first word in the string to be transferred from the
first word in the data segment. This must be an integer value greater than
or equal to zero.

integer by value (required)
The size of the data string to be transferred, in words. This must be an in-
teger value greater than or equal to zero.

logical array (required)
The array (buffer) in the stack where the data string is to be moved.

CONDITION CODES

CCE

CCG

CCL

Request granted.
Request denied because of bounds-check failure.

Request denied because of illegal index or number parameter.

SPECIAL CONSIDERATIONS

Data Segment Management (DS) capability required.

ADDITIONAL DISCUSSION

The GETDSEG intrinsic in this section, and "Creating an Extra Data Segment" in Section III.

2-46

DMOVOUT

INTRINSIC NUMBER 133

Copies data from the stack to an extra data segment.

SYNTAX

LV 1v IV LA
DMOVOUT (index ,disp ,number ,location);

The DMOVOUT intrinsic copies data from the stack to an extra data ssgment. When DMOVOUT is called,
a bounds check is initiated to ensure that the data is taken from an area within the stack boundaries
and moved to an area within the extra data segment boundaries. For example, in the diagram shown
below, to move four words from ARA(C10) within the stack to the data segment whose index is 2
(from a GETDSEG call), starting at location 201 within the segment, the intrinsic call could be:

DMOVOUT (2,201,4,ARAC10));

The index is 2; the displacement (disp) within the data segment is 201; the number of words to be
moved to the data segment is 4; and the location of the data within the stack is the address of
ARAC10). If ARAC10) is at DB+20, the end result is that the four words within the stack will be
moved to words 201 through 204 of the data segment, as shown below:

STACK DATA SEGMENT

DL (GETDSEG INDEX=2)
DB 0

ARA(0)

ARA(1) ,

ARA (10) DB+20 054517 201 054517

21 052522 ~_ 202 052522
22 047101 ~ 203 047101
23 046505 204 046505
Q
S
u 4096

2-47

PARAMETERS
index

disp

rumber

location

logical by value {required)
A word containing the logical index of the extra data segment, obtained
from a GETDSEG call.

integer by value (required)

The displacement, in the extra data segment, of the first word of the
receiving buffer from the first word in the data segment. This value must
be an integer greater than or equal to zero.

integer by value (required)
The size of the data string to be transferred, in words. This must be an in-
teger value greater than or equal to zero.

logical array (required)
The array (buffer) in the stack containing the data to be moved.

CONDITION CODES

CCE

CCG

CCL

Request granted.
Request denied because of bounds-check failure.

Request denied because of illegal index or number parameter.

SPECIAL CONSIDERATIONS

Data Segment Management (DS) capability required.

ADDITIONAL DISCUSSION

The GETDSEG intrinsic in this section, and "Creating an Extra Data Segment" in Section III.

2-48

ENDLOG

NO INTRINSIC NUMBER ASSIGNED

Marks the end of a user logging transaction.

SYNTAX

D LA I 1 I
ENDLOG (index ,data,len ,mode ,status);

The ENDLOG intrinsic posts a special record to the logging file to mark the end of a logical transaction
in the logging file. When the record is posted, ENDLOG flushes the user logging memory buffer to en-
sure that the record gets to the logging file.

The data parameter of this intrinsic can be used to post user data to the logging file. This function of
the procedure is identical to the WRITELOG intrinsic.

PARAMETERS

index double (required)
The parameter returned from OPENLOG that identifies the user’s access to
the logging file.

data logical array (required)
An array in which the actual information to be logged is passed. A log
record contains 128 words of which 119 words are available to the user.
Thus, the most efficient use of logging file space is to structure arrays with
lengths in multiples of 119 words.

len integer (required)
The length of the data in data. A positive count indicates words and a
negative count indicates bytes. If the length is greater than 119 words, the
information in data will be divided into two or more physical log records.

mode integer (required)
An integer which specifies whether you want your process impeded by the
logging process if the logging buffer is full. If it is not possible to log the
transaction and the mode is set to NOWAIT, the ENDLOG intrinsic will
return an indication in the status word that the request was not completed:

0 Specifies WAIT.
1 Specifies NOWAIT.
status integer (required)

One of the following integers that the logging system uses to return infor-
mation on the status of the intrinsic call:

2-49

Message No. Meaning

0 No error occurred for this call.

1 User requested NOWAIT mode and the logging process is
busy.

2 Parameter out of bounds in logging intrinsic.

3 Requ.est to open or write to a logging process that is not
running.

4 Incorrect index parameter passed to a logging intrinsic.

5 Incorrect mode parameter passed to a logging intrinsic.

6 User request denied because logging process is suspended.

7 Illegal capability. Must have User Logging (LG) and
System Supervisor (OP) capabilities to use a logging
intrinsic.

8 Incorrect password passed to a logging intrinsic.

9 Error occurred while writing to the logging file.

10 Invalid DST passed to a logging system intrinsic.

12 System is out of disc space, logging cannot proceed.

13 No more logging entries.

14 Invalid access to logging file.

15 End-of-file on user logging file.

16 Invalid logging identifier.

CONDITION CODES

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

User Logging (LG) and System Supervisor (OP) capabilities required.

ADDITIONAL DISCUSSION

"User Logging" in Section III.

2-50

Changes length of a USL file.

SYNTAX

EXPANDUSLF

INTRINSIC NUMBER 84

I

v

filenum:=EXPANDUSLF (uslfnum,records);

Iv

You can increase or decrease the length of a USL file by calling the EXPANDUSLF intrinsic. When this
intrinsic is executed, a new USL file is created with a records length longer or shorter than the USL
file specified by uslfnum. The old USL file is copied to the new file with the same file name; the old

USL file is then deleted.

FUNCTIONAL RETURN

filenum

integer (optional)

The new file number. If an error occurs, the error number is returned in-
stead of the new file number; the condition code must be tested immediate-
ly on return from this intrinsic. If an error number were to be used as a
file number, unpredictable results would occur. The following lists the er-
ror numbers and their associated meanings:

Error No.

0

10

11

Meaning

The file specified by uslfnum was empty, an unexpected
end-of-file was encountered when reading the old USL
file, or an unexpected end-of-file was encountered
when writing the new usifrum.

Unexpected input/output error occurred. This can oc-
cur on the old USL file, or the new uslfrum to which
the intrinsic is copying the information.

The intrinsic was unable to open the new USL file.

The intrinsic was unable to close (purge) the old USL
file.

The intrinsic was unable to close (save) the new USL
file.

The intrinsic was unable to close $NEWPASS.

The intrinsic was unable to open $OLDPASS.

2-51

PARAMETERS

uslfram integer by value (required)
A word supplying the file number of the file.

records integer by value (required)
A signed integer specifying the number of records by which the length of
the USL file is to be changed. If records is a positive value, the new USL
file is longer than the old USL. If records is a negative value, the new USL
file is shorter than the old USL.

CONDITION CODES

CCE Request granted. The new file number is returned.
CCG Not returned by this intrinsic.
CCL Request denied. An error number was returned to filenum.

ADDITIONAL DISCUSSION

MPE Segmenter Reference Manual (30000-90011).

2-52

FATHER

INTRINSIC NUMBER 109

Requests the Process Identification Number (PIN) of its father process.

SYNTAX

I
pin:=FATHER;

A process can determine the Process Identification Number (PIN) of its father by calling the FATHER
intrinsic.

FUNCTIONAL RETURN

pin integer
An integer containing the Process Identification Number (PIN) for the
father of the process.

CONDITION CODES

CCE Request granted. The father is a user process.
CCG Request granted. The father is a job or session main process.
CCL Request granted. The father is a system process.

SPECIAL CONSIDERATIONS

Split-stack calls permitted.

Process Handling (PH) capability required.

ADDITIONAL DISCUSSION

"Determining Father Process" in Section III.

2-53

FCARD

NO INTRINSIC NUMBER ASSIGNED

Drives the HP 7260A Optical Mark Reader (OMR).

SYNTAX

I I

FCARD(recode , filenum,bufadr ,count ,status);

IA I I

The FCARD intrinsic allows you to control the operation of the Optical Mark Reader (OMR)
programmatically. This is achieved through passing a parameter (recode) , corresponding to the func-
tion of FCARD desired, from your program to FCARD. FCARD returns to the program parameter values
which indicate the success or the cause of failure of execution, the status of the HP 7260A, the file
number of the HP 7260A/terminal file for which the function has been performed and the number of
columns read at the completion of a read request.

PARAMETERS

recode integer (required)
A positive integer represented as an input or output parameter.

As an input parameter, recode requests one of the following options
(functions):

0

10

Open the reader and terminal as a file and return the filenum to the
program through SPL/3000 conventions.

Read a single card whether in ASCII or in column image format.

Select the previously read card by routing the card into the select
output hopper (providing option 002 of the HP 7260A is installed).

Retransmit data from the previously read card. This transmission
may be performed in ASCII or column image reading formats,
depending on the latest FCARD call issued specifying recode equal to
11or12.

Temporarily suspend the program awaiting an operator action (press
the READY switch). This particular call to FCARD will maintain
control and will not be completed until the operator presses the
READY switch.

Cause the HP 7260A motor to come to a stop and deactivate MUTE
for the associated terminal, if muted. When MUTE is activated and
the HP 7260A is in its READY state, data transmission from the
computer and from the HP 7260A to the terminal is disabled.

2-54

11

12

13

17

18

20

Cause the output format of the subsequent read (recode=1) and
retransmit (recode=3) requests to be performed in the image reading
format. In image mode reading, count is returned to the program
with the number of columns which have been transmitted.

Cause the output format of the subsequent read (recode=1) requests to
be performed in the ASCII reading format. In ASCII mode reading,
count, is returned to the program with the number of characters
{columns) transmitted.

Cause the optional bell to ring (providing option 004 is installed).
Enable the "echo-on" function of the computer.

Disable the "echo-on" function of the computer.

Close the reader/terminal file opened with recode=0. This effectively
completes the program.

As an output parameter, recode indicates to the program whether a call to
FCARD has been properly executed. The indication given by the value of
recode is described below:

0

Indicates that the request, i.e. the call to FCARD, has been successful-
ly performed. For the following conditions, when output recode=0,
the specified parameters are significant to the program:

a. If the request was to open a file (recode=0), then filenum is
significant.

b. If the request was either to read (recode=1) or to retransmit
(recode=3), then bufadr (the first byte may contain status infor-
mation identical to that contained in the parameter status),
count, filenum, and status are significant.

c. If the request was to select the previously read card (recode=2),
then status is significant.

d. If the request was to perform a temporary suspension of the
program (recode=4), then status is significant.

e. For all other requests (recode=10, 11, 12, 17, 18, and 20), none
of the other parameters are significant.

Indicates that recode specified in the request was not one of the fol-
lowing legal values: 1, 2,3, 4,10, 11,12, 13, 17, 18, or 20.

Indicates that FCARD was unable to open the HP 7260A /terminal pair
as a file. This error is not recoverable; the program should indicate
an error and terminate itself.

Indicates that FCARD has encountered a file read or write error while

accessing the HP 7260A. This error is not recoverable; the program
should indicate an error and proceed to a normal termination.

2-355

fileram

bufadr

count

status

S5 Indicates that FCARD was unable to close the terminal file. This error
is not recoverable; the program should indicate an error and proceed
to a normal termination.

6 Indicates that a logical end-of -data (:JOB, :EQJ, :EOD, and :DATA)
was encountered while reading data in response to either a read or
retransmit request.

7 Indicates that FCARD has encountered a file error on a request for
either enabling or disabling the echo function.

8 Indicates that FCARD has detected a data dropout condition while the
HP 7260A was transmitting. You should request a retransmission of
the data or status (refer to recode=3).

integer (required)

A word supplying the file number of the file associated with the
reader/terminal file. This file number is returned to the program from
FCARD with the output recode=0. It must be provided to FCARD on all
requests.

integer array (required)
The array to which the record is to be transferred. The declared length of
bufadr should be set to 120 words.

integer (required)

A positive integer which is returned to the program upon completion of a
read (recode=1) or a retransmit (recode=3) request indicating the number of
columns which have been transferred from the HP 7260A.

integer (required)

An integer indicating whether the HP 7260A has successfully performed or
responded to the read, select, retransmit, or temporary suspend request. If
status is equal to zero, then the request has been successfully performed. If
status is not equal to zero, then it contains an octal value specifying the HP
7260A condition. The octal values indicate the following conditions:

OCTAL 07 Input hopper empty or hopper full. Can either be
returned upon a read request (recode=1) or upon a
retransmit request, if there is no data to retransmit
(recode=3).

OCTAL 11 Pick fail. Can either be returned upon a read request
(recode=1) or upon a retransmit request, if there is no
data to transmit (recode=3).

OCTAL 13 Select hopper full. Indicates that the OMR select hopper
was full when the select request (recode=2) was issued.

2-56

OCTAL 14

OCTAL 22

OCTAL 37

Successful select. Indicates that the HP 7260A has suc-
cessfully selected the card upon the select request
(recode=2).

READY status. Indicates that the HP 7260A READY
push button has been pressed (recode=4). Would also in-
dicate that the HP 7260A is ready but there is no data to
be retransmitted input (recode=3).

Not ready. Can either be returned upon a read request
(recode=1) or upon a retransmit request (recode=3). This
status is provided by the HP 7260A if the operator has
pressed the STOP button or if a lamp has burned out in
the read head.

FCARD derives the parameter status by assigning the contents of the first
byte of bufadr to status, if this byte equals one of the values of stafus

given above:

after a read (recode=1), select (recode=2) or retransmit

(recode=3) request, or if this byte equals octal 22 after a request for tem-
porary suspension of the program (recode=4).

For more details on the OMR status parameter, refer to the HP 7260A
Operating and Service Manual (07260-90001).

CONDITION CODE

The condition code remains unchanged.

ADDITIONAL DISCUSSION

Appendix B, "DEVICE CHARACTERISTICS".

2-57

FCHECK

INTRINSIC NUMBER 10

Requests details about file input/output errors.

SYNTAX

0-v v

FCHECK (filenum,errorcode ,tlog ,blknum,numrecs);

I I D I

When a file intrinsic returns a condition code indicating an input/output error, additional details may
be obtained by using the FCHECK intrinsic call. This intrinsic applies to files on any device.

FCHECK accepts zero as a legal filenum parameter value. When zero is specified, the information
returned in errorcode reflects the status of the last call to FOPEN. When FOPEN fails, there is no file
number which can be referenced in filenum. Therefore when FOPEN fails, a filenum of zero can be
used in the FCHECK intrinsic call to obtain the errorcode only.

PARAMETERS

filenum

errorcode

tlog

blknum

numrecs

integer by value (optional)

A word supplying the file number of the file for which error information is
to be returned. If omitted or 0, FCHECK assumes you want the last FOPEN
error.

integer (optional)

A word to which a 16-bit code specifying the type of error that occurred is
returned. If the previous operation was successful or an EOF was encoun-
tered, all bits are set to zero. (Refer to Table 2-2 for a listing of File
System Error Codes.)

Default: The error code is not returned.

integer (optional)

A word to which the transmission log value recorded on the last data trans-
fer is returned. This word specifies the number of words actually read or
written if an input/output error occurred.

Default: The transmission log value is not returned.

double (optional)

The physical record count if the file is not a spoolfile; or the logical record
count if the file is a spoolfile. The physical count is the number of physical
records transferred to or from the file since either FOPEN, for fixed and
undefined length record files; or the last rewind, rewind/unload, space
forward or backward to tape mark, for variable length record files.

integer (optional)
A word to which the number of logical records in the bad block (blocking
factor) is returned. - .

Default: The number of logical records is not returned.

2-58

Table 2-2. File System Error Codes

Code Meaning
(Decimal)
0 Successful (no errors) or end-of -file (EOF).
1 Illegal DB register setting (typically, a request in split-stack mode when

[NS S R S R i i el ol
PRl VP AW — o PP ITNR LN

DN
O 0~ LA

W W W W
W N = O

BW WL W W W
QO 00 2O\ Wn P

F O O O S
LA B W N —

it is illegal).

Illegal capability.

Required parameter is missing.

Disc space allocation disabled on all discs in domain.
DRT number >511.

Device has no available spare blocks.
Unformatted or uninitialized media on device.
Illegal parameter value.

Invalid file type specified in foptions.
Invalid record size specification.

Invalid resultant block size.

Record number out of range.

Can’t open file multiaccess, out of FMAVT entries.
More than 255 opens of a file.

Magnetic tape runaway.

Device powered up.

Forms control was reset.

Invalid operation.

Data parity error.

Software time-out.

End-of -tape.

Unit not ready.

No write-ring on tape.

Transmission error.

I/0 time-out.

Timing error or data overrun.

Start I/O (SIO) failure.

Unit failure.

End-of-line (EOL) special character terminator.
Software abort of input/output operation.
Data lost.

Unit not online.

Data-set not ready.

Invalid disc address.

Invalid memory address.

Tape parity error.

Recovered tape error.

Operation inconsistent with access type.
Operation inconsistent with record type.
Operation inconsistent with device type.
Write exceeds record size.

Update at record zero.

Privileged file violation.

Out of disc space.

Input/output error on a file label.

2-59

Table 2-2. File System Error Codes (Continued)

Code Meaning
(Decimal)
48 Invalid operation due to multiple file access.
49 Unimplemented function.
50 Nonexistent account.
St Nonexistent group.
52 Nonexistent permanent file.
53 Nonexistent temporary file.
54 Invalid file reference.
55 Device unavailable.
56 Invalid device specification.
57 Out of virtual memory.
58 No passed file.
59 Standard label violation.
60 Global RIN not available.
61 Out of group disc space.
62 Out of account disc space.
63 User lacks non-sharable device capability.
64 Program not prepped with multiple RIN capability.
65 Punch hopper empty.
66 Plotter limit switch reached.
67 Paper tape error.
68 Insufficient system resources.
69 1/0 error.
70 1/0 error while printing header/trailer.
71 Too many files open.
72 Invalid file number.
73 Bounds violation.
74 No room left in stack segment for another file entry.
76 Input buffer absent in IOWAIT.
77 NOWAIT input/output operation is pending.
78 No NOWAIT I/0 pending for any file.
79 No NOWAIT I/0 pending for any special file.
80 Spoolfile size exceeds configuration.
81 No SPOOL class defined in system.
82 Insufficient space in SPOOL class to honor this input/output request.
83 1/0 error on spoolfile.
84 Device unavailable for spoolfile.
85 Operation is inconsistent with spooling, (e.g. attempt to read hardware
status).
86 Spooling internal error.
87 Bad spoolfile block.
88 Nonexistent spoolfile.
89 Power failure.
90 Exclusive violation: file being accessed.
91 Exclusive violation: file accessed exclusively.
92 Lockword violation.
93 Security violation.
94 User is not creator.

2-60

Table 2-2. File System Error Codes (Continued)

Code Meaning
(Decimal)

95 Read not completed due to BREAK.
96 Disc I/0 error.
97 No CONTROL-Y PIN.
98 Read time overflow.
99 BOT and backspace tape.
100 Duplicate permanent file name.
101 Duplicate temporary file name.
102 I/0 error on directory.
103 Permanent directory overflow.
104 Temporary directory overflow.
105 Bad variable block structure.
106 Extent size exceeds maximum.
107 Insufficient space for user labels.
108 Invalid file label.
109 Invalid carriage control.
110 Attempt to save permanent file as temporary.
111 User lacks Save Files (SF) capability.
112 User lacks Private Volumes (UV) capability.
113 Volume set not mounted - mount problem.
114 Volume set not dismounted - dismount problem.
115 Attempted rename across volume sets rejected.
116 Invalid tape label FOPEN parameters.
117 Attempt to write on an unexpired tape file.
118 Invalid header or trailer tape label.
119 I/0 error positioning tape for tape labels.
120 Attempt to write IBM standard tape label.
121 Tape label lockword violation.
122 Tape label table overflow.
123 End of tape volume set.
124 Attempt to append labeled tape.
125 Expiration date can’t be later than that of preceding file.
126 Character set number must be between 0 and 31.
127 Form number must be between 0 and 31.

©128 Logical page number must be between 0 and 31.
129 Vertical format number must be between O and 31.
130 Number of copies must be between 1 and 32767.
131 Number of overlays must be between 1 and 8.
132 Page length parm must be between 12 (=3") and 68 (=17").
133 Picture number must be between 0 and 31.
134 Extended capability parm must be 0 (OFF) or 1 (ON).
137 Defective track on foreign disc.
138 Track does not exist on foreign disc.
139 Deleted record on IBM diskette.
148 Inactive RIO record.
149 Missing item number or return variable.
150 Invalid item number.

151

Undefined file type.

2-61

Table 2-2. File System Error Codes (Continued)

Code Meaning
(Decimal)

152 Unrecognized key word in FOPEN device parameter.

153 Expecting " ;" or "carriage return" in FOPEN device parameter.

154 Environment file open error.

155 File not environment file. Check file code or record size.

156 Header record incorrect.

157 Uncompiled environment file.

158 Error reading environment file.

159 Error closing environment file.

160 Error doing FDEVICECONTROL from environment file.

161 Too many parameters in device string overflow.

162 Expecting "=" after keyword in device parameter.

163 "ENV" backreference in file equation incorrect.

164 The device parameter too large or missing carriage return.

165 Invalid density specification.

166 FFILEINFO failed in accessing remote spoolfile.

167 Spoolfile label error, can’t insert environment file name.

168 Item not supported on remote system.

170 The record is marked deleted. FPDINT positioned pointer to a record that
was marked for deletion.

171 Duplicate key value (KSAM error).

172 No such key (KSAM error).

173 The tcount parameter larger than record size (KSAM error).

174 Cannot get extra data segment (KSAM error).

175 Internal KSAM error.

176 Illegal extra data segment (KSAM error).

177 Too many extra data segments for this process (KSAM error).

178 Not enough virtual memory for extra data segment (KSAM error).

179 File must be locked before issuing this intrinsic (KSAM error).

180 The KSAM file must be rebuilt because this version of KSAM does not
handle the file built by previous version.

181 Invalid key starting position (KSAM error).

182 File is empty (KSAM error).

183 Record does not contain all keys (KSAM error).

184 Invalid record number (KSAM FF INDN intrinsic error).

185 Sequence error in primary key (KSAM error).

186 Invalid key length (KSAM error).

187 Invalid key specification (KSAM error).

188 Invalid device specification (KSAM error).

189 Invalid record format (KSAM error).

190 Invalid key blocking factor value (KSAM error).

191 Record does not contain search key for deletion. Specified key value
points to record which does not contain that value (KSAM error).

192 System failure occurred while KSAM file was opened.

193 $STDIN/$STDLIST cannot be redirected to KSAM files.

194 KSAM files not allowed for global AFTs.

195 Global files cannot be remote files.

196 Language not supported (KSAM error).

2-62

Table 2-2. File System Error Codes (Continued)

Code Meaning
(Decimal)

197 Native language internal error (KSAM error).

198 Invalid version number in KSAM file (KSAM error).

201 Invalid ID sequence.

202 Invalid telephone number (CS error).

203 No telephone list specified (CS error).

204 Unable to allocate an extra data segment for DS/DSN 3000.

205 Unable to expand the DS/DSN 3000 extra data segment.

212 File number returned from IOWAIT is not a DS line number.

214 The requested DS line has not been opened with a user :DSLINE
command.

216 Message rejected by remote computer (DS error).

217 Insufficient amount of user stack available (DS error).

221 Invalid DS message format (Internal DS error).

240 Local Communication line not opened by operator (DS error).

241 DS line in use exclusively or by another subsystem.

242 Internal DS software malfunction.

243 Remote computer not responding (DS error).

244 Communications interface error. Remote Computer reset the line.

245 Communications interface error. Receive time-out.

246 Communications interface error. Remote computer has disconnected.

247 Communications interface error. Local time-out.

248 Communications interface error. Connect time-out.

249 Communications interface error. Remote computer rejected connection.

250 Communications interface error. Carrier lost.

251 Communications interface error. The local data set for the DS line went
"not ready".

252 Communications interface error. Hardware failure.

253 Communications interface error. No response to dial request by the
operator.

254 Communications interface error. Invalid input/output configuration.

255 Communications interface error. Unanticipated condition.

302 Invalid item number for FDEVICECONTROL.

303 Invalid access for item number to FDEVICECONTROL.

304 Attempt to change terminal parity in 8-bit mode.

305 Invalid format in terminal configuration file.

306 Checksum error in terminal configuration file.

307 Passed value to FDEVICECONTROL less than minimum.

308 Passed value to FDEVICECONTROL greater than maximum.

309 Passed value to FDEVICECONTROL is unsupported.

310 Count to FDEVICECONTROL insufficient to return information.

311 Count to FDEVICECONTROL greater than available store information.

312 Passed special character has previously defined function.

2-63

CONDITION CODES

CCE Request granted.
CCG Not returned by this intrinsic.
CCL Request denied because filenum was invalid or a bounds violation occurred

while processing this request (errorcode is 73).

SPECIAL CONSIDERATIONS

Split-stack calls permitted.

ADDITIONAL DISCUSSION

None.

2-64

FCLOSE

INTRINSIC NUMBER &8

Closes a file.

SYNTAX

Iv Iv v
FCLOSE(filenum,disposition,seccode);

The FCLOSE intrinsic terminates access to a file. This intrinsic applies to files on all devices. FCLOSE
deletes buffers and control blocks through which the user process accessed the file. It also deallocates
the device on which the file resides and it may change the disposition of the file. If you do not issue
FCLOSE calls for all files opened by your process, such calls are issued automatically by MPE when the
process terminates. All magnetic tape files are left offline after such FCL.OSE calls, to indicate to the
System Operator that they may be removed.

The FCLOSE intrinsic can be used to maintain position when creating or reading a labeled tape file
that is part of a volume set. If you close the file with a disposition code of 3, the tape does not
rewind, but remains positioned at the next file. If you close the file with a disposition code of 2, the
tape rewinds to the beginning of the file but is not unloaded. A subsequent request to open the file
does not reposition if the sequence (seq) subparameter of formmsg in FOPEN specifies NEXT or
default (1). A disposition code of 1 (rewind and unload) implies the close of an entire volume set.

If an unlabeled magnetic tape is closed with a disposition code of 0, 1, or 4, and the tape was written
to while open, FCLOSE writes three EOFs at the end of the tape before performing a rewind or
rewind/unload. This ensures that all tapes have an acceptable number of EOF marks at the end. The
three EOFs are written only after the last FCLOSE to occur before the rewind, and only if the tape
was written on. (This feature applies to version G.01.00 or later only.)

For circular files, deletion of disc space beyond the end-of -file is not allowed.

PARAMETERS
filernum integer by value (required)

A word supplying the file nut_nber of the file to be closed.
disposition integer by value (required)

Indicates the disposition of the file, significant only for files on disc and
magnetic tape (disposition is ignored by the Foreign Disc Facility). This
disposition can be overridden by a corresponding parameter in a :FILE
command entered prior to program execution. The disposition options are
defined by the bit fields (13:3) and (12:1) as follows:

(13:3) - Domain Disposition.

=000 No change. The disposition remains as it was before the file was
opened. Thus, if the file is new, it is deleted by FCLOSE; other-
wise, the file is assigned to the domain it belonged to previously.
An unlabeled tape file is rewound. If the file resides on a labeled
tape, the tape is rewound and unloaded.

2-65

=001 Permanent file. If the file is a disc file, it is saved in the system
file domain. A new or old temporary file on disc will have an entry
created for it in the system file directory. Should a file of the same
name already exist in the directory, an error code is returned and
the file remains open. If the file is an old permanent file on disc,
this domain disposition has no effect. Also, if the file is stored on
magnetic tape, the tape is rewound and unloaded.

=010 Temporary job file (rewound). The file is retained in the user’s
temporary (job/session) file domain and can be requested by any
process within the job/session. If the file is a disc file, the unique-
ness of the file name is checked. Should a file of the same name al-
ready exist in the temporary file domain, an error code is returned
and the file remains open. When a file resides on unlabeled mag-
netic tape, the tape is rewound. However, if the file resides on
labeled magnetic tape, the tape is backspaced to the beginning of
the presently opened file.

=011 Temporary job file (not rewound). This option has the same effect
as domain disposition 010, except that tape files are not rewound.
In the case of unlabeled magnetic tape, if this FCLOSE is the last
done on the device (with no other FOPEN calls outstanding) the tape
is rewound and unloaded. If the file resides on a labeled magnetic
tape, the tape is positioned to the beginning of the next file on the
tape.

=100 Released file. The file is deleted from the system.

(12:1) - Disc Space Disposition (for fixed, undefined, and variable format
files.

=0 Does not return any disc space allocated beyond the end-of-file
indicator.

=1 Returns any disc space allocated beyond the end-of -file indicator to the
system. The EOF becomes the file limit. No records may be added to
the file beyond this new limit.

Bit (0:12) - Reserved for MPE and should be set to zero.

When a file is opened by the FOPEN intrinsic, a file count (maintained by
MPE for each file) is incremented by one. When the file is closed, the file
count is decremented by one. If more than one FOPEN is in effect for a
particular file, its disposition is saved but not affected by the FCLOSE call
until the file count is decremented to zero. Then the effective (saved)
disposition is the smallest nonzero disposition parameter specified among all
FCLOSE calls issued against the file. For example, the file XYZ is opened
three successive times by a process. The first FCLOSE disposition is 1, the
second FCLOSE disposition is %14, and the third (and last) FCLOSE disposi-
tion is %12. The final disposition on the file XYZ will be disposition 1
(permanent file and no return of disc space).

2-66

seccode

integer by value (required)
Denotes the type of security initially applied to the file. This is significant

only for new permanent files (seccode is ignored by the Foreign Disc
Facility). The options are:

0 Unrestricted access. The file can be accessed by any user, unless
prohibited by current MPE provisions.

1 Private file creator security. The file can only be accessed by its
creator.

CONDITION CODES

CCE

CCG

CCL

The file was closed successfully.
Not returned by this intrinsic.

The file was not closed because an incorrect filenum was specified or be-
cause another file with the same name and disposition exists in the system.
Any outstanding write I/Os which failed will also cause the FCLOSE to fail
(such I/Os as buffered writes which are done in background).
Additionally, an illegal disposition (5, 6, or 7) may have been specified.
This can be detected by FCHECK returning an error of 49.

SPECIAL CONSIDERATIONS

Split-stack calls permitted.

ADDITIONAL DISCUSSION

"Closing Files", "File Domains", and "Internal Operations for File Accessing" in Section IV.

For further information on magnetic tape files and associated functions, refer to the MPE File System
Reference Manual (30000-90236).

2-67

FCONTROL

INTRINSIC NUMBER 13

Performs control operations on a file or device.

SYNTAX

v 1v L
FCONTROL (filenum,controlcode ,param) ;

The FCONTROL intrinsic performs various control operations on a file or on the device on which the
file resides. These operations include:

¢ Supplying a printer or terminal carriage control directive.

e Verifying input/output.

e Reading the hardware status word pertaining to the device on which the file resides.

e Setting a terminal’s time-out interval.

o Repositioning a file at its beginning.

e Writing an end-of -file indicator.

e Skipping forward or backward to a tape mark.

The FCONTROL intrinsic applies to files on disc, tape, terminal, or line printers. There are some spe~
cial conditions that exist when FCONTROL is used with files on labeled magnetic tape. Some

FCONTROL functions cannot be used with labeled tapes, and other functions may produce unexpected
results. (Refer to controlcodes 5, 6, 7, 8,and 9.)

PARAMETERS

filemm integer by value (required)
A word supplying the file number of the file for which the control opera~
tion is to be performed.

controlcode integer by value (required).

An integer specifying one of the following operations to be performed:

0 General device control. The param parameter is transmitted to the ap-
propriate device driver. The value returned is transmitted to the user
through param.

1 Line control. A request to send the value specified in param to the
terminal or line printer driver as a carriage control directive. For non-~
spooled devices only, use line controls provided by FWRITE when direct-
ing to a disc or a spooled file.

2-68

Complete input/output. This ensures that requested input/output has
been physically completed. Valid only for buffered files. Posts the
block being written whether full or not. This control code is ignored
for message files.

Read hardware status word. This operation returns the status word
from the c2vice on which the file resides to param. The returned value
is the status of the device from the previous input/output operation,
including FOPEN of the file. :

Set time-out interval. This code indicates that a time-out interval is to
be applied to input from a file. If input is requested from a file but is
not received in this interval, the FREAD request terminates prematurely
with CCL. The interval itself is specified, in seconds, in a word on the
user’s stack, indicated by param. If this interval is zero, any previously
established interval is cancelled, and no time-out occurs. A controlcode
4 only affects the next read and is ignored if the addressed file is not
being read from the terminal. This code may also be applied to an
Interprocess Communication (IPC) file. In this case, param specifies
the length of time that a process will wait when reading from an empty
file or writing to a full one. For IPC files, the time-out will remain
enabled until it is explicitly cancelled. Refer to the MPE File System
Reference Manual (30000-90236).

Reposition the file at its beginning. The next record read or written is
the first record in the file. This code is not valid for files accessed as
"append-only". Note that on a labeled magnetic tape file, the tape is
positioned at the beginning of the opened file, and not necessarily at
the beginning of the volume.

Write end-of-file. This operation is used to denote the end-of-file
(EOF) on disc or magnetic tape, and is effective only for those devices.
If applied to a disc file, the operation writes a logical end-of -data in-
dicator at the point where the file was last accessed. The disc file label
also is updated and written to disc. For a file residing on unlabeled
magnetic tape, a tape mark is written at the current position of the
tape. This controlcode is not allowed for labeled magnetic tape files.
When applied in Interprocess Communication (IPC), this controlcode, is
used to verify the state of the file by writing the file label and buffer
area to disc; this ensures that the message file can survive system
crashes. No EOF is written.

Space forward to tape mark. This moves a magnetic tape forward until
a tape mark is encountered. If used on labeled magnetic tapes, the tape
is positioned at the beginning of user trailer labels, if any.

Space backward to tape mark. On unlabeled tapes, this moves a mag-
netic tape backward until a tape mark is encountered. If used on
labeled tapes, the tape is positioned at the beginning of user header
labels, if any.

Rewind and unload tape. This repositions a magnetic tape file at its
beginning and places the tape offline. Not allowed for labeled tapes.

2-69

NOTE

Control codes 0and 3 will be rejected for spooled devicefiles.
Control codes S through 9 (magnetic tape control) will be rejec-
ted for spooled :DATA tapes. Control codes 6 and 9 will be rejec-
ted for labeled magnetic tape files. All descriptions pertaining
to magnetic tape are also valid for serial disc. Refer to the dis-
cussion of magnetic tape files in the MPE File System Reference
Manual (30000-90236) for special considerations not covered
here.

The following values for controlcode are used in changing terminal charac-
teristics. Included with the definition of the code is an indication, where
applicable, of whether the characteristic is reset in BREAK mode or after
FCLOSE. Also listed are the default settings for each:

10

11

12

13

14

15

16

17

18

19

20

21

Change terminal input speed. (Not reset in BREAK mode; not reset
after FCLOSE.)

Change terminal output speed. (Not reset in BREAK mode; not reset
after FCLOSE.)

Turn echo facility on. (Not reset in BREAK mode; not reset after
FCLOSE. Default.)

Turn echo facility off. (Not reset in BREAK mode; not reset after
FCLOSE.)

Disable the system BREAK function. (Reset after FCLOSE.)
Enable the system BREAK function. (Reset after FCLOSE. Default.)

Disable the subsystem BREAK function. (Reset in BREAK mode;
reset after FCLOSE. Default.)

Enable the subsystem BREAK function. (Reset in BREAK mode;
reset after FCLOSE.)

Disable tape option. (Default.)
Enable tape option.

Disable the terminal input timer. (Reset in BREAK mode; reset after
FCLOSE. Default.)

Enable the terminal input timer. (Reset in BREAK mode; reset after
FCLOSE.)

Read the terminal input timer.

Disable parity checking. (Default.)

Enable parity checking.

Define line termination characters for terminal input.

2-170

26

27

28

29

34

35

36

37

38

39

40

41

43

45

46

0

1

2

Disable binary transfers. (Default.)
Enable binary transfers.

Disable user block mode transfers. (Not reset in BREAK mode; not
reset after FCLOSE. Default.)

Enable user block mode transfers. (Not reset in BREAK mode; not
reset after FCLOSE.)

Fnable line deletion echo suppression. (Not reset in BREAK mode;
reset after FCLOSE. Default.)

Disable line deletion echo suppression. (Not reset in BREAK mode;
reset after FCLOSE.)

Set parity.
Allocate a terminal.
Set terminal type.
Obtain terminal type information.
Obtain terminal output speed.
Set unedited terminal mode.
Aborts pending NOWAIT I/O request. For Interprocess Communica-
tion, CCG is returned when an outstanding I/O operation has com-
pleted. An IOWAIT call must be issued to finish the request.
Enable/disable extended wait. For Interprocess Communication, a
value of 1 for param enables extended wait. This permits a reader to
wait on an empty file that is not currently opened by any writer, or a
writer to wait on a full file that has no reader. This will remain in
effect until an FCONTROL call with a controlcode of 45 and a param
value of O is issued. Disabled extended wait, param value of O,
specifies that if a second FREAD call is issued and it encounters an
empty file that has no reader, it will return an end-of -file condition.
Default: O.
Enable/disable reading writer’s ID. For Interprocess Communication,
a value of 1 for param enables reading the writer’s ID. Each record
read will have a two-word header. The first word will indicate the
type of record with the following codes:

Data record.

Open record.

Close record.

2-71

The second word will contain the writer’s ID number. If the record is
a data record, the data will follow the header; open and close records
contain no more information. If the value of param is 0, reading the
writer’s ID is disabled. Only data is read to the reader’s target area.
The open and close records are skipped and deleted by the file system
when they come to the head of the message queue, and the two-word
header is transparent to the reader.

Default: O.

47 Nondestructive read. If the value of param is 1 the next FREAD by this
reader will not delete the record. Subsequent FREAD calls will be unaf-
fected. When O is specified for param the next FREAD by this reader
will delete the record.

Default: O.

48 Enable/disable software interrupts. The external label (plabel) is con-
tained in param of your interrupt procedure. In SPL it is passed as a
parameter by placing an "®" before the procedure name. If the value
of param is 0, the interrupt mechanism is disabled for this file.

logical (required)

If controicode is 1, param denotes a word containing the value to be trans-
mitted to the terminal or line printer driver as a carriage control or mode-
control directive. The carriage control directive is selected from the listing
in Table 2-5, located in the description of the FWRITE intrinsic.

The mode-control directive determines whether any carriage control direc-
tive transmitted through the FWRITE intrinsic takes effect before printing
(pre-space movement) or after printing (post-space movement). The
mode-control directive is selected from octal codes %400 or %401 listed in
Table 2-5, located in the description of the FWRITE intrinsic.

If param contains a mode-control directive, then a value is returned to
param that shows the mode setting of the device as it was before the call to
FCONTROL, as follows:

0 Post-spacing.

1 Pre-spacing.

If controlcode is 4, param denotes a word in the user’s stack that contains
the time-out interval, in seconds, to be applied to input from the terminal.

If controlcode is 2, 5, 6, 7, 8, or 9, param is any variable or word iden-
tifier. This parameter is needed by FCONTROL to satisfy the internal
requirements of the intrinsic. It serves no other purpose, however, and is
not modified by the intrinsic.

2-72

CONDITION CODES

CCE Request granted.
CCG Not returned by this intrinsic.
CCL Request denied because an error occurred.

SPECIAL CONSIDERATIONS

Split-stack calls permitted.

ADDITIONAL DISCUSSION

MPE File System Reference Manual (30000-90236).

2-73

FDELETE

NO INTRINSIC NUMBER ASSIGNED

Deactivates a Relative 1/0 (RIO) record.

SYNTAX

0-v IV DV
FDELETE(filenum,recnum);

FDELETE deactivates a specified logical record. If no record is specified (or the recnum is negative),
the next logical record becomes inactive. If the selected record has already been deactivated, CCE is
returned. The condition can be detected by calling the FCHECK intrinsic; an " INACTIVE RECORD"
error indicates that the record selected for this FDELETE was already inactive.

PARAMETERS
filemum integer by value (required)

The file number of the file to be deactivated.
recnum double by value (optional)

A double integer representing the relative logical record to be modified.

CONDITION CODES

CCE Request granted. No error (although inactive record may have been
encountered).

CCG Request denied. End-of-file.

CCL Request denied. Access error.

SPECIAL CONSIDERATIONS

Split-stack calls permitted.

Not applicable to message files.

ADDITIONAL DISCUSSION

MPE File System Reference Manual (30000-90236).

2-74

FDEVICECONTROL

NO INTRINSIC NUMBER ASSIGNED

Provides control operations to a printer, Workstation Configurator, (version G.01.00 or later) or a

spooled devicefile.

SYNTAX

FDEVICECONTROL (filerum,target ,tcount ,controlcode,

paraml ,paran? ,erynum) ;

v LA Iv v

Lv Lv I

FDEVICECONTROL may be used to download character sets, forms, and internal or control tables used
in printing. It may also be used to control the page size, pen positioning, use of character sets and
form, and the number of copies of each page to be printed, and other characteristics of the printing
environment. The IFS/3000 intrinsics (which perform the same functions for the HP 268x as
FDEVICECONTROL), together with the layout of the Character Set Load Record and Form Set Load
Record and the Logical Page Table, are discussed in the IFS/3000 Manual (36580-90001).

PARAMETERS

filerum

target

teount

controlcode

integer by value (required)
A word supplying the file number of the devicefile. This value is obtained
from FOPEN.

logical array (required)
This array contains data to be passed to the device. In general, it contains
character sets, forms, or Vertical Format Control (VFC) information.

integer by value (required)

An integer indicating the length of target, the units of which are deter-
mined by the sign. A positive value indicates the specified length is words;
a negative value indicates bytes.

integer by value (required)

The code number of the operation to be performed. These are described
below.

128 - Character Set Selection.

paraml (8:8) Primary character set identification.

param?2 (8:8) Secondary character set identification.

The HP 268x page printer can contain up to 32 character sets, thus allow-
ing the use of a variety of fonts, styles, print rotations, and languages.
Use controlcode 134 to download character sets to the printer. Use control-

code 128 to select any two downloaded character sets to be the current
primary and secondary character sets.

2-75

To change to the secondary character set a character at a time, set the
eighth bit of the byte coding for the desired ASCII character. The HP 268x
will strip out this bit and print, in the secondary character set, the charac-
ter represented by the remaining 7-bit value. To change to the secondary
character set for a number of characters and over several lines, insert a
shift-in character (Nc) in the data. Insert a shift-out character (0") where
the primary character set is to be re-activated.

129 - Logical Page Activation/Deactivation Request.
paraml (0:1) =0 Ignores the left byte of param2.

=] Deactivates the Logical Page Table entry iden-
tified in the left byte of param2.

paraml (1:1) =0 Ignores the right byte of param?2.

=1 Activates the Logical Page Table entry identified
in the right byte of param2.

param?2 (0:8) Logical Page Table entry (from 0 to 31) to be deac-
tivated. Ignored if param1 (0:1)=0.

param?2 (8:8) Logical Page Table entry (from Oto 31) to be ac-
tivated. Ignored if param1 (1:1)=0.

This controlcode allows you to cancel or enable the printing of logical pages
during a job through the activation or deactivation of those pages.

Every physical page is composed of one or more logical pages. When the
HP 268x begins to print each physical page, it scans the Logical Page Table
(LPT) for the first logical page labeled as active. The printer then con-
tinues searching the table sequentially for active pages and printing them
until it has printed the last active page. At this point the HP 268x per-
forms a physical page eject and starts the sequence again. There must be at
least one active LPT entry while the HP 268x is printing.

130 - Relative Pen Displacement.

paraml A 16-bit signed integer containing the desired X axis
displacement, in dots, of the pen from its current
position.

param?2 A 16-bit signed integer containing the desired Y axis
displacement, in dots, of the pen from its current
position.

No pen movement will result from requests to move the pen off the logical
page. As the coordinate system is based upon the current logical page itself
and not upon the page’s orientation with respect to the printer, you need
not consider how the page has been rotated when assigning displacement
values to paramI and param?2. Since the dot density for the HP 2680 (180
dots per inch) differs from that for the HP 2688 (300 dots per inch), the
effects of param1 and param?2 will be different.

2-76

131 - Absolute Pen Move.

paraml

param?2

An integer containing the X coordinate, in dots, of
the point to which you wish to move the pen.

An integer containing the Y coordinate, in dots, of
the point to which you wish to move the pen.

The values in paraml and param2 are measured from the upper left corner
of the logical page. As with controlcode 130, you need not take page rota-
tion into account when assigning coordinates, and the printer will not move
the pen if the location you specify is off the logical page. Since the dot
density for the HP 2680 (180 dots per inch) differs from that for the HP
2688 (300 dots per inch), the effect of param1 and param2 will be

different.

132 - Define Job Characteristics.

param! (O:

paraml (1:

param?2

1)

1y

=0 This bit is ignored.

=] The printer will not print job separation marks
until the next job is open.

=0 This bit is ignored.

=] Param2 contains the maximum allowable num-
ber of copies of each page.

Significant only if paramI (1:1)=1. This specifies
the maximum number of copies the printer will
make of any one page for the current job. The
default maximum is 32,767.

133 - Define Physical Page.

The following bits are ignored if set to zero:

paraml (O:
paraml (1:
paraml (2:
paraml (3:
param! (4:
paraml (5:
param1 (6:

paraml] (7:

1)
1)
1)
1)
1)
D
1)
1)

=] Turn on multicopy form overlay feature.

=] Turn off multicopy form overlay feature.

=] Reserved.

=] Redefine the physical page length.

=1 Redefine the number of copies per page desired.
=] Reserved.

=] Reserved.

=] Reserved.

2-77

paraml (8:8) New physical page length in units of 0.25 inches.
The length may not be less than 3.0 inches (a value
of 12) or greater than 17.0 inches (a value of 68).

param?2 Contains the number of copies of each page you
want to print. If this number exceeds the maximum
defined in param2 of controlcode 132, only the max-
imum number of copies is printed.

Although FDEVICECONTROL will accept page length values that are multi-
ples of 0.25 inches, the HP 268x printer is able to produce only pages that
are’multiples of 0.5 inches. For this reason, only use even values in
param] (8:8). In other words, bit (15:1)=0.

134 - Download/Delete Character Set.

paraml1 (0:1) =0 Download the character set identified in the
right-hand byte of param?2 into the HP 268x.

=1 Purge the character set identified in the right-
hand byte of param2 from the HP 268x.

param2 (0:1) =0 Indicates the first record of a load.

=1 Indicates a continuation of the previous record.
param?2 (8:8) Character set identifier - an integer from 0 to 31.
If you attempt to download a character set having the same identifier as
one existing in the printer, then the HP 268x will purge the existing
character set and repack the user area before loading the new font.
However, before the modification of the user area, the HP 268x prints all
data currently in its buffer, as it does whenever you load, overlay, or
delete a character set, form, or Vertical Format Control set (VFC).

135 - Download/Delete Form.

param] (0:1) =0 Load the form set identified in the right-hand
byte of param?2.

=1 Purge the identified form set from the HP 268x
printer’s memory.

param?2 (0:1) =0 Indicates the first record of a load.
=1 Indicates a continuation of the previous record.

param?2 (8:8) Form set identifier - an integer from O to 31.

2-78

If you attempt to download a form set having the same identifier as one ex-
isting in the printer, then the HP 26 8x will purge the existing form set and
repack the user area before loading the new form. However, before the
modification of the user area, the HP 268x prints all data currently in its
buffer, as it does whenever you load, overlay, or delete a character set,
form, or Vertical Format Control set (VFC).

136 - Download Logical Page Table.
param1 Is not used.
param2 (0:1) =0 Indicates the first record of a load.

=] Indicates a continuation of the previous record.
A logical page is a page of data that may or may not take up an entire sheet
of paper. It is possible to print up to eight logical pages on one physical
page. The Logical Page Table, 513 words long, contains some of the in-
formation needed to print up to 32 logical pages, so that the set of up to
eight logical pages printed on any one physical page may be varied.
137 - Download Multicopy Form Overlay Table.
param1 Is not use(i.
param?2 Is not used.
This operation allows you to emulate a multipart carbon by printing up to
eight copies of a page, each on one or two different forms.
FDEVICECONTRDL downloads a table containing one word of information
for each of the eight possible copies to be overlaid with a form into the
printer’s memory. The format of each word of the table is:
Bit (0:1) =0 This bit is ignored.

=] Forml is to be overlaid on the physical page.

(1:1) =0 This bit is ignored.

=] Form2 is to be overlaid on the physical page.

(2:4) Reserved.
(6:95) Form1 identifier - an integer from 0 to 31.
(11:5) Form2 identifier - an integer from O to 31.

2-79

138 - Download/Delete Vertical Format Control (VFC).
param] (0:1) =0 Load a VFC.

=] Delete a VFC.
param2 (0:1) =0 This is the first record of a load.

=1 This record is logically a continuation of the
previous record.

param2 (8:8) VFC set identifier - an integer from 0 to 31.

The Vertical Format Control table is an ASCII file downloaded to the HP
268x printer in order to give specific instructions on the print density,
location of the top of the page, the bottom of the page, and other
specifications of the printed page.

The HP 268x expresses the height of a printed line in dots and the system
uses this value to compute line positions on the page. Because these space
measurements are relative to the top of the logical page, as opposed to the
physical page, you may use the same or different Vertical Format Control
tables for logical pages of different rotations.

139 - Download/Delete a Picture.
param1 (0:1) =0 Load a picture.
=1 Delete a picture.
param2 (0:1) =0 This is the first record of a load.

=1 This record is a logical continuation of the
previous record.

param?2 (8:8) Picture identifier - an integer from 0 to 31.

When the picture is downloaded to the HP 268x, it changes every pointer
to reflect where the dot per bit symbol actually is in memory. If a picture
is downloaded and one is already present with the same identifier (0-31),
then the original one is overwritten in the Picture Descriptor Block (PDB).
The area taken up by the deleted picture will be freed as soon as the page
has been transferred to paper.

2-80

140 - Page Control.
paraml! (15:1) =0 Do not eject a physical page.
=] Do a physical page eject before going to the
specified logical page. This bit has no effect if
this is the first record since an environment load,
FOPEN or FCLOSE.
param1 (13:2) Auto eject mode.

=00 Use auto eject flag of last data record (default
at start of job is auto eject enabled).

=01 Enable auto eject (select VFC channel 1 on
new page).

=11 Disable auto eject (position pen at top of page).
param?2 (8:8) Logical page number - an integer from O to 31.
The logical page identified in param2 becomes the current logical page even
if other logical pages have entries which precede it in the Logical Page
Table. FDEVICECONTROL activates the specified page if it is inactive, and
the HP 268x performs a physical page eject if param1 (15:1)=1.

141- Clear Environment. When set to zero, the following bits are ignored.

param1 (0:1) =1 Clear all character sets.

param] (1:1) =1 Clear all forms.

paraml] (2:1) =1 Clear all Vertical Format Controls (VFCs).
paramlI (3:1) =] Clear all pictures.

param2 Is not used.

The printer will flush all data currently in its buffers, and then perform
the indicated clears, if any.

142 - Reserved.

143 - Load the Default Environment.

paraml Is not used.

param?2 Is not used.

The HP 268x printer flushes all data, erases the user area, and loads the

default chara~ter set, the Vertical Format Control (VFC), and the Logical
Page Table (LPT).

2-81

144 - Print Picture.
param1 (0:1) =0 Temporary picture.
=] Addressable picture.
paraml (1:1) =0 X and Y are relative to the current pen position.

=] X and Y are absolute pen position to the logical

page.
paramlI (2:14) X coordinate for picture placement (radixed
integer).
param2 (0:1) =0 First of temporary picture load.

=] Continuation record for load.

param?2 (1:1) Is not used.
param?2 (2:14) Y coordinate for picture placement (radixed
integer).

The X and Y values are radixed integers expressed in the coordinate system
of the logical page. The param! values allow the specification of picture
location relative to the current position of the logical pen or at an absolute
location on the logical page. In either case, the position refers to the user-
selected location on the picture specified in the Picture Descriptor Block
(PDB) as downloaded by the host. No bounds checking is done for pictures.

145 - End of Job.
param1 Is not used.
param?2 Is not used.

146 - Device Extended Capability Mode.

param1 =0 Clear.
=] Set.
param?2 Is not used.

2-82

paraml, param2

192 - Access Workstation Configurator terminal configuration file.

param 1 Item number of function. Refer to the Workstation
Configurator Reference Manual (30239-90001) for
values.

param?2 Access code

1= Return current value in farget.
2= Set item to value in target.

3= Set item to value in farget, and return current
value in target.

193 -Record processing information for NRIJE spoolfiles.

param] Integer indicating the character code (e.g. ASCII) of
spoolfile data. Refer to SNA NRIJE Network
Remote Job Entry User/Programmer Reference
Manual (30245-90001).

param2 (14:1) 0: Data is not compacted.
1: Data is compacted.

param2 (15:1) 0: Data is not compressed.
1: Data is compressed.

logical by value (required)

For each value of controlcode, there may be several possible values for
paraml and param2, which define the operation in more detail. These are
described in the list of operation code numbers under confrolcode.

integer (required)

If no error occurs errnum is set to zero. If an error occurs errnum contains
the File System error code. If FDEVICECONTROL detects a bounds violation
for errnum (i.e. an address outside the user’s stack area), errnum is
unchanged.

CONDITION CODES

CCE

CCG

CCL

Request granted.
Not returned by this intrinsic.

Request denied because an error occurred.

ADDITIONAL DISCUSSION

IFS/3000 Reference Guide (36580-90001).

Point-to-Point Workstation I/0O Reference Manual (30000-90250).

2-83

FERRMSG

INTRINSIC NUMBER 305

Returns message corresponding to FCHECK error number.

SYNTAX

I LA I
FERRMSG (errorcode ,msgbuf ,msglgth);

The FERRMSG intrinsic returns a message to msgbuf that corresponds to an FCHECK error number.
This makes it possible to display an error message from your program. The message describes the error
associated with the error number provided in the errorcode parameter.

PARAMETERS

errorcode integer (required)
An integer indicating the error code for which a message is to be returned.
It should contain an error number returned by FCHECK.

msgbuf logical array (required)
A logical array to which the message associated with errorcode is returned
by FERRMSG. In order to contain the longest string, msgbuf must be a min-
imum of 72 characters long.

msglgth integer (required)

An integer to which the length of the msgbuf string is returned. The
length is returned as a positive byte count.

CONDITION CODES

CCE Request granted.
CCG Request not granted because no error message exists for this errorcode.
CCL Request not granted. The msgbuf address may be out of bounds, msgbuf

may not be large enough, or msglgth is out of bounds.

ADDITIONAL DISCUSSION

"Using FERRMSG" in Section IV.

2-84

FFILEINFO

NO INTRINSIC NUMBER ASSIGNED

Provides access to file information.

SYNTAX

o-v Iv Iv BA
FFILEINFO(filerum [,itemmuml,itemvaluel]l
[,2temmum?2 ,itenwalue2]
[,itemnum3 ,itemvalue3]
[,itemmumd ,itemvalued]
[,itemmums ,itemvalueb1);

The itemnum/itemvalue parameters must appear in pairs. Up to five items of information can be
retrieved by specifying one or more itemnum/itemvalue pairs. FFILEINFO is designed to allow for fu-
ture changes so that new file information can be defined and accessed.

PARAMETERS

filermum integer by value (required)
MPE file number returned by FOPEN.

1temum integer by value (optional)
Cardinal number of the item desired; this specifies which item value is to
be returned. (Refer to "Item#" in Table 2-3.)

itemvalue byte array (optional)

Returns the value of the item specified by the corresponding ifemnum; the
data type of the item value depends on the item itself. (Refer to "Item
Value" in Table 2-3.)

CONDITION CODES

CCE No error.
CCG Not used.
CCL Access or calling sequence error.

ADDITIONAL DISCUSSION

MPE File System Reference Manual (30000-90236).

2-85

Table 2-3.

Item Values Returned by FFILEINFO

ITEM#
1

0 N AU B WN

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36
37
38

ITEM VALUE
Filename
Foptions
Aoptions
Recaord
Device type
Ldev # of remote file
Hdaddr
File code
Record pointer
EOF
File limit
Log count
Physcount
Block size
Extent size
Number of extents
User 1labels
Creator ID
Label address
Blocking factor
Physical block size
Data block size

Offset to data in blocks
Offset of Active Record Table
Size of Active Record Table

within the block
Vol. ID(label tape)
Vol.

File sequence number
Reel number

Sequence type
Creation date(Julian)
Label type

Current# of writers
Current# of readers
File Allocation Date
File Allocation Date

set ID(label tape)
Expiration date(Julian)

TYPE

O HH HMFHRODOOOO WM rFEHM™IF g

>

- H o H O

[or)
>

(o]
»

lo B PR e T

SPOOLFILE Devicefile number L
Spoolfile

(Bit (0:1) = 0 Input
(0:1) = 1
Bits (1:15)

Output Spoolfile
Devicefile Number)

(see
(see
{see
(see
(see
(see
(see
(see
(see
(see
(see
(see
(see
(see
(see
(see
(see
(see
(see
(see

(RIO

FGETINFO}
FGETINFO}
FGETINFO)
FGETINFO)
FGETINFO)
FGETINFO)
FGETINFO)
FGETINFO)
FGETINFOQ)
FGETINFO)
FGETINFO)
FGETINFO)
FGETINFO)
FGETINFO)
FGETINFO)
FGETINFO)
FGETINFQ)
FGETINFOQ)
FGETINFO)
FOPEN)

files)

UNITS

words/bytes

records
records
records
records/bytes
sectors

words
words
words
words
words

(CALENDAR format)
{CLOCK format)

2-86

Table 2-3. Item Values Returned by FFILEINFO (Continued)

ITEM# ITEM VALUE TYPE UNITS
39 RESERVED

40 Disc or diskette device status D
41 Device type I
42 Device subtype I
43 Environment file name BA
44 Last disc extent allocated I

45 Filename from labeled tape HDR1 record BA
46 Tape density
47 DRT number
48 UNIT number
49 Software interrupt PLABEL
50 Real device number of the file
51 Remote environment number
52 Last modification time (CLOCK format)
53 Last modification date (CALENDAR format)
54 File creation date {(CALENDAR format)
55 Last access date (CALENDAR format)
56 # data blocks in a variable length file
57 # of the user label written to the file
58 Number of opens for output
59 Number of opens for input
60 Terminal type, defined as: I
0-File’'s associated device is not a terminal
1-Standard hardwire or multi-point terminal
2-The terminal is connected via a phone-modem
3-DS pseudo terminal
4-X.25 Packet Switching Netword PAD
(Packet Assembler Disassembler) terminal
61%k NS/3000 remote environment id name

HH - = e O -

&k

If NS/3000 RFA (Remote File Access) is being used specify DSDEVICE Idev# when a DS (point-
to-point or X.25) link is being used.

If NS/3000 RFA is being used: DSDEVICE Idev# in ASCII if a point-to-point link is being used;
the X.25 node name if an X.25 link is being used. Users of item 61 must provide a buffer for
the node name (or envid). This buffer must be able to accommodate the required space of 52
bytes. If not you risk data corruption on variables whose DB-relative location follows that of the
Item 61 buffer or FSERR 73, "BOUNDS VIOLATION" from FFILEINFO.

2-87

FGETINFO

INTRINSIC NUMBER 11

Requests access and status information about a file.

SYNTAX

0-V v BA L L I
FGETINFO(filerum, filename, foptions,aoptions,recsize,

I L L I D D D
devtype,ldnum,hdaddr, filecode ,recpt ,EOF ,flimit

D D I L I
logcount ,physcount ,blksize,,extsize ,numextents,

I BA D
userlabels,creatorid,labaddr);

Once a file is opened on any device, the FGETINFO intrinsic can be used to request access and status

information about that file.

PARAMETERS

filerum integer by value (required)

A word supplying the file number of the file about which information is

requested.

filename byte array (optional)

A 28-character byte array to which the actual designator of the file being

referenced is returned, in the format:

filename.groupname .accountname

When the actual designator is returned, unused bytes in the array are filled
with blanks on the right. A nameless file will return an empty string.

Default: The actual designator is not returned.

foptions logical (optional)

The foptions parameter returns seven different file characteristics by set-
ting corresponding bit groupings in a 16-bit word. Correspondence is from
right to left. The file characteristics returned (the bit settings are sum-

marized in Figure 2-1) are as follows:

Bits (14:2) - Domain foption.

The file domain that was searched by MPE to locate the file, indicated by

these bit settings:

=00 The file is a new file.

=01 The file is an old permanent file.
=10 The file is an old temporary file.
=11 The file is an old file.

2-88

Bit (13:1) - ASCII/binary foption.

=0 Binary.

=1 ASCII.

Bit (10:3) - Default file designator foption.

=000 The actual file designator is the same as the formal file designator.
=001 The actual file designator is $STDLIST.

=010 The actual file designator is $NEWPASS.

=011 The actual file designator is $0LDPASS.

=100 The actual file designator is $STDIN.

=101 The actual file designator is $STDINX.

=110 The actual file designator is $NULL.

Bits (8:2) - Record format foption.

The format in which the records in the file are recorded, indicated by these
bit settings:

=00 Fixed-length records.

=01 Variable~length records.

=10 Undefined-length records.

=11 Spoolfile.

Bit (7:1) - Carriage control foption.

=0 No carriage-control character expected.

=] Carriage-control character expected.

Bit (6:1) - MPE tape label foption.

=0 Nonlabeled tape.

=1 Labeled tape.

Bit (5:1) ~ Disallow :FILE equation foption.

This option ignores any corresponding :FILE command, so that the
specifications in the FOPEN call take effect (unless overridden by those in
the file label). The following bit settings apply: -

=] Disallow :FILE command.

=0 Allow :FILE command.

2-89

Bits (2:3)- File type foption.
=000 Ordinary file.
=001 KSAM file.
=010 Relative I/O file.
=100 Circular file (discussed in Section III).
=110 Message file.
Bits (0:2) - Reserved for MPE. Should be set to zero.
Default: Foptions are not returned.
aoptions logical (optional)
The aoptions parameter returns up to seven different access options
represented by bit groupings in a 16-bit word, as described below. The bit

settings are summarized in Figure 2-2.

Bits (12:4) - Access type aoptions.
The type of access allowed users of this file follows:

=0000 Read access only.

=0001 Write access only.

=0010 Write access only, but previous data in file is not deleted.
=0011 Append access only.

=0100 Input/output access.

=0101 Update access.

=0110 Ezxecute access.

Bit (11:1) - Multirecord aoption.

=0 Select nonmultirecord mode.

=] Select multirecord mode.

Bit (10:1) - Dynamic locking aoption. The bit settings are:
=0 Disallow dynamic locking/unlocking.

=1 Allow dynamic locking/unlocking.

2-90

recsize

Bits (8:2) - Exclusive aoption.

This aoption specifies whether a user has continuous exclusive access to this
file, from the time it is opened to the time it is closed. The bit settings
are:

=00 Default.

=01 Exclusive access.

=10 Semi-exclusive access.

=]1 Shared access.

Bit (7:1) - Inhibit buffering aoption.

This option inhibits automatic buffering by MPE and allows input/output
to take place directly between the user’s stack or extra data segment and
the applicable hardware device.

=0 Normal buffering.

=1 Inhibit buffering.

Bit (5:2) - Multiaccess mode aoption.
This field provides the accessor with the means of sharing access to the file.

=00 Nonmultiaccess.

=01 Multiaccess.

=10 Inter-job multiaccess.

Bit (4:1) - NOWAIT 1/0 aoption.

This bit allows the accessor to initiate an I/O request and to have control
returned before the completion of the I/0.

=0 NOWALIT I/0 not in effect.

=1 NOWAIT I/0 in effect.

Bits (3:1) - File Copy Access aoption.

=0 Access in file’s native mode.

=1 Access as standard sequential file.

Bits (0:3) Reserved for MPE.

Default: Aoptions are not returned.

integer (optional)

A word to which the logical record size associated with the file is returned.
If the file was created as a binary type, this value is positive and expresses

the size in words. If the file was created as ASCII type, this value is nega-
tive and expresses the size in bytes.

2-91

devtype

Ldnum

hdaddr

filecode

For Interprocess Communication (IPC) when a call to FCONTROL with a
controlcode of 46 ("FCONTROL 46") is in effect, the value returned in rec-
size will be the size of the user’s data records, including the two-word
header.

Default: The logical record size is not returned.

integer (optional)

A word to which the type and subtype of the device being used for the file
is returned, where bits (0:8) indicate device subtype, and bits (8:8) indi-
cate device type. If the file is not spooled, which can be determined from
hdaddr (0:8), the returned devtype is actual. The same is true if the file is
spooled and was opened via the logical device number. However, if an
output file is spooled and was opened by device class name, devtype con-
tains the type and subtype of the first device in its class, which may be dif-
ferent from the device actually used. If you have opened a device in a
serial disc class, the type returned in bits (8:8) is 31 (%37) even though the
real device type is as specified in Table 4-2, Classification of Devices, in
the MPE V System Operation and Resource Management Reference Manual
(32033-90005). Device type 7 (%407) is returned by FGETINFO for devices
opened in a foreign disc class.

Default: The device type and subtype are not returned.

logical (optional)
A word to which the logical device number (ldev) associated with the device
on which the file resides is returned.

If the file is a disc file, the logical device number will be that of the first
extent. If the file is spooled, ldnum will be a virtual device number which
does not correspond to the system configuration I/O device list. If the file
is located on a remote computer, linked by a DS (point-to-point or X.25)
link, the left eight bits (0:8) are the logical device number of the
Distributed System (DS) device. If the remote computer is linked by
NS/3000, the left eight bits are the remote environment of the connection.
The right eight bits (8:8) are the logical device number of the file on the
remote computer. For version G.00.00 or later, note that if Idev is greater
than 255, Ois returned. For version G.02.00 or later, if either the DS
device for the RFA or the Idev is 0, then the entire word is O.

Default: The logical device number is not returned.

logical (optional)

A word to which the hardware address of the device is returned, where bits
(0:8) are the Device Reference Table (DRT) number, and bits (8:8) are
the unit number. The limitations for the Device Reference Table number
are discussed in "Special Considerations". If the device is spooled, the DRT
number will be zero and the unit number is undefined.

Default: The hardware address is not returned.

integer (optional)
A word to which a disc file’s file code is returned.

Default: The file code is not returned.

2-92

recpt

EOF

flimit

logcount

physcount

blksize

extsize

double (optional)

A double-word to which a double integer representing the current logical
record pointer setting is returned. This is the displacement in logical
records from record number Oin the file. It identifies the record that
would next be accessed by an FREAD or FWRITE call.

Default: The logical record pointer setting is not returned.

double (optional)

A double-word to which a double positive integer equal to the number of
logical records currently in the file is returned. If the file does not reside
on disc, this value will be zero. For Interprocess Communication (IPC)
when a call to FCONTROL with a controlcode of 46 is in effect, the number
of records returned in EOF will include open, close, and data records.

Default: The number of logical records in the file is not returned.

double (optional)

A double-word to which a double positive integer representing the number
of the last logical record that could ever exist in the file, because of the
physical limits of the file is returned. If the file does not reside on disc,
this value will be zero.

Default: The logical record count is not returned.

double (optional)

A double-word to which a double positive integer representing the total
number of logical records passed to and from the user during the current
access of the file is returned.

Default: The logical record count is not returned.

double (optional)

A double-word to which a double positive integer is returned. This value
represents the total number of physical input/output operations performed
within this process against the file since the last FOPEN call.

Default: The number of 1/O operations is not returned.

integer (optional)

A word to which the block size associated with the file is returned. If the
file is a binary file, this value is positive and expresses the size in words. If
the file is ASCII, this value is negative and shows the size in bytes.

Default: The block size is not returned.

logical (optional)

A word to which the disc extent size associated with the file (in sectors) is

returned.

Default: The disc extent sizé is not returned.

2-93

numextent

userlabels

creatorid

labaddr

integer (optional)
A word to which the maximum number of disc extents allowable for the
file is returned.

Default: The maximum allowable number of extents is not returned.

integer (optional)

A word to which the number of user header labels defined for the file when
it was created is returned. If the file is not a disc file, this number is zero.
When an old file is opened for overwrite output, the value of userlabels is
not reset and old user labels are not destroyed.

Default: The number of user labels is not returned.

byte array (optional)
A byte array to which the eight-byte name of the user who created the file
is returned. If the file is not a disc file, blanks are returned.

Default: The user name is not returned.

double (optional)

A double-word to which the sector address of the file label is returned.
The high-order eight bits show the logical device number. The remaining
24 bits show the absolute disc address. If the file is not a disc, zero is
returned.

Default: The sector address is not returned.

CONDITION CODES

CCE

CCG

CCL

Request granted.
Not returned by this intrinsic.

Request denied because an error occurred.

ADDITIONAL DISCUSSION

MPE File System Reference Manual (30000-90236).

2-94

ers | 02 | @29 | &0 e re | (&2 (10:3 630 | (42
FIELD (RE- FILE |[DISALLOW| MPE CAR- | RECORD DEFAULT AsCll DOMAIN
SERVED}| TYPE FILE TAPE RIAGE | FORMAT FILE BINARY
LABELS || CONTROL DESIGNATOR
MEANING 00}]0=STD {O=Allow 0O=Non- 0=NQCCTL | 00=Fixed 000=FILENAME | | 0=BINARY th
Q0| [1=KSAM] :FILE Labeled
01]|0=RIO Tape 1=CCTL O1=Variable | | 001=8STOLIST ||1=ASCl [01=0id
10||0=CIR |i=No Permanent
11 |jo=MsG | :FILE t=Labled 10=Un- QI0=SNEWPASS File
Tape defined
10=0ld
fi=Spoolfile | | 011 =SOLDPASS Temporary
Flle
100=8STDIN
1=0id
101=8STDINX Permanent Or
Temporary
110=8NUL File
NOTE: Double lines indicate octal digit boundaries.
Figure 2-1. Foptions Bit Summary
g8 | 09 | (30 o | &2 || o0 | &2 ot | n)
FIELD (RE- FILE NOWAIT | MULTH || INHIBIT | EXCLU- DYNAMIC MULTI- | ACCESS
SERVED)| COPY wo ACCESS BUF- SIVE LOCKING | RECORD TYPE
ACCESS FERING | ACCESS ACCESS
MEANING 0=Access || 1=NOWAIT |00=Non 0=BUF 00=Dafaut || 0=No FLOCK |Q=No Multi- | 0} [000=Read
Native Multi- Allowed Record Only
Mode Q=Non- Access 1=NQBUF |Oi=Exclusive
NOWAIT 1=R.OCK 1=Multi- 0]{001=Write
1=Access 01=Only 10=Semi- Aliowed Record Only
As Stand- Intra- exclysive
ard Se- Job Multl- Acoess 0} j0t0=Write
quential Accass Read {Save)
Fis Only
0=inter- 11=Share
Job 0| jo11=Appand
Multi- Only
Access
Allowed 0| {100 Read/
Write
0} [101=Update
0Of H10=Executd

NQTE: Double lines indicate octal digit boundaries.

Figure 2-2

2-95

. Aoptions Bit Summary

FINDJCW

INTRINSIC NUMBER 86

Searches the Job Control Word Table for a specified Job Control Word (ICW).

SYNTAX

BA

FINDJCW(jcwname , jewvalue ,status);

L I

PARAMETERS

Jjewname

Jewvalue

status

byte array (required)

A byte array containing the name of the Job Control Word (ICW) to be
found. May contain up to 255 alphanumeric characters, starting with a
letter and ending with a nonalphanumeric character such as a blank.

logical (required)

A word to which the value of jewname is returned, if jewname is found. If
jewname is not found, jewvalue is unchanged.

integer (required)

A word to which a value denoting the execution status of the intrinsic is
returned, as follows:

0 Successful execution, jewname found.

1 Error, jewname greater than 255 characters long.

2 Error, jewname does not start with a letter.

3 Error, jewname not found in JCW table.

4 Error, attempted to assign a value to an MPE-defined JCW value
mnemonic (0K, WARN, FATAL, or SYSTEM).

5 Error, cannot assign a value to a system-reserved JCW.

Value 5 will only be returned if the fundamental operating software is ver-
sion G.00.00 or later.

SPECIAL CONSIDERATIONS

There are three types of JCWs in the system: user-defined JCWs, system-defined JCWs, and system-

reserved JCWs. FINDJCW
HPDATE, HPDAY, HPHOUR,

can return the value of any type of JCW. The system-reserved JCWs are
HPMINUTE, HPMONTH, and HPYEAR.

2-96

CONDITION CODES

The condition code remains unchanged.

ADDITIONAL DISCUSSION

"Interprocess Communication" in Section V.

2-97

FINTEXIT

INTRINSIC NUMBER 23

Causes the return from a user’s interrupt procedure. (Available only on version G.01.00 or later.)

SYNTAX
0-v LV
FINTEXIT(intstate);

The FINTEXIT intrinsic is used to cause the return from the user’s interrupt procedure. On the
return, software interrupts are set according to intstate. If intstate is omitted, the software interrupts
are enabled by default.

PARAMETERS

intstate logical by value (optional)
A logical value indicating the state in which software interrupts should be
left. Bit (15:1) controls this as follows:
=1 Enable software interrupts.

=0 Leave software interrupts disabled.

Default: (15:1)=1.

CONDITION CODES

The condition code remains unchanged.

ADDITIONAL DISCUSSION

MPE File System Reference Manual (30000-90236).

2-98

FINTSTATE

INTRINSIC NUMBER 24

Enables/disables all software interrupts against the calling process. (Available only on version
G.01.00 or later.)

SYNTAX

L Lv
oldstate:=F INTSTATE(intstate);

The software interrupt facility enables users to perform FREAD/FWRITE completion processing with
their own interrupt procedure. An FREAD/FWRITE call is necessary to initiate the I/O request. Both
of these intrinsics return to the user’s process as soon as the request has been started. When the opera-
tion completes, the user’s program is trapped (or "interrupted") and goes to a user chosen interrupt
procedure. This performs whatever processing is necessary and then resumes the user’s original
program.

Soft interrupts are "armed" for a particular file by specifying the interrupt procedure’s plabel in an
FCONTROL call with a controlcode of 48. Calling "FCONTROL 48" with a parameter of 0 will disarm
the software interrupt mechanism.

NOTE

MPE inhibits software interrupts just before entering an
interrupt procedure. This is done to stop unwanted nest-
ing of the interrupt procedures. Each interrupt proce-
dure should call FINTEXIT (Refer to FINTEXIT in this
section) to re-enable other interrupts just before it exits.

Software interrupts are normally automatically in-
hibited before a Y€ trap procedure. The trap procedure
may elect to allow software interrupts, however, by
calling the FINTSTATE intrinsic. The RESETCONTROL
intrinsic will restore the interrupt state of the process to
its pre-YC value (unless the trap procedure issues an
FINTSTATE call, in which case RESETCONTROL makes
no change).

When the software interrupt is executed, location Q-4 in the stack will contain the file number of
the file that caused the interrupt.
It is necessary to issue a call to the IODONTWAIT intrinsic against the file in order to complete the

request. When reading, the tfargef parameter is ignored in the FREAD call. The data is moved to the
array specified by the farget parameter of IODONTWAIT.

2-99

FUNCTIONAL RETURN

oldstate logical
The old state (enabled or disabled) of software interrupts is returned by this
procedure.

PARAMETERS

intstate logical by value (required)
A logical value enabling/disabling software interrupts through bit (15:1) as
follows:

=0 Disable software interrupts.

=] Enable software interrupts.

CONDITION CODES

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

An uncompleted FREAD/FWRITE request may be aborted by issuing an FCONTROL call with a control-
code 43 (abort NOWAIT I/0).

Limitations:

e Only message (MSG) files allow soft interrupts.

¢ 1Jo more than one uncompleted FREAD/FWRITE may be outstanding for a particular file.

¢ The interrupt is held off while the user is executing within MPE, with the following exceptions:
PAUSE and IOWAIT will allow the interrupt. The interrupt handler’s return stack marker in this

case will be set to reinvoke the intrinsic.

¢ FINTSTATE may not be used with remote files.

ADDITIONAL DISCUSSION

MPE File System Reference Manual (30000-90236).

2-100

FLABELINFO

INTRINSIC NUMBER 25

Returns information from the file label of a disc file. (Available version G.02.00 or later.)

SYNTAX

BA 1v I IA BA IA
FLABELINFO (fname,mode,errorcode,items,itenwalues ,itemerrors);

The FLABELINFO intrinsic allows information on a specific disc file to be extracted from the file sys-
tem whether or not the file is opened. The information returned is a subset of the information
returned from the FFILEINFOintrinsic. FLABELINFO is not supported for remote files.

PARAMETERS

fname byte array (required)
The name of the file terminated by a nonalphanumeric character other
than a period (.) or a slash (/). The filename may include password, group,
and account specifications. The file must be in the permanent file direc~
tory. The filename also may backreference a file equation and optionally
be preceded by an asterisk.

mode integer by value (required)
An integer specifying the valid backreferencing (to file equations) for the
file. Valid mode values are:
0 Use file equation if one exists.
1 Must use file equation (error if one does not exist).
2 Ignore any existing file equations.

errorcode integer (required)
Returns any general warnings or errors which affect the FLABELINFO call.
Specifically, it will return an error number indicating that the call failed
or that an error occurred in one of the specific items. An error code of
zero indicates no errors, a positive error code indicates an error, and a
negative error code indicates a warning.

items integer array (required)
An array of item numbers terminated with a zero. Each item number
describes which item is to be returned in the ifemvalues array. (Refer to
"Item#" in Table 2-4.)

itemvalues byte array (required)

Information returned depending on the item number. (Refer to “"Item
Value" in Table 2-4.) The array contains all of the returned items. For
example, if Item 1 and Item 2 are requested, the filename will be in the
first eight bytes of the array, and the group name will be in the next eight
bytes of the array.

2-101

itemerrors integer array (required)
Array of error numbers which correspond to the items specified in the item
array. If an element of the array is negative, a warning exists for that
item. If the element is positive, an error was detected for that specific
item. The absolute value of the error is the file system error number.

CONDITION CODES

CCE Request granted.
CCG Not returned by this intrinsic.
CCL Request denied because an error occurred. Refer to the errorcode and

itemerrors parameters for specific error numbers.

ADDITIONAL DISCUSSION

The FFILEINFD discussion in this section.

2-102

The request for information from an Item# listed in Table 2-4 is granted or denied based on the
access mode of the user:

e Read access to the file (R).

¢ Write access to the file (W).

¢ Read or write access to the file (R/W).

e Privileged call to intrinsic (P).

e Manager of file (M).

e Creator of the file (C).

(This is AMif file is within group, otherwise SM).

Items 1 through 3 and 6 through 24 are available to any caller. Items 4 and 5 require either creator,
privileged, or manager access. Item 25 requires privileged, manager, or read/write access.

Table 2-4. Item Values Returned By FLABELINFO

ITEM#

16%
17%
18
19%x
20
21
22%

23
24x%
25%

ITEM VALUE

File name in file label
Group name in file label
Account name in file label
Creator name in file label
Security matrix for access

Creation date (calendar format)

Last access date (calendar format)
")

Last modified date ("
File code

Number of user labels written
Number of user labels available

File limit

FOPTIONS

Record size

Block size

Number of extents

Last extent size

Extent size

End of file record number

File allocation time

File allocation date

Number of open/close records
(message files only)

Device name

Last modify time

First user label (user label

0)

TYPE

Or 9o rm 9N rOHA~rr~r-r o

BA
D
BA

UNITS
8 bytes
8 bytes

8 bytes
8 bytes

bytes
words

sectors
sectors

8 bytes

256 bytes

* These items may not be up to date while the file is open.

2-103

FLOCK

INTRINSIC NUMBER 15

Dynamically locks a file.

SYNTAX

Iv

FLOCK (filenum,lockcond) ;

Lv

FLOCK provides a means of signaling that the caller temporarily wants exclusive use of a file.

PARAMETERS

filemum

lockeond

integer by value (required)
A word supplying the file number of the file to be locked.

logical by value (required)
A word specifying conditional or unconditional locking by setting bit
(15:1) as follows:

=0 Locking will take place only if the file’s Resource Identification
Number (RIN) is not currently locked. If the RIN is locked, control
returns immediately to the calling process, with condition code CCG.

=] Locking will take place unconditionally. If the file cannot be locked
immediately, the calling process suspends until the file can be locked.

CONDITION CODES

The condition codes possible when lockcond bit (15:1)=1 are:

CCE

CCG

CCL

Request granted.
Not returned for this bit setting.

Request denied because this file was not opened with the "dynamic lock-
ing" aoption bit (10:1) specified in the FOPEN intrinsic, or the request was
to lock more than one file and the calling process does not possess the
Multiple RIN (MR) capability.

The condition codes possible when lockcond bit (15:1)=0 are:

CCE

CCG

CCL

Request granted.

Request denied because the file was locked by another process.

Request denied because this file was not opened with the "dynamic lock-
ing" aoption bit (10:1) specified in the FOPEN intrinsic, or the request was

to lock more than one file and the calling process does not possess the
Multiple RIN (MR) capability.

2-104

SPECIAL CONSIDERATIONS
Split-stack calls permitted.

Standard capability sufficient if only one file is to be locked dynamically. If more than one file is to
be locked dynamically, the Multiple RIN (MR) capability is required.

ADDITIONAL DISCUSSION
MPE File System Reference Manual (30000-90236).

The FOPEN intrinsic in this section.

2-105

FLUSHLOG

NO INTRINSIC NUMBER ASSIGNED

Flushes the contents of the user logging memory buffer to the logging file.

SYNTAX

D I
FLUSHLOG(index ,status);

The FLUSHLOG intrinsic is used to write the contents of the user logging memory buffer to the disc
destination file. This helps to preserve the contents of the memory buffer in the event of a system
failure. This intrinsic does not write special records.

PARAMETERS

index double (required)

The parameter returned from OPENLOG that identifies the user’s access to
the logging system.

status integer (required)

One of the following integers indicating the success/failure of the intrinsic

call:
Message No.
0

1

10

Meaning
No error occurred for this call.

User requested NOWAIT mode and the logging process is
busy.

Parameter out of bounds in logging intrinsic.

Request to open or write to a logging process that is not
running.

Incorrect index parameter passed to a logging intrinsic.
Incorrect mode parameter passed to a logging intrinsic.
User request denied because logging process is suspended.
Illegal capability. Must have User logging (LG) and
System Supervisor (OP) capabilities to use a logging
intrinsic.

Incorrect password passed to a logging intrinsic.

Error occurred while writing to the logging file.

Invalid DST passed to a logging system intrinsic.

2-106

Message No. Meaning

12 System is out of disc space, logging cannot proceed.
13 No more logging entries.

14 Invalid access to logging file.

15 End-of-file on user log file.

16 Invalid logging identifier.

CONDITION CODES

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

User Logging (LG) and System Supervisor (OP) capability required.

ADDITIONAL DISCUSSION

"User Logging" in Section III.

2-107

FMTCALENDAR

NO INTRINSIC NUMBER ASSIGNED

Converts any calendar date with the same format as the CALENDAR intrinsic into the format: "FRI,
JAN 18, 1985".

SYNTAX

Lv BA
FMTCALENDAR(date ,string);

PARAMETERS
date logical by value (required)
A logical value representing any calendar date with the same format as the
CALENDAR intrinsic:
Bits (7:9) - The day of the year.
Bits (0:7) - The year of the century.
string byte array (required)

A 17-character byte array in which the formatted calendar date is return-
ed. If the day of the month is less than 10, an additional blank will
precede it, for example: "FRI, JAN 8, 1985".

CONDITION CODES

The condition code remains unchanged.

ADDITIONAL DISCUSSION

"Formatting Calendar Data and Time Information" in Section V.

2-108

FMTCLOCK

NO INTRINSIC NUMBER ASSIGNED

Converts the time of day with the same format as the CLOCK intrinsic, into the format: "12:39
AM" .

SYNTAX
DV BA
FMTCLOCK (time,string);

PARAMETERS

time double by value (required)
A double-word value representing the time of day in the same format as
the CLOCK intrinsic:
Word 1:
Bits (8:8) - The minute of the hour.
Bits (0:8) - The hour of the day.
Word 2:
Bits (8:8) - The tenths of seconds.
Bits (0:8) - The seconds.

string byte array (required)

An 8-character byte array in which the formatted time of day is returned.
If the hour is a single digit (i.e. prior to 10:00) the array will contain a
leading blank as follows: " 7:39 AM".

CONDITION CODES

The condition code remains unchanged.

ADDITIONAL DISCUSSION

"Formatting Calendar Date and Time Information" in Section V.

2-109

FMTDATE

NO INTRINSIC NUMBER ASSIGNED

Converts calendar date and time of day with the same format as the CALENDAR and CL.OCK intrinsics,
into the format: "FRI, JAN 18, 1985, 12:39 AM".

SYNTAX

LV DV BA
FMTDATE (date ,time ,string);

PARAMETERS

date logical by value (required)
A logical value with the same format as the CALENDAR intrinsic:

Bits (7:9) - The day of the year.
Bits (0:7) ~ The year of the century.

time double by value (required)
A double value with the same format as the CLOCK intrinsic:

Word 1:
Bits (8:8) ~ The minute of the hour.
Bits (0:8) - The hour of the day.
Word 2:
Bits (8:8) - The tenths of seconds.
Bits (0:8) - The seconds.
stﬁng byte array (required)
A 27-character byte array in which the formatted date and time are
returned. If the day of the month is less than 10, an additional blank will
precede it. Similarly, if the time is earlier than 10:00 (one digit), an addi-

tional blank will also precede the time, for example: "FRI, JAN 8,
1985, 7:39 AM".

CONDITION CODES

The condition code remains unchanged.

ADDITIONAL DISCUSSION

"Formatting Calendar Date and Time Information" in Section V.

2-110

FOPEN

INTRINSIC NUMBER 1

Used to establish access to a file and optionally, to define the physical characteristics of the file prior
to access.

SYNTAX

I 0-v BA Lv LV Iv
i1lenum: =FOPEN(formaldesignator, foptions,aoptions,recsize, |
p .
BA BA IV Iv IV
device, formmsg ,userlabels,blockfactor ,numbuffers

DV v v’ v
filesize,numextents,initialloc,filecode);

The FOPEN intrinsic makes it possible to access a file. In the FOPEN intrinsic call, a particular file
may be referenced by its formal file designator, described in Section IV. When the FOPEN intrinsic is
executed, it returns a file number to the user’s process by which the system uniquely identifies the
file. This file number, rather than the file designator, is used by subsequent intrinsics in referencing
the file.

FUNCTIONAL RETURN

filenum integer
An integer file number used to identify the opened file in subsequent in-
trinsic calls.

PARAMETERS

formaldesignator byte array (optional)

This array contains a string of ASCII characters interpreted as a formal file
designator. This string must begin with a letter; contain alphanumeric
characters, slashes, or periods; and terminate with any nonalphanumeric
character except a slash (/) or a period (.). If the string is the name of a
system-defined file, it can begin with a dollar sign ($); if it is the name of
a user-predefined file, it can begin with an asterisk (*). New KSAM files,
unlike standard files, must be opened with a unique name. Effective with
the G.02.00 release, the remote location of a device may be specified in
formaldesignator as filename :envid.

Default: A temporary nameless file is assigned that can be read from or
written to, but not saved.

2-111

foptions

logical by value (optional)

The foptions parameter allows you to specify different file characteristics
by setting corresponding bit groupings in a 16-bit word. The correspon-
dence is from right to left, beginning with bit 15. These characteristics are
as follows, proceeding from the rightmost bit groups to the leftmost bit
groups in the word. The bit settings are summarized in Figure 2-1,
"Foptions Bit Summary, found in the description of the FGETINFO
intrinsic.

Bits (14:2) - Domain foption.
The file domain to be searched by MPE to locate the file:

=00 The file is a new file, created at this point. No search is necessary.
=01 The file is an old file, and the system file domain should be searched.

=10 The file is an old temporary file, and the job file domain should be
searched.

=11 The file is an old file, located first by searching the job file domain
then, if it is not found, by searching the system file domain.

Bit (13:1) - ASCII/binary foption. :

The code (ASCII or binary) in which a new file is to be recorded when it is
written to a device that supports both codes. In the case of disc files, this
also affects padding that can occur when a direct-write intrinsic call
(FWRITEDIR) is issued to a record that lies beyond the current logical end-
of -file indicator. In ASCII files, any dummy records between the previous
end-of -file and the newly written record are padded with blanks. In bi-
nary files, such records are padded with binary zeros. By default, mag-
netic tape and serial disc files are treated as ASCII files; and foreign disc
files are treated as binary. This bit has the following settings:

=0 Binary file.

=1 ASCII file.

Bit(10:3) - Default file designator foption.

The actual file designator is equated with the formal file designator

specified in FOPEN if:

e No explicit or implicit :FILE command equating the formal file desig-
nator to a different actual file designator occurs in the job or session.

¢ The “"Disallow file equation" foption is true (bit (5:1)=1). Note that

a leading " *" in a formal designator can effectively override the disal-
low file equation foption.

2-112

The bit settings are:

=000

=001

=010

=011

=100

=101

=110

The actual file designator is the same as the formal file designator.
The actual file designator is $STDLIST.

The actual file designator is $NEWPASS.

The actual file designator is $0LDPASS.

The actual file designator is $STDIN.

The actual file designator is $STDINX.

The actual file designator is $NULL.

Bits (8:2) - Record format foption.
The format in which the records in the file are recorded, indicated by the
following bit settings:

=00

=01

Fixed-length records. The file is composed of logical records of
uniform length. Foreign discs always have fixed-length records.

Variable-length records. The file contains logical records of varying
length. This format is restricted to records that are written in
sequential order. The size of each record is recorded internally. The
actual physical record size used is determined by multiplying the
record size (specified or default) plus one by the blocking factor, and
adding one word for the end-of -block indicator.

In the case of new files, this option is not allowed when NOBUF is
specified. In such a case, the record format will be changed by these
bit settings internally to undefined-length records, discussed below.
If NOBUF is specified, then reads/writes are performed in terms of
the entire block, not just the record; thus you must set up the vari-
able structure before attempting an FWRITE. (Refer to record for-
mats in the MPE File System Reference Manual (30000-90236).)

Undefined-length records. The file contains records of varying
length that were not written using the variable~length foption (bits
(8:2)=01). All files not on disc or magnetic tape are treated as con-
taining undefined-length records by default. The file system makes
no assumption about the amount of data that is useful. The user
must determine how much data is required.

For undefined-length records, only the data supplied is written with
no information about its length. Undefined-length records are sup-
ported by all devices; fixed- and variable-length records are sup-
ported by disc and magnetic tape devices only. To state this another
way: disc and magnetic tape devices support all record formats,
whereas all other devices support only undefined length records.

2-113

Bit (7:1) - Carriage control foption.

If selected, this specifies that you will supply a carriage control directive in
the calling sequence of each FWRITE call that writes records onto the file.
This bit may be set as follows:

=0 No carriage control directive expected.
=] Carriage control directive expected.

Carriage control is defined only for character-oriented (ASCII) files. This
option and the "binary" option are mutually exclusive, and attempts to
open new files with both binary and carriage control directives will result
in an access violation. This option is a physical attribute of the file and its
state cannot be modified when opening an old disc file.

A carriage-control character passed through the control parameter of
FWRITE is recognized as such and acted upon for files that have carriage
control specified in FOPEN. Embedded control characters are treated strict-
ly as data on files for which no carriage control is specified, and they do
not invoke spacing for such files. You may specify spacing action on files
for which carriage control has been specified, either by embedding the con-
trol in the record, indicated with a confrol parameter of 1 in the call to
FWRITE, or by sending the control code directly via the control parameter
of FWRITE.

A carriage-control character sent to a file on which the control cannot be
executed directly (for example, line spacing characters sent to a disc or tape
file), will result in having the control character embedded as the first byte
of the record. Thus, the first byte of each record in a disc file having
carriage-control characters enabled contains control information.
Carriage-control characters sent to other types of files will result in trans-
mission of the control to the driver.

The control codes %4400 through %403 are remapped to %100 through %103,
so that they fit into one byte and thus can be embedded. Records written
to the line printer with one of the above control codes should contain only
control information.

A record written with one of the above controls and no data (count=0, or
embedded control and count=1) will not cause physical I/O of any sort.

For the purpose of computing record size, carriage control information is
considered by the file system to be part of the data record. As such,
specifying the carriage control option adds one byte to the record size when
the file is originally created. For example, a specification of
"REC=-132,1,F,ASCII;CCTL" results in a recsize of 133 characters.

As a general rule you may read the entire file (the size of which is returned
in the recsize parameter of FGETINFO or item# 6 (record) of FFILEINFO).
(Refer to Table 2-3 found in the description of the FFILEINFO intrinsic.)
However, on writes of files for which carriage control characters are
specified the data transferred is limited to recsize-1 unless a control of 1 is
passed, indicating the data record is prefixed with embedded carriage con-
trol characters.

2-114

aoptions

Bit (6:1) - Labeled tape foption.

=1 Labeled tapes.

=0 No labeled tapes.

Bit (5:1) - Disallow :FILE equation foption.

This option ignores any corresponding :FILE command, so that the
specifications in the FOPEN call take effect (unless pre-empted by those in
the file label, for disc files). Note that a leading # in a formal designator
can effectively override the disallow file equation foption.

=0 Allow :FILE.(

=1 Disallow :FILE.

Bits (2:3) - File type foption.

Determines the type of file to create for a new file. If the file is old, this
field is ignored.

=000 Ordinary file.

=001 KSAM file.

=010 Relative I/0 file.

=100 Circular file.

=110 Message file.

NOTE

The default designator foption, bits (10:3), offers several
choices for default file designators. Any value used other than
000 for "filename" will override the File Type field.

Specification of both the KSAM and RIO options result in an access viola—
tion communicated by returning CCL. Specifying RIO in a :FILE com-
mand will override the KSAM option in the FOPEN call.

Bits (0:2) - Reserved for MPE. Should be set to zero.

logical by value (optional)

The aoptions parameter permits you to specify up to seven different access
options established by bit groupings in a 16-bit word. The correspondence
is from right to left, beginning with bit 15. These access options are
described below, proceeding from the rightmost bit groups to the leftmost
bit groups in the word. The bit settings are summarized in Figure 2-2,
"Aoptions Bit Summary", found in the description of the FGETINFO
intrinsic.

Default: All bits are set to zero.

2-115

Bits (12:4) - Access Type aoptions.
The type of access allowed for this file is specified by the following bit
settings:

=0000 READ access only. FWRITE, FUPDATE, and FWRITEDIR intrinsic
calls cannot reference this file. The end-of-file is not changed;
the record pointer starts at O.

=0001 WRITE access only. Any data written in the file prior to the cur-
rent FOPEN request is deleted. The FREAD, FREADSEEK,
FUPDATE, and FREADDIR intrinsic calls cannot reference this file.
The end-of-file is set to 0; the record pointer starts at 0. On
magnetic tape an EOF mark will be written to the tape when the
file is closed even if no data is written.

=0010 WRITE access only, but previous data in the file is not deleted.
The FREAD, FREADSEEK, FUPDATE, and FREADDIR intrinsic calls
cannot reference this file. The end-of~file pointer is not chang-
ed, the record pointer starts at 0. Therefore, data will be over-
written if an FWRITE is done. The system will change this value
to APPEND for message files.

=0011 APPEND access only. - The FREAD, FREADDIR, FREADSEEK,
FUPDATE, FSPACE, FPOINT, and FWRITEDIR intrinsic calls can-
not reference this file. The end-of -file pointer is used to set the
record pointer prior to each FWRITE. For disc files it is updated
(in an internal file system table) after each FWRITE. Thus, data
cannot be overwritten.

=0100 INPUT/OUTPUT access. —Any file intrinsic except FUPDATE can
be issued for this file. The end-of-file pointer is not changed,
the record pointer starts at 0. Not valid for message files.

=0101 UPDATE access. All file intrinsics, including FUPDATE can be is-
sued for this file. The end-of-file pointer is not changed; the
record pointer starts at 0. Not valid for message files.

=0110 EXECUTE access. Allows user who is running in Privileged Mode
input/output access to any loaded file. The end-of -file pointer is
not changed, the record pointer starts at 0. Not valid for message
files.

2-116

Bit (11:1) - Multirecord aoption.

Signifies that individual read or write requests are not confined to record
boundaries. Thus, if the number of words or bytes to be transferred
(specified in the fcount parameter of the read or write request) exceeds the
size of the physical record (i.e. block) that is referenced, the remaining
words or bytes are taken from subsequent successive records until the num-
ber specified by fcount has been transferred.

For message (MSG) files, the file system sets this bit to zero. This option is
available only if the inhibit buffering aoption, described below, is also
selected.

=0 Non-multirecord mode (NOMULTI).
=] Multirecord mode (MULTI).

Bit (10:1) - Dynamic Locking aoption (disc file only).

Indicates use of the FLOCK and FUNLOCK intrinsics to dynamically permit or
restrict concurrent access to the file by other processes at certain times.
The user process can continue this temporary locking/unlocking until it
closes the file. Dynamic locking/unlocking is made possible through a
Resource Identification Number (RIN) assigned to the file and temporarily
acquired by FOPEN. The calling process and other processes must use the
RIN in cooperation to guarantee the integrity of the file, as discussed under
"Resource Management" in Section III. Non-cooperating processes are al-
lowed concurrent access at all times, unless other provisions prohibit this.
You must have LOCK access at account, group, and file levels for FOPEN to
grant the dynamic locking aoption. (LOCK access is available if LOCK,
APPEND, or WRITE access is set for you at these levels.)

=0 Disallow dynamic locking/unlocking.
=] Allow dynamic locking/unlocking. A disc file may be accessed concur-
rently only if all FOPEN requests for the file specify dynamic locking.

An FOPEN request that disagrees with the current access, if any, will
fail. This bit is ignored for files not residing on disc.

2-117

Bits (8:2) - Exclusive aoption.

This aoption specifies whether you have continuous EXCLUSIVE access to
this file, from the time it is opened to the time it is closed. This option of -
ten is used when performing some critical operation, such as updating the

file.

=00

=01

Default value. If the "READ access only" aoption is selected,
SEMI-exclusive access (8:2)=10 takes effect. Otherwise,
EXCLUSIVE access (8:2)=01 takes effect. Regardless of which access
is selected, FGETINFO will report (8:2)=00.

EXCLUSIVE access. After this file is opened, any additional FOPEN
requests, whether issued by this process or another process, are
prohibited until this process issues the FCLOSE request or terminates.
If any process already is accessing this file when the FOPEN call is is-
sued, CCL is returned to the calling process. If another FOPEN call is
issued for this file while the "EXCLUSIVE access" aoption is in ef -
fect, an error code is returned to that calling process. The
"EXCLUSIVE access" aoption can be requested only by users allowed
the LOCK access mode by the security provisions for the file. For
message files, there can be only one reader and one writer.

SEMI-exclusive access. After the file is opened, concurrent output
access to this file via another FOPEN request is prohibited, whether is-
sued by this process or another process, until this process issues the
FCLOSE request or terminates. A subsequent request for the
"INPUT/OUTPUT" or "UPDATE" aoptiorn access type will obtain
"READ" access. Other types of read access, however, are allowed.
If a process already has OUTPUT access to the file when this FOPEN
call is issued, a CCL error code is returned to the calling process. If
another FOPEN call that violates the READ-only restriction is issued
while the "SEMI-exclusive" aoption is in effect, that call fails and an
error code is returned to the calling process. Semi-exclusive access
can be requested only by users allowed the LOCK access mode by the
security provisions for the file. For message files there can be multi-
ple readers, but only one writer.

SHARE access. After the file is opened, permits concurrent access to
this file by any process, in any access mode, subject to other basic
MPE security provisions in effect. For any message file there can be
multiple readers and multiple writers.

Bit (7:1) - Inhibit buffering aoption.

When selected, this aoption inhibits automatic buffering by MPE and al-
lows input/output to take place directly between the user’s data area and
the applicable hardware device.

2-118

=0 Allow normal buffering (BUF).
=1 Inhibit buffering (NOBUF).

NOBUF access is oriented to physical block transfer rather than logical
record transfer. If this option is specified with the variable record format
and the file is not variable length record format, the format will be chang-
ed internally to undefined length record format. Thus, you are responsible
for buffer management. When performing an FWRITE, you will have to
set up the variable structure. (Refer to the File System Reference Manual
(30000-90236) for a discussion of record formats.)

With NOBUF access, you have responsibility for blocking and deblocking of
records in the file. To be consistent with files built using buffered 1/0,
records should begin on word boundaries. When the information content of
the record is less than the defined record length, pad the record with blanks
if the file is ASCII, or with zeros if the file is binary.

The record size and block size for files manipulated under NOBUF access
follow the same rules as those files that are created using buffering. The
default blocking factor for a file created under NOBUF is 1.

When a NOBUF file is opened without multirecord access, the amount of
data transferred per read or write is limited to a maximum of one block.

The end-of -file, next record pointer, and record transfer count are main-
tained in terms of logical records for all files. The number of logical
records affected by each transfer is determined by the size of the transfer.

Transfers always begin on a block boundary. Those transfers which do not
transfer whole blocks leave the next record pointer set to the first record in
the next block. The end-of-file pointer always points at the last record in
the file.

For files opened with NOBUF access, the FREADDIR, FWRITEDIR, and
“IOINT intrinsics treat the recnum parameter as a block number.

Non-RIO access to a RIO file can be indicated by specifying the NOBUF
option. In this case the physical block size from FFILEINFO should be used
to determine the maximum transfer length. (Refer to Table 2-3, Item
#21 found in the description of the FFILEINFO intrinsic.) The FGETINFO
blksize parameter may also be used.

For message files, the file system sets bit (7:1)=0. However, readers may
open a message file with NOBUF if they are in copy mode; this determines
whether they will be accessing the file record by record or by block. Thus
for readers of message files, bit (7:1) has the following settings:

=0 Read by logical record.

=1 Read by physical block.

Writers must open message files with NOBUF if they are in copy mode;

they will access the file block by block -

2-119

recsize

Bits (5:2) - MULTI access mode aoption.
This feature permits processes located in different jobs or sessions to open
the same file.

=00 No MULTI access.

=01 Only intra-job MULTI access allowed; this is the same as specifying
the MULTI option in a :FILE command.

=10 Inter-job MULTI access allowed; this is the same as specifying the
GMULTI option ina :FILE command.

=11 Undefined. If this is specified, the FOPEN call will be rejected with
an error code of 40: "ACCESS VIOLATION".

For message files, the file system changes bits (5:2)=00 to bits (5:2)=10 to
allow global MULTI access.

Bit (4:1) - NOWAIT I/0 aoption.

This bit allows the accessor to initiate an I/O request and to have control
returned before the completion of the I/O. The NOWALIT 1/0 aoption im-
plies the NOBUF aoption; if you do not specify NOBUF, the file system
does it for you. Also, multirecord access is not available. This option is
not available if the file is located on a remote computer.

=] NOWAIT I/O in effect.
=0 NOWAIT I/0 not in effect.
You must be running in Privileged Mode to use NOWAIT.

Bits (3:1) - File copy aoption.

This feature permits any file to be treated as a standard sequential file so
that the file can be copied by logical record or physical block to another
file.

=0 The file will be accessed in its native mode, i.e. a message file will be
treated as a message file, a KSAM file as a KSAM file.

=] The file is to be treated as a standard, sequential file with variable
length records. For message files this allows nondestructive reading of
an old message file at either the logical record or physical block record
level. Only block level access is permitted if the file has message-file
format to prevent incorrectly formatted data from being written to the
message file while it is unprotected. In order to access a message file in
copy mode, a process must have exclusive access to the file.

Bits (0:3) - Reserved for MPE. Should be set to zero.

integer by value (optional)

An integer indicating the size of the logical records in the file. If a positive
number, this represents words; bytes are represented by a negative number.
A newly created file will have this value recorded permanently in the file
label. This value indicates the maximum logical record length allowed if
the records in the file are of variable length.

2-120

device

Binary files are word oriented. A record size specifying an odd byte count
for a binary file is rounded up by FOPEN to the next highest even number.

ASCII files may be created with logical records which are an odd number of
bytes in length. Within each block, however, records begin on word
boundaries.

For either ASCII or binary files with fixed or undefined length records,
the record size is rounded up to the nearest word boundary. For example, a
recsize specified as -106 for an ASCII file is 106 characters (53 words) in
length. A recsize of ~113 for a binary file is 114 characters (57 words) in
length. The rounded sizes should be used in computations for blockfactor or
block size. When a foreign disc is opened, recsize is forced to 128 words.
(IBM diskettes are forced to 64 words.)

Default: The default value is the configured physical record width of the
associated device.

byte array (optional)

Contains a string of ASCII characters terminating with any nonal-
phanumeric character except a slash (/) or period (.), designating the
device on which the file is to reside, and optionally specifying density for
tape files (DEN= parameter), and/or environment files for the HP 268x
page printer (ENV= parameter). This parameter may be specified in one of
the following forms: devclass or ldev. The devclass form represents a
device class name of up to eight alphanumeric characters beginning with a
letter, as for example, DISC or TAPE. If the devclass form is specified, the
file is allocated to any available device in that class. To open a file which
is to reside on a private volume, you must specify a device class which in-
cludes those disc drives upon which the home volume set is mounted; the
file then is allocated to any of the home volume set’s drives that fall within
that device class.

The logical device number (ldev) consists of a three~byte numeric string
specifying a particular device.

If you open a foreign disc file, device must be either a foreign disc class
name or the Idev of a disc in a foreign disc class. If you specify Idev, the
disc should be mounted on the drive prior to the FOPEN. Otherwise it may
be assumed to be a serial disc by the system. Any of the forms may be used
to reference files on a remote computer by preceding the device or volume
specification with dsdevice#.

Effective with the G.02.00 release, the remote location of a device may be
specified with the device parameter as nodename#idev; VTERMCCR>.

NOTE

When opening a magnetic tape as shared for a second time, the
device must be opened by ldev instead of devclass. This is to en~
sure that the System Operator does not get confused by a second
tape request. The Idev may be programmatically obtained
through FGETINFO.

2-121

To specify density when writing to the tape files, the keyword "DEN=" is
used. The "DEN=" keyword must be preceded by a semicolon (3), which
indicates to the system that a keyword follows. Note that if the device
parameter is specified, a semicolon must terminate the device string. If
device string is not specified but the device parameter is, then a semicolon
must be the first character of the device parameter. The entire device pa-
rameter string must be terminated by a carriage return.

The keyword DEN=" is applicable only when writing to tape on a tape drive
that supports more than one density. The keyword DEN=" is ignored at all
other times.

When reading from tape, the density selected by the user at FOPEN time
will be ignored. For example, when reading from a tape, a 1600 BPI tape
will satisfy an FOPEN request which specified 3;DEN=6250, and vice versa.
The following examples show the correct syntax for the "DEN=" keyword:

BYTE ARRAY DEVICE(0:13):=""TAPE;DEN=6250",%15
BYTE ARRAY DEVICEC0:9):='';DEN=6250",%15;

[]

[]

[]

NUM: =FOPENCFILEX,%4,%4, ,DEVICE);

If you are opening 2 HP 268x page printer file, you may specify an option-
al printing environment for your job. The printing environment is defined
as all of the characteristics of the printed page which are not part of the
data itself, including the page size, the margin width, the character set,
the orientation (horizontal or vertical), and the name of forms you wish to
use. Such information is contained in the "environment" file.

If you do not specify an environment file, FOPEN assumes that you want to
use the default printer environment. Hewlett-Packard provides a number
of prepared environment files, which reside in the HPENV (G.00.00 and
later) or ENV2680A (earlier versions) group of the SYS account. For in-
formation on how to build your own printing environments, refer to the
IFS/3000 Reference Manual (36580-90001).

To specify your own printer environment you must also assign the keyword
"ENV=", followed by the name of your environment file, to the device ar-
ray in the form ENV=environmentfilename, and terminate the array
with a carriage return. You must also include a semicolon (3) between the
device class name and the "ENV" keyword. For example, if PP is the device
class name configured for your HP 26 8x printer:

EQUATE CR=%15;

BYTE ARRAY DEVICE(0:16):="PP;ENV=MYENVFILE",CR;
L
L]

NUM: =FOPENCFILEX, %4,%4, ,DEVICE);

2-122

formmsg

Any environment you select remains active until it is replaced by a new
environment or until you FCLOSE the printer. If the printer has been
opened with the MULTI access aoption (for example, as $STDLIST), a
selected environment remains active until replaced or until the final
FCLOSE of the printer.

For Interprocess Communication (IPC), this field is relevant only if thisisa
new message file. The device field must either be omitted or must specify a
disc; specification of any device other than disc opens the device. When
this occurs, the file is no longer a message file.

Default: DISC.

byte array (optional)
Contains a forms message that can be used for such purposes as telling the

' System Operator what type of paper to use in the line printer. This mes-

sage must be displayed to the System Operator and verified before this file
can be printed on a line printer. The message itself is a string of ASCII
characters terminated by a period. The maximum number of characters al-
lowed in the array is 49, including the terminating period. Arrays with
more than 49 characters are truncated by MPE.

This array is also used for tape label information if bit (6:1) of the foptions
parameter is set. The tape label information is formatted as follows:

.[volumeidl ,typel,expl,seqlll];

The period is required so that the tape label information is not mistaken for
a forms message by MPE.

volumeid Consists of six or fewer printable characters that identify the
volume. In a multi-volume set, only the first volumeid can be
specified.

type Three alphabetic characters that identify label type informa-
tion. The options are:

ANS- ANSI standard labels. (Default)
1BM- IBM standard labels.

expdate Month/day/year of the expiration date of the file or the date
after which the information contained in the file is no longer
useful. The file can be overwritten after this date. Default is
00/00/00, meaning that the file can be overwritten im-
mediately. In a volume set, file expiration dates must always
be equal to or earlier than the date on the previous file.

2-123

userlabels

blockfactor

seq One of the following methods to specify the position of the
file in relation to other files on the tape:

A 0 which causes a search of all volumes until the file is
found.

An unsigned integer (1-9939) that specifies the position
of the file relative to the current file on the tape.

ADDF causes the tape to be positioned so as to add a new
file on the end of the volume (or last volume in a multi-
volume set).

NEXT will position the tape at the next file on the tape.
If this is not the first FOPEN for the file and a rewind
occurred on the last close, then the position will remain
at the beginning of the previous file. "

Default: NEXT.

integer by value (optional)

An integer specifying the number of user-label records to be written for
this file. Applicable to new disc files only. The maximum number of user
labels allowed varies from file to file. It depends on the final blockfactor
and recsize used, as well as whether you specified fixed, variable or un-
defined length records. If you specify more user labels than will fit in the
254 sectors following the MPE file label, an error occurs and the FOPEN
fails.

Default: The default number of user-label records is zero.

integer by value (optional)

An integer containing the size of the buffer to be established for the file,
specified as a number equal to the number of logical records per block. For
fixed-length records, blockfactor is the actual number of records in a
block. For variable-length records, blockfactor is interpreted as a multi-
plier used to compute the block size (maximum recsize*blockfactor). For
undefined-length records, blockfactor is always one logical record per
block. The blockfactor value specified by you may be overridden by MPE.
The valid range for blockfactor is from 1 through 235. Specification of a
negative or zero value results in the default blockfactor setting. Values
greater than 255 are defaulted to 255. The blockfactor establishes the
physical record size on disc and magnetic tape files. Note that for NOBUF
files the default blocking factor is one. The blockfactor for foreign disc
filesis 1.

Default: Calculated by dividing the specified recsize (in words) into the

configured block size. This value i1s rounded downward to a» integer that is
never less than 1.

2-124

numbuffers

filesize

integer by value (optional)
A 16-bit word whose bits specify the number of buffers, number of copies,
and output priority.

Default: The default values of all bit groupings are taken.

Bits (11:5) - Number of buffers.

Specifies the number of buffers to be allocated to the file. This parameter
is not used for files representing interactive terminals, because a system-
managed buffering method is always used in such cases. If omitted, set to
zero, the default value of 2 is set by MPE.

For message files, a value between 2 and 31; default is 2. This parameter
must not exceed the physical capacity of the file.

Bits (4:7) - Number of Copies.

For spooled output devices only, specifies the number of copies of the entire
file to be produced by the spooling facility. This can be specified for a file
already opened (for example, $STDLIST), in which case the highest value
supplied before the last FCLOSE will take effect. The copies do not appear
contiguously if the System Operator intervenes or if a file of higher output
priority becomes READY before the last copy is complete. This parameter
is ignored for nonspooled output devices.

Default: The valueis 1.

Bits (0:4) - Output Priority. For spooled devices only.

Specifies the output priority to be attached to this file. This priority is
used to determine the order in which files are produced when several are
waiting for the same device. This parameter must be a number between 1
(lowest priority) and 13 (highest priority), inclusive. If this value is less
than the current outfence set by the System Operator, file printing/punch-
ing is deferred until the operator raises the output priority of the file or
lowers the outfence. This parameter can be specified for a file already
opened (for example, $STDLIST), in which case the highest value supplied
before the last FCLOSE takes effect. This parameter is ignored for non-
spooled devices.

Default: 8.

double by value (optional)

A double-word integer specifying the maximum file capacity. For
variable- and undefined-length records the capacity is expressed in blocks.
For fixed-length records the capacity is expressed in logical records. The
maximum file size is 2° sectors. However, some other file options, such as
the blocking factor, may prevent the maximum file size from being
reached. In general, the filesize is determined by the extent size and the
number of extents (maximum=32).

The filesize for foreign disc files is set to the maximum physical size of the
disc as determined by its subtype.

2-125

numextents

initialloc

filecode

For message files, the number of records is rounded up to completely fill
the last block and to make the last extent the same size as the other extents.
Two additional records are included for the open and close records.
Because of spare tracks or remapped tracks, the logical size will usually be
smaller than the physical size.

Default: 1023 logical records.

integer by value (optional)

An integer specifying the maximum number of extents (integral number of
contiguous disc sectors) that can be dynamically allocated to the file as
logical records are written to it. The size of each extent is always calcu-
lated in terms of physical records. When the file is type F (fixed) filesize is
the number of logical records; thus it will be divided by the blockfactor to
determine the number of physical records (blocks). If the file is variable
length or undefined length, filesize is the number of physical records.
Then, the number of physical records required for the system file label,
and user labels (if any), are added to the number of physical records
required for data. To determine extent size, this number is divided by the
requested numextents to determine extent size. The result rounded up, is
the number of physical records per extent. This is then used to determine
the actual number of extents and the size of each. If specified, numextents
must be an integer from 1 to 32. A zero or negative value results in the
default setting. Any value >32 will automatically be set to 32.

Default: 8 extents.

NOTE

Extents are allocated on any disc in the device class specified in
the device parameter when the file was created. If it is neces-
sary to ensure that all extents of a file are on a particular disc,
a single disc device class or a logical device number must be used
in the device parameter.

integer by value (optional)

An integer specifying the number of extents to be allocated to the file when
it is opened. This must be an integer from 1 to 32. If an attempt to allo-
cate the requested disc space fails, the FOPEN intrinsic returns an error
condition code to the calling program.

Default: 1 extent.

integer by value (optional)

An integer recorded in the file label and made available for general use to
anyone accessing the file through the FGETINFO intrinsic. For this param-
eter, any user can specify a positive integer ranging from 0 to 1023. This
parameter is used for new files only when it is positive and the process is
running in user mode. If your process is running in Privileged Mode, you
can specify a negative integer for filecode when initially opening a file.
Then, any future accesses of the "privileged" file must be requested in
Privileged Mode. A process running in user mode cannot open a file that
has a negative filecode. Also, if the process supplies a non-zero parameter,
the filecode must match the one originally specified for the file. The
following integers have meanings predefined by Hewlett-Packard:

2-126

Integer

1024
1025
1026
1027
1028
1029
1031
1035
1036
1037
1040
1041
1042
1050
1051
1052
1054
1055
1056
1057
1058
1059
1060
1070
1080
1083
1084
1090
1100
1101
1102
1103
1110
111
1112
1113
1114
1130
1131
1132
1133
1139
1140
1141
1145
1146
1147
1148
1149
1152
1153

Mnemonic

usL
BASD
BASP
BASFP
RL
PROG
SL
VFORM
VFAST
VREF
XLSAV
XLBIN
XLDSP
EDITQ
EDTCQ
EDTCT
TDPDT
TDPGM
TDPP
TDPCP
TDPQ
TDPXQ
RJEPN
QPROC
KSAMK
GRAPH
SD
LOG
Wpac
WDICT
WCONF
W2601
PCELL
PFORM
PENV
PCCMP
RASTR
OPTLF
TEPES
TEPEL
SAMPL
MPEDL
TSR
TSD
DRAW
FIG
FONT
COLOR
D4g
SLATE
SLATW

Meaning

User Subprogram Library

Basic Data

Basic Program

Basic Fast Program

Relocatable Library

Program File

Segmented Library

VPLUS Forms File

VPLUS Fast Forms File

VPLUS Reformat File

Cross Loader ASCIHI File (SAVE)
Cross Loader Relocated Binary File
Cross Loader ASCII File (DISPLAY)
Edit Quick File

Edit KEEPQ File (COBOL)

Edit TEXT File (COBOL)

TDP Diary File

TDP Proof Marked QMARKED
TDP Proof Marked non-COBOL File
TDP Proof Marked COBOL File
TDP WorkFile

TDP WorkFile (COBOL)

RJE Punch File

QUERY Procedure File

KSAM Key File

GRAPH Specification File

Self ~Describing File

User Logging Log File

HPWORD Document

HPWORD Hyphenation Dictionary
HPWORD Configuration File
HPWORD Attended Printer Environment
IFS/ 3000 Character Cell File
IFS/3000 Form File

IFS/3000 Environment File
IFS/3000 Compiled Character Cell File
Graphics Image in RASTR Format
OPT/3000 Log File

TEPE/3000 Script File
TEPE/3000 Log File

APS/3000 Log File
MPEDCP/DRP Log File

HPToolset Root File

HPToolset Data File

Drawing File for HPDRAW

Figure File for HPDRAW
Reserved

Reserved

Reserved

Compressed SLATE File

Expanded SLATE File

2-127

Integer

1156
1157
1158
1159
1166
1167
1168
1169
1170
1171

1172
1173
1174
1175
1176
1177
1178
1192
1193
1194
1195
1211

1212
1213
1214
1215
1216
1217
1226
1227
1228
1229
1230
1236
1242
1243
1244
1245
1258
1259
1270
1271

1272
1273
1401

1421

1422
1425
3333

Mnemonic

DSTOR
TCODE
RCODE
1CODE
MDIST
MTEXT
MARPA
MARPD
MCMND
MFRTM

MEFT
MCRPT
MSERL
VCSF
TTYPE
TVFC
NCONF
NTRAC
NLOG
MIDAS
ANODE
INDODE
INVRT
EXCEP
TAXON
QUERF
DOCDR
Ve
DIF
LANGD
CHARD
MGCAT
BMAP
BDATA
BFORM
BSAVE
BCNFG
PFSTA
PFDYN
RFDCA
FFDCA
DIU
PDOC
CWPTX
MAP
GAL
TTX

Meaning

RAPID/3000 DICTDBU Utility Store File
Code File for Transact/3000 Compiler
Code File for Report/3000 Compiler
Code File for Inform/3000 Compiler
HPDESK Distribution list

HPDESK Text

ARPA Messages File

ARPA Distribution List

HPDESK Abbreviated Commands File
Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Terminal Type File

Terminal Vertical Format Control File
Network Configuration File

Network Trace File

Network Log File

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

VC File

DIF File

Language Definition File

Character Set Definition File
Formatted Application File

Base Map Specification File

Basic Data File

Basic Field Order File for VPLUS
Basic Saved Program File
Configuration File for Default Option Basic Program
Pathflow STATIC File

Pathflow DYNAMIC File

Revised Form DCA Document

Final Form DCA Document
Document Interchange Unit
HPWORDY/ 150 Document

Reserved

HPMAP/3000 Map Specification File
Reserved

Reserved

Reserved

Default is the unreserved file code of 0.

2-128

CONDITION CODES

CCE Request granted. The file is open.
CCG Not returned by this intrinsic.
CCL Request denied. This may be because another process already has

EXCLUSIVE or semi-exclusive access for this file, or an initial allocation
of disc space cannot be made due to lack of disc space. The file number
value returned by FOPEN is O if the file is not opened successfully. The
FCHECK intrinsic should be called for more details.

ADDITIONAL DISCUSSION

"File Device Relationships" and "How to Use Files" in Section IV.

2-129

FPARSE

NO INTRINSIC NUMBER ASSIGNED

Parses and validates file designators. (Available version G.02.00 or later.)

BA IA LA 0o-Vv
FPARSE (string,result,items,vectors);

FPARSE is called to ensure that the formal file designator is syntactically correct. It eliminates the
need to write your own modules to parse and validate file names. FPARSE also eliminates any am-
biguities about the correct syntax of the file designators and presents a more flexible and modular
programming approach. It is recommended that all new programs use FPARSE to validate and parse
file designators and that many of the existing application programs and subsystems enhance their code
to use FPARSE.

PARAMETERS

string byte array (required)
A buffer which contains the file reference string to be parsed. The string
can be delimited by any nonalphanumeric character except a slash (/),
period (.), or colon (:).

result integer array (required)

A two-word array. The first 16~-bit word of the array will contain the
value indicating the result of the parse. If the value is positive, the file
string is syntactically correct and the value indicates the type of file
reference being made. The second word is reserved for future use. The
following values are valid:

0 - Regular file designator.

1 - Backreference (" #" is the first character in string).

2 - System file ("$" is the first character in string).

If negative, it is one of the following error codes, indicating a syntax error
in the file reference:

Error# Meaning

-1 Bad item values.

-2 Parameter bounds violation.

-3 Illegal delimiter; misuse of "." /" or ":".

-4 User specified only one of items or vectors array.
-5 Illegal item value in items array.

2-130

Error# Meaning

-6 Item list not terminated by the O terminator.
-7 Undefined system file.

-8 Lockword disallowed in backreferenced (#) file.
-9 NS/3000 not present, but user specified envid.

-101 First character of the file name not alpha.

-102 File name expected in the string.

-103 File name identifier too long.

-104 First character of lockword not alpha.

-105 Lockword expected in the string.

-106 Lockword identifier too long.

-107 First character of the group name not alpha.

-108 Group name expected in the string.

-109 Group name identifier too long.

~-110 First character of the account name not alpha.

-111 Account name expected in the string.

-112 Account name identifier too long.

-113 First character of envidname not alpha.

-114 The envidname expected in the string.

-115 Identifier for envidname too long.

System~defined designators, i.e. file names starting with "$", are part of
the file designator extension; a file name starting with " :" is not part of

the file designator extension and is considered an illegal delimiter.

The default designator numbers for system files as defined for FOPEN fop-
tion are:

- Filename.
- $STDLIST.
- $NEWPASS.
$0LDPASS.
- $STDIN.
- $STDINX.
- $NULL.

AN = O
]

2-131

items

vectors

In case of an error the first element of the vectors array returns the byte
offset of the invalid item in string. The second word will be zero.

There may be up to 3 identifiers separated by a period (.) in an envidname.
Therefore, each of the errors, -113 through -115, may be referring to one
of the 3 identifiers. The error pointer will point to the location of the
error.

If the NS/3000 subsystem is not installed on the system, FPARSE will
return error code -9 for file designators with envid after the file name.
This error implies that everything else, up to the point where envid was
detected, is valid. However, FPARSE will not return a parsed vectors
array.

logical array (optional)
This array contains the item code, one-per-word, categorizing to what the
corresponding vectors array should point:

0 - End of item list in array.

"1 - File name.

2 - Lockword.
3 - Group name.

4 ~ Account name.

5 - NS/3000 envid name.

double array (optional)

An array which contains the vector element, one per double-word, for the
requested items. The first word will contain the byte offset, from the base
of the string array to the start of the item name, and the second word will
contain the length. A length of zero will indicate that the item was not
specified in the string array. There will be a one-to-one mapping with the
items array, i.e. one ifems array word to one vectors array double-word.
For Item 0, which terminates the ifems list, the corresponding entry in the
vectors array will contain the total length of the file designator string in
the second word and the first word will contain the default designator type
(as in bits (10:3) of the FOPEN foptions) if the result parameter indicates
a system file.

CONDITION CODES

The condition code remains unchanged.

ADDITIONAL DISCUSSION

"Parsing and Validating File Designators" in Section IV.

NS/3000 User/Programmer Reference Manual (32344-90001).

2-132

FPOINT

INTRINSIC NUMBER 6

Sets the logical record point for a disc file.

SYNTAX

Iv

DV
FPOINT(filerum,recram);

The FPOINT intrinsic sets the logical record pointer for a disc file (except serial disc) containing fixed-
length or undefined-length records, to any logical record. When the next FREAD or FWRITE request is
issued for the file, this record will be the one read or written.

PARAMETERS

filemum

recnum

integer by value (required)
A word supplying the file number of the file in which the pointer is to be
set.

double by value (required)

A positive double integer representing the relative logical record (or block
number for a NOBUF file) at which the logical record pointer is to be posi-
tioned. The number of the first first logical record is zero.

On disc files, the end-of -file indicator is the file limit.

CONDITION CODES

CCE

CCG

CCL

Request granted.

Request denied. The logical record pointer position is unchanged.
Positioning was requested at a point beyond the file limit.

Request denied. The logical record point position is unchanged because of
one of the following:

e The recnum was <0.

o Invalid filenum parameter.

e Input/output is pending on a NOWAIT request.

o The file is spooled or is not a direct-access disc file.

¢ The file does not contain fixed-length or undefined-length records.

e Not allowed with append access.

2-133

SPECIAL CONSIDERATIONS

Split-stack calls permitted.

Not applicable to message files.

ADDITIONAL DISCUSSION

MPE File System Reference Manual (30000-90236).

2-134

FREAD

INTRINSIC NUMBER 2

Reads a logical record or portion of a record from a file to the user’s stack.

SYNTAX

I 1v LA Iv
lgth:=FREAD(filenum,target ,tcount);

The FREAD intrinsic reads a logical record, or a portion of such a record, from a file on any device to
the user’s stack. The record read is determined by the current position of the record pointer.

When the logical end-of -data is encountered during reading, CCG is returned to the user process. On
magnetic tape, the end-of-data can be denoted by a physical indicator such as a tape mark. When a
file is read that spans more than one volume of labeled magnetic tape, the user program is suspended
until the operator has completed mounting the next tape. CCG is not returned when end-of -tape is
encountered. On disc, the end-of-data occurs when attempting to read beyond the last logical record
of the file. In this case, CCG is returned and no record is read. If the file is embedded in an input
source containing MPE commands, the end-of-data is indicated when an :EOD command is encoun-
tered, but the :EOD command itself is not returned to the user. The end-of-data is indicated by a
hardware end-of -file, including :EOF:; on $STDIN by any record beginning with a colon; or on
$STDINX by :EOD. In addition, on the standard input device for a job, as opposed to a session, :JOB,
:E0J, or :DATA indicate end-of -data.

When a message file is empty and there are no writers, the process will wait if there is an FCONTROL
45 in effect. It will also wait if this is the first FREAD after the reader’s FOPEN. Otherwise CCG is
returned. If an FREAD is issued against a message file, and an FCONTROL 46 is in effect, the writer’s
ID and the record type code are appended to the beginning of the record.

When an old file containing carriage-control characters supplied through the conti'ol parameter of the
FWRITE intrinsic is read, and the carriage control foption parameter of the FOPEN intrinsic, or the
CCTL parameter of the :FILE command is specified, the carriage control byte is read as follows:

DATA READ
"\

Ve
CARRIAGE I |]
CONTROL

BYTE-¥

FUNCTIONAL RETURN

lgth integer (optional)
An integer value showing the length of the information transferred. If the
tcount parameter in the FREAD call is positive, the positive value returned
represents a word count; if the fcount parameter is negative, the positive
value returned represents a byte count. FREAD always returns zero if
NOWAIT 1/0 is specified. In this case, the actuai record length is returned
in the fzcount parameter of the INWAIT intrinsic.

PARAMETERS

filenum integer by value (required)
A word supplying the file number of the file to be read.

?-135

target

teount

logical array (required)
An array to which the record is to be transferred. This array should be
large enough to hold all of the information to be transferred.

integer by value (required)

An integer specifying the number of words or bytes to be transferred. If
this value is positive, it signifies the length in words; if it is negative, it
signifies the length in bytes; if it is zero, no transfer occurs. If fcount is
less than the size of the record, only the first count words or bytes are read
from the record.

If fcount is larger than the size of the logical record, and the multirecord
aoption was not specified in FOPEN, transfer is limited to the length of the
logical record. If the multirecord aoption was specified in FOPEN, transfer
continues until either fcount is satisfied or the end-of-data is encountered,
and each transfer will begin at the start of the next physical record (block).
Any data remaining in the last physical record read will be inaccessible.

CONDITION CODES

CCE

CCG

CCL

The information was read.

The logical end-of -data was encountered during reading. When reading a
labeled magnetic tape file that spans more than one volume, CCG is not
returned when end-of -tape (EOT) is encountered. Instead, CCG is return-
ed at actual end-of -file, with a transmission log of O if an attempt is made
to read past end-of -file.

The information was not read because an error occurred, a terminal read
was terminated by a special character or time-out interval as specified in
the FCONTROL intrinsic, or a tape error was recovered and the FSETMODE
option was enabled.

NOTE

The condition codes should be checked both in normal 1/O and
in NOWAIT 1/0.

SPECIAL CONSIDERATION

Split-stack calls permitted.

ADDITIONAL DISCUSSION

"Using FREAD and FWRITE with $STDIN and $STDLIST" in Section IV.

2-136

FREADBACKWARD

NO INTRINSIC NUMBER ASSIGNED

Reads a logical record backward from the current record pointer. Data is presented to the user as if
read forward.

SYNTAX

I Iv LA 1v
1gth: =FREADBACKWARD(filemun,target ,tcount) ;

The FREADBACKWARD intrinsic reads a logical record from a tape to the user’s stack. The record read
is determined by the current position of the record pointer. This intrinsic permits access to the "Read
Reverse" capability of the HP-IB magnetic tape drives, and can be used to recover tape errors when
handling I/O management and data recovery routines.

Presently two substantial restrictions are associated with the use of this intrinsic:
1. It may only be used with magnetic tape drives on HP-IB Systems.

2. The magnetic tape must be accessed NOBUF.

FUNCTIONAL RETURN

lgth integer (optional)
An integer value showing the length of the information transferred. If the
tcount parameter in the FREADBACKWARD call was positive, the positive
value returned represents a word count; if the fcount parameter was nega-
tive, the positive value returned represents a byte count. FREADBACKWARD
always returns zero if NOWAIT 1/0 is specified. In this case, the actual
record length is returned in the fcount parameter of the I0WAIT intrinsic.

PARAMETERS

filerum integer by value (required)
A word supplying the file number of the file to be read.

target logical array (required)
An array to which the record is to be transferred. This array should be
large enough to hold all of the information to be transferred.

teount integer by value (required)

An integer specifying the number of words or bytes to be transferred. If
this value is positive, it signifies the length in words; a negative value sig-
nifies the lengths in bytes; and zero means no transfer occurs. When tcount
is less than the size of the record, only the first fcount words or bytes are
read from the record.

2-137

If tcount is larger than the size of the logical record, and the multirecord
aoption was not specified in FOPEN, transfer is limited to the length of the
logical record. When the multirecord aoption was specified in FOPEN,
transfer continues until either fcount is satisfied, or the beginning-of ~data
is encountered, and the transfer will begin at the end of the next physical
record (block). Any data remaining in the last physical record read will be
inaccessible.

CONDITION CODES

CCE

CCG

CCL

The information was read.

The logical beginning-of-data was encountered during reading. When
reading a labeled magnetic tape file that spans more than one volume, CCG
is not returned when beginning-of-tape (BOT) is encountered. Instead,
CCG is returned at actual beginning of file, with transmission log of 0 if
an attempt is made to read past beginning of file.

The information was not read because a tape error occurred, or a tape error
was recovered, and the FSETMODE option was enabled.

NOTE

The condition code should be checked both in normal I/0 and in
NOWAIT 1/0.

SPECIAL CONSIDERATIONS

Split-stack calls permitted.

ADDITIONAL DISCUSSION

MPE File System Reference Manual (30000-90236).

2-138

FREADDIR

INTRINSIC NUMBER 7

Reads a specific logical record or portion of a record from a direct-access disc file to the user’s data
stack. :

SYNTAX

IV LA 1V DV
FREADDIR(filerum,target ,tcount ,recrum);

The FREADDIR intrinsic reads a specific logical record, or a portion of such a record, from a disc file
to the user’s data stack. This intrinsic differs from the FREAD intrinsic in that the FREAD intrinsic
reads only the record already pointed to by the logical record pointer. The FREADDIR intrinsic may
be issued only for direct-access disc files composed of fixed-length records. If RIO access is used,
FREADDIR will input the specified logical record. If the record is inactive, the contents of the inac-
tive record will be transmitted and a CCE will be returned. In this case there is no indication
whether the block contains some inactive records. (FCHECK returns a nonzero error number to distin-
guish active and inactive records. If a RIO file is accessed using the nonRIO method, (NOBUF)
FREADDIR will input the specified block.)

After the FREADDIR intrinsic is executed, the logical record pointer is set to the beginning of the next
logical record, or the first logical record of the next block for NOBUF files.

It is possible to skip portions of records inadvertently if the multirecord aoption of FOPEN is set and
tcount parameter specified is greater than one logical record. For example, if you read all of record
11 and half of record 12 in a file, the logical record pointer is set to the beginning of record 13 after
the FREADDIR intrinsic executes. Thus the second half of record 12 is skipped.

PARAMETERS

filerum integer by value (required)
A word supplying the file number of the file to be read.

target logical array (required)
An array to which the record is to be transferred. This array should be
large enough to hold all of the information to be transferred.

teount integer by value (required)

An integer specifying the number of words or bytes to be transferred. If
this value is positive, it signifies words; a negative value bytes; and zero
signifies that no transfer occurs. If fcount is less than the size of the
record, only the first fcount words or bytes are read from the record.

If tcount is larger than the size of the logical record and the multirecord
aoption was not specified in FOPEN, the transfer is limited to the length of
the logical record. If the multirecord aoption was specified in FOPEN, the
remaining words or bytes specified in tcount are read from succeeding
records.

2-139

recnum double by value (required)
A double-word integer indicating the relative number, in the file, of the
logical record or block number for NOBUF files to be read. The first
record is indicated by "0D" (double-word zero in SPL notation).

CONDITION CODES

CCE The information was read.
CCG End-of -file was encountered.
CCL The information was not read because an error occurred.

SPECIAL CONSIDERATIONS

Split-stack calls permitted.

Not applicable to message files.

ADDITIONAL DISCUSSION

MPE File System Reference Manual (30000-90236).

2-140

FREADLABEL

INTRINSIC NUMBER 19

Reads a user file label.

SYNTAX

0-v Iv LA Iv Iv
FREADLABEL (filenmum,target ,tcount,labelid);

The FREADLABEL intrinsic reads a user-defined label from a disc file or magnetic tape file. Once a
disc file has been opened, user labels may be read from or written to in any order at any time, regard-
less of the opener’s access to the rest of the file. A disc file can have up to 254 128-word user labels.
A magnetic tape file, if labeled at all, must be labeled with an ANSI-standard or IBM-standard label.
MPE automatically skips over any unread user labels when the first FREAD intrinsic call is issued for
files. Therefore for labeled tape files, the FREADLABEL intrinsic should be called immediately after
the FOPEN intrinsic has opened the file. The user-defined label must be 40 words in length to con-
form to the length of the ANSI or IBM-standard label.

PARAMETERS
fileram integer by value (required)
A word supplying the file number of the file whose label is to be read.
target logical array (required)
An array in the stack to which the label is to be transferred. This array
should be large enough to hold the number of words specified by tcount.
teount integer by value (optional)
An integer specifying the number of words to be transferred from the
label. The limit is 128 words.
Default: 128 words.
labelid integer by value (optional)

An integer specifying the label number. For labeled tapes labelid is ig-
nored. The next sequential label is read.

Default: Zero is assigned.

CONDITION CODES

CCE The label was read.
CCG The intrinsic referenced a label beyond the label written on the file.
CCL The label was not read because an error occurred.

2-141

SPECIAL CONSIDERATIONS

Split-stack calls permitted.

ADDITIONAL DISCUSSION

MPE File System Reference Manual (30000-90236).

2-142

FREADSEEK

INTRINSIC NUMBER 12

Moves a record from a disc file to a buffer in anticipation of a FREADDIR intrinsic call.

SYNTAX

Iv

FREADSEEK (filemuam, recnum) ;

DV

Direct access of disc files can be enhanced by issuing the FREADSEEK intrinsic call. This call is used
when the need for a certain record is known before its transfer to the user’s stack by a FREADDIR call
is actually required. The FREADSEEK intrinsic directs MPE to move the record from disc into a buffer
in anticipation of the FREADDIR call, which subsequently moves the record directly to the stack.

The FREADSEEK intrinsic call can be issued only for direct-access files for which input/output buffer-
ing and fixed or undefined-length records are in effect.

PARAMETERS

filerum

recnum

integer by value (required)
A word supplying the file number of the file to be read.

double by value (required)

A double-word integer in SPL notation indicating the relative number of
the logical record to be read. The first record is indicated by "0D"
(double-word zero in SPL notation).

CONDITION CODES

CCE

CCG

CCL

Request granted.
A logical end-of -file indication was encountered.

Request denied because an error occurred.

SPECIAL CONSIDERATIONS

Split-stack calls permitted.

Not applicable to message files.

ADDITIONAL DISCUSSION

MPE File System Reference Manual (30000-90236).

2-143

FREEDSEG

INTRINSIC NUMBER 131

Releases an extra data segment.

SYNTAX

LV LV
FREEDSEG(index,id);

A process can release an extra data segment assigned to it by using the FREEDSEG intrinsic. If thisis a
private data segment, or if it is a sharable (nonprivate) segment not currently assigned to any other
process in the job/session, the segment is deleted from the entire job/session. If it is a sharable seg~
ment which is currently assigned to any other process, it is deleted from the calling process but con-
tinues to exist in the job/session.

PARAMETERS

index logical by value (required)
A word containing the logical index assigned to the data segment, obtained
from the GETDSEG intrinsic call.

id logical by value (required)

The identity assigned to the segment. If none is assigned, enter a zero.

CONDITION CODES

CCE Request granted. The data segment is deleted from the job/session.

CCG Request granted. The data segment is deleted from the calling process but
continues to exist in the job/session because it is being shared by another
process.

CCL Request denied. Either the index is invalid or index and id do not specify

the same extra data segment.

SPECIAL CONSIDERATIONS

Data Segment Management (DS) capability required.

ADDITIONAL DISCUSSION

The GETDSEG intrinsic in this section, and "Deleting an Extra Data Segment” in Section IiI.

2-144

FREELOCRIN

INTRINSIC NUMBER 31

Frees all local Resource Identification Numbers (RINs) from allocation to a job.

SYNTAX

FREELOCRIN;

The FREELOCRIN intrinsic frees all local Resource Identification Numbers (RINs) currently reserved
from your job.

If the GETLOCRIN intrinsic has been called by a process, the FREELOCRIN intrinsic must be called
before GETLOCRIN can be called successfully a second time.

CONDITION CODES

CCE Request granted.
CCG Request denied because no RINs are currently reserved for the job.
CCL Request denied because at least one RIN is currently locked by a process.

ADDITIONAL DISCUSSION

"Resource Management" in Section III.

2-145

FRELATE

INTRINSIC NUMBER 18

Determines whether a file pair is interactive, duplicative, or both interactive and duplicative.

SYNTAX

L Iv v
intordup : =FRELATE (infilenum,listfilenum);

A devicefile is interactive if it requires human intervention for all input operations. This quality is
necessary to establish the person/machine dialog required to support a session. A devicefile is duplica-
tive if all input operations are echoed to a corresponding display without intervention by the operat-
ing system software.

You can determine whether a pair of files is interactive, duplicative, or both interactive and duplica-
tive through the FRELATE intrinsic call. The interactive/duplicative attributes of a file pair do not
change between the time the files are opened and the time they are closed.

The FRELATE intrinsic applies to files on all devices.

FUNCTIONAL RETURN

intordup logical (optional)
A word indicating whether the two files referenced are interactive and/or
duplicative. It contains two bits of importance:
Bit (15:1)
=0 The infilenum and listfilenum do not form an interactive pair.
=1 The infilenum and listfilenum form an interactive pair.
Bit (0:1)

=0 The infilenum and listfilenum do not form a duplicative pair.

=1 The infilenum and listfilenum form a duplicative pair.

PARAMETERS
infilenum integer by value (required)

A word supplying the file number of the input file.
listfilerum integer by value (required)

A word supplying the file number of the list file.

2-146

CONDITION CODES

CCE Request granted.

CCG Request denied because infilenum and/or listfilenum corresponds to $NULL.
$NULL is considered to be a logical file which contains no data. No data
can be read from this file and all data written to it is discarded. The in-
filenum and listfilenum functions, therefore, are illogical for the $NULL

file. Interactive or duplicative functions do not apply.

CCL Request denied because an error occurred.

SPECIAL CONSIDERATIONS

Split-stack calls permitted.

ADDITIONAL DISCUSSION

MPE File System Reference Manual (30000-90236).

2-147

FRENAME

INTRINSIC NUMBER 17

Renames a disc file.

SYNTAX

Iv

BA
FRENAME (filerum,newfilereference);

The FRENAME intrinsic changes the actual designator (including lockword, if any) of an open disc file.
The home volume set of newfilereference must be the same as that of the file being renamed.
(Volume sets cannot be spanned when renaming files.)

The file to be renamed must be either:

o A new file.

e An existing file, opened for EXCLUSIVE access, for which you have WRITE access (specified by
the security provisions of the file). If the file is a permanent file, you must be the creator.

PARAMETERS

filenmum

newfilereference

integer by value (required)
A word supplying the file number of the file to be renamed.

byte array (required)

Contains an ASCII string specifying the new name of the file. The maxi-
mum number of characters allowed in the string is 36. The format of new-
filereference is:

filename/lockword. group .account

filename

Lockword

group

account

The new file name for the file. (Required in
newfilereference.)

A lockword for the new file name. (Optional parameter of
newfilereference.) If you wish to keep or add a lockword to
the file, you must enter the lockword parameter in the
ASCII string. If this part of newfilereference is not
specified, the new file named will not have a lockword as-
sociated with it.

The group where the file is to reside. (Optional parameter
of newfilereference.) If no group is specified, the file will
reside in the group it was assigned before the FRENAME in-
trinsic call.

The account name where the file is to reside. (Optional pa-
rameter of newfilereference.) The account to which the file
is currently assigned must be used. If other than the cur-
rent account name is specified, the CCL error condition is
returned and the file retains its old name.

2-148

The ASCII string contained in newfilereference must begin with a letter;
can contain up to eight alphanumeric characters for each of the filename,
lockword, group, and account fields. The string must end with a nonal-
phanumeric character including a blank, but not a slash (/) or a period (.)
since these are used as field delimiters within the string.

CONDITION CODES

CCE Request granted.
CCG Not returned by this intrinsic.
CCL Request denied because an error occurred.

ADDITIONAL DISCUSSION

None.

2-149

FSETMODE

INTRINSIC NUMBER 14

Activates or deactivates the file access modes.

SYNTAX

1v Lv
FSETMODE (filenum,modeflags);

The FSETMODE intrinsic activates or deactivates the following access mode options: automatic error
recovery, terminal control by the user, and critical output verification.

The access mode established by the FSETMODE intrinsic remains in effect until another FSETMODE call
is issued or until the file is closed. The FSETMODE intrinsic applies to files on all devices.

The FSETMODE intrinsic allows access to the MPE global Serial Write Queue and BLOCKONWRITE pa-
rameter on a file-by-file basis. By enabling the Serial Write Queue on a file, all write requests are
guaranteed to be performed in the order issued. This preserves integrity while allowing the perfor-
mance benefits of uninterrupted process execution (BLOCKONWRITE=NO). This option may affect total
system performance; contact your Hewlett-Packard SE before enabling it. The Serial Write Queue is
globally disabled if the :CACHECONTROL BLOCKONWRITE=YES was specified, since this causes all
processes on the system to wait for the physical disc I/O to complete.

BLOCKONWRITE management can also be controlled on a file-by-file basis with the FSETMODE intrin-
sic. If BLOCKONWRITE is locally enabled, the user’s application will not be notified of a disc write
completion until the physical write operation has completed. Therefore, the BLOCKONWRITE option
guarantees commitment of the transaction to disc prior to completion notification to the user’s ap-
plication. The FSETMODE setting of an individual file will be overridden if the :CACHECONTROL
BLOCKONWRITE=YES is specified.

A combination of these two options in FSETMODE provides complete integrity and transaction com-
mitment notification with disc caching with minimal performance impact. Many disc writes can be
performed with BLOCKONWRITE=NO, Series Write Queue enabled, and guarantee integrity. On the
final disc write of a transaction, both localized BLOCKONWRITE=YES and Serial Write Queue enabled
can be specified to provide both integrity and total transaction commitment notification.

PARAMETERS
filenum integer by value (required)
A word supplying the file number of the file to which the call applies.
modeflags logical by value (required)
A 16-bit value that denotes the access mode options in effect, as described
below:

Bit (15:1) - Serial Write Queue. This bit may be set as follows:

=0 Disabled. Serial I/0O is not guaranteed.

=] Enabled. All physical 1I/O performed for this file will be guaranteed to
be output to disc in the order in which the I/Os were sent. This bit is

effective only on systems with disc caching enabled. With disc caching,
it is possible for I/Os to be posted in a different order than sent.

2-150

Bit (14:1) - BLOCKONWRITE. This bit has the following settings:
=0 Disabled. Output is not verified.

=] Enabled. All physical (block) output to the file is to be verified as
physically complete (when full data buffers are posted) before control
returns from a write intrinsic to the user’s program. The user waits
while the system is posting a full block to the file. Note that this bit is
effective only in buffered mode.

Bit (13:1) - Terminal control by the user.
This bit has the following settings:

=0 MPE will automatically issue the carriage return and line feed for the
terminal. This parameter is ignored if the device is not a terminal.

=] Inhibit normal terminal control by the system. MPE will not issue an
automatic carriage return and line feed at the completion of each ter-
minal output line.

Carriage return, line feed is not issued in the case where FREAD filenum,
target , or tcount is satisfied (tcount characters are typed in). If is
pressed, however, a carriage return is echoed but no line feed is sent. This
also applies to the READ intrinsic.

Bit (12:1) - Tape error recovery.
This bit may be set as follows:

=0 Tape error and report condition code CCE.

=] Report recovered tape error by FREAD or FWRITE with condition code
CCL and error number.

The remaining bits (0:12) are reserved for MPE and must be set to zero.

CONDITION CODES

CCE

CCG

CCL

Request granted.
Not returned by this intrinsic.

Request denied because an error occurred.

2-151

SPECIAL CONSIDERATIONS

Split-stack calls permitted.

ADDITIONAL DISCUSSION

"Declaring Access-Mode Options" in Section IV.

MPE File System Reference Manual (30000-90236).

MPE V System Operation and Resource Management Reference Manual (32033-90005).

Point-to-Point Workstation I/O Reference Manual (30000-90250).

2-152

FSPACE

INTRINSIC NUMBER 5

Moves a physical record pointer forward or backward on a tape or disc file.

SYNTAX

v

FSPACE (filenum,displacement) ;

Iv

You can space forward or backward on a fixed-length or undefined-length file by using the FSPACE
intrinsic to reset the logical record pointer. The FSPACE intrinsic applies to files on disc and magnetic
tape devices (including serial discs) only. On magnetic tape devices FSPACE spaces physical rather

than logical records.

The FSPACE intrinsic cannot be used with variable-length record files, message files, or with spooled
files on disc. An attempt to use this intrinsic on such files results in CCL, and the logical record
pointer is left at its current position.

Refer to the MPE File System Reference Manual (30000-90236) for special considerations on mag-

netic tape files.

PARAMETERS

filerum

displacement

integer by value (required)
A word supplying the file number of the file on which spacing is to be
done.

integer by value (required)

A signed integer indicating the number of logical records for buffered disc
files, or blocks for NOBUF files and all tape files, to be spaced over, rela-
tive to the current position of the logical record pointer. A positive value
signifies forward spacing, a negative value signifies backward spacing. The
maximum positive value is 32767, the maximum negative value is -327638.
If RIO access is used, the displacement includes all records regardless of ac-
tivity state (that is, active or deleted). Attempts to backspace beyond the
beginning of the file will be ignored by the system. The logical record
pointer will point to record O (the first record) and no error codes will be
returned.

2-153

CONDITION CODES

CCE Request granted.

CCG An end-of-file indicator was encountered during spacing. For disc files,
this is the file limit, and the logical record pointer is not changed. For
magnetic tape files, it is the end-of-file mark, and the logical record
pointer points to the (logical) end-of-file. The magnetic tape, however, is
positioned to one record past the file mark on the tape. For labeled tape
the logical record pointer is at the file mark.

CCL Request denied because an error occurred; for example, the file resides on a
device that prohibits spacing. Not allowed with APPEND access.

SPECIAL CONSIDERATIONS

Split-stack calls permitted.

ADDITIONAL DISCUSSION

MPE File System Reference Manual (30000-90236).

2-154

FUNLOCK

INTRINSIC NUMBER 16

Dynamically unlocks a file.

SYNTAX

Iv
FUNLOCK (filemam) ;

The FUNLOCK intrinsic dynamically unlocks a file that has been locked with the FLOCK intrinsic.

PARAMETERS

fileruam integer by value (required)
A word supplying the file number of the file to be unlocked.

CONDITION CODES

CCE Request granted.
CCG Request denied because the file had not been locked by the calling process.
CCL Request denied because the file was not opened with the dynamic locking

aoption of the FOPEN intrinsic, or the filenum parameter is invalid.

SPECIAL CONSIDERATIONS

Split-stack calls permitted.

ADDITIONAL DISCUSSION

MPE File System Reference Manual (30000-90236).

2-155

FUPDATE

INTRINSIC NUMBER 4

Updates (writes) a logical record in a disc file.

SYNTAX

v LA Iv
FUPDATE(filenum,target ,tcount);

The FUPDATE intrinsic updates a logical record in a disc file. This intrinsic affects the logical record
(or block for NOBUF files) last referenced by any intrinsic call for the file named except for FPOINT
which affects the record prior to the last record referenced. FUPDATE moves the specified informa-
tion from the user’s stack into this record. The file containing this record must have been opened
with the update aoption specified in the FOPEN call, and must not have variable-length records. If
RIO access is used, the modified record is set to the active state.

FUPDATE is functionally equivalent to, but faster than, FSPACE(filenum,-1); followed by an
FWRITE to filenum.

PARAMETERS
filemum integer by value (required)
A word supplying the file number of the file to be updated.
target logical array (required)
Contains the record to be written in the updating.
teount integer by value (required)

An integer specifying the number of words or bytes to be written from the
record. If this value is positive, it signifies words; a negative value sig-
nifies bytes; and a zero indicates that no transfer occurs. To have all con-
tents of a record written, fcount must be set at >=RECSIZE.

CONDITION CODES

CCE Request granted.

CCG An end-of -file condition was encountered during updating.

CCL Request denied because of an error, such as the file not residing on disc, or
tcount exceeding the size of the block when multirecord mode is not in
effect.

SPECIAL CONSIDERATIONS

Split-stack calls permitted.

Not applicable to message files.

ADDITIONAL DISCUSSION

MPE File System Reference Manual (30000-90236).

2-157

FWRITE

INTRINSIC NUMBER 3

Writes a logical or physical record or portion of a record from the user’s stack to a file on any device.

SYNTAX

Iv LA 1v LV
FWRITE(filemum,target ,tcount ,control);

The FWRITE intrinsic writes a logical or physical record, or a portion of such a record, from the user’s
stack to a file on any device.

When information is written to a fixed-length record, and the NOBUF aoption was not specified in
FOPEN, any unused portion of the record will be padded with binary zeros for a binary file or ASCII
blanks for an ASCII file.

When the FWRITE intrinsic is executed, the logical record pointer is set to the record immediately fol-
lowing the record just written, or the first logical record in the next block for NOBUF files. If RIO
access is used, the modified record is set to the active state.

When an FWRITE call writes a record beyond the current logical end-of -file indicator, this indicator
is advanced to a farther location; however, this is only noted in the file label when the file is actually
closed or when an extent is allocated. If the physical bounds of the file are reached, CCG is returned.

If a magnetic tape or serial disc is unlabeled (as specified in the FOPEN intrinsic or :FILE command)
and a user program attempts to write over or beyond the physical or simulated end-of -tape (EOT)
marker, the FWRITE intrinsic returns CCL. The actual data has been written to the tape, and a call
to FCHECK reveals a file error indicating end-of-tape. All writes to the tape after the EOT tape
marker has been crossed transfer the data successfully but return CCL until the tape crosses the EOT
marker again in the reverse direction (rewind or backspace).

If a magnetic tape or serial disc is labeled (as specified in the FOPEN intrinsic or :FILE command),
CCL is not returned when the tapc passes the EOT marker. Attempts to write to the tape after the
EOT marker is encountered cause end-of-volume (EOV) markers to be written. A message then is
printed on the System Console requesting another volume (reel of tape) to be mounted.

For message files and circular files this intrinsic logically appends the user’s record to the end of the
file. If circular file is full, the first block is deleted, the remaining blocks are logically shifted to the
file’s head, and the new record is appended to the end of the file. If a message file is full and there
are no readers, the process will wait if there is an FCONTROL 45in effect. It will also wait if this the
first FWRITE after the writer's FOPEN. Otherwise, CCG is returned.

PARAMETERS
filemum integer by value (required)

A word supplying the file number of the file to be written on.
target logical array (required)

Contains the record to be written.

2-158

tecount

control

integer by value (required)

An integer specifying the number of words or bytes to be written to the
record. If this value is positive, it signifies words; a negative value, bytes;
and a zero indicates that no transfer occurs. If fcount is less than the rec-
size parameter associated with the record, only the first fcount words or
bytes are written.

If tcount is larger than the logical record size and the NOBUF aoption is not
specified in FOPEN, the FWRITE request is refused and CCL is returned. If
NOBUF is specified, tcount may not exceed the physical record size unless
the multirecord aoption is specified.

If the multirecord aoption is specified in FOPEN, the excess words or bytes
are written to succeeding physical records. For files for which carriage
control is specified, the actual data transferred is limited to recsize minus
one byte.

logical by value (required)

A logical value representing a carriage control code, effective if the file is
transferred to a line printer or terminal (including a spooled file whose ul-
timate destination is a line printer or a terminal). This parameter is effec-
tive only for files opened with carriage control specified.

The options are:

0 Print the full record transferred, using single spacing. This results in a
maximum of 132 characters per printed line.

1 Use the first character of the data written to satisfy space control, and
suppress this character on the printed output. This results in a maxi-
mum of 132 characters of data per printed line. Permissible control
characters are shown in Table 2-3.

Any octal code from Table 2-5 can be used to determine space control and
print the full record transferred. This results in a maximum of 132
characters per printed line.

If the control parameter is not 0 or 1, and #count is O, only the space con-
trol is executed and no data is transferred.

The effect of the FWRITE control parameter in combination with the FOPEN
carriage control foption (or overriding :FILE command CCTL/NOCCTL
parameter) upon the data written is summarized in Figure 2-3.

You determine whether the carriage control directive takes effect before
printing (pre-space movement) or after printing (post-space movement),
through the FCONTROL intrinsic.

For spooled files it is necessary to set the pre-space/post-space control and
the auto/no auto page eject control using FWRITE instead of FCONTROL.
You may use control codes %100 through %103 and %400 through %403 for
this. If you specify one of the above controls with fcount = 0, no physical
I/0 will occur.

2-159

For non-spooled devicefiles, all of the Carriage Control Codes listed in
Table 2-§ may be used as the value of the param parameter in FCONTROL
(when controlcode = 1), regardless of whether the file is opened with CCTL
or NOCCTL. When the file is opened with CCTL, these carriage control
codes may be used in either of the following ways via FWRITE:

¢ Asthe value of the control parameter.
¢ When control = 1, as the first byte of the target array.
The default carriage control code is post-spacing with automatic page eject.

This applies to all Hewlett-Packard-supported subsystems except
FORTRAN and COBOL which have prespacing with automatic page eject.

CONDITION CODES

CCE

CCG

CCL

Request granted.

The physical bounds of the file prevented further writing; all disc extents
are filled.

Request denied because an error occurred, such as fcount exceeding the size
of the record in nonmultirecord mode; the FSETMODE option is enabled to
signify recovered tape errors; or the end-of-tape marker was sensed. If
the file is being written to a multivolume labeled magnetic tape set, CCL is
not returned when the end-of-tape marker is sensed. Instead, end-of -
volume labels are written, and a request is issued to mount the next
volume.

SPECIAL CONSIDERATIONS

Split-stack calls permitted.

ADDITIONAL DISCUSSION

MPE File System Reference Manual (30000-90236).

Point-to~Point Workstation I/0O Reference Manual (30000-90250).

2-160

Table 2-5.

Carriage Control Directives

OCTAL CODE ASCII SYMBOL

CARRIAGE ACTION

%40 wnon

%53 Il+ll

%55 won

%60 IIOII

%461 "1

%462

%463

%2nn

%4300 - %313

%300 - %317

Single space (with or without automatic page eject).

No space, return (next printing at column 1). This
cannot be used more than once on the HP 2608A/S
without losing data.

Triple space (with or without automatic page eject).*
Double space (with or without automatic page eject).*

Conditional page eject (form feed) is performed by the
software. If the printer is not already at the top of
the form, a page eject is performed. Ignored if:

Post-space mode: The current request has a transfer
count of 0 and the previous request was FOPEN,
FCLOSE, or FWRITE which specified a carriage control
directive of %61.

Pre-space mode: Both the current request and the
previous request have transfer counts of 0, and the
current request and previous request are any combina-
tion of FOPEN, FCLOSE, or FWRITE specifying a car-
riage control of %61.

Skip to one line before top of form. This specification
is valid only for the HP 2608S and 2563A printers.

A conditional page eject form (form feed) is perform-
ed by the printer. If the printer is not already at the
top of form, perform a page eject. This specification
is valid only for the HP 2608S and 2563A printers.

Space nn lines (no automatic page eject); nn is any oc~
tal number from O through 77.

Select VFC Channel 1 - 12 (HP 2613, 2617, 2618,
2619).

Select VFC Channel 1 - 16 (HP 2608A/S).

*Note: If these codes are selected with automatic page eject in effect (by default or following an octal
code of %102 or %402), the resulting skip is to a location absolute to the page. A code of %60 is
replaced by %303, and a code of %55 is replaced by %304. Thus, the resulting skip may be less than

two or three lines, respectively.

If automatic page eject is not in effect, a true double or triple space results, but the perforation be-
tween pages is not automatically skipped. For the HP 2608S and 2563A, if auto-eject and feature
mode are in effect, a code of %60 will be replaced by two codes of #4302, and a code of %55 is replaced
by three codes of %302. The resulting skip will be double or triple space with auto-eject,

respectively.

2-161

Table 2-5. Carriage Control Directives (Continued)

OCTAL CODE ASCH SYMBOL

CARRIAGE ACTION

#300
#4301
%302
%303
%304
%305
#4306
%307
%310
%311

%312
%313

%314
%315
%316
%317
%320

%2 - %37

%41 - %52

%54

%56-%57

%62-%71

%104-%177

%310-%317 (HP 2607)
%314-%317 (HP 2613/17/18/19)
%321-%377

%400 or %100

%401 or %101
%402 or %102

%403 or #4103

NOTE:
Channel assignments shown below are the Hewlett-Packard
standard defaults.

Skip to top of form (page eject).

Skip to bottom of form.

Single spacing with automatic page eject.

Skip to next odd line with automatic page eject.

Skip to next third line with automatic page eject.

Skip to next 1/2 page.

Skip to next 1/4 page.

Skip to next 1/6 page.

Skip to bottom of form.

User option (HP 2613/17/18/19), skip to one line before
bottom of form (HP 2608A/S).

User option (HP 2613/17/18/19), skip to one line before
top of form (HP 2608A/S).

User option (HP 2613/17/18/19), skip to top of form (HP
2608A).

Skip to next seventh line with automatic page eject.

Skip to next sixth line with automatic page eject.

Skip to next fifth line with automatic page eject.

Skip to next fourth line with automatic page eject.

No space, no return (next printing physically follows this).

Same as %40.

Sets post-space movement option; this first prints, then
spaces. If previous option was pre-space movement, the
driver outputs a line with a skip to VFC Channel 3 (auto-
matic page eject in effect) or a one line advance (equivalent
to an octal code of %201 without automatic page eject) to
clear the buffer.

Sets pre-space movement option; this first spaces, then
prints.

Sets single-space option, with automatic page eject (60 lines
per page).

Sets single-space option, without automatic page eject (66
lines per page).

2-162

FOPEN

FWRITE Control Parameter

OR
:FILE =0 =1 = Greater than 1
Carriage Byte recsize recsize Byte recsize
Control 15 133 l | 132 l I 133 i
Faption
or 0| record = 132 record = 132 ‘o] record = 132
CCTL
Data output contains Data output contains 132 Data output contains
132 characters; the prefix characters; the carriage control 132 characters; the prefix
byte is added and character in the first byte is character added is a
contains 0. not printed if output is to a carriage control character
list device. specified by the FWRITE
control parameter.
Carriage
Control | 132 | | 132 | | 132]
Foption
not record = 132 record = 132 record = 132
specified
or
NOCCTL

Data output contains
132 characters.

Data output contains
132 characters.

Data output contains
132 characters.

V
EFFECT ON DATA OUTPUT

Figure 2-3. Carriage Control Summary

2-163

FWRITEDIR

INTRINSIC NUMBER 8

Writes a specific logical record from the user’s stack to a disc file.

SYNTAX

v LA IV DV
FWRITEDIR(filenum,target ,tcount ,recrum);

The FWRITEDIR intrinsic writes a specific logical record (or physical record if NOBUF is specified), or
a portion of such a record, from the user’s stack to a disc file. This intrinsic differs from the FWRITE
intrinsic in that the FWRITE intrinsic writes only the record pointed to by the logical record pointer.
The FWRITEDIR intrinsic may be used only for disc files composed of fixed- or undefined-length
records.

When information is written to a fixed-length record and NOBUF was not specified in the FOPEN call
that opened the file, any unused portion of the record will be padded with binary zeros for a binary
file, or ASCII blanks for an ASCII file.

When the FWRITEDIR intrinsic is executed, the logical record pointer is set to the record immediately
following the record just written, or the first logical record of the next block for NOBUF files.

If RIO access is used, the modified record is set to the active state.

When an FWRITEDIR call writes a record beyond the current logical end-of-file indicator, the in-
dicator is advanced to a farther location. This can result in the creation of dummy records to pad the
records between the previous end-of -file and the newly written record. These dummy records are
filled with binary zeros for a binary file, or with ASCII blanks for an ASCII file when the new record
is in the same extent.

When the physical bounds of the file prevent further writing, because all allowable extents are filled,
the end-of -file condition (CCG) is returned to the user’s program.

PARAMETERS

filemum integer by value (required)
A word supplying the file number of the file to be written on.

target logical array (required)
Contains the record to be written. This array should be large enough to
hold all of the information to be transferred.

tecount integer by value (required)

An integer specifying the number of words or bytes to be written to the
record. If this value is positive, it signifies words; a negative value, bytes;
and a zero indicates that no transfer occurs. If fcount is less than the rec-
size parameter associated with the record, and NOBUF was specified, only
the first fcount words or bytes are written.

2-164

If tcount is larger than the size of the logical record and the NOBUF aop-
tion was not specified in FOPEN, the transfer is limited to the length of the
logical record. If NOBUF was specified and if tcount is larger than the size
of the physical record, the transfer is limited to the length of the physical
record if the multirecord aoption was not specified. If the multirecord aop-
tion was specified in FOPEN, the remaining words or bytes are written to
succeeding physical records up to the file limit.

recnum double by value (required)
A double integer indicating the relative number of the logical record, or
block number for NOBUF files, to be written. The first record is indicated
by zero.

CONDITION CODES

CCE Request granted.
CCG The physical end-of ~file was encountered.
CCL Request denied because an error occurred.

SPECIAL CONSIDERATIONS

Split-stack calls permitted. '

Not applicable to message files.

ADDITIONAL DISCUSSION

MPE File System Reference Manual (30000-90236).

2-165

FWRITELABEL

INTRINSIC NUMBER 20

Writes a user file label.

SYNTAX

o-v

FWRITELABEL (filenum,target ,tcount,labelid);

LA v Iv

The FWRITELABEL intrinsic writes a user-defined label onto a disc file or labeled magnetic tape file
that is labeled with an ANSI-standard or IBM-standard label. This intrinsic overwrites old user
labels. Once a disc file has been opened, user labels may be read from or written to regardless of the
user’s access to the rest of the file. If the file is on labeled magnetic tape, the user-defined label must
be 40 words in length to conform to the length of the ANSI or IBM-standard label.

PARAMETERS

filemum

target

teount

Labelid

integer by value (required)
A word supplying the file number of the file to be labeled.

logical array (required)
Contains the label to be written. If the file is a labeled magnetic tape file,
this label must be 40 words in length.

integer by value (optional)
The number of words to be transferred from the array. The default is 128
words.

integer by value (optional)
The number of the label to be written. The first label is 0. This parameter
is ignored for labeled tapes. The next sequential tape label is written. Zero
is assigned as the default.

CONDITION CODES

CCE

CCG

CCL

Request granted.

Request denied because the calling process attempted to write a label
beyond the limit specified in FOPEN when the file was opened.

Request denied because an error occurred.

SPECIAL CONSIDERATIONS

Split-stack calls permitted.

ADDITIONAL DISCUSSION

MPE File System Reference Manual (30000-90236).

2-166

GENMESSAGE

NO INTRINSIC NUMBER ASSIGNED

Accesses the MPE message system.

SYNTAX

I 0-v Iv Iv IV BA v Lv
msglen:=GENMESSAGE (filenum,setmum,msgram, buff,buffsize,parmask,

Lv Lv Lv Lv Lv Iv I
paraml ,param2 ,param3 ,paramd ,params ,msgdest ,errnum) ;

The GENMESSAGE intrinsic accesses the MPE message system. A message number is passed by
GENMESSAGE to the message system. The message system gets the message from a message catalog
(opened by the calling program), inserts parameters supplied by GENMESSAGE into the message, then
routes the message to $STDLIST, to a file, or returns the message to the calling program. (If msgdest
is specified, the message is routed to a file; if buff is specified, the message is returned; if both
msgdest and buff are specified, the message is routed to a file and returned.)

NOTE

The catalog file must be opened with foptions "old,
permanent, ASCII" (foptions 5), and aoptions "NOBUF
and MULTIrecord access" (aoptions %$420).

FUNCTIONAL RETURN

msglen integer (optional)
The length of the message is returned (in bytes).

PARAMETERS
filerum integer by value (required)
A word supplying the file number of the message catalog.
setmm integer by value (required)
A positive integer no greater than 62 specifying the message set number
within the catalog.
msgnum integer by value (required)
A positive integer, specifying the message number within the message set.
buff byte array {optional)

A byte array to which the assembled message is returned.

Default: Message is not returned to calling program.

2-167

buffsize

parmask

paraml

param2

paramd

integer by value (optional)

When buff is specified, buffsize is the size, in bytes, of the buffer. When
buff is not specified, buffsize is the length, in bytes, of the records written
to the destination file.

Default: 72 bytes.

logical by value (optional)

A 16-bit logical mask indicating parameter types for parami, param2,
param3, param4, and param5. The bit settings are as follows:

Bits (13:3) - Defines params$ type.

=000 Parameter is a string, terminated by an ASCII null (0).

=001 Parameter is an integer.

=010 Parameter is double by reference.

=011 Ignore the parameter.

Bits (10:3) - Param4 type (types same as for params5).

Bits (7:3) - Param3 type (types same as for params5).

Bits (4:3) - Param2 type (types same as for params).

Bits (1:3) - Param1 type (types same as for params5).

Bit (0:1)

=] Ignore rest of word and parameters param! through params.

=0 Rest of word, in 3-bit groupings, will specify parameter types for
paraml, param?2, param3, param4, and params.

Default: Parameters param 1 through params will be ignored.

logical by value (optional)

Parameter to be inserted into message. If parmask specifies type O (string),
param1 must pass the byte address (that is, @stringarray) of the byte array
containing the string. If parmask specifies type 2 (double by reference),
param! must pass the word address (that is, @doublename) of the double-
word identifier containing the value.

logical by value (optional)

“Parameter to be inserted into message. Description is the same as for

paraml .
logical by value (optional)

Parameter to be inserted into message. Description is the same as for
paraml .

2-168

paramb

msgdest

errnum

logical by value (optional)

Parameter to be inserted into message. Description is the same as for
paraml .

logical by value (optional)

Parameter to be inserted into message. Description is the same as for
paraml .

integer by value (optional)

Integer value specifying the destination of the assembled message. Enter
the file number of the destination file if the file is not $STDLIST; for
$STDLIST, enter O.

Default: $STDLIST if buff is not specified, no file if buff is specified.
integer (optional)

Integer identifier to which an error number is returned. Values returned
are as follows:

0 Successful execution.

1 FREADLABEL failed on catalog file.

2 FREADfailed on catalog file.

3 Specified setnum not found in catalog.

4 Specified msgnum not found in catalog.

6 Assembled message overflowed buffer (if msgdest was specified,
however, message routed correctly).

7 Write failed to destination file.

8 Catalog file opened with improper access options.
11 A filenum parameter not specified.

12 A setnum parameter not specified.

13 A msgnum parameter not specified.

14 The setnum is <= 0.

15 The setnum is > 62.

16 The msgnum is <= 0.

17 The buffsize is <= 0.

18 The msgdest is < 0.

2-169

CONDITION CODES

CCE Successful execution.
CCL Intrinsic did not execute because of file system error.
CCG Intrinsic did not execute. May have missing required parameter, invalid

parameter, or invalid file number of catalog or destination file. CCG 1is
also returned if setnum or msgnum is not found.

ADDITIONAL DISCUSSION
"Using GENMESSAGE to Insert Parameters in Messages" in Section V.

Point-to-Point Workstation I/0 Reference Manual (30000-90250).

2-170

GETDSEG

INTRINSIC NUMBER 130

Creates an extra data segment.

SYNTAX

L I LV
GETDSEG(index,length,id);

The GETDSEG intrinsic creates or acquires an extra data segment. The number of extra data segments
that can be requested, and the maximum size allowed these segments, are limited by parameters
specified when the system is configured. When an extra data segment is created, the GETDSEG in-
trinsic returns a logical index number to the calling process. This index number is assigned by MPE
and allows this process to reference the segment in later intrinsic calls.

The GETDSEG intrinsic is also used to assign the segment the identity that either allows other processes
in the job or session to share the segment, or that declares it private to the calling process. If the
segment is sharable, other processes can obtain its logical index (through GETDSEG) and use this index
to reference the segment. Thus, the logical index is a local name that identifies the segment
throughout any process that obtained the index with the GETDSEG call. The logical index need not be
the same value in all processes sharing the data segment. The identity, on the other hand, is a job-
wide or session-wide name that permits any process to determine the logical index of the segment. If
the intrinsic is called in User Mode, then the data segment is initially filled with zeros.

When GETDSEG is called in User Mode, all subsequent calls to intrinsics that use index must now bé in
User Mode. When GETDSEG is called in Privileged Mode, all subsequent calls to intrinsics that use in-
dex must now be in Privileged Mode (version G.01.00 or later).

PARAMETERS

index logical (required)
A word to which the logical index of the data segment, assigned by MPE, is
returned. When GETDSEG is called in User Mode, index is a logical index of
the assigned data segment; if an error is found, index will be set to
%2000-%2004. When GETDSEG is called in Privileged Mode, index is the
actual Data Segment Table (DST) entry number for the data segment that
was assigned.

length integer (required)
The maximum size of the data segment requested, if the segment is not yet
created. If the segment already exists, the word to which the maximum
size of the segment is returned.

id logical by value (required)

A word containing the identity that declares the data segment sharable be-
tween other processes in the job/session, or private to the calling process.
For a sharable segment, id is specified as a nonzero value. If a data seg-
ment with the same identification already exists, it is made available to the
calling process. Otherwise, a new data segment, sharable within the
job/session, is created with id. For a private data segment, an id of zero
must be specified.

2-171

CONDITION CODES

CCE Request granted. A new segment was created.
CCG Request granted. An extra data segment with this identity exists already.
CCL Request denied. An illegal length was specified (index is set to %2000).

The process requested more than the maximum allowable number of data
segments (index is set to %2001). Sufficient storage was not available for
the data segment (index is set to %2002). A stack expansion necessary to
satisfy the request could not be done because the stack was frozen (index set
to %#2003). A stack expansion is usually not necessary to get an extra data
segment. There is not enough room in the job definition table to make an
entry for the extra data segment (index set to %2004).

SPECIAL CONSIDERATIONS

Data Segment Management (DS) capability required.

If the index parameter will be used with the SWITCHDB intrinsic, GETDSEG must be called in
Privileged Mode (PM). :

ADDITIONAL DISCUSSION

"Creating an Extra Data Segment" in Section III.

2-172

GETINFO

INTRINSIC NUMBER 87

Retrieves the info string and parm value from the :RUN command or CREATEPROCESS intrinsic.
(Available G.02.00 version or later.)

SYNTAX

o-v BA

GETINFD (info,info'length,parm);

I I

The GETINFO intrinsic provides user programs with the ability to retrieve the info string and the parm
value entered in the :RUN command, or given in the CREATEPROCESS intrinsic. The info string is
returned in the byte array info and the parm value is returned in parm. If the info string is longer
than the length specified by info'length only the amount of the string up to the infolength is returned.

FUNCTIONAL RETURN

result

PARAMETERS

info

info'length

Integer. The possible values returned are:
0: The intrinsic executed successfully.

1: Error. This occurs when the info array is passed in, but the length is
invalid or omitted.

byte array (optional)
Specifies where the info string is to be returned. If not provided, the info
string will not be returned.

integer (optional)

This parameter both passes and receives a length. When calling, this should
contain a positive integer specifying the length, in bytes, of info. This is
only required if info is specified.

When returning from the call, the real length of the info string will be in
infolength. When returning from the call, infolength will contain the
smaller of either the real length of the info string or the original infollength
value.

integer (optional)
Specifies where the parm value will be returned.

CONDITION CODES

The condition code remain unchanged.

2-1173

ADDITIONAL DISCUSSION
The CREATEPROCESS discussion in this section.

MPE V Commands Manual (32033-90006).

2-174

GETJCW

INTRINSIC NUMBER 73

Returns the value of the system-defined Job Control Word JCW.

SYNTAX

L
JCW : =GETJCIW;

The GETJCW intrinsic returns the value of the system-defined Job Control Word to the calling process.

FUNCTIONAL RETURN

JCW logical (optional)
A logical variable containing the Job Control Word. This word is struc-
tured for a desired purpose by the calling program through the SETJCW in-
trinsic or PUTJCW intrinsic.

CONDITION CODES

The condition code remains unchanged.

ADDITIONAL DISCUSSION

"User-Defined Job Control Words" in Section V.

2-175

GETLOCRIN

INTRINSIC NUMBER 30

Acquires local RINs.
SYNTAX

LV
GETLOCRIN(rincount);

Just as global Resource Identification Numbers (RINs) must be acquired by users before they can be
used in jobs/sessions, local RINs must be acquired by a job/session before they can be used within the
job/session. This is done by using the GETLOCRIN intrinsic.

PARAMETERS

rincount logical by value (required)
The number of local RINs to be acquired by the job/session. The maximum
number of RINs available is defined when the system is configured.

CONDITION CODES
CCE Request granted.

CCG Request denied. RINs already are allocated to this job. Additional RINs
cannot be allocated until these RINs are released.

CCL Request denied. Not enough RINs are available to satisfy this call. None
are allocated to this job.

ADDITIONAL DISCUSSION

"Resource Management" in Section III.

2-176

GETORIGIN

INTRINSIC NUMBER 10§

Determines the source of an activation call for a process.

SYNTAX

I
source : =GETORIGIN;

After a suspended process is reactivated, it can determine whether the source of the activation request
was its father process, one of its son processes, or whether the reactivation was by an interrupt or the
timer.

FUNCTIONAL RETURN

source integer (optional)
This intrinsic returns one of the following codes:

0 Was not activated by the father nor the son.
1 Activated by the father.

2 Activated by a son.

CONDITION CODES

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

Process Handling (PH) capability required.

ADDITIONAL DISCUSSION

"Determining Source of Activation" in Section III.

2-177

GETPRIORITY

INTRINSIC NUMBER 120

Changes the priority of a process.

SYNTAX

0-v Iv
GETPRIORITY (pin,priorityclass ,rank);

Lv v

When a process is created, it is scheduled on the basis of a priority class assigned by its father. After
this point, the priority class of the created process can be changed at any time by using the

GETPRIORITY intrinsic.

HOTE

A process can change its own priority or that of its son,
but it cannot reschedule its father.

The GETPRIORITY intrinsic will abort the calling process if the requested priorityclass exceeds the
maximum allowable priorityclass of the rescheduled process, or specifies an invalid priorityclass.

PARAMETERS

pin

priorityclass

integer by value (required)

An integer specifying the process whose priority is to be changed. If this is
a son process, the integer is the Process Identification Number (PIN) of the
process. If this is the calling process, the integer is zero. ’

logical by value (required)

A 16-bit word that contains two ASCII characters describing the priority
class in which the process is rescheduled. This may be AS, BS, CS, DS, or
ES. For users running in Privileged Mode, the priorityclass parameter may
be specified as an absolute number by xA, where x is an 8-bit priority
number and A is the ASCII character "A". For example, a request for a
priorityclass of 31 in the master queue would be requested as %017501.
Note that an absolute priority must be specified in order to overcome the
MAXPRI setting of an account.

NOTE

Scheduling a process into the AS or BS priority class (assuming
the maximum priority for the process allows such a specifica-
tion) can result in the rescheduled process deadlocking the sys-
tem or locking out system and user processes from execution.

2-178

rank integer by value (optional)
This parameter is used only for the "AS" priority class. It will be added to
the "AS" priority value if supplied and is ignored in all other cases.

CONDITION CODES

CCE Request granted.
CCG Request denied because the process specified does not exist.
CCL Request denied because an illegal PIN was specified.

SPECIAL CONSIDERATIONS

Split-stack calls permitted.
Process Handling (PH) capability required.

Must be running in Privileged Mode to specify absolute priority.

ADDITIONAL DISCUSSION

"Rescheduling Processes" in Section III.

2-179

GETPRIVMODE

INTRINSIC NUMBER 200

Dynamically enters Privileged Mode.

SYNTAX

0-P
GETPRIVMODE 5

The GETPRIVMODE intrinsic switches a temporarily privileged program from the non-Privileged Mode
to the Privileged Mode. This intrinsic sets the Privileged Mode bit in the status register bit (9:1)=1,
but leaves the Privileged Mode bit in the Code Segment Table (CST) entry for the executing segment
unchanged. The status register, rather than the CST, determines a mode change when running in
Privileged Mode. Thus, if additional segments are to be run as part of the program, they will be run
in Privileged Mode unless GETUSERMODE is called specifically to return to the non-Privileged Mode.
The calling process is aborted if the program file does not possess the Privileged Mode (PM) capability,

and the CST indicates non-Privileged Mode.

CONDITION CODES

CCE

CCG

CCL

Request granted. The program was in non-Privileged Mode when the in-

trinsic call was issued.

Request granted. The program was already in Privileged Mode when the

intrinsic call was issued.

Not returned by this intrinsic.

SPECIAL CONSIDERATIONS

Privileged Mode (PM) capability required.

CAUTION

The normal checks and limitations that apply to the
standard users in MPE are bypassed in Privileged Mode.
It is possible for a Privileged Mode program to destroy
file integrity, including the MPE operating system soft-
ware itself. Hewlett-Packard will investigate and at-
tempt to resolve problems resulting from the use of
Privileged Mode code. This service, which is not
provided under the standard Service Contract, is avail-
able on a time and materials billing basis.
Hewlett-Packard will not support, correct, or attend to
any modification of the MPE operating system software.

ADDITIONAL DISCUSSION

"Entering Privileged Mode" in Section III.

2-180

GETPROCID

INTRINSIC NUMBER 112

Requests PIN of a son process.

SYNTAX

I Iv
pin:=GETPROCIDGumson);

A process can determine the Process Identification Number (PIN) assigned to any of its sons by using
the GETPROC ID intrinsic. :

FUNCTIONAL RETURN

pin integer (optional)
The PIN of the specified son process.

PARAMETERS

numson integer by value (required)
A number from 1! to » which specifies the chronological son’s PIN. The
value n cannot exceed the number of sons in existence. For example, a
father process has three sons and wants to know the PIN of the second son.
The value of numson then would be 2.
If n exceeds the number of sons currently attached to this calling process, a

zero is assumed. If n is less than 1, the PIN of the first son (or zero if no
sons exist) is returned.

CONDITION CODES

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

Process Handling (PH) capability required.

ADDITIONAL DISCUSSION

"Determining Son Process" in Section III.

2-1381

GETPROCINFO

INTRINSIC NUMBER 110

Requests status information about a father or son process.

SYNTAX

D Iv
statinfo:=GETPROCINFO(pin);

Information about a father or son process can be obtained with the GETPROCINFO intrinsic.

FUNCTIONAL RETURN

statinfo double (optional)
A double-word message denoting information about a father or son process.
The words contain information in the following manner:
Word 1:

Bits (8:8) - The priority number of the process in the master queue.

Bits (0:8) - Reserved for MPE.
These bits are set to zero by the system.

Word 2:

Bit (15:1)-Activity state.
This bit has the following settings:

=0 The process is suspended.
=] The process is active.

Bits (13:2) - Suspension condition.
The following settings apply only if bit (15:1)=0:

=00 Is not used.

=01 The source of the expected activation is the father.

=10 The source of the expected activation is the son.

=11 The source of the expected activation is either the father or the son.

Bits (9:4) - Reserved for MPE.
These bits are set to zero by the system.

2-182

PARAMETERS

pin

Bits (7:2) - Origin of the last ACTIVATE intrinsic call denoted by the fol-
lowing bit settings:

=00 The process was activated by MPE.

=01 The process was activated by the father.
=10 The process was activated by the son.
=11 Is not used.

Bits (4:3) - Queue Characteristics.
The characteristics are defined by the following bit settings:

=001 DSor ES priority class.
=010 CS priority class.
=100 Linearly scheduled (AS, BS, or Master queue).

Bits (0:4) - Reserved for MPE.
These bits are set to zero by the system.

integer by value (required)

The process to which the returned message pertains. If this is a request for
a father process, pin must be zero. If it is a request for a son process, pin is
the PIN of that process.

CONDITION CODES

CCE

CCG

CCL

Request granted.
Request denied because the process is being terminated.

Request denied because an illegal PIN was specified.

SPECIAL CONSIDERATIONS

Split-stack calls permitted.

Process Handling (PH) capability required.

ADDITIONAL DISCUSSION

“Determining Process Priority and State" in Section III.

2-183

GETUSERMODE

INTRINSIC NUMBER 201

Dynamically returns a program to non-Privileged Mode.

SYNTAX

GETUSERMODE ;

The GETUSERMODE intrinsic changes a temporarily privileged program from Privileged to non-
Privileged Mode.

This intrinsic changes the Privileged Mode bit in the status register, bit (9:1)=0, and is the comple-
ment of the GETPRIVMODE intrinsic.

CONDITION CODES

CCE Request granted. The process was in Privileged Mode when the intrinsic
call was issued.

CCG Request granted. The program was in non-Privileged Mode when the in-
trinsic call was issued.

CCL Not returned by this intrinsic.

SPECIAL CONSIDERATIONS

Privileged Mode (PM) capability required.

ADDITIONAL DISCUSSION

"Entering Non-Privileged Mode" in Section III.

2-184

INITUSLF

INTRINSIC NUMBER 82

Initializes a USL file to the empty state.

SYNTAX

I IV I
errnum:=INITUSLF (uslfrum,rec0) ;

The INITUSLF intrinsic initializes the first record (record 0) of a USL file to the empty state.

\

FUNCTIONAL RETURN

errnum integer (optional)
If no error occurs, no value is returned. If an error occurs, one of the fol-
lowing is returned:
0 An unexpected end-of -file was encountered when writing to uslfnum.

1 Unexpected input/output error occurred.

PARAMETERS
uslfrum integer by value (required)

A word supplying the file number of the USL file.
recO integer array (required)

A 128-word buffer, corresponding to the first record of the USL file
(record 0), to be initialized to the empty state. This buffer should be set to
all zeros. The intrinsic will set certain values in record O before returning
to the calling program.

CONDITION CODES

CCE Request granted.
CCG Not returned by this intrinsic.
CCL Request denied ; an error number is returned to errnum.

ADDITIONAL DISCUSSICN

MPE Segmenter Reference Manual (30000-90011).

2-185

IODONTWAIT

NO INTRINSIC NUMBER ASSIGNED

Initiates completion operations for an 1/0O request.

SYNTAX

I o-v

frum:=10DONTWAIT(filenum, target ,tcount ,cstation);

Iv LA I L

The IODONTWAIT intrinsic operates the same as IOWAIT with one exception: if IOWAIT is called and
no I/0 has completed, then the calling process is suspended until some I/O completes; if IODONTWAIT
is called and no I/0 has completed, then control is returned to the calling process (CCE is returned
and the result of IDDONTWAIT is zero).

FUNCTIONAL RETURN

fnum

PARAMETERS

filemum

target

teount

cstation

integer (optional)
An integer representing the file number for which the completion occur-
red. If no completion occurred, zero is returned.

integer by value (required)

A word supplying the file number for which there is a pending I/O request.
If zero is specified, the IODONTWAIT intrinsic will check for any I/0
completion.

logical array (optional)

A word pointer specifying the DB-relative address of the user’s input
buffer. This buffer must be large enough to contain the input record. It
should be the same buffer specified in the original I/O request if that
request was a read.

integer {(optional)

A word to which a positive integer representing the length of the received
or transmitted record is returned. If the original request specified a byte
count, the integer represents bytes; if the request specified words, the in-
teger represents words. Note that this parameter is pertinent only if the
original request was a read. The FREAD intrinsic always returns zero as its
functional return if NOWAIT 1/0 is specified. In this case, the actual
record length is returned in the fcount parameter of IODONTWAIT.

Default: The length of the record is not returned.
logical (optional)

Used for distributed systems to return the number of the calling station
when completed.

2-186

CONDITION CODES

CCE Request granted. If the functional return is not zero then 1/O completion
occurred with no errors. A 0 returned to fnum indicates that no I/O has
completed.

CCG An end-of -file condition was encountered.

CCL Request denied. Normal I/O completion did not occur because there were

no I/0 requests pending, a parameter error occurred, or an abnormal 1/0
completion occurred.

SPECIAL CONSIDERATIONS

You must be running in Privileged Mode to specify FOPEN aoption NOWAIT 1/0.

ADDITIONAL DISCUSSION
"Using the IOWAIT Intrinsic" in Section IV.

Point-to-Point Workstation I/O Reference Manual (30000-90250).

IOWAIT

INTRINSIC NUMBER 22

Initiates completion operations for an I/0 request.

SYNTAX

I 0-v

Iv LA I L
Frum:=10WAIT(filenum, target , tcount ,cstation);

If a file has been opened with the NOWAIT 1/0O mode aoption of the FOPEN intrinsic (aoption bit
(4:1) = 1), all read and write requests must be followed by the IOWAIT or IODONTWAIT intrinsic call.
This intrinsic initiates completion operations for the associated I/O request, including data transfer
into the user’s buffer area if necessary.

The IOWAIT intrinsic call must precede any subsequent I/O request against the file. Within this
restriction, the IOWAIT intrinsic call can be delayed as long as desired to allow effective I/0 and

processing overlap.

FUNCTIONAL RETURN

fnum

PARAMETERS

filenum

target

tecount

integer (optional)
An integer representing the file number for which the completion occur-
red. If no completion occurred, zero is returned.

integer by value (optional)

A word specifying the file number for which there is a pending 1/0
request. If zero is specified, the IOWAIT intrinsic will wait for the first
I/0 completion.

logical array (optional)

A word pointer specifying the DB-relative address of the user’s input buff-
er. This buffer must be large enough to contain the input record. It
should be the same buffer specified in the original I/O request if that
request was a read. This allows for proper recognition of :EOD where
applicable.

integer (optional)

A word to which a positive integer representing the length of the received
or transmitted record is returned. If the original request specified a byte
count, the integer represents bytes; if the request specified words, the in-
teger represents words. Note that this parameter is pertinent only if the
original request was a read. The FREAD intrinsic always returns zero as its
functional return if NOWAIT 1/0 is specified. In this case, the actual
record length is returned in the fcount parameter of IOWAIT.

Default: The length of the record is not returned.

2-188

cstation logical (optional)
Used for distributed systems to return the number of the calling station
when completed.

CONDITION CODES

CCE Request granted. 1/O completion occurred with no errors.
CCG An end-of -file condition was encountered.
CCL Request denied. Normal I/O completion did not occur because there were

no I/O requests pending, a parameter error occurred, or an abnormal I/O
completion occurred.

SPECIAL CONSIDERATIONS
You must be running in Privileged Mode to specify FOPEN aoption NOWAIT 1/0.

Split-stack calls permitted.

ADDITIONAL DISCUSSION
"Using the IOWAIT Intrinsic" in Section IV.

Point-to-Point Workstation I/0 Reference Manual (30000-90250).

2-189

JOBINFO

INTRINSIC NUMBER 180

Provides access to job/session related information. (Available on version G.01.00 or later).

SYNTAX

0-v 1v D LA IV LA I
JOBINFO(jsind ,JS#nmn ,status [,itemmuml,iteml ,errornuml]
[,itenmmum2 ,item? ,errornum?2l
[,1temmum3 ,item3 ,errornum3]
[,itemmumd ,itemd ,errornumdl
[,i1temmums ,item5 ,errornums1);

JOBINFO provides access to information related to any job/session that is current to the system. This
intrinsic is expandable, and is written so the addition of further functions will be straightforward.

PARAMETERS
Jsind integer by value (required)
An integer indicating whether the JS#nnn denotes a session or job:
1 JS#nnn is a session.
2 JS#nnnisa job.
JS#nnn double (required) i
A double-value, 32 bits, identifying a job or session for which information
will be retrieved.
status logical array (required)

A two-word logical array to report the overall success/failure of the call.
Only the first word contains significant information. The success/failure
of the call is indicated by the following returns:

0 Successful call. All errornums equal zero.

1 Semi-successful call. One or more errornum(s) were returned with
nonzero values.

2 Unsuccessful call. All errornums were returned with nonzero values.
3 Unsuccessful call. Syntax error in calling sequence.
4 Unsuccessful call. Unable to retrieve JS#nnn.

S Process terminated. The process terminated during the start of
retrieval.

2-190

itemum integer by value (optional)
Cardinal number of the item desired. This specifies which item value is to
be returned (Refer to "Item#" in Table 2-6).

item logical array (optional)
Name of a reference parameter {(whose data type corresponds to the data
type for the desired information) to which the desired information is
returned (Refer to "Item Value" in Table 2-6).

All possible itemnum and item parameters are output parameters with one
exception. Item Number 1 can be used for an input or output parameter.
Item Number 1 is an input parameter only if the user is identifying a job or
session by passing a character string containing the logon ID,
{jsname, lusername .acctname. Otherwise, it is an output parameter. The
maximum number of characters returned is twenty-six. The returned
string will be left-justified and padded with blanks.

errornum integer (optional)

A returned integer specifying the success or failure of the retrieval of each

item. The returned values are:

0 Successful information retrieval.

1 Invalid itemnum (item number).

2 Desired information not pertinent to the given JS#nnn (e.g. user
specifies a session number and wishes to know if a job had RESTART
option).

3 User has insufficient capability to access this information.

4 The desired information is no longer available (e.g. returned when
spoolfiles are processed).

SPECIAL CONSIDERATIONS

A user without System Manager (SM) or Account Manager (AM) capability can only retrieve infor-
mation about the jobs/sessions logged onto under the user name and account. A user with AM
capability, but not SM capability will be restricted to access information concerning account sessions
and jobs; a user with SM capability will be able to retrieve information concerning all sessions and
jobs. The exception to the above security will be access to items, through MPE commands, which are
normally available to the user who does not have any special capabilities.

CONDITION CODES

The condition code remains unchanged.

ADDITIONAL DISCUSSION

“Identifying a Job or Session with JOBINFO" in Section V.

2-191

Table 2-6. Item Values Returned By JOBINFO

ITEM$

00 N O WU & WN

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

ITEM VALUE (Information Returned)
[jsname, Juser.account (See Note 1)
Session/job name (See Note 2)

User name (See Note 2)

User logon group (See Note 2)

User account (See Note 2)

User home group (See Note 2)

Session/job introduction time (See Note 3)
Session/job introduction date (See Note 4)
Input ldev/class name (See Note 2)

Qutput ldev/class name (See Note 2)
Current job step (See Note 5)

Current number of active jobs

Current number of active sessions

Job input priority

Job/session number

JOBFENCE

Job output priority

Number of copies

Job limit (system)

Session limit (system)

Job deferred (See Note 6)

Main PIN - CI PIN for job/session

Original job-spooled (See Note 6)

RESTART option (See Note 6)

Sequenced - job (See Note 6)

Term code (See Note 7)

CPU limit

Session/job state (See Note 8)

User's local attributes

$STDIN spoolfile number (See Notes 9 & 10)
$STDIN spoolfile status (See Notes 9 & 11)
$STDLIST spoolfile number (See Notes 9 & 10)
$STDLIST spoolfile status (See Notes 9 & 11)
Length of current job step of Item Number 11
:SET STDLIST=DELETE invoked (See Note 12)
Job Information Table data segment number

DATA TYPE
LA
LA
LA
LA
LA
LA
LA
LA
LA
LA

-
>

FrEHMEHHROOrCrrEFrCrrrrr e e e RS D e

2-192

Table 2-6. Item Values Returned By JOBINFO (Continued)

10.

11.

12.

Can be used as an input or output parameter. If used as an input parame-
ter, a maximum of 26 ASCII characters, plus one for a binary 0 terminator
is allowed. The input string must be in the form of
[jsname, Juser.account. The wildcard character @ is not allowed. If used
as an output parameter, the logical array must be 13 words long. Output
is left-justified and padded with blanks.

An ASCII output parameter. Logical arrays must be four words long.
OQutput is left-justified and padded with blanks.

Returns a 32-bit double-word in a form to be used by the FMTCLOCK intrin-
sic. If for a scheduled job, it will be the time when the job enters the
WAIT state.

Returns a 16-bit logical word in a form to be used by the FMTCALENDAR in-
trinsic. If for a scheduled job, it will be the date when the job ent-
ers the WAIT state.

Returns a maximum of 283 ASCII characters, and is the image of the com-
mand currently executing. The logicifﬁarray must be long enough to ac-
commodate the expected command image.

Returns the values: 0 - No
1 - Yes

Returns the values: 0 - Regular terminal

1 - Regular terminal with special logon

2 - APL terminal

3 - APL terminal

Returns the values: 2 - Executing
4 - Suspending
32 - Wait
48 - Initialization
56 - Scheduled

Returns data for current jobs and sessions. $STDIN/$STDLIST files only.

Returns the spoolfile number as an integer.

Returns the values: 0 - Active
1 - Ready
2 - Open
3 - Reserved
Returns the values: 0 - $STDLIST will be saved
1l - :SET STDLIST=DELETE is invoked

2-193

KILL

INTRINSIC NUMBER 102

Deletes a son process.

SYNTAX

Iv
KILL(pin);

A process can delete one of its sons by using the KILL intrinsic.

PARAMETERS

pin integer by value (required)
A word containing the Process Identification Number (PIN) of the process
to be deleted.

CONDITION CODES

CCE Request granted.
CCG Request granted. The specified process was terminating.
CCL Request denied because an illegal PIN was specified.

SPECIAL CONSIDERATIONS

Process Handling (PH) capability required.

ADDITIONAL DISCUSSION

"Deleting Processes" in Section III.

2-194

LOADPROC

INTRINSIC NUMBER 80

Dynamically loads a library procedure.

SYNTAX

1 BA Iv I
identnum: =LOADPROC (procname,1ib ,plabel) ;

LOADPROC dynamically loads a library procedure, and any external procedures it has referenced.

FUNCTIONAL RETURN

identnum integer (optional)
An identity number required for use in unloading the procedure. If a
loader error occurs, the identity number represents a loader error code.

PARAMETERS
procname byte array (required)
Contains the name of the procedure to be loaded. The name must be ter-
minated by a blank.
1ib integer by value (required)
An integer value of O, 1, or 2, to request library searching for the proce-
dure residing in the logon group of the user, as follows:
0 Search the system library only.
1 Search the account library, then the system library.
2 Search the group library first, the account library second, and the sys-
tem library last.
plabel integer (required)

The word to which the procedure’s label (plabel) is returned. This is the
external plabel so that the SPL construct ASSEMBLE(PCAL 0) may be used.

CONDITION CODES

CCE Request granted.
CCG Not returned by this intrinsic.
CCL Request denied. The value returned to identnum is a loader error code.

ADDITICNAL DISCUSSION

"Dynamic Loading and Unloading of Library Procedures" in Section V.

2-195

LOCKGLORIN

INTRINSIC NUMBER 34

Locks a global RIN.
SYNTAX

Iv

LOCKGLORIN(rinnum, Lockecond ,rinpassword) ;

L BA

Any global Resource Identification Number (RIN) assigned to a group of users can be locked, one job
at a time, by using the LOCKGLORIN intrinsic. When this is done, any other jobs that attempt to lock

this RIN are suspended.

To use the LOCKGLORIN intrinsic, you must know both the RIN number and the RIN password.
Multiple RIN (MR) capability is required to lock two or more global RINs simultaneously. An at-
tempt by a user with standard capabilities to lock two or more RINs simultaneously aborts the process.

PARAMETERS

rirnnmum

Llockeond

rinpassword

integer by value (required)

A word specifying the RIN number of the resource to be locked. This is
the RIN number furnished in the :GETRIN command. Refer to the MPE V
Commands Reference Manual (32033-90006) for a description of the
:GETRIN command.

logical (required)
A word specifying conditional or unconditional RIN locking, through bit
(15:1). Bit (15:1) has the following settings:

=0 Locking takes place only if the RIN is immediately available. If the
RIN is not immediately available, control returns to the calling process
immediately with the condition code CCG.

=1 Locking will take place unconditionally. If the RIN is not available,
the calling process suspends until it becomes available.

All other bits are ignored.
byte array (required)
Contains the RIN password assigned through the :GETRIN command. This

array must be 2 minimum of 10 bytes in length and must be terminated by
a nonalphanumeric ASCII character (a blank is recommended).

2-196

CONDITION CODES

The condition codes possible if lockcond bit (15:1)=1 are:

CCE Request granted. If the calling process had already locked the RIN,
lockword bit (15:1)=1. If the RIN was free, lockword bit (15:1)=0.

CCG Not returned.

CCL Request denied because of invalid RIN. Rinnum is not a global RIN or the

value is out of bounds for the RIN table.

The condition codes possible if lockcond bit (15:1)=0 are:

CCE Request granted. If the calling process had already locked the RIN,
lockword bit (15:1)=0. If the RIN was free, lockword bit (15:1)=1.

CCG Request denied because the RIN was locked by another job.

CCL Request denied because of invalid RIN. Rinaum is not a global RIN or the

value is out of bounds for the RIN table.

SPECIAL CONSIDERATIONS

Multiple RIN (MR) capability is required if you are doing the following:
o Locking more than one global RIN at a time within a process.

¢ Locking one RIN within a process tree.

e Locking any files (for example, database).

¢ Using local RINs with global RINs.

ADDITIONAL DISCUSSION

"Resource Management" in Section III.

2-197

LOCKLOCRIN

INTRINSIC NUMBER 32

Locks a local RIN.
SYNTAX

1v L
LOCKLOCRIN(rinnum,lockeond) ;

Any local Resource Identification Number (RIN) assigned to a job can be locked, one process at a
time, by using the LOCKLOCRIN intrinsic. When this is done, other processes within the job that at-
tempt to lock that RIN are suspended until the locked RIN is released.

PARAMETERS

rinnum integer by value (required)
A number specifying one of the previously allocated local RINs, designated
by an integer from 1 to the value specified in the rincount parameter of the
GETLOCRIN intrinsic.

Llockeond logical (required)

A word specifying conditional or unconditional locking, through bit
(15:1). The settings for bit (15:1) are as follows:

=0 Locking takes place only if the RIN is immediately available. If it is
not, control returns to the calling process immediately with CCG.

=1 Locking takes place unconditionally. If the RIN is not available, the
calling process suspends until the RIN becomes available.

All other bits are ignored.

CONDITION CODES

The condition codes possible if lockcond bit (15:1)=1 are:

CCE Request granted. If the calling process had already locked the RIN,
lockcond bit (15:1)=1. If the RIN was free, lockcond bit (15:1)=0.

CCG Not returned.

CCL Request denied because the RIN was invalid; the rinnum was too large, no
local RIN was allocated, or rinnum specified a number less than or equal to
Zero.

2-198

The condition codes possible if lockcond bit (15:1)=0 are:

CCE Request granted. If the calling process had already locked the RIN,
lockcond bit (15:1)=1. If the RIN was free, lockcond bit (15:1)=0.

CCG Request denied because the RIN was locked by another process.

CCL Request denied because the RIN was invalid; the rinnum was too large, no
local RIN was allocated, or rinnum specified a number less than or equal to
Zero.

ADDITIONAL DISCUSSION

"Resource Management” in Section III.

2-199

LOCRINOWNER

INTRINSIC NUMBER 36

Determines PIN of process that has locked a local RIN.

SYNTAX

I

pin:=LOCRINOWNER (rinrum) ;

v

After local RINs have been acquired by a process, they can be locked and unlocked by other processes

in the process structure.

LOCRINOWNER determines the PIN (Process Identification Number) of the

process that has a particular RIN locked.

FUNCTIONAL RETURN

pin

PARAMETERS

rinmum

integer (optional)

If the particular RIN is locked by the father process of the process which
called LOCRINOWNER, a O is returned. The PIN of the son or brother
process which has the local RIN locked is returned.

integer by value (required)

The number of the local RIN (from 1 to the value specified in the rincount
parameter of the GETLOCRIN intrinsic) for which the PIN of the locking
process is to be determined.

CONDITION CODES

CCE

CCG

CCL

Request granted.

Request denied. The local RIN specified by rinnum is not currently locked
by any process.

Request denied. The rinnum parameter was invalid (i.e. rinnum was less
than or equal to 0, greater than the RIN table size, or greater than the
number of local RINs currently allocated to this process structure).

ADDITIONAL DISCUSSION

"Resource Management" in Section III.

2-200

LOGINFO

INTRINSIC NUMBER 215

Provides information about an opened user’s logging file (whole file set). (Available on version

G.02.00 or later.)
SYNTAX

o-v DV I

LOGINFO (index,status [,itemmuml,itenwvalll
[,itemmum2,itemwal?2]
[,itemum3,itemval3]
[,iterruand ,itemwaldl);

BA

The LOGINFO intrinsic is used to obtain information about the whole logging file set. Up to four
items of information can be retrieved by specifying one or more itemnum/itemval pairs. The item-
num/itemval parameters must appear in pairs.

PARAMETERS
index double by value (required)
The index parameter returned from OPENLOG. Identifies the user access to
the logging file.
status integer (required)
One of the following integers indicating the success/failure of the intrinsic
call:
Message No. Meaning
0 No error occurred for this call.
1 User requested NOWAIT mode and the logging process is
busy.
2 Parameter out of bounds in logging intrinsic.
3 Request to open or write to a logging process that is not
running.
4 Incorrect index parameter passed to a logging intrinsic.
5 Incorrect mode parameter passed to a logging intrinsic.
6 User request denied because logging process is suspended.
7 Illegal capability. Must have User Logging (LG) and System

Supervisor {OP) capabilities to use a logging intrinsic.

2-201

Message No. Meaning

8 Incorrect password passed to logging intrinsic.
9 Error occurred while writing logging file.
12 System is out of disc space; logging cannot proceed.
13 No more logging entries.
14 Invalid access to logging file.
15 End-of -file on user logging file.
16 Invalid logging identifier.
17 Either itemnum or itemval is missing.
18 Invalid item number.
itemnum integer by value (optional)

Cardinal number of the item desired; this specifies which item value is to
be returned. (Refer to Item# in Table 2-7.)

ttemwal byte array (optional)
The value of the item specified by the corresponding item number; the data
type of the item value depends on the item itself. (Refer to Item Value in
Table 2-7.)

CONDITION CODES

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

User Logging (LG) and System Supervisor (OP) capabilities required.

ADDITIONAL DISCUSSION

"User Logging" in Section III.

2-202

Table 2-7. Item Values Returned By LOGINFO

ITEM# ITEM VALUE TYPE
1 Total # of records written in current file D
2 Current file size D
3 Current file space left D
4 Number of users I
5 Total records written in whole set D
6 Current logfile name 36 bytes
7 Current logfile type: disc, tape, sdisc, ctape I
8 Previous logfile name 36 bytes
9 Previous logfile type: disc, tape, sdisc, ctape I
10 CHANGELOG allowed L
11 AUTO allowed L
12 Current file sequence number I
13 Log status I
= Inactive
= Active

CHANGELOG pending

0
1
2
3 STOP pending

2-203

LOGSTATUS

INTRINSIC NUMBER 214

Provides information about a current opened user logging file.

SYNTAX

D
LOGSTATUS (index,1

LA I
oginfo,status);

The LOGSTATUS intrinsic is used to obtain information about the current opened logging file. Its
primary use is to determine the amount of space used and remaining in a disc logging file.

PARAMETERS
index

loginfo

status

double (required)
The parameter returned from OPENLOG that identifies your access to the
logging system.

logical array (required)
A formatted array in which the following information is returned:

Words 0 and 1 - Total records written in current logging file.
Words 2 and 3 - The size, in records, of the current logging file.

Words 4 and 5 - The space, in records, remaining in the current logging
file.

Word 6 - The number of users using the logging system.
integer (required)
One of the following integers indicating the success/failure of the intrinsic

call:

Message No. Meaning

0 No error occurred for this call.

1 User requested NOWAIT mode and the logging process is
: busy.

2 Parameter out of bounds in logging intrinsic.

3 Requ.est to open or write to a logging process that is not

running.

4 Incorrect index parameter passed to a logging intrinsic.

5 Incorrect mode parameter passed to a logging intrinsic.

6 User request denied because logging process is suspended.

©2-204

Message No. Meaning

7 Illegal capability. Must have User Logging (LG) and System
Supervisor (OP) capabilities to use a logging intrinsic.

8 Incorrect password passed to logging intrinsic.

9 Error occurred while writing logging file.

12 System is out of disc space, logging cannot proceed.

13 No more logging entries.

14 Invalid access to logging file.

15 End-of -file on user logging file.

16 Invalid logging identifier.

CONDITION CODES

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

User Logging (LG) and System Supervisor (OP) capabilities required.

ADDITIONAL DISCUSSION

"User Logging" in Section III.

2-205

MAIL

INTRINSIC NUMBER 106

Tests mailbox status.

SYNTAX

L

Iv I

status:=MAIL(pin,count);

A process can determine the status of the mailbox used by its father or son with the MAIL intrinsic. If
the mailbox contains mail that is awaiting collection by this process, the length of this message (in
words) is returned to the calling process in the count parameter. This enables the calling process to in-
itialize its stack in preparation for receipt of the message.

FUNCTIONAL RETURN

status

PARAMETERS

pin

count

logical (optional)

One of the following which indicates the status of the mailbox:

Status
Returned

0

1

Meaning
The mailbox is empty.

The mailbox contains previous outgoing mail from this
calling process that has not yet been collected by the des-
tination process.

The mailbox contains incoming mail awaiting collection
by this calling process. The length of the mail is return-
ed in count.

An error occurred because an invalid pin was specified
or a bounds check failed.

The mailbox is temporarily inaccessible because other in-
trinsics are using it in the preparation or analysis of
mail.

integer by value (required)

An integer specifying the mailbox tested. If this integer specifies the mail-
box of a son process, it must be the Process Identification Number (PIN) of
that son. Zero specifies the mailbox of a father process.

integer (required)

A word to which an integer denoting the length, in words, of any incoming
mail in the mailbox is returned.

2-206

CONDITION CODES

CCE Request granted. The mailbox stafus was tested.

CCG Request denied because an illegal pin parameter was specified. The value
of 3 is returned to the calling process through status.

CCL Not returned by this intrinsic.

SPECIAL CONSIDERATIONS

Process Handling (PH) capability required.

ADDITIONAL DISCUSSION

"Interprocess Communication" in Section III.

2-207

MYCOMMAND

INTRINSIC NUMBER 71

Parses (delineates and defines parameters for) a user-defined command image.

SYNTAX

I 0-v

entryno : =MYCOMMAND(comimage ,del imi ters ,maxparms ,

BA BA Iv

I DA BA BP
numparms ,params ,dict ,defn);

You can extract and format the parameters of a command, other than an MPE command, for execu-
tion by using the MYCOMMAND intrinsic within your program. This intrinsic also allows you to request
the searching of a byte array, serving as a command dictionary, for a specified command.

The MYCOMMAND intrinsic aborts the calling process if the number of characters in comimage exceeds
255 characters and no delimiter is present.

FUNCTIONAL RETURN

entryno

PARAMETERS

comimage

delimiters

integer (optional)
An integer specifying the command entry number. If the dict parameter
was not specified, this number is 0.

byte array (required)
Contains either:

e A command name (expected if the dict parameter is specified), fol-
lowed by parameters, followed by a carriage-return character (%15).
The command name is delimited by the first nonalphanumeric charac-
ter, and cannot be preceded by any leading blanks. The parameters are
formatted and referenced in the params array. Also, comimage is con-
verted to uppercase and the byte array specified by dict is searched for a
name matching the command.

¢ Only command parameters (expected if the dict parameter is not
specified), followed by a carriage-return character (%15). These
parameters are formatted. Leading and trailing blanks are ignored.
Lowercase is upshifted. In the byte array named for the comimage pa-
rameter, the first character of the parameter list may be a leading
blank.

byte array (optional)

A byte array containing a string of up to 32 legal delimiters, each of which
is an ASCII special character. The last character must be a carriage return.
Each delimiter is identified later by its position in this string.

Default: If this parameter is omitted, the delimiter array ",=; (carriage
return)" is used.

2-208

integer by value (required)
An integer specifying the maximum number of parameters expected in
comimage.

integer (required)
The number of parameters found in comimage.

double array (required)

A double array of maxparms double-words that, on return, delineates the
parameters. When the intrinsic is executed, the first aumparms double-
words are returned to the user’s process in this array, with the first double-
word corresponding to the first parameter, the second double-word cor-
responding to the second parameter, and so forth. The parameter fields of
comimage are delimited by the delimiters specified in delimiters. In for-
matting, the byte pointer in the first word of params points to the parame-
ter in comimage. The string in comimage is upshifted. The second word of
params contains the delimiter number and parameter information. Each
double-word in the array named by params contains the following
information:

Word 1: Contains the byte pointer to the first character of the parameter.
If the parameter is empty or all blanks, the pointer indicates the location of
the delimiter.

Word 2: Contains bits that describe the parameter:

Bits (11:5) -

The zero-relative position of the delimiter in delimiters. For example, if
the default delimiters array is used, and the current parameter is delimited

by a semicolon, this field will contain 2.

Bit (10:1) - Special characters indicator bit.
This bit may be set as follows:

=0 The parameter contains no special characters.

=1 The parameter contains special characters other than those listed in
delimiters.

Bit (9:1) - Numeric character indicator bit.
The settings for this bit are as follows:

=0 The parameter does not contain numeric characters.
=1 The parameter contains numeric characters.

Bit (8:1) - Alphabetic characters indicator bit.
This bit may be set as follows:

=0 The parameter does not contain alphabetic characters.
=] The parameter contains alphabetic characters.
Bits (0:8) - These bits contain the length of the parameter in bytes.

This value is zero if the parameter is omitted.

2-209

dict

defn

byte array (optional)

A byte array that will be searched for the command name in comimage.
The format must be identical to that of the dict parameter in the SEARCH
intrinsic. Actually, the command, delimited by a blank, is extracted from
comimage, and the SEARCH intrinsic is called with the command name used
as the target parameter in SEARCH. If the command name is found in dict,
its entry number is returned to the user’s program. If the command is not
found, or if the dict parameter is not specified, zero is returned. If dict is
specified but the command name is not found in dict, the parameters
specified in comimage are not formatted.

Default: O isreturned.
byte pointer (optional)
A word to which the relative address of the definition portion of the com-

mand entry in dict is returned.

Default: The corresponding information is not returned.

CONDITION CODES

CCE

CCG

CCL

The parameters were formatted, without exception. If dict was specified,
the command entry number was returned to the user’s program.

More parameters were found in comimage than were allowed by maxparms.
Only the first maxparms of these parameters were formatted in params and
returned to the user.

The dict parameter was specified, but the command name was not located
in the array dict. The parameters in comimage were not formatted.

ADDITIONAL DISCUSSION

"Formatting Command Parameters" in Section V.

2-210

OPENLOG

INTRINSIC NUMBER 210

Provides access to the user logging facility.

SYNTAX

D LA LA 1 1
OPENLOG(index,logid ,pass ,mode ,status);

The OPENLOG intrinsic provides access to the user logging facility. Effective with version G.02.00,
the number of users and log entries are independent of the number of times OPENLOG is called. There
must already be an active process for this logging identifier. If the process is active, it will get an
entry in the logging buffer. Previously each call to OPENLOG obtained an entry and incremented the
user count in the logging buffer table. This occurred whether or not the user already had an entry in
the table. This caused applications to exceed the limit for users per process or log entries prematurely.

Now a logging buffer entry is obtained and the user count is incremented only if this is the first
OPENLOG call for this user. A counter is used to keep track of the number of times a user has per-
formed OPENLOG and CLOSELOG. The counter is incremented for every OPENLDOG and decremented
for every CLOSELOG. This is done to ensure that the entry in LOGBUFF is released only if this is the
last CLOSELOG call for this user (i.e. counter = 0).

PARAMETERS

index double (required)
A double-word returned which identifies logging access. The index pa-
rameter is used to check the validity of subsequent calls to the other user
logging intrinsics.

logid logical array (required)
An array of up to eight characters which supplies user logging identifica-
tion. The array contains alphanumeric characters. Arrays of less than
eight characters must be terminated with a nonalphanumeric character.

pass logical array (required)
An array in which a password associated with the logging identifier by
using the :GETLOG command is assigned.

mode integer (required)
An integer used to indicate whether or not a process should be suspended if
a request for service cannot be completed immediately. Enter a zero if you
want to wait for service; enter a one if you do not want to wait.

status integer (required)

One of the following integers that the logging system uses to return infor-
mation on the status of the intrinsic call to the user:

2-211

Message No. Meaning

0 No error occurred for this call.

1 User requested NOWAIT mode and the logging process is
busy.

2 Parameter out of bounds in logging intrinsic.

3 Requ‘est to open or write to a logging process that is not
running.

4 Incorrect index parameter passed to a logging intrinsic.

5 Incorrect mode parameter passed to a logging intrinsic.

6 User request denied because logging process is suspended.

7 Illegal capability. Must have User Logging (LG) and
System Supervisor (OP) capabilities to use a logging
intrinsic.

8 Incorrect password passed to a logging intrinsic.

9 Error occurred while writing to the logging file.

10 Invalid DST passed to logging system intrinsic.

12 System is out of disc space, logging cannot proceed.

13 No more logging entries.

14 Invalid access to logging file.

15 End-of -file on user logging file.

16 Invalid logging identifier.

CONDITION CODES

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

User Logging (LG) and System Supervisor (OP) capabilities required.

ADDITIONAL DISCUSSION

"User Logging" in Section III.

2-212

PAUSE

INTRINSIC NUMBER 45

Suspends calling process for a specified number of seconds.

SYNTAX
R
PAUSE (interval);
PARAMETERS
interval real (required)
A positive real value specifying the amount of time, in seconds, that the
process will pause. The maximum time allowed is approximately

2,147,484 seconds (almost 25 days).

CONDITION CODES

CCE Request granted.

CCG Request denied because of insufficient system table (Timer Request List)
space.

CCL Request denied because a negative value was specified for interval or the

value is too large.

ADDITIONAL DISCUSSION

"Suspending the Calling Process" in Section V.

2-213

PRINT

INTRINSIC NUMBER 65

Prints character string on job/session listing device.

SYNTAX

LA v Iv
PRINT(message ,length,control);

You can write a string of ASCII characters from an array to the job/session listing device by using the
PRINT intrinsic. This is similar to issuing an FWRITE intrinsic call against the file $STDLIST. The
PRINT intrinsic is limited in its usefulness, however, in that the full capability of the file system is
not available to a user of this intrinsic. For example, :FILE commands are not allowed and certain
file intrinsics cannot be used because the filenum parameter, obtained from the FOPEN intrinsic, is not
available to normal users of the PRINT intrinsic.

PARAMETERS
message logical array (required)
Contains the character string to be output.
NOTE
SPL programmers can avoid warning messages in the compiled
output by setting a byte array equivalent to a logical array for
the message parameter.
length ‘integer by value (required)
An integer denoting the length of the character string to be transmitted. If
length is positive, it specifies the length in words; if length is negative, it
specifies the length in bytes. Note that if length exceeds the configured
record length of the device, successive records will be written only on
terminals.
control integer by value (required)

An integer representing a Carriage Control Code as shown in Table 2-5,
"Carriage Control Directives", found in the description of the FWRITE
intrinsic.

CONDITION CODES

CCE Request granted.
CCG End-of -data was encountered.
CCL Request denied because of input/output error. Further error analysis

through the FCHECK intrinsic is not possible.

2-214

ADDITIONAL DISCUSSION

"Writing Output to the Job/Session List Device" in Section V.

Point-to-Point Workstation I/O Reference Manual (30000-90250).

2-215

PRINTFILEINFO

INTRINSIC NUMBER 21

Prints a file information display on job/session list device.

SYNTAX

IV
PRINTFILEINFO(frum);

From SPL (only), a secondary entry point is provided that allows the PRINTFILEINFO intrinsic to be
called in the following format:

1v
PRINT ‘FILE’INFOCfram);

The PRINTFILEINFO intrinsic causes MPE to print a file information display on the standard list
device in one of two formats. (Refer to Appendix A.)

PARAMETERS

fram integer by value (required)
A word containing the file number.

CONDITION CODES

The condition code remains unchanged.

ADDITIONAL DISCUSSION

"Writing a File System Error-Check Procedure" in Section IV.

Point-to-Point Workstation I/O Reference Manual (30000-90250).

2-216

PRINTOP

INTRINSIC NUMBER 66

Prints a character string on the System Console.

SYNTAX

LA v Y
PRINTOP Gmessage ,length ,control) ;

The PRINTOP intrinsic transmits a string of ASCII characters from an array in your program to the
System Console.

PARAMETERS

message logical array (required)
The array from which the character string is output. The character string
contained in message is limited to 56 characters. Nonvideo enhancing es-
cape sequences are stripped out.

length integer by value (required)
An integer denoting the length of the output string to be transmitted. If
length is positive, it specifies the length in words; if length is negative, it
specifies the length in bytes.

control integer by value (required)
The value 0 or %320.

NOTE

If a null character (%000) is embedded in an array to be printed
on the System Console via PRINTOP, then PRINTOP prints only
the portion of the array before the null character, regardless of
the length specified.

CONDITION CODES

CCE Request granted.
CCG Not returned by this intrinsic.
CCL Request denied because of a physical input/output error. Further error

analysis through the FCHECK intrinsic is not possible.

ADDITIONAL DISCUSSION

"Writing Output to the System Console" in Section V.

2-217

PRINTOPREPLY

INTRINSIC NUMBER 67

Prints a character string on the System Console and solicits a reply.

SYNTAX

I LA Iv Iv LA v
lgth:=PRINTOPREPLY (message,length,zero ,reply ,expectedl))

The PRINTOPREPLY intrinsic transmits a string of ASCII characters from an array in your program to
the System Console and solicits a reply. While the reply is pending, the string can be viewed by using
the :RECALL command.

FUNCTIONAL RETURN

lgth integer (optional)
A positive integer indicating the length of the reply from the System
Operator. This length represents a word count if expected! is positive or a
byte count if expected! is negative.

If expectedl is zero, then the PRINTOPREPLY intrinsic behaves like
PRINTOP and does not solicit a reply. In this case, the value returned by
PRINTOPREPLY is zero.

If an error occurs, the value returned is zero.
The parameter length may be zero, in which case only the standard message

prefix is written on the System Console. If both lergth and expectedl are
zero, then CCL is returned.

PARAMETERS

message logical array (required)
The array from which the characters are output to the System Console.
The character string is limited to 50 characters.

length integer by value (required)
An integer denoting the length of the output string to be transmitted. If
length is positive, it specifies the length in words; if length is negative, it
specifies the length in bytes. This parameter should never specify a length
of more than 50 bytes.

zZero integer by value (required)
This parameter is not used by MPE but it must be specified. Typically it is
assigned the value of zero.

reply logical array (required)
The array into which the input characters are read from the System
Console.

2-218

expectedl integer by value (required)
An integer specifying the maximum length of the message to be read into
the array reply. If expected! is positive, it specifies a word count; if it is
negative, it specifies a byte count. This parameter should never specify a
reply length of more than 31 bytes.

CONDITION CODES

CCE Request granted.
CCG Not returned by this intrinsic.
CCL Request denied because a physical input/output error occurred. Further

error analysis through the FCHECK intrinsic is not possible.

ADDITIONAL DISCUSSION

"Writing Output to the System Console and Requesting a Reply" in Section V.

2-219

PROCINFO

INTRINSIC NUMBER 111

Provides access to process information.

SYNTAX

0-v I

PROCINFOCerrorl,error2,pin [,itemnuml,iteml]

I Iv I BA

[,itemnum2,1tem2]
[,itemnum3,item3]
[,itemnumd ,itemd]
[,itemnumS,1tem5]
[,itemnumb ,item61);

PARAMETERS

errorl

error2

itemmum

item

integer (required)
An integer indicating the success or failure of the intrinsic call as described
in Figure 2-4.

integer (required)
An integer which supplies additional information concerning an error
reported in error I as described in Figure 2-4.

integer by value (required)

An integer specifying the Process Identification Number (PIN) for which
information is to be returned. A pin value of zero will return information
about the calling process. This parameter is not compatible with the pin
parameter of the GETPROCINFO intrinsic.

integer (optional)

An integer containing the item number (in any order) of an information
option as defined in Figure 2-5. The user may request up to 6 options to
be returned.

byte array (optional)
Arrays (in the same order as the itemnums) of returned information as
specified in Figure 2-5.

The parameters errorl, error2, and pin are required. The itemnum and item parameters are optional.
The actual number included depends upon the information desired. The itemnums and the items are
paired such that the nth itemnum corresponds to the nth ifem. An itemnum contains the option
number of the desired information. The information is returned in the corresponding item or is stored
using the ifem element as a pointer, depending on the information desired. See Note 3 in Figure 2-9§
for the user capabilities required for the use of any option.

2-220

CONDITION CODES

CCE

CCG

CCL

Successful call. All error codes set to zero.

Not used.

Unsuccessful call with error codes set accordingly.

ADDITIONAL DISCUSSION

None.
Errorl Meaning Error2
0 Successful execution - no error. 0
1 Insufficient capability to return Index of offending itemnum.
request information.
2 Omission of required parameter. -1
3 Required parameter address (other Not used.
than "error1") out of bounds.
4 Illegal array size. Array size passed to PROCINFO.
S Invalid item#. Index of offending itemnum.
6 Invalid PIN - no information -1
returned.
7 Unassigned PIN. -1
8 Unpaired itemnum/item parameters. Index of offending itemnum/item
pair.
Note 1: The process will abort if error! parameter address is illegal or if the intrinsic is
called in split-stack mode.
Note 2: If an error condition is detected while processing an information request, the in-
dex of the ifemnum where the offending option was located is stored in error2.

Figure 2-4. Error Codes Returned From PROCINFO

2-221

ITEM#

INFORMATION RETURNED

ITEM

10

ignored.
Process Identification Number of calling process.

Process !dentification Number of the father of
the specified process.

Number of sons of the specified process (direct
descendants).

Number of descendants (both direct and in-
direct) of the specified process.

Number of generations (number of levels in the
process tree substructure) the specified
process has including itself.

Process Identification Numbers of all sons
(direct descendants).

Process Identification Numbers of all descen-—
dants (both direct and indirect).

Priority number in the Master Queue of
specified process.

State and activation information of the
specified process.

Program name where the specified process is
currently executing.

Ignored.

Integer where PIN will be returned.

Integer where PIN will be returned. (See Note 3)
Integer where the number of sons wil be
returned. (See Note 3.)

integer where the number of descendants will
be returned. (See Note 3.)

Integer where number of generations will be
returned. (See Note 3)
Integer array where son PINs will be returned.

(See Note 1, 3)

integer array where descendent PINs will be
returned. (See Note 1, 3)

Integer where priority will be returned (same as
Word 1 of GETPROCINFO intrinsic).

Logical where information will be returned
(same as Word 2 of GETPROCINFO intrinsic).

Byte array where the fully qualified program
name will be stored. (See Note 2, 3)

Note 1:

Note 2

Note 3:

Options 6/7 return a variable number of PINs. In these cases item should be set by the calling
process to point to an integer where the PINs will be returned. The first word of the array should be
set by the calling process to indicate the array size in words and the array size should include the
array size word (i.e. if the user desires four pins, the first entry that contains the array size should
be 5). PINs will be stored into the array, one PIN per word, starting with the second word and con-
tinuing until the array is filled or all PiNs have been returned. If the array is not filled, the remaining
unused locations will be padded with zeros.
The byte array for the program name must be a minimum of 28 bytes long. The name will be
returned in the form of "f.ga” where "f” wil be the local file name, g” will be the group name, and
»2” will be the account name of the file containing the program that the specified process is current-
ly executing. The name will be returned left-justitied with the unused locations filled with blanks.
If the calling process is executing in Privileged Mode, requests for information will be honored for any
process. Otherwise, requests will be honored as follows:)
1. Complete information will be returned for sons of the calling process itself.
2. item 10 will be returned only if the calling process has read access to the program file.
3. Information returned for indirect descendants and processes directly above the calling process
will be limited to items 2 through 7 and 10 only.
Process Handing capabiiity will also be required for any user mode call unless the calling process
is requesting information about itself.

Figure 2-5. Information Options For PROCINFO

2-222

PROCTIME

INTRINSIC NUMBER 42

Returns the accumulated CPU time for a process.

SYNTAX

D
time :=PROCTIME;

The PROCTIME intrinsic is used to obtain the amount of CPU time, in milliseconds, that a process has
accumulated. This is the basis on which CPU time is charged. (Refer to the :REPORT command in
the MPE V Commands Reference Manual (32033-90006) for additional information.)

FUNCTIONAL RETURN

time double (optional)
A double integer value which shows the number of milliseconds that the
process has been running.

CONDITION CODES

The condition code remains unchanged.

ADDITIONAL DISCUSSION

"Obtaining Process Run Time" in Section V.

2-223

PTAPE

INTRINSIC NUMBER 191

Copies input from paper tapes which do not contain X-OFF control characters to a disc file.

SYNTAX

Iv IV
PTAPE(fileruml,filerum2);

When using terminals with attached tape readers (such as the ASR-33), you can read data program-
matically from paper tapes not containing the X-OFF control character, or from tapes being read
through terminals not recognizing this character, by using the PTAPE intrinsic. PTAPE deletes the
characters as the tape is read through a terminal which does not recognize these characters.

Tape input terminates when a Y€ character is encountered , returning control to you at the terminal.

Prior to calling this intrinsic, be sure to position the end-of -file pointer in the disc file (filenum2) to
the proper position in the file. If you are reading more than one tape, you should specify, in the
FOPEN intrinsic call that opens the disc file, the append-only aoption and a variable-length record
format, before the first PTAPE call. In addition, set the end-of-file pointer to zero, if necessary,
before issuing the first PTAPE intrinsic call.

Lines will be folded at 256-character intervals until a carriage-control character indicates the end of
. . . ; . c
a line or until the input is terminated by the Y character.

PARAMETERS

fileruml integer by value (required)
A word supplying the file number of the user’s terminal. This is the value
returned by FOPEN when the terminal file was opened.

filerum2 integer by value (required)
A word supplying the file number of the disc file to which the data is to be
written.

CONDITION CODES

CCE Request granted.

CCG Request denied because an error occurred while writing to the specified disc
file.

CCL Request denied because the input file specified is not a terminal or does not

belong to the calling process, or because insufficient resources, such as disc
space or main memory, are available to satisfy the request. (PTAPE
requires 128 contiguous sectors of work area on idevl.)

2-224

SPECIAL CONSIDERATIONS

Split-stack calls permitted.

ADDITIONAL DISCUSSION
Appendix B, "DEVICE CHARACTERISTICS".

Point-to-Point Workstation I/O Reference Manual (30000-90250).

2-225

PUTJCW

INTRINSIC NUMBER 85

Assigns the value of a particular Job Control Word (JCW) in the JCW Table.
SYNTAX

BA L I
PUTJCW(jewname , jewvalue ,status);

The PUTJCW intrinsic assigns a specified value to a Job Control Word (JCW) in the JCW Table. If an
entry of the same name already exists in the table, only its value is entered. If no entry exists for this

name, an entry is created and its value is entered.

PARAMETERS

Jjewname byte array (required)
A byte array containing the name of the JCW. This array may contain up
to 255 characters, beginning with a letter and ending with a nonal-
phanumeric character such as a blank. An "®" causes all executing JCWs
to be set to jecwvalue.

Jeowvalue logical (required)
A word containing the value of the JCW.

status integer (required)

A word used by the system to return a value denoting the execution status

of the intrinsic, as follows:

0 Successful execution. Value entered in JCW.

1 Error, jcwname greater than 255 characters long.

2 Error, jewname does not start with a letter.

3 Error, JCW table overflow. No JCW with this name exists in table and

unable to create new entry.

4 Error, attempted to assign a value to an MPE-defined JCW-value

mnemonic (0K, WARN, FATAL, or SYSTEM).

5 Error, cannot assign a value to a system-reserved JCW.

Value § will only be returned if the fundamental operating software is ver-

sion G.00.00 or later.

SPECIAL CONSIDERATIONS

There are three types of JCWs in the system; user-defined JCWs, system~defined JCWs, and system-
reserved JCWs. Attempts to assign a value to a system-reserved JCW will result in an error. The
system-reserved JCWs are HPDATE, HPDAY, HPHOUR, HPMONTH, HPMINUTE, and HPYEAR.

2-226

CONDITION CODES

The condition code remains unchanged.

ADDITIONAL DISCUSSION

"User-Defined Job Control Words" in Section V.

2-227

QUIT

INTRINSIC NUMBER 76

Aborts a process.

SYNTAX

v
QUIT) 5

From within any process in a user program structure, you can abort the process by using the QUIT
intrinsic. The QUIT intrinsic also transmits an abort message to the calling process output device, and
sets the job/session in an error state. In batch jobs not containing the :CONTINUE command this
results in job termination. For additional information refer to the MPE V Commands Reference
Manual (32033-90006).

PARAMETERS
num integer by value (required)

Any arbitrary number. When the QUIT intrinsic is executed, aum is
transmitted as part of the abort message, as follows:

ABORT :PROG.GROUP.ACCT.%SEG.XLOC
PROGRAM ERROR :PROCESS QUIT. PARAM=num

If num=0, PARAM=num is not printed.

CONDITION CODES

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

Split-stack calls permitted.

Affects the system Job Control Word.

ADDITIONAL DISCUSSION

"Aborting a Process" in Section V.

2-228

QUITPROG

NO INTRINSIC NUMBER ASSIGNED

Aborts the entire user process structure.

SYNTAX

Iv
QUITPROGGuam) ;

This intrinsic destroys all sons of the job/session main process. The job/session main process is set in
the error state. In batch jobs not containing the :CONTINUE command this terminates the job. Refer
to the MPE V Commands Reference Manual (32033-90006) for additional information.

An abort message is transmitted to the job/session list device.

PARAMETERS

num integer by value (required)
Any arbitrary number. When the QUITPROG intrinsic is executed, num is
output as part of the abort message, as follows:

ABORT :PROG.GROUP.ACCT.%SEG.%LOC
PROGRAM ERROR :PROCESS QUIT. PARAM=num

If num=0, PARAM=num is not printed.

CONDITION CODES

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

Split-stack calls permitted.

Affects the system Job Control Word.

ADDITIONAL DISCUSSION

"Aborting a Program" in Section V.

2-229

READ

INTRINSIC NUMBER 64

Reads an ASCII string from $STDIN into an array.
SYNTAX

I LA 1v
lgth:=READ(message ,expectedl);

This intrinsic is similar to issuing an FREAD intrinsic call against the file $STDIN. The READ intrinsic
is limited in its usefulness, however, in that the full capability of the file system is not available to a
user of this intrinsic. For example, :FILE commands are not allowed and certain file intrinsics can-
not be used because the filenum parameter, obtained from the FOPEN intrinsic, is not available to
normal users of the READ intrinsic.

Basic line editing such as cancellation of lines and backspacing are performed automatically by the in-
put/output driver. If the input device is a terminal in full-duplex mode with the echo facility on, or
if the terminal is in half -duplex mode, the characters read are printed.

READ differs from READX in how it interprets an end-of-file. READ reads a record and if there is a
colon in the first column end-of -file is set.

FUNCTIONAL RETURN

lgth integer (optional)
A positive integer value representing the length of the ASCII string which
was read. If expected! is positive, the length specified is words; if expected!
is negative, the length specified is bytes.

PARAMETERS
message logical array (required)

The array into which the ASCII characters are read.
expectedl integer by value (required)

An integer specif ying the maximum length of the message array. If expec-
tedl is positive, it specifies the length in words; if expected! is negative, it
specifies the length in bytes. When the record is read the first expected!
characters are input. If expectedl equals or exceeds the size of the physical
record, the entire record is transmitted.

2-230

CONDITION CODES
CCE Request granted.

CCG A record with a colon in the first column, signaling the end-of -data or a
hardware end -of -file was encountered.

CCL Request denied because a physical input/output error occurred. Further
error analysis through the FCHECK intrinsic is not possible.

ADDITIONAL DISCUSSION

"Transmitting Program Input/Output from Job/Session Input/Qutput Devices" in Section V.

Point-to-Point Workstation I/O Reference Manual (30000-90250).

2-231

READX

NO INTRINSIC NUMBER ASSIGNED

Reads an ASCII string from $STDINX into an array.
SYNTAX

I LA Iv
lgth :=READX (message ,expectedl) ;

This intrinsic is similar to issuing an FREAD intrinsic call against the file $STDINX. The READ intrin-
sic is limited in its usefulness, however, in that the full capability of the file system is not available to
a user of this intrinsic. For example, :FILE commands are not allowed and certain file intrinsics
cannot be used because the filenum parameter, obtained from the FOPEN intrinsic, is not available to
normal users of the READ intrinsic.

Basic line editing such as cancellation of lines and backspacing are performed automatically by the in-
put/output driver. If the input device is a terminal in full-duplex mode with the echo facility on, or
if the terminal is in half ~-duplex mode, the characters read are printed.

READX differs from READin how it interprets an end-of-file. READX interprets :EOD, :EOF:, orin a
job, :EQJ, :JOB, or :DATA as an end-of -file indication.

FUNCTIONAL RETURN

lgth integer (optional)
A positive integer value representing the length of the ASCII string which
was read. If expectedl is positive, the length is specified in words; if expec-
tedl is negative, the length is specified in bytes.

PARAMETERS
message logical array (required)

The array into which the ASCII characters are read.
expectedl integer by value (required)

An integer specifying the maximum length of the message array. If expec-
tedl is positive, the length is specified in words; if expected! is negative, the
length is specified in bytes. When the record is read the first expectedi
characters are input. If expectedl equals or exceeds the size of the physical
record, the entire record is transmitted.

2-232

CONDITION CODES

CCE Request granted.

CCG An :EOD, :EOF:, or in a job, :EOQJ, :JOB, or :DATA command was
encountered.

CCL Request denied because a physical input/output error occurred. Further

error analysis through the FCHECK intrinsic is not possible.

ADDITIONAL DISCUSSION

"Transmitting Program Input/Output from Job/Session Input/Output Devices" in Section V.

Point-to-Point Workstation I/O Reference Manual (30000-90250).

2-233

RECEIVEMAIL

INTRINSIC NUMBER 108

Receives mail from another process.

SYNTAX

L v

status :=RECEIVEMAIL (pin,location,waitflag);

LV

A process collects mail transmitted to it by its father or a son by using the RECEIVEMAIL intrinsic. If
the mailbox for the receiving process is empty, the action taken depends on the waitflag parameter
specified in the RECEIVEMAIL intrinsic call. If the mailbox is currently in use by other intrinsics, the
RECEIVEMAIL waits until the mailbox is free before accessing it.

FUNCTIONAL RETURN

status logical (optional)
One of the following mailbox status codes:
Status
Returned Meaning

0 The mailbox was empty and waitflag bit (15:1)=0.

1 No message was collected because the mailbox containéd
outgoing mail from the receiving process.

2 The message was collected successfully.

3 An error occurred because an invalid pin was specified
or a bounds check failed.

4 The request was denied because waitflag specified that
the receiving process wait for mail if the mailbox is
empty, but the other process sharing the mailbox is al-
ready suspended, waiting for mail. If both processes
were suspended, neither could activate the other, and
they may be deadlocked.

PARAMETERS

pin integer by value (required)
An integer specifying the process sending the mail. If a son process is
specified, the integer is the Process Identification Number (PIN) of that
process. If a father process is specified, the integer is zero.

location logical array (required)

The array (buffer) in the stack where the message is to be written.

2-234

waitflag logical by value (required)
A word which specifies the action to be taken if the mailbox is empty. This
is determined by the setting of bit (15:1). Bit (15:1) has the following
settings:

=0 Return immediately to the calling process.

=1 Wait until incoming mail is ready for collection.

CONDITION CODES

CCE Request granted. The mail was collected (value 2 is returned to status) or
the mail was not collected because the mailbox contained outgoing mail
from the receiving process (value 1 is returned to status).

CCG Request denied because of an illegal pirn parameter (value 3 is returned to
status).
CCL Request denied because the bounds check revealed that the location param-

eter did not define a legal stack address (value 3is returned to status) or
because both sending and receiving processes would be awaiting incoming
mail causing a deadlock (value 4 is returned to status).

SPECIAL CONSIDERATIONS

Process Handling (PH) capability required.

ADDITIONAL DISCUSSION

"Interprocess Communication" in Section III.

DSN/DS Reference Manual (32190-90001).

2-235

RESETCONTROL

INTRINSIC NUMBER §5

Resets terminal to accept CONTROL~Y signal.
SYNTAX

RESETCONTROL 5

The RESETCONTROL intrinsic is used to reset a terminal so it can accept a CONTROL-Y signal. To
take effect, this intrinsic may be called at any time from any procedure, after the CONTROL-Y trap
has been invoked.

CONDITION CODES

CCE Request granted. '
CCG Not returned by this intrinsic.
CCL Request denied because the trap procedure was not invoked.

ADDITIONAL DISCUSSION
"CONTROL-Y Traps" in Section V.

Point-to-Point Workstation I/0 Reference Manual (30000-90250).

2-236

RESETDUMP

INTRINSIC NUMBER 79

Disables the abort stack analysis facility.

SYNTAX

RESETDUMP ;

CONDITION CODES
CCE Request granted.

CCG Abort stack analysis facility was disabled prior to the RESETDUMP call and
remains disabled.

CCL Not returned by this intrinsic.

ADDITIONAL DISCUSSION
MPE Debug/Stack Dump Reference Manual (30000-90012).

MPE V Commands Manual (32033-90006).

2-237

SEARCH

INTRINSIC NUMBER 70

Searches an array for a specified entry or name.

SYNTAX

I 0-v

entryno : =SEARCH(target ,length ,dict ,defn);

BA v BA BP

The SEARCH intrinsic searches a specially formatted array, consisting of sequential entries, for a
specified name. A simple linear search is performed, with the specified name compared against each
entry of the specially formatted array. Because the search is linear, the most frequently used name
byte arrays should appear at the beginning of the array to insure efficient searching.

FUNCTIONAL RETURN

entryno

PARAMETERS
target

length

dict

defn

integer (optional)
The entry number of the word in dict which matches target. If the name
specified in target is not found, a zero is returned.

byte array (required)
Contains the name for which the search is to be performed.

integer by value (required)
An integer specifying the length, in bytes, of the byte array target.

byte array (required)
The specially formatted array which is to be searched for farget.

byte pointer (optional)
A word to which the address of the definition portion of the entry sought
in the array is returned.

Default: If defn is omitted, the address is not returned.

CONDITION CODES

The condition code remains unchanged.

ADDITIONAL DISCUSSION

"Searching Arrays" in Section V.

2-238

Sends mail to another process.

SYNTAX

SENDMAIL

INTRINSIC NUMBER 107

L v IV

status : =SENDMAIL (pin,count ,location ,waitflag);

Lv

A process sends mail to its father or sons by using the SENDMAIL intrinsic. If the receiving process
mailbox contains an uncollected message from the calling process, the action taken depends on the
waitflag parameter specified in the SENDMAIL intrinsic call. If the mailbox currently is being used by
other intrinsics, the SENDMAIL intrinsic waits until the mailbox is free and then sends the mail.

FUNCTIONAL RETURN

status logical (optional)

One of the following status codes indicating the success of the intrinsic:

Status
Returned

0

Meaning

The mail was transmitted successfully. The mailbox
contained no previous mail.

The mail was transmitted successfully. The mailbox
contained mail sent previously that was overwritten by
the new mail, or contained previous incoming/outgoing
mail that was cleared.

The mail was not transmitted successfully because the
mailbox contained incoming mail to be collected by the
sending process (regardless of the waitflag setting).

An error occurred because an illegal pin parameter was
specified, or a bounds check failed.

An illegal wait request would produce a deadlock.

The request was denied because count exceeded the max-
imum mailbox size allowed by the system.

The request was denied because storage resources for the
mail data segment were not available.

2-239

PARAMETERS

pin

count

location

waitflag

integer by value (required)

An integer specifying the process to receive the mail. If a son process is
specified, the integer is the Process Identification Number (PIN) of that
process. If a father process is specified, the integer is zero.

integer by value (required)

An integer specifying the length of the message, in words, transmitted
from the stack of the sending process. If zero is specified, SENDMAIL
empties the mailbox of any incoming or outgoing mail.

logical array (required)
The array (buffer) in the stack containing the message.

logical by value (required)
A word specifying in bit (15:1) the action to be taken if the mailbox con-
tains previously sent mail. Bit (15:1) has the following settings:

=0 Cancel (overwrite) any mail sent previously with the current mail.

=] Wait until the receiving process collects the previous mail before send-
ing current mail.

CONDITION CODES

CCE

CCG

CCL

Request granted. The mail was sent (value O or 1 is returned to sfatus) or
the mail was not sent because the mailbox contained incoming mail to be
collected by the sending process (value 2 is returned to status).

Request denied because of an illegal count parameter (value 5 is returned to
status), an illegal pin parameter was specified (value 3 is returned to
status), or storage for the mail data segment was not available (value 6 is
returned to status).

Request denied because the bounds check revealed that the count or location
parameters did not define a legal stack area (value 3 is returned to status),
or both processes are waiting to send mail (value 4 is returned to status).

SPECIAL CONSIDERATIONS

Process Handling (PH) capability required.

ADDITIONAL DISCUSSION

“Interprocess Communication" in Section III.

2-240

SETDUMP

INTRINSIC NUMBER 78

Enables the stack analysis facility.

SYNTAX

LV
SETDUMP(flags);

PARAMETERS

flags

logical by value (required)
A logical word whose bits specify the following if set to =1:

Bit (15:1) - Specifies a DL to Q initial dump.
Bit (14:1) - Specifies a Q initial to S dump.

Bit (13:1) - Specifies 2 Q-63 to S dump. This bit is ignored if bit
(14:1)=1.

Bit (12:1) - Causes an ASCII dump of the octal content along with the oc-
tal values.

If bits (12:4)=0, flags will specify a display of registers and stack marker
trace only.

Bits (0:12) are reserved for MPE.

CONDITION CODES

CCE

CCG

CCL

Request granted.

Abort stack analysis facility already enabled before SETDUMP call. The
facility is now set up according to new specifications from this call.

Not returned by this intrinsic.

ADDITIONAL DISCUSSION

MPE Debug/Stack Dump Reference Manual (30000-90012).

2-241

SETJCW

INTRINSIC NUMBER 72

Sets bits in the system Job Control Word, JCW.

SYNTAX

Lv
SETJCW(word) ;

You can establish the bit contents of the system Job Control Word, JCW, with the SETJCWintrinsic.

PARAMETERS
word logical by value (required)

A 16-bit word whose contents are established by the user for Interprocess
Communication. The form is:

01 15

Bit (0:1) is reserved for MPE and should be set to zero. If you set (0:1)=1,
the system will output the following message when the user program ter-
minates, either normally or due to an error:

PROGRAM TERMINATED IN ERROR STATE (CIERR 976)
In batch mode, the job is terminated unless the :CONTINUE command is
used. If you set JCW to exactly %140000 (bits (0:1)=1 and (1:1)=1 only),
the CIERR 976 message is replaced by:

PROGRAM ABORTED PER USER REQUEST (CIERR 989)
Refer to the MPE V Commands Reference Manual (32033-90006) for a
discussion of :CONTINUE. Bits (1:15) may be used for any purpose.

CONDITION CODES

The condition code remains unchanged.

ADDITIONAL DISCUSSION
"User-Defined Job Control Words" in Section V.

MPE V Commands Reference Manual (32033-90006).

2-242

STACKDUMP

INTRINSIC NUMBER 77

Dumps selected parts of stack to a file.

SYNTAX

0-v

STACKDUMP (filename ,idnumber,flags,selec);

I L DA

or (from SPL only):

o-v

STACKDUMP ’ (filename ,idnumber,flags,selec);

I L DA

PARAMETERS

filename

idnumber

flags

byte array (optional)

Contains the filename of the file where the information is to be dumped.
When filename contains the formal designator of the file, the file will be
opened and closed by the STACKDUMP intrinsic. If the secondary entry
point STACKDUMP’ is used to enter this intrinsic, MPE assumes that
filename(0) contains the file number of a file which has been successfully
opened prior to the call to STACKDUMP. In this case, the file is not closed
before returning to the calling program. When a file number is passed via
the STACKDUMP ’ secondary entry point, the record length must be between
32 and 256 words and write access must be allowed for the file.

Default: Dump is sent to $STDLIST.

integer (optional)

An integer which is displayed in the header of the dump to identify the
printout. If this intrinsic is unsuccessful, the value of idnumber is the cor-
responding file system error number.

Default: Identifying integer not displayed.

logical (optional)
A logical value used to specify the following options:

Bit (15:1) - Controls ASCII dump.
=0 Provide ASCII dump.

=1 Suppress ASCII dump.

2-243

selec

Bit (14:1) - Controls trace back of stack markers.
=0 Display trace back of stack marker.
=1 Do not display trace back of stack marker.

Default: If Bits (14:2)=00, a corresponding ASCII dump is provided for all
values dumped in octal, and a trace back of stack markers is displayed.

double array (optional)

Specifies which stack areas are to be dumped. The format of the array is
shown in the MPE Debug/Stack Dump Reference Manual (30000-90012).
The array has no predetermined length; the first double-word containing
the values 0/-1 indicates the end of the array. An entry for which the
count is 0is interpreted as a "skip" (for example, to next double-word
element in list).

Default: If missing, or if the first double-word contains 0/-1 (indicating
end of array), no dump occurs (except for the header), unless flags bit
(14:1)=0, in which case the trace back of stack markers is displayed.

CONDITION CODES

CCE

CCG

CCL

Request granted.

Request denied. Bounds violation occurred and the dump was not com-
pleted. Record size was not between 32 and 256 words.

Request denied. File system error occurred during opening, writing to, or
closing the file. The file error number is returned in idnumber .

ADDITIONAL DISCUSSION

MPE Debug/Stack Dump Reference Manual (30000-90012).

2-244

STARTSESS

INTRINSIC NUMBER 195

Initiates a session on the specified terminal. (Available only on version G.01.00 and later.)

SYNTAX

IV BA I D IA
STARTSESS(Zdev,logonstr, jsid,jsmum,errorstat.) ;

STARTSESS initiates a session on the specified terminal using the given logon string. The terminal on
which the session is to be created must be available; no other user may be logged on. The target ter-
minal will not be speed sensed, so it must be set at the configured baud rate.

When the session is created, nothing will be printed to the terminal until the key is pressed
unless ;NOWAIT is specified. To override the need for a (RETURN), the ;NOWAIT keyword parameter
may be entered with the logon string when executing the :STARTSESS command or invoking the
STARTSESS intrinsic. For example, :STARTSESS 21 ;MANAGER/pass .SYS;NOWAIT or passing a byte
array of "MANAGER/pass.SYS; NOWAIT (%15)" to the STARTSESS intrinsic will start a session and
logon immediately without waiting for a BETURN). The ;NOWAIT parameter should never be used
without first ensuring that the target terminal is turned on and set at the default baud rate. If the
target terminal is the System Console and NOWAIT is specified, then the invoker must have System
Manager (SM) capability. All other valid terminals may be specified by the invoker with only
Programmatic Sessions (PS) capability.

PARAMETERS

ldev integer by value (required)
The logical device number of the terminal on which the session is to be
created. This must a real physical device, and it must be a hardwired ter-
minal. The terminal must be configured as TYPE 16 and SUBTYPE O or 4.

logonstr byte array (required)
The character holding the logon parameters in the same format expected in
the :STARTSESS command. For more details on the :STARTSESS com-
mand, refer to the MPE V Commands Reference Manual (32033-90006).
The first characters in the string should be the session name, if specified, or
the user name if no session name is assigned; logonstr must be terminated
with a carriage return character (%15).

Passwords must be supplied in the logonstr. There will be no prompting for
passwords. If passwords are required but not supplied, STARTSESS will
fail.

Jsid integer (required)
Indicates the type of Command Interpreter (CI) process. If the STARTSESS
call was successful, the value returned will be 1, if unsuccessful, the value
will be 0. When the value returned to jsid is 1, jsid and jshum can be used
as input to JOBINFO to check on the various attributes of the session.
Jjsnum double (required)
A 32-bit value which when used with jsid uniquely identifies the created
session.

2-245

errorstat

integer array (required)

A two-element array in which the status of the call is returned. The
second element is reserved for future use, and will always contain a zero.
The first element will contain a zero if no errors occurred. If an error oc-
curs one of the following error values is returned in the first element:

Error No.
0
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024

7025

7026

7027

7028

7029

7030

Meaning

Successful call.

The Idev is out of range.

The Idev must not be virtual.

The device specified by ldev is not a terminal.

The Ildev is not free.

The Idev is not job accepting.

The Idev is in diagnostic mode.

The Idev terminal is down.

DOWN pending on Ildev.

Logical device specified by Ildev is not a real device.

Caller lacks Programmatic Sessions (PS) capability.

Session was aborted before logging on.

Logon failed because system is at its session limit.

Logon failed because the session’s INPRI was less than or
equal to the system’s JOBFENCE.

Logon failed because the system was unable to obtain a
PCB entry for the system process.

Logon failed because the system was unable to obtain a
DST entry for the session.

Logon failed because the system was unable to obtain a
DST entry for the session’s JIT.

Logon failed because the system was unable to obtain a
DST entry for the session’s JDT.

Logon failed because the system was unable to obtain a
file DST entry.

Logon failed because the system was unable to obtain an
entry in the JPCNT table for the session.

Logon failed because the system was unable to obtain the
XDD entry for the output device.

Logon failed because the system was unable to obtain the
XDD entry for the input device.

Unknown error occurred. This would only happen in the
case of an illegal call from one internal procedure to
another internal procedure when passing the error
number.

Unable to allocate $STDIN or logon failed because of a
failure to open $STDIN.

Unable to allocate $STDLIST or logon failed because of a
failure to open $STDLIST.

Logon failed because a disconnect was detected on the
terminal during logon processing.

Logon failed because the session’s account is out of CPU
time.

Logon failed because the session’s account is out of
CONNECT time.

2-246

Error No.
7033
7034
7042

1444
1424
1426
1438
1437
1436
1431

1412

1411

-1458
-1459
-1479
-1461
-1464
-1462
-1463
-1465
-1473
-1452
-1451

CONDITION CODES

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

Meaning

Logon failed because the session’s logon group is out of
CPU time. ,

Logon failed because the session’s logon group is out of
CONNECT time.

Group is not specified, and there is no default home
group.

Password is required but not specified in logonstr.

Missing or invalid user name in logonstr.

Missing or invalid account name in logonstr.

No such user in the account.

No such account in the system.

No such group in the account.

Specified session user lacks Interactive Access (IA)
capability.

Logon failed due to JIMAT overflow.

Logon failed due to IDD overflow.

Bad TERMTYPE specified in logonstr, default used.

Invalid PRI specified in logonstr, default used.

Invalid TIME specified in logonstr, no time limit is used.
HIPRI then INPRI specified, INPRI used.

INPRI then HIPRI specified, HIPRI used.

INPRI too low, lowest valid INPRI used.

INPRI too high, highest valid INPRI used.

OUTCLASS specified, ignored.

RESTART specified, ignored.

Unknown parameter found in logonstr, ignored.

Ignored delimiter.

Programmatic Sessions (PS) capability required.

ADDITIONAL DISCUSSION

None.

2-247

SUSPEND

INTRINSIC NUMBER 103

Suspends a process.

SYNTAX

0-v Lv Iv
SUSPEND(susp,rin);

A process can suspend itself with the SUSPEND intrinsic. When this intrinsic is executed, the process
relinquishes its access to the central processor unit until reactivated by an ACTIVATE intrinsic call.
When a process suspends itself , it must specify the anticipated source of this ACTIVATE call (its father
or a son process). When the process is reactivated, it begins execution with the instruction immediate-
ly following the SUSPEND call.

PARAMETERS

susp logical by value (required)
A word whose 14th and 15th bits specify the anticipated source of the call
that later will reactivate the process. For processes run by users with only
the Process Handling (PH) capability, at least one of these bits must = 1.
Bit (15:1) - Father activation bit.
=0 Process does not expect to be activated by its father.
=1 Process expects to be activated by its father.
Bit (14:1) - Son activation bit.
=0 Process does not expect to be activated by one of its sons.

=1 Process expects to be activated by one of its sons.

If (14:1)=1 and (15:1)=1, the suspended process can be activated by either
father or sons. Bits (0:14) are reserved by MPE and should be set to zero.

rin integer by value (optional)
An integer specifying a Resource Identification Number (RIN). If rin is
specified, it represents a local RIN that is locked by the process but that
will be released when this process is suspended. This facility can be used to
synchronize processes within the same job.

Default: If omitted, no RIN is unlocked when the process suspends.

2-248

CONDITION CODES

CCE Request granted.
CCG Not returned by this intrinsic.
CCL Request denied because the susp parameter is not valid, the specified RIN

is not owned by this process, or the specified RIN was not locked.

SPECIAL CONSIDERATIONS

Split-stack calls permitted.

Process Handling (PH) capability required.

ADDITIONAL DISCUSSION

"Suspending Processes" in Section III.

2-249

SWITCHDB

INTRINSIC NUMBER 139

Switches DB register pointer.

SYNTAX

L 0-P Lv
logindex :=SWITCHDB(index);

The SWITCHDB intrinsic changes the DB register so that it points to the base of an extra data segment
instead of the base of the stack.

FUNCTIONAL RETURN

logindex logical {optional)
The logical index of the data segment indicated by the previous DB register
setting, thus allowing you to restore this setting later. If the previous DB
setting indicated the stack, zero is returned.

PARAMETERS

index logical by value (required)
Specifies the logical index of the data segment to which the DB register is
to be switched, as obtained through the GETDSEG intrinsic call in Privileged
Mode. MPE checks the value specified for index to ensure that the process
has acquired access to this segment previously. For an extra data segment,
index must be a positive, nonzero integer. To switch back to the stack
segment, index must be zero.

CONDITION CODES

CCE Request granted.
CCG Not returned by this intrinsic.
CCL Request denied because an illegal data segment was specified.

SPECIAL CONSIDERATIONS

The program calling both SWITCHDB and GETDSEG which generated the value for index must be run-
ning in Privileged Mode. GETDSEG requires Data Segment Management (DS) capability.

ADDITIONAL DISCUSSION

"Moving the DB Pointer" in Section III.

The GETDSEG intrinsic in this section.

2-250

TERMINATE

INTRINSIC NUMBER 60

Terminates a process.

SYNTAX

TERMINATE ;

A process and all of its descendants (sons), including any extra data segments belonging to them, can
be deleted by using the TERMINATE intrinsic.

All files still open by the process and its descendants are closed and assigned the same disposition they
had when opened.

CONDITION CODES

The process that calls this intrinsic is terminated and no return is made.

SPECIAL CONSIDERATIONS

Split-stack calls permitted.

ADDITIONAL DISCUSSION

"Deleting Processes" in Section Il and "Terminating a Process" in Section V.

TIMER

INTRINSIC NUMBER 40

Returns system timer information.

SYNTAX

D
count:=TIMER;

A 31-bit logical quantity representing the current system timer and overflow count can be returned
to your program with the TIMER intrinsic. :

The resolution of the system timer is one millisecond. Thus, readings taken within a one-millisecond
period may be identical.

FUNCTIONAL RETURN

count double (optional)
A 31-bit logical quantity representing the actual millisecond count since
the midnight preceding the last system coldload.

CONDITION CODES

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

Split-stack calls permitted.

ADDITIONAL DISCUSSION

"Obtaining System Timer Information" in Section V.

2-2852

UNLOADPROC

INTRINSIC NUMBER 81

Dynamically unloads a library procedure.

SYNTAX

Iv
UNLOADPROC (procid) ;

The UNLOADPROC intrinsic dynamically unloads a procedure and its referenced external procedures.

PARAMETERS

procid integer by value (required)
A word containing the procedure’s identity number, which was obtained
from the LOADPROC intrinsic call.

CONDITION CODES

CCE Request granted.
CCG Not returned by this intrinsic.
CCL Request denied because of invalid procid.

ADDITIONAL DISCUSSION

"Dynamic Loading and Unloading of Library Procedures" in Section V.

2-253

UNLOCKGLORIN

INTRINSIC NUMBER 35

Unlocks a global RIN.
SYNTAX

v
UNLOCKGLOR INCrinrum) 5

The UNLOCKGLORIN intrinsic unlocks a global Resource Identification Number (RIN) that has been
locked with the LOCKGLORIN intrinsic.

PARAMETERS

rinnum integer by value (required)
A word supplying the number of any RIN locked by the calling process. If
rinnum does not specify a RIN locked by the calling process, no action is
taken.

CONDITION CODES

CCE Request granted.
CCG Request denied because this RIN was not locked for this purpose.
CCL Request denied because the specified RIN was not allocated.

ADDITIONAL DISCUSSION

"Resource Management" in Section III.

2-254

UNLOCKLOCRIN

INTRINSIC NUMBER 33

Unlocks a local RIN.
SYNTAX

Iv
UNLOCKLOCRIN(rinmm) ;

The UNLOCKLOCRIN intrinsic unlocks a local Resource Identification Number (RIN) that has been
locked by the LOCKLOCRIN intrinsic.

PARAMETERS

rinnum integer by value (required)
A word supplying the locked RIN, designated by an integer from 1 to the
value specified in the rincount parameter of the GETLOCRIN intrinsic call.

CONDITION CODES

CCE Request granted.

CCG Request denied because the RIN specified is not locked by the calling
process.

CCL Request denied because the specified RIN is not allocated to this process.

ADDITIONAL DISCUSSION

"Resource Management" in Section III.

2-255

WHO

INTRINSIC NUMBER 69

Returns information about a user.

SYNTAX

0-Vv L D D BA BA BA BA L
WHOGmode ,capability,lattr usern ,groupn ,acct ,homen,term);

The WHO intrinsic supplies the access mode and attributes of the user running the program.

PARAMETERS

mode logical (optional)

A word to which the current user’s access mode is returned. In this word,

the bits have the following meanings:

Bit (15:1)

=0 The job/session input file and job/session list file are not interactive.

=1 The job/session input file and job/session list file form an interactive
pair. A dialog can be established between a program, displaying infor-
mation on the list device, and a person responding through the input
device.

Bit (14:1)

=0 The job/session input file and job/session list file are not duplicative.

=1 The job/session input file and job/session list file form a duplicative
pair. Images on the input device are duplicated automatically on the
list device.

Bits (12:2)

=00 Is not used.

=01 The user is accessing the system through a session.

=10 The user is accessing the system through a job.

=11 Is not used.

Bits (0:12) - Reserved for MPE. The WHO intrinsic sets these bits to zero.

Default: The user’s access mode is not returned.

2-256

capability

double (optional)

A double-word to which the user’s file access, user, and capability class at—
tributes are returned. In the first word, possession of the following file ac-
cess and user attributes is indicated by the corresponding bit being =1.
File access attributes:

Bit (15:1)-Ability to save files (declare them permanent) (SF).

Bit (14:1)-Ability to acquire nonsharable devices (ND).

Bit (13:1)-Communications System (CS).

Bit (12:1)-Node Manager (NM). (On version G.01.00 or later.)

Bit (11:1)-Network Administrator (NA). (On version G.01.00 or later.)
Bits (9:2)-Reserved for MPE. The WHO intrinsic sets these bits to zero.
Bit (8:1)- User Logging (LG).

Bit (7:1)- Volume set usage (UV).

Bit (6:1)~ Volume set creation (CV).

User Attributes:

Bit (5:1)- System Supervisor (OP).

Bit (4:1)- Diagnostician (DI).

Bit (3:1)- Group Librarian (GL).

Bit (2:1)- Account Librarian (AL).

Bit (1:1)- Account Manager (AM).

Bit (0:1)- System Manager (SM).

In the second word, possession of the user’s capability-class attributes is in-
dicated by the corresponding bit being =1.

Bit (15:1)-Process Handling (PH).

Bit (14:1)-Extra Data Segments (DS).

Bit (13:1)-Reserved for MPE. The WHO intrinsic sets this bit to zero.
Bit (12:1)-Multiple RINs (MR).

Bit (11:1)-Reserved for MPE. The WHO intrinsic sets this bit to zero.

Bit (10:1)-Programmatic Sessions (PS). (On version G.01.00 or later.)

2-257

lattr

usern

groupn

accitn

homen

term

Bit (9:1)- Privileged Mode operation (PM).

Bit (8:1)- Interactive (session) access (IA).

Bit (7:1)- Batch (job) access (BA).

Bit (0:7)- Reserved for MPE. The WHO intrinsic sets these bits to zero.

Default: The user’s file access, user, and capability-class attributes are not
returned.

double (optional)
A double-word to which the local attributes of the user, as defined by a
user with the Account Manager attribute, is returned.

Default: The user’s local attributes are not returned.

byte array (optional)
An 8-byte array to which the user’s name is returned.

Default: The user’s name is not returned.

byte array (optional)
An 8-byte array to which the name of the user’s logon group is returned.

Default: The user’s logon group is not returned.

byte array (optional)
An 8-byte array to which the name of the user’s logon account is returned.

Default: The user’s logon account is not returned.

byte array (optional)
An 8-byte array to which the name of the user’s home group is returned.
If a2 home group is not assigned, this array is filled with blanks.

Default: This information is not returned.

logical (optional)

A word to which the logical device number of the job/session input device
is returned. If this is a spooled (:STREAM) batch job, then the logical
device number will be the virtual device.

A virtual device simulates a spooling device. The actual spooling device
cannot be owned by users, so the virtual device allows users access to spool-
ing. Each virtual device will be temporarily assigned a logical device num-
ber for the duration of the input or output spooling process. Since the same
logical device number can be reassigned to another virtual device with dif -
ferent physical characteristics, such as page length, the virtual device is not
permanently configured in the system configuration. The logical device
number of the virtual device can also be obtained with FFILEINFO.

Default: The logical device number is not returned.

2-258

CONDITION CODES

The condition code remains unchanged.

ADDITIONAL DISCUSSION

"Determining the User’s Access Mode and Attributes” in Section V.

Point-to-Point Workstation I/O Reference Manual (30000-90250).

2-259

WRIITELOG

INTRINSIC NUMBER 211

Writes a record to a logging file.

SYNTAX

D LA 1 I I
WRITELOG(index ,data,len ,mode ,status);

The WRITELOG intrinsic journalizes data base and subsystem file additions and modifications to the
user logging file.

PARAMETERS

index double (required)
The parameter returned from OPENLOG that identifies your access to the
logging file.

data logical array (required)
The array in which the information to be logged is passed. A log record
contains 128 words of which 119 are available to you. Thus the most effi-
cient use of log file space is to structure your arrays with lengths in multi-
ples of 119 words.

len integer (required)
The length of the data in data. A positive number indicates words, a nega-
tive number indicates bytes. If the length is greater than 119 words, the
information in data is divided into two or more physical log records.

mode integer (required)

An integer which you use to indicate whether or not your process should be
suspended if your request for service cannot be completed immediately.
Enter a zero if you want to wait for service, enter a one if you do not want
to wait. If a two is entered it will cause the logging buffer to get written
to the disc logfile (disc logging) or disc buffer file (serial logging) at the
first opportunity. This is the only intrinsic that allows a setting for mode
that is greater than 1. :

status integer (required)
One of the following integers indicating the success/failure of the call:

Message No. Meaning
0 No error occurred for this call.

1 User requested NOWAIT mode and the logging process is
busy.

2 Parameter out of bounds in logging intrinsic.

2-260

Message No.

3

10
12
13
14
15

16

CONDITION CODES

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

Meaning

Request to open or write to a logging process that is not
running.

Incorrect index parameter passed to a logging intrinsic.
Incorrect mode parameter passed to a logging intrinsic.
User request denied because logging process is suspended.
Illegal capability. Must have User Logging (LG) and
System Supervisor (OP) capabilities to use a logging
intrinsic.

Incorrect password passed to a logging intrinsic.

Error occurred while writing logging file.

Invalid DST passed to a logging system intrinsic.

System is out of disc space, logging cannot proceed.

No more logging entries.

Invalid access to logging file.

End-of-file on user log file.

Invalid logging identifier.

User Logging (LG) and System Supervisor (OP) capabilities required.

ADDITIONAL DISCUSSION

"User Logging" in Section IV.

2-261

XARITRAP

INTRINSIC NUMBER 50

Enables or disables the user-written software arithmetic trap.

SYNTAX

v v I I
XARITRAP(mask ,plabel ,oldmask ,oldplabel);

The XARITRAP intrinsic enables you to replace the trap handler in MPE with your own trap handler
routine.

The validity of a trap procedure, specified by the external-type label of the user’s trap procedure
plabel, depends on the code domain of the caller’s code and executing mode (privileged or non-
privileged). The code domains are:

PROG (User Program)

GSL (Group SL)
PSL (Public SL)
SSL (System SL, non-MPE segments)

MPESSL (System SL, MPE segments)
If, when a trap procedure is being enabled, the code of the caller is in one of the following states:
e Nonprivileged in PROG, GSL, or PSL, plabel must be nonprivileged in PROG, GSL, or PSL.

e Privileged in PROG, GSL, or PSL, plabel may be privileged or nonprivileged in PROG, GSL, or
PSL.

e Privileged or nonprivileged in SSL, plabel may be in any non-MPESSL -segment.

PARAMETERS

mask integer by value (required)
A word mask that selects which hardware traps will invoke the software
trap, and which will not. Only the 14 right-most bits of the word forming
the mask are used. The setting of the other bits is not significant, but it is
recommended that they be set to zero. Thus, octal values up to %37777 are
allowed for this parameter.

If a bit is on (=1), the corresponding hardware trap activates the software
trap. If a bit is off (=0), the corresponding hardware trap does not activate
the software trap. If all bits are set to zero, the software trap is disabled.
Hardware traps are activated by the following relationships:

Bit Hardware Error Trap

(15:1) Floating Point Divide By Zero.
(14:1) Integer Divide By Zero.

(13:1) Floating Point Underflow.

2-262

(12:1) Floating Point Overflow.

(11:1) Integer Overflow.
(10:1) Extended Precision Overflow.
(9:1) Extended Precision Underflow.
(8:1) Extended Precision Divide By Zero.
(7:1) Decimal Overflow.
(6:1) Invalid ASCII Digit.
(5:1) Invalid Decimal Digit.
(4:1) Invalid Source Word Count.
(3:1) Invalid Decimal Operand Length.
(2:1) Decimal Divide By Zero.

plabel integer by value (required)

The external-type label of the user’s trap procedure. If the value of this
entry is 0, the software trap is disabled. The external-type label of the
procedure, which resides in the segment transfer table of the procedure’s
code segment, is passed as a parameter (in SPL) by placing an @ before the
procedure name.

oldmask integer (required)
A word in which the value of the previous mask is returned to the user’s
program.

oldplabel integer (required)

A word in which the previous plabel is returned to the user’s program. If
no plabel existed previously, zero is returned.

CONDITION CODES

CCE Request granted. Software trap enabled.
CCG Request granted. Software trap disabled.
CCL Request denied because of an invalid plabel.

ADDITIONAL DISCUSSION

"Enabling and Disabling Traps" in Section V.

2-263

XCONTRAP

INTRINSIC NUMBER 54

Enables or disables the CONTROL-Y trap.
SYNTAX

Iv I
XCONTRAP(plabel ,oldplabel);

When a session is initiated, the CONTROL-Y trap is disabled. The XCONTRAP intrinsic enables this
trap. This intrinsic takes effect on the file $STDINX, and also on $STDIN (when $STDINis defined as
a terminal).

The validity of a trap procedure, specified by the external-type label of the user’s trap procedure
(plabel), depends on the code domain of the caller’s code and executing mode (privileged or non-
privileged). The code domains are:

PROG (User Program)

GSL (Group SL)
PSL (Public SL)
SSL (System SL, non-MPE segments)

MPESSL (System SL, MPE segments)
If, when a trap procedure is being enabled, the code of the caller is one of the following states:
e Nonprivileged in PROG, GSL, or PSL, plabe! must be nonprivileged in PROG, GSL, or PSL.

e Privileged in PROG, GSL, or PSL, plabel may be privileged or nonprivileged in PROG, GSL, or
PSL.

e Privileged or nonprivileged in SSL, plabel may be in any non-MPESSL segment.

PARAMETERS

plabel integer by value (required)
The external-type label of the user’s trap procedure. If the value of this
entry is 0, the software trap is disabled.

oldplabel integer (required)

A word in which the previous plabel is returned to the user’s program. If
no plabel existed previously, zero is returned.

CONDITION CODES

CCE Request granted. Trap enabled.
CCG Request granted. Trap disabled.
CCL Request denied because of illegal plabel, or because $STDIN is not defined

as a terminal.

2-264

ADDITIONAL DISCUSSION

"Enabling and Disabling Traps" in Section V.

Point-to-Point Workstation I/O Reference Manual (30000-90250).

2-265

XLIBTRAP

INTRINSIC NUMBER 52

Enables or disables the software library trap.

SYNTAX

v I
XLIBTRAP(plabel ,oldplabel);

When a program begins execution, the software library trap is disabled automatically. You can en-
able (or subsequently disable) this trap with the XLIBTRAP intrinsic call.

PARAMETERS

plabel integer by value (required)
The external-type label of the user’s trap procedure. If the value of this
entry is O, the trap is disabled.

oldplabel integer (required)

A word in which the previous plabel is returned to the user’s program. If
no plabel existed previously, zero is returned.

CONDITION CODES

CCE Request granted. Trap enabled.
CCG Request granted. Trap disabled.
CCL Request denied because of an illegal plabel.

ADDITIONAL DISCUSSION

"Enabling and Disabling Traps" in Section V.

2-266

XSYSTRAP

INTRINSIC NUMBER 53

Enables or disables the system trap.

SYNTAX

Iv I
XSYSTRAP (plabel ,oldplabel);

When a program begins execution, the system trap is disabled automatically. When enabled by the
XSYSTRAP intrinsic, and subsequently activated by an error, the trap transfers control to a trap
procedure.

You can enable (or subsequently disable) the system trap by using the XSYSTRAP intrinsic.

PARAMETERS

plabel integer by value (required)
The external-type label of the user’s trap procedure. If the value of this
entry is 0, the software trap is disabled.

oldplabel integer (required)

A word in which the previous plabel is returned to the user’s program. If
no plabel existed previously, zero is returned.

CONDITION CODES

CCE Request granted. Trap enabled.
CCG Request granted. Trap disabled.
CCL Request denied because of an illegal plabel.

ADDITIONAL DISCUSSION

"Enabling and Disabling Traps" in Section V.

2-267

ZSIZE

INTRINSIC NUMBER 136

Alters current Z to DB area.

SYNTAX

I Iv
actsize:=ZS1ZE(size);

The ZSIZE intrinsic alters the size of the current Z to DB area by adjusting the register offset of the
Z address from the DB address (Z to DB).

The ZSIZE intrinsic moves the Z address forward (expansion) or backward (contraction). If the Z to
DB area size requested exceeds the maximum size permitted for the Z to DL (stack) area, only the

maximum size allowed is granted.

All changes to the Z to DB area are made in increments or decrements of 128 words, and hence the
size actually granted may differ from the size requested.

FUNCTIONAL RETURN

actsize integer (optional)
This intrinsic returns the size in words actually granted.

PARAMETERS

size integer by value (required)
An integer value greater than or equal to zero that specifies the desired
register offset (in words) for Z to DB.

CONDITION CODES

CCE Request granted.

CCG The requested size exceeded the maximum limits of the Z to DL (stack)
area. The maximum limit is granted, and this value is returned to the call-

ing process as the value of actsize.

CCL An illegal size parameter, less than (S - DB) + 64 words, was specified.
This minimum value is assigned by default.

ADDITIONAL DISCUSSION

"Changing Stack Sizes" in Section V.

2-268

OPTIONAL CAPABILITIES

Some MPE functions can only be performed by users with the optional capabilities mentioned in
Section I. This section discusses the optional capabilities needed to perform these functions.

PRIVILEGED MODE CAPABILITY

Users with standard MPE capabilities can only access their own code and data areas in main memory.
A user with Privileged Mode (PM) capability, however, can access all areas of the system and can use
all features of the hardware. They can access all system tables, and invoke all system instructions,
including those in the privileged central processor instruction set. In short, a user with PM capability
can use the computer on the same terms as MPE itself. MPE does not make any distinction between a
privileged user and the operating system.

CAUTION

The normal checks and limitations that apply to stan-
dard users in MPE are bypassed in Privileged Mode. It is
possible for a Privileged Mode program to destroy file in-
tegrity, including the MPE operating system software it -
self. Hewlett-Packard will investigate and attempt to
resolve problems resulting from the use of Privileged
Mode code. This service, which is not provided under
the standard Service Contract, is available on a time and
materials billing basis. Hewlett-Packard will not sup-
port, correct, or attend to any modification of the MPE
operating system software.

You can use Privileged Mode capability in the following ways:

¢ To write permanently privileged programs that are loaded and executed entirely in Privileged
Mode.

e To write temporarily privileged programs that dynamically enter and leave Privileged Mode
during execution, as required.

Permanently Privileged Programs

A code segment is loaded and executed directly in Privileged Mode when all the following conditions
exist :

1. $CONTROL PRIVILEGED s used or any of the segment’s procedures have OPTION PRIVILEGED.

Optional Capabilities

2. The program is prepared with Privileged Mode capability and resides in a group and account
having Privileged Mode capability. You enter the appropriate capability-class attribute in the
caplist parameter of the :PREP or :PREPRUN command that prepares the program. You must
have Privileged Mode capability in order to enter a privileged capability class attribute and must
be in a group and account with Privileged Mode capabilities. Refer to the MPE V Commands
Reference Manual (32033-90006) for discussions of the :PREP and :PREPRUN commands.

3. The NOPRIV optional parameter is omitted from the :PREPRUNor :RUN command that executes
the program, or the CREATE intrinsic that creates a process to run it. This omission leaves the
Privileged Mode bit ON in the appropriate CST entries.

When you add a segment to a Segmented Library (through the -ADDSL Segmenter command), the
procedures within the segment are checked to determine whether any of them are privileged. If they
are, the segment is always run in Privileged Mode. In order to add a segment containing one or more
privileged procedures to a library, you must possess Privileged Mode capability in your group and ac-
count. Refer to the MPE Segmenter Reference Manual (30000-90011) for instructions concerning
Segmented Libraries.

Temporarily Privileged Programs

Temporarily privileged programs are initiated, upon request, in the non-Privileged Mode. Then, in-
trinsics can be used to change the program to and from Privileged Mode dynamically. For example,
just before a set of privileged instructions is encountered, the program can be switched to Privileged
Mode to allow execution of these instructions. Then, after the last privileged instruction in the set is
encountered, the program can be returned to non-Privileged Mode. This bracketing of privileged in-
structions aids in reducing system violations, since the program cannot access locations or resources
outside the user environment when it is running in non-Privileged Mode.

Before running a temporarily privileged program, you should understand how the central processor
handles procedure calls (PCAL instructions) and exits (EXIT instructions) when encountered in either
mode:

e In Privileged Mode, when a PCAL instruction is executed, Privileged Mode is retained even
though the destination code segment may have a nonprivileged CST entry. When an EXIT in-
struction is encountered, the resulting mode depends on the status word in the stack marker.

e In non-Privileged Mode, when a PCAL instruction is encountered, the mode is obtained from the
CST entry for the destination code segment. When an EXIT instruction occurs, the resulting
mode is taken from bit (0:1) of the status in the stack marker. If the entry indicates Privileged
Mode, ((0:1)=1) a system violation occurs.

In general, the status word determines the action taken in Privileged Mode, but the CST determines
the action in non-Privileged Mode. Refer to the Machine Instruction Set Reference Manual
(30000-90022) for further discussions of the PCAL and EXIT instructions.

A code segment is loaded and begins execution as a temporarily privileged segment (in non-Privileged
Mode) when three conditions are met:

3-2

Optional Capabilities

1. The program is prepared with Privileged Mode capability, by entering the appropriate
capability-class attribute in the caplist parameter of the :PREP or :PREPRUN command. This
requires that you have Privileged Mode capability as a user and must be in a group and account
with Privileged Mode capabilities.

2. $CONTROL PRIVILEGED was not used.
3. None of the segment’s procedures have OPTION PRIVILEGED.

The NOPRIV parameter of the :PREPRUN and :RUN commands forces all segments in the program to
begin execution in user mode. When a temporarily privileged segment is loaded, the CST entry cor-
responding to that segment has its Privileged Mode bit (1:1)=0.

If you possess Privileged Mode capability, you can also call all intrinsics available to users with the
Data Segment Management capability (DS), provided that you follow these rules:

e When calling the data segment intrinsics from Privileged Mode, ensure that the DB register points
to its normal stack position. When the GETDSEG intrinsic is used to create extra data segments
under these conditions, the number of segments that can be created is dependent on the space
available in the Process Control Block Extension (PCBX) and cannot be calculated.

e When a temporarily privileged process calls a data segment intrinsic while in non-Privileged
Mode, the data segment index returned to the calling process can also be used by the process to
reference that segment in Privileged Mode. If the process calls a data segment intrinsic in
Privileged Mode, however, the returned index cannot be used to reference the segment in non-
Privileged Mode.

Entering Privileged Mode

The GETPRIVMODE intrinsic is used to switch a temporarily privileged program from non-Privileged
Mode to Privileged Mode. This intrinsic turns on the Privileged Mode bit in the status register
((0:1)=1), but leaves the Privileged Mode bit in the Code Segment Table (CST) entry for the execut-
ing segment ((1:1)=0). Thus, if additional segments are run as part of the program, they will run in
Privileged Mode unless GETUSERMODE is specifically called to return to the non-Privileged Mode, since
the status register not the CST determines a mode change when in Privileged Mode.

Figure 3-1 contains a program that uses the GETPRIVMODE intrinsic to switch to Privileged Mode.
Privileged Mode is necessary temporarily because the program opens a file with both NOBUF and
NOWAIT aoptions specified in the FOPEN intrinsic call. Privileged Mode capability (PM) is required
to call this intrinsic, however, caution should be used since your 1/0 could overwrite other data on
the system.

The program in Figure 3-1 was prepared with the CAP=PM parameter specified in the :PREP com-
mand. This enables the program to be switched from non-Privileged to Privileged Mode with the
GETPRIVMODE intrinsic. Statement 00019000 in the program switches the program from non-
Privileged to Privileged Mode before the next statement opens a file with both the NOBUF and
NOWALIT aoptions specified.

The statement CCG(2); in line 00019000 causes the program to quit if CCG (signifying that the
program already is running in Privileged Mode) is returned.

3-3

Optional Capabilities

PAGE 0001 HP32100A.08.01 [4W] (C) HEWLETT-PACKARD COMPANY 1880

00001000 00000 0 $CONTROL USLINIT

00002000 00000 0 BEGIN

00003000 00000 1 BYTE ARRAY OUTPUT(0:16):="CGUTPUT ";

00004000 00005 1 BYTE ARRAY TNAM(0:6):="DATAIN ";

00005000 00005 1 BYTE ARRAY DEV(0:7):="LP TERM ";

00006000 00005 1 INTEGER OUT,FILE,LGTH,I:=1,PROMPT:="? “ ,DONE:=0;

00007000 00005 1 EQUATE MAXTRM=3,

00008000 00005 1 ARRAY BUFR (0 :36XMAXTRM) ;

00009000 00005 1 INTEGER ARRAY OPEN(0:MAXTRM);

00010000 00005 1 DEFINE CCL = IF < THEN QUIT#,

00011000 00005 1 CCG IF > THEN QUIT#,

00012000 00005 1 CCNE= IF <> THEN QUITH#;

00013000 00005 1 INTRINSIC FOPEN,FREAD,FWRITE ,FCLOSE,GETPRIVMODE ,GETUSERMODE,

00014000 00005 1 IOWAIT ,QUIT;

00015000 00005 1 <<END OF DECLARATIONS>>

00016000 00005 1 QUT:=FOPEN(OUTPUT,4,1, ,DEV); CCL(1); <<LINEPRTR OUTPT>>

00017000 00015 1 WHILE (I:=I+1)<MAXTRM DO <<LOOP-SET UP TRMS>>

00018000 00023 1 BEGIN

00019000 00023 2 GETPRIVMODE; CCG(2); << NOWAIT FOPEN>>

00020000 00027 2 FILE:=FOPEN(TNAM,%405,%4404,36 DEV(3)); <<INPUT TERM>>

00021000 00042 2 CCL(3); <<CHECK FOR ERR>>

00022000 00042 2 GETUSERMODE ; CCG(4); <<KNOWAIT I/0>>

00023000 00046 2 OPEN(I):=FILE; <<SAVE FILE NMBRS>>

00024000 00051 2 FWRITE (FILE,PROMPT,1,%320); CCNE(5); <<OUTPUT PRMPT>>

00025000 00061 2 IOWAIT(FILE); CCNE(6); <<COMPLETE REQST>>

00026000 00072 2 FREAD(FILE,BUFR(I%36),-72); CCNE(7);<<INPT DATA>>

00027000 00106 2 END;
1
1
1
1
2
2
2
1
1
2
2
2
2
2
2
2
2
2
2
1
1

00028000 00113 WAIT:

00029000 00113 FILE:=IOWAIT(0, ,LGTH); CCL(8); <<WAIT FOR 1ST DNE>>
00030000 00125 IF > THEN <<EOF ON TERM READ>>
00031000 00126 BEGIN

00032000 00126 FCLOSE (FILE,0,0); CCL(9}; <<TERMINAL FILE>>

00033000 00134 IF (DONE : =DONE+1)>=MAXTRM THEN GO EXIT;<<TERMS CLSD?>>
00034000 00140 END

00035000 00140 ELSE

00036000 00142 BEGIN

00037000 00142 1=-1; <<SET BUFFER INDEX>>
00038000 00144 DO I:=I+1 <<INCR BUFR INDX>>
00039000 00144 UNTIL OPEN(I)=FILE OR I=MAXTRM; <<SRCH FOR FILE NO>>
00040000 00154 IF I=MAXTRM THEN QUIT(10); <<FILE NOT FOUND>>
00041000 00161 FWRITE (OUT,BUFR{I%36),-LGTH,0); <<COPY INPUT TO LP>>
00042000 00171 CCNE(11); <<CHECK FOR ERR>>
00043000 00174 FWRITE(FILE,PROMPT,1,%320); CCNE(12);<<QUTPT PRMPT>>
00044000 00204 IOWAIT(FILE); CCNE(13); <<COMPLETE REQUEST>>
00045000 00215 FREAD(FILE ,BUFR(I%36),-72); CCNE(14);<<INPT DATA>>
00046000 00231 END;

00047000 00231 GO TO WAIT; <<CONTINUE>>

00048000 00232 EXIT:END.

Figure 3-1. Using the GETPRIVMODE and GETUSERMODE Intrinsics (Program DSINIT)

3-4

Optional Capabilities

Entering Non-Privileged Mode

The GETUSERMODE intrinsic is used to change a temporarily privileged program from Privileged to
non-Privileged Mode, by changing the Privileged Mode bit in the status register to OFF ((0:1)=0).

The intrinsic call GETUSERMODE ;, is illustrated in line 00022000 of Figure 3-1.

Moving the DB Pointer

If you have the Data Segment Management capability (DS) and run a process with an extra data seg~
ment in Privileged Mode, you can prepare for movement of data between this segment and the stack
with the SWITCHDBintrinsic. This intrinsic changes the DB register so that it points to the base of the
extra data segment rather than the base of the stack. The SWITCHDB intrinsic returns the logical in-
dex of the data segment indicated by the previous DB register setting, allowing you to restore this set—
ting later. If the previous DB setting indicated the stack , Zero is returned.

For example, to set the DB register so that it points to the base of an extra data segment whose logical
index is indicated in the word INDEX2, enter the following intrinsic call:

SET:=SWITCHDB(INDEX2):

INDEX2 is a logical value denoting the logical index of the data segment to which the DB register is
switched, as obtained through the GETDSEG intrinsic call. MPE checks the value specified for this pa-
rameter to insure that the process has previously acquired access to this segment. For an extra data
segment, this parameter must be a positive, nonzero integer. To switch back to the stack, this pa-
rameter must be zero.

Since a user-mode call to GETDSEG generates a value for index of the assigned entry or an error code
of %2000-%2004, a Privileged Mode call to GETDSEG must be made to ensure that the value for index
is the actual segment entry number for the data that was assigned. The calling process is aborted if
the SWITCHDB intrinsic is called from a program which is not running in Privileged Mode.

Scheduling Processes

Every process in the system is assigned a priority. When a process is ready to run, it is placed in the
READY list. When the dispatcher runs, it selects the process in memory with the highest priority for
execution.

The Master Queue (see Figure 3-2) is divided into logical areas, each corresponding to a particular
type of dispatching and priority class for the processes within it. A logical area can be a linear sub-
queue, a circular subqueue, or a portion of the main Master Queue. In a linear subqueue, the process
with highest priority accesses the central processor first and maintains this access until the process
either is completed, terminated, or suspended to await the availability of a required resource. In a
circular subqueue, all processes access the central processor for an interval (time quantum) of maxi-
mum duration (or until completed, terminated, or suspended). At the end of this duration, control is
transferred to another process in the queue if no process with a higher priority is ready to be dis-
patched. This time allocation is controlled by the system timer. Processes that are not scheduled in a
subqueue are scheduled in the Master Queue. ‘

3-5

Optional Capabilities

Each linear subqueue in the Master Queue is defined by a single priority number, and each circular
subqueue is defined by a range of priority numbers. While the standard user is aware of the priority
class associated with a subqueue, only a user with System Supervisor (OP) or Privileged Mode (PM)
capability can manage priority numbers. The standard subqueues (priority classes) are as follows:

AS A linear subqueue containing processes of very high priority. Its priority
range is 30-99, and it is presently used only by MPE.

Scheduling Type: Linear
Priority Range: 30 (+ rank to a maximum of 99)

BS A linear subqueue containing processes of high priority. It is accessible to
users having MAXPRI=BS. Normally, priority for a BS process is 100.
However, by specifying a rank >0 in the GETPRIORITY intrinsic, the
process may be set in the Master Queue at min value of (100 + rank, 149).

Scheduling Type: Linear
Priority Range: 100 (+ rank to a maximum of 149)

CS A circular subqueue generally devoted to interactive sessions. A CS process
whose CPU time between priority changes exceeds the "average short trans-
action" time will be lowered in priority, but not below the C Subqueue
Priority Limit, called CLIMIT, which may be set by the :TUNE command.
Refer to the MPE V Commands Reference Manual (32033-90006) for
more information on the : TUNE command.

Scheduling Type: Circular
Priority Range: CBASE-CLIMIT

DS A circular subqueue generally devoted to batch jobs. A DS process whose
CPU time between priority changes exceeds the background quantum will
be lowered in priority, but not below the D Subqueue Priority Limit, or
DLIMIT, which may be set by the : TUNE command. Refer to the MPE V
Commands Reference Manual (32033-90006) for more information on the
: TUNE command.

Scheduling Type: Circular
Priority Range: DBASE-DLIMIT

ES A circular subqueue generally used for background processes. An ES
process whose CPU time between priority changes exceeds the background
quantum, will be lowered in priority, but not below ELIMIT. Such a
process will have a minimal impact on the performance of processes in
other subqueues.

Scheduling Type: Circular
Priority Range: EBASE-ELIMIT

3-6

PRIORITY
NUMBER
0 N
= > "AS
LINEAR
QUEUES
/
100
"BS"

DS

NOTE: Parameters are
modifiable by :TUNE
command only.

C BASE, C LIMIT

150 < (D BASE, D LIMIT > < 255

E BASE, E UMIT

Figure 3-2. Master Queue Structure

3-17

Optional Capabilities

HIGH PRIORITY

LOW PRIGRITY

Optional Capabilities

In all cases, it should be remembered that low numeric values mean high priority in the system.

The System Manager/System Supervisor (only users with OP capability) has the ability to modify the
values of the starting priority (BASE) and priority limits (LIMIT) for each circular queue, as well as
the average short transaction limit and background quantum, via the : TUNE command.

A CS process is given a priority of CBASE when it begins (see Figure 3-2). When a process stops (e.g.
for disc I/0O, terminal I/O, pre-emption), its new priority is determined so that it may be requeued
for the CPU. If the process has completed a transaction, (a transaction is defined as the time between
terminal reads), the priority becomes CBASE. The value of an "average short transaction" is then
recalculated. If the CS process has not completed a transaction, and if the process has exceeded the
average short transaction filter value since its priority was last reduced, the priority is decreased, but
will not be lower than CLIMIT.

DS and ES processes begin at DBASE and EBASE respectively, and are rescheduled according to the
same criteria used for CS processes. The exception is that a fixed value (the value of max which has
been specified for the DS subqueue) is used for the DS and ES subqueues in place of the average short
transaction value, which is used for CS processes only.

The priority class of a process can be specified by the user with PH capability. In the two-character
string that comprises a priority class reference, the first character refers to the location of a subqueue
within the Master Queue (in alphabetical order) and the second character specifies whether the logical
area is the subqueue itself (S), or the portion of the Master Queue (M) that immediately follows the
subqueue. When a priority class is requested for a process, it is assigned the highest priority within
that class (relative to other processes already assigned the same class). In a circular subqueue, the ac-
tual priority of the process is modified as other processes use central processor time.

Only a user with Privileged Mode capability can assign a priority number to a process. Priority num-
bers range from 1 to 2585 inclusively, with 1 denoting the highest priority. Any two processes having
the same priority number are in the same subqueue.

Priorities are assigned to processes through the priorityclass parameter of the CREATE and/or
GETPRIORITY intrinsic. Because users with the Privileged Mode (PM) capability can schedule

processes within the Master Queue, the priorityclass parameter can take on the following values:

e A string of two ASCII characters describing the standard priority class (subqueue) in which the
process is to be scheduled: AS, BS, CS, DS, or ES.

e An ASCII character or characters (x) specifying a valid subqueue, followed immediately by the
single-character string M, indicating the Master Queue, or S, indicating the subqueue.

The word format is:

BITS O 7|8 15

X Mor S

This schedules the process in that region of the Master Queue directly adjacent to and below the
subqueue x. The process is scheduled in the first available priority in that region.

3-8

Optional Capabilities

e An ASCII character or characters (y) specifying an absolute priority number, followed by the
single-character string Aindicating that y is an absolute priority number. The word format is:

BITS O 7|8 15

This schedules the process at the location specified by y in the Master Queue. If another process or
subqueue already occupies the location designated by y, the process is placed in the first location
available moving toward the ES subqueue, and the process priority number is changed to reflect
that location.

DATA SEGMENT MANAGEMENT CAPABILITY

During execution of a user program, many processes may be created, run, and deleted. For each
process in execution, one or more "code segments"” and one "data segment" exist. The data segment is
private to the process and contains the data generated and manipulated by that process. In a user
process, this segment is referred to as the "user’s stack segment". (Refer to the HP 3000 Computer
Systems General Information Manual (5953-7553) for further discussion of segments, processes, and
the stack.)

A particular program, which consists of code segments, can be run by many user processes simul-
taneously, with all user processes accessing the same body of code. The stack segment, however, is
private to each user process and cannot be shared among others. User processes created by a user with
the standard MPE capabilities may create and access one stack segment only.

MPE allows users with the Data Segment Management (DS) capability, however, to create and access
extra data segments for their processes during a job or a session. These segments are used for tem-—
porary storage of data while the creating processes exist. Each segment is assigned an identity that
either allows it to be shared between different processes in a job or session, or declares it as private to
the creating process. All private data segments created by a process are either deleted explicitly with
the FREEDSEG intrinsic or are destroyed automatically when the process terminates. Sharable data
segments are saved until explicitly deleted by the last process which is sharing them, or until that
process terminates, at which time they are destroyed.

Extra data segments are not directly addressable by user processes. They can be accessed only through
intrinsics (DMOVIN, DMOVOUT) that move data between the user’s stack and the extra data segments.
If a program (or process running a program) without Data Segment Management capability attempts
to call these intrinsics, that process is aborted. The Data Segment Management capability is assigned
to the program at :PREP time by a user with this capability (:PREP... ;CAP=DS).

The maximum number of extra data segments allowed per process and the maximum size of each seg-
ment is determined at system configuration time.

3-9

Optional Capabilities

A user who possesses the Data Segment Management capability, can:
e Create an extra data segment.

e Transfer data from an extra data segment to the stack.

¢ Transfer data from the stack to an extra data segment.

e Change the size of an extra data segment.

e Delete an extra data segment.

Creating an Extra Data Segment

A process can create or acquire an extra data segment with the GETDSEG intrinsic. The number of ex-
tra data segments that can be requested, and the maximum size of these segments, are limited by
parameters specified when the system is configured. When an extra data segment is created, the
GETDSEG intrinsic returns a logical index number, assigned by MPE, to the calling process that allows
this process to reference the segment in later intrinsic calls.

The GETDSEG intrinsic is also used to assign the segment an identity that either allows other processes
in the same job or session to share the segment, or declares it private to the calling process. If the
segment is sharable, other processes in the same job/session can obtain its logical index (through
GETDSEG) and use this index to reference the segment. Thus, the logical index is a local name that
identifies the segment throughout any process that obtained the index with the GETDSEG intrinsic
call. The logical index need not be the same value in all processes sharing the segment. The GETDSEG
intrinsic may return different logical index numbers to different processes, even though each process
referenced the same data segment in their intrinsic calls. The identity, on the other hand, is a job-
or session-wide name that allows any process to identify the data segment in order to obtain a logical
index.

Figure 3-3, 3-4, and 3-5 each contain a program which illustrates the use of the GETDSEG,
DMOVOUT, or DMOVINintrinsic. Together, these three programs do the following:

1. Create an extra data segment which can be shared by all three processes.

2. Compute Julian calendar dates (a Julian date is the sequential number of the day within the
year; €.g. February 1 is represented as "32").

3. Transfer the Julian calendar dates from the array to the extra data segment.

4. Create and activate two processes of the program shown in Figure 3-§, each of which shares the
same code, but has its own data stack.

5. Each of the processes created in Step 4 above:

a. Opens a terminal for input/output, and once a :DATA filename command is entered on
the terminal, requests month and day information from the user.

b. Moves the Julian dates, for the month entered by the user, from the extra data segment to
its own stack.

Optional Capabilities

c. Computes the Julian date, based on the day of the month entered by the user, and displays
this information on the terminal.

The program in Figure 3-3, called DSINIT, creates an extra data segment 372 words long, fills an ar-
ray with values representing Julian calendar dates for a particular year entered by a user, then trans-
fers this information from its stack to the extra data segment.

The program in Figure 3-4, called DSBOSS, creates and activates two processes. Each of the two
processes created is a process to run the program shown in Figure 3-5. Thus, each process shares the
same code, but has its own data stack. The program in Figure 3-5 called DSACCS, opens a terminal
for input/output, acquires the extra data segment created by DSINIT, requests 2 month and day from
the user, then transfers the Julian dates contained in that particular month into its own data stack.
Because DSBOSS (Figure 3-4) has created two processes for the program shown in Figure 3-5, and
has activated both processes, the functions performed by DSACCS are duplicated (i.e. two terminals
are opened for input/output, or two users can enter the month and day).

NOTE

The three programs in Figures 3-3, 3-4, and 3-5 must
specify the Data Segment (DS) or Process Handling (PH)
capability when they are prepared, as follows:
DSINIT (Figure 3-3):

:PREP $0LDPASS,DSINIT;CAP=DS, IA,BA
DSBOSS (Figure 3-4):

:PREP $0LDPASS, DSBOSS ;CAP=PH, IA,BA
DSACCS (Figure 3-5):

:PREP $OLDPASS, DSACCS ;CAP=DS, IA,BA
In all cases above, it is assumed that $0LDPASS contains
the compiled USL file for each of the three programs.

In Figure 3-3, the statement (00011000/00012000) initializes a 12-word integer array to represent

the number of days in each month of the year:

INTEGER ARRAY MAXDAY(0:11):=31,28,31,30,31,30
31,31,30,31,30,31;

The next statement (00013000) of program DSINIT declares a 372-word integer array and initializes
all 372 words to -1:

INTEGER ARRAY CALENDAR(0:371):=372(-1);

The two FOPEN intrinsic calls open $STDIN and $STDLIST so that FREAD and FWRITE intrinsic calls
can be issued against these files.

3-11

Optional Capabilities

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00008000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00028000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00038000
00040000
00041000
00042000
00043000

PRIMARY

PAGE 0001

HEWLETT-PACKARD 32100A.08.1 SPL[4W] TUE, OCT 28, 1982, 4:35 PM
00000 0 SCONTROL USLINIT

00000 0 BEGIN

00000 1 BYTE ARRAY INPUT(0:5):="INPUT *;

00004 1 BYTE ARRAY OUTPUT(0:6):="OUTPUT "; ,

00005 1 INTEGER IN,OUT,LGTH,MONTH,DAY,KYEAR ,DATE:=1,DSLGTH:=372;
00005 1 LOGICAL DSINDX;

00005 1 ARRAY READ(0:14):="GENERATE CALENDAR DATA SEGMENT";

00017 1 ARRAY BUFR(0:1):=2(" ");

00001 1 BYTE ARRAY BBUF (%)=BUFR;

00001 1 ARRAY REQST(0:5):="ENTER YEAR: *;

00006 1 INTEGER ARRAY MAXDAY(0:11):=31,28,31,30,31,30,

00006 1 31,31,30,31,30,31;

00014 1 INTEGER ARRAY CALENDAR (0:371):=372(-1);

00001 1 DEFINE CCL = IF ¢ THEN QUIT#,

00001 1 CCNE= IF <> THEN QUITH;

00001 1

00001 1 INTRINSIC FOPEN,FREAD,FWRITE,GETDSEG,DMOVOUT ,BINARY,QUIT;
00001 1

00001 1 <<END OF DECLARATIONS>>

00001 1

00001 1 IN:=FOPEN(INPUT,%45); CCL(1); <<$STDIN>>

00012 1 OUT:=FOPEN(OUTPUT,%414,1); CCL(2); <<$STDLIST>>

00025 1

00025 1 FWRITE (OUT ,HEAD,15,0); CCNE(3); <<PROGRAM ID>>
00035 1

00035 1 GETDSEG(DSINDX,DSLGTH,"JD"); CCL(4);<<SHARED EXTRA DS>>
00044 1

00044 1 FWRITE (OUT,REQST,6,%320); CCNE(5); <<REQST CLNDR YR>>
00054 1 LGTH: =FREAD (IN,BUFR,-4); CCNE(6); <<INPUT YEAR>>
00065 1 YEAR :=BINARY(BBUF ,LGTH); CCNE(7); <<CONVERT YEAR>>
00075 1

00075 1 IF YEAR MOD 4 = 0 THEN MAXDAY(1):=29; <<FIX FEB-LEAP YR>>
00105 1

00105 1 FOR MONTH:=0 UNTIL 11 DO <<INDEX 12 MONTHS>>
00112 1 FOR DAY:=0 UNTIL MAXDAY(MONTH)-1 DO<<INDEX DAYS/EA MO>>
00127 1 BEGIN

00132 2 CALENDAR (MONTHX31+4DAY) : =DATE; <<SET JULIAN DATE>>
00140 2 DATE : =DATE+1 <<INCR JULIAN DATE>>
00141 2 END;

00143 1

00143 1 DMOVOUT (DSINDX,0,372,CALENDAR); <<JULIAN CLNDR TO DS>>
00150 1 CCNE(8); <<CHECK FOR ERROR>>
00153 1 END.

DB STORAGE=%021; SECONDARY DB STORAGE=%00636

NO. ERRORS=000;
PROCESSOR TIME=0:00:03; ELAPSED TIME=0:00:10

NO. WARNINGS=000

Figure 3-3. Using the GETDSEG and DMOVOUT Intrinsics (Program DSINIT)

3-12

Optional Capabilities

PAGE 0001

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
000098000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00018000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00028000
00030000
00031000
00032000

PRIMARY

HEWLETT-PACKARD 32100A.08.1 SPL[4W] TUE, OCT 28, 1982, 4:35 PM
0 S$CONTROL USLINIT
0 BEGIN

00000
00000
00000
00004
00005
00005
00005
00022
00036
00036
00036
00036
00036
00036
00036
00036
00036
00036
00012
00025
00025
00037
00051
00051
00060
00067
00067
00067
00077
00110
00110
00131

1

P S o T T T o S S e e e e N e T il e i i i

BYTE ARRAY INPUT(0:5):="INPUT *“;

BYTE ARRAY OUTPUT(0:6):="0QUTPUT *;

INTEGER IN,OUT,LGTH,PIN1,PIN2;

BYTE ARRAY PFILE(0:6):=DSACCS *“;

ARRAY MESSAGE(0:29):="WHEN ALL JULIAN DATE OPERATIONS ARE "
“"COMPLETE TYPE: DONE." ,%6412,"7? ";

ARRAY BUFR(0:1};

BYTE ARRAY BBUF (X)=BUFR;

DEFINE CCL= IF < THEN QUIT#,
CCNE= IF <> THEN QUIT#;

INTRINSIC FOPEN,FWRITE ,FREAD,CREATE ,ACTIVATE,QUIT;
<<END OF DECLARATIONS>>

IN:=FOPEN(INPUT,%45); CCL(1); <<$STDIN>>
OUT:=FOPEN(OUTPUT,%414,1); CCL(2); <<$STDLIST>>

CREATE(PFILE, ,PIN1,1); CCNE(3); <<SON 1-TERMID1 FILE>>
CREATE(PFILE, ,PIN2,2); CCNE(4); <<SON 2-TERMID2 FILE>>
ACTIVATE(PIN1,0); CCNE(S5); <<SON 1>
ACTIVATE(PIN2,0); CCNE(6); <<SON 2>>
WAIT:

FWRITE (OUT ,MESSAGE ,30,%320); CCNE(7); <<TERMNATN INSTR>>
LGTH: =FREAD (IN,BUFR,-4); CCNE(8}; <<SUSPD FOR READ>>

1 IF BBUF<>"DONE" THEN GO WAIT; <<END IF DONE-KILLS SONS>>

1 END.

DB STORAGE=%013; SECONDARY DB STORAGE=%00053
NO. ERRORS=000;
PROCESSOR TIME=0:00:02; ELAPSED TIME=0:00:08

NO. WARNINGS=000

Figure 3-4. Creating and Activating Two Son Processes (Program DSBOSS)

3-13

Optional Capabilities

PAGE 0001 HEWLETT-PACKARD 32100A.08.1 SPL[4W] TUE, OCT 28, 1982, 4:35 PM
00001000 00000 0 SCONTROL USLINIT

00002000 00000 0 BEGIN

00003000 00000 1 BYTE ARRAY NAME(0:7):="TERMIO# ",

00004000 00005 1 BYTE ARRAY DEV(0:4):="TERM ";

00005000 00004 1 INTEGER FNO,LGTH,MONTH,DAY DSLGTH, JDATE,CURRENT:=1;

00006000 00004 1 LOGICAL DSINDX,PARM=Q-4;

00007000 00004 1 ARRAY READ(0:8):="JULIAN DATE CALENDAR";

00008000 00012 1 ARRAY BUFR(0:1};

00009000 00012 1 BYTE ARRAY BBUFR(%)=BUFR;

00010000 00012 1 ARRAY MESSAGE(0:16):="MONTH = ","DAY = ", "JULIAN DATE = ",
00011000 00021 1 BYTE ARRAY BMSG(X)=MESSAGE;

00012000 00021 1 ARRAY DATES(0:30);

00013000 00021 1 DEFINE CCNE = IF <> THEN QUIT#H;

00014000 00021 1 INTRINSIC FOPEN,FREAD,FWRITE,GETDSEG,DMOVIN,BINARY , ASCII ,QUIT;
00015000 00021 1 <<END OF DECLARATIONS>>

00016000 00021 1 NAME (6) : =PARM; <<FORMALDES #=1 OR 2>>
00017000 00003 1 FNO:=FOPEN(NAME %405 ,4 ,36 ,DEV]); <<TERM FILE TERMIO# >>
00018000 00015 1 IF < THEN QUIT(1); <<CHECK FOR ERROR>>
00019000 00020 1 FWRITE(FNO,READ,10,0); CCNE(2); <<PROGRAM ID>>
00020000 00030 1 GETDSEG(DSINDX ,DSLGTH,"JD"); <<SHARED CALENDAR DS>>
00021000 00034 1 IF <= THEN QUIT(3); <<ERR OR NONEXISTENT>>
00022000 00037 1 GETMO

00023000 00037 1 FWRITE (FNO,MESSAGE,4,%32C); CCNE(4); <<REQUEST MONTH>>
00024000 00047 1 MOVE BUFR:=" " <<BLANK READ BUFFER>>
00025000 00061 1 LGTH:=FREAD(FNO,BUFR,-2); CCNE(S5); <<INPUT MONTH>>
00026000 00072 1 IF LGTH=0 THEN GO EXIT; <<NO MONTH - DONE>>
00027000 00075 1 MONTH:=BINARY(BBUFR,LGTH); <<CONVERT MONTH>>
00028000 00102 1 IF <> THEN GO GETMO; <<IF BAD TRY AGAIN>>
00029000 00103 1 IF NOT(1<=MONTH<=12) THEN GO GETMO; <<ILLEGAL MONTH CHK>>
00030000 00112 1 GETDA

00031000 00112 1 FWRITE (FNO,MESSAGE(4),3,%320); CCNE(6);<<REQUEST DAY>>
00032000 00123 1 MOVE BUFR:=" " <<BLANK READ BUFFER>>
00033000 00132 1 LGTH:=FREAD(FNO,BUFR,-2); CCNE(7};<<INPUT DAY>>

00034000 00143 1 DAY :=BINARY(BBUFR,LGTH); <<CONVERT DAY>>
00035000 00150 1 IF <> THEN GO GETDA; <<IF BAD TRY AGAIN>>
00036000 00151 1 IF NOT(1<=DAY<=31 THEN GO GETDA; <<ILLEGAL DAY CHK>>
00037000 00156 1 IF MONTH<>CURRENT THEN <<MONTH NOT IN BUFR>>
00038000 00161 1 BEGIN

00039000 00161 2 DMOVIN(DSINDX, (MONTH-1)%31,31,<<GET MO FRM CLNDR>>
00040000 00166 2 DATES); CCNE(8); <<CHECK FOR ERROR>>
00041000 00173 2 CURRENT : =MONTH; <<UPDATE MONTH IN BUFR>>
00042000 00175 2 END;

00043000 00175 1 JDATE : =DATES (DAY-1); <<GET JULIAN DATE>>
00044000 00201 1 IF JDATE<O THEN GO GETDA; <CUNINITIALIZED DATE>>
00045000 00204 1 MOVE MESSAGE(14):=" " <<BLANK OQUTPUT BUFR>>
00046000 00216 1 LGTH:=ASCII(JDATE,10,BMSG(28)); <<CNVRT JULIAN DATE>>
00047000 00225 1 FWRITE(FNO,MESSAGE(7),10,0); CCNE(9);<<OUTPT DATE-TERM#>>
00048000 00236 1 GO GETMO; <<CONTINUE>>

00053000 00237 1 EXIT:END.

Figure 3-5. Using the GETDSEG and DMOVIN Intrinsics (Program DSACCS)

3-14

Optional Capabilities

An extra data segment is created with statement 00026000 in Figure 3-3:
GETDSEG(DSINDX,DSLGTH,"JD'");
The parameters specified"a‘re:

index The logical word DSINDX, to which the logical index number of the data
segment will be returned. This index is used to refer to this data segment
in later intrinsic calls from this process.

length DSLGTH, which has been initialized to 372 words (see statement 00005000
in Figure 3-3).

id 1 JD", which specifies that this data segment is sharable by other processes
in the same job/session. Any process which is to create or share an extra
data segment must have the Data Segment (DS) capability. If the data
segment being created is private to the creating process, specify O for id.

Statements 00028000, 00029000, and 00030000 in Figure 3-3 request the user to enter the calen-
dar year, and convert this ASCII string to a binary value.

Statement 00032000 of Figure 3-3 checks if the year is equally divisible by four, and if it is, adds
the twenty-ninth day to February for the leap year.

The six statements beginning on line 00034000 of Figure 3-3 establish two FOR loops. The inner loop
steps from O to the maximum number of days minus 1 for each entry in the array MAXDAY. For ex-
ample, when MONTH = 0, MAXDAY(MONTH) = 31, thus the FOR loop performs 31 iterations (0 to
MAXDAY (MONTH)-1).

Statement 00038000 of Figure 3-3 increments the date each time the FOR loop is repeated. When
the inner loop is satisfied, the MONTH FOR loop steps one iteration and the inner loop repeats. The ar-
ray CALENDAR is filled with Julian dates. All elements of the array were initialized to -1, and posi-
tions in the array that retain the value -1 signify invalid dates.

The data contained in CALENDAR is transferred from the stack to the extra data segment with state-
ment 00041000 of Figure 3-3: -

DMOVOUT (DSINDX, 0,372, CALENDAR)

The parameters specified are:

index DSINDX, which contains the logical index returned by MPE when the
GETDSEG intrinsic was executed.

disp 0, which specifies the first word in the data segment. This is the starting
location for the first word transferred from CALENDAR to the extra data
segment.

number 372, which specifies the size, in words, of the data block to be transferred.

location CALENDAR, which specifies the starting address in the stack, of the data

block to be transferred.

3-15§

Optional Capabilities

At this point, the following events have occurred:

:RUN DSINIT

CALENDAR YEAR
1976 ENTERED

ARRAY CALENDAR
FILLED WITH
JULIAN DATES

EXTRA DATA
SEGMENT
ENTERED

DATA IN CALENDAR
TRANSFERRED TO
EXTRA DATA SEGMENT

When the :RUN DSBOSS command is entered, the program in Figure 3-4 (DSBOSS) executes.

Statements 00018000 and 00019000 of Figure 3-4 open $STDINand $STDLIST to accept FREAD and

FWRITE intrinsic calls.

Statement 00021000 of Figure 3-4:

CREATECPFILE, ,PIN1,1);

creates a process. The parameters specified are:

progname

entryname

pin

param

PFILE, a byte array containing the string "DSACCS" which is the name of
the file containing the program to be run. Note that DSACCS is the name
of the program in Figure 3-5, thus the process is created for this program.

Omitted; a comma place holder is used. The primary entry point is
specified by default.

PIN1, a word to which the Process Identification Number of the process
will be returned.

1, a parameter used to transfer control information to the new process.
The new process can access this control information (1) in location Q-4 of
its data stack.

All other parameters are omitted from the CREATE intrinsic call.

Statement 00022000 of Figure 3-4 also creates a process for the program DSACCS. This time the
Process Identification Number is returned to PIN2, and the control parameter 2is located at stack
location Q-4 for this process.

Optional Capabilities

The two ACTIVATE intrinsic calls activate the two processes; the susp parameter O specifies that the
father process will not be suspended when the sons are activated. Program DSBOSS, therefore, has

created and activated two processes as follows:

FATHER
(DsBOSS)

COD

SON1
(DSACCS)

Q-4

The four statements beginning with 006027000 of Figure 3-

SON2
(DSACCS)

Q-4

4 suspend DSBOSS for 1/0 until "DONE" is

entered on $STDIN. DSBOSS did not suspend when the sons were activated. The reason for this is
that when two or more sons are created, and the father is suspended when the last son is activated, it
is possible that the sequence of events will be such that the sons are unable to reactivate the father.

The following sequence illustrates how this could happen:
1. Create two sons. Activate SONI1.

Father and SON1 both active.

2. Activate SON2. Suspend father. Father expects to be reactivated when either son terminates.

Father suspended; SON1 and SON2 active.

3. SONI1 terminates, reactivating father. Father reactivates, determines that SON2 is still active,
and resuspends itself. However, while the father was active, SON2 terminated. The attempt
by SON2 to reactivate the father failed, because the father was already active. Thus, when the
father resuspends itself , it suspends indefinitely because both sons have terminated.

The two processes, SON1 and SON2, both of which are DSACCS, are shown in Figure 3-5.

3-17

Optional Capabilities

Statement 00017000 of Figure 3-5:
FNO:=FOPEN(NAME, %405,4,36,DEV);

opens a terminal for input/output. The parameters specified are:

formaldesignator NAME, which contains the string TERMIO1 when this call is issued by SON1
and TERMIOZ2 when the call is issued by SON2. Note that in statement
00003000 of Figure 3-S5, NAME is set equal to TERMIO#. The statement:

NAME(B) : =PARM:

however, replaces "#" with | or 2, depending on the parameter contained
in stack location Q-4. (This parameter was passed to the process by the

CREATE intrinsic call in program DSBOSS.) Thus, by using different for-
mal designators, SON1 opens one terminal, and SON2 opens another.

NOTE

Unlike disc files, where each formal designator must be
unique in its domain (temporary or permanent), two or
more devices can be opened with the same formal desig-
nator. For example, the two :DATA commands:

:DATA FIELD.SUPPORT;TERMIO
:DATA FIELD.SUPPORT ;TERMIO

would cause MPE to search the device directory for two
available terminals and, if two are available, both
would be allocated. Using different formal designators,
however, allows a user to direct output to a particular .
terminal with a :FILE command.
foptions %405, which specifies the following:

(14:2)=01 The file is an old file.

(13:1)=1 Type ASCII.

(10:3)=000 Actual file designator is the same as the formal file designator.

(8:2)=00 Fixed-length records.

(7:1)=1 Carriage-control character expected.

aoptions 4, which specifies input/output access.
recsize 36, specifying 36 words.
device DEV, a byte array specifying the device class (" TERM ").

All other parameters are omitted from the FOPEN intrinsic call.

Optional Capabilities

The shared data segment is acquired with the statement:
GETDSEG(DSINDX,DSLGTH,"'JD"");

Note that the process quits unless CCG, signifying that an extra data segment with this identifier ex-
ists already, is returned. (See Figure 3-§, Statement 00025000.)

A month is requested from the user and the input is converted to binary. The user then is requested
to enter a day, and this information is read and converted to binary.

Statement 00039000 of Figure 3-35:

IF MONTH<>CURRENT THEN

checks whether the month information is different than the information currently in the stack. If it
is, statement 00041000 of Figure 3-5:

DMOVIN(DSINDX, (MONTH-1)#31,31,DATES);
transfers the Julian dates for the month entered by the user into the 31-word array DATES. For ex-
ample, if the user entered 3, the values 61 through 91 corresponding to the Julian calendar dates for
the month of March are transferred from the extra data segment to the array DATES in the stack.
Data representing the entire month, instead of data representing the specific day entered by the user,
is transferred by DMOVIN because DMOVIN, which requires considerable time to execute, should be
used sparingly to maintain programming efficiency. Transferring the data for the entire month saves
time if the user’s next request is for a Julian date in the same month. Note that months are numbered
from Oto 11.
The buffer CURRENT is updated to the current month with statement 00041000 for Figure 3-5:
CURRENT : =MONTH;
The Julian date is computed with statement 00043000 of Figure 3-5:
JDATE: =DATES(DAY-1);
and this information is output to the user.
The following examples illustrate using the three programs in Figures 3-3, 3-4, and 3-35:
EXAMPLE 1:
:RUN DSINIT

GENERATE CALENDAR DATA SEGMENT
ENTER YEAR: 1983

END OF PROGRAM
:RUN DSBOSS

WHEN ALL JULIAN DATE OPERATIONS ARE COMPLETE TYPE: DONE.
? DONE

END OF PROGRAM

Optional Capabilities

EXAMPLE 2:

:DATA FIELD.SUPPORT ; TERMIO
JULTAN DATE CALENDAR

MONTH = 11
DAY = 31
DAY = 30
JULIAN DATE
MONTH = 2
DAY = 39
JULIAN DATE = 60
MONTH = 6

DAY = 1

DAY =
JULIAN
MONTH
MONTH
MONTH
DAY = 29

JULIAN DATE = 89
MONTH =

335

|sl=

o
w4

E = 165

A
1

leol

EXAMPLE 3:

:DATA FIELD.SUPPORT; TERMIO2
JULIAN DATE CALENDAR

MONTH = 9
DAY = 15

JULIAN DATE = 259
MONTH = 7

DAY = 20

JULIAN DATE = 202
MONTH =
DAY = 14
JULIAN DATE
MONTH

DAY = 3

227

In Example 1, the command :RUN DSINIT causes DSINIT to execute. It prints the purpose of the
program and requests the user to enter the year for which Julian dates are required. When 1983 is
entered, DSINIT creates an extra data segment, fills an array with Julian dates for the year 1983,
transfers this data to the extra data segment, and terminates.

The :RUN DSBOSS command causes DSBOSS to execute. DSBOSS creates and activates two son
processes (DSACCS), then suspends itself after the message:

WHEN ALL JULIAN DATE OPERATIONS ARE COMPLETE TYPE: DONE.
?

Example 2 illustrates the SON1 process execution. First a user enters a :DATA statement on a ter-
minal. (Remember that SON1 and SON2 have each opened a terminal for input/output.) Then,
MPE searches the device class directory for a terminal with the formal designator TERMIO1 and
allocates the terminal.

3-20

Optional Capabilities

In response to the month and day requests, the user enters:
MONTH = 11
DAY = 31

DSACCS determines that 31 is not a valid day for month 11 with statement 00044000 of Figure 3-5:
IF JDATE < 0 THEN GO GETDA;

DSACCS prompts for a new day and the user enters 30; DSACCS computes the Julian date for
November 30 and displays:

JULIAN DATE = 335

Example 3 shows a second user accessing terminal 2. When a user types DONE on $STDIN, (see
Example 1), the father process terminates, terminating both sons.

Deleting an Extra Data Segment

A process can release an extra data segment assigned to it by using the FREEDSEG intrinsic. If the ex—
tra data segment is private, or if it is a sharable (nonprivate) data segment not currently assigned to
any other process in the job/session, it is deleted from the entire job/session. If the extra data seg~
ment is sharable (nonprivate), and currently assigned to any other process in the job/session, it is

deleted from the calling process, but continues to exist in the job/session.

For example, to delete a data segment with the logical index contained in INDX, the following intrin-
sic call could be used:

FREEDSEG(INDX,0):
Because the data segment is private to this process, the id parameter is specified as 0 and the segment
will therefore cease to exist.
Transferring Data from an Extra Data Segment to the Stack
A process can copy a block of words from an extra data segment to the stack with the DMOVIN intrin-
sic. A bounds check is performed by the intrinsic on both the extra data segment and the stack to en-
sure that the data is taken from within the data segment boundaries and moved to an area within the

stack boundaries.

The DMOVIN intrinsic call is illustrated in Figure 3-5 and described earlier in this section.

Transferring Data from the Stack to an Extra Data Segment
A process can copy a block of words from the stack to an extra data segment with the DMOVOUT in-
trinsic. A bounds check is performed by the intrinsic to ensure that the data is taken from an area

within the stack boundaries and moved to an area within the extra data segment .

The DMOVOUT intrinsic call is illustrated in Figure 3-3, and described earlier in this section.

3-21

Optional Capabilities

Changing the Size of an Extra Data Segment

You can change the current size of an extra data segment with the ALTDSEG intrinsic. In a typical
application, disc storage for a new segment is obtained by calling the GETDSEG intrinsic. Sufficient
virtual space is allocated by the system to accommodate the original length of the data segment. This
virtual space is usually allocated in increments of 512 words (depending on virtual memory con-
figured in the system configuration). For example, creation of a data segment with a length of 600
words would result in two increments of 512 words being allocated for the data segment space, thus
resulting in 1024 words.

Once disc storage is obtained, you can use the ALTDSEG intrinsic to reduce the storage required by the
segment when it is moved into main memory, then later expand it as needed for more efficient use of
memory. In no case, however, can ALTDSEG be used to increase segment size beyond the virtual space
originally allocated through GETDSEG.
The form of the ALTDSEG intrinsic call is:

ALTDSEGCINDEX, INC,SIZE);

The parameters specified are:

index INDEX is a word containing the logical index of the extra data segment, ob-
tained through the GETDSEG intrinsic call.

inc INC is the value, in words, by which the extra data segment is to be
changed. A positive integer value specifies an increase and a negative in-

teger value specifies a decrease.

size SIZE is a word to which the new size of the data segment is returned after
incrementing or decrementing has occurred.

PROCESS HANDLING CAPABILITY

All user and system programs under MPE are run on the basis of processes, which are the basic ex-
ecutable entities in the operating system. Processes are invisible to users with standard MPE
capabilities. Such users have no control over processes or their structure, since MPE automatically
creates, handles, and deletes all processes. Users with certain optional capabilities, however, can in-
teract with processes directly. One of these optional capabilities is Process Handling (PH) which is
discussed in this section. Process Handling capability, assigned and used independently of the other
optional capabilities, allows you to:

¢ Create and delete processes.

e Activate and suspend processes.

e Manage communications between processes.

e Change the scheduling of processes.

e Obtain information about existing processes.

These operations can be very useful to you. For example, they allow you to have several independent
processes running concurrently on your behalf, all communicating with one another.

3-22

Optional Capabilities

Processes

A process is an independent entity that can be run within MPE. Processes are run on behalf of users,
and on behalf of the operating system. Many processes can be running concurrently. The 'design of
MPE is process oriented: the system deals exclusively with processes (except for interrupt routines and
some very central and specialized system functions).

A process consists of a private data area (the stack) used only by this process, a Process Control Block
(PCB) that defines the process, and instructions in a code segment that the process is to execute. Note
that code segments may be shared by many processes because the segments are not owned by the
processes.

When a user enters MPE, a process is created for that user. This process is called a Job/Session Main
Process (JSMP). The process is linked into the Command Interpreter (CI), which then proceeds to
handle user commands.

Every process known to MPE is identified by a number called the Process Identification Number
(PIN). Most control in MPE is carried out at the process level. A process can run any kind of code
(such as programs, procedures, private code, sharable code), and one of the main elements needed to
establish a new process is a starting address (a "program label"). Beginning with the starting address,
the process follows the sequence of the code until its deletion.

PROGEN, the "Progenitor", is the first process established during the initialization phase of MPE. It
is the responsibility of the Progenitor, using a set of configuration data specified at system configura-
tion time, to create its "son" processes. These processes are defined as "system" processes, and are
used to perform parallel functions on behalf of the system. Such processes may include I/O or other
processes, and in particular the "User Controller Process" (UCOP). All these processes may, if
required, have their own structure of descendants.

PROGEN is the ancestor of all processes in MPE, including system processes, as the User Controller
Process is the ancestor of all user processes currently in existence. The UCOP is consequently the root
of the user process Tree Structure. The sons of the UCOP are called (User) main processes or the
JSMPs.

The father/son relationship between processes is used primarily to maintain control from top to bot-
tom throughout the structure. In most cases the father is held “responsible" for what happens to its
son: creation, deletion and other special actions.

ORGANIZATION OF USER PROCESSES. When you logon (initiate a job or session), a main process
is created for you by UCOP. According to the mode of access, the main process can be one of the two
types:

e Job Main Process (JMP).

¢ Session Main Process (SMP).

Such a distinction results from the different kinds of control that the system provides for those two
separate entities: a job is associated with a batch type of access, while a session is for interactive
access.

As soon as a given signal is received by UCOP, a JMP or SMP is created (depending upon the origin of

the signal). The starting address of the JMP or SMP is the Command Interpreter, and once the user is
validated, the main process is free to recognize any command.

3-23

Optional Capabilities

ACTIVE AND SUSPENDED PROCESS SUBSTATES. During its life span (that is, between creation
and deletion), a process finds itself in different substates according to its past and present history, as
well as its present requirements. Only two of these substates can be controlled by users: active and
suspended.

An active process is run by the CPU until it suspends itself, terminates, or is killed.

A suspended process is not run by the CPU as long as it stays in this substate. In other words, a
suspended process is waiting for some kind of a signal which will activate it. When it suspends itself ,
a process may specify the origin of its next activation.

You can programmatically terminate one of your processes. The termination destroys the process and
all of its descendants, and resets the links of the remaining processes for the session or job.

Interprocess Communication (IPC) is a facility of the file system which permits multiple user processes
to communicate easily and efficiently with each other. To accomplish this, IPC uses message files as
the interface between user processes. These message files act as first-in-first-out queues of records,
with entries made by FWRITE and deletions made by FREAD: one process may submit records to the
file with the FWRITE intrinsic while another process takes records from the file using FREAD.

Occasionally a process may attempt to read a record from an empty message file, or write a record to
a message file that is full. In such situations, the file system will usually cause the process to wait un-
til its request can be serviced; that is, until another process either writes a record to the empty file or
reads enough records to take a block from the full file.

The flow of information between a given process and a message file is unidirectional. A process open-
ing the file with read access, identified as a "reader", may only read from the file, and not write. A
process opening the file with write access, identified as a "writer", may only write to the file, and
not read. (If it is necessary for the same process to read and write, it may open the same file twice,
once as a reader and once as a writer.) More than one message file may be associated with a process,
and the process may be configured as a reader to some of the files and as a writer to others. A given
message file typically has one reader, though more are allowed, and one or more writers. For more
detail on Interprocess Communication, refer to the MPE File System Reference Manual
(30000-90236).

Creating and Activating Processes

From within any running process, you can programmatically request the creation of a son process
with the CREATE intrinsic. The CREATE intrinsic loads the program to be run by the new process into
virtual memory, creates the new process as the son of the calling process, initializes its data stack,
schedules the process, and returns its Process Identification Number (PIN) to the calling process.

You can also create processes with the CREATEPROCESS intrinsic. It contains a superset of the
CREATE intrinsic and, therefore, is more flexible and expandable. CREATEPROCESS allows you to as-
sign $STDIN and $STDLIST values to a file when the process is created. By using CREATEPROCESS
you are not limited to the system defaults for $STDINand $STDLIST.

Once a process is created, it must be activated with the ACTIVATE intrinsic in order to run. When a
process is activated, it may or may not suspend the process that activated it, then run until it is
suspended or deleted. A newly created process can be activated only by its father. A father process
that has been suspended when a son process was activated can be activated only by its son. A father
process that has been suspended when a son process was activated can be reactivated automatically
when the son process execution ends, if the flags parameter of the CREATE intrinsic bit is set
((15:1)=1). A program that has been suspended with the SUSPEND intrinsic can be reactivated by its
father or any of its sons, as specified in the susp parameter of the SUSPEND intrinsic.

3-24

Optional Capabilities

Figure 3-6 contains a program which illustrates the CREATE and ACTIVATE intrinsics. Statement
00027000 reads the name input by the user on $STDIN, and stores the name in the logical array
NAME. In order to be used in the CREATE intrinsic, the string in the array NAME must be specified in a
byte array; thus the byte array BNAME is made equivalent to NAME in statement 00008000 in the
program. Additionally, the string must be terminated by a blank, and statement 00030000 enters
the ASCII code for a blank character to the end of the string in BNAME. Next, the program displays
the message:

CREATE PROCESS
and calls the CREATE intrinsic with statement 00034000:

CREATE(BNAME, ,PIN,,1);

The following parameters were specified in the CREATE intrinsic call. All other parameters were
omitted in the CREATE intrinsic call:

progname Specified by BNAME, which contains the name entered by the user.

entryname Omitted; a comma place holder is used. The primary entry point of the
created process is specified by default.

pin The Process Identification Number (PIN), to be used by the ACTIVATE in-
trinsic, is returned to the word PIN.

param Omitted; a comma place holder is used. A word filled with zeros is
specified by default.

ags 1, which specifies that this (the father) process will be reactivated auto-
g N :
matically by MPE when the created process execution ends (bit(15:1)=1).

All other parameters are omitted in the CREATE intrinsic call.
Statement 00037000:

FWRITE(OUT,ACTMSG,8,0);
displays the message:

ACTIVATE PROCESS

and statement 00039000 of Figure 3-6 calls the ACTIVATE intrinsic to activate the process. The fol-
lowing parameters were specified:

pin Specified by PIN, which contains the Process Identification Number of the
process to be activated, as returned to the CREATE intrinsic by the system.

susp If susp is specificd, the calling process will be suspended when the called
process is activated. When 2 (bit(14:1)=1) is specified, as in this call, the
suspended calling process expects to be reactivated automatically by MPE
when this son process ends execution. If susp had not been specified, the
calling (father) process would not have been suspended when the called
process was activated.

3-25

Optional Capabilities

PAGE 0001 HEWLETT-PACKARD 32100A.08.1 SPL[4W] TUE, OCT 28, 1982, 4:35 PM
00001000 00000 O SCONTROL USLINIT
00002000 00000 0 BEGIN
00003000 00000 1 BYTE ARRAY INPUT(0:5):="INPUT *;
00004000 00004 1 BYTE ARRAY OUTPUT(0:6):="0UTPUT *;
00005000 00005 1 INTEGER IN,OQUT,LGTH,PIN;
00006000 00005 1 ARRAY REQST(0:8):=%6412,"PROGRAM FILE = ";
00007000 00011 1 ARRAY NAME(0:13);
00008000 00011 1 BYTE ARRAY BNAME (%) =NAME;
00008000 00011 1 ARRAY CRMSG(0:6):="CREATE PROCESS";
00010000 00008 1 ARRAY ACTMSG(0:7):="ACTIVATE PROCESS";
00011000 00010 1 DEFINE CCL=IF < THEN QUIT#,
00012000 00010 1 CCG=IF > THEN QUIT#,
00013000 00010 1 CCNE=IF <> THEN QUIT#;
00014000 00010 1
00015000 00010 1 INTRINSIC FOPEN,FREAD,FWRITE ,CREATE, ACTIVATE,QUIT;
00016000 00010 1
00017000 00010 1 <<END OF DECLARATIONS>>
00018000 00010 1
00019000 00010 1 IN:=FOPEN(INPUT,%45); <<$STDIN>>
00020000 00007 1 CCL(1); <<CHECK FOR ERROR>>
00021000 00012 1 OUT:=FOPEN(OQUTPUT,%414,1}; <<STDLIST>>
00022000 00022 1 CCL(2); <<CHECK FOR ERROR>>
00023000 00025 1
00024000 00025 1 NEXT:
00025000 00025 1 FWRITE(OUT ,REQST,9,%320); <<REQUEST PGM FILE NAME>>
00026000 00032 1 CCNE(3); <<CHECK FOR ERROR>>
00027000 00035 1 LGTH:=FREAD (IN,NAME, -26]); <<INPUT FILE NAME>>
00028000 00043 1 CCNE(4); <<CHECK FOR ERROR>>
00029000 00046 1 IF LGTH=0 THEN GO EXIT; <<IF NO NAME - EXIT>>
00030000 00053 1 BNAME (LGTH) : =%40; <<SET IN TRAILING BLANK>>
00031000 00056 1
00032000 00056 1 FWRITE (OUT,CRMSG,7,0}; <<CREATE MESSAGE>>
00033000 00063 1 CCNE(5); <<CHECK FOR ERROR>>
00034000 00066 1 CREATE (BNAME, ,PIN, ,1); <<CREATE PROCESS>>
00035000 00076 1 CCL(6); <<CHECK FOR ERROR>>
00036000 00101 1
00037000 00101 1 FWRITE(OUT ,ACTMSG,8,0); <<ACTIVATE MESSAGE>>
00038000 00106 1 CCNE(7); <<CHECK FOR ERROR>>
00039000 00111 1 ACTIVATE(PIN,2); <<ACTIVATE PROCESS>>
00040000 00115 1 CCL(8); CCG(9); <<CHECK FOR ERROR>>
00041000 00123 1 GO NEXT; <<CONTINUE OPERATIONS>>
00042000 00130 1 EXIT:END.

PRIMARY DB STORAGE=%013; SECONDARY DB STORAGE=%00055

NO. ERRORS=000 NO. WARNINGS=000

PROCESSOR TIME=0:00:04; ELAPSED TIME=0:00:51;

Figure 3-6. Using the CREATE and ACTIVATE Intrinsics (Program PROG)

3-26

Optional Capabilities

A sample run of the program listed in Figure 3-6: (named PROG) results in the following:
:RUN PROG

PROGRAM FILE = SPL.PUB.SYS
CREATE PROCESS
ACTIVATE PROCESS

HEWLETT-PACKARD 32100A.08.1 SPL[4W]l TUE, OCT 28, 1982, 4:35 PM

>$CONTROL USLINIT
>BEGIN

> _ARRAY MSG(0:12):='"'#+ TEST PROCESS EXECUTING #'';
> INTRINSIC PRINT;

> PRINT (MSG,13,0);

>END.

PRIMARY DB STORAGE=%001; SECONDARY DB STORAGE=%00015
NO. ERRORS=000; NO. WARNINGS=000

PROCESSOR TIME=0:00:02 ELAPSED TIME=0:13:20

PROGRAM FILE = SEGDVR.PUB.SYS
CREATE PROCESS

ACTIVATE PROCESS

SEGMENTER SUBSYSTEM (C.0)

-USL $0LDPASS

-PREPARE $NEWPASS

-EXIT

PROGRAM FILE = $OLDPASS
CREATE PROCESS ~
ACTIVATE PROCESS

*+ TEST PROCESS EXECUTING *
PROGRAM FILE =

END OF PROGRAM

When SPL.PUB.SYS is entered in response to the "PROGRAM FILE= " request, the program displays:
CREATE PROCESS
ACTIVATE PROCESS

then suspends itself and the SPL compiler subsystem is accessed. (This process has been created and
activated because of the SPL .PUB.SYS response by the user.)

A short program is entered from the terminal and the SPL compiler is exited, reactivating PROG at
the statement following the ACTIVATE intrinsic call, and causing the "PROGRAM FILE=" message to
be displayed again.

3-27

Optional Capabilities

The response:
SEGDVR.PUB. SYS

causes PROG to create and activate the Segmenter Driver (a programmatic entry point to the
Segmenter subsystem). The Segmenter displays the following and a prompt (-):

SEGMENTER SUBSYSTEM (C.0)
The small program written in SPL and compiled into the USL file $0LDPASS (the default USL file
since a uslfile parameter could not be included in the SPL.PUB.SYS response) is identified with the

Segmenter command:

-USL $0LDPASS

The next command:

-PREPARE $NEWPASS

prepares the SPL program and the Segmenter is exited with the command:

-EXIT
Once again, PROG is reactivated and requests a program file to be created and activated. The
response " $0LDPASS" causes the compiled and prepared program written in SPL to be created and
activated.
This program executes and displays:

TEST PROCESS EXECUTING#

then ends execution, reactivating PROG.

A (signifying no input) is entered in response to the "PROGRAM FILE=" request and the
program terminates.

The example below uses PROG to create and activate a duplicate of itself:
:RUN PROG
PROGRAM FILE = PROG
CREATE PROCESS
ACTIVATE PROCESS
PROGRAM FILE = PROG

CREATE PROCESS
ACTIVATE PROCESS

PROGRAM FILE = XK3INK
PROGRAM FILE = Xk 2 %K
PROGRAM FILE = XK 1K

END OF PROGRAM

3-28

Optional Capabilities

When PROG is entered in response to the "PROGRAM FILE= " request, the calling process (PROG)
creates a duplicate of itself and activates this process (for clarity, call this PROG1). This process ex~
ecutes and requests a file name. The user enters PROG again, causing yet another duplicate (call this
one PROG?2) to be created and activated. At this point, PROG is suspended: it has created and ac-
tivated a duplicate process. The duplicate process (PROG1) has, in turn, created and activated a
duplicate of itself (PROG2). Thus, it also is suspended.

The third process (PROG2) executes and displays:

PROGRAM FILE =

A carriage return (see *x3xk in the example) causes this process to stop executing and control
returns to PROG1. PROGI] displays:

PROGRAM FILE =

A second carriage return (see %k2%% in the example) causes this process to stop executing and
control returns to PROG.

PROGRAM FILE = is displayed once more, this time by the original process. Another carriage return
(see *x1%% in the example) causes PROG to stop executing and control returns to the session
main process, which displays:

END OF PROGRAM

Suspending Processes

A process can suspend itself with the SUSPEND intrinsic. When this is done, the process relinquishes
its access to the central processor until reactivated by an ACTIVATE intrinsic call. When it suspends
itself , the process must specify the anticipated source of this ACTIVATE call (its father or son process).
When the process is reactivated, it begins execution with the instruction immediately following the
SUSPEND intrinsic call. The SUSPEND intrinsic can also release a local Resource Identification
Number (RIN) when the process is suspended by specifying the RIN as a parameter in the intrinsic
call.

The intrinsic call:
SUSPEND(3,RINNUM);

would cause the process to suspend itself and release the local RIN specified by RINNUM. The parame-
ter 3 (bit (14:1)=1 and bit (15:1)=1) specifies that the process expects to be reactivated by its father
or one of its sons.

Deleting Processes

A process can delete itself with the TERMINATE intrinsic, or delete of any of its sons with the KILL
intrinsic. When this is done, all code and data segments in the process and all resources owned by the
process are released; all files opened by the process are closed; and finally, the Process Identification
Number (PIN) is released. When a process is deleted, MPE also automatically deletes all descendants
of that process, as shown in Figure 3-7. Within a process tree structure, the newest generations are
deleted first. Within each generation, processes are deleted in the order of their creation.

3-29

Optional Capabilities

FIRST (OLDEST)
GENERATION

SECOND
GENERATION

THIRD
GENERATION

FOURTH (NEWEST)
GENERATION

FIRST
GENERATION

SECOND
GENERATION

PRQCESS 0

PROCESS 4

PROCESS 6

(WHEN PROCESS 2 IS DELETED, THE FOLLOWING STRUCTURE REMAINS.)

PROCESS 0

Figure 3-7. Process Deletion

3-30

Optional Capabilities

In the job or session main process, the TERMINATE intrinsic is invoked automatically by detection of
an end-of -job/session condition. This intrinsic removes the job or session from the system.

Interprocess Communication

You can direct the communication of information between processes. This information transfer,
however, is restricted to upward or downward paths through the process tree structure, so that any
process can communicate only with its father or sons. Between any father/son pair, only one such
transfer is allowed at any particular time. This feature should not be confused with message files,
which can be used to transfer information between unrelated processes.

Information transferred between processes is referred to as "mail". It is sent from one process to
another through an intermediate storage area called a "mailbox". At any given time, a mailbox can
contain only one item of mail (a "message"). For any process, there are two sets of mailboxes:

e The mailbox used for communication between the process and its father. Each process has one of
these.

e The set of mailboxes used for communication between the process and its sons. Each process has
one of these mailboxes for each of its sons.

Even though there are two sets of mailboxes, there is only one mailbox between any two processes.

The transfer of mail is based upon a transaction between the sending and receiving processes that in-
volves the following steps:

1. Optionally, the sending process may test the mailbox to determine its status (whether it is
empty, contains a message, or is being used by the receiving process).

2. The sending process transmits the mail to the mailbox. The message transferred is a word array
in the sending process stack, defined by a starting location and word count. The smallest mes-
sage allowed is a single word. MPE automatically performs a bounds check to ensure that the
array specified actually falls within the limits of the process stack.

3. The receiving process optionally may test the mailbox to determine its status.
4. If the mailbox contains a message, the receiving process collects this mail. If the mail is not col-
lected, it is overwritten by additional mail from the sending process. When the mail is collec—

ted, another bounds check is performed to validate the address given for the stack of the receiv-
ing process.

3-31

Optional Capabilities

TESTING MAILBOX STATUS. A process can determine the status of the mailbox used by its father
or by a son with the MAIL intrinsic. If the mailbox contains mail that is awaiting collection by this
process, the length of the message, in words, is returned to the calling process. This enables the call-
ing process to initialize its stack in preparation for receipt of the message.

For example, to test the status of the mailbox associated with one of its son processes, the following
intrinsic call could be used:

STATCOUNT : =MAILCSONPIN,MCOUNT);

SONPIN contains the Process Identification Number (PIN) of the son process. An integer count sig-
nifying the length, in words, of the incoming message will be returned to the word MCOUNT. The
status returned to STATCOUNT will be one of the following values:

Status Meaning
0 The mailbox is empty.
1 The mailbox contains previous outgoing mail from this calling process that has not

yet been collected by the destination process.

2 The mailbox contains incoming mail awaiting collection by this calling process.
The length of the mail is returned in MCOUNT.

3 An error occurred because an invalid PIN was specified or a bounds check failed.
4 The mailbox is temporarily inaccessible because other intrinsics are using it in the

preparation or analysis of mail.

SENDING MAIL. A process sends mail to its father or sons with the SENDMAIL intrinsic. If the
mailbox for the receiving process contains a message sent previously by the calling process but not col-
lected by the receiving process, the action taken depends on the waitflag parameter specified in
SENDMAIL. If the mailbox is currently being used by other intrinsics, the SENDMAIL intrinsic waits
until it is free and then sends the mail.

For example, to send mail to its father, the following intrinsic call could be used:
STAT:=SENDMAIL (0,3, LOCAT,WAITSTAT);

The parameters specified are:

pin 0, specifying that the mail is to be sent to the father process.

count 3, specifying that the length of the message is three words.

location LOCAT, a logical array in the stack containing the message to be sent.
waitflag WAITSTAT, a logical word. If bit (15:0)=1, any mail sent previously will

be overwritten. If bit (15:1)=1, the intrinsic will wait until the receiving
process collects the previous mail before sending the current mail.

3-32

Optional Capabilities

The status returned to STAT is one of the following values:

Status

0

1

Meaning

The mail was transmitted successfully. The mailbox contained no previous mail.
The mail was transmitted successfully. The mailbox contained previously sent mail
that was overwritten by the new mail, or contained previous incoming/outgoing
mail that was cleared.

The mail was not transmitted successfully because the mailbox contained incoming
mail to be collected by the sending process (regardless of the waitflag parameter
setting).

An error occurred because an illegal pin was specified, or a bounds check failed.
An illegal wait request would have produced a deadlock.

The request was rejected because the count specified in the count parameter ex-
ceeded the mailbox size allowed by the system. If this size exceeds one word, then

the maximum size cannot exceed the maximum DST size for the system.

The request was rejected because storage resources for the mail data segment were
not available.

RECEIVING (COLLECTING) MAIL. A process collects mail transmitted from its father or a son
with the RECEIVEMAIL intrinsic. If the mailbox for the receiving process is empty, the action taken
depends on the waifflag parameter specified in RECEIVEMAIL. If the mailbox is currently being used
by other intrinsics, the RECEIVEMAIL intrinsic waits until the mailbox is free before accessing it.

To collect a message from a son process, the following intrinsic call could be used:

STAT:=RECEIVEMAIL (SONPIN,MDATA,WAITSTAT);

The parameters specified are:

pin

location

waitflag

SONPIN, which contains the Process Identification Number of the son
process (0 for father process).

MDATA, a logical array in the stack in which the incoming mail will be
stored.

WAITSTAT, a logical word. If bit (15:1)=1, the intrinsic will wait until the

incoming mail is ready for collection. If bit (15:0)=1, the intrinsic will
return to the calling process immediately.

3-33

Optional Capabilities

One of the following status codes is returned to STAT:

Status Meaning
0 The mailbox was empty (and WAITSTAT bit (15:1)=0).
1 No message was collected because the mailbox contained outgoing mail from the
receiving process.
2 The message was collected successfully.
3 An error occurred because of an illegal pin or a bounds check failed.
4 The request was rejected because waitflag specified that the receiving process

should wait for mail if the mailbox is empty, but the other process sharing the
mailbox is already suspended, waiting for mail. If both processes were suspended,
neither could activate the other, and they may be deadlocked.

Avoiding Deadlocks

Simuitaneous use of mail-transmission, process-suspension, and RIN-locking intrinsics throughout a
process structure could result in a deadlock if the intrinsic calls are not synchronized properly. Be
aware of the following:

1. In a multi-process job/session, whenever a process is suspended (through the SUSPEND intrinsic,
or when locking a RIN or receiving mail), MPE does not determine whether all other processes
in the tree are suspended. Avoid this situation.

2. An attempt by a process to lock a global RIN succeeds only if both the following conditions are

met:

No other process within the job/session currently has locked this RIN. A global RIN can-
not be used as a local RIN, because deadlock within the same job/session can occur.

The calling process currently has no other global RIN locked for itself. This could other-
wise result in deadlock between two jobs/sessions.

Rescheduling Processes

When a process is created, it is scheduled on the basis of a priority class assigned by its father. After

this point,

its priority class can be changed at any time with the GETPRIDRITY intrinsic. A process

can change its own priority or that of a son, but it cannot reschedule its father.

Generally, MPE schedules processes in linear or circular subqueues, as described in the HP 3000
Computer Systems General Information Manual (5953-7553). The standard linear subqueues are:

e The ASsubqueue, containing system processing only.

e The BSsubqueue, containing processes of very high priority.

3-34

Optional Capabilities

The circular subqueues are:
¢ The CSsubqueue, recommended for interactive processes.

¢ The DS subqueue, available for general use at a lower priority than the CS subqueue, and recom-
mended for jobs (batch).

e The ESsubqueue operates at very low priority (background).

The subqueue to which a process belongs determines the priority class of the process. From highest to
lowest priority, these classes (named after their subqueues) , are:

AS

BS

CS

DS

ES
To reschedule itself with the priority class DS, a process would make the following call:

GETPRIORITY (0,"DS');
The 0 parameter specifies that the calling process is rescheduling itself. If the process were reschedul-
ing a son process, the Process Identification Number (PIN) of the son processes would be specified.

Determining Source of Activation

After a suspended process is reactivated, it can determine whether the source of the activation request
was its father process or one of its son processes with the GETORIGIN intrinsic call.

For example, the following intrinsic call could be used:
SOURCE : =GETORIGIN;
One of the following codes could be returned to SOURCE:
1 Indicating that the process was activated by its father.

2 Indicating that the process was activated by a son.

Determining Father Process
A process can determine the Process Identification Number of its father with the FATHER intrinsic.

The Process Identification Number of the father is returned to PIN. For example, the following in-
trinsic call could be used:

PIN:=FATHER

3-35

Optional Capabilities

Determining Son Processes

A process can request the return of the Process Identification Number assigned to any of its sons with
the GETPROCID intrinsic.

For example, the following intrinsic call would return the Process Identification Number of the sixth
existing son of the calling process to the word PINNUM:

PINNUM: =GETPROCID(6);

Determining Process Priority and State

A process can request the return of a double-word message denoting the following information about
its father or sons with the GETPROCINFO intrinsic (refer to the GETPROCINFO discussion in Section II).
For example, to request information about its father, the following intrinsic call could be used:

INFO:=GETPROCINFOC0);

The 0 parameter specifies that the process is the father. If the process is a son process, the Process
Identification Number of the son process is specified.

The information returned to the double-word INFOis of the following form:

Not Used Priority
/N A
/7 N/ N
ars |o|1|2|3]a]|s5]|6|7|8]9]10]11|12]13]14]15
WORD 1: | 0 olololalofo]ofo]al1jt]r1]1]o
worD 2: [o[o|ofof1|o]ojo]1]ojojojaf1]o

0
N — M~ N — T L-MMty

Not Used Queue Not Used State

ACTIVATE Suspension
Origin Conditions

The information is interpreted as follows for the father process:
Word Bits Value Meaning
1 (8:8) 00011110 Process has priority 30 in Master Queue.

(0:8) 00000000 Not used.

2 (15:1) 0 Process is suspended.
(14:1) 0 Would not expect the source of activation to be the father.
(13:1) 1 The source of expected activation is the son.
(9:4) 0000 Not used.
(7:2) 01 Origin of last ACTIVATE call was father of this process.
(4:3) 100 Circular subqueue.

3-36

Optional Capabilities

RESOURCE MANAGEMENT

Any element of the HP 3000 which a program can access through MPE is called a resource. A
resource can be an input or output device, a file, subroutine, procedure, code segment, or the data
stack.

Occasionally, you may want to manage a specific resource shared by a set of jobs or processes, so that
no two jobs or processes can use the resource at the same time. To accomplish resource management
within a job or session, or between processes, the jobs or processes must cooperate. For example, if
Job B must not access a particular file when Job A is using it, both jobs should contain provisions for a
"hand-shaking" arrangement overseen by MPE when both jobs are active. Job B will be denied access
to the file while Job A is accessing it, or be suspended until Job A releases its exclusive access.

Under this arrangement, when Job A has exclusive access to the file, when Job B attempts to access
the same file, access will be denied, and Job B will be suspended until Job A releases its exclusive ac-
cess. Then Job B can resume execution and access the file. However, if Job B has been suspended by
MPE, it is unable to access the file and in fact cannot execute at all.

The hand-shaking arrangement is based on an arbitrary Resource Identification Number (RIN) made
available to users (for inter-job management) or assigned to the job (for inter-process management).
Within their jobs or processes, cooperating programmers relate a RIN to a particular resource through
the statement structure of the job or process. When a job or process seeks exclusive access to a
resource, it requests MPE to lock the RIN associated with the resource. The request is granted only if
no other job or process has already locked the RIN. Otherwise, the requesting process is suspended
until the RIN is released. When it is finished with the resource, the job or process requests MPE to
unlock the RIN so that others can lock it.

A RIN is not a physical entity, nor is it logically assigned to any resource. The association of a RIN
and a resource is accomplished only by the structure of the code which operates the job or process
which uses the RIN. The RIN number is always known to MPE | but the resource with which it is as—
sociated is not. For this reason, all cooperating programs must specify what RIN is associated with
which resource.

Processes run by users with standard MPE capabilities can lock only one global RIN (used at the
unrelated-process level) at a time. Users with Multiple RIN (MR) capability can lock more than one
global RIN at a time.

Users with Multiple RIN (MR) capability, must avoid deadlocking, which occurs when two or more
suspended processes cannot resume because they are mutually blocked. For example, you have two
processes A and B, and two RINs 1 and 2. Each process attempts to lock both RINs in the following
sequence: Process A tries to lock RIN 1 then RIN 2, and Process B tries to lock RIN 2 then RIN 1.
Process A will lock RIN 1 then have to wait for RIN 2 to be released by Process B and Process B will
lock RIN 2 and have to wait for Process A to release RIN 1 before it can continue. The processes are
mutually blocked and thus a deadlock has occurred.

Deadlocks can be avoided by ranking. If the RINs had been ranked (for example, ranking order A=1;
B=2), then Process B should have tried to lock RIN 1 before RIN 2. However, since Process A already
locked RIN 1, Process B would have to wait until Process A had released RIN 1 and locked RIN 2
which in this example would be free. A WARMSTART is necessary to free the locked processes.
Ranking also applies to processes and procedures.

3-37

Optional Capabilities

Inter-Job Level (Global) RINs

The RINs used at the inter-job level are called "global" RINs. Global RINs prevent simultaneous ac-
cess to a resource by two or more processes. Each global RIN is a positive integer which is unique
within MPE. Global RINs are acquired and released through MPE commands, and locked and un-
locked through MPE intrinsics. ‘

ACQUIRING GLOBAL RINS. Before users can engage in cooperative resource management through
2 RIN, one user must request the RIN and assign it a RIN password that enables all who know the
password to lock the RIN. This is done with the :GETRIN command:

:GETRIN rinpassword

where rinpassword is a required password of up to eight alphanumeric characters, beginning with a
letter, which locks the RIN.

The :GETRIN command is typically entered during a session. As a result of the command, MPE
makes a RIN available for use, and displays the RIN number in the form:

RIN:rinnum

The user who enters the :GETRIN command can use the RIN to lock and unlock the resource in the
current session, or in future jobs and sessions. The RIN and its password are passed to other users to
permit them to lock and unlock the resource in their jobs and sessions. All users do this by including
the RIN as a reference parameter in intrinsic calls that lock and unlock resources. Users can use the
RIN until the user who issued the :GETRIN command for that resource releases the RIN.

NOTE

MPE regards the user who issues the :GETRIN command
as the owner of the RIN. Only the owner of a RIN can
release it.

The total number of RINs that MPE can handle is specified when the system is configured, but can
never exceed 1024,

Refer to the MPE V Commands Reference Manual (32033-90006) for details on the :GETRIN
command.

3-38

Optional Capabilities

RELEASING GLOBAL RINS. The owner of a global RIN (the user who issued the :GETRIN
command) can release the RIN to the RIN pool managed by MPE. Only the owner can release the
RIN.

To release a RIN, enter the command:
:FREERIN rin
where rin is the RIN to be released.

Refer to the MPE V Commands Reference Manual (32033-90006) for details on the :FREERIN
command.

LOCKING AND UNLOCKING GLOBAL RINS. Any global RIN assigned to a group of users can be
locked by one process at a time with the LOCKGLORIN intrinsic. Once a RIN is locked, any attempt
by another process to lock this RIN fails. Note that depending on the call, the calling process may be
suspended until the RIN is released.

To lock a global RIN, a user must know the rinpassword specified with :GETRIN, and its number
returned by :GETRIN. Users with standard MPE capability can lock only one global RIN at a time.

The LOCKGLORIN intrinsic is useful when locking an entire file would inconvenience other users. For
example, if several users are trying to access and update a large file simultaneously, one will succeed
in locking the file and the others will be suspended until the file is unlocked. The LOCKGLORIN in-
trinsic, however, lets users lock a portion of a file so that other users are suspended less often.

The UNLOCKGLORIN intrinsic does not check whether the rinnum parameter specifies the most recently
locked global RIN. When global RINs are locked and unlocked in any order by concurrent processes,
deadlocks can occur. An effective way to avoid deadlocks is to assign a rank to each RIN which is
used by all processes locking them.

Figure 3-8 shows a program using the LOCKGLORIN and UNLOCKGLORIN intrinsics. The program al-
lows a user to lock four records, as a RIN, in a file so that a record can be updated without chance of
another user updating it simultaneously. In the program, the other users are not suspended when at-
tempting to access records elsewhere in the file.

The file BOOKFILE, illustrated in Figure 3-9, contains the titles and status of the -20 books in a
library. The program of Figure 3-8 will access this file.

BOOKF ILE contains 20 records, so the program must acquire five RINs (the program uses four records
per RIN). This is accomplished by issuing the command:

:GETRIN BOOKRIN

where BOOKRIN is the rinpassword specified in the program to lock the RIN. (See statements
00006000 through 00032000 in Figure 3-8.)

3-39

Optional Capabilities

PAGE 0001 HEWLETT-PACKARD 32100A.08.1 SPL[4W] TUE, OCT 28, 1982, 4:35 PM
00001000 00000 O SCONTROL USLINIT
00002000 00000 O BEGIN
00003000 00000 1 BYTE ARRAY INPUT(0:5):="INPUT ";
00004000 00004 1 BYTE ARRAY OUTPUT(0:6):="O0UTPUT ";
00005000 00005 1 BYTE ARRAY NAME(0:8):="BOOKFILE “;
00006000 00006 1 BYTE ARRAY PASSWD(0:7):="BOOKRIN *;
00007000 00005 1 INTEGER IN, OUT, BOOK, LGTH, ACCNO, RIN;
00008000 00005 1 LOGICAL DUMMY, COND:=TRUE;
00009000 00005 1 ARRAY BUFR(0:35);
00010000 00005 1 BYTE ARRAY BBUFR(X)=BUFR;
00011000 00005 1 ARRAY HEAD(0:13):="LIBRARY INFORMATION PROGRAM.";
00012000 00016 1 ARRAY REQUEST(0:7):=%6412,"ACCESSION NO: *;
00013000 00010 1 ARRAY CHANGE(0:9):=" NEW LOCATION: *“;
00014000 00012 1 EQUATE RINBASE=2, RECDS’PER'RIN=4, MAXRIN=6;
00015000 00012 1 DEFINE CCL =IF < THEN QUIT#,
00016000 00012 1 CCNE=IF <> THEN QUIT#;
00017000 00012 1 INTRINSIC FOPEN,FREAD,FWRITE,FCONTROL,FREADDIR,FWRITE
00018000 00012 1 LOCKGLORIN,UNLOCKGLORIN,QUIT,BINARY;
00019000 00012 1 <<END OF DECLARATIONS>>
00020000 00012 1 IN:=FOPEN(INPUT,%45}; CCL(1); <<$STDIN>>
00021000 00012 1 OUT:=FOPEN(OQUTPUT,%414); CCL(2); <<$STDLIST>>
00022000 00024 1 BOOK : =FOPEN (NAME ,%5,%304); CCL(3); <<0LD DISC FILE>>
00023000 00037 1 FWRITE(OUT ,HEAD,14,0); CCNE(4); <<PROGRAM 1ID>>
00024000 00047 1 LOOP:
00025000 00047 1 FWRITE (OUT ,REQUEST,8,%320); CCNE(5); <<REQUEST BOOK NO>>
00026000 00057 1 LGTH:=FREAD(IN,BUFR,-10); CCNE(8); <<INPUT NUMBER>>
00027000 00070 1 IF LGTH=0 THEN GO EXIT; <<NO INPUT-EXIT>>
00028000 00073 1 ACCNO: =BINARY (BBUFR,LGTH) ; <<CONVERT NUMBER>>
00029000 00100 1 F <> THEN GO LOOP; <<IF BAD TRY AGAIN>>
00030000 00101 1 RIN:=RINBASE+(ACCNO/RECDS’PER’RIN}; <<COMPUTE RIN NO>>
00031000 00105 1 IF NOT(RINBASE<=RIN<=MAXRIN) THEN GO LOOP;<<BNDS CHK RIN>>
00032000 00117 1 LOCKGLORIN(RIN,COND,PASSWD) ; <<LOCK FILE SUBSET>>
00033000 00123 1 FREADDIR (BOOK ,BUFR,36 ,DOUBLE (ACCNO)) ;CCL(7); <<READ DATA>>
00034000 00135 1 IF > THEN GO AGAIN; <<EOF, TRY AGAIN>>
00035000 00136 1 FWRITE(OUT ,BUFR,36,0); CCNE(8); <<DISPLAY DATA>>
00036000 00146 1 FWRITE (OUT,CHANGE, 10,%320); CCNE(9); <<REQUEST A CHANGE>>
00037000 00156 1 BUFR(19):=" *;
00038000 00161 1 MOVE BUFR(20):=BUFR(19},(16); <<BLANK OLD LOCN>>
00038000 00167 1 LGTH: =FREAD (IN,BUFR(198),17); CCNE(10);<<READ NEW LOCN>>
00040000 00201 1 IF LGTH>O0 THEN <<NEW LOCN ENTERED>>
00041000 00204 1 BEGIN
00042000 00204 2 FWRITEDIR (BOOK,BUFR,36,DOUBLE (ACCNO)) ; <<MODIFY FILE>>
00043000 00213 2 CCNE(11); <<CHECK FOR ERROR>>
.00044000 00216 2 END;
00045000 00216 1 FCONTROL (BOOK,2,DUMMY); CCL(12); <<FORCE RECD POST>>
00046000 00225 1 AGAIN:
00047000 00225 1 UNLOCKGLORIN(RIN); CCNE(13); <<UNLOCK SUBSET>>
00048000 00232 1 GO LOOP; <<CONTINUE>>
00049000 00234 1 EXIT:END.

Figure 3-8. Using the LOCKGLORIN and UNLOCKGLORIN Intrinsics.

3-40

Optional Capabilities

TITLE: THE BORROWERS LOCN: AVAILABLE
TITLE: ALICE IN WONDERLAND LOCN: AVAILABLE
TITLE: PETER PAN LOCN: AVAILABLE
TITLE: JUNGLE BOOK LOCN: AVAILABLE
TITLE: THE LIFE OF MERENB LOCN: AVAILABLE
TITLE: INTRO TO TAI CHI CHUAN LOCN: AVAILABLE
TITLE: TOM SAWYER LOCN: AVAILABLE
TITLE: TREASURE ISLAND LOCN: AVAILABLE
TITLE: A CHRISTMAS CAROL LOCN: AVAILABLE
TITLE: THE WIZARD OF 0Z LOCN: AVAILABLE
TITLE: THE DARK CRYSTAL LOCN: AVAILABLE .
TITLE: SPEED RACER LOCN: AVAILABLE
TITLE: ULTRAMAN GOES TO TOWN LOCN: AVAILABLE
TITLE: H.M.S. PINAFORE LOCN: AVAILABLE
TITLE: FEAR OF FLYING LOCN: AVAILABLE
TITLE: SNOW WHITE LOCN: AVAILABLE
TITLE: DR. DOOLITTLE LOCN: AVAILABLE
TITLE: TALES OF MOTHER GOOSE LOCN: AVAILABLE
TITLE: AESOP’S FABLES LOCN: AVAILABLE
TITLE: THE GULAG ARCHIPELAGO LOCN: AVAILABLE

Figure 3-9. BOOKFILE

The program in Figure 3-8 establishes the RIN number limits 2 and 6 (statement 00014000), thus
using only RINs 2, 3, 4, §, and 6. MPE returns the RIN number assigned each time the :GETRIN
command is entered. Because MPE does not always assign RINs in sequence, and because the program
wants consecutive RINs to keep track of them more easily, it may be necessary to enter more
:GETRIN commands before the program is run to acquire the five consecutive RINs. Extra RINs can
be released with the :FREERIN command.

The statement:

FWRITE(COUT,REQUEST,8,%320);CCNE(S);

requests 2 book number from the user and performs a condition code check. Note that in statement
00016000 Figure 3-8, CCNE has been defined as:

IF <> THEN QUIT#;

This eliminates the need to repeat the entire statement at every point in the program where a condi-
tion code check is required. Instead, the statement CCNE and an arbitrary number (5) can be used.

The book number is read with the statement:
LGTH:=FREADCIN,BUFR,-10);

and converted to a binary value with the statement:
ACCNO: =BINARY (BBUFR,LGTH) ;

The RIN to be locked is computed with the statement:

RIN:=RINBASE+(ACCNO/RECDS ‘PER ‘RIN)D;

3-41

Optional Capabilities

RINBASE and RECDS ‘PER‘RIN have been equated to 2 and 4, respectively (see statement 00014000
of Figure 3-8). Thus, if a book number 3 is entered by the user, the RIN number to be locked would
be RIN 2, computed in the following way (using integer division):

RIN = 2 + (3/4)

=2 +0

The record specified by the book number is displayed for the user and the "NEW LOCATION:" is
requested. The existing location information is filled with blanks with statements 00037000 and
00039000:

BUFR(19):=" "'

MOVE BUFR(20):=BUFR(19), (16);
The new location is entered and read with the statement:

LGTH:=FREADCIN,BUFR(19),17);
and the record is updated with the statement:

FWRITEDIR(BOOK ,BUFR, 36, DOUBLE(ACCND));
In case the opened file is a buffered file, the statement :

FCONTROL (BODK, 2, DUMMY) 5

ensures that the process buffers are posted to disc before the RIN is unlocked.

In this type of program, it is important that the number of records per block be equal to the number
of records per RIN. The RIN must contain a complete block of records.

The statement:
UNLOCKGLDORINCRIN);

unlocks the RIN before the loop is repeated. When the user enters a new book number, a new RIN
will be computed and locked.

When is pressed, signifying no input, the program terminates.
The results of the program in Figure 3-8 are shown below:

:RUN LIBIN

LIBRARY INFORMATION PROGRAM.

ACCESSION NO: 3

TITLE: JUNGLE BOOK LOCN: AVAILABLE
NEW LOCATION: FACULTY LOAN - DR. JOHNSON

3-42

Optional Capabilities

ACCESSION NO: 10
TITLE: THE DARK CRYSTAL - LOCN: AVAILABLE
NEW LOCATION: LOANED CARD# 451, DUE APRIL 1

ACCESSION NO: 3
TITLE: JUNGLE BOOK LOCN: FACULTY LOAN - DR. JOHNSON
NEW LOCATION:

ACCESSION ND: 9
TITLE: THE WIZARD OF 0Z LOCN: AVAILABLE
NEW LOCATION: INTERLIBRARY LOAN - UNIV. OF 0OZ

ACCESSION NO: 3

TITLE: JUNGLE BOOK LOCN: FACULTY LOAN - DR. JOHNSON
NEW LOCATION: AVAILABLE

ACCESSION NO:
END OF PROGRAM

Interprocess (Local) Level RINs

Interprocess RINs are called local RINs. Local RINs are used to prevent simultaneous access of a
resource by two or more processes within the same job. Each local RIN is a positive integer that is
significant to processes within the job only.

Local RINs are assigned, managed, and released with the GETLOCRIN, LOCKLOCRIN, and
FREELOCRIN intrinsics.

ACQUIRING LOCAL RINS. Like global RINs, local RINs must be acquired by the user before they
can be used by the processes within a job. For example:

GETLOCRIN(B);

would acquire six local RINs, 1 through 6. Multiple RIN (MR) capability is not required and it is the
user’s responsibility to avoid deadlocks.

LOCKING AND UNLOCKING LOCAL RINS. Any local RIN assigned to a job can be locked, by one
process at a time, by using the LOCKLOCRIN intrinsic call within that process. When this is done,
other processes within the job that attempt to lock this RIN are suspended until the locked RIN is
released.

For example, to lock RIN number 6 (acquired by GETLOCRIN) unconditionally, the following call
could be used:

LOCKLOCRIN(E,COND)

Unconditional locking is denoted when bit (15:1)=1 of the logical word COND. If bit (15:1)=0, lock-
ing will take place only if the RIN is immediately available.

3-43

Optional Capabilities

To unlock the same RIN, the intrinsic call:
UNLOCKLOCRIN(B) 3

could be used. The call above makes RIN number 6 available for locking by other processes in the
job. The highest priority process suspended because this RIN was locked is now activated.

To illustrate how the LOCKLOCRINand UNLOCKLOCRIN intrinsic calls are used, consider two processes,
a father and its son, within a job:

FATHER PROCESS

[]
LP:=FOPENCLIN,...);
L
[]

LJ
GETLOCRINC3);
FWURITECLP,...);

LOCKLOCRINC1, TRUEVALD;
CREATE(DESCEND, ...J;
FWRITECLP,...);

®

[]

[]
UNLOCKLOCRINC1);

L]
[]
[]

SON PROCESS

°
LP:=FOPENCLIN,...D;

°

.

[

LOCKLOCRINCY, TRUEVAL);

FWRITECLP,...);
[]
L]

[]
FWRITECLP,...);
[]

[]

[]
UNLOCKLOCRINC1);
®
[]
®

Suppose the father and son processes wanted to use RIN 1 to manage the line printer (designated as
LP) so that the son process could never use the printer while the father is using it. This is coded in
the examples above. When the father first references LP, the son has not been created and the print-
er need not be locked. But just before creating the son, the father locks the printer RIN. The father
issues all of its print requests before unlocking the printer. Before the son accesses the printer, it tries
to lock it, fails, and is suspended. When the father unlocks the printer, the son locks it and issues
print requests.

IDENTIFYING LOCAL RIN OWNERS. LOCRINOWNER identifies at any time the PIN of the process
that has a particular local RIN locked. This is useful, for example, when father and son processes are
being synchronized through calls to the ACTIVATE and SUSPEND intrinsics.

Consider the following example in which a father process acts as a monitor for several son processes.
The father waits in a suspended state at the top of its loop to be activated by any son. When ac-
tivated, the father locks a RIN to synchronize its communication with the son. LOCRINOWNER
determines the PIN of the son that activated the father, since that son will have the WHICHSONRIN
RIN locked. The father then performs its required duty. The father finally activates the son that ac-
tivated the father, and the father suspends, releasing the synchronization RIN, and waiting for
“another son to activate it again. An example of Process Synchronization with LOCRINOWNER is:

3-44

equate whichsonrin =1,
synchrin = 2,
waitforfather= 1,
waitforson =2

~

FATHER PROCESS

*
[)
L J
soncount := 0;
while soncount <= maxsons do
begin
SUSPEND(wait forson, synchrind;
LOCKLOCRIN (synchrin);

Optional Capabilities

SON PROCESS

LOCKLOCRIN (whichsonrin)
LOCKLOCRIN (synchrin);
ACTIVATE (father);

owner' := LOCRINOWNER (whichsonrin); SUSPEND (waitforfather, synchrin);
. UNLOCKLOCRIN (whichsonrin);

L]
[]

soncount := soncount + 1;
ACTIVATE (owner);
end;

FREEING LOCAL RINS. To free all local RINs currently reserved for your job, enter:

FREELOCRIN;

USER LOGGING

The MPE User Logging Facility provides a structure for documenting additions and modifications to
user data bases and subsystem files. Documentation can be recorded on disc, tape. serial disc, and
cartridge tape. Logging is done programmatically by means of the following intrinsics, which you
must have User Logging (LG) or System Supervisor (OP) capabilities to use:

]

LOGSTATUS displays status information about currently opened log files.
OPENLOG provides access to a logging facility.

WRITELOG writes journal entries to a logging file. This creates a copy of any modifications to a
data set.

CLOSELOG closes access to the logging facility.

FLUSHLOG writes the contents of the user logging memory buffer to the disc destination file (disc
buffer file when logging to a serial device). This intrinsic writes no special records.

BEGINLOG posts a special record to the user logging file to mark the beginning of a logical transac-
tion in the log file.

3-45

Optional Capabilities

e ENDLOG posts a special record to the user logging file to mark the end of a logical transaction in
the logging file. When the record is posted, ENDLOG flushes the user logging memory buffer to
ensure that the record gets to the logging file.

e LOGINFD obtains information from the logging buffer and passes it to the user.

If a data set is lost, the user logging file can be used with a copy of the data set file to recover the lost
transactions.

How User Logging Works

When requesting serial files within the logging facility, entries are placed in the buffer area of the
logging data segment. Once this buffer area is full, the contents are written to the disc buffer file on
disc. (See Figure 3-10.) If there is no space available in the memory buffer, the result depends upon
the mode parameter specified:

e If mode=0 (WAIT) is specified, the process is suspended until the logging process writes the con-
tents of the memory buffer to disc. Then, the process is reactivated (similar to WAITIO). Space
becomes available, and your request is moved into the memory buffer.

e If mode=1 (NOWALIT) is specified the communications area of the data segment sends an error
message indicating the transaction has not been completed. The user needs to resubmit the request
(similar to NOWAITIO).

Effective with the G.02.00 release the user can have the system automatically write a changelog
record and close the user logging file when it becomes full by specifying the aufo parameter of the
tALTLOG or :GETLOG command. A new, permanent user logging file is then opened, which has the
same characteristics as the previous file. It is important to note that user logging files can be changed
automatically only when the storage media is disc, not tape. To use the auto parameter of the
:ALTLOG and :GETLOG commands the filename of the existing user log file must end with a three
digit numeric (e.g. fname001). Then when the new file is constructed the filename digits preceding
this three digit numeric remain unchanged and the last three digits are incremented by one (i.e.
fname002). Refer to the MPE V Commands Manual (32033-90006) for additional information on
the auto parameter of the :ALTLOG and :GETLOG commands.

The buffer area in LOGBUFF has a maximum capacity of 4K words (32 records). This buffer area
will be posted, entered, or transferred to the disc buffer file (when logging to a serial device) or the
disc destination file (when logging to disc) if :

e A user calls FLUSHLOG, BEGINLOG, ENDLOG, or WRITELOG in mode=2. (Refer to the
WRITELDG intrinsic in Section II for information on mode=2.)

e There is not enough space in the buffer for another record.
e The process is interrupted at any time.

The logging process and logging buffer function differently according to the type of file specified by
the user.

When a serial log file is specified, the logging process acts as an interface between the logging buffer
file and the serial log file by writing records to the serial log file requested. This process is indepen-
dent of your process. The user can add records to the logging memory buffer at the same time the
logging process is writing records from the disc buffer to the serial device. As soon as the logging
process has made space available in the logging buffer file, the user’s process will be reactivated.

3-46

Optional Capabilities

SHOWLOGSTATUS LOGTAB

SV,

L

oOZ»rIZIO0OO

LOGBUF

COMM | d——]
GETLOG AREA | OV
ALTLOG
RELLOG

USTLOG

OPENLOG
LOGID LOG CONTROL
TABLE SYSTEM

PROCESS BUFFER <
AREA DATA

WRITELOG

CLOSELOG

NOoOZPXTITOO

O -~ nNnZ—JVAZ~—

> <4>»0

TAPE
DESTINATION

' ADDITIONAL
1 EXTENTS
' FOR DISC
+ DESTINATION
t

Figure 3-10. User Logging Facility

3-47

Optional Capabilities

When a disc file is specified, the logging process and logging buffer function differently. Logging
records are loaded into the buffer area of LOGBUFF (the logging data segment). The records are
moved to the disc destination file when the buffer area is full. A message is displayed on the Console
when the destination file becomes full. The process will then stop as soon as the number of users
equals zero. No other 1/Os can access the file. The WRITELOG, BEGINLOG, ENDLOG, and FLUSHLOG
intrinsics suspend the user process and activate the logging process. If needed, the logging process al-
locates additional extents (one at a time) to the disc destination file up to the maximum the user
specified in the :BUILD command. Logging continues until the user-specified maximum is reached
(same as EOF). Then the logging process reactivates the user process.

The user needs the record formats to directly access the logging files.
Logging Record Format:
record size = 128 words

user area = 119 words

LOG RECORD AT OPENLOG:

0 2 3 4 6 7 i1 12 24 25 127

recf§ | cksum | code | time | date | logid | lagé | creator |pcb

LOG RECORD AT WRITELOG:

0 2 3 4 6 7 8 S 127

recf | cikeum | code | time | date | log# | len user area

LOG RECORD AT CLOSELOG:

0 2 3 4 6 7 1 12 24 25 127

rec§ | cksum | code | time | date | logid | logé | crestor |pcb

LOG RECORD AT CHANGELOG:

0 2 3 4 6 7 1 12 14 127

recf | cksum | code | time | date | logid | seq | c—time | c—dote
num

CRASH MARK:

0 2 3 4 6 7 127

recf | cksum | code | time | dote

3-48

Optional Capabilities

HEADER RECORD (START/RESTART):

0 2 3 4 6 7 1 127

rech | cksum | code | time | date | logid

TRAILER RECORD (STOP):

0o 2 3 4 6 7 1 127

rec# | cksum | code | time | date | logid

NULL RECORD:

0 2 3 4 6 7 . 127

reck# | cksum | code | time | dote

BEGIN TRANSACTION MARKER:

0 2 3 4 6 7 8 9 127

recf | ckeum | code | time | date | logh | ten user arec

END TRANSACTION MARKER:

0 2 3 4 6 7 8 9 127

reck | ckeum | code | time | dote | log | len ueer ared

CODE DEFINITION:
Code = Open log record
User /subsystem record
Close log record
Header record
Trailer record
Restart record
Continuation of user or subsystem record
Crash marker
End transaction record
11 Begin transaction record
12 Change log record (resides in new file; points to old file)
13 Change log record (resides in old file; points to new file)
(SPACE) Null record

Ew\xmmaww—

3-49

Optional Capabilities

DATA FIELDS OF LOG RECORDS:

REC# = Double Integer

CKSUM = Integer

CODE = Integer

TIME = Double Integer (from CLOCK intrinsic)
DATE = Integer (from CALENDAR intrinsic)
LOGID = ASCII

LOG# = Integer

LEN = Integer

USERAREA = ASCII

CREATOR = ASCII

PCB = Integer

SEQ NUM = Integer

C-DATE = Double Integer

C-TIME = Double

The code in Word 3 of each logging record identifies the type of record. For example, a "1" in the
second half of the third word indicates an OPENLOG record.

Privileged users can define a subsystem code in the first half of the logging record code word bits
(0:8). This code is passed in the index parameter of the OPENLOG intrinsic.

The checksum (CKSUM) algorithm uses the Exclusive-Or (XOR) function against a base of negative
one.

The null record is used as a filler.

The length field (LEN) contains the number of words in the entire transaction (i.e. the length passed
to WRITELOG, BEGINLOG, or ENDLOG). If a continuation record is part of the transaction, that record
will also contain the data length. For example, if a length of 140 (words) is passed to the intrinsic,
the LEN field will contain 140. Since the user area will only accommodate 119 words the remaining
21 words will be stored in a continuation record. However, the LEN field of the continuation record
will indicate the total number of words in the transaction (140 in this example). A positive number
indicates words; a negative number refers to bytes.

User Logging Procedures

To utilize the User Logging Facility, the programmer uses the logging intrinsics in the applications
program to write data to a logging file to be used for recovery. The user must also write a recovery
procedure program that can read the log file and apply it to a backup copy of the data set to recover
data lost in a system failure. User logging does power failure recovery automatically.

The suggested User Logging procedure includes the following steps:

1. Select a logging identifier using :GETLOG. If data security is necessary, use passwords/
lockwords provided in the :GETLOG command. Specify the configured device class name, i.e.
DISC, TAPE for magnetic tape, SDISC for serial disc device, and CTAPE for cartridge tape unit
(such as HP 9140/9144). These must be configured device class names or an FOPEN failure will
result.

2. Design the application and data structures.

3-50

Optional Capabilities

Decide what information must be logged in order to recover the data structures of the
application. The log file will be applied to the backup copy of the data structure to recover data
lost because of a system failure or power failure. Include the appropriate calls to the User
Logging intrinsics in your application program to log the data necessary for recovery.

Design and program the recovery procedure. The backup copy of the application data structure
is necessary to the recovery procedure. The recovery program must recognize the User Logging
file record formats.

If the logging identifier specified in the :GETLOG command is associated with a disc file, build
that file with the correct code (;CODE=LOG), and enough disc space to contain one day’s output.
Be generous with the disc file space. Divide the file into several extents; allocate only the first
extent. This minimizes the impact of a large file on the system. The user logging process allo-
cates additional extents when necessary (one at a time).*

Have the System Operator start the logging process for your logging identifier. Refer to the
MPE V Commands Reference Manual (32033-90006) for more information on the :L0G
command.

If there are changes in the data sets, run your logging application program for the User Logging
file you specified in the :GETLOG command.

If it becomes necessary to recover the data sets, restore the backup copy that was saved and run the
recovery procedure to incorporate any changes made to the data structures.

Suggested Log File Uses

Use of a log file starts with your application, especially if many users are accessing the same user log
file. Set up a log file separate from your data base log file with information which points to your
entry. The separate log file might include the following information :

User, group, and account names you are using in your application. This can be determined by
using the WHO intrinsic.

Job/session input device number, which can also be determined by using the WHO intrinsic. This
number provides only a history which does not help directly in recovery.

Process Identification Number (PIN) of the process accessing the log files. Use the GETPROCID
intrinsic to obtain the PIN.

Date and time of opening the log file. This information can be accessed by the CALENDAR and
CLOCK intrinsics. (The date and time returned by these intrinsics match the format of this infor-
mation in the data base log file.) Put in calls to these intrinsics immediately after a successful
OPENLOG intrinsic call.

The fully qualified file name of the data set log file being accessed, including the ASCH code of
the LOGID.

To recover the file listing, read the additional file and open the log file. Search the log file for the
LOGIDand the creator that match in the OPENLOG record CODE 1. Verify it using the date and time.
Use the PIN to verify the creator in case there are duplicate creators. Then pick up the LOG number.
All records with this log number will be in your file.

3-51/3-52

ACCESSING AND ALTERING FILES

This section provides background information on the MPE file system and some typical operations per-
formed with the MPE file system intrinsics. For more information on the MPE File System, refer to
the MPE File System Reference Manual (30000-90236). The following operations can be performed
by using MPE file system intrinsics:

L]

Open files with FOPEN.

Parse a file designator and validate that it is syntactically correct with FPARSE.

Request access and status information about a file with FFILEINFO and FGETINFO.
Request file error information with FCHECK.

Read records (or a portion of a record) from a file with FREAD and FREADDIR.
Write a record (or a portion of a record) toa file with FWRITE and FWRITEDIR.

Move a specific record from a file into a buffer preparatory to reading the record to the stack
with FREADSEEK.

Initiate completion operations for an 1/O operation with the IOWAIT intrinsic.
Read a file label on a labeled magnetic tape file with FREADLABEL.

Write a file label on a labeled magnetic tape file with FWRITELABEL.

Obtain information from the file label of a disc file with FLABEL INFO.

Read a user-defined label from a disc file with FREADLABEL.

Write a user-defined label onto a disc file with FWRITELABEL.

Update a record on a disc file with FUPDATE.

Space forward or backward on a disc or tape file with FSPACE.

Reset the logical record pointer to any logical record in a fixed-record length disc file with
FPOINT.

Perform control operations on a file (or the device on which the file resides) with FCONTROL.
Activate and deactivate access mode options with FSETMODE.

Rename an open disc file with FRENAME.

Determine if an input file and a list file are interactive and/or duplicative with FRELATE.
Coordinate access to shared files with FLOCK and FUNLOCK intrinsics.

Close a file with FCLOSE.

4-1

Accessing and Altering Files

FILE DEVICE RELATIONSHIPS

Devices required by files are allocated by MPE. You can specify these devices by class (such as any
card reader or line printer), or by a logical device number related to a particular device (such as a
specific line printer). Regardless of what device a particular file resides on, when a user program asks
to read that file, it references the file by its formal file designator. This is the name that is coded
into the program, along with the program’s specifications for the file. For more information on for-
mal file designators refer to the MPE File System Reference Manual (30000-90236). Actual subsys-
tem formal file designators can be found in the MPE V Commands Reference Manual
(32033-90006). MPE then determines the device on which the file resides, or its disc address if ap-
plicable, and accesses it for you. When the user program writes information to a particular file to be
output on a device such as a line printer, again the program refers to the file by its formal file desig-
nator. MPE then automatically allocates the required device to that file. Throughout its existence,
every file remains device-independent; that is, it is always referenced by the same formal file desig-
nator regardless of where it currently resides.

Non-Sharable Device Access

Any device which can only handle one set of data at a time is a non-sharable device. The specifica-
tion of a device by class when a file is opened implies a request for the initial allocation of a previous-
ly unopened device. The file system, during FOPEN, issues an allocation request to the System
Operator if necessary. After the Operator answers, FOPEN continues execution. (The device
specification is ignored when $STDIN, $STDINX, or $STDLIST is opened.) A job may reallocate an
opened device by specifying the device’s logical device number when the file is opened. In this case,
no System Operator intervention is required.

Multiple processes can asynchronously interleave accesses to reallocated devices. Since the file system
does "anticipatory reads" on buffered input devices, multiple processes should specify Multi-Access
(MULTI) or Inhibit Buffering (NOBUF) if records must be transmitted in the same order as request-
ed. In this instance MULTI is preferred.

File Domains

The set of all permanent disc files in MPE is known as the system file domain. Within this system file
domain, files are assigned to accounts and accounts are then organized into groups. You logon using
an account and group which provides the basis for your local file references. You may be required to
supply passwords for the account and group to logon, but thereafter (if the default MPE file security
provisions are in effect) you will have unlimited access to any file within your logon or home group.
(However, if the file is protected by a lockword, you must know the lockword.) You can also read
and execute programs residing in any file in the PUB group of your account, and in the PUB.SYS
group/account.

Potentially, if the MPE file security provisions at the account, group, and file levels were all
suspended, and you knew all account and group names and file lockwords, you could access any per-
manent file in the system once you logon. Note that once you logon, you do not need to know the
passwords for other accounts and groups to access files assigned to them. You only need to know the
account and group names. If any of these files are protected by a file lockword, you do need to know
this lockword.

For every job or session running in the system, MPE recognizes an accompanying file domain, called
the "job file domain" or "session file domain". This domain contains all temporary files opened and
closed within the job or session without being saved (that is, declared as permanent). Files in these
domains are deleted when the job or session terminates (if they are job/session temporary files), or

4-2

Accessing and Altering Files

when the creating program ends (if they are new files, not saved temporary or permanent files when
closed).

When a new file is opened it is known only to the program that creates it, and will exist only while
the program is being executed. At this time, the file name assigned by you need not be unique. But
if the program tries to save the file as permanent or job temporary (via FCLOSE), MPE determines
whether another file with the same name exists in the domain in which you are trying to save that
file (permanent or job temporary). If a name conflict occurs, a CCL condition code is returned to the
user process from FCLOSE, and the specific error is made available through the FCHECK intrinsic.
When a program aborts, old files are returned to the domain in which they were found when opened;
new files are deleted. The fact that a duplicate file name is detected at FCLOSE (not FOPEN) time is
important for many applications.

NOTE

All intrinsics discussed in this section, with the excep-
tion of FOPEN, FGETINFO, FFILEINFO, FDEVICE-
CONTROL, and FRENAME, can be called with the DB
register pointing to a data segment other than the call-
ing process’ stack (split-stack mode). All parameters
referenced in any calls to these intrinsics are always ac-
cessed using the current DB-register setting. Privileged
Mode is required to enter split-stack mode; once in
split-stack mode, you need not remain in Privileged
Mode to call file system intrinsics.

Opening a File

Before a user process can read, write, or otherwise manipulate a file, the process must initiate access
to that file by opening it with the FOPEN intrinsic call. This call applies to files on all devices. When
the FOPEN intrinsic is executed, it returns the file number used to identify the file in subsequent in-
trinsic calls to the user process.

If the file is opened successfully (indicated by the CCE condition code), the file number returned is a
positive integer. If the file cannot be opened (indicated by the CCL condition code), the file number
returned is zero. Whenever a process is run, MPE calls FOPEN twice to open $STDIN and $STDLIST
for that process before any of the user code is executed. This uses two file numbers. No assumption
should ever be made concerning the allocation order of these file numbers.

If a process issues more than one FOPEN call for the same file before it is closed, this results in multi-
ple, logically separate accesses of that file, and MPE returns a unique file number for each such ac-
cess. Also, MPE maintains a separate logical record pointer (indicating the next sequential record to
be accessed) for each access where the MULTI-access option was not requested or not permitted at
FOPEN time.

In opening a file, FOPEN establishes a communication link between the file and your program by:

o Determining the device on which the file resides.

e Allocating the device on which the file resides to your process. If the file resides on a non-
sharable device, such as magnetic tape, and the user has Non-sharable Device (ND) capability,
FOPEN determines whether the System Operator must approve allocation of the device, such as an
unlabeled magnetic tape, or provide a particular media, such as a specific volume for a labeled

magnetic tape request or special forins for a line printer. If so, FOPEN requests the System

+-3

Accessing and Altering Files

Operator to respond appropriately. Disc files generally can be shared concurrently among jobs and
sessions. Magnetic tape and unit-record devices are generally allocated exclusively to the
requesting job or session. For example, different processes within the same job may open and have
concurrent access to a file on the same magnetic tape or unit-record device, if the file has been
opened with MULTI-access. However, this device cannot be accessed by another job until all ac-
cessing processes in this job have issued a corresponding FCLOSE call.

e Verifying your right to access the file under the security provisions existing at the account, group,
and file levels.

e Determining that the file has not been allocated exclusively to another process (by the
EXCLUSIVE option in an FOPEN call issued by that process).

e Processing user labels (for files on disc). For new files on disc, FOPEN specifies the number of user
labels to be written.

e Allocating to the file the number of extents initially requested (for new disc files).

e Constructing the control blocks required by MPE for this particular access of the file. The infor-
mation in these blocks is derived by merging specifications from five sources, listed below in des-
cending order of precedence:

1. The file label, obtainable only if the file is an old file on disc. This information overrides in-
formation from any other source. Label formats are presented in the MPE File System
Reference Manual (30000-90236).

2. FOPEN overrides of incompatible options.

3. The parameter list of a previous :FILE command referencing the same formal file designator
named in this FOPEN call, if such a command was issued in this job or session. This is only
true, if file equations were not disallowed.

4. The parameter list of this FOPEN intrinsic call.

5. System default values provided by MPE (when values are not obtainable from the above
sources).

When information from one of these five sources conflicts with that from another, pre-empting
takes place according to the order of precedence shown above. To determine the specifications ac-
tually taking effect, the user can call the FGETINFO/FF ILEINFO intrinsics, described later in this
section. (Notice that certain sources do not always apply or convey all types of information. For
example, no file label exists when a new file is opened, and so all information must come from the
last four sources above.)

Files on Non—-Sharable Devi_ces

When a process opens a disc file, the FOPENcall will specify whether the file is an old or new file; an
old file is an existing file, and a new file implies that the file is to be created. When a process accesses
a file that resides on a non-sharable device, the device’s attributes may override your old/new
specification. Specifically, devices used for input only, such as card readers, automatically imply old
files. Devices used for output only, such as line printers, automatically imply new files. Serial in-
put/output devices, such as terminals and magnetic tape units, follow the old/new specification in
your FOPEN call.

4-4

Accessing and Altering Files

When a job attempts to open an old file on a non-sharable device, MPE searches for the file in the
Input Device Directory (IDD). If the file is not found, a message is transmitted to the System Console
requesting the Operator to locate the file by taking one of the following steps:

1. Indicate that the file resides on a device that is not in auto-recognition mode. No :DATA com-
mand is required ; the Operator simply allocates the device.

2. Make the file available on an auto-recognizing device, and allocate that device.
3. Indicate that the file does not exist on any device; the user’s FOPEN request will be rejected.

When a job opens a new file on a non-sharable device (other than magnetic tape), the Operator is not
required to intervene. In these cases, the first available device is used. (A non-sharable device is
considered directly available if it is not being used, or if it is being used by the requesting job and is
requested by its logical device number.)

The specification of a device class when FOPEN is issued implies a request for the initial allocation of a
previously unopened device. (The device parameter is ignored when $STDIN, $STDINX, and
$STDLIST are opened.) A job may reallocate an opened device by specifying the device’s logical
device number when the file is opened. The FGETINFO/FFILEINFO intrinsic should be used to
determine the logical device number assigned to an opened file. The subsequent FOPEN which supplies
this logical device number should insure that no existing file equation overriding the device number is
accidentally picked up.

When a job opens a new file on a magnetic tape unit, Operator intervention is usually required. The
Operator must make the tape available, unless the tape is already mounted and recognized by MPE, it
is auto-allocating, or the device is being reopened by the same or related process.

HOW TO USE FILES

The remainder of this section explains what you can accomplish with files using the file system intrin-
sics. An attempt is made to show practical applications for the intrinsics, instead of merely restating
the purpose of each intrinsic as discussed in Section 1I.

Internal Operations for File Accessing

Before a file can be used, it must be opened with the FOPEN intrinsic. If you are programming in
SPL, you must call the FOPEN intrinsic directly from your program. The compilers for other lan-
guages, such as FORTRAN and COBOL, emit code which calls FOPEN and opens the file for you. In
any case, however, whether called explicitly by your program, or called for you by the language’s
compiler, the FOPEN intrinsic is used to open all files in a program. Several items which should be
considered before using FOPEN are discussed in the following paragraphs.

For example, consider what occurs when a user coding a program in SPL performs a call to the FOPEN
intrinsic to open a new disc file. (A new disc file is a file that has not existed previously in the sys-
tem.) One of the fundamental things that occurs at FOPEN time is that an access interface is created
for the file. This access interface comprises a number of control blocks that are created, and which
contain information about the file. In addition, if the new disc file is opened with buffered access, a
buffer space is allocated in the Access Control Block (ACB) to contain the number of records per
block that the user has specified in the FOPEN call. The buffer space is large enough to hold a block
of information to be sent to the disc.

4-5

Accessing and Altering Files

The control blocks are pointed to by an entry in the user’s stack. This entry is called an Available File
Table (AFT), and is part of the Process Control Block Extension (PCBX) in the user’s stack. The next
thing that occurs is that file space is allocated to the file. On each system disc or private volume disc
there is a table of free space managed by MPE. The file system refers to the file space table and allo-
cates initial space for this file (the number of sectors allocated depends on the parameters specified in
the FOPEN call) by deallocating free space from the table and writing a file label in the first sector of
the newly allocated space. Upon the successful completion of an FOPEN call, an integer value is
returned to the calling program as the file number. This integer value is an index into the AFT, and
the appropriate AFT entry in turn then points to the control block that belongs to this particular file.

Figure 4-1 shows the stack and the AFT entry pointing to the control block. The control block con-
tains buffers, in this case, enough room for three logical records. In the example shown in Figure
4-1, each record is 80 bytes and the records are grouped into a block of three.

A partial list of items contained in a disc file label is shown below; once their values are established,
they cannot be changed by subsequent FOPEN operations:

e File name.

e Sector address.

e Maximum number of logical records.

e Logical record size.

s Block size.

e Foptions (exception: disallow file equations and domain bits).

e Number of extents.

o Extent size.

e File code.

The linkage, then, goes from the user’s stack, via the AFT, to the control block; from the control
block there is a pointer to the label on the disc itself. In the simplified example of Figure 4-1 the file
label is shown on the system disc. However, it could be on any disc in the system.

Since this is a new file, there is no information in the file. Therefore, the access mechanism is the
only information the system has for this file. Depending on the FOPEN parameters specified, it is pos-
sible to write on this file.

If the FWRITE intrinsic was called to write a single 80-byte record, that record would be moved from
the user’s stack to position number | in the buffer. As soon as that physical move from the stack to
the buffer is complete, the FWRITE is also complete as far as the program is concerned. However, no
actual write to the disc takes place. An FWRITE call to write record number 2 would consist of a
similar move from the stack position number 2 in the buffer. Subsequently, record number 3 would
occupy position 3 in the buffer. Immediately after the buffer becomes full, when the third record
has been moved to the buffer, the entire block of information is then transferred to the disc. Thus,
when a file is accessed in a buffered manner, records actually are moved from the stack to the buffer.

Then, when the last record in a block has been moved to the buffer, a physical write of a complete
block occurs. That is, a whole block (in this case three records) is transferred to the system disc.

4-6

Accessing and Altering Files

At FCLOSE time, the access interface is dismantled. If the file is a new file, you must now decide
whether you want the file to remain in the system as a permanent file, as a job/session temporary
file, or whether you want the file to be deleted from the system. Therefore, if information about the
file is to be saved in the system, the FCLOSE intrinsic is used to close the file with a permanent dis~
position. The name of the file, which is available to the file system in the Access Control Block
(ACB), is posted in the system directory along with your logon account and the group you have
specified. MPE finds that area of the directory and posts an entry in the system directory for that file
name. If the name is FILE1, then FILE1 resides on the disc at a certain sector address. Referring to
Figure 4-1, you can see that in the system directory there will be an entry that includes the file name
and some sector address, for example, %123. The sector address %123 then points to the first extent
which includes the label.

ACCESS CONTROL BLOCK (ACE)

STACK
FILE INFORMATION
AVAI FILE RECORD O
TA;EBL(EAFT) RECORD 1 BUFFER O
RECORD 2 FILE CONTROL BLOCK (FCB)
EXTENT O ADDRESS
RECORD 3 EXTENT 1 ADDRESS
RECORD 4 BUFFER 1 EXTENT 2 ADDRESS
ONE ENTRY PER RECORD >
OPEN FILE EXTENT n ADDRESS

DIsC

3

bk EXTENT O

N

o VABEL| bik Tpik | oik | bik

ON
SYSTEM
Disc { FLEY [%123
SYSTEM DIRECTORY (ENTRY
MADE AT FCLOSE TIME)
80 BYTES

RECORD
256 { RECORD| 80 BYTES

|

BYTES/SECTOR ¢ I'REFGRD] 80 BYTES

16 BYTES
LEFT OVER

Figure 4-1. File Access Interface for New Disc Files

Accessing and Altering Files

As soon as the name of the file, pointer to the file label, and accounting information such as creation
date, have been entered in the system directory the file access interface is dismantled. The control
blocks and buffers are deleted from the system and the entry in your stack in the Available File Table
(AFT) is removed.

When the FCLOSE operation is complete, the disc file becomes a permanent file in the system. It can
now be opened as an old disc file. If a file with the name of FILE1 already exists in your logon ac-
count and specified group, this will not be noticed until FCLOSE is called, and, at that time, results in
an error.

Figure 4-2 shows that now there is an entry in the system directory with a file name of FILE1 and a
sector address of %123. To open this file as an existing or old file, the FOPEN parameters would have
to be changed to specify an old file. The resulting operation would be similar to the previous example
with one exception: since an existing file is being opened, it is not necessary to allocate disc space for
it. It is necessary for the system to establish a mechanism for the user to access the disc file. In other
words, the system makes an entry in the Available File Table (AFT), creates a new Access Control
Block (ACB) and File Control Block (FCB), pointing to the existing file on the disc.

STACK

—
Nanme®

N ~

DISC SYSTEM DIRECTORY

~ [=[=] T2

Figure 4-2. Directory File Name and Label Address Pointer

Figure 4-3 shows what occurs if an FOPEN call is issued for an old file named FILE1. In this case,
FOPEN specifies an old file and must supply the name of this file; MPE searches the system directory
under the appropriate account and group for this file.

4-8

Accessing and Altering Files

Once the file is found, MPE establishes the access mechanism, consisting of an ACB and FCB as
before, and a map from the FCB of the extent address on disc.

The other type of old file is the job or session temporary file. One of the differences between a job/
session temporary file and a permanent file is where the actual entry is placed when the file is closed.
Each job or session has a table called the Job Temporary File Directory. In the case of a file that is
saved with temporary disposition, the name of the file and a pointer to the file label are stored in this
Job Temporary File Directory. (Note that the Job Temporary File Directory is unique to each job or
session.) Another difference between a job temporary file and a permanent file is that when a job/ses-
sion terminates, all job/session temporary files are deleted from the system, and file space that was
held by such files is returned to the system.

ACCESS CONTROL BLOCK (ACB)

STACK
FILE INFORMATION
AVAJ R RECORD O
TA;L"?"(EAH.;'E RECORD 1 BUFFER 0
RECORD 2 FILE CONTROL BLOCK (FCB)
EXTENT O ADDRESS
RECORD 3 EXTENT 1 ADDRESS
E RECORD 4 BUFFER 1 EXTENT 2 ADDRESS
ONE ENTRY PER RECORD 5
OPEN FILE EXTENT n ADDRESS
DISC
<l >
‘_—4-/
< TENT O
LABEL| bk T T om | bk | P &
9l1}21]3 N
ON
SYSTEM
DISC FILEY | %123
SYSTEM DIRECTORY

56 RECORD| 80 BYTES
RECORD| 80 BYTES

BYTES/ semoa{ [RECORD] 80 BYTES
7777 16 BYTes

LEFT OVER

Figure 4-3. File Access Interface for Old Disc Files

File characteristics are obtained from different sources, depending on whether the file is a new disc
file, an old disc file, or a file on a device other than disc.

For a new disc file, created with FOPEN fopfions bits (14:2)=00, the characteristics are obtained from
FOPEN intrinsic call parameters and defaults. These characteristics may be overridden by :FILE
command parameters. The disc file and the file label are created according to the characteristics
specified above. (This label remains with the file during its entire existence on the system.)

Accessing and Altering Files

Old permanent disc files are opened with FOPEN foptions bits (14:2)=01. Old temporary disc files are
opened with FOPEN foptions bits (14:2)=10. In either case the file characteristics are obtained from
the disc file label, FOPEN intrinsic parameters and default conditions. Some of these characteristics
may be overridden by :FILE command parameters. The disc file label may override either of the
above specifications. If foption bits (14:2)=11 the existing file can be either an old temporary or an
old permanent file with the Job Temporary File Directory searched first.

When a file is opened on a device other than disc, the file characteristics are established by FOPEN
intrinsic call parameters and defaults. Any :FILE command parameters will override these specifica-
tions and defaults. However, any device-dependent restraints imposed by the file system will over-
ride both of the above settings.

If you have the Non-Sharable Device (ND) capability, the file system allows you to open a physical
I/O device in the same manner as you would open a disc file. (Discs are the only devices which are
considered by MPE to be sharable among several users.) When a non-sharable device has been opened
by FOPEN, it is referred to as a devicefile. The physical characteristics of each different device avail-
able to the file system can differ substantially and these differences affect the characteristics which
are permitted for corresponding devicefiles. For this reason, the file system imposes a number of
device-dependent restrictions on devicefiles. Card reader files, for example, are required to have
read-only access with a blocking factor of one. A summary of these restrictions is presented in Table
4-1.

It should also be noted that some non-sharable devices can be spooled by MPE. This means that data
input from and output to such devices is stored temporarily on the disc in transit between the physical
devices and the user program. Because data can be temporarily buffered in a disc file, the program
assumes that all physical device files which it requires are constantly available to it. Input data typi-
cally is read and stored before a program requires it, and output data is delayed until the program’s
file operations are complete (at FCLOSE time). Other than these external variations, most differences
between a spooled and a non-spooled devicefile are insignificant to the program.

One exception is applications which write large reports. Because a spoolfile is a disc file, it has a max-
imum size of 32 extents, each of which is of a fixed configured size. This size may be too small and
therefore, all extents may become filled before the job is finished. Asa result, data may be lost. The
solution is to have the System Manager raise the number of sectors per spoolfile extent.

The System Manager reconfigures the extent size in the INITIAL/SYSDUMP dialog. The appropriate
question is "# OF SECTORS PER SPOOLFILE EXTENT". A configured extent size of 384 sectors
means the spoolfile has room for approximately 25,000 lines.

An alternative to generating one large output spoolfile is to periodically close the output file and open
a new one. A large report program might start a new output file every 200 pages. While this tech-
nique requires gathering several files for the complete report, it has the advantage of allowing the
first portion of the report to print while the rest of the program is still running.

When a non-sharable devicefile is opened, the device has to be allocated by the system so that the
calling process can access the file. MPE classifies devices as "NEW or OLD", "OLD only", or "NEW
only", depending on the device type. Table 4-2 shows the manner in which devices are classified.
Included in Table 4-2 is the device name, its device type (in octal), and whether it is considered to be
OLD/NEW, OLD only, or NEW only. If FOPEN specified a device type that is considered by MPE to
be output only, MPE considers this to be a NEW file. Normally, NEW files do not require special at-
tention. If the device is available, it will be allocated to the user. Printer forms message, plotter, or
magnetic tape requests are the exceptions, however, and require Operator intervention.

4-10

Accessing and Altering Files

Table 4-1. Device-Dependent Restrictions

INPUT ONLY DEVICES (SERIAL)

Card Reader/Paper Tape Reader
No carriage control
Undefined-length records
If card reader, ASCII only (can only read ASCII cards without using
FCONTROL)
Blocking factor = 1
Domain = 1 (OLD permanent)
If not ASCII, then NOBUF
If FOPEN aoptions access type = 1,2,3, then FOPEN fails (access
violation)

INPUT/OUTPUT DEVICES (PARALLEL)

Terminals
ASCII
NOBUF
Undefined-length records
Blocking factor = 1

INPUT/OUTPUT DEVICES (SERIAL)

Magnetic Tape Drive/Serial Disc Drive/Card Reader/Punch
No restriction

OUTPUT ONLY (SERIAL)

Line Printer/Card Punch/Paper Tape Punch/Plotter
If Line Printer, ASCII only
Undefined-length records
Blocking factor = 1
Domain = NEW
Access type = 1, write only (if read only specified, access
violation results)

UNDEFINED (COMMON CHECKING)

If carriage control specified and not ASCII, access violation results

4-11

Accessing and Altering Files

Table 4-2. Classification of Devices

DEVICE TYPE

DEVICE NAME NUMBER (OCTAL) CLASSIFICATION
Moving-Head Disc 00 NEW or OLD
Flexible Disc 02 NEW or OLD
7911, 7912, 7914, 7933, or 7911/ 03 NEW or OLD
7912 Integrated Cartridge Tape Unit
and 7945 Disc, and 9144 Cartridge
Tape Unit.
Card Reader 10 OLD only
Paper Tape Reader 11 OLD only
Terminals, DSN/DS pseudo terminals, 20 NEW or OLD
NS/3000 pseudo devices, multipoint
terminals, multipoint supervisor,
asynchronous terminal controller.
Intelligent Network Processor 21 NEW or OLD
(INP)
Printing Reader Punch 24 NEW or OLD
DSN/MRIJE Pseudo Device 26 NEW or OLD
Magnetic Tape Drive 30 NEW or OLD
Line Printer 40 NEW only
Card Punch 41 NEW only
Plotter 43 .44 45 NEW only

The flowchart shown in Figure 4-4 illustrates how MPE allocates a non-sharable device when an
FOPEN request is received. First, MPE considers the device type requested by the FOPEN call. If the
device type is input only, this is considered to be an OLD file. Because MPE considers the file to be
an OLD file, it searches for a predefined input file, for example, a file identified with the :DATA
command. If no such file is found, MPE sends a message to the System Operator asking for the logical
device number of the input device.

If an input/output type of device is specified, MPE next considers the user access requested in the
FOPEN call. If read only was requested, the file is considered to be an OLD file. If write only, MPE
considers the file to be a NEW file.

If the FOPEN call requests a user access of input/output, or any other mode (except read only or write

only), MPE next looks at the type of file domain specified in the call (NEW or OLD) and opens the
file accordingly. The system device directories contain entries for each device that contains a file.

4-12

Accessing and Altering Files

START

INPUT ONLY TYPE QUTPUT ONLY

INPUT OR OUTPUT

READ ONLY WRITE ONLY

SET SET
ACCESS — READ ONLY ACCESS — WRITE ONLY
DOMAIN — OLD DOMAIN — NEW
’ < Oow NEW

SEARCH DEVICE
DIRECTORIES FOR
READY OR OPENED
DEVICE SPECIFIED
OR :DATA FILE

OUN
N YES

DIRECTORY?

NO

ASK OPERATOR TO

IDENTIFY DEVICE ASK OPERATOR TO IDENTIFY DEMCE
{NO MESSAGE IF:

1. REALLOCATION FOR CURRENT
DEVICE OWNER.)

2. LABELED TAPE REQUEST & TAPE
W/MATCHING LABEL MOUNTED.

3. AUTOMATIC ALLOCATION SPECIFIED

AND DEVICE IS AVAILABLE

v

GET OPERATOR REPLY
TO FORMS MESSAGE

ALLOCATE THE DEVICE
TO THE REQUESTOR

Figure 4-4. Device Allocation Flowchart

Accessing and Altering Files

Non-spooled devices can have only one file (for example, a card deck in the read hopper of a card
reader), but spooled devices can have several file entries (for example, card decks which have been
read in by the device and are stored as spoolfiles on disc to await access). Such devicefiles are iden-
tified by :DATA commands. Information from a :DATA command image is used to build the device
directory entry and identifies the file by user name and account name and (optionally) job name
and/or file name. The data file may be accessed by a user program when its request matches the
:DATA information and the file is in the READY state. In the case of an unspooled card reader, this
means that only the :DATA card has been read in, and the rest of the deck awaits processing. In the
case of a spooled card reader, however, this means that the :DATA card and the entire deck have been
read and await processing in the form of a disc spoolfile. A permanent :DATA file can be created on
disc. This file can be made available to user programs by using the :STREAM command. This also
results in a disc spoolfile. Refer to the MPE V Commands Reference Manual (32033-90006) for ad-
ditional information of the :STREAMcommand.

If the entry in the device directory indicates that the device is opened, a user process has already
opened the devicefile (device or spoolfile) successfully. In this case, access to the same non-sharable
device is granted only if the requesting process is in the same process tree as the process which has the
file open. This is accomplished by referencing a logical device number, not a device class name.
These subsequent calls to FOPEN will not require Operator intervention; the first device allocation
request is the only one issued to the Operator. This technique might be used by a program which does
a great deal of magnetic tape processing but wants to avoid multiple tape allocation messages.
Attempts to use this technique with a printer can result in intermixing of output data.

A condition code error is returned to the calling process if:

e The device type specified an input-only device and the requested access was write only.

e The device type specified an output-only device and the requested access was read only.

A message to the Operator will be printed if:

e The device is a card reader (spooled or unspooled) and a predefined file with a :DATA card) can-
not be located to match the file requested.

e The device is a line printer and uses the forms message option. If the line printer is spooled, the
Operator dialog takes place when the file is printed, not when it is created by the user program.

e The device is a magnetic tape device and automatic allocation, described below, is not used.

e The device is a plotter.

The Operator message is omitted if:

e The device is being reopened by logical device number by a process in the same process tree as the

one which originally opened the device (except that forms message requests always result in an
Operator message).

4-14

Accessing and Altering Files

¢ For magnetic tapes and serial discs only:

1. The call to FOPEN specifies an ANSI or IBM labeled tape or serial disc, and media with a
valid matching label has already been mounted and recognized by

2. The FOPEN request properly specifies a magnetic tape or serial disc device which has been
configured for automatic allocation, and which is available (not assigned to another process
tree). Refer to the MPE V System Operation and Resource Management Reference Manual
(32033-90005) for a description of the requirements for automatic allocation of magnetic
tapes.

Parsing and Validating File Designators

The FPARSE intrinsic parses and validates a file designator string to determine if it is syntactically
correct. You can employ this intrinsic to check a formal designator representing a file before at-
tempting to open the file via FOPEN. FOPEN also calls FPARSE, however, by calling FPARSE directly
through your program, syntax errors are easier to identify.

MEPE file designators used for the file system and two user interface commands include a remote en—
vironment ID (envid). This allows the user to indicate that a file is to be accessed from a remote en-
vironment established by the user with the :DSLINE or :REMOTE HELLO command. FPARSE
facilitates the changes required for the file designator extension. It provides the only location within
MPE where file designators are parsed and syntax is checked.

The optional items (input) and vectors (output) arrays enable you to acquire parsing information for
the file designator; namely the length of each item and its position in the string. The items array
must be set up before the call to FPARSE. This is done by entering the item numbers for which pars-
ing information is required into the items array. They may be entered in any order you desire. The
items array is terminated with a zero entry. The possible items (itemnums), as shown in the examples
below, are file name (1), lockword (2), group name (3), account name (4), and environment ID (5).
The environment ID is treated as a single item and is not parsed into environment name, domain, and
organization.

The following are examples of the ifems and the vectors array pair. The order of entries in the vec-
tors array corresponds to the order of items in the ifems array. Each double word entry in the vectors
array will return the byte offset of the item in the first word, and the length in bytes of the item in
the second word. However, the last entry of the vecfors array has a different meaning from that of
the other entries: The second word gives the total length of the file string, and the first word gives a
system file code when applicable.

4-15

Accessing and Altering Files

EXAMPLE 1:
In Example 1 the file string is "F ILENAME/LOCKWORD. GROUP . ACCOUNT : ANIMAL . INDDCL . HPBCG" :
111111111122222222223333333333444444444455

012345678901 2345678301 234567890123456789012345678901
"fjilename/lockword.group.account :animal.inddcl.hpbcg "

items array vectors array

111111 1111111111222222222233
0123456789012345 01234567890123456789012345678901
Fmmmm————————— e + e ettt T L +
! 1 1C 008 0 ! 8 !
Jmmmmmmmmmmm oo T Tt !
! 5 1C 18 32 ! 19 !
P T R Gt et EE PP R !
! 3 1C 2)8 18 | 5 !
P I :
! 4 1C 3! 24 ! 7 |
R e I S e e e !
! 2 1C 41 9 ! 8 !
P T R !
! 0 1C 51 0 ! 51 !
e ———— + e m e — e ———— e — e ————— +

The items array, as illustrated above, can be listed in any order, or left unspecified if not
required.

EXAMPLE 2:

In Example 2 the file string is " #*F ILENAME : ANIMAL":

111111
0123456789012345
"sfilename:animal "'
items array vectors array
11111 1111111111222222222233
0123456789012345 012345678901 23456789301 2345678301
tmmmm e —— e + S +
! 1 1C 0O 1 H 8 i
e e R bl | o e H
H 2 1C 1D 0 H 0 H
R L LD DLl H et H
H 3 1C 21 0 H 0 H
L ittt bkt b H - e i
H 4 1C DI 0 { 0 '
- ! o e H
H 5 1C i 10 ! 6 !
- H e e e '
{ 0 1C 5 0 ! 15 H
tmmmm e ———— + b - ————————— +

4-16

Accessing and Altering Files

EXAMPLE 3:

In Example 3 the file string is " $0LDPASS":

012345678
"'$0LDPASS **
items array vectiors array

111111 1111111111222222222233

012345678901 2345 01234567890 1234567890 12345678901
bprm—————————————— + D Rt ettt +
i 1 1C 0 0 i 8 i
ittty i ittt ittt i

i 2 iC i 0 i 0 i
ittt i st i

i 3 iC 24 0 : 0 i

e iiai ittty i b e i

i 4 1 3Di 0 i 0 i

L ininiehitit i ittt ittt i

i 5 1C DI 0 i 0 i
ittty i ittt ittt i

i 0 i 5)i 3 i 8 i

R et e R + et ittt et T +

Note that " $" is a special exception to the rules of file names and is considered part of the file name
unlike "#", which is not.
Opening a New Disc File
Figure 4-5 contains an SPL program which opens two files: a card reader file and a new disc file.
The second FOPEN call in Figure 4-5 (Statement 00019000):
0OUT : =FOPENCOUTPUT,%4,%101,128);
opens the new disc file. The parameters specified are:
formaldesignator DATAONE, which is contained in the byte array OUTPUT.

foptions %4, for which the bit pattern is as follows:

O|1|2}3(4]5|6|7]|8]9{10|11(12]13]|14]15] BITS

gjojojojojoj]ojoj{0|[O0OjO]|]0O]J0O}]1]0] O] BINARY

4 OCTAL

The above bit pattern specifies the following file options:

Domain: New file. Bits (14:2) = 00.
ASCII/Binary: ASCII. Bit (13:1)=1.

Accessing and Altering Files

aoptions 4101, for which the bit pattern is as follows:

o|lt1|2|3|4|5(6|7|8]9]tal11]12]13]1a]15] ens

0Oj6jojofo|jojojo|ao|t1}jOojO0]|]Oo]|oja| 1| BINARY

1 ¢ 1 OCTAL

The above bit pattern specifies the following access options:

Access Type: WRITE access only. Bits (12:4) = 0001 .
Exclusive: EXCLUSIVE access. Bits (8:2)=01.

recsize The logical record size is specified as 128 words.
All other parameters are omitted from the FOPEN intrinsic call.

Once the file is opened, the file number (used by other system intrinsics when referencing this file) is
returned to the variable OUT.

The condition code for second FOPEN call is checked with the statement on line 00020000 of Figure
4-5. If the condition code is CCL, signifying that the FOPEN request was denied, the next four
statements, starting with the BEGINstatement, are executed.

The statement on line 00036000 of Figure 4-5 calls the PRINT ‘FILE /INFO intrinsic, which prints a
File Information Display on the standard list device, enabling you to determine the error number
returned by FOPEN. The parameter (OUT) specifies the file number returned through the FOPEN in-
trinsic. If the file was not opened successfully, OUT is set to 0, where 0 specifies that the File
Information Display will reflect the status of the file referenced in the last call to FOPEN. Refer to
Appendix A for a discussion of the File Information Display.

The QUIT intrinsic call (statement 00023000 in Figure 4-5) aborts the process. The parameter (2) is
an arbitrary user-supplied number. When a QUIT intrinsic is executed, this number is printed as part
of the resulting abort message, allowing you to determine, in the case of multiple QUIT intrinsic calls
in a program, which specific QUIT call was executed.

NOTE

The QUIT intrinsic causes MPE to close all files with no
change. Thus, new files are deleted, and old files are
saved and assigned to the same domain to which they
belonged previously. This may be overridden by a
:FILE command.

4-18

Accessing and Altering Files

PAGE 0001

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00008000
00010000
00011000
00012000
00013000

- 00014000

00015000
00016000
00017000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000
00047000

HP32100A.08.01 [4W] (C) HEWLETT-PACKARD COMPANY 1980
0 SCONTROL USLINIT
0 BEGIN

00000
00000
00000
00005
00004
00005
00005
00005
00005
00005
00005
00005
00012
00013
00013
00015
00017
00017
00030
00031
00031
00033
00035
00035
00035
00043
00044
00044
00046
00050
00050
00051
00056
00057
00057
00061
00063
00063
00066
00066
00072
00073
00073
00075
00077
00077

[

H RN RN RERNDRNRNRPBBRRON = RN RN RN RN b e b = s s b e e

BYTE ARRAY INPUT(0:6):="INFILE ",

BYTE ARRAY DEV(0:4):="CARD “;

BYTE ARRAY OUTPUT(0:7):="DATAONE ";

ARRAY BUFFER(0:127);
INTEGER IN,OUT,LGTH;

INTRINSIC FOPEN,FREAD,FWRITE ,FCLOSE,PRINT ' FILE INFO,QUIT;

<< END OF DECLARATIONS >>

IN:=FOPEN(INPUT, %S, ,40,DEV);

IF < THEN
BEGIN
PRINT'FILE'INFO(IN);
QUIT(1);
END;

QUT :=FOPEN(OUTPUT,%4,%101,128);

IF < THEN
BEGIN
PRINT'FILE'INFO(OUT);
QUIT(2);
END;

COPY'LOOP:
LGTH: =FREAD(IN,BUFFER,40);

IF < THEN
BEGIN
PRINT'FILE'INFO(IN);
QUIT(3);
END;
IF > THEN GO END'OF 'FILE;

FWRITE(OUT ,BUFFER,LGTH,0);

IF <> THEN
BEGIN
PRINT'FILE’INFO(OUT);
QUIT(4);
END;
GO COPY'LOOP;

END’'OF "FILE:

FCLOSE(OUT ,%1,0);
IF < THEN
BEGIN
PRINT’FILE'INFO(OUT);
QUIT(S);
END;

m
=
o

<<CARD READER>>
<<CHECK FOR ERROR>>

<<PRINT ERROR>>
<<ABORT>>

<<NEW DISC FILE>>
<<CHECK FOR ERROR>>

<<PRINT ERROR>>

<<ABORT>>

<<READ A CARD>>

<<CHECK FOR ERROR>>

<<PRINT ERROR>>
<<ABORT>>

<<CHECK FOR EOF>>
<<COPY CARD TO DISC>>
<<CHECK FOR ERROR>>

<<PRINT ERROR>>
<<ABORT>>

<<CONTINUE COPYING>>

<<MAKE PERMANENT>>
<<CHECK FOR ERROR>>

<<PRINT ERROR>>
<<ABORT>>

Figure 4-5. Opening a New Disc File

4-19

Accessing and Altering Files

Opening an Old Disc File
Figure 4-6 contains an SPL program that opens three files: an old disc file, $STDIN, and $STDLIST.
Statement 00016000:
DFILE1 : =FODPEN(DATA1,%5,%345,128);
opens the old disc file. The parameters specified are:
formaldesignator DATAONE, which is contained in the byte array DATA1.

foptions %5, for which the bit pattern is as follows:

Q|1 |2]3]4]|5(6|7]|8]|9[10111]12]13|14]15]| BITS

0[]0]0]|]0l0}]0]0}]0}j0]0]0|0]|0]|1]0] 1] BINARY

S OCTAL

The above bit pattern specifies the following file options:

Domain: Old permanent file. The system file directory should be
searched. Bits (14:2)=01.

ASCII/Binary: ASCII. Bit (13:1)=1

aoptions %345, for which the bit pattern is as follows:

O|1f2]|3]|]4|5|6|7|8|9]|10]11]12]13|14]15] BITS

clo]J]ojJo]lojo]ojoOo]|1}1]|1]0|0] 1|01 | BINARY

3 4 S OCTAL

The above bit pattern specifies the following access options:

Access Type: Update access. (This file is updated later in the program with
the FUPDATE intrinsic.) Bits (12:4) = 0101.

Multirecord: Non-multirecord mode. Bit (11:1) = 0.

Dynamic Locking: Dynamic locking allowed. Bit (10:1) = 1.

Exclusive: Share access. Bits (8:2)=11.

recsize The logical record size is specified as 128 words.
All other parameters are omitted in the FOPEN intrinsic call. Note that for existing files FOPEN will
return a lockword violation (FSERR92 via FCHECK) if the file has a lockword, and the lockword is not

included in the formaldesignator parameter nor (for sessions only) supplied by the user on request.

Once the file is opened, the file number (used by other file system intrinsics when referencing this
file) is returned to the variable DFILE1.

4-20

Accessing and Altering Files

PAGE 0001
00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00008000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00018000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000

HP32100A.08.01 [4W] (C) HEWLETT-PACKARD COMPANY 1980
$CONTROL USLINIT
BEGIN
BYTE ARRAY DATA1(0:7):="DATAONE ";
ARRAY BUFFER(0:127);
INTEGER DFILE1,LGTH,DUMMY, IN,LIST;
INTRINSIC FOPEN,FREAD ,FUPDATE ,FLOCK,FUNLOCK,FCLOSE,
PRINT'FILE’ INFO,QUIT,FWRITE, FREAD;
PROCEDURE FILERROR(FILENO,QUITNO};

00000
00000
00000
00005
00005
00005
00005
00005
00000
00000
00000
00000
00002
00004
00000
00000
00011
00015
00024
00030
00040
00044
00044
00044
00047
00053
00061
00065
00070
00075
00101
00110
00114
00115
00121
00125
00127
00133
00140
00140
00142
00146
00151
00155

0

0
1
1
1
1
1
1
1
1
1
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

VALUE QUITNO;

INTEGER FILENO,QUITNO;

BEGIN
PRINT’FILE ' INFO(FILENO);
QUIT(QUITNO);

END;

<<END OF DECLARATIONS>>
DFILEL:=FOPEN(DATAL,%S5,%345,128); <<OLD DISC FILE>>

IF < THEN FILERROR(DFILEL1,1);
IN:=FOPEN(,%244);

IF < THEN FILERROR(IN,2);
LIST:=FOPEN(,%614 ,%1);

IF < THEN FILERROR(LIST,3);

UPDATE ’ LOOP:

END

FLOCK(DFILEL,1);

IF < THEN FILERROR(DFILE1,4);
LGTH: =FREAD(DFILE ,BUFFER,128);
IF < THEN FILERROR(DFILE1,S);
IF > THEN GO END’OF 'FILE;
FWRITE(LIST,BUFFER,-20,%320);
IF <> THEN FILERROR(LIST,6);
DUMMY : =FREAD (IN,BUFFER(30),5);
IF < THEN FILERROR(IN,7);

IF > THEN GO END’OF 'FILE;
FUPDATE (DFILE1,BUFFER,128);

IF <> THEN FILERROR(DFILE1,8);
FUNLOCK (DFILEL);

IF <> THEN FILERROR(DFILE1,9);
GO UPDATE 'LOOP;

'OF 'FILE;

FUNLOCK(DFILEL);

IF <> THEN FILERROR(DFILE1,10);
FCLOSE(DFILE1,0,0);

IF < THEN FILERROR(DFILE1,11);

END.

<<CHECK FOR ERROR>>
<<$STDIN>>

<<CHECK FOR ERROR>>
<<$STDLIST>>
<<CHECK FOR ERROR>>

<<LOCK FILE/SUSPEND
<<CHECK FOR ERROR>>
<<GET EMPLOYEE RECO
<<CHECK FOR ERROR>>
<<CHECK FOR EOF>>

<<EMPLOYEE NAME>>

<<CHECK FOR ERROR>>
<<EMPLOYEE NUMBER»>>
<<CHECK FOR ERROR>>

<<EMPLOYEE RECORD>>
<<CHECK FOR ERROR>>
<<ALLOW OTHER ACCES
<<CHECK FOR ERROR>>
<<CONTINUE UPDATE>>

<<ALLOW OTHER ACCES
<<CHECK FOR ERROR>>
<<DISP-NO CHANGE>>

<<CHECK FOR ERROR>>

Figure 4-6. Opening an Old Disc File

4-21

Accessing and Altering Files

The condition code for this FOPEN is checked in line 00017000 of Figure 4-6. If the condition code
is CCL, the error-check procedure FILERROR is called, and two parameters, DFILE1 and 1, are
passed to it for FILEND and QUITNO. (Refer to statements 00008000 through 00014000 in Figure
4-6.) DFILE1 contains the file number (assigned to it when the FOPEN intrinsic opened the file) to be
passed by FILEND, and 1 represents an arbitrary user-supplied number to be passed by QUITNO.

The FILERROR procedure passes the file number (through FILEND) to the PRINT ‘FILE’INFO intrin-
sic. If the file was not opened successfully, FILEND is set to 0 , where O specifies t status of the file
referenced in the last call to FOPEN. The PRINT/FILE‘INFO intrinsic prints a File Information
Display on the standard output device, enabling you to determine the error number returned by
FOPEN. Refer to Appendix A for a discussion of the File Information Display.

The QUIT intrinsic call (statement 00013000 of Figure 4-6) aborts the program’s process. The value
of QUITND is 1 and this number is printed as a part of the resulting abort message, allowing you to
determine, in the case of multiple QUIT intrinsic calls in a program, which specific QUIT call was ex-
ecuted. The system Job Control Word, JCW, is set to %100001 in this example.

Opening a File on a Device Other Than Disc
Figure 4-7 contains an SPL program that opens a card reader file and a disc file, reads the contents of
a card deck and writes the records read from the card deck into the disc file and, finally, closes the
disc file as a permanent file.
If the desired card deck has been read in by the spooler before the program which references the deck
executes, or if the :DATA card of that deck has been read by an unspooled card reader, the system
finds an entry for the card reader file in the device directory and allocation is automatic. If the card
deck is not read before the program executes, however, the system will print a message on the System
Console requesting the System Operator to reply with the logical device number of the device on
which the file resides.
In Figure 4-7, statement 00010000:

IN:=FOPENCINPUT, %5, ,40,DEV);
calls the FOPEN intrinsic to open the card reader file. The parameters specified are:

formaldesignator INFILE, which is contained in the byte array INPUT.

foptions %5, for which the bit pattern is as follows:

of12]|3|4|5|6]7|8]|9]|10]11]12]13]14[15] BITS

0o|locjc|0ojo|l0o|{0]0|0Q0|Oj0O]O|O]|1]0O][1| BINARY

S OCTAL

The above bit pattern specifies the following file options:

Domain: OIld permanent file, system file domain. Bits (14:2) = 01.
ASCII/Binary: ASCII. Bit (13:3)=1.

4-22

Accessing and Altering Files

aoptions Omitted. All bits are set to zero. Access defaults to READ only.
recsize 40 words.
device CARD . The byte array DEV, containing the string "CARD ", is specified

for the device parameter.
All other parameters are omitted in the FOPEN call.

Once the file is opened, the file number (used by other file system intrinsics when referencing this
file) is returned to the variable IN.

The next statement in the program (line 00011000 of Figure 4~7) checks the condition code. If the
condition code is CCL, signifying that the FOPEN request was denied, the next four statements, start—
ing with the BEGINstatement, are executed.

Line 00013000 in Figure 4-7, PRINT’/FILE‘INFOCIN); calls the PRINT’FILE‘INFOD intrinsic,
which prints a File Information Display on the standard list device, enabling you to determine the er-
ror number returned by FOPEN. The parameter IN specifies the file number returned through the
FOPENintrinsic. If the file was not opened successfully, INis set to 0, where 0 specifies that the File
Information Display will reflect the status of the file referenced in the last call to FOPEN. Refer to
Appendix A for a discussion of the File Information Display.

The QUIT intrinsic call in line 00014000 of Figure 4-7:

QUITC1);

aborts the process. The parameter 1 is an arbitrary user-specified number. When the program is
terminated this number is displayed allowing you to determine, in the case of multiple QUIT intrinsic
calls in a program, which specific QUIT call was executed.

Using FREAD and FWRITE with $STDIN and $STDLIST

If the standard input device ($STDIN) and the standard list device ($STDLIST) are opened with an
FOPEN intrinsic call, the FREAD and FWRITE intrinsics can be used with these devices. For example,
the FREAD intrinsic can be used to transfer information entered from a terminal to a buffer in the
stack, and the FREAD intrinsic can be used to transfer information from a buffer in the stack directly
to the standard list device.

4-23

Accessing and Altering Files

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00009000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00018000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000

PAGE 0001

HP32100A.08.01 [4W] (C) HEWLETT-PACKARD COMPANY 1980

00000
00000
00000
00005
00004
00005
00005
00005
00005
00005
00012
00013
00013
00015
00017
00017
00030
00031
00031
00033
00035
00035
00035
00043
00044
00044
00046
00050
00050
00051
00056
00057
00057
00061
00063
00063
00066
00066
00072
00073
00073
00075
00077
00077

0

RN NNEFP R R FRNRDRN RN RN R RN RNNPRE R RRNRDRN R R e e e e O

$CONTROL USLINIT
BEGIN

BYTE ARRAY INPUT(0:6):="INFILE ";

BYTE ARRAY DEV(0:4):="CARD “;

BYTE ARRAY OUTPUT(0:7):="DATAONE ";

ARRAY BUFFER(0:127);
INTEGER IN,OQUT,LGTH;

INTRINSIC FOPEN,FREAD ,FWRITE,FCLOSE,PRINT'FILE' INFO,QUI

<< END OF DECLARATIONS >>

IN:=FOPEN(INPUT,%5, ,40,DEV);

IF < THEN
BEGIN
PRINT'FILE’INFO(IN);
QUIT(L1);
END;

OUT:=FOPEN(OUTPUT,%4,%101,128);

IF < THEN
BEGIN
PRINT'FILE’INFO(OUT);
QUIT(2);
END;
COPY’ LOOP:
LGTH:=FREAD(IN,BUFFER,40);
IF < THEN
BEGIN
PRINT'FILE’INFO(IN);
QUIT(3);
END;
IF > THEN GO END'OF 'FILE;
FWRITE({OUT,BUFFER,LGTH,0]};
IF < THEN
BEGIN
PRINT'FILE’INFO(OUT);
QUIT(4);
END;
GO COPY'LOOP;
END’OF 'FILE:
FCLOSE(OUT,%1.,0);
IF < THEN
BEGIN
PRINT'FILE'INFO(OUT);
QUIT(S]);
END;
END;

<<CARD READER>>
<<CHECK FOR ERROR>>

<<PRINT ERROR>>
<<ABORT>>

<<NEW DISC FILE>>
<<CHECK FOR ERROR>>

<<PRINT ERROR>>

<<ABORT>>

<<READ A CARD>>

<<CHECK FOR ERROR>>

<<PRINT ERROR>>
<<ABORT>>

<<CHECK FOR EOF>>
<<COPY CARD TO DISC
<<CHECK FOR ERROR»>>

<<PRINT ERROR>>
<<ABORT>>

<<CONTINUE COPYING>

<<MAKE PERMANENT>>
<< CHECK FOR ERROR>

<<PRINT ERROR>>
<<ABORT>>

Figure 4-7. Opening a File on a Device Other Than Disc

4-24

Accessing and Altering Files

OPENING $STDIN. Figure 4-8 contains a program that opens $STDINso that FREAD intrinsic calls
can be issued directly against the standard input device (in this case a terminal, since the program was
run interactively).
The standard input device is opened with the FOPEN intrinsic call:
IN:=FOPEN(, %244);
The parameters specified in the above intrinsic call are as follows:
formaldesignator Omitted.
Default: A temporary nameless file, that can be read but not saved, is

assigned.

foptions %244, for which the bit pattern is as follows:

0|1]2}]3|4|5]6]7|8}9]|10]11]112113]14{15] BITS

0]0|]0j0O0fj0]0O0]|]0O]0O]|1]0}1]0}]0]1]|0] 0] BINARY

2 4 4 OCTAL

The above bit pattern specifies the following file options:
Domain: New file. No search of system or job temporary file directory is
necessary. Bits (14:2) = 00.
ASCII/Binary: ASCII Bit (13:1)=1.
Default Designator: $STDIN. Bits (10:3) = 100.
Record Format: Undefined length. Bits (8:2) = 10.
aoptions Omitted. All bits are set to zero, access defaults to READ only.
All other parameters are omitted in the FOPEN intrinsic call.
Since $STDIN is specified (bits (10:3)=100), MPE knows the file exists and ignores the new file
specification without reporting an error. Once the file is opened, the file number (used by other file

system intrinsics when referencing this file) is returned to the variable IN.

The next statement in the program (00019000) checks the condition code. If the condition code is
CCL, signifying that the FOPEN request was denied, the error-check procedure FILERROR is called.

The FILERROR procedure (statements 00008000 through 00014000) calls the PRINT‘FILE “INFD in-
trinsic, which prints a File Information Display on the standard list device, enabling you to determine
the error number returned by FOPEN.

The QUIT intrinsic call (statement 00013000 in Figure 4-8) aborts the process.

OPENING $STDLIST. In Figure 4-8, statement 00020000:
LIST:=FOPENC, %614, %1);

opens the standard list device so that the FWRITE intrinsic can be used to transfer information directly
to the device.

4-25

Accessing and Altering Files

formaldesignator Omitted.
Default: A temporary nameless file, that can be written on but not saved,
1s assigned.

foptions %614, for which the bit pattern is as follows:

O|1]2]|3|4|5|6|7|8]|9]|10[1t1]112]13]14]|15] BITS

0j0|]0j0]0ojOo|O|1]1]0}|O|O]|1]1]0]O0]| BINARY

6 1 4 OCTAL

The preceding bit pattern specifies the following file options:

Domain: New file. No search of system or job temporary file directory is
necessary. Bits (14:2) = 00.

ASCII/Binary: ASCII. Bit (13:1)=1.

Default Designator: $STDLIST. Bits (10:3) = 001.

Record Format: Undefined length. Bits (8:2) = 10.

Carriage Control: Carriage control character expected. Bit (7:1)=1.

aoptions %1, for which the bit pattern is as follows:

0O1112]3|4]5]6]|7]|8]|9]|10]11]12]13|14|15| BITS

0jlojojojo|o|l0Oj0o]J]Oojo]jOo]jo|lo|O]O] 1| BINARY

1 OCTAL

The preceding bit pattern specifies the following access options:
Access Type: WRITE access only. Bits (12:4) = 0001.
All other parameters are omitted in the FOPEN intrinsic call.

Once the file is opened, the file number (used by other file system intrinsics when referencing this
file) is returned to the variable LIST.

The next statement in the program (00021000 of Figure 4-8) checks the condition code. If the condi-
tion code is CCL, signifying that the FOPEN request was denied, the error-check procedure FILERROR
is called.

The FILERROR procedure (statements 00008000 through 00014000 in Figure 4-8) calls the
PRINT‘FILE’INFO intrinsic, which prints a File Information Display on the standard list device,
enabling you to determine the error number returned by FOPEN.

The QUIT intrinsic call (statement 00013000) aborts the process.

4-26

Accessing and Altering Files

PAGE 0001

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00008000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
000198000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00028000
00030000
00031000
00032000
00034000
00035000
00036000
00037000
00038000
00038000
00040000
00041000
00042000
00043000
00044000

HP32100A.08.01 [4W] (C) HEWLETT-PACKARD COMPANY 1980

00000
00000
00000
00005
00005
00005
00005
00005
00000
00000
00000
00000
00002
00004
00000
00000
00011
00015
00024
00030
00040
00044
00044
00047
00053
00061
00065
00070
00075
00101
00110
00114
00115
00121
00125
00127
00133
00140
00140
00142
00146
00151
00155

0
0
1

R e S O T Tl e T o I o S N S N O e T T e e e S L I I T S e e S R T o o

$SCONTROL SUSLINIT
BEGIN
BYTE ARRAY DATA1(0:7):="DATAONE *“;
ARRAY BUFFER({0:127);
INTEGER DFILEL,LGTH,DUMMY IN,6LIST;
INTRINSIC FOPEN,FREAD,FUPDATE ,FUNLOCK,6FCLOSE,
PRINT'FILE’INFO,QUIT,FWRITE,FREAD;
PROCEDURE FILERROR(FILENO,QUITNO);
VALUE QUITNO;
INTEGER FILENO,QUITNO;
BEGIN
PRINT'FILE'INFO(FILENO);
QUIT(QUITNO);
END;
<<END OF DECLARATIONS>>
DFILEL:=FOPEN(DATAL1,%5,%345,128);<<0OLD DISC FILE>>

IF < THEN FILERROR(DFILE1,1}; <<CHECK FOR ERROR>>
IN:=FOPEN(,%244); <<$STDIN>>
IF < THEN FILERROR(IN,2); <<CHECK FOR ERROR>>
LIST:=FOPEN(,%614,%1); <<$STDLIST>>
IF < THEN FILERROR(LIST,3); <<CHECK FOR ERROR>>
UPDATE ' LOOP:
FLOCK(DFILEL, 1); <<LOCK FILE/SUSPEND>>
IF < THEN FILERROR(DFILE1,4); <<CHECK FOR ERROR>>
LGTH:=FREAD(DFILEl ,BUFFER,128); <<GET EMPLOYEE RECD>>
IF < THEN FILERROR(DFILE1,5); <<CHECK FOR ERROR>>
IF > THEN GO END'OF’'FILE; <<CHECK FOR EOF>>
FWRITE(LIST,BUFFER,-20,%320); <<EMPLOYEE NAME>>
IF <> THEN FILERROR(LIST,6); <<CHECK FOR ERROR>>
DUMMY : =FREAD (IN,BUFFER(30),5); <<EMPLOYEE NUMBER>>
IF < THEN FILERROR(IN,7); <<CHECK FOR ERROR>>
IF > THEN GO END'OF 'FILE;
FUPDATE (DFILE1l,BUFFER,128); <<EMPLOYEE RECORD>>
IF <> THEN FILERROR(DFILE1,8); <<CHECK FOR ERROR>>
FUNLOCK (DFILEL); <<ALLOW OTHER ACCESS>
IF <> THEN FILERROR(DFILEL,9); <<CHECK FOR ERROR>>
GO UPDATE'LOOP; <<CONTINUE UPDATE>>
END’OF 'FILE:
FUNLOCK (DFILEL); <<ALLOW OTHER ACCESS>
IF <> THEN FILERROR(DFILE1,10); <<CHECK FOR ERROR>>
FCLOSE(DFILE1,0,0); <<DISP-NO CHANGE>>

IF < THEN FILERROR(DFILEL,61l); <<CHECK FOR ERROR>>
END.

Figure 4-8. Opening $STDIN and $STDLIST

4-27

Accessing and Altering Files
CLOSING FILES

To terminate access to a file, you use the FCLOSE intrinsic. The FCLOSE intrinsic applies to files on all
devices, and deallocates the device on which the file resides. If a file has several concurrent FOPEN
calls issued by the same user, the device is not deallocated until the last "nested" FCLOSE intrinsic is
executed.

- The FCLOSE intrinsic may be used to change the disposition of a disc or magnetic tape file. For ex-
ample, a file opened as a new file can be closed and saved as an old file with permanent or temporary
disposition. Alternately, a disc file opened as a temporary file can be closed as temporary or saved as
a permanent file.

When the FOPEN intrinsic opens a disc file specified as new in the foptions parameter (bits (14:2) =
00), neither the job temporary domain nor the system file domain is searched to ensure that a file of
the same name does not exist already. However, if this file is saved with the FCLOSE intrinsic, a
search is conducted. The job temporary file domain is searched if the file is to be saved as a tem-
porary job/session file and the system file domain is searched if the file is to be saved as a permanent
file. If a file of the same name is found in either directory, an error code is returned to the calling
process. Thus, it is possible to open a new file with the same name as an existing file, but an error
will occur if an FCLOSE intrinsic attempts to save such a file in the same domain with a file of the
same name.

Similarly, when the FOPEN intrinsic opens a file specified as an old temporary file in the foptions
parameter (bits (14:2) = 10), only the job temporary file domain (not the system file domain) is
searched. Thus it is possible to have three files with the same name, a permanent file, a new file, and
a temporary file. If a file opened as temporary is closed and saved as a permanent file with the
FCLOSE intrinsic, the system file domain is searched. If a file of the same name is found, an error
code is returned to the calling process.

If an FCLOSE intrinsic call is not issued in a program in which files have been opened, MPE closes all
files automatically when the program’s process terminates. In this case, all opened files are closed
with the same disposition they had before being opened. New files are deleted, old files are saved and
assigned to the domain in which they belonged previously, either permanent or temporary. This may
be altered, however, with a :FILE command. Further information on changing domains can be
found in the MPE File System Reference Manual (30000-90236). The following examples illustrate
how a new file can be closed as either a temporary file or a permanent file.
Closing a New File as a Temporary File
Figure 4-9 contains an FCLOSE intrinsic call that closes a new file as a temporary job file.
The FCLOSE intrinsic call in statement 00036000:

FCLOSE(DFILE2,%2,0);

closes the file specified by DFILE2. The parameters specified in the above intrinsic call are:

1ilenum ontained in the identifier . e file number was assigned to
A C ined in the identifier DFILE2. The fil b igned
DFILE2 when FOPEN opened the file.

disposition %2, for which the bit pattern is as follows:

4-28

Accessing and Altering Files

0l1]12]|3}14|5]6|]71819110]11[12113]|14|15] BITS

0|0jO0|0}]0O|0|0|O0}jO|]0]|]OjO}|0]|O]1]0]| BINARY

2 OCTAL

The above bit pattern specifies the following:

Domain Disposition: Temporary job file (rewound). The file is retained in
the user’s temporary (job/session) file domain and can thus be reopened by
any process within the job/session. The uniqueness of the file name is
checked; if a file of this name already exists in the job temporary file
domain, an error code is returned. If the file resides on unlabeled magnetic
tape, the tape is rewound, but not unloaded. However, if this is the last
FCLOSE on the device, then the tape is rewound and unloaded. Bits (13:3)
= 010.

seccode 0. Unrestricted access.
A condition code of CCL is returned if the file is not closed successfully. Statement 00037000:

IF < THEN FILERROR(DFILE2,7);
checks the condition code. If the condition code is CCL, the error-check procedure FILERROR
(statements 00011000 through 00017000 in Figure 4-9) is called. The FILERROR procedure calls the
PRINTFILE /INFO intrinsic, which prints a File Information Display on the standard list device,
enabling you to determine the error number returned to FCLOSE.
The QUIT intrinsic call (00016000) aborts the process.
The QUIT intrinsic causes MPE to close all files with no change. Thus new files are deleted, and old

files are saved and assigned to the same domain to which they belonged previously, unless otherwise
requested in a :FILE command.

4-29

Accessing and Altering Files

PAGE 0001
00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00008000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00028000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00038000
00040000

HP32100A.08.01 [4W] (C) HEWLETT-PACKARD COMPANY 1980
00000 O SCONTROL USLINIT
00000 0 BEGIN
00000 1 BYTE ARRAY DATA1(0:7):="DATACNE *“;
00005 1 BYTE ARRAY DATA2(0:7):="DATATWO ";
00005 1 ARRAY LABL(0:8):="EMPLOYEE DATA FILE";
00011 1 ARRAY BUFFER(0:127);
00011 1 INTEGER DFILE1l,DFILE2, DUMMY;
00011 1 DOUBLE REC;
00011 1 INTRINSIC FOPEN,FWRITELABEL,FGETINFO,FREAD ,WRITEDIR,FCLOSE
00011 1 PRINT’FILE’INFO,QUIT;
00011 1 PROCEDURE FILERROR(FILENO,QUITNO);
00000 1 VALUE QUITNO;
00000 1 INTEGER FILENO,QUITNO;
00000 1 BEGIN
00000 2 PRINT'FILE’INFO(FILENO);
00002 2 QUIT(QUITNO);
00004 2 END;
00000 1 <<END OF DECLARATIONS>>
00000 1 DFILELl:=FOPEN(DATAL1,%5,%100); <<0OLD FILE-DATAONE>
00010 1 IF < THEN FILERROR(DFILEL,1l); <<CHECK FOR ERROR>>
00014 1 DFILE2:=FOPEN(DATA2,%4,%4,128,,,1); <<NEW FILE-DATATWO>
00027 1 IF < THEN FILERROR(DFILE2,2); <<CHECK FOR ERROR>>
00033 1 FWRITELABEL(DFILE2,LABL,9,0); <<FILE ID>>
00041 1 IF <> THEN FILERROR(DFILE2,3); <<CHECK FOR ERROR>>
00045 1 FGETINFO(DFILEL,,,,,,,,, ,REC); <<LOCATE EOF>>
00053 1 IF < THEN FILERROR(DFILE1l,4); <<CHECK FOR ERROR>>
00057 1 INVERT'LOOP:
00057 1 DUMMY : =FREAD (DFILE1,BUFFER, 128); <<0LD FILE RECORD>>
00065 1 IF < THEN FILERROR(DFILEL,S); <<CHECK FOR ERROR>>
00071 1 IF > THEN GO END'OF 'FILE; <<CHECK FOR EOF>>
00072 1 REC:=REC-1D <<LAST REDC NO>>
00076 1 FWRITEDIR(DFILE2 ,BUFFER, 128 ,REC); <<INVERT REC ORDER>
00103 1 IF <> THEN FILERROR(DFILE2,6); <<CHECK FOR ERROR>>
00107 1 GO INVERT'LOOP; <<CONTINUE OPERATIO
00116 1 END'OF 'FILE:
00116 1 FCLOSE(DFILE2,%2,0); <<SAVE NEW AS TEMP>
00122 1 IF < THEN FILERROR(DFILE2,7}; <<CHECK FOR ERROR>>
00126 1 FCLOSE(DFILEL1,4,0); <<DELETE OLD FILE>>
00132 1 IF <> THEN FILERROR(DFILEL,K8); <<CHECK FOR ERROR>>
00136 1 END.

Figure 4-9. Closing a New File as a Temporary File

4-30

Accessing and Altering Files

Closing a New File as a Permanent File

Figure 4-10 contains an FCLOSE intrinsic call that closes a new file as a permanent file. The FCLOSE
intrinsic call in statement 00038000:

FCLOSE(DOUT, %11,0);
closes the disc file specified by DUT. The parameters specified are:

1lenum ontained in the identifier . e file number was assigned to
11 C ined in the identifier OUT. The fil b igned ouT
when the FOPEN intrinsic opened the file.

disposition %11, for which the bit pattern is as follows:

Q11213 |4|5|6]7|8]|9]|10[11]12]13]|14]|15] BITS

0l10|0]0f0]JO0}j0O|0|O|0Q0C]0O|0Q}]1|{0O|0O]| 1| BINARY

1 1 OCTAL

The above bit pattern specifies the following:

Domain Disposition: Permanent file. The file is saved in the system
domain. If the file is a new or old temporary file on disc, an entry is
created for it in the system file directory. (An error code is returned if a
file of the same name exists already in the system directory.) If it is an old
permanent file on disc, this disposition value has no effect. If the file is
stored on magnetic tape, that tape is rewound and unloaded. Bits (13:3) =
001.

Disc Space Disposition: Unused disc space returned to the system.
(Applicable to fixed and undefined length files only.) Bits (12:1) = 1.

seccode 0. Unrestricted access.

A condition code of CCL is returned if the file is not closed successfully. Statement 00039000 of
Figure 4-10 checks the condition code and, if it is CCL, the next four statements, starting with the
BEGINstatement, are executed.

The PRINT‘FILE’INFO intrinsic which is called in statement 00041000 of Figure 4-10 prints a File

Information Display on the standard list device, enabling you to determine the error number returned
by FCLOSE. The QUIT intrinsic call (00042000, Figure 4-10) aborts the process.

4-31

Accessing and Altering Files

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00009000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000

PAGE 0001

HP32100A.08.01 [4W] (C) HEWLETT-PACKARD COMPANY 1980

00000
00000
00000
00005
00004
00005
00005
00005
00005
00005
00012
00013
00013
00015
00017
00017
00030
00031
00031
00033
00035
00035
00035
00043
00044
00044
00046
00050
00050
00051
00056
00057
00057
00061
00063
00063
00066
00066
00072
00073
00073
00075
00077
00077

0

0
1
1
1
1
1
1
1
1
1
1
2
2
2
1
1
1
2
2
2
1
1
1
1
2
2
2
1
1
1
1
2
2
2
1
1
1
1
1
2
2
2
1

$CONTROL USLINIT
BEGIN
BYTE ARRAY INPUT(0:6):="INFILE ";
BYTE ARRAY DEV(0:4):="CARD ";
BYTE ARRAY OUTPUT(0:7):="DATAONE ";
ARRAY BUFFER(0:127);
INTEGER IN,OUT,LGTH;
INTRINSIC FOPEN,FREAD,FWRITE ,FCLOSE,PRINT’FILE’ INFO,QUIT;
<<END OF DECLARATIONS>>
IN:=FOPEN(INPUT, %5, ,40,DEV); <<CARD READER>>

IF < THEN <<CHECK FOR ERROR>>
BEGIN
PRINT'FILE'INFO(IN); <<PRINT ERROR>>
QUIT(1); <<ABORT>>
END;
OUT:=FOPEN(OUTPUT,%4,%101,128) ;<<NEW DISC FILE>>
IF < THEN <<CHECK FOR ERROR>>
BEGIN
PRINT'FILE'INFO(OUT); <<PRINT ERROR>>
QUIT(2); <<ABORT>>
END;
COPY’LOOP:
LGTH:=FREAD(IN,BUFFER,40); <<READ A CARD>>
IF < THEN <<CHECK FOR ERROR>>
BEGIN
PRINT'FILE'INFO(IN); <<PRINT ERROR>>
QUIT(3); <<ABORT>>
END;
IF > THEN GO END'OF 'FILE; <<CHECK FOR EOF>>
FWRITE (OUT ,BUFFER,LGTH,0); <<COPY CARD TO DISC>>
IF <> THEN <<CHECK FOR ERROR>>
BEGIN
PRINT'FILE’INFO(OUT); <<PRINT ERROR>>
QUIT(4); <<ABORT>>
END;
GO COPY'LOOP; <<CONTINUE COPYING>>
END'OF 'FILE:
FCLOSE(OUT ,%1,0); <<MAKE PERMANENT>>
IF < THEN <<CHECK FOR ERROR>>
BEGIN
PRINT'FILE'INFO(OUT); <<PRINT ERROR>>
QUIT(S); <<ABORT>>
END;

END.

Figure 4-10. Closing a New File as a Permanent File

4-32

Accessing and Altering Files
WRITING A FILE SYSTEM ERROR-CHECK PROCEDURE

As you noticed in some of the examples, the statements:

BEGIN
PRINT‘FILE‘INFO(filenum);
QUITuum)

END;

were repeated after each intrinsic call. Instead of repeating this code throughout a program with mul-
tiple intrinsic calls it is more efficient (because less code is generated) to write an error-check proce-
dure and merely call this procedure where necessary in a program.

Figure 4-11 contains a program which includes an error-check procedure, and a single statement
calls this procedure if an error occurs. The program opens a card reader and a disc file, reads the card
file, writes these records into the disc file, then closes the disc file.

The error check procedure (statements 00009000 through 00015000 in Figure 4-11) contains two
parameters: FILENO (integer) and QUITNO (integer by value). FILENOis an identifier through which
the file number is passed. This file number is used by PRINT‘FILE /INFO to print a File Information
Display for that file.)

The QUIT intrinsic aborts the program’s process and prints the QUITNO as part of the abort message,
enabling you to determine the point at which the process was aborted.

USING FERRMSG

This intrinsic is usually called following a call to FCHECK. The error code returned in the call to
FCHECK can then be used as a parameter in the call to FERRMSG.

For example, suppose a CCL condition is returned by a call to FCLOSE, a call to FCHECK requests the
particular error code, then a call to FERRMSG can be used to retrieve a printable message associated
with the code:

FCLOSECFILENUM,1,0);
IF <
THEN BEGIN
FCHECK (FILENUM, ERRNUM) 5
FERRMSG (ERRNUM, MESSAGE , LENGTH) 3
PRINT(MESSAGE, -LENGTH,0);
END;
TERMINATE;

The message printed explains the FCHECK code. If the FCHECK code has no assigned meaning, the fol-
lowing message is returned:

UNDEF INED ERROR errorcode

4-33

Accessing and Altering Files

PAGE 0001 HP32100A.08.01 [4W] (C) HEWLETT-PACKARD COMPANY 1980
00001000 00000 0 SCONTROL USLINIT

00002000 00000 0 BEGIN

00003000 00000 1 BYTE ARRAY INPUT(0:6):="INFILE ";

00004000 00005 1 BYTE ARRAY DEV(0:4):="CARD ";

00005000 00004 1 BYTE ARRAY OUTPUT(0:7):="DATAONE " ;

00006000 00005 1 ARRAY BUFFER(0:127);

00007000 00005 1 INTEGER IN,OUT,LGTH;

00008000 00005 1 INTRINSIC FOPEN,FREAD,FWRITE ,FCLOSE,PRINT'FILE ' INFO,QUIT;
00009000 00005 1 PROCEDURE FILERROR(FILENO,QUITNO};

00010000 00000 1 VALUE QUITNO;

00011000 00000 1 INTEGER FILENO,QUITNO;

00012000 00000 1 BEGIN

00013000 00000 2 PRINT'FILE’ INFO(FILENO);

00014000 00002 2 QUIT(QUITNO);

00015000 00004 2 END;

00016000 00000 1 <<END OF DECLARATIONS>>

00017000 00000 1 IN:=FOPEN(INPUT,%5,,40 ,DEV); <<CARD READER>>
00018000 00012 1 IF < THEN FILERROR(IN,1); <<CHECK FOR ERROR>>
00019000 00016 1 OUT:=FOPEN(OUTPUT, %4 ,%101,128); <<NEW DISC FILE>>
00020000 00027 1 IF < THEN FILERROR(OUT,2); <<CHECK FOR ERROR>>
00021000 00033 1 COPY'LOOP

00022000 00033 1 LGTH: =FREAD (IN,BUFFER,40); <<READ A CARD>>
00023000 00041 1 IF < THEN FILERROR(IN,3); <<CHECK FOR ERROR>>
00024000 00045 1 IF > THE GO END'OF 'FILE; <<CHECK FOR EOF>>
00025000 00046 1 FWRITE(OUT ,BUFFER,LGTH,0); <<COPY CARD TO DISC>>
00026000 00053 1 IF <> THEN FILERROR(OUT,4); <<CHECK FOR ERROR>>
00027000 00057 1 GO COPY'LOOP; <<CONTINUE COPYING>>
00028000 00062 1 END'OF’'FILE:

00029000 00062 1 FCLOSE(OUT,#%1,0); <<MAKE PERMANENT>>
00030000 00066 1 IF < THEN FILERROR(OUT,S); <<CHECK FOR ERROR>>
00031000 00072 1 END.

Figure 4-11. Error-Check Procedure Example

4-34

Accessing and Altering Files

USING THE IOWAIT INTRINSIC

Figure 4-12 shows a program that opens several terminals for input. Statement 00016000:
0UT: =FOPEN(BOUTPUT, 4,1, ,DEV);
opens the line printer for output and the WHILE statement begins a loop to open the terminals.
In order to open a file with both the NOBUF and NOWALIT aoptions specified, the program must be
running in Privileged Mode, and this program is switched to Privileged Mode with the GETPRIVMODE
intrinsic call (statement 00019000, Figure 4-12).
Statement 00029000 of Figure 4-12:
FILE:=FDPENCTNAM, %2405, 24404, 36, DEV(3));
opens a terminal. The parameters specified are:

formaldesignator DATAIN, which is contained in the byte array TNAM.

foptions %405, for which the bit pattern is:

0O(1]2]|3]4]|5}16]|7|8|9]10]11112}13]14]15]| BITS

0j|0|(0|J0|JO0O]O}jO}1t}0[{0]0O|0}]0O]1]|0Q] 1| BINARY

4 0 S OCTAL

The above bit pattern specifies the following file options:

Domain: Old permanent file, system file domain. Bits (14:2) = 01.
ASCII/Binary: ASCII. Bit (13:1)=1.

File Designator: Actual file designator = formal file designator. Bits
(10:3) = 000.

Record Format: Fixed-length records. Bits (8:2) = Q0.

Carriage Control: Carriage control character expected. Bit (7:1) = 1.

aoptions %4404, for which the bit pattern is as follows:

0|1)12|3|415|6]718|9|10]11]12113|14]15| BITS

010({0]0]1]0]0]|]1]0j0(0({0]0]1]0] 0] BINARY

4 4 0 4 OCTAL

The above bit pattern specifies the following access options:

Access Type: Input/output. Bits (12:4) = 0100.
Multirecord:: Non-multirecord. Bit (11:1)=0.

4-35§

Accessing and Altering Files

Dynamic Locking: Disallowed. Bit (10:1)=0.

Exclusive: Exclusive access. Default when I/O access is specified. Bits
(8:2) = 00.

Inhibit Buffering: Selected (NOBUF). Bit (7:1) = 1.

Multiaccess: No multiaccess. Bits (5:2) = 00.

NOWAIT: NOWAIT I/O selected. Bit (4:1)=1.

recsize 36 words.
device TERM (terminal), specified in elements (3)-(7) of the byte array DEV.

Once the file is opened, the program is switched back to the non-Privileged Mode with the
GETUSERMODE intrinsic call.

The first file number is saved in FILEBASE, a prompt is displayed on the terminal, and the IOWAIT
intrinsic is called to wait until the request is completed. Input from the terminal is read and stored in
BUFR at the location determined by the file number. (Input from the first terminal opened starts at
BUFR location O, the next input starts at location 36, and so forth.)

Statements 00029000/00030000 of Figure 4-12 wait fbr an end-of -file indication (the user enters
an :EOF command) from the first terminal on which the input is complete. If the end-of -file indica-
tion is received, the terminal is closed.

The input from the terminal i§ printed on the line printer and another prompt is displayed. Again,
the TOWAIT intrinsic is called to wait until the request is completed. When DONE=MAXTRM (all ter-
minals closed), control is passed to EXITand the program terminates.

Note that the IODONTWAIT intrinsic (not shown in Figure 4-12) operates the same way as IOWAIT
with one exception: if IOWAIT is called and no I/0 has completed, the calling process is suspended un-
til some I/0O completes; if IODONTWAIT is called and no I/O has completed, control is returned to the
calling process. Thus, the program shown in Figure 4-12 would not have suspended if the
JIODONTWAIT intrinsic had been called, and control would have returned to the program.

4-36

Accessing and Altering Files

PAGE 0001 HP32100A.08.01 [4W] (C) HEWLETT-PACKARD COMPANY 1980
00001000 00000 O $CONTROL USLINIT

00002000 00000 0 BEGIN

00003000 00000 1 BYTE ARRAY OUTPUT(0:6):="OUTPUT ";

00004000 00005 1 BYTE ARRAY TNAM(0:6):="DATAIN “;

00005000 00005 1 BYTE ARRAY DEV(0:7):="LP TERM *;

00006000 00005 1 INTEGER OUT,FILE,LGTH,I:=-1,PROMPT:="? " DONE:=0;

00007000 00005 1 EQUATE MAXTRM=3;

00008000 00005 1 ARRAY BUFR(0:36XMAXTRM);

00009000 00005 1 INTEGER ARRAY OPEN(0:MAXTRM);

00010000 00005 1 DEFINE CCL = IF < THEN QUIT#,

00011000 00005 1 CCG = IF > THEN QUIT#,

00012000 00005 1 CCNE= IF <> THEN QUIT#H;

00013000 00005 1 INTRINSIC FOPEN,FREAD,FWRITE,FCLOSE ,GETPRIVMODE ,GETUSERMOD
00014000 00005 1 IOWAIT,QUIT;

00015000 00005 1 <<END OF DECLARATIONS>>

00016000 00005 1 OUT:=FOPEN(OUTPUT, 4,1, ,DEV); CCL(1);<<LINEPRINTER OUTPUT
00017000 00015 1 WHILE (I:=I+1)<MAXTRM DO <<LOCP-SET UP TERMS>>
00018000 00023 1 BEGIN

00019000 00023 2 GETPRIVMODE; CCG(2); <<FOR NOWAIT FOPEN>>
00020000 00027 2 FILE:=FOPEN(TNAM,6%405,%4404 ,36,DEV(3)); <<INPUT TERM>
00021000 00042 2 CCL(3); <<CHECK FOR ERROR>>
00022000 00045 2 GETUSERMODE ; CCG(4); <<FOR NOWAIT I/0>>
00023000 00051 2 OPEN(I):=FILE; <<SAVE FILE NUMBERS>>
00024000 00054 2 FWRITE(FILE,PROMPT,1,%320);CCNE(S5); <<OUTPUT ? PROMPT
00025000 00064 2 IOWAIT(FILE); CCNE(S6); <<COMPLETE REQUEST>>
00026000 00075 2 FREAD (FILE ,BUFR(I%36),-72);CCNE(7); <<INPUT DATA-NOWA
00027000 00111 2 END;

00028000 00116 1 WAIT;

00029000 00116 1 FILE:=IOWAIT(0,,LGTH); CCL(8); <<WAIT FOR 1ST DONE>>
00030000 00130 1 IF > THEN <<EOF ON TERM READ>>
00031000 00131 1 BEGIN

00032000 00131 2 FCLOSE(FILE,0,0); CCL(9); <<TERMINAL FILE>>
00033000 00137 2 IF (DONE : =DONE+1)>=MAXTRM THEN GO EXIT;<<TERMS CLSD?>
00034000 00143 2 END

00035000 00143 1 ELSE

00036000 00145 1 BEGIN

00037000 00145 2 I:=-1; <<SET BUFFER INDEX>>
00038000 00147 2 DO I:=I+1 <<INCR BUFFER INDEX>>
000398000 00147 2 UNTIL OPEN(I)=FILE OR I=MAXTRM;<<SEARCH FOR FILE N
00040000 00157 2 IF I=MAXTRM THEN QUIT(10); <<FILE NOT FOUND>>
00041000 00164 2 FWRITE(OUT,BUFR(I%36),-LGTH,0}; <<COPY INPUT TO LP>>
00042000 00174 2 CCNE(11); <<CHECK FOR ERROR>>
00043000 00177 2 FWRITE(FILE,PROMPT,1,%320);CCNE(12};<<OUTPUT ? PROMP
00044000 00207 2 IOWAIT(FILE); CCNE(13); <<COMPLETE REQUEST>>
00045000 00220 2 FREAD(FILE ,BUFR(I%36),-72);CCNE(14);<<IN DATA-NOWAIT
00046000 00234 2 END;

00047000 00234 1 GO TO WAIT; <<CONTINUE>>

00048000 00235 1 EXIT;END.

Figure 4-12. Using the IOWAIT Intrinsic

4-37

Accessing and Altering Files

DECLARING ACCESS-MODE OPTIONS

You can activate or deactivate the following access-mode options by issuing the FSETMODE intrinsic
call: automatic error recovery, critical output verification, terminal control by the user, and ter-
minal binary data mode. The access modes that are established remain in effect until another
FSETMODE call is issued or until the file is closed. The FSETMODE intrinsic applies to all files on all
devices.

The following FSETMODE intrinsic call:
FSETMODE(FILE1,%2);
establishes access-mode options as outlined below. The parameters specified are:

filenum Designated by FILE1, which was assigned the file number by FOPEN when
the file was opened. (It is a terminal in this example.)

modeflags %42, for which the bit pattern is as follows:

0O|1}12]|]3]4]5|6|7|8|9|10[t1]12]13]14]15] BITS

0|]0|0]0|0}l0|]0]|]0j0]0O|0]0O0|0]0O]| 1] 0O} BINARY

2 OCTAL

The above bit pattern specifies the following access-mode options:

Critical Output Verification: All physical output of blocks to the file is to
be verified as physically complete before control returns from a write in-
trinsic to your program. For each successful logical write operation, a con-
dition code (CCE) is returned immediately to your program. Bit (14:1) =
1.

Terminal Control by User: MPE will issue carriage return/linefeed.
Bit (13:1)=0.

4-38

OTHER APPLICATIONS OF
MPE INTRINSICS |y

MPE intrinsics allow you to perform the following utility functions:

e Manage library procedures with LOADPROC and UNLOADPROC.

e Convert numbers from ASCII to binary code with BINARY and DBINARY.
e Convert numbers from binary to ASCII code with ASCII and DASCII.

e Convert a string of characters between EBCDIC and ASCII, or between EBCDIK and JIS
(KANA 8) with CTRANSLATE.

e Read input from job/session list devices with READand READX.
e Write output to the job/session list device with PRINT.

e Write output to the System Console with PRINTOP, or write output to the System Console and
solicit a reply with PRINTOPREPLY.

e Obtain system timer information with TIMER.

e Obtain the calendar date with CALENDAR.

e Obtain the time of day in terms of hour, minute, second, and tenth of second with CLOCK.
e Format the calendar date with FMTCALENDAR.

e Format the time of day with FMTCLOCK.

e Format the calendar date and time of day with FMTDATE.

e Obtain process run time (CPU time) with PROCTIME.

e Obtain information pertaining to your access mode and attributes with WHO.
e Obtain information about other jobs/sessions in the system with JOBINFO.

e Search an array for a specified name with SEARCH.

¢ Format the parameters of a non-MPE command with MYCOMMAND.

e Execute MPE commands programmatically with COMMAND.

¢ Enable or disable hardware arithmetic traps with ARITRAP.

e Enable or disable software arithmetic traps with XARITRAP.

o Enable or disable the software library trap with XLIBTRAP.

¢ Enable or disable the software s\ystem trap with XSYSTRAP.

5-1

Other Applications Of MPE Intrinsics

e Enable/disable the CONTROL-Y trap with XCONTRAP and reset a terminal to accept a
CONTROL-Y signal with RESETCONTROL.

e Change the size of the current DL to DB area with DLSIZE.

e Change the size of the current Z to DB area with ZSIZE.

¢ Suspend the calling process with PAUSE.

¢ Initiate a session break programmatically with CAUSEBREAK.

e Programmatically terminate a process (after successful execution) with TERMINATE.

e Programmatically abort any process within a user process structure with QUIT.

o Abort the entire process structure (program) with QUITPROG.

e Manage Interprocess Communication through the Job Control Words with SETJCW, GETJCW,
PUTJCW, and FINDJCW.

e Access a2 message catalog in the MPE message facility, and insert parameters in a message, with
the GENMESSAGE intrinsic.

e Control the functioning of an HP 2680/2688 page printer with FDEVICECONTROL.

DYNAMIC LOADING AND UNLOADING OF LIBRARY PROCEDURES

Normally, segments containing library procedures referenced by a program are linked to that program
when the program is loaded. However, you can also dynamically link and unlink such procedures
while your program is running. You might, for example, decide to do this for a large procedure used
optionally and infrequently by your program, or for a procedure whose name is not known at load
time. By loading this procedure only when it is required, and then unloading it, you can save the
table entries since these segments are sharable. The procedures are loaded from segmented libraries,
not from relocatable libraries (which are used only at program preparation time). Preparation and
maintenance of segmented libraries and relocatable libraries is explained in the MPE Segmenter
Reference Manual (30000-90011).

You do not need to dynamically load procedures that are declared as externals to your program, be-

cause the loader will load them automatically. Dynamic loading and unloading is intended for
procedures that are not declared at all.

5-2

Other Applications Of MPE Intrinsics

Dynamic Loading

The LOADPROC intrinsic is used to load a library procedure, together with external procedures
referenced by it.

For example, to dynamically load a procedure named PROC1 | enter the following intrinsic call:
PNUM: =L DADPROC(PNAME, 0,LAB);
The parameters specified in the preceding intrinsic call are:

procname Contained in the byte array PNAME. The contents of PNAME is the string
"PROC1 ". Note that the string is terminated with a blank space.

lib 0, signifying that only the system library should be searched. If 2were
specified, library searching would proceed in this order:

Logon Group Library
Logon Account Library
System Library

Specifying 1 for the lib parameter would cause the search to be conducted
in this order:

Account Public Library
System Library

plabel LAB, a word to which the procedure’s label ("plabel") is returned.

When the LOADPROC intrinsic executes, the procedure identity number will be returned as an integer
to PNUM.

Dynamic Unloading

The UNLOADPROC intrinsic is used to unload a procedure and its referenced external procedures.

For example, to unload the procedure that was dynamically loaded in the previous example, enter the
following UNLOADPROC intrinsic call:

UNLOADPRDOC (PNUMD 5

5-3

Other Applications Of MPE Intrinsics
SEARCHING ARRAYS

Occasionally, you may construct byte arrays whose contents you may later want to search for
specified entries or names. A dictionary of user-defined commands (UDCs) is one such example.
The searching is accomplished with the SEARCH intrinsic, which can be used with specially formatted
arrays consisting of sequential entries, each including:

e An integer specifying the length (in bytes) of the entire entry. The length includes this byte, plus
all the information in the subsequent byte areas. .

e An integer specifying the length of the "name" (in bytes) in the entry.

® A byte string forming the name in the entry; this name and name length are checked against the
search string for a match. In a command dictionary, for example, this would be a command
name.

e An optional byte string containing a user-supplied definition.
e A zero, as the length of the last entry, indicating the end of the dictionary.

Each entry has an implied entry number in the dictionary. The entry number of the first entry in
such a dictionary is one (1). If the entry is not found, zero (0) is returned by SEARCH.

In the examples below, the five rows all represent entries for the SEARCH intrinsic. The elements of
each row (except the last) are the length of the entry, the length of the "name", the byte string, and
the user-supplied definition. In the last row, the zero indicates the end of the array (but is not ac-
tually part of the array contents).

EXAMPLE 1:

BYTE ARRAY COMMANDTABLE (0:25):=
5,2,"IN",1,

6,3,'"out",1,

7,4,'"SKIP",2,

7,4,"EXIT,0,

03

The main program might use the definitions as a cross-reference, to indicate the type of parameter
which the user might enter after a prompt: Ofor no parameter, 1 for a filename, and 2 for a
number.

EXAMPLE 2:

BYTE ARRAY SHORTCOMMANDS (0:29):=
5,1 ’IIIII,IIINII’

6,1 ,IODII,IIDUTII,

‘7’1 ’IISII,IISKIPII,

7,1 ,|IEII,IIEXITII,

0;

The main program might use this array as a cross-reference iable, to allow abbreviated commands to
be entered by the user.

5-4

Other Applications Of MPE Intrinsics

EXAMPLE 3:

BYTE ARRAY RESPONSETABLE (0:9):=
5,3,"YES",

4,2,'"N0",

0;

This look-up table would allow the user to enter YES or NO as responses to prompts. No definitions
were necessary in this example.

You can request the search of such an array for a specified name with the SEARCH intrinsic. A simple
linear search is performed, with the name, specified as a byte array, compared against the byte array
forming the name in each entry. Because the search is linear, the most frequently used byte arrays
should appear at the beginning of the array to promote efficient searching. If the name is found, the
number of the entry containing the name is returned to the calling program. If the name is not
found, a zero is returned. Optionally, you can also request the return of a pointer to the definition
information for the name.

If you want to search the byte array in Example 1 for the string " IN", the following intrinsic call
could be used:

BYTE ARRAY COMMAND (0:3);MOVE COMMAND:="IN "
ENUM:=SEARCH (COMMAND, 2, COMMANDTABLE ,DEFADDR);

The length of the string in COMMAND is two bytes. The byte address of the definition sought is to be

returned to the word DEFADDR. The entry number corresponding to the entry containing " IN" will
be returned to the word ENUM.

FORMATTING COMMAND PARAMETERS

You can programmatically extract and format for execution the parameters of a command defined by
you (that is, the command is not an MPE command) with the MYCOMMAND intrinsic. Additionally,
you can have the MYCOMMAND intrinsic search a byte array for the specified command. Figure 5-1
contains a program that determines whether the user is running the program in a session, and if so,
performs the following:

e Prompts the user to enter a command name from the terminal.

e Reads the command name entered by the user.

¢ Compares this command name against entries in a byte array. If no match is found, the program
displays " ILLEGAL ENTRY", and prompts the user for another command.

o Converts the parameter entered with the command to binary, then uses this operand to perform
the calculation specified by the command.

e Converts the result to ASCII, then displays the result on the terminal.

5-5

Other Applications Of MPE Intrinsics

PAGE 0001 HEWLETT-PACKARD 32100A.08.1 SPL[4W] TUE, OCT 28, 1882, 4:35 PM
00001000 00000 O SCONTROL USLINIT

00002000 00000 O BEGIN

00003000 00000 1 ARRAY HEADING(0:8):="INTEGER CALCULATOR";
00004000 00011 ARRAY ERRMSG(0:6):="ILLEGAL ENTRY.";

00005000 00007 ARRAY INPUT(0:36);

00006000 00007 BYTE ARRAY COMMAND (%)=INPUT;

00007000 00007 BYTE ARRAY ANSWER(0:13):="ACCUM = "

00008000 00010 ARRAY OUTPUT(%)=ANSWER;

00009000 00010 BYTE ARRAY TABLE(0:25):=

00010000 00001 5,3,"ADD", 5,3,"SsuB", 5,3,"MUL",
00011000 00010 5,3,"DIV", 5,3,"SET", 0;

00012000 00016 INTEGER ARRAY PARMINFO(0:1);

00013000 00016 LOGICAL INTERACTIVE:=FALSE;

00014000 00016 INTEGER ACCUM:=0, OPERAND:=0, REQ:="?7 ",

00015000 00016 LGTH, INDX, PARMCNT, TYPE;

00016000 00016
00017000 00016
00018000 00016
00019000 00016
00020000 00016
00021000 00018
00022000 00004
00023000 00010
00024000 00010
00025000 00016
00026000 00023
00027000 00026
00028000 00040
00028000 00043
00030000 00043
00031000 00050

INTRINSIC ASCII,BINARY,READ,PRINT,MYCOMMAND,QUIT,WHO;
<<END OF DECLARATIONS>>

PRINT(HEADING,9,0);
WHO{INTERACTIVE) ;
LOOP:
IF INTERACTIVE THEN PRINT(REQ,1,%320);
LGTH: =READ (INPUT,-72);
IF <> THEN QUIT(1);
IF COMMAND ="END" THEN GO EXIT;
COMMAND (LGTH) : =%15;

<<PROGRAM ID>>
<<LIVE USER?>>

<<PROMPT USER>>
<<GET COMD>>
<<CHECK FOR ERR>>
<<DONE - EXIT>>
<<CARRIAGE RETN>>
TYPE : =MYCOMMAND (COMMAND , , 1 , PARMCNT, <<TAKE APART CMD>>
PARMINFO, TABLE) ;

I I I T T T S O S g N g O N T o R o i S S o

00032000 00056 IF < THEN GO ERROR; <<NO CMD MATCH>>
00033000 00057 IF PARMCNT<>1 THEN GO ERROR; <<NO PARAMETERS>>
00034000 00062 INDX: =PARMINF0-@COMMAND; <<SUBSCR OF PARM>>
00035000 00065 OPERAND: =BINARY {COMMAND (INDX) , <<CONVERT PARM>>
00036000 00070 PARMINFO(1).(0:8));

00037000 00075 IF <> THEN GO ERROR; <<CHECK FOR ERR>>
00038100 00076

00039000 00076 CASE (TYPE-1) OF <<SELECT OPERATN>>
00040000 00100 BEGIN

00041000 00106 ACCUM: =ACCUM+OPERAND ; <<ADD COMD>>
00042000 00116 ACCUM: =ACCUM-OPERAND ; <<suB COMD>>
00043000 00122 ACCUM: =ACCUMXOPERAND ; <<MUL COMD>>
00044000 00126 ACCUM: =ACCUM/OPERAND ; <<DIV COMMAND>>
00045000 00133 ACCUM: =0PERAND; <<SET COMMAND>>
00046000 00136 END;

Figure 5-1. Using the MYCOMMAND Intrinsic (Program UTILY) (1 of 2)

5-6

Other Applications Of MPE Intrinsics

00047000 00143 1 RESULT:

00048000 00143 1 MOVE ANSWER(8):=" " <<RESET OLD ANSWER>>
00049000 00155 1 ASCII(ACCUM,10,ANSWER(8)); <<CONVERT ACCUM>>
00050000 00163 1 PRINT (OUTPUT,7,0); <<OUTPUT NEW ANSWER>>
00051000 00170 1 GO LOOP; <<CONTINUE CALC>>
00052000 00171 1 ERROR:

00053000 00171 1 PRINT (ERRMSG,7,0); <<ERROR MESSAGE>>
00054000 00175 1 IF NOT INTERACTIVE THEN QUIT(2); <<NO LIVE USER-QUIT>>
00055000 00201 1 GO LOOP; <<CONTINUE CALC>>

00056000 00202 1 EXIT: END.
PRIMARY DB STORAGE=%020; SECONDARY DB STORAGE=%00113
NO. ERRORS=000; NO. WARNINGS=000
PROCESSOR TIME=0:00:03; ELAPSED TIME=0:00:11

Figure 5-1. Using the MYCOMMAND Intrinsic (Program UTILY) (2 of 2)
Statement 00025000:
LGTH:=READCINPUT,-72);

reads the command entered by the user. (The arrays INPUT and COMMAND have been set as equivalents
in statement 00006000 in Figure 5-1.)

Statements 00026000 and 00027000:

IF <> THEN QUITC(1);
IF COMMAND="'END" THEN GO EXIT;

perform the following:

e Check for a condition code error and execute the QUIT intrinsic (causing the process to abort if a
condition code error is returned).

e Cause the program control to transfer to the statement EXITif "END" is entered by the user.
Statement 00028000:
COMMANDCLGTH) :=%153

adds a carriage return character as the last character of the comimage parameter for the command en-
tered. The carriage return character is added starting at the position in the array specified by LGTH,
but does not overwrite the last position of the string entered by the user. This is because in SPL, the
first position in an array is 0, not 1. For example, if the user entered the command ADD 5, this
command would occupy array positions 0 through 4, as follows:

01234
ADD &
The value returned to LGTH specifying the length of the string read, however, is 5, because the READ

statement read a string five characters long. Therefore, the carriage return character is added to
position § of the array (which is actually the 6th position).

5-1

Other Applications Of MPE Intrinsics

Statement 00030000:

TYPE : =MYCOMMANDC(COMMAND, , 1, PARMCNT , PARMINFO, TABLED ;

calls the MYCOMMAND intrinsic to parse the command entered by the user. The parameters specified

are:

comimage

delimiters

maxparms
numparms

parms

dict

Specified by the array COMMAND. It contains the string entered by the user.
This parameter contains a user command, such as ADD or SUB, a parameter
consisting of an integer, and a carriage return character added to the com-
mand by the statement:

COMMANDC(LGTH) : =%15;

Omitted. The default delimiter array "COMMA, EQUAL, SEMICOLON,
CARRIAGE RETURN" is used.

1, specifying that one parameter is expected in comimage.

Specified by PARMCNT. It contains the actual number of parameters en-
tered with the command.

Specified by PARMINFO. An integer array to which the byte address of the
parameter, entered as part of comimage, is returned.

NOTE

Although this parameter is listed as a double array in the
specifications for the MYCOMMAND intrinsic in Section II,
it is declared as a two-word integer array in this
program because it is necessary to access each of the
words individually. This is more convenient than
declaring a one-word double array and a two-word in-
teger array, then setting the two as equivalents.

Specified by TABLE, a byte array containing "5,3,"ADD", 5,3,'SUB",
5,3,"MuL", 5,3,"DIV', 5,3,"SET", 0".

The table specified by the dict parameter is searched until a match is found between the command
name and an entry in the table. When a match is found, the number of the entry in the table con-
taining the matching name is returned to TYPE. The dict parameter may specify a specially formatted
array, or table. Each entry in the table will contain:

1. An integer specifying the total number of bytes in the entry.

2. An integer specifying the total number of characters in the command portion of the entry.

5-8

Other Applications Of MPE Intrinsics

3. The command portion of the entry.

4. An arbitrary user-defined definition of the entry.

For example, the first entry in the array TABLE is:
5,3,ADD

which is broken down as follows:

5 The total number of bytes in this entry (53ADD = § bytes).
3 The total number of bytes in the command portion (ADD) of the entry.
ADD The string comprising the command portion of the entry.

Note that a user-defined definition of the entry is not included in the entries in TABLE. The byte ar-
ray TABLE, then, consists of 26 bytes structured as follows:

5 3
A D
D 5
3 S
u B
5 3
M U
L 5
3 D
I \%
5 3
S E
T 0

5-9

Other Applications Of MPE Intrinsics

Statement 00032000:

IF < THEN GO ERROR;
checks the condition code, and if it is CCL, transfers program control to statement label ERROR.
Statement 00033000:

IF PARMCNT <> 1 THEN GO ERROR;
checks that only one parameter was entered with the command (the parameter maxparms had
specified that one parameter was expected). If PARMCNT does not equal 1, control is transferred to
statement label ERROR.
Statements 00034000 and 00035000:

INDX : =PARMINFO-@COMMAND ;
OPERAND: =BINARY (CCOMMANDCINDX) ,PARMINFO(1).(0:8));

determine the byte address of the parameter entered with the command, then convert this parameter
to a binary value.

The first statement above subtracts the byte address of the first element of COMMAND from the byte
address of PARMINFO to obtain the relative position of the parameter in the array COMMAND. This
value is returned to INDX.

For example, the command:
ADD 5
would occupy positions in the array COMMAND as follows:

01234

ADD ©§
Subtracting the byte address of the first (zero) element of COMMAND from the byte address specified by
PARMINFO for the first element of the parameter produces the byte offset of the parameter.

The following statement converts the ASCII characters starting in the INDX position of the array
COMMAND to a binary value and returns this value to OPERAND. The number of bytes (length) of the
ASCII string to be converted are specified by the first eight bits (PARMINFO(1),(0:8)) of the first
word contained in PARMINFO:

OPERAND: =BINARY CCOMMANDCINDX) ,PARMINFO(1).(0:8));

The following statement transfers program control to one of the five statements following the BEGIN
statement, depending on the value of TYPE-1. Note that -1 is necessary because the five statements
are considered in the SPL numbering convention by the CASE statement (ACCUM:=ACCUM+0OPERAND;
is considered to be the statement following BEGIN) but the value assigned to TYPE by MYCOMMAND
contains the range 1 to 5:

CASECTYPE-1)0F

5-10

Other Applications Of MPE Intrinsics

An example of running the program is shown below.
:RUN UTILY

INTEGER CALCULATOR
? SET 10

ACCUM = 10

? ADD 34

ACCUM = 44

? MUL .5

ILLEGAL ENTRY

? MUL 2

ACCUM = 88

? END

END OF PROGRAM

EXECUTING MPE COMMANDS PROGRAMMATICALLY

The COMMAND intrinsic can be used to programmatically request the execution of certain MPE com-
mands. The command image, including parameters, is passed to the intrinsic, which searches the sys-
tem command directory for a command of the same name, and executes it. When command execu-
tion is completed, or when an error is detected during this execution, control returns to the calling
process. Commands that can be executed programmatically are listed below.

:ABORTIO :DSCONTROL :L0OG
:ABORTJOB :DSLINE :MPLINE
:ACCEPT :DSTAT :MRJECONTROL
:ALLOW :FILE :NEWACCT
:ALTACCT :FOREIGN : NEWGROUP
:ALTGROUP :GETLOG :NEWUSER
:ALTJOB :GETRIN tNEWVSET
:ALTLOG 1GIVE :OUTFENCE
tALTSEC :HEADOFF :PTAPE
:ALTSPOOLFILE :HEADON :PURGE
tALTUSER tHELP :PURGEACCT
:ALTVSET : IMLCONTROL : PURGEGROUP
:ASSOCIATE : JOBFENCE : PURGEUSER
:BREAKJOB : JOBPRI :PURGEVSET
:BUILD :JOBSECURITY 1RECALL

: CACHECONTROL :LDISMOUNT :REFUSE

: CHANGELOG tLIMIT :RELEASE

: COMMENT :LISTACCT :RELLOG
:CONSOLE :LISTEQ :REMOTE
:DEALLOCATE :LISTF :REMOTE HELLO
:DELETESPOOLFILE :LISTFTEMP :RENAME
:DISALLOW :LISTGROUP :REPLY
:DISASSOCIATE :LISTLOG :REPORT
:DICSRPS :LISTUSER :RESET

: DOWN :LISTVS :RESETACCT

: DOWNLOAD :LMOUNT :RESETDUMP

5-11

Other Applications Of MPE Intrinsics

:RESUMEJOB :SHOWIN : STOPSPOOL
:RESUMELOG : SHOWJCW :STREAM
:RESUMESPOOL ' : SHOWJOB : SUSPENDSPOOL
:SAVE : SHOWL DG :SWITCHLOG
:SECURE : SHOWME. : TAKE

: SETDUMP : SHOWOUT :TELL
:SETJCW : SHOWQ :TELLOP
:SETMSG :SHOWTIME : TUNE

: SHOWALLOW :SPEED :UP

: SHOWCACHE :STARTCACHE : VMOUNT

: SHOWCOM :STARTSPOOL :WARN

1 SHOWDEV +STOPCACHE :WELCOME

Refer to the MPE V Commands Reference Manual (32033-90006) for a discussion of these
commands.

If you want to programmatically execute the command :SHOWTIME, the following intrinsic call could
be used:

COMMAND(COMD, ECODE , EPARM)D 3
All characters for the command except the prompting colon but including a terminating carriage
return are contained in the byte array COMD. Any error code is returned to ECODE. The :SHOWTIME

command has no parameters, therefore, no information is returned to EPARM.

When the intrinsic executes, the date and time are printed on the job/session list device.

DETERMINING THE USER’S ACCESS MODE AND ATTRIBUTES

A program can obtain the access mode and attributes of the user running that program from the sys-
tem tables with the WHO intrinsic.

Figure 5-2 contains a program which must determine if the user is running the program in an inter-
active session. The statement:

WHOCINTERACTIVE);
calls the WHO intrinsic to make this determination. If the logical identifier INTERACTIVE is TRUE (bit
(15:1) = 1) after the WHO intrinsic executes, and the job/session input file and job/session list file
form an interactive pair, then the user is running the program interactively.
Statement 00024000:

IF INTERACTIVE THEN PRINT(REQ,1,%320);

checks whether INTERACTIVE is TRUE or FALSE. If TRUE, the PRINT portion of the statement is ex-
ecuted and a prompt character (?) is displayed on the terminal to prompt the user for a command.

Other Applications Of MPE Intrinsics

PAGE 0001

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00005000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000

HEWLETT-PACKARD 32100A.08.1 SPL[4W] TUE, OCT 28, 1982, 4:35 PM
0 SCONTROL USLINIT
0 BEGIN

00000
00000
00000
00011
00007
00007
00007
00010
00010
00001
00010
00016
00016
00016
00016
00016
00016
00016
00016
00016
00016
00004
00010
00010
00016
00023
00026
00040
00043
00043
00050
00056
00057
00062
00065
00070
00075
00076
00076
00100
00106
00116
00122
00126
00133
00136

N RN RN RN NN o e b b o b e e b b b e b b bt e b e o b B b b e e b b = b e = b e e

ARRAY HEADING(0:8):="INTEGER CALCULATOR";
ARRAY ERRMSG{0:6):="ILLEGAL ENTRY.";
ARRAY INPUT(0:36);
BYTE ARRAY COMMAND (%) =INPUT;
BYTE ARRAY ANSWER(0:13):="ACCUM = "
ARRAY OUTPUT(X)=ANSWER;
BYTE ARRAY TABLE(0:25):=
5,3,"ADD", 5,3,"suB", 5,3,"MUL",
5,3,"DIV", 5,3,"SET", 0;
INTEGER ARRAY PARMINFO(0:1);
LOGICAL INTERACTIVE:=FALSE;
INTEGER ACCUM:=0, OPERAND:=0, REQ:="7 ",
LGTH, INDX, PARMCNT, TYPE;

INTRINSIC ASCII,BINARY,READ,PRINT,MYCOMMAND ,QUIT ,WHO;

<<END OF DECLARATIONS>>

PRINT(HEADING,9,0); <<PROGRAM ID>>

WHO(INTERACTIVE) ; <<LIVE USER?>>
LOGP:

IF INTERACTIVE THEN PRINT(REQ,1,%320); <<PROMPT USER>>

LGTH:=READ(INPUT,-72); <<GET COMD>>

IF <> THEN QUIT(1); <<CHECK FOR ERR>>

IF COMMAND ="END" THEN GO EXIT; <<DONE - EXIT>>

COMMAND (LGTH) : =%15; <<CARRIAGE RETN>>

TYPE : =MYCOMMAND (COMMAND, , 1, PARMCNT, <<TAKE APART CMD>>
PARMINFO, TABLE) ;

IF < THEN GO ERROR; <<NO CMD MATCH>>
IF PARMCNT<>1 THEN GO ERROR; <<NO PARAMETERS>>
INDX :=PARMINFO-@COMMAND ; <<SUBSCR OF PARM>>
OPERAND : =BINARY (COMMAND (INDX) , <<CONVERT PARM>>
PARMINFO(1).(0:8));
IF <> THEN GO ERROR; <<CHECK FOR ERR>>
CASE (TYPE-1) OF <<SELECT OPERATN>>
BEGIN
ACCUM: =ACCUM+0OPERAND ; <<ADD COMD>>
ACCUM: =ACCUM-OPERAND ; <<SUB COMD>>
ACCUM: =ACCUMXOPERAND ; <<MUL COMD>>
ACCUM: =ACCUM/OPERAND ; <<DIV COMMAND>>
ACCUM: =0PERAND ; <<SET COMMAND>>
END;

Figure 5-2. Using the WHO Intrinsic. (1 of 2)

5-13

Other Applications Of MPE Intrinsics

00047000 00143 1 RESULT:

00048000 00143 1 MOVE ANSWER(8):=" " <<RESET OLD ANSWER>>
00049000 00155 1 ASCII(ACCUM, 10 ,ANSWER(8)); <<CONVERT ACCUM>>
00050000 00163 1 PRINT(OUTPUT,7,0); <<QUTPUT NEW ANSWER>>
00051000 00170 1 GO LoOOP; <<CONTINUE CALC>»>
00052000 00171 1 ERROR:

00053000 00171 1 PRINT(ERRMSG,7,0); <<ERROR MESSAGE>>
00054000 00175 1 IF NOT INTERACTIVE THEN QUIT(2); <<NO LIVE USER-QUIT>>
00055000 00201 1 GO LOOP; <<CONTINUE CALC>>

00056000 00202 1 EXIT: END.

PRIMARY DB STORAGE=%020; SECONDARY DB STORAGE=%00113
NO. ERRORS=000; NO. WARNINGS=000

PROCESSOR TIME=0:00:03; ELAPSED TIME=0:00:11

Figure 5-2. Using the WHO Intrinsic (2 of 2)

IDENTIFYING A JOB OR SESSION WITH JOBINFO

JOBINFO provides the user with three options for identifying a job or session which is on the system.
The three options are the following:

¢ Taking the caller’s job/session as default.
¢ Specifying a specific job/session number.
e Specifying a logon ID.
To retrieve information about the job/session executing JOBINFD, the usef must specify the ap-
propriate jsind (1 for session, 2 for job) and a jsnnn of 0D (double-word zero). Further, the itemnum
of the first optional triple must not be a one (1) as this invokes option number three (described
below). For example, to retrieve the logon ID for the caller, from a session, a JOBINFO call might
look like this:

JOBINFOC 1, jsnnn, STATUS,,,,1,jsname,ERROR1);
Where:

e Jsnnn must be 0D.

e Jsind is 1since JOBINFO is executed from a session, and default to the caller’s session for the
logon ID.

5-14

Other Applications Of MPE Intrinsics

o Jsname must be a logical array of 13 words.
¢ The session number will be returned through jsnann.

o The second triple contains the ifemnum of 1. When using the default job or session, the first
triple can not contain an ifemnum equaling 1.

It is not possible to attempt a default call with jsind equaling 2 if JOBINFOis executed from a session.
Likewise, it is not possible to call JOBINFO, attempting a default call, with jsind equaling 1 when
JOBINFO is executed from a job.
The user may identify a job or session by specifying the appropriate job/session number through
jsnnn, along with the appropriate jsind. By supplying a non-zero jsnnn, the other two job/session
identification options are over-ridden. There is no restriction on the use of any of the optional
triples, or itemnums. An example of specifying a specific job/session number is a follows:

JOBINFOC 2, jsnnn, STATUS, 1, jsname, ERROR1);
Where:
e Jsind equals 2 and specifies that jsann is a job number.
e Jsnnn is a job number.
s Itemnum equals 1 denoting that the logon ID of job number jsrnn is to be retrieved.
The user may identify a job or session by specifying the appropriate job/session by supplying the ap-
propriate logon ID through the first optional triple. The user must supply the appropriate jsind and
jsnnn must be 0D. The logon ID is specified through the first triple with itemnum equal to 1, and
item being a logical array containing the logon ID (a character string). The logon ID must be ter-
minated by a binary zero (0). The maximum length of the logon ID is twenty-six (26) characters,
plus one (1) for the binary zero terminator. An example of thisis as follows:

JOBINFO(C 2, jsnnn, STATUS, 1, LOGON’ID, ERROR1);
Where:
e Jsind equals 2, denoting the LOGON ‘ID supplied is that of a job.
e Jsnnn equals 0D.

¢ The job number of the job denoted by LOGON /ID will be returned through jsnnn.

o The first triple is specified with an itemnum equal to 1, a logical array LOGON’ID containing the
logon id of a job (terminated by a binary 0), and an integer error return for the item.

An example of initializing LOGON‘ID might be as follows:

MOVE LOGON‘IDCO)> := “TESTJOB,LARRY.OSE",0;

Other Applications Of MPE Intrinsics

CONVERTING NUMBERS FROM BINARY CODE TO ASCIl STRINGS

You can convert a one-word binary number to an octal or decimal number represented as an ASCII
string with the ASCII intrinsic. The length of the resulting ASCII string can be returned as an in-
teger value. BINARY will not convert numbers which are greater than 32,767 in value.

The ASCII intrinsic call is illustrated in Figure 5-3, statement 00049000:
ASCIICACCUM,10,ANSWER(8));

converts the one-word binary number contained in ACCUM to the base 10 and places the converted

value into the ninth element (O is the first element) of the byte array ANSWER. The length of the

resulting ASCII string is unimportant in this application, and therefore no variable is provided in the

intrinsic call for this return. If the length were desired, the intrinsic call could have had the form:

LGTH:=ASCII (ACCUM,10,ANSWER(8));

The DASCII intrinsic, which converts a double-word (32-bit) binary number to an octal or decimal
number represented as an ASCII string, is shown in statement 00015000 in Figure 5-4.

LGTH:=DASCII(CNTR,10,BMSG(20));
converts the 32-bit binary number contained in CNTR to the base 10 and places the converted decimal
value starting with the 21st element of byte array BMSG. The length (number of characters) of the

converted value is returned to LGTH.

The value is converted from binary to ASCII so that it can be printed by the PRINT statement.

5-16

Other Applications Of MPE Intrinsics

PAGE 0001 HEWLETT-PACKARD 32100A.08.1 SPL[4W] TUE, OCT 28, 1982, 4:35 PM
00001000 00000 0 SCONTROL USLINIT

00002000 00000 0 BEGIN

00003000 00000 ARRAY HEADING(0:8):="INTEGER CALCULATOR";
.00004000 00011 ARRAY ERRMSG(0:6):="ILLEGAL ENTRY.";

00005000 00007 ARRAY INPUT(0:36);

00006000 00007 BYTE ARRAY COMMAND (X)=INPUT;

00007000 00007 BYTE ARRAY ANSWER(0:13):="ACCUM = "

00008000 00010 ARRAY OUTPUT(%)=ANSWER;

00009000 00010 BYTE ARRAY TABLE{0:25):=

00010000 00001 5,3,"ADD", 5,3,"SuB", 5,3,"MUL",
00011000 00010 5,3,"DIV", 5,3,"SET", 0;

00012000 00016 INTEGER ARRAY PARMINFO(0:1);

00013000 00016 LOGICAL INTERACTIVE:=FALSE;

00014000 00016 INTEGER ACCUM:=0, OPERAND:=0, REQ:="? ",

00015000 00016 LGTH, INDX, PARMCNT, TYPE;

00016000 00016
00017000 00016
00018000 00016
00019000 00016
00020000 00016
00021000 00016

INTRINSIC ASCII,BINARY,READ,PRINT,MYCOMMAND,QUIT,6WHO;
<<END OF DECLARATIONS>>

PRINT(HEADING,9,0); <<PROGRAM 1ID>>

b et e b et et e et b b Ba b e (e (e b et e e et b B b b e e e e b e e e e e e e

00022000 00004 WHO(INTERACTIVE); <<LIVE USER?>>
00023000 00010 LOOP:

00024000 00010 IF INTERACTIVE THEN PRINT(REQ,1,%320); <<PROMPT USER>>
00025000 00016 LGTH:=READ(INPUT,-72); <<GET COMD>>
00026000 00023 IF <> THEN QUIT(1); <<CHECK FOR ERR>>
00027000 00026 IF COMMAND ="END" THEN GO EXIT; <<DONE - EXIT>>
00028000 00040 COMMAND (LGTH) : =%15; <<CARRIAGE RETN>>
00028000 00043

00030000 00043 TYPE : =MYCOMMAND (COMMAND , , 1, PARMCNT, <<TAKE APART CMD>>
00031000 00050 PARMINFO,TABLE) ;

00032000 00056 IF < THEN GO ERROR; <<NO CMD MATCH>>
00033000 00057 IF PARMCNT<>1 THEN GO ERROR; <<NO PARAMETERS>>
00034000 00062 INDX:=PARMINFO-@COMMAND ; <<SUBSCR OF PARM>>
00035000 00065 OPERAND : =BINARY (COMMAND (INDX), <<CONVERT PARM>>
00036000 00070 PARMINFO(1).(0:8));

00037000 00075 IF <> THEN GO ERROR; <<CHECK FOR ERR>>
00038000 00076

00039000 00076 CASE (TYPE-1) OF <<SELECT OPERATN>>
00040000 00100 BEGIN

00041000 0106 2 ACCUM: =ACCUM+OPERAND ; <<ADD COMD>>
00042000 00116 2 ACCUM: =ACCUM-0OPERAND ; <<SUB COMD>>
00043000 00122 2 ACCUM: =ACCUMXOPERAND ; <<MUL COMD>>
00044000 00126 2 ACCUM: =ACCUM/OPERAND ; <<DIV COMMAND>>
00045000 00133 2 ACCUM: =0PERAND; <<SET COMMAND>>
00046000 00136 2 END;

Figure 5-3. Using the ASCII Intrinsic. (1 of 2)

5-17

Other Applications Of MPE Intrinsics

00047000
00048000
00049000
00050000
00051000
00052000
00053000
00054000
00055000
00056000

PRIMARY

00143
00143
00155
00163
00170
00171
00171
00175
00201
00202

RESULT:
MOVE ANSWER(8):=" ",
ASCII(ACCUM, 10 ANSWER(8));
PRINT(OUTPUT,7,0);
GO LOOP;

ERROR:
PRINT(ERRMSG,7,0);
IF NOT INTERACTIVE THEN QUIT(2);
GO LOOP;

EXIT: END.

DB STORAGE=%020; SECONDARY DB STORAGE=%00113

NO. ERRORS=000;
PROCESSOR TIME=0:00:03; ELAPSED TIME=0:00:11

NO. WARNINGS=000

<<RESET OLD ANSWER>>
<<CONVERT ACCUM>>
<<OUTPUT NEW ANSWER>>
<<CONTINUE CALC>>

<<ERROR MESSAGE>>
<<NO LIVE USER-QUIT>>
<<CONTINUE CALC>>

Figure 5-3. Using the ASCH Intrinsic (2 of 2)

5-18

Other Applications Of MPE Intrinsics

PAGE 0001 HEWLETT-PACKARD 32100A.08.1 SPL[4W]} TUE, OCT 28, 1982, 4:35
00001000 00000 0 $CONTROL USLINIT

00002000 00000 0 BEGIN

00003000 00000 1 ARRAY HEADING(0:10):="CONTROL Y TRAP EXAMPLE";
00004000 00013 ARRAY MSG(0:15):="COUNTER CURRENTLY = "
00005000 00020 BYTE ARRAY BMSG(X)=MSG;

00006000 00020 DOUBLE CNTR:=0D;

00007000 00020 INTEGER DUMMY , LGTH;

00008000 00020
00008000 00020
00010000 00020
00011000 00020
00012000 00000
00013000 00000
00014000 00000
00015000 00000

INTRINSIC PRINT,XCONTRAP,QUIT,DASCII ,RESETCONTROL;
PROCEDURE CONTROLY;
BEGIN
INTEGER SDEC=Q+1;

LGTH:=DASCII(CNTR,10,BMSG(20)); <<CONVERT COUNTER>>

00016000 00007 PRINT(MSG,16,0); <<OUTPUT COUNTER>>
00017000 00013 RESETCONTROL ; <<REARM CNTL Y TRAP>>
00018000 00014 T0S:=%31400+SDEC; <<BUILD EXIT INSTRN>>
00019000 00016 ASSEMBLE (XEQ 0]} ; <<EXECUTE EXIT
00020000 00017 END;

00021000 00000
00022000 00000
00023000 00000

<<END OF DECLARATIONS>>

s b e e b s e N RN N RN RN NN = e e b e e

00024000 00000 PRINT(HEADING, 11,0); <<PROGRAM 1ID>>
00025000 00004 XCONTRAP (@CONTROLY ,DUMMY) ; <<ARM CNTL Y TRAP>>
00026000 00007 IF < THEN QUIT(1); <<CHECK FOR ERROR>>
00027000 00012 LOOP:

00028000 00012 CNTR:=CNTR+1D; <<DOUBLE INCREMENT>>
00029000 00023 1 IF CNTR<3000000D THEN GO LOCOP; <<CONTINUOUS LOOP>>

00030000 00027 1 END.

PRIMARY DB STORAGE=%007; SECONDARY DB STORAGE=7%00033
NO. ERRORS=000; NO. WARNINGS=000

PROCESSOR TIME=0:00:02; ELAPSED TIME=0:00:26

Figure 5-4. Using the DASCII Intrinsic

Other Applications Of MPE Intrinsics

CONVERTING NUMBERS FROM AN ASCIl NUMERIC STRING TO
A BINARY CODED VALUE

The BINARY intrinsic converts an ASCII numeric string to its equivalent binary value. The converted
value is returned to the calling program.

The BINARY intrinsic call is illustrated in Figure 5-5, statement 0003 5000:

OPERAND: =BINARY (COMMANDCINDX) ,PARMINFO(1).(0:8));
converts the ASCII numeric string contained in the element specified by INDX of the array COMMAND
to its binary equivalent. The length of the ASCII string is specified by the first eight bits of the first
word of the array PARMINFO. The resulting binary value is stored in the word OPERAND.

To convert a number from an ASCII string to a double-word (32-bit) binary value, the DBINARY in-
trinsic is used.

A DBINARY intrinsic call could be of the form:
DVAL : =DBINARY (STRING,LENGTH);
where STRING contains the octal or decimal number to be converted and LENGTH is an integer

representing the length of the string containing the ASCII-coded value. The converted double-word
value is returned to DVAL.

5-20

Other Applications Of MPE Intrinsics

PAGE 0001 HEWLETT-PACKARD 32100A.08.1 SPL[4W] TUE, OCT 28, 1982, 4:35 PM
00001000 00000 O $CONTROL USLINIT

00002000 00000 0 BEGIN

00003000 00000 1 ARRAY HEADING(0:8):="INTEGER CALCULATOR";

00004000 00011 1 ARRAY ERRMSG(0:6):="ILLEGAL ENTRY.";

00005000 00007 1 ARRAY INPUT(0:36);

00006000 00007 1 BYTE ARRAY COMMAND (%)=INPUT;

00007000 00007 1 BYTE ARRAY ANSWER(0:13):="ACCUM = "

00008000 00010 1 ARRAY OUTPUT(X)=ANSWER;

00009000 00010 1 BYTE ARRAY TABLE(0:25):=

00010000 00001 1 5,3,"ADD", 5,3,"suB", 5,3,"MUL",

00011000 00010 1 5,3,"DIV", 5,3,"SET", 0;

00012000 00016 1 INTEGER ARRAY PARMINFO(0:1);

00013000 00016 1 LOGICAL INTERACTIVE:=FALSE;

00014000 00016 1 INTEGER ACCUM:=0, OPERAND:=0, REQ:="? ",

00015000 00016 1 LGTH, INDX, PARMCNT, TYPE;

00016000 00016 1

00017000 00016 1 INTRINSIC ASCII,BINARY,READ,PRINT,MYCOMMAND,QUIT,WHO;
00018000 00016 1

00019000 00016 1 <<END OF DECLARATIONS>>

00020000 00016 1

00021000 00016 1 PRINT(HEADING,9,0); <<PROGRAM 1ID>>
00022000 00004 1 WHO (INTERACTIVE); <<LIVE USER?>>
00023000 00010 1 LOOP:

00024000 00010 1 IF INTERACTIVE THEN PRINT(REQ,1,%320); <<PROMPT USER>>
00025000 00016 1 LGTH:=READ(INPUT,-72); <<GET COMD>>
00026000 00023 1 IF <> THEN QUIT(1); <<CHECK FOR ERR>>
00027000 00026 1 IF COMMAND ="END" THEN GO EXIT; <<DONE - EXIT>>
00028000 00040 1 COMMAND (LGTH) : =%15; <<CARRIAGE RETN>>
00029000 00043 1

00030000 00043 1 TYPE : =MYCOMMAND (COMMAND, , 1, PARMCNT, <<TAKE APART CMD>>
00031000 00050 1 PARMINFO, TABLE) ;

00032000 00056 1 IF < THEN GO ERROR; <<NO CMD MATCH>>
00033000 00057 1 IF PARMCNT<>1 THEN GO ERROR; <<NO PARAMETERS>>
00034000 00062 1 INDX:=PARMINFO0-@COMMAND ; <<SUBSCR OF PARM>>
00035000 00065 1 OPERAND : =BINARY (COMMAND (INDX) , <<CONVERT PARM>>
00036000 00070 1 PARMINFO(1).(0:8));

00037000 00075 1 IF <> THEN GO ERROR; <<CHECK FOR ERR>>
00038000 00076 1

00039000 00076 1 CASE (TYPE-1) OF <<SELECT OPERATN>>
00040000 00100 1 BEGIN

00041000 00106 2 ACCUM: =ACCUM+0OPERAND ; <<ADD COMD>>
00042000 00116 2 ACCUM: =ACCUM-OPERAND ; <<SUB COMD>>
00043000 00122 2 ACCUM: =ACCUMXOPERAND ; <<MUL COMD>>
00044000 00126 2 ACCUM:=ACCUM/OPERAND ; <<DIV COMMAND>>
00045000 00133 2 ACCUM: =0PERAND; <<SET COMMAND>>
00046000 00136 2 END;

Figure 5-5. Using the BINARY Intrinsic. (1 of 2)

5-21

Other Applications Of MPE Intrinsics

00047000
00048000
00049000
00050000
00051000
00052000
00053000
00054000
00055000
00056000

PRIMARY

00143
00143
00155
00163
00170
00171
00171
00175
00201
00202

1
1
1
1
1
1
1
1
1

1

RESULT:
MOVE ANSWER(8):=" "
ASCII(ACCUM, 10 ,ANSWER(8});
PRINT(QUTPUT,7,0};

GO
ERROR:

LOQP;

PRINT(ERRMSG,7,0};

IF NOT INTERACTIVE THEN QUIT(2);

GO
EXIT:

DB STORAGE=%020;

NO. ERRORS=000;
PROCESSOR TIME=0:00:03;

LOOP;
END.
SECONDARY DB STORAGE=%00113
NO. WARNINGS=000
ELAPSED TIME=0:00:11

<<RESET OLD ANSWER>>
<<CONVERT ACCUM>>
<<OUTPUT NEW ANSWER>>
<<CONTINUE CALC>>

<<ERROR MESSAGE>>
<<NO LIVE USER-QUIT>>
<<CONTINUE CALC>>

TRANSLATING CHARACTERS WITH THE CTRANSLATE INTRINSIC

The CTRANSLATE intrinsic is used for character code translating, whether between the standard com-
puter character codes, or a user-defined code. It permits you to obtain character code conversions
within programs of your own design. In the code parameter of CTRANSLATE, the following values

Figure 5-5. Using the BINARY Intrinsic (2 of 2)

specify the translation table to be used:

0 The user-supplied table specified in the table parameter.

1 EBCDIC to ASCII.

2 ASCII to EBCDIC.

3 Reserved for future use.

4 Reserved for future use.

5 EBCDIK to JIS (Katakana data).

6 JIS to EBCDIK.

As an example of converting from EBCDIC to ASCII, suppose the byte array ESTRING contains the
EBCDIC characters "JOB 2". To convert this string to its ASCII equivalent and store it in the byte

array ASTRING use the following intrinsic call:

CTRANSLATE(1,ESTRING,ASTRING,5);

5-22

Other Applications Of MPE Intrinsics

The parameters specified in the previous intrinsic call are:

code 1, which specifies the EBCDIC-to-ASCII table. An Ofor this parameter
specifies a user-defined translation table, and a 2 specifies the ASCII-to-
EBCDIC table.

instring ESTRING, a byte array containing the string to be converted.

outstring ASTRING, a byte array which will contain the ASCII characters for
“JOB 2" when the intrinsic is executed.

stringlength 5, which specifies the length, in bytes, of the string " JOB 2".

table Omitted. This parameter, if specified, consists of a byte array containing a

user-defined table to be used in the translation.

TRANSMITTING PROGRAM INPUT/OUTPUT FROM JOB/SESSION
INPUT/OUTPUT DEVICES

In addition to the FREAD and FWRITE intrinsics, MPE provides other intrinsics that allow you to read
information from the job/session input device (READand READX) or write information to the job/ses-
sion list device (PRINT). You can transmit a message to the System Console with the PRINTOP intrin-
sic or transmit a message to the System Console and solicit a reply with the PRINTOPREPLY intrinsic.

NOTE

The READ, READX, and PRINT intrinsics are limited in
their usefulness in that :FILE commands are not al-
lowed. Also, the filenum parameter, obtained from the
FOPEN intrinsic, is not available for use with these in-
trinsics. Therefore, if an error occurs, it is not possible
to determine what it is because the FCHECK intrinsic
requires the filenum parameter. You may find it more
convenient (and a better programming practice) to use
the FOPEN intrinsic to open the files $STDIN and
$STDLIST, then issue FREAD and FWRITE against these
files.

Reading Input from the Job/Session Input Device

The job/session input device is the source of all MPE commands relating to a Job or session, and is the
primary source of all ASCII information input to the job or session. You can read a string of ASCII
characters from the job/session input device into an array in your program with the READ and READX
intrinsics. The READ and READX intrinsics are identical, except that the READX intrinsic reads input
from $STDINX instead of $STDIN. $STDINX is equivalent to $STDINexcept that records with a colon
(:) in column 1 indicate the end-of-file to $STDIN, and only the commands :EOD, and :EOF indicate
the end of file for $STDINX. The READ intrinsic call is illustrated in Figure 5-6.

5-23

Other Applications Of MPE Intrinsics

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00009000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00028000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000

PAGE 0001

HEWLETT-PACKARD 32100A.08.1 SPL[4W] TUE, OCT 28, 1982, 4:35 PM
00000 0 $CONTROL USLINIT
00000 0 BEGIN
00000 1 ARRAY HEADING(0:8):="INTEGER CALCULATOR";
00011 1 ARRAY ERRMSG(0:6):="ILLEGAL ENTRY.";
00007 1 ARRAY INPUT(0:38);
00007 1 BYTE ARRAY COMMAND (X)=INPUT;
00007 1 BYTE ARRAY ANSWER(0:13):="ACCUM = "
00010 1 ARRAY OUTPUT(X)=ANSWER;
00010 1 BYTE ARRAY TABLE(0:25):=
00001 1 5,3,"ADD", 5,3,"SUB", 5,3,"MUL",
00010 1 5,3,"DIV", 5,3,"SET", 0;
00016 1 INTEGER ARRAY PARMINFO(0:1);
00016 1 LOGICAL INTERACTIVE:=FALSE;
00016 1 INTEGER ACCUM:=0, OPERAND:=0, REQ:="? "
00016 1 LGTH, INDX, PARMCNT, TYPE;
00016 1
00016 1 INTRINSIC ASCII,BINARY,READ,PRINT,MYCOMMAND,QUIT,WHO;
00016 1
00016 1 <<END OF DECLARATIONS>>
00016 1
00016 1 PRINT(HEADING,9,0); <<PROGRAM ID>>
00004 1 WHO(INTERACTIVE) ; <<LIVE USER?>>
00010 1 LOOP:
00010 1 IF INTERACTIVE THEN PRINT(REQ,1,%320); <<PROMPT USER>>
00016 1 LGTH: =READ (INPUT,-72) ; <<GET COMD>>
00023 1 IF <> THEN QUIT(1); <<CHECK FOR ERR>>
00026 1 IF COMMAND ="END" THEN GO EXIT; <<DONE - EXIT>>
00040 1 COMMAND (LGTH) : =%15 ; <<CARRIAGE RETN>>
00043 1
00043 1 TYPE : =MYCOMMAND (COMMAND , , 1, PARMCNT, <<TAKE APART CMD>>
00050 1 PARMINFO, TABLE) ;
00056 1 IF < THEN GO ERROR; <<NO CMD MATCH>>
00057 1 IF PARMCNT<>1 THEN GO ERROR; <<NO PARAMETERS>>
00062 1 INDX : =PARMINF 0-@COMMAND ; <<SUBSCR OF PARM>>
00065 1 OPERAND : =BINARY (COMMAND (INDX) , <<CONVERT PARM>>
00070 1 PARMINFO(1).(0:8));
00075 1 IF <> THEN GO ERROR; <<CHECK FOR ERR>>
00076 1
00076 1 CASE (TYPE-1) OF <<SELECT OPERATN>>
00100 1 BEGIN
00106 2 ACCUM: =ACCUM+OPERAND ; <<ADD COMD>>
00116 2 ACCUM: =ACCUM-OPERAND ; <<SUB COMD>>
00122 2 ACCUM: =ACCUMXOPERAND ; <<MUL COMD>>
00126 2 ACCUM: =ACCUM/OPERAND ; <<DIV COMMAND>>
00133 2 ACCUM: =OPERAND ; <<SET COMMAND>>
00136 2 END;

Figure 5-6. Using the PRINT and READ Intrinsics (1 of 2)

5-24

Other Applications Of MPE Intrinsics

00047000 00143 1 RESULT:

00048000 00143 1 MOVE ANSWER(8):=" ", . <<RESET OLD ANSWER>>
00049000 00155 1 ASCII(ACCUM, 10, ANSWER(8)); <<CONVERT ACCUM>>
00050000 00163 1 PRINT (OUTPUT,7,0); <<OUTPUT NEW ANSWER>>
00051000 00170 1 GO LOOP; <<CONTINUE CALC>>
00052000 00171 1 ERROR:

00053000 00171 1 PRINT(ERRMSG,7,0); <<ERROR MESSAGE>>
00054000 00175 1 IF NOT INTERACTIVE THEN QUIT(2); <<NO LIVE USER-QUIT>>
00055000 00201 1 GO LOOP; <<CONTINUE CALC>>

00056000 00202 1 EXIT: END.

PRIMARY DB STORAGE=%020; SECONDARY DB STORAGE=%00113
NO. ERRORS=000; NO. WARNINGS=000

PROCESSOR TIME=0:00:03; ELAPSED TIME=0:00:11

Figure 5-6. Using the PRINT and READ Intrinsics (2 of 2)

Statement 00025000:

LGTH:=READCINPUT,-72);
reads an entry from the terminal and transfers this string to the array INPUT. The maximum length
of the string to be read is specified as 72 bytes (-72). The actual number of bytes read is returned
and stored in the word LGTH when the intrinsic executes.
Statement 00026000:

IF <> THEN QUIT(1);
checks for a CCG or CCL condition code and, if either is found the QUIT intrinsic is executed and the
process is aborted. The (1) parameter is an arbitrary user-supplied value that is displayed as part of
the abort message. .

Writing Output to the Job/Session List Device

Normally, the list device for jobs is a line printer and for sessions a terminal. You can write a string
of ASCII characters from an array in your program to this list device with the PRINT intrinsic.

In Figure 5-6, statement 00021000:

PRINT(HEADING,9,0);
transmits the string " INTEGER CALCULATOR" from the array HEADING (refer to statement
00003000). The length parameter is specified as 9, which means that the string to be transmitted is 9

words long (a negative value would specify bytes). The control parameter is 0, signifying that the full
record is to be printed, up to 132 characters per line, using single spacing.

5-25

Other Applications Of MPE Intrinsics

Writing Output to the System Console
The PRINTOP intrinsic could be called as follows:

PRINTOP(MESSAGE ,10,0);
The character string to be transmitted is contained in the array MESSAGE. The parameter 10 signifies
that the message is 10 words long (a negative value would specify bytes). If zero is specified for the
length parameter, only the standard message prefix is written on the System Console; the string con-
tained in MESSAGE would not be transmitted.
Writing Output to the System Console and Requesting a Reply
The PRINTOPREPLY intrinsic can be used to transmit an ASCII string from an array in your program
to the System Console and to request that a reply be returned. For example, a program could ask the
System Operator if the line printer contains a certain type of form. If the response is affirmative, the
program could then write information on these forms.
A PRINTOPREPLY intrinsic call could be as follows:

REPLGTH: =PRINTOPREPLY(MESSAGE ,18,0,REPLY, -3);
The following parameters were specified in the above call:
message An ASCII string contained in the array MESSAGE.
length 18 words. A negative value would specify bytes. If zero is specified for

the length parameter, only the standard message prefix is written on the
System Console ; the string contained in MESSAGE would not be transmitted.

control 0 (MPE ignores this parameter).
reply The System Operator’s reply will be returned to the array REPLY.
expectedl -3, signifying that the maximum expected length of the reply is 3 bytes. A

positive value would specify words.
The actual length of the System Operator’s reply is returned to REPLGTH. This is a positive value

representing a byte count in this case because expected! is negative (-3). If expectedl is positive, then
the length returned represents words. The maximum value for expectedi is 31 bytes.

SUSPENDING THE CALLING PROCESS

The calling process can be suspended with the PAUSE intrinsic. The maximum interval allowed is ap-
proximately 2,147,484 seconds (almost 25 days). A PAUSE intrinsic call could be as shown below,
where INT is a real variable that specifies the amount of time, in seconds, that the process is
suspended:

PAUSECINT);

5-26

Other Applications Of MPE Intrinsics

When INT seconds have elapsed, control is returned to the calling process and execution resumes at
the statement following the PAUSE intrinsic call.

REQUESTING A PROCESS BREAK

During a session, you can initiate a break programmatically with the CAUSEBREAK intrinsic. The
CAUSEBREAK intrinsic is the programmatic equivalent of using the key in a session. It allows
you to enter certain MPE commands to perform functions such as creating a file or transmitting an
informal message. The MPE commands permitted during a break are listed below:

:ABORT :HELP :RENAME :SHOWIN
:ALTSEC 1 IF :REPORT : SHOWJCW
tALTVSET :LISTEQ :RESET :SHOWJOB
:BUILD :LISTF :RESETDUMP : SHOWME

: COMMENT :LISTFTEMP :RESUME :SHOWOUT
:DEBUG :LISTVS :SAVE :SHOWTIME
:DISCRPS :MOUNT :SECURE :SPEED
:DISMOUNT tNEWVSET :SETCATALOG :STARTSESS
:DSLINE :PTAPE : SETDUMP :STREAM
:DSTAT : PURGE :SETJCW :TELL
:ELSE :REDO :SETMSG :TELLOP
:ENDIF :RELEASE : SHOWCACHE :VSUSER
tFILE :REMOTE : SHOWCATALOG

:GETRIN :REMOTE HELLO : SHOWDEV

(Refer to the MPE V Commands Reference Manual (32033-90006) for discussions of the above
commands.)

The CAUSEBREAK intrinsic is not valid in a job. A program containing the CAUSEBREAK intrinsic will
not break if it is executed from a UDC which specifies the NOBREAK option.

The form of the CAUSEBREAK intrinsic call is:
CAUSEBREAK 3
Execution of the process can be resumed where the interruption occurred by entering the command :

: RESUME

TERMINATING A PROCESS

You can programmatically terminate a process with the TERMINATE intrinsic. The process and all of
its descendants, including any extra data segments belonging to them, are deleted.

5-27

Other Applications Of MPE Intrinsics

All files still open by the process are closed with a disposition of 0. (For more details, refer to the
FCLOSE intrinsic discussion in Section II.)

The form of the TERMINATE intrinsic call is:

TERMINATE;

ABORTING A PROCESS

If called from within any process in a user-process structure, the QUIT intrinsic aborts that process.
All process files still open are closed with a disposition of 0. (Refer to the FCLOSE intrinsic discussion
in Section II for more details.)

The QUIT intrinsic transmits an abort mesage to the calling process calling device and terminates the
process in an error state. (Refer to "Run-Time Messages" in Appendix A.) In a session, the process is
aborted but the session remains active when the entire program finishes. In a batch job, the job ter-
minates when the entire program finishes unless the :CONTINUE command is in effect. (Refer to the
MPE V Commands Reference Manual (32033-90006) for more information on the :CONTINUE
command.)

Figure 5-7 shows the QUIT intrinsic being called if a READ statement did not execute properly. The
abort message resulting from the QUIT intrinsic is shown below:

ABORT :program.group.account(.%26
PROGRAM ERROR #18 :PROCESS QUIT . PARAM=1

Statement 00026000:
IF <> THEN QUITC1);

checks for a CCG or CCL condition code and, if one is returned, the QUIT intrinsic is called. The
abort message is printed and the process is aborted. The QUIT parameter (1) is an arbitrary number
supplied by the user and can be used to identify a specific QUIT intrinsic call in case of multiple pos-
sible QUIT intrinsic calls. This number, 1 in this case, is printed at the end of the abort message
(PARAM=1). The system Job Control Word, JCW, is set to the value %100000, with the QUIT pa-
rameter as a modifier. In this example, JCW would be set to %100001.

ABORTING A PROGRAM

You can programmatically abort the entire user-process structure (program) with the QUITPROG in-
trinsic. This intrinsic destroys all processes up to, but not including, the job/session main process.
All files still open by any user process are closed with a disposition of 0. (Further details can be found
under the FCLOSE intrinsic in Section II.)

5-28

Other Applications Of MPE Intrinsics

PAGE 0001

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00009000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
- 00036000
00037000
00038000
00037000
00040000
00041000
00042000
00043000
00044000
00045000
00046000

HP32100A.08.01

00000
00000
00000
00011
00007
00007
00007
00010
00010
00001
00010
00016
00016
00016
00016
00016
00016
00016
00016
00016
00016
00004
00010
00010
00016
00023
00026
00040
00043
00043
00050
00056
00057
00062
000865
00070
00075
000786
00076
00100
00106
00116
00122
00126
00133
00136

[4w] (C)

0 $CONTROL USLINIT
0 BEGIN

1

NN RN RN RN RN - e b b e b b b o b bt b bt b bt bt b e e b e = b b b b b b bt e b b b e e b e

ARRAY HEADING(0:8):="INTEGER CALCULATOR";
"ARRAY ERRMSG(0:6):="ILLEGAL ENTR

ARRAY INPUT(0:36};

BYTE ARRAY COMMAND (X)=INPUT;
BYTE ARRAY ANSWER(0:13):="ACCUM
ARRAY OUTPUT(%)=ANSWER;

BYTE ARRAY TABLE(0:25):=

Y‘";

HEWLETT-PACKARD COMPANY 1980

5,3,"ADD", 5,3,"SuB", 5,3,"MUL",
5,3,"DIV", 5,3,"SET", 0;
INTEGER ARRAY PARMINFO(0:1);
LOGICAL INTERACTIVE:=FALSE;
INTEGER ACCUM:=0, OPERAND:=0, REQ:="?7 *“,
LGTH, INDX, PARMCNT, TYPE;

INTRINSIC ASCII,BINARY,READ,PRINT,MYCOMMAND QUIT,WHO;

<<END OF DECLARATIONS>>

PRINT(HEADING,9,0);
WHO (INTERACTIVE);
LOOP:

IF INTERACTIVE THEN PRINT(REQ,1,%320);

LGTH: =READ (INPUT,-72};
IF <> THEN QUIT(1);

IF COMMAND ="END"
COMMAND (LGTH) : =%15;

THEN GO EXIT;

TYPE : =MYCOMMAND (COMMAND, , 1, PARMCNT,
PARMINFO, TABLE) ;

IF < THEN GO ERROR;

IF PARMCNT<>1 THEN GO ERROR;

INDX:=PARMINFO0-@COMMAND ;

OPERAND: =BINARY {COMMAND (INDX)
PARMINFO(1).

IF <> THEN GO ERROR;

CASE (TYPE-1) OF
BEGIN
ACCUM:
ACCUM:
ACCUM:
ACCUM:
ACCUM:
END;

=ACCUM+OPERAND ;
=ACCUM-OPERAND;
=ACCUMXOPERAND ;
=ACCUM/OPERAND ;
=0PERAND;

(0:8));

<<PROGRAM 1ID>>
<<LIVE USER?>>

<<PROMPT USER?>>
<<GET COMD>>
<<CHECK FOR ERR>>
<<DONE - EXIT>>
<<CARRIAGE RETN>>

<<TAKE APART CMD>>

<<NO CMD MATCH>>
<<NO PARAMETERS>>
<<SUBSCR OF PARM>>
<<CONVERT PARM>>

<<CHECK FOR ERR>>

<<SELECT OPERATN>>

<<ADD
<<SUB
<<MUL
<<DIV
<<SET

COMD>>
COMD>>
COMD>>
COMD>>
COMD>>

Figure 5-7. Using the QUIT Intrinsic

5-29

. (1 of 2)

Other Applications Of MPE Intrinsics

00047000 00143 1 RESULT:

00048000 00143 1 MOVE ANSWER(8):=" ", <<RESET OLD ANSWER>>
00048000 00155 1 ASCII(ACCUM, 10 ,ANSWER(8)); <<CONVERT ACCUM>>
00050000 00163 1 PRINT(OUTPUT,7,0); <<QUTPUT NEW ANSWER>>
00051000 00170 1 GO LOOP; <<CONTINUE CALC>>
00052000 00171 1 ERROR:

00053000 00171 1 PRINT(ERRMSG,7,0}; <<ERROR MESSAGE>>
00054000 00175 IF NOT INTERACTIVE THEN QUIT(2); <<NO LIVE USER-QUIT>>
00055000 00201 1 GO LOOP; <<CONTINUE CALC>>

00056000 00202 1 EXIT: END.

PRIMARY DB STORAGE=%020; SECONDARY DB STORAGE=%00113
NO. ERRORS=000; NO. WARNINGS=000

PROCESSOR TIME=0:00:03; ELAPSED TIME=0:00:11

Figure 5-7. Using the QUIT Intrinsic (2 of 2)

In batch jobs not containing the :CONTINUE command this terminates the job. For more information
on the :CONTINUE command refer to the MPE V Commands Reference Manual (32033-90006).

The form of the QUITPROG intrinsic call could be as follows:
QUITPROG(1);

The parameter (1) can be any user-specified number. When the QUITPROG intrinsic executes, this
number is printed as part of the abort message. In addition, QUITPROG sets the system Job Control
Word, JCW, to the value %100000, with the QUITPROG parameter as a modifier. Thus, in this ex-
ample, JCW would be set to %100001.

CHANGING STACK SIZES

When you prepare or execute a process, you specify (or allow MPE to assign by default) the size of the
stack (Z to DB) area and the user-managed (DL to DB) area within the stack segment. Once the
process begins execution, you can programmatically change the size of these areas, to meet new
requirements as they arise, by altering the register offsets Z to DB or DL to DB. For example, you
typically expand the size of these areas when you find, during process execution, that the sizes
specified initially were not sufficient for your data requirements. Conversely, you might contract the
size of either of these areas should your process no longer require large amounts of space for data.
(This is a good practice as it improves overall system performance.) These changes are requested with
the DLSIZE intrinsic for the DL to DB area and the ZSIZE intrinsic for the Z to DB area.

If you plan to expand or contract the Z to DB or DL to DB areas programmatically, you must specify,
at the time the stack is created, the anticipated maximum size of the stack segment. This value is
used by MPE in allocating disc storage. The maximum stack size value is specified at preparation or
run time with the segsize parameter of the :PREP, :PREPRUN, or :RUN command, or if you are a
user with the Process Handling capability, after the program is running with the maxdata parameter
of the CREATE intrinsic.

5-30

Other Applications Of MPE Intrinsics

NOTE

When the stack segment of a process running in
Privileged Mode is frozen in main memory, as during an
input/output operation, either implicitly or explicitly,
intrinsics to change the register offsets DL to DB or Z to
DB cannot be executed. The stack segment is frozen in
main memory implicitly when a user’s process interfaces
directly with the input/output system. It is frozen in
main memory explicitly by a direct call to system intrin-
sics. When these intrinsics are called under such cir-
cumstances, a special "frozen stack" error code is
returned to the calling process, which then may attempt
recovery. In general, this error implies that you should
wait until the stack is unfrozen before reissuing the in-
trinsic call.

Changing the DL to DB Area Size

You can expand or contract the area between DL and DB within the stack segment with the DLSIZE
intrinsic. All current information within the DL to DB area is saved on expansion. On contraction,
data within the area to be contracted is lost. (Refer to Figure 5-8.)

A request for contraction to less than the initial DL size of the area causes the initial DL size to be
granted and an error condition code (CCL) to be returned. If the size requested causes the stack to
exceed the maximum size permitted to the entire stack area, Z to DL, only this maximum will be
granted.

Some possible applications for the DL area are:
¢ Dynamically allocated 1/O buffers when using the FCOPY subsystem.
e Compiler symbol tables when programming in SPL.

¢ Global storage area for library routines in Segmented Libraries. These routines typically have no
global area storage which will retain values assigned to them between calls to the procedure.
These routines also typically have no common storage where data can be shared by several
procedures. If you define your conventions carefully, these library routines can use the DL area
of the process which calls them for this kind of storage. Care must be taken, however, because
the 10 words of the DL area located adjacent to DB are reserved for subsystem use, and some sys-
tem routines make use of the DL area for their own storage. As long as your environment is com-
pletely known and well defined, your main program or your library routines can get DL space and
manage it as they choose.

Figure 5-9 contains an SPL program that expands and contracts the DL to DB area.

NOTE

All addressing within the DL to DB area is DB-relative
negative indexing. SPL is the only language which can
access this area for you.

5-31

Other Applications Of MPE Intrinsics

The program in Figure 5-9 reads data from $STDIN and stores it in the DL area at progressively
lower (DB-n) addresses. Additional DL space is allocated when the next buffer would lie outside the
current DL area. When a null record (0 length) is read, the program outputs the data on a last-in-
first~out (LIFO) basis. After all the records are output, the DL space is collapsed to its initial alloca-
tion and the operation begins again. The loop is terminated by entering :EODin place of a data line.
Note that the program was prepared (:PREP command) with a MAXDATA=2000 parameter.

Statement 00018000 of Figure 5-9 sets the DL to DB area to the original area assigned when the
process was created (initial DL):

TOTALDL : =DLSIZEC0);

oL S
(NEW A CALL TO DLSIZE TO EXPAND
AREA) THE DL TO DB AREA CAUSES
oL—> -~7=~-r91 THE DL REGISTER TO BE
/ / / / / / // MOVED FARTHER AWAY FROM DB.
/ / THE NEW AREA CREATED BY
oB__, 0B — THE EXPANSION IS ADDED

TO THE EXISTING DL AREA.
INFORMATION WHICH WAS
CONTAINED IN THE OLD DL AREA
- Q- IS NEITHER MOVED RELATIVE TO
DB NOR ALTERED IN ANY WAY.

S— S|
Z— 2>

A g

N

=7 7777 """ DATA
LOST
______ DL
DB _ / 08B / / / / / A CALL TO DLSIZE TO CONTRACT

THE DB TO DL AREA CAUSES THE
DL REGISTER TO BE MOVED CLOSER
TO DB. THE DATA CONTAINED

Q Q- BETWEEN THE OLD PQSITION OF
- DL AND THE NEW CONTRACTED
POSITION OF DL IS LOST TO

W

THE USER.
S S_)
Z_ N Z_
7 -7

Figure 5-8. Expanding and Contracting the DL to DB Area

5-32

Other Applications Of MPE Intrinsics

PAGE 0001 HP32100A.08.01 ([4W] (C)
00001000 00000 0 SCONTROL USLINIT
00002000 00000 0 BEGIN

00003000 00000 1 INTEGER IN,OUT,LGTH,

HEWLETT-PACKARD COMPANY 1980

00004000 00000
00005000 00000
00006000 00000
00007000 00000
00008000 00000
00009000 00000
00010000 00000
00011000 00000
00012000 00000
00013000 00007
00014000 00012
00015000 00012
00016000 00022
00017000 00025
00018000 00025
00019000 00030
00020000 00033
00021000 00033
00022000 00034
00023000 00036
00024000 00036
00025000 00043
00026000 00046
00027000 00046
00028000 00050
00029000 00055
00030000 00062
00031000 00065
00032000 00073
00033000 00076
00034000 00077
00035000 00102
00036000 00102
00037000 00105
00038000 00113
00039000 00113
00040000 00116
00041000 00117
00042000 00117
00043000 00124
00044000 00127
00045000 00132
00046000 00135

TOTALDL:=0;

LOGICAL PROMPT:="?7 ",
LOGICAL POINTER BUFFER:=-46;

INTRINSIC FOPEN,DLSiZE,FREAD,FWRITE,QUIT;

<<END OF DECLARATIONS>>

IN:=FOPEN(,%44);
IF < THEN QUIT(1);

OUT:=FOPEN(,%414,1);
IF < THEN QUIT(2);

RESTART:

TOTALDL:=DLSIZE(0)
IF <> THEN QUIT(3);

LINEIN:

PUSH(DL) ;
IF TOS>@BUFFER THEN
BEGIN

TOTALDL :=DLSIZE(TOTALDL-128);<<GET MORE DL AREA>>

IF <> THEN QUIT(4);
END;
BUFFER:=" ",
MOVE BUFFER(1):=BUFFER, (35);
FWRITE (OUT, PROMPT,1,%320);
IF <> THEN QUIT(S);
LGTH:=FREAD (IN,BUFFER,36);
IF < THEN QUIT(6);
IF > THEN GO EXIT;
IF LGTH=0 THEN
BEGIN
@BUFFER : =@BUFFER+36 ;
GO LINEOUT;
END;
@BUFFER: =@BUFFER-36;
GO LINEIN;
LINEOUT:
FWRITE (OUT,BUFFER,36,0);
IF <> THEN QUIT(7);

IF @BUFFER>=-46 THEN GO RESTART;<<ALL BUFRS OUT:RESTRT>>

@BUFFER: =@BUFFER+36;
GO LINEOUT;

<<BUFFER:36 ; RESERV:10>>

<<$STDIN>>
<<CHECK FOR ERROR>>

<<$STDLIST»>
<<CHECK FOR ERROR>>

<<SET DL TO INITL SIZE>>
<<CHECK FOR ERROR>>

<<GET CRNT DL SETTING>>
<<NEXT BFR OUTSIDE DL?>>

<<CHECK FOR ERROR>>

<<BLANK READ BUFFER>>
<<?PROMPT FOR INPUT>>
<<CHECK FOR ERROR>>
<<INPUT DATA>>
<<CHECK FOR ERROR>>
<<CHECK FOR :EOD>>
<<NO DATA INPUT?>>

<<ADDRESS PREVIOUS BUFR>>
<<START OUTPUT PHASE>>

<<ADDRESS NEXT BUFFER>>
<<CONTINUE>>

<<QUTPUT DATA>>
<<CHECK FOR ERROR>>

<<ADDRESS PREVIOUS BUFR>>
<<CONTINUE OUTPUT PHASE>>

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
1
1
1
1
1
1
1
1
1
2
2
2
1
1
1
1
1
1
1
1
1

00047000 00137 EXIT:END.

Figure 5-9. Using the DLSIZE Intrinsic (Program DLAREA)

5-33

Other Applications Of MPE Intrinsics

Consider the following illustration of the DL to DB area:

OL ORIGINAL DL UMIT

0B-46

E 36 WORDS RESERVED FOR BUFFER

D8 10 WORDS RESERVED FOR SUBSYSTEMS OF MPE

Statement 00006000 in Figure 5-9:
LOGICAL POINTER BUFFER:=-46;
sets a pointer to DB-46, which is the DB-relative address of the first word in BUFFER.
Statement 00021000:
PUSH(DL);
pushes the DL register contents onto the top of the stack, and statement 00022000:
IF TOS>@BUFFER THEN
checks to determine whether the address of the first word of BUFFER is outside the DL to DB area. In
other words, TOS contains the DL address from the DL register. If this value is greater than (less

negative) the address of the first word in BUFFER, then BUFFER is outside the DL to DB area. The
following diagram illustrates this point:

0B-154 Fo-o---------]¢—— STARTING ADDRESS OF NEXT BUFFER
36 WORDS IF ANOTHER RECORD READ FROM $STDIN
DL
(DB-128) BUFFER
(36 WORDS)
DB-82
BUFFER
(36 WCRDS)
DB-46
BUFFER
(36 WORDS)
DB-10
DB

5-34

Other Applications Of MPE Intrinsics

If the DL address is DB-128, then when only one buffer is filled, the address of the next buffer is
well within the DL to DB area. When three buffers have been filled, however, the starting address
of the next buffer (DB-154) would be outside the DL to DB area (DB-0 to DB-128). The TOS
(DB-128) is greater than the address of the first word in the next buffer (DB-154).

If the next buffer would lie outside the DL to DB area, the four statements in the program beginning
on line 00023000 add 128 words to the DL to DB area.

Statements 00027000 and 00028000:

BUFFER:=" '3
MOVE BUFFERC1):=BUFFER, (35);

fill BUFFER with blanks preparatory to reading the input from $STDIN. A prompt is displayed and
the user enters the next record. The length of the record is assigned to LGTH in statement 0003 5000.

If LGTH= 0, signaling a carriage return (no data entered), the program addresses the previous buffer
and transfers control to LINEOUT. The contents of the buffers are written on $STDLIST on a last-in-
first-out basis. When the original address is reached (DB-46), control is returned to RESTART and
the procedure is repeated.
Statement 00024000:

TOTALDL :=DLSIZE(0);

contracts the DL to DB area back to its original size, destroying the contents of all buffers. An :EOD
entry terminates program execution.

Figure 5-10 shows the results when the program is run.

5-35

Other Applications Of MPE Intrinsics

:RUN DLAREA

D ORRERBERBREERRERF RS
? (222X 2 XXX R L 2)
HREFRAFEREFRRERER
3 9 3 % 3 3 % W3 X AW H IR
3636 3 8 3 3 % 3 3 kK
FRBREFIFRRR
(X222 L2 2 2]
(22 XX X}
3% 3 3 3t #
* %%
*

e I B R T B B B I]

#*
%* 3% 3
*#HER
222X X X

3t 36 3¢ 3 3 % % 3% %

[Z XXX XXX}
36 9 96 3 3 3 96 96 % % X * 3
36 38 3 96 3 96 3 3 96 3 % 3 %

B 40 36 36 3 3% 96 % 3 % 3 % %
X2 ZXXXXX XL LR L RX S
222X XXX LR 2 RS XL R 3

DDDDDD
NNNNNN
EEEEEE
(Enter at least one blank space and <CR>)
EEEEEE
HHHHHH
TTTTTT

BN B N e I I 2R B |

HHHHHH
EEEEEE

EEEEEE
NNNNNN
DDDDDD
? :EOD

END OF PROGRAM

Figure 5-10. Changing the DL to DB Area Size (Program DLAREA)

5-36

Other Applications Of MPE Intrinsics

Changing the Z to DB Area Size

You can alter the size of the current Z to DB area by adjusting the register offset of the Z address
from the DB address with the ZS1ZE intrinsic.

The ZSIZE intrinsic moves the Z address forward (expansion) or backward (contraction) as shown
below:

oL DL
DB 0B
Q Q
s s
Z oo NEW Z
FORWARD ' T '
d \ BACKWARD
NEW Z p AR '
EXPANSION CONTRACTION

If the Z to DB area size requested exceeds the maximum size permitted for the Z to DL (stack) area,
only the maximum size allowed is granted.

All changes to the Z to DB area are made in increments or decrements of 128 words; thus the sizé ac-
tually granted may differ from the size requested. For example, if the present Z to DB area size is
128 words, a request for 129 words would result in a size of 256 words being granted.
A ZSIZE intrinsic call could be:

ACTSIZE:=ZSIZE(250);

If the maximum size for the Z to DL area permitted, an actual size granted for the Z to DB area of
256 words would be returned to ACTSIZE.

ENABLING AND DISABLING TRAPS

Normally, whenever a major error occurs during the execution of a hardware instruction, a procedure
from the System Library, or an intrinsic called by a user, the user program is aborted and an error
message is output. You can, however, avoid immediate abort by enabling any of three software traps
provided by MPE:

e The arithmetic trap, for hardware instruction errors.

e The library trap, for errors detected during execution of a system library procedure.

¢ The system trap, for errors detected during execution of a system intrinsic.

5-37

Other Applications Of MPE Intrinsics

When an error occurs, the corresponding trap, if enabled, suppresses output of the normal error mes-
sage, transfers control to a "trap procedure" defined by you, and passes one or more parameters
describing the error to this procedure. This procedure may attempt to analyze or recover from the
error, or may execute some other programming path. Upon exiting from the trap procedure, control
returns to the instruction following the one that activated the trap. In the case of the library trap,
however, you can specify that the process be aborted when control exits from the trap procedure.

The validity of a trap procedure, specified by the external-type label of the user trap procedure
{plabels), depends on the code domain of the caller’s code and executing mode (privileged or non-
privileged), and on the code domain of the plabel and its mode (privileged or nonprivileged). The
code domains are:

PROG (User Program) SSL (System SL, non-MPE segments)
GSL (Group SL) MPESSL (System SL, MPE segments)
PSL (Public SL)

If, at the time of enabling a trap procedure, the code of the caller is:
e Nonprivileged in PROG, GSL, or PSL, plabel must be nonprivileged in PROG, GSL, or PSL.

o Privileged in PROG, GSL, or PSL, plabel may be privileged or nonprivileged in PROG, GSL, or
PSL.

e Privileged or nonprivileged in non-MPE SSL, plabel cannot be in any MPESSL segment.

Arithmetic Traps

There are two levels of arithmetic traps: the "hardware arithmetic trap set" and the "software
arithmetic trap". Each trap in the hardware trap set detects a particular type of hardware error,
such as division by zero or result overflow. The software trap, if enabled, receives an internal inter-
rupt signal from a hardware trap when an error is encountered, and transfers control to a user trap
procedure.

When a user process begins execution, all hardware trap set interrupt signals are enabled automatical-
ly, but the software trap is disabled, permitting any hardware error to abort the process. Through in-
trinsic calls, however, you can alter the ability of the hardware trap set to send signals, and that of
the software trap to receive a signal from any particular hardware trap. Only signals received and
accepted by the software trap can invoke a user trap procedure.

To enable or disable the internal interrupt signals from all hardware arithmetic traps, you enter the
ARITRAP intrinsic call, as follows:

ARITRAP(STATE);

where STATE is true (bit (15:1) = 1) to enable the signals from all hardware traps, or false (bit (15:1)
= 0) to disable these signals.

When a software arithmetic trap procedure is executed, the Index register contains the word of code
being executed when the trap occurred. This information, plus the right stackop bit in the status
word at Q-1 of the Stack Marker, can be used to identify the offending instruction. A one-word pa-
rameter is available, in Q-4, in which certain bits indicate the type of hardware trap invoked. The
various traps leave the parameter in Q-4 as follows.

5-38

Other Applications Of MPE Intrinsics

STANDARD TRAPS.

Bit 15= Floating Point Divide By 0
14 = Integer Divide By 0
13 = Floating Point Underflow
12 = Floating Point Overflow
11 = Integer Overflow

A return from the trap procedure (through an EXIT 1 instruction) will resume execution in the user

code domain at the instruction following that which activated the trap procedure. The condition of
the stack when the trap procedure is invoked is:

USER PROGRAM

HARDWARE TRAP TYPE
Q-4 PARAMETER

STACK MARKER

ARITHMETIC
TRAP
s PROCEDURE

EXTENDED PRECISION FLOATING POINT TRAPS.

Bit 10 = Extended Precision Overflow
9 = Extended Precision Underflow
8 = Extended Precision Divide By 0

The address of the result operand is left on the stack in Q-5. An EXIT 2return will resume execu-
tion in the user code domain at the instruction following the one which caused the trap. The condi-
tion of the stack when the trap procedure is invoked is:

USER PROGRAM

Q-5 RESULT ADDRESS

HARDWARE TRAP TYPE

Q-4 PARAMETER
STACK MARKER
Q
ARITHMETIC
TRAP
$ PROCEDURE

5-39

Other Applications Of MPE Intrinsics

COMMERCIAL INSTRUCTION TRAPS.

Bit 7= Decimal Overflow
= Invalid ASCII Digit (CVAD)
5 = Invalid Decimal Digit
= Invalid Source Word Count (CVBD)
3 = Invalid Decimal Operand Length
2 = Decimal Divide By 0

The parameters for the execution of the instruction are left on the stack below Q-4. To return prop-

erly the trap handler must examine the opcode (found in the Index Register) to determine the proper
stack decrement to use on exit. The condition of the stack when the trap procedure is invoked is:

USER PROGRAM

STACKED OPERANDS

HARDWARE TRAP TYPE

Q-4 PARAMETER
STACK MARKER
Q
ARITHMETIC
TRAP
s PROCEDURE

An arithmetic trap procedure is shown in Figure 5-11. The procedure FDIVZRO is a trap procedure
to which control is passed if a divide by zero operation is attempted while a Floating Point Divide By
0 software trap is enabled. Statement 00027000 of Figure 5-11 enables the Floating Point Divide By
O trap. The parameter %1 (bit (15:1) = 1) enables only the Floating Point Divide By 0. The
®@FDIVZRO passes the trap procedure as a parameter, and DUMMY1 and DUMMY2 are dummy parameters.

Statement 00031000 of Figure 5-11 attempts a Floating Point Divide By O operation and, since the
Floating Point Divide By O trap is enabled, control is transferred to procedure FDIVZRO. The condi-
tion of the stack at this point is:

USER PROGRAM
Q-6
RESULT
o-5
HARDWARE TRAP TYPE
Q-4 PARAMETER
STACK MARKER
Q
ARITHMETIC
TRAP
s PROCEDURE

5-40

Other Applications Of MPE Intrinsics

The two-word floating point value of RESULT has been left at Q-5/Q-6 and the FDIVZRO procedure
uses this for QUOTIENT.

If QUOTIENT = 0 (0 divided by 0), no action is taken and the procedure is exited, transferring control
back to the user program.

If QUOTIENT is less than O, then the largest possible negative value is assigned to QUOTIENT.

If QUOTIENT is not less than 0, the largest possible positive value is assigned.

PAGE 0001 HEWLETT-PACKARD 32100A.08.1 SPL[4W] TUE, OCT 28, 1982, 4:35
00001000 00000 0 SCONTROL USLINIT

00002000 00000 0 BEGIN

00003000 00000 REAL NUM:=1.,
00004000 00000 DENOM: =0 .,
00005000 00000 RESULT;

00006000 00000
00007000 00000
00008000 00010
00008000 00007
00010000 00007
00011000 00000
00012000 00000
00013000 00000

INTEGER DUMMY1,DUMMY2;
ARRAY DIVMSG(0:7):="DIVIDE OPERATION";
ARRAY ADDMSG(0:6):="ADD OPERATION ";

PROCEDURE FDIVZRO(QUOTIENT, TRAP);
VALUE QUOTIENT,TRAP;
REAL QUOTIENT;
LOGICAL TRAP;

00014000 00000 BEGIN
00015000 00000 IF QUOTIENT=0. THEN GO EXIT; <<LEAVE UNCHANGED>>
00016000 00004 IF QUOTIENT<O. <<CHECK SIGN OF ANS>>

00017000 00006
00018000 00011

THEN QUOTIENT:=%37777777777D << - LARGEST VALUE>>
ELSE QUOTIENT:=%17777777777D; << + LARGEST VALUE>>

00019000 00023 EXIT:
00020000 00023 RETURN 1; <<DEL TRAP PARM ONLY>>
00021000 00026 END;

00022000 00000
00023000 00000
00024000 00000
00025000 00000
00026000 00000
00027000 00000

INTRINSIC XARITRAP,PRINT,QUIT;
<END OF DECLARATIONS>>

XARITRAP(%1,@FDIVZRO,DUMMY1,DUMMY2) ; <<ARM FP/0. TRAP>>

00028000 00005 IF < THEN QUIT(1); <<CHECK FOR ERROR>>
00029000 00010

00030000 00010 PRINT(DIVMSG,8,0); <<DIVIDE HEADING>>
00031000 00014 RESULT : =NUM/DENOM; <<DIVIDE>>

00032000 00020

00033000 00020 PRINT(ADDMSG,7,0); <<ADD HEADING>>
00034000 00024 RESULT: =RESULT+RESULT; <<ADD>>

o e e e e e b b e b e = R NN RN N NN R b e e b e b e e e e e

00035000 00030 END.

Figure 5-11. Using the XARITRAP Intrinsic (Program ATRAP)

5-41

Other Applications Of MPE Intrinsics

Statement 00020000 of Figure 5-11 deletes one word from the stack (the TRAP parameter at Q-4)
and returns to the program leaving QUOTIENT (whose value is either %37771777777D or
%17777777777D) on the top of stack (once the stack marker for FDIVZRDand the trap parameter are
deleted).

When statement 00034000:
RESULT:=RESULT+RESULT;

tries to add the large value contained in RESULT to itself, the Floating Point Overflow hardware trap
aborts the process. The Floating Point Overflow error was deliberately caused in this example
program by assigning one of two largest possible values to RESULT and then attempting an add
(RESULT + RESULT). In a practical program such trap recovery (causing another intentional error)
would not be used. The result of running the example program is shown below:

:RUN_ATRAP

DIVIDE OPERATION
ADD OPERATION

ABORT :ATRAP.PUB.SUPPORT.%0.%26
PROGRAM ERROR #2 :FLOATING POINT OVERFLOW

PROGRAM TERMINATED IN AN ERROR STATE. (CIERR 976)

Library Trap

The software library trap reacts to major errors that occur during execution of procedures from the
System Library. When a user program begins execution, this trap is disabled automatically. You can
enable (or disable) it with the XL IBTRAP intrinsic. When enabled, the library trap passes control to a
trap procedure in the event of an error. This procedure, in turn, returns four words to the user
program which contain the stack marker created when the library procedure was called by the user
program. In addition, the trap procedure returns an integer representing the error number. When
the procedure is completed, it either transfers control to the instruction following that which caused
the error or aborts the process at your option. The trap procedure is defined by you, but it must con-
form to the special format discussed in the HP 3000 Compiler Library Reference Manual
(30000-90028).

The XL IBTRAP intrinsic call could be as follows:
XL IBTRAP(PLABEL , OLDPLABEL);
where PLABEL is the external-type label of your trap procedure. If the value of this parameter is 0,

the trap is disabled. OLDPLABEL is a word in which the previous plabel is returned to the user
program. If no plabel existed previously, O is returned.

5-42

Other Applications Of MPE Intrinsics

When a library trap procedure is invoked, the condition of the stack is:

USER’S PROGRAM
Q-3
Q-2
Q-1
Q
COMPILER
UBRARY
ROUTINES
Q-6 USERSTACK
Q-5 ERRORCODE
Q-4 ABORTFLAG
USER’S TRAP PROCEDURE

where the variables shown in Q-4 to Q-6 represent the following :

USERSTACK

ERRORCODE

ABORTFLAG

A word pointer to @’ of the stack marker placed on the stack when the
user program called the compiler library.

A reference parameter indicating the type of compiler library error,
described in the HP 3000 Compiler Library Reference Manual
(30000-900238).

A reference parameter set before the user exits from the trap procedure. If
true, the compiler library aborts the program with the standard error mes-
sage (just as if no trap procedure had been executed). If false, the compiler
library does not abort the program, and no error message is printed. In this
case, the compiler library attempts error-recovery.

5-43

Other Applications Of MPE Intrinsics

System Trap

The software system trap reacts to errors occurring in intrinsics called by user programs. Typical er-
rors are:

e Illegal access. An attempt by a user to access an intrinsic for which he does not have access
capability.

e Illegal parameters. The passing to an intrinsic of parameters that are not defined for the user’s
environment.

e Illegal environment. The DB register is not currently pointing to the user’s stack area.

e Resource violation. The resource requested by a user is either illegal or outside the constraints
imposed by MPE.

When a user program begins execution, the system trap is disabled automatically. When enabled by
the XSYSTRAP intrinsic call and subsequently activated by an error, the trap transfers control to a
trap procedure. The system trap is enabled or disabled by a XSYSTRAP intrinsic call, as follows:

XSYSTRAP (NEWPLABEL , OLDPLABEL) ;

where NEWPLABEL is the external-type label of your trap procedure. If the value of this parameter is
0, the software trap is disabled. OLDPLABEL is a word to which the previous plabel is returned to
your program. If no plabel existed previously, 0 is returned.

When a system trap procedure is executed because of an abort condition arising in a system intrinsic,
the stack is readjusted to provide an eight-word parameter group between the intrinsic parameters
and the stack marker:

USER PROGRAM
N WORDS FOR THE
CALLABLE INTRINSIC E N WORDS
Q-1 PARAMETER 1 N
Q-10 PARAMETER 2
Q-9 PARAMETER 3
e PARAMETER 4 EIGHT-WORD
Q-7 PARAMETER 5 PARAMETER GROUP
Q-6 PARAMETER 6
Q-5 PARAMETER 7
Q-4 PARAMETER 8 /
Q-3
Q-2 STACK MARKER
Q-1
Q -
o |_SYSTEM TRAP PROCEDURE

5-44

Other Applications Of MPE Intrinsics

The format of the eight-word parameter group in Q-4 through Q-11 is:

BTS 0 9 10 15

Q-1 | N PARAMETER 1

Q-0 P PARAMETER 2
Q-9 P- E-1 PARAMETER 3
Q-8 P-2 E-2 PARAMETER 4
Q-7 P-3 E-3 PARAMETER §
Q-6 P-4 E-4 PARAMETER 6
a5 P-5 E-% PARAMETER 7
Q-4 P6 E-6 PARAMETER 8

78

where the variables represent the following:
I Intrinsic number.

N Number of callable intrinsic parameters. (To resume execution in the user
code domain, an EXIT N+8 instruction should be executed.)

P Additional parameter information.

P-1 through P-6 Parameters modifying the error bytes (described below). If no modifying
parameter is present, the corresponding parameter byte is set to zero.

E-1 through E-6 Error bytes. The last error code present is delimited by the value of zero in
the following error byte.

With these parameters, the trap procedure may take any recovery action necessary. For example, it
may write messages, produce selective dumps, set error-indication flags, or allow interactive debug-
ging. Finally, the procedure may either call the TERMINATE intrinsic or issue an EXIT N+8 instruc-
tion to return to the user program (at the location following that where the trap was invoked), with
appropriate error indications. A sample declaration for a system trap procedure, and an example of
how you might issue an EXIT N+8instruction, is:

PROCEDURE

SYSTEMTRAP (PARAMETER1 , PARAMETERZ , PARAMETER3,
PARAMETER4, PARAMETERS, PARAMETERG,
PARAMETER7 , PARAMETERS) ;

VALUE PARAMETER1 , PARAMETER2, PARAMETER3, PARAMETER4,
PARAMETERS, PARAMETERG, PARAMETER? , PARAMETERS;;

LOGICAL PARAMETER1 , PARAMETER2, PARAMETER3, PARAMETER4,
PARAMETERS, PARAMETERG , PARAMETER7 , PARAMETERS;

5-45

Other Applications Of MPE Intrinsics

BEGIN
INTEGER N;
L]
[J
[J
<<USER MAY OUTPUT MESSAGES>>
[]
L]
[]
N:=PARAMETER1 LAND%37; <<N=NUMBER OF PARAMETERS PASSED TO
CALLABLE INTRINSIC>>
TOS:=N+%31410; <<PUT “EXIT N+8' ON TOP OF STACK>>
ASSEMBLE (XEQ 0); <EXECUTE “EXIT N+8'" ON TOP OF STACK>>
END;

CONTROL-Y Traps

If you are running a program in an interactive session, you can enable a special trap that transfers
control from the currently executing program to a trap procedure whenever a CONTROL-Y subsys-
tem break signal is entered from the terminal. On most terminals, the CONTROL -Y signal is trans-
mitted by pressing the CONTROL key and the Y key simultaneously.

When more than one process is currently running within your process tree structure, the
CONTROL-Y signal interrupts the last process to enable the trap.

When a process is interrupted by a CONTROL-Y signal, the following occurs:

1.

The input/output transactions pending between the process and the terminal are halted and
flagged as though all were completed successfully.

Control is transferred to the trap procedure for interaction. This procedure executes in the same
mode (either privileged or nonprivileged) as the interrupted user program. The restrictions for
operating the trap procedure are: you cannot trap from Privileged to non-Privileged Mode; the
program Group SL/Public SL can’t trap into System SL; the System SL can trap into System SL
only; if you are in MPE, you can trap into either MPE or a non-MPE mode; if you are not in
MPE, you can only trap into a non-MPE mode.

Control returns from the trap procedure to the interrupted program or procedure. If the inter-
rupted program or procedure was waiting for completion of input/output (reading from or writ-
ing to the terminal) when the CONTROL-Y signal was received, the FREAD or FWRITE intrinsic
that was executed is flagged as successfully completed when control returns from the trap proce-
dure. If the CONTROL-Y signal was received during reading, the number of characters en-
tered before this signal is returned to you as the value of FREAD. The "carriage" position is
unchanged.

If you send another CONTROL-Y signal, it is ignored unless a call to the RESETCONTROL intrinsic
was issued at some point prior to the signal.

5-46

Other Applications Of MPE Intrinsics

If you send a CONTROL-Y signal while MPE system code is executing on your behalf, MPE searches
back to the last user stack marker and sets bit 0 of RELATIVE P in that marker. No interrupt will
occur until an EXIT instruction is executed through the above marker. The trap is recognized, a
marker is built, and control is transferred to the trap procedure. When the trap procedure is in-
voked, the condition of the stack is as follows:

USER PROGRAM
DATA
Q-3
Q-2 P
o RELATIVE USER STACK MARKER
Q
Q+1 n
Q+2 CONTROL-Y
Q43 TRAP PROCEDURE
DATA

When the first instruction in the trap procedure is executed, the Q register points to the user stack
marker and the S register points to Q+2. The trap procedure should not write data in the rightmost
byte of the word Q+1, because this word contains the number of words to be deleted from the stack
(in addition to the stack marker) upon exit from the procedure. This value is non-zero when para-
meters to a system procedure (which was executing when the CONTROL-Y occurred) have been left
on the stack. On return, the trap procedure must know the value contained in Q+1 and pass it to the
n parameter of the EXIT # instruction. The EXIT n instruction must be placed on the stack as
follows:

TOS:=%31400+N;

The EXIT n instruction then is executed by an XEQ 0 instruction.

NOTE

If you are a user with Privileged Mode capability, you
should be aware of the following:

e If your interrupted code was executing in Privileged
Mode, your trap procedure must also be executed in
Privileged Mode, and therefore must have Privileged
Mode capability.

e When your process is executing in Privileged Mode
and a CONTROL -Y signal invokes a trap procedure,
the trap procedure is entered with the same DB
register setting in effect when the signal was
received. Thus, if the DB register is pointing to an
extra data segment rather than the user stack when
a CONTROL-Y signal is received, it will continue to
point to that extra data segment when the trap pro-
cedure is entered.

5-47

Other Applications Of MPE Intrinsics
Figure 5-12 shows a program containing a CONTROL-Y trap procedure. Statements 00022000
through 00024000:
LOOP:
CNTR:=CNTR+1D;
IF CNTR<3000000D THEN GO LOOP;

increment a double-word counter by 1 each time the loop is executed. When the counter reaches the
value 3000000 (decimal), program execution terminates.

The CONTROL-Y trap procedure, beginning with statement 00010000:
PROCEDURE CONTROLY;

assumes control whenever CONTROL-Y is entered from the terminal. The trap procedure executes,
then control passes back to the loop.

Statement 00012000:

INTEGER SDEC=Q+1;
equates SDEC to Q+1. The_rightmost byte of Q+1 contains the number of words on the stack to be
deleted (in addition to the stack marker) when the EXIT instruction executes. This value is passed to

EXIT as the n parameter.

The counter value is converted to an ASCII string by calling the DASCII intrinsic, and the PRINT in-
trinsic call displays this ASCII string on the terminal.

The RESETCONTROL intrinsic call enables the CONTROL-Y trap. To take effect, this intrinsic may
be called at any time from any procedure after the CONTROL-Y trap has been invoked. An EXIT
instruction must be built and statement 00016000:

TO0S:=%31400+SDEC;

accomplishes this, loading the octal value %#31400 plus the value of SDEC (Q+1) onto the top of the
stack. Statement 00017000:

ASSEMBLE(XEQ 0D

executes the statement on the top of the stack, which in this case is the EXIT instruction placed there
by the previous statement.

The CONTROL-Y trap is enabled by statement 00020000:
XCONTRAP (@CONTROLY, DUMMY)

The @®CONTROLY parameter informs the system that a procedure (CONTROLY) is being passed as a
parameter.

5-48

Other Applications Of MPE Intrinsics

PAGE 0001 HP32100A.08.01 [4W] (C) HEWLETT-PACKARD COMPANY 1980
00001000 00000 0 SCONTROL USLINIT

00002000 00000 BEGIN

00003000 00000 ARRAY HEADING(0:10):="CONTROL Y TRAP EXAMPLE";
00004000 00013 ARRAY MSG(0:15):="COUNTER CURRENTLY= "
00005000 00020 BYTE ARRAY BMSG(X)=MSG;

00006000 00020 DOUBLE CNTR:=0D;

00007000 00020 INTEGER DUMMY,LGTH;

00008000 00020 INTRINSIC PRINT,XCONTRAP,QUIT,DASCII , RESETCONTROL ;
00008000 00020
00010000 00020
00011000 00000
00012000 00000
00013000 00000

PROCEDURE CONTROLY;
BEGIN
INTEGER SDEC=Q+1;
LGTH:=DASCII(CNTR,10 ,BMSG(20)); <<CONVERT COUNTER>>

o e b e = = RN NN RN R = e b b b b b e

00014000 00007 PRINT(MSG,16,0); <<OUTPUT COUNTER>>
00015000 00013 RESETCONTROL ; <<REARM CONTROL Y TRAP>>
00016000 00014 TOS:=%31400+SDEC; <<BUILD EXIT INSTRUCTION>>
00017000 00016 ASSEMBLE(XEQ 0); <<EXECUTE EXIT>>
00018000 00017 END;

00019000 00000 PRINT(HEADING,11,0); <<PROGRAM ID>>

00020000 00004 XCONTRAP({@CONTROLY ,DUMMY) ; <<ARM CONTROL Y TRAP>>
00021000 00007 IF < THEN QUIT(1); <<CHECK FOR ERROR>>
00022000 00012 LOOP:

00023000 00012 CNTR:=CNTR+1D; <<DOUBLE INCREMENT>>
00024000 00023 IF CNTR<3000000D THEN GO LOOP;<<CONTINUOUS LOOP>>
00025000 00027 END.

Figure 5-12. Using the XCONTRAP Intrinsic (Program CONTY)
The results of executing the program are shown below:

:RUN_CONTY

CONTROL Y TRAP EXAMPLE
N RRENTLY = 1251
COUNTER CURRENTLY = 125153 CONTROLY
COUNTER CURRENTLY = 1093923 ENTERED FROM TERMINAL
COUNTER CURRENTLY = 1860957
COUNTER CURRENTLY = 2700949

END OF PROGRAM

TIME AND DATE INTRINSICS

You can programmatically request the return of system timer information with the TIMER intrinsic;
the time of day with the CLOCK intrinsic; the calendar date with the CALENDAR intrinsic; and the
duration, in milliseconds, that a process has been running with the PROCTIME intrinsic.

5-49

Other Applications Of MPE Intrinsics

Obtaining System Timer Information

A 31-bit logical quantity representing the current system timer count can be returned to your
program with the TIMER intrinsic. This information can be used in routines that generate random
numbers, or in measuring the real time elapsed between two events. The resolution of the system
timer is one millisecond ; thus readings taken within a one~millisecond period may be identical.

This quantity is reset to zero on 24-day intervals at 12 o’clock midnight. Detection and correction of
this case between two calls to TIMER (less than 24 days apart) for computing an elapsed time interval
can be done by adding 2,073,600,000 (the number of milliseconds in 24 days) to the result when
subtracting a current TIMER count from a previous count with a negative result.

Figure 5-13 contains a program that uses the system timer bit count to generate a random octal num-
ber. This number then is converted to one of the ASCII characters (;,<=>7@®, or A through Z.)

Statement 00027000:
CBUF(5):=INTEGER(CTIMER).(11:5)+%73;

calls the TIMER intrinsic to obtain the timer count. A double-word quantity is returned as follows:

Brs 0 1 WORD 1 i5 0 WORD 2 15

NOT USED

The INTEGER function strips Word 1 from this quantity, leaving a 16-bit integer value. The low-
order five bits change value most rapidly, and are used to obtain a decimal number from O to 32.

The octal codes for ASCII characters ;,<=>7®, and A through Z range from 000073 to 000132, or
decimal values 58 through 90 (a difference of 32 decimal). Thus, by adding %73 to the value ob-
tained from the low-order five bits of the system timer information, one of the above ASCII charac-
ters is generated by the foregoing statement and assigned to the sixth position of byte array CBUF
(CBUF(5)). The FWRITE intrinsic displays this character, and the string "TYPE" on the terminal.
(CBUF and BUFR have been equated in statements 00006000 and 00007000.)

Obtaining the Current Time

The CLOCK intrinsic returns the actual time as a double-word. The first word contains the hour and
minute of the hour, and the second word contains seconds and tenths of seconds, as follows:

BITS © 718 15

HOUR OF DAY MINUTE OF HOUR WORD 1

SECONDS TENTHS OF SECONDS WORD 2

By using the intrinsic call TIME:=CLOCK;, the above information would be returned to the double-
word identifier TIME.

5-50

Other Applications Of MPE Intrinsics

PAGE 0001 HP32100A.08.01 [4W] (C) HEWLETT-PACKARD COMPANY 1980

00001000 00000 0 $CONTROL USLINIT

00002000 00000 0 BEGIN

00003000 00001 0 BYTE ARRAY INNAME(0:5):="INPUT *";

00004000 00004 1 BYTE ARRAY OUTNAME(0:6):="OUTPUT *;

00005000 00005 1 INTEGER IN,OUT,LGTH,DUMMY,fTIME,TIMEOUT:=10;

00006000 00005 1 ARRAY BUFR(0:3):="TYPE X",0;

00007000 00004 1 BYTE ARRAY CBUF (X)=BUFR;

00008000 00004 1 ARRAY INSTRUCTIONS(0:34):="REACTION TIMER: "%6412,
00009000 00011 1 "TYPE THE REQUESTED CHARACTER AS QUICKLY AS YOU CAN. ";
00010000 00043 1 ARRAY MSG(0:24):="TRY AGAIN? (Y/N)","WRONG CHARACTER.",
00011000 00020 1 %6412 ,"YOU'RE TOO SLOW!";

00012000 00031 1 ARRAY RESPONSE(0:16):="REACTION TIME: MILLISECONDS";
00013000 00021 1 BYTE ARRAY CRESP(%)=RESPONSE;

00014000 00021 1 INTRINSIC FOPEN,FREAD,FWRITE,FCONTROL,ASCII,TIMER,QUIT;
00015000 00021 1 <<END OF DECLARATIONS>>

00016000 00021 1 IN:=FOPEN(INNAME, %45); <<$STDIN>>

000170600 00007 1 IF < THEN QUIT(1); <<CHECK FOR ERROR>>
00018000 00012 1 OUT :=FOPEN(OUTNAME, %414 ,%1); <<$STDLIST>>

00019000 00022 1 IF < THEN QUIT(2}; <<CHECK FOR ERROR>>
00020000 00025 1 FWRITE(OUT, INSTRUCTIONS,35,0); <<USER DIRECTIONS>>
00021000 00032 1 IF < THEN QUIT(3); <<CHECK FOR ERROR>>
00022000 00035 1 LOOP:

00023000 00035 1 FCONTROL (IN,21,DUMMY); <<ENABLE TIMER READ>>
00024000 00041 1 IF < THEN QUIT(4); <<CHECK FOR ERROR>>
00025000 00044 1 FCONTROL (IN,4,TIMEOUT); <<ENABLE TIMEQUT>>
00026000 00050 1 IF < THEN QUIT(5); <<CHECK FOR ERROR>>
00027000 00053 1 CBUF (5) : =INTEGER(TIMER). (11:5)+%73; <<GENERATE CHARACTER>>
00028000 00062 1 FWRITE (OUT,BUFR,3,%320); <<REQUEST USER INPUT»>
00029000 00067 1 IF < THEN QUIT(SB); <<CHECK FOR ERROR>>
00030000 00072 1 LGTH: =FREAD(IN,BUFR(3),-1); <<READ CHARACTER>>
00031000 00101 1t IF < THEN <<TIMEOUT OCCURRED>>
00032000 00102 1 BEGIN

00033000 00102 2 FWRITE(OUT ,MSG(16),9,0); <<TOO0 SLOW MESSAGE>>
00034000 00110 2 IF < THEN QUIT(7) ELSE GO NEXT;<<CHECK FOR ERROR>>
00035000 00120 2 END;

00036000 00120 1 IF CBUF(5)<>CBUF(6) THEN <<INCORRECT CHARACTER>>
00037000 00126 1 BEGIN

00038000 00126 2 FWRITE (OUT,MSG(8),8,0); <<WRONG CHARACTER MSG>>
00039000 00134 2 IF < THEN QUIT(8) ELSE GO NEXT;<<CHECK FOR ERROR>>
00040000 00141 2 END;

00041000 00141 1 MOVE RESPONSE(7):=" ", <<RESET RESPONSE TIME>>
00042000 00153 1 FCONTROL(IN,22,TIME); <<READ INPUT TIME>>
00043000 00157 1 IF <> THEN QUIT(9); <<CHECK FOR ERROR>>
00044000 00162 1 ASCII(TIMEX10,10,CRESP(15)); <<CONVERT TIME>>
00045000 00171 1 FWRITE (OUT ,RESPONSE,17,0); <<REACTION TIME>>
00046000 00177 1 IF < THEN QUIT(10); <<CHECK FOR ERROR>>

Figure 5-13. Using the TIMER Intrinsic (1 of 2)

5-51

Other Applications Of MPE Intrinsics

00047000 00202 1 NEXT:

00048000 00202 1 FWRITE (OUT,MSG,8,%320); <<CONTINUE TEST?>>
00049000 00207 1 IF < THEN QUIT(11); <<CHECK FOR ERROR>>
00050000 00212 1 FREAD(IN,BUFR(3),-1); <<GET Y/N ANSWER>>
00051000 00220 1 IF < THEN QUIT(12); <<CHECK FOR ERROR>>
00052000 00224 1 IF CBUF(6)="Y" THEN GO LOOP; <<Y-CONTINUE TEST>>
00053000 00232 1 END.

Figure 5-13. Using the TIMER Intrinsic (2 of 2)

Obtaining the Calendar Date

The CALENDAR intrinsic returns a logical value representing the year and day as follows:

BITS O 617 15

YEAR OF CENTURY DAY OF YEAR

In the following intrinsic call, the day and year information would be returned to the logical iden-
tifier DATE:

DATE : =CALENDAR;

Obtaining Process Run Time

The PROCTIME intrinsic returns a double integer value representing the duration, in milliseconds, that
a process has been running (CPU time).

In the intrinsic call shown below, the process run time would be returned to TIME:

TIME:=PROCTIME;

Formatting Calendar Date and Time Information
You can format the calendar date with the FMTCALENDAR intrinsic, the time of day with the
FMTCLOCK intrinsic, and the calendar date and time of day with the FMTDATE intrinsic. These intrin-
sics use the information returned by the CALENDAR and CLOCK intrinsics.

The program shown in Figure 5-14 illustrates the use of these intrinsics.

5-52

Other Applications Of MPE Intrinsics

PAGE 0001 HP32100A.08.01 [4W] HEWLETT-PACKARD COMPANY 1880
00001000 00000 0 $CONTROL USLINIT

00002000 00000 0 BEGIN

00004000 00000 I ARRAY F’'DATE(0:8);

00005000 00000 BYTE ARRAY FDATE (X)=F 'DATE;

00006000 00000 ARRAY F’'TIME(0:4);

00007000 00000 BYTE ARRAY FTIME(X)=F’TIME;

00008000 00000 ARRAY DATE'TIME(0:13);

00008000 00000 BYTE ARRAY DATETIME(X)=DATE ' TIME;
00010000 00000
00011000 00000
00012000 00000
00013000 00000
00014000 00000
00015000 00000
00016000 00000
00017000 00000
00018000 00003
00019000 00006
00020000 00006
00021000 00011
00022000 00015
00023000 00015
00024000 00020
00025000 00024
00026000 00024
00027000 00030
00028000 00034
00029000 00034

LOGICAL DATE;
DOUBLE TIME;

INTRINSIC CALENDAR,CLOCK,FMTCALENDAR,
FMTCLOCK,FMTDATE , PRINT;

DATE :=CALENDAR ;
TIME :=CLOCK;

FMTCALENDAR (DATE ,FDATE) ;
PRINT(F 'DATE,-17,%60);

FMTCLOCK(TIME,FTIME);
PRINT(F'TIME,-8,%60);

FMTDATE (DATE, TIME ,DATETIME) ;
PRINT(DATE ' TIME,-27,%0);

P e b e e b b e e B b e b= b b b e e e B B B e e e

END.

Figure 5-14. Using the FMTCALENDAR, FMTCLOCK, and FMTDATE Intrinsics

JOB CONTROL WORDS

There are three classes of Job Control Words (JCWs) in the system. User-defined JCWs are named
and assigned values exclusively by the user. System-defined JCWs are named by the system and can
be assigned values either by the system (under certain circumstances) or by the user. System-reserved
JCWs are assigned values exclusively by the system.

Any attempt by a user to assign a value to a system-reserved JCW (with either SETJCW or PUTJCW)
will result in an error. The values of system-reserved JCWs can be returned with FINDJCW. The
values of these JCWs can be used in assignments to other JCWs, but the user cannot assign values to a
system-reserved JCW. System-reserved JCWs are available on MPE V releases G.01 .00 or later.

5-53

Other Applications Of MPE Intrinsics

A

The name of the system-reserved JCWs are reserved words, that is, a user cannot have a JCW of the
same name. The following is a list of the system-reserved JCWs and their meanings.

HPDATE

HPDAY

HPHOUR

HPMINUTE

HPMONTH

HPYEAR

Indicates the day of the month. The possible range of values for HPDATE is
1 through 31, inclusive.

Indicates the day of the week. The possible range of values for HPDAY is 1
through 7, inclusive, with 1 indicating Sunday and 7 indicating Saturday.

Indicates the hour of the day on a 24-hour basis. The possible range of
values for HPHOUR is O through 23, inclusive.

Indicates the minute of the hour. The possible range of values for
HPMINUTE is O through 59, inclusive.

Indicates the month of the year. The possible range of values for HPMONTH
is 1 through 12, inclusive, with 1 indicating January.

Contains the year of the century.

INTERPROCESS COMMUNICATION

You can arrange for two processes belonging to the same job/session to communicate with each other
through a Job Control Word (JCW). This word is used by systems programmers to ‘enable a subsystem
process to return information to the job or session that initiated that process. Such a communication
mechanism is used by the command executors for :RUN and various subsystem commands. However,
you may find this control word helpful in other applications.

The SETJCW intrinsic is used to set the bits in the Job Control Word JCW. A SETJCW intrinsic call

could be:

SETJCW(WORD) 3

where WORD is a 16-bit logical word whose bits are set by you. If you set bit (0:1)=1, the system dis-
plays the following message when your program terminates, either normally or due to an error:

PROGRAM TERMINATED IN AN ERROR STATE (CIERR 976)

Bits (1:15) may be set to any pattern.

5-54

Other Applications Of MPE Intrinsics

NOTE

In batch mode, the job is terminated unless the
:CONTINUE command is used. If you have a JCW of ex-
actly #140000, (bits (0:2) only), the "CIERR 976"
message is replaced by "CIERR 989, PROGRAM
ABORTED PER USER REQUEST". Refer to the MPE V
Commands Reference Manual (32033-90006) for a dis—
cussion of :CONTINUE.

The Job Control Word, JCW, can be read by a process with the GETJCW intrinsic. The form of the
GETJCW intrinsic call is:

JCW: =GETJCIW
The Job Control Word would be returned to JCI.

As an example, consider a job where two processes in the same process tree pass information to each
other through the Job Control Word. In one process, you transmit the contents of the word PROCLNK
to JCW. Process A sets the Job Control Word to PROCLNK as follows:

SETJCW(PROCLNK) 3

When process B is executed, it obtains the value of JCW through the GETJCW intrinsic. In this case,
the contents of JCWis returned to the word STORELNK.

STORELNK : =GETJCW;

USER-DEFINED JOB CONTROL WORDS

MPE allows you to establish and manipulate Job Control Words including the system-defined Job
Control Word JCW. This capability overcomes a disadvantage of using the system-defined JCW be-
cause MPE uses JCW for status information, you cannot be sure that MPE will not modify it, thus
destroying whatever information you may wish to pass.

A user-defined JCW is a 16-bit logical word which resides in an MPE-managed table. This table,
which also holds the system-~defined JCWs, is shared by all processes in a job or session; thus any
process of a job can access any JCW in the table.

The name of a user-defined JCW must start with a letter and be between 1 and 255 characters long.
A user-defined JCW is established with the PUTJCW intrinsic. This intrinsic scans the JCW Table for
a given JCW. If found, the value of the JCW is updated to the value passed by the PUTJCW intrinsic
call. If a JCW of that name is not found, the name is added to the table and assigned the value passed
with the name. For example, the intrinsic call:

PUTJCW(JCWNAME , JCWVALUE , STATUS) 5
would search the JCW Table for a name which matches the name contained in JCWNAME (a byte ar-
ray). If the name exists, its value is updated to the value contained in JCWVALUE. If a name match-

ing that contained in JCWNANME is not found, the name is added to the JCW Table and assigned the
value contained in JCWVALUE.

5-55

Other Applications Of MPE Intrinsics

The STATUS parameter of PUTJCW indicates the status of the intrinsic call and returns an integer
value to indicate this status as follows:

0 Successful execution.

1 Error. JCWNAME is longer than 255 characters.

2 Error. JCWNAME does not start with a letter.

3 Error. The JCW Table is out of space.

4 Error. Attempted to assign a value to an MPE-defined JCW value mnemonic (0K,

WARN, FATAL, or SYSTEM).
S Error. Cannot assign a value to a system-reserved JCW.

The FINDJCW intrinsic is used to scan the JCW Table for a given JCW and return its value. Thus, the
intrinsic call:

F INDJCWCJCWNAME , JCWVALUE , STATUS) 3

would search the JCW Table for a JCW of the same name as that contained in JCWNAME. If a JCW of
the same name is found, its current value is returned in JCWVALUE. If a JCW of the same name is not
found, an error is returned in STATUS.

The STATUS parameter of FINDJCW indicates the status of the intrinsic call and returns an integer
value indicating this status as follows:

0 Successful execution.

1 Error. JCWNAME is longer than 255 characters.

2 Error. JCWNAME does not start with a letter.

3 Error. The JCW named in JCWNAME does not exist.

MPE MESSAGE FACILITY

The MPE message facility consists of a message catalog (CATALOG.PUB.SYS), the HELP subsystem
catalog (CICAT.PUB.SYS, containing descriptions of all MPE commands), many user message
catalogs, a program (MAKECAT.PUB.SYS) for building message catalogs, and an intrinsic
(GENMESSAGE) used to insert parameters in messages from a catalog and print the resulting message.

Message Catalog

A message catalog must be a standard editor-type file containing sets of messages, that is, a numbered
file which contains 80-byte records in a fixed format. The message sets serve to break a catalog into
manageable portions. After a message file is created, the MAKECAT program is used to build a
catalog that is readable by the message system. This catalog file can still be texted into the editor, but
it now contains a directory (written as a user label by MAKECAT).

5-56

Other Applications Of MPE Intrinsics

Messages in the catalog can be of any length and can contain up to five parameters (parameters are
indicated in a message by the symbol "!"). Continuation of a message is indicated by "%" or "&" at
the end of a line. The "%" symbol indicates that the message is continued and that a carriage return/
line feed will be issued to the terminal. The "&" symbol indicates that the message is continued on
the same line with no carriage return/line feed. The GENMESSAGE intrinsic ignores all blanks be-
tween the last nonblank character of a message and the continuation character. This allows free-
formatting of the continuation character.

Message sets are indicated by "$SET n" starting in column 1 (the rest of the line is treated as a com-
ment). Maximum value for n is 62. Comments can be inserted in the catalog by placing "$" in
column 1 of a line. Message numbers are positive integers that need not be contiguous but must be in
the file in ascending order. After processing by the program MAKECAT, the catalog file contains
records of 80 bytes with a blocking factor of 16, in 32 extents. (The system message catalog is only
one extent, however.) The format of the message catalog is as follows:

$SET 1 SYSTEM MESSAGES
1 LDEV#!{IN USE BY FILE SYSTEM
2 LDEV#!IN USE BY DIAGNOSTICS
3 LDEV#!IN USE, DOWN PENDING
S IS "' ON LDEV#! (Y/N)?

L]

L J

L J

$MESSAGE 35 IS TWO LINES LONG, A PARAMETER STARTS THE (Comment)
$FIRST LINE, AND THE SECOND LINE IS "HP32002' (Comment)
351%

HP32002B.00.!
L]
[]
[]
276 LDEV # FOR "!*' ON ! (NUMD!
$
$SET 2 CIERRDR MESSAGES
82 STREAM FACILITY NOT ENABLED: SEE OPERATOR.(CIERR 82)
200 MORE THAN 30 PARAMETERS TO BUILD COMMAND.(CIERR 200)
©
[]

L]
204 FILE COMMAND REQUIRES AT LEAST TWO PARAMETERS, INCLUDING THE %
FORMAL NAME OF THE FILE.C(CIERR 204)

L J

[]

L]

MAKECAT Program

The program MAKECAT.PUB.SYS is used to build message catalogs (and HELP catalogs). The
program’s input file has the formal designator INPUT. The program has the following entry points:

Default entry point Reads from the input file and builds a temporary file with the formal
designator CATALOG. Also renames any old temporary CATALOG to CATnn,
using an incremental numbering scheme (for example, CAT1, CAT2).

BUILD To use BUILD as the entry point, you must logon as MANAGER.SYS. Reads
from the input file, builds the system message catalog (formal designator

5-57

Other Applications Of MPE Intrinsics

CATALOG), and installs the message system. Existing catalog is renamed
CATnn using the incremental numbering scheme as for the default entry
point. Installation of the message system means moving the directory con-
tained in the user label of the catalog into a data segment. The Data
Segment Table (DST) number and the disc address of CATALOG are placed
in the system global area. The message system may be installed while the
system is running.

DIR To use DIR as the entry point you must logon as MANAGER.SYS. Installs the
system message catalog (does not build a new one). Opens input file, moves
the directory in the CATALOG into a data segment, and places the DST
number and disc address of CATALOG in the system global area. This entry
point may be used when the message system seems to be malfunctioning,
but the catalog is intact. (For example, MPE is issuing "MISSING MSG
SET=mm. MSG=nn" at terminals and the System Console.) This may be
done while the system is running.

HELP Used to build the HELP catalog. Reads input file and builds a HELP
catalog (formal designator HELPCAT).

To use MAKECAT to build your own message catalog, enter:

«FILE INPUT=CAT15 ,

:RUN MAKECAT.PUB.SYS %Xk No entry point XX

#+\VAL ID MESSAGE CATALOG %% Printed if no errors in catalog CAT1S XX
:SAVE CATALOG

To use MAKECAT to modify the system message catalog:
1. Text CATALOG.PUB.SYS into the Editor.
2. Make the desired changes.
3. Keep the file under a new name and exit the Editor.
4. Logon as MANAGER.SYS, and enter:

:FILE INPUT=catname.group.account

:RUN MAKECAT,BUILD
#*NEW CATALOG INSTALLED

To reinstall the message catalog if MPE is printing "MISSING MSG. SET=nm. MSG=nn," enter:

:HELLO MANAGER.SYS
tFILE INPUT=CATALOG
:RUN MAKECAT,DIR

##NEW CATALOG INSTALLED

To build a HELP catalog for the Command Interpreter, enter:

:HELLO MANAGER.SYS

:PURGE CICAT

:FILE INPUT=catalog.group.account
:RUN MAKECAT,HELP

END OF PROGRAM

:RENAME HELPCAT,CICAT

5-58

Other Applications Of MPE Intrinsics

Using GENMESSAGE to Insert Parameters in Messages

The GENMESSAGE intrinsic can be used to access the MPE message facility. GENMESSAGE is called with
a set number, a message number, and any values to be substituted in the message.

The message facility fetches the message from a message catalog, inserts parameters, and then routes
the message to a file. It then returns the message in a buffer to the calling program, and/or prints
the message on $STDLIST.

GENMESSAGE expects the catalog file to be a standard 80-byte Editor file with valid data, including
continuation characters " &" and " %", to be in positions 1 through 72. Data found in positions 73 and
above will not be included when the message is formed to go to the file or message buffer.

In order to use the message catalog, the program must first open the message catalog, then call
GENMESSAGE with the file number, message set number, and message number.

NOTE

The file must be opened with foptions OLD,
PERManent, ASCII (foptions 5), and aoptions NOBUF
and MULTI-record access (aoptions %$420).

Parameters may be inserted into the message from the catalog. The parameters are passed to the mes-
sage with the param1, param2, param3, param4, and param5 parameters in the GENMESSAGE intrin-
sic call and are inserted in the message wherever a " " is found. Parameters are inserted in the fol-
lowing order: paraml substitutes for the leftmost "!" in the message, param2 for the next leftmost,
and so forth. If param(n) is present, param(n-1) must be present (that is, you cannot specify param3
unless param 1 and param?2 are specified.)

Figure 5-15 contains a simple program that inserts the value 95 into message number 201 in message
set 1 in the message catalog CATALOG.PUB.SYS. The complete message is then displayed on the ter-
minal. Note that the file CATALOG.PUB.SYS is equated to CATALOG with a :FILE command; then
the name CATALOG is used in the FOPEN call (passed to FOPEN in byte array BUFF). Note also that the
file is opened with aoptions NOBUF and MULTI-record access (aoptions %420). The message set (1)
and message number (201) are included as parameters in the GENMESSAGE call. The parameter par-
mask is set to %10000 and param1 (NUMBER) has the value 95. The complete message is returned in
BUFF, which is then printed on the terminal with the PRINT intrinsic.

APPLICATION MESSAGE FACILITY

Native Language Support provides the capability for programmers to produce localized applications.
Translated program messages may be printed in the language of a user, and data manipulation may be
done according to the rules of a particular language.

Information on GENCAT, the application message facility, appears in the Native Language Support
Reference Manual (32414-90001).

5-59

Other Applications Of MPE Intrinsics

:SPLPREP TEST,MSGTEST

PAGE 0001 HP32100A.08.01 [4W] (C) HEWLETT-PACKARD COMPANY 1980
00001000 00000 O SCONTROL USLINIT
00002000 00000 O BEGIN

00003000 00000 1

00004000 00000 1 BYTE ARRAY BUFF (0:255);

00005000 00000 1 ARRAY OUTBUFF (%)=BUFF;

00006000 00000 1

00007000 00000 1 INTEGER FILENUM MSGLEN,6 NUMBER=95;

00008000 00000 1

00009000 00000 1 INTRINSIC FOPEN,PRINTFILEINFO,GENMESSAGE,PRINT;
00010000 00000 1

00011000 00000 1 MOVE BUFF:="CATALOG *“;

00012000 00016 1 FILENUM:=FOPEN{BUFF,65,%420);

00013000 00026 1 IF <> THEN PRINTFILEINFO(FILENUM);

00014000 00031 1

00015000 00031 1 MSGLEN: =GENMESSAGE (FILENUM, 1,201 ,BUFF, ,%10000 ,NUMBER)
00016000 00045 1

00017000 00045 1 PRINT(OUTBUFF,-MSGLEN,0);

00018000 00051 1

00019000 00051 1 END.

PRIMARY DB STORAGE=%005; SECONDARY DB STORAGE=%00200
NO. ERRORS=0000; NO. WARNINGS=0000
PROCESSOR TIME=0:00:00; ELAPSED TIME=0:00:29

END OF COMPILE

END OF PREPARE

:SAVE MSGTEST

:FILE CATALOG=CATALOG.PUB.SYS
:RUN MSGTEST

LOG FILE NUMBER 95 IS ON

END OF PROGRAM

Figure 5-15. GENMESSAGE Intrinsic Example

5-60

MPE DIAGNOSTIC MESSAGES

Programs running under MPE at any batch input device or terminal may return the following types of
error messages:

e Command Interpreter Error Messages which report fatal errors that occur during the interpreta-
tion or execution of an MPE command.

e Command Interpreter Warning Messages which report unusual conditions that occur during com-
mand interpretation or execution but that may not necessarily be detrimental to the processing of
the job or session.

¢ Run-Time Messages which denote conditions that abort the running program, unless an ap-
propriate error trap has been enabled.

e User Messages which are sent to you by other users currently running jobs or sessions.
e Operator Messages which are sent to you by the System Operator.

e System Messages which denote miscellaneous conditions that terminate or otherwise affect the
job/session, such as an abort requested by the System Operator.

Other messages may be received only at the System Console, such as System Operator messages and
System Failure messages:

e System Operator Messages
- Status Messages indicate the current status of jobs/sessions or input/output devices.
- Input/Output Messages request service for, and report errors on, input/output devices.
- User Messages, sent by users to the System Operator.
¢ System Failure Messages
- System Failure Messages.

- Cold Load Error Messages.

RUN-TIME MESSAGES

Your program can be aborted as a result of any of the following general types of run-time errors:

e Special violations: those detected by the MPE internal interrupt structure (arithmetic traps,
bounds violations, stack overflow, etc) are "program errors" and are described in Table A-1.

MPE Diagnostic Messages

e Explicit calls to the QUIT intrinsic.
o Explicit calls to the QUITPROG intrinsic.

e Violations of other callable intrinsics (listed in Table A-2), such as passing of illegal parameters or
the invoking of an intrinsic without having the required capability class.

If an appropriate error trap has been armed, control transfers to the trap procedure which may at-
tempt recovery or take some other action. But if no trap has been armed for the type of error en-
countered, MPE transmits a run-time (abort) message to the user’s output device and terminates the
user’s process. In a muiti-process structure, QUIT aborts only the violating process, but all other er-
rors abort the entire program.

If the aborted program was running in a batch job, the job is aborted or terminated (if no :CONTINUE
command overrides termination).

If the aborted program was running in a session, control of the session is returned to you at the
terminal.

NOTE

An abort-error will occur if a user process invokes cer-
tain callable intrinsics when the DB register is not point-
ing to its normal position (for example, DB is pointing at
an extra data segment). If this happens and a user trap
procedure is invoked, the DB register is reset to the
normal position before the trap procedure is entered.

The format for run-time error messages is:
ABORT :pname . segment . Llocation : sname. segment . location

) < >
-< > - >

p-field s-field

msgtype#msgno: <message> [. param ﬁ;; number]

< [
- r ot

m-field (from 1 to 7 lines)

Where:
p-field Is the location of the last instruction executed.
s-field Is output only if the abort occurred when executing code belonging to a

library segment referenced by the user program. The field provides the in-
struction location within the library segment that initiated the abort.

MPE Diagnostic Messages

Within the p-field and s-field , the parameters are:

pname

segment

location

The name of the program file containing the user’s program, group, and
account name.

In the special case of a process having been procreated from a segment in a
segmented library (SL) (for example, the Command Interpreter), an as-
terisk (#) is output followed by the SL name in symbolic form.

The symbolic name of the SL in which the segment exists:

SYSL - System SL
PUSL - Public SL
GRSL - Group SL

The logical number of the code segment relating to either the program or
SL, whichever is appropriate.

The location in the code segment. This is expressed in terms of the dis-
placement (P-PB), where PB is the absolute address of the base of the code
segment.

NOTE

Octal numbers are indicated by a percent sign (¥%)
preceding the number.

If the stack is completely destroyed and no valid stack
markers can be found that define a user environment,
then the subfields previously described will be output
containing a question mark (7).

The m-field contains the error message text. The parameters within the m-field are:

msgtype is one of :

PROGRAM TYPE
ERROR: INTRINSIC
RUN-TIME ERROR
CREATE ERROR
ACTIVATE ERROR
SUSPEND ERROR
MYCOMMAND ERROR
LOCKGLORIN ERROR
LOADER ERROR
FILESYSTEM ERROR

and corresponds to the names listed in Tables A-1 through A-9. For a listing of File System Errors
refer to the discussion on the FCHECK intrinsic in Section II. Guide (30000-90049).

MPE Diagnostic Messages

msgno A message number in the appropriate message table.
message The text of the message.
number The number of the invalid parameter passed to an intrinsic (the message

will read: PARAM=). '
Some examples of run-time messages are:
BINARY was called with an invalid byte address:

ABORT :BIN.ED.MPE.%0.%12
ERROR : INTRINSIC#62:BINARY
RUN-TIME ERROR#S :PARAMETER ADDRESS VIOLATION.PARAM #1

The program was in an infinite loop doing a DUP instruction:

ABORT :0V.ED.MPEX0.%177777
PROGRAM ERROR#20 :STACK OVERFLOW

A return was made from a nonprivileged segment to a privileged segment:

ABORT :PRIV.ED.MPE%0.%3
PROGRAM ERROR #6 :PRIVILEGED INSTRUCTION

The program called the QUIT intrinsic with a parameter of 15:

ABORT :QUIT.ED.MPE.X0.2%1
PROGRAM ERROR #18 :PROCESS QUIT.PARAM=15

Nearly all CST entries were allocated and the program tried to create a process which required more
CSTs than were available:

ABORT :EDITOR.PUB.SYS.%2.%7
ERROR :INTRINSIC #100:CREATE
CREATE ERROR #30 :LOAD ERROR
LOADER ERROR#65 :UNABLE TO OBTAIN CST ENTRIES

The program tried to activate a nonexistent process:
ABORT :EDITOR.PUB.SYS.%2.%13

ERROR :INTRINSIC #104: ACTIVATE
ACTIVATE ERROR #21 :ACTIVATION OF MAIN PROCESS NOT ALLOWED

MPE Diagnostic Messages

Table A-1. "PROGRAM TYPE" Error Messages

MESSAGE
NO. MESSAGE
1 INTEGER OVERFLOW \
2 FLOATING POINT OVERFLOW
3 FLOATING PQINT UNDERFLOW
4 INTEGER DIVIDE BY ZERO
5 FLOATING PQINT DMIDE BY ZERO
6 PRMILEGED INSTRUCTION
7 ILLEGAL INSTRUCTION
8 EXTENDED PRECISION OVERFLOW
9 EXTENDED PRECISION UNDERFLOW > LOGIC ERROR IN THE PROGRAM
10 EXTENDED PRECISION DMVIDE BY ZERO
11 DECIMAL QVERFLOW
12 INVALID ASClI DIGIT
13 INVALID DECIMAL DIGIT
14 INVALID WORD COUNT
15 INVALID DECIMAL OPERAND LENGTH
16 DECIMAL DMDE BY ZERO /
17 STT UNCALLABLE
18 PROCESS QUIT=<number> <number> Is the value passed to the QUITPROG or
19 PROGRAM QUIT=<number> QUIT intrinsic by the terminating process. (This
value is output only if it is not zero.)
20 STACK OQVERFLOW Loglc error in the program. Probably looping
ond odding to the stack. May require larger
MAXDATA when preparing program,
21 PROGRAM KILLED Program gborted from an external source.
22 INVALID STACK MARKER
23 ADDRESS VIOLATION } Possible logic error in program.
24 BOUNDS VIOLATION
25 NONRESPONDING MODULE
26 DATA PARITY .
27 MEMORY PARITY Possible hardware problem,
28 SYSTEM PARITY
29 STACK UNDERFLOW Logic error in program. Probably invalid CST or STT
30 CST VIQLATION discovered by hardware. Explicit PCAL from TOS
31 STT VIOLATION may hove referenced nonexistent CST or STT.
May be bad program file.
Table A-2. "ERROR:INTRINSIC" Message Numbers
MESSAGE INTRINSIC MESSAGE INTRINSIC
. NO.
1 FOPEN 6 FPOINT
2 FREAD 7 FREADDIR
3 FURITE 8 FCLOSE
4 FUPDATE 10 FCHECK
5 FSPACE 11 FGETINFO

MPE Diagnostic Messages

Table A-2. "ERROR:INTRINSIC" Message Numbers (Continued)

MESSAGE MESSAGE
NO. INTRINSIC NO. INTRINSIC
12 FREADSEEK 74 DBINARY
13 FCONTROL 75 DASCII
14 FSETMODE 76 QUIT
15 FLOCK 77 STACKDUMP
16 FUNLOCK 78 SETDUMP
17 FRENAME 79 RESETDUMP
18 FRELATE 80 LOADPROC
19 FREADLABEL 81 UNLOADPROC
20 FWRITELABEL 82 INITUSLF
21 PRINTFILEINFO 83 ADJUSTUSLF
22 IOWAIT 84 EXPANDUSLF
23 FINTEXIT 85 PUTJCW
24 FLABELINFO 86 FINDJCW
25 FINSTATE 87 GETINFO
30 GETLOCRIN 99 DEBUG
31 FREELOCRIN 100 CREATE
32 LOCKLOCRIN 101 CREATEPROCESS
33 UNLOCKLOCRIN 102 KILL
34 LOCKGLORIN 103 SUSPEND
35 UNLOCKGLORIN 104 ACTIVATE
36 LOCRINOWNER 105 GETORIGIN
40 TIMER 106 MAIL
42 PROCTIME 107 SENDMAIL
43 CALENDAR 108 RECEIVEMAIL
44 CLOCK 109 FATHER
45 PAUSE 110 GETPROCINFD
50 XARITRAP 111 PROCINFO
51 ARITRAP 112 GETPROCID
52 XL IBTRAP 120 GETPRIORITY
53 XSYSTRAP 130 GETDSEG
54 XCONTRAP 131 FREEDSEG
55 RESETCONTROL 132 DMOVEOUT
56 CAUSEBREAK 133 DMOVIN
60 TERMINATE 134 ALTDSEG
61 CTRANSLATE 135 DLSIZE
62 BINARY 136 ZSIZE
63 ASCI1 139 SWITCHDB
64 READ 180 JOBINFO
65 PRINT 191 PTAPE
66 PRINTOP 200 GETPRIVMODE
67 PRINTOPREPLY 201 GETUSERMODE
68 COMMAND 210 OPENLOG
69 WHO 211 WRITELOG
70 SEARCH 212 CLOSELDG
71 MYCOMMAND 214 LOGSTATUS
72 SETJCW 215 LOGINFO
73 GETJCW 305 FERRMSG

MPE Diagnostic Messages

Table A-3. "RUN-TIME" Error Messages.

MESSAGE
NO. MESSAGE
i ILLEGAL DB REGISTER
2 ILLEGAL CAPABILITY
3 OMITTED PARAMETER
4 INCORRECT REGISTER
5 PARAMETER ADDRESS VIOLATION
6 PARAMETER END ADDRESS VIDLATION
7 ILLEGAL PARAMETER
8 PARAMETER VALUE INVALID
9 INCORRECT Q REGISTER
Run-time errors are discovered by MPE performing parameter checking before attempting
certain operations. They are caused by a logic error in the program.

Table A-4. "CREATE" Error Messages

UNKNOWN SUBQUEUE NAME (CREATE ERROR 20)

SUBQUEUE ‘A’ REQUESTED WITHOUT FROZEN STACK (CREATE ERROR 21)
INSUFFICIENT CAPABILITY FOR NONSTANDARD SUBQUEUE (CREATE ERROR 23)
UNKNOWN PORTION OF MASTER QUEUE (CREATE ERROR 24)

INSUFFICIENT CAPABILITY FOR MASTER QUEUE (CREATE ERRDR 25)
ABSOLUTE PRIORITY REQUESTED WITHOUT CAPABILITY (CREATE ERROR 26)
ILLEGAL PRIORITY CLASS SPECIFIED (CREATE ERROR 27)

PRIORITY OMITTED WHILE FATHER PROCESS IN MASTER QUEUE (CREATE ERROR 28)
PRIDRITY RANK RESERVED TO SUPERVISOR CAPABILITY (CREATE ERROR 29)
LOAD ERROR (CREATE ERROR 30)

LACK OF SYSTEM RESOURCE (CREATE ERROR 31)

MAXIMUM ACCOUNT PRIORITY EXCEEDED (CREATE ERROR 32)

Table A-5. "ACTIVATE" Error Messages.

ACTIVATION OF SYSTEM PROCESS NOT ALLOWED (ACTIVATE ERROR 20)
ACTIVATION OF MAIN PROCESS NOT ALLOWED (ACTIVATE ERROR 21)

Table A-6. "SUSPEND" Error Messages

INSUFFICIENT CAPABILITY (SUSPEND ERROR 20>

MPE Diagnostic Messages

Table A-7. "MYCOMMAND" Error Message

PARSED PARAM OF COMIMAGE > 255 CHARACTERS

Table A-8. "LOCKGLORIN" Error Messages

INCORRECT PASSWORD FOR RIN

ONLY ONE RIN CAN BE LOCKED

RIN IS NOT ALLOCATED

RIN IS TOO LARGE FOR THE RIN TABLE
RIN IS NOT GLOBAL RIN

Table A-9. "LOADER" Error and Warning Messages

ILLEGAL SEARCH (LOAD ERR 20>

UNKNOWN ENTRY POINT (LOAD ERR 21)

TRACE SUBSYSTEM NOT PRESENT (LOAD ERR 22)
STACK SIZE TOO SMALL (LOAD ERR 23

MAXDATA TOO LARGE (LOAD ERR 24

DATA SEGMENT TOO LARGE (LOAD ERR 25)
PROGRAM LOADED IN OPPOSITE MODE (LOAD ERR 26)
SL BINDING ERROR (LOAD ERR 27)

INVALID SYSTEM SL FILE (LDAD ERR 28)

INVALID PUBLIC SL FILE (LOAD ERR 29)

INVALID GROUP SL FILE (LOAD ERR 30)

INVALID PROGRAM FILE C(LOAD ERR 31)

INVALID LIST FILE (LOAD ERR 32>

CODE SEGMENT TOO LARGE (LOAD ERR 33)

PROGRAM FILE ‘S EXTENT MAXIMUM MUST BE ONE (LOAD ERR 34)
DATA SEGMENT TOO LARGE (LOAD ERR 35)

DATA SEGMENT TOO LARGE (LOAD ERR 36)

TOO MANY CODE SEGMENTS (LOAD ERR 37)

TOO MANY CODE SEGMENTS (LOAD ERR 38)

ILLEGAL CAPABILITY (LOAD ERR 39)

TOO MANY PROCEDURES LOADED (LOAD ERR 40)
UNKNOWN PROCEDURE NAME (LOAD ERR 41)

INVALID PROCEDURE NUMBER (LOAD ERR 42)
ILLEGAL PROCEDURE UNLOAD (LOAD ERR 43)
ILLEGAL SL CAPABILITY (LOAD ERR 44)

INVALID ENTRY POINT (LOAD ERR 45)

TEMPORARY PROGRAM FILE ILLEGAL (LOAD ERR 46)
UNABLE TO OPEN SYSTEM SL FILE (LOAD ERR 50)
UNABLE TO OPEN PUBLIC SL FILE (LOAD ERR 51)

MPE Diagnostic Messages

Table A-9. "LOADER" Error and Warning Messages (Continued)

UNABLE TO OPEN GROUP SL FILE (LOAD ERR 52)

UNABLE TO OPEN PROGRAM FILE (LOAD ERR 53)

UNABLE TO OPEN LIST FILE (LOAD ERR 54)

UNABLE TO CLOSE SYSTEM SL FILE (LOAD ERR 55)

UNABLE TO CLOSE PUBLIC SL FILE (LOAD ERR 56)

UNABLE TO CLOSE GROUP SL FILE (LDAD ERR 57)

UNABLE TO CLOSE PROGRAM FILE (LOAD ERR 58)

UNABLE TO CLOSE LIST FILE (LOAD ERR 59)

EOF OR I/0 ERROR ON SYSTEM SL FILE (LOAD ERR 60)

EOF OR I/0 ERROR ON PUBLIC SL FILE (LOAD ERR 61)

EOF OR I/0 ERROR ON GROUP SL FILE (LOAD ERR 62)

EOF OR I/0 ERROR ON PROGRAM FILE (LOAD ERR 63)

EOF OR I/0 ERROR ON LIST FILE (LOAD ERR 64)

UNABLE TO OBTAIN CST ENTRIES (LOAD ERR 65>

UNABLE TO OBTAIN PROCESS DST ENTRY (LOAD ERR 66)

UNABLE TO OBTAIN MAIL DATA SEGMENT (LOAD ERR 67)

UNABLE TO CREATE LOAD PROCESS (LOAD ERR 68)

UNABLE TO OBTAIN CSTX ENTRIES (LOAD ERR 69)

SEGMENT TABLE OVERFLOW (LOAD ERR 70)

UNABLE TO OBTAIN SUFFICIENT DL STORAGE (LOAD ERR 71)

ATTIO ERROR (LOAD ERR 72)

UNABLE TO OBTAIN VIRTUAL MEMORY (LOAD ERR 73)

DIRECTORY 1/0 ERROR (LODAD ERR 74)

PRINT I/0 ERROR (LOAD ERR 75)

ILLEGAL DLSIZE (LOAD ERR 76)

ILLEGAL MAXDATA (LOAD ERR 77)

PROGRAM ALREADY ALLOCATED (LOAD ERR 80)

ILLEGAL PROGRAM ALLOCATION C(LOAD ERR 81)

ILLEGAL PROGRAM DEALLOCATION (LOAD ERR 83)

PROCEDURE ALREADY ALLOCATED (LOAD ERR 84)

ILLEGAL PROCEDURE ALLOCATION (LOAD ERR 85)

PROCEDURE NOT ALLOCATED (LDAD ERR 86)

ILLEGAL PROCEDURE DEALLOCATION (LOAD ERR 87)

LMAP NOT AVAILABLE (LOAD WARN 88)

PROGRAM LOADED WITH LIB = S (LOAD WARN 89)

PROGRAM LOADED WITH LIB = P (LOAD WARN 90)

PROGRAM LOADED WITH LIB = G (LOAD WARN 91)

ATTEMPTING TO ALLOCATE OR DEALLOCATE PROGRAM FROM NON-SYSTEM & DISC
(LDAD ERR 92)

UNABLE TO MOUNT PROGRAM FILE’S HOME VOLUME SET (LOAD ERR 93)

UNABLE TO MOUNT SYSTEM SL ‘S HOME VOLUME SET (LDAD ERR 94)

UNABLE TO MOUNT PRIVATE SL‘S HOME VOLUME SET (LOAD ERR 95)

UNABLE TO MOUNT GROUP SL ‘S HOME VOLUME SET (LOAD ERR 96)

UNABLE TO LOAD REMOTE PROGRAM FILE (LOAD ERR 97)

UNABLE TO CONVERT OLD FORMAT (LOAD ERR 98>

UNABLE TO OBTAIN DST FOR LOGICAL MAP (LOAD ERR 99)

TOD MANY MAPPED SEGMENTS (LOAD ERR 100)

SEGMAP TOO BIG (LOAD ERR 101)

UNABLE TO EXPAND SEGMAP (LOAD ERR 102)

UNABLE MANY DYNAMIC LOADS ON PROCEDURE (LOAD ERR 103)

MPE Diagnostic Messages

USER MESSAGES

When your batch job or session receives a message from another user’s job or session, that message ap-
pears in the following format:

FROM/ {é}nwn,usemame .acctname /message

The parameters have the following meanings:

num The job/session number.

username acctname The names of the transmitting job/session and user, and the name of the
account under which it is running.

message The message.
As an example, if a user identified as BOB running a session under an account named MPE, sends a
message to you that he is changing the name of a file frequently used by both programs you would see

the following message:

FROM/S106 BOB.MPE/DO NOT USE FILE TR7

OPERATOR MESSAGES

When your batch job or session receives a message from the Operator, that message appears in one of
two formats, depending on its degree of urgency. Urgent messages (Operator Warnings) which pre-
empt any form of input/output being conducted on the standard list device, appear in the same for-
mat as user messages:

DPERATOR WARNING/message

where message is the message text.

Less serious messages, used for normal communication between the Operator and you, do not pre-
empt input/output in progress, and appear on the standard list device in this format:

FROM/S3, 0PERATOR.SYS/message

Once again message 1s the message text.

SYSTEM MESSAGES

Miscellaneous conditions that terminate or otherwise affect your job/session are reported through sys-
tem messages. These messages may appear, asynchronously, during the course of running a job/ses-
sion on the standard list device. Table A-10 lists the system messages and their meanings.

MPE Diagnostic Messages

Table A-10. System Messages

CAN‘T INITIATE NEW SESSIONS NOW
A new session cannot be initiated due to one of the following problems:
1. Insufficient system resources to start job.

2. Session limit would be exceeded (see =LIMITand =LOGOFF).
3. Requestor’s input priority (INPRI=) is not greater than current jobfence.

NOTE

System Operators can bypass rejections due to 2 and 3 by
supplying; HIPRI on the :HELLDand :JOBcommands.

*{jg.gsrou } ABORTED BY SYSTEM MANAGEMENT#

The job/session has been aborted by the System Operator through the appropriate
command. An immediate logoff takes place.

{gggszoy } HAS EXCEEDED TIME LIMIT

The job/session has exceeded the time limit which was specified in the TIME= parame-
ter of the JOB/HELLD command. An immediate logoff takes place.

WARNING: PRIORITY=XXX

The priority passed to the CREATE intrinsic resulted in a conflict with another process,
and the priority then assigned was XXX instead of the requested value.

LMAP NOT AVAILABLE

LMAP of the process being created, or program file being run, is not available because
the code segments are already loaded.

##POWER FAIL

Power failure has occurred and automatic restart is in progress. It is possible that a
character has been lost due to a transmission error when the power failure occurred.

MPE Diagnostic Messages

FILE INFORMATION DISPLAY

In addition to Command Interpreter and run-time (abort) error messages, certain file input/output
errors result in the output of a file information display if the caller of the file system intrinsic sub-
sequently calls PRINTFILEINFO. For files not yet opened, or for which the FOPEN intrinsic failed,
this display appears as in the example below.

~F-1-L-E---1-N-F-0-R-M-A-T-1-0-N---D-1-5-P-L-A-Y+

+

! FILE NUMBER 5 1S UNDEFINED. ! (Line 1)
! ERROR NUMBER: 2 RESIDUE: 0 (WORDS) ! (Line 2)
! BLOCK NUMBER: 0 NUMREC: O ! (Line 3)
L il ittt +

In this display, the lines indicated show the following information:

Line Content
1 A warning that there is no corresponding file open.
2 "ERROR NUMBER" indicates the last FOPEN error for the calling program.

"RESIDUE" is the number of words not transferred in an input/output
request ; since no such request applies in this case, this is zero.

3 The "BLOCK NUMBER" and “NUMREC" fields will always be zero in this
short form.

For files that were open when a CCG (end-of-file error) or CCL (irrecoverable file error) was
returned, the file information display appears as shown in this example:

~F-1-L-E---1-N-F-0-R-M-A-T-1-0-N---D-1-S-P-L-A-Y+

+

' FILE NAME IS IN.VOLLMER.CLIFTON t (Line 1)

! FOPTIONS: NEW,ASCII,FORMAL,F,NOCCTL,FEQ, H (Line 2)

! NOLABEL i (Line 3)

! AOPTIONS: INPUT,NOMR,NOLOCK,DEF,BUF,NOMULTI, ! (Line 4)

! WAIT,NOCOPY ! (Line 5)

! DEVICE TYPE: 0 DEVICE SUBTYPE: 9 ! (Line 6)

! LDEV: 2 DRT: 4 UNIT: 1 ¢ (Line 7)

! RECORD SIZE: 256 BLOCK SIZE: 256 (BYTES) ! (Line 8)

I EXTENT SIZE: 128 MAX EXTENTS: 8 ! (Line 9)

! RECPTR: 0 RECLIMIT: 1023 ! (Line 10)
I LOGCOUNT: 0 PHYSCOUNT: 0 ! (Line 11)
I EOF AT: 0 LABEL ADDR: %00201327630 ! (Line 12)
! FILE CODE: 0 ID IS JOE ULABELS: 0 ! (Line 13)
! PHYSICAL STATUS: 1000000000000001 ! (Line 14)
! NUMBER WRITERS: 0 NUMBER READERS: 1 ! (Line 15)
! ERROR NUMBER: 0 RESIDUE: 0 ! (Line 16)
! BLOCK NUMBER: 0 NUMREC: 1 ! (Line 17)
o e e — e m e ———— +

MPE Diagnostic Messages

The lines indicated show the following information:

Line Content
1 The filename (IN.VOLLMER.CLIFTON).
2,3 The foptions in effect, including:
Domain: NEW - A new file.
SYS - System file domain.
JOB - Job temporary file domain.
File Type: ASCII
BINARY
Default file FORMAL - Actual file designator is the same as the for-
Designator: mal file designator.
$STDIN
$STDLIST
$STDINX
$NEWPASS
$O0LDPASS
$NULL

Record Format: F - Fixed length.
V - Variable length.
U - Undefined length.
? - Unknown format.

Carriage Control: NOCCTL - None.
CCTL - Carriage control character expected.

File Equation FEQ - :FILE allowed.

Option: DEQ - :FILE not allowed.
Labeled NOLABEL - Not a labeled tape.
Tape Option: LABEL - Labeled tape.

4.5 The aoptions in effect, including:
Access Type: INPUT - Read access.

OUTPUT - Write access.

OUTKEEP - Write-only access, without deleting.
APPEND - Append access.

IN/OUT - Input and output access.

UPDATE - Update access.

Multi-record NOMR - Single record access.
Option: MR - Multirecord access.
Dynamic NOLOCK - No locking permitted.
Locking LOCK - Locking permitted.
Option:

MPE Diagnostic Messages

6,7

10
11
12

13

14

15

16

17

Exclusive DEF - Default specification.
Access EXC - Exclusive access allowed.
Option: SEA - Semi-exclusive access.

SHR - Sharable file.

Buffering: BUF - Automatic Buffering.

NOBUF - Inhibit buffering.
Multi-access NOMULTI - Multi-access not allowed.
Option: MULTI - Intra-job multi-access allowed.

GMULTI - Inter-job multi-access allowed
{any job/session process tree).

Wait WAIT - 1/0 with wait.

Option: NOWAIT - I/0 without wait.

Copy NOCOPY - No special treatment of MSG, CIR files.

Option: COPY - Treat MSG, CIR files as regular variable length
files.

The device type, device subtype, Logical Device Number (LDEV), Device
Reference Table (DRT), and unit of the device on which the file resides.
If the file is a spoolfile, the ldev will be "virtual” rather than a physical
device number. (Refer to Idev under FGETINFQ.)

The record and block size of the offending record, in bytes or words as
noted.

The extent size of the current extent and the maximum number of extents
allowed this file.

The current record pointer and limit on number of records in the file.

The present count of logical and physical records.

The locations of the current end-of -file and header label of the file.

The file code, name of the file’s creator, and number of user-created
labels. i

The physical (hardware) status of the device on which the file resides.

"NUMBER WRITERS" is the number of FOPEN calls of the file with some
type of write access to the file. "NUMBER READERS" is the number of
FOPEN calls to the file with read access to the file. This is only for message
files, in all other files it will not appear.

The error number and residue ; same as for the abbreviated file information
display format.

The block number and number of records {(NUMREC) for the file.

DEVICE CHARACTERISTICS

MPE intrinsics can be used to alter certain aspects of device operation. Before any of these intrinsics
can be issued against a device, the devicefile must be opened with the FOPEN intrinsic (refer to the
FOPEN discussion in Section II).

With the FCONTROL intrinsic, you can:

e Change terminal speed.

e Change input echo facility.

e Enable and disable the system BREAK function.

e Enable and disable subsystem BREAK requests.

e Enable and disable parity checking.

e Enable and disable tape-mode option.

o Enable and disable the terminal timer.

e Read the result from the terminal input timer.

e Define line-termination characters for terminal input.

Card Reader

The card reader is a unit record device. The data is read in ASCII mode; that is, two columns are
converted to ASCII and packed into the left and right byte of one word. If the read request specifies
80 or more bytes, 80 bytes will be transmitted independent of the data on the card.

Line Printer

The line printer is a print and space device (postspace). The prespace operation is simulated by per-
forming a print operation and then filling the line printer buffer. A carriage control code of %320
will append data to the current contents of the line printer buffer, whether prespace or postspace is
selected.

To change the mode control settings (pre/post spacing and auto/no-auto page eject) FWRITE is used
with carriage controls %100 - %103 and %400 - %403. If FWRITE is called with one of these carriage
controls and count=0 (count=1 if imbedded control), then no physical I/O will occur; the only effect is
changing the mode.

Device Characteristics

Magnetic Tape

The magnetic tape unit reads and writes undefined~length records in packed binary mode. Each word
of data is represented by two tape characters. On read requests, the amount of data transferred is the
lesser of the read request length and the tape record length. An end of tape indication is returned
whenever a write operation completes with the tape positioned beyond the EOT marker.

Line Printer and Terminal Carriage Control Codes

Line printer and terminal carriage control codes are shown in Table 2-5 (refer to Section II,
FWRITE). All of the Carriage Control Codes shown in Table 2-5 may be used as the value of the
param parameter of FCONTROL (when controlcode=1) regardless of whether the file is opened with
CCTL or NOCCTL specified in the FOPEN intrinsic. The device must be nonspooled. When the file is
opened with CCTL, the Carriage Control Codes may be used via FWRITE either as the value of the
control parameter, or, when control is specified as 1, as the first byte of the farget array. Carriage
Control Codes greater than %403 cause an error return with no operation performed. The default
mode controls are post spacing with automatic page eject.

End-of-File Indication

An end-of -file indication is returned by the card reader and tape drivers under conditions specified
by the initiators of read requests. The types of requests and the end-of-file classes are as follows:

Type Class of End-Of-File
A All records that begin with a colon ().
B All records that contain, starting in the first byte, :EO0D, :EOQJ,

:JOB, and :DATA. If the word count is less than 3 or the byte count
is less than 6, Type B reads are converted to Type A reads.

E Hardware-sensed end-of -file.

In utilizing the card/tape devices as files via the File System, the following types are assigned:

File Specified Type

$STDIN Type A

$STDINX Type B

Dev=CARD/TAPE Type B, if device accepts jobs or data.

Type E, if device does not accept jobs or data.

Any subsequent requests to the device after an end-of -file condition is detected are rejected with an
end-of -file indication, except as described in the next paragraph.

When reading from an unlabeled tape file, a request encountering a tape mark responds with an end-
of ~file indication, but succeeding requests are allowed to continue reading data past the tape mark.
Under these conditions, it is the responsibility of the caller to protect against the occurrence of data
beyond an end-of-file, and to prevent reading off the end of the reel.

B-2

Device Characteristics

Terminals

Refer to the MPE File System Reference Manual (30000-90236) for detailed information on ter-
minals and terminal characteristics.

Using the FCARD Intrinsic With an HP 7260A Optical Mark Reader

The FCARD intrinsic enables you to programmatically control the operation of the HP 7960A Optical
Mark Reader (OMR). This is achieved through passing a parameter value (recode), corresponding to
the function of FCARD desired, from a program to FCARD. FCARD returns parameter values to the
calling program which indicate the success or the cause of failure of execution, the status of the HP
7260A, the file number of the HP 7260A/terminal file for which the function has been performed
and the number of columns read at the completion of a read request.

The program shown in Figure B-1 performs the following:

¢ Opens the HP 7260A/terminal file.

¢ Displays Operator instructions.

¢ Temporarily suspends program operation until the HP 7260A READY switch is pressed.
o Reads ten cards in the ASCII reading format.

¢ Displays the number of columns read fro;n each card.

¢ Examines STATUS for empty input hopper status.

¢ Examines output RECODE values for each request.

¢ Closes the HP 7260A terminal file.

Under the label OPENFILE, the program requests that an HP 7260A /terminal file be opened for ac-
cess and that the file number of this file be returned to the program in the parameter F ILENUM by as-
signing to RECODE a value of 0, and calling FCARD as illustrated. When process control is returned
from FCARD, the program verifies that the call was successful (RECODE=0) and continues at the label
DISPINST. Under this label, Operator instructions are displayed on the $STDLIST device. If the call
to FCARD was unsuccessful (RECODE<>0), then the error message "CANNOT OPEN FILE - PROGRAM
WILL TERMINATE" is displayed, and the program goes to the label FINIS and terminates.

Under the label RDYWAIT, a display instructing the Operator to press the READY switch is given, and
the request for a temporary suspension of the program awaiting the depression of the READY switch
is made by setting RECODE to 4 and calling FCARD as illustrated. The program, upon regaining process
control, checks for unsuccessful execution of the request (RECODE<>0). If the execution was unsuc-
cessful, the program goes to the label FINIS and terminates. The program could also have branched
to an instruction set to correct or display an error at this point. If the execution was successful, the
program continues with the next statement, which is under the label READ”.

Under the label READ’, the program requests the reading of ten cards by setting RECODE to 1 and call-
ing FCARD as illustrated. Upon return of the process control from FCARD, the program checks for an
unsuccessful execution (RECODE<>0). If the execution was unsuccessful, the program goes to the label
READ ‘ERR.

Device Characteristics

Under the label READ’ERR, the program determines the value of RECODE returned after the read
request, and initiates corrective action and/or displays an appropriate error message, or terminates it-
self , depending on the value of RECODE detected.

If the execution was successful, the program checks STATUS for an empty input or full output hopper
condition, and if this status condition is detected, the program goes to the label HOPPERS under which
corrective steps are initiated. If this status condition is not detected, the program calls the procedure
DISPCOUNT, which displays the number of columns read from the previous card. After the
DISPCOUNT procedure is completed, the program goes to the label CLOSE ‘F.

Under the label CLOSE ‘F, the program requests that the HP 7260A be put in the NOT READY state
and that the HP 7260A/terminal file be closed by setting RECODE equal to 10 and calling FCARD; and
by setting RECODE equal to 20 and calling FCARD, respectively. In both cases, the value of RECODE
returned from FCARD is examined for an indication of successful execution as illustrated in Figure
B-1.

ASCIl and Column Image Reading Formats

In the ASCII mode (also called the Hollerith mode), the OMR recognizes 128-character Hollerith
codes and transmits one 7-bit serial ASCII character plus an even parity bit per card column. FCARD
packs two ASCII characters (two columns of data) into each buffer word in BUFADR. The data from
the first column of the card is stored in the upper byte of the first word of the buffer, as illustrated
below:

Bits 0 7 8 18
Word 1 1st column data 2nd column data
Word 2 3rd column data 4th column data

In the column image mode, the OMR transmits a 12-bit data string, representing the twelve rows of
one card column. FCARD packs the first 12-bit data string (the first column of data) into the first
buffer word in BUFADR, as illustrated in the following program example:

-i=]-]-112|11]10|1]12]|]3]|4]|5]|]6]7]8]| 9| COLUMN ROW NO.

BUFFERWORD |0 JOJO|O([X|X|X|[X]IX]X]|X]|X]X]X]|X]|X]| DATA

0 1t 2 3 4 5§ 6 7 8 9 10 11 12 13 14 15 BIT NO.

B-4

Device Characteristics

$CONTROL USLINIT

BEGIN

INTEGER ARRAY BUFADR(0:99);
BYTE ARRAY T00(0:72);

POINTER HERE;

INTEGER RECODE,A,I;

INTRINSIC QUIT,PRINT;

INTEGER COUNT,FILENUM,STATUS;
INTRINSIC PRINT’FILE’INFO;

PROCEDURE DISP’'COUNT(COUNT);
INTEGER COUNT;

BEGIN
ARRAY 0UT(0:11);
BYTE ARRAY ROUT(X)=0UT;
INTRINSIC PRINT,ASCII;
INTEGER Al ,A2;

MOVE ROUT:="NO. OF COLUMNS READ= ";
Al :=ASCII(COUNT, 10 ,ROUT(21));

A2:= -21-Al;

PRINT(OUT,A2,%401);

END;

PROCEDURE FCARD (RECODE ,FILENUM, BUFADR,COUNT,STATUS);
INTEGER ARRAY BUFADR;

INTEGER RECODE,FILENUM,COUNT,STATUS;

OPTION EXTERNAL;

@HERE : =@TO00 & LSR(1);
OPENFILE:
<<@ET FILE NUMBER FOR LOGICAL DEV EQUAL TO THE TERMINAL>>
RECODE : =0 ;
FCARD (RECODE , FILENUM, BUFADR , COUNT, STATUS) ;
IF RECODE =0 THEN GO DISPINST;
MOVE TOO:="CANNGT OPEN FILE - PROGRAM WILL TERMINATE";
PRINT (HERE,-40,0);
GO FINIS;

Figure B-1. FCARD Intrinsic Example (1 of 3)

B-$

Device Characteristics

IF

DISPINST:

MOVE T00:=(%15,%12);

PRINT(HERE,-2,0);

MOVE TOO:="SET THE 7260A FOR CLOCK ON DATA.";

PRINT (HERE,-32,0);

MOVE TO0O:="PUSH IN THE FULL/HALF SWITCH TO ITS FULL POSITION.";
PRINT(HERE,-49,0);

MOVE TOO:="UNMUTE THE TERMINAL.";

PRINT(HERE,~-20,0);

MOVE TOO:="LOAD 30 CLOCK ON DATA CARDS IN THE INPUT HOPPER.";
PRINT (HERE,-48,0);

RDYWAIT:

MOVE TOO:="NOW, PRESS THE READY SWITCH.";
PRINT(HERE,-28,0);

RECODE :=4;

FCARD(RECODE ,FILENUM,BUFADR,COUNT ,STATUS) ;
A:=0;1:=0;

IF RECODE <>0 THEN GO FINIS;

READ:

DO BEGIN
RECODE :=1;
FCARD (RECODE ,FILENUM,BUFADR ,COUNT,STATUS) ;
IF RECODE <> 0 THEN GO READ'ERR; '
IF STATUS = %07 THEN GO HOPPERS;
DISP'COUNT (COUNT);
I:=1I+1;
END
UNTIL I=10;
GO CLOSE’F;

HOPPERS:

RECODE :=10; <<MAKE BMR NOT READY>>
FCARD (RECODE ,FILENUM, BUFADR,COUNT ,STATUS) ;
IF RECODE <> 0 THEN BEGIN

A:=A+1;

IF A<5 THEN GO HOPPERS;

PRINT'FILE'INFO(FILENUM);

QUIT(RECODE});

END;

MOVE TOO:="INPUT HOPPER EMPTY OR QUTPUT HOPPER FULL";
PRINT(HERE,-40,0);
MOVE TOO:="CORRECT HOPPER CONDITION AND PRESS READY";
PRINT(HERE,-40,0);
RECODE <> 0 THEN GO FINIS ELSE
GO READ’;

Figure B-1. FCARD Intrinsic Example (2 of 3)

B-6

Device Characteristics

CLOSE'F:
RECODE:=10; <<MAKE CR NOT READY>>
FCARD(RECODE ,FILENUM,BUFADR,COUNT,STATUS);
IF RECODE <> 0 THEN BEGIN
I:=I+1;
IF I < 16 THEN GO CLOSE'F;
PRINT'FILE'INFO(FILENUM);

END;
RECODE :=20;
FCARD (RECODE ,FILENUM,BUFADR,COUNT,STATUS);
IF RECODE =0 THEN GO FINIS ELSE BEGIN
MOVE TOO:="UNABLE TO CLOSE THE TERMINAL FILE";
PRINT (HERE,33,0);
GO FINIS; END ;

READ'ERR:
IF RECODE =8 THEN GO RETRANS;
IF RECODE =4 THEN BEGIN
MOVE TOO:="FREAD OR FWRITE ERROR-PROGRAM WILL ABORT";
PRINT(HERE,-40,0);
QUIT(RECODE); END;

IF RECODE =6 THEN BEGIN
MOVE T00:=":EOJ, :EOD, :DATA, OR :JOB FOUND IN INPUT.";
PRINT(HERE,-42,0);
MOVE T00:="CHECK CARD VALIDITY-PROGRAM WILL RESTART";
PRINT(HERE,-40,0);
GO DISPINST; END;

MOVE TOO:="UNINTERPRETED ERROR-PROGRAM WILL ABORT";

PRINT (HERE,-37,0);

QUIT(RECODE);
RETRANS:
RECODE :=3;

FCARD (RECODE,FILENUM, BUFADR,COUNT,STATUS);

IF RECODE <> 0 THEN BEGIN
MOVE TO0O:="UNSUCCESSFUL RETRANSMIT-PROGRAM WILL ABORT";
PRINT(HERE,-42,0);
QUIT(RECODE); END;

IF STATUS =0 THEN GO READ’;
MOVE TOO:="UNSUCCESSFUL RETRANSMIT-PROGRAM WILL ABORT";
PRINT(HERE,-42,0);
QUIT(RECODE};
FINIS:
END.

Figure B-1. FCARD Intrinsic Example (3 of 3)

B-7/B-8

INDEX

Aborting

Processes, 2~228, 5-28

Programs, 5~28

Sessions, 2-§

User-Process Structure, 2-229
ABORTSESS Intrinsic, 2~5
Accessing

File Information, 2-85

Files, 2-111

Message System, 2-167

Non-Sharable Devices, 4-2

Process Information, 2-220

User Logging Facility, 2-211
Access-Mode Options, Declaring, 4-38
Acquiring

Global RINs, 3-38

Local RINs, 2-176, 3-43
ACTIVATE Intrinsic, 2-7
Activating File Access Modes, 2-150
Activating Processes, 2-7, 3-24
Active Process Substates, 3-24
Adjusting Directory Space in USL File, 2-9
ADJUSTUSLF Intrinsic, 2-9
Allocating Devices, 4-12
ALTDSEG Intrinsic, 2-11
Altering, Size of Extra Data Segment, 2-11
Altering, Z to DB Area, 2-268
Aoption Bit Summary, 2-90
Arithmetic Traps, 5-38
ARITRAP Intrinsic, 2-13
Arrays, Searching, 5-4
ASCII Intrinsic, 2-14
ASCII Numeric String

Converting to Binary Coded Value, 5-20

ASCII Reading Formats, B-4

Assigning $STDIN/$STDLIST to Files, 2-32
AS Subqueue, 3-6

Attributes, Determining User, 5-12
Available File Table (AFT), 4-6

Avoiding Deadlocks, 3-34

BEGINLOG Intrinsic, 2-16
Binary Code, Converting Numbers
to ASCII Strings, 2-38, 5-16

BINARY Intrinsic, 2-18
BS Subqueue, 3-6

Calendar Date
Formatting, 2-108, 2-110, 5-52
Obtaining, 2-19, §-52
CALENDAR Intrinsic, 2-19
Calling
Intrinsics, Calling From Languages, 1-4
Intrinsics, Calling From SPL, 1-1
Process, Suspending, 2-213, 5-26
Capabilities
Create Volumes, 1-9
Data Segment Management, 1-8, 3-9
Multiple Resource Identification, 1-8
Optional, 1-7
Privileged Mode, 1-8, 3-1
Process Handling, 1-8, 3-22
Programmatic Sessions, 1-8
Required, 2-3
User Logging, 1-8
Volume Usage, 1-9
Card Reader, B-1
Carriage-Control Bytes, 2-135
Carriage-Control Codes, B-2
Carriage-Control Directives, 2-161
Catalog Message, 5-56
CAUSEBREAK Intrinsic, 2-20
Changing
DB Register Pointer, 2-250
DL to DB Area Size, 5-31
Length of USL File, 2-51
Process Priority, 2-178
Size of Extra Data Segment, 3-22
Stack Size, 5-30
Z to DB Area Size, 5-37
CLEANUSL Intrinsic, 2-21
CLOCK Intrinsic, 2-23
CLOSELOG Intrinsic, 2-24
Closing
Access to Logging Facility, 2-24
Files, 2-65, 4-28
New File as Permanent File, 4-31
New File as Temporary File, 4-28
Code Segments, 3-9
Collecting Mail, 3-33
Column Image Reading Formats, B-4
COMMAND Intrinsic, 2-26

I-1

INDEX (Continued)

Command Parameters, Formatting, 5-5
Commercial Instruction Traps, 5-40
Communication, Interprocess, 3-31, §-54
Condition Codes, 1-5, 2-3
Contracting Area Between DL/DB, 2-43
Control Code Values, 2-68
Control Operations, 2-68, 2-75
CONTROL-Y Traps, 5-46
Converting ASCII Strings
To Binary Word, 2-18
To Double-Word Binary Value, 2-41
Converting Binary Numbers
To ASCII String, 2-38
To Numeric ASCII String, 2-14
Converting Calendar Date Formats, 2-108
Converting Numbers From
ASCIH String To Binary Value, 5-20
Binary Code To ASCII String, 5-16
Converting Strings of Characters, 2-36
Between EBCDIC/ASCII, 2-36
Between EBCDIK/JIS, 2-36
Copying
Extra Data Segment to Stack, 2-45
Stack to Extra Data Segment, 2-47
Input From Paper Tapes To
Disc File, 2-224
CREATE Intrinsic, 2-27
CREATEPROCESS Intrinsic, 2-32
Create Volumes Capability, 1-9
Creating
Extra Data Segment, 2-171, 3-10
Processes, 2-27, 2-32, 3-34
CS Subqueue, 3-6
CTRANSLATE Intrinsic, 2-36
Translating Characters With, 5-22
Current Time, Obtaining, 2-40, 5-50

D

DASCII Intrinsic, 2-38
Data Segment Mgmt Capability, 1-8, 3-9
Date, Obtaining, 5-52
DATELINE Intrinsic, 2-40
DBINARY Intrinsic, 2-41
DB Pointer, Changing, 2-250
DB Pointer, Moving, 3-5
Deactivating
File- Access Modes, 2-150
RIO Records, 2-74

Deadlocks, 3-34
DEBUG Intrinsic, 2-42
Declarations

Intrinsic, 1-2
Procedure, 1-2

Declaring Access-Mode Options, 4-38
Define, Parameters, 2-208
Deleting

Extra Data Segment, 3-21
Inactive Entries From USL File, 2-21
Processes, 2-194, 3-29

Determining

Father Process, 3-35

PIN of Process Locking Local RIN, 2-200
Son Process, 3-36

Source of Activation Call, 2-177

Source of Process Activation, 3-35

Status of File Pairs, 2-146

User Access Mode/Attributes, 5-12

Device Characteristics

Card Reader, B-1
Line Printer, B-1
Magnetic Tape, B-2
Terminals, B-3

Devices

Allocation/Classification Of , 4-12

Directory Space, Adjusting, 2-9
Disable

Abort Stack Analysis Facility, 2-237
Hardware Arithmetic Traps, 2-13
Software Interrupts, 2-99

Software Library Trap, 2-266

System Trap, 2-267

User Software Arithmetic Trap, 2-262

Disc Files,

File Label Information, 2-101
Opening, 4-20

Displaying File Information, A-12
DLSIZE Intrinsic, 2-43

DL To DB Area Size, Changing, 5-31
DMOVIN Intrinsic, 2-45
DMOVOUT Intrinsic, 2-47
Domains, File, 4-2

Drive, Optical Mark Reader, 2-54
DS Subqueue, 3-6

Dump Stack to File, 2-243
Duplicative File Pairs, 2-146
Dynamic

I-2

Loading, 5-3
Load/Unload, Library Procedure, 5-2
Unloading, 5-3

INDEX (Continued)

Enabling
Hardware Arithmetic Traps, 2-13
Software Interrupts, 2-99
Software Library Trap, 2-266
Stack Analysis Facility, 2-241
System Trap, 2-267
User Software Arithmetic Trap, 2-262
Enabling/Disabling Traps, 5-37
End-of -File Indication, B-2
ENDLOG Intrinsic, 2-49
Entering
Non-Privileged Mode, 3-5
Privileged Mode, 2-180, 3-3
Error-Check Procedure Writing, 4-33
Error Messages, Types Of
ACTIVATE Intrinsic, A-7
CREATE Intrinsic, A-7
LOADER Error/Warnings, A-8
LOCKGLORIN Intrinsic, A-38
MYCOMMAND Intrinsic, A-8
Run-Time, A-7
SUSPEND Intrinsic, A-7
Errors, Intrinsic Call, 1-3
ES Subqueue, 3-6
Executing MPE Commands Programmatically,
2-26, 5-11
Expanding Area Between DL and DB, 2-43
EXPANDUSLF Intrinsic, 2-51
Extended Precision Floating Point Trap, 5-39
Extra Data Segment
Altering Size Of, 2-11
Changing Size Of , 3-22
Creating, 2-171, 3-10
Deleting, 3-21
Releasing, 2-144
Transferring Data From Stack,
2-47, 3-21
Transferring Data To Stack,
2-45, 3-21

FATHER Intrinsic, 2-53
Father Process, Determining, 3-35
FCARD Intrinsic, 2-54
Using With Optical Mark Reader, B-3

FCHECK Intrinsic, 2-58
FCLOSE Intrinsic, 2-65
FCONTROL Intrinsic, 2-68
FDELETE Intrinsic, 2-74
FDEVICECONTROL Intrinsic, 2-75
FERRMSG Intrinsic, 2-84, 4-33
FFILEINFO Intrinsic, 2-85
FGETINFO Intrinsic, 2-88
File Designators, Parsing/Validating,
2-130, 4-15
File Device Relationships, 4-2
File Domains, 4-2
File Information, Displaying, A-12
File System Error-Check Procedure, 4-33
Files
Accessing, 2-111
Closing, 2-65, 4-28

Closing New File as Permanent File, 4-31
Closing New File as Temporary File, 4-28

Device Relationships, 4-2
Dynamically Lock, 2-104
How to Use, 4-§
Non-Sharable Devices, 4-4
Opening, 4-3

Opening New Disc Files, 4-17

Opening On Device Other Than Disc, 4-22

Renaming, 2-148
FINDICW Intrinsic, 2-96
FINTEXIT Intrinsic, 2-98
FINTSTATE Intrinsic, 2-99
FLABELINFO Intrinsic, 2-101
FLOCK Intrinsic, 2-104
FLUSHLOG Intrinsic, 2-106
FMTCALENDAR Intrinsic, 2-108
FMTCLOCK Intrinsic, 2-109
FMTDATE Intrinsic, 2-110
FOPEN Intrinsic, 2-111
Foptions Bit Summary, 2-88
Formatting Calendar Dates/Time,
2-108, 5-52
Formatting Command Parameters, 5-5
FPARSE Intrinsic, 2-130
FPOINT Intrinsic, 2-133
FREAD Intrinsic, 2-135
Using With $STDIN/$STDLIST, 4-23
FREADBACKWARD Intrinsic, 2-137
FREADDIR Intrinsic, 2-139
FREADLABEL Intrinsic. 2-141
FREADSEEK Intrinsic, 2-143
FREEDSEG Intrinsic, 2-144
Freeing Local RINs, 2-145, 3-45
FREELOCRIN Intrinsic, 2-145

I-3

INDEX (Continued)

FRELATE Intrinsic, 2-146
FRENAME Intrinsic, 2-148
FSETMODE Intrinsic, 2-150
FSPACE Intrinsic, 2-153
Functional Return, 2-2
FUNLOCK Intrinsic, 2-155

INITUSLF Intrinsic, 2-185§

Interactive File Pairs, 2-146

Inter-Job Level Global RINs, 3-38

Internal Operations For File Accessing, 4-5
Interprocess Communication, 3-24, 3-31, 5-54
Interprocess Local Level RINs, 3-43

FUPDATE Intrinsic, 2-156 Intrinsics
FWRITE Intrinsic, 2-158 Call Errors, 1-5
Using With $STDIN/$STDLIST, 4-23 Calling, 1-1

FWRITEDIR Intrinsic, 2-164
FWRITELABEL Intrinsic, 2-166

G

GENMESSAGE Intrinsic, 2-167
GETDSEG Intrinsic, 2-171
GETINFO Intrinsic, 2-173
GETICW Intrinsic, 2-175
GETLOCRIN Intrinsic, 2-176
GETORIGIN Intrinsic, 2-177
GETPRIORITY Intrinsic, 2-178
GETPRIVMODE Intrinsic, 2-180
GETPROCID Intrinsic, 2-181
GETPROCINFO Intrinsic, 2-182
GETUSERMODE Intrinsic, 2-184
Global RINs

Acquiring, 3-38

Inter-Job Level, 3-38

Locking, 2-196

Locking/Unlocking, 3-39

Releasing, 3-39

Unlocking, 2-254

H

Hand-Shaking Arrangement, 3-37
How to Use Files, 4-5

Identifying Job/Session with JOBINFO, 5-14
Identifying Local RIN Owners, 3-44
Implementing Intrinsic Calls, 1-2

Initialize USL File to Empty State, 2-185
Initiate Completion of 1/0O Request, 2-186
Initiate Session on Specified Terminal, 2-245

Calling From SPL, 1-1
Calls, Implementing, 1-2
Declarations, 1-2
Functions, 1~7

Names, 2-1

Numbers, 2-1

Procedure Declarations, 1-2

Time and Date, 5-49

Intrinsics, List Of

I-4

ABORTSESS, 2-$§
ACTIVATE, 2-7
ADJUSTUSLF, 2-9
ALTDSEG, 2-11
ARITRAP, 2-13
ASCII, 2-14
BEGINLOG, 2-16
BINARY, 2-18
CALENDAR, 2-19
CAUSEBREAK, 2-20
CLEANUSL, 2-21
CLOCK, 2-23
CLOSELOG, 2-24
COMMAND, 2-26
CREATE, 2-27
CREATEPROCESS, 2-32
CTRANSLATE, 2-36
DASCII, 2-38
DATELINE, 2-40
DBINARY, 2-41
DEBUG, 2-42
DLSIZE, 2-43
DMOVIN, 2-45
DMOVOUT, 2-47
ENDLOG, 2-49
EXPANDUSLF, 2-51
FATHER, 2-53
FCARD, 2-54
FCHECK, 2-58
FCLOSE, 2-65
FCONTROL, 2-68
FDELETE, 2-74
FDEVICECONTROL, 2-75
FERRMSG, 2-84, 4-33

INDEX (Continued)

FFILEINFO, 2-85
FGETINFO, 2-88
FINDICW, 2-96
FINTEXIT, 2-98
FINTSTATE, 2-99
FLABELINFO, 2-101
FLOCK, 2-104
FLUSHLOG, 2-106
FMTCALENDAR, 2-108
FMTCLOCK, 2-109
FMTDATE, 2-110
FOPEN, 2-111
FPARSE, 2-130
FPOINT, 2-133
FREAD, 2-135
FREADBACKWARD, 2-137
FREADDIR, 2-139
FREADLABEL, 2-141
FREADSEEK , 2-143
FREEDSEG, 2-144
FREELOCRIN, 2-145
FRELATE, 2-146
FRENAME, 2-148
FSETMODE, 2-150
FSPACE, 2-153
FUNLOCK, 2-155
FUPDATE, 2-156
FWRITE, 2-158
FWRITEDIR, 2-164
FWRITELABEL, 2-166
GENMESSAGE, 2-167
GETDSEG, 2-171
GETINFO, 2-173
GETICW, 2-175
GETLOCRIN, 2-176
GETORIGIN, 2-177
GETPRIORITY, 2-178
GETPRIVMODE, 2-180
GETPROCID, 2-181

MAIL, 2-206
MYCOMMAND, 2-208
OPENLOG, 2-211
PAUSE, 2-213

PRINT, 2-214
PRINTFILEINFO, 2-216
PRINTOP, 2-217
PRINTOPREPLY, 2-218
PROCINFO, 2-220
PROCTIME, 2-223
PTAPE, 2-224
PUTICW, 2-226

QUIT, 2-228
QUITPROG, 2-229
READ, 2-230

READX, 2-232
RECEIVEMAIL, 2-234
RESETCONTROL, 2-236
RESETDUMP, 2-237
SEARCH, 2-238
SENDMAIL, 2-239
SETDUMP, 2-241
SETICW, 2-242
STACKDUMP, 2-243
STARTSESS, 2-245
SUSPEND, 2-248
SWITCHDB, 2-250
TERMINATE, 2-251
TIMER, 2-252
UNLOADPROC, 2-253
UNLOCKGLORIN, 2-254
UNLOCKLOCRIN, 2-255
WHO, 2-256
WRITELOG, 2-260
XARITRAP, 2-262
XCONTRAP, 2-264
XLIBTRAP, 2-266
XSYSTRAP, 2-267
ZSIZE, 2-268

GETPROCINFO, 2-182 Invoking DEBUG Facility, 2-42
GETUSERMODE, 2-184 IODONTWALIT Intrinsic, 2,186
INITUSLF, 2-185 IOWAIT Intrinsic, 2-188, 4-35
IODONTWAIT, 2-186

IOWAIT, 2-188, 4-35

JOBINFO, 2-190, 5-14 J
KILL, 2-194
LOADPROC, 2-195
LOCKGLORIN, 2-196 JCWs (See Job Control Words)
LOCKLOCRIN, 2-198 Job Control Words (JCWs), 5-53
LOCRINOWNER, 2-200 System-Defined, 5-53
LOGINFO, 2-201 User-Defined, 5-53
LOGSTATUS, 2-204 Value in JCW Table, 2-226

INDEX (Continued)

Job, Identifying With JOBINFO, 5-14
JOBINFO, 2-190
Job/Session

Access to Related Information, 2-190

Input Devices, Reading Input From, 5-23
I/0O Devices, Transmitting Programs, 5-23

List Device, Writing Output To, 5-25
Job Temporary File Directory, 4-9

K

KILL Intrinsic, 2-194

Languages, Calling Intrinsics From, 1-4
Library Trap, 5-42
Library Procedures
Dynamic Loading, 2-195, 5-3
Dynamic Loading/Unloading, 5-2
Dynamic Unloading, 2-253, §-3
Linear Subqueue, 3-6
Line Printer, B-1
Line Printer Carriage-Control Codes, B-2
LOADER Error/Warning Messages, A-9
Loading, Dynamic, 5-3
Load Library Procedure Dynamically, 2-19§
LOADPROC Intrinsic, 2-19§
Local RINs
Acquiring, 2-176
Freeing, 3-45
Identifying Owners, 3-44
Interprocess Level, 3-43
Locking, 2-198
Locking/Unlocking, 3-43
Unlocking, 2-255§
LOCKGLORIN Intrinsic, 2-196
Locking
Files, Dynamically, 2-104
Global RINs, 2-196, 3-39
Local RINs, 2-198, 3-43
LOCKLOCRIN Intrinsic, 2-198
LOCRINOWNER Intrinsic, 2-200
Logging Facility
Close Access To, 2-24
Provide Access To, 2-211

Logging File,
Information About, 2-201
Uses For, 3-51
Logging, User, 3-45
Logging, User Procedures, 3-50
LOGINFO Intrinsic, 2-201
LOGSTATUS Intrinsic, 2-204

M

Magnetic Tape, B-2
Mail
Receiving, 2-234, 3-33
Sending, 2-239, 3-32
Mailbox, 3-31
MAIL Intrinsic, 2-206
Mailbox, Testing Status Of, 2-206, 3-32
MAKECAT Program, 5-57
Marking
End of Logging Transaction, 2-49
Start of User Logging Transaction, 2-16
Master Queue, 3-§
Message Catalog, 5-56
Message Facility, MPE, §5-56
Messages
Intrinsic Error, A-5
LOADER Error/Warning, A-8
Operator, A-10, A-11
Run-Time, A-1, A-7
System, A-11
System Failure, A-1
System Operator, A-1, A-11
User, A-10
Mnemonics, Definitions, 2-1
Moving
DB Pointer, 3-§
Physical Record Pointer, 2-153
Record From Disc File to Buffer, 2-143
User Logging Memory Buffer to
Logging File, 2-106
MPE Commands, Executing
Programmatically, 2-26, 5-11
MPE Message Facility, 5-56
Multi-Access (MULTI), 4-2
Multiple Resource Identification Number, 1-8
MYCOMMAND Intrinsic, 2-208

I-6

INDEX (Continued)

N

New Disc Files, Opening, 4-17
Non-Sharable Devices

Accessing, 4-2

Files On, 4-4
Non-Privileged Mode, Entering, 3-5

o

Obtaining
Calendar Date, 5-52
Current Time, 5-50
Process Run Time, 5-52
System Timer Information, 5-50
Octal Values, 2-56
Opening
Files, 4-3
Files On Devices Other Than Disc, 4-22
New Disc Files, 4-17
Old Disc Files, 4-20
$STDIN, 4-25
$STDLIST, 4-25§
OPENLOG Intrinsic, 2-211
Operator Console, 5-26
Operator Messages, A-10, A-11
Optical Mark Reader, 2~-54, B-3
Optional Capabilities, 1-7
Create Volumes, 1-9
Data-Segment Management, 1-8
Multiple Resource Identification No., 1-8
Privileged Mode, 1-8
Process Handling, 1-8
Programmatic Sessions, 1-8
User Logging, 1-8
Volume Set Usage, 1-9
Optional Parametérs, 1-3

Parameters
Definition, 2-3
User-Defined Command, 2-208
With GENMESSAGE, 5-59
Parsing File Designators, 2-130, 4-15
PAUSE Intrinsic, 2-213
Performing Control Operations, 2-75

Permanently Privileged Programs, 3-1
PRINT Intrinsic, 2-214
PRINTFILEINFO Intrinsic, 2-216
Printing
Character Strings, 2-214
File Information, 2-216
On System Console, 2-217
Reply, From System Console, 2-218
PRINTOP Intrinsic, 2-217
PRINTOPREPLY Intrinsic, 2-218
Priority Classes, 3-6 ’
Privileged Mode
Capability, 1-8, 3-1
Entering, 2-180, 3-3
Procedure Declarations, 1-2
Process Break , Requesting, 5-27
Processes, 3-23
Aborting, 2-228, 5-28
Accumulated CPU Time Of , 2-223
Activating, 2-7
Active/Suspended Process Substates, 3-24
Changing Priority Of , 2-178
Creating, 2-27
Creating/Activating, 3-24
Deleting, 3-29
Determining Source of Activation, 3-35
Organization Of User, 3-23
Rescheduling, 3-34
Scheduling, 3-5
Suspending, 2-248, 3-29
Terminating, 2-251, 5-27
Process Handling Capability, 1-8, 3-22
Process Identification Number (PIN), 3-23
Process Priority
Changing, 2-178
Determining, 3-36
Process Run Time, Obtaining, 5-52
Process State, Determining, 3-36
PROCINFO Intrinsic, 2-220
PROCTIME Intrinsic, 2-223
Programs
Aborting, 5-28
Permanently Privileged, 3-1
Temporarily Privileged, 3-2
Programmatic Execution Of Commands, 5~11
Provide Data on Open User Logging File, 2-204
Providing Control Operations to Devices, 2-75
PTAPE Intrinsic, 2-224
PUTJCW Intrinsic, 2-226

I-7

INDEX (Continued)

QUIT Intrinsic, 2-228
QUITPROG Intrinsic, 2-229

R

READ Intrinsic, 2-230
Reading
Disc File to User Data Stack, 2-139
Input From Job Input Device, 5-23
Input From Session Input Device, §-23
Logical Record, 2-13$5
Logical Record Backward, 2-137
User File Label, 2-141
Reading ASCII String
From $STDIN to Array, 2-230
From $STDINX to Array, 2-232
READX Intrinsic, 2-232
Receive Mail From Other Process, 2-234
RECEIVEMALIL Intrinsic, 2-234
Receiving Mail, 3-33
Release Extra Data Segment, 2-144
Releasing Global RINs, 3-39
Renaming File, 2-148
Requesting
File Information, 2-88
File Input/Output Error Data, 2-58
PIN of Father Process, 2-53
PIN of Son Process, 2-181
Process Break, 5-27
Status of Father/Son Process, 2-182
Required Capabilities, 2-3
Required Parameters, 1-3
Rescheduling Processes, 2-178, 3-34
RESETCONTROL Intrinsic, 2-236
RESETDUMP Intrinsic, 2-237
Reset, Terminal to Accept
CONTROL-Y Signal, 2-236
Resource Identification Numbers
(See RINs)
Resource Management, 3-37
Resources, 3-37
Retrieve .
Info String From :RUN Command, 2-173
Parm Value From CREATEPROCESS
Intrinsic, 2-173

Returns
Actual System-Timer Time, 2-23
Calendar Date, 2-19
Current Date/Time Information, 2-40
FCHECK Error Number Message, 2-84
File Label Data From Disc File, 2-101
From User Interrupt Procedure, 2-98
Process CPU Time, 2-223
System Timer, 2-252
To Non-Privileged Mode, 2-184
To Privileged Mode, 2-180
User Information, 2-256
User Logging File Information, 2-204
Value of System-Defined JCW, 2-175§
RINs, 3-37
Acquiring Local, 3-43
Freeing Local, 2-145, 3-45
Identifying Local Owners, 3-44
Interprocess Local Level, 3-43
Locking/Unlocking Local, 3-43
Run-Time Messages, A-1

Scheduling Processes, 3-9§
Searching
Arrays, 5-4
Arrays for Specified Entry, 2-238
Job Control Word Table, 2-96
SEARCH Intrinsic, 2-238
Send Mail to Other Process, 2-239
Sending Mail, 3-32
SENDMALIL Intrinsic, 2-239
Sessions
Aborting, 2-5
Identifying with JOBINFO, 5-14
In BREAK Mode, 2-20
Set
Bits in System JCW, 2-242
Logical Record Pointer, 2-133
System JCW Bits, 2-242
SETDUMP Intrinsic, 2-241
SETICW Intrinsic, 2-242
Son Process
Deleting, 2-194
Determining, 3-36
Special Considerations, 2-3
SPL, Calling Intrinsics From, 1-1
Split-Stack Operations, 2-4
STACKDUMP Intrinsic, 2-243

I-8

INDEX (Continued)

Stack Sizes, Changing, 5-30
Standard Traps, 5-39
STARTSESS Intrinsic, 2-245
Subqueue Priority Classes, 3-6
Suspending
Calling Process, 2-213, 5-26
Processes, 2-248, 3-29
SUSPEND Intrinsic, 2-248
Suspended Process Substates, 3-24
SWITCHDB Intrinsic, 2-250
Syntax Description, 2-1
System Console
Messages, A-1
Requesting a Reply From, 5-26
Writing Output To, 5-26
System Failure Messages, A-1
System Messages, A-11
System Operator Messages, A-1, A-10
System Timer, Obtaining Data From,
2-23, 2-252, 5-50
System Trap, 5-44

Temporarily Privileged Programs, 3-2

Terminal Carriage-Control Codes, B-2

TERMINATE Intrinsic, 2-251

Terminating a Process, 2-251, 5-27

Testing Mailbox Status, 2-194, 3-32

Time and Date Intrinsics, 5-49

Time Information, Formatting,
2-109, 2-110, §-52

Time Of Day, 2-109, 2-110, 5-50

TIMER Intrinsic, 2-252

Transferring Data

U

Unloading,, Dynamic, 5-3
Unloading Library Procedure, 2-253
UNLOADPROC Intrinsic, 2-253
Unlocking
Files Dynamically, 2-155
Global RINs, 2-254, 3-39
Local RINs, 2-255, 3-43
UNLOCKGLORIN Intrinsic, 2-254
UNLOCKLOCRIN Intrinsic, 2-255
User Access Mode, Determining, 5-12
User Attributes, Determining, 5-12
User-Defined Job Control Words, 5-55
User Logging, 3-45
Capability, 1-8
Flush Memory Buffer Of, 2-106
How It Works, 3-46
Mark Beginning of Transaction, 2-16
Mark End of Transaction, 2-49
Procedures, 3-50
User Messages, A-10
User Processes, Organization Of, 3-23
Uses For Log File, 3-51
Using Files, 4-5
USL Files
Directory Space, Adjusting, 2-9
Inactive Entries, Deleting, 2-21
Initializing To Empty State, 2-185
Length Of , Changing, 2-§1
Utility Functions, MPE, 5-1

A%

From Extra Data Segment to Stack, 3-21 Validating File Designators, 2-130, 4-15

From Stack to Extra Data Segment, 3-21 Volume Set Usage Capability, 1-9
Translating Characters With

CTRANSLATE Intrinsic, 2-36, 5-22

Transmitting Program Input/Output \"Y
From Job/Session Devices, 5-23

Traps, 1~-6
Arithmetic, 5-38 WHO Intrinsic, 2-256
Commercial Instruction, 5-40 WRITELOG Intrinsic, 2-260

CONTROL-Y, 5-46
Disabling/Enabling, 5-37

Extended Precision Floating Point, 5-39
Library, 5-42

Standard, 5-39

System, 5-44

1-9

INDEX (Continued)

Writing XLIBTRAP Intrinsic, 2-266
File System Error-Check Procedure, 4-33 XSYSTRAP Intrinsic, 2-267
Logical Record In Disc File, 2-156 ZSIZE Intrinsic, 2-268
Logical Record/User Stack Z To DB Area Size, Changing, 2-268, 5-37

To Disc File, 2-164
Logical Record to File, 2-158
Record to Logging File, 2-260 $
User File Label, 2-166
Writing Output To

Job/Session List Device, 5-25 $STDIN
System Console, 5-26 Assigning, 2-32
System Console/Request A Reply, §-26 Opening, 4-25
) Using FREAD/FWRITE With, 4-23
$STDLIST
XYZ Assigning, 2-32

Opening, 4-25

Using FREAD/FWRITE With, 4-23
XARITRAP Intrinsic, 2-262
XCONTRATP Intrinsic, 2-264

10

READER COMMENT SHEET
MPE V Intrinsics Reference Manual

32033-90007 February 1986

We welcome your evaluation of this manual. It is one of several that serve as a reference source for
HP 3000 Computer Systems. Your comments and suggestions help us to improve our publications and
will be reviewed by appropriate technical personnel. HP may make any use of the submitted sugges-
tions and comments without obligation.

Is this manual technically accurate ? Yes [I1 No{] (If no, explain under Comments, below.)
Are the concepts and wording easy to Yes [No[] (If no, explain under Comments, below.)
understand ?

Is the format of this manual convenient Yes [I No] (If no, explain or suggest improvements
in size, arrangement and readability ? under Comments, below.)

Comments:

We appreciate your comments and suggestions. This form requires no postage stamp if mailed in the
U.S. For locations outside the U.S., your local HP representative will ensure that your comments are
forwarded.

Date:

FROM:

Name

Company

Address

I |||I | NO POSTAGE

NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 781 CUPERTINO, CALIFORNIA

POSTAGE WILL BE PAID BY ADDRESSEE

Documentation Manager/47LS
Hewlett-Packard Compeny
Computer Systems Divisiom
19447 Pruneridge Avenue
Cupertino, California 95014

HEWLETT

Part No. 32033-90007 ﬂ
Printed in U.S.A. 02/86 P8 PACKARD

E0286

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033
	2-034
	2-035
	2-036
	2-037
	2-038
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044
	2-045
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	2-102
	2-103
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	2-112
	2-113
	2-114
	2-115
	2-116
	2-117
	2-118
	2-119
	2-120
	2-121
	2-122
	2-123
	2-124
	2-125
	2-126
	2-127
	2-128
	2-129
	2-130
	2-131
	2-132
	2-133
	2-134
	2-135
	2-136
	2-137
	2-138
	2-139
	2-140
	2-141
	2-142
	2-143
	2-144
	2-145
	2-146
	2-147
	2-148
	2-149
	2-150
	2-151
	2-152
	2-153
	2-154
	2-155
	2-156
	2-157
	2-158
	2-159
	2-160
	2-161
	2-162
	2-163
	2-164
	2-165
	2-166
	2-167
	2-168
	2-169
	2-170
	2-171
	2-172
	2-173
	2-174
	2-175
	2-176
	2-177
	2-178
	2-179
	2-180
	2-181
	2-182
	2-183
	2-184
	2-185
	2-186
	2-187
	2-188
	2-189
	2-190
	2-191
	2-192
	2-193
	2-194
	2-195
	2-196
	2-197
	2-198
	2-199
	2-200
	2-201
	2-202
	2-203
	2-204
	2-205
	2-206
	2-207
	2-208
	2-209
	2-210
	2-211
	2-212
	2-213
	2-214
	2-215
	2-216
	2-217
	2-218
	2-219
	2-220
	2-221
	2-222
	2-223
	2-224
	2-225
	2-226
	2-227
	2-228
	2-229
	2-230
	2-231
	2-232
	2-233
	2-234
	2-235
	2-236
	2-237
	2-238
	2-239
	2-240
	2-241
	2-242
	2-243
	2-244
	2-245
	2-246
	2-247
	2-248
	2-249
	2-250
	2-251
	2-252
	2-253
	2-254
	2-255
	2-256
	2-257
	2-258
	2-259
	2-260
	2-261
	2-262
	2-263
	2-264
	2-265
	2-266
	2-267
	2-268
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	replyA
	replyB
	xBack

