
HP 3000 Computer Systems

MPE Intrinsics
reference manual

Ff/~ HEWLETT
~~ PACKARD

Part No. 30000-90010
Product No. 32002C.OO.OO

HP 3000 Computer Systems

F//09 HEWLETT
~~PACKARD

M PE Intrinsics
Reference Manual

19447 PRUNERIDGE AVENUE, CUPERTINO, CA 95014

Printed in U.S.A. 1/81

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER­
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor­
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved:
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright© 1981 by HEWLETT-PACKARD COMPANY

ii

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date or the curent edition and of any pages changed in updates to that edition.
Within the manual, any page changed since the last edition is indicated by printing the date the changes were made
on the bottom of the page. Changes are marked with a vertical bar in the margin. It an update is incorporated when
an edition is reprinted, these bars are removed but the dates remain. No information is incorporated into a reprinting
unless it appears as a prior update.

~p D~

i DEC 1981
iii . JUL 1981
iv DEC 1981
v JUL 1981
vi JUL 1981
vii . JUL 1981
viii . DEC 1981
ix DEC 1981
x JUL 1981
xi JUL 1981
xii . JUL 1981
Xlll • • . • . . • • . • • • . • • • • • . • • • • • • • • • • • DEC 1981
xiv DEC 1981
1-1 . JUL 1981
1-4 . JUL 1981
2-5. JUL 1981
2-12 DEC 1981
2-13a . JUL 1981
2-26 through 2-27 . JUL 1981
2-40a . JUL 1981
2-49 DEC 1981
2-55 . JUL 1981
2-58 . DEC 1981
2-49 through 2-53. JUL 1981
2-55 through 2-56. JUL 1981
2-59 through 2-60. JUL 1981
2-6la through 2-61i JUL 1981
2-64 . JUL 1981
2-64a DEC 1981
2-71 . DEC 1981
2-73 DEC 1981
2-76a . JUL 1981

iii

Page Date
2-88 through 2-89 . JUL 1981
2-93 . JUL 1981
2-94 . DEC 1981
2-97 . JUL 1981
2-146 . JUL 1981
2-150a . JUL 1981
2-165 . JUL 1981
2-167a through 2-167c DEC 1981
3-3 . JUL 1981
4-1 . JUL 1981
4-3 through 4-3a. JUL 1981
4-35 DEC 1981
6~2. JUL 1981
6-3 . JUL 1981
10-32 . DEC 1981
10-40 . JUL 1981
10-71 . JUL 1981
10-7 4 through 10-7 5a JUL 1981
10-82 . JUL 1981
10-84 . JUL 1981
10-89 through 10-89b JUL 1981
10-91 . JUL 1981
10-96 through 10-97 DEC 1981
D-3 through D-4 . DEC 1981
E-8 DEC 1981
E-17 JUL 1981
E-19. JUL 1981
E-22 . JUL 1981
I-1 through I-7 . JUL 1981
I-8 . DEC 1981
I-9 through I-10 . JUL 1981

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which are issued between editions, contain additional
and replacement pages to be merged into the manual by the customer. The date on the title page and back cover of the
manual changes only when a new edition is published. When an edition is reprinted, all the prior updates to the edition
are incorporated. No information is incorporated into a reprinting unless it appears as a prior update. The edition does
not change.

The software product part number printed alongside the date indicates the version and update level of the software product
at the time the manual edition or update was issued. Many product updates and fixes do not require manual changes, and
conversely, manual corrections may be done without accompanying product changes. Therefore, do not expect a one to one
correspondence between product updates and manual updates.

First Edition Jun 1976 32002A
Update Package #1 Oct 1976 32002A
Update Package #2 Jan 1977 32002A
Update Package #2 Incorporated Feb 1977 32002A
Update Package #3 Apr 1977 32002A
Second Edition Apr 1978 32002B
Update Package #1 . Jul 1979 . 32002B
Update Package #2 ~ Jan 1980 32002B
Update Package #3 Mar 1980 32002B,32033B
Third Edition . Jan 1981 32002C,32033C
Update Package #1 Jul 1981 32002C,32033C
Update Package #2 Dec 1981 32002C,32033C

iv

PREFACE

This manual is one of the set of manuals that document the Multiprogramming Executive Operating
System (MPE-IV). The manual plan on the next page indicates the position of this manual (shaded
block) in the overall set.

This manual describes the set of intrinsics available with the MPE Operating System and tells you how
to communicate with MPE programmatically. In addition, capabilities available to users with special
capability-class attributes are described.

An introduction to MPE intrinsics is presented in Section I. The specifications for all intrinsics, in
alphabetical order, are contained in Section II. Functional descriptions of the intrinsics, including
those intrinsics for which special capabilities are required, are presented in the remaining sections,
as follows:

Section III

Section IV

Section V

Section VI

Section VII

Section VIII

Section IX

Section X

Interprocess Communication and Circular Files

Utility Functions of MPE Intrinsics.

Device Characteristics.

Resource Management.

Process-Handling Capability.

Data Segment Management Capability.

Privileged Mode Capability.

Accessing and Altering Files

v

INTRODUCTORY
LEVEL

STANDARD USER
LEVEL

ADMINISTRATIVE
LEVEL

SUMMARY LEVEL

MANUAL PLAN

CONCEPTS

General
Information

Manual
30000-90008

COMMAND
USAGE

Commands
Reference

Manual
30000-90009

ELEMENTARY ELEMENTARY
USAGE USAGE

Using Using
the Files

HP 3000
03000-90121

30000-90102

UTILITY

Segmenter
Reference

Manual

UTILITY

System
Utilities
Manual

30000-90011 30000-90044

Debug/Stack Dump
Reference

Manual
30000-90012

Error
Messages and

Recovery Manual
30000-90015

INDEX

Index to MPE
Reference
Documents

30000-90045

PROGRAMMATIC
USAGE

UTILITY DIAGNOSTIC
AID

SYSTEM
MONITORING

Series Ill
Console

Operator's
Guide

30000-90013

Series 30/33
Console

Operator's
Guide

30070-90025

Software
Pocket
Guide

SYSTEM MODIFICATION
_________ ACCOUNT MANAGING

Series44
Console

Operator's
Guide

30090-90013

System
Manager/Supervisor

Manual

30000-90014

30000-90049

SYNTAX AND ERROR MESSAGES

vi

CONVENTIONS USED IN THIS MANUAL I

The normal conventions (braces, brackets, etc.) used for MPE Commands do not apply to MPE
intrinsic calls.

See page 2-1 for a description of the conventions used in this manual.

JUL 1981 vii

I

viii

Section I Page
INTRODUCTION TO MPE INTRINSICS
Purposes and Uses of MPE Intrinsics 1-1
Intrinsic Calls 1-2

Calling Intrinsics from SPL 1-2
Calling Intrinsics from Other Languages 1-11

Intrinsic Call Errors 1-11
Optional Capabilities . 1-13

Section II Page
INTRINSIC DESCRIPTIONS
ACCEPT 2-4
ACTIVATE . 2-5
ADJUSTUSLF 2-7
ALTDSEG 2-9
ARITRAP . 2-11
ASCII 2-12
BEGINLOG 2-13a

BINARY 2-14
CALENDAR . 2-15
CAUSEBREAK. 2-16
CLEANUSL. 2-17
CLOCK 2-18
CLOSELOG 2-19
COMMAND . 2-20
CREATE 2-21
CREATEPROCESS 2-26
CTRANSLATE 2-28
DASCII. 2-30
DATELINE . 2-32
DBINARY 2-33
DEBUG 2-34
DLSIZE. 2-35
DMOVIN. 2-37
DMOVOUT . 2-39
ENDLOG 2-40a

EXPANDUSLF 2-41
FATHER 2-43
FCARD 2-44
FCHECK. 2-48
FCLOSE . 2-54
FCONTROL 2-57
FDELETE . 2-61
FDEVICECONTROL 2-61a

FERRMSG. 2-62
FFILEINFO. 2-63
FGETINFO . 2-65
FINDJCW 2-74
FLOCK 2-75
FLUSHLOG 2-76a
FMTCALENDAR 2-77
FMTCLOCK. , . , , 2-78
FMTDATE 2-79
FOPEN 2-80
FPO INT 2-94
FREAD 2-95

DEC 1981 ix

CONTENTS I

FREADBACKWARD. 2-97
FREADDIR. 2-99
FREADLABEL 2-101
FREADSEEK 2-102
FREEDSEG 2-103
FREELOCRIN 2-104
FRELATE 2-105
FRENAME 2-107
FSETMODE 2-109
FSPACE 2-111
FUNLOCK 2-113
FUPDATE 2-114
FWRITE 2-115
FWRITEDIR 2-120
FWRITELABEL 2-122
GE:NMESSAGE 2-123
GET 2-126
GETDSEG 2-127
GETJCW - 2-129
GETLOCRIN 2-130
GETORIG IN 2-131
GETPRIORITY 2-132
GETPRIVMODE 2-134
GETPROCID 2-135
GETPROCINFO 2-136
GETUSERMODE 2-138
INITUSLF 2-139
IODONTWAIT 2-140
IOWAIT 2-142
KILL 2-144
LOADPROC 2-145
LOCKGLORIN 2-146
LOCKLOCRIN 2-148
LOCKRINOWNER 2-150
LOGST ATUS 2-150a

MAIL 2-151
MYCOMMAND 2-153
OPENLOG 2-156
PAUSE 2-157
PCHECK 2-158
PCLOSE 2-159
PCONTROL 2-160
POPEN 2-161
PREAD 2-162
PRINT 2-163
PRINTFILEINFO 2-164
PRINTOP 2-165
PRINTOPREPLY 2-166

PROCTIME . 2-168
PTAPE 2-169
PUTJCW . 2-170
PWRITE 2-171
QUIT 2-172
QUITPROG . 2-173
READ 2-174
READX . 2-17 5
RECEIVEMAIL . 2-176

I

I

i

I

I CONTENTS (continued)

REJECT 2-178
RESETCONTROL 2-179
RESETDUMP 2-180
SEARCH 2-181
SENDMAIL 2-182
SETDUMP 2-184
SETJCW 2-185
STACKDUMP 2-186
SUSPEND 2-188
SWITCHDB 2-189
TERMINATE 2-190
TIMER 2-191
UNLOADPROC 2-192
UNLOCKGLORIN 2-193
UNLOCKLOCRIN 2-194
WHO 2-195
WRITELOG 2-198
XARITRAP 2-199
XCONTRAP 2-201
XLIBTRAP 2-202
XSYSTRAP 2-203
ZSIZE 2-204

Section III Page
INTERPROCESS COMMUNICATION AND
CIRCULAR FILES
Introduction 3-1
Operation 3-1

FOPEN 3-1
FREAD 3-2
FWRITE 3-2
FCONTROL 3-2
FCLOSE 3-2
Additional Features. 3-2

Using IPC. 3-3
Features of Intrinsics for Message Files 3-5
FOPEN 3-5
FCONTROL 3-8
FCHECK 3-8
FGETINFO . 3-9
FFILEINFO 3-9

Circular Files . 3-9
Features of Intrinsics for Circular Files 3-10
FOPEN 3-10
FWRITE 3-12
FCLOSE . 3-12

Examples. 3-12

Section IV Page
UTILITY FUNCTIONS OF MPE INTRINSICS
Dynamic Loading and Unloading of Library Procedures 4-2

Dynamic Loading 4-2
Dynamic Unloading 4-3

Searching Arrays . 4-3
Formatting Command Parameters 4-4

Executing MPE Commands Programmatically 4-9
Determining the User's Access Mode and Attribures .. 4-10
Converting Numbers from Binary Code to

x

ASCII Strings 4-12
Converting Numbers from an ASCII Numeric String to

a Binary Coded Value 4-12
Translating Characters with the CTRANSLATE

Intrinsic. 4-14
Transmitting Program Input/Output from Job/Session

Input/Output Devices 4-16
Reading Input from the Job/Session List Device .. 4-17
Writing Output to the Job/Session List Device ... 4-17
Writing Output to the Operator's Console 4-17
Writing Output to the Operator's Console and

Requesting a Reply . 4-19
Suspending the Calling Process. 4-19
Requesting a Process Break 4-19
Terminating a Process 4-20
Aborting a Process 4-20
Aborting a Program . 4-22
Changing Stack Sizes . 4-22

Changing the DL to DB Area Size. 4-23
Changing the Z to DB Area Size 4-29

Enabling and Disabling Traps 4-29
Arithmetic Traps. 4-30
Standard Traps . 4-31
Extended Precision Floating-Point Traps 4-31
Commercial Instruction Traps 4-32
Library Trap 4-34
System Trap 4-35
Control-Y Traps 4-38

Time and Date Intrinsics. 4-42
Obtaining System Timer Information 4-42
Obtaining the Current Time. 4-44
Obtaining the Calendar Date 4-44
Obtaining Process Run Time (Use of the Central

Processor) 4-44
Formatting Calendar Date and Time Information . 4-45

Interprocess Communication 4-46
User-Defined Job Control Words 4-47
MPE Message System . 4-48

Message Catalog . 4-48
MAKECAT Program 4-49
Using the GENMESSAGE Intrinsic 4-50

Section V Page
DEVICE CHARACTERISTICS
Device Characteristics 5-1

Paper Tape Reader. 5-1
Binary Mode 5-1
ASCII Mode . 5-1

Paper Tape Punch . 5-3
Binary Mode. 5-3
ASCII Mode 5-3

Card Reader . 5-3
Line Printer 5-3
Magnetic Tape . 5-4
Printing Reader /Punch . 5-5
Line Printer and Terminal Carriage-Control Codes .. 5-1
End-of-File Indication 5-7
Terminals 5-9

JUL 1981

[
Terminal Types. 5-9
Special Keys 5-10
Changing Terminal Characteristics 5-12

Changing Terminal Speed 5-12
Changing Input Echo Facility 5-13
Enabling and Disabling System Break

Function 5-15
Enabling and Disabling Subsystem Break

Function 5-16
Enabling and Disabling Parity Checking 5-16
Enabling and Disabling Tape-Mode Option .. 5-17
Enabling and Disabling the Terminal Input

Timer 5-18
Reading the Terminal Input Timer 5-21
Defining Line-Termination Characters for

Terminal Input 5-22
Enabling and Disabling Binary Transfers ... 5-23
Enabling and Disabling User Block Transfers. 5-24
Enabling and Disabling Line Deletion Echo

Suppression 5-25
Setting Parity . 5-25
Allocating a Terminal. 5-26
Setting Terminal Type 5-27
Obtaining Terminal Type Information. 5-27
Obtaining Terminal Output Speed 5-28
Setting Unedited Terminal Mode 5-28
Reading Paper Tapes without X-OFF Control.5-29

Using the FCARD Intrinsic to Operate the
HP 7260A Optical Mark Reader 5-30

ASCII and Column Image Reading Formats . 5-31

Section VI Page
RESOURCE MANAGEMENT
Inter-Job Level (Global) RIN's 6-2

Acquiring Global RIN's 6-2
Releasing Global RIN's 6-3
Locking and Unlocking Global RIN's 6-3

Inter-Process (Local) Level RIN's 6-6
Acquiring Local RIN's . 6-8
Locking and Unlocking Local RIN's 6-8
Identifying Local RIN Owners 6-9
Freeing Local RIN's 6-10

Section VII Page
PROCESS-HANDING CAP ABILITY
Processes . 7 -1

Organization of User Processes 7-2
Process Substates. 7-2
Process to Process Communication 7-2

Creating and Activating Processes 7-3
Suspending Processes . 7 -8
Deleting Processes . 7-8
Interprocess Communication 7-10

Testing Mailbox Status 7-10
Sending Mail. 7-11
Receiving (Collecting) Mail 7-12

Avoiding Deadlocks 7-13
Rescheduling Processes 7-13
Determining Source of Activation 7-14

JUL 1981 xi

CONTENTS (continued)

Determining Father Process 7-14
Determining Son Processes 7 -15
Determining Process Priority and State 7-15

Section VIII Page
DATA SEGMENT CAPABILITY
Creating an Extra Data Segment. 8-2
Deleting an Extra Data Segment 8-15
Transferring Data from an Extra Data Segment

to the Stack 8-15
Transferring Data from the Stack to an Extra Data

Segment 8-15
Changing the Size of an Extra Data Segment 8-15

Section IX Page
PRIVILEGED MODE CAP ABILITY
Permanently Privileged Programs 9-1
Temporarily Priveleged Programs 9-2
Entering Privileged Mode 9-3
Entering Non-Privileged Mode 9-5
Moving the DB Pointer 9-5
Scheduling Processes . 9-5

Section X Page
ACCESSING AND ALTERING FILES
File Management System 10-1
File Characteristics . 10-2

Record Formats . 10-3
Relative I/O Block Format 10-6
File Device Relationships 10-7

Non-Sharable Device Access 10-7
File Domains . 10-7
File Label . 10-8

File Accessing. 10-8
Relative I/O l0-8
System-Defined Files 10-9
User Pre-Defined (Back Referenced) Files 10-10
New Files 10-10
Old Files 10-11
Input/Output Sets 10-11
Accessing Files Already in Use 10-12
Files on Non-Sharable Devices 10-15
Special Considerations for Shared Files 10-16

Private Volumes Subsystem 10-17
How to Use Files 10-17

Internal Operations for File Accessing 10-17
Opening Files .10-27

Opening a New Disc File. 10-27
Opening an Old Disc File10-30
Foreign Disc Facility 10-32
Opening a File on a Device other than Disc 10-33
Issuing FREAD and FWRITE Intrinsics Calls for

$STDIN and $STDLIST 10-35
Closing Files 10-39

Closing a New File as a Temporary Fiie10-39
Closing a New File as a Permanent File 10-40

Renaming a File .10-43
Writing a File System Error-Check Procedure 10-45
Reading a File in Sequential Order 10-4 7

I CONTENTS (continued)

I Ob_taining File Access Information 10-66
Usmg FFILEINFO 10-68
Obtaining File-Error Information 10-68
Using FERRMSG 10-69
Magnetic Tape Considerations 10-69

FWRITE 10-71
FREAD10-71
FSPACE 10-71
FCONTROL (Write EOF) 10-71
FCONTROL (Forward Space to File Mark) 10-71
FCONTROL (Backward Spare to File Mark) 10-71
End-of-File Mark on Magnetic Tape 10-72
Spacing File Marks 10-72
Using the FCLOSE Intrinsic with Magnetic Tape .. 10-73
MPE Tape Labels 10-75
Updating Magnetic Tape Files 10-75
Reading and Writing an Unlabeled Magnetic
Tape File 10-77

Opening a Labeled Magnetic Tape File 10-81
Writing a Tape Label 10-84
Reading a Labeled Magnetic Tape File 10-87
Writing to a Labeled Magnetic Tape File 10-88
Writing a User-Defined File Label on a

Labeled Tape File 10-88
Reading a User-Defined File Label on a

Labeled Tape File 10-89

I Density Selection on Labeled and
Unlabeled Tapes 10-89

Labeled Tapes 10- 89a

xii

Unlabeled Tapes 10- 89a
Determining Tape Density 10-89b

Spacing on Disc or Tape Files 10-89
Directing File Control Operations 10-90
Resetting the Logical Record Pointer 10-91
Declaring Access-Mode Options 10-91
Determining Interactive and Duplicative File Pairs ... 10-92
User Logging 10-93

How User Logging Works 10-93
Effective Use of User Logging 10-96
Suggested Log File Uses 10-98

Appendix A
ASCII Character Set

Appendix B
Disc File Labels

Appendix C
End-of-File

Appendix D
Magnetic Tape Labels

Appendix E
MPE Diagnostic Messages

JUL 1981

Title Page

Calling the PRINTOP Intrinsic from SPL 1-10
Using Numeric Values as Parameters in an

Intrinsic Call . 1-10
Condition Code Checks 1-12
Item Numbers and Corresponding Items 2-27
Foptions Bit Summary . 2-66
Aoptions Bit Summary 2-69
Carriage-Control Directives 2-117
Carriage-Control Summary 2-119
Error Codes Returned From PROCINFO 2-167b
Information Options For PROCINFO 2-167c

Data Paths Among Processes and Message Files (1) ... 3-12
Data Paths Among Processes and Message Files (2) ... 3-16
Using the MYCOMMAND Intrinsic 4-5
Using the WHO Intrinsic 4-11
Using the ASCII Intrinsic 4-12
Using the DASCII Intrinsic 4-14
Using the BINARY Intrinsic 4-15
Using the PRINT and READ Intrinsics 4-17
Using the QUIT Intrinsic 4-21
Expanding and Contracting the DL to DB Area 4-23
Using the DLSIZE Intrinsic 4-25
Changing the DL to DB Area Size. 4-28
Using the XARITRAP Intrinsic 4-33
Using the XCONTRAP Intrinsic 4-41
Using the TIMER Intrinsic 4-43
FMTCALENDAR, FMTCLOCK, and FMTDATE

Intrinsics Exampie 4-45
GENMESSAGE Intrinsic Example 4-51
Carriage Control Directives 5-8
Echo Facility vs Duplex Mode 5-12
Using the FCONTROL Intrinsic to Enable and Read

the Terminal Input Timer 5-18
FCARD Intrinsic Example 5-30
Using the LOCKGLORIN and UNLOCKGLORIN

Intrinsics 6-4
Using the CREATE and ACTIVATE Intrinsics 7-4
Process Deletion . 7 -9

DEC1981 xiii

ILLUSTRATIONS I
Title Page

Using the GETDSEG and DMOVOUT Intrinsics
(Program DSINIT) . 8-3

Creating and Activating Two Son Processes (Program
DSBOSS) . 8-4

Using the GETDSEG and DMOVIN Intrinsics
(Program DSACCS) 8-5

Array CALENDAR 8-8
Using the GETPRIVMODE and GETUSERMODE

Intrinsics 9-4
MPE Queue Structure. 9-6 I
Actions Resulting from Multiple Access of Files 10-13
File Access Interface for New Disc Files 10-18
File Name and Sector Address Storage 10-21
File Access Interface for Old Disc File 10-22
Device Allocation Flowchart 10-26
Opening a New Disc File .10-28
Opening a Old Disc File .10-31
Opening a File on a Device Other Than Disc10-34
Opening $STDIN and $STDLIST 10-36
Closing a New File as a Temporary File 10-39a
Closing a Ne·w File as a Permanent File 10-41
FRENAME Intrinsic Example 10-44
Error-Check Procedure Example 10-46
FREAD and FWRITE Intrinsics Example 10-48
FREADDIR and FREADSEEK Intrinsics Example .. 10-52
FWRITEDIR Intrinsic Example 10-53
FLOCK and FUNLOCK Intrinsics Example 10-56
FUPDATE Intrinsic Example 10-58
Using the IOWAIT Intrinsic 10-60
FWRITELABEL Intrinsic Example (Disc File) 10-64
FREADLABEL Intrinsic Example 10-65
FGETINFO Intrinsic Example 10-67
FCHECK Intrinsic Example 10-70
Using the FCLOSE Intrinsic with Unlabeled Magnetic

Tape 10-74
Unlabeled Magnetic Tape Example 10-78
Opening a Labeled Magnetic Tape File 10-82
Writing a Tape Label 10-85
User Logging Facility 10-94
MPE Tape Labels (Conforming to ANSI-Standard D-2

I

Title Page

Summary of MPE Intrinsics. 1-3
Intrinsics That are Not Permitted with

Message Files 3-5
Intrinsics That are Not Permitted with

Circular Files . 3-10
Line Printer Differences . 5-4
Carriage-Control Directives 5-7
Terminals Supported by MPE 5-9
Device Dependent Restrictions 10-24
Classification of Devices 10-25
Format of Tape Labels Written by MPE (ANSI

Standard) D-3
Program Errors E-5

TABLES I

Title Page

Intrinsic Errors . E-6
Run-Time Errors E-7
File System Errors. E-8
Loader Errors E-12
CREATE Intrinsic Errors E-13
ACTIVATE Intrinsic Errors E-13
SUSPEND Intrinsic Error E-13
MYCOMMAND Intrinsic Error E-13
LOCKGLORIN Intrinsic Errors E-13
Private Volumes Messages E-14
User-Logging Error Messages E-15
CLEANUSL Error Messages E-16
CREATEPROCESS Error Messages E-17

xiv DEC 1981

j!UIH.!11 INTRODUCTION TO MPE INTRINSICS! 1 I

In the MPE Operating System, individual programming operations are handled by sets of code
known as procedures. These procedures are coded in SPL (Systems ProgTamming Language for the
MPE Operating System) and are defined by a procedure declaration consisting of I

• A procedure head, containing the procedure name and type, parameter definitions, and
other information about the procedure.

• A procedure body, containing executable statements and data declarations local to this
procedure.

As part of their function, several procedures also return values to the processes that invoke them.

NOTE

A process is the basic executable entity in MPE. A process is
not a program itself, but the unique execution of a program
by a particular user at a particular time.

Each procedure is invoked by a corresponding procedure call. When a procedure call is encountered
in a program, control is transferred to the procedure. The procedure runs until an exit is
encountered, at which time control returns to the statement following the procedure call.

In addition to the procedures provided by the operating system, MPE allows the user to write
special-purpose procedures in SPL. To distinguish MPE system procedures (which are always
available to the user, either directly or indirectly) from any other procedures, the term intrinsic is
applied to MPE system procedures. Similarly, the term intrinsic call is used to denote the procedure
call that references an MPE system procedure.

PURPOSES AND USES OF MPE INTRINSICS

With MPE intrinsics, it is possible to

• Access and alter files. Files cap be opened, read, written on, updated, and otherwise
manipulated using intrinsics.

• Request various utility operations, such as:

JUL 1981

Listing date, time, and accounting information.
Determining job status.
Determining device status.
Obtaining devicefile information.
Transmitting messages.

1-1

Inserting comments in command stream.
Requesting ASCII/binary number conversion.
Reading input from job/session input device.
Writing output to job/session list device.
Obtaining system timer information.
Determining the user's access mode and attributes.
Searching arrays and formatting parameters.
Executing MPE commands pro grammatically.
Enabling and disabling error traps.
Requesting program break, termination, or abort.
Changing the lengths of the user-managed area (DL to DB) and stack area (Z to DL) and
altering DL to DB and Z to DL register offsets.
Managing interprocess communication through the job control word.
Changing terminal speed and echo mode.

• Access and manage a system resource such as an input/output device, file, program,
subroutine, procedure, code segment, or the data stack such that no other program may
use the resource simultaneously.

• In addition, users with certain optional capabilities (see OPTIONAL CAPABILITIES,
page 1-12) may use intrinsics to

Create and delete processes.
Activate and suspend processes.
Send information (mail) between processes.
Change the scheduling of processes.
Obtain information about existing processes.
Create and access extra data segments.
Lock as many resources as desired simultaneously.

To help you determine what you can accomplish with MPE intrinsics, a summary is presented in
table 1-1. Table 1-1 lists each intrinsic, and the capability necessary to use it.

INTRINSIC CALLS

Intrinsic calls invoke MPE system procedures which are requested programmatically (that is, from
within a user program). In SPL programs (see CALLING INTRINSINCS FROM SPL, below), you
write the intrinsic calls explicitly. In FOR TRAN, COBOL, BASIC, and RPG programs, for most
general applications, the compiler for that language generates any necessary intrinsic calls
automatically - they are invisible to you. It is possible, however, to call intrinsics directly from
these languages (see CALLING INTRINSICS FROM OTHER LANGUAGES, page 1-10).

All MPE intrinsics are treated as external procedures by user programs. External linkages from user
programs to intrinsics are satisfied when the user programs are segmented (at PREPARATION time)
and allocated residence in virtual memory (at RUN time). See the MPE Segmenter Reference
Manual for a discussion of segments, segmentation, and allocation.

CALLING INTRINSICS FROM SPL

Before an intrinsic can be called from an SPL program, it must be declared at the beginning of the
program, following all data declarations, like any other SPL procedure. This could be done by

1-2

INTRINSIC
NAME

ACCEPT

ACTIVATE

ADJUSTUSLF

ALTDSEG

AR IT RAP

ASCII

BINARY

CALENDAR

I CAUSEBREAK

CLEANUSL

CLOCK

CLOSE LOG

COMMAND

CREATE

CREATEPROCESS

CTRANSLATE

DASCll

DATELINE

DBI NARY

DEBUG

DLSIZE

DMOVIN

DMOVOUT

EXPANDUSLF

I

I

I

Table 1-1. Summary of MPE Intrinsics

PURPOSE CAPABILITY REQUIRED I
j_ j

Accepts (and completes) a request received by the l Standard l
preceding GET intrinsic.call. (Used only with DS/3000.)

Activates a process. Process Handling

Adjusts directory space in a USL file. Standard

Alters the size of an extra data segment. Data Segment Management

Enables or disables internal interrupt signals from all Standard

hardware arithmetic traps.

Converts a number from binary to ASCII code. Standard

Converts a number from ASCII to binary code. Standard

Returns the calendar date. Standard

Requests a session break. I Standard

Deletes inactive entries from USL file. Standard

Returns the actual time. Standard

Closes access to the logging facility. LG Capability

Executes an MPE command programmatica!ly. I Standard

Creates a process. Process Handling

Provides ability to assign $STDIN and $STDLIST Process Handling
to any file

Converts a string of characters from EBCDIC to ASCII Standard

or from ASCII to EBCDIC.

Converts a value from double-word binary to ASCII code. Standard

Returns date and time information. Standard

Converts a number from ASCII code to a double-word Standard

binary value.

Calls the DEBUG facility. Standard

Changes size of D L to DB area. Standard

Copies block from data segment to stack. Data Segment Management

Copies block from stack to data segment. I Data Segment Management
l

Changes length of a USL file. Standard

1-3

Table 1-1. Summary of MPE Intrinsics (Continued)

INTRINSIC
NAME

PURPOSE CAPABILITY REQUIRED

FATHER Requests Process Identification Number (PIN) of Process Handling
father process.

FCARD Drives the HP 7260A Optical Mark Reader. Standard

FCHECK Requests details about file input/output errors. Standard

FCLOSE Closes a file. Standard

FCONTROL Performs control operations on a file or terminal device. Standard

FDELETE Deactivates a R 10 record. Standard

I FDEV ICECONTROL Adds control directives to a spooled device file. Standard

FERRMSG Returns message corresponding to FCHECK error Standard
number.

FFILEINFO Provides access to file information. Standard

FGETINFO Requests access and status information about a file. Standard

FINDJCW Searches Job Control Word (JCW) table for specified Standard
JCW.

FLOCK Dynamically locks a file. Standard

FMTCALENDAR Formats calendar date. Standard

FMTCLOCK Formats time of day. Standard

FMTDATE Formats calendar date and time of day. Standard

FOP EN Opens a file. Standard

FPO INT Resets the logical record pointer for a sequential disc Standard
file.

FREAD Reads a logical record from a sequential file (on any Standard
device) to the user's data stack.

FREADBACKWARD Reads a logical record beginning at a point prior to Standard
the current record printer

FREADDIR Reads a logical record from a direct access file to the Standard

user's data stack.

FREADLABEL Reads a user file label. Standard

FREADSEEK Prepares, in advance, for reading from a direct-access Standard

file.

FREEDSEG Releases an extra data segment. Data Segment Management

1-4 JUL 1981

Table 1-1. Summary of MPE Intrinsics (Continued)

INTRINSIC I PURPOSE CAPABILITY REQUIRED
NAME l

FREELOCRIN I Frees all local Resource Identification Numbers (RIN's) Standard
from allocation to a job.

FR ELATE Determines if a file pair is interactive or duplicative. Standard

FRENAME Renames a disc file. Standard

FSETMODE Activates or de-activates file-access modes. Standard

FSPACE Spaces forward or backward on a file. Standard

FUN LOCK Dynamically unlocks a file. Standard

FUPDATE Updates a logical record residing in a disc file. Standard

FWRITE Writes a logical record from the user's stack to a sequen- Standard

I I
tia! file (on any device),

FWRITEDIR Writes a logical record from the user's stack to a direct- Standard
access disc file.

FWRITELABEL Writes a user file label. Standard

GENMESSAGE Accesses MPE message system. Standard
I

GET Receives the next request from a remote master program. Standard
(Used only with DS/3000.)

GETDSEG Creates an extra data segment. Data Segment Management

GETJCW Fetches contents of system job control word (JCW). Standard

GETLOCRIN Acquires local RIN's. Standard

GETORIGIN Determines source of process activation call. Process Handling

GETPRIORITY Changes the priority of a process. Process Handling

GETPRIVMODE Dynamically enters privileged mode. Privileged Mode

GETPROCID Requests Pl N of a son process. Process Handling

GETPROCINFO Requests status information about a father or son Process Handling
process.

GETUSERMODE Dynamically returns to non-privileged mode. Privileged Mode

INITUSLF Initializes a USL file to the empty state. Standard

IODONTWAIT Initiates completion operations for an 1/0 request. Privileged Mode

1-5

Table 1-1. Summary of MPE Intrinsics (Continued)

INTRINSIC
NAME

PURPOSE CAPABILITY REQUIRED

IOWAIT Initiates completion operations for an 1/0 request. Privileged Mode

KILL Deletes a process. Pocess Handling

LOADPROC Dynamically loads a library procedure. Standard
-~ - -

LOCKGLORIN Locks a global RIN. Standard

LOCKLOCRIN Locks a local RIN. Standard

LOCRINOWNER Identifies process locking a local RIN. Standard

MAIL Tests maiibox status. Process Handling

MYCOMMAND Parses (delineates and defines parameters) for user- Standard
supplied command image.

OPEN LOG Provides access to a logging facility. LG Capability

PAUSE Suspends calling process for a specified number of Standard
seconds.

PCHECK Returns an integer code specifying the completion status Standard
of the most recently executed DS/3000. (Used only with
DS/3000.)

PC LOSE Terminates program-to-program communication with a Standard
remote slave program. (Used only with DS/3000.)

PCONTROL Exchanges tag fields with a remote slave program. (Used Standard
only with DS/3000.)

POP EN Initiates program-to-program communication with a Standard
remote slave program. (Used only with DS/3000.)

PREAD Requests a block of data from a remote slave program. Standard
(Used only with DS/3000.)

PRINT Prints character string on job/session list device. Standard

PRINTFILEINFO Prints file information display. Standard

PRINTOP Prints a character string on the Operator's Console. Standard

PR I NTOPR EPL Y Prints a character string on the Operator's Console and Standard
solicits a reply.

PROCTIME Returns a process' accumulated central processor time. Standard

PT APE Accepts input from paper tapes which do not contain Standard
X-OF F control characters.

1-6

Table 1-1. Summary of MPE Intrinsics (Continued)

INTRINSIC

I NAME l PURPOSE CAPABiLiTY REQUIRED

PUTJCW I Puts value of a given JCW in JCW table. Standard

PWRITE Sends a block of data to a remote slave program. Standard

QUIT Aborts a process. Standard

QUITPROG Aborts the user process structure. Standard

READ Reads an ASCII string from the job/session input device Standard
($STDIN).

READX Reads an ASCI i string from the job/session input device Standard
($STDINX).

RECEIVEMAI L Receives mail from another process. Process Hand Ii ng

REJECT Rejects the request received by the preceding GET Standard
intrinsic call. (Used only with DS/3000.)

RESETCONTROL Resets terminal to accept CONTROL Y signal. Standard

RESETDUMP Disables the abort stack analysis facility. Standard

SEARCH Searches an array for a specified entry or name. Standard

SENDMAIL Sends mail to another process. Process Handling

I
SETDUMP Enables the abort stack analysis facility. I Standard

I

SETJCW Sets the value of the system job control word (JCW). Standard

STACKDUMP Dumps selected parts of stack to file. Standard

SUSPEND Suspends a process. Process Handling

SWITCH DB Switches DB register pointer. Privileged Mode

TERMINATE Terminates a process. Standard

TIMER Returns job or session timer bit count. Standard

UNLOADPROC Dynamically unloads a library procedure.

UNLOADGLORIN Unlocks a global RIN. Standard

UNLOCKLOCRIN Unlocks a local R IN. Standard

WHO Returns user attributes. Standard

WRITE LOG Writes a record to a logging file. LG Capability

XARITRAP Arms or disarms the software arithmetic trap. Standard

XCONTRAP Arms or disarms the CONTROL-Y trap. Standard

XLIBTRAP Arms or disarms the library trap. Standard

1-7

Table 1-1. Summary of MPE Intrinsics (Continued)

INTRINSIC
PURPOSE CAPABILITY REQUIRED

NAME

XSYSTRAP Arms or disarms the system trap. Standard

ZSIZE Changes size of Z to DB area. Standard

writing the entire intrinsic declaration but, because some intrinsic declarations are rather long, you
can save time by declaring intrinsics with the INTRINSIC declaration statement.

The format of the INTRINSIC declaration statement is

INTRINSIC intrinsicname, intrinsicname, ... ,intrinsicname;

In the intrinsicname list, you name all intrinsics that you intend to call within your program. When
more than one intrinsic is named, the names must be separated by commas. For example, to use the
INTRINSIC declaration statement to declare the FOPEN, FREAD, FWRITE, and FCLOSE
intrinsics, you could write

INTRINSIC FOPEN ,FREAD,FWRITE,FCLOSE;

Regardless of whether you declare an intrinsic as a procedure or in an INTRINSIC declaration
statement, you must know the number and type of parameters which the intrinsic uses in order to
call it correctly. Parameters can be passed to a procedure (intrinsic) either by value or by reference.
When a parameter is passed by reference (the default case), its address in the caller's data area is
made available to the called procedure. If the variable is changed by the called procedure, the
storage in the caller's data area is updated. When a parameter is passed by value, the called
procedure receives a local (private) copy of the actual data value. If the called procedure changes
this private copy, the corresponding variable in the calling routine remains unchanged.

You call an intrinsic in your program exactly as you would any SPL procedure: that is, you write
the intrinsic name, followed by a parameter list enclosed in parentheses. These parameters must
follow the positional format shown in each intrinsic description (Section II). Parameters must be
separated from each other by commas. For example, a call to the FREAD intrinsic could be written
as

FREAD(FN,TAR,TC);

where the filenum, target, and tcount parameters (see Section II, page 2-82) are represented by FN,
TAR, and TC, respectively. If numeric values are to be specified for the filenum and tcount
parameters (which are VALUE parameters), the following call could be used:

FREAD(3,TAR,-80);

If the OPTION VARIABLE notation appears in the intrinsic description shown in Section II, some
of the intrinsic parameters are optional. Since all intrinsic parameters are positional, however, you
must indicate a missing parameter within a parameter list by omitting the parameter itself but
retaining the preceding and following commas. For example, if the second parameter is missing

FOP EN(FILEN AME,,3);

If the first parameter is omitted from a list, this is indicated by following the left parenthesis with a
comma. If one or more parameters are omitted from the end of a list, however, this is indicated by
simply writing the terminating right parenthesis after the last parameter included.

1-8

NOTE

In some intrinsic calls, input parameters are passed to the
intrinsic as words whose individual bits or fields of bits
signify certain functions or options. In cases where some of
the bits within a word are described in this manual as
"reserved for MPE", you are advised to set such bits to zero.
This will help insure the compatibility of your current
program with future releases of MPE.

In cases where output parameters are passed by an intrinsic
to words referenced by a calling program, bits within such
words that are described as "reserved for MPE" are set to
zero unless otherwise noted in the discussion of the particular
parameter.

To call an intrinsic from an SPL program, follow the steps listed below:

1. Refer to the intrinsic description in Section II to determine the parameter types and their
positions in the parameter list.

2. Declare the variables or array names to be passed as parameters by type at the beginning
of the program.

3. Include the name of the intrinsic in an INTRINSIC declaration statement.

4. Issue the intrinsic call at the appropriate place in your program.

For example, reier to Section II, page 2-147 for a description of the PRINTOP intrinsic. This
intrinsic is shown as

A IV IV
PRINTOP(message ,length,control);

The bold face italics shown for message, length, and control signify that these are required
parameters. (Optional parameters are signified by regular italics.)

The superscripts A, IV, and IV over message, length, and control denote logical array, integer by
value, and integer by value, respectively.

The array name to be used as the message parameter must be declared as an array at the beginning
of the program. If variable names are used for the length and controi parameters, they must be
declared as type integer at the beginning of the program.

Figure 1-1 shows the intrinsic PRINTOP being called from an SPL program after being declared
with the INTRINSIC declaration statement. Note that MESSAGE is declared as an array and the
variables LENGTH and CONTROL are declared as type integer.

Figure 1-2 shows the same intrinsic being called with numeric values, instead of symbolic identifiers,
being specified for the parameters length and control.

1-9

PAGE 0001 HP32100Ae06e0 CC> COPYRIGHT HEWLETT-PACKARD COMPANY 1976

00001000 00000 0
00002000 00000 0

$CONTROL USL IN IT

00003000 00000 0
80004000 00000 0

<< USING THE INTRINSIC DECLARATION STATEMENT >>

BEGIN 00005000 00000 0
00006000 00000 1
00007000 00012 1
00008000 00012 1
00009000 00012 1
08010000 00012 1
00011000 00002 1
000 l 20fH 0CIJfH4

ARRAY MESSAGEC0:9>:="MESSAGE TO OPERATOR ";
INTEGER LENGTH,CONTRQL; ,.·, 1:~ml·J·N:1~:;:,·-:11.f:H1~1~·· ... :: : : ::=··,.,,.,., ,.·.·.-.,.·.·.·.··

LENGTH:= 10;
CONTROL:= %60;

1

90013000 00010
eeJ0l4000 00010 END.
PRIMARY DB STORAGE=%003;
NO. ERRORS=000i
PROCESSOR TIME=0:00:00i

SECONDARY DB STORAGE=%00012
NO. WARNINGS=000
ELAPSED TIME=0:01:23

Figure 1-1. Calling the PRINTOP Intrinsic from SPL

PAGE 0001 HP32100A.06.0 CC> COPYRIGHT HEWLETT-PACKARD COMPANY 1976

00001000 00000 0 $CONTROL USL INI T
00002000 00000 0
00003000 00000 0 << USING NUMERIC VALUES AS PARAMETERS >>
00004000 00000 0
00005000 00000 0 BEGIN
00006000 00000 1 TO OPERATOR ". ,
00007000 00012 1
00008000 00012 1
00009000 00012 1
00f'10000 00004 1
00011000 00004 1 ENO.
PRIMARY DB STORAGE=%001; SECONDARY DB STORAGE=%00012
NO. ERRORS=0~HH NO. WARNINGS=000
PROCESSOR TIME=0:00:00; ELAPSED TIME=0:00:53

Figure 1-2. Using Numeric Values as Parameters in an Intrinsic Call

1-10

CALLING INTRINSICS FROM OTHER LANGUAGES

For most applications in FORTRAN, COBOL, BASIC, and RPG programs, the compiler for the
specific language generates any necessary intrinsic calls automatically. It is possible, however, to call
intrinsics, or other libra_ry procedures, from these languages. The procedures for calling intrinsics
from these languages are described in the applicable language reference manuals.

INTRINSIC CALL ERRORS

Some intrinsics alter the condition cnde returned to FORTRAN and SPL programs through two
bits (6 and 7) in the Status register. These two bits have four states which are defined as follows:

00 Defined as CCG, or condition code greater than.
01 Defined as CCL, or condition code less than.
10 Defined as CCE, or condition code equal.
11 Undefined.

Since bits 6 and 7 of the Status register are affected by many instructions, you should check for
condition codes immediately upon return from an intrinsic (see figure 1-3). A condition code is
always CCG, CCL, or CCE, and has the general meaning indicated below. The specific meaning, of
course, depends upon the intrinsic called and these meanings are described in Section II.

Condition Code State

CCE

CCG

CCL

General Meaning

Condition code equal. This generally indicates that the request
was gra.11ted.

Condition code greater. A special condition occurred but may
not have affected the execution of the request. (For example,
the request was executed, but default values were assumed as
intrinsic call parameters.)

Condition code less. The request was not granted, but the error
condition may be recoverable. Beyond this condition code,
some intrinsics return further error information in the program
through their return values.

Two types of errors may occur when an intrinsic is executed. The first, denoted by the CCG or CCL
condition codes, is generally recoverable (control returns to the calling program) and is known as a
condition code error. The second type is an abort error, which occurs when a calling program passes
illegal parameters to an intrinsic, or does not have the capability demanded by the intrinsic.
Intrinsic (system) traps are handled by a special procedure designed for that purpose. Normally, if
an intrinsic causes the trap to be invoked, the system trap handler aborts the user program. You
may, however, specify a procedure to be used instead of the default system trap handler and try to
recover from such errors. If the program is aborted in a batch job, MPE removes the job from the
system (unless a :CONTINUE command, defined in the MPE Commands Reference Manual,
precedes the error). If the program is aborted in an interactive session, MPE returns control to the
terminal; Abort-error messages are described in Section X.

1-11

PAGE 000 l HP32100A.06·0 CC> COPYRIGHT HEWLETT-PACKARD COMPANY 1976

00001000 00000 0
00002000 00000 0
00003000 00000 0
00004000 00000 0
00005000 00000 0
00006000 00000 1
00007000 00012 1
00008000 00012 J
00009000 00011 1
00010000 000 l 1 1
0eJ011000 00011 1
00012000 00004 1
00013000 00004 1
00014000 00005
90015000 00006 1
00016000 00006 1
~017000 00006 1
00018000 00012 l
00019000 00013 l
00020000 00013 l
00021000 00013 l
00022000 00017 l

$CONTROL USLINIT

<< CONDITION CODE CHECKS >>

BEGIN
ARRAY MESSAGEC0: 9 >:=•'MESSAGE TO OPERATOR .. ;
ARRAY OKBUFC0:9>:="'MESSAGF TRANSMITTED";
ARRAY ERRBUFC0:8>:=''I/0 ERROR OCCURRED";
INTRINSIC PRINTOP,PRINT;

PRINTOPCMESSAGE,10,%60);

OK:
PRINTCOKBUF,10,%60>;
GOTO STOP;

ERR:

00023000 00017 1 STOP:
00024000 00017 1 END.
PRIMARY DB STORAGE=%003;
NO. ERRORS=000;
PROCESSOR TIME=0:00:0J;

SECONDARY DB STORAGE=%00035
NO. WARNINGS=000
ELAPSED TIME=0:01:55

1-12

Figure 1-3. Condition Code Checks

NOTE

Whenever an intrinsic is invoked by a process and the DB
register is pointing to the DB area in the user's stack, a
bounds check takes place to insure that all parameters in the
intrinsic call reference addresses that lie between the DL and
S addresses in the stack (prior to the intrinsic call). If an
address outside of these boundaries is referenced, an abort
error occurs.

When an intrinsic is invoked by a process running in the
privileged mode, and the DB register points to a data segment
other than the user's stack segment (split stack), the results
depend on the particular intrinsic. Most intrinsics abort
immediately in this case. Others, indicated in Section II, are

allowed to execute following a bounds check that insures
that all parameters in the intrinsic call reference addresses
that lie within the data segment. Any boundary violation
results in an abort error. Any additional special actions taken
by a particular intrinsic are described in the discussion of that
intrinsic in Section IL

Figure 1-3 illustrates the use of condition code checks in a program. If the condition code is CCE
(meaning that the request was granted), the program displays "MESSAGE TRANSMITTED". For a
CCL condition code, the message "I/0 ERROR OCCURRED" is displayed and the program
terminates normally.

OPTIONAL CAPABILITIES

Users with the Standard MPE Capability can perform most functions available through the
operating system. There are some functions, however, which can only be performed by users with
certain optional capabilities assigned to them when the Accounts, Groups, and Users are created by
the System Manager.

The Process-Handling Optional Capability allows you to programmatically

• Create and delete processes.
• Activate artd suspend processes.
• Send mail between processes.
• Change the scheduling of processes.
• Obtain information about existing processes.

The Process-HandlL.1g Optional Capability is described in Section VIL

The Data-Segment Management Optional Capability allows you to create and access extra data
segments from processes during a job or session. This capability is described in Section VIII.

Multiple Resource Identification Number Optional Capability. Users having standard MPE
capability can lock only one global or local Resource Identification Number (RIN) at a time. The
Multiple Resource Identification Number Optional Capability, however, allows you to lock as many
RIN's as desired simultaneously, without checking by the operating system. The Multiple RIN
Optional Capability is described in Section VI.

The Privileged Mode Optional Capability allows you to access all areas of the system and use all
features of the hardware. This capability allows you to access all system tables and invoke all system
instructions, including those in the privileged central processor unit instruction set. In short, this
capability allows you to use the computer on the same terms as the operating system itself. The
Privileged Mode Optional Capability is described in Section IX.

1-13

IMPORTANT NOTE

The normal checks and limitations that apply to the standard
users in MPE are bypassed in privileged mode. It is possible
for a privileged mode program to destroy file integrity, includ­
ing the MPE operating system software itself. Hewlett-Packard
will investigate and attempt to resolve problems resulting
from the use of privileged mode code. This service, which is
not provided under the standard Service Contract, is available
on a time and materials billing basis. However, Hewlett­
Packard will not support, correct, or attend to any modifica­
tion of the MPE operating system software.

The User Logging Optional Capability provides a flexible transaction logging capability which
enables you to journalize additions and modifications to your data bases and subsystem files. User
logging permits you to journalize on two mediums: tape and disc. If the data base is lost, the logging
tape or disc file can be used to recover the lost transactions.

1-14

!1HM111
INTRINSIC DESCRIPTIONS II 11 J

This sP-ction co mains descriptions of all intrinsics~ arranged alphabetically. Each intrinsic description
includes the folkwin;~ information:

• The intrinsic name, a brief summary of its function, and the number of the intrinsic. (The
number is only significant for error diagnosis. See the Error Messages and Recovery
Manual.)

• The complete intrinsic call description highlighted by being enclosed in a shaded box. The
intrinsic call descriptions are in the format shown below for the ACTIVATE intrinsic:

Required parameters; such as pin, are shown in bold face italics; optional parameters
(susp) are shown in regular italics. Superscripts are used to describe the types of
parameters and whether they must be passed by value, instead of by reference (the
default case). See Section I, page 1-8 for a discussion of passing parameters by value and
by reference. The superscripts have the following meanings:

BA Byte array
BP Byte pointer
D Double
DA Double array
DV Double by value
I Integer
IA Integer array
IV Integer by value
L Logical
LA Logical fLlTay
LV Logical by value
0-P Option privileged
0-V Option variable
R Real

In addition to the superscripts shown over the parameters, the superscript 0-V is shown
for some intrinsics to denote option variable. Option variable means that the intrinsic
contains optional parameters. Additionally, 0-P is shown for those intrinsics which can be
called only when running in privileged mode. The ACTIVATE intrinsic shown, for ex­
ample, contains two parameters: pin, which is a required integer parameter that must be
passed by value; and susp, an optional logical parameter that, if included in the intrinsic
call, must be passed by value. Additionally, the intrinsic is option variable, meaning that
some parameters are optional.

2-1

2-2

• FUNCTIONAL RETURN: For those intrinsics which return a value to the calling
program (type procedures), the return is described. If the intrinsic is not a type
procedure, this portion.of the description is omitted. The intrinsic call description format
for type intrinsics is as shown below for the READ intrinsic:

The READ intrinsic returns the positive length of the input actually read. This value is
returned to an integer variable. In the intrinsic call description, a word, representing what
is returned, is shown in italics (as is length, above) to denote that the intrinsic is a type
procedure. The type (integer, double, etc.) is signified by a superscript above the
descriptive word. Thus,

is an integer procedure, message is a required logical array, and expected! is a required
integer parameter which must be passed by value.

NOTE

: = means "is assigned" or "is replaced by."

• PARAMETERS: All parameters are described. In the intrinsic call description, required
parameters are shown in bold face italics and optional parameters are shown in regular
italics. Elsewhere in this manual, this distinction is not shown for required and optional
parameters and all parameters are shown in regular italics.

• CONDITION CODES: Condition codes are included for each intrinsic.

• SPECIAL CONSIDERATION:

Required Capability. When you run a program file, the program file's capability
(established at PREP ARA TI ON time) is checked against the capability of the group
in which the file resides. If the file's capability does not exceed the capability of the
group, the program executes. Additional capability checking, however, is done if the
program calls an intrinsic. Some intrinsics require that the program file have
sufficient capability to call them. If an intrinsic requires a special capability, it will
be noted in the discussion of that intrinsic.

NOTE

The optional capabilities are discussed in Section I, page 1-13.

Split Stack Operations. During normal operation, the DB register points to the user
process' stack. Some operations with extra data segments require that DB be set to
the base of the extra data segment while DL and all other data registers remain
associated with the stack. When a process is operating in this mode it is said to have
a split stack. Several of the MPE L"11trin.sics deal with DB in this manner and you
need not be concerned with the mechanics of the operation because while the stack
is "split" only system code is executing. It is possible, however, if you are a privileged
user, to force your process to operate in split-stack mode explicitly by calling the
SWITCHDB intrinsic.

IMPORTANT NOTE

The normal checks and limitations that apply to the standard
users in MPE are bypassed in privileged mode. It is possible
for a privileged mode program to destroy file integrity, includ­
ing the MPE operating system software itself. Hewlett-Packard
will investigate and attempt to resolve problems resulting
from the use of privileged mode code. This service, which is
not provided under the standard Service Contract, is available
on a time and materials billing basis. However, Hewlett­
Packard will not support, correct, or attend to an.y modifica­
tion of the MPE operating system software.

If you do this, you must recognize that some of the normal callable intrinsics may
not be called when DB does not point to the stack. Such intrinsics, if called by a
privileged process in split stack mode, can result in system failures. If you are a
normal user, you need not concern yourself with this restriction and you may assume
in all the intrinsics described in this section that unless it is otherwise stated, an
intrinsic will not operate in split stack mode.

The SPECIAL CONSIDERATIONS portion of the description is omitted unless the
intrinsic operates in split stack mode, a special optional capability is required, or the
intrinsic requires a privileged call. Therefore, unless otherwise stated:

The intrinsic does not operate in split stack mode.
The intrinsic requires only standard capabilities.
The intrinsic does not require a privileged call.

• TEXT DISCUSSION: This references the page in this manual where usage of the intrinsic
is discussed.

2-3

ACCEPT

Accepts (and completes) a request received by
the preceding GET intrinsic call and returns
an optional tag field back to a remote master
program.

See the DS/3000 Reference Manual (32190-90001) for a discussion of this intrinsic.

2-4

ACTIVATE

Activates a process. INTRINSIC NUMBER 104

After a process has been created, it must be activated in order to run. Once activated, the process
runs until it is suspended or deleted. A newly-created process can only be activated by its father. A
process that has been suspended (with the SUSPEND intrinsic, see page 2-1 72) can be reactivated by
its father or any of its sons, as specified in the susp parameter of the ACTIVATE and SUSPEND
intrinsics.

The operating system guarantees that there will be no process switching (to some other process)
between activation of the called process a..'1d suspension of the calling process.

The ACTIVATE intrinsic aborts the calling process (and possibly the entire job/session) if:

1. The group in which the program file resides does not have the Process-Handling Capa- I
bility, and the program was not prepared with Process-Handling Capability.

2. The required parameter pin is omitted.
3. A request to activate the father would result in activation of a job or session main process

or a system process.

PARAMETERS
pin

susp

JUL 1981

integer by value (required)
Process Identification Number (PIN). An integer specifying the PIN for
the son or father process to be activated. The PIN number to activate a
father process is always zero. The called process must always be
expecting an activation from the caller as noted in the discussion of the
SUSPEND (see page 2-172') and CREATE (see page 2-19) intrinsics.

logical by value (optional)
A word that specifies:
The calling process is to be suspended while the called process is
activated and commences execution.

or

The called process is activated by the operating system but does not
commence execution immediately. Instead, control is returned to the
calling process which will continue execution.

When susp is omitted or is zero, the calling process remains active.
When susp is specified, the calling process is suspended. The 14th and
15th bits of susp specify the anticipated source of the call that later will
reactivate the calling process.

Bit (15:1) - If on, the process expects to be activated by its father.
Bit (14: 1) - If on, the process expects to be activated by one of its
sons.

If both bits are on, the suspended process can be activated by either the
father or sons.

2-5

ACTIVATE

CONDITION CODES

CCE

CCG

CCL

Bits (0:14) - Reserved for MPE. Should be set to zero.

Default: Calling process remains active.

Request granted. Called process is activated. The calling process is
suspended if susp was specified.

The called process already is active. The calling process is suspended if
susp was specified.

Request denied, because the called process was not expecting activation
by this calling process; an illegal pin parameter was specified; or the
susp parameter was specified improperly.

SPECIAL CONSIDERATIONS

Split stack calls permitted.
Process-Handling Capability required.

TEXT DISCUSSION

Page 8-10

2-6

ADJUSTUSLF

Adjusts directory space in a USL file. INTRINSIC NUMBER 83

The ADJUSTUSLF intrinsic moves the start of the information block forward or backward on a
user subprogram library (USL) file, thereby increasing or decreasing, respectively, the space
available for the file directory block. Note that this does not change the overall length of the file.
This intrinsic is intended for programmers writing compilers. See the MPE Se gm enter Ref ere nee
Manual for a discussion of USL's, the ADJUSTUSLF intrinsic, information blocks, and directory
blocks.

FUNCTIONAL RETURN

This intrinsic returns an error number if an error occurs. If no error occurs, no value is returned.

PARAMETERS

uslfnum

records

CONDITION CODES

CCE

CCG

CCL

integer by value (required)
A word supplying the file number of the USL file (as returned by
FOPEN).

integer by value (required)
A word supplying a signed record count. If records is greater than zero,
the information block is moved toward the end-of-file in the USL file,
increasing the space available for the directory block and decreasing the
space available for the information block. If records is less than zero,
the information block is moved toward the start of the USL file,
decreasing the directory-block space and increasing the information­
block space.

Request granted.

Not returned by this intrinsic.

Request denied. One of the following error numbers is returned.

Error Number

0

Meaning

The file specified by uslfnum was empty,
or an unexpected end-of-file was encoun­
tered when reading the old uslfnu m, or an
unexpected end-of-fiie was encountered
when writing on the new uslfnum.

ADJUSTUSLF

Error Number

1

3

6

TEXT DISCUSSION

MPE Segmenter Reference Manual.

2-8

Meaning

Unexpected input/output error occurred.
This can occur on the old uslfnum or the
new uslfnum to which the intrinsic is
copying the information.

Your request attempted to exceed the
maximum file directory size (32,768
words).

Insufficient space was available in the USL
file information block.

ALTDSEG

Alters the size of a..11 extra data segment. INTRINSIC NUMBER 134

The ALTDSEG intrinsic alters the current size of an extra data segment. ALTDSEG can be used to
reduce the storage required by the segment when it is moved into main memory, then used again to
expand storage as required, thus allowing more efficient use of memory.

Expansion and contraction is accomplished in even multiples of 4, which are rounded up. For
example,

Present Segment Size (Words) Change Value (Words) New Segment Size (Words)

128
128
128
128
128

-3
-4
+l
+3
+4

NOTE

Sufficient virtual space is allocated by the system when a
data segment is created through GETDSEG to accommodate
the original length of the data segment. This virtual space is
allocated in increment.s of pages where the number of words
per page is set when the system is configured (typically 512
words/page). For example, creation of a data segment with a
length of 600 words would result in two virtual pages being
allocated for the data segment (space for 1024 words).

In no case may AL TDSEG increase the size of a data segment
to exceed the virtual space originally allocated through
GETDSEG.

128
124
132
132
132

PARAMETERS

index

inc

size

logi,cal by value (required)
A word containing the logical index of the extra data segment, obtained
from the GETDSEG call.

integer by value (required)
The value, in words, by which the data segment is to be changed. A
positive integer value requests an increase, and a negative integer value
requests a decrease.

integer (required)
A word to which is returned the new size of the data segment after
incrementing or decrementing occurs.

2-9

ALTDSEG

CONDITION CODES

CCE

CCG

CCL

Request granted.

Request not fully granted. An illegal decrement, requesting a new total
segment size of zero or less, or an illegal increment, requesting a new
size greater than the virtual space originally assigned by GETDSEG,
was attempted. In the first case, the current size remains in effect. In
the second case, the size of the virtual space is granted and this size is
returned through the size parameter.

Request denied because an illegal index parameter was specified.

SPECIAL CONSIDERATIONS

Data-Segment Management Capability required.

TEXT DISCUSSION

Page 8-16

2-10

ARITRAP

Enables or disables all hardware arithmetic traps. INTRINSIC NUMBER 51

The interrupts listed below are collectively called the arithmetic user traps.

When a user process begins execution, all internal arithmetic user traps are enabled. That is, if an
arithmetic error occurs in the user process, it is aborted in the trap mechanism. The various
interrupts which can occur are:

• Integer overflow .

• Floating point overflow .

• Floating point underflow .

• Integer divide by zero .

• Floating point divide by zero .

• Double precision overflow .

• Double precision underflow . - Double precision divide by zero. -• Decimal overflow .

• Invalid ASCII digit .

• Invalid decimal digit .

• Invalid source word count .

• Invalid decimal operand length .

• Decimal divide by zero .

The traps may be collectively enabled/disabled with the ARITRAP intrinsic call.

The ARITRAP intrinsic always clears the overflow indicator located in the caller's status word.

PARAMETERS

state

CONDITION CODES

CCE

CCG

CCL

TEXT DISCUSSION
Page 4-30.

logical by value (required)
A word specifyi...11g whether all traps are to be enabled or disabled.
If state is TRUE (bit 15 = 1), all traps are enabled.
If state is FALSE (bit 15 = 0), all traps are disabled.
Bits 0 through 14 are reserved for MPE and should be set to zero.

Request granted. The arithmetic traps were originally disabled.

Request granted. The arithmetic traps were originally enabled.

Not returned by this intrinsic.

2-11

I

I

ASCII

INTRINSIC NUMBER 63 Converts a one-word binary number to a numeric ASCII string.

Any 16-bit binary number can be converted to a different base and represented as a numeric
character ASCII string by using the ASCII intrinsic call.

FUNCTIONAL RETURN

This intrinsic returns the number of characters in the resulting string.

PARAMETERS

word

base

string

2-12

logical by value (required)
The number to be converted to an ASCII string.

integer by value (required)
An integer indicating octal or decimal conversion.
8 =octal
10 = decimal (left justified)
-10 =decimal (right justified)
If any other number is entered in this parameter, the intrinsic causes
the user process to abort.

byte array (required)
A byte array into which the converted value is placed. This array must
be long enough to contain the result. No result, however, exceeds six
characters. For octal conversion (base= 8), six characters, including
leading zeros, are always returned in string, showing the octal
representation of word. In octal conversions, the length returned by
ASCII is the number of significant (right-justified) characters in string
(excluding leading zeros). If word= 0, the length (numchar) returned
by ASCII is 1.

For decimal conversions, word is considered as a 16-bit, 2's comple­
ment integer ranging from -32768 to +32767. If the value of word is
negative, the first byte of string contains a minus sign. If word= 0, only
one zero character is returned in string. The length (numchar) returned
by ASCII is the total number of characters in string (including the
sign). If word= 0, the length returned by ASCII is 1.

For decimal left-justified conversions (base= 10), leading zeros are
removed and the numeric ASCII result is left justified in string.

For decimal right-justified conversions (base= -10), the result is right
justified in string.

DEC 1981

BEGIN LOG

INTRINSIC NUMBER 211 Marks the beginning of user logging transaction.

The BEGINLOG instrinsic posts a special record to the user logging file to mark the beginning of a
logical transaction in the log file. When BEGINLOG is used, the logging memory buffer is flushed
to ensure that the record gets to the logging file. BEGINLOG can be used also to post data to the
logging file by using the data parameter. This function of BEGINLOG performs the same procedure
as the WRITELOG intrinsic.

PARAMETERS

data

!en

index

status

mode

CONDITION CODES

array (required)
An array in which the actual information to be logged is passed. A log
record contains 128 words of which 119 words are available to the user.
Because of this, the most efficient use of log file space is a multiple of
119 words.

integer (required)
The length of the data in data. A positive count indicates words, and a
negative count indicates bytes. If the length is greater than 119 words,
the information in data will be divided into two or more physical
log records.

double (required)
The parameter returned from OPENLOG that identifies the users
access to the logging system.

integer (required)
An integer that the logging system uses to return error information to
the user. Zero indicates OK status.

integer (required)
An integer which specifies whether you want your process impeded
by the logging process if the logging buffer is full. If it is not possible
to log the transaction and the mode is set to nowait, the BEGINLOG
intrinsic will return an indication in the status word that the request
was not completed. Mode zero indicates wait; mode one indicates
nowait.

The condition code remains unchanged.

TEXT DISCUSSION

None.

I 2-13a JUL 1981

BINARY

INTRINSIC NUMBER 62 Converts a nuniber from an ASCII string to a binary word.

FUNCTIONAL RETURN

This intrinsic returns the binary equivalent of the numeric string.

PARAMETERS

string

length

CONDITION CODES

CCE

CCG

CCL

TEXT DISCUSSION

Page 4-13.

2-14

byte array (required)
Contains the octal or signed decimal number (ASCII characters) to be
converted. If the character string in this array begins with a percent sign
(%), it is treated as an octal value. If the string begins with a plus sign,
minus sign, or a number, it is treated as a decimal value.

NOTE

String cannot contain blanks.

integer by value (required)
An integer representing the length (number of bytes) in the byte array
containing the ASCII-coded value. If the value of length is 0, the
intrinsic returns 0 to the calling process. If the value of length is less
than 0, the intrinsic causes the user process to abort.

Successful conversion. A one-word binary value is returned to the user's
process.

A word overflow, possibly resulting from too many characters (string
number too large), occurred in the word (bineqv) returned.

An illegal character was encountered in the byte array specified by
string. For example, the digits 8 or 9 specified in an octal value.

CALENDAR

Returns the calendar date. INTRINSIC NUMBER 43

FUNCTIONAL RETURN

This intrinsic returns the calendar date in the format

Bits 0 6 7 15

I Year of Century I Day of Year I

CONDITION CODES

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

Page 4-44.

2-15

CAUSEBREAK

INTRINSIC NUMBER 56 Places a session in break mode.

Using the CAUSEBREAK intrinsic is the programmatic equivalent to using the BREAK key in a
session. Execution of the process can be resumed where the interruption occurred by entering the
command

:RESUME

CONDITION CODES

CCE

CCG

CCL

Request granted.

Not returned by this intrinsic.

Request denied because the intrinsic was not called from an interactive
session.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

2-16

CLEANUSL
Deletes inactive entries from USL file

FUNCTIONAL RETURN

CLEANUSL deletes all inactive entries from currently managed USL files and returns the new file
number. If an error occurs, the error number is returned instead of the new file number. (See Table
10-13, CLEANUSL Error Messages) The condition code, therefore, must be tested immediately on
return from the intrinsic. Unpredictable results occur if an error number is used as a file number.

NOTE

CLEANUSL requires at least 3000 words of available stack
space to execute.

PARAMETERS

uslfnum

filename

integer by value (required)
A word identifier which supplies the file number of the file.

byte array (required)
The name to be given to the cleaned file. The array must end with a
blank, but it can be all blanks. If it's all blanks it purges the inactive
entries.

CONDITION CODES

CCE Request granted. The new file number is returned.

CCG Not returned by this intrinsic.

CCL Request denied. (See Table 10-13, CLEANUSL Error Messages)

TEXT DISCUSSION

None

2-17

CLOCK

INTRINSIC NUMBER 44 Returns the time of day.

FUNCTIONAL RETURN

This intrinsic returns the actual time (wall time), as monitored by the system timer, as a double
word. The first word contains the hour of the day and the minute of the hour, the second word
contains seconds and tenths of seconds as follows:

Bits 0 7 8 15

Hour of Day Minute of Hour Word 1

Seconds Tenths of Seconds Word2

CONDITION CODES

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

Page 4-44.

2-18

CLOSELOG
Closes access to the logging facility. INTRINSIC NU1v1BER 212

The CLOSELOG intrinsic closes access to the logging facility.

PARAMETERS

index

mode

status

double (required)
The parameter returned from OPENLOG that identifies your access to
the logging facility.

integer (required)
An integer which you use to indicate whether or not your process
should be suspended if your request for service cannot be completed
immediately. Enter a zero if you want to wait for service; enter a one if
you do not want to wait.

integer (required)
An integer which indicates logging system errors to you. (See table
E-12, User Logging Error Messages.)

CONDITION CODES

The condition code remains unchanged.

TEXT DISCUSSION

Page 10-93

DEC 1981 2-19

I

COMMAND

INTRINSIC NUMBER 68 Executes an MPE command programmatically.

NOTE

User-defined commands may not be used.

PARAMETERS

comimage

error

pa rm

CONDITION CODES

CCE

CCG

CCL

TEXT DISCUSSION

Page 4-9

2-20

byte array (required)
Contains an ASCII string consisting of a command and parameters ter­
minated by a carriage return. The carriage return character must be the
last character of the command string. No prompt character, however,
should be included in this string. The comimage array may be altered
by the COMMAND intrinsic (for example, characters in it may be shift­
ed from lowercase to uppercase), but will be returned in a form that
can be resubmitted to this intrinsic without adjustment.

integer (required)
A word to which any error code set by the command is returned. This
is the same error code that would appear on a job /session list device if
the command was part of an input stream, i.e., command interpreter
error code not file system error code. If no error occurs, error returns
zero.

integer (required)
A word to which th~ number (index) of the erroneous parameter is
returned. If no parameters are in error, parm returns zero. If there are
errors, parm may be zero or some positive integer. In the case where an
error refers to a file system problem, parm is the file system error code.

Request granted.

An executor-dependent error, such as an erroneous parameter, pre­
vented execution of the command. The error parameter contains the
numeric error code.

Request denied. The command was an undefined command.

CREATE

Creates a process. INTRINSIC NUMBER 100

Any running process, if it has the Process-Handling Capability, can request the creation of a son
process by issuing the CREATE intrinsic call. The CREATE intrinsic loads the program to be run by
the new process into virtual memory, creates the new process as the son of the calling process,
initializes its data stack, schedules the process, and returns the new Process Identification Number
(PIN) to the requesting process.

The creating process is aborted if:

1. Request was rejected because of illegal parameters; a PIN of zero is returned. Specifically,
this occurs:

• If progname is illegal.

• If entryname is illegal.

• If stacksize is less than 512 (decimal) and is not -1. (Note that if -1 is specified, the
default value is taken.)

• If dlsize is less than 0 and is not -1.

• If maxdata is less than or equal to 0, and is not -1.

• If (dlsize + globsize + stacksize + 128) exceeds maxdata. Note that dlsize may have
been modified to satisfy condition 2 under CCG. The globsize value is the sum of
the primary DB plus the secondary DB values (the total DB given at program
preparation time by the program map (PMAP)).

• If (dlsize + globsize + stacksize + 128) exceeds the maximum stacksize defined
during system configuration. Note that dlsize may have been modified to satisfy
condition 2 under CCG.

• If (maxdata + 90) exceeds 32768, where maxdata is either the value passed as a
parameter or a value re-computed by the Loader under condition 1 of CCG.

2. The program file does not have the Process-Handling Optional Capability.

3. An illegal value (a non-existent subqueue) was specified for the priorityclass parameter.

4. A required parameter (progname or pin) is omitted.

5. A reference parameter was not within the required range.

2-21

CREATE

PARAMETERS

progname

entry name

pin

param

flags

2-22

byte array (required)
Contains a string, terminated by a blank, specifying the name, and
optionally, the account and group (filereference format, see Section III,
page 3-8) of the file containing the program to be run.

byte array (optional)
Contains a string, terminated by a blank, specifying the entry point
(label) in the program where execution is to begin when the process is
activated. The primary entry point in the program can be specified by
setting the array equal to a blank character alone.
Default: The primary entry point is used.

integer (required)
A word in which the PIN of the new process is returned to the
requesting process. This PIN is used in other intrinsics to reference the
new process. The PIN can range from 1 to 255. If an error is detected, a
PIN of zero is returned to the requesting process.

integer by value (optional)
A word used to transfer control information to the new process. Any
instruction in the outer block of code in the new process can access this
information in location Q-4.
Default: Word is filled with zeros.

logical by value (optional)
A word whose bits, if on, specify the loading options:

NOTE

Bit groups are denoted using the standard SPL notation. Thus
bit (15:1) indicates bit 15, bits (10:3) indicates bits 10, 11,
and 12.

Bit (15:1) -ACTIVE bit. If on, MPE reactivates the calling process
(father) when the new process terminates. If off, the
calling process is not activated at that time.
Default: Off.

Bit (14:1) -LOADMAP bit. If on, a listing of the allocated (loaded)
program is produced on the job/session list device. This
map shows the Code Segment Table (CST) entries used by
the new process. If off, no map is produced.
Default: Off.

Bit (13:1) -DEBUG bit. If on, a call to DEBUG is made at the first
executable instruction of the new process. If off, the
breakpoint is not set. This bit is ignored if the user is
non-privileged and the new process requires privileged

CREATE

mode. It also is ignored if the user does not have read/write
access to the program file of the new process.
Default: Off.

Bit {12:1) - NOPRIV bit. Ii on, the program is loaded in non-privileged
mode. If this bit is off, the program is loaded in the mode
specified when the program file was prepared.
Default: Off.

Bits {10:2)-LIBSEARCH bits. These bits denote the order in which
libraries are to be searched for the program:

s; 00 - System Library.
P 01 - Account Public Library, followed by System Library.
(,.- 10 - Group Library, followed by Account Public Library,

followed by System Library.
Default: 00.

Bit {9:1) -NOCB bit. If on, file system control blocks are established
in an extra data segment. If off, control blocks may be
established in the Process Control Block Extension (PCBX)
area.
Default: Off.

NOTE

This bit should be set on if you are using a large stack.

Bits {7:2) - Reserved for MPE. Should be set to zero.

Bits {5:2) - STACKDUMP bits. These bits control the enabling/
disabling of the mechanism by which the stack is dumped
in the event of an abort:

00 - Enables only if enabled at father level.
01 - Enables unconditionally=
10 - Same as 00.
11 - Disables unconditionally for new process.
Default: 00.

Bit {4:1)- Reserved for MPE. Should be set to zero.

NOTE

The following bits {0:4) are used only when the bit pair {5:2)
is 01. Otherwise, these bits are ignored.

Bit (3:1)- DL to QI bit. If on, the portion of the stack from DL to
QI is dumped. If off, this portion of the stack is not
dumped.
Default: Off.

2-23

CREATE

stacksize

dlsize

max data

priority class

rank

2-24

Bit (2:1) - QI to S bit. If on, the portion of the stack from QI to Sis
dumped. If off, this portion of the stack is not dumped.
Default: Off.

Bit (1: 1) - Q-63 to S bit. If on, the portion of the stack from Q-63 to
S is dumped. If off, this portion of the stack is not
dumped.
Default: Off.

Bit (0:1) -ASCII DUMP bit. If on, the dump is interpreted in ASCII,
in addition to the octal dump. If off, ASCII interpreting is
not given.
Default: Off.

Default: Default values as noted are taken.

integer by value (optional)
An integer (Z - Q) denoting the number of words assigned to the local
stack area bounded by the initial Q and Z registers.
Default: The same as that specified in the program file.

integer by value (optional)
An integer (DB - DL) denoting the number of words in the
user-managed stack area bounded by the DL and DB registers.
Default: The same as that specified in the program file.

integer by value (optional)
The maximum size allowed for the process' stack (Z - DL) area in
words. When specified, this value overrides the one established at
program-preparation time.
Default: If not specified, and not specified in program file either, MPE
assumes stack will remain same size.

logical by value (optional)
A string of two ASCII characters describing the priority class in which
the new process is scheduled. This may be all, as discussed under
Rescheduling Processes (see Section VII, page 7-13) for users with
Process-Handling Capability, or CS, DS, and ES for users without the
Process-Handling Capability.
Default: The same as the priority of the calling process.

integer by value (optional)
This parameter is used only for compatibility with previous versions of
the MPE Operating system. It is ignored for all users.

NOTE

For the stacksize, dlsize, and maxdata parameters, a value of
-1 indicates that the MPE Segmenter is to assign default
values. Specifying -1 is equivalent to omitting the parameter.

CONDITION CODES

CCE

CCG

CCL

CREATE

Request granted. The new process is created.

Request granted. The maxdata and/or dlsize parameters given were
illegal, but other values were used, as follows:

1. If the maxdata specified exceeds that maximum Z - DL allowed by
the configuration, the configuration maximum value is assigned.

2. If (dlsize + 100) modulo 128 is not zero, then dlsize is rounded
upward so that (dlsize + 100) modulo 128 = 0.

Request denied because the progname or entry name specified does not
exist.

SPECIAL CONSIDERATIONS

Process-Handling Capability required.

TEXT DISCUSSION

Page 7-3.

2-25

CREATE PROCESS

INTRINSIC NUMBER 101 Provides the ability to assign
$STDLIST and $STDIN to any file.

The CREATERPROCESS Intrinsic allows you to assign the system defined files, $STDIN and
$STD LIST, to any file at process creation time. You are not limited to system defined defaults.
Note that Process-Handling capability is required to call this intrinsic, and that it may not be
called in split stack mode. If the intrinsic is called with the error parameter omitted, an invalid

I address for parameter error is returned. In split stack mode, the calling process will be aborted.

I

PARAMETERS

error

pin

progname

itemnums

items

integer (required)
An integer indicating success or failure type. (See Table E-14.) ~- +: - l !)

integer (required)
An integer in which the PIN of the newly created process is returned.
If there is an error in creating the new process, i.e., parameter error> 0
a zero is returned.

byte array (required)
A byte array containing a string terminated by any non-alphanvmeric
character other than a period or a slash which specifies the name of the
program file to be run by the new process.

integer array (optional)
An array containing the item numbers (in any order) of the options you
want to use in creating a new process. This array must contain a zero as
its last element to indicate the end of the option list. (See Figure 2-0).

logical array (optional)
An array containing the items (in the same order as the item numbers
in itemnums), to be used in creating the new process. (See Figure 2-0.)

CONDITION CODES

CCE No error.

CCL Unsuccessful.

CCG Successful. Error numbers preceded by a minus sign (-) indicate a
warning only. (See Table E-14.)

SPECIAL CONSIDERATIONS '--fa.CJ t ,::: - l ~
Process-Handling capability required.

TEXT DISCUSSION

None.

JUL 1981

The item numbers in the array itemnums indicate the options to be applied in creating the new process. The
corresponding items in the array items give the information necessary for each option to be used.

Item number

2

3

4

5

6

7

8

9

10

11

12

NOTES

Item

A pointer to a byte array containing the name of the entry point in the program where the
new process is to begin execution. The name is specified as a string of characters terminated
by a blank.

An integer containing a parameter to be passed to the new process (accessed through 0-4
of the outer block).

A logical value containing the load option flags to be used in loading the program file for the
new process. This parameter has the same definition as the flags parameter of the CREATE
intrinsic.

An integer specifying the initial stack size (0 - Z).

An integer specifying the initial Dlsize (DL-DB) for the new process.

An integer specifying the maximum stack size (DL-Z) for the new process (i.e. MAXDATA).

A string of 2 ASCII characters specifying the priority class in which the new process is to be
scheduled. ("CS", "DS", or "ES".)

A pointer to a byte array containing the definition of a file to be used as $STDIN for the
new process. (See description below).

A pointer to a byte array containing the definition of a file to be used as $STD LIST for the
new process (see description below).

A logical value indicating suspension and anticipated source of re-activation. Specification
of this parameter causes the newly created process to be ACTIVATEd automatically upon
creation completion. The meanings of the individual bit fields of this parameter are the same
as those of the susp parameter of the ACTIVATE intrinsic.

A pointer to a byte array containing a string of information to be passed to the new process.
The length of the string is specified with item number 12.

An integer specifying the length in bytes of the string specified with item number 11.

if item numbers 8 or 9 are not specified, the default $STD!N and $STDL!ST wi!! be used in creating the new
process. These defaults are the current $STD IN and $STD LIST files for the creating (father) process.

Item number 8 indicates that the corresponding item in the item array is the address of a byte array which
contains the definition of the file to be used as $STDIN for the new process. This byte array must contain an
ASCII string (terminated by a carriage return) which is the right hand side of a file equation specifying the file
to be used as $STDIN (i.e. everything after the ":FILE formaldesignator=" portion of the file equation).

Item number 9 indicates that the corresponding item in the item array is the address of a byte array which
contains the definition of the file to be used as $STD LIST for the new process. This array is defined as above
for $STDIN.

Item numbers 11 and 12 indicate that a string is to be passed to the new process. The string will be placed just
after the global area of the new process's stack. A DB relative byte pointer to the string in the new process's
stack will be placed at 0-5 of the stack {where Q is the initial value of the 0-iegister at activation time), and
the length of the string in bytes will be placed at 0-6. If no string is specified to be passed to the new process,
0-5 and 0-6 will both contain 0.

Figure 2-0. Item Number and Corresponding Items

JUL 1981 2-27

I

CTRANSLATE

INTRINSIC NUMBER 61 Converts a string of characters from EBCDIC to
ASCII, ASCII to EBCDIC, EBCDIK to JIS (katakana),

or JIS to EBCDIK.

The CTRANSLATE intrinsic is used for character code translating, whether between the standard
computer character codes or with a user defined code. It permits you to obtain character code con­
versions within programs of your own design. In the code parameter of CTRANSLATE, the follow­
ing values specify the translation table to be used:

PARAMETERS

code

instring

outstring

stringlength

table

2-28

integer by value (required)
An integer identifying a specific translation to be used as follows:

0 =The user supplied table specified in the parameter, table.

1 = EBCDIC to ASCII.

2 = ASCII to EBCDIC.

3 = Reserved for future use.

4 = Reserved for future use.

5 = EBCDIK to JIS (katakana data).

6 = JIS to EBCDIK.

byte array (required)
The string of characters to be translated.

byte array (optional)
A byte array to which is returned the translated character string. If
outstring is not specified, all translation will occur within instring.
The parameters instring and outstring may specify the same array.

integer by value (required)
A positive integer specifying the length (in bytes) of instring.

byte array (required when code= 0)
A byte array to be used as the translation table. The contents of table,
and the order of these contents, define the translation process. The
length of table may be as large as 256 bytes, but it needs to be only as
large as the largest numeric value of any source byte in instring. The
table is constructed such that each byte in the table corresponds to a
byte value in the source string to be translated; for example, the fifth
byte in the table gives the code to be substituted for source bytes
whose value is 4.

CTRANSLATE

CONDITION CODES

CCE Request granted. Translation performed successfully.

CCG Not returned by this intrinsic.

CCL Request denied because an error occurred.

TEXT DISCUSSION

Page 4-13

2-29

DASCll

INTRINSIC NUMBER 7 5 Converts a two-word binary number (double word)
to a numeric ASCII string.

A 32-bit double-word binary number can be converted to a different base and represented as a
numeric character ASCII string by issuing the DASCH intrinsic call.

FUNCTIONAL RETURN

This intrinsic returns the number of characters in the resulting string.

PARAMETERS

dword

base

string

2-30

double by value (required)
A double-word value indicating the number to be converted to ASCII
code.

integer by value (required)
An integer indicating octal or decimal conversion.
8 =octal
10 = decimal (left justified)
If any other number is entered in this parameter, the intrinsic causes
the user process to abort.

byte array (required)
The byte array into which the converted value is placed. This array
must be long enough to contain the result. No result, however, exceeds
11 characters.

For octal conversion (base = 8), 11 characters, including leading zeros,
are always returned in string, showing the octal representation of
dword. The length (numchar) returned by DASCII is the number of
significant (right justified) characters in string, excluding leading zeros.
If dword = 0, the length returned by DASCH is 1.

For decimal conversions (base = 10), dword is considered as a 32-bit,
2 's complement integer ranging from -2,147 ,483,648 to
+2,14 7 ,483,64 7. Leading zeros are removed and the numeric DASCII
result is left justified in string. If the value of dword is negative, the
first byte of the string returned contains a minus sign. If dword = 0,
only one zero character is returned to string. String can contain up to
11 characters, including the sign. If dword = 0, the length returned by
DASCII is 1.

DASCll

CONDITION CODES

The condition code remains unchanged.

TEXT DISCUSSION

Page 4-13.

2-31

DATELINE

Returns date and time information.

PARAMETERS

datebuf byte array (required)

A byte array reference, (minimum 27 characters), to which the date
and time information is returned.

byte string F r i , M a y 2 5 , 1 9 7 9 , 1 2 : 0 6 P M
byte index 0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526

I

CONDITION CODES

The condition code remains unchanged.

TEXT DISCUSSION

None

2-32

DBI NARY

Converts a number from an ASCII string to a double-vmrd bina..ry value. INTRINSIC NUMBER 7 4

The DBIN ARY intrinsic performs double-integer ASCII to binary conversion.

FUNCTIONAL RETURN

This intrinsic returns the converted double-word binary value to dual.

PARAMETERS

string

length

CONDITION CODES

CCE

CCG

CCL

TEXT DISCUSSION

Page 4-13.

byte array (required)
Contains the octal or signed decimal number (in ASCII characters) to
be converted. If the character string in this array begins with a percent
sign (%),it is treated as an octal representation. If the string begins with
a plus sign, minus sign, or number, it is treated as a decimal
representation.

integer by value (required)
An integer representing the length (number of bytes) in the string
containing the ASCII-coded value. If the value of length is 0, the
intrinsic returns 0 to the calling process. If the value of length is less
than 0, the intrinsic causes the user process to abort.

Successful conversion. A double-word binary value is returned to the
program.

A word overflow, possibly resulting from too many characters (string
number too large), occurred in the word returned.

An illegal character was encountered in string. For example, the digits 8
or 9 specified in an octal value.

2-33

DEBUG

INTRINSIC NUMBER 99 Invokes the DEBUG facility.

DEBUG;

PARAMETERS

None.

CONDITION CODES

The condition code remains unchanged.

TEXT DISCUSSION

MPE DEBUG/Stack Dump Reference Manual.

2-34

DLSIZE

Expands or contracts the area between DL and DB
in multiples of 128 words.

INTRINSIC NUMBER 135

This intrinsic causes the area between DL and DB to be expanded or contracted within the stack
segment. All current information within the area is saved on expansion. If contracting, data in the
area which is to be contracted is lost. A request for contraction less than the initial DL size of the
area causes the initial DL size to be granted and an error condition (CCL) to be returned. If the size
requested causes the stack to exceed the maximum size permitted by the stack area (Z - DL), only
this maximum is granted.

All addressing within the DL to DB area is DB relative negative indexing. Therefore, SPL is the only
language, at present, which can access this area for you. If you wish to access this area in SPL,
please note that the original data is not moved relative to DB on expansion or contraction of the
area. For example, if a variable is located at DB -10 before an expansion, it will be at DB - 10 after
the expansion.

FUNCTIONAL RETURN

This intrinsic returns the size actually granted. This value is a negative quantity except on error
condition CCL when it is possible to have a positive value returned.

PARAMETERS

size

CONDITION CODES

CCE

CCG

CCL

integer by value (required)
A negative integer representing the new size of the DL to DB area. A
size of 0 is permitted and resets the DL to DB area to the original value
assigned when the process was created (initial DL). (This is the only
way to contract the DL to DB area.) The size granted will be an absolute
value which is rounded up so that the distance between the beginning
of the segment to DB is a multiple of 128 words.

Request granted. The value returned is at least as large as the value
requested,

Requested size exceeded maximum limit allowed. The maximum limit
allowable is granted and its size is returned.

1. An illegal size parameter was specified. The size parameter was a
positive integer or the negative size requested was smaller than the
original DL to DB area. The original area size assigned when the
stack segment was created is granted and this size is returned as a
negative value.

2-35

DLSIZE

TEXT DISCUSSION

Page 4-22.

2-36

2. The data segment is a FROZEN stack segment which cannot be
changed until the system UNFREEZES it. The area remains
unchanged. The value returned is a positive integer size of the area
and denotes this special error conditions.

DMOVIN

Copies data from data segment to stack. INTRINSIC NUMBER 132

A process can copy data from an extra data segment into the stack by issuing the DM OVIN intrinsic
call. A bounds check is performed by the intrinsic on both the extra data segment and the stack to
insure that the data is taken from within the data segment boundaries and moved to an area within
the stack boundaries. For example, in the diagram shown below, if you wish to move 4 words from
locations 422 through 425 of the data segment whose index is 21 to DB + 40 through DB + 43 of
your stack, the intrinsic call would be

The index is 21 (from GETDSEG, see page 2-111); displacement (disp) within the data segment is
422; the number of words to move into the stack is 4; and the DB relative location to begin
transferring the data is the address of ARA(lO). If ARA(lO) is at DB+ 40, the end result will be the
4 words moved to DB+ 40 through DB+ 43 within the stack, as shown below.

DB
ARA(O)
ARA(1)

ARA(10)DB+40
41
42
43

Q

s

z

STACK

042503
045501
047113
040522

0

422
423
424
425

DAT A SEGMENT
(GETDSEG INDEX= 21)

042503
045501
047113

040522

12000 I

2-37

DMOVIN

PARAMETERS

index

disp

number

location

CONDITION CODES

CCE

CCG

CCL

logical by value (required)

A word containing the logical index of the extra data segment, obtained
from a GETDSEG intrinsic call.

integer by value (required)

The displacement of the first word in the string to· be transferred, from
the first word in the data segment. This must be an integer value greater
than or equal to zero.

integer by value (required)

The size of the data string to be transferred, in words. This must be an
integer value greater than or equal to zero.

logical array (required)

The array (buffer) in the stack where the data string is to be moved.

Request granted.

Request denied because of bounds-check failure.

Request denied because of illegal index or number parameter.

SPECIAL CONSIDERATIONS

Data-Segment Management Capability required.

TEXT DISCUSSION

Page 8-15.

2-38

DMOVOUT

Copies data from stack to extra data segment. INTRINSIC NUMBER 133

The DMOVOUT intrinsic copies data from the stack to an extra data segment. A bounds check is
initiated to insure that the data is taken from an area within the stack boundaries and moved to an
area with the extra data segment boundaries.

In the example shown below,-if you wish to move 4 words from DB+ 20 within your stack to the
data segment whose index is 2 (from a GETDSEG call, see page 2-111), starting at location 201
within the segment, the intrinsic call could be

The index is 2; the displacement (disp) within the data segment is 201; the number of words to be
moved to the data segment is 4; a11d the location of the data within the stack is the address of
ARA(lO). If ARA(10) is at DB + 20, the end result is that the 4 words within the stack \\'ill be
moved to words 201 through 204 of the data segment, as shown below.

DL

DB
ARA(O)
ARA(1)

ARA (10) DB+20
21
22
23

Q

STACK

054517
052522
047101
046505

0

201
202
203
204

I

DAT A SEGMENT
(GETDSEG INDEX= 2)

054517
052522
047101
046505

40961
----~~~~~~~~

2-39

END LOG

INTRINSIC NUMBER 211 Marks the end of a user logging transaction.

The ENDLOG intrinsic posts a special record to the logging file to mark the end of a logical
transaction in the logging file. When the record is posted, ENDLOG flushes the user logging memory
buffer to ensure that the record gets to the logging file.

The data parameter of the intrinsic can be used to post user data to the log file. This function of
the procedure is identical to the WRITELOG intrinsic.

PARAMETERS

data

/en

index

mode

status

CONDITION CODES

array (required)
An array in which the actual information to be logged is passed. A log
record contains 128 words of which 119 words are available to the user.
Because of this, the most efficient use of log file space is a multiple of
119 words.

integer (required)
The length of the data in data. A positive count indicates words and a
negative count indicates bytes. If the length is greater than 119 words,
the information in data will be divided into two or more physical log
records.

double (required)
The parameter returned from OPENLOG that identifies the user's
access to the logging file.

integer (required)
An integer which specifies whether you want your process impeded by
the logging process if the logging buffer is full. If it is not possible to
log the transaction and the mode is set to nowait, the ENDLOG intrin­
sic will return an indication in the status word that the request was not
completed. Mode zero indicates wait; mode one indicates nowait.

integer (required)
An integer that the logging system uses to return error information to
the user. Zero indicates no errors.

The condition code remains unchanged.

TEXT DISCUSSION

None.

JUL 1981 2-40a I

DMOVOUT

PARAMETERS

index

disp

number

location

CONDITION CODES

CCE

CCG

CCL

logical by value (required)
A word containing the logical index of the extra data segment, obtained
through a G ETDSEG call.

integer by value (required)
The displacement, in the extra data segment, of the first word of the
receiving buffer from the first word in the data segment. This value
must be an integer greater than or equal to zero.

integer by value (required)
The size of the data string to be transferred, in words. This must be an
integer value greater than or equal to zero.

logical array (required)

The array (buffer) in the stack containing the data to be moved.

Request granted.

Request denied because of bounds-check failure.

Request denied because of illegal index or number parameter.

SPECIAL CONSIDERATIONS

Data-Segment Management Capability required.

TEXT DISCUSSION

Page 8-15.

2-40

EXPANDUSLF

Changes length of a USL file. INTRINSIC NUMBER 84

You can increase or decrease the length of a USL file by calling the EXP ANDUSLF intrinsic.

When this intrinsic is executed, a new USL file is created whose length is records longer or shorter
than the USL file specified by uslfnum. The old USL file is copied to the new file with the same file
name, and the old USL file then is deleted.

FUNCTIONAL RETURN

This intrinsic returns the new file number. If an error occurs, the error number is returned instead
of the new file number. The condition code therefore must be tested immediately on return from
this intrinsic. If an error number were to be used as a file number, unpredictable results would
occur.

PARAMETERS

uslfnum

records

CONDITION CODES

CCE

CCG

CCL

integer by value (required)
A word identifier supplying the file number of the file.

integer by value (required)
A signed integer specifying the number of records by which the length
of the USL file is to be changed. If records is positive, the new USL file
is longer than the old USL. If records is negative, the new USL file is
shorter than the old USL.

Request granted. The new file number is returned.

Not retu..~ed by this intrinsic.

Request denied. One of the following error numbers is returned.

Error Number

0

1

l\".'.lea...11.ing

The file specified by uslfnum was empty,
or an unexpected end-of-file was encoun­
tered when reading the old uslfnum, or an
unexpected end-of-file was encountered
when writing on the new uslfnum.

Unexpected i..11put/output error occurred.
This can occur on the old uslfnum or the
new uslfnum to which the intrinsic is
copying the information.

2-41

EXPANDUSLF

Error Number

7

8

9

10

11

TEXT DISCUSSION

MPE Segmenter Reference Manual.

2-42

Meaning

The intrinsic was unable to open the new
USL file.

The intrinsic was unable to close (purge)
the old USL file.

The intrinsic was unable to close (save) the
new USL file.

The intrinsic was unable to close
$NEWPASS.

The intrinsic was unable to open
$0LDPASS.

FATHER

Requests PIN of father process. INTRINSIC NUMBER 109

A process can determine the Process Identification Number (PIN) of its father by issuing the
FATHER intrinsic call.

FUNCTIONAL RETURN

This intrinsic returns the PIN of the process' father.

CONDITION CODES

CCE Request granted. The father is a user process.

CCG Request granted. The father is a job or session main process.

CCL Request granted. The father is a system process.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

Page 7-14.

2-43

FCARD

Drives the HP 7260A Optical Mark Reader (OMR)

The FCARD intrinsic allows you to control the operation of the 7260A OMR programmatically.
This is achieved through passing a parameter (recode), corresponding to the function of FCARD
desired, from your program to FCARD. FCARD returns to the program parameter values which
indicate the success or the cause of failure of execution, the status of the 7260A, the file number
of the 7260A/terminal file for which the function has been performed and the number of columns
read at the completion of a read request.

PARAMETERS

recode

2-44

integer (required)
A positive integer represented as an input or output parameter. As an
input parameter, recode requests one of the following twelve options
(functions):

0 = Open the reader and the terminal as a file and return to the
program the fi/enum through SPL/3000 conventions.

1 = Read a single card whether in ASCII or in column image format.
See Section V for descriptions of ASCII and column image read­
ing formats.

2 = Select the previously read card by routing the card into the select
output hopper (providing option 002 of the 7260A is installed).

3 = Retransmit data from the previously read card. This transmission
may be performed in ASCII or column image reading formats,
depending on latest issued FCARD call specifying recode equal to
11or12.

4 =Temporarily suspend the program awaiting an operator action
(depress the 7260A "READY" switch). This particular call to
FCARD will maintain control and will not be completed until the
operator presses the 7260A "READY" switch.

10 = Cause the 7260A motor to come to a stop and de-activate MUTE
for the associated terminal, if muted. When MUTE is activated and
the 7260A is in its "READY" state, data transmission from the
computer and from the 7260A to the terminal is disabled.

11 = Cause the output format of the subsequent read (recode=l) and
retransmit (recode=3) requests to be performed in the image read­
ing format.

In image mode reading, count is returned to the program with the
number of columns which have been transmitted.

FCARD

12 = Cause the output format of the subsequent read (recode=l) and
retransmit (recode=3) requests to be performed in the ASCII read­
ing format.

In ASCII mode reading, count is returned to the program with the
number of characters (columns) transmitted.

13 = Cause the 7260A optional bell to ring (providing option 004 is
installed) .

17 =Enable the "echo-on" function of the computer.

18 =Disable the "echo-on" function of the computer.

20 =Close the reader/terminal file opened with recode=O. This effec­
tively completes the program.

As an output parameter, recode indicates to the program whether a
call to FCARD has been properly executed. The indication given by
the value of recode is as described below:

0 = Indicates that the request, i.e., the call to FCARD, has been suc­
cessfully performed. For the following conditions, when output
recode=O, the specified parameters are significant to the program:

a. If the request was to open a file (recode=O), then filenum is
significant.

b. If the request was either to read (recode=l) or to retransmit
(recode=3), then bufadr (the first byte may contain status infor­
mation identical to that contained in the parameter status),
count, filenum and status are significant.

c. If the request was to select the previously read card (recode=2),
then status is significant.

d. If the request was to perform a temporary suspension of the
program (recode=4), then status is significant.

e. For all other requests (recode=l0,11,12,17 ,18 and 20), none of
the other parameters are significant.

1 =Indicates that recode specified in the request was not one of the
following legal values: O,l,2,3,4,10,11,12,13,17 ,18 or 20.

2 =Indicates that FCARD was unable to open the 7260A/terminal
pair as a file. This error is not recoverable, thus the program
should indicate an error and terminate itself.

4 = Indicates that FCARD has encountered a file read or write error
while accessing the 7260A. This error is not recoverable, thus the
program should indicate an error and terminate itself.

5 =Indicates that FCARD was unable to close the 7260A/terminal
file. This error is not recoverable, thus the program should indi­
cate an error and proceed to a normal termination.

2-45

FCARD

filenum

bufadr

count

status

2-46

6 =Indicates that a logical end-of-data (:JOB, :EOJ, :EOD and
:DAT A) was encountered while reading data in response to either
a read or retransmit request.

7 = Indicates that FCARD has encountered a file error on requests for
either enabling or disabling the echo function.

8 = Indicates that FCARD has detected a data dropout condition
while the 7260A was transmitting. You should request a retrans­
mission of the data or status (see recode=3).

integer (required)
A word identifier supplying the file number of the file associated with
the reader /terminal file. This file number is returned to the program
from FCARD with output recode=O. It must be provided to FCARD
on all requests.

integer array (required)
The array to which the record is to be transferred. This parameter
should be set to 120 words.

integer (required)
A positive integer which is returned to the program upon completion of
a read (recode=l) or a retransmit (recode=3) request indicating the num­
ber of columns which have been transferred from the 7260A OMR.

integer (required)

An integer indicating whether the OMR has successfully performed or
responded to the read, select, retransmit, or temporary suspend request.
If status is equal to zero, then the request has been successfully
performed. If status is not equal to zero, then it contains an octal value
specifying the OMR condition. The options are:

OCTAL 22

OCTAL 07

OCTAL 11

READY status. Indicates that the OMR READY
push button has been pressed (recode=4). Would
also indicate that the OMR is ready but there is no
data to be retransmitted (recode=3).

Input hopper empty or hopper full status. Can
either be returned upon a read request (recode=l)
or upon a retransmit request, if there is no data to
retransmit (recode=3).

Pick fail status. Can either be returned upon a read
request (recode=l) or upon a retransmit request, if
there is no data to retransmit (recode=3).

CONDITION CODE

OCTAL 37

OCTAL 14

OCTAL 13

FCARD

Not ready status. Can either be returned upon a
read request (recode=l) or upon a retransmit re­
quest (recode=3). This status is provided by the
OMR if the operator has pushed the OMR STOP
push button or if a lamp has burned out in the
OMR read head.

Select successful status. Indicates that the OMR
has successfully selected the card upon the select
request (recode=2).

Select hopper full status. Indicates that the OMR 's
select hopper was full when the select request
(recode=2) was issued.

FCARD derives the parameter status by assigning the contents of the
first byte of bufadr to status, if this byte equals one of the values of
status given above after a read (recode=l), select (recode=2) or retrans­
mit (recode=3) request, or if this byte equals octal 22 after a request
for a temporary suspension of the program (recode=4).

For more details on the OMR status, refer to the HP 7260A Operating
and Service Manual (HP Part No. 07260-90001).

The condition code remains unchanged.

TEXT DISCUSSION

Page 5-28.

2-47

FCHECK

INTRINSIC NUMBER 10 Requests details about file input/output errors.

:i.l.i.i .. 1~ .. :..-.1iiiili~
:·::::;:;:::::::::::::::::::·:·:·: ::::::::::::;:::::::::::::;:;:::::::::::::;:;:;:::;:;:;:::::::;:;:::=:::;:::;:::::::::;:::;:;:;:·:·:·:········

When a file intrinsic returns a condition code indicating a physical input/output error, additional
details may be obtained by using the FCHECK intrinsic call. This intrinsic applies to files on any
device.

FCHECK accepts zero as a legal filenum parameter value. When zero is specified, the information
returned in errorcode reflects the status of the last call t~ FOPEN. When an FOPEN fails, there is
obviously no file number which can be referenced in filenum. Therefore, when an FOPEN fails, a
filenum of zero can be used in the FCHECK intrinsic call to obtain the errorcode only. If the tlog,
blknum, or numrecs parameters are specified, a zero value will be returned to these parameters. If a
filenum of zero is used for a file which has been previously FOPENed, but not yet FCLOSEd, the
returned errorcode will be meaningless.

PARAMETERS

filenum

errorcode

tlog

bl kn um

numrecs
numrecs

2-48

integer by value (optional)
A word identifier supplying the file number of the file for which error
information is to be returned. If omitted, FCHECK assumes you want
the last FOPEN error.

integer (optional)
A word to which is returned an 8-bit code (16 bits for KSAM) specifying
the type of error that occurred. If the previous operation was successful
or an EOF is encountered, all 16 bits are set to zero.
Default: The error code is not returned.

integer (optional)
A word to which is returend the transmission log value recorded on the
last data transfer. This word specifies the number of words actually
read or written if an input/output error occurred.
Default: The transmission log value is not returend.

double (optional)
The physical record count, if the file is not a spool file; the logical
record count if it is a spool file. The physical count is the number of
physical records transferred to or from the file since a) FOPEN, for

fixed and undefined length record files; b) the last rewind, rewind/
unload space forward or backward to tape mark, for variable length
record files.

integer (optional)
A word to which is returned the number of logical records in the bad
block (blocking factory).
Default: The number of logical records is not returned.

FCHECK

In the 16 bits returned to the word specified by the errorcode parameter, the low-order eight bits
contain the error-type code that shows what kind of error occurred. (Non KSAM access.)

The following codes are returned in errorcode by FCHECK:

Code
(Decimal) Meaning

0
1

2
3
5
8
9

10
11
12
16
17
18
19
20
21
22
23
24
25

' 26

27
28

• 29
• 30

31
32
33
34
35
36
37
38
39
40
41
42
43

44

45

DEC 1981

End of file.
Illegal DB register setting (typically, a request in split-stack mode
when it is illegal).
Illegal capability.
Parameter omitted in IOW AIT.
DRTnumber> 255.
Illegal parameter value.
Undefined file type.
Invalid record size.
Invalid block size.
Record number out of range.
More than 255 FOPENs applied against one file.
Magnetic tape runaway (tape is blank).
Device did a power-up reset.
Line printer did a VFC reset.
Invalid operation.
Data parity error.
Software time-out.
End of tape.
Unit not ready.
No write ring on tape.
Transmission error (No defective track table entry is made on foreign
discs).
Input/output time-out.
Timing error or data overrun.
Start input/output (SIO) failure.
Unit failure.
End of line (special character terminator).
Software abort of input/output operation.
Data lost.
Unit not on-line.
Data set not ready.
Invalid disc address.
Invalid memory address.
Tape parity error.
Recovered tape error.
Operation inconsistent with access type.
Operation inconsistent with record type.
Operation inconsistent with device type.
The tcount parameter value exceeded the recsize, but the multirecord
access aoption was not specified when the file was opened.
The FUPDATE intrinsic was called, but the file was positioned at
record zero. (FUPDATE must reference the last record read, but no
previous record was read.)
Privileged file violation.

2-49

I

FCHECK

I 2-50

Code
(Decimal)

46

47
48
49
50
51
52

53
54
55
56
57
58

-;;:. 59
60
61
62
63
64
66
67
68
69
70
71

72
73
76
77
78
79
80

'81
82
83
84

85

86
87
88
89

Meaning

File space on all discs in the device class specified is insufficient to
satisfy this request.
Input/output error on a file label.
Invalid operation due to multiple file access.
Unimplemented function.
The account referenced does not exist.
The group referenced does not exist.
The referenced file does not exist in the system (permanent) file
domain.
The referenced file does not exist in the job temporary file domain.
The file reference is invalid.
The referenced device is not available.
The device specification is invalid or undefined.
Virtual memory is not sufficient for the file specified.
The file was not passed (typically, a request for $0LDP ASS when there
is no $0LDPASS).
Standard label violation.
Global RIN not available.
Group disc file space exceeded.
Account disc file space exceeded.
Non-sharable device (ND) capability required, but not assigned.
Multiple RIN (MR) capability required, but not assigned.
Plotter limit switch reached.
Paper tape error.
System internal error.
Miscellaneous (ATTACHIO) input/output error.
Header or trailer 1/0 error.
Process file access information area exhausted. (Try preparing with
NOCB.)
Invalid file number.
Bounds check violation.
Input buffer absent in IOWAIT.
NO-WAIT input/output operation is pending.
There is no NO-WAIT input/output for any file.
There is no NO-WAIT input/output for file specified.
Configured maximum number of spoolfile sectors would be exceeded
by this output request.
No SPOOL class defined in system.
Insufficient space in SPOOL class to honor this input/output request.
Extent size exceeds maximum allowable.
The next extent in this spoolfile resides on a device which is unavail­
able to the system (i.e., the device is :DOWN).
Operation inconsistent with spooling, e.g., attempt to read hardware
status.
Spool process in temal error.
Offset to data is greater than 255 sectors.
Spooling error.
Power failure.

JUL 1981

Code
(Decimal)

90

91

92
93
94
95
96

97
98
99

100
101
102
103
104
105
106
107
108
109
110

111
112
113
114
115
116
117
118
119
121
122
123
124
126
127
128
129
130
131
132
139
148

JUL 1981

FCHECK

Meaning

The calling process requested exclusive access to a file to which another
process has access.
The calling process requested access to a file to which another process
has exclusive access.
Lockword violation.
Security violation.
Creator conflict in use of FRENAME intrinsic (user is not the creator).
"BROKEN" terminal read.
Miscellaneous disc input/output error (device may require HP Customer
Engineer attention).
CONTROL Y processing requested, but no CONTROL Y pin exists.
Input/output read time has overflowed.
Magnetic tape error. Beginning of tape (BOT) found while requesting
a backspace record (BSR) or a backspace file (BSF).
Duplicate file name in the system file directory.
Duplicate file name in the job temporary file directory.
Directory input/output error.
System directory overflow.
Job temporary directory overflow.
Illegal variable block structure.
Extent size exceeds maximum allowable.
Offset to data greater than 255 sectors.
Inaccessible file due to a bad file label.
Illegal carriage-control option.
The intrinsic attempted to save a system file in the job temporary file
directory.
User lacks save files (SF) capability.
User lacks private volumes (UV) capability.
Volume set not mounted - mount problem.
Volume set not dismounted - dismount problem.
Attempted rename across volume sets.
Invalid tape label FOPEN parameters.
Attempted to write on an unexpired tape file.
Invalid header or trailer tape label.
Input/output error positioning tape for tape labels.
Tape label lockword violation.
Tape label table overflow.
End of tape volume set.
Append request to labelled tape.
Character set number must be between 0 and 31.
Form number must be between 0 and 31.
Logical page number must be between 0 and 31.
Vertical format number must be between 0 and 31.
Number of copies must be between 1 and 32767.
Number of overlays must be between 1 and 8.
Page length parm must be between 12 (=3") and 68 (=17").
Deleted sectors on IBM diskette.
Inactive RIO record accessed.

2-51 I

FCHECK

I 2-52

Code
(Decimal)

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
170

171
172
173
174
175
176
177
178
179
180

181
182
183
184
185
186
187
188
189
190
191

192
201
202
203

Meaning

Missing item number or return variable.
Invalid item number.
Undefined file type (invalid file type in FOPTION of FOPEN).
Unrecognized key word in FOP EN dl:vice parameter.
Expecting";" or "er" in FOPEN device parameter.
Environment file open error.
File not environment file. Check file code or record size.
Header record incorrect.
Uncompiled environment file.
Error reading environment file.
Error closing environment file.
Error doing FDEVICECONTROL from environment file.
Too many parameters in device string-overflow.
Expecting "= " after keyword in device parameter ..
"ENV" back reference in file equation incorrect.
Device parameter too large or missing carriage return.
Invalid density specification.
FFILEINFO failed in accessing remote spoolfile.
Spoolfile label error, can't insert ENV file name.
The record is marked deleted. FPOINT positioned pointer to a record
that was marked for deletion.
Duplicate key value (KSAM error).
No such key (KSAM error).
Tcount parameter larger than record size (KSAM error).
Cannot get extra data segment (KSAM error).
Internal KSAM error.
Illegal extra data segment (KSAM error).
Too many extra data segments for this process (KSAM error).
Not enough virtual memory for extra data segment (KSAM error).
File must be locked before issuing this intrinsic (KSAM error).
The KSAM file must be rebuilt because this version of KSAM does not
handle the file built by previous version.
Invalid key starting position (KSAM error).
File is empty (KSAM error).
Record does not contain all keys (KSAM error).
Invalid record number (KSAM FFINDN intrinsic error).
Sequence error in primary key (KSAM error).
Invalid key length (KSAM error).
Invalid key specification (KSAM error).
Invalid device specification (KSAM error).
Invalid record format (KSAM error).
Invalid key blocking factor value (KSAM error).
Record does not contain search key for deletion. Specified key value
points to record which does not contain that value.
System failure occurred while KSAM file was opened.
Invalid ID sequence (CS error).
Invalid telephone number (CS error).
No telephone list specified (CS error).

JUL 1981

Code
(Decimal)

204
205
212
214

216
217
221
240
241
242
243
244
245
246
247
248
249
250
251

252
253

254
255

Meaning

Unable to allocate an extra data segment for DS/3000.
Unable to expand the DS/3000 extra data segment.

FCHECK

File number returned from IOWAIT is not a DS line number.
The requested DS line has not been opened with a user : DSLINE
command.
Message rejected by remote computer (DS error).
Insufficient amount of user stack available (DS error).
Invalid DS message format. (Internal DS error.)
Local communication line not opened by operator (DS error).
DS line in use exclusively or by another subsystem.
Internal DS software malfunction.
Remote computer not responding (DS error).
Communications interface error. Remote computer reset the line.
Communications interface error. Receive timeout.
Communications interface error. Remote computer has disconnected.
Communications interface error. Local timeout.
Communications interface error. Connect timeout.
Communications interface error. Remote computer rejected connection.
Communications interface error. Carrier lost.
Communications interface error. The local data set for the DS line went
not ready.
Communications interface error. Hardware failure.
Communications interface error. Negative response to the dial request
by the operator.
Communications interface error. Invalid input/output configuration.
Communications interface error. Unanticipated error condition.

CONDITION CODES

CCE

CCG

CCL

Request granted.

Not returned by this intrinsic.

Request denied because filenum was invalid or a bounds violation
occurred while processing this request and errorcode is 73.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

Page 10-68

JUL 1981 2-53 I

FCLOSE

INTRINSIC NUMBER 9 Closes a file.

The FCLOSE intrinsic terminates access to a file. This intrinsic applies to files on all devices.
FCLOSE deletes the buffers and control blocks through which the user process accessed the file. It
also deallocates the device on which the file resides and it may change the disposition of the file. If
you do not issue FCLOSE calls for all files opened by your process, such calls are issued automati­
cally by MPE when the process terminates. All magnetic tape files are left offline after an FCLOSE
to indicate to the console operator that they may be removed.

The FCLOSE intrinsic can be used to maintain position when creating or reading a labeled tape file
that is part of a volume set. If you close the file with a disposition code of 3, the tape does not
rewind, but remains positioned at the next file. If you close the file with a disposition code of 2, the
tape rewinds to the beginning of the file but is not unloaded. A subsequent request to open the file
does not reposition the tape if the sequence (seq) subparameter is NEXT, or default (1). A
disposition code of 1 (rewind and unload) implies the close of an entire volume set.

When the logical end-of-data is encountered during reading, the CCG condition code is returned to
the user process. On magnetic tape, the end-of-data can be denoted by a physical indicator such as a
tape mark. When a file is read that spans more than one volume of labeled magnetic tape, the user
program is suspended until the operator has completed mounting the next tape. CCG is not returned
when end-of-tape is encountered. On disc, the end-of-data occurs when the last logical record of the
file is passed. In this case, the CCG condition code is returned and no record is read. If the file is
embedded in an input source containing MPE commands, the end-of-data is indicated when an
:EOD command is encountered, but the :EOD command itself is not returned to the user. The
end-of-data is indicated by a hardware end-of-file , including :EOF:, or on $STDIN by any record
beginning with a colon, or on $STDINX by :EOD. In addition, on the standard input device for a
job, as opposed to a session, :JOB, :EOJ, or ·:DATA indicate end-of-data.

PARAMETERS

filenum

disposition

2-54

integer by value (required)
A word identifier supplying the file number of the file to be closed.

integer by value (required)
Indicates the disposition of the file, significant only for files on disc and
magnetic tape (ignored by Foreign Disc Facility). This disposition can
be overridden by a corresponding parameter in a : FILE command
entered prior to program execution. The disposition options are defined
by two-bit fields, as follows:

(13:3) Domain Disposition

NOTE

Bit groups are denoted using the standard SPL notation.
Thus, bits (13 :3) indicates bits 13, 14, and 15.

JUL 1981

FCLOSE

0 - No change. The disposition code remains as it was before the file
was opened. Thus, if the file is new, it is deleted by FCLOSE; other­

wise, the file is assigned to the domain to which it belonged previously.
An unlabeled tape file is rewound. If the file resides on a labeled tape,
the tape is rewound and unloaded.

1 - Permanent file. If a disc file, it is saved iB. the system file domain. If
the file is a new or old temporary file on disc, an entry is created for it
in the system file directory. An error code is returned, and the file
remains open, if a file of the same name already exists in the directory.
If the file is an old permanent file on disc, this disposition value has no
effect. If the file is stored on magnetic tape, that tape is rewound and
unloaded. I

2 - Temporary job file (rewound). The file is retained in the user's
temporary (job/session) file domain and can thus be requested by any
process within the job/session. If the file is a disc file, the uniqueness
of the file name is checked. If a file of the same name in the temporary I
file domain exists already, an error code is returned and the file remains
open. If the file resides on unlabeled magnetic tape, the tape is re­
wound. If the file resides on labeled magnetic tape, the tape is back- I
spaced to the beginning of the presently opened file.

3 =Temporary job file (not rewound). This option has the same effect
as disposition code 2, except that tape files are not rewound. In the
case of unlabeled magnetic tape; if this FCLOSE is the last done on the
device (no other OPENs outstanding) the tape is rewound. If the I
file resides on a labeled magnetic tape, the tape is positioned to the
beginning of the next file on the tape. Note that this disposition does
not apply to disc files.

4 =Released file. The file is deleted from the system.

NOTE

Although the basic functions covering magnetic tape files are

covered above in dispositions 0 through 4, it is recom­
mended that you read the discussion of magnetic tape files
in Section X for special considerations not here.

(12:1) Disc Space Disposition (for fixed length and undefined format
files only).

1 = Returns to the system any disc space allocated beyond the end­
of-file indicator. The EOF becomes the file limit. No records may be
added to the file beyond this new limit.

Note: No space will be returned to the system if used with variable
iength files.

0 = Does not return any disc space allocated beyond the end-of-file
indicator.

2-55

I
I

I

I

FCLOSE

sec code

CONDITION CODES

CCE

CCG

CCL

When a file is opened by the FOPEN intrinsic, a file count (maintained
by the system) is incremented by one. When the file is FCLOSEd, the
file count is decremented by one. If more than one FOPEN is in effect
for a particular file, its disposition is saved but not affected by the
FCLOSE call until the file count is decremented to zero. Then the
effective (saved) disposition is the smallest non-zero disposition
parameter specified among all FCLOSE calls issued against the file. For
example, a file XYZ is opened three successive times by a process. The
first FCLOSE disposition is 1, the second FCLOSE disposition is %14,
and the third (and last) FCLOSE disposition is %12. The final
disposition on the file XYZ will be disposition 1 (permanent file and no
return of disc space).

Bits (0:12) are reserved for MPE and should be set to zero.

integer by value (required)
Denotes the type of security initially applied to the file, significant only
for new permanent files (ignored by Foreign Disc Facility). The options
are:
0 - Unrestricted access - the file can be accessed by any user, unless
prohibited by current MPE provisions.

1 - Private file creator security - the file can be accessed only by its
creator.

The file was closed successfully.

Not returned by this intrinsic.

The file was not closed, perhaps because an incorrect filenum was
specified, or because another file with the same name and disposition
exists in the system. Additionally, an illegal disposition, 5, 6, or 7, was
specified. This can be detected by FCHECK returning an error 49.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

Page 10-39

2-56 JUL 1981

FCONTROL

Performs control operations on a file or device. INTRINSIC NUMBER 13

The FCONTROL intrinsic performs various control operations on a file or on the device on which
the file resides.

These operations include:

• Supplying a printer or terminal carriage-control directive.

• Verifying input/output.

• Reading the hardware status word pertaining to the device on which the file resides.

• Setting a terminal's time-out interval.

• Rewinding a file.

• Writing an end-of-file indicator.

• Skipping forward or backward to a tape mark.

The FCONTROL intrinsic applies to files on disc, tape, terminal, or line printer. Note the special
conditions that exist when FCONTROL is used with files on labeled magnetic tape. Some FCON­
TROL functions cannot be used with labeled tapes, and other functions may produce unexpected
results. (Refer to controlcodes 5, 6, 7, 8, and 9.)

PARAMETERS
filenum

controlcode

integer by value (required)
A word identifier supplying the file number of the file for which the
control operation is to be performed.

integer by value (required)
An integer specifying the operation to be performed:

0 - General Device Control. The param parameter is transmitted to the
appropriate device driver, and the value returned is transmitted to the
user through the param parameter.

1 - Line Control. A request to send the value specified in the param
parameter to the terminal or line printer driver as a carriage-control
directive. Use line controls provided by FWRITE when directing to a
disc or a spooled file.

2 - Complete Input/Output. This insures that requested input/output
has been physically completed. Valid only for buffered files. Posts the
block being written whether full or not.

2-57

FCONTROL

I

2-58

3 - Read Hardware Status Word. This operation will return in param
the status word from the device on which the file resides. The returned
value is the status of the device from the previous input/output opera­
tion, including FOPEN of the file.

4 - Set Time-Out Interval. This code indicates that a time-out interval is
to be applied to input from the terminal. If input is requested from the
terminal but is not received in this interval, the FREAD request termi­
nates prematurely with condition code CCL. The interval itself is speci­
fied, in seconds, in a word on the user's stack, indicated by param. If
this interval is zero, any previously established interval is cancelled, and
no time out occurs. Controlcode 4 is ignored if the addressed file is not
being read from the terminal. Note that this only affects the next read.

5 - Rewind File. This repositions the file at its beginning, so that the
next record read or written is the first record in the file. This code is
not valid for files accessed with append -only. Nate that on a labeled
magnetic tape file, the tape is positioned to the beginning of the opened
file, and not necessarily to the beginning of the volume.

6 - Write End-of-File. This operation is used to denote the end of a file
on disc or magnetic tape, and is effective only for those devices. If
applied to a disc file, the operation writes a logical end-of-data indicator
at the point where the file was last accessed. The disc file label also is
updated and written to disc. If the file is an unlabeled magnetic tape
file, a tape mark is written at the current position of the tape. This
controlcode is not allowed for labeled magnetic tape files.

7 - Space Forward to Tape Mark. This moves a magnetic tape forward
until a tape mark is enountered. If used on labeled magnetic tapes, the
tape is positioned to the beginning of user trailer labels, if any.

8 - Space Backward to Tape Mark. On unlabeled tapes, this moves a
magnetic tape backward until a tape mark is encountered. If used on
labeled tapes, the tape is positioned to the beginning of user header
labels, if any.

9 - Rewind and Unload Tape. This repositions a magnetic tape file at
its beginning and places the tape offline. Not allowed for labeled tapes.

NOTE

Control codes 0 and 3 will be rejected for spooled devicefiles.
Control codes 5 through 9 (magnetic tape control) will be
rejected for spooled :DATA tapes. Control codes 6 and 9 will
be rejected for labeled magnetic tape files.

Although the basic functions covering magnetic tape files are
covered above, it is recommended that you read the discus­
sion of magnetic tape files in Section III for special considera­
tions not covered here.

DEC 1981

FCONTROL

The following values for controlcode are used for changing terminal characteristics. See Section V.

10 =Change terminal input speed.

11 = Change terminal output speed.

12 = Turn echo facility on.

13 =Turn echo facility off.

14 =Disable the system break function.

15 =Enable the system break function.

16 = Disable the subsystem break function.

1 7 = Enable the subsystem break function.

18 = Disable tape mode option.

19 =Enable tape mode option.

20 =Disable the terminal input timer.

21 =Enable the terminal input timer.

22 = Read the terminal input timer.

23 = Disable parity checking.*

24 Enable parity checking.*

25 = Define line -termination characters for terminal input.

26 = Disable binary transfers.

27 = Enable binary transfers.

28 = Disable user block mode transfers.

29 =Enable user block mode transfers.

34 =Disable line deletion echo suppression.

35 = Enable line deletion echo suppression.

36 = Set parity.*

37 = Allocate a terminal.

38 = Set terminal type.

39 =Obtain terminal type information.

40 =Obtain terminal output speed.

41 = Set unedited terminal mode.

43 = Aborts pending NO -WAIT I /0 request.

45 = Enable/Disable extended wait.

46 = Enable/Disable reading writer's ID.

4 7 = Nondestructive read.

I •

I

I

*In Series 30/33 environment, FCONTROL code 36 only sets parity sense. You must additionally I
use control code 23/24 to disable/enable parity checking.

JUL 1981 2-59

FCONTROL

param

CONDITION CODES

CCE

CCG

CCL

logical (required)
If controlcode is 1, param denotes a word containing the value to be
transmitted to the terminal or line printer driver as a carriage control or
mode control directive. The carriage control directive is selected from
figure 2-3, following FWRITE.

The mode control determines whether any carriage control directive
transmitted through the FWRITE intrinsic takes effect before printing
(pre-space movement) or after printing (post-space movement). The
mode control directive is selected from the octal codes %400 or %401
in figure 2-3.

If param contains a mode control directive, then a value is returned to
param that shows the mode setting of the device as it was before the
call to FCONTROL, as follows:

Value

0
1

Meaning

Post-spacing
Pre-spacing

If controlcode is 4, param denotes a word in the user's stack that
contains the time-out interval, in seconds, to be applied to input from
the terminal.

If controlcode is 2, 5, 6, 7, 8, or 9, param is any variable or word
identifier. This parameter is needed by FCONTROL to satisfy the
internal requirements of the intrinsic. It serves no other purpose,
however, and is not modified by the intrinsic.

See Section V for param requirements when controlcode is 10 or greater.

Request granted.

Not returned by this intrinsic.

Request denied because an error occurred.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

Pages 5-1 and 10-79

2-60 JUL 1981

FDEVICECONTROL

INTRINSIC NUMBER 53 Adds a variety of control directives to a spooled device file~
currently only device files of the 2680 page printer.

FDEVICECONTROL may be used to download character sets, forms and internal or control tables
used in printing. It may also be used to control the page size, pen positioning, use of character sets
and forms, and the number of copies of each page to be printed, along with other characteristics of
the printing environment. The IFS/3000 intrinsics (which perform the same functions as FDEVICE­
CONTROL), together with the layout of character set and form set load records and the Logical
Page Table, are discussed in the IFS/3000 manual, part number 36580-90001.

PARAMETERS

filenum

target

tcount

controlcode

paraml, param2

errnum

I 2 - 6la

integer by value (required)
A word identifier supplying the file number of the spoolfile. This value
is obtained from FOPEN.

logical array (required)
This array contains data to be passed to the 2680 printer. In general,
it contains character sets, forms, or VFC information.

integer by value (required)
The length of target in words or, if the value is negative, in bytes.

integer by value (required)
The code number of the operation to be performed.

logical by value (required)
For each value of controlcode, there may be several possible values for
param1 and param2, which define the operation in more detail.

integer (required)
The File System error code returned if an error occurs. Otherwise set
to zero.

JUL 1981

FDEVICECONTROL

The following is a summary of the controlcodes described below:

Controlcode Meaning

128 Character Set Selection
129 Logical Page Activation/Deactivation Request
130 Relative Pen Displacement
131 Absolute Pen Move
132 Define Job Characteristics
133 Define the Physical Page
134 Download/Delete Character Set
135 Download/Delete Form
136 Download Logical Page Table
137 Download Multi-copy Form Overlay Table
138 Download/Delete Vertical Format Control
140 Page Control
141 Clear Environment
142 Reserved
143 Load the Default Environment

Controlcode = 128 Character Set Selection

paraml (8 :8) primary character set identification

param2 (8:8) secondary character set identification

The 2680 can contain up to 32 character sets, thus allowing the use of a
variety of fonts, styles, print rotations, and languages. Use controlcode
134 to download character sets to the printer. Use this controlcode to
select any two downloaded character sets to be the current primary and
secondary character sets.

JUL 1981

To change the secondary character set a character at a time, set the
eighth bit of the byte coding for the desired ASCII character. The 2680
will strip out this bit and print, in the secondary character set, the
character represented by the remaining 7 bit value. To change to the
secondary character set for a number of characters and over several
lines, insert a shift-out control character (control N) in the data. Insert
a shift-in control character (control 0) where you again wish to use the
primary character set.

2 - 6lb I

FDEVICECONTROL

I 2 - 61c

Controlcode = 129

paraml (O :1)

(i:l)

param2 (0:8)

(0:8)

Logical Page Activation/Deactivation Request

deactivates the Logical Page Table entry identified in
the left byte of param2.

activates the Logical Page Table entry identified in
the right byte of param2.

Logical Page Table entry (from 0 to 31) to be de­
activated.

Logical Page Table entry (from 0 to 31) to be acti­
vated.

Every physical page is composed of one or more logical pages. When the
2680 begins to print each physical page, it scans the Logical Page Table
for the first logical page labeled as active. The printer then continues
searching the table sequentially for active pages and printing them
until it has printed the last active page. At this point the 2680 performs
a physical page eject and starts the sequence again. There must be at
least one active LPT entry while the 2680 is printing.

This controlcode allows you to cancel or enable the printing of logical
pages during a job through the activation or deactivation of those pages.

Controlcode = 130 Relative Pen Displacement

paraml is a 16 bit signed integer containing the desired X displace­
ment of the pen from its current position.

param2 is a 16 bit signed integer containing the desired Y displace­
ment of the pen from its current position.

No pen movement will result from requests to move the pen off of the
logical page. As the coordinate system is based upon the current logical
page itself and not upon the page's orientation with respect to the
printer, you need not consider how the page has been rotated when
assigning displacement values to paraml and param2.

JUL 1981

JUL 1981

FDEVICECONTROL

Controlcode = 131 Absolute Pen Move

paraml is an integer containing the X coordinate of the point to
which you wish to move the pen.

param2 is an integer containing the Y coordinate of the point to
which you wish to move the pen.

The values in paraml and param2 are measured from the upper left
corner of the logical page. As with controlcode 130, you need not take
page rotation into account when assigning coordinates, and the printer
will not move the pen if the location you specify is off the logical page.

Controlcode = 132 Define Job Characteristics

paraml (0:1) 1 - the printer will print no job separation marks until
the next job is open.

(1: 1) 1 - param2 contains the maximum allowable number
of copies of each page.

param2 is significant only if paraml (1 :1) is set, and is the maximum
number of copies the printer will make of any one page for
the current job. The default maximum is 32,767.

The Spooler calls FDEVICECONTROL with this value of controlcode
to set the maximum allowable number of copies per page. You may
request any number less than or equal to this number by using control­
code 133.

2 - 61d I

FDEVICECONTROL

I 2 - 61e

Controlcode = 133 Define the Physical Page

Paraml (0:1) 1- turn ON Multi Copy Form Overlay feature.

(1:1) 1- turn OFF Multi Copy Form Overlay feature.

(2:1) 1- reserved

(3 :1) 1- redefine the physical page length.

(4: 1) 1- redefine the number of copies of each page de­
sired.

(5 :1) 1- reserved

(6:1) 1- reserved

(7 :1) 1- reserved

(8:8) New physical page length in units of .25 inches. The
length may not be less than 3.0 inches (a value of
12) or greater than 17 .0 inches (a value of 68).

param2 contains the number of copies of each page you want to print.
If this number exceeds the maximum defined in param2 of
controlcode 132, only the ma.ximum number of copies is
printed.

Although FDEVICECONTROL will accept page length values that are
multiples of .25 inches, the 2680 printer is able to produce only pages
that are multiples of .5 inches. For this reason, only use even number
values in paraml (8:8). In other words, bit 15 must always be zero.

JUL1981

JUL 1981

Controlcode = 134

Param1 (0:1

Param2 (0:1)

FDEVICECONTROL

Download/Delete Character Set

0- Download of character set into the 2680.

1- Purge the character set identified in the right
hand byte of param2 from the 2680.

0- This is the first record of a load.

1- This record is a continuation of the previous
record.

(8:8) Character set identifier (0-31)

If you attempt to download a character set having the same identifier
as one already present in the printer, then the 2680 will purge the
already present character set and repack the user area before loading
the new font. However, before the modification of the user area, the
2680 prints all data currently in its buffer, as it does whenever you
load, overlay, or delete a character set, form, or Vertical Format Con­
trol set.

Controlcode = 135

Param1 (0:1)

Param2 (0:1)

Download/Delete Form

0- Load the form set identified in the right hand
byte of param2.

1- Purge the identified form set from the 2680
printer's memory.

O - This is the first record of a load.

1- This record is logically a continuation of the pre­
vious record.

(8:8) Form set identifier (0:31).

FDEVICECONTROL will treat form sets with the same identifying
integer in a way analogous to its treatment of character sets with the
same identifiers. See controlcode 134.

2 - 61f I

FDEVICECONTROL

I 2 - 61g

Controlcode = 136 Download Logical Page Table

Paraml is not used.

Param2 (0:1) 0- This is the first record of a load.

1- This record is logically a continuation of the
previous record.

A logical page is a page of data that may or may not take up an entire
sheet of paper. It is possible to print up to 8 logical pages on one
physical page. The Logical Page Table, 513 words long, contains some
of the information needed to print up to 32 logical pages, so that the
set of up to 8 logical pages printed on any one physical page may be
varied.

Controlcode = 137 Download Multi-copy Form Overlay Table

Paraml is not used.

Param2 is not used.

This operation allows you to emulate a multi-part carbon by print­
ing up to 8 copies of a page, each on one or two different forms.
FDEVICECONTROL downloads into the printer's memory a table
containing one word of information for each of the 8 possible copies
to be overlayed with a form. The format of each word of the table is:

Bit (0:1)
(1:1)
(2:4)
(6:5)

(11:5)

- Forml is to be overlayed on the physical page.
- Form2 is to be overlayed on the physical page.
-Reserved
- Forml identifier - an integer from 0 to 31.
- Form2 identifier - an integer from 0 to 31.

JUL 1981

JUL 1981

Controlcode = 138

Paraml (0:1)

Param2 (0:1)

FDEVICECONTROL

Download/Delete Vertical Format Control

0- Load a VFC
1 - Delete a VFC

0- This is the first record of a load.

1 - This record is logically a continuation of the
previous record.

(8:8) VFC set identifier (0-31).

The Vertical Format Control table is an ASCII file downloaded to the
2680 printer in order to give specific instructions as to the print density,
location of top and bottom of page, and other specifications of the
printed page. This table is further described and illustrated in chapter 4
of the Console Operator's Guide (part number 32002-90004).

The 2680 expresses the height of a printed line in dots, and the system
uses this value to compute line positions on the page. Because these
space measurements are relative to the top of the logi,cal page, as
opposed to the physical page, you may use the same or different Veri­
cal Format Control tables for logical pages of different rotations.

Controlcode = 140 Page Control

Paraml (15 :1) 1- Do a physical page eject before going to the
specified logical page. This bit has no effect if
this is the first record since an environment load,
FOPEN or FCLOSE.

(13:2) Auto eject mode.

Param2 (8:8)

0- Use auto eject flag of last data record (default at
start of job is auto eject enabled).

1- Enable auto eject (select VFC channel 1 on new
page).

2- Disable auto eject (position pen at top of page.)

Logical page number (0 to 31).

The logical page identified in param2 becomes the current logical page
even if other logical pages have entries which precede it in the Logical
Page Table. FDEVICECONTROL activates the specified page if it is
inactive, and the 2680 performs a physical page eject if bit (15:1) of
paraml is set.

2 - 61h I

FDEVICECONTROL

Controlcode = 141 Clear Environment

paraml (0:1) 1 - clear all character sets
(1:1) 1 - clear all forms
(2:1) 1 - clear all Vertical Format Controls (VFCs)

param2 is not used.

The printer will flush all data currently in its buffers, and then perform
the indicated clears, if any.

Controlcode = 142 Reserved

Controlcode = 143 Load the Default Environment

paraml is not used.

param2 is not used.

The 2680 printer flushes all data, erases the user area, and loads the
default character set, the Vertical Format Control (VFC), and the
Logical Page Table (LPT).

CONDITION CODES

CCE Request granted.

CCG Not" returned by this intrinsic.

CCL Request denied because an error occurred.

TEXT DISCUSSION

None.

I 2 - 61i JUL 1981

FDELETE

Deactivates a RIO record

FDELETE deactivates a specified logical record. If no record is specified (or the recnum is
negative), the next random access logical record becomes inactive. If the selected record has already
been deactivated a CCE condition code is returned. The condition can be detected by calling the
FCHECK intrinsic. The "inactive record" error indicates that the record selected for this FDELETE
was already inactive.

PARAMETERS

filenum

recnum

CONDITION CODES

CCE

CCG

CCL

lEXT DiSCUSSiON
Page 10-9

integer by value (required)
A word identifier supplying the file number of the file to be de­
activated.

double by value (optional)
A positive double integer representing the relative logical record to be
modified.

Request granted. No error (although inactive record may have been
encountered).

Request denied. End of file.

Request denied. Access error.

2-61

FERR MSG

INTRINSIC NUMBER 307 Returns message corresponding to FCHECK error number.

......... ·.. ·.·.-..... •.·.··:·····:·:·:·:·:········-·.-.·.·.·.·.·. ·:·:·:·:·:-:·:·:·:·:;:::·:

-
The FERRMSG intrinsic causes a message to be returned to msgbuf that corresponds to an
FCHECK error number. This makes it possible to display an error message from your program. The
message describes the error associated with the error number provided in the errorcode parameter.

PARAMETERS

errorcode

msgbuf

msglgth

CONDITION CODES

CCE

CCL

CCG

TEXT DISCUSSION

Page 10-69

2-62

integer (required)
A word identifier containing the error code for which a message is to be
returned. It should contain an error number returned by FCHECK.

logical array (required)
A logical array to which the message associated with errorcode is
returned by FERRMSG. In order to contain the message string, msgbuf
must be a maximum of 72 characters long.

integer (required)
A word identifier to which is returned the length of the msgbuf string.
The length is returned as a positive byte count.

Request granted.

Request not granted because no error message exists for this errorcode
or because of a message system error.

Request not granted. msgbuf address may be out of bounds, msgbuf
may not be large enough, or msglgth address is out of bounds.

FFILEINFO
Provides access to file information.

NOTE

Itemnum/itemvalue parameters must appear in pairs. Up to five
items of information can be retrieved by specifying one or more
itemnum/itemvalue pairs.

FFILEINFO provides access to file information. It is designed to be extensible so that new file
information can be defined and accessed.

PARAMETERS

filenum

itemnum

item value

integer by value (required)
MPE file number returned by FOPEN

integer by value (optional)
Cardinal number of the item desired; this specifies which item value is
to be returned.
(See item#, Figure 2-la)

byte array (optional)
Value of the item specified by the corresponding itemnum; the data
type of the item value depends on the item itself.
(See item, Figure 2-la)

CONDITION CODES

CCE No error

CCG Not used

CCL Access or calling sequence error

TEXT DISCUSSION

Page 10-68

2-63

FFILEINFO

ITEM# TYPE ITEM UNITS

33 label type (see Label Tapes)

34 current number of writers (see IPC)

35 current number of readers (see IPC)

36 L File Allocation Date (CALENDAR format)

37 D File Allocation (CLOCK format)

38 L SPOOFLE Device file number (#0 or #I (see File Code)

number)

39 RESERVED

40 D disc or diskette device status

41 I device type

42 I device subtype

43 BA environment file name

44 I last disc extent allocated

45 BA file name from labeled tape HD R 1 record

46 tape density BPI

47 ORT number I
48 UNIT number I 49 software interrupt PLABEL

Figure 2-la. Item Values Returned by FFILEINFO (Continued)

DEC 1981 2-64a

FFILEINFO

ITEM# TYPE ITEM UNITS

1 BA filename (see FGETINFO)

2 L foptions (see FGETINFO)

3 L aoptions (see FGETINFO)

4 recsize (see FGETINFO) words/bytes
5 I devtype (see FGETINFO)

6 L ldnum (see FGETINFO)

7 L hdaddr (see FGETINFO)

8 filecode (see FGETI NFO)

9 D rec pt (see FGETINFO)

10 D eof (see FGETINFO)
11 D flimit (see FGETINFO) records
12 D logcount (see FGETINFO) records
13 D physcount (see FGETINFO) records
14 b!ksize (see FGETINFO) words/bytes
15 L extsize (see FGETINFO) sectors
16 numextents (see FGETINFO)
17 I userlabels (see FGETINFO)
18 BA creatorid (see FGETINFO)
19 D labaddr (see FGETINFO)
20 blocking factor (see FOPEN)
21 physical block size words
22 data block size words
23 off set to data in blocks words
24 offset to Active Record Table within the block (R 10 files) words
25 size of Active Record Table words
26 BA vol. ID (label tape) (see Label Tapes)
27 BA vol. set ID (label tape) (see Label Tapes)
28 expiration date (Julian format) (see Label Tapes)
29 file sequence number (see Label Tapes)
30 reel number (see Label Tapes)
31 sequence type (see Label Tapes)
32 creation date (Julian format) (see Label Tapes)

Figure 2-la. Item Values Returned by FFILEINFO

2-64 JUL 1981

FGETINFO

Requests access and status information about a file. INTRINSIC NUMBER 11

Once a file is opened on any device, the FGETINFO intrinsic can be used to request access and
status information about that file.

PARAMETERS

filenum

filename

{options

integer by value (required)
A word identifier supplying the file number of the file about which
information is requested.

byte array (optional)
A byte array to which is returned the actual designator of the file being
referenced, in this format:
f .g.a
where
f = the locai file name.
g =the group name (supplied or implicit).
a= the account name (supplied or implicit).
The byte array must be 28 bytes long. When the actual designator is
returned, unused bytes in the array are filled with blanks on the right.
A nameless file will return an empty string.
Default: The actual designator is not returned.

logical (optional)
The {options parameter returns seven different file characteristics by
setting corresponding bit groupings in a 16-bit word. Correspondence is
from right to left. The file characteristics returned are as follows. The
bit settings are summarized in figure 2-1.

NOTE

Bit groups are denoted using the standard SPL notation. Thus
bits (14:2) indicates bits 14 and 15; bits (10:3) indicates bits
10, 11, and 12.

Bits (14: 2) - Domain Foption.
The file domain that was searched by MPE to locate the file, indicated
by these bit settings:
00 - The file is a new file.

2-65

BITS (0:3) (3:1) (4:1) (5:1) (6:1) (7: 1) (8:2)

FIELD (RESERVED)
RELATIVE KSAM DISALLOW MPE TAPE CARRIAGE RECORD

1/0 FILE :FILE LABELS CONTROL FORMAT

MEANING 0 =Non- 0 =Not a new 1 =No :FILE 1 =LABELED 0 = NOCCTL 00 =Fixed
RIO file KSAM file TAPE

(default)

1 =RIO file 1 =New KSAM O=:FILE 0 =NON- 1 = CCTL 01 = Variable
file or LABELED
existing TAPE
KSAM file
opened as
an MPE
file

10 = Undefined

Figure 2-1. Foptions Bit Summary

NOTE: Double lines indicate octal digit boundaries.

(10:3) (13:1)

DEFAULT ASCII/
DESIGNATOR BINARY

000 =filename 0 =Binary

001 = $STDLIST 1 =ASCII

010 = $NEWPASS

011 = $0LDPASS

100 = $STDIN

101 = $STDINX

110 =$NULL

(14:2)

DOMAIN

00 =New file

01 =Old System
File

10 =Temporary
File

11 =Old User
File

--

.,,
C)
m
-I -z .,,
0

01 =The file is an old perma..11ent file.
10 =The file is an old temporary file.
11 =The file is an old file.

Bit (13:1) - ASCII/Binary Foption.
For ASCII this bit is 1. For binary, it is 0.

Bits (10:3) - Default File Designator Foption.
The bit settings are:

FGETINFO

000 = The actual file designator is the same as the formal file
designator.
001 =The actual file desi_gnator is $STDLIST.
010 = The actual file designator is $NEWP ASS.
011 = The actual file designator is $0LDP ASS.
100 =The actual file designator is $STDIN.
101 =The actual file designator is $STDINX.
110 = The actual file designator is $NULL.

Bits (8:2) - Record Format Foption.
The format in which the records in the file are recorded, indicated by
these bit settings:
00 = Fixed-length records.
01 =Variable-length records.
10 = Undefined-length records.

Bit (7:1) - Carriage Control Foption.
0 =No carriage-control character expected.
1 = Carriage-control character expected.

Bit (6:1)-MPE Tape Label Foption.
0 = Non-labeled tape.
1 =Labeled tape.

Bit (5:1) - Disallow File Equation Foption.
This option ignores any corresponding : FILE command, so that the
specifications in the FOPEN call take effect (unless overridden by those
in the file label). For disallowing :FILE, this bit is set to 1; for allowing
:FILE, the bit is 0.

Bits (4: 1) - KSAM file Foption
0 = Not a new KSAM file (default)
1 =New KSAM file or existing file opened as an MPE file.

Bits (3:1) - Relative 1/0 Foption
0 =Non-RIO file will be created. (default)
1 =RIO file will be created.

2-67

FGETINFO

aoptions

2-68

Default: Foptions are not returned.

logical (optional)
The aoptions parameter returns up to seven different access options
represented by bit groupings in a 16-bit word, as described below. The
bit settings are summarized in figure 2-2.

Bits (12:4) - Access Type Aoptions.
The type of access allowed users of this file, as follows:
0000 = Read access only.
0001 = Write access only.
0010 = Write access only, but previous data in the file is not deleted.

BITS

FIELD

~-

MEANING

NOTE:

(0:3) (3:1) (4:1) (5:1)

(RESERVED)
KSAM NO WAIT

(RESERVED)
ACCESS 1/0

0 = KSAM 1 =No-Wait
access
expect-
ed

1 = Non- 0 =Non
KSAM No-Wait
access
expect-

ed

(6:1)

MUL Tl
SS ACCE

1 =Multi
acces

----, r---------.----

(7:1)
---< t-·--------1---

INHIBIT
BUFFERING

E

(8:2)
-

XCLUSIVE
ACCESS

-
1 = NOBUF 0 1 = Exclusive

0 =Non-Multi 0 = BUF 0 =Semi-
acces exclusive

1 =Share

0 0 =Default

Figure 2-2. Aoptions Bit Summary

Double lines indicate octal digit boundaries.

(10:1) (11: 1)

MULTI-

DYNAMIC RECORD
LOCKING ACCESS

0 = No Dynamic 1 =Multi- 0
Lock record

1 =Dynamic 0 =No multi- 0
Lock record

0

0

0

0

0

(12:4)

ACCES s
TYPE

000 =Re ad
y onl

001 = Wr
on

010 =Wr
(sa

on

ite
ly

ite
ve)
ly

011 = Ap pend
ly on

100 = Re
wr

ad/
ite

101 = u pd ate

110 =Ex ecute

,,
C>
m
-I -z ,,
0

FGETINFO

2-70

0011 = Append access only.
0100 = Input/output access.
0101 = Update access.
0110 =Execute access.

Bit (11:1) - Multirecord Aoption.
For multirecord mode, this bit is set to 1; for non-multirecord mode, it
is 0.

Bit (10:1) - Dynamic Locking Aoption.
The bit settings are:
1 = Allow dynamic locking/unlocking.
0 = Disallow dynamic locking/unlocking.

Bits (8:2) - Exclusive Aoption.
This aoption specifies whether a user has continuous exclusive access to
this file, from the time it is opened to the time it is closed. The bit
settings are:
01 = Exclusive access.
10 = Semi-exclusive access.
11 =Share access.

Bit (7:1) - Inhibit Buffering Aoption.
This option inhibits automatic buffering by MPE and allows input/
output to take place directly between the user's stack or extra data
segment and the applicable hardware device.
1 = Inhibit buffering.
0 =Normal buffering

Bit (6:1) - Multi-Access Mode Aoption.
This field provides the accessor with a means of sharing access to the
file.
1 = Multi access.
0 =Non-multi access.

Bit (5:1) - Reserved for MPE.

Bit (4:1) - No-Wait 1/0 Aoption.
This bit allows the accessor to initiate an 1/0 request and to have
control returned before the completion of the 1/0.
1 = No-wait 1/0 in effect.
0 = No-wait 1/0 not in effect.

Bits (3:1) - KSAM Access Aoption
0 = KSAM access
1 = Non-KSAM access expected; KSAM key file or data file is treated as
standard MPE file. For this setting to be meaningful, file must be a
KSAM file ({options 4:1=1).

Bits (0:3) - Reserved for MPE.

Default: Aoptions are not returned.

recsize

FGETINFO

integer (optional)
A word to which is returned the logical record size associated with the
file. If the file was created as a binary type, this value is positive and
expresses the size in words. If the file was created as an ASCII type, this
value is negative and expresses the size in bytes.
default: The logical record size is not returned.

devtype integer (optional)
A word to which is returned the type and subtype of device being used
for the file, where
bits (0:8) =device subtype, and
bits (8:8) =device type.
If the file is not spooled, which can be determined from hdaddr (0:8),
and returned devtype is actual. The same is true· if the file is spooled
and was opened via logical device number. However, if an output file is
spooled and was opened by device class name, devtype contains the
type and subtype of the first device in its class, which may be different
from the device actually used. (See the System Manager/System Super­
visor Manual.) If you have opened a serial disc tape and type returned

1
/- ~ -1 in bits (8 :8) is 31 (%37) even though the real device type is as specified

\Jo ~.-~-------------ffi-~Classification of Devices. Device type %07 is returned by
./ FGETINFO for foreign discs.

default: The device type and subtype are not returned.

ldnum logical (optional)
A word to which is returned the logical device number associated with
the device on which the file resides.

If the file is a disc file, then the logical device number will be that of
the first extent. If the file is spooled, then ldnum will be a virtual device
number which does not correspond to the system configuration I/O
device list. If the file is located on a remote computer, the left eight bits
are the logical device number of the DS device and the right eight bits
are the logical device number on the remote computer.
default: The logical device number is not returned.

hdaddr logical (optional)
A word to which the hardware address of the device is returned, where
bits (0:8) =the Device Reference Table (DRT) number, and
bits (8:8) = the unit number. (See limitation under special consider- I
ations). I
If the device is spooled, the DRT number will be zero and the unit
number is undefined.
Default: The hardware address is not returned.

filecode integer (optional)

recpt

DEC 1981

A word to which is returned the value recorded with the file as its file
code (for disc files only).
default: The file code is not returned.

double (optional)
A double word to which is returned a double integer representing the
current logical record pointer setting. This is the displacement in logical
records from record number 0 in the file. It identifies the record that
would next be accessed by an FREAD or FWRITE call.
Default: The logical record pointer setting is not returned.

2-71

FGETINFO

eof

{limit

logcount

physcount

blksize

extsize

numextent

userlabels

2-72

double (optional)
A double word to which is returned a double positive integer equal to
the number of logical records currently in the file. If the file does not
reside on disc, this value will be zero.
Default: The number of logical records in the file is not returned.

double (optional)
A double word to which is returned a double positive integer
representing the number of the last logical record that could ever exist
in the file, because of the physical limits of the file. If the file does not
reside on disc, this value will be zero.
Default: The file limit information is not returned.

double (optional)
A double word to which is returned a double positive integer
representing the total number of logical records passed to and from the
user during the current access of the file.
Default: The logical record count is not returned.

double (optional)
A double word to which is returned a double positive integer
representing the total number of physical input/output operations
performed within this process against the file since the last FOPEN call.
Default: The number of l/O operations is not returned.

integer (optional)
A word to which is returned the block size associated with the file. If
the file was created as a binary type, this value is positive and expresses
the size in words. If the file was created as an ASCII type, this value is
negative and shows the size in bytes.
Default: The block size is not returned.

logical (optional)
A word to which is returned the disc extent size associated with the file
(in sectors).
Default: The disc extent size is not returned.

integer (optional)
A word to which is returned the maximum number of disc extents
allowable for the file.
Default: The maximum allowable number of extents is not returned.

integer (optional)
A word to which is returned the number of user header labels defined
for the file when it was created. If the file is not a disc file, this number
is zero. When an old file is opened for overwrite output, the value of
userla be ls is not reset and old user labels are not destroyed.
Default: The number of user labels is not returned.

creatorid

labaddr

CONDITION CODES

CCE

CCG

CCL

FGETINFO

byte array (optional)
A byte array to which is returned the eight-byte name of the user who
created the file. If the file is not a disc file, bianks are returned.
Default: The user name is not returned.

double (optional)
A double word to which is returned the sector address of the label of
the file. The high-order eight bits show the logical device number. The
remaining 24 bits show the absolute disc address. If the file is not a
disc, zero is returned.

Default: The sector address is not returned.

Request granted.

Not returned by this intrinsic.

Request denied because an error occurred.

SPECIAL CONSIDERATIONS

HDADDR Error Code 5 as obtained by FCHECK:

For large system configurations such as Series 64, if a DRT larger than 255 was requested by
FGETL"l\JFO the request will be denied with a CCL condition code 5. To obtain a proper value for
DRT and/or UNIT number, refer to the table of parameters in FFILEINFO.

TEXT DISCUSSION

Page 10-66

DEC 1981 2-73

I

FIN DJ CW

Searches the Job Control Word table for
a specified Job Control Word.

PARAMETERS

jcwname

jcwvalue

status

byte array (required)
A byte array containing the name of the Job Control Word (JCW) to
be found. May contain up to 255 alphanumeric characters, starting
with a letter and ending with a non-alphanumeric character such as a
blank.

logical (required)
A word identifier to which is returned the value of jcwname, if
jcwname is found. If jcwname is not found, jcwvalue is unchanged.

integer (required)
A word identifier to which is returned a value denoting the execution
status of the intrinsic, as follows:

0 - Successful execution, jcwname found.

1 - Error, jcwname greater than 255 characters long.

2 - Error, jcwname does not start with a letter.

3 - Error, jcwname not found in JCW table.

CONDITION CODES

The condition code remains unchanged.

TEXT DISCUSSION

Page 4-47

2-74

FLOCK

Dynamically locks a file. INTRINSIC NUMBER 15

The FLOCK intrinsic provides a means of signaling that the caller wants temporary exclusive use of
a file.

PARAMETERS

filenum

lockcond

CONDITION CODES

integer by value (required)
A word supplying the file number of the file to be locked.

logical by value (required)
A word specifying conditional or unconditional locking:

TRUE - Locking will take place unconditionally. If the file cannot be
locked immediately, the calling process suspends until the file
can be locked.
Bit 15 = 1

FALSE - Locking will take place only if the file's RIN is not currently
locked. If the RIN is locked, control returns immediately to
the calling process, with condition code CCG.
Bit 15 = 0.

The condition codes possible when lockcond = TRUE are

CCE

CCG

CCL

Request granted.

Not returned when lockcond = TRUE.

Request denied because this file was not opened with the dynamic
locking aoption specified in the FOPEN intrinsic, or the request was to
lock more than one file and the calling process does not possess the
Multiple RIN Capability.

The condition codes possible if lockcond =FALSE are

CCE

CCG

CCL

Request granted.

Request denied because the file was locked by another process.

Request denied because this file was not opened with the dynamic
locking aoption specified in the FOPEN intrinsic, or the request was to
lock more than one file and the calling process does not possess the
Multiple RIN Capability.

2-75

FLUSH LOG

INTRINSIC NUMBER 213 Obtains information about the opened logging file.

The FLUSHLOG intrinsic is used to write the contents of the user logging memory buffer to the
disc destination file. This helps to preserve the contents of the memory buffer in the event of a
system failure. This intrinsic writes no special records.

PARAMETERS

index

status

CONDITION CODES

double (required)
The parameter returned from OPENLOG that identifies the user's
access to the logging system.

integer (required)
An integer in which error information is returned to the caller. Zero
indicates OK status.

The condition code remains unchanged.

TEXT DISCUSSION

None.

JUL 1981 2-76a I

FLOCK

SPECIAL CONSIDERATIONS

Split stack calls permitted.
Standard Capability sufficient if only one file is to be locked dynamically.
If more than one file is to be locked dynamically, the Multiple RIN Capability is required.

TEXT DISCUSSION

Page 10-55

2-76

PARAMETERS

date

string

FMTCALENDAR

Converts any calendar date with the same format as
the CALENDAR intrinsic into a format as follows:

FRI, AUG 5, 1977

logical by value (required)
A logical value representing any calendar date with the same format as
the CALENDAR intrinsic.

byte array (required)
A 1 7 -character byte array in which the formatted calendar date is
returned.

CONDiTiON CODES

The condition code remains unchanged.

TEXT DISCUSSION

Page 4-45

2-77

FMTCLOCK

Converts the time of day with the same
format as the CLOCK intrinsic into a format
as follows:

7:39 AM

PARAMETERS

time

string

double by value (required)
A doubleword value representing the time of day with the same format
as the CLOCK intrinsic.

byte array (required)
An 8-character byte array in which the formatted time of day is
returned.

CONDITION CODES

The condition code remains unchanged.

TEXT DISCUSSION

Page 4-45

2-78

PARAMETERS

date

time

string

FMTDATE

Converts calendar date and time of day
with the same format as the CALENDAR
and CLOCK intrinsics to a format, as follows:

FRI, AUG 5, 1979 7:39 AM

logical by value (required)
A logical value with the same format as the CALENDAR intrinsic.

double by value (required)
A doubleword value with the same format as the CLOCK intrinsic.

byte array (required)
A 27-character byte array in which the formatted date and time are
returned.

CONDITION CODES

The condition code remains unchanged.

TEXT DISCUSSION

Page 4-45

2-79

FOP EN

INTRINSIC NUMBER 1 Used to establish access to a file and optionally
define the physical characteristics of the file
prior to setting up access to it.

The FOPEN intrinsic makes it possible to access a file. In the FOPEN intrinsic call, a particular file
may be referenced by its formal file designator, described in Section III. When the FOPEN intrinsic
is executed, it returns to the user's process a file number by which the system uniquely identifies
the file. This file number, rather than the fiie designator, then is used by subsequent intrinsics in
referencing the file.

FUNCTIONAL RETURN

This intrinsic returns an integer file number used to identify the opened file in other intrinsic calls.

PARAMETERS

formal designator

{options

2-80

byte array (optional)
Contains a string of ASCII characters interpreted as a formal file
designator, as defined in Section III. This string must begin with a
letter, contain alphanumeric characters, slashes, or periods, and
terminate with any non-alphanumeric character except a slash or a
period. If the string names a system-defined file, it can begin with a
dollar sign ($); if it names a user-predefined file, it can begin with an
asterisk (*). New KSAM files unlike standard files must be opened with
a unique name.
Default: A temporary nameless file that can be read from or written to,
but not saved, is assigned.

logical by value (optional)
The {options parameter allows you to specify different file charac­
teristics by setting corresponding bit groupings in a 16-bit word. The
correspondence is from right to left, beginning with bit 15. These char­
acteristics are as follows, proceeding from the rightmost bit groups to
the leftmost bit groups in the word. The bit settings are summarized in
figure 2-1.

NOTE

Bit groups are denoted using the standard SPL notation. Thus
bits (14:2) indicates bits 14 and 15; bits (10: 3) indicates bits
10, 11, and 12.

FOP EN

Bits (14:2) - Domain Foption.
The file domain to be searched by MPE to locate the file, indicated by
these bit settings:
00 =The file is a new file, created at this point. No search is necessary.
01 = The file is an old permanent file; and the system file domain
should be searched.
10 =The file is an old temporary file, and the job file domain should be
searched.
11 = The file is an old file that is to be located by first searching the job
file domain and then, if the file is not found, by searching the system
file domain.

Bit (13:1) - ASCII/Binary Foption.
The code (ASCII or binary) in which a new file is to be recorded when
it is written to a device that supports both codes. In the case of disc
files, this also affects padding that can occur when a direct-write
intrinsic call (FWRITEDIR) is issued to a record that lies beyond the
current logical end-of-file indicator. In ASCII files, any dummy records
between the previous end-of-file and the newly-written record are
padded with blanks. In binary files, such records are padded with
binary zeros. All files except mag tape and serial disc files are treated as
ASCII files. Foreign disc files are binary records.
For ASCII files, this bit is 1.
For binary files, this bit is 0.

Bits (10:3) - Default File Designator Foption.
The actual file designator is equated with the formal file designator
specified in FOPEN, if
1. No explicit or implicit :FILE command equating the formal file

designator to a different actual file designator occurs in the job or
session; or

2. The Disallow File Equation Foption (bit 5) is specified. (Note that
a leading * in a formal designator can effectively override the dis­
allow file equation {option.)

The bit settings are
000 = The actual file designator is the same as the formal file designator.
001 =The actual file desi~11ator is $STDLIST.
010 = The actual file designator is $NEWP ASS.
011 = The actual file designator is $0LDP ASS.
100 =The actual file designator is $STDIN.
101 = The actual file designator is $STDINX.
110 =The actual file designator is $NULL.

Bits (8:2) - Record Format Foption.
The format in which the records in the file are recorded, indicated by
these bit settings:
00 = Fixed-length records. The file is composed of logical records of

uniform length. Foreign discs always have fixed-length records.
01 = Variable-length records. The file contains logical records of varying

length. This format is restricted to records that are written in
sequential order. The size of each record is recorded internally.

2-81

FOP EN

2-82

The actual physical record size used is determined by multiplying
the recsize (specified or default) plus one by the blockfactor, and
adding one word for the end-of-block indicator. This option is not
allowed when NOBUF is specified. In such a case, the record
format used is undefined-length records, discussed below.

10 =Undefined-length records. The file contains records of varying
length that were not written using the variable-length {option (01).
All files not on disc or magnetic tape are treated as containing
undefined-length records by default. The file system makes no
assumption about the amount of data that is useful. The user
must determine how much data is good.
For undefined length records, only the data supplied is written
with no information about its length.

Note: Undefined-length records are supported by all devices;
fixed- and variable-length records are supported by disc and
magnetic tape devices only. To state this another way: disc and
magnetic tape devices support all record formats, whereas all oilier
devices support only undefined length records.

Bit (7:1) - Carriage Control Foption.
If selected, this specifies that you will supply a carriage control
directive in the calling sequence of each FWRITE call that writes
records onto the file.
0 = No carriage control directive expected.
1 =Carriage control directive expected.
Carriage control is defined only for character oriented, i.e., ASCII, files.
This option and binary are mutually exclusive and attempts to open
new files with both binary and this option results in an access violation.

This option is a physical attribute of the file and its state cannot be
modified when opening an old disc file.

A carriage control character passed through the control parameter of
FWRITE is recognized and acted upon only for files for which carriage
control is specified in FOP EN. Embedded control is treated strictly as
data on files for which no carriage control is specified, and does not
invoke spacing for such files. You may specify spacing action on files
for which carriage control has been specified, either by embedding the
control in the record, indicated with a control parameter of one in the
call to FWRITE, or by sending the control code directly via the control
parameter of FWRITE.

A carriage control character sent to a file on which the control cannot
be executed directly, for example, line spacing to a disc or tape file, will
result in having the control character embedded as the first byte of the
record. Thus, the first byte of each record in a disc file having a carriage
control character contains control information. Control sent to other
types of files results in transmission of the control to the driver.

The control codes %400 through %403 are remapped to %100 through
%103 so that they fit into one byte and thus can be embedded. Records
written to the line printer with one of the above controls should not
contain information other than control information.

aoptions

FOP EN

A record written with one of the above controls and no data (count =
0, or imbedded control and count = 1) vvill not cause physical I/0 of
any sort.

For the purpose of computing record size, carriage control information
is considered by the file system to be part of the data record. As such,
specifying the carriage control option adds one byte to the record size
at the time the file is created. For example, a specification of
REC=-132,1,F,ASCII;CCTL results in a recsize of 133 characters.

You always may read up to and including the recsize as returned by
FGETINFO. On writes of files for which carriage control is specified,
however, the data transferred is limited to recsize -1 unless a control
of one is passed indicating the data record is prefixed with embedded
control.

Bit (6:1) - Labeled Tape Foption.
1 = Labeled tapes.
0 =No labeled tapes.

Bit (5:1) - Disallow File Equation Foption.
This option ignores ai1y correspondi.11g :FILE command 1 so that the
specifications in the FOPEN call take effect (unless preempted by those
in the file label, for disc files). Note that a leading * in a formal desig­
nator can effectively override the disallow file equation {option.
0 = Allow : FILE.
1 = Disallow : FILE.

Bits (2:3) File Type Foption
Determines the type of file to create for a new file. If the file is old, this
field is ignored.

000 - Ordinary file

001 - KSAM file

010 - Relative I/O file

100 - Circular file (discussed in Section III)

110 - Message file

Note: The Default Designator FOPTION, bits 10 through 12, offers
several choices for default file designators. Any value used other than
0 for "filename" will override the File Type field.

Specification of both the KSAM and RIO options result in an access
violation communicated by a CCL being returned. Specifying RIO in a
: FILE command will override the KSAM option in the FOPEN call.

Bits (0: 2) - Reserved for MPE. Should be set to zero.

logical by value (optional)
The aoptions parameter permits you to specify up to seven different
access options established by bit groupings in a 16-bit word. These
access options are described below. The bit settings are summarized in
figure 2-2.

2-83

FOPEN

2-84

Bits (12:4) - Access Type Aoptions.
The type of access allowed for this access of this file:
0000 =Read access only. The FWRITE, FUPDATE, and FWRITEDIR

intrinsic calls cannot reference this file. The end-of-file is not
changed; the record pointer starts at 0.

0001 = Write access only. Any data written in the file prior to the cur­
rent FOPEN request is deleted. The FREAD, FREADSEEK,
FUPDATE, and FREADDIR intrinsic calls cannot reference
this file. The end-of-file is set to O; the record pointer starts at
0. On magnetic tape an EOF mark will be written to the tape
when the file is FCLOSED even if no data is written.

0010 = Write access only, but previous data in the file is not deleted.
The FREAD, FREADSEEK, FUPDATE, and FREADDIR
intrinsic calls cannot reference this file. The end-of-file pointer
is not changed, the record pointer starts at 0. Therefore, data
will be overwritten if a WRITE is done.

0011 =Append access only. The FREAD, FREADDIR, FREADSEEK,
FUPDATE, FSP ACE, FPO INT, and FWRITEDIR intrinsic calls
cannot reference this file. This option is not valid for files con­
taining variable-length records. The end-of-file pointer is used to
set the record pointer prior to each FWRITE. For disc files it
is updated (in an internal file system table) after each FWRITE.
Thus, data in the file cannot be overwritten.

0100 = Input/output access. Any file intrinsic except FUPDATE can be
issued for this file. The end-of-file pointer is not changed, the
record pointer starts at 0.

0101 = Update access. All file intrinsics, including FUPDATE, can be
issued for file. The end-of-file pointer is not changed; the record
pointer starts at 0.

0110 =Execute access. Allows user with Privileged Mode Capability
input/output access to any loaded file. The end-of-file pointer is
not changed, the record pointer starts at 0.

Bit (11:1) - Multirecord Aoption.
Signifies that individual read or write requests are not confined to
record boundaries. Thus, if the number of words or bytes to be
transferred (specified in the tcount parameter of the read or write
request) exceeds the size of the physical record (i.e., block) referenced,
the remaining words or bytes are taken from subsequent successive
records until the number specified by tcount have been transferred.
This option is available only if the inhibit buffering aoption, described
below, is selected also.
0 = Non-multirecord mode.
1 = Multirecord mode.

Bit (10:1) - Dynamic Locking Aoption (disc file only).
Indicates that you want to use the FLOCK and FUNLOCK intrinsics to
dynamically permit or restrict concurrent access to the file by other
processes at certain times. The user process can continue this temporary
locking/unlocking until it closes the file. Dynamic locking/unlocking is
made possible through a Resource Identification Number (RIN)
assigned to the file and temporarily acquired by the FOPEN intrinsic.

FOP EN

The calling process and other processes must use the RIN in
cooperation to guarantee the integrity of the file, as discussed in
Section III. Non-cooperating processes are allowed concurrent access
at all times, unless other provisions prohibit this. You must have
LOCK access at account, group and file levels for FOPEN to grant the
dynamic locking aoption. (LOCK Access is available if LOCK,
APPEND, or WRITE access is set for you at these levels.)
O = Disallow dynamic locking/unlocking.
1 = Allow dynamic locking/unlocking. A disc file may be multiple
accessed only if all FOPEN requests for the file specify dynamic locking,
or if none of them do. An FOPEN request that disagrees with the cur­
rent access, if any, will fail. This bit is ignored for non-disc files.

Bits (8:2) - Exclusive Aoption.
This aoption specifies whether you have continuous exclusive access to
this file, from the time it is opened to the time it is closed. This option
often is used when performing some critical operation, such as updating
the file.
01 = Exclusive access. After this file is opened, prohibits another

FOPEN request, whether issued by this or another process, until
this process issued the FCLOSE request or terminates. If any
process already is accessing this file when this FOPEN call is
issued, a CCL error code is returned to the calling process. If
another FOPEN call is issued for this file while the exclusive
aoption is in effect, an error code is returned to that calling
process. The exclusive access aoption can be requested only by
users allowed the file locking access mode by the security
provisions for the file.

10 =Semi-exclusive access. After the iile is opened, prohibits con­
current output access to this file through another FOPEN request,
whether issued by this or another process, ~til this process issues
the FCLOSE request or terminates. A subsequent request for the
input/output or update aoption access type will obtain read only
access. Other types of read access, however, are allowed. If any
process already has output access to the file when this FOPEN call
is issued, a CCL error code is returned to the calling process. If
another FOPEN call that vioiates the read-only restriction is issued
while the semi-exclusive aoption is in effect, that call fails and an
error code is returned to the calling process. The semi-exclusive
access can be requested only by users allowed the file-locking
access mode by the security provisions for the file.

11 = Share access. After the file is opened, permits concurrent access to
this file by any process, in any access mode, subject to other basic
MPE security provisions in effect.

00 =Default value. If the read access only aoption is selected, share
access (11) takes effect. Otherwise, exclusive access (01) takes
effect. Regardless of which access is selected, FGETINFO will
report 00.

2-85

FOP EN

2-86

Bit (7:1) - Inhibit Buffering Aoption.
When selected, this aoption inhibits automatic buffering by MPE and
allows input/output to take place directly between the user's data area
and the applicable hardware device.
0 = Allow normal buffering.
1 = Inhibit buffering (NOBUF).
NOBUF access is oriented to the transfer of physical blocks rather than
logical records.

With NOBUF access, you have responsibility for blocking and de­
blocking of records in the file (see Section III). To be consistent with
files built using buffered I/0, records should begin on word boundaries,
and when the information content of the record is less than the defined
record length, the record should be padded with blanks by you if the
file is ASCII or with zeros if the file is binary.

The recsize and block size for files manipulated under NOBUF access
follow the same rules as those files that are created using buffering. The
default blockfactor for a file created under NOBUF is one.

When a NOBUF file is opened without multirecord access, the amount
of data transferred per read or write is limited to a maximum of one
block.

The end-of-file, next record pointer, and record transfer count are
maintained in terms of logical records for all files. The number of
logical records affected by each transfer is determined from the size of
the transfer.

Transfers always begin on a block boundary. Those transfers which do
not transfer whole blocks leave the next record pointer set to the first
record in the next block. The end-of-file pointer always points at the
last record in the file.

For files opened with NOBUF access, the FREADDIR, FWRITEDIR,
and FPO INT intrinsics treat the recnum parameter as a block number.

Non-RIO access to a RIO file can be indicated by specifying the
NOBUF option. In this case the physical blocksize (item #21) from
FFILEINFO should be used to determine the maximum transfer length.
(The FGETINFO "blksize" parameter may also be used.)

Bits (5:2)- Multi-Access Mode Aoption
This feature permits processes located in different jobs or sessions to
open the same file.

00 - No multi-access.

01 - Only intra-job multi-access allowed; this is the same as specifying
the MULTI option in a FILE command.

10 - Inter-job multi-access allowed; this is the same as specifying the
GMULTI option in a FILE command.

11 - Undefined. If this is specified, the FOPEN will be rejected with an
error code of 40: ACCESS VIOLATION.

rec size

FOP EN

Bit (4:1) - No-Wait I/0 Aoption.
The selection of this aoption allows you to initiate an I/O request and
to have control returned before the completion of the I/O. The IOWAIT
intrinsic must be called after each 1/0 request to confirm the comple­
tion of the I/O. The No-Wait I/0 aoption implies the NOBUF aoption;
if you do not specify NOBUF, the file system does it for you. Also,
multirecord access is not available. This option is not available if the file
is located on a remote computer.

NOTE

You must be running in Privileged Mode to use No-Wait
I/O and NOBUF.

Bits (3:1) - File Copy Aoption
This feature permits any file to be treated as a standard sequential file,
rather than as a file of its own type.

0 - The file will be accessed in its native mode; that is, a message file
will be treated as a message file, a KSAM file as a KSAM file, etc.

1 - The file is to be treated as a standard, sequential file with variable­
length records.

Note: In order to access a message file in copy mode, a process must
have exclusive access to the file.

Bits (0:3) - Reserved for MPE. Should be set to zero.

Default: All bits are set to zero.

integer by value (optional)
An integer indicating the size of the logical records in the file. If a
positive number, this represents words; bytes are represented by a nega­
tive number. If the file is a newly-created file, this value is recorded
permanently in the file label. If the records in the file are of variable
length, this value indicates the maximum logical record length allowed.

Binary files are word oriented. A record size specifying an odd byte
count for a binary file is rounded up by FOPEN to the next highest
even number.

ASCII files may be created with logical records which are an odd num­
ber of bytes in length. Within each block, however, records begin on
word boundaries.

For either ASCII or binary files ·with fixed or undefined length records,
the record size is rounded up to the nearest word boundary. For exam­
ple, a recsize specified as -106 for an ASCII file is 106 characters (53
words) in length. A recsize of -113 for a binary file is 114 characters
(57 words) in length. The rounded sizes should be used in computations
for blockfactor or block size.
When a foreign disc is opened, recsize is forced to 128 words. (Note:
IBM diskettes are forced to 64 words.)

Default: The default value is the configured physical record width of
the associated device.

2-87

JUL 1981

FOPEN

To specify density when writing to the tape files, the keyword "DEN="
is used. The DEN keyword must be preceded by a semicolon(;), which
indicates to the system that a keyword follows. Nate that if the device
parameter is specified, a semicolon must terminate the device string. If
device is not specified, then a semicolon must be the first character of
the device parameter. The keyword string must be terminated by a
carriage return.

The density keyword is applicable only when writing to tape. When
reading from a tape, the density selected by the user at FOPEN time
will be ignored. For example, when reading from a tape, a 1600 BPI
tape will satisfy an FOP EN request which specified ";DEN =6250 ", and
vice-versa. The following examples show the correct syntax for the
DEN= keyword:

BYTE ARRAY DEVICE(0:13):="TAPE;DEN=6250",%13;

BYTE ARRAY DEVICE(0:8):=";DEN=6250",%13;

•
•

NUM: = FOPEN (FILEX,%4,%4,, DEVICE);

For more information on density selection, see Density Selection on
Labeled and Unlabeled Tapes in Section X.

If you are opening a 2680 page printer, you may specify an optional
printing environment for your job. The printing environment is defined
as all of the characteristics of the printed page which are not part of
the data itself, and thus would include the page size, the margin width,
the character set, the orientation (horizontal or vertical), and the name
of any forms you wish to use. Such information is contained in the
environment file.

If you do not specify an environment file, FOPEN assumes that you
want to use the default printer environment. HP provides a number of
prepared environment files, which reside in the ENV2680A group of
the SYS account. For information on how to build your own printing
environments, see the IFS/3000 manual, part number 36580-90001.

To specify your own printer environment, you must also assign a key­
word, ENV=, followed by the name of your environment file, to the
device array, in the form, ENV=environmentfilename, and terminate
the array with a carriage return. You must also include a semicolon
between the device class name and the ENV keyword. For example,
if PP is the device class name configured for your 2680 printer,

2-88a I

FOPEN

formmsg

I 2-88b

EQUATE CR =13;
BYTE ARRAY DEVICE(0:50) :="PP;ENV=MYENVFLE",CR;

•
•
•

NUM :=FOPEN (FILEX,%4,%4,,DEVICE);

Any environment you select remains active until replaced by a new en­
vironment or until you FCLOSE the printer. If the printer has been
opened with the multi-access AOPTION (e.g. as $STDLIST), a selected
environment remains active until replaced or until the final FCLOSE of
the printer.

Default: DISC.

byte array (optional)
Contains a forms message that can be used for such purposes as telling
the console operator what type of paper to use in the line printer. This
message must be displayed to the operator and verified before this file
can be printed on a line printer. The message itself is a string of ASCII
characters terminated by a period. The maximum number of characters
allowed in the array is 49, including the terminating period. Arrays with
more than 49 characters are truncated by MPE.

JUL 1981

FOP EN

device

I

2-88

byte array (optional)
Contains a string of ASCII characters terminating with any non-alpha­
numeric character except a slash or period, designating the device on
which the file is to reside, and optionally specifying density for tape
files (DEN = parameter), and/or environment file for the 2680 page
printer (ENV = parameter). This parameter may be specified in one of
the following forms:
devclass
ldn

*
*vcname
**volname
The devclass form represents a device class name of up to eight alpha­
numeric characters beginning with a letter, as for example, DISC or
TAPE. If devclass is specified, the file is allocated to any available de­
vice in that class. If you are opening a file which is to reside on a private
volume, you must specify device class DISC; the file then is allocated to
any of the home volume set's volumes that fall within that device class.

The logical device number (ldn) consists of a three-byte numeric string
specifying a particular device. If you are opening a file which is to re­
side on a private volume, you must specify a disc drive on which one of
the volumes in the home volume set resides.

If you open a foreign disc file, device must be either a foreign disc class
name or the ldn of a disc in a foreign disc class. When opening a foreign
disc by logical device, the disc should be mounted on the drive, prior to
the FOPEN. Otherwise it may be assumed to be a serial disc by the
system.

The forms *, *vcname, and **volname are used only if you are opening
a file which is to reside on a private volume.

If * is specified, the file is allocated to any of the volumes of the home
volume set.

If *vcname (volume class name) is specified, vcname must be a member
of the home volume set. The file then is allocated to any of the volumes
within the volume class.

If **volname (volume name) is specified, volname must be a member of
the home volume set. The file then is allocated to that volume.

Any of the forms may be used to reference files on a remote computer
by preceding the device or volume specification with DSDEVICE#.

JUL 1981

userlabels

block factor

JUL 1981

FOPEN

This array also is used for tape iabei information if bit 6 of the {options
parameter is set. The 49-character limit does not apply in this case. The
tape label information is formatted as fallows:

• [volumeid] [,type] [,expdate] [,seq];

where

volumeid - Consists of six or fewer printable characters that identify I
the volume. In a multi-volume set, only the first volumeid can be
specified.

type - Three alphabetic characters that identify label type information.
Options are:

ANS - ANSI standard labels. (Default)
IBM - IBM standard labels.

expdate - Month/day/year of the expiration date of the file or the date
after which the information contained in the file is no longer useful.
The file can be overwi.itten after this date. Default is 00/00/00, mean­
ing that the file can be overwritten immediately. In a volume set, file
expiration dates must always be equal to or earlier than the date on the
previous file.

seq - Up to four characters that denote the position of the file in I
relation to other files on the tape. Default is "NEXT." A zero will
cause a search of all volumes until file is found. If seq='ADDF," then
the tape will be positioned to add a new file on the end of the volume
or last volume in a multi-volume set. If seq= NEXT, then the tape will
be positioned to the next file on the tape. If this is the first FOPEN,
then NEXT will cause the tape to be positioned to the first file on the,
tape. If the previous FCLOSE specified REWIND backspace to last file.
The position will remain as it was on the previous file. (You cannot
append a file on a labeled tape.)

intege; by value (optional)
An integer specifying the number of user-label records to be written for
this file. Applicable to new disc files only. The maximum number of
user labels allowed varies from file to file. It depends on the final
blockfactor and recsize used, as wen as whether you have specified
fixed, variable or undefined length records. If you specify more user
labels than will fit in the 254 sectors following the MPE file label, an
error occurs and the FOPEN fails.

Default: The default number of user-label records is zero.

integer by value (optional)
An integer containing the size of the buffer to be established for the file,
specified as a number equal to the number of logical records per block.
For fixed-length records, blockfactor is the actual number of records in
a block. For variable-length records, blockfactor is interpreted as a

2-89

FOP EN

numbuffers

filesize

2-90

multiplier used to compute the block size (maximum recsize x block­
factor). For undefined-length records, blockfactor is always one logical
record per block. The blockfactor value specified by you may be over­
ridden by MPE. The valid range for blockfactor is from 1 through 255.
Specification of a negative or zero value results in the default block­
factor setting. Values greater than 255 are defaulted to 255. Block factor
establishes the physical record size on disc and magnetic tape files.

The blockfactor for foreign disc files is > = 1.
Default: Calculated by dividing the specified recsize (in words) into the
configured blocksize. This value is rounded downward to an integer
that is never less than 1.

integer by value (optional)
A 16-bit word whose bits specify the following:

Bits (11:5) - Number of Buffers.
Specifies the number of buffers to be allocated to the file. This param­
eter is not used for files representing interactive terminals, because a
system-managed buffering method is always used in such cases. If
omitted, set to zero, or set to a negative number, the default value of 2
is set by MPE.

Bits (4:7)- Number of Copies.
For spooled output devices, specifies the number of copies of the entire
file to be produced by the spooling facility. This can be specified for a
file already FOPENed (for example, $STDLIST), in which case the high­
est value supplied before the last FCLOSE will take effect. The copies
do not appear contiguously if the console operator intervenes or if a
file of higher outputpriority becomes READY before the last copy is
complete. This parameter is ignored for non-spooled output devices.
The default value is 1.

Bits (0:4) - Output Priority.
Specifies the outputpriority to be attached to this file. This priority is
used to determine the order in which files are produced when several
are waiting for the same device. This parameter must be a number be­
tween 1 (lowest priority) and 13 (highest priority), inclusive. If this
value is less than the current output fence set by the console operator,
file printing/punching is deferred until the operator raises the output­
priority of the file or lowers the output fence. This parameter can be
specified for a file already FOPENed (for example, $STDLIST), in
which case the highest value supplied before the last FCLOSE takes
effect. This parameter is ignored for non-spooled devices. The default
value is 8.
Default: The default values of all bit groupings are taken.

double by value (optional)

A double-word integer (as defined in SPL) specifying the maximum file
capacity in terms of blocks for files containing variable-length and
undefined-length records, and logical records for files containing

numextents

initialloc

filecode

FOP EN

fixed-length records. A zero or negative value results in the default
filesize setting. The maximum capacity allowed is over two million
(221) sectors. The number of sectors in a file is found by the formula
shown under FILE CHARACTERISTICS in Section X.

The filesize for foreign disc files is set to the maximum physical size of
the disc as determined by its subtype.

Because of spare tracks, remapped tracks, etc., the logical size will
usually be smaller than the physical size.
Default: 1023 logical records.

integer by value (optional)
An integer specifying the maximum number of extents (integral number
of contiguously-located disc sectors) that can be dynamically allocated
to the file as logical records are written to it. The size of each extent
is always calculated in terms of physical records. When the file is type F
(fixed) filesize is the number of logical records; thus it will be divided
by the blockfactor to determine the number of physical records (blocks).
If the file is variable length or undefined length, filesize is the number
of physical records. Then, the number of physical records required for
the system file label, and user iabeis (if any), are added to the number
of physical records required for data. To determine extent size, the
number is divided by the requested numextents. The result rounded up,
is the number of physical records per extent. This is then used to
determine the actual number of extents and the size of each. If speci­
fied, numextents must be an integer from 1 to 32. A zero or negative
value results in the default setting. Any value > 32 will automatically be
set to 32.
Default: 8 extents.

NOTE

Extents are allocated on any disc in the device class specified
in the device parameter when the file was created. If it is
necessary to insure that all extents of a file are on a particular
disc, a single disc device class or a logical device number must
be used in the device parameter.

integer by value (optional)
An integer specifying the number of extents to be allocated to the file
when it is opened. This must be an integer from 1 to 32. If an attempt
to allocate the requested disc space fails, the FOPEN intrinsic returns
an error condition code to the calling program.
Default: 1 extent.

integer by value (optional)
An integer recorded in the file label and made available for general use
to anyone accessing the file through the FGETINFO intrinsic. For this
parameter, any user can specify a positivP. integer ranging from 0 to
1023. This parameter is used for new file::i only when it is positive and

2-91

FOPEN

2-92

the process is running in user mode. If your process is running in
privileged mode, you can specify a negative integer for filecode when
initially opening a file. Then, any future accesses of the "privileged" file
must be requested in privileged mode. A process running in user mode
cannot open a file that has a negative filecode. Also, if the process
supplies a non-zero parameter the filecode must match the one
originally specified for the file. Certain integers have particular
HP-defined meanings, as follows:

Mnemonic

USL
BASD
BASP
BASFP
RL
PROG
SL
VFORM
VF AST
XLSAV
XL BIN
XLDSP
EDITQ
EDTCQ
EDTCT
RJEPN
QPROC

KSAMK
LOG

Integer

1051
1052
1060
1069
1070

1071}
1072

Integer Meaning

1024 USL file.
1025 BASIC data file.
1026 BASIC program file.
1027 BASIC fast program file.
1028 RL file.
1029 Program file.
1031 SL file.
1035 VIEW formsfile.
1036 VIEW fast forms file.
1040 Cross Loader ASCII file (SAVE).
1041 Cross Loader relocated binary file.
1042 Cross Loader ASCII file (DISPLAY).
1050 Edit KEEPQ file (non-COBOL).
1051 Edit KEEPQ file (COBOL).
1052 Edit TEXT file (COBOL).
1060 RJE punch file.
1070 QUERY procedure file.
1071 QUERY work file.
1072 QUERY work file.
1080 KSAM key file.
1090 User Logging logfile.

Meaning

An EDIT KEEPQ file (COBOL).
An EDIT TEXT file (COBOL).
An RJE punch file.
Reserved.
A QUERY procedure file.

QUERY work files.

1080 KSAM Key file.
1090 User Logging
Default: 0.

CONDITION CODES

CCE

CCG

CCL

TEXT DISCUSSION

Page 10-27

FOPEN

Request granted. The file is open.

Not returned by this intrinsic.

Request denied. This may be because another process already has
exclusive or semi-exclusive access for this file, or an initial allocation of
disc space cannot be made due to lack of disc space. The file number
value returned by FOPEN if the file is not opened successfully is zero.
The FCHECK intrinsic should be called for more details.

2-93

I

FPO INT

INTRINSIC NUMBER 6 Sets the logical record pointer for a disc file.

The FPOINT intrinsic sets the logical record pointer for a disc file, containing fixed-length or
undefined records, to any logical record in the file. When the next FREAD or FWRITE request is
issued for the file, this record will be the one read or written.

PARAMETERS

filenum

recnum

CONDITION CODES

CCE

CCG

CCL

integer by value (required)
A word identifier supplying the file number of the file on which the
pointer is to be set.

double by value (required)
A positive double integer representing the relative logical record (or
block number of NOBUF files) at which the logical record pointer is to
be positioned. The number of the first logical record is zero.

NOTE

On disc files, the end-of-file indicator is the file limit. Magnetic
tape files are delimited by the end-of-file marker.

Request granted.

Request denied. The logical record pointer position is unchanged.
Positioning was requested at a point beyond the file limit.

Request denied. The logical record pointer position is unchanged
because of one of the following:
recnum was <O.
Invalid filenum parameter.
Input/output is pending on a no-wait 1/0 request.
The file is spooled or is not on disc.
The file does not contain fixed-length or undefined-length records.
Not allowed with append access.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

Page 10-91

2-94 DEC 1981

Reads a logical record from a file on any
device to the user's stack.

FREAD

INTRINSIC NUMBER 2

The FREAD intrinsic reads a logical record, or a portion of such a record, from a file on any device
to the user's stack. The record read is determined by the current position of the record pointer.

When the logical end-of-data is encountered during reading, the CCG condition code is returned to
the user process. On magnetic tape, the end-of-data can be denoted by a physical indicator such as
a tape mark. When a file is read that spans more than one volume of labeled magnetic tape, the
user program is suspended until the operator has completed mounting the next tape. CCG is not
returned when end-of-tape is encountered. On disc, the end-of-data occurs when the last logical
record of the file is passed. In this case, the CCG condition code is returned and no record is read.
If the file is embedded in an input source containing MPE commands, the end-of-data is indicated
when an :EOD command is encountered, but the :EOD command itself is not returned to the user.
The end-of-data is indicated by a hardware end-of-file, including :EOF:, or on $STDIN by any
record beginning with a colon, or on $STDINX by :EOD. In addition, on the standard input device
for a job, as opposed to a session, :JOB, :EOJ, or :DATA indicate end-of-data.

When an old file containing carriage-control characters, supplied through the control parameter of
the FWRITE intrinsic, is read, and the carriage-control {option parameter of the FOPEN intrinsic,
or the CCTL parameter of the : FILE command is specified, the carriage-control byte is read as
follows:

DATA READ

(If file has carriage control specified.)

FUNCTIONAL RETURN

The FREAD intrinsic returns a positive integer value showing the length of the information trans­
ferred. If the tcount parameter in the FREAD call was positive, the positive value returned repre-
sents a word count; if the tcount paraiTJ.eter was negative, the positive value returned represents a
byte count. FREAD always returns zero if no-wait 1/0 is specified. In this case, the actual record
length is returned in the tcount parameter of the IOWAIT intrinsic.

PARAMETERS

filenum

target

integer by value (required)
A word identifier supplying the file number of the file to be read.

logical array (required)
An array to which the record is to be transferred. This array should be
large enough to hold all of the information to be transferred.

2-95

FREAD

tcount

CONDITION CODES

CCE

CCG

CCL

integer by value (required)
An integer specifying the number of words or bytes to be transferred.
If this value is positive, it signifies the length in words; if it is negative,
it signifies the length in bytes; if it is zero, no transfer occurs. If tcount
is less than the size of the record, only the first tcount words or bytes
are read from the record.

If tcount is larger than the size of the logical record, and the multi­
record aoption was not specified in FOPEN, transfer is limited to the
length of the logical record. If the multirecord aoption was specified
in FOPEN, transfer continues until either tcount is satisfied or the end­
of-data is encountered, and each transfer will begin at the start of the
next physical record (i.e., block). Any data remaining in the last physi­
cal record read will be inaccessible.

The information was read.

The logical end-of-data was encountered during reading. When reading a
labeled magnetic tape file that spans more than one volume, CCG is not
returned when end-of-tape (EOT) is encountered. Instead, CCG is re­
turned at actual end-of-file, with a transmission log of 0 if an attempt is
made to read past end-of-file.

The information was not read because an error occurred, a terminal
read was terminated by a special character or timeout interval as speci­
fied in the FCONTROL intrinsic, or a tape error was recovered and the
FSETMODE option was enabled.

NOTE

The condition codes should be checked both in normal 1/0
and in no-wait 1/0.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

Page 10-47

2-96

FREADBACKWARD

Reads a logical record beginning at a point
prior to the current record pointer.

INTRINSIC NUMBER 2

:-:·:·:··-·:::.:;::;:;.·.·.· ... :·:·: ·.·:·.·.·.·.·.·:·.·.·:-:-.·:·:·:·.·.·:·.·.·:·:·.·:·:·:·.·:·:·:·.·.·:·.·.·:·:·:·.·:-:·;-;-:-:·:·:-;-;

r~111111
The FREADBACKW ARD intrinsic reads a logical record from a tape to the user's stack. The record
read is determined by the current position of the record pointer. This intrinsic permits access to the
Read Reverse capability of HP -IB Magnetic Tape Drives, and can be used to recover tape errors I
when handling I/O management and data recovery routines.

Presently two substantial restrictions are associated with the use of this intrinsic:

1. It may only be used with Magnetic Tape Drives on HP-IB Systems (i.e., Series 30, 33, 44, and I
Series III with HP-IB Interface Module).

2. The magnetic tape must be accessed NOBUF.

FUNCTIONAL RETURN

The FREADBACKW ARD intrinsic returns a positive integer value shmving the length of the infor-
mation transferred. If the tcount parameter in the FREADBACKW ARD call was positive, the
positive value returned represents a word count; if the tcount parameter was negative, the positive
value returned represents a byte count. FREADBACKW ARD always returns zero if no-wait I/O is
specified. In this case, the actual record length is returned in the tcount parameter of the IOW AIT
intrinsic.

PARAMETERS
filenum

target

tcount

JUL ~1981

integer vy value (required)
A word identifier supplying the file number of the file to be read.

logical array (required)
An array to which the record is to be transferred. This array should be
large enough to hold all of the information to be transferred.

integer by value (required)
An integer specifying the number of words or bytes to be transferred.
If this value is positive, it signifies the length in words; if it is negative,
it signifies the length in bytes; if it is zero, no transfer occurs. If tcount
is less than the size of the record, only the first tcount words or bytes
are read from the record.

If tcount is larger than the size of the logical record, and the multi­
record aoption was not specified in FOPEN, transfer is limited to the
length of the logical record. If the multirecord aoption was specified in
FOPEN, transfer continues until either tcount is satisfied or the begin­
ning-of-data is encountered, and each transfer will begin at the end of
the next physical record (i.e., block). Any data remaining in the last
physical record read will be inaccessible.

2-97

FREADBACKWARD

CONDITION CODES

CCE

CCG

CCL

The information was read.

The logical beginning-of-data was encountered during reading. When
reading a labeled magnetic tape file that spans more than one volume,
CCG is not returned when beginning-of-tape (BOT) is encountered.
Instead, CCG is returned at actual beginning of file, with a transmission
log of 0 if an attempt is made to read past beginning of file.

The information was not read because a tape error occurred, or a tape
error was recovered and the FSETMODE option was enabled.

NOTE

The condition codes should be checked both in normal 1/0
and in no-wait l/O.

SPECIAL CONSIDERATIONS

Split stack calls permitted

TEXT DISCUSSION

None.

2-98

FREADDIR

Reads a specific iogical record from a disc file to the user's data stack. INTRINSIC NUMBER 7

The FREADDIR intrinsic reads a specific logical record, or a portion of such a record, from a disc
file to the user's data stack. This intrinsic differs from the FREAD intrinsic in that the FREAD
intrinsic reads only the record pointed to by the logical record pointer. The FREADDIR intrinsic
may be issued only for disc files composed of fixed-length or undefined-length records. If RIO
access is used, FREADDIR will input the specified logical record. If the record is inactive, the
contents of the inactive record will be transmitted and a CCE will be returned. (FCHECK returns a
non-zero error number to distinguish active and inactive records. If a RIO file is accessed using the
non-RIO method, (NOBUF) FREADDIR will input the specified block. In this case there is no
indication whether the block contains some inactive records.

After the FREADDIR intrinsic is executed, the logical record pointer is set to the beginning of the
next logical record, or first logical record of the next block for NOBUF files.

It is possible to skip portions of records inadvertently if the multirecord aoption of FOPEN is set
and the tcount parameter specified is greater than one logical record. For example, if you read all of
record 11 and half of record 12 in a file, the logical record pointer is set to the beginning of record
13 after the FREADDIR intrinsic executes. Thus the second half of record 12 may be skipped.

PARAMETERS

filenum

target

tcount

recnum

integer by value (required)
A word identifier supplying the file number of the file to be read.

logical array (required)

An array to which the record is to be transferred. This array should be
large enough to hold all of the information to be transferred.

integer by value (required)

An integer specifying the number of words or bytes to be transferred. If
this value is positive, it signifies words; if negative, it signifies bytes; and
if it is zero, no transfer occurs. If tcount is less than the size of the
record, only the first tcount words or bytes are read from the record.

If tcount is larger than the size of the logical record and the multirecord
aoption was not specified in FOPEN, the transfer is limited to the
length of the logical record. If the multirecord aoption was specified in
FOPEN, the remaining words or bytes specified in tcount are read from
succeeding records.

double by value (required)
A double-word integer indicating the reiative number, in the file, of the
logical record to be read. The first record is indicated by OD (double
word zero in SPL notation).

2-99

FREADDIR

CONDITION CODES

CCE

CCG

CCL

The information was read.

End of file was encountered.

The information was not read because an error occurred.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

Page 10-49

2-100

FREADLABEL

Reads a user file label. INTRINSIC NUMBER 19

The FREADLABEL intrinsic reads a user-defined label from a disc file or magnetic tape file. Once a
disc file has been opened, user labels may be read from or written to regardless of the opener's
access to the rest of the file. A disc file can have up to 254 128-word user labels. A magnetic tape
file must be labeled with an ANSI-standard or IBM-standard label. Before reading occurs, the user's
read access capability is verified. Note that MPE automatically skips over any unread user labels
when the first FREAD intrinsic call is issued for a file, therefore, the FREADLABEL intrinsic should
be called immediately after the FOPEN intrinsic has opened the file. If the file is on labeled magnetic
tape, the user-defined label must be 40 words in length to conform to the length of the ANSI or
IBM-standard label. Refer to Appendix D for the format of magnetic tape labels.

PARAMETERS

filenum

target

tcount

la be lid

CONDITION CODES

CCE

CCG

CCL

integer by value (required)
A word identifier supplying the file number of the file whose label is to
be read.

logical array (required)
An array in the stack to which the label is to be transferred. This array
should be large enough to hold the number of words specified by
tcount.

integer by value (optional)
An integer specifying the number of words to be transferred from the
label. Tcount is limited to 128 words.
Default: 128 words.

integer by value (optional)
An integer specifying the label number.
Default: Zero is assigned.

The label was read.

The intrinsic referenced a label beyond the last label written on the file.

The label was not read because an error occurred.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

Page 10-63

2-101

FREADSEEK

INTRINSIC NUMBER 12 Moves a record from a disc file to a buffer in anticipation
of a FREADDIR intrinsic call.

Direct access of disc files can be enhanced by issuing the FREADSEEK intrinsic call. This call is
used when the need for a certain record is known before its transfer to the user's stack, by a
FREADDIR call, is actually required. The FREADSEEK intrinsic directs MPE to move the record
from disc into a buffer in anticipation of the FREADDIR call, which subsequently moves the
record directly to the stack.

NOTE

The FREADSEEK intrinsic call can be issued only for files
for which input/output buffering and fixed or undefined­
length records are in effect.

PARAMETERS

filenum

recnum

CONDITION CODES

CCE

CCG

CCL

integer by value (required)

A word supplying the file number of the file to be read.

double by value (required)

A double-word integer in SPL notation indicating the relative number
of the logical record to be read. The first record is indicated by OD.

Request granted.

A logical end-of-file indication was encountered.

Request denied because an error occurred.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

Page 10-50

2-102

FREEDSEG

Releases fuJ. extra data segment. INTRINSIC NUMBER 131

A process can release an extra data segment assigned to it by using the FREEDSEG intrinsic. If this
is a private data segment, or if it is a sharable segment not currently assigned to any other process in
the job/session, the segment is deleted from the entire job/session. Otherwise, it is deleted from the
calling process but continues to exist in the job/session.

PARAMETERS

index

id

CONDITION CODES

CCE

CCL

logical by value (required)
A word containing the logical index assigned to the data segment,
obtained from the GETDSEG intrinsic call.

logical by value (required)
The identity, if any, assigned to the segment. If none is assigned, zero
should be entered.

Request granted. The data segment is deleted from the job/session.

Request granted. The data segment is deleted from the calling process
but continues to exist in the job/session because it is being shared by
another process.

Request denied. Either the index is invalid or index and id do not
specify the same extra data segment.

SPECIAL CONSIDERATIONS

Data-Segment l\fanagement Capability required.

TEXT DISCUSSION

Page 8-15.

2-103

FREELOCRIN

INTRINSIC NUMBER 31 Frees all local RIN's from allocation to a job.

The FREELOCRIN intrinsic frees all local Resource Identification Numbers (RIN's) currently
reserved for your job.

If the GETLOCRIN intrinsic has been called by a process, the FREELOCRIN intrinsic must be
called before GETLOCRIN can be called successfully a second time.

CONDITION CODES

CCE

CCG

CCL

TEXT DISCUSSION

Page 6-9.

2-104

Request granted.

Request denied because no RIN's are currently reserved for the job.

Request denied because at least one RIN is currently locked by a
process.

FRELATE

Determines whether a file pair is interactive, duplicative,
or both interactive and duplicative.

INTRINSIC NUMBER 18

A device file is interactive if it requires human intervention for all input operations. This quality is
necessary to establish the person/ machine dialog required to support a session. A device file is
duplicative if all input operations are echoed to a corresponding display without intervention by the
operating system software.

You can determine whether a pair of files is interactive, duplicative, or both interactive and
duplicative through the FRELATE intrinsic call. The interactive/duplicative attributes of a file pair
do not change between the time they are opened and the time they are closed.

The FRELATE intrinsic applies to files on all devices.

NOTE

A condition code of CCG is returned when either infilenum
or listfilenum corresponds to $NULL. $NULL is considered
to be a logical file which contains no data. No data can be
read from this file and all data written to it are discarded.
The infilenum and listfilenum functions, therefore, are
illogical for the $NULL file.

FUNCTIONAL RETURN

FRELA TE returns a word to the calling process showing whether the two files referenced are
interactive and/or duplicative. The word returned contains two significant bits, bit 15 and bit 1.

If bit 15 = 1, infilenum and listfilenum form an interactive pair.
If bit 15 = 0, infilenum and listfilenum do not form an interactive pair.
If bit 0 = 1, infilenum a..11.d listfilenum form a duplicative pair.
If bit 0 = 0, infilenum and listfilenum do not form a duplicative pair.

PARAMETERS

infilenum integer by value (required)
A word identifier supplying the file number of the input file.

listfilenum integer by value (required)
A word identifier supplying the file number of the list file.

CONDITION CODES

CCE Request granted.

2-105

FRELATE

CCG

CCL

Request denied because infilenum and/or listfilenum corresponds to
$NULL. Interactive or duplicative functions do not apply.

Request denied because an error occurred.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

Page 10-92

2-106

FRENAME

Renames a disc file. INTRINSIC NUMBER 17

The FRENAME intrinsic changes the actual designator (including lockword, if any) of an open disc
file. The home volume set of newfile reference must be the same as that of the file being renamed.
(Volume sets cannot be spanned when renaming files.)

The file to be renamed must be either:

1. A new file, or
2. An existing file, opened for fully-exclusive access, for which you have write access (speci­

fied by the security provisions of the file). If the file is a permanent file, you must be the
creator.

PARAMETERS
filenum

ne wfilereference

integer by value (required)
A word identifier supplying the file number of the file to be renamed.

byte array (required)
Contains an ASCII string specifying the new name of the file. The
maximum number of characters allowed in the string is 36. The format
of newfilereference is

filename/lockword.group.account

where

filename the new file name for the file. (Required in
newfileref ere nee.)

lockword = a lockword for the new file name. (Optional parameter of
newfileref erence.) If you wish to keep, or add a lockword
to the file, you must enter the lockword parameter in the
ASCII string. If this part of newfilereference is not
specified, the new file named will not have a lockword
associated with it.

group the group name where the file is to reside. (Optional
parameter of newfilereference.) If no group is specified,
the file will reside in the group to which it was assigned
before the FREN AME intrinsic call.

account the account name where the file is to reside. (Optional
parameter of newfilereference.) The account to which the
file is currently assigned must be used. If other than the
current account name is specified, the CCL error condition
is returned and the file retains its old name.

2-107

FRENAME

CONDITION CODES

CCE

CCG

CCL

TEXT DISCUSSION

Page 10-43

2-108

The ASCII string contained in newfilereference must begin with a
letter; can contain up to eight alphanumeric characters for each of the
filename, lockword, group, and account fields; and must end with any
non-alphanumeric character, including a blank, other than a slash(/) or
a period (since period and slash are used as field delimiters within the
string).

Request granted.

Not returned by this intrinsic.

Request denied because an error occurred.

FSETMODE

Activates or deactivates file access modes. INTRINSIC NUMBER 14

The FSETMODE intrinsic activates or deactivates the following access mode options: automatic
error recovery, critical output verification, and terminal control by the user.

The access mode established by the FSETMODE intrinsic remains in effect until another
FSETMODE call is issued or until the file is closed. The FSETMODE intrinsic applies to files on all
devices.

PARAMETERS

filenum

modeflags

integer by value (required)
A word identifier supplying the file number of the file to which the call
applies.

logical by value (required)

A 16-bit value that denotes the access mode options in effect, as
described below.

Bit (14:1) - Critical Output Verification
1 = All physical (block) output to the file is to be verified as physically

complete (when full data buffers are posted) before control returns
from a write intrinsic to the user's program. The user waits while
the system is posting a full block to the file. Note that this bit is
effective only in buffered mode.

0 = Output is not verified.

Bit (13:1) -Terminal Control by the User
1 = Inhibit normal terminal control by the system. Thus, MPE will not

issue an automatic carriage return and line feed at the completion
of each terminal input line.

0 MPE will automatically issue the carriage return and line feed for
the terminal. This parameter is ignored if the device is not a
terminal.

Carriage return, line feed is not issued in the case where FREAD file­
num, target, or tcount is satisfied (tcount characters are typed in). If
carriage return is hit, however, a carriage return is echoed but no line
feed is sent. This also applies to the READ intrinsic.

Bit (12:1)-:- Tape Error Recovery
1 Report recovered tape error by FREAD or FWRITE with CCL

condition code a.nd error number.
0 Report recovered tape error with CCE condition code.

The remaining 13 bits are reserved for MPE and must always be set to
zero.

2-109

FSETMODE

CONDITION CODES

CCE

CCG

CCL

Request granted.

Not returned by this intrinsic.

Request denied because an error occurred.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

Page 10-91

2-110

FSPACE

Spaces forward or backward on a file. INTRINSIC NUMBER 5

You can space forward or backward on a fixed-length or undefined-length file by using the FSP ACE
intrinsic. This results in resetting the logical record pointer. The FSP ACE intrinsic applies to files on
disc and magnetic tape devices only. On magnetic tape devices, however, FSP ACE spaces physical

rather than logical records.

The FSPACE intrinsic cannot be used with variable-length record files or with spooled files on disc.
An attempt to use this intrinsic on such files results in a CCL error condition code and the logical
record pointer is left at its current position.

See Section III for special considerations on magnetic tape files.

PARAMETERS

filenum

displacement

CONDITION CODES

CCE

CCG

CCL

integer by value (required)
A word identifier supplying the file number of the file on which spacing
is to be done.

integer by value (required)
A signed integer indicating the number of logical records for buffered
disc files, or blocks for NOBUF files and all tape files, to be spaced
over, relative to the current position of the logical record pointer. A
positive value signifies forward spacing, a negative value signifies back­
ward spacing. The maximum positive value is 32767, the maximum
negative value is -32768. If RIO access is used, the displacement
includes all records regardless of activity state (i.e., active deleted).
Attempts to backspace beyond the beginning of the file will be ignored
by the system. The logical record pointer will point to record 0 (the
first record) and no error codes will be returned.

Request granted.

An end-of-file indicator was encountered during spacing. For disc files,
this is the file limit, and the logical record pointer is not changed. For
magnetic tape files, it is the end-of-file mark, and the logical record
pointer points to the (logical) end-of-file. The magnetic tape, however,
is positioned to one record past the file mark on the tape. For labeled
tape the logical record pointer is at the file mark.

Request denied because an error occurred; for example file resides on a
device that prohibits spacing.
Not allowed with append access.

2-111

FSPACE

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

Page 10-89

2-112

FUN LOCK

Dynamically unlocks a file. INTRINSIC NUMBER 16

The FUNLOCK intrinsic dynamically unlocks a file (Resource Identification Number) that has been
locked with the FLOCK intrinsic.

PARAMETERS

filenum

CONDITION CODES

CCE

CCG

CCL

integer by value (required)
A word supplying the file number of the file to be unlocked.

Request granted

Request denied because the file had not been locked by the calling
process.

Request denied because the file was not opened with the dynamic
locking aoption of the FOPEN intrinsic, or the filenum parameter is
invalid.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

Page 10-55

2-113

FUPDATE

INTRINSIC NUMBER 4 Updates (writes) a logical record in a disc file.

The FUPDA TE intrinsic updates a logical record in a disc file. This intrinsic affects the logical
record (or block for NOBUF files) last referenced by any intrinsic call for the file named.
FUPDATE moves the specified information from the user's stack into this record. The file
containing this record must have been opened with the update aoption specified in the FOPEN call,
and must not have variable-length records. If RIO access is used, the modified record is set to the
active state.

Note that FUPDATE is functionally equivalent (but faster) to FSPACE(FILENUM, -1); followed
by an FWRITE to FILENUM.

PARAMETERS

filenum

target

tcount

CONDITION CODES

CCE

CCG

CCL

integer by value (required)
A word identifier supplying the file number of the file to be updated.

logical array (required)
Contains the record to be written in the updating.

integer by value (required)

An integer specifying the number of words or bytes to be written from
the record. If this value is positive, it signifies words; if it is negative, it
signifies bytes; if it is zero, no transfer occurs. If tcount is less than the
recsize parameter associated with the record, only the first tcount bytes
or words are written. For buffered file, tcount is limited to the block
size. FUPDATE cannot update more than one block in multirecord
mode.

Request granted.

An end-of-file condition was encountered during updating.

Request denied because of an error, such as the file not residing on disc,
or tcount exceeding the size of the block when inultirecord mode is not
in effect.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

Page 10-57

2-114

FWRITE

Writes a logical record from the user's stack to a file on any device. INTRINSIC NUMBER 3

The FWRITE intrinsic writes a logical or physical record, or a portion of such a record, from the
user's stack to a file on any device.

When information is written to a fixed-length record, and the NOBUF aoption was not specified in
FOPEN, any unused portion of the record will be padded with binary zeros for a binary file or
ASCII blanks for an ASCII file.

When the FWRITE intrinsic is executed, the logical record pointer is set to the record immediately
following the record just written, or the first logical record in the next block for NOBUF files. If
RIO access is used, the modified record is set to the active state.

When an FWRITE call writes a record beyond the current logical end-of-file indicator, this indicator
is advanced to a farther location; however, this is only noted in the file label when the file is
actually closed or when an extent is allocated. If the physical bounds of the file are reached, the
CCG condition code is returned.

If a magnetic tape is unlabeled (as specified i~ the FOPEN intrinsic or :FILE command) and a user
program attempts to write over or beyond the physical EQT marker, the FWRITE intrinsic returns
an error condition code (CCL). The actual data has been written to the tape, and a call to FCHECK
reveals a file error indicating END OF TAPE. All writes to the tape after the EQT tape marker has
been crossed transfer the data successfully but return a CCL condition code until the tape crosses
the EQT marker again in the reverse direction (rewind or backspace).

If a magnetic tape is labeled (as specified in the FOPEN intrinsic or :FILE command), a CCL condi­
tion code is not returned when the tape passes the EOT marker. Attempts to write to the tape after
the EOT marker is encountered cause end of volume (EOV) markers to be written. A ~essage then
is printed on the operator's console requesting another volume (reel of tape) to be mounted.

PARAMETERS

filenum

target

tcount

integer by value (required}
A word identifier supplying the file number of the file to be written on.

logical array (required)
Contains the record to be \Vritten.

integer by value (required)
An integer specifying the number of words or bytes to be written to the
record. If this value is positive, it signifies words; if it is negative, it
signifies bytes; if it is zero, no transfer occurs. If tcount is less than the
recsize parameter associated with the record, only the first tcount
words or bytes are written.

If tcount is larger than the logical record size and the NOBUF aoption
is not specified in FOPEN, the FWRITE request is refused and condi­
tion code CCL is returned. If NOBUF is specified, tcount may not
exceed the physical record size unless the multirecord option is specified.

2-115

FWRITE

control

If the multirecord aoption is specified in FOPEN, the excess words or
bytes are written to succeeding physical records. For files for which
carriage control is specified, the actual data transferred is limited to
recsize minus one byte.

logical by value (required)

A logical value representing a carriage control code, effective if the file is
transferred to a line printer or terminal (including a spooled file whose
ultimate destination is a line printer or a terminal). This parameter is
effective only for files opened with carriage control specified.

The options are:

0 - Print the full record transferred, using single spacing. This results
in a maximum of 132 characters per printed line.

1 - Use the first character of the data written to satisfy space control,
and suppress this character on the printed output. This results in a
maximum of 132 characters of data per printed line. Permissible control
characters are shown in figure 2-3.

Any octal code from figure 2-3 can be used to determine space control
and print the full record transferred. This results in a maximum of 132
characters per printed line.

If the control parameter is not 0 or 1, and tcount is 0, only the space
control is executed - no data are transferred.

The effect of the FWRITE control parameter in combination with the
FOP EN carriage control {option (or overriding : FILE command CCTL/
NOCCTL parameter) upon the data written is summarized in figure 2-4.

You determine whether the carriage control directive takes effect before
printing (pre-space movement) or after printing (post-space movement),
through the FCONTROL intrinsic.

Sometimes it is necessary to set the pre-space/post space control and
the auto/no auto page eject control with the FWRITE instead of
FCONTROL. You may use control codes %100 through %103 and
%400 through %403 for this. If you specify one of the above controls
with + count = 0, no physical 1/0 will occur.

All of the carriage control codes listed in figure 2-3 may be used as the
value of the param parameter in FCONTROL (when controlcode=l),
regardless of whether the file is opened with CCTL or NOCCTL. When
the file is opened with CCTL, these carriage control codes may be used
in either of the following ways via FWRITE:

a. As the value of the control parameter_

b. When control=l, as the first byte of the target array.

The default carriage control code is post spacing with automatic page
eject. This applies to all HP-supported subsystems except FOR TRAN
which is prespacing with automatic page eject.

FWRITE

CONDITION CODES

CCE

CCG

CCL

I

OCTAL CODE

%40

%53

%55

%60

%61

%2nn (nn is any
octal number
from 0 through
77)

%300- %307

%300- %313

%300- %317

*Note:

Request granted.

The physical bounds of the file prevented further writing; all disc
extents are filled.

Request denied because an error occurred, such as tcount exceeding the
size of the record in non-multirecord mode; or the FSETMODE option
is enabled to signify recovered tape errors; or the end-of-tape marker
was sensed. If the file is being written to a multi-volume magnetic tape
set, CCL is not returned when the end-of-tape marker is sensed. Instead,
end-of-volume labels are written, and a request is issued to mount the
next volume.

ASCII_ SYMBOL CARRIAGE ACTION

II II

"+"

"O"

"1 ''

Single space (with or without automatic page eject).

No space, return (next printing at column 1). Not valid on 2607 I
2608 (results in single space without automatic page eject).

Triple space (with or without automatic page eject).*

Double space (with or without automatic page eject).*

Page eject (form feed). Selects VFC Channel 1. Ignored if:

Post-space mode: The current request has a transfer count of 0 and I
the previous request was an FOPEN or FCLOSE or an FWRITE.
which specified a carriage-control directive of %61. I

Pre-space mode: Both the current request and the previous request
have transfer counts of 0, and the current request and previous re­
quest are any combination of FOPEN, FCLOSE or an FWRITE speci­
fying a carriage-control directive of %61.

Space nn lines (no automatic page eject). %200 not valid for 2607
(results in single space without automatic page eject).

Select VFC Channel 1-8 (2607)

Select VFC Channei i-i2 (2613, 2617, 2618, 2619)

Select VFC Channel 1-16 (2608)

Series 30/33/44: If these codes are selected with automatic page eject in effect (by default or following an Octal Code of %102 or
%402). the resulting skip is to a location absolute to the page. A code of %60 is replaced by %303 and %61 is replaced by %304. Thus
the resulting skip may be less than two or three lines, respectively.

If automatic page eject is not in effect, a true double or triple space results, but the perforation between pages is not automatically
skipped.

Series II/Ill: If these codes are selected with automatic page eject in effect, %60 and %61 are replaced by two or three %302 codes,
respectively. This results in true double or triple spacing, and also skips the perforation.

If automatic page eject is not in effect, the behavior is the same as for Series 30/33/44.

Figure 2-3. Carriage-Control Directives (Sheet 1 of 2)
2-117

FWRITE

OCTAL CODE

%300

%301

%302

%303

%304

%305

%306

%307

%310

%311

%312

%313

%314

%315

%316

%317

%320

%2-%37
%41 - %52
%54
%56- %57
%62-%77
%104 - %177

%310-%317

%314-%317
%321 -%377

%400 or %100

%401 or %101

%402 or %102

%403 or %103

2-118

ASCII SYMBOL

(2607)

(2613/17 /18/19)

CARRIAGE ACTION

NOTE
Channel assignments shown below are the HP standard
defaults.

Skip to top of form (page eject).

Skip to bottom of form.

Single spacing with automatic page eject.

Skip to next odd line with automatic page eject.

Skip to next third line with automatic page eject.

Skip to next 1 /2 page.

Skip to next 1 /4 page.

Skip to next 1 /6 page.

Skip to bottom of form.

User option (2613/17/18/19), skip to one line before bottom of form
(2608)

User option (2613/17/18/19), skip to one line before top of form
(2608)

User option (2613/17 /18/19), skip to top of form (2608)

Skip to next seventh line with automatic page eject.

Skip to next sixth line with automatic page eject.

Skip to next fifth line with automatic page eject.

Skip to next fourth line with automatic page eject.

No space, no return (next printing physically follows this).

Same as %40

Sets post-space movement option; this first prints, then spaces. If
previous option was pre-space movement, the driver outputs a line with
a skip to VFC channel 3 to clear the buffer.

Sets pre-space movement option; this first spaces, then prints.

Sets single-space option, with automatic page eject (60 lines per page).

Sets single-space option, without automatic page eject (66 lines per
page).

Figure 2-3. Carriage-Control Directives (Sheet 2 of 2)

FWRITE

I I
FWRITE Control Parameter I FOP EN l

I
OR I I :FILE =O = 1 = Greater than 1

I

Carriage Byte Byte

Control 1 recsize recsize 1 recsize
L 133 •I L 132 _J 133 _J

Foption

r i 1 I Specified 0 I record =132
I

record= 132 I ~~;1-1 record = 132

or
~

...... _
CCTL

Data output contains Data output contains Data output contains
132 characters; the 132 characters; the 132 characters; the
prefix byte is added carriage control prefix character added
and contains 0 character in the first is a carriage-control

byte is not printed if character specified by
output is to a list the FWR ITE control
device. parameter.

Carriage
Control L 132 ~ L 132 .J L 132 .J

I l=nntinn I r I I

i I
,..-

. -..- ... ·-·· I I r l

not record= 132 record= 132 record= 132
specified
or

Data output contains Data output contains Data output contains
NOCCTL

132 characters. 132 characters 132 characters.

EFFECT ON DATA OUTPUT

Figure 2-4. Carriage-Control Summary

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

Page 10-49

2-119

FWRITEDIR

INTRINSIC NUMBER 8 Writes a specific logical record from the user's stack to a disc file.

The FWRITEDIR intrinsic writes a specific logical record (or physical record if NOBUF is specified),
or a portion of such a record, from the user's stack to a disc file. This intrinsic differs from the
FWRITE intrinsic in that the FWRITE intrinsic writes only the record pointed to by the logical
record pointer. The FWRITEDIR intrinsic may be used only for disc files composed of fixed or
undefined-length records.

When information is written to a fixed-length record and NOBUF was not specified in the FOPEN
call that opened the file, any unused portion of the record will be padded with binary zeros for a
binary file, or ASCII blanks for an ASCII file.

When the FWRITEDIR intrinsic is executed, the logical record pointer is set to the record
immediately following the record just written, or the first logical record of the next block for
NOBUF files.

If RIO access is used, the modified record is set to the active state.

When an FWRITEDIR call writes a record beyond the current logical end-of-file indicator, the
indicator is advanced to a farther location. This can result in the creation of dummy records to pad
the records between the previous end-of-file and the newly-written record. These dummy records
are filled with binary zeros for a binary file, or with ASCII blanks for an ASCII file when the new
record is in the same extent.

When the physical bounds of the file prevent further writing, because all allowable extents are filled,
the end-of-file condition (CCG) is returned to the user's program.

PARAMETERS

filenum

target

tcount

2-120

integer by value (required)

A word identifier specifying the file number of the file to be written
on.

logical array (required)

Contains the record to be written. This array should be large enough to
hold all of the information to be transferred.

integer by value (required)

An integer specifying the number of words or bytes to be written to the
record. If this value is positive, it signifies words; if it is negative, it
signifies bytes; if it is zero, no transfer occurs. If tcount is less than the
recsize parameter associated with the record, and NOBUF was specified,
only the first tcount words or bytes are written.

If tcount is larger than the size of the logical record and the NOBUF
aoption was not specified in FOPEN, the transfer is limited to the
length of the logical record. If NOBUF was specified and if tcount is
larger thatn the size of the physical record, the transfer is limited to the
length of the physical record if the multirecord aoption was not specified.
If the multi record aoption was specified in FOPEN, the remaining
words or bytes are written to succeeding physical records up to the
file limit.

recnum

CONDITION CODES

CCE

CCG

CCL

FWRITEDIR

double by value (required)
A double integer indicating the relative number of the logical record, or
block number for NOBUF files, to be written. The first record is
indicated by OD.

Request granted.

The physical end-of-file was encountered.

Request denied because an error occurred.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

Page 10-51

2-121

FWRITELABEL

INTRINSIC NUMBER 20 Writes a user file label.

The FWRITELABEL intrinsic writes a user-defined label onto a disc file or labeled magnetic tape
file that is labeled with an ANSI-standard or IBM-standard label. This intrinsic overwrites old user
labels. Once a disc file has been opened, user labels may be read from or written to regardless of the
user's access to the rest of the file. If the file is on labeled magnetic tape, the user-defined label must
be 40 words in length to conform to the length of the ANSI or IBM-standard label. Refer to
Appendix D for the format of magnetic tape labels.

PARAMETERS

filenum

target

tcount

la be lid

CONDITION CODES

CCE

CCG

CCL

integer by value (required)
A word identifier specifying the file number of the file to which the
label is to be written.

logical array (required)
Contains the label to be written. If the file is a labeled magnetic tape
file, this label must be 40 words in length.

integer by value (optional)
An integer specifying the number of words to be transferred from the
array.
Default: 128 words.

integer by value (optional)
An integer specifying the number of the label to be written. The first
label is 0.
Default: Zero is assigned.

Request granted.

Request denied because the calling process attempted to write a label
beyond the limit specified in FOPEN when the file was opened.

Request denied because an error occurred.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

Page 10-62

2-122

GEN MESSAGE

Accesses message system.

The GENMESSAGE intrinsic accesses the MPE message system. A message number is passed by
GENMESSAGE to the message system. The message system fetches the message from a message
catalog (opened by the calling program), inserts parameters supplied by GENMESSAGE into the
message, then routes the message to a file or returns the message to the calling program. (If msg­
dest is specified, the message is routed to a file. If buff is specified, the message is returned. If both
msgdest and buff are specified, the message is both routed to a file and returned.)

NOTE

The catalog file must be opened with {options old, permanent,
ASCII ({options 5), and aoptions nobuf and multi-record
access (aoptions %420).

FUNCTIONAL RETURN

The length of the message is returned (in positive bytes) to msglen.

PARAMETERS

filenum

setnum

msgnum

buff

buffsize

parmask

integer by value (required)
A word identifier supplying the file number of the message catalog.

integer by value (required)
A positive integer no greater than 62 specifying the message set number
within the catalog.

integer by value (required)

A positive integer, specifying the message number within the message
set.

byte array (optional)
A byte array to which the assembled message is returned.
Default: Message is not returned to calling program.

integer by value (optional)
When buff is specified, buffsize is the size, in bytes, of the buffer. When
buff is not specified, buffsize is the length, in bytes, of the records
written to the destination file.
Default: 72 bytes.

logical by value (optional)
A 16-bit logical mask indicating parameter types for parml, parm2,
parm3, parm4, and parm5. The bit settings are as follows:

GEN MESSAGE

parml

parm2

parm3

parm4

parm5

msgdest

2-124

Bit (0:1)=1. Ignore rest of word andparametersparmJ throughparm5.

=O. Rest of word, in 3-bit groupings, will specify parameter
types for parml, parm2, parm3, parm4, and parm5, as
follows:

Bits (1:3)=parmJ type.

0 - parameter is a string, terminated by an ASCII null (0).

1 - parameter is integer.

2 - parameter is double by reference.

3 - ignore the parameter.

Bits (4:3) = parm2 type (types same as for parml).

Bits (7:3) = parm3 type (types same as for parml).

Bits (10:3)= parm4 type (types same as for parml).

Bits (13:3)= parm5 type (types same as for parml).

Default: Parameters parml through parm5 will be ignored.

logical by value (optional)
Parameter to be inserted into message. If parmask specifies a type of 0
(string), parml must pass the byte address (i.e., @stringarray) of the
byte array containing the string. If parmask specifies type 2 (double by
reference), parml must pass the word address (i.e., @doublename) of
the doubleword identifier containing the value.

logical by value (optional)
Parameter to be inserted into message. Description is the same as for
parml.

logical by value (optional)
Parameter to be inserted into message. Description is the same as for
parml.

logical by value (optional)
Parameter to be inserted into message. Description is the same as for
parml.

logical by value (optional)
Parameter to be inserted into message. Description is the same as for
parml.

integer by value (optional)
Integer value specifying the destination of the assembled message, as
follows:

0 = $STDLIST.

>2 =File number of destination file.

Default: $STDLIST if buff is not specified, no file if buff is specified.

errnum

CONDITION CODES

CCE

CCL

CCG

TEXT DISCUSSION

Page 4-50

GEN MESSAGE

integer (optional)
Integer identifier to which ai.1 error number is returned. Values returned
are as follows :

0 = Successful execution.

1 = FREADLABEL failed on catalog file.

2 = FREAD failed on catalog file.

3 =Specified setnum not found in catalog.

4 =Specified msgnum not found in catalog.

6 =Assembled message overflowed buffer (if msgdest was specified,
however, message routed correctly).

7 = write failed to destination file.

8 =Catalog file opened with improper access options.

11 = filenum parameter not specified.

12 = setnum parameter not specified.

13 = msgnum parameter not specified.

14 = setnum <= 0.

15 = setnum > 62.

16 = msgnum <= 0.

17 = buffsize <= 0.

18 = msgdest < 0.

Successful execution.

Intrinsic did not execute because of file system error.

Intrinsic did not execute. May have missing required parameter, invalid
parameter, or invalid file number of catalog or destination file. CCG is
also returned if SET or MSG is not found.

2-125

GET
Receives the next request from the remote master program.

See the DS/3000 Reference Manual (32190-90001) for a discussion of this intrinsic.

2-126

GETDSEG

Creates an extra data segment. INTRINSIC NUMBER 150

The GETDSEG intrinsic creates or acquires an extra data segment. The number of extra data
segments that can be requested, and the maximum size allowed these segments, are limited by
parameters specified when the system is configured. When an extra data segment is created, the
GETDSEG intrinsic returns a logical index number to the calling process. This index number is
assigned by MPE and allows this process to reference the segment in later intrinsic calls. The
GETDSEG intrinsic also is used to assign the segment the identity that either allows other processes
in the job or session to share the segment, or that declares it private to the calling process. If the
segment is sharable, other processes can obtain its logical index (through GETDSEG) and use this
index to reference the segment. Thus, the logical index is a local name that identifies the segment
throughout any process that obtained the index with the GETDSEG call. The logical index need not
be the same value in all processes sharing the data segment. The identity, on the other hand, is a
job-wide or session-wide name that permits any process to determine the logical index of the
segment. If the intrinsic is called in user mode, then the data segment is initially filled with zeros.

PARAMETERS

index

length

id

CONDITION CODES

CCE

CCG

logical (required)
A word to which the logical index of the data segment, assigned by
MPE, is returned.

integer (required)
The maximum size of the data segment requested, if the segment is not
yet created, or the word to which the maximum size of the segment is
returned, if the segment already exists.

logical by value (required)
A word containing the identity that declares the data segment sharable
between other processes in the job/session, or private to the calling
process. For a sharable segment, id is specified as a non-zero value. If a
data segment with the same id exists already, it is made available to the
calling process. Otherwise, a new data segment, sharable within the
job/session, is created with this id. For a private data segment, an id of
zero must be specified.

Request granted. A new segment was created.

Request granted. An extra data segment with this identity exists
already.

2-127

GETDSEG

CCL Request denied. An illegal length was specified (index is set to %2000),
or the process requested more than the maximum allowable number of
data segments (index is set to %2001), sufficient storage was not
available for the data segment (index is set to %2002) or a stack
expansion necessary to satisfy the request could not be done because
the stack was frozen (index set to %2003). Note that a stack expansion
is usually not necessary to get an extra data segment.

SPECIAL CONSIDERATIONS

Data Segment Management Capability required.

TEXT DISCUSSION

Page 8-6.

2-128

GETJCW

Fetches content of system job control word (JCW). INTRINSIC NUMBER 73

The GETJCW intrinsic returns the complete job control word (JCW) to the calling process.

FUNCTIONAL RETURN

This intrinsic returns the job control word. This word is structured for a desired purpose by the
calling program through the SETJCW intrinsic or PUTJCW intrinsic.

CONDITION CODES

The condition code remains unchanged.

TEXT DISCUSSION

Page 4-46

2-129

GETLOCRIN

INTRINSIC NUMBER 30 Acquires local RIN's. The number acquired = rincount.

Just as global Resource Identification Numbers (RIN's) must be acquired by users before they can
be used in jobs/sessions, local RIN's must be acquired by a job/session before they can be used
within the job/session. This is done by using the GETLOCRIN intrinsic.

PARAMETERS

rincount

CONDITION CODES

CCE

CCG

CCL

TEXT DISCUSSION

Page 6-8.

2-130

logical by value (required)
The number of local RIN's to be acquired by the job /session. The
maximum number of RIN's available is defined when the system is
configured.

Request granted.

Request denied. RIN's already are allocated to this job. Additional
RIN's cannot be allocated until these RIN's are released.

Request denied. Not enough RIN's are available to satisfy this call.
None are allocated to this job.

GETORIGIN

Determines source of activation call. INTRINSIC NUMBER 105

After a suspended process is reactivated, it can determine whether the source of the activation
request was its father process, one of its son processes, or whether the reactivation was by an
interrupt or the timer.

FUNCTIONAL RETURN

This intrinsic returns one of the following codes:

1 =Activated by father.
2 = Activated by a son.
0 = Activated from some other source.

CONDITION CODES

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

Process Handling Capability required.

TEXT DISCUSSION

Page 7-14.

2-131

GETPRIORITY

INTRINSIC NUMBER 120 Reschedules a process.

When a process is created, it is scheduled on the basis of a priority class assigned by its father. After
this point, the priority class of the created process can be changed at any time by using the
GETPRIORITY intrinsic.

NOTE

A process can change its own priority or that of its son but it
cannot reschedule its father.

The GETPRIORITY intrinsic will abort the calling process if the requested priorityclass exceeds the
maximum allowable priorityclass of the rescheduled process or specifies an invalid priority class.

PARAMETERS

pin

priorityclass

rank

2-132

integer by value(required)
An integer specifying the process whose priority is to be changed. If
this is a son process, the integer is the process Process Identification
Number (PIN). If this is the calling process, the integer is zero.

logical by value(required)

A 16-bit word that contains two ASCII characters describing the priority
class in which the process is rescheduled. This may be "AS", "BS",
"CS", "DS", or "ES". For users running in Privileged Mode, theprior­
ityclass parameter may be specified as an absolute number by x A,
where x is an 8-bit priority number and A is the ASCII character "A".
For example, a request for a priorityclass of 31 in the master queue
would be requested as %017501. Note that an absolute priority must be
specified in order to overcome the MAXPRI setting of an account.

NOTE

Scheduling a process into the "AS" or "BS" priority class
(assuming the process's maximum priority allows such a specifi­
cation) can result in the rescheduled process deadlocking the
system or locking out system and user processes from execu­
tion.

integer by value(optional)
This parameter is used only for compatibility with previous versions of
the MPE Operating System. It is ignored for all users.

GETPRIORITY

CONDITION CODES

CCE Request granted.

CCG Request denied because the process specified is not alive.

CCL Request denied because an illegal PIN was specified.

SPECIAL CONSIDERATIONS

Split stack calls permitted.
Process Handling Capability required.
Must be running in Privileged Mode to specify absolute priority.

TEXT DISCUSSION

Page 7-13.

2-133

GETPRIVMODE

INTRINSIC NUMBER 200 Dynamically enters privileged mode.

The GETPRIVMODE intrinsic switches a temporarily-privileged program from the non-privileged
mode to the privileged mode. This intrinsic turns the privileged mode bit in the status register on,
but leaves the privileged mode bit in the Code Segment Table (CST) entry for the executing
segment unchanged. The status register, rather than the CST, determines a mode change when
running in privileged mode. Thus, if additional segments are to be run as part of the program, they
will be run in privileged mode unless an intrinsic is called specifically to return to the non-privileged
mode.

The calling process is aborted if the program file does not possess the Privileged Mode Capability,
and the CST indicates non-privileged mode.

CONDITION CODES

CCE

CCG

CCL

Request granted. The program. was in non-privileged mode when the
intrinsic call was issued.

Request granted. The program was already in privileged mode when the
intrinsic call was issued.

Not returned by this intrinsic.

SPECIAL CONSIDERATIONS

Privileged Mode Capability required.

TEXT DISCUSSION

Page 9-3.

2-134

IMPORTANT NOTE

The normal checks and limitations that apply to the standard
users in MPE are bypassed in privileged mode. It is possible
for a privileged mode program to destroy file integrity, includ­
ing the MPE operating system software itself. Hewlett-Packard
will investigate and attempt to resolve problems resulting
from the use of privileged mode code. This service, which is
not provided under the standard Service Contract, is available
on a time and materials billing basis. However, Hewlett­
Packard will not support, correct, or attend to any modifica­
tion of the MPE operating system software.

GETPROCID

Requests PIN of a son process. INTRINSIC NUMBER 112

A process can determine the Process Identification Number (PIN) assigned to any of its sons by
using the GETPROCID intrinsic.

FUNCTIONAL RETURN

This intrinsic returns the PIN of the specified son process.

PARAMETERS

numson

CONDITION CODES

integer by value (required)
A number from 1 to n which specifies the chronological son's PIN
desired. The value n cannot exceed the number of sons in existence.
For example, a father process has three sons and it is desired to know
the PIN of the second son. The value of numson then would be 2.

If n exceeds the number of sons currently attached to this calling
process, a zero is returned. If n is less than 1, the PIN of the first son
(or zero if no sons exist) is returned.

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

Process Handling Capability required.

TEXT DISCUSSION

Page 7-15.

2-135

GETPROCINFO

INTRINSIC NUMBER 110 Requests status information about a father or son process.

Information about a father or son process can be obtained with the GETPROCINFO intrinsic.

FUNCTIONAL RETURN

This intrinsic returns a double-word message denoting the following information about a father or
son process:

Word 1:
Bits (8:8) -The process' priority number in the master queue.
Bits (0: 8) - Reserved for MPE. These bits are set to zero by the system.

Word 2:
Bit (15: 1) - Activity state.

1 =The process is active.
0 = The process is suspended.

Bit (13:2) - Suspension condition. Set only if bit 15 = 0.
If bit 14 = 1, the source of the expected activation is the father.
If bit 13 = 1, the source of the expected activation is a son.

Bits (9:4) - Reserved for MPE. These bits are set to zero by the system.
Bits (7:2) - Origin of the last ACTIVATE intrinsic call.

00 = The process was activated by MPE.
01 =The process was activated by the father.
10 = The process was activated by a son.

Bits (4: 3) - Queue Characteristics.
001 = DS or ES priority class.
010 = CS priority class.
100 =Linearly scheduled (AS or BS or Master queue).

Bits (0:4) - Reserved for MPE. These bits are set to zero by the system.

PARAMETERS

pin

CONDITION CODES

CCE

CCG

CCL

2-136

integer by value (required)
The process to which the returned message pertains. If this is a request
for a father process, pin must be zero. If it is a request for a son
process, pin is the PIN of that process.

Request granted.

Request denied because the process is being terminated.

Request denied because an illegal PIN was specified.

GETPROCINFO

SPECIAL CONSIDERATIONS

Split stack calls permitted.
Process Handling Capability required.

TEXT DISCUSSION

Page 7-15.

2-137

GETUSERMODE

INTRINSIC NUMBER 201 Dynamically returns to non-privileged mode.

The GETUSERMODE intrinsic changes a temporarily-privileged program from the privileged to the
non-privileged mode.

This intrinsic changes the privileged mode bit in the status register to off, and is the complement of
the GETPRIVMODE intrinsic.

CONDITION CODES

CCE

CCG

CCL

Request granted. The process was in privileged mode when the intrinsic
call was issued.

Request granted. The program was in non-privileged mode when the
intrinsic call was issued.

Not returned by this intrinsic.

SPECIAL CONSIDERATIONS

Privileged Mode Capability required.

TEXT DISCUSSION

Page 9-5.

2-138

INITUSLF

Initializes buffer for a USL file to the empty state. INTRINSIC NUMBER 82

The INITUSLF intrinsic initializes the first record (record 0) of a USL file to the empty state.

FUNCTIONAL RETURN

This intrinsic returns an error number if an error occurs. If no error occurs, no value is returned.

PARAMETERS

uslfnum

recO

CONDITION CODES

CCE

CCG

CCL

TEXT DISCUSSION

integer by value (required)
A word identifier supplying the file number of the USL file.

integer array (required)
A 128-word buffer, corresponding to the first record of the USL file
(record 0), to be initialized to the empty state. This buffer should be
set to all zeros. The intrinsic will set certain values in record 0 before
returning to the calling program. See the MPE Segmenter Reference
Manual for record 0 format.

Request granted.

Not returned by this intrinsic.

Request denied. One of the error numbers listed below is returned.

Error Number

0

1

Meaning

An unexpected end-of-file was encountered
when writing to uslfnum.

Unexpected input/output error occurred.

See the MPE Segmenter Reference Manual

2-139

IODONTWAIT

INTRINSIC NUMBER 22 Initiates completion operations for an I/0 request.

The IODONTWAIT intrinsic behaves the same as IOWAIT (see page 2-128) with one exception:

If IOWAIT is called and no I/0 has completed, then the calling process is suspended until some
I/0 completes; if IODONTWAIT is called and no I/0 has completed, then control is returned to
the calling process (CCE is returned and the result of IODONTWAIT is zero.)

FUNCTIONAL RETURN

This intrinsic returns- an integer representing the file number for which the completion occurred. If
no completion occurred, zero is returned.

PARAMETERS

filenum

target

tcount

est a ti on

2-140

integer by value (required)
A word identifier specifying the file number for which there is a pend­
ing I/0 request. If zero is specified, the IODONTWAIT intrinsic will
check for any I/0 completion.

logical array (optional)
A word pointer specifying the DB-relative address of the user's input
buffer. This buffer must large enough to contain the input record. It
should be the same buffer specified in the original 1/0 request if that
request was a read. This allows for proper recognition of :EOD (AND :)
where applicable.

integer (optional)
A word to which is returned a positive integer representing the length of
the received or transmitted record. If the original request specified a byte
count, the integer represents bytes; if the request specified words, the
integer represents words. Note that this parameter is pertinent only if
the original request was a read. The FREAD intrinsic always returns
zero as its functional return if no-wait 1/0 is specified. In this case, the
actual record length is returned in the tcount parameter of
IODONTWAIT.
Default: The length of the record is not returned.

logical (optional)

Used for distributed systems to return the number of the calling station
which completed.

CONDITION CODES

CCE

CCG

CCL

IODONTWAIT

Request g-ranted. If the functional retu..rn is non-zero then 1/0 com­
pletion occurred with no errors. If the return is zero then no 1/0 has
completed.

An end-of-file condition was encountered.

Request denied. Normal 1/0 completion did not occur because there
were no 1/0 requests pending, a parameter error occurred, or an ab­
normal 1/0 completion occurred.

SPECIAL CONSIDERATIONS

You must be running in Privileged Mode to specify FOPEN aoptions No-Wait 1/0.

TEXT DISCUSSION

Page 10-62

2-141

IOWAIT

INTRINSIC NUMBER 22 Initiates completion operations for an I/0 request..

If a file has been opened with the no-wait I/0 mode aoption of the FOPEN intrinsic (aoptions bit
(4:1) = 1), all read and write requests must be followed by the IOWAIT intrinsic call. This intrinsic
initiates completion operations for the associated I/0 request, including data transfer into the user's
buffer area if necessary.

The IOWAIT intrinsic call must precede any subsequent I/O request against the file. Within this
restriction, the IOWAIT intrinsic call can be delayed as long as desired to allow effective I/0 and
processing overlap.

FUNCTIONAL RETURN

This intrinsic returns an integer representing the file number for which the completion occurred. If
no completion occurred, zero is returned.

PARAMETERS

filenum

target

tcount

cstation

2-142

integer by value (optional)
A word identifier specifying the file number for which there is a
pending I/O request. If zero is specified, the IOW AIT intrinsic will wait
for the first I/O completion.

logical array (optional)
A word pointer specifying the DB-relative address of the user's input
buffer. This buffer must be large enough to contain the input record. It
should be the same buffer specified in the original 1/0 request if that
request was a read. This allows for proper recognition of :EOD (and:)
where applicable.

integer (optional)
A word to which is returned a positive integer representing the length of
the received or transmitted record. If the original request specified a byte
count, the integer represents bytes; if the request specified words, the
integer represents words. Note that his parameter is pertinent only if the
original request was a read. The FREAD intrinsic always returns zero as
its functional return if no-wait 1/0 is specified. In this case, the actual
record length is returned in the tcount parameter of IOWAIT.
Default: The length of the record is not returned.

logical (optional)
Used for distributed systems to return the number of the calling station
which completed.

CONDITION CODES

CCE

CCG

CCL

IOWAIT

Request granted. 1/0 completion occurred with no errors.

.An end-of-file condition was encountered.

Request denied. Normal 1/0 completion did not occur because there
were no 1/0 requests pending, a parameter error occurred, or an
abnormal 1/0 completion occurred.

SPECIAL CONSIDERATIONS

You must be running in Privileged Mode to specify FOPEN aoptions No-Wait 1/0.

TEXT DISCUSSION

Page 10-59

2-143

Intrinsics

New Intrinsic JOBINFO

By Larry Cargnoni

The JOB INFO intrinsic is new for MPE V /E, and will execute only on an HP 3000 supporting MPE
V /E. It enables a standard user to access session- and job-related information. Previously, most of
this information was accessible only through MPE commands and the WHO intrinsic. The JDBINFO
intrinsic is patterned after the FFILEINFO and CREATEPROCESS intrinsics. It is callable from any
language, and may be used in software that performs security checks, job stream polling, system ac­
counting, and job/session communication. -The JOB INFO intrinsic provides access to information re­
lated to any job/session that is current to the system. This intrinsic is expandable, and is written so
that the addition of further functionality will be straightforward.

SYNTAX

IV D LA IV LA I OV
JDBINFDCjsind,JS#nnn,status r , i temnuml, i teml ,errornwn1 J

C,itemnum2,item2,errornwn2j
C,itemnwn3,item3,errornum3J
C,itemnum4,item4,errornum4l
C,itemnwn5,item5,errornum5]);

t .

PARAMETERS

jsind

JS#nnn

status

integer by value (required)
An integer indicating whether the JS#nnn is a session or job:

l= JS#nnn is a session.

2= J S#nnn is a job.

double (required)
A double value, 32 bits, identifying the job or session for which informa =

tion will be retrieved.

logical array (required)
K two word logical array reporting the overall success/failure of the call.
Only the first word contains significant information.

Oz Successful call. All errornums equal zero.

1 = Semi-successful call. One or more errornums were returned with non -
zero values.

3-2

itemnum

item

errornum

Intrinsics

2• Unsuccessful call. All errornums were returned with nonzero values.

3• Unsuccessful call. Syntax error in calling sequence.

4• Unsuccessful call. Unable to retrieve JS#nnn/S#nnn .

5• Process died during the start of retrieval.

integer by value (optional)
Cardinal number of the item desired. This specifies which item value is to
be returned (refer to 11 ITEM# 11 in Table i).

logical array (optional)
Name of a reference parameter (whose data type corresponds to the data
type for the desired information) to which the desired information is
returned (refer to "ITEM" in Table 1).

integer (optional)
A returned integer specifying the success or failure of the retrieval of each
item. The returned values are:

Qa Successful information retrieval.

l• Invalid itemnum (item number).

2• Desired information not pertinent to the given JS#nnn (eg., user
specifies a session number and wishes to know if a job had RESTART
option).

3~ User has insufficient capability to access this information.

4= The desired information is no longer available (eg., when spoolfiles
disappear).

SPECIAL CONSIDERATIONS

A user without System Manager (SM) or Account Manager (AM) capability can only retrieve informa­
tion about the jobs/sessions logged on under the user name and account. A user with AM capability
but not SM capability will be restricted to information concerning his account sessions and jobs; a user
with SM capability will be abie to retrieve information concerning all sessions and jobs. The excep­
tion to the above security is access to items which are normally available to a user, through MPE
commands, who does not have any special capabilities.

CONDITION CODES

There are no condition codes in the traditional sense, but the status parameter can be thought of as a
condition code.

3-3

Intrinsics

The status parameter returns a number representing the overall status of the call. The errornum pa­
rameter returns the status of the individual accesses items and itemnums . Combinations of successful
and unsuccessful data retrievals could be returned from the same call. For example, a user who does
not have System Manager or Account Manager capabilities writes a program with JOBIHFO . The
JOBI HFO intrinsic retrieves the jobfence and the current job step of access user. Upon the return of
JOB INFO , the parameter status will return a 2 (semi-successful call). The call is not successful since
the errornum corresponding to the jobfence access will be 0 (successful retrieval) and the errornum
corresponding to the current job step access will be a 3 (insufficient capability).

ITEM#
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
i8
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36

Table 1. Item Descriptions

ITEM (information returned)
[JSNAME,]user.account (See note 1)
session/job name (See note 2)
user name (See note 2)
user logon group (See note 2)
user account (See note 2)

user home ·group (See note 2)

session/job introduction time (See note 3)
session/job introduction date (See note 4)
input ldev/class name (See note 2)
output ldev/class name (See note 2j
current job step (See note 5)
current number of jobs
current number of sessions
job input priority
job/session number
jobfence·
job output priority
number of copies
job lim.it (system)
session limit (system)
job deferred (See note 6)
main PIN - CI PIN for job/session
original job-spooled (See note 6)
RESTART option (See note 6)
sequenced - job (See note 6)
term code (See note 7)
CPU limit
session/job state (See note 8)
user's local attributes
SSTDIN spoolfile number (See notes 9 & 10)
SSTDIN spoolf ile status (See notes 9 & llJ

SSTDLIST spoolf ile number (See notes 9 & 10)
SSTOLIST spoolfile status (See notes 9 & 11)
length of current job step of item number 11
:SET SSTDLIST!DELETE invoked (See note 12)
Job Information Table data segment number

3-4

DATA TYPE
LA
LA
LA
LA
LA
LA
LA
LA
LA
LA
LA
I
I
I
0
I
I
I
I
I
I
L
L
L
L
L
L
L
0
I
I
I
I
I
L
L

Intrinsics

Table 1 (continued). Item- Number Notes

1. A maximum of 26 characters are allowed for input. Input must be in the
form [jsname,]user.account. The wild card character(@) is not allowed.

2. A maximum of 8 characters are returned.

3. Returns a 32-bit double word in a form to be used by the FMTCLOCK
intrinsic.

4. Returns a 16-bit logical word in a form to be used by the FMTCALENDAR
intrinsic.

5. Returns a maximum of 283 characters, and is the image of the command
currently executing.

6. Returns the values: 0 •No.
l • Yes.

7. Returns the values: 0 •Regular terminal.
1 • Regular terminal with special log on.
2 •APL terminal.
3 =APL terminal.

8. Returns the values: 2 •Executing.
4 • Suspending.

32 • Wait.
48 • Initialization.

9. Returns data for current jobs and sessions. SSTDIN/SSTOLIST files only.

10. Returns the spoolfile number as an integer.

11. Returns the values: 0 • Active.
l • Ready.
2 • Open.
3 = locked.

12. Returns the values: 0 ~ SSTDL!ST will be saved.
1 • :SET SSTDLIST•DELETE is invoked.

All itemnum and item parameters are output parameters with one exception. Item number 1 can be
used for an input and output parameter. Item number 1 is an input parameter only if the user is
retrieving data by the Parse Method of Retrieval (Refer to the MPE V Intrinsics Reference Manual
(32033-90007)). Otherwise, it is an output parameter. The number of characters returned is
twenty-six or less. The re_turned message will be left justified and padded with blanks:

Cjsname,Juser.account

A useful program would be to poll a user's :STREAMjob to determine what job step it is currently ex­
ecuting. The foiiowing piece of pseudo code couid be used to accomplish this:

3-5

KILL

INTRINSIC NUMBER 102 Deletes a process.

A process can delete one of its sons by using the KILL intrinsic.

PARAMETERS

pin

CONDITION CODES

CCE

CCG

CCL

integer by value (required)
A word containing the Process Identification Number (PIN) of the
process to be deleted. The value of pin must be an integer ranging from
1 to 255.

Request granted.

Request granted. The specified process was terminating.

Request denied because an illegal PIN was specified.

SPECIAL CONSIDERATIONS

Process Handling Capability required.

TEXT DISCUSSION

Page 7-8.

2-144

LOADPROC

Dynamically loads a librai.-y procedure. INTRINSIC NUMBER 80

The LOADPROC intrinsic dynamically loads a library procedure, together with external procedures
referenced by it.

FUNCTIONAL RETURN

This intrinsic returns an identity number required for use in unloading the procedure. If an error
occurs, an error code number is returned instead of the identity number.

PARAMETERS

procname

lib

plabel

CONDITION CODES

CCE

CCG

CCL

TEXT DISCUSSION

Page 4-2.

byte array (required)

Contains the name of the procedure to be loaded. The name must be
terminated by a blank.

integer by value (required)

An integer value of 0, 1, or 2, to request library searching for the
procedure, as follows:
0 Search the system library only.
1 = Search libraries in this order:

Account public library.
System library.

2 Search libraries in this order:
Group library.
Account public library.
System library.

integer (required)

The word to which the procedure's label (P-label) is returned. This is
the external P-label so that the SPL construct ASSEl'v1BLE (PCAL 0)
may be used.

Request granted.

Not returned by this intrinsic.

Request denied. The value returned to the calling process is a loader
error code. See Section X for a description of error codes.

2-145

I

LOCKGLORIN

INTRINSIC NUMBER 34 Locks a global RIN.

Any global Resource Identification Number (RIN) assigned to a group of users can be locked, by
one process at a time, by using the LOCKGLORIN intrinsic. When this is done, any other processes
that attempt to lock this RIN are suspended.

To use the LOCKGLORIN intrinsic, you must know both the RIN number and the RIN password.
Users with only Standard MPE Capability cannot lock more than one global RIN simultaneously.
An attempt by such a user to lock more than one RIN simultaneously aborts the process.

PARAMETERS

rinnum

lockcond

rinpassword

CONDITION CODES

integer by value (required)
A word identifier specifying the RIN number of the resource to be
locked. This is the RIN number furnished in the :GETRIN command.
See the MPE Commands Reference M~nual for a description of the
: GETRIN command.

logical (required)
A word identifier specifying conditional or unconditional RIN locking,
as follows:
TRUE = Locking will take place unconditionally. If the RIN is not

available, the calling process suspends until it becomes
available. The TRUE condition is passed as a word in which
bit 15 is 1. All other bits are ignored.

FALSE = Locking takes place only if the RIN is immediately available.
If the RIN is not immediately available, control returns to
the calling process immediately with the condition code
CCG. The FALSE condition is passed as a word in which bit
15 is 0. All other bits are ignored.

byte array (required)
Contains the RIN password assigned through the : GETRIN command.
This array must be a minimum of 10 bytes in length and must be
terminated by a non-alphanumeric ASCII character (a blank is
recommended).

The condition codes possible if lockcond =TRUE are

CCE

CCG

2-146

Request granted. If the calling process had already locked the RIN,
FALSE is returned to the word lockcond. If the RIN was free, TRUE
is returned to lockcond.

Not returned.

JUL 1981

CCL

LOCKGLORIN

Request denied because of invalid RIN. Rinnum is not a global RIN or
the value is out of bounds for the RIN table.

The condition codes possible if lockcond =FALSE are

CCE

CCG

CCL

Request granted. If the calling process had already locked the RIN,
FALSE is returned to the word lockcond. If the RIN was free, TRUE is
returned to lockcond.

Request denied because the RIN was locked by another job.

Request denied because of invalid RIN. Rinnum is not a global RIN or
the value is out of bounds for the RIN table.

SPECIAL CONSIDERATIONS

Multiple RIN Capability is required if you are going to lock more than one global RIN at a time
within a process.

TEXT DISCUSSION

Page 6-3.

2-147

LOCKLOCRIN

INTRINSIC NUMBER 32 Locks a local RIN.

Any local Resource Identification Number (RIN) assigned to a job can be locked, by one process at
a time, by using the LOCKLOCRIN intrinsic. When this is done, other processes within the job that
attempt to lock that RIN are suspended until the locked RIN is released.

PARAMETERS
rinnum

lockcond

CONDITION CODES

integer by value (required)

An identifier specifying one of the previously-allocated local RIN's,
designated by an integer from 1 to the value specified in the rincount
parameter of the GETLOCRIN intrinsic.

logical (required)
A word identifier specifying conditional or unconditional locking, as
follows:
TRUE = Locking takes place unconditionally. If the RIN is not

available, the calling process suspends until the RIN becomes
available. The TRUE condition is passed as a word in which
bit 15 is 1. All other bits are ignored.

FALSE = Locking takes place only if the RIN is immediately available.
If it is not, control returns to the calling process immediately
with the condition code CCG. The FALSE condition is
passed as a word in which bit 15 is 0. All other bits are
ignored.

The condition codes possible if lockcond =TRUE are

CCE

CCG

CCL

Request granted. If the calling process had already locked the RIN,
TRUE is returned to the word lockcond. If the RIN was free, FALSE is
returned to lockcond.

Not returned.

Request denied because the RIN was invalid. Possibly due to: rinnum
too large, no local RIN allocated, or rinnum specified a number less
than or equal to zero.

The condition codes possible if lockcond = FALSE are

CCE

2-148

Request granted. If the calling process had already locked the RIN,
TRUE is returned to the word lockcond. If the RIN was free, FALSE is
returned to lockcond.

CCG

CCL

TEXT DISCUSSION

Page 6-8.

LOCKLOCRIN

Request denied because the RIN was locked by another process.

Request denied because the RIN was invalid. Possibly due to: rinnum
too large, no local RIN allocated, or rinnum specified a number less
tha11 or equal to zero.

2-149

LOG STATUS

INTRINSIC NUMBER 214 Provides information about an opened user logging file.

The LOGSTATUS intrinsic is used to obtain information about the opened logging file. Its primary
use is to determine the amount of space used and remaining in a disc logging file.

PARAMETERS

index

loginfo

status

CONDITION CODES

double (required)
The parameter returned from OPENLOG that identifies your access to
the logging system.

logical (required)
A formatted array in which the following information is returned:

words 0 and 1 - total records written in log file
words 2 and 3 - the size of the logging file
words 4 and 5 - the space remaining in the log file
word 6 the number of users using the log system

integer (required)
An integer in which error information is returned to the caller. Zero
indicates OK status.

The condition code remains unchanged.

TEXT DISCUSSION

None.

JUL 1981 2-150a I

LOCRINOWNER

INTRINSIC NUMBER 36 Determines PIN of process that has locked a local RIN.

After local RIN's have been acquired by a process, they can be locked and unlocked by other
processes in the process structure. LOCRINOWNER determines the PIN (Process Identification
Number) of the process that has a particular RIN locked.

FUNCTIONAL RETURN

If the particular RIN is locked by the father process of the process which called LOCRINOWNER, a
0 is returned. Otherwise, the PIN of the son or brother process which has the local RIN locked is
returned.

PARAMETERS

rinnum integer by value (required)
The number of the local RIN (from 1 to the value specified in the
rincount parameter of the GETLOCRIN intrinsic) for which the PIN of
the locking process is to be determined.

CONDITION CODES

CCE

CCG

CCL

TEXT DISCUSSION

Page 6-9

2-150

Request granted.

Request denied. The local RIN specified by rinnum is not currently
locked by any process.

Request denied. The rinnum parameter was invalid (was < = 0, greater
than the RIN table size, or was greater than the number of local RIN's
currently allocated to this process structure).

MAIL

Tests mailbox status. INTRINSIC NUMBER 106

A process can determine the status of the mailbox used by its father or son with the MAIL intrinsic.
If the mailbox contains mail that is awaiting collection by this process, the length of this message
(in words) is returned to the calling process in the count parameter. This enables the calling process
to initialize its stack in preparation for receipt of the message.

FUNCTIONAL RETURN

This intrinsic returns the status of the mailbox, as follows:

Status Returned

0

1

2

3

4

- • - • ·--..-- r-. t'At1AMC1Cn~

pin

count

CONDITION CODES

CCE

Meaning

The mailbox is empty.

The mailbox contains previous outgoing mail from
this calling process that has not yet been collected by
the destination process.

The mailbox contains incoming mail awaiting collec­
tion by this calling process. The length of the mail is
returned in count.

An error occurred because an invalid pin was speci­
fied or a bounds check failed.

The mailbox is temporarily inaccessible because other
intrinsics are using it in the preparation or analysis of
mail.

integer by value (required)
An integer specifying the mailbox tested. If this integer specifies the
mailbox of a son process, it must be the Process Identification Number
(PIN) of that son. Zero specifies the mailbox of a father process.

integer (required)
A word to which an integer denoting the length, in words, of any
incoming mail in the mailbox is to be returned.

Request granted. The mailbox status was tested.

2-151

MAIL

CCG

CCL

Request denied because an illegal pin parameter was specified. The
value of 3 is returned to the calling process.

Not returned by this intrinsic.

SPECIAL CONSIDERATIONS

Process Handling Capability required.

TEXT DISCUSSION

Page 7-10.

2-152

MY COMMAND

Parses (delineates and defines parameters)
user-supplied command image.

INTRINSIC NUMBER 71

:!::.:::mmm:~:lllBIWllW~lltilltllRllB'-111111S&J.ll~illl:1i=i':::::::::::::IP:lI::

Within your program, you can extract and format for execution the parameters of a command (that
is not an MPE command) by using the MYCOMMAND intrinsic. This intrinsic also allows you, at
your option, to request the searching of a byte array, serving as a command dictionary, for a
specified command.

The MYCOMMAND intrinsic aborts the calling process if the number of characters in comimage
exceeds 255 characters and no delimiter is present.

FUNCTIONAL RETURN

If the diet parameter is specified in the intrinsic call, the command entry number is returned.

PARAMETERS

comimage

delimiters

max par ms

numparms

byte array (required)
Contains eiiher:
• A command name (expected if the diet parameter is specified),

followed by parameters, followed by a carriage-return character.
The command name is delimited by the first non-alphanumeric
character, and cannot be preceded by any leading blanks. The
parameters are formatted and referenced in parms array. Also,
comimage is converted to upper case and the byte array specified
by diet is searched for a name matching the command.

• Only command parameters (expected if the diet parameter is not
specified), followed by a carriage-return character. These para­
meters will be formatted. Leading and trailing blanks are ignored.
Lower case is upshifted.

In the byte array named for the comimage parameter, the first
character of the parameter list may be a leading blank.

byte array (optional)
A byte array containing a string of up to 32 legal delimiters, each of
which is an ASCII special character. The last character must be a
carriage return. Each delimiter is identified later by its position in
this string.

Default: If this parameter is omitted, the delimiter array "comma,
equal, semicolon, carriage return" is used.

integer by value (required)
An integer specifying the maximum number of parameters expected in
comimage.

integer (required)
A word to which is returned the actual number of parameters found in
comimage.

2-153

MYCOMMAND

{Xlrms

diet

defn

CONDITION CODES

CCE

2-154

double array (required)
A double array of maxparms double words that, on return, delineates
the parameters. When the intrinsic is executed, the first numparms
double words are returned to the user's process in this array, with the
first double word corresponding to the first parameter, the second
double word corresponding to the next parameter, and so forth. The
parameter fields of comimage are delimited by the delimiters specified
in delimiters. In formatting, the byte pointer in the first word of parms
points to the parameter in comimage. The string in comimage is
upshifted. The second word of parms contains the delimiter number
and parameter information. Each double word in the array named by
parms contains the following information:

Word 1 - Contains the byte pointer to the first character of the para­
meter. If the parameter is empty or all blanks, points to the delimiter.

Word 2 - Contains bits that describe the parameter:
Bits (11:5) =The delimiter number in delimiters, starting at zero.
Bit (10:1) = If on, indicates that the parameter contains special

characters other than those in delimiters.
Bit (9:1) = If on, indicates that the parameter contains numeric

characters.
Bit (8: 1) = If on, indicates that the parameter contains alphabetic

characters.
Bits (0:8) = The length of the parameter, in bytes. This value is zero if

the parameter is omitted.

byte array (optional)
A byte array that will be searched for the command name in comimage.
The format must be identical to that of the diet parameter in the
SEARCH intrinsic. Actually, the command, delimited by a blank, is
extracted from comimage, and the SEARCH intrinsic is called with the
command name used as the target parameter in SEARCH. If the
command name is found in diet, its entry number is returned to the
user's program. If the command is not found, or if the diet parameter is
not specified, zero is returned. If diet is specified but the command
name is not found in diet, the parameters specified in comimage are not
formatted.
Default: 0 is returned.

byte pointer (optional)
A word to which is returned the relative address of the definition
portion of the command entry in diet.
Default: The corresponding information is not returned.

The parameters were formatted, without exception. If diet was
specified, the command entry number was returned to the user's
program.

CCG

CCL

TEXT DISCUSSION

Page 4-4.

MYCOMMAND

More parameters were found in comimage than were allowed by
maxparms. Only the first maxparms of these parameters were
formatted in parms and returned to the user.

The diet parameter was specified, but the command n~~e was not
located in the array diet. The parameters in comimage were not
formatted.

2-155

OPEN LOG
INTRINSIC NUMBER 210 Provides access to the logging facility.

The OPENLOG intrinsic provides access to the user logging facility.

PARAMETERS

index

logid

pass

mode

status

double (required)
A double word returned to you which identifies logging access. The
index is used to check the validity of subsequent calls to WRITELOG
and CLOSELOG.

logical array (required)
An array of up to eight characters which supplies your logging
identification. The array contains alphanumeric characters. Arrays of
less than eight characters must end in a space.

logical array (required)
An array in which you assign a password associated with the logging
identifier by the GETLOG command.

integer (required)
An integer which you use to indicate whether or not your process
should be suspended if your request for service cannot be completed
immediately. Enter a zero if you want to wait for service; enter a one if
you do not want to wait.

integer (required)
An integer which indicates logging system errors to you. (See table
10-12, User Logging Error Messages.)

CONDITION CODES

The condition code remains unchanged.

TEXT DISCUSSION

Page 10-93

2-156

PAUSE

Suspends the calling process for a specified number of seconds. INTRINSIC NUMBER 45

PARAMETERS

interval

CONDITION CODES

CCE

CCG

TEXT DISCUSSION

Page 4-19.

real (required)
A positive real value specifying the amount of time, in seconds, that the
process will pause. The maximum time allowed is approximately
2,147,484 seconds.

Request granted.

Request denied because of insufficient system table (Timer Request
List) space.

Request denied because a negative value was specified for interval or
the value is too large.

2-157

PCHECK

Returns an integer code specifying the
completion status of the most recently
executed DS/3000 program-to-program in­
trinsic.

See the DS/3000 Reference Manual (32190-90001) for a discussion of this intrinsic.

2-158

PC LOSE

Terminates program-to-program communica­
tion with a remote slave program.

See the DS/3000 Reference Manual (32190-90001) for a discussion of this intrinsic.

2-159

PCONTROL

Exchanges tag fields with a remote slave
program.

See the DS/3000 Reference Manual (32190-90001) for a discussion of this intrinsic.

2-160

Initiates program-to-program communication
with a remote slave program.

See the DS/3000 Reference Manual (32190-90001) for a discussion of this intrinsic.

PO PEN

2-161

PREAD

Requests a remote slave program to send a
block of data.

See the DS/3000 Reference Manual (32190-90001) for a discussion of this intrinsic.

2-162

PRINT

Prints character string on job/session listing device. INTRINSIC NUMBER 65

You can write a string of ASCII characters from an array to the job/session listing device by using
the PRINT intrinsic. This intrinsic is similar to issuing an FWRITE intrinsic call against the file
$STDLIST. The PRINT intrinsic is limited in its usefulness, however, in that the full capability of
the file system is not available to a user of this intrinsic. For example, : FILE commands are not
allowed and certain file intrinsics cannot be used because the filenum parameter, obtained from the
FOPEN intrinsic, is not available to normal users of the PRINT intrinsic.

PARAMETERS

message

length

control

CONDITION CODES

CCE

CCG

CCL

TEXT DISCUSSION

Page 4-16.

logical array (required)

Contains the character string to be output.

NOTE

SPL programmers can avoid annoying warning messages in
the compiled output by equivalencing a byte array to a
logical array for the message parameter.

integer by value (required)
An integer denoting the length of the character string to be transmitted.
If length is positive, it specifies the length in words; if length is negative,
it specifies the length in bytes. Note that if length exceeds the
configured record length of the device, successive records will be
written only on terminals.

integer by value (required)
An integer representing a carriage-control code as shown in figure 2-3.

Request granted.

End-of-data was encountered.

Request denied because of input/output error. Further error analysis
through the FCHECK intrinsic is not possible.

2-163

PRINTFILEINFO

INTRINSIC NUMBER 21 Prints a file information display on the job/session list device.

From SPL (only), a secondary entry point is provided that allows the PRINTFILEINFO intrinsic to
be called in the following format:

The PRINTFILEINFO intrinsic causes MPE to print a file information display on the standard list
device in one of two formats (See Section X).

PARAMETERS

fnum integer by value (required)
A word containing the file number.

CONDITION CODES

The condition code remains unchanged.

TEXT DISCUSSION

Page 10-45

2-164

PRINTOP

Prints a character string on the Operator's Console. INTRINSIC NUMBER 66

The PRINTOP intrinsic transmits a string of ASCII characters from an array in your program to the
Operator's Console.

PARAMETERS

message

length

control

CONDITION CODES

CCE

CCG

CCL

TEXT DISCUSSION

Page 4-18.

logical array (required)
The array from which the character string is output. The character
string contained in message is limited to 56 characters.

integer by value (required)

An integer denoting the length of the output string to be transmitted. If
length is positive, it specifies the length in words; if length is negative, it
specifies the length in bytes.

integer by value (required)
The value </J or %32(/J.

Request granted.

Not returned by this intrinsic.

Request denied because of a physical input/output error. Further error
analysis through the FCHECK intrinsic is not possible.

2-165

PRINTOPREPL Y

INTRINSIC NUMBER 67 Prints a character string on the Operator's Console and solicits a reply.

The PRINTOPREPL Y intrinsic transmits a string of ASCII characters from an array in your
program to the Operator's Console and solicits a reply.

FUNCTIONAL RETURN

This intrinsic returns a positive integer indicating the length of the reply from the console operator.
This length represents a word count if expectedl is positive or a byte count if expectedl is negative.

If expectedl is zero, then the PRINTOPREPL Y intrinsic behaves like PRINTOP and does not solicit
a reply. In this case, the value returned by PRINTOPREPL Y is zero.

If an error occurs, t:he value returned is zero.

The parameter length may be zero, in which case only the standard message prefix is written on the
Operator's Console. If both length and expectedl are zero, then a CCL condition code is returned.

PARAMETERS

message

length

control

reply

expected/

2-166

logical array (required)
The array from which the characters are output to the Operator's
Console. The character string is limited to 50 characters.

integer by value (required)
An integer denoting the length of the output string to be transmitted. If
length is positive, it specifies the length in words; if length is negative, it
specifies the length in bytes. This parameter should never specify a
message length of more than 50 bytes.

integer by value (required)
This parameter must be specified but is not used by MPE.

logical array (required)
The array into which the input characters are read from the Operator's
Console.

integer by value (required)
An integer specifying the maximum length of the message to be read
into the array reply. If expected/ is positive, it signifies a word count; if
it is negative, it signifies a byte count. This parameter should never
specify a reply length of more than 31 bytes.

CONDiTION CODES

CCE

CCG

CCL

TEXT DISCUSSION

Page 4-18.

PRINTOPREPL Y

Request granted.

Not returned by this intrinsic.

Request denied because a physical input/output· error occurred. Further
error analysis through the FCHECK intrinsic is not possible.

2-167

PROCTIME

INTRINSIC NUMBER 42 Returns a process' accumulated central processor time.

The PROCTIME intrinsic is used to obtain the amount of CPU time, in milliseconds, that a process
has accumulated. This is the basis on which CPU time is charged. (See the :REPORT command in
the MPE Commands Ref ere nee Manual.)

FUNCTIONAL RETURN

This intrinsic returns a double integer value which shows the number of milliseconds that the
process has been running.

CONDITION CODES

The condition code remains unchanged.

TEXT DISCUSSION

Page 4-44.

2-168

PTAPE

Copies, to a disc file, input from paper tapes
which do not contain X-OFF control
characters.

INTRINSIC NUMBER 191

When using terminals with attached tape readers (such as the ASR-33), you can read data
programmatically from paper tapes not containing the X-OFF control character, or from tapes
being read through terminals not recognizing this character, by using the PTAPE intrinsic. PTAPE
deletes the characters as the tape is read through a terminal which does not recognize these
characters.

Tape input terminates when a CONTROL Y (YC) character is encountered, returning control to you
at the terminal.

Prior to calling this intrinsic, you must be sure to position the end-of-file pointer in the disc file
(filenum2) to the proper position in the file. If you are reading more than one tape, you should
specify, in the FOPEN intrinsic call that opens the disc file, the append-only aoption and a
variable-length record format, before the first PT APE call. In addition, you should set the
end-of-file pointer to zero, if necessary, before issuing the first PT APE intrinsic call.

Lines will be folded at 256-character intervals until a carriage-control character indicates the end of
a line or until the input is terminated by the ye character.

PARAMETERS

filenuml

filenum2

CCE

CCG

CCL

integer by value (required)
A word identifier specifying the file number of the user's terminal. This
is the value returned by FOPEN when the terminal file was opened.

integer by value (required)
A word identifier specifying the file number of the disc file to which
the data is to be written.

Request granted.

Request denied because an error occurred while vvriting to the specified
disc file.

Request denied because the input file specified is not a terminal or does
not belong to the calling process, or because insufficient resources, such
as disc space or main memory, are available to satisfy the request.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION
Page 5-27.

2-169

PUTJCW

Puts value of a particular job control word (JCW) in JCW table.

The PUT JCW intrinsic puts the value of a job control word (JCW) in the JCW table. If an entry of
the same name already exists in the table, only its value is entered. If no entry exists for this name,
an entry is created and its value is entered.

PARAMETERS

jcwname

jcwvalue

status

byte array (required)
A byte array containing the name of the JCW. May contain up to 255
characters, beginning with a letter and ending with a non-alphanumeric
character such as a blank."@" causes all executing JCW's to be set to
jcwvalue.

logical (required)
A word identifier containing the value of the JCW.

integer (required)
A word identifier used by the system to return a value denoting the
execution status of the intrinsic, as follows:

0 - Successful execution. Value entered in JCW.

1 - Error, jcwname greater than 255 characters long.

2 - Error, jcwname does not start with a letter.

3 - Error, JCW table overflow. No JCW with this name exists in table
and unable to create new entry.

CONDITION CODES

The condition code remains unchanged.

TEXT DISCUSSION

Page 4-47

2-170

Sends a block of data to the remote slave
program.

See the DS/3000 Reference Manual (32190-90001) for a discussion of this intrinsic.

PWRITE

2-171

QUIT

INTRINSIC NUMBER 76 Aborts a process.

From within any process in a user program structure, you can abort the process by using the QUIT
intrinsic. The QUIT intrinsic also transmits a Type 2 abort message (see Section X) to the calling
process' output device, and sets the job/session in an error state. In batch jobs not containing the
:CONTINUE command (see the MPE Commands Reference Manual), this results in job termination
when the entire program finishes.

PARAMETERS

num

CONDITION CODES

integer by value (required)
Any arbitrary number. When the QUIT intrinsic is executed, num is
transmitted as part of the resulting abort message, as follows:

ABORT: PROG.GROUP.ACCT. %SEG. %LOC
PROGRAM ERROR: PROCESS QUIT. PARAM= num

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

Split stack calls permitted.
Affects the system job control word.

TEXT DISCUSSION

Page 4-20

2-172

QUITPROG

Aborts a process. INTRINSIC NUMBER 61

You may abort the entire user-process structure by using the QUITPROG intrinsic. This intrinsic
destroys all sons of the job/session main process. The job/session main process is set in the error
state. In batch jobs not containing the :CONTINUE command (see the MPE Commands Reference
Manual), this terminates the job.

An abort message (see Section X) is transmitted to the job/session list device.

PARAMETERS

num integer by value (required)
Any arbitrary number. When the QUITPROG intrinsic is executed, num
is output as part of the abort message, as follows:

CONDITION CODES

ABORT: PROG.GROUP.ACCT. %SEG. %LOC
PROGRAM ERROR: PROCESS QUIT. PARAM=num

If num =O, P ARAM=num is not printed.

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

Split stack calls permitted.
Affects the system job control word.

TEXT DISCUSSION

Page 4-22

2-173

READ

INTRINSIC NUMBER 64 Reads an ASCII string from an input device.

The READ intrinsic reads a string of ASCII characters from a job/session input device into an array
in your program. This intrinsic is similar to issuing an FREAD intrinsic call against the file $STD IN.
The READ intrinsic is limited in its usefulness, however, in that the full capability of the file system
is not available to a user of this intrinsic. For example, : FILE commands are not allowed and
certain file intrinsics cannot be used because the filenum parameter, obtained from the FOPEN
intrinsic, is not available to normal users of the READ intrinsic.

Basic line editing such as cancellation of lines and backspacing are performed automatically by the
input/output driver. If the input device is a terminal and it is in full-duplex mode and the echo
facility is on, or if the terminal is in half-duplex mode, the characters read are printed.

FUNCTIONAL RETURN

This intrinsic returns a positive value representing the length of theASCII string which was read. If
expectedl is positive, this length specifies words; if expectedl is negative, length specifies bytes.

PARAMETERS

message

expected/

CONDITION CODES

CCE

CCG

CCL

TEXT DISCUSSION

Page 4-16.

2-174

logical array (required)
The array into which the ASCII characters are read.

integer by value (required)
An integer specifying the maximum length of the array message. If
expectedl is positive, this specifies the length in words; if expectedl is
negative, this specifies the length in bytes. When the record is read, the
first expectedl characters are input. If expectedl equals or exceeds the
size of the physical record, the entire record is transmitted.

Request granted.

A record with a colon in the first column, signalling the end of data, or
a hardware end-of-file was encountered.

Request denied because a physical input/output error occurred. Further
error analysis through the FCHECK intrinsic is not possible.

READX

Reads a...11 ASCII string from an input device. INTRINSIC NUMBER 64

The READX intrinsic reads a string of ASCII characters from a job/session input device into an
array in your program. This intrinsic is similar to issuing an FREAD intrinsic call against the file
$STDINX. The READX intrinsic is limited in its usefulness, however, in that the full capability of
the file system is not available to a user of this intrinsic. For example, : FILE commands are not
allowed and certain file intrinsics cannot be used because the filenum parameter, obtained from the
FOPEN "intrinsic, is not available to normal users of the READX intrinsic.

Basic line editing such as cancellation of lines and backspacing are performed automatically by the
input/output driver. If the input device is a terminal and it is in full-duplex mode and the echo
facility is on, or if the terminal is in half-duplex mode, the characters read are printed.

FUNCTIONAL RETURN

This intrinsic returns a positive value representing the length of the ASCII string which was read. If
expectedl is positive, this length specifies words; if expected[is negative, length specifies bytes.

PARAMETERS

message

expected/

CONDITION CODES

CCE

CCG

CCL

TEXT DISCUSSION

Page 4-16.

logical array (required)
The array into which the ASCII characters are read.

integer by value (required)
An integer specifying the maximum length of the array message. If
expected/ is positive, this specifies the length in words; if expected! is
negative, this specifies the length in bytes. When the record is read, the
first expedtedl characters are input. If expected! equals or exceeds the
size of the physical record, the entire record is transmitted.

Request granted.

An :EOD, :EOF:, or in a job, :EOJ, :JOB, or :DATA command was
encountered.

Request denied because a physical input/output error occurred. Further
error analysis through the FCHECK intrinsic is not possible.

2-175

RECEIVEMAIL

INTRINSIC NUMBER 108 Receives mail from another process.

A process collects mail transmitted to it by its father or a son by using the RECEIVEMAIL
intrinsic. If the mailbox for the receiving process is empty, the action taken depends on the waitflag
parameter specified in the RECEIVEMAIL intrinsic call. If the mailbox currently is being used by
other intrinsics, the RECEIVEMAIL waits until the mailbox is free before accessing it.

FUNCTIONAL RETURN

This intrinsic returns one of the following mailbox status codes:

Status Returned

0

1

2

3

4

PARAMETERS

pin

location

waitflag

2-176

Meaning

The mailbox was empty and the waitflag parameter
was FALSE.

No message was collected because the mailbox
contained outgoing mail from the receiving process.

The message was collected successfully.

An error occurred because an invalid pin was speci­
fied or a bounds check failed.

The request was denied because waitflag specified
that the receiving process wait for mail if the mailbox
is empty, but the other process sharing the mailbox is
already suspended, waiting for mail. If both processes
were suspended, neither could activate the other, and
they may be deadlocked.

integer by value (required)
An integer specifying the process sending the mail. If a son process is
specified, the integer is the Process Identification Number (PIN) of that
process. If a father process is specified, the integer is zero.

logi,cal array (required)
The array (buffer) in the stack where the message is to be written.

logical by value (required)
A word specifying the action to be taken if the mailbox is empty:
TRUE= Wait until incoming mail is ready for collection. (Bit 15 = 1)
FALSE = Return immediately to the calling process. (Bit 15 = 0)

RECEIVEMAIL

CONDITION CODES

CCE

CCG

CCL

Request granted. The mail was collected (the value 2 is returned to
RECEIVEMAIL) or the mail was not collected because the mailbox
contained outgoing mail from the receiving process. The value 1 is
returned to RECEIVEMAIL.

Request denied because of an illegal pin parameter. The value 3 is
returned to RECEIVEMAIL.

Request denied because the bounds check revealed that the location
parameter did not define a legal stack address (the value 3 is returned to
RECEIVEMAIL) or because both sending and receiving processes would
be awaiting incoming mail (deadlock). The value 4 is returned to
RECEIVEMAIL.

SPECIAL CONSIDERATIONS

Process Handling Capability required.

TEXT DISCUSSION

Page 7-12.

2-177

REJECT

Rejects a request received by the preceding
GET intrinsic call and returns an optional tag
field back to a remote master program ..

See the DS/3000 Reference Manual (32190-90001) for a discussion of this intrinsic.

2-178

RESETCONTROL

Resets terminal to accept CONTROL-Y signal. INTRINSIC NUMBER 55

To reset the terminal so that a CONTROL-Y signal can be accepted, the RESETCONTROL intrinsic
is used. To take effect, this intrinsic must be called after the trap procedure is entered.

CONDITION CODES

CCE Request granted.

CCG Not returned by this intrinsic.

CCL Request denied because the trap procedure was not invoked.

TEXT DISCUSSION

Page 4-40.

2-179

RESETDUMP

INTRINSIC NUMBER 79 Disables the abort stack analysis facility.

PARAMETERS

None

CONDITION CODES

CCE

CCG

CCL

TEXT DISCUSSION

Request granted.

Abort stack analysis facility was disabled prior to the RESETDUMP call
and remains disabled.

Not returned by this intrinsic.

MPE DEBUG/Stack Dump Reference Manual.

2-180

SEARCH

Searches an array for a specified entry or name. INTRINSIC NUMBER 70

The SEARCH intrinsic searches a specially-formatted array, consisting of sequential entries, for a
specified name. A simple linear search is performed, with the specified name compared against each
entry of the specially-formatted array. Because the search is linear, the most frequently used name
byte arrays should appear at the beginning of the array to insure efficient searching.

FUNCTIONAL RETURN

This instrinsic searches diet for a word matching target, and returns the corresponding entry number
to the user's program. If the name specified in target is not found, a zero is returned.

PARAMETERS

target

length

diet

defn

CONDITION CODES

byte array (required)
Contains the name for which the search is to be performed.

integer by value (required)
An integer specifying the length, in bytes, of the byte array target.

byte array (required)
The specially-formatted array which is to be searched for target.

byte pointer (optional)
A word to which is returned the address of the definition portion of the
entry sought in the array.
Default: If defn is omitted, the address is not returned.

The condition code remains unchanged.

TEXT DISCUSSION

2-181

SENDMAIL

INTRINSIC NUMBER 107 Sends mail to another process.

A process sends mail to its father or sons by using the SENDMAIL intrinsic. If the mailbox for the
receiving process contains a message sent previously by the calling process but not collected by the
receiving process, the action taken depends on the waitflag parameter specified in the SENDMAIL
intrinsic call. If the mailbox currently is being used by other intrinsics, the SENDMAIL intrinsic
waits until the mailbox is free and then sends the mail.

FUNCTIONAL RETURN

This intrinsic returns one of the following status codes:

Status Returned

0

1

2

3

4

5

6

PARAMETERS

pin

2-182

Meaning

The mail was transmitted successfully. The mailbox
contained no previous mail.

The mail was transmitted successfully. The mailbox
contained mail sent previously that was overwritten
by the new mail, or contained previous incoming/
outgoing mail that was cleared.

The mail was not transmitted successfully because the
mailbox contained incoming mail to be collected by
the sending process (regardless of the waitflag
setting).

An error occurred because an illegal pin parameter
was specified, or a bounds check failed.

An illegal wait request would have produced a
deadlock.

The request was denied because count exceeded the
maximum mailbox size allowed by the system.

The request was denied because storage resources for
the mail data segment were not available.

integer by value (required)
An integer specifying the process to receive the mail. If a son process is
specified, the integer is the Process Identification Number (PIN) of that
process. If a father process is specified, the integer is zero.

count

location

waitflag

SENDMAIL

integer by value (required)
An integer specifying the length of the message, in words, transmitted
from the sending process' stack. If zero is specified, SEND MAIL
empties the mailbox of any incoming or outgoing mail.

logical array (required)
The array (buffer) in the stack containing the message.

logical by value (required)
A word specifying (in bit 15) the action to be taken if the mailbox
contains mail sent previously:
TRUE= Wait until the receiving process collects the previous mail

before sending current mail. (Bit 15 = 1).
FALSE = Cancel (overwrite) any mail sent previously with the current

mail. (Bit 15 = 0).

CONDITION CODES

CCE

CCG

CCL

Request granted. The mail was sent (the value 0 or 1 is returned to
SENDMAIL) or the mail was not sent because the mailbox contained
incoming mail to be collected by the sending process. The value 2 is
returned to SENDMAIL.

Request denied because of an illegal count parameter (the value 5 is
returned to SEND MAIL), or an illegal pin parameter was specified (the
value 3 is returned to SENDMAIL), or storage for the mail data
segment was not available (the value 6 is returned to SENDMAIL).

Request denied because the bounds check revealed that the count or
location parameters did not define a legal stack area (the value 3 is
returned to SENDMAIL), or both processes are waiting to send mail
(the value 4 is returned to SENDMAIL).

SPECIAL CONSIDERATIONS

Process Handling Capability required.

TEXT DISCUSSION

Page 7-11.

2-183

SETDUMP

INTRINSIC NUMBER 78

PARAMETERS

flags

CONDITION CODES

CCE

CCG

CCL

TEXT DISCUSSION

Enables the stack analysis facility.

logical by value (required)
A logical word whose bits specify the following:

Bit 15 = If on, specifies a DL to Q initial dump.

Bit 14 = If on, specifies a Q initial to S dump.

Bit 13 = If on, specifies a Q-63 to S dump. This bit is ignored if bit 14
is on.

Bit 12 =If on, causes an ASCII dump of the octal content along with
the octal values.

A 0 value for flags results in a display of registers and stack marker
trace only.

Request granted.

Abort stack analysis facility already enabled before SETDUMP call. The
facility is now set up according to new specifications from this call.

Not returned by this intrinsic.

MPE DEBUG/Stack Dump Reference Manual.

2-184

SETJCW

Sets bits in the system job control word (JCW) INTRINSIC NUMBER 72

You can establish the bit contents of the system job control word (JCW) with the SET JCW intrinsic.

PARAMETERS

word

CONDITION CODES

logical by value (required)
A 16-bit word whose contents are established by the user for inter­
process communication. The form is:

0 1 15

Bit zero is reserved for MPE and should be set to 0. If you set this bit to
1, the system will output the following message when the user program
terminates, either normally or due to an error:

PROGRAM TERMINATED IN ERROR STATE (CIERR 976)

A batch job is terminated unless the :CONTINUE command is used.
(See the MPE Commands Reference Manual). Bits 1 through 15 may be
used for any purpose (see the description on page 4-46).

The condition code remains unchanged.

TEXT DISCUSSION

Page 4-46

2-185

STACKDUMP

INTRINSIC NUMBER 77

or (from SPL only)

PARAMETERS
filename

idnumber

flags

selec

2-186

Dumps selected parts of stack to a file.

byte array (optional)
Contains the file name of the file where the information is to be dump­
ed. When filename contains the formal designator of the file, the file
will be opened and closed by the ST ACKDUMP intrinsic. If the secon­
dary entry point (STACKDUMP') is used to enter this intrinsic, MPE
assumes that filename(O) contains the file number of a file which has
been successfully opened prior to the call to STACKDUMP. In this case,
the file is not closed before returning to the calling program. When a
file number is passed via the ST ACKDUMP' secondary entry point, the
record length must be between 32 and 256 words and write access must
be allowed for the file.

Default: Dump is sent to $STD LIST.

integer (optional)
An integer which is displayed in the header of the dump to identify the
printout.
Default: Identifying integer not displayed.

logical (optional)
A logical value used to specify the following options:

Bit 15 = Suppress ASCII dump.

Bit 14 =Suppress trace back of stack markers.

Default: If bits 14 and 15=00, a corresponding ASCII dump is pro­
vided for all values dumped in octal, and a trace back of stack
markers is displayed.

double array (optional)
Specifies which stack areas are to be dumped. The format of the array
is shown in the MPE DEBUG/Stack Dump Reference Manual. The array
has no predetermined length; the first double word containing the values
0/-1 indicates the end of the array. An entry for which the count is 0 is
interpreted as a "skip" (i.e., go to next double word element in list).

Default: If missing, or if the first double word contains 0/-1 (indicat-
ing end of array), no dump occurs (except for the header),
unless flags bit 14=0, in which case the trace back of stack
markers is displayed.

STACKDUMP

CONDITION CODES

CCE

CCG

CCL

TEXT DISCUSSION

Request granted.

Request denied. Bounds violation occurred and the dump was not
completed. Record size was not between 32 and 256 words.

Request denied. File system error occurred during opening, writing to,
or closing the file. The file error number is returned in idnumber.

MPE DEBUG/Stack Dump Reference Manual.

2-187

SUSPEND

INTRINSIC NUMBER 103 Suspends a process.

A process can suspend itself with the SUSPEND intrinsic. When this intrinsic is executed, the
process relinquishes its access to the central processor unit until reactivated by an ACTIVATE
intrinsic call. When a process suspends itself, it must specify the anticipated source of this
ACTIVATE call (its father or a son process). When the process is reactivated, it begins execution
with the instruction immediately following the SUSPEND call.

PARAMETERS

susp

rin

CONDITION CODES

CCE

CCL

logical by value (required)
A word whose 14th and 15th bits specify the anticipated source of the
call that later will reactivate the process. For processes run by users
vvith only the Process Handling Capability, at ieast one of these bits
must be set to 1.
If bit 15 = 1, the process expects to be activated by its father.
If bit 14 = 1, the process expects to be activated by one of its sons.
If both of these bits = 1, the suspended process can be activated by
either father or sons.

integer by value (optional)
An integer specifying a Resource Identification Number (RIN). If rin is
specified, it represents a local RIN that is locked by the process but
that will be released when this process is suspended. This facility can be
used to synchronize processes within the same job.
Default: If omitted, no RIN is unlocked when the process suspends.

Request granted.

Request denied because the susp parameter is not valid, the specified
RIN is not owned by this process, or the specified RIN was not locked.

SPECIAL CONSIDERATIONS

Split stack calls permitted.
Process Handling Capability required.

TEXT DISCUSSION

Page 7-8.

2-188

SWITCH DB

Switches DB register pointer. INTRINSIC NUMBER 139

The SWITCHDB intrinsic changes the DB register so that it points to the base of an extra data
segment instead of the base of the stack.

FUNCTIONAL RETURN

This intrinsic returns the logical index of the data segment indicated by the previous DB register
setting, thus allowing you to restore this setting later. If the previous DB setting indicated the stack,
zero is returned.

PARAMETERS

index

CONDITION CODES

CCE

CCG

CCL

logical by value (required)
Specifies the logical index of the data segment to which the DB register
is to be switched, as obtained through the GETDSEG intrinsic call.
MPE checks the value specified for index to insure that the process has
acquired access to this segment previously. For an extra data segment,
index must be a positive, non-zero integer. To switch back to the stack
segment, index must be zero.

Request granted.

Not returned by this intrinsic.

Request denied because an illegal data segment was specified.

SPECIAL CONSIDERATIONS

Must be running in Privileged Mode.

TEXT DISCUSSION

Page 9-5.

2-189

TERMINATE

INTRINSIC NUMBER 60 Terminates a process.

A process and all of its descendants, including any extra data segments belonging to them, can be
deleted by using the TERMINATE intrinsic.

All files still open by the process are closed and assigned the same disposition they had when
opened.

CONDITION CODES

The process that calls this intrinsic is terminated and no return is made.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

Page 4-20

2-190

TIMER

Returns system timer. INTRINSIC NUMBER 40

A 31-bit logical quantity representing the current system timer and overflow count can be returned
to your program with the TIMER intrinsic.

The resolution of the system timer is one millisecond. Thus, readings taken within a one-millisecond
period may be identical.

FUNCTIONAL RETURN

This intrinsic returns a 31-bit logical quantity representing the actual millisecond count since the
midnight preceding the last system cold load.

CONDITION CODES

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

Split stack calls permitted.

TEXT DISCUSSION

Page 4-42.

2-191

UNLOADPROC

INTRINSIC NUMBER 81 Dynamically unloads a library procedure.

The UNLOADPROC intrinsic dynamically unloads a procedure and its referenced external
procedures.

PARAMETERS

procid

CONDITION CODES

CCE

CCG

CCL

TEXT DISCUSSION

Page 4-3.

2-192

integer by value (required)

A word containing the procedure's identity number, which was
obtained from the LOADPROC intrinsic call.

Request granted.

Not returned by this intrinsic.

Request denied because of invalid procid.

UNLOCKGLORIN

Unlocks a global RIN. INTRINSIC NUMBER 35

The UNLOCKGLORIN intrinsic unlocks a global Resource Identification Number (RIN) that has
been locked with the LOCKGLORIN intrinsic.

PARAMETERS

rinnum

CONDITION CODES

CCE

CCG

CCL

TEXT DISCUSSION

Page 6-3.

integer by value (required)
A word supplying the number of any RIN locked by the calling process.
If rinnum does not specify a RIN locked by the calling process, no
action is taken.

Request granted.

Request denied because this RIN was not locked for this process.

Request denied because the specified RIN was not allocated.

2-193

UNLOCKLOCRIN

INTRINSIC NUMBER 33 Unlocks a local RIN.

The UNLOCKLOCRIN intrinsic unlocks a local Resource Identification Number (RIN) that has
been locked by the LOCKLOCRIN intrinsic.

PARAMETERS

rinnum

CONDITION CODES

CCE

CCG

CCL

TEXT DISCUSSION

Page 6-8.

2-194

integer by value (required)
A word supplying the locked RIN, designated by an integer from 1 to
the value specified in the rincount parameter of the GETLOCRIN
intrinsic call.

Request granted.

Request denied because the RIN specified is not locked by the calling
process.

Request denied because the specified RIN is not allocated to this
process.

WHO

Returns user attributes. INTRINSIC NUMBER 69

The WHO intrinsic supplies the access mode and attributes of the user running the program.

PARAMETERS

mode

capability

File access
attributes

logfoal (optional)
A word to which the current user's access mode is returned. In this
word, the bits will have the following meanings:

Bit (15:1)
1 = The job/session input file and job/session list file form an

interactive pair. A dialog can be established between a program,
displaying information on the list device, and a person responding
through the input device.

0 T1ne job/session input file and job/session list file are not
interactive.

Bit (14:1)
1 = The job/session input file and job/session list file form a

duplicative pair. Images on the input device are duplicated
automatically on the list device.

0 The job/session input file and job/session list file are not
duplicative.

Bits (12:2)
01 =The user is accessing the system through a session.
10 =The user is accessing the system through a job.

Bits (0:12) - Reserved for MPE. The WHO intrinsic sets these bits to
zero.
Default: The user's access mode is not returned.

double (optional)
A double word to which the user's file access, user, and capability class
attributes are returned. In the first word, possession of the following
file access and user attributes is indicated by the corresponding bit
being on (equal to 1).

\

Bit (15:1) Ability to save files (declare them permanent) (SF).
Bit (14: 1) Ability to acquire non-sharable devices (ND).
Bit (13: 1) Communications System. (CS)
Bits (9:4) Reserved for MPE. The WHO intrinsic sets these bits to

Bit (8:1)
Bit (7:1)
Bit(6:1)

zero.
User Logging (LG)
Volume set usage (UV).
Volume set creation (CV).

2-195

WHO

User
Attributes

lattr

usern

groupn

acctn

ho men

termn

2-196

Bit (5:1) =System supervisor (OP).
Bit (4:1) =Diagnostician (DI).
Bit (3:1) =Group librarian (GL).
Bit (2:1) =Account librarian (AL).
Bit (1 :1) =Account manager (AM).
Bit (0: 1) = System manager (SM).

In the second word, possession of the user's capability-class attributes is
indicated by the corresponding bit being on (equal to 1).
Bit (15:1) =Process handling (PH).
Bit (14:1) =Extra data segments (DS).
Bit (13:1) =Reserved for MPE. The WHO intrinsic sets this bit to zero.
Bit (12:1) =Exclusive simultaneous use of more than one system re-

source (Multiple RIN's) (MR).
Bits (10:2)= Reserved for MPE. The WHO intrinsic sets these bits to

zero.
Bit (9:1) =Privileged mode operation (PM).
Bit (8:1) =Interactive (session) access (IA).
Bit (7 :1) =Batch (job) access (BA).
Bits (0:7) = Reserved for MPE. The WHO intrinsic sets these bits to

zero.
Default: The user's file access, user, and capability-class attributes are

not returned.

double (optional)
A double word to which is returned the local attributes of the user, as
defined by a user with the Account Manager attribute.
Default: The user's local attributes are not returned.

byte array (optional)
An 8-byte array to which the user's name is returned.
Default: The user's name is not returned.

byte array (optional)
An 8-byte array to which the name of the user's log-on group is
returned.
Default: The user's log-on group is not returned.

byte array (optional)
An 8-byte array to which the name of the user's log-on account is
returned.
Default: The user's log-on account is not returned.

byte array (optional)
An 8-byte array to which the name of the user's home group is returned.
If a home group was not assigned, this array is filled with blanks.
Default: This information is not returned.

logical (optional)
A word to which the logical device number of the job/session input
device is returned.
Default: The logical device number is not returned.

WHO

CONDITION CODES

The condition code remains unchanged.

TEXT DISCUSSION

Page 4-10.

2-197

WRITELOG

INTRINSIC NUMBER 211 Writes a record to a logging file.

The WRITELOG intrinsic journalizes data base and subsystem file additions and modifications to
logging tape or disc files.

PARAMETERS

index

data

/en

mode

status

double (required)
The parameter returned from OPENLOG that identifies your access to
the logging file.

logical array (required)
The array in which the information to be logged is passed. The maxi­
mum length of the data is 32K words. A log record contains 128 words
of which 119 are available to you. If you specify a length greater than
119 words a continuation record is automatically posted for you. The
most efficient use of the log file is a multiple of 119 words.

integer (required)

The length of the data in data. A positive number indicates words,
and a negative number indicates bytes. If the length is greater than 119
words, the information in data is divided into two or more physical log
records.

integer (required)
An integer which you use to indicate whether or not your process
should be suspended if your request for service cannot be completed
immediately. Enter a zero if you want to wait for service, enter a one if
you do not want to wait.

integer (required)
An integer which indicates logging system errors to you. (See table
10-12, User Logging Error Messages.)

CONDITION CODES

The condition code remains unchanged.

TEXT DISCUSSION

Page 10-93

2-198

XARITRAP

Enables the user-written software arithmetic trap. INTRINSIC NUMBER 50

:::::::::=. =:::::::::::::::)tL.,.,,,:::::/:\Jt?::::::::::,,,,,:::::::t=:::=·=·=·=·=··· . ·=·=·=·=·==== .. ==·=====·=·==·=·=====·=·=·=·=·=·=·=·'''''='·=·=·=·=·=·===========·=·= 1111.!.I: :::, .:;::.,.,.,,. ,.:::::::r:,:.

i-rll~
The XARITRAP intrinsic enables you to replace the trap handler in MPE with your own trap
handler routine.

PARAMETERS

mask

plabel

old mask

integer by value (required)
A word mask that selects which hardware traps will invoke the software
trap, and which will not. Only the 14 rightmost bits of the word form­
ing the mask are used. The setting of the other bits is not significant,
but it is recommended that they be set to zero. Thus, octal values up
to %3 77 77 are allowed for this parameter.

If a bit is on (= 1), the corresponding hardware trap activates the soft­
ware trap. If a bit is off(= 0), the corresponding hardware trap does not
activate the software trap. If all bits are set to zero, the software trap
is disabled.

Bit Hard ware Error Trap

15 Floating point divide by zero.
14 Integer divide by zero.
13 Floating point underflow.
12 Floating point overflow.
11 Integer overflow.
10 Extended precision overflow.

9 Extended precision underflow.
8 Extended precision divide by zero.
7 Decimal overflow.
6 Invalid ASCII digit.
5 Invalid decimal digit.
4 Invalid source word count.
3 Invalid decimal operand length.
2 Decimal divide by zero.

integer by value (required)
The external-type label of the user's trap procedure. If the value of this
entry is 0, the software trap is disabled. The external-type label of the
procedure, which resides in the segment transfer table of the proce­
dure's code segment, is passed as a parameter (in SPL) by placing a @

before the procedure name.

intege; (;equired)
A word in which the value of the previous mask is returned to the user's
program.

2-199

XARITRAP

oldplabel

CONDITION CODES

CCE

CCG

CCL

TEXT DISCUSSION

Page 4-32.

2-200

integer (required)
A word in which the previous plabel is returned to the user's program.
If no plabel existed previously, zero is returned.

Request granted. Software trap enabled.

Request granted. Software trap disabled.

Request denied because of an invalid plabel.

NOTE

The validity of a trap procedure, specified by the external­
type label of the user's trap procedure (plabel), depends on
the code domain of the caller's code and executing mode
(privileged or non-privileged), and on the code domain of the
plabel and the mode (privileged or non-privileged). The code
domains are:

PROG
GSL
PSL
SSL
MPESSL

(User Program)
(Group SL)
(Public SL)
(System SL, non-MPE segments)
(System SL, MPE segments)

If, when a trap procedure is being enabled, the code of the
caller is
1. Non-privileged in PROG, GSL, or PSL, plabel must be

non-privileged in PROG, GSL, or PSL.
2. Privileged in PROG, GSL, or PSL, plabel may be

privileged or non-privileged in PROG, GSL, or PSL.
3. Privileged or non-privileged in SSL, plabel may be in any

non-MPESSL segment.

XCONTRAP

Enables or disables the CONTROL-Y trap. INTRINSIC NUMBER 54

When a session is initiated, the CONTROL-Y trap is disabled. The XCONTRAP intrinsic enables this
trap. This intrinsic takes effect on the file $STDINX, and also on $STD IN (when $STD IN is defined
as a terminal).

PARAMETERS

plabel

oldplabel

CONDITION CODES

CCE

CCG

CCL

TEXT DISCUSSION

Page 4-41.

integer by value (required)
The external-type label of the user's trap procedure. If the value of this
entry is 0, the software trap is disabled.

A word in which the previous plabel is returned to the user~s program.
If no p label existed previously, zero is returned.

Request granted. Trap enabled.

Request granted. Trap disabled.

Request denied because of illegal plabel, or because $STDIN is not
defined as a terminal.

NOTE

The validity of a trap procedure, specified by the external­
type label of the user's trap procedure (plabel), depends on
the code domain of the caller's code and executing mode
(privileged or non-privileged), and on the code domain of the
plabel and the mode (privileged or non-privileged). The code
domains are:

PROG
GSL
PSL
SSL

(User program)
(Group SL)
(Public SL)
(System SL, non-MPE segments)
(System SL, MPE segments)

If, when a trap procedure is being enabled, the code of the
caller is
1. Non-privileged in PROG, GSL, or PSL, plabel must be

non-privileged in PROG, GSL, or PSL.
2. Privileged in PROG, GSL, or PSL, plabel may be

privileged or non-privileged in PROG, GSL, or PSL.
3. Privileged or non-privileged in SSL, plabel may be in any

non-MPESSL segment.

2-201

XLIBTRAP

INTRINSIC NUMBER 52 Enables or disables the software library trap.

When a program begins execution, the software library trap is disabled automatically. You can
enable (or subsequently disable) this trap with the XLIBTRAP intrinsic call.

PARAMETERS

plabel

oldplabel

CONDITION CODES

CCE

CCG

CCL

TEXT DISCUSSION

Page 4-35.

2-202

integer by value (required)
The external-type label of the user's trap procedure. If the value of this
entry is 0, the trap is disabled.

integer (required)
A word in which the previous plabel is returned to the user's program.
If no plabel existed previously, zero is returned.

Request granted. Trap enabled.

Request granted. Trap disabled.

Request denied because of an illegal plabel.

XSYSTRAP

Enables or disables the system trap. INTRINSIC NUMBER 53

When a program begins execution, the system trap is disabled automatically. When enabled by the
XSYSTRAP intrinsic, and subsequently activated by an error, the trap transfers control to a trap
procedure.

You can enable (or subsequently disable) the system trap by using the XSYSTRAP intrinsic.

PARAMETERS

plabel

oldplabel

CONDITION CODES

CCE

CCG

CCL

TEXT DISCUSSION

Page 4-36.

integer by value (required)
The external-type label of the user's trap procedure. If the value of this
entry is 0, the software trap is disabled.

integer (required)
A word in which the previous plabel is returned to the user's program.
If no pla be l existed previously, zero is returned.

Request granted. Trap enabled.

Request granted. Trap disabled.

Request denied because of an illegal plabel.

2-203

ZSIZE

INTRINSIC NUMBER 136 Changes size of Z to DB area.

The ZSIZE intrinsic alters the size of the current Z to DB area by adjusting the register offset of the
Z address from the DB address (Z to DB).

The ZSIZE intrinsic moves the Z address forward (expansion) or backward (contraction). If the Z
to DB area size requested exceeds the maximum size permitted for the Z to DL (stack) area, only
the maximum size allowed is granted.

All clwlges to the Z to DB area are made in increments or decrements of 128 words, and hence the
size actually granted may differ from the size requested.

FUNCTIONAL RETURN

This intrinsic returns the size actually granted.

PARAMETERS

size

CONDITION CODES

CCE

CCG

CCL

TEXT DISCUSSION

Page 4-27.

2-204

integer by value (required)
An integer value greater than or equal to zero that specifies the desired
register offset (in words) for Z to DB.

Request granted.

The requested size exceeded the maximum limits of the Z to DL (stack)
area. The maximum limit is granted, and this value is returned to the
calling process as the value of ZSIZE.

An illegal size parameter, less than (S - DB)+ 64 words, was specified.
This minimum value is assigned by default.

I INTERPROCESS COMMUNICATION AND 111111(.111
__ I C_IR_C_UL_A_R_F~IL_ES _____ _...111 Ill I

INTRODUCTION

Interprocess communication (IPC) is a facility of the file system which permits multiple user pro­
cesses to communicate with one another in an easy and efficient manner. To accomplish this, IPC
uses message files as the interface between user processes. These message files act as first-in-first-out
queues of records, with entries made by FWRITEs and deletions made by FREADs: one process
may submit records to the file with the FWRITE intrinsic while another process takes records from
the file using FREADs.

Occasionally a process may attempt to read a record from an empty message file, or write a record
to a message file that is full. In such situations, the file system will usually cause the process to wait
until its request can be serviced; that is, until another process either writes a record to the empty
file or reads enough records to take a block from the full file.

There is a unidirectional flow of information between a given process and a message file: a process
opening the file with read access, identified as a "reader", may only read from the file, and not
write; a process opening the file with write access, identified as a "writer", may only write to the
file, and not read. (If it is necessary for the same process to read and write, it may open the message
file twice, once as a reader and once as a writer.) More than one message file may be associated with
a process, and the process may be configured as a reader to some of the files and as a writer to
others. A given message file typically has one reader, though more are allowed, and one or more
writers.

Applications for IPC exist wherever it is necessary for processes to communicate with one another.
In the case of a father process with several sons, message files may serve as interfaces between the
processes: through one file, the father may direct the activities of the sons; through another, the
sons may inform the father of their progress. Message files may also aid object managers during
data base operations: several writers may send information to a file which serves as the single source
from which the data base process actually receives the information.

OPERATION

Message files are maintained and manipulated by several intrinsics. The FOPEN, FREAD, FWRITE,
FCONTROL, and FCLOSE intrinsics operate upon the files to yieid a unidirectional, first-in-first­
out message queue.

FOPEN Establishes a connection to a message file. With FOPEN, a user process
identifies itself as either a reader or writer; readers access the head of
the message file and writers access the tail. Incompatible parameters
that are specified with FOPEN are adjusted. For example, since messages
are read or written to the file one record at a time, a multirecord param­
eter is corrected. If FOPEN is used to access a new file, a new message
file is created.

3-1

FREAD

FWRITE

FCONTROL

FCLOSE

NOTE

There are different Access Type (bits (12:4) of the Access
Options) specifications for slightly different types of writer
processes. In one case, if a writer is the first accessor to a
message file, the file's contents are purged; in another case,
the writer simply appends records to the tail of the file.
These AOPTIONS are discussed in a later section.

Reads one record from the head of a message file. The record is copied
to the reader's TARGET area and is logically deleted from the message
queue; the next record is now at the head of the file. If a process tries
to read from an empty message file which writers are accessing, the file
system causes it to wait until a writer process enters a record to the file;
if there are no writers associated with the message file, an end-of-file
indication, CCG, is returned.

NOTE

If the message file is empty and there are no writers, the
process will wait if there is an FCONTROL 45 in effect, or
if this is the first FREAD after the reader's FOPEN.

Appends one record to the tail 'Of a message file. If a process tries to
write to a full message file which readers are accessing, the file system
causes it to wait until a reader process has read a block of records from
the file; if there are no readers associated with the message file, an end­
of-file indication, CCG, is returned.

NOTE

If the message file is full and there are no readers, the pro­
cess will wait if there is an FCONTROL 45 in effect, or if
this is the first FWRITE after the writer's FOPEN.

Supplies various control functions during a process that is using a
message file. These control functions permit a process to take advantage
of the additional features of IPC, which are discussed in detail in the
next section.

Breaks a process' connection with a message file. If the process reopens
the same file later, it may do so as either a reader or a writer, regardless
of what it was previously.

ADDITIONAL FEATURES

Besides the regular attributes of IPC and message files, several features are available for use with
these facilities. Writer ID's and nondestructive reads are specifically intended for use with IPC; copy
access, the global multiaccess option and the ability to append to variable-length files are general
enhancements to the file system. The time-out feature has been expanded to apply to IPC.

3-2

Writer !D's. When a writer process opens a message file, the file system assigns a unique 16-bit I
ID number to the writer. Each record the process writes to the message file is prefixed with this
number by FWRITE. When the writer closes the file, the ID number is no longer associated with the
process and may be reused. Whenever a writer opens or closes a message file, records are written to
the file indicating these actions. Record prefixes and open/close records are usually transparent to
the readers of the message file, but by issuing an FCONTROL 46, the reader process may see them.
The interested reader may use the writer ID 's to determine the source of the records it is receiving.

Time-outs. A reader or a writer process may limit the length of time it will wait to be serviced. By I
issuing an FCONTROL 4, a reader may specify the maximum number of seconds it will permit the
file system to keep it waiting for a record to be written to an empty message file~ a writer may also
use FCONTROL 4 to specify the maximum number of seconds it will wait for a block of records to
be read from a full file.

Copy access. When records are read from a message file, FREAD logically deletes them as it reads. I
In order to copy a message file without destroying it, the file must be opened with the file copy
option specified in the AOPTIONs of the FOPEN, or the COPY keyword may be specified in a
FILE equation. When this option is selected, the message file is treated as a standard sequential
file rather than as a message queue, and may be copied safely. The file may then be read by logical
record or by block, and information may be written to it by block.

NOTE

In order to access a message file in copy mode, a process must
have exclusive access to the file.

Nondestructive read. By issuing an FCONTROL 47, a reader may avoid deleting t..11.e next record it I
reads; the record will remain at the head of the message queue. This feature differs from the copy
access feature in that it is a temporary condition: the second FREAD following the FCONTROL 47
will reread the record and delete it in the usual manner.

Global multiaccess. When the global multiaccess option is requested, processes located in different I
jobs or sessions may open the same file. The global multiaccess option may be requested in the
AOPTIONs of the FOP EN to the file, or by using the GMUL TI keyword in a FILE command to
create the file.

NOTE

Global multiaccess is unavailable to message files when they
have been opened with exclusive access in copy mode.

Appending to variable-length files. Variable-length files may be opened with append access. It is I
not necessary to have fixed-length records of the maximum possible size, so space is conserved.

USING IPC

Message files can be created in several ways. When a user process opens a new file and indicates in
the FOPTIONs that it will be a message file, the FOPEN intrinsic creates the new message file. In
order to create a message file with the BUILD command, use the MSG keyword; for example, to
build a message file named SARA, enter:

:BUILD SARA; MSG

JUL 1981 3-3

A new message file may also be specified with a FILE command. Use the MSG keyword for a new
file:

:FILE LISBETH, NEW; MSG

A message file named LISBETH is indicated.

When you perform a LISTF ,2 command, message files will be identified by an "M" in the third
column of the TYP field; SARA is identified here:

FILENAME CODE ------------LOGICAL RECORD----------- ----SPACE---­
SECTORS #X MX SIZE TYP EOF LIMIT R/B

SARA 1Z8W VBM 0 1 031 1 258 1 8

Other types of files are similarly indicated by a token in the TYP field:

K - identifies a KSAM file
R - identifies a Relative I/0 file
O - identifies a Circular file

A blank in the third column indicates a standard MPE file. Circular files are discussed in a later
section.

Occasionally, you might create a message file and specify a certain number of records for the file to
contain, only to discover that the file system has allocated more records for the file than you
requested. The reason for this is that the file system is maintaining the necessary internal structure
for the message file. The file system has four basic rules for establishing this structure when the
message file is created:

1 Since records are written to the message file every time a writer process opens or closes the file,
the file system adds two records to the requested number to allow for a minimum of one open
and one close operation.

2 The requested number of records is rounded up to fill an even number of blocks.

3 The file system adds an extra block to the message file for the file label to occupy. (This block
is transparent to you.)

4 Each extent is the same size; that is, the file system assigns the same number of blocks to each
extent.

For example, suppose you want to create a message file named ODDSIZE:

:BUILD ODDSIZE; MSG; REC=,3; DISC=51,8

You have specified a message file with fifty-one records, three records per block, that occupies
eight extents. The file system will adjust the number of records to conform to the rules for message
file structure:

3-4

The file system adds two records to allow for one open and one close indication; the number
of records goes from 51 to 53.

The number of records is rounded up to 54 to provide an even number of blocks. With three
records per block, 54 records will fill 18 blocks.

An additional block is added to the file to accommodate the file label. Now the file contains
19 blocks.

The eight extents must all be the same size, so the number of blocks is increased from 19 to 24.
Each extent now contains three blocks.

Of the 24 blocks in ODDSIZE, 23 are data blocks and one contains the file label, which is invisible
to you. With three records per block, 23 blocks contain a total of 69 data records!

FEATURES OF INTRINSICS FOR MESSAGE FILES

There are a few features of several intrinsics which apply specifically to message files. Most of these
features are found in FOPEN and FCONTROL, but several other intrinsics are also affected.

Certain intrinsics are not allowed for message files.* These intrinsics are listed in Table 3-1:

Table 3-1. Intrinsics that are not permitted with message files.

FPO INT
FREADSEEK
FUPDATE
FDELETE

FREADDIR
FSPACE
FWRITEDIR

*The FSETMODE intrinsic is permitted, but ignored.

Parameters that are omitted in the following descriptions retain their normal range of values and
their normal default values.

FOPEN

FOPTIONS: (2 :3) ..;_ File type. Determines the type of file to create for a new file.
If the file is old, this field is ignored.

000 - Ordinary file

001 - KSAM file

010 - Relative IiO file

100 - Circular file; discussed in the next section

110 - Message file

NOTE

The Default Designator FOPTION, bits 10 through 12, offers
several choices for default file designators. Any value used
other than 0 for ''filename'' will override the File Type field.

(8:2) - Record format. Message files are always internally formatted
as variable-length records. However, a message file can appear
as a fixed file to an opener. There is no difference for a writer,
but a reader will have the portion of his target area which ex­
ceeds the file filled with blanks (for an ASCII file) or zeroes
(for a binary file.)

3-5

AOPTIONS:

3-6

00 - Fixed

01 - Variable

10 - Undefined, changed to variable

(3 :1) - File copy. This feature permits a message file to be treated as
a standard sequential file, so it can be copied by logical record
or physical block to another file.

0 - The file will be accessed in its native mode; that is, a
message file will be treated as a message file.

1 - The file is to be treated as a standard, sequential file with
variable-length records. This allows nondestructive read­
ing of an old message file at either the logical record or
physical block level. Only block level access is permitted
if the file is opened with write access. These blocks are
checked for proper message file format to prevent in­
correctly formatted data from being written to the
message file while it is unprotected.

NOTE

In order to access a message file in copy mode, a process
must have exclusive access to the file.

Setting this bit on causes all the remaining file parameters
to have their normal defaults.

(5 :2) - Multiaccess mode. This feature permits processes located in
different jobs or sessions to open the same file.

00 - No multiaccess. The file system changes this value to 2
to allow global multiaccess.

01 - Only intra-job multi-access allowed; this is the same as
specifying the MULTI option in a FILE command.

10 - Inter-job multi-access allowed; this is the same as speci­
fying the GMULTI option in a FILE command.

11 - Undefined. If this is specified, the FOPEN will be re­
jected with an error code of 40: ACCESS VIOLATION.

(7 :1) - Inhibit buffering. For message files, the file system sets this bit
off.

NOTE

Readers may open a message file with NOBUF if they are in
copy mode; this determines whether they will be accessing
the file record by record or block by block:

0 - read by logical record

1 - read by physical block

T'\D"\TT/"'11".
LJ.L:J V.LV.L:Jo

NUMBUFFERS:

FILESIZE:

Writers must open message files with NOBUF if they are in
copy mode; they will access the file block by block.

(8:2) - Exclusive. The values for this field are the same as for any
disc file, but they have different meanings for the readers and
writers of a message file:

USER
VALUE

EXCLUSIVE

SEMI

SHARE

Default

Means

One reader, one writer

One reader, multiple writers

Multiple readers and writers

One reader, one writer

(11 :1) - Multirecord. For message files, the file system sets this bit to
0.

(12:4) - Access type. These bits specify whether the user will be a
reader or a writer process.

0000 - READ access only. The FWRITE intrinsic cannot
reference this file. This access type requires both read
and write access capability to the file. A process that
has opened a file with this access type is a ''reader".

0001 -WRITE access only. If this is the first accessor to the
file and the process has write access capability, then
the file's contents are purged. If this is not the first
accessor to the file, the file system sets this access
type to APPEND. The FREAD intrinsic cannot
reference this file. A process that has opened a file
with this access type is a "writer".

0010 -WRITE SA VE access. The file system sets this to
APPEND access.

0011 -APPEND access only. The FREAD intrinsic cannot
reference this file. This access type requires append
capability to the file. A process that has opened a
file with this access type is a "writer".

This field is relevant only if this is a new file. The DEVICE field must
either be omitted or specify a disc; specification of any device other
than a disc opens the device. When this happens, the file is no longer a
message file.

(0:11) - Ignored.

(11:5) - Value between 2 and 31; default is 2. This parameter must
not exceed the physical record capacity of the file.

The number of records is rounded up to completely fill the last block
and to make the last extent the same size as the other extents. Two
additional records are included for the open and close records.

3-7

FCONTROL

A few controlcodes deal specifically with IPC. Those not mentioned here are invalid when IPC is
being used.

CONTROL- PARAM
CODE

2

3

4 integer

6

43

45 TRUE

FALSE

46 TRUE

FALSE

47 TRUE

FALSE

FCHECK

DESCRIPTION

Complete all I/O; ignored in the case of message files.

Read hardware status word.

Set time-out interval. This applies to both FREADs and FWRITEs.
The time-out will be armed at the beginning of the I/O request and
cleared when the I/O completes. P ARAM specifies the length of the
time-out in seconds. A value of zero disables time-outs on the file.

Write end-of-file. Used only to verify the state of the file by writing out
the file label and buff er area to disc; this ensures that the message file
can survive system crashes. No EOF is written.

A CCG condition code is returned if an outstanding I/O operation has
completed. An IOW AIT must be issued to finish the request.

Enable extended wait. Permits a reader to wait on an empty file that is
not currently opened by any writer, or a writer to wait on a full file
that has no reader. This FCONTROL will remain in effect until
FCONTROL 45 is issued with a PARAM value of FALSE.

Disable extended wait. Specifies that when an FREAD encounters an
empty file that has no writer, or an FWRITE encounters a full file that
has no reader, it will return an end-of-file condition. (Default)

Enable reading the writer's ID. Each record read will have a two-word
header. The first word will indicate the type of record:

0 - data record
1 - open record
2 - close record

The second word will contain the writer's ID number. If the record is a
data record, the data will follow the header; open and close records
contain no more information.

Disable reading the writer's ID. Only data is read to the reader's
TARGET area. The open and close records are skipped and deleted by
the file system when they come to the head of the message queue, and
the two-word header is transparent to the reader. (Default)

Nondestructive read. The next FREAD by this reader will not delete
the record. Subsequent FREADs will be unaffected.

The next FREAD by this reader will delete the record. (Default)

There is one error message that is returned only when using IPC:

151 CURRENT RECORD WAS LAST RECORD WRITTEN BEFORE SYSTEM CRASHED.

This message is returned when this record is read following system startup.

3-8

FGETINFO

The value returned in RECSIZE will indicate the user's data record size, and the value returned in
EOF will indicate the number of data records, unless an FCONTROL 46 is in effect. When an
FCONTROL 46 is in effect, the value returned in RECSIZE will be the size of the user's data
records, including the two-word header; the number of records returned in EOF will include open,
close and data records.

The value returned in BLKSIZE reflects the actual blocksize of the file. When the file is created,
the blocksize is computed by the following algorithm:

BLOCKSIZE := ((RECORDSIZE + 3) * BLOCKING FACTOR) + 2

where RECORDSIZE and BLOCKSIZE are in words. For example, with a recordsize of 100 words
and a blocking factor of 10, the blocksize would be 1032 words.

FFILEINFO

Two values for ITEMV AL UE are specifically for use with IPC:

ITEM#

34

35

TYPE

integer

integer

CIRCULAR FILES

DESCRIPTION

The current number of writers.

The current number of readers.

Circular files are wrap-around structures which behave as standard sequential files until they are full.
As records are written to a circular file, they are appended to the tail of the file; when the file is
filled, the next record added causes the block at the head of the file to be deleted and all other
blocks to be logically shifted toward the head of the file. Circular files may not be simultaneously
accessed by both readers and writers. When the file has been closed by all writers, it may be read;
a reader takes records from the circular file one at a time, starting at the head of the file.

Circular files are particularly useful as history files, when a user is interested in the information
recently written to the file and is less concerned about earlier material that has been deleted. These
history files are frequently used as debugging tools: diagnostic information may be written to the
file, and the most recent and relevant material can be saved and studied.

Creating a circular file is similar to creating a message file. When a user process opens a new file and
indicates in the AOPTIONs that it will be a circular file, the FOPEN intrinsic creates the new circular
file. In order to create a circular file with the BUILD command, use the CIR keyword; for example,
to build a circular file named CIRCLE, enter:

:BUILD CIRCLE; CIR

A new circular file may also be specified with a FILE command. Use the CIR keyword for a new
file:

FILE ROUND, NEW; CIR

A circular file named ROUND is indicated.

3-9

When you perform a LISTF,2 command, circular files will be identified by an "0" in the TYP field;
CIRCLE is identified here:

FILENAME CODE

CIRCLE

------------LOGICAL RECORD ----------
SIZE TYP EOF LIMIT RIB

128W FBO 0 1023 1

----SPACE---­
SECTORS #X MX

128 1 8

FEATURES OF INTRINSICS FOR CIRCULAR FILES

Most intrinsics treat circular files the same way they treat regular disc files, but some have special
features which apply specifically to circular files. Most of these features are found in FOPEN, but
a few other intrinsics are also affected.

Certain intrinsics are not allowed when circular files are used. These intrinsics are listed in Table 3-2:

Table 3-2. Intrinsics that are not permitted with circular files.

Not permitted
for READ access

FUPDATE
FDELETE
FWRITEDIR
FWRITE

Not permitted
for WRITE access

FUPDATE
FDELETE
FWRITEDIR
FREAD
FREADDIR
FREADSEEK
FPO INT
FSPACE

Parameters that are omitted in the following descriptions retain their normal range of values and
their normal default values.

FOPEN

FOPTIONS:

AOPTIONS:

3-10

(2 :3) - File type. Determines the type of file to create. If the file is old,
this field is ignored.

000 - Ordinary file

001 - KSAM file

010 - Relative I/0 file

100 - Circular file

110 - Message file

(5 :2) - Multiaccess mode. This feature permits processes located in
different jobs or sessions to open the same file.

00 - No multiaccess. For a writer, the file system changes
this value to a 2 for global multiaccess.

01 - Only intra-job multiaccess allowed; this is the same as
specifying the MULTI option in a FILE command.

10 - Inter-job multiaccess allowed; this is the same as
specifying the GMULTI option in a FILE command.

11 - Undefined. If this is specified, the FOPEN will be
rejected with an error code of 40: ACCESS VIO­
LATION.

(7 :1) - Inhibit buffering. Reader processes may open circular file with
either the BUF or NOBUF option; for write access to circular
files, the file system sets this bit off.

NOTE

Readers may open a circular file with NOBUF if they are in
copy mode; this determines whether they will be reading the
file record by record or block by block:

0 - read by logical record

1 - read by physical block

(8:2) - Exclusive. The values for this field are the same as for any
standard disc file, but they have different meanings for the
readers and writers of a circular file:

USER
VALUE

Changed to:
READER WRITER

EXCLUSIVE

SEMI

SHARE

Default

EXCLUSIVE

SHARE

SHARE

SHARE

EXCLUSIVE

EXCLUSIVE

SHARE

EXCLUSIVE

For readers, SHARE means "allow other readers";

for writers, SHARE means "allow other writers".

(11:1) -Multirecord. When a reader specifies this option, the file
will be accessed NOBUF; for writers, this bit is set to zero.

(12:4) -Access type. These bits specify whether the user will be a
reader or a writer process.

0000 - READ access only.

0001 -WRITE access orJy. If tris is the first accessor to
the file, then the file's contents are purged. If this
is not the first accessor to the file, the access type
is set to APPEND.

0010 -WRITE SA VE access. Set to APPEND access.

0011 - APPEND access only.

NOTE

Circular files allow variable length records with append access.

Any other access types are invalid.

3-11

FILESIZE: The number of records is rounded up to completely fill the last block.

FWRITE

This intrinsic logically appends the user's record to the end of the file. If the file is full, the first
block is deleted, the remaining blocks are logically shifted to the file's head, and the new record is
appended to the end of the file.

FCLOSE

For circular files, deletion of disc space beyond the end-of-file is not allowed.

EXAMPLES

The following programs illustrate the use of IPC via message files. Intrinsics called within the pro­
grams manipulate the message files to produce a unidirectional flow of information.

In these two programs, the first is sending information to the second through a message file: the
first program, PROCl, reads data from a data file and writes it to MSGFILE2; the second program,
PROC2, can then read this data from MSGFILE2 and print it. When PROC2 finishes reading and
printing the data, it writes a message to MSG FILEl indicating this and terminates. PROCl reads
this message from MSGFILEl and also terminates. The messages travel among processes and
message files as illustrated in Figure 3-1:

3-12

DATA

I
I

~
I I

--~~~~-'- -~t ________ _
MSGFILE1 I MSGFILE2

J I
I I

~
Figure 3-1. Data paths among processes and message files.

$CONTROL USLINIT

<< Purpose: >>
<<Read data from a data file and send to another process. >>

BEGIN
LOGICAL EOF := FALSE;
INTEGER DATA'FILE, LEN, PIN, IN'FILE, OUT'FILE;
BYTE ARRAY IN' FILE'NAME <0:8) := "MSGFILE1 ";
BYTE ARRAY OUT'FILE'NAME <0:8) := "MSGFILE2 ";
BYTE ARRAY DATA'FILE'NAME <0:8) := "DATA";
BYTE ARRAY PRINTPROC <0:8) .- "PRNTPROC ";
ARRAY MESSAGE (0:39);

INTRINSIC CREATEPROCESS, FCLOSE, FOPEN, FREAD, FWRITE,
QUITPROG, PRINT, READ;

<<Create entries for the message files in the directory: >>

<< Note that IN' FILE'NAME ("MSGFILE1") is opened with FOPTIONs >>
<< %30004: this indicates a new ASCII message file. >>

IN 1 FILE := FOPEN CIN'FILE'NAME, %30004);
IF< THEN QUITPROG (1);
FCLOSE (IN'FILE, 2, 0); <<Save file as session temporary.>>
IF < THEN QUITPROG (2);

<<Note that OUT'FILE'NAME ("MSGFILE2") is opened with FOPTIONs >>
<< %30004: this indicates a new ASCII message file. >>

OUT'FILE := FOPEN (0UT 1 FILE'NAME, %30004);
IF < THEN QUITPROG (3); -
FCLOSE (OUT'FILE, 2, 0); <<Save file as session temporary. >>
IF < THEN QUITPROG (4);

<< Create and activate the print process: >>

CREATEPROCESS (, PIN, PRINT'PROC)
IF < THEN QUITPROG (5);

<<Open message file for traffic from print process: >>

<<Note that IN'F!LE'NAME ("MSGFILE1") is opened with FOPTIONs >>
<< %106 and AOPTIONs %1100: %106 indicates an old temporary >>
<<ASCII file and %1100 indicates a reader process with >>
<<exclusive access and multiaccess capability. MSGFILE1 >>
<<has already been designated as a message file. Since >>
<<only one reader and one writer process will be accessing >>
<<the message file, exclusive access mode is specified. >>

IN'FILE := FOPEN (IN'FILE'NAME, %106, %1100);
IF < THEN QUITPROG (7);

<<Open message file for traffic to print process: >>

3-13

<<Note that OUT'FILE'NAME ("MSGFILE2") is opened with FOPTIONs >>
<< %106 and AOPTIONs %1101: %106 indicates an old temporary >>
<<ASCII file and %1101 indicates a writer process with >>
<<exclusive access and multiaccess capability. MSGFILE2 has >>
<<already been designated as a message file. Since only >>
<<one reader and one writer process will be accessing the >>
<<message file, exclusive access mode is specified. >>

OUT'FILE := FOPEN COUT'FILE'NAME, %106, %1101);
IF < THEN QUITPROG (8);

<<Open data input file: >>

<<Note that DATA'FILE'NAME ("DATA") is opened with FOPTIONs %3 >>
<< and AOPTIONs 0: %3 indicates an old permanent or temporary >>
<<file and 0 indicates read only access. The file system >>
<<will change the FOPTIONs to specify an ASCII file. >>

DATA'FILE := FOPEN CDATA'FILE'NAME, %3, 0);
IF <> THEN QU!TPROG (9);

WHILE NOT EOF DO BEGIN
LEN := FREAD CDATA'FILE, MESSAGE, -80);
IF < THEN QUITPROG (10);
IF > THEN EOF := TRUE
ELSE BEGIN

FWRITE COUT'FILE, MESSAGE, -LEN, 0);
IF <> THEN QUITPROG C11);

END;
END << WHILE >>;

FCLOSE COUT'FILE, 4, 0);
IF < THEN QUITPROG (12);

FREAD CIN'FILE, MESSAGE, 1);
IF <> THEN QUITPROG (13);

FCLOSE CIN'FILE, 4, 0);
IF < THEN QUITPROG (14);

END.

3-14

<< No more data to send: EOF >>

<< Wait for printing process >>
<< to finish. >>

$CONTROL USLINIT

<< Purpose: >>
<< Receive data from other process and print it. >>

BEGIN
LOGICAL EOF := FALSE;
INTEGER LEN, IN'FILE, OUT'FILE;

BYTE ARRAY IN'FILE'NAME C0:8) := "MSGFILE2 ";
BYTE ARRAY OUT'FILE'NAME C0:8) := "MSGFILE1 ";
ARRAY MESSAGE (0:39);

INTRINSIC FCLOSE, FOPEN, FREAD, FWRITE, QUITPROG, PRINT;

<<Open message file for traffic from other process: >>

<<Note that IN'FILE'NAME ("MSGFILE2") is opened with FOPTIONs >>
<< %106 and AOPTIONs %1100: %106 indicates an old temporary >>
<<ASCII file and %1100 indicates a reader process with >>
<<exclusive access and multiaccess capability. MSGFILE2 >>
<<has already been designated as a message file. Since >>
<<only one reader and one writer process will be accessing >>
<<the message file, exclusive access mode is specified. >>

IN'FILE := FOPEN CIN'FILE'NAME, %106, %1100);
IF < THEN QUITPROG (13);

<<Open message file for traffic to other process: >>

<<Note that OUT'FILE'NAME ("MSGFILE1") is opened with FOPTIONs >>
<< %106 and AOPTIONs %1101: %106 indicates an old temporary >>
<<ASCII file and %1101 indicates a writer process with >>
<<exclusive access and multiaccess capability. MSGFILE1 >>
<<has already been designated as a message file. Since only >>
<<one reader and one writer process will be accessing the >>
<<message file, exclusive access mode is specified. >>

OUT'FILE := FOPEN (OUT'FILE'NAME, %106, %1101);
IF < THEN QUITPROG (14);

WHILE NOT EOF DO BEGIN
LEN := FREAD CIN'FILE, MESSAGE, -80);
IF < THEN QUITPROG (15);
IF > THEN EOF := TRUE
ELSE PRINT (MESSAGE, -LEN, 0);

END << WHILE >>;

<< Now signal other process; we are done. >>

FCLOSE (OUT'FILE, 4, 0);
IF < THEN QUITPROG (16);

FCLOSE (IN'FILE~ 4, 0);
IF < THEN QUITPROG (17);

END.

3-15

These two COBOL programs perform the same tasks as the preceding SPL programs: the first pro­
gram, FATHERPROC, reads data from a data file and wrties it to MSGFILE2; the second program,
SONPROC, can then read this data from MSGFILE2 and print it. When SONPROC finishes reading
and printing the data, it writes a message to MSGFILEl indicating this and terminates. FATHER­
PROC reads this message from MSGFILEl and also terminates. The messages travel among processes
and message files as illustrated in Figure 3-2:

DATA

FATHERPROC

MSGFILE1 I
4

I
I
t

I I

MSGFILE2

~
Figure 3-2. Data paths among processes and message files.

$CONTROL USLINIT
IDENTIFICATION DIVISION.
PROGRAM-ID. FATHERPROC.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. HP3000.
OBJECT-COMPUTER. HP3000.
SPECIAL-NAMES.
CONDITION-CODE IS CC.
DATA DIVISION.
WORKING-STORAGE
01 DATA-FILE

SECTION.

01 LEN
01 PIN
01 IN-FILE
01 OUT-FILE
01 IN-FILE-NAME
01 OUT-FILE-NAME
01 DATA-FILE-NAME
01 PRINTPROC
01 MESSAGE-BUF
01 EOF-VAR

88 EO F

3-16

PIC S9(4) COMP.
PIC S9(4) COMP.
PIC S9(4) COMP.
PIC S9(4) COMP.
PIC S9(4) COMP.
PIC X(9) VALUE "MSGFILE1 II

PIC X(9) VALUE "MSGFILE2 II

PIC XCS) VALUE "DATA ".
PIC X(9) VALUE "PRNTPROC II

PIC XC80).
PIC X.
VALUE "E".

* ERROR VARIABLES
01 ERROR-BUFFER.

05 FILLER PIC X OCCURS 1 TO 80 TIMES
DEPENDING ON LEN.

01 ERR-NUM PIC S9(4) COMP.
01 FILE-NUM PIC S9(4) COMP.
01 QUIT-PARM PIC S9(4) COMP.
PROCEDURE DIVISION.
MAIN PROCESSING SECTION.

$DEFINE %QUITPROG=
MOVE !1 TO QUIT-PARM
MOVE !2 TO FILE-NUM
PERFORM PRINT-ERROR#

QUITPROG
QUITPROG
QUITPROG
QUITPROG

*

DRIVER-PARA.
PERFORM INIT-PARA.
MOVE "F" TO EOF-VAR.
PERFORM LOAD-PARA UNTIL EOF.
PERFORM CLOSE-PARA.
STOP RUN.

*Create entries for the message files in the directory.

* * Note that IN-FILE-NAME ("MSGFILE1") is opened with FOPTIONs
* %30004: this indicates a new ASCII message file.

*

*

I NIT-PARA.
CALL INTRINSIC "FOPEN"

USING IN-FILE=NAME %30004
GIVING IN-FILE.

IF CC NOT = 0
%QUITPROG(1#,IN-FILE#).

CALL INTRINSIC "FCLOSE" USING IN-FILE %2 %0.
IF CC NOT = 0

%QUITPROG(2#,IN-FILE#).

* Note that OUT-FILE-NAME ("MSGFILE2") is opened with FOPTIONs
* %30004: this indicates a new ASCII message file.

*

*

CALL INTRINSIC "FOPEN"
USING OUT-FILE-NAME %30004
GIVING OUT-FILE.

IF CC NOT = 0
%QUITPROG(3#,0UT-FILE#).

CALL INTRINSIC "FCLOSE" USING OUT-FILE %2 %0.
IF CC NOT = 0

%QUITPROG(4#,0UT-FILE#).

* Create and activate the print process.

*

*

CALL INTRINSIC "CREATEPROCESS" USING \ PIN PRINTPROC.
IF CC NOT = 0

%QUITPROG(5#,-1#).

3-17

*Open message file for traffic from print process.

* * Note that IN-FILE-NAME ("MSGFILE1") is opened with FOPTIONs
* %106 and AOPTIONs %1100: %106 indicates an old temporary
*ASCII file and %1100 indicates a reader process with exclu-
* sive access and multiaccess capability. MSGFILE1 has already
*been designated as a message file. Since only one reader and
*one writer process will be accessing the message file,
* exclusive access mode is specified.

*

*

CALL INTRINSIC "FOPEN"
USING IN-FILE-NAME %106 %1100
GIVING IN-FILE.

IF CC NOT = 0
%QUITPROG (7#,IN-FILE#).

*Open message file for traffic to print process.

*
* Note that OUT-FILE-NAME ("MSGFILE2") is opened with FOPTIONs
* %106 and AOPTIONs %1101: %106 indicates an old temporary
*ASCII file and %1101 indicates a writer process with exclu-
* sive access and multiaccess capability. MSGFILE2 has already
*been designated as a message file. Since only one reader and
*one writer process will be accessing the message file,
* exclusive access mode is specified.

*

*

CALL INTRINSIC "FOPEN"
USING OUT-FILE-NAME %106 %1101
GIVING OUT-FILE.

IF CC NOT = 0
%QUITPROG (8#, OUT-FILE#).

*Open data input file.

*
* Note that DATA-FILE-NAME ("DATA") is opened with FOPTIONs %3
* and AOPTIONs 0: %3 indicates an old permanent or temporary
* fi Le and 0 indicates read only access. The fi Le system wi LL
*change the FOPTIONs to specify an ASCII file.

*

*

CALL INTRINSIC "FOPEN"
USING DATA-FILE-NAME %3 %0
GIVING DATA-FILE.

IF CC NOT = 0
%QUITPROG(9#,DATA-FILE#).

*Load input to message file.

*

3-18

LOAD-PARA.
CALL INTRINSIC "FREAD"

USING DATA-FILE MESSAGE-BUF -80
GIVING LEN.

IF CC NOT = 0
IF CC LESS THAN 0 THEN

%QUITPROG(10#,DATA-FILE#)
ELSE

MOVE "E" TO EOF-VAR
ELSE

COMPUTE LEN = - LEN
CALL INTRINSIC "FWRITE"

USING OUT-FILE MESSAGE-BUF LEN %0
IF CC NOT = 0

%QUITPROG(11#,0UT-FILE#).
CLOSE-PARA.

*

CALL INTRINSIC "FCLOSE 11 USING OUT-FILE %4 %0.
IF CC NOT = 0

%QUITPROG(12#,0UT-FILE#).

* Wait for print to finish.

*

*

CALL INTRINSIC nFREAD" USING IN-FILE MESSAGE-BUF %1 ..
IF CC < 0

%QUITPROG(13#,IN-FILE#).
CALL INTRINSIC "FCLOSE" USING IN-FILE %4 %0.
IF CC NOT = 0

%QUITPROGC14#,IN-FILE#).

* General error routine.

*
PRINT-ERROR SECTION.
WHAT-TYPE.

IF FILE-NUM IS NOT NEGATIVE THEN
CALL INTRINSIC "FCHECK" USING FILE-NUM ERR-NUM
MOVE 80 TO LEN
CALL INTRINSIC "FERRMSG" USING ERR-NUM ERROR-BUFFER LEN
DISPLAY ERROR-BUFFER.

IF QUIT-PARM IS NOT NEGATIVE THEN
CALL INTRINSIC "QUITPROG" USING QUIT-PARM.

$CONTROL USLINIT
IDENTIFICATION DIVISION.
PROGRAM-ID. SONPROC.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. HP3000.
OBJECT-COMPUTER. HP3000.
SPECIAL-NAMES.
CONDITION-CODE IS CC.
DATA DIVISION.

3-19

WORKING-STORAGE
01 LEN
01 IN-FILE
01 OUT-FILE
01 IN-FILE-NAME
01 OUT-FILE-NAME
01 MESSAGE-BUF
01 EOF-VAR

88 EOF

SECTION.
PIC S9C4) COMP.
PIC S9C4) COMP.
PIC S9(4) COMP.
PIC XC9) VALUE
PIC X(9) VALUE
PIC XC80).
PIC X.
VALUE "E".

"MSGFILE2 II

"MSGFILE1 II

* Error variables.
01 ERROR-BUFFER.

05 FILLER PIC X OCCURS 1 TO 80 TIMES
DEPENDING ON LEN.

01 ERR-NUM
01 FILE-NUM
01 QUIT-PARM

PIC S9(4) COMP.
PIC S9(4) COMP.
PIC S9(4) COMP.

PROCEDURE DIVISION.
MAIN-PROCESSING SECTION.

$DEFINE %QUITPROG=

*

MOVE !1 TO QUIT-PARM
MOVE !2 TO FILE-NUM
PERFORM PRINT-ERROR#

DRIVER-PARA.
PERFORM OPEN-PARA.
MOVE "F" TO EOF-VAR.
PERFORM READ-PARA UNTIL EOF.
PERFORM CLOSE-PARA.
STOP RUN.

*Open message file for traffic from other process.

*

QUITPROG
QUITPROG
QUITPROG
QUITPROG

* Note that IN-FILE-NAME ("MSGFILE2") is opened with FOPTIONs
* %106 and AOPTIONs %1100: %106 indicates an old temporary
*ASCII file and %1100 indicates a reader process with
*exclusive access and multiaccess capability. MSGFILE2 has
* already been designated as a message file. Since only one
* reader and one writer process will be accessing the message
*file, exclusive access mode is specified.

*
OPEN-PARA.

*

CALL INTRINSIC "FOPEN"
USING IN-FILE-NAME %106 %1100
GIVING IN-FILE.

IF CC NOT= 0
%QUITPROGC15#,IN-FILE#).

*Open message file for traffic to other process.

*
* Note that OUT-FILE-NAME C"MSGFILE1") is opened with FOPTIONs
* %106 and AOPTIONs %1101: %106 indicates an old temporary
*ASCII file and %1101 indicates a writer process with exclu-
* sive access and multiaccess capability. MSGFILE1 has already

3-20

*been designated as a message file. Since only one reader and
*one writer process will be accessing the message file;
* exclusive access mode is specified.

*

*

CALL INTRINSIC "FOPEN"
USING OUT-FILE-NAME %106 %1101
GIVING OUT-FILE.

IF CC NOT = 0
%QUITPROG(16#,0UT-FILE#).

*Read messages from message file.

*

*

READ-PARA.
CALL INTRINSIC "FREAD"

USING IN-FILE MESSAGE-BUF -80
GIVING LEN.

IF CC NOT = 0
IF CC LESS THAN 0 THEN

%QUITPROG(17#,IN-FILE#)
ELSE

MOVE "E" TO EOF-VAR

* Piint message out.

*

*

ELSE
COMPUTE LEN = - LEN
CALL INTRINSIC "PRINT"

USING MESSAGE-BUF LEN %0
i F CC NOT = 0

%QUITPROGC18#,2#).

* Now signal the other process; we are done.

*

*

CLOSE-PARA.
CALL INTRINSIC "FCLOSE" USING OUT-FILE %4 %0.
IF CC NOT = 0

%QUITPROG(19#,0UT-FILE#).
CALL INTRINSIC "FCLOSE" USING IN-FILE %4 %0.
IF CC NOT = 0

%QUITPROG(20#,IN-FILE#).

* General error routine.

*
PRINT-ERROR SECTION.
WHAT-TYPE.

IF FILE-NUM IS NOT NEGATIVE THEN
CALL INTRINSIC "FCHECK" USING FILE-NUM ERR-NUM
MOVE 80 TO LEN
CALL INTRINSIC "FERRMSG" USING ERR-NUM ERROR-BUFFER LEN
DISPLAY ERROR-BUFFER.

IF QUIT-PARM IS NOT NEGATIVE THEN
CALL INTRINSIC "QUITPROG" USING QUIT-PARM.

3-21

UTILITY FUNCTIONS OF I IUll!.l.'I
MPE INTRINSICS I 1v I

MPE intrinsics allow you to perform the following utility functions:

• Manage library procedures with LOADPROC (see page 4-2) and UNLOADPROC (see page 4-3).
• Convert numbers from ASCII to binary code with BINARY and DBINARY. See page 4-13.
• Convert numbers from binary to ASCII code with ASCII and DASCII. See page 4-10.
• Convert a string of characters from EBCDIC to ASCII, from ASCII to EBCDIC, from EBCDIC to

JIK (Katakana), and from JIK to EBCDIC with CTRANSLATE. (See page 4-13).
• Read input from job/session list devices with READ and READX. See page 4-16.
• Write output to the job/session list device with PRINT. See page 4-18.
• Write output to the Operator's Console with PRINTOP or write output to the Operator's Console

and solicit a reply with PRINTOPREPLY. See page 4-18.
• Obtain system timer information with TIMER. See page 4-42.
• Obtain the calendar date with CALENDAR. See page 4-44.
• Obtain the time of day in terms of hour, minute, second, and tenth of second with CLOCK. See

page 4-44.
• Format the calendar date with FMTCALENDAR. See page 4-45.
• Format the time of day with FMTCLOCK. See page 4-45.
• Format the calendar date and ti.me of day with FMTDATE. See page 4-45.
• Obtain process run time (CPU time) with PROCTIME. See page 4-44.
• Obtain information pertaining to your access mode and attributes with WHO. See page 4-10.
• Search an array for a specified name with SEARCH. See page 4-3.
• Format the parameters of a non-MPE command with MYCOMMAND. See page 4-4.
• Execute MPE commands programmaticaiiy with COMMAND. See page 4-9.
• Enable or disable hardware arithmetic traps with ARITRAP. See page 4-30.
• Enable or disable software arithmetic traps with XARITRAP. See page 4-32.
• Enable or disable the software library trap with XLIBTRAP. See page 4-34.
• Enable or disable the software system trap with XSYSTRAP. See page 4-36.
• Disarm the CONTROL-Y trap with RESETCONTROL (see page 4-40) or arm the CONTROL-Y

trap with XCONTRAP (see page 4-41).
• Change the size of the current DL-to-DB area with DLSIZE. See page 4-22.
• Change the size of the current Z-to-DB area with ZSIZE. See page 4-27.
• Suspend the calling process with PAUSE. See page 4-19.
• Initiate a session break progra..mmatically with CAUSEBREAK. See page 4-19.
• Programmatically terminate a process (after successful execution) with TERMINATE. See

page 4-20.
• Programmatically abort any process within a user process structure with QUIT. See page 4-20.
• Abort the entire process structure (pro~ram) with QUITPROG. See page 4-20.
• Manage interprocess communication through the job control words with SETJCW (see page 4-46),

GETJCW (see page 4-46), PUTJCW (see page 4-47), and FINDJCW (see page 4-47).
• Access a message catalog in the MPE message system, and insert parameters in a message, with the

GENMESSAGE intrinsic. See page 4-50.
• Control function of 2680 A page printer. I

JUL 1981 4-1

DYNAMIC LOADING AND UNLOADING OF LIBRARY PROCEDURES

Normally, segments containing library procedures referenced by a program are attached to that
program when the program is allocated in virtual memory. However, you also may dynamically
attach and detach such procedures while your program is running. You might, for example, decide
to do this for a large procedure used optionally and infrequently by your program, or for a procedure
whose name is not known at load time. By loading this procedure only when it is required, and then
unloading it, you can save the tabie entry. The procedures are loaded from segmented libraries, not
from relocatable libraries (which are used only at program-preparation time).

NOTE

Preparation and maintenance of segmented libraries and
relocatable libraries is explained in the Segmenter Reference
Manual.

You need not load procedures dynamically that are declared as externals to your program, because
the loader will load them automatically. Dynamic loading and unloading is intended for procedures
that are not declared at all.

DYNAMIC LOADING

The LOADPROC intrinsic is used to load a library procedure, together with external procedures
referenced by it.

For example, to dynamically load a procedure named PROCl, you could enter the following
intrinsic call:

PNUM:=LOADPROC(PNAME,O,LAB);

The parameters specified in the above intrinsic call are

procname

lib

plabel

Contained in the byte array PNAME. The contents of PNAME are
"PROCl ". Note that the last character is a blank.

0, signifying that only the system library should be searched.
If 2 were specified, library searching would proceed in this order:

Group Library
Account Public Library
System Library

Specifying 1 for the lib parameter would cause the search to be
conducted in this order:

Account Public Library
System Library

LAB, a word to which the procedure's label (P label) is returned.

When the LOADPROC intrinsic executes, the procedure identity number will be returned as an
integer to PNUM.

4-2

•

I
• I

I

Example 2:

BYTE ARRAY SHORTCOMMANDS (0:29) :=

Entry

6,1, "I",
7 ,1,"0",
8,1,"S",
8,1,"E~',

O;

Definition

"INA ",
"OUTA ",
"SKIP A ",
"EXITA ",

NOTE: This would enable the program to allow abbreviations and replace them with the full
command.

Example 3:

BYTE ARRAY RESPONSETABLE(0:9):=

J;l,...+ T
.l:J.L.Lll.l.J'

5,3,"YES",
4,2, "N 0 ",
O;

NOTE: In this example, the definition portion was not deemed necessary by the main program.

You can request the search of such an array for a specified name with the SEARCH intrinsic. A
simple linear search is performed, with the name, specified as a byte array, compared against the
byte array forming the name in each entry. Because the search is linear, the most frequently used
byte arrays should appear at the beginning of the array to promote efficient searching. If the name
is found, the number of the entry containing the name is returned to the calling program. If the
name is not found, a zero is returned. Optionally, you also can request the return of a pointer to the
definition information for the name.

If you want to search the byte array in Example 1 for the string "IN", the following intrinsic caii
could be used .

BYTE iiiRRAY COMMAND(0:3);MOVE COMMAND;="IN";
ENUM: =SEARCH (COMMAND ,2 ,COMMANDT ABLE ,DEF ADD R);

The length of the string in COMMAND is 2 bytes. ~he byte address of the definition sought is to be
returned to the word DEFADDR. The entry number corresponding to the entry containing "IN"
will be returned to the word ENUM.

4-3a JUL 1981

DYNAMIC UNLOADING

The UNLOADPROC intrinsic is used to unload a procedure and its referenced external procedures.

For example, to unload the procedure that was dynamically loaded in the previous example, you
could use the following UNLOADPROC intrinsic call:

UNLOADPROC(PNUM);

SEARCHING ARRA VS

Occasionally, you may construct byte arrays whose contents you may later want to search for
specified entries or names. A dictionary of user-designed commands is one such example. The
searching is accomplished with the SEARCH intrinsic, which can be used with specially-formatted
arrays consisting of sequential entries, each including:

•
•
•
•
•

An integer specifying the length (in bytes) of the entire entry - the length includes this
byte plus all the information in the following byte areas.
An integer specifying the length of the "name" (in bytes) for which the search is
performed.
A byte string forming the name for which the search is performed - in a co:rrunand
dictionary, for example, this would be the command name.
An optional byte string containing a user-supplied definition .
A zero, as the length of the last entry, indicating the end of the dictionary .

The entry number of the first entry in such a dictionary is one. If the entry is not found, it is indi-

I

cated by a zero. I

In the following examples, consider a byte array wherein the relationship of each entry to its I
definition is:

Example 1:

BYTE ARRAY COMMANDTABLE(0:25):=

Entry

5,2, "IN",
6,3, "OUT",
7,4,"SKIP",
7 ,4,"EXIT",
O;

Definition

1,
1,
2,
0,

NOTE: The main program presumably will use the definitions to mean:

JUL 1981

0 = No parameter follows
1 = Filename parameter follows
2 =Numeric parameter follows

I

4-3

FORMATTING COMMAND PARAMETERS

You can programmatically extract and format for execution the parameters of a command defined
by you (i.e., the command is not an MPE command) with the MYCOMMAND intrinsic.
Additionally, you can have the MYCOMMAND intrinsic search a byte array for the specified
command.

Figure 4-1 contains a program that checks if the user is running the program in a session and, if such
is the case, performs the following:

1. Prompts the user to enter a command name from the terminal.
2. Reads the command name typed in by the user.
3. Compares this command name against entries in a byte array. If no match is found, the

program displays
ILLEGAL ENTRY

and prompts the user for another command.
4. Converts the parameter, entered with the command, to binary, then uses this operand to

perform the calculation specified by the command.
5. Converts the result to ASCII, then displays the result on the terminal.

The statement

LGTH:=READ(INPUT,-72);

reads the command entered by the user (the arrays INPUT and COMMAND have been equivalenced,
see statement 6 in the program).

The two statements

IF<> THEN QUIT(l);
IF COMMAND = "END" THEN GO EXIT;

perform the following:

1. Check for a condition code error and execute the QUIT intrinsic (causing the process to
abort if a condition code error is returned).

2. Cause program control to transfer to the statement EXIT if "END" is entered by the
user.

The statement

COMMAND(LGTH):=%15;

adds a carriage-return character as the last character of the comimage parameter for the command
entered. Note that the carriage-return character is added starting at the position in the array
specified by LGTH, but does not overwrite the last position of the string entered by the user. The

4-4

PAGE 0001 HEWL~TT•PACKAPD 32100A.05.1 SPL/3000 TUE, OCT 286 1975, 4:35 PM

00001000 00000
00002000 00000
00003000 ooono
00004000 00011
00005000 00007
00006000 00007
00007000 00007
00008000 00010
00009000 00010

0
0
1
1
1
1
1
1
1

SCONTP.OL USLIN!T
BEGIN

ARRAY HEADINGCO:R):="INTEGFR CAI.CULATOR":
ARRAY FRRMSG(0:6):="ILLEGAL ENTRY.":
ARRAY INPUTC0:36):
BYTE ARRAY COM~AND(*)=INPUT:
BYTF ARRAY ANSWERC0:13):="ACCUM =
ARRAY OUTPUTC•):ANSWER:
BYTE ARRAY TABLF-(0:25)::

". ,

00010000 00001 1 5,3,"ADD", 5,3,"SUB", 5,3,"MUL",
00010100 00010 1 5,3,"DIV", 5,3,"SET", O:
00011000 00016 1 INTFGFR ARRAY PARMINFOCO:l):
00012000 00016 1 LOGICAL INTERACTIVE:=FALSE:
00013000 00016 1 INTEGER ACCUM::O, OPERAND::O, REQ:="? "
00014000 00016 1 LGTH, INDX, PARMCNT, TYPE:
00015000 00016 1
00016000 00016 1 INTRINSIC ASCII,BINARY,READ,PRINT,MYCOMMAND,QUIT,WHO:
00017000 00016 1
00019000 00016 1 <<END OF DECLARATIONS>>
000200v0 00016 1
00021000 00016 1 PRINTCHEADING,9,0):
00022000 00004 1 WHO(tNTERACTIVf.):
00023000 00010 1 1,ooP:
00024000 00010 1
00025000 00016 1
00026000 00023 1
00027000 00026 ' 00028000 00040 1
00028100 00043 1
00029000 00043 1
00030000 00050 1
00031000 00056 i
00032000 00057 1
00033000 00062 1
00034000 00065 1
00035000 00070 1
00036000 00075 1
00036100 00076 1
00037000 00076 1
00038000 00100 1
00039000 00106 2
00040000 00116 2
00041000 00122 2
00042000 00126 2
00043000 00i33 2
00044000 00136 2
00045000 00143 1
00046000 00143 1
00047000 00155 1
00048000 00163 1
00049000 00170 1

RESULT:

ERROR: 00050000 00171 1
00051000 00171 1
00052000 00175 1
00053000 00201 1
00054000 00202 1 FXIT:

PRIMARY DB STORAGE=%020:
NO. ERRORS=OOO:
PROCESSOR T!ME=0:00:03;

MOVE ANSWERC8l:=" ":
ASCII(ACCUM 1 1Q,ANSWEP(8)):
PRINT(OUTPUT,7,0):
GO LOPP:

PRINTCERRMSG,7,0):
If NOT INTERACTIVE TH~N QUITC21:
GO I,OOP ~

END.
SECONDARY DB STORAGE=%00113
NO. WARNINGS:OOO
ELAPSF.D TIME=O:OO:ll

Figure 4-1. Using the MYCOMMAND Intrinsic

<<PROGRA~ ID>>
«LIVE USER?»

<<RFSFT OLD ANSWER>>
<<CONVERT ACCUM>>
<<OUTPUT NEW ANSWER>>
<<CONTINUE CALCULATION>>

<<ERROR MESSAGE>>
<<NO LIV~ USER•QUIT>>
<<CONTINUE CALCULATION>>

4-5

reason for this is that, in SPL convention, the first position in an array is 0, not 1. For example, if
the user entered the command ADD 5, this command would occupy array positions 0 through 4, as
follows:

0 1 2 3 4

A D D 5

The value returned to LGTH specifying the length of the string read, however, is 5 because the
READ statement read a string 5 characters long and therefore the carriage-return character is added
to position 5 of the array.

The statement

TYPE:=MYCOMMAND(COMMAND,,l,PARMCNT,PARMINFO,TABLE);

calls the MYCOMMAND intrinsic to parse the command entered by the user. The parameters
specified are

com image

delimiters

maxparms

numparms

par ms

4-6

Contained in the array COMMAND, which contains the string entered
by the user. This parameter contains a user command such as ADD or
SUB, a parameter consisting of an integer, and a carriage-return
character added to the command by the statement

COMMAND(LGTH):=%15;

For example, the complete comimage parameter could be ADD 15%15,
with ADD 15 entered by the user and the %15 carriage return added
programmatically.

Omitted. The default delimiter array "comma, equal, semicolon,
carriage return" is used.

1, specifying that one parameter is expected in comimage.

Specified by PARMCNT, which contains the actual number of param­
eters entered with the command.

Specified by PARMINFO, an integer array to which is returned the
byte address of the parameter entered as part of comimage.

NOTE

Although this parameter is listed as a double array in the
specifications for the MYCOMMAND intrinsic in Section II,
it is declared as a two-word integer array in this program
because it is necessary to access each of the words indivi­
dually. This is more convenient than declaring a one-word
double array and a two-word integer array, then
equivalencing the two.

diet Specified by TABLE, a byte array containing 5,3,"ADD", 5,3,"SUB",
5,3,"MUL", 5,3,"DIV", 5,3,"SET", O;

The table specified by the diet parameter is searched until a match is found between the command
name and an entry in the table. If a match is found, the number of the entry in the table containing
the matching name is returned to TYPE. The diet parameter specifies a specially-formatted array, or
table. Each entry in the table contains:

1. An integer specifying the total number of bytes in the entry.
2. An integer specifying the total number of characters in the command portion of the

entry.
3. The command portion of the entry.
4. An arbitrary user-defined definition of the entry.

For example, the first entry in the array TABLE is

5,3,ADD

which is broken down as follows:

5 The total number of bytes in this entry (53ADD = 5 bytes).
3 The total number of bytes in the command portion (ADD) of the entry.

ADD The string comprising the command portion of the entry.

Note that a user-defined definition of the entry is not included in the entries in TABLE.

The byte array TABLE, then, consists of 26 bytes structured as follows:

5 3

A D

D 5

3 s
u B
...

3 D

I v
5 3

s E

T 0

4-7

The statement

IF <THEN GO ERROR;

checks the condition code and, if it is CCL, transfers program control to statement label ERROR.

The statement

IF PARMCNT < > 1 THEN GO ERROR;

checks that only one parameter was entered with the command (the parameter maxparms had
specified that one parameter was expected). If PARMCNT does not equal 1, control is transferred
to statement label ERROR.

The two statements

INDX:=PARMINFO-@COMMAND;
OPERAND:=BINARY(COMMAND(INDX),PARMINFO(l).(0:8));

determine the byte address of the parameter entered with the command, then convert this parameter
to a binary value.

The first statement above

INDX:=PARMINFO-@COMMAND;

subtracts the byte address of the first element of COMMAND from the byte address of P ARMINFO
to obtain the relative position of the parameter in the array COMMAND. This value is returned to
INDX. For example, the command

ADD5

would occupy positions in the array COMMAND as follows:

0 1 2 3 4

A D D 5

Subtracting the byte address of the first (zero) element of COMMAND from the byte address
specified by P ARMINFO for the first element of the parameter produces the byte address of the
parameter.

The statement

OPERAND:=BINAR Y(COMMAND(INDX),PARMINFO(l).(O :8));

converts the ASCII characters starting in the INDX position of the array COMMAND to a binary
value and returns this value to OPERAND. The number of bytes (length) of the ASCII string to be
converted are specified by the first eight bits (PARMINFO(l).(0:8)) of the first word contained in
PARMINFO

4-8

The statement

CASE (TYPE-1) OF

transfers program control to one of the five statements following the BEGIN statement, depending
on the value of TYPE-1. N>te that -1 is necessary because the five statements are considered in the
SPL numbering convention by the CASE statement (ACCUM:=ACCUM+OPERAND; is considered
to be the zeroth statement following BEGIN) but the value assigned to TYPE by MYCOMMAND
contains the range 1 to 5.

An example of running the program is shown below.

:RUN UTILY

INTEGER CALCULATOq
? SET 10
ACCUM = 1 ·~
? ADD 34
ACCTJM = 44
? MTJL • 5
ILLEGAL ENTRY
? MTJL 2
ACCTJM = 88
? END

END OF P~OG~AM

EXECUTING MPE COMMANDS PROGRAMMATICALLY

The COMMAND intrinsic can be used to programmatically request the execution of certain MPE
commands. The command image, including parameters, is passed to the intrinsic, which searches the
system command dictionary for a command of the same name, and executes it. When command
execution is completed, or when an error is detected during this execution, control returns to the
calling process. Commands that can be executed pro grammatically are listed below.

:ABORTIO :COMMENT :GIVE
:ABORT JOB .rVY1'.TC'r\T V

.V'-.J.1.'IU'-1'.L..1.L< :HEADOFF
:ACCEPT :DEALLOCATE :HEADON
:ALLOW :DELETESPOOLFILE :HELP
:ALT ACCT :DISALLOW :IMLCONTROL
:ALTGROUP :DISASSOCIATE :JOBFENCE
:ALT JOB :DOWN :JOBPRI
:ALTLOG :DOWNLOAD :JOBSECURITY

:ALTSEC :DSCONTROL :LDISMOUNT

:ALTSPOOLFILE :DSLINE :LIMIT

:ALTUSER :DST AT :LIST ACCT

:ALTVSET :FILE :LISTF

:ASSOCIATE :FOREIGN :LISTGROUP

:BREAKJOB :GETLOG :LISTLOG

:BUILD :GETRIN :LISTUSER

4-9

:LISTVS :RENAME :SHOWME
:LMOUNT :REPLY :SHOWOUT
:LOG :REPORT :SHOWQ
:MP LINE :RESET :SHOWTIME
:MRJECONTROL :RESET ACCT :SPEED
:NEWACCT :RESETDUMP :STARTSPOOL
:NEWGROUP :RESTORE :STOPSPOOL
:NEWUSER :RESUMEJOB :STORE
:NEWVSET :RESUMELOG :STREAM
:OUTFENCE :RESUMESPOOL :STREAMS
:PT APE :SAVE :SUSPENDSPOOL
:PURGE :SECURE :SWITCHLOG
:PURGEACCT :SETDUMP :TAKE
:PURGEGROUP :SETJCW :TELL
:PURGE USER :SETMSG :TELLOP
:PURGEVSET :SHOWALLOW :TUNE
:RECALL :SHOWCOM :UP
:REFUSE :SHOWDEV :VMOUNT
:RELEASE :SHOWIN :WARN
:RELLOG :SHOWJCW :WELCOME
:REMOTE :SHOWJOB
:REMOTE HELLO :SHOWLOG

See the MPE Commands Reference Manual and the Console Operator's Guide for discussions of
commands.

If you want to programmatically execute the command :SHOWTIME, the following intrinsic call
could be used:

COMMAND(COMD,ECODE,EPARM);

All characters for the command except the prompting colon are contained in the byte array COMD.
Any error code is returned to ECODE. Since the :SHOWTIME command has no parameters, no
information is returned to EPARM.

When the intrinsic executes, the date and time are printed on the job/session list device.

NOTE

Conditions which result in warning messages are not returned
to the user.

DETERMINING THE USER'S ACCESS MODE AND ATTRIBUTES

A program can obtain the access mode and attributes of the user running that program from the
system tables with the WHO intrinsic.

Figure 4-2 contains a program which must determine if the user is running the program in an
interactive session. The statement

WHO(INTERACTIVE);

4-10

PAGE 0001 HEWLfTT•PACKARD 32100A.05.1 SPL/3000 !UE, OCT 28, 1975, 4:35 PM

00001000 00000 0
00002000 00000 0
00003000 00000 1
00004000 00011 1
00005000 00007 1
00006000 00007 1
00007000 00007 1
00008000 00010 1
00009000 00010 1

SCONTPOL USLINIT
AEGIN

ARRAY HE~AD ING C 0: 8): =" INTEGF.R C AI.CULA TOR'':
ARRAY FRRMSG(0:6):="ILLEGAL ENTRY.":
ARRAY INPUTC0:36):
BYTE ARRAY COM~AND(*)=INPUT:
BYTF ARRAY ANSWERC0:13):="ACCUM =
ARRAY OUTPUT(*):ANSWER:
BYTE ARRAY TABLF-(0:25)::

". ,

00010000 00001 1 5,3,"SUB", 5,3,"MUL",
00010100 00010 1
00011000 00016 1
00012000 00016 1
00013000 00016 1
00014000 00016 1
00015000 00016 1

5,3,"DIV", 5,3,"SET", O:
INTEGER ARRAY PARMINFOCO:t);
LOGICAL INTERACTIVE:=FALSE;
INTEGER ACCUM::O, OPERAND::O, REG:="? "

LGTH, INDX, PARMCNT, TYPE:

00016000 00016 1 INTRINSIC ASCII,BINARY,READ,PRINT,MYCOMMAND,QUIT,~HO:
00017000 00016 1
00019000 00016 1 <<ENO OF DECLARATIONS>>
00020000 00016 1
00021000 00016 1
00022000 00004 1.
00023000 00010 1
00024000 00010 1
00025000 00016 1
00026000 00023 1
00027000 00026 ' 00028000 00040 1
00028100 00043 1
00029000 00043 1
00030000 00050 1
00031000 00056 1
00032000 00057 1
00033000 00062 1
00034000 00065 1
00035000 00070 1
00036000 00075 1
00036100 00076 1
00037000 00076 1
00038000 00100 1
00039000 00106 2
00040000 00116 2
00041000 00122 2
00042000 00126 2
00043000 00133 2
00044000 00136 ')_

2 :
IF<> TH~N QUITC1l:
If COMMAND:"END" THEN GO FXIT:
COMMAND(LGTH1:=%i5:

TYPE:=MYCOMMAND(COMMAND,,1,PAPMCNT,
PARM INFO, TABLE):

IF < THEN Go ERROR;
IF PARMCNT<>l THEN GO EPROR:
INDX::PAR~INFO•@COMMAND:

OPERAND::RINARY(COMMANO(INDX),
PARMINFO(l).(0:8)):

TF <> THEN GO ERROR:

CASE CTYPE-1) OF
REG IN

ACCUM:=ACCUM+DPERAND:
ACCU~:=ACCUM-OPERAND:

ACCUM:=ACCUM•OPERAND:
ACCUM:=ACCU~/OPERAND:
a.. ,.,,..1111 .. -nn~o h PJf).
Joo\\,..\ ur1i-vr:1...1'.r\.l'"'~,

END:
00045000 00143 PESULT:
00046000 00143
00047000 00155
00048000 00163 1
00049000 00170 1
00050000 00171 1 ERROR;
00051000 00171 1
00052000 00175 1
00053000 00201 1
00054000 00207 1 F.XIT:

PRIMARY DB STOPAGE=%020;
NO. ERRORS=OOO:
PROCESSOR TIME=0:00:03;

MOVE ANSWER(8):=" ":
ASCII(ACCUM,10 1 ANSWEPC8)):
PRINT(OUTPUT,7,0):
GO LOPP:

PRINT(ERRMSG,7,0):
If NOT INTERACTIVE TH~N QUITC2);
GO LOOP:

END.
SECONDARY DB STORAGE=%00113
NO. WARNINGS:OQO
ELAPSF.D TIME:0:00:11

Figure 4-2. Using the WHO Intrinsic

<<CHECK FOR ERROR>>
<<DONE - EXIT>>
<<CARRIAGE RETURN>>

<<TAKE APART COMMAND>>

<<NO COMMAND MATCH>>
<<NO PARA~ETERS>>

<<SUBSCRIPT OF PARM>>
<<CONVERT PARAMETER>>

<<CHECK FOR F.RROR>>

<<SELECT OPERATION>>

<<ADD CU'.\MAND>>
<<SUB COMMAND>>
<<MUL CO"'IMAND>>
<<DIV COMMAND>>
<<SF.T COµM~ND>>

<<RFSFT OLD ANSWER>>
<<CONVERT ACCUM>>
<<OUTPUT NEW ANSWER>>
<<CONTINUE CALCULATION>>

<<ERROR MESSAGE>>
<<NO LIVE USER•OUIT>>
<<CONTINUE CALCULATION>>

4-11

calls the WHO intrinsic to make this determination. If the logical identifier INTERACTIVE is
TRUE (bit 15 = 1) after the WHO intrinsic executes, and job/session input file and job/session list
file form an interactive pair, thus the user is running the program interactively.

The statement

IF INTERACTIVE THEN PRINT(REQ,1,%320);

checks whether INTERACTIVE is TRUE or FALSE. If TRUE, the PRINT portion of the statement
is executed and a prompt character (?) is displayed on the terminal to prompt the user for a
command.

CONVERTING NUMBERS FROM BINARY CODE TO ASCII STRINGS

You can convert a one-word binary number to an octal or decimal number represented as an ASCII
string with the ASCII intrinsic. The length of the resulting ASCII string can be returned as an
integer value.

The ASCII intrinsic call is illustrated in figure 4-3. The statement

ASCil(ACCUM,10,ANSWER(8));

converts the one-word binary number contained in ACCUM to the base 10 and places the converted
value into the 8th element of the byte array ANSWER. The length of the resulting ASCII string is
unimportant in this application and therefore no variable is provided in the intrinsic call for this
return. If the length were desired, the intrinsic call could have had the form

LGTH: = ASCII(ACCUM, 10,ANSWER(S));

The DASCH intrinsic, which converts a double-word (32-bit) binary number to an octal or decimal
number represented as an ASCII string, is shown in Figure 4-4.

The statement

LGTH: =DASCII(CNTR,10,BMSG(20));

converts the 32-bit binary number contained in CNTR to the base 10 and places the converted
decimal value in the 20th element of byte array BMSG. The length (number of characters) of the
converted value is returned to LGTH.

The value is converted from binary to ASCII so that it can be printed by the PRINT statement.

CONVERTING NUMBERS FROM AN ASCII NUMERIC
STRING TO A BINARY CODED VALUE

The BINARY intrinsic converts an ASCII numberic string to its equivalent binary value. The con­
verted value is returned to the calling program.

The BINARY intrinsic call is illustrated in Figure 4-5. The statement

OPERAND:= BINARY (COMMAND (INDX), P ARMINFO (1). (0 :8));

converts the ASCII numeric string contained in the element specified by INDX of the array COM­
MAND to its binary equivalent. The length of the ASCII string is specified by the first 8 bits of the
first word of the array PARMINFO. The resulting binary value is stored in the word OPERAND.
4-12

PAGE 0001

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00009000
00010000
00010100
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00028100
00029000
00030000
00031000
00032000
000 33000
00034000
00035000
00036000
00036100
00037000
00038000
00039000
00040000
00041000
00042000
00043000

HEWLF.TT•PACKARD 32100A.05.1 SPL/3000 TUE, OCT 28, 1975, 4:35 PM

00000 0
00000 0
ooono 1
00011 1
00007 1
00007 1
00007 1
00010 1
00010 1
00001 1
00010 1
00016 1
00016 1
00016 1
00016 1
00016 1
00016 1
00016 1
00016 1
00016 1
00016 1
00004 1
00010 1
00010 1
00016 1
00023 1
00026 ' 00040 1
00043 1
00043 1
00050 1
00056 1
000!'>7 1
00062
00065 1
00010 1
00075 1
00076 1
00076 1
00100 1
00106 2
00116 2
00122 2
00126 2
00133 2

SCONTROL USLINJT
HEGIN

ARRAY HEADINGC0:8) :="INTEGFR CALCULATOR":
ARRAY FRRMSG(0:6):="ILLEGAL ENTRY.":
AHRAY INPUT(0:36);
BYTE ARRAY COMMANDC*l=INPUT:
BYTF ARRAY ANSWER(0:13l:="ACCUM =
ARRAY OUTPUT(*):ANSWER:
BYTE ARRAY TABLEC0:25)::

5,3,"ADD", 5,3,".SUB",
5,3,"DIV", 5,3,"SET", O:

INTEGFR ARRAY PARMINF0C0:1):
LOGICAL INTERACTIVE:=FALSE:
INTEGER ACCUM::O, OPERAND::O, FEG:="? "

LGTH, INDX, PARMCNT,

". ,

TYPE:

INTRINSIC ASCII,BINARY,READ,PRINT,MYCOMMAND,QUIT,wHO;

<<END OF DECLARATIONS>>

1,ooP:

PRINTCHEADING,9,0);
WHOCINTERACTIVf.);

IF INTERACTIVF THEN PRINTCREQ,1,%3201:
LGTH:=REAO(TNPUT,•72):
IF<> TH~N QUITC1):
IF CQMMAND:"END" TttEN GO FXIT:
COMMAND(LGTHl:=%15:

TYPE:=~YCOMMANDCCOMMAND,,1,PARMCNT,

PARMINFO,TABLE);
IF < THEN GO ERROR:
IF PARMCNT<>1 THEN GO ERROR:
INDX::PAR~INFO•@COMMAND;

OPERAND::RINARY(COMMANOCINDX),
PARMINFOC1).(0:8));

IF <> THEN GO ERROR;

CASE CTYPE•l) OF
BEGIN

ACCUM:=ACCUM+OPERAND:
ACCUM:=ACCUM•OPERAND;
ACCUM:=ACCUM•OPERAND:
ACCUM:=ACCU~/OPERAND:

ACCUM:=OPERAND:
r.• a.If"\ -
C.l'fl.J;

RESULT:

<<PROGRA~ ID>>
<<LIVE USER?>>

<<Pf.lOMPT USER>>
<<GET COMMAND>>
<<CHECK FOR ERROR>>
<<DONE - EXIT>>
<<CARRIAGE RETVRN>>

<<TAKE APART COMMAND>>

<<NO COMMAND MATCH>>
<<NO PARAMETERS>>
<<SUBSCRIPT OF PARM>>
<<CONVERT PARAMETER>>

<<CHECK FOR F.RROR>>

<<SELECT OPERATION>>

<<ADD CU"-!MAND>>
<<SUB COMMAND>>
<<MUL CO~MAND>>
<<DIV COMMAND>>
<<SF:T CO~Ml\ND>>

MOVE ANSWERCBJ:=" ": <<RFSFT OLD ANSWER>>

00044000 00136 7
00045000 00143 1
00046000 00143 1
00047000 00155 1
00048000 00163 1
00049000 00170 1 GO LOOP: <<CONTINUE CALCULATION>>
00050000 00171 1
00051000 00171 1
00052000 00175 1
00053000 00201

ERROR;

00054000 00202 1 FXIT:
PRIMARY DB STOPAGE=%020:
NO. ERRORS:OOO:
PROCESSOR TIME=0:00:03:

PRINTCERRMSG,7,0):
IF NOT INTERACTIVE THEN QUITC2):
GO LOOP;

END.
SECONDARY DB STORAGF.=%00113
NO. WARNINGS:OOO
ELAPSFD TIME:0:00:11

Figure 4-3. Using the ASCII Intrinsic

<<ERROR MESSAGE>>
<<NO LIVE USER•QUIT>>
<<CONTINUE CALCULATION>>

4-13

PAGE: 0001 HF.WLETT•PACKARD 32100A.05.1 SPL/3000 MON, NOV 3, 1975, 10:42 AM

SCONTROJ_, USLINJT
BEGIN

00001000 00000 0
00002000 00000 0
00003000 00000 1
00004000 00013 1
00005000 00020 1
00006000 00020 1
00007000 00020 1
00008000 00020 1
00009000 00020 1
00010000 00020 1
00011000 00020 1
00012000 00000 1
00013000 00000 2
00014000 00000 2
00015000 00000 2
00016000 00007 2
00017000 00013 2
00018000 00014 2

ARRAY HEADTNGCO:lO)::"CONTROL Y TFAP EXAMPLE":
ARRAY MSGC0:15)::"COUNTER CURRENTLY : ":
BYTF, ARRAY AMSG(*):MSG:
DOUBLE CNTR:=OD:
INTEGEP DUMMY,LGTH:

INTRINSIC PRINT,XCONTRAP,CUIT,DASCII,RESETCONTROL:

PROCEDURE CONTROLY:
BEGIN

INTEGER SD~C=O+l:

RESETCONTROL: <<PEARM CONTROL Y TRAP>>
ToS:=%31400+SDEC: <<BUILD EXIT INSTRUCTION>>

00019000 00016 2
00020000 00017 2
00021000 00000 1
00022000 00000 1
00023000 00000 1
00024000 00000 1
00025000 00004 1
00026000 00007 1

ASSEMBLECXFQ O): <<F.XECUTE EXIT>>
END:

<<END OF DECLARATIONS>>

00027000 00012 1
00028000 00012 1
00029000 00023 1

LOOP:

00030000 00027 1 END.
PRI~ARY DB STORAGE:\007:
NO. ERRORS:OOO:
PROCESSOR TIM~=o:oo:02:

PRINTCHEADING,11,0):
XCONTR AP (@CONTROL Y, DllMt-1 Y) :

If < THEN QUIT(l)J

CNTR::CNTR+tD:
If CNTR<30000000 THEN GO LOOP:

SECONDARY DB STORAGE:%00033
NO. ~ARNINGS=OOO

ELAPSED TIME=0:00:26

<<PROGRAM ID»
<<ARM CONTROL Y TRAP>>
<<CH~CK FOR ERROR>>

<<DOUBLE INCREMENT>>
<<CONTINUOUS LOOP>>

Figure 4-4. Using the DASCH Intrinsic

To convert a number from an ASCII string to a double-word (32-bit) binary value, the DBINARY
intrinsic is used. A DBINARY intrinsic call could be of the form

DVAL:=DBINARY(STRING,LENGTH);

where STRING contains the octal or decimal number to be converted and LENGTH is an integer
representing the length of the string containing the ASCII-coded value. The converted double-word
value is returned to DYAL.

TRANSLATING CHARACTERS WITH THE CTRANSLATE INTRINSIC

The CTRANSLATE intrinsic is used for character code translating, whether between the standard
computer character codes or with a user-defined code. It permits you to obtain character code con­
versions within programs of your own design. In the code parameter of CTRANSLATE, the follow­
ing values specify the translation table to be used:

4-14

0 - The user supplied table specified in the parameter, table.

1 - EBCDIC to ASCII. (EBCDIC characters with no ASCII equivalent are translated to a byte
of zero.)

2 - ASCII to EBCDIC. (The ASCII parity bit is ignored.)

3 - Reserved for future use.

PAGE 0001 HEWLFTT•PACKARD 32100A.05.1 SPL/3000 TUE, OCT 28, 1975, 4:35 PM

00001000 00000
00002000 00000
00003000 00000
00004000 00011
00005000 00007
00006000 00007
00007000 00007
00008000 00010
00009000 00010

0
0
1
1
1
1
1
1
1

SCONTPOL USLINIT
HEGIN

ARRAY HEADINGCO:S):="INTEGF.R CALCULATOR":
ARRAY FRRMSGC0:6):="ILLEGAL ENTRY.":
ARRAY INPUT(0:36):
BYTE ARRAY COMMAND(*)=INPUT:
BYTF ARRAY ANSWER(0:13):="ACCUM:
ARRAY OUTPUT(*):ANSWER:
BYTE ARRAY TABLEC0:25)::

II o ,

00010000 00001 t 5,3, 11 ADD 11
, 5,3,"SUB", 5,3,"MUL",

00010100 00010 1 5,3, 11 DIV", 5 1 3,"SET", O:
00011000 00016 1 INTEGER ARRAY PARMINFOCO:l):
00012000 00016 1 LOGICAL INTERACTIVE:=FALSE:
00013000 00016 1 INTEGER ACCUM::O, OPERAND::O, FEQ:="? "
00014000 00016 1 LGTH, INDX, PARMCNT, TYPE:
00015000 00016 1
00016000 00016 1 INTRINSIC ASCII,BINARY,READ,PRINT,MYCOMMAND,QUIT,WHO:
00017000 00016 1
00019000 00016 1 <<~ND OF DECLARATIONS>>
00020000 00016 1
00021000 00016 1
00022000 00004 1
00023000 00010 1
00024000 00010 1
00025000 00016 1
00026000 00023 1
00027000 00026 1
00028000 00040 1
00028100 00043 1
00029000 00043
00030000 00050 1
00031000 0005& 1
00032000 00057 1
000 33000 00062 1
00034000 00065 1
00035000 00070 1
00036000 00075 1
00036100 00076 1
00037000 00076 1
00038000 00100 1
00039000 00106 2
00040000 00116 2
00041000 00122 2
00042000 00126 2
00043000 00133 2
00044000 00136 2

J,onP:

PRINTCHEADING,9,0l:
WHO(tNTERACTIVE):

IF INTERACTIVf THEN PRINTCREQ,1,%320):
LGTH:=REAOCINPUT,·72):
IF <> THEN QUITC1):
IF COMMAND:"END" THEN GO FXIT:
COMMAND(LGTHl:=%15:

TYPE:=~YCO~MAND(CDMMAND,,1,PARMCNT,

PARM INFO, TABLE):
IF < THEN Gn ERROR~
IF PARMCNT<>l THEN GO ERROF:

CASE CTYPE-1) OF
HEGIN

ACCUM:=ACCUM+DPERAND:
ACCUM:=ACCUM•OPERAND:
ACCUM:=ACCUM*OPEPAND:
ACCUM:=ACCU~/OPERAND:

ACCUM::OPERAND:
END:

00045000 00143 1 RESULT:
00046000 00143 1
00047000 00155 1
00048000 00163 1
00049000 001;0
00050000 00171 F,RRUR:
00051000 00171
00052000 00175
00053000 00201
00054000 00202 1 F.XIT:

PRIMARY DB STOPAGE=%020:
NO. ERRORS=OOO:
PROCESSOR TIME=0:00:03:

MOVE ANSWER(8)::" ":
ASCIICACCUM,10,ANSWEP(8)):
PRINT(OUTPUT,7,0):
rn T nr"l.o.
\.JU UU\...'f i

PRINT(ERRMSG,7,0):
IF NOT INTERACTIVE THEN QUIT(2);
GO I,OOP:

END.
SECONDARY DB STORAGF.=%00113
NO. WARNINGS:OOO
ELAPSFD TIME:O;OO:ll

Figure 4-5. Using the BINARY Intrinsic

«PROGRA~ ID»
<<LIVE USER?>>

<<PROMPT USER>>
<<GET COMMAND»
<<CHECK FOR ERROR>>
<<DONE • EXIT>>
<<CARRIAGE RETURN>>

<<TAKE APART COMMAND>>

<<NO COMMAND MATCH>>
<<NO PARAMETERS>>

<<SELECT OPERATION>>

<<ADD CU'"1MAND>>
<<SUB COMMAND>>
<<MUL CO"iMAND>>
<<DIV COMMAND>>
<<SF:T CO"'M~ND>>

<<RFSET OLD ANSWER>>
<<CONVERT ACCUM>>
<<OUTPUT NEW ANSwER>>
<<CONTINUE CALCULATION>>

<<ERRO~ MESSAGE>>
<<NO LIVE USER•QUIT>>
<<CONTINU~ CALCULATION>>

4-15

4 - Reserved for future use.

5 - EBCDIK to JIS (Katakana data).

6 - JIS to EBCDIK.

As an example of converting from EBCDIC to ASCII, suppose the byte array ESTRING contains
the EBCDIC characters "JOB 2". You want to convert this string to its ASCII equivalent and store
it in the byte array ASTRING. The following intrinsic call could be used:

CTRANSLATE(l,ESTRING,ASTRING,5);

The parameters specified in the above intrinsic call are:

code

instring

outstring

stringlengt h

table

1, which specifies the EBCDIC-to-ASCII table. A 0 for this parameter
specifies a user-defined translation table, and a 2 specifies the
ASCII-to-EBCDIC table.

ESTRING, a byte array containing the string to be converted.

ASTRING, a byte array which will contain the ASCII characters for
"JOB 2" when the intrinsic is executed.

5, which specifies the length, in bytes, of the string "JOB 2".

Omitted. This parameter, if specified, consists of a byte array
containing a user-defined table to be used in the translation.

TRANSMITTING PROGRAM INPUT /OUTPUT FROM JOB/SESSION
INPUT/OUTPUT DEVICES

In addition to the FREAD and FWRITE intrinsics discussed in Section III, MPE provides three
other intrinsics that allow you to read information from the job/session input device (READ and
READX intrinsics) or write information to the job/session list device (PRINT intrinsic).
Additionally, two other intrinsics allow you to transmit a message to the Operator's Console
(PRINTOP intrinsic), or transmit a message to the Operator's Console and solicit a reply
(PRINTOREPL Y intrinsic).

Please bear in mind that the READ, READX, and PRINT intrinsics are limited in their usefulness.
The reason for this is that : FILE commands are not allowed with these intrinsics and the filenum
parameter, obtained from the FOPEN intrinsic, is not available for use with these intrinsics. Usually,
therefore, you will find it to be more convenient and better programming practice to use the
FOPEN intrinsic to open the files $STDIN and $STDLIST, and then issue FREAD's and FWRITE's
against these files.

READING INPUT FROM THE JOB/SESSION INPUT DEVICE

The job/session input device is the source of all MPE commands relating to a job or session, and is
the primary source of all ASCII information input to the job or session. Normally, the input device
is a terminal for sessions and a card reader for jobs.

4-16

You can read a string of ASCII characters from the job/session input device into an array in your
program with the READ and READX intrinsics. The READ and READX intrinsics are identical
except that the READX intrinsic reads input from $STDINX instead of $STDIN. ($STDINX is
equivalent to $STDIN except that records with a colon in column 1 indicate the end of data to
$STDIN and only the commands :EOD; :EOF, :JOB, :EOJ, and :DATA indicate the end of data for
$STDINX.)

The READ intrinsic call is illustrated in figure 4-6.

The statement

LGTH := READ(INPUT ,-72);

reads an entry from the terminal and transfers this string to the array INPUT. The maximum length
of the string to be read is specified as 72 bytes (-72). The actual length of the string read is returned
and stored in the word LGTH when the intrinsic executes.

The statement

IF< >THEN QUIT(l);

checks for a "not equal'' condition code and, if CCG or CCL is returned, the QUIT intrinsic is
executed and the process is aborted. The (1) parameter is an arbitrary user-supplied value that is
displayed as part of the abort message.

WRITING OUTPUT TO THE JOB/SESSION LIST DEVICE

Normally, the list device is a line printer for jobs and a terminal for sessions. You can wTite a string
of ASCII characters from an array in your program to this list device with the PRINT intrinsic.

In figure 4-6, the statement

PRINT(HEADING,9,0);

transmits the string "INTEGER CALCULATOR" from the array HEADING (see statement number
3 in figure 4-6). The length parameter is specified as 9, which means that the string to be
transmitted is 9 words long (a negative value would specify bytes}. The control para..111eter is 0,
signifying that the full record is to be printed, up to 132 characters per line, using single spacing.

WRITING OUTPUT TO THE OPERATOR'S CONSOLE

The PRINTOP intrinsic can be used to transmit an ASCII string from an array in your program to
the Operator's Console. The ASCII string to be transmitted is limited to 56 characters.

The PRINTOP intrinsic could be called as follows:

PRINTOP(MESSAGE, 10, 0);

The character string to be transmitted is contained in the array MESSAGE. The parameter 10
signifies that the message is 10 words long. A negative value for this parameter would specify bytes.
If zero is specified for the length parameter, only the standard message prefix is written on the
Operator's Console; the string contained in MESSAGE would not be transmitted in this case.

4-17

PAGE 0001 HEWLF.TT•PACKARD 32100A.05.1 SPL/3000 TUE, OCT 28, 1975, 4:35 PM

$CONTROL USLINJT
HEGIN

00001000 00000 0
00002000 00000 0
00003000 00000 1
00004000 00011 1
00005000 00007 1
00006000 00007 1
00007000 00007 1
00008000 00010 1
00009000 00010 1
00010000 00001 1
00010100 00010 1
00011000 00016 1
00012000 00016 1
00013000 00016 1
00014000 00016 1
00015000 00016 1
00016000 00016 1
00017000 00016 1
00019000 00016 1
00020000 00016 1
00021000 00016 1
00022000 00004 1

''RR~¥ w1Jfl'~tttt.;~:t:P.:~:l;§r::t:t;teat:8 p,*-f:;f:Uu!mo1HnF t ,,,

4-18

ARRAY FRRMSGC0:6):="ILLEGAL ENTRY.":
AHRAY INPUTC0:36):
BYTE ARRAY COMMANDC*l=INPUT:
BYTF ARRAY ANSWERC0:13):="ACCUM =
ARRAY OUTPUT(*):ANSWER:
BYTE ARRAY TABL[(0:25):=

5,3,"ADD", 5,3,"SUB",
5,3,"DIV", 5,3,"SET",

INTEGER ARRAY PARMINFOC0:1l:
LOGICAL INTERACTIVE:=FALSE:

"· ,

INTEGER ACCUM::O, OPERAND::O,
LGTH, INDX,

REO:="? ",
PARMCNT, TYPE:

INTRINSIC ASCII,BINARY,READ,PRINT,MYCOMMAND,QUIT,wHO:

00023000 00010 1
00024000 00010 1
00025000 00016 1
00026000 00023 1
00027000 00026 J
00028000 00040 1
00028100 00043 1
00029000 00043 1
00030000 00050 1
00031000 00056 1
00032000 00057 1
00033000 00062 1
00034000 00065 1
00035000 00070 1
00036000 00075 1
00036100 00076 1
00037000 00076 1
00038000 00100 1
00039000 00106 2
00040000 00116 2
00041000 00122 2
00042000 00126 2
00043000 00133 2

<<~ND OF DECLARATIONS>>

LOOP:
WHO IVE): «LIVE USER?»

IF INTERACTIVE THEN PRINTCREQ,1,%320)J <<PROMPT USER>>

IF CQM~AND:"END" THEN GO EXIT: <<DONE - EXIT>>
COMMAND(LGTH):=%15: <<CARRIAGE RETURN>>

TYPE:=MYCOMMANDCCOMMAND,,1,PARMCNT,
PARMINFO,TABLE):

IF < THEN GO ERROR:
IF PARMCNT<>i THEN GO ERROR:
INDX::PARMINFO•@COMMAND:
OPERAND::BINARY(COMMANO(INDX),

PARMINFD(1).(0:8)):
IF <> THEN GO ERROR:

CASE CTYPE-1) OF
RE GIN

ACCUM:=ACCUM+DPERAND:
ACCUM:=ACCUM•OPERAND:
ACCUM:=ACCUM•OPERAND:
ACCUM::ACCU~/OPERAND:

ACCUM::OPERAND:
END:

<<TAKE APART COMMAND>>

<<NO COMMAND MATCH>>
<<NO PARAMETERS>>
<<SUBSCRIPT OF PARM>>
<<CONVERT PARAMETER>>

<<CHECK FOR ERROR>>

<<SELECT OPERATION>>

«ADD COMMAND>>
«SUB COMMAND»
«MUL COMMAND»
«DIV COMMAND»
«SF:T COMMAND»

00044000 00136 2
00045000 00143 1
00046000 00143 1
00047000 00155 1
00049000 00163 1
00049000 00170 1

RESULT:

ERROR: 00050000 00171 1
00051000 00171 1
00052000 00175 1
00053000 00201 1
00054000 00202 1 FXIT:

PRIMARY DB STORAGE=%020:
NO. ERRORS=O\JO:
PROCESSOR TIME=0:00:03:

MOVE ANSWER(8)::" ":
ASCII(ACCUM,10,ANSWER(8)):
PRINT(OUTPUT,7,0l:
GO LOOP:

PRINTCERRMSG,7,0):
IF NOT INTERACTIVE TH~N QUITC2):
GO l,OOP:

END.
SECONDARY DB STORAGE=%00113
Nn. WARNINGS:OOO
ELAPSFD TIME=0:00:11

<<RESET OLD ANSWER>>
<<CONVERT ACCUM>>
<<OUTPUT NEW ANSWER>>
<<CONTINUE CALCULATION>>

<<ERROR MESSAGE>>
<<NO LIVE USER•QUIT>>
<<CONTINUE CALCULATION>>

Figure 4-6. Using the PRINT and READ Intrinsics

WRITING OUTPUT TO THE OPERATOR'S CONSOLE AND REQUESTING A REPLY

The PRINTOPREPL Y intrinsic can be used to transmit an ASCII string from an array in your
program to the Operator's Console and to request that a reply be returned. For example, a program
could ask the operator if the line printer contains a certain type of form. If the response is
affirmative, the program then could write information on these forms.

A PRINTOPREPL Y intrinsic call could be as follows:

REPLGTH: =PRINTOPREPLY (MESSAGE, 18,'/J ,REPLY ,-3);

The following parameters were specified in the above call:

message

length

control

reply

expectedl

An ASCII string contained in the array MESSAGE.

18 words. A negative value would specify bytes. If zero is specified for
the length parameter, only the standard message prefix is written on the
Operator's Console; the string contained in MESSAGE would not be
transmitted in this case.

fP (MPE ignores this parameter).

The operator's reply will be returned to the array REPLY.

-3, signifying that the maximum expected length of the reply is 3 bytes.
A positive value would specify words.

The actual length of the operator's reply is returned to REPLGTH. This is a positive value
representing a byte count in this case because expectedl is negative (- 3). If expectedl is positive,
then the length returned represents words.

SUSPENDING THE CALLING PROCESS

The calling process can be suspended with the PAUSE intrinsic. A PAUSE intrinsic call could be as
follows:

P AUSE(INT);

INT is a real variable that specifies the amount of time, in seconds, that the process is suspended.
The maximum interval allowed is approximately 2,147 ,484 seconds.

When INT seconds have elapsed, control is returned to the calling process and execution resumes at
the statement following the PAUSE intrinsic call.

REQUESTING A PROCESS BREAK

Duri~11g a session; you can initiate a break programmatically with the CAUSEBREAK intrinsic. Using
this intrinsic is the programmatic equivalent of using the BREAK key in a session, and allows you to
enter certain MPE commands to perform functions such as creating a file or transmitting an
informal message. The MPE commands permitted during a break are listed below:

4-19

:ABORT :IF :RESUME :SPEED
:ALTSEC :LISTF :SAVE :STORE
:ALTVSET :LISTVS :SECURE :STREAM
:BUILD :MOUNT :SETCATALOG :TELL
:BYE :NEWVSET :SETDUMP :TELLOP
:COMMENT :PT APE :SETJCW :VSUER
:DEBUG :PURGE :SETMSG
:DISMOUNT :REDO :SHOWCATALOG
:DSLINE :RELEASE :SHOWDEV
:DST AT :REMOTE HELLO :SHOWIN
:ELSE :RENAME :SHOWJCW
:END IF :REPORT :SHOW JOB
:FILE :RESET :SHOWME
:GETRIN :RESETDUMP :SHOWOUT
:HELP :RESTORE :SHOWTIME

See the MPE Commands Reference Manual for discussions of commands.

The form of the CAUSEBREAK intrinsic call is

CAUSEBREAK;

Execution of the process can be resumed where the interruption occurred by entering the command

:RESUME

The CAUSEBREAK intrinsic is not valid in a job.

TERMINATING A PROCESS

You can programatically terminate a process with the TERMINATE intrinsic. The process and all of
its descendants, including any extra data segments belonging to them, are deleted.

All files still open by the process are closed and assigned the same disposition they had when
opened.

The form of the TERMINATE intrinsic call is

TERMINATE;

ABORTING A PROCESS

If called from within any process in a user-process structure, the QUIT intrinsic aborts that process.

The QUIT intrinsic sets the job/session in an error state and transmits a Type 2 abort message to the
calling process' list device. In a session, the process is aborted but the session remains active when
the entire program finishes. In a batch job, the job terminates when the entire program finishes
unless the :CONTINUE command (see the MPE Commands Reference Manual) has been included as
part of the job.

Figure 4-7 shows the QUIT intrinsic being called if a READ statement did not execute properly.
The abort message resulting from the QUIT intrinsic execution is shown below.

ABORT :SPROG.PUB. TECHPUBS. %0. %26

4-20

PAGE 0001 HEWLF.TT•PACKAPD 32100A.05.1 SPL/3000 TUE, OCT 28, 1975, 4:35 PM

00001000 00000
00002000 00000
00003000 00000
00004000 00011
00005000 00007
00006000 00007
00007000 00007
00008000 00010
00009000 00010

0
0
1
1
1
1
1
1
1

SCONTFOL USLINJT
HEGIN

ARRAY HEADINGCO:B):="INTEGF.R CALCULATOR":
ARRAY FRRMSG(0:6):="ILLEC.AL ENTRY.":
ARRAY INPUT(0:36);
BYTE ARRAY COMMAND(*)=INPUT:
BYTF ARRAY ANSWERC0:13):="ACCUM =
ARRAY OUTPUT(*):ANSWER:
BYTE ARRAY TABLEC0:25)::

". ,

00010000 00001 1 5,3,"ADO", 5 1 3,"SUB", 5,3,"MUL",
00010100 00010 1
00011000 00016 1
00012000 00016 1
00013000 00016 1

5,3,"DJV", 5,3,"SET", O:
INTEGER ARRAY PARMINFOCO:l);
LOGICAL INTERACTIVE:=FALSE:
INTEGER ACCUM::O, OPERAND::O, REQ:="? "

00014000 00016 1 LGTH, INDX, PARMCNT, TYPE:
00015000 00016 1
00016000 00016 1 INTRINSIC ASCII,BINARY,READ,PRINT,MYCOMMAND,QUIT,WHO:
00017000 00016 1
00019000 00016 1 <<END OF DECLARATIONS>>
00020000 00016 1
00021000 00016 1.
00022000 00004 1
00023000 00010 1
00024000 00010 1
00025000 00016 1
00026000 00023 1
00027000 00026 1
00028000 00040 1
00028100 00043 1
00029000 00043 1
00030000 00050 1
00031000 00056
00032000 00057 1
00033000 00062 1
00034000 00065 1
00035000 00070 1
00036000 00075 1
00036100 00076 1
00037000 00076 1
00038000 00100 1
00039000 00106 2
00040000 00116 2
00041000 00122 2
00042000 00126 2
00043000 00133 2
00044000 00136 7

PRINTCHEADING,9,0);
WHO(INTERACTIVE):

TYPE:=~YCOMMAND(COMMAND,,1,PAFMCNT,

PARMINfO,TABLE):
IF < THEN GO ERROR;
IF PARMCNT<>l THEN GO ERROR:
INDX::PARMINFO•@COMMAND;
OPERAND:=BINARYCCOMMANDCINDX),

PARMINF0(1).(0:~)):

IF <> THEN GO ERROR:

CASE CTYPE•l) OF
BEGIN

ACCUM:=ACCUM+OPERAND;
ACCUM:=ACCUM•OPERAND:
ACCUM:=ACCUM*OPERAND:
ACCUM:=ACCUM/OPERAND;
ACCUM:=OPERAND;

END:
00045000 00143 1 RESUI,T:
00046000 00143 1
00047000 00155 1
00048000 00163 1
00049000 OOiiO
00050000 00171 ERROR:
00051000 001 71
00052000 00175
00053000 00201
00054000 00202 1 F.XIT:

PRIMARY DB STORAGE=%020:
NO. ERRORS=OOO:
PROCESSOR TIME=0:00:03:

MOVE ANSWER(8)::" ":
ASCII(ACCUM,10,ANSWER(8));
PRINT(OUTPUT,7,0);
~f""\ • t'll"'\T"'\-uu 1.JUt..1 r;

PRINTCERRMSG,7,0);
IF NOT INTERACTIVE TH~N QUITC2);
Go r.oop:

END.
SECONDARY DB STORAGE=%00113
NO. WARNINGS:OOO
ELAPSFD TIME=O:OO:ll

Figure 4-7. Using the QUIT Intrinsic

«PROGRA~ ID»
«LIVE USER?»

<<TAKE APART COMMAND>>

<<NO COMMAND MATCH>>
<<NO PARAMETERS>>
<<SUBSCRIPT OF PARM>>
<<CONVERT PARAMETER>>

<<CHECK FOR F.RROR>>

<<SELECT OPERATION>>

<<ADD C0'4MAND>>
<<SUB COMMAND>>
<<MUL CO"'IMAND>>
«DIV COMMAND>>
<<SF:T CO~M~ND>>

<<RESET OLD ANSWER>>
<<CONVERT ACCUM>>
<<OUTPUT NEW ANSWER>>
<<CONTINUE CALCULATION>>

<<ERROR MESSAGE>>
<<NO LIVE USER•QUIT>>
<<CONTINUE CALCULATION>>

4-21

The statement

IF< >THEN QUIT(l);

checks for a "not equal" condition code and, if CCG or CCL is returned, the QUIT intrinsic is
called. The process is aborted and the abort message is printed. The QUIT parameter (1) is an
arbitrary number supplied by the user and can be used to identify a specific QUIT intrinsic call in
case of multiple possible QUIT intrinsic calls. This number, 1 in this case, is printed at the end of
the abort message (P=l). The system job control word (JCW) is set to the value FATAL, with the
QUIT parameter as a modifier. In this example, JCW would be set to FATALl, or %100001.

ABORTING A PROGRAM

You can programmatically abort the entire user-process structure (program) with the QUITPROG
intrinsic. This intrinsic destroys all processes up to, but not including, the job/session main process.

In batch jobs not containing the :CONTINUE command (see the MPE Commands Reference
Manual), this terminates the job.

The form of the QUITPROG intrinsic call could be as follows:

QUITPROG(l);

The parameter (1) can be any user-specified number. When the QUITPROG intrinsic executes, this
number is printed as part of the abort message. In addition, QUITPROG sets the system job control
word (JCW) to the value FATAL, with the QUITPROG parameter as a modifier. Thus, in this
example, JCW would be set to FATALl, or %100001.

CHANGING ST ACK SIZES

When you prepare or execute a process, you specify (or allow MPE to assign by default) the size of
the stack (Z to DB) area and the user-managed (DL to DB) area within the stack segment. Once the
process begins execution, you can programmatically change the size of these areas, to meet new
requirements as they arise, by altering the register offsets Z to DB or DL to DB. For example, you
typically expand the size of these areas when you find, during process execution, that the sizes
specified initially were not sufficient for your data requirements. Conversely, you might contract
the size of either of these areas should your process no longer require large amounts of space for
data. (This is a good practice - it improves overall system performance.) These changes are
requested with the DLSIZE intrinsic for the DL to DB area and the ZSIZE intrinsic for the Z to DB
area.

If you plan to expand or contract the Z to DB or DL to DB areas programmatically, you must
specify, at the time the stack is created, the anticipated maximum size of the stack segment. This
value is used by MPE in allocating disc storage. The maximum stack size value is specified at
preparation or run time with the segsize parameter of the :PREP, :PREPRUN, or :RUN command,
or if you are a user with the Process-Handling Capability, after the program is running with the
maxdata parameter of the CREATE intrinsic.

4-22

NOTE

When the stack segment belonging to a process running in
privileged mode is frozen in main memory (during an
input/output operation, for example), either implicitly (when
a user's process interfaces directly with the input/output
system), or explicitly (by a direct call to system intrinsics),
the intrinsics to change the register offsets DL to DB or Z to
DB cannot be executed. When these intrinsics are called
under such circumstances, a special FRO ZEN ST ACK error
code is returned to the calling process, which then may
attempt recovery. In general, this error implies that you
should wait until the stack is unfrozen before re-issuing the
intrinsic call.

CHANGING THE DL TO DB AREA SIZE

You can expand or contract the area between DL and DB within the stack segment with the
DLSIZE intrinsic. All current information within the DL to DB area is saved on expansion. On
contraction, data within the area to be contracted is lost. See figure 4-8.

A request for contraction less than the initial DL size of the area causes the initial DL size to be
granted and an error condition code (CCL) to be returned. If the size requested causes the stack to
exceed the maximum size permitted by the stack area, Z to DL, only this maximum will be granted.

Some possible applications for the DL area are:

• Dynamically allocated I/0 buffers when using the FCOPY subsystem.

• Compiler symbol tables when programming in SPL.

• Global storage area for library routines in Segmented Libraries. These routines typically
have no global area storage which will retain values assigned to them between calls to the
procedure. These routines also typically have no common storage where data can be
shared by several procedures. If you define your conventions carefully, these library
routines can use the DL area of the process which calls them for this kind of storage. Care
must be taken, however, because the first 10 words of the DL area are reserved for
subsystem use, and some system routines make use of the DL area for their own storage.
1\.s long as your environment is completely known and well defined, your main program
or your library routines can get DL space and manage it as they choose ..

Figure 4-9 contains an SPL program that expands and contracts the DL to DB area.

NOTE

All addressing within the DL to DB area is DB-relative
negative indexing and SPL is the only language, at present,
which can access this area for you.

4-23

4-24

DL

(NEW
AREA) A CALL TO DLSIZE TO EXPAND THE

DL TO DB AREA CAUSES THE DL

DL REGISTER TO BE MOVED FARTHER
AWAY FROM DB. THE NEW AREA
CREATED BY THE EXPANSION IS

DB DB ADDED TO THE EXISTING DL AREA.
INFORMATION WHICH WAS CONTAINED
IN THE OLD DL AREA IS NEITHER
MOVED RELATIVE TO DB NOR ALTERED

Q Q
IN ANYWAY.

s s

z z

D L --t~~"""''""""''"" - - - - - - - - -} ~~;:

l"/fi/"//)~/,1,;ij',-'l'.%1- - DL ~m~m~m~

DB

Q

s

z

Q

s

z

A CALL TO DLSIZE TO CONTRACT THE
DB TO DL AREA CAUSES THE DL
REGISTER TO BE MOVED CLOSER TO
DB. THE DATA CONTAINED BETWEEN
THE OLD POSITION OF DL AND THE NEW
CONTRACTED POSITION OF DL IS LOST
TO THE USER.

Figure 4-8. Expanding and Contracting the DL to DB Area

The program in figure 4-9 reads data from $STDIN and stores it in the DL area at progressively
iower (DB - n) addresses. Additional DL space is allocated when the next buffer would lie outside
the current DL area. When a null record (0 length) is read, the program outputs the data on a
last-in-first-out basis. After all the records are output, the DL space is collapsed to its initial
allocation and the operation begins again. The loop is terminated by entering :EOD in place of a
data line.

NOTE

The program was PREPed with a MAXDATA 2000
parameter.

The statement

TOTALDL:=DLSIZE(O);

sets the DL to DB area to the original value assigned when the process was created (initial DL).

Observe the following illustration of the DL to DB area.

DL nRIGll'-JAL DL L!M!T v

DB-46 I
r--- 36 WORDS RESERVED FOR BUFFER

DB 10 WORDS RESERVED FOR SYBSYSTEMS OF MPE

Statement number 8 in the program

LOGICAL POINTER BUFFER:=-46;

sets a pointer to DB - 46, which is the DB-relative address of the first word in BUFFER.

The statement

PUSH(DL);

pushes the DL register contents onto the top of the stack and the statement

IF TOS > @BUFFER THEN

checks if the address of the first word of BUFFER is outside the DL to DB area. In other words,
TOS contains the DL address from the DL register. If this value is greater than (less negative) than
the address of the first word in BUFFER, then BUFFER is outside the DL to DB area. See below.

4-25

DB - 154

DL
(DB - 128)

DB-82

DB-46

DB-10

DB

...._ - - - J4----- STARTING ADDRESS OF NEXT BUFFER

36 WORDS
IF ANOTHER RECORD READ FROM $STDIN

BUFFER

(36 WORDS)

BUFFER

(36 WORDS)

BUFFER
(36WORDS)

If the DL address is DB - 128, then when only one buffer is filled, the address of the next buffer is
well within the DL to DB area. When three buffers have been filled, however, the starting address of
the next buffer (DB - 154) would be outside the DL to DB area (DB - 0 to DB - 128). The TOS
(DB - 128) is greater than the address of the first word in the next buffer (DB - 154).

If the next buffer would lie outside the D L to DB area, the next four statements in the program

BEGIN

TOTALDL:=DLSIZE(TOTALDL-128);

IF< >THEN QUIT(4);

END;

add 128 more words to the DL to DB area.

The statements

BUFFER:=" ";

MOVE BUFFER(l):=BUFFER, (35);

fill BUFFER with blanks preparatory to reading the input from $STDIN. A prompt is displayed and
the user enters the next record. The length of the record is assigned to LGTH.

If LGTH = 0, signalling a carriage return (no data entered), the program addresses the previous
buffer and transfers control to LINEOUT. The contents of the buffers are written on $STD LIST on
a last-in-first-out basis. When the original address is reached (DB - 46), control is returned to
RESTART and the procedure is repeated.

The statement

TOTALDL:=DLSIZE(O);

contracts the DL to DB area back to its original size, destroying the contents of all buffers. An
: EOD entry terminates program execution.

Figure 4-10 shows the results when the program is run.

4-26

I

PAGE'.: 0001

00001000
00002000
00003000
00004000
00007000
00008001)
00009000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00018100
00018200
00018300
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00050000
00051000
00053000

HEWLETT-PACKARD 32100A.05.1 SPL/3000 THU, NOV 61 1975, 11:12 AM

00000 0
00000 0
00000 1
00000 1
00000 1
00000 1
00000 1
00000 1
00000 1
00000 1
00000 1
00000 1
00007 1
00012 1
00012 1
00022 1
00025 1
00025 l
00030 1
00033 1
00033 1
00034 1
00036 1
00036 2
00043 2
00046 2
00046
00050
00055 1
00062 1
00065 1
00073 1
00076 1
00071 1
00102 1
00102 2
00105 2
00113 2
00113 1
00116 1
00117 1
00117 1
00124 1
00127 1
00132 1
00135 1
00137 1

SCONTROL usr. IN IT
REG IN

INTEGER IN,OUT,LGTH,
TOTALDL:=o:

INTRINSIC FOPEN,OLSIZE,FREAD,FWRITE,QUIT:

<<END OF DECLARATIONS>>

IN::FOPEN(,%44);
IF< THEN GUIT(l):

GO RESTART:

<<SSOTIN>>
<<CHECK FOR ERROR>>

<<SSTDLIST»
<<CHECK FOR ERROR>>

<<OUTPUT DATA>>
<<CHECK foR ERROR>>
<<ALL BUFFERS OUTPUT:RESTART>>
<<ADDRESS PREVIOUS BUFFER>>
<<CONTINUE OUTPUT PHASE>>

PRIMARY DB STORAGE=%006;
NO. ERRORS:OOO: NO. WARNINGS:OOO

ELAPSED TIME:o:oo:22 PROCESSOR TIME=0:00:03:

Figure 4-9. Using the DLSIZE Intrinsic

4-27

4-28

? **•***•**•***••••****
? ******************•
? *************•••*
? **************¥
? *************
? *******~***
? *****•~**
? **'!(****
? ***:it<::,<
? ***
? *
?

*¥******)!(
>!'•*****¥***

**********¥¥*
""**:.P::oic****

? 0:-..:.:<JJJ

? :::z=:=~E

?
?
?
?
?

-----­................
......,, ._.J -..J .-J_. ..._.

H :-r :-n-: :'i 1-!
T;"TT:T

...... -:--._...._.,......_
-1_.~.__..._,,_

7;' ~;:--'":.""";;'':""
. ... ~~,.I...__.

D:JDD~JD

? :::'.:[:;)

Figure 4-10. Changing the DL to DB Area Size

CHANGING THE Z TO DB AREA SIZE

You can alter the size of the current Z to DB area by adjusting the register offset of the Z address
from the DB address with the ZSIZE intrinsic.

The ZSIZE intrinsic moves the Z address forward (expansion) or backward (contraction) as shown
below.

DL ---------. DL -------.....

DB ------- DB

a a

s s

z r- - - - -
FORWARD I

NEWZ t I
NEWZ • BACKWARD

zL----....J

EXPANSION CONTRA CTI ON

If the Z to DB area size requested exceeds the maximum size permitted for the Z to DL (stack)
area, only the maximum size allowed is gra..llted.

All changes to the Z to DB area are made in increments or decrements of 128 words, thus the size
actually granted may differ from the size requested. For example, if the present Z to DB area size is
128 words, a request for a size of 129 words would result in a size of. 256 words being granted.

A ZSIZE intrinsic call could be

ACTSIZE:=ZSIZE(250);

If the maximum size for the Z to DL area permitted, an actual size granted for the Z to DB area of
256 words would be returned to ACTSIZE.

ENABLING AND DISABLING TRAPS

Normally, whenever a major error occurs during the execution of a hardware instruction, a
procedure from the System Library, or an intrinsic called by a user, the user program is aborted and
an error message is output. You can, however, avoid immediate abort by enabling any of three
software traps provided by MPE:

The ariihmetic trap, for hardware instruction errors.
The library trap, for errors detected during execution of a system library procedure.
The system trap, for errors detected during execution of a system intrinsic.

4-29

When an error occurs, the corresponding trap, if enabled, suppresses output of the normal error
message, transfers control to a trap procedure defined by you, and passes one or more parameters
describing the error to this procedure. This procedure may attempt to analyze or recover from the
error, or may execute some other programming path. Upon exiting from the trap procedure, control
returns to the instruction following the one that activated the trap. In the case of the library trap,
however, you can specify that the process be aborted when control exits from the trap procedure.
Trap intrinsics can be invoked from within trap procedures.

NOTE

The validity of a trap procedure, specified by the extemal­
type label of the user trap procedure (plabel), depends on the
code domain of the caller's code and executing mode
(privileged or non-privileged), and on the code domain of the
plabel and the mode (privileged or non-privileged). The code
domains are:

PROG
GSL
PSL
SSL
MPESSL

(User Program)
(Group SL)
(Public SL)
(System SL, non-MPE Segments)
(System SL, MPE Segments)

If, at the time of enabling a trap procedure, the code of the caller is

1. Non-privileged in PROG, GSL, or PSL: plabel must be non-privileged in PROG, GSL, or
PSL.

2. Privileged in PROG, GSL, or PSL plabel may be privileged or non-privileged in PROG,
GSL, or PSL

3. Privileged or non-privileged in SSL: plabel may be in any non-MPESSL segment.

ARITHMETIC TRAPS

There are two levels of arithmetic traps: the hardware arithmetic trap set and the software
arithmetic trap. Each trap in the hardware trap set detects a particular type of hardware error, such
as division by zero or result overflow. The software trap, if enabled, receives an internal interrupt
signal from a hardware trap when an error is encountered, and transfers control to a user trap
procedure.

When a user process begins execution, all hardware trap set interrupt signals are enabled
automatically, but the software trap is disabled, permitting any hardware error to abort the process.
Through intrinsic calls, however, you can alter the ability of the hardware trap set to send signals,
and that of the software trap to receive a signal from any particular hardware trap. Only signals
received and accepted by the software trap can invoke a user trap procedure.

To enable or disable the internal interrupt signals from all hardware arithmetic traps, you enter the
ARITRAP intrinsic call, as follows:

ARITRAP(STATE);

where STATE is TRUE (bit 15 = 1) to enable the signals from all hardware traps, and FALSE (bit
15 = 0) to disable these signals.

4-30

When a software arithmetic trap procedure is executed, the Index register contains the word of code
being executed when the trap occurred. This information, plus, if necessary, the right stackop bit i..'1
the stacked status word, can be used to identify the offending instruction. A one-word parameter is
available, in Q - 4, in which certain bits indicate the type of hardware trap invoked. The various
traps leave the parameter in Q - 4 as follows.

STANDARD TRAPS

Bit 15
14
13
12
11

Floating Point Divide by 0
Integer Divide by 0
Floating Point Underflow
Floating Point Overflow
Integer Overflow

A return from the trap procedure (through an (EXITl) instruction) will resume execution in the
user code domain at the instruction following that which activated the trap procedure. The
condition of the stack when the trap procedure is invoked is

User Program

Q-4 Hardware Trap Type
Parameter

Q Stack Marker

Arithmetic
S Trap

Procedure

EXTENDED PRECISION FLOATING-POINT TRAPS

Bit 10
9
8

Extended Precision Overflow
Extended Precision Underflow
Extended Precision Divide by 0

The address of the result operand is left on the stack in Q-5. An (EXIT 2) return will resume
execution in the user code domain at the instruction following the one which caused the trap. The
condition of the stack when the trap procedure is invoked is

User Program

Q-5 Result Address

Hardware Trap Type
Parameter

Q-4

Q Stack Marker

Arithmetic
Trap Procedure

s

4-31

COMMERCIAL INSTRUCTION TRAPS

Bit 7 = Decimal Overflow
6 Invalid ASCII Digit (CV AD)
5 Invalid Decimal Digit
4 = Invalid Source Word Count (CVBD)
3 = Invalid Decimal Operand Length
2 = Decimal Divide by 0

The parameters stacked for the execution of the instruction are left on the stack below Q-4. To
return properly the trap handler must examine the opcode (found in the Index Register) to
determine the proper stack decrement to use on exit. The condition of the stack when the trap
procedure is invoked is

User Program

Stacked Operands

Hardware Trap Type
Parameter

Q-4

Q Stack Marker

Arithmetic
s Trap

Procedure

An arithmetic trap procedure is shown in figure 4-11. The procedure FDIVZRO is a trap proce­
dure to which control is passed if a floating point divide by zero software trap is enabled and
a program attempts an operation to divide by 0.

The statement

XARITRAP(%1,@FDIV ZRO ,D UMMYl ,D UMMY2);

enables the floating point divide by 0 trap. The parameter %1(bit15 = 1) enables only the floating
point divide by O; the @FDIVZRO passes the trap procedure as a parameter; DUMMYl and
DUMMY2 are dummy parameters.

The statement

RESULT:=NUM/DENOM;

attempts a floating point divide by 0 operation and, since the floating point divide by 0 trap is
enabled, control is transferred to procedure FDIVZRO. The condition of the stack at this point is

4-32

PAGE 0001 HEWLETT-PACKARD 32100A.05.1 SPL/3000 FPI, OCT 31, 1975, 11:01 AM

00001000 00000 0
00002000 00000 0
00003000 00000 1
00004000 00000 1
00005000 00000 1
00006000 00000 1
00007000 00000 1
00008000 00010 1
00009000 00007 1
00010000 00007 1
00011000 00000 1
00012000 00000 1
00013000 00000 1
00014000 00000 1
00015000 00000 2
00016000 00004 2
00017000 00006 2
00018000 00011 2
00019000 00023 2
00020000 00023 2
00021000 00026 2
00022000 00000 1
00023000 00000 1
00024000 00000 1
00025000 00000 1
00026000 00000 1

$CONTROL USL IN IT
BEGIN

REAL NUM:=l.,
DENOM:=O.,
RESULT:

INTEGER DUMMY1,DUMMY2:
ARRAY DIVMSGC0:7)::"DIVIDE OPERATION":
ARRAY ADDMSGC0:6):="ADD OPERATION ":

PROCEDURF FDIVZRO(QUOTTENT,TRAP):
VALUE QUOTIENT,TRAP:
REAL QUOTIENT:
LOGICAL TRAP:
Bf!~GIN

:::Jtt::@:::::ta:=F=rnm:outtr:t=JH!it#4W =tMEfMMiU:'?EXlit:J:tt' :::trr :::::::::r=t{ ::: !Mdiitt4Ai:E\hiNifati:i@Mrl>>f :r::i=tr=:::::
IF QUOTIENT<O. <<CHECK SIGN OF ANSWfR>>

THEN QUOTIENT:=%37777777777D << • LARGEST VALUE>>
ELS~ 0UOTIENT:=%17777777777D: << + LARGEST VALUE>>

EXIT:
RETURN 1: <<DELETF. TRAP PARM ONLY>>

END:

INTRINSIC XARITFAP,PRINT,QUIT:

<<END OF DECLARATIONS>>

0 0 0 2 7 0 0 0 0 0 0 0 0 1 :r1ut?l:t:t1*:~:~:1:rn=*li~M::1::t:Ji:Jfljitt:M:Z:RPJXHf!f.M¥¥UM:J:MM:t:2(:)\#lF 'f: :::n~:1:1:tfrUUtP:ZfiW:==:::m:~:\Mti::?t:=trt:=:=t==<?'='
00027100 00005 1 IF< THEN QUITC1J: <<CHECK FOR ERROR>>
00028000 00010 1

PRINTCDIVMSG,8,0): <<DIVIDE HF.ADING>>
::: =r::=:: ::::: ::r::::a£:su=titi:¥.:inn~ft:D.itNttin=rt >>'>'= ,,,, ,,,, · .. , ,,,, ,,,,,, ,,,,,,,,,,,,,, ,, ,, '''==<<tt=::!::~:ttx=::w1:r.t:m>.i:?:t?ftt=>> =r::::tx :::::::::::::::::::::°'''''''''.

00029000 00010 1
00030000 00014 1
00031000 00020 1
00032000 00020 1
00033000 00024 1
00034000 00030 1 END.

PRIMARY DB STORAGE=%012:
NO. ERRORS=OOO:
PROCESSOR TIME=o:oo:o2:

PRINT 0)

SECONDARY DB STORAGE=%00017
NO. WARNINGS:OOO
ELAPSED TIM~=0:00:11

<<ADD HEADING>>

Figure 4-11. Using the XARITRAP Intrinsic

User
Program

Q-6 RESULT

Hardware Trap
Q-4 Type Parameter

(%1)

Q Stack Marker

Arithmetic Trap
l>-rn.,-.orh11'0

s

The value of RESULT has been left at Q-6 and the FDIVZRO procedure uses this for QUOTIENT.

4-33

If QUOTIENT = 0 (0 divided by 0), no action is taken and the procedure is exited, transferring
control back to the user program.

If QUOTIENT is less than 0, then the largest possible negative value is assigned to QUOTIENT.

If QUOTIENT is not less than 0, the largest possible positive value is assigned.

The statement

RETURN 1;

deletes only one word from the stack (the TRAP parameter at Q - 4) and returns to the program
leaving the address of QUOTIENT (whose value is either %37777777777D or %17777777777D) at
stack location Q - 5.

When the statement

RESULT:=RESULT+RESULT;

tries to add the large value contained in RESULT to itself, the floating point overflow hardware
trap aborts the process. The floating point overflow error was deliberately caused in this example
program by assigning one of two largest possible values to RESULT and then attempting an add
(RESULT + RESULT) which could not succeed. In a practical program, of course, such trap
recovery (causing another intentional error) would not be used. The result of running the example
program is shown below.

:RUN ATRAP

DIVlDE OPERATION
ADD OPF.RATION

ABORT :ATRAP,PUB.SUPPORT,%0.,26
PROGRAM ERROR #3: FLOATING POINT OVERFLOW

PROGRAM T~R~INATED IN AN ERROR STATE. CCIERR 976)

LIBRARY TRAP

The software library trap reacts to major errors that occur during execution of procedures from the
System Library. When a user program begins execution, this trap is disabled automatically. You can
enable (or disable) it with the XLIBTRAP intrinsic. When enabled, the library trap passes control to
a trap procedure in the event of an error. This procedure, in turn, returns to the user program four
words containing the stack marker created when the library procedure was called by the user
program. In addition, the trap procedure returns an integer representing the error number. When the
procedure is completed, it either transfers control to the instruction following that which caused
the error or aborts the process at your option. The trap procedure is defined by you, but it must
conform to the special format discussed in the HP 3000 Compiler Library Manual.

4-34

The XLIBTRAP intrinsic call could be as follows:

XLIBTRAP(PLABEL,OLDPLABEL);

where PLABEL is the external-type label of your trap procedure. If the value of this parameter is 0,
the trap is disabled. OLDLABEL is a word in which the previous plabel is returned to the use
program. If no plabel existed previously, 0 is returned.

When a library trap procedure is invoked, the condition of the stack is:

USERSTACK

ERROR CODE

ABORTFLAG

SYSTEM TRAP

Q' -3

Q'-2

Q' -1

Q'

0-6

Q-5

0-4

I

I

USER'S PROGRAM

COMPILER
LIBRARY

ROUTINES

USERSTACK

ERRORCODE

ABORTFLAG

USER'S TRAP PROCEDURE

A word pointer to the base of the stack marker placed on the stack
when the user program called the compiler library.

A reference parameter indicating the type of compiler library error,
described in the HP 3000 Compiler Library Manual.

A reference parameter set before the user exits from the trap pro­
cedure. If TRUE, the compiler library aborts the program with the
standard error message (just as if no trap procedure had been executed).
If FALSE, the compiler library does not abort the program and no
error message is printed, in this case, the compiler library attempts
error- recovery.

The software system trap reacts to errors occurring in intrinsics called by user programs. Typical
errors are

DEC 1981 4-35

I

I

• Illegal access. An attempt by a user to access an intrinsic for which he does not have
access capability.

• Illegal parameters. The passing to an intrinsic of parameters that are not defined for the
user's environment.

• Illegal environment. The DB register is not currently pointing to the user's stack area.
• Resource violation. The resource requested by a user is either illegal or outside the

constraints imposed by MPE.

When a user program begins execution, the system trap is disabled automatically. When enabled by
the XSYSTRAP intrinsic call and subsequently activated by an error, the trap transfers control to a
trap procedure.

The system trap is enabled or disabled by a XSYSTRAP intrinsic call, as follows:

XSYSTRAP(PLABEL,OLDPLABEL);

where PLABEL is the external-type label of your trap procedure. If the value of this parameter is 0,
the software trap is disabled. OLDPLABEL is a word to which the previous pl.abel is returned to
your program. If no plabel existed previously, 0 is returned.

When a system trap procedure is executed because of an abort condition arising in a system
intrinsic, the stack is readjusted to provide an eight-word parameter group between the intrinsic
parameters and the stack marker.

0-11

0-10

0-9

0-8

0-7

0-6

0-5

0-4

0-3

0-2

0-1

0

s

4-36

USER PROGRAM

N WORDS FOR THE
CALLABLE INTRINSIC

PARAMETER 1

PARAMETER 2

PARAMETER 3

PARAMETER 4

PARAMETER 5

PARAMETER 6

PARAMETER 7

PARAMETER 8

~ -
STACK MARKER

~ -
t---- -

SYSTEM TRAP PROCEDURE

} N WORDS

EIGHT-WORD
PARAMETER GROUP

The format of the eight-word parameter group in Q-4 through Q-11 is

BITS 0

0-11

0-10

0-9

0-8

0-7

0-6

0-5

0-4

I

N

p

P-1 through P-6

E-1 through E-6

9 10 15

i I
l N PARAMETER 1

p PARAMETER 2

P-1 E-1 PARAMETER 3

P-2 E-2 PARAMETER 4

P-3 E-3 PARAMETER 5

P-4 E-4 PARAMETER 6

P-5 E-5 PARAMETER 7

P-6 E-6 PARAMETER 8

7 8

Intrinsic number.

Number of callable intrinsic parameters. (To resume execution in the
user code domain, an EXIT N +8 instruction should be executed.)

Additional parameter information.

Parameters modifying the error bytes, described below. If no modifying
parameter is present, the corresponding parameter byte is set to zero.

Error bytes, containing the error codes noted in Section X. The last
error code present is delimited by the value of zero in the fallowing
error byte.

With these parameters, the trap procedure may take any recovery action necessary - vvTite
messages, produce selective dumps, set error-indication flags, or allow interactive debugging. Finally,
the procedure may either call the TERMINATE intrinsic or issue an (EXIT N+8) instruction to
return to the user program (at the location following that where the trap was invoked), with
appropriate error indications.

A sample declaration for a system trap procedure, and an example of how you might issue an EXIT
N+8 instruction follow:

PROCEDURE SYSTEM TRAP (PARAMETER I ,PARAMETER2,PARAMETER3,
PARAMETER4,PARAMETER5,PARAMETER6,
PARAMETER7,PARAMETERB);

4-37

VALUE PARAMETERl ,PARAMETER2,PARAMETER3,PARAMETER4,
PARAMETER5,PARAMETER6,PARAMETER 7,PARAMETERB;

LOGICAL PARAMETER1,PARAMETER2,PARAMETER3,PARAMETER4,
PARAMETER5,PARAMETER6,PARAMETER 7,PARAMETERB;

BEGIN

INTEGER N;

<<USER MAY OUTPUT MESSAGES>>

N:=PARAMETERl LAND%37; < <N=NUMBER OF PARAMETERS
PASSED TO CALLABLE
INTRINSIC>>

TOS:=N+%3141 O; < < PUT "EXIT N+B" ON TOP
OF STACK>>

ASSEMBLE (XEQ fJ); < < EXECUTE "EXIT N+B" ON
TOP OF STACK>>

END;

CONTROL-Y TRAPS

If you are running a program in an interactive session, you can enable a special trap that transfers
control from the currently-executing program to a trap procedure whenever a CONTROL-Y
subsystem break signal is entered from the terminal. On most terminals, the CONTROL-Y signal is
transmitted by pressing the Y key while holding the CONTROL key down.

When more than one process is currently running within your process' tree structure, the
CONTROL-Y signal interrupts the last process to enable the trap.

When a process is interrupted by a CONTROL-Y signal, the following occurs:

4-38

1. The input/output transactions pending between the process and the terminal are halted
and flagged as though all were completed successfully.

2. Control is transferred to the trap procedure defined by you, with which you can now
interact. The trap procedure executes in the same mode (privileged or non-privileged) as
the user program that was interrupted.

3. Control returns from the trap procedure to the interrupted program or procedure. If the
interrupted program or procedure was awaiting completion of input/output (reading from
or writing to the terminal) when the CONTROL-Y signal was received, the FREAD or

FWRITE intrinsic that was executed is flagged as successfully completed when control
returns from the trap procedure. If the CONTROL-Y signal was received during reading,
the number of characters typed in before this signal is returned to you as the value of
FREAD. The carriage position is unchanged.

If you send another CONTROL-Y signal, it is ignored uniess a call to the RESETCONTROL intrin­
sic was issued at some point prior to the signal.

If you send a CONTROL-Y signal while MPE system code is executing on your behalf, MPE searches
back to the last user stack marker and sets bit 0 of relative Pin that marker. No interrupt will occur
until an EXIT instruction is executed through the above marker. The trap is recognized, a marker is
built, and control is transferred to the trap procedure. When the trap procedure is invoked, the
condition of the stack is as follows:

USER PROGRAM
DATA

0-3

2 RELATiVE P I l 0-

USER STACK MARKER
0-1

o ____..,

a+ 1 i l n I
s _.....,..

CONTROL-Y
TRAP PROCEDURE

DATA

When the first instruction in the trap procedure is executed, the Q register points to the user stack
marker and the S register points to Q+2. The trap procedure should not write data in the rightmost
byte of the word Q+l, because this word contains the number of words in the stack, plus the stack
marker. This value will be deleted from the stack upon exit from the procedure. This value is non­
zero when parameters to a system procedure (which was executing when the CONTROL-Y occurred)
have been left on the stack. On return, the trap procedure must know the value contained in Q + 1
and pass it to the N parameter of the EXIT N instruction. The EXIT N instruction must be placed
on the stack as follows:

TOS:=%31400+ N;

The Exit N instruction then is executed by an XEQ instruction.

4-39

NOTE

If you are a user with the Privileged Mode Capability, you
should be aware of the following:

1. If your interrupted code was executing in privileged
mode, your trap procedure also must be executed in
privileged mode, and therefore must have privileged
mode capability.

2. When your process is executing in privileged mode, and
a CONTROL-Y signal invokes a trap procedure, the trap
procedure is entered with the same DB register setting in
effect when the signal was received. Thus, if the DB
register is pointing to an extra data segment rather than
the user stack when a CONTROL-Y signal is received, it
will continue to point to that extra data segment when
the trap procedure is entered.

Figure 4-12 shows a program containing a CONTROL-Y trap procedure. The statements

LOOP:
CNTR:=CNTR+lD;
IF CNTR < 3000000D THEN GO LOOP;

increment a double-word counter by lD each time the loop is executed. When the counter reaches
the value 3000000D, program execution terminates.

The CONTROL-Y trap procedure, beginning with the statement

PROCEDURE CONTROL Y;

assumes control whenever CONTROL-Y is entered from the terminal. The trap procedure executes,
then control passes back to the loop.

The statement

INTEGER SDEC = Q + 1;

equivalences SDEC to Q + 1. The rightmost byte of Q + 1 contains the number of words on the
stack to be deleted when the exit instruction executes. This value is passed to EXIT as the N
parameter.

The counter value is converted to an ASCII string by calling the DASCH intrinsic and the PRINT
intrinsic call displays this ASCII string on the terminal.

The RESETCONTROL intrinsic call enables the CONTROL-Y trap. To take effect, this intrinsic
must be called from within the trap procedure. An EXIT instruction must be built and the
statement

TOS:=%31400 + SDEC;

4-40

PAGE: 0001 HF.WLETT•PACKARD 32100A.05.1 SPL/3000 MON, NOV 3, 1975, 10:42 AM

00001000 00000 0
00002000 00000 0
00003000 00000 1
00004000 00013 1
00005000 00020 1
00006000 00020 1
00007000 00020 1
00008000 00020 1
00009000 00020 1
00010000 00020 1
00011000 00020 1
00012000 00000 1
00013000 00000 2
00014000 oonoo 2
00015000 00000 2
00016000 00007 2
00017000 00013 2
00018000 00014 2
00019000 00016 2
00020000 00017 2
00021000 00000 1
00022000 00000 1
00023000 00000 1
00024000 00000 1
00025000 00004 1
00026000 00007 1
00027000 00012 1
00028000 00012 1
00029000 00023 1

SCONTROL USLINIT
BEGIN

AHRAY HEADINGCO:lOl:="CONTROL Y TFAP EXAMPLE";
ARRAY MSG(0:15)::"COUNTER CURFENTLY : ":
BYTE ARRAY HMSG(*)=MSG:
DOUBLE CNTR:=on:
INTEGEP DUMMY,LGTH:

INTRINSIC PRINT,XCONTRAP,QUJT,DASCII,RESETCONTROL:

<<END OF DECLARATIONS>>

PRINTCHEADING,11,0): <<PROGRAM ID>>
XCONTRAP(@CONTROLY,DllMMY): <<ARM CONTROL Y TRAP>>

T

00030000 00027 1 END.
PRIMARY DB STORAGE=%007:
NO. ERRORS=OOO:
PROCESSOR TIM~=o:oo:o2:

SECONDAPY DB STORAGE=%00033
NO. ~ARNINGS=OOO
ELAPSED TIME:o:oo:26

Figure 4-12. Using the XCONTRAP Intrinsic

accomplishes this, loading the octal value %31400 plus the value of SDEC (Q + 1) onto the top of
the stack. The statement

ASSEMBLE(XEQ O);

executes the statement on the top of the stack, which in this case is the EXIT instruction placed
there by the previous statement.

The CONTROL-Y trap is enabled by the statement

XCONTRAP(@CONTROL Y ,DUMMY);

The @CONTROL Y parameter informs the system that a procedure (CONTROL Y) is being pa~ed as
a parameter.

4-41

The results of executing the program are shown below:

:RUN CONTY

CCNTROL Y TRAP EXAMPLE
COUNTE:t CURRENTLY= 125153~ ~"-
COUNTER CURRENTLY = 1093423 ~

~-----...,/

CONTROL-Y

COUNTER CURRENTLY = 1860957 ENTERED FROM TERMINAL ------COUNT2R C~R~ENTLY = 2700949

END OF ?R 08 RA!'<'.

TIME AND DATE INTRINSICS

You can programmatically request the return of system timer information with the TIMER intrinsic;
the time of day with the CLOCK intrinsic; the calendar date with the CALENDAR intrinsic; and
the duration, in milliseconds, that a process has been running with the PROCTIME intrinsic.

OBTAINING SYSTEM TIMER INFORMATION

A 31-bit logical quantity representing the current system timer count can be returned to your
program with the TIMER intrinsic. This information can be used in routines that generate random
numbers, or in measuring the real time elapsed between two events. The resolution of the system
timer is one millisecond, thus readings taken within a one-millisecond period may be identical.

This quantity is reset to zero on 24 day intervals at 12 o'clock midnight. Detection and correction
of this case between two calls to TIMER (less than 24 days apart) for computing an elapsed time
interval can be done as follows:

If, when subtracting a current TIMER count from a previous count, the result is negative,
add 2,073,600,000 (the number of milliseconds in 24 days) to the result.

Figure 4-13 contains a program that uses the system timer bit count to generate a random octal
number. This number then is converted to one of the ASCII characters ;, <, =, >,?,@,or A
through Z.

The statement

CBUF(5):=INTEGER(TIMER) .(11 :5)+%73;

calls the TIMER intrinsic to obtain the timer count. A double-word quantity is returned as follows:

BITS 0 WORD2 15 0 WORD 1 15

I
t
I

NOT USED

4-42

PAGE !'1001 HEWLETT-PAC~ARO 32100A.05.l SPL/3000 TJE, NOV 2St 197St 3:53 PM

000011'100

0000?1'100
00003000
000041'100

oooosnoo
OOOOti'lOO
00007000
OOOORl'I011
000041'l00
00fll01'10(1
0 0 0 l l t''I() 0
ooounoo
00013noo
0001'1-<Hin
00015000
0001£,00()
00017000

OOf·JHl'lOO
00014000
OOOi?OnOn
OOO?lOOn
OOO?Zl'IOO
on u 2 -~ r1 no
ono?t+nno
OOO?Snoo
OoO?nnoo
Q00?.7fl00

0002bOIJ0
ono~gnoo

0 00 jf) t) 0 4)

on o 31 no i)

000J2no0
ono:i1non
00 0340 (JO
0003501)()
0003fd)(j(l

000371)00
0003H'1()t1

001139'100
00040f'l0()
0004101)(1
o o o 4 2 no\)
0004j(){lf)

Ofl0441'1lJtl

00000 0
00000 0
00000 1
0 0 I) ()4 1

00005 1
o on oi:; 1
Q (I() 0 4 1
0001)4 l
00011)
1Hl 043 l
001l?I) l
0 0 'l1 l 1
n no?l
000?1
OOOi-'l
noo?l
ono21
on 021
00 021
oono7
rJOO 1?
0002~

noo?:i
Oll03?
00015
00015
()()041

()1)044

ooor,o
ll()()"iJ

OOOh?
n OOh l
1)11072
00101 1
0()102 1
on 1 o? ?
00110?
n0vo ?
no120 l
() 0 126 1
1)01?,h 2
00134 2
,, (l J 41 ?
0()141 1
n /"\ 1 L. :t
\) \} .1 ··' J

000'4-fd"IOO un1c,1
00047t100 OOlf:i?
o n o 4 R n r)'·, o n 1 7 1
0004911()ij 00177

onosonuo 00202
onos1non 00202
OOUC,cOUD 0U207
onnc,3non 00212
onoc.;4non no?:::>n
000551'100 00??4

$CONTROL USLI~IT

AHiIN
BYTE ARRAY INNAME(O:S>:= 11 INPUT 11 ;

RYT E ~R~A Y OUT NA MF ((): 6) : =11 0UTIJ JT 11;

I~TEGER IN,nUT,LGTH,DUMMY,TlME,TIMEOUT:=lO•
ARRAY rlUFR(o:3)::11fYPE x11,o;
HYTE ARRAY C~Ur(*l=RUFR;

ARRAY INSTR11CTIONS(0:34) :: 11 REACTION TIMER: "t%6412t
1'1 Y PE_ THE t-<EQUESTH> CHARAC TE~ AS QUICKLY AS YOU CAN• ";

A'rH~AY MSf;(0:24l :::11fRY AGAIN? (Y/l\J)"•"~RONG CHARACTER ... ,
t\',64l?• 11 YUIJ 9 RE. TOO SL0t.i! 11 ;

ARRAY RFSf.JON~t::<o:1ni:= 11 Rt.ACTIO'll TIME: MILLISECONDS•q
HYTt A~4AY CHFSP(*l=RESPONSE;

<<FNIJ OF flECLAHAfJOllJS>>

LOOP:

IN: =FOPF- N (l 1\INAMEt q::,4:, l ;
IF < T Hf I'll IJlJ IT (l) ;
'1UT:=FOPEN<llUTl'IAMf:•%4l4t'All l;
t F < T HF l\j •h ! Ii (?) ;

F •;.:h' I H:. (OUT; I NS mu CT I Qi\lS. 3". 0) ;
I F < T ri F i'li lHJ IT (3 l ;

<<$STDIN>>
<<CHECK FOR ERROR>>
<<$STDLIST>>
<<CHECK FOR ERROR>>
<<USER DIRECTIONS>>
<<CHECK FOR ERROR>>

FCONTkUL(lN•~l,DUMMYJ; <<ENABLE TIMER READ>>
IF < THE~ WJ1T14l; <<CHECK FUR ERROR>>
FCONTRUL(l~t4eTIMEOUTl; <<ENABLE TIMEOUT>>
I~ < THfN UUIT<~); <<CHECK FOR ERROR>>

\llflJ''""1'9•lllJ1fll1~r;-~~;

t'lifXT:

LGTH:=FPEAO(lN,RUFR(JJ,-1); <<READ CHARACTER>>
IF- < T~rN <<TIMEOUT OCCURRED>>

HUlIN
FWRITE(UUT,MSG(l6J,9tOli <<TOO SLOW MESSAGE>>
IF < THEN QllIT!7l F.LSf GO NEXT; «CHECK FOR ERROR»

E f\l[);
IF CH:.IF (~l <>CHIJF (6) THEN

~tC?IN

FWRITE COUT,MSG(Al ,H,0);
I F < TH F N fJU t T (M l t_ LS E

E:.NO:
;'1()Vf. kt.SPUl\jSt (7 l : =11

FCCL\JTl-d)L (1Nt2;:>.TIMEl;

r,o NEXT;

.. :
IF <>THE~ YU!T(9);
ASCIICflM~*l0,10tCRESP<l5ll;
FwMITF!OUT,HESPONSE.11.oi;
IF < THfN UUITClOH

F~~llf(OUT,MSG•8•%320)i

IF< TrH:N OUlT(ll);
FRF.AD<IN.HUFR(3l ,-ll;
IF< THFN UUIT(l2J;
IF C~llF (hl =11 '1' 11 THEN GO

<<INCORRECT CHARACTER>>

<<WRONG CHARACTER ~ESSAGE>>
<<CHECK FOH ERROR>>

<<RESET RESPONSE TIME>>
<<READ INPUT TIME>>
<<CHECK FOH ERROR>>
<<CONVERT TIME>>
<<REACTION TIME>>
<<CHECK FOR ERROR>>

<<CONTINUE TEST?'.»
<<CHECK FOR ERROR>>
<<GET Y/N ANSWER>>
<<CHECK FOR ERROR>>
<<Y-CONTINUE TEST>>

000t;60()(l 00232 El\l1).

PMIM~MY nH STORAG~=%016;

r-.JO. F"i~>JOPS::: ri fl 0;
PROCFS~0R TI~F=o:oo:o3;

'::ifCONnARY UH STORAGE=%0n130
NO. WAl·H~H~GS=nnri

ELAPSfD f!ME=n:ou:10

Figure 4-13. Using the TIMER Intrinsic

4-43

The INTEGER function strips word 2 from this quantity, leaving a 16-bit integer value. The low­
order five bits of course change value most rapidly, and these bits are used to obtain a decimal
number from 0 to 32.

The octal codes for ASCII characters ;, <, =, >, ? , @,and A through Z range from 000073 to
000132, or decimal values 58 through 90 (a difference of 32 decimal). Thus, by adding %73 to the
value obtained from the low-order five bits of the system timer information, one of the above
ASCII characters is generated by the foregoing statement and assigned to the 6th (CBUF(5))
position of byte array CBUF. The FWRITE displays this character, and the string "TYPE" on the
terminal (CBUF and BUFR have been equivalenced, see statements 6 and 7).

OBTAINING THE CURRENT TIME

The CLOCK intrinsic returns the actual time (wall time) as a double word. The first word contains
the hour of the day and the minute of the hour, the second word contains seconds and tenths of
seconds, as follows:

BITS 0

HOUR OF DAY

SECONDS

7 8 15

MINUTE OF HOUR WORD 1

TENTHS OF SECONDS WORD 2

In the following intrinsic call, the above information would be returned to the double-word iden­
tifier TIME.

TIME:=CLOCK;

OBTAINING THE CALENDAR DATE

The CALENDAR intrinsic returns a logical value representing the year and day as follows:

BITS 0 6 7 15

I YEAR OF CENTURY I DAY OF YEAR

In the following intrinsic call, the day and year information would be returned to the logical iden­
tifier DATE.

DATE:=CALENDAR;

OBTAINING PROCESS RUN TIME (USE OF THE CENTRAL PROCESSOR)

The PROCTIME intrinsic returns a double integer value representing the duration, in milliseconds,
that a process has been running (CPU time).

In the intrinsic call shown below, the process run time would be returned to TIME.

TIME:= PROCTIME ;

4-44

FORMATTING CALENDAR DATE AND TIME INFORMATION

You can format the calendar date with the FMTCALENDAR intrinsic, the time of day with the
FMTCLOCK intrinsic, and the calendar date and time of day with the FMTDATE intrinsic. These
intrinsics use the information returned by the CALENDAR and CLOCK intrinsics.

The simple program shown in Figure 4-14 illustrates the use of these intrinsics.

$CONTROL USLINIT
BEGIN

END.

BYTE ARRAY FMTDATE(0116)J
BYTE ARRAY FMTTIMEC017)J
BYTE ARRAY DATETIMEC0:26)J

ARRAY FMt•DATE(•)sFMTDATEJ
ARRAY FMT'TIMEC•)aFMTTIMEJ
ARRAY DAtE•TIMEC•)•DATETIMEJ

LOGICAL DATEJ

DOUBLE TIMEJ

INTRINSIC CALENDAR,CLOCK,FMTCALENDARiFMTCLOCK,FMTDATE,PRINTJ

DATE:=CALENDA~J
TIME:=CLOCKJ

FMTCALENDAR(DATE,FMDATE)J
PRINTCFMT'DATEr•17r\60)J

FMTCLOCKCTIME,FMTTIME)s
PRINTCFMt•TtME,•8,,60)S

FMTDATE(OATE.TIME,DATETIME)J
PRINTCDATE.TIME,•27,0)J

Figure 4-14. FMTCALENDAR, FMTCLOCK, and FMTDATE Intrinsics Example

4-45

INTERPROCESS COMMUNICATION

You can arrange for two processes belonging to the same job/session to communicate with each
other through a job control word (JCW). This word is used by systems programmers to enable a
subsystem process to return information to the command executor that initiated that process. Such
a communication mechanism is used by the command executors for :RUN and various subsystem
commands. However, you may find this control word helpful in other applications.

The SET JCW intrinsic is used to set the bits in the job control word (JCW). A SET JCW intrinsic call
could be

SETJCW(WORD);

where WORD is a 16-bit logical word whose bits are set by you. If you set bit 0 to 1, the system dis­
plays the following message when your program terminates, either normally or due to an error:

PROGRAM TERMINATED IN AN ERROR STATE (CIERR 976)

Bits 1through15 may be set to any pattern.

NOTE

In batch mode, the job is terminated unless the :CONTINUE
command is used. If you have a JCW of exactly %14000,
(bits 0 and 1 only), the CIERR 976 message is replaced by
CIERR 989, PROGRAM ABORTED PER USER REQUEST.
See the MPE Commands Reference Manual for a discussion
of :CONTINUE.

The job control word (JCW) can be read by a process with the GETJCW intrinsic. The form of the
GET JCW intrinsic call is

JCW:=GETJCW;

The job control word would be returned to JCW in the above intrinsic call.

As an example, consider a job where two processes pass information to each other through the job
control word. In one process, you transmit the contents of the word PROCLNK to the job control
word. Process A sets the job control word to PROCLNK as follows:

SETJCW(PROCLNK);

When process B is executed, it obtains this current job control word through the GETJCW intrinsic.
In this case, the contents of the job control word are returned to the word STORELNK.

STORELNK:=GETJCW;

4-46

USER-DEFINED JOB CONTROL WORDS

MPE allows you to establish and manipulate job control words including the system-defined job
control word "JCW." This capability overcomes a disadvantage of using the system-defined JCW,
which is that because MPE uses the JCW for status information, you cannot be sure that MPE will
not modify it, thus destroying whatever information you may wish to pass.

A user-defined JCW is a 16-bit logical word which resides in an MPE managed table. This fable,
which also holds the system-defined JCW, is shared by all processes in a job, thus any process of a
job can access any JCW in the table.

The name of a user-defined JCW must start with a letter and be between 1 and 255 characters long.

A user-defined JCW is established with the PUTJCW intrinsic. This intrinsic scans the JCW table for
a given JCW. If found, the JCW's value is updated to the value passed by the PUT JCW intrinsic call.
If a JCW of that time is not found, the name is added to the table and assigned the value passed
with the name. For example, the intrinsic call

PUTJCW(JCWNAME,JCWVALUE,STATUS);

would search the JCW table for a name which matches the name contained in JCWNAME (a byte
array). If the name exists, its value is updated to the vaiue contained in JCWVALUE. If a name
matching that contained in JCWN AME is not found, the name is added to the JCW table and
assigned the value contained in JCWVALUE.

The STATUS parameter indicates the status of the intrinsic call and returns an integer value to
indicate this status as follows:

0 - Successful execution.

1 - Error. JCWNAME is longer than 255 characters.

2 - Error. JCWNAME does not start with a letter.

3 - Error. The JCW table is out of space.

The FINDJCW intrinsic is used to scan the JCW table for a given JCW name and return its value.

Thus, the intrinsic call

FINDJCW(JCWNAME,JCWVALUE,STATUS);

would search the JCW table for a JCW of the same name as that contained in JCWNAME. If a JCW
of the same name is found, its current value is returned in JCWVALUE. If a JCW of the same name
is not found, an error is returned in STATUS.

The STATUS parameter indicates the status of the intrinsic call and returns an integer value indicat­
ing this status as follows:

0 - Successful execution.

1 - Error. JCWNAME is longer than 255 characters.

2 - Error. JCWNAME does not start with a letter.

3 - Error. The JCW named in JCWNAME does not exist.
4-47

MPE MESSAGE SYSTEM

The MPE message system consists of a message catalog (CATALOG.PUB.SYS), the Help subsystem
catalog (CICAT, containing descriptions of all MPE commands), any number of user message cata­
logs, a program (MAKECAT) for building message catalogs, and an intrinsic (GENMESSAGE) used
to insert parameters in messages in a catalog.

MESSAGE CATALOG

A message catalog must be a standard editor-type file containing sets of messages. That is, a num­
bered file which contains 80 byte records in a fixed record format. The sets serve to break a catalog
into manageable portions. After a message file is created, the MAKECAT program is used to build a
catalog that is readable by the message system. This catalog file can still be texted into the editor,
but it now contains a directory (written as a user label by MAKECAT).

Messages in the catalog can be of any length and can contain up to five parameters (parameters are
indicated in a message by the symbol !). Continuation of a message is indicated by"%" or"&" at
the end of a line. The "%" symbol indicates that the message is continued and that a carriage return,
line feed will be issued to the terminal. The"&" symbol indicates that the message is continued on
the same line with no carriage return, line feed. The GENMESSAGE intrinsic ignores all blanks
between the last non-blank character of a message and the continuation character. This allows
free-formatting of the continuation character.

Message sets are indicated by "$SET n" starting in column 1 (the rest of the line is treated as a
comment). Maximum value for n is 62. Comments can be inserted in the catalog by placing "$"in
column 1 of a line. Message numbers are positive integers, need not be contiguous, but must be in
ascending order. After processing by the program MAKECAT, the catalog file contains records of
80 bytes, blocked 16, in 32 extents. (The system message catalog is only one extent, however.)

The format of the message catalog is as follows:

4-48

$SET 1 SYSTEM MESSAGES

1 LDEV # ! IN USE BY FILE SYSTEM

2 LDEV #!IN USE BY DIAGNOSTICS

3 LDEV IN USE, DOWN PENDING

5 IS"!" ON LDEV#! (Y/N)?

$MESSAGE 35 IS TWO LINES LONG, A PARAMETER STARTS THE

$FIRST LINE AND THE SECOND LINE IS "HP32002"

35 !%
HP32002B.00. !

276 LDEV #FOR"!" ON! (NUM) !

$
$SET 2 CIERROR MESSAGES

82 STREAM FACILITY NOT ENABLED: SEE OPERATOR. (CIERR 82)
200 MORE THAN 30 PARAMETERS TO BUILD COMMAND. (CIERR 200)

204 FILE COMMAND REQUIRES AT LEAST TWO PARAMETERS, INCLUDING THE%

FORMAL NAME OF THE FILE. (CIERR 204)

MAKECATPROGRAM

The program MAKECAT.PUB.SYS is used to build message catalogs (and Help catalogs). The pro­
gram's input file has the formal designator INPUT. The program has the following entry points:

No entry point

BUILD

DIR

HELP

Reads from input file and builds a temporary file (formal designator
CATALOG). Also renames any old temporary CATALOG, CATnn,
using an archival numbering scheme (i.e., CATl, CAT2, etc.).

(Must log on under MANAGER.SYS to use this entry point.) Reads
from input file, builds the system message catalog (formal designator
CATALOG), and installs the message system. Existing catalog is re­
named CATnn according to the same scheme as for no entry point
(above). Installation of the message system means moving the directory
contained in the user label of the catalog into a data segment. The Data
Segment Table (DST) number and the disc address of CATALOG are
placed in the system global area. The message system may be installed
while the system is running.

(Must log on under MANAGER.SYS to use this entry point.) Installs
the system message catalog (does not build a new one). Opens input
file, moves the directory in the CATALOG into a data segment, and
places the DST number and disc address of CATALOG in the system
global area. This entry point may be used when the message system
seems to be malfunctioning, but the catalog is intact. (For example,
MPE is issuing "MISSING MSG SET=mm. MSG=nn" at terminals and
the system console.) This may be done while the system is running.

(Must have System Manager of System Supervisor capability to use this
entry point.) Used to build the Help catalog. Reads input file and builds
a Help catalog (formal designator HELPCAT).

EX.AlVIPLES. To use MAKECAT to build your own message catalog, enter:

:FILE INPUT=CAT15
:RUN MAKECAT.PUB.SYS
**VALID MESSAGE CATALOG (printed if no errors in catalog CAT15)
:SAVE CATALOG

4-49

To use MAKE CAT to modify the system message catalog:

1. Text CATALOG.PUB.SYS into the Editor.

2. Make the desired changes.

3. Keep the file under a new name and exit the Editor.

4. Log on as MANAGER.SYS, and enter:

:FILE INPUT=catname.group.account
:RUN MAKECAT,BUILD
**NEW CATALOG INSTALLED

To reinstall the message catalog if MPE is printing "MISSING MSG. SET=mm. MSG=nn," enter:

:HELLO MANAGER.SYS
:FILE INPUT= CATALOG
:RUN MAKECAT,DIR
**NEW CATALOG INSTALLED

To build a Help catalog for the command interpreter, enter:

::HELLO MANAGER.SYS
:PURGE CICAT
: FILE INPUT= catalog.group.account
:RUN MAKECAT,HELP
END OF PROGRAM

:RENAME HELPCAT, CICAT

USING THE GENMESSAGE INTRINSIC TO INSERT PARAMETERS IN MESSAGES

The GENMESSAGE intrinsic can be used to access the MPE message system. GENMESSAGE is
called with a message number from a catalog as a parameter. The message system fetches the mes­
sage from a message catalog, inserts parameters, then routes the message to a file or returns the
message in a buffer to the calling program.

In order to use the message catalog, the program must first open the message catalog, then call
GENMESSAGE with the file number, message set number, and message number. The file must be
opened with the aoptions nobuf and multi-record access.

NOTE

The file must be opened with foptions old, permanent,
ASCII (foptions 5), and aoptions nobuf and multi-record
access (aoptions %420).

Parameters may be inserted into the message from the catalog. The parameters are passed to the
message with the parml, parm2, parm3, parm4, and parm5 parameters in the GENMESSAGE
intrinsic call and are inserted in the message wherever a "!" is found. Parameters are inserted in the
following order: parml substitutes for the leftmost"!" in the message, parm2 for the next leftmost,
and so forth. If parm(n) is present, parm(n-1) must be present (for example, you cannot specify
pann3 unless parml and parm2 are specified).

4-50

Figure 4-15 contains a simple program that inserts the value 95 into message number 11 in message
set 1 in the message catalog CATALOG .PUB.SYS. The complete message then is displayed on the
terminal. Note that the file CATALOG.PUB.SYS is equated to CATALOG with a :FILE command,
then the name CATALOG is used in the FOPEN call (passed to FOPEN in byte array BUFF). Note
also that the file is opened with aoptions nobuf and multi-record access (aoptions %420). The
message set (1) and message number (11) are included as parameters in the GENMESSAGE c~n.
The parameter parmask is set to %10000 and parml (NUMBER) has the value 95. The complete
message is returned in BUFF, which is then printed on the terminal with the PRINT intrinsic.

:SPLPREP T~ST,MSGTFST

PAGE~ 0001 PPJ2100A.06.4J [4~] (C} HEWLETT-~ACKARD COMPANY 1976

00001000
00002000
00003000
00004000
00005000
OOOObOOO
00007000
00000000
00009000
00010000

00000 0
OQOOO 0
00(100 1
00000 1
00000 1
00000 1
00(100 1
00000 1
00000 1
000(;0
"'' n r.n vvvvv

$CONTROL USLINIT
Bfl.IN

BYTE AR~AY BUff(0:255);
ARRAY OUTBUFFC*l=BUFf:

INTEGER FILENUM,MSGLEN,NUMBER:=95;

INTRINSIC FOPEN,PRINTFILEINFO,Gf.NMESSAGE,PRINTJ

MOVE BUfF:~"CATALOG ":
00012000 00016 1
00013000 00026 1
00014000 00031 '
00015000 00031 1
00016000 Oo1i45 1
oov11000 00045 1
00018000 00051 1
00019000 00051 1 E~D~

FILFNUM:=FOPENCBUFFrS1%420l:
IF <> THEN PRINTFlLEINFO(FILENVM):

MSGLEN::GENMESSAGECFILENUM1l111,BUFF,,\10000,NUMBER)J

PRJNT(OUTBUFF,•MSGLEN,O):

PRIMARY DB STORAGE=%005:
NO. ERROF<S=OOOO:
PROCESSOR TIME~O:Oo:oo:

END o~- COMP I Lr:

END OF PREPT\~E

:SAVE MSGTEST

SECONDARY DB sTnRAGE=\00200
NO. WARN!NGS=OOOO
F.LAPSED TIME=O:oo:2q

:FILE CATALOG=CATALOG.PUH.SYS
:RUN MSGTEST

END OF PROGR.~._.

Figure 4-15. GENMESSAGE Intrinsic Example

4-51

l'Uillh DEVICE CHARACTERISTICS I v I

MPE intrinsics can be used to alter certain aspects of device operation. Before any of these intrinsics
can be issued against a device, however, the device file must be opened with the FOPEN intrinsic
(see Section II, page 2-71).

With the FCONTROL intrinsic, you can

• Change terminal speed. See page 5-10.
• Change input echo facility. See page 5-11.
• Enable and disable the system break function. See page 5-13.
• Enable and disable subsystem break requests. See page 5-14.
• Enable and disable parity checking. See page 5-14.
• Enable and disable tape-mode option. See page 5-15.
• Enable and disable the terminal timer. See page 5-15.
• Read the result from the terminal input timer. See page 5-18.
• Define line-termination characters for terminai input. See page 5-19.
• Control the operation of a primary reader /punch. See page 5-4.

In addition, you can programmatically read paper tapes not containing the X-OFF control character
with the PT APE intrinsic. See page 5-20.

DEVICE CHARACTERISTICS

PAPER TAPE READER

The paper tape reader driver is capable of reading tapes in either BINARY or ASCII format. The
mode is determined by the ASCII/BINARY bit in the {options parameter of the FOPEN intrinsic.
The default condition for this {option is ASCII; however, this default condition can be altered with
the FCONTROL intrinsic (see page 2-49).

BINARY MODE. In binary mode, the device will read the number of words/bytes requested
without regard to any special characters present on the tape. Tape leaders are skipped automatically
by the hardware. For example, whenever the roller is raised to load a new tape, the device sets an
internal flag which causes it to ignore all leadi.11.g null characters on the next read. After this first
read, the flag is reset. Thus, trailers and embedded nulls are as valid as any other characters. The full
8-bit character is read, and characters are packed two characters per word. There is no defined
end-of-record character in binary mode, so the read is terminated only when the word/byte count is
satisfied.
If a time-out occurs (for example, for a tape bind, broken tape, or an attempt to read beyond the
end of the tape), an error (CCL) is returned to the calling program.

ASCII MODE. fa ASCII mode, the following conditions apply by default:

• Bit 8 (parity bit) is set to zero.

5-1

• The carriage-return character {%15) is recognized as the end-of-record character. In other
words, data transfer stops when the word/byte count is satisfied or when the
end-of-record character is detected. {However, if word/byte count is satisfied before the
end-of-record character is found, the tape motion continues until end-of-record is
detected, with the extra characters being ignored.)

• Data characters are packed automatically with two characters per computer word.

The following characters are not transferred as data and result in the following action:

Carriage-return { %15)
Line-feed {%12)
X-ON {%21)
X-OFF {%23)
Rub-out {%177)
Control H {%10)
Control X {%30)

Control Y {%31)
Null(% 0)

End-of-record.
Ignored.
Ignored.
Ignored.
Ignored.
Previous character deleted from data buffer.
All data in current record are deleted. The tape
is advanced to the next record and the read is
restarted.
Ignored.
Consecutive nulls are counted to determine
end-of-tape.

• Any number of leading null characters are allowed. However, after the first non-zero
character in a record, 20 consecutive null characters are treated as the end-of-tape
condition and result in the following actions:

a. Tape motion is stopped.

b. Any characters already read are deleted.

c. The message

LDEV #nn NOT READY

is output to the system console. The operator should insert the next tape to be read
into the paper tape reader.

d. When the READY interrupt is detected, the READ request is restarted and
operation continues as before.

The entire sequence is invisible to the calling program, except for the delay required to change
tapes, so that multiple tapes may be read as if they were a single tape.

5-2

NOTE

There should always be at least one non-null character, such
as a line feed, before the TRAILER to allow it to be
distinguished from the LEADER.

All job control cards (i.e., :JOB, :DATA, :EOD, :EOJ, etc.) are recognized in the standard way to
allow batch input from paper tape.

PAPER TAPE PUNCH

The paper tape punch driver is capable of punching tapes in either BINARY or ASCII format. The
mode is determined by the ASCII/BINARY bit in the {options parameter of the FOPEN intrinsic.
The default condition of ASCII mode may be altered with the FCONTROL intrinsic.

BINARY MODE. In BINARY mode, all characters are punched exactly as they appear in the
buffer. No characters are deleted or added. Data characters are unpacked automatically, assuming
two characters per computer word. In other words, no end-of-record marks such as carriage return
are punched unless they are in the buffer. All bit patterns are considered valid and none have any
significance as far as the driver is concerned. If you want end-of-record marks on the tape, you must
provide them. Nate, however, that the paper tape reader driver also attaches no significance to the
end-of-record marks.

ASCII MODE. In ASCII mode, the following conditions apply by default:

• Trailing blank characters (%40) are not punched on the tape. This feature saves paper
tape on short records, and also speeds up the net transier rate for output and for input
when the tape is read.

• All other characters, including leading and embedded blanks, are transferred as data. No
special characters are recognized.

• A record termination sequence, consisting of X-OFF (%23), a carriage return (%15),.
followed by a line feed (%12), is appended to the end of each record.

• Data characters are unpacked automatically, assuming two characters per computer word.

CARD READER

The card reader is a unit record device. The data is read in ASCII mode; that is, two columns are
converted to ASCII and packed into the left and right byte of one word. If the read request
specifies 80 or more bytes, 80 bytes will be transmitted independent of the data on the card.

LINE PRINTER

The line printer is a print and space device (postspace). The prespace operation is simulated by
performing a print operation and then filling the line printer buffer. Note that a carriage control
code of %320 will append data to the current contents of the line printer buffer, whether prespace
or postspace is selected.

Table 5-1 describes the differences between the 5 subtypes of line printers.

The HP 2608/2610/2614 printers use a 6-bit space count that allows vertical spacing of up to 63
lines when carriage control codes of %200 to %277 are used.

5-3

The HP 2607 /2613/2617 /2617J/2618/2619 printers have only a 4-bit space count that imposes a
maximum vertical spacing of 15 lines at a time. MPE will simulate vertical spacing of more than 15
lines, when carriage control codes of %200 to %277 are used, by concatenating as many 15-line
spacings as necessary. The final spacing may consist of less than 15 lines.

Table 5-1. Line Printer Differences

SUBTYPE HP PRODUCT NO. SUPPRESS VFC CHAN NE LS
SPACE AVAILABLE**

0 2610 YES 1-8

0 2614 YES 1-8

1 2607 NO* 1-8

2 2613 YES 1-12

2 2617 YES 1-12

2 2618 YES 1-12

2 2619 YES 1-12

3 2617J YES 1-8

4 2608 YES*** 1-16

* A suppress space request (carriage control code= %53 or %200) will result in a single space without
automatic page eject.

** Carriage control codes %300 to %317 specify VFC channels 1-16 respectively. A request to skip to
a channel which is undefined for that subtype printer will result in a single space (with or without
automatic page eject, the same as for carriage control code % 10).

*** Data may be lost if spacing is suppressed on two or more consecutive requests.

To change the mode control settings (pre/post spacing and auto/no auto page eject) FWRITE is
used with carriage controls %100 - %103 and %400 - %403. If FWRITE is called with one of
these carriage controls and count=O (count =1 if imbedded control), then no physical I/0 will
occur; the only effect is changing the mode.

MAGNETIC TAPE

The magnetic tape unit reads and writes variable length records in packed binary mode. Each word
of data is represented by two tape characters. On read requests, the amount of data transferred is
the lesser of the read request length and the tape record length.

After write operations, when the end of tape reflective marker is detected, an EOT indication is
returned. A request initiated before the EOT marker was detected is completed but an EOT
indication is returned.

5-4

PRINTING READER/PUNCH

The HP 30119A printing reader/punch is supported in three ways by MPE:

1. As a card reader which, from a user program's viewpoint, behaves exactly like the
HP 30106A/30107 A card readers. This mode of operation prevails when the device is
opened by device class name and the device class access type is input only. In this mode,
default is select primary hopper and primary stacker.

2. As a card punch. This mode of operation prevails when the device is opened by device
class name and the device class access type is output only. In this mode, default is select
secondary hopper and secondary stacker.

3. As a printing reader/punch with two input hoppers and -two output stackers over which
the user has complete control. This mode of operation prevails when the device is opened
by logical device number or by device class name when the device class access type is
input/output.

5-5

In the mode of operation described under 3 above, you can control all aspects of the device with
the intrinsic call

FCONTROL(filenum,O,param);

where the bit settings of param signify the following:

Bits (0:6) Reserved for MPE. These bits should be set to zero.
Bit (6:1) 0. Select no inhibit feed on writes.

1. Select inhibit feed on writes.
Bit (7:1) 0. Select punch on writes.

1. Select no punch on writes.
Bit (8:1) 0. Select print on writes.

1. Select no print on writes.
Bit (9:1) 0. Select print and punch same data on writes.

1. Select print and punch separate data on writes.
Bit (10:1) 0. Select primary stacker.

1. Select secondary stacker.
Bit (11:1) 0. Select primary hopper.

1. Select secondary hopper.
Bits (12:4) 'Reserved for MPE. These bits should be set to zero.

When the device is opened for the first time, all of above parameter selections assume a default value
of zero. Subsequent opens, however, do not necessarily yield these default values; the parameter
selections for such opens assume the values established by previous opens.

The FREAD and FWRITE intrinsics perform the following actions for the printing reader/punch.

FREAD

FWRITE

5-6

a. Feeds a card from the hopper selected.
b. Moves card from wait station (if present) to stacker last selected

(no punch or print performed).
c. Reads data from (a) and transfers it to caller's buffer.
d. The mode (ASCII or column binary) of the read is specified on

each read/write.
e. The following parameter selections have no effect:

same/separate print data;
print/no print;
punch/no punch;
inhibit input feed.

a. Moves card from the wait station to the stacker last selected.
b. Prints and/or punches card (1) using data in caller's buffer.
c. If inhibit input feed has been selected, no card is fed from

hoppers. If inhibit feed has not been selected, card is fed from
hopper last selected; any data on that card is lost.

d. If separate print data has been selected, a double buffer is
expected and punch data is extracted from the first part, print
data from the second part. No print and no punch selections are
still honored. If no print or no punch is on, a single length buffer
suffices. If separate print data has not been selected, then the same
data is printed and punched, unless no print or no punch has been
selected.

e. The mode (ASCII or column binary) used will be the one last
selected.

f. If no print is selected, printing is inhibited.
g. If no punch is selected, punching is inhibited.

The FCONTROL param selections (bits 6 through 11) remain in effect until changed by another
FCONTROL intrinsic call.

LINE PRINTER AND TERMINAL CARRIAGE-CONTROL CODES

Line printer and terminal carriage-control codes are shown in table 5-2. All of the carriage-control
codes shown in table 5-2 may be used as the value of the param parameter of FCONTROL (when
controlcode = 1) regardless of whether the file is opened with CCTL or NOCCTL specified in the
FOPEN intrinsic. When the file is opened with CCTL, the carriage-control codes may be used in
either of the following ways via FWRITE:

1. As the value of the control parameter.
2. When control= 1, as the first byte of the target array.

Carriage-control codes greater than %403 cause an error return with no operation performed.

The default mode controls are post spacing with automatic page eject.

END-OF-FILE INDICATION

An end-of-file indication is returned by the card reader and tape drivers under conditions specified
by the initiators of read requests. The types of requests and the end-of-file classes are as follows:

Type

A

B

E

Ciass of end-of-file

All records that begin with a colon (:).

All records that contain, starting in the first byte, :EOD, :EOJ, :JOB
and :DATA (See Note.)

Hard ware-sensed end-of-file

NOTE

If the word count is less than 3 or the byte count is less than
6, then Type Breads are converted to Type A reads.

In utilizing the card/tape devices as files via the File System, the following types are assigned.

File Specified Type

$STD IN Type A.

$STDINX Type B.

Dev=CARD /TAPE Type B, if device accepts jobs or data.
Type E, if device does not accept jobs or data.

5-7

OCTAL CODE

%40

%53

%55

%60

%61

%2nn (nn is any
octal number
from 0 through
77)

*Note:

%300-%307

%300-%313

%300-%317

%300

%301

%302

%303

%304

%305

%306
%307

%310

%311

Table 5-2. Carriage-Control Directives

ASCII SYMBOL

"+"

''O"

''1 ''

CARRIAGE ACTION

Single space (with or without automatic page eject).

No space, return (next printing at column 1). Not valid on 2607
(results in single space without automatic page eject).

Triple space (with or without automatic page eject).*

Double space (with or without automatic page eject).*

Page eject (form feed). Selects VFC Channel 1. Ignored if:

Post-space mode: The current request has a transfer count of 0
and the previous request was an FOPEN or FCLOSE or an
FWR ITE which specified a carriage-control directive of %61.

Pre-space mode: Both the current request and the previous re­
quest have transfer counts of 0, and the current request and
previous request are any combination of FOPEN, F LCOSE or an
FWR ITE specifying a carriage-control directive of %61.

Space nn lines (no automatic page eject). %200 not valid for 2607
(results in single space without automatic page eject).

Select VFC Channel 1-8 (2607)

Select VFC Channel 1-12 (2613, 2617, 2618, 2619)

Select VFC Channel 1-16 (2608)

NOTE: Channel assignments shown below are the HP standard
defaults.

Skip to top of form (page eject).

Skip to bottom of form.

Single spacing with automatic page eject.

Skip to next odd line with automatic page eject.

Skip to next third line with automatic page eject.

Skip to next 1 /2 page.

Skip to next 1 /4 page.

Skip to next 1 /6 page.

Skip to bottom of form.

User option (2613/17/18/19), skip to one line before bottom of
form (2608)

Series 30/33/44: If these codes are selected with automatic page eject in effect (by default or following an Octal Code of %102 or
o/o402), the resulting skip is to a location absolute to the page. A code of %60 is replaced by %303 and %61 is replaced by %304. Thus
the resulting skip may be less than two or three I ines, respectively.

If automatic page eject is not in effect, a true double or triple space results, but the perforation between pages is not automatically
skipped.

Series ///Ill: If these codes are selected with automatic page eject in effect, %60 and %61 are replaced by two or three %302 codes,
respectively. This results in true double or triple spacing, and also skips the perforation.

If automatic page eject is not in effect, the behavior is the same as for Series 30/33/44.

5-8

Figure 2-3. Carriage-Control Directives

OCTAL CODE ASCII SYMBOL

%312

%313

%314

%315

%316

%317

%320

%2-%37
%41-%52
%54
%56-%57
%62-%77
%104-%177
%310-%317 (2607)
o/c.314-%317 (2613/17 /18/19)
%321-%377

%400 or %100

%401 or %101

%402 or %102

%403 or %103

CARRIAGE ACTION

User option (2613/17/18/19), skip to one iine before top of form
(2608)

User option (2613/17 /18/19), skip to top of form (2608)

Skip to next seventh line with automatic page eject.

Skip to next sixth line with automatic page eject.

Skip to next fifth line with automatic page eject.

Skip to next fourth line with automatic page eject.

No space, no return (next printing physically follows this).

Same as %40

Sets post-space movement option; this first prints, then spaces. If
previous option was pre-space movement, the driver outputs a
line with a skip to VFC Channel 3 to clear the buffer.

Sets pre-space movement option; this first spaces, then prints.

Sets single-space option, with automatic page eject (60 iines per

page).

Sets single-space option, without automatic page eject (66 lines

per page).

Any subsequent requests to the driver after an end-of-file condition is senses, are rejected with an
end-of-file indication.

When reading from an unlabeled tape file, a request encountering a tape mark responds with an end­
of-file indication but succeeding req1:1ests are allowed to continue reading data past the tape mark.
Under these conditions, it is the responsibility of the caller to protect against the occurrence of data
beyond an end-of-file and to prevent reading off the end of the reei.

TERMINALS

Terminals are supported by MPE through the terminal controller (each controller controls up to 16
terminals). The terminal controller supports 103A and 202A modems, and hardwired terminals.

TERMINAL TYPES. The terminals shown in Table 5-3 are supported by MPE. Terminals equipped
with the automatic linefeed feature (operator selectable) must be operated with this feature OFF.

5-9

SPECIAL KEYS. The following keys have special significance to MPE.

Key

sc

ye

BREAK

ESC:

ESC;

5-10

Meaning

Deletes (ignores) the line being typed and then reads any following characters.
The system responds with a triple exclamation point (! ! !) followed by a carriage­
retum and linefeed. (The superscript c denotes a control character. Thus, "Xe"
means "CONTROL-X. ")

Deletes the previous character. (To delete n characters, enter n HC's.) See note
below.

Places terminal in tape mode, allowing input from paper tape. When enabled, the
tape-mode option inhibits the implicit linefeed normally issued by MPE each
time a carriage return is entered. The tape-mode option also inhibits responses to
He and xc entries. Thus, when xc is received and tape mode is in effect, no
exclamation points (! ! !) are sent to the terminal. If used after gc, Qc also
resumes write operation during output (cancels Sc).

Indicates the beginning of a block mode read and starts a special block mode
timer. If the read doesn't complete successfully within the timer period, (ap­
proximately twice the expected read time determined from line speed and
number of characters to read plus thirty seconds), the read is returned with an
FSERR 27. Normal block mode transfers proceed as follows: The computer
sends DCl to the terminal to initiate a read. If the user has pressed ENTER for a
block mode read, the terminal then sends DC2 (Re) to the computer to indi­
cate a block mode read; the computer sends another DCl to the terminal to
initiate the transfer; the terminal then sends the data to the computer.

NOTE: Re has special significance only for termtypes which support block
mode.

Suspends the write operation during output.

If the terminal is not in tape mode, ye requests subsystem break (terminating
program or command execution). If the terminal is in tape mode, ye returns it
to the keyboard mode.

Requests a system break.

Places the terminal in the echo-on mode so that characters input are echoed on
the terminal by MPE.

Places the terminal in echo-off mode so that characters input are not echoed on
the terminal by MPE.

Key Mea!'ing

LINEFEED For any terminal with a linefeed entry, the log-on user may strike this key and a
carriage return will be echoed. The linefeed character is not transmitted to the
input buffer. This mechanism permits multiple lines to be entered in response to
a single read request (for example, the length of a read request from a terminal is
not constrained by the carriage or line width).

The defined control characters Xe, He, Qc, Sc, and Y c are recognized even when following an ESC
key entry. However, entry of ESC followed by any other character (other than one of these control
characters, a colon, or a semicolon) is read as a 2-character string in the user's input stream.

TERMINAL
TYPE

0

Table 5-3. Terminals Supported by MPE

DESCRIPTION

HP 27498 (ASR-33 EIA compatible) Terminal (10 characters per second (cps)).

ASR-37 Teleprinter Terminal with Paper Tape ReaderiPunch (10 cpsj.

2 ASR-35 El A-compatible Terminal (10 cps).

3 Execuport 300 Data Communications Transceiver Terminal (10/15/30 cps).

4 HP 2600A or Datapoint 3300 Keyboard Display Terminal (10/15/30/60/120/240 cps).

5 Memorex 1240 Communications Terminal (10/15/30/60 cps).

6 HP 2762A/B (General Electric Terminet 300 or 1200), or Data Communications Terminal,
Model B (10/15/30/120 cps) with Paper Tape Reader/Punch, Option 2.

9 HP 2615A Terminal (Beehive MiniBee) (10/15/30/60/120/240 cps).

10 HP 2640A/B, HP 2641A, HP 2644A, or HP 2645A Character Mode or full program control of
block mode transmission (10-240 cps).

11 HP 2640A/B, HP 2641 A, HP 2644A, or HP 2645A. Allows user to use block mode without
program control of block mode transmission. Requires user to position cursor before pressing
ENTER. Recommended for speeds exceeding 30 cps when you expect to S\."!itch between
character mode and block/line mode. May not be used in block/page mode. (10-240 cps.)

12 HP 2645K Katakana/Roman Data Terminal.

13 Message switching network or other computer.

14 Multi point Terminal.

15 HP 2635A Printing Terminal. 8-bit protocol (for second character set).

16 HP 2635A Printing Terminal. 7-bit protocol (standard character set).

5-11

NOTE

The line correction mechanism (He) works in the following
ways for all terminals including the system console:

• CRT Terminals
All currently supported CRT terminals can physically
backspace the cursor; therefore, He causes the cursor to
be backspaced one position, leaving the cursor posi­
tioned over the character to be replaced. The physical
backspacing of the cursor does not erase the character
from the screen, but the character has been deleted
from MPE's internal buffer.

• Hardcopy Terminals
a. Terminals which have physical backspace

capability:
He causes a physical backspace to occur. In
addition, a line feed is performed unless the
previous character also was a He. The result is
that you begin typing beneath the first character
to be replaced.

b. Terminals with no physical backspace capability:
No backspacing takes place. Each He echoes a
backslash (\) unless in tape mode.

CHANGING TERMINAL CHARACTERISTICS. Certain aspects of terminal operation can be
changed with the FSETMODE, FCONTROL, and PT APE intrinsics. Before these intrinsics can be
used in a program to change terminal characteristics, however, the terminal/file must be opened
with the FOPEN intrinsic.

Changing Terminal Speed. MPE supports terminals that run at speeds ranging from 10 to 240
characters per second (cps). You can programmatically change these speeds with the FCONTROL
intrinsic. This capability allows a user running a mark sense card reader coupled to a terminal to
operate the two devices at different speeds (for example, the card reader at 240 cps for input and
the terminal at 10 cps for output). The FCONTROL intrinsic is not valid for terminals that operate
at only one speed.

The format for this application of the FCONTROL intrinsic is

IV IV L
FCONTROL(filenum,contro/code,speed);

The parameters are

filenum

5-12

integer by value (required)
A word identifier supplying the file number of the terminal for which
the speed is to be changed.

controlcode

speed

The condition codes are

CCE

CCG

CCL

integer by value (required)

The decimal integer 10 to change the input speed or 11 to change the
output speed.

logical (required)

A word identifier that specifies the new speed desired: 10, 14, 15, 30,
60, 120, 240, 480, or 960, cps. When the FCONTROL intrinsic is exe­
cuted, the previous input or output speed is returned to the calling
process through the speed parameter.

Request granted.

Not returned by this application of FCONTROL.

Request denied. The process does not ow~ the logical device, or this
device is not a terminal, or the speed entered is not acceptable.

As an example, to change the current input speed of the terminal identified by the file number
stored in the word TERMFN from 60 to 120 cps, the following call could be used. The word
SPEED contaLqs the value 120.

FCONTROL(TERMFN ,10,SPEED);

After the intrinsic is executed, the word SPEED contains the integer 60 (the previous speed).

Changing Input Echo Facility= You can programmatically determine whether MPE transmits
(echoes) input from the terminal keyboard back to the terminal printer by calling the FCONTROL
intrinsic to turn the echo facility on or off.

When the echo facility is on, input read from the terminal is echoed to the terminal's printer by
MPE. If the terminal is operating in full-duplex mode, the echoed information appears as normal
printed lines. If the terminal is in half-duplex mode, however, the echoed printing is illegible - as
you enter input on such terminals, it is simultaneously printed by the terminal itself and
subsequently overwritten by the echoed information. Where a terminal can operate in either full- or
rialf-duplex mode, the mode is s€1€cted by a S\vitch on the terminal. When you log on; all terminals
are assumed to have the echo facility on.

When the echo facility is off, input read from the terminal is not echoed to the terminal's printer by
MPE. If the terminal is operating in fuii-dupiex mode, no printing appears. If the terminal is in
half-duplex mode, the input is copied by the terminal itself, and appears as normal, printed lines.
Bear in mind that the only way printing can be suppressed is with the echo facility off and the
terminal in full-duplex mode, as illustrated in figure 5-1.

In addition to the FCONTROL intrinsic, the echo facility also can be switched on and off by
entering the characters:

ESC: io turn the echo facility on.
ESC; to turn the echo facility off.

5-13

MPE

TERMINAL

PRINTED
OUTPUT

I­
::>
c..
2

ECHO
ON

0
:c
(.)
w

PRINT LINE

PRINTING

I­
::>
c..
2

ECHO
ON

0
:c
(.)
w

HALF-DUPLEX

GARBAGE

I­
::>
c..
2

ECHO
OFF

FULL-DUPLEX

NO PRINTING

Figure 5-1. Echo Facility vs Duplex Mode

The format for this application of the FCONTROL intrinsic is

IV IV L
FCONTROL(filenum,contro/code,last);

The parameters are

filenum integer by value (required)

I­
::>
c..
2

PRINT LINE

PRINTING

A word identifier supplying the file number of the terminal.

5-14

controlcode

last

The condition codes are

CCE

CCG

CCL

integer by value (required)
The integer 12 to turn the echo facility on, or 13 to turn it off.

logical (required)
A word identifier to which the previous echo facility is returned, where

0 =echo on
1 =echo off.

Request granted.

Not returned by this application of FCONTROL.

Request denied because the file number specified did not belong to this
process or this device is not a terminal.

As an example, to turn the echo facility off, the following intrinsic call could be used:

FCONTROL(TERMFN,13,LAST);

After the intrfr1sic is executed, the word L.A .. ST contai...11s the value 0 or 1 to reflect the previorn~ echo
facility status.

Enabling and Disabling System Break Function. You can pro grammatically suspend or enable a
terminal's ability to react to a system break request with the FCONTROL intrinsic. System break
requests are initialized by pressing the BREAK key or by calling the CAUSEBREAK intrinsic.

The format for this application of the FCONTRO L intrinsic is

IV IV L
FCONTROL(filenum,controlcode,anyinfo);

The parameters are

filenum

controlcode

any info

The condition codes are

CCE

integer by value (required)
A word identifier supplying the file mnnber of the terminal.

integer by value (required)
The integer 15 to enable the break function, or 14 to disable the break
function.

logical (required)
Any variable or word identifier. This parameter is needed by
FCONTROL to satisfy the internal requirements of this intrinsic;
however, it serves no other purpose and is not modified by the intrinsic.

Request granted.

5-15

CCG

CCL

Not returned by this application of FCONTROL.

Request denied because the file number specified did not belong to this
process or the device is not a terminal.

As an example, to enable the break function, the following intrinsic call could be used:

FCONTROL(TERMFN,15,DUMMY);

Enabling and Disabling Subsystem Break Function. All terminals are initially set to disable (not
accept) subsystem break requests, generated by entering CONTROL-Y during a session. You can,
however, programmatically enable and again disable a terminal's ability to react to subsystem break
requests with the FCONTROL intrinsic.

The format for this application of the FCONTROL intrinsic is

IV IV L
FCONTROL(filenum,controlcode,anyinfo);

The parameters are

filenum

controlcode

any info

The condition codes are

CCE

CCG

CCL

integer by value (required)
A word identifier supplying the file number of the terminal.

integer by value (required)
The integer 17 to enable the subsystem break function, or 16 to disable
the subsystem break function.

logical (required)
Any variable or word identifier. This parameter is needed by
FCONTROL to satisfy the internal requirements of this intrinsic;
however, it serves no other purpose and is not modified by the intrinsic.

Request granted.

Not returned by this application of FCONTROL.

Request denied because the file number specified did not belong to this
process or the device is not a terminal.

As an example, to enable the subsystem break function, the following intrinsic call could be used:

FCONTROL(TERMFN ,17 ,DUMMY);

Enabling and Disabling Parity Checking. All terminals and mark-sense card readers are initially set
to disable parity checking during read operation. They may, however,·be programmatically enabled
for parity checking with the FCONTROL intrinsic. Then, the parity of the data received is checked
against the parity computed by the asynchronous channel multiplexer. If a parity error is detected,

5-16

an error code is made available through the FCHECK intrinsic. When you are running a card reader
coupled to a terminal, the ability to enable/disable parity checking allows you to obtain optimum
utilization of the card reader by running it at 240 characters per second. These control code options
are not valid for terminals configured as termtype 12 (HP 2645K).

The format for this application of the FCONTROL intrinsic is

IV IV L
FCONTROL(filenum,controlcode,anyinfo);

The parameters are

filenum

controlcode

any info

The condition codes are

CCE

CCG

CCL

integer by value (required)
A word identifier supplying the file number of the terminal.

integer by value (required)
The integer 24 to enable parity checking, or 23 to disable parity
checking. (Not valid for termtype 12 (HP 2645K).)

Any variable or word identifier. This parameter is needed by
FCONTROL to satisfy the internal requirement of this intrinsic;
hovrever, it serves no other purpose and is not modified by the iI1tri..nsic.

Request granted.

Not returned by this application of FCONTROL.

Request denied because the file number specified did not belong to this
process or the device is not a terminal.

As an example, to enable parity checking, the following intrinsic call could be used:

FCONTRO L(TERMFN ,24,DUMMY);

Enabling ai"ld Disabling Tape~Mode Option.. You can progra...-rnmatically enable or disable the
tape-mode option for a terminal with the FCONTROL intrinsic. When enabled, the tape-mode
option inhibits the implicit line feed normally issued by MPE each time a carriage return is entered.
The tape mode option also inhibits responses to He and xe entries. Thus, when He is received and
tape mode is in effect, no exciamation points (! ! !) are sent to the terminal. To inhibit carriage
return, linefeed after READ or FREAD, use FSETMODE (see page 2-84).

The format for this application of the FCONTROL intrinsic is

IV IV L
FCONTROL(filenum,controlcode,anyinfo);

5-17

The parameters are

filenum

controlcode

any info

The condition codes are

CCE

CCG

CCL

integer by value (required)
A word identifier supplying the file number of the terminal.

integer by value (required)
The integer 19 to enable tape mode, or 18 to disable tape mode.

logical (required)
Any variable or word identifier. This parameter is needed by
FCONTROL to satisfy the internal requirements of this intrinsic;
however, it serves to other purpose and is not modified by the
intrinsic.

Request granted.

Not returned by this application ofFCONTROL.

Request denied because the file number specified did not belong to this
process or the device is not a terminal.

As an example, to enable tape mode, the following intrinsic call could be used:

FCONTROL(TERMFN,19,DUMMY);

Enabling and Disabling The Terminal Input Timer. The terminal input timer records the time
required to satisfy an input request on the terminal, from the time the input is requested until it is
completed. This applies only to unbuffered, serial terminal input requests. You can program­
matically enable or disable the terminal input timer with the FCONTROL intrinsic.

The format for this application of the FCONTROL intrinsic is

IV IV L
FCONTROL(filenum,controkode,anyinfo);

The parameters are

filenum

controlcode

any info

5-18

integer by value (required)
A word identifier supplying the file number of the terminal.

integer by value (required)
The integer 21 to enable the time, or 20 to disable the timer.

logical (required)
Any variable or word identifier. This parameter is needed by
FCONTROL to satisfy the internal requirements of this intrinsic;
however, it serves no other purpose and is not modified by the intrinsic.

The condition codes are

CCE

CCG

CCL

Request granted.

Not returned by this application of FCONTROL.

Request denied because the file number specified did not belong to this
process or the device is not a terminal.

Figure 5-2 contains a program that generates an ASCII character, instructs the user to enter this
character on the terminai, then measures and displays the reaction time of the user.

The statement

FCONTROL(IN ,21,DUMMY);

enables the terminal input timer so that the reaction time of the user can be measured. The
parameter IN supplies the file number of the terminal and was obtained through the FOPEN
intrinsic call (see statement 19 in the program).

NOTE

The statement

FCONTROL(IN,4,TIMEOUT);

is used to set a time out on FREAD. This application of
FCONTROL is used in conjunction \Vith FREAD intrinsic
calls issued against the terminal. The time-out interval speci­
fied in this case is 10 seconds (see statement number 5 in the
program). If there is no response to the FREAD intrinsic
call (see statement number 33) within 10 seconds, a CCL
condition code is returned and the program displays the
message

YOU'RE TOO SLOW

5-19

PAGE noo1 HEWLETT-PAC~AHO 32100A.05.l SPL/3000 TJE, NOV 2St 1975t 3:53 PM

00001noo 00000 o
00002000 00000 0
00003000 oonoo 1
onoo4noo ooon4 1
oooosnoo ooon~ 1
oooo~noo oono5 1
00007000 00004 1
OOOOAOOO 00004 1
00004000 00011 J
oon1onon onu43 1
00011000 l}Oll?O 1
00012noo 00011 1
00013000 ono?l J
00014000 00021 1
00015000 000?.l]
0001~000 noo?I I
0001rnoo 00021 1
OOO}Rl'IOO 00021 1
00019000 00021 l
ooo~ooon 00001 1
000?1000 00012 l
000?2000 000?2 1
00023000 noo2s 1
ooo?4nnn o~o3? l
ono?~non 00015 1
OOO?h000 00015 1
00021noo 00041 l
0002bll00 01)044 1
00029000 000~0 1
0003fl'l00 flOOS3 1
00031000 OOOh? 1
00032000 00067 1
000~1non 00012 1
00034000 011101 1
00035non 00102 1
0003AOOO OO]U? ?
00037nun 00110?
OOOJM~OU 001~0 ?
OOll39'HlO 00120 l
000401'100 00126 1
00041000 001?6 1
00042000 00134 2
00043000 nOJ41 ?
onu44nun onl4l 1
00045000 001~3 1
0004AOOO 001~7 1
00047000 0016? 1
oo04Rnoo 00111 1
000491"1()(} 00177
000501'100 00202
ooos1noo 00202
000':>200:> 00207
ooor,3oon 00212
00054000 00?;;>0
0005500(! 00::>::>4

$CONTROL USLI'\11 T
AH:df\I

HYTE ARl~AY INNAJl'1E(O:Sl :="INPUT 11;
RYTt:: ~R~AY OUTNAMF((l:6l:= 11 0UTJ.>JT "'
J~TEGEH IN,nUTtLGTH,DUMMY,TlMEtTIMEOUT:=lOS
ARF<AY HUFR(o:J)::11fYPE x11,o;
BYTE AR4AY C~UF(*l=AUFR;

ARRAY INSTH11CTIONS(0:34l ::oREACTJON TIMER:
11 lYPE. THE HEQUESTF.O CHARACTE~ AS QUICKLY

ARRAY MSG(0:24)::•tTRY AGAIN? (Y/N)''•""IRONG
r:t.64ll'• 11 YOIJ'RE. TOO SL0w! 11 ;

"•%6412•
AS YOU CAN. "C
CHARACTER•"•

ARRAY RF.SPONSt::<O:H>l :: 11 Rt.ACT!O\I TIME: MILLI SECONDS•q
HYTE ARRAY CHFSP(*l=RESPONSE;

INTRINSIC FoPt.NtFR~ADtF~HITl,FCONTROLtASCIItTIMER,QUIT;

<<fNfl OF DECLARA T JOl\IS»

t-.Jf XT:

lN:=F0PfN(INNAMEt~4~);
IF <THEN QU!T(l);
0ur:=FUPENCOUTNAM~t%4)4t%1>•
lF < Trl~N i.JLII1 Pl;
Fwh'ITECOlJT,IN<;rnucTIONSt3St0);
IF< TrlFN vUITCJ);

r-i • ci. • I
IF < THF.:N <JUIT (~);
f~UF(~):=INTEGER(TIMER>.CJl:5)+%73;
F1o1R ITF (OUT, HllFR .3, %320) S
IF < THEN QUIT(~);
LGTH:=FPEAOCIN,HUFR(J),-});
If. < T~f-N

Ht<ll N
FW~tTE.(tJUTtM5G(16) ,9,0);
IF c THEN QllITf7l F.:LSf GO NEXT;

E l\JD;
IF CH:IF(:,)c>CHIJF(6l THfN

HE(, IN
F~RITECUUT,MSG<Hlt~•O);

I F < T HF N fJ U I T < fol l t_ L SF.
lNO;

1"1nvr: kE.SPOl\JSt. (7l: ="
r.o NFXT;

ti:

ASCII<ftMi*lU,10tCHESP(l5>>;
FwHITFfOUT,HESPONSE.11,oi;
I F < TH f N lHJI T (1 0) ;

F~MITE(OUT,MSGt8•%320lJ

IF< TH~N QU!Tflll;
FREADCIN•HUFR<3> ,-lJ;
IF< THEN QUIT(l2>;
IF CRlJF(fll="i" THEN GO

<<$STD IN>>
<<CHECK FOR ERROR>>
<<SSTDLIST»
<<CHECK FOR ERROR>>
<<USER DIRECTIONS>>
<<CHECK FOR ERROR>>

<<ENABLE TIMEOUT>>
<<CHECK FOR ERRO~>>
<<GENERATE A CHARACTER>>
<<REQUEST USER INPUT>>
<<CHECK FOR ERROR>>
<<READ CHARACTER>>
<<TIMEOUT OCCURRED>>

<<TOO SLO~ ME5SAGE>>
<<CHECK FOR ERROR>>

<<INCORRECT CHARACTER>>

<<WRONG CHARACTER MESSAGE>>
<<CHECK FO~ ERROR>>

<<RESET RESPONSE TIME>>

<<CONVERT TIME>>
<<REACTION TIME>>
<<CHECK FOR ERROR>>

«CONTINUE TEST?»
<<CHECK FOR ERROR>>
<<GET Y/N ANSWER>>
<<CHECK FOR ERROR>>
<<Y•CONTINUE TEST>>

0 O 0 S 6 0 0 0 0 0 2 3 2 E. N 1) •

PRIMAHY OH STORAGE=%016;
NO. l="RRORS:nno;
PROCFSSOR TJMF:o:oo:o3;

SfCONnARY DB STORAGE=%00!30
NO. WAl-H~Ir~GS=non

ELAPSrD fIME=o:ou:10

Figure 5-2. Using the FCONTROL Intrinsic to Enable and Read the Terminal Input Timer

5-20

The results of running the program of figure 5-2 are shown below:

:RUN TIME

REAC!I ON TIMER:
TYPE THE RE'-1UE~TED CHARACTEt:C AS 9UICKLY AS
TY!.:>E M
Y 0 T_J' ~ E T 0 0 5 L 0 W !
TRY AGAIN? CY/N)Y
TYPE >~

qEACTION TIME: 9670 MILLISECONDS
TRY AGAIN? CY/N)Y
TYPE BB
~EACTION TIME: 4090 MILLISECONDS
TRY AGAIN? CY/N)Y
TYPE UU
REACTI3N TIME: 1790 MILLISECONDS
TRY AGAIN? CY/N)Y
TYPE IO
WRONG C:1ARACTER •
TqY AGAIN? CY/N)N

END OF ?qOG~AM

Vl"'\tf f""/'\'~ r u· 1 vt-Hv •

Reading The Terminal Input Timer. You can read the result from the terminai input timer vvith
the FCONTROL intrinsic. The result will be valid only if the terminal input was preceded by a call
to enable the terminal input timer. If valid, the result is the time, in hundredths of seconds, required
for the last direct, unbuffered serial input on the terminal.

The format for this application of the FCONTROL intrinsic is

IV IV L
FCONTRO L(filenum,controlcode ,inpu.ttime);

The parameters are

filenum

controlcode

integer by value (required)
A word identifier supplying the file number of the terminal.

integer by value (required)
The integer 22.

5-21

inputtime

The condition codes are

CCE

CCG

CCL

logical (required)
A word to which is returned the input time (in seconds/100).

Request granted.

Request granted, but the result overflowed 16 bits (inputtime was
greater than 655.35 seconds).

Request denied because the file number specified did not belong to this
process or the device is not a terminal.

Refer to figure 5-2. The statement

FCONTROL(IN ,22,TIME);

reads the result from the terminal input timer. This result is returned to the word TTh1E.

The statement

ASCII(TIME*10,10,CRESP(l5));

multiplies the value of TIME by 10 and converts this result to an ASCII string so that the user's
reaction time, in milliseconds, can be displayed. The resulting ASCII string is stored in the byte
array CRESP, starting at the 16th position (CRESP(l5)). The statement

FWRITE(OUT,RESPONSE,17 ,O);

displays the reaction time. (Arrays CRESP and RESPONSE have been equivalenced, see statements
12 and 13.)

Defining Line-Termination Characters for Terminal Input. Normally, when using a terminal, you
indicate the end of a line by entering a carriage return (with the RETURN key on most terminals).
With the FCONTROL intrinsic, however, you can specify that an additional character, such as an
equal sign, a period, or an exclamation point, be recognized as the standard line terminator. On
subsequent read operations during your process, the input line is terminated by the specified
character. That character is returned to your buffer. No carriage return or line feed is generated.

The format for this application of the FCONTROL intrinsic is

IV IV L
FCONTROL(filenum,controlcode,character);

The parameters are

fi/.enum integer by value (required)
A word identifier supplying the file number of the terminal.

5-22

controlcode

character

The condition codes are

CCE

CCG

CCL

integer by value (required)
The integer 25.

logical (required)

A word identifier supplying (in the right byte) the character to be used
as a line terminator. The left byte of this word can contain any
information - it is ignored by the intrinsic. If zero is specified in the
character parameter, the terminal reverts to its normal line-control
operation.

Request granted.

Not returned by this application of FCONTROL.

Request denied because the file number specified did not belong to this
process or the device is not a terminal.

The following characters are not recognized as line-terminating charac-
ters during normal reads:

ASCII Character Octal Cpde

Backspace (He) 10
Line Feed (JC) 12
Carriage Return (Mc) 15
X-ON (QC) 21
DC2 (Re) 22
X-OFF (Sc) 23
Line Delete (Xe) 30
Control-Y (Ye) 31
Escape ([c) 33
Del 177

As an example, to specify a period as the standard line terminator for a terminal, the following
intrinsic call could be used:

FCONTROL(TERMFN ,25,CHAR);

The word CHAR contains the octal value %56 (indicating a period) in the right byte. (The left byte
can be specified as any value.)

Enabling and Disabling Binary Transfers. Binary transfers can be enabled or disabled with the
FCONTROL intrinsic. (Binary transfers are disabled in normal MPE operation.)

The format for this application of the FCONTROL intrinsic is

IV IV L
FCONTROL(filenum,controlcode,anyinfo);

5-23

The parameters are

filenum

controlcode

any info

The condition codes are

CCE

CCG

CCL

integer by value (required)
A word identifier supplying the file number of the terminal.

integer by value (required)
The integer 26 to disable binary transfers, or 27 to enable binary
transfers.

logical (required)
Any variable or word identifier. This parameter is needed by
FCONTROL to satisfy the internal requirements of this intrinsic; how­
ever, it serves no other purpose and is not modified by the intrinsic.

Request granted.

Not returned by this application of FCONTROL.

Request denied because an error occurred.

Enabling and Disabling User Block Transfers. User mode block transfers (to or from block mode
terminals such as the HP 2644/2645) can be enabled or disabled with the FCONTROL intrinsic.
(User mode block transfers are disabled in normal MPE operation.)

The format for this application of the FCONTROL intrinsic is

IV IV L

FCONTROL(filenum,controlcode,anyinfo);

The parameters are

filenum

controlcode

any info

The condition codes are

CCE

CCG

CCL

5-24

integer by value (required)
A word identifier supplying the file number of the terminal.

integer by value (required)
The integer 28 to disable user mode block transfers, or 29 to enable
user mode block transfers.

logical (required)

Any variable or word identifier. This parameter is needed by
FCONTROL to satisfy the internal requirements of this intrinsic; how­
ever, it serves no other purpose and is not modified by the intrinsic.

Request granted.

Not returned by this application of FCONTROL.

Request denied because an error occurred.

Enabling and Disabling Line Deletion Echo Suppression. In normal MPE operation, Controi-X is
interpreted as a line deletion operation and the character string "! ! ! " is echoed on the terminal.
You can suppress the line deletion echo, so that the character string is not displayed on the terminal,
with the FCONTROL intrinsic.

The format for this application of the FCONTROL intrinsic is

IV IV L
FCONTROL(filenum,controlcode ,anyinfo);

The parameters are

filenum

controlcode

any info

The condition codes are

CCE

CCG

CCL

integer by value (required)
A word identifier supplying the file number of the terminal.

integer by value (required)
The integer 34 to disable the line deletion echo, or 35 to enable the line
deletion echo.

logical (required)
Any variable or word identifier. This parameter is needed by
FCONTROL to satisfy the internal requirements of this intrinsic; how­
ever, it serves no other purpose and is not modified by the intrinsic.

Request granted.

Not returned by this application of FCONTROL.

Request denied because an error occurred.

Setting Parity. The FCONTROL intrinsic can be used to specify the parity, if any, to be used in
transmitting data to a terminal. Parity is generated on the right seven bits or the full eight bits of a
character. This control code option is not valid for terminals configured as term type 12 (HP 2645K).

The format for this application of the FCONTROL intrinsic is

IV IV L
FCONTROL(filenum,controlcode,param);

The parameters are

filenum integer by value (required)

A word identifier supplying the file number of the terminal.

controlcode integer by value (required)

The integer 36. (Not valid for termtype 12 (HP 2645K).)

5-25

param

The condition codes are

CCE

CCG

CCL

logical (required)
A logical word, as follows:

O - No parity generated. All eight bits are transmitted.

1 - No parity generated. Bit. 8 is always set to 1.

2 - Even parity generated if bit 8 is 0; odd parity generated if bit 8 is 1.

3 - Odd parity generated on seven bits. (This is the normal mode of
operation.)

Request granted.

Not returned by this application of FCONTROL

Request denied because an error occurred.

Allocating a Terminal. A terminal can be removed from speed-sensing mode, initialized according to
the type and speed specified by the FCONTROL intrinsic, and set on line. (The terminal cannot be
configured as :JOB or :DATA accepting.)

The format for th~s application of the FCONTROL intrinsic is

IV IV L
FCONTROL(filenum,controlcode,param);

The parameters are

filenum

controlcode

par am

The condition codes are

CCE

CCG

CCL

5-26

integer by value (required)
A word identifier supplying the file number of the terminal.

integer by value (required)
The integer 37.

logical (required)
A logical word, as follows:

Bits (11 :5) - Terminal type (see page 5-8).

Bits (0:11) - Speed in characters per second.

If param is set to zero, the speed and terminal type specified when the
system was configured will be used to initialize the device.

Request granted.

Not returned by this application of FCONTROL.

Request denied because an error occurred.

Setting Terminai Type. The terminal type can be set with the FCONTROL intrinsic.

The format for this application of the FCONTROL intrinsic is

IV IV L
FCONTROL(filenum,controlcode,param);

The parameters are

filenum

controlcode

param

The condition codes are

CCE

CCG

CCL

integer by value (required)

A word identifier supplying the file number of the terminal.

integer by value (:··equired)
The integer 38.

logical (required)
A logical word specifying the terminal type (see page 5-8).

Request granted.

Not returned by this application of FCONTROL.

Request denied because an error occurred.

Obtaining Terminal Type Information. The terminal type can be determined with the FCONTROL
intrinsic.

This application of FCONTROL may be used before a terminal is allocated (with FCONTROL
controlcode parameter 37, see page 5-24) to return the terminal type specified when the system was
configured. A value of 31 is returned inparam if no terminal type was specified at configuration time.

The format for this application of the FCONTROL intrinsic is

IV IV L
FCONTROL(filenum,controlcode,param);

The parameters are

filenum

controlcode

par am

The condition codes are

CCE

CCG

CCL

integer by value (required)

A word identifier supplying the file number of the terminal.

integer by value (required)
The integer 39.

logical (required)

A logical identifier to which is returned the terminal type (see Table
5-3) as specified at log-on time or when the terminal was allocated.

Request granted.

Not returned by this application of FCONTROL.

Request denied because an error occurred.

5-27

Obtaining Terminal Output Speed. The terminal output speed can be determined with the
FCONTROL intrinsic.

This application of FCONTROL may be used before a terminal is allocated (with FCONTROL
controlcode parameter 37, see page 5-24) to return the speed specified when the system was configured.
A value of zero is returned in param if no speed was specified at configuration time.

The format for this application of the FCONTROL intrinsic is

IV IV L
FCONTROL(filenum,controlcode,param);

The parameters are

filenum

controlcode

param

The condition codes are

CCE

CCG

CCL

integer by value (required)
A word identifier supplying the file number of the terminal.

integer by value (required)

The integer 40"

logical (required)
A logical identifier to which the terminal output speed in characters per
second is returned.

Request granted.

Not returned by this application of FCONTROL.

Request denied because an error occurred.

Setting Unedited Terminal Mode. The terminal can be set in unedited mode with the FCONTROL
intrinsic. In unedited mode, all characters, except those that you can specify for Attention and
end-of-record, are passed to the terminal. Note that only seven bits of the characters are passed; the
parity bit is stripped.

The end-of-record character terminates input from the terminal in unedited mode (as a carriage
return does in normal mode).

The Attention character terminates input and causes a Subsystem Break in unedited mode (as a
Control-Y does in normal mode).

No automatic line feed is output to the terminal when input terminates in unedited mode.

The unedited mode is reset to normal when an FCLOSE intrinsic call is issued against the terminal,
or when the chars parameter of FCONTROL equals zero. (See below.)

The unedited mode is disabled while the terminal is in Break or Console mode.

The format for this application of the FCONTROL intrinsic is

IV IV L
FCONTROL(fUenum,controlcode,chars);

5-28

The parameters are

lilenum

controlcode

chars

The condition codes are

CCE

CCG

CCL

integer by value (required)
A word identifier supplying the file number of the terminal.

integer by value (requ.ired)
The integer 41.

logical (required)
A logical word, as follows:

Bits (0:8) - Attention character.

Bits (8:8) - End-of-record character.

If chars = 0, the unedited mode is reset to normal.

Request granted.

Not returned by this application of FCONTROL.

Request denied because an error occurred.

Reading Paper Tapes Without X-OFF Control. The X-OFF control character, written by pressing
the X-OFF key on a teletype terminal, is used to delimit data input on paper tape. When a teletype
tape reader encounters this character while reading a tape, reading halts until the program requests
more input data.

You can programmatically read data from paper tapes not containing the X-OFF control character,
or from tapes input through terminals not recognizing this character with the PT APE intrinsic. In
the latter case, the X-OFF characters are stripped from the tape. Tape input terminates when ye is
encountered, returning control to the terminal. Prior to calling the PT APE intrinsic, you must be
sure to position the end-of-file pointer to the proper position in the file. If you are reading more
than one tape, you should specify, in the FOPEN intrinsic call that opens the file, the append-only
access type, and a variable-length record format before the first PT APE intrinsic call. Additionaiiy,
you should set the end-of-file pointer to zero, if necessary, before issuing the first PTAPE intrinsic
call.

A PT APE intrinsic call such as

PT APE(TERMFN ,DISCFL);

could be used to read a paper tape not containing the X-OFF control character, or to read a paper
tape input through a terminal that does not recognize this character. The data would be stored in
the disc file whose file number is specified by DISCFL.

To inhibit carriage return, linefeed after READ or FREAD, use the FSETMODE intrinsic (see
page 2-84).

5-29

USING THE FCARD INTRINSIC TO OPERATE THE HP 7260A OPTICAL MARK READER

The FCARD intrinsic allows you to control the operation of the HP 7260A Optical Mark Reader
(OMR) programmatically. This is achieved through passing a parameter value (recode), correspond­
ing to the function of FCARD desired, from a program to FCARD. FCARD returns to the calling
program parameter values which indicate the success or the cause of failure of execution, the status
of the 7260A, the file number of the 7260A/terminal file for which the function has been per­
formed and the number of columns read at the completion of a read request.

The program shown in figure 5-3 performs the following:

1. Opens the 7 260A/terminal file.
2. Displays operator instructions.
3. Temporarily suspends program operation awaiting the depression of the 7260A READY switch.
4. Reads ten cards in the ASCII reading format.
5. Displays the number of columns read from each card.
6. Examines status for empty input hopper status.
7. Examines output recode values of ·each request.
8. Closes the 7260A/terminal file.

Under the label OPENFILE, the program requests that a 7260A/terminal file be opened for access
and that the file number of this file be returned to the program in the parameter fi/enum by assign­
ing to recode a value of 0 and calling FCARD as illustrated. When process control is returned from
FCARD, the program verifies that the call was successful (recode=O) and continues at the label
DISPINST. Under this label, operator instructions are displayed on the $STDLIST device. If the
call to FCARD was unsuccessful (recode=FO), then the error message "CAN NOT OPEN FILE -
PROGRAM WILL TERMINATE" is displayed and the program goes to the label FINIS and
terminates.

Under the label RDYW AIT, .a display instructing the operator to press the READY switch is given
and the request for a temporary suspension of the program awaiting the depression of the READY
switch is made by setting recode equal to 4 and calling FCARD as illustrated. The program, upon
regaining process control, checks for unsuccessful execution of the request (checks for recode=FO).
If the execution was unsuccessful, the program goes to the label FINIS and terminates. (NOTE: The
program could have branched to an error correcting or displaying instruction set if desired by the
programmer). If the execution was successful, the program continues with the next statement
which is under the label READ'.

Under the label READ', the program requests the reading of ten cards by setting recode equal to 1
and calling FCARD as illustrated. Upon return of the process control from FCARD, the program
checks for an unsuccessful execution (recode=FO). If the execution was unsuccessful the program
goes to the label READ'ERR.

Under the label READ'ERR, the program determines the value of recode returned after the read
request and initiates corrective action and/or displays an appropriate error message or terminates
itself, depending on the value of recode detected.

5-30

If the execution was successful, the program checks status for an empty input or full output hopper
condition and if this status condition is detected, the program goes to the label HOPPERS under
which corrective steps are initiated. If this status condition is not detected, the program calls a
procedure (DISP'COUNT) which displays the number of columns read from the previous card.
After the DISP'COUNT procedure is completed, the program goes to the label CLOSE'F.

Under the label CLOSE 'F, the program requests that the 7260A be put in the not READY state
and that the 7260A/terminal file be closed by setting recode equal to 10 and calling FCARD and
by setting recode equal to 20 and calling FCARD, respectively. In both cases, the value of recode
returned from FCARD is examined for an indication of successful execution as illustrated.

ASCII AND COLUMN IMAGE READING FORMATS

In the ASCII mode (also called the Hollerith mode) the OMR recognizes 128 character Hollerith
codes and transmits one 7 bit serial ASCII character plus an even parity bit per card column.
FCARD packs two ASCII characters (two columns of data) into each buffer word in bufadr. The
data from the first column of the card is stored in the upper byte of the first word of the buffer,
as illustrated below.

1st word 1st column data 2nd column data

2nd word 3rd column data 4th column data

In the column image mode, the OMR transmits a 12-bit data string, representing the twelve rows of
one card column. FCARD packs the first 12-bit data string (the first column of data) into the first
buffer word in bufadr, as illustrated below.

- - - - 12 11 0 1 2 3 4 5 6 7 8 9 column row no.

Buffer Word 0 0 0 0 x x x x x x x x x x x x data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 bit no.

X - indicates that bit may be either logical 1 or 0.

5-31

5-32

ICONTPnL USLlf\JIT
t3£Grn
INTEGER ARRAY AU~ADRC0:9q):

RYTf ARRAY f00C0:72):
POif\IUR HERE:
INTEGfP PECOOE,A,I:
INTRINSIC QUIT,PRJNT:
JNTEEf-R COUNT1FllENUM,STATUSr
INTRINSIC PRINT'~ILE'INFO:

PROCfOllRE DISP'COUlllT (COUNT l:
l!iLTEGER COUNT:

~EGTN
ARRAY DUTJQ:ll);
ATH' ARRAY MQll'l'(*):OUT:
INTRINSIC PPINT,ASCII:
INTEGER At,A~:

~~VE ~OUT:="NO. OF COLUMNS READ: •·
A 1 : : AS C T I I C (l IJ ~1 T , I () , Pl 011 T (2 1)) :
P:: •21•4!:
PP1NTf0UT,A2,xqo11:

ElllDJ

PROC~OllPf FCAPl'l (RFCQf)E, F TL FNUM, BllF AfH~, COLJ~iT, STAT llS):
JNTE~FP ARRA' RUFADR:
11~.H:.GEP RECOQt., r; I LENUM, COUNT, ST A TIJS:
QPTJON fXTER~AL:

~~E~F:z~Ton & lSR(I):
OF>ENFILE!

<<GFT FTLF NUMRER FO~ LOGICAL DEV EQUAL TO THE TERMINAL>>
Rl'.:CODF::(l:
FCARflC~ECOOF,FILENU~.~UFAOR,CUUNt,STATUS):
IF RfCUOE :U TH~N GO OTSPTNST:
MOVf TUO::"rAN NOT OPFN FTLE•PPOGRAM ~ILL TERMINATE":
PRINf(HfRE,-~o.o):
Gl"J I=' JNl5:

DISPINST:
~nvf J1Jn:=1x1i:;,,x1?>:
PRINT(HFR~,-2,0l:

~OVE TOO:;"SfT THE 7260A FUR CLOCK ON DA1A.":
PRINT(HFRE,-3?,0):
MQVI=' Tlln::"PUSH IN THi:: FllLL1'"1ALF S"!TCl"I TO ITS FULL POSTI0'-1 0 •:

PRINT(~FRE,.49,0):
Mn v f T 0 n : : "I) !\j.,,, Ii T :- THE T FR"' I ~j A I. • " :
PRlNT(HFKf,-c~,O):

MOVE rooi=·L0AD 30 CLO[~ o~ DATA CA~DS IN THE I~~UT hOPPER.":
PRINTfHFRF,•4A,0):

Figure 5-3. FCARD Intrinsic Example (1 of 3)

Rl)YL'iAIT:
MOVE TUO: ="N.Ufi, PRESS ll'IE REA.OV SNlJC.H. ":
PPINTCHERE,•28,0lt
RE.cool'. ::Ii:
FCARDCRECUDf,F!LENUM#@UfAeR.COUNt.&fATUSlr
A:=o:I:=o:
JF R~CODt <>O THFN GO FINISr

REAO'":
DO !i!E"GJN

RFCODE::t;
FCARO(REC0DE,FILENlJ\4 1 BUFADR,COUNT,STATUS):
IF RFCOOF <> 0 THEN GO READ•ERR:
H STATUS ; X07 !.HEN GO 1:1.l)PPERSJ
OJSP'COUNTCCDUNTlr
T:=I+l:
Ei<D

llNT!L l=ll':
Gn CLOSE"'F:

HOPPERS:
RECODE::tO: <<MAKE 0MR NOT ~EADY>>
FCAR~(REC0DE.FILENUM,8UF&DR,cOUNT,iTATUS)r
IF Pf~OOE <> 0 THEN BFGIN

~: :A+1:
IF ft<S THEN GO HOPPE.RS:
P~INT•FILE•INFOlFILENUM)f
QUIT (RECODE):

END:
MnvE Tno:="Jl~PllT HOPPFR EMPTY OR OUTPUT HOPPER FULL"r
PRTNT(HF~F,-U~,01:

~nvF TOn:="COPRECT HOPPER CQNDITIO~ AND PRESS READY":
PRINTrHERE,-uO,O):
JF RECODE <>O THEN GO FINIS ELSE

GO t<EAfl':

r:LnsE·F:
RECO~E::tC: <<~AKE CR NOT READY>>
FCAR~rRFCODF,FILENUM,BUFAoR,(OUNT,STATUS):
IF RECOOE <> 0 THEN BEGIN
I= =I +1:
l~ T < 1h THE~ GO CLusF•F:
PRINT • F IL t • Ji'1 i:-o (f I l EN UM) :

END:
RECODE:=20;
FCARnrRFCOnF,FJLE~UM,~LJFADR,COlJNT,STATUS):
IF RLCOnE :o THf fll GO FINIS ELSE BEbIN

M1)Vt TlJO:="li"-'A'3LE TO CLO!E THE lERMINAL FILE":
PP1~T(HEPE,-3J,OJ:
GO FTfllIS: END:

Rt.AD'fRP:
TF RFCOOE :A THFN GO RFTRANS:
!I'" RECvDt :4 THEN BEGIN

Figure 5-3. FCARD Intrinsic Example (2 of 3)

5-33

5-34

MnvE rno:="FPFAD Op FwRITE ERROR-PROGRAM WJLL ABOkT"J
PRINT(HFAE,-4U,O):
QUIT~RlCODEJ: END:

tF RECODE =6 THE~ BEGIN
l.1!1Vt TOO:=":EOJ, :FOO, :DATA, OR :JOA FUUNO IN lti1PUT 0

11 ;

PRINT(HERE,-a2,0l:
~OVE TOO:="~HE~K C6RD VALIDIJY-PRUGRA~ WJLL RtSJART"J
~RINT(HERE,-qO,Ol:

r.o DTSPINST: ENOs
~ovE Too:="UNI:.TERPREIED ERROR-PROGRAM WILL ABORT":
PRINT(HERE,-37,0J:
QUIT(RECODE};

RE Ha NS t
RE£0Df::3:
fClRO(RECOOE~fILENU~,BUFADR,COUNT,STATUS)J
IF PECOOE <> 0 THEN AEGIN

MOVE TflO::"UNSlJCCF:qSFUL RETRANSMIT-PROGRAM WILL ABORT":
PR1.NTC~ERE6-42,0l:
QUJT(RECODE): ENOJ

IF STATUS :o THEN GO READ':
"'10VE TOO::"ll"iSIJCCFSSFllL RETRANSMJT ... PROGRAM WILL ABORT":
P~INTCHERE,-a?,OJ:

QUITCRECQf)El:

FINIS:
E~D.

Figure 5-3. FCARD Intrinsic Example (3 of 3)

RESOURCE 1 !Uii!.Jii
MANAGEMENT II VI I

Within MPE, any element that can be accessed by your program is regarded as a resource. Thus, a
resource can be an input/output device, file, program, subroutine, procedure, code segment, or the
data stack.

Occasionally, you may want to manage a specific resource shared by a particular set of jobs or
processes, so that no two of these jobs or processes can use the resource at the same time. To
accomplish this type of resource management on either the inter-job (or session) or inter-process
level, the jobs or processes involved must mutually cooperate. For example, if job B must not access
a particular file when job A is using it, both jobs should include provisions for a hand-shaking
arrangement overseen by MPE when these jobs are being executed concurrently. Under this arrange­
ment, when job A has exclusive access to the file and job B attempts to access the same file, this
access will be denied. Job B will be suspended until job A releases its exclusive access. Then, job B
can resume execution and access the file.

NOTE

It is important to realize that as long as job Bis suspended, it
not only cannot access the file - it cannot perform any
operations.

On either the inter-job or inter-process level, the hand-shaking arrangement is based upon an
arbitrary resource identification number (RIN) made available to users (at the inter-job level) or
assigned to the job (at the inter-process level). Within their jobs (or processes), the cooperating
programmers relate a RIN to a particular resource through the structure of the statements making
up each job (or process). When a job (or process) seeks exclusive access to a resource, it requests
MPE to lock the RIN associated with this resource. This request is granted only if no other job or
process has already locked the RIN. Otherwise, the requesting process is suspended until the RIN is
released; When it is finished with the resource, the job (or process) requests MPE to unlock the RIN
so that other jobs or processes can lock it.

A RIN is not a physical entity. Furthermore, it is not logically assigned to any resource. The
association between a RIN and a resource is accomplished only by the structure of the statements
within the job or process using the RIN. The resource identification number is always known to
MPE, but its meaning (the resource with which it is associated) is not. For this reason, all cooperat­
ing programs must specify what RIN is associated with what resource through their statements.

Processes run by users having only the Standard MPE Capabilities can lock only one global RIN at a
time. But processes run by users having the Multiple RIN Optional Capability can lock more than
one global RIN at a time. In doing so, however, such users must be careful to avoid deadlocking,
where two or more suspended processes cannot be resumed because they are mutually blocked.

6-1

I

INTER-JOB LEVEL (GLOBAL) RIN'S

The RIN's used at the unrelated process level are called global RIN's. Global RIN's are used to
exclude simultaneous access of a resource by two or more processes. Each global RIN is a positive
integer unique within MPE. Global RIN's are acquired and released through MPE commands, and
locked and unlocked through MPE intrinsics.

ACQUIRING GLOBAL RIN'S

Before any users can mutually engage in resource management through a RIN, one of these users
must request the RIN and assign it a RIN password that enables all who know the password to lock
the RIN. This is done by entering the : GETRIN command:

:GETRIN rinpassword

where

rinpassword is a password required in the intrinsic that locks the RIN. It is a string
of up to eight alphanumeric characters beginning with a letter.
(Required parameter.)

The :GETRIN command is typically entered during a session. As a result of the command, MPE
makes a RIN available for use and displays the RIN number in this format:

RIN: rin

where

rin is the RIN number.

The user who entered the :GETRIN command can use the RIN number to lock and unlock the RIN
in the current session, or in future jobs and sessions. The RIN number and password also are passed
on to other users to permit them to lock and unlock the RIN in their jobs and sessions. All users
pass the RIN number to the intrinsics that lock and unlock the RIN, as a reference parameter in
the intrinsic calls. These users can continue to use the lUN until the user who issued the :GETRIN
command for this RIN releases the RIN.

NOTE

MPE regards the user who issued the : GETRIN command as
the owner of the RIN assigned. This means that only this user
may release the RIN.

The total number of RIN's that MPE can allocate is specified when the system is configured, and
in no case can exceed 1024.

See the MPE Commands Reference Manual for a further discussion of the :GETRIN command.

6-2 JUL 1981

RELEASING GLOBAL RIN'S

The owner of a global RIN (the user who issued the :GETRIN command to acquire the RIN) can
de-allocate the RIN, returning it to the RIN pool managed by MPE. Only the owner can de­
allocate the RIN.

The RIN is de-allocated with the : FREERIN command

: FREERIN rin

where

rin is the number of the RIN to be de-allocated. (Required parameter.)

See the MPE Commands Reference Manual for a further discussion of the : FREERIN command.

LOCKING AND UNLOCKING GLOBAL RIN'S

Any global RIN assigned to a group of users can be locked by one process at a time with the LOCK- I
GLORIN intrinsic. Once a RIN is locked, any other processes that attempt to lock this RIN are
suspended.

In order to lock a global RIN, you must know both the RIN number returned by MPE when the
RIN was acquired with the : GETRIN command, and the password which was specified in the
rinpassword parameter of the :GETRIN command. If you are a user with only the Standard MPE
Capability, you can lock only one global RIN at a time.

The LOCKGLORIN intrinsic is useful in applications where locking an entire file is not desirable
because it may inconvenience other users. For example, if several users are trying to access and up­
date a large file simultaneously, any one user who succeeds in locking the file suspends the other
users' processes until the file is unlocked. The LOCKGLORIN intrinsic, however, can be used to
lock a portion of such a file so that the chance of inconveniencing the other users is lessened.

UNLOCKGLORIN does not check whether the rinnum parameter specifies the most recently
locked global RIN. When global RIN's are locked and unlocked in any order by concurrent pro­
cesses, deadlocks can occur. An effective way to avoid deadlocks is to assign an ordering of RIN's
which is used by all processes locking them.

Figure 6-1 contains a program which uses the LOCKGLORIN and UNLOCKGLORIN intrinsics.
The program allows a user to lock four records, as a RIN, in a file so that a record can be updated
without any chance of some other user updating the same record simultaneously. Additionally,
the other users are not suspended when attempting to access and update records elsewhere in
the file.

The file used in the example (see below) contains 20 records and therefore five contiguous RIN's
have to be acquired (there are four records per RIN) before the program is run. This is accomplished
by entering :GETRIN commands as follows:

:GETRIN BOOKRIN

where BOOKRIN is specified as the rinpassword parameter. BOOKRIN is the password which is
used in the program to lock the RIN (see statements 6 and 36 in figure 6-1).

JUL 1981 6-3

I
I

PAGE 0001 H~WLF.TT-PACKARD 32100A.05.1 SPL/3000 WED, NOV 26, 1975, 1:52 PM

00001000
00002000
00003000
00004000
00005000
OOOObOOO
00007000
00008000
00009000
00010000
00011000
00012000
00013000
00014000
00015000

00000 0
00000 0
00000 1
00004 1
00005 1
00006 1
00005 1
00005 1
00005 1
00005 1
00005 1
00016 1
00010 1
00012 1
00012 1

00016000 00012
00017000 00012 1
00018000 00012 1
00019000 00012 1
00020000 00012 1
00021000 00012 1
00022000 00012 1
00023000 00012 1
00024000 00012 1
00025000 00024 1
00026000 00037 1
00027000 00047 1
00028000 00047 1
00029000 00057 1
00030000 00070 1
00031000 00073 1
00032000 00100 1
00033000 00101 1
00034000 00101 1
00035000 00105 1
00036000 00120 1
00037000 00124 1
00038000 00124 1
00039000 00136 1
00040000 00137 1
00041000 00147 1
00042000 00157 1
00043000 00157 1
00044000 00162 1
00045000 00170 1
00046000 00202 1
00047000 00205 1
00048000 00205 2
00049000 00214 2
00050000 00217 2
00051000 00217 1
00052000 00226 l
00053000 00226 1
00054000 00233 1

$CONTROL USLINIT
BEGIN

BYTE ARRAY INPUT(0:5)::"INPUT ":
BYTE ARRAY OUTPUTC0:6)::"0UTPUT ":
BYTE ARRAY NAME(0:8)::"HOOKFILE ":
:Jttt$t\:i.){ij:jfft@ltA:s.tntwt::~U::1Y;!#m:lU9(H~Jft:ff: t¥>
INTEGER IN,OUT,BOOK,LGTH,ACCNO,RIN:
LOGICAL DUMMY,COND:=TRUE:
ARRAY BUFRC0:35):
BYTE ARRAY BBUFR(*):BUFR:
ARRAY HEADC0:13):="LIBRARY INFORMATION PROGRAM.":
ARRAY REOUESTC0:7l:=%6412,"ACCESSION NO: ":
ARRAY CHANGE(0:9)::" NEW LOCATIO~: ":

:~i~:q:Jtt& tfi:~@A$$#~W: J{~¢¥~$fg¢#.!iij·J;:f{¥:•:~:?::M~/t:R.:t:•:ffi~i?
DEFINE CCL =IF < THEN QUIT#,

CCNE~If <> THEN QUIT#:

INTRINSIC FOPEN,FREAD,FWRITE,fCONTROL,fREADDIH1fWRITEDlR1
LOCKGLDRJN,UNLOCKGLORJN,QUIT,BINARY:

<<END OF DECLARATIONS>>

LOOP:

IN:=FOPENCINPUT,%45): CCLCl):
OUT:=FOPEN(OUTPUT,%414): CCL(2):
BOOK:=FOPEN(NAME,%5,%304); CCL(3):
~WRITECDUT,H~AD,1410); CCNE(4);

FWRITECOUT,REQUEST,81%320): CCNE(5);
LGTH:=FREAD(JN,BUFR,•10); CCNE(6):
IF LGTH=O THEN GO EXIT;
ACCNO::BINARYCBBUFR,LGTH);
If <> THEN GO LOOP:

<<SSTDIN>>
«S STOL !ST»
<<OLD DISC FILE>>
«PROGRAM ID»

<<REQST BOOK NUMBR>>
<<INPUT NUMBER>>
<<NO INPUT•EXIT>>
<<CONVERT NUMBER>>
<<If BAD TRY AGAIN>>

RIN:=RINBASE+CACCNO/RECDS'PER'RIN): <<COMPUTE RIN NO.>>
IF NOTCRINBASE<=RIN<=MAXRIN) THEN GO LOOP: <<BOUNDS CHECK RIN>>

::::r;qg:~~J:lQFJ~:utt:tG:c:Q$pM:f:tl~$W:DJ:t:f:' t: : :: ;:< . < ::>:: :::: : : : ::::) ~~:1*11:¢1C::~ff:l;)fj}$:lJ.~$~!,li:>~

FREADDIRCBOOK1BUFR136,00UBLE(ACCNO)): CCL(7): <<READ BOOK DATA>>
If > THEN GO AGAIN: <<EOF - TRY AGAIN>>
fWRITE(OUT,BUFR,36,0): CCNEC8): <<DISPLAY DATA>>
FWRITE(DUT,CHANGE,10,%320): CCNEC9); <<REQST A CHANGE>>

B u f" R c 1 9) : = II II :

MOVE BUFRC20)::BUFRC19),(16l:
LGTH::FREADCIN,BUFR(19),17): CCNEClO):
IF LGTH>O THEN

BEGIN
FWRITEDIRCBOOK,BUFR,36,DOUBLE(ACCNO));
CCNECll);

END;
FCONTROL(BOOK,2,ouMMY): CCLC12);

<<BLANK OLD LOCN>>
<<READ NEW LOCN>>
<<NEW LUCN ENTERED>>

<<MODIFY THE FILE>>
<<CHECK fOR ERROR>>

<<FORCE RECD POST>>

«CONTINUE»
00055000 00235 1 EXIT:END.

PRIMARY DB STORAGE=%021; SECONDARY DB STORAGE=%00124
NO, ERRORS:OOO: NO, WARNINGS:QOO
PROCESSOR TIME=0:00:03; ELAPS~D TIME=O:OO:lO

Figure 6-1. Using the LOCKGLORIN and UNLOCKGLORIN Intrinsics

6-4

TITLE: THE BORROWERS
TITLE: ALICE IN WONDERLAND
TITLE: PETER ?AN
TITLE: JUNGLE BOOK
TITLE: MARY POPPINS
TITLE: TOM SAWYER
TITLE: TREASURE ISLAND
TITLE: A CHRISTMAS CAROL
TITLE: HOUSE AT POOH CORNER
TITLE: THE WIZARD OF OZ
TITLE: SLEEPING BEAUTY
TITLE: TALES OF MOTHER GOOSE
TITLE: AESOP'S FABLES
TITLE: KIDNAPPED
TITLE: OLIVER TWIST
TITLE: DR· DOLITTLE
TITLE: WHEN WE WERE VERY YOUNG
TITLE: H.M.s. PINAFORE
TITLE: WORLD BOOK ENCYCLOPEDIA
TITLE: COLLEGIATE DICTIONARY

LOCN: AVAILABLE
LOCN: AVAILABLE
LOCN: AVAILABLE
LOCN: AVAILABLE
LOCN: AVAILABLE
LOCN: AVAILABLE
LOCN: AVAILABLE
LOCN: AVAILABLE
LOCN: AVAILABLE
LOCN: AVAILABLE
LOCN: AVAILABLE
LOCN: AVAILABLE
LOCN: AVAILABLE
LOCN: AVAILABLE
LOCN: AVAILABLE
LOCN: AVAILABLE
LOCN: AVAILABLE
LOCN: AVAILABLE
LOCN: AVAILABLE
LOCN: AVAILABLE

The program in figure 6-1 establishes the RIN number limits 2 and 6 (see statement number 14),
thus using only RIN numbers 2, 3, 4, 5, and 6. MPE returns the RIN number assigned each time
the :GETRIN command is entered. Because MPE does not always assign RIN numbers in sequence,
however, it may be necessary to enter more than five :GETRIN commands in order to acquire the
five contiguous RIN's 2, 3, 4, 5, and 6. Extra RIN's can be released with the : FREERIN command.

The statements

FWRITE(OUT ,REQUEST ,8, %320); CCNE(5);

request a book number from the user and perform a condition code check. Note that in statement
number 16, CCNE has been defined as

IF<> THEN QUITtf;

This eliminates the need to repeat the entire statement at every point in the program where such a
condition code check is required. Instead, the statement CCNE and an arbitrary number, (5) in
this case, can be used.

The book number is read with the statement

LGTH:=FREAD(IN,BUFR,-10);

and converted to a binary value with the statement

ACCNO:=BINARY(BBUFR,LGTH);

The RIN number to be locked is computed with the statement

RIN:=RINBASE+(ACCNO/RECDS'PER'RIN);

6-5

RINBASE and RECDS'PER'RIN have been equated to 2 and 4, respectively (see statement number
14). Thus, if book number 3 is entered by the user, the RIN number to be locked would be
computed as RIN number 2, as follows:

RIN 2 + (3/4)

2 + 0 (integer division)

The record specified by the book number is displayed for the user and the change ("NEW
LOCATION: ")is requested. The existing location information is filled with blanks with the
statements

BUFR(l9):=" ";

MOVE BUFR(20):=BUFR(19),(16);

The new location is entered and read with the statement

LGTH:=FREAD(IN,BUFR(l9),(l 7);

and the record is updated with the statement

FWRITEDIR(BOO K,BUFR,36,DOUBLE(A CC NO));

The statement

FCONTROL(BOOK,2,DUMMY);

is used in case the file which has been opened is a buffered file. This statement insures that the
process' buffers are posted to the disc before the RIN is unlocked.

Note that in a program of this kind, it is important that the number of records per block and the
number of records per RIN are the same. The RIN must contain a complete block of records.

The statement

UNLOCKGLORIN(RIN);

unlocks the RIN before the loop is repeated. When the user enters a new book number, a new RIN
number will be computed and that RIN number will be locked.

When a carriage return is entered, signifying no input, the program terminates.

The results of running the program and the updated condition of the library file are shown below.

INTER-PROCESS (LOCAL) LEVEL RIN'S

The RIN's used at the inter-process level are called local RIN's. These RIN's are used to exclude
simult.aneous access of a resource by two or more processes within the same job. Each RIN number
is a positive integer that is significant only with respect to different processes within that job.

6-6

:RUN LIBIN

LIBRARY INFORMATION PROGRAM·

ACCESSION NO: ~

TITLE: JUNGLE BOOK LOCN: AVAILABLE
NEW LOCATION: FACULTY LOAN - DR. SCHWARTZ

ACCESSION NO: ~
TITLE: SLEEPING BEAUTY LOCN: AVAILABLE

NEW LOCATION: LOANED CARDI 451, DUE JUNE 6

ACCESSION NO: ~
TITLE: JUNGLE BOOK

NEW LOCATION:
LOCN: FACULTY LOAN - DR. SCHWARTZ

ACCESSlOI-.J NO: .2.
TITLE: THE WIZARD OF OZ LOCN: AVAILABLE

NEW LOCATION: INTERLIBRARY LOAN - UNIV. OF OZ

ACCESS ION NO: ~
TITLE: JUNGLE BOOK LOCN: FACULTY LOAN - DR. SCHWARTZ

NEW LOCATION: AVAILABLE

ACCESSION NO:rerum

END OF PROGRAM

TITLE: THE BORROWERS LOCN: AVAILABLE
TITLE: ALICE IN WONDERLAND LOCN: AVAILABLE
TITLE: PETER PAN LOCN: AVAILABLE
TITLE: JUNGLE BOOK LOCN: AVAILABLE
TITLE: MARY POPPINS LOCN: AVAILABLE
TITLE: TOM SAWYER LOCN: AVAILABLE
TITLE: TREASURE ISLAND LOCN: AVAILABLE
TITLE: A CHRISTMAS CAROL LOCN: AVAILABLE
TITLE: HOUSE AT POOH CORNER LOCN: AVAILABLE
TITLE: THE WIZARD OF oz LOCN: INT ERL IBRA:qy LOAN - UNIV. OF
TITLE: SLEEPING BEAUTY LOCN: LOANED CARD# 451, DUE JUNE 6
TITLE: TALES OF MOTHER GOOSE LOCN: AVAILABLE
TITLE: AESOP'S FABLES LOCN: AVAILABLE
TITLE: KIDNAPPED LOCN: AVAILABLE
TITLE: OLIVER TWIST LOCN: AVAILA3LE
TITLE: DR· DOLITTLE LOCN: AVAILABLE
TITLE: WHEN WE WERE VE'C{Y YOUNG LOCN: AVAILA'3LE
.,.. t '!:' •
1J.1.W!:..i H.M.s. PINA.FORE LOCN: AVAILABLE
TITLE: WORLD BOOI< ENCYCLOPEDIA LOCN: AVAILABLE
TITLE: COLLEGIATE DICTIONARY LOCN: AVAILABLE

6-7

oz

Local RIN's are assigned, managed, and released with the GETLOCRIN, LOCKLOCRIN, and
FREELOCR IN intrinsics.

ACQUIRING LOCAL RIN'S

Just as global RIN's must be acquired by users before they can be used in jobs, local RIN's must be
acquired by a job before they can be used by processes within the job. This is done with the
GETLOCRIN intrinsic. For example, the intrinsic call below would acquire six local lUN's:

GETLOCRIN(6);

The RIN's acquired are identified by RIN numbers 1 through 6. Note that Multiple RIN capability
is not required; it is the user's responsibility to avoid deadlocks.

LOCKING AND UNLOCKING LOCAL RIN'S

Any local RIN assigned to a job can be locked, by one process at a time, by issuing the LOCKLOC­
RIN intrinsic call within that process. When this is done, other processes within the job that attempt
to lock this RIN are suspended until the locked RIN is released.

For example, to lock RIN number 6 (acquired with the GETLOCRIN intrinsic) unconditionally, the
following intrinsic call could be used:

LOCKLOCRIN(6,COND);

The logical word COND = TRUE for unconditional locking: If COND = FALSE, locking will take
place only if the RIN is immediately available.

To unlock this same RIN, the following UNLOCKLOCRIN intrinsic call could be used:

UNLOCKLOCRIN(6);

The above call makes RIN number 6 available for locking by other processes in the job. The highest
priority process suspended because this RIN was locked is now activated.

To illustrate how the LOCKLOCRIN and UNLOCKLOCRIN intrinsic calls are used, consider two
processes (a father process and its son) within a job:

6-8

FATHER PROCESS

LP:=FOPEN (LIN, ...);

GETLOCRIN (3);

FWRITE (LP, ...);

LOCKLOCRIN (1, TRUEV AL);
CREATE (DESCEND, ...).

SON PROCESS

LP:=FOPEN (LIN, ...);

LOCKLOCRIN (1, TRUEVAL);

FWRITE (LP, ...);

FWRITE (LP, ...);

UNLOCKLOCRIN (1);

I

I

l

FWRITE (LP, ...);

UNLOCKLOCRIN (1);

Suppose that the father process and its son wanted to use RIN (1) to manage a line printer
(designated by LP) so that the son process could not use the printer at any time that it was being
used by the father process. This could be done as shown in the above coding. When the father
process first references LP, the son process is not yet created and the printer need not be locked.
However, just prior to creating the son, the father process locks the RIN covering the printer. The
father issues all of its print requests before unlocking the printer. Before the son process accesses
the printer, it tries to lock it, fails, and is suspended. As soon as the father unlocks the printer, the
son process locks it, and issues print requests.

IDENTIFYING LOCAL RIN OWNERS

LOCRINOWNER allows you to identify at any given time the PIN of the process that has a
particular local RIN locked. This information can be useful, for example, in situations where father
and son processes are being synchronized through calls to the ACTIVATE and SUSPEND intrinsics.
(See descriptions of ACTIVATE and SUSPEND in the Process Handling Capability Section)

Consider the following example in which a father process acts as a monitor for several son processes.
The father waits SUSPENDed at the top of its loop to be ACTIV ATEd by any son. When
ACTIVATEd, the father locks a RIN to synchronize its communication with the son. LOCRIN­
OWNER is used to determine the PIN of the son that ACTIV ATEd the father, since that son will
have the "whichson" RIN locked. The father can then do whatever processing it needs to do. The
father finally ACTIV ATEs the son that ACTIV ATEd the father process and SUSPENDs, releasing
the synchronization RIN and waiting for the next son to ACTIVATE it again.

6-9

<<Example of Process Synchronization with LOCRINOWNER>>

equate whichsonrin
synchrin
waitforfather
waitforson

<<father process>>

soncount : = O;
while soncount <= maxsons do
begin

SUSPEND (waitforson, synchrin);
LOCKLOCRIN (synchrin);

1,
2,
1,
2;

owner : = LOCRINOWNER (whichsonrin);

soncount : = soncount + 1;
ACTIVATE (owner);

end;

FREEING LOCAL RIN'S

<<son process>>

LOCKLOCRIN (whichsonrin);
LOCKLOCRIN (synchrin);
ACTIVATE (father);
SUSPEND (waitforfather, synchrin);
UNLOCKLOCRIN (whichsonrin);

To free all local RIN's currently reserved for your job, the FREELOCRIN intrinsic is called, as
follows:

FREELOCRIN;

6-10

IBIMll PROCESS-HANDLING CAPABILITY Ii vu I

All user and system programs under MPE are run on the basis of processes - which are the basic
executable entities in the operating system. Processes are invisible to a programmer with standard
capabilities who accesses MPE. This programmer has no control over processes or their structure;
for him, MPE automatically creates, handles, and deletes all processes. Users with certain optional
capabilities, however, can interact with processes directly. One of these optional capabilities is the
Process-Handling Optional Capability, discussed in this section.

The Process-Handling Capability, assigned and used independently of the other optional capabilities,
allows you to

• Create and delete processes.

• Activate and suspend processes.

• Manage communications between processes.

• Change the scheduling of processes.

• Obtain information about existing processes.

These operations can be very useful to you. For instance, they allow you to have several independent
processes running concurrently on your behalf, all communicating with one another.

PROCESSES

A process is an independent entity that can be run within MPE: processes are run on behalf of
users and on behalf of the operating system. Many processes can be running concurrently. The
design of MPE is process-oriented: the system deals exclusively with processes (except for interrupt
routines and some very central and specialized system functions).

A process consists of a private data area (the stack) used only by this process, a Process Control
Block (PCB) that defines the process, and instructions in a code segment that the process is to
execute. Note that code se~u1ents are used by processes, not ovmed by them, a....11d may, therefore,
be shared by many processes.

When a user enters MPE, a process is created for him. This process is called a Job Main Process
(JMP) in batch mode or a Session Main Process (SMP) in time-share mode. The process is linked
into the Command Interpreter which then proceeds to handle user commands.

Every process known to MPE is identified by a number called the Process Identification Number
(PIN). Most control in l\1PE is ca...-roried out at the process level. A process ca..r1 run any kind of code
(programs, procedures, private code, sharable code, and so forth) and one of the main elements
needed to establish a new process is a starting address (that is a program label). From this address on,
the life of the process follows the sequence of the code until its deletion.

7-1

The Progenitor is the first process established during the initialization phase of MPE. It is the
responsibility of the Progenitor, using a set of configuration data specified at system configuration
time, to create its son processes. These processes are defined as system processes and are used to
perform parallel functions on behalf of the system. Such processes may include I/Oprocesses, etc.,
and in particular the User Controller Process (UCOP). All these processes may, if required, have
their own structure of descendents.

Whereas the Progenitor is the ancestor of all processes in MPE, including system processes, the User
Controller Process is the ancestor of all User Processes currently in existence. The UCOP is thereby
the root of the user process Tree Structure. The sons of the UCOP are called (User) main processes.

The father/son relationship between processes is used mainly to maintain control from top to
bottom everywhere in the structure. Roughly speaking, a father is always held "responsible" for
what happens to its son: creation, deletion and other special actions.

ORGANIZATION OF USER PROCESSES

When you log on yourself, a main process is created for you by UCOP. According to the mode of
access, the main process can be one of the two types:

- Job Main Process (JMP)

- Session Main Process (SMP)

Such a distinction results from the different kinds of control that the system provides for those two
separate entities: job is associated with a batch type of access, while session is for interactive access.

As soon as a given signal is received by UCOP, a JMP or SMP is created (depending upon the origin
of the signal). The starting address of the JMP or SMP is the Command Interpreter and once the
user is validated, the main process is free to recognize any command.

PROCESSSUBSTATES

During its life span (i.e., between its creation and its deletion), a process finds itself in different
substates according to its past and present history as well as its present requirements. Only two of
these may be controlled by users: active substate and suspended substate.

An active process is run by the CPU until it suspends itself, terminates, or is killed.

A suspended process is not run by the CPU as long as it stays in this substate. In other words, a
suspended process is waiting for some kind of a signal which will activate it. When it suspends
itself, a process may specify the origin of its next activation.

You can control the termination of one of your processes. The termination destroys the process
and all its descendents and resets the links of the remaining processes for the session or job.

PROCESS TO PROCESS COMMUNICATION

MPE provides a means for processes to communicate between themselves.

The sending or receiving of information is restricted to either an upward or downward path; thus
such communication is allowed only between father and son, and only one transfer is allowed in
either direction at any given time.

7-2

This method results from the fact that the father is solely responsible for both the existence and
actions of his sons. The father created his sons and knows their identification in the process structure;
he can, therefore, reference them at any time. The sons, however, only know their father by the
default identification "father".

CREATING AND ACTIVATING PROCESSES

From within any running process, you can programmatically request the creation of a son process
with the CREATE intrinsic. The CREATE intrinsic loads the program to be run by the new process
into virtual memory, creates the new process as the son of the calling process, initializes its data
stack, schedules the process, and returns its Process Identification Number (PIN) to the calling
process.

Once a process is created, it must be activated with the ACTIVATE intrinsic in order to run. When
a process is activated, it may suspend the process that activated it, then run until it is suspended or
deleted. A newly-created process can be activated only by its father. A father process that has been
suspended when a son process was activated can be reactivated automatically when the son process'
execution ends, if a bit has been set in the flags parameter of the CREATE intrinsic. A process that
has been suspended with the SUSPEND intrinsic (see page 7-8) can be reactivated by its father or
any of its sons, as specified in the susp parameter of the SUSPEND intrinsic.

Figure 7-1 contains a program which illustrates the CREA TE and ACTIVATE intrinsics.

The statement

FWRITE(OUT,REQST ,9, %320);

requests the user to enter the program file name which is to be created and activated.

The statement

LGTH:=FREAD(IN,NAME,-26);

reads the name input by the user on $STDIN and stores the name in the array NAME. In order to
be used in the CREATE intrinsic, the string in the array NAME must be specified in a byte array;
thus the byte array BNAME is equivalenced to NAME in statement number 8 in the program. Add­
itionally, the string must be terminated by a blank and the statement

BNAME(LGTH):=%40;

enters the ASCII code for a blank character to the end of the string in BN AME.

Next, the program displays the message

CREATE PROCESS

and calls the CREATE intrinsic with the statement

CREA TE(BN AME,,PIN,, 1);

7-3

PAGI:: 0001 H~WLETT•PACKA~D 32100A.05.1 SPL/3000 MON, DEC 1, 1975, 2:09 PM

SCONTHOL USLINIT
.BEGIN

BYTE ARRAY INPUTC0:5)::"1NPUT ";
BYTE ARRAY OUTPUTC0:6)::"0UTPUT ":
INTEGER JN,OUT,LGTH,PIN;
ARRAY REQSTC0:8)::%6412 1 "PROGRAM FILE :

00001000 00000 0
00002000 00000 0
00003000 00000 1
00004000 00004 1
00005000 00005 1
00006000 00005 1
00007000 00011 1
00008000 00011 1
00009000 00011 1
00010000 00007 1
00011000 00010 1
00012000 00010 1
00013000 00010 1
00014000 00010 1
00015000 00010 1
00016000 00010 1
00017000 00010 1
00018000 00010 1
00019000 00010 1
00020000 00007 1
00021000 00012 1
00022000 00022 1
00023000 00025 1
00024000 00025 1 NEXT:

" . , .
ARRAY NAME(O:tJl:
BYTE ARRAY BNAME(*)=NAME:
ARRAY CRMSG(0:6)::"CREATE PROCESS";
ARRAY ACTMSGC0:7l:="ACTIVATE PROCESS";
DEFINE CCL=lF < THEN QUIT#,

CCG=If > THEN QUIT#,
CCNE=IF <> THEN QUIT#;

INTRINSIC FOP~N,FREAD,FWRITE,CREATE,ACTIVATE,QUIT;

<<END Of DECLARATIONS>>

IN:=FUPEN(INPUT,%45);
CCL(1):
OUT::f0PEN(OUTPUT,%414rl);
CCL(2);

<<SSTOJN>>
<<CHECK FOR ERROR>>
«SSTDLIST»
<<CHECK FOR ERROR>>

mm!! !!!!! i r•r: ... ·····'··1 ... ···:.: ... ····',::·······',•• ..•.... :··•: .. ·····'r ·····':.': ... ···'1 ... ·····'! ···'·•:.'~.• ·'·:·.• ... ··:.·::.! · '-

.·.·.·.·.·.·.·------·.·-·.·-·.·.·.·-·.·.·.·-·.·.·.·.·.·.·.·.·.· ·.·.·.·.·.-... ::·····,···.:···,· .. ,1.,:.::.·.,•; .. ::,t.1.:,. :-:-:-:-:-:-:·:·:·:·:·:···:·.<·.·:·····:·.·:-:.;-:-:-:-:-:-:-:;.:-:.-:·:·:·:.:.:-.···:·:·:-.->:-:-:·:-:-.-:-:.;:.·.·.·.·.·.·.·.·.·. ·.·.·.·.·.·:·.·.·.·.·.·.·.·:-:-.·.·.·.·.·:.-.·:·.·.·.·.·.·.·.·.·.·.·.·

o o o 31 o o o o o o 5 6 1 ::::+::tt?:t>' > tt>trr:::::::t:::: :/' :: ''<t?:t:t:rt:i ::::=::::: ::: :::r:::: :: :::::::: ::::::: ::::::=::t ::::::::=:=: : ::: nt :::::=,:,:::.;,::::::::::::::::::::::=,:,:::;::::tt::::::::

gmm mg 1 ••'•~1.-11'1 ~gg ~~ gg g g g: g: : fS110RWt0lWMK!WW1N!foil4t\'VIWMF!N I m:r11111JIJJlllll!llffiti,i(;lli!lfJ

iii!~iii ii!i! l :,i,l.,i.;1.1.,~.~.:· .. ··:~.,: .•. : •. J.l.i.,:.':.,,:.~.':.';·'· ... :.,.:1 .. :~ .. ~ .•. ~.~.A;·····:·.!··,~.r::.:.!.;:.·.,;· .• ~'.;:U··.'.;,~·:,; •. ~,,::,•: .•... ;·•.~ .•. :,~,1,:.•:.i.i.!,.l~,:.1 .. ;·j::·:·p.».!~.~ o o o 41 o o o o o 1 2 3 1 ~ W:GW,.,:: , :::::::::: ,,,,,,,:,,, ' : : ::: :::::: '=:r:::r:::: ' : : <:<tto:tt~n:w:um:::::::aP:tJ{lii.tt:ows>>t>r:: '' '' :::: ,,,,
00042000 00130 1 EXIT:END.

PRIMARY DB STORAGE=%013: SECONDARY DB STORAGE=%00055
NO. ERRORS:OOO; NO. WARNINGS=OOO
PROCESSOR TIME=0:00:04: ELAPSED TIME=0:00:51

Figure 7-1. Using the CREATE and ACTIVATE Intrinsics

The following parameters were specified in the above intrinsic call:

progname

entry name

pin

pa ram

flags

7-4

Specified by BNAME, which contains the name entered by the user.

Omitted. The primary entry point of the created process is specified
by default.

The Process Identification Number (PIN), to be used by the ACTIVATE
intrinsic, is returned to the word PIN.

Omitted. A word filled with zeros is specified by default.

1, which specifies that this (the father) process will be reactivated
automatically by MPE when the created process' execution ends (bit
15 = 1).

All other parameters are omitted in the CREATE intrinsic call.

The statement

FWRITE(OUT, ACTMSG,8,0);

displays the message

ACTIVATE PROCESS

and the statement

ACTIVATE(PIN,2);

calls the ACTIVATE intrinsic to activate the process. The following parameters were specified:

pin

susp

Specified by PIN, which contains the Process Identification Number
of the process to be activated, as returned to the CREATE intrinsic by
the system.

2. When susp is specified, the calling process is to be suspended when
the called process is activated. When 2 (bit 14 = 1) is specified, as in this
call, the suspended calling process expects to be reactivated auto­
matically by MPE when this son process ends execution. If susp was
not specified, the calling (father) process will not be suspended when
the called process is activated.

Shown below is an example of running the program (named PROC) listed in figure 7-L

:RUN PROC

PROG~AM FILE = SPL. 0 ua.SYS
CREATE ~ROCESS
ACTIVATE PROCESS

PAGE ,332i 1

>$CONTROL USLINIT
>BEG IN
> ARRAY MSG<0:12>:="* TEST PROCESS EXECUTING*";
> INTRINSIC PRINT;
> DRINTCMSG,13,~);

>END.
PRIMARY DB STORAGE=%001;
NO. E~RORS=0~2U

ORQCESSOR TIME=0:00:02J

SECONDARY D3 STO::tAGE=%00015
NO. WARNINGS=000

7-5

PROG~AM FILE= SEGD~rn. 0ua.SYS

CREATE PROCESS
ACTIVATE PfWCESS
SEGMENTEq SUBSYSTEM cc.0>
-USL $0LD?ASS
-P~EDARE $NEWPASS
-EXIT

pqQSRAM FILE = $0LD?ASS
cqEATE ?ROCESS
ACTIVATE PROCESS
* TEST PROCESS EXECUTING *
PROGRAM FILE = return

END OF PROGRAM

When SPL.PUB.SYS is entered in response to the PROGRAM FILE = request, the program displays

CREA TE PROCESS

ACTIVATE PROCESS

then suspends itself and the SPL compiler subsystem is accessed. (This process has been created and
activated because of the SPL.PUB.SYS response by the user.)

A short program is entered from the terminal and the SPL compiler is exited, reactivating PROC at
the statement following the ACTIVATE intrinsic call, and causing the PROGRAM FILE= message
to be displayed again.

The response

SEGDVR.PUB.SYS

causes PROC to create and activate the Segmenter Driver (a programmatic entry point to the Seg­
menter subsystem). The Segmenter displays

SEGMENTER SUBSYSTEM (C.O)

and a prompt character (-).

The small program written in SPL and compiled into the USL file $0LDPASS (the default USL
file since a USLfile parameter was not included in the SEGDVR.PUB.SYS response) is identified
with the

-USL $0LDPASS

Segmenter command.

The next command

-PREP ARE $NEWP ASS

prepares the SPL program and the Segmenter is exited with the

-EXIT

command.

7-6

Once again, PROC is reactivated and requests a program file to be created and activated. The response
($0LDPASS) causes the compiled and prepared program written in SPL to be created and activated.

This program executes, displays

TEST PROCESS EXECUTING

then ends execution, reactivating PROC.

A carriage return, signifying no input, is entered in response to the PROGRAM FILE = request and
the program terminates.

The example below uses PROC to create and activate a duplicate of itself.

:qUN PROC

?ROGRAM FILE = P~QC

CREATE 0 ROCESS
ACTIVATE 0 ROCESS

PROGRAM FILE = PROC
CREATE PROCESS
ACTIVATE ?ROCESS

0 ROGRAM FILE = returnl

pqQGRAM = return2

PR03RAM FI LE = return3

END OF PROGRAM

When PROC is entered in response to the PROGRAM FILE = request, the calling process (PROC)
creates a duplicate of itself and activates this process (for clarity, call this PROCl). This process
executes and requests a file name. The user enters PROC again, causing yet another duplicate
(call this one PROC2) to be created and activated. At this point, PROC is suspended: it has
created and activated a duplicate process. The duplicate process (PROCl) has, in turn, created and
activated a duplicate of itself (PROC2). Thus, it also is suspended. The third process (PROC2)
executes and displays

PROGRAM FILE=

A carriage return (see returnl in the example) causes this process to stop executing and control
returns to PROCl.

7-7

PROCl displays

PROGRAM FILE=

Again, a carriage return (return2 in the example) causes this process to stop executing and control
returns to PROC.

PROGRAM FILE = is displayed once more, this time by the original process. Carriage return3
causes PROC to stop executing and control returns to the session main process, which displays

END OF PROGRAM

SUSPENDING PROCESSES

A process can suspend itself with the SUSPEND intrinsic. When this is done, the process relinquishes
its access to the central processor until reactivated by an ACTIVATE intrinsic call. When it suspends
itself, the process must specify the anticipated source of this ACTIVATE call (its father or son
process). When the process is reactivated, it begins execution with the instruction immediately
following the SUSPEND intrinsic call. The SUSPEND intrinsic also can release a local Resource
Identification Number (RIN) when the process is suspended by specifying the RIN number as a
parameter in the intrinsic call.

The intrinsic call

SUSPEND(3,RINNUM);

would cause the process to suspend itself and release the local RIN specified by RINNUM. The
parameter 3 (bits 14 and 15 = 11) specifies that the process expects to be reactivated by either its
father or one of its sons.

DELETING PROCESSES

A process can request the deletion of itself with the TERMINATE intrinsic or the deletion of any
of its sons with the KILL intrinsic. When this is done, all code and data segments in the process,
and all resources owned by the process, are released; all temporary files opened by the process are
closed; and finally, the Process Identification Number (PIN) is released. When a process is deleted,
MPE also automatically deletes all descendents of that process, as shown in figure 7-2. Within a
process tree structure, the newest generations are deleted first. Within each generation, processes
are deleted in the order of their creation.

In a job or session main process, the TERMINATE intrinsic is invoked automatically by detection
of an end-of-job/session condition. This intrinsic removes the job or session from the system.

The form of the TERMINATE intrinsic call is

TERMINATE;

The form of the KILL intrinsic call is

KILL(PIN);

Where PIN contains the Process Identification Number of the son process to be deleted.

7-8

Fl RST (OLDEST)
GENERATION

SECOND
GENERATION

THIRD
GENERATION

FOURTH (NEWEST)
GENERATION

(WHEN PROCESS 2 IS DELETED, THE FOLLOWING STRUCTURE RESULTS.)

FIRST
,...-11.1r-n11.T1r'\l\I
\.JC:l'\IC:nl-\ I IVl\I

SECOND
GENERATION

Figure 7-2. Process Deletion

7-9

INTERPROCESS COMMUNICATION

You can direct the communication of information between processes. This information transfer,
however, is restricted to upward or downward paths through the process tree structure, so that
any process can communicate only with its father or sons. Between any father/son pair, only one
such transfer is allowed at any particular time.

Information transferred between processes is referred to as mail. It is sent from one process to
another through an intermediate storage area called a mailbox. At any given time, a mailbox can
contain only one item of mail (a message). For any process, there are two sets of mailboxes:

• The mailbox used for communication between the process and its father. Each process
has one of these.

• The set of mailboxes used for communication between the process and its sons. Each
process has one of these mailboxes for each of its sons.

Even though there are two sets of mailboxes, between any two processes there is only one mailbox.

The transfer of mair is based upon a transaction between the sending and receiving processes that
involves the following steps:

1. Optionally, the sending process tests the mailbox to determine its status (whether it is
empty, contains a message, or is being used by the receiving process).

2. The sending process transmits the mail to the mailbox. The message transferred is a word
array in the sending process' stack, defined by a starting location and word count. The
smallest message allowed is a single word. MPE automatically performs a bounds check
that insures that the array specified actually falls within the limits of the process' stack.

3. The receiving process optionally tests the mailbox to determine its status.

4. If the mailbox contains a message, the receiving process collects this mail. If the mail is
not collected, it is overwritten by additional mail from the sending process. When the
mail is collected, another bounds check is performed to validate the address given for the
stack of the receiving process.

TESTING MAILBOX STATUS

A process can determine the status of the mailbox used by its father or by a son with the MAIL
intrinsic. If the mailbox contains mail that is awaiting collection by this process, the length of the
message, in words, is returned to the calling process. This enables the calling process to initialize
its stack in preparation for receipt of the message.

7-10

For example, to test the status of the mailbox associated with one of its son processes, the following
intrinsic call could be used:

ST ATCOUNT:=MAIL(SONPIN ,MCOUNT);

SONPIN contains the Process Identification Number (PIN) of the son process. An integer count
signifying the length, in words, of the incoming message will be returned to the word MCOUNT.
The status returned to STATCOUNT will be one of the following values:

Status

0

1

2

3

4

SENDING MAIL

Meaning

The mailbox is empty.

The mailbox contains previous outgoing mail from this calling process
that has not yet been collected by the destination process.

The mailbox contains incoming mail awaiting collection by this calling
process.

An error occurred because an invalid PIN was specified or a bounds
check failed.

The mailbox is temporarily inaccessible because other intrinsics are
using it in the preparation or analysis of mail.

A process sends mail to its father or sons with the SENDMAIL intrinsic. If the mailbox for the
receiving process contains a message sent previously by the calling process but not collected by the
receiving process, the action taken depends on the waitflag parameter specified in SENDMAIL. If
the mail is being used currently by other intrinsics, the SENDMAIL intrinsic waits until the mailbox
is free and then sends the mail.

For example, to send mail to its father, the following intrinsic call could be used:

STAT:=SENDMAIL(0,3,LOCAT,WAITSTAT);

The parameters specified are

pin

count

locat

wait flag

0, specifying that the mail is to be sent to the father process.

3, specifying that the length of the message is 3 words.

LOCAT, an array in the stack containing the message to be sent.

WAITSTAT, a logical word. If WAITSTAT = FALSE (bit 15 = 0),
any mail sent previously will be overwritten. If WAITSTAT =TRUE
(bit 15 = 1), the intrinsic will wait until the receiving process collects
the previous mail before sending the current mail.

7-11

The status returned to ST AT is one of the following values:

Status

0

1

2

3

4

5

6

Meaning

The mail was transmitted successfully. The mailbox contained no
previous mail.

The mail was transmitted successfully. The mailbox contained previously­
sent mail that was overwritten by the new mail, or contained previous
incoming/outgoing mail that was cleared.

The mail was not transmitted successfully because the mailbox con­
tained incoming mail to be collected by the sending process (regardless
of the waitflag parameter setting).

An error occurred because an illegal PIN was specified, or a bounds
check failed.

An illegal wait request vvould have produced a deadlock.

The request was rejected because the count specified in the count
parameter exceeded the mailbox size allowed by the system.

The request was rejected because storage resources for the mail data
segment were not available.

RECEIVING (COLLECTING) MAIL

A process collects mail transmitted from its father or a son with the RECEIVEMAIL intrinsic.
If the mailbox for the receiving process is empty, the action taken depends on the waitflag pa­
rameter specified in RECEIVEMAIL. If the mailbox is being used currently by other intrinsics, the
RECEIVEMAIL intrinsic waits until the mailbox is free before accessing it.

To collect a message from a son process, the following intrinsic call could be used:

STAT:=RECEIVEMAIL(SONPIN,MDATA,WAITSTAT);

The parameters specified are

pin

location

waitflag

7-12

SONPIN, which contains the Process Identification Number of the son
process. (Zero for father process.)

MDAT A, an array in the stack in which the incoming mail will be
stored.

WAITSTAT, a logical word. If WAITSTAT = TRUE (bit 15 = 1), the
intrinsic will wait until the incoming mail is ready for collection. If
WAITSTAT =FALSE (bit 15 = ~), the intrinsic will return to the
calling process immediately.

One of the following status codes is returned to STAT:

Status Meaning

0

1

2

3

4

The mailbox was empty (and WAITSTAT was FALSE).

No message was collected because the mailbox contained outgoing
mail from the receiving process.

The message was collected successfully.

An error occurred because of an illegal PIN or a bounds check failed.

The request was rejected because waitflag specified that the receiving
process should wait for mail if the mailbox is eID;pty, but the other
process sharing the mailbox is already suspended, waiting for mail. If
both processes were suspended, neither could activate the other, and
they may be deadlocked.

AVOIDING DEADLOCKS

Since the simultaneous use of mail transmission, process suspension, and RIN iocking intrinsics
throughout a process structure could result in a deadlock if the intrinsic calls are not synchronized
properly, you should be aware of the following:

1. In a multi-process job/session, whenever a process is suspended (through the SUSPEND
intrinsic, or when locking a RIN or receiving mail), MPE does not determine whether
all other processes in the tree are suspended. You must exercise caution in avoiding such
a situation.

2. An attempt by a process to lock a global RIN succeeds only if two conditions are met:

a. No other process within the job/session currently has locked this RIN - a
global RIN cannot be used as a local RIN, because deadlock within the same
job/session could otherwise occur.

b. The calling process currently has no other global RIN iocked for itself. This
could otherwise result in deadlock between two jobs/sessions.

RESCHEDULING PROCESSES

When a process is created, it is scheduled on the basis of a priority class assigned by its father. After
this point, its priority class can be changed at any time with the GETPRIORITY intrinsic. A process
can change its own priority or that of a son but it cannot reschedule its father.

Generally, MPE schedules processes in linear or circular subqueues, as described in the MPE General
Information Manual. The standard linear subqueues are

• The AS subqueue, containing processes of very high priority.

• The BS subqueue, containing processes of high priority.

7-13

The circular subqueues are

• The CS subqueue recommended for interactive processes.

• The DS subqueue, available for general use at a lower priority than the CS subqueue and
recommended for jobs.

The subqueue to which a process belongs determines the priority class of the process. From highest
to lowest priority, these classes (named after their subqueues), are

AS
BS
cs
DS
ES

To reschedule itself with the priority class "D" ,. a process would make the following call:

GETPRIORITY (O,"DS");

The 0 parameter specifies that the calling process is rescheduling itself. If the process were re­
scheduling a son process, the Process Identification Number of the son processes would be
specified.

DETERMINING SOURCE OF ACTIVATION

After a suspended process is reactivated, it can determine whether the source of the activation
request was its father process or one of its son processes with the GETORIGIN intrinsic call.

For example, the following intrinsic call could be used:

SOURCE:=GETORIGIN;

One of the following codes would be returned to SOURCE:

1 Activated by its father.

2 Activated by a son.

DETERMINING FATHER PROCESS

A process can determine the Process Identification Number of its father with the FATHER
intrinsic.

For example, the following intrinsic call could be used:

PIN:=FATHER;

The Process Identification Number of the father is returned to PIN.

7-14

DETERMINING SON PROCESSES

A process can request the return of the Process Identification Number assigned to any of its sons
with the GETPROCID intrinsic.

For example, the following intrinsic call would return the Process Identification Number of the
sixth existing son of the calling process to the word PINNUM:

PINNUM: =GETPROCID(6);

DETERMINING PROCESS PRIORITY AND ST ATE

A process can request the return of a double-word message denoting the following information
about its father or sons with the GETPROCINFO intrinsic:

Word Bits Meaning

1 (8:8) The process' priority number in the master queue.

(0:8) Reserved for MPE. These bits are set to zero by the system.

2 Activity State.

1 The process is active.

0 The process is suspended.

(13:2) Suspension Condition. (Set only if bit 15 = 0)

01 The process expects to be activated by its father.

10 The process expects to be activated by a son.

(9:4) Reserved for MPE. These bits are set to zero by the system.

(7:2) Origin of the last ACTIVATE Call.

01 Father.

10 Son.

00 MPE.

(4:3) Queue Characteristics.

001 DS or ES priority class.

010 CS priority class.

100 Linearly scheduled (AS or BS Master queue).

(0:4) Reserved for MPE. These bits are set to zero by the system.

For example, to request information about its father, the following intrinsic call could be used:

INFO:=GETPROCINFO(O);

The 0 parameter specifies that the process is the father. If the process were a son process, the
Process Identification Number of the son process would have been specified.

7-15

The information returned to the double-word INFO is of the following form:

Bits 0

Word 1: 0

Word 2: 0

Not Used

1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

Not Used ~T
ACTIVATE

Origin

Priority

9 10 11 12 13 14

0 0 1 1 1 1

0 0 0 0 1 0

-..-
Not Used

r
Suspension
Conditions

The information is interpreted as follows for the father process:

Word Bits Value Meaning

1 (8:8) %36 Process has priority 30 in master queue.

(0:8) 0 Not used.

2 (15:1) 0 Process is suspended.

(14:1) 0 }
(13:1) 1

Process to be activated by its son.

(9:4) 0 Not used.

15

0

0

L Activity
State

(7:2) 1 Origin of last ACTIVATE call was father of this process.

(4:3) 4 Circular subqueue.

7-16

DATA SEGMENTiiUffrlii
MANAGEMENT CAPABILITYll vm I

During execution of a user program, many processes may be created, run, and deleted. For each
process in execution, one or more code segments, and one data segment, exist. The data segment is
private to the process and contains the data generated and manipulated by that process. In a user
process, this segment is referred to as the user's stack segment.

NOTE

See the MPE General Information Manual for discussions of
segments, processes, and the stack.

A particular program, which consists of code segments, can be run by many user processes
simultaneously, with all user processes accessing the same body of code. The stack segment, however,
is private to each user process and cannot be shared among others. Additionally, user processes
created by a user with the standard MPE capabilities may create and access one stack segment only.

MPE allows users with the Data Segment Management Capability, however, to create and access
extra data segments for their processes during a job or a session. These segments are used for
temporary storage of data while the creating processes exist. Each segment is assigned an identity
that either allows it to be shared between different processes in a job or session, or declares it
private to the creating process. When a process terminates, all private data segments created by it
are destroyed automatically. Sharable data segments are saved until explicitly deleted or until the
job or session ends, at which time they are destroyed.

Extra data segments are not directly addressable by user processes. They can be accessed only
through intrinsics that move data between the user's stack and the extra data segments (DMOVIN,
DMOVOUT). If a process not having the Data Segment Management Capability attempts to call
these intrinsics, that process is aborted. The Data Segment Management Capability is assigned to
the process at :PREP time by a user with this capability (:PREP ... ; CAP= DS).

The maximum number of extra data segments allowed per process is determined at system
configuration time, and this number may not be exceeded.

If you are a user who possesses the Data Segment Management Capability, you can

• Create an extra data segment.

• Transfer data from an extra data segment to the stack.

• Transfer data from the stack to an extra data segment.

e Change the size of an extra data segment.

• Delete an extra data segment.

8-1

CREATING AN EXTRA DATA SEGMENT

A process can create or acquire an extra data segment with the GETDSEG intrinsic. The number
of extra data segments that can be requested, and the maximum size allowed these segments, are
limited by parameters specified when the system is configured. When an extra data segment is
created, the GETDSEG intrinsic returns to the calling process a logical index number, assigned by
MPE, that allows this process to reference the segment in later intrinsic calls. The GETDSEG
intrinsic also is used to assign the segment an identity that either allows other processes in the same
job or session to share the segment, or that declares it private to the calling process. If the segment
is sharable, other processes in the same job/session can obtain its logical index (through GETDSEG)
and use this index to reference the segment. Thus, the logical index is a local name that identifies
the segment throughout any process that obtained the index with the GETDSEG intrinsic call.
The logical index need not be the same value in all processes sharing the same data segment. The
GETDSEG intrinsic may return different logical index numbers to different processes, even though
each process referenced the same data segment in their intrinsic calls. The identity, on the other
hand, is a job-wide or session-wide name that allows any process to identify the data segment in
order to obtain a logical index for it.

Figures 8-1, 8-2, and 8-3 contain three programs which illustrate the use of the GETDSEG,
DMOVOUT, and DMOVIN intrinsics.

Together, the three programs perform the following:

1. Create an extra data segment which can be shared by all three processes.

2. Compute Julian calendar dates for any year and store these dates in an array.

3. Transfer the Julian calendar dates from the array to the extra data segment.

4. Create and activate two processes of the program shown in figure 8-3, each of which
shares the same code but has its own data stack.

5. Each of the processes created in 4 above:

a. Opens a terminal for input/output and, once a :DATA filename command is
entered on the terminal, requests month and day information from the user.

b. Moves the Julian dates, for the month entered by the user, from the extra
data segment to its own stack.

c. Computes the Julian date based on the day of the month enter_ed by the user
and displays this information on the terminal.

The program in figure 8-1, called DSINIT, creates an extra data segment 372 words long, fills an
array with values representing Julian calendar dates for a particular year entered by a user, then
transfers this information from its stack to the extra data segment.

The program in figure 8-2 called DSBOSS, creates and activates two processes. Each of the two
processes created is a process to run the program shown in figure 8-3, thus each process shares
the same code but has its own data stack.

8-2

PAGl': 0001

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00009000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
0002200iJ
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
000.33000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
0004100()
00042000
00043000

Ht:wLETT-PACf('At<D 321v0A.OS.1 SPL/3000 nn. DEC 5, 1975, 5:28 PM

00000
ooouo
00000
00004
00005
00005
00005
00017
00001
00001
00006
00006
00014
00001
00001
00001
00001
00001
00001
00001
00001
,..,,,...,,..41')
VVVJ. .r;

00025
00025
00035
00035
00044
00044
00054
00065
00075
0007!:>
00105
00105
00112
00127
00132
00140
00141
00143
00143
00150
001~3

0 SCDNTHOL USLINI1
0 RC.:GIN
1 HYTt ARkAY INPU1(U:5l:="lNPUT ":
1 bYTC.: ARHAY OUTPUT(O:bl:="UU1PUT ":
1 lNTEGEH IN,UUT,LGTH,MUNTH,DAY,YEAR,DATE:=l,DSLGTH:=372;
1 LOGICAL DSINDX:
1 ARRAY Ht:ADC0:14)::"GENERATE CALC.:NDAR DATA SEGMENT";
1 ARRAY bUFR(O:ll:=2C" "l:
1 BYTE APRAY bBilf(*)=HUfR:
1 ARRAY REYSTC0:5)::"ENTER YEAR: ";
1 INTEGER ARRAY MAXDAY(o:11J:=31128,31130,311301
1 11,31,10,31,10,31;
1 IN1EGER ARRAY CAL~NDAR(0:371)::372(•1):
1 DC.:FIN~ CCL = IF < THEN QUIT#,
1 CCNE= IF <> THEN UUIT#:
1
1 INTBINSIC fOP~N,FREAD,F~RITE,GC.:TDSEG,DMOVOUT,BINARY,QUlT;

1
1 <<END Of DECLARATIONS>>
1

1
1
1
l
1
2
2
2

END.

IN::FOPEN(I~PUT~%45J: CCL[l);
OUT:::;f[1Pfti(UllTPUT,%4141lli CCL(2):

f~RITC.:(OUT,HEAD,15,0): CCNC.:(3);

t'l-IR11UOUT, Rf::(JST161%3iCJ): CCNl::(5):
LGTH:=FREADCIN,BUfR,-4): CCNEC&l:
YEAR:=HINARYCHBUF,LGTH); CCNf(7l:

<<$STDIN>>
<<$STDLIST»

<<PROGRAM ID>>

<<REQUEST CALENDAR YEAR>>
<<INPUT YEAR»
<<CONVERT YEAR>>

Jf YEAR HUD 4 = 0 THE~ MAXDAYC1l:=29: <<FIX FEd FOR LEAP YEAR>>

FOR MUNlH:=O UNflL 11 DO <<INDEX 12 MONTKS>>
fOR DAY:=O UNTIL MAXDAYCMONTHl-1 DO <<INDEX DAYS IN EA MONTH>>

Bt:G IN
CALENDAR(MONTH*31+DAY)::DAT~: <<SET IN JULIAN DATE>>
DATE:=DATl':+l: <<!NCR JULIAN DATE>>

END:

PRIMARY DB STORAGE=%021;
NO. ~:RRURS=OOO:

SECONDARY DH STORAG~=%00636

hO. WAR~lNGS:OOO
PROC~SSOR TIME=O:oo:03: ELAPSED TIME=o:oo:10

Figure 8-1. Using the GETDSEG and DMOVOUT Intrinsics (Program DSINIT)

8-3

PAGE 0001 HEWLETT-PACKARD 32100A.05.t SPL/3000 FRI, DEC 5, 1975, 5:28 PM

$CONTkOL USLINI'f
BEGIN

BYTE ARRAY 1NPUT(0:5):="1NPUT ":
BYTE ARRAY OUTPUTCO:b)::"OUTPUT ":
INTEGER IN,OUT,LGTH,PlN!,PIN2:
AYTE ARRAY PFlLECO:bl:="DSACCS ";

00001000 00000 0
00002000 00000 0
00003000 00000 1
00004000 00004 1
00005000 00005 1
00006000 00005 1
00007000 00005 1
00008000 00022 1
00009000 00036 1
00010000 00036 1
00011000 00036 1
00012000 00036 1
00013000 00036 1
00014000 00036 1
00015000 00036 1
00016000 00036 1
00017000 00036 1
00018000 00036 1

ARRAY MESSAGE(0:29)::"WHEN ALL JULIAN DATE OPERATIONS ARE ",
"COMPLETE TYPE: DONE.",%6412 1 "? ";

ARRAY BUFRCO:l);
BYTE ARRAY BBUf(*)=BUfR;
DEFINE CCL= IF < THEN QUIT#,

CCNE: If <> THEN QUIT#:

INTHINSJC FOPEN,FwRIT~,FREAD,CREATE,ACTIVATE,QUIT:

<<END OF DECLARATIONS>>

00019000 00012 1
00020000 00025 1
00021000 00025 1
00022000 00037 1
00023000 00051 1
00024000 00051 1
00025000 00060 1
00026000 00067 1
00027000 00067 1
00028000 00067 1
00029000 00077 1
00030000 00110 1
00031000 00110 1
00032000 00131 1 END.

WAIT:

PRIMARY DB STORAGE=%013;
NO. ERRORS=OOO;
PROCESSOR TIME=o:oo:o2;

I~:=FOPEN(INPUT,%45): CCLC1):
OUT:=FOPENCOUTPUT,%41411): CCLC2);

<<$STDIN>>
«SSTDLIST>>

fWHlTECOUTrMESSAGE,30,%320): CCNf(7): <<TERMINATION INSTRUCTIONS>>
LGTH:=FREADCJN,BUFR,•4): CCNE(8); <<SUSPEND FOR READ>>

IF BBUF<>"DONE" THEN GO WAIT:

SECONDARY DB STORAGE=%00053
NO. WARNINGS=OOO
ELAPSED TIME=o:oo:09

<<IF DONE • END KILLS SONS>>

Figure 8-2. Creating and Activating Two Son Processes (Program DSBOSS)

8-4

PAGE 0001

OOOOlOO!J
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00009000
00010000
00011000
00012000
00013000
00114000
00')15000
00016000
00017000
00018000

lffvlLr:TT-PAO,ARD 32100A.05.1 SPL/3000 FRI, DEC 5, 1975, 5:29 PM

ooouo 0
000()0 0
00000 1
00005 l
00004 1
00004 1
00004 1
OuO 12 1
00012
00012
00021
00021
00021
00021
00021
00021
00021
00021

scr1r~TROL USLINl T
B~GIN

BYTf ARRAi NAMft0:7J:="TEHMIO# ":
HYTE AH~AY DEVC0:4)::"T~RM ":
1NTEG~R FNO,LGTH,MONTH,DAY,DSLGTH,JDATE,CURRENT::•l:
LOGICAL USINDX,PARM:Q•4:
AHRAY H~ADC0:9)::"JULIAN DATE CALENDAH";
ARHAY BUfR(0:1);
HtTE ARRAY HBUfH(*):BUFR:
ARRAY M~SSAGE(O:lb)::"MUNTH: ","DAY : ","JULIAN DATE: ":
BtT~ ARRAY BMSGC*l=MESSAGE:
ARRAY DA1£S(0:30):
DEFINE CCN~ : If <> THEN QUIT#;

INTHINSIC fOPEN,fREAD,F~RlTl,GETDSEG,DMOVIN,BINARY,ASCII,QUIT:

<<~ND OF OECLARATlONS>>

00019000 00021
00020000 00003
00021000 00015

NAMEC6):=PARM;
FNO:=FOPEN(NAME1%405r4r3b1DEV);
If< THEN QUIT(ll:

<<SET FORMALDES #=1 OR 2>>
<<TERMINAL FILE TERMIO# >>
<<CHECK FOR ERROR>>

00022000 00020
ooo.nooo Ou020
00024000 00030
00025000 00034
00026000 00037
00027000 00037
00029000 00047
00029000 00061
00030000 00072
00031000 00075
00032000 00102 1
00033000 00103
00034000 00112
00035000 00112
00036000 00123
00037000 00132
00038000 00143
00039000 00150
00040000 00151
00041000 00156
00042000 001t>1 1
00043000 00161 2
00044000 0016b 2
00045000 00173 2
00046000 00175 2
00047000 00175 1

GC::TMO:

GE TOA:

fWkITE(fNO,H£AD,10,0): CCN~C2l: <<PROGRAM ID>>

f~RITE(FNU,MESSAGE,4,%320); CCNE(4);
MOVE HUFR:=" ":
LGTH:=FREADCFNO,BUFH,•2J: CCNE(5l:
rr· LGTH=O THEN GO EX IT;
MONTH::Bl~ARYCBHUfR,LGTH):

IF <> THEN GO GETMO:
!F N0f(1<=MONTH<=12l THEN GO GETMO;

<<REQUEST MONTH>>
<<BLANK READ BUFFER>>
<<INPUT MONTH»
<<NO MONTH • DONE>>
<<CONVERT MONTH>>
<<IF BAD TRY AGAIN>>
<<ILLEGAL MONTH CHECK>>

F~RITE(fNO,MESSAGE(4),3,%320l: CCNEC6);<<REQUEST DAY>>
MUVE BUfR;:" ": <<BLANK READ BUFFER>>
LGTH:=FREAD(FNO,BUFR,•2): CCNE(7); <<INPUT DAY>>
DAY:=BINARYCBBUfR,LGTH): <<CONVERT DAY>>
If <> THEN GO GETDA: <<IF BAD TRY AGAIN>>
Ir NOT(l<=DAY<=31) TH~N GO GETDA: <<ILLEGAL DAY CHECK>>

00048000 00201 1 If JDAT~<O THEN GO GETDA; <<UNINITIALIZED DATE>>
<<BLANK OUTPUT BUFFER>>
<<CONVERT JULIAN DATE>>

00049000 00204 1 MQV[MESSAGEC14)::" ":
00050000 00216 1 LGTH:=ASCIICJOATE,to,BMSG(28)):
00051000 00225 1 FWRIT~CFNO,MESSAGE(7),10rO): CCNEC9): <<OUTPUT DATE ON TERMIO# ''
00052000 00236 1 GU GtTMO: <<CONTINUE»
00053000 00237 1 EXIT:END.

PRIMARY DB STORAGE=%020; S[CQNuARY DB STORAG~=%00103

N!J. ERRORS=O 0 0; fl<U. WAR~1INGS=O0 0
PROCESSOR TIM~=0:00:03; ~LAPS~D T1Mf:0:00:13

Figure 8-3. Using the GETDSEG and DMOVIN Intrinsics (Program DSACCS)

8-5

The program in figure 8-3, called DSACCS, opens a terminal for input/output, acquires the extra
data segment created by DSINIT, requests a month and day from the user, then transfers the Julian
dates contained in that particular month into its own data stack. Because DSBOSS (figure 8-2) has
created two processes for the program shown in figure 8-3, and has activated both processes, the
functions performed by DSACCS are duplicated (i.e., two terminals are opened for input/output,
two users can enter the month and day, etc.).

NOTE

The three programs in figures 8-1, 8-2, and 8-3 must specify
the Data Segment and Process Handling capability when they
are prepared, as follows:

DSINIT (figure 8-1)

:PREP $0LDPASS,DSINIT;CAP=DS

DSBOSS (figure 8-2)

:PREP $0LDP ASS,DSBOSS;CAP=PH

DSACCS (figure 8-3)

:PREP $0LDPASS,DSACCS;CAP=DS

In all cases above, it is assumed that $0LDP ASS contains
the compiled USL file for each of the thr~e programs.

In figure 8-1, the statement

INTEGER ARRAY MAXDAY(O:l1):=31,28,31,30,31,30,
31,31,30,31,30,31;

initializes a 12-word integer array to represent the number of days in each month of the year.

The statement

INTEGER ARRAY CALENDAR(0:371):=372(-l);

declares a 372-word integer array and initializes all 372 words to -1.

The two FOPEN intrinsic calls open $STDIN and $STDLIST so that FREAD and FWRITE intrinsic
calls can be issued against these files.

An extra data segment is created with the statement

GETDSEG(DSINDX,DSLGTH," JD");

The parameters specified are

index

8-6

The logical word DSINDX, to which the logical index number of the
data segment will be returned. This index is used to refer to this data
segment in later intrinsic calls from this process.

length

id

DSLGTH, which has been initialized to 372 words (see statement
number 5 in figure 8-1).

"JD", which specifies that this data segment is sharable by other
processes in the same job/session. Note that any process which is to
create or share an extra data segment must have the Data Segment
Capability. If the data segment being created were to be private to the
creating process, zero would be specified for id.

Statements 28, 29, and 30 in figure 8-1 request the user to enter the calendar year, and convert
this ASCII string to a binary value.

The statement

IF YEAR MOD 4 = 0 THEN MAXDAY(l):=29;

checks if the year is equally divisible by 4 and, if it is, adds the 29th day to February for the leap
year.

The six statements beginning with

FOR MONTH:=O UNTIL DO

establish two FOR loops. The inner loop steps from 0 to the maximum number of days minus 1 for
each entry in the array MAXDAY. For example, when MONTH= 0, MAXDAY(MONTH) = 31,
thus the FOR loop performs 31 iterations (0 to MAXDA Y(MONTH) -1).

The statement

DATE:=DATE+l;

increments the date each time the FOR loop is repeated. When the inner loop is satisfied, the
MONTH FOR loop steps one iteration and the inner loop repeats. The array CALENDAR thus is
filled with Julian dates as shown in figure 8-4. The array is linear, of course, and is shown as a
day/month matrix for illustrative purposes only. All elements of the array were initialized to -1,
and positions in the array that retain the value -1 signify invalid dates.

The data contained in CALENDAR is transferred from the stack to the extra data segment with
the statement

DMOVOUT(DSINDX,0,372,CALENDAR);

The parameters specified are

index

disp

DSINDX, which contains the logical index returned by MPE when the
GETDSEG intrinsic was executed.

0, specifying the first word in the data segment. This is the starting
location for the first word transferred from CALENDAR to the extra
data segment.

8-7

Cl)

::c
t-
2
0
2

z
<(....,
en
w
LL

a:
<(
~

a:
a..
<(

>-
<(
~

z
:J,
_J

:J,
(.9
:J
<(

a..
w
(/)

I-
u
0
>
0
z
u
w
0

0

0 1

1 32

2 61

3 92

4 122

5 153

6 183

7 214

8 245

9 275

10 306

11 336

1 2 3

2 3 4

33 34 35

62 63 64

93 94 95

123 124 125

154 155 156

184 185 186

215 216 217

246 247 248

276 277 278

307 308 309

337 338 339

4 5 6 7 8 9

5 6 7 8 9 10

36 37 38 39 40 41

65 66 67 68 69 70

96 97 98 99 100 101

126 127 128 129 130 131

157 158 159 160 161 162

187 188 189 190 191 192

218 219 220 221 222 223

249 250 251 252 253 254

279 280 281 282 283 284

310 311 312 313 314 315

340 341 342 343 344 345

DAYS

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 -1 -1

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 -1

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 -1

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 -1

285 286 287 288 289 290 291 292 293 2B4 295 296 297 298 299 300 301 302 303 304 305

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 -1

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366

Figure 8-4. Array CALENDAR

number

location

372, specifying the size, in words, of the data block to be transferred.

CALENDAR, the data block to be transferred begins at the address in
the stack specified in CALENDAR.

At this point, the following events have occurred:

:RUN DSINIT CALENDAR YEAR
1976 ENTERED

l
ARRAY CALENDAR
FILLED WITH
JULIAN DATES

,, I
EXTRA DATA DATA IN CALENDAR

SEGMENT -- TRANSFERRED TO -
CREATED EXTRA DATA SEGMENT

When the :RUN DSBOSS command is entered, the program in figure 8-2 (DSBOSS) executes.

Statements 18 and 19 open $STDIN and $STDLIST to accept FREAD and FWRITE intrinsic calls.

The statement

CREATE(PFILE,,PINl, "1 ");

creates a process. The parameters specified are

progname

entry name

pin

param

PFILE, a byte array containing the string "DSACCS", which is the
name of the file containing the program to be run. Note that DSACCS
is the name of the program in figure 8-3, thus the process is created for
this program.

Omitted. The primary entry point is specified by default.

PINl, a word to which the Process Identification Number of the
process will be returned.

"l ", a parameter used to transfer control information to the new
process. The new process can access this control information ("1 ") in
location Q - 4 of its data stack.

All other parameters are omitted from the CREATE intrinsic call.

The statement

CREATE(PFILE,,PIN2, "2");

also creates a process for the program DSACCS. This time the Process Identification Number is
returned to PIN2, and the control parameter "2" is located at stack location Q - 4 for this process.

8-9

The two ACTIVATE intrinsic calls activate the two processes. Note that the susp parameter 0
specifies that the father process will not be suspended when the sons are activated. Program DSBOSS,
therefore, has created and activated two processes as follows:

SON1
(DSACCS)

STACK

The four statements beginning with

WAIT:

FATHER
(DSBOSS)

DD
STACK CODE

SON2
(DSACCS)

0-4

suspend DSBOSS for I/0 until "DONE" is entered on $STDIN. DSBOSS did not suspend when
the sons were activated. The reason for this is that when two or more sons are created, and the
father is suspended when the last son is activated, it is possible that the sequence of events will be

8-10

such that the sons are unable to reactivate the father. The following sequence illustrates how this
could happen:

1. Create two sons. Activate SONl.

Father and SONI both active.

2. Activate SON2. Suspend father. Father expects to be reactivated when either son
terminates.

Father suspended; SONI and SON2 active.

3. SONl terminates, reactivating father. Father reactivates, determines that SON2 is still
active, and re-suspends itself. However, while father was active, SON2 terminated.
Attempt to reactivate father failed because father already was active. Thus, when father
re-suspends itself, it suspends indefinitely because both sons have terminated.

The two processes, SONl and SON2, both of which are DSACCS, are shown in figure 8-3.

The statement

FNO:=FOPEN(N.A.ME,%405,4,36,DEV);

opens a terminal for input/output. The parameters specified are

f ormaldesignator NAME, which contains the string TERMIOl when this call is issued by
SONl and TERMI02 when the call is issued by SON2. Note that in
statement number 3, NAME is set equal to TERMIOff. The statement

NAME(6):=PARM;

however, replaces ti with 1 or 2, depending on the parameter contained
in stack location Q - 4 (this parameter was passed to the process by
the CREATE intrinsic call in program DSBOSS). Thus, by using
different formal designators, SONl opens one terminal and SON2 opens
another.

NOTE

Unlike disc files, where each formal designator must be
unique in its domain (temporary or permanent), two or
more devices can be opened with the same formal designator.
For example, two :DATA commands

:DATA FIELD.SUPPORT;TERMIO
:DATA FIELD.SUPPORT;TERMIO

would cause MPE to search the device directory for two
available terminals and, if two are available, both would be
allocated. Using different formal designators, however, allows
a user to direct output to a particular terminal with a : FILE
command.

8-11

{options %405, which specifies the following:

a. Old file.

b. ASCII.

c. Actual file designator is the same as the formal file designator.

d. Fixed-length records.

e. Carriage-control character expected.

aoptions 4, which specifies input/output access.

recsize 36, specifying 36 words.

device DEV, a byte array specifying the device class ("TERM").

All other parameters are omitted from the FOPEN intrinsic call.

The shared data segment is acquired with the statement

GETDSEG(DSINDX,DSLGTH," JD");

Note that the process quits unless the CCG condition code, signifying that an extra data segment
with this identity exists already, is returned (see statement number 25).

A month is requested from the user and the input is converted to binary. The user then is requested
to enter a day and this information is read and converted to binary.

The statement

IF MONTH < > CURRENT THEN

checks whether the month information is different than the information currently in the stack.
If it is, the statement

DMOVIN(DSINDX,(MONTH-1)*31,31,DATES);

transfers the Julian dates for the month entered by the user into the 31-word array DATES. For
example, if the user entered 3, the values 61 through 91 (see figure 8-4), corresponding to the
Julian calendar dates for the month of March are transferred from the extra data segment to the
array DATES in the stack. Data representing the entire month, instead of data representing the
specific day entered by the user, is transferred by DMOVIN because DMOVIN, which requires
considerable time to execute, should be used sparingly to maintain programming efficiency. Trans­
ferring the data for the entire month saves time if the user's next request is for a Julian date in the
same month. Note that months are numbered from 0 to 11.

8-12

The buffer CURRENT is updated to the current month with the statement

CURRENT:=MONTH;

The Julian date is computed with the statement

JD ATE:= DATES(DAY -1);

and this information is output to the user.

The three examples below illustrate using the three programs shown in figures 8-1, 8-2, and 8-3.

EXAMPLE 1

:RUN DSlNlT

GENERATE CALENDAR DATA SEGMENT
ENTEq YEAR: 1976

END OF 0 ROGRAM
:quN DSBOSS

WHEN ALL JULIAN DATE OPERATIONS AqE COMPLETE TY0 E: DONE.
? DONE

END OF PROGRAM

EXAMPLE 2

:DATA FlELD.STJDPORTJTERMIOl
JULIAN DATE CALENDAR
MONTH = J 1
DAY = 31
DAY = 30
JULIAN DATE = 335
MONTH = 2
DAY = 29
JULIAN DATE = 60
MONTH = 6
DAY = l /1

DAY = f3
JULIAN DATE= 165
MONTH = 13
MONTH = ~
MONTH = 3
DAY = 29
JULIAN DATE = 89
MONTH =

8-13

EXAMPLE 3

:DATA FIELD.SUP?ORTJTERM102
JULIAN DATE CALENDA~
MONTH = -9
MONTH = 9
DAY= 15
JULIAN DATE = 259
MONTH = 7
DAY = 20
JULIAN DATE = 202
MONTH = 8
DAY = 14
JULIAN DATE = 227
MONTH = 5
DAY = 3

In example 1, the command : RUN DSINIT causes DSINIT to execute. It prints the purpose of the
program and a request to the user to enter the year for which Julian dates are required. When 1976
is entered, DSINIT creates an extra data segment, fills an array with Julian dates for the year 1976,
transfers this data to 'the extra data segment, and terminates.

The :RUN DSBOSS command causes DSBOSS to execute. DSBOSS creates and activates two son
processes (DSACCS), then suspends itself after the message

WHEN ALL JULIAN DATE OPERATIONS ARE COMPLETE TYPE: DONE.
?

Example 2 illustrates the SONl process execution.

1. A user enters a :DATA statement on a terminal. (Remember. that SONl and SON2 have
each opened a terminal for input/output.)

2. MPE searches the device class directory for a terminal with the formal designator
TERMIOl, and allocates the terminal.

In response to the month and day requests, the user enters

MONTH= 11

DAY= 31

DSACCS determines that 31 is not a valid day for month 11 with the statement

IF JDATE < 0 THEN GO GETDA;

(see figure 8-3). Recall that invalid dates in the array CALENDAR (see figure 8-4) are signified
by -1. DSACCS prompts for a new day and the user enters 30. DSACCS computes the Julian
date for November 30th and displays:

JULAIN DATE = 335

Example 3 shows a second user accessing terminal 2.

8-14

When a user types DONE on $STDIN, see example 1, the father process terminates, terminating
both sons.

DELETING AN EXTRA DATA SEGMENT

A process can release an extra data segment assigned to it with the FREEDSEG intrinsic. If this is a
private data segment, or if it is a sharable segment not currently assigned to any other process in the
job/session, the segment is deleted from the entire job/session. Otherwise, it is deleted from the call­
ing process but continues to exist in the job/session.

For example, to delete a data segment with the logical index contained in INDX, the following
intrinsic call could be used. Because the id parameter is specified as 0, the data segment is deleted
from both the process and the job.

FREEDSEG(INDX,O);

TRANSFERRING DATA FROM AN EXTRA DATA SEGMENT TO
THE STACK

A process can copy a biock oi words from an extra data segment into the stack v'v"ith the DMOVIN
intrinsic. A bounds check is performed by the intrinsic on both the extra data segment and the
stack to insure that the data is taken from within the data segment boundaries and moved to an area
within the stack boundaries.

The DMOVIN intrinsic call is illustrated in Figure 8-3 and described on page 8-12.

TRANSFERRING DATA FROM THE STACK TO AN EXTRA
DATA SEGMENT

A process can copy a block of words from the stack to an extra data segment with the DMOVOUT
intrinsic. A bounds check is performed by the intrinsic to insure that the data is taken from an area
within the stack boundaries and moved to an area within the extra data segment.

The DMOVOUT intrinsic call is illustrated in Figure 8-1 and described on page 8-7.

CHANGING THE SIZE OF AN EXTRA DATA SEGMENT

You can change the curreni size oi an extra data segment with the ALTDSEG intrinsic. As a typical
application, disc storage for a new segment is obtained by calling the GETDSEG intrinsic. Sufficient
virtual space is allocated by the system to accommodate the original length of the data segment.
This virtual space usually is allocated in increments of 512 words (depending on how the system is
configured). For example, creation of a data segment with a length of 600 words would result in
two increments of 512 words being allocated for the data segment space, thus resulting in 1024
words.

Once disc storage is obtained, you can use the ALTDSEG intrinsic to reduce the storage required by
the segment when it is moved into main memory, then later expand it as needed for more efficient
use of memory. In no case, however,. can ALTDSEG be used to increase segment size beyond the
virtual space originally allocated through GETDSEG.

8-15

The form of the AL TDSEG intrinsic call is

ALTDSEG(INDEX,INC,SIZE);

where

8-16

INDEX is a word containing the logical index of the extra data segment, obtained through the
GETDSEG intrinsic call.

INC is the value, in words, by which the extra data segment is to be changed. A positive integer
value specifies an increase and a negative integer value specifies a decrease.

SIZE is a word to which is returned the new size of the data segment after incrementing or
decrementing has occurred.

PRIVILEGED MODE CAPABILITY 1rul!·li~ I

If you are an MPE user with standard MPE capabilities, you can access only your own code and data
areas in main memory. But if you are a user with the Privileged Mode Capability, you can access all
areas of the system and can use all features of the hardware. You can access all system tables, and
can invoke all system instructions, including those in the privileged central processor instruction set.
You can, in short, use the computer on the same terms as MPE itself. (In fact, MPE does not
distinguish a privileged user as not being MPE itself.)

IMPORTANT NOTE

The normal checks and limitations that apply to the standard
users in MPE are bypassed in privileged mode. It is possible
for a privileged mode program to destroy file integrity, includ­
ing the MPE operating system software itself. Hewlett-Packard
will investigate and attempt to resolve problems resulting
from the use of privileged mode code. This service, which is
not provided under the standard Service Contract, is available
on a time and materials billing basis. However, Hewlett-Pack­
ard will not support, correct, or attend to any modification
of the MPE operating system software.

You can use the Privileged Mode Capability in two ways:

1. You can write permanently privileged programs that are loaded and executed entirely in
privileged mode.

2. You can write temporarily privileged programs that dynamically enter and leave
privileged mode during execution, as required.

PERMANENTL V PRIVILEGED PROGRAMS

A program's segments are loaded and executed directly in privileged mode when all three of the
following conditions exist:

1. Any of the program's code segments contain privileged instructions. ($OPTION
PRIVILEGED is used.)

2. The program is prepared with the Privileged Mode Capability, by entering the appropriate
capability-class attribute in the caplist parameter of the :PREP or :PREPRUN command
that prepares the program. (See the MPE Commands Reference Manual for discussions of
the :PREP and :PREPRUN commands.) Note that entering a privileged capability class
attribute requires that you have been assigned the Privileged Mode Capa,bility.

9-1

3. The NOPRIV optional parameter is omitted from the :PREPRUN or :RUN command
that executes the program, or the CREA TE intrinsic that creates a process to run it. This
omission leaves the privileged mode bit in the appropriate CST entries on.

When you add a segment to a Segmented Library (through the -ADDSL Segmenter command), the
procedures within the segment are checked to determine if any one of them is privileged. If it is, the
segment is always run in privileged mode. In order to add a segment containing one or more
privileged procedures to a library, you must possess the Privileged Mode Capability. See the MPE
Segmenter Reference Manual for instructions concerning Segmented Libraries.

TEMPORARILY PRIVILEGED PROGRAMS

Temporarily privileged programs are initiated, upon request, in the non-privileged mode. Then,
intrinsics can be used to change the program to and from the privileged mode dynamically. For
example, just before a set of privileged instructions is encountered, the program can be switched to
the privileged mode to allow execution of these instructions. Then, after the last privileged
instruction in the set is encountered, the program can be returned to non-privileged mode. This
bracketing of privileged instructions aids in reducing system violations, since the program cannot
access locations or resources out.side the user environment when it is running in non-privileged
mode.

Before running a temporarily-privileged program, you should understand how the central processor
handles procedure calls (PCAL instruction) and exits (EXIT instructions) when encountered in
either mode:

In the privileged mode, when a PCAL instruction is executed, privileged mode is retained
even though the destination code segment may have a non-privileged CST entry. When an
EXIT instruction is encountered, the resulting mode depends on the status word in the
stack marker.

In the non-privileged mode. when a PCAL instruction is encountered, the mode assumed
is obtained from the CST entry for the destination code segment. When an EXIT
instruction occurs, the resulting mode is taken from bit 0 of the status in the stack
marker. If the entry indicates privileged mode, a system violation occurs.

In general, the status word determines the action taken in privileged mode, but the CST determines
the action in non-privileged mode.

NOTE

See the Machine Instruction Set Reference Manual for further
discussions of the PCAL and EXIT instructions and System
Reference Manual (Chapter 4) for principle of operation.

A program is loaded and begins execution as a temporarily-privileged program (in the non-privileged
mode) when these two conditions are met:

9-2

1. The program is prepared with the Privileged Mode Capability, by entering the appropriate
capability-class attribute in the caplist parameter of the :PREP or :PREPRUN command
that prepares the program. This requires that you have been assigned the Privileged Mode
Capability.

2. The NOPRIV parameter is included in the :PREPRUN or :PREP command that executes
the program, or the CREA TE intrinsic that creates a process to run it.

When a temporarily-privileged program is initiated, the CST entries corresponding to its segments
have their privileged-mode bits set off.

If you possess Privileged Mode Capability, you also can call all intrinsics available to users with the
Data Segment Management Capability (Section VIII), provided that you acknowledge these rules:

1. When calling the data segment intrinsics from privileged mode, ensure that the DB register
points to its normal stack position. When the GETDSEG intrinsic is used to create extra
data segments under these conditions, the number of segments that can be created is
limited only by the space available in the Process Control Block Extension. This number
is virtually unlimited.

2. When a temporarily-privileged process calls a data segment intrinsic while in
non-privileged mode, the data segment index returned to the calling process also can be
used by the process to reference that segment in privileged mode. If the process calls a
data segment intrinsic in privileged mode, however, the index returned cannot be used to
reference the segment in non-privileged mode.

ENTERING PRiViLEGED MODE

The GETPRIVMODE intrinsic is used to switch a temporarily-privileged program from the
non-privileged mode to the privileged mode. This intrinsic turns the privileged mode bit in the status
register on, but leaves the privileged mode bit in the Code Segment Table entry for the executing
segment off. Thus, if additional segments are to be run as part of the program, they will be run in
privileged mode uniess an intrinsic is specifically called to return to the non-privileged mode,
because the status register rather than the Code Segment Table determines a mode change when
running in privileged mode.

Figure 9-1 contains a program that uses the GETPRIVMODE intrinsic to switch to privileged mode.
Privileged mode is necessary temporarily because the program opens a file with both NOBUF and
NOWAIT aoptions specified in the FOPEN intrinsic call. Privileged mode capability is necessary for
this because your I/0 could overwrite other data in the system unless caution is used.

The program in figure 9-1 was prepared with the CAP = Pl\1 parameter specified in the :PREP
command. This enables the program to be switched from non-privileged to privileged mode with the
GETPRIVMODE intrinsic. The statement in the program

GETPRIVMODE;

switches the program from non-privileged to privileged mode before the next statement opens a file
with both the NOBUF and NOWAIT aoptions specified.

The statement

CCG(2);

causes the program to quit if a CCG condition code (signifying that the program already is running
in privileged mode) is returned.

9-3

SCONTROL USLINIT
BEGIN

BYTE ARRAY OUTPUT(016)1•"0UTPUT "J
BYTE ARRAY TN~MC016)1:"DATAIN "J

00001000 00000 0
00002000 00000 0
00003000 00000 1
00004000 00005 1
00005000 00005 1
00006000 00005 1
00007000 00005 1
00008000 00005 1
00009000 00005 1
00010000 00005 1
00011000 00005 i
00012000 00005 1

BYTE ARRAY DEVC017)1:"LP TERM "'
INTEGER OUT,FILE1LGTH,I1••l1PROMPT1a"?
EQUATE ""AXTRM=lr

11 ,00NE1=or

ARRAY AUFRC0:36*MAXTRM)J
INTEGER ARRAY OPF.N(O:MAXTRM)J
DEFINE CCL : IF < THEN QUIT#,

CCG z IF > THEN QUIT•,
CCNEz IF <> THEN QUIT#J

INTRINSIC FOPEN,FREAO,FWRITE,FCLOSE,GETPRIVMODE,GETUSERMOOE,
IOWAIT,QUITJ

00013000 00005 1
00014000 00005 1
00015000 00005 1
00016000 00005 1
00017000 00005 1
00018000 00005 1
00019000 00005 1
00020000 00015 1
00021000 00023 1
00022000 00023 2
00023000 00027 2
00024000 00042 2
00025000 00045 2
00026000 00051 2
00027000 00054 2
00028000 00064 2
00029000 00075 2
00030000 00111 2
00031000 00116 1 WA!TI

<<END OF DECLARATIONS>>

OUT!=FOPENCOUTPUT,41111DEV)J CCLC1)J
WHILE Cit•I+1)<MAXTRM DO

BEGIN

<<LINEPRINTER OUTPUT>>
<<LOOP•SET UP TERMS>>

::1;¢:g~U\Vi!?:P.1ml\J¢¢.~Ui¥tt:<: :=:='.:::::::::==.,.::=:::::::::=:=:::::::::=:2 ... =':?:':':::+<@tttH~$f:~nn::11111:tiltAP:~•j»t'
FILE1sFOPENCTNAM,%405,,44041361DEVC3))J<<OATA INPUT TERMINAL>>
CCLC3)J <<CHECK FOR ERROR>>
3~$!!-tPl.t~•ttti~.mr:t¢tlJ.¥J.><t<ttmtth>IItttttttttt:tii.t.initJialtttr::1zo:i1t=t1m
OPEN(!)t=FILEJ <<SAVE FILE NUMBERS>>
FWRITECFILE,PROMPT,1,\320)J CCNEC5)1 <<OUTPUT ? PROMPT>>
IOWAITCFILE)J CCNE(6)J <<COMPLETE REQUEST>>
FREADCFILE,BUFR(I*36) 1•72)J CCNE(7)J <<INPUT DATA•NOWAIT>>

ENOJ

00032000 00116 1 FILE::IOWAITco,,LGTH)J CCL(8)J <<WAIT FOR 1ST DONE>>
<<EDF ON TER~ READ>> 00033000 00130 1 IF > THEN

00034000 00131 1 BEGIN
00035000 00131 2 FCLOSECFILE,O,O)J CCLC9)J <<TERMINAL FILE>>
00036000 00137 2 IFCDONEl=DONE+t)>:MAXTRM THEN GO EXITr <<ALL TERMS CLOSED?>>
00037000 00143 2 END
00038000 00143 1 ELSE
00039000 00145 1 BEGIN
00040000 00145 2 l:=•1J
00041000 00147 2 00 I1=I+1
00042000 00147 2 UNTIL OPENCI):FILE OR I:MAXTRMJ
0004300-0 00157 2 IF I:MAXTRM THEN QUITCtO)J
00044000 00164 2 FWRITECOUT,BUFR(l*36),•LGTH,O)r
00045000 00174 2 CCNEC11)r
00046000 00177 2 FWRITECFILE,PROMPT,1,,320)J CCNEC12)r
00047000 00207 2 IOWAITCFILE)r CCNEC13)J
00048000 00220 2 fREADCFlLE,BUFRCI•36),•72)J CCNEC14)J
00049000 00234 2 ENDJ
00050000 00234 t GO TO WAITS
00051000 00235 1 EXIT:END,

PRIMARY OB STORAGE:\01lJ SECONDARY DB STORAGE=\00175
NO. ERRORS•OOOJ NO. WARNINGS:OOO
PROCESSOR TIME=O:OOI02r ELAPSED TIM~=o100108

<<SET BUFFER INDEX>>
<<!NCR BUFFER INDEX>>
<<SEARCH FOR FILE NO>>
<<FILE NOT FOUND>>
<<COPY INPUT TO LP>>
<<CHECK FOR ERROR>>
<<OUTPUT ? PROMPT>>
<<COMPLETE REQUEST>>
<<INPUT DATA•NOWAIT>>

«CONTINUE»

Figure 9-1. Using the GETPRIVMODE and GETUSERMODE Intrinsics

9-4

ENTERING NON-PRIVILEGED MODE

The GETUSERMODE intrinsic is used to change a temporarily-privileged program from the
privileged to the non-privileged mode. This intrinsic changes the privileged mode bit in the status
register to off.

The statement

GETUSERMODE;

in figure 9-1 illustrates this intrinsic call

MOVING THE DB POINTER

If you have the Data Segment Management Capability, and run a process with an extra data segment
in privileged mode, you can prepare for movement of data between this segment and the stack with
the SWITCHDB intrinsic. This intrinsic changes the DB register so that it points to the base of the
extra data segment rather than the base of the stack. The SWITCHDB intrinsic returns the logical
index of the data segment indicated by the previous DB register setting, allowing you to restore this
setting later. If the previous DB setting indicated the stack, zero is returned.

As an example, to set the DB register so that it points to the base of an extra data segment whose
logical index is indicated in the word INDEX2, the following intrinsic call could be used:

SET:=SWITCHDB(INDEX2);

where INDEX2 is a logical value denoting the logical index of the data segment to which the DB
register is switched, as obtained through the GETDSEG intrinsic calL MPE checks the value
specified for this parameter to insure that the process has previously acquired access to this
segment. For an extra data segment, this parameter must be a positive, non-zero integer; and to
switch back to the stack, this parameter must be zero.

The calling process is aborted if you try to call the SWITCHDB intrinsic from a program which does
not have the Privileged Mode Capability.

SCHEDULING PROCESSES

Every process in the system has a priority assigned to it. When a process is ready to run, it is placed
in the READY list. When the dispatcher runs, it selects for execution the process with the highest
priority that is in memory.

The master queue (see figure 9-2) is divided into logical areas, each corresponding to a particular
type of dispatching and priority class for the processes within it. A logical area can be a linear
subqueue, a circular subqueue, or a portion of the main master queue. In a linear subqueue, the
process with highest priority accesses the central processor first and maintains this access until the
process either is completed, terminated, or suspended to await the availability of a required
resource. In a circular subqueue, all processes have equal priority and each accesses the central
processor for an interval (time quantum) of maximum duration (or until completed, terminated, or
suspended). At the end of this duration, control is transierred to the next process in the queue,
continuing in a round-robin fashion. This time-slicing is controlled by the system timer. Processes
that are not scheduled in a subqueue are scheduled in the master queue.

9-5

9-6

NOTE: Parameters are
modifiable by :TUNE
command only.

LINEAR
QUEUES

cs

DS

ES

150 <

PRIORITY
NUMBER

0

50

100

"AS"

150

} ,,~ ..

255

(

C BASE, C LIMIT)
D BASE, D LIMIT
E BASE, E LIMIT

Figure 9-2. Queue Structure

< 255

HIGH PRIORITY

CBASE

LOW PRIORITY

Each linear subqueue in the master queue is defined by a single priority number, and each circular
subqueue is defined by a range of priority numbers. While the standard user is aware of the priority
class associated with a subqueue, only a user with System Supervisor or Privileged Mode capability
can deal with priority numbers. The standard subqueues (priority classes) are as follows:

AS

BS

cs

DS

ES

Is a linear subqueue containing processes of very high priority. Its priority
range is 30-99 and it is presently used only by MPE

Scheduling Type:
Priority Range:

Linear
30-99

Is a linear subqueue containing processes of very high priority. It is accessible
to users having MAXPRI=BS. Normally, priority for a BS process is 100.
However, by specifying a rank> 0 in the CREATE or GETPRIORITY in­
trinsics, the process may be set in the master queue at min (100 +rank, 149).

Is a circular subqueue generally devoted to interactive sessions. A CS process
whose CPU time between priority changes exceeds the "average short trans­
action" will be lowered in priority, but not below the C Subqueue Priority
Limit, called CLIMIT, which may be set by the :TUNE command. (See
Section II of the System Manager/System Supervisor Reference Manual,
30000-90014.)

Scheduling Type:
Priority Range:

Circular
150-CLIMIT

Is a circular subqueue generally devoted to batch jobs. A DS process whose
CPU time between priority changes exceeds the backgroundquantum will be
lowered in priority, but not below the D Subqueue Priority Limit, or
DLIMIT, which may be set by the :TUNE command. (See Section II of the
System Manager/System Supervisor Reference Manual, 30000-90014.)

Scheduling Type:
Priority Range:

Circular
150-DLIMIT

Is a circular subqueue generally used for so-called "idle" processes. When an
ES process's CPU time between priority changes exceeds the background­
quantum, its priority is reduced, but not below ELIMIT. Such a process will
have a minimal impact on the performance of processes in other subqueues.
(See Section II of the System Manager/System Supervisor Reference Manual,
30000-90014.)

Scheduling Type:
Priority Range:

Circular
150-ELIMIT

In all cases, it should be remembered that low numeric values mean high priority in the system.

The System Manager has the ability to modify on-line the values of the starting priority (BASE) and
priority limits (LIMIT) for each queue, as well as the average short transaction limit and back­
groundquantum via the :TUNE command.

9-7

A CS process is given a priority of CEASE when it begins. (See Figure 9-2). When a process stops
(for disc I/0, terminal I/0, preemption, etc.), its new priority is determined so that it may be re­
queued for the CPU. If the process has completed a transaction, (a transaction is defined as the time
between terminal reads), the priority becomes CEASE. The value of an "average short transaction"
is then recalculated. If the CS process has not completed a transaction, and if the process has ex­
ceeded the average short transaction filter value since its priority was last reduced, the priority is
decreased, but will not be worse than CLIMIT.

DS and ES processes begin at DEASE and EEASE respectively, and are rescheduled according to
the same criteria as used for CS processes, with the exception that a fixed value (the value of max
which has been specified for the subqueue) is used in place of the average short transaction value,
which is used for CS processes only.

The priority class of a process can be specified by the normal user with standard or optional MPE
capabilities. In the two-character string that comprises a priority-class reference, the first character
refers to the location of a subqueue within the master queue (in alphabetical order) and the second
character specifies whether the logical area is the subqueue itself (S) or the portion of the master
queue (M) that immediately follows the subqueue. When a priority class is requested for a process,
it is assigned the lowest priority within that class (relative to other processes already assigned the
same class). In a circular subqueue, the actual priority of the process is modified as other processes
use central processor time.

Only a user with Privileged Mode Capability can assign a priority number to a process. Priority
num hers range from 1 to 255 inclusively, with 1 denoting the highest priority. Any two processes
having the same priority number are in the same subqueue. The privileged mode user also can
specify the relative ranks of processes having identical numbers within a linear subqueue, and can
assign them specific priorities in the master queue.

Priorities are assigned to processes through the priorityclass parameter of the CREATE and/or
GETPRIORITY intrinsic. Because users with the Privileged Mode Capability can schedule processes
within the master queue, the priorityclass parameter can take on the following values:

9-8

1. A string of two ASCII characters describing the standard priority-class (subqueue) in
which the process is to be scheduled; the standard subqueues are "AS", "BS", "CS",
"DS", or "ES".

2. An ASCII character (x) specifying a valid subqueue, followed immediately by the
single-character string "M", indicating the Master Queue. The word format is:

BITS 0 15

x "M''

This schedules the process in that region of the master queue directly adjacent to and
below the subqueue x. The process is scheduled in the first available priority in that
region.

3. An ASCII character (y) specifying an absolute priority number, followed by the single­
character string "A" indicating that y is an absolute priority number. The word format
is:

BITS 0 1p

y ., A" I

This schedules the process at the location specified by y in the Master Queue. If another
process or subqueue already occupies the location designated by y, the process is placed
in the first location available moving toward the ES subqueue, and the process priority
number is changed to reflect that location.

9-9

ACCESSING AND ALTERING
,1u;u.u

FILES 11 x I

By using MPE file system intrinsics, you can perform the following operations on files:

• Open files with FOPEN. See page 10-28.
• Request access and status information about a file with FGETINFO. See page 10-70.
• Request file error information with FCHECK. See page 10-7 4.
• Read records (or a portion of a record) from a file with FREAD (see page 10-48) and

FREADDIR (see page 10-52).
• Write a record (or a portion of a record) to a file with FWRITE (see page 10-51) and

FWRITEDIR (see page 10-55).
• Move a specific record from a file into a buffer preparatory to reading the record to the

stack with FREADSEEK. See page 10-55.
• Initiate completion operations for an I/0 operation with the IOWAIT intrinsic. See page

10-63.
• Write a file label on a magnetic tape file. See page 10-93.
e Read a user~defined label from a disc file with FREADLABEL. See page 10-70.
• Write a user-defined label onto a disc file with FWRITELABEL. See page 10-66.
• Update a record on a disc file with FUPDATE. See page 10-60.
• Space forward or backward on a disc or tape file with FSPACE. See page 10-85.
• Reset the logical record pointer to any logical record in a fixed-length record disc file

with FPOINT. See page 10-96.
• Perform control operations on a file (or the device on which the file resides) with FCON-

TROL. See page 10-95.
• Activate and deactivate access mode options with FSETMODE. See page 10-96.
• Rename an open disc file with FRENAME. See page 10-45.
• Determine if an input file and a list file are interactive or duplicative with FRELATE. See

page 10-97.
• Coordinate access to shared files with FLOCK and FUNLOCK intrinsics (see pages

10-58 and 10-60).
• Close a file with FCLOSE. See page 10-40.

FILE MANAGEMENT SYSTEM

The File Management System provides a uniform method of directing input and output of
information. It handles various inputioutput applications, such as the transfer of information to and
from user processes, compilers, and data management subsystems.

MPE treats each set of input or output information as a set of records arranged into a file. When a
file is created, MPE allocates (or requests the operator to allocate) a device for its storage. Input
read from a hardware device such as a card reader is accepted from that device. Similarly, output
from an executing process is transmitted to the required device (such as a line printer).

You reference a file by the file name assigned to the file when it is created. w-hen you reference an
existing file, MPE determines the device or disc address where the file is stored and accesses the file
for you. In most cases, access to the file remains device independent.

10-1

The MPE File Management System allocates devices for the storage of files on the basis of
specifications from you. For example, you can request a device by generic type name, or "device
class", as configured by the System Manager (such as any magnetic tape unit or line printer), or by
the logical device number that refers to a specific device. Logical device numbers are related to all
devices when MPE is configured.

FILE CHARACTERISTICS

A file can contain MPE commands, programs, or data, or any combination of these elements,
written in ASCII or binary code.

Within a file, information is organized as a set of logical records, which are fields of data input,
processed, and output as a unit. A logical record is the smallest data grouping directly addressable
by you. Its length is specified by you when you create or define the file. A physical record is one or
more logical records, and is the basic unit that can be transferred between main memory and the
device on which the file resides. Physical records can be longer or the same size as the logical records
in the file. In files on disc or magnetic tape, physical records are organized as blocks that always
contain an integral number of logical records. On unit-record devices, the size of the physical rec­
ords in a file is determined by the device. For example, each physical record read from a card reader
consists of one punched card; each physical record written to a line printer consis~ of one line of
print. On unit-record devices in multi-record mode, logi,cal records are not blocked. For example, on
punched cards, each logical record is assumed to begin at the first column of the card. Thus, to read
a single 100-character logical record, the multi-record aoption must be specified in the FOPEN call
to open the file. Then the record would be read as 80 characters from one card (physical record)
and 20 characters from the next card. The next logical record is assumed to begin in the first col­
umn of the third card encountered. Similarly, when a file is transmitted to a printer, each logical
record appears as one line of print (physical record), left-justified. If the logical record is longer than
the print line, and the multirecord aoption is specified, the remaining information is continued on
the next line, also left-justified.

Files of fixed or undefined length permit sequential or direct access. Variable length files permit
sequential access only in buffered mode, and direct access only in NOBUF.

MPE manages each file on disc as a set of extents. Each extent is an integral number of
contiguously-located disc sectors. All extents (except possibly the last) are of equal size. When a file
is opened, the first extent (containing at least one sector for file label information) is allocated
immediately. Other extents, up to a maximum of 32, are allocated as needed. Alternatively, you can
request immediate allocation of more than one extent when' the file is opened. The size of each
extent is determined as noted in the discussion of the :FILE command parameter numextents in the
MPE Commands Reference Manual.

Each extent of a disc file must be totally contained within a given disc device. In addition, the
extents that comprise a disc file are restricted to disc devices that are members of the device class
specified when the file was created. Normally, each extent is arbitrarily assigned to any device with
this class. Alternatively, each extent may be restricted to a specific disc device. The method of
extent allocation is determined by the device class specification of the FOPEN intrinsic when the
file is created.

10-2

RECORD FORMATS

A file can contain records ·written in one of three formats: fixed-length, variable-length, and
undefined length. These formats are described below. (In all cases, recsize is in words.)

For fixed-length records, physical records are blocks containing one or more logical records. The
block size is determined by multiplying the block factor by the logical record size. (The block
factor and logical record size are specified in the blockfactor and recsize parameters of the FOPEN
intrinsic.) On any one file, fixed-length records are all the same size. A 128-word physical record
(block) containing three 80-byte, fixed-length logical records is illustrated below:

Physical Record
(blockfactor x recsize)

LOGICAL LOGICAL LOGICAL
RECORD 0 RECORD 1 RECORD 2

~~~ 

RECSIZE= -80 RECSIZE= -80 RECSIZE= -80 

'----------------. .------------~----
120 WORDS 8 WORDS UNUSED 

DISC SECTOR 

If you use a record of 129 words vvith a blockfactor of 1, you will waste 127 words of disc space, as 
follows: 

_____ ____.! I -
+'-------~----------

128 WORDS 1 WORD 127 WORDS UNUSED 

For optimum use of disc space, therefore, block size should be computed such that (recsize x 
blockfactor) modulo 128 = 0. 

For variable-length records (as for fixed-length records), physical records are blocks containing one 
or more logical records - but, on any one file, the record size may vary from record to record and 
so the number of logical records per physical record may vary. Therefore, when the file is created, 
the block size is determined by multiplying the blockfactor by the recsize parameter specified in 
FOPEN plus one, and adding one word (reserved for file-system use). 

Because a fixed block factor has no meaning for a file of variable length records, once the calcula­
tion is done the block factor is reset to 1. Maximum logical recsize is then set to actual blocksize 
minus two words. 

Actual Blocksize = (blockfactor x (recsize + 1) )+ 1 
(in words) 

10-3 



In a block containing variable-length records, each logical record is preceded by a one-word 
byte-count showi~g the length of that record in bytes. The last record in the block is followed by a 
word containing "-1 ", acting as the block terminator; the next logical record encountered will be 
the first record in the next block. (Logical records are not split across block boundaries.) The block 
format is: 

BYTE LOGICAL 
COUNT RECORD 0 

Physical Record 
[(blockfactor x (recsize + 1) + 1] 

BYTE LOGICAL BYTE LOGICAL 
COUNT RECORD 1 COUNT RECORD 2 -1 

Unless block size is computed such that 

(actual block size) modulo 128 = 0, 

some disc space will be wasted. 

For example, if recsize = 128 words and blockfactor = 1, 126 words of disc space will be wasted as 
follows: 

-1 
t 

l~I ___ ____.I 111 
• l 
COUNT 127 WORDS 1 WORD 126 WORDS UNUSED 

For undefined-length records, physical records and logical records are synonymous - that is, 
Physical record A is the same as logical record A. For records of this type, the recsize parameter 
specified by the user denotes the size of the longest record to be transferred. The format of 
undefined records written to disc, with respect to the disc sectors occupied, can be illustrated by 
three cases in which the user-specified recsize is 256. 

10-4 

Case 1: You write a record 256 words long. The full record completely fills two disc sectors. 

RECSIZE = 256 

SECTOR A SECTOR B 
A " 

WORDS WRITTEN= 256 

Case 2: You write a record 129 words long. The record written occupies all of sector A and 
the first word of sector B; the last word written is propagated throughout the 
remainder of sector B. (The rule is: if (rec length) modulo 128 is not zero, then the 
last word written is propagated through the current sector.) 



SECTOR A 

RECSIZE = 256 

SECTOR B 

CONTENT OF WORD 129 
PROPAGATED THROUGH 

SECTOR B 

WORDS WRITTEN= 129 

Case 3: You write a record 127 words long. The record written occupies 127 words of 
Sector A; the last word of the record is propagated throughout the remainder (word 
128) of Sector A. Sector B contains uninitialized data. (The rule is: any sector not 
written into will remain uninitialized to 0 (binary files) or blanks (ASCII files).) 

RECSI ZE = 256 

SECTOR A SECTOR B 

FRECORD .. i T..._ ___ _,_ _ _... 
CONTENT OF WORD 127 UNINITIALIZED 

PROPAGATED THROUGHOUT 
SECTOR A 

10-5 



RELATIVE 1/0 BLOCK FORMAT 

10-6 

Item____. 
#23 

Item_____.. 
#24 

Logical Record </> 

• 
• 
• 
• 

Logical Record F -1 

Active Record Table 

Item 
#22 

+Item 
+ #25 

FFILEINFO Item Numbers (see Figure 2-lA) 

Item 21 - Physical Block Size 
22 - Data Block Size 
23 - Offset to Data in Blocks 

Item 
#21 

24 - Offset to Active Record Table within the block 
2 5 - Size of Active Record Table 

Active Record Table 

l l 
-r I I I I I I I I 

T 

I I I I I I I 

• • 
I I I I I I I I I I I I I I I 

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 
A= active-record table size in words =Ii~ 
F = blocking factor (number of records per block) 

R = index of desired record, modulo F 

W = index of word for desired record= R/16 

P = index of bit for desired record = R mod 16 

bit = 0: inactive record 

= 1 : active record 

wor 

wor 

record </> (block-relative) 

record 15 

d </> 

d A-1 



FILE DEVICE RELATIONSHIPS 

Devices required by files are allocated by MPE. You can specify these devices by type (such as any 
card reader or line printer), or by a logical device number related to a particular device (such as a 
specific line printer). (A unique logical device number is assigned to each device when the system is 
configured.) Regardless of what device a particular file resides on, when a user program asks to read 
that file, it references the file by its formal file designator. MPE then determines the device on 
which the file resides, or its disc address if applicable, and accesses it for you. When the user pro­
gram writes information to a particular file to be output on a device such as a line printer, again the 
program refers to the file by its formal file designator. MPE then automatically allocates the re­
quired device to that file. Throughout its existence, every file remains device-independent; that is, it 
is always referenced by the same formal file designator regardless of where it currently resides. The 
user program always deals with logical records. 

NON-SHARABLE DEVICE ACCESS 

The specification of a device by type when a file is opened implies a request for the initial allocation 
of a previously unopened device. The file system, during FOP EN, issues an allocation request to the 
console operator. After the operator answers, FOPEN continues execution. (The device speci­
fication is ignored when $STDIN[X] and $STDLIST are opened.) A job may reallocate an opened 
device by specifying the device's logical device number when the file is opened. In this case, no con-
sole operator intervention is required. 

Multiple processes can asynchronously interleave accesses to reallocated devices. Since the file 
system does "anticipatory reads" on buffered input devices, multiple processes should specify 
Multi-Access (better) or Inhibit Buffering (NOBUF) if records must be transmitted in the same 
order as requested. 

FILE DOMAINS 

The set of all permanent disc files in MPE is known as the system file domain. Within this domain, 
files are assigned to accounts and organized into groups under those accounts. You log on using an 
account and group which provides the basis for your local file references. You may be required to 
supply passwords for the account and group to log on, but thereafter (if the default MPE file 
security provisions are in effect) you can: 

• Have unlimited access to any file within your log-on or home group. If, however, the file 
is protected by a lockword, you must know this lockword. 

• Read, and execute programs residing in, any file in the public group of your account, and 
in the public group of the system account. 

Potentially, if the MPE file security provisions at the account, group, and file levels were all 
suspended, and you knew all account and group names and file lockwords, you could access any 
permanent file in the system once you logged on. Note that once you log on, you do not need to 
know the passwords for other accounts and groups to access files assigned to them -you only need 
to know their account and group names. But, if any of these files are protected by a file lockword, 
you must know this lockword. 

For every job or session running in the system, MPE recognizes another file domain, called the job 
or session file domain. This domain contains all temporary files opened and closed within the job or 
session without being saved (i.e., declared permanent). Files in these domains are deleted when the 
job or session terminates (if they are job/session temporary files), or when the creating program 
ends (if they are regular temporary files). 

10-7 



FILE LABEL 

MPE reads and writes file labels for files on disc during allocation of the devices on which the files 
reside. The format and content of file labels is presented in Appendix B. 

FILE ACCESSING 

You access files through commands and intrinsic calls. Commands, described in the MPE Commands 
Reference Manual, are issued external to the user program and perform administrative functions, 
such as creating, deleting, or renaming a file. Files are opened (through the FOPEN intrinsic); 
operated on through various intrinsics that read information from them, write information to them, 
update them, or otherwise manipulate them; and, finally, they are closed (through the FCLOSE 
intrinsic). 

Within a program, a file is accessed by its formal file designator. The formal file designator is the 
name by which the program recognizes the file. This is the name supplied by the program to the 
FOPEN intrinsic.) At the time a file is FOPENed, this formal file designator is used to determine 
the actual file designator. The actual file designator is the name of the actual file to be used and the 
physical device upon which it resides, as recognized throughout the system by MPE. Thus, the 
actual file designator is an execute-time redefinition of the file specified in the program by the 
formal file designator. If you do not specify an actual file designator for a formal file designator, 
MPE uses the formal file designator for the actual file designator. 

MPE recognizes actual file designators for four types of files: 

• System-Defined Files 
• User Pre-Defined (Back-Referenced) Files 
• New Files 
• Old Files 

You can specify any of these designators programmatically. 

RELATIVE 1/0 

NOTE 

For discussions of MPE commands referenced below, such as 
:JOB, :DATA, :EOJ, :EOD, :FILE, and :BUILD, see the 
MPE Commands Reference Manual. 

In addition to the conventional direct and serial access, MPE offers Relative I/O access. RIO is 
intended for use primarily by COBOL II programs; however you can access these files by programs 
written in any language. 

RIO is a direct access method that permits individual file records to be deactivated. These inactive 
records retain their space and position within the file, i.e., their relative position. 

RIO files may be accessed in two ways; RIO access and non-RIO access. RIO access ignores the 
inactive records when the file is read serially using the FREAD intrinsic; however such records can 
be read by direct access using FREADDIR. They may be overwritten both serially and directly 
using FWRITE, FWRITEDIR or FUPDATE. With RIO access the internal structure of RIO blocks 
is trans parent. 

10-8 



Non-RIO access is provided to facilitate the replication of RIO files. This method requires 
knowledge of the internal structure of the file and is intended primarily for system use. Non-RIO 
access is enabled by specifying NOBUF I/0 when the file is opened. 

Most of the existing :MPE file intrinsics access RIO files in the same manner as they would access 
other MPE files. There are exceptions, however. Some of these are: 

FREAD inputs an active record, not necessarily the next physical record. 

FREADDIR inputs the specified record regardless of its activity state; a warning will result if the 
record is inactive 

FDELETE deactivates the next record, not the last-accessed record as defined by COBOL II. 

The actual size of a block will be slightly larger than the size specified when the file was built. 
The value returned by FGETINFO for blksize will depend on how the RIO file is being accessed. 

The amount of space available for user labels also may be slightly larger; this depends on the size 
of an extent which itself depends on the block size. 

SYSTEM-DEFINED FILES 

System-defined file designators indicate those files that MPE uniquely identifies as standard 
input/output devices for a job/session. They are referenced as follows: 

Actual File Designator 

$STD IN 

Device/File Referenced 

A file name indicating the standard job or session input device (that 
from which the job or session is initiated). For a job, this is typically a 
card reader. For a session, this is typically a terminal. Input data images 
in the $STDIN file should not contain a colon in column 1, since this 
indicates the end-of-data. (When data is to be delimited, this should be 
done through the :EOD command, which performs no other function.) 
Once : or :EOD is detected on $STDIN, that end-of-file condition is 
considered permanent for the life of the process. No further reading 
may be done from $STDIN/$STDINX by that process. [If :EOF: (hard­
ware EOF command) is encountered, the end of file condition applies 
to the entire session which ·will then have to terminate.] 

10-9 



Actual File Designator 

$STDINX 

$STD LIST 

$NULL 

Device/File Referenced 

Equivalent to $STD IN, except that records with a colon in column 1 
encountered in a data file are read without indicating the end of data. 
However, the commands :JOB, :DATA, :EOJ, :EOD and :EOF: are 
exceptions that always indicate the end-of-data. 

A file name indicating the standard job or session listing device 
(customarily a printer for a batch job and a terminal for a session). 

The name of a non-existent "ghost" file that is always treated as an 
empty file. When referenced as an input file by a program, that program 
receives an end-of-data indication upon each access. When referenced as 
an output file, the associated write request is accepted by MPE but no 
physical output is actually performed. Thus, $NULL can be used to 
discard unneeded output from a running program. 

USER PRE-DEFINED (BACK-REFERENCED) FILES 

A user pre-defined file is any file that was previously defined or re-defined in a : FILE command. In 
other words, it is a back-reference to that : FILE command. It is referenced by the following file 
designator format: 

*formaldesignator 

formaldesignator 

NEW FILES 

The name used in the formaldesignator parameter of the :FILE 
command. 

New files are files that have not yet been created, and are being created/opened for the first time by 
the current program. New files can have the following actual file designators: 

Actual File Designator 

$NEWPASS 

fileref ere nee 

10-10 

File Referenced 

A disc file that is always assumed to be new, and is always closed in 
such a way that it can be automatically passed to any succeeding MPE 
command/job step within the same job/session, which will reference it 
by the file name $0LDPASS. Only one $0LDP ASS file can exist in the 
job/session at any one time. (When $NEWPASS is closed, it is auto­
matically changed to $0LDPASS, and any previous file named 
$0LDPASS in the job/session is deleted.) 

Requests that a new file be created with this name, residing on disc, or 
some other device. Unless other action is taken, a new disc file will be 
deleted on termination of the creating program. If closed as a job/ 
session temporary file, as shown later in this section, such a file is 
purged at the end of the job/session. If closed as a permanent file, it is 
saved until purged by you. Typically, this format consists of a file name 
containing up to eight alphanumeric characters, beginning with a letter, 
as discussed below. In addition, other elements (such as a group name, 
account name or lockword) can be specified. 



OLD FILES 

Old files are existing named files presently in the system. They may be named by the following 
designators: 

Actual File Designator 

$0LDPASS 

filereference 

INPUT/OUTPUT SETS 

File Referenced 

The name of the temporary file resulting from the last close of a 
$NEWP ASS file. 

Any other old file to which you have access. (The filereference format 
is discussed below.) It may be a job/session temporary file created in 
this or a previous program in the current job/session, a permanent file 
saved by any program, or a permanent file built (with the :BUILD 
command) in any job/session. 

All file designators described previously can be classified as those used for input files (Input Set) 
and those used for output files (Output Set). These sets are defined as follows: 

Input Set 

$STDIN 

$STDINX 

$0LDPASS 

$NULL 

*formaldesignator 

filereference 

Output Set 

$STD LIST 

$0LDPASS 

$NEWPASS 

$NULL 

*f ormaldesignator 

fileref ere nee 

The job/session input device. 

The job/session input device with records containing in column 1 
allowed, (exclusive of :EOD, :EOJ, :DATA, etc.) 

The last $NEWP ASS file closed, (considered a "passed file''). 

A constantly-empty file that will return an end-of-file indication 
whenever it is read. 

A back-reference to a previously-defined file (via :FILE command). 

A file name, and perhaps account and group names and a lockword. 
When file name, group name and account name are supplied, the name 
is said to be a fully qualified file name. 

The job/session listing device. 

The last $NEWP ASS file closed, (considered a "passed file"). 

A new temporary file to be passed. 

A constantly-empty file that returns a successful indication whenever 
information is written to it. 

A back-reference to a previously-defined file. 

A file name, and perhaps account and group names and a lockword. 

10-11 



ACCESSING FILES ALREADY IN USE 

When a user process attempts to access a file already being accessed by another process, the action 
taken by MPE depends on the current use of the file, as shown in figure 10-1. 

Within a user program, the accessing and modification of files is requested through intrinsic calls. 
Each file referenced is first opened with the FOPEN intrinsic call. Then other operations, such as 
reading, writing, updating, and spacing forward or backward, can be performed on the file with 
other intrinsic calls. Finally, the file is closed with the FCLOSE intrinsic call, issued by the user 
process or (if not included in the user program) by MPE when the user process terminates. 

If you are programming in SPL, you declare the intrinsics and write the intrinsic calls as you do 
other statements within your program. If you are programming in another language, however, such 
as FORTRAN, any intrinsics required are called automatically by MPE (intrinsics may be called 
directly from other languages and the methods are described in the manuals covering the languages). 

In the FOP EN intrinsic call, you reference a particular file by its formal file designator. When the 
FOPEN intrinsic is executed, it returns to your program a file number by which the system 
uniquely identifies the file. The file number, rather than the file designator, is used by subsequent 
intrinsics in referencing the file. In an SPL program, you obtain this number through the normal 
conventions of the language. One such convention employs an SPL assignment statement to store 
the file number into a location specified by an identifier (name) which then can be used as an 
intrinsic call parameter to reference the file. The format of the assignment statement is discussed in 
the SPL Reference manual. Each intrinsic is declared and called as described in Section II. 

The condition codes returned to your program by the file system intrinsics have the following 
general meanings. The specific meanings, of course, depend on the particular intrinsic and are 
described in Section II. 

Condition Code 

CCE 

CCG 

CCL 

Meaning 

The function requested by the intrinsic call was completed 
successfully. 

MPE encountered the end of the file while servicing the request. 

MPE could not service the request because an error occurred. 
Corrective action may be taken in some cases. (By issuing an 
FCHECK intrinsic call, you can have a more detailed error 
description transmitted to your process.) If, however, the error 
resulted from invalid parameters supplied by you in the intrinsic call, 
the error is fatal and the process is aborted, or a software error trap, 
if previously enabled by you, is activated (See the XSYSTRAP 
intrinsic). 

When a file is accessed by a process running a program written in a language other than SPL, the file 
is generally (but not always) referenced by a file name. All intrinsic calls needed for opening, 
accessing, and closing the file are generated automatically by the user process, and the file name is 
equated with the file number used by the intrinsics to reference the file. 

10-12 



CURRENT 
REQUESTED 

LS~ ACCESS 

SHR 

FOPEN for 
Input 

EAR 

SHR 

FOPEN for 
Output 

EAR 

SHR 

FOPEN for 
Input/Output 

EAR 

:RUN,CREATE 

:STORE 

:RESTORE 

REQUESTED ACCESS GRANTED, UNLESS NOTED 

-
FOPENed FOPENed 

FOR INPUT FOR OUTPUT 

SHR EAR SHR EAR 

Request1:id Requested Requested Requested 
Access Access Access Access 
Granted Granted Granted Granted 

Requested Requested 
Access Access Error 90 Error 90 
Granted Granted 

Requested Requested 
Access Error 91 Access Error 91 
Granted Granted 

-

Requested 
Access Error 91 Error 90 Error 90 
Granted 

-

Requested Input Requested Input 

Access Only Access Only 
Granted Granted Granted Granted 

-

Reques1ted Input 
Access Only Error 90 Error 90 
Granted Granted 

-

!Requested 
,l\ccess Error Message 
Granted 

-

Requested 
.Access Error Message 
Granted 

-

E1·ror Message Error Message 

FOPENed 
FOF INPUT/OUTPUT 

SI-IR 
-

Requ sted e 
SS 

te 
Acee 
Gran cl 

-

Error 9 0 

Requ sted e 
SS 

te 
Acee 
Gran d 

Error 9 0 

Requ sted e 
SS 

te 
Acee 
Gran d 

Error 90 

-

EAR 

Requested 
Access 
Granted 

Error 90 

Error 91 

Error 90 

Input 
Only 
Granted 

Error 90 

E rror Message 

E rror Message 

E rror Message 

PROGRAM 
FILE 

BEING 

LOADED 
:STOREd 

Requested Requested 
Access Access 
Granted Granted 

Error 91 Error 91 

Input Input 
Granted Granted 

Requested 
Only if 

Access 
Loaded 

Granted 

Requested 
Error 

Access 
Message 

Granted 

Error Error 
Message Message 

B EING 
TOREcl :RES 

Er ror 91 

En ·or 91 

Er ror 91 

Er ror 
ssage Me 

Er ror 
ssage Me 

Er ror 
ssage Me 

NOTES: 1. SHR =Share; EAR= Exclusive, allow reading. 
2. Fully exclusive accesses cause any succeeding access 

(except :STORE) to fail. 

4. Error 90 = Calling process requested exclusive access to a file to which another process 
has access. 

3. Append access treated like output; Update treated like input/output. 
5. Error 91 = Calling process requested access to a file to which another process has 

exclusive access. 

Figure 10-1. Actions Resulting from Multiple Access of Files 



When a new file is opened but not yet closed, it is always local to the process. At this time, the 
file name assigned by you need not be unique. But if the program tries to save the file permanent or 
job temporary (via FCLOSE), MPE determines whether another file with the same designator name 
exists in the domain in which you are trying to save that file (permanent or job temporary). If a 
name conflict occurs, a CCL condition code is returned to the user process from FCLOSE and the 
specific error is made available through the FCHECK intrinsic. When a program aborts, old files are 
returned to the domain in which they were found when opened; new files are deleted. The fact 
that a duplicate file name is detected at FCLOSE (not FOPEN) time is important for many 
applications. 

NOTE 

All intrinsics discussed in this section, with the exception of 
FOPEN, FGETINFO, FFILEINFO and FRENAME, can 
be called with the DB register pointing to a data segment 
other than the calling process' stack (split stack). All para­
meters referenced in any calls to these intrinsics are always 
accessed using the current DB-register setting. Privileged 
mode is required to enter split-stack mode; once in split­
stack mode, you need not remain in priviieged mode to call 
File System intrinsics. 

Before a user process can read, write on, or otherwise manipulate a file, the process must initiate 
access to that file by opening it with the FOPEN intrinsic call (see page 10-28). This call applies to 
files on all devices. When the FOPEN intrinsic is executed, it returns to the user process the file 
number used to identify the file in subsequent intrinsic calls. 

If the file is opened successfully (and the CCE condition code results), the file number returned is a 
positive integer ranging from 1 to 255. (Theoretically, one process may open a maximum of 255 
files.) If the file cannot be opened, resulting in the CCL condition code, the file number returned is 
zero. Whenever a process is run, MPE calls FOPEN twice to open $STDIN and $STDLIST for that 
process before any of the user code is executed. Thus there are 253 file numbers available to the 
user process. However, no assumption should ever be made concerning the allocation order of these 
file numbers. 

If a process issues more than one FOPEN call for the same file before it is closed, this results in 
multiple, logically-separate accesses of that file, and MPE returns a unique file number for each such 
access. Also, MPE maintains a separate logical record pointer (indicating the next sequential record 
to be accessed) for each access where the multi-access option was not requested or not permitted at 
FOPEN time. 

In opening a file, FOPEN establishes a communication link between the file and your program by 

10-14 

• Determining the computer system on which the file resides. 

• Allocating to your program the device on which the file resides. If the file resides on 
magnetic tape, FOPEN determines whether it is present in the system. (If it is not, 
FOPEN requests the system operator to supply the tape. Cataloging of tapes, however, is 
not done.) Generally, disc files can be shared concurrently among jobs and sessions. But 
magnetic tape and unit-record devices are allocated exclusively to the requesting job or 
session. For example, different processes within the same job may open and have con­
current access to files on the same magnetic tape or unit-record device; but this device 
cannot be accessed by another job until all accessing processes in this job have issued 
corresponding close requests (FCLOSE calls). 



• Verifying your right to access the file under the security provisions existing at the ac­
count, group, and file levels. 

• Determining that the file has not been allocated exclusively to another process (by the 
exclusive option in an FOPEN call issued by that process). 

• Processing file labels (for files on disc). For new files on disc, FOPEN specifies the 
number of labels to be written. 

• Allocating to the file the number of extents initially requested (for new disc files). 

• Constructing the control blocks required by MPE for this particular access of the file. The 
information in these blocks is derived by merging specifications from five sources, listed 
below in descending order of precedence: 

1. The file label, obtainable only if the file is an old file on disc. This information 
overrides that from any other source. (Label formats are presented in Appendix B). 

2. FOPEN overrides of incompatible options. 

3. The parameter list of a previous : FILE command referencing the same formal file 
designator named in this FOPEN call, if such a command was issued in this job or 
session. This information overrides that from the two sources listed next. 

4. The parameter list of this FOPEN intrinsic call. 

5. System default values provided by MPE (when values are not obtainable from the 
above three sources). 

When information in one of these five sources conflicts with that in another, pre-empting 
takes place according to the order of precedence shown above. To determine the 
specifications actually taking effect, the user can call the FGETINFO/FFILEINFO intrin­
sic, described later in this section. Notice that certain sources do not always apply or 
convey all types of information. (For instance, no file label exists when a new file is 
opened and so all information must come from the last four sources above.) 

FILES ON NON-SHARABLE DEVICES 

When a process opens a disc file, you specify whether the file is an old or new file; an old file is an 
existing, labeled file, and a new file implies that the file is to be created. When a process accesses a 
file that resides on a non-sharable device, the device's attributes may override your old/new 
specification. Specifically, devices used for input only (such as card readers) automatically imply 
old files; devices used for output only (such as line printers) automatically imply new files; serial 
input/output devices (such as teletype terminals and magnetic tape units) foliow your oldinew 
specifications. 

When a job attempts to open an old file on a non-sharable device, MPE searches for the file in the 
Virtual Device Directory (VDD). If the file is not found, a message is transmitted to the console 
operator, asking him to locate the file by taking one of the following steps: 

1. Indicate that the file resides on a device that is not in auto-recognition mode. No :DATA 
command is required - the operator simply allocates the device. 

2. Make the file available on an auto-recognizing device, and allocate that device. 

3. Indicate that the file does not exist on any device; the user's FOPEN request will be 
rejected. 

10-15 



When a job opens a new file on a non-sharable device (other than magnetic tape), the operator is not 
required to intervene. In these cases, the first available device is used. (A non-sharable device is con­
sidered directly available if it is not being used, or if it is being used by the requesting job and is 
requested by its logical device number.) 

The specification of a device class when FOPEN is issued implies a request for the initial allocation 
of a previously unopened device. (The device parameter is ignored when $STDIN(X) and $STDLIST 
are opened.) A job may reallocate an opened device by specifying the device's logical device number 
when the file is opened. The FGETINFO/FFILEINFO intrinsic should be used to determine the 
logical device number assigned to an opened file. The subsequent FOPEN which supplies this logical 
device number should insure that no existing file equation overriding the device number is acci­
dentally picked up. 

When a job opens a new file on a magnetic tape unit, operator intervention is always required; the 
operator must make the tape available. 

SPECIAL CONSIDERATIONS FOR SHARED FILES 

When a file is being shared among two or more processes, or within the same process, and is being 
written to by one or more of them, care must be taken to ensure that the processes are appropri­
ately interlocked. For example, if Process A is trying to read a particular record of the file, and at 
that time Process B should execute and try to write that record, the results are not predictable. 
Process A may see the old record, the new record, or hash consisting of parts of both. If buffering is 
being done, please bear in mind that an output request (FWRITE) will not cause physical I/0 to 
occur until a block is filled, which typically will contain several records. A process trying to read 
such a file could, for example, read past the last record of the file which has been written on the 
disc because the end-of-file pointer is not kept in the file but is kept in core where it can be updated 
quickly as writes occur. This interlocking is provided by the intrinsics FLOCK and FUNLOCK, 
which use a Resource Identification Number (RIN) as a flag to interlock multiple accessors. 

For processes within a job/session sharing a file in multi-access mode, the use of a local RIN is 
recommended instead of FLOCK and FUNLOCK. That recommendation does not apply if the file 
is simultaneously being accessed from another job or session. 

In the simple case of a file shared between a writer process and a reader process, where the writer is 
merely adding records to the file, the writer calls FLOCK prior to writing each record and FUNLOCK 
after writing. The reader calls FLOCK prior to reading record, and FUNLOCK after reading. If the 
writing process should execute while the reader is in the middle of a read, the writer will be impeded 
on its FLOCK call until the reader signifies that it is done by calling FUN LOCK. Similarly, if the 
reader should execute while the writer is performing a write, the reader will be impeded on its 
FLOCK call until the writer calls FUNLOCK. FUNLOCK ensures that all buffers are posted on the 
disc so that reading processes can see all the data. 

Protection offered by FLOCK and FUNLOCK depends on cooperation among all processes ac­
cessing the file. If one process does not use FLOCK, or uses it improperly, problems will arise. 

More complicated cases arise when a file has two or more writing processes, or when the write con­
sists of writing more than one record at a time. If, for example, it should be necessary to write pairs 
of records, with read prohibited until both records of the pair are written, the writing process can 
call FLOCK before writing the first record of the pair, and FUNLOCK after writing the second. 
This procedure also can be used if the records are to be written in different files; one of the files is 
used as a "sentinel" file and the processes FLOCK and FUNLOCK this file as required. 

10-16 



PRIVATE VOLUMES SUBSYSTEM 

Users with the Volume Set Usage (UV) capability can maintain files on private disc volumes. These 
private volumes consist of removable disc packs, which, when mounted on a disc drive, can be 
accessed by MPE through the MPE Private Volumes Subsystem. 

Individual removable volumes can be combined to form logical units in the form of volume sets or 
volume classes. 

See the MPE Commands Reference Manual for a further discussion of the Private Volumes Sub­
system. 

Whether disc files created by you will be assigned to a private disc volume set or the system volume 
set depends on how the file group for your account was established by the System Manager. The 
System Manager can establish your file group so that disc files created by you will be stored on a 
private home volume set or on the system volume set. In either case, you do not need to be con­
cerned with, or even aware of, where disc files created and opened by you will be stored. 

If your file group has been structured to use the Private Volumes Subsystem, then when you create 
a new disc file with the :BUILD command (see the MPE Commands Reference Manual) or the 
FOPEN intrinsic, MPE checks to determine if your home volume set is mounted. If your home 
volume set is not mounted, MPE asks the Console Operator to mount it. The only indication to you 
of this action is that your progra...'TI will suspend, if your home volu...'tJle set is not mounted, until it 
is mounted by the Console Operator. Similarly, when you close and save a disc file with the 
FCLOSE intrinsic, it is automatically stored on your home volume set or the system volume set, 
depending on how your file group was established, again with no action necessary from you. 

HOW TO USE FILES 
The remainder of this section expiains what you can accomplish with files using the file system 
intrinsics. An attempt is made to show practical applications for the intrinsics, instead of merely 
reiterating the purpose of each intrinsic (which was discussed in Section II). 

INTERNAL OPERATIONS FOR FILE ACCESSING 

Before a file can be used, it must be opened with the FOPEN intrinsic. If you are programming in 
SPL, you must call the FOPEN intrinsic from your program. The compilers for other languages, 
such as FORTRAN and COBOL, call the FOPEN intrinsic and open the file for you. In any case, 
however, whether c~lled explicitly by your SPL program or called for you in a FORTRAN or 
COBOL program, the FOPEN intrinsic is used to open all files in a program. Several items which 
should be considered before using FOPEN are discussed in the following paragraphs. 

For example, consider '\Vhat occurs when a user coding a program in SPL performs a call to the 
FOPEN intrinsic to open a new disc file. A new disc file is a file that has not existed previously in 
the system. One of the fundamental things that occurs at FOPEN time is that an access in ierface is 
created for the file. This access interface may be an extra data segment that is created and which 
contains information about the file. In addition, a buffer space is allocated in this file segment to 
contain the number of records per block that the user has specified in the FOPEN call. The buffer 
space is large enough to receive a block of information from the disc. 

The file segment is pointed to by an entry in the user's stack. This entry is called an available file 
table (AFT) and is part of the process control block extension (PCBX) in the user's stack. Upon the 
successful completion of an FOPEN call, an integer value is returned to the calling program. This 
integer value is an entry into the AFT, and the appropriate AFT entry in turn then points to the file 
segment that belongs to this particular file. 



Figure 10-2 shows the stack and the AFT entry pointing to the file segment. The file segment 
contains buffers, in this case, enough room for three logical records. In the example shown in figure 
10-2, each record is 80 bytes and the records are grouped into a block of three. Thus, there is 
enough room in the file segment to hold three logical records. 

10-18 

STACK 

AVAILABLE FILE 
TABLE (AFT) 

[ONE ENTRY PER 
OPEN FILE 

ON { SYSTEM 
DISC 

Fl LE SEGMENT "I FILE INFORMATION 

ocrnon 11.1n n 

DISC 

(ENTRY MADE AT 
FCLOSE TIME) 

256 
BYTES/SECTOR 

11&.."\J'l ILJ 1\IV. V 

RECORD NO. 1 

RECORD NO. 2 

{ 
RECORD 

RECORD 

BLOCKS 

80 BYTES 

80 BYTES 

80 BYTES 

16 BYTES LEFT 
OVER 

Figure 10-2. File Access Interface for New Disc Files 



The next thing that occurs is that file space is allocated to the file. On the system disc there is a 
table of free space that is monitored by MPE. The file system refers to the file space table and 
allocates initial space for this file, (the number of sectors allocated depends on the parameters 
specified in the FOPEN call), by deallocating free space from the table and writing a file label in 
the first sector of the newly allocated space. The file system then deallocates the free space and 
writes a file label in the first sector of the free space. 

A partial list of items contained in a disc file label is shown below. Once their values are established, 
they cannot be changed by subsequent FOPEN operations. 

File name 
Sector address 
Maximum number of logical records 
Logical record size 
Block size 
Foptions (Exception: disallow file equations bit) 
Number of extents 
Extent size 
File code 

The linkage, then, goes from the user's stack, via the available file table, to the file segment; from 
the file segment there is a pointer to the label on the disc itself. In the simplified example of figure 
10-2, the file label is shown on the system disc, however, it could be on any disc in the system. 

Since this is a new file, there is no information in the file. Therefore the access mechanism is the 
only information the system has for this file. 

Depending on the FOPEN parameters specified, it is possible to write on this file. The example 
shows 80-byte records, three records per block, a.11d one buffer. If fu! FWRITE intrinsic were called 
to write a single 80-byte record, that record would be moved from the user's stack to position 
number 1 in the file segment. As soon as that physical move from the stack to the file segment is 
complete, the FWRITE also is complete as far as the program is concerned. However, no actual 
write to the disc takes place. An FWRITE call to write record number 2 would consist of a move 
from the stack to the file segment and record number 2 would occupy position number 2 in the file 
segment. Subsequently, record number 3 would occupy position 3 in the file segment. Immediately 
upon the file segment being full, that is, when the third record has been written to the file segment, 
the entire block of information is then transferred to the disc. Thus, when the file system is used in 
a buffered manner with disc files, records actually are moved from the stack to the file segment; 
then, when the last record in a block has been moved into the file segment, a physical write to the 
disc occurs in a block fashion. That is, a whole block of information (in this case containing three 
records) is transferred to the system disc. 

It is at FCLOSE time that you decide whether you want the file to remain in the system as a 
permanent file or a job/session temporary file, or whether you want the file to be deleted from the 
system. 

At FCLOSE time, the access interface is dismantled and therefore if information about the file is to 
be saved in the system, the FCLOSE intrinsic is used to close the file with a permanent disposition. 
The name of the file, which is available to the system in the file label, is posted in the system 
directory under your log-on account a...11d group~ MPE finds that area of the directory and posts an 
entry in the system directory for that file name. If the name is FILEl, then FILEl resides on the 
disc at a certain sector address. Referring to figure 10-2, you can see that in the system directory 
there will be an entry that consists of the file name and some sector address, for example, 123. The 
sector address 123 then points to the label. 

10-19 



As soon as the entry is made in the system directory, consisting of the name of the file and a 
pointer to the file label, then the FCLOSE operation continues and the file access interface is 
dismantled. The file segment is deleted from the system and the entry in your stack in the available 
file table (AFT) is purged. If the FCLOSE specifies the save permanent disposition, the name of the 
file will be placed in the system directory with a pointer to the file label. 

As soon as the FCLOSE operation is complete, then, the disc file becomes a permanent file in the 
system, or, to use different terminology, it becomes an old disc file. If a file with the name of 
FILEl already exists in your log-on account and group, it is not noticed until FCLOSE is issued, 
and, at that time, results in an error. 

Figure 10-3 shows that now there is an entry in the system directory with a file name of FILEl and 
a sector address of 123. To open this file, as an existing, or old file, the FOPEN parameters would 
have to be changed to specify an old file. Then the same type of operation that occurred before 
would occur again with one exception: since an existing file is being opened, it is not necessary to 
deallocate free space, what is necessary is for the system to establish a mechanism for the user stack 
area. In other words, the system makes an entry in the available file table, and creates another file 
segment, pointing to the existing file on the disc. 

Figure 10-4 shows what occurs if an FOPEN call is issued for an old file named FILEl. In this case, 
FOPEN specifies an old file and must supply the name of this file; then MPE searches the system 
directory under the appropriate account and group for this file. Once the file is found, MPE then 
establishes the access mechanism, consisting of a file segment as before, and a pointer from the file 
segment to the file label on the disc. 

The other type of old file is the job or session temporary file. One of the differences between a job 
temporary file and a permanent file is where the actual entry is placed when the file is closed. Each 
job or session has a table called the job temporary file directory. In the case of a file that is saved 
with temporary disposition, the name of the file and a pointer to the file label are stored in this job 
temporary file directory. (Note that the job temporary file directory is unique to each job or 
session.) Another difference between a job temporary file and a permanent file is that when a 
job/session terminates, all job/session temporary files are deleted from the system, and file space 
that was held by such files is returned to the system. 

File characteristics are obtained from different sources, depending on whether the file is a new disc 
file, an old disc file, or a file on a device other than disc. 

For a new disc file, the characteristics are established as shown below: 

10-20 

FOPEN: 
(create a new disc file) 

The characteristics are obtained from: 

FOPEN intrinsic parameters 
and defaults 

overridden by: 

: FILE command parameters 



STACK 

DISC 

%123 

ON { SYSTEM 

DISC 
SYSTEM DI RECTORY 

Figure 10-3 File Name and Sector Address Storage 

A disc file and a file label are created according to the characteristics specified above. (This 
label remains with the file during its entire existence on the system.) 

For an old disc file, the characteristics are established as follows: 

FOPEN: 
(open existing disc file) 

10-21 



10-22 

STACK 

AVAILABLE FILE 
TABLE (AFT) 

DISC 

SYSTEM DI RECTORY 

Fl LE SEGMENT 

FILE INFORMATION 

RECORD 

RECORD 

RECORD 

Figure 10-4. File Access Interface for Old Disc Files 

The characteristics are obtained from: 

FOPEN intrinsic parameters 
and defaults 

overridden by: 

: FILE command parameters 

overridden by 

Disc file label 

The existing file can be either an old temporary file or an old permanent file. 



When a file is opened on a device other than disc, the file characteristics are established as follows: 

FOP EN 
(open a device file) 

The characteristics are obtained from: 

FOPEN intrinsic parameters 
and defaults 

overridden by: 

: FILE command parameters 

overridden by: 

Device-dependent restraints 
imposed by the file system. 

Note that if you have the ND (non-sharable device) capability, the file system allows you to open a 
physical IiO device in the same manner as you would open a disc file. (Discs are the only devices 
which are considered by MPE to be simultm1eously sharable among several users.) When a 
non-sharable device has been FOPENed, it is referred to as a devicefile. The physical characteristics 
of each different device available to the file system can differ substantially and these differences 
affect the characteristics which are permitted for corresponding device files. For this reason, the file 
system imposes a number of device-dependent restrictions on device files. Card reader files, for 
example, are required to have read-only access with a block factor of one. A summary of these 
restrictions is presented in tabie 10-1. 

It also should be noted that some non-sharable devices can be spooled by MPE. This means that 
data input from and output to such devices is stored temporarily on the disc in transit from the 
physical devices to and from the user program. Because data can be temporarily buffered in a disc 
file, the program assumes that all physical device files which it requires are constantly available to it. 
Input data typically is read and stored before a program requires it, and output data is delayed until 
the program's file operations are complete (at FCLOSE time). Other than these external variations, 
most differences between a spooled and a non-spooled device file are insignificant to the program. 

One exception, however, may affect applications which write very large reports. Regardless of the 
spooled device, there is a limit as to how much disc space an individual spoolfile can have. In some 
cases, it is possible to exhaust this maximum space allowed. As an example, an application would 
not normally expect to encounter an end-of-file condition when writing to a line printer. Yet this 
may actually happen if the line printer is spooled and the report being written is large enough to 
have reached the spoolfile's limit. Therefore, applications should check for end-of-file after every 
write. When an end-of-file condition is detected, the output file should be closed and a new one 
opened. 

NOTE 

The maximum size of a spoolfile in sectors is 32* configured 
extend size for spoolfiles. (The maximum number of extents 
is 32.) A configured extent size of 384 sectors means the 
spoolfile has room for approximately 25,000 lines. 

10-23 



Table 10-1. Device-Dependent Restrictions 

INPUT ONLY DEVICES (SERIAL) 

Card Reader/Paper Tape Reader 

No carriage control 

Undefined-length records 

If card reader, ASCII only (can only read ASCII cards without using FCONTROL) 

Blockfactor = 1 

Domain = 1 (OLD permanent) 

If not ASCII, then NOBUF 

If access type = 1, 2, 3, then access violation results 

INPUT/OUTPUT DEVICES (PARALLEL) 

Terminals 

ASCII 

NOBUF 

Undefined-length records 

Blockfactor = 1 

INPUT/OUTPUT DEVICES (SERIAL) 

Magnetic Tape Drive 

Serial Disc Drive 

No restriction 

OUTPUT ONLY (SERIAL) 

Line Printer/Card Punch/Paper Tape Punch/Plotter 

If Line Printer, ASCII only 

Undefined-length records 

Blockfactor = 1 

Domain = NEW 

Access Type = 1, write only (if read only specified, access violation results) 

UNDEFINED (COMMON CHECKING) 

If carriage control specified and not ASCII, access violation results 

10-24 



Table 10-2. Classification of Devices 

DEVICE TYPE 
DEVICE NAME 

I 
NUMBER (OCTAL) t CLASS I FICA TiON 

Moving-Head Disc T 00 I NEW or OLD 

Fixed-Head Disc 01 NEW or OLD 

Card Reader 10 OLD only 

Paper Tape Reader 11 OLD only 

Terminal 20 NEW or OLD 

Printing Reader Punch 24 NEW or OLD 

Hardwired Serial Interface 23 NEW or OLD 

I 
Synchronous Single-Line Controller 26 NEW or OLD 

I I 

Magnetic Tape Drive 30 NEW or OLD 

Line Printer 40 NEW only 

Card Punch 41 NEW only 

I T D --h Paper , ape , u. ,..,, , I /;- Ir"" Ill ___ L. 

~'llcVv urny 

Plotter 43,44,45 NEW only 

An alternative to generating one large output spoolfile is to periodically close the output file and 
open a new one. A large report program might start a new output file every 200 pages. While this 
technique requires gathering several files for the complete report, it has the advantage of allowing 
the first portion of the report to print while the program is still running. 

When a non-sharable device file is opened, the device has to be allocated by the system so that the 
calling process can access the file. MPE classifies devices as OLD or NEW, OLD only, or NEW only, 
depending on the device type. Table 10-2 shows the manner in which devices are classified. Included 
in table 10-2 is the device name, its octal device number, and whether it is considered to be 
OLD/NEW, OLD only, or NEW only. 

The flowchart shown in figure 10-5 illustrates how MPE allocates a non-sharable device when an 
FOPEN request is received. 

' 

First, MPE considers the device type requested by the FOPEN call. If the device type is input only, 
this is considered to be an OLD file. Because MPE considers the file to be an OLD file, it searches 
for a pre-defined input file. For example, a file identified with a :DATA command. If no such file is 
found, MPE sends a message to the Console Operator asking for the logical device number of the 
in put device. 

10-25 



YES 

SET 

ACCESS +-READ ONLY 

DOMAIN +-OLD 

SEARCH DEVICE 
DIRECTORIES FOR THE 
READY OR OPENED 
DEVICE SPECIFIED 

ASK OPERATOR TO 
IDENTIFY THE DEVICE 

NO 

INPUT ONLY 

READ ONLY 

OLD 

ASK OPERATOR TO 
IDENTIFY THE DEVICE. 
INO MESSAGE IF 
REALLOCATION FOR 
CURRENT DEVICE OWNER) 

ALLOCATE THE DEVICE 
TO THE REOUESTOR 

YES 

SET 

ACCESS +-WRITE ONLY 

DOMAIN +-NEW 

NO 

NO 

Figure 10-5. Device Allocation Flowchart 

YES 

GET OPERATOR REPLY 
TO FORMS MESSAGE 

If FOPEN specified a device type that is considered by MPE to be output only, MPE considers this 
to be a NEW file. Normally, NEW files do not require special attention. If the device is available, it 
will be allocated to the user. Printer forms message, plotter, or magnetic tape requests are the 
exceptions, however, and require operator intervention. 

If a device was specified that is an input/output type of device, MPE next considers the user access 
requested in the FOPEN call. If read only was requested, the file is considered to be an OLD file. If 
write only, MPE considers the file to be a NEW file. 

If the FOPEN call requested a user access of input/output, or any other mode (except read only or 
write only), MPE next looks at the type of file domain specified in the call (NEW or OLD) and 
opens the file accordingly. The system device directories contain entries for each device that 
contains a file. Non-spooled devices can have only one file (for example, a card deck in the read 
hopper of a card reader), but spooled devices can have several file entries (for example, card decks 

10-26 



which have been read in by the device and are stored as spoolfiles on disc to await access). Such 
device files are identified by :DATA commands. Information from a :DATA command image is 
used to build the device directory entry and identifies the file by file name, user name, and account 
name. The data file may be accessed by a user program when its request matches the :DATA 
information and the file is in the READY state. In the case of an unspooled card reader, this means 
that only the :DATA card has been read in, and the rest of the deck awaits processing. In the case 
of a spooled card reader, however, this means that the :DATA card and the entire deck have been 
read and await processing in the form of a disc spoolfile. 

If the entry in the device directory indicates that the device is OPENED, a user process has already 
FOPENed the device file successfully (device or spoolfile). In this case, access to the same non­
sharable device is granted only if the requesting process is in the same process tree as the process 
which has the file open. This is accomplished by referencing a logical device number, not a device 
classname. These subsequent calls to FOPEN will not require operator intervention - the first de­
vice allocation request is the only one issued to the operator. This technique might be used by a 
program which does a great deal of magnetic tape processing but wants to avoid multiple tape allo­
cation messages. Attempts to use this technique with a non-spooled printer can result in inter­
mixing of output data. 

A condition code error is returned to the calling process if: 

1. Device type specified an input only device and requested access was write only. 
2. Device type specified an output only device and the requested access was read only. 

A message to the operator will be printed if: 

1. The device is a card reader and a pre-defined file (read in with a :DATA card) cannot be 
located to match the file requested. 

2. The device is a magnetic tape device. 
3. The device is a plotter. 
4. The device is a line printer and uses the forms message option. 

OPENING FILES 

OPENING A NEW DISC FILE 

Figure 10-6 contains an SPL program which opens two files: a card reader file and a new disc file. 

The second FOPEN call in figure 10-6. 

OUT:=FOPEN(OUTPUT,%4,%101,128); 

opens the new disc file. The parameters specified are 

for111aldesignator DATAONE, which is contained in the byte array OUTPUT. 

{options %4, for which the bit pattern is as follows: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

4 

15 

0 

Bits 

Binary 

Octal 

10-27 



PAGE nool HEWLETT-PACKARD 32100Ae05el SPL/3000 TUE, OCT 7, 1975t 10130 AM 

00001000 00000 0 SCONTROL USLINIT 
00002000 00000 0 BEGIN 
00003000 00000 1 BYTE ARRAY INPUT!Ol6)1•"1NFILE II I 
00004000 00005 1 BYTE ARRAY DEV!014) 1:m"CARO 11 1 
00005000 00004 1 BYTE ARRAY OUTPUT(017)1="DATAO~E "I 
00006000 00005 1 ARRAY BUFFERI01127>1 
00007000 00005 1 INTEGER INtOUTtLGTHI 
OOOOMOO 00005 1 
00009000 00005 1 INTRINSIC FOPENtFREAOtFWRITE,FCLOSE,PRINT•FILE•INFO,QUITI 
00010000 00005 1 
00011000 00005 1 << END OF DECLARATIONS » 
00012noo 00005 1 
00013000 00005 1 INl=FOPEN!INPUTt%5tt40tDEV>I «CARO READER» 
00014000 00012 1 IF < THEN <<CHECK FOR ERROR>> 
00015000 00013 1 BEGIN 
00016000 00013 2 PRINT•FILE•INFO!IN>I «PRINT ERROR» 
00017000 00015 2 QUITllH <<ABORT>> 
00018000 00017 2 ENDI 
00019000 00017 1 
00020000 00017 l 
00021000 00030 1 
00022000 00031 1 
00023000 00031 2 
00024000 00033 2 
00025000 00035 2 
00026000 00035 1 
00027000 00035 1 COPY•LOOPI 
00028000 00035 1 LGTHl=FREADIINtBUFFER,40)J «READ A CARD» 
00029000 00043 1 IF < THEN <<CHECK FOR ERROR>> 
00030000 00044 1 BEGIN 
00031000 00044 2 PRINT•FILE•INFO!IN>I «PRINT ERROR» 
00032000 00046 2 QUIT I 3) I «ABORT>> 
00033000 00050 2 ENOI 
00034000 00050 1 IF > THEN GO ENO•OF•FILEI «CHECK FOR EOF>> 
00035000 00051 1 
00036000 00051 l FWRITE!OUTtBUFFERtLGTHtO)I «COPY CARO TO DISC» 
00037000 00056 1 IF <> THEN «CHECK FOR ERROR» 
00038000 00057 1 BEGIN 
00039000 00057 2 PRINT•FILE•INFOCOUT>I «PRINT ERROR» 
ooo•onoo 00061 2 QUIT 14) J «ABORT>> 
00041000 00063 2 END• 
00042000 00063 1 
00043000 00063 1 GO COPY•LOOPS «CONTINUE COPYING» 
00044000 00066 1 
00045000 00066 1 END•OF•FILEI 
00046000 00066 1 FCLOSECOUT,~lltO>I <<MAKE PERMANENT>> 
00047000 00072 1 IF < THEN <<CHECK FOR ERROR>> 
00048000 00073 1 BEGIN 
00049000 00073 2 PRINT•FILE•INFOIOUT>I «PRINT ERROR» 
00050000 00075 2 QUIT 15> I <<ABORT>> 
00051000 00077 2 ENDS 
00052000 00077 1 END. 

PRIMARY DB STORAGE=I0071 SECONDARY DB STORAGE=I00213 
NO. FR~ORS=OOOI NO. WARNINGS=OOO 
PROC~SSOR TIMEzOIOOl031 ELAPSED TIME•Ol00144 

Figure 10-6. Opening a New Disc File 

10-28 



The above bit pattern specifies the following file options: 

Domain: New file, no search of system or job temporary file directory 
is necessary. Bits (14:2) = 00. 

ASCII/Binary: ASCII. Bit (13:1) = 1. 

aoptions %101, for which the bit pattern is as follows: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

1 0 1 

The above bit pattern specifies the following access options: 

Access Type: Write access only. Bits (12:4) = 0001. 
Exclusive: Exclusive access. Bits (8:2) = 01. 

All other parameters are omitted from the FOPEN intrinsic call. 

15 

1 

Bits 

Binary 

Octal 

Once the file is opened, the file number (used by other file system intrinsics when referencing this 
file) is returned to the variable OUT. 

The condition code is checked with the 

IF<THEN 

statement. If the condition code is CCL, signifying that the FOPEN request was denied, the next 
four statements, starting with the BEGIN statement, are executed. 

The statement 

PRINT' FILE'INFO( OUT); 

calls the PRINT'FILE'INFO intrinsic, which prints a FILE INFORMATION DISPLAY on the 
standard list device, enabling you to determine the error number returned by FOP EN. The 
parameter (OUT) specifies the file number returned through the FOPEN intrinsic. If the file was not 
opened successfully, OUT= 0, where 0 specifies that the FILE INFORMATION DISPLAY will 
reflect the status of the file referenced in the last call to FOP EN. See Section X for a discussion of 
the FILE INFORMATION DISPLAY 

The QUIT intrinsic call 

QUIT(2); 

aborts the process. The parameter (2) is an arbitrary user-supplied number. When a QUIT intrinsic is 
executed, this number is printed as part of the resulting abort message, allowing you to determine, 
in the case of multiple QUIT intrinsic calls in a program, which specific QUIT call was executed. 

10-29 



NOTE 

The QUIT intrinsic causes MPE to close all files with no 
change. Thus, new files are deleted, old files are saved and 
assigned to the same domain to which they belonged 
previously. 

OPENING AN OLD DISC FILE 

Figure 3-7 contains an SPL program that opens three files: an old disc file, $STDIN, and 
$STD LIST. 

The statement 

DFILEl:=FOPEN(DATAl,%5,%345,128): 

opens the old disc file. The parameters specified are 

f ormaldesignator 

{options 

aoptions 

10-30 

DATAONE, which is contained in the byte array DATAl. 

%5, for which the bit pattern is as follows: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

5 

The above bit pattern specifies the following file options: 

15 

1 

Bits 

Binary 

Octal 

Domain: Old permanent file, the system file directory should be 
searched. Bits (14:2) = 01. 
ASCII/Binary: ASCII. Bit (13:1) = 1. 

%345, for which the bit pattern is as follows: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 

3 4 5 

The above bit pattern specifies the following access options: 

15 

1 

Bits 

Binary 

Octal 

Access Type: Update access. (This file is updated later in the program 
with the FUPDATE intrinsic.) Bits (12:4) = 0101. 
Multirecord: Non-multirecord mode. Bit (11:1) = 0. 
Dynamic Locking: Dynamic locking allowed. Bit (10:1) = 1. 
Exclusive: Share access. Bits (8:2) = 11. 



PAGE' 0001 HEWLETT-PACKARD 32lOOA.05.l SPL/3000 TJE, OCT 7, 1975• 10:32 AM 

00001000 00000 
00002000 00000 
00003000 00000 
00004000 00005 
oooosnoo 00005 
00006000 00005 

0 
0 
1 
1 
l 
1 

$CONTROL USLINIT 
BEGIN 

BYTE ARRAY DATAl (0:7) Z= 11 DATAONE "' 
ARRAY RUFFER<O:l27); 
INTEGER DFILEltLGTH,DUMMY,IN,LISTI 

00007000 00005 
OOOOAOOO 00005 

1 
1 

INTRINSIC FOPENtFREADtfUPOATE,FLOCKtFUNLOCKtFCLOSEt 
PRINT•FILE•INFOtQUITtFWRITE,fREAO; 

00009000 00005 
0001onoo 00005 
00011000 00000 
000121'100 00000 
000131'100 00000 
00014000 00000 
00015000 00002 
00016000 00004 
00017000 00000 
OOOlAOOO 00000 
00019000 00000 
00020000 00000 
00021000 00011 
00022000 00015 
00023000 00015 
00024t'i00 00024 
00025000 00030 
00026000 00030 
00027000 00040 
0002AOOO 00044 
00029000 00044 
00030000 00044 
00031000 00047 
ooo32noo 00053 
00033000 00053 
00034('100 00061 
00035000 00065 
0 0 0 361'10 0 00070 
00037000 00070 
00038000 00075 
00039000 00101 
000401'100 00101 
00041000 00110 
00042non 00114 
00043000 00115 
000441'100 00115 
00045000 00121 
A A ft JI I A ft A A A 1 ~C 
UllV'+OVVll l.'U J.CJ 

00047000 00125 
0004snoo 00121 
00049000 00133 
ooosonoo 00133 
00051000 00140 
000521'100 00140 
00053000 00140 
00054000 00142 
ooos5noo 00146 
00056000 00146 
00057000 00151 

l 
1 
1 
1 
1 
2 
2 
2 
l 
1 
1 
1 
1 
1 

PROCEDURE FILERRORCFILENO,QUIT~O)I 
VALUE QUITNOI 
INTEGER FJLENO,QUITNOI 
BEGIN 

PRINT•FILE•INFOCFILENOll 
QUIT (QUITNOl I 

ENDS 

<<END OF DECLARATIONS>> 

IN:=FOPEN(,%244); 
IF< THEN FlLERRORtlN;2)S 

LISTl=FOPENC,~614•~1); 
IF < THEN FILERRORCLISTt3l I 

UPOATE•LOOP: 
FLOCK IDFILEl, 1 l I 
IF< THEN FiLFRRORCDFILE'i,~)i 

LGTH::FREAOIDFILEl•BUFFERtl28)' 
!F < THFN FILERRORCDFILElt5ll 
If > THEN GO END•OF•FILEI 

fWRITF.ILISTtBUFFERt•20t~320l; 

IF<> THEN FILERROR<LIST,~>I 

OlJMMY I =FREAO (IN, RUFFER ( 30 l, 5 l I 
IF< THEN FILERRORCIN,7ll 
IF > THEN GO END•OF•FILEC 

FUPDATECDFILEltAUFFERtl2Bl; 
IF<> THEN FILERRORCDFILEltBll 

FUNLOCK<DFILElll 
IF<> THEN FILERROR<DFILElt9lC 

GO UPDATE•LOOPC 

END•OF•FILE: 
FUNLOCK CDFILEl l I 
IF<> THEN FILERRORCDFILEl•lOll 

FCLOSE(DFILtl.o.o>i 
IF< THEN FILERRORCDFILEltllll 

00058000 00155 1 END. 
PRIMARY DR STORAGf=~0071 
NO. FRRORS:rOOOI 
PROC~SSOR TIME':O:OOl031 

SECONDARY DB STORAGE=%00204 
NO. WARNINGS=OOO 
ELAPSED TIME=o:oo:11 

Figure 10-7. Opening an Old Disc File 

<<$STDHl>> 
<<CHECK FOR ERROR>> 

<<$STDLIST» 
<<CHECK FOR ERROR>> 

<<LOCK FILE/SUSPEND>> 
<<CHECK FOR ERROR>> 

<<G~T EMPLOYEE RECD>> 
<<CHECK FOR FRROR>> 
<<CHECK FOR EOF>> 

<<EMPLOYEE NAME>> 
<<CHECK FOR ERROR>> 

«E'MPLOYFF NUMBER» 
<<CHECK FOR ERROR>> 

<<EMPLOYEE RECORD>> 
<<CHECK FOR ERROR>> 

<<ALLOW OTHER ACCESS>> 
<<CHECK FOR ERROR>> 

<<CONTINUE UPDATE>> 

<<ALLOW OTHE~ ACCESS>> 
<<CHECK FOR ERROR>> 

<<DISP-NO CHANGE>> 
<<CHECK FOR ERROR>> 

10-31 



I All other parameters are omitted in the FOPEN intrinsic call. Nate that for existing files FOPEN 
will return a lockword violation (FSERR92 via FCHECK) if the lockword is not included in the 
formaldesignator parameter. 

Once the file is opened, the file number (used by other file system intrinsics when referencing this 
file) is returned to the variable DFILEl. 

The condition code is checked with the statement 

IF< THEN FILERROR(DFILEl,l); 

If the condition code is CCL, the error-check procedure FILERROR (see statements 10 through 16 
in the program) is called and two parameters, DFILEl and 1, are passed to it for FILENO and 
QUITNO (see statement number 10). DFILEl contains the file number (assigned to it when the 
FOPEN intrinsic opened the file) to be passed by FILENO, and 1 represents an arbitrary 
user-supplied number to be passed by QUITNO. 

The FILERROR procedure passes the file number (through FILENO) to the PRINT'FILE'INFO 
intrinsic. If the file was not opened successfully, FILENO = 0, where 0 specifies the status of the 
file referenced in the last call to FOPEN. The PRINT'FILE'INFO intrinsic prints a FILE 
INFORMATION DISPLAY on the standard output device, enabling you to determine the error 
number returned by FOPEN. See Section X for a discussion of the FILE INFORMATION 
DISPLAY. 

The QUIT intrinsic call (statement 15) 

QUIT(QUITNO); 

aborts the program's process. The value of QUITNO is 1 and this number is printed as part of the 
resulting abort message, allowing you to determine, in the case of multiple QUIT intrinsic calls in a 

I program, which specific QUIT call was executed. The system Job Control Word "JCW" is set to 
FATALl in this example. 

I 

FOREIGN DISC FACILITY 

The Foreign Disc Facility (FDF) allows you to use the file system to access and alter disc packs and 
flexible diskettes that do not have standard HP 3000 file system disc label formats. When mounted, 
a disc volume with an unrecognizable disc label is assumed to be a foreign disc. 

Discs and diskettes must be physically compatible with HP hardware. The IBM 3741 format dis­
kettes (64 words per sector), for example, are compatible. 

When using the FOPEN intrinsic to open a foreign disc file, the recsize is forced to 128 words (IBM 
diskettes are forced to 64 words). The file system will treat disc sectors as file records, thereby 
allowing you to manipulate the foreign file as though it was an MPE created file. 

In addition to FOPEN, several other intrinsics have been modified to accommodate foreign discs. 
They are: FCLOSE, FREAD, FWRITE, FWRITEDIR, FREADDIR, FGETINFO, FFILEINFO, and 
FCHECK. 

10-32 DEC 1981 



OPENING A FILE ON A DEVICE OTHER THAN DISC 

Figure 10-8 contains an SPL program that opens a card reader file and a disc file, reads the contents 
of a card deck and writes the records read from the card deck into the disc file and, finally, closes 
the disc file as a perma..11ent file. 

NOTE 

If a card deck is read in by the spooler before the program 
which references the deck executes, the system finds an entry 
for the card reader file in the device directory and allocation 
is automatic. If the card deck is not read before the program 
executes, however, the system will print a message on the 
system console requesting the Console Operator to reply with 
the logical device number of the device on which the file 
resides. 

The NOT READY message was printed because the read 
hopper of the card reader was emptied by the spooler when 
the INFILE deck was read. 

In figure 10-8, the statement 

IN:=FOPEN(INPUT,%5,,40,DEV); 

calls the FOPEN intrinsic to open the card reader file. The parameters specified are 

formal designator INFILE, which is contained in the byte array INPUT. 

{options %5, for which the bit pattern is as follows: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 

The above bit pattern specifies the following file options: 

14 15 

0 1 

5 

Domain: Old permanent file, system file domain. Bits (14:2) = 01. 
ASCII/Binary: ASCII. Bit (13:1) = 1. 

aoptions Omitted. All bits are set to zero, access defaults to READ only. 

recsize 40 words. 

Bits 

Binary 

Octal 

device CARD. The byte array DEV, containing the string "CARD", is 
specified for the device parameter. 

All other parameters are omitted in the FOPEN intrinsic call. 

10-33 



PAGE nool HEWLETT-PACKARD 32100A.05el SPL/3000 TUEt OCT 7, 1975t 10130 AM 

$CONTROL USLINIT 
BEGIN 

BYTE ARRAY INPUTI016) l•"INFILE "I 
BYTE ARRAY OEVI0:4>1="CARO "I 
BYTE ARRAY OUTPUT(0:7)1="DATAO~E "I 
ARRAY BUFFERl01127)J 
INTEGER INtOUTtLGTHI 

00001000 00000 0 
00002000 00000 0 
00003000 00000 1 
00004000 00005 1 
00005000 00004 1 
00006000 00005 1 
00007000 00005 1 
oooo8noo 00005 1 
00009000 00005 1 
00010000 00005 1 
00011000 00005 1 
00012000 00005 1 
00013000 00005 1 
00014000 00012 1 
00015noo 00013 1 
00016000 00013 2 
00011noo 0001s 2 
00018000 00017 2 
00019000 00017 1 
0002onoo 00011 l 
00021000 00030 1 
00022000 00031 l 
00023000 00031 2 
00024000 00033 2 
00025000 00035 2 

INTRINSIC FOPENtFREADtFWRITEtFCLOSEtPRINT•FILE•INFOtQUITI 

<< END OF DECLARATIONS >> 

0UTl=FOPEN<OUTPUTt%4t~l0ltl28>1 
IF < THEN 

BEGIN 
PRINT•FILE•INFO<OUT>I 
QUIT <2> I 

END• 
00026000 00035 1 
00027000 00035 1 
00028noo 00035 1 
00029000 00043 1 
00030000 00044 1 
00031000 00044 2 
00032000 00046 2 
00033000 00050 2 
00034000 00050 1 
oooJsnoo 00051 1 
00036000 00051 l 
00037000 00056 l 
0003AOOO 00057 l 
00039000 00057 2 
00040000 00061 2 
00041000 00063 2 
00042000 00063 1 
00043000 00063 1 

COPY•LOOPI 
LGTHl=FREAD<INtBUFFER,40)1 
IF < THEN 

BEGIN 
PR I NTt FI LE• INFO< IN> J 
QUIT I 3> I 

ENDI 
IF > THEN GO ENO•OF•FILEI 

FWRITE!OUTtBUFFERtLGTHtO>I 
IF <> THEN 

BEGIN 
PRINT•FILE•INFO<OUT>I 
QUIT (4 >I 

END• 

GO COPY•LOOPS 

END•OF•FILEI 
00044000 00066 1 
00045000 00066 1 
00046000 00066 l 
00047000 00072 1 
00048000 00073 1 
00049000 00073 2 
00050000 00075 2 
00051000 00077 2 
00052000 00077 1 END. 

PRIMARY DB STORAGE=~0071 
NO. F'RRORS=ooos 
PROCESSOR TIME:ozoo:031 

FCLOSEIOUTt~lltO>I 
IF < THEN 

BEGIN 
PRINT•FILE•INFO<OUT>I 
QUIT 15> I 

ENOS 

SECONDARY OR STORAGE=~00213 
NO. WARNINGS=OOO 
ELAPSED TIME=Ol00144 

<<NEW DISC FILE>> 
<<CHECK FOR ERROR>> 

«PRINT ERROR» 
«ABORT>> 

«READ A CARD» 
<<CHECK FOR ERROR>> 

«PRINT ERROR» 
<<ABORT>> 

<<CHECK FOR EOF>> 

<<COPY CARD TO DISC>> 
<<CHECK FOR ERROR>> 

«PRINT ERROR» 
<<ABORT» 

<<CONTINUE COPYING>> 

<<MAKE PERMANENT>> 
<<CHECK FOR ERROR>> 

«PRINT ERROR» 
<<ABORT>> 

Figure 10-8. Opening a File on a Device Other Than Disc 

10-34 



Once the file is opened, the file number (used by other file system intrinsics when referencing this 
file) is returned to the variable IN. 

The next statement in the program 

IF<THEN 

checks the condition code. If the condition code is CCL, signifying that the FOPEN request was 
denied, the next four statements, starting with the BEGIN statement, are executed. 

The statement 

PRINT'FILE'INFO(IN); 

calls the PRINT'FILE'INFO intrinsic, which prints a FILE INFORMATION DISPLAY on the 
standard list device, enabling you to determine the error number returned by FOP EN. The 
parameter (IN) specifies the file number returned through the FOPEN intrinsic. If the file was not 
opened successfully, IN = 0, where 0 specifies that the FILE INFORMATION DISPLAY will reflect 
the status of the file referenced in the last call to FOPEN. See Section X for a discussion of the 
FILE INFORMATION DISPLAY. 

The QUIT intrinsic call 

QUIT(l); 

aborts the process. The parameter (1) is an arbitrary user-specified number. When a QUIT intrinsic 
is executed, this number is printed as part of the resulting abort message, allowing you to 
determine, in the case of multiple QUIT intrinsic cails in a program, which specific QUIT call was 
executed. 

ISSUING FREAD AND FWRITE INTRINSIC CALLS FOR $STDIN AND $STDLIST 

If the standard input device ($STDIN) and standard list device ($STDLIST) are opened with the 
FOPEN intrinsic, then FREAD and FWRITE intrinsic calls can be used with these devices. For 
example, the FREAD intrinsic can be used to transfer information entered from a terminal to a 
buffer in the stack; and the FWRITE intrinsic can be used to transfer information from a buffer in 
the stack directly to the standard list device. 

OPENING $STDIN. Figure 10-9 contains a program that opens $STD IN so that FREAD intrinsic 
calls can be issued directly against the standard input device (a· terminal in this case; the program 
was run interactively). 

The standard input device is opened with the FOPEN intrinsic call 

IN:= FOPEN(, %244); 

The parameters specified in the above intrinsic call are as follows: 

f ormaldesigna tor Omitted. 
Default: A temporary, nameless file that can be read, but not saved, is 
assigned. 

10-35 



PAGE OOnl HEWLETT-PACKARD 32100A.OS.l SPL/3000 T~Et OCT 7t 197St 10132 AM 

00001000 00000 0 $CONTROL USLINIT 
00002000 00000 0 BEGIN 
00003000 00000 l BYTE ARRAY DATA1(0:7>z= 11 DATAONE "' 00004000 00005 1 ARRAY RUFFER(01127)1 
00005000 oooos 1 INTEGER OFILEltLGTHtDUMMYtIN,LISTI 
00006000 00005 1 
00007000 00005 1 INTRINSIC FOPENtfREADtFUPOATE,FLOCK,FUNLOCKtFCLOSEt 
00008000 00005 1 PRINT•FILE•INFO,QUITtFWRITEtFREAOI 
00009000 00005 1 
00010000 00005 l PROCEDURE FILERROR(F!LENO,QUIT~O>S 
00011000 00000 1 VALUE QUITNOI 
00012noo 00000 1 INTEGER F!LENO,QUITNOI 
00013000 00000 l BEGIN 
00014000 00000 2 PRINT•FILE•INFOCFILENOlJ 
00015000 00002 2 QUIT (QUJTNOl I 
00016000 00004 2 ENDS 
00017000 00000 l 
000181)00 00000 1 <<END OF DECLARATIONS>> 
00019000 00000 1 
00020000 00000 l DFILEl:=FOPEN!DATAlt~St%345tl2All <<OLD DISC FILE>> 
00021noo 00011 1 IF< THEN FILERRORCDFILEltlll <<CHECK FOR FRROR>> 
00022000 00015 1 
00023000 00015 1 
000241')00 00024 1 
00025000 00030 1 
00026000 00030 1 
00027000 00040 1 
00028f'IOO 00044 1 
00029000 00044 1 UPOATE'LOOP: 
ooo3onoo 00044 l FLOCK CDFILEl t l l J <<LOCK FILE/SUSPEND>> 
00031000 00047 1 IF< THEN FILFRRORCDFILElt~lS <<CHECK FOR ERROR>> 
ooo32noo 00053 1 
00033000 00053 1 LGTH:=FREAO<OFILEltBUFFERtl28)1 <<G~T EMPLOYEE RECD>> 
00034000 00061 l IF< THFN FILERROR<DFILElt5>1 <<CHECK FOR FRROR>> 
00035000 00065 1 IF > THEN GO fND•OF•FILEI <<CHECK FOR EOF>> 
000361'100 00070 1 
00037000 00070 1 FWRITFCLISTtBUFFERt-20t%320>; <<EMPLOYEf NAME>> 
00038000 00075 l IF<> THEN fILERRORCLIST,~>I <<CHECK FOR ERROR>> 
00039000 00101 1 
000401'100 00101 1 OlJMMYl=FREAD(JN,AUFFER!30lt5)J «EMPLOYFF NUMBER» 
00041noo 00110 1 IF< THEN FILERROR<IN,7ll <<CHECK FOR F.RROR>> 
00042t'IOn 00114 l IF > THEN GO END•OF•FILEI 
00043000 0011 s 1 
00044000 00115 1 FUPDATECOFILEltAUFFERtl28); <<EMPLOYEE RECORD>> 
00045000 00121 1 IF<> THEN FILERRORCDFILElt8)1 <<CHECK FOR ERROR>> 
00046000 00125 l 
00047000 00125 1 FUNLOCK<DFILElll <<ALLOW OTHER ACCE55>> 
00048000 00127 1 IF<> THEN FILERRORCDFILElt9ll <<CHECK FOR ERROR>> 
00049000 00133 1 
ooosonoo 00133 1 GO UPDATE•LOOPS <<CONTINUE UPDATE>> 
00051000 00140 l 
00052000 00140 1 END•OF'FILE: 
00053000 00140 1 FUNLOCK <OF I LEl l I <<ALLOW OTHE~ ACCESS>> 
00054000 00142 1 IF<> THEN FILERRORCDFILEltlO>l <<CHECK FOR ERROR>> 
00055000 00146 1 
00056000 00146 l FCLOSECDFILlltOtO>I <<DISP-NO CHANGF>> 
00057000 00151 l IF< THEN FILERRORCDFILEltllll <<CHECK FOR ERROR>> 
00058000 00155 l END. 

PRIMARY DR ST0RAGf•~0071 SECONDARY DB STORAGE=~00204 
NO. FRRORS•OOOJ NO. WARNINGS=OOO 
PROCFSSOR TIMF=O:oo:031 ELAPSED TIME=ozoo:11 

Figure 10-9. Opening $STDIN and $STDLIST 

10-36 



{options %244, for which the bit pattern is as follows: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Bits 

0 0 n I n u u 0 I 0 I 0 0 I 1 0 "I 
.J. 0 I 0 I 1 I 0 I 0 I Binary 

2 4 4 Octal 

The above bit pattern specifies the following file options: 

Domain: New file, no search of system or job temporary file directory 
is necessary. Bits (14:2) = 00. 

aoptions 

ASCII/Binary: ASCII. Bit (13:1) = 1. 
Default Designator: $STDIN. Bits (10:3) = 100. 
Record Format: Undefined length. Bits (8:2) = 10. 

Omitted. All bits are set to zero, access defaults to READ only. 

All other parameters are omitted in the FOPEN intrinsic call. 

Once the file is opened, the file number (used by other fiie system intrinsics when referencing this 
file) is returned to the variable IN. 

The next statement in the program 

IF< THEN FILERROR(IN,2); 

checks the condition code. If the condition code is CCL, signifying that the FOPEN request was 
denied, the error-check procedure FILERROR is called. 

The FILERROR procedure (see statements 10 through 16 in the program) calls the 
PRINT'FILE'INFO intrinsic, which prints a FILE INFORMATION DISPLAY on the standard list 
device, enabling you to determine the error number returned by FOPEN. 

The QUIT intrinsic call (statement number 15) aborts the process. 

OPENING $STDLIST. In figure 10-9, the statement 

LIST:= FOPEN1 (, %614, %1); 

opens the standard list device so that the FWRITE intrinsic can be used to transfer information 
directly to the device. 

The parameters specified in the above intrinsic call are 

formaldesignator Omitted. 
Default: A temporary, nameless file that can be written on, but not 
saved, is assigned. 

10-37 



{options %614, for which the bit pattern is as follows: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Bits 

0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 Binary 

6 1 4 Octal 

The above bit pattern specifies the following file options: 

Domain: New file, no search of system or job temporary file directory 
is necessary. Bits (14:2) = 00. 
ASCII/Binary: ASCII. Bit (13:1) = 1. 
Default Designator: $STDLIST. Bits (10:3) = 001. 
Record Format: Undefined length. Bits (8:2) = 10. 
Carriage Control: Carriage control character expected. Bit (7:1) = 1. 

aoptions %1, for which the bit pattern is as follows: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 

The foregoing bit pattern specifies the following access options: 

Access Type: Write access only. Bits (12:4) = 0001. 

All other parameters are omitted in the FOPEN intrinsic call. 

Bits 

Binary 

Octal 

Once the file is opened, the file number (used by other file system intrinsics when referencing this 
file) is returned to the variable LIST. 

The next statement in the program 

IF< THEN FILERROR(LIST,3); 

checks the condition code. If the condition code is CCL, signifying that the FOPEN request was 
denied, the error-check procedure FILERROR is called. 

The FILERROR procedure (see statements 10 through 16 in the program) calls the 
PRINT'FILE'INFO intrinsic, which prints a FILE INFORMATION DISPLAY on the standard list 
device, enabling you to determine the error number returned by FOPEN. 

The QUIT intrinsic call (statement number 15) aborts the process. 

10-38 



I 
I 

I PAGE 0001 

00001000 
00002000 
00003000 
00004000 
00005000 
00006000 
00007000 
00008000 
00009000 

HEWLETT-PACKARD 32100Ae05el SPL/3000 Tl.IE t OCT 

00000 
00000 
00000 
00005 
00005 
00011 
00011 
00011 
00011 

0 
0 
1 
1 
1 
1 
1 
1 
1 

SCONTROL USLINIT 
BEGIN 

BYTE ARRAY OATAl (0l7) l•"DATAONE· 11 1 
BYTE ARRAY OATA2(017Jl•"DATATWO 11 1 
ARRAY LABL(018)1:a 11 EMPLOYEE DATA FILE"I 
ARRAY BUFFER(01127)1 
INTEGER DFILEltOFILE2tDUMMYI 
DOUBLE RECI 

7t 1975t 10133 AM 

000101')00 00011 
00011000 00011 

1 
1 

INTRINSIC FOPENtFWRITELABELtFGETINFOtFREAO,FWRITEDIRtFCLOSEt 
PRINT•FILE•INF01QUITI 

00012000 00011 1 
00013000 00011 1 
00014000 00000 1 
00015000 00000 1 I 00016000 00000 1 
00017000 00000 2 
00018000 00002 2 

i ~~~!!~~~ 00004 2 
ooozoooo 00000 l 
00021000 00000 1 
00022000 00000 1 
00023000 00000 1 
00024000 00010 1 
00025000 00014 1 
00026000 00014 1 

I 00021000 00027 1 
00028000 00033 1 

i 00029000 00033 l 
oooJonoo 00041 l 
00031000 00045 1 
00032000 00045 1 
00033000 00053 1 
00034000 00057 1 
00035000 00057 1 
00036000 00057 1 
00037000 00065 1 
00038000 00071 1 
00039000 00072 1 
00040000 00072 1 
00041000 00076 1 
00042000 00103 
00043000 00107 1 
00044000 00107 1 

PROCEDURE FILERROR<FILENO,QUIT~O>C 
VALUE QUITNOC 
INTEGER FILENO,QUITNOC 
BEGIN 

PRINT•FILE•INFO<FILENO>J 
QUIT (QUITNO> I 

ENDf 

<<END OF DECLARATIONS>> 

DFILElS:FOPEN<DATAlt'S•'lOO>J 
IF< THEN FILERROR<DFILEltl>C 

DFILE21sFOPEN(OATA2t~4t,4tl28tttl>I 
IF< THEN FILERROR<DFILE212)1 

FWRITELABEL<DFILE2,LABL;9,0)J 
!F <>THEN FILERROR<OFILE2t3)1 

FGETINFO<DFILEl••••••••t•REC>I 
IF< THEN FILERROR<OFILEl,4)1 

INVERT•LOOPI 
DUMMYlmFREAD<DFILEltBUFFERtl28)1 
IF< THEN FILERROR<DFILEle511 
IF > THEN GO END•OF•FILEI 

RECl=REC•lDI 
FWRITEOIR(DFILE2tBUFFERtl281REC>I 
If<> THEN F!LERROR(DFILE2!6)1 

GO INVERT•LOOPI 

END•OF•FILEt 
00045000 00116 1 
00046000 00116 1 
00047000 00116 1 
00048000 00122 1 
00049000 00126 1 
00050000 00126 1 
00051000 00132 l 
00052000 00136 1 END. 

FCLOSE<DFILEl,4,0)1 
IF< THEN FILERROR<DFILEltB)I 

PRIMARY OB STORAGE=~Olll 
NO. FRRORS•OOOI 
PROCF.SSOR TIME•Ol001041 

SECONDARY DB STORAGE•I00221 
NO. WARNINGS=OOO 
ELAPSED TIME•Ol00t59 

<<OLD FILE•DATAONE>> 
<<CHECK FOR ERROR>> 

<<NEW FILE•OATATWO>> 
<<CHECK FOR ERROR>> 

«FILE ID>> 
<<CHECK FOR ERROR>> 

«LOCATE EOF» 
<<CHECK FOR ERROR>> 

<<OLD FILE RECORD>> 
<<CHECK FOR ERROR>> 
<<CHECK FOR EOF>> 

<<LAST REDC NO>> 
<<INVERT REC ORDER>> 
<<CHECK FOR ERROR>> 

<<CONTINUE OPERATION>> 

<<DELETE OLD FILE>> 
<<CHECK FOR ERROR>> 

Figure 10-10. Closing a New File as a Temporary File 

10-39a 



CLOSING FILES 

To terminate access to a file, you use the FCLOSE intrinsic. The FCLOSE intrinsic applies to files 
on all devices, and de-allocates the device on which the file resides. If a file was FOPENed 
concurrently several times by the same user, the device is not de-allocated until the last "nested" 
FCLOSE intrinsic is executed. 

The FCLOSE intrinsic may be used to change the disposition of a file. For example, a file opened as 
a new file can be closed and saved as an old file with permanent or temporary disposition. 

When the FOPEN intrinsic opens a file specified as new in the {options parameter (bits 14 and 
15 = 00), no search of the job temporary or system file domains is conducted to ensure that a file of 
the same name does not exist already. If such a file is closed and saved with the FCLOSE intrinsic, 
however, a search is conducted. The job temporary file domain is searched if the file is to be saved 
as a temporary job/session file and the system file domain is searched if the file is to be saved as a 
permanent file. If a file of the same name is found in either directory, an error code is returned to 
the calling process. Thus, it is possible to open a new file with the same file name as an existing file, 
but an error will result if an FCLOSE intrinsic attempts to save such a file in the same domain with 
a file of the same name. 

Similarly, when the FOPEN intrinsic opens a file specified as old temporary in the f options 
parameter (bits 14 and 15""' 10), only the job tempora... ..... ; file domain (not the system file domain) is 
searched. If such a file is closed and saved as a permanent file with the FCLOSE intrinsic, the 
system file domain is searched. If a file of the same name is found, an error code is returned to the 
calling process. 

If an FCLOSE intrinsic call is not issued in a program in which files have been opened, MPE closes 
all files automatically when the program's process terwinates. In this case, all opened files are closed 
with the same disposition they had before being opened. New files are deleted, old files are saved 
and assigned to the domain to which they belonged previously - either permanent or temporary. 

CLOSING A NEW FILE AS A TEMPORARY FILE 

Figure 10-10 contains an FCLOSE intrinsic call that closes a new file as a temporary job file. 

The FCLOSE intrinsic call 

FCLOSE(DFILE2,2,0); 

closes the file specified by DFILE2. The parameters specified in the above intrinsic call are 

filenum Contained in the identifier DFILE2. The file number was assigned to 
DFILE2 when FOPEN opened the file. 

disposition 2, for which the bit pattern is as follows: 

10-39 



seccode 

The above bit pattern specifies the following: 

Domain Disposition: Temporary job file (rewound). 
The file is retained in the user's temporary 
(job/session) file domain and can thus be re­
opened by any process within the job/session. 
The uniqueness of the file name is checked; if 
a file of this name already exists in the job 
temporary file domain, an error code is 
returned. If the file resides on unlabeled mag­
netic tape, the tape is rewound but not 
unloaded. Bits (13 :3) = 010. 

Disc Space Disposition: Unused disc space not returned to the system. 
Bit (12:1) = 0. 

0, unrestricted access. 

A condition code of CCL is returned if the file is not closed successfully. The statement 

IF <THEN FILERROR(DFILE2, 7); 

checks the condition code and, if thE condition code is CCL, the error-check procedure FILERROR 
(see statements 13 through 19 in the program) is called. 

The FILERROR procedure calls the PRINT'FILE'INFO intrinsic, which prints a FILE 
INFORMATION DISPLAY on the standard list device, enabling you to determine the error number 
returned to FCLOSE. 

The QUIT intrinsic call 

QUIT(QUITNO); 

aborts the process. 

NOTE 

The QUIT intrinsic causes MPE to close all files with no 
change. Thus, new files are deleted, old files are saved and 
assigned to the same domain to which they belonged 
previously. 

CLOSING A NEW FILE AS A PERMANENT FILE 

Figure 10-11 contains an FCLOSE intrinsic call that closes a new file as a permanent file. 

The FCLOSE intrinsic call 

FCLOSE(OUT,%11,0); 

10-40 JUL 1981 



PAGE noo1 HEWLETT-PACKARD 32100A.05.l SPL/3000 TUEt OCT 7t 1975t 10130 AM 

$CONTROL USLINIT 
BEGIN 

BYTE ARRAY INPUT(016)S• 11 INFILE 11 1 
BYTE ARRAY DEV<0:4) s= 11 CARO "I 
BYTE ARRAY OUTPUT(0:7>Z="OATAO!\IE 111 
ARRAY BUFFER<O:l27)1 
INTEGER INtOUTtLGTHI 

00001000 
00002000 
00003000 
00004000 
00005000 
00006000 
00007000 
ooooenoo 
00009000 
00010000 
00011000 
00012000 
00013000 
00014000 
00015noo 
00016000 
00017000 
00018000 
00019000 
0002onoo 
00021000 
00022000 
00023000 
00024000 
00025000 
00026000 
00027000 
00028000 
00029000 
00030000 
00031000 
00032000 
00033000 
00034000 
00035000 
00036000 
00037000 
00038000 
00039000 
00040000 
00041000 
00042000 
00043000 
00044000 
00045000 
00046000 
00047000 
00048000 

00000 0 
00000 0 
00000 1 
00005 1 
00004 1 
00005 1 
00005 l 
00005 1 
00005 1 
00005 1 
00005 l 
00005 1 
00005 1 
00012 l 
00013 1 
00013 2 
00015 2 
00017 2 
00017 1 
00017 1 
00030 1 
00031 1 
00031 2 
00033 2 
00035 2 
00035 l 
00035 1 
00035 1 
00043 1 
00044 1 
00044 2 
00046 2 
00050 2 
00050 l 
00051 l 
00051 1 
00056 1 
00057 l 
00057 2 
00061 2 
00063 2 
00063 1 
00063 1 
00066 l 
00066 1 
00066 1 
00072 1 
00073 1 

INTRINSIC FOPENtFREAOtFWRITEtFCLOSE,?RINT•FILE•INFOtQUITI 

<< END OF DECLARATIONS >> 

IN:•FO?EN<INPUT,%5tt40tDEV>I 
IF < THEN 

BEGIN 
PRINT•FILE•INFOCIN>I 
QUIT< 1>' 

ENDI 

0UTl=FOPEN<OUTPUTt~4t~l0ltl28>1 
IF < THEN 

BEGIN 
PRINT•FILE•INFO<OUT)J 
QUIT <2> I 

END• 

COPY•LOOP: 

00049000 00073 2 
00050000 00075 2 
00051000 00077 2 
ooos2noo 00011 1 END. 

PRIMARY DB STORAGE=~0071 
NO. FRRORS=OOOI 
PROCESSOR TIME:ozoo:oJI 

LGTHl=FREAD<INtBUFFER,40)J 
IF < THEN 

BEGIN 
PRINT•FILE•INFO<IN>I 
QUIT< 3) I 

ENOI 
IF > THEN GO END•OF•FILEI 

FWRITECOUTtBUFFERtLGTHtO)I 
IF <> THEN 

BEGIN 
PRINT•FILE•INFO<OUT>I 
QUlT<4>1 

EN01 

GO COPY•LOOPI 

SECONDARY DR STORAGE=$00213 
NO. WARNINGS=OOO 
ELAPSED TIME=Ol00144 

«CARD READER» 
<<CHECK FOR ERROR>> 

«PRINT ERROR» 
<<ABORT>> 

<<NEW DISC FILE>> 
<<CHECK FOR ERROR>> 

«PRINT ERROR» 
<<ABORT>> 

«READ A CARO» 
<<CHECK FOR ERROR>> 

«PRINT ERROR» 
<<ABORT>> 

<<CHECK FOR EOF>> 

<<COPY CARO TO DISC>> 
<<CHECK FOR ERROR>> 

«PRINT ERROR» 
<<ABORT>> 

<<CONTINUE COPYING>> 

Figure 10-11. Closing a New File as a Permanent File 

10-41 



closes the disc file specified by 0 UT. The parameters specified are 

filenum 

disposition 

seccode 

Contained in the identifier OUT. The file number was assigned to OUT 
when the FOPEN intrinsic opened the file. 

%11, for which the bit pattern is as follows: 

0 1 2 3 4 5 6 7 8 

0 0 0 0 0 0 0 0 0 

9 10 11 12 

0 0 0 1 

1 

13 14 

0 0 

1 

15 

1 

Bits 

Binary 

Octal 

The above bit pattern specifies the following: 

Domain Disposition: Permanent file. The file is saved in the system 
domain. If the file is a new or old temporary 
file on disc, an entry is created for it in the 
system file directory. (An error code is 
returned if a file of the same name exists 
already in the system directory.) If it is an 
old permanent file on disc, this disposition 
value has no effect. If the file is stored on 
magnetic tape that tape is rewound and un­
loaded. Bits (13:3) = 001. 

Disc Space Disposition: Unused disc space returned to the system. 

0, unrestricted access. 

Bits (12:1), (fixed and undefined length 
files only). 

A condition code of CCL is returned if the file is not closed successfully. The statement 

IF< THEN 

checks the condition code and, if it is CCL, the next four statements, starting with the BEGIN 
statement, are executed. 

The statement 

PRINT' FILE'INFO( OUT); 

calls the PRINT'FILE'INFO intrinsic, which prints a FILE INFORMATION DISPLAY on the 
standard list device, enabling you to determine the error number returned by FCLOSE. 

The QUIT intrinsic call 

QUIT(5); 

aborts the process. 

10-42 



RENAMING A FILE 
You can change the name of an exclusively-opened disc file with the FRENAME intrinsic call. This 
intrinsic effectively changes the actual designator (including lockword, if any) of the file. The file 
must be either: 

1. A new file, or 

2. An existing file to which you have write access. If the file is a permanent file, you must 
be the creator. 

When the FCLOSE intrinsic is called in figure 10-12, a check is made to determine if a file of the 
same name exists and, if one does exist, the FREN AME intrinsic is used to rename the file being 
closed. 

The statement 

FCLOSE(DFILE2,l,O); 

attempts to close the file specified by DFILE2 as a permanent file. The file specified by the file 
number contained in DFILE2 is "DATATWO", which was opened as an old temporary file. If the 
file is closed successfully, a CCE condition code is returned and program control is transferred to 
statement label DONE, terminating program execution. If CCE is not returned, the FCHECK 
intrinsic is called to determine the error number. The statement 

IF ERROR=lOO THEN 

checks whether the error number is 100 (duplicate file name in the system file directory). Note that 
even though the file DAT ATWO was opened successfully from the job temporary file directory, it is 
possible that some other user already has a permanent file named DATATWO in the system file 
directory, hence an error to this effect will be returned when the program attempts to close a job 
temporary file as a permanent file. 

The statement 

FRENAME(DFILE2,ALTNAME); 

attempts to rename the file to the actual designator (ALTDATA) contained in the byte array 
ALTNAME. The second FCLOSE call then attempts to close the file under this new name. 

If the second FCLOSE call fails, the PRINT'FILE'INFO intrinsic causes a FILE INFORMATION 
DISPLAY to be printed on the standard list device. In addition, the statement 

FWRITE(LIST,MESSAGE,19,0); 

prints the message 

DUPLICATE FILE NAME - FIX DURING BREAK 

and the CA USEBREAK intrinsic call causes a session break. 

MPE prompts with a colon on the terminal and now you can enter MPE commands. 

10-43 



PAGE 0001 HEWLETT•PACKARD 32100Ae05el SPL/3000 TJEt OCT 7, 1975t 10%34 AM 

SCONTROL USLINIT 
BEGIN 

BYTE ARRAY OATA2(0Z7> ::s 11 0ATATWO 11 J 
BYTE ARRAY LISTFILE(018) 1= 11 LISTFILE "' 
BYTE ARRAY ALTNAME(017)l:nALTDATA "' 
ARRAY BUFFER(01127>• 

00001000 00000 0 
00002000 00000 0 
00003000 00000 1 
00004000 00005 l 
00005000 00006 l 
00006000 00005 l 
00007000 00005 l 
00008000 00023 l 
00009000 00023 l 
0001onoo 00023 1 
00011000 00023 1 
00012000 00023 l 
00013000 00023 1 
00014000 00023 1 
00015000 o~ooo l 
00016000 00000 1 
00017000 00000 1 
00018000 00000 2 
0001~000 00002 2 
00020000 00004 2 
00021000 00000 1 
00022000 00000 1 
00023000 00000 
00024000 00000 1 
00025000 00011 1 
00026000 00015 ~ 
00027000 00015 1 
00028000 00025 1 
00029000 00031 1 
00030000 00031 1 
00031000 00037 1 
00032000 00043 1 
00033000 00050 1 
00034000 00054 1 
00035000 00054 1 
oo036noo 00054 1 
00037000 00061 1 
00038000 00065 1 
00039000 00066 1 
00040000 00066 1 
00041000 00072 1 
00042000 00075 1 
00043000 00101 1 
00044000 00101 1 
00045000 00106 1 
00046000 00112 l 
00047000 00112 l 
00048000 00117 1 
00049000 00117 1 
ooosonoo 00111 1 
ooos1noo 00123 1 
0005?.000 00124 1 
00053000 00131 1 
00054000 00134 1 
00055000 00134 2 
00056000 00137 2 
00057000 00137 2 
00058000 00143 2 
00059000 00144 2 
ooo6onoo 00146 2 
00061000 00153 2 
00062000 00154 2 
00063000 00155 2 

ARRAY MESSAGE<Oll8>1• 11 DUPLICATE FILE NAME - FIX DURING BREAK"' 
INTEGER OFILE2tLIST,ERRORf 
DOUBLE RECtzOD' 

INTRINSIC FOPENtFREADLABELtFREADDIRtFWRITE,FCLOSEtFRENAMEt 
FREADSEEK,CAUSEBREAKtFCHECK,PRINT•FILE•INFO,QUITI 

PROCEDURE FILERROR<FILENO,QUIT~O>J 
VALUE QUJTNOI 
INTEGER FILENO,QUITNOI 
BEGIN 

PRINT•FILE•INFO(QUITNO>I 
QUIT (QUITNO> I 

E"NDI 

<<ENO OF OECLARATIONS>> 

OFILE21:FOPENCOATA2t~6t,4tl28)1 
IF< THEN FILERROR<DFILE2tl>• 

LISTs=FOPEN<LISTFILEt,14,,l)I 
IF< THEN FILERROR!LISTt2)1 

FREADLARELCDFILf.2tBUFFERtl~8t0)1 
IF<> THEN FILERRORCDFILE2t3>f 
FWRITf<LISTtBUFFERt9tO>I 
IF<> THEN FILERRORCLIST,4>1 

LIST•LOOPI 
FREADOIRCDFILE"2tBUFFERtl28tREC>• 
IF< THEN FILERROR<DFILE2tS>I 
IF > THEN GO ENO•OF•FILEI 

RECl=REC+2DI 
FREADSEEK<OFILE?tREC>• 
IF< THEN FILERR0RCDFILE2t~>I 

FWRITFCLISTtBUFFERt35tO>• 
IF<> THEN FILERRORCLIST,7>1 

GO LIST•LOOP' 

00064000 00155 1 DONEcEND. 
PRIMARY OB STORAGE=~Ol21 SECONDARY DB STORAGE=I00240 
NO. FRRORS•OOO• NO. WARNINGS=OOO 
PROCFSSOR TIME:OIOOl04J ELAPSED TIME•Ol00158 

Figure 10-12. FRENAME Intrinsic Example 

10-44 

<<OLD TEMP FILE>> 
<<CHECK FOR ERROR>> 

<dSTDLIST» 
<<CHECK FOR ERROR>> 

<<FILE ID» 
<<CHECK FOR ERROR>> 
<<DISPLAY IO>> 
<<CHECK FOR ERROR>> 

<<EVERY OTHER RECD>> 
<<CHECK FOR ERROR>> 
<<CHECK FOR EOF>> 

<<EVERY OTHER RECD>> 
<<FILL SYSTEM BUFFER>> 
<<CHECK FOR ERROR>> 

<<ALTERNATE RECORDS>> 
<<CHECK FOR ERROR>> 

<<CONTINUE LISTING>> 



NOTE 

The : REN AME command can be used to rename a file. 
However, this command cannot be used to rename a file that 
is currently open in a program. For example, if a file of the 
alternate name (ALTDATA) also exists in the system file 
directory, the :RENAME command must be used to rename 
this file instead of the file opened by the program. Thus, a 
:RENAME command of the form 

:RENAME ALTDATA,ALTAAAA,TEMP 

(attempting to rename the opened temporary file 
ALTDATA) will result in the error message 

EXCLUSIVE VIOLATION: FILE ACCESSED EXCLUSIVELY (FSERR 91) 

The :RENAME command must be used to rename the old, 
unopened file in the system directory, as follows: 

:RENAME ALTDATA,ALTAAAA 

See the MPE Commands Reference Manual for a further discussion of the :RENAME command. 

Once :RESUME is typed to resume program execution, the statement 

GO CLOSE; 

transfers program control back to the label CLOSE and the FCLOSE sequence is tried again. 

WRITING A FILE SYSTEM ERROR-CHECK PROCEDURE 
As you noticed in some of the examples, the statements 

BEGIN 
PRINT'FILE'INFO(filenum); 
QUIT(num); 

END; 

were repeated after each intrinsic call. Instead of repeating this code throughout a program ·with 
multiple intrinsic calls, however, it is more efficient (because less code is generated) to write an 
error-check procedure and merely call this procedure where necessary in a program. 

Figure 10-13 contains a program which includes an error-check procedure, a.."'1.d a single statement 
calls this procedure if an error occurs. The program opens a card reader and a disc file, reads the 
card file, writes these records into the disc file, then closes the disc file. 

The error check procedure (statements 10 through 1 7 in figure 10-13) contains two parameters: 
FILENO (integer) and QUITNO (integer by value). FILENO is an identifier through which is passed 
the file number. This file number is used by PRINT'FILE'INFO to print a FILE INFORMATION 
DISPLAY for that file. 

The QUIT intrinsic aborts the program's process and prints the QUITNO as pa..vt of the abort 
message, enabling you to determine the point at which the process was aborted. 

10-45 



PAGE nool HEWLETT·PACKARD 32100A.05.l SPL/3000 TJEt OCT 7t 1975t 10131 AM 

SCONTROL USLINIT 
BEGIN 

BYTE ARRAY INPUT (OH» l="INFILE "' 
BYTE ARRAY DEV<014>1="CARO 11 1 
BYTE ARRAY OUTPUT<0:7>1= 11 DATAO'JE "I 
ARRAY RUFFERC01127)1 
INTEGER JN,OUTtLGTHI 

00001000 00000 0 
00002000 00000 0 
00003000 00000 1 
00004000 00005 1 
00005000 00004 1 
00006000 00005 1 
00007000 00005 1 
00008000 00005 1 
00009000 00005 l 
00010000 00005 1 
00011000 00005 1 
00012000 00000 1 
00013000 00000 i 
00014000 00000 1 
00015000 00000 2 
00016000 00002 2 
00017000 00004 2 
00018000 00000 l 
00019000 00000 1 
0002onoo 00000 1 
00021000 00000 1 
00022000 00012 1 
00023000 00016 1 
00024000 00016 1 
00025000 00027 1 

INTRINSIC FOPENtFREAD1FWRITE1FCLOSE,PRINT•FILE 1 INFOtOUITI 

<< ENO OF DECLARATIONS >> 

INt=FOPEN(INPUTtlS1t40tDEV)I 
IF< THEN FILERRORCINtl)I 

0UTl=FOPENCOUTPUTtl4tll0ltl28>1 
IF< THEN FILERRORCOUTt2)1 

00026000 00033 1 
00027000 00033 1 
00028000 00033 l 
00029000 00041 1 
00030000 00045 1 
00031000 00046 1 
00032000 00046 l 
00033000 00053 1 
00034000 00057 1 
00035000 00057 1 

COPY•LOOP: 
LGTHl=FREAD<INtBUFFER,40)1 
IF< THEN FILERROR(JN,J>J 
IF > THEN GO ENO•OF•FILEJ 

FWRITE<OUTtBUFFERtLGTHtO)f 
IF <> THEN FILERROR<OUTt4> I 

GO COPY•LOOPI 

END•OF•FILE: 
00036000 00062 1 
00037000 00062 l 
00038000 00062 l 
00039000 00066 l 
00040000 00072 l END. 

PRIMARY DB STORAGE=,0071 
NO. ERRORS:sOOOI 
PROCFSSOR TIME:OIOOI03• 

FCLOSE<OUT1,lltOll 
IF< THEN FILERROR<OUTt5>1 

SECONDARY DB STORAGE=I00213 
NO. WARNINGS•OOO 
ELAPSED TIME=Ol0013l 

Figure 10-13. Error-Check Procedure Example 

10-46 

«CARO READER» 
<<CHECK FOR ERROR>> 

<<NEW DISC FILE>> 
<<CHECK FOR ERROR>> 

«READ A CARD» 
<<CHECK FOR ERROR>> 
<<CHECK FOR EOF>> 

<<COPY CARD TO DISC>> 
<<CHECK FOR ERROR>> 

<<CONTINUE COPYING>> 

<<MAKE PERMANENT>> 
<<CHECK FOR ERROR>> 



READING A FILE IN SEQUENTIAL ORDER 
To read records, or portions of records, from a file in sequential order, you use the FREAD 
intrinsic. 

When the FREAD intrinsic executes, a logical record pointer advances to the next record. Then; the 
next time the FREAD intrinsic is called, the next record is read. Even if a portion of a record is 
read, a subsequent FREAD ignores the unread portion of the last record (because the logical record 
pointer has advanced) and begins reading the next record. 

NOTE 

The logical record pointer is a number kept by MPE to 
indicate the next sequential record to be accessed in a file. 

If RIO access is used, FREAD will input the next active record, automatically ignoring de-activated 
records. The fact that inactive records may have been ignored is transparent to the caller. 

If an RIO file is accessed using the non-RIO method, FREAD will input from the next block. 

The program shown in figure 10-14 reads a card file. The FREAD statement 

LGTH := FREAD(IN ,BUFFER,40); 

reads a record from the card reader file designated by the variable IN (the file number was assigned 
to IN when the FOPEN intrinsic opened the file) and transfers this record to the array BUFFER in 
the stack. The 

1
statement reads up to 40 words from the record, then returns a positive value to 

LGTH which indicates the actual length of the information transferred. 

If an error occurs during execution of the FREAD intrinsic, a condition code of CCL is returned. 
The statement 

IF<THEN 

checks the condition code and, if the condition code is CCL, the next four statements are executed. 
The PRINT'FILE'INFO intrinsic call causes a FILE INFORMATION DISPLAY to be printed on 
the output device so that you can determine the error number returned by FREAD, and the QUIT 
intrinsic aborts the process. 

When the end-of-file is encountered on the card file, a condition code of CCG is returned. The 
statement 

IF> THEN GO END'OF'FILE; 

checks for this condition code and, when it occurs, transfers program control to the label 
END'OF'FILE. If the end-of-file condition is not encountered, the FWRITE statement is executed 
and the 

GO COPY'LOOP; 

statement transfers program control back to the beginning of the copy loop. The FREAD intrinsic 
is called again and the next record is read. 

The FREAD intrinsic operates in the usual manner to read foreign discs. However, IBM diskettes 
number sectors starting with one rather than zero, and the diskette driver adds one to all sector 
addresses for IBM diskettes. Therefore, you specify record number zero to read sector number one 
on an IBM diskette. 

10-47 



PAGE nool HEWLETT-PACKARD 32100A.05.l SPL/3000 TUEt OCT 7, 1975t 10130 AM 

00001000 00000 0 
00002000 00000 0 
00003000 00000 1 
00004000 00005 1 
00005000 00004 1 
00006000 00005 1 
00007000 00005 l 
ooooenoo 00005 1 
00009noo 00005 1 
00010000 00005 1 
00011000 00005 l 
00012000 00005 1 
00013000 00005 l 
00014000 00012 1 
00015000 00013 1 
00016000 00013 2 
00017000 00015 2 
00018000 00017 2 
00019000 00017 l 
00020000 00017 l 
00021000 00030 1 
00022000 00031 l 
00023000 00031 2 
00024000 00033 2 
00025000 00035 2 

SCONTROL USLINIT 
BEGIN 

BYTE ARRAY INPUT(016)1• 11 INFILE "I 
BYTE ARRAY DEV(014) p1 11 CARO "I 
BYTE ARRAY OUTPUT(017)1="0ATAO~E "I 
ARRAY BUFFER(01l27)S 
INTEGER INtOUTtLGTHI 

INTRINSIC FOPEN1FREA01FWRITE1FCLOSEtPRINT•FILE•INFOtQUITI 

<< END OF DECLARATIONS >> 

lNl•FOPEN(lNPuT,,5.t40tOEV>I 
IF < THEN 

BEGIN 
PRINT•FILE•INFO<IN>I 
QUIT<I>I 

ENOI 

0UTl=FOPEN<OUTPUTt,4t~l01t128>1 
IF < THEN 

BEGIN 
PRINT•FILE•INFOIOUT>I 
QUIT <2> I 

ENDf 

COPY•LOOPI 

«CARO READER» 
<<CHECK FOR ERROR>> 

«PRINT ERROR» 
<<ABORT>> 

<<NEW DISC FILE>> 
<<CHECK FOR ERROR>> 

«PRINT ERROR» 
«ABORT>> 

00026000 00035 1 
00027000 00035 l 
00028000 00035 l 
00029000 00043 1 
00030000 00044 1 
00031000 00044 2 
00032000 00046 2 
00033000 00050 2 
00034000 00050 1 
00035000 00051 1 
00036000 00051 1 
00037000 00056 1 
00038000 00057 1 
00039000 00057 2 
0004onoo 00061 z 
00041000 00063 2 
00042000 00063 l 
00043000 00063 1 

1.:l,l.:,1.1.1,:.1:,.:1,!1.:,l.:1,i.:1,'.1.:!,1.:!,1.:1,:.!.:!,1.,·.~.IJ·,·'.~,'.1.:.1.:.1.1.1.i,1:: ... ,•.::,.:::·:,::,·i: ..• ,[.:·:::·'·:·:'~'QU···,···,:.:·,: .• ,'.:,:.i.:[, .. :.1.:::.:.,r.~.·.:.:,•.•t.i .. i.•.:.i.'t.·.'.·.;.·:.~ .. :··: ... !:!, .. !.:

1

, .. ~::·:.'.~.::.1.:.~.:.1 
.. ··i·;.1,~, .. 

1

,•.:.·.·.:!, .. ·.:ei .. :' .. :.!.:.,_·:.·•.:.,.:.:.1.f.:.:.
1

·.:.~:.:•.'"' ... :.,:.·,:.:!.il'i:···:.!•.:.1.'.,.0~ .. 

1

.i.:.·.:.

1

,:.

1

.1,

1

,:.

1

r ..... ,,.·:,1.1,~.f.1•.:.,.::r:,.:~··.;.,::.:r .. : .. :.:.:.i.:.~.ri.i .... l,1,~.:.i.•.i, .. :,:.::•.:.!,:.·,i,:.:.:.:.·.:,:.:.:i,',: I (!!tl9!8!!!! 
u:, ,.,. ~,n~:n: ~ '"'~···vr.: ,.,,.,,"~~,.. n:n:r::rtmbtt.Htt-K:tttve:::rQff:j:ittHJ:tt 

GO COPY•LOOPI 

END•OF•FILEI 
00044000 00066 1 
00045000 00066 1 
00046000 00066 1 
00047000 00072 1 
00048000 00073 1 
00049000 00073 2 
00050000 00075 2 
00051000 00077 2 
00052000 00077 l ENO. 

PRIMARY DB STORAGE=,0071 
NO. FRRORS=OOOI 
PROC~SSOR TIME=oroo:031 

FCLOSE<OUTtilltO>f 
IF < THEN 

BEGIN 
PRINT•FILE•INFO<OUT>S 
QUJT(5)1 

ENDI 

SECONDARY OB STORAGE=,00213 
NO. WARNINGS=OOO 
ELAPSED TIME=Ol00144 

<<CONTINUE COPYING>> 

<<MAKE PERMANENT>> 
<<CHECK FOR ERROR>> 

«PRINT ERROR» 
«ABORT» 

Figure 10-14. FREAD and FWRITE Intrinsics Example 

10-48 



WRITING RECORDS INTO A FILE IN A SEQUENTIAL ORDER 

To write records, or portions of records, from your buffer to a file in sequential order, you use the 
FWRITE intrinsic. 

When the FWRITE intrinsic executes, the logical record pointer advances to the next record. Then, 
the next time the FWRITE intrinsic is called, information is written into the next record position. 
When information is written to a file composed of fixed-length records (and buffering is not 
specified in the FOPEN call), the file system pads all short records with binary zeros for a binary 
file, or ASCII blanks for an ASCII file to bring the records up to the fixed length required. If nobuff 
was specified in FOPEN, automatic buffering is not provided by MPE. 

The FWRITE statement in figure 10-14. 

FWRITE(OUT,BUFFER,LGTH,O); 

writes a record from the array BUFFER into the disc file designated by the variable OUT. (The file 
number was assigned to OUT when FOPEN opened the file.) The length of the record is specified 
by LGTH. (LGTH was assigned its value when FREAD read the record and transferred it to 
BUFFER, so in this case the same number of words being read from the card reader are being 
written to the disc.) 

The control parameter is specified as 0 to indicate that no ca...rriage control code is included in the 
record. (Carriage control, of course, is not necessary for a disc file but the parameter is included 
because all FWRITE parameters are required.) 

A condition code of CCE signifies that the FWRITE request was granted. The statement 

IF <>THEN 

checks for a "not equal" condition code and, if CCG or CCL is returned, the next four statements 
are executed. The PRINT'FILE'INFO intrinsic causes a FILE INFORMATION DISPLAY to be 
printed on the output device, enabling you to determine the error number returned by FWRITE. 
The QUIT intrinsic aborts the process. 

If CCE is returned, the next four statements are not executed, the GO COPY'LOOP statement is 
executed, and the FREAD and FWRITE intrinsic calls are repeated until FREAD detects the end of 
the card file. 

The FWRITE intrinsic operates in the usual manner to write to foreign discs. However, IBM 
diskettes number sectors starting with one rather than zero, and the diskette driver adds one to all 
sector addresses for IBM diskettes. Therefore, you specify record number zero to write to sector 
number one on an IBM diskette. 

READING A FILE IN DIRECT-ACCESS MODE 

As you recall from the discussion of the FREAD intrinsic, a record read with that intrinsic is 
determined by the position of the logical record pointer. Each successive FREAD then reads the 
next record in sequence because the logical record pointer advances one record each time FREAD is 
executed. It is possible, however, to access specific records in a disc file with the FREADDIR 

10-49 



intrinsic. The record number to be read is specified as one of the parameters in the FREADDIR 
intrinsic call. Note that the FREADDIR intrinsic call may be issued only for a disc file composed of 
fixed-length or undefined-length records. 

The FREADDIR intrinsic operates in the usual manner to read foreign discs. However, IBM 
diskettes number sectors starting with one rather than zero, and the diskette driver adds one to all 
sector addresses for IBM diskettes. Therefore, you specify record number zero to read sector 
number one on an IBM diskette. 

Figure 10-15 contains a program that reads every other record in a disc file using the FREADDIR 
intrinsic. The FREADDIR intrinsic call 

FREADDIR(DFILE2,BUFFER,128,REC); 

reads a record from the file designated by DFILE2 (the file number was assigned to DFILE2 when 
the FOPEN intrinsic opened the file) and transfers this record to the array BUFFER in the stack. 
Up to 128 words are read from the record. The parameter REC specifies which record is read. The 
double integer value OD (double integers are indicated by the suffix D in SPL) was assigned to REC 
(see statement number 9 in the program), and so the first time the LIST'LOOP is executed, the first 
record in the file (logical record number 0) is read. REC is incremented by 2D each time the loop is 
executed, therefore, physical record number 3 (logical record number 2) is read the second time the 
loop is executed, then 5, 7, etc. The logical record pointer is advanced by one each time the 
FREADDIR intrinsic is executed. Since the record number to be read is specified by REC, however, 
the FREADDIR intrinsic does not necessarily read records in sequential order, as does the FREAD 
intrinsic. 

If the information is not read successfully by a FREADDIR intrinsic call, a CCL condition code is 
returned. The statement 

IF< THEN FILERROR(DFILE2,3); 

checks the condition code and, if it is CCL, calls the error-check procedure FILERROR. The 
FILERROR procedure prints a FILE INFORMATION DISPLAY on the standard list device, 
enabling you to determine the error number returned by FREADDIR, then aborts the program's 
process. 

A condition code of CCG signifies an end-of-file condition and the statement 

IF >THEN GO END'OF'FILE; 

transfers program control to the label END'OF'FILE when the end-of-file condition is encountered. 

OPTIMIZING DIRECT-ACCESS FILE READING 

If you know in advance that a certain record is to be read from a file with the FREADDIR intrinsic, 
you can speed up the I/0 process by issuing a FREADSEEK intrinsic call. 

The FREADSEEK intrinsic moves the record from the file to a file system buffer. Then, when the 
FREADDIR intrinsic call is issued, the record is transferred from this buffer to the buffer in the 
stack specified by FREADDIR. The I/0 process is enhanced when FREADSEEK is used, if the 
record to be read can be brought into the buffer before the FREADDIR call is issued. An FREAD­
SEEK call should not immediately be followed by the FREADDIR call; enough time must be 
allowed for the 1/0 process to bring in the record from the file. 

10-50 



The LIST'LOOP in figure 10-15 performs the following functions: 

1. Issues a FREADDIR intrinsic call to transfer a record (specified by REC) from a file 
(specified by DFILE2) to an array (BUFFER) in the stack. 

2. Increments REC by 2D. 

3. Issues an FREADSEEK intrinsic call to read the record specified by the new value of REC 
and to transfer this record to a system buffer. 

4. Lists the record in the stack array (BUFFER) on the standard list device. 

5. Repeats the loop. 

The next time LIST'LOOP is executed, the FREADDIR intrinsic reads the record from the file 
system buffer to the stack array (BUFFER), eliminating the need to wait for file access and thus 
reducing the execution time of the loop. 

Note: Can also be used with FPOINT and FREAD. 

WRITING RECORDS INTO A FILE IN DIRECT-ACCESS MODE 

To write information into a specific record in a disc file, you can use the FWRITEDIR intrinsic. 

Unlike the FWRITE intrinsic, which writes records into a file depending on the position of the 
logical record pointer, the FWRITEDIR intrinsic can write into any record of a file by specifying 
the logical record number as a parameter (or physical record number if in NOBUF access mode). 

The FWRITEDIR intrinsic call may be issued only for disc files of fixed-length or undefined-iength 
records. 

The FWRITEDIR intrinsic operates in the usual manner to write to foreign discs. However, IBM 
diskettes number sectors starting with one rather than zero, and the driver adds one to all sector 
addresses for the IBM diskettes. Therefore, you specify record number zero to write to sector 
number one on an IBM diskette. 

Figure 10-16 contains a program that reads records from one file and writes these records, in inverse 
order, into a second file using the FWRITEDIR intrinsic. 

The FGETINFO intrinsic (see page 10-68) is used to locate the end-of-file in the file to be read. 
This information is returned to the variable REC. 

The FREAD statement 

DUMMY:=FREAD(DFILEl,BUFFER,128); 

reads up to 128 words from the first record of the file DATAONE (specified by the file number 
assigned to DFILEl by the FOPEN intrinsic when the file was opened) and transfers this 
information to the array BUFFER. 

10-51 



PAGE noo1 HEWLETT·PACKARD 32100Ae05.1 SPL/3000 TJEt OCT 7, 1975t 10:34 AM 

SCONTROL USLINIT 
BEGIN 

BYTE ARRAY OATA2<0Z7> 1z 11 0ATATWO "J 
BYTE ARRAY lISTfILECOr8> 1= 11 LISTFILE "f 
BYTE ARRAY ALTNAMEC0:7>1="ALTDATA "I 
ARRAY BUFFER<O:l27>• 

00001000 00000 0 
00002000 00000 0 
00003000 00000 1 
00004000 00005 1 
00005000 00006 1 
00006000 00005 1 
00007000 00005 1 
ooooenoo 00023 1 
00009000 00023 1 
0001onoo 00023 1 
00011000 00023 l 
00012000 00023 l 
00013nOO 00023 l 
00014000 00023 l 
00015000 00000 l 
00016000 00000 1 
00017000 00000 l 
00018000 00000 2 
00019000 00002 2 
00020000 00004 2 
00021000 00000 1 
00022000 00000 l 
00023000 00000 1 
00024000 00000 1 

ARRAY MESSAGECOl18> p1: 11 DUPLICATE FILE NAME - FIX DURING BREAK"I 
INTEGER DfILE2tLIST,ERRORI 
DOUBLE RECrzODI 

INTRINSIC FOPENtFREADLABELtFREADDIReFWRITEtFCLOSEtFRENAMEt 
FREAOSEEK,CAUSEBREAKtFCHECK,PRINT•FILE•INFO,QUITI 

00025000 00011 1 
00026000 00015 1 
00027000 00015 1 
00028000 00025 1 
00029000 00031 l 
00030000 00031 1 
00031000 00037 1 
00032000 00043 l 
00033000 00050 l 

PROCEDURE FILERRORCFILENO,QUIT~O>I 
VALUE QUITNOJ 
INTEGER FILENO,QUITNOJ 
BEGIN 

PRINT•FILE•INFOCQUITNO)l 
QUITCQUITNO) I 

E"NDI 

<<END OF OECLARATIONS>> 

DFILE2l=FOPEN<DATA2t'6•'4•128>1 
IF< THEN FILERROR<DFILE2,l>I 

LISTs=FOPEN<LISTFILEt,14t~l)I 
IF < THEN FILERROR<LISTt2)~ 

FREADLARELCDFILF.2tBUFFERtl28tO>I 
IF<> THEN FILERROR<OFILE2t3>C 
FWRITECLISTtBUFFERt9eO>I 
IF<> THEN FILERROR<LIST,4)1 

<<OLD TEMP FILE>> 
<<CHECK FOR ERROR>> 

<dSTDLIST» 
<<CHECK FOR ERROR>> 

«FILE ID» 
<<CHECK FOR ERROR>> 
«0 I SPLAY 10» 
<<CHECK FOR ERROR>> 

00034000 00054 l 
00035000 00054 1 
00036000 00054 1 
00037000 00061 l 
00038000 00065 l 
00039000 00066 1 
00040000 00066 1 
00041000 00072 1 
00042000 00075 1 
00043000 00101 1 
00044000 00101 l 

REC:=REC•2DI <<EVERY OTHER RECD>> 
:::::rt: :::::ai:;ae•ase'tk:tow:1;:ue~:;:#:Eel¥t:: :: ::ur::: :::,;: , = 'ii'<ritt 's'vs'tr• au#'f'eii:> 
: <>tr::: :=:::::1:f:Vij:f:11e:"1:if:1:ue1~=J:nr'1:t:ezi:1::t::11r>'< :,:::::::, ... :.·,!·! [:!·i~'·(eHi:e=i·:.:::~=oi.1.=£#1&#$.i:::::::::::::: 

00045000 00106 1 
00046000 00112 1 
00041noo 00112 1 
00048000 00117 1 
00049000 00117 1 
ooosonoo 00111 1 
ooos1noo 00123 1 
ono5?.ooo 00124 1 
00053000 00131 1 
00054000 00134 1 
00055000 00134 2 

FWRITF<LISTtBUFFERt35tO>I 
IF<> THEN FILERRORCLIST,7>1 

GO LIST•LOOPI 

END•OF•fILF:: 
FCLOSE<nFILE2tltO>I 
IF = THEN GO DONEi 
FCHECKCOFILE2tERROR) I 
IF ERROR=lOO THEN 

BEGIN 
FRENAME<DFILE2tALTNAME>I 

00056000 00137 2 CLOSE: 
00057000 00137 2 FCLOSECDFILE2tlt0)1 
00058000 00143 2 IF • THEN GO DONEi 
00059000 00144 2 PRINT•FILE•INFOCOFILE2>1 
00060nOo 00146 2 FWRITECLISTeMESSAGEtl9tO>• 
00061000 00153 2 CAUSEBREAKf 
00062000 00154 2 GO CLOSEI 
00063000 00155 2 ENDI 
00064000 00155 1 DONE:END. 

PRIMARY DR STORAGE=,0121 SECONDARY DB STORAGE•,00240 
NO. FRRORS•OOOI NO. WARNINGS•OOO 
PROCFSSOR TIME•OIOOI04f ELAPSED TIME•Ol00S58 

<<ALTERNATE RECORDS>> 
<<CHECK FOR ERROR>> 

<<CONTINUE LISTING>> 

<<MAKE PERMANENT>> 
<<LISTING nONE>> 
<<FCLOSE ERROR>> 
<<DUPLICATE FILE NAMf>> 

<<CHANGE FILE NAME>> 

«TRY AGAIN» 
«GOOD FCLOSE» 
«PRINT ERROR>> 
«SEEK HELP» 
<<SESSION BREAK>> 
«LOOP BACK» 

Figure 10-15. FREADDIR and FREADSEEK Intrinsics Example 

10-52 



PAGE 0001 HEWLETT-PACKARD 32100A.05el SPL/3000 TUEt OCT 7t 1975t 10:33 AM 

00001000 00000 
00002000 00000 
00003000 00000 
00004000 00005 
00005000 00005 
00006000 00011 
00007000 00011 
00008000 00011 
00009000 00011 

0 
0 
1 
1 
1 
1 
1 
1 
1 

SCONTROL USLINIT 
BEGIN 

BYTE ARRAY DATAl (017) l•"DATAONE 11 1 
BYTE ARRAY OATA2<0l7> t•"DATATWO 11 1 
ARRAY LABL<018>1="EMPLOYEE DATA FILE"J 
ARRAY BUFFER(01127)J 
INTEGER OFILEltDFILE2tDUMMYI 
DOUBLE RECI 

00010000 00011 
00011000 00011 

1 
1 

INTRINSIC FOPENtFWRITELABELtFGETINFOtFREADtFWRITEOIR,FCLOSEt 
PRINT'FILE•INFO,QUITI 

00012000 00011 1 
00013000 00011 1 
00014000 00000 1 
00015000 00000 1 
00016000 00000 1 
00017000 00000 2 
00018000 00002 2 
00019000 00004 2 
00020000 00000 l 
00021000 00000 l 
00022000 00000 1 
00023000 00000 1 
00024000 00010 l 
00025000 00014 1 
00026000 00014 1 
00027000 00027 l 
00028000 00033 1 
00029000 00033 l 
0003onoo 00041 1 
00031000 00045 
00032000 00045 1 
00033000 00053 1 
00034000 00057 l 
00035000 00057 1 
0003MOO 00057 l 
00037000 00065 1 
00038000 00011 1 
00039000 00072 1 
00040000 00072 1 
00041000 00076 1 
00042000 00103 l 
00043000 00107 
00044000 00107 l 

PROCEDURE FILERRORCFILENO,QUIT~O>C 
VALUE QUITNOJ 
INTEGER FILENO,QUITNOI 
BEGIN 

PRINT•FILE•INFO<FlLENO)J 
QUIT CQUITNO> J 

END• 

<<END or DECLARATIONS>> 

DFILEll=FOPEN<DATAltlStllOO>J 
IF< THEN FILERRORCDFILEltl>I 

DFILE21sFOPENCDATA2tl4t14tl28tttlll 
IF< THEN FILERROR(OFILE2t2>C 

FWRITELABEL<DFILE2tLABLt9tO>• 
IF<> THEN FILERRORCOF!LE2o3)1 

FGETINFO<OFILElttttttttttREC>J 
IF< THEN FILERROR<OFILEl,~)I 

INVERT•LOOPI 
DUMMYl=FREAD<DFILEltBUFFERtl28)1 
IF< THEN FILERROR<DFILElt5)1 
IF > THEN GO ENO•OF•FILEI 

GO INVERT•LOOPI 

END•OF•FILEI 
FCLOSE<DFILE2,2tO>I 

00045000 00116 1 
00046000 00116 1 
00047000 00116 1 
00048000 00122 1 
00049000 00126 l 
00050000 00126 l 
00051000 00132 l 
00052000 00136 l END. 

IF< THEN FILERRORCDFILE2t7lJ 

FCLOSE<DFILElt4tO>I 
IF< THEN FILERROR<OFILEltB)I 

PRIMARY OB STORAGE~IOlll 
NO. FRRORS•OOOJ 
PROCF.SSOR TIME•OIOOI041 

SECONDARY OB STORAGE•I00221 
NO. WARNINGS=OOO 
ELAPSED TIMEsOl00159 

Figure 10-16. FWRITEDIR Intrinsic Example 

<<OLD FILE·DATAONE>> 
<<CHECK FOR ERROR>> 

<<NEW FILE•DATATWO>> 
<<CHECK FOR ERROR>> 

«FILE ID» 
<<CHECK FOR ERROR>> 

«LOCATE EOF» 
<<CHECK FOR ERROR>> 

<<OLD FILE RECORD>> 
<<CHECK FOR ERROR>> 
<<CHECK FOR EOF>> 

<<CONTINUE OPERATION>> 

<<SAVE NEW AS TEMP>> 
<<CHECK FOR ERROR>> 

<<DELETE OLD FILE>> 
<<CHECK FOR ERROR>> 

10-53 



The statement 

REC:=REC-lD; 

decrements REC by the double integer value lD to arrive at the logical record number of the last 
record in the file. (REC contains a current value of last physical record (last logical record+ JD) as 
a result of the FGETINFO intrinsic call.) 

The FWRITEDIR statement 

FWRITEDIR(DFILE2,BUFFER,128,REC); 

writes the record contained in the array BUFFER to the file specified by DFILE2. The parameters 
specified in the FWRITEDIR intrinsic call are 

filenum 

target 

tcount 

recnum 

Contained in DFILE2, which was a~igned the file number of the file 
DAT ATWO when the FOP EN intrinsic opened the file. 

BUFFER, the array that contains the record to be written. 

128 words 

REC, which contains the logical record number of the last record in the 
file. 

If the FWRITEDIR request is successful, a CCE condition code is returned. The statement 

IF<> THEN FILERROR(DFILE2,6); 

checks for a "not equal" condition code and, if such a condition code is returned, the error-check 
procedure FILERROR is called. 

The FILERROR procedure prints a FILE INFORMATION DISPLAY on the standard list device, 
enabling you to determine the error number returned by FWRITEDIR, then aborts the program's 
process. 

If a condition code of CCE is returned, the 

IF<> THEN FILERROR(DFILE2,6); 

statement is not executed and the 

GO INVERT'LOOP; 

statement transfers program control to the statement label INVER T'LOOP, causing the invert loop 
to be repeated. 

The second time the loop is executed, the FREAD intrinsic reads the second record from 
DATAONE and the FWRITE intrinsic writes this record into the next-to-last record in DATATWO 
(REC has been decremented again by lD). The loop repeats until the last record is read from 
DATAONE. 

10-54 



LOCKING AND UNLOCKING FILES 

Occasionally, for example, when a file is opened so that records can be changed, it is advantageous 
to dynamically lock the file to signal that another user should not attempt to change the same 
record at the same time. This is accomplished with the FLOCK intrinsic; a locked file is unlocked 
with the FUNLOCK intrinsic. 

When an FOPEN intrinsic specifying the dynamic locking aoption is issued against a disc file, a 
Resource Identification Number (RIN) is established for that file. (The MPE RIN mechanism pro­
vides a waiting queue facility). A user's process then can call intrinsics that dynamically lock and 
unlock the file by alternately acquiring and releasing exclusive use of this RIN. 

It is important to note that the FLOCK and FUNLOCK intrinsics only provide a means of signaling 
that the caller wants temporary exclusive use of the file. All processes must cooperate by using the 
same signaling system to ensure data integrity. If one process fails to call FLOCK or does so im­
properly, the data may be corrupted and unexpected results may occur. FLOCK locks as RIN, not 
the file itself. 

Because the RIN's used in dynamic file locking are available system wide, the user employing the 
file-locking intrinsics must follow the rules governing global RIN's (see Section VI). Specific capa­
bility-class rules governing file locking are: 

1. Standard Capabilities. A user's running process (program) can lock only one file at a time. 

2. Process-Handling Optional Capability. Within the job process structure, only one file can 
be locked at any one time. 

3. Multiple RIN Optional Capability. No restrictions are imposed. 

Figure 10-17 contains a program that updates the file DATAONE. The FLOCK intrinsic call 

FLOCK(DFILEl,1 ); 

locks the file. The parameters specified in the intrinsic call are 

.1::1 ___ - • ---
/ uenurn Contaii1ed ii1 DFILEl, which was assigned the file number of 

lockcond 

DATAONE when the FOPEN intrinsic opened the file. 

1, which specifies that the file is to be locked unconditionally. This 
means that if the file cannot be locked immediately, the calling process 
is suspended until the file can be locked. 

A condition code of CCL is returned if the FLOCK request was not granted. The statement 

IF< THEN FILERROR(DFILEl,4); 

checks for a condition code of CCL and, if it is returned, the error-check procedure FILERROR is 
called. The FILERROR procedure prints a FILE INFORMATION DISPLAY on the standard 
output device, enabling you to determine the error number returned by FLOCK, then aborts the 
program's process. 

10-55 



PAGE 0001 HEWLETT-PACKARD 32100A.OS.l SPL/3000 TJEt OCT 7, 1975• 10132 AM 

00001000 00000 0 
00002000 00000 0 
00003000 00000 1 
00004000 00005 l 
00005000 00005 1 
00006000 00005 1 
00007000 00005 1 
OOOOAOOO 00005 1 
00009000 00005 l 
00010000 00005 l 
00011000 00000 l 
00012000 00000 l 
00013000 00000 1 
00014000 00000 2 
00015000 00002 2 
00016000 00004 2 
00017000 00000 1 
OOOlAOOO 00000 l 
00019000 00000 1 
00020000 00000 
00021000 00011 1 
00022000 00015 1 
00023000 00015 l 
00024000 00024 1 
00025000 00030 1 
00026000 00030 1 
00027000 00040 1 
00028000 00044 1 
00029000 00044 1 
oooJonoo 00044 1 
00031000 00047 1 
00032000 00053 1 
00033000 00053 1 
00034000 00061 1 
00035000 00065 1 
00036000 00070 1 
00037000 00070 1 
00038000 00075 1 
00039000 00101 1 
00040000 00101 1 
00041000 00110 1 
00042000 00114 1 
00043000 00115 l 
00044000 00115 l 
00045000 00121 1 
00046000 00125 1 
00047000 00125 1 
00048000 00127 l 
00049000 00133 1 
ooosonoo 00133 I 

SCONTROL USLINIT 
BEGIN 

BYTE ARRAY DATAl (0:7) Z="OATAONE 11 1 
ARRAY AUFFER(01127)J 
INTEGER DFILEltLGTHtDUMMYtIN,LISTS 

INTRINSIC FOPEN•FREAOtFUPOATE,FLOCKtFUNLOCKtFCLOSEt 
PRINT•FILE•INFO,QUITtFWRITEtFREADI 

PROCEDURE FILERROR(FILENO,QUIT~O>I 
VALUE QUITNO' 
INTEGER FILENO,QUITNOI 
BEGIN 

PRINT•FILE•INFO<FILENO)I 
QUIT CQUITNO>' 

END• 

<<END OF DECLARATIONS>> 

DFJLEl~=FOPEN(DATAlt%S,%345tl2AlS 

IF< THEN FILERROR(DfILEltlll 

IN::FOPENC,~244>• 
IF< THEN FILERROR!INt2>S 

LISTs=FOPENCt~614t~lll 
IF< THEN FILERROR<LISTt3l-

UPDATE'LOOP: 

LGTHZ=FREAO<DFILEltBUFFERtl2B>• 
IF< THFN FILERROR<OFILEl,Sll 
IF > THEN GO ENO•OF•FILEI 

FWRITfCLISTtBUFFERt-20t~320>J 

IF<> THEN FILERROR<LIST,~>I 

DUMMYl=FRE:AD(JN,AUFFER(30lt5ll 
IF< THEN FILERROR<IN,7>1 
IF > THEN GO END•OF•FILEI 

FUPOATECDFILEltAUFFERtl28)1 
IF<> THEN FILERROR<DFILEltBll 

GO UPDATE•LOOPI 

END t OF' FI LE: 

<<OLD DISC FILE>> 
<<CHECK FOR fRROR>> 

«$STD IN>> 
<<CHECK FOR ERROR>> 

«SSTDLIST» 
<<CHECK FOR ERROR>> 

<<G~T EMPLOYEE RECD>> 
<<CHECK FOR FRROR>> 
<<CHECK FOR EOF>> 

<<EMPLOYEE NAME>> 
<<CHECK FOR ERROR>> 

«EMPLOYFF NUMBER» 
<<CHECK FOR ERROR>> 

<<EMPLOYEE RECORD>> 
<<CHECK FOR ERROR>> 

<<CONTINUE UPDATE>> 

:;:::::::::1::::::::::;:-:-:::::::;·11:111111:111:~1:illllliii:~:i~::1:41::i:,~::1:,::~:::.,:-::::1d··.:. :1:111;1:11-1~1~:1.1~111::111111211~\~IBlllll~:~: 

ooos1oon 00140 1 
00052000 00140 1 
00053000 00140 1 
00054000 00142 1 
ooossnoo 00146 1 
00056000 00146 1 
00057000 00151 l 
ooosenoo 00155 l END. 

PRIMARY DR ST0RAGf=~007C 
NO. FRRORS:rQOOc 
PROCFSSOR TIMF:O:oo1031 

FCLOSECDFILlltOtO>I 
IF< THEN FILERRORCDFILEltll>I 

SECONDARY DB STORAGE=~00204 
NO. WARNINGS=OOO 
ELAPSED TIME=o:oo:11 

<<DISP•NO CHANGF>> 
<<CHECK FOR ERROR>> 

Figure 10-17. FLOCK and FUNLOCK Intrinsics Example 

10-56 



The statements below perform the following: 

LGTH:=FREAD<DFILEltBUFFERtl28>1 
IF< THFN FILERROR<DFILElt5>1 
IF > THEN GO END'0F'FILEI 

FWRITEILISTtBUFFER•-20t~320>1 
IF<> THEN FILERROR<LIST,~>I 

DUMMYl&fREAD(IN,AUFFER<30ltSll 
IF< THEN FILERROR<IN,7>1 
IF > THEN GO ENO•OF•FILEI 

FUPOATE<DFILEltRUffERtl2B>I 
IF<> THEN FILERRORCDFILEltB>I 

<<GET EMPLOYEE RECD>> 
<<CHECK FOR FRROR>> 
<<CHECK FOR EOF>> 

<<EMPLOYEE NAME>> 
<<CHECK FOR ERROR>> 

«EMPLOYFE NUMBER» 
<<CHECK FOR ERROR>> 

<<EMPLOYEE RECORD>> 
<<CHECK FOR ERROR>> 

1. Read a record from the file DATAONE. 

2. Print 20 bytes of this record (employee name) on the standard list device (a terminal in 
this case; the program was run interactively). 

3. Read an employee number from the terminal into the array BUFFER starting at word 30. 

4. Update the record by writing the information contained in BUFFER, inciuding the 
employee number, into file DATAONE. 

The statement 

FUNLOCK(DFILEl); 

unlocks the file DATAONE (the file number of which is specified by DFILEl), thus allowing other 
users to access the file. Note that this statement follows each update in UPDATE'LOOP and is 
repeated in END'OF'FILE to insure that the file is unlocked in case an end-of-file condition causes 
a branch out of UPDATE'LOOP before the file is unlocked. 

UPDATING A FILE 

To update a logical record of a disc file, you use the FUPDATE intrinsic. 

The FUPDATE intrinsic affects the last logical record (or block for NOBUF files) accessed by any 
intrinsic call for the file named, and writes information from a buffer in the stack into this record. 
Note that the record number need not be supplied in the FUPDATE intrinsic call; FUPDATE 
automatically updates the last record referenced in any intrinsic call. 

The file containing the record to be updated must have been opened with the update aoption 
specified in the FOPEN call and must not contain variable-length records. 

FUPDATE operates in the usual manner to update a foreign disc file. 

Figure 10-18 contains a program that opens an old disc file and updates records in the file. The 
update information (employee number) is entered from a terminal (the program was run 
interactively) into a buffer in the stack, then the contents of the buffer are used to update the 
record. 

10-57 



PAGE oon1 HEWLETT-PACKARD 32100A.05.l SPL/3000 TJEt OCT 7t 1975t 10132 AM 

$CONTROL USLINIT 
REG IN 

BYTE ARRAY DATAl con> =="DATAONE ... 
ARRAY AUFFER<OZ127)J 
INTEGER OfILEltLGTHtDUMMY,IN,LISTJ 

00001000 00000 0 
00002000 00000 0 
00003000 00000 1 
00004000 00005 1 
oooosnoo oonos l 
00006000 00005 1 
00007000 00005 l 
OOOOROOO 00005 1 
oooo9noo 00005 1 
0001onoo oooos 1 
00011000 00000 1 
00012noo 00000 1 
00013000 00000 1 
00014000 00000 2 
00015000 00002 2 
00016000 00004 2 
00017000 00000 1 
OOOlROOO 00000 1 
00019000 00000 1 
00020000 00000 1 
000211'00 00011 

INTRINSIC FOPENtfREADtFUPOATEt~LOCKtFUNLOCKtFCLOSEt 
PRINT•FILE•INFO,QUITtFWRITE,FREADI 

00022noo 0001s 1 
00023000 00015 1 
00024000 00024 1 
00025000 00030 1 
00026000 00010 1 
00027000 00040 1 
00028000 00044 l 
00029000 00044 1 
oooJonoo 00044 1 
00031000 00047 1 
00032000 00053 l 
00033000 00053 1 
00034000 00061 1 
00035000 00065 l 
oo036noo 00010 1 
00037000 00070 1 
00038000 00075 l 
00039000 00101 1 
00040~00 00101 1 
00041000 00110 l 
00042non 00114 l 
00043000 00115 1 
00044000 00115 1 
00045000 00121 1 
00046000 00125 1 
00047000 00125 1 
0004enoo 001~1 1 
00049000 00133 1 
ooosonoo 00133 1 
00051000 00140 1 
ooos2noo 00140 l 
00053000 00140 l 
00054000 00142 l 
ooossnoo 00146 l 
00056000 00146 1 
00057000 00151 l 

PROCEDURE FILERRORCFILENO,QUIT~O>& 
VALUE QUITNO• 
INTEGER FILENO,QUITNOI 
BEGIN 

PRINT•FILE•INFO<FILENO)I 
QUIT ( QU JTNO > I 

END& 

<<END Of DECLARATIONS>> 

DFILEl:=fOPENCDATAlt$5t%345tl2A>I 
IF< THF.N FILERROR(DFILEltlii 

IN:=FOPENCt%244ll 
IF< THEN FILERRORCINt2)J 

LISTl=FOPENCt%614t~l>• 
IF< THEN FILERROR<LISTt3lf 

UPOATE•LOOP: 
FLOCKCOFILEltlll 
If< THEN FILFRRORCDFILElt~ll 

LGTHl=FREAO<OFILElt8UFFERtl28)1 
IF< THFN FILERROR<DFILElt5>1 
If > THEN GO ENO•OF•FILEI 

fWRITFCLISTtBUFFERt-20t~320>1 
If<> THEN FILERRORCLIST,~>I 

DtlMMY: =FRF.:AD (IN, RUFFER C 30 > , 5 l I 
IF< THfN FILERRORCIN,7>J 
IF > THEN GO ENO•OF•FILf 1 

FUNLOCKCDFILfl)S 
IF<> THEN FILERRORCDFILElt9ll 

GO UPOATE•LOOPI 

END•OF•FILE: 
FUNLOCK CDFILEl >I 
IF<> THEN FILERRORCDFILEl•lO)I 

FCLOSf(OFIL~ltOtOll 
If< THEN FILERRORCDFILEltllll 

oooseooo 00155 1 END. 
PRIMARY DR STORAGf•~007J 
NO. FRRORS:zOOOI 
PROCFSSOR TIMF:O:oo1031 

SECONDARY DB STORAGE=%00204 
NO. WARNINGS=OOO 
ELAPSED TIME=OIOO:l7 

Figure 10-18. FUPDATE Intrinsic Example 

10-58 

<<OLD DISC FILE>> 
<<CHECK FOR FRROR>> 

<<$STOIN» 
<<CHECK FOR ERROR>> 

«SSTDLIST» 
<<CHECK FOR ERROR>> 

<<LOCK FILE/SUSPEND>> 
<<CHECK FOR ERROR>> 

<<G~T EMPLOYfE RECD>> 
<<CHECK FOR FRROR>> 
<<CHECK FOR EOF>> 

<<EMPLOYEf NAME>> 
<<CHECK FOR ERROR>> 

«EMPLOYFF NUMBER» 
<<CHECK FOR ERROR>> 

<<ALLOW OTHER ACCE5~>> 
<<CHECK FOR fRROR>> 

<<CONTINUE UPDATE>> 

<<ALLOW OTHE~ ACCESS>> 
<<CHECK FOR ERROR>> 

<<DISP•NO CHANGf>> 
<<CHECK FOR ERROR>> 



The statement 

LGTH := FREAD(DFILEl,BUFFER, 128); 

reads an employee record from the file specified by DFILEl into the array BUFFER in the stack. 

The statement 

FWRITE(LIST,BUFFER,-20, %320); 

then displays this record on the terminal ($STDLIST has been opened with the FOPEN intrinsic 
and the resulting file number was assigned to LIST). 

The statement 

DUMMY:= FREAD(IN ,BUFFER( 30),5 ); 

reads an employee number, entered on the terminal ($STDIN has been opened with the FOPEN 
intrinsic and the resulting file number was assigned to IN), into the array BUFFER starting at word 30. 

The statement 

FUPDATE(DFILEl,BUFFER,128); 

then calls the FUPDATE intrinsic to update the last record accessed in the file specified by 
DFILEl. The contents of BUFFER (including the employee number entered from the terminal) are 
written into this record. Up to 128 words are written. 

If the FUPDATE request was granted, a CCE condition code results. The statement 

IF< >THEN FILERROR(DFILEl,9); 

checks for a "not equal" condition code and, if such is the case, calls the error-check procedure 
FILERROR. The procedure FILERROR prints a FILE INFORMATION DISPLAY on the terminal, 
enabling you to determine the error number returned by FUPDATE, then aborts the program's 
calling process. 

USING THE IOWAIT INTRINSIC 

Figure 10-19 shows a program that opens several terminals for input. 

The statement 

OUT:=FOPEN(OUTPUT,4,1,,DEV); 

opens the line printer for output and the WHILE statement begins a loop to open the terminals. 

In order to open a file with both the NOBUF and NO-WAIT aoptions specified, the program must 
be running in privileged mode, and this program is switched to privileged mode with the statement 

GETPRIVMODE; 

10-59 



00001000 00000 0 
00002000 00000 0 
00003000 00000 1 
00004000 00005 1 
oooosooo 00005 1 
00006000 00005 1 
00007000 00005 1 
00008000 00005 1 
00009000 00005 1 
00010000 00005 1 
00011000 00005 1 
00012000 00005 1 

SCONT~OL USLINIT 
BEGIN 

BYTE ARRAY OUTPUT(016)1s"OUTPUT "r 
BYTE ARRAY TNAMC016)::"DATAIN "f 
BYTE ARRAY OEVC017)1:"LP TERM "J 
INTEGER OUT,FILE1LGTH,I1••1,PROMPT1a"? 
EQUATE P<fAXTRM=3r 
ARRAY AUFRC0&36*MAXTRM)s 
INTEGER ARRAY OPF.NCO:MAXTRM)' 
DEFINE CCL • IF < THEN QUIT#, 

CCG • IF > THEN QUIT•, 
CCNE: IF <> THEN QUIT#t 

"1DONE1=01 

INTRINSIC FOPEN,FREAO,FWR!TE,FCLOSE,GETPRIVMODE,GETUSERMODE, 
IOWAIT,QU!TJ 

00013000 00005 1 
00014000 00005 1 
00015000 00005 1 
00016000 00005 1 
00017000 00005 1 
00018000 00005 1 
00019000 00005 1 
00020000 00015 1 
00021000 00023 1 
00022000 00023 2 
00023000 00027 2 
00024000 00042 2 
00025000 00045 2 
00026000 00051 2 
00027000 00054 2 
00028000 00064 2 
00029000 00075 2 
00030000 00111 2 
00031000 00116 1 WAJTI 

<<ENO OF DECLARATIONS>> 

00032000 00116 1 FILE:=IOWAJT(O,,LGTH)J CCL(8)J 
00033000 00130 1 IF > THEN 
00034000 00131 1 BEGIN 

<<WAIT FOR 1ST DONE>> 
<<EOF ON TER~ READ>> 

00035000 00131 2 FCLOSECFILE,010), CCLC9)J <<TERMINAL FILE>> 
00036000 00137 2 IFCDONF.l•DONE+l)>=MAXTRM THEN GO EXITJ <<ALL TERMS CLOSED?>> 
00037000 00143 2 END 
00038000 00143 1 ELSE 
00039000 00145 1 BEGIN 
00040000 00145 2 I:=•lJ 
00041000 00147 2 00 I1=I+1 
00042000 00147 2 UNTIL OPENCI):FILE OR I=MAXTRMJ 
00043000 00157 2 IF l=MAXTRM THEN QUITC10)J 
00044000 00164 2 FWRITECOUT,BUFRCI*l6),•LGTH,O)r 
00045000 00174 2 CCNEC11)r 
00046000 00177 2 FWRlTECF!LE1PROMPT,1,,l20)J CCNEC12)r 
00047000 00207 2 IOWAITCFILE)r CCNEC13)J 
00048000 00220 2 FREAOCFILE,BUFRCI*36),•72)J CCNEC14)r 
00049000 00234 2 ENDJ 
00050000 00234 1 GO TO WAITr 
00051000 00235 1 EXITIENO, 

PRIMARY OB STORAGE=,Ollr SECONDARY DB STORAGE•,00175 
NO, ERRORS•OOOJ NO, WARNINGS•OOO 
PROCESSOR TIME=01001021 ELAPSED TIM!•0100108 

Figure 10-19. Using the IOWAIT Intrinsic 

10-60 

<<SET BUFFER INDEX>> 
<<lNCR BUFFER INDEX>> 
<<SEARCH FOR FILE NO>> 
<<FILE NOT FOUND>> 
<<COPY INPUT TO LP>> 
<<CHECK FOR ERROR>> 
<<OUTPUT ? PROMPT>> 
<<COMPLETE REQUEST>> 
<<INPUT DATA•NOWAIT>> 

«CONTINUE» 



The statement 

FILE:=FOPEN(TNAM,%405,%4404,36,DEV(3)); 

opens a terminal. The parameters specified are 

formaldesignator 

{options 

aoptions 

recsize 

device 

DATAIN, which is contained in the byte array TNAM. 

%405, for which the bit pattern is 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 0 0 0 0 0 1 0- 0 0 0 0 1 0 1 

4 0 5 

The above bit pattern specifies the following file options: 

Domain: Old permanent file, system file domain. Bits (14:2) = 01. 
ASCII/Binary: ASCII. Bit (13:1) = 1. 

Bits 

Binary 

Octal 

File Designator: Actual file designator = formal file designator. Bits 
(10:3) = 000. 

Record Format: Fixed-length records. Bits ( 8: 2) = 00. 
Carriage Control: Carriage-control character expected. Bit (7:1) = 1. 

%4404, for which the bit pattern is as follows: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 

4 4 0 4 

The above bit pattern specifies the following access options: 

. 
Access Type: Input/output. Bits (12:4) = 0100. 
Multirecord: Non-multirecord. Bit (11 :1) = 0. 
Dynamic Locking: Disallowed. Bit (10:1) = 0. 

15 

0 

Bits 

Binary 

Octal 

Exclusive: Exclusive access. Default when !/O access is specified and 
bits (8 :2) = 00. 

Inhibit Buffering: Selected (NOBUF). Bit (7 :1) = 1. 
No-Wait I/O. Selected. Bit (4:1) = 1. 

36 words. 

T (terminal), specified in element (3) of byte array DEV. 

Once the file is opened, the program is switched back to the non-privileged mode with the statement 

GETUSERMODE; 

10-61 



The first file number is saved in FILEBASE, a prompt is displayed on the terminal, and the IOWAIT 
intrinsic is called to wait until the request is completed. Input from the terminal is read and stored 
in BUFR at the location determined by the file number. (Input from the first terminal opened starts 
at BUFR location 0, the next input starts at location 36, and so forth.) 

The statements 

FILE:= IOWAIT(O,, LGTH); 
IF>THEN 

wait for an end-of-file indication (the user enters an :EOF: command) from the first terminal on 
which the input is complete. If the end-of-file indication is received, this terminal is closed. 

The input from the terminal is printed on the line printer and another prompt is displayed. Again, 
the IOWAIT intrinsic is called to wait until the request is completed. When DONE= MAXTRM (all 
terminals closed), control is passed to EXIT and the program terminates. 

Note that the IODONTWAIT intrinsic (not shown in figure 10-21) behaves the same as IOWAIT 
with one exception: if IOWAIT is called and no I/0 has completed, the calling process is suspended 
until some I/0 completes; if IODONTWAIT is called and no I/0 has completed, control is returned 
to the calling process. Thus, the program shown in figure 10-21 would not have suspended if the 
IODONTWAIT intrinsic had been called, and control would have returned to the program. 

WRITING AND READING USER FILE LABELS 

MPE allows you to write and read user-defined labels with the FWRITELABEL and FREADLABEL 
intrinsics. Such labels are very useful, for example, labels can be used on files that are updated fre­
quently in order to determine the time of the last update. User-defined labels can be read from and 
written to either disc files or labeled magnetic tape files. The tape files must be previously labeled 
with an ANSI-standard or IBM-standard label. (See Page 10-80 for a discussion of labeled magnetic 
tape files.) 

WRITING A USER FILE LABEL ON A DISC FILE 

When a disc file is created, MPE automatically supplies a file label in the first sector of the first 
extent occupied by that file. User-supplied labels are located in the sectors immediately following 
the MPE file label. The number of records allowed for user-supplied labels for any file must be 
specified in the userlabels parameter of the FOPEN intrinsic call that creates the file. 

In figure 10-20 the FOPEN intrinsic call 

DFILE2:=FOPEN(DATA2,%4,%4,128,,,l); 

opens a new file and specifies 1 for the userlabels parameter (last parameter before parenthesis in 
this example), meaning that one 128-word record will be set aside for user labels. Any attempt to 
write a label beyond this 128-word limit will result in a CCG condition code and the intrinsic 
request will be denied. Note that any subsequent FWRITELABEL intrinsic calls will write over an 
existing label. 

10-62 



The statement 

FWRITELABEL(DFILE2,LABL,9,0); 

calls the intrinsic FWRITELABEL to write a user-supplied label. The parameters specified in the 
intrinsic call are 

filenum Supplied by DFILE2, which was assigned the file number when the 
FOPEN intrinsic opened the file. 

target The array LABL, containing the string "EMPLOYEE DATA FILE", 
which will be written as the user file label. 

tcount 9 words, specifying the length of the string to be transferred from the 
array LABL. 

la be lid 0, specifying the number of the label. (0 = first label, 1 = second label, 
etc.). 

If the label is written successfully, a CCE condition code results. The statement 

IF<> THEN FILERROR(DFILE2,3); 

checks for a "not equal" condition code and, if such is the case, calls the error-check procedure 
FILERROR. The FILERROR procedure prints a FILE INFORMATION DISPLAY on the standard 
list device, enabling you to determine the error number returned by FWRITELABEL, then ~borts 
the program's process. 

READING A USER FILE LABEL ON A DISC FILE 

To read a user file label, you use the FREADLABEL intrinsic. Before reading occurs, MPE checks 
to ensure that you have read-access capability for the file on which the file label is to be read. The 
file therefore must be opened with one of the following access type aoptions: 

Read access only. Bits (12:4) = 0000. 
Input/output access. Bit (12:4) = 0100. 
Update access. Bits (12:4) = 0101. 

In figure 10-21 ~the FOPEN intrinsic call 

DFILE2:=FOPEN(DATA2,%6,%4,128); 

contains the aoptions parameter %4, which specifies input/output access. 

10-63 



PAGE 0001 HEWLETT-PACKARD 32100A.05,l SPL/3000 TUE, OCT 7t 1975, l0t33 AM 

SCONTROL USLINIT 
BEGIN 

BYTE ARRAY DATA! (017> l•"DATAONE "I 
BYTE ARRAY OATA2(017)1•"DATATWO 
ARRAY LABL(018>1="EMPLOYEE DATA 
ARRAY BUFFER(01127>1 

"' FILE"I 

INTEGER DFILEltDFILE2tDUMMY• 
DOUBLE RECI 

00001000 00000 0 
00002000 00000 0 
00003000 00000 1 
00004000 00005 1 
00005000 00005 1 
00006000 00011 1 
00007000 00011 1 
00008000 00011 1 
00009000 00011 1 
00010000 00011 1 
00011000 00011 1 
00012000 00011 1 
00013000 00011 1 
00014000 00000 1 
00015000 00000 1 
00016000 00000 1 
00017000 00000 2 
00018000 00002 2 
00019000 00004 2 
00020000 00000 1 
00021000 00000 1 
00022000 00000 1 
00023000 00000 1 
00024000 00010 1 
00025000 00014 1 
00026000 00014 1 
00027000 00027 1 

INTRINSIC FOPENtFWRITELABELtFGEflNFOtFREAO,FWRITEDIRtFCLOSEt 
PRINT•FILE•INFO,QUITI 

00028000 00033 1 
00029000 00033 1 
00030000 00041 1 
00031000 00045 1 
00032000 00045 1 
00033000 00053 1 

PROCEDURE FILERROR(FILENO,QUIT~O)I 
VALUE QUITNOI 
INTEGER FILENO,QUITNOI 
BEGIN 
PR!NT•FI~E•INFO<FILENO)I 
QUIT (QUITNO> I 

ENDt 

<<END OF DECLARATIONS>> 

OFILEll•FOPEN<DATAltlStllOO>• 
IF< THEN FILERROR<OFILEl,i>I 

DFILE21sFOPEN(DATA2tl4t14,128tttl>I 
IF< THEN FILERROR<DFILE2,2>1 

FGETINFO(OFILEltt•••••••tREC>I 
IF< THEN FILERROR<OFILElt411 

00034000 00057 1 
00035000 00057 l 
00036000 00057 1 
00037000 00065 1 
00038000 00071 1 
00039000 00072 1 
00040000 00072 1 
00041000 00076 1 
00042000 00103 1 
00043000 00107 l 
00044000 00107 1 

INVERTtLOOPI 
DUMMYl=FREAD<DFILEltBUFFERtl28>1 
IF< THEN FILERRORCOFILE1t511 
IF > THEN GO END•OF•FILE• 

RECl•REC•lD• 
FWRITEOIR(OFILE2tBUFFERtl28tREC>I 
IF<> THEN FILERROR<DFILE2t6)1 

GO INVERT•LOOPI 

ENO•OF•FILEI 
FCL0SE<DFILE2t2tO>I 

00045000 00116 1 
00046000 00116 1 
00047000 00116 1 
00048000 00122 1 
00049000 00126 l 
00050000 00126 1 
00051000 00132 l 
00052000 00136 1 END, 

PRIMARY DB STORAGE:IOllf 
NO, f'RRORS•OOO• 
PROCF-SSOR TIME•OSOOS041 

IF< THEN FILERRORCDFILE2,7>• 

FCLOSE<OFILEl,4,0>I 
IF< THEN FILERROR<DFILEl,8>• 

SECONDARY OB STORAGE•I00221 
NO. WARNINGS=OOO 
ELAPSED TIME•Ot00r59 

<<OLD FILE-DATAONE>> 
<<CHECK FOR ERROR>> 

<<NEW FILE•DATATWO>> 
<<CHECK FOR ERROR>> 

«LOCATE EOF» 
<<CHECK FOR ERROR>> 

<<OLD FILE RECORD>> 
<<CHECK FOR ERROR>> 
<<CHECK FOR EOF>> 

<<LAST REDC NO>> 
<<INVERT REC ORDER>> 
<<CHECK FOR ERROR>> 

<<CONTINUE OPERATION>> 

<<SAVE NEW AS TEMP>> 
<<CHECK FOR ERROR>> 

<<DELETE OLD FILE>> 
<<CHECK FOR ERROR>> 

Figure 10-20. FWRITELABEL Intrinsic Example (Disc File) 

10-64 



FAGE nool 

00001000 00000 0 
00002000 00000 0 
00003fl00 00000 l 
00004000 00005 l 
00005000 00006 1 
0000600(') 00005 1 

$CONTROL USLINIT 
BEGIN 

SPL/3000 iJE, ...... 
V~l 

BYTE ARRAY DATA2(0Z7> :a 11 0ATATWO 11 ; 

BYTE ARRAY lISTflLEC0:8>l= 11 LISTFILE "' 
BYTE ARRAY ALTNAMEC0:7)Z:"ALTDATA "' 
ARRAY BUFFER(01127>1 

7, i975t l0i34 AM 

00007000 00005 
ooooenoo 00023 

l 
1 

ARRAY MESSAGE<Oll8> :="DUPLICATE FILE NAME • FIX DURING BREAK"I 
INTEGER DflLE2tLISTtERRORI 

00009000 00023 1 DOUBLE RECS:OOI 
0001onoo 00023 l 
00011000 00023 
00012000 00023 

l 
1 

INTRINSIC FOPENtFREAOLABELtFREADOJR,FWRITEtFCLOSE,FRENAME, 
FREAOSEEKtCAUSEBREAKtFCHECK,PRINT•FILE•INFO,QUITI 

00013000 00023 l 
00014000 00023 1 
00015000 00000 1 
00016000 00000 1 
00017000 00000 1 
00018000 00000 2 
00019000 00002 2 
00020000 00004 2 
00021000 00000 1 
00022000 00000 1 
00023000 00000 1 
00024000 00000 1 
00025000 00011 1 
00026000 00015 1 
00027000 00015 1 
00028000 00025 l 
00029noo 00031 1 

PROCEDURE FILERROR<FILENO,QUIT~O>• 
VALUE QUITNOI 
INTEGER FILENO,QUITNOI 
BEGIN 

PRINT•FILE•INFO(QUITNO>I 
QUIT (QU ITNO) I 

E"NDI 

<<END Of DECLARATIONS>> 

DFILE2:=FOPEN<DATA2t%6t%4tl28>1 
IF< THEN FILERR0RCOFILE2tl)I 

LJSTs=FOPEN<LISTFILEt%l4e%l>• 
IF< THEN FILERRORCLISTt2)1 

<<OLD TEMP FILE>> 
<<CHECK FOR ERROR>> 

<<!STDLIST» 
<<CHECK FOR ERROR>> 

00030000 00031 1 
00031000 00037 l 
00032000 00043 1 

i.._rjl:.lft!'Mll 
00033000 00050 1 If<> THEN FILERRORCLIST,4)1 <<CHECK FOR ERROR>> 
00034000 00054 l 
00035000 00054 1 
00036'100 00054 1 
00037000 00061 1 
00038000 00065 1 
00039noo 00066 1 
ooo4onoo 00066 1 
00041000 00072 1 
00042000 00075 1 
000431'100 00101 l 
000441'>00 00101 1 
00045000 00106 1 
00046000 00112 l 
00047000 00112 l 
00048000 00117 1 
000491'100 00117 l 
ooosonoo 00117 1 
00051noo 00123 1 
00052noo 00124 l 
00053000 00131 1 
00054000 00134 1 
ftftl\CCftl\1' ftft 1 ':IA 2 VVVJ'JUVV UV .&.W._.. 

LIST •LOOP: 
FREADOIR<DFILf2,BUFFERtl28tRECll 
IF< THEN fILfRRORCDFILE2t5ll 
IF > THEN GO END•OF•FILEI 

REC:=REC•2DI 
FREADSEEKCOFILE?tREC>I 
IF< THEN FILERRORCDFILE2t~ll 

fWRITFlLISTtBUFFERt35tOll 
IF<> THEN FILERROR<LIST,7ll 

GO LJST•LOOPI 

END•OF•FILf: 
fCLOSElnFILE2.1.o>• 
IF = THEN GO DONEi 
FCHECKCDFILE2tERR0R)J 
If ERROR=lOO THEN 

BEGIN 
FRENAME(DF!LE2~ALTNA~E)! 

00056000 00137 2 CLOSE: 
ooos1noo 00137 2 FCLOSE<DFILE2tlt0)1 
00058000 00143 2 JF • THEN GO DONEi 
00059000 00144 2 PRINT•FILE•INFOCOFILE2>1 
0006onoo 00146 2 FWRITECLISTtMESSAGEtl9t0)1 
00061000 00153 2 CAUSEBREAKJ 
00062000 00154 2 GO CLOSEI 
00063000 00155 2 ENDJ 
00064000 00155 l DONE:END. 

PRIMARY DR STORAGE:%0121 SECONDARY DB STORAGEc~00240 
NO. FRRORS=OOOI NO. WARNINGS=OOO 
PROC~SSOR TIME:OfOOi04; ELAPSf.D TIME=o:oo:ss 

<<EVERY OTHER RECD>> 
<<CHECK FOR ERROR>> 
<<CHECK FOR EOF>> 

<<EVERY OTHER RECD>> 
<<FILL SYSTEM BUFFER>> 
<<CHECK FOR ERROR>> 

<<ALTERNATE RECORDS>> 
<<CHECK FOR ERROR>> 

<<CONTINUE LISTING>> 

<<MAKE PERMANENT>> 
<<LISTING nONE>> 
«FCLOSE ERROR» 
<<DUPLICATE FILE NAMf>> 

<<CHANGE FILE NAME>> 

<<TRY AGAIN>> 
«GOOD FCLOSE» 
<<PRINT ERROR>> 
<<SEEK HELP» 
<<SESSION BREAK>> 
<<LOOP BACK» 

Figure 10-21. FREADLABEL Intrinsic Example (Disc File) 

10-65 



The statement 

FREADLABEL(DFILE2,BUFFER,128,0); 

reads a user file label from the file specified by DFILE2. The parameters specified in the intrinsic 
call are 

filenum 

target 

tcount 

la be lid 

Supplied by DFILE2, which was assigned the file number when the 
FOPEN intrinsic opened the file. 

BUFFER, the array in the stack to which the file label is transferred. 

128, specifying the maximum number of words to be transferred. 

0, specifying the number of the label to be read. 

If the label is read, a CCE condition code results. The statement 

IF<> THEN FILERROR(DFILE2,3); 

checks for a "not equal" condition code and, if such is the case, calls the error-check procedure 
FILERROR. The FILERROR procedure prints a FILE INFORMATION DISPLAY on the standard 
list device, enabling you to determine the error number returned by FREADLABEL, then aborts 
the program's process. 

OBTAINING FILE ACCESS INFORMATION 

You can request access and status information about an open file with the FGETINFO or the 
FFILEINFO intrinsics. FFILEINFO is a superset of FGETINFO and is designed to replace it. 
However, programs may use either intrinsic exclusively or in conjunction with one another. 

USING FGETINFO 

The program shown in figure 10-22 uses the FGETINFO intrinsic call to locate the end-of-file, 
as follows: 

FGETINFO(DFILEl,,,,,,,,,,REC); 

All parameters of the FGETINFO intrinsic except filenum, which supplies the file number of the 
file for which information is to be obtained, are optional. Note that all parameters in the above 
intrinsic call except filenum and eof are omitted. The commas between DFILEl and REC signify to 
MPE that the parameters are omitted. Omissions from the end of the parameter list need not be 
signified to MPE by commas; instead, the parenthesis after REC signifies that this is the last 
parameter in the intrinsic call. 

If the blksize parameter is specified, the value returned will depend on the access mode, RIO or 
non-RIO. Blksize reflects only the size of the data area within the block when RIO access is used. In 
this case, the blocking factor can be computed in the usual way, block-size divided by record-size. 

When the files are accessed using the non-RIO method, the blksize parameter will reflect the actual 
size of the block, including the Active Record Table area used to implement the RIO access 
method. This value can be used to determine the size of the data transfer, especially for file 
replication. 

10-66 



PAGE 0001 HEWLETT-PACKARD 32100Ae05el SPL/3000 TUEt OCT 7, 1975t 10133 AM 

00001000 00000 
00002000 00000 
00003000 00000 
00004000 00005 
00005000 00005 
00006000 00011 
00007000 00011 
00008000 00011 
00009000 00011 

0 
0 
1 
1 
1 
1 
1 
1 
l 

$CONTROL USLINIT 
BEGIN 

BYTE ARRAY DATAl (OST> 1• 11 0ATAONE· "I 
BYTE ARRAY DATA2<0l7> :=11 DATATWO "I 
ARRAY LABL(018)1:s"EMPLOYEE DATA FILE 11 1 
ARRAY BUFFER(01127)1 
INTEGER DFILEltDFILE2tDUMMYI 
DOUBLE RECI 

00010000 00011 
00011000 00011 

l 
1 

INTRINSIC FOPENtFWRITELABELtFGETINFOtFREADtFWRITEDIRtFCLOSEt 
PRINT'FILE•INFO,QUITI 

00012000 00011 l 
00013000 00011 l 
00014000 00000 1 
00015000 00000 l 
00016000 00000 l 
00017000 00000 2 
00018000 00002 2 
00019000 00004 2 
00020000 00000 1 
00021000 00000 1 
00022000 00000 1 
00023000 00000 1 
00024000 00010 l 
00025000 00014 1 
00026000 00014 1 
00027000 00027 1 
00028000 00033 l 
00029000 00033 l 
00030000 00041 l 
00031000 00045 l 
00032000 00045 l 
00033000 00053 1 
00034000 00057 l 
00035000 00057 l 
00036000 00057 1 
00037000 00065 1 
00038000 00011 1 
00039000 00072 1 
00040000 00072 l 
00041000 00076 l 
00042000 00103 1 
00043000 00107 l 
00044000 00107 1 
00045000 00116 l 
00046000 00116 1 
00047000 00116 1 
AAA£81\ftft "", .,., l vvv•cvuv UV~~.._ 

PROCEDURE FILERRORCFILENO,QUIT~O>J 
VALUE QUITNOI 
INTEGER FILEN01QUITNOI 
BEGIN 

PRINT•FILE•INFO<FILENO>J 
QUIT (QUITNO) I 

ENDI 

<<END OF DECLARATIONS>> 

DFILEll:FOPENCOATAltlStllOO>I 
IF< THEN FILERROR<DFILEltl>I 

DFILE21sFOPENCOATA2tl4,14•12Btttl>I 
IF< THEN FILERRORCDFILE212)1 

FWRITELABEL<DFILE2tLABLt9t0)J 
IF<> THEN FILERRORCDFILE2•3>1 

INVERT•LOOPI 
DUMMYl•FREAD<DFILEltBUFFERtl28>1 
IF< THEN FILERROR<OFILEltS>J 
IF > THEN GO ENO•OF•FILEJ 

RECl=REC•lDI 
FWRITEDIR<OFILE2tBUFFERt128tREC>I 
IF<> THEN FILERROR<DFILE2t6)1 

GO INVERT•LOOPI 

END•OF•FILEI 
FCL0SE<OFILE2e2tO>I 
!F ~THEN FILERROR<OFlLE2,7>1 

00049000 00126 1 
ooosoooo 00126 l 
ooos1000 00132 1 
00052000 00136 1 END. 

FCLOSE<OFILEl,4,0)1 
IF< THEN FILERROR(OFILElt8)J 

PRIMARY DB STORAGE=IOlll 
NO. FRRORS•OOOI 
PROCF.SSOR TIME•OIOOI041 

SECONDARY DB STORAGE=I00221 
NO. WARNINGS=OOO 
ELAPSED TIME=Ot00159 

Figure 10-22. FGETINFO Intrinsic Example 

<<OLD FILE-DATAONE>> 
<<CHECK FOR ERROR>> 

<<NEW FILE•DATATWO>> 
<<CHECK FOR ERROR>> 

«FILE IO» 
<<CHECK FOR ERROR>> 

<<OLD FILE RECORD>> 
<<CHECK FOR ERROR>> 
<<CHECK FOR EOF>> 

<<LAST REDC NO>> 
<<INVERT REC ORDER>> 
<<CHECK FOR ERROR>> 

<<CONTINUE OPERATION>> 

<<SAVE NEW AS TEMP>> 
<<CHECK FOR ERROR>> 

<<DELETE OLD FILE>> 
<<CHECK FOR ERROR>> 

10-67 



The size of a block can be computed by: 

B =fF*R+Al 1128-I A =ffsl 
(A notation in the form I xi means "ceiling (x)" - the smallest integer greater than or equal to x. 
See p. 3-3). Where B =block-size (in sectors), F =blocking-factor, R =record-size (in words), and A 
=size of the Active Record Table (in words). 

The blocking factor can be recomputed by: 

F =I 16*B*12~l 
16*B+l] 

(A notation in the formLx_J means "floor (x)" - the largest integer less than or equal to x). 

Thus, the data-block size can be computed as F*R. Note that double-integer arithmetic is necessary 
for the above calculation since B*128 < = 32767 (thus 16 * B * 128 < = 524272). 

The recpt parameter will always return the ordinal of the next actual record, whether it is active or 
inactive. 

A double integer value equal to the number of logical records currently in the file is returned to 
REC. 

If the FGETINFO request is not granted, a CCL condition code is returned. The statement 

IF< THEN FILERROR(DFILEl,4); 

checks for a condition code of CCL and, if such is the case, calls the error-check procedure 
FILERROR. This procedure prints a FILE INFORMATION DISPLAY on the standard list device, 
enabling you to determine the error number returned by FGETINFO, then aborts the program's 
process. 

USING FFILEINFO 

Although itemvalue is declared as a byte array, the data type of the value returned depends on the 
item itself. Some languages, SPL/3000 and Cobol II for example, permit you to pass any data type 
structure to a formal byte array parameter. This means you do not have to equivalence the data 
structures or to move the data from a temporary buffer to the desired variable. For this reason, the 
following example would retrieve the filename, {options, and record pointer. SPL automatically 
converts the word addresses for {options and recptr to byte addresses. 

byte array FNAME (0:27); 
integer FOPTIONS; 
double RECPTR; 
FFILEINFO(FILENUM, 2, FOPTIONS, 9, RECPTR, 1, FNAME); 

OBTAINING FILE-ERROR INFORMATION 

When a file system intrinsic returns a condition code indicating that an error occurred, you can 
request more details about the error in order to correct it. The FCHECK intrinsic call is used for 
this purpose. 

10-68 



In Figure 10-23, the FCHECK intrinsic is used to determine the error number if a condition code 
error is returned when the FCLOSE intrinsic is executed. The statement 

FCHECK(DFILE2,ERROR); 

specifies that error information is to be returned for the file number designated by DFILE2. The 
error number is returned to ERROR as a 16-bit code. The statement 

IF ERROR=lOO THEN 

checks the error number returned and, if ERROR=lOO, executes a file rename procedure. 

USING FERRMSG 
This intrinsic is called usually following a call to FCHECK. The error code returned in the call to 
FCHECK can then be used as a parameter in the call to FERRMSG. 

For example, suppose a CCL condition is returned by a call to FCLOSE, a call to FCHECK requests 
the particular error code, then a call to FERRMSG can be used to retrieve a printable message 
associated with the code. 

FCLOSE( FILNUM, 1, 0); 
IF< 
THEN BEGIN 

FCHECK( FILNUM,ERRNUM); 
FERRMSG(ERRNUM,MESSAGE,LENGTH); 
PRINT(MESSAGE,-LENGTH,O); 

END 
TERMINATE; 

The message printed explains the FCHECK code. If the FCHECK code has no assigned meaning, the 
following message is returned: 

UNDEFINED ERROR errorcode 

MAGNETIC TAPE CONSIDERATIONS 

Every standard reel of magnetic tape designed for digital computer use has two reflective markers 
located on the back side of the tape (opposite the recording surface). One of these marks is located 
behind the tape leader at the beginning of tape (BOT) position, and the other is located in front of 
the tape trailer at the end of tape (EOT) position. 

These markers are sensed by the tape drive itself and their position on the tape (left or right side) 
determines whether they indicate the start or end of tape positions. (See below.) 

LEADER BOT Fi LE SPACE C:t"\T 
i;:.v1 TRAILER 

MAGNETIC 
TAPE 

As far as the magnetic tape hardware and software are concerned, the BOT marker is much more 
significant than the EOT marker because BOT signals the start of recorded information, but EOT 
simply indicates that the remaining tape supply is running low and the program writing the tape 

10-69 



PAGE nool HEWLETT-PACKARD 32100A.05.l SPL/3000 TJE• OCT 7, 19751 10%34 AM 

SCONTROL USLINIT 
BEGIN 

BYTE ARRAY DATA2COZ7> ::s 11 DATATWO "I 
BYTE ARRAY lISTfILECOrB> 1= 11 LISTFILE 11 1 
BYTE ARRAY ALTNAME(017)1:"ALTDATA "I 
ARRAY BUFFER(O:l27>• 

00001000 00000 0 
00002000 00000 0 
00003000 00000 1 
00004000 00005 1 
00005000 00006 1 
00006000 00005 1 
00007000 00005 1 
00008000 00023 1 
00009000 00023 1 
0001onoo 00023 1 
00011000 00023 1 
00012000 00023 1 
00013000 00023 1 
00014000 00023 1 
00015000 00000 l 
00016000 00000 l 
00017000 00000 1 
00018000 00000 2 
00019000 00002 2 
00020000 00004 2 
00021000 00000 1 
00022000 00000 l 
00023000 00000 l 
00024000 00000 1 

ARRAY MESSAGE<OS18> :="DUPLICATE FILE NAME • FIX DURING BREAK"I 
INTEGER DFILE2tLIST,ERRORI 
DOUBLE RECl=OOI 

INTRINSIC FOPEN,fREADLABELtFREAODIRtFWRITE,FCLOSEtFRENAME, 
FREADSEEK,CAUSEBREAKtFCHECK,PRINT•FILE•INFQ,QUITI 

00025noo 00011 1 
00026000 00015 1 
00027000 00015 1 
00028000 00025 1 
00029000 00031 1 
00030000 00031 1 
00031000 00037 1 
00032000 00043 1 
00033000 00050 1 
00034000 00054 1 
00035000 00054 1 
00036000 00054 l 
00037000 00061 1 
00038000 00065 1 
00039000 00066 1 
00040000 00066 1 
00041000 00072 l 
00042000 00075 1 
00043000 00101 1 
00044000 00101 l 
00045000 00106 1 
00046000 00112 l 
00047000 00112 1 

PROCEDURE FILERROR<FILENO,QUIT~Oll 
VALUE QUITNOI 
INTEGER FILENO,QUITNO• 
BEGIN 

PRINT•FILE•INFO!QUITNO)I 
QUIT CQUITNO> I 

fND• 

<<ENO OF OECLARATIONS>> 

DFILf21=FOPEN<DATA2t%6t%4tl2B>I 
IF< THEN FILERROR<OFILE2tl)I 

LISTr=FOPEN<LISTFILEt~l4t%1>1 
IF< THEN FILERR0RCLISTt2)1 

FREADLARELCDFILF2tBUFFERtl28•0>1 
IF<> THEN FILERRORCDFILE2t3>1 
FWRITf<LISTtBUFFER,9,0>I 
IF<> THEN FILERROR<LIST,4)1 

LIST •LOOP: 
FREADOIR<DFILf2,BUFFER•l28tREC>I 
IF< THEN FILERROR<DFILE2,S>I 
IF > THEN GO END•OF•FILEI 

RECl:REC•2DI 
FREADSEEK<DFILE?tRECll 
IF< THEN FILERROR<DFILE2t~ll 

FWRJTF<LISTtBUFFERt35,0ll 
JF <>THEN FILERROR(LIST,7ll 

END•OF•FILF: 

<<OLD TEMP FILE>> 
<<CHECK FOR ERROR>> 

<dSTDLIST» 
<<CHECK FOR ERROR>> 

«FILE ID» 
<<CHECK FOR ERROR>> 
«OISPLAY ID>> 
<<CHECK FOR ERROR>> 

<<EVERY OTHER RECD>> 
<<CHECK FOR ERROR>> 
<<CHECK FOR EDF>> 

<<EVERY OTHER RECD>> 
<<FILL SYSTfM BUFFER>> 
<<CHECK FOR ERROR>> 

<<ALTERNATf RECORDS>> 
<<CHECK FOR ERROR>> 

<<CONTINUE LISTING>> 
00048000 00117 1 
00049000 00117 1 
ooosonoo 00111 1 
00051000 00123 1 

FCLOSE<nFILE2.1.o>• <<MAKE PERMANENT>> 
IF : THEN GO DONEJ <<LISTING nONE>> 

0005?000 00124 1 
00053000 00131 1 
00054000 00134 1 BEGIN 
00055000 00134 2 FRENAMEIDFILE2tALTNAME>I 
00056000 00137 2 CLOSE: 
00057000 00137 2 FCLOSE(DFILE2•l•O>• 
00058000 00143 2 JF • THEN GO DONEJ 
00059000 00144 2 PRINT•FILf•INFOIOFILE2>1 
00060000 00146 2 FWRITECLIST,MESSAGEtl9•0>1 
00061000 00153 2 CAUSEBREAK• 
00062000 00154 2 GO CLOSE; 
00063000 00155 2 ENDI 
00064000 00155 l DONErEND, 

PRIMARY DR STORAGE=~Ol21 SECONDARY DB STORAGE=%00240 
NO, ~RRORS=OOOI NO, WARNINGS=OOO 
PROCFSSOR TIME:Ol001041 ELAPSED TIME•Ol00158 

Figure 10-23. FCHECK Intrinsic Example 

10-70 

<<CHANGE FILE NAME>> 

«TRY AGAIN>> 
«GOOD FCLOSE» 
«PRINT ERROR>> 
«SEEK HELP>> 
<<SESSION BREAK>> 
«LOOP BACK» 



should bring the operation to an orderly conclusion. The difference in treatment of these two 
physical tape markers is reflected by the file system intrinsics when the file being read, written, or 
controlled is a magnetic tape device file. The following paragraphs discuss the characteristics of each 
appropriate intrinsic. 

FWRITE 

If the magnetic tape is unlabeled (as specified in the FOPEN intrinsic or :FILE command) and a 
user program attempts to write over or beyond the physical EOT marker, the FWRITE intrinsic 
returns an error condition code (CCL). The actual data has been written to the tape, and a call to 
FCHECK reveals a file error indicating END OF TAPE. All writes to the tape after the EOT tape 
marker has been crossed transfer the data successfully but return a CCL condition code until the 
tape crosses the EOT marker again in the reverse direction (rewind or backspace). 

If the magnetic tape is labeled (as specified in the FOPEN intrinsic or :FILE command), a CCL 
condition code is not returned when the tape passes the EOT marker. Attempts to write to the tape 
after the EOT marker is encountered cause end of volume (EOV) labels to be written. A message 
then is printed on the operator's console requesting another volume (reel of tape) to be mounted. 

FREAD 

A user program can read data written over an EOT marker and beyond the marker into the tape 
trailer. The intrinsic returns no error condition code (CCL or CCG) and does not initiate a file 
system error code when the EOT marker is encountered. 

FSPACE 

A user program can space records over or beyond the EOT marker without receiving an error 
condition code (CCL or CCG) or a file system error. The intrinsic does, however, return a CCG 
condition code when a logical file mark is encountered. If the user program attempts to backspace 
records over the BOT marker, the intrinsic returns a CCG condition code and remains positioned on 
the BOT marker. 

FCONTROL (WRITE EOF) 

If a user program writes a logical end of file (EOF) mark on a magnetic tape over the reflective EOT 
marker, or in the tape trailer after the marker, the FCONTROL intrinsic returns an error condition 
code (CCL) and sets a file system error to indicate END OF TAPE. The file mark is actually written 
to the tape. 

FCONTROL (FORWARD SPACE TO FILE MARK) 

A user program which spaces forward to logical tape file marks (EOFs) with the FCONTROL 
intrinsic cannot detect passing the physical EOT marker. No special condition code is returned. 

FCONTROL (BACKWARD SPACE TO FILE MARK) 

The EOT reflective marker is not detected by FCONTROL during backspace file (EOF) operations. 
If the intrinsic discovers a BOT marker before it finds a logical EOF, it returns a condition code 
of CCE and treats the BOT as if it were a logical EOF. Subsequent backspace file operations 
requested when the file is at BOT are treated as errors and return a CCL condition code and set a 
file system error to indicate BOT and BACKSPACE TAPE. I 
JUL 1981 10-71 



In summary, only those intrinsics which cause the magnetic tape to write information are capable of 
sensing the physical EOT marker. If a program designed to read a magnetic tape needed to detect 
the EOT marker, it could be done by using the FCONTROL intrinsic to read the physical status of 
the tape drive itself. When the drive passes the EOT marker and is moving in the forward direction, 
tape status bit 5 (%2000) is set and remains on until the drive detects the EOT marker during a 
rewind or backspace operation. Under normal circumstances, however, it is not necessary to check 
for EOT during read operations. The responsibility for detecting end of tape and concluding tape 
operations in an orderly manner belongs to the program which originally created (wrote) the tape. 

A program which needed to create a multi-volume (multiple reel) tape file would normally write 
tape records until the status returned from FWRITE indicated an EOT condition. Writing could be 
continued in a limited manner to reach a logical point at which to break the file. Then several file 
marks and a trailing tape label would typically be added, the tape rewound, another reel mounted, 
and the data transfer continued. The program designed to read such a multi-volume file must expect 
to find and check for the EOF and label sequence written by the tape's creator. Since the logical 
end of the tape may be somewhat past the physical EOT marker, the format and conventions used 
to create the tape are of more importance than determining the location of the EOT. 

END-OF-FILE MARKS ON MAGNETIC TAPE 

An FWRITE to magnetic tape, followed by any intrinsic call which reverses tape motion (for 
example, backspace a record, backspace a file, or rewind) causes the file system to write an EOF 
mark before initiating the reverse motion. 

For example, if a user program has just written several data records to magnetic tape, writes a file 
mark, rewinds the tape, and closes the file, the tape file will be terminated by two file marks (EOF). 
The first of these was requested by the user by calling FCONTROL to write an EOF, and the 
second was provided by the system because the direction of tape motion had been reversed after a 
write (rewind). See below. 

SP ACING FILE MARKS 

When you space forward to a tape mark (EOF), the tape recording heads have just read the EOF 
and are positioned beyond it, as follows: 

10-72 

B 
0 
T 

E 
0 
F 

BEFORE------------~ AFTER 

E 
0 
T 



When you space backward to a tape mark (EOF), the mark is recog-nized as the tape travels in the 
reverse direction. The tape heads then are left positioned just in front of the EO F that was read, as 
follows: 

I BI 

I~ I 
I E I I EI 

I ~I &I 
AFTER 0 BEFORE 

NOTE 

BOT (beginning of tape) and EOT (end of tape) correspond 
to the reflective markers on the reel of magnetic tape. 

When FREAD has found a logical file mark and returned a condition code of CCG, the EOF mark 
has been read and the tape heads are positioned immediately following the mark (similar to space 
forward to tape mark above). 

USING THE FCLOSE INTRINSIC WITH MAGNETIC TAPE 

The operation of the FCLOSE intrinsic as used with unlabeled magnetic tape is outlined in the 
flowchart of Figure 10-24. 

Note that a tape closed with the temporary no-rewind disposition will be rewound and unloaded if 
certain additional conditions are not met. If is possible for a single process to FOPEN a magnetic 
tape device using a device class and later FOPEN the same device again using its logical device 
number. This may be done in such a manner that both magnetic tape files are open concurrently. 
The second FOPEN does not require any operator intervention (for example, for device allocation). 
When FOPEN /FCLOSE calls are arranged in a nested fashion, tape files may be closed without 
deallocating the physical device, as follows: 

IFOPEN allocate tape 

[

FOP EN 

FCLOSE I 
[

FOPEN J 

l 
FCLOSE 

FCLOSE 

allocated 

deallocate tape 

Such nesting of FOPEN /FCLOSE pairs is required to keep an FCLOSED tape from rewinding. A 
tape closed with the tempora.ry, no-rewind disposition will be rewound and unloaded unless the 
process closing it has another file currently open on the device. 

Nate also that when a temporary no-wind tape is deallocated, the file system has not placed an 
end-of-file mark at the end of the data file. 

10-73 



147028-01 

I 10-74 

0 (NO CHANGE) 
(SAVE PERM) 

2 (SAVE TEMP) 
4 (DELETE) 

WRITE EOF MARK 
ON TAPE. 
REWIND TAPE 

REWIND AND 
UNLOAD TAPE -
SET OFF LINE 

NO REWIND 
TAPE 

FCLOSE 

3 (TEMP-NO REWIND) 

REWIND & UNLOA 
TAPE 
(DRIVE GOES 
OFFLINE) 

DEALLOCATE THE 
MAGNETIC TAPE 
DEVICE 

Figure 10-24. Using the FLCOSE Intrinsic with Unlabeled Magnetic Tape 

JUL 1981 



I 

I 

There are two standard formats for labels in common use: IBM and ANSI. They differ mainly in 
that the IBM labels are written in EBCDIC, not ASCII. The MPE tape labels facility can read and 
write labeled tapes that conform to the ANSI standard, and can read tapes that conform to the 
IBM standard. Only ANSI standard tapes support file lockwords. 

OPERATOR INTERVENTION 

When a tape is mounted and put on-line, an interrupt occurs which causes the label on a labeled 
tape to be read. In this case, the volume name, and, unless the tape is the first volume of a volume 
set, the volume set name, are reported on the operator's console. 

When an FOPEN for a labeled tape is executed, MPE checks to see whether a tape which satisfies 
the request is mounted. If so, it is assigned without operator intervention. Otherwise, a message is 
generated on the system console directing the operator to mount the required tape. If the operator 
mounts a suitable labeled tape, MPE assigns it to the requesting process, and no further operator 
intervention is required. If, however, the FOPEN specifies a write operation, and a blank tape is 
mounted, the operator must : REPLY to the request in order to assign it to the requestor. If the 
operator refuses the request with a : REPLY PIN ,0, the FOPEN will fail with FSERR55 - Device 
Unavailable. 

The FCLOSE intrinsic can be used to maintain position when creating or reading a labeled tape file 
that is part of a volume set. If you close the file with a disposition code of 3 or 4, the tape does not 
rewind, but remains positioned at the next file. If you close the file with a disposition code of 2, 
the tape rewinds to the beginning of the file but is not unloaded. A subsequent request to open the 
file does not reposition the tape if the sequence (seq) subparameter is NEXT, or default. A disposi­
tion code of 0 (no change) or 1 (save permanent) implies the close of an entire volume set. , 

UPDATING MAGNETIC TAPE FILES 

As a physical data storage device, magnetic tape is not designed to enable the replacement of a 
single record in an existing file. An attempt to perform this type of operation will cause problems in 
maintaining the integrity of records on the tape. Magnetic tape files, therefore, should not be 
maintained (updated) on an individual record basis but should be updated during copy operations 
from one file to another. 

As an example of the type of probiems that can occur, consider the results of attempting to read a 
tape record, modify its data, backspace the tape, and overwrite the original record, as follows: 

10-75a 

I BI 
0 
T 

RECORD 
1 

nc:r-nnn 
ni::"vnv 

2 

\ \ I 

> I 
FREAD FWRITE 

~ BACKSPACE ) 
RECORD 

FIX DATA 

oc:r-non 
nL.'-'VrtL.I 

n 

JUL 1981 



MPE TAPE LABELS 

MPE provides a means whereby you can read and write labels on magnetic tape files. Labeled 
magnetic tape files are intended to provide for: 

1. A permanent identification for tape reels or volumes. 

2. Additional security, to protect against accidental over-writing or unauthorized access to 
files. 

3. Easy access to files which extend over more than one volume. 

4. More than one file on a volume. 

5. Retrieval of files by file names. 

6. Facilitating information interchange between computer systems. 

Each tape volume, when first written, is assigned a unique identifier, up to six printable characters, 
to permanently identify it. This identifier is the Volume Name. It is often strictly numeric, so that 
volumes in an installation's library can be sorted and stored by this number. 

A collection of volumes containing one or a related group of files is called a volume set. The volume 
name of the first reel in the set is taken as the Volume Set Name. 

Each file on a labeled tape has a header label or labels, which contain the name of the file, the 
sequential position of the file in ihe volume set, and the sequential number of the volume of the 
file if the file extends over more than one volume. They may optionally contain the record and 
block size, a file lockword, and whether the file is ASCII or binary. 

When opening a labeled tape file to be read, you must specify the Volume Set.Name. This may 
appear either in a file equation LABEL = parameter, or in the FORMSMSG parameter of FOPEN; 
if it appears in neither place, the console operator will be asked for the Volume Set Name. One 
may also specify either that a specified file name is to be sought within the volume set, or merely 
that the next sequential file is to be accessed. If no file follows, then FOPEN will return an End of 
Volume Set error (FSERR123). 

When opening a labeled tape file to be written, the volume set name is specified as for reading. 
One may request a specific named file, or that the next sequential file be written, or that a file be 
added to the end of the volume set. An End of Volume Set error will be reported if a specific 
named file is requested but is not found. Of course, if there are other files following the file to be 
written, the contents of those files will be lost. 

You may close a file without closing the volume set containing it. What this means is that s subse­
quent FOPEN specifying the same volume set name will be able to access a file on the currently 
mounted volume of the volume set without operator intervention. The volume thus accessed need 
not be the first one in the volume set. 

JUL 1981 10-75 I 



If the replacement differed at all in size from the original record, the result would not simply be an 
update of the record. A replacement record of greater length than the original record would 
overwrite (destroy) a portion of the next record on the tape, as shown below. 

BEFORE 

AFTER 

RECORD 
2 

NEW 

RECORD 2 

I 

R 
G 

I 

R 
G 

IRG: INTER-RECORD GAP -THE HARDWARE 
DEVICE CONTROLLER PLACES A GAP 
(UNRECORDED TAPE) BETWEEN 

ADJACENT DATA FIELDS. 

RECORD 
3 

REMAINS OF RECORD 3 

On the other hand, if the length of the replacement record is less than that of the original record, a 
portion of the original record will still remain on the tape as shown below . 

BEFORE • 
AFTER 

RECORD 
2 

R 
G 

RECORD 
3 

RECORD 

3 

• 
REMAINS OF OLD RECORD 2 

NEW RECORD 2 

In either of the two cases shown, the partial records remaining would cause magnetic tape read 
errors and would create problems in subsequent processing of the tape file. 

Even with replacement records of the same size as the original records, errors can still result. 
Mechanical and timing variations from one magnetic tape drive to another can create substantial 
differences in the actual length of tape records containing the same amount of data. Magnetic tape 
standards, for example, permit the inter-record gap (IRG) to vary in length from 0.5 to 0.7 inches. 
Similar variations may occur to a lesser extent in the spacing of the actual data bytes recorded. In 
short, the variation of a number of hardware factors which are beyond the user's control can affect 

10-76 



the physical length of the tape records written. For this reason, always update tape files during copy 
operations from one tape to another. 

READING AND WRITING AN UNLABELED MAGNETIC TAPE FILE 

Figure 10-25 contains a program that copies an unlabeled magnetic tape file into another file on the 
same reel of tape. 

The FOPEN intrinsic call 

MT:= FOPEN(N AME, %201, %4,66,CLASS ); 

opens the magnetic tape file. The parameters specified are 

formaldesignator MA GT APE, which is contained in the byte array NAME 

{options %201, for which the bit pattern is as follows: 

0 1 2 I 3 4I5I617 8 9 10 11 12 13 

0 0 o 1 o o1o1ojo 1 0 0 0 0 0 ..L 

I 2 I 0 I 

The above bit pattern specifies the following file options: 

Domain: Old permanent file. Bits (14:2) = 01. 
ASCII/Binary: Binary. Bit (13:1) = 0. 

14 15 Bits 

0 1 Binary 

1 I Octal 

Default Designator: Same as formal file designator. Bits (10: 3) = 000. 
Record Format: Undefined length. Bits (8:2) = 10. 

aoptions %4, for which the bit pattern is as follows: 

The above bit pattern specifies the following access options: 

Access Type: Input/output access. Bits (12:4) = 0100. 

recsize 66 words. 

device TAPE, contained in the byte array CLASS. 

All other parameters are omitted from the FOPEN intrinsic call. 

10-77 



PAGE 0001 

00001noo 
00002000 
00003000 
00004000 
00005000 
000061'100 
00007000 
ooooeooo 
00009000 
0001onoo 
00011000 
00012000 
00013000 
000141'100 
00015000 
00016000 
00017000 
00018000 
00019000 
00020000 
00021noo 
00022000 
00023000 
00024000 
00025000 
00026000 
00027000 
00028000 
00028100 
00029000 
00030000 
00031000 
00032000 
00032100 
00033000 
00034noo 
00035000 
00036000 
000.37000 
0003AOOO 
00039000 
ooo4onoo 
00041000 
00042000 
00043000 
00044000 
00045000 
00047000 
0004AOOO 
00049000 
00050000 
ooos1000 
ooos2noo 
00053001) 
00054001) 
00055000 

PRIMARY 

10-78 

HF.WlfTT-PACKARD 32100A.05el SPL/3000 MONt OCT 27t 1975t 10106 AM 

00000 0 
00000 0 
00000 1 
00000 l 
00005 1 
00004 1 
00004 1 
00004 1 
00004 l 
00004 1 
00004 1 
00004 1 
00000 1 
00000 1 
00000 1 
00000 2 
00002 2 
00004 2 
00000 
00000 1 
00000 1 
00000 1 
00012 l 
00016 1 
00016 1 
00016 1 
00024 1 
00030 1 
00033 1 
00033 1 
00037 l 
00043 1 
00046 1 
00052 1 
00052 1 
00057 1 
00063 1 
00063 1 
00067 1 
00073 1 
00077 1 
00103 1 
00103 1 
00104 l 
00104 1 
00107 1 
00113 1 
00115 1 
00115 1 
00115 l 
00121 1 
00125 1 
00125 1 
00130 1 
00134 1 

$CONTROL USLI NIT 
BEGIN 

INTEGER MT,REC0 1 POSITION:=OtLGTHt 
AYTE A PRAY NAME ( 0 :7) : ="MAGTAPE •q 
RYTf. ARRAY CLASS(014) :="TAPE 11 1 
ARRAY BUFFER(0:65); 
LOGICAL DUMMYI 

INTRINSIC FOPENtFREAD,FCONTROLtFSPACEtFWRITEtFCLOSEt 
PRINT•FILE•INFQ,QUITJ 

PPOCEOUPE FTLERR0RCFILENO,QUIT~0)1 
VALUE FILENQ,QUITNOI 
INTEGER FILENO,QUITNOI 
AEGIN 

PRINT•FILE•INFO<FILENO>I 
QUIT CQUITNO) I 

ENDJ 

<<END OF DECLARATIONS>> 

MT:=FOPENCNAMEt%20lt%4t661CLASS>J 
IF< THFN FILERROR<MTtl)I 

FCLOSE CMTtOtO) I 
IF< THEN FILfRROR(MT,10>1 

<<~AG TAPE>> 
<<CHECK FOR ERROR>> 

<<MAG TAPE>> 
<<CHECK FOR ERROR>> 

00134 1 END. 
DB STORAGE=~007; SECONnARY DB STORAGE=%001ll 

Figure 10-25. Unlabeled Magnetic Tape Example 



Once the file is opened, the file number (used by other file system intrinsics when referencing this 
file) is returned to the variable MT. 

The statement 

IF< THEN FILERROR{MT,1); 

checks the condition code and, if it is CCL, calls the error-check procedure FILERROR. The 
FILERROR procedure prints a FILE INFORMATION DISPLAY on the standard list device, 
enabling you to determine the error number returned by FOPEN, then aborts the program's 
process. 

The tape format before the copy operation is started is as follows: 

...._~_.__R_E_C_O_R_D ______ R_E_C_~_R_D __ _.__.- ~---l.___R_E_~O--R_D__.l_~ __ rlllllllllll ....... __ .............................................. --.~..._~--1 
The statement 

LGTH:=FREAD(MT,BUFFER,66); 

reads a record from the file designated by MT and transfers this record to BUFFER. The statement 
reads up to 66 words from the record, then returns a positive value to LGTH indicating the actual 
length of the information transferred. 

The statement 

FCONTROL(MT, 7 ,DUMMY); 

spaces forward to the EOF tape mark (the end of the file). As you recall from the paragraph 
"SP ACING FILE MARKS", the recording head actually is positioned slightly beyond the EOF file 
mark. Now the statement 

FSP .ACE( MT ,RECD'POSITION); 

spaces the tape to the point where the first record (RECD'POSITION = 0, see statement number 3 
in the program) of the second file is to begin. The statement 

FWRITE(MT,BUFFER,LGTH,O); 

writes the record contained in the array BUFFER into this record. 

The statement 

FCONTROL(MT,8,DUMMY); 

spaces back to the end of file 1 (the EOF mark) and the statement 

10-79 



FCONTROL(MT,8,DUMMY); 

then spaces back to the next tape mark (the start of file 1). 

The record position is set to the next record in file 1 by incrementing RECD'POSITION with the 
statement 

RECD'POSITION:=RECD'POSITION+l; 

and spaces ahead to that record with the statement 

FSP ACE( MT ,RECD'POSITION); 

and the copy loop is repeated. After the copy loop is repeated, the tape is as follows: 

B 
0 
T 

RECORD 
1 

RECORD 
2 

FILE 1 

RECORD 
n 

E 
0 
F 

RECORD 
1 

RECORD 
2 

FILE 2 

Note that the reverse tape motion after a write creates an EOF mark (see end of file 2). 

The copy loop is repeated until the end of file 1 is reached, at which point program control is 
transferred to the statement label DONE. The tape then is rewound with the statement 

FCONTROL(MT,5,DUMMY); 

and closed with the same disposition (old permanent) as before. 

The format of the tape at the end of the copy operation is as follows: 

B 
O RECORD RECORD 

1 2 
T 

RECORD ~ RECORD RECORD 

n F 1 2 

FILE 1 FILE 2 

RECORD ~ 
n 

F 

E 
0 
T 

10-80 



OPENING A LABELED MAGNETIC TAPE FILE 

Figure 10-26 shows a program that opens a labeled magnetic tape file and a disc file; reads the con­
tents of the tape file and writes the records read to the disc file; closes the tape file; and, finally, 
closes the disc file as a permanent file. 

The statement 

FNOl := FOPEN ( FILIDl, %1004,,DEV ,LABELID); 

calls FOPEN to open the labeled magnetic tape file. The parameters specified are 

formaldesignator TAPEFILE, stored in the byte array FILIDl. 

{options %1004, for which the bit pattern is as follows: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 

I I I 1 I 0 0 I 5 

The above bit pattern specifies the following file options: 

Domain: Old, permanent file, system file domain. 
Bits (14:2) = 01. 
ASCII/Binary: ASCII. Bit (13:1) = 1. 

15 Bits 

1 Binary 

I Octal 

File Designator: Actual file designator same as formal file designator. 

aoptions 

recsize 

device 

Bits (10:3) = 000. (Default) 
Record Format: Fixed length. Bits (8:2) = 00. (Default) 
Carriage Control: No carriage control. Bit (7 :1) = 0. (Default) 
Labeled Tape: Labeled. Bit ( 6: 1) = 1. 

5, for which the bit pattern is as follows: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 
I I I I I I 

I I 5 

The above bit pattern specifies the following access options: 

Access Type: Update. Bits (12:4) = 0101. 

Default. 

TAPE, contained in the byte array DEV. 

Bits 

Binary 

j Octal 

10-81 



$CONTROL USLINIT 
BEGIN 

BYTE ARRAY FILID1C0:8)::"TAPEFILE "J 
BYTE ARRAY FILID2C0:8)::" "J 

- BYTE ARRAY LABELIDC0:79)s:".FIL001,ANS,12/31/77J"J 
BYTE ARRAY DEVC0:4l:="TAPE "J 

APPAY MSGBUfC0:35l: 
ARRAY INBUFt0:39); 
ARRAY FIL'ID2C•):FILID2: 

INTEGER FN01,FN02,LGTri: 

INTRINSIC FOPEN,FCLOSE,FREAD,FWRITE,READ,PRINT,PRINT'FILE•INFO, 
QUI1,CAUSE8REAK,FREADLABELJ 

PROCEDURE FILEPRORCFILENO,QUITNO): 
VALUE QUITNO: 
INTEGER FILENO,QUITNO: 
BEGIN 

PRINT'FILE'INFOCFILENO)J 
UUITCQUITNO)J 

END; 

<< END OF DECLARATIONS >> 

MOVE MSGBUF::"NAME OF NEW DISC FILE TO BE CREATED?"J 
PRINTCMSGBUF,-6,0); 
READCFIL'ID2,4); << READ NAME OF NEW DISC FILE >> 

<< OPEN LABELED 
TAPE FILE >> 

FNOt:=FOPENCFILIOt,,1001,s,,oEV,LABELID)S 

IF < THEN << CHECK FOR E~ROR >> 
BEGIN 

MOVE MSGBUF::"CAN'T OPEN TAPE FILE"; 
PRINTCMSGBUF,•20,0); 
FILERRORCFN011l): 

END; 

FN02::FOPENCFILID2,4,5); << OPEN NEW DISC FILE >> 
IF < THEN << CHECK FOR ERROR >> 

BEGIN 
MOVE MSGBUF:="CAN'T OPEN DISC FILE"J 
PRINT(MSGBUF,•20,0)J 
FILfRRORCFN02,2)7 

ENDS 

FREAOLABELCFN01,INBUF,40)J << READ USER LABEL >> 
If <> THEN FILERRORCFN01,3)s << CHECK FOP ERROR >> 
PRINTCINBUF,40,0): 

READ• WRITE' LOOP: 

10-82 

LGTH::FREADCFN01,INBUF,40)J << READ RECORD FROM 
TAPE FILE >> 

Figure 10-26. Opening a Labeled Magnetic Tape File (Sheet 1 of 2) 

JUL 1981 



IF < THEN << CHECK FOR ERROR >> 
BEGIN 

MOVE MSGBUF:~~CAN'T READ TAPE FILE": 
PRINTCMSGBUF,•20,0)J 
FILERROFCFN01,4)J 

ENDJ 
IF > THEN GO CLOSE1J << CHECK FOR END•OF•FILE >> 

FWRITECFN02,INBUF,LGTH,O): << WRITE ~ECORD TO 
DISC FILE >> 

IF <> THEN << CHECK FOR ERROR >> 
BEGIN 

MOVE MSGBUF::"CAN•T WRITE 
PRINTCMSGBUF,•24,0)J 
FILERRORCFN02,5): .. 

END; 

TO DISC FILE"J 

GOTO READ'WRITE'LOOPr 

CLOSEl: 

FCLOSECFN01,110)J << CLOSE, REWIND, AND UNLOAD TAPE FILE >> 
IF < THEN << CHECK FOR ERROR >> 

BEGIN 
MOVE MSGBUF:="CAN'T CLOSE TAPE FILE"J 
PRINTCMSGBUF,•21,0)J 
FILERRORCFN01,6): 

END: 

CLOSE2: 

FCL05ECFN021110)J << CLOSE DISC FILE AS 
PEPMANENT FILE >> 

IF < THEN << CHECK FOR ERROR >> 

END. 

BEGIN 
MOVE MSGBUF:="CAN'T CLOSE DISC FILE"J 
PRINTCMSGBUF,•21,0)J 
MOVE MSGBUFc:"CHECK FOF DUPLICATE NAME"J 
PRINTCMSGBUF,•24,0)J 
MOVE MSGBUF;:"FIX, THEN TYPE 'RESUME'"J 
PRINT(MSGBUF,•2310); 
GOTO CLOSE2J << TRY AGAIN >> 

END: 

Figure 10-26. Opening a Labeled Magnetic Tape File (Sheet 2 of 2) 

10-83 



I 

I 

tape label Contained in the byte array LABELID (formmsg parameter). LABELID 
is declared with the value 

.FILOOl ,ANS,12/31/77; 

(see statement number 5 in figure 10-26). Note that the tape label 
begins with a period and ends with a semi-colon. This is necessary to 
distinguish the tape label from a forms message (another use for this 
parameter). 

When the FOPEN intrinsic call executes, MPE sends a message to the system console, requesting the 
Console Operator to mount the tape labeled FILOOl (if it is not already mounted). 

The statement 

FN02 := FOPEN(FILID2,4,5 ); 

opens a new disc file. 

The program then reads records from the tape file with the statement 

LGTH:=FREAD(FNOl,INBUF,40); 

and writes these records to the disc file with the statement 

FWRITE{FN02,INBUF,LGTH,O); 

When all records in the tape file have been read, both files are closed. The disc file is saved as a per­
manent file. 

WRITING A TAPE LABEL 

The MPE :FILE command or FOPEN intrinsic is used to write ANSI-standard tape labels (MPE will 
not write IBM-standard tape labels). See the MPE Commands Reference Manual for a discussion of 
writing tape labels with the :FILE command. 

The program shown in Figure 10-27 opens a magnetic tape file and writes a label on the file. 

The statement 

BYTE ARRAY LABELID{0:79):= ".FIL099,ANS,12/31/77,NEXT;"; 

declares a byte array of 80 bytes and initializes it to 

• FIL099,ANS, 12/31/77 ,NEXT; 

which constitutes an ANSI-standard label. Note that the tape label begins with a period and ends 
with a semi-colon. This is necessary to distinguish the tape label from a forms message (which is 
another use for the same FOPEN parameter). The LABELID byte array will be used in the FOPEN 
intrinsic call to specify a file label as follows: 

Volume Identification: FIL099 

10-84 JUL 1981 



$CONTROL USLINIT 
BEGIN 

BYTE ARPAY FILID1(018)1z" "r 
BYTE ARRAY FILI02(0:8)1:~NEWTAPEt "J 
BYTE ARRAY LABELIDC0179)s:•,F1L099,ANS,12/31/771NEXTs"J 
BYTE ARRAY DEV(014)::"TAPE "J 

ARRAY MSGBUFC0135)J 
ARRAY INBUF(0:39)J 
ARRAY FIL•totc•>=FILID1J 
ARRAY USERLABLC0:79)J 

INTEGER FN01,FN02,LGTHs 

INTRINSIC FOPEN,FCLOSE,PRINT•FILE•INFO,QUIT,PRINT,REAO, 
FWRITELABEL,FREAO,FWRITEJ 

PROCEDURE FILERRORCFILENO,QUITNO)J 
VALUE QUITNOJ 
INTEGER FILENO,QUITNOi 
BEGIN 

PRINT'FILE'INFO(FILENO)s 
QUITCQUITNO) 1 

ENDs 

<< END OF DECLARATIONS >> 

MOVE MSGBUfsz"NAME OF INPUT FILE?": 
PRINTCMSGBUF1•19,0)J 
READCFIL'ID11•8)J << READ NAME OF INPUT FILE >> 

FN01:sFOPENCFILID1 1 1,5)J << OPEN OLD DISC FILE >> 
IF < THEN << CHECK FOR ERROR >> 

BEGIN 
MOVE MSGBUF::"CAN'T OPEN DISC FILE"J 
PRINTCMSGBUF,•2010)1 
FJLERRORCFN0111)J 

ENOJ 

FN021:FOPENCFILID2,\1004,5,,DEV,LABELID)S << OPEN NEW LABELED 
TAPE FILE » 

IF < THEN << CHECK FOR ERROR >> 
BEGIN 

MOVE MSGBUF:•"CAN'T OPEN TAPF. FILE"r 
PPINTCMSGBUF1•2010)r 
r1LERRORCFN0212)r 

ENDJ 

MOVE USERLABL1:" "J 
MOVE uSERLABL:=uSERLABL(0),(40)J 
MOVE USERLABL:•"UriL1 USER HEADER LABEL NO, 1"J 
FWRITELABELCFN02,USERLABL,40,0)J << WRITE USER HEADER LABEL >> 
IF <> THEN FILE~ROFCFN02 1 3)J << CHECK FOR ERROR >> 

Figure 10-27. Writing a Tape Label (Sheet 1 of 2) 

10-85 



LGTHl•FR£AD(FN01,INBUF,40)J <<READ RECORD FROM DISC FILE >> 
IF < THEN << CHECK- FOP ERROR >> 

BEGIN 
MOVE MSGBUFl•"CAN•T READ DISC FILE"J 
PRINTCMSGBUF,•20,0)J 
FILERRORCFN0114)S 

ENDJ 
Ir > THEN GO CLOSEs << CHECK FO~ END•OF•FILE >> 

FWRITECFN02,INBUF,LGTH,O)J << WRITE RECORD TO LABELED TAPE FILE >> 
IF <> THEN << CHECK FOR ERROR >> 

BEGIN 
MOVE MSGBUF1s"CAN•T WRITE TO TAPE FILE"J 
PP.INTCMSGBUF,•24,0)J 
FILERRORCFN021S)J 

ENDS 

CLOSE I 

FCLD5E(FN01,0,0)J << CLOSE DISC FILE >> 
IF < THEN << CHECK FOR ERROR >> 

BEGIN 
MOVE MSGBUFl•"CAN•T CLOSE DISC FILE"J 
PRINTCMSGBUF,•21,0)J 
FILERRORCFN01,6)r 

ENDJ 

FCLOSECFN02,1,0)S << CLOSE, REWIND, AND UNLOAD TAPE FILE >> 
IF < THEN << CHECK FOR ERROR >> 

BEGIN 
MOVE MSGBUF1•"CAN•T CLOSE TAPE FILE"s 
PRINTCMSGBUF,-21,o>s 
FILERRORCFN02r7)S 

ENDJ 
END. 

Figure 10-27. Writing a Tape Label (Sheet 2 of 2) 

10-86 



Label Type: ANS (AN"SI) 

Expiration Date: 12/31/77. This is the date after which the file can be overwritten. If 
you attempt to overwrite the file before this date, MPE will send a mes­
sage to the Console Operator asking for confirmation that such is really 
desired. This affords an extra measure of protection against inadver­
tently destroying a tape by overwriting when a WRITE RING is left in 
the tape by mistake. 

sequence: NEXT. Signifies that the file is to be positioned at the next file on the tape. 

The statement 

FN02:=FOPEN(FILID2,%1004,5,,DEV,LABELID,l); 

opens a new tape file and writes the tape label as specified by LABELID. 

READING A LABELED MAGNETIC TAPE FILE 

Once a labeled tape file has been opened, the FREAD intrinsic may be used in the same manner as 
on an unlabeled tape file. The system defaults to the blocksize, recordsize and file format on the 
tape label if these parameters are not specified. You can call FGETINFO or FFILEINFO to get 
these values. 

The program shown in Figure 10-26 reads a labeled magnetic tape file in sequential order. 

The labeled tape file is opened with the statement 

FNOl :=FOPEN(FILIDl,%1005,5,,DEV,LABELID); 

The file label is contained in the byte array LABELID. 

The block of statements 

GOTO READ'WRITE'LOOP; 

form a read/write loop. Records are read from the tape file in sequential order with the statement 

LGTH:=FREAD(FNOl,INBUF,40); 

and written to a disc file with the statement 

FWRITE (FN02,INBUF,LGTH,O); 

10-87 



WRITING TO A LABELED MAGNETIC TAPE FILE 

Writing records to a labeled tape file is slightly different than writing to an unlabeled tape file as 
follows: 

If the magnetic tape is unlabeled and a user program attempts to write over or beyond the 
physical EOT marker, the FWRITE intrinsic returns an error condition code (CCL). The actual 
data has been written to the tape, and a call to FCHECK reveals a file error indicating END OF 
TAPE. All writes to the tape after the EOT tape marker has been crossed transfer the data 
successfully but return a CCL condition code until the tape crosses the EOT marker again in 
the reverse direction (rewind or backspace). 

If the magnetic tape is labeled, a CCL condition code is not returned when the tape passes the 
EOT marker. Attemp~ to write to the tape after the EOT marker is encountered cause end of 
volume (EOV) labels to be written. A message then is printed on the operator's console request­
ing another volume (reel of tape) to be mounted. 

The program shown in Figure 10-27 opens an existing disc file and a new labeled tape file, reads 
records from the disc file and writes these records to the tape file. If an attempt is made to write 
records on the tape beyond the EOT marker, MPE will write EOVl and EOV2 labels on the tape 
and request the Console Operator to mount another reel of tape. 

The statement 

FWRITE(FN02,INBUF,LGTH,O); 

writes the conten~ of array INBUF onto the tape file signified by FN02. The LGTH parameter 
specifies the number of words to be written. 

WRITING A USER-DEFINED FILE LABEL ON A LABELED TAPE FILE 

User-defined labels are used to further identify files and may be used in addition to the ANSI-stan­
dard labels. Note that user-defined labels may not be written on unlabeled magnetic tape files. 

User-defined labels are written on files with the FWRITELABEL intrinsic instead of the FOPEN 
intrinsic (as is the case for writing ANSI-standard labels). 

User-defined labels for labeled tape files are slightly different than user-defined labels for disc files 
in that user-defined labels for tape files must be 80 bytes ( 40 words) in length. The tape label infor­
mation need not occupy all 80 bytes, however, and you can set unused portions of the space equal 
to blanks. 

Figure 10-27 contains a program that opens a new tape file and writes an ANSI-standard label on 
this file, then writes a user-defined header label with the FWRITELABEL intrinsic. 

The statement 

FN02 := FOPEN(FILID2,%1004,5,,DEV ,LABELID,1); 

opens a new tape file named NEWTAPEl (the name is contained in byte array FILID2), writes an 
ANSI-standard label (contained in the byte array LABELID) to the file. 

10-88 



Labeled Tapes 

Since it is important that tape density be an attribute of an entire volume set, the density of a 
labeled tape is determined by the first FOPEN, the volume set open. Density specified on all subse­
quent FOPENs will be ignored until the entire volume set is unloaded from the tape drive. Note that 
the file system will rewrite VOL 1 labels in certain situations, such as in the case of rewriting a 
labeled tape at 6250 BPI which had previously been written at 1600 BPI. This is to prevent creating 
a multireel labeled volume set containing volumes of different densities. 

If the user omits the DEN keyword parameter (see FOPEN in Section II), or specifies the keyword 
and omits the density selection when writing a new label on a previously unlabeled tape, the file 
system assigns a default density (in this case 6250 BPI) to the FOPEN request. 

If a volume set FOPEN takes the default density, and is satisfied by the proper unlabeled tape 
volume, the density of the volume is left unchanged. However, if a volume set open is satisfied by 
a proper labeled tape volume, and the density of the tape does not match the specific density 
requested by the user, the VOLl label may be rewritten at a new density. If the volume set is 
currently empty (which is determined by the presence of a tape mark after the VOLl header), or if 
the volume set open specifies NEXT as the sequence type, the VOLl label is rewritten. In all other 
cases the volume set density is unchanged. 

When a reel switch occurs while writing a file to a labeled tape, each succeeding volume is written 
at the same density as its predecessor, i.e., all volumes are written at the same density as the first. 
Therefore, if a reel switch request is satisfied by a labeled tape, its VOLl label is rewritten if the 
label's density is different from that of the volume set. This ensures that all volumes of a labeled 
volume set are written at the same density. 

Unlabeled Tapes 

Since unlabeled tapes may be accessed as many different files simultaneously (providing that the 
FOPENs occur in the same process tree), and may be returned to load point using several different 
file system Intrinsics, the default density selection is somewhat different for unlabeled tapes. If a 
write operation occurs while an unlabeled tape is at load point, the density of the tape will be set 
to the density requested by the most recent FOPEN which had write access to the tape. 

The default density for the first FOPEN of a variable density tape drive is 6250 BPI. For any subse­
quent FOPENs, the density specified by the previous FOPEN is retained. Note, however, that any 
FOPEN which specifies a particular density (user supplied, not default), and has write access to the 
file takes precedence over all previous FOPENs. Remember that density can be changed only at load 
point, and if the next operation is a write. 

When an applica~ion does its own unlabeled tape reel management, all subsequent reels of a volume 
set will be automatically set to the density of the first reel, providing that no FOPENs which change 
the density of the tape drive occur during the writing of the reels. In this case, it would be possible 
to generate volumes of different densities (i.e., one volume at 1600 BPI, and one volume at 6250 
BPI). Note, however, that it is not possible in any case to write a tape at two different densities, 
since density can only be changed at load point. 

I 10-89a JUL 1981 



Determining Tape Density 

The FFILENO Intrinsic will return the density of a tape file if item number 46 is specified. The 
density will be returned as an integer, either 1600 or 6250, signifying BPI. This item number is 
only valid for files residing on variable density tape drives. For any other requests, the Intrinsic 
will return a zero. 

When a tape is not at load point at the time of the call, the intrinsic returns the actual density of 
the tape. If the Intrinsic is called while the tape is at load point (only possible for unlabeled 
tapes), a value based on the FOPEN access is returned. If the tape was accessed READ only, the 
Intrinsic returns the actual density of the tape. If the tape was accessed in any other mode, the 
Intrinsic assumes that the next operation will be a WRITE, and returns the tape density requested at 
FOPEN time. 

SPACING ON DISC OR TAPE FILES 

You can space forward or backward on a disc or tape file (containing non-variable-length records) 
with the FSPACE intrinsic. (This intrinsic resets the logical record pointer.) 

JUL 1981 10-89b 



The statements 

MOVE USERLABL: =" "; 
MOVE USERLAB;:=USERLABL(0),(40), 

fill the array USERLABL with 80 ASCII blanks ( 40 words), and the statement 

MOVE USERLABL:="UHLl USER HEADER HEADER LABEL NO. l"; 

moves the desired user label into the first 35 bytes of the array (replacing the blanks). 

The statement 

FWRITELABEL(FN02,USERLABEL,40,0); 

writes all 80 characters into the file as a user-defined header label. 

Note that in order to write a user-defined header label, the FWRITELABEL intrinsic must be called 
before the first FWRITE to the file. (MPE will write user-defined trailer labels if FWRITELABEL is 
called after the first FWRITE). 

READING A USER-DEFINED FILE LABEL ON A LABELED TAPE FILE 

The FREADLABEL intrinsic is used to read a user-defined label on a labeled magnetic tape file. 
To read a user-defined header label, the FREADLABEL intrinsic must be called before the first 
FREAD is issued for the file. Execution of the first FREAD causes MPE to skip past any unread 
user-defined header iabels. 

If Figure 10-26, the statement 

FREADLABEL(FNOl,INBUF,40); 

reads a user-defined header label. The parameters specified are as follows: 

FN02 The file number as returned by the FOPEN intrinsic. 

INBUF An array to which the label is transferred. 

40 Specifies the number of words to be read. 

DENSITY SELECTION ON LABELED AND UNLABELED TAPES 

The following information applies to density selection for variable density tape drives. Density, if 
specified, is ignored by tape drives which operate only at one density. 

JUL 1981 10-89 

I 



In figure 10-25, the statement 

FSP ACE(MT ,RECD'POSITION); 

is used to space a tape file. The parameters specified are 

filenum 

displacement 

Supplied by MT, which was assigned the file number when the FOPEN 
intrinsic opened the file. 

Specified by RECD'POSITION, which signifies the number of logical 
records to be spaced and the direction of displacement. (A positive 
value signifies forward spacing, a negative value signifies backward 
spacing.) 

In the example, the value of RECD'POSITION is positive and the spacing is forward. 
RECD'POSITION is incremented by 1 each time the copy loop is executed, resulting in a sequential 
spacing of the file, thus enabling the program to read logical record 0, then 1, 2, and so forth. 

DIRECTING FILE CONTROL OPERATIONS 

You can perform various control operations on a file (or the device on which the file resides) by 
issuing the FCONTROL intrinsic call. These operations include: supplying a printer or terminal 
carriage-control directive, verifying input/output, reading the hardware status word pertaining to 
the device on which the file resides, setting a terminal's time-out interval, rewinding the file, writing 
an end-of-file indicator, and skipping forward or backward to a tape mark. (The FCONTROL 
intrinsic can also be used to perform various terminal functions, such as changing the terminal speed 
or enabling parity checking. These applications of FCONTROL are described in Section V.) 

Figure 10-25 contains four examples of FCONTROL which manipulate a tape file. 

The first statement (statement number 29) 

FCONTROL(MT, 7 ,DUMMY); 

spaces forward to a tape mark (EOF). 

The next two statements (statement numbers 36 and 38) are both as follows: 

FCONTROL(MT,8,DUMMY); 

These statements space backward to tape marks. The first statement finds the EOF mark (the head 
was positioned beyond the EOF mark) and the second statement spaces backward again to find the 
beginning of the same file. 

The last FCONTROL statement in the program 

FCONTRO L(MT ,5,D UMMY); 

rewinds the tape. 

10-90 



Note that the parameter DUMMY has no :function in the application of FCONTROL in figure 3-25 
and is supplied merely because all parameters of FCONTROL are required parameters. 

RESETTING THE LOGICAL RECORD POINTER 

You can reset the logical record pointer for a disc file, containing only fixed-length or 
undefined-length records, to any logical record in the file with the FPOINT intrinsic. When the next 
FREAD or FWRITE request is issued for the file, this record will be the one read or written. 

As an example, to position the logical record pointer to the 40th logical record in the file FILEl, 
you would use the following intrinsic call: 

FPOINT(FILE1,39D); 

Remember that the first logical record in a file is record zero and that the D suff:L-x: denotes a double 
integer value in SPL. 

DECLARING ACCESS-MODE OPTIONS 

You can activate or deactivate the following access-mode options by issuing the FSETMODE 
intrinsic call: automatic error recovery, critical output verification, term:Lnal control by the user, 
and terminal binary data mode. The access-mode options established remain in effect until another 
FSETMODE call is issued or until the file is closed. The FSETMODE intrinsic applies to files on all 
devices. 

The following FSETMODE intrinsic call 

FSETMODE( FILEl,%2 }; 

establishes access-mode options as outlined below. The parameters specified are 

filenum 

modeflags 

JUL 1981 

Designated by FILEl, which was assigned the file number by FOPEN 
when the file was opened. (It is a terminal in this example.) 

%2, for which the bit pattern is as follows: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Bits 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 Binary Ii----1 __...__._____....__._____.__...._______.___._ ______ 2 ---ii Octal 

The above bit pattern specifies the following access-mode options: 

Critical Output Verification: 
All physical output of blocks to the file is to be verified as physically 
complete before control returns from a write intrinsic to your program. 
For each successful logical write operation, a condition code ( CCE) is 
returned immediately to your program. Bit (14:1) = 1. 

10-91 

I 

I 

I 



Tape Error Recovery: 
A recovered tape error is reported with the CCE condition code. Bit 
(12:1) = 0. 

Terminal Control by User: 
MPE will issue carriage return/linefeed. Bit (13:1) = 0. 

DETERMINING INTERACTIVE AND DUPLICATIVE FILE PAIRS 

An input file and a list file are said to be interactive if a real-time dialogue can be established 
between a program and a person using the list file as a channel for programmatic requests, with 
appropriate responses from a person using the input file. For example, an input file and a list file 
opened to the same teleprinting terminal (for a session) would constitute an interactive pair. An 
input file and a list file are said to be duplicative when input from the former is duplicated 
automatically on the latter. For example, input from a card reader is printed on a line printer. 

You can determine whether a pair of files is interactive or duplicative with the FRELATE intrinsic 
call. (The interactive/duplicative attributes of a file pair do not change between the time it is 
opened and the time it is closed.) 

The FRELATE intrinsic applies to files on all devices. 

To determine if the input file INFILE and the list file LISTFILE are interactive or duplicative, you 
could issue the following FRELATE intrinsic call. 

ABLE:= FRELATE(INFILE,LISTFILE); 

INFILE and LISTFILE are identifiers specifying the file numbers of the two files. (The file numbers 
were assigned to INFILE and LISTFILE when the FOPEN intrinsic opened the files.) 

A word is returned to ABLE showing whether the files are interactive or duplicative. The word 
returned contains two significant bits, 0 and 15. 

If bit 15 = 1, INFILE and LISTFILE form an interactive pair. 
If bit 15 = 0, INFILE and LISTFILE do not form an interactive pair. 
If bit 0 = 1, INFILE and LISTFILE form a duplicative pair. 
If bit 0 = 0, INFILE and LISTFILE do not form a duplicative pair. 

10-92 



USER LOGGING 

The MPE IV User Logging Facility provides a flexible transaction logging capability which enables 
you to journalize additions and modifications to your data bases and subsystem files. User logging 
permits you to journalize on two mediums: tape and disc. When a tape file is used, journal entries 
are saved on a dedicated magnetic tape file outside the domain of the system. When a disc file is 
used, the journal entries are saved in a special disc file you create specifically for logging 
transactions. It is also possible to organize your applications so that both mediums are used for 
logging. 

Logging is done programmatically by means of three intrinsics: OPENLOG, WRITELOG, and 
CLOSELOG. OPENLOG provides access to the logging facility, CLOSELOG closes access to the 
system, and WRITELOG writes journal entries to the logging file. This creates a copy of the 
data-set's modifications. If the data-set is lost, the logging tape or disc file can be used in 
conjunction with a backup copy of the file to recover the lost transactions. 

HOW USER LOGGING WORKS 

The User Logging Facility contains a buffer file, a logging process, a logging file for each process, 
and a data segment containing a communications area and a buffer for each active log file. (See 
Figure 10-28) The function of two of these segments, the logging process and the logging buffer 
file, varies for disc file logging and tape file logging. 

When you access the logging facility and request tape files, your entries are placed in the buffer area 
of the logging data segment. Once this buffer area is full, the contents are written to the logging 
buffer file on disc. If there is no space available, two things can happen according to the MODE you 
specified. 

If you indicated no wait in the mode parameter, the communications 
area of the data segment sends an error message indicating your trans­
action has not been completed, and you need to resubmit your request 
(similar to NOWAITIO). 

If you indicated wait in the mode parameter, your process is sus­
pended until the logging process writes the contents of the buffer to the 
media specified, tape or disc, and then reactivates your process (similar 
to WAITIO). 

10-93 



GETLOG 
ALTLOG 
REL LOG 
LISTLOG 

10-94 

c 
0 
M 

SHOWLOGSTATUS M 

c 
0 
M 
M 
A 
N 
D 
s 

A 
N 
D 

BUFFER 
AREA 

DISC 
BUFFER 

OR 
DISC 

DESTINATION 

I ADDITIONAL I 
I EXTENTS I 

FOR DISC 
I DESTINATION I 
, ___ _J 

Figure 10-28. User Logging Facility 

OPEN LOG 

WRITE LOG 

CLOSE LOG 



The logging process acts as an interface between the logging buffer file and the logging tape file. The 
logging process writes records to the mag tape destination you have requested. This process is 
independent of your process; thus the logging process can be '\VTiting records from the disc buffer to 
tape at the same time you are adding additional records to the logging buff er. Once the logging 
process has made space available in the logging buffer file, the logging process reactivates your 
process. 

When a disc file is specified, the logging process and logging buff er function differently. When the 
WRITELOG intrinsic has been called, your entries are loaded into the buffer area of the logging data 
segment. Your records are moved to your disc destination file when the buffer area is full. When the 
destination file becomes full, you receive a warning message only if you have set the mode 
parameter for no-wait. Otherwise, the WRITELOG intrinsic suspends your process and activates the 
logging process. If needed, the logging process allocates additional extents to your disc destination 
file up to the maximum that you specified in the : BUILD command and logging continues. The 
logging process then activates your process. 

You need the record formats to directly access the logging files. 

Logging Record Format: 
record size 128 words 
user area = 119 words 

LOG RECORD AT OPENLOG 

0 2 3 4 6 7 11 12 24 25 127 

rec# ck sum code time date logid log# creator pin 

USER OR SUBSYSTEM LOG RECORD OR CONTINUATION RECORD 

0 2 3 4 6 7 8 9 127 

rec# cksum code time date log# len user area 

LOG RECORD AT CLOSELOG 

0 2 3 4 6 7 11 12 24 25 127 

rec±; ck sum code time date logid log# creator pin 

CRASH MARK 

0 2 3 4 6 7 127 

rec# cksum code time date 

10-95 



I 

START/RESTART (From Log Operator Command) 

0 2 3 4 6 

rec# ck sum code time date 

TRAILER RECORD 

0 2 3 4 6 

rec# cksum code time date 

SP ACE RECORD 

2 3 4 6 

rec# ck sum code time date 

CODE DEFINITION: 

Code 1 Open log 
2 User/Subsystem Record 
3 Close log 
4 Header 
5 Trailer 
6 Restart 

7 11 

logid I 

7 11 

logid I 

7 

7 Continuation of User of Subsystem Record 
9 Crash Marker 

10 End Transaction Marker 
11 Begin Transaction Marker 

Space Null Record 

NOTE 

127 

I 

127 

I 

127 

I 

1. The checksum algorithm uses the EXCLUSIVE OR function against a base of negative one. It 
is calculated on the entire record except the checksum word. 

2. 'PIN' is the index into the PCB table. To get an absolute PIN value, divide by 16. 

3. The space record code is 8224 (%20040) 

EFFECTIVE USE OF USER LOGGING 

Effective use of the User Logging Facility includes writing the log file and designing a recovery 
procedure. You must use the logging intrinsics in your program to write data to a logging file to be 
used for recovery. You must also program a recovery procedure that can read the log file and apply 
it to a backup copy of your data-set to recover your data. 

10-96 DEC 1981 



The following steps are suggested as a procedure for effective use of User Logging. 

1. Select your logging identifier. You can find an explanation of the identifier in the MPE 
Commands manual. Make sure you use passwords/lockwords provided in the :GETLOG 
command if data security is necessary. Also be sure to specify the configured device class I 
name, i.e., TAPE for mag tape, SDISC for serial disc device, and CTAPE for cartridge tape 
unit (such as 7911/7912). Otherwise an FOPEN failure will result. 

2. Design your application and data structures. 

3. Determine what information must be logged in order to recover the data structures of your 
application. Assume you will have a back-up copy of the data structure to which you can 
apply the log file to recover. 

Place the appropriate calls to the User Logging Intrinsics in your application to log the data 
necessary for recovery. It is best to log edited and verified data by logging a full transaction 
at one time or wrapping transactions with start and completion records. 

4. Design and program your recovery procedure. Again, assume the recovery procedure will have 
a back-up copy of your application data structure to which it will apply the log file. Your 
recovery program must recognize the User Logging file record formats. (see "How User 
Logging Works'') 

5. If you specify in the :GETLOG command that your logging identifier is associated with a disc 
file, you must build that file making sure the file has the proper code [;CODE= LOG] and 
enough disc space to contain one day's output. Be generous with the disc file space. Divide 
the file into several extents, but allocate only the first extent. This minimizes the impact of a 
large file on your system. The user logging process allocates additional extents when necessary. 

6. Have the operator start the user logging process for your logging identifier (See :LOG 
Command in the MPE Console Operators Manual.) 

7. Run your application to log changes to your data sets to the User Logging file you specified in 
the :GETLOG command. 

If it becomes necessary to recover your data-sets, restore the back-up copy that you have saved and 
run the recovery procedure you wrote to reapply changes you made to the data structures. 

DEC 1981 10-97 



SUGGESTED LOG FILE USES 

Usage of a log file, especially if many users are accessing the same user log file, starts with your 
application. Set up a log file separate from your data base log file with information which points to 
your entry. This separate log file might include the following information. 

1. User group and account names you are logged onto. This can be determined using the WHO 
intrinsic. 

2. Job/session input device number using the WHO intrinsic. This would only give a history 
however, and not help directly in recovery. 

3. Process Identification Number (PIN) of the process accessing the log file right now using the 
GETPROCID intrinsic. 

4. Date and time of opening the actual log file. This information can be accessed by the 
CALENDAR and CLOCK intrinsics. (The date and time returned by these intrinsics match the 
format of this information in the data base log file.) Put in calls to these intrinsics immediately 
after a successful OPENLOG intrinsic call. 

5. The fully qualified file name of the data set log file being accessed including the ASCII of the 
LOG ID. 

When you need to recover the file listing, the additional file can be read and the log file opened. 
Search the log file for the LOGID and the creator that match in the OPENLOG record (type 1). 
Verify using the date and time. Use the PIN to verify the creator in case there are duplicate creators. 
Then pick up the LOG number. All records with this LOG number will be in your file. 

10-98 



r 

I 

I 

ASCII 
Character 

A 
B 
c 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
p 
Q 

R 
s 
T 
u 
v 
w 
x 
y 

z 

b 
c 
d 
e 
f 

!:! 

h 
i 
j 
k 
I 

m 
n 
0 

p 
q 
r 
s 
t 

u 
v 
w 
x 
y 
z 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

NUL 
SOH 
STX 
ETX 
EOT 
ENO 

I 

I 

First Character 
Octal Equivalent 

040400 
041000 
041400 
042000 
042400 
043000 
043400 
044000 
044400 
045000 
045400 
046000 
046400 
047000 
047400 
050000 
050400 
051000 
051400 
052000 
052400 
053000 
053400 
-054000 

054400 
055000 

060400 
061000 
061400 
062000 
062400 
063000 
063400 
064000 
064400 
065000 
065400 
066000 
066400 
067000 
067400 
070000 
070400 
071000 
071400 
072000 
072400 
073000 
073400 
074000 
074400 
075000 

030000 
030400 
031000 
031400 
032000 
032400 
033000 
033400 
034000 
034400 

000000 
000400 
001000 
001400 
002000 
002400 

I 

I 

l

lHl1MI ASCII CHARACTER SET II A I 
Second Character 
Octal Equivalent 

000101 
000102 
000103 
000104 
000105 
000106 
000107 
000110 
000111 
000112 
000113 
000114 
000115 
000116 
000117 
000120 
000121 
000122 
000123 
000124 
000125 
000126 
000127 

.... 0001.,0 
000131 
000132 

000141 
000142 
000143 
000144 
000145 
000146 
000147 
000150 
000151 
000152 
000153 
000154 
000155 
000156 
000157 
000160 
000161 
000162 
000163 
000164 
000165 
000166 
000167 
000170 
000171 
000172 

000060 
000061 
000062 
000063 
000064 
000065 
000066 
000067 
000070 
000071 

000000 
000001 
000002 
000003 
000004 
000005 I 

ASCII 
Character 

ACK 
BEL 
BS 
HT 
LF 
VT 
FF 
CR 
so 
SI 

DLE 
DC1 
DC2 
DC3 
DC4 
NAK 
SYN 
ETB 
CAN 
EM 

SUB 
ESC 
FS 
GS 
RS 
us 

SPACE 

# 
$ 
% 
& 

( 
) 

* 
+ 

-

I 
: 
; 

< 
= 

> 
? 

@ 

[ 

\ 
l 
ti 
-

{ 

I 

-
} 

DEL 

I 

First Character 
Octal Equivalent 

003000 
003400 
004000 
004400 
005000 
005400 
006000 
006400 
007000 
007400 
010000 
010400 
011000 
011400 
012000 
012400 
013000 
013400 
014000 
014400 
015000 
015400 
016000 
016400 
017000 
017400 
020000 
020400 
021000 
021400 
022000 
022400 
023000 
023400 
024000 
024400 
025000 
025400 
026000 
026400 
027000 
027400 
035000 
035400 
036000 
036400 
037000 
037400 
040000 
055400 
056000 
056400 
057000 
057400 
060000 
075400 
076000 
076400 
077000 
077400 

First Character 

I 

Second Character 
Octal Equivalent 

000006 
000007 
000010 
000011 
000012 
000013 
000014 
000015 
000016 
000017 
000020 
000021 
000022 
000023 
000024 
000025 
000026 
000027 
000030 
000031 
000032 
000033 
000034 
000035 
000036 
000037 
000040 
000041 
000042 
000043 
000044 
000045 
000046 
000047 
000050 
000051 
000052 
000053 
000054 
000055 
000056 
000057 
000072 
000073 
000074 
000075 
000076 
000077 
000100 
000133 
000134 
000135 
000136 
000137 
000140 
000173 
000174 
000175 
000176 
000177 

Second Character 

.A. .A (---- =y --, 

; o, , i 2 i JI • i s j s I 1; s j 9 l1oj 11j12l131i4j1s I 

i 

A-1 



DISC FILE LABELS j~H81WI~ ~~~~~~~~~~~~~~~~~~___.'! I 

Whenever a disc file is created, MPE automatically supplies a file label in the first sector of the 
first extent occupied by that file. Such labels always appear in the format described below. (User­
supplied labels, if present, are located in the sectors immediately following the MPE file label.) 
The contents of a label may be listed by using the :LISTF -1 command described in the MPE Com­
mands Reference Manual. 

Words 

0-3 

4-7 

8-11 

12-15 

16-19 

20-21 

22 

23 

24 

25 

26 

27 

28 

(Bits 0:15) 

(Bit 15:1) 

(BitO:l) 

(Bitl:l) 

(Bit 2:1) 

(Bit 3:1) 

(Bits 4:4) 

(Bits 8:6) 

(Bit 14:1) 

(Bit 15: 1) 

Contents 

Local file name. 

Group name. 

Account name. 

User name of file creator. 

File lockword. 

File security matrix. 

Not used. 

File secure bit: 

If 1, file secured. 

If 0, file released. 

File creation date 

Last access date. 

Last modification date. 

File code. 

File control block vector. 

Store Bit. (If on, :STORE or :RESTORE, in 
progress.) 

Restore Bit. (If on, :RESTORE in progress.) 

Load Bit. (If on, program file is loaded.) 

Exclusive Bit. (If on, file is opened with exclusive 
access.) 

Device sub-type. 

Device type. 

File is open for write. 

File is open for read. 

B-1 



Words 

29 

30-31 

32-33 

34 

35 

36 

37 

38 

39 

40 

41 

42-43 

44-45 

46-107 

108-123 

124-127 

B-2 

(Bits 0:8) 

(Bits 8:8) 

(Bits 0:8) 

(Bits 8:3) 

(Bits 11 :5) 

Contents 

Number of user labels written. 

Number of user labels available. 

File limit in blocks. 

Private volume information (while file is open). 

File label check sum (used for error detection). 

Cold-load identity. 

Foptions specifications. 

Logical record size (in negative bytes). 

Block size (in words). 

Sector offset to data. 

Not used. 

Number of extents-1. 

Last extent size in sectors. 

Extent size in sectors. 

Number of logical records in file. 

First extent descriptor. 

Remaining extent descriptors (32 maximum). 

Not used. 

Device class name. 

Note 

An extent descriptor (words 44 through 107 above) is a double word. 
The first byte contains the volume table index of the volume in which 
the extent resides; the remaining three bytes of the double word 
extent descriptor contain the first sector number of the extent. 



END-OF-FILE I
DU!MO INDICATION I c I 

L--~~~~~~~~~~~--' I 

The end-of-file indication will be returned by the card reader and tape drivers under conditions 
specified by the initiators of read requests. The type of requests are as follows: 

Type 

A 

B 

E 

Class of end-of-file 

All records that begin with a colon (:). 

All records that contain, starting in the first byte, :EOD, 
:EOJ, :JOB and :DATA (See Note.) 

Hardware-sensed end-of-file. 

NOTE: If the word count is less than 3 or the byte count is less 
than 6, then Type Breads are converted to Type A reads. 

In utilizing the card/tape devices as files via the file system, the following types are assigned: 

File Specified 

$STD IN 

$STDINX 

Dev=CARD/TAPE 

Type 

Type A. 

Type B. 

Type B, if device job/data accepting. 
Type E, if device not job/data accepting. 

Any subsequent requests initiated by the driver following sensing of an end-of-file condition will be 
rejected with an end-of-file indication. 

When reading from an unlabeled tape file, the request encountering a tape mark will respond with 
an end-of-file indication but succeeding requests will be allowed to continue to read data past the 
tape mark. Under these conditions, it is the responsibility of the caller to protect against the 
occurrence of data beyond an end-of-file and to prevent reading off the end of the reel. 

C-1 



MAGNETIC TAPE LABELS l~H~l·JI:~ 

Labels conforming to ANSI-standard can be read and written on magnetic tape files by MPE. IBM­
standard labels can be read, but cannot be written by MPE. 

The tape labels written by MPE consist of: 

Volume Header 
File Header 1 
File Header 2 
End-of-File 1 
End-of-File 2 
End-of-Volume 1 
End-of-Volume 2 

At the beginning of each reel of tape. 
At the beginning of each file on the reel. 
Following File Header 1. 
At the end of each file on the reel. 
Following End-of-File 1. 
At the end of a reel if the tape spans more than one volume. 
Following End-of-Volume 1. 

The file labels (file headers, end-of-file, and end-of-volume labels) are written on tape using the 
:FILE command or the FOPEN intrinsic. Each label is 80 bytes long and is formatted as shown in 
Figure D-1 and Table D-1. 

User-supplied labels, if any, are located on the tape as shown in Figure D-1. User-supplied labels can 
only be written on tape labeled with MPE tape labels, and the user labels must be exactly 80 bytes, 
to conform to the MPE labels. 

D-1 



t;! 
~ v H H 

0 D D 
u 

T RECORD 
H 

L R R 
L 

M 
2 

VOLUME 1 OF 3 

v H H 
0 D D 

u 
T 

RECORD 
H 1 

L R R M 
(FILE A) 

1 1 2 
L 

VOLUME 2 OF 3 

v H H FIRST 

0 D D T RECORD 
L R R M ON THIS 

2 REEL 
(FILE B) 

VOLUME 3 OF 3 

v H H FIRST 

0 D D T RECORD 

L R R M ON THIS 
2 REEL 

(FILE B) 

E E U H 
T 0 0 T D 
M F F T M R 

2 L 1 

H U 
D T RECORD 
R H M 
2 L 

MULTIPLE Fl LES ON A SINGLE VOLUME 

FILE A FILE B 

7 

(_ 

r 
E E u H H u 

RECORD T 0 0 T D D 
H 

T REC 
M F F 

T 
M R R M 1 n 

1 2 
L 

1 2 
L 

I' 

) 

FILE B 

CONTINUATION OF 
FILE B 

FILE B FILE C 

tEC~RD 
E E H H u 

T 0 0 
u 

T D D T RECO 

F F 
T 

M R R 
H 

M 1 M 
L 

1 2 
L 

1 2 

MULTIPLE FILES ON MULTIPLE VOLUMES 

Figure D-1. MPE Tape Labels (Conforming to ANSI-Standard) 

E E 
RECORD T 0 0 U T T 

MF FT MM 
n 1 2 L 

Note: When the file spans 
more than one volume, EOV 
is written instead of EOF. 

LAST E E 
RECORD T 0 0 T T 

ON THIS M v v M M 

REEL 1 2 

LAST E E 

RECORD T 0 0 T T 
ON THIS M v v M M 

REEL 1 2 

E E 
RECORD T 0 0 U T T 

n MFF TMM 

1 2 
L 



Table D-1. Format of Header Tape Labels Written by MPE. (ANSI Standard) 

POSITION 

Bytes 1-4 

Bytes 5-10 

Bytes 11-37 

Bytes 38-51 

Bytes 52-79 

I Byte 80 

Bytes 1-4 

Bytes 5-21 

Bytes 22-27 

Bytes 28-31 

Bytes 32-35 

Bytes 36-41 

Bytes 42-47 

Bytes 48-53 

Byte 54 

Bytes 55-60 

Bytes 61-73 

Bytes 74-80 

DEC 1981 

VOLUME HEADER LABEL (80 BYTES) 

CONTENTS 

VOLn 

volume id 

Blanks 

Blanks 

Blanks 

i J 

HDR1 

filename.groupname 

volume set id 

reel number 

file sequence number 

Blanks 

file creation date 

file expiration date 

%230 

Blanks 

"HP MPE 3000 " 

Blanks 

COMMENTS 

Indicates volume label (n specifies the relative position of this label 

within the VOL type labels. MPE always uses 1.) Appears on each 

label. 

Six -character identifier as supplied by : FI LE command, FOP EN 
intrinsic, or console operator. 

Reserved for future use. 

Not written by MPE. (Used for owner identification in ANSI-
standard labels.). 

Reserved for future use. 

indicates that label conforms to A!'JS! -standard. 

Fl LE HEADER LABEL 1 

Indicates file header 1 label. Appears before each file on the reel. 

Used for file identifier in ANSI -standard labels. 

Six-character identifier of the first volume in a set, as supplied by 
:FILE command, FOPEN intrinsic, or console operator. 

A four-digit entry from 0001 to 9999, indicating the relative posi­
tion of a reel in a volume set. 

A four-digit entry from 0001 to 9999, indicating the relative posi­
tion of a file on a reeL 

Not written by MPE. (Reserved for generating data groups in ANSI­
standard labels.) 

Indicates date on which file is written to magnetic tape. 

Indicates date after which file can be overwritten. 

Indicates that file was created by MPE and the file has a lockword. 

Reserved for future use. 

System code 

Reserved for future use. 

J 

D-3 

I 

I 



Table D-1. Format of Header Tape Labels Written by MPE. (ANSI Standard) Continued 

FILE HEADER LABEL 2 

POSITION CONTENTS COMMENTS 

Bytes 1-4 HDR2 Indicates header 2 label. Appears after header 1. 

Byte 5 record format "F" = Fixed 
"V" = Variable 
"U" = Undefined 

Bytes 6-10 block length A five-digit entry, indicating block length in bytes. 

Bytes 11-15 record length A five-digit entry, indicating record length in bytes. 

Bytes 16-23 lockword MPE file lockword. 

Bytes 24-36 Blanks Reserved for future use. 

Byte 37 record type "A"= ASCII 
"B" =Binary 

Byte 38 carriage control "C" if control 
" " if no control 

Bytes 39-80 Blanks Reserved for future use. 

I D-4 DEC 1981 



MPE DIAGNOSTIC MESSAGES 1ru:.11.1t1 

Programs running under MPE at any batch input device or terminal may return the following types 
of error messages: 

• Command Interpreter Error Messages, reporting fatal errors that occur during the inter­
pretation or execution of an MPE command. See the MPE Commands Reference Manual 
for a listing of these messages. 

• Command Interpreter Warning Messages, reporting unusual conditions that occur during 
command interpretation or execution but that may not necessarily be detrimental to the 
processing of the job or session. See the MPE Commands Reference Manual for a listing of 
these messages. 

• Run-Time Messages, denoting conditions that abort the running program, provided that an 
appropriate error trap has not been enabled. 

• User Messages, which are messages sent to you by other users currently running jobs or 
sessions. 

• Operator Messages, which are messages sent to y~u by the console operator. 

• System Messages, which denote miscellaneous conditions that terminate or otherwise 
affect the job/session, such as an abort requested by the system supervisor or console 
operator. 

Other messages may be received only at the system console. These are: 

Console Operator Messages, including: 

• Status Messages that indicate the current status of jobs/sessions or input/output 
devices. 

• Input/Output Messages that request service for, and report errors on, input/ 
output devices. 

• User Messages, sent by users to the console operator. 

System Failure Messages, including: 

• System Failure Messages. 

• Cold Load Error Messages. 

E-1 



RUN-TIME MESSAGES 

Your program can be aborted as a result of any of the following general types of run-time errors: 

Special violations - those detected through the internal interrupt structure (such as arithmetic 
trap errors, parity errors, bounds violations, etc.) and other violations detected by MPE (such 
as stack overflows or invalid stack markers). These are PROGRAM ERRORS and are described 
in a following table. 

Explicit calls to the QUIT intrinsic. 

Explicit calls to the QUITROG intrinsic. 

Violations of other callable intrinsics, such as passing of illegal parameters or the invoking of an 
intrinsic without having the required capability class or a valid register environment. (These are 
listed in the RUN-TIME error table. The intrinsics are listed in the INTRINSIC table, and errors 
encountered by them are listed in tables by specific intrinsic: FILESYSTEM, LOADER, 
CREATE, ACTIVATE, SUSPEND, MYCOMMAND and LOCKGLORIN. 

If an appropriate error trap has been armed, control transfers to the trap procedure which may 
attempt recovery or take some other action. But if no trap has been armed for the type of error 
encountered, MPE terminates the user's process and transmits a run-time (abort) message to the 
user's output device. In a multi-process structure, QUIT aborts only the violating process but all 
other errors abort the entire program. 

If the aborted program was running in a batch job, the job is removed from the system (if no 
:CONTINUE command overrides termination). 

If it was running in a session, control of the session is returned to you at the terminal. 

NOTE 

An abort-error will occur if a user process invokes certain 
callable intrinsics when the DB register is not pointing to its 
normal position (e.g. DB is pointing at an extra data segment). 
If this happens and a user trap procedure is invoked, the DB 
register is reset to the normal position before the trap 
procedure is entered. 

The format for run-time errors is: 

ABORT:pname.segment.location:sname.segment.location 

p-field s-field 

<msgtype>#<msgno>: <message> [.PARAM {;}<number>] 

m-field (from 1 to 7 lines) 

E-2 



where: 

p-field 

s-field 

is the last location of the last instruction executed in the user program 
prior to the abort. 

is output only if the abort occurred when executing code belonging to 
a library segment referenced by the user program. The field provides 
the instruction location within the library segment that initiated the 
abort. 

Within the p-field ands-field, the parameters are: 

pname 

sname 

segment 

location 

The name of the program file containing the user's program and 
optionally, the group and account name. 

In the special case of a process having been PROCREATED from a 
segment in a segmented library (SL) (for example, the Command 
Interpreter), an asterisk (*) is output followed by the SL name in 
symbolic form (sname, below). 

The symbolic name of the SL in which the segment exists 

SYSL - System SL 

PUSL - Public SL 

GRSL - Group SL 

The logical number of the code segment relating to either the program 
or SL, whichever is appropriate. 

The location in the code segment. This is expressed in terms of the 
displacement (P-PB), where P is the absolute address of the instruction 
and PB the absolute address of the base of the code segment. 

NOTE 

Octal numbers are indicated by a percent sign(%) preceding 
the number. 

If the stack is completely destroyed and no valid stack 
markers can be found that define a user environment, then 
the above-defined subfields will be output containing a 
question mark (?). 

E-3 



m-field 

<msgno> 

<message> 

<number> 

contains the error message text. 

The parameters within the m-field are 

< msgtype > is one of: 

PROGRAM ERROR 

ERROR: INTRINSIC 

RUN-TIME ERROR 

FILESYSTEM ERROR 

LOADER ERROR 

CREATE ERROR 

ACTIVATE ERROR 

SUSPEND ERROR 

MYCOMMAND ERROR 

LOCKGLORIN ERROR 

and corresponds to the names of the following tables. 

is a message number, which is an index into the < msgtype > table. 

is the text of the message which can be found along with the message 
number in the message type table. 

is the number of the invalid parameter passed to an intrinsic (the 
message will read: PARAM # <number>)oris the parameter passed to 
the QUIT or QUITPROG intrinsic (the message will read: PARAM =). 

Some examples of run-time messages are: 

Examples: 

ABORT :BIN.ED.MPE.%0.%12 

ERROR: INTRINSIC H62: BINARY 

RUN-TIME ERROR H5: PARAMETER ADDRESS VIOLATION. PARAM Hl 

BINARY was called with an invalid byte address. 

ABORT :OV.ED.MPE.%0.%177777 

PROGRAM ERROR H20: STACK OVERFLOW 

The program was in an infinite loop doing a DUP instruction. 

ABORT :PRIV.ED.MPE.%0.%3 

PROGRAM ERROR H6: PRIVILEGED INSTRUCTION 

A return was made from a non-privileged segment to a privileged segment. 

E-4 



ABORT :QUIT.ED.MPE.%0.%1 

PROGRAM ERROR #18; PROCESS QUIT.PARAM = 15 

The program called QUIT Intrinsic with a parameter of 15. 

ABORT :UF.ED.MPE.%0.%1 

PROGRAM ERROR #29: STACK UNDERFLOW 

The program was in an infinite loop doing a DEL instruction. 

ABORT :EDITOR.PUB.SYS.%2.%7 

ERROR: INTRINSIC fllOO: CREATE 

CREATE ERROR #30: LOAD ERROR 

LOADER ERROR #65: UNABLE TO OBTAIN CST ENTRIES 

Nearly all CST entries were ALLOCATEd and the program tried to create a process which required 
more CST's than were available. 

ABORT :EDITOR.PUB.SYS.%2.%13 

ERROR: INTRINSIC #104: ACTIVATE 

ACTIVATE ERROR fl21: ACTIVATION OF MAIN PROCESS NOT ALLOWED 

The program tried to activate a non-existent process. 

The following is a list of < msgtype > tables, the message number and text for each message found 
for each type of message: 

Table E-1. Program Error Messages 

MESSAGE 
MESSAGE 

NO. 

1 INTEGER OVERFLOW ) 
2 FLOATING POINT OVERFLOW 
3 FLOATING POINT UNDERFLOW 
4 INTEGER DIVIDE BY ZERO 
5 FLOATING POINT DIVIDE BY ZERO 
6 PRIVILEGED INSTRUCTiOi\i 
7 ILLEGAL INSTRUCTION 
8 EXTENDED PRECISION OVERFLOW > LOGIC ERROR IN THE PROGRAM. 
9 EXTENDED PRECISION UNDERFLOW 
10 EXTENDED PRECISION DIVIDE BY ZERO 
11 DECIMAL OVERFLOW 
12 INVALID ASCII DIGIT 
13 INVALID DECIMAL DIGIT 
14 INVALID WORD COUNT 
15 INVALID DECIMAL OPERAND LENGTH 
16 DECIMAL DIVIDE BY ZERO· 
17 STT UNCALLABLE I 

E-5 



Table E-1. Program Error Messages (Continued) 

MESSAGE MESSAGE 
NO. 

18 PROCESS QUIT=<number> <number> is the value passed to the OUITPROG or 
19 PROGRAM QUIT=<number> O.UIT intrinsic by the terminating process. (This 

value is output only if it is not zero.) 

{Logic error in the program. Probably looping and 
20 STACK OVERFLOW adding to the stack. May require larger MAXDATA 

when preparing program. 

21 PROGRAM Kl LLED Program aborted from an external source. 

22 INVALID STACK MARKER} 
23 ADDRESS VIOLATION Possible logic error in program. 
24 BOUNDS VIOLATION 

25 NON-RESPONDING MODULE J 
26 DATA PARITY Possible hardware problem. 

27 MEMORY PAR ITV 

28 SYSTEM PARITY 

29 STACK UNDERFLOW Logic error in program. Probably Invalid CST or STT 

30 CST VIOLATION discovered by hardware. Explicit PCAL from TOS 
31 STT VIOLATION may have referenced non-existent CST or STT. May 

be bad program file. 

Table E-2. Intrinsic Error Numbers 

MESSAGE INTRINSIC MESSAGE INTRINSIC 
NO. NO. 

1 FOP EN 20 FWRITELABEL 

2 FREAD 21 PRINTFILEINFO 

3 FWRITE 22 IOWAIT 

4 FUPDATE 30 GETLOCRIN 

5 FSPACE 31 FREELOCRIN 

6 FPO INT 32 LOCKLOCRIN 

7 FREADDIR 33 UNLOCKLOCRIN 

8 FCLOSE 34 LOCKGLORIN 

10 FCHECK 35 UNLOCKGLORIN 

11 FGETINFO 36 LOCRINOWNER 

12 FREADSEEK 40 TIMER 

13 FCONTROL 42 PROCTIME 

14 FSETMODE 43 CALENDAR 

15 FLOCK 44 CLOCK 

16 FUN LOCK 45 PAUSE 

17 FRENAME 50 XARITRAP 

18 FRELATE 51 ARITRAP 

19 FREADLABEL 52 XLIBTRAP 
53 XSYSTRAP 

E-6 



I 
I 

MESSAGE 
NO. 

54 
55 
56 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 

MESSAGE 
NO. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

l 
I 

Table E-2. Intrinsic Error Numbers (Continued) 

INTRINSIC MESSAGE 
NO. 

XCONTRAP 84 
RESETCONTROL 99 
CAUSEBREAK 100 
TERMINATE 102 
CTRANSLATE 103 
BINARY 104 
ASCII 105 
READ 106 
PRINT 107 
PRINTOP 108 
PRINTOREPLY 109 
COMMAND 110 
WHO 112 
SEARCH 120 
MYCOMMAND 130 
SETJCW 131 
GETJCW 132 
DBI NARY 133 
DASCll 134 
QUIT 135 
STACKDUMP 136 
SETDUMP 139 
RESETDUMP 191 
LOADPROC 200 
UNLOADPROC 201 
INITUSLF 210 
ADJUSTSLF 211 

212 
307 

Table E-3. Run-Time Error Messages 

MESSAGE 

ILLEGAL DB REGISTER 
ILLEGAL CAPABILITY 
OMITTED PARAMETER 
INCORRECT S REGISTER 
PARAMETER ADDRESS VIOLATION 
PARAMETER END ADDRESS VIOLATION 
ILLEGAL PARAMETER 
PARAMETER VALUE INVALID 
INCORRECT Q REGISTER 

INTRINSIC 

EXPANDUSLF 
DEBUG 
CREATE 
KILL 
SUSPEND 
ACTIVATE 
GETORIGIN 
MAIL 
SENDMAIL 
RECEIVEMAI L 
FATHER 
GETPROCINFO 
GETPROCID 
GETPRIORITY 
GETDSEG 
FREEDSEG 
DMOVIN 
DMOVEOUT 
ALTDSEG 
DLSIZE 
ZSIZE 
SWITCH DB 
PT APE 
GETPRIVMODE 

GETUSERMODE 
OPEN LOG 
WRITELOG 
CLOSE LOG 
FERR MSG 

Run-time errors are discovered by MPE performing parameter checking before attempting certain operations. 
These errors are caused by a logic error in the program. 

E-7 



I 

Table E-4 .. File System Error Messages 

END OF FILE (FSERR O) 

ILLEGAL DB REGISTER SETTING (FSERR 1) 

ILLEGAL CAPABILITY (FSERR 2) 

ILLEGAL PARAMETER VALUE (FSERR 8) 

INVALID RECORD SIZE SPECIFICATION (FSERR 10) 

INVALID RESULTANT BLOCK SIZE (FSERR 11) 

RECORD NUMBER OUT OF RANGE (FSERR 12) 

INVALID OPERATION (FSERR 20) 

DATA PARITY ERROR (FSERR 21) 

SOFTWARE TIME-OUT (FSERR 22) 

END OF TAPE (FSERR 23) 

UNIT NOT READY (FSERR 24) 

NO WRITE-RING ON TAPE (FSERR 25) 

TRANSMISSION ERROR (FSERR 26) 

1/0 TIME-OUT (FSERR 27 
TIMING ERROR OR DATA OVERRUN (FSERR 28) 

SIO FAILURE (FSERR 29) 

UNIT FAILURE (FSERR 30) 

END OF LINE (FSERR 31) 

SOFTWARE ABORT (FSERR 32) 

DATA LOST (FSERR 33) 

UNIT NOT ON-LINE (FSERR 34) 

DATA-SET NOT READY (FSERR 35) 

INVALID DISC ADDRESS (FSERR 36) 

INVALID MEMORY ADDRESS (FSERR 37) 

TAPE PARITY ERROR (FSERR 38) 

RECOVERED TAPE ERROR (FSERR 39) 

OPERATION INCONSISTENT WITH ACCESS TYPE (FSERR 40) 

OPERATION INCONSISTENT WITH RECORD TYPE (FSERR 41) 

OPERATION INCONSISTENT WITH DEVICE TYPE (FSERR 42) 

WRITE EXCEEDS RECORD SIZE (FSERR 43) 

UPDATE AT RECORD ZERO (FSERR 44) 

PRIVILEGED FILE VIOLATION (FSERR 45) 

OUT OF DISC SPACE (FSERR 46) 

1/0 ERROR ON FILE LABEL (FSERR 47) 
INVALID OPERATION DUE TO MULTIPLE FILE ACCESS (FSERR 48) 

UNIMPLEMENTED FUNCTION (FSERR 49) 

NONEXISTENT ACCOUNT (FSERR 50) 

NONEXISTENT GROUP (FSERR 51) 

NONEXISTENT PERMANENT FILE (FSERR 52) 

NONEXISTENT TEMPORARY FILE (FSERR 53) 

INVALID FILE REFERENCE (FSERR 54) 

DEVICE UNAVAILABLE (FSERR 55) 

INVALID DEVICE SPECIFICATION (FSERR 56) 

OUT OF VIRTUAL MEMORY (FSERR 57) 

NO PASSED FILE (FSERR 58) 

STANDARD LABEL VIOLATION (FSERR 59) 

GLOBAL RIN UNAVAILABLE (FSERR 60) 

OUT OF GROUP DISC SPACE (FSERR 61) 

OUT OF ACCOUNT DISC SPACE (FSERR 62) 

USER LACKS NON-SHARABLE DEVICE CAPABILITY (FSERR 63) 

USER LACKS MULTl-RIN CAPABILITY (FSERR 64) 

PUNCH HOPPER EMPTY (FSERR 65) 

PLOTTER LIMIT SWITCH REACHED (FSERR 66) 

E-8 DEC 1981 



Table E-4. File System Error Messages (Continued) 

PAPER TAPE ERROR (FSERR 67) 

INSUFFICIENT SYSTEM RESOURCES (FSERR 68) 

1/0 ERROR (FSERR 69) 

TOO MANY FILES OPEN (FSERR 71) 

INVALID FILE NUMBER (FSERR 72) 

BOUNDS VIOLATION (FSERR 73) 

NO-WAIT 1/0 PENDING (FSERR 77) 

NO NO-WAIT 1/0 PENDING FOR ANY FILE (FSERR 78) 

NO NO-WAIT 1/0 PENDING FOR SPECIAL Fl LE (FSERR 79) 

SPOOF LE SIZE EXCEEDS CONFIGURATION (FSERR 80) 

NO "SPOOL" CLASS IN SYSTEM (FSERR 81) 

INSUFFICIENT SPACE FOR SPOOF LE (FSERR 82) 

1/0 ERROR ON SPOOF LE (FSERR 83) 

DEVICE UNAVAILABLE FOR SPOOF LE (FSERR 84) 

OPERATION INCONSISTENT WITH SPOOLING (FSERR 85) 

NONEXISTENT SPOOF LE (FSERR 86) 

BAD SPOOF LE BLOCK (FSERR 87) 

SPOOLING ERROR (FSERR 88) 

POWER FAILURE (FSERR 89) 

EXCLUSIVE VIOLATION: FILE BEING ACCESSED (FSERR 90) 

EXCLUSIVE VIOLATION: Fl LE ACCESSED EXCLUSIVELY (FSERR 91) 

LOCKWORD VIOLATION (FSERR 92) 

SECURITY VIOLATION (FSERR 93) 

USER IS NOT CREATOR (FSERR 94) 
READ COMPLETED DUE TO BREAK (FSERR 95) 

DISC 1/0 ERROR (FSERR 96) 

NO CONTROL Y PIN (FSERR 97) 

READ TIME OVERFLOW (FSERR 98) 

BOT AND BACKSPACE TAPE (FSERR 99) 

DUPLICATE PERMANENT FILE NAME (FSERR 100) 

DUPLICATE TEMPORARY FILE NAME (FSERR 101) 

1/0 ERROR ON DIRECTORY (FSERR 102) 

PERMANENT FILE DIRECTORY OVERFLOW (FSERR 103) 

TEMPORARY FILE DIRECTORY OVERFLOW (FSERR 104) 

BAD VARIABLE BLOCK STRUCTURE (FSERR 105) 

EXTENT SIZE EXCEEDS MAXIMUM (FSERR 106) 

INSUFFICIENT SPACE FOR USER LABELS (FSERR 107) 

INVALID FILE LABEL (FSERR 108) 

INVALID CARRIAGE CONTROL (FSERR 109) 

ATTEMPT TO SAVE PERMANENT FILE AS TEMPORARY (FSERR 110) 

USER LACKS SAVE FILES (SF) CAPABILITY (FSERR 111) 

USER LACKS PRIVATE VOLUMES (UV) CAPABILITY (FSERR 112) 

VOLUME SET NOT MOUNTED - MOUNT PROBLEM (FSERR 113) 

VOLUME SET NOT DISMOUNTED - DISMOUNT PROBLEM (FSERR 114) 

ATTEMPTED RENAME ACROSS VOLUME SETS - REJECTED (FSERR 115) 
INVALID TAPE LABEL FOPEN PARAMETERS (FSERR 116) 

ATTEMPT TO WRITE ON AN UNEXPIRED TAPE FILE (FSERR 167) 

INVALID HEADER OR TRAILER TAPE LABEL (FSERR 118) 
1/0 ERROR POSITIONING TAPE FOR TAPE LABELS (FSERR 119) 

ATTEMPT TO WRITE IBM STANDARD TAPE LABEL (FSERR 120) 

TAPE LABEL LOCKWORD V!OLAT!ON (FSERR 121) 

END OF TAPE VOLUME SET (FSERR 123) 

INACTIVE RIO RECORD ACCESSED (FSERR 148) 

MISSING ITEMNUM OR ITEMVALUE (149) 

E-9 



Table E-4. File System Error Messages (Continued) 

INVALID ITEMNUM VALUE (150) 
THE RECORD IS MARKED DELETED. FPOINT POSITIONED POINTER TO A RECORD THAT WAS 

MARKED FOR DELETION (FSERR 170) 

DUPLICATE KEY VALUE (FSERR 171) 
NO SUCH KEY (FSERR 172) 
TCOUNT PARAMETER LARGER THAN RECORD SIZE (FSERR 173) 
CAN NOT GET EXTRA DATA SEGMENT (FSERR 174) 
KSAM INTERNAL ERROR (FSERR 175) 
ILLEGAL EXTRA DATA SEGMENT LENGTH (FSERR 176) 
TOO MANY EXTRA DATA SEGMENTS FOR THIS PROCESS (FSERR 177) 
EXTRA DATA SEGMENT TOO SMALL (FSERR 178) 

THE FILE MUST BE LOCKED BEFORE ISSUING THIS INTRINSIC (FSERR 179) 
THE KSAM Fl LE MUST BE REBUILT BECAUSE THIS VERSION OF KSAM DOES NOT HANDLE THE 

FILE BUILT BY PREVIOUS VERSION (FSERR 180) 
INVALID KEY STARTING POSITION (FSERR i81) 
FILE IS EMPTY (FSERR 182) 
RECORD DOES NOT CONTAIN ALL KEYS (FSERR 183) 
INVALID RECORD NUMBER (FFINDN INTRINSIC) (FSERR 183) 
SEQUENCE ERROR IN PRIMARY KEY (FSERR 185) 
INVALID KEY LENGTH - NUMERIC DISPLAY OR PACKED DECIMAL (FSERR 186) 
INVALID KEY SPECIFICATION {FSERR 187) 
INVALID DEVICE SPECIFICATION {FSERR 188) 
INVALID RECORD FORMAT (FSERR 189) 

INVALID KEY BLOCKING FACTOR VALUE (FSERR 190) 
RECORD DOES NOT CONTAIN SEARCH KEY FOR DELETION. SPECIFIED KEY VALUE POINTS TO 

RECORD WHICH DOES NOT CONTAIN THAT VALUE. (FSERR 191) 
SYSTEM FAILURE OCCURRED WHILE KSAM FILE WAS OPENED. (FSERR 192) 
INVALID ID SEQUENCE (FSERR 201) 
INVALID TELEPHONE NUMBER (FSERR 202) 
NO TELEPHONE LIST SPECIFIED (FSERR 203) 

INVALID ID SEQUENCE (FSERR 201) 
INVALID TELEPHONE NUMBER (FSERR 202) 
NO TELEPHONE LIST SPECIFIED (FSERR 203) 
UNABLE TO ALLOCATE AN EXTRA DATA SEGMENT FOR DS/3000. (DSERR 204) 
UNABLE TO EXPAND THE DS/3000 EXTRA DATA SEGMENT. (DSERR 205) 
FILE NUMBER RETURNED FROM IOWAIT IS NOT A OS LINE NUMBER. (DSWARN 212) 
THE REQUESTED OS LINE HAS NOT BEEN OPEN WITH A USER :DSLINE COMMAND. (DSERR 214) 
MESSAGE REJECTED BY THE REMOTE COMPUTER. (DSERR 216) 
INSUFFICIENT AMOUNT OF USER STACK AVAILABLE. (DSERR 217) 
INVALID OS MESSAGE FORMAT. (INTERNAL OS ERROR) (OSERR 221) 
THE LOCAL COMMUNICATION LINE HAS NOT BEEN OPENED BY THE OPERATOR. (DSERR 240) 
THE OS LINE IS IN USE EXCLUSIVELY OR BY ANOTHER SUBSYSTEM. (DSERR 241) 
INTERNAL OS SOFTWARE MALFUNCTION. (OSERR 242) 
THE REMOTE COMPUTER IS NOT RESPONDING. (DSERR 243) 
COMMUNICATIONS INTERFACE ERROR. THE REMOTE COMPUTER RESET THE LINE. (DSERR 244) 
COMMUNICATIONS INTERFACE ERROR. RECEIVE TIMEOUT. (DSERR 245) 
COMMUNICATIONS INTERFACE ERROR. REMOTE HAS DISCONNECTED. (DSERR 246) 
COMMUNICATIONS INTERFACE ERROR. LOCAL TIME OUT. (DSERR 247) 
COMMUNICATIONS INTERFACE ERROR. CONNECT TIME OUT. (DSERR 248) 
COMMUNICATIONS INTERFACE ERROR. REMOTE REJECTED CONNECTION. (DSERR 249) 
COMMUNICATIONS INTERFACE ERROR. CARRIER LOST. (DSERR 250) 
COMMUNICATIONS INTERFACE ERROR. THE LOCAL DATA SET FOR THE OS LINE WHEN NOT 

READY. (DSERR 251) 

E-10 



Table E-4 .. File System Error Messages (Continued) 

COMMUNICATIONS INTERFACE ERROR. HARDWARE FAILURE. (DSERR 252) 
COMMUNICATIONS INTERFACE ERROR. NEGATIVE RESPONSE TO THE DIAL REQUEST BY THE 

OPERATOR. (DSERR 253) 
COMMUNICATIONS INTERFACE ERROR. INVALID 1/0 CONFIGURATION. (DSERR 254) 
COMMUNICATIONS INTERFACE ERROR. UNANTICIPATED ERROR CONDITION. (DSERR 255) 

E-11 



Table E-5. Loader Error and Warning Messages 

ILLEGAL LIBRARY SEARCH {LOAD ERR 20) 
UNKNOWN ENTRY POINT (LOAD ERR 21) 
TRACE SUBSYSTEM NOT PRESENT (LOAD ERR 22) 
STACK SIZE TOO SMALL (LOAD ERR 23) 
MAXDATA TOO LARGE (LOAD ERR 24) 
DATA SEGMENT TOO LARGE (LOAD ERR 25) 
PROGRAM LOADED IN OPPOSITE MODE (LOAD ERR 26) 
SL BINDING ERROR {LOAD ERR 27) 
INVALID SYSTEM SL FILE (LOAD ERR 28) 
INVALID PUBLIC SL FILE (LOAD ERR 29) 
INVALID GROUP SL FILE (LOAD ERR 30) 
INVALID PROGRAM FILE (LOAD ERR 31) 
INVALID LIST FILE (LOAD ERR 32) 
CODE SEGMENT TOO LARGE (LOAD ERR 33) 
PROGRAM USES MORE THAN ONE EXTENT (LOAD ERR 34) 
DATA SEGMENT TOO LARGE (LOAD ERR 35) 
DATA SEGMENT TOO LARGE (LOAD ERR 36) 
TOO MANY CODE SEGMENTS (LOAD ERR 37) 
TOO MANY CODE SEGMENTS (LOAD ERR 38) 
ILLEGAL CAPABILITY (LOAD ERR 39) 
TOO MANY PROCEDURES LOADED (LOAD ERR 40) 
UNKNOWN PROCEDURE NAME (LOAD ERR 41) 
INVALID PROCEDURE NUMBER (LOAD ERR 42) 
ILLEGAL PROCEDURE UNLOAD (LOAD ERR 43) 
ILLEGAL SL CAPABILITY (LOAD ERR 44) 
INVALID ENTRY POINT (LOAD ERR 45) 
UNABLE TO OPEN SYSTEM SL FILE (LOAD ERR 50) 
UNABLE TO OPEN PUBLIC SL FILE (LOAD ERR 51) 
UNABLE TO OPEN GROUP SL FILE (LOAD ERR 52) 
UNABLE TO OPEN PROGRAM FILE (LOAD ERR 53) 
UNABLE TO OPEN LIST FILE (LOAD ERR 54) 
UNABLE TO CLOSE SYSTEM SL FILE (LOAD ERR 55) 
UNABLE TO CLOSE PUBLIC SL FILE (LOAD ERR 56) 
UNABLE TO CLOSE GROUP SL FILE (LOAD ERR 57) 
UNABLE TO CLOSE PROGRAM FILE (LOAD ERR 58) 
UNABLE TO CLOSE LIST FILE (LOAD ERR 59) 
EOF OR 1/0 ERROR ON SYSTEM SL FILE (LOAD ERR 60) 
EOF OR 1/0 ERROR ON PUBLIC SL FILE (LOAD ERR 61) 
EOF OR 1/0 ERROR ON GROUP SL FILE (LOAD ERR 62) 
EOF OR 1/0 ERROR ON PROGRAM FILE (LOAD ERR 63) 
EOF OR 1/0 ERROR ON LIST FILE (LOAD ERR 64) 
UNABLE TO OBTAIN CST ENTRIES (LOAD ERR 65) 
UNABLE TO OBTAIN PROCESS DST ENTRY (LOAD ERR 66) 
UNABLE TO OBTAIN MAIL DATA SEGMENT (LOAD ERR 67) 
UNABLE TO CREATE LOAD PROCESS (LOAD ERR 68) 
SEGMENT TABLE OVERFLOW (LOAD ERR 70) 
UNABLE TO OBTAIN SUFFICIENT DL STORAGE (LOAD ERR 71) 
ATTIO ERROR (LOAD ERR 72) 
UNABLE TO OBTAIN VIRTUAL MEMORY (LOAD ERR 73) 
DIRECTORY 1/0 ERROR (LOAD ERR 74) 
PRINT 1/0 ERROR (LOAD ERR 75) 
ILLEGAL DLSIZE (LOAD ERR 76) 
PROGRAM ALREADY ALLOCATED (LOAD ERR 80) 
ILLEGAL PROGRAM ALLOCATION (LOAD ERR 81) 
PROGRAM NOT ALLOCATED (LOAD ERR 82) 

E-12 



Table E-5. Loader Error and Warning Messages (Continued) 

ILLEGAL PROGRAM DEALLOCATION (LOAD ERR 83) 

PROCEDURE ALREADY ALLOCATED (LOAD ERR 84) 

ILLEGAL PROCEDURE ALLOCATION (LOAD ERR 85) 

PROCEDURE NOT ALLOCATED (LOAD ERR 86) 

ILLEGAL PROCEDURE DEALLOCATION (LOAD ERR 87) 

LMAP NOT AVAILABLE (LOAD WARN 88) 

PROGRAM LOADED WITH LIB=nnn (LOAD WARN 89) 

Table E-6. CREATE Intrinsic Errors 

UNKNOWN SUBQUEUE NAME (CREATE ERROR 20) 

SUBQUEUE 'A' REQUESTED WITHOUT FROZEN STACK (CREATE ERROR 21) 

INSUFFICl·ENT CAPABILITY FOR NON-STANDARD SUBQUEUE (CREATE ERROR 23) 

UNKNOWN PORTION OF MASTER QUEUE (CREATE ERROR 24) 

INSUFFICIENT CAPABILITY FOR MASTER QUEUE (CREATE ERROR 25) 

ABSOLUTE PRIORITY REQUESTED WITHOUT CAPABILITY (CREATE ERROR 26) 

ILLEGAL PRIORITY CLASS SPECIFIED (CREATE ERROR 27) 

PRIORITY OMITTED WHILE FATHER PROCESS IN MASTER QUEUE. (CREATE ERR 28) 

PRIORITY RANK RESERVED TO SUPERVISOR CAPAB!L!TY (CREATE ERROR 29) 
LOAD ERROR (CREATE ERROR 30) 

LACK OF SYSTEM RESOURCE (CREATE ERROR 31) 

MAXIMUM ACCOUNT PRIORITY EXCEEDED (CREATE ERROR 32) 

Table E-7. ACTIVATE Intrinsic Errors 

ACTIVATION OF SYSTEM PROCESS NOT ALLOWED (ACTIVATE ERROR 20) 

ACTIVATION OF MAIN PROCESS NOT ALLOWED (ACTIVATE ERROR 21) 

Table E-8. SUSPEND Intrinsic Error 

INSUFFICIENT CAPABILITY (SUSPEND ERROR 20) 

Table E-9. MYCOMMAND Intrinsic Error 

PARSED PARAM OF COM IMAGE> 255 CHARACTERS 

Table E-10. LOCKGLORIN Intrinsic Errors 

INCORRECT PASSWORD FOR RIN 

ONLY ONE RINCAN BE LOCKED 

RIN IS NOT ALLOCATED 

RIN IS TOO LARGE FOR THE RIN TABLE 

RIN IS NOT GLOBAL RIN 

E-13 



Table E-11. Private Volumes Error Messages 

PRIVATE VOLUMES FACILITY NOT INVOKED (PVERR 20) 
OPERATOR REJECTED MOUNT REQUEST (PVERR 21) 
INSUFFICIENT DRIVES AVAILABLE TO MOUNT VOLUME SET (PVERR 22) 
VOLUME SET TEMPORARILY IN USE BY SYSTEM (PVERR 23) 
GROUP IN VOLUME SET SPECIFICATION DOES NOT EXIST (PVERR 24) 
ACCOUNT IN VOLUME SET SPECIFICATION DOES NOT EXIST (PVERR 25) 
VOLUME SET IS NOT PHYSICALLY MOUNTED ON SYSTEM (PVERR 26) 
VOLUME SET/CLASS DEFINITION DOES NOT EXIST (PVERR 27) 
NO HOME VOLUME SET DESIGNATED FOR nnn (PVERR 28) 
GROUP IN HOME VOLUME SET SPECIFICATION DOES NOT EXIST (PVERR 29) 
ACCOUNT IN HOME VOLUME SET SPECIFICATION DOES NOT EXIST (PVERR 30) 
GROUP DOES NOT EXIST ON VOLUME SET (PVERR 31) 
ACCOUNT DOES NOT EXIST ON VOLUME SET (PVERR 32) 
VOLUME SET ALREADY MOUNTED BY THIS USER (PVERR 33) 
USER DOES NOT HAVE VOLUME SET MOUNTED (PVERR 34) 
OPERATOR DISMOUNT PENDING FOR VOLUME SET (PVERR 35) 
DOWN PENDING FOR DISC CONTAINING MEMBER VOLUME (PVERR 36) 
REQUEST FOR DIFFERENT MEMBERS THAN CURRENTLY IN USE (PVERR 37) 
MUST USE HOME VOLUME SPECIFICATION IN THIS CONTEXT (PVERR 38) 
CANNOT USE HOME VOLUME SET SPECIFICATION IN THIS CONTEXT (PVERR 39) 
VOLUME SET CURRENTLY MOUNTED WITH DIFFERENT GENERATION (PVERR 41) 
MOUNTED VOLUME TABLE ERROR (SYSTEM PROBLEM) (PVERR 50) 
VOLUME SET USER TABLE ERROR (SYSTEM PROBLEM) (PVERR 51) 
DIRECTORY ERROR (SYSTEM PROBLEM) (PVERR 52) 
LDEV# nnn IS OUT OF RANGE (PVERR 60) 
LDEV# nnn IS NOT CONFIGURED (PVERR 61) 
LDEV# nnn IS NOT A DISC (PVERR 62) 
LDEV# nnn IS NOT A REMOVABLE DISC (PVERR 63) 
LDEV# nnn IS NOT AN ALLOWED REMOVABLE DISC-INVALID SUBTYPE (PVERR 64) 
LDEV# nnn IS NOT IN THE USER DISC DOMAIN (PVERR 65) 
LDEV# nnn IS NOT ON-LINE (PVERR 66) 
LDEV# nnn IS A SERIAL DISC (PVERR 67) 
LDEV# nnn IS RESERVED FOR USE BY SYSTEM (PVERR 68) 
LDEV# nnn IS NOT DOWN-ED (PVERR 69) 
LDEV# nnn HAS DOWN PENDING (PVERR 70) 
LDEV# nnn IS IN USE BY PRIVATE VOLUMES (PVERR 71) 
** FUNCTION ABORTED ** 
UNRECOGNIZED FUNCTION (PVERR 101) 
INVALID TRACK DISPOSITION (PVERR 102) 
UNRECOGNIZED KEYWORD (PVERR 103) 
NO VOLUME SET CURRENTLY SPECIFIED (PVERR 104) 
LDEV# nnn NOT DOWNED (PVERR 105) 
LDEV# nnn NOT DOWNED OR SCRATCH (PVERR 106) 
VOLUME SPECIFIED IS NOT A MEMBER OF THE VOLUME SET (PVERR 107) 
SUBTYPE INCONSISTENCY BETWEEN DEVICES SPECIFIED (PVERR 108) 
PACK SIZE INCONSISTENCY BETWEEN DEVICES SPECIFIED (PVERR 109) 
ATTEMPTED TO COPY TO A BAD TRACK (PVERR 110) 
NO SUSPECT TRACKS FOUND 
NO ALTERNATE TRACKS AVAILABLE (PVERR 112) 
TRACK NOT REASSIGNED 
TRACK IN RESERVED AREA - MUST REFORMAT PACK (PVERR 114) 
INVALID NUMERIC VALUE FOR KEYWORD PARAMETER (PVERR 115) 
VOLUME NAME MORE THAN EIGHT CHARACTERS IN LENGTH (PVERR 116) 

E-14 



Table E-11. Private Volumes Error Messages (Continued) 

VOLUME SET NAME MORE THAN EIGHT CHARACTERS IN LENGTH (PVERR 117) 
KEYWORD IS MORE THAN EIGHT CHARACTERS IN LENGTH (PVERR 118) 
VOLUME NAME HAS NON-ALPHA LEADING CHARACTER (PVERR 119) 
VOLUME SET NAME HAS NON-ALPHA LEADING CHARACTER (PVERR 120) 
KEYWORD HAS NON-ALPHA LEADING CHARACTER (PVERR 121) 
VOLUME NAME CONTAINS A SPECIAL CHARACTER (PVERR 122) 
VOLUME SET NAME CONTAINS A SPECIAL CHARACTER (PVERR 123) 
KEYWORD CONTAINS A SPECIAL CHARACTER (PVERR 124) 
NO PARAMETERS ALLOWED FOR THIS FUNCTION (PVERR 125) 
MISSING NON-OPTIONAL PARAMETER (PVERR 126) 
NON-NUMERIC CHARACTER IN LDEV SPECIFICATION (PVERR 127) 
INVALID LDEV VALUE (PVERR 128) 
TOO MANY NAMES IN VOLUME SET SPECIFICATION (PVERR 129) 
MISSING KEYWORD PARAMETER VALUE (PVERR 130) 
UNEXPECTED DELIMITER (PVERR 131) 
UNEXPECTED PARAMETER (PVERR 132) 
WARNING: VOLUME ALREADY nnn (PVWARN 140) 
WARNING: SUSPECT TRACK IN ALTERNATE AREA (PVWARN 141) 
WARNING: SUSPECT TRACK IN RESERVED AREA (PVWARN 142) 
WARNING: nnn SUSPECT TRACKS DETECTED (PVWARN 143) 

E-15 

MESSAGE NO. 

0 

1 

2 

3 

4 

5 

6 

8 

9 

10 

12 

13 

14 

15 

16 

Table E-12. User Logging Error Messages 

MESSAGE 

No error occurred for this call. 

User requested no wait mode and the logging process is busy. 

Parameter out of bounds in logging intrinsic 

Request to open or write to a logging process that isn't 
running. 

Incorrect index parameter passed a iogging intrinsic 

Incorrect mode parameter passed to logging intrinsic 

User request denied because logging process is suspended. 

incorrect password passed to logging intiinsic. 

Error occurred while writing logging file. 

Invalid DST passed to logging system intrinsic. 

System is out of disc space logging cannot proceed. 

No more logging entries. 

Invalid access to logging file. 

End of file on user log file. 

Invalid logging identifier. 



ERROR NUMBER 

0 

3 

6 

7 

8 

9 

10 

11 

12 

Table E-13. CLEANUSL Error Messages 

MESSAGE 

The file specified by uslfnum was empty, or unexpected end-of-file 
was encountered when reading the old uslfnum, or an unexpected 
end-of-file was encountered when writing on the new uslfnum. 

Unexpected input/output error occurred. This can occur on the 
old uslfnum or the new uslfnum to which the intrinsic is copying 

the information. 

Your request attempted to exceed the maximum file directory size 
(32,768 words). 

Insufficient space was available in the USL file information block. 

The intrinsic was unable to open the new USL file. 

The intrinsic was unable to close (purge) the old USL file. 

The intrinsic was unable to close (purge) the new USL file. 

The intrinsic was unable to close $N EWPASS. 

The intrinsic was unable to open $0 LDPASS. 

Illegal USL file format. 

E-16 



ERROR NUMBER 

0 

2 

3 

4 

5 

6 

7 

8 

9 

-10 

-11 

-12 

-13 

-14 

15 

i6 

17 

18 

19 

20 

JUL 1981 

Table E-14. CREA TEPROCESS Error Messages 

MESSAGE 

Process created as requested, 

Caller lacks PH capability. 

Required parameter (other than error) omitted. 

Parameter address (other than error) out of bounds. 

Out of system resources (PCB's, DST's, etc.) 

Process not created because an invalid item number was specified. 

Process not created because progname does not exist. 

Process not created because progname is invalid. 

Process not created because entryname does not exist or is invalid. 

Process created with default stacksize from progfile (specified 
stacksize was < 512). 

Process created with default dlsize from progfile (specified dlsize 
was <O). 

Process created with default maxdata from progfile (specified 
maxdata was<= 0). 

Process created with dlsize rounded up to next 128 word multiple. 

Process created with maxdata decreased to configuration maximum. 

Process created with maxdata increased to dlsize+globsize+stacksize 
(globsize is defined to be primary DB space+secondary DB space). 

Process not created because dlsize+globsize+stacksize was > con­
figuration maximum stacksize. 

Process not created because a "hard" load error occurred (e.g. !/0 
error reading progfile, etc.). 

Process not created because an illegal value was specified for priority­

class. 

Process not created because specified $STD IN could not be opened. 

Process not created because specified $STDLIST could not be opened. 

Process not created because string to be passed to new process was 
invalid (pointer without length, length without pointer, or length 
exceeds stack size of calling process). 

E-17 

I 

I 



USER MESSAGES 

When your batch job or session receives a message from another user's job or session, that message 
appears in the following format: 

FROM! { ~ } num, username.acctname/message 

jsname 
username 
acctname 

message 

} The names of the transmitting job/session and user, and the name of 
the account under which they are running. 

The message. 

As an example, if a user identified as BOB running a session under an account named MPE, sends a 
message to you that he is changing the name of a file used frequently by both programs: you would 
see the following message: 

FROM/8106 BOB.MPE/DO NOT USE FILE TR 7 

OPERATOR MESSAGES 

When your batch job or session receives a message from the console operator, that message appears 
in one of two formats, depending on its degree of urgency. Urgent messages which pre-empt any 
form of input/output being conducted on the standard list device, appear in this format: 

OPERATOR WARNING/message 

message is the message text. 

Less serious messages used for normal communication between the operator and you do not pre­
empt input/output in progress, and appear on the standard list device in this format: 

FROM OPERATOR: message 

message is the message text. 

SYSTEM MESSAGES 
Miscellaneous conditions that terminate or otherwise affect your job/session are reported through 
system messages, shown in table E-11. These messages may appear, asynchronously, during the 
course of a running job/session on the standard list device. 

E-18 



Table E-15. System Messages 

CAN'T INITIATE NEW SESSIONS NOW 

New sessions cannot be initiated due to one of the following problems: 

1. Insufficient system resources to start job. 

2. Session limit would be exceeded (see= LIMIT and= LOGOFF). 

3. Requestor's input priority (INPRI =)is not greater than current <jobfence >(see= JOBFENCE). 

NOTE: System managers and system supervisors can bypass rejections due to 2 and 3, above, by 
supplying HIPRJ on :HELLO command. 

* (SESSION l 
JOB 

ABORTED BY SYSTEM MANAGEMENT* 

The job/session has been aborted by the computer operator or system supervisor user through the appropriate 

command. An immediate log-off then takes place. 

* (SESSION l 
JOB 

HAS EXCEEDED TIME LIMIT* 

The job/session has exceeded the time limit which was specified in the TIME=parameter of the JOB/HELLO 

command. An immediate log-off then takes place. 

WARNING: PRIORITY= XXX 

The priority passed to the CREATE intrinsic resulted in a conflict with another process, and the priority then 

assigned was XXX instead of the requested value. 

LMAP NOT AVAILABLE 

An LMAP of the process being created, or program file being : RUN, is not available because the code segments 
are already loaded. 

**POWER FAIL** 

Power failure has occurred and automatic restart is in progress. It is possible that a character has been lost due 

to a transmission error when the power failure occurred. 

JUL 1981 E-19 

I 



FILE INFORMATION DISPLAY 

In addition to Command Interpreter and run-time (abort) error messages, certain file input/output 
errors result in the output of a file information display. For files not yet opened, or for which 
the FOPEN intrinsic failed, this display appears as in the example below. 

+-F-I-L-E---I-N-F-O-R-M-A-T-I-0-N---D-I-S-P-L-A-Y+ 
CD--! FILE NUMBER 5 IS UNDEFINED. 
®--! ERROR NUMBER: 2 RESIDUE: 0 <WORDS) ! 
~! BLOCK NUMBER: 0 NUMREC: 0 ! 

.+------------------------------------------------+ 

In this display, the lines indicated show the following information. 

Line 

1 

2 

3 

Content 

A warning that there is no corresponding file open. 

The appropriate error number, relating to table E-4. The residue, which 
is the number of words not transferred in an input/output request; 
since no such request applies in this case, this is zero. 

NOTE 

This will always be the last FOPEN error for the calling program. 

The block number, and numrec fields will always be zero in this short 
form. 

For files that were open when a CCG (end-of-file error) or CCL (irrecoverable file error) condition 
code was returned, the file information display appears as shown in this example: 

E-20 

+ • F • I - L • E - • - I .... f.' - F ... fl .. P - ~-~ - .A • T - J • 0 - N - .. • r. - J - ~ - P - L .. A • Y + 
0---.. F'JLE Nll.MF JS 1~~.vor.rYfP.CJ.JFtfl,! 

0-
00-
00--

0--.. 
00-
G-­e-. 

F n p T I 0 n s : M" \,\: , A , * Fl.l p fl,· A L * , F , N , Fr::<~ , T 
AOPTinNS: 
DEVICE TYP~:: 

LDEV: 2 
p~:cnPD SIZE: 
FXTF\1'f SIZF: 
PECPTR: 0 
LOGCOUNT: 0 
EOF 1'\T: 0 

I N PU T , S P ~ C , ~' fH. 0 (!-, , C E F , P PF F F: P 
0 D~VICF SURTYPE: g 

ORT: 4 UNlT: 
?56 hLflC'K STZF: 256 
12H ~AX ~XTE~TS: ~ 

PFCLJ.MlT: 1023 
FHYSCUUNT: 0 

(HYTES) 

LAB~L AnDP: *002013?7~30 
FILF CUDF<: 0 
PRYSICJ\f., STATPS: 

l P T ~ lJn E U l_, ?. 8 ELS : 0 

@ ! 
@--. ! ER HOR t-ITJMREP: CJ 

G ! BL n c K r.1 u v BE P : o 

10rinoooooooc1noo1 
f<ES HH.it: r) 



The lines indicated show the following information: 

Line 

1 

2 

3 

Content 

The file name: in this case, the name is IN.VOLLMER.CLIFTON 

The {options in effect, including: 

Domain: New file (as in this case). 
System file domain. 
Job temporary file domain. 

NEW 
SYS 
JOB 
ALL System and job temporary file domain. 

Type: A = ASCII File (as in this case). 
B = Binary File. 

Default File *FORMAL* = Actual file designator is same as 
Designator: formal file designator. 

Record 
Format: 

Carriage 
Control: 

$STD IN 
$STD LIST 
$STDINX 
$NEWPASS 
$0LDPASS 
$NULL 

Fixed length. (as in this case) 
V = Variable length. 
U = Undefined length (as in this case). 
? = Unknown format. 

N = None (as in this case). 
C = Carriage control character expected. 

File Equation FEQ = :FILE allowed (as in this case). 
Option: DEQ = :FILE not allowed. 
Labeled T 
Tape Option: L 

Not a labeled tape (as in this case) 
= Labeled tape 

The aoptions in effect, including: 

Read access (as in this case). 
Write access. 

Access Type: INPUT 
OUTPUT 
OUTKEEP 
APPEND 
IN/OUT 
UPDATE 

Write-only access, without deleting. 
Append access. 

Mui ti-record 
Option: 

Input and output access. 
Update access. 

SREC Single record access (as in this case). 
MREC = Multi-record access. 

E-21 



Line 

3 
(Cont.) 

4,5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

E-22 

Dynamic 
Locking 
Option: 

Exclusive 
Access 
Option: 

Buffering: 

NO LOCK 
LOCK 

Contents 

No locking permitted (as in this case). 
Locking permitted. 

DEF Default specification (as in this case). 
EXC Exclusive access allowed. 
SEA Semi-exclusive access allowed. 
SHR Sharable file. 
BUFFER= Automatic buffering (as in this case). 
NOBUFF = Inhibit buffering 

The Device Type, Device Subtype, LDEV (Logical Device Number), 
DRT (Device Reference Table Entry Number) and Unit of the device 
on which the file resides. (These are 0, 9, 2, 4, and 1 respectively, in 
this case.) If the file is a spoolfile, the LDEV will be a "virtual" rather 
than a physical device number. See ldnum under FGETINFO. 

The record size and block size of the offending record, in bytes or 
words as noted. (In this case, these are both specified as 256 bytes.) 

The extent size (of the current extent) and the max extents (maximum 
number of extents) allowed this file. 

The recptr (current record pointer) and reclimit (limit on number of 
records in the file). 

The logcount (present count of logical records) and physcount (present 
count of-physical records) in the file. 

The EOF at (location of the current end-of-file) and the label addr 
(location of the header label of the file). 

The file code, id (name of creating user), and ulabels (number of 
user-created labels) for the file. 

The physical status of the file. 

The error number and residue, as described under the abbreviated file 
information display format, above. 

The block number and numrec, as described under the abbreviated file 
information display format, above. 

JUL 1981 

I 



A 

Aborting a process, 4-20 
Aborting a program, 4-20 
Accessing files, 10-8 
Accessing files already in use, 10-12 
Access-mode options for files, 10-91 
Access mode, user, 4-10 
Acquiring global RIN's, 6-2 
Acquiring local RIN's, 6-8 
ACCEPT intrinsics, 2-4 
ACTIVATE errors, E-13 
ACTIVATE intrinsic 

specifications, 2-5 
usage, 8-10 

Activating an extra data segment, 8-10 
Activating processes, 7-3 
Actual file designator, 10-10 
ADJUSTUSLF intrinisc, 2-7 
Allocation of devices, 10-25, 10-26 
Allocating a terminal, 5-24 
ALTDSEG intrinsic 

specifications, 2-9 
usage, 8-15 

Aoptions 
bit summary, 2-51 
description, 2-61 

Arithmetic traps, 4-30 
ARITRAP intrinsic 

specifications, 2-11 
usage, 4-30 

Arrays, searching, 4-3 
ASCII intrinsic 

specifications, 2-12 
usage, 4-10 

AS subqueue, 9-7 
Attributes, user, 4-10 
Available file table (AFT), 10-17 
Avoiding deadlocks, 7-13 

B 

Back referencing files, 10-10 
BEGINLOG intrinsics, 2-13a 
BINARY intrinsic 

specifications, 2-14 
usage, 4-13 

Block factor, 2-65, 10-3 
Blocks, 10-2 
Block size, 10-4 
Block transfers, 5-22 
Bounds check, 1-11 
BS subqueue, 9-7 
On-f.fn.,.;nl"t 1 ()_7 
..l..IU.L.LC.1..l.1.1.6, .Lv-1 

JUL 1981 I-1 

c 

Calculating disc space, 10-2 
Calendar date, 4-44 
CALENDAR intrinsic 

specifications, 2-15 
usage, 4-44 

Calling intrinsics from other languages, 1-10 
Calling intrinsics from SPL, 1-2 
Card reader, 5-3 
Carriage control 

byte, 2-70 
characters, 5-1 
codes, 5-7 
directives, 2-89, 5-7 
summary, 2-90 

Carriage-return characters, 5-2 
CAUSEBREAK intrinsic 

specifications, 2-16 
usage, 4-19 

Central processor run-timer, 4-44 
Changing DL to DB area size, 4-22 
Changing input echo faciiity, 5-11 

INDEX 

Changing size of an extra data segment, 8-15 
Changing terminal characteristics, 5-10 
Changing terminal speed, 5-10 
Changing Z to DB area size, 4-27 
Circular Files, 3-9 through 3-12 

Features of intrinsics, 3-10 
Circular subqueues, 9-5 
Classification of devices, 10-25 
CLEANUSL intrinsic 

specifications, 2-1 7 
CLOCK intrinsic 

specifications, 2-18 
usage, 4-44 

CLOSELOG intrinsic 
specifications, 2-19 
usage, 10-93 

Closing a new file as a permanent file, 10-40 
Closing a new file as a temporary file, 10-39 
Closing files, 10-39 
Closing magnetic tape files, 10-73 
COBOL II 

FDELETE, 2-61 
FFILEINFO, 2-63 
Relative I/O, 10-6 

Code segments, 8-1 
Collecting mail, 7-12 
COMMAND intrinsic 

specifications, 2-20 
usage,4-9 

Command parameters, formatting, 4-4 
Commercial instruction traps, 4-31 

I 



I 

I 

I 

Communication 
inter-process, 4-44, 7-10 
process-to-process, 7-2 

Condition codes 
definitions, 1-11 
file system, 10-12 

Console Operator, 4-18 
Control-Y traps, 4-38 

Converting characters from EBCDIC to ASCII and 
ASCII to EBCDIC, 4-13 

Converting numbers 
from ASCII to binary, 4-13 
from ASCII to EBCDIC, 4-13 
from binary to ASCII, 4-10 
from EBCDIC to ASCII, 4-13 

Copy access, for message files, 3-3, 3-8 
CREATE errors, E-13 
CREATE intrinsic 

specifications, 2-21 
usage, 7-3 

CREATEPROCESS intrinsic, 2-26 
errors, E-17 

Creating an extra data segment, 8-2 
Creating processes, 7-3 
CS subqueue, 9-7 
CTRANSLATE intrinsic 

specifications, 2-28 
usage, 4-13 

Current time, 4-44 

D 

DASCH intrinsic 
specifications, 2-30 
usage, 4-13 

Data segments, 8-1 
changing the size, 8-15 
deleting, 8-15 
transferring to and from, 8-15 

Data information, 4-42 
DATELINE intrinsic, 2-32 
DBINARY intrinsic 

specifications, 2-33 
usage, 4-13 

DB pointer, 9-5 
Deadlocks, 7-13 
DEBUG intrinsic, 2-34 
Declaring access-mode options for files, 10-91 
Defining line-termination characters for 
terminal input, 5-20 

Deleting an extra data segment, 8-15 
Deleting processes, 7 -8 
DENsity selection on labeled and 

and unlabeled tapes, 10-89 
DENsity Specification, FOPEN, 2-88a 
Determining father process, 7-14 
Determining interactive and duplicative file pairs, 10-92 
Determining process priority and state, 7-15 
Determining son processes, 7-15 

I-2 

Determining source of process activation, 7-14 
Determining user's access mode attributes, 4-10 1 

Device access, 10-7 
Device allocation, 10-26 
Device characteristics, 5-1 
Device control (2680A Printer), 2-61a 
Device -dependent restrictions on files, 10-24 
Devices, 10-7 
Devices, classification of, 10-25 
Direct-access file reading, 10-49 
Direct-access file writing, 10-51 
Disabling traps, 4-29 
Disc space, 10-2 
DLSIZE intrinsic 

specifications, 2-35 
usage, 4-22 

DL to DB area, 4-22 
DMOVIN intrinsic 

specifications, 2-37 
usage, 8-15 

DMOVOUT intrinsic 
specifications, 2-39 
usage, 8-15 

Domains, file, 10-7 
DS subqueue, 9-7 
Duplex mode, 5-11 
Duplicate file pairs, 10-92 
Dynamic loading and unloading of library procedures, 4-2 

E 

Effective Use of User Logging, 10-96 
Enabling and disabling binary transfers, 5-21 
Enabling and disabling line deletion 

echo suppression, 5-23 
Enabling and disabling parity checking, 5-14 
Enabling and disabling subsystem break function, 5-14 
Enabling and disabling system break function, 5-13 
Enabling and disabling tape-mode option, 5-15 
Enabling and disabling terminal input timer, 5-16 
Enabling and disabling user block transfers, 5-22 
Enabling traps, 4-29 
End-of-file indication, 5-6 
End-of-file marks on magnetic tape, 10-72 
ENDLOG intrinsic, 2-40a 
ENVironment File 

Specification, FOPEN, 2-88a 
Entering non-privileged mode, 9-5 
Entering privileged mode, 9-3 
Error-check procedure, 10-45 
Errors 

ACTIVATE errors, E-13 
condition code, 1-10, 10-12 
CREATE errors, E-13 
CREATEPROCESS errors, E-17 
file information display, E-20 
file system errors, E-8 
intrinsic errors, E-6 
loader errors, E-12 

JUL 1981 



LOCKGLORIN errors, E-13 
MYCOMMAND errors, E-13 
obtaining file error information, 10-68 
operator messages, E-18 
program errors, E-5 
run-time errors, E-7 
run-time messages, E-2 
SUSPEND errors, E-13 
system messages, E-18 
user messages, E-18 
writing an error-check procedure, 10-45 

ES subqueue, 9-7 
Executing MPE commands programmatically, 4-9 
EXPANDUSLF intrinsic, 2-41 
Extended precision floating-point traps, 4-31 

Extents, 10~2 
Extra data segment, 8-2 

F 

FATHER intrinsic 
specifications, 2-43 
usage, 7-14 

Father process, 7-3 
FCARD intrinsic 

specifications, 2-44 
usage, 5-28 

FCHECK intrinsic 
specifications, 2-48 
usage, 10-69 

FCLOSE intrinsic 
specifications, 2-54 
usage, 10-38 

FCLOSE with magnetic tape files, 10-73 
FCONTROL intrinsic 

specifications, 2-57 
usage, 5-1, 10-79 

FDELETE intrinsic, 2-61 
specifications, 2-61 
usage, 10-9 

FDEVICEVONTROL intrinsic, 2-61a 
FERRMSG intrinsic, 2-62 

usage, 10-69 
FFILEINFO intrinsic 

usage, 10-68 
FGETINFO intrinsic 

specifications, 2-65 
usage, 10-66 

File accessing, 10-12, 10-17 
File characteristics, 10-2 
File control operations, 10-90 
File designators, 10-10 
File-device relationships, 10-7 
File domains, 10-7 
File error information, 10-68 
File information display, E-20 
File label, 10-8 
File management system 10-1 

JUL 1981 

File marks on magnetic tape, 10-7 2 
File numbers, 10-12 
Files 

I-3 

access information, 10-66 
accessing, 10-8 
back referencing 10-10 
block factor, 10-3 
blocks, 10-2 
block size, 10-4 
buffered, 2-63 
characteristics, 10-2 
closing, 10-39 
condition codes, 10-12 
control, 10-90 
declaring access-mode options, 10-91 
designators, 10-8 

device relationships, 10-7 
disc, 10-2 
domains, 10-7 
duplicative pairs, 10-92 
error-check procedure, 10-45 
error information, 10-68 
extents, 10-2 
file information display, 10-14 
file management system, 10-1 
fixed-length records, 10-3 
foreign disc facility, 10-32, 10-4 7, 10-49, 10-50, 10-51 
how to use, 10-17 
interactive pairs, 10-92 
label, 10-8 
locking and unlocking, 10-55 
logical records, 10-2 
magnetic tape, 10-69 
multiple access, 10-12, 10-13 
$NEWP ASS, 10-10 
non-sharables devices, 10-15 
no-wait I/O, 10-59, 10-60 
$NULL, 10-10 
numbers, 10-12 
$0LDP ASS, 10-11 

,,..ri.,,.., ;...... 1 (\_ '>7 
vp-c;.i.iu..1.6, ..L.v- ""'"'' 

permanent,10-14,10-40 
physical records, 10-2 
pointer, 10-91 
reading, 10-4 7, 10-49 
record formats, 10-3 
records, 10-2 
relative I/O, 10-6, 10-8 
renaming, 10-43 
sectors, 10-2 
shared, special considerations, 10-16 
spooling, 10-23 
$STDIN, 10-9 
$STDINX, 10-10 
$STD LIST, 10-10 
system defined, 10-9 
temporary, 10-7 
types, 10-8 
undefined-length records, 10-3 

I -



I 

unlocking, 10-55 
updating, 10-57 
user labels, 10-62 
user logging, 10-93 
using, 10-17 
variable-length records, 10-3 
writing, 10-49, 10-50 

Files on non-sharable devices, 10-50 
File system condition codes, 10-12 
File system errors, E-8 
File types, 10-8 
FINDJCW intrinsic 

specifications, 2-7 4 
usage, 4-47 

Fixed-length records, 10-3 
FLOCK intrinsic 

specifications, 2- 7 5 
usage, 10-55 

FLUSHLOG intrinsic, 2-76a 
FMTCALENDAR intrinsic 

specifications, 2-77 
usage, 4-45 

FMTCLOCK intrinsic 
specifications, 2-78 
usage, 4-45 

FMTDATE intrinsic 
specifications, 2-79 
usage, 4-45 

FOPEN intrinsic 
specifications, 2-80 
usage, 10-26 

Foptions 
bit summary, 2-49 
description, 2-58 

Foreign Disc Facility, 10-32, 10-37, 10-49, 10-50, 10-51 
Formal file designator, 10-8 
Formatting Calendar date and time, 4-45 
Formatting command parameters, 4-4 
FPOINT intrinsic 

specifications, 2-94 
usage, 10-9 

FREAD and FWRITE for $STDIN and $STDLIST, 10-35 
FREAD for magnetic tape files, 10-71 
FREAD intrinsic 

specifications, 2-95 
usage, 10-4 7 

FREADBACKW ARD intrinsic, 2-97 
FREADDIR intrinsic 

specifications, 2-99 
usage, 10-49 

FREADLABEL intrinsic 
specifications, 2-101 
usage, 10-63 

FREADSEEK intrinsic 
specifications, 2-102 
usage, 10-52 

FREEDSEG intrinsic 
specifications, 2-103 
rn;age, 8-15 

I-4 

Freeing local RIN's 6-9 
FREELOCRIN intrinsic 

specifications, 2-104 
usage, 6-9 

FRELATE intrinsic 
specifications, 2-105 
usage, 10-92 

FRENAME intrinsic 
specifications, 2-107 
usage, 10-43 

FSETMODE intrinsic 
specifications, 2-109 
usage, 10-91 

FSP ACE intrinsic 
specifications, 2-111 
usage, 10-89 

Functional return, 2-2 
FUNLOCK intrinsic 

specifications, 2-113 
usage, 10-56 

FUPDATE intrinsic 
specifications, 2-114 
usage, 10-58 

FWRITE and FREAD for $STD LIST and $STDIN, 10-35 
FWRITE for magnetic tape files, 10-71 
FWRITE intrinsic 

specifications, 2-115 
usage, 10-48 

FWRITEDIR intrinsic 
specifications, 2-120 
usage, 10-53 

FWRITELABEL intrinsic 
specifications, 2-122 
usage, 10-64 

G 

GENMESSAGE intrinsic 
specifications, 2-123 
usage, 4-50 

GET intrinsic, 2-126 
GETDSEG intrinsic 

specifications, 2-127 
usage, 8-6 

GET JCW intrinsic 
specifications, 2-129 
usage, 4-46 

GETLOCRIN intrinsic 
specifications, 2-130 
usage, 6-8 

GETORIGIN intrinsic 
specifications, 2-131 
usage, 7-14 

GETPRIORITY intrinsic 
specifications, 2-132 
usage, 7-13 

GETPRIVMODE intrinsic 
specifications, 2-134 
usage, 9-3 

JUL 1981 



GETPROCID intrinsic 
specifications, 2-135 
usage, 7-15 

GETPROCINFO intrinsic 
specifications, 2-136 
usage, 7-15 

:GETRIN command, 6-2 
GETUSERMODE intrinsic 

specifications, 2-138 
usage, 9-5 

Global multiaccess, for circular files, 3-10 
for mes.sage files, 3-3, 3-6 

Global RIN's, 6-2 

H 

HP 2680A Printer, 2-61a, 2-88a 
Hand-shaking arrangement, 6-1 
How to use files, 10 -1 7 
How user logging works, 10-94 
Hand-shaking arrangement, 6-1 
How to use files, 10~1 7 
How user logging works, 10-94 

Identifying Local RIN owners, 6-9 
INITUSLF intrinsic, 2-137 
Input echo facility, 5-11 
Input/output devices, 4-16 
Input/output files, 10-11 
Interactive file pairs, 10-92 
Inter-job level RIN's, 6-2 
Internal operations for file accessing, 10-17 
Interprocess Communication (IPC), 3-1 through 3-21 

additional features, 3-2 
examples, 3-12 
features of intrinsics, 3-5 
operation, 3-1 
using, 3-3 

Inter-process level RIN's, 6-6 
Inter-record gap, 10-76 
Intrinsic errors, 10-6 
Intrinsics 

• ,-,,-,pnm o A 
.t\.vv.c.r .i , "--<± 

ACTIVATE, 2-5, 8-10 
ADJUSTUSLF, 2-7 
ALTDSEG, 2Q9, 8=16 
ARITRAP, 2-11, 4-30 
ASCII, 2 -12, 4 -10 
BEGINLOG, 2-13a 
BINARY, 2-14, 4-13 
CALENDAR, 2-15, 4-44 
calling from other languages, 1-10 
calling from SPL, 1-2 
CAUSEBREAK, 2-16, 4-19 
CLEANUSL, 2-1 7 
CLOCK, 2-18, 4-44 
CLOSELOG, 2-19 

JUL 1981 I-5 

COMMAND, 2-20,4-9 
CREATE, 2-21, 7-3 
CREATEPROCESS, 2-26 
CTRANSLATE, 2-28, 4-13 
DASCH, 2-30, 4-13 
DATELINE, 2-32 
DBINARY, 2-33, 4-13 
DEBUG, 2-34 
declaration, 1-2 
definition, 1-1 
DLSIZE, 2-35, 4-22 
DMOVIN, 2-37, 8-15 
DMOVOUT, 2-39, 8-15 
error definitions, 1-10 
error messages, E-1 
END LOG, 2-40a 
EXPANDUSLF, 2-41 
FATHER, 2-43, 7-14 
FCARD, 2-43, 5-28 
FCHECK, 2-44, 2-48, 10-70 

FCLOSE, 2-54, 10-73 
FCONTROL, 2-57, 5-1, 10-79 
FDELETE, 2-61, 10-9 
FDEVICECONTROL, 2-61a 
FERRMSG, 2-62, 10-69 
FFILEINFO, 2-63, 10-68 
FGETINFO, 2-65, 10-66 
FINDJCW, 2-74, 4-47 
FLOCK, 2-75, 10-55 
FLUSHLOG, 2-76a 
FMTCALENDAR, 2-77, 4-45 
FMTCLOCK, 2-78, 4-45 
FMTDATE, 2-79, 4-45 
FOPEN, 2-80, 10-25 

for Interprocess Communication, 3-5 
for Circular Files, 3-10 

FPOINT, 2-94, 10-9 
FREAD, 2-95, 10-4 7 
FREADBACKW ARD, 2-97 
FREADDIR, 2-99, 10-49 
FREADLABEL, 2~101, 10~63 
FREADSEEK, 2-103, 10-52 
FREEDSEG, 2-103, 8-15 
FREELOCRIN, 2-104, 6-9 
FRELATE, 2-105, 10-92 
FRENAME, 2-107, 10-43 
FSETMODE, 2-109, 10-91 
FSPACE, 2-111, 10-89 
FUNLOCK, 2-113, 10-56 
FUPDATE, 2-114, 10-58 
FWRITE, 2-115, 10-48 
FWRITEDIR, 2-120, 10-53 
FWRITELABEL, 2-122, 10-64 
GENMESSAGE, 2-123, 4-50 
GET, 2-126 
GETDSEG, 2-127, 8-6 
GETJCW, 2..-129, 4-46 
GETLOCRIN, 2-130, 6-8 
GETORIGIN, 2-131, 7-14 

I 
I 

i 

I 



I 

I 

GETPRIORITY, 2-132, 7-13 
GETPRIVMODE, 2-134, 9-3 
GETPROCID, 2-135, 7-15 
GETPROCINFO, 2-136, 7-15 
GETUSERMODE, 2-138, 9-5 
INITUSLF, 2-125 
IODONTWAIT, 2-140, 10-62 
IOWAIT, 2-142, 10-59 
KILL, 2-144, 7-8 
LOADPROC, 2-145, 4-2 
LOCKGLORIN, 2-146, 6-3 
LOCKLOCRIN, 2-148, 6-8 
LOCRINOWNER, 2-150, 6-9 
LOGSTATUS, 2-150a 
MAIL, 2-151, 7-10 
MYCOMMAND, 2-153, 4-4 
OPENLOG, 2-156, 3-94 
PAUSE, 2-157, 4-19 
PCHECK, 2-158 
PCLOSE, 2-159 
PCONTROL, 2-160 
POPEN, 2-161 
PREAD, 2-162 

PRINT, 2-163, 4-16 
PRINTFILEINFO, 2-164, 10-45, 10-47 
PRINTOP, 2-165, 4-18 
PRINTOPREPL Y, 2-166, 4-18 
PROCTWIE, 2-168, 4-44 
PTAPE, 2-169, 5-27 
purposes, 1-1 
PUTJCW, 2-170, 4-47 
PWRITE, 2-1 71 
QUIT, 2-172, 4-20 
QUITPROG, 2-173, 4-22 
READ, 2-174, 4-16 
READX, 2-175, 4-16 
RECEIVEMAIL, 2-176, 7-12 
REJECT, 2-178 
RESETCONTROL, 2-1 79, 4-40 
RESETDUMP, 2-180 
SEARCH, 2-181, 4-3 
SENDMAIL, 2-182, 7-11 
SETDUMP, 2-183 
SETJCW, 2-185, 4-46 
STACKDUMP, 2-186 
summary, 1-3 
SUSPEND, 2-188, 7-8 
SWITCHDB, 2-189, 9-5 
TERMINATE, 2-190, 4-20 
TIMER, 2-191, 4-42 
types, 2-2 
UNLOADPROC, 2-192, 4-3 
UNLOCKGLORIN, 2-193, 6-3 
UNLOCKLOCRIN, 2-194, 6-8 
WHO, 2-195, 4-10 
WRITELOG, 2-198, 10-94 
XARITRAP, 2-199, 4-32 
XCONTRAP, 2-201, 4-41 
XLIBTRAP, 2-202, 4-35 

I-6 

XSYSTRAP, 2-203, 4-36 
ZSIZE, 2-204, 4-27 

IODONTW AIT intrinsic 
specification, 2-140 
usage, 10-62 

IOWAIT intrinsic 
specifications, 2-142 
usage, 10-59 

IPC - see Interprocess Communication 
Issuing FREAD and FWRITE calls for 

$STD IN and $STDLIST, 10-35 

J 

Job control words, 4-4 7 
Job main process, 7-1 
Job or session file domains, 10-7 
Job/session input/output devices, 4-16 
Job temporary file directory, 10-20 
Julian calendar, 8-8 

K 

Keys, terminals, 5-9 
KILL intrinsic 

specifications, 2-144 
usage, 7-8 

L 

Labeled magnetic tape file 
density selection, 10-89 
opening, 10-81 
reading, 10-87 
writing, 10-84 

Library procedures, 4-2 
Library traps, 4-34 
Linear subqueue, 9-5 
Line deletion echo suppression, 5-23 
Line printer, 5-3 
Line printer and terminal carriage-control codes, 5-6 
Line-termination characters for terminal input, 5-20 
Loader errors, E-12 
Loading library procedures, 4-2 
LOADPROC intrinsic 

specifications, 2-145 
usage, 4-2 

Local RIN's, 6-6 
Locking and unlocking files, 10-56 
Locking and unlocking global RIN's, 6-3 
Locking and unlocking local RIN's, 6-8 
LOCKGLORIN errors, E-13 
LOCKGLORIN intrinsic 

specifications, 2-146 
usage, 6-3 

LOCKLOCRIN intrinsic 
specifications, 2-148 
usage, 6-8 

LOCRINOWNER intrinsic 

JUL 1981 



specifications, 2-151 
usage, 6-9 

Logging, user, 10-93 
BEGINLOG, 2-13a 
ENDLOG 2-40a 
FLUSHLOG, 2-76a 
LOGSTATUS, 2-150a 
OPENLOG, 2-156 
CLOSELOG, 2-19 
WRITELOG, 2-198 

Logical index number, 8-2 
Logical record pointer, 10-91 
Logical records, 10-2 
LOGSTATUS intrinsic, 2-150a 

M 

Magnetic tape considerations for files, 10-69 
Magnetic tape labels, D-1 
Magnetic tape unit, 5-3 
Mailbox, 7-10 
MAIL intrinstic 

specifications, 2-151 
usage, 7-10 

MAKECAT program, 4-50 
Master queue, 9-5 
Message Files, 3-1 through 3-21 
Message system 4-48 

message catalog, 4-48 
MAKECAT program) 4-49 

Messages 
operator, 10-18 
run-time, E-2 
system, 10-18 
user, 10-18 

Moving the DB pointer, 9-5 
Multi-access, 10-12 
Multiple access of files, 10-13 
Multiple RIN optional capability, 6-1 
MYCOMMAND errors, E-13 
MYCOMMAND intrinsic 

specifications, 2-153 
usage, 4-4 

N 

New files, 10-10 
$NEWPASS, 10-10 
Nondestructive read, for message files, 3-3, 3-8 
Non-sharable device access, 10-7 
Non-sharavle devices, 10-15 
No-wait I/O, 10-62 
$NULL, 10-10 

0 

Obtaining file access information, 10-66 
Obtaining file error information, 10-68 
Obtaining process run time, 4-44 

JUL 1981 

Obtaining system timer information, 4-42 
Obtaining terminal output speed, 5-26 
Obtaining terminal type information, 5-25 
Obtaining the calendar data, 4-44 
Obtaining the current time, 4-44 
Old files, 10-11 
$0LDP ASS, 10-11 
Opening a file on a device other than disc, 10-34 
Opening a new disc file, 10-38 
Opening an old disc file, 10-31 
Opening files, 10-27 
Opening $STDIN, 10-36 
Opening $STDLIST, 10-36 
OPENLOG intrinsic 

specifications, 2-156 
usage, 10-94 

Operator messages, E-18 
Operator's Console, 4-18 
Operator intervention, 

tape labels, 10 -7 5a 
Optical Mark Reader, 5-28 
Optional capabilities 

data segment management, 8-1 
definitions, 1-12 
multiple resource, 6-1 
privileged mode, 7 -1 
process handling, 7-1 

Optional parameters, 1-7 
Option variable, 1-7, 2-1 
Organization of user processes, 7-1 

p 

Paper tape punch, 5-3 
Paper tape reader, 5-1 
Paper tapes, 5-21 
Parameters 

definition, 1-7 
optional, 1-7 
option variable, 1-7 
passing by value, 1-7 
positional, 1-7 
required, 1-8 
using numeric values, 1-8 

Parity checking, 5-14 
Parity, setting, 5-23 
Passing parameters, 1-7 
PAUSE intrinsic 

specifications, 2-157 
usage, 4-19 

Permanent files, 10-14, 10-40 
Permanently privileged programs, 9-1 
PCHECK intrinsic, 2-158 
PCLOSE intrinsic, 2-159 
PCONTROL intrinsic, 2-160 
Physical records, 10-2 
PIN, 7-1 
POPEN intrinsic, 2-161 
Positional parameters, 1-7 

I-7 

I 



I 

I 

PREAD intrinsic, 2-162 
Pre-defined files, 10-10 
PRINT intrinsic 

specifications, 2-163 
usage, 4-16 

PRINTFILEINFO intrinsic 
specifications, 2-166 
usage, 10-45, 10-47 

Printing reader/punch, 5-3 
PRINTOP intrinsic 

specifications, 2-165 
usage, 4-18 

PRINTOPREPL Y intrinsic 
specifications, 2-166 
usage,4-18 

Private data area, 7-1 
Private volumes errors, E-14 
Private volumes subsystem, 10-17 
Privileged programs,9-1 
Privileged mode capability, 9-1 
Procedures, 1-1 
Procedure type, 2-2 
Process activation, 7-14 
Process break, 4-19 
Process control block extension, 10-17 
Processes 

aborting, 4-20 
activating, 7-3 
avoiding deadlocks, 7-13 
breaking, 4-19 
creating, 7-3 
deleting, 7-8 
description, 7-1 
father, 7-3 
identification number, 7-1 
inter-process communication, 4-44 
mail, 7-10 
organization, 7-2 
priority, 7 -15 
process-handling capability, 7-1 
rescheduling, 7-13 
run time, 4-44 
scheduling, 9-5 
son, 7-3 
state, 7-15 
substate, 7 -2 
suspending, 4-19, 7-8 
terminating, 4-20 

Process-handling capability, 7-1 
Process identification number 7-1 
Process priorities, 7 -15 ' 
Process run time, 4-44 
Process states, 7-15 
Process substates, 7-2 
Process-to-process communication, 7-2 
PROCINFO intrinsic 

specifications, 2-167a 
PROCTIME intrinsic 

specifications, 2-168 
usage, 4-44 

Program errors, E-5 1-8 

Program label, 7-1 
Programmatic execution of MPE commands 4-9 
PT APE intrinsic ' 

specifications, 2-169 
usage, 5-27 

PUTJCW intrinsic 
specifications, 2-170 
usage, 4-47 

PWRITE intrinsic, 2-1 71 

Q 

Queues, 9-5 
QUIT intrinsic 

specifications, 2-172 
usage, 4-20 

QUITPROG intrinsic 
specifications, 2-173 
usage, 4-22 

R 

Reading a file in direct-access mode, 10 -49 
Reading a file in sequential order, 10-47 
Reading a user-defined file label 

on a labeled tape file, 10-89 

Reading input from $STDIN and $STDINX, 4-16 
Reading magnetic tape files, 3-70 
Reading paper tapes without X-OFF control, 5-27 
Reading the terminal input timer, 5-19 
Reading user file labels, 10-62 

READ intrinsic 
specifications, 2-174 
usage, 4-16 

READX intrinsic 
specifications, 2-175 
usage, 4-16 

Receiving mail, 7-12 
RECEIVEMAIL intrinsic 

specifications, 2-176 
usage, 7-12 

Record formats, 10-3 
Records, 10-2 
REJECT intrinsic, 2-178 
Relative 1/0, 10-8 

Block format, 10-3 
FDELETE, 2-61 
FFILEINFO, 2-63 

Releasing global RIN's, 6-3 
REJECT intrinsic, 2-178 
Releasing global RIN's, 6-3 
Renaming a file, 10-44 
Requesting a process break, 4-17 
Requesting a reply from the Operator's Console, 4-18 
Required parameters, 1-8 
Rescheduling process, 7-13 
RESETCONTROL intrinsic 

specifications, 2-1 79 
usage, 4-40 

DEC 1981 



I 

RESETDUMP intrinsic, 2-180 
Resetting the logical record pointer, 10-91 
Resource identification number, 6-1 
Resource management, 6-1 
Resources, 6-1 
Returns, intrinsic, 2-2 
RIN, 6-1 
Run-time errors, E-7 
Run-time messages, E-2 

s 
Scheduling processes, 9-5 
Searching arrays, 4-3 
SEARCH intrinsic 

specifications, 2-181 
usage, 4-3 

Sectors, 10-2 
Segmenter driver, 7-6 
Segmenter subsystem, 7-6 
Segments 

activating, 8-10 
changing size of extra data segment, 8-15 
code segments, 8-1 
creating an extra data segment, 8-2 
data segment management capability, 8-1 
data segments, 8-1 
deleting, 8-15 
description, 8-1 
logical index number, 8-2 
stack segment, 8-1 

transferring data from extra data segment to stack, 8-15 
transferring data from stack to extra data segment, 8-15 

Sending mail, 7-11 
SENDMAIL intrinsic 

specifications, 2-182 
usage, 7-11 

Sequential access file reading, 10-4 7 
Sequential access file writing, 10-49 
Session main process, 7-1 
SETDW'v'.'IP intrinsic, 2~184 
SETJCW intrinsic 

specifications, 2-185 
usage, 4-46 

Setting parity, 5-23 
Setting terminal type, 5-25 
Setting unedited terminal mode, 5-26 
Shared files, 10-16 
Son process, 7 -3 
Source of file characteristics, 10-20 
Source of process activation, 7-14 
Spacing on disc or tape files, 10-89 
Special terminal keys, 5-8 
SPL 

caning intrinsics from, 1-2 
description, 1-1 

Split stack, 1-11, 2-3 
Spooling, 10-23 

JUL 1981 I-9 

Stack 
changing size, 4-22 
sizes, 4-22 
split stack, 1-11, 2-3 

STACKDUMP intrinsic, 2-170 
Stack segment, 8-1 
Standard traps, 4-31 
$STDIN, 10-9 
$STDINX, 10-10 
$STDLIST, 10-10 
Subqueues, 9-5 
Substates, 7-2 
Subsystem break function, 5-14 
Suggested Log File Uses, 3-98 
SUSPEND errors, E-13 
Suspending processes, 7 -8 
SUSPEND intrinsic 

specifications, 2-188 
usage, 7-8 

Suspending the calling process,4-19 
SWITCHDB intrinsic 

specifications, 2-189 
usage, 9-5 

System break function, 5-13 
System defined files, 10-9 
System file domain, 10-7 
System messages, 10-18, 10-19 
System procedures, 1-1 
Systems Programming Language 

calling intrinsics from, 1-2 
description, 1-1 

System timer, 4-42 

System traps, 4-35 

T 

Tape density, determining, 10-89b 
Tape label, writing, 10-84 
Tape labels, MPE, 10-75, D-1 
Tape-mode option, 5-15 
Temporarily privileged programs, 9-2 
Temporary files, 10-7 
Terminal and line printer carriage-control codes, 5-6 
Terminal input timer, 5-16 
Terminals, 5-8, 5-9 
Terminal speed, 5-10 
Terminating a process, 4-20 
TERMINATE intrinsic 

specifications, 2-190 
usage,4-20 

Testing mailbox status, 7-10 
Time and data intrinsics, 4-42 
TIMER intrinsic 

specifications, 2-191 
usage, 4-42 

Time outs, for IPC, 3-3, 3-8 
Transferring data from an extra data segment 

to the stack, 8-15 



I 

I 

Transferring data from the stack to an 
extra data segment, 8-15 

Translating characters from EBCDIC to ASCII 
and ASCII to EBCDIC, 4-13 

Transmitting program input/output from job/session 
input/output devices, 4-16 

Traps 
arithmetic, 4-30 
commercial instruction, 4-32 
Control-Y, 4-38 
enabling and disabling, 4-29 
extended precision floating-point, 4-31 
library, 4-34 
standard, 4-31 
system, 4-35 

Types of files, 10-8 
Types of procedures, 2-2 

u 

Undefined length records, 10-3 
Unlabeled magnetic tape file, 10-77 

density selection, 10-89 
Unloading library procedures, 4-2 
UNLOADPROC intrinsic 

specifications, 2-192 
usage,4-3 

UNLOCKGLORIN intrinsic 
specifications, 2-193 
usage, 6-3 

Unlocking files, 10-56 
Unlocking global RIN's, 6-3 
Unlocking lobal RIN's, 6-8 
UNLOCKLOCRIN intrinsic 

specifications, 2-194 
usage, 6-8 

Updating a file, 10-58 
Updating magnetic tape files, 10-75 
User block transfers, 5-22 
User-defined job control words, 4-4 7 
User file labels, 10-62 
User Logging Facility, 10-94 
User messages, E-18 
User pre-defined files, 10-10 
User processes, 7 -2 
User's access mode, 4-10 
User's attributes, 4-10 
User's stack segment, 8-1 
Using disc space efficiently, 10-4 
Using FFILEINFO, 10-68 

I-lO 

Using FGETINFO, 10-66 
Using numeric values as parameters, 1-8 
Using the FCARD intrinsic 

to operate the HP 7260A Optical Mark Reader, 5-28 
Utility functions of intrinsics, 4-1 

v 
Variable-length records, 10-3 
Virtual device directory, 10-15 
WHO intrinsic 

specifications, 2-195 
usage, 4-10 

Writer ID's, 3-3, 3-8 
Writing a file system error-check procedure, 10-46 
Writing a tape label, 10-84 
Writing on a magnetic tape file, 10-88 
Writing output to $STDLIST, 4-18 
Writing output to the Operator's Console, 4-18 
Writing records into a file in direct-access mode, 10-51 
Writing records into a file in sequential order, 10-49 
Writing to magnetic tape files, 10-77 
Writing user file labels, 10-62 
WRITELOG intrinsic 

specifications, 2-198 
usage, 10-94 

x 
XARITRAP intrinsic 

specifications, 2-199 
usage,4-32 

XCONTRAP intrinsic 
specifications, 2-201 
usage, 4-41 

XLIBTRAP intrinsic 
specifications, 2-202 
usage,4-35 

X-OFF control, 5-21 
XSYSTRAP intrinsic 

specifications, 2-203 
usage, 4-36 

z 
ZSIZE intrinsic 

specifications, 2-204 
usage, 4-27 

Z to DB area, 4-27 

JUL 1981 



READER COMMENT SHEET 

HP 3000 Computer System 
MPE Intrinsic 

Reference Manual 

30000-90010 December 1981 

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications. 

Please use additional pages if"necessary. 

Is this manual technically accurate? 

Are the concepts and wording easy to understand? 

Is the format of this manual convenient in size, 
arrangement, and readability? 

Comments: 

FROM: 

Name 

Company 

Address 

Yes 

Yes 

Yes 

D No D (If no, explain under Comments, below.) 

n No D (If no, explain under Comments, below.) u 

D No D (If no, explain or suggest improvements 
under Comments, below.) 

DATE _____ _ 



FOLD FOLD 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------· 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 1070 

POSTAGE WILL BE PAID BY ADDRESSEE 

Hewlett-Packard Company 
Computer Systems Division 
MPE Documentation 
19447 Pruneridge Avenue 
Cupertino, California 95014 

CUPERTINO, CALIFORNIA 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 

·----------------------------- ----------------------------------... ------ ... --- ----------------------------- ... ------------------------------------------------------------------------. ----- ... -.... -------..... -...... 
FOLD FOLD 



Part No. 30000-90010 
Printed in U.S.A. 1/81 
3MPE.320.30000-90010 

r//09 HEWLETT 
~~PACKARD 


	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	02-001
	02-002
	02-003
	02-004
	02-005
	02-006
	02-007
	02-008
	02-009
	02-010
	02-011
	02-012
	02-013a
	02-014
	02-015
	02-016
	02-017
	02-018
	02-019
	02-020
	02-021
	02-022
	02-023
	02-024
	02-025
	02-026
	02-027
	02-028
	02-029
	02-030
	02-031
	02-032
	02-033
	02-034
	02-035
	02-036
	02-037
	02-038
	02-039
	02-040a
	02-040
	02-041
	02-042
	02-043
	02-044
	02-045
	02-046
	02-047
	02-048
	02-049
	02-050
	02-051
	02-052
	02-053
	02-054
	02-055
	02-056
	02-057
	02-058
	02-059
	02-060
	02-061a
	02-061b
	02-061c
	02-061d
	02-061e
	02-061f
	02-061g
	02-061h
	02-061i
	02-061
	02-062
	02-063
	02-064a
	02-064
	02-065
	02-066
	02-067
	02-068
	02-069
	02-070
	02-071
	02-072
	02-073
	02-074
	02-075
	02-076a
	02-076
	02-077
	02-078
	02-079
	02-080
	02-081
	02-082
	02-083
	02-084
	02-085
	02-086
	02-087
	02-088a
	02-088b
	02-088
	02-089
	02-090
	02-091
	02-092
	02-093
	02-094
	02-095
	02-096
	02-097
	02-098
	02-099
	02-100
	02-101
	02-102
	02-103
	02-104
	02-105
	02-106
	02-107
	02-108
	02-109
	02-110
	02-111
	02-112
	02-113
	02-114
	02-115
	02-116
	02-117
	02-118
	02-119
	02-120
	02-121
	02-122
	02-123
	02-124
	02-125
	02-126
	02-127
	02-128
	02-129
	02-130
	02-131
	02-132
	02-133
	02-134
	02-135
	02-136
	02-137
	02-138
	02-139
	02-140
	02-141
	02-142
	02-143
	02-144a
	02-144b
	02-144c
	02-144d
	02-144
	02-145
	02-146
	02-147
	02-148
	02-149
	02-150a
	02-150
	02-151
	02-152
	02-153
	02-154
	02-155
	02-156
	02-157
	02-158
	02-159
	02-160
	02-161
	02-162
	02-163
	02-164
	02-165
	02-166
	02-167
	02-168
	02-169
	02-170
	02-171
	02-172
	02-173
	02-174
	02-175
	02-176
	02-177
	02-178
	02-179
	02-180
	02-181
	02-182
	02-183
	02-184
	02-185
	02-186
	02-187
	02-188
	02-189
	02-190
	02-191
	02-192
	02-193
	02-194
	02-195
	02-196
	02-197
	02-198
	02-199
	02-200
	02-201
	02-202
	02-203
	02-204
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	04-01
	04-02
	04-03a
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	10-39a
	10-39
	10-40
	10-41
	10-42
	10-43
	10-44
	10-45
	10-46
	10-47
	10-48
	10-49
	10-50
	10-51
	10-52
	10-53
	10-54
	10-55
	10-56
	10-57
	10-58
	10-59
	10-60
	10-61
	10-62
	10-63
	10-64
	10-65
	10-66
	10-67
	10-68
	10-69
	10-70
	10-71
	10-72
	10-73
	10-74
	10-75a
	10-75
	10-76
	10-77
	10-78
	10-79
	10-80
	10-81
	10-82
	10-83
	10-84
	10-85
	10-86
	10-87
	10-88
	10-89a
	10-89b
	10-89
	10-90
	10-91
	10-92
	10-93
	10-94
	10-95
	10-96
	10-97
	10-98
	A-01
	B-01
	B-02
	C-01
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	E-19
	E-20
	E-21
	E-22
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	replyA
	replyB
	xBack

