
liP 3000 Computer Systems

MPE Commands
reference manual

r//fl'I HEWLETT
~~PACKARD

Part No. 30000-90009
Product No. 32002B

HP 3 0 0 0 Computer Systems

M PE Commands
Reference Manual

Ff/~ HEWLETT
~~PACKARD

19447 PRUNERIDGE AVE., CUPERTINO, CALIFORNIA, 95014

Printed in U.S.A. 1/81

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright @1981 by HEWLETT-PACKARD COMPANY

ii

PREFACE

This manual documents the commands which control the Multiprogramming Executive Operating
System on the HP 3000.

This fourth edition specifies commands and describes the MPE Command Interpreter as compatible
with the MPE IV operating system. Readers familiar with previous editions will notice that the
manual has undergone internal revisions which result in a more reference type document. Because of
this, some of the information you may be used to finding in this manual has been deleted.

It is assumed that you know how to log on to your terminal and have some familiarity with the system.
If you need further help or information, refer to the ADDITIONAL DISCUSSION section of each
command where additional references may be listed.

As a general guideline, the following supportive documentation will provide any in-depth discussions
you may require:

• MPE INTRINSICS REFERENCE MANUAL

• USING FILES

• CONSOLE OPERATOR'S GUIDE

(30000-90010)

(30000-90102)

(30000-90013 & 30070-90025)

• SYSTEM MANAGER'SYSTEM SUPERVISOR MANUAL (30000-90014)

iii

INTRODUCTORY
LEVEL

STANDARD USER
LEVEL

ADMINISTRATIVE
LEVEL

SUMMARY LEVEL

CONCEPTS

General
Information

Manual
30000-90008

MANUAL PLAN

ELEMENTARY ELEMENTARY
USAGE USAGE

Using Using
the Files

HP 3000
03000-90121

30000-90102

UTILITY UTILITY

Segmenter System
Reference Utilities

Manual Manual

30000-90011 30000-90044

Intrinsics
Reference

Manual

30000-90010

PROGRAMMATIC
USAGE

Debug/Stack Dump
Reference

Manual

30000-90012

UTILITY

Error
Messages and

Recovery Manual

30000-90015

DIAGNOSTIC
AID

SYSTEM SYSTEM MODIFICATION
MONITORING ACCOUNT MANAGING

INDEX

Index to MPE
Reference
Documents

30000-90045

r-~~ ~~~ -~~--~~-

Series 11/111
Console

Operator's
Guide

30000-90013

Series 33
Console

Operator's
Guide

30070-90025

Software
Pocket
Guide

30000-90049

SYNTAX AND ERROR MESSAGES

iv

System
Manager/Supervisor

Manual

30000-90014

NOTATION

[]

{ }

italics

underlining

superscript C

return

linefeed

CONVENTIONS USED IN THIS MANUAL I

DESCRIPTION

An element inside brackets is optional. Several elements stacked inside a pair of brackets means
the user may select any one or none of these elements.

Example: [~] user may select A or B or neither

When several elements are stacked within braces the user must select one of these elements.

Example: { i} user must select A or B or C.

Lowercase italics denote a parameter which must be replaced by a user-supplied variable.

Example: CALL name

Dialogue: Where it is necessary to distinguish user input from computer output, the input is
underlined.

Example: NEW NAME? ALPHAl

Control characters are indicated by a superscript C

Example: ye

return in italics indicates a carriage return

linefeed in italics indicates a linefeed

A horizontal ellipsis indicates that a previous bracketed element may be repeated, or that elements
have been omitted.

v

CONTENTS

Section I Page :FORTRAN 2-73
INTRODUCTION TO COMMANDS :FREERIN 2-75
How to Use This Manual 1-1 :GETLOG 2-76
How to Enter Commands 1-1 :GETRIN .. 2-78
Command Elements 1-2 :IIELLO ... 2-80

Positional Parameters 1-3 :IIELP .. 2-85
:Keyword Parameters 1-3 :IF .. 2-89
Continuation Characters 1-4 :IML .. 2-91

Command Errors 1-4 :JOB .. 2-93
Sequence Numbers in MPE Commands 1-5 :LISTF .. 2-97
Executing Command Log On 1-5 :LISTLOG 2-104
Executing Commands Programmatically 1-5 :LISTVS 2-105
Interrupting Command Execution 1-6 :MOUNT 2-108
Interrupting Non-Program Commands 1-6 :MRJE ... 2-110
Interrupting Program Commands 1-6 :PREP ... 2-111
Aborting a Program 1-7 :PREPRUN 2-114
Back Referencing 1-9 :Pl'APE .. 2-117
Reference Note for Command Definitions 1-10 :PURGE 2-119

:RECALL 2-121
Section II Page :REDO ... 2-122
COMMAND SPECIFICATIONS :RELEASE 2-124
:() COMMAND LOG ON 2-4 :RELLOG 2-125
:ABORT .. 2-8 :REMOTE 2-126
: ALT LOG .. 2-9 :REMOTE HELLO 2-129
:ALTSEC .. 2-10 :RENAME 2-132
:APL .. 2-12 :REPORT 2-135
:ASSOCIATE 2-13 :RESET .. 2-138
:BASIC ... 2-14 :RESETDUMP 2-139
:BASICGO 2-16 :RESTORE 2-140
:BASICOMP 2-17 :RESUME 2-144
:BASICPREP 2-19 :RJE ... 2-146
:BUILD ... 2-21 :RPG .. 2-148
:BYE ... 2-26 :RPGGO 2-150
:COBOL ... 2-27 :RPGPREP 2-152
:COBOLGO 2-29 :RUN .. 2-155
:COBOLPREP 2-31 :SA VE ... 2-159
:COMMENT 2-33 :SECURE 2-161
:CONSOLE 2-34 :SEGMENTER 2-162
:CONTINUE 2-35 :SETCATALOG 2-164
:DATA .. 2-36 :SETDUMP 2-166
:DEBUG .. 2-39 :SETJCW 2-167
:DISASSOCIATE 2-40 :SETMSG 2-169
:DISMOUNT 2-41 :SHOWALLOW 2-170
:DS COPY 2-42 :SHOWCATALOG 2-171
:DSLINE .. 2-44 :SHOWDEV 2-172
:DSTAT ... 2-47 :SHOWIN 2-175
:EDITOR .. 2-48 :SHOWJCW 2-179
:ELSE .. 2-50 :SHOWJOB 2-180
:ENDIF ... 2-51 :SHOWLOGSTATUS 2-184
:EOD ... 2-52 :SHOWME 2-185
:EOF .. 2-55 :SHOWOUT 2-187
:EOJ .. 2-56 :SHOWTIME 2-192
:FCOPY ... 2-57 :SPEED .. 2-193
:FILE ... 2-58 :SPL ... 2-195
:FORTGO 2-69 :SPLGO .. 2-197
:FORTPREP 2-71 :SPLPREP 2-199

vi

:STORE .. 2-201
:STREAM 2-205
:TELL ... 2-209
:TELLOP 2-211
:VSUSER 2-212

Section III Page
USER DEFINED COMMAND
Syntax of User-Defined Commands 3-1

Header .. 3-1
Body .. 3-2

Using UDC's 3-2
Options .. 3-5
Using the :SETCATALOG Command 3-9
Building and Modifying a UDC File

Using the Editor 3-10

Title Page

Code-sharing and Data Privacy C-2
Code Segment and Associated Registers C-4
Data (Stack) Segment and Associated Registers C-5

Title Page

Non-Program Commands 1-8
Program Commands (All breakable) 1-8
Functional Lists of Commands 2-2

CONTENTS (continued)

Using the :SHOWCATALOG Command 3-12
Nesting User-Defined Commands 3-12
Errors in User-Defined Commands 3-13

Appendix A Page
TERMINALS SUPPORTED BY MPE A-1

APPENDIX B Page
SUBSYSTEM FORMAL FILE DESIGNATORS . B-1

APPENDIX C Page
DETAILS OF PROGRAM EXECUTION C-1

INDEX ... I-1

ILLUSTRATIONS

Title Page

Stack Operation C-9
Stack Operation Example C-10

TABLES

Title Page

End-of-File Indicators 2-53
Data Areas in Stack Segment C-6

vii/viii

INTRODUCTION TO COMMANDS

MPE commands allow you to initiate, control, and terminate the processing of programs and to request
various other system operations. You generally use them for functions external to the source-language
programs that you write, although many of these functions may be necessary to support those
programs. For example, you use commands to:

• Initiate an interactive session (:HELLO command) or batch job (:JOB command).

• Display status information about sessions and jobs in the system (:SHOW JOB).

• Create, save, and delete files (:BUILD, :SA VE, and :PURGE, respectively); specify and list their
characteristics (:FILE and :LISTF); dump them offline and subsequently restore them to the
system (:STORE and :RESTORE); and specify security provisions for them (:ALTSEC, :RELEASE,
and :SECURE).

• Compile programs (:FORTRAN, :COBOL, :RPG, :SPL), prepare those programs (:PREP), and
execute them (:RUN).

• Determine the status of devices (:SHOWDEV and :DST AT).

• Determine the status of devicefiles, which are disc files originating on or destined for non-sharable
devices (:SHOWIN and :SHOWOUT).

• Communicate with other users (:TELL) and with the Console Operator (:TELLOP).

• Define your own commands (:SETCATALOG).

• Access private disc volumes (:MOUNT and :DISMOUNT).

• Obtain assistance in using the Command Interpreter (:HELP).

Many other commands and functions are available as well; complete specifications for all of the
commands appear in Section II.

HOW TO USE THIS MANUAL

The reference specifications, appearing in Section II, primarily cover the rules for entering each
command. Specifically, they show the command syntax and format; define the parameters and discuss
constraints upon them and default values for them; provide an overview of the operation requested by
the command; and present examples illustrating proper command entries. Parameter definitions
common to more than one command are repeated for each applicable command, to reduce the amount
of cross referencing you must do when looking up a definition.

ENTERING COMMANDS

You can enter commands through any standard input device, typically a terminal (for sessions) or a
card reader (for jobs). Each command is accepted by the MPE Command Interpreter, which passes it to
the appropriate system procedure for execution. Following this execution, control returns to the
Command Interpreter, which is now ready for another command.

1-1

COMMAND ELEMENTS

Each MPE command consists of:

• A colon (required in all cases as an MPE command identifier).

• A command name (required in all cases).

• A parameter list (used in most cases).

A typical command including all three elements appears as follows:

Colon Parameter list

\RUN PROG,~NTRYX

"" Command

The colon identifies a statement as an MPE command. In an interactive session, MPE prints the colon
on the terminal whenever it is ready to accept a command; you respond by entering the remainder of
the command after the colon. In a batch job, however, you must enter the colon, placing it in column 1
of the source card (or card image) on which the command is to appear.

The command name, which you enter immediately after the colon, requests a specific operation. MPE
prohibits embedded blanks within the name, and rejects the command if they appear. MPE interprets
the next non-alphanumeric character encountered as the end of the command name; typically this
character is a blank. Blanks also may appear between the colon and the command name.

The parameter list contains one or more parameters that specify options for the command. It is re
quired in some commands, but is optional or prohibited in others. Parameter lists can include position
al parameters and/or keyword parameter groups (defined below), separated from each other by
delimiters such as commas, semicolons, equal signs, or other punctuation marks.

Normally, you must separate the parameter list from the command name by one or more blanks.
However, when you omit the first optional parameter in a positional list, you can begin the list,
starting with a comma or other delimiter that normally follows the first parameter, immediately
after the command name. The comma in place of blanks serves as a delimiter, as noted under
Positional Parameters, below. Within the parameter list, any delimiter can be surrounded by any
number of blanks, permitting a free and flexible command format.

MPE permits both decimal and octal numbers as command parameters. You distinguish between the
two by preceding the octal numbers with a percent sign (%).

The end of each command is indicated by the end of the record on which it appears - for example, a
carriage return for terminal input or the end of the card containing the command for card input. But if
the last non-blank character of the record is a continuation character, the command is continued onto
the next record.

NOTE

If you are running programs in batch job mode, bear in mind
that MPE scans all 80 columns on each card image, and thus
no characters are ignored.

1-2

POSITIONAL PARAMETERS

With positional parameters, the meaning of a parameter depends upon its position in the parameter
list. For example, in the :FORTRAN command, issued to compile a FORTRAN program, the param
eter list specifies the input file containing the source program, the output file to which the object
program is written, and the output file to which the source listing is transmitted, always in that order.
In the following :FORTRAN command, for instance, the variable names INP, OUT, and *LST indi
cate the source, object, and list files, respectively.

:FORTRAN INP,OUT,*LST

In the above example, the asterisk (*) in *LST is not a delimiter but a special character denoting a
back reference to a previously defined file. (See BACK REFERENCE, this section).

Positional parameters are separated (delimited) from one another by commas. When you omit an
optional positional parameter from within a list, you must still include the delimiter that would nor
mally follow that parameter. Thus, on a listing, two adjacent delimiters indicate a missing optional
parameter. When you omit a positional parameter that would otherwise immediately follow a com
mand name, indicate this by entering its delimiter as the first character in the parameter list. When
you omit positional parameters from the end of the list, however, you need not include delimiters to
signify this - the terminating return or end-of-card is sufficient. The following examples demonstrate
how to properly omit parameters from a command:

:FORTRAN, USLFL, *LISTFL,MFL,NFL
:FORTRAN *SOURCEFL,, *LISTFL,MFL,NFL
:FORTRAN *SOURCEFL,USLFL, *LISTFL
:FORTRAN

KEYWORD PARAMETERS

First parameter omitted.
Second parameter omitted.
Last two parameters omitted.
All parameters omitted.

When a parameter list is so long that use of positional parameters becomes difficult, MPE provides
keyword parameter groups. The meaning of such a group is independent of its position in the list -
thus, you can enter keyword groups in any order with respect to each other. A keyword group consists
of a keyword that denotes the group's meaning, sometimes followed by an equal sign and one or more
sub-parameters. Each keyword group is preceded by a semicolon. When more than one sub-parameter
appears in a group, they are usually separated from each other by commas. All delimiters can be op
tionally preceded or followed by blanks.The following example shows a :PREP command containing
both positional and keyword parameters. INPT and OUTP are the variable names of the positional
parameters. DL and CAP are keywords that designate the keyword parameter groups. PH, DS, and
MR are sub-parameters of the keyword group designated by CAP.

:PREP INPT,OUTP;DL=500;CAP=PH,DS,MR

When both keyword groups and positional parameters form a list, the positional parameters always
occur before the keyword groups. When you omit trailing parameters from the positional group in this
list, you need not include their delimiters since the occurrence of the first keyword indicates the omis
sion. When you omit optional sub-parameters from a keyword group, simply follow the same rules that
apply to positional parameters.

1-3

CONTINUATION CHARACTERS

When the length of a command exceeds one record (for instance, one entry-line or source card), you
may enter an ampersand (&) as the last non-blank character of the record and continue the command
on the next record. This next record must begin with a colon (supplied automatically by MPE in
interactive processing, but entered by yourself in batch processing). Optionally, you can embed blanks
between the colon that begins the continuation record and the first non-blank character in the continu
ation record. In the example below, the command contains a continuation character at the end of the
first line and an embedded blank at the beginning of the second.

:RUN PROGB;NOPRIV;LMAP;STACK=500;PARM=5; &
: DL=600;LIB =G

You can continue commands up to 268 characters; prompting colons and continuation ampersands are
not counted as part of this total.

When continuing a command onto another line, you must not divide a command name, keyword, posi
tional parameter, or keyword sub-parameter - MPE does not permit any such element to span more
than one line.

MPE does not begin interpretation of a command until the last record of the command is read.

COMMAND ERRORS

If you make an error while entering a command in an interactive session, MPE suppresses execution of
that command and attempts to determine the cause of the error. If the cause of the error is of a nature
that can be pointed out to you easily, MPE prints a caret under the incorrect part of the command,
along with an appropriate message. If the command entry is such that MPE cannot print the caret to
signify a specific error point, an appropriate error is displayed. In either case, control returns to your
terminal.

If you enter an erroneous command in a batch file, and do not precede this command with a
:CONTINUE command, MPE suppresses execution of the command. An error message is printed
on your standard list device, all subsequent commands in this job are ignored and the job is aborted.

If a command is continued over several lines, and an error is detected, the offending line will be echoed,
preceded by the line number on which the error has occurred.

:FILE ABC&
:=TAP%&
:;NEW
(l)=TAP%

A

UNEXPECTED CHARACTER IN FILE NAME; EXPECTED"." OR"/". IS THE DELIMITER
BETWEEN PARAMETERS CORRECT? (CIERR 582)

1-4

SEQUENCE NUMBER IN MPE COMMANDS

MPE commands in spooled jobs may have sequence numbers. The rule is that if the first card image
(i.e., the one containing the :JOB command) has a positive integer value in the last 8 bytes, MPE
assumes that all MPE commands in the job have sequence numbers in the last eight bytes.

The sequence field is checked for each command in such a job. If the value is less than the preceding
command's sequence number, a warning is issued. The sequence field may also be all blanks, in which
case the sequence field is ignored. If the sequence field is non-numeric and non-blank, a warning is
issued. For all cases except the last one, the sequence field is stripped from the command before the
command itself is analyzed.

This definition of sequence numbers has certain implications. Ampersands, which indicate continua
tion lines, must be placed before, not after, sequence fields. Secondly, STREAM files may be numbered
or unnumbered. If a file is numbered, MPE will strip the last 8 bytes of each non-MPE record. The
sequence of non-MPE records will not be checked, and a program reading these records (data records)
from $STD IN will never see the sequence numbers. Finally, input card decks may be numbered or
unnumbered. However, all 80 columns of a non-MPE card will always be read, even if the deck is
numbered. By convention, when a card deck is sequenced, only the MPE cards should have sequence
numbers punched in columns 73/80. If you choose to punch sequence numbers into data cards, your
program must be prepared to handle them.

EXECUTING COMMAND LOG ON

Another way to issue a command to MPE is through the command log-on capability. It is used when
you want to log on to execute just one MPE command, and you would like to simplify the log-on and
log-off procedures. A command log on is performed in an interactive session by entering any MPE
command and its parameter list, enclosed in parentheses, followed by the parameter list (user name,
account and group names) normally associated with the :HELLO command. The following example
shows how someone with the username MYNAME, and acctname MYACCT, can log on to the system,
execute a program prepared in a program file called MYPROG, and log off, all in a single MPE
command.

:(RUN MYPROG) MYNAME.MYACCT

EXECUTING COMMANDS PROGRAMMATICALLY

In addition to entering commands directly through your standard input device, MPE allows you to
execute many of them from within the programs that you write. You do this by including, within those
programs, calls to the COMMAND intrinsic. This intrinsic invokes the Command Interpreter and
passes to it command images that MPE will interpret and execute as the corresponding system
commands. Complete information on the COMMAND intrinsic appears in the MPE Intrinsics Refer
ence Manual.

1-5

INTERRUPTING COMMAND EXECUTION

When executing an MPE command, it is sometimes necessary to interrupt and perform another
command such as listing your files (:LISTF), creating a new disc file (:BUILD), or determining
information about other jobs and sessions (:SHOWJOB). Command interruption is accomplished
by pressing the BREAK key on your terminal (sometimes labeled INTERRUPT or ATTENTION).
Pressing the BREAK key can result in your command being either suspended or aborted and in
some cases, the BREAK will be ignored. The exact effect that using the BREAK key will have on
your executing command depends on whether the command is one that executes a subsystem or
user program (program command), or whether the command does not execute such a program
(non-program command). Table 1-1 indicates which commands are breakable and which ones are not.

INTERRUPTING NON-PROGRAM COMMANDS

Breaking from a breakable non-program command will abort the command and the Command
Interpreter will issue a colon prompt for a new MPE command.

Several commands, such as the list commands (:LISTF, :LISTACCT, :LISTGROUP, :LISTUSER,
:LISTVS), :STORE, :RESTORE, and :REPORT may require the operator to mount a tape for the
output file. If you BREAK from one of these commands while waiting for operator intervention,
only three commands will function after the colon prompt is displayed. These are :RECALL,
:RESUME, and :REPLY. If you use any other command a warning message is issued and the
command is ignored.

If you log on using the :HELLO command and press the BREAK key during output of the log on
message, MPE terminates the output, keeps you logged on, and prompts you for your next command.

If you log on using the :() command log on and press the BREAK key during output of the log on
message, MPE terminates the output and begins executing the command enclosed within the paren
theses. If you press the BREAK key after the log-on message is output, MPE breaks the command
within the parentheses. If this command is a non-program command, MPE stops its execution and
logs you off immediately. If the command is a program command, MPE suspends its execution and
prompts you for a new command.

INTERRUPTING PROGRAM COMMANDS

Program commands invoke MPE subsystems or run user programs. All program commands are
breakable.

When you press the BREAK key to interrupt one of these program commands, the execution of
that command is suspended and the Command Interpreter issues a prompt for a new MPE command.
If you then enter a non-program command (other than :HELLO, :BYE, :JOB, or :DATA), the
Command Interpreter performs the requested operation and then allows you to re-activate the sus-

1-6

pended program by entering :RESUME. But, if you enter another program command (such as
:FORTRAN, :EDITOR, or :RUN) or one of the non-program commands :HELLO, :BYE, :JOB, or
:DAT A, the Command Interpreter prints the following message on your terminal:

ABORT? (YES/NO)

If you respond YES to the ABORT? message, the Command Interpreter aborts the current program
and executes the command you entered, in the usual way.

If you had logged on using the :() command log on with a program command inside the parentheses,
then responding YES to the ABORT? message causes MPE to abort the command and log you off
immediately.

If you respond NO to the ABORT? message, the Command Interpreter prints the message NOT
ALLOWED IN BREAK and prompts you for another command. If you now enter :RESUME, the
suspended program resumes at the point where it was interrupted.

NOTE

User programs are initiated with the BREAK facility en
abled. But since you may not wish to let those who run
your programs interrupt them under certain circumstances,
you may programmatically disable the BREAK facility by
using the FCONTROL intrinsic. For example, application
programs can restrict user access to the Command Interpre
ter by disabling the BREAK function.

ABORTING A PROGRAM

When a program contains logical errors, such as an infinite loop, you can abort it by

1. Pressing break. This suspends your program and MPE prompts you for a new command.

2. When you receive a colon prompt, type ABORT. This terminates the program, but in NO WAY
disrupts the session.

MPE confirms this termination by displaying

PROGRAM ABORTED PER USER REQUEST (CIERR 989)

then prompts you for a new command.

You can also use the BREAK/:ABORT sequence to abort certain MPE subsystem and command
operations. Those operations are indicated in the associated command specifications, under the
BREAKABLE? entry. (Some of them abort immediately upon entering BREAK, without requiring the
:ABORT command.)

1-7

Table 1-1. Non-Program Commands

BREAKABLE NON-BREAKABLE

:() COMMAND LOG ON :ABORT :MOUNT
:BYE :ALTLOG :PT APE
:HELLO :ALTSEC :PURGE
:HELP :ASSOCIATE :RECALL
:LISTF :BUILD :RELEASE
:LIS TVS :COMMENT :RELLOG
:REDO :CONSOLE :REMOTE
:REPORT :CONTINUE :RENAME
:RESTORE :DATA :RESET
:SHOWCATALOG :DEBUG :RESETDUMP
:SHOWDEV :DISASSOCIATE :RESUME
:SHOWIN :DISMOUNT :SAVE
:SHOWJCW :DSLINE :SECURE
:SHOW JOB :DST AT :SETCATALOG
:SHOWME :ELSE :SETDUMP
:SHOWOUT :END IF :SETJCW
:STORE :EOD :SETMSG
:STREAM :EOJ :SHOWALLOW

:FILE :SHOWLOGST ATUS
:FREERIN :SHOWTTh:tE
:GETLOG :SPEED
:GETRIN :TELL
:IF :TELLOP
:JOB :VSUSER
:LISTLOG

Table 1-2. Program Commands (All Breakable)

:APL
:BASIC
:BASICGO
:BASICO MP
:BASICPREP
:COBOL
:COBOLGO
:COBOLPREP
:DSCOPY
:EDITOR
:FCOPY
:FORTGO
:FORTPREP
:FORTRAN

:Il\1L
:MRJE
:PREP
:PREPRUN
:RJE
:RPG
:RPGGO
:RPG PREP
:RUN
:SEGMENTER
:SPL
:SPLGO
:SPLPREP

1-8

I

BACK REFERENCING

Once you establish a set of specification in a :FILE command, you can apply those specifications to
other file references in your job or session simply by using the file's formal designator, preceded by an
asterisk (*), in those references. For instance, suppose you use a :FILE command to establish the
specifications shown below for the file FILEA, used by program PROGA. You then run PROGA. Now,
you wish to apply those same specifications to the file FILEB, used by PROGB, and run that program.
Rather than re-specify all these parameters in a second :FILE command, you can simply use :FILE to
equate the FILEA specifications to cover FILEB, as follows:

:FILE FILEA;DEV=T APE;REC=-80,4,V ;BUF=4
:RUNPROGA

Establishes specifications.
Runs program A.

:FILE FILEB=*FILEA

:RUNPROGB

Back references specifications for
FILEA.
Runs program B.

This technique is called back referencing files, and the files to which it applies are sometimes known
as user pre-defined files. Whenever you reference a pre-defined file in an MPE command, you must
enter the asterisk before the formal designator if you want the pre-definition to apply. As an example,
you would do this when using the Editor in session mode when you wish to transmit the Editor's
off-line listings to an off-line device (such as a magnetic tape or line printer). You specify the
destination file name as a parameter in the :EDITOR command that invokes the Editor, but you
define the file in a previous :FILE command. You then back reference the definition by using the
asterisk in the :EDITOR command, as shown below:

:FILE L;DEV=LP
:EDITOR*L

Specifies file named L as a line printer.
Runs Editor, directs off-line listing to L, now established as a
line printer.

When back referencing in a command, you cannot reference any predefined formal file designator of
the subsystem you are using. For example, FORTRAN predefines FTNTEXT as its formal file
designator, therefore you cannot back reference it in your command: FORTRAN* FTNTEXT.

1-9

REFERENCE NOTES FOR COMMAND DEFINITIONS

ELEMENTS OF COMMAND FORMAT j

• Leading Colon: Prompt/command identifier character in
interactive sessions.

• Command Name:

• Parameters:

• Positional Parameters:

• Keyword Parameters:

• Mixed Parameters:

• Optional Parameters:

USER/SYSTEM DIALOG

Command identifier character in batch jobs.

Shown in CAPITAL LETTERS IN REGU
LAR (ROMAN) TYPE. Contains no blanks, is
delimited by a non-alphanumeric character
(usually a blank).

Shown in CAPITAL LETTERS IN REGU
LAR TYPE when they are literal information
that you enter exactly as shown.
Shown in lower-case italics when they are vari
able parameters to be replaced by information
that you must supply.

Have significance implied by positional order
after command name; use adjacent commas (or
semicolons where required) to indicate omitted
parameter(s), as follows:
COMMANDNAME pl,,p3
COMMANDNAME ,p2,p3
ning)

(from middle)
(from begin-

COMMANDNAME pl (from end)

Separated by semicolons and can appear in any
order.

Positional parameters are given first; first
keyword indicates end of positional list.

[A] means A may be included
A

[]
B
A
{ }
B

[A]
[BJ
A
[]
B

means A or B may be
included

means A or B must be
included
means A and/or B may be
included in any order

underline means A is default.

• User input is underlined where necessary for clarity. For example:

NEW NAME? ALPHAI

1-10

CO MAND SPECIFICATIONS J IUll[.)ll
M II II I

The reference specifications for all MPE commands available to standard users appear in this section.
For easy reference, commands are presented alphabetically by name; should you prefer to reference
them by function, remove these pages and re-arrange them according to the Functional List of
Commands shown in table 2-1. For each command, the reference specifications show the following
information:

• Parameter definitions (including meaning, constraints, and defaults).

• When legal (in jobs or sessions, during break, or programmatically).

• Whether interruptable (with BREAK key).

• Operation or functional description.

• Examples.

• Where described in other manuals.

In the reference specifications, the indication Available in Break means that the command can be
executed if the current operation is suspended by pressing the BREAK key on the terminal (or calling
the CAUSEBREAK intrinsic). The notation Available Programmatically means that the command is
available through the COMMAND intrinsic. CAUSEBREAK and COMMAND are explained in the
MPE Intrinsics Reference Manual.

NOTE

IF YOU HA VE NO PRIOR EXPERIENCE WITH MPE,
YOU SHOULD READ THE TEXT DISCUSSION (SEC
TIONS III THROUGH X) BEFORE ATTEMPTING TO
USE THE REFERENCE SPECIFICATIONS IN THIS
SECTION.

2-1

Table 2-1. Functional List of Commands

FUNCTION COMMAND

:() COMMAND LOG ON l :HELLO
:BYE

Running Sessions (Section III) :ABORT
:RESUME
:HELP
:EOD
:EOF:

:JOB
:EOJ
:STREAM
:COMMENT

Running Jobs (Section IV) :CONTINUE
:SETJCW
:SHOWJCW
:IF
:ELSE
:ENDIF

Determining Job/Session Status :SHOW JOB
and Resource Usage (Section V) :REPORT

:SHOWME

:FILE
:RESET
:BUILD
:LISTF
:MOUNT
:DISMOUNT
:LISTVS

I
:VSUSER

Managing Files (Section VD :RENAME
:PURGE
:SAVE
:STORE
:RESTORE
:ALTSEC
:RELEASE
:SECURE
:DATA

:APL*
Running Subsystems and User :BASIC
Programs (Section VII). :BASICO MP
Commands marked with asterisk :BASICPREP
are discussed in pertinent :BASICGO
subsystem manuals. :COBOL

:COBOLPREP
:COBOLGO

2-2

Table 2-1. Functional List of Commands (continued)

FUNCTION COMMAND

:FORTRAN
:FORTPREP
:FORT GO
:RPG
:RPG PREP
:RPGGO
:SPL
:SPLPREP
:SPLGO

Running Subsystems and User :PREP
Programs :PREPRUN
Commands marked with asterisk :RUN
are discussed in pertinent :DEBUG*
subsystem manuals. :DSCOPY*

:DSLINE*
:EDITOR*
:FCOPY*
:IML*
:RJE*
:MRJE*
:REMOTE*
:REMOTE HELLO*
:SEGMENTER*
:SETDUMP*
:RESETDUMP*

:ASSOCIATE
:CONSOLE
:DISASSOCIATE

Determining Device and :DST AT
Devicefile Status :RECALL

:SHOWALLOW
:SHOWDEV
:SHOWIN
:SHOW OUT

:TELL
:TELLOP
:SETMSG
:SPEED
:PT APE

Requesting Utility Operations :GETRIN
:FREERIN
:SHOWTIME
:SETCATALOG
:SHOWCATALOG
:SHOWJCW
:REDO

:ALTLOG
:GETLOG

Resource Management :LISTLOG
:RELLOG
:SHOWLOGSTATUS

:() COMMAND LOG ON
Begins a session, executes the enclosed MPE command, and ends the session upon completion of the
command.

SYNTAX

:([:]commandname) [sessionname,]username[/userpass]
.acctname [/acct pass] [,groupname [/group pass]]

[;TERM= termtype]
[;TIME=cpusecs]

BS
cs

[;PRI= { }]
DS
ES

;INPRI =input priority
[]
;HIP RI

PARAMETERS

command name

sessionname

username

user pass

acctname

acct pass

Any MPE command, including its parameter list. The prompting colon may be
omitted. (REQUIRED PARAMETER)

Arbitrary name used in conjunction with username and acctname to form a
fully-qualified session identity. Contains from 1 to 8 alphanumeric characters,
beginning with a letter. Default is no session name.

A user name, established by the Account Manager, that allows you to log on under
this account. This name is unique within the account. Contains from 1to8 alpha
numeric characters, beginning with a letter. (REQUIRED PARAMETER)

Your user password, optionally assigned by the Account Manager. Contains from
1 to 8 alphanumeric characters, beginning with a letter.

Name of your account, as established by the System Manager. Contains from 1 to
8 alphanumeric characters, beginning with a letter.

NOTE

Must be preceded by a period as a delimiter. (REQUIRED
PARAMETER)

Account password, optionally assigned by the System Manager. Contains from 1
to 8 alphanumeric characters, beginning with a letter.

2-4

group name

group pass

termtype

cpusecs

BS,CS,DS,ES

input priority

HIP RI

Name of file group to be used for local file domain and central processor time
charges, as established by the Account Manager. Contains from 1 to 8 alphanu
meric characters, beginning with a letter. Default is your home group if one is
assigned. (REQUIRED IF HOME GROUP NOT ASSIGNED)

Group password, optionally assigned by the Account Manager. Contains from 1 to
8 alphanumeric characters, beginning with a letter. Not needed when when you
log on under home group, otherwise, required if assigned.

Type of terminal used for input. MPE uses this parameter to determine
device-dependent characteristics such as delay factors for carriage returns. Must
be a number from 0 to 15. See Appendix A for a list of terminals.

Default: For hardwired terminals, determined by System Supervisor during sys
tem configuration. No default for terminals that are not hardwired. Required pa
rameter to insure correct listings if your terminal is not hardwired or if your
terminal is not the default termtype.

Maximum central processor time that your session can use, entered in seconds.
When this limit is reached, session is aborted. Must be a value from 1 to 32767. To
specify no limit, specify question mark or omit this parameter. Default is no limit.

The execution priority class that the Command Interpreter uses for your session,
and also the default priority for all programs executed within the session. BS is
highest priority, ES is lowest. If you specify a priority that exceeds the highest
permitted for your account or user name by the system, MPE assigns the highest
priority possible below BS. Default is CS.

NOTE

DS and ES are intended primarily for batch jobs; their use
for sessions is generally discouraged.

Relative input priority used in checking against access restrictions imposed by
jobfence, if one exists. Takes effect at log-on time. Must be a value from 1 (lowest
priority) to 13 (highest priority). If you supply a value less than or equal to cur
rent jobfence set by Console Operator, session is denied access. Default is 8.

Request for maximum session selection input priority, causing session to be
scheduled regardless of current jobfence or execution limit for sessions. If you do
not have OP or SM capability, the System will try to log you on with INPRI =13.

NOTE

You can specify this parameter only if you have System
Manager or System Supervisor capability

2-5

USE

Available In Session? NO (initiates a session only)

In Job? NO

In Break? NO

Programmatically? NO

Breakable? How BREAK functions with :() Com-
mand Log On depends on when BREAK is
pressed. Pressing BREAK during the out-
put of the log-on message suppresses the
remainder of the message and causes im-
mediate execution of the command within
the parentheses. Pressing BREAK after
the log-on message is completed, and dur-
ing the execution of the command within
the parentheses, causes break in the com -
mand. Finally, pressing BREAK during
the output of the log-off message termi-
nates the message.

OPERATION

This command initiates a session and immediately executes the command contained within the paren
theses. Once in contact with the command or subsystem specified inside the parentheses, all input,
output, break capabilities, and prompts operate as described in the command or subsystem instruc
tions. After the execution of the command or subsytem is completed, either normally or through an
abort, a log off is performed automatically.

NOTE

You must enter the:() command log on at a terminal - no
other device can be used for this command.

:()command log on is not recognized within sessions, as for
example, the :HELLO command is.

Commands which would normally cause an end of file, such
as :HELLO, :BYE, :JOB, :DATA, :EOF, and :EOJ are not
recognized and if used the session is terminated immediate
ly.

Only one MPE command is allowed within the parentheses.
Also, the leading and trailing blanks are suppressed within
the parentheses.

2-6

The log-on and log-off messages can be terminated using BREAK, and the command specified within
the parentheses is breakable or not in accordance with its usual break or no break capability. When the
command inside the parentheses is aborted, a log off is performed immediately.

If you omit any passwords required in the:() command log on, MPE prompts you for them individual
ly.

When MPE initiates the session, it displays the HP 3000 Model Number, and the date and time as
follows:

HP3000 I MPE IV C.00.00 THU, OCT 9, 1980, 12:15 PM

After the log-on message is printed at your terminal, MPE executes the command specified within the
parentheses. The information MPE generates as a result of this command is transmitted to your termi
nal immediately; just as if you had called that command or subsystem during a session. When the
command or subsystem is exited, MPE terminates the session at once, and displays the cpu time used
(in seconds), the connect time (in minutes), and the date and time, as follows:

CPU =l. CONNECT =l. THU, OCT 9, 1980, 12:16 PM

EXAMPLE

To log on under username MAC, acctname TECHPUB, and groupname XGROUP, and execute the
LISTF command, enter:

:(LISTF) MAC.TECHPUB.XGROUP

HP3000 I MPE IV. C.00.00 THU, OCT 9; 1980, 12:15 PM

FILENAME

FIRST GP005 TRIAL XPROG-------Displayed by MPE
CPU =l. CONNECT =l. THU, OCT 9, 1980, 12:16 PM

2-7

:ABORT
Aborts current program or operation.

SYNTAX

PARAMETERS

None

USE

Available In Session? Yes (in BREAK only)

In Job? NO

In Break? YES

Programmatically? NO

Breakable? NO

OPERATION

After you suspend a program or MPE command operation by pressing the BREAK key, the :ABORT
command immediately terminates that program or operation. The :ABORT command is available only
from a session and only during a break, but in no way disrupts the session. Note that some operations
abort immediately upon entering BREAK without requiring the :ABORT command. An :ABORT
command results in the Job Control Word (JCW) being set to the SYSTEM 0 state. (For a discussion of
Job Control Word, see the Intrinsics Reference Manual.

EXAMPLE

To abort the current operation, enter:

:ABORT

2-8

:ALTLOG
Alters the attributes of an existing logging identifier.

SYNTAX

/,DISC)
:ALTLOG logid[;LOG=logfile l,TAPE][;PASS=password]

PARAMETERS

log id The logging identifier whose attributes are to be changed.
(REQUIRED PARAMETER)

logfile

password

USE

Available

Breakable?

OPERATION

The new destination file name for the logfile. Must be specified as residing on tape
or disc.

The new password for the logging identifier.

In Session? YES

In Job? YES

In Break? YES

Pro grammatically? YES

NO

Changes the attributes of an existing logging identifier to those specified in the parameter list.
Parameters not included in the :ALTLOG command retain their current values. This command can be
used only by the creator of the logging identifier.

EXAMPLE

To change the destination logfile of the logging identifier DATALOG to FILEX, and specify that
FILEX reside on tape, enter:

:ALTLOG DATALOG;LOG=FILEX,TAPE

Since the ;PASS parameter was not included, DATALOG retains the password previously specified.

ADDITIONAL DISCUSSION

Console Operator's Guide

2-9

:ALTSEC
Permanently changes file's security provisions.

SYNTAX

:ALTSEC filereference[;([fileaccess
[;[fileaccess[; . ..]]])]

PARAMETERS

file ref ere nee

fileaccess

Actual designator of the file whose security provisions are to be altered, written in
the format:

filename [/lockword] [.group name [.accountname]]

The lockword, if any, must be specified. (REQUIRED PARAMETER)

File security specifications, entered as follows:

R ANY
L AC
A GU
W AL
X GL

CR

where R, L, A, W, X specify modes of access by types of users (ANY, AC, GU, AL,
GL, CR) as follows:

R = Read
L = Lock (allows opening with dynamic locking option)
A = Append (implicitly specifies L also)
W = Write (implicitly specifies A and L also)
X = Execute

Two or more modes may be specified if they are separated by commas.

The user types are specified as follows:

ANY = Any user
AC = Member of this account only
GU = Member of this group only
AL = Account librarian user only
GL = Group librarian user only
CR = Creating user only

Two or more user types may be specified if they are separated by commas.

DefuuU~R,A,W,L,X: ANY

2-10

USE

I Available In Session? YES

In Job? YES

In Break? YES

Programmatically? YES

Breakable? NO

OPERATION

The :ALTSEC command enables you to change the security provisions for any disc file that you have
created by permanently deleting all previous provisions specified for this file at the file level and
replacing them with those defined in the :ALTSEC parameters. Account level and group level security
is not affected, nor is the lockword (ifone exists). The command can only be used by the creator of the
file.

Note that you can only use this command for a permanent disc file that you have created, and that this
command will fail if the group's home volume set is not mounted. When the normal (default) MPE
security provisions are in effect, the file must be in your log-on account and must belong to your log-on
or home group.

Even though you may be barred by fileaccess restrictions from accessing a file that you have created,
you still can issue an :AL TSEC command for that file. Thus, you can change the security provisions to
allow yourself access to it.

EXAMPLE

You have created a file named FDAT A and you wish to change its security provisions to allow write
access to yourself only. Enter:

:ALTSEC FDATA;(W:CR)

To change the security provisions for a program file (FPROG) so that any group user can execute the
program but only account and group librarian users can read or write on the file, enter:

:ALTSEC FPROG;(X:GU;R,W:AL,GL)

ADDITIONAL DISCUSSION

Intrinsics Reference Manual
Using Files
System Manager/System Supervisor Reference Manual

2-11

:APL
Accesses APL subsystem.

SYNTAX

PARAMETERS

None

USE

Available In Session? YES

In Job? YES

In Break? NO

Programmatically? NO

Breakable? YES (Under control of APL subsystem.
See APL\ 3000 Reference Manual.)

OPERATION

Accesses the APL subsystem, which is used to create and execute APL programs.

EXAMPLE

NOTE

The recommended way of accessing the APL subsystem
from terminals equipped with the APL character set is
through the command log on. The unusual APL character
set and its resultant coding causes unreadable log-on and
log-off messages when the :HELLO and :BYE commands
are used at APL terminals.

:(APL) MAC.TECHPUBS

ADDITIONAL DISCUSSION

APL 3000 Reference Manual.

2-12

:ASSOCIATE
Gives a user operator control of a device.

SYNTAX

I :ASSOCIATE devclass

PARAMETERS

devclass The name of a logical device class configured during SYSDUMP.

USE

Available In Session? YES

In Job? NO

In Break? YES

Programmatically? YES

Breakable? NO

OPERATION

This command makes a user the controller (operator) of a device class. As such, the user may execute
any valid operator command for a device in the device class and will receive the status messages for
the devices in that device class.

The operator commands which are made available to users through the :ASSOCIATE command are:

:ABORTIO
:ACCEPT
:ALTSPOOLFILE
:DELETESPOOLFILE
:DOWN
:DOWNLOAD
:DSCONTROL
:FOREIGN
:GIVE
:HEADON
:HE ADO FF

:MPLINE
:REFUSE
:REPLY
:RESUME SPOOL
:SHOWCOM
:STARTSPOOL
:STOPSPOOL
:SUSPENDSPOOL
:TAKE
:UP

The system manager must specify in a system file, ASOCIATE.PUB.SYS, which users may associate
what devices. This file is created and maintained by the system manager through the system utility,
ASOCT ABL. A user may :ASSOCIATE a device only after the system manager has made the
appropriate entries in ASOCIATE.PUB.SYS. Both the console operator and the user may :DISAS
SOCIATE a user from a device. In addition, a user implicitly disassociates a device when logging off.

EXAMPLE
:ASSOCIATE PRINTER

ADDITIONAL DISCUSSION

Console Operator's Guide

2-13

:BASIC
Interprets a BASIC program.

SYNTAX

:BASIC [command file] [,[inputfile] [,listfile]]

PARAMETERS

command file

input file

list file

USE

Available

Breakable?

OPERATION

Actual designator of source file (device) from which BASIC commands and state
ments are input. Can be any ASCII input file. Formal designator is BASCOM.
Default is $STDINX.

Actual designator of file containing data input for BASIC program. Can be any
ASCII input file. Formal designator is BASIN. Default is $STDINX.

Actual designator of destination file for program listing and output. Can be any
ASCII output file. Formal designator is BASLIST. Default is $STDLIST.

NOTE

The formal file designators used in this command (BAS
COM, BASIN, BASLIST) cannot be back referenced as ac
tual file designators in the command parameter list. For
further information see the OPERATION section of the
:FILE command.

In Session? YES

In Job? YES

In Break? NO

Programmatically? NO

YES (Suspends)

Generally used for on-line programming in BASIC, but it can also be used to interpret BASIC pro
grams submitted in batch mode. In batch mode, the BASIC > EOD command is required after any
data following the BASIC >RUN command, or after the >RUN command itself if there is no data.

2-14

EXAMPLE

To enter commands and data from your standard input device, with program listing and output trans
mitted to the standard output device, enter:

:BASIC

To submit BASIC interpreter commands and statements from the command file MYCOMDS, and
data from the input file MYDATA, with program listing and output written to the list file MYLIST,
enter:

:BASIC MYCOMDS,MYDATA,MYLIST

(All three files are disc files.)

Note that input files created on the Editor must be kept with the UNN option of the Editor KEEP
command.

ADDITIONAL DISCUSSION

Basic Interpreter Manual

2-15

:BASICGO
Compiles, prepares, and executes a BASIC program.

SYNTAX

:BASICGO [command file] [,list file]

PARAMETERS

command file

list file

USE

Available

Breakable?

OPERATION

Actual designator of input file from which BASIC compiler commands are read.
Can be any ASCII input file. Formal designator is BSCTEXT. Default is
$STDINX.

Actual designator of file on which program listing is written. Can be any ASCII
output file. Formal designator is BSCLIST. Default is $STDLIST.

NOTE
The formal file designators used in this command
(BSCTEXT,BSCLIST) cannot be back referenced as actual
file designators in the command parameter list. See the
OPERATION section the :FILE command for further
information.

In Session? YES

In Job? YES

In Break? NO

Programmatically? NO

YES (Suspends)

Compiles, prepares, and executes a program from a SAVE FAST file (created by BASIC interpreter).
This enables the program to run faster than it would if executed by the interpreter. After the program
is written, it can be saved with the BASIC interpreter command SAVE filename, FAST. The program
then can be compiled, prepared, and executed with the :BASICGO command.

EXAMPLE
To compile, prepare, and execute the BASIC program MYPROG, with the listing directed to the disc
file LISTFL, enter:

:BASICGO ,LISTFL Calls the BASIC compiler

$CONTROL USLINIT,SOURCE

$COMPILE MYPROG

$EXIT

ADDITIONAL DISCUSSION
Basic Compiler Reference Manual

Initializes USL and requests program listing

Compiles program MYPROG

Exits from compiler

2-16

I

:BASICOMP
Compiles a BASIC program.

SYNTAX

:BASICO MP [commandfile] [,[uslfile] [,listfile]]

PARAMETERS

commandfile

uslfile

list file

USE

Available

Breakable?

Actual designator of input file from which compiler commands are read. Can be
any ASCII input file. Formal designator is BSCTEXT. Default is $STDINX.

Actual designator of user subprogram library (USL) file on which compiled object
program is written. Can be any binary output file with filecode of USL (or 1024).
Formal designator is BSCUSL. This parameter, if entered, must specify a file
created previously in one of four ways:

1. By saving a USL file (with the :SAVE command) created by a previous com
pilation where the default value was used for the uslfile parameter.

2. By building the USL with the Segmenter command -BUILDUSL (see the
MPE Segmenter Reference Manual).

3. By creating a new USL file with the MPE :BUILD command and a filecode
parameter of USL or 1024.

4. By specifying a non-existent uslfile parameter, thereby creating a permanent
file of the correct size and type.

Default is that $NEWP ASS is assigned.

Actual designator of file on which program listing is written. Can be any ASCII
output file. Formal designator is BSCLIST. Default is $STDLIST.

NOTE

The formal file designators used in this command
(BSCTEXT, BSCUSL, BSCLIST) cannot be back referenced
as actual file designators in the command parameter list.
For further information, see the OPERATION section of the
: FILE command.

In Session? YES

In Job? YES

In Break? NO

Programmatically? NO

YES (Suspends)

2-17

OPERATION

Compiles a program from a SA VE FAST file (created by the BASIC interpreter) onto disc in USL
format. This enables the program to run faster than it would if left in the form generated by the
interpreter. After the program is written, it is stored in a SA VEFAST file with the BASIC interpreter
command SAVE filename,FAST. The program can then be compiled with the compiler command
COMPILE, prepared with the MPE :PREP command, and executed with the MPE :RUN command.

EXAMPLE

To compile the BASIC program MYPROG onto the USL named OBJECT, enter:

:BUILD OBJECT;CODE =USL

:BASICOMP ,OBJECT

$COMPILE MYPROG

$EXIT

Builds USL file

Calls BASIC compiler, specifies USL named
OBJECT

Compiles SA VE FAST program named MYPROG

Exits from compiler

If you do not choose to build a USL file, the :BASICO MP command compiles your file to $0LDPASS
(USL default):

:BASICO MP

- $COMPIL MYRUN

$EXIT

Runs BASIC compiler, accepting commands from
$STDINX, and requesting $NEWPASS/$0LDPASS
for RBM output and $STDLIST for listing output.

Compiles from SAVE FAST file named MYRUN
onto USL named $0LDPASS.

Exits from BASIC compiler.

If you now want to run your program, use the :PREPRUN command:

:PREPRUN $.OLDPASS Prepares and runs program.

ADDITIONAL DISCUSSION

Basic Compiler Reference Manual

2-18

:BASICPREP
Compiles and prepares a BASIC program.

SYNTAX

:BASIC PREP [command file][, [progfile] [,listfile]]

PARAMETERS

commandfile

progfile

list file

USE

Available

Breakable?

Actual designator of input file from which compiler commands are read. Can be
any ASCII file. Formal designator is BSCTEXT. Default is $STDINX.

Actual designator of program file on which prepared program segments are writ
ten. Can be any binary output file with filecode of PROG (or 1029). This param
eter, if entered, must indicate a file created in one of two ways:

1. With the MPE :BUILD command using the filecode parameter PROG or
1029, and a numextents parameter value of 1.

2. By specifying a non-existent file in the progfile parameter, in which case a job
temporary file of the correct size and type is created.

Default is that $NEWPASS is assigned.

Actual designator of file on which program listing is written. Can be any ASCII
output file. Formal designator is BSCLIST. Default is $STDLIST. .

NOTE

The formal file designators used in this command
(BSCTEXT, BSCPROG, BSCLIST) cannot be back refer
enced as actual file designators in the command parameter
list. For further information, see the OPERATION section of
the :FILE command.

In Session? YES

In Job? YES

In Break? NO

Programmatically? NO

YES (Suspends)

2-19

OPERATION

Compiles and prepares a program from a SAVE FAST file (created by BASIC interpreter) into a pro
gram file on disc. This enables the program to run considerably faster than it would if executed by the
interpreter. After the program is written, it can be stored in a SAVE FAST file with the BASIC
interpreter command SA VE filename,FAST. It then can be compiled/prepared with the MPE
:BASICPREP command and executed with the MPE :RUN command.

EXAMPLE

To compile and prepare a program named MYPROG from the BASIC SAVE FAST file named
MYCOMDS, with listing directed to the standard list device, enter:

:BASICPREP ,MYCOMDS

The file MYCOMDS is an ASCII file that contains the following BASIC compiler commands:

$CONTROL USLINIT,SOURCE

$COMPILE MYPROG

$EXIT

ADDITIONAL DISCUSSION

Basic Compiler Reference Manual.

Initializes USL and lists program

Com piles SA VE FAST program

Exits from compiler

2-20

:BUILD
Creates and immediately allocates new empty file on disc.

SYNTAX

F BINARY
:BUILD filereference[;REC= [recsize] [,[block/actor] [,[U] [,]]]]

;CCTL
[]

;NOCCTL
[;TEMP]
[;DEV =[[dsdevice]#J[device]]
[;CODE =[filecode]]

V ASCII

[;DISC= [numrec] [, [numextents] [,initalloc]]]
[;RIO]
[;NORIO]
[;MSG]
[;CIR]

PARAMETERS

file re {ere nee

rec size

Actual name of file to be created, in the following format:

filename [Jlockword] [.groupname] [.acctname]

Names may contain from 1 to 8 alphanumeric characters, beginning with a letter.
If acctname is specified, it must be that of your log-on account (you cannot create
a file in another account). Defaultgroupname and acctname are the log-on group
and account. (REQUIRED PARAMETER)

Record size. A positive number indicates words while negative indicates bytes.
For fixed-length files, this is logical record size. For undefined length, this is the
maximum record size. For variable length files this is the maximum logical
record size if blockfactor is 1. If not, this is used to calculate the maximum logical
record size and physical record size.

Records always begin on word boundaries, therefore the record size is rounded up
to the nearest word boundary for block size calculations. For a binary file or a
variable length ASCII file, odd byte lengths are rounded up and the extra byte is
available for data. However, if an odd byte length record size is specified for a
fixed or undefined length record file, the extra byte is not available for data.

For example: a fixed length ASCII file with record size specified as 11 bytes will
have only 11 bytes available for data in each logical record. However, to deter
mine actual blocksize, 12 bytes will be used for the record size (blocksize =12
bytes x blockfactor). If the file was specified as a binary file, the 11 bytes would be
rounded up to 12 bytes (6 words), all of which are available for each logical record.
Default is determined as device configuration.

2-21

blockfactor

F, U, V

BINARY

ASCII

CCTL

NOCCTL

TEMP

device

Number oflogical records per physical block. Default is calculated by dividing the
specified recsize into the configured blocksize; this value is rounded downward to
an integer that is never less than 1. For variable length record files, blockfactor is
always set to 1 after using the original value along with recsize to calculate
maximum logical record size and physical record size. Blockfactor is ignored for
undefined length records.

File contains fixed (F), undefined (U), or variable (V) length records. Default is F
for disc files.

File contains binary-coded records. Default.

File contains ASCII-coded records. Default is BINARY.

Indicates carriage-control characters will be supplied with write requests. De
fault is NOCCTL.

Indicates carriage-control characters will not be supplied with write requests.
Default.

File will be created as a job temporary file and will be saved in the job/session
temporary file domain when closed. Default is permanent file

Specifies the device on which the file is to reside, entered in one of the following
forms:

devclass
ldn

*
*vcname
**volname

The devclass form represents a device class name of up to eight alpha-numeric
characters beginning with a letter, as for example, DISC or PVDISC 1. If devclass
is specified, the file is allocated to any available device in that class. If you are
opening a file which is to reside on a private volume, you must specify device class
DISC; the file then is allocated to any of the home volume set's volumes that fall
within that device class. Note that a file cannot span more than one volume set,
but can reside on more than one volume within the set.

The logical device number (ldn) consists of a three-byte numeric string specifying
a particular device. If you are opening a file which is to reside on a private
volume, you must specify a disc drive on which one of the volumes in the home
volume set resides.

The forms*, *vcname, and **volname are used only if you are opening a file which
is to reside on a private volume.

If* is specified, the file is allocated to any of the volumes of the home volume set.

2-22

filecode

If *vcname (volume class name) is specified, vcname must be a member of the
home volume set. The file then is allocated to any of the volumes within the
volume class.

If**volname (volume name) is specified, volname must be a member of the home
volume set. The file then is allocated to that volume.

Any of the forms may be used to reference files on a remote computer by
preceding the device or volume specification with DSDEVICE #.

Default is device class name DISC.

Code indicating a specially-formatted file. This code is recorded in the file label
and is available to processes accessing the file through the FFILEINFO or
FGETINFO intrinsic. For this parameter, any user can specify a positive integer
ranging from 0 to 1023. Certain integerse have particular HP-defined meanings,
as follows:

Mnemonic

USL
BASD
BASP
BASFP
RL
PROG
SL
VFORM
VF AST
VREF
XLSAV
XL BIN
XLDSP
EDITQ
EDTCQ
EDTCT
TDP
RJEPN
QPROC

KSAMK
GRAPH
SD
LOG
OPTLF

Integer

-400
-401
-402
1024
1025
1026
1027
1028
1029
1031
1035
1036
1037
1040
1041
1042
1050
1051
1052
1058
1060
1070
1071
1072
1080
1083
1084
1090
1130

Meaning

IMAGE root file.
IMAGE data set.
IMAGE file for DS information.
USL file.
BASIC data file.
BASIC program file.
BASIC fast program file.
RL file.
Program file.
SL file.
VIEW formsfile.
VIEW fast forms file.
VIEW reformat file.
Cross Loader ASCII file (SA VE).
Cross Loader relocated binary file.
Cross Loader ASCII file (DISPLAY).
Edit KEEPQ file (non-COBOL).
Edit KEEPQ file (COBOL).
Edit TEXT file (COBOL).
TDP/3000 work file.
RJE punch file.
QUERY procedure file.
QUERY work file.
QUERY work file.
KSAM key file.
GRAPH specification file.
Self-describing file.
User Logging logfile.
On-line performance Tool log file.

Using LOG as your designated filecode may not yield the number of records you
specify in the DISC= parameter. Most files use the number ofrecords specified in
the DISC= parameter as the maximum limit; user logging uses this specified
number as a minimum.

Default is 0.

2-23

numrec

numextents

initialloc

RIO

NO RIO

x

.Y

USE

Available

? Breakable.

Maximum number of logical records. For fixed and undefined length files the
maximum value allowed for this field is 2,147,483,647. However, the maximum
sectors per file is 2,097,120 based on the maximum of65535 sectors per extent, 32
extents maximum. Thus the actual maximum number of records will be limited
by blocksize (determined by record size and blockfactor. An approximate practical
limit for numrec is 2,097,119 for variable and undefined files, and 267,382,000 for
fixed length files. Default is a value of 1023.

NOTE

The file system uses these values to compute other charac
teristics of the file as well. Therefore, the values (or default
values) specified on the :FILE command may be valid within
their respective fields, but may cause overflow errors in the
computation of internally needed file specifications.

See the Intrinsics Manual for a discussion on calculating file
space.

Maximum number of disc extents. This is a value from 1 to 32. Default is 8.

Number of extents to be initially allocated to the file at the time it is opened. This
is a value from 1 to 32. Default is 1.

If RIO is specified, a relative I/O file is created. The record length parameter will
implicitly be changed to fixed record length. RIO is a special file access method
supported by COBOL II. See the Intrinsics Reference Manual for a discussion of
relative I/O.

A non-relative I/O file is created.

MSG - A message file is created allowing communication between any set of
processes. Acts like a FIFO (first in, first out) queue where records are read from
the start of the file and logically deleted and/or appended to the end of file.

CIR-Acts as normal sequential file until full. When full, the first physical block
will be deleted when the next record is written, and remaining blocks will be
logically shifted to front of file. Cannot be simultaneously accessed by readers
and writers.

In Session? YES

In Job? YES

In Break? YES

Programmatically? YES

I NO

2-24

OPERATION

Builds a new file on disc and immediately allocates space for it, initialized to blanks (if an ASCII file)
or zeros (ifa binary file). Unless the TEMP parameter is specified, the file is permanent. (Note that you
must have SA VE access to the group to which the new file is to belong and that you can only build a
file belonging to your log-on account.) If the home volume set is not mounted for the group in which the
new file is to be built, this command will implicitly cause a volume set mount request to be generated.

The default characteristics of a file created with the :BUILD command are: standard binary disc file,
fixed length records of 128 words, blocking factor of 1, 1buffer,1023 record limit, and a maximum of 8
extents with 1 extent initially allocated.

EXAMPLE

To create a permanent disc file named WORKFILE, with fixed-length records each 80 bytes long, 3
records per block (blockfactor), and in ASCII code, enter:

:BUILD WORKFILE;REC = -80,3,F,ASCII;DISC =2000,10,2

The file can reside on any disc, has a maximum capacity of 2000 records divided into 10 extents, with 2
extents allocated immediately.

An example of using the :BUILD command to create a new file on a volume set/class is as follows:

:BUILD VFILE;DISC =500,10,l;REC =-80;DEV =VCLASSl

Name of existing volume class/

This file is confined to volumes which reside on devices of that device class.

The following example uses the CODE= parameter. In this particular case you wish to create a
logging file called NEWDATA:

:BUILD NEWDATA;DISC =3000,1,l;CODE =LOG

ADDITIONAL DISCUSSION

Using Files
Intrinsics Reference Manual

2-25

:BYE
Ends an interactive session.

SYNTAX

I :BYE I

PARAMETERS

None

USE

Available In Session? YES

In Job? NO

In Break? YES

Programmatically? NO

Breakable? YES (Aborts log-off message)

OPERATION

Terminates a session, and displays the cpu time used (in seconds), connect time (in minutes), and the
date and time, as follows:

CPU=48. CONNECT=35. WED, OCT 12, 1977, 10:56 PM

MPE also adds the central-processor time and connect-time, along with the permanent file space used
by your session, to the resource-usage counters maintained for your log-on account and group. During
your session, you can determine the account and group totals by entering the :REPORT command.

If you hang up the receiver prior to logging off at a terminal with a telephone connection, MPE
automatically terminates your session by implicitly issuing a :BYE command.

If you enter a :HELLO command before logging off, MPE terminates your current session and
immediately initiates a new one. If you are logged on at a terminal with a telephone connection, MPE
does not disconnect the terminal. Instead, MPE maintains the connection, allowing the new session to
begin immediately.

EXAMPLE

To terminate a session, enter:

CPU =l. CONNECT =5. THU, OCT 13, 1977; 12:20 PM

2-26

:COBOL
Compiles a COBOL program.

SYNTAX

:COBOL [textfile] [, [uslfile] [, [listfile] [,[masterfile] [,newfile]]]]

PARAMETERS

textfile

uslfile

listfile

masterfile

new file

Actual designator of input file from which source program is read. Can be any
ASCII input file. Formal designator is COBTEXT. Default is $STDIN.

Actual designator of user subprogram library (USL) file on which object program
is written. Can be any binary output file with filecode of USL (or 1024). Formal
designator is COBUSL. If entered, this parameter must indicate a file created in
one of three ways:

1. By saving a USL file (with the :SA VE comand) created by a previous compla
tion where the default value was used for the uslfile parameter.

2. By building the USL with the Segmenter command -BUILDUSL. (See the
MPE Segmenter Reference Manual.)

3. By creating a new USL file with the MPE :BUILD command and a filecode
parameter of USL or 1024.

Default: $NEWP ASS is assigned

Actual designator of file on which program listing is written. Can be any ASCII
output file. Formal designator is COBLIST. Default is $STDLIST.

Actual designator of master file which is merged against testfile to produce
composite source. Can be any ASCII input file. Formal designator is COBMAST.
Default is that the master file is not read; input is read from textfile.

Actual designator of merged textfile and masterfile. Can be any ASCII output file.
Formal designator is COBNEW. Default is that no file is written.

NOTE

The formal file designators used in this command (COB
TEXT, COBUSL, COBLIST, COBMAST, COBNEW) cannot
be back referenced as actual file designators in the com
mand parameter list. For further information, see the
OPERATION section of the :FILE command.

2-27

USE

Available In Session? YES

In Job? YES

In Break? NO

Programmatically? NO

Breakable? YES (Suspends)

OPERATION

Compiles COBOL program onto a USL file on disc. If you do not specify a source text file, MPE
expects input from your standard input device. If you create the USL prior to compilation, you must
specify a filecode of USL or 1024. If you do not specify a list file, MPE sends the program listing to the
current list device.

EXAMPLE

To compile a COBOL program that you enter from your current input device into an object program in
the USL file $NEWP ASS, and write the listing to your current list device, enter:

:COBOL

If the next command is one to prepare an object program, $NEWPASS can be passed to that command
by specifying $0LDPASS for the uslfile parameter. A file can only be passed between commands or
programs within the same job/session.

To compile a COBOL program residing on the disc file SOURCE into an object program on the USL
file OBJECT, with the program listing to be sent to the disc file LISTFL, enter:

:BUILD OBJECT;CODE=USL
:COBOL SOURCE,OBJECT,LISTFL

ADDITIONAL DISCUSSION

COBOL Reference Manual
COBOL II Reference Manual

2-28

:COBOLGO
Compiles, prepares, and executes a COBOL program.

SYNTAX

:COBOLGO [textfile] [,[listfile] [,[masterfile] [,newfile]

PARAMETERS

textfile

list file

masterfile

new file

USE

Available

Breakable?

OPERATION

Actual designator of input file from which source program is read. Can be any
ASCII input file. Formal designator is COBTEXT. Default is $STDIN.

Actual designator of file on which program listing is written. Can be any ASCII
output file. Formal designator is COBLIST. Default is $STDLIST.

Actual designator of master file which is merged against textfile to produce
composite source. Can be any ASCII input file. Formal designator is COBMAST.
Default is that the master file is not read; input is read from textfile.

Actual designator of merged textfile and masterfile. Can be any ASCII output file.
Formal designator is COBNEW. Default is that no file is written.

NOTE

The formal file designators used in this command (COB
TEXT, COBLIST, COBMAST, COBNEW) cannot be back
referenced as actual file designators in the command pa
rameter list. For further information see the OPERATION
section of the : FILE command.

In Session? YES

In Job? YES

In Break? NO

I Programmatically? NO

YES (Suspends)

Compiles, prepares, and allocates/executes a COBOL program. If you do not specify textfile, MPE
expects your input from your current input device. If you do not specify list file, MPE writes the listing
to your current list device. This command creates a temporary USL file ($NEWPASS) that cannot be
accessed, and a temporary program file that can be accessed under the name $0LDPASS.

2-29

EXAMPLE

To compile, prepare, and execute a COBOL program entered from your current input device, with the
program listing sent to your current list device, enter:

:COBOLGO

To compile, prepare, and execute a COBOL program from the disc file TEXTEL and send the program
listing to the disc file LISTFL, enter:

:COBOLGO TEXTFL,LISTFL

/ I
Text file List file

The :COBOLGO command is equivalent to:

Text file

"'
USL file ' /

List file

:COBOL TEXTFL,$NEWPASS,LISTFL
:PREP $0LDPASS,$NEWPASS

:RUN$0/ASS~ ~

Program USL file Program file
file

ADDITIONAL DISCUSSION

Using the HP 3000
COBOL II Reference Manual

2-30

:COBOLPREP
Compiles and prepares a COBOL program.

SYNTAX

:COBOLPREP [textfile] [,[progfile] [,[listfile]
[,[masterfile] [newfile]]]]

PARAMETERS

text file

progfile

listfile

masterfile

new file

Actual designator of input file from which source program is read. Can be any
ASCII input file. Formal designator is COBTEXT. Default is $STDIN.

Actual designator of program file on which prepared program segments are writ
ten. Can be any binary output file with filecode of PROG or 1029. If parameter is
specified, it must indicate a file created in one of two ways:

1. With the MPE :BUILD command, specifying afilecode of PROG or 1029 and a
numextents parameter value of 1.

2. By specifying a non-existent file in the progfile parameter in which case a job
temporary file of the correct size and type is created.

Formal designator is COBPROG.

Default: $NEWP ASS is assigned.

Actual designator of file on which program listing is written. Can be any ASCII
output file. Formal designator is COBLIST. Default is $STDLIST.

Actual designator of master file which is merged against textfile to produce
composite source. Can be any ASCII input file. Formal designator is COB MAST.
Default is that the master file is not read; input is read from textfile.

Actual designator of merged textfile and masterfile. Can be any ASCII output file.
Formal designator is COBNEW. Default is that no file is written.

NOTE

The formal file designators used in this command (COB
TEXT, COBPROG, COBLIST, COBMAST, COBNEW) can
not be back referenced as actual file designators in the
command parameter list. For further information see the
OPERATION section of the :FILE command.

2-31

USE

Available In Session? YES

In Job? YES

In Break? NO

Programmatically? NO

Breakable? YES (Suspends)

OPERATION

Compiles and prepares a COBOL program onto a program file on disc. If you do not specify textfile,
MPE expects your input from your current input device. If you create the program file prior to compi
lation, you must use the filecode parameter of PROG or 1029 and a numextents parameter value of 1.
If you do not specify listfile, MPE sends the listing output to your current list device. The USL file
created during compilation is a temporary file passed directly to the preparation mechanism; you can
access it under the name $0LDPASS only if the program file is not $NEWPASS.

EXAMPLE

To compile and prepare a COBOL program entered through your current input device, onto the file
$NEWPASS, with the listing printed on the current list device, enter:

:COBO LP REP

If the next command is one to execute the program, the file $NEWP ASS is referenced in the execute
command under the name $0LDPASS.

To compile and prepare a COBOL source program input from the textfile named SFILE into a pro
gram file named MYPROG, with the resulting listing sent to the current list device, enter:

:COBOLPREP SFILE,MYPROG

ADDITIONAL DISCUSSION

Using the HP 3000
COBOL II Reference Manual

2-32

:COMMENT
Inserts comment into command stream.

SYNTAX

:COMMENT [text]

PARAMETERS

text Information comprising comment text. If last non-blank character is ampersand
(&),comment text is continued onto next line. Default is null comment. (A record
containing only :COMMENT is inserted in command stream.)

USE

Available In Session? YES

In Job? YES

In Break? YES

Programmatically? YES

Breakable? NO

OPERATION

The :COMMENT command allows you to include comments or notes in job listings produced on hard
copy devices to create headings or explain the purpose of commands or logic used. After :COMMENT is
entered, it can be followed by the message made up of any ASCII characters. This command is used
primarily in batch jobs but can be used in sessions as well.

EXAMPLE

The following example employs a comment as a job heading.

:JOB MAC.TECHPUBS
PRIORITY = ES; INPRI = 8
PRI = DS; INPRI = 13; TIME = ?
JOB NUMBER = #JS
MON,SEP 8, 1980, 2:21 PM
HP3000 I MPE IV C.00.00

:COMMENT - THIS IS A SAMPLE JOB
:FORTGO

2-33

:CONSOLE

Displays the location of the operator's console.

SYNTAX

:CONSOLE

PARAMETERS

None

USE

Available In Session? YES

In Job? YES

In Break? YES

Programmatically? YES

Breakable? NO

OPERATION

This command allows any user to find the current location of the console. Using this command without
any parameters requires no special capabilities and the device number of the system console will be
returned.

EXAMPLE

:CONSOLE

Console is currently assigned to LDEV 20.

ADDITIONAL DISCUSSION

See Console Operator's Guide for a discussion of the operator command :CONSOLE.

2-34

:CONTINUE
Overrides job or session error.

SYNTAX

:CONTINUE

PARAMETERS

None

USE

Available In Session? YES

In Job? YES

In Break? NO

Programmatically? NO

Breakable? NO

OPERATION

The :CONTINUE command permits ajob or session to continue even though the next command results
in an error (with accompanying error message). Typically used when anticipating errors that you wish
to override and applies only to the command immediately following :CONTINUE.

EXAMPLE
If you anticipate a possible error resulting from the command

:RUNMYPROG

and wish to override this error and allow a job to continue, enter:

:JOB MAC.PUBS
:CONTINUE
:RUNMYPROG
:RUN MYPROG2
:EOJ

2-35

:DATA
Enters data into system from devicefile. (Cannot be used to enter data from $STDIN.)

SYNTAX

:DATA Usname,]username[/userpass] .acctname[/acctpass] [;filename]

PARAMETER

1sname

username

user pass

acctname

acct pass

filename

Name of job or session that is to read data. Default is no job/session name.

Your user name that allows you to access MPE under this account, as established
by Account Manager. (REQUIRED PARAMETER)

Your user password, optionally assigned by Account Manager.

Name of account under which job/session is running, as established by System
Manager. (REQUIRED PARAMETER)

Account password, optionally assigned by System Manager.

Additional qualifying name for the data that can be used by job or session to
access the data. May be used, for instance, to distinguish two separate data decks
from different card readers read by the same program. Default is that no distin
guishing name is assigned.

Note that the jsname, username, userpass, acctname, acctpass, and filename parameters all are
names that can contain up to 8 alpha-numeric characters, beginning with a letter.

USE

I I I

Available In Session? YES (but not from $STDIN)

In Job? YES (but not from $STDIN)

In Break? NO

Programmatically? NO

Breakable? NO

OPERATION

Identifies input to be read from a device file other than your standard job/session input file, for
example when reading a file from a batch input device while running an interactive session.

To designate a set of data as an auxiliary file for your job or session, enter the :DATA command,
followed by the data and terminated with the :EOD command. The data can only be read by a job or
session that has the same identity ((jsname,] username.account), i.e., the same identity that is used on
the data command, and can only be submitted via a device configured to accept the :DATA command.
If the filename parameter is omitted~ data can be read by any access from a job or session with the
same identity.

2-36

When the data file is placed on the input device and the device is readied, MPE reads the entire file (if
input from a spooled device), or the :DATA command only (if input from a non-spooled device). From
this point on, your job can access the data, which remains available until it is actually read.

The :DATA command implicitly initiates communication with MPE, and thus is the only command not
entered within a formally initiated job or session. Files identified by :DATA may be input on cards,
magnetic tape, paper tape, or from a terminal, but not from disc. When entered from magnetic tape,
such a file must reside on a single tape volume. The :DATA command may not be used for data
embedded within the standard input stream or for data on disc files.

NOTE

The :DATA command establishes the standard input file of
the device on which it is entered as a data file. Therefore, it
is not a command to be used on a device which is active
within a formally initiated job or session. For example, if
you enter the :DATA command from your terminal during a
session, it makes the terminal a data file for some un
specified process. Then, until a process issues a request for
data from the terminal, it will not be available for any other
function.

To designate data for your job or session, enter the :DAT A command, followed by the data, followed by
the :EOD command. The data can only be read by a job/ses.sion that has the same identity (Usname,]
username.acctname).

If the filename parameter is omitted, data can be read by any access from a job/session with the same
identity.

When the data file is placed on the input device and the device is readied, MPE reads the entire file (if
input from a spooled device), or the :DATA command only (if input from a non-spooled device). From
this point on, your job can access the data, which remains available until it is actually read.

The :DAT A command implicitly initiates communication with MPE, and thus is the only command
not entered within a formally-initiated job or session. Files identified by :DATA may be input on cards,
magnetic tape, paper tape, or from a terminal (but not from disc). When entered from magnetic tape,
such a file must reside on a single tape volume.

2-37

EXAMPLE

As an example, suppose you are running a session identified by the session name SESSA, user name
BROWN, and account name ACCTl. You wish to make data on punched cards available to that
session, to be used by a program named PROGY. This program references the data under the formal
file designator DATAFL. Proceed as follows:

1. Arrange your data deck beginning with the :DATA command and terminating with the :EOD
command, as follows:

:DATA SESSA, BROWN.ACCTl

(YOUR DATA)

:EOD

2. Load the cards into the card reader and make the reader ready. If the card reader is a spooled
device, the data is copied to disc, where it awaits your access. If it is not a spooled device, the
:DATA command is read but the subsequent data remains in the card reader until your program
accesses it. The :DATA command is used to build an entry in the device directory that identifies
the file to the system.

3. Begin your session, making sure that you use precisely the same session identity entered in your
:DATA command. (For instance, if you omit the optional session name SESSA, your session will
not be able to access the data.) To log on, enter:

:HELLO SESSA,BROWN.ACCTl

Same identity used in :DAT A command

4. Enter a :FILE command equating the formal file designator DATAFL with the card reader. For
instance,

:FILE DATAFL;DEV=CARD

5. Run the program that requires the data; when the program attempts to read the data, it will be
available:

:RUN PROGY

NOTE

If you have not entered the data through the card reader
prior to this step, the program transmits a message to the
Console Operator requesting this data and waits for him to
furnish it. The operator may, at his option, supply the data
via the :DATA command or by allocating a device confi
gured not to accept this command; or if he does not have the
data, he may send you a message asking you to supply it or
he may abort the session.

6. Once the data has been read, it is no longer available to the system. When you run another
program requiring this data, you must therefore enter the data again in the above manner.

2-38

:DEBUG
Invokes the MPE Debug facility. (Privileged Mode capability required)

SYNTAX

PARAMETER

None

USE

Available In Session? YES

In Job? NO

In Break? YES

Programmatically? NO

Breakable? NO

OPERATION

(Privileged Mode capability required)
The :DEBUG command is an extension of the MPE Debug facility and is used primarily by systems
programmers; its use is explained in the MPE Debug/Stack Dump Reference Manual.

IMPORTANT NOTE

The normal checks and limitations that apply to the stan
dard users in MPE are bypassed in privileged mode. It is
possible for a privileged mode user to destroy the integrity of
the system, including the MPE operating system software
itself. Hewlett-Packard will investigate and attempt to re
solve problems resulting from the use of privileged mode
code. This service, which is not provided under the standard
Service Contract, is available on a time and materials bil
ling basis. However, Hewlett-Packard will not support, cor
rect, or attend to any modification of the MPE operating
system software.

ADDITIONAL DISCUSSION

MPE Debut/Stack Dump Reference Manual.

2-39

:DISASSOCIATE

Removes control of a device from the user.

SYNTAX

I :DISASSOCIATE devclass

PARAMETERS

devclass The name of a logical device confiured during SYSDUMP.

USE

Available In Session? YES

In Job? NO

In Break? YES

Program ma tically? YES

Breakable? NO

OPERATION

This command counteracts a previously issued :ASSOCIATE command in that it removes the control
of a device class from a user. The command may be issued by the console operator and by the user. The
user implicitly disassociates a device when logging off.

EXAMPLE

:DISASSOCIATE PRINTER

ADDITIONAL DISCUSSION

Console Operator's Guide.

:DISMOUNT
Causes a volume set that was previously explicitly mounted by the user to be dismounted.

SYNTAX

*
:DISMOUNT [] [.groupname[.acctname]]

vcsname

PARAMETERS

*

vcsname

groupname.
acctname

USE

Available

Breakable?

OPERATION

Specifies the home volume set for the group and account specified, or the log-on
group and account if groupname.acctname are not specified. Default.

Volume set/class name, specifying a previously-defined volume class name or vol
ume set name. Default is *.

Specify the group and account which created the volume set. Default is log-on
group and account.

In Session? YES

In Job? YES

In Break? YES

Programmatically? NO

NO

The :DISMOUNT command allows you to dismount a volume set that you previously explicitly
mounted via a :MOUNT command. Ifthere are no other users ofthe volume set, the devices on which it
resides are made available to the system. You can only request a dismount for a volume set which you
have caused to be mounted; you cannot affect the status of the volume set with respect to other users.

EXAMPLE

To dismount the volume set MYSET, previously mounted by you via a :MOUNTcommand, enter:

:DISMOUNT MYSET

2-41

:DSCOPY
Enables user to copy disc files locally or between HP 3000's.

SYNTAX

PARAMETERS

sfile

sdsdev

sdev

tfile

tdsdeu

(Required Parameter) Identifies the file to be copied. The name can be written in
the following format:

sfile Vlockword] [.groupname] [.accountname]

If the source file is in a group.account different from the requestor's logon
group.account, the requestor must have read and lock access to the source file.

(Optional Parameter) The device classname or logical device number that was
used to open the communications link to the remote computer where the source
file resides.

Default: The local system (that is, the system where the transfer request is
submitted).

(Optional Parameter) The classname or logical device number of the disc where
the source file resides.

Default: DISC.

(Optional Parameter) Specifies the file to receive the data. The name can be
written in the following format:

tfile [llockword] [.groupname] [.accountname]

Default: The new file has the same filename, groupname, and accountname as
the source file. Security is on for the new file, even though the source
file may have been released.

(Optional Parameter) The device classname or logical device number that was
used to open the communications link to the remote computer where the target
file will reside.

Default: DSCOPY copies the sourcefile to the local computer and assigns the
same filename as the sourcefile name. If the source computer is the
local system, this default causes a file system error (because the file
already exists).

Means the target dsdevice (i.e., the target computer) is the same as the source
dsdevice (i.e., the source computer).

2-42

* (Optional Parameter) The device classname or logical device number of the disc
where the new file should reside.

Default: DISC

USE

I Available In Session? YES

In Job? YES

In Break? NO

Pro grammatically? NO*

Breakable? NO

*Call the DSCOPY intrinsic rather than use the COMMAND intrinsic.

OPERATION

This command accesses the Network File Transfer (NFT) program that allows the user to copy disc
files from within his own HP 3000, or between HP 3000's, via a DS/3000 communication link. The user
can initiate copy operations from sessions, jobs, or programs. DSCOPY can be used to copy users' files
and MPE system files as well as data management files such as KSAM/3000 files. It does not copy
Image files.

EXAMPLE

To make a local copy of SFILE and name the new file TFILE, use either of the following:

:DSCOPY SFILE TO TFILE or :DSCOPY SFILE; TFILE

To copy a file from the computer connected to dsline SYSA into your logon group (on the local system),
enter:

:DSCOPY SFILE,SYSA;TFILE

To copy a file on the same remote system, enter:

:DSCOPY FILEA, SYSX TO FILEB, SYSX

To copy a file between two remote systems, enter:

:DSCOPY FILEA, SYSX TO FILEB, SYSY

ADDITIONAL DISCUSSION

DS/3000 Reference Manual.

2-43

:DSLINE
Opens or closes communication lines with DS/3000.

SYNTAX

To open a DS line:

:DSLINE dsdevice[;LINEBUF=buffsize]

[;LOCID=local-id-sequence]
[;REMID =remote-id-sequence 1 [,remote-id-sequence2]]
[;PHNUM=telephone number]
[;EXCLUSIVE]
[;COMP]
[;NOCOMP]
[;QUIET]

To close a communication line:

dsdevice
:DSLINE [ds-line-number];CLOSE

@

PARAMETERS

dsdevice Device class name or logical device number assigned to the DS/3000 communica
tions driver IODSO during system configuration. This parameter specifies what
physical line you wish to use. (REQUIRED PARAMETER)

buffsize A decimal integer specifying the size (in words) of the DS/3000 line buffer to be
used in conjunction with the particular communications line. The integer must be
within the range 304 < buffer size> 4095. Default is the buffer size entered in
response to the PREFERRED BUFFER SIZE prompt during system
configuration.

EXCLUSIVE Specifies that you want exclusive use of the particular communications line. If
the requested line already is open and you have specified the exclusive option,
DS/3000 will deny you access to the line. Use of this parameter requires CS
capability. Default is that the line is opened non-exclusive.

local-id-sequence A string of ASCII characters contained within quotation marks or a string of octal
numbers separated by commas and contained within parameters. If you wish to
use a quotation mark within an ASCII string, use two successive quotation marks.
In the case of an octal sequence, each octal number represents one byte and must
be within the range 0 - 377. The maximum number of ASCII characters or octal
numbers allowed is 16.

2-44

The supplied string of ASCII characters or octal numbers defines the ID sequence
that will be sent from your HP 3000 to the remote HP 3000 when you attempt to
establish the telephone connection. If the remote HP 3000 does not recognize the
supplied ID sequence as valid, the telephone connection is terminated. Default is
the ASCII or octal string entered in response to the LOCAL SEQUENCE prompt
during system configuration.

remote-id- A string of ASCII characters or octal numbers in the same format as described
sequence under the local-id-sequence parameter.

The supplied strings of ASCII characters or octal numbers define those remote
HP 3000 ID sequences that will be considered valid when you attempt to establish
the telephone connection. If the remote HP 3000 does not send a valid ID se
quence, the telephone connection is terminated. Default is the ASCII and octal
strings entered in response to the REMOTE ID SEQUENCE prompt during sys
tem configuration.

telephone-number A telephone number consisting of digits and dashes. The maximum length
permitted (including both digits and dashes) is 20 characters. Provided that YES
was entered in response to the DIAL FACILITY prompt during system configu
ration, this telephone number will be displayed at the operator's console of your
HP 3000 and the operator will then establish the telephone connection by dialing
that number at the MODEM. Default is the first one entered in response to the
PHONE NUMBER prompt during system configuration.

ds-line-number The DS line number assigned to you by DS/3000 when the particular line was
opened.

@ Specifies that you wish to close all lines that you currently have open.

CLOSE Specifies that you wish to close the specified lines.

COMP Overrides the current system default, which was set at configuration time or set
by the system operator, and activates data compression. In this way, the mode of
operation is set for your subsequent DS activity. This parameter does not affect
other users sharing the line.

NOCOMP Deactivates the data compression mode.

QUIET When you issue the DSLINE command with this parameter added, the message
identifying the DS line number is suppressed. The messages associated with the
subsequent REMOTE HELLO and REMOTE BYE commands will also be
suppressed.

USE

Available In Session? YES

In Job? YES

In Break? NO

Programmatically? YES

Breakable? NO

2-45

OPERATION

The :DSLINE command opens or closes hardwired or telephone communications lines with DS/3000.
To open a line, the specified line must be currently available for your use, that is the console operator
must have opened the line.

EXAMPLE

To initiate a local session on System A, obtain access to the hardwired communications line that
connects System A to System B, and initiate a remote session on System B, enter:

:HELLO USER.X (Logging on locally)
:DSLINE HDSl (Accessing DS line)
:REMOTE HELLO USER.X (Logging on remotely)

ADDITIONAL DISCUSSION

DS/3000 Reference Manual

2-46

:DSTAT
Displays the current status of the disc drives on the system.

SYNTAX

ldn
:DSTAT [

ALL

PARAMETERS

ldn An integer specifying the logical device number of the disc drive whose status is
desired.

ALL Causes the status of all disc drives, system and non-system, to be displayed.

The default is that if no parameter is included, only the status of non-system discs is displayed.

USE

Available In Session? YES

In Job? YES

In Break? YES

Programmatically? YES

Breakable? NO

OPERATION
The :DST AT command causes the display of the current status of the disc drives on the system.

EXAMPLE
To display the status of all disc drives on the system enter:

:DSTAT ALL

LDEV-TYPE

1-7920
2-7925
3-7902
4-7920

STATUS

SYSTEM
SYSTEM
DOWNED
OFF-LINE

To display the status of LDN 7 enter:

:DSTAT7
LDEV-TYPE

7-7902

STATUS

FOREIGN

2-47

VOLUME (VOLUME SET-GEN)

MH7920Ul
MH7925Ul
FOREIGN DISC

VOLUME (VOLUME SET-GEN)

UNALLOCATED

:EDITOR
Invokes the Editor.

SYNTAX

:EDITOR [listfile]

PARAMETERS

list file

USE

Available

Breakable?

OPERATION

Actual designator of file to receive any output resulting from Editor commands
LIST and XPLAIN when the OFFLINE option is specified. Can be any ASCII
output file. Formal designator is EDTLIST. Because this file often is a line print
er, it usually is defined in an MPE :FILE command and back referenced as fol
lows:

:FILE LISTFILE;DEV=LP
:EDITOR*LISTFILE

Default: If omitted, default is EDTLIST. If specified with no device parameter,
default device is LP.

NOTE

The formal file designator used in this command (EDTLIST)
cannot be back referenced as an actual file designator in the
command parameter list. For further information, see OP
ERATION section of :FILE command.

In Session? YES

In Job? YES

In Break? NO

Programmatically? NO

YES (Suspends)

Accesses the Editor subsystem.

2-48

EXAMPLE

To access the Editor during a session and specify a line printer (device class LPl) as the
list device for offiine output, enter:

:FILE LISTFILE;DEV = LPl
:EDITOR*LISTFILE

ADDITIONAL DISCUSSION

EDIT/3000 Reference Manual.

2-49

:ELSE
Provides an alternate execution sequence for an :IF statement.

SYNTAX

PARAMETERS

None

USE

Available In Session? YES

In Job? YES

In Break? YES

Programmatically? NO

Breakable? NO

OPERATION

The :ELSE command is used only with the :IF command. The :IF command is used with the :ENDIF
command and 1 optionally, the :ELSE command, to control the execution of a job. The :IF command,
:ENDIF command, and optional :ELSE command constitute an IF block. A logical expression is evalu
ated and, if true, the IF block is executed, if false, the ELSE block (if one exists) is executed.

EXAMPLE

:RUN UPDATE1
:IF JCW<WARN THEN

SETJCW UPDATE1JCW:=JCW
RUN UPDATE2
IF JCW<WARN THEN

SETJCW UPDATE2JCW:=JCW
RUN DBSTATUS
IF CUPDATE1JCW < SO> AND

RUN DAILYRPT
END IF

(Run first data base update)
(Continue if OK so far)
(Save that return code)
(Run second data base update)
(Continue if still OK)
(Save the second return code)
(Report current status of DB)

CUPDATE2JCW < SO> THEN

IF CCUPDATE1JCW = 1> OR CUPDATE2JCW =1>> THEN
RUN WEEKLYRPT

END IF

ELSE
RUN FIXUP

END IF
:ENDIF

2-50

(Second update program failed)
(Repair data base and report)

:ENDIF
Terminates an IF block.

SYNTAX

PARAMETERS
None

USE

Available In Session? YES

In Job? YES

In Break? YES

Programmatically? NO

Breakable? NO

OPERATION
The :ENDIF command is used to terminate an IF block. The :IF command, :ENDIF command, and
optional :ELSE commad, constitute an IF block and are used to control the execution of a job. A logical
expression is evaluated and, if true, the IF block is executed; if false, the :ELSE block (if one exists) is
executed.

EXAMPLE
:RUN UPDATE1
:IF JCW<WARN THEN

SETJCW UPDATE1JCW:=JCW
RUN UPDATE2
IF JCW<WARN THEN

SETJCW UPDATE2JCW:=JCW
RUN DBSTATUS
IF CUPDATE1JCW < 50) AND

RUN DAILYRPT
END IF

(Run first data base update)
(Continue if OK so far)
(Save that return code)
(Run second data base update)
(Continue if still OK)
(Save the second return code)
(Report current status of DB)

CUPDATE2JCW < 50) THEN

IF CCUPDATE1JCW = 1> OR CUPDATE2JCW =1)) THEN
RUN WEEKLYRPT

END IF

ELSE
RUN FIXUP

END IF
: END IF

2-51

(Second update program failed)
(Repair data base and report)

:EOD
Denotes end-of-data on input stream and terminates a set of data initiallized by the :DATA command.

SYNTAX

PARAMETERS

None

USE

Available In Session? YES

In Job? YES

In Break? NO

Programmatically? NO

Breakable? NO

OPERATION

The :EOD command is used to signify the end of a data set entered through a standard input device. It
is also used to delimit data entered via the :DATA command from data-accepting devices such as paper
tape and card readers.

Although in most cases programmers use :EOD for delimiting data, any record beginning with a colon
wili delimit the data. Using a command other than :EOD for this purpose, however, depends upon
whether the standard input file is opened with the file name $STDIN or $STDINX. Refer to Table 2-2
to see what delimiters are permitted with certain types of files.

When using a compiler language that does not provide a convention for terminating compilation (such
as END. in SPL), you must enter :EOD after the last record of your source program to ensure proper
delimiting of your input. (The :EOD command is not required when using the BASIC interpreter since
the subsystem provides different conventions for delimiting data).

PROGRAMMER'S NOTE

The :EOD command causes the READ of the FREAD intrin
sic to return the CCG condition code to the calling program.
This condition code indicates the end-of-file condition on the
terminal.

2-52

Table 2-2. END-OF-FILE Indicators

TYPE OF FILE INDICATORS

DAT A file from Standard :EOD } Terminates $STDIN and $STDINX
input device (for Sessions) :EOF

followed by any } Terminates $STDIN
other character

DAT A file from Standard :EOJ

} input device (for jobs) :JOB
:EOD Terminates $STDIN and $STDINX
:DATA
:EOF:

followed by any } Terminates $STDIN. This record is
other character then interpreted by the Command

Interpreter as the next command to
be executed.

:DATA files :EOD
:JOB
:DATA
:EOF:

2-53

EXAMPLE

To terminate a data file entered on cards for a session identified as :DATA SESSl,BLACK.ACCTSP,
you would enter:

:DATA SESS1 ,BLACK.ACCTSP

data

:EDD

The following FORTRAN program is an example of how the :EOD command is used to trminate a set of
data entered through a standard input device.

:FORTRAN

PAGE 0001 HP32102B.01.04 CC> HEWLETT-PACKARD CO. 1980

>$CONTROL USLINIT
> PROGRAM MONEY
> INTEGER QUARTERS,DIMES,PENNIES
> DISPLAY "INPUT MONEY AMOUNT IN DECIMAL FORM 11

> ACCEPT DECIMALFORM
> CALL CHANGERCDECIMALFORM,QUARTERS,DIMES,NICKELS,PENNIES>
> DISPLAY QUARTERS, 11 QUARTERS 11

> DISPLAY DIMES, 11 DIMES"
> DISPLAY NICKELS, 11 NICKELS"
> DISPLAY PENNIES, 11 PENNIES 11

> STOP
> END

PROGRAM UNIT MONEY COMPILED
> SUBROUTINE CHANGERCDECIMALFORM,QUARTERS,DIMES,NICKELS,PENNIES>
> INTEGER QUARTERS,DIMES,PENNIES
> DECIMALFORM = DECIMALFORM•100
> QUARTERS = DECIMALFORM/25
> REMAINDER = DECIMALFORM-CQUARTERS•2S>
> DIMES=REMAINDER/10
> REMAINDER=REMAINDER-CDIMES•10>
> NICKELS=REMAINDER/S
> PENNIES=REMAINDER-CNICKELS•S>
> RETURN

PROGRAM UNIT CHANGER COMPILED
>:EDD

**** GLOBAL STATISTICS ****
**** NO ERRORS, NO WARNINGS ****
TOTAL COMPILATION TIME 0:00:01
TOTAL ELAPSED TIME 0:01:29

END OF COMPILE

2-54

:EOF:
Simulates hardware end-of-file on input stream from any device.

SYNTAX

:EOF: (The last colon in this command must be followed by a blank)

PARAMETERS

None

USE

Available In Session? YES

In Job? YES

In Break? NO

Programmatically? NO

Breakable? NO

OPERATION

Denotes end-of-file read through an input stream. Required to simulate a physical end-of-file on HP
2894A Card Reader/Punch when that device is configured to refuse data submitted via a :DATA com
mand. (This device does not provide a true hardware end-of-file indication.)

EXAMPLE

:EOF: (The last colon in this command must be followed by a blank)

2-55

:EOJ
Ends a batch job.

SYNTAX

B
PARAMETERS

None

USE

Available In Session? NO

In Job? YES

In Break? NO

Programmatically? NO

Breakable? NO

OPERATION

The :EOJ command terminates a batch job and displays the CPU time (in seconds) and the elapsed
time since the beginning of the job (rounded upward to the nearest minute). MPE also adds the central
processor time and file space used by your job to the resource usage counters maintained for your
log-on account and group.

If you omit the :EOJ command from a job, the next :JOB command terminates the current job and
starts a new one. (The end of the first job is indicated by the standard end-of-job display, and the
beginning of the next job is denoted by the job-initiation display, in the normal way.

EXAMPLE

:EOJ

CPU SEC.=4. ELAPSED MIN.=8. TUE, OCT 18, 1977, 4:17 PM

2-56

:FCOPY
Accesses the FCOPY subsystem.

SYNTAX

:FCOPY lfcopycommand]

PARAMETERS

fcopycommand An FCOPY subsystem command. See the FCOPY Reference Manual for a de
scription of the command syntax.

USE

Available In Session? YES

In Job? YES

In Break? NO

Pro grammatically? NO

Breakable? YES
J

OPERATION

This command accesses the FCOPY subsystem from MPE. If the command is entered with no
parameters, FCOPY prompts (>) the user for subsystem commands one at a time until an EXIT
command is entered. If the fcopycommand parameter is used, FCOPY executes the FCOPY subsystem
command and then returns control to MPE.

EXAMPLE

To access the FCOPY subsystem to execute multiple commands, enter:

:FCOPY
HP32212A.3.12 FILE COPIER (C) HEWLETT-PACKARD CO. 1980

> (FCOPY subsystem prompt character)

To access FCOPY to execute a single command and return control to MPE, enter the command as
follows:

:FCOPY FROM =UDC.COHEN;TO =;OCTAL;CHAR .

ADDITIONAL DISCUSSION

FCOPY Reference Manual

2-57

:FILE
Declares file attributes to be used at file open time. May be used to override programmatic or system
default file specifications.

SYNTAX

{

devicespec [access][disposition] }
:FILE namespec access[devicespec][disposition]

disposition [access][devicespec]

PARAMETERS

namespec
(NAME)

devices pee
(DEVICE)

access (ACCESS)

Consists of the formal name used by the program and may be equated to another
file in the system. (REQUIRED PARAMETER)

A list of parameters giving the physical description of the REC, DEV, DISC,
CODE, RIO, NORIO, STD, MSG and CIR parameters.

A list of parameters specifying the type of access granted to a file.

disposition (DISP) Specifies what is to be done with the file after it is closed. This consists of the
DEL, SA VE, and TEMP parameters.

SYNTAX FOR NAMESPEC

formaldesignator [= *formaldesignator
[=$NULL
[=$NEWPASS
[=$0LDPASS
[=$STDIN
[=$STDINX
[=$STDLIST

]
]
]

J
J
]
]

[= filereference]

[

,NEW]
,OLD
,OLDTEMP

NAMESPEC PARAMETERS

formaldesignator Formal name specified by program opening the file. Contains from 1 to 8 al
phanumeric characters in each field, beginning with a letter. formaldesignator is
used as the file name when filereference is not specified. The format is:

filename [.groupname [.accountname]]

*formaldesignator Equates the formal designator to a formal designator from a previous :FILE com
mand. When a formal designator is equated to another, no other :FILE command
parameters are allowed.

2-58

$NULL

$NEWPASS

$0LDPASS

$STD IN

$STDINX

$STD LIST

filereference

NEW

OLD

OLDTEMP

System-defined file that is always empty.

System-defined job temporary file. Opening $NEWPASS purges any previous
temporary file. When $NEWPASS is closed, it is referenced by the name
$0LDPASS.

System-defined name of the last temporary file closed as $NEWPASS.

System defined name of the standard job input device. A colon as the first charac
ter read on this file indicates end-of-data.

Equivalent to $STDIN except colon can be read as the first character and re
ceived as data (:JOB, :DATA, :EOJ, and :EOD can not be read as data, however).

System defined name for standard job/session list device.

Actual name of file, in the following format:

filename f!lockword] [.groupname [.accountname]]

Each field may contain from 1 to 8 alphanumeric characters, beginning with a
letter. Omission of lockword causes MPE to ask for it when the file is opened, if
one is present. Default groupname and accountname are the logon group and
account.

Specification that the file is a new file.

Previously-existing permanent file saved in system or private volume domain.
File continues to exist after current session/job terminates.

Previously-existing temporary file in session/job temporary file domain. File is
deleted at end of current session/job.

NOTE

NEW, OLD, and OLDTEMP specify the file domain indicat
ing where the file exists. If all are omitted, the domain
specified in the FOPEN intrinsic takes effect.

2-59

SYNTAX FOR DEVICESPEC

[;REC= [recsize] [, [blockfactor] [, [F] [,BINARY]]]]
[U] [,ASCII]
[V]

[;DEV= [[dsdevice] #] [device] [, [outpriority] Lnumcopies]]]
[;DISC = [numrec] [, [numextents] Linitalloc]]]
[;CODE= [filecode]]
[;RIO]
[;NORIO]
[;STD]
[;MSG]
[;CIR]

These parameters can be used for new files only with the exception of REC and DEV. REC can also be
specified for system defined files. DEV can be used with OLD files and with files found on DS lines.

:FILE A,OLD;DEV=23 system looks for data entered on Device 23.

:FILE A,OLD;DEV =FONZ* DISC System accessed by DS line

DEVICESPEC PARAMETERS

rec size

blockfactor

Record size. A positive number indicates words while negative indicates bytes.
For fixed-length files, this is logical record size. For undefined length, this is the
maximum record size. For variable length files this is the maximum logical
record size ifblockfactor is 1. If not, this is used to calculate the maximum logical
record size and physical record size.

Records always begin on word boundaries, therefore the record size is rounded up
to the nearest word boundary for block size calculations. For a binary file or a
variable length ASCII file, odd byte lengths are rounded up and the extra byte is
available for data. However, if an odd byte length record size is specified for a
fixed or undefined length record file, the extra byte is not available for data.

For example: a fixed length ASCII file with record size specified as 11 bytes will
have only 11 bytes available for data in each logical record. However, to deter
mine actual blocksize, 12 bytes will be used for the record size (blocksize = 12
bytes x blockfactor). if the file was specified as a binary file, the 11 bytes would be
rounded up to 12 bytes (6 words), all of which are available for each logical record.

Number of logical records per physical block. Default is calculated by dividing the
specified recsize into the configured blocksize; this value is rounded downward to
an integer that is never less than 1. For variable length record files, blockfactor is
always set to 1 after using the original value along with recsize to calculate
maximum logical record size and physical record size. Blockfactor is ignored for
undefined length records.

2-60

F, U, V

BINARY

ASCII

device

dsdevice

outpriority

numcopies

File contains fixed (F), undefined (U) or variable (V) length records.

File contains binary-coded records.

File contains ASCII-coded records.

Contains a string of ASCII characters terminating with any non-alphanumeric
character except a slash or period, designating the device on which the file is to
reside. This parameter may be specified in one of the following forms:

devclass
ldn

*
*vcname
**volname

The devclass form represents a device class name of up to eight alphanumeric
characters beginning with a letter, as for example, DISC or TAPE. If devclass is
specified, the file is allocated to any available device in that class. If you are
opening a file which is to reside on a private volume, you must specify device class
DISC; the file then is allocated to any of the home volume set's volumes that fall
within that device class.

The logical device number (ldn) consists of a three-byte numeric string specifying
a particular device. If you are opening a file which is to reside on a private
volume, you must specify a disc drive on which one of the volumes in the home
volume set resides.

The forms* ,*vcname, and**volname are used only if you are opening a file which
is to reside on a private volume.

If* is specified, the file is allocated to any of the volumes of the home volume set.

If **vcname (volume class name) is specified, vcname must be a member of the
home volume set. The file then is allocated to any of the volumes within the
volume class.

If**volname (volume name) is specified, volname must be a member of the home
volume set. The file then is allocated to that volume.

Any of the forms may be used to reference files on a remote computer by
preceding the device or volume specification with dsdevice #.

The output priority for spooled device files. This is a value between 1 (lowest
priority) and 13 (highest priority).

Number of copies of file for spooled output device files. Maximum is 127.

2-61

numrec

numextents

initalloc

filecode

Maximum number of logical records. For fixed and undefined length files the
maximum value allowed for this field is 2,147,483,647. However, the maximum
sectors per file is 2,097,120 based on the maximum of65535 sectors per extent, 32
extents maximum. Thus the actual maximum number of records will be limited
by blocksize (determined by record size and blockfactor). An approximate practi
cal limit for numrec is 2,097,119 for variable and undefined files, and 267,382,000
for fixed length files.

The file system uses these values to compute other characteristics of the file as
well. Therefore, the values (or default values specified on the :FILE command
may be valid within their respective fields, but may cause overflow errors in the
computation of internally needed file specifications.

See the Intrinsics Manual for a discussion on calculating file space.

Maximum number of disc extents. This is a value from 1 to 32.

Number of extents to be initially allocated to the file at the time is it opened. This
is a value from 1 to 32.

Code indicating a specially-formatted file. This code is recorded in the file label
and is available to processes accessing the file through the FGETINFO intrinsic.
For this parameter, any user can specify a positive integer ranging from 0 to
1023. Certain integers have particular HP-defined meanings, as follows:

Mnemonic

USL
BASD
BASP
BASFP
RL
PROG
SL
VFORM
VF AST
VREF
XLSAV
XL BIN
XLDSP
EDITQ
EDTCQ
EDT CT
RJEPN
QPROC

Integer

-400
-401
-402
1024
1025
1026
1027
1028
1029
1031
1035
1036
1037
1040
1041
1042
1050
1051
1052
1060
1070
1071
1072

Meaning

IMAGE root file.
IMAGE data set.
IMAGE file for DS information.
USL file.
BASIC data file.
BASIC program file.
BASIC fast program file.
RL file.
Program file.
SL file.
VIEW formsfile.
VIEW fast forms file.
VIEW reformat file.
Cross Loader ASCII file (SA VE).
Cross Loader relocated binary file.
Cross Loader ASCII file (DESPLA Y).
Edit KEEPQ file (non-COBOL).
Edit KEEPQ file (COBOL).
Edit TEXT file (COBOL).
RJE punch file.
QUERY procedure file.
QUERY work file.
QUERY work file.

2-62

RIO

NO RIO

STD

MSG

CIR

Mnemonic Integer Meaning
KSAMK 1080 KSAM key file.
GRAPH 1083 GRAPH specification file.
SD 1084 Self-Describing file.
LOG 1090 User Logging logfile.
OPTLF 1130 On-line performance tool logfile.

Default is 0.

If RIO is specified, a relative I/O file is created. The record length parameter will
implicitly be changed to fixed record length. RIO is a special file access method
supported by COBOL II.

Note that "RIO" and "NORIO" specifications affect only the physical charac
teristics of the file. If''NOBUF" is specified in the :FILE command, the file will be
accessed in non-RIO mode; otherwise RIO access is used with RIO files. Note that
"NOBUF" access is provided for special operations on RIO files such as replicat
ing an RIO file. "NOBUF" is not normally used by the RIO user. See the
Intrinsics Manual for a discussion of relative I/O.

A non-relative 1/0 file is created.

A standard MPE Disc file.

Specification of a MSG (Message) file allows, communication ~etween any set of
processes. Acts like a FIFO (first in, first out) queue where records are read from
the start of the file and logically deleted and/or are appended to the end of file.

Acts as normal sequential file until full. When full, the first physical block will be
deleted when the next record is written, and remaining blocks will be logically
shifted to front of file. Cannot be simultaneously accessed by readers and writers.

2-63

SYNTAX FOR ACCESS

[;NOCCTLJ
[;CCTL]

[;NOMULTI]
[;MULTI]
[;GMULTI]

[;ACC = {IN}]
{OUT} [
{UPDATE}
{OUTKEEP}
{APPEND}
{INOUT}

[;BUF [= [numbuffers]]]
[;NOBUF]

[;EXC J
[;SHR]
[;EAR]
[;SEMI]

[;NOLABEL]

[;NOMR]
[;MR]

[;WAIT]
[NOWAIT]

[;LABEL [=[void][, [type][, [expdate] [,seq]]]]]

[;FORMS =formsmsg]

[;NOLOCK]
[;LOCK]
[;NOCOPY]
[;COPY]

ACCESS PARAMETERS

NOCCTL

CCTL

IN

OUT

OUTKEEP

APPEND

UPDATE

Indicates that carriage control characters are not being specified in writes to the
file

Indicates that carriage control characters are being supplied in writes to the file.

Read-access only permitted to the file.

Write-access only permitted to the file.

Write-access only permitted to file, except that previous data is not deleted.

Append-access only permitted to file. Is invalid for variable length files. (An error
of this type will be detected at FOPEN time, FS ERROR 40.)

Any type of access is permitted to the file,

2-64

IN OUT

numbuffers

NOBUF

EXC

SHR

EAR

SEMI

NOMULTI

MULTI

GMULTI

NOMR

MR

WAIT

NOWAIT

NO LABEL

LABEL

vol id

type

File permits input/output access. (Any file intrinsic except FUPDATE can be
issued against the file.)

Number of buffers to be allocated for the file. This is an integer from 1 to 16.
numbuffers is ignored for terminals. The default is 2 buffers.

Specifies that no buffers are allocated for the file.

Exclusive access. After the file is opened no other accessors are permitted. For
message and circular files, EXC means 1 writer and 1 reader.

Share access. After file is opened other accessors are permitted.

Exclusive for writer, allows multiple readers. If a message file, changed to SEMI.

Same as EAR, i.e., no difference in execution and both set a 2 in exclusive access
field. For message files, allows exclusive reader, multiple writers. If not a mes
sage file, SEMI acts like EAR (exclusive writer, multiple readers.)

Prohibits sharing files in MULTI mode.

Concurrent accessors of the file may regard the file as if no buffering is taking
place. Access-control information is shared by the accessor. Accessors must exist
in same job/session.

Same as MULTI except allows accessors to be in different jobs/sessions.

Multi-record access to file is not permitted.

Multi-record access to file is permitted.

I/O requests to the file must be complete before control is returned to the
program.

Control is returned to the program as soon as I/O requests are queued by MPE.
The program does not have to wait for the physical I/O to be complete before
resuming execution.

Specifies that this is not a labeled tape.

Specifies that this is a labeled tape.

Six alphanumeric characters identifying a labeled magnetic tape volume. Op
tional when file opened for output; volid for at least the first volume must be
specified when file opened for input. Non-printing characters can not be used.

Three characters that specify label type information, as follows:

ANS ANSI-standard label.
IBM IBM-standard label.

2-65

expdate

seg

formsmsg

NO LOCK

LOCK

COPY

NOCOPY

Month/day/year, written in the format mm/dd/yy. This specifies the expiration
date of the file, or the date after which information contained in the file is no
longer useful. The file can be overwritten after this date.

Up to four numeric characters that specify the position of the file relative to other
files on the tape, or one of the following:

0 - Causes a search of all volumes until the file is found.
ADDF - The tape will be positioned so as to add a new file on the end of

the volume (or last volume in a multi-volume set). Not to be used
for the first file on a volume set.

NEXT Tape will be positioned at next file on the tape. If this is the first
open for the file, then NEXT will position the file on the tape. If
this is not the first open for the file and rewind occurred on the
previous close, then the position will remain at the beginning of
the previous file.

A message that can be used for such purposes as telling the Console Operator
what type of paper to use in the line printer. This message will be displayed on
the console and must be verified by the operator before the user can access the
file. The message itself is a string of not more than 49 characters terminated with
a period.

Does not allow dynamic locking/unlocking of file through the FLOCK/
FUNLOCK intrinsics.

Allows dynamic locking/unlocking through FLOCK/FUNLOCK intrinsics.

For message files only. Allows MSG files to be either copied (logical data record
read) or replicated (block read and write completely duplicating file) to another
file.

Default. The MSG file will be accessed in its nature mode, i.e., as a MSG file.

SYNTAX FOR DISPOSITION

[;DEL]
[;TEMP]
[;SAVE]

If none of these parameters are supplied, the disposition of the file is as it was when opened, or as
specified by the close.

2-66

DISPOSITION PARAMETERS

DEL The file is deleted when closed.

SAVE The file is saved in the permanent file domain when closed.

TEMP The file is saved in the job/session temporary domain when closed.

USE

Available In Session? YES

In Job? YES

In Break? YES

Programmatically? YES

Breakable? NO

OPERATION

Allows you to change the specifications for files, including the devices on which they reside, at the time
you run your program, overriding specifications supplied to the FOPEN intrinsic. The :FILE command
remains in effect for the entire job or session unless revoked by the :RESET command or superseded by
another :FILE command.

To use the :FILE command for a file, you must open that file with a formal file designator, the name by
which your program recognizes the file. In addition, the formal file designator provides a way for
commands and code outside your program to reference the file.

NOTE

When you are programming in a language other than SPL,
and do not yourself write the FOPEN intrinsic calls for files
used by your program, the :FILE command is the only way
you can control or change the programmatic file
specifications.

IMPLICIT :FILE COMMANDS FOR SUBSYSTEMS

When an actual file designator appears as a command parameter, it is automatically equated to a
formal file designator used within the subsystem by an implicit :FILE command issued by the
command executor. For instance, within the FORTRAN compiler the formal file designator for the
textfile input is FTNTEXT. When you specify a file named ALSFILE for textfile input as shown below,

:FORTRAN ALSFILE

MPE implicitly issues the following :FILE command, invisible to yourself:

: FILE ITNTEXT =ALSFILE

2-67

You cannot back reference any of the formal file designators associated with the command as actual
file designators, i.e., DO NOT use the formal file designators FTNTEXT, FTNUSL, FTNLIST,
FTNMAST or FTNNEW as actual file names. Therefore, the use of FTNTEXT as a file name;

:FORTRAN*FTNTEXT

is invalid because the implicit :FILE command

:FILE FTNTEXT =*FTNTEXT

issued by the FORTRAN compiler will then back reference itself.

The following is an example of a correct use of the *formaldesignator, in this case specifying a file on
magnetic tape used as a source file during a FORTRAN compilation:

:FILE SOURCE=TAPEl,OLD;DEV=TAPE; REC=-80
: FORTRAN* SOURCE

Implicitly, the command executor issues the following :FILE command, back referencing your previ
ous :FILE command:

:FILE FTNTEXT=*SOURCE

Implicit :FILE commands, like explicit :FILE commands, cancel any previous :FILE commands that
reference the same formal file designators.

EXAMPLE

A program references two files by the file names (formaldesignators) SOURCE and DEST, but you
wish to use two existing disc files INX and 0 UTX as the actual files for the program. This is done by:

:FILE SOURCE=INX
:FILE DEST=OUTX
:RUNMYPROG

Now you wish to run the program using input from a card reader which has 80-byte records and has the
device class name CARD:

:FILE SOURCE,OLD;REC=-80;DEV=CARD

Output is to be sent to a new file FILEX with 64-word fixed-length records, blocked two records per
block in ASCII code. FILEX is limited to 800 records among 10 extents, two of which are to be immedi
ately allocated. The file is to be permanently saved when MYPROG closes it. Enter:

:FILE DEST=FILEX,NEW;REC=64,2,F,ASCII;DISC=800,10,2;SAVE
:RUNMYPROG

Note that the file equation only modifies those items specified. All other attributes used will come from
the FOPEN for DEST or the FOPEN defaults.

ADDITIONAL DISCUSSION

Intrinsics Reference Manual
Using Files l'.1 anual

2-68

:FORTGO
Compiles, prepares, and executes a FORTRAN program.

SYNTAX

:FORTGO [textfile] [,[listfile] [,[masterfile] [,[newfile]

PARAMETERS

textfile

list file

masterfile

new file

USE

Available

? j Breakable.

OPERATION

Actual designator of input file from which source program is read. Can be any
ASCII input file. Formal designator is FTNTEXT. Default is $STDIN.

Actual designator of file on which program listing is written. Can be any ASCII
output file. Formal designator is FTNLIST. Default is $STDLIST.

Actual designator of master file which is merged against textfile to product
composite source. Can be any ASCII input file. Formal designator is FTNMAST.
Default is for no file to be read; input is read from textfile.

Actual designator of merged textfile and masterfile. Can be any ASCII output
file. Formal designator is FTNNEW. Default is for no file to be written.

NOTE

The formal file designators used in this command
(FTNTEXT, FTNLIST, FTNMAST, FTNNEW) cannot be
back referenced as actual file- designators in the command
parameter list. For further information see OPERATION
section of :FILE command.

In Session? YES

In Job? YES

In Break? NO

Programmatically? NO
~ - .,. ..., Y ~s (Su:spend:s)

Compiles, prepares, and allocates/executes a FORTRAN program. If you do not specify a source file;
MPE expects your input from your standard job/session input device. If you do not specify listfile, MPE
writes your listing to your standard job/session list device. This command creates a temporary user
subprogram library (USL) file ($NEWP ASS) that is passed directly from the compiler to the Seg
menter and cannot be accessed. A temporary program file is created during preparation and can be
accessed under the file name $0LDP ASS.

2-69

EXAMPLE

To compile, prepare, and execute a FORTRAN program entered from the disc file SOURCE and
transmit the resulting program listing to the disc file LISTFL, enter:

:FORTGO SOURCE,LISTFL

To enter your source input from a device other than your standard input device, and/or direct the
listing to a device other than your standard listing device, simply name the input and listing files as
command parameters:

:FILE MTAPE;DEV=TAPE
:FILE PRTR;DEV=FASTLP

:FORTGO *MTAPE,*PRTR

I I
Text file List file

ADDITIONAL DISCUSSION

FORTRAN Reference Manual.

Identifies MTAPE as a magnetic tape file.
Identifies PRTR as a special line printer file (FASTLP
class name).
Compiles from MTAPE, writes listing to PRTR, prepares,
and executes.

2-70

:FORTPREP
Compiles and prepares a FORTRAN program.

SYNTAX

:FORTPREP [textfile] [,[progfile] [,[listfile] [,[masterfile] [,newfile]]]]

PARAMETERS

textfile

progfile

listfile

masterfile

new file

Actual designator of input file from which source program is read. Can be any
ASCII input file. Formal designator is FTNTEXT. Default is $STDIN.

Actual designator of program file on which prepared program segments are
written. Can be any binary output file with filecode of PROG or 1029. If entered,
this parameter must indicate a file created in one of two ways:

1. With the MPE:BUILD command using afilecode parameter of PROGor 1029.

NOTE

A program file is limited to only one extent. Thus, the
numextents parameter of the :BUILD command must be 1.

2. By specifying a non-existent file in the progfile parameter, in which case a
job/session temporary file of the correct size and type is created.

Default: $NEWP ASS is assigned.

Actual designator of file on which program listing is written. Can be any ASCII
output file. Formal designator is FTNLIST. Default is $STDLIST.

Actual designator of master file which is merged against textfile to produce
composite source. Can be any ASCII input file. Formal designator is FTNMAST.
Default is that the master file is not read; input is read from textfile.

Actual designator of merged textfile and masterfile. Can be any ASCII output file.
Formal designator is FrNNEW. Default is that no file is written.

NOTE

The formal file designators used in this command
(FTNTEXT, FrNPROG, FTNLIST, FTNMAST, FTNNEW)
cannot be back referenced as actual file designators in the
command parameter list. For further information, See OP
ERATION section of :FILE command.

2-71

USE

Available In Session? YES

In Job? YES

In Break? NO

Programmatically? NO

Breakable? YES (Suspends)

OPERATION

Compiles and prepares a FORTRAN program onto a program file on disc. If you do not specify a source
file, MPE expects your input from your current job/session input device. If you create the program file
prior to compilation, you must assign a filecode of PROG or 1029. If you do not specify listfik, MPE
sends the output to your current list device. The user subprogram library (USL) file created during
compilation is a temporary file passed directly to the preparation mechanism; you can access it under
the name $0LDP ASS only if the program file is not prepared into the file named $NE WP ASS. The
program file is also opened as a temporary file.

EXAMPLE

To compile and prepare a FORTRAN program entered through the current input device, onto the
standard default file $NEWP ASS, with the listing printed on the current list device, enter:

:FORTPREP

If the next command is one to execute the program, the file $NEWP ASS is referenced in the execute
command under the name $0LDP ASS.

To compile and prepare a FORTRAN source program from a text file named TEXTX into a program
file named PROGX, with the reulting listing sent to the list file LISTX, enter:

:FORTPREP TEXTX,PROGX,LISTX

I t \
Text file Program List file

fik

The :FORTPREP command combines the compilation and preparation steps. It is equivalent to:

Text file

"
List file USL file

" I :FORTRAN TEXTX,$NEWPASS,LISTX
:PREP $0LDPASS,PROGX

/ ' USL file Program file

ADDITIONAL DISCUSSION

FORTRAN Reference Manual.

2-72

:FORTRAN
Compiles a FORTRAN program.

SYNTAX

:FORTRAN [textfile] [,[uslfile] [,[listfile] [,[masterfile] [,newfile]]]]

PARAMETERS

textfile

uslfile

listfile

masterfile

new file

Actual designator of input file from which source program is read. Can be any
ASCII input file. Formal designator is FTNTEXT. Default is $STDIN.

Actual designator of user subprogram library (USL) file on which object program
is written. Can be any binary output file with filecode of USL or 1024. Formal
designator is FTNUSL. If entered, this parameter must indicate a file cr.eated
previously in one of four ways:

1. By saving a USL file (with the MPE:SA VE command) created by a previous
compilation where the default value was used for the uslfi,l,e parameter.

2. By building the USL with the Segmenter -BUILDUSL command. (See the
MPE Segmenter Reference Manual.)

3. By creating a new USL file with the MPE:BUILD command with afilecode of
USL or 1024.

4. By specifying a non-existent uslfile parameter, thereby creating a permanent
file of the correct size and type.

Default: $NEWP ASS is assigned.

Actual designator of file on which program listing is written. Can be any ASCII
output file. Formal designator is FrNLIST. Default is $STDLIST.

Actual designator of master file which is merged against textfile to produce
composite source. Can be any ASCII input file. Formal designator is FTNMAST.
Default is that the master file is not read; input is read from the textfile.

Actual designator of merged textfile and masterfile. Can be any ASCII output file.
Formal designator is FrNNEW. Default is that no file is written.

NOTE

The formal file designators used in this command
(FTNTEXT, FTNUSL, FTNLIST, FTNMAST, FTNNEW)
cannot be back referenced as actual file designators in the
command parameter list. For further information see OP
ERATION section of :FILE command.

2-73

USE

Available In Session? YES

In Job? YES

In Break? NO

Programmatically? NO

Breakable? YES (Suspends)

OPERATION

Compiles FORTRAN program onto a USL file on disc. If yv ... ~.o not specify textfile, MPE expects your
input from your current input device. If you create the USL prior to compilation, you must assign a
filecode of USL or 1024. If you do not specify listfile, MPE sends the listing to the current list device.

EXAMPLE

To compile a FORTRAN program entered from your current input device into an object program in
the USL file $NEWPASS, and write the listing to your current list device, enter:

:FORTRAN

If the next command is one to prepare an object program, $NEWPASS can be passed to that command
as an input file named $0LDP ASS.

The following example compiles a program and creates a USL file.

FORTRAN MYSOURCE,MYUSL,MYLIST Compiles program, creates USL file.

/ I t
Text file USL file List file

To compile a FORTRAN program, creating the USL file with the : BUILD command, enter:

:BUILD OBJECT:CODE =USL
:FORTRAN SOURCE,OBJECT ,LISTFL

/ r \
Text file USL file Ust file

ADDITIONAL DISCUSSION

FORTRAN Reference Manual.

2-74

(You must specify the CODE parameter as
USL if you choose to create a USL file with
the :BUILD command.)

:FREERIN
Releases a global Resource Identification Number (RIN).

SYNTAX

I :FREERIN rin

PARAMETERS

rin The RIN to be released. Must be a number from 1 to the configured maximum.
(REQUIRED PARAMETER).

USE

Available In Session? YES

In Job? YES

In Break? NO

Programmatically? NO

Breakable? NO

OPERATION

A Resource Identification Number is used to manage a resource shared between two or more jobs or
sessions so that only one job or session at a time can access that resource.

The user acquires a RIN from the system by entering the : GETRIN command. When all users are
finished with the RIN, the users who acquired it returns it to the system by entering the :FREERIN
command. To free a RIN, you must be the original owner of that RIN, i.e., the user who actually issued
the GETRIN command that allocated the RIN and assigned it a password.

EXAMPLE

To release RIN 1, enter:

:FREERIN 1

ADDITIONAL DISCUSSION

Intrinsics Reference Manual.

2-75

:GETLOG
Establishes a logging identifier on the system.

SYNTAX

/,DISC l
:GETLOG logid; LOG=logfile \,TAPE [;PASS=password]

PARAMETERS
logid

logfile

password

USE

Available

Breakable?

OPERATION

The logging identifier to be established. Contains from 1 to 8 alphanumeric
characters, beginning with a letter.
(REQUIRED PARAMETER)

The name of the file to receive data from the logging procedure. Must be specified
as residing on DISC or TAPE. Contains from 1 to 8 alphanumeric characters
beginning with a letter.
(REQUIRED PARAMETER)

Logging identifier password, optionally assigned by the creator for protection
against illegal use of his identifier. Contains from 1 to 8 alphanumeric charac
ters, beginning with a letter.

In Session? YES

In Job? YES

In Break? YES

Programmatically? YES

NO

:GETLOG specifies the logging identifier and an optional password by entering the logid and other
information specified in the command into the directory of logging identifiers.

The creator of the logging identifier can allow other users access to his logging identifier by notifying
them of the identifier and password. Note that if a password is specified it will be required whenever
the logging process is accessed. Users accessing the logging system with this identifier must supply the
identifier and passwork in the OPENLOG intrinsic.

There cannot be two logids with the same name on the system at the same time. The LISTLOG
command can be used to find out what logids currently exist.

2-76

EXAMPLE

To create the logging identifier FINANCE and associate it with the tape logfile NEWDATA, enter:

:GETLOG FINANCE;LOG=NEWDATA, TAPE

ADDITIONAL DISCUSSION

Console Operators Guide,

2-77

:GETRIN
Acquires global Resource Identification Number (RIN) and assigns password to it.

SYNTAX

:GETRIN rinpassword

PARAMETERS

rinpassword Password required in the intrinsic that locks the RIN. This is a string of up to
eight alphanumeric characters, beginning with a letter.
(REQUIRED PARAMETER)

USE
Available In Session? YES

In Job? YES

In Break? YES

Programmatically? YES

Breakable? NO

OPERATION

The :GETRIN command acquires a global RIN from the MPE RIN pool typically during a session. You
must also assign an arbitrary password for the RIN that aids in restricting its use to proper users only.
You can then give this RIN and the associated password to cooperating users so that it can be locked
and unlocked by them. For instructions on how to lock and unlock the RIN, and how to pass a RIN and
its password as intrinsic parameters, see the MPE Intrinsics Reference Manual.

Users who know the RIN and its password can use it in their programs (in jobs or sessions) until the
user who acquired the RIN releases it via the :FREERIN command. The RIN acquired is always a
positive integer unique within MPE. The total number ofRINs MPE can allocate is specified when the
system is configured and cannot exceed 1024. If all RINs currently available are acquired by other
users when you request one, MPE rejects the request and issues the message:

RIN TABLE FULL

In this case, you must wait until one of the RINs becomes available or see your system manager about
raising the maximum number of RINs that can be assigned.

2-78

EXAMPLE

To acquire a global RIN and assign to it the password MYRIN, enter:

:GETRIN MYRIN

MPE responds with the RIN number assigned, as for example:

RIN: 1

ADDITIONAL DISCUSSION

MPE Intrinsics Reference Manual.

2-79

:HELLO
Initiates an interactive session.

SYNTAX

:HELLO [sessionname ,]username [/user pass] .acct name[/ acct pass]
[,groupname[/grouppass]]

[;TERM= termtype]
[;TIME=cpusecs]

BS
cs

[;PRI={ }]
DS
ES

;INPRI =input priority
[]
;HIP RI

PARAMETERS

sessionname

username

user pass

acctname

acct pass

group name

group pass

Arbitrary name used in conjunctioo with username and acctname parameters to
form a session identity. Contains from 1to8 alphanumeric characters, beginning
with a letter. Default is that no session name is assigned.

A user name, established by Account Manager, that allows you to log on under
this account. Contains from 1 to 8 alphanumeric characters, beginning with a
letter. (REQUIRED PARAMETER)

User password, optionally assigned by Account Manager. Contains from 1 to 8
alphanumeric characters, beginning with a letter.

name of account, as established by Account Manager. Contains from 1 to 8 alpha
numeric characters, beginning with a letter. The acctname parameter must be
preceded by a period. (REQUIRED PARAMETER)

Account password, optionally assigned by System Manager. Contains from 1to8
alphanumeric characters, beginning with a letter.

Name of group to be used for local file domain and CPU time charges. Established
by Account Manager. Contains from 1 to 8 alphanumeric characters, beginning
with a letter. Default is your home group if you are assigned one by Account Man
ager. (Optional if you have a home group, required if home group not assigned.)

(Required if assigned and you are logging on under other than home group. Not
required if logging on under home group.) Group password, optionally assigned
by Account Manager. Contains from 1 to 8 alphanumeric characters, beginning
with a letter.

2-80

termtype

cpusecs

BS, CS, DS, ES

inputpriority

HIP RI

USE

Available

Breakable?

Type of terminal used for input. MPE uses this parameter to determine device
dependent characteristics such as delay factors for carriage returns. Must be a
number from 0 to 16. See Appendix A for a list of terminals.

Default: For hardwired terminals, determined by System Supervisor during sys
tem configuration. No default for terminals that are not hardwired. Required pa
rameter to insure correct listings if your terminal is not hardwired or if your
terminal is not the default termtype.

Maximum CPU time that session can use, entered in seconds. When limit is
reached, session is aborted. Must be a value from 1 to 32767. To specify no limit,
enter question mark("?") or "UNLIM", or omit parameter. Default is no limit.

Execution priority class. BS is highest priority, ES is lowest. If you specify a prior
ity that exceeds the highest permitted for your account or user name by the sys
tem, MPE assigns the highest priority possible below BS. Default is CS.

NOTE

DS and ES are used primarily for batch jobs; their use for
sessions is discouraged.

Relative input priority used in checking against access restrictions imposed by
the jobfence, if one exists. Takes effect at log-on time. Must be a value from 1
(lowest priority) to 13 (highest priority). If a value is specified that is less than or
equal to current jobfence set by Console Operator, session is denied access. De
fault is 8.

Request for maximum session-selection input priority, causing session to be
scheduled regardless of current jobfence or execution limit for sessions. This
parameter can be specified only by users with System Manager or System Super
visor capability. (If not, the system tries to log you on with INPRI =13.) Default is
the current job fence and execution limit.

In Session? YES

In Job? NO

In Break? NO

Programmatically? NO

YES (Log-on message aborted)

2-81

OPERATION

The :HELLO command initiates an interactive session and must be entered from a terminal; no other
device can be used for this command. You must supply both a valid user name and account name in
your log-on commands. Otherwise, MPE rejects your log-on attempt and prints an error message to
that effect. If your log-on attempt is accepted, however, MPE verifies this by printing specific log-on
information and prompting you for your next MPE command. Such information appears in the
following example, where a user has logged on under the user name MAC and the account name
TECHPUBS:

:HELLO MAC.TECHPUBS
HP3000 I MPE IV C.00.00 TUE, OCT 7, 1980, 2:09 PM
--- MPE prompts for next command

Sometimes a welcome message from the Console Operator will appear following MPEs verification of
your log-on.

The session number assigned by MPE always uniquely identifies your session to MPE and to other
users. MPE assigns such numbers to sessions in sequential order as they are logged on.

In certain instances, you may be required to furnish information in addition to the user and account
names in your :HELLO command or:() command log on. This information includes:

• Group Name.
• One or more passwords.
• Terminal type code.

GROUP NAME

The group you select at log on for your local file domain is known as your log-on group. If your account
manager has associated a home group with your user name, and if you desire this group as a log-on
group, you need not specify this - MPE automatically assigns the home group as your log-on group
when you log on. But if you desire to use some other group as log-on group, you must specify that
group's name in your log-on command in this way:

:HELLO MAC.TECHPUBS,YGROUP

t
Group name

NOTE

If your user name is not related to a home group, you must
enter a group name in your :HELLO command or:() com
mand log on - otherwise, your log-on attempt is rejected.

Once you log on, ifthe normal (default) file security provisions of MPE are in force, you have unlimited
access to all files in your log-on and home groups. Furthermore, you can read files and execute
programs stored in the public group of your account and the public group of the System account. You
cannot, however, access any other files in any way. Further information about files and file security
can be found in the MPE Files Reference Manual.

2-82

PASSWORDS

To enhance the security of an account, and to prevent unauthorized accumulation of charges against
the account, the System Manager may assign a password to the account. Similarly, an Account
Manager may associate passwords with the user names and groups belonging to his account. If you are
using an account, user name, or group (other than your home group) that has a password, you must
furnish that password when you log on. Include the password after the name of the protected entity,
separated from that name by a slash mark(/). (In MPE, slash marks denote security.) For instance, if
the group XGROUP requires a password and if you wish this group as your log-on group, you could
enter the password in this fashion:

Group password

/
:HELLO MAC.TECHPUBS,}\GROUP/XP ASS

NOTE

When specifying your home group as your log-on group, you
need not enter a password even if that group has such a
password.

Sometimes, when logging on to the system, it is more convenient to have MPE prompt you for any
required passwords. You do this by omitting the passwords from the log-on command. Then, if you log
on at a hard-copy terminal, the command is printed in the normal way and MPE prompts you for the
password, then turns echo off. Echo is turned on after all passwords are read.

TERMINAL TYPES

MPE must be able to determine, for its own use, certain characteristics about the terminal in order to
conduct the session, such as input and output speed. If you log on using a different type of hardwired
terminal (or one that is not hardwired) than the type the System Manager has configured, you must
specify your terminal type when you log on. For instance, if you are logging on at an HP 2600A, but the
default type at your site is a HP 2640A you would enter:

:HELLO MAC.TECHPUBS;TERM =4

~
Terminal type code

2-83

EXAMPLE

To start a session named ALPHA, with the username MAC, accountname TECHPUBS, group
XGROUP, grouppass XPASS, enter:

:HELLO ALPHA,MAC.TECHPUBS,XBROUP,XPASS
HP3000 I MPE IV C.000.00 THU, OCT 9, 1980, 12:15 PM

(MPE displays colon to prompt for command)

NOTE

When the :HELLO command is issued from a session it will
not start another session if:

1. Spaces precede the command.

2. The command is executed using a :REDO command.

3. The command is issued in a user defined command
(UDC).

2-84

:HELP

Accesses the Help subsystem.

SYNTAX

:HELP [HELP

[EXIT]

[tablecontents
[command[,keyword]]
[ALL]

PARAMETERS

HELP

tablecontents

command

Displays information for the HELP command. Treated the same as entering
:HELP with any other command (because HELP is a command).

Any of several items for which information may be obtained. These items are:

SESSIONS
JOBS
PROGRAMS
FILES
MANAGE
OPERATOR
SPOOLER
UTILITY

Thus, if you want information on running sessions, you would enter:

:HELP SESSIONS

Any MPE command. MPE displays the command name and syntax. In addition, a
list of keywords for that command is displayed. Keywords for all commands
except the :FILE command are:

PARMS
OPERATION
EXAMPLE

where

PARMS

OPERATION

EXAMPLE

lists all parameters of the specified command.

describes the use of the specified command.

displays an example showing usage of the specified
command.

2-85

Keyword

ALL

EXIT

The :FILE command has the additional keywords:

NAME
DEVICE
ACCESS
DISP

Entering :HELP command,ALL causes MPE to display all information for that
command (syntax, parameters, operation, and example).

One of the keywords described under the command parameter. The keyword
parameter can be entered with a command, as in :HELP HELLO,PARMS. In this
case, PARMS is a keyword and must be separated from the command with a
comma. The keyword parameter also can be entered alone if you are running the
Help subsystem in subsystem mode and have accessed a command, then received
the prom pt (>) from Rel p.

For example,

:HELP DEBUG

:DEBUG (Privileged Mode capability required)

Invokes the Debug facility.

SYNTAX

:DEBUG

KEYWORDS: PARMS, OPERATION

>PARMS (keyword entered by itself in response to prompt)

Displays entire table of contents for :HELP command. If entered with a com
mand, as in

:HELP SPL,ALL

displays all information for that command.

Exits Help subsystem.

2-86

USE

Available In Session? YES

r In Job? YES

In Break? YES

Programmatically? YES

Breakable? YES (Aborts)

OPERATION

The :HELP command accesses the Help subsystem. If entered with no parameters, as in

:HELP

Help enters the subsystem mode, displays a table of contents, a greater than (>) prompt, and awaits
your input. Entering any table of contents item such as SESSIONS produces a listing of all the
commands used in running sessions. Entering any command name produces the syntax for that
command and a list of keywords. Entering a keyword, such as PARMS produces a listing of all items
for that keyword (all parameters in this case). Entering EXIT or pressing the BREAK key terminates
the Help subsystem. Entering Control Y stops the display. Entering Control S stops the display and
entering Control Q resumes the display (useful if the screen is full as when using a CRT terminal).

Entering carriage return in subsystem mode causes MPE to display information up to the next
keyword or command. For example, after entering STORE, MPE displays STORE syntax, the keyword
list (PARMS, OPERATION, EXAMPLE) and prompts (>). Entering carriage return again causes
MPE to display all Parms information for the :STORE command. Entering carriage return once more
(after the prompt) causes MPE to display all OPERATION information for the :STORE command, and
so on. (This is similar to page turning through a manual.)

Entering :HELP with a parameter causes Help to enter the immediate mode. Information pertaining
to that parameter is displayed immediately. For example,

:HELP DEBUG

causes Help to display:

:DEBUG (Privileged Mode capability required)

Invokes the MPE Debug facility.

SYNTAX

:DEBUG

KEYWORDS: PARMS, OPERATION

2-87

EXAMPLE

To obtain information concerning MPE utility functions, enter:

:HELP UTILITY

MPE displays:

Utility functions. Following are the commands used.

PT APE
SETMSG
SPEED

SHOWTIME
TELL
TELLOP

You can use any command name as a keyword.

2-88

:IF
Used to control the execution sequence of a job.

SYNTAX

:IF [(]logexpr[)] THEN

ELSE

END IF

PARAMETERS

logexpr

USE

Availaole

Breakable?

Logical expression, consisting of relational operators or combinations of rela
tional operators. The relational operators allowed are:

> greater than
< less than
> = greater than or equal
< = less than or equal

equal
<> not equal

Compound logical expressions can be formed using the AND, OR, and NOT
logical operators and nesting with parentheses.

The allowed operands are: JCW or CIERROR; any Job Control Word values saved
in a name with the :SETJCW command; OK, WARN, FATAL, or SYSTEM (as
defined under the :SETJCW command); or integer constants.

In Session? YES
In Job? YES

In Break? YES

Programmatically? NO

NO

2-89

OPERATION

The :IF command begins an IF block, and is used with an :END IF command and, optionally, an :ELSE
command to control the execution of a job. An IF block consists of all the commands after the IF up to,
but not including, the next :ELSE or :ENDIF statement that has the same nesting level as the IF
statement. Another similar block can follow the :ELSE statement. Nesting of blocks is allowed to 15
levels. The :ENDIF statement ends the IF block.

The logical expression is evaluated and, if true, the IF block is executed; iffalse, the ELSE block (if one
exists) is executed.

EXAMPLE

:RUN UPDATE1
: IF JCW<WARN THEN

SETJCW UPDATE1JCW:=JCW
RUN UPDATE2
IF JCW<WARN THEN

SETJCW UPDATE2JCW:=JCW
RUN DBSTATUS
IF CUPDATE1JCW < 50> AND

RUN DAILYRPT
END IF

(Run first data base update)
(Continue if OK so far)
(Save that return code)
(Run second data base update)
(Continue if still OK)
(Save the second return code)
(Report current status of DBJ

CUPDATE2JCW < 50) THEN

IF CCUPDATE1JCW = 1) OR CUPDATE2JCW =1>> THEN
RUN WEEKLYRPT

END IF
ELSE

RUN FIXUP
END IF

:ENDIF

(Second update program failed;
(Repair data base and report i

2-90

:IML
Enables use of the Inquiry and Development Facility (lDF) portion of IML/3000 if authorized in the
IML configuration file.

SYNTAX

0

{ } IML [ENHANCE =
1

][;BLANKS]
2
3

PARAMETERS

ENHANCE

BLANKS

Controls the display of characters. If this parameter is not used, the HP 264x
terminal will display 3270 normal intensity characters as 264x half-bright
characters, and 3270 enhanced characters as 264x full-bright (normal) charac
ters. Using option "O" will give the same result as not using ENHANCE at all.

The following table shows the display enhancements provided by options 0, 1, 2,
3.

Option 3270 Normal 3270 High
Intensity Intensity

0 264x half 264x normal
bright

1 264x normal 264x underline

2 264x normal 2 64x in verse
video

3 2 64x in verse 264x normal
video

With use of this parameter the IDF will not convert leading blanks into ~~nulls,"
thus transmitting the field to the host with leading blanks. If this parameter is
not used, IDF will convert leading blank input characters in an unprotected field
into "nulls" and thus not transmit the leading blanks to the host. This parameter
may be used to right-justify numeric input data.

2-91

USE

Available In Session? YES

In Job? NO

In Break? NO

Programmatically? NO

Breakable? NO

OPERATION

A terminal user or a device which the IML manager has allowed access to in the configuration file can
use this command to start the IML Inquiry and Development Facility (IDF). The user responds to IML
prompts to name a configuration file and a specific IBM device number for emulation.

EXAMPLE

If the user wishes to have 3270 High Intensity displayed as underline and does not want to convert
leading blanks to zeros, (s)he would enter:

:IML ENHANCE= 1; BLANKS
HP32229A.OO.OO IMU3000 (c) HEWLETT-PACKARD 1979
CONFIGURATION FILE NAME? REMOTEl.PUB.SYS
DEVICE NUMBER? 26

REMOTEl names a configuration file that defines a 3270 control unit with attached terminals and
printers. DEVICE NUMBER 26 specifies which of the devices attached to the 3270 control unit the
user's terminal should emulate.

ADDITIONAL DISCUSSION

!ML Manual.

2-92

:JOB
Initiates a batch job.

SYNTAX

:JOB U obname ,] username [/userpass] .acctname [/acct pass]
[,groupname[/grouppass]]

[;TIME=cpusecs]

BS
cs

[;PRI={ }]
DS
ES

;INPRI = inputpriority
[]
;HIP RI

[;RESTART]
[;OUTCLASS= [device] [,output priority] [,numcopies]]

PARAMETERS

jobname

username

userpass

acctname

acct pass

groupname

group pass

Arbitrary name used with username and acctname parameters to form a job iden
tity. Contains from 1 to 8 alphanumeric characters, beginning with a letter. De
fault is no job name is assigned.

User name, established by the Account Manager. Contains from 1to8 alphanu
meric characters, beginning with a letter. (REQUIRED PARAMETER)

User password, optionally assigned by Account Manager. Contains from 1 to 8
alphanumeric characters, beginning with a letter.

Account name, established by System Manager. Contains from 1 to 8 alphanu
meric characters, beginning with a letter. The acctname parameter must be pre
ceded by a period. (REQUIRED PARAMETER)

Account password, optionally assigned by System Manager. Contains from 1 to 8
alphanumeric characters, beginning with a letter.

(Optional if home group assigned, required if not.) Name of group used for local
file domain and for CPU time charges, as established by Account Manager. Con
tains from 1 to 8 alphanumeric characters, beginning with a letter. Default is
home group if one is assigned.

(Optional parameter if accessing MPE under home group; required parameter if
assigned and accessing MPE under other than home group) Group password, op
tionally assigned by Account Manager. Contains from 1to8 alphanumeric char
acters, beginning with a letter.

2-93

cpusecs

BS,CS,DS,ES

input priority

HIP RI

RESTART

device

out put priority

numcopies

Maximum CPU time allowed job, in seconds. When this limit is reached, job is
aborted. Must be value from 1 to 32767. To specify no limit, enter question mark
or omit this limit. Default is system configured job limit.

Execution priority class. BS is highest priority, ES is lowest. If a priority is speci
fied that exceeds the highest permitted for the account or user name by the sys
tem, MPE assigns the highest priority possible below BS. Default is DS, unless CS
is specified by System Supervisor with the :JOBPRI command.

Relative input priority used in checking against access restrictions imposed by
jobfence (if one exists). Takes effect when job is entered. Must be value from 1
(lowest priority) to 13 (highest priority). If value is less than or equal to jobfence
set by Console Operator, job is deferred. Default is 8.

Request for maximum input priority, causing job to be scheduled regardless of
current jobfence or execution limit for jobs. Over rides inputpriority. You can
specify this parameter only if you have System Manager or System Supervisor
capability. If not, the system tries to log you on with INPRI =13. Default is 8 or
inputpriority if this parameter is specified.

Request or restart a spooled job interrupted by system termination/restart. Takes
effect automatically when system is subsequently restarted with the
W ARMST ART option.

This parameter applies only to jobs initiated on spooled input devices, and is
ignored for other jobs. Default is that spooled jobs are not restarted after system
termination/restart.

Class name or logical device number of device to receive listing output. Cannot
specify a magnetic tape unit. Default is $STDLIST.

NOTE

Non-sharable device (ND) file access attribute is required in
order to use this parameter.

Output priority for job list file, if destined for spooled line printer or card punch.
Used to select next spooled devicefile (on disc) for output, among all those con
tending for a specific printer or punch. Must be a value from 1 (lowest priority) to
13 (highest priority). Note that when outputpriority is 1, output always is de
ferred. Thus, you should use an out put priority of 2 or greater if you wish output
written from disc.

This parameter applies only to output destined for spooled output devices, and is
ignored for other output. Default is 8, if logging enabled; 13 if disabled.

Number of copies of job listing to be produced. This parameter applies only when
listing is directed to a spooled device, and is ignored in other cases. Must be a
value from 1 to 255. Default is 1.

2-94

USE

Available In Session? YES

In Job? YES

In Break? NO

Programmatically? NO

Breakable? NO

OPERATION

Initiates a batch job by establishing contact with MPE. When MPE begins the job, it displays the
following information on the list device:

PRIORITY - (BS, CS, DS, or ES)

INPRI JOB NUMBER - as assigned by MPE to identify job.

Date and time.

HP 3000 and the MPE Version Level, in the form HP 3000/MPE III.v.uu.ff where v is the
version level (a letter), uu is the update level (a number), and ff is the fix level (a number).

In the :JOB command as in the :HELLO command, you must always include your user name and
account name, which you obtain from your Account Manager. If you omit either of these names or
enter them incorrectly, MPE rejects your job and prints an error message on the standard listing
device. If your job is accepted, however, MPE begins job processing. If the job is entered through a
spooled input device, the job is copies to a disc file and initiated from that file rather than the
originating device.

If the standard listing file is a line printer, MPE prints a special header page prior to listing the :JOB
command, as shown below. (The Console Operator can disable the printing of this page via the console
command :HEADOFF.)

The job number assigned by MPE always uniquely identifies your job to MPE and other users. MPE
assigns such numbers in sequential order as jobs are accepted.

Sometimes, the job-acceptance information includes a message from the Console Operator following
the standard display. When present, this is the same message output in the log-on information for
sessions.

The user and account name combination :JOB constitutes a fully qualified job identity - the
minimum information required for job initiation. Under certain circumstances, however, you may
need to furnish the following additional information in your :JOB command:

• File Group Name.

• User, Account, and/or Group Passwords.

2-95

The cases in which this information is required and the rules for supplying it are the same as for the
:HELLO command for sessions, except that:

1. If you omit a required password from the :JOB command, MPE rejects your access attempt without
prompting you for the password.

2. When you enter the :JOB command through a device other than a terminal and the standard input
device is different than the standard listing device, MPE never echoes passwords entered.

3. When the standard listing device is a line printer, and you do not specify a file group name,
central-processor time limit, execution priority, and/or input priority in the :JOB command, the
default values assigned by MPE for the omitted parameters appear on the job listing.

The following :JOB command, entered from a card reader, illustrates how to specify the group name
MYGROUP and the group password MYPASS:

:JOB MAC.TECHPUBS,MYGROUP/MYPASS

EXAMPLE

To start a job named BETA, username MAC, accountname TECHPUBS, groupname XGROUP, and
grouppass XP ASS, enter:

:JOB BETA,MAC.TECHPUBS,XGROUP/XPASS

PRIORITY=ES; INPRI=8
JOB NUMBER = #Jl
TUE, OCT 7, 1980, 2:01 PM
HP3000 I MPE IV.C.00.00

Note that subsequent MPE commands must begin with a colon (:), entered in column 1 of the input
record.

ADDITIONAL DISCUSSION

Using Files Manual.
Intrinsics Reference Manual.

2-96

Lists descriptions of one or more permanent disc files.

SYNTAX

Q
1

:LISTF [fileset] [,] [;listfile]
2

PARAMETERS

:LISTF

files et Specifies the set of files to be listed. Default is@. This parameter is of the form:

filedesignator[.groupdesignator[.acctdesignator]]

fileset can be entered in any of the following formats and may use wild card
characters, in any order, as replacements.

file.group.account List file named in specified group and account.

file.group List file named in specified group.

file List file named.

@.group.account List all files in specified group and account.

@.@.account List all files in all groups in specified account.

@.@.@ List all files in system.

@.@ List all files in all groups in log-on account.

@ List all files in log-on group. Default.

@.group List all files in specified group.

file.@.account List file named in any group of specified account.

NOTE

The characters @, #,and? can be used as wild card charac
ters in the fileset parameter. These wild card characters
have the following meanings:

@-specifies zero or more alphanumeric characters.

- specifies one numeric character.

? - specifies one alphanumeric character.

2-97

0

1

2

-1

listfile

The characters can be used as follows:

n@ List all files starting with the character n.

@Jn List all files ending with the character n.

n @t List all files starting with the character n and ending with the
character x.

n ## .. # List all files starting with the character n followed by up to
seven digits (useful for listing all EDIT/3000 temporary files).

?n @ List all files whose second character is n.

n? List all two-character files starting with the character n.

?n List all two-character files ending with the character n.

Display file name only. Default.

Display file name, plus file code, record size (W indicates words, B indicates
bytes), record format (F, U, or V), whether ASCII (A) or binary (B) records,
whether carriage-control option is taken (C if so), current end-of-file location, and
maximum number of records allowed in file. Default is 0.

Display file name, file code, record size (W indicates words, B indicates bytes),
record format (F, U, or V), whether ASCII (A) or binary (B) records, whether
carriage-control option is taken (C if so), current end-of-file location, maximum
number of records allowed in file, blocking factor, number of disc sectors in use
(including those in.use for file label and user headers), number of extents current
ly allocated, and maximum number of extents allowed. Default is 0.

Display octal listing of file label. This option can be requested only by users with
System Manager capability (all files) or Account Manager capability (all files in
own account). Default is 0. The first line of the listing is the directory entry for
the fi1e being listed. The remainder of the listing is the file label.

Name of output file on which descriptions are written. Automatically specified as
new ASCII file with variable-length records closed in temporary domain, user
supplied carriage-control characters (CCTL), OUT access mode, and EXC (exclu
sive access) option. All other characteristics are same as :FILE command default
specifications. Default is $STDLIST.

NOTE

If you specify the -1 option and direct listing output to a
non-spooled device (such as a magnetic tape unit) that en
ters the NOT READY state, the System Directory will be
locked down and the system may hang up. Avoid this com
bination of specifications if possible.

2-98

USE

I Available In Session? YES

n o . I J b? YES

In Break? YES

Programmatically? YES

Breakable? YES (Aborts)

OPERATION

Lists descriptions of one or more disc files at level of detail you select. You need not have access to a file
to list a description of it, however, a file description will not be listed unless the file's home volume set
is mounted. A standard user may list level 0, 1, and 2 information for any file in the system. A user
with Account Manager capability may list level -1 data for files in his own account. A user with
System Manager capability may list -1 data for any file in the system. Doing a :LISTF to the line
printer or magnetic tape will print the date and time at the top.

Note that this command applies only to permanent disc files in the system file domain.

The output may appear in the following formats:

Level 0 (Default)

Level 1

: LI STF

FILENAME

APPB
CONOP1
GI MAGE
K1030955
MTS3000

:LISTF,1
ACCOUNT=
FILENAME

CONOP1
DOA LL
EXAMPLES
LIST
PROSE
PS
REPLY

APPC
CONOP4
GIMCOM
LINDA
OPFRONT

LEWIS

APPD
CONOPS
GIMDOC
LIST
PS

GROUP=

APPE
CONOPEX
GIMDS
LOGON
REPLY

PUB

APPF
CONSG
GIMOP
MEMLOGAN
SCH ED

CODE -------------LOGICAL RECORD--------
SIZE TYP EDF LIMIT

808 FA 1 0 1 0
SOB FA 9 9
SOB FA 20 20
SSB FA 1 5 15
SOB FAR 5 5

PROG 12SW FB 7 7
BOB FA 30 30

See :BUILD or :FILE command for a list of mnemonic codes.

2-99

CONMSG
EXAMPLES
INDEX
MTS
VIN IT

Level 2

: LI STF, 2
ACCOUNT= USERS GROUP= BARBARA
FILENAME CODE -------------LOGICAL RECORD-----------

SIZE TYP EDF LIMIT R/B
APPB 88B FA 414 414 16
APPC 80B FA 1 31 131 16
APPD 80B FA 719 719 16
APPE 80B FA 118 118 16
APPF 80B FA 224 224 16
APPM 80B VAM 119 240 16
APPC 80B FAD 127 208 16
APPK KSAM 80B FA 16 200 16
CONMSG BASD 308W FB 348 408
CONOP1 BASD 308W FB 68 108

Level-I

:LISTF EXAMPLES,-1
F EXAMPLES
042530 040515 050114 042523 001000 033261
042530 040515 050114 042523 050125 041040 020040 020040
046105 053511 051440 020040 041101 051102 020040 020040
020040 020040 020040 020040 020202 004040 000001 116221
116221 116221 000000 000000 002400 000000 000000 000024
000000 000000 147462 016063
000017 000017 000000 000024
000000 000000 000000 000000
000000 000000 000000 000000
000000 000000 000000 000000
000000 000000 000000 000000
000000 000000 000000 000000

FORMAT OF LISTF-1 LISTING

F=filename

DODD ' ,,, ""'" File Name
(4 words-octal)

002005 177660 001200 002400
001000 033261 000000 000000
000000 000000 000000 000000
000000 000000 000000 000000
000000 000000 000000 000000
000000 000000 000000 000000
000000 000000 000000 000000

Disc Volume Number
(bits 0:8)

D
'----...,-----/
Sector Address

of Label

----SPACE----
SECTORS IX MX

162 14 14
50 1 1

230 16 16
45 1 1
75 1 5 15
12 8 8
70 8 8
20 2 7

1092 7 8
210 5 8

EXAMPLES .. 6.
EXAMPLESPUB
LEWIS ... BARB
................
................

2. 3
.......... 6
................
................
................
................
• e e e 11 •• e. e e e e e e I

§\gningctap B B B B
ASCII Chars.

ASCII Chars.

File Label
(word 0)

2-100

KEY FOR FILE TYPE

:listf ,2
ACCOUNT=
FILENAME

USERS
CODE

GROUP= RUTH

---~~;~,-~~;-,OGICALE~~CORD--~~~~~-;~;

123

----SPACE---
SECTORS 1X MX

COLUMN 1 = RECORD FORMAT This can be
• Fixed length
• V ariabk length

COLUMN 2 = ASCIL'BINARY Option Indicates whether file is

COLUMN 3 = KIND of file

EXAMPLE

• ASCII
• BINARY

File can be
• Blank

indicates standard file unless KSAM appears
in code field

• 0
indicates Circular file

• M
indicates a Message file

• R
indicates a Relative L'O file

To list the names of all files in your log-on group, enter:

:LISTF

2-101

To display the file code, record size and format, ASCII/binary and carriage-control options, current
end-of-file location, and maximum number ofrecords allowed in a file, request level 1 information with
the : LISTF command:

Requests Level I data

File na""\.. \ Account name Group name

:LISTF MVFILE2, 1 ~ ~
ACCOUNT= TECHPUBS GROUP= PUB

FILENAME CODE ------------LOGICAL RECORD--------
SIZE TYP EDF LIMIT

MYFILE2 128W FB

/
File name

File code (none)

0

\
1 023

M'ciximum number
of records allowed

End-of-file location

CCTL (none) Kind of File (see Key for File Type) ..._ ___________ ,
Size of records (128)

(Jndwates words)

......_ __ ASCII/Binary option (Binary)

Record format (fixed length)

To list a greater level of detail, includii--ig blocking factor, number of disc sectors in use, number of
extents currently allocated and maximum number of extents allowed; use level 2 information option:

File name

~
Requests Level 2 data

/
:LISTF MYFILE2, 2
ACCOUNT= TECHPUBS GROUP= PUB
FILENAME CODE ------------LOGICAL RECORD----------- ----SPACE---- ACCT

SiZE TYP EDF LIMIT R/B SECTORS IX MX

MYFILE2 128W FB 0 1023 1 128 8

Blocking factor~s in use/ 1/
Extents allocated-------'·

Maximum number of extents allowed

To request that the file information be displayed on devices other than the standard listing device,
name the desired device in the command:

: FI LE PRTR; DEV= LP Equates name PRTR with device class name LP.
: LI STF @ .@, 2; *PRTR Directs Level 2 description of all files in all groups of log-on account to

PRTR.

2-102

To list the name, file code, record format, ASCII vs. binary code information, carriage-control option,
end-of-file location, and maximum number of records for the file named BASE in the group USERGP
in your log-on account, enter:

:LISTF BASE.USERGP,1

ADDITIONAL DISCUSSION

Using Files Manual.

2-103

:LISTLOG
Lists currently active logging identifiers on the system.

SYNTAX

I :LISTLOG [logid[;PASS]]

PARAMETERS

log id The specific logging identifier to be verified. Default is to list all currently active
logging identifiers on the system.

PASS Causes the password associated with the logging identifier to be displayed. Can
be used only by the creator of the logging identifier.

USE

Available In Session? YES

In Job? YES

In Break? YES

Programmatically? YES

Breakable? NO

OPERATION

Lists the logging identifier specified with its associated creator and logfile. If the logid parameter is not
entered, all logging identifiers on the system are displayed with their creators and logfiles. The pass
parameter, which can be used only by the creator of the logging identifier specified, causes the
password associated with the logging identifier to be listed.

EXAMPLE

To list all logging identifiers on the system, enter:

:LISTLOG

LOGID

FINANCE
IN LOG
ERRORS

CREATOR

DATABASE.FINANCE
TOM.LAB
TOM.LAB

ADDITIONAL DISCUSSION

LOG FILE

NEWDATA
TEMP.TOM.LAB
OTHERLG

For a discussion of user logging, see the Console Operator's Guide.

2-104

(disc file)
(tape file)

:LISTVS
Produces a formatted listing of volume set definition information.

SYNTAX

Q
:LISTVS [vslist][,l] [;listfile]

2

PARAMETERS

vs list

vsname.group.
account

Specifies the volume set definitions to be listed. Default is @. This parameter is
of the form:

vsdesignator[.groupdesignator[.acct designator]]

vslist can be entered in any of the following formats and may use wild card
characters, in any order, as replacements.

List information for volume set vsname in the specified group and account.

@.group.account List all home volume sets .in the specified group and account.

@.@.account List all home volume sets for all groups in the specified account.

@ List all home volume sets in log-on group and account.

@.@ List all home volume sets for all groups in log- on account.

@.@.@ List all home volume sets in system.

vsname. @.account List information for volume set vsname for all groups in the specified account.

NOTE

The characters @, #, and ? can be used as wild card charac
ters in the vslist parameter. These wild card characters have
the following meanings:

@ - specifies zero or more alphanumeric characters.

- specifies one numeric character.

? - specifies one alphanumeric character.

The characters can be used as follows:

n@ List all volume set definitions starting with the character n.

@n List all volume set definitions ending with the character n.

2-105

0

1

2

list file

USE

Available

l Breakable?

n@x List all volume set definitions starting with the character n and end
ing with the character x.

n## .. # List all volume set definitions starting with the character n followed
by up to seven digits.

?n@ List all volume set definitions whose second character is n.

n? List all two-character volume set definitions starting with the charac
ter n.

?n List all two-character volume set definitions ending with the charac
ter n.

Display the following information:

Volume set name and volume set definition creator.

Display the information shown for 0 plus:

Volume names of volume set members and the types of devices on which the vol
umes reside.

Volume class names and member volume names.

Display the information shown for 0 and 1, plus:

Logical device numbers (ldn's) and use counts of the devices on which the volume
set is mounted. This information is not displayed if the volume set is not mount
ed; instead, information is displayed indicating if there are sufficient AV AIL
ABLE ldn' s of the right type to permit the volume set to be mounted. Default is 0.

Actual designator of output file to receive listings. This file must be named in a
:FILE command and back referenced as in the foilowing example:

:FILE LIST;DEV=LP
:LISTVS @,l;*LIST

Default is $STDLIST.

In Session?

In Job?

In Break?

Programmatically?

YES

YES

YES

YES

YES

2-106

OPERATION

The :LISTVS command allows you to determine the configuration of a volume set and produce a
formatted listing of volume set definition information.

1. Volume set names and volume class names.

2. Volume set member volume names and types.

3. Volume class member volume names and types.

4. Logical device numbers (ldn's) and status of the devices on which the volume set is mounted. This
information is omitted for any volume set not currently mounted.

The detail parameter of the :LISTVS command determines the amount of information displayed. If
detail is omitted or if a 0 is specified, item 1 above is displayed. If detail is 1, items 1 through 3 are
displayed. If detail 2 is specified, items 1 through 4 are displayed.

To display volume set definition information for your home volume set, enter:

:LISTVS,1

EXAMPLE

To display volume set definition information for volume sets in your log-on group and account, with
the listing sent to a line printer, enter:

:FILE LIST;DEV =LP
:LISTVS @,l;*LIST

ADDITIONAL DISCUSSION

System Manager/System Supervisor Reference Manual.

2-107

:MOUNT
Requests the Console Operator to mount a volume set.

SYNTAX

*
:MOUNT [] [.group name [.acct name]]

vcsname

[;GEN= [genindex]]

PARAMETERS

*

vcsname

groupname.
acct name

gen index

USE

Available

Breakable?
~-----·--

OPERATION

Specifies the home volume set for the group and account specified, or the log-on
group and account if groupname.acctname are not specified. Default.

Volume class/set name, specifying a previously- defined volume class name or
volume set name. Default is *.

Specify the group and account under which the volume set was created. Default is
log-on group and account.

A value from -1 to 32767 specifying which generation of the home volume set is
to be mounted. A value of -1 indicates that any generation is permitted. If
omitted, the system will ignore the generation when attempting to satisfy the
:MOUNT request.

In Session? YES

In Job? YES

In Break? YES

Programmatically? NO

NO

The :MOUNT command allows you to become attached to a specific volume set. In addition, this
command allows you to specify that the volume set is to be treated as a home volume set and therefore
it is to be bound to the system's accounting structure with respect to a particular group. The :MOUNT
command is rejected ifthere is an operator-initiated :LDISMOUNT command pending for the specified
volume set. The requesting job is suspended until the mount is completed or rejected.

2-108

In addition, various user commands which cause access to your log-on group's home volume set will
initiate mount requests if the volume set is not mounted already. An example of one of these
commands (:BUILD) is as follows:

:BUILD VFILE;DISC =500,10,l;REC =-80;DEV =VCLASSl

PROGRAMMATIC MOUNT REQUEST. You may issue an FOPEN call referencing a file residing on
an unmounted volume set; this causes an implicit user-initiated mount request.

An FOPEN mount remains in effect until a corresponding FCLOSE intrinsic call is issued. The
programmatic request is used when a single job/session step requires a certain volume set. See the
MPE Intrinsics Reference Manual for a description of programmatic mounting.

EXAMPLE

To request the Console Operator to mount volume set MYSET, generation index 43, enter:

:MOUNT MYSET;GEN =43

2-109

:MRJE
Initiates execution of the Multileaving Remote Job Entry (MRJE) facility.

SYNTAX

PARAMETERS

None

USE

Available In Session? YES

In Job? YES

In Break? NO

Programmatically? NO

Breakable? YES (Suspends)

OPERATION

The :MRJE command is used to initiate execution of the MRJE facility for submitting jobs to, and
retrieving output from, a host computer. The host computer may be using either a HASP Version 3.1,
HASP-II Version 4.0, or JES2 job entry subsystem.

EXAMPLE

:MRJE

ADDITIONAL DISCUSSION

MRJE/3000 Reference Manual.

2-110

:PREP
Prepares program from a User Subprogram Library (USL) file onto a program file.

SYNTAX

:PREP uslfile,progfile
[;ZERODB]
[;PMAP]
[;MAXDATA =segsize]
[;STACK =stacksize]
[;DL=dlsize]
[;CAP=caplist]
[;RL= filename]
[;PATCH= patchsize]

PARAMETERS

uslfile

progfile

ZERO DB

PMAP

segsize

stacksize

dlsize

Actual designator of USL file on which program has been compiled. (REQUIRED
PARAMETER)

Actual designator of program file on which prepared program segments are writ
ten. Can be any binary output file. This program file must be created in one of two
ways:

1. By creating a new file with the MPE :BUILD command with a filecode of
PROG or 1029, and a numextents parameter value of 1.

2. By specifying a non-existent file in the progfile parameter, in which case a file
of the correct size and type is created. This file is a job temporary file. (RE
QUIRED PARAMETER)

Request to initialize to zero the initially-defined, user-managed (DL-DB) area,
and uninitialized portions of the DB-Q (initial). Default is that these areas are
not affected.

Request to produce a descriptive listing of the prepared program on file whose
formal designator is SEGLIST. If no :FILE command is found referencing SEG
LIST, listing is produced on $STDLIST. Default is no listing. See Appendix D for
a listing of a prepared program.

Maximum stack area (Z-DL) size permitted, in words. This parameter is included
when it is expected that the size of DL-DB or Z-DB areas will be changed during
program execution. Default is that MPE assumes that these areas will not change.

Size of initial local data area (Z-Q initial) in stack, in words. (This value, if
specified, must be between 511 and 32767 words. This parameter over rides
stacksize estimated by Segmenter. Default is estimated by MPE Segmenter.

DL-DB area to be initially assigned to stack. This area is of interest mainly in
programmatic applications. In all cases, the DL-DB area is rounded upward so
that the distance from the beginning of the stack data segment to the DB-address
is a multiple of 128 words. Default is estimated by the MPE Segmenter.

2-111

cap list

fikname

patchsize

USE

Available

Breakable'?

OPERATION

Capability-class attributes associated with program, specified as two-character
mnemonics. If more than one mnemonic is specified, each must be separated from
its neighbor by a comma.

The mnemonics are:
IA Interactive access
BA Local batch access
PH Process handling
DS Data segment management
MR Multiple resource management
PM Privileged mode

Note that you can specify only those capabilities that you possess (through as
signment by the Account Manager or System Manager). Default is IA, BA (if you
possess these capabilities).

Actual designator of RL file to be searched to satisfy external references during
preparation. This can be any permanent binary file of type RL. It need not belong
to log-on group, nor have a reserved, local name. This file yields a single segment
that is incorporated into the segments of the program file. See the MPE Seg
ment;er Reference Manual for a discussion of RL files. Default is that no library is
searched.

Specifies size of patch area. This size will apply to all segments within the
program file.

In Session? YES

In Job? YES

In Break? NO

Programmatically? NO

YES (Suspends)

The :PREP command prepares a compiled source program for execution. Unless you prepare the
program onto a previously created program file, this command will create a program file of the
appropriate format for you in the job/session temporary file domain. In fact, it is recommended that
you specify a non-existent program file in the :PREP command. This allows MPE to create a file of
optimum size and characteristics. (See example 1)

A compiled program is prepared by searching a relocatable library (RL) to satisfy references to
external procedures required by the program. When the program is prepared, such procedures are
linked to the program in the resulting program file. To use a relocatable library (RL) via the :PREP
command, the user requires read and lock capability.

2-112

EXAMPLE

To prepare a program from the USL file USLX to the program file PROGX, enter:

Non-existent

~
:PREP USLX,PROGX
:SAVE PROGX

Prepares program into program fil,e PROGX.
Saves program fik.

You can create a program file in the permanent file domain by using the :BUILD command. When you
do this, you must be sure to specify a filecode of PROG (or 1029) for this file, and to limit the file to one
extent; program files are not allowed to span more than one extent. The following :BUILD command
creates such a file, which is then used by the :PREP command:

:BUILD PFILE;CODE =PROG;DISC =,1
:PREP UFILE,PFILE

To prepare a program from the USL file named USEFILE and store it in a program file named
PROGFILE, list the prepared program, assign a stacksize of 511 words, and assign batch-access
capability only for the program, enter:

:PREP USEFILE,PROGFILE;PMAP;STACK =51l;CAP =BA

ADDITIONAL DISCUSSION

Using Fiks Manual.

2-113

:PREPRUN
Prepares and executes a compiled program.

SYNTAX

:PREPRUN uslfile[,entrypoint]
[;NOPRIV]
[;PMAP]
[;DEBUG]
[;LMAP]
[;ZERODB]
[;MAXDAT A =segsize]
[;PARM= parameternum]
[;ST ACK =stacksize]
[;DL=dlsize]

G
[;LIB= {P}]

~

[;CAP=caplist]
[;RL=filename]
[;NOCB]

PARAMETERS
uslfile

entrypoint

NOP RIV

PMAP

DEBUG

Actual designator of USL file on which program has been compiled. (REQUIRED
PARAMETER)

Program entry point where execution is to begin. May be primary entry point of
program, or any secondary entry point in program's outer block. Default is prima
ry entry point.

Declaration that program segments will be placed in non-privileged (user) mode.
This parameter is intended for programs prepared with privileged mode capabili
ty. Normally, program segments containing privileged instructions are executed
in privileged mode only if program was prepared with privileged mode (PM) ca
pability class. (A program containing legally compiled privileged code, placed in
non-privileged mode, may abort when an attempt is made to execute it.) If
NOPRIV is specified, all segments are placed in non-privileged mode. (Library
segments are not affected because their mode is determined independently.) De
fault is segments of privileged mode program will remain in privileged mode.

Request to produce a descriptive listing of the prepared program on file whose
formal designator is SEGLIST. If no :FILE command referencing SEGLIST is
found, listing is produced on current list device. Default is no listing. See Appen
dix D for listing of prepared and loaded program.

A request to set a breakpoint on the first executable instruction of the program.
Default is no breakpoint is set.

2-114

LMAP

ZERO DB

segsize

parameternum

stacksize

dlsize

G

p

s

cap list

Request to produce a descriptive listing of the allocated (loaded) program on file
whose formal designator is LOADLIST. If no :FILE command referencing
LOADLIST is found, listing is produced on $STDLIST. Default is no listing.

Request to initialize to zero initially-defined, user-managed (DL-DB) area, and
unitialized portions of the DB-Q (initial) area. Default is these areas are not af
fected.

Maximum stack area (Z-DL) area permitted, in words. This parameter is includ
ed if it is expected that sizes of DL-DB or Z-DB areas will be changed during
program execution. Default is MPE assumes that these areas will not be changed.

Value that can be passed to program for control or other purposes. When program
is executed, this value can be retrieved from address Q(initial)-4, where Q(initial)
is Q- address for outer block of program. Value can be octal number or signed or
unsigned decimal number. Default is Q(initial)0-4 address is filled with zeros.

Size of local data area (Z-Q(initial)) in stack, in words. If specified, this value
must exceed 511 words. This parameter overrides stacksize estimated by MPE
Segmenter. Default is estimated by MPE Segmenter.

DL-DB area to be initially assigned to stack. This area is of interest mainly to
programmatic applications. In all cases, the DL-DB area is rounded upward so
that the distance from the beginning of the stack data segment to the DB- address
is a multiple of 128 words. Default is estimated by MPE Segmenter.

Search segmented procedure libraries of the program file's group and account in
the following order: group library, account library, system library. Default is S.

Search segmented procedure libraries of the program file's group and account in
the following order: account library, system library. Default is S.

Search system library for external references to segmented procedures. Default.

Capability-class attributes associated with the program, specified as two-charac
ter mnemonics. If more than one mnemonic is specified, each must be separated
from its neighbor by a comma.

The mnemonics are:

IA Interactive access
BA Local batch access
PH Process handling
DS Data segment management
MR Multiple resource management
PM Privileged mode

You can only specify those attributes that you possess through assignment by the
Account Manager or the System Manager. Default is IA and BA (if you possess
these capabilities).

2-115

filename

NOCB

USE

Actual designator of RL file to be searched to satisfy external references during
preparation of the program. This can be any permanent file of type RL. It need
not belong to log-on group nor does it require a reserved, local name. This file
yields a single segment that is incorporated into the segments of the program file.
See the MPE Segmenter Reference Manual for a description of RL files. Default
is no library is searched.

Request that file system not use stack segment (PCBX) for its control blocks,
even if sufficient space is available. This will permit you to expand your stack (via
the DLSIZE or ZSIZE intrinsics) to the maximum possible limit at a later time,
but will cause the File Management System to operate more slowly for this pro
gram.

Available In Session? YES

In Job? YES

In Break? NO

Programmatically? NO

Breakable? YES (Suspends)

OPERATION

Prepares and executes a program compiled in a User Subprogram Library (USL). Command prepares
a temporary program file and then executes the program in that file. This command permits searching
both relocatable (RL) and segmented (SL) libraries to satisfy external references.

EXAMPLE

To prepare and execute a program on the USL file USEF, with no special parameters declared, enter:

:PREPRUN USEF

To obtain a descriptive listing of the prepared program, and a listing of the allocated (loaded) program,
enter:

Requests prepared program listing

l
:PREPRUN XUSL;PMAP;LMAP

'\
Requests loaded program listing

To prepare and execute a program on the USL file UBASE, beginning execution at the entry point
RESTART, declaring a stacksize of 800 words, and specifying that the library LIBA will be searched to
satisfy external references, enter:

:PREPRUN UBASE,RESTART:STACK =800;RL =LIBA

ADDITIONAL DISCUSSION
Using Files Manual.

2-116

:PTAPE
Reads paper tape without X-OFF control.

SYNTAX

:PT APE filename

PARAMETERS

filename

USE

Available

Breakable?

OPERATION

Name of existing ASCII file on disc, to which input data is to be written from a
paper tape. Normally, this is a file with variable-length records; the record size
specified must be large enough to contain the longest paper tape record. (RE
QUIRED PARAMETER)

In Session? YES

In Job? NO

In Break? YES

Programmatically? YES

NO

Permits programs to read input originating from a terminal coupled to a paper tape reader/punch,
when the tape does not include the X-OFF control character punched on the tape. (The X-OFF char
acter, when encountered on a tape, turns the tape-reading mechanism off. This character normally
appears following the carriage-return/line-feed character combination used to delimit each record.)
The :PTAPE command transfers all data from the tape to an ASCII file (named in the filename pa
rameter) on disc. This operation stores all records onto the disc file in the order read from the tape, but
deletes all carriage-return and line-feed characters. (If the tape contains X-OFF characters, the oper
ation also deletes these. The X-OFF characters are not ignored by the tape reader, however, and so you
must restart the reader after each X-OFF is read.) The input terminates when the CONTROL Y char
acter is encountered on the tape or entered from the terminal, returning control to the keyboard. The
input data now can be read from the disc file by any program.

Note that the :PTAPE command is required ONLY for input from HP tape readers associated with
terminal key boards.

You cannot use the :PT APE command to copy tapes containing more than 32767 bytes of information.
If this is attempted, MPE reads only the first 32767 bytes on the tape and then terminates the oper
ation.

2-117

EXAMPLE

To copy input from a paper tape onto a disc file named TAPEFILE, create an appropriate file (with
the MPE :BUILD command) and then enter the following :PT APE command:

:BUILD TAPEFILE;REC=-80,3,V,ASCII
:PT APE T APEFILE

2-118

:PURGE
Deletes file from system.

SYNTAX

:PURGE file ref ere nee[, TEMP]

PARAMETERS

filereference

TEMP

USE

Available

Breakable?

OPERATION

Actual file designator of file to be deleted, in this format:

filename [I lock word] [.groupname [.acctname]]

To delete the fi~e, you must have write (W) access to it. (REQUIRED
PARAMETER)

Indicates that the file is a temporary file in the job/session temporary file domain.
You must enter this parameter to delete a temporary file, otherwise the appro
priate domain is not searched for the file. Default is that a permanent file is
assumed.

In Session? YES

In Job? YES

In Break? YES

Programmatically? YES

NO

Deletes a disc file from the system. Applies only to files on disc. If the volume set on which the file
resides is not mounted, this command will generate an implicit mount request.

If the file does not exist in the domain specified (temporary or permanent (permanent is default)), the
following message is displayed: -C.

FILE filename NOT FOUND

NOTE

To purge both a KSAM data file and its associated key file,
you must enter the :PURGE command twice, once for each
file.

2-119

EXAMPLE

To delete the permanent file PFILE, enter:

:PURGE PFILE

To delete the temporary file TFILE, enter:

:PURGE TFILE,TEMP

ADDITIONAL DISCUSSION

Using Files Manual.

2-120

Displays all pending console: REPLY messages.

SYNTAX

I :RECALL

PARAMETERS

None

USE

Available

Breakable?

EXAMPLES

In Session?

In Job?

In Break?

Pro grammatically?

:RECALL

YES

YES

YES

YES

YES (Aborts)

To display all pending console messages which require a :REPLY response, enter:

:RECALL
REPLY(S) PENDING:
010:05/ #J19/15/LDEV #FOR ((L00576" ON TAPE 1600 (NUM)?

If there are REPLYs pending, the test of the request(s) will appear at your terminal, as shown above. If
there are no REPLY s pending the following message will appear at the console:

:RECALL
NO REPLIES PENDING

ADDITIONAL DISCUSSION

Console Operator's Guide

2-121

:REDO
Allows you to edit a command entry.

SYNTAX

PARAMETERS

None

USE

Available In Session? YES

In Job? NO

In Break? YES

Programmatically? NO

Breakable? YES (Aborts)

OPERATION

The :REDO command allows you to correct certain kinds of errors in an incorrect command entry or to
change a correct command entry eliminating the need for re-entering the command in its entirety. The
:REDO command only applies to the last command entered. When the :REDO command is entered,
MPE enters a mode similar to the Editor and displays the command to be modified.

To modify the command output by MPE, position the cursor (using the space bar on the terminal)
under the character(s) to be modified, then enter one of the following sub-commands:

D - Delete. Deletes the character above the cursor. If D is :repeated, each character above each D
is deleted.

I - Insert. Inserts one or more characters immediately preceding the character above the cursor.
The D and I sub-commands can be used in conjunction to delete characters, then insert new
characters.

R - Replace. Replaces the characters above the cursor with new characters. If one character is
entered, the character above the cursor is replaced; if two characters are entered, two char
acters, (the character above the cursor and the character to the right) are replaced; and so
forth for additional characters. R is the default sub-command.

U - Undo. Cancels the effect of the previous D, I, or R sub-command. Entering a U, carriage
return, then another U cancels all previous sub-commands for this :REDO command and
restores the line being corrected to its original form.

2-122

EXAMPLE

:FILE A;REC= .. G;DISC=l0000,16,l;SAVE

T
:ERR nnn EXPECTED F, V, OR U

:REDO (Request to enter command string)
:FILE A;REC=,,G;DISC=l0000,16,l;SAVE (MPE displays command)

RF (Replace G with F)
:FILE A;REC=,,F;DISC=l0000,16,l;SAVE (Corrected command displayed)

Note that the letter G can be replaced by F without entering the R sub-command (R is the default sub
command). For example,

:FILE A;REC=,,G;DISC=l0000,16,l;SAVE
F

2-123

(MPE displays command)
(Replace G with F)

:RELEASE
Temporarily suspends all security provisions for a file.

SYNTAX

:RELEASE file ref ere nee

PARAMETERS

filereference Actual designator of file whose security provisions are to be suspended, written in
this format:

filename f/lockword] [.groupname [.acctname]]

If the file has a lockword, it must be specified. (REQUIRED PARAMETER)

USE

Available In Session? YES

In Job? YES

In Break? YES

Programmatically? YES

Breakable? NO

OPERATION

Temporarily suspends security provisions for file at all (file, group, and account) levels· (except for
privileged files) allowing any user in system unlimited access to the file. Suspension remains in effect
until a :SECURE command is entered for this file to restore its previous security provisions. Suspen
sion remains valid after job termination, or system failure followed by coldload or reload. (It can be
negated, however, if system is reloaded from a :SYSDUMP tape created before :RELEASE command
was entered.) Note that this command can be used only for permanent files on disc whose labels
identify you as the creator of the file. In addition, the :RELEASE command will fail ifthe group's home
volume set is not mounted. When the normal (default) MPE security provisions are in effect, the file
must be in your log-on account and must belong to your log-on or home group.

This command will not cause a volume set to be mounted. If the file's home volume set is not mounted
at the time this command is issued, the file will not be found and thus cannot be released.

The :RELEASE command does not affect the file's lockword, if any. It also does not modify the file
security settings recorded in the system; it merely bypasses them temporarily.

EXAMPLE

To release all security provisions for the file named FILE 1, enter:

:RELEASE FILEl

2-124

Removes a logging identifier from the system.

SYNTAX

I :RELLOG logid

PARAMETERS

log id The logging identifier to be removed from the system.
(REQUIRED PARAMETER)

USE

Available In Session? YES

In Job? YES

In Break? YES

Programmatically? YES

Breakable? NO

OPERATION

:RELLOG

The :RELLOG command removes a logging identifier from the system by deleting it from the directory
of logging identifiers. This command may be issued only by the user who created the logging identifier
specified in the logic parameter. After :RELLOG is issued, programs containing the removed logging
identifier will not be allowed to access the logging system.

EXAMPLE

:RELLOG DATALOG

ADDITIONAL DISCUSSION

Console Operator's Guide.

2-125

:REMOTE

Used for transmitting commands between a local HP computer and a remote HP computer in a
DS/3000 Network environment.

SYNTAX

I :REMOTE [dslinenumber][mpecommand]

PARAMETERS

dslinenumber

USE

Available

Breakable?

OPERATION

The dslinenumber that was returned by DS/3000 when the communications line
was opened. (A dslinenumber is returned in response to (1) a :DSLINE command,
or (2) a :REMOTE HELLO command that includes the DSLINE= parameter.) A
dslinenumber is required only if more than one communications line is open
simultaneously. If dslinenumber is omitted, the line which you most recently
opened is referenced.

The form of the line number returned by DS/3000 is:

DS LINE NUMBER= #L3 (where 3 is the dslinenumber)

In Session? YES

In Job? YES

In Break? YES

Programmatically? YES

Not breakable if MPE command is not
specified. Is breakable if MPE command
you specify is breakable.

To use the :REMOTE command, you must first establish a local session. Also, the communications line
must have been opened with the :DSCONTROL console operator command.

After the line is open, you can gain logical access to the line with the :DSLINE command. Next, you
should establish a remote session with the :REMOTE HELLO command, or the sequence of commands,
:REMOTE (to transfer control to the remote MPE command Interpreter) followed by the standard
MPE #HELLO command. Note that the remote system prompts with a pound sign(#).

2-126

Once a remote session is established, the :REMOTE command can be used to execute any valid MPE
command on the remote computer system. For multiple commands, the :REMOTE command (without
the command parameter) allows the input command stream to be executed by the Command Interpre
ter on the remote system. (See EXAMPLE.) To return to the local system, respond to the pound sign
(#) prompt with a colon (:).

Variations of the :REMOTE command may be used in multi-node DS/3000 networks with three or
more nodes.

EXAMPLE

:HELLO MIKE.OSE
ENTER USER PASSWORD:

HP3000 I MPE IV C.00.00. FRI, AUG 22, 1980, 3:07 PM
PIRANHA

FILE MIKE;DEV=TAPE
FILE LP;DEV=LP;CCTL
FILE FLP;DEV=FASTLP;CCTL
FILE SLP;DEV=SLOWLP;CCTL
FILE TAPE;DEV=TAPE
FILE BACKUP;DEV=TAPE;REC=-80,16,F,ASCil;ACC=APPEND
COMMENT &DBDON'T FORGET TO RUN PNOTE!
:DSLINE RADAR
DS LINE NUMBER = #L3.
:REMOTE HELLO MIKE.OSE
USER PASSWORD CPASS)?

HP3000 I MPE IV C.00.00. FRI, AUG 22, 1980, 3:10 PM
RADAR

STROLD DONE LAST NIGHT 8/21/80
:REMOTE LISTF
NO FILES FOUND IN FILE-SET CCIWARN 431>
: LI STF ---
FILENAME

CHEC002C DOCVSTR F07F3450
F59FALOC F59FMISC F64F3450
FCAF3450 FHEF002C JOOJXXXX
JYYJXXXX MASKKPR MASKMEMO
PHEP002C SRBNOTES TGENMP
WORKMEMO WORKNOTE WORKQUAL
XCAP XOP

: DSLI NE MY
DS LINE NUMBER = #LS.
:REMOTE HELLO MIKE.OSE
ENTER USER PASSWORD:

F09FMISC
F76F3450
J51JXXXX
MASK RESP
TGENMS
WORKRESP

F51F3427
F76FNEWP
JONUDC
NOTEDATA
UDC
WORKVSTR

HP3000 I MPE IV C.00.00. AUG 22, 1980, 3:11 PM
&DEMELLO YELLO

SYSTEM WAS RELOADED 8/19/80
:REMOTE LISTF

FILENAME

IOTEST PNOTE TEST XCAP XOP

2-127

F51FPTCT
F85FPTCT
JXXJXXXX
NOTEF I LE
WORKKPR
XBJACK

:REMOTE

1SHOWME
USER: #S158,MIKE.OSE,PAIVINEN CNOT IN BREAK>
MPE VERSION: HP32002X.08.02
CURRENT: FRI, AUG 22, 1980, 3:11 PM
LOGON: FRI, AUG 22, 1980, 3:11 PM
CPU SECONDS: 1 CONNECT MINUTES: 1
$STDIN LDEV: 72 $STDLIST LDEV: 72

&DEMELLO YELLO

SYSTEM WAS RELOADED 8/19/80 ...
#LI STF

FILENAME

IOTEST PNOTE TEST XCAP

#:

:REMOTE 3SHOWME

XOP

USER: 1S286,MIKE.OSE,PAIVINEN CNOT IN BREAK>
MPE VERSION: HP32002C.OO.OO
CURRENT: FRI, AUG 22, 1980, 3:11 PM
LOGON: FRI, AUG 22, 1980, 3:10 PM
CPU SECONDS: 1 CONNECT MINUTES: 2
$STDIN LDEV: 81 $STDLIST LDEV: 81

RADAR
STROLD DONE LAST NIGHT 8/21/80

:REMOTE 3 LISTF
NO FILES FOUND IN FILE-SET-CCIWARN 431)
:REMOTE SHOWME
USER: #S158,MIKE.OSE,PAIVINEN <NOT IN BREAK>
MPE VERSION: HP3200C.OO.OO
CURRENT: FRI, AUG 22, 1980, 3:12PM
LOGON: FR I , AUG 22, 1980, 3: 11 PM
CPU SECONDS: 1 CONNECT MINUTES: 2
$STDIN LDEV: 72 $STDLIST LDEV: 72

&DEMELLO YELLO

SYSTEM WAS RELOADED 8/19/80 ...
: DSL I NE 8; CLOSE
ABORT THE REMOTE SESSION ON #LS?YES
SESSION ABORTED BY SYSTEM MANAGEMENT
CPU=1. CONNECT=2. FRI, AUG 22, 1980, 3:12 PM
ABORT THE REMOTE SESSION ON #L3?YES
SESSION ABORTED BY SYSTEM MANAGEMENT
CPU=1. CONNECT=3. FRI, AUG 22, 1980, 3:12 PM
2 DS LINES WERE CLOSED.

ADDITIONAL DISCUSSION

DS/3000 Reference Manual

2-128

:REMOTE HELLO
Establishes communication between a local computer and a remote computer, and initiates a session
on the remote system.

SYNTAX

:REMOTE HELLO [sessionname,] username [/userpass] .acctname [/acct pass]
[,groupname[/grouppass]]
[;TERM=termtype]
[;TIME=cpusecs]

BS
cs

[;PRI={ }]
DS
ES

;INPRI =input priority
[]
;HIP RI

[;DSLINE=dsdevice]

PARAMETERS

sessionname

username

userpass

acctname

acctpass

groupname

group pass

Arbitrary name used in conjunction with username and acctname parameters to
form a session identity. Contains from 1to8 alphanumeric characters, beginning
with a letter. Default is no session name is assigned.

A user name, established by an Account Manager on a remote HP 3000, that
allows you to log on the remote system under this account. Contains from 1 to 8
alphanumeric characters, beginning with a letter. (REQUIRED PARAMETER)

User password, optionally assigned by an Account Manager on a remote HP 3000.
Contains from 1 to 8 alphanumeric characters, beginning with a letter.

Name of account, as established by System Manager of the remote system.
Contains from 1 to 8 alphanumeric characters, beginning with a letter. The
acctname parameter must be preceded by a period. (REQUIRED PARAMETER)

Account password, optionally assigned by the System Manager of the remote
system. Contains from 1 to 8 alphanumeric characters, beginning with a letter.

Name of a remote system group to be used for file domain and CPU time charges.
Established by Account Manager. Contains from 1to8 alphanumeric characters,
beginning with a letter. Default is your remote system home group if you are
assigned one by Account Manager. (Optional if you have a home group, required
if home group not assigned.)

(Required if assigned and you are logging on under other than home group. Not
required if logging on under home group.) Group password, optionally assigned
by the Account Manager on a remote system. Contains from 1 to 8 alphanumeric
characters, beginning with a letter.

2-129

termtype

cpusecs

BS, CS, DS, ES

inputpriority

HIP RI

dsdevice

USE

Available

Breakable?

Term type, if present, has no meaning and is ignored. The term type for your local
session implicitly defines your log-on terminal type for a remote session.

Maximum remote CPU time that your remote session can use, entered in seconds.
When limit is reached, session is aborted. Must be a value from 1 to 32767. To
specify no limit, enter question mark (?) or UNLIM, or omit parameter. Default is
no limit.

Execution priority class. BS is highest priority, ES is lowest. If you specify a prior
ity that exceeds the highest permitted for your account or user name by the sys
tem, MPE assigns the highest priority possible below BS. Default is CS.

NOTE
DS and ES are used primarily for batch jobs; their use for
sessions is discouraged.

Relative input priority used in checking against access restrictions imposed by
the remote system'sjobfence, if one exists. Takes effect at log-on time. Must be a
value from 1 (lowest priority) to 13 (highest priority). If a value is specified that is
less than or equal to currentjobfence set by the remote Console Operator, session
is denied access. Default is 8.

Request for maximum session-selection input priority, causing your remote ses
sion to be scheduled regardless of current job fence or execution limit for sessions.
This parameter can be specified only by users with System Manager or System
Supervisor capability on the remote system. If the user does not have OP or SM
capability, the system tries to log the user on with INPRI =13. Default is the
current job fence and execution limit.

The device class name or logical device number assigned to the DS/3000 commu
nications driver IODSO during system configuration. This parameter specifies
what physical line you wish to use. Optional parameter if a line already is open;
otherwise it is required.

In Session? YES

In Job? YES

In Break? YES

Programmatically? YES J
YES (Log-on message aborted) J

2-130

OPERATION

The :REMOTE HELLO command is used to obtain access to a physical communications line and
establish a session on a remote HP 3000.

The line to the remote computer must have been opened by the Console Operator before a :REMOTE
HELLO command can be completed successfully. In addition, the line must be opened from your local
session. This can be done by including the optional dsdevice parameter in the :REMOTE HELLO
command or by first issuing a :DSLINE xxx command and then omitting the dsdevice parameter (refer
to EXAMPLE).

When you open a line by including the dsdevice parameter, the line remains open only for the duration
of your remote session. When the remote session terminates, the line is automatically closed.

After a session exists on a remote HP 3000, you can issue :REMOTE commands that include any valid
MPE command. It is also possible to issue a :REMOTE command (without parameters) to transfer
control to the remote Command Interpreter. See the :REMOTE command.

EXAMPLE

To establish the communications line FONZ and log on to System B from System A, you could enter
either of the following examples:

:HELLO NANCY.USERS
USER PASSWORD (PASS)?
HP3000 I MPE IV C.00.00. WED, SEP 3, 1980, 1:51 PM

:REMOTE HELLO NANCY.SA YLOR;DSLINE =FONZ
HP3000 I MPE IV C.00.00. WED, SEP 3, 1980, 1:52 PM

DS LINE NUMBER = #L5.

:HELLO NANCY.USERS
USER PASSWORD (PASS)?
HP3000 I MPE IV C.00.00. WED, SEP 3, 1980, 1:55 PM

:DSLINE FONZ
DS LINE NUMBER 1FL0.

:REMOTE HELLO NANCY.SAYLOR
HP3000 I MPE IV C.00.00 WED, SEP 3, 1980, 1:56 PM

ADDITIONAL DISCUSSION

DS/3000 Reference Manual.

2-131

:RENAME
Changes identity (file name, lockword, and/or group name) of disc file.

SYNTAX

:REN AME oldfileref erence,newfileref ere nee[, TEMP]

PARAMETERS

oldfikreference

newfilereference

TEMP

USE

Available

I Breakable?

OPERATION

Current name of file, written in the following format:

filename [llockword] [.groupname [.acctname]]

If acctname is specified, it must be that of your log-on account. (REQUIRED
PARAMETER)

New name of file, in the same format as oldfilereference. If acctname is specified,
it must be that of your log-on account. If groupname is specified, it must be one to
which you have SA VE access. If acctname and/or groupname are omitted, the
log-on account and/or group are assumed. (REQUIRED PARAMETER)

Indicates that old file was, and new file will be, in temporary job/session file do
main. Default is permanent file is assumed.

In Session? YES

In Job? YES

In Break? YES

Programmat1cally? YES

NO

Changes system file identification for permanent or temporary disc file. Effectively removes file with
old name from system and creates another file with identical contents and new name. This command
can be used to change the name of a file, to move a file from one group to another (by specifying a
differentgroupname in the newfilereference parameter), or to change the lockword. You cannot rename
files across accounts.

The volume set must be mounted for the group in which this file is to be renamed or this command will
fail. In addition, renaming is confined to a volume set (i.e., a file cannot be renamed across volume
sets).

Note that in order to rename a file you must be the creator of the file and the system must be able to
open the file exclusively. (Exclusive implies lock access).

2-132

EXAMPLE

To change the name of a temporary file from OLDFILE to NEWFILE, moving it from your log-on
group to the group named NEWG, enter:

:RENAME OLDFILE,NEWFILE.NEWG,TEMP

To change the lockword ~f the permanent file FILE2 from LOCKA to LOCKB, enter:

:RENAME FILE2/LOCKA,FILE2/LOCK

To transfer a file from one group to another within the same account, use the :RENAME command,
simply naming the new group in the second parameter. (You must be the creator of the file to use this
command.) For example,

:RENAME MYFILE.GROUP1,MYFILE.GROUP2

I /
Old group New group

NOTE

To use :RENAME in this way, you must have SA VE access
to the group named in the second parameter (GROUP2 in
the previous example). In addition, both groups must be in
the system domain or must both reside on the same volume
set (renaming of files across volume sets is not allowed).

To transfer a file from one account to another, proceed as follows:

1. Log on to the computer under the account presently containing the file.

2. Enter the :RELEASE command to temporarily suspend any MPE security provisions covering the
file. For example:

:RELEASE FILEX File name

You can only enter this command if you are the creator of the file.

3. Log off from this account, and log on under the account to which the file is to be transferred.

2-133

4. Run the File Copier Subsystem (FCOPY) to copy the file from the old account into this account. For
example,

Old account name

:RUN FCOPY.PUB.SYS \
>FROM =FILEX.GROUP A.ACCTl;NEW;TO =FILEX.GROUPA.ACCT2

New account name ~
(optional entry)

NOTE
The renaming of files across volume sets is not allowed (this
would require that the operation physically transfer the file
between different volume sets).

A copy of FILEX now exists under GROUPA of ACCT2; the original FILEX still exists under
GROUPA of ACCTI. (ACCT2 must be your log-on account.)

ADDITIONAL DISCUSSION

Using Files Manual.

2-134

:REPORT
Displays accounting information for logon account and group.

SYNTAX

:REPORT [groupset] [,listfile] [;VS=volset]

PARAMETERS

groups et

group name

@

groupname.
acctname
@.acctname

@.@

groupname.@

Specifies the accounts and groups for which information is to be listed. The per
missible entries and the capability required (shown in parentheses) are as follows:
Account Manager is shown as AM; System Manager as SM.

Reports on the specified group in the log-on account. Standard user can only
specify his log-on group.

Reports on all groups in the log-on account (AM or SM).

Reports on the specified group in the specified account (SM).

Reports on all groups in the specified account (SM).

Reports on all groups in all accounts (SM).

Reports on specified group in any account.

Default: For standard user: his log-on group.
For Account Manager: All groups in his own account.
For System Manager: All groups in all accounts.

NOTE

The characters @, #, and ? can be used as wild card charac
ters in any order in the groupset parameter. These wild card
characters have the following meanings:

@ - specifies zero or more alphanumeric characters.

- specifies one numeric character.

? - specifies one alphanumeric character.

The characters can be used as follows:

n@ Report on all groups starting with the character n.

@n Report on all groups ending with the character n.

n@x Report on all groups starting with the character n and ending with the
character x.

2-135

list file

volset

USE

Available

Breakable?

OPERATION

n## .. # Report on all groups starting with the character n followed by up to
seven digits.

?n@ Report on all groups whose second character is n.

n? Report on all two-character groups starting with n.

?n Report on all two-character groups ending with n.

Actual file designator of output file to which information is to be written. Output
may be re-directed with a :FILE back reference as follows:

:FILE LISTl,DEV =LP

:REPORT , *LISTI

Default is $STDLIST.

Directs the reporting of accounting information from the specified volume set.

In Session? YES

In Job? YES

In Break? YES

Programmatically? YES

YES (Aborts)

Displays the total resource usage logged against accounts and groups, and the limits on those
resources. For the standard user, this information covers his own group only; an Account Manager
may specify all groups in his account; and the System Manager may specify all groups in all accounts.

The information includes usage counts and limits for permanent file space (in sectors), cpu time (in
seconds), and session connect time (in minutes). The file space usage count reflects file space used as of
the present time, but the cpu time and connect time usage reflects these counts as they were immedi
ately prior to the start of the current job.

The type of output written to list file depends on the type of file (ASCII or binary) specified or implied.
If listfile is an ASCII file, a standard ASCII listing is produced; on this listing, an unlimited quantity is
denoted by a double asterisk(**). If listfile is a binary file (typically used to help in automatic process
ing of the report data), a 17-word record is written for each account/group.

On both ASCII and binary listfiles, the entry for each account is followed immediately by the entries
for all of its groups.

2-136

EXAMPLE

To obtain accounting information for your group, enter the :REPORT command. The accounting
information follows the listing of this command:

:REPORT @.SUPPORT
ACCOUNT FILESPACE-SECTORS CPU-SECOND CONNECT-MINUTES

/GROUP COUNT LIMIT COUNT LIMIT COUNT LIMIT
SUPPORT 23116 ** 624700 ** 98880 **

/BUGGROUP 7465 ** 9233 ** 45451 **
/CREATOR 0 ** 0 ** 0 **
/GAMES 0 ** 241 ** 133 **
/HP30126 0 ** ** 4 **
/HP32000 0 ** 31 ** 71 **
/HP32002 14933 ** 15482 ** 3137 **
/HP32190 0 ** 2

/** /HP32192 0 ** 43 **
1 **

1 7 **
Double asterisk
signifies no limit

ADDITIONAL DISCUSSION

System Manager/System Supervisor Reference Manual.

2-137

:RESET
Cancels :FILE command.

SYNTAX

f ormaldesignator
:RESET { }

@

PARAMETERS

f ormaldesignator Formal file name of file on which :FILE command will be cancelled.

@ Directive to reset all formal file designators noted in all :FILE commands pre
viously encountered in this job session.

USE

Available In Session? YES

In Job? YES

In Break? YES

? Programmat1cally. YES

Breakable? NO

OPERATION
Resets the formal designator for a file to its original meaning, :negating the effect of any :FILE
command that has referenced this formal designator up to this point in the job. The :RESET command
applies to files on any device.

EXAMPLE
To cancel the effects of a previous :FILE command that specified characteristics for a file pro
grammatically referred to as ALPHA, enter:

:RESET ALPHA

2-138

:RESETDUMP
Disables Stackdump facility.

SYNTAX

:RES ETD UMP

PARAMETERS

None

USE

Available In Session? YES

In Job? YES

In Break? YES

Programmatically? YES

Breakable? NO

OPERATION

Disarms MPE Stackdump facility (armed by :SETDUMP command), described in the MPE
Debug/Stackdump Reference Manual. When entered in BREAK, does not modify state of processes
already created. If Stackdump facility is not enabled, :RESETDUMP command has no effect.

EXAMPLE

To disable the Stackdump facility, enter:

:RESETDUMP

ADDITIONAL DISCUSSION

MPE Debug/Stack Dump Reference Manual.

2-139

:RESTORE
Returns files (stored on magnetic tape or serial disc) to system.

SYNTAX

:RESTORE restorefile[;[fileset][, . ..]]

[;KEEP][;DEV =device][;SHOW][;FILES =maxfiles][;OLDDATE]

PARAMETERS

restorefile

fileset

Name of magnetic tape or serial disc file on which files to be restored exist. This
file must be referenced in the back-reference format by using an asterisk. (This
format references a previous :FILE command that has defined the file as a mag
netic tape or serial disc file.)

A message is output on the system console requesting the Console Operator to
mount the tape or serial disc platter identified by the restorefile parameter, and
allocate the device. (REQUIRED PARAMETER)

Set of files to be restored. Default is@. This parameter is of the form:

filedesignator[.groupdesignator[.acctdesignator]]

fileset can be entered in any of the following formats and may use wild card
characters, in any order, as replacements.

file.group.account Restore the specified file in the specified group and account.

file.group Restore specified file in specified group.

file Restores the specified file.

@.group.account Restore all files in specified group and account.

@.group Restore all files in specified group.

@.@.account Restore all files in all groups in specified account.

@ Restore all files in logon group. Default for users.

@.@ Restore all files in all groups on logon account. Default for account manager.

@.@.@ Restore all files in system. Default for system manager and system supervisor.

file.@.account Restore file named in any group of specified account.

NOTE

The characters@,#, and? can be used as wild card charac
ters in the fileset parameter. These wild card characters
have the following meanings:

2-140

KEEP

device

@ - specifies zero or more alphanumeric characters.

- specifies one numeric character.

? - specifies one alphanumeric character.

The characters can be used as follows:

n@

@n

n@x

Restore all files starting with the character n.

Restore all files ending with the character n.

Restore all files starting with the character n and ending with
the character x.

n## .. # Restore all files starting with the character n followed by up to
seven digits.

?n@

n?

?n

Restore all files whose second character is n.

Restore all two-character files starting with n.

Restore all two-character files ending with n.

NOTE

More than one fileset may be used with a single :RESTORE
command. The number of filesets that may be specified with
one :RESTORE command is limited as follows: up to 10 by
account name; up to 15 by group name and account name;
and up to 20 by file name, group name, and account name.
The fileset is a positional parameter.

Specifies that if a file referenced in the :RESTORE command currently exists on
disc, the file on disc is kept and the corresponding tape or serial disc file is not
copied into the system. Default: If an identically-named file exists in the system,
that file is replaced with the one on tape or serial disc. If the identically-named
file on disc is busy, however, the disc file is kept and the tape or serial disc file is
not restored.

Specifies the device on which the file is to reside, entered in one of the following
forms:

devclass
ldn

The device class (devclass) specifies the type of device. If devclass is specified, the
file is allocated to any of the home volume set's volumes that fall within that
device class.

2-141

SHOW

max files

OLDDATE

USE

Available

I Breakable?

OPERATION

The logical device number (ldn) specifies a specific device. If ldn is specified, the
file will be allocated to that device only if one of the volumes in the home volume
set currently occupies the device.

Default: MPE attempts to restore the file on a logical device compatible with the
type/sub-type specified in the file's file label and the type/ sub-type of the mount
ed home volume set. If this fails, an attempt is made to restore the file on the same
device class as specified in the file's file label and that of the mounted home vol
ume set. If this fails, an attempt is made to restore the file on any member of the
home volume set. If this fails, the file is not restored.

Request to list names of restored files. Default: Only total number of files re
stored, list of files not restored, (and the reason each was not restored), and the
count of files not restored are listed. The listing is sent to $STDLIST (formal
designator SYSLIST) unless a :FILE command is entered to send the listing to
some other device. For example,

:FILE SYSLIST;DEV=LP

entered before the :RESTORE command would send the listing to a line printer.

Maximum number of files that may be restored. Default is 4000.

Keeps the accdate and moddate on files being restored unchanged. Default is to
alter these dates.

In Session? YES

In Job? YES

In Break? YES

Programmatically? YES

YES (Aborts)

Reads back into system, on disc, a file or files stored offline by :STORE or :SYSDUMP commands. If
you have System Manager or System Supervisor capability, you can restore any file from a :STORE
tape or serial disc, assuming the account and group to which the file belongs and the user who created
the file are defined in the system. If you have Account Manager capability, you can restore any file in
your account (but cannot restore those with negative file codes unless you also have Privileged Mode
capability. If you have standard user capability only, you can restore any file in your log-on account if
you have SA VE access to the group to which the file belongs; you cannot, however, restore those with
negative file codes unless you have Privileged Mode capability. If the file to be restored is protected by
a lockword, you must supply the lockword via the :RESTORE command unless you have System
Manager, System Supervisor, or Account Manager and you are restoring within your own account)
capability. If you are logged on in an interactive session, MPE prompts you for omitted lockwords.
However, if you are a System Manager, System Supervisor, ·or Account Manager (restoring within
your own account), you are not required to provide lockwords. Any file belonging to a group whose
home volume set has not been pre-mounted will not be restored.

2-142

The listing output by :RESTORE is sent to a file whose formal designator is SYSLIST. If not specified,
this file is equated by default to the current list device ($STDLIST).

Before entering :RESTORE, you must identify restorefile as a magnetic tape or serial disc file with a
:FILE command, as follows:

:FILE formaldesignator [=file reference];DEV =device [;REC =recsize]

The device parameter must indicate the device class name or logical unit number of a magnetic tape or
serial disc unit. The recsize parameter must be entered only if· the record size of files being :RE
STORED is different than 4096. All other parameters for restorefile are supplied by the :RESTORE
command. If you attempt to supply any of these parameters, MPE rejects the :RESTORE command.

EXAMPLE

To restore all files belonging to your log-on group from the restorefile named BACKUP, enter:

:FILE BACKUP;DEV=TAPE
:RESTORE *BACKUP;@;KEEP;SHOW

In response, the Console Operator receives a request to mount the tape identified as BACKUP. If a
serial device file satisfying the @specification already exists in the system, it is not restored because
the KEEP parameter was specified.

To have the list of restored files printed on a line printer, enter:

:FILE SYSLIST;DEV =LP
:FILE BACKUP;DEV =TAPE
:RESTORE* BACKUP; @KEEP;DEV =MHDISC;SHOW

If a file satisfying the @ specification already exists in the system, it is not restored.

ADDITIONAL DISCUSSION

System Manager/System Supervisor Reference Manual.

2-143

:RESUME
Resumes execution of a suspended operation.

SYNTAX

:RESUME

PARAMETERS

None

USE

Available In Session? YES (While in BREAK mode only)

In Job? NO

In Break? YES

Programmatically? NO

Breakable? NO

OPERATION

After a program or MPE command operation is suspended by pressing the BREAK key or by using the
CAUSEBREAK intrinsic, the :RESUME command resumes execution of the operation at the point
where the execution was suspended.

Note that the :R.ESUME command is legitimate only during a BREAK Many MPE commands are
aborted rather than suspended by a BREAK, and thus cannot be resumed.

If, instead of :RESUME, you enter another program command (such as :EDITOR, :FORTRAN or
:RUN) or one of the non-program commands, :HELLO, :BYE, :JOB or :DATA, the Command Interpre
ter prints the following message on your terminal:

ABORT? (YES/NO)

If you respond YES to the ABORT? message, the Command Interpreter aborts the current program
and executes the command you entered, in the usual way.

If you had logged on using the: () command log on with a program command inside the parentheses,
then responding YES to the ABORT? message causes MPE to abort the command and log you off
immediately.

2-144

If you respond NO to the ABORT? message, the Command Interpreter prints the message NOT
ALLOWED IN BREAK and prompts you for another command. If you now enter :RESUME, the
suspended program resumes at the point where it was interrupted.

EXAMPLE

:RESUME

2-145

:RJE
Calls RJE/3000.

SYNTAX

:RJE [commandfile] [,[inputfile] [,[listfile] [,punchfile]]]

PARAMETERS

command file

inputfile

list file

punchfile

Actual designator of file from which RJE/3000 reads its directives. Can be any
ASCII input file. Formal designator is RJECOM. Default is $STDIN.

Actual designator of file from which RJE/3000 reads input data to be transmit
ted to the remote computer. Can be any ASCII input file. Formal designator is
RJEIN. Default is $STDIN.

Actual designator of file to receive listed output obtained from remote computer.
Can be any ASCII output file. Formal designator is RJELIST. Because this file
usually is a line printer, it is defined in a :FILE command and back referenced as
follows:

:FILE LP;DEV =LP
:RJE CFILE,INFILE,*LP

Default is $STDLIST.

Actual designator of file to receive punched output obtained from remote com
puter. Can be any output file. Formal designator is RJEPUNCH. Because this file
usualiy is a non-disc file, it is defined in a :FILE command and back referenced as
follows:

:FILE PUNFILE;DEV=PrPUNCH
:RJE CFILE,INFILE,,*PUNFILE

Default is $0LDPASS (if $0LDPASS exists) or $NEWPASS if $0LDPASS does
not exist.

NOTE

The formal file designators used in this command
(RJECOM, RJEIN, RJELIST, RJEPUNCH) can
not be back referenced as actual file designators
in the command parameter list. For further in
formation, see the OPERATION section of the
:FILE command.

2-146

USE

Available In Session? YES

In Job? YES

In Break? NO

Programmatically? NO

I Breakable?
I

YES (Suspends)

OPERATION

Invokes the HP 2780/3780 Emulator. The Emulator permits transfer of data between an HP 3000
Computer System and a variety of remote processors in a full multiprogramming environment. The
Emulator makes the HP 3000 Computer System appear to a remote processor as either an IBM 2780 or
3780 Data Transmission Terminal.

EXAMPLE

To invoke the Emulator in a session, enter directives to it via your current input device, and input data
via the disc file MYDAT A, with listing output directed to a line printer (LISTFL) and punched output
to a card punch (PUNCHFL), enter:

:FILE LISTFL;DEV=LP
:FILE PUNCHFL;DEV=PTPUNCH
:RJE ,MYDATA,*LISTFL,*PUNCHFL

ADDITIONAL DISCUSSION

RJE/3000 Reference Manual (HP 278013780 Emulator Reference Manual).

2-147

:RPG
Compiles an RPG program.

SYNTAX

:RPG [textfile] [,[uslfile] [,[listfile] [,[masterfile] [,new file]]]]

PARAMETERS

textfile

uslfile

listflle

masterfile

new file

Actual designator of input file from which source program is read. Can be any
ASCII input file. Formal designator is RPGTEXT. Default is $STDIN.

Actual designator of USL file on which object program is written. Can be any
binary input file with a filecode of USL or 1024. Formal designator is RPGUSL. If
this parameter is specified, it must indicate a file previously created in one of four
ways:

1. By saving a USL file, with the MPE :SA VE command, created by a previous
compilation where the default value was used for the uslfile parameter.

2. By building the USL with the MPE Segmenter-BUILDUSL command. (See
the MPE Segmenter Reference Manual.)

3. By creating a new USL file with the MPE :BUILD command with afilecode of
USL or 1024.

4. By specifying a non-existent uslfile parameter, thereby creating a permanent
file of the correct size and type.

Default: $NEWPASS is assigned.

Actual designator of file on which program listing is written. Can be any ASCII
output file. Formal designator is RPGLIST. Default is $STDLIST.

Actual designator of master file to be merged against textfile to produce composite
source. Can be any ASCII input file. Formal designator is RPGMAST. Default is
that the master file is not read, input is read from textfile.

Actual designator of merged textfile and masterfile. Can be any ASCII output file.
Formal designator is RPGNEW. Default is that no file is written.

NOTE

The formal file designators used in this command
(RPGTEXT, RPGUSL, RPGLIST, RPGMAST, RPGNEW)
cannot be back referenced as actual file designators in the
command parameter list. For further information, see OP
ERATION section of the :FILE command.

2-148

USE

Available In Session? YES

In Job? YES

In Break? NO

Programmatically? NO

Breakable? YES (Suspends)

OPERATION

Compiles RPG program onto a User Subprogram Library (USL) file on disc. If you do not specify
textfile, MPE expects input from your current job input device. If the USL file is created prior to
compilation, it must have a filecode of USL or 1024.

EXAMPLE

To compile an RPG program entered from the current input device into an object program in the USL
file $NEWP ASS, and write the listing to the current list device, enter:

:RPG

If the next command is one to prepare an object program, $NEWP ASS can be passed to that command
by referencing $0LDPASS. Note that a file can only be passed between commands or programs within
the same job or session.

To compile an RPG program residing on the disc file SOURCE into an object program on the USL file
OBJECT, with the program listing sent to the disc file LISTFL, enter:

:BUILD OBJECT;CODE =USL
:RPG SOURCE,OBJECT,LISTFL

You must specify the CODE parameter as
USL if you choose to create a USL file with
the :BUILD command.

To compile an RPG program creating the USL file with the uslfile parameter, enter:

:RPG SOURCE,OBJECT,LISTFL

I t ' Textfile USL file List file

ADDITIONAL DISCUSSION

RPG/3000 Compiler Reference Manual.

2-149

:RPG GO
Compiles, prepares, and executes an RPG program.

SYNTAX

:RPGGO [text file] [,[listfile] [,[masterfile] [,newfile]]]

PARAMETERS

text file

list file

masterfile

new file

USE

Available

Breakable?

OPERATION

Actual designator of input file from which source program is read. Can be any
ASCII input file. Formal designator is RPGTEXT. Default is $STDIN.

Actual designator of file on which program listing is written. Can be any ASCII
output file. Formal designator is RPGLIST. Default is $STDLIST.

Actual designator of master file which is merged against textfile to produce
composite source. Can be any ASCII input file. Formal designator is RPGMAST.
If masterfile is not designated, input is read from textfile.

Actual designator for merged textfile and masterfile. Can be any ASCII output
file. Formal designator is RPGNEW. Default is that no file is written.

NOTE

The formal file designators used in this command
(RPGTEXT, RPGLIST, RPGMAST, RPGNEW) cannot be
back referenced as actual file designators in the command
parameter list. For further information, see OPERATION
section of :FILE command.

In Session? YES

In Job? YES

In Break? NO

Programmatically? NO

YES (Suspends)

Compiles, prepares, and executes an RPG program. If you do not specify a source file, MPE expects
input from your current input device. This command creates a temporary User Subprogram Library
(USL) file ($NEWPASS) that you cannot access, and a temporary program file that you can access
under the name $0LDPASS.

2-150

EXAMPLE

To compile, prepare, and execute an RPG program entered from the current input device, with the
program listing sent to your current list device, enter:

:RPGGO

To compile, prepare, and execute an RPG program read from the disc file SOURCE and send the
resulting program listing to the disc file LISTFL, enter:

:RPGGO SOURCE,LISTFL

ADDITIONAL DISCUSSION

RPG/3000 Compiler Reference Manual.

2-151

:RPGPREP
Compiles and prepares an RPG program.

SYNTAX

:RPG PREP [textfile] [,[progfile] [,[listfile] [,masterfile] [,new file]]]]

PARAMETERS
textfile

progfile

listfile

masterfile

new file

USE

Available

I Breakable?
I

Actual designator of input file from which source program is read. Can be any
ASCII input file. Formal designator is RPGTEXT. Default is $STDIN.

Actual designator of program file on which prepared program segments are writ
ten. Can be any binary input file with filecode of PROG or 1029. If entered, this
parameter must indicate a file created in one of two ways:

1. By creating a new program file with the MPE :BUILD command with a
filecode of PROG or 1029 and a numextents parameter value of 1.

2. By specifying a non-existent file in theprogfile parameter, in wich case a job
session temporary file of the correct size and type is created. Default is that
$NEWPASS is assigned.

Actual designator of file on which program listing is written. Can be any ASCII
output file. Formal designator is RPGLIST. Default is $STDLIST.

Actual designator of master file which is merged against textfile to produce
composite source. Can be any ASCII input file. Formal designator is RPGMAST.
Default is that master file is not read; input is read from textfile.

Actual designator of merged textfile and masterfile. Can be any ASCII output file.
Formal designator is RPGNEW. Default is that no file is written

NOTE

The formal file designators used m this command
(RPGTEXT, RPGPROG, RPGLIST, RPGMAST, RPGNEW)
cannot be back referenced as actual file designators in the
command parameter list. For further information, see OP
ERATION section of :FILE command.

In Session? YES

In Job? YES

In Break? NO

Programmatically? NO

YES (Suspends)

2-152

I

OPERATION

Compiles and prepares an RPG program onto a program file on disc. If you do not specify a source file,
MPE expects input from your current input device. The User Subprogram Library (USL) file created
during compilation is a temporary file passed to the preparation mechanism; you can access it with the
name $0LDPASS only if the program file is not $NEWPASS.

EXAMPLE

To compile and prepare an RPG program entered through the current input device, onto the file
$NEWP ASS, with the listing printed on the current list device, enter:

:RPG PREP

If the next command is one to execute the program, the file $NEWPASS is referenced in the execute
command under the name $0LDP ASS.

The USL file created during compilation is a temporary file passed directly to the preparation
mechanism; you can access it, but only under the name $0LDP ASS, and only if the program was not
prepared into the file named $NEWPASS. Therefore, if you want to save the compiled USL, you must
specify some other file as the second positional parameter in this command, and then use a :SA VE
command. For instance:

Note the first positional parameter omitted, textfile read from standard input device.

:RPGPREP ,COMFL
:SA VE $0LDPASS,NUSL

Compiles into $NEWPASS, PREPARED INTO COMFL.
Saves USL, changing file name from $0LDP ASS
(formerly $NEWPASSJ to NUSL.

The program file is also created as a temporary file (unless you prepare the program onto a
previously-created file). Therefore, if you want to save a new program file, you may use the :SA VE
command as follows:

:RPGPREP ,COMFL
:SAVE $0LDPASS,NUSL
:SAVE COMFL

Compiles into $NEWPASS, prepares into COMFL.
Saves USL under name NUSL.
Saves program file named COMFL.

Alternatively, if you want to create a new permanent file into which to prepare your program, you may
use the :BUILD command. When you do this, however, you must specify a filecode of PROG (or 1029) to
specify program file format, and limit this file to one extent.

Specifies program file format Specifies 1 extent

\..
""' :BUILD PROGFL;CODE =PROG;DISC =,1 Creates permanent program file.

Compiles into $NEWPASS, prepares
into PROGFL.

:RPGPREP ,PROGFL

2-153

If you are receiving your input file from a device other than the standard input device, for instance,
from a disc file created via the Editor, and wish to transmit your listing to a device other than the
standard listing device - for instance, to another line printer, enter:

:FILE LINEA:DEV =12
:RPGPREP EDTDISC,COMFL,*LINEA

/ I " Text file Program List file
file

ADDITIONAL DISCUSSION

RPG/3000 Compiler Reference Manual.

2-154

Identifies line printer (logical device 12).
Compiles and prepares program.

:RUN
Ex~cutes a prepared program.

SYNTAX

:RUN progfile[,entrypoint]

[;NOPRIV]
[;LMAP]
[;DEBUG]
[;MAXDATA=segsize]
[;PARM= parameternum]
[;STACK =stacksize]
[;DL=dlsize]

G
[;LIB={P}]

s
[;NOCB]
[;INFO =string]

[;STDIN = [*formaldesigl J [
file ref ;STDLIST =
$NULL

[
* formaldes ig J J
fileref [,NEW]
$NULL

PARAMETERS

progfile

entry point

NOP RIV

Actual designator of program file that contains prepared program. (REQUIRED
PARAMETER)

Program entry point where execution is to begin. May be primary entry point of
program or any secondary entry point in program's outer block. Default is prima
ry entry point.

Declaration that program segments will be placed in non-privileged (user) mode.
This parameter is intended for programs prepared with privileged mode capabili
ty. Normally, programs containing privileged instructions are executed in privi
leged mode only if program was prepared with privileged mode (PM) capability
class. (A program containing legally compiled privileged code, placed in non
privileged mode, may abort when an attempt is made to execute it.) IfNOPRIV is
specified in the :RUN command, all program segments are placed in non-privi
leged mode. (Library segments are not affected because their mode is determined
independently.)

Note that NOPRIV produces the same effect as omitting the $OPTION
PRIVILEGED and OPTION PRIVILEGED entries in SPL source input. Default
is that privileged mode programs will remain in privileged mode.

2-155

LMAP

DEBUG

segsize

parameternum

stacksize

dlsize

G

p

s

NOCB

STD IN

STD LIST

Request to produce a descriptive listing of the allocated (loaded) program on file
whose formal designator is LOADLIST. If no :FILE command is found that
references LOADLIST, listing is sent to $STDLIST. Default is no listing. See
Appendix D for a loaded program listing.

Request to issue a Debug cail before the first executable instruction of the pro
gram. This parameter is ignored when a non-privileged user runs a program hav
ing privileged mode capability. This parameter also is ignored if user does not
have read and write access to program file. Default is Debug call is not issued.

Maximum stack area (Z-DL) size permitted, in words. This parameter is included
if it is expected that size ofDL-DB or Z-DB areas will be changed during program
execution. Default is MPE assumes areas will not be changed.

Value that can be passed to program as a general parameter for control or other
purposes. When program is executed, this value can be retrieved from address
Q(initial)-4, where Q(initial) is Q address for outer block of program. Value can be
octal number or signed or unsigned decimal number. Default is Q(initial)-4 ad
dress is filled with zeros.

Size of initial local data area (Z-Q(initial)) in stack. This value must exceed 511
words, and overrides stacksize estimated by MPE Segmenter. Default is estimat
ed by Segmenter.

DL-DB area to be initially assigned to stack. This area is of interest mainly in
programmatic applications. In all cases, the DL-DB area is rounded upward so
that the distance from the beginning of the stack data segment to the DB address
is a multiple of 128 words. Default is estimated by Segmenter.

Search segmented procedure libraries of the program file's group and account to
satisfy external references during allocation in the following order: group library,
account public library, system library. Default is S.

Search segmented procedure libraries of the program file's group and account to
satisfy external references during allocation in the following order; account
public library, system library. Default is S.

Search system library only to satisfy external references during allocation.
Default.

Request that file system not use stack segment (PCBX) for its control blocks, even
if sufficient space is available. This permits expansion of the stack (with the
DLSIZE and ZSIZE intrinsics) to the maximum possible limit at a later time, but
causes the File Management System to operate more slowly for this program.

Use of this parameter allows the user to specify the file to be used by the program
being executed.

Use of this parameter allows the user to specify the file to be used by the program
being executed.

2-156

f ormaldesig

fileref

The formal file designator for a file previously specified in a file equation.

The name of an old parameter disc file or, if the NEW option is specified, the
name to be assigned to a job/session temporary disc file created with system
defaults.

The system defaults for the NEW file are fixed length ASCII 132 byte records with a maximum file size
of 1023 records.

If nothing is specified on the right-hand side of the"=" sign or if"STDIN ="and "STDLIST ="are not
specified on the :RUN command, the job/session main $STDIN and $STDLIST files are assumed to
serve as $STDIN and $STDLIST for the program. In session mode, $STDIN and $STDLIST are the
interactive session terminal. In job mode, $STDIN is usually the spooled input device file that
introduced the job, and $STDLIST is usually the spooled line printer.

INFO

USE

Available

Breakable?

OPERATION

A string of ASCII characters delimited by a pair of 's or "s. Maximum length of
the string is 255 characters, including the delimiting characters.

In Session? YES

In Job? YES

In Break? NO

Programmatically? NO

YES Sus ends) p

Executes a program prepared in a program file. This command permits searching of segmented librar
ies (SL's) but not relocatable libraries (RL's) to satisfy external references.

If the volume set containing the file to be run is not mounted, this command implicitly causes that
volume set to be mounted.

2-157

EXAMPLE

To run a program stored in the program file PROG4, beginning at the entry point SECLAB, enter:

:RUN PROG4,SECLAB

To get a listing of the loaded program, enter:

:RUN XLAB;LMAP

The following example runs a program with $STDIN set to an old disc file named INPUT and
$STDLIST set to the line printer:

:FILE LPFILE; DEV =LP
:RUN TESTPROG; MAXDAT A= 10000; STDIN = INPT; STD LIST=* LPFILE

The next example runs a program using the STDIN paramet.er, setting $STDIN to an old disc file
......

named INPT, this time referenced through a file equation, and $STD LIST set to a temporary disc file
named RESULTS that is automatically created by the :RUN comnrand.

:FILE INFILE =INPT, OLD;
:RUN TESTPROG; DEBUG; STDIN=*INFILE; STDLIST=RESULTS,NEW

The following example of the :RUN command uses the INFO parameter to pass a string to the
program:

:RUN MYPROG; MAXDATA=2000; INFO= 'A test with ''and" characters'

Note that if the delimiting character is desired within the string, it can be doubled. In the above
example, the string passed to the program is:

A TEST WITH "AND" CHARACTERS

2-158

:SAVE
Saves file in system file domain.

SYNTAX

$0LDPASS,newfilereference
:SAVE { }

tempfilereference

PARAMETERS

$0LDPASS

newfilereference

tempfilereference

USE

Available

Breakable?

File currently being passed. After this file is saved, no file in the job/session tem
porary file domain can be referenced by the name $0LDPASS.

New actual file designator to be assigned $0LDPASS when it is made perma
nent, written in the format:

filename f/lockword][.groupname [.acctname]]

If acctname is used, this must indicate the log-on account. If groupname is used,
this must indicate a group to which you have SA VE access, as defined by your
Account Manager. If groupname is omitted, log-on group is assigned. new
filereference is required as a parameter if $0LDPASS is used.

Actual designator of temporary file to be made permanent under the same
designator. The file is deleted from job/session temporary file domain and entered
in system file domain. This parameter is written in the format:

filename f/lockword][.groupname [.acctname]]

' If acctname is used, this must indicate the log-on account. If groupname is used,
this must indicate a group to which you have SA VE access, as defined by your
Account Manager. If groupname is omitted, log-on group is assigned.
tempfilereference is required as a parameter if $0LDPASS/newfilereference is
not used.

In Session? YES

In Job? YES

In Break? YES

Programmatically? YES

NO

2-159

OPERATION

The :SA VE command saves a temporary file currently in a temporary file domain by converting it to a
permanent file in the system file domain. This command is necessary when the subsystem or program
that created your file does not allow you the option to save it while the program is executing. You must
specify a new file name for $0LDPASS because MPE does not allow use of $0LDP ASS as a permanent
file name. In addition, the volume set for the group in which the file is to be saved must be mounted
because files cannot be saved across volume sets. Note that this command applies only to temporary
files on disc. It is analogous to opening a file (FOPEN CALL) and then closing it (FCLOSE CALL) with
permanent file disposition.

EXAMPLE

To save the temporary file $0LDPASS, containing an object program, onto the program file
PROGFILE, enter:

:SA VE$0LDPASS,PROGFILE

To save the temporary file TEMPFL as a permanent file of the same name, enter:

:SA VE TEMPFL

To save temporary file DATAFILE under the GROUPX group, enter:

:SA VE DATAFILE.GROUPX Note: You must have SA VE access
to the GROUP group

To save a temporary file whose present name is not $0LDPASS and change its name, you must also
use the :RENAME command:

:SA VE DATAFILE.GROUPX saves file DATAFILE
:RENAME DA'l'AFILE.GROUPX,DATABASE.GROUP changes name to DATABASE

2-160

:SECURE
Restores security provisions for a file that were suspended by a :RELEASE command.

SYNTAX

:SECURE file ref ere nee

PARAMETERS

filereference

USE

Available

Breakable?

OPERATION

Actual designator of the disc file whose security provisions are to be restored,
written in the format:

filename ~lockword][.groupname [.acctname]]

(REQUIRED PARAMETER)

In Session? YES

In Job? YES

In Break? YES

Programmatically? YES

NO

Restores all security provisions for a file that were suspended previously by a :RELEASE command in
this or another job.

This command can be used only for a permanent disc file whose file label identifies the user as the
creator of that file. In addition, the :SECURE command will fail if the group's home volume set is not
mounted. When the normal (default) MPE security provisions are in effect, the file must belong to the
log-on account and group.

EXAMPLE

To restore the security provisions previously in effect for the file named FILEl, enter:

:SECURE FILEl

2-161

:SEGMENTER
Calls MPE Segmenter.

SYNTAX

:SEGMENTER [listfile]

PARAMETERS

listfile

USE

Available

Breakable?

OPERATION

Actual designator of file to receive listable output from Segmenter. Can be any
ASCII output file. Formal designator is SEGLIST. Because this file usually is a
line printer, it is defined in a :FILE command and back referenced as follows:

:FILE LISTFL;DEV=LP
:SEGMENTER *LISTFL

Default is $STDLIST.

NOTE

The formal file designator used in this command (SEGLIST)
cannot be back referenced as actual file designators in the
command parameter list. For further information, see OP
ERATION section of :FILE command.

In Session? YES

In Job? YES

In Break? NO

Programmatically? NO

YES (Suspends)

Calls MPE Segmenter.

2-162

EXAMPLE

To call the Segmenter from a session and transmit the listable output to a line printer instead of the
current list device, enter:

:FILE LISTFL;DEV =LP
:SEGMENTER *LISTFL

NOTE

To use a relocatable library (RL) via the :SEGMENTER
command, the user is required to have read and lock
capability.

ADDITIONAL DISCUSSION

MPE Segmenter Reference Manual.

2-163

:SETCATALOG
Causes the Command Interpreter to search a catalog of user-defined commands and to establish a
directory entry for each command in the catalog.

SYNTAX

~ACCOUNT]
:SETCATALOG [catfilename[,catfilename, ... ,[catfilename]]][;SHOW]LSYSTEM

PARAMETERS

cat file name

SHOW

ACCOUNT

SYSTEM

USE

Available

I Breakable?

OPERATION

Catalog file name. Normally, this file would be prepared using the Editor. When
more than one user-defined command resides in the catalog file, the commands
must be separated from each other by one line, the first character of which must
be an asterisk.

Lists catalogs and UDCs as the user-defined commands are initialized. This
parameter is useful for listing additional information if there is an error in UDC
initialization. SHOW lists each UDC as it is checked. If an error occurs, it is listed
after the erroneous UDC.

Specifies that the catalog file being defined or reset is at the account level.
Requires AM capability.

Specifies that the catalog file being defined or reset is at the system level.
Requires SM capability.

In Session? YES

In Job? YES

In Break? YES

Programmat1cally? NO

NO

The :SETCATALOG command causes the Command Interpreter to search a specially-prepared disc
file for user-defined commands. The Command Interpreter then establishes a directory entry for each
command in the file.

2-164

EXAMPLE
To create a user-defined command (UDC) and have the Command Interpreter establish a directory
entry for it in the file MYCMNDS, enter:

:EDITOR

!ADD
1 s
2 SHOWJOB
3 **
4 R
5 RESUME
6 II

/KEEP MYCMNDS
/END

:SETCATALOG MYCMNDS

(UDC name)
(MPE command)
(Separates UDC's)
(UDC name)
(MPE command)

Thus, S and R are established as user-defined commands. If you enter S, the :SHOW JOB MPE com
mand will execute; if you enter R, :RESUME will execute.

Example for altering catalog:

:SETCA T ALOG (Closes existing UDC file)
:EDITOR

/TEXT MYCMNDS
!ADD

6 **
7 E
8 EDITOR
9//

/KEEP MYCMNDS
/END

:SETCATALOG MYCMNDS

ADDITIONAL DISCUSSION

See Section III of this manual.

2-165

:SETDUMP
Enables Stackdump facility on abort.

SYNTAX

DB [,ST] [,QS]
:SETDUMP [{ ST [,DB] } [;ASCII]]

PARAMETERS

DB

ST

QS

ASCII

USE

Available

1 I BreaKahle?

OPERATION

QS [,DB]

Dump memory from DL to Q(initial) address. Default is a display of the stack
marker trace and all registers at time of abort.

Dump memory from Q(initial) to S address. Default is a display of the stack
marker trace and all registers at time of abort.

Dump memory from Q-63 to S address. This parameter is ignored if ST parameter
is used. Default is a display of the stack marker trace and all registers at time of
abort.

Display ASCII conversion of octal values requested by DB, ST, or QS parameters
(along with octal display). Default is octal.

In Session? YES

In Job? YES

In Break? YES

Programmatically? YES

NO

Arms Stackdump Facility as described in the MPE Debug/Stackdump Reference Manual.

In an interactive session, all parameters of the :SETDUMP command are ignored and the only effect is
the arming of the Stackdump Facility in order for the process to call Debug if an abort occurs. To be
able to access Debug, you must have read and write access to the program file.

EXAMPLE
To arm the Stackdump Facility to display the memory area from the Q(initial) to S address, with
accompanying ASCII conversion of the octal data, enter:

:SETDUMP ST;ASCII

ADDITIONAL DISCUSSION

l'vfPE Debug/Stack Dump Reference Manual.

2-166

:SETJCW
Scans JCW table for a specified JCW name and updates the value of this JCW.

SYNTAX

:SET J CW j cw name char value

PARAMETERS

1cwname

char

value

USE

Available

Breakable?

The name of a Job Control Word (JCW). If jcwname is that of an existing JCW,
the JCW table is scanned for this name. If a name matching jcwname is not found
in the JCW table, jcwname is added to the table. (REQUIRED PARAMETER)

Any special character except %, used as a delimiter. (REQUIRED PARAM
ETER)

One of the following:

1. Octal number between 0 and % 177777.

2. Decimal number between 0 and 65535.

3. A name which has been defined as being equivalent to certain numeric values,
as follows:

OK = 0
OKl = OK+ 1 = 1
OKlOO = OK + 100 = 100 = %144

WARN = 16384 = % 40000 (= OK16384)
WARNlOO = WARN + 100 = 16484 = %40144

FATAL = 32768 = %100000 (= WARN16384 = OK32768)
FATAL85 = FATAL + 85 = 32853 = %100125

SYSTEM = 49152 = % 140000
SYSTEM200 = SYSTEM + 200 = 49352 = % 140310

4. The name of an existing JCW.

(REQUIRED PARAMETER)

In Session? YES

In Job? YES

In Break? YES

Programmatically? YES

NO

2-167

OPERATION

There are two predefined job control words, "JCW" and "CIERROR". At the beginning of a job or
session the value of "CIERROR" is set to zero. Whenever a warning/error occurs as a result of
executing an MPE command, "CIERROR" is set to the value of the error message reported, and retains
this value until another error/warning occurs or the :SETJCW command is executed. The "JCW" is
usually set by a subsystem when some type of fatal error occurs. For a description of "JCW" see the
Intrinsics Manual.

If a specifiedjcwname is found in the JCW table, thejcwname is set equal to the value passed with
:SETJCW. If thejcwname is not found, it is inserted in the JCW table.

EXAMPLE

To set the Job Control Word CURRl to 100, enter:

:SETJCW CURRl,100

To set CURRl to WARN, enter:

:SETJCW CURRl/W ARN

2-168

:SETMSG
Disables or re-enables receipt of user or operator messages at standard list device.

SYNTAX

OFF
:SETMSG {

ON

PARAMETERS

OFF Sets job or session to refuse :TELL command messages from other users.

ON Re-enables message operation.

USE
I A ·1 bl va1 a e n ess10n. I S . ? YES

In Job? YES

In Break? YES

Programmatically? YES

Breakable? NO

OPERATION

Allows job or session to run in quiet mode, such that :TELL messages from other users are refused.
: WARN messages from the Console Operator override quiet mode and are accepted.

EXAMPLE

To prevent messages, enter:

:SETMSG OFF

To re-enable message reception, enter:

:SETMSG ON

2-169

:SHOWALLOW
Display which operator commands have been allowed.

SYNTAX

:SHOWALLOW [{username}·{acctname}]
@ @

PARAMETERS

username Defines a particular user.

account name Defines a particular account.

USE

Available In Session? YES

In Job? YES

In Break? YES

Programmatically? YES

Breakable? NO

OPERATION

This command will display for the user which operator commands that (s)he or the specified users have
been allowed. Either zero or the two parameters must be specified. If none are specified, then oniy that
user's allows are listed. Account manager capability is required to specify "@" for username and
system manager capability is required to specify"@" for acctname. In addition, the command sepa
rately lists which operator commands have been globally allowed.

EXAMPLE
:SHOWALLOW
MANAGER.SYS

USER HAS NO COMMANDS ALLOWED.

THERE ARE NO GLOBAL ALLOWS DEFINED.

2-170

:SHOWCATALOG
Lists user-defined command (UDC) files.

SYNTAX

:SHOW CATALOG [list file]

PARAMETERS

list file An arbitrary file name, causing the listing to be sent to a line printer. Default: If
omitted, the listing is sent to $STDLIST. If specified, the listing is sent to device
class LP (line printer) unless directed elsewhere with a prior :FILE command.

USE

Available In Session? YES

In Job? YES

In Break? YES

Programmatically? NO

Breakable? YES (Aborts)

OPERATION

The :SHOWCATALOG command lists user-defined command (UDC) files and specifies at which levels
(USER, ACCOUNT, SYSTEM) the files have been defined.

EXAMPLE

To list UDC files and have the listing appear on the standard list device, enter:

:SHOWCATALOG

To have the listing sent to the line printer, enter:

:SHOWCATALOG LFILE

To have the listing sent to a disc device, enter:

:FILE LFILE:DEV=DISC
:SHOWCATALOG *LFILE

UDC CATALOG LIST SENT TO LIST FILE. (CI 1932)

ADDITIONAL DISCUSSION

See Section III of this manual.

2-171

:SHOWDEV
Reports status of input/output devices.

SYNTAX

ldev
:SHOWDEV [

class name

PARAMETERS

ldev Logical device number of device for which status information is to be displayed.
Unique for each individual device. Default is if both ldev and classname are omit
ted, status information for all devices on the system is displayed.

class name
Device class name of device(s) for which status information is to be displayed.
May apply to several devices. Default is if both ldev and classname are omitted,
status information for all devices on the system is displayed.

USE

l A ·1 bl vai_a e n · ess10n; I S ? YES

In Job? YES

In Break? YES

Programmatically? YES

Breakable? YES (Aborts)

OPERATION

Displays status information for any input/output device on the system. The following items may ap
pear in the listing, always displayed on the standard list device:

Logical device number.

Input type allowed:

J Accepts jobs.

D Accepts data.

A Accepts jobs and data.

2-172

Availability:

AVAIL Available as a real, non-sharable device.

SPOOLED Available via input or output spooling.

UNA VAIL Not available (owned by job or session).

DISC Device is a disc, always available.

Device ownership (if applicable):

SYS Owned by system. If #nnn appears, it specifies Process Identification
Number (PIN) of the owning process (running program).

SPOOLER IN Input spooling in effect, owned by spooler.

SPOOLER OUT Output spooling in effect, owned by spooler.

#Jnnn

#Snnn

DIAG

nn FILES

DOWN

DP

VO LID

Owned by indicated job.

Owned by indicated session.

Allocated to diagnostic testing by Console Operator via :GIVE command.

Indicates number of files currently in use on a disc.

Device is offiine, requested by Console Operator via :DOWN command.

Device is being taken offiine (:DOWN command operation pending).

The MPE file label for labeled tapes. If the tape is unlabeled, (NO LABEL)
is displayed.

The display appears in the following format:

:SHOWDEV
LDEV AVAIL

DISC
2 DISC
4 DISC
6 SPOOLED
7 AVAIL
8 AVAIL
9 AVAIL

1 0 A AVAIL
15 UNAVAIL
16 UNAVAIL
20 A UNAVAIL

OWNERSHIP

113 FILES
0 FILES
38 FILES
SPOOLER OUT

SYS 13
SYS #3
1S91: 2 FILES

2-173

VOLID

EXAMPLE

To display the status of the device identified by logical device number 5 enter:

Logical device no.

!
:SHOWDEV 5

LDEV AVAIL OWNERSHIP VO LID

5 SPOOLED SPOOLER OUT

Logica';';;,,vice no. De::::availabl.e via ~e is owned by Output Spooler
Spooler program

To display the status of all devices of the device class CARD, enter:

Device class name

:SHOWDEV CARD

LDEV AVAIL OWNERSHIP VO LID

6 A SPOOLED SPOOLER IN

\ \ \ "' Logical device no. Device available via Device is owned by Input Spooler

\ Spooler program

ilccepts jobs/sessions and DATA (via :DATA command)

To display all devices with the class name TAPE, enter:

:SHOWDEV TAPE

LDEV AVAIL

7 AVAIL
8 UN AVAIL

t \
Logical device no. Device owned

OWNERSHIP

#S299:1 FILES
~

Session number,
number of files

2-174

VO LID

(NO LABEL)

/
Unlabeled tape file

:SHOWIN
Reports status of input devicefiles.

SYNTAX

[:~~~~s]
:SHOWIN [

l [SP]~item Kitem]~·item] ___ __,

PARAMETERS

#lnnn

STATUS

item

Identifier of particular input device file for which information is to be displayed.
The information appears in following format:

DEV/CL DFID JOBNUM FNAME STATE FRM SPACE RANK PRI 1C

45 #125 #S16 $STD IN OPENED

Default: MPE displays information for all input devicefiles used by this job.

Request to summarize status information for all current input devicefiles. The
information appears in following format:

8 FILES:
0 ACTIVE
0 READY;INCL 0 SPOOFLES, 0 DEFERRED
8 OPENED; INCL 0 SPOOFLES
0 SPOOFLES; 0 SECTORS

Default: MPE displays information for all input devicefiles used by this job.

Request to display status of current input devicefiles as identified by the follow
ing subparameters:

[DEV =ldev]

@S

(g,J

[JOB= {@ }]
[#]Snn

[#]Jnnn

ACTIVE
[READY
OPENED

2-175

USE

Available

I

Breakable?

OPERATl.ON

Each set of brackets, above, defines an item. You cannot use the same item more
than once in the parametr list. The subparametrs are:

ldev

@S

@J

@

#Snnn

#Jnnn

ACTIVE

READY

OPENED

Display status of input devicefile residing on device iden
tified by logical device number ldev.

Display status of input devicefiles for all sessions.

Display status of input devicefiles for all jobs.

Display status of input devicefiles for all jobs and sessions.

Display status of all input devicefiles for session indicated.

Display status of all input devicefiles for job indicated.

Display status of ACTIVE devicefiles.

Display status of READY devicefiles.

Display status of OPENED devicefiles.

Do not use duplicate item keywords in this command. That is, you can specify

:SHOWIN DEV =25;ACTIVE;@J but not
:SHOWIN DEV =25;.ACTIVE;OPENED.

Default: MPE displays status information for all input devicefiles used by this
job.

In Session? YRS ~

In Job? YES

In Break? YES

Programmatically? YES

YES (Aborts)

Displays status information about one or more currently-defined input devicefiles. This information
reflects the status at the time the command is entered, and always appears on the standard list device.
The information includes:

Logical device number of device.

Devicefile identification in the form #lnnn.

2-176

Job/session number (jsnum) of job/session using the devicefile, if not used for READY or AC
TIVE data; otherwise, job/session name appears on line following standard device information.

Filename associated with the devicefile.

State:

ACTIVE Input being read from spooled device to disc.

READY Input spooling completed, and file is now ready for use by a program.

OPENED File is being accessed by a program.

Approximate disc space currently used (in sectors), for spooled input devicefiles only.

Rank, indicating the order in which the file is entered in the system with respect to other files.

Input priority requested by user (1 = lowest, 13 = highest, blank= current default priority).

EXAMPLE

The following is an example of how you would determine the status of an individual input devicefile:

Device file id

"' :SHOWIN 1180

DEV/CL DFID JOBNUM FNAME STATE FRM SPACE RANK PRI 1C

43 #180 #S37 SSTDI\ DPEHED~

\ nLefileif I File name of devicefile Status

Logical device no.
of device on which
file originated

Session no. of session
owning devicefile

If you do not know the devicefileid of the device file whose status you want to determine, you may
request the status display by entering either the logical device number or device class name of the
device on which the file originated:

Logical device no. of original device

:SHOWIN DEV=43/

DEV/CL DF!D JOBNUM FNAME STATE FRM SPACE RANK PRI #C

43 1 I 80 #S37 $STDIN OPENED

2-177

You can also request displays of devicefile information by various combinations of qualifications
(devices, jobs/sessions, and states). As an example, suppose you wanted to display information about
all OPENED input devicefiles used by all sessions (but not jobs) in the system. You would enter:

Requests data on OPENED devi_cefiles
used by all sessions

:SHOWIN JOB=8S;OPENED

DEV/CL DFID JOBNUM FNAME STATE FRM SPACE RANK PRI #C

7 #I 81 #S38 MASTER OPENED
26 #I36 #S18 $STDIN OPENED
32 #I85 #S41 SSTDIN OPENED
34 #I58 #S26 $STDIN OPENED
42 #I64 #S28 SSTDIN OPENED
43 1180 #S37 SSTDIN OPENED
50 #I84 #S40 SSTDIN OPENED
51 #I 35 #S17 SSTDIN OPENED

8 FILES <DISPLAYED>:
0 SPOOFLES: 0 SECTORS

2-178

:SHOWJCW
Displays current state of Job Control Word.

SYNTAX

:SHOWJCW Ucwname]

PARAMETERS

jcwname The name of a Job Control Word (JCW). If omitted, the status of all JCW's is
displayed.

USE

Available In Session? YES

In Job? YES

In Break? YES

Programmatically? YES

Breakable? YES (Aborts)

OPERATION

The :SHOWJCW command is used to display the current state of any or all Job Control Words. If no
particular JCW is specified, all JCWs and CIERRORs are shown.

EXAMPLE
:showjcw
JCW = 0
CIERROR = 0

To display the current state of JCW named JCWl, enter:

:SHOWJCW JCWl

2-179

:SHOW JOB
Displays status information about jobs/sessions.

SYNTAX

[#]Snnn
[#]Jnnn

:SHOWJOB [STATUS]
id[;state]
state[;id]

PARAMETERS
#Snnn

#Jnn

STATUS

id

state

The session number (assigned by MPE) of the session for which status informa
tion is to be displayed. The information appears in Type I format, described under
OPERATION. Default is that the status information for all jobs/sessions is
displayed.

The job number (assigned by MPE) of the job for which status information is to be
displayed. The information appears in Type I format, described under OPERA
TION. Default is that the status information for all jobs/sessions is displayed.

A request to display a summary of status information for all jobs/sessions. The
information is in Type II format, described under OPERATION. Default is that
the status information for all jobs/sessions is displayed.

A list of jobs/sessions/session whose status information is to be displayed. This
parameter is written in this format:

I JOB= { ~~ame,]username.acctname l l
l @,username.acctname . J

[@,]@.acctname

The symbol@ indicates all. Thus @S means all sessions, @J means all jobs, and
@.@.acctname means all sessions and jobs for all users in the specified account.
If only one job/session is displayed, output appears in Type I format; if more than
one job/session is displayed, the output appears in Type III format. (Format
types are described under OPERATION.) Default is status information for all
jobs/sessions is displayed.

A particular job/session state, specified as a further restriction on which
jobs/sessions are to be displayed. The format of this parameter is:

jINTRO l
I WAIT l·Nl .
L
I EXEC l ,n J J

SUSP

2-180

N and D, which are requests for only non-deferred or deferred jobs/sessions,
respectively, apply only to the WAIT state.

If only one job/session is displayed, output appears in Type I format; if more than
one job/session is displayed, output appears in Type III format. (Format types are
described under OPERATION.) Default is that status information for all jobs/
sessions is displayed.

USE

Available In Session? YES

In Job? YES

In Break? YES

Programmatically? YES

Breakable? YES (Aborts)

OPERATION

This command enables you to determine the number of jobs and sessions in each processing state, the
current jobfence and job/session limits, and allows you to keep track of individual spooled and
streamed jobs that are entered in the system.

The output appears in three possible formats:

Type I:

JOBNUM STATE IPRI JIN JUST

#S16 EXEC 45 45

JOBFENCE= O; JLIMIT= 3; SLIMIT= 16

Type II:

7 JOBS:
0 INTRO
0 WAIT; INCL 0 DEFERRED
7 EXEC; INCL 7 SESSIONS

JOBFENCE= O; JLIMIT= 3; SLIMIT= 16

Type III:

(Type I followed by Type II.)

2-181

INTRODUCED JOB NAME

TUE 7: OBA TEST.PUBS

EXAMPLE

To determine the number of jobs and sessions in each processing state and the current jobfence and
job/session limits, enter:

Total number of
sessions and jobs

~ :SHOWJOB STATUS
~6 JOBS:

0 INTRO
0 WAIT; INCL 0 DEFERRED
6 EXEC; INCL 6 SESSIONS
0 SUSP

JOBFENCE= O; JLIMIT= 3; SLIMIT= 16

) Number of sessions and
jobs in each state

I
Current jobfence CurrLt job limit \rrent session limit

To produce a status report for all jobs and sessions running under the identifier MAC.TECHPUBS and
show which jobs are streamed or spooled, enter:

Processing
Request for status of all sessions/jobs
under user name MAC, account name
TECHPUBS

Logical device number or device class
name of standard listing device state

JOB=@, MAC.TECHPUBS

STATE IPRI JIN JUST JOB NAME
1S90 EXEC 41 41 FRI 7:S4A SESS1,MAC.TECHPUBS
1J16 WAIT D S SS LP FRI 8:10A JOB1,MAC.TECHPUBS
1J17 WAIT D S SS LP FRI 8:10A JOB2,MAC.TECHPUBS

3 IJOBS <DISPLAY~>: ~ ~Day and time of "-.session/job ickntifU!r

~ ~~~~~ i NCL\2 DEF 'RR ·n ~introduction
1 EXEC; INCL 1 SESS ON '
0 SUSPJOBFEN(E= 3; SLI TT= 16

Session/job D =Deferred job S =S[XJoled input device
number

Logical device number or device class
name of standard input device

Input priority (for jobs not
in execution)

2-182

If you wish to determine which jobs/sessions under your user name and account are in a particular
state (such as WAIT), you can request a report on them in this way:

User name Account name State

:SHOWJOB JOB•8, SP~T.ALA"; WAIT~
JOBNUM STATE IPRI JIN JLIST INTRODUCED JOB NAME

1J392 WAIT:2 13 6S FASTLP TUE 2:05P SPLT.ALANG

JOBFENCE= 2; JLIMIT= 1; SLIMIT= 16

To get a report on all jobs and sessions in the system, enter:

:SHOWJOB

JOBNUM STATE IPRI JIN JUST INTRODUCED JOB NAME

#S745 EXEC 29 29 TUE 2:53P DL,SPL.ALANG
#S746 EXEC 26 26 TUE 2:53P CLl.AOPSYS
#S747 EXEC QUIET 42 42 TUE 2:53P MAC.TECHPUBS
#S748 EXEC 47 47 TUE 2:53P FIELD.SUPPORT
#S749 EXEC 34 34 TUE 2:55P SPLT.ALANG
#5750 EXEC 28 28 TUE 2:55P MIKE.DCA
#J396 INTRO 13 6S FASTLP TUE 2:55P SPLT.ALANG

7 JOBS:
1 INTRO
0 WAIT; INCL 0 DEFERRED
6 EXEC; INCL 6 SESSIONS
0 SUSP

JOBFENCE= 2; JLIMIT= 1; SLIMIT= 16

2-183

:SHOWLOGSTATUS
Displays status information about currently opened log files assigned to a logging identifier.

SYNTAX

I :SHOWLOGSTATUS logidl

PARAMETERS

log id The logging identifier created by the :GETLOG command.

USE

Available In Sessions? YES

In Job? YES

In Break? YES

Pro grammatically? NO

Breakable? NO

OPERATION
This command is used to list the status of currently running logging processes. The status includes the
total number of records written by the process and the current number of users accessing the logging
file.

This command gives the following information about all currently running logging processes:

LOGID -The identifier of the logging process.
USERS - The number of users.
STATE -Active or inactive.
RECORDS -The number of records in the log file.

EXAMPLE

To display the status of an open log file named LEN, enter:

:SHOWLOGSTATUS LEN
LOG ID

LEN
USERS

0
STATE
INACT

2-184

RECORDS
160

:SHOWME
Reports job/session status.

SYNTAX

:SHOWME

PARAMETERS

None

USE

Available In Session? YES

In Job? YES

In Break? YES

Programmatically? YES

Breakable? YES (Aborts)

OPERATION

The :SHOWME command reports the following information pertaining to your job or session:

Job/session number.

User job/session identity.

The message IN BREAK or NOT IN BREAK, indicating if :SHOWME was entered during a
break or not.

MPE version.

Current time.

Log-on time.

Central processor time used by this job/session.

Amount of time job/session has been connected.

Standard input device number.

Standard list device number.

Current welcome message.

2-185

EXAMPLE

: showme
USER: 192,CARRI.USERS,RUTH CNOT IN BREAK>
MPE VERSION: HP32002C.OO.OO
CURRENT: MON, AUG 25, 1980, 4:32 PM
LOGON: MON, AUG 25, 1980, 9:46 AM
CPU SECONDS: 22 CONNECT MINUTES: 407
$STDIN LDEV: 75 SSTDLIST LDEV: 75

2-186

:SHOW OUT
Reports status of output devicefiles.

SYNTAX

[
#Onnn J
STATUS

:SHOWOUT
[SP] [;item] [;item] [;item]

PARAMETERS

#Onnn

STATUS

SP

item

Identifies particular output devicefile for which information is to be displayed.
The information is displayed in Type I format, described under OPERATION.
Default is a display of status information for all output device files.

Request to summarize status information for all current output devicefiles. The
information is displayed in Type II format, described under OPERATION. De
fault is a display of status information for all output device files.

Request to display status information for currently spooled output devicefiles
associated with the logon job or session. The information is displayed in Type III
format, described under OPERATION. Default is a display of status information
for all output device files.

Request to display status of all current output devicefiles. This parameter is writ
ten in the following format:

[

ldev J
DEV= { }

class name

@J
@S

JOB= {@ }
[#]Jnnn
[#]Snnn

I ACTIVE

I READY,,N l
l

L,D ~

OPENED
LOCKED J

2-187

USE

Available

Breakable?

OPERATION

Each set of brackets defines an item. You cannot use the same item more than
once in the parameter list. The subparameters are:

ldev

class name

@J

@S

@

#Jnnn

#Snnn

ACTIVE
READY
OPENED
LOCKED

N

D

Display status of output devicefile residing on device identi
fied by logical device number ldev.

Display status of output devicefiles residing on all devices
having device class name classname.

Display status of output devicefiles for all jobs.

Display status of output devicefiles for all sessions.

Display status of output devicefiles for all jobs and sessions.
JOB = @ is the default on the current console.

Display status of all output devicefiles for specified job.

Display status of all output devicefiles for session indicated.

Display status of output devicefiles in specified state.

Display status of non-deferred READY devicefiles only.

Display status of deferred READY device-files only.

If information for only one devicefile is displayed, output is in Type I format; if
information for more than one devicefile is displayed, output is in Type III for
mat. (Format types are described under OPERATION.)

In Session? YES

In Job? YES

In Break? YES

Programmatically? YES

YES (Aborts)

Displays status information for one or more currently-defined output devicefiles. The information
reflects the status at the time the command is entered and always appears on the standard list device.
The information includes:

Logical device number or device class name of device.

Devicefile identification, in form #Onnn.

2-188

Job/session number (jsnum) of job/session using devicefile, if not used for READY or ACTIVE
data. Otherwise, job/session name appears on line following standard device information.

Filename assigned to devicefile.

State:

ACTIVE

READY

LOCKED

OPENED

Spooled devicefile on disc is actually being written to a printer, plotter,
or card punch.

Devicefile on disc is ready for output.

READY, but system is using file with exclusive access.

Devicefile on disc is being accessed by a program.

Forms message indicator (the letter Y), appearing only if a forms alignment message applies to
this devicefile.

Approximate disc space currently used (in sectors), for spooled output devicefiles only.

Rank, indicating the order in which the file is entered in the system with respect to other files.

D, indicating a deferred file, for spooled devicefiles only.

Outputpriority, requested by user, for spooled devicefiles only (1=lowest,13 =highest, blank=
current default priority).

Number of copies needed (#C), for spooled devicefiles only.

Output may appear in three possible formats:

Type I:

DEV/CL DFID JOBNUM FNAME STATE FRM SPACE RANK PRI #C

45 #032 #S16 SSTDLIST OPENED

TYPE II:

19 FI LES
0 ACTIVE
2 READY; INCLUDING 2 SPOOFLES, 2 DEFERRED

17 OPENED; INCLUDING 1 SPOOFLE
0 LOCKED; INCLUDING 0 SPOOFLES
3 SPOOFLES: 1572 SECTORS

OUTFENCE 6
OUTFENCE = 2 FOR LDEV 13

Type III:

(Type I followed by Type II.)

2-189

To display the total number of output devicefiles currently existing, the number of those that are
spooled, and the states that they are in, enter:

Total no. of Request for summary data No. of spooled READY

~ : SHOWOUT STATUS No. of deferred READY
devicefiles \ I devicefiles

No. of ACTIVE 11 FI LES: / devicefiles
devicefiles ----- 1 ACT I VE /

No. of READY------ 1 READY; INCL 1 SPOOF LES, O DEFERRED

evice i es 0 LOCKED. INCL 0 SPOOFLES No. of spooled OPENED
d · fi"l ~9 OPENED; INCL 1 SPOOFLES------

No. of OPENED;i3 SPOOFLES: 7212 SECTORS ~ devicefiles

No. of LOCKED OUTFENCE= 2 Total no. of spooled
devicefiles / \

devicefile/ I WCKED devicefiles

Total no. of spooled Current outfence Total no. of disc sectors
devicefiles occupied by spooled devicefiles

To list information about an individual output devicefile, you can reference its devicefile identifier in
the :SHOWOUT command:

Device file id

J
:SHOWOUT 1068

File name of
devicefile

DEV/CL DFID JOBNUM FNAME STATE FRM SPACE RANK PRI #C

2:::;0
2
r •J1\ SSTDLIST

/

Outfence Devicefileid Job no. of job

Device class name of device
on which file originated

owning devicefile

READY

I
Status

4524 13

II
Disc space Rank in
used by file system

Output
priority

No. of copies
requested

You can also request status of a device file by using the logical device number or device class name of
the device for which the file is destined in the :SHOWOUT command:

Logical device no. of device

/
:SHOWOUT DEV=43

DEV/CL DFID JOBNUM FNAME STATE FRM SPACE RANK PRI #C

43 #089 #S37 $STDLIST OPENED

OUTFENCE= 2

You can request displays of output devicefile information by various combinations of qualifications
(devices, jobs/sessions, and states). As an example, suppose you wanted to list information about all
OPENED output devicefiles used by all sessions in the system. You would enter:

Request for data on OPENED output devicefiles

use/y all sessions

:SHOWOUT JOB=®S; OPENED

DEV/CL DFID JOBNUM FNAME STATE FRM SPACE

20 #090 #S38 $STDLIST OPENED
26 #037 #S18 $STDLIST OPENED
27 #095 #S42 $STDLIST OPENED
32 #093 #S41 $STDLIST OPENED
34 #064 #S26 $STDLIST OPENED
42 #073 #S28 $STDLIST OPENED
43 #089 #S37 $STDLIST OPENED
50 #092 #S40 $STDLIST OPENED
51 #036 #S17 $STDLIST OPENED

9 FILES CDISPLAYED>:
0 SPOOFLES: 0 SECTORS

OUTFENCE= 2

2-191

RANK PRI IC

:SHOWTIME
Prints current time and date.

SYNTAX

:SHOWTIME

PARAMETERS

None

USE

Available In Session? YES

In Job? YES

In Break? YES

Programmatically? YES

Breakable? NO

OPERATION

Prints current time and date, as indicated by system clock in the following format:

day of
week

EXAMPLE

month
day of
year

To display the time and date, enter;

:SHOWTIME
TUE, JUN 17, 1980, 11:08

year hour

2-192

min AM/PM

:SPEED
Changes terminal operating speed.

SYNTAX

:SPEED newins peed, new outs peed

PARAMETERS

newinspeed New input speed, in characters per second. Must be 10, 14, 15, 30, 60, 120, or 240.

newoutspeed New output speed, in characters per second. Must be 10, 14, 15, 30, 60, 120, or 240.

NOTE

N ewinspeed and newoutspeed must be the same.

USE

Available In Session? i YES

In Job? NO

In Break? YES

Programmatically? YES

Breakable? NO

OPERATION

MPE automatically senses the input/output speed of a terminal when you log on at that terminal. If
your terminal has speed-adjustment controls, you can change the input and output speeds after log on
with the :SPEED command. Note that this command is not valid for terminals that operate on one
speed only.

When the command is entered, MPE outputs the following message at the old output speed:

CHANGE SPEED AND INPUT MPE

Manually change the speed control on the terminal and verify the new speed by entering:

MPE

If the characters MPE cannot be verified, the system assumes that the terminal is to continue at the
old speed. (To continue, you must reset the terminal to the old speed.)

You can also change the terminal speed programmatically by using the FCONTROL intrinsic. (See the
MPE Intrinsics Reference Manual.)

2-193

EXAMPLE

To change the input and output speeds to 240 cps, enter:

:SPEED 240,240

MPE outputs:

CHANGE SPEED AND INPUT MPE

Manually change the speed and input MPE.

2-194

:SPL
Compiles an SPL program.

SYNTAX

:SPL [text file][, [uslfile] [,[listfile] [,[masterfile] [,newfile]]]]

PARAMETERS

text file

uslfile

listfile

masterfile

new file

Actual designator of input file from which source program is read. Can be any
ASCII input file. Formal designator is SPLTEXT. Default is $STDIN.

Actual designator of USL file on which object program is written. Can be any
binary output file. Formal designator is SPLUSL. If entered, this parameter must
indicate a file created previously in one of four ways:

1. By saving a USL file (with the MPE :SAVE command) which was created by a
previous compilation where the default value was used for the uslfile
parameter.

2. By building the USL with the MPE Segmenter -BUILDUSL command. (See
the MPE Segmenter Reference Manual.)

3. By creating a new USL file with the MPE :BUILD command with afilecode of
USL or 1024.

4. By having the statement $CONTROL USLINIT in your program.

Default: $NEWP ASS is assigned.

Actual designator of file on which program listing is written. Can be any ASCII
output file. Formal designator is SPLLIST. Default is $STDLIST.

Actual designator of master file which is merged against textfile to produce
composite source. Can be any ASCII input file. Formal designator is SPLMAST.
Default is that the master file is not read; input is read from textfile.

Actual designator of merged textfile and masterfile. Can be any ASCII output file.
Formal designator is SPLNEW. Default is that no file is written.

NOTE

The formal file designators used m this command
(SPLTEXT, SPLUSL, SPLLIST, SPLMAST, SPLNEW)
cannot be back referenced as actual file designators in the
command parameter list. For further information see the
OPERATION section of the :FILE command.

2-195

USE

Available In Session? YES

In Job? YES

In Break? NO

Programmatically? NO

Breakable? YES (Suspends)

OPERATION

Compiles SPL program onto a User Subprogram Library (USL) file on disc. If textfile is not specified,
MPE expects input from your standard input device.

EXAMPLE

To compile an SPL program entered from the job input device into an object program in the USL file
$NEWPASS, and write the listing to your standard list device, enter:

:SPL

If the next command is one to prepare an object program, $NEWPASS can be passed to that command
by referencing $0LDPASS.

To compile an SPL program residing on the disc file SOURCE into an object program on the USL file
OBJECT, with program listing generated on the disc file LISTFL, enter:

:SPL SOURCE,OBJECT
:SA VR OB.JECT

ADDITIONAL DISCUSSION

SPL Reference Manual.

2-196

:SPLGO
Compiles, prepares, and executes an SPL program.

SYNTAX

:SPLGO [textfile] [,[listfile] [,[masterfile] [,newfile]]]

PARAMETERS

textfile

list file

masterfile

new file

USE

Available

I Breakable?

OPERATION

Actual designator of input file from which source program is read. Can be any
ASCII input file. Formal designator is SPLTEXT. Default is $STDIN.

Actual designator of file on which program listing is written. Can be any ASCII
output file. Formal designator is SPLLIST. Default is $STDLIST.

Actual designator of master file which is merged against textfile to produce
composite source. Can be any ASCII input file. Formal designator is SPLMAST.
Default is that the master file is not read; input is read from textfile.

Actual designator of merged textfile and masterfile. Can be any ASCII output file.
Formal designator is SPLNEW. Default is that no file is written.

NOTE

The formal file designators used in this command
(SPLTEXT, SPLLIST, SPLMAST, SPLNEW) cannot be
back referenced as actual file designators in the command
parameter list. For further information see OPERATION
section of :FILE command.

In Session? YES

In Job? YES

In Break? NO

Programmatically? NO

YES (Suspends)

Compiles, prepares, and allocates/executes an SPL program. If textfile is omitted, MPE expects input
from your standard input device. This command creates a temporary User Subprogram Library (USL)
file ($NEWPASS) that you cannot access, and a temporary program file that you can access under the
name $0LDPASS.

2-197

EXAMPLE

To compile, prepare, and execute an SPL program entered from your standard input device, with the
program listing sent to your standard list device, enter:

:SPLGO

To compile, prepare, and execute an SPL program read from the disc file SOURCE and send the
resulting program listing to the disc file LISTFL, enter:

:SPLGO SOURCE,LISTFL

ADDITIONAL DISCUSSION

SPL Reference Manual.

2-198

:SPLPREP
Compiles and prepares an SPL program.

SYNTAX

:SPLPREP [textfile] [, [progfile] [, [list file][, [masterfile] [,new file]]]]

PARAMETERS
textfile

progfile

listfile

masterfile

new file

USE

I Available

Breakable?

Actual designator of input file from which source program is read. Can be any
ASCII input file. Formal designator is SPLTEXT. Default is $STDIN.

Actual designator of program file on which program segments are written. Can be
any binary output file with filecode of PROG or 1029. If entered, this parameter
must indicate a file created on one of two ways:

1. By creating a new program file with the MPE :BUILD command with a
filecode of PROG or 1029 and a numextents parameter value of 1.

2. By specifying a non-existent file in the progfile parameter, in which case a
job/session temporary file of the correct size and type is created.

Default: $NEWP ASS is assigned.

Actual designator of file on which program listing is written. Can be any ASCII
output file. Formal designator is SPLLIST. Default is $STDLIST.

Actual designator of master file which is merged against textfile to produce
composite source. Can be any ASCII input file. Formal designator is SPLMAST.
Default is that the master file is not read; input is read from textfile.

Actual designator of merged textfile and masterfile. Can be any ASCII output file.
Formal designator is SPLNEW. Default: no file is written.

NOTE

The formal file designators used m this command
(SPLTEXT, SPLPROG, SPLLIST, SPLMAST, SPLNEW)
cannot be back referenced as actual file designators in the
command parameter list. For further information see OP
ERATION section of :FILE command.

In Session? YES

In Job? YES

In Break? NO

Programmatically? NO

YES (Suspends)

2-199

OPERATION

Compiles and prepares an SPL program onto a program on disc. Iftextfile is not specified, MPE expects
input from your standard job/session input device. The User Subprogram Library (USL) file created
during compilation is a temporary file passed directly to the preparation mechanism; you can access it
under the name $0LDPASS only if the program file is not $NEWPASS. (Note that if you want to save
the compiled USL, you must specify some other file as the second positional parameter in this
command and then use a :SA VE command. See the third example below).

EXAMPLE

To compile and prepare an SPL program entered through the job input device, onto the file
$NEWPASS, with the listing printed on the job list device, enter:

:SPLPREP

If the next command is one to execute the program, the file $NEWPASS can be passed to this com
mand by referencing $0LDPASS.

To compile and prepare an SPL source program from a source file named SFILE into a program named
MYPROG, with the resulting listing sent to the job/session list device, enter:

:SPLPREP SFILE,MYPROG

Note that when the first positional parameter is omitted, textfile is read from the standard input
device:

:SPLPREP,FILEZ Compiles into $NEWPASS, prepares into FILEZ.
:SA VE $0LDPASS, NUSL Saves USL_, changing file name from $0LDPASS

fformally $NEWPASSJ to NUSL.

ADDITIONAL DISCUSSION

SPL Reference Manual.

2-200

Stores disc files onto magnetic tape or serial disc.

SYNTAX

:STORE lfileset][,fileset][, ...];storefile

[
,DATE> =moddate]

[;SHOWJ[;FILES =maxfiles] DATE< =accdate

PARAMETERS

:STORE

fileset Signifies a set of files to be stored. Default is @. This parameter is of the form:

filedesignator [.groupdesignator [.acctdesignator]]

fileset can be entered in any of the following formats and may use wild card
characters, in any order, as replacements.

file.group.account Store specified file in specified group and account.

file.group Store specified file in specified group under log-on account.

file store specified file under log-on group.

@.group.account Store all files in specified group and account.

@.group Store all files in specified group under log-on account.

@.@.account Store all files in all groups in specified account.

@ Store all files in log-on group. Default.

@.@ Store all files in all groups under log-on account.

@.@.@ Store all files in system.

file.@.account Store specified file in any group of specified account.

NOTE

The characters @, #, and ? can be used as wild card charac
ters in the fileset parameter. These wild card characters
have the following meanings:

@- specifies zero or more alphanumeric characters.

- specifies one numeric character.

? - specifies one alphanumeric character.

The characters can be used as follows:

n @ Store all files starting with the character n.

@n Store all files ending with the character n.

2-201

storefile

SHOW

max files

<=accdate

>=moddate

n@n

n ## .. #

?n@

n?

?n

Store all files starting with the character n and ending with
the character n.

Store all files starting with the character n followed by up to
seven digits.

Store all files whose second character is n.

Store all two-character files starting with n.

Store all two-character files ending with n.

Name of destination tape or serial disc file onto which the stored files are to be
written. Can be any magnetic tape or serial disc from the output set. This file
must be named in a :FILE command and back referenced as shown in the follow
ing examples:

or

:FILE STORTAPE;DEV=TAPE
:STORE @.@;*STORTAPE

:FILE STORDISC;DEV=SDISC
:STORE @.@;*STORDISC
(REQUIRED PARAMETER)

Request to list names of files stored. Default is total number of files stored, names
of files not stored, and number of files not stored are listed. The listing is sent to
$STDLIST (formal designator is SYSLIST) unless a :FILE command is entered
to send the listing to some other device. For example,

:FILE SYSLIST;DEV=LP

entered before the :STORE command would send the listing to a line printer.

Maximum number of files that may be stored. Default is 4000.

Store only files not accessed since date specified.

Store only files which have been modified on or after date specified.

When no date is specified all files specified by the filesets will be stored. The date
is expressed mm/dd/yy.

2-202

USE

Available In Session? YES

In Job? YES

In Break? YES

Programmatically? YES

Breakable? YES (Aborts)

OPERATION

Enables you to copy offline onto magnetic tape or serial disc a particular user disc file or set of files.

Files currently open for output, inputJoutput, update or append, and files currently being stored or
restored, cannot be acted upon by the :STORE command. However, files loaded into memory (contain
ing currently running programs) and files open for input only can be stored, since their contents
cannot be altered! You can only store those files whose home volume sets are mounted.

Users with System Manager or System Supervisor capability can store any user file in the system.
Users with Account Manager capability can store any file in the account (but cannot dump those with
negative file codes unless they have Privileged Mode capability also).

Before entering a :STORE command, you must identify storefile as a magnetic tape or serial disc file
with a :FILE command written in the following format:

device

rec size

BUF

NOBUF

j;BUF]
:FILE formaldesignator[=file reference];DEV =device [;REC =recsize] ~NOBUF

Must indicate the device class name or logical unit number of a magnetic tape or
serial disc unit.

Sets the size of the blocks on the store tape. Record size may be any multiple of
256 words between 256 and 4096 words for tapes, and 256 to 8192 words for serial
disc. Default is 4096 for non-programmatic calls to :STORE, and 1024 words for
programmatic calls.

Causes the tape and disc I/O to overlap.

Will not allow the tape and disc I/O to overlap. It is suggested that BUF always be
used with tape, and NOBUF always be used with serial disc. Default is BUF.
NOBUF must be specified if recsize is greater than 4096.

Other parameters for storefile are supplied by the :STORE command. If you attempt to supply them,
MPE will reject the :STORE command.

NOTE

To use a device class name when storing to serial disc, you
must have answered ''YES" to the SYSDUMP question of
"SERIAL DISC CLASS?". If not, you will receive file system
error #46, "OUT OF DISC SPACE". The same requirement
applies to the :RESTORE command, in this case receiving
file system error #52, "NON-EXISTENT DEVICE".

2-203

While a file is being dumped, it is locked by MPE so that it cannot be altered or deleted until safely
copied to tape or serial disc. If a job/session running a :STORE/:RESTORE function is aborted by
yourself or the console operator, those files not yet stored or restored will be unlocked during the
processing of the abort. If the BREAK. Key is pressed furing a store operation the operation stops after
storing the current file and further output is suppressed.

EXAMPLE

To copy all files in the group GP4X in your logon account, to a tape file named BACKUP, enter:

:FILE BACKUP;DEV=TAPE
:STORE@.GP4X;*BACKUP;SHOW

The console operator receives a request to mount the tape identified as BACKUP. A listing of the files
copied appears on your standard list device.

If a file is in use by the system, the file name is displayed, along with the message BUSY.

2-204

:STREAM
Spools batch jobs or data from session or job.

SYNTAX

:STREAM [input file] [,character]

PARAMETERS

input file

character

USE

Available

Breakable?

OPERATION

File designator of ASCII input file from which jobs or data are spooled to disc.
May be a disc file created with the Editor and containing commands or data; or a
file input from a card reader, tape unit, or terminal. Records in this file cannot
exceed 255 characters. All character positions within each record are significant.
Default is $STDIN.

Character used in place of colon(:) to identify MPE commands within inputfile.
When inputfile is entered on device configured to accept jobs sessions or data
input via the :DATA command, this character can be any ASCII special (non
alphanumeric) character except a colon. Default is exclamation point(!).

In Session? YES

In Job? YES

In Break? YES

Programmatically? YES

YES (Command and partially-streamed
job abort.)

This command allows you to initiate jobs while in an interactive session by allowing you to make up
your job from your terminal or to read these records from a card or tape file. Alternatively, you can
read these records from a disc file previously prepared via the Editor. When the job is read, MPE spools
it onto a disc file, assigns it a job number, and processes it independently as a completely separate
entity from your session. In the meantime, MPE allows you to continue with your session.

You can only initiate jobs in this way if the Console Operator or a user who has been given operator
capabilities has enabled the MPE Streaming Facility by entering the console command :STREAMS.
This command also specifies a streaming device, which (to MPE) appears to be the source of your job
input regardless of what device you actually use for this input. Thus, the job number assigned by MPE
and the listing generated by the job appear on the standard listing device that corresponds to the
streaming device, rather than on your terminal.

Note that to stream data to disc the input device used must be configured to accept the :DATA
command.

2-205

When you enter :STREAM with the terminal as the default input device, whether during a session or
job, MPE prompts you for input by displaying a greater than (>)character. When you enter :STREAM
for another input device, MPE does not print the prompt character. In any case, you terminate
inputfile by entering the :EOD command. At the terminal, this halts prompting for job input and
returns control to your job/session.

Begin each job in inputfile with the :JOB command and terminate it with the :EOJ command. Begin
each data file with the :DATA command and terminate this file with the :EOD command. Begin all
commands with an appropriate substitute (other than colon) character, as in !JOB or #DATA. When
inputfile is spooled to disc, MPE replaces the substitute command identifier with a colon so that
command reports are properly interpreted when executed.

Following the !EOJ command that terminates the job, MPE assigns each job a unique job number and
prints this number on the standard list device. MPE also assigns each job a preset priority unless you
specify otherwise in the :JOB command, and processes the job independent of the initiating job.
Regardless of which device you use to submit the inputfile, all jobs in that file are treated as though
they originated on a unique streaming device designated by the Console Operator (with the
:STREAMS command). The listing for each spooled job is written to the standard list device that
corresponds to the streaming device, unless you use the OUTCLASS= parameter of the :JOB com
mand to direct the listing to another device.

To terminate job input, enter a colon (:). In response, MPE terminates prompting for batch job input
and instead prompts you for another MPE command:

>: Denotes end of batch job input
MPE prompts for next command

Pressing the Break key aborts the :STREAM command and any job currently being entered through
the command, and incompletely spooled disc space is returned to the system.

If you make an error while entering the JOB command, you receive an error message on your job
listing device. The Console Operator, however, receives no indication of either the job or the error.

EXAMPLE

To use the Editor to enter a job into a disc file and then stream the job from that file, you must name
the input file in the :STREAM command:

:STREAM DISCFILE

~e of fi/,e on disc that contains job input

2-206

If you use a character other than an exclamation point as the substitute command identifier in your job
input, you must identify that character in the :STREAM command. Because you enter this character
as the second positional parameter in this command, you must always precede it with a delimiting
comma, even when you omit the input file name (the first parameter):

Delimiting comma / __
:STREAM , * Asterisk used as substitute command identifier
>*JOB MAC.TECHPUBS
>*FORTGO MYPROG
>*EOJ
#J74
>:

If your job input file contains subsystem commands, such as commands directed to the Editor, do not
enter any command identifier at the beginning of these commands. For instance, when using the
Editor, enter the subsystem commands as follows:

:STREAM
>#JOB MAC.TECHPUBS
>#EDITOR
>TEXT MYFILE
>ADD

>KEEP MYFILE,UNN
>END
>#EOJ

#J76
>:

Indicates streaming.
Initiates job.
Invokes Editor.

Subsystem commands (without #as -------subsystem command identifier).

Terminates job.
Job number.
Terminates job input.
Prompt for new MPE command.

If you wish the job listing to appear on a device other than the standard listing device associated with
the streaming device, you can specify this other device in the JOB command in this way:

:STREAM
>!JOB MAC.TECHPUBS;OUTCLASS =12

"' Logical device number of al-ternate device

2-207

To initiate, from a session, a batch job that compiles, prepares, and executes the FORTRAN program
MYPROG, enter:

:STREAM
>!JOB SOFT.PUBS
>!FORTGO MYPROG
>!EOJ

#J73 (Job number returned by MPE)
>lli.QQ

ADDITIONAL DISCUSSION

Using Files Manual.

2-208

:TELL
Sends a message to another job or session.

SYNTAX

[#]Jnnn
:TELL { [#]Snnn }[;][text]

Usname,] username.acctname

@

@.acctname
@J

@S

PARAMETERS

#Jnnn

#Snnn

;sname,username.
acctname

@

@.acctname

@S

text

USE

J Available

Breakable?

Job number (as assigned by MPE) for the job that is to receive the message.
(Obtained by entering the :SHOWJOB command).

Session number (as assigned by MPE) of the session that is to receive the
message. (Obtained by entering the :SHOWJOB command).

Names of the job/session and user to receive the message, and the account name
under which they are running. (This parameter is the same as the job or session
identity entered with the :JOB or :HELLO command.) (Obtained by entering the
:SHOWJOB command).

If several users are running under the same job/session identity, MPE will send
the message to all of them.

All users.

All users under acctname.

All jobs.

All sessions.

Message text, consisting of any string of ASCII characters. The default is that no
message is printed; however, MPE prints the FROM message as follows:

FROM/sessionid

In Session? YES

In Job? YES

In Break? YES

Programmatically? YES

NO

2-209

OPERATION

Transmits a message from the sender's session to one or more jobs/sessions currently running. The
message appears on the receiving job/session list device.

If a message is sent to a terminal that is currently interacting with a program, MPE queues the
message as high as possible among the current input/output requests but does not interrupt reading or
writing in progress. If the job/session or user designated to receive the message is not running, or the
job is spooled, the transmitting job/session receives a system message indicating this. MPE rejects the
:TELL command if the receiving device is operating in the quiet mode (see :SETMSG command) and
informs the sender with:

USER username NOT ACCEPTING MESSAGES

EXAMPLE

To send a message to a user identified as BROWN, logged on under account A, running a session
named BROWNSES, enter:

:TELL BROWNSES,BROWN.A; USE PROGA, NOT PROGB message text

To send a message to all users logged on in account A:

:TELL @,A; PLEASE LOG OFF

2-210

:TELLOP
Sends message to Console Operator.

SYNTAX

:TELLOP [text]

PARAMETERS

text Message text, consisting of any string of ASCII characters. Default is that no
message is printed; however, MPE prints the FROM as follows:

FROM!sessionid

USE

Available In Session? YES

In Job? YES

In Break? YES

Programmatically? YES

Breakable? NO

OPERATION

Sends a message from the sender's job/session to the operator's console. The message text appearing on
the operator's console, preceeded by the time it was transmitted and your job/session number. Like
messages transmitted between users (:TELL command), this message is printed as soon as possible
without interrupting any console input/output currently in progress.

EXAMPLE

To send a message to the operator instructing him to mount a tape, you could enter:

:TELLOP PLS MOUNT MYTAPE, VERSION 1

2-211

:VSUSER
Prints a listing of all users of a currently mounted volume set.

SYNTAX

:VSUSER [vsnamej

PARAMETERS

vs name A fully-qualified volume set name.

USE

Available In Session? YES

In Job? YES

In Break? YES

Programmatically? NO

Breakable? NO

OPERATION

The :VSUSER command lists all users who have explicitly or implicitly mounted a volume set.

EXAMPLE

:VSUSER

ADDITIONAL DISCUSSION

MPE System Manager/System Supervisor Manual.

2-212

llUllM11
USER DEFINED COMMANDS 11 Ill I

MPE allows you to define your own commands which can be used to fit your specific needs. A
user-defined command, or UDC, is a command built from standard MPE commands. When you
combine several MPE commands into a single list and assign a name to that list, you create a UDC. In
this way it is possible to enter a UDC name in response to the MPE prompt(:) and cause several MPE
commands to be executed. A user-defined command may be used in most places where an MPE
command may be used, including another UDC. However, UDCs cannot be executed through the
COMMAND intrinsic.

UDCs may be created by any user for personal use, by the Account Manager for use by anyone in the
account, and by the System Manager for use by any user on the system. When identically named UDCs
occur at different levels, the user UDC takes precedence over the account level UDCs which in turn
take precedence over the system level UDCs. (An exception to this rule is discussed in Nesting UDCs,
this section).

Note that to establish account or system level UDCs you must have special capabilities. For informa
tion on these capabilities, see the System Manager/System Supervisor Reference Manual.

SYNTAX OF USER-DEFINED COMMANDS

A user-defined command consists of two parts: a header section containing control information, and a
body consisting of MPE commands.

HEADER

The control information contained in the header section of a UDC consists of:

1. The command name, composed of alphanumeric characters (16 maximum) beginning with a letter.
You cannot use the reserved word RF A as a UDC name.

2. Parameters and their optional default values (maximum 16).

3. Execution options (LIST/NOLIST, BREAK/NOBREAK, LOGON/NOLOGON, HELP/NOHELP).

An example of a UDC header section is

Command Name parameters default ' I ' / ___(___ valUR

B PARM1,PARM2 =FTN06,PARM3 ="REC= -14,16,F,ASCII"
OPTION NOBREAK,LIST ~

parameier

E~ . .
xecutwn options

'\
default value

Any line of a UDC header may be continued up to 320 characters, and each continuation line, when
needed, must contain an ampersand(&) as the last non-blank character.

3-1

BODY

The body contains a set ofMPE commands which are executed when the UDC name is entered in place
of an MPE command. Any line in a UDC body may be continued using the ampersand(&) character up
to a maximum of 320 characters. The following is the body of user-defined command ''B".

FILE INPUT=!PARM2,0LD
FILE LISTFILE =!PARM1,NEW;!PARM3;DISC =1000,16,2
RUN ABC

Thus, the complete user-defined command B is:

R de {B PARM1,PARM2 =FTN06,PARM3 ="REC= -14,16,F,ASCII"
ea r - OPTION NOBREAD,LIST

{

FILE INPUT=!PARM2,0LD
Body --- FILE LISTFILE =!PARM1,NEW;!PARM3;DISC =1000,16,2

RUN ABC

USING UDC's

The first line (including continuation lines) in the header of a UDC supplies to the Command
Interpreter the name of the command and any parameters and their defaults. Thus an absolutely
minimal first line could be

c

In this example, the command would be named C and would have no parameters. The name given a
parameter in the header of a UDC is the formal name by which the parameter is known in the body of
the command. Any occurance of this parameter in the command body preceeded by an exclamation
point(!) signifies that MPE should substitute the value of that parameter into the command. Thus, in
the previous example of UDC "B", the line

FILE INPUT=!PARM2,0LD

informs MPE that you wish to substitute FTN06 for !PARM2

The body part of a user-defined command may contain MPE commands and other user-defined
commands, but may not contain any non-command material such as data for MPE subsystems or user
programs.

NOTE

The :REDO command is not allowed from within a UDC.
Using :DATA, :.JOB or :HELLO within a UDC will cause
your current job or session to log off.

3-2

Notice that the command body of UDC "B" contains only the MPE commands :FILE and :RUN, and
parameters for these commands:

FILE INPUT=!PARM2,0LD }
FILE LISTFILE =!PARMl,NEW ;!PARM3;DISC =1000, 16,2 --- ~;~ ~~"
RUN ABC

To execute a UDC, the user enters the command name followed by a parameter list. The parameter list
supplies values for the parameters defined in the UDC command header. Required parameters are
those for which no default values are supplied in the command header. If a value for a required
parameter is not supplied in the parameter list, an error is reported and the UDC is not executed. If
there are no required parameters in the UDC header, a parameter list does not have to be supplied
when the command is executed. In the previous example, the parameters PARM2 and PARM3 will be
passed to the command body either as default values as specified in the command header, or as values
entered in the parameter list with the command. The value for P ARMl must be supplied in the
parameter list.

The parameters DISC =1000,16,2 (for the FILE LISTFILE command) and ABC (for the RUN com
mand), of course, cannot be changed by the user-entered command call. Thus, if the command

:B FTN77

is entered, the effect is the same as if the following MPE commands had been entered:

:FILE INPUT =FTN06,0LD
:FILE LISTFILE =FTN77,NEW;REC =40,16,F,ASCII;DISC =1000,16,2
:RUN ABC

When supplying values for UDC parameters you can use either keyword parameters or positwnal
parameters, but not both at the same time.

A keyworded parameter is one in which the formal name of the parameter is used, and may appear in
any position in the parameter list. A positwnal parameter is one in which the formal name of the
parameter is not used. Instead, a substitute name or value is used in the same relative position in the
parameter list as the parameter's formal name appears in the parameter declaration.

The following are examples of different parameter lists for a UDC with the header

B PARM1,PARM2 = FTN06,P ARM3 ="REC =40,16,F,ASCII"

EXAMPLE 1:

:B FTN05

The required parameter PARMl (specified) would have the value FTN05; PARM2 (not specified) its
default value FTN06; and PARM3 (not specified) its default value REC =40,16,F,ASCII.

3-3

EXAMPLE 2:

:B FTN05,FTN77

PARMl would have the value FTN05, and PARM2 the value FTN77. The default value for PARM2
would not be used because the call contained a new value. The default value (REC =40,16,F,ASCII)
would be used for PARM3 because PARM3 was not specified. Both FTN05 and FTN77 are positional
parameters because they substitute for PARMl and PARM2.

EXAMPLE 3:

:B PARM2=FTN77,PARM1=FTN05

Example 3 illustrates entering the command B with keyworded parameters. Note that this call is
identical in effect to the call in Example 2.

EXAMPLE 4:

:B FTN05,,"REC = -88"

Example 4 illustrates the use of quote marks when a parameter containing embedded blanks or special
characters is used. Also note that the second parameter is not specified (denoted by the adjacent
commas), thus the default value FTN06 is used for PARM2.

Usually an exclamation point(!) in the body of a UDC must be followed by a formal parameter name. If
a parameter name does not follow the exclamation point, then an error is reported to the user.

The user can, however, change the meaning of the exclamation point if, for example, an exclamation
point is part of his UDC and he does not wish it to signify a parameter value. When exclamation points
occur in a pair (!!), the pair is replaced by a single exclamation point and MPE does not treat the
characters which follow as a parameter name. If the number of consecutive exclamation points is
greater than two, then each pair is replaced by a single exclamation point. If the number of points is
odd, MPE expects a parameter name to follow the last exclamation point. For example:

TESTUDC PARM
OPTION LIST
COMMENT "!!!!PARM"
COMMENT "!!!!!PARM"

If the user executes this UDC with ":TESTUDC ABC", the two comments will be printed as:

COMMENT "!!PARM"
COMMENT "!!ABC"

In previous versions of MPE, a UDC parameter name had to be terminated by a non-alphanumeric
character in the body of a UDC to allow the UDC parser to find the end of the name. Now the UDC
parameter can be delimited by the use of double quotes ("\ enabling the user to insert the parameter
into the middle of another string.

3-4

Consider, for example, that a user has three application programs that he compiles and preps daily:

SOURCE

APPLlSRC
APPL2SRC
APPL3SRC

USL

APPLlUSL
APPL2USL
APPL3USL

PROGRAM

APPLl
APPL2
APPL3

Assuming a file equation :FILE SLP;DEV =SLOWLP a UDC could be set up that would easily combine
the steps to prepare any of the above three source files into a program file:

COMP APPL MODULE,LISTING=*SLP
OPTION LIST quotes used to identify parameter
PURGE APPL!MODULE
PURGE APPL!"MODULE"USL
BUILD APPL!"MODULE"USL;CODE =USL;DISC =255,16
SPL APPLr'MODULE"SRC,APPL!"MODULE"USL,!LISTING parameter delimited
PREP APPL!"MODULE"USL,APPL!MODULE;PMAP
SA VE APPL!MODULE

by semicolon
parameter delimited by a blank

After adding the COMP APPL UDC to the catalog, you can compile and prepare Application 1 by
entering

:COMPAPPLl

Entering this UDC is the same as entering the following MPE commands:

:PURGE
TlTTTlrtV :r un.u.c..

:BUILD
:SPL
:PREP
:SAVE

OPTIONS

APPLl
APPLlUSL
APPLlUSL;CODE =USL;DISC =255,16
APPLlSRC,/ APPLl USL,*SLP
APPLl USL,/ APPLl;PMAP
APPLl

The following options can be specified in a UDC declaration. The underlined options are defaults and
need not be specified.

LIST/NOLIST The LIST option of a user-defined command allows the text of the body part of
the UDC, as modified by its parameters and other variables, to be listed on the
standard list device. Also, with the LIST option, errors are reported with a
caret (") under the error. Default is NOLIST.

3-5

EXAMPLE OF LIST OPTION:

B PARM1,PARM2 =FTN06,PARM3 ="REC =14,16,F,ASCII"
OPTION LIST
FILE INPUT=!PARM2,0LD
FILE LISTFILE =!PARM1,NEW;!PARM3;DISC =1000,16,2
RUN ABC

:B FTN27
FILE INPUT=FTN06,0LD
FILE LISTFILE=FTN27,NEW;REC=14,16,F,ASCII;DISC=1000,16,2
RUN ABC

THIS IS PROGRAM ABC, AN EXAMPLE
RUN BY A USER-DEFINED COMMAND

END OF PROGRAM

BREAK/NOBREAK If NOBREAK is specified, the command will be non-breakable.

If the NOBREAK option is not specified, all breakable commands within the UDC are breakable.

If a non-program command is broken (see table 1-1), the UDC terminates. If a program command is
broken, and you use the :RESUME command to resume the program, the UDC will also be resumed.
(An exception to this is if the :SETCATALOG command is used while you are in BREAK. In this case,
the UDC will not be resumed. See Using SETCATALOG, this section.)

Default is BREAK.

NOTE

The CAUSEBREAK intrinsic overrides the UDC NO
BREAK option; a program containing CA USE BREAK will
break even if executed from a UDC which specifies the
NOBREAK option.

EXAMPLE OF NOBREAK OPTION:

: EDITOR
HP32201A.7.0H EDIT/3000 THU, SEP 22, 1977, 3:36 PM
CC> HEWLETT-PACKARD CO. 1976
IT UDC1;L ALL

1 s
2 SHOWJOB

I --~~~~~~~~~~~-
:SET CAT ALO G UDC1
: .§.

Break

3-6

JOBNUM STATE IPRI JIN JLIST INTRODUCED JOB NAME

+SSS EXEC 20 20 THU 2:49P FIELD.SUPPORT
+SS7 EXEC S2 S2
: SETCATALDG ~Break Hit Here
:RESUME ~
READ PEND I NG ~must be done so that UDCl can be modified & saved.
~ (See ENTERING UDCs INTO AN EDIT FILE.)

1.1 OPTION NOBREAK
1 . 2

/L ALL
1
1 . 1
2

/K UDC1

II

s
OPTION NOBREAK
SHOWJDB

UDC1 ALREADY EXISTS - RESPOND YES TO PURGE OLD AND THEN KEEP
PURGE DLD?::f..
I
:SETCATALDG UDC1 Break Hit Here
:.§. To NO Effect

JOBNUM STATE IPRI JIN JL~NTRODUCED JOB NAME

•SSS EXEC 20 20 THU 2:49P FIELD.SUPPORT
+SS7 EXEC S2 S2 THU 2:SOP BOB.DATAMGT
+SS9 EXEC 1 00 100 THU 2:S9P YU.UTILITY
•S6S EXEC 11 0 11 0 THU 3:24P RICH.COBOL74
•S61 EXEC 111 111 THU 3:01P SMITH. COBOL 74
•S62 EXEC 102 102 THU 3:10P STEVE.PASCAL
+S63 EXEC 2S 2S THU 3:12P ED.MPE
•S66 EXEC S4 S4 THU 3:2SP MIKE.DATAMGT

8 JOBS:
0 INTRO
0 WAIT; INCL 0 DEFERRED
8 EXEC; INCL 8 SESSIONS
0 SUSP

JOBFENCE= 2; JLIMIT= 2; SLIMIT= 16

LOGON/NOLOGON The LOGON option specifies that the UDC will be executed at log-on
automatically.

Only one log-on UDC is executed for a user. If UDC files with option LOGON
exist at more than one level, the user level log-on UDC takes precedence over
the account level log-on UDC, which in turn takes precedence over the system
level log-on UDC. If more than one log-on UDC has been defined at the same
level, and no log-on UDCs exist at a lower level, the first one encountered in
the file(s) is executed.

Default is NOLOGON.

3-7

EXAMPLE OF LOGON OPTION:

1 s
2 OPTION LOGON
3 SHOW JOB
4

IE

:HELLO BARBARA.USERS

CPU=10. CONNECT=7. THU, JUL 12, 1979, 9:43 AM

HP 3000 I MPE III B.00.02. THU, JUL 12, 1979, 9:13 AM

JOBNUM STATE IPR! JIN JLIST

1SSS
#SS7
#SS9
#S68

EXEC
EXEC
EXEC
EXEC

20 20
S2 S2

100 100
43 43

4 JOBS:
0 INTRO
0 WAIT; INCL 0 DEFERRED
4 EXEC; INCL 4 SESSIONS
0 SUSP

INTRODUCED JOB NAME

THU 6:43A FIELD.SUPPORT
THU 6:4SA BARBARA.USERS
THU 9:32A AD.CRESSMAN
THU 9:S9A PAUL.REYNOSO

HELP/NOHELP The HELP subsystem can be used to obtain information about user-defined
commands unless NOHELP is specified as an option. The Command Interpre
ter locates the appropriate catalog entry for the specified UDC and prints the
complete command (header and body).

You cannot use the HELP subsystem to obtain information on a UDC from
within a subsystem or program.

Default is HELP.

EXAMPLE OF USING THE HELP SUBSYSTEM FOR A UDC:

:HELPB
USER DEFINED COMMAND:

B PARM1,PARM2 =FTN06,PARM3 ="REC =14,16,F,ASCII"
OPTION LIST
FILE INPUT=!PARM2,0LD
FILE LISTFILE =!PARM1,NEW;!PARM3;DISC =1000,16,2
RUN ABC

If you specify both the NOLIST and NO HELP options and an error occurs, the error will be reported,
but the line containing the error will not be echoed.

3-8

USING THE :SETCATALOG COMMAND

The :SETCATALOG command is used to inform MPE that a specified file name(s) contains user
defined commands. The Command Interpreter then searches the file and establishes a directory of all
commands contained in the file(s). The file name(s) is stored in a system catalog of all UDC users
(COMMAND.PUB.SYS). A user must have read and lock access for the UDC file in order to use the
:SETCATALOG command and to logon while that UDC file is in effect. Therefore, for account and
system level UDCs, the account and group file security in which the file resides must allow read and
lock access to all users (R,L:ANY). Note that the default file access for the PUB group gives lock access
only to users with AL, GL, or home group (GU) capability.

The system UDC catalog, COMMAND.PUB.SYS, must exist for the :SETCATALOG command to
properly execute. If this file does not exist on your system, the system manager or operator must build
it. The file should normally be built with a record size of 20; the size of the file will determine how
many users will simultaneously have UDCs in effect. A file for the system catalog might be built in the
following way:

:BUILT COMMAND;REC =20;DISC =2000

If you want to have the file named MYUDCl searched by the Command Interpreter, and have the
user-defined commands contained therein entered into a directory enter:

:SETCATALOG MYUDCl

Note that once a UDC file is entered into the system catalog with the :SETCATALOG command, that
file cannot be purged with the :PURGE command nor modified and kept under the same name with the
Editor while any user that has that UDC file as part of their directory is logged on. Any attempt to do
either of these two operations will result in an error message (Exclusive Violation).

In order to purge or modify such a file, it must be removed from the system catalog by issuing the
:SETCATALOG command with a parameter list that excludes that UDC file.

Entering :SETCATALOG with no parameters removes all your UDC files from the system catalog.
Note that the files are not purged, but merely deleted from the catalog. For example:

:SETCATALOG

To reenter UDC files into the catalog, reenter the :SETCATALOG command for these files.

Removing UDCs with the :SETCATALOG command (for example, :SETCATALOG;SYSTEM to re
move system-wide UDCs) does not have an immediate effect upon jobs/session that are still logged on.
These jobs/sessions may continue to access the UDCs cancelled until that job or session terminates, or
that job or session forces the creation of a new UDC directory with a :SETCATALOG command.

If the : SE TC AT ALOG command is part of a user-defined command, the : SE TC AT ALOG command will
be the last command executed in the UDC. In addition, if a program command is part of your UDC and
you break, do a :SETCATALOG and a :RESUME, that program command is the last command that
your UDC will execute.

3-9

For example, suppose your UDC calls the Editor subsystem. Once in Editor you break and perform a
:SETCATALOG command, followed by a :RESUME command. The :RESUME command will allow
you to again enter the Editor subsystem, but the :EDITOR command will be the last command in the
UDC to execute.

BUILDING AND MODIFYING A UDC FILE USING THE EDITOR

Once you have defined a command or set of commands which you would like to save, you can enter
them into an ASCII disc file using the Editor. This file should have a record length of 80 bytes for
numbered files (standard editor file), or 72 bytes for unnumbered files. You may create several such
files, each consisting of one or more user-defined commands. If a file contains more than one user
defined command, the commands must be separated from each other by one line containing one or
more asterisks, starting in the first column.

The Editor can be used to modify commands stored in a file, if that file is not being accessed. Note,
however, that a UDC file once entered into the system catalog with the :SETCATALOG command,
cannot be modified and kept under the same name with the Editor while any user that has that UDC
file as part of their directory is logged on.

For example, suppose you are the only user with file UDCI as your UDC file, and you wish to modify
that file:

:showcatalog

UDC1.SMR.OSE
s

:editor
USER

HP32201A.7.08 EDITl3000 FRI, AUG 29, 1980, 3:44 PM
CC> HEWLETT-PACKARD.CO. 1980
/t udc1
/1 all

1
2

/a 1 • 1
1 . 1
1. 2

/1 al 1
1
1 . 1
2

/k udc1

s
showjob

option nobreak
II

s
option nobreak
showjob

+-F-I-L-E---I-N-F-0-R-M-A-T-I-O-N---D-I-S-P-L-A-Y+
ERROR NUMBER: 90 RESIDUE: 0
BLOCK NUMBER: 0 NUMREC: 0

+--+
*41*FAILURE TO OPEN KEEP FILE C90)
EXCLUSIVE VIOLATION: FILE BEING ACCESSED CFSERR 90)
I Break
:setcatalog---------
: resume releases file from system UDC catalog.
READ PENDING
k udc1
UDC1 ALREADY EXISTS - RESPOND YES TO PURGE OLD AND KEEP NEW
PURGE DLD?y
le

END OF SUBSYSTEM
:setcatalog udc1

3-10

The following is an example showing how to create User-Defined Commands with the Editor:

: EDITOR
HP32201A.7.0H EDIT/3000 THU, Sep 22, 1977, 3:17 PM
CC> HEWLETT-PACKARD CO. 1976
/ADD

1 ~ Head
2 SHOWJOB -List of Commands
3 .LL

/KEEP UDC1
iDELETE ALL
/ADD

1 h
2 LISTF
3 .!!!!. ---Separates UDC's
4 R
s RESUME
6 J..J.

/KEEP UDC2
I Break
:SETCATALOG UDC1 ,UDC2
:..§.

JOBNUM STATE IPRI JIN JLIST INTRODUCED

*SSS EXEC 20 20
*SS7 EXEC S2 S2
*SS9 EXEC 100 100
*S61 EXEC 111 111
*S62 EXEC 102 102
*S63 EXEC 2S 2S

6 JOBS:
0 INTRO
0 WAIT; INCL 0 DEFERRED
6 EXEC; INCL 6 SESSIONS
0 SUSP

THU
THU
THU
THU
THU
THU

JOBFENCE= 2; JLIMIT= 2; SLIMIT= 16

FILENAME
FS3Q JMAT K26S1S17
:..R_
READ PENDING

/END

END OF SUBSYSTEM

3-11

2:49P
2:SOP
2:S9P
3:01P
3:10P
3:12P

US3

JOB NAME

FIELD.SUPPORT
BOB.DATAMGT
YU.UTILITY
SMITH.COBOL74
STEVE.PASCAL
ED.MPE

UDC1 UDC2

USING THE :SHOWCATALOG COMMAND

The :SHOWCATALOG command is used to list the UDCs currently in effect, the level at which they
are defined, and the file in which they are contained.

:SHOWCATALOG

UDCU .TOM.MPE -filename
WELCOME UDC
T

UDCA.TOM.MPE
LIST
FCOPY

UDCS.TOM.MPE
R

USER -----UDC level
USER

ACCOUNT
ACCOUNT

SYSTEM

NESTING USER-DEFINED COMMANDS

User-defined commands can be nested; that is, they can be defined so that entering one UDC will cause
several UDCs to execute. For example,

DO ALL
L
s

L
LISTF

s
SHOW JOB

If the above set ofUDCs is entered into a UDC directory, then each time DOALL is entered, the MPE
commands :LISTF and :SHOWJOB will execute.

Note, however, that a UDC can only call another UDC if the UDC being called is defined after the
calling UDC; UDCs can only be referenced forward, not backward. For example, for the command
:SETCATALOG CAT1,CAT2 all commands in CAT2 are forward of CATl.

3-12

If, in the above example, DOALL is put in the UDC file after the Land S user-defined commands, the
UDC DOALL will not execute and an error message will result:

:EDITOR
HP32201A.7.0H EDIT/3000 MON, DEC 5, 1977, 10:39 AM
(C) HEWLETT-PACKARD CO. 1976
IA

1
2
Q
u

4
5
6
7
8
9

10

/K DOALL
IE

L
LISTF

••••
s
SHOW JOB

••••
DO ALL
L
s
II

END OF SUBSYSTEM
:SETCATALOG DOALL
:DO ALL
L
I\

UNKNOWN COMMAND NAME. (CIERR 975)

System-level UDCs are forward of account-level UDCs, which in turn are forward of user-level UDCs.
This means that an account-level UDC can call a system-level UDC and a user-level UDC can call
either account or system-level UDCs.

If a system and user-level UDC exist with the same name, and an account-level UDC calls a UDC by
this name, the system-level UDC will be called instead of the user-level UDC because in this case,
forward of the user-level UDC.

ERRORS IN USER-DEFINED COMMANDS

A user-defined command contains an error if the execution of an MPE or a user-defined command
within the body of the UDC results in an error, or the expansion of the UDC parameters result in an
error. If an error or warning occurs as a result of executing a UDC, MPE may:

i. print the line in which the error occurs

2. print a caret(") pointing to the error, and/or

3. print the appropriate error message

3-13

If option NO HELP is specified as the execution option, the caret is not printed. If options NOLIST and
NOHELP are specified, then the line containing the error is not printed as well. The error message is
always printed.

When a UDC contains an error (rather than a warning) none of the commands in the body of the UDC
following the line which causes the error will be executed unless the line that caused the error is
preceeded by a :CONTINUE. In a job, a UDC that contains an error when no :CONTINUE is in effect
at any of the current nesting levels, will cause the job to terminate.

Consider the following example:

EDITOR
HP32201C.00.00 EDITl3000 FRI, SEP 5, 1980, 8:46 AM
(C) HEWLETT-PACKARD CO. 1980
IA

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

IK TUDC
IE

A
OPTION LIST
COMMENT A STARTS
CONTINUE
B
COMMENT A ENDS

**
B
OPTION LIST
COMMENT B STARTS
c
COMMENT B ENDS

**
c
OPTION LIST
COMMENT C STARTS
FILE A;CODE =XYZZY
COMMENT C ENDS

**
11

END OF SUBSYSTEM
:SETCATALOG TUDC
:A ----------begin execution of UDC A
COMMENT A STARTS
CONTINUE -------CONTINUE in effect for A's call of B
B A calls B
COMMENT B STARTS
C -----------B calls C
COMMENT C STARTS
FILE A;CODE =XYZZY---execution at :FILE results in an error

UNKNOWN FILE CODE TYPE. (CIERR 253)
COMMENT A ENDS ---The remainder of UDCs B and C are not executed.

3-14

UDC C contains an error because the :FILE command contains an invalid file code. Therefore, the
:COMMENT following the :FILE command is not executed. Because the execution ofUDC C results in
an error, the last :COMMENT in UDC Bis not executed. The last :COMMENT in UDC A is executed,
however, because at that nesting level there is a :CONTINUE in effect for the execution of UDC B.

When a :CONTINUE is placed before the :FILE command in UDC C, all three UDCs execute
completely.

:SETCATALOG
:EDITOR
HP32201C.OO.OO EDITl3000 FRI, SEP 5, 1980, 8:48AM
(C) HEWLETT-PACKARD CO. 1980
IT TUDC
IA 16.5

16.5 CONTINUE
16.6 II

IK;E
TUDC
TUDC ALREADY EXISTS - RESPOND YES TO PURGE OLD AND KEEP NEW
PURGE OLD?Y

END OF SUBSYSTEM
:SETCATALOG TUDC
:A
COMMENT A STARTS
CONTINUE
B
COMMENT B STARTS
c
COMMENT C STARTS
CONTINUE ------ CONTINUE in effect for :FILE command.
FILE A;CODE =XYZZY

/\

UNKNOWN FILE CODE TYPE. (CIERR 253)

COMMENT C ENDS} .
COMMENT B ENDS ----The remainder of B and C are executed.

COMMENT A ENDS

3-15

ICJMMO
____ TE_R_M_1N_A_Ls_s_u_PP_o_R_TE_o_e_v _M_PE___.l I A

1

TERMINAL DESCRIPTION
TYPE

0 HP 2749B (ASR-33 EIA-compatible) Terminal (10 cps).

1 ASR-37 Teleprinter Terminal with Paper Tape Reader/Punch (10 cps).

2 ASR-35 EIA-compatible Terminal (10 cps).

3 Execuport 300 Data Communications Transceiver Terminal (10/15/30
cps).

4* HP 2600A or Datapoint 3300 Keyboard Display Terminal (10/15/30/60/120/
240 cps).

5 Memorex 1240 Communication Terminal (10/15/30/60 cps).

NOTE: This terminal must be equipped with even
parity-checking option.

6* HP 2762A/B (General Electric Terminet 300 or 1200), or Data Communica-
tions Terminal, Model B (10/15/30/120 cps) with Paper Tape Reader/Punch,
Option 2.

NOTE: This terminal must be equipped for ECHO PLEX.

9* HP 2165A Terminal (Beehive MiniBee) (10/15/30/60/120/240 cps).

10* HP 2640A/B, HP 2641A, HP 2644A, or HP 2645A Character Mode or full pro-
gram control of block mode transmission (10-240 cps).

11* HP 2640A/B, HP 2641A, HP 2644A or HP 2645A. Allows user to use block
mode without program control of block mode transmission. Requires user to
position cursor before pressing ENTER. Recommended for speeds exceeding 30
cps when you expect to switch between character mode and block/line mode.
May not be used in block/page mode.

12* HP 2645K Katakana/Roman Data Terminal.

13* Message switching network or other computer.

14 Multipoint Terminal.

15* HP 2635A Printing Terminal. 8-bit protocol (for second character set).

16* HP 2635A Printing Terminal. 7-bit protocol (sta~dard character set).

19 2631B Remote Spooled printer.

* = Terminals that are supported on Series 30/33.

For further information see the Communications Handbook, Section B (30000-90105).

A-1

Command

:BASIC

:BASICOMP

:FORTRAN

:SPL

:COBOL

:RPG

:BASICPREP

:FORTPREP

SUBSYSTEM FORMAL FILE INMMti
DESIGNATORS II 8 I

Parameters Formal File Designator

commandfile BASCOM
inputfile BASIN
list file BAS LIST

textfile BSCTEXT
uslfile BSCUSL
list file BSCLIST

textfile FTNTEXT
uslfile FTNUSL
list file FTNLIST
masterfile FTNMAST
new file FTNNEW

textfile SPLTEXT
uslfile SPLUSL I listfile SPLLIST
masterfile SPLMAST
new file SPLNEW

textfile COB TEXT
uslfile CO BUSL
listfile COBLIST
masterfile CO BM AST
new file COBNEW

textfile RPG TEXT
uslfile RPGUSL
listfile RPG LIST
masterfile RPG MAST
new file RPG NEW

textfile BSCTEXT
progfile BSCPROG
list file BSCLIST

textfile FTNTEXT
progfile FTNPROG
list file FTNLIST
masterfile FTNMAST
new file FTNNEW

B-1

Command Parameters Formal File Designator

:SP LP REP textfile SPLTEXT
progfile SP LP ROG
list file SPLLIST
masterfile SPLMAST
new file SPLNEW

:COBOLPREP textfile COBTEXT
progf ile CO BP ROG
listfile COBLIST
masterfile CO BM AST
new file COBNEW

:RPGPREP textfile RPG TEXT
progf ile RPGPROG
listfile RPG LIST
masterfile RPG MAST
new file RPG NEW

:BASICGO textfile BSCTEXT
list file BSCLIST

:FORTGO textfile FTNTEXT
listfile FTNLIST I

masterfile FTNMAST

J
new file FTNNEW

:SPLGO textfile SPLTEXT I
list file SPLLIST
masterfile SPLMAST
new file SPLNEW

:COBOLGO textfile COBTEXT
list file COBLIST
masterfile CO BM AST
new file COBNEW

:RPGGO text file RPG TEXT
listfile RPG LIST
masterfile RP GM AST
new file RPGNEW

:EDITOR listfile EDTLIST

:SEGMENTER listfile SEGLIST

:RJE commandfile RJECOM
inputfile RJEIN
list file RJELIST
punchfile RJEPUNCH

B-2

Command Parameters Formal File Designator

:PREP } :PREPRUN
PMAP SEGLIST

:PREPRUN } :RUN
LMAP LOAD LIST

:RESTORE } :STORE
SHOW SYSLIST

B-3

1miJ.11
...____D_ET_Al_LS_OF_P __ R_O_GR_A_M_E_X_EC_UT_I O_N___j/ I c I

In MPE, programs are run on the basis of processes created and handled by the system. A process is not
a program itself, but the unique execution of a program by a particular user at a particular time.
Therefore, if the same program is run by several users, or more than once by the same user, it is
executed by several distinct processes.

The process is the basic executable entity in MPE. A process consists of a process control block (PCB)
that defines and monitors the state of the process, a dynamically-changing set of code segments, and a
data area (stack) upon which these segments operate. Thus, while a program consists of instructions
(not yet executable) and data in a file, a process is an executing program with a data stack assigned.
The code segments used by a process can be shared with other processes, but its data stack is private
(Figure C-1). For example, each user working on-line through the BASIC language is running his
program under a separate process; all use the same code (the only copy of the BASIC interpreter in the
system), but each has his own stack.

Processes, and the elements that comprise them, are invisible to the programmer accessing MPE
through standard capabilities; in other words, this programmer has no control over processes or their
structure. For this user, MPE automatically creates, handles, and deletes all processes. The user with
certain optional capabilities, however, can create and manipulate processes directly. See MPE Intrin
sics Reference Manual for further details.

OVERVIEW OF ALLOCATION/EXECUTION

When a program is run, it is allocated and executed. Before allocation/execution takes place, MPE
checks to verify the following points:

• For program files that are permanent files, the capabilities assigned to the program must not
exceed those assigned to the group to which the program file belongs; otherwise, an error occurs.

• For program files that are temporary files in the session/job temporary file domain, the capabilities
assigned to the program must not exceed those of the user running the program; otherwise, an
error occurs.

• For privileged segments, when the NOPRIV parameter is omitted from the :RUN (program execu
tion) command, the capabilities assigned to the program must include the privileged mode
capability for the segment to be loaded in privileged mode; otherwise, an error occurs.

During allocation, the MPE loader binds the segments from the program file to referenced external
segments from a segmented library (SL). Execution now begins. Then, the first code segment to be exe
cuted and the stack are moved into main memory. As it progresses, many processes may be created,
run, and deleted. For each process in execution, one or more code segments and one stack, operating
under control of a process control block (PCB), typically exist in main memory. Not all code segments
belonging to a process in execution need exist in main memory simultaneously. Typically, a process
operates on a set of segments that are dynamically swapped between memory and disc. MPE main-

C-1

Data
Stack

Code

LJ

PROCESS A

Data
Stack

Data
Stack

LJ

Figure C-1. Code-Sharing and Data Privacy

C-2

tains records of the frequency each segment is used, so that those used least frequently in main
memory become the most eligible for swapping out. You never need to determine whether a segment is
in main memory or on disc at any given time - this is always done for you automatically by MPE.

During allocation/execution, MPE keeps track of each code segment by maintaining information about
its nature and current location in the code segment table (CST). Similarly, information about the stack
is dynamically recorded in the data segment table (DST).

A particular program can be run by many user processes simultaneously, with all processes accessing
the same copy of sharable code. But unlike the program code segme_nts, the data segment containing
the stack is private to each user's process and cannot be shared with others. As execution progresses,
data enters and leaves the stack dynamically. Within the stack, data is arranged as a linear group of
items accessed from one end (called the top-of-stack). When the last instruction in a process is
executed, MPE releases those segments associated only with that process, including the stack seg
ment, and deletes their related entries in the CST and DST. (However, shared code segments are not
released until the last process using them is deleted.) All files opened by this process are closed.

PCB/CODE SEGMENT/STACK INTERACTION

Each process control block (PCB) contains information needed to control a process. This information
includes the priority of the process and pointers to ancestor and descendent processes. (See MPE
Intrinsics Reference Manual for a discussion of inter-process relationships.)

Each code segment executed by a process can contain one or more program units that include calls to
procedures elsewhere in this segment or in another segment. When a code segment is executing in
main memory, it is defined by pointers in three hardware registers: the Program Base (PB), Program
Counter (P), and Program Limit (PL) registers (Figure C-2). There is only one set of these registers; at
any particular instant, their contents refer to the code segment currently in execution. The PB register
contains the absolute address of the starting location of the segment in main memory. The P register
holds the absolute address of the instruction currently being executed. The PL register indicates the
absolute address of the last location of the code segment. Execution can only be transferred from this
segment by an interrupt or by a call or exit instruction referencing a procedure in another segment, in
which case the PB, P, and PL registers are reset to reflect the characteristics of the new segment.
Whenever an instruction is executed, the PL and PB registers are checked to ensure that referenced
addresses fall within the proper segment boundaries. This bounds check guarantees that other
programs and the system itself are protected against improper access. Since all addresses within a code
segment are relative to the contents of the three program registers, a segment can be relocated
anywhere in main memory and only the register contents and CST need be changed to reflect this
transfer.

As with code segments, there are normally several stacks present in memory. (One stack exists for
each process. l But since the execution of any process is interleaved with that of others, only one stack
is active at any particular instant. Most dynamic computational operations take place on the stack.
The last element added to the stack is placed in the word at the top-of-the-stack. In this position, it is
the first element removed when the process associated with the stack requests data from the stack. (ln
other words, the last element in is the first one out.) Each time data is added to the stack, the previous
top element becomes the second element from the top; each time the topmost element is removed, the
second element returns to the top of the stack.

C-3

PB BANK

p

PL

t
Low-Numbered Addresses
First Address

Current Instruction

Last Address
High-NumbP.red Addresses

Figure C-2. Code Segment and Associated Registers

Programmers operate directly on elements in the stack only when using the SPL language. However,
any program in any other language references the stack implicitly when it manipulates data, although
the user need not be aware of this. The principal data areas within the stack segment and their
purposes are summarized in table C-1. (The values of specific constants appearing in table C-1 are
currently accurate but may be changed in future releases of the operating system.) The boundaries of
these areas are delimited by the addresses stored in the registers indicated along the left side of the
stack diagram appearing in figure C-3 (DST, DL, ... Z registers). The PCBX, DL, and working stack
areas are all subject to dynamic expansion or contraction as the process runs.

C-4

STACK BANK

DB BANK

DSTr-------,
I I
I PCBX Area I

DL

Data Limit (DL)
Area

DB

Global Area

Q

Local Area
(Used by Current
Computation)

s

Unused Area
(Available for
New Data)

z
Stack Overflow

t

r
ow-Numbered Addresses

pcbxsize

} dlsize

} globsize

Working Stack
(stacksize)

}.
storsize

L _ ~r~ - - - _J High-Numbered Addresses

totalsize

NOTE: DL, 0, Sand Z are aligned with the Stack Bank register, and DB is aligned with the DB Bank
register to allow split stack operations.

Figure C-3. Data (Stack) Segment and Associated Registers

C-5

AREA

PCBX

OL

Global

Working Stack

Local

Unused

Table C-1. Data Areas in Stack Segment

FUNCTION

The Process Control Block Extension (PCBX) area contains information
necessary for the system to control process activity efficiently, such as
register settings and file pointers. In general, the PCBX is used when the pro
cess 1s running in main memory: the PCB 1s used when it is not. Initially, this
area is %402 words long.

This area contains user-managed information accessed and used only
through SPL programs such as compilers. These programs sometimes require

this space for buffers. This area is bounded by the addresses stored in the
data limit (OL) and data base (OB) registers, and is accessed via DB-negative
addressing. (A portion of the DL area, that between the addresses OB-10 and
OB-1. is reserved for data used by subsystems during their operation.) The
initial size of the DL area (dls1ze) may be specified 1n the :RUN command or
CREATE 1ntrins1c. If omitted from the RUN command. dlsize 1s taken from the
specifications supplied with the PREP command If not supplied anywhere by
user. dls1ze 1s assigned a value of zero. The dlsize actually granted 1s calcu
lated as follows

dlsize -- { I (specified dls1ze) + %613] land - 128} -%402

Note In this calculation. land indicates a log1cal-and operation.

This calculation assures that the area from the beginning of the segment to the
DB address 1s an integral number of disc sectors The resulting dls1ze 1s
checked to ensure that 1t 1s less than 32768 words

This area 1s used for global v;=rnables these are variables declared within the
data group of a main program and usable by any procedure within that pro
gram It also contains global arrays and pointers to those arrays. The size of
this area (globs1ze) 1s set during program preparation and entered 1n the
program file This size. and the content of the global area. are determined by
the number of global variables and their 1n1t1al1zat1on as specified by the pro
grammer The area 1s del1m1ted by the contents of the DB register and the
stack marker (0) register

From the standpoint of user proqrams. this 1s the most ac.t1ve rire;:i of the
stack---1t 1s the area where the users temporary data 1s stored and manipulated
It 1s bounded by the addresses 1nd1cated by the initial contents of the 0 regis
ter (0-1nit1al) and the Z-reg1ster Its size (stacks1ze) is specified 1n the RUN
command or CREATE 1ntr1ns1c. or else 1s taken from the PREP command
spec1f1cat1ons By default. 111 the at)sence of such 111forrnat1011. stacks1ze is sup
plied by MPE (This default stacks1ze 1s spec1f1ed bv the Syste'11 Supervisor
when he configures the system J The stacks1ze must be greater than 512 worcis
but :css than 32768 worcJs

W1th1n the working stack area. the local area co11ta1ns data relating only to the
procedure currently 111 execution The curre11t contents of U1e O-reg1ster
denotes the beg1nn111g of this area and the contents of the top-of-stack (S}
register 1nd1cates the end. po1nt1ng to the las'. item of data n the stack

Also within the working stack area, the unused area is the space that remains
available for new data. This area is bounded by the addresses in the S register
and stack limit (Z) register. The Z register indicates the last main-memory
location that can be used by user data in the stack area.

C-6

I

j

Table C-1. Data Areas in Stack Segment (Continued)

AREA FUNCTION

Stack Overflow This area is available for stack-overflow. a condition that occurs when the
S-register pointer must be moved beyond the Z-register pointer and space
must be provided for certain end-of-stack information. This buffer area lies
between the Z-register contents and the end of the data segment. This area is
currently % 170 (120 decimal) words long.

When the stack is allocated for a process, its total size (totalsize) is calculated as follows:

totalsize ~ pcbxsize + dlsize + globsize + stacksize + storsize

MPE ensures that totalsize is less than 32768 words and also less than or equal to maxstack (the
maximum allowed stack size specified during system configuration). The entire size of the data
segment allocated for the stack (dssize) is calculated as follows:

dssize ~ (totalsize + 7) land - 4

The dssize is effectively rounded upward to an integral multiple of four, and increased to include the
four-word trailing main-memory link of the segment when present in memory. The segmenter
descriptor (dstsize) in the Data Segment Table (DST) is:

dstsize ~ dssize/4

Another stack-related value, maxdata, is maintained by MPE in the PCBX and is used to limit
automatic stack expansion by fixing the maximum stack size. It may be specified in the :PREP
command and recorded in the program file. It rnay also be specified in the :RUN command or CREATE
intrinsic, in which case it overrides the :PREP command specification (if any). If maxdata is omitted
from both :PREP and :RUN (or CREATE), MPE equates maxdata to totalsize. When specified, maxdata
must be a positive number or zero. If the specified value exceeds the maxstack value defined during
configuration, maxdata is equated to maxstack. During process execution, ifthe distance from the start
of the data segment to the Z-address exceeds maxdata because of stack overflow, the process is aborted.

The size of the data segment as it exists in virtual memory on disc (usize) is calculated as follows:

vsize *- dssize + 2058 words

The maximum virtual-memory space allowed (maxsize) is:

maxsize *- max(dssize,maxdata) + 2058

The above calculation includes three disc sectors for possible expansion within the PCBX area, and
nine sectors for space used during possible stack-overflow abort. These extra twelve sectors, totaling
2058 words, imply a limit on maxdata of 30702 words.

Through bounds checks, MPE and certain hardware prov1s10ns ensure that data for the process
remains within the limits defined by the contents of the DL and Z registers, and that no other user
accesses this area. All locations are addressed relative to the DB, Q, and S registers.

C-7

Although the top-of-stack is logically indicated by the S register, up to four of the topmost elements of
the stack can actually exist in central processor registers (the TR registers) rather than in main
memory - in effect, the stack "spills over" from memory into these registers. This function is managed
by the hardware and greatly enhances processing speed.

Before a process begins execution, stack space is first reserved for global data, beginning at the
DB-address and terminating at the Q-ad<lress, which denotes the beginning of the dynamic working
stack (figure C-4A). At this time, no data is stored beyond the Q-address, and so the S-register also
points to the same address as the Q register - that is, the bottom and top of the working stack
coincide. But, as the process begins execution, data is added to the stack, and the S-pointer (top-of
stack) moves away from the Q-pointer (figure C-4B). If, at some point, the process encounters a
procedure call, a new area for data local to that procedure must be defined. To do this, the system
hardware places a group of four words called the stack marker on top of the stack to save information
necessary to re-create the currently-defined local area later. The Q and S registers are then pointed to
the top word of the stack marker, which also delimits the beginning of a new, fresh and unique local
area for the procedure just called (figure C-4C).

The words in the stack marker preserve the state of the machine at the time of the procedure call.
These words contain the following information, (shown in order ascending toward the Q-address):

Word

Q-3

Q-2

Q-1

Q-0

Contents

Current contents of the Index (X) register.

The return address for the code segment, denoted by P+ 1 (relative to the PB
register).

The current contents of the Status register (which includes the number of
the code segment containing the calling procedure l.

The delta-Q value, which is the number of words between the new and
previous Q-locations, enabling the later re-setting of Q to its old value.

As data is added to the stack during execution of the new procedure, the S-pointer moves away from
the new Q-pointer, reflecting the latest data added (figure C-4D). When the procedure exits back to the
main program, the new local data area is deleted from the stack, the stack marker is used to restore
the Q-pointer to its previous setting, any value returned by the procedure is left at the new top-of
stack, and the S-pointer is set to indicate the new top-of-stack (figure C-4E). This results in a "clean"
stack from which temporary data local to the called procedure is eliminated because it is no longer
needed.

Whenever a procedure is called, the Q and S registers are manipulated in this manner. The Q register
changes with each procedure call and exit; the S register may change when an instruction references
data. Thus, when a process executes a main program (outer block) that calls three procedures, there
will be a maximum of four local areas (one for the main program and three for the procedures called by
it l on the stack. Each procedure's local area is delimited at its base by its own stack marker. Within
these stack markers, the delta-Q words form a logical chain that links the present Q register setting
back to its initial value.

C-8

DL

DL
Area

DB

Global Area

0,S

z
A

DL

DB

~O(old)

I

S(old)

L O(new)

S(new)

z

DL

DL
Area

DB

Global Area

Q

Main Program
Local Area

s

i

z L

B

DL

DL
Area

DB

Global Area

----- Q

Main Program
Local Area

Stack s
Marker

Procedure's
Local Data

I

i

z
D

DL

DB

r _. O(old)
I
I
I
I
I
I

S(old)

DL
Area

Global Area

Main Program
Local Area

Stack
Marker

O(new) ,S(new)---------1

z
c

DL
Area

Global Area

Main Program
Local Area

New Data

E

Figure C-4. Stack Operation

C-9

old 0

old S

0-12

0-10
0-7

0-6

0-4

0-3

0-2

0-1

new 0

new S

\ procedure return (Double word max)

VALUE A

VALUE B

POINTER C

} Parameters passed to called procedure

} OPTION VARIABLE mask (Double word maximum)

x
~p

STATUS

~o

Figure C-5. Stack Operation Example

Figure C-5 shows what the top of stack area would look like if a procedure (or intrinsic) is called that
has the following type of declaration:

DOUBLE PROCEDURE X (A,B,C);
VALUE A,B; INTEGER A,B;
LOGICAL C;
OPTION VARIABLE;

In this example the code increments the S-register by 2 to save a double word area for the procedure
double value return. Next, since parameters A and Bare specified by value. the actual value of the
parameters are pushed on TOS respectively. Parameter C is specified to be the address of a logical
location so the DB relative address is placed on TOS. Since the procedure is OPTION VARIABLE, not
all of the parameters must be passed. As a result, a method is provided for the procedure to find out
which parameters are valid. This method utilizes a mask value which is the next word pushed on TOS.
The mask value is a one bit if the parameter was passed and a zero bit if it was not passed. The
parameter area exists whether or not the parameter is passed or not. Bit 15 of the mask word is a one if
parameter C was passed, Bit 14 is a one if parameter B was passed and Bit 13 is a one if parameter A
was passed. The mask value can be up to 31 bits and therefore a maximum of 31 parameters can be to
any one procedure.

Next a PCAL to the procedure pushes a standard 4 word stack marker and moves the Q register down
to prevent accidental destruction of the stack marker and parameters passed to the procedure.

The last instruction of the procedure, in this example, is an EXIT 4 instruction. During execution of
this instruction the Q register is moved back to the Hold Q" location and all values except the double
returned word are taken (popped) off the stack. The next instruction in the user's program stores the
double return value in a DB relative double word variable location. The Q negative relative locations
shown in the figure are relative to the Q register while the procedure is executing.

C-10

PROGRAM LISTINGS

Listing Of Prepared Program

PROGRAM FILE SCR4.MPE.SYS
~

SEG40....0 CD 0...-G)
NAME Q
LISTRL~
MAKEROOMINDL
FGETINFO
FREADMR''
NTOA
BLANKLINE
TESTBIT
DNTOA

OPENRL

SIT CODE ENTRY SEG

1~ ~ 3027 30 1 o--®
31 6 ?
32 1 0
33 10
34 1 0
35 10
36 1 0

27 2523 2523
FOPEN 70 ?
FLOCK 71 ?
FREADMR' 72 10
SEGMENT LENGTH 3130~

SEG30
NAME
LISTSL'
FGETINFO
NTOA
BLANKLINE
TESTBIT
DNTOA
PR I NTLI NE
EJECTPAGE
CLEANUPRTBUF
FWRITEDIR'
GETREFTABENTRY
FEDF

SET CODE ENTRY SEG
1 0 1 06

33 ?

34 10
35 1 0
36 10
37 10
40 1 0
41 1 0

2 545 545
42 10

3 556 556
43 10

FPO INT 46 ?

FCLOSE 47 ?
NTOA 50 1 0
EJECTPAGE 51 10
SEGMENT LENGTH 2030

11mMO
I D I

PRIMARY DB
SECONDARY DB
TOTAL DB
ELAPSED TIME

@_350 f!J IN I TI AL STACK @._,._1 440 .)§) CAPABILITY (.;;\ ®'..1 01
1 216 IN IT I AL DL 0 TOTAL CODE ~27320 f,9'
1566~MAXIMUM DATA 40000~TOTAL RECORDS 155~

PROCESSOR TIME 00:24.156~ 00:14:2~7

D-1

Prepared Program Listing Key

Item No. Meaning

1 The name of the program file (filename.groupname.accountname).

I I 2 The segment name.

3 The (logical) segment number.

4 The program unit entry-point name or external procedure name.

5 The assigned entry number in the Segment Transfer Table (STT).

6 The beginning location of the procedure code in the segment.

7 The location of the entry point in this segment.

8 The (logical) segment number of the segment containing this external procedure.
If this entry is a number, then the procedure is external to the segment but in-
ternal to the program file; if it contains a question mark(?), then the procedure is
external to the segment and external to the program file.

9 The segment length (in words).

10 The primary DB area size.
I

11 The secondary DB area size.

12 The total DB area size.
I

13 The time elapsed during preparation process.

14 The initial stack size.

15 The initial DL size.

16 The maximum area available for data (maximum Z-DL size).

17 Capability of program file.

18 Total code in file.

19 Total records in file.

20 Total central processor time used during preparation process.

D-2

Listing Of Loaded Program

PROGRAM FILE SCR4.MPE.SYS ..__,_..
CD >DtJ ~ fD~~f§J

TERMINATE~G:J"'PROG 0 SO 11 SSL 0 2 37
SENDMAIL 3 PROG 0 46 11 SSL 0 2 40
DEBUG PROG 0 44 11 SSL 0 S2
RECEIVEMAIL PROG 0 6 1 1 SSL 0 40
AWAKE PROG 0 s 1 1 SSL 0 4 33
WHO PROG 0 4 11 SSL 0 4 4S
FREADDIR PROG 0 4S 1 0 SSL 0 0
FWR !TEDIR PROG 0 44 1 0 SSL 0 2 0
FWR ITE PROG 0 43 1 0 SSL 0 3 0
DLSIZE PROG 0 41 1 0 SSL 0 1 S 42
PRINT PROG 0 1 s 7 SSL 0 11 4S
SETJCW PROG 0 13 7 SSL 0 1 4S
GETJCW PROG 0 12 7 SSL 0 2 4S
ADJUSTUSLF PROG 0 42 6 SSL 0 11 46
FPO INT PROG 0 46 2 SSL 0 s 1
RESETDB PROG 0 34 4 SSL 0 7 33

26 2
SETSYSDB PROG 0 33 4 SSL 0 11 33

2S 2
FCONTROL PROG 0 14 2 SSL 0 3 1
PROCTIME PROG 0 4 2 SSL 0 1 s 44
TIMER PROG 0 3 2 SSL 0 23 33
GETUSERMODE PROG 0 1 0 11 SSL 0 4 44

3S 4
27 2
SS

LOADEDSLSEG PROG 0 S3 SSL 0 2 47
GETPRIVMODE PROG 0 4S 11 SSL 0 s 44

32 4
24 2
52 1

QUIT PROG 0 7 11 SSL 0 11 31
S2 1 0
2S s
so

FGETINFO PROG 0 14 11 SSL 0 4 2
46 1 0
32 6
S6 3
1 s 2
33 1
31 0

r11'I
301 302 303 304 30S 306 307 310 311 312/0

D-3

Loaded Program Listing Key

Item No. Meaning

1 The name of the program file (filename.groupname.accountname).

2 The name of the external procedure.

3 The type of the segment referencing the external procedure, where:

PROG
GSL
PSL

program segment.
group segmented library segment.
public segmented library segment.

4 External parameter checking level.

5 External segment transfer table (STT) number.

6 External (logical) segment number.

7 Entry point segment type, where:

GSL = group segmented library segment.
PSL public segmented library segment.
SSL = system segmented library segment.

8 Entry point parameter checking level.

9 Entry point segment transfer table (STT) number.

10 Entry point (logical) segment number.

11 A list of the code segment table (CST) numbers to which the program file seg
ments were assigned. The list is ordered by logical segment number

D-4

I

(with user-defined command), 3-4
* (file back referencing, 1-9

ABORT command, 2-8
example, 2-8
usage, 2-8

Abort? prompt, 1-4
Aborting a program, 1-7
Aborting an operation, 2-8
Access, FILE command parameters, 2-58
Accessing APL subsystem, 2-12
ACCOUNT

name, at log-on, 2-8
name, in a JOB command, 2-93
password, at log-on, 2-8

Accounting information, 2-135
ALTLOG command, 2-9

example, 2-9
operation, 2-9.
parameters, 2-9
syntax, 2-9
usage, 2-9

ALTSEC command, 2-11
example, 2-11
operation, 2-11
parameters, 2-10
usage, 2-11

APL command, 2-12
example, 2-12
operation, 2-12
usage, 2-12

ASSOCIATE command, 2-13
example, 2-13
operation, 2-13
parameters, 2-13
syntax, 2-13
usage, 2-13

Back referencing files, 1-9
BASIC command, 2-14

example, 2-15
parameters, 2-14
usage, 2-14

BASIC programs
compiling, 2-16, 2-17, 2-19
executing, 2-16
interpreting, 2-14
preparing, 2-16, 2-19

BASICGO command, 2-16
example, 2-16
parameters, 2-16
usage, 2-16

I-1

BASICOMP command, 2-17
example, 2-18
operation, 2-18
parameters, 2-1 7
usage, 2-17

BASICPREP command; 2-19
example, 2-20
operation, 2-20
parameters, 2-19
usage, 2-19

Batch job
initiating, 2-93
spooling, 2-205
submitting, 2-95

BREAK key
interrupting commands, 1-6, 2-1
suppressing messages, 1-6
suspending program execution, 1-7

BUILD command, 2-21
example, 2-25
operation, 2-25
parameters, 2-21
usage, 2-24

BYE command, 2-26
example, 2-26
operation, 2-26
usage, 2-26

COBOL command, 2-27
example, 2-28
for compiling programs, 2-27
operation, 2-28
parameters, 2-27
usage, 2-28

COBOL programs
compiling, 2-9, 2-31
executing, 2-29
preparing, 2-29, 2-31

COBOLGO command, 2-29
example, 2-30
operation, 2-29
parameters, 2-29
usage, 2-29

COBOLPREP command, 2-31
example, 2-32
parameters, 2-31
usage, 2-32

Command errors, 1-4
Command log on

example, 2-7
parameters, 2-4
usage, 2-6
with APL command, 2-12

INDEX

Commands
breakable, 1-8
correcting entry of, 2-122
execution at log on, 1-5
execution from a program, 1-5
functional list, 2-3
how to edit (REDO), 2-122
how to enter, 1-1
interrupting execution of, 1-6
non-breakable, 1-8
parameter list, 1-2
program, 1-6
sequence numbers, 1-5

COMMENT command, 2-33
example, 2-33
usage, 2-33

Compiling
BASIC programs, 2-16, 2-17, 2-19
COBOL programs, 2-29, 2-31
FORTRAN programs, 2-69, 2-71
SPL programs, 2-197, 2-199

CONSOLE command, 2-34
example, 2-34
parameters, 2-34
usage, 2-34

Continuation character, 1-4
CONTINUE command, 2-35

example, 2-35
operation, 2-35
usage, 2-35

DATA command, 2-36
example, 2-38
operation, 2-36
parameters, 2-36
usage, 2-36

Date, how to display, 2-192
DEBUG command, usage, 2-39
Debug facility, invoking, 2-39
Delimiters, parameter, 1-2
Details of Program Execution, B-1
Device

operator control, 2-13
status, how to display, 2-175, 2-187

Devicefile
displaying information for, 2-172
input, how to access, 2-175
output, how to access, 2-187
state, 2-175, 2-187

DISASSOCIATE, 2-40
example, 2-46
operation, 2-40
parameters, 2-40
syntax, 2-40
usage, 2-40

Disc drive status, 2-4 7
DISMOUNT command, 2-41

operation, 2-41
parameters, 2-41
usage, 2-41

I-2

DS/3000 subsystem
closing a line, 2-44
opening a line, 2-44
remote hello, 2-129

DSCOPY, 2-41
copy discfiles, 2-42
example, 2-43
operation, 2-43
parameters, 2-42
syntax, 2-42
usage, 2-43

DSLINE command, 2-44
example, 2-46
operation, 2-46
parameters, 2-44
syntax, 2-44

DSTAT command, 2-47
example, 2-47
operation, 2-4 7
parameters, 2-4 7
usage, 2-47

Editing commands, 2-122
EDITOR command, 2-48

example, 2-49
operation, 2-48
parameters, 2-48
usage, 2-48

ELSE command, 2-50
example, 2-50
operation, 2-50
usage, 2-50

End-of-data, 2-48
End-of-file indicators, 2-53
End-of-file, 2-55
End-of-job, 2-56
ENDIF command, 2-51

example, 2-51
operation, 2-51
usage, 2-51

EOD command, 2-52
example, 2-54
operation, 2-52
usage, 2-52

EOF command, 2-55
example, 2-55
operation, 2-55
usage, 2-55

EOJ command, 2-56
example, 2-56
operation, 2-56
usage, 2-6

Errors
during a session, 1-4, 2-35
during job entry, 2-35
in a batch job, 1-4
in a command, 1-4
in a session, 1-4
in user-defined commands, 3-13

FILE command, 2-58
access parameters, 2-64
devicespec parameters, 2-60
disposition parameters, 2-67
example, 2-68
implicit, for subsystems, 2-67
namespec parameters, 2-58
operation, 2-67
parameters, 2-58
syntax, 2-58
syntax for access, 2-64
syntax for devicespec, 2-60
syntax for disposition, 2-66
syntax for namespec, 2-58

File designator
subsystem formal, B-1

File
access parameters, 2-64
altering security on, 2-10
arbitrary formal designator, 2-58
attributes how to specify, 2-58
creating, 2-58
device, 2-58
example, 2-68
formal designator, resetting, 2-113
parameters, 2-58
renaming, 2-132
restoring to system, 2-140
security, restoring, 2-10
security, suspending, 2-124
storing, 2-201

Files, how to dump, 2-201
Files, how to restore, 2-140
Formal file designators

used by subsystems, 2-67
FORTGO command, 2-69

example, 2-70
parameters, 2-69
usage, 2-69

FORTPREP command, 2-71
example, 2-72
operation, 2-72
parameters, 2-71
syntax, 2-71
usage, 2-72

FORTRAN command, 2-73
example, 2-7 4
operation 2-7 4
parameters, 2-73
syntax, 2-73
usage, 2-74

FORTRAN programs
compiling, 2-69, 2-71
executing, 2-69
preparing, 2-69, 2-71

FREERIN command, 2-75
example, 2-75
parameters, 2-7 5
syntax, 2-75
usage, 2-75

I-3

GETLOG command, 2-76
example, 2-77
operation, 2-76
parameters, 2-76
usage, 2-76

GETRIN command, 2-78
example, 2-79
parameters, 2-78
usage, 2-78

Global RIN, how to free, 2-75
Group

name, 2-82
passwords, 2-83

HELLO command, 2-80
example, 2-84
operation, 2-82
parameters, 2-80
syntax, 2-80
usage, 2-81

HELP command, 2-85
example, 2-88
operation, 2-87
parameters, 2-85
syntax, 2-85
usage, 2-87

Help subsystem, 2-85
accessing, 2-85

IF block termination, 2-51
If command, 2-89

example, 2-90
operation, 2-90
parameters, 2-89
usage, 2-89

IF statement alternative (ELSE), 2-89
IML Command

example, 2-92
parameters, 2-91
syntax, 2-91
usage, 2-92

Input
devicefile, displaying status/state, 2-172
stream, end-of-data, 2-58
stream, end-of-file, 2-55

Interpreting BASIC programs, 2-14

JCW
current state, 2-179
displaying status of, 2-1 79
setting the value of, 2-167

JOB command, 2-93
example, 2-96
operation, 2-95
parameters, 2-93
usage, 2-95

Job Control Word, see JCW

Job
errors, overriding, 2-35
name, in JOB command, 2-93
output, controlling, 2-94
status displaying, 2-180
streaming, 2-205
submitting from a session, 2-95

Keyword parameters, 1-3

LIST option (UDC declaration), 3-6
LISTF command, 2-97

example, 2-101
operation, 2-99
parameters, 2-97
usage, 2-99

LISTLOG command, 2-104
example, 2-104
operation, 2-104
parameters, 2-104
syntax, 2-104
usage, 2-104

LISTVS command
example, 2-107
operation, 2-107
parameters, 2-105
usage, 2-106

Logging Files, 2-76
Logging off the system, 2-26
Logging on the system, 2-80, 2-93, 2-129
LOGON option (UDC declaration), 3-7

Messages
from console operator, 2-209
how to send, 2-209, 2-211
OFF or ON, 2-170
sending to console operator, 2-211
sending to job or session, 2-209

MOUNT command, 2-108
example, 2-109
operation, 2-108
parameters, 2-108
usage, 2-108

Mounting volume sets, 2-108
MRJE command, 2-110

example, 2-110
operation, 2-110
usage, 2-110

MRJE/3000 subsystem, accessing, 2-110

Nested commands, user-defined, 3-12
$NEWPASS, 2-59
NOBREAK option (UDC declaration), 3-6
NOHELP option (UDC declaration), 3-8

$0LDPASS, text discussion, 2-59
Optional parameters, 1-10
Output

devicefiles, displaying status1state, 2-172

I-4

Parameter
delimiters, 1-2
keyword, 1-3
optional, 1-10
positional, 1-3

Positional parameters, 1-3
PREP command, 2-111

example, 2-113
operation, 2-112
parameters, 2-111
syntax, 2-111
usage, 2-112

PREPRUN command, 2-114
example, 2-116
operation, 2-116
parameters, 2-114
syntax, 2-114
usage, 2-116

PROCESSES, C-1
CS, 2-94
DS, 2-94
ES, 2-94
HIPRI, 2-93
maximum, 2-94

Program
commands, a list of 1-6
execution after break, 1-7
listings, D-1

PT APE command, 2-117
example, 2-118
operation, 2-11 7
usage, 2-117

PURGE command, 2-119
example, 2-120
parameters, 2-119
usage, 2-119

Quiet mode (SETMSG OFF), 2-169

RECALL command, 2-121
examples, 2-121
syntax, 2-121
usage, 2-121

REDO command, 2-122
example, 2-122
operation, 2-122
usage, 2-122

RELEASE command, 2-124
example, 2-124
operation, 2-124
parameters, 2-124
usage, 2-124

RELLOG command, 2-125
example, 2-125
operation, 2-125
parameters, 2-125
syntax, 2-125
usage, 2-125

REMOTE Command, 2-126
operation, 2-126
parameters, 2-126
syntax, 2-126
usage, 2-126

REMOTE HELLO command, 2-129
parameters, 2-129
operation, 2-131
syntax, 2-129
usage, 2-130

RENAME command, 2-132
example, 2-133
operation, 2-132
parameters, 2-132
usage, 2-132

REPORT command, 2-135
example, 2-137
operation, 2-136
parameters, 2-135
usage, 2-136

RESET command, 2-138
example, 2-138
operation, 2-138
parameters, 2-138
usage, 2-138

RESETDUMP command, 2-139
example, 2-139
usage, 2-139

RESTORE command, 2-140
error messages, 6-68
example, 2-118
operation, 2-142
parameters, 2-140
syntax, 2-140
usage, 2-142

RESUME command, 2-144
example, 2-145
operation, 2-144
usage, 2-144

RIN (Resource Identification Number, 2-75
acquiring, 2-78
releasing, 2-7 5

RJE command, 2-146
example, 2-147
parameters, 2-146
usage, 2-147

RJE/3000 subsystem command, 2-147
RPG command, 2-148

example, 2-148
parameters, 2-148
usage, 2-149

RPG program
compiling, 2-148, 2-150, 2-152
executing, 2-150
preparing, 2-150, 2-152

RPGGO command, 2-150
example, 2-151
parameters, 2-150
usage, 2-150

I-5

RPGPREP command, 2-152
example, 2-153
operation, 2-153
parameters, 2-152
usage, 2-152

RUN command, 2-155
example, 2-158
parameters, 2-155
syntax, 2-155
usage, 2-157

SA VE command, 2-159
example, 2-160
parameters, 2-159
usage, 2-159

SECURE command, 2-161
example, 2-161
operation, 2-161
parameters, 2-161
usage, 2-161

SEGMENTER command, 2-162
example, 2-163
parameters, 2-162
usage, 2-162

Sequence field, in commands, 1-5
Session

command log-on, 2-4
initiating, 2-80
status, displaying, 2-180
termination and suspension, 2-8
termination (BYE command), 2-26

SETCATALOG command, 2-164
example, 2-165
operation, 2-164
parameters, 2-164
usage, 2-164

SETDUMP command, 2-166
example, 2-166
parameters, 2-166
usage, 2-166

SETJCW command, 2-167
example, 2-168
operation, 2-168
parameters, 2-167
usage, 2-167

SETMSG command, 2-169
example, 2-169
operation, 2-169
parameters, 2-169
usage, 2-169

SHOWALLOW command, 2-170
example, 2-170
operation, 2-170
parameters, 2-170
syntax, 2-170
usage, 2-170

SHOWCATALOG command, 2-171
example, 2-171
operation, 2-1 71
parameters, 2-1 71
usage, 2-197-

SHOWDEV command, 2-172
operation, 2-172
parameters, 2-172
usage, 2-172

SHOWIN command, 2-175
example, 2-177
operation, 2-176
parameters, 2-175
usage, 2-176

SHOWJCW command, 2-179
operation, 2-1 79
parameters, 2-179
usage, 2-179

SHOWJOB command, 2-180
example, 2-182
operation, 2-181
parameters, 2-180
usage, 2-181

SHOWLOGSTATUS command, 2-184
example, 2-184
operation, 2-184
parameters, 2-184
syntax, 2-184
usage, 2-184

SHOWME command, 2-185
example, 2-186
operation, 2-185
parameters, 2-185
usage, 2-185

SHOWOUT command, 2-187
operation, 2-188
parameters, 2-187
usage, 2-188

SHOWTIME command, 2-192
~xample, 2-192
operation, 2-192
usage, 2-192

SPEED command
example, 2-194
operation, 2-193
parameters, 2-193
usage, 2-193

SPL command, 2-195
example, 2-196
operation, 2-196
parameters, 2-195
usage, 2-196

SPL program
compiling, 2-165, 2-197, 2-199
executing, 2-197
preparing, 2-197, 2-199

SPLGO command, 2-197
example, 2-198
operation, 2-197

I-6

parameters, 2-197
usage, 2-197

SPLPREP command, 2-199
example, 2-200
operation, 2-200
parameters, 2-199
usage, 2-199

STORE command, 2-201
example, 2-204
operation, 2-203
parameters, 2-201
usage, 2-203

STREAM command, 2-205
example, 2-206
operation, 2-205
parameters, 2-205
usage, 2-205

TELL command, 2-209
operation, 2-210
parameters, 2-209
usage, 2-209

TELLOP command, 2-211
example, 2-211
operation, 2-211
parameters, 2-211
usage, 2-211

Terminal speed, how to change, 2-193
Terminal type

speed sensing at log on, 2-193
Terminals supported by MPE, A-1
Time limit, TTh1E = parameter, 2-80, 2-129
Time, how to display, 2-192
Transmission speed, how to change, 2-194

UDC (user-defined command)
command errors, 3-13
syntax, 3-1, 3-2
nesting, 3-12

UDC file
generating a list of, 3-6
how to catalog, 2-164
using Editor to create, 3-10
using Editor to modify, 3-10

UDC files, how to list, 3-12
User-defined command, see UDC

Volume set
how to dismount, 2·-41
how to mount, 2-41

VSUSER command
example, 2-178
text discussion, 6-5
usage, 2-178

READER COMMENT SHEET

HP 3000 Computer Systems
MPE Commands

Reference Manual

30000-90009 January 1981

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.

Please use additional pages if necessary.

Is this manual technically accurate? Yes D No D (If no, explain under Comments, below.)

Are the concepts and wording easy to understand? Yes D No D (If no, explain under Comments, below.)

Is the format of this manual convenient in size, Yes D No D (If no, explain or suggest improvements
arrangement, and readability? under Comments, below.)

Comments:

FROM:

Name

Company

Address

FOLD FOL[

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1070

POSTAGE WILL BE PAID BY ADDRESSEE

Publications Manager
Hewlett-Packard Company
Computer Systems Division
19447 Pruneridge Avenue
Cupertino, California 95014

CUPERTINO, CALIFORNIA

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

·------------------- -- ------------------ .. --
FOLD FOLD

Part No. 30000-90009
Printed in U.S.A. 1/81
3MPE.320.30000-90009

r//OW HEWLETT
~~PACKARD

	000
	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033
	2-034
	2-035
	2-036
	2-037
	2-038
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044
	2-045
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	2-102
	2-103
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	2-112
	2-113
	2-114
	2-115
	2-116
	2-117
	2-118
	2-119
	2-120
	2-121
	2-122
	2-123
	2-124
	2-125
	2-126
	2-127
	2-128
	2-129
	2-130
	2-131
	2-132
	2-133
	2-134
	2-135
	2-136
	2-137
	2-138
	2-139
	2-140
	2-141
	2-142
	2-143
	2-144
	2-145
	2-146
	2-147
	2-148
	2-149
	2-150
	2-151
	2-152
	2-153
	2-154
	2-155
	2-156
	2-157
	2-158
	2-159
	2-160
	2-161
	2-162
	2-163
	2-164
	2-165
	2-166
	2-167
	2-168
	2-169
	2-170
	2-171
	2-172
	2-173
	2-174
	2-175
	2-176
	2-177
	2-178
	2-179
	2-180
	2-181
	2-182
	2-183
	2-184
	2-185
	2-186
	2-187
	2-188
	2-189
	2-190
	2-191
	2-192
	2-193
	2-194
	2-195
	2-196
	2-197
	2-198
	2-199
	2-200
	2-201
	2-202
	2-203
	2-204
	2-205
	2-206
	2-207
	2-208
	2-209
	2-210
	2-211
	2-212
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	A-01
	B-01
	B-02
	B-03
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	D-01
	D-02
	D-03
	D-04
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	replyA
	replyB
	xBack

