HEWLETT@F PACKARD

BASIC Interpreter

Reference Manual

HP 3000 Computer System

BASIC Interpreter

Reference Manual

il

HEWLETT @ PACKARD

5303 STEVENS CREEK BLVD., SANTA CLARA, CALIFORNIA, 95050

Printed in U.S.A. 6/76

Part No. 30000-90026
Product No. 32101B

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1978 by HEWLETT-PACKARD COMPANY

ii

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date of the current edition and of any pages changed in updates to that edition.
Within the manual, any page changed since the last edition is indicated by printing the date the changes were made on the
bottom of the page. Changes are marked with a vertical bar in the margin. If an update is incorporated when an edition is
reprinted, these bars are removed but the dates remain. No information is incorporated into a reprinting unless it appears

as a prior update.

First Edition June 1976

Changed Pages

Title Apr 1978
Hooo e Apr 1978
ftoiv. Aug 1978
VIl . L S0 1978
. Aug 1978
-7 Aug 1978
222 e Apr 1978
2.31t02:32. Aug 1978
2-37t0238.Augl978
2:38a ... Apr 1978
243t0243a Aug 1978
251 .. e Apr 1978
256 Aug 1978
28T e Apr 1978
259t0260. Apr 1978
32 Apr 1978
S . oL . Augl978
O Apr 1978
513 . Apr 1978
519t05-20. L Aug 1978
T-23 Apr 1978
8-1to 82 Aug 1978
810to811... e Aug 1978
813to814.Aug1978

AlIG 1978

ii

Effective Date

816 . . . Apr 1978
818 Aug 1978
820 Apr 1978
8-22 Aug 1978
8-23at0823b L Aug 1978
824 . e Apr 1978
826 Apr1978
831to8-31la....... Apr 1978
8-32t0835. Aug 1978
837 . e Aug 1978
9-1t09-36. Aug 1978
9b6t09-6. Aug 1978
1110 .o oo Apr 1978
123 .. Apr 1978
C-b. Apr 1978
C-8. e Aug 1978
D3toD4 Aug 1978
D7 Apr 1978
E-3. . . Aug 1978
R Apr 1978
H-2. Aug 1978
Index-1toIndex-4. Aug 1978
Index-5...... Apr 1978

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which are issued between editions, contain additional
and replacement pages to be merged into the manual by the customer. The date on the title page and back cover of the
manual changes only when a new edition is published. When an edition is reprinted, all the prior updates to the edition are
incorporated. No information is incorporated into a reprinting unless it appears as a prior update. The edition does not
change.

The software product part number printed alongside the date indicates the version and update level of the software
product at the time the manual edition or update was issued. Many product updates and fixes do not require manual
changes, and conversely, manual corrections may be done without accompanying product changes. Therefore, do not
expect a one to one correspondence between product updates and manual updates.

First Edition. Jun1976 32101B.00
Update Package No. 1 Apr1978.......... 32101B.00
Update Package No. 2 Augl978............... 32101B.00

Contents

SECTION I Introduction to BASIC 11
SPECIAL KEYS 1-2
PROMPT CHARACTERS 1-3
LOGGING ON AND OFF 1-4

Logging On 14
Entering BASIC 14
Leaving BASIC 1-5
Logging Off 1-5
Suspending BASIC 1-5
CORRECTING ERRORS 1-6
BASIC COMMANDS AND STATEMENTS 1-7
BASIC PROGRAMS 1-10
USER’S WORK AREA 1-11
LISTING A PROGRAM 1-12
RUNNING A PROGRAM 1-13
DELETING A PROGRAM 1-14
DOCUMENTING A PROGRAM 1-15

SECTION I Essentials of BASIC 2-1

EXPRESSIONS 2-2
Constants 2-2
Variables 2-4
Functions 2-5
Operators 2-6
Evaluating Expressions 2-8

STATEMENTS 2-10

ASSIGNMENT STATEMENT 2-11

SECTION II (Continued)

REM STATEMENT 2-13
GOTO STATEMENT 2-14
GOSUB/RETURN STATEMENTS 2-16
END/STOP STATEMENTS 2-19
LOOPING STATEMENTS 2-22
CONDITIONAL STATEMENTS 2-25
PRINT STATEMENT 2-31
Print Functions 2-36
READ/DATA/RESTORE STATEMENTS 2-39
INPUT STATEMENT 2-42
ENTER STATEMENT 2-47
>BASIC 2-49
COMMANDS 2-50
RUN 2-51
EDITING COMMANDS 2-54
LIST 2-54
SCRATCH 2-55
DELETE 2-55
RENUMBER 2-56
LENGTH 2-56
LIBRARY COMMANDS 2-59
NAME 2-59
SAVE 2-59
GET 2-61
PURGE 2-61
APPEND 2-62
CATALOG 2-62
SECTION III Arrays 3-1
DIM STATEMENT 3-3
REDIM STATEMENT 3-4
STORING DATA IN ARRAYS 3-6
MAT READ/INPUT Statements 3-6
PRINTING DATA FROM ARRAYS 3-8
MAT PRINT Statement 3-8
INITIALIZING ARRAYS 3-10

SECTION III (Continued)

ARRAY OPERATIONS 3-12
Array Copying 3-12
Array Addition/Subtraction 3-13
Array Multiplication 3-14
Array Inversion 3-16
Array Transposition 3-18
Array Scalar Multiplication 3-19

ARRAY FUNCTIONS 3-20

SECTION IV Variable Types 4-1

TYPE STATEMENTS 4-2
Numeric Constant Forms 4-2
Printing Long and Complex Data 4-6
Numeric Expressions 4-7
Conditional Statement 4-8
Numeric Assignment 4-8
Entering Numeric Data 4-9
Other Uses of Data Types 4-9
Numeric Arrays 4-10
Function Class 4-11

SECTION V Strings 5-1

LITERAL STRINGS 5-1

DIM STATEMENT WITH STRINGS 5-3

REDIM STATEMENT WITH STRINGS 5-5

STRING VARIABLE 5-6

STRING EXPRESSIONS 5-9

STRING ASSIGNMENT 5-10

STRING-RELATED FUNCTIONS 5-12

COMPARING STRINGS 5-16

STRING INPUT AND OUTPUT 5-17
Reading Strings 5-17
Inputting Strings 5-18
Entering Strings 5-18
Printing Strings 5-20

LINPUT STATEMENT 5-21

vl

SECTION V (Continued)
STRING ARRAY OPERATIONS
CONVERT STATEMENT

SECTION VI User-Defined Functions
ONE-LINE FUNCTION
MULTILINE FUNCTION
CALLING A USER-DEFINED FUNCTION

Passing Parameters

SECTION VII Debugging
TRACE/UNTRACE COMMANDS
BREAK /UNBREAK COMMANDS

Legal Commands During Break
ABORT COMMAND
RESUME OR GO COMMAND
SHOW COMMAND
SET COMMAND
FILES COMMAND
CALLS COMMAND
WAIT COMMAND

SECTION VIII Files
CREATING A FORMATTED FILE
PURGING A FILE
OPENING FILES
FILES STATEMENT
ASSIGN STATEMENT
FILES ACCESS
SERIAL FILE PRINT
SERIAL FILE READ
FILE RESTORE STATEMENT
DIRECT FILE PRINT
DIRECT FILE READ
ASCII FILE ACCESS
FILE LINPUT STATEMENT
FILE MARGIN STATEMENT
BINARY FILE ACCESS
DYNAMIC LOCKING

viii

5-22
5-23

6-1
6-2
6-4

6-10

7-1
7-2
7-7
7-8
7-11
7-12
7-14
7-16
7-18
7-20
7-23

8-1
8-3
8-5
8-6
8-7
8-9
8-12
8-13
8-15
8-17
8-18
8-20
8-22
8-23
8-23a
8-24
8-25

AUG 1978

SECTION VIII (Continued)

ON END STATEMENT

ADVANCE STATEMENT

UPDATE STATEMENT

LISTING FILE CONTENTS
DUMP Command

FILE FUNCTIONS
TYP Function
REC Function
ITM Function

FILE ARRAY OPERATIONS
Serial File MAT PRINT Statement
Serial File MAT READ Statement
Direct File MAT PRINT Statement
Direct File MAT READ Statement

SECTION IX Formatted Output

PRINT USING STATEMENT

PRINT # USING STATEMENT
MAT PRINT USING STATEMENT
MAT PRINT # USING STATEMENT
IMAGE STATEMENT

FORMAT STRINGS

SECTION X Segmentation

SECTION XI Communication with Non-BASIC Programs

CHAIN STATEMENT
INVOKE STATEMENT

FILES AND SEGMENTATION
COM STATEMENT

CALL STATEMENT
SYSTEM/RESUME COMMANDS
SYSTEM STATEMENT

SECTION XII Non-Interactive Programs

AUG 1978

CARD READER/LINE PRINTER
PAPER TAPE
Preparing a Paper Tape
Punching Paper Tape Off-Line

ix

8-27
8-29
8-30
8-31
8-31
8-32
8-32
8-34
8-34
8-35
8-35
8-35
8-36
8-37

9-2
9-3a

9-5a
9-6

10-1
10-2
10-4
10-7
10-9

111
11-2
11-10
11-12

12-1
12-2
12-5
125
12-6

SECTION XII (Continued)

Reading Paper Tape 12-7
COMMAND INPUT FROM FILES 12-9
APPENDIX SECTION
APPENDIX A ASCII Character Set Al
APPENDIX B Error Messages B-1
APPENDIX C BNF Syntax for BASIC/3000 C-1
APPENDIX D Summary of BASIC/3000 Statements & Commands D-1
STATEMENT SUMMARY D-1
COMMAND SUMMARY D-6
APPENDIX E Built-in Functions E-1
APPENDIX F Parameter Format F-1
APPENDIX G Compatibility Between BASIC/2000 & BASIC/3000 G-1

APPENDIX H File Structure H-1

SECTION |
Introduction to BASIC

HP BASIC/3000 is a programming language designed for use at a keyboard terminal. It may also be
used for batch jobs on paper tape and cards. To use BASIC at a terminal, the terminal must gain
access to the BASIC/3000 Interpreter through the HP Multiprogramming Executive Operating
System (MPE/3000). The BASIC/3000 Interpreter is the control program for BASIC/3000.

BASIC/3000 consists of statements for writing programs and commands for controlling program
operation. This section describes how to log on and log off, how to enter commands and statements
and make corrections. A few simple programs are used for illustration, but the actual programming
language is not described until Section II.

This manual assumes that the user knows how to connect his terminal, and is familiar with his
terminal keyboard. Special keys with particular functions in BASIC/3000 are described in this
section.

In this section only, characters typed by the computer are underlined to distinguish them from user
input. Subsequent sections assume that this distinction is clear to the user.

return

linefeed

CTRL

CTRL H (HF)

CTRL X (X°)

CTRL Y (Y°)

BREAK

Special Keys

Must be pressed after every command and statement. It terminates the
line and causes the teleprinter to return to the first print position. BASIC
returns a linefeed.

Advances the teleprinter one line.

When pressed simultaneously with another key, converts the key to a
control character that is usually non-printing.

Deletes the previous character in a line. It prints the character \ for each
character deleted.

Cancels the line currently being typed. It types three exclamation points
on the line and then gives a return and linefeed to the beginning of the

next line.

Suspends a particular BASIC/3000 program or command and returns to the
BASIC/3000 Interpreter. To return control to a program, type GO.

Stops all BASIC/3000 activity and returns the user to the operating system
(MPE/3000). BASIC/3000 can be re-entered by typing RESUME.

1-2

Prompt Characters

BASIC/3000 uses a set of prompting characters to signal to the user that certain input is expected
or that certain actions are completed.

>

7

>>

The prompt character for the BASIC/3000 Interpreter; a BASIC command or statement
is expected.

The prompt character for the MPE Operating System; MPE commands such as HELLO or
BASIC are expected.

User input is expected during execution of an INPUT statement.

Further input is expected during execution of an INPUT statement.

BASIC expects a continuation line when the previous line was terminated by a &.
A full line has been deleted with CTRL X.

A single character was deleted with CTRL H.

A BASIC command was mistyped; re-enter it correctly.

1-3

Logging On and Off

LOGGING ON

Once the terminal is connected and ready, the user presses the carriage return. MPE responds with
a colon (:) at the beginning of the line. The user may now log on. He should know his user and
account identification codes, and also the user and account passwords.

To log on, type: $HELLO JOANG.STUDENT

JOANG and STUDENT are sample USER PASSWORD?

u.ser and account.identifica- XXXXXXXXX

tion codes. A period must I

be typed between them. ACCOUNT PASSWORD?

The computer types a mask

over which the passwords XXXXXXXXX

are typed. This preserves SESSION NUMBER = #S5

password privacy. WED, MAY 16§, 15973, 2:26 PM

HP32P00B .Q1l .20

The last line identifies the Multi-programming Executive Operating System (MPE/3000).

ENTERING BASIC

Following log on, the MPE/3000 Operating System signals it is ready for the next command by
printing a colon. The user may now request the BASIC/3000 Interpreter by typing BASIC.

To enter BASIC, type: $BASIC

BASIC signals that it has control with a

greater-than sign at the start of the EAS 1C 21,8
line. —_

BASIC commands and statements can now be entered. Each command or statement is prompted
by the greater-than sign at the start of a new line.

14

LEAVING BASIC

When the user is through, he returns control to MPE/3000 with the EXIT command.

To leave BASIC, type: >EXIT

The computer prints: END OF PROGRAM
and MPE/3000 signals that it has resumed

control with a colon. 2

LOGGING OFF

When a session at the terminal is finished, the user logs off with the MPE/3000 command BYE.
He must have already exited from the BASIC Interpreter by typing EXIT. When MPE /3000 prints
a colon, the user can type BYE.

To log off, type: $BYE

MPE/3000 records the date and the time. CPU (SEC) = 3

It also records the number of minutes CONNECT (MIN) = 2

the terminal was connected and the WED, MAY 16, 1573, 2:28 PM

END OF SESSION

seconds of central processor time used.

SUSPENDING BASIC

The user may want to return to the MPE/3000 Operating System temporarily. He can leave BASIC,
return to MPE/3000 control, enter MPE/3000 commands and then return to the same point in his
BASIC program. To do this, he uses the SYSTEM command or the BREAK key. For operation of
the BREAK key, see Special Keys, this section.

To suspend BASIC operation: >SYSTEM
The computer types a colon: R

The user may then enter MPE/3000 commands. When he wishes to return to BASIC, he types the
MPE/3000 command RESUME. The system responds with a > .

1-5

Correcting Errors

Several types of errors may be made while logging on. We will consider spelling mistakes, format
errors and incorrect passwords or codes. The methods for correcting these errors are general and can
be used in BASIC as well as under control of MPE/3000.

Corrections can be made while the line is being entered if the error is noticed before return is
pressed. The control character CTRL H (H€) can be used to correct a few characters just typed,
or the control character CTRL X (X¢) can be used to cancel the line and start fresh.

Suppose the user misspells the command

HELLO. H€ will delete the last character sHELONLO JOANG,STUDENT
and print a back slash. The user retypes USER PASSWORD?

the character correctly and finishes the
line. When he presses return, the line is
entered correctly.

If several characters have been typed after the error, H® must be typed for each character to be
deleted.

In this case, four characters including 3HELO JOMN\LO JOANG.STUDE NT
the blank are deleted. USER PASSWORD?

Another method is to use X¢ to cancel the line. X¢ must be typed before return is pressed.

To cancel the line, type X¢ SHELO!!!
Three exclamation points are typed HELLO JOANG.STUDENT

and the computer responds with a
carriage return and linefeed. The
user retypes the line:

1-6

BASIC Commands and Statements

Commands

BASIC/3000 commands instruct the BASIC/3000 Interpreter to perform certain control functions.
Commands differ from the statements used to write a program in the BASIC/3000 language. A
command instructs the interpreter to perform some action immediately, while a statement is an
instruction to perform an action only when the program is run. A statement is always preceded by
a statement number; a command never is.

Any BASIC/3000 command can be entered following the BASIC prompt character > . Each
command is a single word that must be typed in its entirety with no embedded blanks. If mis-
spelled, the computer will return an error message. Some commands have parameters to further
define command operation.

For instance, EXIT is a command that signals completion of a BASIC program and return to the
operating system. It has no parameters. Another command, LIST, prints the program currently
being entered. It may have parameters to specify that only part of the program is to be listed, or to
indicate a particular list destination.

Statements

Statements are used to write a BASIC/3000 program that will subsequently be executed. Each
statement performs a particular function. Every statement entered becomes part of the current
program and is kept until explicitly deleted or the user exits from BASIC with EXIT.

A statement is always preceded by a statement number. This number is an integer between 1 and
15999. The statement number indicates the order in which the statements will be executed. State-
ments are ordered by BASIC from the lowest to the highest statement number. Since this order

is maintained by the interpreter, it is not necessary for the user to enter statements in execution
order so long as the numbers are in that order.

Following each statement, return must be pressed to inform the interpreter that the statement is

complete. The interpreter generates a linefeed and prints the prompt character > on the next line
to signal that the statement is accepted. If an error is made entering the statement, the computer

prints an error message.

BASIC/3000 statements have a free format. This means that blanks are ignored.

>30 PRINT S

For instance, all these statéments 2>30 PRINT S
are equivalent. >3@BPRINTS

> 3BPRINTS

AUG 1978 1-7

Any statement except REM (to introduce remarks) can continue on more than one line. Each line
to be continued must end with the character &; only the first line has a statement number. When
the computer expects a continuation line, it prompts with two greater-than characters.

The statement 100 PRINT 35+5 >10808 PRINT&
is entered on two lines: 2>>35+5

Error Messages

If an error is made in a line and the line is entered with return, the interpreter types a message. The
message consists of the word ERROR followed by @ and a number indicating about how many
non-blank characters were read before an error was detected.

If this line is entered; >33 PRING S
the computer prints a ERROR®2
message.

The user then presses return and enters the correct line after the BASIC prompt character > .

If the mistake is not obvious, type any character after the message instead of pressing return. The
computer will print a diagnostic message.

>38 PRING S
ERROR@2
UNRECOGNIZABLE STATEMENT TYPE

For instance:

Typing a semi-colon causes the diagnostic message to be prin'ted. Any other character, except a
colon, could have been typed with the same result. A colon will cause an abort.

1-8

Changing or Deleting a Statement
If an error is made before return is pressed, the error can be corrected with CTRL H (H®) or the line
may be cancelled with CTRL X (X¢). (See Correcting Errors, above). After return is pressed, the

error can be corrected by deleting or changing the statement.

To change a statement, simply type the statement number followed by the correct statement.

To change this statement: >30 PRINT X
retype it as: >38 PRINT S

A change such as this can be made any time before the program is run.

To delete a statement, type the statement number followed by return.

Statement 30 is deleted: 230

The DELETE command, described in section II, is useful to delete a group of statements.

1-9

BASIC Programs

Any statement or group of statements that can be executed constitutes a program.

A program can have as few as one statement.

This is an example of a
program with only one >183 PRINT 35+5
statement.

100 is the statement number. PRINT is the key word or instruction that tells the interpreter the
kind of action to perform. In this case, it prints the result of the expression that follows. 35+5 is
an arithmetic expression. It is evaluated by the interpreter, and when the program is run, the result
is printed.

The statement 100 PRINT 35+5 is a complete program since it can run with no other statements
and produce a result. Usually a program contains more than one statement.

D,E

>10 INPUT A,B,C,
These three statements are a program: 228 LET S = (A+B+C+D+E) /5
>30 PRINT S

This program, which calculates the average of five numbers, is shown in the order of its execution.
It could be entered in any order if the statement numbers assigned to each statement were not
changed.

223 LET S=(A+B+C+D+E) /5

This program runs exactly like the >1® INPUT A,B,C,D,E
program above. ;;.'5 @ PRINT S

It is generally a good idea to number statements in increments of 10. This allows room to inter-
sperse additional statements as needed.

1-10

User’'s Work Area

When statements are typed at the terminal, these statements become part of the user’s work area.
All statements in the user’s work area constitute the current program.

Any statement in the user’s work area can be edited or corrected; the resulting statement will then
replace the previous version in the user’s work area.

When the user exits from BASIC with the EXIT command, the work area is cleared. If, however,

he only suspends BASIC operation with the SYSTEM command, the BREAK key, or the CTRL Y
keys, the user’s work area is not changed.

111

Listing a Program

At any time while a program is being entered, the LIST command can be used to produce a listing
of the statements that have been accepted by the computer. LIST causes the computer to print a
listing of the current program at the terminal.

After deleting or changing a line, LIST can be used to check that the deletion or correction has
been made.

. . >1 @ UNINPUT A,B,C,D,E
A correction is made while >20 PR\\LET S = (A+B+C+D+E)/5
entering a program: >3@ PRINT S
>LIST
180 INPUT A,B,C,D,E
To check the correction, 28 LET S=(A+B+C+D+E) /5
list the program: 3@ PRINT S

Note that the greater-than prompt character is not printed in the listing, but is printed when the
list is complete to signal that BASIC is ready for the next command or statement.

Should the statements have been entered out of order, the LIST command will cause them to be
printed in ascending order by statement number,

220 LET S = (A+B+C+D+E) /5

For instance, the program >38 PRINT S
is entered in this order: >1@ INPUT A,B,C,D,E
>LIST

~ 18 INPUT A,B,C,D,E
for execution: 20 LET S=(A+B+C+D+E) /5
' 30 PRINT S

The list is in correct order

1-12

Running a Program

After the program is entered and, if desired, checked with LIST, it can be executed with the RUN
command. RUN will be illustrated with two sample programs.

The first program has one line: >100 PRINT 35+5
When run, the result of the expression >RUN
35+5 is printed: 42

Because the program contains a PRINT statement, the result is printed when the program is run.

The second sample program averages a >18 INPUT A,B,C,D,E
group of five numbers. The numbers >20 LET S=(A+B+C+D+E) /5
must be input by the user: >30 PRINT S

Each of the letters following the word INPUT and separated by commas names a variable that will
contain a value input by the user from the terminal. When the program is run, the interpreter
signals that input is expected by printing a question mark. The user enters the values following
the question mark. They are entered with a comma between each successive value.

The statement LET S = (A+B+C+D+E)/5 assigns the value of the expression to the right of the
equal sign to the variable S on the left of the equal sign. The expression first adds the variable
values within parentheses and then divides them by 5. The result is the value of S.

When the program is run, the user >RUN
enters input values and the com- _'_3_7 1996,8,9
puter prints the result: A

1-13

Deleting a Program

If a program that has been entered and run is no longer needed, it can be deleted with the SCRATCH
command. Typing SCR or SCRATCH deletes whatever program has been entered by the user during
the current session.

The first program entered was 100 PRINT 35+5. After it has run, it should be scratched before
entering the next program. Otherwise both programs will run when RUN is typed. They will run in
the order of their statement numbers. For instance, if both programs are currently in the user’s
work area, the program with numbers 10 through 30 executes before line 100.

>188 PRINT 35+5
>1® INPUT A,B,C,D,E
>20 LET S=(A+B+C+D+E) /5

Both programs will run >3@ PRINT S
when RUN is typed: >RUN
27,5,6,8,9
7

40

To avoid confusing results, a program that has been entered and run can be deleted with SCRATCH:

21808 PRINT 35+5

After entering and running: >RUN
4
the program is scratched: >SCRATCH

The users work area is now cleared and another program can be entered.

210 INPUT A,B,C,D,E
228 LET S=(A+B+C+D+E) /5
The second program is >30 PRINT S
entered: 2>RUN
215,25,32,11,29
22.4

Unless this program is to be run again, it can now be scratched and a third program entered.

1-14

Documenting a Program

Remarks that explain or comment can be inserted in a program with the REM statement. Any
remarks typed after REM will be printed in the program listing but will not affect program
execution, The remarks cannot be continued on the next line, but as many REM statements
can be entered as are needed.

>5 REM THIS PROGRAM AVERAGES
The sample program to average 5 numbers >T7 REM 5 NUMBERS
can be documented with several remarks: >15 REM 5 VALUES MUST BE INPUT
>25 REM S CONTAINS THE AVERAGE

The statement numbers determine the position of the remarks within the existing program. A list
will show them in order:

5 REM THIS PROGRAM AVERAGES
7 REM 5 NUMBERS
18 INPUT A,B,C,D,E

LS} o sample program 15 REM 5 VALUES MUST BE INPUT
including remarks: 20 LET Sz (A+B+C+D+E) /5
25 REM S CONTAINS THE AVERAGE
38 PRINT S

When run, the program will execute exactly as it did before the remarks were entered.

1-15

SECTION [/
Essentials of BASIC

The first section introduced the user to BASIC programming. This section describes the statements
needed to write a simple BASIC program. It also describes the commands used to run a program, to
edit a program, and to save and manipulate library programs.

The section begins with a description of expressions used in BASIC, and the constants, variables,
functions and operators used in the formation of expressions.

Subsequent sections discuss particular features of more advanced BASIC.

The simple PRINT statement and RUN command used in Section I are used again in this section
prior to the explanation of the full capabilities of PRINT and RUN.

Expressions

An expression combines constants, variables, or functions with operators in an ordered sequence.
When evaluated, an expression must result in a value. An expression that, when evaluated, is con-
verted to an integer, is called an integer expression. Constants, variables, and functions represent
values; operators tell the computer the type of operation to perform on these values.

Some examples of expressions are:

(P +5)/27 P is a variable that must have been previously
assigned a value. 5 and 27 are constants. The
slash is the divide operator. Parentheses group
those portions of the expression evaluated first.

If P = 49, it is an integer expression with the
value 2.

(N-(R+5))-T N, R, and T must all have been assigned
values. + and - are the add and subtract
operators. The innermost parentheses

enclose the part evaluated first.

If N=20, R=10, and T=5, the value of the
integer expression is zero.

CONSTANTS
A constant is either numeric or it is a literal string.

Numeric Constants. A numeric constant is a positive or negative decimal number including zero.
It may be written in any of the following three forms:

o As an integer — a series of digits with no decimal point.

® As afixed point number — a series of digits with one decimal point preceding, following, or
embedded within the series.

® As a floating point number — an integer or fixed point number followed by the letter E and
an optionally signed integer.

2-2

Examples of Integers:

1234
-70
0

Examples of Fixed Point Numbers:

1234.
1234.56
-.0123

Floating Point Numbers. In the floating point notation, the number preceding E is a magnitude that
is multiplied by some power of 10. The integer after E is the exponent, that is, it is the power of 10
by which the magnitude is multiplied.

The exponent of a floating point number is used to position the decimal point. Without this
notation, describing a very large or very small number would be cumbersome:

100000000000000000000000000000000000
.00000000000000000000000000000000001

1E+35
1E-35

Examples of Floating-Point Numbers:

1E+23 =1x 1023 = 100000000000000000000000
1.0E23 (same as above)
.001E26 (same as above)

1.02E+4 =1.02x 10% = 10200.

1.02E-4 =.000102

Within the computer, all these constants are represented as floating-point real numbers whose
precision is 6 or 7 digits and whose size is between 10~77 and 1077,

2-3

Literal Strings. A literal string consists of a sequence of characters in the ASCII character set
enclosed within quotes. The quote itself is the only character excluded from the character string.
By using an integer equivalent of the graphic character, even the quote may be included in a
character string (see Strings, Section V).

Examples of Literal Strings:

“ABC" ne (a null, empty, or zero length string)
"1 IWHAT A DAY!I"™ * " (astring with two blanks)
"Xy z "

Blank spaces are significant within a string.

VARIABLES

A variable is a name to which a value is assigned. This value may be changed during program
execution. A reference to the variable acts as a reference to its current value. Variables are either
numeric or string.

Numeric variables are a single letter (from A to Z) or a letter immediately followed by a digit
(from 0 to 9):

A0
P P5
X X9

A variable of this type always contains a numeric value that is represented in the computer by a
real floating-point number. Other numeric representations can be specifically requested with the
type statement (see Variable Types, Section IV). These types are integer, long floating-point,
and complex.

A variable may also contain a string of characters. This type of variable is identified by a variable
name consisting of a letter and $, or a letter, digit, and $:

A$ AO0$

P$ P5%
The value of a string variable is always a string of characters, possibly null or zero length. String

variables can be used without being declared with a DIM statement (see section V) only if the
variable contains a single character.

If a variable names an array (see Arrays, Section III), it may be subscripted. When a variable is sub-
scripted, the variable name is followed by one or two subscript values enclosed in parentheses. If
there are two subscripts, they are separated by a comma. A subscript may be an integer constant
or variable, or any expression that is evaluated to an integer value:

A1) AO(N,M)
P(1,1) P5(Q5,N/2)
X(N+1) X9(10,10)

A simple numeric variable and a subscripted numeric variable may have the same name with no
implied relation between the two. The variable A is totally distinct from variable A(1,1).

Simple numeric variables can be used without being declared. Subscripted variables must be
declared with a DIM statement (see Section III) if the array dimensions are greater than 10 rows,
or 10 rows and 10 columns. The first subscript is always the row number, the second the column
number. The subscript expressions must result in a value between 1 and the maximum number of
rows and columns.

String arrays differ from numeric arrays in that they have only one dimension, and hence only one
subscript. Also, the name of a string array and a simple string variable may not be the same (see
String Arrays in Section V). Examples of subscripted string array names are:

A$(1) AO$(N)

FUNCTIONS

A function names an operation that is performed using one or more parameter values to produce a
single value result. A numeric function is identified by a three-letter name followed by one or more
formal parameters enclosed in parentheses. If there is more than one, the parameters are separated
by commas. The number and type of the parameters depends on the particular function. The
formal parameters in the function definition are replaced by actual parameters when the function
is used.

Since a function results in a single value, it can be used anywhere in an expression where a constant
or variable can be used. To use a function, the function name followed by actual parameters in
parentheses (known as a function call) is placed in an expression. The resulting value is used in the
evaluation of the expression.

Examples of common functions:

SQR(x) where x is a numeric expression that results in a value = 0. When called, it
returns the square root of x. For instance, if N = 2, SQR(N+2) = 2.

ABS(x) where x is any numeric expression. When called, it returns the absolute
value of x. For instance, ABS(-33) = 33.

BASIC/3000 provides many built-in functions that perform common operations such as finding the
sine, taking the square root, or finding the absolute value of a number. The available functions are
listed in Appendix E. In addition, the user may define and name his own functions should he need
to repeat a particular operation. How to write functions is described in Section VI, User-Defined
Functions.

The functions described so far are numeric functions that result in a numeric value. Functions
resulting in string values are also available. These are identified by a three-letter name followed by
a $. String functions are described with user-defined functions in Section VI; available built-in
string functions are listed in Appendix E.

OPERATORS

An operator performs a mathematical or logical operation on one or two values resulting in a
single value. Generally, an operator is between two values, but there are unary operators that pre-
cede a single value. For instance, the minus sign in A - B is a binary operator that results in sub-
traction of the values; the minus sign in - A is a unary operator indicating that A is to be negated.

The combination of one or two operands with an operator forms an expression. The operands that
appear in an expression can be constants, variables, functions, or other expressions.

Operators may be divided into types depending on the kind of operation performed. The main
types are arithmetic, relational, and logical (or Boolean) operators.

The arithmetic operators are:

+ Add (or if unary, no operation) A+B or+A

- Subtract (or if unary, negative) A-B or-A

* Multiply AXB
/ Divide A+B
** or ™~ Exponentiate (if ™ is used, it is
changed internally to **) AB
MOD Modulo; remainder from division A - B X INT(A + B)

where INT(x) returns the largest
integer < x. If A and B are positive,
A MOD B is the remainder from
A~ B.

2-6

In an expression, the arithmetic operators cause an arithmetic operation resulting in a single numeric
value.

The relational operators are:

= Equal A=B
< Less than A Greater than A>B
<= Less than or equal to A= Greater than or equal to A>=B
<>or# Notequal (if # is used, it is

changed internally to <>) A#B

When relational operators are evaluated in an expression they return the value 1 if the relation is
found to be true, or the value O if the relation is false. For instance, A = B is evaluated as 1 if A
and B are equal in value, as 0 if they are unequal.

Maximum and minimum operators are:

MIN Select the lesser of two values A MIN B
MAX Select the greater of two values A MAXB

These operators are evaluated as follows:

A MIN B = A if A is less than or equal to B; = B if B is less than A
A MAX B = A if A is greater than or equal to B; = B if B is greater than A

Logical or Boolean operators are:

AND Logical “and” A AND B
OR Logical “or” AORB
NOT Logical complement NOT A

Like the relational operators, the evaluation of an expression using logical operators results in the
value 1 if the expression is true, the value 0 if the expression is false.

Logical operators are evaluated as follows:

A ANDB = 1 (true) if A and B are both #0;=0 (false)if A=0orB=0
AORB = 1 (true) if A% 0 or B# 0;= 0 (false) if both Aand B=0
NOT A = 1 (true) if A=0;=0 (false) if A# 0

2-7

A string operator is available for combining two string expressions into one:
+ Concatenation A$ + B$

The values of A$ and B$ are joined to form a single string; the characters in B$ immediately follow
the last character in A$. If A$ contains “ABC”’ and B$ contains “DEF”, then A$ + B$ = “ABCDEF”
(see Strings, Section V).

EVALUATING EXPRESSIONS

An expression is evaluated by replacing each variable with its value, evaluating any function calls,
and performing the operations indicated by the operators. The order in which operations is per-
formed is determined by the hierarchy of operators:

ok (highest)
NOT

* | MOD

+o

+ (string concatenate)

MIN MAX

Relational (=, <,>, <=,>=,<>)
AND

OR (lowest)

The operator at the highest level is performed first followed by any other operators in the hierarchy
shown above. If operators are at the same level, the order is from left to right. Parentheses can be
used to override this order. Operations enclosed in parentheses are performed before any operations
outside the parentheses. When parentheses are nested, operations within the innermost pair are
performed first.

For instance: 5+ 6*7 is evaluated as 5 + (6 X7) = 47

7/14*2/5 is evaluated as ((7/14)X2)/5 = .2
If A=1, B=2, C=3, D=3.14, E=0

then: A+B*C is evaluated as A +(BXC) =7
A*¥B+C is evaluated as (AXB)+C =5
A+B-C isevaluated as (A+B)-C =0
(A+B)*C is evaluated as (A+B)XC = 9
A MIN B MAX C MIN D is evaluated as ((A MIN B)MAXC)MIND=C =3

2-8

When a unary operator immediately follows another operator of higher precedence, the unary
operator assumes the same precedence as the preceding operator. For instance,

B**_B**C is evaluated as (B~B)C = 1/64 or .015625

In a relation, the relational operator determines whether the relation is equal to 1 (true) or
0 (false):

(A*B) < (A-C/3) is evaluated as O (false) since A*B=2 which is not less than A-C/3=0.

In a logical expression, other operators are evaluated first for values of zero (false) or non-zero
(true). The logical operators determine whether the entire expression is equal to O (false) or 1 (true):

E AND A-C/3 is evaluated as O (false) since both terms in the expression
are equal to zero (false).

A+B AND A*B is evaluated as 1 (true) since both terms in the expression
are different from zero (true).

A=B OR C=SIN(D) isevaluated as O (false) since both expressions are false (0).

AORE is evaluated as 1 (true) since one term of the expression (A)
is not equal to zero.

NOTE is evaluated as 1 (true) since E=0.

(I

If any ambiguity exists between the relational operator
sign is treated as an assignment operator:

and the assignment operator, the equal

A=B=1 assigns 1 to both A and B.
A=1=B assigns 1 to A if B equals 1, or 0 to A if B does not equal 1.

For rules governing the evaluation of relational expressions using strings, see Comparing Strings
in Section V.

2-9

Statements

Statements essential to writing a program in BASIC are described here. Statements in general are
described in Section I. It should be recalled that all statements must be preceded by a statement
number and are terminated by pressing the return key. Statements are not executed until the
program is executed with the RUN command.

2-10

Assignment Statement

This statement assigns a value to one or more variables. The value may be in the form of an expres-
sion, a constant, a string, or another variable of the same type.

Form
When the value of the expression is assigned to a single variable, the forms are:

variable = expression

LET variable = expression
When the same value is to be assigned to more than one variable, the forms are:

variable = variable = . . . = variable = expression

LET variable = variable = . . . = variable = expression
Several assignments can be made in one statement if they are separated by commas:

variable = expression, . . ., variable = expression

LET variable = expression, . . ., variable = expression

Note that the word LET is an optional part of the assignment statement.

Explanation

In this statement, the equal sign is an assignment operator. It does not indicate equality, but is a
signal that the value on the right of assignment operator be assigned to the variable on the left.
If any ambiguity exists between the relational operator ‘“="" and the assighment operator, the
equal sign is treated as an assignment operator.

When a variable to be assigned a value contains subscripts, these are evaluated first from left to
right, then the expression is evaluated and the resulting value moved to the variable.

If a value is assigned to more than one variable, the assignment is made from right to left. For

instance, in the statement A=B=C=2, first C is assigned the value 2, then B is assigned the current
value of C, and finally A is assigned the value of B.

2-11

Examples

19 LET A=5.02
20 A=5.82

The variable A is assigned the value 5.02. Statements 10 and 20 have the same result.
30 X=YT7=Z:=Z1=0

Each variable X, Y7, Z, and Z1 is set to zero. This is a simple method for initializing variables at the
start of a program.

35 LET N=2
49 LET AIN)=N=9

First N is assigned the value 2 in line 35. In line 40 N is assigned the value 9, then the array
element A(2) is assigned the value 9.

5@ N:=0
60 LET N=M+1
70 LET AIN]=N

Statements 50 through 70 set the array element A(1) to 1. By repeating statements 60 and 70,
each array element can be set to the value of its subscript.

80 Az10.5,B=7.5
92 B$="ABC",C$=B$

Variable A is set to 10.5, then B is set to 7.5. The string variable B$ is assigned the value ABC,
then C$ is assigned the value of B$ (or ABC).

1828 C$=B$="ABC"

This statement has the same result as statement 90.

110 LET A=10.,5,B=7.5,B$=C$="ABC"

Statement 110 has the same effect as the two statements 80 and 90.

2-12

REM Statement

This statement allows the insertion of a line of remarks in the listing of the program. The remarks
do not affect program execution.

Form
REM any characters

Like other statements, REM must be preceded by a statement number. Unlike other statements, it
cannot be continued on the next line.

Explanation

The remarks introduced by REM are saved as part of the BASIC program, and printed when the
program is listed or punched. They are, however, ignored when the program is executed.

Remarks are easier to read if REM is followed by spaces, or a punctuation mark as in the examples.

Examples

10 REM: THIS IS AN EXAMPLE

20 REM OF REM STATEMENTS.

38 REM -- ANY CHARACTERS MAY FOLLOW REMs " //x*!!&&&,ETC.
40 REM...REM STATEMENTS ARE NOT EXECUTED

2-13

GOTO Statement

GOTO overrides the normal sequential order of statement execution by transferring control to a
specified statement. The statement to which control transfers must be an existing statement in the
current program.

Form

GOTO statement label

GOTO integer expression OF statement label, statement label, . . .

GOTO may have a single statement label, or may be multi-branched with more than one state-
ment label.

If the multi-branch GOTO is used, the value of the integer expression determines the label in the
list to which control transfers.

Explanation

If the GOTO transfers to a statement that cannot be executed (such as REM or DIM), control
passes to the next sequential statement after that statement. GOTO cannot transfer into or out
of a function definition (see Section VI), If it should transfer to the DEF statement, control
passes to the line following the function definition.

The labels in a multi-branch GOTO are selected by numbering them sequentially starting with 1,
such that the first label is selected if the value of the expression is 1, the second label if the expres-
sion equals 2, and so forth. If the value of the expression is less than 1 or greater than the number
of labels in the list, then the GOTO is ignored and control transfers to the statement immediately
following GOTO.

2-14

Examples

The example below shows a simple GOTO in line 200 and a multi-branch GOTO in line 600,

100 LET I:=0

208 GOTO 600

380 PRINT I

400 REM THE VALUE OF 1 IS ZERO
500 LET I:=I+1

600 GOTO I+l OF 300,500,800

700 REM THE FINAL VALUE OF I IS 2
800 PRINT I

>RUN
)
2

When run, the program prints the initial value of I and the final value of 1.

2-15

GOSUB/RETURN Statements

GOSUB transfers control to the beginning of a simple subroutine. A subroutine consists of a
collection of statements that may be performed from more than one location in the program. In a
simple subroutine, there is no explicit indication in the program as to which statements constitute
the subroutine. A RETURN statement in the subroutine returns control to the statement following
the GOSUB statement.

Form

GOSUB statement label
GOSUB integer expression OF statement label, statement label, . . .

RETURN

GOSUB may have a single statement label, or may be multi-branched with more than one state-
ment label. In a multi-branch GOSUB, the particular label to which control transfers is determined
by the value of the integer expression. The RETURN statement consists simply of the word
RETURN.

Explanation

A single-branch GOSUB transfers control to the statement indicated by the label. A multi-branch
GOSUB transfers to the statement label determined by the value of the integer expression. As in a
multi-branch GOTO, if the value of the expression is less than 1 or greater than the length of the
list, no transfer takes place. A GOSUB must not transfer into or out of a function definition

(see Section VI).

When the sequence of control within the subroutine reaches a RETURN statement, control returns
to the statement following the GOSUB statement.

Within a subroutine, another subroutine can be called. This is known as nesting. When a RETURN
is executed, control transfers back to the statement following the last GOSUB executed. Up to ten
GOSUB statements can occur without an intervening RETURN; more than this causes a terminating
error,

2-16

Examples

In the first example, line 20 contains a simple GOSUB statement; the subroutine is in lines 50
through 70, with RETURN in line 70.

10
20
30
40
50
60
108
80
>RUN
SINE

LET B=98@

GOSUB 5@

PRINT “SINE OF B IS "3A

GOTO 8@

REM: THIS IS THE START OF THE SUBROUTINE

LET A=SIN(B)
RETURN
REM: PROGRAM CONTINUES WITH NEXT STATEMENT

OF B IS .893992

The GOSUB statement can follow the subroutine to which it transfers as in the example below.

130
140
>RUN

LET B=90

GOTO 100

REM: THIS IS START OF SUBROUTINE
LET A=SIN(B)

RETURN

REM: OTHER STATEMENTS CAN APPEAR HERE
REM: THEY WILL NOT BE EXECUTED
A=24,B=50

PRINT A3B

GOSuUB 39

PRINT A

REM: A SHOULD EQUAL .8939552
PRINT B

REM: B SHOULD EQUAL 958

«893992

S8

2-17

This example shows a multi-branch GOSUB in line 20. The third subroutine executed has a nested

subroutine.
Conditional

18
20
30
40
50
60
100
110
120
130
150
160
170
180
200
210
220
225
238
240
250
260
2170
280
290
295
300
>RUN
X =
Y =
Y +
SINE

An IF. . . THEN statement is used in the example; should its function not be clear, see

Statements below in this section.

A=@

GOSUB A+l OF 100,150,200

LET AzA+1

IF A<3 THEN GOTO 20

GOTO 300

REM: STATEMENT 58 BRANCHES AROUND ALL THE SUBROUTINES

REM: FIRST SUBROUTINE IN MULTIBRANCH GOSUB

LET X=SQR(A+25)

PRINT *X = "3X

RETURN

REM: SECOND SUBROUTINE IN MULTIBRANCH GOSUB
LET Y=COS(X)

PRINT Y = COSINE X = "3Y

RETURN

REM: THIRD SUBROUTINE IN MULTIBRANCH GOSUB

REM: IT CONTAINS A NESTED SUBROUTINE
LET Y=Y+X

PRINT Y + X = "3Y

GOSUB 268

RETURN

REM: STATEMENT 242 RETURNS CONTROL TO STATEMENT 380
REM: FIRST STATEMENT IN NESTED SUBROUTINE

B=SINCY)

PRINT "SINE Y = 3B

RETURN
REM: STATEMENT 290 RETURNS CONTROL TO STATEMENT 240

REM: PROGRAM CONTINUES WITH NEXT STATEMENT

5
COSINE X = .,283663
X = 5.28366

Y = -.841213

2-18

END/STOP Statements

The END and STOP statements are used to terminate execution of a program. Either may be used,
neither is required. An END is assumed following the last line entered in the current program.

Form
END
STOP

The END statement consists of the word END; the STOP statement of the word STOP.

Explanation

Both END and STOP terminate the program run. END has a different function from STOP only
when programs are segmented (see Section X, Segmentation). When END is executed in a program
segment that has been called by another program with INVOKE, control returns to the statement
after INVOKE.

Whenever STOP is used, the program terminates. STOP in a program called with INVOKE
terminates all program execution, including any suspended programs.

2-19

Examples

These three programs are effectively the same:

10 LET A=2,B=3

20 C=A%xx-A%x*B

30 PRINT C
>RUN

«B15625

10 LET A=2,B=3
20 C=A*xx=A*x*xB
30 PRINT C
40 END

>RUN
«B15625

12 LET A=2,B=3
20 C=A*x=-A%*B
38 PRINT C
40 STOP

>RUN
815625

When sequence is direct and the last statement in the current program is the last statement to be
executed, END or STOP are optional. They have a use, however, when sequence is not direct and
the last statement in the program is not the last statement to be executed:

1280 LET A=2

120 GOSUB 149
130 END

140 LET B:=A+1l
150 XzA%% (Bx*A)
160 PRINT X
178 RETURN

>RUN

512

The subroutine at line 140 follows the END statement.

2-20

18 LET A=2
20 X:=A*%*2+4A
38 PRINT X
49 IF X<180 THEN GOTO 80
58 PRINT "X= "3X
68 PRINT "A= "3A
78 STOP
80 A=A+1
9@ GOTO 22
>RUN

12

30
42
56
72
S0
110

Az

The STOP statement at line 70 is skipped until the value of X is equal to or exceeds 100.

2-21

Looping Statements

The looping statements FOR and NEXT allow repetition of a group of statements. The FOR state-
ment precedes the statements to be repeated, and the NEXT statement directly follows them. The
number of times the statements are repeated is determined by the value of a simple numeric
variable specified in the FOR statement.

Form

FOR variable = expression TO expression

FOR variable = expression TO expression STEP expression

The variable is initially set to the value resulting from the expression after the equal sign. When the
value of the variable passes the value of the expression following TO, the looping stops. If STEP is
specified, the variable is incremented by the value resulting from the STEP expression each time the
group of statements is repeated. This value can be positive or negative, but should not be zero. If a
STEP expression is not specified, the variable is incremented by 1.

The NEXT statement terminates the loop:
NEXT variable

The variable following NEXT must be the same as the variable after the corresponding FOR.

Explanation

When FOR is executed, the variable is assigned an initial value resulting from the expression after
the equal sign, and the final value and any step value are evaluated. Then the following steps occur:

1. The value of the FOR variable is compared to the final value; if it exceeds the final value
(or is less when the STEP value is negative), control skips to the statement following NEXT.

2. All statements between the FOR statement and the NEXT statement are executed.

3. The FOR variable is incremented by 1, or if specified, by the STEP value.

4. Returnto step 1.

NOTE: Unless specified with a variable type statement, the values of the variables used to index a

FOR loop are assigned as real by default. Round-off errors can increase or decrease the
number of steps when non-integer step sizes are used.

2-22 APR 1978

The user should not execute the statements in a FOR loop except through a FOR statement.
Transferring control into the middle of a loop can produce undesirable results.

FOR loops can be nested if one FOR loop is completely contained within another. They must not

overlap.

Examples

Each time the FOR statement executes, the user inputs a value for R and the area of a circle with
that radius is computed and printed:

10

PRINT "AREA OF CIRCLE WITH RADIUS "$R3"™ IS "33 .14%R*x%x2

FOR A=z! TO 5
INPUT R
NEXT A
OF CIRCLE WITH RADIUS

OF CIRCLE WITH RADIUS
OF CIRCLE WITH RADIUS
OF CIRCLE WITH RADIUS
OF CIRCLE WITH RADIUS

16

1s
IS
1S
IS
IS

d.14
12,56
50.24
200.96
803 .84

The FOR loop executes six times, decreasing the value of X by 1 each time:

18 FOR X=8 TO -5 STEP -1|

20

30
>RUN
-5
-6
-7
-8
-9
-18

PRINT X-5
NEXT X

2-23

The first X elements of the array P(N) are assigned values. When N = X, the loop terminates. In
this case, the value of X is input as 3:

18 INPUT X
28 FOR N=1 TO X
39 LET PIN]=N+1
49 PRINT PIN]
50 NEXT N

>RUN

23

The examples below show legal and illegal nesting. A diagnostic is printed when an attempt is made
to run the second example:

16 REM..THIS EXAMPLE IS LEGAL
20 FOR A=l TO 10
30 FOR B=1 TO 5

40 LET X(A,B)=0
50 NEXT B
60 NEXT A

18 REM.., THIS EXAMPLE IS ILLEGAL
20 FOR A=l TO 1@
38 FOR B=1l TO 5

4 LET X(A,B]:=2
58 NEXT A
60 NEXT B

>RUN

'FOR* - °NEXT® VARIABLES DON°'T MATCH IN LINE 50

2-24

Conditional Statements

Conditional statements are used to test for specific conditions and specify program action depending
on the test result. The condition tested is a numeric expression that is considered true if the value is
not zero, false if the value is zero. Conditional statements are always introduced by an IF statement;
an ELSE statement may follow the IF statement. Both IF and ELSE statements may be followed by
a series of statements enclosed by DO and DOEND.

Form

IF expression THEN statement label
IF expression THEN statement

IF expression THEN DO

statement

DOEND

An IF. . .THEN statement can be followed by an ELSE statement to specify action in case the
value of the expression is false. Like IF, ELSE can be followed by a statement, a statement label,
or a series of statements enclosed by DO. . . DOEND.

ELSE statement label
ELSE statement

ELSE DO

statement

DOEND

ELSE statements never appear in a program unless preceded by an IF. . . THEN statement. An
ELSE statement must immediately follow an IF. . .THEN statement or the DOEND statement
corresponding to an IF. . .THEN DO statement; no intervening statements (including REM) are
permitted. DO...DOEND statements may follow only an IF. . THEN or an ELSE statement.

2-25

The four diagrams below show all possible combinations of conditional statements. Items enclosed
by [] are optional; one of the items enclosed by { } must be chosen. Statements immediately
following THEN and ELSE are not labeled; all other statements must be labeled.

o label IF expression THEN
statement

label
label ELSE
statement

° label IF expression THEN DO

label }

label statement

label DOEND

label
label ELSE
statement

[label IF expression THEN :

label
statement

label ELSE DO

label statement

.

.

label DOEND

° label IF expression THEN DO

label statement

label DOEND

label ELSE DO

label statement

label DOEND

2-26

Explanation

The expression following IF is evaluated, and if true the program transfers control to the label
following THEN or executes the statement following THEN. If DO follows THEN, the program
executes the series of labeled statements terminated by DOEND. The program then continues. If the
expression is false, control transfers immediately to the next statement or to the statement following
DOEND if THEN DO was specified.

When an ELSE statement follows the IF. . . THEN statement, it determines the specific action should
the IF expression be false. When the expression is true, the ELSE statement or the group of ELSE
statements enclosed by DO. . .DOEND is skipped, and the program continues with the next state-
ment after ELSE or DOEND.

A FOR statement can be specified in a DO. . .DOEND group; if so, the corresponding NEXT must
be within the same DO. . .DOEND group. (See FOR. . .NEXT statement description in this
section.)

IF statements are nested when an IF statement occurs within the DO. . .DOEND group of another

IF statement. In such a case, each ELSE is matched with the closest preceding IF that is not itself
part of another DO. . .DOEND group.

Examples

The various types of IF statement are illustrated with the following examples:

12 IF A=B THEN 30
28 LET A=B
38 PRINT A,B

If A equals B, the program skips to line 30, otherwise, it sets A equal B in line 20 and continues.
In either case, line 30 is executed.

16 IF A=B THEN PRINT B
20 ELSE PRINT A,B

If A equals B, the value of B is printed, otherwise, both values are printed. The program then
continues.

2-217

190 IF A=B THEN 100
20 ELSE 200

Program control transfers to line 100 if A equals B, to line 200 if not.

16 IF A=B THEN GOTO 100
20 ELSE GOTO 200

These two statements are identical in effect to the preceding two statements.

19 IF A<180 THEN AzA+5
20 ELSE DO

30 LET X=A

40 GOTO 100

50 DOEND

68 GOTO 18

1860 PRINT X

If A is less than 100, it is increased by 5 and control skips to line 60 where control is returned to
line 10. When A is equal to or greater than 100, X is set equal to A and control skips to line 100.

5 INPUT A

19 IF A<100 THEN DO
20 A=A+

30 GOTO 220

40 DOEND

56 ELSE DO

60 X=A

70 A=0

80 GOSUB 850
92 DOEND
100 PRINT "A>z108"
120 END
208 PRINT "A="3A
210 END
8508 PRINT "Xx="3X
851 PRINT "A="3A
852 RETURN

If A is less than 100, it is increased by 1 and control goes to line 200. If A is equal to or greater
than 100, X is set equal to A, A is set to zero and the subroutine at line 850 is executed. The

subroutine returns control to line 100.

2-28

If a value less than 100 is input for A, line 200 is executed and the program ends:

>RUN
275
A= 76

If a value greater than 100 is input for A, the subroutine is executed, then line 100 is executed and
the program terminates:

>RUN
7158
X= 158
A= @
A>= 100

The examples below illustrate nested IF. . THEN statements.

18 INPUT A,B,C
20 IF (A+108)=(B+5) THEN DO
LY’ A=B
40 IF A>C THEN A=C
50 ELSE C:=B
68 DOEND
70 PRINT A,B,C
>RUN
5,10,15
12 12 10

2-29

With the particular values input, the first IF is true and the second IF is false. As a result both A
and C are set equal to B.

I8 INPUT A,B,C
28 1F A>B THEN DO
30 IF B>C THEN DO

40 IF C=18 THEN DO
50 C=C+1l

69 GOTO 2289

70 DOEND

80 ELSE GOTO 228
90 DOEND

100 ELSE DO

110 IF C=18 THEN B=C+A
120 ELSE C=B-A

130 GOTO 180

140 DOEND

158 DOEND

168 PRINT "A<=3,A=";A
170 GOTQ 238

188 PRINT "A>B,B<=(C,B=";3B
190 GOTO 23@

200 PRINT "A>B>C,C=10"
218 GOTO 239

228 PRINT "A>B>C,C<>13,C="3C
230 END

>RUN

7218,15,20
A<B,A= 1D

>RUN
715,5,10
A>B ’B<C ’B: 25

>RUN

720,15,5
A>B>C,C<>10,C= 5

So that nested IF statements may be easier to follow, the LIST command indents them as shown
in these examples.

2-30

PRINT Statement

PRINT causes data to be output at the terminal. The data to be output is specified in a print list
following PRINT.

Form

PRINT
PRINT print list

The print list consists of items separated by commas or semicolons. The list may be followed by a
comma or a semicolon. If the list is omitted, PRINT causes a skip to the next line. Items in the
list may be numeric or string expressions, special print functions for tabbing or spacing, or FOR
loops to provide repeated output. The form of the FOR loop is:

(FOR statement, print list)

where the print list contains any items allowed in the PRINT statement list including other FOR
loops. The FOR statement is described earlier in this section under the heading Looping Statements.

Explanation

The contents of the print list is printed. If there is more than one item in the print list, commas
or semicolons must separate the items. The choice of a comma or semicolon affects the output

format.

The output line is divided into consecutive fields, each of 15 characters except possibly the last.
For example, on a terminal with default print length of 72 characters, there will be four fields of
15 characters and one of 12 characters. When a comma separates items, each item is printed
starting at the beginning of a field. When a semicolon separates items, each item is printed immedi-
ately following the preceding item. In either case, if there is not enough room left in the line to
print the entire item, printing of the item begins on the next line. The length of the print line

can be changed by using the MARGIN statement (Section VIII).

The separator between items can be omitted if one or both of the items is a quoted string. In this
case, a semicolon 1s inserted automatically.

A carriage return and linefeed are output after PRINT has executed, unless the output list is
terminated by a comma or semicolon. In this case, the next PRINT statement begins on the

same line.

If an expression appears in the print list, it is evaluated and the result is printed. Any variable must
have been assigned a value before it is printed. Each character between quotes in a string constant

is printed, excluding quotes.

AUG 1978 2-31

If a FOR loop is included in the print list, each item in the print list associated with the FOR
statement is printed once for each time the FOR loop is executed.

Numeric values are left justified in a field whose width is determined by the magnitude of the
number. The smallest field is six characters. Numeric output format is discussed in detail below.

For the printing of data according to a customized format, see the PRINT USING and PRINT #
USING statements described in Section IX.

Examples

When items are separated by commas, they are printed in consecutive fields per line; separated by
semicolons, they directly follow one another. In the example below, the items are numeric, so
each item is assigned a minimum of six characters.

10 LET A=B=C=D=E=15

20 LET Al1=B1:=C1=DIl=E1=22

338 PRINT A,B,CI,C

40 PRINT A;B;Cl:CtD;E;Al;Dl;El
5@ PRINT A,B3C,D

>RUN
15 15 20 15
15 15 20 15 15 15 20 20 20
15 15 15 15

In the example below, a DIM statement is used to specify the number of characters in each string;
if omitted, the strings are assumed to have only one character.

18 DIM B$(31,C$I[3)
20 C$=B%$="ABC"
38 PRINT BS$,C$

>RUN
ABC ABC

2-32 AUG 1978

In the example below, the first PRINT statement evaluates and then prints three expressions. The
second PRINT skips a line. The third and fourth PRINT statements combine a string constant with
a numeric expression. No fields are used in the print line for string constants unless a comma
appears as separator. The fourth PRINT statement prints output on the same line as the third
because the third statement is terminated by a comma.

18 LET A=B=C=D=E=15

20 LET Al=B1=Cl=DI=El=20

30 PRINT A%*B,B/C/DI1+30,A+B

40 PRINT

58 PRINT "AxB ="3;A%*B,

60 PRINT "THE SUM OF A AND B IS";A+B

>RUN
225 30.05 38
A*B = 225 THE SUM OF A AND B IS 30

A FOR statement can be specified in a print list with its own print list, all included within
parentheses:

16 FOR I=1 TO 3

20 INPUT R
30 AlI)=3.14%R*%*2
49 NEXT 1
50 PRINT (FOR I=1 TO 3,A[lI))
>RUN
72
23
74
12.56 28.26 50.24

Note that NEXT is not needed when the FOR statement is included in a print list.

NUMERIC OUTPUT FORMATS

Numeric quantities are left justified in a field whose width is determined by the magnitude of the
item. The width includes a position at the left of the number for a possible sign and at least one
position to the right containing blanks. The width is always a multiple of three; the minimum

width is six characters.

2-33

Integers

An integer with a magnitude less than 1000 requires a field width of six characters:

sign number trailing blanks
3 digits

1 i 1

An integer with a magnitude between 1000 and 999999 inclusive requires a field width of nine
characters:

sign number trailing blanks
6 digits

1 1 1 1 1 i

Examples of integers:

The integers below are less than 1000 and greater than -1000:

1@ PRINT 13999330@3-30083+295
>RUN
l 999 30 -300 295

These integers are between 1000 and 999999 or between -1000 and -999999:

13 PRINT 10003+327513-999999345678
>RUN
1200 32751 =-999999 45678

These integers are mixed in magnitude, but none are greater than 999999 or less than -999999:

10 PRINT 13100039993+3275132085-9999993-3003456783+29635000
>RUN
1 1009 999 32751 280 =999999 -328 45678 256
5000

If an integer has a negative sign it is printed; a positive sign is not printed.

2-34

Fixed-Point Numbers

A fixed point number requires a field width of 12 positions. If the magnitude of the number is
greater than or equal to .09999995 and less than 999999.5, or is less than .1 but can be printed
with six significant digits, the number is printed as a fixed-point number with a sign. Trailing zeros
are not printed, but a trailing decimal point is printed to show the number is not exact. The
number is left-justified in the field with trailing blanks. The sign is printed only if it is negative.

sign number trailing blanks
6 digits & decimal pt.

1 1 1 - 1 1 ! 1 1

Examples of fixed-point numbers:

18 PRINT 999999.435.099999963 .0002044
>RUN
999595955S. ol 0802044

Floating-Point Numbers

Any number, integer or fixed-point, with a magnitude greater than the magnitude of the numbers
presented above, is printed as a floating-point number using a total field width of 15 positions:

sign number Etexponent trailing blanks
6 digits & decimal pt. E
1 1 1 1]] 1 1 1 1 1

Examples of floating-point numbers:

12 PRINT 23456783 .08000044

>RUN
2 .34568E+06 4,40000E~-36

10 PRINT 234567893 .000080044
>RUN
2.34568E+07 4.,40000E-07

19 PRINT .P80839543;.0000257895
>RUN
3 «94300E-085 2.57895E-85

2-35

PRINT FUNCTIONS

These print functions may be included in a PRINT statement print list. A comma after any print
function is treated as a semicolon.

TAB Function

The form of the tabulation function is:

TAB(integer expression)

The print position is moved to the column specified by the integer expression. Print positions are
numbered from O to 71. If the print position must be moved to the left because the integer expres-
sion is less than the current position, nothing is done. If the expression is greater than 71, the print
position is moved to the beginning of the next line.

SPA Function

The form of the spacing function is:

SPA (integer expression)

Blanks are printed for the number of spaces indicated by the integer expression. Nothing occurs
when the expression is zero or negative, If the number of spaces will not fit on the current line, or
the expression exceeds 71, a carriage return and line feed is generated.

The limit of 71 on TAB and SPA expressions does not apply to PRINT USING (see Section IX).

LIN Function

The form of the line skip function is:

LIN(integer expression)

The terminal performs a carriage return and as many line feeds as are specified in the expression.
If the value is negative, the absolute value of the expression is used for the number of line feeds;
no carriage return is generated. Normally, a carriage return and one line feed is performed at the
end of a PRINT statement unless there is a trailing comma or semicolon.

2-36

CTL Function

The form of the carriage control function is:

CTL(integer expression)

All items preceding the CTL function in a PRINT statement are printed immediately, using the
integer expression as the carriage control code. This function is effective only for the particular print
statement in which it occurs and has no effect on any other statement. This function is useful when
the output device is a line printer. The carriage control codes are listed below.

Carriage Control Codes

Decimal

Code Carriage Action

32 Single-space

43 Carriage return, no line feed

48 Double-space

49 Page eject (form feed)

64 Post-spacing

65 Pre-spacing

66 Single-space, with auto page eject (60
lines/pg)

67 Single-space, without auto page eject (66
lines/pg)

128+nn Space nn lines (no automatic page eject).
nn=1 thru 63 (i.e., codes 129 thru 191).

192 Page eject (*ftc #1)

193 Skip to bottom of form (*ftc #2)

194 Single-spacing, with auto page eject (*ftc
%3)

195 Single-space on next odd-numbered line,
with auto page eject (*ftc #4)

196 Triple-space, with auto page eject (*ftc
=5)

197 Space 1/2 page, with auto page eject (*ftc
=6)

198 Space 1/4 page, with auto page eject (*ftc
#7)

199 Space 1/6 page, with auto page eject (*ftc
=8)

256 Post-spacing

257 Pre-spacing

258 Single-space, with auto page eject (60
lines/pg)

259 Single-space, without auto page eject (66
lines/pg)

*Format Tape Channel number

Examples of Print Functions

The TAB, SPA, LIN and CTL functions are illustrated below:

AUG 1978 2-37

12 PRINT TAB(8)3" TITLEsPRINT HEADING"3SPA(1@);"SUMMARY REPORT"}
20 PRINT LINCG3)3" DETAIL LINES®

>RUN
TITLE:PRINT HEADING SUMMARY REPORT

DETAIL LINES

The LIN function can generally be used to provide double or triple spacing, to suppress spacing,
or to provide a line feed. For instance,

Double Space LIN(2)
Suppress Spacing LIN(0)

Line Feed only LIN(-integer expression)

19 PRINT "ABC"3LINC(-1)3§"DEF"$§LINC2)3$"GHI"
>RUN
ABC

DEF

GHI

Some frequently used carriage control characters are:

Double Space CTL(48)
Page Eject CTL(49)
Suppress Spacing CTL(43)

The decimal numbers associated with the carriage control characters are used as the integer expres-
sion in the CTL function. To illustrate:

10 LET P=1,X=520
20 PRINT CTL(49),"PAGE NO";P
30 PRINT CTL(48),"DETAIL LINE®"
40 PRINT TAB(15),X,CTL(43)}
50 PRINT TAB(18),"X="

>RUN

After ejecting to the top of a new page, the print items are output as:
PAGE NO 1

DETAIL LINE
Xz 500

2-38

In the following example, the CTL function causes a double space between “LINE 1’ and “LINE 2",
but has no effect on statement 20:

:BASIC

>HP32101B.00.08 (4WD) BASIC (C)HEWLETT-PACKARD CO 1976
>10 PRINT "LINE 1",CTL(48) ,"LINE 2"

>20 PRINT "LINE 3"

>RUN

LINE 1

LINE 2
LINE 3

>EXIT

END OF SUBSYSTEM

The effect of the CTL function in the next example is immediate at it’s location within the PRINT
statement 200. It has no effect at the end of that statement where a normal linefeed and carriage
control occurs.

:BASIC

>HP32101B.00.08 (4WD) BASIC (C) HEWLETT-PACKARD CO 1976
>100 FOR I=1 TO 2

>200 PRINT "ABCD",CTL(130),"EFGH"

>300 NEXT I

>RUN

ABCD

EFGH
ABCD

EFGH
>EXIT

END OF SUBSYSTEM

APR 1978 2-38a |

READ/DATA/RESTORE Statements

Together, the READ, DATA, and RESTORE statements provide a means to input data to a
BASIC/3000 program. The READ statement reads data specified in DATA statements into
variables specified in the READ statement. RESTORE allows the same data to be read again.

Form

READ item list

The items in the item list are either variables or FOR loops. Items are separated by commas.
A FOR loop has the form:

(FOR statement, item list)
where the item list contains variables or FOR loops separated by commas.
DATA constant, constant,. . .

The constants are either numeric or string. Constants in the DATA statement are assigned to
variables in the READ statement according to their order: the first constant to the first variable,
the second to the second and so forth.

RESTORE
RESTORE label

The label identifies a DAT A statement.

Explanation

When a READ statement is executed, each variable is assigned a new value from the constant list
in a DATA statement. RESTORE allows the first constant to be assigned again when READ is
next executed or, if a label is specified, the first constant in the specified DATA statement.

More than one DATA statement can be specified. All the constants in the combined DATA state-
ments comprise a data list. The list starts with the DATA statement having the lowest statement
label and continues to the statement with the highest label. DATA statements can be anywhere
in the program; they need not precede the READ statement, nor need they be consecutive.

2-39

If a variable is numeric, the next item in the data list must be numeric; if a variable is a string, the
next item in the data list must be a string constant. It is possible to determine the type of the next
item with the TYP function (see Section VIII).

If the READ statement contains a FOR statement, the items following the FOR statement within
parentheses are assigned values once for each time the FOR statement is executed. The FOR
variable can be used in the item list, as can further FOR statements.

A pointer is kept in the data list showing which constant is the next to be assigned to a variable.
This pointer starts at the first DATA statement and is advanced consecutively through the data
list as constants are assigned. The RESTORE statement can be used to access data constants in a
non-serial manner by specifying a particular DATA statement to which the pointer is to be moved.

When the RESTORE statement specifies a label, the pointer is moved to the first constant in the
specified statement. If the statement is not a DATA statement, the pointer is moved to the first
following DATA statement. When no label is specified, the pointer is restored to the first constant
of the first DATA statement in the program.

Examples

The data in statement 10 is read in statement 20 and printed in statement 30:

10 DATA 3,5,7

20 READ A,B,C

38 PRINT A,B,C
>RUN

3 5 7

Note the use of RESTORE in this example. It permits the second READ to read the same data
into a second set of variables:

5 DIM A$(31,B%(3)
18 DATA 3,5,7
28 READ A,B,C
38 READ AS%,BS
40 DATA "ABC","DEF"
50 RESTORE
68 READ D,E,F
70 PRINT A$+BS$,A3BsC3 DsES F
>RUN
ABCDEF 3 5 7 3 5 7

2-40

In the following examples, the data from three DATA statements is read into an 8-element array
variable and a simple variable. The same data is then restored and read into three simple variables.

10
20
30
40
58
>RUN
3
13

10
20
30
49
50
69
70
80
50
100
110
120
>RUN
3
13
3

DATA 3,5,7
DATA 9,11,1
DATA 15,17,
READ (FOR I

3

19

=1
PRINT (FOR 1=

T0 8,Cl11),D
1 TO 8,Cl1I1,D
5 7
15 17

DATA 3,5,7
DATA 9,11,13

DATA 15,17,19

READ (FOR I=1 TO 8,ClI1),D
PRINT (FOR I=1 TO 8,C(I1),D
RES TORE

READ A

RESTORE 29

READ B

RESTORE 39

READ C

PRINT A,B,C
5 7
15 17
9 15

2-41

S 11

S i1

INPUT Statement

The INPUT statement allows the user to input data to his program from the terminal. INPUT has
options that allow the user to save excess input and to print prompting strings before input. FOR
loops may be included in the item list associated with INPUT.

Form

INPUT
INPUT item list

The items in the item list may be variables, string constants, or FOR loops. Items are separated by
commas. FOR loops have the form:

(FOR statement, item list)

where the item list contains variables or FOR loops separated by commas.

A colon (:) may precede or follow the INPUT item list. When a colon follows the list, excess input
is saved in a buffer; when a colon precedes the list, input is assigned from the buffer before it is
requested from the user at the terminal,

An INPUT statement with no item list clears the input buffer; INPUT followed only by a colon
fills the buffer.

Explanation

When an INPUT statement is executed, a question mark (?) is printed at the terminal and the
program waits for the user to type his input. The input is in the form of constants separated by
commas. If an insufficient number of constants is typed, the program responds with two question
marks (??). This requests the user to input more constants. The type of data item, numeric or
string, must match the type of variable it is destined for,

Like the READ and PRINT statements, the INPUT statement can include any number of FOR

loops. Each time a FOR statement is executed, the user inputs a constant to match the variables
in the item list associated with the FOR statement.

Numeric Constants. Numeric constants always begin with the first non-blank character preceding
the comma or the end of the line.

2-42

String Constants. A string may be unquoted, in which case it begins with the first non-blank
character and ends with the last non-blank character in the line, It may not contain quotation
marks. A string may also be quoted, in which case it is delimited on each side by quotes and is
followed either by a comma or the end of the line.

The INPUT statement can be requested to print a string constant instead of a question mark by
placing the string constant immediately before a variable. When the value for the variable is needed,
the string is printed instead of the usual question mark. Any number of these request strings can be
included in the variable list.

Examples

18 DIM C$(25)

20 INPUT A,B,CS$

30 X=A*B*x2

40 PRINT C$3x
>RUN :
72,5,"X=A TIMES B SQUARED, Xx:="
X=A TIMES B SQUARED, X= 50

10 INPUT "INPUT VALUE OF RADIUS *",R
20 X=3.14%R*%2
38 PRINT "AREA OF X =",X

>RUN
INPUT VALUE OF RADIUS 25
AREA OF X = 1962.5

Note that a series of strings on one line separated by commas will be recognized as a single string
constant unless each (except the last) is enclosed in quotes. See the following example:

10 DIM A$[10],BS$[10],CS$[10]

20 INPUT "THREE NAMES?",A$,B$,CS

30 PRINT AS$,BS$,CS
>RUN

THREE NAMES?PAUL,PETE,DIX

?? "MARY" , "JOHN"

PAUL, PETE, MARY JOHN

>RUN

THREE NAMES?PAUL

??PETE

??DIX

PAUL PETE DIX

>RUN

THREE NAMES?"PAUL" ,"PETE" ,DIX
PAUL PETE DIX

AUG 1978 2.43

This example illustrates the various prompts for input:

18 INPUT A,"NUMBER?",B,C
20 PRINT A,B,C
>RUN
215
NUMBER?63 .5
2?7
15 63.5 7

2-43a

If all input values are entered at one time, only the first prompt is used:

18 INPUT A,"NUMBER?",B,C
20 PRINT A,B,C
>RUN

215,63.5,7
15 63 .5 7

The examples below illustrate FOR loops in the INPUT item list:

10 INPUT (FOR I=1 TO 5 STEP 2,AllD
TI0 5 S In

2@ PRINT (FOR I=1 TEP 2,Al
>RUN
71,3,5

! 3 5

10 INPUT N, (FOR K=1 TO N,"WHAT'S NEXT?",Bl(K]))
20 PRINT (FOR K=1 TO N,B(K])

>RUN

23

WHAT'S NEXT?1

WHAT'S NEXT?2

WHAT*S NEXT?3
l 2 3

1@ INPUT N,(FOR Si=1 TO N,(FOR I=1 TO N,CIS1,I]))
20 PRINT (FOR Sl=1 TO N,(FOR Izl TO N,CIS1,11))
>RUN
72

271,2,3,4
1 2) 4

2-44

The example below illustrates the use of the colon (:) to save input in the buffer, and to assign
input from the buffer. A colon following the input list saves the buffer; a colon preceding the
input list assigns values from the buffer.

In this example, four input values are placed in the buffer. However, following line 20 the buffer
is cleared because there is no colon after E. Another value must be input for F.

18 INPUT
28 INPUT
38 INPUT
42 PRINT
>RUN
71,2,3,4
279
1

I>ee o0 D>
e T 1]
w
.

By putting a colon after E as well as before it, the entire buffer is saved:

12 INPUT
20 INPUT
30 INPUT
40 PRINT

I se o0 D
-
570
- .o
(o]
-
)

>RUN
21,2,3,4
l

BUF FUNCTION

The BUF function is used in conjunction with INPUT to determine the type of the next data item
in the buffer. The form is:

BUF(X)

The parameter X has no meaning; any expression can replace X as the actual parameter. The results
of executing BUF(X) are:

Value of BUF(X) Next Item in Buffer
1 real
2 string
4 no data in buffer
5 integer
6 long
7 complex

BUF(X) will not return the value 3.

2-45

Example

1@ INPUT

20 IF BUF(@)=z4 THEN GOTO 199
3@ IF BUF(@)=5 THEN DO

40 INPUT :A:

50 PRINT "INTEGER Az="3A
Y%/ GOTO 28

70 DOEND

80 IF BUF(@)=]1 THEN DO

99 INPUT :B:
180 PRINT "REAL NO ="3B
110 GOTO 28

120 DOEND

138 IF BUF(@)=2 THEN DO
140 INPUT :C$:

150 PRINT "STRING C="3C$
168 GOTO 20

178 DOEND

180 GOTO 2@

192 PRINT " END OF BUFFER"

When run, the user can input any number of constants and they will be kept in the input buffer.
This example assumes that no long or complex numbers will be input.

>RUN
2143,"X",576,35.2,66.6,75,"A" ,"C"
REAL NO = 1.3

STRING C=X

INTEGER A= 576

REAL NO = 35.2

REAL NO = 66.6

INTEGER A= 75

STRING C=A

STRING C=C

END OF BUFFER

2-46

ENTER Statement

The ENTER statement provides the program with more control over the input operation. The
statement can limit the amount of time allowed to input data from the input device (e.g., terminal),
provide the program with the actual input time, indicate whether the data is of the correct type,
and return logical device number of the user’s terminal.

Form
There are three forms of the ENTER statement:

ENTER # terminal variable
ENTER time limit expression, actual time variable, input variable

ENTER # terminal variable, time limit expression, actual time variable, input variable

The terminal variable after # is used to return the logical device number of the terminal;
the time limit expression specifies the time allowed for input; the actual time variable
is assigned the actual time used; and the input variable is assigned the value typed in.

Explanation
The first form sets the terminal variable equal to the user’s terminal logical device number.

The time limit expression specifies the length of time, in seconds, that the user is allowed to enter
his input. The value must be in the range 1 to 255. If it is greater, 255 is used; if it is less, 1 is used.

The actual time variable is set to the approximate time, in seconds, that the user takes to respond.
If an improper input is typed, this value is negated. If the user fails to respond within the allotted
time, this variable is set to -256.

Only one value can be typed in for each ENTER statement and it is assigned to the input variable.
A string should not be entered enclosed in quotes, but it may contain quotes. A string that is too
long is truncated on the right.

The ENTER statement differs from the INPUT statement in that a “?”’ is not printed on the user
terminal and the system returns to the program if the user does not respond within a specified
time limit (there is no time limit on INPUT). Also, the program does not generate a linefeed after
the user types in a carriage return.

2-47

Examples

12 DIM C$(25]

20 ENTER #A

3@ PRINT " TERMINAL NO.z"3&

43 PRINT "YOU HAVE | NMINUTE TO TYPE 25 CHARACTERS FOR C3$"

52 ENTER 62,B,C%

60 PRINT LINCI)3"ACTUAL TIME="3B

73 PRINT C$%

828 PRINT LINCI)s" TYPE VALUE FOR C"

99 ENTER #A,60,B8,C

128 PRINT LINCI)3"ACTUAL TIME="3B

112 PRINT C
>RUN
TERMINAL NO.z= 17
YOU HAVE | MINUTE TO TYPE 25 CHARACTERS FOR C$%
EMBEDDED "QUOTES" 0.K.
ACTUAL TIME= 13.41
EMBEDDED "QUOTES” 0.K.

TYPE VALUE FOR C
25.7E-8

ACTUAL TIME= 6.62
2.5T000E-27

The system enters the logical terminal number in the variable A as a result of line 20; A can then be
referenced as in line 30. Since ENTER does not provide a prompt character, it is useful to print
some form of prompt particularly because there is a time limit on the input.

Note that the system does not provide a linefeed after input. It is therefore essential, if any output
is to be printed after the input line, to provide a linefeed (use LIN function) within the PRINT
statement. Without this linefeed, a subsequent output line overprints the input line.

A common use of ENTER is to test students:

12 PRINT "WHAT IS .25 TIMES 75°?"
20 ENTER 30,T,X
30 IF X=z.25%75 THEN GOTO 72
49 PRINT LINC1),"SORRY,THE CORRECT ANSWER IS";.25%75
50 PRINT " TRY THE NEXT PROBLEM"
60 GOTO 89
79 PRINT LINC1)$"CORRECT,YOU ANSWERED IN"3T;"SECONDS"
80 REM..THE NEXT PROBLEM COULD START HERE
>RUN
WHAT IS .25 TIMES 757
18.75
CORRECT,YOU ANSWERED IN 3.35 SECONDS

2-48

> BASIC

When a BASIC/3000 program is waiting for input at the terminal as a result of an INPUT or
ENTER statement, the user can interrupt input and request a new level of the BASIC/3000
Interpreter by typing > BASIC.

The computer returns a greater than sign (>) to prompt for other BASIC statements or commands.

The previous program is suspended until the user types EXIT. EXIT in this case returns control to
the INPUT or ENTER statement in the previous program. The computer types two question marks
(??) to signal that it is waiting for further input.

Example

18 PRINT "WHAT IS THE SQUARE ROOT OF 947"
20 INPUT I

>RUN

WHAT IS THE SQUARE ROOT OF 9%4?

7>BASIC

BASIC 21.0

>1@ PRINT SQR(54)

>RUN

9.69536

SEXIT

2?9.69536

>

The user responds to the INPUT prompt signal with > BASIC. He can then enter and run another
program. EXIT returns control to the original program. He now enters the value he got as a result
of the program run in > BASIC.

When BASIC/3000 is entered with > BASIC, it cannot be entered again in the same way. That is,
there is no nesting of this feature.

2-49

Commands

So far we have used a set of commands (LIST, RUN, SCRATCH) for simple program manipulation,
Both LIST and RUN have parameters and functions other than were illustrated. The full capability
of commands used to run a program, to edit a program, and to save a program in the library are
described here. The commands are:

RUN

The Editing Commands:
LIST
SCRATCH
DELETE
RENUMBER
LENGTH

Library Commands:
NAME
SAVE
GET
APPEND
PURGE
CATALOG

Commands in general are described in Section I. It should be recalled here that commands do not
have labels; they are entered directly after the > prompt character and are executed immediately.
Unlike statements, commands may not contain embedded blanks except between parameters.
Some commands may be abbreviated.

Certain conventions are used in the command description:

UPPER-CASE Key words that must be spelled correctly
lower-case Words defined by the user

[1] Enclose optional items

{ } Enclose required items

| Separates alternatives, one of which must be chosen

Indicate the preceding item may be repeated

2-50

In the command descriptions, certain keywords are used:

programname a BASIC/3000 program file
filename a non-BASIC/3000 file
asciifile an MPE/3000 ASCII file

Key word parameters may be in any order.

RUN

The RUN command executes a BASIC/3000 program; the form is

RUN [programname] [,label] [,OUT=asciifile] [[N{OWARN] [[FREQ] [[NOECHO] [,MR]

If programname is specified, the named program is retrieved from the user’s library and made the
current program. Any program previously in the user’s work area is scratched. The current program
then is executed. Any traces and breakpoints are deleted. (Traces and breakpoints are described in

Section VII, Debugging.)

If label is specified, execution starts at the first executable statement at or after the label number.
The starting statement must not be within a function definition. If the label specifies a DEF state-
ment, execution begins at the first executable statement following the function definition.

OUT=asciifile diverts all printed output and trace information to the specified ASCII file,

NOWARN suppresses warning messages.

FREQ causes a table to be printed following program execution that summarizes the usage of all
statements in all programs that are part of the run. There may be more than one program in a run
when segmentation is used (see Section X, Segmentation).

NOECHO suppresses printing of program input when the input and list files are not on the same
device.

MR allows the execution of a program that locks multiple files, provided that the user has MR capa-
bility (see Section VIII, Dynamic Locking).

APR 1978 2-51

Examples of RUN

The program below is the current program:

18 DATA 3,5,17

20 DATA 9,11,13

38 DATA 15,17,19

40 READ (FOR I=1 TO 8,Cl11),D
50 PRINT (FOR I=1 TO 8,Cl1)),D
68 RESTORE

70 READ A

80 RESTORE 29

90 READ B

100 RESTORE 30
118 READ C

120 PRINT A,B,C

First the entire program is run, then it is run starting at line 60:

>RUN

R) 5 7)
13 15 17 19
3 9 15

>RUN, 608

3 9 15

2-52

1l

Next the same program is run with a frequency table:

>RUN,FREQ

3 5 7

13 15 17
3 9 15

FREQUENCY TABLE

TOTAL STATEMENTS = 12
TOTAL TIME = .297 SECONDS

FREQUENCY EXECUTION TIME
LABEL COUNT PCT AVE TOTAL PC

10 l 8 <001 081
20 l 8 000 «000
30 l 8 001 081
40 l 8 022 222
508 l 8 160 160 5
60 l 8 001 001
10 1 8 002 0082
80 l 8 .000 «002
59 1 8 .02 .082
100 ! 8 9001 201
110 l 8 002 «002
129 l 8 . 000 000
SYSTEM OVERHEAD <105 K]

2-53

T

VeS8~ suyaam

11

Editing Commands

The editing commands always affect the current program, that is, the program that is currently
being entered at the terminal.

LIST

The LIST command lists all or part of the current program; the form is

LIST [first [- last]] [, OUT=asciifile] [, RECSIZE=number] [[NONAME]

where first and last specify the range of statements to be listed, and asciifile specifies the ASCII file
to which the list is diverted. If RECSIZE is specified, number specifies the number of characters
per record for the list file. If NONAME is specified, the program name is not listed; this is useful
when listing programs to be read back with the XEQ command. The default parameters are the
normal list file and a record size of 72 characters per record. If neither first nor last is specified, the
entire program is listed. If only first is specified, just that statement is listed.

Examples

>LIST

The entire current program is listed at the terminal.

>LIST 1-100,0UT=FASTFILE,RECSIZE=130

Statements 1 through 100 of the current program are listed on the file FASTFILE with a record
size of 130.

Note that a listing can be stopped by pressing the CTRL Y key. The user is returned to BASIC
control.

2-54

SCRATCH

The SCRATCH command deletes the entire current program and its name; the form is

SCRATCH | SCR

SCRATCH also clears traces and breakpoints. (Traces and breakpoints are described in Section VII,
Debugging).

Example

>SCR

The current program is deleted, and a new current program can be entered in the user’s work area.

DELETE

The DELETE command deletes one or more specified statements; the form is

{DELETE | DEL | first [- last] [, first [- last 1] ...

where first and last are statement labels; the statements referenced by the parameters are deleted
from the program. Each first-last pair specifies a range of statements which are to be deleted. If a
first is given without a last, only the one statement is deleted.

Example

>DEL 45,75,400-1708

Statements 45, 75, and all statements from 400 through 700 inclusive are deleted from the user’s
current program.

2-55

RENUMBER

The RENUMBER command allows the user to renumber any of the statements in the current
program; the form is

{RENUM | RENUMBER } [newfirst [, delta [, oldfirst [- oldlast]1]]1]

oldfirst and oldlast specify the range of original statements to be renumbered (defaults are
1—15999). If only oldfirst is specified, the default for oldlast is 15999. The first of these statements
is assigned the number newfirst (default is 10) and each of the remainder is assigned a statement
number delta greater than its predecessor (default for delta is 10). Any statement in the program
which references a renumbered statement is changed as required for consistency.

Examples

>RENUMBER

The statements in the current program are renumbered in increments of 10 starting with statement
number 10.

>RENUM 5,5,1-890

The old statement numbers 1 through 890 are renumbered starting with 5 and increasing by 5.

LENGTH

The LENGTH command reports the size of the current program; the form is

LENGTH | LEN

The length of the current program (in 16-bit words) is printed

Example

>LENGTH

The length of the current program is printed.
2-56 AUG 1978

Examples Using Editing Commands

After the user enters text at a terminal, mistakes can be corrected by pressing the CNTL H (or H®) I
key or the backspace key.

>1@ INPUG\T A ’B ,C ’D,E

>20 REM..INPUT 5 VALUES

>30 LET S=(A@\+B+C+D+E) 7\/5

>4@ REM..S=AVERAGE OF 5 INPUT VALUES
>50 PRINT S

LIST correctly lists the program:

>LIST
18 INPUT A,B,C,D,E
20 REM.,.INPUT 5 VALUES
30 LET S=(A+B+C+D+E) /5
42 REM..S=AVERAGE OF 5 INPUT VALUES

58 PRINT S

LENGTH gives the length in computer words:

>LENGTH
53 WORDS.

The remark lines are deleted and the program is listed:

>DELETE 20,40

>LIST
18 INPUT A,B,C,D,E
38 LET S=(A+B+C+D+E) /5
58 PRINT S

APR 1978 2-57

Next, the program is renumbered and listed again:

>RENUMBER

>LIST
18 INPUT A,B,C,D,E
20 LET S=(A+B+C+D+E) /5
3@ PRINT S

The program is scratched. When LIST is now specified, there is no current program; the computer
returns a ‘“>"’ to prompt for further entries:

>SCRATCH
>LIST

>

2-58

Library Commands

When a current program is complete, and if it is to be used again, it should be saved in the user’s
library. A copy of the current program identified by a:name is kept in the library when the program
is saved. The current program is not affected; it remains the current program until log off, or until
it is scratched with the SCRATCH command.

When a program is saved, it must be given a name either with the NAME or SAVE command. The
program name is used to get, to append, or to purge a program in the user’s group library. The

name must be unique among names in a particular user’s group library, but it may be duplicated
in other groups. A catalog of the programs and files contained in the user’s library may be requested

with the CATALOG command.

NAME

The NAME command assigns a name to the current program; the form is

NAME programname

The programname specified is assigned to the current program. The programname can be any com-
bination of eight alphabetic and numeric characters, beginning with an alphabetic character.

Example

>NAME PROGX

The current program is assigned the name PROGX.

SAVE

The SAVE command stores a copy of the current program in the user’s library; the form is
SAVE [programname] [!] [, FAST] [[RUNONLY] [,MR]

If programname is specified, that name is given to the saved copy, but not to the current program.
If programname is omitted, the name of the current program is assumed; in this case, the program
must have been named before it can be saved. If there is no file with the same name in the user’s
library, a new file is created and a copy of the current program is stored in it. If a file with the same
name already exists in the library, the SAVE command is rejected unless the exclamation mark is
specified, in which case the original file is purged and a new file created.

APR 1978 2-59

FAST causes the program to be saved in pseudo-compiled form so that it can be RUN more quickly.
It also ensures that the program is valid (matching FOR-NEXT pairs, etc.).

A program saved for RUNONLY is assumed to be free of errors and ready for execution. When a
RUNONLY program is brought into the user’s work area with GET, certain commands are illegal
until a SCRATCH or another GET. For instance, a RUNONLY program cannot be listed or modified.
The only commands legal when a RUNONLY program is current are:

ABORT
CATALOG
CREATE
DUMP
EXIT

GET

KEY
PURGE
RESUME or GO
RUN
SCRATCH
SPOOL
SYSTEM
TAPE
XEQ

MR saves a program with MR status, if the user has MR capability (see Section VIII, Dynamic
Locking). Otherwise, the following message appears on the terminal:

COMMAND EXCEEDS USER CAPABILITY

Examples
>SAVE PROGX

The name PROGX is assigned to the copy of the current program that is saved in the user’s library.
>NAME PROGX

>SAVE

The current program is given the name PROGX, and then a copy is saved in the user’s library.

2-60 APR 1978

>SAVE PROGX!,FAST,RUNONLY

A copy of the current program is assigned the name PROGX and stored in the user’s library; any
other program with the name PROGX is purged from the library. The program is saved in pseudo-
compiled form and, if retrieved as the current program, only commands legal with RUNONLY can
be used.

GET

The GET command loads a specified BASIC/3000 program into the user’s working space; the
form is

GET programname
where programname is the name of a program to replace the current program. GET deletes all

traces and breakpoints.

Example

>GET SEARCH

SEARCH is a program saved in the user’s library. It is now also available in the user’s work area
replacing any previous program in that area.

PURGE

The PURGE command removes a file or program from the user’s library; the form is
PURGE { basicfile | programname | filename}

The file or program specified is deleted from the user’s library; it is not recoverable once it has
been purged.

Example

>PURGE PROGX

PROGX is a file or program in the user’s library. It is no longer available to the user and its name
may be assigned to another file or program.

2-61

APPEND

The APPEND command appends a specified program to the user’s current program; the form is
APPEND programname

The program specified is appended to the end of the current program. The last sequence number
of the current program must be smaller than the first sequence number of the appended program.
Programs which have been saved in pseudo-compiled form (see SAVE command) and RUNONLY
programs cannot be appended.

Example

>APPEND PROGX

PROGX is a program saved in the user’s library. It is appended to the program currently in the
user’s work area.

CATALOG

The CATALOG command provides a list of programs or files specified by the user. The list includes
the program or file name, the type, the number of logical records, and if desired, the record width.

The form is:

{CAT | CATALOGY} [fileset] [,ALL] [,RECSIZE] [,0UT=asciifile] [,START=filename]

where:

fileset one or more files or programs referenced by file name,
group name, and/or account name. When fileset is omitted,
all the files in the user’s log-on group are listed. (See the
next page for a full description of fileset.)

ALL all ASCII and Binary files are included in the list; if ALL is
omitted, only BASIC files and programs are listed.

RECSIZE requests the record width for each file. If RECSIZE is

omitted, record width is not listed.

2-62

OUT=asciifile the file listing is diverted to the specified ASCII file; if OUT
is omitted, the list is on the list device (e.g., the terminal).

START=filename the listing starts with the specified file name.

For each file listed, the file name, the type (BF for BASIC file, SP for saved program, FP for fast
saved program, A for ASCII, B for Binary) and the number of records in the file are listed. The
record width is listed if RECSIZE is specified; the width is in bytes for ASCII files, in words
otherwise, The listing is printed in as many columns as will fit across the width of the list device.

Output can be stopped with CTRL Y, as with the LIST command.

The fileset parameter has three fields that allow the user to request descriptions of one file alone,
or various sets of files. The filename field indicates a specific file or all files within the units
designated by the other fields. The group field denotes the group to which the files belong. The
account field denotes the account to which the group belongs, or it may specify all accounts in
the system. To specify all files, groups, or accounts, the user enters the character @ in the appro-
priate field. The three fields are separated by periods.

The table below shows the possible combination of entries in fileset:

File Field Group Field Account Field Entry Example Meaning

filename groupname accountname FILE.GROUP.ACCT The file named, in the
group and account
designated.

filename groupname FILE.GROUP The file named, in the

group designated under
the log-on account.

filename FILE The file name, under
the log-on group.

@ groupname accountname @.GROUP.ACCT All files in the group
named, under the
designated account.

@ groupname @.GROUP All files in the group
named, under the
log-on account.

@ @ All files in the log-on
group. This is the
default case.

@ @ accountname @.@.ACCT All files in all groups
under the account named.
@ @ @.@ All files in all groups under
the log-on account.
@ @ @ @.0.0 All files in the system.
@ means all

2-63

Examples Using Library Commands

A program is input,named, and saved in the user’s library. It is then scratched as the current program:

>1 20 INPUT A,B,C,D,E
>120 LET S=(A+B+C+D+E) /5
>13@8 PRINT S

>NAME AVERAGE

>SAVE

>SCRATCH

A second program is entered, named, and saved. The first program is then appended to this program
to make a third program. It too is named and saved:

>0 INPUT R

>20 P=3.14

>33 A=P%R%x*2
>40 PRINT A
>NAME AREA
>SAVE

>APPEND AVERAGE
>SAVE CALC

Any of these programs may now be brought back as the current program with GET. To illustrate,
each is retrieved and then listed:

>GET AVERAGE
>LIST
AVERAGE
180 INPUT A,B,C,D,E
120 LET S=(A+B+C+D+E) /5
138 PRINT S
>GET AREA
>LIST
AREA
18 INPUT R
20 P=3.14
30 A=P*Rx*x%x2
43 PRINT A
>GET CALC
sLIST
CALC
12 INPUT R
20 P=3.14
3@ AzPxR*x%2
40 PRINT A
198 INPUT A,B,C,D,E
120 LET S=(A+B+C+D+E) /5
138 PRINT S

2-64

To determine whether a particular program is in the user’s library, he can type CATALOG followed
by the program name. If there are not too many files in the current log-on group, he can simply
type CATALOG to get a list of all the files currently saved.

In this example, the user requests a catalog of the program CALC. He then types RUN CALC and
the program will be retrieved from the library and run:

>CATALOG CALC

ACCOUNT=LANG GROUP=BASIC

NAME RECORDS NAME RECORDS NAME RECORDS
CALC SP 2

>

>RUN CALC

CALC

760

11504
234,56,43,61,54,73
49,6

If there is no further need for the saved programs, each may be purged as follows:

>PURGE CALC
>PURGE AREA
>PURGE AVERAGE

The program CALC remains the current program as a result of the RUN CALC command until it is
scratched or is replaced by another program in the user’s library, or until the user exits from
BASIC.

Saved programs remain in the library after log-off and can only be removed with the PURGE
command.

2-65

SECTION 1I
Arrays

An array (or matrix) is a set of variables which is known by one name. The individual elements of
an array are specified by the addition of a subscript to the array name: for example, M(7) is the
seventh element of array M.

Arrays have either one or two dimensions. A one-dime:isional array consists of a single column of
many rows. The elements are specified by a single subscript, indicating the row desired. Rows and
columns are numbered starting with 1. A two-dimensional array consists of a specified number of
rows and a specified number of columns organized into a table. For example, an array M of five
rows and three columns can be represented as follows:

Columns
1 2 3
1 M(1,1) M(1,2) M(1,3)

2 M(2,1) M(2,2) M(2,3)

Rows
w

M(3,1) M(3,2) M(3,3)

4 M(4,1) M(4,2) M(4,3)

5 M(5,1) M(5,2) M(5,3)

Each element of the array is specified by a pair of subscripts separated by commas; the first indicates
the row and the second the column.

Every array in a BASIC/3000 program is defined in one of three ways:

[Through a DIM statement that specifies the array name, and the number of rows and columns.

] Through a type declaration that specifies the same information as DIM and also declares the
array to contain a particular data type.

° Through usage—numeric arrays that are used but are not explicitly defined in a DIM or type
statement have 10 rows if one-dimensional or 10 rows and 10 columns if two-dimensional.

3-1

The physical size of an array is the total number of elements originally allocated to it; the logical
size is the current number of rows times the current number of columns. The physical size of an
array cannot be changed during execution, but the logical size (that is, the number of rows and
columns) can be changed with a REDIM statement so long as the physical size is not exceeded.

BASIC/3000 permits arrays of all numeric data types as well as one-dimensional string .arrays. Re-
marks in this section refer to numeric arrays, unless otherwise noted. String arrays are described in

section V.

This section describes DIM and REDIM as used for numeric arrays. In addition it describes special
statements used for computation and manipulation of one- and two-dimensional arrays. All of these

statements begin with the word MAT.

Whenever an array is referenced within a function or a call to an external procedure, it must be sub-
scripted by * if one-dimensional, or * * if two-dimensional. For example,

DIM A(10), B(4,10)

CALL SETVALUE (X,A(*),B(*,*))

3-2 APR 1978

DIM Statement

The DIM statement is used to reserve storage for arrays and to set upper bounds on the number of
elements in arrays. DIM statements may also be used with strings (see Section V).

Form
DIM variable(integer),variable(integer), . . .

where the variable is the array name, and the integer specifies the number of rows in a one-
dimensional array.

DIM variable(integer,integer),variable(integer,integer), . . .

where the variable names a two-dimensional array, and the first integer specifies the number of rows
in the array, the second integer the number of columns.

Rows and columns are numbered starting with 1. The overall array size is the number of elements.
In a one-dimensional array it is identical to the number of rows; in a two-dimensional array it is the
product of the rows and columns.

More than one array can be named in a DIM statement; they are separated by commas.

Explanation

The elements of an array are specified by subscripted variables. The values of the elements are un-
defined when the program begins. The number of elements in the array is defined by a DIM state-
ment, a type statement, or by usage. The DIM statement can appear anywhere in a program and is
not executed. If control transfers to a DIM statement, execution falls through to the next sequential

statement.

Examples

19 DIM Al15),B(15,51,B1(2,10])
20 REM A HAS 15 ROWS, ONE COLUMN

30 REM B AND Bl ARE TWO-DIMENSIONAL ARRAYS

40 REM B HAS 15 ROWS, 5 COLUMNS3B1 HAS 2 ROWS,18 COLUMNS
58 DIM Ct5),Cl(5,11,C2[1,5])

60 REM C AND Cl HAVE THE SAME DIMENSIONS: 5 ROWS, | COLUMN
70 REM C2 HAS 1 ROW, 5 COLUMNS

Note that the DIM statement for C1 in line 50 would be the same if it were C1(5).

3-3

REDIM Statement

The REDIM statement is used to vary the number of rows and columns in arrays. REDIM is also
used with strings (see Section V).

Form

REDIM variable(integer expression),variable(integer expression), . . .

REDIM variable(integer expression,integer expression),
variable(integer expression,integer expression), . . .

REDIM is like DIM except that the rows and columns can be specified with integer expressions.
The value of the expression must be positive.

When more than one array is specified in a REDIM expression, they are separated by commas.

Explanation

The variables in a REDIM statement must have been previously dimensioned either explicitly with
a DIM or type statement, or implicitly through use. When using REDIM to redimension an array,
the number of rows and columns can be changed as desired provided these two conditions are met:

e The number of dimensions must not be changed.

° The total number of elements (rows times columns) must not be increased beyond the
physical size (original dimensions) of the array.

Any data elements whose subscripts are included in both the old and new dimensions retain their
old values in the newly dimensioned array. New elements have undefined values.

Arrays may be implicitly redimensioned in MAT READ, MAT INPUT, and the MAT Initialization
and MAT Operation statements.

Examples

108 DIM A[201,B[5,5]

120 FOR X=1 TO 24

150 AlX1=0

140 NEXT X

159 Bll1,41=100

168 PRINT (FOR Azl TO 2@,A[A)),Bl1,4]
1706 REDIM AL101,Bl(2,6]

180 PRINT (FOR A=1 TO 10,A[A}),Bl1,4]

Each element in A is set to zero, then one element in B is set to 100, and the results are printed.
After redimensioning, the results are again printed. Note that B(4,1) is not affected by REDIM
since it is still within the bounds of the redimensioned array.

2 0 () 2 2
) 2 2 2 2
2 2) 2 2
2) 2 2 0
100

2 "/ 2 e 2
2 2 2 2]
102

In the example below, array C is dimensioned by use to have 10 rows and 10 columns, and array C5
to have 10 rows. An element in each array is assigned a value which, when the arrays are redimen-
sioned, are out of the bounds of the array. Other elements within the new bounds are then given
values and printed.

10 Cl4,!
20 C5I118
30 REM BOTH C AND C5 ARE DIMENSIONED BY USE
49 RENM C WITH 1@ ROWS AND 12 COLUMNS
50 REM C5 WITH 1@ ROWS
68 PRINT Cl4,1]
76 PRINT C5(18)
80 REDIM C[2,121,C5(5]
S@ REM CC4,1) AND C5(13) ARE NO LONGER DEFINED
139 Cl2,11=70
113 C5(51=100
122 PRINT LINC1),CI2,11],C5(5]
>RUN
99
2

10 109

3-5

Storing Data in Arrays

There are several methods of assigning values to arrays. Individual elements can be assigned using
the assignment statement:

10 LET Al5)=26
20 Bl1,91=N%x4,5

In addition, individual elements can appear in INPUT and READ statements:

18 INPUT All1,A[21,A[3]
20 READ BIl12)

If embedded FOR loops are used, entire arrays can be filled element by element:

12 INPUT (FOR N=1 TO 5,A[ND
20 READ (FOR N=1 TO 5,(FOR M=1 TO 5,BIN,M)))

To simplify the use of arrays, the MAT INPUT and MAT READ statements are provided to fill
entire arrays.

MAT READ/INPUT STATEMENTS

The MAT READ statement assigns values from DATA statements to entire arrays, row by row. If
dimensions are specified, the array is given new logical dimensions. The MAT INPUT statement is
identical to MAT READ except that the values are taken from the input device (e.g., terminal) as
in an INPUT statement.

Form
MAT READ array, array, . . .

MAT INPUT array, array, . . .

each array is either an array name (A,B7, etc.) or an array name followed by new dimensions
(A(5), B(5,d)). The dimensions can be expressions. The rules for assigning new dimensions are given
in the description of REDIM.

3-6

Explanation

If an array is dimensioned in MAT INPUT or MAT READ, the new logical size (i.e., the total
number of elements) must not be more than were originally allocated to the array, nor may the

number of dimensions be altered.

If the array is a string array, only the number of elements can be changed by MAT INPUT or MAT
READ. The size of the elements in the string cannot be changed. (See Section V for a description

of strings and string arrays.)

None of the special extensions available with a simple INPUT, such as saving excess input, are
allowed with MAT INPUT.

Examples

186 DIM AlS1),ClL10,4)
28 MAT READ A
25 RESTORE
30 MAT READ C(8,4]
42 PRINT Al1),A[5],A(9)]
5@ PRINT Cl1,11,Cl5,21,Cl8,4]
1000 DATA 1,2,3,4,5,6,7,8,9,18
1812 DATA 18,9,8,7,6,5,4,3,2,1
1238 DATA 30,31,32,33,34,35,36,37,38,39
1340 DATA 40,41,42,43,44,45,46,47,48,49

>RUN
l >)
l 3 41

Three elements from each array are printed. Array C is redimensioned by MAT READ in line 30.
Note that the RESTORE and DATA statements have the same functions with MAT READ as they

do with READ.

In the next example, the MAT INPUT statement expects input from the user. Both arrays A and C
are printed in their entirety using FOR loops as print itams.

180 DIM A[9],Cl2,3]

20 MAT INPUT A,C

38 PRINT (FOR N=1 TO 9,A(N))

40 PRINT (FOR N=! TO 2,(FOR M=1 TO 3,CIN,M}))

>RUN
79989 796,5,4,3,2,1
2722,33,44,55,66,717

S 8 7 6 5
4 3 2 l

22 33 44 55 66
177

3-7

Printing Data from Arrays

The mechanisms for printing data from arrays are parallel to those used for filling arrays. Individual
elements can be printed using PRINT:

180 PRINT ALl 1,A[21,A[3]

If embedded FOR loops are used, entire arrays can be printed element by element:

120 PRINT (FOR N=1 TO 15,A[N))
200 PRINT (FOR N=1 TO 15,(FOR M=1 TO 5,BIN,M)))

To simplify the use of arrays, the MAT PRINT statement is provided to print entire arrays. MAT
PRINT is also available for printing string arrays (see Section V) and for printing arrays to files (see
Section VIII). In addition, the length of the print line can be changed by using the MARGIN state-
ment (Section VIII) together with the MAT PRINT or MAT PRINT # statements. To print arrays
according to a customized format, see the MAT PRINT USING and MAT PRINT # USING state-

ments described in Section IX.

MAT PRINT STATEMENT

The MAT PRINT statement allows the printing of one or more complete arrays in a single statement.
The elements are printed row by row and can be spaced out in fields or packed together, as in the
PRINT statement (Section II).

Form
The form of a MAT PRINT statement is:
MAT PRINT mat print item,mat print item, . . .

A mat print item is either an array name or special function (TAB,LIN,CTL, and SPA); items are
separated by a comma or semicolon and the list is optionally terminated by a comma or semicolon.
FOR loops are not allowed in MAT PRINT.

Explanation

Each row of each array is printed separately, with double spacing between rows. If a comma follows
the array, each element starts in one of the consecutive divisions of the line (see “PRINT Statement,”
Section II). If a semicolon follows the array, the elements are printed packed together, as if each
element were followed by a semicolon. If nothing follows the last array, a comma is assumed. All
formatting is done according to the specifications under PRINT statement.

An undefined array element causes the program to terminate. A one-dimensional array is printed as
a single row.

3-8 AUG 1978

Examples

10
20
30
40
50
60
1000
1010
1028
>sRUN
2.5
2

11

16

6
11

DIM All101,BI[5,5]),Cl2,2)

MAT READ A,BI3,51,C

MAT PRINT A
PRINT

MAT PRINT B,LINCI),C,LINCI)
MAT PRINT A3 LINC2),Bs
DATA 2.5,46.7,75,04,50.1,0,0,0,159.8,8

DATA 1,42,3,4,5,6,748,9,10

DATA 11,12,13,14,15,16,17,18,15,20

46.7
2
2
7
12
17
)
46,7
2
2 3 4
7 8 9

12 13 14

]

>
18
15

75
)

13

2

14

50.1 @

10
15

Note the effect of the semicolons following A and B in the MAT PRINT statement, line 60, on the

printed output. MAT READ in line 20 redimensions array B; redimensioning of arrays is not per-

mitted in a MAT PRINT statement.

3-9

Initializing Arrays

Three special functions (ZER, CON, IDN) provide the means to initialize numeric arrays with
certain values, and optionally to redimension the arrays.

Form
The forms of MAT initialize statements are:

MAT numeric array=function

MAT numeric array=function(dimension)
The allowable functions are ZER, CON, and IDN.

The (dimension) part is optional and consists of one or two integer expressions separated by a
comma. It changes the logical size of the array.

Explanation
ZER sets all elements of the array to zero.
CON sets all elements of the array to one.

IDN assigns an identity array to the array specified. The identity array is all zeroes, except the
major diagonal which is all ones. The major diagonal starts in the upper left corner. If the array is
not square, ones are extended along the diagonal as far as possible.

If an array is redimensioned by ZER, CON or IDN, the new size cannot have more elements than
the original size, nor can the number of dimensions be altered.

Examples

18 DIM A[5,5)
20 MAT A=ZER
38 MAT PRINT A

>RUN

2 2 2 2
2 2 2 2
2 2 2 @
2 2 2 0
] 0 2]

3-10

Function ZER sets each element in array A to zero.

12 DIM AL 4,4)

20 MAT A=CON(3,4)

3@ MAT PRINT A
>RUN

1 1 l l
1 1 1 l
1 1 l l

MAT A=CON(3,4) redimensions array A to have 3 rows and 4 columns, and sets each element in
the newly dimensioned array to 1.

10 DIM AL5,5]
20 MAT A=IDN(4,4)
30 MAT PRINT A

>RUN

l 2 2 2
() 1 2]
2 " l)
2 %) 0 l

IDN(4,4) changes the dimensions of A to 4 rows by 4 columns and sets the major diagonal to 1, the
remaining elements to zero. If the array is not square, the extra elements are set to zero:

12 DIM A[5,5)
20 MAT A=IDN(5,3)
38 MAT PRINT A

>RUN

1] 2
] 1 2
) 2 1
] 2 2
%) 0 ']

3-11

Array Operations

This group of six statements provides functions which operate on one or more entire arrays:

MAT Copy statement

MAT Add/Subtract statement
MAT Multiply statement
MAT Inverse statement

MAT Transpose statement

MAT Scalar Multiply statement

The arrays named in each statement all must be the same numeric type (see Section IV, Variable
Types).

ARRAY COPYING
The MAT Copy statement copies one array into another. The form is
MAT numeric array=numeric array

The array on the right is copied into the array on the left. The destination array must have at least
as many elements as the source and the same number of dimensions. It is redimensioned to have
the same number of rows and columns as the source.

Examples

19 DIM AlL2,3),B2(3,2]
20 MAT READ B2
30 MAT Al=B2
48 MAT PRINT Al
1000 DATA 2.5,46.7,75,08,50.1,8,0,8,15.8,0

>RUN

245 46.7
75 2
50.1 2

3-12

ARRAY ADDITION/SUBTRACTION

The MAT Add/Subtract statement performs array addition or subtraction (element by element)
upon arrays of identical logical size and assigns the result to another array. The form is

MAT numeric array=numeric array-+numeric array

MAT numeric array=numeric array — numeric array

The resulting array is assigned to the array on the left, which is redimensioned as in MAT copy. Any
or all of these arrays may be the same array.

Examples

10 DIM B(2,21,Al1(2,2],A2([2,2]

20 MAT READ Al,A2

38 MAT B=Al1+A2

48 MAT PRINT Al,LINC2),A2,LINC2),B
1210 DATA 1,2,3,4,5,6,7,8,9,10

>sRUN

| 2
3 4
5 6
7 8
6 8
19 12

The values in arrays Al and A2 are added to produce the values printed for array B. Using the same
data, A1l is subtracted from A2 to produce the following results in B:

12 DIM Bl2,2]),A112,2],A2(2,2)
20 MAT READ Al,A2
38 MAT B:=Al-A2
40 MAT PRINT B
1318 DATA 1,2,3,4,5,6,7,8,9,102

>RUN
-4 -4
-4 -4

3-13

ARRAY MULTIPLICATION

The MAT Multiply statement performs an array multiplication on an array of dimension m by n
and an array of dimension n by p; that is, the number of columns in the first array must equal the
number of rows in the second. The result, a new array of dimension m by p, is assigned to a third
array. The form is

MAT numeric array = numeric array * numeric array

Each row of the array to the left of * is multiplied by each column of the array on the right to pro-
duce the new element. The resulting array is assigned to the array to the left of the assignment
operator. This array is redimensioned to dimension m by p as in the MAT Copy statement. Any or
all of these arrays may be the same array.

Examples

18 DIM Al1(2,31,A2(3,2]1,B(2,2]

20 MAT READ Al,A2

30 MAT B=Al1%A2

A® MAT PRINT Al3LINC1),423LINC1),B;
100 DATA 1,2,3,4,5,6
2@0 DATA 4,5, 6, 7, 8,9

sRUN
| 2 3
array Al
4 5 6
4 5
s 7 array A2
8 S
42 46
array B=A1%A2
94 129

The method for performing a matrix multiplication is to multiply each element of the first row of
array Al by the corresponding element of the first column of A2 and to add the products. The
result is the element B(1,1). Then each element in the first row of Al is multiplied by the corres-
ponding element in the second column of A2 and these are added to produce B(1,2). B(2,1) is the
sum of the products resulting from the multiplication of row 2 of Al and column 1 of A2;

B(2,2) is the sum of the products of row 2 of Al and column 2 of A2. To illustrate:

1X4 (4) + 2X6 (12) + 3X8 (24) = 40 1X5 (5) + 2X7 (14) + 3X9 (27) = 46
4X4 (16) + 5X6 (30) + 6X8 (48) = 94 4X5 (20) + 5X7 (35) + 6X9 (54) = 109

3-14

A second example multiplies the square array C by itself. In this case, the number of columns
always equals the number of rows.

18 DIM C(3,3]

20 MAT INPUT C

30 MAT PRINT CsLINCL)
48 MAT C=Cx*C

58 MAT PRINT Cj

>RUN
2294,6,8,1,3,5,7,9
2 4)

8 l 3

5 7 S

66 54 78
39 54 78
11l 52 132

To achieve the result MAT C=C*C;

C(1,1) = 2X2 (4) + 4X8 (32) + 6X5 (30) = 66
C(1,2) = 2X4 (8) + 4X1 (4) + 6X7 (42) = 54
C(1,3) = 2X6 (12) + 4X3 (12) + 6X9 (54) = 78
C(2,1) = 8X2 (16) + 1X8 (8) + 3X5 (15) = 39
C(2,2) = 8X4 (32) + 1X1 (1) + 3X7 (21) = 54
C(2,3) = 8X6 (48) + 1X3 (3) + 3X9 (27) = 78
C(3,1) = 5X2 (10) + TX8 (56) + 9X5 (45) = 111
C(3,2) 5X4 (20) + TX1 () + 9X7 (63) = 90
C(3,3) 5X6 (30) + TX3 (21) + 9X9 (81) = 132

3-15

This next example multiplies a two-dimensional array with three rows and two columns by a one
dimensional array with two rows. The result is a one-dimensional array with three rows.

19 DIM AL3,21,Bl21,Cl3]
29 MAT READ A
38 MAT READ B
42 MAT C=Ax*B

50 DATA 1,2,3,4,5,6,1,2
60 MAT PRINT AjLINCI),ByLINC1),C;
>RUN
1 2
K] 4
5 6
l 2
5 11 17

To achieve the result MAT C=A*B:
C(1)=1X1(1)+2X2(4)=5

C(2)= 3X1 (3) +4X2 (8)=11
C(3)= 5X1 (5) + 6X2 (12) = 17

ARRAY INVERSION

The MAT Inverse statement assigns the inverse of a square array (i.e., number of rows equals
number of columns) to another array. The inverse of an array is the array which, when multiplied
by the original array, results in the identity array. The form is

MAT numeric array = INV (numeric array)

The arrays must not have been declared type integer (see Section IV). The array to the left of the
assignment operator is redimensioned as in MAT Copy. The two arrays may be the same.

3-16

Example

10 DIM A(10,31,Bl5,5]
20 MAT INPUT B

30 MAT A=INV(B)

43 MAT PRINT B,LINC(2),A

;T?g,ﬁ,ﬂ,ﬂ,?.,l,Z,@,D,&,Z,l,ﬂ,@,lt,S,Z. 19045,4,3,2,1
l 2) 2
2 l 0 2
3 2 l 2
4 3 2 l
5 4 3 2
l 2) 2

-2 l 2 2
1 -2 l 2
) l -2 1
] 2 1 -2

25 values are input to the square array B, then using INV, array A is set to the inverse of B.
Array A is redimensioned to the same dimensions as B.

3-17

ARRAY TRANSPOSITION

The MAT Transpose statement assigns the transposition of an n by m array to an m by n array.
Transposition switches rows and columns. The form is

MAT numeric array = TRN (numeric array)

The array to the left is redimensioned as in the MAT Copy statement. The two arrays may be the
same.

Example

19 DIM A(5,31,Bl3,5]

20 MAT INPUT B

30 MAT A=TRN(B)

40 MAT PRINT B,LINC(2),A
>RUN
?:,2,5,4,5,6,7,8é9,10,11,12,ls,éll,15

4 5
§ 1 8 S 19
11 12 13 14 15

l 6 11
2 7 12
3 8 13
4 S 14
5 10 15

Array A is the result of transposing array B with the TRN function. The columns in B are the
rows in A; the rows in B are the columns in A.

3-18

ARRAY SCALAR MULTIPLICATION

The MAT Scalar Multiply statement multiplies all of the elements of an array by a specified value
and assigns the result to another array. The form is

MAT numeric array = (numeric expression) ¥ numeric array

The array to the left is redimensioned as in the MAT Copy statement. The two arrays may be the

same.
Example
1@ N=5
20 MAT INPUT B
38 PRINT

40 MAT Al=(N%2)*B

50 MAT PRINT Al

60 DIM All3,4)

70 DIM B(2,6])
>RUN
?l,2,5,4,5,6,7,8,9,1%,11,12

10 20 30 49 52 690
79 80 S0 loe 110 128

Scalar multiplication simply multiplies each element of the array by the specified numeric expres-
sion, in this case N*2 or 10 since N=5. Each element of the resulting array Al is 10 times the
corresponding element in B. The dimensions of Al are copied from B. The two arrays must be the

same numeric type; the numeric expression may be a different type.

The numeric expression, if a different type, is converted to the type of the arrays before multipli-
cation is performed. The conversion may affect the result if, for instance, the scalar expression is
type real and the arrays are type integer. Consider the following:

MAT A = (2.5)*B, where A and B are integers, is equivalent to MAT A = (3)*B.

3-19

Array Functions

Two functions which can be used in expressions return information about arrays: ROW and COL.

ROW Function
The ROW function has the form
ROW (array)

and returns the number of rows in the array (a one-dimensional array consists of one column,
many rows).

COL Function
The COL function has the form
COL (array)

and returns the number of columns in the array (returns 1 if the array is one-dimensional).

Examples

18 READ M, N
28 MAT READ A[M,N]
3@ PRINT (FOR I=1 TO ROWCA),(FOR J=1 TO COL(A),AlI,J1))
40 DATA 3,5,1,2,3,4,5,6,7,9,9,18,11,12,13,14,15

>?UN

2 3 4
§ 7 8 9
11 12 13 14

10
15

The dimensions of array A are read into the variables M and N. The functions ROW(A) and COL(A)

are used in the FOR loop to determine the print bounds for printing the array.

3-20

SECTION IV
Variable Types

In addition to the floating-point real numbers used so far in this manual, BASIC/3000 allows three
additional representations of data: integer, long real, and complex. Including real, these four num-
ber types apply to variables, arrays, constants, expressions, assignments, functions, input and output.

4-1

Type Statements

The type statements allocate space for variables and arrays and assign them a specific data type. Any
particular variable or array can appear only in one type statement or DIM statement.

Form
The form of the type statement is
type typespec list

where type is either INTEGER, REAL, LONG, or COMPLEX. The typespec list includes variables
and arrays to be assigned the data type of type. Arrays are defined in the same form as in the DIM
statement (Section III).

Explanation

A simple variable or array which does not appear in a type statement is automatically type REAL.
The explicit typing of variables in a REAL statement is, therefore, redundant, except within a func-
tion body, where all local variables must be declared in order to distinguish them from variables of
the same name outside the function. Real numbers are represented as 32-bit quantities consisting
of a sign, exponent, and fraction. The range of real numbers is £ (10-77,1077) with approximately
6 to 7 digits of precision.

Variables which appear in an INTEGER statement hold integers. The range of integers is -32767 to
32767.

Variables which appear in a LONG statement hold long numbers. Long representation is a 64-bit
quantity with sign, exponent, and fraction. The range is identical to real, but long has a precision
of 16 to 17 digits.

Variables which appear in a COMPLEX statement hold numbers in complex form. Complex repre-

sentation is a 64-bit quantity consisting of two real numbers, one for the real part of the complex
number and one for the imaginary part.

NUMERIC CONSTANT FORMS

When constants are used in an expression, DATA statement, or during execution of an INPUT or
ENTER statement, they are represented in one of five forms: integer, fixed-point, floating-point,
complex, or long. Fixed and floating-point numbers are type REAL.

4-2

Integer Form

An integer is a series of digits without a decimal point. A number in integer form is represented
externally (e.g., on the list device) as type INTEGER, but internally as type REAL. Examples of

integer form:

1® INTEGER A,B,C,D
20 A=102,B=150,C=5903,D:=5
>RUN
10 150 595083 5

When arithmetic operations are performed on expressions containing an integer constant, the results
are real numbers. However, when both operands are type INTEGER, the result is truncated to the

nearest integer. For instance,

1@ INTEGER I,J
20 LET 1:=3,4=5
33 PRINT 3/5,3/7d,1/5,1/J
>RUN
o6 6 .6 2

Fixed-Point Form

A fixed-point number is a series of digits with a decimal point. A number in fixed-point form is
represented internally as type REAL. For example:

132 REAL A,B,C,D
20 A:73,B:505’C:oegg557.D:155097

32 PRINT A,B,C,D

>RUN
73 5.5 «2B05617 153.57

Floating-Point Form

A floating-point number is a fixed or integer form number followed by the letter E and an optionally
signed exponent. The exponent represents the power of 10 by which the number is multiplied. For
example 3E-11 equals 3 X 10-11, Numbers in floating-point form are represented internally as type
REAL. Examples of floating-point numbers: ‘

18 REAL A,B,C,D
20 A=3E-11,B=,4723E-4,C=1.1E4,D=1,.1EL1D
38 PRINT A,B,C,D
>RUN
3 .00020E-11 4,72300E-05 11020 l.120CVE+1@

A fixed or floating point real number that has an integer value between -999999 and 999999 is
printed as an integer.

APR 1978 4-3

Complex Form

A complex number consists of two numbers in integer, fixed-point, or floating-point form, separated
by a comma and enclosed in parentheses. The first number is the real part, the second represents
the imaginary part. Complex numbers are represented internally as type COMPLEX. Examples of

complex numbers:

18 COMPLEX A,B,C,D

20 A=(3,5),B=(3.,2E-9,8),C=(8,-47),D=(0,d)

308 PRINT A,B,C,D

>RUN

(5.,00000E+00, 5.00000E+00) (3.20000E-25, 0.20000E+00)

(2.,00000:+00,-4.70000E+01) (0.000008E+00, 0.00000E+09)

Long Form

Numbers in long form are identical to numbers in real form, except that the letter E is replaced by
the letter L. Long numbers have almost double the precision of real numbers. Long numbers are
represented internally as type LONG. Examples of long numbers:

1% LONG A>B,C»D
20 A=3L-11,B=4.751259L-6,C=-1.1LS5,D=1.1L~-15
33 PRINT A,B,C,D

>RUN
3.0007%200002000307L.-11 4.751259000000000L.-06
-1.10000000000002AL+@35 1.10000000000308AL-15

Examples of Type Statements

This example assigns values to and prints two integer variables and an integer array:

12 INTEGER A,Bl,N[5,5])
20 LET A=5,81=19

30 MAT N=ZER

49 PRINT A,BI

580 MAT PRINT Ng

SRUN
5 19

2)) 2)
2 8 2 2)
2) 2) 2
2))))
2 2 0 o

Note that the type statement is used instead of a DIM statement to define the dimensions of array N.

4-4

This example assigns values to and prints two real variables; one is printed as floating-point and the
other as fixed-point:

19 REAL 1,J

20 LET 1:=2795348.6,J=2,79E-3
33 PRINT I,J

>RUN

2.79535E+86 082179

I is printed as a floating-point number because its magnitude is greater than 999999.5; J is printed
as fixed-point because its magnitude is less than 999999.5 (see Numeric Output Formats in the
PRINT statement description, Section II). Note that the printed value of I is rounded.

The following example inputs values to the type LONG variable P, then doubles each value and
prints it:
12 LONG P
20 INPUT P
30 LET P=P+P
4% PRINT P
>RUN
MW.TL+1D
S5.4000000003000300L+10

>RUN
?72.5L+12
S.000000003300023L+12

>RUN
72.0L+11
4.000000000000030L+11

The example below reads data into two complex variables and one complex array, and then prints
the variable and array values:

12 COMPLEX C9,&8,MI[15)

20 READ C9,Q8

38 MAT READ M[5]

42 PRINT C9,LINCI),Q8,LINCL)
5@ MAT PRINT M

9@ DATA (4052"6".2E‘9),4.25E6

>R188 DATA (3’9)'(405"'52), (4 .SE-S, 1 OZE-S), 25 05,5502), (@,f())

(4.50000E-926, |.20000E-39)
(4.23000E+06, 0.00008E+20)

(3.00000E+08, 9.00080E+020) (4.53200E+20,-3.30823E+21)

(4.50000E-96, |.20800E-29) (2,53000E+021, 3.22003E+01)
(0.00000E+00, 0.02000E+202)

4-5

PRINTING LONG AND COMPLEX DATA

Numbers of all data types can be output with the PRINT statement. All numeric quantities, regard-
less of type, are printed left-justified in a field whose width is always a multiple of 3. At least one
blank is always printed on the right side of the field, unless it is the last item on the line.

The output form for values of type INTEGER and REAL is described under Numeric Output For-
mats in the PRINT statement description, Section II.

The output form for long quantities is an 16 digit fixed-point number followed by an exponent and
two trailing blanks. The total required is 24 print positions.

sign fixed-point number L+exponent trailing blanks
16 digits & decimal pt. L
1 1 i I i 1 1 i L | 1]] 1 1 1 1 1 1 1

For example:

12 LONG A>B,C,D,E

20 A=7.3215L9,B=4.32L-8

30 C=4.3214978L-8,D=2.173L2

48 E=2.173L6

5@ PRINT A3BSC5LINC1)>DSE
>RUN
7.3215002000000320L+39 4.3200200000000033L-08 4. 321497800020200L-08
2.173000000008000L+32 2.1730000000000800L+086

The output form for complex numbers is two real numbers separated by a comma and enclosed in
parentheses (i.e., this is the same form as a complex constant). Each part of the number is printed
as a separate 6-digit fixed-point number, followed by an exponent. The total required is 30 print
positions including 3 trailing blanks:

(real number real number trailing blanks
)
(6 digits & decimal pt. | Ezxexp , 6 digits & decimal pt.| Ezxexp |[)
f 1 L 1] 1 L. 1 1 1 ? 1 1 [] 1 1 1 A1 1 1 1
sign sign

For example:

18 COMPLEX A,B
20 LET A=(l.2E8,1.39E-6)
38 LET B=(12.5,1.56E6)
43 PRINT AsB
>RUN
(1.20000E+08, |.35020E-06) (1.25000E+81, 1.56030E+26)

4-6

NUMERIC EXPRESSIONS

Variables of all data types and numbers of all data forms can be used in numeric expressions.
BASIC/3000 provides the arithmetic operations for all four data types as well as automatic conver-
sion when two operands are not of the same type. The following table summarizes the results of
combining arithmetic elements with any operator (except AND, OR, NOT, and relationals):

Second Element Data Type

INTEGER REAL LONG COMPLEX
g
£ INTEGER INTEGER REAL LONG COMPLEX
]
]
8 REAL REAL REAL LONG COMPLEX
€
Y]
g LONG LONG LONG LONG COMPLEX
o]
g COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX
w

When the operators AND, OR, NOT, =, <,>, <=, >=, and <> are used, the result is always type
REAL (O for false, 1 for true). When relations are performed on complex numbers, the real parts
are compared first; the imaginary parts are compared only if the real parts are equal.

Examples

An integer combined with a real type in an expression results in a real number; two integers result
in an integer:

12 INTEGER 1,I1
20 REAL R
30 LET 1=25,11=50,R=2.75
43 PRINT I+I1l
5@ PRINT I+R
>RUN
75
27.75

A real type combined with a long results in a long type number; a long type combined with a com-
plex results in a complex type number:

12 REAL R
20 LONG L
33 LET L=-5.25L2,R=2.75
4¢ PRINT L+R
5@ COMPLEX C
60 C=(2.75,-1.25)
70 PRINT L+C
>RUN
-5.222500000000000L+022
(-5.22250E+02,-1.25200E+020)

CONDITIONAL STATEMENT

The numeric expression used to make a branching decision in a conditional statement (Section II)

can contain, or result in, any numeric data type. The expression is considered false if equal to O,

true otherwise.

NUMERIC ASSIGNMENT

When the result of a numeric expression is ass<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>