
f¥h~ HEWLETT
~~ PACKARD

Information Networks Division

Location Code: 66-7850

Project Number: 6651-3035

September 28, 1987

Jeff Orum

Version: A. 00. 04

* HP Confidential *

::-.:

Dn

Copyright © 1987 HEWLETT-PACKARD COMPANY

I'---- P_R_I_N_T_IN_G_H_I_S_T_O_R_Y_

Version A. 00. 00 - Original Version.

Version A. 00. 01 -The names of the procedures the Telnet Monitor calls were changed to eliminate the
II_II character. Changed interface specification for PDRecvMsg and added a description of
lOWAlT. Changed values for the return codes and special function status returns. Updated the
configuration section. Added a maximum size and more details on QStat in the pseudo IOQ
specification.

Version A. 00. 02 - A note was added regarding the cstation parameter in IOWait. Return codes %407 and
%413 were added. Function 5) set read timeout, was eliminated.

Version A. 00. 03 - Added section on FTP logon and logoff. A note was added for the write pseudo IOQ
when switching from pre to post spacing. Added the fact that break should be enabled on certain
set logon pseudo IOQs.

Version A. 00. 04 - Added information on the logon parameter for FTPLOGON. New result codes were
added to FTPLOGON and FTPLOGOFF.

Version A. 00. as - Updated configuration information. Removed restrictions on aborting the user sesion
for FTPLOGOFF.

CONTENTS I·

Section 1
PRODUCT IDENTIFICATION

1. 1 Product Name 1-1
1.2 Product Abstract 1-1
1. 3 Project Personnel. 1-1

Section 2
PRODUCT OVERVIEW

2. 1 Product Goals. 2- 1
2.2 Interface Overview 2- 2
2.3 Module Description 2- 3
2.3.1 Application Program and File System 2- 3
2.3.2 Driver .. . 2- 3
2.3.3 InItiation, Termination, Send and Receive. . 2- 3
2.3.4 Wollongong Code -= 2- 3
2. 4 Functional Description . 2- 4
2.4. 1 Session Startup 2-4
2.4.2 Steady State 2-4
2.4.3 Termination 2-4
2.5 Configuration 2- 5

Section 3
INTERFACE SPECIFICATIONS

3. 1 Initialize Pseudo Driver .
3.2 Send Message To Driver .
3.3 Receive Message From Driver .
3.4 Terminate Pseudo Driver .
3. 5 Return Codes .

Section 4
DATA STRUCTURE SPECIFICATIONS

· 3-1
· 3-1
· 3-2
· 3-2
· 3-3

4.1 Normal I/O Functions. 4- 3
4.1.0 Function 0 - Read 4-3
4. 1. 1 Function 1 - Write 4- 6
4. 1. 2 Function 2 - File Open. .. 4- 6
4. 1. 3 Function 3 - File Close. 4- 6
4.1.4 Function 4 - Device Close. 4-6

I CONTENTS (continued)

4. 1. 5 Function 5 - Set Read Timeout 4-7
4.1. 6. Function 6 - Set Input Speed 4-7
4.1.7 Function 7 - Set Output Speed 4-7
4. 1. 8 Function 8 - Enable Echo. 4-7
4. 1. 9 Function 9 - Disable Echo. 4-7
4. 1. 10 Fun~tion 10 - Disable System Break 4-7
4. 1. 11 Function 11 - Enable System Break. 4- 8
4.1. 12 Function 12 - Disable Subsystem Break " 4- 8
4.1.13 Function 13 - Enable Subsytem Break .. " 4-8
4. 1. 14 Function 14 - Disable Tape Mode 4- 8
4. 1. 15 Function 15 - Enable Tape Mode 4- 8
4. 1. 16 Function 16 - Disable Read Timer 4- 8
4. 1. 17 Function 17 - Enable Read Timer 4- 8
4. 1. 18 Function 18 - Return Read Time 4- 8
4. 1. 19 Function 19 - Disable Parity 4-9
4. 1. 20 Function 20 - Enable Parity ~ 4-9
4. 1. 21 Function 21 - Set Logon Type 4- 9
4. 1. 22 Function 22 - Unused 4- 9
4. 1. 23 Function 23 - Set Terminal Type 4-9
4.1. 24 Function 24 - Allocate Terminal 4-9
4. 1. 25 Function 25 - Clear Flush and Write 4-9
4.1. 26 Function 26 - Enable Line Delete Echo 4-10
4. 1. 27 Function 27 - Disable Line Delete Echo 4-10
4. 1. 28 Function 28 - Quiese IOQ 4-10
4.1. 29 Function 29 - Paper Tape Read 4-10
4. 1. 30 Function 30 - Set/Clear Break 4-10
4. 1. 31 Function 31 - Set/Clear Console 4-10
4. 1. 32 Function 32 - Set Parity 4-10
4. 1. 33 Function 33 - Allocate Terminal . 4-11
4.1. 34 Function 34 - Set Terminal Type 4-11
4. 1. 35 Function 35 - Get Terminal Type 4-11
4.1. 36 Punction 36 - Get Output Speed 4-11
4.1. 37 Function 37 - Set Unedited Mode 4-11
4. 1. 38 Function 38 - Vary Console Mode 4-12
4. 1. 39 Function 39 - Speedsense 4-12
4. 1. 40 Function 192 - Device Control. 4-13
4. 1. 40.1 Item 28 - Block Mode Support. 4-13
4.2 Special Functions 4-14
4.2. 1 Function 1 - Initialize Driver 4-14
4. 2. 2 Function 2 - Terminate Driver 4-14

/ 4.2.3 Function 3 - Invoke Break 4-14
4.2.4 Function 4 - Invoke Subsystem Break 4-14

CONTENTS (continued) I

4. 3 Status Returns 4-15
4. 3. 1 Status Returns For Normal I/O 4-15
4. 3. 1. 1 General Status 1 - Successful . 4-1 5
4. 3. 1. 2 General Status 3 - Unusual Condition 4-15
4.3. 1. 3 General Status 4 - Irrecoverable Error 4-15
4.3.1.4 General Status 5 - Error In Control Information 4-16
4.3.2 Special Functions Status Returns 4-16

Section 5
BREAK AND SUBSYSTEM BREAK

5. 1 Break Handling 5-1
5.1.1 Enabling and Disabling 5-1
5. 1.2 Invoking 5-1
5.1.3 Errors...................•.......................... 5-2
5.2 Subsystem Break Handling 5- 3
5.2.1 Enabling and Disabling 5-3
5.2.2 Invoking - 5-3
5.2.3 Errors 5-4
5. 3 Fast Break and Subsystem Break . 5- 4

Section 6
NON-HP3000 SYSTEMS

6.1 Block Mode Support 6-1
6. 1. 1 XON/XOFF VIEW Read 6-1
6. 1.2 OWN Read 6--2

Section 7
FTP LOGON AND LOGOFF

7.1 FTPLogon 7-1
7.2 FTPLogoff 7-2

PRODUCT IDENTIFICATION

1.1 PRODUCT NAME

Telnet/3000-V

1.2 PRODUCT ABSTRACT

Telnet/3000-V is a joint project between IND and The Wollongong Group to provide the Defense Data
Network's Telnet virtual terminal service. HP's involvement in Telnet is limited to producing an
interface into the I/O system for Wollongong. This document will describe that interface.

1.3 PROJECT PERSONNEL

Jeff Orum
Ollie Polk
Katy Jenkins (Project Manager)

* lit' Confidential *
1-1

PRODUCT OVERVIEW

2.1 PRODUCT GOALS

Hewlett-Packard had a number of goals in mind when this product was designed:

• Allow Wollongong to write their code as a user program. Any privileged mode code should be
supplied by HP.

• Isolate the 3000 I/O system from Wollongong. This will make their code portable. Also, this
guarantees that the interface between HP code and Wollongong code will remain consistent.
Should the I/O system interface change, only the HP code will need to be modified.

• Support running VPLUS applications on terminals that are connected to an HP 9000.

• By providing this interface, other code (as yet unknown) could use the HP code in a similar
manner to Wollongong's. In effect, HP is providing a generic driver.

* HP Confidential *
2-1

Product Overview

2.2 INTERFACE OVERVIEW

A block picture of this product is as follows:

Application Program

File & r/o System

Driver

Code in the
box is
provided by
HP.

,

Recv
Code

Send
Code

Well-defined
interface.)

Initiation/
Termination

Code

Wollongong Code
Telnet Monitor---- ---r-

IPC
Intrinsics

Figure 2. 1 Telnet Code Structure

* HP Confidential *
2-2

Product Overview

2.3 MODULE DESCRIPTION

2.3.1 Application Program and File System

The application program uses standard MPE Intrinsics to direct I/O to the terminal. Because it uses this
interface, it does not know if the terminal is directly connected to the system or is coming in from a
remote machine. Note that the application program can be the command interpreter.

The file and I/O system accepts requests from the application program. It will then build a data structure
(called an 10Q) that specifies what type of operation to perform (e. g. read, write or control).

2.3.2 Driver

In MPE, a driver accepts IOQ's from the file system and then actually performs the I/O. Typically,
drivers have real hardware associated with them (e.g. a terminal or printer). When a driver receives an
IOQ, it will issue the necessary commands to the hardware to perform the operation.

The Telnet driver has no real hardware associated with it and so it is referred to as a pseudo driver. Since
no hardware exists for this driver, the device it controls is called a pseudo terminal. The purpose of this
driver is to accept IOQ's and translate them into a data structure, a pseudo 10Q, that will be sent to the
Wollongong code. This data structure will be documented in Section 4. Note that if the structure of the
IOQ (or any other system table) changes, only the driver needs to be modified and it will still output the
same data structure to the Wollongong code. Thus the interface between the HP code and Wollongong
code will remain consistent.

2.3.3 Initiation, Termination, Send and Receive

These modules are provided to allow the Wollongong code to communicate with the driver. They are
necessary because privileged mode is required to do the communication. The interface for these modules
is described in Section 3.

2.3.4 Wollongong Code

This code is also called the Telnet monitor. Its purpose is to build the appropriate Telnet messages and
send them out over the network. I assumed in the diagram that IPC would be used, but this could change
and it would not affect the HP supplied code. The monitor code would be responsible for implementing
any changes in the Telnet protocol.

The monitor will need to have a receive posted on the network and the driver simultaneously. Due to the
asynchronous nature of terminals, it is not known where data to the monitor will come from next. For
example, the monitor could be receiving write requests from the driver and then a break request would
come in over the network.

In order to do this, the monitor will operate in nowait mode. The monitor will post a receive on the driver
which will complete immediately with no data and then post a receive on the network which will also
complete immediately with no data. The monitor will then call the intrinsic lOWAIT which will impede
it. When either of the receives completes, the monitor will be awoken. It can then process the data that
has arrived.

* HP Confidential *
2-3

Product Overview

2.4 FUNCTIONAL DESCRIPTION

2.4.1 Session Startup

The following description of how the monitor gets started is only a suggestion. It will be up to
Wollongong to decide exactly how to start a monitor.

There will need to be a process that listens to a well-known address for a connection request. Perhaps this
process could be in a job that is streamed whenever the system comes up. When a request is received from
a remote machine, this process will create a Telnet monitor process.

The Telnet monitor will send an initialization request to the pseudo driver. The driver will obtain a
pseudo terminal and inform MPE to start the logon procedure. MPE will, through the driver, issue a write
and then a read. At this point, we are operating in steady state mode.

2.4.2 Steady State

In steady state mode, the Telnet monitor will receive I/O requests from the pseudo terminal driver. It
will eIther process them locally or send some sort of Telnet message to the remote machine. Once the
monitor has finished processing a request it will send the results to the driver.

An exception to this driver initiated form of operation is if an interrupt process request comes from the
remote side. In this case, the monitor will need to notify the driver that this condition exists. The driver
will notify MPE and then process the requests that MPE sends down to it.

2.4.3 Termination

A termination request can come from either the driver or the network. In either case, the monitor should
call the termination code that is supplied by HP. This will terminate the session, free the pseudo terminal,
and break the connection from the driver to the monitor. The monitor should not do any more sends or
receives from the driver at this point. Once the monitor has finished its termination code, it can also
terminate.

* HP Confidential *
2-4

Product Overview

2.5 CONFIGURATION

Telnet pseudo terminals can be configured with SYSDUMP or INITIAL. The following dIalogue is used in
both:

ANY CHANGES? Y

I/O CONFIGURATION CHANGES? Y

« Note, for each pseudo terminal you want, do the following: »
LOGICAL DEVICE #? N, where N is the LDEV of the new pseudo terminal
DEVICE NAME? «carriage return»
DRT #? Input the logical device number of the console preceded by

a #. For example, if the console is Idev 20, input #20.
UNIT #? 0
SOFTWARE CHANNEL #? 0
TYPE? 16
SUB TYPE? 0
ENTER [TERM TYPE #],[DESCRIPTOR FILENAME] ? «carriage return»
SPEED IN CHARACTERS PER SECOND? «carriage return»
RECORD WIDTH? 40
OUTPUT DEVICE? N, same as for the logical device question.
ACCEPT JOB/SESSIONS? Y
ACCEPT DATA? n
INTERACTIVE? y
DUPLICATIVE? Y
INITIALLY SPOOLED? «carriage return»
AUTO REPLY? «carriage return»
DRIVER NAME? ioptermO
DEVICE CLASSES? input any name here you want

* HP Confidential *
2-5

INTERFACE SPECIFICATIONS

This section will describe the procedures the Telnet monitor uses to communicate with the pseudo driver.
The interface specifications will be given in Pascal.

3.1 INITIALIZE PSEUDO DRIVER

Procedure PDlnit (var Idev
\:'a,r ret urn code

small int,
small-int) ;

Function:
Initializes the connection to the pseudo driver. The pseudo
driver will allocate a pseudo device and start the logon
process. This procedure must be called by the monitor
before any attempt is made to communicate with the driver.

Input Parameters:
None.

Output Parameters:
ldev - the logical devi~e number of the pseudo

terminal. Required for further communication
with the driver.

return code - See codes in section 3.5.

3.2 SEND MESSAGE TO D'R'VER

Procedure PDSendMsg { ldev
msg

var return code

small_int,
pIOQ pt r,
small int);

Function:
Sends the pseudo driver a message. If this procedure returns
successful, the driver has received the message.

Input Parameters:
- the logical device number of the pseudo terminal.

a pointer to the pseudo IOQ message. See section
4 for a description of this data structure.

Output Parameters:
return code - See codes in section 3.5.

* lIP Confidential *
3-1

Interface Specifications

3.3 RECEIVE MESSAGE FROM DRIVER

Procedure PDRecvMsg (ldev
var number
var return code

small int,
small:=int,
small int);

Function:
Initiates a receive from the driver. The receive will be done
nowait, so control will be immediately returned with no data.
An IOWAIT must be done in order to receive the data.

Input Parameters:
ldev - the logical device number of the pseudo terminal.

Output Parameters:
number - contains the completion number IOWAIT will return

when a pseudo IOQ is received.
return code - See codes in section 3.5. Note that a

successful completion only indicates that the
receive has been posted. When IOWAIT completes,
if the pseudo IOQ is a special function reply,
QStat should be examined to get the status of
the request.

The IOWAIT that is done by the Telnet Monitor should be done as follows:
completion num := IOWAIT (, buffer, count)

Because the file-number is not specified, this IOWAIT will complete when any I/O completes. If a pseudo
IOQ caused the completion, the completion_num parameter will equal the number parameter that is
returned by PDRecvMsg. The buffer parameter should point to the Telnet Monitor's receive buffer for
pseudo IOQs. The buffer must be large enough to accommodate the pseudo IOQ or an error will be
returned. The count parameter will be set to the pseudo IOQ length in words. The cstation parameter
should not be specified.

3.4 TERMINATE PSEUDO DRIVER

Procedure PDTerm ldev
var retu rn code

small int,
small-int);

Function:
Terminates the connection to the pseudo driver. The pseudo
driver will release the pseudo terminal and terminate the
session (if there is one) logged onto the terminal. Once
this procedure is called, no further communication with the
driver is possible.

Input Parameters:
ldev - the logical device number of the pseudo terminal.

Output Parameters:
return code - See codes in section 3.5.

* HP Confidential *
3-2

3.5 RETURN CODES

The following are the return codes these routines will return.

Interface Specifications

Code %
1
402
403
405
406
407
411
412
413

Meaning
Successful
Invalid ldev passed
Unsupported function, QType not 1 or 2
Can't receive message from driver
Can't send message to driver
Can't find request with specified QNum
No pseudo terminals available
Can't set up communication with driver
Incompatible version of the driver

* HP Confidential *
3-3

DATA STRUCTURE SPECIFICATIONS

This section will describe the data structures the Telnet monitor and driver use to communicate with each
other. The main data structure is a pseudo IOQ, and is shown below:

Word

o

2

3

4

5

6

7

8

9 on up

Function Type

Function

Request Number

Data Offset

Parameter 1

Parameter 2

Flags

Count and Control Returns

Status

Data

QType

QFunc

QNum

QAddr

QParm1

QParm2

QFlags

QCount

QStat

QType

Figure 4. 1 Pseudo IOQ

This field specifies the type of function. The values allowed are:

o - Normal I/O Function Request.
1 - Normal I/O Function Reply.
2 - Special Function Request.
3 - Special Function Reply.

* HP Confidential *
4-1

Data Structure Specifications

QFunc

QNum

QAddr

QParml
QPar;;;'2

QFlags

This field specifies the function. Values for this field will be described in the next
sections.

This field is used to synchronize the driver and monitor. Each pseudo IOQ will have
a request number and when a completed pseudo 10Q is returned to the sender it will
contain the same number. The request number is generated by the sender; the
receiver should not expect the number to be of any relevance or in any particular
sequence.

This field points to the start of the data in the pseudo 10Q. It currently will have
the value 9. By using this field, if the pseudo 10Q expands, the code that looks at the
data will not have to be changed.

These contain additional information for a given function. See the individual
functions for a description of what data these fields contain.

This field contains flags which may modify the function.

Bit Position
(0: 1)
(12:2)

Meaning
Abort
Preemptive: 1-soft, 2-hard

QCount

QStat

The Abort bit is used to abort a previous request. QNum is set to the same value as
the QNum in the request to be aborted. The receiver of this request should return
the request with an aborted status.

The Preemptive bits are used to indicate a request is of a high priority. A soft
preempt means to finish doing the current I/O and then process this request next. A
hard preempt means to stop the current I/O and process this request.

On initiation, this field contains the positive byte count. At completion of the
request, this field contains the actual transmission count. Certain control requests
return data through this location.

This field contains the result status of the request. See section 4. 3 for a description
of the codes. It is set only in replies. In requests it is O.

The maximum size of a pseudo 10Q is 15009 words. This allows for a 9 w0rd header plus 15000 words of
data. This should be sufficient for most applications. VIEW, for example, can do a maximum read or
write of 12000 words.

Note that in general, only one pseudo 10Q will be sent at a time from the driver to the Telnet Monitor.
No new pseudo 10Qs will be sent until a reply is received on the outstanding pseudo 10Q. An exception to
this will be if an existing pseudo 10Q is to be aborted. Also, a preemptive request may be sent while there
is still an outstanding pseudo 10Q. The QFlags word is used to indicate these situations.

* HP Confidential *
4-2

Data Structure Specifications

4.1 NORMAL I/O FUNCTIONS

This section will describe what the functIons are when QType = 0 or 1. With these functions, the request
is always from the pseudo driver to the monitor and the reply from the monitor to the pseudo driver.

4.1.8 Function (9 - Read

This request is to read data from the terminal. In MPE, there are three types of reads:

Edited Mode - In this mode, the read is terminated by a carriage return or the byte count being
reached. If an alternate end of record (AEOR) character is passed [QParm2(0:8)], this character will
also terminate the read.

Unedited Mode - This is also called Transparent Editing Mode. In this mode, which is enabled via
Function 37, the read is terminated by the end of record character (EOR) passed in the function,
the AEOR (if one is specified), or the byte count being reached. If the input terminates with the
AEOR or EOR character, carriage return/line feed is not sent to the terminal. If the byte count
terminated the read, the carriage return/line feed will be sent depending on QParm 1(0: 1). Note
that unedited mode remains in effect until it is disabled.

Binary Mode - In this mode, which is enabled by QParm2(l1:2), the read is terminated only by the
byte count being reached. Binary mode is enabled by FControl 27 and disabled by FControl 26.
(This will also affect writes.) This mode will disable unedited mode if it is active. Carriage
return/line feed is not written to the terminal when the read completes. Note that binary mode is
enabled in each read.

QParml

(0: 1)

QParm2

(0:8)

If 0, issue a carriage return/line feed when the read completes. If I, do not. This is
enabled/disabled by FSetMode.

Contains the AEOR character that will terminate the read. If 0, reset the AEOR. If
a read completes with the AEOR character, the AEOR character should be returned
in the user data, and no carriage return/line feed is issued. Also, on return, QStat
should be %11. The AEOR is set by FControl 25.

* HP Confidential *
4-3

Data Structure Specifications

QParm2
(cont'd)

(9: 1) If 1, indicates a VIEW read. The VIEW read is enabled by FControl 31 and disabled
by FControl 30. Neither of these are documented, they are only for use by VPLUS.
The terminal must be in block mode, the D strap must be turned on (PAGE), the H
strap must be turn off, the G strap must be turned on (meaning the terminal uses a
DC1/DC2/DCl handshake), echo must be off, the driver must be in unedited mode,
and subsystem break must be disabled. VPLUS will send the necessary escape
sequences and FControls for this. The handshake is as follows:

Computer
Application program

issues a read.
Sends DC1 ---)

Terminal

User inputs data,
presses (ENTER).

<--- Sends DC2

The driver issues
the escape sequences
to lock the keyboard
and home the cursor. ---)

Sends DC1 ---)
<--- Sends data then record

separator character.

If the terminal uses XON/XOFF flow control, a different handshake is used for
VIEW reads. See section 6.1.1 for a description of this.

* HP Confidential *
4-4

QParm2
(cont'd)

(l 0: 1)

Data Structure Specifications

If I, indicates an OWN read (also known as User Block Mode Handshake). This is
enabled by an FControl 29 and disabled by an FControl 28. If the OWN read is
disabled, the following is done (The terminal should already be in block mode, and use
a DC 1/DC2/DC 1 handshake.):

Computer
Application program

issues a read.
Sends DCl --->

Sends DCl --->

Terminal

User inputs data,
presses [ENTER).

<--- Sends DC2

<--- Sends data then record
separator character.

If the OWN read is enabled, the following is done (The terminal should already be in
block mode, and use a DCI/DC2/DCI handshake.):

Computer
Application program

issues a small read.
Sends DC1 ---)

Terminal

User inputs data,
presses [ENTER).

<--- Sends DC2

(11:2)

QCount

Data

Application program gets
the DC2. The program will
take some action, such as
moving the cursor. It
will then issue a read.

Sends DCl ---)
<--- Sends data then record

separator character.

If non-zero, indicates a binary read.

The request will contain the maximum number of bytes to read. The reply will have
the actual number of bytes read.

The read data will be returned here.

* HP Confidential *
4-5

Data Structure Specifications

4.1.1 Function 1 - Write

This request is to write data to the terminal. A zero length write means to just output the carriage
control.

QParml

(8:8)

QParm2

(11:2)

(1,:,:1)

QCount

Data

Contains the carriage control character. If this is a I, the carriage control character
is actually the first byte of the data. For a list of carriage control characters, see the
MPE V Intrinsics Reference Manual (32033-90007).

If set to 0, write data is 7 bit ASCII. Otherwise, data is 8 bit ASCII, sent in Binary
mode. Binary mode is enabled by FControl 27 and disabled by FControl 26. (This
will also affect reads.) In Binary mode, carriage control is disabled.

If set to 1, carriage control is prespacing. This means the carriage control is written
before the data. Otherwise, it is postspacing. Pre or post spacing is set by doing an
FControl 1 with the appropriate carriage control character. If postspacing is used,
and the previous write request was prespacing, a carriage return and line feed should
be output.

Contains the number of bytes to write.

The write data will be here.

4.1.2 Function 2 - File Open

This request is issued when the user does an FOpen. Once the file system issues this function, it does not
wait for a response from the driver. As nothing is ever done by the driver for this function, the pseudo
driver will never send it to the monitor.

4.1.3 Function 3 - File Close

This request is issued when the user does an FClose. When the monitor receives this request, it should do
the following:

EOR and AEOR are reset.
Line delete echo should be reenabled.

4.1.4 Function 4 - Device Close

This request is issued from the File System when the last FClose is done. When the monitor receives this
request, it should do all the things described in Function 3 - File Close. This is also a termination request.
The monitor should terminate the connection, and among other things, call PDTerm.

* HP Confidential *
4-6

Data Structure Specifications

4.1.5 Function 5 - Set Read Timeout

This request will set a timeout for a read. It is set by FControl 4. The read timeout affects only the next
read. Timers are not user accessible, so this feature will be handled in the pseudo driver. Therefore, this
function will never be sent from the pseudo driver to the monitor.

4.1.6 Function 6 - Set Input Speed

This request is to set the input speed of the terminal. It is set by FControl 10. Some terminal drivers
make no distinction between FControl 10 and 11 because it is not possible to run with "split" line speeds.

QParml

QCount

Contains the input speed in characters per second.

On return, contains the old value of the input speed in characters per second.

4.1.7 Function 7 - Set Output Speed

This request is to set the output speed of the terminal. It is set by FControl 11. Some terminal drivers
make no distinction between FControl 10 and 11 because it is not possible to run with "split" line speeds.

QParml

QCount

Contains the output speed in characters per second.

On return, contains the old value of the output speed in characters per second.

4.1.8 Function 8 - Enable Echo

This request is to enable echoing on the terminal. This is set by FControl 12.

QCount On return, contains the old echo status - 0 is on, 1 is off.

4.1.9 Function 9 - Disable Echo

This request is to disable echoing on the terminal. It is set by FControl 13. Note that this will not
suppress the carriage return/line feed that is sent when a read completes. To suppress this, use FSetMode.
See Function 0 - Read for details.

QCount On return, contains the old echo status - 0 is on, 1 is off.

4.1.10 Function 10 - Disable System Break

This request is to disable the System Break. It is set by Fcontrol 14.

* HP Confidential *
4-7

Data~tructureSpeci(ications

4.1.11 Function 11 - Enable System Break

This request is to enable the System Break. It is set by FControl 15. If System Break is enabled, the
[BREAK) key will cause an interrupt. For a discussion of system break, see section 5.1. Note that system
break is available during sessions only.

4.1.12 Function 12 - Disable Subsystem Break

This request is to disable the Subsystem Break. It is set by FControl 16.

4.1.13 Function 13 - Enable Subsytem Break

This request is to enable the Subsystem Break. It is set by FControl 17. If Subsystem Break is enabled,
the user can invoke it by typing [CONTROl)Y. For a discussion of subsystem break, see section 5.2.

4.1.14 Function 14 - Disable Tape Mode

This request is used to disable Tape Mode. It is set by FControl 18. As Tape Mode, which was used to
read paper tapes and tape cartridges, is not supported on the newer terminal controllers, the pseudo driver
will not send this function to the monitor.

4.1.15 Function 15 - Enable Tape Mode

This request is used to enable Tape Mode. It is set by FControl 19. Like the previous function, this
request will never be sent from the pseudo driver to the monitor.

4.1.16 Function 16 - Disable Read Timer

This request is to disable the read duration timer. It is set by FControl 20.

4.1.17 Function 17 - Enable Read Timer

This request is to enable the read duration timer. It is set by FControl 21. Note that this not the same
timer used by Function 5 - Set Read Timeout. This timer is used to get the length of time the read takes,
not to set a timeout on the read. This request only affects the next read.

4.1.18 Function 18 - Return Read Time

This request is used to return the read time that was enabled by Function 17. It is set by FControl 22.

QCount On return, contains the duration of the read in hundredths of a second. If the
duration was greater than 655.35 seconds, QStat should be set to %163.

* HP Confidential *
4-8

Data Structure Specifications

4.1.19 Function 19 - Disable Parity

This request is to disable parity checking and generation. It is set by FControl 23. Parity must be
disabled in order to transmit and receive bInary data.

4.1.20 Function 20 - Enable Parity

This request is to enable parity checking and generation. It is set by FControl 24. The type of parity
used is that which was in use before it was disabled. To specify the type of parity, Function 32 - Set
Parity, is used.

4.1.21 Function 21 - Set Logon Type

This request is sent by MPE to inform the driver of the logon type.

QParml Contains the logon type. 0 is for data, 1 is for sessions, and 2 is for jobs. If the logon
type is a session, break should be enabled.

4.1.22 Function 22 - Unused

This function will never be sent from the pseudo driver to the monitor.

4.1.23 Function 23 - Set Terminal Type

This request is used to change the terminal type. It is the same as Function 34.

QParml Contains the terminal type.

4.1.24 Function 24 - Allocate Terminal

This request is used to allocate a terminal, setting terminal type and speed. It is the same as Function 33.

QParml

QParm2

Contains the terminal type.

Contains the terminal speed.

4.1.25 Function 25 - Clear Flush and Write

This request is a special write request. When a terminal goes into break mode, it will throwaway all
write requests until it gets a Clear Flush and Write request. For a detailed description of break, see
section 5. 1. See the description for Function 1 - \\'rite for the applicable parameters.

* HP Confidential *
4-9

Data Structure Specifications

4.1.26 Function 26 - Enable Line Delete Echo

This request is to enable the printing of II ! ! ! II upon execution of a (CONTRolIX. It is set by FControl 34.

4.1.27 Function 27 - Disable Line Delete Echo

This request is to disable the printing of II ! ! ! II upon execution of a (CONTROl)X. It is set by FControl 3S.
Note that the data is still deleted from the input buffer after a [CONTROlIX has been typed and a carriage
return/line feed is still output.

4.1.28 Function 28 - Ouiese 100

This request should cause any buffered write data to be output.

4.1.29 Function 29 - Paper Tape Read

This request is used to read paper tapes. It is set by the PTape intrinsic. This function is not supported by
the newer terminal controllers. and the pseudo driver will not send this function to the monitor.

4.1.30 Function 30 - Set/Clear Break

This function is used to set and clear break mode. For a discussion of system break, see section S. 1.

QParm1

(l 5: 1) o- Clear break mode.
1 - Set break mode.

4.1.31 Function 31 - Set/Clear Console

This request is to set and clear console mode. Console mode is set when the operator types (CONTROlIA at
the console. Because this is a console only function) the pseudo driver will not send this function to the
monitor.

QParm1

(l 5: 1) o- Clear console mode.
1 - Set console mode.

4.1.32 Function 32 - Set Parity

This function will set the parity checking and generation characteristics. It is set by FControl 36.

QParml o- No pafity O)s.
1 - No parity I's.
2 - Even parity.
3 - Odd parity.

* HP Confidential *
4-10

Data Structure Specifications

4.1.33 Function 33 - Allocate Terminal

This request is used to allocate a terminal, setting terminal type and speed. It is the same as Function 24.
It is set by FControl 37.

QParml

QParm2

Contains the terminal type. If 0, use the configured terminal type.

Contains the terminal speed. If 0, use the configured terminal speed.

4.1.34 Function 34 - Set Terminal Type

This request is used to change the terminal type. It is the same as Function 23. It is set by FControl 38.

QParml Contains the terminal type.

4.1.35 Function 35 - Get Terminal Type

This request is to return the terminal type. It is set by FControl 39.

QCount On return, contains the terminal type.

4.1.36 Function 36 - Get Output Speed

This request is to get the output speed. It is set by FControl 40.

QCount On return, contains the output speed.

4.1.37 Function 37 - Set Unedited Mode

The request puts the terminal in Unedited Mode, or resets the terminal into Edited mode. It is set by
FControl 41. See the description under Function 0 - Read on Unedited Mode.

QParml

(0:8)

(8:8)

Contains the new subsystem break character. This character functions like the
(CONTROlIY character in Standard Editing Mode and is ignored if subsystem break is
not accepted. It is always stripped from the input stream.

Contains the new EaR character. If non-zero, puts the driver into unedited mode.
If zero, resets the EaR and puts the driver into edited mode.

* HP Confidential *
4-11

Data Structure Specifications

4.1.38 Function 38 - Vary Console Mode

This request is to enable the detection of (CONTROlIA. This detection is only needed at the console. Because
this is a console only function, the pseudo driver will not send this function to the monitor.

QParml o- Enable (CONTROlIA.

1 - Disable (CONTROLIA.

4.1.39 Function 39 - Speedsense

Speedsense mode is used when a terminal is not logged on to detect when the user presses return, no matter
what speed the terminal is configured at. Because this is a function that only makes sense for locally
attached terminals, the pseudo driver will not send this function to the monitor.

* HP Confidential *
4-12

Data Structure Specifications

4.1.40 Function 192 - Device Control

This request is used to control various aspects of the device. It is set by doing an FDeviceControl with a
control code of 192. The individual functions are sent in QParm 1. QParm2 specifies the access of the
function as follows:

QParm2

Read - return requested item in the data area.

2

3

Write - use the value in the data area to change the item.

Read and Write - use the value in the data area to change the item and return the
old value in the data area.

Only the listed functions will be sent from the pseudo driver to the monitor. If any others are sent they
should be returned with a QStat of 5.

4.1. 40.1 Item 28 - Block Mode Support

This function is used to determine the block mode handshake the terminal uses.

QParml

QParm2

Data

QCount

Contains 28.

Contains the access type (read or write).

Contains the block mode handshake as an integer:
o - No block mode 1 - Line Block
2 - OC1!OC2!OC1 Page Block 3 - Both 1 and 2
6 - XON!XOFF Page Block 7 - Both 1 and 6

If the data is not one of the above values, QStat should be returned as %65 if the data
is < 0, %75 if the data is > 7, and %105 if the data is a 4 or 5.

Contains the count. If the access type is 1, if QCount is smaller than 1, QStat should
be returned with an %115. If the access type is 2, if QCount is greater than 1, QStat
should be returned with an %125. For access type 3, QCount must be 1. If it is not,
QStat should be returned with either %115 or %125 as appropriate.

If it is not possible to tell a remote system to set a particular block mode type, only those requests with a
QParm2 read (1) access type should be allowed. Others should be returned with a QStat of %15 and
QCount should contain a 1) indicating read is the only type allowed.

Also) it is recommended that if the block mode type cannot be directly obtained from the other side) that
a 7 be returned in the data. This will allow VPLUS to work on some remote systems. For a detailed
description of this, see section 6. 1.

* HP Confidential *
4-13

Data Structure Specifications

4.2 SPECIAL FUNCTIONS

This section will describe what the functions are when QType is 2 or 3. These functions always have the
request sent from the monitor to the pseudo driver, and the reply from the pseudo driver to the monitor.

4.2.1 Function 1 - Initialize Driver

This request is sent from the monitor to the pseudo driver. The monitor does not directly send this
message, it calls PDInit in order to do this. The pseudo driver will allocate a pseudo terminal and start the
logon process on that terminal when this request is received.

QParml

(15: 1)

QCount

If set to 1, indicates a request for a null pseudo terminal. See section 7 for a
discussion of null terminals.

On return, contains the logical device number (ldev) of the pseudo terminal.

4.2.2 Function 2 - Terminate Driver

This request is sent from the monitor to the pseudo driver. The monitor does not directly send this
message, it calls PDTerm in order to do this. The pseudo driver will release the pseudo terminal and
terminate the session (if there is one) logged onto the terminal.

4.2.3 Function 3 - Invoke Break

This request is sent from the monitor to the pseudo driver. The monitor sends this request when a break
is received and system break has been enabled (via QType = 0 and QFunc = 11). For a discussion of system
break, see section 5. 1.

4.2.4 Function 4 - Invoke Subsystem Break

This request is sent from the monitor to the pseudo driver. The monitor sends this request when a
subsystem break ~.> received and subsystem break has been enabled (via QType = 0 and QFunc = 13). For a
discussion of subsystem break, see section 5. 2.

* HP Confidential *
4-14

Data Structure Specifications

4.3 STATUS RETURNS

The following status returns are put in QStat before the reply is sent. Other status returns may be added
to this list as implementation proceeds.

4.3.1 Status Returns For Normal I/O

For normal I/O, bits 12:3 are the general status and 8:5 are the qualifier code which further defines the
general status. Unless indicated, a particular status can be returned by all functions.

4.3.1. 1 General Status 1 - Successful

Status %

11

Meaning

Normal Completion

Read terminated with special character. Returned only with QFunc = 0 (read).

4.3.1.2 General Status 3 - Unusual Condition

Status %

33

163

173

Meaning

I/O Aborted Fxternally

Read Time Returned Overflow. Returned only with QFunc = 18 (return read time).

Break Stopped Read. Returned only with QFunc =0 (read).

4.3.1.3 General Status 4 - Irrecoverable Error

Status %

4

14

Meaning

Invalid Request

Transmission Error - This should be used if no other category fits.

* HP Confidential *
4-15

Data Structure Specifications

4.3.1.4 General Status 5 - Error In Control Information

The following statuses are used for QFunc 192 (Device Control).

Status %

5

15

65

75

105

115

125

Meaning

Invalid item number.

Invalid Access for Item. QCount should contain the valid access.

Passed value is less than the minimum allowed. QCount contains the minimum
value.

Passed value is more than the maximum allowed. QCount contains the maximum
value.

Passed value is unsupported.

Count less than needed to return informatIOn. QCount contains the minimum space
needed.

Count greater than available to store information. QCount contains the maximum
space available.

4.3.2 Special Functions Status Returns

Status %

1

404

411

421

422

431

432

Meaning

Successful

Bad function. QFunc must be I, 2, 3, or 4.

No psuedo terminals available.

Break request rejected, break not enabled.

Break request rejected, system refused request.

Subsystem break request rejected) subsystem break not enabled.

Subsystem break request rejected) system refused request.

* HP Confidential *
4-16

BREAK AND SUBSYSTEI\1 BREAK

This section will describe the actions the pseudo driver and monitor perform when a break or subsystem
break is received.

5.1 BREAK HANDLING

On an HP terminal, break is invoked when the user presses the [BREAK) key. Break is used to return to the
CI. If a subsystem was running when break was invoked, the user can return to the subsystem by entering
the RESUME command.

5.1.1 Enabling and Disabling

In order to enable break, an FControl 15 is done. This will cause a QType 0 pseudo IOQ with a QFunc of
11 to be sent from the pseudo driver to the monitor.

To disable break, an FControl 14 is done This will cause a QType 0 pseudo IOQ with a QFunc of 10 to be
sent from the pseudo driver to the monitor.

5.1.2 Invoking

When a break request is received at the monitor, the monitor first needs to determine if break has been
enabled. (The details of how a break request is sent to the monitor are dependent on what the protocol of
the network is. For Telnet, this would be the IP command.) If break has not been enabled, the pseudo
driver is not invoked. If break has been enabled, the following sequence should happen:

* HP Confidential *
5-1

Break and Subsystem Break

Pseudo Driver

<-----
Determines if break

can be invoked. I~

it can, returns the
pseudo IOQ with a
successful status. ----->

Sends a normal function,
type 30 pseudo 10Q 10
set break mode. -----)

Sends normal function,
type 25 pseudo 10Q to
clear flush mode and
output a ".11. ----->

Mon i tor
Builds a special function,
type 3 (invoke break)
pseudo IOQ. Calls
PD_Send_Msg.

The monitor should abort
any I/O requests it has
(aStat is %33). If a
read is pending, return
it with a QStat of %173.

Go into "flush mode".

Break mode will cause the
monitor to abort all I/O
requests it has (QStat
is %33). If a read is
pending, return it with
a QStat of %173.

Resets IIflush mode".

In flush mode, all new read {type 0) and write (type 1) pseudo 10Qs should immediately be returned as
successful, with no actual I/O taking place. Reads should be returned with QCount equal to o. Writes
that are preemptive [QFlags (12:2)] should be output in flush mode. Flush mode is reset by a clear flush
and write (type 25) pseudo IOQ.

In break mode, if there is a subsystem break enabled, it is disabled during the time break mode is set.
Break mode will be cleared when the user types ABORT or RESUME. It will be cleared by sending a
QType 0, QFunc 30 pseudo 10Q down to the monitor with QParml(l5:1) set to O. When break mode is
cleared, the subsystem break (if there is one) should be reenabled. This type of pseudo 10Q will only be
sent if the user was in a subsystem (e. g. EDIT/3000) when break was invoked. If the user was doing a CI
command (e.g. LISTF), no break mode pseudo IOQ will be sent.

5.1.3 Errors

It is possible the the invoke break request from the monitor to the driver will fail. This could happen for
a couple of reasons. First, at the time when break is being invoked, the operating system may have
disabled break, but has not informed the driver yet. Secondly, when the user is in the CI, break is always
enabled, but may not always be accepted. It will only be accepted if the user is doing a CI command (e. g.
LISTF). If the user is just sitting at the CI prompt with a read and invokes break, it will fail. In both
these cases, the request will fail with a status of %405.

* HP Confidential *
5-2

Break and Subsystem Break

The request will also fail if the monitor attempts to invoke break, but it has not been enabled. This could
happen if the pseudo driver has been told that break has been disabled, but has not yet sent the monitor
the disable break pseudo IOQ. In this case, the request will fail with a status of %404.

5.2 SUBSYSTEM BREAK HANDLING

Subsystem break is usually invoked by typing (COtHROLlY. The subsystem break character can be changed
by doing an FControl 41 to put the terminal in unedited mode (this will be passed to the monitor with a
normal pseudo IOQ of QFunc 37). Subsystem break is used to trap to a user supplied procedure.

5.2.1 Enabling and Disabling

The user indicates the procedure to trap to by calling XCONTRAP. This will also enable subsystem
break. The user can disable subsystem break by doing an FControl 16 and enabling it by doing an
FControl 17. It makes no sense to do an FControl 17 if there is no trap procedure to call.

The monitor will be sent a pseudo IOQ with a QFunc of 13 to enable subsystem break and a pseudo IOQ
with a QFunc of 12 to disable subsystem break.

5.2.2 Invoking

When the subsystem break character is received at the monitor, the monitor first needs to determine if
subsystem break has been enabled. (Note that in normal editing mode, (CONTROllY should be stripped from
the input data regardless of the state of subsystem break.) If subsystem break has not been enabled, the
pseudo driver is not invoked. If subsystem break has been enabled, the following sequence should happen:

Pseudo Driver

(-----
Determines if subsystem

break can be invoked.
If it can, returns the
pseudo IOQ with a
successful status. -----)

Monitor
Builds a special function,
type 4 (invoke subsystem
break) pseudo IOQ. Calls
PD_Send_Msg.

The monitor should complete
all existing I/O as
successful (QStat is 1).
Any read pseudo IOQ
should be returned with no
data.

Note that unlike break, there is no such thing as a IIsubsystem break modell
• So, once the special function

type 4 pseudo IOQ is returned, the monitor is operating as normal.

* HP Confidential *
5-3

Brea~_~nd Subsystem ~Break

5.2.3 Errors

It is possible the the invoke subsystem break request from the monitor to the driver will fail. This could
happen for a couple of reasons. First, at the time when subsystem break is being invoked, the user may
have disabled subsystem break, but the driver has not yet been informed. Secondly, the user may have
enabled subsystem break (via an FControl 17), but not have give a trap procedure to call. In both these
cases, the request will fail with a status of %407.

The request will also fail if the monitor attempts to invoke subsystem break, but it has not been enabled.
This could happen if the pseudo driver has been told that subsystem break has been disabled, but has not
yet sent the monitor the disable subsystem break pseudo IOQ. In this case, the request will fail with a
status of %406.

5.3 FAST BREAK AND SUBSYSTEM BREAK

When running over a network, the delay between when a user enters [BREAK) (or [CONTROl)Y) and when
output finally stops can be quite l.engthy. This is because there could be a lot of output data buffered in
the network. It is recommended (but not required) that the local side where the real terminal exists
implements what is called fast break (or subsystem break).

With this implementation, the local side needs to be told if the monitor side has enabled (subsystem) break.
If it has, when a (subsystem) break happens, data will not be written to the terminal, but will be thrown
away. Data should start being output to the terminal when the special function pseudo IOQ that says to
invoke (subsystem) break is returned by the pseudo driver to the monitor. (This is true regardless of
whether or not the status was successful.) So, there needs to be some mechanism for the monitor to tell
the local side to stop throwing away data. This mechanism is dependent on the protocol being used, and
will not be described in this document. It may not be possible to implement such a mechanism, and so fast
break and subsystem break could not be implemented.

* HP Confidential *
5-4

NON-HP3000 SYSTEMS

This section will describe how certain HP3000 specific functions may be done if the local machine is not
an HP3000.

6.1 BLOCK MODE SUPPORT

The main goal (as far as block mode support is concerned) of Telnet/3000-V is to be able run VPLUS
applications on an HP 9000. It should be possible to support VPLUS applications if the following
requirements are met:

• The terminal is one of the newer HP terminals that support XON/XOFF flow control.

• The local system (where the terminal is) should use XON/XOFF flow control to talk to the
terminal. It should also support typeahead, meaning data coming in from the terminal is
buffered, regardless of whether a read is pending or not.

These requirements are met on the HP9000, and so VPLUS applications should work over Telnet. Note
however that they are not met on the HP3000-V machines because the drivers do not do XON/XOFF
flow control nor do they do typeahead. This means a user will not be able to run a VPLUS application if
the Telnet connection is from one 3000-V to another 3000-V. In this case, the user would need NS/VT.
This is the recommended software to use for 3000 to 3000 communication.

Strictly speaking, if the local system can accept data without overruns at the line speed, it is not necessary
to support XON/XOFF for the transmission of data from the terminal to the host. However, the driver
must be able to stop sending data to the terminal if the terminal sends an XOFF.

The older HP terminals only use the ENQ/ACK protocol. So, unless the driver uses ENQ/ACK, when it
sends large amounts of data to the terminal (which many block mode applications do), there will be
overruns. This is because there is no way for the terminal to tell the system to stop sending data.

6.1.1 XON/XOFF VIEW Read

Section 4.1.0 talks about a VIEW read, and gives an example of the DCI/DC2/DCI handshake. If the
block mode type is 7 (XON/XOFF page block mode) as described in section 4. 1. 0, a different type of
handshake is used. For this handshake, the terminal must be in block mode, the 0 strap must be turned
on (PAGE), the G and H straps are both on, meaning the terminal will send data immediately when the
user presses (ENTER J, echo is off, unedited mode is set, and subsystem break is disabled. VPLUS will send
the necessary escape sequences and FControls for this. The handshake is as follows:

Computer Terminal
User inputs data, presses

(ENTER). Terminal sends
data then record separator
character.

* HP Confidential *
6-1

Non-HP3000 Systems

Note that there is nothing from the computer indicating a read is pending so data can be accepted. This is
why the driver on the computer must support typeahead. The driver will XOFF the terminal if its
buffers fill up.

One reason that the DC1/DC2/DCl handshake cannot be used is that the block mode type will always be
returned as XON/XOFF page block mode. This is because it is not possible to determine what block mode
the local side supports as there is no way in Telnet to do this.

In order to support older HP terminals) which do the DC 1/DC 2/DC 1 handshake) the driver must be able
to accept all the data the terminal sends it at line speed. (There is no way to stop the terminals once they
start sending data. An XOFF will not work.) Most drivers cannot do this) so this is another reason this
handshake will not work.

6.1.2 OWN Read

The OWN read is also talked about in section 4.1. O. Unlike the VIEW read) there is no such thing as an
XON/XOFF OWN read. So in order to do an OWN read) the DC2 the terminal sends must get passed
back to the application program. As this is dependent on the driver on the local system, it may work for
some systems and not for others.

In order for OWN reads to work) a DC 1 needs to be sent to the terminal. Because it will not be known if
the local side sent a DC 1) when an OWN read is received by the monitor) it should send a write of a DC 1
to the local side.

* HP Confidential *
6-2

FTP LOGON AND LOGOFF

This section will describe the routines needed by the File Transfer Protocol (FTP) to access an MPE/V HP
3000 system. The routines will allow FTP to create a user session on a null pseudo terminal, and to
terminate a session.

A null pseudo terminal is a bit bucket; it allows a logon on the 3000, but no I/O is sent to the Telnet
Monitor. The null terminal completes all I/O except a CI read, the CI read is queued and the session
becomes inactive.

7.1 FTPLOGON

Creates a user session using a pseudo terminal and adopts the calling process into the user session.

Syntax:

FTPLOGON

Parameters:

logon, sessioninfo, result)

logon
(input)

sessioninfo
(output)

result
(output)

character array, by reference. The logon string to be
used to create the user session. Format:

user[/userpass].account[/acctpass] [,group[/grouppass]]

This parameter must be delimited by a carriage return
(octal 15). The maximum acceptable length for this
parameter is 80 characters.

array of 10 16-bit integers, by reference. Information about
the user session, returned by FTPLOGON and used by FTPLOGOFF

16-bit integer, by reference. Result of call:
o - successful
1 could not adopt process into user session
2 could not get info on user session
3 could not create user session; logon may be

incorrect or resources may not be available
4 - no pseudo terminals are available for session
7 - parameter out of bounds

* HP Confidential *
7-1

FTP Logon and Logoff

Description:

The FTP server calls FTPLOGON to create a user session and to adopt itself into the user session
environment. It performs the following functions:

1. Saves identify of the job or session containing the server at entry to FTPLOGON. This should be the
job or session running the FTP daemon. The server will return to this session after it has logged off
the created session.

2. Allocates a null telnet pseudo terminal for the $STDIN/$STDLIST device for the user session. All
writes to this device will be discarded and all reads will be held by the pseudo terminal driver.
Consequently the FTP server should refrain from reading or writing to $STDIN/$STDLIST while it is
in the user session.

3. Creates the user session for the specified logon using the null pseudo terminal.

4. Adopts the server into the user session. The server will assume the identity, capabilities, and access
rights for the user, account, and group of the logon.

7.2 FTPLOGOFF

Adopts the FTP server back into the FTP daemon's session, logs off the user session, and deallocates the
telnet pseudo terminal.

Syntax:

FTPLOGOFF (sessioninfo, result);

Parameters:

session info
(in put)

result
(output)

* HP Confidential *
7-2

array of 10 16-bit integers, by reference. Information about
the user session, returned by FTPLOGON.

16-bit integer, by reference. Result of call:
o - successful
1 could not adopt process into daemon session
5 could not abort user session
6 could not release pseudo terminal
7 parameter out of bounds

FTP Logon and Logoff

Description:

The FTP server calls FTPLOGOFF when it is finished with its business in the user session. FTPLOGOFF
performs the following functions:

1. Adopts server back into the original session it was in before the call to FTPLOGON. This should be
the FTP daemon's session. If that session no longer exists, or if the original father process no longer
exists, a result of 1 will be returned. The server then should take appropriate action, probably
aborting itself and the user session.

2. Aborts the user session.

3. Deallocates the null pseudo terminal, so it can be reused for other FTP user sessions.

* HP Confidential *
7-3

j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
J

j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j

I

j
j
j
j
j
j
j
j
j
j
j
j
j

	Printing History
	Contents
	Section 1 Product Identification
	Section 2 Product Overview
	Section 3 Interface Specifications
	Section 4 Data Structure Specifications
	Section 5 Break and Subsystem Break
	Section 6 Non-HP3000 Systems
	Section 7 FTP Logon and Logoff

