
CONTENTS

3.3 Intrinsic Interface Definitions 2
3.3.1 IPCCreate•...•................................•.•.•... 2
3 . 3 . 2 IPCNAME•...•••..••......•......•...•...••.....••.....•.. 5
3.3.3 IPCNAMERASE ..•.........•....................•...........••.... 7
3.3.4 IPCLookUp•.••...•••..........•..................•........ 8
3.3.8 IPCRECVCN....•.........•.•...........................•....... 10
3.3. 7 IPCConnect•.••...•...•.........•................•.••... 14
3.3.9 IPCSend•... 19
3 . 3 . 10 IPCRECV•..•... 22
3 • 3 • 11 I PCGI VE .•....•..........•..............•....•.........•..... 27
3.3.12 IPCGet•..........•...............•...•.... 29
3.3.13 IPCCONTROL 30
3.3.18 IPCSHUTDOWN•.•........ 36
3.3.19 IPCOest 39

Wednesday. April 8. 1987

1

3.3 Intrinsic Interface Definitions

3.3.1 IPCCreate

Function:

Creates a socket.

Declaration:

PROCEDURE IPCCreate socket kind
protocol

var flags
var opt
var sd
var result

integer;
integer;
flags type;
opt type;
descriptor type;
integer);-

socket_kind (input)

Defines the type of socket to be created. Valid types are:

3 - call
4 - pxp request (privileged users only)
5 - pxp reply (privileged users only)

Oatagrarns are not supported.

protocol (input)

Defines the protocol module the user will be interfacing to. If this
value is zero, a default protocol ~ill be used. For call sockets, the
default protocol is TCP. Supported values are:

2 - X.25
4 - rep
6 - HP-PXP

13 - 05I'S5

For 051'55, rep and X25 tbe Jnly allowed SOcket type is (,3iL Any others
will produce a sockerr 10

flags (lnput)
,

32 bits, each specifying an optional capability. The only flag which is
currently supported is:

flags [protect J (bit 0, i.rtPtlt)

If this bit is set, th,:.r f.~ socket will b~ prlvileged

opt (input parameter)

Array of options, constructed with ADDOPT. The options currently allowed
are:

max_msg_size (code=1, len= 2, 2 byte integer) (input)

This option defines the maximum expected message size. This opt can
only be used with datagram, pxp request. or pxp reply sockets This
option does not necessarily limit the user to the specified ~ ~P-. it
is intended to be used by IPC and/or the protocol module in
determining how much resources should be allocated f \. a 'J5·· ven
protocol mayor may not take advantagf> of 1'~ jc: • ·~fo· "C; :on

len=2. 2 by. ~, ·tege,' ~ input)

Used to spec11, tn~ ."dK~mum number of unreceived connection requests
thA· be queued to a call socket. Valid'only for connection
o· ~':l protocols.

max_mesgs_queue_in (code=7, len=2, 2 byte integer) (input)

For datagram or j:•.•,p sockets. This parameter specifles the numtJe· vf
unreceived messa'~~s the user expects to bequelJe;~ to this socket at
anyone time. This does not necessarily limit ttle user to this
number; it is intended to be used by IPC and/or the protocol module in
determining what resources need to be allocated for the user.

:)de=g, len=2. 2 byte integer) (input)

Specifies the number of retries for a pxp request socket.

pxp_timeout_val (code=10, len=2, 2 byte array) { input

Specifies the timeout value for pxp request sockets.

protocol_rel_addr (code=128, n-byte integer) (input)

The protocol relative address assigned to the newly created socket.
Foro, \vileged users, the address maybe up t~ 16 bytes long. For
non-;. i.vileged users, the address must be exactly 2 bytes (otherwise
SOCkerr 165), and the address must be in the rangeX74057 to X77717
(otherwise sockerr 164). This option tells IPC to create the socket
with the specified protoco' address rather than dynamically allocating
an address.

X25_net_name (code=140. len=8, 8 character array) (input)

Specifies the X25 network interface name, telling IPC ~hich X25
instance the socket should be identified with. For X25 call sockets,
this option is required. Otherwise, a sockerr 141 will result.IPC
automatically upshifts the characters in the supplied name to all
capital letters.

protocol_flags (code=144, len=4, 4 byte integer) (input)

32 bits of protocol-specific flags. Currently, only X25 uses these
flags. For IPCCREATE, only one is defined; any others will cause a
SOCI<ERR 155.

catch-alI-socket (bit #2) (input): Defines the socket as a
catch-all. The catch all socket is a CALL socket that gets all
incc,:"ing calls whose relative address is not assigned to a specific
socket. Only one catch-all socket ~an be defined ioreachdirectly
connected X25 network. This flag is meanin~less for permanent
virtudl circuits and also for the process WhlCh is initiating a
call. (privileged users only)

sd (output)

Socket descriptor. Value returned which is to identify the created
sock f'"'t

result (output)

Resultant error code, else zero.

Discussion:

The IPCCREATE intrinsic is called to create a socket. The intrinsic returns
a socket descriptor which is used to identify the socket when using other
IPC intrinsics.

The relatjve address field is used by X25 to find the CALL socket an
incomil;~ call is intended fur. X25 uses the first four bytes of the
connectlon call user data (CUD) field as anajdress. This address is
matched to the relative addressasssigned to all the X25 call socke t <: If a
call socket's relative address matches the CUD address then the incCJflIL'ig
call is routed to that sock'::t. If no match is found then the incoming call
is routed to the catch all socket. The catch all socket is defined by
creating a 50C~(~ith the catch all flag set. Only one catch all socket can
be defined per .1, ~ctly connected network. Finally, if the CUD address does
not match 0ry L~~l s0cke~s and no catch all socket is definprl then the
incom13 (611 is clpar~d.

If a non-pI' i"Ji!~'J,=d user lJ.ldr")ts to specify the address to be assigned'
neLL' soct<~t. tr-:- Innge ~:'4,.C;7 to 'X77777 must be used. For a privileged ;'::,
there is /,0 ~.~,i_~cjiic ((:r jn on the address range. However, it is
reC0mrTlI:;:nd~d U-,~t 'I""\ly al_j,.,j.~~::'~s between Xl and X14056 be used. This will
pre'Jent (j',Jpl it_,~1 'f' .::-·f addl-esses wi th those that are automatically allocated
when tr,e u::.?r c).- .:::> l.(,t provide opt 128.

3 • 3 • 2 I PCNAME

Function:

Associates a name ~ith a socket.

Declaration:

PROCE~RE IPCNAME

Parameters:

sd
VAR socket name

nlen
VAR result

descriptor_type;
socket name type;
integer;
integer):

sd (input)

Socket descriptor of socket to be named. If a connection descriptor is
given, SOCKERR #30 will result; for a pxp request descriptor, a SOCKERR
U104 will occur

socket._name (input ~put)

Name' to be given to socket.

nlen (input)

Byte length of specified socket name. Maximum is 16.

If the specified name length is zero, an eight byte name will be randomly
generated for the user 13,-,,4 ret~Jrned in the socket_name parameter.

resul t (output)

Resultant error code, else zero.

Discussion:

The IPCNAME intrinsic allows a user to bind a name to a socket. Using the
IPCLookUp intrinsic, another user can obtain access to the socket by knowing
its name. The syntax of the socket name is defined in Section 3.2.1.

Note that this intrinsic binds a name to a socket, not an address. That is,
when the socket is destroyed the name will be removed from the registry.

Up to four names may be assigned to a single socket. If a fifth name is
attempted, SOCKERR #35 will occur. However, the same name may not be used
for multiple sockets. If IPCNAME is called with a name which already is
used, a SOCKERR #31 will result.

This intrinsic may not be called in split stack. Otherwise, SOCKERR ~32.

All alpha characters in the name are automatically upshifted. Therefore,
names may not be distinguished by case of the alpha characters.

If the intrinsic call fails for any reason, the condition code will be set
to eel.

6

3.3.3 IPCNAMERASE

Function:

To delete a socket name.

PROCEDURE I~ .• trP.ASE (VAR socket name
nlen -

VAl: ~t

Parameters:

socket name type;
integer;
integer) ;

socket_name (input)

Name currently bound to a socket that is to be removed.

olen (input)

Byte length of ... _('l~ed socket name. Maximum is 16.

result (output)

Resultant error code, else zero.

Discussion:

If a socket has been named with the IPCNAME intrinsic, the owner of the
socket may remove the name with the IPCNAMERASE intrinsic. If the user is
not the owner of the socket which has the specified name bound to it, the
intrinsic will terminate with a SOCKERR ~38. If the name is not found (no
socket has the name), a SOCKERR #37 will occur.

If the intrinsic fails for any reason, the conditior ~ode will be set to
Cel.

3.3.4 I PCLookUp

Function:

To obtain a destination descriptor for a named call socket.

Declaration:

PROCEDURE IPCLookUp

Parameters:

VAR socket name
nlen -

VAR location
loclen

VAR flags
VAR dest descriptor
VAR protocol
VAR socket kind
VAR result-

socket name type;
integer;
location type;
integer ;-
flags type;
descrIptor type;
integer:
integer:
integer):

socket_name (input)

Name of the socket for which the search will be conducted and for which a
destination descriptor will be defined.

nlen (input)

Byte length of the supplied socket name. Maximum length is 16. If the
nlen is not at least one or is greater than 16. sockerr 128 will be
returned.

location (input)

If specified, this is the name of the node where the socket is assumed to
reside. This is the node on which a search for ~he specified name will
occur. If not given. then the search will takp f lace locally. This
r-'~1:3meter is optional. However if it is givef'\ "len the loclen must also
..~ given r'ltherwi-:.e- a sockef' ~~7 will occur

~n (input)

Byte length of the node name. This parameter is optional, but if it is
given then the location must also be given. The loclenparameter may be
zero indicating the lookup is t~ take place on the local node. The
maximum length is 50. Otherwise. a sockerr #39 will occur.

£ lags (input)

Various option flags. Only one is defined:

flags (protected] (bit #0, input)

If this flag is set, the destination descriptor will be protected and
can only be accessed by privileged users. If this flag is set by a
non-privileged user, sockerr #7 ~ill result.

dest_descriptor (output)

Descriptor ~ich can be used by the callin$ process to access the socket
that had been looked up. This descriptor 1S required by other
intrinsics, including IPCCONNECT

protocoJ (output)

Protol..:..ol l.d resuJ. t .. ,g from tht socket search. Identifies the level 4
protocol module used by the socket.

socket_kind (output)

Socket type which was found lu r L!"

result (output)

Resultant error code, else zero.

Discussion:

~ search.

The IPCLOOKUP intrinsic is used to ~ain access to a socket ~hose name is
known. (The name was previously def1ned with an IPCNAME operation.) The
destination descriptor is associated with that name, and the calling process
thereafter uses the descriptor to access the named socket.

In addition to the socket's name, the user may specify where the registry
search is to take place. If no location is specified the registry search
will be performed on the local node If the name is not found, a sockerr #37
will be returned.

For a remote search, the protocol and socket type combination must be valid.
Currently, the only combinations which will not result in a sockerr #46 are
call socket with Tep protocol, or pxp reply socket with pxp protocol.

Required parameters are socket_name, nlen, and dest_descriptor.

9

3.3.8 IPCRECVCN

Function:

To receive a connection request on a call socket.

Declaration:

PROCEDURE IPCRecvCn

Parameters:

sd
VRR cd
VRR flags
VRR opt
VRR result

descriptor type;
descriptor-type;
flags_type;
opt type;
integer);

sd (input)

Socket descriptor for a call socket.

ed (output)

Connection descriptor identifying the local endpoint of the connection
which is established with the call to this intrinsic.

flags (input/output)

Option flags. 32 bits. Defined are:

flags [protect] (bit 0, input)

If this bit is set, the created connection descriptor will be
protected and can only be accessed by privileged users.

flags [tcpmsg] (bit 1, input)

If true, then rep 1S instructed to operate in message mode.
otherwise, stream mode will be used on the connection.

flags lno_output_flags] (bit 16, input)

If true and this intrinsic is call in nowait mode, the flags parameter
will not be updated when the intrinsic completes.

fl~gs [defer) (bit 18. input)

If set, completion of the connection lL1ili be deferred, and the user
can later decide whether to accept or reject the connection with
IPCCONTROL.

flags [checksum (bit 21, inpu t)

10

If set then the protocol module will be instructed to enable
checksumming on the established connection. (Currently, the only
protocol module which supports checksumming is TCP.)

flags [discarded] (bit 25, output only)

This flag indicates that call user data was ~"esent, but some or all
of it had to be discarded. This OiiIJ'~ when no call user data recv
option was given or if the~fJace ied was to small to hold the
data received If flags bl' #16 l~ ~et on the initial call to
IPCRECVCN and nowai t mode ...Jsed, the discarded flag will not L·
output ~hen the intrinsic completes.

flags [vectored] (bit '. input)

If set. then the received call user data is expected to be vectored.
meaning that the data will be placed in a memory location specified by
the user rather than directly into the buffer of the option entry. The
target location is specifipd wi th one or tUj.~ ~ctors which i~. -ate a
OST and of fset.

opt (input/output parameter)

Byte array conta~ning various options. The entries are assembled with an
INITOPT/ADDOPT sequence. The defined opts are:

max_send_size (code=3. len= 2. 2 byte integer) (input)

This option may be used to inform the protocol of the length ~t the
largest message to be sent by the user on this connection. The
default is In24 for Tep.

max_recv_size (code=4. len=2. 2 byte integer) (input)

This option may be used to inform the protocol of the length of the
largest message to be received by the user on this connection. The
default is 1024 ro TCP.

call_user_data_recv (code=5.1en=n. n byte buffer) (output)

This option specifies that call user data may be received during the
connection establishment. (Not supported by TCP.) The data can be
either vectored or non-vectored. depending upon the state of flags bit
31 when the intrinsic is called. If not vectored, the data will be
returned into this buffer area of the opt array. See IPCCONNECT for a
descripton of the vector format. The maximum non-vectored length is
512 bytes.

The actual byte count received is available to the user. If the data
is not vectored. then the byte count will be placed in the length
parameter of the option entry and may be determined with a READOPT
intrinsic call. If the data is vectored. then the location of the
received count depends upon whether nowait J/O is being used. If

11

waited, then the count is put in the len~th pprar.t-=ter of the FIRST
vector (which is assumed to still be in 1ts orjgi~~l place in the opt
entry). This will be the number of TOTAL bytes received, even if there
were two vectors. If nowait I/O is selected and the data is vectored,
then the total byte count will be available in the tcount parameter of
the IOWAIT.

If not enough buffer space was allocated for tt"l~ actual amount of call
user data received, then the discarded flag will be set.

send_burst_size (code=134. len=2. 2-byte integer) (input)

Informs the protocol module of the send burst size to be used. The
integer must be in the range 1 to 7, setting the number of messages
which can be sent on this connection to the remote node without the
remote peer actually accepting them. The default send burst size is
for TCP.

recv_burst_size (code=135, len=2. 2-byte integer) (input)

Informs the protocol module of the receive burst size. The integer
must be in the range 1 to 7. with a default of 3 for TCP. The local
protocol module is instructed to accept up to this number of. incoming
~essages, even if the local receiver has not yet processed them.

update_threshold (code=136, len=2. 2-byte integer) (input)

The integer value is sent to the protocol module to specify how the
receive window is to be updated. The integer value must be in the
range of 0 to 100. This specifies a percentage of the total windOl~

size which must be available before an update packet is sent to the
remote node. (TCP only at this time.)

calling_node_addr (code=141, max len=8, 8 byte buffer) (ou1 r IJt)

I f -,this opt is specified. the protocol module is requested t ..·\ ~'Ipply

the address of ttl,:. calling '""'Icvie. This is primarily an X25 £- ~.

al though IPC ·'·'es no protoc01 checking on this 'Jpt. I f the - th is
no 8. then SOl.~ERR 144 will occur.

pro~ocol_flags (code=144. len=4. 4 byte buffer) (input/output)

This opt contains 32 bits of protocol-specific flags. If the length is
not 4 bytes. then SOCKERR 155 is returned. Currently. only X25 lJSes
these flags, although IPC does no protocol checking on this opt. If
flaos bit #16 is set on the initial call to IPCRECVCN and n('u.lait mode
is 6eing used, ~he protocol flags will not be output when the
intrinsic completes. The defined flags are:

pad_call (bit #14) {output):

If this bit is set, the the protocol module has received an
indication that the connection request originated from a pad. The

12

X25 protcol module makes this determination by examining bit #1 of
the first octet in the call user data field.

calling_nod~_add_available(b1t #16) (output):

This flag indicates that the callin~ node address l&tas present in the
call request message. The address wlil be placed in the appropriate
entry of the opt array.

q_bi t_f lag (bit #19) (output):

Indicates the state of the Q bit in the X25 packet received by the
protocol module. For connection establishment with X2S, this bit
should never be set.

result (output)

Indicates whether the request wa~ ~ccessful. It ~owait I/O is used, the
lesult parameter will give information about the initial call to the
intrinsic, but the parameter will not be updated upon final rompletion of
the request. To examine the result of the IPCRECVCN completJun, the J5er
can call IPCCHECK to view both the protocol module error and the I~
error.

Discussion:

The IPCRECVCN lntrinsic allows users to receive connection requests and
establish a VC socket (identified by the returned connection descriptor).
The user can then use the IPCSFND and IPCRECV intrinsics to send and receive
data on the connection.

The call user data which can be received on connection establishment can be
either vectored or not. There are two primary reasons for using vectored
data: 1. The user wants the data to be scattered into two different
locations, perhaps because the ~eaning of the two portions is different, 2.
The user does not want the data to be returned into the stack area. This can
be important 1f the available stack-relative space is limited or if the user
cannot guarantee that upon comple~ion of a nowait call to this intrinsic
that the location of the original opt array will still be valid.

13

3.3.7 IPCConnect

Function:

Initiates a connection request.

Declaration:

PROCEDURE IPCConnect

Parameters:

sd
dest descriptor

VAR flags
VAR opt
VAR cd
VAR result

descriptor type;
descriptor:type;
flags type;
type opt;
descriptor type;
integer) ;-

sd (input)

Socket descriptor. Refers to a call socket the user has previously
created. This parameter is optional. If it is not given or if it is -1.
then a "ghost" call socket will be created by IPC for the purpose of
establishing the connection. This is a temporary socket which will be
closed when IPCCONNECT completes. If the destination node is using X25
protocol. then a call socket must be specified (no ghost socket is
allowed). Otherwise. a SOCKERR 27 ~ill be given.

dest_descriptor (input)

Descriptor Which the user has previously obtained that identifies the
socket that is to receive the connection request.

flags (input)

32 bits. specifying various optional capabilities. Supported flags are:

flags [protect] (bit O. input)

If this bit is set, then the connection will be protected and can only
be accessed by privileged users.

flags (tcpmsg (bi t 1. input)

If set. this bit tells the TCP protocol to operate in message mode. If
set false. then TCP will be in stream mode (default). This capability
is available only to privileged users (SOCKERR 7 for non-privileged
users) .

flags [checksum J (bit 21. input)

14

If set, the protocol module is instructed to use checksumBing on the
connection. Currently, only TCP supports this feature. Note that
checksumming will degrade performance of the data transfers.

flags [vectored] (bit 31, input)

If set, this flag specifies that the call user data in the opt array
will be vec·ored. If vectored. then the CUD will be located in user
.,":. r S (.JI (') 2 buffers all':'1wed), and the opt entry will cont~;.n

rs t~ . ~se buffers

OPl \ J.nput)

Array of options, deflned with an ADOOPT. Entries with a code other than
those listed here Cdv?e an error. This includes a code of zero.

call .-:-,::r_data_send (code=2, len=n, n byte ar ray)

Data to be sent when the connection is e~lablishing. Trtt:: .Jta may be
vectored or not, according to the state of flags [vectored). If not
vectored, the actual data will be in the opt entry. The maximum length
of 0n-vectored data is

X25 protocol with noaddress flag set: 16 bytes

X25 protocol with noaddress flag not set: 12 bytes

all other pre "_015: 512 bytes

If vect~red, the data will reside in user buffer5 \2 maximum,. and the
information in the opt entry will be vectors to the buffers. A vector
consists of four words and has the following format:

1 TYPE I
1------------1
1 DST I
1------------1
I OFFSET 1
1------------1
1 BYTE COUNT 1

Type:
o - Address is stack relative
1 - Address is relative to a data

segment index as returned b.
the GETDSEG intrlnsic. The
user must be privileged.

- Address is relative to the
specified DST. The user must
be privileged.

Offset:
A DB-relative byte ofset for tyPe O.
For types 1 and 2. an offset relative
to the start of the OST.

Byte Count:
The length of the user buffer

15

For vectored data, the length parameter of the opt entry (specified
with an AODOPT) must be either 8 or 16, indicating the length of the
vector(s) .

max_send_size (code=3, len= 2, 2 byte integer) (input)

This option may be used to inform the protocol of the ~ength of the
largest message to be sent by the user on this connect~on. The
inte~er must be in the range 1 to 32,000. If the value is smaller than
prev~ously set, the option will be ignored. If this option is not
specified, the protocol module will default to a send message size of
1024.

max_recv_size (code=4, len=2, 2-byte integer) (input)

This option may be used to inform the protocol of the leng~h of the
lar~est message to be received by the user on this connect~on. The
valld range is 1 to 32,000 with a default of 1024. If the value is
smaller than previously set, the new value will be ignored.

protocol_reI_address (code=128, len=2, 2-byte integer) (input)

Allows the user to define the source address for the connection. I£
the user is not privileged, the address must be in the range %74057 to
%77777. Otherwise a SOCKERR 164 will be returned. The address length
must be two bytes (otherwise SOCKERR 165).

send_burst_size (code=134 , len=2, 2-byte integer) (input)

Informs the protocol module of the send burst size to be 'used. The
integer must be in the range 1 to 7, indicating the number of messages
which can be sent to the remote node without that node having
processed them. Default is 3. (Privileged users only.)

recv_burst_size (code=135, len=2, 2-byte integer) (input)

Informs the protocol module of the receive burst size. The intege t

must be a number in the range 1 to 7. This set.c:; the number .• £ mes~a:4~~

which may be received without the local user having processed them.
This burst size is used to calculat.ettle window size which Tep
advertises to the remote end. (Privileged users only.)

update_t.hreshold (code=136, len=2, 2-byte integer) (input)

The integer value is sent to the protocol module to specify how the
receive window is to be updated. The value must be between 0 and 100,
indicating the percentage of the tot.al window size which must be
available before rep will send an update packet to the remote end.
The default is 50%.

facilities_set_narne

(code=142, len=8, packed array of 8 characters max) (input)

16

This option allows the user to specify a facilities set name which
l.IIillbe associated with the connect~'n (an X25 capability).

protocol...;flags (code=144, len=4, 4 byte buffer) (input)

The bits of this four-byte option are taken as fla~sl.llhich are unique
to the protocol. If any undefined flags are specifled, SOCKERR 155
l.IIill occur. The only currently-defined flag bit is:

no_address (bit #17 of the double word option entry)

If set. this flag allows the maximum length of the X25
call user data to be 16 bytes. Otherwise. the maximum
is 12 bytes for X2S.

cd (output;

Connection descriptor. Returned value wt
intrinsics to identify the connection.

result (output)

Resultant error code eJse zero.

Discussion:

• . u5e~ in succeeding

This intrinsic is used to establish a connection. The user talill generally
have a call socket to use in the intrinsic call. However, if no call socket
is specified, then a "ghost" socket will automatically be created and used
for the connection initiation. This ghost socket will be destroyed before
the IPCCONNECT completes. However, ghost sockets are not allowed for X2S.

If the protocol is not TCP or 051'SS then the address of the call socket
tAlillbe used for the source. For Tep and OSI'SS, the user may specify the
source address. Non-privileged users are limited in the range of the address
which can be specified. Privileged users are not limited to a certain range,
but it is suggested that they use only addresses between Xl and %77777. This
will prevent possible overlap with any addresses which are automatically
allocated when the user does not specify the source address. If the
TCP/OSI'SS user does not specify the address, then one will be allocated in
the ran~ %100000 to %123771. (Addresses X124000 to X177777 are used for
connect~on sockets.)

A successful result only means that the connection request has been
init1ated. The user must call IPCRecv with cd to determine the success or
failure of the request.

Use and specific meaning of the options is determined by the actual protocol
implementation.

17

Burst sizes for user sockets are only supported for protocols which preserve
message boundaries. They may also be supported for NS applications using
'message model Tep.

To establish a connection, the destination socket must also be a call socket
using the same protocol.

IS

3.3.9 IPCSend

Function:

Sends data on a connection.

Declaration:

PROCEDURE IPCSend

Parameters:

cd (input)

cd
VAR data

dlen
VAR flags
VAR opt
VAR result

descriptor type;
data buffer:
integer;
flags typP
opt type;
integer);

Connection descriptor which identifies the virtual c~rcuit to be u ... ··• tor
the send. If the connection is shared by more thal"'l one process, 'the first
word of cd must contain the process identification number of the ~j-ocess

which created the connection. If the current process is the connection
crea~ort then the first word may be zero.

data (lnput)

This parameter conta~ns either t~eactu~' data to be sent or vectors
pointing to users buffers wh~cr. contail' ne data. If flags bit #31 is
set, then the data is assumed to contain one or two vectors.

A vector consists of four words and has the following format:

I TVPE I
1------------1
I OST 1
1------------1
I OFFSET I
1------------1
I BYTE COUNT I

Type:
o - Address is stack relative
1 - Address is relative to a data

segment index as returned by
the GETOSEG intrinsic. The
user must be privileged.

2 - Address is relative to the
specified OST. The user must
be privileged.

Offset:
A DB-relative byte offset for
type 0, otherwise relative to
start of OST

Byte Count:
The length of the user buffer

19

Note that if the data is to be vectored, the 'data' array must contain
exactly 8 or 16 bytes, and the 'dlen' paramter must be either 8 or 16.

dlen (input)

If the data is not vectored, then dlen must be greater than one and not
greater than X72460. This is the byte count of the data. If the data is
vectored, then dlen must be either 8 or 16, indicating the byte length of
the vectors contained in the data parameter.

flags (input only)

Option flags. Defined are:

flags [shared_conn] (bit #0, input)

This flag indicates that the connection specified by the cd parameter
is being shared by more than one process. In this case, the first word
of cd must indicate the PIN of the process which Ol«"lS the connection.
This is a privileged function; if this flag bit is set and the user is
not privileged, a sockerror 7 will result.

The only sender on a shared connection who can use newait I/O is the
connection owner. To use nowait I/O on a shared connection. the owner
must call IPCSENO without the shared_conn flag set.

flags (more_data] (bit #26. input)

This bit is intended for use with stream protocols to provide the user
some control over the buffering and transmission of data at the
sender's end of the connection. If set, the protocol module should
expect more data to be sent. If this bit is not set, then the
p~otocol module is instructed to send (push) the data immediately. If
set, then the protocol module can use its own algorithm to decide how
to concatehate and send the user data. The reader is directed to the
docum(;n1:s for the protocol module for a complete description of
"normal',' stream mode. (The initial implementation of Tep will always
push, 50 this bit has no effect with that protocol.)

f1285 l vectored] (bi~ #31. input)

If this bit is set then the data to be sent is to be gathered from the
addresses given in the data parameter. Up to two user buffers may be
specified from which the data will be taken.

opt (input)

Array of options, assembled with an ADOOPT intricsic. Defined are:

data_offset (code=8, len=2. 2 byte integer, input option)

20

Defines a byte offset from the data parameter's address where IPC is
to begin looking for the data. This opt must not be used if the data
is to be vectored!

protocol_flags (code=144, len=4, 4 byte buffer) (input only)

This o~, , ·tains 32 bits of protocol-specific flags. Currently, only
X25 uses these flags, althoughIPC does no protocol checking on this
opt. The defined flags are:

d bit flag (bit ~ input): Specifies the state of the 0 bit in
the X15 packet. -e oit is used tc request end-to-end
acknowledgement of the data.

~bit flag (bit #19) (input): Specifies the state of the Q bit in
the x1s packet to be sent by the protocol module. The Q bit is used
to mark the data as control information intended for a pad.

urgent_data_flag (bit #21) (input): If set, this bit will cause the
data to be marked as urgent

Any flag: ~ther than these will cause a SOCKERR 155.

Discussion:

This intrinsic may be called in split stack.

Up to seven output operations may be pending at one time per connection.

If the connection is being shared, IPCSEND will always be a blocking
operation; nowait will not be in effect.

Note that a connection may be shared only for sends. The receiving end of
a connection may not be shared.

21

3.3.10 IPCRECV

Function:

To receive a reply to a connection request or to receive data on an
established connection.

Declaration:

PROCEDURE IPCRecv

Parameters:

cd
VAR data
VAR dlen
VAR flags
VAR opt
VAR result

descriptor type;
data buffer;
integer:
flags type;
opt type;
integer);

cd (input)

Connection descriptor identifying the connection endpoint. Since a
connection cannot be shared for receipt of data. the first l.ItOrd of the
connection descriptor must not contain the pin of the calling process.
(See IPCSENO.)

data (input/output)

During connection establishment. this parameter is not used.

On an established connection. this array is either the buffer where the
data is to be placed or a list of addresses indicating Ldhere the received
data is to be scattered. If flag bit #31 is set. then the data will be
scattered (vectored). and the user is expected to supply one or t~o

vectors as input. These specify where the data is to be placed. A vector
consists of four words and has the following format:

1 TYPE I
1------------1
I OST 1
1------------1
t OFFSET 1
1------------1
I BYTE COUNT I

Type:
o - Address is stack relative
1 - Address is relative to a data

segment index as returned by
the GETOSEG intrinsic. The
user must be privileged.

2 - Address is relative to the
specified OST. The user must
be privileged.

Offset:
A DB-relative byte offset for
type O. otherwise relative to
start of DST

22

Byte Count:
The length of the user buffer

Note that if the data is to be vectored, the 'data' array must contain
exactly 8 or 16 bytes, and the 'dlen' paramter must be either 8 or 16.

dlen (lnput/output'

If .receiving a re:>l->onse to a' -·nectior. request, this parameter is not
used.

If receiving data on an established connection, this parameter is bot
input and output. On input. it gives the maximum number of unvectl'~ed

bytes the user is willing tCi ··r:eive. This value must: be greater t '"'lan
zero and no larger than 30,000. For vectored data . specifies the
length of the vectors (8 or 16). On output, ~len ln0 ate how many
bytes were actually received if waited I/O was U5P ' "ur r .:3it I/O, the
actual byte count will be placed in the tcount par dn,eter of IOWAIT.

flags (input/output parameter)

Option flags "'''''is parameter is not required. Defined flags a't;'

flags [no_output_flags] (bit #16, input)

If this bit is set and the intrinsic is called in nowait mode, the
flags parameter will not be updated upon completion of the intrinsic.
This allows a calling procedure to have a local flags parameter and
still complete before the IPCRECV completes.

flags [discarded) (bit ~Pf Jutput)

This flag is used only on the ipcrecv following an ipcconnect. It
indicates that some of the call user data returned ~ith the connection
request reply message had to be discarded because the user's buffer
was too small. Note that all fla~s are optional, so if the user has
not specified a flags parameter ln the IPCRECV call, the RESULT
parameter must be examined for a value of 142.

flags [more_data] (bit #26, output)

In general terms. this bit is intended to indicate that there is (or
may be) more data to be received after the completion of the IPCRECV.
This bit gets set when:

a. The TCP protocol is operating in stream mode. The aS~·lmption

here is that there could always be more data.

b. A message was received which was larger than the user chose to
accommodate. In this case. the remaining data will be available
in the protocol module's buffer and can be read with another
IPCRECV if the destroy_data flag was not set.

23

For connection completion. this flag bit is not used; if call user
data was received and the user buffers could not accommodate all the
data. then the discarded flag will be set.

If flaes bit ~16 is set when the intrinsic is called. the more data
flag w~ll not be presented to the user if nowait mode is being used.

flags [destroy_data] (bit #29. input)

With this flag, the user can direct IPC to throwaway any data
remaining after the user's buffers have been filled. The only way the
user ~ill know that data has been discarded is that in messaae mode
(TCP) , the more data flag will be set upon completion of th(;-IPCPF:CV.
In stream model-there is no mechanism for the user to detect this.
Therefore. it is recommended that this fla~ not be used in stream
mode. This flag is not used during connectlon initiation.

flags [preview] (bit #30, input)

If set then the user can preview the received data. This means that
the data can be obtained from the 'data' array, but will not be
removed from the protocol module's buffer. This flag should be
mutually exclusive with the destroy data flag, and if the user sets
both then an IPC error will result. This flag is used only on an
established connection.

flags [vectored) (bit #31, input)

If set then the data is to be scattered. This means that vectors must
be supplied on input in the 'data' array to indicate where th€
received data is to be placed. If bit #31 is not set, the rer~iv~d
data will be placed directly into the 'data' array. A maximum.f two
vectors may be provided.

This flag also selects vectored/non-vectored for call user data.
However, in this case, the vectors are olaced in the opt array.

opt (input/output)

Array of options, assembled with an AOOOPT intrinsic l~fineCJ are:

call_user_data_recv (code:5, len:n, n byte buffer) (output)

This option specifies that call user data may be received duri r ... Hie
connection establishment. The data can be either vectored or
non-vectored, depending upon the state of flags bit 31 when the
intrinsic is called. See the above discussion of the 'data' para~eter

for a descripton of the vector(s). The maximum non-vectored length is
512 bytes. NOr"l-vectored data is placed in the opt entry area. whe;-(:,·s:.:i
vectored data 15 put into the buffers specified by the vectors.
Therefore. if nowa.it I/O is desired and the call user data buffer
(which is part of the opt record) is to be released after the initial
call to IPCRECV, vectored data should be selected. Otherwise, the

24

location previously held by the call user data buffer will be
overwritten lAIith the data. possibly creating undesirable results.

The actual byte count received is available to the user. If the data
is not vectored, then the byte count will be placed in the length
parameter of the option entry and may be determined with a READOPT or
by explicit k~led~ of the location of this parameter within the opt
array. If the data ~s vectored, then the location of the received
count depends upon whether newait I/O is being used. Ifaited, then
the count is put in the length parameter of the first vector (ldhich is
assume~·o st'-Ii be in its or~"·P'\c3l place in the opt e",tr-y). This will
be the "1KJ'." ,JTAl bytes . ..=ceived. even if there we ~. two vectors.
If nOWd.lt l. is selected ana the data is vectvt"ec, th~. the total
byte count ~ill be available in the tcount parameter of the IOWAIT.

If not enough buffer space ~as allocated for the actual amount of data
received. then the discarded flag will be set. However, the flags
parameter is optional ~ A if it is not ~lven in the initial call to
this intrinsic, there be no indicatl~ .1f discarded data.

data_offset (code=8, len=2. 2 byte intege t ~nput option)

Defines a byte offset from the data parameter's address where IPC is
to be~in placing the received data. This opt must not be userl lf the
data lS to be vectored!

protocol_flags (code=144, len=4. 4 byte buffer) (output)

This opt contains 32 bits of protocol-specific flags. Currently. only
X25 uses these flags, although IPC does no protocol checking on this
opt. Undefined flags cause a SOCKERR 155. If bit #16 of the fla~s
parameter is set and nowait is being used, the protocol flags wlil not
be updated upon completion of IPCRECV. The only flags defined for this
intrinsic are:

d bit flag (bit #18) (output): Indicates the state of the 0 bit in
tne X'5 packet. The 0 bit is used to specify end-to-end
acknowledgement of the data. This bit is not used by IPCRECV for
connection establishment. (There is no 0 bit for call user data.)

q bit flag (bit #19) (output): Indicates the state of theQ bit in
tne X~5 packet received by the protocol module. During connection
establishment, IPCRECV does not change this bit. On an established
connection, this bit specifies that the data is control information
intended for a pad.

urgent data flag (bit #27) (output): This flag is used only on an
established-connection and indicates that urgent data has been
received. This bit is not output to the user if flags bit 116 is set
when the intrinsic is called in nowait mode.

result (output)

25

Indicates whether the request ~as successful. If nowait I/O is used, the
result parameter will give information about the initial call to the
intrinsic, but the parameter will not b~ updated upon final completion of
the request. To examine the result of the IPCRECV completion. the user
can call IPCCHECK.

Discussion:

The IPCRecv intrinsic serves two purposes: 1) to receive a response to a
connection request, and 2) to receive user data on a connection. When
receiving data, a user can choose to preview the data and/or recieve it into
user buffer(s).

In receiving a response to a connection request (a call to IPCConnect), the
intrinsic returns nothing in the data buffer. A result of zero indicates a
successful connection establishment. Various error codes indicate
unsuccessful establishment. One such error code will indicate rejection by
the destination. Call user data if available will be returned in the buffer
provided by the option call user data recv or into user buffers if vectored
data is selected. - - -

~hen receiving data, the user ~ill be waited until some data arrives (or a
timeout occurs). The dlen parameter will reflect how much data ~as

received. If there is more data than was requested, the more data bit will
be set and the re~ining data can be received with the next call to IPCRecv.
A user will never receive any data beyond an end of message marker with a
single call to IPCRECV.

26

3.3.11 IPCGIVE

Function:

To give a socket or connection endpoint to another process.

Declaration:

PROCEDURE IPCGIVE

Parameters:

descriptor
Vp.~ give name

nlen
VAR flag:,
VAR result

descriptor type;
socket name type;
integer;
flags type-'
integer

descriptor (input)

Socket or connection descriptor of ertity to be passed

give_name (input/output)

Socket name to be temporarily assigned to the soc~~_ or connection to be
given away. This value must be matched by the user attempting to get the
connection/socket. If the user specifies a length of zero for this name,
an eight byte value will be randomly assigned and returned in this
parameter. If the name is supplied by the user, it must be no more than
sixteen bytes.

nlen (input)

Byte length of the specified name. This value may be zero ind~~dtlng the
IPC facility is to assign the name.

flags (input/output)

Option flags. No flags are currently defined.

result (output)

Resultant error code~ else zero.

Discussion:

The IPCGIVE intrinsic is used to pass a socket or connection to anoth.c;>r
process. A name will be associated with the connection/ socket which ~ust

be matched by the process trying to receive the connection/socket. This
name can either be specified by the user or assigned by the IPC facility.
This name will be temporary (until the connection/socket is taken or
destroyed) and can only be referenced by the IPCGET intrinsic (not by
IPCLOOKUP) .

21

The syntax of the of the name is the same as for the other socket intrinsics
permitting names (see Section 3.2.1). This allows users to use a socket's
well known name for the IPCGive and IPCGet intrinsics.

Once this intrinsic has been invoked, the user no longer has access to that
socket or connection descriptor. If a process expires after giving away a
socket/connection but before another process receives it, the connection or
socket will be destroyed. It should be noted that some systems may wish
implement a means for a process to give away a socket/connection and expire
without destroying the socket or connection.

~ers may continue sending data to a socket or conection while it is being
glven away. It is the user's responsibility to notify other users that a
socket/connection has been given away, and what name has been assigned for
retrieving the socket or connection.

28

3.3.12 IPCGet

Function:

To receive a connection endpoint or socket ~hich has been given away.

Declaration:

PROCEDURE IPCGet

Parameters:

VAR give_name
f"'lle~

VAR 1~9S

VAR descr~ptot

VAR result

socket name type;
inteQer; -
fla· type;
des f :. tor type;
inte~);-

give_name (input)

Name assigned to the socket or connect1.0n when l.t was given away.

nlen (input)

length, in bytes. of specifieu name.

flags (input/output parameter)

Option flags. None are currently defined.

descriptor (output)

Connection or socket descriptor for socket/connt<ction received.

result (output)

Resultant error code. else zero.

Discussion:

The IPCGet intrinsic is used to take a connection or socket which has been
relinquished via the IPCGive intrinsic. The name identifies

29

3.3.13 IPCCONTROL

Function:

Performs special operations.

Declaration:

PROCEDURE IPCCONTROL

Parameters:

descriptor (input)

descriptor
request

VAR wrtdata
wlen

VAR readdata
VRR rlen
VAR flags
VAR result

desc I' .i~tor_ type;
inteoer;
daTn"'bliffer;
irl:eg~r ;
data t'ul fer;
integer;
flags t"pe;
inte9~r ,;

Either a socket descriptor or a connect.ion descr~ptor.

request (input)

Defines what control operation is to be perfD"."ed. See t'·e ,jiscussion
below fora list of the defined requests.

wrtdata (input)

Byte array used to present any input data. For (~rtain requests, wrtdata
will contain the actual data, whereas cth~r ~~~ue5·.s 2:1ow l~st of
addresses (vectors).

wlen (input)

Byte length of the wrtdata array.

readdata (output)

If the request results in data being returi.~a tv tile 'Jser, this parameter
is the destination.

rlen (input/output)

On input, used to specify the maximum amour': of data the user is willing
to receive. On output ,tells the user how r.H.•ch data actually was
received. See the various requests for details.

Option flags. 32 bits, each selecting an option. Defir'\€"d is:

flags [vect/transtrace) (bit #31. input)

30

This £la~bit has a dual usage, depending on the request code. If the
request ~s to enable IPC trancing, then this bit is used to select
whether transport tracing should also be enabled. If the request is to
accept or reject a deferred connection, then the bit is used to select
vectored data (data which will be gathered from user buffers).

result (output)

Indicates the result of the request.

Discu=

The IPCCONTROL intrinslC 1S lJS~C to perform special requests on sockets. A
request can inc!IJde recelving • lo r rnation about a socket. The currently
defined control functions are: ~

1 - Er. .. nowai t (asynchronous) I/O for the specified socket or
c<.·.·"ection. (Uses Descriptor, Request. and Result.) If this "'~C1uest

is selected. then the user's pro("'"ss can continue its acti·..·. while
the I/O intrinsic waits for the requested Transfer to complei.c:
Operations such as IPCSENO, IPCRECV. and ····oECVCN u.llil not actually
complete until the user calls the IOWAIT. ~in5ic.

2· '.: :)I"m waited (synchronous) I/O for the specified socket or
(;Oflr·e..:t lon. (Uses Descriptor. Request, and Resul t.) This means that
the calling process will wait for the intrinsic to complete the
operation before ontinuing. If the user tries to switCh from nowait
I/O to waited I when there is uncompleted I/O, sockerr 71 will be
returned. Also. 1£ the user tries to enable waited I/O'when software
interrupts are enabled. error 112 will be returned. (enhancement in
near future)

3 - Allows the user to change the default timeout for receives. The
wrtdata array must contain 2 bytes of timing value in tenths of
seconds. A zero time value turns off receive timeouts. The default
timeout will be sixty (60) seconds. The maximum time is 3.276.7
seconds. If a larger value is requested. error 76 is returned.

Wr,en an IPCRECV is called by the user, the timer is set to the value
specified. 'S the ~O(RECV completes before the timer pops, then the
timer is auvr~ed.

If a t~meout occurs before the receive intrinsic completes. the
result parameter of the IPCRECV will be updated to show error #59.
and the dlen parameter will be set to zero. (This is true only for
nowait I/O.) The pending receive will be terminated, but the
connection. if established, will not be closed.

9 - ACCEPT DEFER CONN. This request tells the protocol module to accept a
deferred connection. The source socket which received the call must
be in deferred call acceptance mode. or error #166 is returned4

31

The user may send call-related data along with this message to the
protocol module. If the wrtdata array is specified with this request,
then the contents of the array will be interpreted as "call user
data". The format of the wrtdata array is the same as the opt
parameter of other intrinsics and must be specified with an
INITOPT/AODOPT sequence. The call user data may be vectored If
flags bit #31 is set for this request, then the wrtdata array 1S
assumed to contain one or two (maximum) vectors which point to user
buffers. For this request, the wlen parameter is not used.

10 - RESET VC. This request causes X25 to send a reset packet on the
virtual circuit associated with the connection socket. It is only
valid on connection sockets and only for X25. ~rtdata may contain the
cause and diagnostic fields for inclusion in the reset packet. Wlen
must be 2. No readdata is associated with this request.

11 - INTERRUPT VC. This request causes X25 to send an interrupt packet on
the virtual circuit associated with the connection socket. Wrtdata
must contain 1 byte of user data to be put in the interrupt packet
user data field. This request is only valid on connection sockets and
only on X25.

12 - WHY. This request returns the reason for the IPC error or event on an
X25 connection. The readdata parameter is required, and rlen must be
4. The first byte of readdata contains the type of packet that caused
the error (reset. clear. restart) or the unSOlicited event
(interrupt). If the type is reset or clear, the third and fourth
bytes will contain the cause and diag bytes from the packet (the
second byte will be zero). If the event was an interrupt. the second
byte will contain the interrupt code from the packet. and the last
two bytes will be zero. This request is only valid on anX25 connect
socket.

Note that the WHY request is only useful if the user needs to obtain
the data associated with the event; the type of event is indicated by
the error code returned. For example, if a SOCKERR #146 occurs. the
U5~r knows that a reset packet was received. An IPCCONTROl ~ill be
f1eC2""sary only if the cause is of interest.

13 - NO H· . ry 11,1EOLfT. This request sets the no activity timeout value
(X?5 0" '. -1£ no user generated activity occur~ on the connection
for this oiTtc:!Jnt of time, then the connection is automatically cleared
;:;nd an error is returned on. any subsequent IPC routine call. The user
ill"st use the IPCSH\JTOOWN intrinsic to remove the connection socket.
:..;, t.data must contain a 16 bit integer representing the timeout value
in minutes. If the value is equal to zero. the timer will be
oi ~ ..1bled. Wlen is 2. Readdata is not used for this request. This
re'~uest is only valid on connection sockets. A default timeout value
is d··f 1" 1 at configuration time.

15 - REJECT Of:.FLi,::Eo CONNECTION. This request is used to reject a
cconne':..ti.:,n request which was previously deferred. The connection must
be in the vc wait confirm state. otherwise a SOCKERR 1166 will be

32

returned. If the wrtdata array is given, then call-related data will
be sent back to the protocol module (and presumably back to the
requesting node). The fonmat of the ~rtdata array is the saBe as for
the opt array used by other intrinsics, and it must be initialized
with an INITOPT/AODOPT seQUence. The call user data can be vectored
by setting flags bit #31 and putting one or two vectors in the
~rtdata array. The ~len parameter is not used.

256 - Enable nowait receives/disable nowait sends.

257 - Enabu ~wait send~/disat~~ ~wa1t receives.

258 - ABOR1 uUTSTANDING NOWAlT RECEIVES. The coone· Lon is not abofted.

259 - ENABLE USER TRACING. This request enables trac1ng for a socket and
possibly also for the protocol module. The wrtdata array can contain
up to three optional entries for the tracing. This array must be
initialized lIlith an INI""OPT/ADOOPT sequence. The three available opt
entry codes are'

131 - Specify trace file name. The data in the wrtdata entry
contains the name of the trace file to be used. The name
length must be greater than zero and less than 36.

132 - Specify the number of logical records in the trd~e file.
The wrtdata entry ~ust be two bytes, giving a 16-bit
number of records.

133 - Specify the maximum number of user bytes to be traced.
The wrtdata entry must be two bytes with a value no larger
then 8192.

The readdat3 array if 5pec~f~ed will return the actual name of the
trace file. InclUding the group and account. If the user specified
the file name, then the current group and account will be appended.
If no user file was specified, then one will be created. The file
name so created will be of the form SOCK????, where ???? is four
random digits.

If bit .31 of the flags parameter 1S specified with this request,
then protocol module t-acing will be enabled along with user data
tracing. \This is not allowed for a Tep call socket.)

260 - DISABLE TRACING.

261 - ENABLE IMMEDIATE ACK. This request instructs the Tep protocol module
to acknowledge received frames immediately.

262 - ENRBLE SEND TIMEOUT. Sets a timer for connection send oPerations. The
wrtdata array contains the timeout value in tenths of seconds and
must be exactly two bytes in length. A time value of zero ~ill

disable the timer. The default is no send timeout. If the user tries

33

to set a timeout on a connection which is being shared, a SOCKERR 167
will occur.

512 - ALLOW SHRREO CONNECTION. Allows other processes to share the
connection for sending data. An error will be returned if the
descriptor is not a connection. (Call sockets cannot be shared.)
fUso. if a timer has been enabled for sends on the connection, an
error ~ill be reported. There can be a maximum of eight shared
connections per process. This request is available only to privileged
users.

513 - ENABLE SOFT INTERRUPTS. This request is used to enable or disable
software interrupts on the socket. The wrtdata array should contain
two bytes ~hich define the user's plabel. A plabel of zero ~ill

disable software interrupts. If there is any I/O outstanding, the
request to enable software interrupts will be denied. Privileged
users only.

A future enhancement will disallolAl software interrupts lAIith waited
I/O and will also notallou software interrupts to be disabled ~ith
I/O outstanding.

514 - RETURN SOCK ADDRESS. For privileged users, the specified socket's
address wilI be returned in the readdata array. The readdata array
should be at least six bytes long to accommodate the returned string.
The rlen parameter is not used as an input, but will be updated on
output to indicate the actual length of the address. The returned
address has the following meaning:

DESCRIPTOR TYPE

call socket

cor''-1E-C t jon from IPCCONNECT

COl .;,.~r- I i.:...n f f om IPCRECVCN

ADDRESS MEANING

port address of socket
(for TCP, len = 2 bytes)

local port address of connection
socket (for TCP, len = 2 bytes)

remote port address of connection
socket in bytes 0 and 1; remote
internet address of node in bytes
2 through 5

515 - SET Tep Wl~·!iI0t~ f'ARMS. This request is available to privileged users
only an:::) is onTy valid for connections (not call sockets) using rep.
Various pa' -3~let~rs which control the sending and receipt of rcp
rneSSa~f::5 c.na t·e 31tered with this request. The wrtdata parameter
contaIns -3 l-0de for the specif ic parameter to be altered. The wrtdata
array is formatted with an INIrOPT/AOOOPT sequence. Request 515 is

34

intended for use with TCP message mode only. The supported opt codes
are:

3 - Maximum send message size in bytes. The wrtdata entry must
contain 2 bytes in the range 1 to 32,000. If the value is
smaller than previously set, the request will be ignore<.L The
default is 1024.

4 Maximum receive message size in bytes. The wrtdata array must
contain 2 bytes in the "angp l ~: ~2,OOO. If the value is
smaller than previous; ~e ·~e equest ~ill be ignored. The
default is 1024.

134 - Maximum send burst The wrtdata parameter "t CO' . ,n two
byes ~hich speclfy a ~umber in the range I 1 1. Th1S number
sets the number 01 messages that can be p.q,Jelined to the other
end of the connection without the messages necessarily being
processed by the peer. A user ca~ continue sending messa~~~

wi thout forcing the peer to P' ,,'ess them, if the number
outstanding messages is small~· than the burst size at" ~re

is sufficient window space. The default burst size lS -'.

135 - Maximum receive burst. The wrtdata parameter must contain two
bytes representing a number in the range 1 to 1. This is the
number of messagec ~hich can be pipelined to the receiver's
end of the connection without being processed. ThiS burst
size is used to calculate the window which Tep will be
advertising. That is, the ~indow is the maximum receive size
times the receive burst size. The default receive burst size
is 3.

136 - Window threshold. The wrtdata a' ay contains two bytes whiCh
represent a number i~ the range to 100. This is the
percentage of the total window that must be utilized before
sending a window update packet to the remote peer. It is used
to prevent rcp from generating packets merely for updating the
window. However, packets for piggybacked updates will
continue to be sent. The default window threshold is 50X.

The IPCCONTROL intrinsic is "option variable". That is, the number of
parameters actually supplied in the intrinsic call is variable. The request
code and the descriptor must always be supplied, but other parameters may
not be required for the specific request.

This intrinsic cannot be called in split stack.

35

3.3.18 IPCSHUTDOWN

Function:

To release a call socket, destJ.nation descriptor. or connection descriptor.
Associated resources are also released.

Declaration:

PROCEDURE IPCSHUTDOWN

Parameters:

descriptor
VAR flags
VAA opt
VAR result

descriptor type;
type_flags;
type opt;
integer);

descr iptor (input)

Either a socket descriptor, connection descriptor, or destination
descriptor.

flags (input)

32 bits of optional actions. The only defined flag is:

flags graceful_release] (bit #17, input)

If this flag is set, the connection will be gracefully released.

opt (input)

Array of options, initialized with an INITOPT/AOOOPT sequence. Defined
is:

reason_code (code=143, len=2, 2 bytes, input)

This option allow,= tr,e user to specify two bytes of informat·-- about
the shutdown reason. The reason code is only allowed for ~2~ jr any
other protocol, a sockerr #145 will occur. The bytes are P_'3 ...j ~ +he
cause (first byte) and diagnostic (second byte) fields of the X25
clear packet. The reason information may be supplied only for a
connection socket. Otherwise, asockerr #8 will occur.

result (output parameter)

Resultant error code, else zero.

Discussion:

The descriptor is the only required parameter.

36

This intrinsic may not be called in split stack.

This intrinsic permits a user to close a socket or release a connection. If
a call socket is being shut down, users may continue using any associated
connections which have been established. The effects of shutting ~n a call
socket are:

1. Any timers set on the socket are aborted.

2. -If softl.dare interrupts were set for the socket, they are disabled.

3. If there are any pending connection requests on the socket, the
requests are rejected.

4. Any names associated with the socket are removed.

5. If tracing is enabled for the socket. the ·trace file will be closed.

6. If logging is enabled on the socket, the closure will be logged in the
active NMLG file.

The effects of shutting dotAln a connection are:

1. If the connection was being shared by several processes, error
messages are sent to the other users. This causes any outstanding
requests on that connection to immediately complete.

2. If software interrupts were enabled on the connection, they will be
disabled.

The graceful release capability is intended to allow closing a connection
without loss of inbound data. When one node initiates a graceful release, a
message is sent to the remote node informine it of the event. The connection
l.dill then 90 into a simplex state with the lnitiatin~ node being able to
receive but not send. Therefore, if data is in translt to the initiating
node, it will not be lost. The remote node must at sometime call IPCRECV to
know that this has happened. The connection will remain in a simplex state
until the remote node initiates a graceful release or until the local node
calls IPCSHUTDOWN without the graceful release option.

~ sockerr .102 will result if graceful release is selected and any of the
following conditions exist:

1. The connection is in the vc'wait'confirm state. That is, a connection
request has been received, but the connection has not been accepted.

2. The connection is in the vC'simplex'in state. This could happen, for
example, if an established connection has already been gracefully
released.

3. The connection is in the vC'connecting state. In this case, a connect
request was issued, but the connection is not yet established.

37

4. The connection has been aborted. possibly due to an irrecoverable
error.

5. The pending outcount on the connection is not zero. For example.
IPCSENO was called in nowait mode and has not completed.

6. The protocol module does not support graceful release.

38

3.3.19 IPCOest

Function:

Creates a destination descriptor.

Declaration:

PROCEDURE IPCDest

Parameters:

socket kind
VRR location

location len
protocol

VRR proto addr
addr Ten

VRR flags
VAR opt
VAR dest descrip
VAR result

integer;
location type;
integer;
integer;
packed array of bytes;
integer;
type_flags;
type opt;
descriptor type;
integer);-

socket_kind (input)

Defines the type of socket. Refer to the IPCCREATE discussion for a of
list socket kinds. There is no default.

location (input)

Name of the node on which the remote socket resides. This parameter may
be omitted. in which case the location is assumed to be local. If
omitted. then the location_len parameter must also be omitted.

location_len (input)

Byte length of the destination node name. If this parameter is given.
then the location parameter must also be given. However. the location_len
may be zero, indicating a local destination (loopback).

protocol (input)

Defines the protocol used by the remote socket. Refer to the IPCCRERTE
discussion for a list of valid protocols.

pro to_add r (input)

Protocol relative address which will be associated with the destination
descriptor. For non-privileged users. the address value must be in the
range X14057 to X77777. Otherwise, sockerr #164 will occur.

addr_len (input)

39

Byte length of the protocol address, if given. For privileged users, the
length may be no less than one and no greater than 16 bytes. For non
privileged users, the addr len must be 2 bytes. Otherwise, sockerr #165
will occur. -

flags (input/output)

Option flags. No flags are defined for this intrinsic. If any flags are
given. a sockerr #7 will occur.

opt (input/output)

Array of options. None are defined for this intrinsic. If the opt
parameter is given, then its length must be zero. Otherwise, sockerr #8
will result.

dest_descrip (output)

Destination descriptor. Value returned llJhich is to identify the
destination socket.

result (output)

Resultant error code. else zero.

Discussion:

This intrinsic may not be called in split stack.

The required parameters are socket_kind, proto_addr, addr_len, and
dest_descrip.

The IPCOEST intrinsic is an alternative to the IPCLOOKUP intrinsic and
allows the user to create a destination descriptor which can be used for
establishing connections and sending data.

40

	Contents
	3.3 Intrinsic Interface Definitions
	3.3.1 IPCCreate
	3.3.2 IPCNAME
	3.3.3 IPCNAMERASE
	3.3.4 IPCLookUp
	3.3.8 IPCRECVCN
	3.3.7 IPCConnect
	3.3.9 IPCSend
	3.3.10 IPCRECV
	3.3.11 IPCGIVE
	3.3.12 IPCGet
	3.3.13 IPCCONTROL
	3.3.18 IPCSHUTDOWN
	3.3.19 IPCDest

