
* * * DRAFT * * *

fl'h-::tJ HEWLETTa::.re. PACKARD
Information Networks Division

Location Code: 66-'1850

Project Number: 6651-3008

July 24, 1986

Katy Jenkins

* UP Confidential .;;

IL-"_PR_O_;;D_···.·u_~'b_:i2T_· _ID_E_N_T_IF_·;C_·········~_~:;~_010_~N_:··::.<---_·C_;:~: .. __.:~:'_"-'-'-_._.-_lIT] . ".

Name

Mnemonic

Project Number

Project Manager

Project Engineer.'].:'·:

Product Manager

Product Assurance

Documentation

Off- Line Support

On-Line Support

Software Production

HP3000 DDN Seryices: TELNET

none

6651-3008

Bruce Templeton

Katy Jenkins

Dennis King

Murali Subbarao

Mike Genevro

Bruna Byrne

Susan Gennrich

Lorraine Mehrtens

Jim Zepp

George Melchiorsen

1:- HP Confidential 1:

1-1

TELNET, a network virtual terminal protocol, is one" of three required services protocols defined by the

Department of Defense for the Defense Data Network (DON). The other services are File Transfer

Protocol (FfP) and Simple Mail Transfer Protocol (SMTP).

The DON architecture model has·also defined lower layer protocols, including Transmission Control"

Protocol (Tep), Internet Protocol (IF), and :x. 25. The existing HP implementations of these layers require

modifications in order to be certified with the Defense Data Network. An overview of the· product

requirements necessary to provide DDN compatibility for HP3000s is given in DDN_Services/HP3000:

Investi~tionR~ort.

This document discusses the design" of the TELNET protocol modules. It is recommended that the

External Specifications be read ""before this document. Familiarity with MIL-STD-1782 (the formal

definition of the TELNET protocol). would also be useful.

2.1 DESIGN APPROACH"

The following are some of the general guidelines used in the design of the TELNET protocol modules.

They appear in no particular order.

• Design with the stated project priorities in mind. Specifically, schedule is the highest priority

for this project, followed by functionality, followed by performance.

• Provide at least the minimum functionality necessary to insure certification with the DDN.·

• Leverage from existing code whenever possible.

• Provide a product which is independent from any particular release of the MPE operating

system.

• Design the product with portability to other systems in mind.

• Facilitate foreign language customization of the product.

• Provide a clean, maintainable, understandable product.

2.1.1 Pro ject Priorities

A timely, functiona~ easy to use product at first release is an important design goal of the TELNET

project. However, since a goal of timeliness often conflicts with goals of functionality and usability, design

tradeoffs must be made to achieve an acceptable combination of all three. One example of such i design

tradeoff is the way in which an HP 3000 terminal user invokes system break on a remote system over a

TELNET connection. (See the External Specifications for more details.) To invoke system break on a

remote system while running the TELNET user program in data mode, the terminal user must:

* HP Confidential *
2-1

I

Design Overview "

1) Enter the TELNET attention character to switch from command mode to data mode.

2} Type" the TELNET user program SEND BREAK command.

3) Type REMOTE to return to data mode in order to receive the remote system's response.

Although this interface is somewhat awkward for the terminal user, this approach was considered

preferable for first release) given the complexity of implementing a more user-friendly approach (i.e.

allowing the terminal user to invoke system break on the remote system simply by striking the (BREAK)

key on the local terminal). "

Likewise, the product muSt have an acceptable performance level at first release and performance

considerations will be incorporated throughout the design and implementation process. The major

concern for first release is to provide a functional product with reasonable performance which can be

optimized and enhanced in subsequent versions.

2.1.2 Certifi<:ation
.' .~..~' .

The design of the""TELNET/3000 product is adhering to the TELNET protocol specification contained in

MIL-STD~1782""" to insure cOmpliance with the DON requirements. Additionally, the Defense

Communication Agency (DCA) has published a draft, Defense Data Network Host Interface, Qualification

Testing: Higher Level Protocols) discussing test procedures for certifying with the DDN. The progress of

this document is being tracked) and the TELNET/3000 implementation is designed to pass the

certification tests currently outlined in the qualification testing document.

2.1.3 Code Leverage

Communication between HP machines is currently provided by the Network Services (NS) product. The

Virtual Terminal Service (VT) portion of the NS product provides terminal users the capability to logon to

remote systems and to run applications as if they were using a terminal directly attached to the remote

system. The TELNET protocol provides a similar type of terminal to host communication facility

between various types of HP and non-HP systems which provide the TELNET service.

The NS/VT and TELNET services) however) differ greatly in the protocol used to exchange information

between the peer protocol entities communicating across the network. These protocol differences limit

the amount of leverage which can be obtained from the NS/VT code.

The TELNET design will use the NS/VT architecture model) and the system interfaces of the TELNET

modules will be similar to those of VT. (By similar I mean that the types of interfaces will be the same,

i. e. a pseudo terminal driver which intercepts MPE I/O requests, an application monitor process which is

created by DSDAD, etc. The information exchanged across the interfaces) i.e. which MPE I/O requests are

supported, contents of port messages sent from pseudo terminal driver to application monitor process) etc.

will be different for TELNET.) Use of the NS/VT architecture model will allow TELNET to use many of

the common services which were developed for NS) such as the buffer management routines and the

DSDAD control process. The TELNET module system interfaces will be discussed in more detail later in

this document.

There will be little direct code leverage from the internal workings of the VT modules, due to the

differences between the two protocols and their traffic characteristics. Experience gained from working

with the NS/VT code) however, will be very valuable in the design and implementation of the TELNET

modules.

* HP Confidential *

2.1.4 MPElndepen~~nce

The TELNET design will not have any dependencies on a particular version" of the MPE operating system

(other than a limitation that the operating system be an MPE V/E version). One design implication of this

goal is that the TELNET user program is activated with an MPE :RUN command, as opPosed to a specific

MPE command interpreter CQmmand like NS/VT. ~e use of the :RUN command also simplifies the

interfaces for the TELNET module on the local terminal user system.

2.1.. 5 Portability

The TELNET program modules (the terminal user routines and most of the· application server routines)

will be written in PASCAL to facilitate porting of code to non-HP3000 machines. Application server

routines which access system tables and all of the pseudo terminal driver code will be written in SPL.

A few observations should be noted regarding the portability of the TELNET/3000 code. Most HP3000

virtual terminal products by necessity are intimately associated with the MPE operating system and its

terminal I/O characteristics. Thus it only makes sense to talk about portability to systems which resemble

MPE (such as MPE/XL systems). "Likewise, the usefulness of porting the TELNET/3000 code depends

upon the availability of associated products (such as the NS common services) on the target system.

2.1.6 Foreign Languages

The TELNET modules will load all command keywords, error messages, help messages, etc. from a message

catalog. This will allow localization by a Network Manager.

2.1.7 Maintainability

The TELNET modules will be designed to provide a clean, easily understood, product which is

maintainable by a non-author. Code comments and supporting documents (ES and IMS) will be kept up to

date and the code implementation will follow standard structured programming practices.

1: HP Confidential 1;

2-3

Design Overview

2.2 OVERVIEW OF OPERATION

This section provides a guide to the design and operation of TELNET/3000. It is assumed that the reader

is familiar with NS Services, NS transport, MPE ports, and Network Manager; if not HP internal

documents exist to aid the reader.

2.2.1 TELNET Local Structure

Figure 1 shows the structure of the TELNET/3000 product on the terminal user's local system.

2.2.1. 1 Startup

A terminal user in an MPE session on the HP3000 asks the CI to run the TELNET user program, thereby

creating the TELNET user process as a child of the user's session.

The TELNET user program will open the MPE session input and output devices (typically the user's

terminal) in order to communicate with the terminal user.

The TELNET user process will check the Port Dictionary to determine if the TELNET service has been

allowed. The 17ELNETL" entry in the dictionary will be placed there by DSDAD when the Network

Manager includes the service in an NSCONTROL START command. If the port entry is not found, the

TELNET user program will print an error message on the user's terminal and terminate.

When the terminal user requests a connection to a remote host (by specifying a nodename info string in

.- the :RUN command or by issuing a TELNET user program OPEN command), the TELNET user program

will open a NetlPC connection to the remote host.

2.2.1.2 Steady State

The TELNET user program will communicate with the user's terminal using file system intrinsics and

AITACHIO calls. The TELNET user program will communicate with the network by using NetIPC

intrinsics.

While in data mode, the TELNET user program will process data read from the user's terminal and send it

out on the NetlPC connection. The TELNET user program will process data received from the network

and write it to the user's terminal.

In command mode, the TELNET user program will suppress output of any data received from the network

and will interpret data read from the user's terminal as TELNET user program commands to be executed.

-;\; HP Confidential -;\;

.-:

USER
CI

PROCESS

PORT
PROCEDURES

USER
TERMINAL

TELNET USER
PROCESS

FILE SYSTEM

MPE I/O SYSTEM

NETWORK
CONNECTION

2.2.1.3 Shutdown

Figure 1 - TELNET Local Structure

The NETIPC connection will be closed when the terminal user enters the TELNET user program CLOSE

or EXIT commands, or opens a new connection with the OPEN command (and responds affirmatively to

the "Close current connection?" prompt). The connection may also be closed if an irrecoverable NetIPC

error occurs. The TELNET user process remains alive until an EXIT command is entered, or the father CI

process is aborted.

*" HI' Confidential *"
2-5

2.2.2 TELNET Remote Structure

. Figure 2 shows the structure of the TELNET/3000 product on the remote system.

2.2.2.1 Startup

If the TELNET service has been enabled via an NSCONTROL START command, DSDAD will listen ·on

Port 13 fora connection request. When an incoming connection request is received, DSDAD will create a

TELNET server process and give the NetlPC connection to this newly created process. The TELNET

server process creates an MPE port to receive further communications from DSDAD and from the

TELNET pseudo terminal driver. The TELNET server process is a child of DSDAD at this point.

The TELNET server process will obtain and initialize a TELNET pseudo terminal. The MPE device

recognition sequence will be started for the TELNET pseudo terminal. This should cause MPE to issue a

colon prompt to the pseudo terminal.

Any I/O requests (for example, the colon prompt) directed to the pseudo terminal will be received by the

TELNET pseudo terminal driver~ The pseudo terminal driver will notify the TELNET server process of

work to be done by sending an MPE port message to the TELNET server process. The TELNET server

process will send the colon ·prompt to the terminal user's local system using NetIPC intrinsics..

Data received from the network will be used to satisfy read requests which are issued for the pseudo

terminal. No real work can be done however, until the terminal user types in llHELLO user.acet" to

initiate an MPE session on the remote system. Once an MPE session has been established on the remote

system, the TELNET server will adopt into that session.

2.2.2.2 Steady State

The TELNET pseudo terminal driver receives I/O requests directed to the TELNET pseudo terminal. The

pseudo terminal driver cooperates with the TELNET server process associated with this pseudo terminal in

order to handle the application I/O requests. The TELNET pseudo terminal driver informs the TELNET

server process of work to be done by sending an MPE port message to the server. The TELNET server

informs the TELNET pseudo terminal driver of work to be done by PCALing the driver. Data written to

the pseudo terminal is sent out on the network connection by the TELNET server process. Data received

on the network connection by the TELNET server process is used to satisfy read requests issued to the

pseudo terminal Additional details on the interaction between the TELNET server process and the

TELNET pseudo terminal driver are provided in the llModule Design" section of this document.

* HP Confidential *

I.
I.

r----- OSOAO
· PROCESS
1
•
(·(•

t
NETWORK

CONNECTION

I

-.
I.
I

t
TELNET SERVER

PROCESS

REMOTE CI
PROCESS

FILE
SYSTEM

MPE I/O SYSTEM

-'-

PORT
PROCEDURES

TELNET PSEUDO
TERMINAL DRIVER

Figure 2 - TELNET Remote Structure

2.2.2.3 Shutdown

When an MPE session associated with the TELNET pseudo terminal is terminated (i. e. the terminal user

typed :BYE, or typed :HELLO to relogon, or the session is aborted), the TELNET pseudo terminal driver

will notify the TELNET server so that the server can adopt itself back under DSDAD. f\.ny Jile

information associated with this session will be reset. If the terminal user is not doing a relogon, the

TELNET pseudo terminal will be deallocated and the NETIPC connection will be closed. If the terminal

user is rclogging on, the pseudo terminal will remain allocated, the NETIPC connection will be retained,

and the TELNET server will adopt into the new ~1PE session once it is established.

"* HP Confidential "*
2-7

If an irrecoverable error occu~ on the NetIPC connection the TELNET server process will adopt itself

back under DSDAD, abort the associated user MPE session, and cleanup and deallocate the associated

TELNET pseudo terminal.

Whenever the TELNET server closes the NetiPC connection, processing is basically finished from the

server's point of view. The TELNET server process will send a "Server Done" port message to DSDAD.

Whether the TELNET _server process is actually terminated. or just put into reserve is determined by

DSDAD, and is dependent on whether pcreated servers are being used.

NOTE

The decision to terminate the NetiPC connection when the user is not

relogging on is based on observation of existing TELNET implementations.

The TELNET protocol standard itself does not address the issue of

shutdown. All of the TELNET server implementations which I have seen

terminate' the network connection when ' a user, logs off.' If the

TELNET/3000 server retained the NetiPC connection when a user logged

off, a problem' could be created for ·non-HP3000TELNET local systems

which do not implement a TELNET attentioncharacter. The terminal user·

would not have a ~ethod to wake the local TELNET system out of data

mode. Having the TELNET server close the network connection upon user

logoff accomplishes this wakeup purpose. A· terminal user who wishes to

esta:tJlish a new MPE session without terminating the NetIPC connection

may do so by relogging on (i.e. typing :HELLO user.acct while currently in

an MPE session).

* HP Confidential *
"l 0

Design Overview

2.3 MAJOR MODULES

The TELNET product will consist of three major modules, the user program module, the server process

module, and the pseudo terminal driver module. The user program module and the server process module

will be contained in one program file. The pseudo terminal driver is contained in a program file which is

configured as an MPE VO driver. Additionally there are a few utility routines which must reside in the

syStem SL. These are the routines which provide the null terminal interface to FrP and'must reside in the

system SL so that FrP can call them. These SL routines could either reside in a separate SL segment set

aside for DDN services or they could be incorporated into an existing SL segment which will always be

present when DDN services are present (such as the ASUTIL segment).

2.4 MAJOR DAT'A ST~UCTURES

The TELNET modules will use NS buffer management intrinsics to buffer data in the process stacks of

the TELNET user program and the TELNET server process. No extra data segments will be used. The

user program and server process· will·maintain global variable information in their process stack. The

pseudo terminal driver will maintain":"global information in the MPE Device Information Table (OIT)

associated with the pseudo terminal. The pseudo terminal driver may also access global information and

the NS buffers which are located in the server process stack. The TELNET modules will need to access

MPE system tables associated with the pseudo terminal, such as the Logical-Physical Device Table (LPOT)

and IOQ elements. MPE Include Files will be used in the code to provide the definitions of these tables.

Other MPE tables may be accessed indirectly as a result of routines the TELNET modules call (such as

setting up Port Dictionary entries, or changing the father of the server process). The TELNET modules

will access the DON catalog file and will create a trace file in the user's local group and account if tracing

.. is enabled.

* HP Confidential *
2-9

:. Design Overview

2.5 MAJOR INTERFACES

Figures 3 and 4 summarize the major interfaces of the TELNET modules.

NS PORT
BUFFER PROCEDURES
MANAGER

it r----

TELNET N
USER ~ E

ft- PROGRAM T
ASUT1L ro- I

P

! c

L....--

~ ATTACH 10
fILE

SYSTEM

Figure 3 - Local TELNET Module Interfaces

*" HP Confidential *

.. .

osDAD

t
NS

BUFFER"

- MANAGER

N TELNET
E I+-- SERVER -
T PROCESS
I
P ASUTIL
C

-

~.~~:. ~·~~~··~:/..·:-·~i~·:, ...,.
Design Overview·

TELNET
PSEUDO

TERMINAL
DRIVER f---t MPE

PORT
PROCS

Figure 4 - Remote TELNET Module Interfaces

1) Buffer Management: The NS buffer management intrinsics will be used to manage buffers in the user

program and server process stack. No extra data segments will be necessary_ The NS buffers will be

designated as "frozenll and lIin usell since the TELNET modules need to use the actual address of these

buffers in most cases. The interface is described in NS/3000_0verview-lnternaLMaintenance

~ecifications.

2) NetlPC: All circuit connections) controls) sends, receives, and closures will be done through NetIPC

intrinsics which are defined in N~3000_UseliProgrammeS-.Referenc~Manua
l.All communication

with lower layers will be done through NetlPC intrinsics.

3) ASUTIL: The TELNET user program and server process will use NS/3000 utility routines which are

contained in the ASUTIL segment. Examples of these utility routines are error logging routines and

process termination cleanup routines. The interface to these routines is described in NS-.L3000

Overview-!nternal.J!faintenance~~cifications.

4) Port Pr~edures: The TELNET user program will do a port dictionary lookup to determine if the

TELNET service has been allowed. (On the server side this lookup is performed by DSDAD.) The

TELNET uscr program will create a port which may be used occasionally as part of thc TELNET

;I: HP Confidcntial ;I:

2-11

•• ": " ::.:.~. '.~.::. :.: ~ I ..••: ~ ~~ :.: .~ '•• <.~ .~, .h • .-.:.....I.:.. -:;··:;:;~:.:·.\::.;.:. ; .. ·..•.-:r ..~ .;.._ ..4- .-.), .. ~ ·~. h' ., • .;. M.h __#~ ••••• _•• _. __ ••

::~:~: '.

Design Overview.

attention character processing. The TELNET server process will create a port for communication with

DSDAD and the TELNET pseudo driver. The interface to the port procedures is described in Port

Procedures: External Specifications.

5) DSDAD: The TELNET server process will communicate with DSDAD using the standard port messages

outlined in N~3000 Overview Internal Maintenance Specifications. A new port message(s) may be

defined for DDN Services to enable server tracing.

6) File System: The TELNET user program will use file system intrinsics to communicate with the user's

terminal. This interface is described in MPE Intrinsic£Referenc~Manual.

7) Attacbio: The TELNET user program. will occasionally call the MPE procedure ATTACHIO directly in

order to communicate with the user's terminal. Direct calls to ATIACHIO will be used only when the

desired functionality is not available through the file system interface. The ATIACHIO interface is

described in the code comments for the procedure ATIACmO in the MPE module HARDRES.

8) MPE: The TELNET server process and pseudo terminal driver will access MPE tables related to the

pseudo terminal. The format of these tables is given in MPE V Tables Manual for MPE V /E.

2.6 PERFORMANCE CONSIDERATIONS

The primary design technique employed by theTELNET modules to aid performance is the use of data

concatenation. On the server system, the TELNET modules will buffer information from multiple

application I/O requests. This information will be concatenated to reduce the number of NetlPC sends

performed. Concatenated information may include application write data and/or TELNET commands.

On the user program side, data received from the network will be written to the terminal as it is received.

Terminal read data will normally be sent out on the network when an end-of-line condition (the user

enters (RETURN) or the TELNET push character) occurs in LINE input mode. The primary intention in

CHAR input mode will be to expedite the sending of terminal read characters and no explicit wait until

the end of line will be done.

The interaction between the TELNET server process and the pseudo terminal driver has been designed to

aid performance by minimizing deliberate process switches between the two modules while still avoiding

possible deadlock situations.

2.7 LOCALIZATION CONSIDERATIONS

DDN Services will include a message catalog with the product. All TELNET keywords, delimiters, help

messages, and error messages will be accessed from this catalog. This mechanism will allow one to change

these items in the file and to use the MAKECAT program to make it a valid catalog file. Any errors

occurring in the use of file system intrinsics will be reported by using the FERRMSG intrinsic to retrieve

the appropriate file system error message from the system message catalog.

"* lIP Confidential "*

:~::~~"-;-' ..._-"' .. -"'<-'-

.. I·.·•. MODULE DESIGN-

3.1 TELNET PROGRAM

3.1.1 Description and Function

This section describes the outer block of the TELNET program. This program file is used by both the user

process and server process, so one of the first things the program does is determine whether it is a user or a

server and proceed accordingly. Some initialization is common for both user and server processes, (such as

turning off arithmetic traps, etc.) so this initialization is done first.

3.1.2 Interface Specifications

If the program is running as a user process, the info string may contain an optional nodename entered by

the user..If the program is running as a server process, the info string contains the DSDAD port id.

3.1.3 Algorithm

The basic algorithm of the program outer block is:

Initialize; {do common initialization}

CheckFather; {determine if user or server process}

If UserProcess
then UserProcessing
else ServerProcessing;

* HP Confidential *
3-1

Module Design

3.2 USER PR"OCESSING

3.2.1 Description and Function

This procedure is the main body of the TELNET user program. It does user program specific initialization

and then enters an infinite loop. "This loop will be exited when the terminal user enters an IIEXITI

command, and the program will be terminated.

3.2.2 Algorithm

The basic algorithm of the user processing is:

Userlnit;
While True 00

Begin
CommandModeProc;
DataModeProc;
End;

In the discussion which follows, the Command Mode procedures will be referred to collectively as the CM

and the Data Mode procedures will be referred to as the DM.

3.2.3 Local Data Structures

There are two types of data structures used by the User Processing routines: state variables and data

buffers. Two sets of state variables are maintained: connection state variables, and terminal state

variables.

Connection state variables record the state of the TELNET connection (open or closed, what TELNET

options are enabled, etc.). This information is used by the CM routines to determine what commands are

allowed (i.e. a limited set of commands is allowed before a connection is open). The connection state

variables affect the actions taken by the DM routines (such as disabling local terminal echo if the

connection is in TELNET remote echo mode). The connection state variables may be updated by either

the eM routines (in response to a user command such as OPEN) or by the DM routines in response to

TELNET negotiations received from the network.

Terminal state variables record the state of the user's terminal environment when in TELNET data mode.

This information determines the behavior of the DM routines. Examples of terminal state variables are

input, editing, and output modes. Terminal state variables are updated by both the eM and DM routines.

The user may obtain information about some of the state variables through the SHOW command.

* HP Confidential ±

~-?

· ' ~. ~: .•._ _.~,_.: .•u.'.;':__ .~': -,.l J"""'" '_'~"'_"''"''.' _. __~

'. ··~Y"tI~?f~i~~'Dt{'~~'~;'::'''~1~12~t~~:~·j6~fl~J~~flei~q
.....

3.2.4 Submodule Descriptions

This section describes the three major submodules of the User Processing procedure: Command Mode

procedures (CM), Data Mode procedures (DM), and the Subsystem Break Trap Procedure (TRAP).

3.2.4.1 Command Mode Procedures

The CM routines repeatedly read and execute TELNET user program commands input by the terminal

user. While in command mode, terminal reads and writes are done with waited I/O and the normal

HP3000 terminal editing characteristics apply.

Execution of a <?ommand is completed before the terminal user is prompted for another command. SEND

commands will not actually transmit information to the remote system. Information from SEND

commands will be stored into the network buffers uSed. by the OM. This information will be transmitted

by the DM routines after the terminal user enters a REMOTE command.

If the te~minal user enters a SEND command and the network buffers are full, the· CM routines will

temporarily exit to allow the DM routines to empty the network buffers. However, the user is still

logically considered to be in Command Mode and the DM routines will not perform Data Mode terminal

input and output but will simply return to the CM routines when room is available in the .network

buffers. This mode switching will be transparent to the terminal user (although a meSsage indicating that

the SEND may take a little longer to complete this time could be output ii desired).

While the terminal user is in Command Mode, the TRAP procedure for the TELNET attention character

is disabled. It will be reenabled when the terminal user returns to Data Mode by entering a REMOTE

command. A user who wishes to terminate the TELNET user program while a command is executing in

Command Mode may do 80 by breaking and aborting the program. The OPEN and SEND commands

(when the network buffers are full) are the only commands which might take a noticeable amount of time

to execute.

Command Mode will be exited when the terminal user enters a REMOTE or EXIT command. If a

REMOTE command is entered, the user will be switched to Data Mode and the DM routines invoked. If

an EXIT command is entered, resource cleanup will be performed and the process will terminate.

3.2.4. 2 Data Mode Procedures

The DM routines continually perform two main tasks. Terminal input data is read, formatted according

to TELNET protocol conventions, and sent out on the network. Data received from the network is

processed and written to the user's terminal.

Writing data to the terminal takes precedence over reading. Data Mode terminal reads will be issued only

if there is nothing to write. If write data arrives while a terminal read is pending, the read will be aborted

if the terminal user is using TELNET NOWAIT Output Mode. Otherwise, the data will be written as soon

as the terminal read completes. When using TELNET NOWAIT Output Mode, a quiesce 10Q will be issued

when switching from writing to reading to prevent a loss of write data if the read should subsequently be

aborted. (The quiesce IOQ will work on some, but not all terminal drivers).

Data Mode terminal writes are done with waited I/O. Data ~1ode terminal reads are performed with

nowait I/O, as are IPCSENDs and IPCRECVs. Normally, one IPCSENO will be outstanding at a time. A

second IPCSEND may be performed for the user SEND CLEAR command which uses TCP urgent data

mode. The OM routines will concatenate terminal input data while an IPCSEND is pending. However,

any available data will be sent as soon as the previous IPCSEND completes (i. e. the concatenation will not

* HP Confidential *
3-3

Module Design

wait for a maximum data length or timeout). The amount of available data sent will depend partially on

the terminal user's choice of LINE or CHAR Input Mode. The choice of Input Mode does not explicitly

affect the concatenation; rather it determines the maximum length specified in terminal reads and thus

affects the amount of data returned when these reads complete.

The DM routines will periodically check to see if a subsystem break has occurred. If one has occurred,

processing will be stopped and the DM routines will exit to allow the eM routines to run.

The DM routines will exit to Command Mode if an irrecoverable error occurs on the connection. They

will also return to Command Mode when network buffer space becomes available if they were invoked by

the CM for this reason.

3.2.4.3 Subsystem Break Trap Procedure

The TRAP routine is called by the MPE operating system if the TELNET attention character is input

while the terminal. user is in Data Mode. This routine simply sets a global flag in the user process stack

and exits.' The subsystem break causes any pending terminal I/O to complete successfully as soon as the

trap procedure exits. This wakes up the TEL~ET user process and gives it a chance to check the global

flag set by TRAP. . . '.

A potential hole exists with this method if the TELNET user process calls lOWAIT with no terminal I/O

pending. This would occur only if the pipeline backed up and the DM network send buffers were full In

this case, the TELNET user prOcess would not issue a data mode terminal read because there would be no

place to put processed terminal input data. If a subsystem break occurred in this situation, the TELNET

user process would not wake up until an IPCSEND or IPCRECV completed.

This delay in invoking command mode would be frustrating to a terminal user who wants to issue a SEND

CLEAR command to clear up the pipeline.. What I propose in this situation is to have the TRAP

procedure send a port message· to the TELNET user process to complete the lOWAlT. The TRAP routine

would check flags set by the TELNET user process and only send a port message in this special instance.

Multiple port messages would not be sent since the trap procedure, once executed, is disabled until

explicitly reenabled by the TELNET user program.

* HP Confidential *

.. :. ~ ~ :.," .~~:., ..:.,,:.::-", ;

_:'l~'~~":--::" ;:~;-~~::'., .. , . 'j~;.::(:~>:, _".::'-;~' .: :,::>."

: ''::~~~l~' DeSi~~'" ::.:/,~,~~?::>,:',::'~:"

-'

3.3 SERVER PROCESSING

3.3.1 Description and Function

This prOCedure is the main body of the TELNET server process" created by DSDAD. It allocates and

initializes.a TELNET pseudo terminal The TELNET server process and the pseudo terminal driver

cooperate to handle application I/O requests directed to the TELNET pseudo terminaL This section will

discuss both of these modules. The TELNET server process routines will be referred to as ~he SP, the

pseudo terminal driver routines will be referred to as the PO.

3.3.2 Algorithm
.. . .

The PD 'may be thought 'of as an MPE IOQ manager; the SP is a NetiPC connection manager. All NetIPC

sends and receives are perfo'rmed by the SP. There is no shared connection as in NS/VT. Likewise, all

. explicit IOQ manipulation is done by !he PD. The SP does not need to know exactly what an IOQ ,looks _,-

like. - '.

The SP and PO communicate in the following fashion. As part of initialization, the SP creates an lOWAIT

port to receive port messages from the PO (and DSDAD). The SP also allocates two buffers for application

I/O request information. Information about the port and buffers is passed to the PD as part of its

initialization. Logical ownership of the buffers is passed between the SP and the PD. Only the current

owner is allowed to access the buffer.

The PD is the initial owner of the outgoing request buffer. The PO 'concatenates information about I/O

requests requiring SP action into this buffer. This information is in the form of request "blocks"

containing relevant information copied from the IOQ. When the PO wants to pass ownership of the

buffer to the SP (so the SP can start processing), the PO sends a port message to the SP indicating this fact.

The PO then considers the buffer to be "ownedll by the SP and will defer processing of any further I/O

requests which require SP attention until the SP has returned t~e buffer.

When the SP is finished with the outgoing request buffer, it returns it by PeALing the PO. Status

information for the peAL may be exchanged by the two modules through a local array set up in the SP

stack for this purpose.

The SP is the initial owner of the incoming data buffer. This buffer contains terminal user input data

which has been received from the network.. Ownership of this buffer is passed through the PCAL

mechanism. The SP PCALs the PD at appropriate times (discussed later) to give the PD a chance to review

the data contained in this buffer and use it to complete application read requests. The PD is considered to

own the buffer for the duration of the PeAL and will update the data descriptors accordingly if data is

removed. Once the PCAL complet~ the SP once again owns the buffer.

3.3.3 Local Data Structures

The PO and SP maintain separate data areas. The PO uses the terminal DIT as a· global context area

maintained between invocations. The SP maintains state variables in its process stack. The two modules do

not mess with each other's data structures (except for a field in the pseudo terminal OIT which the SP will

set to indicate that the SP is trying to invoke the PO). Information is passed via the mechanisms described

above and each module updates its own data structures when information is received.

"* HP Confidential ok

3-5

Q

Module Design

The PO variables are concerned primarily with the pseudo terminal state. The SP is with the·

NetlPC connection. Some overlapping information is maintained by both modules. For example, the PD

needs to know if a NetIPC connection exists and the SP needs to know the pseudo terminal echo state

since this may affect TELNET option negotiations. The SP informs the PO of changes in the connection

state by PCALing the PO with this information contained in the local array. The PD informs the·SP of

changes in the pseudo terminal echo state by formatting I/O request blocks into the outgoing request

buffer and sending a port message to give the buffer to the SP.

3.3.4 Submodule Descriptions

This section provides additional information on the algorithms used by the PO and SP routines. It also

includes comments on some utility routines which actually reside in a system SL segment.

3.3.4.1 Pseudo Terminal Driver Procedures

The PDouter shell is pretty much the same as any MPE terminal I/O driver. The PO while active,

basically executes in a loop, handling any available I/O requests. The PO exits when there are no more

I/O requests to process or when processing of I/O requests must be deferred until some PO external event

occurs. The PO procedures are reentrant in the sense that multiple instances of the PO may be activated

at anyone time. However,· each new instance of the PD immediately checks the DIT. to see if another

instance is active, and if so, exits immediately to avoid concurrent access to data structures. Any currently

running instance of the PO therefore, must make sure that ALL currently available work isproeessed

before exiting. The PO may be invoked by either the MPE I/O system or the SP. The PD will give priority

to the SP requests. If a currently· running instance of the PO is busy processing MPE I/O requests and

notices that the SP is trying to call it, it will finish processing the current MPE I/O request and exit so

that the PO instance created by the SP PeAL may execute. It is ok for the PD to leave some MPE I/O

requests unprocessed in this situation, since the PO knows it will be imnlediately invoked by the SP. The

PD does not perform any tasks which might cause it to block for an indefinite period of time, so the PO

should be able to respond to SP PCAL invocations in a timely manner. The PO does not issue IPCSENDs

and only one port message is outstanding at a time to the SP.

The PD can process and complete many types of application I/O requests on its own without help from

the SP. Most of these are I/O requests resulting from FCONTROLs which simply update the pseudo

terminal state. A few FCONTROLs (such as enabling/disabling terminal echo) require action by the SP to

change the TELNET connection state.

In instances when an I/O request requires SP action, the PO can usually copy the relevant information

into an I/O request block within the outgoing request buffer, update its own PO terminal state variables,

and complete the request by returning the IOQ. This is how write IOQs are handled. The PO copies the

application write data to the I/O request buffer, inserting any characters necessary for carriage control

and prespacing or postspacing operations. The" write IOQ is returned to the caller as soon as the data has

been copied.

Two types of requests which the PD does not complete immediately are read requests and device close

requests. When these requests arrive, the PO concatenates an I/O request block into the outgoing request

buffer to inform the SP of their arrival. The PD must then wait for notification by the SP before

completing these requests. The PO waits on a read request until the SP calls the PO to allow the PO to

review the contents of the incoming data buffer for data to satisfy the read request. The PO waits on a

device close to give the SP a chance to adopt out of the user session and back unde"r DSDAD before -the

user session terminates. (The SP had adopted into the user session when the PD had informed it of a logon

request arrival).

* I-IP Confidential *
3-6

Module Design

-'

Of course) if the PO does not currently own the outgoing request buffer) it must wait for the SP to return

it before processing new application I/O requests which require action by the SP.

The PO may concatenate information from multiple application I/O requests into the outgoing request

buffer before giving ownership to the SP. The PD will stop concatenation and give control of the buffer

to the SP when one of the following conditions occurs: 1) the outgoing request buffer is full so there is no

room for new requests, 2) a concatenation timer expires (used to insure a reasonable response time» 3) the

last application request processed was one which the PO cannot complete until it receives notification

from the SP. The PD processes application I/O requests in order of their arrival (with exceptions for

preemptive writes) and this order is maintained by the I/O request blocks in the concatenation buffer.

Note that the PD may process and complete I/O requests which can be handled entirely by the PD

without having to stop concatenation of I/O request blocks requiring SP attention.

3.3.4.2 Server Process Procedures

The SP is responsible for managing the NetIPC connection. The SP uses nowait IPCSENDs and nowait

IPCRECVs to transmit and receive data from the network.. The SP calls lOWAIT to complete any pending

IPCSENDs or IPCRECVs and also to receive port messages from the PD or DSDAD.

When control of the outgoing"request.buffer "is '~~~~6~ 'the PO to the SP) the SP processes the

information contained in the buffer.· Application write data is copied into the SP network send buffers

and application control request information is used to update SP state v~riables and possibly to generate

TELNET command sequences to be placed into the network send buffers. The SP returns the outgoing

request buffer to the PD as soon as it has processed all information contained within.

The SP processes terminal input data received from the network, and places it into the incoming data

buffer. It then checks to see if it has received notification of a read request from the PO. Ifa read request

is pending, the SP calls the PO to give it a chance to review the data. The PD will return a status of either

read complete or read incomplete. If the read is incomplete (because the PD did not find a read

termination condition in the terminal input data) the SP will call the PO the next time it adds more data

to the terminal input buffer. If the read is complete (either the data satisfied the read request, or the read

had been aborted» the SP will not call the PO again .until it receives notification of a new read request.

The PD is responsible for uPdating the buffer data descriptors if it uses data from the buffer to complete

a read request. Note that if a read times out or is aborted, data in the incoming request buffer is not

discarded; it is saved and used to satisfy the next read request. If the incoming data buffer becomes full

(because the application is not issuing read requests) the SP will stop accepting data from the network.

The SP will continue to listen to the network, however) by issuing IPCRECVs with the "preview" option.

This allows the SP to find out about connection closings or urgent data pending. Urgent data is used as

part of the TELNET signal to clear the data path, in which case the SP can discard the buffered terminal

input data.

When a connection is going to be terminated because the associated session is logging off, the SP will

insure that all send data has reached the partner TELNET entity before closing the connection.

3.3.4.3 Utility Procedures

The procedures used for the null terminal interface reside in a system SL segment so that they can be

called by FrP. The null terminal procedures need to allocate a pseudo terminal and PCAL the pseudo

terminal driver for initialization just like the SP does, so common utility routines to accomplish this t~sk

are also contained in the same SL segment. \Vhen a PD is initialized as a null terminal, there is no

corresponding SP. A null terminal PD simply completes all I/O requests immediately with a successful

status except for command interpreter read requests. The null terminal PO holds onto the CI read request

as a means of suspending the CI.

7; HP Confiden tial *
3-7

OATA STRUCTURE DESIGN

""... '-
. :-: - .

This section provides information about the input/output buffer requirements and usage for the TELNET

modules. Optimal sizes for the buffers will be determined in the implementation and testing phases.

4.1 USER PROCESS BUFFERS

The TELNET user process will use the following buffers:

Command Input Buffer
Command Output Buffer
Terminal Input Buffer"
Terminal Output Buffer
Network Send Buffers (2)
Network Receive Buffer

The command input buffer is relatively small, since only one command is read at a time. The command

output buffer is also small, being used to output the command prompt, any command output, and

error/help messages.

The termina1 input data is used to receive input from data mode terminal "reads. This buffer must be as

large as the largest data mode terminal read. Data from this buffer is processed and put into the network

send buffers. This buffer is non-concatenable, i.e., a new data mode terminal read is not issued until all

data from a previous data mode terminal read has been processed.

The network send buffers contain data and TELNET commands which are ready to be transmitted onto

the network. These buffers have two states: ReadyforData and DataSent. Two buffers are used, so that

one buffer can be filled with processed data from the termina.l input buffer while waiting for an

IPCSEND of the other buffer to complete. These buffers are concatenable when in the ReadyForData

state. Processed data from multiple data mode terminal reads may be concatenated into a ReadyForData

buffer. Once an IPCSEND is issued for the buffer and it enters the DataSent state, the buffer will not be

ReadyForData again until the IPCSEND completes.

The network receive buffer is used to receive data from the network. This data is processed and placed

into the terminal output buffer. The network receive buffer is non-concatenable and data from the

network will not be accepted until all previously received network data has been processed. IPCRECVs

with the preview option may be issued to listen to the connection.

The terminal output buffer contains data which is ready to be written to the terminal. Since terminal

writes are done with waited I/O, data in this buffer is normally not concatenated. However, processed

data from several IPCRECVs may be concatenated if the user is using TELNET WAIT Output Mode and

the data mode procedures are waiting for a data mode terminal read to complete before issuing a terminal

write.

* HP Confidential *
4-1

"...-:;..-.
....!. ;"

4.2 SERV·ER PROCESS BUFFERS

The TELNET server process will use the following buffers:

Outgoing Request Buffer
Incoming Data Buffer
Network Send Buffers (2)
Network Receive Buffer

The outgoing request buffer is used to receive concatenated application I/O request blocks from the
pseudo terminal driver. This buffer must be as large as the largest single PD application I/O request
block which depends on the largest terminal FWRITE allowed. Information fromthis buffer is processed
and put into the network send buffers. This buffer is not returned to the PO until all information
contained within has been processed.

The network send buffers contain data and TELNET commands which are ready to be transmitted onto
the ·network-These buffers have two states: ReadyforData and OataSent. Two buffers are used, so that
one buffer can be filled with processed information from the outgoing request buffer while waiting for an
IPCSEND of the other buffer to complete. These buffers are concatenable when in the ReadyForData
state, although sending of buffers will not be delayed simply to wait for more requests. .The PD
concatenation algorithm should· insure that reasonably sized IPCSENDs are done. Once an IPCSEND is
issued for a buffer and it enters the DataSent state, the buffer will not be ReadyForData again until the
IPCSEND completes. Only one IPCSEND will be outstanding at a time.

The network receive buffer is used to receive data from the network. This data is processed and placed
into the incoming data buffer. The network receive buffer is non-concatenable and data from the
network will not be accepted until all previously received network data has been processed. IPCRECVs
with the preview option may be issued to listen to the connection.

The incoming data buffer contains terminal input data which is ready to be edited by the PO and
delivered to the application. Processed data from multiple IPCRECVs will be concatenated into this buffer
while waiting for an application to read it.

* lIP Confidential *
4-2

Most of the TELNET module interfaces have been discussed in detail either previously in this document,

or in the External Specifications. The Internal Maintenance Specifications will contain details on the

exact formats used in the I/O request blocks and the PCAL array to exchange information between the

TELNET server process and the pseudo terminal driver. The IMS will also contain detailed information

on the state variables and buffer descriptors maintained by each module.

5.1 SUPPORTABILITY DESIGN

This section discusses some' of the design techniques which will be used to:

• Increase the supportability of the product.

• Increase the ability to get high PFA coverage for the TELNET modules.

• Aid in measuring performance bottlenecks in the TELNET modules...

The NetIPC tracing facility will be used by the TELNET modules to trace calls to NetIPC intrinsics and

data sent and received over the network. The TELNET process modules (user and server) will maintain an

internal logging buffer in the process stack to trace internal states and procedure calls and to maintain

statistics. The pseudo terminal driver will not maintain a logging buffer, but will maintain flags in the

terminal DIT to indicate what portion of code it is currently executing. The TELNET user and server

processes will use the NS logging procedures (i. e. AS'LOG'ERROR) to log serious error conditions.

Additionally, the TELNET user program will print error messages to the terminal user (in command

mode)..

A combination of DEBUG accessible variables and conditionally compiled code will be used to generate

false error conditions in order to test error recovery mechanisms.

1: HP Confidential *
5-1

....
. ... ,...... .-

_I_M_"'P_LE_M_E_N_T_A_T_IO_N_·P_S:t_ff,A_:~N_·:· '" __.__.. -_:,,::::.:_.;:_'<'_';':_"~:'--,""'lli;'~:~~:;lZ""';:X)."~:;"'}

6.1 CODING CONVENTIONS

The TELNET user processing and server processing procedures will be written in PASCAL MPE Intrinsics

will be used for the user terminal I/O and control, with the exception that an ATTACHIO call will be

made to issue a quiesce IOQ. The pseudo terminal driver and associited utility procedures in the system

SL will be written in SPL. In-code comments will constitute 40-50% of the final finished source code.

6.2 IMPLEMENTATION ORDER

The following outline presents the planned impleme:ntation order for the TELNET modules.

1. ·Primary User Processing Module Routines

a. Outer Block of TELNET Program
b. Outer Block of User Process

c. User Process Initialization / Data Structure Setup

d. CommandMode Procedure Outer Block

e. Command Input and Parsing Routines

f. Individual Command Execution Routines

g. Data Mode Procedure Outer Block/ Control Loop

h. Data Mode Terminal Input/Output Routines

i. Data Mode NetIPC Input/Output Routines

j. Subsystem Break Trap Procedure Excluding Port Message Interface

k. User TELNET Data Transformation Routines

1. User TELNET Option Negotiation Routines

2. Primary Server Processing Module Routines

a. Server Process Initialization / Data Structure Setup

b. Server Process Outer Block / Control Loop

c. Server Process NetIPC Input/Output Routines

d. Server Process Outgoing Request/Incoming Data Buffer Management

e. Server Process Utility Procedures/ Null Terminal Interface

3. Primary Pseudo Terminal Driver Routines

a. Pseudo Terminal Driver Initialization / Data Structure Setup

b. Pseudo Terminal Driver Outer Block / Control Loop

c. Pseudo Terminal Driver Outgoing Request Buffer Management

d. Pseudo Terminal Driver Individual I/O Request Handling

e. Pseudo Terminal Driver Incoming Data Buffer Management

f. Pseudo Terminal Driver Null Terminal Handling

4. Secondary Server Processing Routines

a. Server Process Individual I/O Request Block Handling

7: HP Confidential 7:

6-1

b. Se.rver TELNET Data Transformation Routines

c. Server TELNET Option Negotiation Routines

5. Secondary User Processing Routines

a. User Process Port Message Handling Routines

b. Subsystem Break Trap Procedure Port Message Interface

c. User Process Help facility and Output Formatting

* HP Confidential *
f.-I

.. 0

~ction 1
PRODUCT IDENTIFICATION

~ction 2
DESIGN OVERVIEW

2. 1 Design Approach. 2-1
2. 1. 1 Project Priorities 2-1
2. 1. 2 Certification . 2-2
2. 1. 3 Code Leverage . o. . . . • • • . 2-2
2. 1. 4 MPE Independence . 2- 3
2. 1. 5 Portability. 2-3
2. 1. 6 Foreign Languages. . . o. 2- 3
2. 1. 7 Maintainability 2-3
2.2 Overview of Operation o •• 2-4 0

2. 2. 1 TELNET Local Structure ' ~ ~ . 2-4
2.2. 1. 1 Startup o•• 0 •• 2-4
2. 2. 1.2 Steady State o' ••••• 2-4 .
2.2.1.3 Shutdown 0 •••••• ~ ••••••••••• 2-5
2. 2. 2 TELNET Remote Structure. 2-6
2. 2. 2. 1 Startup .. o' ••0 ••••••• 0.... 2-6
2.2. 2. 2 Steady State o' •••••••• 2-6 0

2. 2. 2. 3 Shutdown. o. • • . 2-7
2.3 Major Modules - 2-9
2. 4 Major Data Structures. 2-9
2. 5 Major Interfaces 0 •••• 2-10
2. 6 Performance Considerations 2-12
2. 7 Localization Considerations 2-12

Section 3
MODULE DESIGN

3. 1 Telnet Program 3-1
3. 1. 1 Description and Function . 3-1
3.1.2 Interface Specifications 3-1
3. 1. 3 Algorithm 3-1
3. 2 User Processing 3- 2
3. 2. 1 Description and Function . 3- 2
3.2.2 Algorithm 3-2
3. 2. 3 Local Data Structures. 3- 2
3.2.4 Submodule Descriptions 3-3
3.2.4. 1 Command Mode Procedures 3- 3
3.2.4.2 Data Mode Procedures 3-3
3.2.4.3 Subsystem Break Trap Procedure 3-4
3. 3 Server Processing. .-. . 3-- 5
3. 3. 1 Description and Function . 3- 5
3.3.2 Algorithm 3- 5
3. 3.3 Local Data Structures 3- 5
3.3.4 Submodule Descriptions 3-6

",
Table of Contents

·'~i;;i",~~.~~:tl'l~X'
. :>0 .

3.3.4. 1 Pseudo Terminal Driver Procedures 3-6

3.3.4.2 Server Process Procedures 3-7

3.3.4.3 Utility Procedures
3-7

Section 4
DATA STRUCTURE DESIGN

4.1 User Process Buffers
4-1

4.2 Server Process Buffers
4-2

Section 5
INTERFACE DESIGN

S. 1 Supportability Design. 5-1

Section 6
IMPLEMENTATION PLAN

6. 1 Coding Conventions
" 6-1

6.2 Implementation Order
6-1

· ** END OF FORMATIING
TDP/3000 (A.04.0l) HP36578 Formatter
THU, JUL 24, 1986, 7:23 PM
NO ERRORS
INPUT = IDTELNET. TELNET.DDN
OUTPUT =*HP2680

-'

IJ458
IJ458
IJ458

#01861
101861
i01861

•••
10J08, KATY.OON SLP •
10J08. KATY.ODN SLP •
10J08, KATY.OON SLP •

THU, JUL 24, 1986,
THU, JUL 24, 1986,
THU, JUL 24, 1986,

7 4S PM
7 4S PM
7 45 PM

#J458
#J458
#J458

#01861 •
101861 •
#01861 •

10J08. KATY.DON SLP •
10J08. KATY.OON SLP •
10J08, KATY.OON SLP •

THU. JUL 24, 1986,
THU, JUL 24, 1986,
THU, JUL 24, 1986.

7 45 PM
7 45 PM
7 45 PM

~J458

IJ458
#J458

101861
#01861
101861

•••
10J08, KATY.DDN SLP •
10JOB, KATY.DON SLP •
10J08, KATY.OON SLP •

THU, JUL 24, 1986, 7 45 PM
THU, JUL 24, 1986,· 7 45 PM
THU, JUL 24, 1986, 7 45 PM

"

#J458
**J458
#J458

1*01861
IW1861
*101861

'"•
'"

rOJ08, KATY.OON SLP
rDJOB, KATY.DON SLP
rOJ08, KATY.OON SLP

•••
THU, JUL 24, 1986,
THU, JUL 24, 1986,
THU. JUL 24, 1986.

7 45 PM
7 45 PM
7 45 PM

	Section 1 Product Identification
	Section 2 Design Overview
	Section 3 Module Design
	Section 4 Data Structure Design
	Section 5 Interface Design
	Section 6 Implementation Plan
	Table of Contents

