!

HEWLETT ﬁ PACKARD

g ,

HP FORTRAN

reference manual

HP 2000 COMPUTER SYSTEMS

HP FORTRAN

reference manual

HEWLETT hp; PACKARD

I

HEWLETT-PACKARD COMPANY
11000 WOLFE ROAD, CUPERTINO, CALIFORNIA, 95014

Printed: MAR 1974
Printed in U.S.A.

MANUAL PART NO. 02116-9015
MICROFICHE PART NO. 02116-91784

First Edition, Feb. 1968
Revised, April 1970
Revised, June 1971
Revisad, March 1974

© Copyright, 1974, by
HEWLETT-PACKARD COMPANY
Cupertino, California

Printed in the U.S.A.

Fourth Edition

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system (e.g., in memory, disc or core) or

transmitted by any means, clectronic, mechanical, photocopy, rc-
cording or otherwise, without prior written permission from thc
publisher.

PREFACE

This publication is the reference manual for the HP FORTRAN programming language
for the 2100 family of computers. Since Hewlett-Packard provides FORTRAN Com-
pilers for all of its operating systems, this manual covers only the features

of language, not operating procedures for the compiler. The user should refer

to the appropriate system manual or operator's guide listed below:
SOFTWARE OPERATING PROCEDURES SIO SUBSYSTEMS Module (5951-1390)
DISC OPERATING SYSTEM (02116-91748)
BASIC CONTROL SYSTEM (02116-9017)
MOVING-HEAD DISC OPERATING SYSTEM (02116-91779)

MAGNETIC TAPE SYSTEM (02116-91752)
In addition, the Formatter and other relocatable subroutines used by FORTRAN

programs are described in full in the RELOCATABLE SUBROUTINES manual (02116-

- 91780) .

iii

For
and
The

are

NEW AND CHANGED INFORMATION

this edition, all known errors in the HP FORTRAN manual have been corrected
some information has been eliminated to avoid repetition in several manuals.
operating procedures (previously found in Section IX) have been deleted and

now described in the SOFTWARE OPERATING PROCEDURES SIO SUBSYSTEMS Module

(5951-1390) . The Basic Control System Relocating Loader listings have been

deleted from Appendix D.

iv

iv

ix

1-1

CONTENTS

PREFACE
NEW AND CHANGED INFORMATION

INTRODUCTION

SECTION I
PROGRAM FORM

CHARACTER SET
LINES

STATEMENTS
STATEMENT LABELS
COMMENTS

CONTROL STATEMENT
END LINE

CODING FORM

SECTION II
ELEMENTS OF HP FORTRAN

DATA TYPE PROPERTIES
CONSTANTS

Integer

Octal

Real

VARIABLES

Simple Variable
Subscripted Variable
ARRAYS

Array Structure
Array Notation
EXPRESSIONS

STATEMENTS

CONTENTS

3-1 SECTION III
ARITHMETIC EXPRESSIONS AND ASSIGNMENT STATEMENTS

3-1 ARITHMETIC EXPRESSIONS
3-2 Order of Evaluation
3-4 Type of Expression

3-5 ASSIGNMENT STATEMENTS
3-5 Type of Statement

3-6 MASKING OPERATIONS

4-1 SECTION IV
SPECIFICATIONS STATEMENTS

4-1 DIMENSION

4-2 COMMON

4-3 Correspondence of Common Blocks
4-6 EQUIVALENCE

5-1 SECTION V
CONTROL STATEMENTS

5-1 GO TO STATEMENTS
5-2 IF STATEMENTS
5-3 DO STATEMENTS
5-6 Do Nests

5-9 CONTINUE

5-9 PAUSE
5-10 STOP
5-10 END
5-10 ENDS$

6-1 SECTION VI
MAIN PROGRAM, FUNCTIONS, AND SUBROUTINES

6-2 ARGUMENT CHARACTERISTICS
6-2 MAIN PROGRAM
6-3 SUBROUTINE SUBPROGRAM

vi

6-4
6-5

6-9
6-11

6-13

7-1

7-1

CONTENTS

SECTION VI
MAIN PROGRAM, FUNCTIONS, AND SUBROUTINES (cont)

SUBROUTINE CALL

FUNCTION SUBPROGRAM
FUNCTION REFERENCE
STATEMENT FUNCTION

BASIC EXTERNAL FUNCTIONS

RETURN AND END STATEMENTS

SECTION VII
INPUT/QUTPUT LISTS AND FORMAT CONTROL

INPUT/OUTPUT LISTS

DO-IMPLIED LISTS

FORMAT STATEMENT

FORMAT Statement Conversion Specifications

FREE FIELD INPUT

SECTION VIII
INPUT/OUTPUT STATEMENTS

UNIT-REFERENCE
FORMATTED READ, WRITE
UNFORMATTED READ, WRITE

AUXILIARY INPUT/OUTPUT STATEMENTS

SECTION IX
COMPILER INPUT AND OUTPUT

CONTROL STATEMENT
SOURCE PROGRAM
BINARY OUTPUT

LIST OUTPUT

vii

B-1

C-1

D-1

I-1

APPENDIX A
HP CHARACTER

APPENDIX B

CONTENTS

SET

ASSEMBLY LANGUAGE SUBPROGRAMS

APPENDIX C
SAMPLE PROGRA

APPENDIX D

M

FORTRAN ERROR MESSAGES

INDEX

TABLES
Table 6-1. F

ILLUSTRATIONS
Figure 1-~1.

Figure 5-1.

ORTRAN Functions and Arguments

Sample Coding Form

Example of a Do Loop

viii

INTRODUCTION

The FORTRAN compiler accepts as input, a source program written according to
American Standard Basic FORTRAN specifications; it produces as output, a re-
locatable binary object program which can be loaded and executed under con-

trol of an HP operating system.

In addition to the ASA Basic FORTRAN language, HP FORTRAN provides a number of

features which expand the flexibility of the system. Included are:

Free Field Input: Special characters included with ASCII input data
direct its formatting; a FORMAT statement need not be specified in

the source program.

Specification of heading and editing information in the FORMAT state-

ment through use of the "..." notation; permits alphanumeric data to

be read or written without giving the character count.

Array declaration within a COMMON statement.

Redefinition of its arguments and common areas by a function subprogram.
Interpretation of an END statement as a RETURN statement.

Basic External Functions which perform masking (Boolean) operations.
Two-branch IF statement.

Octal constants.

There are several versions of the HP FORTRAN Compiler; each is designed to run

in a different operating environment: Software Input/Output System, Disc

Operating System, etc. The operating system manuals contain descriptions of

any features limited to special versions of the compiler.

ix

SECTION |
PROGRAM FORM

A FORTRAN program is constructed of characters grouped into lines and statements.

CHARACTER SET

The program is written using the following characters:

Alphabetic: A through 2
Numeric: 0 through 9
Special:
Space

= Equals

+ Plus

- Minus

* Asterisk

/ Slash

(Left Parenthesis
) Right Parenthesis
’ Comma

Decimal Point
$ Dollar Sign

Quotation mark

Spaces may be used anywhere in the program to improve appearance; they are
significant only within heading data of FORMAT statements and, in lieu of

other information, in the first six positions of a line.

In addition to the above set which is used to construct source language
statements, certain characters have special significance when appearing

with ASCII input data.

They are the following:

space, Data item delimiters

/ Record terminator

+ - Sign of item

.E+- Floating point number
@ Octal integer

oLt Comments

<« Suppress CR-LF (output)

Details on the input data character set are given in Section VII.

LINES

A line is a sequence of up to 72 characters. On paper tape, each line is
terminated by a return,CR, followed by a line-feed, LF. This terminator may
be in any position following the statement information or comment contained
in the line. 1If an error is punched on a paper tape, a rubout before the

return and linefeed causes the entire line containing the error to be ignored.

STATEMENTS

A statement may be written in an initial line and up to five continuation lines.
The statement may occupy positions 7 through 72 of these lines. The initial
line contains a zero or blank in position 6. A continuation line contains any
character other than zero or space in position 6 and may not contain a C in

position 1.

STATEMENT LABLES

A statement may be labeled so that it may be referred to in other statements.
A label consists of one to four numeric digits placed in any of the first five
positions of a line. The number is unsigned and in the range of 1 through

9999. 1Imbedded spaces and leading zeros are ignored. If no label is used,

1-2

the first five positions of the statement line must be blank. The statement

label or blank follows the CR LF terminator of the previous line.
COMMENTS

Lines containing comments may be included with the statement lines; the comments
are printed along with the source program listing. A comment line requires a C
in position 1 and may occupy positions 2 through 72. If more than one line 1is
used, each line requires a C indicator. Each comment line is terminated with

a CR and LF.

CONTROL STATEMENT

The first statement of a program is the control statement; it defines the out-

put to be produced by the FORTRAN compiler. The following options are available:

Relocatable binary -- The output can be loaded by the relocating

loader and run.

Source Listing output -- A listing of the source program is
produced.
Object Listing output -- A list of the object program is produced.

The control statement must be followed by the CR LF terminator.
END LINE

Each subprogram is terminated with an end line which consists of blanks in
positions 1 through 6 and the letters E, N, and D located in any of the posit-
ions 7 through 72. The special end line, ENDS$, signifies the end of five or

less programs being compiled at one time. The end line is terminated by CR LF
CODING FORM

The FORTRAN coding form is shown in Figure 1-1. Columns 73-80 may be used to
indicate a sequence number for a line; they must not be punched on paper tape.

All other columns of the form conform with line positions for paper tape.

4174 3WO438 LNOFNY 48 931 NN Z YHdlY - 7
17 - N3Ni3¥ A8 Q3 I 1 WHAIV =] D wHATY - 837
08 174 0L 59 09 55 % 114 oy S5 g 114 24
' T Pl ” TTTT T T T T ,
| i | [| | P | |
N . l i ! | 4 | ! i | }
+ t t
! i b
! i | || i
H
t '
’ , I |
; b — | w » I
| o | H |
+ i |
* 1 t T _ T 1
| ; | |
o | ; | . | | | , |
j I I i i T 1 1 1
! ! | , | . ; !
I H i ;] | | 1
RN EEEEEE | [T !
- o N :
T 1 '
| | | |
| | | i |
4 { } i
i - - ,
. ! } I | : i
h ! ! !
+ f : f T +
| I L | | ! , !
I I i | i | |
1 T T]
; ! | ! ! I +
- t +
T | |
| | | P
| i |
; 1 .
' + 1 }
i |
| ! l |
' + T 1
| | i ! i ; | ! [
- i ! - +
1 T 1 T } T 1 t T
| | i | | | | i |
H ! |]
1 f T t T
[| | | !
| i i —1 14
T 1 T t T 1 =
!] |]
i I i , ! ! !] i i
| : I i | | | it
H i R 1 i 1 H T 1 T
| i : | | i
! i i i { | i ;
T ' T i . -
i ! | i
| 1 | H)
t 1 f T T
i ! ! f f
! ! ! i |
| H i i
- - . . - . - -
| : i ! i !
—t T t t : + } } |
P . i ! : ! |
- + f - . . : + . :
! 1 ! ! i 1 !
| I | | 4 i
: T B 1] ! |
i !] |
+ - : t f i 1
| | i , _ |
i ; ‘ | .
. T T i |
: , ,_ w ,
| i [i o
; | | | | : | L |
I] T 1 1 T T
| ! A, | |
- ; | i :
1 1 f
it | H H
j ; + 1 ﬁ -
i i i | ! ;
; ﬁ , . | ,
! , . i i I
w 1 k] i ! |
! 1 1
n | ! , , !
4 | ! I |
T 1 t 4
1 i |
i
! I
i f i
1 i | | [|
} i I | J |
1 H H
! !
! _ T ;
08 174 0c 59 09 139 [y Sy oy SE 0ot ST (4 St ol 9 1
N a0y 5
IN3W3LYLS muv
40 19vd WY¥O0¥d — 3va ¥IWWVEOOU

WNHO4 ONIAOD NVH1HO4 AYVMOVd-113TMIH

M0251

Sample Coding Form (Actual Size 11 x 13-1/2)

Figure 1-1.

SECTION 1l
ELEMENTS OF HP FORTRAN

HP FORTRAN processes two types of data -- real and integer quantities. They
differ in mathematical significance, constant format, and symbolic represen-

tation.

DATA TYPE PROPERTIES

Integer and real data quantities have different ranges of values.

An integer quantity has an assumed fixed decimal point. It is represented
by a 16-bit computer word with the most significant bit as the sign and the

assumed decimal point on the right of the least significant bit.

. . 15 15
An integer quantity has a range of -2 to 2 -1.
15 14 0
s integer

SIGN

A real quantity has a floating decimal point; it consists of a fractional part
and an exponent part. It is represented by two 1lé-bit computer words; the ex-
ponent and its sign are eight bits; the fraction and its sign are twenty-four

bits.

15 14 0

s| fraction (most significant bits)

| SIGN OF FRACTION
15 e7 10

fraction exponent |s

ﬂGhIOFEXPONENT—J

. . . -38 38
It has a range in magnitude of approximately 10 to 10 and may assume
positive, negative, or zero values. If the fraction is negative, the num-
ber is in two's complement form. A zero value is stored as all zero bits.

Precision is approximately seven decimal digits.

CONSTANTS

A constant is a value that is always defined during execution and may not be
redefined. Three types of constants are used in HP FORTRAN: integer, octal
(treated as integer), and real. The type of constant is determined by its

form and content.

Integer

An integer constant consists of a string of up to five decimal digits.

215 15

If the range -32768 to 32767 (- to 2 -1) is exceeded, a diagnostic 1is

provided by the compiler.

Examples:
8364 5932
1720 9
1872 31254
125 1
3653 30000
Octal

Octal constants consist of up to six octal digits followed by the letter B.

The form is:

nl is O or 1

n_ - n6 are 0 through 7

If the constant exceeds six digits, or if a non-octal digit appears, the con-

stant is treated as zero and a compiler diagnostic is provided.

Examples:
7677B 7631B
3270B 5B
3520B 750268
175B 177776B
567B 1777778
Real

Real constants may be expressed as an integer part, a decimal point, and a
decimal fraction part. The constant may include an exponent, representing
a power of ten, to be applied to the preceding quantity. The forms of real

constants are:
n.n n. .n n.nkE+te n.E+e .nE+e

n is the number and e is the exponent to the base ten. The plus sign may
be omitted for a positive exponent. The range of e is 0 through 38. When
the exponent indicator E is followed by a + or - sign, then all digits be-
tween the sign and the next operator or delimiter are assumed to be part of

the exponent expression, e.

If the range of the real constant is exceeded, the constant is treated as

zero and a compiler diagnostic message occurs.

Examples:
4.512 4.5E2
4. . 45E+3
.512 4.5E-5
4.0 0.5
4.E-10 .5E+37
1. 10000.0

VARIABLES

A variable is a guantity that may change during execution; it is identified
by a symbolic name. Simple and subscripted variables are recognized. A

simple variable represents a single quantity; a subscripted variable repre-
sents a single quantity (element) within an array of quantities. Variables
are identified by one to five alphanumeric characters; the first character

must be alphabetic.

The type of variable is determined by the first character of the name. The
letters I, J, K, L, M, and N, indicate an integer (fixed point) variable;
any other non-numeric character indicates a real (floating point) variable.

Spaces imbedded in variable names are ignored.

Simple Variable

A simple variable defines the location in which values can be stored. The

value specified by the name is always the current value stored in that lo-

cation.

Examples:
Integer Real
I ALPHA
JAIME G1l3
K9 DOG
MIL Xp2
NIT GAMMA

Subscripted Variable

A subscripted variable defines an element of an array; it consists of an
alphanumeric identifier with one or two associated subscripts enclosed in

parentheses. The identifier names the array; the subscripts point to the

2-4

particular element. If more than two subscripts appear, a compiler diagnostic

message is given.

Subscripts may be integer constants, variables, or expressions; they may

have the form (exp._, exp2), where exp, is one of the following:

1
c*v+k v-k
c*v-k v
c*v k
v+k

where c and k are integer constants and v is a simple integer variable.

Examples:
Integer Real
I(J, K) A(T)
LAD(3, 3) BACK (M+5, 9)

MAJOR (24*K, I+5) OPA45(4*I)
NU (K+2) RADI (IDEG)
NEXT (N*5) VOLTI (,J)

ARRAYS

An array is an ordered set of data of one or two dimensions; it occupies a
block of successive memory locations. It is identified by a symbolic name
which may be used to refer to the entire array. An array and its dimensions
must be declared at the beginning of the program in a DIMENSION or COMMON
statement. The type of an array is determined by the first letter of the
array name. The letters I, J, X, L, M, and N, indicate an integer array;

any other letter indicates a real array.

Each element of an array may be referred to by the array name and the sub-
script notation. Program execution errors may result if subscripts are
larger than the dimensions initially declared for the array, however, no

diagnostic messages are issued.

Array Structure

Elements of arrays are stored by columns in ascending order of storage lo-

cations. An array declared as SAM(3,3), would be structured as:

Columns
SaM(1l,1) SAM(1,2) SAM(1, 3)
Rows SAM(2,1) SAM(2,2) SAM(2,3)
SAM(3,1) SAM(3,2) SAM (3, 3)

and would be stored as:

m SAM(1,1)
m+1 SAM(2,1)
m+2 SAM(3,1)
m+3 SAM(1,2)
m+4 SAM(2,2)
n+5 SAM(3,2)
m+6 SAM (1, 3)
m+7 SAM(2,3)
m+8 SAM (3, 3)

The location of an array element with respect to the first element is a
function of the subscripts, the first dimension, and the type of the array.

Addresses are computed modulo 215.

Given DIMENSION A(L,M), the memory location of A(i,j) with respect to the

first element, A, of the array, is given by the equation:

L = a+[i-14+1L(3-17]*s

The quantity in brackets is the expanded subscript expression. The element
size, s, is the number of storage words required for each element of the

array: for integer arrays, s = 1; for real arrays, s = 2.

Array Notation

The following subscript notations are permitted for array elements:

For a two-dimensional array, A(dl, d2):
A(I,J) implies A(I,J)
A(I) implies A(I,1)
A implies A(1,1)*

For a single-dimension array, A(d)

A(I) implies A(I)

A implies A(1)

The elements of a single-dimension array, A(d), however, may not be referred
to as A(I,J). A diagnostic message is given by the compiler if this is

attempted.

EXPRESSTONS

An expression is a constant, variable, function or a combination of these
separated by operators and parentheses, written to comply with the rules for
constructing the particular type of instruction. An arithmetic expression

has numerical value; its type is determined by the type of the operands.

Examples:
A+B-C . 4+SIN (ALPHA)
X*COS (Y) A/B+C-D*F

RALPH-ALPH 4+2*IABS(LITE)

*In an Input/Output list, the name of a dimensioned array implies the entire
array rather than the first element.

STATEMENTS

Statements are the basic functional units of the language. Executable state-
ments specify actions; non-executable statements describe the characteristics
and arrangement of data, editing information, statement functions, and classi-

fication of program units.

A statement may be given a numeric label of up to four digits (1 to 9999);
a label allows other statements to refer to a statement. Each statement

label used must be unique within the program.

SECTION Il
ARITHMETIC EXPRESSIONS
AND ASSIGNMENT STATEMENTS

ARITHMETIC EXPRESSIONS

An arithmetic expression may be a constant, simple or subscripted variable,
or a function. Arithmetic expressions may be combined by arithmetic

operators to form complex expressions.

Arithmetic operators are:

+ Addition

- Subtraction

* Multiplication
/ Division

** Exponentiation

If o is an expression, (a) is an expression. If a and B are arithmetic

expressions, then the following are expressions:

a + B a - R a/B
a * B + - Qo
o ** B

An arithmetic expression may not contain adjoining arithmetic operators,

o op op R.

Expressions of the form a**g and a**B and a**(-B) are valid; a**B**y is not

valid.

Integer overflow resulting from arithmetic operations is not detected at execu-

tion time.

Examples:

PRUCRAMMER

PROGRAM

< STATEMENT

C

X533+ 2% %1 5-T
BLE[-3. 1 4*HOUS[E**32[.E-2
*JAICK(K,|L+5) -[LOUD

oBrN]

Order of Evaluation

In general, the hierachy of arithmetic operation is:

** exponentiation class 1
/ division } class 2
* multiplication

- subtraction
class
+ addition

In an expression with no parentheses or within a pair of parentheses, evalu-

ation basically proceeds from left to right, or in the above order if adjacent

operators are in a different class.

When writing an integer expression it is important to remember not only the
left to right scanning process, but also that dividing an integer quantity
by an integer quantity yields a truncated result; thus 11/3 = 3. The
expression I*J/K may yield a different result than the expression J/K*I.

For example, 4*3/2 = 6; but 3/2*4 = 4.

Expressions enclosed in parentheses and function references are evaluated as

they are encountered from left to right.

Examples:

S

In the examples below, s ceer S indicate intermediate results during

1" 727
the evaluation of the expression; the symbol - can be interpreted as

"goes to".

a) Evaluation of class 1 precedes class 3
A+B**C-D
B**C>s
1
S, +A>s
1 2

s2-D—>s3 53 is the evaluated expression

b)

Evaluation of class 2 precedes class 3

A*B*C/D+E*F-G/H
A*B->
°1

*C—>
sl C 52
sz/D+s3

* >

E*F s4

+ -
s, s3>55
H->
G/ S6
=S, 7S,

+
S,7S57Sg Sg

Evaluation of an expression including a function is performed.

A+B**C+D+COS (E)
B**C->g
1
A+s_—s
1 2
s _+D>s

2 3

OS(E)~
COS (E) S,

+
54 S3_>S5 55

Parentheses can

A*B/C+D
A*B-
°1
s./C~>
1778,
+
52 D‘*S3 S
A*B/ (C+D)
A*B-
°1
C+D—>s

2
sl/s2—>s3 s

is the evaluated expression

is the evaluated expression

control the order of evaluation

is the evaluated expression

is the evaluated expression

e) If more than one pair of parentheses or if an exponential

expression appears, evaluation is performed left to right.

A+B**C~ (D*E+F) + (G-H*P)
B**C—>
51
+A~>
sl A s2
D*E~
3
+F->
S3TETSy

—S4_*SS

S57S,75¢

H*P->

S7
-5 >
S758

+
S8 G+59

+ S .
59 s6—>slo slO is the evaluated expression

Type of Expression

With the exception of exponentiation and function arguments, all operands
within an expression must be of the same type. An expression is either real

or integer depending on the type of all of its constituent elements.

If either an integer or real operand is exponentiated by an integer operand,
the resultant element is of the same type as that of the operand being

exponentiated. If both operands are real, the resultant element is real.

Examples:
J**T integer
A**T real
A**B real

An integer exponentiated by a real operand is not valid.

ASSIGNMENT STATEMENTS

An arithmetic assignment statement is of the form:

v=oe
The variable, v , may be simple or subscripted; e is an expression.

Execution of this statement causes the evaluation of the expression, e ,

and the assignment of the value to the variable.

Type of Statement

The processing of the evaluated expression is performed according to the

following table:

Type of v Type of e Assignment rule
Integer Integer Transmit e to v without change.
Integer Real Truncate and transfer as in-

teger to v.

Real Integer Transform integer form of e
to floating decimal and trans-
fer to v.
Real Real Transmit e to v without change.
Examples:
T TA=BC+o+[COSEN “TTT77] Transmit without change
SAM(l6) =IR-[s(6,2)) *(T/U) Transmit without change
L IN=WH3. *x (X*xY-2]) Truncate
BAKER=T* |4+ K*(L|-M/N) Convert to real
N=1Z|ZY+LAKE /MOD Transmit without change

MASKING OPERATIONS

In HP FORTRAN, masking operations may be performed using the Basic External

Functions IAND, IOR, and NOT. (See Section VI.) These functions are as
follows:
IAND Form the bit-by-bit logical product of two operands
IOR Form the bit-by-bit logical sum of two operands
NOT Complement the operand

The operations are described by the following table:

Value of
Arguments Value of Function
a) a, IAND (al ’ a2) IOR (al , a2) NOT (al)
1 1 1 1 0
1 0 0 1 0
0 1 0 1 1
0 0 0 0 1
Examples:
TR T 7sze [T [T
1B =| 71/55@8B BB | |
T ! | I
P ; I 4 j i

IAND (IA, IB) is 70500B
IOR (IA, IB) is 73557B
NOT (IA) is 105270B

SECTION IV
SPECIFICATIONS STATEMENTS

The Specifications statements, which include DIMENSION, COMMON, and EQUIVA-
LENCE, define characteristics and arrangement of the data to be processed.
These statements are non-executable; they do not produce machine instructions
in the object program. The statements must all appear before the first
executable statement in the following order: DIMENSION, COMMON, and
EQUIVALENCE.

DIMENSION

The DIMENSION statement reserves storage for one or more arrays.

DIMENSION vl (11), v2 (12),..., vn (1n)

An array declarator, vj(ij); defines the name of an array, vj, and its associ-
ated dimensions, (ij). The declarator subscript, i, may be an integer con-
stant or two integer constants separated by a comma. The magnitude of the
values given for the subscripts indicates the maximum value that the sub-

script may attain in any reference to the array.

The number of computer words reserved for a given array is determined by the
product of the subscripts and the type of the array name. For integer arrays,
the number of words equals the number of elements in the array. For real
arrays, two words are used for each element; the storage area is twice the

product of the subscripts.

. 15 .
A diagnostic message is printed if an array size exceeds 2 -1 locations.

Examples:

DIMENSION SAM (5, 10), ROGER (10, 10), NILE (5, 20)

Area reserved for SAM 5*%10*2 = 100 words
Area reserved for ROGER 10*10*2 = 200 words
Area reserved for NILE 5*%20*1 = 100 words

COMMON

The COMMON statement reserves a block of storage that can be referenced by
the main program and one or more subprograms. The areas of common inform-

ation are specified by the statement form:

COMMON al, a2,...,an
Each area element, ai, identifies a segment of the block for the subprogram
in which the COMMON statement appears. The area elements may be simple
variable identifiers, array names, or array declarators (dimensioned array

names) .

If dimensions for an array appear both in a COMMON statement and a DIMENSION

statement, those in the DIMENSION statement will be used.

Any number of COMMON statements may appear in a subprogram section (pre-
ceding the first executable statement). The order of the arrays in common
storage is determined by the order of the COMMON statements and the order
of the area elements within the statements. All elements are stored contig-

uously in one block.
At the beginning of program execution, the contents of the common block are

undefined; the data may be stored in the block by input/output or assign-

ment statements.

Examples:

COMMON I(5), A(6), B(4)

Area reserved for I = 5 words
Area reserved for A = 12 words
Area reserved for B = _8 words
Common area 25 worxds

Block
Origin I (1)
I (2)
I (3)
I (4)
I (5)

(2)

(4)

W ow W ow w owowow oo R o»»
o

Correspondence of Common Blocks

Each subprogram that uses the common block must include a COMMON statement.
Each subprogram may assign different variable and array names, and different
array dimensions, however, if corresponding quantities are to agree, the

types should be the same for corresponding positions in the block.

Examples:

MAIN PROG COMMON I(5), A(6), B(4)

SUBPROG1 COMMON J(3), K(2), C(5), D(5)

MAIN PROG Common SUBPROG1
reference Block reference
I (1) integer 1 J (1)
I (2) integer 2 J (2)
I (3) integer 3 J (3)
I (4) integer 4 K (1)
I (5) integer 5 K (2)
A (1) real 1 C (1)
A (1) real 1 c (1)
A (2) real 2 Cc (2)
A (2) real 2 Cc (2)
A (3) real 3 Cc (3)
A (3) real 3 c (3)
A (4) real 4 C (4)
A (4) real 4 Cc (4)
A (5) real 5 Cc (5)
A (5) real 5 C (5)
A (6) real 6 D (1)
A (6) real 6 D (1)
B (1) real 7 D (2)
B (1) real 7 D (2)
B (2) real 8 D (3)
B (2) real 8 D (3)
B (3) real 9 D (4)
B (3) real 9 D (4)
B (4) real 10 D (5)
B (4) real 10 D (5)

If portions of a common block are not referred to by a particular subprogram,

dummy variables may be used to provide correspondence in reserved areas.

Examples:

MAIN PROG COMMON I(5),

SUBPROG2 COMMON J(17),

MAIN PROG
reference

I

—

W w oW w w w w WP ooy o P o PP P H H

(1)
(2)
(3)
(4)
(5)
(1)
(1)
(2)
(2)
(3)
(3)
(4)
(4)
(5)
(5)
(6)
(6)
(1)
(1)

Conmon

Block

integer
integer
integer
integer
integer
real 1

real 1

real
real
real
real
real
real
real
real
real
real
real
real
real
real

real

O © O W N 3 O o0 v ;oW w NN

real

—
o

real

real 10

A(o),

B(4)

U w NN

B(4)

SUBPROG2
reference

J

w W w w w w w w4y g 4 4 g g g 4g 44 g9 g4 49 4 9 9

(1)
(2)
(3)
(4)
(5)
(6)

J (17) is a dummy
array. It is not
referenced in

SUBPROG 2 but pro-
vides proper corre-
spondence in reserved
areas so that

SUBPROG 2 can refer

to array B.

The length of the common block may differ in different subprograms, however,
the subprogram (or main program) with the longest common block must be the

first to be loaded at execution time.

EQUIVALENCE

The EQUIVALENCE statement permits sharing of storage by two or more entities.

The statement has the form:

EQUIVALENCE (kl), (k2),...,<kn)

in which each k is a list of the form:

al,az,...,am
Each a is either a variable name or a subscripted variable; the subscript of
which contains only constants. The number of subscripts must correspond to

the number of subscripts for the related array declarator.

All names in the list may be used to represent the same location. If an -
equivalence is established between elements of two or more arrays, there is
a corresponding equivalence between other elements of the arrays; the arrays
share some storage locations. The lengths may be different or equal.
Examples:
DIMENSION A(5), B(4)

EQUIVALENCE (A (4), B (2))

Array 1 Array 2 Quantity
Name Name Element
A (1) real 1

real 1

A (2) real 2
real 2

A (3) B (1) real 3
real 3

A (4) B (2) real 4
real 4

A (5) B (3) real 5
real 5

B (4) real 6

real 6

The EQUIVALENCE statement establishes that the names A(4) and B(2) identify
the fourth real quantity. The statements also establish a similar corre-

spondence between A(3) and B(l), and A(5) and B(3).

An integer array/or variable may be made equivalent to a real array or vari-
able; equivalence may be established between different types. The variables

may be with or without subscripts.

The effect of an EQUIVALENCE statement depends on whether or not the variables
are assigned to the common block. When two variables or array elements share
storage, the symbolic names of the variables or arrays may not both appear in
COMMON statements in the same subprogram. The assignment of storage to vari-
ables and arrays declared in a COMMON statement is determined on the basis of
their type and the array declarator. Entities so declared are always contig-
uous according to the order in the COMMON statement. The EQUIVALENCE state-

ment must not alter the origin of the common block, but arrays may be defined

so that the length of the common block is increased.

Examples:

a) Effect of EQUIVALENCE, variables not in common block:

PROGRAMMER | han I‘M N

[S iobe

PIMENSTION T (4D, Ry, Wiy | [1
EQUIVALENCE (T[(3), [K(2)) U

storage is assigned as follows:

Arrays Quantities
I(1) integer 1
I(2) K(1) integer 2
I(3) K(2) integer 3
I(4) K(3) integer 4

K(4) integer 5
K(5) integer 6
J(1) integer 7
J(2) integer 8

b) Effect of EQUIVALENCE, some variables in common block:
T PTMENSTION K(5D[T T T 17 |
- |lcomMon 1(|a), J(2) | |
EQUIVALENFE‘(I(3)@ K(2)) J
storage is assigned as follows:
Arrays Quantities
I(1) integer 1)
I(2) K(1) integer 2
X .
1(3) k(2) integer 3 > Common block
I(4) K(3) integer 4
J(1) K(4) integer 5
J(2) K(5) integer 6
c) Effect of EQUIVALENCE on the length of the common block:

PROGRAMMER

PROGRAM

Lobel

STATEMENT

DIMENST

oN| K [([7

T

BEERER
|

| C

OMMO

N

1((4),

T

)

E

QUT

VAL

ENCE (1

Ji(2
(1)

0, K(4))

storage is assigned as follows:

Arrays

I(1)
I(2)

K(1)
K(2)
K(3)

Quantities
integer 1

integer
integer
integer
integer
integer

integer

W N 0 U w N

integer

common block

The value of the subscripts for an array being made equivalent to another
array should not be such that the origin of the common block is changed

(for example, EQUIVALENCE (I(3), K(4)).

Arrays Quantities

K(l) = ziizézd integer 1

origin —~ I(l) K(2) integer 2
I(2) K(3) integer 3

I(3) K(4) integer 4

I(4) K(5) integer 5

J(1) K(o) integer ©

J(2) K(7) integer 7

If contradictory EQUIVALENCE relationships are specified, a diagnostic mes-

sage 1s printed.

Example:
a)

T TEQUIVALENCE (A(2) l' s | T)

EQU[[VALENCE (Al(5), [B(3))] B
b)
' T
< 7 N o .uml.
T TJEQUIVALENCE (A(2), B2l [T :
EQUIVALENCE (B(3), [c(3] | |] |
EQUIVALENCE (A(5), [c(2n| | |

SECTION V
CONTROL STATEMENTS

Program execution normally proceeds from statement to statement as they appear
in the program. Control statements can be used to alter this sequence or
cause a number of iterations of a program section. Control may be transferred
to an executable statement only; a transfer to a non-executable statement will
result in a program error which is usually recognized during compilation as a
transfer to an undefined label.* With the DO statement, a predetermined
sequence of instructions can be repeated a number of times with the stepping

of a simple integer variable after each iteration.

Statements are labelled by unsigned numbers, 1 through 9999, which can be
referred to from other sections of the program. A label up to four digits
long precedes the FORTRAN statement and is separated from it by at least one
blank or a zero. Imbedded blanks and leading zeros in the label are ignored:

1, 01, 0 1, 0001 are identical.

GO TO STATEMENTS

GO TO statements provide transfer of control.
GO TO k

This statement, an unconditional GO TO, causes the transfer of control to

the statement labelled k.

GO TO (k .o
(l'k2' n

This statement, a computed GO TO, acts as a many-branched transfer. The k's
are statement labels and 1 is a simple integer variable. Execution of this
statement causes the statement identified by the label kj to be executed
next, where j 1is the value of i at the time of execution, and 1 < j *« n.

If i <1, a transfer to kl occurs; if i > n, a transfer to krl occurs.

*A transfer to a FORMAT statement 1s not detectable during compilation; 1if
such an error occurs, no diagnostic message 1s produced.

Examples:

PROGRAMMER]:)ME PROGRAM

STATEMENT

c Label
1

o —~Z0on

T T A B
| il

1'g| [0l [Tjo 5 .

N Q=
|

"

P
*

<

39| A

ag je0 o (5,[1d, 15],208),] 1SWCH T
549 IGO0 Tlo (25,38, 35, 48)|, JSWCH

[
%)
=
o
T
"
[
=
o
I

b

S S —

At statement 40, control transfers to statement 10, which is an unconditional

transfer to statement 500. At 540 control transfers to statement 35.

[F STATEMENTS

The arithmetic IF statement provides conditional transfer of control

IF (e)klrk2rk3

The e is an arithmetic expression and the k's are statement labels. The
arithmetic IF is a three-way branch. Execution of this statement causes
evaluation of the expression and transfer of control depending on the

following conditions:

e <0, go to kl

e=OIgOtOk2
e>olgot0k3
Examples:
TF eS8, s T e ENENEE
If‘(X**Y*COS(Z)+W)5,367W5 31 ? i

The logical IF statement provides conditional transfer of control to either

of two statements:

I '
F (e)kl k2

The e is an arithmetic expression that may yield a negative or non-negative
(positive or zero) value. Execution of this statement causes evaluation of

the expression and transfer of control under the following conditions:

e < 0, go to kl

e >0, go to k2

Examples:
L ThF (isswinods, [e -7 [T [
! IF (|A+B)2@, 25 . R i |
IF (LANI)[3@, 4@ S
- DO STATEMENTS

A DO statement makes it possible to repeat a group of statements.

DOni=m,m_,m
17273

or

The n is the label of an executable statement which ends the group of state-
ments. The statement, called the terminal statement, must physically follow
the DO statement in the source program. It may not be a GO TO of any form,

IF, RETURN, STOP, PAUSE, or DO statement.

The i is the control variable; it may be a simple integer variable.

The m's are indexing parameters: my is the initial parameter; m, the termi-

nal parameter; and My the incrementation parameter. They may be unsigned
integer constants or simple integer variables. At time of execution, they
all must be greater than zero. If m, does not appear (second form), the

incrementation value is assumed to be 1.

A DO statement defines a loop, as shown in the flowchart of Figure 5-1.
Associated with each DO statement is a range that is defined to be those
executable statements following the DO, to and including the terminal state-
ment associated with the DO. At time of execution, the following steps

occur:

1. The control variable is assigned the value of the initial

parameter.
2. The range of the DO is executed.

3. The terminal statement is executed and the control variable is

increased by the value of the incrementation parameter.

4. The control variable is compared with the terminal parameter.
If less than or equal to the terminal parameter, the sequence
is repeated starting at step 2. If the control variable
exXceeds the terminal parameter, the DO loop is satisfied and
control transfers to the statement following n. The control

variable becomes undefined.

Should ml exceed m2 on the initial entry to the loop, the range of the DO
is executed and control passes to the statement after n. If a transfer
out of the DO loop occurs before the DO is satisfied, the current value
of the control variable is preserved. The control variable, initial
parameters, terminal parameter, and incrementation parameters may not be

redefined during the execution of the range of the DO loop.

ENTER
LOOP

ASSIGN
™ TO i

EXECUTE STATEMENTS
IN LOOP INCLUDING
STATEMENT n

ADD mq TO i

AND STORE
IN i

COMPARE
i My

Figure 5-1. Example of a DO Loop

DO Nests

When the range of a DO loop contains another DO loop, the latter is said
to be nested. DO loops may be nested 10 deep. The last statement of a
nested DO loop must be the same as the last statement of the outer loop or

occur before it. If dl’dZ'“"dn are DO statements, which appear in the

order indicated by the subscripts; and if nyr Dyre..n are the respective
terminal statements, then nm must appear before or be the same as no_q
no_q must appear before or be the same as Ny, and n, must appear before
or be the same as n, -
Examples:
d, s/ oo [ileg 1 [= OL0fel el [T T
! Bl
—d, _7llpo _Jeg v = 1,1@,2
: P ‘
__dm 9| DO 80 K [= I,1|9,2
L'l | i
|
_nm 8@ |CONT|INUE
L g ;
_n2 . 9@ |ICONT|INUE
|]
M 1 @g| |ICONT|INUE

—d, 5| po lijgg 1 |- 1,2@ o
d, 8 po 1pg J |- 1,18,3
—d_ 1o po__o@ K |= 1,2,2 |
[n 9¢| ICONT|INUE | o
m _ it —
ny=n, | @@ [CONT[INUE N -
—d 5| po Jipg 1]- 1,3@,5 |
dy | 1e[pbo o v |- 2,8 |
- -
—d 2¢| PO 1|00 K |- 5,50,5 i
| B R B
1@ ICONTINVE | | |
n,=n,a=n
12 ' m

If one or more nested loops have the same terminal statement, when the
inner DO is satisfied, the control variable for the next outer loop is
incremented and tested against its associated terminal parameter. Con-
trol transfers to the statement following the terminal statement only

when all related loops are satisfied.

DO loops may be nested in common with other loops as long as their ranges

do not overlap.

Examples:

4 [oo [1lgg [T [(LIl L[T[]
T | !
d, g bo 5@ J |- 2,2,2
L n, [Tsel|conTlinue | |
|
dg 6g oo |70 K =§|,|4,2
| ? |
e SN I |
L ng 79| |CONT|INVE
ny 1 @9 |CONT|INUE |]
d)
r_zd
L 3 Invalid, ranges overlap
N2 na

‘h__n.l

In a DO nest, a transfer may be made from an inner loop into an outer
loop, and transfer is permissible outside of the loop. It is illegal,
however, for a GO TO or IF to initiate a transfer of control from out-

side of the range of a DO into its range.

When nested DO loops have the same terminal statement, a transfer to that
terminal statement causes a transfer to the innermost logs of the nest.
When this transfer occurs, the current value of the control variable

for the innermost loop is incremented and that loop is executed until

its range is satisfied, etc.

d d dq
d, dy d,,
\\
—>- —>
n2 n2 n2
D 44—
n] S E—— n.| ——n]
VALID INVALID
TRANSFERS TRANSFERS

CONTINUE

This statement acts as no-operation instruction.
CONTINUE

The CONTINUE statement is most frequently used as the last statement of a

DO loop to provide a loop termination when a GO TO or IF would normally be
the last statement of the loop. If used elsewhere in the source program,

it acts as a do-nothing instruction and control passes to the next sequential

program statement.

PAUSE

This statement provides a temporary program halt.

PAUSE n
or

PAUSE

n may be up to four octal digits (without a B suffix) in the range 0 to 7777.
This statement halts the execution of the program and types PAUSE on the
standard output unit. The value of n, if given is in the A-Register. Pro-

gram execution resumes at the next statement.

The STOP statement terminates the execution of the program.

STOP n
or

STOP

n may be up to four octal digits (without a B suffix) in the range 0 to
7777. This statement halts the execution of the program and types STOP on

the standard output unit. The value of n, if given, is in the A-Register.

END
The END statement indicates the physical end of a program or subprogram.

It has the form:
END name

The END statement is required for every program or subprogram. The name of
the program can be included, but it is ignored by the compiler. The END
statement is executable in the sense that it will effect return from a sub-
program in the absence of a RETURN statement. An END statement may be

labelled and may serve as a junction point.

END$

The ENDS$ statement indicates the physical end of five or less programs oOr
subprograms that are to be compiled at one time. If there are four or less
programs, the statement is printed on the source program listing. If there
are exactly five, the statement is not printed. If more than five programs
are on the same tape, the ENDS may be omitted after the fifth program; the

compiler stops accepting input after the fifth is processed.

5-10

SECTION VI
MAIN PROGRAM, FUNCTIONS, AND SUBROUTINES

A FORTRAN program consists of a main program with or without subprograms. sSub-
programs, which are either functions or subroutines, are sets of statements

that may be written and compiled separately from the main program.

The main program calls or references subprograms; and subprograms may call or
reference other subprograms as long as the calls are non-recursive. That is,
if program A calls program B, subprogram B may not call program A. Further-

more, a program or subprogram may not call itself. A calling program is a

main program or subprogram that refers to another subprogram.

In addition to multi-statement function subprograms, a function may be defined
by a single statement in the program (statement function) or it may be defined
as basic external function. A statement function definition may appear in a
main program or subprogram body and is available only to the main program or
subprogram containing it. A statement function may contain references to
function subprograms, basic external functions, or other previously defined
statement functions in the same subprogram. Basic external function ref-

erences may appear in the main program, subprogram, and statement functions.

Main programs, subprograms, statement functions, and basic external functions
communicate by means of arguments (parameters). The arguments appearing in a
subroutine call or function reference are actual arguments. The corresponding
entities appearing with the subprogram, statement function, or basic external

function definition are the dummy arguments.

ARGUMENT CHARACTERSITICS

Actual and dummy arguments must agree in order, type, and number. If they
do not agree in type, errors may result in the program execution, since no

conversion takes place and no diagnostic messages are produced.

Within subprograms, dummy arguments may be array names or simple variables;
for statement functions, they may be variables only. Dummy arguments are
local to the subprogram or statement function containing them and, there-
fore, may be the same as names appearing elsewhere in the program. A max-

imum of 63 dummy arguments may be used in a function or subroutine.

No element of a dummy argument list may appear in a COMMON or EQUIVALENCE
statement within the subprogram. If it does, a compiler diagnostic results.
When a dummy argument represents an array, it should be declared in a
DIMENSION statement within the subprogram. If it is not declared, only the
first element of the array will be available to the subprogram and the array

name must appear in the subprogram without subscripts.

Actual arguments appearing in subroutine calls and function references may

be any of the following:

A constant

A variable name

An array element name
An array name

Any other arithmetic expression

MAIN PROGRAM

The first statement of a main program may be the following:
PROGRAM name

The name is an alphanumeric identifier of up to five characters. If the

PROGRAM statement is omitted, the compiler assigns the name "FTN."

SUBROUTINE SUBPROGRAM

An external subroutine is a computational procedure which may return none,
one, or more than one value through its arguments or through common storage.

No value or type is associated with the name of a subroutine.

The first statement of a subroutine subprogram gives its name and, if relevant,

its dummy arguments.

ce,oal)

SUBROUTINE s (a a. -
2 n

1’
or

SUBROUTINE s

The symbolic name, s, is an alphanumeric identifier of up to five characters
by which the subroutine is called. If the subroutine is unnamed the compiler
will assign the name of "." (period). The a's are the dummy arguments of

the subroutine.

The name of the subroutine must not appear in any other statement within the

subprogram.

The subroutine may define or redefine one or more of its arguments and areas

in common so as to effectively return results. It may contain any statements
except FUNCTION, another SUBROUTINE statement, or any statement that directly
or indirectly references the subroutine being defined. It must have at least

one RETURN or END statement which returns control to the calling program.

6-3

Examples:

P P,W and H are the dummy para-
¢ ol % meters. Actual values supplied
SUBRIOUTIINE] [VIM (P[,W,H) by a calling program are to be
Z/=[5].| *WHP[**3 ,
h=2_3 substituted for P and W. The
RE TIURN variable name supplied for H
END
| would contain the result on re-
turn to the calling program.
MUL multiplies the array sup-
SUBRIOUT INE MUL|(K])| | .)
COMMON| MA(T|(|12){, PROD|([1@) plied for MAT by the single
DO 5L I=1,1 ! 1 lied £ K to produce
5| PROD|(T) |=MAT|(I)[*K bt P
RE TURN ‘ values to be stored in array
| ENP Lol
Il T PROD.

SUBROUTINE CALL

The executable statement in the calling program for referring to a subroutine

is:

CALL s (al, Bgreees an)
or

CALL s

The symbolic name, s, identifies the subroutine being called; the a's define
the actual arguments. The name may not appear in any specification state-

ments in the calling program.

If an actual argument corresponds to a dummy argument that is defined or re-
defined in the called subprogram, the actual argument must be a variable

name, an array element name, or an array name.

The CALL statement transfers control to the subroutine. Execution of the
subroutine results in an association of actual arguments with all appearances
of dummy arguments in executable statement and function definition state-

ments. If the actual argument is an expression, the association is by value

6-4

rather than by name. Following these associations, the statements of the sub-
program are executed. When a RETURN or END statement is encountered, control
is returned to the next executable statement following the CALL in the calling
program. If the CALL statement is the last statement in a DO loop, looping

continues until satisfied.

Examples:

o - These calls provide actual

PROICRAMMER

K arguments for the subroutines

| [leALlL] vIv (|'5'. , IZI,V,‘ABL:’E') defined in the previous ex-
ample. In subroutine JIV,

15. is substituted for P;

T S 12., for W; and ABLE, for H.

COMMON N([Ig), [a(1¢) T For subroutine MUL, the data

is passed via COMMON. The

= ‘ - - value supplied for the dummy

CALIL] MuL (|T¢ 5,3)) argument K is element (5,3)

- of matrix I of the calling

program.

FUNCTION SUBPROGRAM

A function subprogram is a computational procedure which returns a single
value associated with the function name. The type of the function is de-
termined by the name; an integer quantity is returned if the name begins

with I, J, K, L, M, or N, otherwise it will be a real guantity.

The first statement of a function subprogram must have the following form:

FUNCTION f (a a

1’ T2 n
The symbolic name, f, is an alphanumeric identifier of up to five characters
by which the function is referenced. If the function is unnamed the compiler

will assign the name of "." (period). The a's are the dummy arguments of the

function.

The name of the function cannot appear in any non-executable statement within
the subprogram. It must be used in the subprogram, however, at least once

as any of the following:

The left-hand identifier of an assignment statement
An element of an input list

An actual parameter of a subprogram reference

The value of name at the time of execution of a RETURN or END statement in

the subprogram is called the value of the function.

The function subprogram may define or redefine one or more of its arguments

and areas in common so as to effectively return results in addition to the
value of the function. If the subprogram redefines variables contained in

the same expression as the function reference, the evaluation sequence of the
expression must be taken into account. Variables in the portion of the ex-
pression that is evaluated before the function reference is encountered and the
values of variable subscripts are not affected by the execution of the function
subprogram. Variables that appear following the function reference are mod-

ified according to the subprogram processing.

Examples:
a) PocAANER The function IDIV calculates
€ o S§7 . . . the value of I divided by J.
I
! FIUNCITTION [IDIIVI({1],) On return to the calling pro-
| b1/
ETURP gram the result provided is
END |
‘ [T 1T ! the value of IDIV.
t Tt 4 L 1 f 11 7[
b) rrochame The function IREAD reads a

< Label
! 5

o ~ZON,

, 10 15 ® » value from the unit IUNT
[FUNCITI[ON [IREAD |([TUNIT)
| R

(specified as an actual

parameter in the calling

+—

READ|(TUNT], *)IREAD . program.) IREAD has this

T value on return to the call-

ing program.

1|0
Z|m|-

4

[FUNCITTION [SCIALL](A,[B,[C) T]
c) U | | SCALL is both the function
N ” ‘ name and an actual parameter
CéLL SUBF(SCA$L’A’8’C) of a subroutine call. The
ﬁ | value of SCALL is provided
i T
RETURN ! ! by SUBF and returned to the
% END ‘ . calling program.
PROGRAMMER o { LATE
d) ¢ The function defines
[T FUNCITTON_[ZETA (BETTA, DELTA], GAMMA). the value of GAMMA
| A= &ETA*:E_EELTA**3 as well as finding
‘ GAMMA = .
|]zETAl = cAMmAX*2 | the value of ZETA.
__|RETURN - .
END

FUNCTION REFERENCE

A function subprogram is referenced by using the name and arguments in an

arithmetic expression:

The type of function depends on the first letter of the name of the function
referenced; the a's are the actual arguments. The reference may appear any
place in an expression as an operand. The evaluated function will have a
single value associated with the function name. When a function reference is
encountered in an expression, control is transferred to the function indicated.
Execution of the function results in an association of actual arguments with
all appearances of dummy arguments in executable statements and function de-
finition statements. If the actual argument is an expression, this associa-
tion is by value rather than by name. Following these associations, the
statements of the subprogram are executed. When a RETURN or END statement in
the function subprogram is encountered, control returns to the statement con-
taining the function reference. During execution the function also may define

or redefine one or more of its arguments and areas in common.

Example:

PROGRAMMER DATE

o ~Z0NM

~
=

a) T [SANTU=[KFHTDIV([1 @], B) FrE/ON] |

S
R —

b) | sAND|u=TAD}+ TREAD (18))

PROGRAMMER DATE

c)

C ~avel
1 5

E=Y-Zelal

25 30

=
=
2
©0

T RLPHFBETAXSICA

d) The program,

a) The values of 10 and 5

are provided for I and
J: The resulting value
of IDIV would be 2.

The function IREAD is
called with 10B as the
unit number. The value
of IREAD would be the
value of the item read
from the device with
unit reference number 108.
The actual parameters
SCALL are 10., 9., and
8. The value of SCALL
would depend on the
value supplied by the

subroutine SUBF.

PROGRAMMER]pm[

PROGRAM

o —Z0N

STATEMENT

40 45 50

’,[Flu

r

R

I |

|
1

T
|

[|
o

I
5[+ZE

BLo]
T=GiAM|v18+\7

would result in the following calculation:

RSLT = 5.0 + 7.5 + ZETA

where ZETA would be determined as:

A = .2%%2 - 3%*x3 = 04 - .027
GAMMA = .013*5.2 =
ZETA = .0676**2 = .00456976
RSLT = 5.0 + 7.5 + .00456976

12.50456976

Py i
TAl(.2,.]3,GAMMB)

.0676 (GAMMB is not altered)

But, the program,

PROGRAMME R Cgan

e

GAMMB=5.9] HEEER]
RSLT:ZETA(,Z,.3,GAMWB)+].5+GAMMB B

would result in the following calculations for ZETA and GAMMB:

A = .2%%2 — _3*%*3 = 04 - .027 = .013
GAMMA = .013*5.2 = .0676 = GAMMB
ZETA = .0676**2 = .00456976
RSLT = .00456976 + 7.5 + .0676

7.57216976

When referring to a function which redefines an argument which appears as a
variable elsewhere in the same expression, the order of evaluation (i.e., the

order in which the expression is stated) is significant.

STATEMENT FUNCTION

A statement function is defined internally to the program or subprogram in
which it is referenced and must precede the first executable statement. The
definition is a single statement similar in form to an arithmetic assignment

statement.

e, @) = €

£ (al, a2 n

The name of the statement function, f, is an alphanumeric identifier; a single
value is associated with the name. The dummy arguments, a's, must be simple
variables. One to ten arguments may be used. The expression, e, may be an
arithmetic expression and may contain references to basic external functions,
previously defined statement functions, or function subprograms. The dummy
arguments must appear in the expression. Other variables appearing in the

expression have the same values as they have outside the statement function.

The statement function name must not appear in any specification statements

in the program or subprogram containing it.

6-9

Statement functions must precede the first executable statement of the pro-

gram or subprogram, but they must follow all specification statements.

A statement function reference has the form:

f (al, a2,..., an)

f is the function name and the a's are the actual arguments. A function
reference with its appropriate actual arguments may be used to define the
value of an actual argument in a subroutine call or function subprogram

reference.

Example:

PROGRAMMER

Statement function definition.

o —z0oN

~
>

20 25 3

IMX2[+N**2/+5

NJR[(M. IN)

—

Subroutine call using state-

ment function reference.

CALL| MATX| (INJR(5,2]),M)

SUBRIOUTINE MATX (J,[K)

| I |

Execution of a statement function reference results in an association of
actual argument values with the corresponding dummy arguments in the ex-
pression of the function definition, and evaluation of the expression.
Following this, the resultant value is made available to the expression

that contained the function reference and control is returned to that state-

ment.

Example:

Statement function:

PROGRAMMER IL;A‘YE l PROGRAM

STATEMENT

o —Zon

NBC(R, B =R (AR B*Fe)/ [(AF* 2L BFF2D[111111 [
T T 1T 11 T

|
|

6-10

Function reference:

PROGRAMMER l et ln;\-(m«

CALCFRANM+ACESFABC (7., [0 | 1 [w*,‘

BASIC EXTERNAL FUNCTIONS

Certain basic functions are defined in FORTRAN. When one of these appears
as an operand in an expression, the Compiler generates the appropriate

calling sequence within the object program.

The types of these functions and their arguments are defined. The compiler
recognizes the basic function and associates the type with the results. The
actual arguments must correspond to the type required for the function; 1if
not, a diagnostic message is issued. The functions available are shown in

Table 6-1.

Table 6-1

FORTRAN Functions and Arguments

Function e Symbolic No. of Type of
Definition .
Name Name Arguments Argument Function
Absolute Value fal ABS 1 Real Real
IABS 1 Integer Integer
Float Conversion FLOAT 1 Integer Real
from in-
teger to
real
Fix Conversion IFIX 1 Real Integer
from real
to integer
Transfer sign Sign of a SIGN 2 Real Real
times ’al’ ISIGN 2 Integer Integer
Exponential a EXP 1 Real Real
Natural log (a) ALOG 1 Real Real
Logarithm ©
Trigonometric sine (a)T SIN 1 Real Real
Sine
Trigonometric cos (a)T Cos 1 Real Real
Cosine
Trigonometric tan (a)T TAN 1 Real Real
Tangent
Hyperbolic tanh (a) TANH 1 Real Real
Tangent 1/2
Square Root (a) SQRT 1 Real Real
Arctangent arctan (a) ATAN 1 Real Real
And (Boolean) alA a IAND 2 Integer Integer
Or (Boolean) alv a2 IOR 2 Integer Integer
Not (Boolean) Ka NOT 1 Integer Integer
Sense Switch Sense Switch ISSwW 1 Integer Integer
Register
switch (n)

ta 1s in radians

Examples:

PROIGRAMMER

2

T SR

SIGND=A+BX*C/D-[E '] 1
STGNN=ABS|(SIGND) 1 T
Y=FLIOAT (NEWT)
ISGND=I +J*K/L-M
ISGNN=TAB|S(ISGND)
IAL | =JACK*KEN*LARR]Y
ISAL| =ISI|GN(IAL,ISGNN)
POWR| =EXP|(X)
ANTL|G=ALO|G(Y)'
OOHY[P=SIN/(AGL)
AOHY[P=COS|(AGL)
00AH| =TANH(AGLH)
HFPR| =SQR[T(Z)
ARC | =ATAN(S)
LPRO|D=TAND (M, N
LSUM =IOR|(M,N
LCLMT=NOT|(M)

~

RETURN AND END STATEMENTS

A subprogram normally contains a RETURN statement that indicates the end of
logic flow within the subprogram and returns control to the calling program.

It must always contain an END statement.

In function subprograms, control returns to the statement containing the
function reference. In subroutine subprograms, control returns to the
next executable statement following the CALL. A RETURN statement in the main

program is interpreted as a STOP statement.

The END statement marks the physical end of a program, subroutine subpro-
gram, or function subprogram. If the RETURN statement is omitted, END

causes a return to the calling program. The ENDS$ is required in additon
to END statements when five or less subprograms are being compiled at one

time.

SECTION VI
INPUT/OUTPUT LISTS AND FORMAT CONTROL

Data transmission between internal storage and external equipment requires an
input/output statement and, for ASCII character strings, either a FORMAT state-
ment or format control symbols with the input data. The input/output statement
specifies the input/output process, such as READ or WRITE; the unit of equip-
ment on which the process is performed; and the list of data items to be

moved. The FORMAT statements or control symbols provide conversion and

editing information between the internal representation and the external
character strings. If the data is in the form of strings of binary values,

format control is unnecessary.

INPUT/OUTPUT LISTS

The input list specifies the names of the variables and array elements to
which values are assigned on input. The output list specifies the references
to the variables, array elements, and constants whose values are transmitted.
The input and output lists are of the same form. The list elements consist

of variable names, array elements, and array names separated by commas. The
order in which the elements appear in the list is the sequence of transmission.
If FORMAT statements are used, the order of the list elements must correspond
to the order of the format descriptions for the data items. In array elements

buffer length is limited to a maximum output of 60 computer words.

Supscripts in an input/output list may be of the form (expl, expz), where

exp, is one of the following:
c*v+k -k
c*v-k v
c*v k
v+k

where ¢ and k are integer constants and v is a simple integer variable pre-

viously defined or defined within an implied DO loop.

7-1

DO-IMPLIED LISTS

A DO-implied list consists of one or more list elements and indexing para-

meters. The general form is

(«..(list, 1 = ml, m2, m3)...)

list Any series of arrays, array elements, or variables separated
by commas

i Control variable

m's Index parameters in the form of unsigned integer constants

or predefined integer variables

Data defined by the list elements is transmitted starting at the value of m, in
increments of my until m, is exceeded. If m, is omitted it is assumed to be one.
An implied DO loop may be used to transmit a simple variable or a sequence of

variables more than one time.

Two-dimensional arrays may appear in the list with values specified for the

range of the subscripts in an implied DO loop. The general form for an array is:

((a(dl’dz)’ll =m, m, my), i, =n;, n,, n,)
where,
a An array name
dl' d2 Subscripts of the array in one of
the preceding forms
il, i2 Control variables representing
either of the variables subscripts
dl and d2
m's, n's Index parameters in the form of unsigned

integer constants or predefined integer variables.

If m3 or n3 is omitted, it is construed as 1.

The input/output list may contain nested implied DO loops. During execution,
the control variables are assigned the values of the initial parameters (il

= my i2 = nl). The first control variable defined in the list is incremented
first. When the first control variable reaches the maximum value, it is re-

set; the next control variable to the right is incremented and the process

is repeated until the last control variable has been incremented.

If the name of a dimensioned array appears in a list without subscripts, the

entire array is transmitted.

Examples:

a) The DO-implied list
((a(x,J3), I1=1, 20, 2), J=1, 50,5)
replaces the following:
DO x J=1, 50, 5
DO x I=1, 20, 2
transmit A (I,J)

X CONT INUE

b) Other implied DO loops might be:
((ABLE (5%KID-3, 100*LID), KID=1, 100), LID=1, 10)
((a(z,J3), I=1, 5),J=1, 5) Transmit elements by column

((a(z,J), J=1, 5),I=1, 5) Transmit elements by row.

c) Nested implied DO loops:
((((a(x,J), B(X,L),k=1,10),L=1,15),1=1,20) ,J=1,25)
(((a(rx,J), B(K),kK=1,10),I=20,100,10) ,K=9,90,10)

d) Simple variable transmission:

(A,kK=1, 10) Transmits 10 values of A.

e) Dimensioned array transmission:

DIMENSION A (50,20)

... A ... list element
is equivalent to:
DO x I =1,20
DO x J = 1,50
transmit A(J,I)
X CONTINUE

FORMAT STATEMENT

ASCII input/output statements may refer to a FORMAT statement which contains
the specifications relating to the internal-external structure of the corres-
ponding input/output list elements.

FORMAT (spec r(specm,...), specn,...)

ll"'l
The spec's are format specifications and r is an optional repetition factor
which must be an unsigned integer constant. FORMAT specifications may be

nexted to a depth of one level. The FORMAT statement is non-executable and

may appear anywhere in the program.

FORMAT Statement Conversion Specifications

The data elements in the input/output lists may be converted from external to
internal and from internal to external representation according to FORMAT con-
version specifications. (If the type of a variable in the input/output

list does not correspond to the type specified in the FORMAT statement, the
Formatter insures that the proper conversion from one type to the other will

take place.) FORMAT statements may also contain editing codes.

Conversion Specifications

rEw.d Real number with exponent
rFw.d Real number without exponent
rIiw Decimal integer
r@w

Octal integer
rKw
rAw Alphanumeric character

Editing Specification

nX Blank field descriptor

nHh h2...hn

1 Heading and labeling descriptors

r"hl h2...hn" Specification should not be on more than one line.
If continuation is necessary, specification should be
broken up in two specifications.

r/ Begin new record

Both w and n are nonzero integer constants representing the width of the field
in the external character string; n may be omitted if the width is one. d is
an integer constant representing the number of digits in the fractional part of
the string. r, the repeat count, is an optional nonzero integer constant
indicating the number of times to repeat the succeeding basic field descriptor.

Each h is one character.

Ew.d OQutput

The
The
ing

. e +
Q_Xl Xd Etee

X, ...X

E specification converts numbers in storage to character form for output.
field occupies w positions in the output record; the number appears in float-

point form right justified in the field as:

1 a are the most significant digits of the value of the data to be output.

ee are the digits in the exponent.

significant digits, signs, decimal point, E, and exponent.

Field w must be wide enough to contain

Generally, w should

be greater than or equal to d + 4.

If the field is not long enough to contain the output value, an attempt is made

to adjust the value of d (i.e.,

a number is written in the field.

the field, dollar signs ($)

are inserted in the entire field.

truncating part or all of the fraction) so that
If the remaining value is still to large for

If the field is

longer than the output value, the quantity is right-justified with spaces to the

left.

Examples:

PROGRAMMER.

Lote

WRITE (4.5
5| FORMAT (E |

i

0.3)

WRIT[E(4,5)A |

" 5/ [FORMAT (E |

Y
JA |

2.3) |

WRITE(4,5)A
5| FORMAT(E7|.3)

RITIE(4,5))A

5| FORMAT(ES

1)

TT A s
he caret symbol, . indicates

A contains +12.34 or -12.34
Result is Aa.123E+02 or A-.123E+02

A contains +12.34 or -12.34

Result is aaaa.123E+02 or
AAN - 123E+02

A contains +12.34 or -12.34

Result is .12E+02 or -.1E+02

A contains +12. 34
Result is $$$$$

the presence of a space.

Ew.d Input

The E spcification converts the number in the input field (specified by w) to a

real number and stores it in the appropriate storage locations.
The input field may consist of integer, fraction, and exponent subfields:

integer fraction

: | . | . 1/'—“exponent
+ ...n.n...ntee

n E

decimal point

The integer subfield begins with a + or - sign, or a digit and may contain a
string of digits terminated by a decimal point, an E, +, -, or the end of the

input field.

The fraction subfield begins with a decimal point and may contain a string of

digits terminated by an E, +, -, or the end of the input field.

The exponent field may begin with a sign or an E and contains a string of digits.
When it begins with E, the + is optional between E and the string. The value
of the string of digits should not exceed 38. The number may appear in any

positions within the field; spaces in the field are ignored.

cxamples:

+1.2345E2
123.456+9
-0.1234-6
.12345E-3
1234
+12345
+12345E6

When no decimal point is present in the input quantity, d acts as a negative
power of ten scaling factor. The internal representation of the input quantity

will be:

(integer subfield)x10 Ox1o'SXponent subfield)

Example:

PROGRAMMER

<
o
C lobel b

[] FORMAT(ER.BD [11| Input quantity = annl234+5aa

t T t T

Conversion performed: 1234x1078x105
Result: 1.234

If a d value in the specification conflicts with the a decimal point appearing

in an input field, the actual decimal point takes precedence.

Example:

2ROGRAMMER

(SR b
2

[FORMAT(ET[2-@) [[T | Input quantity = anaaal.234+5
Quantity stored: 1.234x105

The field width specified by w should always be the same as the width of the
input field. When it is not, incorrect data may be read, converted and stored.
The value of w should include positions for signs, the decimal point, the letter

E, as well as the digits of the subfields:

Example:

PROGRAMMER DATE PROGRAM

< STATEMENT

M|

EAD[(5, DAL Bl [T 1 [1]
ORMAT (E7|.2,ES[.3,E9[.2) ‘ S8R
!]

Assuming input data in contiguous fields:

-12.3E1+1234123.46E-3
«7—*— § ke |

The fields read would be:

-12.3E1
+1234
123.46E-3

and converted as:
-123.
1.234
.12346

However, 1f specifications were:

T e

10 VFORL AT (‘E,Y]l-;ZIE}%[;31,;,'57?2"3: N [- [L

The fields read would be:

-12.3E1
+123
4123.40

The effects of possible FORMAT specification errors such as the above may not be

detected by the system.

Examples:

FORMAT Input Converted
Specification Field Value
E9.2 +1.2345E2 123.45
E9.4 -0.1234-6 -.0000001234
E4.2 1234 12.34

Fw.d Output

The F specification converts real numbers in storage to character form for out-
put. The field occupies w positions and will appear as a decimal number, right

justified in the field.

The x's are the most significant digits. The number of decimal places to the
right of the decimal point is specified by d. If d is zero, no digits appear
to the right of the decimal point. The field must be wide enough to contain the
significant digits, sign, and decimal point. If the number is positive, the +
sign is suppressed. If the field is not long enough to contain the output value,
an attempt is made to adjust the value of d (i.e., truncating part or all of the
fraction) so that a number is written in the field. If the remaining value is
still too large for the field, dollar signs ($) are inserted in the entire field.
If the field is longer than the output value, the number is right-justified with

spaces occupying the excess positions on the left.

Examples: P e -
WRITE (4], 8]JA | || A contains +12.34 or -12.34
5 FORMAT(F1j0.3) | Result: AAnanl12.340 or aan-12,340
| WRITEE(4,5) A A contains +12.34 or -12.34
5| FORMAT(F1l2.3) | Result: Anaann12.340 oraaann -12.340
| WRITE(4,5)A || A contains +12.34
5| FORMAT (F4[.3) | Result: 12.3
WRIT[E(4,5))A | A contains +12345.12

5 FﬁORMAT(F“FlL;.,_, Result: $$$$

7-10

Fw.d Input

The F specification input is identical to the E specification input. Although
the fields are generally assumed to contain only a sign, integer, decimal point,
and fraction; they may also contain an exponent subfield. All restrictions for

Ew.d input apply.

Iw

The Iw specification converts internal values to output character strings, or
input character strings to internal numbers. The output external field occupies

w record positions and appears right justified (spaces on left) as:

:_Xl...Xd

During input conversion, if a value is less than —3276810, the value is converted

to a positive 32767.

The x's represent the decimal digits (maximum of 5) of the integer. When the
integer is positive on output, the sign is suppressed. If an output field is
too short, dollar signs ($) will be placed in the output record.

The Iw specification, when used for input, is identical to an Fw.0 specification.

Examples:

WRIT

5 FORMi(T I contains -1234
| I

b QL

4,16) J contains +12345
K contains +12345
L contains +12345

Result: =-123412345$$55,.12345

)<—5—>’<—5—>‘<—L*—>|<—6—>‘

DATE

o «ZON

Input contains:

2

15 2 2 x

| T IREAD[(S], 1A 1], WL KL L REE
12 FORMAT (15[, 18], [1]4,,]T1) BB

-
-

-.12312,.3.1.23

!+5—>l<—5—>l<—”—>! 1!

I contains -0123
contains 12003

contains 0102

H X g

contains 3

Aw

This specification (not available in the 4K version of FORTRAN) causes alpha-
numeric data on an external medium to be translated to or from ASCII form in

memory. The associated list element must be of type integer.

On input, if the field, as indicated by w, is greater than 2, the first w-2
characters are ignored; only the last two characters are read. When w equals
2, the two characters are read. If w equals 1, one character is read and stored

in the right half of a computer word; zero is entered in the left half.

On output, if the field is greater than 2, two characters are written with right
justification in the field; the leading positions are filled with spaces. If
w equals 2, the two characters are written. If w equals 1, the character in

the right half of the computer word is written.

w>2 w=2 w=1
| | : I
FIELD | !
| [| |
</ l,/ 1 4 | 4 4 14 g
(ignored/on input)
spaces on output
v | v ; v : v
MEMORY ! i |
1 1 1

7
(ignored on output)
zero on input

7-12

Example:

Input data: AZZ213-ABCXABC137 - 229 @

DIMENSION ID (5)
READ (5, 1¢) 12, Il1, ID
10 FORMAT (Alg, Al, 5A2)

Result: 12 BC
I1 gX

ID AB

Ccl

37

-Z

Z9

r 0w, rkw

Octal integer values are converted under either the @ or the K specification.
The field is w octal digits in length; the corresponding list element must

be of type integer. (Not available in the 4K version of FORTRAN.)

On input, if w is greater than or equal to 6, up to six octal digits are stored;
non-octal digits appearing within the field are ignored. If the value of the
octal digits within the field is greater than 177777, the results are unpredict-
able. If w is less than 6, or if less than six octal digits are encountered in
the field, the number is right justified in the computer word with zero fill on
the left.

On output, if the field is greater than 6, six octal digits are written with right
justification in the field; the leading positions are filled with spaces. If w
equals 6, the six octal digits are written. If w is less than 6, the w least

significant octal digits are written.

Example:

Input data: 123456-1234562342342342, 396-¢5 CR LF

DIMENSION ID(2), IE(2)
READ (5,10) IB, IC, ID, IE
10 FORMAT (@6, @7, 2@5, 2@4)

Result: 1IB 123456
IC 123456

ID @23423

242342

IE gp@@3e

2o0295

The X specification may be used to include n blanks in an output record or to

skip n characters on input to permit spacing of input/output quantities.

the specifications list, the comma following X is optional.

as 1X. OX is not permitted.

Examples:

BROCRAMMES

2

RIIT

E(6,1@)A,BLT ~ [T
|8 FORMAT (E8|.3,5X|,F6.2[,5X,1
Result: ,.1234E2.. ... -12.34, -123

Input:

WEIGHT. .10..PRICE..$1.98,. . TOTAL..$19.80

PROGRAMMER

C

. g

. .. A contains +123. 4
4). | B contains -12.34
I contains -123

" TREA

(5. i@

PXF4 .

19| FORMAT (8X

Result: I contains 10
A contains 1.98

B contains 19.80

7-14

~X 1s interpreted

nHh, h,...h

172 n

The H specification provides for the transfer of any combination of 8-bit ASCII
characters, including blanks. n is an unsigned integer specifying the number
of characters to the right of the H that are to be transmitted. The comma
following the H specification is optional. .H is interpreted as 1H. OH is not
permitted. An H-specification should not span more than one line. If continua-
tion is necessary the H specification should be broken off in 2H specifications,

one on each line.

On output, the ASCII data in the FORMAT statement is written on the unit in the

form of comments, titles, and headings.

Example:

PROGRAMMER l.’,A'l lPRerGRAM

[§ Looe

WRITE (8], (o0 [[[[T
1| FIORMAT(20H THI|S IS ‘
! l

Result: THIS IS AN EXAMPLE

———

WRITE (6, 1|@)1,A,8 AR N A
19 FORMAT(BHWEIGHT | ,L?-HLQL,,E,J__,QE%.SLfi'-?;!, NN
ClPH | TOTAL $.F5.2) I I R

I contains 10
A contains 1.98
B contains 19.80

Result: WEIGHT 10 PRICE $1.98 TOTAL $19.80

On input, the data is transmitted from the unit to the FORMAT statement. A

subsequent output statement transfers the new data to the output record.

Examples:

PROCRAMMER Hete PROTRAM

A ICAN 1SS NENEN RESRN ARRRE RRRSS BARENEN

REAID ‘
j“ﬁ FIORMAT (3 1[HA'A A A[A A AN A[NAAANAAANAAAAAAANAAAANA])
Hl WRITE(6,11@) ‘ ‘ L. L

Input: H INPUT ALLOWS VARIABLE HEADERS

Result: H INPUT ALLOWS VARIABLE HEADERS

r'h.h,...h "

12 n

This specification also provides for the transfer of any combination of ASCII
characters (except the quotation marks.). The number of characters transmitted

is the number of positions between the two quotation marks; field length is not
specified. If r, an optional repeat count, is present, the character string with-
in the quotation marks is repeated that number of times. Commas preceding the
initial quotation mark and following the closing quotation are optional. As with

H, the specification must be contained on one line.

Examples:

T

TTWRITEC(S,
1gl FORMAT (™

2)
HIS ALSO 1|S AN [EXAMPLE ")

- —

Result: THIS ALSO IS AN EXAMPLE

5 WRITE(6,l6) | | R BN
FORMAT(3"[ABC™)| NN A |

,r_,
(S

Result: ABCABCABC

On input, the number of characters within the quotation marks is skipped on the
input field.
7-16

New Record

The slash, /, terminates the current record and signals the beginning of a new
record of formatted data. It may occur anywhere in the specifications list and
need not be separated from the other list elements by commas. Several records

may be skipped by indicating consecutive slashes or by preceding the slash

with a repetion factor; r-1 records are skipped for r/. On output the slash

is used to skip lines, cards, or tape records; on input, it specifies that control

passes to the next record or card.

Examples:

[WRITE(S, @)] N
19| FORMAT(22[x, 6HBlUDGET|/ //6HWEIGHT,,6X,| |
ICE,9

_|C/sHPRILCE,, 9}, SHTOTAL ,[8X)

PO i ——aa . ——

— b J— IO S ——

CwRiTE(e, ey | L |]
1| FORMAT (22[X , 6HBUDGET]|, 3 /6 HWE I GH[T , 6,
ICl5HPRICE, 9x, SHTOTAL, [BX)

SESURNSES IO |

Result:

line 1 NAAAAAAA Amanmannnn~~ ~~~BUDGET
line 2
line 3

4

line WEIGHT c c a n A PRICE A A aaaaaa aTOTAL A aannann

Repeat Specifications

Repetition of the field descriptors (except nH) is accomplished by preceding the
descriptor with a repeat count, r. If the input/output list warrants, the con-

version is interpreted repetitively up to the specified number of times.

Repetition of a group of field descriptors, including nH is accomplished by en-
closing the group in parentheses and preceding the left parenthesis with a group

in parentheses and preceding the left parenthesis with a group repeat count.

7-17

If no group repeat count is specified, a value of one is assumed. Grouped field

descriptors may be nested to a depth of one level.

Examples:

WRITTE (4, 00 (1L KL [[T
1 g| FORMAT (15[, 15,15) L 3 ‘
can be written as
— | o
WRITE(4,I¢)I,J,K | i
| O FDRMAT(3IS) | ! |

| WRITE (4, 112)A,8|,1,C,0D,J ,
19| FORMAT (E8[.3 ,5X|,F6.2[,5X,1/4,E8 |3, 5X,
cFe.2[,5x,14)

can be written as

| | L
WRITE (4, 1|@)A,B[,I,C,D,J
I' g FORMAT (2 ([E8.3,[5X/,F6[.2,5%[,14))|]
A nested repetition specification would be:
FOR| AT(Ee.3ls?,syfe.2,5xhIpWWIW"”*I”‘"‘T*”AA1f‘
| I | I 1 |

The group F6.2, 5X, I4 would be written five times, and the entire group, once.

Unlimited Groups

FORMAT specifications may be repeated without use of the repetition factor. If
list elements remain after all specifications in a FORMAT statement are processed,
the rightmost group of repeated (enclosed in parentheses) specifications is used.
If there is no repeated group, processing resumes with the first specification

in the statement. On output, each time the rightmost parenthesis in the state-

ment, or in the unlimited group, is reached, the current record is terminated.

7-18

FREE FIELD INPUT

By following certain conventions in the preparation of the input data, a 2116A
FORTRAN program may be written without use of FORMAT statements. Special symbols

included with the ASCII input data items direct the formatting:

Space or, Data item delimiters

/ Record terminator

+ - Sign of item

. E+ - Floating point number
@ Octal integer

"o Comments

All other ASCII non-numeric characters are treated as spaces (and delimiters).
Free field input may be used for numeric data only. Free field input is indicated
in the FORTRAN READ statement by using an asterisk rather than a number of a
FORMAT statement.

Data Item Delimiters

Any contiguous string of numeric and special formatting characters occurring
between two commas, a comma and a space, Or two spaces, is a data item whose
value corresponds to a list element. A string of consecutive spaces is
equivalent to one space. Two consecutive commas indicate that no data item
is supplied for the corresponding list element; the current value of the list
element is unchanged. An initial comma causes the first list element to be

skipped.

ExampTle:

l) PR CaAMMER ’ — N 2)

T T TREAD| S, M, 9, K, L T Reab[s, %, UL K U

Input data: 1720, 1966

1980 1492

1720 I
1966 J
1980 K
1492 L

I contains Result:
J contains
K contains
L contains

Result:

Floating Point Input

The symbols used to indicate a floating point data

Input data:

1266,,1794,2000

1266
1966
1794
2000

contains
contains
contains
contains

item are the same as those

used in representing floating point data for FORMAT statement directed input:

integer fraction

| I o~
f 1T 171

ip...n.n...nige
n E

exponent

decimal point

If the decimal point is not present, it is assumed

to follow the last digit.

Examples:
PROGRAMMER _ B J:)A'l - LP?CCI’(AM -
[T T READICS, *I[A, 8L oL E [T 11] IREERRENREEE
I i | IR [T T T L T T 1 1 T 71 1 T 1
Input Data: 3.14, 314E-2, 3140-3, .0314+2, .314E1l

All are equivalent to 3.14

Octal Input
An octal input item has the following format:

@xl...xd

The symbol @ defines an octal integer. The x's are octal digits each in the
range of 0 through 7. List elements corresponding to the octal data items

must be type integer.

Record Terminator

A slash within a record causes the next record to be read immediately; the

remainder of the current record is skipped.

Example:
PRUGRAMMER ; o J JATE o lp-l;,w-\v o
[T IREAD[(S, PO T,], KK, L [T
Input data: 987, 654, 321, 123/DESCENDING @
456

Result: II contains 987
JJ contains 654
KK contains 321
LL contains 123
MM contains 456

List Terminator

If a line terminates (with a @) and a slash has not been encountered,
the input operation terminates even though all list elements may not have been

processed. The current values of remaining elements are unchanged.

Examples:

" 3

T TREAD(S A B . O T X N.Z T T T
It l! [!()|)! I‘B)‘CLJI 1! 7Z ! !k< ‘V‘L.-,‘*ﬂ_ﬁl_&‘_‘*l;ﬁ_

T
1 T

Input Data:

A=7.987 B=5E2 C=4.6859E-3 @

J=3456 CR LF

Result: A contains 7.987
B contains 5E2
C contains 4.6859E-3

J, X, Y, Z are unchanged.

Comments

All characters appearing between a pair of quotation marks in the same line are

considered to be comments and are ignored.

ExampTles:

"6.7321" is a comment and ignored

6.7321 is a real number

SECTION VIl
INPUT/OUTPUT STATEMENTS

Input/output statements transfer information between memory and an external
unit. The logical unit is specified as an integer variable that is defined else-

where in the program or an integer constant.

Each statement may include a list of names of variables, arrays, and array
elements. The named elements are assigned values on input and have their

values transferred on output.

Records may be formatted or unformatted. A formatted record consists of a
string of ASCII characters. The transfer of such a record requires the
specification of a FORMAT statement or free field input data. An un format-

ted record consists of a string of binary values.

LOGICAL UNIT NUMBERS

FORTRAN input/output statements refer to logical unit numbers (1 to 63) whose
meaning varies depending upon the operating system used. Refer to the appropriate
manual. The operating system relates the logical unit number to a physical

unit through system tables. Logical unit 4 always refers to a punch device,

5 to an input device, and 6 to a list output device.

FORMATTED READ, WRITE

A formatted READ statement is one of the forms:

READ (u, f)k
READ (u, *)k
READ (u, f)

Execution of this statement causes the input of the next ASCII records from
unit u. The information is scanned and converted according to the FORMAT
specification statement, f, and assigned to the elements of list k. If the
input is free field, an asterisk is specified in the READ statement rather
than the label of a FORMAT statement. If the list is absent, the FORMAT

statement should contain editing specifications only.

A formatted WRITE statement may have one of the following forms:

WRITE (u, f)k
or

WRITE (u, f)

This statement transfers ASCII information from locations given by names in
the list k to output unit u. The values are converted and positioned as
specified by the FORMAT statement f. If the list is absent, the FORMAT

statement should contain editing specifications only.

UNFORMATTED READ, WRITE

An unformatted READ statement has one of the forms:

READ (u)k
or

READ (u)

This statement transfers the next binary input record from the unit u to the
elements of list k. The sequence of values required by the list may not
exceed the sequence of values from the record. 1If no list is specified,

READ (u) skips the next record.

An unformatted WRITE statement has the form:
WRITE (u)k

Execution of this statement creates the next record on unit u from the

sequence of values represented by the list k.

AUXILIARY INPUT/OUTPUT STATEMENTS

There are three types of auxiliary input/output statements:

REWIND
BACKSPACE
ENDFILE

A REWIND statement has the form:
REWIND u

This statement causes the unit u to be positioned at its initial point. If

the unit is currently at this position, the statement acts as a CONTINUE.
A BACKSPACE statement is as follows:
BACKSPACE u

BACKSPACE positions the unit u so that what had been the preceding record
becomes the next record. If the unit is currently at its initial point, the

statement acts as a CONTINUE.
An ENDFILE statement is of the form:

ENDFILE u

Execution of this statement causes the recording of an end-of-file record
on the output unit u. If given for an input unit, the statement acts as a

CONTINUE.

SECTION IX
COMPILER INPUT AND OUTPUT

The FORTRAN Compiler accepts as input, paper tape containing a control

statement and a source language program. The output produced by the Com-

piler may include a punched paper tape containing the object program; a

listing of the source language program with diagnostic messages, if any;

and a listing of the object program in assembly level language.

CONTROL STATEMENT

The control statement must precede the first statement of the source program;

it directs the compiler.

FIN, P17 Pyr Py

FTN is a free field control statement. Following the comma are one to three

parameters, in any order, which define the output to be produced. The con-

/

trol statement must be terminated by an end-of-statement mark, (bR} (5;\.
N N

N

Spaces embedded in the statement are ignored.

The parameters may be a combination of the following:

B

Binary output: A program is to be punched in relocatable
binary format suitable for loading by the Relocating

Loader.

List output: A listing of the source language program is to

be produced as the source program is read in.

Assembly listing: A listing of the object program in assembly

level language is to be produced in the last pass.

Symbol table only: A listing of the symbol table only is
produced; in MTS, if both T and A are specified, only the last

used will be decisive.

SOURCE _PROGRAM

The source program follows the control statement. Each statement is fol-
lowed by the end-of-statement mark, . Specifications statements
must precede executable statements. The last statement in each program
submitted for compilation must be an END statement. Up to five source
programs may be compiled at one time. The last program must be followed

by an END$ statement, if less than six programs are to be compiled.

The control statement, each of the five programs, and the ENDS terminator
may be submitted on a single tape or on separate tapes. If more than five
programs are contained on a tape, the compiler processes only the first

five. The remaining programs must be compiled separately.

BINARY OUTPUT

The punch output produced by the compiler is a relocatable binary program.
It does not include system subroutines introduced by the compiler, or

library subroutines referred to in the program.

LIST QUTPUT

If the List Output parameter is specified, the first 72 characters of each
line of the source program is printed on the List Output device. The ENDS$
is the last statement printed. If exactly five programs are compiled, how-

ever, the ENDS$ is omitted from the list.

If the Assembly listing parameter is specified, the program is printed in
assembly level language on the List Output device. If the Symbol Table
option is specified, the program listing is followed by a Symbol Table for

the assembly level program.

The format for the assembly level listing is as follows:

Columns Content

1-5 Zero-relative location (octal) of the instruction
6-7 Blank

8-13 Object code word in octal

14 Relocation or external symbol indicator

15 Blank

16-18 Mnemonic operation code

19 Blank

20-25 Operand address in octal or external symbol name.
26-27 The indicator ",I" if indirect addressing is used.

The Symbol Table listing has the following format:

Columns Content

1-5 Symbol, statement label, or numeric symbol assigned
by the compiler.

6 Blank

7 Relocation indicator

8 Blank

9-14 The zero-relative value of the symbol

The characters that designate an external symbol or type of relocation for

the operand address or a symbol in the Symbol Table are:

Character Relocation Base
Blank Absolute

R Program relocatable
X External symbol

C Common relocatable

NOTE: The operating procedures for the FORTRAN Compiler
are contained in the SOFTWARE OPERATING PROCEDURES
s10 suBsysTEMS Module (5951-1390).

APPENDIX A
HP CHARACTER SET

ASCII CHARACTER FORMAT b, 0 0 o o | | | |
bg 0 0 | ! [¢] 0 | |
bs [o} | (o] | (o] 1 o} !
by
b3
il
by

o{0|0|[0|[NULL|DCo | B 0 @ P
ololo| | soMlDC, | Tl A e | | 1]
olo|t1]|0o| EOA|DC2 " 2 B R 1-_ —::-U:«
olo| |1 |eoM|ocs | # | 3 | c [s | |'N |
ol 1]o]oleoT [2%, $ a D T _u_<_-:--
ol1 o]l I |WRU|ERR| % | 5 E u N s
ol []o[RuJswne] & | 6 | F | v | ATl
of 1|1]||BELL|LEM |[(apos)| 7 G w s N
1lojo|o| FEg | So (8 H X -'_“_g_
ool s | [9 [t 1~ vl 1]
iloyjilo| LF | S2 | = : J z E
1ol t{1|Vrag| S3 + N K C _D—‘__l_‘
tfrjo]o| FF | Sa |icomma) < L \ DR
1jrfol1] CR Ss - = | M] R @
T o] so | se > N | 4]| |esc
P pr | ST S, / ? I (0] - "1] oeL

Standard 7-bit set code positional order and notation are shown below

the high-order and b

1 b
Example: The code for "R" is: | 7
LEGEND

NULL Null/Idle

SOM Start of message

EOA End of address

EOM End of message

EOT End of transmission

WRU "Who are you?"

RU "Are you...?"

BELL Audible signal

FEo Format effector

HT Horizontal tabulation

SK Skip (punched card)

LF Line feed

VTAB Vertical tabulation

A-

1

0

°

the low-order, bit position.
b

b b b b b
5 0 4 0 3 1 2 0

LEM
So-S

ACK

ESC
DEL

LEGEND (cont)

Form feed

Carriage return

Shift out

Shift in

Device control reserved for data link escape

Device Control
Device control (stop)

Error
Synchronous idle
Logical end of media

Separator (information)

Word separator (space, normally non-printing)
Less than

Greater than

Up arrow (Exponentiation)

Left arrow (Implies/Replaced by)

Reverse slant

Acknowledge

Unassigned control

Escape

Delete/Idle

APPENDIX B
ASSEMBLY LANGUAGE SUBPROGRAMS

A FORTRAN program can refer to a subprogram that has been prepared using
Assembler source language. The subprogram may be treated as a subroutine
or as a function. The object code programs generated by FORTRAN and by

the Assembler are then linked together by the Relocating Loader when the

programs are loaded.

FORTRAN REFERENCE

In the FORTRAN program, a subroutine is called using the following statement:

CALL s (al, a2,...,an)

The symbolic name, s, identifies the subroutine and the a's are the actual

arguments.

If the subprogram is a function, it is referenced by using the name and the

actual arguments in an arithmetic expression:

f(al, a2,..-,an)

As a result of either the call or the reference, FORTRAN generates the

following coding sequence:

JSB s/f Transfers control to subroutine or function

DEF*+n+1 Defines return location

DEF al Defines address of al
DEF a2 Defines address of a2
DEF an Defines address of an

The words defining the addresses of the arguements may be direct or indirect
depending on the actual arguments. For example, an integer constant as an
actual argument would yield a direct reference; an integer variable might

yield an indirect reference.

If the subprogram being referenced is a subroutine, it may return none, one,
or more than one value through its arguments or through common storage. If
the subprogram is a function, it is assumed to return a single value in the
accumulators: a function of type integer returns a value in the A-Register;

a function of type real returns a value in the A- and B-Registers.
The subprogram may transfer values directly by accessing the words in the

calling sequence or it may make use of the FORTRAN library subroutine .ENTR

to aid in the transfer.

DIRECT TRANSFER OF VALUES

Any suitable technique may be used to obtain or deliver values for the argu-
ments and to return control to the calling program. If address arithmetic is
used in conjunction with an argument (e.g., to process elements of an array),
the base location must be a direct reference; the location given in the call-
ing sequence must be checked to determine if it is a direct or indirect ref-
erence. If it is an indirect reference the location to which it points must

also be checked, and so forth.

[PROGRAMMEI l:r; PROGRAM

Example: — _ : "
NaM Jamslug] [T T T 1T 7] TTTTT HEREEEE
ENT| [AMS[UB 17 Lol
amsug| INopP BB AMSIUB! T[o' [CON[TAIN [ADDR [0F ™*hN+1"
Lpla| [aMsluB|, 1 A [CONTAIINS V[ALUE [OF! " *+N41 ™
; S|TA| RETRN RE[TRN, CIONTAINS VAILUEl OF " *4N41 ™.
NIX TAG| [1]SZ] |AMS|UB| ' AMSUB CIONTATINS ADDR IOF LOCA[TION |
LDA| [AMSuUB| OF| ARGUMENT.| TEST| [IF ALL AR[GU-
CPA| RETRN| | MENTS P|ROCES|SED: [COMPARE VA[LUE
JMP| RETRN[,1 OF| "*4Nl4 1" WITH ADPDR OF CURRENT |
‘ ‘ " LO[CATION OF |ARGUMENT. |IF EQUAL
PRISIAIG | RE|[TURN [TO CALLLING| PROGRAM, [IF NO
| PR|OCE/S'S| ARGUMENT |AS' REQUIRE[D. |
LIDA] JAMSIUB|,|1, A |CONTA[INS LIOCATIION OF ARGUMENT.
LA 7,11 LIOJAD! ON[E-WOR[D' (FIXED POINT) :
I VALUE INTO Al. |
LDA| |AMsluB|, T 'Liojab] TWO-WORD (FILIOATIN[G POINT)
DLD| 0.1 VALUE IINTO A| AND B. B
I‘ L -
| LbA[|amsjuB|, T [ST|ORE IO[NE-WORD VA|LUE IN ARG[UMENT|
| [SITA] [oUTAD LOICATIION.
| Loal wWrviaL]
SFA OUTAD|, I
LDA| [AMSUB|, I ST|IORE TWO-WORD IN| ARGUMENT)
STA| OUTAD LO[CATIONS .
DLD| W2VAL
DST| OUTAD[, I
LDA| [aMsuUB[,I A |CONTA[INS ADDR OF LOCATION| OF
ssA || AR|GUMEN[T . TO| DETERMINE| IF REF IS
JMP| [*; 2! INDIREC[T, TE|ST BIT 15.] IF ONE, :
JMP| ¥+5 SE[T [TO [ZERO WITH |AND, THEN |LOAD |
AND| [ANMSK| A WITH |REFERENCED| LOCATION. '
LDpA| g, RE|PEAT| [TEST WITH [NEXT |REF. WHEN
1 JMP| [*_5 DI|REC[T| |REF ENCOUNTERED|, PRO|CEED
ANMSK| jolcT| p77[77]7 WI[TH PRIOCESS|ING .
| ! !
[YMP| NXTIAIG RE[TURN |[THROU|GH HERE WHEN NE|XT
RETRN| [B'SS| |1 | AR|GUMEN|T IS |REQUI|RED. |
OUTAD| BSS| [I 1 | '
WivaL| Bss| 1! ? J
W2VAL| BSS| |2 1 !
‘ END !
) T |

The preceding example assumes that each argument is processed or partially
processed before the next is obtained or delivered. Control returns to the

calling program when all arguments have been picked up or delivered.

TRANSFER VIA .ENTR

The transfer of values to or from the locations listed in the calling sequence
may be facilitated through use of the FORTRAN library subroutine .ENTR , This
subroutine moves the addresses of the arguments into an area reserved within
the Assembly language subroutine. The addresses stored in the reserved area
are all direct references; .ENTR performs all the necessary direct/indirect
testing, etc. It also sets the correct return address in the entry point

location.

The general form of the subroutine is:

NAM s The subroutine name is s.
ENT s
EXT .ENTR .ENTR must be declared as external.
a BSS n Reserves n words of storage for the
S NOP addresses of the arguments; this pseudo

instruction must directly precede the entry
point location, s.

JSB .ENTR

DEF a Defines first location of area used to

(First instruction) store argument addresses.

JMP s, 1

END

Example: l e
NAM [aMsluB l | BEE
ENT| [aMsiuB !
EXT| [. EN[TR ; |
AlGMTlS| [BiSS| |5 l |
[i
AMSUB| INOP ; ! |
JSB| [. ENTR | { i
DEF| AGMTS BERERE L !
PRISAG | | |PROCE|sS| AR[GUMEN[T'S' |As| REQU|IRED | !
|- | | 1 fi L] N
| i | |
LDA| [aeMTS|, 1 | PTCK |UP_ VALUE OF FIRIST AR|GUMEN[T |
: L L | !
DILID| |AGMTSH 1, I| PIICK [UP VAILUE| OF SECOND ARGUMENT
A % | L
. L NN L
LDA| WIIVIAL] T |STORE| VALUE FOR| THIRD ARGUMENT| |
! STA| JAGMTSH?2, 1 } | ;
DILD| W2VAL STORE|[VALUE FIOR| FOURTH AR|GUMEN|T |
DIST| IAGMTISH+3,, T | ‘ Ll ;
LDA[|AGMTS|+ 4 3PIbM UP_ADPDRE'SS| OF F|IFTH ARGUMEN&
| | | ; L
| |ymP| JamsuB|, I . RETURN TO [CALLING PRIOGRAM
VAL BiSs| |1 i | |
2VAL| BSS| 12 |1 i S S IO S
_ | IEND i ‘ L \’ i

APPENDIX C
SAMPLE PROGRAM

Using Simpson's rule, calculate the value of the integral:

for the following possible values:

Variable Range of Values

-6.99 to +6.99
b -6.99 to +6.99
Ax -.25 to +.25

Simpson's rule for approximating a definite integral is:
b

S f(x)dx = ég—(f(a)+4f(a+Ax)+2f(a+2Ax)+4f(a+3Ax)+...+f(b)

The last term is reached when (a+kAx)=b, and when neither a 2 nor a 4

appears in front of the first or last term.

g N=N+1

START

:

READ
A, B, AX

1

LAST TERM
LIMITS

I

INCREMENT DO:

YES

b e e — —

N >K?

NO

TERM =

ICOS F (A + N*AX
A+ N*AX

5

SUM = SUM +
C* TERM

YES

NO

(@}
1]
I

4

SUM = SUM +
TERML

SUM = Sum#* 28X

I

PRINT:
SUM

SAMPLE PROGRAM FLOWCHART

c-2

1szow

FenLee, Al] T HEEERBRNER |
| IPROGRAM sMPSN | | ! 1 L
| |IREAD|(5,18)) A,B|,DELTX ‘ {
19| FORMAT (2E[8.2,E[7.2) |
__| [TERML=COS|(B) /B %

SUM=|COS (A) /A i
K=(B-A)/DELTX |
C=4 . ' i ‘ |
I=KHt f j
DO 6| N=1[, 1 |
FN=N
IF(N|-K)2@|,20,7@ ! | |
29| [TERM=ICOS(|A+FN*DELTX]) |/ (A+[F N*DELTIX) ||
IF(TERM-TERMLD B2, 70,32 | || | | |
39| [SUM=[SUM+CI*TERM | ? B
| |tF(cl-a.)5/p, 49,52
_4g/[C=2. L ,
? GO 10 69 ? .
5@l [c=4.] IR
6gl [CONTINUE | [| [T
79 lsum=lsum+TlERML | | | | ‘
82| |[SUM=|(SUM*DEL TX) /(3. | ‘
| WRITE(6,9@) SuM B i
9| FORMAT ("slum="|,|E'8l.[2) B
| |sToP BN ;
| [END | il sEREananl
j END BN B
| [|
I I | i
T 1 { T
T B
T 1"!

OBJECT PROGRAM
Input and Output Data

1.23 4.72 25
SUM=-.63E+00
STOP

1.23 2.01 10
SUM=-.12E-01
STOP

P.34 1.81 02
SUM= .B8E+00
STOP

P.00 1.00 021
SuUM= .S5T7E+36
STOP

1.00 1.25 @5
SUM= .92E-01
STOP

APPENDIX D

FORTRAN ERROR MESSAGES

Errors detected in the source program are indicated by a numeric code inserted

before or after the statement in the List Output.

The format is as follows:

Exrxox
Code

0001

0002

E-~ecee:

eeee

SSSS

nnnn

Ssss + nnnn
The error diagnostic code shown below.

The statement label of the statement in which the error was

detected. If unlabeled, 0000 is typed.

Ordinal number of the erroneous statement following the last
labeled statement. (Comment statements are not included in

this count.)

DescriEtion

Statement label error:

a)

b)

c)

d)

e)

The label is in positions other than 1-5.
A character in the label is not numeric.
The label is not in the range 1-9999.

The label is doubly defined.

The label indicated is used in a GO TO, DO, or IF statement
or in an I/O operation to name a FORMAT statement, but it does
not appear in the label field for any statement in the program

(printed after END).

Unrecognized Statement

a)

b)

The statement being processed is not recognized as a valid

statement.

A specifications statement follows an executable statement.

D~-1

Error
Code

0003

0004

0005

0006

0007

DescriEtion

c¢) The specification statements are not in the following
order:

DIMENSION
COMMON
EQUIVALENCE

d) A statement function precedes a specificatior statement.

Parenthesis error: There are an unequal number of left and

right parentheses in a statement.

Illegal character or format:

a) A statement contains a character other than A through Z,

O through 9, or space =+-/(),.S$".
b) A statement does not have the proper format.

c) A control statement is missing, misspelled, or does not

have the proper format.

d) An indexing parameter of a DO-loop is not an unsigned in-
teger constant or simple integer variable or is specified

as Zero.

Adjacent operators: An arithmetic expression contains adjar

cent arithmetic operators.

Illegal subscript: A variable name is used both as a simple

variable and a subscripted variable.

Doubly defined variable:

a) A variable name appears more than once in a COMMON state-

ment.

b) A variable name appears more than once in a DIMENSION

statement.

c) A variable name appears more than once as a dummy argu-

ment in a statement function.

D~-2

Error
Code

0008

c009

0010

0011

0012

Descrigtion

d) A program subroutine, or function name appears as a
dummy parameter; in a specifications statement of the
subroutine or function; or as a simple variable in a

program or subroutine.

Invalid parameter list:

a) The dummy parameter list for a subroutine or function ex-

ceeds 63.

b) Duplicate parameters appear in a statement function.

Invalid arithmetic expression:

a) Missing operator

b) Illegal replacement

Mixed mode expression: integer constants or variables appear

in an arithmetic expression with real constants or variables.

Invalid subscript:

a) Subscript is not an integer constant, integer variable,

or legal subscript expression.

b) There are more than two subscripts (i.e., more than two

dimensions.)

c) Two subscripts appear for a variable which has been de-

fined with one dimension only.

Invalid constant:

a) An integer constant is not in the range of —215 to 2 -1.

. . . 38
b) A real constant is not in the approximate range of 10

to 10_38.

c) A constant contains an illegal character.

Exror
Code

0013

0014

0015

001lé

Description

Invalid EQUIVALENCE statement:

a)

b)

c)

Two or more of the variables appearing in an EQUIVALENCE
statement are also defined in the COMMON block.

The variables contained in an EQUIVALENCE cause the

origin of COMMON to be altered.

Contradictory equivalence; or equivalence between two or
more arrays conflicts with a previously established

equivalence.

Table overflow: Too many variables and statement labels

appear in the program.

Invalid DO loop:

a)

b)

d)

The terminal statement of a DO loop does not appear in

the program or appears prior to the DO statement.

The terminal statement of a nested DO loop is not within

the range of the outer DO loop.
DO loops are nested more than 10 deep.

Last statement in a loop is a GO TO, arithmetic IF,

RETURN, STOP, PAUSE, or DO.

Statement function name is doubly defined.

D~-4

During execution of the object program, diagnostic messages may be printed on
the output unit by the input/output system supplied for FORTRAN programs.
When a halt occurs, the A-register contains a code which further defines the

nature of the error:

Message A-register
*FMT 000001
*FMT 000002
*FMT 000003
*FMT 000004
*FMT 000005

Explanation

FOR<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>