
2000C HIGH SPEED

TIME SHARED BASIC

INTERNAL MAINTENANCE SPECIFICATIONS

BILL HACCOU

RICH PEARSON

August 10" 1972

Contents

INTRODUCTION -------------------------------------.---------------------­

TABLES---------------------~--­

DIRECTORY--- 2

DIREC-------------------r--~ 4

10 TABLE-- 5

ADT-- h

DISC ADT--- 7
LOCKED BLOCKS TABLE-- 8
FUSS--- 9

COMTABLE---10
LOGGR--11
TELETYPE TABLES--12

EQUIPMENT TABLE--15

SYSTEM SEGMENT TABLE---~---------18

DISC ALLOCATION TABLE--·---19

MOVING HEAD DISC TABLE-------~---20

CORE MAP--21

DRUM ORGANIZATION --22

DISC ORGANIZATION---24

DISC AND DRUM ERROR ROUTINES--2h

SCHEDULING--29

COMMUNICATION BETWEEN SYSTEM MODULES--------------------------~-----------

DRUM DRIVER--32
DISC DRIVER--~------~------------34

I/O PROCESSOR DRIVERS--37

SYSTEM CONSOLE DRIVER------------------------------~-------------------40

INPUT AND TERMINATlON REQUESTS---41

SYSTEM FLOWCHARTS----------------------------~--------~-------------------42

SYSTEM LIBRARY ROUTINES---~---~~~-~---------~---~-------------------~----68
ASSIGN------~---~-----------~-------------~-----·-~--~--~---~---------71

CHAIN--------~------·---~-~ .. ------~-----------~----------------------72
SAVE---~------------~---------74

SUPERSAVE---76

DIRECTORY - USER CONSOLE--91
SDIRECTORY - USER CONSOLE--~--92
REPORT USER CONSOLE---93
STATUS USER CONSOLE---------------------------~---------------------94

LENGTH---~~~.~~~-~~~.~-~-~.~~.~··-~~-~-~~~-.~~.~-~~-~~ •• -~-~~~.·-~·-.lOl
ECHO--~".~ ••• ~~.~~-.· ••• ~.~--~-~.~-~-~-~-~--.----~-~-~-~~-~~-~-~~~.--l02
MESSAGE--103

L PRINTER--------------------------~~--------------------------------103~A
REPORT - SYSTEM CONSOLE--·-.------------------------~-~~~~~~--~~-·-~·l04
DIRECTORY - SYSTEM CONSOLE--·-.~--.~~-·-·-~-~-·~·-----~-~-·-.---·---~105
SDIRECTORY - SYSTEM CONSOLE--.-·----·-----------•• ·---.--.--.--~.-.--106
STATUS - SYSTEM CONSOLE---.-·-•• -------------·--·------------~-------l07

11

HIBERNATE--~---~---------~-------------------~-----------------------~--]13

NEWID---~-----~~----~---~---~--~114
KILLID--~-----------====116

UNLOCK--117

LOCK--118

MUNLOCK---119

MLOCK---~---------------120

COPY---~----------~---------~---122

BESTOW--123

SANCTIFY--]24

DESECRATE---125

PURGE---126

MAGTAPE---128

PHONES--129

PRINTER---130

SPEED--~131

PORT---~132

I/O PROCESSOR PROGRAM--133

2100A Asynchronous Channel Multiplexor----------------------------------133

Send Channel Parameter---~--133

Receive Channel Parameter---133

MULTIPLEXER DIRVER--134

Initial ization--~-7---------134

Receive Channel Processing---------------------------~~-~~~~~-~~--------134'

Send Channel Processing-------------------------------~----~~~~---------J34-A

Abort Processing---~~---------~-134-A

Multiplexer End of Processjng---------------------------------~---------l34-A

LINE PRI~TER DRIVER---135

2100 DATA SET CON~ROL INTERFACE--136

DATA SET CONTROL BOARD DRIVER---137

INITIALIZATION--138

POWER FAIR & RECOVERY---139

TIME BASE GENERATOR---140

TELETYPE TABLES---141

SELECTRIC CONVERSION ROUTINES--------------~----------------------------143

CONVERSION TABLES FOR THE IBM 2741 TERMINALS TRANSMITTlNG EBCD
& CALL/360 CODES--~-~-~-------145

HARDWARE CONFIGURATION---------------------------------~--------------~----146

iii

PROCESSOR INTERCONNECT---~-~~--147

TWO PROCESSOR POWER FAIL CHARACTERISTICS-----------------------------------150
CORE ALLOCATION IN I/O PROCESSOR PROGRAM-~---------------------------------153

BASIC---­

SYNTAX-----~--162

COMPILATION--~----------162

VALUE---163

DECOMPILATION---164
PRNST---------------~---164

EXECUTION---164
FORMATTER--------~-~--174

ERROR ROUTINES--177
CORE MAPS---178

INTERNAL REPRESENTATION---181

VARIABLE STORAGE ALLOCATION~--186

FILE TABLE ENTRy--188

FILE CONTENTS---189
UPDATE LAST CHANGE DATE ROUTINE---190

RUN-TIME STACKS---191
LANGUAGE PROCESSOR TABLES---193

BASIC FLOWCHARTS---194
LOADER--~--------------------------246

LOADER SUBROUTINES---250

LOADER FLOWCHARTS---·---------~--256
BOOTSTRAP PROCEDURE------------~---320

SLEEP TAPE FORMAT--321

iv

INTRODUCTION

The 2000C '(HIGH SPEED) TIME SHARED BASIC SYSTEM consists of three separate

programs which are run on two processors. The Communications processor

Program is responsible for handling all multiplexed I/O from user

terminals. The System contains the BASIC interpreter, executive and

library routines and runs on the main processor. The Loader, which also

runs on the main processor, is responsible for generating initial systems,

backing up the system on mag tape, reloading the entire system and user

library, and selectively reloading or backing up users libraries.

HARDWARE CONFIGURATION

1) UP TO 16 TERMINALS

10 PROCESSOR INTERCONNECT

11 PROCESSOR INTERCONNECT

12 TIME BASE GENERATOR

13 1st MULTIPLEXOR

14 1st MULTIPLEXOR

15 DATA SET CONTROL FOR 1st MULTIPLEXOR

16 LINE PRINTER (OPTIONAL)

2) MORE THAN 16 TERMINALS

10 PROCESSOR INTERCONNECT

11 PROCESSOR INTERCONNECT

12 TIME BASE GENERATOR

13 1st MULTIPLEXOR

14 1st MULTIPLEXOR

15 DATA SET CONTROL FOR 1st MULTIPLEXOR

16 2nd MULTIPLEXOR

17 2nd MULTIPLEXOR

20 DATA SET CONTROL FOR 2nd MULTIPLEXOR

21 LINE PRINTER (OPTIONAL)

1

2000C (HS) TIME SHARED BASIC TABLES

DIRECTORY

The di rectory is a table which contains all necessary infor­

mation about each program or file in the system library. It resides

on the drum and may occupy from I to 80 drum tracks, depending upon

how many discs there are on the system and how many directory tracks

per disc are specified by the operator at load time. A core resident

table called DIREC contains information on the directory itself.

A directory entry consists of 12 words and has the following format:

WORD 0 user id

I program or

2 fi Ie

3 name

4 s tart of program pointe r
for programs/record size
for fi les

5 1 as t re fe renee date
(year in bits 9 to 15

day in bits 0 to 8)
6 last change date

(hour of year)

7 drum address
(0 if not SANCTIFIED)

8 disc

9 address

10 used only by loader

11 length

(- words -for program
+ records for fi Ie)

BIT 15 ::I

BIT 15 =
if protected, 0 if ~nprotected.

if file, 0 if program

BIT 1 5 = i f s em i - comp i led, 0 i f
uncomp i led

The directory entries are kept sorted on words 0-3. BIT 15 of

words I and 2 and 3 are not considered in the sorting. Names of fewer

than 6 characters are filled out with spaces (408).

2

The last reference date is the most recent date on which

the program or file was referred to, while the last change date

is the most recent date on which it was altered.

The directory contains 2 pseudo entries which are the first

and last entries in the table. They have the following form:

FIRST ENTRY LAST ENTRY

a a -1

] 0 -1

2 0 -1

3 0 -1

4 0 0

5 -1 -1

6 0 0

7 -1 - 1

8 0 0

9 0 0

10 0 0

II 0 0

When the directory occupies more than one track, a11 the

directory tracks appended together form the directory.

3

II. 01 REC

DIREC is a 560 word core resident table which contains

information about the directory. It has the following structure:

WORD 0 -length in words of first directory track

1-~ same as first 4 words of first directory track

5 unused

6 drum address of first directory track

7- 1 3 same as 0-6 but applied to 2nd directory track

553-559 same as'O-6 but applied to Both directory track

A drum address of 0 implies that there is no such directory

track. When word 0 is 0, words 1-4 are meaningless.

The drum address of a directory is always sector 0 of a track.

Each directory track may contain as many as 8184 words = 682

directory entries.

When 19ading the system from paper tape or mage tape, the

operator has the opportunity to specify the number of directory

tracks per dis'c, in the range of 1-10, which is saved in NDIRT.

The total number of directory tracks is this number times the

numbe r of discs on the' sys tem.

4

I I I J n TADI,..
I Ii. I LJ IMDLI:.

The 10 table (lOT) is a drum resident table of from] to 3

tracks which contains one 8-word entry for each 10 code on the system.

The entries are kept sorted according to the 10 codes. An entry has

the following format:

WORD a use rid

1-3 password (filled with a's if fewer .than 6 characters)

4 time a I lowed (i n minutes)

5 time used (i n minutes)

6 disc allowed (i n blocks)

7 disc used (in blocks)

Words 4-7 are 16 bit quantities with values between 0 and 65535.

The 9-word IDEC portion of the EQT has the following format:

WORD 0 first id of first track

1 drum address of first track

2 length in -words of first track

3-5 same as 0-2 but app lied to 2nd track

6-8 same as 0-2 but applied to 3rd track

When loading the system from paper tape or mag tape, the

operator has the opportunity to specify the number of id tracks,

in the range of 1-3, which is saved in NIDT. Each track may

contain as many as 8192 words = 1024 id entries.

5

IV. AVAILABLE DRUM TABLE

The avai lable drum table (ADT) is a drum resident table which

contains one two-word entry for each area of the drum which is un­

allocated. An entry has the following form:

WQRD o
1

drum address

length of area in sectors

Entries are· sorted according to word O. Each entry may refer

to as much as one full track, and no two consecutive entries ever

refer to two adjacent drum areas (two tracks are not considered to

be adjacent).

At the end of the ADT is one additional entry having the form:

o 177777

I 0

The following two memory locations refer to the ADT:

ADLOC = drum address of ADT

ADLEN = length in~words of ADT

6

v. DISC ADT

The available disc table (Disc ADT) is a drum resident table

which contains one three-word entry for each area of the disc which

is unallocated. An entry has the following form:

WORD ° I

di sc

address

2 length of area in blocks

There is one Disc ADT track for each disc on the system and

only entries for one particular disc appear on a track. The first

4 blocks of each disc are used by the system and are therefore always

unavai fable. Thus there are no contiguous areas which overlap discs.

The following words in the EQT refer to the Disc ADT:

DADLC BSS 8

DADLN BSS 8

drum addresses of Disc ADT tracks

lengths in -words of Disc ADT tracks

The first word of each BSS refers to logical disc 0, the second to

logical disc 1, etc.

7

VI. LOCKED BLOCKS TABLE

The Locked Blocks Table is a disc-resident table which

resides in the 256 words of block 3 of each disc. It contains

one two-word entry for each area of the disc that has been MLOCKED.

An ent ry has the fo 11 ON i ng format:

WORD o
1.

disc address relative to this disc

length of area in blocks

The rest of the table is zero filled.

The disc address is stored as if the disc were logical disc Ot so

that packs may be used as any logical disc. The Locked Blocks

Table is cleared only when it is determined during the loading

procedure that the disc does not have a valid TSB label and the

operator requests that one be written. This means that the packs

"remenber" which blocks are unavai lable even if different 2000C

systems are loaded.

8

Vi i. FUSS

The FUSS table is a 1024 word table which resides on the

drum. Its drum address ca~ be obtained by the instruction.

LOA FUSS, I

FUSS is divided into 32 sections of 32 words each. The 32

words in each section are the 2-word disc addresses of the user

files currently being accessed by the user corresponding to that

table. Addresses of 0 indicate no file. Disc addresses with bit

15 of the first word = I indicate that the user has read only

access.

The purpose of maintaining this table is to:

I. Prevent simultaneous write access by two users to one fi Ie;

2. Prevent moving or removing a file in the routines KILL, LOCK,

MLOCK, SANCTIFY and DESECRATE when some user has access to it.

A user's FUSS (i.e. his area of the FUSS table) is set by the

FILES routine, which is called from BASIC at the beginning of execution

of a program containing a FILES statement. Individual entries in a

user's FUSS are changed by the execution of ASSIGN statements. It is

cleared by BYE, HELLO, KILLID, and sometimes by KILL.

9

VI I I. COMTABlE

The COMTABlE is a list of all user and system commands con­

taining their ASCII codings and drum locations or core addresses.

The structure 'of the COMTABlE is as follows:

COMI codes for commands which are
executed immediately by the
system

COM2 codes for commands which are
executed by
BASIC

COM3 user commands which are
executed by drum resident
programs

COM4 system commands - - all are
executed by drum resident
programs

COMS starting addresses for those
commands which are listed
under COMI and COM2

COM6 drum addresses for those
commands which are listed
under COM3 and COM4

(th i s sect ion is fill ed
by the I oade r)

Since each command is recognized only by its first 3 letters,

the scanner converts each letter into a number from 0 to 318' and

then packs the three codes into one word as three 5-bit bytes. In

addition, bit IS is set for system commands. Codes of -1 in

sections 2,3, and 4 do not correspond to. any possible 3-1etter

code. Their purpose is to generate room in COM6 for disc addresses

of routines that are called indirectly, or for tables like FUSS. In

the case of CTAPR, the purpose is to generate a status type for

printing compiler tape errors without a direct command from the

user. Similarly, UCDAB generates a status type for updating the

last change date for fi les after a program is aborted.

10

'X. LOGGR

LOGGR Is a 64-word queue which contains codes for printing

LOGON/OFF messages. Entries are placed on the queue by HELLO, BYE,

and SLEEP •. Each entry consists of 2 words, with the following format:

WORD .: user id (BIT 15=0 for ON, I for OFF)

I: bits 15-5 a 60 X hrs + mins

bits 4-0 = terminal number

The representation of a user id Is as follows:

BITS 14-10 • letter (A = 1, B = 2, ••• , Z = 328)

BITS 9-0 • number (0-999)

The fo Ilowf ng varl ab les are re levant:

LOGeT a # of unporcessed entries in LOGGR

LOGPI = points to word 1 of last processed entry

LOGP2 • points to word I of last unprocessed entry

Note that LOGeT • 0 <a> LOGPI-LOGP2

11

X. TELETYPE TABLES

This set of 32 tables, one for each user~ contains relevant

information about the various terminals. The structure of the

tables is as follows:

WORD

FLAG:

BIT

o

2

3

4

5

6

7
8

9

10

TNUM:

0 FLAG

1 TNUM

2 DISC

3 PROG

4 10

5-7 NAME

8-9 TIME

10 CLOC

II RSTR

12 STAT

13 LINK

14 PLEV

15 RTIM

16-20 TEMP

bits 0-8 contain information as follows:

NAME

TERR

CFLAG

HFLAG

TAPEF

UNABT

OUTWT

COMI4

ABTRY

CHNFG

ENDST

MBUST

MEANING IF = I

errors while reading program in tape mode

program is compiled or semi-compiled

$HELLO is running

user in tape mode

unab Ie to abort

user suspended for output wait

communication from I/O processor

abort attempted (while UNABT = 1)

program was called from <CHAIN statement>

error on drum transfer

error on disc transfer

teletype number in bits 12-8; used for sending information

to I/O processor.
12

DISC:

PROG:

ID:

NAME:

CLOC:

RSTR:

STAT:

drum ~ddress of user's swap area

when user is on the drum PROG points to the last cere
location used by the program. When the user is loaded
into core, PROG is placed into PBPTR. When he is written
back to drum, PBPTR is copied into PROG. BASIC is
required to maintain PBPTR as a bound on the core it is
us i ng.

user1s id, 0 if none

a three word entry containing the user1s program name.
It is set by the routine NAME & GET & CHAIN, and cleared
by HELLO. woen fewer than 6 characters are in the name,
blanks are appended.

this is the timeout clock used to determine the length
of a user's time slice. See the discussion on
scheduling for further information.

this is set, when a user is placed on the queue, to
his starting address in core. When the user is actually
initiated, RSTR is set to O. Whenever RSTR = 0, the
transfer address of the user can be found in location PREG.

indicates user's status. The user1s status is as follows:

-4 port unavi lab Ie

-3 enter timeout

-2 system disconnect

-1 user abort reques t

0 idle

I system abort

2 input wait

3 output wait

4 syntax processing

>4 command processing

When a command is being processed, STAT indicates the command.

STAT values are assigned in order of entries in the COMTABLE, so that

RUN = 5

LIST = 6

PUNCH = 7, etc.

LINK: the LINK words in the tables are used to form a queue

of active users. All users whose status is >4 are in the queue.

See discussion on scheduling for further information.

13

PLEV: this word gives the priority level of the user when he is

on the queue. When the user's status is set to 2 or 3, the

previous value of STAT is copied into PLEV, and the user removed

from the queue. The possible values of PLEV are as follows:

0: highest priority, used for syntax, users returning ·from
I/O suspend, and for disc resident routines once they begin.
This includes FILES, CHAIN, and ASSIGN.

1: used for commands RUN,LIST,PUNCH,XPUNCH.'

2: used for disc resident routines unti 1 they reach the top
of the queue.

4: used for long running programs.

RTIM: the length of time in seconds that it took the user to

respond to an <ENTER statement>.

TEMP: used (along with RTIM) to save variables when OPEN, CATALOG,

GROUP, LIBRARY,.STATUS, DIRECTORY, SDIRECTORY and REPORT are swapped

out.

Associated with ea~h item in these tables is a symbol which is

EQUated to the corresponding number of the item. For example:

?FLAG EQU 0

?TNUM E9.U J .
?TEMP EQU 16

These symbols are primarily used for adjusting pointers to the

table. For example, if the B register contains .a pointer to the

LINK entry of some user, the instruction

AD~ .+1 10 - 1 LINK

wi 11 point B to his 10 entry •

. is a symbol located in base page at the 0 entry of a table of con­

stants from -26 to +49. A word containing the value N, where -26~N~49

can be referenced by .+N.

14

XI. EQUIPMENT TABLE

The equipment table is the area of core which describes the

resources available to the system. It resides in locations 100-

204, as fol1ONS:

-

100-1 10 IDEC

111 NIDT

112 ADLOC

113 AOLEN

114 NDIRT

115-124 OAOLC

125-134 OAOLN

135-140 1TBL

141-150 OKTBL

151-170 TRAX

10 tab Ie heade rs (see
number of 10 Tracks

drum address of ADT (coo
, ..1"""'-"

length of ADT in -words

number of directory tracks

Disc AOT drum addresses

Disc AOT lengths in -words

I I I)

IV)

per disc (see

(see V)

There is one word in this area for each of

II)

the 4 drums. When the word is zero, the

particular drum does not exist. Otherwise,

bits 7:6 contain the drum prefix and bits

5:0 the high priority select code. The

prefix is used by the drum driver as the

high order 2 bits of the 8-bit track address.

There is one word in this area for each of the

8 discs. When the word is zero, the particular

disc does not exist., Otherwise, bi ts 15:8

contain the high priority select code and 7:0

the un it numbe r

This is a table of which drum tracks are

physically available to the system. Locations

151-154 correspond to drum 0, 155-160 to drum

1, etc. Track 0 of drum 0 is represented by

bit 0 of 151, track of drum 0 is represented

by bit 1 of 151, etc. A bit is 0 when the

track is available, 1 when unavailable.

15

171-175

176

177

200

201-202

203

204

SYSID

MAGSC

NPORT

YEAR

DATIM

HDATE

SLEPT

The TRAX table is changed only by the

following commands:

DRUM causes all tracks of the specified

drum to be made available.

LOCK all specified tracks are made

unava i 1 ab 1 e .

UNLOCK - all specified tracks are made

available.

A ten character system identification. It is

set in response to the IISYSTEM IDENTIFICATION?"

question on paper tape and mag tape loads. It

is used in the headers for STATUS, REPORT,

DIRECTORY and SOl RECTORY.

High pri ori ty' se lect code for mag tape; if

non-existent, MAGSC=O. If bit 15=1, the tape

un i tis a 7970.

Two's complement of the number of ports on 'the

system. The ports available are numbers ~ thru

-NPORT -1.

'Year of the century.

Time of year. The fi rs t word is the hour of the

year, and the second is the number of 100 ms

units in the hour minus 36000.

Hour of year that the system was· last hibernated.

o says that the system has been slept, -1 that

it has not~ This word is modified only by the

sleep and reload procedures and insures that

the system may not be reloaded from disc if it

has not been slept.

16

Following the equipment table, in locations 205-216 are

must correspond with the ioader. They

are defined as follows:

205

206

207

210

211

212

213

214

215

216

lDBSA

lSTDA

DATlN

MHAD

GHQBP

DISCA

DISCB

MBUSY

MWORD

DREDP

Core address in the loader of the disc bootstrap.

Core address of the first loader segment in the

System Segment Table (SST).

Length of the Disc Allocation Table (OAT) in

-words.

Core address of the Hoving Head Disc Table (MHTBL)

Core address of the routine to get a buffer for

disc or drum error messages. Two such routines

exist: one for the loader and one for the system.

Core address of disc driver entry point.

Core address of disc driver interrupt entry point.

Disc driver busy flag.

Word count for disc driver.

Core address of disc driver auto restart entry

point (used by powerfail/auto restart routine).

17

XII. SYSTEM SEGMENT TABLE

The System Segment Table (SST) is 53-word table resident in

the loader. It is the first portion of the bootstrap and is pointed

to by LDBSA. The first word of the table contains - the number of

system segments. Each group of 4 words following the first word has

the following format:

WORD

2

3-4

length of segment in -words

absolute, beginning core address of the segment

disc address of the segment

There are 13 segments, ordered as follows:

SEGMENT Interrupt locations (28 to 278)

2 System base page (end of EQT to 17778)

3 Sys tern linkage area (20028 to 20158)

4 . Sys tern segment I (end of Direc to 417778)

5 II II 2 (420008 to 517778)

6 II II 3 (520008 to 617778)

7 II II 4 (620008 to 717778)

8 II II 5 (720008 to 776778)

9 Equipment table (1008 to 2168)

10 Direc table (300008 to 310578)

1 1 Loader segment 2 (160008 to 257778)

12 Loader Segment 1 (20008 to 146778)

13 Disc driver (260008 to 277778)

. Not'e that th is inc 1 udes a 11 core res i dent port ions of the 1 oade r

and system except for locations 147008 to 157778 . The first 10008
of these words comp ri se the disc boots t rap and a re res i dent on

blocks 1 and 2 of each disc. Locations 157008 to 157778 may onfy

be used for temporaries.

18

XI I I. DISC ALLOCATION TABLE

The Disc Allocation Table (OAT) is a 276-word table resident

in the loader. It is the first portion of Loader Segment 2 and its

disc address is pointed to by MEM[LSTOA] + 2 when the SST is in

core. The OAT designates the areas allocated on the disc for storage

(during a SLEEP or HIBERNATE) of system library programs and system

tables normally resident on the drum.

There are 4 sections of the OAT. The first (OATSL) is a 3

word entry consisting of the length in blocks of the system library

and the 2-word disc address of the first system library program.

The other 3 sections (OATID, DATDA, and DATDI) contain one

3-word entry for each reserved area on the disc for the Id table,

Disc ADT, and Directory tracks respectively. The format of these

entries is the length in -words in the first word and the disc

address in the second 2 words. For these sections 32 blocks are

always reserved for each track, since the tables may grow to this

size while the system is running.

19

XIV. MOVING HEAD DISC TABLE

The Hoving Head Disc Table (HHTBL) is a 48 word table

resident in the disc driver section of the loader and system.

It contains hardware information about the disc on the system

as fo 11 ows:

WORD 0-1 Two-word logical address of the first 128-word
hardware sector on logical disc O.

2 Points to select code/unit number in DKTBL for

logical disc 0

3

4

5

6-11

42-47

number of sectors/cylinder

number of sectors/track

Current cylinder position of heads for logical
disc 0 (not used for 2883 discs)

Same as 0-5 applied to logical disc

Same as 0-5 applied to logical disc 7

Note that the address in the first two words of each section of the

table is a sector address and must be divided by 2 to obtain the

block address.

The actual numbers for the 3 kinds of used on the 2000C are

as follONs:

2883 2870 7900

WORDS 1-2 fI fI fI

9338°10 974410 i9488 10
186760 10 1948810 38976 10

.280140 10 2923210 58464 10
373520 10 38976 10 7795210
466900 10 4872010 97440 10
560280 10 58464 10 11692810

653660 10 68208 10 136416 10
3 460. _ 48. _ 96.-- - IU IU IU
4 23 10 12 10 24 10

20

CORE MAP

OCTAL
LOCATION

0 INTERRUPT LINKAGE AND UNINITIALIZED
SYSTEM VARIABLES

100 EQU I PHENT TABLE

217 CONSTANTS AND SYSTEM VARIABLES

USER 1224 REGISTERS SAVED BY CLOCK

LIBUS 1230 USER SWAP AREA AND SYSTEM LIBRARY
WORK AREA (10240 WORDS)

26000 DISC DRIVER

30000 DIREC TABLE

_31060 DLOOK ROUTINES

31701 BASIC

60000 I/O DRIVERS

61124 TELETYPE TABLES

62264 EXE_CUT I VE

71624 COMMAND TABLE

72140 SYSTEM LIBRARY SUBROUTINES

LIBRA 75000 SYSTEM LIBRARY PROGRAMS SWAP
AREA (512 WORDS)

77000 CORE DUMP

77700 PROTECTED LOADER

21

DRUM ORGANIZATION

The drum space available to the system consists of from 64

to 256 tracks, depending upon how many drums exist. Each track

contains 128 sectors of 64 words each, for a total of 8192 words

per track. The loader assigns tracks as follows:

System library routines

lOT

User swap tracks

Oi rectory

Di sc ADT

ADT

(3 tracks)

(1-3 tracks)

(1 I /4 - 40 t rack s)

(1-80 tracks)

(1-8 tracks)

(I track)

All remaining tracks are available for storage of sanctified

user programs and fi lese The ADT contains an entry for each avail­

able area.

The drum addresses of the individual system library routines

are stored into the eOMTABLE during loading. Although they are not

all the same' length, they are limited to 512 words, and so the system

reads in exactly 512 words whenever it wants to load such a routine.

The lo'ader never assigns a library routine within T sectors of the

end of a drum track, so that no errors can take place in doing this.

Each directory) ; DT, ADT and 0 i SC ADT track iss tored beg inn i ng

at sector O.

Since the user area is 10240 words long, it cannot fit on a

single track. The loader must therefore find adjacent areas on the

drum which total I 1/4 tracks for each user swap area. This wi 11

not cause any problems because all drums used on the 2000e have

automatic track switching.

22

During running, each user swap area contains a copy of the

area from core location USER through the core iocation specified

by its ?PROG entry. This includes all variabJe data which is

relevant to that user's program, and his program itself. The

location of various sections in his program is discussed elsewhere.

Programs and files which are designated as SANCTIFIED by the

ope rator res i de on the d rum and thus have bet te r access time. They

must be Jess than 8192 words long. The area on the disc where they

were originally resident is reserved so they may be copied back at

sleep time.

23

"

DISC ORGANIZATION

The disc space available to the system is determined by the

number and type of discs which exist on the system. The discs are

divided into 256 word blocks. There are 46690 such blocks on a

2883 disc, 9744 on a 7900 disc, and 4872 on a 2870 disc.

The first 4 blocks of each disc are -reserved for use by the

system. Block 0 is a label, which looks I ike this:

WORD o "LB"

"TS"

2 logical disc number

3-7 system identification

8- 30 "
31 checksum of words 0-30

Blocks 1 and 2 contain the final disc bootstrap found in the loader,

and block 3 contains the locked blocks table for this disc, which is

discussed elsewhere.

Disc space for system usage is assigned as fa I lows :

Res i den t sys tem 130 blocks

System 1 i b rary 126 blocks

lOT 32 blocks/track

Disc ADT 32 blocks/track

Directory 32 blocks/track

All remaining blocks are available for storage of user programs and

files. Programs and fi les are each required to be stored as contig­

uous blocks of disc. Since the disc is allocated by blocks, each

program may cause part of its last block to be wasted. When a pro­

gram is stored (by the SAVE routine), it is first decompiled and is

stored in that form. Only the encoded text is stored, so that a

program may require as-little as 3 words of disc space. When a

program is stored (by the CSAVE routine) it is saved in a semi-compiled

form, i.e. the form it is in after the symbol table is built. Both the

encoded text and the symbol table are stored, plus 7 words of necessary

information. 24

Files always occupy an integral number of records (1-32767),

each file occupying a contiguous area on the disc. BASIC does not

treat the individual records in the same logical sequence as the

physical sequence, but rather interleaves the records, as follows:

even # of records

Physical sequence:

Logical sequence:

odd # of records

Physical sequence:

Logical sequence:

2

n+l

2

n+l

3 4
2 n+2

3 4
2 n+2

2n-2

2n-i

2n-2

2n-1

2n-)

n

2n-1

n

2n

2n

This format tends to decrease disc seek time when records are

accessed in a logically ascending order.

2S

DISC AND DRUM ERROR ROUTINES

Disc and drum errors do not cause immediate halts in th.eir res'pective

drivers. Instead, the drivers indicate failures to their calling routines,

which take appropriate action. In many cases (particularly most disc

errors), the action is merely to inform the affected party and continue

normal system operation. Such is the case for all user access to programs

and files on the disc or drum.

In certain cases, however, system operation is more significantly

affected. The following routines are called after these' disc and drum

fa i 1 u res:

JETPT

This routine is called when a drum transfer to or from a user's swap

area has failed. It proceeds as follows:

1. Remove the user from the queue.

2. Set the port's status to unavailable and clear its 10 and
flags words.

3. Clear this user's area of the FUSS table.

4. Call TCRIR to inform the user that his port is being zapped.

5. Insert an informative message into the system console
message queue and return.

SALVG

This routine is called when a system track with vita.1 information (such

as a directory or lOT track) cannot be written back to its assigned drum

address, but when recovery might be possible if the information can be saved.

It is entered with A containing the address of the word in core which contains

the drum address of the track in question. B contains the negative length of

the table, which must be in core starting at LIBUS. The operation is as

follows:

I. Read the drum ADT, in several portions if necessary, into the
upper 2K of user area. Search each piece for a~ entry large
enough to accommodate the table in core. If none is found, go
to step 4.

26

2. Attempt to write the table to th~.newly found area on the drum. If
the wri te is unsuccessful, go to"'step 4.

SICK

3. If the table ·is successfuily written to the drum, update the drum
address in core associated with it, call ClNOT to finish printing
any messages in the system message queue as well as a message of
success, and halt.

4. Call ClNOT to clean out the message queue and to print a message of
SAlVG's failure, and then halt.

This routine is called when the system cannot continue operating (because,

for example, it cannot read a library routine or system table), but may be

able to be recovered. The routine merely calls ClNOT to finish printing any

messages in the queue and a message of hope j and then halts.

DEAD

This routine is cal1ed when the system cannot continue operating and has

altered its tables in such a way that they contain conflicting information,

and recovery is, therefore, impossible. DEAD calls ClNOT to dump the message

queue and output a "no recove ry" message, and then ha 1 ts.

MDEAD

This routine is called in situations like those which call DEAD, but

which specifically involve possible destruction of a disc's locked blocks

table. The procedure is the same as that in DEAD, except that the final

message refers to the locked blocks table.

ClNOT

This routine is called when a hardware error has caused a system shut

down to be initiated and it is desired to inform the operator and users of

what is happening. The procedure is:

1. Call TCRIR to inform all users that the system is going down.

2. If the system teletype driver was outputting, complete the line
it was printing.

27

3. If there are messag~s in the queue, output them on the system
console.

4. If the routine was ~ntered with B nonzero, print the message
whose'length and text are pointed to by it.

5. Output three X-OFF CR LF's, and return.

TCRIR

This routine is called to inform one or all users of a hardware

fai lure which is fatal to him/them. The procedure is:

1. Set up port counts and message pointer for the appropriate
message.

2. Output the message, one character at a time, to each port to
receive it.

3. Output three linefeeds and return.

SYCON

This routine is the non-interrupt output-only teletype driver used by

CLNOT to print on the system console. Upon entry, A holds the number of

characters to be output. Bit 15 of A = ~ for X-OFF CR LF to be output

after the line. B points to the first word of the buffer to be output.

28

SCHEDULING

The basic philosophy of the TSB scheduling aJgorithm is to provide

short response times for short, interactive Jobs at the possible cost of

delays in longer running Jobs. The implementation of this involves a

queue of jobs to run which is ordered according to a priority scheme.

The queue is a linked list of from I to 34 entries, each entry pointing

to the next entry, and the last entry pointing back to the first. The

34 possible entries in the queue are the 32 user LINK entries, a LINK

word in a truncated TELETYPE table reserved for the system conso1e, and

a queue head. The queue head consists of the locations MLINK (0:2), and

is always in the queue. The queue head has a priority of 777778, which

is stored in location MLINK+2, and so it is always the last entry in the

queue. As an example of how this works, assume that users l, 3 and 6 are

on the queue in that order and so is the system console, in a position

between users 3 and 6. Then the queue will have the following appearance:

TTY~l+1LINK

?PLEV

T35LK
T35PR

TTY~6+1LINK

1PLEV

MLINK

~ -1

i
0 i

I

......... -.-._- - .. - -,
l------z------~ I

I -~:~_J~I
I - - _ .. 1 1
I _. _._~ __ ._ .. _.'

~ ~.
77777

i_. ___ ...

29

Since the MLINK entry is al~ays the last entry on the queue,

MLINK+l is a point~r to the first entry, which in this case is TTY~l.

In the case of an empty queue, ML INK+ 1 w,i 11 point to i tse 1 f, i. e. ,

CONTE'NTS(MLINK+J) = CONTENTS(HLINK). Each entry on the queue has a

priority no greater in numerical value than that of the one it points

to. When an entry is added to the queue, this ordering is always

preserved by placing the new entry just ahead of the fi rst entry

wi th a larger priori ty number. Note that when the fi rst entry in

the queue has pri ori ty 0, it wi 11 rema i n at the head of the queue

until it is removed from the queue entirely.

The following rules are used to assign (and reassign) priorities:

1. Upon first entering the queue, jobs are assigned priorities

as follows:

SYNTAX lines and jobs returning from I/O suspend: 0

BASIC commands (RUN, LIST, PUNCH, XPUNCH)

Commands for drum-resident routines (GET,BYE,etc): 2

2. Priorities of jobs are reassigned in the following way:

Jobs of priority 2, when they reach the top of the queue,

are reassigned priority O.

RUN jobs, when they exceed their time slice, are re­

assigned priority 4, and repositioned in the queue

according to that priority. Each RUN job is assigned

a time slice of two seconds, and if it exhausts that

it is assigned another. When executing a <CHAIN state"ent>i

a <FILES statement>, or an <ASSIGN statement>, a RUN· job

is reassigned. a priority of f.

The OPEN command is reassigned a priority of 4 when it is

suspended after writing fi Ie marks in 400 blocks.

30

After an abort during program execution a user is re-assigned

a priority of 0 to run the routine which updates the last change

date for files.

LIB points to the location in the COMTABLE of the drum address

of the library routine in core. LIB = 0 when none is present.

The following conditions must exist for the scheduier to permit

execution:

A) for Syntax and BASIC commands:

MAIN set to point to correct user table

B) for drum resident commands:

MAIN = 0

LIB set to correct drum resident routine

The scheduler routine SWAPR is responsible for creating these

conditions, and makes its decisions according to the values of MAIN,

LIB, and the entry on top of the queue.

31

COMMUNICATION BETWEEN SYSTEM MODULES

There are seven system modules that communicate with each

other in various ways: the drum driver, the disc driver, I/O

Processor driver, system console driver, scheduler, BASIC, and

system library routines (HELLO, BYE, KILLID~ etc.).

I . Drum Dr i ve r .

Any section of the system may call the drum driver to perform

a drum transfer. Three parametets are passed:

A = drum address (b its (15:14) = drum number

bits (13:8) = track number

bit 7 = 0

bits (6:0) = sector numbe r)

B = core address (b its (14:0) = core add ress

bit 15 = for drum input

° for drum output)

WORD = -# of words to be transferred (may be 0, in which case

no actual transfer is performed).

Called by JSB DRUM,1

It is the responsibility of the caller to insure that the drum

is not busy when the call takes place. This is no hardship since

while BASIC or a system library routine is running, no other module

even initiates drum transfers. As a result, the drum will appear to

be busy only if the module itself has initiated-the transfer.

Upon initiation of a drum transfer, the variable ENDRM is set

to -1, and it is cleared upon completion. A complete transfer can

be pe rformed by:

32

JSB DRUM, 1

LOA ENDRH

SSA

JMP *-2

SZA

JMP <error location>

<process successful transfer>

The system never suspends a program fr)r a drum transfer

because the high speed of the drum does not cause any great overhead.

The value of WORD is not modified by the driver.

33

I I . 0 i s cDr i ve r

Any section of the system may call the disc driver to perform

a (moving-head) disc transfer. Three parameters are passed to

the driver:

A = pointer to
disc address

B = core address

(the core address of a two word

logical disc block number at

which the transfer is to begin)

(bits 14-0 = core address at

which transfer is to begin;

bit 15 = 1 for read from disc

to core;

bit 15 = e for write from

co re to dis c)

The variable MWORD = the negative of the number of words to

be transferred. If MWORD~~, the driver wi 11 cause no transfer,

but will position the appropriate disc unit at the specified

block.

The disc driver is called by JSB DISCA,I.

The driver determines the logical disc on which the specified

block lies, and, if that logical disc is present on the system,

processes the requested transfer. While a request is being

processed and transfer taking place, the driver bus·y flag,

MBUSY ,is set to -1. If the driver is called while MBUSY is

so set, it will return without doing anything .. If the disc

block number passed to the driver does not lie on one of the

discs present on the system, the driver wi 11 increment the

. return address by one and return without doing anything. If

the driver accepts the request, it will increment the return

address by two and return after process ingof the request has

been initiated.

34

A moving head disc transfer involves two steps: positioning

the heads to the correct area of the disc and performing the

actual data transfer. The disc driver returns to its caller

while each of these is going on. Command channel interrupts

return control to the driver when the operations are complete;

the driver checks for successful completion of the operations

before proceeding.

The driver for the 287~ (IOMEC) disc keeps track of the cylinder

position of the heads on each of the discs on the system. If

a requested transfer is to or from the current cylinder of a

disc, the driver does not issue a seek command and suspend

pending its completion before starting the read or write. It

merely issues an lIaddress record" command to set the disc

controller's record address register for the transfer. The

2883~2884 (ISS) disc driver always issues a seek command, since

a seek to the current cylinder consumes virtually no time.

A single data transfer on a disc cannot automatically continue

from one cylinder to the next. The 287~ disc has the further

restriction that a transfer cannot cross the "mid-cylinder"

boundary (between track 1 and track 2). When a data transfer

is reques ted wh ich crosses one or more of these boundari es,

the disc driver breaks up the transfer to conform with the

res t ric t ions.

When the driver completes handling a request and returns to the

caller, MBUSY is set to indicate the outcome of the transfer

as follONs:

~: the requested transfer has been successfully

completed.

1: the transfer has failed; the seek (position)

operation could not be completed.

35

2: the transfer has fai led; the data transfer

was unsuccessful.

3: the transfer has failed; part of the data

I ies on, or would be wri tten to, a disc

which is not present on the system.

A complete disc transfer can be performed by the following

sequence:

JSB 01 SeA, I

<return for driver busy>

<return for disc not present>

LOA HBUSY

SSA

JHP *-2
SZA

<process disc error>

<process successful transfer>

The disc driver does not modify the contents of HWORD and the

A and B registers. The system never suspends a program for a

dis c trans fe r.

36

III. I/O PROCESSOR DRIVERS

There are two drivers used for communication between the main

processor and the I/O processor, one for each direction of communication.

Each communication consists of one 16 bit word which looks like this:

15 13 12 8 7 4

I DATA OR!OPCODE

o
IOPCODE TTY #

The TTY # is the user's port number as found in the ?TNUM word of

his teletype table.

The opcode uses bits 15-13, unless they are all l~s~ in which case

it also uses bits 4-0.

Opcodes which have values of bits 15-13<48 use bits 7-0 for data,

e.g. al ASCII character.

The main processor sends communications on I/O channel 11 and

receives them on I/O channel 10. An exception is a communication

sent by the main processor which requires a response, which will be

recei ved on" 11. Communications are initiated by JSB S14SC, I wi th the

communication in the A register.

The following is a list of communications sent by the main processor:

NAME OPCODE (OCTAL) FUNCTION

OCR 000000 Output a character
STE 020000 Start timing (ENTER statement ~
GTC 040000 Get a character (response required)
PHO 060000 Allowed phones time
SPE 100000 Baud rate information
SBP 120000 Save teletype buffer pointer
RBP 140000 Restore teletype buffer pointer
INI 160000 Initialize system
UIR 160001 User is running
UNR 160002 User no longer running
IWT 160003 User in input wait
HUU 160004 Disconnect user
ULO 160005 User logged on successfully
ECO 160006 Echo-on
ECF 160007 Echo-off

37

NAME

TPO
ILl
NUC
KAO
ALI
OWT
IBF
PSC
LPR
LPD
LPS
BKS
CHS
STP
WSP
WCS
WTP
TKO

OPCODE (OCTAL)

160010
160011
160012
160013
160014
160015
160016
160017
160020
160021
160022
160023
160024
160025
160026
160027
160030
160031

FUNCTION

User in tape mode
Illegal input? (requires response)
New user logged On
Kill-all output
Allow input
User in output wait
Is buffer full (requires response)
Line printer select code
Line printer request (requires response)
Line printer disconnect
Line Printer status (requires response)
Backspace in teletype buffer
Character size information (requires response)
Subtype information
What baud rate (requires response)
What character size (requires response)
What terminal type (requires response)
Telekludge line printer output

Communications initiated by the I/O processor are detailed else­

where. It should be noted that the main processor ignores communications

if they are not consistent, e.g. it will only accept a line of input

when the user's status is idle or i~put wait. The receive driver commun­

icates with the scheduler by setting the COMI4 bit in the ?FLAG word of

the user's teletype table and setting the appropriate status.

The I/O processor program is responsible for all multiplexor I/O.

Ou~put to the multiplexor is performed on a character by character basis

via the routine OUTCH. The calling sequence is as follows:

A = character to be output in bits (6:0), bits (15:7) ignored~

B address of WORD 0 of users teletype table

(JSB OUTCH, I) .

The DUTCH routine places characters into the user's buffer until

it is filled (250 characters), at which point the user is suspended by

OUTCH. This is no problem for BASIC, but due to re-entrancy problems

must not be allowed by ~ther modules. The buffer is always empty when

a library routine is, initiated, so they normally do not have to worry

about it. Routines which may fill the buffer, like CATALOG and DIRECTORY,

get around the problem by suspending themselves at an appropriate time.

38

The I/O processor program recognizes aborts and sends them to the

main processor. If the user is running a library program (except CATALOG,
TTODADV ~D()TTD nTDCrrr()DV
.iJ.l.UIV"\.I'\I. , UI,\VVI, U.l.I,\.u"" I V 1'\. I , SDIRECTORY, REPORT and STATUS), the abort is

ignored, since the routine may be in the process of updating system

tables. At other times when aborting could cause trouble, the UNABT

bit in the ?FLAG word of the TTY table is set. When the abort is seen,

the ABTRY bit is set. Routines which set UNABT have the responsibility

of calling ABCHK when aborts will no longer cause harm. ABCHK aborts

the user if ABTRY was set.

Input from a user teletype is buffered by lines. When the I/O

processor sees a carriage return, it informs the main processor.

BASIC, or the command processor, or the library routine, etc. processes

the input on a character by character basis.

39

IV. SYSTEM CONSOLE DRIVER

The system console driver maintains three flags, T35F1, T35F2,

and T35F3, which determine its status. The meaning of these flags

are as follows:

T35F1: = -1 during output, 0 otherwise

T35F2: Normally 0, it is set to -1 by the driver at the conclusion

of input, and cleared to 0 externally.

T35F3: Normally 0, it is set to -1 by the driver at the conclusion

of input, and c~eared to 0 by the driver after output has

been initiated.

The combined values of these flags are more significant:

Fl F2 F3

o 0 0, Driver is accepting input

o -1 -1 Input command received and is being processed, but output

has not been initiated.

o -1

-1 0

-1 -1

o

o
o

Output terminated from a system command which is to be

reinitiated.

Outputting

Outputting, at the end of which the current system command

will be reinitiated.

When F2 = -1, the driver will not accept any input. This guarantees

sys'tem library programs that they wi 11 not be interfered wi th. These

routines are responsible for clearing F2 when they call the driver for

the last time. F2 and the console status (T35ST) are also cleared if

a key is struck on the console during output. This will effectively

terminate such things as DIRectories, REPorts and STAtuses,

When F3 = -1, log-on and log-off reports as well as the message

queue are held off. This guarantees that these messages will not be

interfered with by system library program output.

40

The calling sequence is:

A: bit 15 = 0 if CRLF is to be appended, bits (14:0) = # of chars.

B: bit 15 = 1 if punching is to take place in addition to printing,

bits (14:0) = core address of output buffer.

JS6 TTY35,1

The driver uses the 36 word buffer T35BF as an input buffer. Most of

the library routines use it for output, and occasionally for temporary

storage between lines of output.

v. INPUT AND TERMINATION REQUESTS

- BASIC may obtain input from a user console by performing the

instruction

JSB SCHIN,l

Either BASIC or a system library routine terminates by:

JSB SCHEN,l

It is possible for BASIC to call a system library routine directly

by executing:

JSB SCHLB,l

DEF <location in COMTABLE of drum address of program>

This is done with the FILES, CHAIN and ASSIGN routines. It is

necessary that the library routine cooperate with BASIC, i.e., not any

program can be so called.

41

0-..

/","'",v,'"
-Ilt~.

.j

....... 1
· ... ~ST

$'ys+ .. ~ :",,~,,!(

d ... :.,tA' ;q,.".

; ... ""t a.,.J

ovf"J·,

EIoIIo/lL(1.oJrE't:I(.

£"lCTT

fl'

l __ • .,ft!. j
iC"'~.~- e'

., c.~,;,1c.. A., :.Jf.,

';. ~;{ ...
~.., 1. ,..,f

TO"'" TQJ'r'" ID~~:O?.
~""'I&, r.."rr,{".c~1 ~

,.. ... ~."

T/JrTs 4-. '~"'''!!' .

,.
1

d' '-...,
(i 41

I

! \

, . I
'r,

m';~'\: ,
'<:.; ~,

sec #,..... .,
c..,.I.. ,;I". -'~"

-I-. $, fI'.
;.,

I '

2.//'

... po~er
/Nt~"'U,t

.- .. .-....... ---"
SAVE

.t ;~Z$Tt Il{

t:~'" ~~.,~.I
,.":;11,,., "'0
,.,.",t/ .~.,.e.

""t"11I.

.r ,,~ ""'"'$
~,. +I. .. I/o
c.4c", J~.

r-'
fAa r,..·

t

2.11'

. /

~4'~""o:~{ TS'"

Ao"'. 7rr
SrNrIAS •

2

~e-----------~

r---. -

of. S

2..1/ ~

t'~+ W.lllfUlI

tl.i' df,"'cc A'cJ

fftll,,~
.. ",If'''',''' f- co.:e'",. •
.,..,,". ..,.,'" ~/_~

".

44ft " .. , + + ,~~
~o;., ~., -1'.. foIte.
/III-fCIf+ c..\tllc •

------.....,.

"I :3

2//6

-.-:-----~

"

\

"f- C)t~ ~'M~
h'1~ 10 ,'tS
l J't~t ,F- 1 "f

.:.IIIS"""," 'T'fK
:,... .. .:.cudl\

lUrtlit ~.,..,.c.r

~(S nr.,. E'~"['(t

)i{'~" ,· ... "' ... t '''41

~eK-~~~-r----~~~~==~-­
~""'<.~

f.'·,:.-

.. :,,,~.-_.
,~ '~~,:'>

;:::::::=::::::::=-=-::.=.'-" '--- -- ---.

2alt>f.E
f~6- t~lEt6A~.P

-:c. ~,~~t \J V'­
~~~T~~ 



1 v'!'~&E "l.N'1£"i. 

! i,,~\ i ~C1 ~oc. 

L~'~(.. 0 

Set \)fi 

<?At2 A~~ 1 t.~ 

FO (( "b~ ,\It: ~ 

f2~ ·E.~t.l btl.'\JE 
j),e~,t..Y 10 
~1~iCT .,t::""$~ 

S E'f 'fo~ t~t" 
~k. rtt~~) S:cr 
Q~ ~~E;.1' 

fO~, ; ()i\~f5:~ 

1E·~N1t~ \)Q.~ 

~ ie--S"tAaT 
Tel,,"' ~t:i.. 



"'""'S~.Y 
c. /-.,,= "--~ 
._f.:n"t'''' c.-c.. 
~.tJ.. -"'. 

8 

,~ '''''''''j. J 
c.1.cJt ..... 1/ 

"i .. le, ,.fo. 

;,.,Iur~,,, 

sy.s"~" .,. 

- -

s" .. J (/~;t#fI'" 

~ cl""'~ 

-

.'-",4 E, ~ ; ." 
fS $AlJ"I'd 

~~, /;,:1 

,.,,~ ;., ,.., .. ~~ ~ 
Sy" 1-... A#"A f 
~<t lAo So f-,.t 

+"'~ I/o 1'-1._ 

Col... 'co t ..... 'Ctl.J. 



,. . 

c. ....... .,.., I "",1""-'1 
_ .•• 41. 

t-esbN.. "+II~' 

A:; 8, ~, 0 

1-~r;~,,1- ~ 

.... "I.e. .. eo·p~ ...... ~/ . 
......... - ...... --___ -.l 

. 
.,l". 

t ofS 



HVL. 

~--'\ 

.,..., It •• 

;",.cI '" 
e." • ."c. 
r~"''''''~· 

__ ...... ,L..-o __ """"-__ -' 



~. 

~ .. #­

. ".6."'z",,,, 

llie. rio 
,,...wer ".s 
t'.c.,~; ,..I ... 
II." , •• ~ • 

... 1tIItI.·,.: .... 
.... - -- ~------...... 

S'''+ 
~--... ~. JJ.Bnc.y 

0.'" 



C OM 11 () ~ :r c.1) T .r 0 #J.s 

C(t''',. It rw.n wat 
()tC.ruT 

~+ 

.j .• 
: .. 

n,"$ ".t¥ 
.""'011-1- 4r._r 
'-s IVII • 

• ~c. 1;41. ~.~,. 

/:II.,. f· .. · • .. ~-' 
.. "J ;+ AI(;,'" "., 

..,.,. .10 ~ .... " 



I,J , 

11.... .6JW 
4.M* .. ~ -#I't~ 

·~ltit It.. '-
, ........... u,..,." 
lMI.:t IbfI'I'C ... '., 

Jt+ ,It .JoS .. ·,t; 

C:JM II.{ ,;t!.. 

s 



t 

• w-
Tl"M'f "4"--: .. J ,,·U' .• 
~ ~.. 0,"" "'"T ~ "Itir.' 

F)fIT 

''-------' 



r----.. __ 

'2-



I S~ hl""~~ 
j f#t' "'10 .. F'U~ .,., '( '~"'f 

UP~E CCWtotr ,...0 e.v,U) 
I \"Olr f..\~SsA&i I 

f~ 
. ! 



)2-



r::;;:~.~'~~j~lr:.. -, 
£ 'C .. c. ... 'P's .. ", r~ , 
'rZ"f~~ • 

_ c • 

r 

,/ ... _._ .. -. 
11, 

fft oe.ItA ... ,s ~I .. ~~ 

It I....... r,:, Ii ,"-' ~ I 
'le-F"t£ ef:-I'-~ I 

'r-~_",_,,_p_&_1> __ "~ 



. I 

f'j 

~;~~:::-~ ~~$1 
- BE £..., T'r'~ J .>/e:, 

Ifl" av~'~·"" 

H ,'s I~~" ..• :.,-

Itt. T"~~ (rl'P-n.ts 

(S~ "".~ ~oJ 
Pl.! V ) 

'S~'f "f FoQ... . 
..,.a .. '""c. vI. E 
t~.o,,"" 4\&"c:"o 
eo"., ~E 

61 

\1-

I C<JZ'£ 7=- 1 

1r'~vt)l..~ r-z .. /.-rj 

- __ L____ I 



I 

(K:P' If~ST»ftT 

""C,.~j £tv7!iC. 

T'~~ J) OGlr-

L-_. ___ ---4.. 

IfE"oIlE !t~-~ 

FNf!'''' O(l!~ .. -

r 
.' " 
d 

62 

. ... :!!I 

prs':"'iJNf! ~ T 

(J.s~" "', .. ;. ~ ..• ) 

-------- . 

Ai.: .... :-' 

7 "T 



11:>., 

I 
c.oP;.· ••. ~"} ,/ 

pt:.:J1i ,. :'.! • '! .. 

_. :J. ,. 

• j 

f~ /f.S";'{ I-
$y""I-t'tJr 

63 

~
U1'~- /I.ftS 

'UrJ efoJn. ~€"j) 
rOli 1It~ ,IiH.. r..t. He ti! . 

,"D<.'(""''' 
d.<;,11\£\," I,·"e i{ 

t"( II .. -J.I", • 

I 

8 



1 __ _ 
.~ 

. , 
. .:-,~-- .... 

64 

----~·,q---l 
I I 

, (J i 

"i,.,.( ~ ~~~ 
"~:·.'T " 

-----



10 

6'c+ rl-,...,I"fI 

.• M. I-rt U"auS. 



I :; tt"l;: \),~(. "tt\ 

~ '.I\!".~_ ~\JS'C' 

Ft.Ar-.;' tN '1y-
., ~\,.~U~ i 

____________ --y-___ --1 I 

---_._-_-_. __ 1 

<AtI ""' '. " tl~", '''''' ee: ' 
~~~O~ // 
. '--, /,/

y

I V

L_.::J -(~-p-r- "\
I ----- \

\(KILL, l-f't.
.. .,.-

'POt. T

l
S-E' L.t ~ (. (,1
t=- L~G-

. ___ -----1

~MA ItJ 4:- -f ~
-.1 fI.)"1121'.-,c­

~e~\)IN(i. Lt%l
()~ CI f:Il A~

67

FO]
I _._-----_ ... ---- -

~N'"'Tl~h~ (Oft£'

to 1)QuM...

\~ .. 'SFE.{l

tl_

SYSTEM LIBRARY ROUTINES

FILES

The FILES routine is used by BASIC to process _FILES statements in a

userls program. The function of the FILES routine is to translate

the file names in the user1s program into a table for use during

execution. This table contains a l5-word entry for each file. Its

format is:

2

3

4

5

6

7

a

9

10

12

13

14

15

,-------
I _ file length

logical record size in words

disc or drum address of filels
L

last logical record

disc or drum address of record
L-

(word 5 -current ly in core

~ __ J ""'@e if none)

. disc or drum address of
L-

fi Ie IS fi rSt record

pointer to first word beyond core

-+-

14-
j
i

bUffe~
---------------- ---~---l

pointer to current word in buffer

EOF/EOR exit address (. for none)

fi le

name

protect mask

68

I
--I

I

bit 15=1 if read only

bit 1 5= 1 i f II d i r t y II re co r d
bit 14=1 if "di rty" fi le

drum addresses in

words 4, 6, and 8

for sanctified

files; for these,

words 3, 5, and

7 = 1777778

During operation of the FILES routine, a temporary buffer is used

as a table to store intermediate data. Eight words of the buffer

are used for each fi If!. The operation is as fol Jows:

1. TransJate characters in FILES statements into the buffer

table. FILES sta~cements are pointed to by a four word table

in the user swap area which is pointed to by DFILT.

FILCT = -5+ # of fiLES statements. There may be up to 4 such

statements. Filenames are extended to six characters, if

necessary, and those which are specified to be public files are

marked by setting Bit 15 of their first word to 1. Those which

are specified to be group library files are marked by setting

bit 7 of the i r firs t wo rd to l. A "*" a lone as a f i 1 e name i s

a place holder. The buffer table for the entry is zeroed.

Possible errors found in this step are:

a. File name of 0 or > 6 characters

b. More than 16 files requested

2. Perform directory search for each specified file. DIRWD is set

to the drum address of the directory track in core so that DLOOK

doesn't have to read and write the directory for each file. Save

the file's drum address (f if not sanctified), disc address, fi Ie

length, and logical record size in its portion of the buffer

table. The record size for "*" entries was set to 256 in the

previous step. The read-only bit is set if the fi le is a library

fiJe and the user is not the owner. An error occurs if the file is

nonexistent or protected. Update the last reference date word

in the directory entry for this file.

3. Test to make sure that there is sufficient room in the user

area for the file table.

4. Scan the FUSS table to see if any other user has write

capability on the files requested. Hark any such fi les as

read-only. This test is skipped if the user's 10 has a

letter prefix 'A'. Copy the disc addresses of the requested

files into the user's portion of FUSS. Indicate read-only

files by setting bit 15 of the upper disc address word.

69

5. Build the table specified above. FILTB is a pointer to the

beginning of the table. Upon exit, VALlB and PBPTR both point

to the first word following the table.

70

ASSIGN

The ASSIGN routine is used by BASIC to process an ASSIGN statement in

a userls program. Thf! function of the routine is to replace the

information currently in the file table referenced by a specified fi le

number with informati,~ about a new (usually different) fi Ie being

assigned to that numbe·r. The operation is as follows:

1. If the previous file was written on j update the last changed date

word in its directory entry.

2. Search the di rectory for the new fi Ie. If it is not found j is a

program, or is protected, exit to non-existent fi Ie return. If it

has records larger than those of the previous file, exit to that

return location. Otherwise save the fi leis drum address, disc

address, length, and record size. Set bit 15 of the length word

(read-only) if this is a user accessing a system or group library

file not his own. Update the last reference date word in the

di rectory entry for the fi Ie.

3. Scan the FUSS table to see if any other user has write capability

on the fi 1e. If so, set bit 15 of the fi leis length word unless

this is an "A" user. Move the disc address of the fi Ie into the

appropriate two words of the user's portion of the FUSS table,

setting bit 15 of the upper word if the fi Ie is read only for this

user.

4. Construct the fi Ie table entry specified in the description of the

FILES routine. Exit to one of three locations, depending on

whether the file is: 1) available for reading and writing; 2) read­

only (except users Axxx) because of another terminal's read-write

access; or 3) read-only because it is a system or group library fi le.

7!

CHAIN

The CHAIN routine is used by BASIC to 'process a CHAIN statement

in a user's program. The function of the CHAIN routine is to find

. the program named In the- CHAIN statement, retrieve it from the disc·,

and beg in execut IOn. I t ope rates as fo I lows :

1. Dump fi Ie buffers ..

2. Update the 1ast changed date entry in the directory for each

fi1e which was written on.

3. Translate name of program from CHAIN statement. Invalid names

exit to error. If preceded by a 11$", set up All" search; if

preceded by ,,* .. , set up group library search; otherwise set for

searching on user's 10. Save the line number if any is specified.

4. Perform directory search. Exit to error if not found.

5. Check to make sure that the entry is a program, that it is not il1-

stored, and that it will fit. If any of these are not true, exit

to the' appropriate error.

6. For programs on the disc (not sanctified), initiate a seek by

calling the disc driver to perform a zero length transfer.

7. Update date entry in di rectory and wri te di rectory track back to

drum~

8. Read in the basic portion of the previous program, including

the· common area and then append the new program. If the read

is unsuccessful, read in the previous program again and exit to

error. if successful, move the new program-name into the user's

table, and if this is a run only program, set the run-only bit,

unless the program' is in this user's own library. Call SEMIC,

which sets up pointers for the language processor, dependent upon

whether the program is uncompiled or semi-compiled.

9. Check if an abort was attempted during the previous steps, and

if so, abort the user.

72

CHAIN (cont.)

10. If a line number was specified, search the program for the

statement and, if found, put Its absolute address into PRGCT.

If no 1ine number was specified~ set PRGCT equal to SPROG.
if the program is nuil, or if the line number cannot be found,

clear the chain bit in the flags word. In any case, exit to

SCHBL.

73

SAVE

The SAVE routine is called by a user to save a program in the

lib ra ry. I ts ope rat i on is as fo 11 Q<>IS :

1. Test for the existence of a program name and a non-null

program.

2. I f the user's program is in compi led form (CFLAG bi t = 1),

call OCMPL to put it into the form in which we wi 11 save it.

3. Check if the common area has been allocated. If not, call

ALCOM, which computes the amount of space required for

common. This is used to determine the start-of-program

pointer which is saved in word 4 of the directory entry, a

device which keeps the common area from being overwritten

on GET's and CHAIN's.

4. Test to see that the user has sufficient disc space allocated

to save the program. The test to be satisfied is:

(disc currently in use) + (length of program in records)

< (disc al1Q<>led).

5. Search the next disc AOT for the first entry large enough to

hold the program. Remember the address of the entry in SAVC.

6. Initiate a seek to the disc address at which program will be

written.

7. Perform a directory search on the program to be saved. Fail

if such an entry already exists.

8. If the directory track is full, call the SUPERSAVE routine to

attempt to reallocate the directory. SUPERSAVE wi II perform

step 9 itself and proceed to step 10.

9. Insert a new di rectory entry into the di rectory.

10. Update the lOT and disc AOT.

11. Copy the user's program to its library area. If the write is

unsuccessful, set the "i l1--storedn bit in the directory and fail.

74

CSAVE

The CSA~E routine is called by a user to save .:a nr-""r-.::IIM - ,..,.. ~~I"'"I
..... ~AI"'I"II_
i ii ~~lIil

compiled form. This is the form it has after the symbol table is

bui It. CSAVE operates like SAVE with the following exceptions:

2. and 3. I f the user's program is in compi led form, call RSTPT,

which restores the symbol table to it's appearance just after

it was built, and before variable storage has been allocated.

If the program is in uncompiled form, call ALCOM and then jump

into ,the coopi ler, returning after the symbol table is bui It.

9. Insert a new entry into the directory, setting bit 15 of word

3 to indicate a semi-compi led program.

11. Read the program and symbol tab1e back from the drum. Prior

to writing it to disc, append 7 words which are:

1) SYMTB - symbol table pointer

2) FILCT - -5 + # of FILES statements

3-6) FLSTS - pointers to FILES statements

7) USESN - "USING SEEN" flag

75

SUPERSAVE

The SUPERSAVE routine is called by the SAVE, CSAVE, COPY, BESTOW

and OPEN routines when they want to make a directory entry on a track

that is already full. SUPERSAVE assumes that the following words are

set properly:

(lTEMP:lTEHP+3) = first 4 words of entry.

(lTEHP+4) = pointer to DIREC entry for appropriate directory track

(lTEHP+5) = core address of entry which is to precede the new entry

(lTEMP+6:lTEMP+7) = disc address of entry

(lTEMP+8) = length of entry

(lTEHP+l0) = start of program pointer/record size

(lTEMP+13) = drum address of entry

Note that (lTEHP+4) and (LTEMP+S) are set correctly by OLOOK.

SUPERSAVE attempts to redistribute the directory tracks so that they

will be as equal in length as possible. This will generally prevent it

from being called very frequently. The operation is as follows:

1. Scan through OIREC and determine the total length of all directory

tracks, and add 12 for the new entry. If all directory tracks are full,

exit through failure location.

2. Divide total directory length by number of available disc tracks

to determine their new individual lengths. Insert these in the table at

(OEFNN+l:DEFNN+80) as negative.

3. Now squeeze all the directory entries to the lastmost of the

available tracks. This is done by reading the tracks in reverse order and

writing 8184 words on each track until we run out of directory entries.

The following variables are used in. this section:

(SUp) Kl points to the DIREC entry for track being read (initially

DIREl)

II points to the OIREC entry for track being written (initially

OIREl)

K2 = -# of words in core

76

4. If (# of words on track KI - K2) > 8184, go to 5. Otherwise

update K2 and read this track to the core buffer at location LULEN + K2

(K2 being negative). If K2 ~ -8184, go to 8. Otherwise set the length

into the Ll DIREC entry and write the 8184 word buffer to track Ll. Set

K2=0 and go to 7.
5. Set ES=(# of words on track KI-K2-8184}/64. That is the number

of extra sectors on the track to be read. Set EX =ES * 64. This is the

number of extra words. Then read the last (# of words on track Kl-EX)

words from track Kl to location (LULEN + K2 - # of words on track Kl + EX)

and update K2.

6. Write 8184 words to track II from location lUlEN-8184 and set the

length in the Ll DIREC entry. Move the leftover -8l84-K2 words to the end

of the buffer, resetting K2. Then read the EX words left on track Kl to

locat ion LULEN+K2-EX. Set K2=K2-EX.

7. Update LI to point to the next track to wri teo

8. Update KI to point to the next track to read. If we've finished

all tracks, go to 9. Otherwise go to 4.

9. If K2 = 0, go to 10. Otherwi se wri te out the -K2 words to track Ll

and set the length in the Ll DIREC entry.

10. Zero·out the lengths in the DIREC table of all those tracks that

no longer have anything written on them.

11. Now redistribute the directory tracks. The basic idea of the

algorithm is to fill the swap area with as much of the directory information

as we can, reading from the beginning, and then to write out as much as we

can, always making sure than when writing we don1t overlay any portion that

hasn't been read yet. The following variables are used:

(SUp) Kl points to the DIREC entry for track being read

(initially DIREC0)

Ll points to the DIREC entry for track being written

(initially DIREC0)

K2 = # of words read so far from track Kl

(initially O)

77

l2 = # of words written so far on track II

(ini tially 0)

p = # of words in core

(initial1y 0)

PP points to DEFNN entry, telling how many are to be written

on ll.

TG = I if we have already inserted the new entry.

12. If l2 = -(pP), we have completely written track LI so check for

II = DIREl. If it is, we've written all the tracks, so go to step 18.

Otherwise, advance II to the next directory track advance PP, set l2 = 0,

and repeat this step. If l2 -(pp), go to step 13.

13. If P .::. 10232, we have read as much as we can, so go to step 15.

If Kl = DIREU, there is nothing left to read, so go to step 15. If K2 = #

of words on track KI, we've read the entire track, so advance Kl to the next

track, set K2 = 0, and repeat this step. Otherwise, compute the number of

words we can read. If there is room to read the balance of the track, we

will, otherwise we will read the maximum number of full sectors possible.

If this is zero, go to step IS. If it is not zero, read from sector K2/64

into core location llBUS +P. Add the number of words read to P and to K2.

14. If TG = 0, determine if we can insert the new entry. To do this

we first determine where the even entry boundary occurs in the core buffer,

since we may have read only part of an entry (12 does not divide 64 evenly).

If the last entry in the buffer is greater than the entry we are inserting,

the entry goes on this track. If this is not the case, go back to step 13.

Otherwise, set TG to I, make a 12-word hole, insert the new entry, set

P =. P + 12, and go back to step 13.

IS. Write section. Set S = o. This is the number of words written.

16. Compute number of words .we can wri te on track L 1. Fi rst set

A = - number of words left to write on the track. If II = KI, we

haven't finishing reading everything from track LI, so if L2-A > K2 change

A to l2-K2, which is the number of words we can wri,te without destroying

any unread directory information. If P-S<-A, we don't have as much in core

as we are capabie of writing so set A = -«(s-p)+64) x 64), an exact number

of sectors.

78

17. If A = 0, we can1t write anything, so if S~D slide the remaining

P-S words in core up to location LIBUS, set S = 0 and P = P-S. Then go

back to step 12.

If A~O, write -A words to sector L2f64 of track Ll. If L2 = 0,

set the first 4 words of the Ll DIREC entry to the first 4 words written.

Set L2 to L2-A, S to S-A, and go back to step 16.

18. Set the new directory lengths into DIREC and go back to the ca11ing

program.

79

GET

The GET routine is called by a user to load a program from the

library. The operation Is as follows:

1. Translate name of program from user's input. If preceded by

a "$", set up for AOOO search; if preceded by a "*", set up

for group library search; othenwise set for searching on

use rl sid.

2. Perform directory search. Print error if not found.

3. Fail if entry is a file (Bit 15 of word 2 of entry is 1).

Fail if entry is ill-stored (Bit 15 of word 4 of entry is 1).

4. If the program is on the disc, initiate a seek by calling the

disc driver to perform a zero length transfer.

5. Check that the program will fit into the user area. This is

necessary incase a program wh i ch was saved un'der an 0 I d

version of the system can no longer fit with the current

vers ion.

6. Set the date into word 5 of the directory entry and write it

back.

7. Read in the basic portion of the user area and the common

area. Append the library program, reading it in starting

with the word specified by the start of program pointer

(word 4 of the di rectory entry). I f the read is unsuccessful,

read in the previous program again and fail. If successful,

move the new program name into the user=s table, and if this

is a run only program, set the run-only bit unless the program

is in this user's own library.

8. Call SEHIC, which sets up pointers as follows: For uncompi led

programs, clear CFLAG bit and set SYHTB = O. For semicompiled

programs, set CFLAG bit, move 4 pointers to FILES statements

into FLSTS, set FILCT, set SYHTB to point to the first word of

the symbol table and set SPTR = O. For both types of programs

set HAIN to point to this user, set SPROG to the start of

program pointer and set PBPTR to point past the last word used

by the program.

80

APPEND

The APPEND routine is called by a user to append a library program

onto his current program. The operation is the same as GET for

steps 1-4, and then continues as fol1ows:

4. Check that the program to be appended is not semicomptled and

has no conmon area •. Set the date into word 5 of the di rectory

entry and write it back.

5. Load user's current program and call DCHPL. Check that the

program to be appended will fit, and if so, read it in at the

end of the current program. If the read is unsuccessful~ fai1.

6. If the current program is not null, search it for the sequence

number of the last statement, and I nslst that I t be smal1er

than the sequence number of the first statement of the ~pended

program. I f okay, update PBPTR and I.f the appended program is

run-on ly, set the run-on ly bit un less the program was retri eyed

from the user's own library.

81

HELLO

The HELLO command is used to log a user on.to the system. Its

operation is as follows:

1. If the current 10 is 0, there is no user to log off, so

go to Step 2.

Otherwise, clear the user's section of FLISS, and tell the

I/O processor (service routine NUC) that a new user called.

This will force the user to be disconnected if he does not

successfully log on.

2. Read the lOT. If there is no user to be logged off, go to

Step 4. Check if user has control over the line printer. If

not, go to Step 3. Otherwise tell the I/O processor ·to dis­

connect the line printer from user (service routine LPO).

3. Find the old user's lOT entry and update his total time used.

Add an entry to LOGGR to be printed on the system console.

Set the user's 10 word to O.

4. Translate the new 10 code and search for it in the lOT. If

not found, print an error message and terminate. Compare the

password typed to the correct one, and fail if they disagree.

5. Check if a terminal type was input. If not, assume terminal

type #1 and go to Step 6. Otherwise check if terminal type

is in the Range I through 6. If not, print an error message.

6. Tell I/O processor (service routine STP) which terminal is

connected to the port. Check that the time used to date is

less than the time allowed.

7. Add a LOGON entry to LOGGR and set the starting time into

the user's table. Also insert the 10 code, clear the name,

clear the program and tell the I/O processor of successful

Logon (service routine ULO).

8. Search the directory for a program named HELLO in the library

of user Zggg. If not found, or if it is a file, or if it will

not fit in core, or if it is ill-stored, or if it can not be

read from drum or disc, print REAOY and terminate.

82

9. Read in the fixed user area and append HELLO. Call SEMIC,

which sets pointers as in SAVE. Change the user's status to

RUN, set TIMEF, and transfer to BASIC.

82-A

BYE

This command is used to log a user off. It operates as follows:

1. If user does not have control of the line printer, go to

Step 2. Otherwise tell the I/O processor to disconnect

the line printer from user. (system calls service routine

"LPD" which sets the line printer disconnect flag I.PDIS)

2. If user ID is 0, go to Step 3. Otherwise clear the user's

FUSS table and read in the IDT. Compute the time used and

update his IDT entry. Create a LOGOFF entry in LOGGR. Clear

the user's ID entry and output a message.

3. Get ?TYPE from the I/O processor with service routine WTP.

If ?TYPE = ° (ASCII terminal connected to the port), tell

I/O processor to restore this port to full duplex. Otherwise

tell I/O processor to restore this port to half duplex.

4. Tell I/O processor to disconnect the user (service routine

HUU) and then terminate.

83

KILL

The KILL routine is called by a user to delete a program or a file
from the library. Files which are being accessed by another user
are not allowed to be killed. The operation is as follows:

1. Translate the program or file name and perform a directory
search. Fail if illegal name or the search fail~.

2. If the entry is a file, search the FUSS table to see if

any other us"er has access to the fi 1 e. If so, pri nt a
message and terminate. If not, clear theuser's section
of FUSS.

3. Delete the entry from the directory and adjust DIREC.
Subtract the program length from the user's lOT entry, and
restore the space to the ADT (drum) if the entry was sancti­
fied. Restore the space to the appropriate disc ADT.

4. If a file was killed, read the user's program in and decom­
pile it. This guarantees that any old references to the
file will disappear.

84

RENUMBER

The function of RENUMBER is to assign a new set of sequence numbers'

to a user program. The user may specify the sequence number of the first

statement and the increment between statements. If unspecified, these are

set to 10. He may also specify the first statement to be renumbered and the

last statement to be renumbered. If unspecified these are set to the first

statement of the program and the last statement of the program respectively.

There are actually two sets of numbers that must be modified. One set

is the sequence numbers themselves, each of which occupies the first word

of its statement. The other is the set of references, which are labels in

GO TO, GOSUB, RESTORE, PRINT USING, MAT PRINT USING, and IF statements.

Each of these also occupies one word. For programs in compiled mode, they

are pointers to the statement they reference; in· decompiled mode they are

the actual statement number.

The primary technique used is to change all the references to absolute

pointers (i f in decompi led mode), then to change all the sequence numbers,

and then (i f in decomp i 1 ed mode) to change the references to the new statement

numbers. References to nonexistent labels are left unchanged.

Because the process of changing all the references to absolute pointers

can become quite time consuming (due to the search that must be performed

for each reference), a table is built in advance essentially dividing the

program into 32 parts, each containing the same number of statements. For

large programs with many references, this effectively cuts the time down

by a factor of close to 32.

The subroutine RENSK is used to scan for references. It maintains two

pointers, P and Q. Whenever it is called, it moves P to the next reference,

and sets Q to point at the statement following the one that P is pointing at.

It takes advantage of the fact that any references within a statement are

always the last word or words of the statement, except in the case of PRINT

USING and MAT PRINT USING, in which case it takes advantage of the fact

8S

t7

that there is only one statement number reference. Before calling RENSK

for the first time, Q is set to point at the first statement to be

renumbered. P is set toQ-I.

The operation of RENUMBER is as follows:

I. If null program, terminate immediately, Otherwise, read in

user program.

2. Translate and check parameters M and N.

3. Translate parameters P and Q. Set RENBA = first statement to be

renumbered, RENLA to last statement to be renumbered.

4. Set RENLA to point to the last sequence # ~RENLA. Also set RENBA

to point to the first sequence # ~ RENBA.

5. Insure that there will be no sequence number overlap at either end

of the portion of the program to be renumbered and that the new sequence

numbers will not exceed 9999.
6. If program is in compiled mode, go to step 9. Otherwise, set up a

table in ERSEC which divides the program into 32 parts. The result, is that for

each I from 0 to 31

ERSEC (X] = sequence number of first statement in part I,

ERSEC [1+32] = absolute address of that statement
,/

i If there are 32K + L statements (0 ~ L ~ 31) in the program, ERSEC[I] is

. , ("
ii, - II - GI { . -rLl.t.~£ ~ t,)~~--t (..J\. ,

~
'5fz.k.~, t 'ttl ~ ~d ~ f s f,,-k~ h-

I JA
~~ ~~~4- I.I~"'-' J 7 £..c..L,(

W Cl.." ld. b,v_.c; ,', ~..:, (oS' .t:. f.,a-,,-,-'f ~ b-~ !>

the sequence number of statement,

(K + i) 1 + J , if I<L

KX + L + 1 , if! >L, K> 0

L if! ~L, K=O

Set Q = SPROG, P - Q-l. (SPROG points to the first statement).

7. Call RENSK to find the next statement reference. If there are

none left, go to step 9. Find the largest r f~r which ERSEC [lJ ~ (RENP).

If there is none, the statement referenced does not exist, so go to step 8.

Otherwise, test all statements from(ERSEC [Z-+ 32]) to either (ERSEC

L! + 33]) or PBPTR, depending upon whether I < 31 or -:t= 31. If found, set

(RENP) to the location of the statement referred to, and repeat this step.

Otherwise, go to step 8.
8. Set (RENP) = (RENP) + 1000008 and go back to step 7.

86

9. Change the sequence numbers of all statements to be changed,

according to the n, N, SA and LA parameters. if compiled mode, terminate.

Otherwise, set Q = SPROG, P = Q-l, and go to step 10.

10. Call RENSK to find the next statement reference. If none left,

terminate. If (RENP)<O, the reference was undefined, so set (RENP) =
(RENP)-lOOOOOS' and repeat this step. Othenwise, set RENP = ((RENP))

and repeat this step.

\'-\ ~ 4-8

k-=-l
L- --=-- (to

e R-LS~(" [IJ­
~ f.(l. s E <., [r] ~

z·.ft- i

1+I<Ct"1

87

(1<:1<.)
(1 >rIc:.)

NAME

,The NAME routine is called by a user when he wants to assign a
name to his program. The program name is placed in his teletype
table. The operation is as follows:

1. Get an input character. If a carriage return chanqe it to
a blank. If a control character, ignore it and repeat this
step. If a U$U or U*", and this is the first character, orint
an error message and tenninate. If a 11,11, print an error mes­
sage and tenminate.

2. Add the character to the user's name area. If <6 characters,
go back to step 1. Otherwise, restore the RUN-ONLY bit, and
get one more character. If not a blank, print an error messaQe.
Then terminate.

88

CATALOG

The CATALOG routine prints a list of all programs and files in the

user library. The operation is as follows:

1. Output heading line.

2. Perform directory search on the program with all nulls. Get

first directory entry foiiowing the one sought.

3. If the entry does not belong to this user, output a CRLF and

terminate. Otherwise, output the 6 characters of the name

one at a time, then a blank, then a IC I if a semi-compiled

program or an IFI if a file (or a blank if neither), then a

Ip i if the entry is protected (otherwise, a blank), then a

lSI if the entry is sanctified (otherwise a blank), then the

5-digit program or file length with 1eading zeroes suppressed,

then 3 blanks. Program length is printed in words (stored as

negative number) and fi1e length in records.

4. If <4 names have been printed on the 1ine, advance to the next

directory entry and return to step 3. Otherwise, copy the name

of the last one output into the userts teletype table, output a

carriage return and suspend unti1 the buffer is almost empty.

5. Read the name of the 1ast program printed from the teletype table

and perform a directory search. The reason for doing this in

this way rather than saving a pointer to the directory is that

during the time CATALOG was suspended, the directory may have

been changed in any way. Get the first directory entry following

and go back to step 3.

89

LIBRARY

The LIBRARY routine prints a list of all programs and fi.les in the
public library. Its operation is identical to that of CATALOG ex­
cept that A8~8 is used for directory searches instead of the user's
id, and ill-stored programs are not listed.

GROUP

The GROUP routine prints a list of all programs and files in the user's
group library (the library of the idcode endinq in 0., which has the
same letter and first number as the user). Its operation is identical
to that of LIBRARY except that the group librarian's idcode is used
for· directory searches instead of A~f'.

90

DIRECTORY - USER CONSOLE

The DIRECTORY routi~e prints a list of all directory entries on

the user console. The entries are printed one per line, and consist

of id, name, last reference date, length, disc address and drum

address, if any. The operation is as follows:

1
I. Check that the user1s id is ACCO. If not, fai1.

2. Check to see if an idcode was specified. If so-, we wi 11 start

printing the directory with this idcode.

3. Print the heading consisting of system id, date and time and

suspend.

4. Print the directory heading and suspend.

5. Set up parameters for directory search for null program name

and idcode previously determined (or null -idcode if none specified).

6. Perform directory search.

7. Get first directory entry following the one sought. If

pseudo-entry, terminate.

8. If id of entry is different from that of the preceding entry,

output the ASCII representation of the idcode. Otherwise output four

blanks. Save the idcode in the RTIM word of the userls TTY table.

9. Output the six character program name and save it in the TEMP

words of the userls TTY table.

10. Output the last reference date.

11. Output a IC I for semi-compiled programs, an IFI for files,

and/or a Ip' for protected programs or files.

12. Output the length, the disc address, and the drum address,

i f the re is one.

13. Output X-OFF, CR, LF and suspend.

14. Retrieve the parameters for the directory search from the user's

TTY table and go to step 6.

91

SOl RECTORY - USER CONSOLE

The SDIRECTORY routine prints a list of all sanctified programs and

fi les on the user console. The printout is in the same format as a

DIRECTORY printout. The routine functions the same as DIRECTORY, except

that in step 7 a check is made to see if the entry is sanctified. If it

is, the 'process i n9 cant inues as in 01 RECTORY. Otherwi se J the poi nter is

moved to the next entry and step 7 is. repeated.

92

REPORT - USER CONSOLE

The REPORT command prints lOT information on the user console. For

each lOT entry, the user 10, time consumed, and disc consumed are

printed. The entries are printed three per line. Note that the time

printed on the console does not include any time for currently active

users, since these are not added to to the lOT until the user logs off.

The operation of REPORT is as follows:

1. Check that the user's id is AOOO. If not, fai 1.

2. Check to see if an idcode was specified. If so, save it, as we

will start printing the report with this idcode. Otherwise save a null

idcode.

3. Print the heading consisting of system id, date and time and

suspend.

4. Print the report heading and suspend.

5. Retrieve the idcode and find what track its on. Read that track

and locate the idcode.

6. Output the id, time and disc of the next three entries. If

necessary, read the next id track.

7. If no entries left, print XOFF,CR,LF,LF and terminate. Otherwise

save the present idcode + 1, print XOFF,CR,LF and suspend. Go to step 5.

STATUS - USER CONSOLE

The STATUS routine prints a summary of the various system resources

and the extent of their utilization on the user console. It operates as

follows:

1. Check that the user's id is AOOO. If not, fai'l.

2. Print the heading consisting of system id, date and time and

suspend.

3. Print MAGSC and a '*' if the mag tape unit is a 7970 (bit 15

of MAGSC=l). Print the select codes of the 4 drums.

4. -Print the logical unit, select code, unit number, first block

and last block of the discs on the system.

_ 5. Print a list of those tracks which are locked on each drum.

6. Print a list of those disc blocks which have been MLOCKEO.

7. Set the ?STAT word in the user's TTY table to the status overlay

and suspend so that when we come back the overlay will be read in.

8. Get the line printer select code and type from the I/O processor

and print them ('*' if the printer is a 26l0A, '**' if the printer

is a 2767A). Then print the port number of the current user.

9. Print the drum addresses and lengths of the lOT, ADT, Disc ADT

and Directory tracks.

10. Print the drum addresses of the system library tracks and user

swap tracks.

11. Print the disc addresses of the 32-block areas reserved for the

IDT, Disc ADT a~d Directory.

12. Print the disc addresses and lengths of the system segments.

13. Terminate.

94

DELETE

The DELETE command allows a user to delete a section of his program.

He can specify two parameters, M and N. H refers to the first line

to be deleted, N to the last. If N is not specified, the entire pro­

gram is deleted, starting at line M. The operation is as follows:

1. Translate and check parameters. If N is not specified, set

it to 9999.
2. Decompile program.

3. Locate range of statements to be deleted.

4. Hove portion of program following deleted area up against

portion preceding.

5. Reset PBPTR and exit.

9S

TIME

The T I ME conmand pro ints the user I s canso 1 e t (me and tota 1 time. The

operat ion· is as· follows:

1. Print "CONSOLE TIME ="
2. Read lOT.

3. Compute console time and print it.

4. Print "TOTAL TIME ="
5. Find user's lOT entry. Add the time in there to the console

time and print it.

6. Exi t.

96

PROTECT

The PROTECT command allows user AOOO or any group librarian to protect

a program or file. Program protection means that no other user may

list or save the program. File protection means that no other user may

access the file. Files are always protected against other users writing

on them. The operation is as follows:

1. Check for privileged user.

2. Translate and check the program or file name.

3. Perform a directory search on the specified program. Fail if

not found.

4. Set the protec~ bit (Blr 15 of word 1 of the directory entry),

write the directory back to the disc, and terminate.

97

UNPROTECT

Th i sis i dent i ca J to PROTECT exc,ept that it clears the protect bit.

98

OPEN

The OPEN command is used to create data files. The user must specify

the file name and file length in records. He may also specify a logical

record size. The operation of OPEN is as follows:

1. Translate and check the file name and length and record size.

File names are subject to the same restrictions as program names.

File length must be between and 32767 records, inclusive. Record

size, jf specified, must be between 64 and 256, inclusive. (The

default record size is 256 words.}

2. Check the lOT and disc ADTls to see if a) the user has enough

disc space allocated to him to satisfy the command; and b} there

is an area on the disc which is large enough to accomodate the file.

Save the location of the disc ADT entry and its information, but

donlt update it until we know there is room in the directory.

3. Perform a directory search on the file name. If found, this is

a duplicate entry. so terminate.

is not full, insert the new entry.

Otherwise, if the directory track

If it i s full, ca 11 in SUPERSAVE

to restructure the directory and insert the entry.

4. Update the lOT and disc ADT appropriately~

5. Fill the user area with end-of-file marks La -l:in the first word

of each of 40 256-word blocks}. Write this area to the location on

the disc reserved for the file. (ncrement the disc address by 40

blocks and write another 40 records up to 10 times (total) or until

the file is full. The last write may be from 1 to 40 blocks in length.

6. If the file has been filled, terminate. If not, save the low word

of the disc a-dress immediately beyond the last write in the userls

teletype table, along with the file name. Move the user to the

bottom of the queue and suspende

99

7. Retrieve the file name and partial disc address from the

teletype table. Ascertain that the file exists (is in the

directory) and that the reconstructed disc address falls with­

in the ff le. If not, terminate. Otherwi.se, return to step 5.

100

LENGTH

The LENGTH command prints the length of the user's program, as it

would be if saved. This is only the length of the source area of

the program, and includes neither the fixed portion nor any of the

tables used at run time. The length is determined in one of two

ways:

1. [f the user is in decompiled mode, length = PROG-SPROG.

PROG is just a copy of PBPTR, which points to the last

word +1 of the program. PBUFF points to the first word.

2. (f the user is in compiled mode, length = SYMTB-SPROG.

101

ECHO

The ECHO command is used to control the computer echo of teletype

input. Echoing is determined by the user1s bit in the word PLEX

or PLEXI in the I/O processor. Bit. 0 implies no echo, 1 implies

echo. The user will want echoing if any only if his teletype is

full duplex. The command format is:

ECHO-ON for full duplex.

ECHO-OFF for half duplex.

102

MESSAGE

The MESSAGE command is used to send a message from a user console

to the system console. The message is placed in a queue and is ulti­

mately output to the system console by the scheduler. The routine oper­

ates as follows:

1. Check if message queue is full. If so, fail.

2. Put a CR-LF and the ASCI I representation of the user1s port

number in the message buffer.

3. Move the message from the user1s teletype buffer in the I/O

processor to the message ~uffer.

4. Increment message counter and set pointer to next message

buffer.

5. Terminate.

103

L PRINTER

The LPRINTER command is used to obtain the line printer as the output

device. The routine operates as follows:

1. Check to see if the line printer is currently being used. If so

print "LP BUSY".

2. Ask the I/O processor to check on the availability of the line

printer. The I/O processor will return the following status in the A

register:

A1 0 Line printer available and on-line. The line printer is assigned

to the user and the character string following the command word

(if present) will be printed.

A =0 Line printer is not available or not on line. Print "LP NOT AVAILABLE".

A < 0 Line printer available but character string is too long. Print

"ILLEGAL FORMAT".

3. Set the LPRINTER command flag, LFLAG, and place the address of the

user's port number in the LP user indicator PRIST. Upon completion of the

user's next command, PRIST will be cleared, the line printer will be released,

and a completion message will be sent to the user. LFLAG is used to indicate

that command being terminated is LPRINTER and therefore the line printer is

not to be released.

4. Terminate. LFLAG is cleared in the termination routine.

103-A

REPORT - SYSTEM CONSOLE

The REPORT command prints lOT information on the system console.

From each lOT entry, the user id, time consumed, and disc consumed are

printed. The entries are printed three per line. Note that the time

printed on the console does not include any time for currently active

users, since these are not added to the lOT until the user logs off.

The operation of REPORT is as follows:

I. Check to see if an idcodewas specified. If so, save it, as

we will start printing the report with this idcode. Otherwise save a

n u 11 i dcode.

2. Print the heading consisting of system id, date and time and

suspend.

3. Print the report heading and suspend.

4. Retrieve the idcode and find what track it's on. Read that

track and locate the idcode.

5. Output the id, time and .disc of the next three entries to the

buffer. If necessary, read the next id track.

6. If no entries left, print the buffer and terminate. Otherwise

save the present idcode +1, print the buffer and suspend. Go to step 4.

104

DIRECTORY - SYSTEM CONSOLE

The DIRECTORY routine prints a list of all directory entries on

the system console. The entries are printed one per line, and consist

of id, name, last refe'rence date, length, disc address and drum address,

if any. The operation is as follows:

1. Check to see if an idcode was specified. If so, we will start

printing the directory with this idcode.

2. Print the heading consisting of system id, date and time and

suspend.

3. Print the directory heading and suspend.

4. Set up parameters for directory search for null program name

and idcode previously determined (or null idcode if none specified).

5. Perform directory search.

6. Get first directory ,entry following the one sought. If pseudo

entrYt terminate.

7. If id of entry is different from that of the preceding entry,

place the ASCII representation of the idcode in the output buffer. Other­

wise, place" blanks in the buffer. Save the idcode in location 35 of

the buffer.

8.

9.
10.

is zero.

11.

12.

Move the 6-character program name to the buffer.

Convert the last reference date and put it in the buffer.

Convert the drum address and put it in the buffer, unless it

Convert the disc address and length and put them in the buffer.

Put a 'c' for semi-compiled programs, an IFI for files,

and/or a 'P' for protected programs or files in the buffer.

13. Print the line and suspend.

14. Set up parameters for directory search. These can be gotten

from locations 35, 3, 4, and 5 of the buffer. Go to step 5.

105

SDIRECTORY - SYSTEM CONSOLE

The SDIRECTORY routine prints a list ~f all sanctified programs and

files on the system console. The printout is in the same format as a

DIRECTORY printout. The routine functions the same as DIRECTORY. except

that in step 6 a check is made to see if the entry is sanctified. If it

is, the processing continues as in DIRECTORY. Otherwise. the pointer is

moved to the next entry and step 6 is repeated.

106

STATUS - SYSTEM CONSOLE

The STATUS routine prints a summary of the various system resources

and the extent of their utilization on the system console. It operates

as follows:

1. Print the heading consisting of system id, date and time and

suspend.

2. Print MAGSC and a '*' if the mag tape unit is a 7970 (bit 15

of MAGSC=l). Print the select codes of the 4 drums.

3. Print the logical unit, select code, unit number, first block

and last block of the discs on the system.

4. Print a list of those tracks which are locked on each drum.

5. Print a list of those disc blocks which have been MLOCKED.

6. Get the line printer select code and type from the I/O processor

and print them ('*' if the printer is a 26l0A, '**' if the printer is a

2767A). Then print the port number of the current user.

7. Set the console status to the status overlay and suspend so

that when we come back the overlay will read in.

8. Print the drum addresses and lengths of the IDT, ADT, Disc ADT

and Directory tracks.

9. Print the drur~ addresses of the system library tracks and user

swap tracks.

10. Print the disc addresses of the 32-block areas reserved for the

IDT, Disc ADT and Directory.

11. Print the disc addresses and lengths of the system segments.

12. Terminate.

107

ROSTER

The ROSTER routine prints a listing of theld codes of al1 active

users. These are obtained from the ID word in the 32 TTYTABLES. The

absence of a user is indicated by the word being zero.

108

ANNOUNCE

The ANNOUNCE command is used to send a message from the system

console to any or all of the user consoles. It operates as follows:

1. Get the port number to send the message to. If 'ALL' specified,

set up for sending message to all ports.

2. Output CR-LF-LF, followed by the message, followed by CR-LF-LF

to a port. This output is done a character a time, after insuring that

the I/O processor can take the character without overflowing the buffer.

3. Move to the next port, and if there are any more ports to do,

go to step 2. Otherwise terminate.

NOTE: If a user has the line printer as his output device, the announce

message is not sent to him. The flag PRIST indicates the address

of the TTY# of the current user.

109

RESET

The RESET command modifies the time to date of a user1s IDT entry.

It operates as follows:

1. Set ID - T- O.

2. If the idcode - IIAll" go to 3. otherwise set ID = the specified

10 code.

3. If no time specified, go to 4. OtherWise set T = specified time.

4. Read the lOT track for I D. If I D ::i 0, go to 5. Otherwi se search

for the specified idcode. Fa i 1 if not found. If found, set its time

entry to T, write the IDT track back and terminate.

5. Set the time entry for all the idcodes on this track to T and

write it back to drum.

6. Hove to the next IDT track. If all are finished, terminate.

Otherwise read the IDT track and go to 5.

110

CHANGEIO

The CHANGEIO command is used to modify any or all of the parameters

in an lOT entry. The parameters that can be specified are: password,

time allowed, disc allowed. The operation is as follows:

1. Translate id specified. Read lOT track for this id and locate

the specified ide Fail is not found.

2. If password specified, insert into lOT entry. If followed

by comma, go to step 3, otherwise to step 5.
3. If time specified, insert into entry. If followed by comma,

go to step 4, otherwise to step 5.
4. Insert new disc value.

5. Write lOT track back to drum and terminate.

111

SLEEP

The SLEEP command is used for system shutdown. It operates as

fo 1 lows :

1. Remove all users from the queue and make sure they can1t

get back by:

a) clearing each user's ?FLAG word in his TTY table.

b) setting all status words to -2.

c) setting T35LK to point to HLINK+I.

2. Output the sleep message to all active users, preceded and

followed by a CRLF.

3. Tell the I/O processor to disconnect the telephones.

4. Call LCD to update the last change date for files for each

port that has a program that is still active.

5. Update the lOT entry for each active user and create a logoff

entry in LOGGR.

6. Wait for the console to finish outputting.

7. Read in the loader, turn off all the I/O and the interrupt

system, set power fail to halt.

8. Set A = 0 (sleep) and jump to the dump.

112

HIBERNATE

The HIBERNATE comma~d is identical to the SLEEP command except for

the fo11owing additions/changes:

o. If HAGSC = 0, fail. OtherwIse set the current time into HDATE.

8. Set A = -1 (hibernate) and jump to the dump.

113

NEWIO

The NEWIO routine adds on entry to the lOT. The operation is as

. follows:

I. Translate the idcode.

2. Determine what lOT track the idcode is on and read it in.

3. Translate the other parameters.

4. Search the lOT for the specified ide Fall if found. If the

track is full go to 5. Otherwise insert the new entry in its appropriate

position, update the track length, write the lOT track back to drum and

terminate.

5. Scan through IDEC, determine the total length of all lOT tracks,

and add 8 for the new entry. If all tracks are full, fail.

6. Divide the total lOT length by the number of lOT tracks to

determine their new individual lengths. Insert these in the table at

(NNSNN+I:NWSNN+3)as negative.

7. Now redistribute the lOT tracks. The basic idea of the algorithm

is to fill the swap area with as much of the lOT information as we can,

reading from the beginning, and then to write out as much as we can,

always

hasn't

making sure that when writing

been read yet. The fo llowl ng

Kl points to the 10EC entry

LI points to the 10EC entry

K2 = # of words read so far

we don't overlay any .portion that

variables are used:

for track being read

for track being written

frOm track K I (i nit i a II y ·0)

L2 = # of words written so far on track Ll (initially 0)

S = # of words in core (initialiy 0)

SP points to NWSNN entry, telling how many are'to be written

on L I.

TG = I if we have already inserted the new entry.

8. If L2 = (Sp), we have completely written track Ll so check for

Ll = NIOC2. If it is, we've written all the tracks, so go to step 14.

Otherwi se, advance LIto the next di rectory track. advance SP, set L2 = 0,

and repeat this step. If L2 - (SP): go to step 9.

114

9. If S ~ 10232, we have read as much as we can, so go to step 11.

If KI = NIOC3, there is nothing left to read, so go to step II. If K2 = #

of words on track Kl, welve read the entire track, so advance Kl to the

next track, set K2 = 0, and repeat this step. Otherwise, compute the

number of words we can read. If there is room to read the balance of the

track, we will, otherwise, we wi11 read the maximum number of full sectors

pos sib 1 e. If th i sis ze ro, go to step 11. If i tis not ze ro, read from

section K2/64 into core location LIBUS + S. Add the number of words read

to S and to K2.

10. If TG = 0, determine if we can insert the new entry. This will

be so if Kl = IDLNP and V - LIBO < K2. If this is not the case, go back to

step 9. Otherwise, set TG to I and insert the new entry in core. Set

S to S + 8 and go back to step 9.
11. Write Section. Set SS = O. This is the.number of words written .

. ', \~:,:

12. Compute number of words we can wr i te on O't rack L I . Firs t set

A = - number of words left to write on the track. If Ll = KI, we haven't

finished reading everything from track LI, so if L2-A > K2 change A to

L2-K2, which is the number of words we can write without destroying any

unread lOT information. If S-55<-A, we don't have as much in core as we

are capable of writing, so set A = -«(5S-S)f64) x 64), an exact number of

sectors.

13. If A = 0, we can't write anything, so if SS ~ 0 slide the

remaining 5-S5 words in core up to location LIBU5, set 55=0 and 5=55-S.

Then go back to step 8. If A~O, write -A words to sector L2f64 of track Ll.

If L2 = 0, set the first word of the Ll 10EC entry to the first word

written. Set L2 to L2-A, 55 to 55-A, and go back to step 12.

14. Set the new lOT lengths into IDEC and terminate.

...

lIS

KILLID

The KILLID routine removes a specified id f om the system. The

ope rat i on . i s as fo II ows :

1 • Get the i d. I f the i dis AOOO, or t fit ends in '00 I and any

members of that group are logged on, fail. This is because the files

belonging to AOOO and group librarians may be accessed by other users,

and removing them would be almost impossible.

2. Read the lOT track for the specified id and search it for the

ide Fail if not found. Otherwise, delete the entry from the lOT and write

it back to the drum.

3. If any user with the specified id is currently on the system, set

the id item of this TTY table to 0, set his status to -2, set his COM14

bit to force him to be disconnected, and remove him from the queue if

he is on it. Also, zero out his section of the FUSS table.

4. Remove all directory entries belonging to this user and build a

table which will be used to patch the AOT and Disc ADT. For each directory

entry, four words are placed in the table: drum address, length, and disc

address.

5. Write the directory back to disc. Read the ADT, call RSFS to

return the space released from sanctified programs and files, and write

the ADT to drum.

6. 'Call TSDAO to return released space to the Disc ADT.

7. Terminate.

116

UNLOCK

The UNLOCK command is used to restore drum tracks to the system.

The operation is as follows:

1. Interpret parameters, setting F and L to the first and last

tracks to be unlocked.

2. Scan the TRAX table to determine the number of tracks to be

unlocked. Set CN to this number.

3. Set CN = min{CN, {8192 + ADLEN)/2}. The parenthesized expression

is the number of words that can be added to the ADT.

4. Read the ADT into core location LIBUS + 2 CN.

5. Set MOVED = LIBD, HaVES = LIBD + 2CN.

6. If track F is unlocked go to step 8. Otherwise, unlock it by

clearing its bit in TRAX. If HOVED ~ HaVES, we can1t insert an ADT

entry, so go to step 8.

7. If MEM [MOVES] <F, move 2 words and repeat this step. Set

MEM [MOVED] = F, MEM [MOVED + 1] = 128 unless F = 0, in which case we set

MEM [MOVED] = 3, MEM [MOVED + 1] = 125. Also set MOVED = HOVED + 2.

8. If F ~ L, set F = F + I and go to step 6. Set ADLEN = ADLEN -

2CN. Write the ADT back to drum and terminate.

117

LOCK

The LOCK routine is used to tell the system that certain drum

tracks are not to be used. Only tracks which are part of the program

library are lockable, but tracks which contain active files are not.

Any programs or files on tracks being locked are removed from the system.

The operation is as follows:

1. Interpret the parameters and set F and L to the fi·rst and last

tracks to be locked. Check that none of these tracks is used for swapping,

directory, Disc AoT, lOT, AoT, or system. Fail if they are.

2. Search the directory for sanctified entries on the specified

tracks. For each such entry, add a 4-word entry to the patch table

consisting of a pointer to the oirec entry, a pointer to the entry in

the buffer, and the two-word disc address. There is room for 512 entries

in this table. Fail if it overflows.

3. Compare the patch table to the FUSS table. Fail if any of the

entries in the patch table are active files.

4. Read the AoT, delete from it all entries for the tracks to be

unlocked, and write it back.

5. For each track to be locked, set its TRAX bit to 1.

6. Update the directory using the patch table. For programs, set

the drum address in the directory entry to O. Also set the second word

of the patch table entry to O. For files, remove the entry from the

directory. Set the first 2 words of the patch table entry to the id and

length of the file.

7. Call TBoAo to return disc space formerly used by removed files

to the Disc AoT.

8. Call TBIOT to update the space used for users whose files have

been removed due to the locking.

9. Terminate.

118

MUNLOCK

The MUNLOCK command is used to restore to the system any disc

blocks which have previously been MLOCKed. It operates as follows:

1. Interpret the parameters. Fail if the last block is less

than the first b1ock, or one of the blocks specified is one of the

first 4 blocks of a disc, or the first and last blocks are not on

the same disc, or the blocks are on a non-existent ~jsc.

2. Read the Bad Blocks Table and Disc ADT for the disc specified.

3. Search the Bad Blocks Table for the first entry greater than

or equal to the first block to be unlocked. If an equal entry is

found check to see if the locked block is completely enclosed. If not,

update the address and length of the locked block entry, return the

unlocked space to the Disc ADT and go to 6. If so, eliminate the

completely enclosed entry, return its space to the Disc ADT, and go to 5.

4. If a greater entry was found or if the end of the table was

reached, check the preceeding block to see if a portion of it is to be

unlocked. If so, modify the entry. If the unlocked portion is in the

middle of the block, it wi 11 be necessary to make a new entry in the table

in addition to modifying the entry. After so doing, return the freed

space to the Disc ADT. If the end of the table was reached in step 3,
go to 6.

5. Check the next block to see if any portion of it is to be un­

locked. If not, go to 6. If it is completely enclosed, eliminate it,

return the space to the Disc ADT, and repeat step 5. If only part of

it is to be unlocked, return this space to the Disc ADT and modify the

address and length.

6 .. Write the Bad Blocks Table back to the disc and the Disc ADT

back to the drum.

7. Terminate.

119

MLOCK

The MLOCK command is used to make certain disc blocks unavailable

to the system because they are faulty or for some other reason. It

operates as follows:

1. Interpret the parameters. Fail if the last block is less than

the first block, or one of the blocks specified is one of the first 4
blocks of a disc, or the first and last blocks are not on the same disc,

or the blocks are on a non-existent disc.

2. Read th i s Sys tem Segment Tab Ie. Fa i 1 if any of the spec i fi ed

blocks are reserved for system segments.

3. Read the Disc Allocation Table. Fail if any of the specified

blocks are reserved for system usage as specified in the OAT.

4. Search the directory for programs or files whose disc address

lie in the range of the blocks to be locked. For each such entry found,

add a 4-word entry to a table consisting of a pointer to the Direc entry

for this track, a pointer to this entry position in the directory buffer,

and the two-word disc address. If an entry is found which is partially

contained in the area to be locked, put its disc address and length iri a

special table. There may be 2 such entries. There is room for 512

entries in the main table. If it overflows, fail.

5. Read the FUSS table. Compare the table just built with the FUSS

to determine if any of the blockS to be locked contain active files. If

so, fail.

6. Read the HLOCK overlay.

7. Read the Bad Blocks Table. Then search it for the first entry

greater than or equal to the first block to be locked. If an equal

entry is found, and the new block is longer, reset the length and go to

8. If it is not longer, terminate. If an equal entry was not found,

check the preceeding entry and if the blocks to be locked will make it

10nger~ update its length. -If the table was fuil and the entries were

120

not combined, fai L'· If they were combined, go to 9. If the entry was

to go at the end of the table and they were not combined, insert the
c

new entry. Then go to 9. If a greater entry was found and the entries

were combined, go to 8. If they were not, insert the new entry (unless

the table was full, in which case we fail).

8. Check the next entry to see if it is overlapped by the one we

jus t made. If not, go to 9. If so, eliminate the overlapped entry,

and change the length of the new entry if it is longer. Repeat step 8.

9. Wri te out Bad Blocks Table.

10. If there were no entries in the table of directory entries to

be removed, go to 13. Otherwi se set TP to point to the first entry in

this table. Read the directory and set HOVES-HOVED=LIBD.

II. MEM[TP + 1] - > the disc address of the directory entry.

Replace MEM[TP] with the id of the entry, MEH[TP + 1] with the length

in blocks, MEM[TP + 2] with the drum address, and, if the drum address

. is not 0, MEM[TP + 3] with the length in sectors. Call the move

routine. Set MOVES=HOVES +12. This eliminates the directory entry

we were pointing to. Set TP=TP + 4. Bump CT. If CT=O, go to 12. If

MEM[TP]=DI, the next entry is on the same track, so go repeat 11. Other­

wise move the end of the directory, write out this directory track, read

the new directory track, set MOVES=MOVED==L I BD and repeat 11.

12. Read the ADT, call RSFS for each non-zero drum address entry in

the table to return space to the ADT, and write the ADT.

13. Read the Disc ADT for this disc. For each of the two special

table entries, if they exist call RADT to return their, space. This is

done because a locked block may remove only part of a program or file,

and it is necessary to put the rest of the space back in the Disc ADT.

14. Remove from the Disc ADT any blocks which lie in the range of

the blocks we are locking. Then write the Disc ADT back to drum.

15. If there are no entries in the main table, go to 16. Otherwise

call T8IoT, which returns space to the lOT based on the first two words

of each 4-word entry in the table we built.

16. Terminate.
121

COpy

The COpy command is used to copy a program or file from one user's

1 ibrary to the I ibrary of another user. I t operates as follows:

1. Interpret the p~rameters.

2. Search the directory for the old entry. Fail if not found.

3. Save the file flag, semi-compiled flag, word 4, drum address,

disc address and length.

4. Find out which lOT track the new idcode is on, read it, and

search for the new idcode. Fail if not found. Also fail if there is

not enough space in the user's library.

5. Search the Disc ADT's for enough disc space to put the new

program .. Fail if not enough space left.

6. Search the directory for the new entry. Fail if found. If

the track is full, call SUPERSAVE and go to 8.
7. Add the new entry to the directory and write the directory

track back.

8. Read the lOT, update the space used, and write it back.

9. Read the Disc ADT, update the space used, and write it back.

10. If the old program or file is on the drum, read it from the

drum, write it to the new entry's place on the disc and terminate.

Otherwise, read it from the disc and write it to the new entry·s place

on the disc 40 blocks at a time·until it is completely copied. Then

terminate.

122

BESTOW

The BESTOW command is used to transfer programs or files from one

user's library to another user's library. It operates as follows:

I. Interpret the parameters. If no name is given, set name to null

and go to 3.
2. Search the directory for the named entry in the old user's

1 i brary. Fa i I if not found. Otherwi se go to It"
3. Search the directory for an entry in the old user's library.

If one found, go to 4. If none found and this is the first time thru

this step, fail. Otherwise print a message if there were any duplicate

entries and terminate.

4. Save pointers to the diretory entry and position in the directory

buffers of this entry and also save its length.

5. Search the directory for an entry in the new user's library

with this name. If found, bump the duplicate entry counter and go to 11.

6. Read the lOT track for the new user and insure that there is

enough space in his library for this entry. If not, fail. Otherwise,

update his disc space u~ed and write out the lOT.

7. Read the lOT track for the old user, reduce his disc space used

and write out the lOT.

8. Read the directory track for the old entry again. Save pertinent

information, eliminate that entry from the directory, and write out the

di rectory track.

9. Search 'the di rectory for a place to put the new entry.

If the track is full, call SUPERSAVE and go to 11.

10. Insert the new entry In the directory and write the directory

track back to drum.

11. Increment the name so we won't find the same entry again. If

we were only transferring one entry, terminate. Otherwise, go, to 3.

123

SANCTIFY

The SANCTIFY command is used to copy a prQgram or file from the disc

to the drum. The space on the disc is reserved 'so that it may be copied

back at sleep time. The routine operates as follows:

1 . I nterpret the parameters.

2. Search the di rectory for the named entry. Fai 1 if not found.

Also fail if the entry is longer than 32 blocks or if the entry is already

sanctified.

3. If the entry is a program, go to 4. Otherwise read the FUSS table

and search it for this entry. Fail if found.

4. Read the ADT. Search it for an area large enough to put this

en t ry. Fa i 1 if not found. Otherwi se, update the ADT and wri te it back.

5. Read the directory track for this entry again, update the drum

address for this entry; and write the directory track back.

6. Read the program or file from disc and write it to the drum.

7. Terminate.

124

DESECRATE

The DESECRATE command is used to return a santified program or

fi Ie to it's area on the disc. Programs are not copied back because

there is an identi~al version already on the disc. The routIne operates

as follows:

i. Interpret the parameters.

2. Search the directory for the named entry. Fail if not found.

Also fail if the entry is not sanctified.

3. If the entry is a program, zero its drum address, write the

directory track back,and go to 6. Otherwise read the FUSS table and

search it for this entry. Fail if found.

4. Zero the drum address of the file and write the directory track

back.

5. Read the file from drum and write it to the disc.

6. Read the ADT, call RSFS to return the drum space to it, and

write the ADT back.

7. Terminate.

125

PURGE

The PURGE routine i.s used to delete from the library all programs

or files which have not been referenced since a certain date. The

operation is as follows:

1. If HELLO program exists, assign it today1s date. This is

because the HELLO routine does not perform this function.

2. Interpret parameters and set DT to the purge date. Hake sure

that DT ~ today1s date.

3. Make sure that FUSS is empty. This is to avoid killing any

active files.

4. Read a directory track. Set P = HOVED = HOVES = LIBD. Set

NO to point to the end of the directory.

5. Test the entry pointed to by P to see if it should be deleted.

If not, go to 7. Otherwise add a 5-word entry to the patch table consisting

of id, .length, disc address and drum address. Call the move routine and

set MOVES = MOVES + 12.

6. If the patch table is full, write out the interim directory, call

PURFX, and read back the directory.

7. Set P = P + 12. If P = NO, we are finished with this directory

track, so go to 8. Otherwise to to 5.

8. Call the move routine to move the end of the directory track.

Wr i te out the t rack and ntove to the next track. I f a II, t racks have been

read, call PURFX and terminate. Otherwise go to 4.

126

The PURFX routine uses the patch table to update the ADT, Disc ADT

and lOT as follows:

I. Read the ADT. Set HOVES D HOVED D L8192. Examine each entry

for a non-zero drum address, and if one is found call RSFS,.to return

space to the ADT. in any case call the move routine after examining

the entry to delete the drum address (i.e., make it into a ~-word entry

table). After returning all drum space write the ADT back.

2. Call TBDAD to return disc space to the Disc ADT.

3. Ca1) TBIDT to adjust the disc space used in the lOT for each user

who has lost programs or files.

127

MAGTAPE

The MAGTAPE routine is used to set a select code into the location

MAGSC. Typing a 1*1 after the select code indicates that the tape unit

is a 7970 and will force bit 15 of K(GSC to be set.

128

PHONES

The PHONES command is used to tell the I/O processor how long to

allow the user to try to successfully log on before disconnecting him.

It is originally assumed to be 120 seconds. It can be reset to from

1 to 255 seconds by the PHONES command.

129

PRINTER

The PRINTER command is used to tell the I/O processor the select

code of the.line printer and the line printer type. '*' after the

SC indicates a 26l0A and '**' indicates a 2767A.

.'.

130

SPEED

The SPEED routine is used to configure the specified port(s) at the

specified baud rate and character size. The baud rate to be input is

computed with the formula:

14,400 _ 1
Bit Rate

Where bit rate = # of Chars. per second X # of bits per character including

the start and stop bites).

N,ote: If 14,400
---- Bit Rate

is not a whole number, it must be rounded off to

the nearest integer.

The baud rate range is from 5 to 191.

The character size to be input is the least significant octal digit of

the total number of data bits and stop bites) in a character and is either

1 or 2 depending on whether the character contains 1 or 2 stop bits.

For the IBM 2741 Terminal an "*" must be input for character size.

Error Conditions:

The message "ILLEGAL FORMAT" is output if

1. A baud rate ~S or >191 is input.

2. A character size other than 1, 2, or "*" is input.

3. A port number outside the range 0 through 31 is specified.

The message "NO CONF. DONE" is output if the port (configuration of a

single port) or at least one port (configuration of more than one port)

is logged on.

In each of the above error conditions no configuration will take place.

For each port to be configured the system first initiate service routine

"CHS" in the I/O processor. "CHS" sets the character size (0 if an "*"
was input!) into the receive and send parometer (?RPRM resp. ?SPRM) kept

in the teletype table. If the character size = 0, the echo bit in ?RPRM

is set to 0, otherwise it is set to 1. If the character size = 0, ?TYPE is

set to 1 (indicating that an IBM 2741 terminal is connected to the port.

Otherwise it is set to 0, indicating that an ASCII terminal is connected.

131

Then the system initiates service routine "SPE". This routine sets the

new baud rate in ?SPRM and ?RPRM and sets the parity bit in ?SPRM to. 1

("EVEN" parity will be generated on output) if ?TYPE = o. Otherwise the

parity bit in ?SPRM is set to O. Finally "SPE" retrieves "?SPRM and ?RPRM

and output. these parameters to the multiplexer board.

l31-A

PORT

This routine is used to print out the baud rate and character size for

which the portes) is (are) configured.

The system processor obtains the information from the I/O processor.

If an IBM 2741 is connected to a port, an U*" will be printed for the

character size.

Error Conditions:

The message "ILLEGAL FORMAT" will be given, if an illegal port number

is specified. No information is given.

This command is available to the system operator and the system master.

If this command is given by a user other than the system master, the error

message "priveleged command" is output and no information will be given.

For each port the system uses service routines WSP and WCS to obtain the

baud rate resp. character size for which the port is configured.

132

PROCESSOR

The second computer in the ZOOOC high speed is used for all of the

terminal input and output operations for the system. In addition, it

takes care of all of the phones logic (answering and hanging up the

telephones) and the timing for the ENTER STATEMENT.

2100A Asynchronous channel Multiplexor

To put the Multiplexor into operation, each port on the interface -must be

primed with two parameters. The parameters are necessary for transmission

and reception of data to/from that port. One parameter is used for the

send channel and one parameter for the receive channel of that port. Once

primed, those parameters will remain in the channel's memory until the

power goes down or a "master clear" is executed.

The parameters consist of 16 bits which have the following functions:

Send Channel Parameter

Bits 0-7

Bits 8-10

Bit 11

Bit 12

Bit 13

Bft 14

Bit 15

Indicates the rate at which the data bits will be transmitted.

Indicates the least significant bits of the number of bits,

indlucing stop bits, in a character.

Not used by the system.

If set, ASCII parity will be generated.

If set, interrupt on completion of transmission of data

will be enabled.

Must be set.

Must be set.

Receive Channel Parameter

Bits 0-7

Bits 8-10

Bit 11

Bit 12

Bit 13

Bit 14

Bit 15

Indicates the rate at which the data bits will be received.

Indicates the least significant bits of the number of bits,

including stop bits, in a character.

Not used by the system.

If set, all received data will be echo'd back to the terminal.

If set, interrupt on reception of data will be enabled.

Must be=O.

Must be set.
133

..

The Multiplexor consists of two boards, a "data" board and a "status" board.

They must be located in "two consecutive I/O slots; the "data" board in the

higher priority slot (lower numbered select code) and the "status" board

in the lower priority slot (higher numbered select code). Output of data

to a send channel (to be transmitted to the terminal) must be in the format.

Data* Bits 0-10

Bit 11 Must be set, if a "synchronizing" character must be transmitted.**

Otherwise, must be = O.

Bits 12-13 Immaterial.

Bit 14 Must be set.

Bit 15 Must be = O.

* The ASCII character must be contained in Bits 0-6. Bit 7 must be = 0

since even ASCII parity must be generated. Bits 8-10 must be = 1. The

selectric character (6 bits/char.) must be contained in bits 0-5. Bit

6 must be set or ,reset according to the odd parity of Bits 0-5. Bit 7

must be = 0 and Bits 8-10 must be = 1.

** A "synchronizing" character is issued by the I/O processor to pro­

vide one character time delay. It is used to delay output until the

terminal has completed a carriage return or line feed. The number

of "synchronizing" characters is dependent on the terminal. The format

of ~he "synchronizing" character is as follows:

Bits 0-6

Bit 7

Bits 8-10

Bit 11

Bits 12-13

Bit 14

Bit 15

Must be = 1.

Must be = 1

Must be = 0

Must be = 1.

Must be = 1.

Immaterial.

Must be = 1.

Must be = o.

if terminal is a selectric.

for all other terminals.

, ~
The "synchronizing" character is a non-printable character. Besides,

providing a means of time delay, it is used to synchronize the terminal

at the beginning of every transmission.

l33-A

Input

is:

Bits

Bits

Bits

of data

0-6

7-9

10-14

is done with a "LIA" or "LIB" to the "data" board. Its format

Data bits.

Immaterial.

Bit 15

Number of the channel on which the data was received.

Not used by the system.

An "LIA" or "LIB" to the "status" board gives information in the following

format:

Bit °

Bit 1

Bit 2

Bit 3

Bits

Bits

4-9

10-14

If=l, the interrupt came from the completion of a character

transmission (send channel).

If=O, the interrupt came from the completion of a character

reception (receive channel).

Not used by the system.

If=l, a "break" signal was received.

Not used by the system.

Immaterial.

Bit 15

Number of the channel on which an interrupt occurred.

"Seeking" bit. This bit indicates that a "seek" operation ·is

taking place in the circulating memory of the interface. If=l,

no data or parameters should be output to the interface.

Method of outputting the "send" and "receive" parameters to the interface:

1. "LIA upper select code"

2. Check seeking bit. If=l, the previous operation was not yet com­

pleted. Go back to 1. If=O, proceed to 3.

3. "OTA lower select code" (the parameter is assumed to be. in the "A"

register).

4. "OTB upper select code (the channel number is assumed to be in bits

10-14 of the "B" register).

5. "STC lower select ~ode".

Output of data is done in the same way.

l33-B

MULTIPLEXER DRIVER

The multiplexer driver is used by both multiplexer boards. The driver

is divided into five sections:

I. Initialization - One routine for each board

II. Receive channel processing

III. Send channel processing

IV. Abort processing

V. Multiplexer end of processing

I. Initialization

The initialization section has two interrupt entry points, MPXIO for

the first board, and MPYIO for the second board. If entry to the driver

is made at MPXIO, the registers are saved and then both MUX channels are

read and saved. YFLAG is now checked to see if the lower priority board

is currently using the driver. If the driver is busy, XFLAG is set, the

registers are restored, and the program is exited. If the driver is not

busy, no flag is set as the lower priority board cannot interrupt. A

check of the multiplexer status determines which processing section (input,

output, or abort) is needed to service the interrupt.

If entry is made at MPYIO, the registers are saved; the MUX channels

are read ~nd saved; and YFLAG is set." The multiplexer status determines

the processing section.

II. Receive Channel Processing

The multiplexer supplies whole characters, each" of which are

"examined on reception and echoed back to the terminal. If the user's

terminal is an IBM Selectric (?TYPE; 0), the character is first trans­

lated into ASCII. Certain characters (rubouts, feed frams, line feeds,

and X-OFF) are ignored. 'Control X' signals that the current line is to

be deleted. If the character is a '~, the buffer pointer is backed up

one position. If the "user has the line printer as his output device:

'Control Q' causes suspension of output to the line printer; 'Control W'

results in resumption of output to the line printer. "

134

II. Receive Channel Processing, Continued

All other characters are appended to the user's buffer.

Upon reception of a carriage return, the system processor is noti­

fied that the user has entered a complete line and further character

input is blocked. If the line was entered in response to an ENTER

statement, the user's response time is also sent to the system.

III. Send Channel Processing

If there are characters left in the user's buffer, a test is made

to see if there is line feed or carriage return delay pending. If so,

a synchronizing character is output and the delay counter is bumped.

If not, the user's next character is plucked from his buffer, translated

to IBM code if warranted, and sent to his port. If the character was a

line feed or a carriage return, the appropriate delay is set up. If

exactly ten characters remain in the user's buffer and if his status is

output wait, the system is notified that his buffer is almost empty.

If no characters remain in the user's buffer: He is placed in an

idle mode if his program is still running; or he is placed in input mode.

IV. Abort Processing

Unless the aborted occurred on the receive channel with the user in

output mode, it is ignored. For a valid abort, the abort request is sent

to the system and the user's buffer pointers are reset to the beginning

of his buffer.

V. Multiplexer End of Processing

Four interrupt combinations can occur. This logic determines which

flags to clear, which multiplexer board to enable, and where to transfer

program control.

134-A

LINE PRINTER DRIVER

This driver is used for the 2767A, 2778A, and 2610A line printers.

Normal entry is from the id~e loop and once entered, the driver replaces the

idle loop until output is completed. The flag, LPTYP, indicates which

line printer is on the system:

2767A = -1 2778A = 0 2610A = 1

Characters are obtained from the user's buffer, and then 'tested before

being sent to the line printer. If the character is a carriage return or

a line feed, a print control character is output. If the character is an

X-OFF and the next character is an X-OFF, line printer output is temporarily

suspended. In addition, control characters and rubouts are ignored and lower

case characters are converted to upper case.

If the line printer goes out of READY status, the user's buffer pointers

are saved and new pointers are set to an error message buffer. Output to

the user's teletype is then initialized and when the transmission has completed,

the buffer pointers are reset and the driver waits for READY status.

135

2100 DATA SET CONTROL INTERFACE

The data set control board is used in the "SCAN" mode so that an

interrupt,will only occur if a change in either of the two signals ("carrier"

and "Data set ready") has been detected. To prime the board for an interrupt

is is necessary to output a parameter with the following format:

Bit 0

Bit 1

Bit 2

Bit 3 .

Bit 4

Bit 5

Bit 6

Bit 7

Bi ts 8-9

Bits 10-13

Bit 14

Bit 15

"Data set ready" bit. If = 0, an interrupt will occur

when "Data set ready" comes up. If = 1, an interrupt

will occur when "Data set ready" drops.

"Carrier detect" bit. If = 0, an interrupt will occur

when "carrier" comes up. If = 1, an interrupt will occur

when "carrier" drops.

Enable bit for comparison Logic. If = 1 and if the com­

parison Logic detects a change in "Data set ready", the

flag will be set and scanning is stopped.

Enable bit for comparison Logic. Same as Bit 2, but applies

to "carrier detect".

= 1 for "Data terminal ready" on.

= 0 for "Data terminal ready" off.

Must be • 1.

Enable bit for "Data terminal ready". If = 1 and Bit 4

is = 1, "Data terminal ready" will be transferred to

the interface.

Must be = 1.

Immaterial.

Channel Number.

If = 1, Bits 0-3 will be transferred to the interface.

Must be = 1 for operation in "scan" mode.

136

On an interrupt because of a change of "Data set ready" or

obtained status has the format:

Bit 0

Bit 1

Bit 2

Bit 3

Bits 4-7

Bits 8-9

Bits 10-13
'\

Bits 14-15

If ;;; 0, "Data set ready" has dropped.

If = 1, "Data set ready" has come up.

If = 0, "Carrier" has dropped.

If = 1; "Carrier" has come up.

Has the same value as Bit 2 in the parameter, output

to the interface • . ,

Has the same value as bit 3 in the parameter, output

to the interface.

= o.

Not used by the system.

Number of the channel on which the interrupt occurred.

=1.

After examining the status and taking the steps necessary to connect, dis­

connect, set up log-on timing, etc., the interface has to be primed for the

next interrupt, based on new conditions of change in "Data set ready" and

"carrier". This can be simply accomplished by outputting the obtained status

to the board.

\,

l36-A

DATA SET CONTROL BOARD DRIVER

The driver for this board is used in the "scan" mode so that an interrupt

only occurs when a change in the signals "Data set ready" (=CC) and "Carrier

detect" (=CF) is detected by the board. As soon as an interrupt occurs, the

new status of the channel is compared with the prev:lous status which was saved

in ?PP~1 teletype table entry. Depending on that comp~rison one of the fol­

lowing will be executed:

1. The phone is answered, "LTBT" bit in ?STAT is set and log on timing

of 120 seconds (subject to change by the system operator with PHOnes

command) is stored in ?PHON.

2. ItLDBT" bit is set in ?STAT and dropout timing of 2 seconds is stored

in ?PHON.

3. -'-'-LDBT" bit is reset in ?STAT to signal that connection was restored

within the 2 seconds dropout timing.

On exit the new channel status is saved in ?PPRM and output to the board.

NOTE: ThetfLTBT" or "LDBT" bit will cause the time base generator

routine to start timing using the value of ?PHON as a counter.

\,

137

INITIALIZATION

I. When the I/O processor program is started at 'INI" (initiated from

location 2), the following is done:

1. Do a "master clear".

2. ·Set "CKFLG" to 0 (flag to be used by the power fail routine).

3. Initialize all 32 teletype tables:

A. Set ?TYPE = 0 (to terminal type #1).

B. Set CR-DELAY and LF-DELAY for terminal type #1 in ?CDLY resp.

C. Set ?RPRM to 110 baud, char. size = 2 and echo bit on.

D. Set ?SPRM to 110 baud, char. size = 2 and "even" parity.

E. Set "Data term. ready" on, "req. to send" on, "carrier detect"

off and "data set ready" on.

4. Set phones timing to 120 seconds.

S. Set "NPORT" = 32

6. Initialize pirocessor interconnect board.

7. Initialize power fail board.

8. Go to idle loop.

II. When the I/O processor is updated at the system update entry "INIF",

the following is done:

1. Do a "master clear".

2. Get number of available ports and save it in "NNPRT".

?LDLY

3. If "NNPRT" is larger than "NPORT", initialize the ports with port

numbers between NPORT and NNPRT (see I, Sub 3). for ports with port

numbers above "NNPRT" set the enable bit (Bit #13) in ?RPRM teletype

table entry to 0 and set "Data term ready" off in ?PPltY. teletype

table entry. If "NNPRT" is less than "NPORT", set the enable bit

4.

in "Data term. ready" off in ?PPRM for all ports with port numbers

above HNNPRT". If "NNPRT" is equal to "NPORT", go to 4.

Set in all teletype tables:

A. ?CCNT = 0

B. ?BPNT = ?BGIN

C. ?BSTR = ?BGIN

D. ?BHED = ?BGIN

E. "IDBT" bit (Bit #3) = 0 in ?STAT

F. ?DCNT = 0

G. ?SCNT = 0 138

5. Output ?RPRM & ?SPRM to the multiplexor board(s) and ?PPRM to the

data set control board(s) for each port up to the port with port

number = "NNPRT".

6. Set "CKFLG" = 1

7. Store contents of "NNPRT" into "NPORT". ("NPORT" indicates now the

current number of available ports).

8. Initialize the time base generator board for 100 MS time interval.

9. Initialize the mUltiplexor board(s) and the data set control baord(s).

10. Go to I, Sub 6.

l38-A

POWER FAIL AND RECOVERY

If the computer is running when a power failure occurs, the current

machine and I/O status is saved. A flag is set to indicate that this status

has actually been saved and the program halts.

If the computer is halted when a power failure occurs, the power down

interrupt does not occur.

When power is restored, the flag is checked to determine whether or

not the power down interrupt was processed. If not, the initialization section

(entry point "INI") is called. If so, the program restarts using the saved

status and all of the ports buffers and status are retained. The parameters

on the multiplexor board(s) and data set control board(s) are re-instated as

. before power failure. When power is restored, the line printer will be dis~

connected from a user who had control over it at the time of power failure.

139

TIME BASE GENERATOR

The time base generator driver is entered every 100 MS. For every

available port the driver will scan for "LTBT", "LDBT", "HUBT", "ENBT" and

"PDBT" bit in the ?STAT teletype table entry. If one of these bits is set,

the following actions will be taken:

A. "LTBT" bit set.

1. Update timing counter in ?PHON for log on timing (See write up of

data set control board).

2. If counter becomes zero, reset "LTBT", "LDBT" and "HUBT" bits

in ?STAT. Then set "PDBT" bit and output "Data term. ready" off

to the appropriate data set control board forcing the phone

connection to be broken.

3. Also the "IOBT" bit in ?STAT will be set, ?TYPE will be set to 1

if type #2 terminal is connected; CCNT, ?DCNT and ?SCNT will be

set to zero.

B. "LDBT" bit set.

1. Update timing counter in ?PHON for line dropout timing (See write

up of data set control board).

2. If counter becomes zero, tell system processor that user has hung

up (conununication code "UHU").

3. Reset "LDBT", "ENBT" and "ICBT" bits in ?STAT.

4. Execute A, Sub 3.

C. "HUBT" Bit set.

1. Check ?CCNT indicating the number of chaTacters to be output. If

?CCNT not = 0, check if "LTaT" or "LDBT" bits are set. If ?CCNT

= 0, execute A, Sub 2 and A, Sub 3.

D. "ENBT" Bit set.

1. Check ?CCNT. If ?CCNT not = 0, check if "LTBT", "DBT" or "HUBT"

bit is set. If ?CCNT = 0, update enter timing counter in ?TIMO.

2. If counter becomes zero, remove "ENBT" bit and set "NIBT" bit in

?STAT. If type #2 terminal is connected, set Bits 8 through 12 in

?TYPE. This will force the selectric into receive mode. Fetch ?RPRM

from teletype table, set echo bit (Bit #12) to zero and output it

140

2. (Continued)

Tell system processor that user was timed out (communication

code "ETO").

E. "PDBT" set.

1. Reset "PDBT Bit in ?STAT

2. Tell the data set control board to stop scanning.

3. Take status on the data set control board for the appropriate

channel. Output to the data set control board the phones

parameter with "Data term. ready" ~, "Req. to send" on, "carrier

detect" = 0 (if status indicates that it is = 1) and "Data set

ready" = 0 (if status indicates that it is = 0) or = 1 (if status

indicates that it is = 1).

l40-A

" TELETYPE TABLES

The teletype tables are located in base page and contain information

about the system users. Each of the 32 users has one table containing the

following entries:

?TNUM

?CCNT

?BPNT

?BSTR

?BHED

?BSAV

?BGIN .

?BEND

?STAT

TPBT
TPNBT

STBT
STNBT

CXBT

IOBT
IONBT

LDBT
LDNBT

LTBT
LTNBT

ENBT
ENNBT

RNBT
RNNBT

Port-number in Bits 8-12

Used by MPX for counting output characters. It "equals

-# of characters, including current one.

On input - Points to the character location into which

the next character will be deposited.

On output- Points to the last character transmitted.

On input - Points to the first character of the most

recent buffer.

On output- Points to the location into which the next"

character will be placed by the outcr routine.

On input - Points to the next character to be fetched.

Saved buffer pickup pointer.

Points to beginning of physical buffer.

Points to first character following physical buffer.

EQU BIT0 User is in tape mode
EQU NBTfJ

EQU BITI User was turned off
EQU NBTI

EQU BIT2 'Control X' was hit

EQU BIT3 User is in input mode
EQU NBT3

EQU BIT4 Line dropout occurred
EQU NBT4

EQU BITS Wait for log timing
EQU NBTS

EQU BIT6 Timing for ~ENTER"
EQU NBT6

EQU BIT7 User is running
EQU NBT7

141

TELETYPE TABLES, Continued

POBT

NIBT
NINBT

HUBT

XOBT

STYP2

STYP3

STYP4

STYPS

STYP6

ICBT

ICNBT

?ATIM

?TIMO

?PHON

?TYPE

EQU BIT8

EQU BIT9
EQU NBT9

EQU BITl~

EQU BITll

EQU BIT12

EQU BIT13

EQU B12l3

EQU BIT14

EQU B12l4

EQU BITIS

EQU NBTIS

Phone disconnected

No input allowed

Hang user up

X-OFF was read from terminal

*
*
** Teletype subtypes

*

*
Input configuration needed

Contains allowed time for <Enter Statement~

execution.

Timeout value for user executing <Enter

Statement).

Used as time counter for phones logic.

Terminal Type: ASCII =~

EBCn Bit 0 =1
Bit IS = 0

Call/36~ Bit ~ = 1

FOR EBCO & CALL/36~ TERMINAL:

COBT EQU BITI Code determined

UCBT EQU BIT2 Upper case mode
UCNBT EQU NBT2

CNBT EQU BIT3 "Cent" character
CNNBT EQU NBT3

CCBT EQU BIT4 "CentC" character

CRBT EQU BITS "CR" Bit (Output only!)
CRNBT EQU NBTS

XBIT EQU BIT6 "Control X" was input
XNBIT EQU NBT6

141-A

CBBT
CBNBT

?CDLY

?LDLY

?DCNT

?SCNT

?RPRM

?SPRM

?PPRM

EQU BIT7
EQU NBT7

BITS

BIT9

BIT10

BITll

BIT12

"Circle C" was sent

Circle D *
SYNC

Space

Space

Space *

*
**

*

Transmit

Interrupt

Bits

Carriage return delay (negative).

Line feed delay (Negative).

CR and LF delay counter.

Character counter used for determining
carriage return delays.

Receive channel parameters.

Send channel parameters.

Phone parameter.

Associated with each item in these tables is a symbol which is equated to

the corresponding number of the item. For example:

?TNUM EQU 0

?CCNT EQU 1

?PPRM EQU 23

These symbols are primarily used for adjusting pointers to the table. For

example, if the B register contains a pointer to the STAT entry of some user,

the instruction ADB.+ ?PHON-?STAT will point B to his PHON entry.

. is a symbol in base page at the 0 entry of a table of constants from -2~

to +20. A word containing the value N, where -20 <. N ~ 20 can be referenced

by .+N.

142

SELECTRIC CONVERSION ROUTINES

There are two conversion routines in the I/O processor, both of which are

entered from the multiplexol~ driver. The input conversion routine. handles

Call/360 or EBCD-to-ASCII conversion. The output'conversion routine handles

ASCII-TO-Call/360 or EBCn conversion.

The conversion routines use a set of bits which are stored in ?TYPE (See

teletype tables).

Input Conversion

On entry a check of the "CDBT" bit is made. If it is not set, the code

determination section is entered. In this section (if it is the 1st input

character in the buffer) the input 'character is compared with the char­

acter "H" (in the "HELLO" command) in EBCD and Call/360 code. If it is

the "H" in EBCD code, Bit #0 and Bit #15 are set to 0 resp. indicating

that input came from an EBCD terminal. If it is not the "H" in EBCD code,

Bit #0 and Bit #15 are set to 1 resp. 0 indicating that input came from

a Call/360 terminal. Consequently if a user logs on with a 1st character

other than an "H" from an EBCD terminal, his input will be treated as

coming from a Call1360 terminal. The user's log on command will naturally

not be recognized by the system so that the system will output "???"

which will appear as "LLL" on the user's terminal. After exit out of the

code determination section, the actual conversion routine is entered. If

the user logs on correctly, the system will tell the I/O processor that

user is logged on and in the "ULO" service routine the "CDBT" will be set.

If, on entry to the input conversion, the "CDBT" is set, the code deter­

mination section will be bypassed and the actual conversion routine will

be entered.

Output Conversion

On entry a check·is made if a "transmit interrupt" (See write up of

Selectric terminal) has to be generated. If not, the actual conversion

routine will be entered.

143

Both reoutines use the "CNBT" and "CCBT" bits if a character is input or must

be output which requires a two or three character sequence (See manual).

If the selectric character "¢" is being input, the "CNBT" bit will be set.

If the "¢" is immediately followed by a ·character as required by a two

character wequence, the "CNBT" bit will be reset and the ASCII-equivalent in­

serted in the buffer. If not, the "CNBT" will be reset but nothing will be

inserted in the buffer. If the "¢" on input is immediately followed by a "C",

the "CCBT" bit will be set. (The "CNBT" bit was already. set when "¢" was input).·

If the sequence "¢C" is followed by a character out of the Range A through Z,

the "CNBT" & "CCBT" bits are cleared and the equivalent ASCII control character

inserted in the buffer.

On output only the two character sequence is involved. If the "¢" is output,

the "CNBT" will be set. If the "upper case code" (next character is in upper

case and terminal is in lower case mode) or the "lower case code" (next char­

acter is in lower case and terminal is in upper case mode) is output,

the "CCBT" bit is set. After output of the two charact·er sequence, both hi ts

are cleared.

The "UCBT" bit is set if an "upper case code" is input from the terminal or

output to the terminal. If the "UCBT" hit is not set either a "lower case code"

was input or output.

The "CRBT" bit is only used on output. The purpose of this bit is to prevent

a line feed to be sent to the terminal if preceded by a carriage return. The

reason for this being that the selectric is a "new line· code" terminal. It will

perform a carriage return + line feed on receipt of a carriage return.

The "XBIT" bit is used when the three character sequence "¢CX!! C="XCn in ASCII)

is received from the terminal. The purpose of this bit is to let the I/O

processor output "¢/" (="/" in ASCII) if the "¢CX" is immediately followed by

·a carriage return, the "XBIT" is also cleared but no action will be taken by the

1.0 processor.

The "CBBT" bit is set on output of the "Circle crt code to· the terminal.

Bits #8 through #12 are used in the "transmit interrupt" operation.

144

CONVERSION TABLES FOR THE IBM 2741 TERMINALS TRANSMITTING EBCD & CALL/360

CODES

There are two conversion tables; one table for the EBCD-ASCII (and ASCII-EBCD)

conversion and one table for the Call/360 - ASCII (and ASCII-Call/360)

conversion. Each table consists of 177 locations, starting at a location

pointed to Bt,y "CTBPI" (for call/360-ASCII Conversion) resp. "CTBP2" (for

EBCD-ASCII conversion). The organization of each table is as follows:

The upper part of each location is used for conversion on input, the lower

part for conversion on output. The upper part of each location contains the

ASCII-equivalent of the input character and the lower part the EBCD or Call/360

. equivalent of the output character.

Method of Fetching the Character Equivalent

A. INPUT

Get the pointer to the appropriate conversion table and add to it the octal

code of tye input character· (if the input character is in upper case, set

Bit #6 of the sum just acquired). The sum is the address of the location

in the conversion table where the character equivalent (ASCII) is stored.

Fetch-the contents of this cell, mask off the lower part; the remainder is

the ASCII-equivalent of the input character.

B. OUTPUT

Get the pointer to the appropriate conversion table .and add to it the octal

code of the output character (ASCII). This sum is the address of the

location in the conversion table where the character equivalent (EBCD

or Call/360) is stored. Fetch the contents of this cell and mask off the

upper part. The remainder is the Call/360 of EBCD equivalent of the output

character.

If Bit #7 of the Call/360 or EBCD equivalent is set, that character is

in upper case. Bit #6 is the parity bit (odd parity).

NOTE: The way to determine which conversion table to use, is to examine

the ?TYPE entry of the teletype table. Bit#~=l and Bit #15=~ for a

Call/360 terminal. Bit #~~~ and Bit #15=1 for an EBtD terminal.

145

HARDWARE CONFIGURATION

I/O PROCESSOR

10 PROCESSOR INTERCONNECT

11 ·PROCESSOR INTERCONNECT

12 TIME BASE GENERATOR

13 1 ST MULTIPLEXOR

14 1 ST MULTIPLEXOR

15 DATA SET CONTROL FOR 1

UP TO 16 TERMINALS

16 LINE PRINTER
(optional)

ST MULTIPLEXOR

MORE THAN 16 TERMINALS

16 2 ND MULTIPLEXOR

17 2 ND MULTIPLEXOR

20 DATA SET CONTROL FOR 2 NO MULTIPLEXOR

21 LINE PRINTER (optional)

146

Cl

C:2
(SENtI CARD)

PROCESSOR INTERCONNECT

I/O PROCESSOR

OUTPUT REGISTER

INPUT REGISTER

ENCODE

Device Flag

A

B

\00-0-- ---- -

, } 0-

I:
~l .. _ . --" -.. -I ________ .. ---

11

il
./\ il

I
!
I

i I
II

~ !
I .

~ .~ .. -"

i
) _._._-)- .- ----r--

I
" t--------------- -. -

SYSTEM PROCESSOR

OUTPUT REGISTER

INPUT REGISTER

ENCODE

Device Flag

NOTE: CABLE IS NOT SHOWN FOR CH2 - Cl CHANNEL.
IT IS IDENTICAL TO THAT FOR C2 - CHI

CHI
(RECEIVE CARD)

In the Idle State, the PI cards are set up as follows:

CI(CH1)

C2 (CH2)

CONTROL & ENCODE: SET

FLAG' IRQ CLEAR

CONTROL & ENCODE: CLEAR

FLAG

IRQ

SET

CLEAR

A data transmission _ .. ,)eration occurs thusly:

I) Sending machine waits for flag to be set on

C2(CH2) indicating that the previous trans-

mission has been processed.

2) Sending machine places data word in output

register of C2(CH2) thereby placing it on

the input register of CH1(Cl). (OTA/B C2(CH2))

3} Sending machine issues STC, CLF to C2(CH2) making

the ENCODE LINE go high, setting FLAG ON (CHI (Cl),

clearing ENCODE on CHI(C1), and strobing data word

into CHI(CI).

It) Sending machine .issues etC to C2(CH2) to prevent

an Interrupt from that,card. The sending machine

is now free to return to other tasks.

5) In the receiving machine, T5 will set the IRQ on

CHI (Cl). If the interrupt system is enabled and

the priority line is high, the IRQ ~ill cause an

148

Interrupt to a service routine.

6) The service routine does an llA/B from CH1(C1) and

decodes the 16 Bit data word.

7) If a response is called for, the receiving machine can

load the Qutput register with a data word (OTA/B CHI (Cl».

8) When the" receiving machin~ has compieted its processing,

it issues an STC,C(Cl~) to CH1(CI) which restores the

cards to the idle state.

The following is the resultant. statuses of the two

computers after a command has been sent, received, and

acknow 1 edged:

a) The flag is set on C2(CH2) of the sending computer

indicating that another transfer is nowallo\'/ed.

This occurred when the receiving computer issued an

STC,C to CH1(Cl) after it had decod~d and executed

" the command. The STC,C is the acknowledgement to

the SEND computer that the RECEIVE computer did

receive the transmission.

b) The control on C2(CH2) is cleared by the CLC to

C2(CH2). This was done to inhibit the interrupt

that normally would occur after the SEND computer

outputted the command.

c) The control is set and the flag is c1eared on

CH1(Cl) (from the STC, C acknowledgement) indicating

readiness to receive another transmission.

149

•

TWO PROCESSOR POWER FAIL CHARACTERISTICS

The two processors In the 20008 system have Independent

power supplIes and consequently, power far lure interrupts in

either machIne may occur at dIfferent tImes.

A problem arises If one computer is powered down, and the

other machine attempts to send a transmission. Data wi I I be

lost as well as possible subsequent data transmissions. This

Is apparently caused by stray encode and data levels while power

Is coming up.

The Internal consequences of a lost data transmission are

these:

I. A I i·ne (Synt.ax, command, or input) befng processed

wi I I be ga rb led.

2. Output characters wi I I be lost. This problem wi I I

be hidden by the fact that the current output

character Is garbled (mux quits sending during

character) •

3. U~~er rare circumstances, such communications as echo­

on, echo-off, phones-xx wi I I be lost.

4. Terminals on whIch a carriage return has come in
•

may never have that line processed by the 2116. The
t tl ',... • i . d erm,na! w! I t nOT accepT .nput an

"
the "Break Keyii

must be used to re-establish communications when­

power Is returned.

150

P~ge two

5. The 2116 may loose the signal th~t indtcates that the

buffer for this user is almost empty. The terminal

wll' stop typing and the program· will remain in I/O

suspend. The "Break Key" must be used to re-establish

communicatIons when power is returned.

6. The 2116 may loose the sIgnal that indicates that the

buffer for this user Is ful I. The circular nature

•

of the buffer wi II cause characters to be typed out

of order. The probabIlity of this error is almost

zero.

7. I f several users are typf.ng on the 2114 and the 2116 is

not running, all r Jltlplexor activity may c'ease

(2114 waiting for transmission to be acknowledged).

This leads to the classic symptoms, I.e., no response

to any struck key (even break), and termination

of all output operations, perhaps with a space on

the line (teletype chattering).

If the primary power source fat Is, the two machines wi I I go down

within milliseconds of one another and it is not so likely that

any transmission will be in progress thereby being lost. If

however. an Individual processor's pow"er is lost via a depr'ession

of the processor's power switch or a malfunction' in its power supply .
one of the above symptoms Is sure to occur if there is' significant

activity on the system.

151

" -

Page three

If the 2116 Is powered down first, the 4th, 5th, and 7th

cases Ifsted are probable. If the 2114 Is powered down

first, the 2nd case listed Is probable. In other words,

turn off the 2114 first if the system must be powered down.

The two mach I nes should not be turned off together.

~f it i~ necessary to power down the system, and a common

power switch does not exist, It is necessary to power down

the 2114 prior to the 2116. Restart procedure dictates that'

the 2114 I s powered up .last.-

152

CORE ALLOCATION IN I/O PROCESSOR PROGRAM

0000

interrupt locations,
variables, & constants

0350

TELETYPE TABLES
1550

SYSTEM PROCESSOR
DRIVERS

1700

multiplexor

driver routines
3000

LINE PRINTER

3350
DRIVER ROUTINES

SYSTEM PROCESSOR
4600 SERVICE ROUTINES

5000 PHONES LOGIC

SELECTRIC CONVERSION
6200 ROUTINES

TIME BASE GENERATOR

6500 ROUTINES

7000 INITIALIZATION

7700 POWER FAIL

TELETYPE BUFFERS

250 CHAR. EACH
17700

17777
BBL I

153

N

y

XFLflG" !
RESTORE

REGISTERS

I NIT/!1L. I:' E,-

FCi!')Tt F,'.5

I N I.T J 11 LIZ fl T J ON 5 E: c. T I a "J

sflvr:
REGISTERS
MUX STfrn)$

ABORT

MPXOP

I1PX E. P

RECEIVE CHANNE.L

PRO c £ ':.;: .' '/ '.;'

lS4A ... ",'

R,1 r'---J
\

. J:

~
'-('-; I .. , ... »:

,,, ~., . . I...

r,'< .. ··r:·
.-

..• /'

N

'0
~/J

MPX£: P

I.

y

?BPNT-+
?B?lJl· -1

154B

XOBT -+ 0
OR

C.XBT --+ 0

NPX£ P

'--------.-~.
\
,I

f/f)D CHP.R

TO f.~JF FE.R

xoBT -+ 1.

XCI/fiR ~ CR

MPXEP

?8STR ..
?BPHT

EN3T -It 0

.. "

11PXEf>

,f?ESET
8UFPER

pOINTERS

C.XBT" 1

I1PX EP

\ /

lS4C

BUFFeR \ "
-peeN! - 3
FJ ~ S VA\: ;H,r.,\, I

I I OUTPUT TO

L;'Ol

T L PI<. ~ LTNVM
1..PTTY -+ 0
T,L SUp....,. 0

I,

LPiTY ... ?TNtJM

TLSUP..,. 0

..

L PTTy .. ?TNUn

Tl-fR -+ 0

154D

OTPC)"T,L'

'"',-----

"

BORRil ~
OUTPtJT:

DFJTR
UVIT Ie

.....

MvL. T JPLEX£ j~ O~/TPUT F?OUTIN£

154E

C L ;: .. ':' ,:.:
S T':1 j" ~~: ;

rOBT 1

o () -r P,') -:­

h~;, :~,

NPXOP

/"lPXEP

CLEfiR
L H-IE.- PRI)'I'!£R
;. LFf (~$

..

lJBORT rl")R 0 F' ;.- .' ," ," ~.
\- ~- ' .. ' .. " '.

LP£R~"" 0
R~,$TDP~

1J l) ~C' ,':':' &; ir:;,
;-=> }fJr E f~ S

, 155

fvlPXOP

INITlfJLJZ£
P01NTE'j~S

X TPNT =
POSI'TIO,V OF

NEx..T CNIll<..

'X.CHfJR =
JJEXi

C.HII?..

fI= SYNC' CHfiR

B = ulJ/r It

?TtP£:
81Ta 0

. .

MPxEP

FJ:::. C HRR.

8·::, ()Nn" ...

r
LFDLY

MPxep)

MPXEP

MPxEP

..
1568

RESET EW;"·fER
PO I ~'I f~ ;,'-$

lOST· ... 1

ICET~ 0

WIBT-'O
A= ?F<PRI1
e ;' 1))J1,':;j:;

MPX£P

~

1~,8BTf 0,.. . ~:-~~~:\p' .. ' i " - .. "'."'J

N?XU).

--_._--'

e ~ Ul.:rr l':!

...

lS6C

'(

E
'---l

YF I r r:. "'>, /'~ f,
, • . I ~.. Io !

!
i
I ._--_.,.- .---

'---I

£u!",; t.,. ,.: ... 1

~! .. [) /,:., ,- •. I

(I'1()XX

i
J

) -

156D

SA#'E

A~A,e
RI~~:S regs

?#T NeW'
,srATV.s ,I1tZ>
SA" /N
~Nr#/

Y6r. ,/J>J>RH.
....Z"5oLAT~ 2!h~
AI "'AI,/;) /.
~AI'~ ,,;v.

,Z):s 7'. y.

'leT Ne/Y
$TII7«$ • J"so­

tU/,.;..z .,B.f-"
ANb /.
SA"· /It'

.2)$7.5 /.

74AralH
")1'01 11 dP6NA­
;~"6N ~

.2>.srjl>/ AI'0
:t>.srs/

II "
~.iI'R,;,ER

>~-~---t C':' ,a,,"'T (/
NV$T NAPe

e'HAN94Z>

,,, '1

:2)s~/=&rtl.
>-__ ... AII/J) 1I~""R'i~.e" 1----_

ND

"~Ll' ''.2SR''
HU:;T N~"£

t!HHNfAU>

9#"T Helt!'
STAT4IS S,.II
/~ ? ~.PkN ~~~
~,,.,, T¥I

&AtUJ

u

RUST #A/I'E

e"NAH~~

ZE5n'JNIf!' A, ~
I&' ~.eJl;s~
~~IA,e j)e,,~

r~41

se r L..2>Br.

s,r ! JI> ~'"
rc _4.,1

/=.2 S6~~

1578

$pr

Lr..8T

s~r .?JI>H~
"7"'t/) /l'ALuI

. •

~r ~N~

157C

9-er ~"Iyn!'"R
70.7rNQH
(')P 1V,E'~r

;bP

. S/lY'

A~B I.E
:K£plST&R.S

. S6T e"VNT«

'.By'-"N:
HI. Ay~,"LANF

.l-'~RT$

96T ;ttu"'Te~
7rJ .7rNV#

i!)r JD~A'?

rr7~~

s,,~, /b;N7i£Je

7(') .7rNVH

~AUJ .1STAT

ISBA

.,Bv#P .' 7/>It:JtII

(L.T.8T ~/l
L..Z>~r Nusr

.86 s£,

~£ 56T.
$GNJ) ~~

HUNU II TD $)1$'
n ..

~L41P,fl

~cS0 &~7
1..:r~8;r

~"'.s

r i I I

" " 7Ey//

ReSTt{J~E ~

It&' RE¢-
7iIIIS •.
t:'~~ .z;,e~/~~

r~" .

.23v#.?

.. Hr,
T.L3 y e''V'

.s rt!'P Sj!OAA' ...

N"'~9 #ADe
tt:>."c ...Z>A7/J
SeT ~~7IoL
~,,~

?£r~
pF' ..2>I9TA~;r

e'cAfflf'pL
&19~

'ItEr .a~,.t:'
PH.?NtE.$

;P/I 'ZAHhG~

S£T .a;'7 tJI
;8 .aRs':~

7Pt?N.I.s
;;>A,pA#'T4~

u
''..z>ArA T41"';"h';9~ K£A.z>y:; /

t".Z>rR)

s~r 2J.,,"; /

/ir' ~s;c:
~~t¥tlES

7A'~AN~T£71,
I

>

1588

I~TA SET ~eAl~y4= t/
('.])s~)

N~NRR,:e,e "'= pJ

S7bR~

7Hew'6.S
jPARAH~rA~

i /~ ,.1 P;PR# I

PARAN.lT.4K
TeJ 2;t4"'/I.5i1i! r
~~"D~ ~.ilb

7/NG ..l!3/Is&" £€N'eR~T~~~..3 or 9'/
v

~LEA~

L r.,87; L'z>8T .

l/-Ib8 r

I,. ~

rEyl/

158C

~Lel'1~

.E;Var.
S4T h'J-l!Jr.

eJvrpq7 .. '~,e
A>'.I''"T# .e~HO

rl'H&'. liMSE ?EN'eR"'r~& f¥ ~p ;rL
v

lilt> NO >-------.

IVI)

SF- T vP r"~
YI"S • nr"'MSHi"r .

.. ... +-----3 --~
,JV TI~,I2u~r

I

1580

~, ~

SU.,8 RQU7-/IVE r<3? //

SEr '&"'r,t
">~_~_1S ____ -I Alii./:) eLEN.-t

A~L ~7"#tE~

a,-rs ~"N /7"7'£

sl&r
?~~ItIT" p&
? .2)1!'A/T - ~
?S~IVT:a.

158E

(!LGAIl LJ,i'rl
A It/.J) 5.£ r
lJ" /s- ,'.,.,

? r7J'F

·HASk t:Jrr
B~~r ~ /:".#1;-
77 LJ~·r.
StIf 1'1 ./ h'

)I(~N'A~

159A

.spr .Birt
A'lD ty~~A;e

..!J~"T /S ;-#

.'ry?.F

'pGTq-R/V

TO

#u~ .:/)R"~

S.Er

u~8r ;jy

?7")'P.e .

t!'LAFAR
ul!'.Br ,/'N

],7?;

(;,LPA~

>------1- V~8/; ~N8"1__--_
t:P~~.r

;Jy ?r)'tP£

. 159B

. iJ:oS

~L4/J~

x.B~7"

(JY ?r)'?B

! ~ Db ~.,:.v;;J
7'D £Bt:.l)

"").0..---& 7A.lU6 I

,II..l>..Z> PD/'NT4,f!

77J ~"L¥.J4J1
771.9u, .,
J"N)7vr t:'HA'.

/N'?vr ~NAR.

)

159C

. .

N()

9.Er ;YoR.D
r:RpH T/I<!JLtt:
/Y'-rh S'4'# /IS
~JJ-DR~

RorRTE uP"P£
'?A,er /jIy';-o
Lc It/IEIe "'#L:>

.I.5t1LRT.E
LolYe~ •

,eE5bLr
IS Th,E

.- t!'oNv;i"R­

T.£,J:>
//vp;"r

£,,#AR-

yes t!'L.e#..f

~N13r I .
C'~ar /'"AI

C'L~;1,f

~h'tBT I
~~dT /ty

..,r-7.PE

!rYJPe

yes
~I I,

//= ~~NY..
It" hAL' ..

SEr
II II

/l = /33
g'

SET

Ser

SET

'/;: ~.:J
¥

~L·E/I~

eAlBr
/N _'7J'?6

SIT
" " R= ~7~

SET
",, _ /
/1= /76

Y

SEr
.~." , 11111: /.3

'ff

159E

CL.E,,/l

~N.Br

/"N .l77,e

eL'.EA/l
,Lj/",6
/It/ ~

t:!'~NJ/, C'NAR.

~'£r

N " /}= ~~NI/ ..

C'NAL •

. (;"L;IF~;f J< B~-r
AIfI.D .,5£r

~/'r g //y

?ryPE

S.Er...z-~Br

iN lsrAr

SET
~I I, .-i
/9 = ..3)ri

Y

S'.£Lrt." 7R/C /~?VT ~~AlI/ERS/'~/Y /6 If)r 1'/
v

159F

S~r

x.B/-r
/'N .. ?r)'.p.E

(!L.€AR

t!N8r I
~~AT /"~

J:I"- "e

ser
e;yar
/'N -' r7.PG

~L,E;9~

t:!'#87
/'# ?r7,P~

lS9G

AID

SGT

C'~.a /-
/'N ?;7p~

(!IL,e/l~

eN.73r

t?LRA/l

~----f ~#~r I
~~.BT "'''' ?r),;F

",./tl ." r7,1'E

159H

159I

fZ"N.sH~·T

IT.EI~~II

~
I
I
I

I ,
I
t ,
I
I N~
L __ _

23~7" y //y

?7J'.iPE HUST
IB£ SIIE'r.

~L6;1R ~""Ty

~LF-"/l.

13/7/:2.

/# ?r7PE

t:'L411R
L!!N~ //

/:,y 1 r/,JPc

~LF-/IR

JI--_---I,8/', /0

/d !r/,,P#

"qr'pqr

'~PAt!&"
1-----..-~_1 7~ . NV)(

&A,(U)

$.f;"'P

90 rc I,

'~;CF-,:P
~--~ :/'yq~/~~R~e~

F~ DF~#?­
L'ISS/N't;

~L6#..e

.8~~T l'
/./V ?7"/,rc

1/ S7;Y~H~CN~·Z/1Y9 q

1------' t!HAL. rD -~

S,E'N,Z) 6~
""'-------It'= @J r~

Hv~ &/10

160A

Nux ~/lA!b

"-."

SVBHcu­
r/AIE

'$L~NJ/"

160B

SET
(!leEr > /~/Y lr7?.c

~

~
SIFT

t!N.Br

//'/ .?r7?E
pO No

----,
I

5[r SET

'~ '~ ,;t I '/I; 71-

160C

· c-LeA,(

e#,Br I
t:"~8r /~

?r)'.1W

SET
N " .23 =0

S,.r
A~ ~t:IN~e~T€>

t:!'NR,r.

~L&AR

YJ£.S UI!Br

S,€r .

u~ar

;'/V ?r7Pe

160D

iN !ry,Pc

SF;

c-L.E.I9R

4~.8r

/N' ~1'7'£

SET b~Pv

~HA:R .. TO

'AlQ'.LL I~

SeL~7R~~ . ~U.T~VT ~"'NPt~...,s...-~H /,:s- e:J~ 6/
•

160E

" ~
SL/a2~:r/HE SL~NV

/I.D.Z> .1b~~ rtG,f

~"f._'E_.s_. ___ ~ ____ -J rt) ~"'L~3~
7A~R A''''0

;I.2).D PofNnER

TO .EZk!Z>
rA8a ,,~Z)
IfJvr'UT dNA./'.

4-IT IY.?£Z>
FkH 7Jl4U

",,'-TN ,:$U#
A.s A. ?>M.£$S"

ZGSqLr t'''s :rAE'
CoNPII,4;.2>
t!)ur'UT I t'J'NA,rAlt'T4~ ..

160F

bUr'ur t!'N/I~ ..

S/IJ/t:

/I~ B AN..J:)e

~.e?;sr'£'R.s

T~#rcR"'R/:i/

S;tlVP /i ,.B
A AI.J> P' f?,Efi's­
T~;es r ?O"'~IP
rA/~ perVl1Y
,.9.z>..Z)R .ESS"

STellE
IINoP'I"N
~DI!'A T/(:)-¥

II P~II/N..l>

PClIV£~ ;:/I/L /1UTO :i'~rARr
;

~r~~,tF I, ",
STPtj /'N
u~"ri"~K

"-n-.,b~J"" "
/-C/,y,,~

PO A
~&JHpL4T&

'2~STA'r

110

$4Ser

7.a;
rl#fW,6'I\I~/

'Pel? ,F~,eH
"'~LF ~II

"JI/ .,Z), I"i~ E

;"#1"£11 ,eupr
NAS pe~"'f.

~ ~ AlCTH"#f/ ~--I

,?EdFt::IIZH
R .. Zu/"'R7'
iNT&'R~"T

S~".J>

Sy"~ :
c~l"eT#R

26- ,,'N$;AT4

/!rH~ I
~-~-I / §!'.l>S~

&;,US

~
I

161B

'.

L

71~-/NsrATe

,t~#~K I
.,2. @ ..J:>.s (!

.a~/lI.ZJ~

SrART ~p
/~rHU7C I
/¥" .l)S~

BcA,epS

161C

$7"AlZr u;o

:l AI..!> N"Jl I
,2@ .1)s~

.BoAeJJ,s

KFsrc.e£

/I~.l3 I E

7?.E ?/S r£R.5

,EXEt!4'7£ .e r,«
''sTFp I, c~
"NaP"
~ CI!'", '#A! I,

.. , ,PIoIY;t/.b

SUPPLEMENTARY NOTES ON BASIC

SYNTAX

The general process of analyzing an input to the language processor

is displayed in the section on flow charts. The annotations in the listing

explain the actions of the subroutines, while the core map and section on

internal representation describe the objects/structures being created or

manipulated. The BASIC syntax, in conjunction with the listing, explains

the method of identification and recognition of legitImate BASIC statements

from the input ,string.

II Phase 2

A. Comp i lat ion

The preliminary section of CHPLE prepares for executfonof the program

following a successful compilation. Null programs require no processing.

If a sequence number follows the RUN, (e.g., RUN - 22(1) the interpreter's

program counter is set to the fi,rst statement whose sequence number equals

or exceeds the reference~ otherwise it is set to, the first statement of the

user program. If the common area has not been allocated, ALCOM is called

to compute the space needed and move the program accordingly. If the pro­

gram is already compiled (SYHTBDSPTR~O) PBPTR is set back to the first

word following the format stack (FCORE) and phase 2 simply reinitializes

all of the variables to undefined. If the program,is semi-compiled

(SPTR=O, SYMT~O) we may skip building the symbol table. Otherwise FILTS

is set to (I so PRNST will not tenminate compilation by mistaking it for

de comp i 1 at i on •

, The symbo 1 tab 1e ; s then bU'! it as exp la I ned in the 11 s t i ng, (Refe r to the .
flow chart for general logic flow and to BASIC Variable Storage Allocation for

a visual example). ' Also, at this time statement number references are replaced

by absolute addr~sses., This Is facilitated by divi,ding the program into 32

parts and building an 64 word table In ERSEC containing the first statement

number and address of each part. Dur,lng compilation SPTR points to the

program word beIng processed. Pointers to <FILES statements> are stored in

162

FLSTS and a count of them IS kept in FILCT. An error in compilation wi 11

cause a call to DCHPL to restore the source form of the program followed

by a call to the error routine. If after a successful compilation at

least one <FILES statement> has been found, BASIC cal1s the system, which

analyzes the <FILES statements> and builds the file table, filling all

but the fifth, sixth, ninth, tenth, eleventh and fifteenth words of each

entry.

The symb01 routine has two entry points: SSYHT is used for functions

and simple variables and ASYHT is used for array and string variables. Because

the dimensionality of an array variable may not be known locally (e.g., MAT A=B)

some symbols may have two entries. If this is the case, the "don1t know" entry

wi 11 always be father down in the table (i.e., have a higher core address)

than its dimensioned counterpart.

B. Value

VALUE is responsible for detecting deficiencies in the symbol table,

allocating storage for the values of symbols (i.e., building the value table

and common area), and initial izing the values of all variables except ,those

in common. Only the last of these functions is performed if a program is

already compi led when a RUN command is received. The process of building

the value table is described in the listing. Not'e that for arrays in common,

the declared dimensions in the <COM statement> are checked against those in

the common area. If they match and the dynamic dimensions are consistent

(i .e., less than or equal to the declared ones) then the values are left

alone. Otherwise they are set to undefined and both sets of dimensions are

set equal to those in the <COH statement>. For strings, the physical length

is checked against the declared length and the logical length tested to be

less than or equal to the physical length. If these testsfatl the physical

length is set to the declared length and the logical length is set to zero.

Simple variables in common are left untouched.

Several errors may be encountered while building the value table. The

occurrence of a null symbol (bit pattern of f) in the symbol table means

that an array symbol Is used in the program, but never in such a way that its

dimensionality can be determined.· If the second word of a function entry is

zero, no <DEF statement> for that function appears in the program. Arrays

163

of more than 5000 elements are not allowed. For all errors the program is

decOf11)l led before the call to the error routine.

C. Decamp i I atl on

Programs are decompi led when any error occurs during compi lation,

bui lding of the file table, but ldlng of the value table, or when the program

is to be modified ~r saved in the user library. Since in the fi rst of these

only a portion of.the program is compiled, the pointer SPTR is used to determine

how much to be decompfJed (A fully compiled program always has SPTR pointing

to the first word following the program). The program is moved so that

SPROG-PBUFF (no common area). The process is explained in the listing.

D. The Rout. ne PRNST

PRNST is used by both CMPLE and DCMPL to scan the program and skip over

those portions not affected by compiling. PRNST assumes responsibility for

recognizing extra <FILES statements> and <COM statements> that are out of

order. If such an error condition Is ehcountered, SPTR is set to point

before the statement which caused the error (it hasn't been compiled). Then

PRNST ca 11 s DCMPL, wh t ch ca 11 s PRNST. The statement caus·i ng the error is

not seen this time, so PRNST and DCMPL can exit correctly.

I I I EX~CUTION

A. Main Loop

Upon completion of the value assignment in phase 2, controi transfers to

XEC. FCORE saves a pointer to the first word following the format stack (used

in repeated RUNS of a program). After printing the program name (unless the

program was CHAINED to) XEC proceeds to initialize the file table. A buffer

the size of a iogicai record is allocated fOi each file and pointers to the

word following it are placed In words 9 and 10 of the· file table. The first

word of the di sc address of the record In the buffer (word 5) is set ·to 100000
8

to indicate that no record Is present. Word 1) is set·to', indicating that

no end-of-record/end~of-file exit has been specified. Word 15 Is set to 0 as

a nul) protectmask. If the file is read-only a message to this effect is

printed, follQ1lng the program name, unless the program was CHAINED to.

164·

The initial execution stacks are claimed from free user space and pointers

are set to the first constant of the first <DATA statement>, if such exists.

The internal print position counter (CHRCT) is set to zero by outputting a

carriage return. Phase 2 has already set the BASIC program pointer (PRGCT)

to the first statement to be executed.

Execution of a statement simulates the execution of an instruction on

a 'BASIC machine i • The sequence number of the statement referenced by PRGCT

is saved for possible use by the error routine. PRGCT Is advanced to

reference the folloWing statement. The type of the current statement is

used to branch to the appropriate routine via a jump table. Individual

statement routines return to the top of the loop.

B. Statement execution

<LET statement> execution consists simply of evaluating the formula,

which is known to contain at least one assignment operator and to have type

compatibility (numeric vs. string) by its acceptance by phase 1.

<IF statement> execution forks on the symbol following the IF. The

construction 'IF END' causes the followIng: the file reference Is evaluated

and tested for existence as one of the program's requested files; if a

legitimate. reference, the statement referencefollONing the THEN is placed

in the end-of-file word of the file's table entry. If not 'IF ENOl, the

decision formula is evaluated and if true the statement reference replaces

the value of the interpreter's program counter, PRGCT, via the GOTO mechanism.

<GOTO statement> execution consists of choosing a statement reference

to replace the program counter. For simple GOTOls this is done trivially;

for multi-branch GOTO's this is done by evaluating the index formula and

choosing the statement reference in the corresponding list position. If the

index value lies outside the list of statement references, the program counter

remains unchanged.

165

. <GOSUB statement> execution follows the pattern for the GOTO except

that after choosing the new value for the program counter, the old value

is saved on the return stack (stack overfloW generating an error condition).

<FOR statement> execution opens an active program loop. The for-stack

is searched for an entry wi th the same for-vari ab Ie; f f found, the entry is

eliminated (i.e., the previous <FOR statement> with thIs for variable is

closed). A new entry ,Is set on top of the for-stack (extending the for-stack

by six words if no entry was ,eliminated) and a pointer to the for-variable's

value entry is put into word 1. Since the first formula in the FOR contains

an assignment operator,the formula evaluator, FORMX, initializes the for­

variable when it determines the Initial value. A reference to the statement

follCMing the <FOR statement> is ,put into word 6 of the for-stack entry (the

start-of-loop address). Words 2 and 3 save the result of evaluating the

limit value fonmula. If a step size fonmula appears explicitly it is evalu­

ated, otherwise 1.' is taken as the step size. In either case the value of

the step size is left in words 4 and 5 of the for-stack entry. The program

counter is set to the statement following the associated <NEXT statement>

and control transfers to the <NEXT statement> execution code to compare the

ini tial and I imi t values (see flow Chart)'.

<NEXT statement> execution decides whether to iterate a loop or c10se it.

The for-stack is searched for an entry with the same for-variable. If none

is found the statement is ignored and control passes 'to the following statement.

If the entry is found, anY' entries above it (more recent entries) are eli'minated;

i.e., they are assumed to belong to nested loops which were no~ closed by

exceeding their limit value but exited otherwise. The value of the for-variable

is then incremented by the step size and the new value tested by subtracting

the limit vajue and using the sign of the step size to determine whether a

non-negative or non-positive result indicates 'success'. If the result is

'success', the program counter is loaded from word 6 or the for-stack entry

(the reference to the statement foilowing the <FOR STATEMENT». If the result

is not 'success', the for-stack entry Is eliminated. At this point the program

. counter already points to the statement following the <NEXT statement> so exit

is 'simply to the matn execution loop.

166

< RETU RN s ta temen t> ,xecu t I on me re J y loads the p rog ram co'un te r f rom the

top entry of the return 'tack. An error condition is generated if the return

stack is empty.

<i'NPUT statement> execution assigns values to the Input list for both

INPUT and MAT INPUT. INITF·, and MCNT is meaningless when executing an

<INPUT statement>; FQr MAT INPUT, INITF. -1 and MCNT holds the number

(In 2'5 complement) of elements of the current array as yet unassigned values.

IFCNT holds the ordinal number of the curren~ item in the current record

(Note that IFCNT is not -cumulative over the entire executton of a statement

requesting input unless the request Is met entirely by one line from the

teJetype).

The general approach in execution is to determine the address and type

of a variable In the Input 1Ist and then attempt to satisfy it from the

input record. When an error occurs in the above process, it is explained .
along with any necessary corrective action and the value assignment is attempted

again, so that errors In the Input record will not terminate program execution.

For simple Input if the next variable in the list is of numeric type its value

table address is placed into SBPTR; for array input the base address of the

array is put into SBPTR. After filling a simple variable the next variable

from the list is taken and a new address generated; after filling an array

element SBPTR has been advanced to the next element by the numeric input

routine so·r.o new address need be calculated. When MeNT rolls over to zero

(an array has been filled) control exits to the MAT INPUT code, which may

return with another array's base address in SBPTR and MeNT reset appropriate1y.

If the input record is empty but the variable list is not yet exhausted a

request for additional Input is made (signified by 111' rather than the

initial 111). SERR is needed as a flag to indicate if under/overflow occurred

while converting the latest numeric input, since the error message wi11 have

destroyed any additional information in· the input record. When looking for a

number, the input record Is scanned for the first sign (+ or -), digit, or

decimal point, 'which begins the number. Any other characters will be ignored

except the ", which wi 11 generate a recoverable error.

167

String input requi res fai rly compl fcated analys is of the data transfer.

If the string variable does not specify the transfer length (does not have a

double subscript), then the next string in th~ input record is transferred in

its entirety and the logical length of the variable set appropriately. If the l

next string does not fit, a message is printed and a new string value requested.

If thestrtng variable specifies the transfer length then exactly that much

of the next string in the input' record will be transferred, either truncated or

extended by blanks as necessary to achieve the specified length. The Inext

string' in the input record begins with the next non-blank 'character or, if it

is a II, the follOtilng character, blanks included. The string ends with the

first II (which is not part of the string) encountered or 'with the carriage

return (also not part of the string) if no II appears.

Every data item In the input record must be followed by a comma or

carriage return and a comma must be followed by another data item. Failure

to observe the above will generate recoverable errors. INTMP holds the

type of data being sought, INTMP • , for a number or INTMP # 0 for a string,

and is used by the error recovery code to prepare for the entry.

<ENTER statement> execution assigns a value to a string variable or a

simple variable. If a III follows the ENTER, the user's port number (0-31)

is assigned to the first variable. The <ENTER statement> is timed and the

length of time it took to respond (in seconds) is assigned to another variable.

The input analysis proceeds much like an input statement with one variable,

with the notable exception that no error messages are printed. Instead, the

response time variable Is negated if an error occurs. If the user does not

respond within the alloted time, the response time variable is set to -256.
This is non-ambiguous since response times are between I and 255 seconds

!ncluslve. Also, for strIng Input leadIng blanks are non stripped off and

quote marks are allowed as characters.

<READ statement> execution asstgns values to variables' In the list.

FDATA 15 primed to obtain values from either a ftle of the <DATA statement>s,

d.ependlng on the presence or lack of a file reference following the READ.

A mismatch fn type between the variable and ~he next data Item, or a strIng

too long to fIt Into Its designated d.esttnatlon, wLll generate an error

and termInate execution.

168

<PRINT statement> execution consists of identifying items in the print

11 stand sefid I fig the app rapr i ate mea i a equi va ient to the te ie type or disc

file. An initial file reference identifies the statement as a fi Ie write

and turns off the end-of-line mode; its absence Identifies and teletype write

and turns on the end-of-lfne mode. A comma or semicolon turns off the

end-of-line mode and generates enough blanks to advance to the next field

of 15 characters, if a teletype write. A literal string is written as a string

of characters, less quotes, and turns on the end-of-l ine mode if a teletype

write. An END writes an end-of-file mark on the file; it cannot occur in a

teletype write. Formulas in the print string are evaluated and the results

examined. Formulas which are string variables evaluate to their contents,

which is then treated as a literal string. If not a string variable but

within a file write statement, the floating point value of the fonmula is

written on the file In Its two-word binary representatIon. If a teletype

write, floating point values are converted to an ASCI I character string of the

decimal equivalent. TAB can only occur in a teletype write; the evaluation

of the TAB itself produces the desired action, so the value returned is

thrown away, along with a following comma If one exits. For a teletype write

. all formu 1 as turn on the end-of-l I ne mode. I f the end-of-l i ne mode is on

after processing the last print item, a carriage return-line feed is printed

(This can only occur in a teletype write).

Before writing a quantity BASIC insures that suff.icient space is

available to accommodate it. CHRCT keeps track of the current print position

on the teletype line ('-71). If the character string sent to the teletype

would require non-blank characters to be printed past position 71, a

carriage return-line feed is output first and CHRCT set to ,. If an item

sent to a file requires more words than remain in the current record, BASIC

automatically advances to the next record if in serial mode or exits to the

end-of-record code if In record mode.

<PRINT ·USING statement> execution sends formatted output to the teletype.

TEMPI is set to point to the first operand, NCH is set to the number of

characters in the format string for a partial string or 0 fora full string,

B = > the fi rst word of the format string and A -character of the string

to start with. Then the Tonmatter is caiied, and it takes care of

169

retrieving the operands, formatting their values, and outputting them.

See description of formatter elsewhere.

<RESTORE statement> execution resets the pointers to the DATA block.

Beginning at the statement specified, or at the first statement in the program

if none is specified, the pointers are set to the first <DATA statement>

found, or to the out-of-data condition if none is found.

<END statement> and <STOP statement> execution terminates the program

run. Since each requested file has a one record buffer in core, the last

record written on a fi Ie does not exist on the disc in its updated form.

Thus END and STOP must force the buffer of each read/write fi Ie onto its

proper disc block. ' Also, the last change date for each fi Ie must be updated

if any records have been changed. Following this, the word DONE is sent to

the teletype and control exits to the scheduler.

<CHAIN statement> execution consists of calling the CHAIN library

routine to get the named program from the disc and start execution of it~

<ASSIGN statement> execution changes the file referred to by a

specified file number. After interpreting the fi Ie name and fi Ie

number and dumping the last record of the previous file, it calls the

ASSIGN library routine to update the last change date for the previous

fi Ie and put information for the new fi Ie in the fi Ie table. Control is

transferred back to BASIC to set the return code in the variable specified

for it and set the protectmask in the file table if one is specified.

<MAT statement> execution involves many disparate tasks. The forms

of the <MAT statement> may be classified as array I/O, array assignment,

array initialization, and the array functions TRN and INV. For conciseness

in coding, all forms other than array I/O use some common program segments.

Array I/O prepares each array in the list in the same fashion. SBPTR is

set to the dynamic dimensions of the array (base address -2) and the operator

following the array identifier is picked up for examination. At this point

170

MAT PRINT USING calls the formatter just as PRINT USING does. The

EVEXP routine in the fOi"~tter takes care of picking up the eiements

of the array one by one~ in rows •. MAT PRINT follows a separate path

than MAT READ and MAT INPUT. The following operator is noted as

spacing the elements (comma or end-of-statement) or packing them

(semicolon). VCHK examines the array and generates an error if any

of its elements have value 'undefined'. The dynamlc·row and column

lengths are saved in 2 1 s complement. If the MAT PRINT references a

file, the array elements are written one by one in rows, each element

in its two-word binary form. If the HAT PRINT references the teletype,

rows are double spaced and the elements within a row are spaced or

packed as noted above, each element in its ASC II dec f mal form. Both

MAT READ and MAT INPUT redimension the array If the following operator

is a left bracket (i.e., begins a matrix subscript). MCNT is set to

the nUnDer of elements in the array, In 2's complement. MAT READ calls

FDATA for element values while MAT INPUT transfers to the <INPUT STATEMENT>

execution to obtain element values. MT~ acts as a flag for MAT INPUT,

differentiating the first call for input from subsequent calls and

saving the input character following the last element value used from

the input record. After completing I/O on an array, a common section

of code prepares the next a r,ray in the lis t or, if no more rema in,

terminates the statement execution. MAT iNPUT returns to the input code

to clean up there, MAT PRINT and MAT READ return directly to the main

execution loop.

Array assignment consists of preparing the destination and source arrays

and executing a loop which assigns the destination array elements one by one.

The general procedure is to assign a Jump to the element computation code to

MOP, an exit address to HEXIT to use after completing the destination array,

and a count of the elements to HCNT, in 2's complement. The code to compute an

element returns to MLOPI, MLOP2, or HLOP3 depending on the number of arrays

involved which require updating of the element address. Each operation checks

the dimensions of the arrays involved to insure that the operation is well­

defined; and all elements of the source matrices are checked to make sure none

have value 'undefined'. Matrix multiplication does not use the element

171

computation loop, instead it uses row and column counters to tell when

it is done and compute$ destination array elements by Innter products

of the rows and columns of its source matrices.

Array initialization also uses the element computation loop. The

initialization program fi rst redimensions the destination array (if a

matrix subscript Is gi"ven) and then chooses the appropriate- cons"tant for the

element values. IDN acts like ZER exeept that it Insists that the destination

array be 'square' and sets a special counter to choose l.g for the value of

main diagonal elements.

TRN and INV are handled apart from the other matrix functions. For

both of these, the elements of the source matrix are checked against the

I undefl ned value'. The source and dest I nat Ion matri ces are then checked for

t ranspos It i ona I compat i b I I I ty. If TRN, then proceed to trans fe r the co I umns

of the source matrix to the rows of the destination matrix.

tNV uses the Gauss-Jordan algorithm with rON pivoting. This procedure

converts a copy of the source matrix into the identity matrix and converts

an identity matrix into the Inverse by applying the same set of operations

to both. Since the source matrix Is destroyed in the process, it is first

copied into free user space and the copy treated thereafter as the source. A

side effect of the copying produces the element of largest absolute value, which

is use-d to cQq)ute a lower bound on the allowable magnitude of pivot elements.

INV then calls iON to set the destination matrix to an identity matrix, having

the side effect of checking that the matrix is square.

Diagonalizatlon of the source matrix and prod~ction of. the inverse

nON proceeds on a rQ>foeby=rc:tN basis. The next unreduced column of the source

is searched for the pivot element (the largest in magnitude). If necessary,

rows are swapped to put the pivot element on the main dia"gonal (the correspond­

I ng rows of the des t i nat i on mat ri x mus t al so be swapped). I f the pivot

element is, smaller in magnitude than the previously computed lower bound, the

matrix Is too nearly singular to Invert and execution Is terminated. Other­

wise, the pivot rows of both matrices are dlvi"ded through by the pivot e"lement.

172

NQoI a J 1 other elements in the pi vot col umnare e J i mt nated by subtract i ng the

appropriate muitipie of the pivot rQol from each of the other rows. Advantage

is taken of those pivot column elements which 'are already zero and of the

fact that elements of the pivot row to the left of the pIvot column have

been set to zero by previous steps. After diagonalizatlon of the source

matrix and consequent creation of the inverse, the user space occupied by

the source copy is released.

The other statement types are declarative in nature .. Execution of them

consists solely of skipping over to the statement follOll'ng.

173

FORMATTER

Upon entry, B contains the address of the format string and A

contains an index describing which character of the string the formatter

should begin with. (This is for substring expressions.) The variable

NCH will be zero if the entire string from character (A) on is to be

considered. Otherwise it will contain a character count.

The routine grabs off the carriage control character, if any, and

saves it. It then searches for a delimiting character ('/', ',', 1)1 or

end of string) and processes the specification up to that delimiter. The

characters of the specification are examined and stored I character/word

on a stack. Replicators are converted to binary and negated. Flags are

set to indicate string, integer, fixed or floating point specifications.

Literal strings are outputted directly from the stack and absence of any

flag being set indicates a blank specification. The stack is then processed

from top to bottom and each character or binary replicator and character

causes appropriate output.

Strings are handled in a straight forward manner and may be output

only if the string flag is set. Numbers are converted from binary to

decimal and are stored I decimal digit/word in a number holding buffer.

For integer or fixed specifications, the numbers are stored with decimal

exponent of 0 and output directly according to the specification. For a

floating specification, the number is stored with a maximum of 7 digits

to the left of the decimal point and the decimal exponent is set accord­

ingly. The number is then output in a straight forward man.'1er;>

When the stack has been exhausted, the delimiter(s) are processed.

If the end of the string has been reached, and there remain expressions

to output, the string is'reprocessed from the beginning. If the end has

not been reached, the next delimiter is found and the specification is

processed as above. If there were no more expressions to output the

carriage control character is processed and execution terminates.

174'

Grouped specifications are handled by saving pointers to the

beginning of the group aqd upon notice of the end, returning and

reprocessing the entire group.

Formatter Utility Routines:

MTLI expects an ~~packed floating pOint number in MANTi, MANT2

and EXP and returns ·a number there which has been made greater than 1.

EXPON holds the count of multiplication, necessary to make the number

greater than 1.

DTLI expects an unpacked floating point number in MANTI, MANT2

and EXP and returns a number there on return. The A register contains

a count of the number of divides necessary to make the number less than

1.

ROUND expects an unpacked floating point number in MANTI, MANT2

or EXP and rounds the numbe.r in the number holding buffer.

I OurBt and OurCL are self explanatory.

DSRCH searches the format string starting at character pointed to

by DP for a delimiter. If one is found, it is returned in the A register,

and DP points to its location in the string. If the end of the string is

reached and ~o delimiter is found, DP points one character past the end

of the string.

MCHAR expects the address of a character in the A register. It

returns that character in the A register. If the O-Bit is set, blanks

are ignored and the first non-blank character after that address is

returned. In this case, if a delimiter is reached, the address of this

delimiter (i.e., DP) is returned in the A register.

175

EVEXP is responsible for extracting the next variable to be output

by the formatter. FFLG determrnes whether this Is a MAT PRINT USING or

a PRINT USING statement. For matrices, the first time EVEXP Is called

it veri fies that all array elements are val i d and returns the fi rst

element. Subsequent calls to EVEXP return array elements one at a time

on a·row by row basis. Numerical values are returned in the A and B

registers and strings are returned with a pointer in the A register and

the number of characters in the B register. EVEXP also evaluates the

functions TAB, LIN and SPA and then goes to the next operand.

176

NOTES ON THE ERROR ROUTINES

Errors are handled routine SERR, reached by a Jump throug~ the base

page table beginning at SERRS. A JSB SERRS + i,l signifies 'detection Of

error i. The alternative bases RERRS, FERRS andWERRS are conveniences to

denote subsections of the table used for run-time errors, format errors

and warning-on1y errors. After printing a format error message, the

offending format string is also printed. The actions taken by SERR are

explained in the .listing; but notice that the IBAD INPUT I error is

singled out, its processing is completed by the. Input execution routine

upon return from SERR.

Syntax errors dete~ted while in tape mode are handled by accepting

error psuedo-statements in place of the erroneous statements. Since these

psuedo-statements wi 1-1 be replaced by any subsequently received statements

wi th the same line numbe r, prov I s I on is made :i n FNDPS, wh f ch returns the

10cation of a statement when given its sequence number, to decrement the

error counter (ERRCT) whenever the statement found is an error psuedo­

statement (an error psuedo-statement will only be found by FNDPS when

another statement with the same sequence number is ready to replace it).

Over/underflows detected during number conversions in syntax mode cause

warning messages to be issued only after accepting the statement, if it

is otherwise correct. Since no printing can be done while in tape mode,

the routine CHOUF suppresses setting of the flag and these potential

errors are not reported when in tape mode.

177

SYNTAX (Phase 1)

System Base Page

USE+ ~---------------------4

Subroutine Entry

Points and User Variables

SPROG=PBUFF+ "-_________ --.

Previously - entered

Program Statements

PBPTR=SBUFA->- ~------=------.

Current Statement

SBPTR+ ~ - - - - - - - - - -
Buffer (185 Words)

SYNTQ+ "-----------t
Syntax Stack

SSTAK+

Available User Space

LWAUS+ +----~------_t

BASIC and System

n777

BASIC Core Haps

User Swap Area
- {10240---Words}

- 178

Pointers

USE FIxed, fIrst word of
user swap area.

PBUFF Fixed, first word of
program space.

SPROG Fixed, first word of
program.

SBUFA Variable, first word 0-

statement being syntax~

PBPTR

SBPTR

Vari ab Ie, fi rs t word 01
program space not used
previously accepted
program statements.

Variable, first word
not used by statement
being syntaxed.

SYNTQ Variable, first word
of syntax stack.

SSTAK Variable, last word of
syntax stack.

LWAUS Fixed, first word not
-fn user swap area.

COMPILATION (Phase II)

• 'Comp i 1 at i on Value Storage Allocation

~

USE+

PBUFF+

SPROG-+­
SPTR+

. System Base Page

Subrouti ne Entry
Points & User
Variabies

Common Area

BASIC
Program

t,
~

.
USE+

PBUFF+

SPROG+

f+ SYMTB SPTR-SYHT&t-

Symbol
tta~l! _ - - - - .

PBPTR !+ol

Available
User Space

LWAUS-+

37777

BASIC and
system

SPROG - Variable, first word of program

SYMTB - Variable, first word of symbol table.

SPTR - Variable, word of program'being processed.

FILTS - Variable, first word of file table.

VALTB - Variable, first word of symbol value table

LWAUS+

37777

System Base Page

Subrout f rie Entry
Poi.nts & User
Variables

Corrmon Area

BASIC
Program

Symbol
Table

Ff Ie Tab1 e

_ 1(a!u~ !a~l~ - - .

Avai lable
User Space

BASIC and
System

(FILTB = VALTB if no <FILES statement> is in program)'

PBPTR - Variable, first word available of user space.

SYHTB and SPTR are not changed after compilation.

FILTB and VALTB are not changed after allocating value storage.

179·----

+FI LTB

+VALTB

+PBPTR

EXECUTION (Phase 1.11)

USE+

!

-PBUFF
SPROG ,ooj

SYHTB ,oo!

'-l FILTB

Sys·tem Base Page

Subroutine Entry
por nts , User
Variables

CORInOI1 Area
BASIC
PrQgr_

Symbol Table

File Tab Ie· ..
VALTB 1-1 .~Value rable·.

IFSS -I ".hI8t:Stlii
Ft le Buffers

'~s 9 Wor Return.St8Gk
i

For-Stack
~

Temporary Stack

I Operator/Oper.nd
Stack
Available
User Space

LWAUS .-t

BASIC and ,

+FeORE
.ttllTRtfQ
+RTNSf
+FORQ'

..vORST

+T"P5T
'+OPTRq
+GrDST
~8PTl

System •
77777 -1 _____ 1.

. I FSS - Variab Ie, fl rs t word of format
.. stack.

'CORE - Variable, first word not used by
Ph ... II

RTRNq - Variable, bottom of return stack
(fl'rst word preceding return stack)

RTNST • Variable, top of return stack
FORQ - Variable, bottom of for-stack

(sixth word preceding for-stack)
FORST.- Variable, top of for-stack

(points to latest 6-word entry)

'1MPST - Variable, top of temporary stack
(points to latest 2"word entry)

OPTRQ.· - Variable, bottom of operator stack.
OPDST - VarIable, top of operand stack.
PBPTR - Varlabl., top of operator stack.

FCORE, RTRNQ" and FORQ. are not changed after InItiatIng execution.

Entries on the operator aod operand .sta~ are one word each and interleave
(I.e., alternate word,sbe lqng to one stack). Al1ltacks beyond the return stack
grow and shrink as ~d SO· 10", .~ user spaCe l':;:;avalllb.le.·

BASIC statements are represent~d intarnally by the sequence number followed

by the length in words (including the sequence number and length words) foiiowed

by the statement body. The statement body is composed almost entirely of' operator­

operand pairs which occupy frqrn one to three words each. Null operands and

operators are used when necessary to maintaIn the operator-operand correspondence.

The operator resides in bits 14-9 of a word; the operand uses bit 15, bits 8-~,

and sometimes whole additional words Immediately following.

'Variable' Oeerands

" Operator 0

, Operator Name ; it

, Operator I Name h-3

" Operator I Name; 4-168 I
, Operator I Name I 178

Nu 11 Ope rand

String Variable

Array Vari ab Ie

Simple Variable

Function Variable

Bits 8-, are generally divided

into two fields as follows:

a name field (bits 8-4) and

a type fIeld (bits 3-0). The

name field holds a value

between 1 and 328 corresponding

to A-Z (for functions,

corresponding to FNA through

FNZ). A type of , identifies

a string variable (e.g. 3,'
represents C$). Types 1 and 2

identify array variables of dimensionality one and two respectively (e.g. 4,2

represents 0[*,*]) whi Ie type 3 identlfles an array variable whose dimensionality

cannot be determined by its immediate context. Type 4 identifies a simple variable

with no digit (e.g. 1,4 represents A) while types 5-168 Identify simple variables

whose names include the digit '-9 10 respectively (e.g. 6,7 represents F2). Type

178 identifies a programmer-defined function (e.g. 328, 178 represents FNZ).

'Constant' Operands

tiJ· operat_o_r~_N_ame __ --.l!r-..4-_1_6..;.8~
r;:-. 0, perator, Narne: 11
,~~~, ____ -,-_, ; 8

• • "

•
LBinary Integer ·1 ----'-_._-, ----'.

II i Operator I
High Mantissa

Law. Han;-~~G~n-~-~t--

I

L c~~~acter

Parameter A parameter (which can

only appear inside a
Pre-defined Function <DEF statement» di ffers

Fonnal Dlmenslonl

Branch Address
List

Numerical Constant

String Constant

'from a simple variable

only In that bit 15 is

set. The name of a pre­

defined function may range,

In the standard system,

from 1 to 218 or 248 to

lOS (TAB to-COS or ZER to
TRN).· A flagged (bi t 15

set) operand of 3 identifies

either a formal dimension

fn a <DIM statement> or <COM

statement> (value in following

word) or a branch address list

(one or more statement sequence

numbers in the following words

A flagged operand of e indicates

that the following two words hold

a floating-point constant (all

numerical constants within a

'program are so represented). The operator with Internal code I Is ", which signals the

start of a string constant. The operand portf.on of the word has a value from fI to 72111,

indicating the number, of characters In the constant. The string follows, two characters

per word, and the c1osln'g U is not explS'clt'ly represented internally.

-.
'182r---_

, ';';',,:; .,'

The table belON gives the Internal representation of the BASIC operators.
ihose operators which manipuiatefhe formula evaluation stack during execution
have associated priorities. All numbers are In octal notation.

BAS I C 0e! rators

CODE PRIORITY ASCII CODi PRIORITY ASCI I CODE ASCII -
II S (end-of- J

formula) 26 5 < Sit FOR .. 27 5 I 55 NEXT

2 3' 5 -(equal) 56 GOSUB
,- //

(unused) 3 31 --- 57 RETURN
J

4 #(fl Ie) ,=------ ~ '-'<:'·:-.1'''''' g;._ ,,"'ilk.·:,_ ' ... -., .~P j/ 68 END

5 (unused .. ,', 'I - ~-- 61 STOP
r :

6 (unused ~~-. :t ;'~N 62 DATA

7 (unused tJS " ;Mlt 63 INPUT

HJ) 'J6 '5 c,. 64 READ

11 1 1 ,7 , >- 65 PRINT

12 13(1) [ill I <. ~6 RESTORE

13 13 (1) (
_1 ii- NOT 67 HAT "

14 11 + (unary ~ 't,! ,4\$~ I GN 7' FILES
~;.

" , i

IS 11 - (unary 43 r LJt!fNA; . 71 CHAIN
':;~{:-~.;t -.~ ~ 'I 72 16 2 , (subscri pt 1t4 ENTER

17 2 -(assignment 45 COM 73 • IHPL I ED I LET

2' 7 + It6 LET 74 OF

21 7 147 DIM 75 THEN

22 HI * Sf DEF 76 TO

23 HI / 51 REM 77 STEP

24 12 t 52 GOTO

25 5 > 53 IF

Some exawples Of BAS1C stft.nents In 'thel rlnternal f~"" are given belowo Note

that actual function par .. ter'· "'1. ,<DE' stjtements> , formulas, and subscript

fonnulas appearIng In <MAT Itat"ntl> requite "'-Qf~fonaul. operlltors to signal

thel r end whereas mast fol1lUlasendetther.tth • first operator which does not

manlpulate the fOmllla ev.l~ttop stack or "','th .• e end of the statement. Note

also that constants' are COM1d1NcI' stgned"Qftly with'n. <DATA statement>. ASCI'

nWllbers are decimal. Int."'1 _rs areUChl, 'In tM presentation 'below.

l' LET W1 - Y -, (8- C) t 3*A(I,J+K]

12 sequence number '2'01" ;\[5], C[6,12J

21 length
, ~ 46 . 27 r'6 LET WI ()

2'" 2;;
I 131 i ,.

j

'1 (. , ; 17 ., Y lit

.117 I I D' :,_J .f,[~

I . ~. • .1t~l.1 I I I

I ,.. 13
," IJ

f'-' 13 214 (8' L
I j

, I 3" 3·,4 • C 5
• 11, -i

i.)

• It'l '.
..,.I ,

I

• 23
1
2

'- " -
1 I 24 I' t

,,1 12 13 '3"" 3.'
IJII"'Z. 1116,6 r 3 , I 22

I

1 : Z *A
I i

" :12 i 11 ~ [1 14 , 16 112 4 ,J • 111 r,
,,2, 113 4 +K I

I , ,: . • (end-of-formula)
I

, 111 ,]

"j

.:.,

~

3(1 DEF FNC (X) -X + A' ltf REM ARK

36 - r. Sf J . .;.~ ~j "

7 5 s , 50 I 3 Il~
~c; , 151J4I It ;-~: :,., 0 ,

1 13 3(1 x ~ ".~,

.41522 rt2-rr' , l' ,) '45"" K 0

1"7 3' I. -" Y
• I i "'7

2' 5
...,.. Plo

I
~ , , , £c;-4

5' GOTO A OF HI, 2', 3' 6, DATA -1 , "ABC"
• i

~

62 S;J 74 L a

-i

7 !

7 11
~ . .:;'f () . ~ l

116~ . I"
-;; ~ ~ , 52 I I II! I

r~~

74 1 j 3 1'''''
12

/0 .. __ ..
t s;'

24 • 21 •
-)6

,

1 I -• 3

''''512· t; J5

7' HAT READ IK;ALJl 1141_::;

Hl6
~l)

"1

11

67
r , ,

...
S 64 S , 4 4

.de K
13

/1 - 1 , 3 J
,':'\1. J

" 12 J1 4 r t

, , ,iI:' v-l

II 11 , J --I

185

PROGRAM FRAGMENT

~DEr-~_-.~_F~~
X !
A I
C i

,
J - -L -

s YM80L TABLE FRAGMENT I ;-)
./

r------- -
I

FNC
----....... _----

-. 4~

D3 A[l) ----_ .. -..... -
t

A[*] j ~ lliens I on8 " ty 1 f A[2]

:

J A[l d I mens I ona 11 ty' Al3]

I
; locally unknew"

B$

•

~ f 1
j, "'-". ~ - . ',~.". -. i" _4 14

- J !)

It
,
, ,

1 L
i\

3 ! t
!

~ .' :,
1 i

-~
.-;-

-- III."" ,'
i l~ -.-

-'."2 1\

•••••)

.. ,"
~

8 5

A B

c D

I E !

.. , .. ,.' -. i
t:':J()f

value of

s Imp·le vari ab Ie

declared

dimensions

dynamic

·dlmenslons

a~tlve

elements

Inactive

element

phys I ca 1 1 ength/ .
10g1 cal ~ength

character

string

The syrnboi tabie cons ists of two-word entries, one for each unique symbol occurri n9

in the user's program. The first word of an entry Is the tnternal representation of

the symbol as previously described. The second word of the entry is a pointer to the

value of the symbol. For a programmer-defined function the value is the defining

formula in the <OEF statement>. The value of a simple variable Is a two-word

floating PQint number. The value pointer of an array Is Its base address (t.e. the

address of its first element); ~-hen an array is dynamicaiiy redimensioned to occupy

·less than Its physically allocated storage, It occupies a contiguous block justified

to the low core portion of Its element space. Since array symbols may not have

dimensionality locally defined (e.g. HAT A-B), array symbols may have a "don't know"

entry in the symbol table In addition to the dimensioned entry. Both entries have

the same value pointer. The declared and dynamic dimensions occupy the four words

preceding the element space In the value table. The value of a string is also its

base address. A string is a character array (packed two elements per word in contrast

to the two words per element, for numerical arrays). Its phys teal (declared) length

and logical (dynamic) le~th occupy the word Immediately preceding Its value space.

The value table and cOlllnOn area are simply the concatenation of the values for

the symbols in the program, excepting programmer-defi·ned functions.

187
~ r----..

read-on 1y b

dirty record
dl rty file

i .. ~

bit_ fo4
blt_ ;..

I-

._.

-

I
t

!
:

i
j I ,

I
~

! ~
!

i

I
I

I
i

I !

i
I I

I I

FILE TAILE ·gTRY,

nUlllber of records In file

logical r.C4,"4' size

dl se or ·dr.add,ress
of ,last 100'Cll re~rd

disc or dr.-address
of recOrd In fi Ie buffer·

file bas. disc
or ,drum address

...

EOF IEOR . exit ··add res s

fi Ie

name

protect .. sk

FILE BUf.FER
" v.

"-

-

-

-

-

h • •
length
specl·ft ed
by second
word In
file table

The fi 1 e tab Ie cons i sts of one fi fteen-word entry for each fi Ie or

place-holder (11*11) in the FjLES statements. Bit 15 of the first word Is

set if another user had read/write access to the file when It was requested

(except for Axxx users) or if the file is a library file not being accessed

by its CMner. B.i t 15 of the second word Is set when an item is stored in

the buffer, so that ·only records which are changed wi i i be written back to

the disc or drum~ Bit 14 of the second word is set when a record is written

to disc or drum and is used during program termination as a basis for up­

dating the 1ast changed date word in the file's directory entry.

A logical record-sized buffer is associated with each file table entry,

and is accessed through pointers in the entry. An intra-buffer pointer

designates the next portion of the record "to be written or read. A fixed

pointer to the first word not In the buffer acts as a bound on the intra­

buffer pointer.

FILE CONTENTS

There are 4 data types possible in a file. A string has bit 9=1 and the

length in characters in the lowest 7 bits of the first word, followed by the

string packed 2 characters per word. A two-word floating point number has the

upper two bits of the first word different, except for a zero, which has both

words zero. An end-of-file is a -1, and an end-of-record is a-2, in the first

word.

Data written to or read from a file is first exclusively ORed with the

fifteenth word of the file table entry. This has no effect, of course, un1ess

that.word is nonzero. It will be nonzero only if an ASSIGN statement has been

used to specify the file, and the statement included a protect mask parameter.

End-of-file marks, end-of-record marks, and the first word of strings are not

masked". Floating point numbers are masked when they are written to or read

from the file buffer. Strings are masked when the buffer Is read from or

written to the disc or drum.

189

•

Each fi Ie andp.rogr_ en·tryln th.dlrect~ has a word containing the

hour of the year When the entry was last .chan9l4l_ It, 15 necessary to update
, .

this word for files when. prot ... Is te ... lnateCI 'for any of the fo11owing

reasons: no.-.I tennl natlOl1 ,CtfAINlng to a new;·progra ... , error termt nat lon,

abort and when a SLEEP or HltntlATECORIMnd 15 Issued.

The DFCHK -bit .1 n the user '5 t'FLAG ·word In his TTY table Is' set to 1 ·1 f

there were any files statetftentsln the program. this determines whether the

LCD routine will be~lled. ~ It' Is., each file table entry is examined.
, ,

" f bl t 14 of word'2- 1., the file has been wrlt.n on, so the last change date

III.IS t be updated .Th Is bit I s •• ~ by the WRBUF -rout I ne.

The only abnonnitllty In ealllng LCD occurs .'o110..,1n9 an abort. The user

is taken off the queue and re-Insertedwlth priority 0 to run a core resident

routine ca1led ABUCO which writes the user to the swap track,. 'calls lCD. and

returns to the scheduler- to flfttsh .bortlngthe user •

. ' \~ ',;

. "190

Return Stack

RTRNQ+

re turn add re~1 RTNST+bd
For-Stack Entry

pointer to value:
of for-variable :

--~~ va;:--!J
t----

step
------:i

I

size i

--~-~~
l~

BASIC Run-Tim Stacks

, words

. I

.. /

two-word

floattng point

numbers

Program Fragment

<FOR

succeeding
statement

191~
I

the return stack is of fixed

le'ngth, holding from' to 9

one-word entries at any time.

An entry'ls the absolute address

of the statement followIng the

GOSUI which placed the entry on

the stack.

The for-stack is of variable

length, containing one six-word

entry for each for-loop which

is currently active. Since the

limit value and step size are

kept in the entry, they may not

be changed within the for-Joop.

The value of the for-variable is

the ·one kept tn the value table,

so this may be altered by

statements within the for-loop.

LET A ::I B+t*D
~.~' I .- ,

I- __ - ____ ~ __

Temporary

Stack
---'--'--'--'---i

J A

OPTRQ-+ (unused)

J B
I .-... --.------ --.- --'---'-1

start-of I
I formula operator! - .. -----.-----..... - I

I c
,

OPDST-+ j
! 0
r-

+
._------ ---~

(unused)
r-'

PBPTR-).

LWAUS-+ -
i

* " ,
I
I

ava i 1 ~b I-~'-'~s~~~

space I
) --_. -

J

. -------. .----.-----1

OPERATOR/OPERAND STACK FMGHENTS.

THPS~ floating point
~1L __ .!

~ I

!
.! I A

. OPTRQ.~

I ~ B+(cu*nDuse~~ __ n ! j
OPDST-.. i

tr---------;
J start-of- I

I formula operator'
----___ J •

! I (unused) j

I I
PBPTR-..! .. I l ___ .. __ . _. __ . ____ .. _ ._ .. __ .. _ ... _ .. _

I available user i
• I

LWAUS-+~

t------ - .-.-_ -..

OPDST-..!
~--------.------

l (unused)

OPTRQ+j ~
'L~

TEMPORARY
STACK

TEMPORARY
STACK

+PBPTR

All operands (checked words) are addresses (I.e., C represents a pointer to

the value of the simple variable C). Bits 7 - , of an operator entry contain the

operators identifying code (See IBaslc Operators' Table) whIle bits 15-8 contain

the operator's priority. Note the a!ternete-woid structure of the stacks. The

temporary stack holds intermediate values during "the formula evaluation.

- .. -1-:--'-' .. ~-.-.
192 '

BASIC Language~Toce$SOr fables

The two areas of core labelled SBJTB and USER contc;lin the mechanism allowing

different users to exercise different portions of the language processor without

interference. The language processor makes Its subroutine calls to the labels in

the area beginning with USER. The word following a subroutine entry point is an

i ndi rect Jump through the appropriate address I n the area follOili ng SBJTB. When

a user is displaced by the system, his registers are saved at USER and the area of

core from USER to PBPTR,I inclusive Is dumped 'onto his track of the disc. Thus,

a complete record of the language processor's status with respect to him is

preserved. The only thing particular to a user which remains when he Is swapped

out is his own teletype table.

The tables headed by PDFTB ~hichmust be in base page), SYNTB, XECTB, and

FOJT are Jump tables. The method In the las~ three cases is to compute a decision

number, add the base address of the table, and transfer through the entry thus

designated. The pre-defined function table Is used by the formula evaluator to

enter the code for evaluating pre-defined functions.

The tab I es headed by Q.UOTE .ud Me8QS h.ve , •.• ra I uses. The i rent r i es are

explained In the listing and theIr use will be explained In thos routines which

access them. The Error Jump Table' (at SERRS)' Is explained alo~g wi th the error

routi nes.

i
!

j
i
I

I I

! 1
I

l
I
i
I
I

r
i .
I

i
I
I .,
;

I
I
I

,-___ . _---1

s, ,,", E. A'~N t"

~_. _ y'''~~tE~

0v,~ ')
----~

Atlb slA'~.MlNil
'{o ?e.o , ... ,,'" : r--.-

_ .. ~_ .. __ , I

~'~~>. ! EitA6ED .~(i"'~(~-,
.~~~ y. . . . - -I:tooI (I\l.o"t"~.. '

",! I -._....J

n.\Nl

n~
J-

G~\~"'-)

_-___ ..J

(i\
,_ .. __ T __ ._~
I (ou..,1 tJ~'"Q.

: ~F .s1Al \.tJ.\;tl'l.S

l~tJ "~~~(.(I\""

6" 'tD 1 "6lt: "f-
51~ 1 {rRt.N'1 NO'.

I" ,·1 C ~"tf'\ "l~ ~
,AOtKl;~!~

l
/ '?~ilS T \

/ :!.t''J1J4't L'JtE ~
\ "(t'o Ur-;~ ... if"

\ !.,A"1l ,.~(. flit'
\----..,..---

. w"~t,,s;:­
"1\ "' •• 'N~i,)

- - - - O,f2tt'''Y:I''
.. .. ""''-\. ~."\.\,y

',,-~'t!At.i\)? - ~

X
fl~A'" ~ , . tI' PZ~

" ~ ..n"6~f<. ~ ,/'>~)
" /

... It£-k --_._-- - - ._-.. _ ... - .• -- -------.-.--.. -.--- -'----1. 1.-----... ..,
I Nl""e; 10 ""Y11

I
wo t.~ &F .

. S'1A1 £"~t:NT l
'L -. , _-,..-___ .--1

l, c· -. 1-'· r- .- - --_. ------, .
""'" j .seAt,,, foe.' .,/' '.. I ~~9u\(.E I !

//S,"l(M~T>L' "2E:r:~tE"c') "Fo";/J~" Y~·S.11(1~~~NTcjl J
'-.~'N\S"~1)! S'~"iNt~'" I IEf.g'N" ..,nM.

r(' -t ___ •• -_. __ ••. -J . ~'S~U1E ~bt'~
Y ~ .

CD

'N

-,-

/

, ,.- A'~ UAr,y
iJ"~"'~~? .

-----_/

,- - _---.. -. -----
! "t)" E- f> AS 1" I
I I

r.JNc..lIO t~ I
bt:. fiNn ION.

,

--. -_. '._._ .. -'

!

~i'
I

,...---.-- --..... - ~- I
I tlE:"A1~ 9o.."e 1
ii'
I 10 c.o~ !
. S'~ltU"N'f J.

I
~----

,..----~- --
! A\)W\r4l~
i "'C) ''''l~'' 'I\~"
b,~ttl~'ONS

,N(O"'NltIlS '"~
- ~ - tN~ or; £'~'U,,,,-»r

------- -._----
11I1-~ Lfr E- 0
If:, ~ Tt> a;> ~ f41)

i t-~ S ~M.~L.
1'AL".

~D."ON !1 loynS
"'lO t1.~t.. __ _

'--c~~1--'-'

i';~~~",V'~-cE ~-io'~'-~~-n~-
P£ {'(., Ii t\ l\\ .'

f ./

--_--JI

Q&'-uiw,o'\
'SI\"~ eNlI"'y

2;)t IT "'f'o

""LUi: ... l.

woeu (\~.

~"\A 1 "'~\(.. ,."

l>E.c..OA\P, l."i 10 N

r--- -------- -
- .! "RI:PLAl' Yo 'Nli;.k:..I'
_~ to '~M.~L

, 'tf\6\.E.wnR-- ~
; vAtl f~. ~I.~ NA'.'\'i ... _ -··---r----·---

i
/" ,"-

/' t-C) '" -'. r--l

<'. ~t.. .1>1"'1/~~

. 1--
F-\Lc..1' ~ -5'
C.O"~ ~ \J S\.StJ~O

F\\...'f''t Eo ~~'L:r

l-'1tN S T

~~ Sffo~ Ip~",s.. eI,'S ~o

@
/M£tE oW ,~e

0\ -----t- - - - - -~ ~ . O~ ~'-II\'EMt.tJT
r t.l)tI,)n,."""" t.\)~IN'"

f.)(.MCI\..

.L,.Nv" ~ S'""EIIEtJ1 ,.

:N ~1'1 ~ :=> t& &,tT
~ ,." 1t:ff. tJ.',

Pc~ o1»E'tA'o(

I

\ ~y NOW-(.Otl

~'A'ba~ ~UN

(I o~ ~)

SA .. ~ 'PO,tJ'tt.f(

1b ~" .. £S
!a'~'E~~

S('~· 0 \J \: ~-'l

~b'" OJ:.

~, A'\'&M ~."..

%,...~~,.~ -,
l"~,..,~ sY.'1i
\J~Q-I~ ...

\\IS ,.,,, ~E. ...) ------

rP3'----t
~.

201

-

.1 _. ----,
, .;-"'., I A\.. 'i.E I
I ~ '0 \'0 tN '\ i

I TO S yt.\£t) \.. !
,~t>\..~ J

'---_.. -.---

~SYMT

r------ _ .. , _.- ... -

'-AP~t"'b ... ~~
. G:N'tt.y '0

~.....3t-__ • ~YfA6c>\. -. "~\.c. I
i
!

~

i~

\22.)
.. V r

['-114 E; - 't& '*-"~
I .WM60L I

i
I

; L--.:-___

ft. ,..,t.C.lo

;"1"" ll~ ~Q"'"

I w" '" RE.lA' '''' l_ I\bb~t;-:.S

202

r

: e~tl't ~o.,t
. Wt;.lAJ c ~

'" ~'" . • t>l'fII'T

l ':"0"" ~f-n"r
l ,~ HE'" ~,."c.r

I
L- ---:-r-----J

203

""-' - ,- -'-'. - ...

~E"\J~N

.,.

,...--_._--_. -'1

i

--

~-l "\

. ALcofv1)
--...-.- ,

I - . - . . J ---- .---- -­
I 1)E::~ 1 + 0

: I",,.., c.,.. PtA,J" r.J

: A\.Let.A1E-il)
i ~1tTtl ~ ~,~~"'f'
. C~.-, " n, 1:J'S1"'

". -;~-_-"==_" .1.-__

[)!1 ~I\,-r

I

I
! ,

l r-- ~:...--, I
i. MC~€ 10 ~E~,rl.

\i r..£.'F\6 E "J.t' ;

: ~1 ~ 1 (lltN't""' I
--- ----- I

. f,Ao"e , 0 .. ~

s.\, M'...o~ 1~t)LE

wN1Q.t-,

CV>A\.\J~) - . r-
f'·9ia. ... rc,oei'l
(tI.:.", ~~"'"

I ~lf) UIO ar
r. ,"f» '~t"'!. ~ I

! i£i.""" J

r
c:c-Mf"r+ n\tF"

. (t~ .. "" "teA
-: ~'Nt'~ i ':1;1

~,Q.~"{ StMf.o ...

; '~'U.i E~'iY

j

- ~-: ~ 'l'!'i '
.~. . .. t

V~~~,

-i-~~ ___ _
",,"~c.A~b)

ROtECr- "91 ,

)lEe.

VALUe:

/"" -s~-;~~

,'f
i t ~.. f

V
'" a\J~S~-~ " . /I\-\.\.OC.~T€ 2-

~' (O,.z ... ~HJ~ N. ~Ot.\)!> feet
'. VI\~U£ . \

. . '-----r---I
'(

~e;- 'P-;;IN';~-;-O/ ISET Pes "'I"t~1t
LO~"'c)t..l ~"-~,. ~~! \C) ,,~\.U~ l.~

~~~\. ,"SLE J ~YM~" 'T~fJL& 
~~ "tLA1~ 

~~"~"Tt' 

/ 

r--

. , 



I 

l_~ ... 
I" s~, ~M- '{S a," l I i 
I I.LN&-T t\ "NO 'i 
; L.C~tl"L c..~~~"i " 
" of.' -i. L(I..~ I I 
" , ----1 I 
i Uf1>",,(.·t-l . " , 
'. LO,,,,,)t"N 

-



V\ .: 
",-/' 

r---· -- ._.--.---- .. -. "'l 
'. LoA 0 ?f( YS.(.AL i 

" ! O.IMf:,.S,Ct-..\S! _.---; .: 

-L~-£01". ~A. .. ue : 
-T'A6c.e : 

i. .1 

r
~-- -. -f~-,.-r;"""N" ,.ii l 

DIM,"" $Ia':l~ :LN.' 

; V Pr\.\)t: 1 ~e.'-E" 
I i 

L-____ -,-~---' 

I ,).., 
. f /' .... ~O(l ",\. ' 

l·.~t~ 

.. ____ ._L!::' __ '_- ___ _ 
\..01\0. ·~U.c.A."L f) . 

i OIf.AE;N~lbtl5 
I 

. J.. K~'" ~ kC~Ir. ~I" ; 
I ! . 

-..... _._ .. - _ . .,...----' 

I I 

~ .-~-----.--. 
, . . . . I···.. ~ 

. \l."t ~I-\ '(~ ItA\. ! 

Oft.. l."':; 'tiN':' 
3N,\O V~L\J( 

AtEA 

'---------- .. - -- .. -- -_._.- _ .. -? 

"209 1 

K 

! l.tn.'ti"AL It£: l 
I "tf!A~ 10 ! 

'\)N~fIN~O' I 

)
. l)c.I\\~\.-

y l)~C.OM"1 L.~ 

P;tOb"'At.\ 



~. 
~ 5f.T vO".'t.-~-l 
1~ (('N') " .... 

~fll~:N I 
~'(r·ta\.. 1nfJl.E I 

---"'r 
,.~, 

.' "'~'( _ L>" 

... ----,,_ . ....,....,..- .. - . ---
" s., P;tt .~.c.~ ~ 
I A"~ ~ 'ft.JA u.'c. . 

r--.lt t;; 100t~" .. ,.~ =-
f . '''~C.''''''«~D I. I - eM .~. I"t' 

i r~:!~~~~ 
i . c.,-t;.t.~ .... 'N 
I ~l'''Y 
1 

,''''-~U1 c.,,.,,.S''',, N 
('.' 1>f('L~A"£&) .--­

··'".'IM~ .. \.tJ ' 
'-....... ... . y 
,./ .. 

"ltb"\lA~=L~'-l --"'"''''Col.'''' 
./.:~\."'''N .... <.. ~'M''''I.~. >--_ 

" ~,c.,"",,£ b 
" 'MtlfS"r' 

'------'----'1 
~ C.,,,,Pu, £ ~\~E 

. or ~'u,.Arc( 0 I 

I Aie"Y i 
'------__ .... 1 

~ 
r-"'--~---

I (.OMf"'l~ ~11.E I 

I 
f\\ ,~, ar; '" 0 

t'C b ,("f\r-\l(. 
1),r-4EN\ 'o,..S 

i .. --.", 
\J Pb'" f 

c.o, .. I\'o,,) 
i "c.tI·n t. tc.. 1 

• J 

~-"--I~--­--'_.-
~ 

. I 

A 
i 

i. 
! 

ftt,A""b . 
·VNlI€f!'.tJ'O' i 

~_'_J 
, .. ... .... _ .. _-
u,.,.W(~ 

<.. oe.a ... f) fJ 

PO'N't~( 

---

1":'" ._-, ..... _. -"-"'. 
~2toR E:.'.c'T ! 

............--.----.... ~ .... ~ 



, 
I 

I AL.lO('.A"lE-~H~l 
I ~'\l '!f~:l '"\lAl.!"t£ 
I ~H .. & lAP..L~ 
I ! (N'U<>( 

'-. - .. f---
~------, i ---

I i M~\fE 10 )Jt:.~T ! 

I L ~\~~ I 
L ---_._, I 
---

i· 

~211·-· 

___ ...i 

SA'IIE, C\le,iE-N1' 

. !>'A,e~.tN".s 
~(;QIJENC.~ ~ 

_~\lAN(.E 

Pflo&fl~f'\I\. 

C.O~'t It '\ 0 
NE.-.1 ~l A1~E:.N 

\ , 
\ 
t 

I 
I 

I 



t",_Iw.,h. 
It ... ft& k. 
,,,etc",, 

'.A~ .. r .... ,h 
~----------------------------~ 6~)"'.n . 

pwt r,..'., • ..., 
~'(~t ... :--~ ... "",h to .n. 

~ t.""r~ ,,-t., k 



.det-t ,er , 
~er .. oy .... '" it' (. 

~"c •• •• .,tc.., 
"-- ,. .. '1' ,. \'ri-

. . 
: 

. .. 

Sft t •• t.~ 
p .... t ,,~'.CI'; , .~t" MIl' l' . 

~Ir 

t It ... '''6t~ 
~ YUt I,.,t "". I". ~ .. , • c.t".c tc-

"',u.~'& ! t r" t~ r.,. Ii. 
l' 

,Ir 

'- \- t" b· ...... , .. 

12 ;- h \h·~., .. ·•• t 
r,,,,' or .. , ... .,. ,o! elA. 

~ ..... ~t ... 1c. 
(10. ,"" ... to. 

~. .... "_.,, .. ! .. .. 

8----1.J,.bl" . 

l ¥"" -\I".'" "'e. 

N. 

~e. .• ld 
t "\or) t. 
-~ ·~t .. ~ ... 

I:"r 

cefl'\t"tc. 
~t ... , "'Jt. 

~ 

Sfr.:~t. " hI ... \'31. ,~ 
.. .. h' ~ 

...... 
st«,. \11L 

.. ~ .. , J • 
$-........... L.tP.. 

~~ 

Vf\ 

,t .~. th(. 
t.,. t,.~ .. , ? 

• 

~(t(S. 

'us 
.... , .... c.t 

o. 
• """,," .... \0(' ~ ~ 

f .......... ·.l. ... • 

--
213, 
~. 

I 

• 

. 

• 

I 

I .. ~.:: .. \0. r .. 11 t. 
'I-tt'f\ ~ 

1"0 

~ 

r h-.i 

1 
.. 

1 t. _ 

-..... 

. 

tit ... ,,., .. ~ C. 0." .. 
"0 .. h" ht" U'!w'I~!t 

• 

.... ""'e, ,. .. "tt .. . 
. ,,"" I: • ,.n" ,., . 

bp , • "' • ., I f'. it \ e. 
i----a;, v .. \- ... ~ 

to', \0..... ... .... , ~~ 

p<--._- >-----
,,,\:er -.o~ .. c.\\ 
~~ ~. 'i wk ,., 

\~. '""r't'1~ h"'t 

~ 

~A""l I,~,t ... v",t,,€ II\. 

f •• ~V·I • 
--, 



214 

R----t t('''t\t 0.. 

t"v~bf~ 

,,~, ", ,. t 
.~rw\'" ~.r 
"t. t .. 

~ ,n ,"r,f.\- ,,~ 

\h''"J ... t" 
., I ... ro"'~ • 

"t vA~''''''e.. 
.. A)r l H 

pre. i'tt..'r <1-
~.r Slr1n, 
t Y'#-P\" Ssf.' ... 

L----------.:.-----------f It ... , \01-, r t' 

~,t: ,,),,c~ 'J 
,tc ,. "" 1 ......... , ... n 



· ,~t n@"t 
~----------------~. l ~f!.r\_n_~_..J 

..... ,t 
"" .... ')t ".h/. - ,.~'I. t)~.e c1 

~T'+~' ,t&n" 
0'" 'T,It. 

l---III""'.f: .... t ')t -e 
etff."f.~,)Y 

, 

M--__ II..o.(~ ___ )-V-..:-S---~·---< 

<2flt-C --..... \ :;~~V; 
\ -...... 

215 



/~ 
, \ 

i P~'NT 

~I"'C., 

~
E" l.-~~~ 1 ~l 

Atj t. ~ tlts.,-

, .s,,~~e In j 

I 
"~ 

/' 5E.Utlt> .......... 

< ~\)~£.,"~ 

r-~ 
i tit-I" ~ (I 

6t1' "bf)t2t~.s 

e~ ~fi1\o~,.". 

f\""'D D~ 1\1-,. 

'-£M' \::;, \ ... r 
OP\:i.ANi)} ,6:.'") 

S,LW&) Itl:-
"c.M ~ 0 

L-__ -,-_.-.. =.-=--___ .. __ ..... _ .. _________ --==-_ 
A~ F liST 
~\Ja$£.tt"," 

8--7 ~lR tN' 

-, 
216 

J 



".",d """:I(t 
0,... " .. t ... 

-----.--;-

"'. 

I"''''~ .. u 
t---..... _ t'YI',,' • Ie! ........ l ~ 

... c.. a.\-... , d 

J 
( 

" .. tG .. ~. 

4ft' r. 1'- ." \: t. 

r ... ~~ 
t,.te..,",.,t \, 

@ .. 

tv" 



ut I., no ,., 

... t t~~ ~.u 
c ... ,-l'-,·t 

':t4! t J03t1P 

.... -----... ~·~.",,~n \ '0'" 
", .. -t~, " 

o rH'" t •• ft f-o ",--..( 
, .. ·t ....... ".l-.,,,,, 

f ... ,,. ~~vrcf. 
r-----------~~ff .. f~ ~r 

~t1,." ... t. L."t 

• 

f. "V. , ",. ~ c. 
~c. ••• " 
~.t,. ... vt ... 

... ~ t t".p 
t', \" ..... l ..... 
..... ",t. r ',,_ \-l H. 

I , 

SU' ~,.. 1 ~,,"' .. f.C 

Clof(.k. ~ ~-' r 
(oJ ... ,)~\.·,,,, h\: 

~'Co i •• " t-o i 
~--~ ~----~ .... ~h fJ2t .,. .... .:. 

c .... " ... .t ..... cJ..~c:k f .. " 
.... ---1(1 ........ \,,, ... 1 

t.·,..t .. \,· •• -·b, S 
M----1' "''''t •. ~ ~'1 ." 

, ...... ,y t".~\lC t: 

,nl, 

P"~p··~~ 
1--..... d ~~t=' ... ~ bo f\ 

~G..t",;. ox 

\t.f: f.~#r 
.r .. Y .... " .. .Jn t!) 
Yt "I.. ..... ·d .. 'f.l".t: 



'tY·II'\~r~\e.. 

t.t,,,,,,..t" 

. \c't t •• , ~ 
'.''1 S',,~rc e. 
It" e·,lt t" ... ~ 

"", ... '1""-' 1',..,. r N.·'V<' 

. ,vt' fl'Vet" 
". ~ eo ~ to r • cr 
~ ... I. ...... "t",(t \ 

, 

\e.t I •• " t CI 

t ,>'" "lot dt",t.,t---~ 
~.t .,),,·t t~@ 

219 

~(...oh .. r'v", t 
)-----<11( y .... , ,y d ... t . 

.... A ~oI,lHt. 

pt.f ~."...., 
... f, .. , to- ,\"t ~ ~ So 

~~ " ...... r ca'.., ... " 

yd4.4\ ~~ c·jr~ 
~t.r.,., Co ye . 



-.. . _. - -... -'---1 
£"ALvATf" 
rJ"~ t&e" ~ 

t!..\-\Act Q.c.T€ as 
.N \Io.I"""t 

CLfAQ. Air/" '-1 
--~ ?lAbS GtoeA<'" I 

T;:~;' _.~'" I 

i 



·--, 
( \ 
\ 3 / 

-----J~~ 
; "\!t..~E~F~·~ 

D€"L-t_."l'"l?o.. 

{
'Nl:.~A&"'% i£ 

--'- ,"t-AG-S. '-O~~ 

-I. -'-0 ~~(l. W'A' 

_.I S~(:-: ,{\( "f~1 0,", 

r I'J I t"l,..)\ .~~F. 

i=oi 411fT C; l""AC-~ 

?\)IN~1t. ,--=\N I) 

L.",) A;;;~e:.:~ 
,.~ Nr ,- UtA"- • 

-~ 
L~-~-~~~ 

(-~f)~l~. CV\ 

" .l \ l I 

t I' f\i(1\ (r 

.%NtQ F ~F~ 

S"Q.rN~ 

L M,IN~ J 
--l ..... ----'!.~ _ _,,-

221 

Tf'oIc:..(lf' ..... r rJT 

~.(~tt. 
f. "'-\ IN TC::. ~l. ~ I) 

e.t.. ... f\ ~6N~<= 
\:S(,.A .. ,,,- (::: l.A6-

. L.t>A \.) ~ ~'AQ 

o N'I'O F=f) O"",IST 

I 'TAu:. AN:!> 
~·"'lt.tl e-~F -..IT 

; S ;:>0- N'f"'EQ. 

.... ___ ~ ~ AAtl,orTT it 

&hJ('f'1£ 
" (II) .-

"r"~~ 
-:r f'ltt'fW\f rJT 

S;~::r-N ~ 

~,...a'~it A~II) 

C~QA("?'f'(' 

e.ouNi£.Q. 
1.---

~.p~ < r;; !NC-

", ~./ l' 1\1 0 

: lZeSPt 

j 'DIe l. ! ~ '"l'C? e.. 

~''''\~a. 



: 4)f T .:u~.E 
, I ! ~{.\NIr F"1.A& 

L ____ -------.J 

( mtJSk our 

{'I ( ,-1 

. (. ~l~ll. '\ .. _0. __ . __ 

----.... 

222 

, "" 4 e", E-.,JT' 

S"Hl XNG. 

Pb, .... Tfe. 



~-r~3 

-------1-------_. 
1r..JE6A"i(.. ~~T 
. To Irvv.(A,e 
I 
, , '\!~G.i:- (4. Al'ly 

I o:;.~(t£ 'rJ 

__ r·:-{.,., .... , ~T~( Ie 

r 

223 

A\:)~ ilf o~T 

""10 vO'S'T- O£t. 

\->o),..n- 'D 
(!~ ~"'1"'£Q 

AvD 'ZfP(., I 
't'O tl'f" D£t .... 1\­

p",.,,- 0 
e Ovt·; ,'~. 

L~~~a'~mlQ 
o::}~~~~}~ 

:r f'l tel e til f'r .. j7 

S"tcz.:rN Go. ~~ 
s.\'l"'l C It 

POI ,-J'''~fi!S 

S£T 
F,..,p of' 
~~ 

-Itt j:!jiL/t:. 



~( I rVtTl/h ... , JG 

~..,-n La( 

A'.--.J·.((l. 

$-ra~ N Go 

~1,.f\t(;C.. l __ . __ . ___ ~ 

" /-%= ~ "t::"\ 

~S~RT~ 

'l;;~ __ 
SQ '1£ tt:r.~ t-\ 

f'f'\ A "'"" "$ Po 
• 0\7 {~ \ (a tlSE 

"I'-lb 'r-R 

'. ~ '(\'.Jl.""t "i!:'U' /Ne. 

t 

t 
t 

J 

~, A ' .. I 

224 

S"Avf:. 

e'NAC " 

F 't"~lItif .rr 

FiC .. A '-. I 

I ...... <;:r.&,J JI 
------~ -_ ... -.- .. 

~ "'-A.€ t\'\E ,JT 
"r~~ 

~N'"l.SSA 

SAllE N F:;-l 
~Gf4 I 

~A~$S~ 

SA .. -=.. 
t..DUoJ 

...... ~-N~~c:. 
~'W". 

e'~N£NI 

.- .. __ .. f.-- ... __ 

\I:L (..-?i1" OIJ~ 
~.:t:-;-



Yl'\f)ICf- ,T ~ 

~tlq'lr.I"v(-~ 

/1€7VtlrJ 

r----

[
._.-
LO~ 0 A 

. . ;;>ue.OV"-

.-~ 

-OUT t~---·\ 
( Ov"tPur 
, f\ \ ..I, i '.J \' 

\. (' t '''v~ If 

-r ,.1 t (1 r if' ( ,.i' 
S~c..lL 

l~IN T€rl. 

\ 
\ 

(nA~f il 

Ii 
"·,..,e ~,~O 

1----

225 



i r.~~L.V~,,[ 

.. N E 'IC."'i 

\\ i: ~ (~ .t~SI 0 

i 
i 

./ .' . 
/ . -,0., b-\ 

,"'" ':>--;-(\(" A 

rN~C(-~// 

I'll.:) 

r ._----

['..2 (2(llt 

"9O(lF 1(" fl r rtrf' 
fh,.,v "t:..t"ftae .. €W>I-r' 

f'~"-"'~ ~~t. 
'Po, .... ~I'ta.. 

'- f ~%I 

f 
I 

! 

\f\)% ~"}I I 
-- ----r-·J I 

OV"r Co. Q.. \ i 
\ } \,"'''-----''-

i 

/;' 

226 



f. r I, I :1 1 .') I ~ l r 

1 
.1 

.' F, 1\) ·t'· 

~"~.: .. 

.. __ .. _1 IfE S 
. -.. ----.- ---'---1 

LS;-. £ '\20~- I 
r ~f' SIC,..' e'1 

Pt.'.-J1Irv, QI'4(' kj 
Glf\ .rt, 1\ ... 0 !.r, ~ 

I Ft A c,. "J;,. PI ''''O_~ 

~-~ 

:CN~ MG,..rr 

'Qu\'\e·".. 
'?& . ...rl .. .,. 

227 

. /1'-i);::;: t \ 

IfnPt~ E MVMG$tt \ 

\ ~iF""\'.lf'",l ! 
\ ' 

'.J ~ ,oj [;r , 
\..-

S~'.J€, NV",a~Ci 

~ ~1" ... 1·1~ i 
S~r:-~.P~~ 

/Gj"""l" D 6- \ 
Ir;e:t \..G~QI~-~ 

t:tr,,~.,. ~ N \) I IIE------
~\JfI'\9(.\(t O~· " 

---T---..-1 

: &tN"ff''''''+-- rr 
~" 

i f)~c1I 
I __ 
r-------l-, 
I ~:r- : 
• I "" "''' """ 'lot '" i ~(;I;t'l' I 'i3.-J-\' \ t-r 

r---" . --:\ 
I~N~.Q~ ",,0 f,../'j' . 

I ~~..,.. ~Q/""""\t'V" ' 
,,~!> 

'at,." t~~ i 
~---.--~.---.j 

~, 
" 

I 

l 



i '---_--, __ J 

'. 1a-4\"'t S~ >-----~ 
""~$ .' 

r r'I t a( 1..,/.,;-1 
~ f'Ad, 
~/Njf'tZ. 

---.ok 
.. / 

~) 

228 

Lof'l;:--l 
)3c..AtJ"- J 

OV'" ~ tJ T" 
\ ~().JF 
\_ ('H~I\:~ 

O€car~f'~.J 
\3t.~,.J" 

tfN,..,1fa .. @-. 

~~Of 'w 
~~f.:It.."T' F't .. 11) 

l:. ... t.a ~ ('r.,,.rr 
~"'tfII( tt 

"'al-N~2. 



1"0 
r'~~ ('(I {" (.~ j , 'T 

.NUE~e,..' 
~~.-r 

("»0 , .... "t#f' 

229 

.Df ~ (?f" ~ F .,!"'t 

DE'41~t 

E APor.f .11 
'--__ -..-___ .. _J 

t 
I 
I 



't~S SHOU",J) ~~~ I 
Ptr.",,"tf' 0 . k O I 
.. ,../s)j.)Vl D ... '........ I. 

'" /', ~6 • .} Sf' ' NO 

f 
............ : .. (';~. Ai" Ali ,'J'-------~----~ 

'" r"" rt '= /,. 

·'/Ye!J 

""H~ 

S:r.6....\ 

/:~~~-\ 
I -

230 

to~o 
..,... ... 6 
'k~n-,a. 

\JoINT' 



r------->-· 
I 
I 
I 
i 
i 
I 

.fI. 

o---lll~_, 

\ ou"'SL \ 
\ OV1'OVI ~f"p("", 
\\.:,l ANt'':. f\O'll) 

\::r r o
' ~ t1 ~ ,.....l< ,.rr- 0 

\ S'rf'\ C "0 -,>;).,4""!·ifi;,j' 

~ --- 1'"-

I 
~Ii\~';;;~~-Jl 
L 0 o· __ ---

l---------~--~------=r 

231 



i 
! , 

v 
C. d 7 

.\ W. .;:, i , ,,, .. f 

p\, II> ~f"-' C· (~ I 
t;)fi. ........ /1'. ''''.'''.'' iT J' 
I?\. , , 'C'v..i l-,tiS 

- '. . . , .. - -... 

~t~'" 
..... ",.~ 

:i
/F;:;/~ 

NO 

.- ._. --.~ 
1)1 L. t _._-- •. - .-., \ 

I IY\ fW I: N\': 0-..(.:",7 ~(. \ 

IJ .. ;- 7 'AlE' ,. , ) 

.1 f'l ... lt!, I 

~ .. J.~ 
I , 

I 
5 A-.J E - IIJV1V\C3F~ : 

o~ '\, """,r:; I 

l ···~~-:-~~D 1 

--- --~ 

r---" --, 

I (lOr '.J f. i' .. ' 
r i'~ __ 
I t \ ~t JJ. I 
L __ ~ ..... ~ 
I ':1-0\-:>..- IN ~\.to,~("! 

bU\\ N ~'t> J 
-:r" ,..I~ (; •• "I'\E:N'"'\ 

,,~,.'.\., t .. '?c .• '''', 
\ :r (, :j ~ 0,"1""'-41.,. 

.- -'-~ , 

i~,,~ ')1"~ L.f'n.,.: f'~ > 
,:,crr /,.-­

,.-

"':"0 

j 

i 
~ 

I 
i 

1 
i 

I 
I 

I 
i 
I 
I 

1 

232 

[5 '"J L.o-f\ t> 
~ 

~ E fl.o 

... L-=~l 
~N" E. -fl."\ "'to : 
A~e:a f)~l) 

S~ (lE '" "'" 

Q...,"~1V 

oeett€", errr 

Gf,;Y~ \ 

""f., ) 
~/J: ( ... ,',\ / 

... ___ ., __ ._._1 

I 
t 

I 
f 

o .~~~ ". 'f ~1Pr L-________ .-______ ~~ 

~"'p :r Nt' Ie,... e".rT 
a,-tfer ?Oll.;t-, .. 

• O' S 'N ~ 17''''1 



t 
! 

(3;J 
'-_0/ 

\ 

... t-. -... -----·-·1 

·r~v"'" \It,.,. o{ 1t..8,,,,, : 
bl~f'It~ -:. ... ~bt't ! 
o~ \J ..... VStl 0" I 

I..~ "l~~I~;-~~~~.~J 

J<!'f!t'-t'_ ... ,iT' 

I .lE'~"-N, 'atAi'I~ 
! ~ O,'.;'"j r~ III t) s;,~T' . 

l
~... \l,'6- '10 SO 

I"I'VIC i-"f.; 
.... -~ . -_. __ ... -

=: (/) 

¥ 
I 
I 

! 
N"''M~ f? 
~~~~.,. 

~YDJN1~~

ll4

233

~ ,

f
~

f
I
t

I

;

I

~
f
l
I

,
~
!
i

I
j
i

I

t
I
t
I

I
!

t
!

I

I
'-'"

I $EO 1:<:i:C;. T -l

~ t~v~;~ _____ ..j
I N\JW\~e.(Z.. J¥
G0A'N~~ I ~

I 1'01'A I,. t:f 5

L--~-r---~

234

c::.~&.N ~ t' ~i>.(I i?

·t\t~' 't1.l;.6~""

'I~~

r:= --I
1 S~ l):teJ :r- --;- I
i CO\.,1 f'",tHl "T'O' I
I I
I 'tffO.L I'JUVV'l6E- ~ I
L ~ ___ D-r-'~ __ --..l

~
.'-'

(v1J"",f!Jr'~ O~

I
Q.(·A~~ PP:t\aoE'S

, -ieeo

I

I)J:I~" C"ou,.".,,;l
I

I~~"O~' N\ITfIO~(l!
c.t '~' .. • .t-rtr !

\)tl/,JT +- I

NUfW\8~-Q I>t'
bL" Nt''' ~ IVVW\Q~

0'=' D's b~,c.
'POI""'- - ,

'-1
i
I
l.

j
I
1

I
I
I ,

I
I
t
l

D.:i:()T\ (' ov nHt

-:. tVV\lY'~(;:I't I)-t"

t>'~ o-t'"'"f'\""
~~-'~A~~.'~~ J

r
------, --*. 0'--- " -- -

f\JVW\ e ~ C2.

'O-\" bl" .-Jar!

L ~r---J

Q)
\.. /'

I

_ .• l~~
I~~:~::b>
i. l~'>-l
i r ~F.\ It F Pt.
! [. ' I 'H) ~6,i (1)'-""1

~. L ~ L~_~..J
I ,

. (j \J ',- GL,
I - .. - .. _ _ .. -___ .-",

\~~~~~~;~~ /fr~.~.~1J'
\'J:'I"'I t fI r-""{N""

\ \ 7~" It "'~1I .. 1f

~ [:;Q ~; ~ ~~'l
i L~;:~~f~~~

L_~~;N~~;;~
fll' ('> ~ '.J

- --- - .---

C' ON "<I f= 01' -T,>

f\ S~ 1I f'\ ... ' \)

c:. ",it t'= ' r$

NIJ",ef({ dw-f~·"(

235

~
~c o~

:Pl.,,.,'" U~ ,,,,G, .
~M'i' mE~-f

_"r:
C.1..~An.

E" PCl F. So 51 .,.,.J
t.. o-.a 't'1a4-

""- '0
t.~Q~cr~~

CO \Iw,t Q..

P.€-s~ S~C'l~,..>~

Pt>.,.,1t? e ",
(3£., "'IN" tl'i

~'I:~~

, -

1
i

j ! r N~6F ""ENl

, t%Q-A<..""~a.
~

fovrJ1T 2.

236

:t:N~flC!l M..e..,or
'De.u"" I ~ 0-

~'N'te{l.

eOft\AI~
~1'£C.(~

~'lO""'.~"
l.£Pt- PM.e ..
~t> :r

·~~e ~

i'Pn',,,o~

c..o\lYlolT

.::rNUtE"'-Cf ... "1'

ST'1lJ:.~c;..

1=b"",TE,,,"

fomAlt"E.
c~&."'tt e.CN

IJP 1'0 ~O %"""'''01
,.£~ P"4~.
~D s iT

'S"oae "'nEIO
C1EP:t-,,.,, ..)

e~NT'

r·· ---
-r N~(lf'l'r ~
DFtl t't-\~a.

~,,..T

'5e-,
::La O(\f

r3"'#\f'o\,,
FL1'(,.

!

'I'SFi~"'.
~U'V~wt ~J>

~NV~
Po/~ t£e

»

2M

")

(l.ESfT' Sl«' ~"
i'O, N~ (l I\.,s 1)

~MNAttftL
LOVY'-lTE' A..

/"

/AtL.
<:/; l-lA(lf"/~(2 S-

'" uS,!,;) ,,/
~ /'

--l~
D.s~c'" \

<r-'f ll) ri ~ ~T \
/

or(ll'\".l(:a .'

L. ~ .. j.

r
--S&' I

~(~....,cr(lE !

of5 IT"

\/OINI ,0 ~
-_" "'PF't , tr-. tf' f1;. '

~::o
/~~l.- ",f 5

~(' ~AttI\ITf~~
"",- \J$f ',.)/.,

"'" ,/ 'r
~

239

l.oA 0 .

SAv£ 0 J
N\)Mat~_

Ov't (>u(A ._-\

~Q. -I-F ;'

-'l'~-
azest:T" Nv",efil

~~,~ ~~I!"l'''r
"-NO ~~,.. o.r,,-;r
{! OVN"Tt"e. ~ ,

I) r~ ~T t:~.('~£ \
Po. ",' t ... ;-!') ..,~ p
0(\.'" j t,....o ~T)

sJ.1:6,T

r
--·--·- _- 'l
SeT 1"VMt..
~6 iT" COJJf'

J't)~

. i: .

r

t
I
I

J
240

-_,
:r-NC~ £ 'f't\t i\ (
~ \I-\'..f~.,. ~-?o,,,,i'£ A.\

~t~ \,) -~6;"t J' t ca 0,,).,.J"'l ~ ("

~

Lo-A 0 A

t 'N~· e:"EE 0

241

t*M.

G
--·'-·-l t.O A r> p.

tAU '116£

i20vcz ,..J
-._---. --~ ... -"

(;~fB!~)

.I ('1~(:>.'f'ne,.i7"

I ;:) \(' (,' (.-:-
. c..,-,·t"" ' ;' .

\-")Ir/~\r

rtI itHrt ,.,., • ... --

[tJ~·~:~··~ ·l:Cio;::~ __ _

_ ~LA_;~:: .. _ .. 1

I

1>C~Q("""'f ,.jI

~f"v.:t- J"l"I 0)

t.o'·J1'l\"

242

[~~~~~ .. ,....-1
tJ\J"'C"f'\\!.' .'. I

~'J ~
--:::::Jt~.~~--.
DE'~~f: '/'f'\€"""-'-:

{?'" ?1 fool ~ ,...j\-

to" ~/'I E.

SEt
e. ",,~(?,:)C· f.'. it

l C\).,.i\-

. "r""" C'

243

tt)N"Et2..1
~

uQPE~~A\£

r-- -. . -_._,
n,A~~

o \oJ'- L.. O\.J i

t. !WI ('! A< 't ~ (l.. I

----------~~-----.---~

~r:~n~:~~.~-· Ir-------------Ne.·r. i):t ~ ~

,r" l.~, .~ -1'(..
..... _. --~

" ./

"'1' i~S
_ .. _., t "-'--1
I 0'(£ QLA'\ .

I ~ 0 :

------~
,

-'-' . ----""/

N\)"MP ... Ir.«

~·.J\fp.r

'9 .. ,...,'"tE' 0..

-- ..••.... - .. -..... __ .J

~~£""E .. r
N1trw\~AZ crt'

C!t.:ANt'~

244

/" £Qt·o(t '\2£r.,!~ ..)

,.. 0 "P ... ,

:1: t'\ t.'2~ lOY' ~,.rr 'I

~ct,,,,,A"

___ €_x_ 1: .,,..1

'/

tIiALvA.1E

F('t<A\'JL~

i ______ ... <

I
I
I

--.-~
~-.-.---'- --- ---I

l f"Af) Nl>Miut I
I

, IN c,..\ "Nblb ') :

I E-'j. 'i 10
\ (\> ""' ~2 _____ '

I

I

,-

1 f:VS1A ~ 0

I
I
i

, -
~ .-._._ .. __ .- -~--~-- ~

245

E------+--.---- .. --.

...,
S6'P7~ ::> .. e:'I1 :
~L~te\ ~fIJ"f j L~I) 1

N V"" 6ti ItJ I

(~ t\Nt> (6) ;
[.. _-.J

. > "-.

"----_ .. _- _._--,,'

2000C Loader

The 2000C TSB Loader isa separate program which runs on the

system computer. It is explicitly loaded by the operator to perform

the following functions:

1) Generate a new system from paper tapes.

2) Update an existing disc resident system using new paper tapes.

3) Reload a system from magnetic tape.

4) Restore the drum resident bootstrap routines.

5) Resuscitate a system that has crashed because of certain hardware

or software failures.

The loader is implicitly loaded when the operator requests any of

the following functions:

6) A normal load from disc of a slept system.

7) A selective load.

8) A selective dump.

9) A sleep or hibernate.

In addition, the loader contains the moving head disc driver for

the system, which remains in core at all times.

The operation of the loader for each of these uses may be under-

stood by using the following brief descriptions, the following flow­

charts, and the listing.

1) The loader generates the system tables by asking the configuration

option questions. Discs are checked for labels and the drum

resident tables are written out. The first system record is read,

and, using it, enough disc space Is reserved for the system. The

iead from paper tape and written to disc.

216

The system library routines are handled by the SYSLB routine,

which puts them on the disc. The remainder of the system is written

out afterwords. The user swap areas are initialized and the DATE-TIME

sequence is entered.

2) Paper tape update uses only the paper tape load section of the

load sequence. It does not change any disc area other than the

system code.

3) Magnetic tape load is similar to paper tape load except that

certain tables are read from tape rather than being initialized.

Also, after the system has been written to disc, the mag tape

loading section is entered to load the users library.

4) The loader may be entered at 14000B to restore the bootstrap

loaders to the drum. The bootstrap sequence is entered after

they have been written.

5) When the system tables are intact (both in core and on the drum)

but the system cannot be slept normally, the loader may be loaded

and started at 3000B to force the sleep procedure to occur.

6) The bootstrap procedure calls in the loader which copies system
,

information to the drum, reads in the system, and enters the

DATE-TIME sequence.

247

7) If the selective load option Is selected while loading, the mag

tape load section performs the load and continues the load process

as if it were a reload from mag tape.

8) Selective dump uses the mag tape dump section of the loader to

generate a tape containing specified user library entries.

9) The sleep process first copies all of the system tables and

sanctified files from the drum and core to the disc. Then, if

sleep or dump has been specified, the system and system tables

are dumped in their entirety to mage tape and the mag tape dump

section is entered to dump the user library. If sleep, only

entries changed since the last hibernate are dumped. If hibernate,

all entries are dumped.

248

A different version of the 2000C Loader exists for each different

type of moving head disc $upported. Except for the disc driver and

several configuration options default values, these loaders are identical.

This section contains brief descriptions of minor routines in the

10ader and flowcharts for the more complicated ones.

249

TTY 35

The loader teletype driver Is a non-Interrupt driver which provides

output and input capabilities on the console (usually an ASR 35).
On output requests, printing Is completed before control is returned

to the caller. On Input requests, control is not returned until

the operator has typed a carriage return. Chara~ter backup (using

the left arrow) and 1 ine cancel1atlon (using the escape kayl are

handled internally to the driver.

DRUMP

The loader drum driver is a non-interrupt driver which provides

output and input capabilities on drums. The driver decodes the

specified drum address into the proper select code, track, and

sector numbers using the 7TBL part of the equipment table. Any

drum errors are retried by the driver up to 100 times. Continued

failure causes a halt (if DISCS is zero) or a skip return (If DISCS

is an RSS) with an error message printed.

DISCZ

This routine provides the necessary environment for the moving

head disk driver and transfers Input/output/seek requests to the actual

driver.

Since the interrupt system must be enabled for the disk driver, this

is done in DISCZ.

In conjunction with the GMQ,BD routine, DISCZ provides a buffer for disk

driver generated error messages an~ prints any such errors that occur.

250

JOSE

This short routine sets up ill Interrupt iocatlons associated with

moving head disks to c~11 the driver Interrupt processor.

SELCP

Enter with the first character in (A). routine finds a two digit octal

number in the range [SELCO, I , SELCO+l,lj. errors are printed. exit

to P+3. otherwise return to p+4 with the integer in (8) and the next

character in (A).

GTONO

This routine searches the input; record for "_II followed by a disk

number followed by a comma. If A - -1 when called, a check is made

to ensure that the specified unit exists. Errors are printed, exit

to P+l. Otherwise, return with number in (A) to P+2.

SETDS

The SETDS routine updates the drum table and trax tables given the

logical drum number and the new select code.

STDIS

This routine updates the disk table and interrupt locations given the·

logical disk number and the new select code and unit number.

GTTRK

This routine searches the AOT for a full drum track. The starting

location is given in (A) (0 sez full search). No find causes an

error (insufficient drum space) and loading is terminated. The entry

is removed from the ADT.

151

FAPD

This routine searches t~ADT for 8 ,Iece 0.' dr&ll space of specified

size. No find causes no ~klp retur-n. On find, the space Is removed

and the return Is s~"I.,~klp.

FNZSC

This routine advances TEMP3 to· ' .. nUt entry in the disk EQT

that contains a vall:d disk. No flncl.sets ~int..r to first entry,

no skip return. A find sets other pointers and gives a single skip

return.

ROLBL and WTLBL

These routines calculate the address ;of a specified disk label and

ca II D I SCZ to read or wr t te t. label,.

SDADT

Th is rout i ne Is ca 11 ed by FSDAD', to . rellOve ,space f ran the ADT I n core.

COATE

Th is rout i ne is used to a I I ocai. d I stt space for the tab I es. 8K is

allocated for each track of a table.

GNDAT

GNDAT Is used when system space Is being allocated. It writes out the

current disk ADT and reads In another. If no other exists, exit Is to

the out of storage err.or and load Ing 15 termi'nat«l.

BUADT

BUADT uses the trax t~ble to generate the.~T for all of the drum

space.

RTADT

This routine is uSed by ClDT t.~ return any unused quarter tracks to

the in core ADT.

Reop

RCOP asks "configuration options" and watts for an answer of yes or

no. The variable COFLG Is set to 0 for no and non-zero for yes. Return

is single skip for yes.

RQINT

This routine packs a one or two digit decimal integer in a specified

range. An i nva 11 d Input pr i nts III LLEGAL 11tPUT'" and returns to P+ 1 •

A s impJe CR returns' to P+2. Otherwise, return to P+3 with the integer

in (A).

CFFW

CFFW converts' the first 4 words of a direclory entry (tD and NAME)

into pr i ntab' e asc I i format . .I n a spec I f i ed buffer.

GHQBD

This routine provides a placebq~ for ·the disk driver when it asks for

an error message buffer. Elther·thls routine or DISCZ will print out

the message.

WDLTD
it:

This routine asks the qu.~tlon':;"ISK OPERATING SYSTEM PRESENT?"

(unless no configuration optlo"*) and uses this bit of infonmation

to place the bID drum boot&trai'S onto the4rum. If a properly

configures DOS exists, :_{~$trap will not be affected; however,
it iss till the operator t., respeins I bill ty to loclt any other

tracks used by DOS.

WOLfE

This routine writes tt.e 'lnal disk bootstrap onto each of the moving
head disks.

BSBSO

BSBSO is the standard RTE. DOS and TS8.bootstrap for drum sector zero.

If switch' is up wh,en it Is run, It reads In sector 2, otherwise
sector 1, and Jumps to tht. first location of that sector.

BSLDR

BSLDR Is the TSB bqotstrap ~at resides on sector 1 (sector 2, also,

if no DIS). t t reads the~~na 1 cll.~ ~t •• r'.p ,frent block 1 of the
moving head disk In cod. 17 unit ,I. The code In this loader was
or ig ina i iy meent to ,be r~d In at an ,4,r igln of 1008. (BSORG EQU 10(8).
Later versions of ehe loider load Itat 14&1oa but the special construe-

tlon remains.

~
'2M' 41 ' ,f : , ",J "- ~

I<

RESU

This section of code is used for· the resusJtation process. It

reads in the system segment table and the OAT and calls the sleep

section.

EOTCH

This routine checks for an .~~fof tape (during Hag Tape Sleep

operations). It is called when end of tape is not allowable

(before first file mark). An end of tape prints a tape too short

message and halts.. Pressing run restarts the dump ..

OREN - ENSU

The OREN ·routine is used to Insert a 12 word directory entry into

the directory. If the proper directory track Is full. ENSU is

called to redistribute the dlr. tracks. See the system documentation

for supersave for a descr Ipt Ion of Its operatlin .. ·

t 25$

MLS

Iljly,.! ;"f"1~""''''--'''
.:

Hflrc. .,...,. ..

;,.,,'f..;itl:yt +: __ '1>

{.

t­
i
1-

f;J;.'., ' ;'

,; '-1-; ',.: .~+
,~. .

",' •. :

.)

\.

rr,u
".II<i!:'M{ ,.",,,,"

~
", 'IV' "" .. 1'

1- • .,I~ J;<;c. a----<..

se f "'I' Q..

"~o..J 1'1),
p4C I: 1~.1 ,. #J

"1 .. oI~4. .,...

\ .

MlS

--r---.
. :l ~

t , .

".

i,. ,,'i.e- I.

,.' ,,,,
",'IIe?1 uNI+

'fll't "er I,

~"
.,,111#

t' "disc ,.c.f~.~<1

l>e. ;IV 17, t:'
I

3."" U'"

1:. .. q''1'''et,.1l """(

t;,'.'~ ti,·,/c"
"" ".(d ''''l.el,

~" II Ie ~
41"',4 (0" ; •. 1-

'd.~(; N~t

I.i.eft.' f:.... 7s/S"

: 't~4~e d l ! it.
.f ~1 eqr.

,
l

V

~-

l'*,t
f

''''I'I-J ,.~~S

14M."c.! soC{/4I.,d

"'#/If.f'~'C a/~,
1I,;c "rt1.,·'J~S

d#lW..oJI,. "ct/..,~S

o~ ". T. 10-.4.1
tiN e.1..A>,~tI Gnt

M.'T: to",.}

- - --:=-:... ___ ..J

write ~"_
I'tbT .,..,. -IrlJ,...

fi,,4 1-1.. '" u' .,

4v •• ·~'.. hltJeir 3->--_ - ~~ ,".-.". -t.,T,

~

"ttJIJI
~.~ .

HLS

,~II-I .. rl"
fM-Nt-, ~

"."~fI;$

• .S.' #ft1

'I.P ~ "1.4
,;,..~y Fn-
.,.... M .. T. f-o-l-4c.

d",., /,
IIi ,.1v.1I:J iJflllf.'

...... " is /let
e.p;.tI /'u ••

~~;~~
,'~~

:.~

o.·· ... ~.·;
0'

I6S
I

Hi. S

.Jr.",.

." ,

• ~~ •• f

"

. ,', . . '

:.; ...

:--... .
. t:, :
; twtII ;

,_, I~III iN, 01"

'lit.. ~ «.too , ; tNt Ie.
IlJ4tl I-I.e. U, • .,
/, ,y I"~

lIt£i ~l:-'"

" ~~ dJ.1t

• .,.. ""'oS 4

1IfAx,'",,,1If INif:~(
.f;3. tie +«." I<IJ
~y +14. ~;3. '

'61'· 14ft IIJ~~~
410 II 'Ia 6/" 14"
'lr, rel'4:"'''''~
eoll'C nt ..

lo~

'\

hl.S

Hl. S

... --
,,·f (~'I<""t: 14~

:-., II •

"'M~
1/11'10 ... ,,"

• Foil 4 IW" ~ ?

'I1'.-./.4 fe. '
"'" It..e ell '" rot!.,.,
Ji f"ecfory ~et.
&. r}; reI(.. ""~/ ...

~ ,'-' ClW'r_f"

~.s di"~.T I-U.
>-----...... ~C'~ e"'~T

,..lJr S"i c..I,·F,·ttd.

"e~14M! + "e.
.--11 ~ec~'y ~ ... f"..)'

"",14 fl.'!. $.~IF

-Fro'" fh ..

Ml..S

:.:,'

t'CA..,f t'",- I"e..
~"'.f'r,-qc. 1t-1If"
A.J ",.1/ DZif.U

;:,,11'7/ NO ~,

avr,'k. ~

'*"'~ ~.,IiIi·e4
"~T.

" '~

'fItte ...•.... ; d.,· ... ~tr '. .~
,~ ,;...... ... ~ :
<.1-, lAc 6./~;,."

. - - - - ---.Ii tfII'f'l.I,.,·1,./~t
hdl~. r.,. It • .s
t."'''Jell"J IN
#1Iw;", .,." .. +- l __ tU."

;:f,..~, J.: .. iI ":/~rt.
*v.JJ .. ",. +4. ..
I.J.... ,,"" .,... f~.
"'."'._ .,tii!f,.fttJ ,,~~S"~
,.,'11 .. ~ fl... ~/sk.

~

~

FSlJ~~ IS c",NJ
...,1 fA ,,"Ice Set ~~

_ (J4.""'Nf!.~r.s -....s.~

*<t" I,·" ". tl.I$
Ii"", ~, .. 0 ,0;, if.

&<,,, .. h, '''''''-'J#'S
~I.. ~ ca¢~.

pr .. ""t
"v""«f'tLc../~J £01=.

<.i'd ~(_"., I .. "

ff'l/ t/'"rytt 1Vt!J-I-
h.. vs ~ 101, e.
tI't- 'fr~Lk..

c.lHr~,.""'!t "AI
C G',. Cl. & v I' t.lltlltl t

J

'h, rJ Ne. .;,,-.J.c-I

e"ttf elF -h'k

~6t4 tJ('''c'''''~J.

~

I' .

~:j'13

f'IM

"""4,.. 4ww·ot".

~id.<. ~ > 104

h' dir,c .,.01-
hi' "'C f4e.
",-14/.1 ~;"'~<fr,.y
~c.k. NO"" I~

I~ ,CIt--(".

~ ft<"~ n"~

It" s &J Cc.vr4..tI

~"Jt ~ o~"''''5

_ J ~~/"~.

Mt.S

tll~ "'<If~ r/t·io.,
''"Ie)

,r;,.,f

I, 8A-D rlltK

UtC£"' I,

Mt...5

---~ ...

I't'II'
"Fr>II '-p ~ ... I". ...

AI_.r "'1141 ",4/ "

;~ ,/ it< (, yt

-~------~

I ~ .. " .• " .. -~~ . -.r-ef-.'.S hI­
#tI.,,".,t~f"" ~Js.,

J.I .. /-.. ~ ... frj

4AU/ , ri-""

~-----.. ~ I;, (.14 > -.../
~ "',,-. '). Fly
t .. 1:. ./*-"-4

>--------1 .. I.4."Jcl-J 1 ' Ie A
r; It tli~C!'...!,;r.' ••

MiS

~----------~~

1:~'

.'~ ,~';t,.': . .,.,.
~ dl,k·~ ..

~':Iti,·,~

__ ~~: ~ ,,~, e-

~~':",''',,''''.',.~, ", '~; . ,,';'

.~
'.. .>, ~ ..

~ , "...,

1'-1[5

SQ."''' A. ,.~;..,'k!tr

4-D f""~ .",f".-cs
+o+.J. l ~rtl

.:I ''"s k Sf'Me. "ScJ.

~ "c'" I.,
'~$ r;~ .. ",j

-.'.,.. of4/s Z.,., ~",Tr;.S
+61

HLS

8

__ i
':·11 'f ____

~. . .

... - - -f'~-

I "~!;.f. I ~ (; 3 E [---1 \-
, 'J)~ ,--e-

/1 C)Q f- fhe..
'. IV f!,.. elir fnac/<.)-:J~ lft
'4~,4 fl'+ ~~~

e~+'"
A

1.1 r r'lre. t ',to
r,.,~rJ

"'1,

CI-.,. f ..
,...11_ ,.._i't _____ rJ .. ,,"f Adh."

~~

HLS

~ i" -lite. ;1.
I'u.... ,,~.,
'-y. k..., oWl'4Iti

.y 6"1H~,~.';':'··

;AI; I-ilt.';:» et II
,/v4,,/·:II«.S ,.­
Il... $W-...,

.p. ti-I"vs
: . \tl~" """"J."

/-f L 5

",~1

,'/11
,---...... ".'IItt·'

,'N L~IfJf'

:,(>4 ~ i.. L V""C

J' t· ('

l. -
\. ar.;l

\

I/O

f';~'"
• __ --..I~ II,/I~I .,.,.,., 'I

r--------------.. - -

so.+ IS ';t/IIl.,

I'I~'~"'C IIHI""~
,~+lCr- It f"D",e,
F.,,'I '''",k$

t;~I''1 ,'wr:--TI,-i'--l
£Q-r" !

~ , ,.

Tt1rs ~()r.tT!,"'E"

C Ha-ClCj FtIIII T'lit
F1It"~ A. £H of

" M,IIS TIt"· tET •

.. -- .. - - - ---------'

HAL;

e

itS#(iWti --]
(JfJ"~,tt~ I!"(.'~

it ..,.,6- -"T" A pi

SC-{£C't c. ,»C

_ - _ .. - '--"

GMTS

10." 1t

C DB

._0 .. "" ?O

<iT&" r 1>n /(~,
V'fr.P~ .1,..,1 TIlt

o~ MAji. nt,'
(..,I't'». - - - - - _______ .J

:1:,-.1.

t.ESTDC€ c.~It£ ... ,..

1't'W. F£7," ,....'~1 .------'

RLu. M

.. ~+,. ... e. +(J
;~f.r~.~·' L()C,.k,

LtI4JLif'("Ic,. ML~

_ • .1 N('(P L6(. 0\

_____ ..L...::",,~,..:::.:: ... :.:.:::,,_tl .. ___ _

,,1.
yeJ "l.t!IJC.lr, V"'"c._,t;.p'. ",./C'<tc, >------.... 011 -U,",t,OCIir

., I
r:" __ "A,""!! .---1

SVSL8

Jl6t ""~" 4." ...
pl<Uc,. ~.,

tYI fy~ /:6r",,:/

t'#fIt#,wl. • _____ --------..J

RCTU.RN

HI. T .IS~

e.'" U I" i~;tl'"
~ ___ crrf!, All 1:, ,. Jp

fIJi ,.,fe'"

J".-e& "
Ntrl ,It-v,.,
't',~,,,.

,
C __ R_~_T_U_(_JJ__')

"'/4S+ :.,~~:::;.r··1
i-4c I. 'to,' ..
p~ ..)r'" /r.,:.)-~! !
~t'lU(" !

____ , i

MLI<.U AI

S'~ ct I.I.~. f(

co",'-+ -1-0 .~~

287

Hi.. OCk - Mu,V:act

~J. is rD,,:1 ;I'f! ,.e . .'./;'''''' £ c , '.1.'

Mux.1C. 8.. hUPLO(1:.

·r",,vc:/'!rk $

,/'d rr..·· .~?--,

.> ~.

-'

11Loc..k
,;":,.. , ..

~ .. ,-,Ii"'~ J~S

-.11 fi. 1l 'N"rk

P .,"',"="1
"" ,./~

. .J

"'LZ,~1.1.)
, I

',.--.-/'

-/t.;c

I , ·h;.) I .. · >',1 I L ,-"-" /. \

lM('ICIL,' :.. -------"'tiI~
\-....J

-....... ,

:&

....... ---.

~.v'1 ')
a.1'~ Cl •. l(

cJ,~.c." -k~ -"
#1I'ed/4j' .~-r I

I ;:"lIb'" ;.~.? f".' r''': I
1 I

,/ :lc ... ~

1.1 ...

...
'\

' il.~, ..

. _ --

--._-"\

2ge

rOllt/NC, d, ... ~.

MU.vf,.lI'c'-:. :"1;,

I··:~ .. ·· .. ~

....... .,....

MLOC.K. -M~AJlOC k

1ft '- ,"$/. 'I.t k
~ .f'4 r.,I("~
H'''', MUIJ (at/ce;

~~~ ~ ....... .,.,> 

(oJ1!I fr.,z ~,< "II "'c' '" ';' {, 

>-----------~ J.. .;;-Iru' # .... , 
~JJ"fS , 

c.1rll-.... _". C <lJh.y • 

r.~--

291 



.rc.."~ (.,<.10.· ... 1" 

~~r. 9ft TnlCk 
f", 1;,,·.~f;A1 

et .... <1 s ,. ~ , i 

il." c(")"'''''' ~-r 
J I) e.,' " ,f' ~ 

r~oJ""" to ,cl­
-Ihl! Mc,,1 ZDT 
'f ..... ct-. uSd '.:r 
J 1> T ",."4~ ro,,~."t 

292 

CQI/ 1v;14 
fOh./C.... 1-"" 

J) .. (~'( h""'. 
~e"(f.5' S'J'~.;ri ... f 

J.-r~~I-o .. y ""02.:1:: 
if: AHJf o../r\!qdy 
/~J f;.O"'~ 



2H, .. ' 

ro~f/'" '~"""'f'1 
t/., .. t#-, t.., 
,,,,It. 'if! A ,~ ... ~ 'f 

- - - ..• - ..... -------" 



C .,/1.- ., '('Of'l''-''+c 

" ,. + 

L ______________ __ 

294 

t'"Mi .. -c. 1-0 
,.rc.~~ L~ 

..... .; U,ut.«'1& 

C"_,, ... tlf 

{4e. +- .:c ",.~, ... itL. 

,;/ 



r_uf,-",- ~ c 
('".U .ji tl"$L. 

'fil'...... -Fr ..... ~ 

'''''''''e,,", t .-.'D'T., 

", ... ~ 
A"tIr~SS ,.,; 

c.v,.J 

. ,",0 

.. -:----

29S 



fB.sT 

iulfl.1ilQ. FOr 

~ </ .. ;"..-; 

rE>"'4i ,',., it, is 

d,.hlet, le/J 

296 

F;~/f.1 dlst .... .,.~., .. ~ 
~ ..... - - - rOil#- i H£ 

·C>F,Gt~ 
'''-../'' 



s."r sn,.e.1" c:~ 
.rIM 7D L • • UC •• ", ~Ir 

M(J~I( 

, '~''''(NTJ 
.,.,.,. ur, 

'297 



298 

IfLV.~ ~:.,;.-.... --, 

~tJPlfr ca..-.: (/~ 

{ow.., 0 r t' .. ~ I . ..,......,; 

..... $.", 



SLDf1 

;~/""c(r3C. 
VtAr,·,d~/ .. ~ I)"'; 

; .. f.. IDc,A/.(/\., 

I.Iri "" 
~ej"J IT.cJrP'''~'''T 

7JtSU 

.--:::----. 

k~/NiIIl,'J "'" 
f/e~1" (,,,,,tiNe / .. 
I __ ktro 



i~i fi4.li*JtC. Fr­
Sf'~~ i~' , /oJ Iry 

l)U1441J T'N£ 

£Q T .( DrJlEt.. 

1~(:J" 

1>u~,., .f-I~ 

Sys{",.., "~7"'."~' 

d" .. p "'L£( ""I: 

+-~. I, b.""'Y t'OoJ",N 

100 

HIf{I"'~;' ""'-fC 
iler" & 
It; ~"-'4 f~. 



· ' ,., U'~ 



Cot 'II 

_.,tl c-'" c( ... 

,. • -Ii ~+ 1.I.cJc. 

~ 6lI", 
£ ... 1:« ..... tI-.J <IF 

+'ff'~ J CAlf 

T'€",c". 

302 



c:l. t··'~l"I •• )' 

+ .. ",-4: .. .:or . .-J '-"'! 
,-, .l •• 

• '((""'r 4 

.. I, •. + 

S'J)RT 

sos 

40.. .. __ 
• - ""'-P"J 

f'~S"~1oH 

c...ck " 



SORr 

304 



S1JteT 



{j,.nl ~ N~o.J 

l~u1H. Fe- ~ 
1) AT ..( v ,tJ~.:f.c 
-t~ ~r"- fILl'" 

306 

SD~T 



SDRT 

r I"" J~~ .• ;". :"'~ 

307 



1{,.z. r1¥r n..c.b 

+e "he :JI, Ie. 

C~f''f 

t/...:z. di~ k. 14111"; 

30E 



r +': ,,~ 
,', 
........ /'('" : 

S"~; "'t._ 

•• It ..... _1, 

/, I •• ~ "1 
.. ro ... ..:.. 

l"_., 1'~ 

P'" I," I; 1"­

f-4e 
Iv" liE:- I'C4. '5 

eN~_'tu"J'I~.eJ -#"e. 
< .,' ,.,.., +...,-. 

MAY 

A ,~ E. 

1 

,I/IS 

7J.! (; 

TrlJ. ~: ,'(' " iI ., 2 ,'/! J 

NOr r~, 
" TilE 

CA- c.. c.. , 

309 



se.f 4"'/"",,,& 

-10 114 ~J·F, 

~\ 
~~:~-----------.~ 

310 

., ..... 

~f't(.c<. /-,., fE, 

~.·rrI (k/~ 
~(J ?''3.:''o .... ,'I 

1" f - ,) ,~ .,A ':I) 



If.t/" ...... Cc r.I 

"""''"thO' ~ ,,,.,t-
"14(Ju.u r tlfe~,­

,A.JVH~l 

fCE'Ss 

GO,., 
SA~ ~." Te-

e' JfVt ~IlElt Ol'E 

,.,.,» r...,O 

~~ d";~.v.r ~ 
fJr.tc. -.:II 
reo--;.,J f I", ~ 

"" r He.. + It ... 
~c.,-, ~ 

11(4' 

311 



r(fLf61-t-"Nj lu 

CA.~ /- .... ~ 

·r l;.'fT<v 

312 

r",d/~ "' ;" 
,..,,," .,J ," .... J 1> ' 

'VIR ~ 

.,/" ... " _+.. 

RETURN 

hl"Z­

C"C~ ~",.J 

t;.('" ",., -k>' 'l-

lJ ... ,-fc. ouf' 

10 2.'1 ' .. b'~ .. 1_« 



r; c T, .(It.' .IV 

''-._._._---" 

RLJ)C· 

,c../e ... ' 4./1 ()' 14«. 
I ' ... v,+ 10. t. "t.~IWt"'~ 

"'.,. ('-IM-I 16) ,.AI 'Iloe 

J '"ret fo~ )' 

,.,./,,+ 1~II"s 

+t> t>p~"../-dr 

e..01~"'I'1 ~>, 

",. ~I1r)} < U4""e) 
!.'~.~ 

313 

1 

toll II,.. c. c t..~A-s 
.,., I, () 1t1J 
.,. [) u ,.,,. 



" 

\00. 



{v_t"t ~$) 

illl& ~/c. 

I~ 

L 0"']) 

315 



cOO' 
IMt//F";C4/ 
J i r~~ +--:r f-e 
't~« 41, Ie 

LO".P 

------

316 



MTRl> 

,~+ ",., +r. 
"'4~ rc,(.,J)',f 

f r~'f1I"'" 

.----. 

317 

.,4is Nw-#'''ft.. 

"~-h"e~;th c.~tI 
"., ~ Itt £CO's 
.~ ,'«.Se", Is 

" c.. ""'."e~-; 
,... J .. ,,1Iot .,. +-I .. 
c,«"t'. "'.:Jul. d~ 



"~C.~"ke-.." 

~~~I N"'M ... " 

"'~/I 0fl.'. hv
~ ,.., e lllV+ I""Itki

r.~'.

It be'

318

L.t..&.1 ,.. ... :,+
f" fl,is

'4!' fl.fl..

319

Bootstrap procedure

start BBDL at 77760B

BBDL

Sector'

Sector I

reads in drum sector'

reads in drum sector

reads in disc blocks 1 & 2

NOTE: this loader is configured to read from unit ~

of the disc controller in select code 17B.

Disc block 1 & 2 this block scans all disc drives and builds a

table of drives vs. logical unit number. This bootstrap

contains the system segment table and uses it to read in

the system.

320

Sleep Tape Format

The following lists the records on a sleep tape In order starting

from the load point marker.

Tape Label

EQT

OIREC

tOT

The tape label is a seven word record and appears at the beginning

and end of each sleep tape. The words are:

0 ASC 1,LB

I ASC 1,TSB

2 (unused)

3 (ree 1 number)

4 (yea r e. g. 71)

5 (hour of year)

6 (tenth of seconds)

'V 120B words

'V 560 words

1024 word blocks, the lOT and Directory are packed into 1024

word blocks as they are read in, wIthout regard to track or

entry boundaries.

Oi rectory

1024 word blocks

see lOT format

321

System Segment Table

System

The system is written out according to the information in the

System Segment Table.

System Library

EOF

Each system library program is dumped in a separate record.

This end of file ends the system Information. It must be on

the first reel of tape.

USER Library

EOF

NOTES:

Programs and Files are written out in 1024 word records (4 blocks.

Files remain interleaved. i.e. the first tape record of a 2n

block long File contains records 1, n + 1,2, n + 2). The First

tape record contains the 12 word directory entry at its beginning

and may be up to 1036 words long. A File mark is written after

the last tape record of each program or File.

An EOF in place of an initial record of a program or File

indicates the end of the sleep set.

1. When an end of tape marker is detected, the mag tape dump wi 11

write an EOF,a label record, and another EOF and ask for

another reel. During reading, the sequence of an EOF followed

by a label (7 word) record will indicate the end of a reel.

No other test for end of reel is possible.

322

	0000
	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	082A
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	103A
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	131A
	132
	133
	133A
	133B
	134
	134A
	135
	136
	136A
	137
	138
	138A
	139
	140
	140A
	141
	141A
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154A
	154B
	154C
	154D
	154E
	155
	156A
	156B
	156C
	156D
	157A
	157B
	157C
	158A
	158B
	158C
	158D
	158E
	159A
	159B
	159C
	159D
	159E
	159F
	159G
	159H
	159I
	160A
	160B
	160C
	160D
	160E
	160F
	161A
	161B
	161C
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322

