
HEWLETT f8 PACKARD

A GIJIDE TO TIME SHARED BASIC

HP 02000-90002

A GUIDE TO TIMIE SHARED BASIC

For Reference and Self-Instruction

HEWLETT ~ PACKARD

Software Publications
Cupertino, California

95014

August, 1969

© COPY~9ht, 1969, by

HEWLETT-PACKARD COMPANY
Cupertino, California

Printed in the U.S.A.

First printing, Aug.
Second printing, Feb.

1969
1970

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system (e.g., in memor:r, disc or core) or
be transmitted by any means, electronic, mechanical, photocopy, re­
cording or otherwise, without prior wri tten permission from the
publisher.

Printed in the U.S.A.

PREFACE

The Time Shared Basic system (TSB) has provided a major breakthrough by
reducing the cost of using a computer. Now, for the first time, it is practical
for the programmer to use his time sharing terminal to teach himself more about
the BASIC language.

Accordingly, this publication is designed to meet two requirements:
1. To serve as a clear and concise reference text

for Time Shared BASIC; and
2. To serve as an instructional aid to the TSB

user.

All example programs may be uSred as practice exercises (as well as for
reference). They were chosen for maximum teaching value, and include pertinent
remarks. Beginners are encouraged to try the examples "on-line".

The syntax requirements of BASIC have been "translated" into English from
the traditional Backus Normal Form. Each element of a statement is underlined
separately, in red.

This text is divided into learning-units. Each page presents a separate
item or feature, and sections are arranged in a coherent instructional sequence.
All items are presented in a standard, consistent format.

Please turn to the next page.

IIII 869

CONVENTIONS USED IN THIS TEXT

SAMPLE

PLEASE LOG IN

And then ...

2~ PRINT X,Y

line number PRINT X,Y

return linefeed

esc ctrl

alt-mode break

Note: Both X and •.•

LISTING A PROGRAM

o
~

EXPLANATION

Black, all capitals in examples indicates
computer-output in forma ti on

Mixed upper and lower case black is used for
regul ar text.

Red, all capitals indicates a statement or
command typed by the programmer.

Black lower case italics indicates a general
form, derived from BASIC syntax r€~quirements

(S ec t. V I I I) .
Red underlining indicates an essential part of a
general form; each underl ined item is a separate,
essential element.

Represents the terminal keys:
Return, L inefeed, Escape, Control"
Alt-Mode, and Break.

Mixed upper and lower case italics is used for
notes.

Oversize black is used for page headings.

The 1 etter "0 11

Zeroes are slashed.

Please examine the sample on the next page.

IV 869

PAGE FORMAT
The reference page format is as uniform as possible. This
sample shows how positioning and typeface relate to content.
Black frames are used on reference pages.

EXAMPLES:

GENERAL FORM:

Several sample
statements or commands

(Each essential element underlined in red.)

PURPOSE ---

A clear and concise explanation of the purpose
or function.

COMMENTS ---

A series of several items containing:
Pertinent information
Additional explanation or examples
Helpful hints.

Reference to other sections or subsections related
to the contents of this page.

"Continued on the next page" if the explanation fills
more than one page.

Section No. _ Page No. _ (Revision Date)

V 869

HOW TO USE THIS BOOK

If your purpose is:

Quickly acquiring a minimum
working knowledge of Time
Shared BASIC:

Acquiring a good working
knowledge of Time Shared
BASIC:

Learning the complete Time
Shared BASIC system:

Reference only:

VI 869

Read:

Sections I and II.

Sections I, II, III,
IV, V, VI, in that
order.

The entire book, in
sequence.

1. Contents

2. The index, Appendix "F"
3. The index tabs to locate

the appropriate section.

SECTION I: Ar~ INTRODUCTION TO TSB

SECTION II: THE ESSENTIALS OF BASIC

SECTIC)N III: ADVANCED BASIC

SECTION IV: FILES

SECTION V: MATRICES

SECTION VI: STRINGS

SECTION VIII: LOGICAL OPERATIONS

SECTION VIII: FOR THE PROFESSIONAL

APPENDICES AND INDEX

CONTENTS

iii PRE FACE
iv CONVENTIONS USED IN THIS TEXT

v PAGE FORMAT
vi HOW TO USE THIS BOOK

1-1 SECTION I
AN INTRODUCTION TO TIME SHARED BASIC

1-1 WHAT IS TIME SHARING?
1-2 COMMUNICATING WITH A COMPUTER
1-3 EXAMPLES OF BASIC STATEMENTS
1-4 STATEMENT NUMBERS
1-5 INSTRUCTIONS (STATEMENT TYPES)
1 -6 OP ERAN DS
1-7 A PROGRAM
1 -8 THE FORMAT OF STATEr~ENTS
1-10 BEFORE GOING ON-LINE
1-11 PRESS RETURN AFTER EACH STATEMENT
1-12 BACKSPACE
-1-13 DELETING OR CHANGING A STATEMENT
1-14 LISTING A PROGRAM
1-16 CONNECTION TO THE COMPUTER
1-17 CHECKING THE CONNECTION
1-17 Your ID Code and Password
1-17 Control Characters
1-18 SAMPLE LOG IN AND LOG OUT
1-19 MISTAKES DURING LOG IN
1-20 ENTERING THE SAMPLE PROGRAM
1-21 HOW TO OBTAIN A DIAI)\JOSTIC MESSAGE
1-22 RUNN IN G THE SAMPLE PROGRAM
1-23 STOPPING A PROGRAM: THE break KEY
1-24 HOW THE PROGRAM WORI<S

VII 869

CONTENTS CONTINUED

2-1 SECTION II
THE ESSENTIALS OF BASIC

2-1 HOW TO READ THIS SECTION
2-2 TERM: NUMBER
2-2 TERM: II E" NOTATION
2-3 TERM: SIMPLE VARIABLE
2-4 TERM: ARITHMETIC EVALUATION
2-5 THE ASSIGNMENT OPERATOR
2-6 ARITHMETIC OPERATORS
2-7 RELATIONAL OPERATORS
2-8 MIN AND MAX OPERATORS
2-9 THE AND OPERATOR
2-10 THE OR OPERATOR
2 - 11 TH E NO TOP ERATO R
2-12 ORDER OF PRECEDENCE 0 F EXECUTION
2-13 STATEMENTS
2-14 THE ASSIGNMENT STATEMENT
2-15 REM
2-16 GO TO AND MULTIBRANCH GO TO
2 -1 7 IF ... TH EN
2-18 FOR ... NEXT
2-20 NESTING FOR ... NEXT LOOPS
2-21 READ, DATA AND RESTORE
2-24 INPUT
2-26 PRINT
2-28 END AND STOP
2-29 Sample Program
2-32 Running the Sam~e Program
2-33 COMMANDS
2-34 HELLO
2-35 BYE
2-36 ECHO-
2-37 RUN
2-38 LIST
2-39 SCRATCH

VIII 869

CONTEN1·S CONTINUED

2-40 RENUMBER
2-41 BREAK
2-42 PUNCH
2-43 TAPE
2-44 KEY
2-45 TIME

3-1 SECTION III
ADVANCED BASIC

3-2 ROUTIN E
3-3 ARRAY (OR MATRIX)
3-4 STRING
3-4 FUNCTION
3-5 WORD
3-5 RECORD
3-6 STORING AND DELETING PROGRAMS
3-7 LENGTH
3-8 NAME
3-9 SAVE
3-10 GET- AND GET-$
3-11 KILL-
3-12 APPEND-
3-13 DELETE-
3-14 LIBRARY
3-15 CATALOG
3-16 SUBROUTINES AND FUNCTIONS
3-17 GOSUB ... RETURN
3-18 MULTIBRANCH GOSUB
3-19 NESTING GOSUB'S
3-20 FOR ... NEXT WITH STEP
3-21 DEF FN
3-22 GENERAL MATHEMATICPIL FUNCTIONS
3-23 TRIGONOMETRIC FUNCTIONS
3-24 THE lAB AND SGN FUNCTIONS
3-25 THE TYP FUNCTION
3-26 THE LEN FUNCTION

IX 869

CONTENTS CONTINUED

4-1 SECTION IV
FILES

4-2 FILE
4-2 END OF RECORD
4-3 END 0 F FILE
4-3 SERIAL AND RANDOM ACCESS
4-4 OPEN-
4-5 KILL-
4-6 FILES
4-7 PRINT#
4-8 READ#
4-9 IF END# ... THEN
4-10 STRUCTURE OF A FILE
4-11 STRUCTURE AND STORAGE PATTERN
4-12 SERIAL FILES
4-13 SUMMARY OF FILE STRUCTURE
4-14 PRINT# ... ,END
4 -1 5 P R I NT # ••• , •••

4-16 PRINT TO RESET A POINTER
4-17 READ# ... p ••

4-18 READ TO RESET A POINTER

5-1 SECTION V
MATRICES

5-1 MATRIX (ARRAY)
5-2 DIM
5-3 MAT ... ZER
5-4 MAT ... CON
5-5 INPUT
5-6 MAT INPUT
5-7 PRINT MATRICES
5-8 MAT PRINT
5-9 READ
5-10 MAT READ
5-11 MATRIX ADDITION

X 869

CONTEN1·S CONTINUED

5-12 MATRIX SUBTRACTION
5-13 MATRIX MULTIPLICATION
5-14 SCALAR MULTIPLICATION
5-15 COPYING A MATRIX
5-16 IDENTITY MATRIX
5-17 MATRIX TRANSPOSITION
5-18 MATRIX INVERSION
5-19 MAT PRINT#
5-20 MAT READ#

6-1 SECTION VI
STRINGS

6-2 STRING
6-3 SUBSTRIN G
6-4 THE STRING DIM STATEMENT
6-5 THE STRING ASSIGNMENT STATEMENT
6-6 THE STRING INPUT STATEMENT
6-7 PRINTING STRINGS
6-8 READING STRINGS
6-9 STRING IF
6-10 THE LEN FUNCTION
6-11 STRING IN DATA STATI::MENTS
6-12 PRINTING STRINGS ON FILES
6-13 READIN G STRIN GS FROI~ FIL ES

7-1 SECTION VII
LOGICAL OPERATIONS

7-1 LOGICAL VALUES AND NUMERIC VALUES
7-2 RELATIONAL OPERATORS
7-4 BOOLEAN OPERATORS
7-5 SOME EXAMPLES

XI 869

CONTENTS CONTINUED

8-1 SECTION VI I I
FOR THE PROFESSIONAL

8-2 SYNTAX REQUIREMENTS OF TSB
8-7 STRING EVALUATION BY ASCII CODES
8-8 MEMORY ALLOCATION BY A USER

A-1 APPENDIX A
HOW TO PREPARE A PAPER TAPE OFF-LINE

B-1 APPENDIX B
THE X-ON, X-OFF FEATURE

C-1 APPENDIX C
SAMPLE PROGRAMS

0-1 APPEN DIX 0
DIAGNOSTIC MESSAGES

E-1 APPENDIX E
INSTANT GUIDE TO TIME SHARED BASIC

F-1 APPENDIX F
INDEX

XII 869

SEC:TION I

AN INTRODUCTION -fO TIME SHARED BASIC

This section is for novices and programmers in
need of a "brush-up" on mechanical skills. The
information presented here is arranged in a tu­
torial sequence. It is assumed that the reader
has access to a Time Shared BASIC terminal, and
will use some or all of the examples as practice
exercises, depending on his own personal require­
ments.

If you are familiar with the following procedures,
skip this section, and begin at Section II:

Log in and log out
Correcting mistakes and changing lines
Obtaining a diagnostic message
Running and terminating a program.

WHAT IS TIME SHARING?

Time sharing is a method of computer programming
which enables many persons (users) to have access
to a single computer simultaneously.

The computer processes the requests of the users so
rapidly that it seems to each individual that he is
the only one using the machine.

Even if every user required large amounts of com­
puter time, the longest delay possible for anyone
user.is a few seconds.

1-1 869

COMMUNICATING WITH A COMPUTER

THE BASIC LANGUAGE

There are many types of languages. English is a
natural language used to communicate with people.
To communicate with the computer we use a formal
language, that is, a combination of simple English
and algebra.

BASIC is a formal language used to communicate with
the computer during time-sharing.

Like natural languages BASIC has grammatical rules,
but they are much simpler. For example, this series
of BASIC statements (which calculates the average of
five numbers given by you, the user) shows the funda­
mental rules:

10 INPUT A,B,C,D,E
20 LET S = (A+B+C+D+E)/5
30 PRINT S
40 GO TO 1.0

50 END

The frames on the following pages show how to interpret
these rules. Notice how the statements are written.
What they do is explained later.

1-2 869

EXAMPLES OF BASIC STATEMENTS

This is a BASIC statement:

l~ INPUT A,B,C,D,E

COMMENTS

A statement contains a maximum of 72 characters
(one teletypewriter line).

A statement may also be called a line.

(f)

~
-I
fTI
3::
fTI
Z
-I

Z
o
CII-

STATEMENT NUMBERS

Each BASIC statement begins with a statement number

(in this example, 20):

20 LET S=(A+B+C+D+E)/5

COMMENTS

The number is called a statement number or a line

number.

The statement number is chosen by you, the programmer.
It may be any integer from 1 to 9999 inclusive.

Each statement has a unique statement number. The
computer uses the numbers to keep the statements in
order.

Statements may be entered in any order; they are
usually numbered by fives or tens so that additional
statements can be easily inserted. The computer keeps
them in numerical order no matter how they are entered.
For example, statements are input in the sequence 30,10,

20; the computer arranges them in the order: 10,20,30.

Continued on the next page.

1-4 869

INSTRUCTIONS (STATEMENT TYPES)

The statement then gives an instruction to the
computer (in this example, PRINT):

3~ PRINT S

CO/'v1MENTS

Instructions are sometimes called statement tqpes

because they identify a type of statement. For
example, the statement above is a IIprintll statement.

Continued on the next page.

'·,5 869

en z o
t
:::>
It:
I­en
~

o
" 111
:;0
~ z
c
(I)

OPERANDS

If the instruction requires further details, operands

(numeric details) are supplied (in this example, 10;
on the previous page, "S"):

4.0 GO TO 10

COMMENTS

The operands specify what the instruction acts upon;
for example, what is PRINTed, or where to GO.

Continued on the next page.

1-6 869

A PF~OGRAM

The sequence of BASIC statements
given on the previous pages is
called a program.

The last statement in a program,
as shown here, is
and END statement.

Cor~MENTS

10 INPUT A,B,C,D,E
20 LET S=(A+B+C+D+E)/5
30 PRINT S

40 GO TO 10
50 END

The last (highest numbered) statement in a program must be
an END statement.

The END statement informs the computer that the program is
finished.

Continued on the next page.

1-7 869

(I)

~
-i
m
l:
m
z
-i
(I)

THE FORMAT OF STATEMENTS

BASIC is a "free format" language--the computer ignores
extra blank spaces in a statement. For example, these
three statements are equivalent:

30 PRINT S
30 PRINT S
30PRINTS

COMMENTS

When possible, leave a space between words and numbers
in a statement. This makes a program easier to read.

Continued on the next page.

1-8 869

•
(Spot check)

Be sure you are familiar with these terms before continuing:

statement
instruction (statement type)
statement type
statement number (line number)
operand
program

All of these terms are defined in the context of this section.

1-H 869

BEFORE GOING ON-LINE

The following pages explain the mechanics of entering,
correcting, and checking statements.

Since you will probably have to make several corrections
in your first attempts to use the computer, these features
should be learned before beginning.

1-10 869

PRESS RETURN ~~FTER EACH STATEMENT

The return key must be pressed after each statement.

Examples: 10 INPUT A,B,C,D,E return

20 LET S=(A+B+C+D+E)/5 return

30 PRINT S return

40 GO TO l~ return

50 END return

CO~1MENTS

Pressing return informs the computer that
the statement is complete. The computer
then checks the statement for mistakes.
(The checking process is explained later.)

1-11869

BACKSPACE

The reverse arrow (+) key acts as a backspace, deleting
the immediately preceding character.

Typing:
is equivalent to typing:

And typi ng:
is equivalent to typing:

2~ LR+ET S=l~ return

2~ LET S=l~ return

3~ LET+ + + PRINT S return

30 PRINT S return

COMMENTS

The + character is a "shift" 0 on most terminals.

1-12 869

DELETING OR CHAINGING A STATEMENT

To delete the statement being typt~d, press the !!2..£ or alt-mode key. This
causes a \ to be printed, and deletes the entire line being typed.

To delete a previously typed statt~ment, type the statement number followed
by a return.

To change a previously typed stat!~ment, retype it with the desired changes.
The new statement replaces the old one.

Pressi ng the ~ key del ett~S
the statement being typed:

NOTE: The computer respnds wi th a \ when esc is typed, like this:

To delete statement 5 in the

sequence: 5 LET S = 0
10 INPUT A,B,C,D,E,
20 LET S = (A+B+C+D+E)/5

NOTE: \ and / are different,and have very different functions.

tyPt~:

Or, to change statement 5 in
the above sequence, type:

The old statement is re-
placed by the new one.

Typing an ~ (or alt-mode)

before a return prevents
replacement of a previously
typed statement.

For example, typing:
or:

has no effect on the orig­
inal statement 5.

1-13 869

(!)
z
c;
z
«
:r: o

LISTING A PROGRAM

After you have made several corrections you may wish to inspect the
entire program. Typing LIST return produces a listing of all lines
accepted by the computer.

NOTE: The program has already been entered.

The computer skips three lines,
separating the listing from pre­
viously printed information.

linefeed indicates that the
listing is complete.

LIST return

linefeed

linefeed

linefeed

10 INPUT A,B,C,D,E
20 LET S = (A+B+C+D+E)/5
30 PRINT S
40 GO TO 10
50 END
linefeed

The LIST command followed by a dash and statement number causes the
listing to begin at the statement specified.

A list of the same sample program
produces these lines:

1-14 869

LIST-30 return

linefeed

linefeed

linefeed

30 PRINT S
40 GO TO 10
50 END
linefeed

•
1. Be sure you understand the use of these features work be­

fore using the computer:

return to end statements
How to backspace
How to delete a statement
How to change a statement
How to list statements
How to stop ali sti ng

The following pages explain how to make the connection with
the computer and log-in.

1-1!i 869

CONNECTION TO THE COMPUTER

To enter a program into the computer, first make a connection between the tele­
prin~er and th~ computer. There are several ways of doing this, depending on
the terminal equipment used. The input-output device, such as teleprinter or
optical mark reader, on your end of the line is called terminal equipment. Not
all users have the same type of equipment.

IF YOUR TERMINAL EQUIPMENT IS A TELEPRINTER WITH

ACOUSTIC COUPLER AND TELEPHONE:

1 •

2.
3.

4.

5.

6.

Turn teleprinter control knob to
LINE.
Turn on coupler power.
If coupler has a duplex switch,
set to FULL or F~LL/UP.
If coupler has a line switch set
it to ON -LIN E .
Call the computer number.
When the computer answers with a
high pitched tone, place the hand-
set in the coupler (Be sure to
check that the handset is inserted
in the correct position; the con­
nection will not be made if it is
reversed. (The correct position
should be marked on the coupler.)

HALF DUPLEX COUPLER AND TELEPHONE
1. Follow instructions 1,2,4,5,6

given above.
2. Log in. (See Log In and Log Out

in this section.)
3. Type ECHO-OFF return

1 .

2.

3.

4.

DATA SET:

Turn tel eprinter contro 1 knob to
line.
Press TAL K button on the Data Set.
Call the computer number.

When the computer answers with a
hi gh pi tched tone, pY'ess the DATA
button until the DATJl~ 1 ight is on,
and replace the handset.

DIRECT CONNECTION TO THE COMPUTER:
Turn the tel eprinter control knob to
the LINE position.

1-16 869

CHECKING THE CONNECTION

The computer does not respond when the connection is established. If

you wish to make sure that the connection has been made, type any num­

ber followed by a return.

EXAMPLE: 3 return

The computer then responds with the message:

PLEASE LOG IN return linefeed

NOTE: linefeed causes the teleprinter to advance to the next line.

return causes the teleprinteJ':." typeface to return to the first

print position.

This step is optional

YOUR 10 CODE lAND PASSWORD

You need your identification code and password to log in. These are

assigned by the system operator. The 10 code is a single letter followed

by a three digit number. The password consists of one to six regular or

con tro 1 cha ra cters .

CONTROL C:HARACTERS

Control characters are non-printing. They are represented with a super­

script "C" to indicate that they are control characters. By using these

non-printing characters, you may keep your password a secret. For exampl e,
on the tel eprinter the password SEcCcRcEcT prints as:

ST

Control letters are input by pressing the letter and ctrl keys

s i mul taneousl y.

1-17 869

SAMPLE LOG IN AND LOG OUT

H2~~ is used as a sample identification code.

User H200 for example, logs in by
typi ng:

HELLO- is a command, not a statement.

Commands are orders to the computer

which are acted upon (executed) im­

mediately. Unlike statements, com­

mands do not require line numbers.

The computer acknowledges that the
user has correctly logged in, by
outputting three linefeeds:

If the operator has put a message
into the system for users it is
printed when the user logs in:

If there is no message, the computer
responds with three linefeeds, then
READY, indicating it is awaiting
input.

To LOG OUT, type:

The elapsed time since log in is
then printed.

1-18 869

HELLO-H200,password rett~

linefeed

linefeed

linefeed

MESSAGE TO USERS FROM OPERATOR

- - - - - - - - - - - - - - - -
linefeed

linefeed

linefeed

READY
linefeed

BYE return

001 MINUTES OF TERMINAL TIME

•

MISTAKES DURING LOG IN

If you make a mistake while logging in, the computer responds with a
message informing you that something is wrong. For example, if user H200
forgets the hyphen while entering the HELLO command:

HELLO H200,~ssword return

the computer responds with the message:

ILLEGAL FORMAT return linefeed

and the user then enters the command in the correct form .

If user H200 enters his password incorrectly:

HELLO-H200,~ssword return

the response is:

ILLEGAL ACCESS return linefeed

and the user tries again.

NOTE: The messages ILLEGAL ,~CCESS and ILLEGAL FORMAT

indicate that some or all of the input is not

acceptable (not legal) to the Time Shared BASIC

system.

1-19 869

ENTERING THE SAMPLE PROGRAM

The frame below shows how to enter a program. If you are not su}"e how
the computer responds when a line is entered, use it as a practice
exercise.

NOTE: Connection to the computer is made.

Log in:

NOTE: The computer responds with a

linefeed after each line is

entered. This indicates that

the line has been checked and

accepted as a legal BASIC

statement. It informs the

user that the computer is

waiting for further input.

or

HELLO-H200 ,password l~eturn

OPERATOR IS f4ESSAGE T() USER

READY return linefeed

10 INPUT A, B, C, 0, E rE~turn
linefeed

20 LET S = (A+B+C+D+E)/5 return

linefeed

30 PRINT S return

linefeed

40 GO TO 10 return

linefeed

50 END return

linefeed

Now the program is ready to run.

1-20 869

HOW TO OBTAIN A DIAGNOSTIC MESSAGE

If you make a mistake while entering a program, the computer responds with an ERROR
message. This indicates that the previous line has not been accepted. There are
two possible responses to the ERROR message. The frame below shows how to obtain a
diagnostic for the probable cause of the error and how to avoid printing the diag­
nostic if you recognize the mistake.

If the user types:

The computer responds:

The user then types in a colon
(or any other character) fol­
lowed by a return. This causes
the diagnostic to be printed
on the same line. The result­
ing output looks like this:

To correct the statement,
retype it in the proper form:

If you know the cause of the
ERROR message and do not wish
to see the diagnostic, type a
return after the ERROR message
is output, then retype the line:

30 PRIMT S return

NOTE: PRINT has been misspelled.

ERROR

ERRO R: return

ERROR: NO STATEMENT TYPE FOUND
NOTE: PRIMT has not been recognized

as a legal statement type, and

the line was not accepted.

30 PRINT S return

30 PRIMT S return

ERRO R return

30 PRINT S

Appendix "0" contains a 1 ist of TSB diagnostic messages and probable
causes.

'··21 869

RUNNING THE SAMPLE PROGRAM

This frame shows what happens when the sample program is run. The
program does not begin execution (does not run) until the command RUN
followed by a return is input.

NOTE: The program (averaging 5 numbers) has been entered.

The computer responds with four linefeed's

indicating that the command is being
executed.

The question mark indicates that input is
expected. The five numbers being averaged
should be typed in, SEPARATED BY COMMAS,
and followed by a return.

The answer is printed:

NOTE: This program continues executing

indefinitely, unless terminated

by the user. To stop the program,
c

type a C return (control "C") when

more input is requested:

The program is finished:

Log off:

Time used is printed:

1-22 869

RUN return linefeed

linefeed

linefeed

linefeed

? 95.6,87.3,8~.5,9~,82.8 return

87.24 return linefe~ed

?-12.5,-5~.6,-32,45.6,60 return

2.1 return linefeed

c
? C return

DONE

BYE return

003 r~INUTES OF TERr'HNAL TIME

STOPPING A PROGRAMI: THE break KEY

When the commands RUN or LIST are typed,
TSB "takes over ll th~= user IS termi na 1
until the program or listing is complete.

To terminate a program or listing, press, then release, the
break key:

When a program is running or being listed, TSB responds
with the message:
after break is pressed.

Remember that:

and not break is used to terminate input loops (when the
computer is expecting a number to be typed in).

Cor~ENTS

break must be held down for at least
1/10 second.

1-23 869

break

STOP

c C return

HOW THE PROGRAM WORKS

Line l~ tells the computer that five numbers will be input,
and that they should be given the labels A,B,C,D,E in se­
quence. The first number input is labeled "A" by the com­
puter, the second IIB/I, etc. A,B,C,D, and E are called var­
ables.

After line 10 is executed, the variables and their assigned
values, typed in by the user, are stored. For example, us­
ing the values entered by the user in the previous example,
this information is stored: A = -12.5; B = -50.6; C = -32;
D = 45.6; E = 60

Line 20 declares that a variable called S exists, and is as­
signed the value of the sum of the variables A,B,C,D,E divid-

10 INPUT A,B,C,D,E

ed by 5: 20 LET S = (A+B+C+D+E)/5

Line 30 instructs the computer to output the value of S to
user's terminal:

NOTE: If the PRINT statement were not given, the value of
S would be calculated and stored, but not printed
The computer must be given explicit instruction for
each operation to be performed.

Line 40 tells the computer to go to line 10 and execute
whatever instruction is there:

NOTE: A "loop" is formed by lines 1{1 to 4¢. The sequence
of statements in this loop execute until the user
breaks the loop. This particular kind of loop is
called an input loop (because the user must consist­
ently input data). INPUTTING A C

C
WHEN INPUT IS

REQUESTED BY A "?" IS THE ONLY WAY TO. BREAK AN INPUT
LOOP WITHOUT DISCONNECTING THE TERMINAL DEVICE.
Other, more controlled loops are explained later.
Line 5¢ is not executed until the loop is broken
by entering a C

C
when input is requested.

Line 50 informs the computer that the program is finished:

1-24 869

30 PRINT S

40 GO TO 10

50 END

SECTION II

THE ESSENT'IALS OF BASIC

HOW TO REi\D THIS SECTION

This section contains enough information to allow
you to use BASIC in simple applications, without
using the capability of storing programs.

Proceed at your own pace. The information in the
vocabulary and operators sUbsections is included
for compl eteness; experienced programmers may ski p
these. Programmers with some knowledge of BASIC
may also concentrate on capabilities of the TSB
system presented in the commands subsection.

The "Operators" subsections contain brief descriptions,
rather than explanations, of the logical operators.
The novice should not expect to gain a clear under­
standing of logical operators from this presentation.
Section VII presents more details and examples of
TSB logical operations. Readers wishing to make best
use of TSB logical capabilities should consult this
section. Those unfamiliar with logical operations
should also refer to an e'lementary logic text.

A simple program is included at the end of this
section for reference; it contains a running commen-
ta ry on the uses of many of the BASIC statements presented
in the section.

2:-1869

TERM: NUMBER

DEFINED IN TSB AS: A Decimal number between an approximate minimum of:
1 Y' - 38 (0 r 2 -1 2 9)

and an approximate maximum of:
1 Y'38 (or 2 12 7)

Zero is included in this range .

..

TERM: E NOTATION

DEFINED IN TSB AS: A means of expressing numbers having more than six
deci rna 1 d i gi ts, in the form of a deci rna 1 number

raised to some power of lY'.

EXAMPLES: 1.00000E+Y'6 is equal to 1,Y'Y'Y',00Y' and is
"l times 1 Y' to the sixth power (lxlY'6).

1.Y'2Y'00E+04 is equal to lY',2Y'0

1.Y'2000E-Y'4 is equal to .0Y'0102

COMMENTS

IIEII notation is used to print numbers greater than six
digits. It may also be used to input any number.

read

Wh e n en te r i n gnu mb e rs i nilE II not a t ion, 1 e ad i n g and

trailing zeroes may be omitted from the number; the + sign
and leading zeroes may be omitted from the exponent.

The precision of numbers is 6 to 7 decimal digits
(23 binary digits).

2-2 869

TERM: SIM PLE VARIABLE

DEFINED IN TSB AS: A letter (from A to Z); or a letter immediately
followed by a number (from 0 to 9).

EXAMPLES: A0
M5

B

C2
Z9 D

COI"1MENTS

Variables are used to represent numeric values.
For instance, in the statement:

10 LET M5 = 96.7
M5 is a variable; 96.7 is the value of the variable M5.

There are two other types of variables in TSB, string
and array variables; their use is explained in Sec­
tions V and VI respectively.

2-3 869

DEFINED IN TSB AS:

EXAMPLES:

TERM: EXPRESSION

A combination of variables, constants and
operators which has a numeric value.

(P + 5)/27

(where P has previously been assigned a
numeric value.)

Q - (N + 4)

(where Q and N have previously been assigned
numeric val,ues.)

TERM: ARITHM ETIC EVALUATION

DEFINED IN TSB AS: The process of calculating the value of
an expression.

2-4 869

THE ASSIGNMI::NT OPERATOR

SYMBOL:

EXAMPLES:

GENERAL FORM:

=

l~ LET A = B2 = C =. 0
20 LET A9 = C5
30 Y = (N-(R+5))/T
40 N5 :: A + B2

50 P5 = P6 = P7 = A = B = 98.6

LET va.riable -= expression

PURPOSE

Assigns an arithmetic or logical value to a
variable.

COI"1MENTS

When used as an assignment operator, = is read
II takes the value of, II rather than lIequa 1 s II. It

is, therefore, possible to use assignment state­
ments such as:

LET X = X+2

This is interpreted by TSB as: IILET X take the
value of (the present value of) X, plus two. II

Several assignments may be made in the same
statement, as in statements 10 and 50 above.

See Section VII, ilLOGICAL OPERATIONS II for a
description of logical assignments.

2-5 869

SYMBOLS:

EXAMPLES:

ARITHMETIC OPERATORS

t * / + -

40 LET Nl = X-5
50 LET C2 = Nt3
60 LET A = (B-C)/4
70 LET X = ((Pt2)-(Y*X))/N+Q

PURPOSE

Represents an arithmetic operation, as:

exponentiate: t
mul ti ply: *

divide: /
add: +

subtract:

COMMENTS

The "-" symbol is also used as a sign for negative numbers.

It is good practice to separate arithmetic operations with
parentheses when unsure of the exact order of precedence.

The order of precedence (hierarchy) is:
t

* /
+ -

with t having the highest priority. Operators on the same level
of priority are acted upon from left to right in a statement. See
"Order of Precedence" in thi s Section for exampl es.

2-6 869

RELATIOINAL OPERATORS

SYMBOLS: = # <> > < >= <=

EXAMPLES: 100 IF A=B THEN 900
110 IF A+B >C THEN 910

120 IF A+B < C+E THEN 920

130 IF C>= D*E THEN 930

140 IF C9<= G*H THEN 940

150 IF P2#C9 THEN 950

160 IF J <> K THEN 950

PURPOSE

Determines the logical relationship between two expressions, as
equa 1 i ty: =

inequality: # or: <>
greater tha.n: >

less tha.n: <

greater than or equal to: >=

1 ess than or equal to: <=

COMMENTS

NOTE: It is not necessary for the novice to understand the nature of

logical evaluation of relational operators, at this point. The

comments below are for the experienced prQgrammer.

Expressions using relational operators are logically evaluated, and assigned
a value of "true" or "false" (the numeric value is 1 for "true", and 0 for
fal se).

When the = symbol is used in such a way that it might have either an
assignment or a relational function, TSB assumes it is an assignment
operator. For a description of the assignment statement using logical
operators, see Section VII, "Logiical Operations".

2··7 869

EXAMPLES:

MIN AND MAX OPERATORS

10 LET A=A9=P2=P5=C2=X=7.5
20 LET B5=08=Ql=Q4=Y=B=12.0

80 PRINT (A MIN 10)
90 LET B=(A MIN 10)+100

100 IF (A MIN B5) > (C2 MIN 08) THEN 10
110 PRINT (X MAX Y)
120 IF (A9 MAX B) <= 5 THEN 150

PURPOSE

Selects the larger or smaller
value of two expressions.

COMMENTS

In the examples above, statement 110
selects and prints the larger value:
since X = 7.5 and Y = 12.0, the value
of Y is printed. The evaluation is
made first, then the statement type
(PRINT) is executed.

2-8 869

THE AND OPERATOR

SYMBOL: AND

EXAMPLES: 6~ IF A9<Bl AND C#5 THEN l~~

7~ IF T7#T AND J=27 THEN l5~

8~ IF Pl AND R> 1 AND NAND V2 THEN l~

9~ PRI NT X I\ND Y

PURPOSE

Forms a logical conjunction between two expressions. If
both are "true ll

, the conjunction is IItrue ll
; if one or both

are IIfalse ll
, the conjunction is "false ll

•

NOTE: It is not necessary for the novice to unders tand how this

operator works. The comments below are for experienced

programmers.

COMMENTS

The numeric value of IItrue ll is 1, of IIfalse ll is ~.

All non-zero values are IItrue li
• For example, statement 9~

would print either a ~ or a 1 (the logical value of the ex­
pression X AND Y) rather than the actual numeric values of
X and Y.

Control is transferred in an IF statement using AND, only
when all parts of the AND conjunction are "true ll

• For in­
stance, example statement 80 requires four IItrue" conditions
before control is transferred to statement 10.

See Section VII, ilLogical Operations ll for a more complete
descriptiorl of logical evaluation.

2-9 869

'" I=!

i
~
....
:t:
f-

SYMBOL:

EXAMPLES:

THE OR OPERATOR

OR

100 IF A>l OR B<5 THEN 500
110 PRINT C OR D
120 LET D = X OR Y
130 IF (X AND Y) OR (P AND Q) THEN 600

PURPOSE

Forms the logical disjunction of two expressions. If
either or both of the expressions is true, the OR dis­
junction is IItrue ll ; if both expressions are IIfalse ll the
OR disjunction is IIfal sell.

NOTE: It is not necessary for the novice to understand

how this operator works. The comments below are

for experienced programmers.

COMMENTS

The numeric values are: "true" = 1, "false" = 0.

All non-zero values are true; all zero values are false.

Control is transferred in an IF statement using OR, when
either or both of the two expressions evaluate to "true ll .

See Section VI I, "Logi cal Operations" for a more compl ete
description of logical evaluation.

2-10 869

THE NOT OPERATOR

SYMBOL:

EXAMPLES:

NOT

30 LET X = Y = 0
35 IF NOT A THEN 300
45 IF (NOT C) AND A THEN 400
55 LET B5 = NOT P
65 PRINT NOT (X AND Y)
70 IF NOT (A=B) THEN 500

PURPOSE

Logically evaluates the complement of a given
expression.

NOTE: It is not necessary for the novice to

understand how this operator works. The

comments below are intended for experi­

enced programmers.

COMMENTS

If A = 0, then NOT A = 1; if A has a non-zero value,
NOT A = 0.

The numeric values are: "true" = 1, Ifa1se" = 0; for
example, statement 65 abov1e would print "1", since the
expression NOT (X AND Y) is true.

Note that the logical specifications of an expression may
be changed by evaluating the complement. In statement 35
above, if A equals zero, the evaluation would be "true" (1);
since A has a numeric value of 0, it has a logical value of
"fal se", making NOT A Itru1e".

See Section VII, ilLogical Opera~ionsll for a more complete
description of logical evaluation.

2-11 869

ORDER OF PRECEDENCE OF EXECUTION

The order of performing operations is:
t

NOT

* /
+ -
MIN MAX

highest precedence

Relational Operators

AND
OR lowest precedence

If two operators are on the same level,
the order of execution is left to right,
for example:

5 + 6*7
7/14*2/5

is evaluated as: 5 + (6x7)
is evaluated as: (7/14)x2

5

A MIN B MAX C MIN D is evaluated as:
((A MIN B) MAX C) MIN D

Parentheses override the order of precedence
in all cases.

2-12 869

ST ATIEM ENTS

Be sure you know the difference between statements
and commands.

Statements are instructions to the computer. They
are contained in numbered lines within a program,
and execute in the order of their line numbers.
Statements cannot be executed without running a pro­
gram. They tell the computer what to do while a
program is running.

Commands are also instructions. They are executed
immediately, do not have line numbers, and may not
be used in a program. They are used to manipulate
programs, and for utility purposes, such as logging
on and off.

Here are some examples mentioned in Section I:

Statements

LET
PRINT
INPUT

Commands ---

HELLO
BYE
LIST

Do not attempt to memorize every detail in the
"Statements" subsection; there is too much material
to master in a single session. By experimenting
with the sample programs, and attempting to write
your own programs, you will learn more quickly than
by memori zing.

2-13 869

--l
:c

THE ASSIGNMENT STATEMENT

EXAMPLES:

GENERAL FORM:

10 LET A = 5.02
20 X = Y7 = Z = 0
30 89 = 5* (Xt2)
40 LET 0 = (3*C2tN)/(A*(N/2))

statement number LET variable .:... number or expression or string or variable . ..

or

statement number variable = number or expression or string or variable ...

PURPOSE

Used to assign or specify the value of a variable.
The value may be an expression, a number, string
or a variable of the same type.

COMMENTS

Note that LET is an optional part of the assignment
statement.

The assignment statement must contain:
1. The variable to be assigned a value.
2. The assignment operator, an = sign.
3. The number, expression or variable to be

assigned to the variable.

Statement 20 in the example above shows the use of
an assignment to give the same value (~) to several
variables. This is a valuable feature for initial­
izing variables in the beginning of a program.

2-14 869

EXAMPLES:

F~EM

10 REM--THIS IS AN EXAMPLE
20 REM: OF REM STATEMENTS
30 REM-----/////*****!!!!!
40 REM. STATEMENTS ARE NOT EXECUTED BY TSB

GENERAL FORM: statement number REM any remark or series of characters

PURPOSE

Allows insertion of a line of remarks or comment
in the listing of a program.

CO~1MENTS

Must be preceeded by a line number. Any series of
characters may follow REM.

REM lines are saved as part of a BASIC program, and
printed when the program is listed or punched; how­
ever, they are ignored when the program is executing.

Remarks are easier to read if REM is followed by a
punctuation mark, as in the example statements.

2-15 869

GO TO AND MULTIBRANCH GO TO

EXAMPLES: 10 LET X = 20

40 GO TO 3 OF 410,420,430
50 GOTO 100
80 GOTO 10
90 GO TO N OF 100,150,180,190

GENERAL FORM:
statement number GO TO statement number

statement number GO TO expression OF sequence of statement numbers

PURPOSE

GO TO transfers control to the statement specified.

GO TO expression . •. transfers control to the state­
ment number specified by the expression.

COMMENTS

GO TO may be written: GOTO or GO TO.

Must be followed by the statement number to which control is transferred, or
expression OF, and a sequence of statement numbers.

GO TO overrides the normal execution sequence of statements in a program.

The expression in a multibranch GO TO specifies the statement to which control is
transferred. For example, statement 40 above transfers control to statement 430.

If the expres~ion evaluates to a number greater than the number of statements speci­
fied, or less than 1, the GO TO is ignored.

Useful for repeating a task infinitely, or "jumping" (GOing TO) another part of a pro­
gram if certain conditions are present.

GO TO should not be used to enter FOR-NEXT loops; doing so may produce unpredictable
results or fatal erros.

2-16 869

SAMPLE PROGRAM:

IF ... THEN

10 LET N = 10
20 READ X
30 IF X <=N THEN 60
40 PRINT "X IS 10 OR OVER"
50 GO TO 80
60 PRINT "X IS LESS THAN 10"
70 GO TO 20
80 END

GENERAL FORM: statement number IF expression THEN statement number

PURPOSE

Transfers control to a specified statement if a specified condition is
true.

COMMENTS

Sometimes described as a conditional transfer; "GO TOil is implied by
IF ... THEN, if the condition is true. In the example above, if X<=10,
the message in statement 60 is pr'inted.

Since numbers are not always repr,esented exactly in the computer, the
= operator should be used carefully in IF •.. THEN statements. <=,>=, etc.
should be used in the IF expression, rather than =, whenever possible.

If the specified condition for tr·ansfer is not true, then the program
will continue executing in sequence. In the example above, if X>=10,
the mess age ins ta temen t 40 wi 11 !be pri nted.

See ilLogical Operations", Section VII for a more complete description
of logical evaluation.

2-17 869

FOR ... NEXT

EXAMPLES: 100 FOR P1 = 1 TO 5
110 FOR Q1 = N TO X
120 FOR R2 = N TO X STEP 1
130 FOR S = 1 TO X STEP Y
140 NEXT S
150 NEXT R2
160 NEXT Q1
170 NEXT P1

- - - - - - - - - - ------- - - - - - - - - ------- - - - - - - - - - -
Sample Program - Variable Number Of Loops

40 PRINT "HOW MANY TIMES DO YOU WANT TO LOOPII;
50 INPUT A
60 FOR J = 1 TO A
70 PRINT "THIS IS LOOPII; J

80 READ N1, N2, N3
90 PRINT "THESE DATA ITEMS WERE READ:" N1; N2; N3

100 PRINT "SUM ="; (N1+N2+N3)
110 NEXT J

120 DATA 5, 6, 7, 8, 9, 10, 11, 12
130 DATA 13, 14, 15, 16, 17, 18, 19, 20, 21
140 DATA 22, 23, 24s 25, 26, 27, 28, 29, 30
150 DATA 31, 32, 33, 34
160 END

GENERAL FORM:
statement number FOR simple variable ~ initial value TO final value

or

statement number FOR simple variable ~ initial value TO final value STEf:. step value

(Statements to be repeated)

statement number NEXT simple variable

NOTE: The same simple variable must be used in both the FOR and NEXT statements of

a loop.

2-18 869

FOR ... "NEX:T, CONTINUED

PURPOSE

Allows repetition of a group of statements
within a program.

COMMENTS

Initial value, final value and
step value may be any expression.

How the loop works:

The simple variable is assigned the value
of the :ini tial value_; the va 1 ue of the s im­
ple variable is incY'eased by 1 (or by the
step va~~_~) each time the loop executes.
When the value of the simple var~able. passes
the final value, control is transferred to the
statement following the "NEXT" statement.

STEP and step value are optional.

For further details on the STEP feature, see
II FO R. . . N EXT with S T E Pili n Sec t ion I I I .

Try running the sample program if you are not
sure what happens when FOR ... NEXT loops are
used in a program.

2-19 869

t­
X
LU
:z

0::
o
LL

NESTING FOR ... NEXT LOOPS

Multiple FOR ... NEXT loops may be used in the same
program; they may also be nested (placed inside one
another). There are two important features of
FOR ... NEXT loops:

1. FOR ... NEXT loops may be nested.

,...----10 FOR A 1 =
j/f f--20 FOR B2 =

Range of loop Al/ -;~ [30 FOR C3 =
/~

Range of loop B2 ~// :

Range of loop C3~ 8~ NEXT C3
-90 NEXT B2

~100 NEXT Al

1 TO 5

N TO P
X TO Y STEP R

2. The range of FOR ... NEXT loops may
not overlap. The loops in the ex­
ample above are nested correctly.
This example shows improper nesting.

The range of lOOPS{
I and J overlap.

~10 FOR 1= 1 TO 5

'-30 FOR J = 1 TO N

~-50 NEXT I

~90 NEXT J

2-20 869

15

20
40
45
50
55

60

READ, DATA AND RESTORE

Sample Program using READ and DATA

FOR 1=1 TO 5
READ A
LET X=At2
PRINT A;II SQUARED =II;X
NEXT I
DATA 5.24,6.75,30.8,72.65,89.72
END

Each data item may be read only once in
this program. TSB keeps track of data
with a II po inter ll . When the first READ
statement is encountered, the IIpointerll
indicates that the first item in the
first DATA statement is to be read; the
pointer is then moved to the second item
of data, and so on.

In this example~ after the loop has
executed five times, the pointer remains
at the end of the data list. To reread
the data, it is necessary to reset the
pointer. A RESTORE statement moves the
pointer back to the first data item.

2-21 869

READ, DATA AND RESTORE, CONTINUED

Sample Program Using READ, DATA and RESTORE

20 FOR 1=1 TO 5
30 READ A
40 LET X=At2
50 PRINT A; "SQUARED = II ;X
60 NEXT I
80 RESTORE

100 FOR J=l TO 5
110 READ B
120 LET Y=Bt4
130 PRINT B; liTO THE FOURTH POWER =";Y
140 NEXT J

150 DATA 5.24,6.75,30.8,72.65,89.72
160 END

GENERAL FORM:
statement number READ variable L variable , ...
statement number DATA number or string Lnumber or string .L'"

statement number RESTORE
statement number RESTORE statement number

PURPOSE

The READ statement instructs TSB to read an item from a DATA statement.

The DATA statement is used for specifying data in a program. The data
is read in sequence from first to last DATA statements, and from left to
right within the DATA statement.

The RESTORE statement resets the pointer to the first data item, allowing
data to be re-read.

RESTORE followed by a statement number resets the pointer to the first
data item, beginning at the specified statement.

2-22 869

READ, DATA AND fi~ESTORE, CONTINUED

COI~MENTS ----
READ statements require at least one DATA

statement in the same program.

Items in a DATA statement must be separated

by conmas. String and numeric data may be

mixed.

DATA s ta temen ts may be pOI aced anywhere in a

program. The data items will be read in se­

quence as required.

DATA statements do not execute; they merely

specify data.

The RUN command automatically sets the pointer

to the first data item.

If you are not sure of the effects of READ,

DATA, and RESTORE, try running the sampl e

programs.

Progranmers mlxlng strin~l and numeric data

may find the TYP function useful. See liThe

TY P Fun c t ion II, Se c t ion I I I .

2-2~l 869

INPUT

This program shows several variations of the INPUT statement and their effects.

Sample Program Using INPUT

5 FOR M=l TO 2
10 INPUT A
20 INPUT Al,B2,C3,Z0,Z9,E5
30 PRINT "WHAT VALUE SHOULD BE ASSIGNED TO
40 INPUT R
50 PRINT A;Al;B2;C3;Z0;Z9;E5;IIR=";R

60 NEXT M
70 END

------------------------------------- RESULTS

RUN
?l return

?2,3,4,5,6,7 return

RII;

WHAT VALUE SHOULD BE ASSIGNED TO R?27 return

2 3 4 5

?1.5 return

?2.5,3.5,4.5,6.,7.2 return

6 7 R=27

??8.l return ?? indicates that mor~ input is expected

WHAT VALUE SHOULD BE ASSIGNED TO R?-99
1.5 2.5 3.5 4.5 6 7.2
8.1 R=-99

DONE
GENERAL FORM:

statement number INPUT variable L variable~ ...

PURPOSE

Assigns a value input from the teleprinter to a variable.

Continued on next page. 2-24 869

INPUT C()NTINUED

COM~IENTS

The program comes to a halt~ and a question mark is print­
ed when the INPUT statement is used. The program does not
continue execution until the input requirements are satis­
fied.

Only one question mark is printed for each INPUT statement.
The statements:

10 INPUT A, B2, C5, D, E, F, G
and

20 INPUT X

each cause a single "?" to be printed. Note that the "?"

generated by statement 10 requires seven input items,
separated by commas, while the "?" generated by statement
20 requires only a single input item.

The only way to stop a program when input is required is
entering: CC return. Note that the CC aborts the program;
it must be restarted with the RUN command.

Relevant Diagnostics:

? indicates that input is required.
?? indicates that more input is needed to satisfy an INPUT statement.

??? indicates that TSB cannot decipher your input.
ENTRA INPUT-WARNING ONLY indicates that a) extra input was

entered; b) it has been disregarded; and c) the program
is continuing execution.

See the description of the "PRINT" format this section for
variations on output formats.

2-2S 869

PRINT

This sample program gives a variety of examples of the PRINT statement.
The results are shown below.

10 LET A=B=C=10
20 LET D1=E9=20
30 PRINT A,B,C,Dl ,E9
40 PRINT A/B,B/C/Dl+E9
50 PRINT "NOTE THE POWER TO EVALUATE AN EXPRESSION AND PRINT THEil
60 PRINT "VALUE IN THE SAME STATEMENT."
70 PRINT
80 PRINT
90 REM* "PRINT" WITH NO OPERAND CAUSES THE TELEPRINTER TO SKIP A LINE.

100 PRINT IIIAI DIVIDED BY IE9 1 =";A/E9
110 PRINT "11111","22222","33333","44444","55555","66666"
120 PRINT "1111111; "22222" ;"33333" ;"44444" ,;"55555";"66666"
130 END

- - - - - - - - - - RESULTS - - - - - - - - - - - - - - - - - - -

RUN return

10
1

10
20.05

10 20

NOTE THE POWER TO EVALUATE AN EXPRESSION AND PRINT THE
VALUE IN THE SAME STATEMENT.

IAI DIVIDED BY IE9 1 = .5

11111 22222
66666
111112222233333444445555566666
DONE

33333 44444

NOTE: The"," and ";" used in statements 110 and 120 have very

different effects on the format.

Continued on next page.

2-26 869

20

55555

PRINT, CONTINUED

GENERAL FORM:
s ta tement number PRINT expression .L expression .L ••• '

or

statement number PRINT... ~any text" "L expression .L

or

statement number PRINt " text" .L §l£,'Qression .L '.:..text~ L '.:..text~.L ...

or

statement number PRINT... any combination of text and/or expressions

or

statement number PRINT ---

PURPOSE

Causes the operand(s) to be output to the
teleprinter or terminal device.

Causes the teleprinter to skip a line when
used without an operand.

COM~1ENTS

Note the effects of , and ; on the output of
the sample program. If a comma ;s used to
separate PRINT operands, five fields will be
printed per teleprinter line. If semicolon
is used, up to twelve "packed" numeric fields
will be output per teleprinter line, or 72
characters.

2-27 869

" OJ

'" t:
....
t:
o
U

EXAMPLES:

GENERAL FORM:

END AND STOP

2~0 IF A # 27.5 THEN 350

300 STOP

350 LET A = 27.5

500 IF B # A THEN 9999

!j50 PRINT liB = A"

600 END
9999 END

9ny statement number STOP
9ny statement number END
~{ighest statement number in p~.9gram END

PURPOSE

Terminates execution of the program and returns control to TSB.

COMMENTS

The highest numbered statement in the program must be an END statement.

END and STOP statements may be used in any portion of the program to
terminate execution.

END and STOP have identical effects; the only difference is that the
highest numbered statement in a program must be an END statement.

2-28 869

SAM PLE PROG RAM

I f you unders tand the effects of the
statement types presented up to this
point, skip to the "COMMANDS II section.

The sample program on the next two
pages uses several BASIC statement
types.

Running the program gives a good idea
of the various effects of the PRINT
statement on teleprinter output. If
you choose to run the program, you may
save time by omitting the REM statements.

After running the program, compare your
output with that shown under IIRUNNING
THE SAMPLE PROGRA.M II . If there is a dif­
ference, LIST your version and compare
it with the one presented on the next
~::."o pages. Check your PRINT statements
fa' commas and semicolons; they must be
used carefully.

2-29 869

SAM PLE PROGRAM

10 REMARK: "REMARK" OR "REM" IS USED TO INDICATE REMARKS OR COMf'lIENTS
20 REMARK: THE USER WANTS TO INCLUDE IN THE TEXT OF HIS PROGRAM.
30 REM: THE COMPUTER LISTS AND PUNCHES THE "REW' LINE, BUT DOES NOT

40 RE~I: EXECUTE IT.
50 REM: "PRINT" USED ALONE GENERATES A "RETURN" "LINEFEED"
60 PRINT
7f/J PRINT "THIS PROGRAM WILL AVERAGE ANY GROUP OF NUMBERS YOU SPECIFY."
80 PRINT
90 PRINT lilT WILL ASK ALL NECESSARY QUESTIONS AND GIVE INSTRUCTIONS."
100 PRINT
110 PRINT "PRESS THE RETURN KEY AFTER YOU TYPE YOUR REPLY."
120 PRINT
130 PRINT
140 REM: FIRST, ALL VARIABLES USED IN THE PROGRAM ARE INITIALIZED
150 REM: TO ZERO (THEIR VALUE IS SET AT ZERO.)
160 LET A=N=R1=S=0
180 REM: NOW THE USER WILL BE GIVEN A CHANCE TO SPECIFY HOW MANY
190 REM: NUMBERS HE WANTS TO AVERAGE.
2f/J0 PRINT "HOW MANY NUMBERS DO YOU WANT TO AVERAGE";
210 INPUT N
220 PRINT
230 PRINT "O.K., TYPE IN ONE OF THE ";N;"NUMBERS AFTER EACH QUES. MARK."
240 PRINT "DON'T FORGET TO PRESS THE RETURN KEY AFTER EACH NUMBER."
250 PRINT
260 PRINT "NOW, LET' S BEGIN"
270 PRINT
280 PRINT
300 REM: II Nil IS NOW USED TO SET UP A "FOR-NEXT" LOOP WHICH WILL. READ
310 REM: 1 TO "N" NUMBERS AND KEEP A RUNNING TOTAL.
320 FOR 1=1 TO N
330 INPUT A
340 LET S=S+A
350 NEXT I
360 REM: "1" IS A VARIABLE USED AS A COUNTER FOR THE NUMBER OF TIMES

2-30 869

SAM PLE PRC~G RAM CONTINUED

370 REM: THE TASK SPECIFIED IN THE "FOR-NEXT" LOOP IS PERFORMED.
380 REM: "1" INCREASES BY 1 EACH TIME THE LOOP IS EXECUTED.
390 REM: II A" IS THE VARIABLE USED TO REPRESENT THE NUMBER TO BE
400 REM: AVERAGED. THE VALUE OF "A" CHANGES EACH TIME THE
410 REM: USER INPUTS A NUMBER.
420 REM: II S II WAS CHOSEN AS THE V/\RIABL E TO REPRESENT THE SUM
430 REM: OF ALL NUMBERS TO BE AVERAGED.
440 REM: AFTER THE L.OOP IS EXECUTED IIN" TIMES, THE PROGRAM CONTINUES.
460 REM: A SUM MA R Y I S PR I NT E 0 FO H THE USE R .
47~ PRINT
480 PRINT
490 PRINT N; "NUMBERS WERE INPUT.II
500 PRINT
510 PRINT "THEIR SUM IS:";S
520 PRINT
53~ p~nNT "THEIR AVERAGE IS: "; SIN

540 PRINT
550 PRINT
570 REM: NOW THE USER WILL BE GIVEN THE OPTION OF QUITTING OR
580 REM: RESTARTING THE PROGRAM.
590 PRINT "00 YOU WANT TO AVERAGE ANOTHER GROUP OF NUMBERS?"
600 PRINT
610 PRINT "TYPE 1 IF YES, 0 IF NOli
620 PRINT "BE SURE TO PRESS THE RETURN KEY AFTER YOUR ANSWER. II

630 PRINT
640 PRI NT II YOUR REPL ylI;

65~ INPUT R1
660 IF R1=1 THEN 12~

670 REM: THE FOLLOWING LINES ANTICIPATE A MISTAKE IN THE REPLY.
68~ IF R1#~ THEN 7~0

69~ GO TO 720
7~0 PRINT liTO REITERATE, YOU SHOULD TYPE 1 IF YES, 0 IF NO."
71~ GO TO 640
72~ END

2-:~11 869

(!)

o
n::
a..
w
...J
a.
::E.
«
(f)

RUNNING THE SAMPLE PROGRAM

RUN return

THIS PROGRAM WILL AVERAGE ANY GROUP OF NUMBERS YOU SPECIFY.

IT WILL ASK ALL NECESSARY QUESTIONS AND GIVE INSTRUCTIONS.

PRESS THE RETURN KEY AFTER YOU TYPE YOUR REPLY.

HOW MANY NUMBERS DO YOU WANT TO AVERAGE?

O.K.,TVPE IN ONE OF THE 5 NUMBERS AFTER EACH QUES. MARK.

DON1T FORGET TO PRESS THE RETURN KEY AFTER EACH NUMBER.

NOW, LET1S BEGIN

? 99 return ---
? 87.6 return --
? 92.7 return --
? 79.5 return --
? 84 return ----

5 NUMBERS WERE INPUT.
THEIR SUM IS: 442.8

THEIR AVERAGE IS: 88.56

DO YOU WISH TO AVERAGE ANOTHER GROUP OF NUMBERS?
TYPE 1 IF YES, 0 IF NO
BE SURE TO PRESS THE RETURN KEY AFTER YOUR ANSWER.
YOUR REPLY? 2 return

TO REITERATE, YOU SHOULD TYPE 1 IF YES, 0 IF NO.
YOUR REPLY? 1 return

HOW MANY NUMBERS DO YOU WISH TO AVERAGE? c C return

DONE

2-32 869

COMMANDS

Remember the difference between commands
and statements (See IIStatements ll in this
section).

Commands are direct instructions to the
computer, and are executed immediately.
They are used to manipulate programs,
and for utility purposes.

Note that all TSB commands may be
abbreviated to their first three letters.
If information is required after a com­
mand, a hyphen II_II must be included. For

example, when logging in:

c c c ·c HEL-H200,SE C RET return

Do not try to memorize all of the details
in the COMMANDS subsection. The various
commands and their functions will become
clear to you as you begin writing programs.

2-33 869

v
c
z
'"
~

:c
I"T1
r
r
o

EXAMPLE:

GEN ERAL FOR~1:

HELLO -

c
HELLO-0007,POS T return

or
C

HEL-0007,POS T return

H ELLO- IDcode .L password

or

HEL-.IDcode .L password

PURPOSE

The command used to log in to the TSB system.

COM~1ENTS

IO codes and passwords are assigned by the
system master or operator.

Several users with the same I.O. code may
be logged on to the computer simultaneously,
using different terminals.

2-34 869

13YE

EXAMPLE: BYE return

009 MINUTES OF TERMINAL TIME

GENERAL FORM: BYE

PURPOSE

The command used to log out of the TSB system.

COMMENTS

Causes the amount of terminal time used to be
printed.

Breaks a telephone connection to the computer.

2-35 869

LL
>­
a:

M
n
:r:
o

ECHO-

EXAMPLES:

GENERAL FORM:

PURPOSE

ECHO-OFF return

ECHO-ON return

ECHO-ON
or

ECHO-OFF

Allows use of half duplex terminal.

COMMENTS

Users with half duplex terminal
equipment must first log on, then
type the ECHO-OFF command; then
input and output becomes legible.

ECHO-ON returns a user to the full­
duplex mode.

May be abbreviated to its first three
letters.

2-36 869

EXAMPLE:

GENERAL FORM:

IRUN

RUN return

or

RUN- 300 retuz'n

RUN

RUN- statement number

PURPOSE

Starts execution of a program at the lowest numbered
statement when used without specifying a statement
number.

Starts execution of a program at the specified statement
when a statement number is used.

COMMENTS

Note that when RUN- statement number is used, all statements
before the specified statement will be skipped. Variables
defined in statements which have been skipped are therefore
considered to be undefined by TSB, and may not be used until

they are defined in an assignment, READ, or LET statement.

A running program may be terminated by pressing the break key;
or, to terminate a running program at some point when input is
required, type:

c C return

2-37 869

z
ii

LIST

EXAMPLE: LIST return

or

LIST -100 return

GENERAL FORM:
LIST- statement number

PURPOSE

Produces a listing of all statements in a
program (in statement number sequence) when
no statement number is specified.

When a statement number is specified, the
listing begins at that statement.

COMMENTS

A listing may be stopped by pressing the
break key.

System library programs designated "RUN ONLY"
by the operator cannot be listed.

May be abbreviated to its first three letters.

2-38 869

SCF~ATCH

EXAMPLE: SCRATCH return

or

SCR return

GENERAL FORM: SCRATCH
or

SCR

PURPOSE

Deletes (from memory) the program currently
being accessed from the teleprinter.

COMMENTS

Scratched programs are not recoverable. For

information about saving programs on paper
tape or in your pel"sona 1 1 i bra ry, see the NAME
and SAVE commands -j n the next section, and PUNCH
in this section.

2-39 869

EXAMPLES:

RENUMBER

RENUMBER return

REN return

REN-100
REN-10, 1 return

REN-20, 50 return

GENERAL FORM: REN
or

REN-number assigned to first statement

or

RE~number ass2.s!..ned to first statement ..L interval between new statement numbers

PURPOSE

Renumbers statements in a Program.

COMMENTS

GO TO's, GO SUB's, IF ... THEN's, and RESTORE's are
automatically reassigned the appropriate new numbers.

If no first statement number is specified, renumbering
begins at statement 10, in intervals of 10.

If no interval is specified, the new numbers are spaced
at intervals of 10, from the beginning statement.

Remember that numbers or text contained in REM and PRINT
statements are not revised by RENUMBER.

2-40 869

BI~EAK

EXAMPLES: break (Press the break key.)

PURPOSE \

Terminates a program being run.

Terminates the execution of LIST, PUNCH, CATALOG, and LIBRARY
commands.

COIMMENTS

Pressing the preak key signals the computer to terminate a
program, producing the message: STOP.

When break is pressed during a listing, the message STOP
is output.

Pressing brea~ will not terminate the program if it is
awaiting input (data to be typed in from the teleprinter).
In this case the only means of ending the program is
typing:

c C .r:eturn

which produces the DONE message.

break will not delete a program; however, the RUN command
must be used to restart it.

2-41 869

EXAMPLES: PUNCH return

PUN return

PUN-65 return

PUN-5 return

PUNCH

GENERAL FORM: PUNCH
or

PUN
or

PUN-statement number at which PUNCHinq is to beqin

PURPOSE

Punches a program, onto paper tape; also
punches the program name, and leading and
trailing guide holes on the tape; lists the
program as it is punched.

COMMENTS

If the teleprinter is not equipped with a
paper tape reader/punch, only a listing is
produced.

Remember to press the paper tape punch lIONlI
button before press ing the return after PUNCH.

PUN-statement nl1Ill1J...er. causes the punching to
begin at the specified statement.

2-42 869

T,APE

EXAMPLES: TAPE return ----
TAP return ---

GENERAL FORM: TAPE
or

TAP

PURPOSE

Informs the computer that following input
is from paper tape.

COIVlMENTS

TAPE suppresses any diagnostic messages which are
generated by input errors, as well as the auto­
matic linefeed after return. The KEY command
(KEY return) or any other command, causes the di­
agnostic messages to be output to the teleprinter,
ending the TAPE mode.

TSB responds to the TAPE command with a linefeed.

2-43 869

~
I-

'" ...,
-<

KEY

EXAMPLES: KEY return

GENERAL FORM: KEY

PURPOSE

Informs the computer that following input
will be from the teleprinter keyboard;
used only after a TAPE (paper tape input)
sequence is complete; causes error messages
suppressed by TAPE to be output to the tele­
printer.

COMMENTS

Any command followed by a return has the
same effect as KEY. Commands sUbstituted
for KEY in this manner are not executed if
diagnostic messages were generated during
tape input.

2-44 869

TIME

EXAMPLE: TIME return

CONSOLE TIME = 0 MINUTES. TOTAL TIME =00 MINUTES

GENERAL FORM: TIME

PURPOSE

Produces listings of terminal time used since log on, and
total time used for the account since the automatic ac­
counting system was last reset to zero.

COMMENTS

Time used by each ID code is recorded automatically by
TSB. The system operator controls the accounting
system.

2-4!5 869

SEc-rION III

ADVANC:ED BASIC

This section describes more sophisticated
capabilities of BASIC.

The experienced programmer has the option of
skipping the "Vocabulary" subsection, and
briefly reviewing the commands and functions
presented here. The most important features
of the TSB system--files, matrices, and
strings are explained in the next three sec­
tions.

The inexperienced programmer need not spend
a great deal of time on programmer-defined
and standard functions. They are shortcuts,
and some programming experience is necessary
before their specifications become apparent.

3-11 869

TERM: ROUTINE

DEFINED IN TSB AS: A sequence of program statements
which produces a certain result.

PURPOSE

Routines are used for frequently performed
operations. Using routines saves the pro­
grammer the work of defining an operation
each time he uses it, and saves computer
memory space.

COMMENTS

A routine may also be called a program,
subroutine, or sub-program.

The task performed by a routine is defined
by the programmer.

Examples of routines and subroutines are
given in this section.

3-2 869

TERM: ARRA'((OR MATRIX)

DEFINED IN TSB AS: An ordered collection of numeric
data containing not more than 2500
elements (numeric values).

COMtJIENTS

i
Arrays are referenced by columns (vertical) and rows (horizontal). ~

Arrays may have one or two dimensions. For example,

is a one dimensional

is a two dimensional

1 .0
2 • 1

3.2
4·.3

array, while

6 , 5· , 4
3 , 2 , 1

0 , 9' , 8

array.

Array elements are referencE~d by their row and column
position. For instance, if the examples above were ar­
rays A and Z respectively, 2.1 would be A(2); similarly,
o would be Z(3,1). The references to array elements are
called subscripts, and set apart with parentheses. For
example P(1,5) references the fifth element of the first
row of array P; 1 and 5 are the subscripts. In X(M,N),
M and N are the subscripts.

3-3 869

~

DEFINED IN TSB AS:

TERM: STRING

o to 72 tel eprinter characters enclosed
by quotation marks.

COMMENTS

Sampl e s tri ngs: "ANY CHARACTERS!?* / ___ "
"TEXT 1234567 ... II

Quotation marks may not be used within a
string.

TERM: FUNCTION

DEFINED IN TSB AS: The mathematical rel ationship between two
variables (X and Y for example) such that
for each val ue of X there is one and on 1 y
one value of Y.

COMMENTS

The independent variable is called an argument;
the dependent variable is the function value.
For instance in

100 LET Y = SQR(X)
X is the argument; the function value is the
square root of X; and Y takes the value of the
function.

3-4 869

DEFINED IN TSB AS:

TERM: WORD

The amount of computer storage
space occupied by two tele­
printer characters.

COMMENTS ----

Numbers require two words of storage each
when stored as numbers.

Numeric characters contained in strings
require the same amount of storage space
as other characters.

TERM: RECORD

DEFINED IN TSB AS: A storage unit containing 64
2-character words.

COM~IENTS ----

Further details on file storage
are given in Section IV, "FILES".

3-5 869

STORING AND DELETING PROGRAM!S

Up to this point manipulation of programs has
been limited to the "current" program, that is,
the program being written or run at the moment.
The only means of saving a program introduced
thus far is the PUNCH command.

The commands on the following pages allow the
user to create his own library of programs on
the Time Shared BASIC system. Library programs
are easily accessed, modified, and run.

The experienced programmer need only review
the commands briefly -- they do what their
names imply: NAME, SAVE, etc.

A word of caution for the inexperienced
programmer: it is wise to make a IIhard"
copy (on paper tape) of programs you wish
to use frequently. Although it is easy and
convenient to store programs lIon-system", you
will make mistakes as you learn, and may ac­
cidentally delete programs. It is much less
time consuming to enter a program from paper
tape than rewrite it!

3-6 869

LENIGTH

EXAMPLES:

GENERAL FORM:

LENGTH return

LEN return

0000 WORDS

LEN return

PURPOSE ---

Prints the number of two-character
words in the program currently being
accessed from the terminal. This
is the amount of "storage space"
needed to SAVE the program.

COMr~ENTS

Each user has a working "space" of
approximately 5100 two character
words. LEN is a useful check on
total program len!~th when writing
long programs.

3-7 869

EXAMPLE:

GENERAL FORM:

NAME-

NAME-PROG.l return

NAME-**GO** return

NAM-ADDER return

NAM-MYPROG return

NAME- Program name of 1 to 6 charactl9rs

or
NAM-Program name of 1 to 6 characters

PURPOSE

Assigns a name to the program currently being
accessed from the teleprinter.

COMMENTS

The first character of the program named may
not be a $.

The program name may be used in certain TSB
operations (see the KILL, GET, and APPEND
commands in this section).

3-8 869

EXAMPLES:

GENERAL FORM:

S)~VE

SAVE return

SAV return

SAVE
or

SAV

PURPOSE

Sa ves a copy of tlhe current program
in the user's private 1 ibrary.

COMI\1ENTS ---

A program must be named b,efore it can be saved
(See NAME, this section).

No two programs in a user's library may have the
same name. The procedure for saving a changed
version of a program is as follows (the program
name is SAMPLE):

KILL-SAMPLE return

linefeed

NAME-SAMPLE return

linefeed

SAVE return

linefeed

(Deletes the stored version.)

(Names the current py'ogram)

(Saves the current program, named SAMPLE.)

For instructions on opening a file, see Section IV, "FILES".

3-9 869

EXAMPLES:

GENERAL FORM:

GET- AND GET- $

GET-PROGRM return

GET-MYPROG return

GET-$PUBLIC return

GET-$NAMES return

GET - name of a PEograrn in user's librar_l.i.

GET -$ name of sys tern library prograll~

PURPOSE

GET- retrieves the specified program, making
it the program currently accessed from the
teleprinter.

GET-$ retrieves the specified program from the
system library, making it the program currently
accessed from the teleprinter.

COMMENTS

The program being accessed previous to using
GET- is not recoverable unless it has been
previously SAVEd or PUNCHed (GET- performs an
implicit SCRATCH).

For more information on public library programs,
see IILIBRARY" in this section.

3-10 869

EXAMPLE:

K:ILL-

KH .. L-PROG12 return

KIL-EXMPLE return

KIL-FILE10 return

GENERAL FORM: KILL- program or filE~ to be deleted

or

KII::program or file to be deleted

PURPOSE ----

Deletes the specified program or file from the user's library. (Does not delete the
program currently being accessed from the teleprinter, even if it has the same name.)

cor~MENTS

CAUTION: Files have only one version, the stored one. A KILLed file is not
recoverable.

A file may not be KILLed while it is being accessed by another user.

KILL-should be used carefully, as the KILLed program is not recoverable unless:
a) A paper tape was previously PUNCHed, or
b) The KILLed program was also the current program.

SCRATCH deletes the program currently being accessed from the teleprinter, while KILL
deletes a program or file stored on-system. The stored and current versions of a pro­
gram occupy separate places in the system. They may differ in content, even though
they have the same name.

The sequence of commands for changing and storing a program named PROG** is:
GET-PROG** (Retrieves the program.)
(make changes)

KILL-PROG** (Deletes the stored version.)
SAVE (Saves the current version.)

3 .. 111 869

I
...J
...J

"'"

EXAMPLES:

GENERAL FORM:

APPEND-

APPEND-MYPROG return

APP-MYPROG return

APPEND-$PUBLIC return

APP-$SYSLIB return

APPEND~program name

or
APP-program name

or
APP-~system library program name

PURPOSE

Retrieves the named program from the users or public library
and appends it (attaches it) to the program currently being
accessed from the teleprinter.

COMMENTS

The lowest statement number of the APPENDed program must be
greater than the highest statement number of the current
program.

CAUTION: If an APPENDed publ ic 1 ibrary program is IIrun·-onlyll,
the enti re program to which it is APPENDed becomes "run·-only".
(IiRun-onlyll programs may not be listed or changed.)

The $ in system library program names is needed to APPEND
them. For details, see "LIBRARY" in this section.

3-12 869

EXAMPLES:

GENERAL FORM:

DELETE-

DELETE-27 return

DEL-27, 50 return

DEL-statement number at which deletion starts

or

DEL-statement no. at which deletion start:s , statement no. at which deletion ends

PURPOSE

DEL-statement number erases the current program statements
after and including the specified statement. DEL-l has
the same effect as SCRATCH.

DEL-statement number, statement number deletes all statements
in the current program between and including the specified
statements.

COMfVlENTS

It is sometimes useful to SAVE or PUNCH the original version
of a program which is being modified, before using the DELETE
statement.

Deleted statements are not recoverable.

3-13 869

EXAMPLES:

BINOPO ~594 CDETER 0706
FNCTS 0652 GEOMEN 0199
ROMINT 0299 SQE 02,09

GENERAL FORM:

LIBRARY

LIBRARY return

LIB return

CSHFLO 1598 CURFIT 1618
IN4 5440 IN5 5440
STAT1] 0568 TAB 2098

LIBRARY
or

LIB

PURPOSE

DIFFEQ 0133
INVHIL 0250
YELLOW 0227

OIVIO 1367
LINFIT 0492
Z123 0413

Produces an alphabetical listing of TSB system library program and
file names, followed by the size of each, in two-character words.

COMMENTS

Public library programs are available to users; typing:
GET-$ pro'lram name return

retrieves the specified program.

Public files are accessed with the FILES statement. (See Section
IV, IIFILES" for details.)

Certain programs designated "run-only" or by the system operator may
be RUN but not listed, or punched.

LIBRARY listings may be terminated with the break key.

3-14 869

CAlrALOG

EXAMPLES: CAT return

CATALOG return

PROG1 0024 PROG2 2348 PROG3 1489

GENERAL FORM: CATALOG
or

CAT

PURPOSE ---

Produces an alphabetical listing of the
names of the programs and fi 1 es stored
on-system, under the user1s account name
and size of each in two-character words.

COMMENTS

May be terminated with the break key.

Programs are accessed with the GET command.

Files are accessed with a FILES statement.
See Section IV, IJFill:slJ for details.

3-15 869

SUBROUTINES AND FUNCTIONS

The following pages show TSB features useful for repetitive
operations
functions.

subrouti nes, programmer-defi ned and standard

The programmer-controlled features, such as multibranch
GOSUB's, FOR ... NEXT with STEP, and DEF FN become more use··
ful as the user gains experience, and learns to use them
as shortcuts.

Standard mathematical and trigonometric functions are
convenient timesavers for programmers at any level. They
are treated as numeric expressions by TSB.

The utility functions TAB, SGN, TYP, and LEN also become
more valuable with experience. They are used to control
or monitor the handling of data by TSB, rather than for
performing mathematical chores.

3-16 869

EXAMPLE:

GOSUB, ... RETURN
5iJ READ A2
60 IF A2<100 THEN 80
70 GOSUB 400

380 STOP (STOP, END, or GO TO's frequently precede
the first statement of a subroutine, to
prevent accidental entry.)

390 REM--THIS SUBROUTINE ASKS FOR A 1 OR 0 REPLY.
400 PRINT "A2 IS>100"
410 PRINT "00 YOU WANT TO CONTINUE";
420 INPUT N
430 IF N #0 THEN 450
440 LET A2 = 0
450 RETURN

600 END

statement number RETURN

PURPOSE

GOSUB transfers control to the specified statement number.

RETURN transfers control to the statement following the GOSUB statement which trans­
ferred control.

GOSUB ... RETURN eliminates the need to repeat frequently used groups of statements in
a program.

COrv'IMENTS

The portion of the program to which control is transferrred must end with a RETURN
statement.

RETURN statements may be used at any desired exit point in a subroutine.

GOSUB ... RETURN's may be nested to a level of 9 (see the next page).

3-17 869

EXAMPLES:

GENERAL FORM:

MULTIBRANCH GOSUB

20 GOSUB 3 OF 100,200,300,400,500
60 GOSUB N+1 OF 200,210,220
70 GOSUB N OF 80,180,280,380,480,580

statement number GOSUB expression OF sequence of statement numbers

PURPOSE

Transfers control to the statement number indicated by the
expression following GOSUB.

COMMENTS

Subroutines should be exited only with a RETURN statement.

The expression indicates which of the specified subroutines will b(~

executed. For example, statement 20, above transfers control to the
subroutine beginning with statement 300. The expression specifies which
statement in the sequence of five statements is used as the starting one

in the subroutine.

The expression is evaluated as an integer. Non-integer values are
rounded to the nearest integer.

If the ~~pression evaluates to a number greater than the number of state­
ments specified, or less than 1, the GOSUB is ignored.

Statement numbers in the sequence following OF must be separated b'y commas.

3-18 869

EXAMPLES:

NESTINC:; GOSUB 5

100 GOSUB 200

200 LET A = R2/7
210 IF A THEN 230
220 GOSUB 250

250 IF A>B THEN 270
260 RETURN
270 GOSUB 600

PURPOSE

Allows selective use of subroutines within
subroutines.

COMMENTS

GOSUB's may be nested to a level of nine.

RETURN statements may be used at any desired
exit point in a subroutine. Note, however,
that nested subroutines are exited in the or­
der in which they were entered. For example,
if subroutine 250 (above) is entered from sub­
routine 200, 250 is exited before subroutine
200.

3-19 869

EXAMPLES:

GENERAL FORM:

FOR ... NEXT WITH STEP

20 FOR 15 = 1 TO 20 STEP 2
4~ FOR N2 = 0 TO -1~ STEP -2
80 FOR P = 1 TO N STEP R
90 FOR X = N TO W STEP (Nt2-V)

statement number FOR simple variable ~ expression TO expression STEP expression

PURPOSE

Allows the user to specify the size of the
increment of the FOR variable.

COMMENTS

The step size need not be an integer. For instance,
100 FOR N = 1 TO 2 STEP .01

is a valid statement which produces approximately
100 loop executions, incrementing N by .01 each
time. Since no binary computer represents all
decimal numbers exactly, round-off errors may in­
crease or decrease the number of steps when a non­
integer step size is used.

A step size of 1 is assumed if STEP is omitted from
a FOR statement.

A negative step size may be used, as shown in
statement 40 above.

3-20 869

EXAMPLE:

GENERAL FORM:

DE:F FN

60 DEF FNA (B2) = At2 + (B2/C)
70 DEF FNB (B3) = 7*B3t2
80 DEF FNZ (X) = X/5

statement number DEF B1 single letter A to z 1 simple variable 1 ~ expression

PURPOSE

Allows the programmer to define
functi ons.

COMMENTS

A maximum of 26 programmer-defined
functions are possible in a program
(FNA to FNZ).

Any operand in the program may be used
in the defining expression; however
such circular definitions as:

l~ DEF FNA (Y) = FNB (X)
2~ DEF FNB eX) = FNA (Y)

causes infinite looping.

See the vocabulary at the beginning of
this section for a definition of
"function ll

•

3-21 869

I

ABS

EXP

INT

LOG

RND

SQR

GENERAL MATHEMATICAL FUNCTIONS;

EXAMPLES:

GENERAL FORM:

(~~pres~ion)

(expression)

(expression)

(exl?re!!..~Jon)

(expres sion)

(expres~ioz.:.)

642 PRINT EXP(N); ABS(N)
652 IF RND (0»=.5 THEN 900
662 IF INT (R) # 5 THEN 910
672 PRINT SQR (X); LOG (X)

The general mathematical functions may be used as
expressions, or as parts of an expression.

PURPOSE

Facil itates the use of common mathematical
functions by pre-defining them, as:

the absolute value of the expression;

the constant e raised to the power of the expression value
(in statement 642 above, etN)

the largest integer 2 the expression;

the logarithm of the positively val ued expression to the base e;

a random number between and 0; the expression is a dummy
argument;

the square root of the positively valued expression.

COMMENTS

The RND function is not restartable; it is
virtually impossible to duplicate a sequence
of random numbers using RND. See Appendix C
for an example of RND in a program.

3-22 869

EXAMPLES:

TRIGONOMETRIC FUNCTIONS

500 PRINT SIN(X); COS(Y)
510 PRINT 3*SIN(B); TAN (C2)
520 PRINT ATN (22.3)
530 IF SIN (A2) <1 THEN 800
540 IF SIN (B3) = 1 AND SIN(X) <1 THEN 90

PURPOSE

Facilitates the use of com~)n trigonometric functions by

pre-defining them, as:

SIN (ex72.r ession)

COS (ex72.ression)

TAN (ex 72.ressionJ

ATN (ex e.re ss ion)

the sine of the expression (in radians);

the cosine of the expression (in radians);

the tangent of the expression (in radians);

the arctangent of the expression (in radians).

COMMENTS

The function is of the value of the expression (the value in
parentheses, or argument).

The trigonometric functions may be used as expressions, or parts

of an expression.

ATN returns the angle in radians.

See the next three pages for other standard functions.

3-23 869

EXAMPLES:

GENERAL FORM:

THE TAB AND SGN FUNCTIONS

500 IF SGN (X» -1 THEN 800
510 LET Y = SGN(X)
520 PRINT TAB (5); A2; TAB (20)"TEXT II

530 PRINT TAB (N),X,Y,Z2
540 PRINT TAB (X+2) IIHEADING II ; R5

The TAB and SGN functions may be used as
expressions, or parts of an expression.
The function forms are:
TA~i expression indicating column number 1
SGN (expression) --- -

PURPOSE

TAB (expression), when used in a PRINT statement,
causes the teleprinter to move to the column num­
ber specified by the expression (0 to 71).

SGN (~xpr~ssi~~_), returns a 1 if the expression
is greater than 0, returns a 0 if the expression
equals 0, returns a -1 if the expression is less
than 0.

3-24 869

EXAMPLES:

GENERAL FORM:

THE TYP FUNCTION

800 IF TYP (3) = 2 THEN 1000
850 PRINT TYP (N)
90~ IF TYP (R) # X THEN 1200

TYP may be used as an expression or as part of an
expression; the function form is:
TYP .L file number formula 1

PURPOSE

If the file number formula is positive, TYP
returns these values indicating the type of
the next data item 4n a file: 1 = number;
2 = string; 3 = "end of fi1e".

If the file number Jormu1a is zero, TYP returns
these values for the next data item in a DATA
statement: 1 = number; 2 = string; 3 for an
"out of data" condition.

If the file number formula is negative, TYP
returns these values for the next data item
ina fii 1 e : 1 = numb e r ; 2 = s t r i n g ; 3 = II end
of fi 1 e"; 4 = "end of record".

COI~MENTS

When using files as random storage devices, the
file number formula should be negative, enabling
TYP to return an lIend of record ll va 1 ue. (See
Section IV for details of file structure.)

3-25 869

EXAMPLES:

GENERAL FORM:

THE LEN FUNCTION

580 IF LEN (8$) >= 21 THEN 9999
800 IF LEN (C$) = R THEN 100~

850 PRINT LEN (N$)
880 LET P5 = LEN (N$)

The LEN function may be used as an expression, or
part of an expression. The function form is
l~N i string variable 1

PURPOSE

Returns the length (number of characters)
currently assigned to a string variable.

COMMENTS

Note the difference between the LEN function
and the LENGTH command. The command is used
outside a program, and returns the working
length of the current program in two-character
words. The LEN function may be used only in
a program statement.

3-26 869

SEC'TION IV

FILES

This section is divided into two parts:

The first part defines terms~ and explains
how to open~ close, read, and write on a file.
These pages contain the minimum information
needed to use files. This part was designed
to allow the problem-oriented user to quickly
obtain minimal file access.

The second part, be9inning with "Structure of
a File", contains information helpful in gain­
ing an understandin[of TSB files. The pro­
grammer who intends to use files consistently
for information stoY'age and retrieval should
make an effort to learn the structure of TSB
files. Considerable time (both programmer
and machine) can be saved if the programmer
has a good understanding of files.

Note that special variations of READ and PRINT
pertinent to files have been included in both
the serial and random access sections.

4-1 869

TERM: FILE

DEFINED IN TSB AS:

A storage area in the TSB system, which may be accessed
from a program. Data may be written on and read from files.

Smaller divisions within a file are called records and wotds.

File structure is explained later in this section.

TERM: END OF RECORD

DEFINED IN TSB AS:

A marker placed (by TSB) at the end of each record used
in a file. The mark is a reference point for the computelf',
and is written by th~ computer when a record is full_
or when the programmer has finished writing on a file
record.

4-2 869

TERM: Er~D OF FILE

DEFINED IN TSB AS:

A mark placed (by TSB) at the end of a file. The mark
is a reference point for the computer, and may be placed
by the computer when a file is full, or when the program­
mer is finished writing on a file.

TERM: SERIAL AND RANDOM ACCESS

DEFINED IN TSB AS:

These denote the two methods of using files mentioned
previously. When files are used as serial devices the
computer selects the appropriate location within the
file to read or write data. Random file access means
that the programmer chooses to control the 'internal
location of data within a file.

EXAMPLES:

GENERAL FORM:

OPEN-

OPEN-FILE27, 85 return

OPEN-SAMPLE, 128 return

OPEN-**FI**, 10 return

OPEN- 1 to 6 character file name 1.. number of 64-word records in file

OPE- 1 to 6 character file name , number of 64-word records in file

PURPOSE

Opens and assigns a name to a file; reserves the
specified number of 64-word records of storage for
file contents (1 word = 2 teleprinter characters).

Places an "end of file" marker at the beginning of
each record.

COMMENTS

The minimum number of records per file is 1.

The maximum number of records per file varies with
computer options.* Contact the system operator for
the specific number on your system.

The maximum number of files available to each user
is determined by the system operator.

Files are accessible only to users with the same
1.0. code as their creator.

* 90 to 128

4-4 869

EXAMPLE:

GENERAL FORM:

KIILL-

KILL-NAMEXX return

KIL-EXMPLE return ---
KIL-FILE10 retur~

KILL~file to be deleted

KIL-file to be deleted

PURPOSE

Deletes the named program or file from the user's library. (Does not
delete the program currently being accessed from the teleprinter, even
if it has the same name.)

COI~MENTS

CAUTION: Files have only one version, the stored one. A KILLed file
is not recoverable.

It is not possible to KILL a file while it is being accessed by another
user.

KILL-should be used carefully, as the KILLed file is not recoverable
unless a paper tape was previously punched, with the data on it.

4-5 869

I
....J
....J

'"

FILES

EXAMPLE: 10 MATH, SCORE, AND, SQRT, NAME5, $DATA

GEN ERAL FO RM:
statement number FILES maximum of 8 file names, separated by commas.

PURPOSE

Declares which files will be used in a program;
TSB assigns a file reference number (from 1 to 8)
to ea ch fi 1 eli s ted.

COMMENTS

The FILES statement may be used only once in a
program; however, the same file name may be re­
peated in a FILES statement.

Files are referenced in the order in which they
are listed in the FILES statement. For instance,
in the example above,

1,fJ,fJ PRINT #2;A
prints the value of A on the file named SCORE.

Publ ic fil es in the system 1 ibrary are "read onlyll:;
they are accessed with a FILES statement. Public
file names must be preceded by a $, as the file
DATA in the example above.

Users with the same ID code may share files. Only
one user at a time may write on a shared file.

4-6 869

EXAMPLES:

GENERAL FORM:

PRIINT #

125 PRINT #5; Al, B2; C
130 PRINT #1; B; C; D
140 PRINT #M+N; B

statement number PRINT # file number formula ,

PURPOSE

Prints variables or text on the file number specified
in the file formula.

COMIVlENTS ---

Non-integer file formula numbers are rounded to the
nearest integer (from 1 through 8), since a maximum
of 8 files may be accessed by a single program.

The maximum capacity of a file varies with computer
options from 90 to 128 64-word records. Consul t
your system operator for specific information.

There are several other variations of PRINT#. This
is the easiest one to use -- it fills available space
within the specified file; however, it is not always
the most efficient form of a print-to-file.

Other versions of the print-to-file, are described
in this section.

4-7 868

EXAMPLES:

READ #

65 READ#5; A,B,C
7~ READ#3; B$
8~ READ#N; A, B$, C(5,3)
9~ READ#(N+l); A,B$,C(5,3)

GENERAL FORM: statement number READ# file number formulci .L •••

PURPOSE

Reads values consecutively from the specified
file.

COMMENTS

Since a maximum of 8 files may be specified
in the FILES statement, the file number for­
mula should not exceed 8. Non-integer file
formula numbers are rounded to the nearest
integer.

Each item of data stored on a file may be
read only once with this statement. Other,
more selective versions of the read-from-file
are described later in this section.

4-8 869

EXAMPLES:

GENERAL FORM:

IF ENO# ... THEN

300 IF END #N THEN 800
310 IF END #2 THEN 830
320 IF END #3 THEN 9999

800 LET N = N + 1
810 IF N > 8 THEN 9999
820 GO TO 1
830 PRINT #3; A,B,C
840 PRINT "DATA IS STORED"

9999 END

statement number IF END# file number formula THEN statement number

PURI)OSE

Defines an exit procedure when an "end of file" mark is encountered;
also detects "end of record" conditions.

COMr~ENTS ---

The IF END statement defines an exit procedure which remains in effect
I

until another IF END statement is encountered. Subsequent IF END state-
men ts wi th the same fit 1 e number fol"mu1 a are used to change the exi t
procedure.

The normal exit procedure when an "end of file" mark is encountered, and
no IF END statement used, is termination of the program, and printing
"END OF FILE/END OF RECORD IN STATEMENT XXXX".

See "Structure of a File" in this section for further detail s on using
files as serial devices.

4-9 869

STRUCTURE OF A FILE

A simple method of using files is to treat
them as "black boxes" which store information.
By using only the statements presented on the
preceeding pages, you may PRINT and READ in­
formation on files.

There are disadvantages to this method:

a) File space may be wasted by creating
files larger than necessary.

b) Time may be wasted if a file is too
small: it terminates the program,
and must be enlarged, and the program
re-run.

It is much more efficient to use files as
one, or a group of, random storage devices.
The next pages show the structure of files
as random devices.

4-10 869

STRUCTURE AND !5TORAGE PATTERN

Record 1

- - -- - -_.-

Record 2 1# .-----
- - --- - --- --- ---- _ ..

d ---

RE~cord 3

-
-

End of
Record
Mark

End of
Last
RE~cord

...- File

COMI~ENTS

--.. and - - indicate the ordet of record use when record numbers
are not specified in PRINT and READ statements.

Each record contai ns 64 words of storage space.

Mark

One file contains a maximum of 90-"128 records (see your system operator

for the exact limit).

Continued on the next page.

4-11 869

SERIAL FILES

(See the previous page for details of the structure of a single file.)

File 1

File 2

End of File Mark

Last File

Up to 8 files may be accessed in series (or any other
configuration) by using the IF END statement.

- --. i ndi cates the sequence of fi 1 e access, us i ng an
IF END# statement, but not record-controlled PRINT or
READ statements. For example, the sequence

1~0 PRINT #N; A,B,C
110 IF END #N THEN 800

800 LET N=N+ 1
810 GO TO 10

fills files sequentially, moving to the next file
when the current file is filled.

4-12 869

FILE STRUCTIJRE-SUMMARY

Each file is made up of a maximum of 90 to
128 64-word records. (Consult your system
operator for the exact figure.)

Each word = 2 teleprinter characters.

Numerical data requires 2 words of file
space. String data requires about 1/2 word
of file space per string character.

The formula for determining the number of
words needed to store strings is:
1 + number of characters in string + _

2

if the number of char~acters is odd.

or
1 + number of characl:ers in string

2

if the number of character is even.

Each fil e has a "pointer" used to reference
data printed on or r,ead from that file. This
pointer references data sequentially when
statements described previously are used to
access fi 1 es.

The following pages describe how the programmer
may access files at random, by manipulating
file pointers.

4-13 869

UJ
..J

....

EXAMPLES:

GENERAL FORM:

PRINT ... ,END

95 PRINT #N ; A,B2, END
100 PRINT #(X+l); R3, Sl, IITEXT II , END
110 PRINT #2; G5; H$, P, END

statement number PRINT# file number formula ..i items to be printE;]d -'-- ~NQ

PURPOSE

Places an !lend of fi1e ll marker after the value
written on the file; END is significant only
when the lIend of file ll marker is the last item
written.

COMMENTS

The lI end of file ll marker written by this
statement is a logical marker, rather than a
physical boundary marker.

The lIend of file ll is overlaid by the first item
in the next PRINT statement. An lI end of file ll

condition is generated only on READ attempts, or
an attempt to PRINT beyound the physical boundary
of a file.

PRINT# ... ,END may be used to put an !lend of file ll

mark in the middle of a data file, to be used as
a flag for an IIIF ENO#II statement.

The IF ENO# statement transfers control when this
end marker is encountered.

4-14 869

EXAMPLES:

GENERAL FORM:

PRINT# ... , ...

165 PRINT #N, X; G2, H, I, "TEXT"
170 PRINT #1,3; X, Y4, Z
175 PRINT #(N+l), (X+2);F,P5

statement number PRINT# file number formu.la ..1... record number formula ;~ p~£j.~t list

PURPOSE

Prints to a specified file and specified record within
that file; permits selective positioning of data within
a fi 1 e.

COMMENTS

The record number formula should evaluate to an integer
between 1 and the number of records in the file. Non­
integers are rounded to the nearest integer value.

The corresponding controlled READ statement works in the
same manner as the controlled PRINT. See "READ" ... , ... "
in this section for details.

PRINT to a specified record erases the record before writing
the new information. PRINT without specifying a record fills
the file sequentially.

4-15 869

EXAMPLES:

GENERAL FORM:

PRINT TO RESET A POINTER

320 PRINT #M+N, R+S
330 PRINT #(N-P),X
340 PRINT #5,1

statement number PRINT# file nuniber formula .1.. record nuniber formula

PURPOSE

Resets the file pointer to the first
position in the specified record.

Erases the contents of the specified
record.

COMMENTS

File and record number formulas should
evaluate to integers. Non-integers are
rounded to the nearest integer value.

Only the contents of the specified record are
erased; the rest of the file remains intact.

A specified record may be rewritten during a
program wi thout a separate "print-to-reset" by
including the record number formula in the
PRINT statement. Remember that PRINT without
specifying a record must be used to fill a file
sequentially.

4-16 869

EXAMPLES:

GENERAL FORM:

READ # ••• ,.

100' READ #2,3; A,B,C3,X$

110 READ #N,2; Nl,N2,N3

120 READ #N,M; R2, P7, A$, T(3,5)

130 READ #(N+l);(M+2); X,Y$,Z(S,S)

statement number READ# file number formuJa, record number formula; variable, variable .••

PURPOSE

Reads data from a speci fi ed record of a

fi 1 e.

cor~MENTS

The record formula number should eval uate

to an in teger betw(~en 1 and the number of

records allowed pe'f fi 1 e.

Non-integers are rounded to the nearest

integer value.

To read data sequentially, use READ with­

out specifying a rlecord number.

The corresponding PRINT statement works in

the same manner as the controlled READ.

See IIPRINT# •.• , ••• II in this section for

detai 1 s.

Attempting to read an end-of-record mark

generates an lIend-rOf-fil ell condition.

4-17 869

READ TO RESET A POINTER

EXAMPLES: 41 ~ READ #2, 3
420 READ #N, 1

GENERAL FORM:

430 READ #(N-P), 5
440 READ # N, P3

statement number READ# file formula number

or

statement number READ# file number formula .!.. record number formula

PURPOSE

Resets the file pointer to the first position
of the specified record.

COMMENTS

A specified record may be reread without
resetting the pointer.

READ# to reset a file pointer does not erase
the specified record.

File and record numbers should evaluate to
integers. Non-integers are rounded to
the nearest integer value.

Once a record is accessed, READ without
specifying a record is used to read sequen­
tially from the file.

4-18 869

SEC1-ION V

MATI~ICES

This section explains matrix manipulation. It is intended
to show the matrix capabilities of TS8, and assumes that the
programmer has some knowledge of matrix theory.

TERM: MA"TRIX (ARRAY)

DEFINED IN TS8 AS: An ordered collection of numeric data
containing not more than 2500 elements
(numeric values).

Matrix elements are referenced by subscripts following the
matrix variable, indicating the row and column of the ele­
ment. For example, if matrix A is:

2 3

456

789

the element 5 is referenced by A(2,2); likewise 9 is A(3,3).

See Section III, IIVocabularyll for a more complete description
of ma tri ces.

5-1 869

EXAMPLES:

GENERAL FORM:

DIM

110 DIM A (50), B(20,20)
1 20 DIM Z (5, 20)
130 DIM S (5,25)
140 DIM R (4,4)

statement number DIM matrix variable i integer L ...
or

statement number DIM matrix variable i integer L integel~ L ...

PURPOSE

Sets upper limits on the amount of working space used by a maxtr"ix in the
TBS system.

COMMENTS

The integers refer to the number of matrix elements if only one dimension
is supplied, or to the number of column and row elements respectively,
if two dimensions are given.

A matrix (array) variable is any single letter from A to Z.

Arrays not mentioned in a DIM statement are assumed to have 10 elements
if one-dimensional, or 10 rows and columns if two-dimensional.

The working size of a matrix may be smaller than its physical size. For

example, an array declared 9 x 9 in a DIM statement may be used to store
fewer than 81 elements; the DIM statement supp1 ies only an upper' bond on
the number of elements.

The absolute maximum matrix size is 2500 elements; a matrix of this size
is practical only in conjunction with a very small program.

5-2 869

EXAMPLES:

GENERAL FORM:

MA l· ... ZER

305 r1AT A = ZER
310 r1AT Z = ZER (N)
31 5 r1A T X = Z E R (30, 10)
320 r1AT R = ZER (N, P)

statement number MAT matrix variru)le = ZER --
or

statement number MAT matri.x variable =- ZER 1.. expression 1
or

statement number MAT matrix variable =- ZER i expression l expression 1

PURPOSE

Sets all elements of the specified matrix
equal to 0; a new working size may be
established.

CO~1MENTS

The new working size in a MAT ... ZER is an
implicit DIM statement within the limits
set by the DIM statement on the total num­
ber of el ements.

Since 0 has a logical value of IIfalse ll
,

MAT ... ZER is useful in logical initialization.

The expressions in new size specifications should
eval uate to integers. Non-integers are rounded
to the nea res t in teger va 1 ue.

5-3 869

MAT ... CON

EXAMPLES: 205 MAT C = CON
210 MAT A = CON (N,N)
220 MAT Z = CON (5,20)
230 MAT Y = CON (50)

GENERAL FORM:
statement number MAT matrix variable = CON --

or

statement number MAT matrix variable ~ CON 1 expression 1
or

statement number MAT matrix variable ~ CON 1 expression...!. expression 1

PURPOSE

Sets up a matrix with all elements equal to 1;
a new working size may be specified, within the
limits of the original DIM statement on the total
number of elements.

COMMENTS

The new working size (an implicit DIM statement)
may be omitted, as in example statement 205.

Note that since 1 has a logical value of "true",
the MAT ... CON statement is useful for logical
initiaiization.

The expressions in new size specifications should
evaluate to integers. Non-integers are rounded
to the nearest integer value.

5-4 869

EXAMPLES:

Ir~PUT

600 INPUT A(5)
610 INPUT B(5,8)

620 INPUT R(X), N$, A(3,3)
630 INPUT Z(X,Y), P3, W$
640 INPUT Z(X,Y), Z(X+l, Y+l), Z(X+R3, Y+S2)

GENERAL FORM:
statement number .INPUT matrix variable 1 expression 1 ...

or

statement number .INPUT matrix variable 1 expression 2- expression 1

PURPOSE

Allows input of a specified matrix element(s)
from the teleprinter.

COMMENTS

Expression should evaluate to integers. Non­

integers are rounded to the nearest integer
value.

The subscripts (expressions) used after the matrix
variable designate the row and column of the matrix
element. Do not confuse these expressions with
working size specifications, such as those following
a MAT INPUT statement.

See MAT INPUT and DIM in this section for further
details on matrix input.

5-5 869

EXAMPLES:

GENERAL FORM:

MAT INPUT

355 MAT INPUT A
36~ MAT INPUT B(5)
365 MAT INPUT Z(5,5)
37~ MAT INPUT A(N)
375 MAT INPUT B(N,M)

statement number MAT INPUT matrix variable

or

statement number MAT INPUT matrix variable i expression 1 ...
or

statement number MAT INPUT matrix variable i expression L expr~s.!::jon_l . ..

PURPOSE

Allows input of an entire matrix from the teleprinter; a new working size may be
specified, within the limits of the DIM statement on total number of elements.

COMMENTS

Do not confuse the size specifications following MAT INPUT with element specifications.
For example, INPUT X(5,5) causes the fifth element of the fifth row of matrix X to be
input, while MAT INPUT X(5,5) requires input of the entire matrix called X, and sets
the working size at 5 rows of 5 columns.

Example statements 360 through 375 require input of the specified number of matrix
elements, because they specify a new size.

Elements being input must be separated by commas.

A "??II response to an input item means that more input is required.

Only one? is generated by a MAT INPUT statement, regardless of the number of
elements.

MAT INPUT causes the entire matrix to be filled from teleprinter input in the (row,
col.) order: 1,1;1,2;1,3; etc.

5-6 869

EXAMPLES:

PRINTING MATRICES

800 PRINT A(3)
810 PRINT A(3,3);
820 PRINT F(X);E$; CS;R(N)
830 PRINT G(X,y)
840 PRINT Z(X,Y), Z(l,S), Z(X+N, Y+M)

GENERAL FORM:
statement number PRINT matrix variable 1 expression 1 ...

or

statement number PRINT matrix variable 1 expression L expression 1 ...

PURPOSE

Causes the specified matrix element(s) to be printed.

COMMENTS

Expressions (subscripts) should evaluate to integers.
Non-integers are rounded to the nearest integer
value.

A trailing semicolon packs output into twelve
elements per teleprinter line, if possible. A trail­
ing comma prints five elements per line.

Expres s ions (s ubscr'i pts) foll owi ng the ma tri x va ri ab 1 e
designate the row and column of the matrix element.
Do not confuse these with new working size specifica­
tions, such as those following a MAT INPUT statement.

This statement prints a single matrix element. MAT
PRINT is used to print an entire matrix.

5-7 869

EXAMPLES:

GENERAL FORM:

MAT PRINT

5fll0 MAT PRINT A
5fll5 MAT PRINT A;
515 MAT PRINT A,B,C
52~ MAT PRINT A,B,C;

statement number MAT PRINT matrix variable

or

statement number MAT PRINT matrix variable, matrix variable ...

PURPOSE

Causes an entire matrix to be
printed, row by row, with double
spacing between rows.

COMMENTS

Matrices may be printed in "packed"
rows up to 12 elements wide by us-
ing the ";" separator, as in example
statement 505. Normal separation (",")
prints 5 elements per row.

5-8 869

EXAMPLES:

~~EAD

900 READ A(6)
910 READ A(9,9)
920 READ C(X); p$; R7
930 READ C(X,V)
940 READ Z(X,V), P(R2, S5), X(4)

GENERAL FORM:
statement number READ matrix variable 1. expression 1

or

statement number READ matrix variable 1 expression .2. expression 1 ...

PURPOSE

Causes the specified matrix element to be
read from the current DATA statement.

COMMENTS

Expressions (subscripts) should evaluate to
integers. Non-integers are rounded to
the nearest integer.

Expressions following the matrix variable
designate the row and column of the matrix
element. Do not confuse these with working
size specifications, such as those following
MAT INPUT statement.

The MAT READ statement is used to read an
entire matrix from DATA statements. See
details in this section.

5··9 869

EXAMPLES:

MAT READ

350 MAT READ A
370 MAT READ B(5),C,D
380 MAT READ Z (5,8)
390 MAT READ N (P3,Q7)

GENERAL FORM:
statement number MAT READ matrix variable

or

statement number MAT READ matrix variable 1 expression 1
or

statement number MAT READ matrix variable 1 expression ...L expression 1

PURPOSE

Reads an entire matrix from DATA statements.
A new working size may be specified, within
the limits of the original DIM statement.

COMMENTS

MAT READ causes the entire matrix to be filled
from the current DATA statement in the (row, col.)
order: 1,1; 1,2; 1,3; etc. In this case the
DIM statement controls the number of elements
read.

5-10 869

EXAMPLES:

MATRIX ADDITION

310 MAT C = B + A
320 MAT X = X + y
330 MAT P = N + M

GENERAL FORM:
statement number MAT matrix va.riable = matrix variable + matrix variable

PURPOSE

Establishes a matrix equal to the
sum of two matrices of identical
dimensions; addition is element­
by-e 1 emen t.

COMMENTS

The resulting matrix must be previously
mentioned in a DIM statement, if it has
more than 10 elements, or 10 x 10 ele­
ments if two dimensional. Dimensions
must be the same as the component matrices.

The same matrix may appear on both sides
of the = sign, as in example statement 320.

5-11 869

MATRIX SUBTRACTION

EXAMPLES: 550 MAT C = A - B
560 MAT B = B Z

570 MAT X = X A

GENERAL FORM:
statement number MAT matrix variable = matrix variable - matri:x variable

PURPOSE

Establishes a matrix equal to the
difference of two matrices of
identical dimensions; subtraction
is element-by-element.

COMMENTS

The resulting matrix must be previously
mentioned in a DIM statement if it has
more than 10 elements, or 10 x 10 elements
if two dimensional. Its dimension must be
the same as the component matrices.

The same matrix may appear on both sides
of the = sign, as in example statement 560.

5-12 869

EXAMPLES:

MATRIX MUlL TIPLICATION

930 MAT Z = B * C
940 MAT X = A * A
950 MAT C = Z * B

GENERAL FORM:
statement number MAT matrix va.riable = matrix variable * matrix variable

PURPOSE

Establishes a matrix equal to the
product of the two specified matrices.

COMMENTS

Following the rules of matrix multiplication,
if the dimensions of matrix B = (P,N) and ma­
trix C = (N,Q), multiplying B*C results in a
matrix of dimensions (P,Q).

Note that the resulting matrix must have an
appropriate working size.

The same matrix variable may not appear on
both sides of the = sign.

5-13 869

SCALAR MULTIPLICATION

EXAMPLES:

GENERAL FORM:

110 MAT A = (5) * B
115 MAT C = (10) * C
120 MAT C = (N/3) * X
130 MAT P = (Q7*N5) * R

statement number MAT matrix variable =-1.. expression 1 ~ matrix variable

PURPOSE

Establishes a matrix equal to the product
of a matrix multiplied by a specified num­
ber, that is, each element of the original
matrix is multiplied by the number.

COMMENTS

The resulting matrix must be previously
mentioned in a DIM statement, if it con­
tains more than 10 elements (lOxlO if two
dimensional).

The same matrix variable may appear on
both sides of the = sign.

Both matrices must have the same working
size.

5-14 869

EXAMPLES:

COPYINGI A MATRIX

40S MAT B = A
41 J~ MAT X = V

42J~ MAT Z = B

GENERAL FORM:

statement number MAT mat.r:ix variable = matrix variable --------- -

PURPOSE ----

Copies a specified matrix into a matrix
of the same dimensions; copying is ele­
ment-by-element.

COMr~ENTS ---

The resulting matrix must be previously
mentioned in a DIM statement if it has
more than 10 e'l ements, or 1 Oxl 0 if two
dimensional. It must have the same di­
mensions as the copied matrix.

5-U5 869

IDENTITY MATRIX

EXAMPLES: 205 MAT A = ION
210 MAT B = ION (3,3)

215 MAT Z = ION (Q5, Q5)
220 MAT S = ION (6, 6)

GENERAL FORM:
statement number MAT array variable = ION --

or

statement number MAT arra~ variable ~ ION i ex;eression ..1- ex;eression

PURPOSE

Establishes an identity matrix (all 01 s, with
a diagonal of all lis): a new working size may
be specified.

COMMENTS

The ION matrix must be two dimensional and square.

Specifying a new working size has the effect of a
OIM statement.

Sample identity matrix: 1 0 0
010
o 0

5-16 869

1

EXAMPLES:

GENERAL FORM:

MATRIX TRJANSPOSITION

959 MAT Z = TRN (A)
969 MA~~ X = TRN (B)
979 MAT Z = TRN (C)

statement number MAT !!latrix variab~[e ~ TRN l matrix variable 1

PURPOSE

Establishes a matrix as the transposition of
a specified matrix; transposes rows and columns.

COMMENTS

Sample transposition:

Original Transposed

1 2 3 1 4 7

4 5 6 2 5 8

7 8 9 3 6 9

Note that the dimensions of the resulting matrix
must be the reverse of the original matrix. For
instance, if A has dimensions of 6,5 and MAT C =
TRN (A), C must have dimensions of 5,6.

5-17 869

EXAMPLES:

GENERAL FORM:

MATRIX INVERSION

38~ MAT A = INV(B)
39~ MAT C = INV(A)
4~~ MAT Z = INV(Z)

statement number MAT matrix variable .:.. INV i matrix variabl.e 1

PURPOSE

Establishes a square matrix as the inverse
of the specified square matrix of the same
dimensions.

COMMENTS

A matrix may be inverted into itself, as in
example statement 4~~, above.

Number representation in TSB is accurate to
6-7 decimal digits; matrix elements are
rounded accordingly.

5-18 869

EXAMPLES:

GENERAL FORM:

MAT PRINT #

520 MAT PRINT #5; A
530 MAT PRINT #6, 3; B
540 MAT PRINT #4,M; A
550 MAT PRINT #N,M; A

statement number MAT PRINT# file m':llnber formula ~ matrix variable ...

or

stat. no. MAT PRINT# file no. form._Lrecordnoo form 0 Lmatrix var

PURPOSE

Pri nts a.n enti re matrix on a fi 1 e, or on a
specified record within a file.

COMMENTS

When printing on a specified file record,
remember that each r,ecord hol ds a maximum
of 32 numbers. Attempting a MAT PRINT of
a matrix having more than 32 elements gen­
erates an error diagnostic, terminating
the program.

5-19 869

EXAMPLES:

GENERAL FORM:

MAT READ #

720 MAT READ #2;A
730 MAT READ #2,3;B
740 MAT READ #M,N;B(5)
750 MAT READ #M,N;B(P7,R5)

statemE?nt number MAT READ# file formula number .L matrix variable .•.

or

statement no. MAT READ# file formula no. i record no. formula Lmatrix variable ..•

or

statement no. MAT READ# file form. no. L record no. form. ~ matrix var. 1_ expression 1 ...
or

stmt. no. MAT READ# file form. no . .L record no. form • .L matrix var . .l exp~ .L expr. 1 ...

PURPOSE

Reads a matrix from a file, or specified
record within a file. A new working size
may be specified.

COMMENTS

MAT READ# fills the entire matrix in a row-by-row
sequence of elements as: 1,1; 1,2; 1,3; 1,4

Remember that a maximum of 32 numbers may be
stored on a file record.

5-20 869

SECTION VI

STIRINGS

This section explains how to manipulate
strings with BASIC statements. There is
1 i ttl e di fference in the form of s tate­
ments manipulating strings and those used
with numeric variables. One important dif­
ference however, is the use of subscripts
to reference strings and substrings.

The examples and comments in this section
emphas i ze modi fi cat ~i ons ins tatement form,
or other special considerations in handling
strings.

If you are familiar with the definitions of
IIstringll and IIsubstr~ingll, skip to liThe String
DIM Sta.tement. 1I

6-1 869

DEFINED IN
TSB AS:

TERM: STRING

o to 72 tel eprinte r cha racters,
enclosed by quotation marks.

COMMENTS

Special purpose characters such as + , esc

(or alt-mode) and quotation marks may not be used
as s trin g characters.

Apostrophes (single quotes) and control characters
are legal string characters.

String variables must be a single letter (A to Z)
followed by a $, for example: A$,Z$,X$.

6-2 869

TERM: SUJBSTRING

DEFINED IN TSB AS: A certain character or characters
contained within a string.

COMMENTS

A substring is referenced by subscripts placed after the string variable.
For example, if the string Z$ = ABCDEFGH, the statement:

300 PRINT Z$(2,6)
prints the substring:

BCDEF

Two subscripts specify the first and last characters of the substring.

Using single subscript, as:
310 PRINT Z$(3)

prints the substring:
CDEFGH

The single subscript identifies the first character of the substring; all
characters after it are considered to be part of the substring.

Both strings and substrings may be used with relational operators.

A substring may be a single character; using string Z$ above, substring
Z$(2,2) = B.

A substring may also be defined as a null string (no value, as distinguished
from a blank space which has a value.) This is done by making the second
subscript one less than the first, as: A$(6,5). This is the only case in
which a smaller second subscript is acceptable.

6-:3 869

EXAMPLES:

GEN ERAL FO RM :

THE STRING DIM STATEMENT

35 DIM A$ (72), B$(60)
40 DIM Z$ (10)
45 DIM N$ (2), R(5,5), P$(8)

statement number DIM string variable J. number of characters in string L

PURPOSE

Reserves storage space for strings longer than 1 character;,
also for matrices (arrays).

COMMENTS

The number of characters specified for a string in its DIM
statement must be expressed as an integer from 1 to 72.

Each string having more than 1 character must be mentioned
in a DIM statement before it is used in the program.

Strings not mentioned in a DIM statement are assumed to
have a length of 1 character.

The length mentioned in the DIM statement specifies the max­
imum number of characters which may be assigned; the actual
number of characters assigned may be smaller than this number.
See liThe LEN Function ll in this section for further detail s"

Matrix dimension specifications may be used in the same DIM
statement as string dimensions (example statement 45 above).

6-4 869

THE STRING ASSIC3NMENT STATEMENT

NOTE: These strings have been ment:'loned in a DIM statement

EXAMPLES:

GENERAL FORM:

200 LET A$ = "TEXT OF STRING"
210 B$ = 11*** TEXT !!!"

220 LET C$ = A$(1,4)
230 D$ = B$(4)
240 F$(3,,8)=N$

statement number LET string variable! =- ~ string value II

or

statement number LET string variable =- string or substring variable

or

statement number string variable =- ~~ string value II

or

statement number string variable =- ~)tring or substring variable

PURPOSE ---

Establishes a value for a string; the value may be a literal
value in quotation marks, or a string or substring value.

COMI~ENTS -----

Strings contain a maximum of 72 characters, enclosed by
quotation marks. Strings having more than 1 character
must be mentioned in a DIM statement.

Special purpose characters, such as + or (esc or alt-mode)

may not be string characters.

If the assigned value is longer than the string length,
the assigned value is truncated at the appropriate point.

6-S 869

THE STRING INPUT STATEMENT

NOTE: These string variables have been mentioned in a DIM

statement.

EXAMPLES:

GENE RAL FO RM :

50 INPUT R$
55 INPUT A$,B$, C9, 010
60 INPUT A$ (l ,5)

65 INPUT B$ (3)

statement number INPUT string or substring variable •••

PURPOSE

Allows string values to be entered from the teleprinter.

COMMENTS

Placing a single string variable in an INPUT statement allows
the string value to be entered without enclosing it in quota­
tion marks.

If multiple string variables are used in an INPUT state­
ment, each string value must be enclosed in quotation marks,
and the values separated by commas. The same convention is
true for substring values. Mixed string and numeric values
must also be separated by commas.

If a substring subscript extends beyond the boundaries of
the input string, the appropriate number of blanks are
appended.

Numeric variables may be used in the same INPUT statement
as string variables (example statement 55 above).

6-6 869

EXAMPLES:

GENERAL FORM:

PRINTINC:; STRINGS

105 PRINT A$

11~ PRINT A$, B$, Z$

115 PRINT C$(8) "END OF STRING" B3, 84, A9

12~ PRINT C$(1,7)

13~ PRINT liTHE TOTAL IS: ";X5

s"tatement number PRINT string or substrinq variable .L string or substring variable .•.

PURPOSE

Causes the current value of the specified string or substring

variable to be output to the teleprinter.

COMMENTS

String and numeric values may be mixed in a PRINT statement

(example statements 115 and 13~ above).

Specifying only one substring parameter causes the entire

substring to be printed. For instance, if C$ = "WHAT IS

YOUR NAME?", examp1 e statemen t 12~ prints:

WHAT IS

while statement 115 prints

YOUR NAME?END OF STRING 642

Numeric and string values may be "packed" in PRINT statements

without using a ";", as in ,examp1e statement 115.

OC and NC generate a return and linefeed respectively when

printed as string characters.

6-7 869

EXAMPLES:

GENERAL FORM:

READING STRINGS

300 READ C$
305 READ X$, Y$, Z$
310 READ Y$(5), A,B,C5,N$
315 READ Y$(1,4)

statement number READ string or substring variable ..L string or substrinq variable 2-'"

PURPOSE

Causes the value of a specified string or substrinq vari­
able to be read from a DATA statement.

COMMENTS

A string variable (to be assigned more than 1 character)
must be mentioned in a DIM statement before attempting
to READ its value.

String or substring values read from a DATA statement
must be enclosed in quotation marks, and separated by
commas. See "Strings in DATA Statements" in this section.

Only the number of characters specified in the DIM statement
may be assigned to a string. Blanks are appended to sub··
strings extending beyond the string dimensions.

Mixed string and numeric values may be read (example state­
ment 310 above); see liThe TYP Function ll

, Section III for des­
cri pti on of a data type check whi ch may be used wi th DATP~
s ta tements.

6-8 869

EXAMPLES:

GEN ERAL FO RM:

STRING IF

340 IF C$<D$ THEN 800
350 IF C$>=D$ THEN 900
360 IF C$#D$ THEN 1000
370 IF N$(3,5)<R$(9) THEN 500
380 IF A$(10)=IEND" THEN 400

statement no. 1£ string variable relational opere string var. THEN statement no.

PURPOSE

Compares two strings. If the specified condition
is true, control is transferred to the specified
statement.

COMMENTS

Strings are compared one character at a time, from left
to right; the first difference determines the relation.
If one string ends before a difference is found, the short­
er string is considered the smaller one.

Characters are compared by their A.S.C.I.I. representation.
See Section VII, "String Evaluation by ASCII Codes" for
details.

If substring subscripts extend beyond the length of the
string, null characters (rather than blanks) are appended.

6-!~ 869

EXAMPLE:

GENERAL FORM:

THE LEN FUNCTION

469 PRINT LEN (A$)
479 PRINT LEN (X$)
489 PRINT "TEXT"; LEN(A$); B$, C
499 IF LEN (P$) #5 THEN 600
509 IF LEN (P$) = 5 THEN 6~9
519 IF LEN (P$) = 5 OR LEN (P$) = 10 THEN 10
529 LET X$(LEN(X$)+l) = "ADDITIONAL SUBSTRING"

600 STOP
609 PRINT "STRING LENGTH = "; LEN (P$)

statement number statement type LEN i string variable 1 ...

PURPOSE

Supplies the current (logical) length of the specified
string, in number of characters.

COMMENTS

DIM merely specifies a maximum string length. The LEN
function allows the user to check the actual number of
characters currently assigned to a string variable.

Note that LEN is a directly executable command (See
Secti on I I I), wh i 1 e LEN (... $) is a pre-defi.ned functi on
used only as an operand in a statement. The LEN command
gives the working program length; the LEN function gives
the current length of a string.

6-10 869

EXAMPLES:

GENERAL FORM:

STRINGS IN D}~TA STATEMENTS

5{lJ{lJ DATA "NOW IS THE TIME."
51{lJ DATA II HOW II , "ARE", lIyOU, II

52{lJ DATA 5.172, "NAME?", 6.47,5071

statement number DATA ~ string text ~...!.. ~ string text ~ ...

PURPOSE

Specifies data in a program (string values may
also be used as data).

COMMENTS

String values must be enclosed by quotation
marks and separated by commas.

String and numeric values may be mixed in a
single DATA statement. They must be separated
by commas (example statement 520 above).

Strings up to 72 char'acters long may be stored
in a DATA statement.

See liThe TYP Function", Section III, for
description of a data type (string, numeric)
check which may be used with DATA statements.

6-11 869

EXAMPLES:

GENERAL FORM:

PRINTING STRINGS ON FILES

35~ PRINT #5; "THIS IS A STRING. II
355 PRINT #8; C$, B$, X$, Y$, 0$
360 PRINT #7,3; X$, P$, IITEXT", 27.5,R7
365 PRINT #N,R; P$, N, A(5,5), "TEXT"

statement number PRINT file number .2- record number formula .i. string variable

or

PRINT f, 1 f, l · II t' t t II statement number file number ormu aL record number ormu aL _ S r~ng ex _ •..

or

statement number PRINT file number formula L string variable or substring variable·· .

PURPOSE

Prints string or substring variables on a file.

COMMENTS

String and numeric variables may be mixed in a single file
or record within a file (example statement 36~ above).

The formula for determining the number of 2-character words
required for storage of a string on a file is:

1 + number of characters in string
2

if the nurrber of characters is even;

1 + number of characters in string + 1 if the nurrber of ch,aracters is odd.
2

A maximum of 124 string characters may be stored on 1 file record.

See liThe TYP Function", Section III for description of a data
type check.

6-12 869

EXAMPLES:

GENERAL FORM:

READING STRII'IGS FROM FILES

710 READ #1,5; A$, B$
715 READ #2; C$, Al, B2, X
720 READ #3,6; C$(5),X$(4,7),Y$
730 READ ~N,P; C$, V$(2,7), R$(9)

statement no. READ# file no •. formula ~ record no. formula i. string or sul)string variable • ••

or

PURPOSE

Reads string and substring values
from a fi 1 e.

COMMENTS

String and numeric values may be
mixed in a file and in a READ#
statement; they must be separated
by commas.

See liThe TYP Function", Section III,
for description of a data type check.

6-113 869

LOGICAL ~OPERATIONS

LOGICAL VALUES A,ND NUMERIC VALUES

When using the logica1 capability of Time Shared BASIC, be
sure to distinguish between logical values and the numeric
values produced by logical evaluation.

The logical value of an expression is determined by definit­
ions established in the user's program.

The numeric values produced by logical evaluation are assign­
ed by Time Shared BASIC. The user may not assign these values.

Logical value is the value of an expression or statement,
using the criteria:

any nonzero expression value = "true"
any expression value of zero = "false ll

When an expression or statl~ment is logically evaluated, it is
assigned one of two numeric values, either:

1, meaning the expression or statement is "true",
or

0, meaning the expression or statement ;s "false ll
•

7··' 869

RELATIONAL OPERATORS

There are two ways to use the relational operators in logical evaluations:
1. As a simple check on the numeric value of an expression.

EXAMPLES: 150 IF B=7 THEN 600
200 IF A9#27.65 THEN 700
300 IF (Z/10»=0 THEN 800

When a statement is evaluated, if the "IFII condition is currently true (for
example, in statement- 150, if B = 7), then control is transferred to the
specified statement.

Note that the numeric value produced by the logical evaluation is unimportant
when the relational operators are used in this way. The user is concerned
only with the presence or absence of the condition indicated in the IF

statement.

Continued on the next page.

7-2 869

RELATIONAL OPE~RATORS CONTINUED

2. As a check on the numeric value produced by logically
evaluating an expression, that is: "true" = 1, "false" = 0.

EXAMPLES: 610 LET X=27
615 PRINT X=27
620 PRINT X#27
630 PRINT X>=27

The exampl e PRINT statements gi ve the numeri c val ues produced
by logical evaluation. For instance, statement 615 is inter­
preted by TSB as "Print 1 if X equals 27, 0 if X does not equal
27." There are only two 10lgical alternatives; 1 is used to
represent "true", and 0 "false".

The numeric value of the logical evaluation is dependent on, but
distinct from, the value of the expression. In the example above,
X equals 27, but the numeric value of the logical expression X=27
is 1, since it describes a "true" condition.

7-3 869

BOOLEAN OPERATORS

There are two ways to use the Boolean Operators.
1. As logical checks on the value of an expression or expressions.

EXAMPLES: 510 IF Al OR B THEN 670
520 IF B3 AND C9 THEN 68~
530 IF NOT C9 THEN 690
540 IF X THEN 700

Statement 510 is interpreted: Ilif either Al is true (has a nonzero value) or B is true
(has a nonzero value) then transfer control to statement 670. 11

Similarly, statement 540 is interpreted: lIif X is true (has a nonzero value) then
transfer control to statement 700. 11

The Boolean operators evaluate expressions for their logical values only; these are
"true ll = any non-zero value, IIfalse ll = zero. For example, if B3 = 9 and C9 = -5,
statement 520 would evaluate to IItrue", since both B3 and C9 have a nOnZE!ro value.

2. As a check on the numeric value produced by logically evaluating an expression,
that is: IItrue ll = 1, IIfalse ll = 0.

EXAMPLES: 490 LET B = C = 7
500 PRINT BAND C
510 PRINT C OR B
520 PRINT NOT B

Statements 500 - 520 returns a numeric value of either: 1, indicating that the state­
ment has a logical value of IItrue ll

, or 0, indicating a logical value of Ilifalse".

Note that the criteria for determining the logical values are:
true = any nonzero expression value
false = an expression value of ~.

The numeric value 1 or 0 is assigned accordingly.

7-4 869

SOME IEXAMPLES

These examples show some of the possibilities for combining
logical operators in a statement.

It is advisable to use parentheses wherever possible when
combining logical operators.

EXAMPLES: 310 IF (A9 MIN B7)<0 OR (A9 MAX B7»100 THEN 900
310 PRINT (A>B) AND (X<Y)
320 LET C = NOT 0
330 IF (C7 OR 04) AND (X2 OR Y3) THEN 930
340 IF (Al AND B2) AND (X2 AND Y3) THEN 940

The numerical value of "true" or "false" may be used in
algebraic operations. For example, this sequence counts
the number of zero values in a file:

90 LET X = (6

100 FO R I = 1 TO N
110 READ #1; J\

120 LET X = X+(A=0)
130 NEXT I
140 PRINT N; II VALUES WERE READ. II

150 PRINT X; "WERE ZEROES. II

160 PRINT (N- X); "WERE NONZERO. 1\

Note that X is increased by 1 or 0 each time A is read; when
A = 0, the expression A = 0 is true, and X is increased by 1.

7 -5 869

SECTION VIII

FOR THE F)ROFESSIONAL

This section contains the most precise reference authority -­
the syntax requirements of Time Shared BASIC. The syntax
requirements are explicit and unambiguous. They may be used
in all cases to clarify descriptions of BASIC language
features presented in othf~r sections.

The other subsections give technical information of interest
to the sophisticated user.

8-1 869

SYNTAX REQUIREMENTS OF TSB

LEGEND

"is defined as ... 11

< > enclose an element of Time Shared BASIC

LANGUAGE RULES

1. Exponents have 1 or 2 digit integers only.

2. A <parameter> primary appears only in the defining formula of a
<DEF statement>.

3. A <sequence number> must lie between 1 and 9999 inclusive.

4. An array bound must lie between 1 and 9999 inclusive; a string
variable bound must lie between 1 and 72 inclusive.

5. The character stri ng for a <REM s ta tement> may i ncl ude the
character II.

6. An array may not be transposed into itself, nor may it be both
an operand and the result of a matrix multiplication.

Note: Parentheses, (), and square brackets, [J, are accepted

interchangeably by the syntax analyzer.

Continued on the next page.

8-2 869

SYNTAX REQUIREMENTS OF TSB

<constant>

<number>

<decimal number>

<i nteger>

<digit>

<exponent part>

<li tera 1 s tri ng>

<character string>

<character>

<variable>

<simple variable>

<1 etter>

<subscripted variable>

<sublist>

<string variable>

<string simple variable>

<expression>

<conjunction>

<rel ation>

<m"inmax>

<sum>

<term>

<subterm>

-

-

-

-

-

-

-

-

-..

<number>I+<number>I-<number>l<literal string>

<decimal number>l<decimal number><exponent part>

<i nteger> I <i nteger>. I <i nteger>. <i nteger> I . <i nteger>

<digit>l<integer><digit>

E<integer>IE+<integer>IE-integer (see rule 1)

II <cha racter s tri ng>"

<character>l<character string><character>

any ASCII character except null, line feed, return, x-off,
al t-mode, escape, +, II , and rubout

<simple variable>l<subscripted variable>

<letter>l<letter><digit>

AIBICIDIEIFIGIHIIIJIKILIMINlolPIQIRlslTlulVIWIXIYIZ

<letter>«sublist»

<expression>l<expression>,<expression>

<string simple variable>l<string simple variable>«sublist»

<letter>$

<conjunction>l<expression>OR<conjunction>

<relation>l<conjunction>AND<relation>

<minmax>I<~inmax><relational operator><minmax>

<sum>1 <minmax>MIN<sum>1 <minmax>MAX<sum>

<term> I <sum>+<term> I <sum>-<term>

<subterm>j<term>*<subterm>j<term>/<subterm>

<denial>l<signed factor>

8-3 869

SYNTAX REQUIREMENTS OF TSB , CONTINUED

<denial>
<s i gned factor>
<factor>
<primary>

<relational operator>
<parameter>
<functional>

<function identifier>
<pre-defined function>
<source string>
<destination string>
<fi 1 e reference>
<file formula>
<record formul a>
<array identifier>
<sequence number>
<program statement>
<BASIC statement>

<LET statement>

<1 eftpart>
<IF statement>

<decision expression>

<comparison string 1>
<comparison string 2>

<factor> 1 NOT<factor>
+<factor>I-<factor>
<primary> 1 <factor>t<primary>
<variable>1 <number> 1 <functional>1 <paramet,=r> (rule 2) 1
«expression»
<1<=1=1#1<>1>=1>
<letter>l<letter><digit>
<function identifier>«expression»1
<pre-defined function>«expression»1
LEN «string simple variable»
FN <letter>

SINICOSITANIATNIEXPILOGIABSISQRIINTIRNDISGNITYP
<string variable>l<literal string>
<string variable>
#<file formula>I#<file formula>,<record formula>
<express ion>
<expression>
<letter>
<i nteger> (see rule 3)

<sequence number><BASIC statement>carriage return
<LET statement> 1 <IF statement> 1 <GOTO statement> 1
<GOSUB statement> 1 <RETURN statement> I <FOR statement> 1
<NEXT statement>! <STOP statement>! <END statement> I
<DATA statement> <READ statement> <INPUT statement> \
<PRINT statement> 1 <RESTORE statement> \ <DIM statement> 1
<DEF statement> \ <FILES statement> I <REM statement> 1
<MAT statement>
LET <leftpart><expression> 1
LET <destination string>=<source string>1
<leftpart><expression>1
<destination string>=<source string>
<variable>=I<leftpart><variable>=
IF<decision expression>THEN<sequence number> 1
IF END #<file formula>THEN<sequence number>

- <expression> I
<comparison string l><relational operator>

<comparison string 2>
- <string variable>
- <string variable>l<literal string>

8-4 869

SYNTAX REQUIREMENTS OF TSB ,CONTINUED

<GOTO statement>

<sequence list>
<GOSUB statement>

<RETURN statement>
<FOR statement>

<for va ri ab 1 e>
<initial value>
<fi na 1 value>
<step size>
<NEXT statement>
<STOP statement>
<END statement>
<DATA statement>
<READ statement>

<variable list>
<read variable>
<INPUT statement>
<PRINT statement>

<type statement>
<print 1>
<pri nt 2>
<pri nt 3>
<print expression>
<file write statement>

<write expression>
<RESTORE statement>

· .

· .

· .

- GOTO <sequence number>1
GOTO <expression>OF<sequence list>
<sequence number> I <sequence list>,<sequence number>
GOSUB <sequence number> I
GOSUB <expression>OF <sequence list>
RETURN

- FOR <for variable>=<initial value>TO<final value>1
FOR <for variable>=<initial value>TO<final value>

STEP<s tep size>
-

-

-

-

-

-

-

-

-

-

-

-

-

-

-
-

<simple variable>
<expressi on >
<expression>
<express 'j on>
NEXT<for variable>
STOP
END
DATA<constant> I <DATA statement>,<constant>
READ<variable list>IREAD<file reference> I
READ<file reference>;<variable list>
<read variable>l<variable list>,<read variable>
<variable>l<destination string>
INPUT<var;able list>
<type statement> I <file write statement> I
PRINT <fi·1 e reference>
<print l>l<print 2>
PRINTI<print 2>,I<print 2>; I<print 3>
<print l><print expression>l<print 3>
<type statement><l iteral string>
<expressiion>ITAB(<expression» I <source string>
PRINT<file reference>;<write expression>1
<file wri'te statement>,<write expression>1
<file write statement>;<write expression>1
<file write statement><literal string>1
<file write statement><literal string>

<write expression>
- <expression>IENDI<source string>
- RESTOREIRESTORE<sequence number>

8··5 869

SYNTAX REQUIREMENTS OF TSB, CONTINUED

<DIM statement>
<dimspec>

<bound>
<DEF statement>
<FILES statement>
<file name>
<REM statement>
<MAT statement>

<MAT READ statement>

<ac tua 1 array>
<dimensions>
<MAT INPUT statement>

<MAT PRINT statement>
<MAT PRINT 1>

<MAT PRINT2>
<MAT initialization

- DIM<dimspec>I<DIM statement>,<dimspec>
::= <array identifier>«bound»I

<array identifier>«bound>,<bound» 1
<string simple variable>«bound»

: : =

-

-

: : =
-

-

<i nteger> (see rule 4)

DEF<function identifier>«parameter»=<expression>
FILES<file name> 1 <FILES statement>,<file name>
a string of 1 to 6 printing characters
REM<character string> (see rule 5)

<MAT READ statement> \ <MAT INPUT statement> 1
<MAT PRINT statement> 1 <MAT initialization statement> \
<MAT assignment statement>

::= MAT READ<actual array> \
MAT READ<file reference>;<actual array> 1
<MAT READ statement>,<actual array>

00= <array identifier>l<array identifier>«dimensions»
00= <expression>\<expression>,<expression>

- MAT INPUT<actual array> \
<MAT INPUT statement>,<actual array>

00= <MAT PRINT l>I<MAT PRINT 2>
- MAT PRINT<array identifier>\

MAT PRINT<file reference>;<array identifier>1
<MAT PRINT 2><array identifier>

- <MAT PRINT 1>, \ <MAT PRINT 1>;

statement>::= MAT<array identifier>=<initialization function>1
MAT<array identifier>=<initialization function>

«dimensions»
<initialization function>::= ZER\CONIIDN
<MAT assignment

statement> (rule 6) :: =

<mat operator>

MAT<array identifier>=<array identifier>1
MAT <array identifier>=<array identifier><mat operator>
<array identifier>1

MAT<array identifier>=INV«array identifier»
MAT <array i denti fi er>=TRN «array i denti fii er» 1

MAT <a rray i denti fi er>= (<express ion>)*<arl"ay i denti fi er>
+1-1*

8-6 869

STRING EVALUATlfON BY ASCII CODES

Each teleprinter character is represented by an A.S.C.I.I.
(American Standard Code for' Information Interchange)
number.

Strings are compared by their A.S.C.I.I. representation.

The A. S . C.!.!. sequence, from lowest to highest is:

Lowest: bell

space 5 I

6 J

7 K

$ 8 L

% 9 M

& N

0

(< p

) = Q

* > R

+ ? S
@ T
A U

B V

/ C w
0 D X

1 E Y

2 F Z

3 G [

4 H \
]

t Highest

Quotation marks are used to delimit strings, and may not
be used within a string.

8-7 869

~

MEMORY ALLOCATION BY A USER

Approximate number of 2-character words per user: 5,440
System overhead (approx.): 320

Space available for user allocation: 5,120 2-character words

SOME EXAMPLES OF USER-DETERMINED ALLOCATION*

a) Introduction of each simple, string, or matrix
variable uses 4 words.

b) A 9 word stack is reserved for GOSUB's.

c) 6 X (maximum level of FOR ... NEXT loop nesting)

d) Each file name mentioned in a FILES statement
reserves 64 words for buffer space.

e) An approximate estimate of space required for
a program is:

11 words per BASIC statement
+2X(number of matrix elements dimensioned)
+1/2X(number of string characters used)

* This is variable "system overhead"; it is not included

in word counts produced by the LEN command.

8-8 869

APPENDIX A

HOW TO PREPARE AI PAPER TAPE OFF-LINE

To prepa re a paper tape for input:

1 . Turn tel eprin ter can tro 1 knob to "lOCAl II •

2. Press the "OW' button (on tape punch).

3. Press the "HERE IS" key; or press @C (control shift "p")

several times to put leading holes on the tape.

4. Type program as usual, following each 1 ine with return

linefeed.

5. Press "HERE IS"; or press @C several times to put trail ing

holes on the tape.

6. Press the "OFF" button on the tape punch.

COMMENTS

The standard on-line editing features, such as esc, +, and re­

peating the same line number may be punched on tape; esc must

be followed by ~turn linefeed.

Pressing the "B.SP." (backspace) botton on the tape punch, then

the "RUBOUT" key will physically delete the previous character

from a paper tape.

A-1 869

APPENDIX B

THE X-ON, X-OFF FEATURE

Terminals equipped with the X-ON, X-OFF feature may be used
to input data from a paper tape while a program is running.

Data is punched on paper tape in this format:
line of data items separated by commas x-off return linefeed

(x-off, return and linefeed are teleprinter keys.)

COMMENTS

Remember that each line of data must end with x-off return

linefeed.

See Appendi x A, II Prepari ng A Paper Tape Offl i ne, II for i nstruc­
tions on editing a paper tape.

8-1 869

APPENDIX C

SAMPLE PROGRA~I LISTING A FILE

This program shows the use of the multi-branch GOTO
and the TYP function.

9002 REM LISTS THE CONTENTS OF A FILE.
9003 LET N=l
9004 DIM A$[72]
9005 LET 1=0
9006 LET 1=1+1
9007 READ #N,I
9008 PRINT "**FILE#"N
9009 PRINT "RECORD"I
9010 GOTO TYP(-N) OF 9011 ,9014,9017,9006
9011 READ #N;A
9012 PRINT A;
9013 GOTO 9010
9014 READ #N; A$
9015 PRINT A$
9016 GOTO 9010
9017 PRINT "**END OF FILE"N Ii**1I
9018 LET N=N+1
9019 GO TO 9005
9020 STOP
9999 END

c··, 869

SAMPLE PROGRAM INTEREST RATES

This program calculates the interest rate of a loan. Note the checks
included to guide the user -- they are skipped over if the data remains
within pre-defined limits.

9003 PRINT 11* TRUE ANNUAL INTEREST RATE *11
9004 PRINT
9010 PRINT IITHIS PROGRAM CALCULATES THE TRUE ANNUAL INTEREST RATEII
9020 PRINT liON AN INSTALLMENT LOAN II

9030 PRINT
9040 PRINT
9050 PRINT IIIF YOU NEED INSTRUCTIONS TYPE 1, OTHERWISE TYPE 0: II
9060 INPUT X
9070 IF X=0 THEN 9120
9080 PRINT liTO USE THIS PROGRAM IT IS NECESSARY FOR YOU TO SUPPLY"
9090 PRINT IIFOUR VARIABLES: A = AMOUNT OF LOAN (IN $), P = AMOUNT OF II

9100 PRINT IIPAYMENT ($), N = THE TOTAL NUMBER OF PAYMENTS DUE, AND K = NUMBER"
9110 PRINT "OF PAYMENTS DUE IN ONE YEAR."
9115 PRINT
9120 PRINT IIWHAT ARE A,P,N,K II;
9130 INPUT A,P,N,K
9140 PRINT
9150 IF N=l THEN 9550
9160 IF P*N >= A THEN 9220
9170 PRINT
9180 PRINT IITHATS NOT REASONABLE; THE PAYMENTS ADD UP TO LESS THAN THE AMOUNT"
9190 PRINT IIOWED. TRY AGAIN. II

9200 PRINT
9210 GOTO 9120
9220 LET R=0
9230 LET D=100
9240 GOSUB 9330
9250 IF P=P1 THEN 9430

C-2 869

SAMPLE PROGRAM- INTE:REST RATES, ,CONTINUED

9260 IF P>P1 THEN 9290
9270 LET R=R-O
9280 GOTO 9300
9290 LET R=R+O
9300 LET 0=0/2
9310 IF 0<.0001 THEN 9430
9320 GOTO 9240
9330 LET R1=R/(100*K)
9340. LET Q=1+R1
9350 IF N*LOG(Q)/LOG(10) <= 75 THEN 9380
9360 LET P1 =A*R1
9370 RETURN
9380 IF Q>l THEN 9410
9390 LET P1=A/N
94fiJ0 RETURN
9410 LET P1=A*QtN*R1/(QtN-1)
9420 RETURN
9430 LET R=.01*INT(.5+10fiJ*R)
9440 IF R<199.5 THEN 9500
945fiJ PRINT
9460 PRINT IIARE YOU SURE THE DATA l[S CORRECT? THE INTEREST RATE IS OVER"
947fiJ PRINT 1120fiJ PERCENT. TRY AGAIN. II
9480 PRINT
9490 GOTO 9120
9500 PRINT liTHE TRUE ANNUAL INTEREST RATE = II;R
9510 PRINT
9520 PRINT
9530 PRINT IIANOTHER CASE?? TYPE 'N' TO QUIT, 'Y' TO TRY AGAIN II ;
9532 INPUT Q$
9534 IF Q$=IINII THEN 9999
9540 GOTO 9120
9550 LET R=(P/A-1)*K
9560 LET R=lfiJ0*R
9570 GOTO 9430

9999 ENO C-3 869

SAMPLE PROGRAM AN ELECTRONIC CALENDAR

This program depends on a series of IF ... THEN statements to findl a day
of the week. Note the use of the INT function, and the choice given in
statements 9080 - 9082 in which only a IINO II reply is significant.

9002 PRINT IITHIS PROGRAM DETERMINES THE DAY OF THE WEEK"
9003 PRINT liON WHICH A GIVEN DATE FALLS.II
90~4 DIM A$[5]
90~5 LET W=W1=0
9006 DIM F[12],L[12]
9007 MAT READ F
90~8 MAT READ L
9009 GOTO 9076
9010 IF Y<l THEN 9027
9011 IF M>12 THEN 9027
9012 IF M<l THEN 9027
9013 IF D<l THEN 9027
9014 IF Y>1752 THEN 9034
9015 IF Y<1582 THEN 9029
9016 IF Y=1752 THEN 9023
9017 IF Y=1582 THEN 9019
9018 GOTO 9031
9019 IF M<10 THEN 9029
9020 IF M>10 THEN 9031
9021 IF D<15 THEN 9029
9022 GOTO 9031
9023 IF M<9 THEN 9031
9024 IF M>9 THEN 9034
9025 IF D<14 THEN 9031
9026 GOTO 9034
9027 PRINT "UNACCEPTABLE DATA -- TRY AGAIN. II

9028 GOTO 9078
9029 LET Gl=0
9030 GOTO 9032

C-4 869

S)~MPLE PROGRAM AN ELECTF~ONIC CALENDAR CONTINUED

9031 LET G1=1
9032 LET J1=1
9ft'33 GOTO 9ft'36

9034 LET G1 =1
9035 LET J1=0
9ft'36 IF J1 <> 1 THEN 9ft'54

9ft'37 LET L1=0
9038 LET A=Y+INT((Y+3)/4)
9039 IF Y <> INT(Y/4)*4 THEN 9044
9ft'40 LET L1=1
9041 IF M<3 THEN 9ft'44

9042 LET L=l
9ft'43 GOTO 9045
9044 LET L=ft'
9045 LET Z=A+D+L+F[M]+5
9ft'46 LET Z=Z-INT(Z/7)*7
9047 LET Q=L[M]
9ft'48 IF M <> 2 THEN 905ft'

9049 LET Q=Q+L1
9050 IF D>Q THEN 9027
9051 PRINT "0LD STYLE CALENDAR: II;

9052·LET W=l
9053 GOSUB 9ft'89

9054 IF G1 <> 1 THEN 9080
9ft'55 LET L1=0
9056 LET Y=Y-400*INT(Y/400)
9ft'57 LET A=Y+INT((Y+3)/4)-INT((Y-l)/100)
9058 IF Y <> INT(Y/4)*4 THEN 9ft'65

9059 IF Y=0 THEN 9061
9060 IF Y=10ft'*INT(Y/100) THEN 9065
9061 LET L1=1
9062 IF M<3 THEN 9065
9ft'63 LET L=l

c-s 869

SAMPLE PROGRAM ELECTRONIC CALENDAR, CONTINUED

9~64 GOTO 9066
9~65 LET L=0
9066 LET Z=A+D+L+F[M]
9067 LET Z=Z-INT(Z/7)*7
9068 LET Q=L[M]
9069 IF M <> 2 THEN 9071
9070 LET Q=Q+L1
9~71 IF D>Q THEN 9027
9072 IF W=0 THEN 9074
9073 PRINT "NEW STYLE CALENDAR: ";
9074 GOSUB 9089
9075 GOTO 9080
9076 PRINT "ENTER MONTH NUMBER, DATE, AND YEAR."
9077 PRINT
9078 INPUT M,D,Y
9079 IF W1=0 THEN 9010
9080 PRINT illS THERE ANOTHER DATE YOU WANT TO KNOW";
9081 INPUT A$
9~82 IF A$="NO" THEN 9999
9083 PRINT
9084 PRINT "ENTER DATE: ";
9085 LET W=0
9086 LET W1=1
9087 INPUT M,D,Y
9088 GOTO 9010
9089 GOTO Z+l OF 9090,9092,9094,9096,9098,9100,9102
9090 PRINT "FRIDAY"
9091 RETURN
9092 PRINT "SATURDAY"
9093 RETURN
9094 PRINT "SUNDAY"
9095 RETURN

C-6 869

SAMPLE PROGRAM AN ELECTR~ONIC CALENDAR, CONTINUED

99}96 PRINT IIMONDAY II

9097 RETURN
9098 PRINT IITUESDAY II

9099 RETURN
9100 PRINT IIWEDNESDAY"
9101 RETURN
9102 PRINT "THURSDAY"
9103 RETURN
9900 DATA 0,3,3,6,1,4,6,2,5,0,3,5
9901 DATA 31,28,31,30,31,30,31 ,31 ,3~1,31 ,30,31
9999 END

C-7 869

SAMPLE PROGRAM

H-P FOOTBALL

Thi s program is a footba 11 game, based on the random number generator.
Notice how the GO TO's and GOSUB ' save repeating statements. Also note
that the coin toss allows the user to specify a number, then generates
as many random numbers, and uses the final number to determine the result.

lfiJ PRINT "WELCOME TO THE CUPERTINO DIVISION FOOTBALL CHAMPIONSHIP GAME".
2fiJ PRINT liTHE DIVISION PLAYOFF IS BETWEEN THE. HEWLETT HORNETS"
3fiJ PRINT "AND THE PACKARD PANTHERS."
4fiJ PRINT
5fiJ PRINT "WE'LL NEED SOME HELP. WILL YOU CALL THE PLAYS FOR HEWLETTIl;
6fiJ DIM W$[12]
7fiJ INPUT W$
80 PRINT "FINE. THE COMPUTER WILL CALL THE PLAYS FOR PACKARD."
9fiJ PRINT
100 PRINT "OK, COACH- FIRST, LET'S GET ACQUAINTED. WHATlS YOUR NAMEIl;
llfiJ INPUT W$
12fiJ PRINT "OK "W$", TYPE ONE OF THE PLAY NUMBERS FOLLOWED BY A RETURN"
13fiJ PRINT liTHE PLAY NUMBERS ARE: II

14fiJ PRINT "l = SIMPLE RUN; 2 = TRICKY RUN; 3 = SHORT PASS;"
15fiJ PRINT "4 = LONG PASS; 5 = PUNT; 6 = QUICK KICK; 7 = PLACE KICK."
16fiJ PRINT
170 LET Pl=51
180 LET Ql=0
19fiJ LET T=0
20fiJ LET S[1]=0
210 LET S[3]=fiJ .
220 PRINT "TOSS OF THE COIN-TYPE A NUMBER FROM 1 TO 30fiJ (THEN RETURN)."
230 INPUT Zl
240 FOR 1=1 TO Zl
25fiJ LET X=RND(Ql)
26fiJ NEXT I
270 IF RND(Ql»1/2 THEN 300
28fiJ PRINT "PACKARD WON THE TOSS. II

C-8 869

SAMPLE PROGIRAMS CONTINUED

H-P FOOTBALL

290 GOTO 1580
300 PRINT "HEWLETT WON THE TOSS."
310 PRINT "HEWLETT'S BALL ON ITS OWN 20."
320 LET P=l
330 LET X=20
340 LET X1=20
350 LET D=l
360 GOTO 1720
370 PRINT "CALL IT, "W$".";
380 INPUT Z
390 LET R=RND{Q1)
400 LET R=R*{.97+P*.03)
410 LET T=T+1
420 IF T<P1 THEN 540
430 PRINT P1-1; "PLAYS HAVE BEEN tJV:\DE. DO YOU WISH TO STOP NOW?"
440 PRINT "TYPE 1 FOR YES, 0 FOR NO.""YOUR REPLY";
450 INPUT D1
460 GOTO D1+1 OF 520, 490
470 GOTO 430
480 PRINT
490 PRINT "END OF GAME ***"
500 PRINT "FINAL SCORE: HEWLETTI;S[3];" PACKARD";S[l]
510 STOP
520 PRINT "20 MORE PLAYS WILL BE ALLOWED. II

530 LET P1=P1+20
540 LET R1=RND(Q1)
550 LET F=0
560 IF Z>4 THEN 620
570 IF Z=l THEN 740
580 IF Z=2 THEN 790
590 PRINT "PASS PLAY-----";
600 IF Z=3 THEN 860
610 GOTO 1010
620 REM PUNT
630 LET Y=INT{100*(R-.5)t3+35)
640 IF Z=7 THEN 2330
650 IF D=4 THEN 670
660 LET Y=INT{Y*1.3)
670 PRINT "PUNT GOOD FOR"Y "YARDS"
680 IF D<4 THEN 720
690 LET Y1=INT{R1t2*20)+{1-P)*INT{Rt2*30)
700 PRINT "RUN BACK FOR "Y1 "YARDS"
710 LET Y=Y-Y1
720 LET F=-1
730 GOTO 1180
740 REM SIMPLE RUN
750 PRINT "RUNNING PLAY--";
760 LET Y=INT{24*(R-.5)t3+3)
770 IF R1<.05 THEN 830

C-~9 869

u
><
c
is
~

SAMPLE PROGRAMS CONTINUED

H-P FOOTBALL

780 GOTO 1070
790 REM TRICKY RUN
800 PRINT "RUNNING PLAY--";
810 LET Y=INT(20*R-5)
820 IF R1>.1 THEN 1070
830 LET F=-1
840 PRINT "*** FUMBLE AFTER ";
850 GOTO 1070
860 REM SHORT PASS
870 IF R<.05 THEN 920
880 IF R<.15 THEN 980
890 IF R<.55 THEN 950
900 PRINT "COMPLETE. ";
910 GOTO 1070
920 PRINT "INTERCEPTED. II

930 LET F=-1
940 GOTO 1180
950 PRINT II INCOMPLETE. ";
960 LET Y=0
970 GOTO 1070
980 PRINT "PASSER TACKLED. ";
990 LET Y=-INT(10*R1)
1000 GOTO 1070
1010 REM LONG PASS
1020 LET Y=INT(160*(R1-.5)t3+30)
1030 IF R<.1 THEN 920
1040 IF R<.25 THEN 980
1050 IF R<.7 THEN 950
1060 GO TO 900
1070 REM RESULT OF PLAY
1080 LET X2=X+P*Y
1090 IF X2 >= 100 THEN 1260
1100 IF X2 <= 0 THEN 1760
1110 IF Y<0 THEN 1150
1120 IF Y=0 THEN 1170
1130 PRINT "GAIN OF"YIIYARDS II
11 40 GO TO 11 80
1150 PRINT IILOSS OFII-Y"YARDS II
1160 GO TO 1180
1170 PRI NT II NO GAIN II
1180 LET X=X+p*y
1190 IF X <= 0 THEN 1760
1200 IF X>50 THEN 1230
1210 PRINT "BALL ON HEWLETT'S"XIIYARD LINE. II;
1220 GOTO 1440
1230 IF X >= 100 THEN 1260
1240 PRINT IIBALL ON PACKARD ' SII100-X;"YARD LINE, ";
1250 GOTO 1440
1260 IF P<0 THEN 1340

C-10 869

SAMPLE PROGIRAMS CONTINUED

H-P F()OTBALL

1270 IF F<0 THEN 1320
1280 PRINT "TOUCHDOWN!!! II

1290 LET P=-l
1300 GOSUB 2250
1310 GOTO 1580
1320 PRINT "TOUCHBACK FOR PACKARD. II

1330 GOTO 1580
1340 IF F<0 THEN 1410
1350 PRINT II SAFETY! II

1360 GOSUB 2210
1370 PRINT "TOUCHDOWN FOR HEWLETT!!! II

1380 LET X=40
1390 LET P=l
1400 GOTO 1610
1410 PRINT "TOUCHDOWN HEWLETT!!!"
1420 GOSUB 2250
1430 GOTO 1580
1440 LET D=D+1
1450 IF F >= 0 THEN 1540
1460 IF P>0 THEN 1510
147j21 PRINT
1480 PRINT IIHEWLETT'S BALL."
149j21 LET P=l
1500 GOTO 1610
15101 PRINT
15201 PRINT IIPACKARD'S BALL. II

1530 GOTO 1600
1540 IF P*(X-X1) >= 10 THEN 1610
1550 IF D<5 THEN 1720
1560 IF P<0 THEN 1470
1570 GOTO 1510
1580 LET X=80
1590 PRINT IIPACKARD'S BALL ON ITS OWN 20. 11

1600 LET P=-l
1610 LET D=l
1620 PRINT IIFIRST DOWN. II
1630 IF P<0 THEN 1670
1640 IF X<90 THEN 17001
1650 LET X1=90
1660 GOTO 1730
1670 IF X>10 THEN 1700
1680 LET X1=10
1690 GOTO 1730
1700 LET X1=X
1710 GOTO 1730
1720 PRINT IIDOWN II D;"AND II 10+P*(Sl-S);IIYARDS TO GO."
1730 PRINT
1740 IF P>0 THEN 370
1750 GOTO 1940

C-11 869

SAMPLE PROGRAMS CONTINUED

H-P FOOTBALL

1760 IF F<0 THEN 1880
1770 IF P>0 THEN 1820
1780 PRI NT II TOUCHDOWN! ! ! II
1790 LET P=l
180flJ GOSUB 2250
1810 GOTO 31flJ
1820 PRINT IISAFETY!!"
1830 GOSUB 2210
184flJ PRINT IIPACKARD GETS THE BALL ON ITS OWN 40."
185flJ LET X=60
1860 LET P=- 1
1870 GOTO 1610
1880 IF P>0 THEN 1910
1890 PRINT IITOUCHBACK FOR HEWLETT. II
190flJ GOTO 310
1910 PRINT "TOUCHDOWN PACKARD!!!"
1920 GOSUB 225flJ
1930 GOTO 310
1950 LET P=-l
196flJ IF D>l THEN 2flJ2flJ
1970 IF RND(Q1»1/3 THEN 20flJ0
1980 LET Z=3
1990 GOTO 2190
2000 LET Z=l
2010 GOTO 2190
2020 IF D<4 THEN 2090
203flJ IF X <= 30 THEN 2060
204flJ LET Z=5
2050 GOTO 2190
206flJ IF 10+X-X1<3 THEN 1970
207flJ LET Z=7
2flJ80 GOTO 2190
2090 IF 10+X-X1<5 THEN 1970
2100 IF X>X1 THEN 2160
2110 IF RND(Q1»1/2 THEN 2140
2120 LET Z=2
213flJ GOTO 2190
2140 LET Z=4
215~ GOTO 2190
216{lJ IF RND(Q1»1/4 THEN 2180
217flJ GOTO 2120
218flJ GOTO 2140
219flJ GOTO 390
2200 REM KEEP SCORE
2210 LET S[2-P]=S[2-P]+7
2220 PRINT IISCORE: HEWLETT "S[3];IIPACKARD II S[1]
2230 PRINT
2240 RETURN
2250 IF RND(Q1».8 THEN 2290

C-12 869

SAMPLE PROGIRAMS CONTINUED

H-P F()OTBALL

2260 PRINT "KICK IS GOOD"
2270 LET S[2-PJ=S[2-P]+7
2280 GOTO 222~
2290 PRINT "KICK IS OFF TO THE SIDE"
2300 LET S[2-PJ=S[2-PJ+6
2310 GOTO 2210
2320 PRINT
2330 REM FIELD GOAL
2340 PRINT "PLACE KICK"
2350 LET F=-1
2360 IF R>.15 THEN 2390
237~ PRINT "KICK IS BLOCKED***"
238~ GOTO 1180
2390 IF P<0 THEN 25~0
2400 IF X+Y >= 110 THEN 2460
2410 IF X+Y<80 THEN 2440
2420 PRINT "KICK IS OFF TO THE SIDE"
243~ GOTO 1320
2440 PRINT "KICK IS OFF TO THE SIDE"
2450 GOTO 1180
2460 PRINT "FI ELD GOAL!!!"
2470 LET S[3J=S[3J+3
2480 GOSUB 2220
2490 GOTO 1580
2500 IF X-V <= -1~ THEN 2540
2510 IF X-Y>20 THEN 2440
2520 PRINT "KICK IS OFF TO THE SIDE."
2530 GOTO 1890
2540 PRINT "FI ELD GOAL!!!"
2550 LET S[1J=S[1J+3
2560 GOSUB 222~
2570 GOTO 31~
2580 END

C-13 869

-

-

APPENDIX 0

DIAGNOSTIC MESSAGES

ARGUMENT OF SIN OR TAN TOO BIG

ARRAY OF UNKNOWN DIMENSIONS

ARRAY TOO LARGE

BAD FORMAT IN FILES STATEMENT

BAD INPUT, RETYPE FROM ITEM

CHARACTERS AFTER COMMAND END

CHARACTERS AFTER STATEMENT END

DATA OF WRONG TYPE

DIMENSIONS NOT COMPATIBLE

DIVIDE BY ZERO - WARNING ONLY

END-OF-FILE/END OF RECORD

EXP OVERFLOW - WARNING ONLY

EXTRA INPUT - WARNING ONLY

EXTRANEOUS LIST DELIMITER

FUNCTION DEFINED TWICE

GOSUBS NESTED TEN DEEP

ILLEGAL EXPONENT

ILLEGAL OR MISSING INTEGER

ILLEGAL READ VARIABLE

ILLEGAL SYMBOL FOLLOWS IMATI

LAST INPUT IGNORED, RETYPE IT

LAST STATEMENT NOT lEND I

ID-1 869

LOG OF NEGATIVE ARGUMENT

LOG OF ZERO - WARNING ONLY

MATRIX CANNOT BE ON BOTH SIDES

MATRIX NOT SQUARE

MISSING ASSIGNMENT OPERATOR

MISSING LEFT PARENTHESIS

MISSING OR BAD ARRAY VARIABLE

MISSING OR BAD FILE REFERENCE

MISSING OR BAD FUNCTION NAME

MISSING OR BAD LIST DELIMITER

MISSING OR BAD SIMPLE VARIABLE

MISSING OR BAD STRING OPERAND

MISSING OR ILLEGAL DATA ITEM

MISSING OR ILLEGAL 'OF'

MISSING OR ILLEGAL ISTEp l

MISSING OR ILLEGAL SUBSCRIPT

MISSING OR ILLEGAL 'THENI

MISSING OR ILLEGAL ITO I

MISSING OR PROTECTED FILE

MISSING RELATIONAL OPERATOR

MISSING RIGHT PARENTHESIS

NEARLY SINGULAR MATRIX

DIAGNOSTIC MESSAGES CONTINUED

NEGATIVE NUMBER TO REAL POWER

NEGATIVE STRING LENGTH

NEXT WITHOUT MATCHING FOR

NO 1*1 AFTER RIGHT PARENTHESIS

NO LEGAL BINARY OPERATOR FOUND

NO CLOSING QUOTE

NON-CONTIGUOUS STRING CREATED

NON-EXISTENT FILE REQUESTED

NO STATEMENT TYPE FOUND

OUT OF DATA

OUT OF STORAGE

OVERFLOW - WARNING ONLY

OVER/UNDERFLOWS - WARNING ONLY

PARAMETER NOT STRING VARIABLE

READ-ONLY FILES:

REDIMENSIONED ARRAY TOO LARGE

RETURN WITH NO PRIOR GOSUB

SAME FOR-VARIABLE NESTED

SECOND FILES STATEMENT

72 CHARACTERS MAX FOR STRING

SIGN WITHOUT NUMBER

STATEMENT HAS EXCESSIVE LENGTH

STRING OVERFLOW

STRING VARIABLE NOT LEGAL HERE

SQR OF NEGATIVE ARGUMENT

SUBSCRIPT OUT OF BOUNDS

UNDECIPHERABLE OPERAND

UNDEFINED FUNCTION

UNDEFINED STATEMENT REFERENCE

UNDEFINED VALUE ACCESSED

UNDERFLOW - WARNING ONLY

UNMATCHED FOR

VARIABLE DIMENSIONED TWICE

WRITE TRIED ON READ-ONLY FILE

ZERO TO NEGATIVE POWER-WARNING

ZERO TO ZERO POWER

Diagnostic messages printed while entering a program refer only to the

first error found in a line.

? (Input is required to continue execution.)

?? (More input is required to continue execution.)

??? (Input is unintelligible.)

0-2 869

APPENDIX E

SPECIAL CHARACTERS

Note: Superscript "e" indicates a control character (Press ctrl and character
simul taneously.)

KEY

aJt-mode

break ---
C C

esc

linefeed

NC

o C

return

+

FUNCTION

Deletes a line being typed. (Same as esc).

Terminates a running program, listing, or punching.
Terminates an input loop (Cc

return); causes a jump to the
END statement.
Deletes a line being typed (same as alt-mode).

Causes the teleprinter to advance one line.
Generates a linefeed when used in a PRINT statement.
Generates a return when used in a PRINT statement.
1. Must follow every command or statement.
2. Causes the teleprinter typeface to return to the first

print position.
3. TSB responds with a linefeed.

Backspace. Deletes as many preceeding characters as +IS

are typed in.

E-1 869

SYMBOL

=

t

*
/
+

OPERATORS

SAMPLE STATEMENT

100 A= B=c=0

110 LET A = 0
120 PRINT Xt2
130 LET C5 = (A*B)*N2
140 PRINT T5/4
150 LET P = Rl +10
160 X3 = R3 - P

PURPOSE/MEANING/TYPE

Assignment operator; assigns a value to
a variable;
May also be used with LET.
Exponentiate (as in X2).
Multiply
Divide
Add
Subtract

NOTE;: The numeric val ues used in logical evalua tion are: "true" = any nonzero
number; "false" = fJ.

170 IF D=E THEN 600 expression "equal s II express i or.!

180 IF (D+E)#(2*D)THEN 710 expression IIdoes not equal II expression

<> 180 IF(D+E)<>(2*D)THEN 700 expression "does not equal II expression

> 190 I F X> 1 0 THEN 620 expression "; s greater than II E.~xpression

< 200 IF R8< P7 THEN 640 expression "; S 1 ess than II expl~ession

>= 210 IF R8>=P7 THEN 710 expression lIois greater than or equal to"
expression

<=

AND

OR

NOT

MAX

MIN

220 IF X2<=10 THEN 650 expression II;S less than or equal toll
expression

230 IF G2 AND H5 THEN 900 expressionl AND expression2 must both be
"true" for statement to be IItrue"

240 IF G2 OR H5 THEN 910 If either expressionl OR expression2 is
"true", statement is "true"

250 I F NOT G5 THEN 950 Statement ; s IItrue II when expression (NOT G5)
is "false ll

•

260 LET B = A2 MAX C3 Evaluates for the larger of the two
expressions

270 LET Bl = A7 MIN A9 Eva 1 uates for the sma 11 er of the two
expressions

E-2 869

ST AT'EM ENTS

NAME EXAMPLE

DATA 360 DATA 99,106.7, IHI!",16.2
DIM 310 DIM A(72)

END 400 END

FOR ... NEXT 350 FOR J=l TO N STEP 3

GO TO 330 GO TO 900

GO TO... 0 F 4 1 2 GO TO n 0 F 100, 1 0 . 20

GOSUB 420 GOSUB 800

GO SU B. . . 0 F 4 1 5 GO SUB n 0 F 100, H~, 20

IF ... THEN 340 IF A#10 THEN 350

INPUT 390 INPUT X$, Y2, B4

ILET 300 LET A=B=C=0

NEXT 355 NEXT J
READ 360 READ A,B,C
REM 320 REM--ANY TEXT**!!

PRINT 356 PRINT A,B,C$

357 PRINT X;Y;Z$;P;Q;R(5)

358 PRINT

395 PRINT#

E-3 869

PURPOSE

Specifies data; read from left to righ"
Specifies maximum string or matrix
size.
Terminates the program; the last
statement in a program must be an END
statement.
Executes statements between FOR and
NEXT the specified number of times (a
loop), and in increments of the size
indicated after STEP; STEP and STEP
SIZE may be omitted.
Transfers control (jumps) to specified
statement number.
Transfers control to the nth statement
of the statements listed after "OF".
Begins executing the subroutine at
specified statement (see RETURN).
Begins executing the subroutine n of
the subroutines 1 isted after "OF"
(See RETURN).
Logical test of specified condition;
transfers control if "true".
Allows data to be entered from tele
printer while a program is running.
Assigns variable a value; LET is op­
tional.
Marks the boundary of the FOR loop.
Reads information from DATA statement.
Inserts non-executable remarks in a
program.
Prints the specified values; 5 fields
per line when commas are used as
separators.
Prints the specified values; 12 fields
per line when semicolons are used as
separators.
Causes the teleprinter to advance one
1 ine.
See "Files" in this section.

ST ATEM ENTS" CONTINUED

NAME EXAMPLE PURPOSE

RESTORE 380 RESTORE Permits re-reading data "dthout re-
running the program.

385 RESTORE n Permits data to be re-read, beginning
in s tatemen tn.

RETURN 850 RETURN Transfers control to statement follow-
ing its GOSUB.

STOP 410 STOP Terminates the program; may be used
anywhere in program.

E-4 869

COMMANDS

NOTE: Commands are executed immediately; they do not require statement numbers.

FULL NAME EXAMPLE

APPEND APP- PROG. 1
BYE BYE
CATALOG CAT

DELETE DEL-l~~

DEL-l~~,2~~

ECHO ECH-OFF

ECH-ON
GET GET-SAMPLE

GET-$ GET -$PROG
HELLO- HEL-D~~7,pcDc

KEY KEY
KILL KIL-SAMPLE

LENGTH LEN

LIBRARY LIB

Continued on next page.

PURPOSE

Appends the named program to current program.
Log off.
Produces a listing of user library program names
and length in two-character words.
Deletes all statements after and including the
specified one.
Deletes all statements between and including the
specified ones.
Permits use of a half duplex coupler; entered after
logging in.
Returns user to full duplex mode.
Retrieves the specified program from the user's
library and makes it the current program.
Retrieves the named program from the system library.
Log on. User needs 1.0. code and Password.
Returns control to keyboard after TAPE inputs.
Deletes the specified program from the user's library
(does not modi fy the current program).
Produces a listing of the current program length in
two-character words.
Produc,es a 1 isting of system 1 ibrary program names,
and s i.ze in two-cha racter words.

E-S 869

FULL NAME EXAMPLE

LIST

NAME

PUNCH

RENUMBER

RUN

SAVE
SCRATCH
TAPE

TIME

LIS
LIS-150
NAM .. SAMPLE

PUN
PUN-50

REN
REN-50

REN .. 60,y

RUN
RUN-50
SAV
SCR
TAP

TIM

COMMANDS, CONTINUED

PURPOSE

Produces a listing of current program.
Produces a listing, starting at specified statement.
Assigns specified name to the current program; name
may be 1 to 6 characters in length and must include
only printing characters.

Punches current program to paper tape.
Punches program to paper tape, beginning at
specified statement.
Renumbers program from 10 in multiples of 10.
Renumbers program from specified statement nurrber
in multiples of 10.
Renumbers program from specified statE~ment number
in multiples of y.

Starts program execution.
Starts program execution at specified statement.
Saves the current program in user's 1 i brary.
Erases current program (but not program name.)
Informs computer that following input is from paper
tape. .

Produces a listing of terminal and account time.

E-6 869

FUNC:TIONS

NOTE: PRINT is used for examples on.ly; other statement types may be used.

FULL NAME EXAMPLE PURPOSE

DEF FN 300 DEF FNA (X)=(M*X)+B

ABS (X) 310 PRINT ABS (X)

EXP (X) 320 PRINT EXP (X)

INT (X) 330 PRINT INT (X)

LOG (X) 34~ PRINT LOG (X)

RND (X) 350 PRINT RND (X)

SQR (X) 360 PRINT SQR (X)

SIN (X) 370 PRINT SIN (X)

COS (X) 380 PRINT COS (X)

TAN (X) 390 PRINT TAN (X)

ATN (X) 400 PRINT ATN (X)

LEN (X) 410 PRINT LEN (A$)

TAB (X) 420 PRINT TAB (X);A

TYP (X) 430 PRINT TYP (X);

SGN (X) 440 PRINT SGN (X)

Allows the programmer to define functions;
the function label (A) must be a letter
from A to Z; the argument (X) must be men­
tioned in the function definition.
Gives the absolute value of the expression
(X) •

Gives the constant e raised to the power of
the expression value (X); in this example,
etX.

Gives the largest integer ~ the expression
(X) •

Gives the natural logarithm of an express­
ion; expression must have a positive value.
Generates a random number between 0 and 1;
the expression (X) is a dummy argument.
Gives the square root of the expression (X);
expression must have a positive value.
Gives the sine of the expression (X); X is
real and in radians.
Gives the cosine of the expression (X); X
is real and in radians.
Gives the tangent of the expression (X); X
is real and in radians.
Gives the arctangent of the expression (X);
is real and in radians.
Gives the current length of a string (A$),
i.e., number of characters.
Tabs to the specified position (X), then
prints the specified value (A).
If argument (X) is negative, gives the type
of data in a file as: l=number; 2=string;
3="end of file"; 4="end of record"; or if
argument (X) is positive, gives the type of
data in a file as: l=number; 2=string; 3=
"end of file". (For sequential access to
fi 1 es - ski ps over "end of records ".)
If argument (X) = 0, gives the type of data
in a DATA statement as: l=number; 2=string;
3="out of data".
Gi ve s : 1 i f X >~ , 0 i f X =0 , - 1 i f X <~

E-7 869

STRINGS

NOTES: 1. A string is 1 to 72 teleprinter characters enclosed in quotes; it may be
assigned to a stl.~ing variable (an A to Z letter followed by a $).

2. Each string variable used in a program must be dimensioned (with a DIM
statement), if it has a length of more than one character.

3. Substrings are described by subscripted string variables. For example,
if A$ = "ABCDEF", A$ (2,2) = B, and A$ (1,4) = "ABCD".

3. The LEN function returns the current string length, for example:
l¢¢ PRINT LEN (A$).

FULL NAME EXAMPLE PURPOSE

DIM
LET

LEN

=

>
<

>=
<=

INPUT

INPUT

READ

READ#
PRINT#

10 DIM A$ (27)
20 LET A$ = II**TEXT 111

30 PRINT LEN (B$)

105 IF A$=C$ THEN 600
110 IF B$#X$ THEN 650
115 IF N$(2,2»B$(3,3) THEN 10
120 IF N$<B$ THEN 999
125 IF P$ (5,8»=Y$(4,7)THEN 10
130 IF X$<=Z$ THEN 999

205 INPUT N$

210 INPUT N$,X$,Y$

215 READ P$

220 READ#5; A$,B$
310 PRINT#2; A$,C$

Declares string length in characters.
Assigns the character string in quotes
to a string variable.
Gives the current length of the speci­
fied string.
String operators. They allow comparison
of strings, and substrings, and transfer
to a specified statement. Comparison is
made in ASCII codes, character by charac­
ter, left to right until a difference is
found. If the strings are of unequal
length, the shorter string is considered
smaller if it is identical to the ini­
tial substring of the longer.
Accepts the appropriate nwmber of char­
acters (followed by a return). The char­
acters need not be in quotation marks if
only one string is input.
Inputs the specified strings; input must
be in quotes and separated by commas.
Reads a string from a DATA statement;
each string read must be enclosed in
quotes.
Reads strings from the specified file.
Prints strings on a file.

E-8 869

MATRICE~;, CONTINUED

NOTES: 1. Absolute maximum matrix siz~3 is 2500 elements.

2. Matrix variables must be a single letter from A to z.

NAME

DIM

MAT ION

MAT ZER

MAT CON

SAMPLE STATEMENT

10 DIM A (10, 20)

15 MAT X = ION (m,n)

20 MAT B = ZER

25 MAT 0 = ZER (m,n)

30 MAT C = CON

35 MAT E = CON (m,n)

INPUT 40 INPUT A(5,5)

45 MAT INPUT A(5,5)

MAT PRINT 50 MAT PRINT A

55 PRINT A(X,Y)

60 PRINT #2; A(1,5)

65 MAT PRINT #2,3;A

MAT READ 70 MAT READ A
75 MAT READ A(5,5)

80 READ A(X., Y)

85 MAT READ #3; A
90 MAT READ #3,5; A

Continued on the next page.

PURPOSE

Allocates space for a matrix of the speci­
fied dimensions.
Establishes an identity matrix (with all
ones down the diagonal). A new working
size (m,n) may be specified;
Sets all elements of the specified matrix
equal to 0.
A new working size (m,n) may be specified
after ZER.
Sets all elements of the specified matrix
equal to 1
A new working size (m,n) may be specified
after CON.
Allows input from the teleprinter of a
specified matrix element.
Allows input of a matrix from the teleprint­
er; a new working size may be specified.
Prints the specified matrix on the
te 1 epri nter.
Prints the specified element of a matrix on
the- teleprinter; element specifications X
and Y may be any expression.
Prints matrix element on the specified file
number.
Prints matrix on a specified file and
record.
Reads matrix from DATA statements.
Reads matrix of specified size from DATA
statements.
Reads the specified matrix element from a
DATA statement.
Reads matrix from the specified file.
Reads matrix from the specified record of a
fi 1 e.

E-9 869

NAME

MAT +

MAT -

MAT*

MAT =

MAT TRN

MAT INV

MATRICES CONTINUED

SAMPLE STATEMENT

100 MAT C = A + B

110 MATC = A - B

120 MAT C = A * B

130 MAT A = B

140 MAT B = TRN (A)

150 MAT C = INV (B)

PURPOSE

Matrix addition; A and B must be the same
size.
Matrix subtraction; A,B, and C must be the
same size.
Matrix multiplication; No. columns in A
must equal No. rows in B.
Establishes equality of two matrices; as­
signs values of B to A.
Transposes an m by n matrix to an n by m
matrix.
Inverts a square matrix into a square
matrix of the same size; matrix may be in­
verted into itself.

E-10 869

FILES

NOTES: 1. STRUCTURE OF A FILE: 1 to 128 64-word records. Maximum size varies
with systems; consult system ope.rator. Files have logical "end of record"
markers and fIend of file" markers. Attempting to read an "end of file"
or "end of record" marker will terminate the program unless an IF END#
sta tement is used.

2. Fi.1e names may be 1 to 6 print.ing characters.

3. The formula for allocating file space for strings is:

1 + number of characters in the string if there are an even number of
2 characters,

number of characters in the string + 1 if the number of characters
or 1 + ------------------------.------~-~---

2 is odd.

This formula gives the required storage space in 2-character words.

FULL NAME EXAMPLE (Abbreviation)

OPEN- OPE-MYFILE,85

KILL- KIL-MYFILE
FILES 10 FILES FILE#l, SECOND, ...

PRINT# 120 PRINT# 1; A,B,C

130 PRINT# X,Y; A,B,C

140 PRINT# 2; A,B,END

160 PRINT# 3,5

READ# 170 READ# 1; A,B2,C

Continued on the next page.

PURPOSE

Opens file; assigns specified name and
number of 64-word records.
Deletes specified file.
Tells the system which files to use (max­
imum of 8); used only once in a program.
Files are assigned reference numbers
(1 to 8) sequentially.
Prints the specified values (A,B,C) on a
specified file number (file reference
numbers are assigned consecutively from
the FILES statement).
Prints the specified information on file
number (X), record number (Y); X and Y
are rounded to integer values.
Prints value on specified file; inserts
an "end of file" marker immediately after
the printed value.
Sets the file pointer to the beginning
of the specified file (3), and the speci~
fied record (5); erases the specified
record.
Reads the specified values from a speci­
fied file (numbered consecutively by the
system, from those given in the FILES
statement) .

E-11 869
><

~
<C

FILES ,CONTINUED

FULL NAME EXAMPLE (Abbreviation)

READ# 180 READ# 2~3; A~B

185 READ# 2~5

IF END# 190 IF END# 1 THEN 800

PURPOSE

Reads specified values from a specified
file (2) and a specified record in that
fi 1 e (3).
Resets the file pointer to the specified
file record without erasing the record.
Transfers control to a specified statement
number if the end of the specified file is
encountered.

E-12 869

APPENDIX F

INDEX

This index is produced with the help of the two programs listed below.
The first accepts two strings (topic and page references), and writes
them on a file. The second program reads the file, sorts the topics
alphabetically, and prints them on the teleprinter.

10 DIM A$[40J,B$[4~J
2~ FILES INDX2
70 PRINT "START NEW INPUT.II
8~ PRINT II Til ;
90 INPUT A$

100 PRINT IIpl!;
110 INPUT B$
130 PRINT #1 ;A$,B$
140 GOTO 80
150 END

LIS
OK

1 IF END #1 THEN 2~0
5 DIM A$[40J,B$[4~],C$[40],L$[40],M$[40J

10 FILES INDX2, INDX3
20 LET C$= II

25 LET L$="ZZZZZZ"
3~ READ #1;A$,B$
4~ IF A$ < = C$ THEN 30
50 IF A$ > = L$ TH EN 30
60 LET L$=A$
65 LET M$=B$
67 LET R=0
70 GOTO 30

20~ IF R THEN 400
205 PRINT L$ II ••• "M$
210 PRINT #2;L$,M$
220 LET C$=L$
225 LET L$="ZZZZ"
23~ LET R=l
235 READ #1,1

. 24~ GOTO 3~
4~0 END

Continued on the next page.

F-'I 869

INDEX, CONTINUED

* ... 2-6
+ ... 2-6
- ... 2-5, 2-7
/ ... 2-6
< ••• 2-7
<= ••• 2-7
> ••• 2-7
>= ••• 2-7
ABS ... 3-22
ABS FUNCTION ... 3-22
ACCESS, FILE ... 6-11
ACCESS STRING ... 6-6
ADDITION ... 2-6
ADVANCED BASIC ... 3-1,FF
ALLOCATION MEMORY ... 8-8
ALT-MODE ... 1-13
AND ... 2-9
AND OPERATOR ... 2-9
APPEND ... 3-12
ARITHMETIC EVALUATION ... 2-4
ARITHMETIC OPERATOR ... 2-6
ASCII CODES ... 8-7
ASSIGNMENT OPERATOR ... 2-5
ATN FUNCTION ... 3-23
BACKSPACE ... 1-12
BREAK ... 1-23,2-41
BREAK KEY ... 1-23, 2-41
BYE ... 2-35
CATALOG ... 3-15
COMBINING LOGICAL OPERATORS ... 7-6
COMMANDS ... 2-34
CONNECTION TO THE COMPUTER ... 1-16
CONTROL C ... 1-17
CO N T RO LN. . . 6 - 7, E -1
CO NT RO L 0 ... 6 -7, E -1
CONVENTIONS IN THIS BOOK ... IV
COPYING A MATRIX ... 5-15
CORRECTING MISTAKES ... 1-13
COS ... 3-23
COSINE FUNCTION ... 3-23
DATA ... 2-21, 6-10
DATA ON PAPE R TAPE ... B-1
DATA TYPE ... 3-2
DEF FN ... 3-21
DEFINING FUNCTIONS ... 3-21
DELETE ... 3-13
DELETING A LINE ... 1-13
DELETING PROGRAMS ... 3-7
DIAGNOSTIC MESSAGES ... 1-19, 0-1
DIM ... 5-2, 6-4
DIMENSIONING A MATRIX ... 5-2
DIVISION ... 2-6
ECHO ... 2-36
END OF FILE ... 4-14
END OF STATEMENT ... 1-7, 2-28

E NOTATION ... 2-2
ENTERING DATA FROM TAPE ... B-1
ESC ... 1 -1 3
ESCAPE KEY ... CONTROL CHARACTERS
EXP ... 3-22
EXP FUNCTION ... 3-22
EXPONENTIATION ... 2-6
EXPRESSION ... 2-4
FILE ACCESS ... 5-19, 5-20
FILE STRUCTURE ... 4-10
FILES ... 4-1
FILES STATEMENT ... 4-6
FOR ... 2-18
FOR ... NEXT WITH STEP ... 3-20
FORMAL LANGUAGE ... 1-2
FORMAT OF STATEMENTS ... 1-8
FUNCTIONS ... 3-16
GET ... 3-10
GET-$... 3-10
GO TO ... 2-16
GO TO... 0 F ... 2 -1 6
GOSUB ... 3-17
GOSUB ... OF ... 3-19
HELLO- ... 2-34
HIERARCHY OF OPERATORS ... 2-12
HOW TO USE THIS BOOK ... VII
lOCO DE. . . 1 -1 7
IDENTITY MATRIX ... 5-16
IF END# STATEMENT ... 4-9
IF. . . TH EN ... 2 - 1 7
INPUT ... 2-24, 5-5, 6-6
INPUT OF MATRIX ELEMENTS ... 5-5
INSTRUCTIONS ... 1-5
INT ... 3-22
INT FUNCTION ... 3-22
INVERTING A MATRIX ... 5-18
KEY ... 2-44
KILL ... 3-11
KILL - ... 4-5
LEN COMMAND ... 3-7
LEN FUNCTION ... 3-26
LET ... 2-14, 6-5
LIBRARY ... 3-14
LINE NUMBER ... 1-4
LINEFEED ... 1-17, 1-20
LIST ... 1-14, 2-38
LISTING A FILE ... C-1
LISTING A PROGRAM ... 1-14
LOG ... 3-22
LOG FUNCTION ... 3-22
LOG IN AND LOG OUT ... 1-18
LOGICAL OPERATIONS ... 7-2
MAT CON ... 5-4
MAT PRINT ... 5-8
MAT READ ... 5-10

F-2 869

INDEX, CONTINUED

MAT ZER ... 5-3
MATHEMATICAL FUNCTIONS ... 3-22
MATRICES ... 5-1
MATRIX ADDITION ... 5-11
MATRIX EQUALITY ... 5-15
MATRIX MULTIPLICATION ... 5-13
MATRIX SUBTRACTION ... 5- 2
MATRIX TRANSPOSITION ... 5-17
MAX ... 2-8
MEMORY ALLOCATION ... 8-8
MIN ... 2-8
MIN-MAX OPERATORS ... 2-8
MISTAKES AND CORRECTIONS ... 1-19
MISTAKES DURING LOG IN ... 1-19
MULTIBRANCH GOSUB ... 3-18
MULTIBRANCH GOTO ... 2-1
MULTIPLICATION ... 2-6
NAME ... 3-8
NATURAL LANGUAGE ... 1-2
NESTING GOSUBS ... 3-19
NEXT ... 2-18, 3-20
NOT ... 2-11
NOT OPERATOR ... 2-11
NUMBER ... 2-2
NUMBER, LINE ... 1-4
NUMBER, STATEMENT ... 1-4
OPEN- ... 4-4
OPENING AND CLOSING FILES ... 4-4,FF
OPERANDS ... 1-6
OPERATIONS, MAT ... 5-11,FF
OPERATORS, BOOLEAN ... 7-4
OPERATORS, RELATIONAL ... 2-5,FF,7-4
OR ... 2-10
OR OPERATOR ... 2-10
ORDER OF PRECEDENCE (OPERS.) ... 2-12
PAGE FORMAT ... V
PASSWORD ... 1-17
POINTER, RESETTING ... 4-16, 4-18
PREFACE ... 111
PREPARE TAPE OFF-LINE ... A-1
PRINT, MAT ... 5-8, 5-19
PRINT TO FILE ... 4-7
PRINT# ... END ... 4-14
PROGRAMMER-DEFINED FUNCTION ... 3-21
PUNCH ... 2-42
PUNCHING TAPE OFFLINE ... A-1
QUICK REFERENCE SECTION ... E-1 ,FF
RAISE TO A POWER ... 2-6
RANDOM FILE ACCESS ... 4-14,FF
READ ... 2-21, 4-8, 4-17, 6-8, 6-12

READ FROM FIL E ... 4-8
READ, MAT ... 5-10, 5-20
READING, WRITING MATRICES ... 5-5,FF
RELATIONAL OPERATORS ... 2-7, 7-2
REM .. '.2-15
RENUMBER ... 2-40
RESTORE ... 2-21
RE T URN ... 1 -1 1
RND ... 3-22
RUN ... 2-37
SAVE ... 3-9
SCALAR MULTIPLICATION ... 5-14
SCRATCH ... 2-39
SERIAL FILES ... 4-6,FF
SGN FUNCTION ... 3-24
SIMPLE VARIABLE ... 2-3
SIN ... 3-23
SPECIAL CHARACTERS ... E-1
SQR ... 3-22
STANDARD FUNCTIONS ... 3-22,FF
STATEMENTS ... 1-3, 2-13
STATEMENT TYPES ... 1-5
STOP ... 2-28
STORING, DELETING PROGRAMS ... 3-6
STRING ASSIGNMENT ... 6-5
STRING DIM ... 6-4
STRING EVALUATION (ASCII) ... 8-7
STRING IF ... 6-9
STRING INPUT ... 6-6
STRING LET ... 6-5
STRING PRINT TO FILE ... 6-12
STRING READ ... 6-8
STRING READ FROM FILE ... 6-11
STRINGS ... 6-1, 6-2
STRUCTURE FILES ... 4-10,FF
SUBROUTINES AND FUNCTIONS ... 3-16,FF
SUBSTRI NG ... 6-3
SUBTRACTION ... 2-6
SYNTAX REQUIREMENTS OF TSB ... 8-2
TAB ... 3-24
TAN FUNCTION ... 3-23
TAPE ... 2-43
TIME . 002-45
TIME SHARING ... 1-1
TRANSPOSING A MATRIX 00.5-17
TRIGONOMETRIC FUNCTIONS ... 3-23
TYP FUNCTION ... 3-26
UTILITY COMMANDS ... 3-12,FF
VARIABLE, SIMPLE ... 2-3
X-ON, X-O FF ... B1

F-3 869

	000
	001
	002
	003
	004
	005
	006
	006a
	007
	008
	009
	010
	011
	012
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	A-01
	B-01
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	F-01
	F-02
	F-03

