HP 1000 E-Series and F-Series
Computer Microprogramming

HEWLETT
PACKARD

Reference Manual

HEWLETT-PACKARD COMPANY
Data Systems Division

11000 Wolfe Road

Cupertino, California 95014

Library Index Number
2MICRO.320.02109-90004

MANUAL PART NO. 02109-90004
Printed in U.S.A. April 1980

PUBLICATION NOTICE

Text changes are supplied in the form of manual change notices or complete revisions to the manual. The publication
history of any changes to this edition of the manual is given under “Publication History” below. The last change listed
reflects the current software.

All changed pages are identified by a change number at the bottom of the page. Changed information is specifically
identified by a vertical line (change bar) on the outer margin of the page.

PUBLICATION HISTORY

Second Edition..................... November 1979 (Software Revision Code 1940)
Change 1 April 1980 (Software Revision Code 2013)
NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATE-
RIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1979 by HEWLETT-PACKARD COMPANY

ii

PREFACE

Are you looking for a better way to accomplish your applications program tasks? Have you
used all the programming methods you can think of to make your library subroutines run as
efficiently as possible in your Real Time Executive (RTE) Operating System environment?
Maybe its time to look into microprogramming.

Primarily, microprogramming is the use of a discrete language to effect control of a specific
computer at the closest possible level without hardware redesign so that you may have the
advantage of executing selected main memory programs at the fastest possible rate available
in the computer. Some other purposes for microprogramming that may be of interest to you are
mentioned in section 1 of this manual.

This manual consists of four parts and eight appendixes that will provide you with the
information necessary to prepare and integrate your microprograms into HP 1000 E-Series or
F-Series Computers, then execute them when desired. You will find subjects organized as
follows:

Part I - Why Microprogramming?

® Program analysis.

® An overview of microprogramming.

® Microprogrammable functions of HP 1000 E-Series and F-Series Computers.

Part II - Microprogramming Methods.
® Microinstruction formats, definitious, and timing.
® Gaining access to your microprogramming area.

¢ How to prepare microprograms.

Part IIT Microprogramming Support Software and Hardware.
® How to microassemble and load object microprograms.
® Using microprogramming support software such as the:

— Microdebug Editor (MDE).

— Writable Control Store (WCS) I/O Utility Routine (WLOAD) and WCS Real Time
Executive (RTE) Driver DVR36.

— Programmable Read-Only-Memory (pROM) Tape Generator.
¢ Using pROM hardware facilities.

® Using extra features of the E-Series and F-Series Computers.

iii

Part IV Microprogramming Examples.

Appendixes
® Microprogramming reference material.
¢ The HP 1000 E-Series Computer base set microprogram listing and F-Series jump tables.

This manual is written for those individuals who have experience as Assembly language
programmers and are familiar with Hewlett-Packard RTE Operating Systems.

The documentation map that follows is a diagram of related manuals. Parts II and III of this
manual contain additional information about microprogramming support software.

This manual is written for those individuals who have experience as Assembly language
programmers and are familiar with Hewlett-Packard RTE Operating Systems.

Parts II and III of this manual contain additional information about microprogramming
support software and manuals.

iv

Section 1

Section 2

Section 3

Section 4
Section 5
Section 6

Section 7
Section 8

Section 9

Section 10

Section 11
Section 12
Section 13

Section 14

APPENDIXES

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H

Index

PART I — Why Microprogramming?

Microprogramming Concept

Controllable Functions

PART Il - Microprogramming Methods

Microprogramming Preparation Steps

Microinstruction Formats
Timing Considerations
Mapping to the User’'s Microprogramming Area

Microprogramming Considerations
Preparation with the Microassembler

PART Ill - Microprogramming Support Software and Hardware

Using the RTE Microassembler
Using the RTE Microdebug Editor

Writable Control Store (WCS) Support Software
Using pROM Generation Support Software and Hardware

Using Special Facilities of the Computer

PART IV - Microprogramming Examples

Microprograms

Abbreviations and Definitions

Microinstruction Formats

Micro-Order Summary and Specialized Microprogramming
Microprogramming Form

Object Tape Formats

HP M-Series-to-E-/F-Series Micro-Order Comparison Summary

HP 1000 E-Series Computer Base Set Microprogram Listing
and F-Series Jump Tables

Functional Block Diagram

v/vi

CONTENTS

Section Page

Preface..........coiiii i iii

PART I — WHY MICROPROGRAMMING?

Section 1 Page
MICROPROGRAMMING CONCEPT
Microprogramming Overview 1-2
Selecting an Analysis Method 1-3
The Microprogramming Process 1-3
Executing Your Microprogram 1-6
Some Microprogramming Related Products 1-7
Summary 1-8
Section 2 Page
CONTROLLABLE FUNCTIONS
Computer Functions that Can Be Controlled 2-1
Control Processorcc.oviiiinnnnn. 2-2
Arithmetic/Logic Section 2-2
Main Memory Section 2-2
Input/Output Section 2-2
Operator Panel 2-2
Memory Protecto il 2-5
Dynamic Mapping System 2-5
Dual Channel Port Controller................... 2-5
A Closer Look at the Functions.................... 2-5
Some Definitions and Timing Points 2-10
How Do All These Functions Interrelate? 2-10
Control Memoryccoiiiiiiiiinn. 2-11
Let’s Talk About The Base Set 2-14
An Operational Overview 2-15
Fetching.............. ... i 2-16
Execution........... 2-17
Microprogrammed Accessories 2-18
Summary 2-18

PART II — MICROPROGRAMMING METHODS

Section 3 Page
MICROPROGRAMMING PREPARATION
STEPS

Environment 3-1

Microprogramming Hardware 3-1

Microprogramming Support Software 3-3
The RTE Microassembler 3-3
Microassembler Cross-Reference Generator 3-3
RTE Microdebug Editor 3-3
Driver DVR36 i 3-4
WLOAD ... e 3-4
Loading the Microprogramming Support
Software 3-4

pROM Tape Generator 3-5
Preparatory Steps...........coiiiiiiiiiiiiiiia, 3-5
Section 4 Page
MICROINSTRUCTION FORMATS
Microinstruction Binary Structures 4-1
Microassembler Formats 4-5

Word Type I o i 4-6

Word Type IT i 4-6

Word Type IIT.......... 4-6

Word Type IV 4-9
Micro-Order Definitions 4-10
SUMMArY ...ttt 4-10
Section 5 Page
TIMING CONSIDERATIONS
Computer Sections Involved in Timing 5-1
Review and Expansion of Timing Definitions
and Terms, 5-2
Timing Variables 5-3

Short/Long Microcycles 5-3

Pauseo 5-4

Freeze ... 5-5
Overall Timing i i 5-7
Timing Calculations 5-8

Arithmetic/Logic Section Operations............ 5-10

Control Memory Branches 5-13

/O Operationscovviiiinano... 5-13

Main Memory Operations...................... 5-14

Reading from Memory 5-14
Writing to Memory 5-15
SUmMmMAaryc.eniiii i 5-17
Section 6 Page

MAPPING TO THE USER’S
MICROPROGRAMMING AREA

Control Memory Mapping Method 6-2
Software Entry Points 6-2
The User Instruction Group..................... 6-2

HP Reserved UIG Codes 6-3
User Area UIGCodes 6-4
User’s Area Mapping Example 6-6
Main Memory/Control Memory Linkage 6-6
Assembler Procedure...................... ... 6-8
Parameter Passing, 6-9
Control Memory/Main Memory Linkage...... 6-12

Some Main Memory Program Procedures 6-12

The MIC Pseudo-Instruction 6-12
Parameter Assignment Example............. 6-13
Example MIC Pseudo-Instruction Use........ 6-13

Calling Microprograms from FORTRAN 6-14

SUMMArYttt i e 6-15

| CONTENTS (continued)

Section 7 Page
MICROPROGRAMMING
CONSIDERATIONS
Read and Write Considerations 7-1
Typical Read Operations 7-1
Typical Write Operations 7-1
Use of MPCK 7-7
Conditional and Invalid Operations 7-7
Some Microprogramming Techniques 7-8
The Use of SRG1 and SRG2 7-8
Using the ASG Micro-Order 7-10
Setting and Clearing Overflow 7-10
The Use of PNM 7-12
The CNTR Micro-Order 7-12
Magnitude Tests 7-13
Memory Protect Considerations 7-14
The FTCH Micro-Order........................ 7-15
IRCM .. 7-15
INCI .o 7-15
MPCKo 7-16
The IOG Micro-Order 7-16
TAK . 7-16
The IOFF Micro-Order 7-16
Dual Channel Port Controller Considerations 7-17
Microprogrammed /O 7-17
Synchronizing With the I/O Section 7-17
I/O Section Signal Generation 7-18
I/OControl i 7-20
OOutput................o 7-20
I/'OInput 7-21
Memory Protect in Relation to /O 7-21
Interrupt Handling 7-21
Forming and Executing Microprogrammed
I/O Instructions 7-24
Special 1/0 Techniques 7-25
I/O Micro-order Summary 7-25
Dynamic Mapping System Considerations 7-27
Guidelines for Writing Loaders 7-30
Summary e 7-30
Section 8 Page
PREPARATION WITH THE
MICROASSEMBLER
Planning and Preparation 8-1
Planning 8-1
Preliminary Information 8-2
Field Template 8-2
Microprogram Entry............................ 8-3
The Microassembler............................... 8-3
Microassembler Rules 8-3
Control Commands 8-4
MIC Assembly Command 8-4
The $CODE Command 8-5
$PAGE Command 8-5
The $LIST and $NOLIST Commands 8-5

viii

$PUNCH and $NOPUNCH 8-5
HP 1000 E-Series
F-Series Microinstructions 8-6
The Label Field 8-7
Micro-Orderscuuiinannnnnni.. 8.7
Address Fields................. ... oo, 8-7
Comment Field 8-8
Pseudo-Microinstructions 8-8
The ORG Pseudo-Microinstruction 8-8
ALGN .., 8-10
The END Pseudo-Microinstruction 8-10
EQU .. 8-10
DEF ..., 8-11
The ONES and ZERO Pseudo-
Microinstruction 8-11
Summary ... 8-12

PART III — MICROPROGRAMMING SUPPORT
SOFTWARE AND HARDWARE

Section 9 Page
USING THE RTE MICROASSEMBLER
Using the Microassembler 9-1
Execution Command 9-1
The Microassembler Qutput..................... 9-3
Binary Object Code 9-4
Microassembler Listing Output 9-4
Symbol Table Output 9-5
Using the Cross-Reference Generator 9-5
MeSSaES . ..ttt 9-7
Informative Messages 9-7
Error Messagesciiiiiinnnnn.. 9-8
Section 10 Page
USING THE RTE MICRODEBUG EDITOR
Scheduling MDE 10-2
MDE Commands 10-3
72Command 10-4
EXit Command 10-4
DUmp Command.............................. 10-4
LoaD Commandccviiiin.. 10-4
LUCommand...............ccovvivinninnn.. 10-5
DElete Command 10-5
REplace Command 10-6
SHow Command 10-7
BReakpoint Command 10-7
CLear Command 10-9
LoCate Command 10-9
PaRameters Command 10-9
RUn Command 10-10
SEt Command 10-11
MeSSages . ..ot 10-13
Restrictions on Using the Microdebug Editor 10-15
Calling MDEooine. 10-15

CONTENTS (continued)

Section 11 Page
WRITABLE CONTROL STORE (WCS)
SUPPORT SOFTWARE

WCS Hardware ..ot 11-1
WCS Softwarecoiiiie i, 11-2
Section 12 Page

USING pROM GENERATION SUPPORT
SOFTWARE AND HARDWARE

Using the pROM Tape Generator 12-1
Initialize'Phase 12-2
Punch Phase, 12-5
Verify Phase 12-6
pROM Tape Generator Error Messages 12-7
pPROM Hardwarec..o... 12-9
Section 13 Page

USING SPECIAL FACILITIES OF THE
COMPUTER

Block I/O Data Transfers......................... 13-2
Block I/0 Byte Packing Burst Input
Microprogram i 13-2
Block I/O Address/Data Burst Input
Microprograml 13-5
Block I/O Word Burst Output Microprogram 13-6
Microprogrammable Processor Port 13-6
Hardware Interface 13-7
MPP & MBI10 Considerations 13-8
MPP Microprogram (E-Series Only) 13-9
Summary of MPP Transfer Rates 13-10
Hardware Floating Point Processor
(F-Series Only) i, 13-11
Controllable Functions 13-11
Data Formats 13-12
FPP Instruction Word Format 13-12
Exponent Format 13-12
FPP Operationcccuuinnnn. 13-14
Operand Source 13-14
Operand Length 13-14
Data Operations 13-14
Fix and Float Operations 13-15
Accumulator Operations 13-15
MPP Micro-Orderscooiieneneennnnn.. 13-15
FPP Instruction Store 13-15
FPP Addressing.....................ooinn... 13-17
Instruction Execution 13-17
Operand to FPP 13-17
Result to CPU ...t 13-18
MPP1 Micro-Order Considerations 13-18
FPP Complete Test 13-18
Overflow Detectionccienn... 13-19

MPP Micro-Order Summary 13-19
FPP Microprogramming Considerations 13-19
FPP Operation Execution Times 13-19
Execution in Progress........................... 13-20
Interrupt Considerations 13-21
Microprogrammed FPP Operation Example 13-21
Microprogramming the Floating
Point Processorcccivinvinnnannnn. 13-21

PART IV — MICROPROGRAMMING

EXAMPLES

Section 14 Page
MICROPROGRAMS

WCS Initializationo i 14-2
Microprogramming with MDE 14-3
Shell Sort Example 14-5
Microprogrammed I/O Operation Example 14-18
APPENDIX A Page
ABBREVIATIONS AND DEFINITIONS A-1
APPENDIX B Page
MICROINSTRUCTION FORMATS B-1
APPENDIX C Page
MICRO-ORDER SUMMARY AND

SPECIALIZED MICROPROGRAMMING C-1
APPENDIX D Page
MICROPROGRAMMING FORM................ D-1
APPENDIX E Page
OBJECT TAPE FORMATS E-1
APPENDIX F Page

HP 1000 M-SERIES-TO-HP 1000
E/F-SERIES MICRO-ORDER COMPARISON
SUMMARY F-1

APPENDIX G Page
E-SERIES COMPUTER BASE SET
MICROPROGRAM LISTING AND F-SERIES

JUMP TABLES ... G-1
APPENDIX H Page
FUNCTIONAL BLOCK DIAGRAM H-1
Index ... I-1

ix

ILLUSTRATIONS

Title Page Title Page
Microprogramming Implementation Process 1-5 Detailed Pause Time Calculation Flowchart
Some Microprogramming Products 1-7 (Using an HP 2102B Memory as an Example) .. 5-16
HP 21MX E-Series Computer Overall Block Overflow Register Control 7-11
Diagram 2-3 Scheduling MDE (MDEP) 10-16
Simplified Control Processor Block Diagram 2-9 Calling MDE (MDES) 10-16
E-Series Control Memory Map.................... 2-12 Interactive Debugging Operations 10-17
F-Series Control Memory Map 2-13 General Tape Format 12-2
Word Type/Binary Format Summary 4-1 FPP Overall Functional Block Diagram.......... 13-11
Micro-Order Binary Formats 4-3 Floating Point Data Format 13-12
RTE Microassembler Word Format Summary....... 4-5 FPP Instruction Word Format 13-13
Microassembler Format Micro-Orders 4-7 Typical FPP Microprogramming
Jump Address Decoding 4-9 Sequence Flowchart 13-16
Basic Timing Definitions 5-2 FPP Microprogramming Example Flowchart 13-23
Variable Microcycles with Pause Conditions 5-6 Example 3, Microprogrammed Shell Sort
Overall Microcycle Timing Flowchart 5-7 Flowchart 14-8
Consolidated Microcycle Estimating Flowchart 5-9 Example 4, Microprogrammed Privileged Section
Detailed Microcycle Time Determination Flowchart 14-24
Flowchart 5-11
TABLES
Title Page Title Page
Computer Functionscccvo.... 2-6 MEM Signals Invoked by Micro-Orders 7-28
Program Partitioning Capabilities 3-5 DMS Micro-Order Control Signals 7-29
Preparatory Steps....... ..ot 3-6 Microassembler and Cross-Reference Generator
Manual/Software References PO 3-8 Error Messagescoieiiniieininnnnnnn. 9-8
Micro-Order Definitions 4-11 MDE Operator Command Syntax 10-1
Summary of Timing Factors 5-18 Summary of Microdebug Editor Commands 10-3
Control Memory User Instruction Group Microdebug Editor Error Messages 10-13
Software Entry Point Assignments (E-Series)6-4 Default Formats by Vendor 12-4
Software Entry Point Assignments MPP Signal Summary 13-7
(F-Series) oot 6-5 Special Facilities Transfer Rate Summary 13-10
Backplane I/0 Signal Generation Determined by Overflow and Underflow Ranges................. 13-13
IR Bits 11 through 6 7-19 Summary of FPP Control Micro-orders 13-19
I/O Micro-Order Summary 7-26 FPP Operation Internal Execution Times 13-20

PART |
Why Microprogramming?

Section 1
MICROPROGRAMMING CONCEPT I

1

MICROPROGRAMMING CONCEPT

Why microprogramming? Because microprograms and microprogramming techniques can be used to. .
e Reduce program execution time. By microprogramming often-used routines you can significantly
decrease the program execution time. Large reductions in execution time are enabled because:
— Many instruction fetches are eliminated.
— Microinstructions execute (typically) four to ten times faster than Assembler instructions.
— Multiple operations can occur during a single microinstruction.

— The microinstruction word width (24 bits) provides a larger instruction repertoire than avail-
able with the Assembler word width (16 bits).

— Many more registers and functions at the microinstruction level are available to you than to
the higher level language programmer.

e Implement customized computer instructions. Designing customized instructions (i.e., micropro-
grams) can provide facilities not otherwise readily available. Examples are:

— Postindexing and/or preindexing.
— Stack instructions.

—~ Special arithmetic instructions (double integer, decimal, etc.).

What types of applications can be microprogrammed?

® Sort routines (e.g., bubble, shell, radix-exchange, and quicksort).
e High-speed or specialized input/output (I/O) transfer operations.
o Table searches (e.g., sequential, binary, and link-list).

o Arithmetic Floating Point Calculations.

e Transcendental functions (e.g., sine, square root, and logarithms).

e Fast Fourier Transform (FFT).

Concept

You may also create microprograms to control your own customized hardware. References for micro-
programmable algorithms for many of the above applications are given in part IV.

Then why not microprogram everything?

® Microprogramming everything would be an unwieldly and unprofitable project. An analysis
should be made to determine those areas that need to be microprogrammed.

® Microprograms are not relocatable in control memory.

® Microprograms run separately from the operating system and, when invoked, are in complete
control of the computer. Therefore, if you don’t plan carefully, the operating system’s peripheral
devices, memory, and computer management can be defeated, or even aborted.

Although additional effort is required to become more familiar with the computer in order to write
microprograms, the results will be well worth the effort. The following paragraphs outline the
considerations involved when you decide to microprogram.

1-1. MICROPROGRAMMING OVERVIEW

What is the first thing to consider? Typically, an application program, or perhaps a library routine
running in an RTE environment, may need to have a faster execution speed. This may or may not be
obvious in external operation (i.e., waiting time is too long for a line printer output when a certain
calculation is performed, terminal response too slow, etc.). Whether the excessive time taken is
obvious or not, some method must be used to analyze the programming environment so that you can
identify these areas. Three basic methods can be considered to determine which areas of the program
{memory) are consuming the most computer time:

® Programming analysis devices may be attached to the computer; this is the most accurate but most
expensive method.

® A programmatical analysis method may be used as a middle-of-the-road approach.

¢ The computer can be checked manually at periodic intervals (i.e., every 10 or 15 seconds) by
halting and recording the program counter (P-register) contents. A profile can thus be obtained,
and a map of the “busy” areas generated; however, this is a tedious and time-consuming task, but a
minimum of material cost is involved.

In summary, it can be seen that the first step is to find out what you're going to microprogram. The

point is that if you spend your time microprogramming some seldom-used library routine, you cannot
expect to realize a significant gain in software efficiency.

1-2

Concept

1-2. SELECTING AN ANALYSIS METHOD

The analysis method we’ll consider in this manual is a middle-of-the-road approach. That is, an
activity profile generation type of program. For example, you can:

® Use an I/O device capable of generating interrupts and cause periodic interrupts to the operating
system.

® Reserve a “word block counter” for (as an example) every 500 words of main memory.

Each time the device interrupts, the P-register could be sampled and the count incremented for the
associated “word block counter”. That is, a record is generated for the program location counter at
periodic intervals. This can be done several hundred thousand times and, at the end of the sample
period, a percentage of time spent in each area of memory can be obtained. Then. . .

® The load map of the program being analyzed can be examined to determine which part(s) of the
program could possibly be microprogrammed to decrease the execution time.

¢ The resolution for your analysis program could be changed, as could other parameters in the
program, to obtain the desired profile.

This is the general idea of how an activity profile generation program could be used. Also, you may
want to refer to the Contributed Library Catalog, part no. 22999-90040, for programs you may be able
to use. '

Once your activity profile generation program output is analyzed, it may be found that some specific
routines (perhaps library subroutines) are indeed consuming too much computer time. Once the
analysis is complete, you're ready to concentrate on a particular area. But remember that:

® The maximum benefit of microprogramming will not be realized by simply imitating the Assembly
language instructions in microroutines.

¢ In order to determine specifically what to microprogram, the computer functions and program
intent should be studied before you begin to write your microprogram. The final result will be a
microprogrammed solution that executes in much less time and is totally or at least partially

transparent.

Now, what steps are necessary to get your microprogram into operation? An overview of the process
follows.

1-3. THE MICROPROGRAMMING PROCESS

Figure 1-1 provides an overview of the steps involved in microprogramming and some explanation of
the illustration may be helpful:

e After a program analysis has been accomplished, the entry point (address) for the control memory
module that you’ll be using must be determined.

® The microprogram is then written using the information given in part II of this manual.

® The microprogram source file can be prepared and stored on disc.

1-3

Concept

The microassembler (program MICRO, which can be placed in the RTE system at generation time)
is loaded into main memory.

The microprogram source is then microassembled by MICRO and a listing and an object file can be
obtained.

At this point the Microdebug Editor (program MDEP, which can also placed in the RTE system at
generation time) can be loaded into main memory. (The Microdebug Editor may also be called from
your programs in the RTE environment by the name MDES.)

The object microprogram may then be loaded into Writable Control Store (WCS) using the MDE.
(Microprograms can also be loaded into WCS using other programs, such as WLOAD.)

The microprogram can be debugged, edited, and checked out interactively using the MDE and
WCS.

NOTE

The HP 13197A Writable Control Store Kit is an integral part of
microprogramming. Information on writing micro-
programs to be stored in WCS is the primary purpose of this
manual; however, installation and additional reference informa-
tion on WCS will be found in the HP 13197A Writable Control
Store Reference Manual, part no. 13197-90005. Information on
the driver (necessary for operation of WCS in the RTE environ-
ment) and on the WCS I/O Utility routine WLOAD is included in
the RTE Driver DVR36 for HP 12978A/13197A Writable Control
Store Board Programming and Reference Manual, part no.
13197-90001.

The ready-to-run microprogram can be stored in one of two ways:

1-4

It can be left in WCS.

You can create a permanent microprogram through the use of the pROM Tape Generator mi-
croprogramming support software. This software, in turn, can be used to generate several different
types of mask tapes that can be used to have Programmable Read Only Memory (pROM’s) fused
(burned). The pROM’s can then be installed on the HP 13304A Firmware Accessory Board (FAB)
(attached to the CPU), the HP 13047A User Control Store (UCS) Kit (in the I/O card cage), or on
the HP 12791A Firmware Expansion Module (FEM) (in the I/O card cage).

NOTE

Information on the pROM Tape Generator (as well as on the RTE
Microassembler and RTE Microdebug Editor microprogramming
support software) is included in this manual. Information you will
need for using pROM’s can be found in the HP 12791A Firmware
Expansion Module Installation and Reference Manual, part no.
12791-90001.

Concept

ACTIVITY PROFILE
GENERATION
PROGRAM

USER
MICROPROGRAMMING
REQUIREMENT

RUN PROGRAM

ANALYSIS COMPUTER
STUDY RESULTS
AND/OR
PLAN MICROPROGRAM

oS CONTROL
RN MEMORY

ASSIGN ASSEMBLY
LANGUAGE
INSTRUCTION CODE
TO DETERMINE
ACCESS POINT

WRITE THE

PREPARE AND
MICROPROGRAM

/Nﬂ' SOURCE
MICROASSEMBLE @ STORE
ON DISC

RTE
MICRO-
ASSEMBLER

MICROPROGRAM
’\ LISTING

pROM TAPE
\ DIsC / GENERATOR

~
OBJECT CODE ON = =

LOAD DISC FILE (OR TO = — o)

OBJECT OUTPUT DEVICE) : — (=

FILE

PREPARE SIX g
MASK TAPES ¥
Z

RTE

MICRO- NEW (EDITED)
DEBUG
£DITOR INTERIM PERFORM
DISC FILE INTERACTIVE
EDITING AND
CHECKOUT BURN
USING WCS pROM's

PROM’s ON 2K UCS
OR FIRMWARE

WRITABLE ACCESSORY BOARD [
CONTROL

STORE P F 2
(wcs) =z

CALL
MICRODEBUG
EDITOR

MICROPROGRAM
EXECUTION

WRITE
MICROPROGRAM
TO WCS

WCS 1/0
UTILITY
ROUTINE
(WLOAD)

USER PROGRAMS
IN MAIN MEMORY

7115-1 . .
Figure 1-1. Microprogramming Implementation Process

1-5

Concept

The advantages of executing microprograms from WCS are:
¢ WCS may be reused for many microprograms.

e WCS may be used to dynamically swap microprograms in and out of the system to suit a variety of
users.

The disadvantages are:

® Microprograms in WCS can be destroyed by an errant user of the system.

¢ When computer power is removed, your microprogram is lost and must be reloaded.
e Each WCS board requires an I/O slot in the computer.

The advantage of fusing (burning) pROM’s is:

® The pROM’s are permanently fused and the computer will not lose the microprogram when power
is removed.

The disadvantage is:

® There is much more involved in changing the microprogram with pROM’s than there is with WCS.

1-4. EXECUTING YOUR MICROPROGRAM

If your microprogram is stored in pROM’s, it can be executed immediately through User Instruction
Group (UIG) instructions (105xxx or 101xxx) that link Assembly language routines to microprograms.
The hardware and firmware map each UIG instruction to a unique control memory destination.

If WCS is being used, your microprogram must initially be contained in WCS before execution.
Microprograms that reside in WCS execute at the same speed as pROM’s. Both WCS and pROM
resident microprograms can be used along with the base set in control memory. (The base set is defined
as the computer’s standard instruction set microprograms.)

Either the WCS I/O Utility routine WLOAD can be used to load WCS (through a call from FORTRAN,
ALGOL, or Assembly language) or the MDE can be used to load WCS. The microprogram can then be
called for execution from the main program in the same manner as described for a pROM stored
microprogram. To summarize, your microprograms (when loaded) can be executed in the following
ways:

e Under MDE control.
e By using an Assembly language UIG instruction.
® Through calls from FORTRAN or ALGOL.

Now that you have an overview of the microprogramming process, let’s look at some microprogram-
ming products.

Concept

1-5. SOME MICROPROGRAMMING RELATED PRODUCTS

Several different products have been mentioned in the previous paragraphs that are directly as-
sociated with the microprogramming environment. Figure 1-2 illustrates products that can be used for
microprogramming your HP 1000 E- or F-Series Computer.

/0 1/0 CARD

& SECTION CAGE
I

L\~ S +
PARTIAL Sl ~
COMPUTER st T
v sCia T 1/0 SLOTS FOR
SICAL LAYOUT g HP 13197A
,SC13 WRITABLE
— ¥ CONTROL STORE
v sci2 |/ (DYNAMIC
USER DESIGNED MICROPROGRAMMING)
EXTERNAL m
HARDWARE M - L - AND/OR
(E-SERIES ONLY) EMORY
SECTION HP 13047A USER
CONTROL STORE
] | OR HP 12791A
= | FIRMWARE
| EXPANSION
z | MODULE
y i (PERMANENT
p ~l—___ INPUT/OUTPUT

MICROPROGRAMS)

; BACKPLANE

MICROPROGRAMMABLE | o |

PROCESSOR PORT | |
MEMORY —_— 8

BACKPLANE v)
s

7/
/ i

OPERATOR
PANEL

N CcTvOOoO~wCc® <DOETMZT

|
|
|
|
|
|
|
|
4

4_/ ! J S o
CENTRAL PROCESSING UNIT EXTENDER
DI /('
/ / CONTROL
BASE SET

MEMORY
MICROPROGRAMS

BUS
9474747@@{

POINT

PROCESSER Hp ‘3304A ‘HP OR USER SUPPLIED FIRMWARE

(FSERIES ONLY) FIRMWARE FOR EXAMPLE, FAST FORTRAN PROCESSOR (FFP).
;\gi?)sonv DYNAMIC MAPPING SYSTEM [DMS}, OR USER

DEFINED pROM's

7116-2A

Figure 1-2. Some Microprogramming Products
1-7

Concept

1-6. SUMMARY

To effectively create a microprogram, the programmer must be equipped with the following:

® An understanding of what to microprogram.

® An understanding of the computer operation and its architecture.

® Knowledge of the methods used to map to and access control memory.

® Knowledge of the microassembly language and microinstruction field effects.

¢ Knowledge of the appropriate microprogramming hardware and software products.

One way to obtain this information is to attend the Hewlett-Packard Computer Microprogramming
course. The above subjects are all expanded upon in the remaining portions of this manual but

remember that the most important step you must take first is to find out what you should
microprogram.

Section 2
CONTROLLABLE FUNCTIONS

CONTROLLABLE FUNCTIONS

Now that the “busy areas” of the program have been identified, you are ready to gain some detailed
knowledge of the computer that is needed before you read information about the microprogramming
language. The following paragraphs describe:

® The hardware functions controlled by microinstructions.

® Aspects of the base set microprogrammed operation that will be important for your
microprogramming.

¢ Enough about Hewlett-Packard products to enable you to take advantage of them (and interface
with them) in your own microprogramming.

To implement your own microprograms you will not need to know the computer design to the “gate”
level. The information in this book should be entirely sufficient for your needs. The base set discus-
sion will help you to become aware of the existing microprogram’s operation. Below is a look at the
overall computer followed by details on the registers and other functions.

2-1. COMPUTER FUNCTIONS THAT CAN BE CONTROLLED
Figure 2-1 illustrates the five major sections in the computer. In order of importance, they are the:

® Control Processor.

® Arithmetic/Logic section.
® Main Memory section.

¢ Input/Output (I/O) section.

e Operator Panel.

Accessories shown in the overall block diagram that are directly associated with microprogramming
are the:

e HP 13197A Writable Control Store (WCS).

e HP 13304A Firmware Accessory Board (FAB).

e HP 13047A User Control Store (UCS).

e HP 12791A Firmware Expansion Module (FEM).

The important points about these and other accessories will be covered after a look at the “basic”
computer.

2-1

Functions

2-2. CONTROL PROCESSOR

The Control Processor includes a special control memory (made of ROM, pROM, or WCS), registers,
logic, and timing signals required to control all of the other sections of the computer. Notice in figure
2-1 that the base set, FAB, WCS, FEM, and UCS are all shown associated with the Control Processor
by addressing and microinstruction (bus) lines. The base set (the standard instruction set mi-
croprogram) is part of the “basic” computer. The 3.5K microword capacity FAB, 8K microword
capacity FEM, 1K microword capacity WCS, and 2K microword capacity UCS are accessories that are
extensions of control memory you can use for your microprogramming. WCS also communicates with
the I/O section to allow microprograms to be written to and read from main memory. Although some
signals for control and loading of WCS are passed through the I/O section, the WCS, FEM, and UCS
are connected by cabling to the rest of control memory in an “OR-tied” fashion so that when executing
there is no difference in addressing and microinstruction output. No matter how control memory is
physically implemented, it all appears as one large microprogram facility to the Control Processor.

2-3. ARITHMETIC/LOGIC SECTION

The Arithmetic/Logic section of the computer includes most of the hardware required to actually carry
out the commands of the microinstructions. It contains all working registers in the Central Processing
Unit (CPU) and provides the logic to perform arithmetic and logical operations on data.

NOTE

The CPU consists of not only the Arithmetic/Logic section but the
Control Processor and I/O section. These functions are all physi-
cally located on the board called the CPU.

2-4. MAIN MEMORY SECTION

All programs and data reside in the Main Memory section consisting of one controller and a set of
semiconductor memory modules with which it is designed to operate. The instructions from main
memory are all decoded by the Control Processor.

2-5. INPUT/OUTPUT SECTION

The Input/Output (I/O) section serves as an interface between the computer and external devices. The
IO hardware responds either to Control Processor stimuli (for computer-initiated data or control
operations) or to device stimuli (for device-signaling attention requests), and hence becomes the active
communication link between the computer and peripheral devices.

2-6. OPERATOR PANEL

This is the basic interface between you and the computer. The panel has two registers, several
indicators, and many control switches (described in your Computer Operating and Reference Manual.
The Operator Panel is controlled by base set microroutines. The Operator Panel is also used to route
data and command signals through the Microprogrammable Processor Port (MPP) for user designed
hardware in E-Series Computers and for the Hardware Floating Point Processor in F-Series
Computers.

2-2

S-BUS

—
4 N N\
INSTRUCTIONS
AND
COUNTS
VAR
DATA
AND OPERATIONS
ADDRESSES AND DISPLAY
zl
\/ \/ /
INPUT/ MICROPROGRAM
OUTPUT CONTROL CONTROL MICROPROGRAM CONTROL >
SECTION < » PROCESSOR ¢ N\
< ~
MICROPROGRAM 4
CONTROL
PERIPHERALS INTERFACE ADDRESSES MICROINSTRUCTIONS
AT T T - READ/WRITE
_7 1)%/ - — FROM/ TO
—_———— e s WRITABLE ——— Y a—
r
r P _ I(_/_ ——— CONTROL (/ | WRITABLE 1, H __V_—’> BASE SET a
Z ————7 conroL prs TN \ STORE ~ | CONTROL | AN
/ / Me——
DATA P / i SR ,l
e ——=— - -
AT T~ < CONTROL A
-7 J AND
—_——— DATA 1T ————
(// - __~ FIRMWARE B
k < -1 1 | ACCESSORY |
— e —— (FIRMWARE I BOARD N | ——— | | —
| expansion | T\ ~1
| |[MODULE OR USER S ———
CONTROL STORE 4 — e e e
I 7
L -
— e — —— —"
(MORE PERIPHERALS) v V£
OPERATOR PANEL
NOTE:
DASHED OUTLINES (— — — _.) INDICATE EQUIPMENT (E-SERIES ONLY)

NOT SUPPLIED WITH THE STANDARD COMPUTER.

7115-3A

USER DESIGNED
EXTERNAL
HARDWARE

MICROPROGRAMMABLE
PROCESSOR PORT

>

<

Functions

S-BUS INSTRUCTIONS AND DATA
f)
~ 78 ~ 7 @ I)
-1 buaLciawner 17 T
INSTRUCTIONS o PORT 10 1 MemoRy |
AND |+ conTroLLer 1! 1 PROTECT |
COUNTS | e e e — —Jl J———-———J
5
91 paTA ke A e kA _/X_/’
AND OPERATIONS
ADDRESSES AND DISPLAY V4
N/ \V
ARITHMETIC/ ADDRESSING
LOGIC
'ONJTUJJT Mlcg(c))mgSEAM CONTROL ¢——\CROPROGRAM CONTROL SECTION -
SECTION < > PROCESSOR \ M-BUS
4— B - = 3/_!
¢ !
MICROPROGRAM ! ' E“)/(IIEXI\?SF:EN | i
CONTROL
AN | | MODULE |
ALS INTERFACE ADDRESSES MICROINSTRUCTIONS I ﬁzmmg I
. - |
o READ/WRITE T
Q;:::;E:::i>('/L-—-—--— FROM/ TO | J________:J
- — - - WRITABLE A —— ——
r b
- kbl - CONTROL | WRITABLE ——| [| easeser — = |-—7
CONTROL v J \ sTore [, | CONTROL J _|
AND 4 - PN > STORE N—
DATA |4/ - 1 | ————— ,] \Z
—— P 9ty vy e e e e ———
CONTROL e —— — P -1
AND - | |
DATA ————n d | MAIN |
—_———— < FIRMWARE | (SEMICONDUCTOR)

7 FIRMWARE I | Acggi%%RY I L < MICROPROGRAM CONTROL > | '\S"Eé"ﬁg; |
| expansion | TN\ ~] | |
| [MODULE OR USER S ———— '
| CONTROL STORE ;— 2 VR A -

SO | - y
L < 7z 7
T F-SERIE Y et d
\ 4 \/ \/ (F-S S ONLY)
OPERATOR PANEL F';?{gz'ENSGSgg'NT
ADDRESSES MICROINSTRUCTIONS
DASHED OUTLINES (— — _) INDICATE EQUIPMENT (E-SERIES ONLY) MICROPROGRAM CONTROL

NOT SUPPLIED WITH THE STANDARD COMPUTER.

USER DESIGNED
EXTERNAL
HARDWARE

<:\ MICROPROGRAMMABLE
- PROCESSOR PORT

Figure 2-1. HP 1000 E - and F - Series Computer Overall
Block Diagram

2-3/2-4

Functions

2-7. MEMORY PROTECT

Memory Protect may interrupt, retain, and report the logical 15-bit address of any instruction that
attempts to enter or alter main memory below a programmable fence, execute certain 1/0 instructions,
or execute certain instructions flagged by the Dynamic Mapping System. This accessory will also
capture the location of any memory location that may have a parity error. Several circumstances that
affect microprogramming in relation to Memory Protect are discussed in part II of this manual.

2-8. DYNAMIC MAPPING SYSTEM

The Memory Expansion Module (MEM) shown in figure 2-1 is part of the HP 13305A Dynamic
Mapping System. If installed, the MEM resides (logically) in front of the memory controller and
expands the amount of addressable main memory beyond 32K words. The system “windows” a large
physical memory down to a logical address space of 32K words. The technique of relating a large
physical memory to a logical 32K memory is called “mapping”. Since the “maps” involved may be
dynamically reloaded, accessibility to the entire physical memory is accomplished. Microprogramming
techniques related to the Dynamic Mapping System are discussed in part II of this manual. Note that
when the MEM is absent, the M-bus lines are connected directly to main memory.

2-9. DUAL CHANNEL PORT CONTROLLER

The DCPC provides two data paths, software assignable, between main memory and a peripheral
device (or devices). High-speed transfers are accomplished in blocks of up to 32K words on an I/O
cycle-stealing basis programmatically transparent to the CPU. DCPC microprogramming considera-
tions are also covered in part II of this manual.

2-10. A CLOSER LOOK AT THE FUNCTIONS

In the following paragraphs the computer will be discussed at the level you’ll be using to microprog-
ram. Table 2-1 provides you with more detail on functions that can be controlled by microinstructions
(and other selected functions) and briefly describes the bus system. You should refer to the detailed
block diagram in appendix H when reviewing the table. Once you understand the computer architec-
ture and the effect of micro-orders, you will need only the detailed block diagram and micro-order
charts to write microprograms.

2-5

Functions

Table 2-1. Computer Functions

FUNCTION

DESCRIPTION

CONTROL PROCESSOR

Instruction Register (IR)

The Instruction Register (IR) is a 16-bit register that usually contains
the Assembly (machine) language instructions for execution. (The lower
8 bits of the IR form the counter.)

Control Memory (CM)

Control Memory (CM) receives a 14-bit address from the Control Mem-
ory Address Register (CMAR) and offers the corresponding 24-bit
microinstruction word to the Microinstruction Register (MIR).

Jump Tables

This ROM is used to map to a CM address from bits contained in the IR.

Microjump Logic (MJL)

The Microjump Logic (MJL) anticipates if and how the Control Memory
Address Register (CMAR) will be loaded for a branch.

Control Memory
Address Register (CMAR)

The Control Memory Address Register (CMAR) is a 14-bit register that
addresses CM. Addressing will progress sequentially (the CMAR is incre-
mented at the beginning of every microcycle) unless a branch or repeat is
to occur.

Save Stack

This is a three-level microsubroutine save register. The 14-bit CMAR
address is “pushed” onto the stack at the beginning of every micro-
subroutine branch (JSB). It is “poppea” (with the contents loaded into the
CMAR) when a microsubroutine return (RTN) is executed.

NOTE

“Pushing” the Save Stack means placing the return address
(the address currently in the CMAR) into the Save Stack. “Pop-
ping” the stack means placing the return address into the
CMAR and removing it from the Save Stack.

Microinstruction
Register (MIR)

The Microinstruction Register (MIR) contains the “current” microinstruction
(received from CM).

Field Decoders

Timing and control lines are merged with the field decoders to direct the
rest of the computer to execute the microinstruction in the MIR.

ARITHMETIC/LOGIC SECTION

Arithmetic/Logic Unit (ALU)

The Arithmetic/Logic Unit (ALU) implements all arithmetic and logical
operations in the CPU under direction of the Control Processor.

L-Register

The L-register provides the second operand for the ALU.

Rotate/Shifter (R/S)

This function performs left and right shifts and rotates.

Overflow and
Extend Registers

These are one-bit registers that participate in ALU and shift/rotate
operations.

Conditional Flags

Testable conditional flags associated with the ALU and R/S functions
include:

ALU Bit 0 Set

ALU Bit 15 Set

ALU Carry Out

ALU Ones

ALU Zero

CPU Flag

2-6

Functions

Table 2-1. Computer Functions (Continued)

FUNCTION

DESCRIPTION

ARITHMETIC/LOGIC SECTION (Continued)

A- and B-Registers

These are the main 16-bit accumulators used for arithmetic, logic,
and /O operations.

RAM Registers

This block of sixteen 16-bit registers is a Random Access Memory
(RAM) used for data manipulation and temporary storage of inter-
mediate results. The RAM includes Scratch Registers (S1 through S11),
a Stack Pointer register (SP), Index registers (X and Y), the Program
Counter (P), and S-register (S).

Loaders

The CPU includes a standard paper tape loader ROM and a standard
disc loader ROM. Also included is space for two optional loader
ROM's. Each loader can contain up to sixty-four 16-bit instructions. The
Remote Program Load (RPL) configuration switches are associated with
the loader ROM's.

M-Register

The 15-bit M-register holds the logical address of any computer main
memory reference. This 15-bit register is loaded from the S-bus and
drives the M-bus. The A-Addressable Flip-Flop (AAF) and B-
Addressable Flip Flop (BAF) functions are also controlled by the M-register.

A-Addressable Flip-Flop
(AAF) and
B-Addressable Flip-Fiop
(BAF) .

These flags determine whether the A-, or B-, or T-register will be
used for storing data or directing data to the S-bus. They exist
because the A- and B-registers can be addressed as main memory
locations O and 1, respectively. AAF or BAF is set or cleared depending
upon the M-bus data.

MAIN MEMORY SECTION

Memory Address Register

This register receives the “physical” main memory address from the M-bus
for a read or write operation. An address must be present here before the
read or write begins. Data is transferred from/to this address on the
selected memory module board from/to the T-register.

T-Register

The T-register is the 16-bit data link between the Main Memory section
and the CPU or DCPC. Data comes from or goes to the address specified
in the Memory Address Register.

INPUT/QUTPUT (I/0) SECTION

110 Control and Select Logic

I/0O timing and signal generation take place from this function. The inter-
face control signals are generated as a result of the Control Processor
executing /O instructions.

Interrupt Control

Interrupts from devices requesting input or output transfers with the CPU
are sequenced for processing by priority logic in this function.

Central Interrupt Register
(CIR)

This 6-bit register is loaded with the select code (address) of the inter-
rupting device after an interrupt request is recognized. The CIR passes
this address to the S-bus under microprogram control.

2-7

Functions

Table 2-1. Computer Functions (Continued)

FUNCTION DESCRIPTION

OPERATOR PANEL

Display Register (DSPL) The Display Register is the 16-bit Operator Panel register associated with
the panel switches.

Display Indicator (DSPI) This Operator Panel register indicates which register is being displayed by
the DSPL register.

BUS SYSTEM

S-bus This is the main 16-bit data transfer bus in the computer. (See the block
diagram and note the functions that have two-way and one-way transfer
capability.)

T-bus This is the 16-bit resultant data bus in the Arithmetic/Logic section.

M-bus This is a 15-bit memory address bus used by both the CPU and the DCPC.

I/O bus This is a 16-bit bus for data transfers, or for control and status exchanges

to and from external devices.

Select Code (SC) bus This 6-bit bus carries the select code of a device being referenced by the
I/0O section or DCPC.

Interrupt Address (I/A) bus This 6-bit bus carries the address (select code) of any /O device
requesting CPU service.

Figure 2-2 is a simplified block diagram of the Control Processor. In a “conventional” computer control
section, specific hardware is dedicated to each function performed by the instruction set. The major
advantage of the “conventional” control section is speed for the instruction set. The major disadvan-
tage is the loss of flexibility for special applications or for enhancements. In the microprogrammed
computer, all distinct logical functions are separated from the sequence in which those functions are
performed. That is, the logical functions are defined by microinstructions (composed of micro-orders)
held in control memory. Because functions can be individually defined by microinstructions, the
microprogrammed computer is much more flexible than the “conventional” type computer. At one time
this caused the microprogrammed computer to be slower in executing some portions of the instruction
set. However, the Computer Control Processor executes microinstructions at a rate that is fast enough
to keep main memory busy practically all the time so, the speed penalty for using the mi-
croprogrammed architecture is essentially not a factor, especially in the base set. Also, since the
Control Processor in the E-Series and F-Series Computers is completely microprogrammable, user
programs can be made to execute much faster with the application of user microprogramming. These
combined factors provide this computer with the final advantage over any conventional control section
(hardwired component) type of computer.

2-8

Functions

EXTRA CONTROL
MEMORY- 1K WCS
3.5K FAB, 2K UCS
BOARDS AND
FIRMWARE
EXPANSION
MODULE

1/O INTERRUPT

INSTRUCTION
REGISTER

JUMP
TABLES AND
MICROBRANCH

 —

LOGIC

TOP OF STACK
RTN (RETURN)

ADDRESS

TOP OF STACK
RTN (RETURN)

BRANCH
ADDRESS
MODIFICATION

CONTROL
MEMORY
ADDRESS
REGISTER

J | 14-BIT ADDRESS

ADDRESS

SAVE
JSB

3 LEVEL
SAVE
STACK

N

—4

[1
- -
. —
- 1
™~ CONTROL]

| - MEMORY _4~
— (BASE SET) —[~
— 1
[1

MICROINSTRUCTIONS

N

AN

\

ANNNANNN

24-BIT
MICROINSTRUCTIONS

MICROINSTRUCTION
REGISTER

“_\—_’>

[FIVE FIELD |
DECODERS

CONTROL FOR

S-BUS

ALU

SPECIAL
FUNCTIONS

COMBINED
OPERATIONS

STORAGE

7115-4

Figure 2-2. Simplified Control Processor Block Diagram

2-9

Functions

2-11. SOME DEFINITIONS AND TIMING POINTS

Now to clarify some definitions about control and timing, and then discuss a little more about the
computer’s interrelated functions and operation.

The Control Processor executes “microcoded” “microinstructions” during “microcycles”.

One microcycle (also called a “T” period) is the time interval required to completely execute a
microinstruction.

A microinstruction is a 24-bit coded word (code definition is called the microcode) that defines
specific hardware operations to be performed by the computer.

Each microinstruction is composed of at least one, and up to five micro-orders. Each micro-order
defines a specific operation to be performed in the computer. Some micro-orders accomplish

multiple operations by themselves.

Microinstructions physically reside in control memory and are the basic building blocks of
microprograms.

Segments of microprograms may be called microroutines.

A portion of microcode called from a microroutine will be referred to as a microsubroutine.

Part II of this manual provides specific information on timing that you will need for
microprogramming.

2-12. HOW DO ALL THESE FUNCTIONS INTERRELATE?

All the functions described in the preceding paragraphs are interrelated in an operational sense
through the microprogrammed operation of the computer. Here are a few points to remember:

The computer is always under microprogram control and executing microinstructions at all times
when power is applied, (except when temporarily suspended by DCPC or main memory
contentions).

A microroutine in the base set reads (“fetches”) Assembly language instructions stored in main
memory. The instructions are loaded into the IR and data is directed to the appropriate destina-
tions by the microprogram invoked.

Each Assembly language instruction from main memory is interpreted as a “pointer” (address) to a
microroutine, resident in control memory, that implements the instruction by executing a
sequence of microinstructions.

A few other points should be considered before examining what control memory can accomplish:

The Control Processor decodes each microinstruction into fields, then executes the indicated
micro-orders in the proper sequence.

Each micro-order performs a distinct operation and the micro-orders are not necessarily related to
each other in each microinstruction.

2-10

Functions

Keep the above points in mind as you read through the following steps of how “generally” the Control
Processor might operate in a microroutine:

¢ The “standard” microinstruction (in the MIR) typically calls for the contents of a register to be
enabled onto the S-bus. Then certain ALU and/or rotate/shift operations take place during the
microcycle and, at the end of the microcycle, a specified destination register is “clocked” to receive
the prevailing data from its input lines.

¢ While a microinstruction presently in the MIR is being executed, the CMAR is incremented to
present the next sequential address to CM or the MJL determines another address to load the
CMAR.

e Ifa microbranch to a microsubroutine is executed, the incremented address is loaded into the Save
Stack and the branch address is loaded into the CMAR.

® Several branch-on tests exist (e.g., conditions of carry, the sign, a zero result, presence of a
particular bit or Operator Panel setting, etc.) that provide branches to microroutines designed to
react to the condition.

e When a microprogram completes, it usually returns to control memory location 0 (addresses in
octal are five digits, i.e., 00000) to complete fetching (obtaining) the next Assembly language
instruction to be executed from main memory.

You should not be concerned if the details of Control Processor and microprogram operation are not
clear at present. You will gain more knowledge and understanding of the computer operation as you
learn the microprogramming language by progressing through the manual and writing micropro-
grams. Some further points:

e [f the microprogram execution time exceeds the interval between pending interrupts allowed by
your particular system application, the interrupts can be lost. Your microprogram must be written
to test for pending interrupts.

e When a pending interrupt is detected, the microprogram must yield control to the Halt-Or-
Interrupt (HORI) microroutine (CM location 6 in the base set).

Microprogrammed interrupt handling techniques will be fully described in section 7. Now, what about
control memory content?

2-13. CONTROL MEMORY

Roughly, you can look at control memory as being devoted to serving three areas:

® The standard base set.
® HP microprogrammed accessories.

® The user’s microprogramming area.

All 16,384 addressable (24-bit) words of control memory are logically partitioned into sixty-four
256-word modules numbered 0 through 63. Figures 2-3 and 2-4 show the control memory map
(represented in basic 1K separations) and identifies the “modules” mentioned above. Notice that
modules 0 through 3 are dedicated to the standard base set shipped with every computer. The other 60
modules are available for additional microprograms written by you or supplied by Hewlett-Packard.

2-11

Functions

ADDRESS
SOFTWARE |-
CONTROL MEMORY | MODULE ENTRY
MODULE ALLOCATION| NO. DECIMAL OCTAL POINT
0 0-00255/ | 00000-00377 YES
1 00256-00511 | 00400-00777 YES [«
HP BASE SET 2 00512-00767 | 01000-01377 YES
3 00768-01023 | 01400-01777 YES
4 01024-01279 | 02000-02377 NO
5 01280-01535 | 02400-02777 NO L oK
6 01536-01761 | 03000-03377 NO
7 01762-02047 | 03400-03777 NO
8 02048-02303 | 04000-04377 NO
9 02304-02559 | 04400-04777 NO L 3k
10 02560-02815 | 05000-05377 NO
11 02816-03071 | 05400-05777 NO
12 03072-03327 | 06000-06377 NO
13 03328-03583 | 06400-06777 NO L 4k
14 03584-03849 | 07000-07377 NO
15 03850-04095 | 07400-07777 NO
AVAILABLE 16 04096-04351 | 10000-10377 NO
FOR USER 17 04352-04607 | 10400-10777 NO L ek
MICROPROGRAMMING 18 04608-04863 | 11000-11377 NO
19 04864-05119 | 11400-11777 NO
20 05120-05375 | 12000-12377 NO
21 05376-05631 | 12400-12777 NO .
22 05632-05887 | 13000-13377 NO
23 05888-06143 | 13400-13777 NO
24 06144-06399 | 14000-14377 NO
25 06400-06655 | 14400-14777 NO Lk
26 06656-06911 | 15000-15377 NO
27 06912-07167 | 15400-15777 NO
28 07168-07423 | 16000-16377 NO
29 07424-07679 | 16400-16777 NO L gk
HP DYNAMIC 30 07680-07935 | 17000-17377 NO
MAPPING SYSTEM 31 07936-08191 17400-17777 NO
32 08192-08447 | 20000-20377 YES
33 08448-08703 | 20400-20777 NO L gk
HP FAST FORTRAN 34 08704-08959 | 21000-21377 YES
PROCESSOR 35 08960-09215 | 21400-21777 YES
EXTENDED MEMORY 36 09216-09571 | 22000-22377 YES
AREA 37 09572-09727 | 22400-22777 YES L 10K
DS/1000 { 38 09728-09983 | 23000-23377 YES
39 09984-10239 | 23400-23777 YES
40 10240-10495 | 24000-24377 YES
41 10496-10751 | 24400-24777 NO L 11k
42 10752-10917 | 25000-25377 NO
HP RESERVED 43 10918-11263 | 25400-25777 NO
a4 11264-11519 | 26000-26377 YES
a5 11520-11775 | 26400-26777 YES e
46 11776-12031 | 27000-27377 YES
47 12032-12287 | 27400-27777 YES
48 12288-12543 | 30000-30377 YES
49 12544-12799 | 30400-30777 YES L 13K
50 12800-13055 | 31000-31377 YES
51 13056-13311 | 31400-31777 NO
52 13312-13557 | 32000-32377 NO
RECOMMENDED 53 13558-13823 | 32400-32777 NO L 14k
FOR USER 54 13824-14079 | 33000-33377 NO
MICROPROGRAMMING 55 14080-14335 | 33400-33777 NO
56 14336-14591 | 34000-34377 YES
57 14592-14847 | 34400-34777 YES | 15K
58 14848-15103 | 35000-35377 YES
59 15104-15359 | 35400-35777 YES
60 15360-15615 | 36000-36377 YES
61 15616-15871 | 36400-36777 NO L 16K
62 15872-16127 | 37000-37377 YES
63 16128-16383 | 37400-37777 NO

71155A

2-12

Figure 2-3. E-Series Control Memory Map

Functions

ADDRESS
SOFTWARE |
CONTROL MEMORY | MODULE ENTRY
MODULE ALLOCATION| NO. DECIMAL OCTAL POINT
0 0-00255| | 00000-00377 YES
1 00256-00511 | 00400-00777 YES
HP BASE SET 2 00512-00767 | 01000-01377 YES 1K
3 00768-01023 | 01400-01777 YES
4 01024-01279 | 02000-02377 YES
5 01280-01535 | 02400-02777 NO | ok
6 01536-01761 | 03000-03377 NO
1762- - 7
HP RESERVED 7 01762-02047 | 03400-0377 NO
8 02048-02303 | 04000-04377 YES
9 02304-02559 | 04400-04777 NO L 3K
10 02560-02815 | 05000-05377 NO
11 02816-03071 | 05400-05777 NO
12 03072-03327 | 06000-06377 YES
VECTOR 13 03328-03583 | 06400-06777 NO L ak
INSTRUCTION SET 14 03584-03849 | 07000-07377 NO
15 03850-04095 | 07400-07777 NO
(f 16 04096-04351 | 10000-10377 YES
17 04352-04607 | 10400-10777 NO | ok
18 04608-04863 { 11000-11377 YES
19 04864-05119 | 11400-11777 NO
20 05120-05375 | 12000-12377 YES
21 05376-05631 | 12400-12777 NO |
HP RESERVED 22 05632-05887 | 13000-13377 NO 6K
23 05888-06143 | 13400-13777 NO
24 06144-06399 | 14000-14377 NO
25 06400-06655 | 14400-14777 NO Lk
26 06656-06911 | 15000-15377 NO
27 06912-07167 | 15400-15777 NOC
AVAILABLE 28 07168-07423 | 16000-16377 NO
FOR USER 29 07424-07679 | 16400-16777 NO L gk
MICROPROGRAMMING || 30 | 07008 08107 | 1740017977 NG
HP DYNAMIC o 32 08192>08447 2oooo_2os77 YES
MAPPING SYSTEM 33 08448-08703 | 20400-20777 NO L ok
HP FAST FORTRAN 34 08704-08959 | 21000-21377 YES
PROCESSOR 35 08960-09215 | 21400-21777 YES
EXTENDED MEMORY { 36 09216-09571 | 22000-22377 YES
AREA 37 09572-09727 | 22400-22777 NO L oK
DS/10 { 38 09728-09983 | 23000-23377 YES
00 39 09984-10239 | 23400-23777 NO
40 10240-10495 | 24000-24377 YES
SCIENTIFIC 41 10496-10751 | 24400-24777 NO L 11k
INSTRUCTION SET 42 10752-10917 | 25000-25377 NO
43 10918-11263 | 25400-25777 NO
HP RESERVED { 24 11264-11519 | 26000-26377 NO
45 11520-11775 | 26400-26777 NO L 1ok
46 11776-12031 | 27000-27377 YES
a7 12032-12287 | 27400-27777 YES
48 12288-12543 | 30000-30377 YES
49 12544-12799 | 30400-30777 YES L 13K
50 12800-13055 | 31000-31377 YES
51 13056-13311 | 31400-31777 NO
52 13312-13557 | 32000-32377 NO
REgg EA%EEQED 53 13558-13823 | 32400-32777 NO L 4k
54 13824-14079 | 33000-33377 NO
MICROPROGRAMMING 55 14080-14335 | 33400-33777 NO
56 1433614591 | 34000-34377 YES
57 14592-14847 | 34400-34777 YES L 15K
58 14848-15103 | 35000-35377 YES
59 15104-15359 | 35400-35777 YES
60 15360-15615 | 36000-36377 YES
61 15616-15871 | 36400-36777 NO - 16K
62 15872-16127 | 37000-37377 YES
63 16128-16383 | 37400-37777 NO

7115-5B

Figure 2-4. F-Series Control Memory Map

2-13

Functions

Several modules have already been allocated to established Hewlett-Packard firmware packages
which are shown in figure 2-3 for E-Series Computers and figure 2-4 for F-Series Computers. In
addition, some modules have been reserved by Hewlett-Packard for potential future enhancements.

The rest of control memory is for user microprogramming and modules 46 through 63 are recom-
mended. Section 6 of this manual describes how you can enter CM (through the software entry points
shown in the map) by using Assembly language User Instruction Group (UIG) instructions.

NOTE

With the exception of modules 0 through 3 (base set instructions),
there is no restriction on which modules you may use (see figure
2-3) to implement your microprograms. However, Hewlett-
Packard may also use other modules (in addition to those already
reserved) for future firmware accessories.

2-14. LET’S TALK ABOUT THE BASE SET

The complete base set listing, including the Jump Tables, is shown in appendix G for E-Series
Computers. For F-Series Computers modules 0, 1, and 2 are the same except for the jump tables and
these differences are provided in appendix G. Module 3 in F-Series Computers is used by the Hardware
Floating Point Processor. There isn’t a great amount of detail about the base set here because:

® You're probably not yet familiar with all the micro-orders and word types.

® The overall microprogram sequence of operation actually depends upon the sequence of Assembly
language instructions fetched from main memory.

¢ It’s assumed that you're primarily interested in doing your own microprogramming.

You will, however, be referring occasionally to the base set for examples of microprogramming
techniques that you may want to use in your own microprograms. (You’'ll also find plenty of applica-
tions type examples in parts II through IV.) Also, you will want to have a basic understanding of how
certain microroutines of the base set can act as utility microroutines for your microprograms.

The base set microprogram provides the capability to execute all the basic Assembly language
instructions described in your Computer Operating and Reference Manual. In modules 0 and 1 of the
base set are:

® Microroutines to execute instructions in the

— Memory Reference Group.

— Alter-Skip Group.

— Shift-Rotate Group.

— Input/Output Group.

— Extended Arithmetic Group.
2-14

Functions

® Microroutines that

— Control the Operator Panel.

— Load the Initial Binary Loader (from the selected Loader ROM).
~ Execute the built-in firmware diagnostics.

— Handle interrupts.

— Fetch indirect operands.
Also in the base set, modules 2 and 3 contain:
® Microroutines for all the instructions in the Extended Instruction Group (EIG).
e Microroutines to execute all the Floating Point instructions.
The Jump Tables (shown in the block diagram, appendix H) map the data in the IR to the appropriate
location in CM to initiate instruction execution.
Some “typical” operations performed by the base set microprogram include:
® A power-up sequence.
® A “short form” diagnostic check of the CPU and main memory.
® An initial binary loading sequence.

® Operator Panel sequences such as scanning the pushbuttons by making conditional tests and
updating the DSPI and DSPL registers.

® Performing a read (fetch) operation to execute an instruction (e.g., Memory Reference Group,
Floating Point, etc.), then fetching the data to perform an ALU operation, and finally storing in a
register.

® Performing a write operation (e.g., an ISZ instruction).

® Performing I/O operations (e.g., CPU-initiated transfers, or device-initiated transfers of data with
Halt-Or-Interrupt microroutine transitions).

¢ Reading UIG instructions from main memory that map to the “user” microprogramming area in
control memory.

The timing relationships involved in operations such as the above mentioned will be discussed in
sections 5 and 7. Now, a brief look at how two of these operations are carried out by the base set.

2-15. AN OPERATIONAL OVERVIEW

The base set microprogram (with computer timing) accomplishes the tasks that, in the past, were
performed by “hardwired” portions of the computer control section. The following discussion provides
an overview of how the Computer Control Processor performs several operations in parallel in the base
set. The microroutines for the Assembly language XOR and ADA instructions are used as examples in

2-15

Functions

this discussion to illustrate several techniques that you should be aware of to effectively execute your
own microprograms. You may find it helpful to look again at the detailed block diagram in
appendix H.

2-16. FETCHING. “Fetching” (as briefly defined in paragraph 2-12) means obtaining the “next”
instruction to be executed from main memory. In this computer, a “look-ahead” technique is used for
this process. That is, fetching is begun while simultaneously completing the execution of the “current”
instruction; fetching is completed while preparing for execution of this “next” instruction. Usually this
is accomplished by starting a read operation (of the main memory address contained in the M-register)
just prior to termination of the “currently” executing instruction microroutine.

For illustrative purposes, suppose that the “currently” executing microroutine is for an XOR instruc-
tion (that had been obtained from main memory location 2000). The M-register has already been
incremented so that as the microroutine for XOR is completing its execution, the read that is initiated
is for main memory location 2001. (Assume that with the completion of the XOR execution, an augend
is left in the A-register and that at main memory location 2001 there is an Assembly language ADA
instruction.)

Upon termination of this “current” Assembly language instruction’s microroutine, control passes to a
Fetch microroutine at the beginning of the base set which completes the read operation by storing the
instruction read from main memory into the IR. In this manner of “look-ahead” reading, the overhead
required for instruction fetching is minimized. Your user microprograms must be designed to termi-
nate in a similar manner and you will see specifically how to do this from information you will read in
section 7.

To continue, in the Fetch microroutine, in addition to completing the read operation by storing the
main memory instruction in the IR, an operand address is always formed in the M-register and
another read operation is started immediately. This is in anticipation that the instruction stored in the
IR is of the Memory Reference Group. If later it is determined that the instruction is of a different type,
the information arriving in the T-register will not be used.

In the example being used, an ADA instruction from main memory location 2001 has been stored in
the IR and an operand address (assume the address is 300) has been formed in the M-register. So the
read operation initiated at the beginning of the Fetch microroutine is obtaining the operand (the
addend) for the ADA instruction from main memory location 300 but the information has not yet
arrived in the T-register.

Next (still in the base set Fetch microroutine), the P- and M-registers are adjusted. During normal
execution P and M are always two and one (respectively) ahead of the current instruction’s address
(the instruction that is executing). After the read operation is initiated (to obtain the operand), the
P-register content is stored in M and P is then incremented.

In the example being used, recall that before the operand address (300) was formed in the M-register it
contained address 2001 (the address of the ADA instruction) and the P-register (if the rules stated
above are followed) contained 2002. Now the content of P is put on the S-bus, stored in M and
incremented through the ALU and stored back in the P-register. Thus, M is now adjusted to 2002 and
P is adjusted to 2003 in preparation for the read operation that will be initiated as the microroutine for
the ADA instruction (from main memory location 2001) is being executed.

2-16

Functions

You can see from the above example that you are now prepared to read the next sequential instruction
from main memory with the P-register one ahead of M and two ahead of the instruction being executed
(preparation to execute the example ADA instruction is being made as will be explained in the next
paragraph). When you study the micro-orders and word types in part II you will see that,
for proper operation, the situation for P and M (just described) will also have to exist for your own
microprograms.

Finally in the Fetch microroutine, the Instruction Register (IR) bits are examined to determine the
instruction type. That is, the upper eight bits of the IR are examined to determine where in control
memory to branch to execute the “current” instruction. This branch can be in the base set (as it is in
the example being used), or within the User’s area, or within the Hewlett-Packard microprogrammed
accessories area. Decoding via the Jump Tables (CM mapping) forces Control Processor operation to
the appropriate CM address to implement the instruction contained in the IR.

In the ADA instruction example being used, the special purpose base set micro-orders used cause the
upper eight bits of the IR to be applied as an address to the Jump Tables (ROM’s) which store the ADA
instruction’s microroutine address into the MJL. The MJL stores this address into the CMAR which
reads the first microinstruction for the ADA microroutine into the MIR. Simultaneously, the special
purpose base set micro-orders enable the interrupt logic and initialize the Save Stack. This is all done
to facilitate branches to microsubroutines which can be made to three levels. This completes the fetch
process. When the appropriate CM address has been reached, “execute” begins.

2-17. EXECUTION. Execution of the Assembly language instruction is carried out by the
specific micro-orders contained in the individual microinstructions of the appropriate microroutines as
they are decoded from the MIR.

Again, using the ADA instruction as an example, the first of the two microinstructions for ADA
immediately begins a read operation from the main memory address (2002) in the M-register (in the
“look-ahead” manner previously described) to obtain the next Assembly language instruction. But,
how do you get the addend from main memory to add to the A-register? Recall that the Fetch
microroutine has already begun a read operation. This read operation gets the ADA operand (addend)
from main memory (via the T-register), places it-on the S-bus, routes it “as is” through the ALU, and
stores it in the L-register. So, for Memory Reference Group instructions, the read operation started in
the Fetch microroutine will be used to obtain operands by storing the T-register data in the desired
register.

The last action in the execution of the example ADA instruction occurs as the CMAR increments to the
next CM location (in a branching type microinstruction, other actions can occur) and CM loads the
MIR with the next microinstruction. Through action of the field decoders, the A-register content is
gated onto the S-bus and routed through the ALU with an “add” function enabled. This causes the
S-bus content (the augend from the A-register) to be added to the content of the L-register (the
addend). The microinstruction simultaneously enables a test for an overflow or carry-out condition
then stores the resultant data back in the A-register. In addition, this second microinstruction forces a
return of Control Processor operation to control memory location 0 to complete another main memory
fetch and prepare for another execution operation. (Remember that the read operation had been
started in a similar manner for the ADA instruction. You can see that a considerable amount of work
can be done with a single microinstruction.

To summarize, the main points that you should remember from the above discussion are that:

® A read operation begins in a “look-ahead” manner while the execution of the previous instruction
is carried out. Once a branch to your microprogram is made (by decoding a UIG type instruction), it
is possible for you to stay in the user microprogramming area until it is desired to return to the
fetch microroutine. Before returning, however, you should terminate your microprogram properly.

2-17

Functions

® Some other considerations also exist for write operations and these will be discussed in section 7.

¢ In regard to staying in your microprogram as long as desired (as mentioned previously in this
section), there is a danger of lost interrupts if you stay too long. These considerations should be
taken into account when you design your microprogram.

® The base set fetch microroutine acts as a utility microroutine for the main memory instruction
fetch and execute preparation. It also takes care of the P- and M-register adjustments. You should
make use of this microroutine in designing your microprograms. Also, in regard to interrupts, the
base set Halt-Or-Interrupt microroutine can be used as another microprogramming aid to handle
interrupts in your microprograms.

Interrupt examples were not included in the operational overview just presented; interrupts are
covered in part II of this manual.

2-18. MICROPROGRAMMED ACCESSORIES

In paragraph 2-13 you found that a few modules have already been reserved for Hewlett-Packard
microprogrammed accessories. Remember that all accessories for the computer do not require addi-
tional microprograms but if they do, the microprograms will generally be supplied as pROM’s to be
mounted on the FAB or on another CM extension (e.g., FEM). Some accessories requiring mi-
croprograms may be supplied in a form that will require writing the microprogram to WCS before the
instructions involved can be executed. DCPC and Memory Protect do not require additional mi-
croprograms. The mapping facility for all Hewlett-Packard microprogrammed accessories is in the
base set. For further information on accessories, see the appropriate manuals. Other microprogramm-
ing features such as, the Microprogrammable Processor Port (MPP), Hardware Floating Point Pro-
cessor (FPP), and the block I/O transfer feature of the Computer are described in section 13.

2-19. SUMMARY

Sections 1 and 2 of part I have provided you with the following:

¢ Reasons for microprogramming.

® An awareness of what to microprogram.

® An overall look at the microprogramming procedure.

e A complete look at the computer hardware controlled by microprograms.

¢ Introductory information on some Hewlett-Packard accessories directly and indirectly associated
with microprogramming.

® An overview of control memory identifying the user’s area.
® A brief look at some base set operations.

In part II you will learn the microprogramming language and methods for microprogramming up
through preparation with the microassembler.

2-18

PART II
Microprogramming Methods

Section 3
MICROPROGRAMMING PREPARATION STEPS I

MICROPROGRAMMING
PREPARATION STEPS | 3

Assuming that you have analyzed your programming environment (as suggested in section 1) and
have decided to microprogram a portion of your program(s), there are certain steps necessary to
prepare your RTE operating system to accept the microprogramming environment. These are not
precisely the same steps to preparation as shown in figure 1-1 (Microprogramming Implementation
Process), but deal with the “background” situation. That is, as you can surmise from a review of part I,
a certain hardware/software situation must be made to exist in the RTE system which includes:

e Installation of some additional control memory “hardware” for storage of the additional micro-
programs (above those used in the base set). Normally this extra control memory must also be in
addition to that which you may have for microprogrammed accessories (such as DMS).

® Installation of microprogramming support software for microprogram development. It must be
realized that, as outlined in part I, it is not necessary to have “extra” software for microprogram-
ming once your microprogram has been “installed” in control memory (CM). The “extra” software
is necessary for development and, when WCS is used for the added CM, a driver and utility routine
are needed for dynamic loading of CM before microprogram execution.

This section outlines the RTE environment and the necessary hardware and microprogramming
support software installation steps.

3-1. ENVIRONMENT

The RTE Microprogramming Support Software package (described in paragraph 3-3) operates in the
RTE II or IV system environment.

Microprogramming hardware that is to be added (outlined in paragraph 3-2) must conceptually be
installed before system generation. Some microprogramming support software must be installed
during system generation and some may be installed just before use. (Section 8 and part III in this
manual provide instructions as to when certain programs may be installed other than at system
generation time.) Paragraph 3-3 describes system requirements for individual microprogramming
support software items.

3-2. MICROPROGRAMMING HARDWARE

The HP 13197A Writable Control Store Kit is the acceptable hardware for microprogram development
and it can, of course, be used for “normal operation” of your microprograms. It must be installed before
system configuration. Two additional WCS (or UCS) boards may be installed. (The total number of
control memory boards that can be installed is dependent upon the computer used.) Control memory
boards in the I/O section should be installed starting at SC 10. The operational states, hardware

3-1

Steps

supplied, and installation guidelines for WCS boards are contained in the HP 13197A Writable Control
Store Reference Manual, part no. 13197-90005. Additional information on the installation of the driver
for WCS follows in paragraph 3-3.

If you are going to install pROM’s, the microprograms must be developed, tapes prepared, and the
pROM’s fused before they can be installed. This means you will have to install WCS (as mentioned
above) first, and the required microprogramming software (mentioned in paragraph 3-3) before the
PROM’s are ready for installation. Then, depending upon whether you select UCS, FEM, or the FAB,
your RTE system will have to be disassembled to a certain extent to install the pROM’s.

If you select the HP 13304 A Firmware Accessory Board for pROM installation, you will not have to use
an I/O slot and reconfigure the RTE system, but you will have to remove the FAB board, install the
pROM’s, configure jumpers, and reinstall the FAB in the computer under the CPU.

NOTE

With an RTE IV system, the HP 13305A Dynamic Mapping
System (DMS) will probably be installed, and control memory
module 32 (dynamic mapping instructions) is installed on the
FAB. You will therefore already have the FAB and its cable. You
may or may not have the FAB with an RTE II system.

NOTE

With an F-Series Computer with RTE IV and DS/1000 the space
on the FAB will probably be completely used up by the following
HP-supplied microcode:

Dynamic Mapping System

Fast Fortran Processor

Extended Memory area

DS/1000

Scientific Instruction Set

The FAB will then not be available for user microprogramming.
The 12791A Firmware Expansion Module can be used for user
microprogramming and for the Vector Instruction Set option.

To install pROM’s and configure CM address jumpers on the FAB, FEM or UCS board, refer to the
following documents.

® Your Computer Series Installation and Service Manual.

® HP 12791A Firmware Installation and Reference Manual, part no. 12791-90001.

If you select the HP 13047A User Control Store Kit for your microprogram installation, the pPROM’s
must be prepared then installed on the board following the instructions in the HP 13047A User
Control Store Kit Installation and Service Manual, part no. 13047-90001. You must then devote an I/O

slot (SC 10) in the backplane to UCS and reconfigure the RTE operating system as necessary following
instructions in the RTE System Operating Manual. (Refer to paragraph 3-1).

3-2

Steps

3-3. MICROPROGRAMMING SUPPORT SOFTWARE

In order to develop and run microprograms in a dynamic manner in the RTE operating system
environment you will need some, and possibly all, of the HP 92061 RTE Microprogramming Support
Software Package. The total package is outlined below.

¢ RTE Microassembler Program

® RTE Microassembler Cross-Reference Generator Program
¢ RTE Microdebug Editor Program

e RTE Microdebug Editor Subroutine

e RTE Driver DVR36

e WCS I/O Utility Routine WLOAD

® pROM Tape Generator program.

These programs, the driver, and utility routines are described below the applicable part numbers,
installation guides, and appropriate references. Note that to receive the microprogramming support
software on a magnetic tape cartridge you should specify option 020 for the HP 92061 package.

3-4. THE RTE MICROASSEMBLER

This program converts a source microprogram into binary object code which may be directed to an
output device and/or recorded on a disc file. The source may be input from an input device or a disc file.
The object code may be produced in either a standard format recognized by the Microdebug Editor
program and the WLOAD routine or a special format for the HP ROM Simulator. The microassembler
can also generate a symbol table and listing of source records with the respective octal code. The RTE
system name for the program is MICRO. The program object part number of MICRO is 92061-16001.
In the RTE system, the microassembler can run with or without the File Manager (FMGR) and
requires a minimum of 12K words of background. Actually, to use the microassembler purely for
microassembling, no additional microprogramming hardware (i.e., WCS) is needed. All information on
preparation with the microassembler and on microassembler output is contained in sections 8 and 9 of
this manual.

3-5. MICROASSEMBLER CROSS-REFERENCE GENERATOR

The cross-reference generator is used (usually with the microassembler) to generate a cross-reference
table of symbols-to-CM addresses. The program can be run using a microassembler parameter list
option or separately using its RTE system name MXREF. The program object part number is
92061-16002. More detail on the RTE Microassembler Cross-Reference Generator is contained in
section 9 of this manual.

3-6. RTE MICRODEBUG EDITOR

This program allows you to debug and execute microprogram object code. The object code may be input
from a paper tape reader or a disc file, or it may be resident in WCS. The Microdebug Editor (MDE)
allows you to delete or replace microinstructions, set breakpoints, change registers, and so on.
Information on the use of the Microdebug Editor is contained in section 10 of this manual. In the RTE
system, the MDE requires 12K words of background. When the MDE is user scheduled it is

3-3

Steps

identified by the program name MDEP. When it is called as a utility in the RTE system environment it
is identified by the progrtam name MDES. The program object (part number) of the MDE is supplied in
two parts: Microdebug Editor Program MDEP, part no. 92061-16004, and subroutine MDES, part no.
92061-16005. The HP 13197A WCS board is used with the MDE, which uses driver DVR36 and WCS
I/0 Utility subroutine WLOAD for operation.

3-7. DRIVER DVR36

Driver DVR36 must be configured into the RTE system during system generation to provide software
linking between the MDE, WLOAD, or Assembly (or FORTRAN) language programs and WCS.

NOTE

The other microprogramming support software can be included
either during system generation or loaded into the system when
required.

DVR36 drives the HP 13197A WCS board(s) for reads and writes (from and to main memory) and
allows control of WCS board functions. The driver implements some resource protection mechanisms
which include ensuring that no two WCS boards are enabled with the same CM address spaces. The
driver utilizes DCPC, if so configured, and transfers data at the fastest rate permitted by the DCPC.
Non-DCPC transfers will take longer; the driver periodically suspends itself to ensure that interrupts
are not held off for too long.

The object part number of the driver is 13197-16001. When configured in the RTE system, the select
code (SC) number of the first WCS should be SC 10 because of hardware constraints. (More details on
DVR36 appear in section 11 of this manual and the driver manual is referenced in table 3-3.) In the
system, the driver can be called directly with an EXEC call, or through the WLOAD routine.
Introductory information on WLOAD follows.

3-8. WLOAD

The WCS I/0O Utility Routine WLOAD (object part no. 13197-16003) uses DVR36 and transfers
microprogram object code into WCS when called by the MDE or by the Assembly (or FORTRAN)
language program. Section 11 in this manual and table 3-3 contain more information on WLOAD.

3-9. LOADING THE MICROPROGRAMMING SUPPORT SOFTWARE

The microprogramming support software can be loaded during System Generation or on line, using the
RTE LOADR. The exception to this is the driver, DVR36, which must be loaded at System Generation
time. (Refer to RTE Driver DVR36 Programming and Operating Manual, part no. 13197-90001.) The
two subroutines WLOAD and MDES can be included at System Generation so that they will be
available when calling programs are loaded on line.

With RTE disc based systems it is possible to load programs into different partitions depending on the
program type. Table 3-1 lists the program partitioning capability.

34

Table 3-1. Program Partitioning Capability

Steps

RTE TYPE ORIV] v
PROGRAM NAME PGM TYPE 1 2 3 4 4
MICRO NO YES YES NO NO
MXREF NO YES YES NO NO
MDEP NO YES YES NO YES
PTGEN NO YES YES NO NO
MDES (see note) NO YES YES NO YES
WLOAD (see note) NO YES YES NO YES

NOTE: MDES and WLOAD are subroutines. This table refers to the type of calling program.

3-10. pROM TAPE GENERATOR

The pROM Tape Generator program (object part no. 92061-16003) may be used to generate mask tapes
for fusing (“burning”) pROM’s from the object code produced by the microassembler. For additional

information on the pROM Tape Generator, refer to section 12 in this manual.

3-11. PREPARATORY STEPS

Condensed information on your preparatory steps for microprogramming appear in table 3-2 with
references to the sections of this manual (or to applicable documents) for details. The letters in the
reference column are keyed to entries in table 3-3. Numerals refer to sections in this manual. WCS
boards to be used for microprogramming must be initialized before use. Section 14 provides examples

of the procedure that you may use.

Steps

Table 3-2. Preparatory Steps

REFERENCE
STEP TASKS (Table 3-3 or
manual sections)
1 Establish your microprogramming goal. (Develop your own microprogram 1, 14
directly or try one of the supplied examples first. For example, run a short
microprogram from start to finish by referring to section 14.
2 Become familiar with the computer and steps to microprogramming 2,3,56
(hardware, timing, and CM mapping).
3 Establish desired CM module and mapping scheme. 6, 8
4 Plan, develop, and write first-pass microprogram (or if desired simple U 4,7 8 14
sample microprogram).
5 Plan, develop, and write main memory linking program (Assembly C.LUV®67 14
language).
6 Place RTE system off-line and power down if not already in this state. C
7 Install the desired number of HP 13197A WCS boards in the computer A B C
starting at SC 10.
8 Generate and configure the RTE system including at feast DVR36. (It is C,DEF
probably desireable to also include at least WLOAD during system
generation).
9 Load the necessary (desired) microprogramming support software (from 3,C
the following list) into the RTE system.
— WLOAD (if not already loaded) F
— Microassembler G
— Cross-Reference Generator H
— Microdebug Editor (MDEP) I
— Microdebug Editor (MDES) J
10 Microassemble your source. 9
11 If necessary, correct errors either at the source and microassemble again 9, 10, 11
or debug your microprogram using MDE and WCS.
CAUTION
It is possible to execute your microprogram from the MDE.
Ensure that the RTE system you are using for microprogram-
ming development does not have critical programs or produc-
tion type programs running concurrently.
12 Load main memory program that links to microprogram. Cc

Table 3-2. Preparatory Steps (Continued)

Steps

REFERENCE
STEP TASKS (Table 3-3 or
manual sections)
13 Execute microprogram from main memory program (or MDE). C. 10, 11
CAUTION
Before executing development microprograms, ensure that
your RTE system is not involved in running production
programs.
14 If necessary, correct any logical errors discovered during microprogram 9, 10, 11
execution. Fix source (by microassembling again) or use MDE.
15 If you are preparing to fuse pROM's you must do so from a corrected 8 9
microassembled object program (can not be done from an MDE
corrected version). Correct source, microassemble and execute micro-
program again. Go to step 16.
__ OR —
If you are going to use dynamic microprogramming and your micro- 10
program executes properly it can be used through WCS. Development
complete at this point unless this was an example program. To develop
your actual microprogram, go to step 1. If you have special applications
(not fusing pROM'’s) go to step 20, 21, or 22 as appropriate.
16 To prepare mask tapes for pROM generation, load the pROM Tape C K 12
Generator program.
17 Prepare mask tapes and have pROM's prepared. 12
18 Select appropriate accessory for pROM’s and mount them. MorN
19 Place RTE system off-line, power down, install pROM facilities, then start B, C, M, orN
up and/or reconfigure the system (as appropriate).
20 If you are going to use the special microprogramming facilities (MPP, FPP, B,P 24 7 13
or block 1/0), begin your microprogram development at step 1 with refer-
ence to the appropriate material listed to the right.
21 If you are going to be microprogramming for system use, start at step 1 B,P,Q 247
with special reference to the appropriate material listed to the right. appendix C
22 If you are going to be microprogramming using HP accessories such as R ST 47

DCPC, Memory Protect, or DMS, start at step 1 with reference to the
appropriate material listed to the right.

Steps

Table 3-3. Manual/Software Reference

REFERENCE
(from table 3-2)

MANUAL/SOFTWARE

HP 13197A Writable Control Store Reference Manual, part no. 13197-90005.

Your Computer Series Installation and Service Manual.

Real-Time Executive IV Software System Programming and Operating Manual, part no.
92067-90001, or Real-Time Executive Il Software System Programming and Operating
Manual, part no. 92001-93001.

RTE Driver DVR36 for HP 12978A/13197A Writable Control Store Board Programming
and Reference Manual, part no. 13197-90001.

Driver DVR36, object part no. 13197-16001.

WCS /O Utility Routine, object part no. 13197-16003.

RTE Microassembler, object part no. 92061-16001.

RTE Microassembler Cross-Reference Generator, object part no. 92061-16002

RTE Microdebug Editor (stand-alone program, MDEP), object part no. 92061-16004.
RTE Microdebug Editor (callable subroutine MDES), object part no. 92061-16005.
RTE pROM Tape Generator, object part no. 92061-16003.

Your Computer Series Operating and Reference Manual.

HP 1000 M/E/F-Series Firmware Installation and Reference Manual, part no.
12791-90001.

HP 13047 A User Control Store Kit Installation and Service Manual, part no. 13047-90001.
HP 21MX/21MX E-Series Computer 1/O Interfacing Guide, part no. 02109-90006.
Your Computer Series Engineering and Reference Documentation.

HP 128978 Dual-Channel Port Controller Installation Manual, part no. 12897-90005,
HP 12892B Memory Protect Installation Manual, part no. 12892-90007.

Your RTE Guide for New Users.

HP RTE Assembler Reference Manual, part no. 92067-90003.

3-8

Section 4
MICROINSTRUCTION FORMATS N

MICROINSTRUCTION FORMATS

Before going further into microprogramming, you must learn the “language” in order for discussions
on microaddressing, timing, etc., to be meaningful. In this section you will find:

® The microinstruction word types.

® The 24-bit microinstruction field divisions for each word type.
e The microassembler formats.
® The definitions and uses for all micro-orders.

® The binary format for each micro-order.

Additional information that you will need to use the microassembler is presented in sections 8 and 9.

4-1. MICROINSTRUCTION BINARY STRUCTURES

Figure 4-1 shows basically how the four microinstruction word types are related. This is an overall
comparison that may help while studying figure 4-2.

Bivs | 23f{22|21}20{19|18| 17|16 |15 |1a|13|12{11 10|98 |7 |6]|5|a|3|[2]1]0
|
WORD . L
TYPE o ALU S-BUS
T v . |
R S
| l T
—_— - A - — — — 0 —_——— e — — — — = —
T | b R
WORD cl) ™ S £
TYPE N 0 OPERAND
n . | [S
[P
| | E
1 - ¢ =
|
| ; iy
ADDRESS L
WORD
TYPE ’ CONDITION g (612 WORDS)
m B E
R
______A_A‘ —_— e e — e e = = e = =4
N
c
WORD H £ ADDRESS
TYPE R { 16K WORDS)
v o
MOD. MEANS MODIFIER
71156 Figure 4-1. Word Type/Binary Format Summary

4-1

Formats

Figure 4-2 shows the binary format of all the micro-orders in their assigned fields. Specific
microinstructions are constructed from the available micro-orders for the particular word type. For
example,

READ NOR P S1 L1
(1001 11110 11110 10000 10010)
is a word type I microinstruction as it would appear in the microinstruction register (MIR).

Note that for word type I in figure 4-2, the S-bus and Store field micro-order mnemonics are nearly the
same. Where there are differences between the two fields, spaces are intentionally included to keep the
similar micro-order mnemonics lined up to simplify the use of the chart.

All micro-order definitions are given in table 4-1. The table can be used in conjunction with figure 4-2,
the binary format, or with figure 4-4, the microassembler format. You'll be using the microassembler
format most, but the bits have to be looked at if you want to find the address of a branch (jump) using a
microassembler listing, want to check the value of a constant, or look at the bit pattern of a
microinstruction to calculate the micro-orders. Appendix C contains a listing of binary fields-to-
micro-orders that will aid you in these tasks.

4-2

Formats

BITS |(23|22|21|20]19 18|17 |16 |15 14|13 |12 |11 |10| 9| 8 65|43 100
FIELDS OPE("SPT;ON ALU S-BUS STORE SPECIAL
ARS 0001 ADD 00110 | A 00011 A 00011 ASG 11000
CRS 0010 [AND 10100 | B 00100 B 00100 | cLFL 01110
DIV 0101 CMPL 11010 | CAB 00001 CAB 00001 cov 01011
ENV 1010 | CMPS 11111 CIR 01010 DCNT 10101
ENVE 1011 DBLS 00011 CNTR 01011 CNTR 01011 FTCH 11011
LGS 0011 DEC 00000 | DES 01110 IAK 11001
LWF 0110 | INC 01111 DSPI 00111 DSPI 00111 ICNT 10110
MPY 0111 IOR 10001 DSPL 00110 DSPL 00110 | INCI 11100
NOP 0000 | NAND 11011 101 00101 IOFF 11111
NRM 0100 | NOR 11110 100 00101 10G 00110
READ 1001 NSAL 11101 IRCM 01100 | (ON 00011
RTN 1111 NSOL 10111 L 01010 | JTaB 00001
WRTE 1000 | ONE 10011 LDR 01100 L1 10010
WORD oP1 01110 | M 01101 M 01101 L4 10011
TYPE oP2 01101 MEU 01001 MEU 01001 MESP 01010
I oP3 01011 MPPA 00010 MPPA 00010 | MPck 11110
oPa 01010 MPPE 01000 MPPB 01000 | MPP1 11010
oP5 01000 NOP 01111 NOP 01111 MPP2 01001
oPé 00111 P 11110 P 11110 | NoP 00111
op7 00101 PNM 01110 | PRST 01101
oP8 00100 s 11111 s 11111 RJ30 00100
OP10 00010 | sp 11011 sP 11011 RPT 10111
OP11 00001 s1 10000 s1 10000 | RTN 00000
oP13 11100 | s2 10001 s2 10001 R1 10100
PASL 10101 s3 10010 53 10010 | SHLT 11101
PASS 10000 | s4 10011 sS4 10011 sov 01100
SANL 11000 | S5 10100 5 10100 | SRGt 10001
SONL 10010 | s6 10101 6 10101 SRG2 10000
SUB 01001 s7 10110 s7 10110 SRUN 01000
XNOR 10110 S8 10111 s8 10111 STFL 01111
XOR 11001 s9 11000 59 11000
ZERO 01100 s10 11001 s10 11001
s11 11010 s11 11010
TAB 00000 TAB 00000
X 11100 X 11100
Y 11101 Y 11101
FieLps | OPERATION | MODI- OPERAND STORE SPECIAL
(OoP) FIER
{ ANY 8-BIT CONSTANT TO (SAME AS ABOVE } | (SAME AS ABOVE)
THE S-BUS MODIFIED BY
MM 1110 | o BITS 18 AND 19)
11
WORD CM';OO
T\]';E HIGH
01
LOW
00
7115-7

Figure 4-2. Micro-Order Binary Formats (Sheet 1 of 2)

4-3

Formats

BITS |23|22[21/20|19 /18 (17 |16 |15 |1a |13 |12 |11{10 9|8 | 7] & a|3]2]1]o0
FIELDS BRANCH CONDITION B ADDRESS SPECIAL
R
ALZ 00000 | A {ANY ADDRESS IN
:t?s 8‘1"1’: : N CURRENT 512 WORD
ot 01000 |€ BLOCK. IF THE
MP 1101 CNTS 01101 H MICROINSTRUCTION CNDX 00010
JSB 1100 | COUT 00010 |g IS LOCATED IN THE
RTN 1111 £ 11001 | LAST LOCATION OF
FLAG 11000 | A 512990 WORD
HOI 00111 S BLOCK THE TARGET
IR8 11110 | g ADDRESS IS DEFINED
IR11 01001 AS THE NEXT 51239
WORD Lo 00100 WORD BLOCK. SEE
TYPE L15 00101 R TABLE 4-1.)
m MPP 01100 |4
MRG 11111 |S
NDEC 10011 |,
NINC 10010
NINT 11010
NLDR 10000
NLT 10101
NMDE 10111
NMLS 01011
NRT 10100
NSFP 01110
NSNG 11100
NSTB 10001
NSTR 10110
ONES 00001
OVFL 11011
RUN 00110
RUNE 01010
SKPF 11101
FIELDS BRANCH ADDRESS MODIFIER/
SPECIAL
{ ANY ADDRESS IN THE 1OFF 11111
16K WORD CONTROL 10G 00110
MEMORY) ION 00011
2 J74 00101
WORD | JMP 1101 E NOP 00111
TYPE isB 1100 FC; RJ30 00100
v RPT 10111
0 STFL 01111
71158

4-4

Figure 4-2. Micro-Order Binary Formats (Sheet 2 of 2)

Formats

4-2. MICROASSEMBLER FORMATS

Figure 4-3 is similar to figure 4-1, but is arranged by the microassembler format. (The base set listing,
appendix G, is an example of the microassembler format.) You will be encoding your microprograms
for the RTE Microassembler this way. Note that the microassembler accepts a 72 column format.

MICROASSEMBLER

b
LS

FIELD
NUMBER ,
BEGINNING o

COLUMN
NUMBER 15 20 25 30

-
-
o
»H
o
~
N

WORD
TYPE ALU
1

S-BUS

[

!

|

|

I

J

|

mméqm

I

[
L 1
'Tl

]

WORD

TYPE MOD. OPERAND

WORD

TYPE COND. BRANCH

SENSE

|
I
rmo>r
|
!
!
1l
20~=-P>p23MOO
rFrp—-—OmUown
|
I
nw—H2mzI00
frl
|

WORD
TYPE

LDOMIOO D
I
f
l
I
I~
]

3

MOD. MEANS MODIFIER
COND. MEANS CONDITION
=< MEANS MAKE NO ENTRY

71ee Figure 4-3. RTE Microassembler Word Format Summary

Figure 4-4 shows all micro-orders in their respective fields. When you have a good idea what each
micro-order does, you can use this figure and the block diagram (appendix H) to microprogram
expeditiously. Some microinstructions have requirements for the field entries, but the primary consid-
erations in determining their effect are generally:

e Word type

® S-bus action

® Specials and OP codes

e Store field action

® Branch conditions, if word type III or IV
4-5

Formats

4-3. WORD TYPE 1

Word type I is used to execute data transfers and operations between main memory, the I/O section,
Operator Panel, Microprogrammable Processor Port (MPP), and the computer registers. The S-bus
field specifies a register to be enabled onto the S-bus, the ALU field specifies an operation to be
performed between this data and the L-register, and the Store field specifies what register will receive
data at the end of the microcycle. The Special and Operation (OP) fields specify additional operations
(e.g., the Special field can command the Rotate/Shift logic). ALU and condition flags are set or cleared
after each word type I or II execution (if used) and remain in this state until changed by another
microinstruction. Also for word type I and II, the Special field may contain any one of the special
micro-orders except CNDX and J74. Summarizing word type I, you can handle:

® Arithmetic and logic functions

e Shifts and rotates

® Register manipulations

® Reading from and writing into memory

e Input and output operations

¢ Interrupts

® Subroutine returns

® Loaders

¢ Memory Protect

® Dynamic Mapping System operations

® Microprogrammable Processor Port functions*
*The microprogrammable Processor Port (MPP) is used to pass command and data signals to and from

user designed hardware in E-Series Computers, F-Series Computers use the MPP functions to access
the Hardware Floating Point Processor.

4-4. WORD TYPE 11

Word type I1 is used for constant generation and storage. The data in the Operand (or Constant) field is
enabled to the S-bus as either the upper byte (bits 15 through 8) or lower byte (bits 7 through 0) while
the alternate byte becomes all logical ones. The IMM micro-order must appear in the OP field. The four
micro-orders that can appear in the Modifier field control formation of the constant. As shown in figure
4-2, bit 18 controls which byte is selected for the constant. (Logical 1 means upper byte.) The ALU can
either pass or complement the entire 16-bit word. Bit 19 (figure 4-2) controls the ALU action. (Logical
1 complements the word.) The Store and Special field entries are identical to those for word type I.

4-5. WORD TYPE III

Word type III is used for conditional microbranches. A microbranch is executed only if the state in the
Condition field is met. You must always have CNDX coded in the Special field for this word type. If
CNDX is not in the Special field, it becomes a word type IV (an unconditional microbranch). The
Branch Sense field may be set (bit 14 a logical 1) by encoding RJS in the field and this will switch the
sense of the condition for the microbranch. (See figure 4-2.) The target address that gets put in the
Control Memory Address Register (CMAR) is always within the current 512,, microword addressing
space (except for conditional branches executed in the last location of the current 512,, microword
block, which will cause a branch into the next higher 512, block (target address + 512).) The return

4-6

Formats

Y L D)
L€ x &
FIELD
NUMBER 1 2 3 4 5 6 7
J 2)
BEGINNING A h
COLUMN
NUMBER 1 10 15 20 25 30 40 R 72
s < 2
FIELDS OPERATION SPECIAL ALU STORE S-BUS
ARS NOP ASG JTAB RTN ADD NSOL OP11 A MPPA S5 A MEU S5
CRS NRM CLFL L1 R1 AND ONE OP13 B MPPB S6 B MPPA S6
DIV READ cov L4 SHLT cMPL oP1 PASL CAB NOP S7 CAB MPPB s7
ENV RTN DCNT MESP SOV CMPS OP2 PASS CNTR] S8 CiR NOP s8
W ENVE WRTE FTCH MPCK SRG1 DBLS oP3 SANL DSPI PNM s9 CNTR p s9
ORD LGS 1AK MPP1 SRG2 DEC oP4 SONL DSPL s 510 DES s s10
TYIPE LWE ICNT MPP2 SRUN INC OP5 SUB 100 sP S11 DSPI sP s11
MPY INCI NOP STFL IOR oPg XNOR IRCM s1 TAB DSPL s1 TAB
|OFF PRST NAND oP7 XOR L s2 X 101 s2 X
10G RJ30 NOR oPs ZERO M s3 Y LDR s3 Y
ION RPT NSAL 0OP10 MEU s4 M s4
FIELDS OPERATION SPECIAL MODIFIER STORE OPERAND ‘1
WORD IMM { SAME AS ABOVE) CMHI HIGH { SAME AS ABOVE) { DECIMAL OR OCTAL CONSTANT)
TYPE C
CMLO LOW
it L (0]
A M
M
| _ B _ v
FIELDS L BRANCH SPECIAL CONDITION BRANCH SENSE ADDRESS N
S T
JMP CNDX ALZ Lo NRT RJS (ANY IN CURRENT 512 WORD §
JSB { MUST BE ENTERED) ALO L15 NSFP {OR NO ENTRY) BLOCK. IF RTN IS ENTERED
RTN AL15 MPP NSNG IN OP FIELD, THIS FIELD MUST
CNT4 MRG BE BLANK). *IF THE MICRO-
NSTB INSTRUCTION IS LOCATED IN
THE LAST LOCATION OF A
CNTS8 NDEC NSTR
RD B K THE TARGE
v¥$§€ COUT NING ONES 512,, WORD BLOC E GET
E NINT OVFL ADDRESS IS DEFINED AS THE
o FLAG NLDR RUN NEXT 512, WORD BLOCK
{SEE TABLE 4-1).
HO!I NLT RUNE
IR8 NMDE SKPF
IR11 NMLS
- — — = — |
FIELDS BRANCH MODIFIER/SPECIAL ADDRESS
JMP OFF NOP { ANY ADDRESS IN
WORD JsB 10G RJ30 CONTROL MEMORY)
ION RPT
TYPE .
v J74 STFL
2 2 D L
LY LSy
NOTES: *SEE TABLE 4-1 FOR ALLOWABLE ADDRESS ENTRIES
ONLY ONE ENTRY PER FIELD
>< MEANS NO ENTRY ALLOWED
ENTRIES LEFT JUSTIFIED TO BEGINNING COLUMN OF FIELD Figure 4-4. Microassembler Format
7115-10 Micro-Orders
7115-10

4-7/4-8

Formats

address is saved for JSB’s. If a RTN micro-order is encoded in the OP field, the address field must be
empty. Table 4-1 outlines what kind of address entries can be made for the microassembler format.
Summarizing word type III, you can accomplish:

® 1/O Interrupt sensing

e Data and Arithmetic/Logic section condition sensing

® Operator Panel pushbutton operation sensing

4-6. WORD TYPE IV

Word type IV is used for unconditional microbranches. Unconditional microbranches are always
executed. As in word type III, a return address is not saved when JMP is encoded in the OP field. A
microbranch modifier may appear in the Modifier/Special field and only seven (IOFF, IOG, ION, J74,
RJ30, RPT, and STFL) are available. Only four of the micro-orders actually modify the address. Word
type IV can be identified by no CNDX code. Also, there will only be at most three fields. The
microbranch target address can be anywhere in the 16K control memory address space. Address field
entries are listed in table 4-1.

As mentioned in paragraph 4-1, you might want to be familiar with the microinstruction bit patterns
so that you can calculate a microbranch address. When you look at a line of microassembler listing and
examine, for example, the octal representation for a JMP microinstruction, you might see:

00311 320 014047 JMP WAIT
where:

00311 is the location of this microinstruction and

320 014047 is the coded content at location 00311
By converting the octal control memory content to the 24-bit word, you can determine the label WAIT
address to be at 00301 as shown in figure 4-5. Note that the separation point between the three left

octal digits and the six right octal digits is between bits 15 and 16. This procedure applies in a similar
manner for any octal content conversion. Also see appendix B.

OCTAL CONTROL
MEMORY CONTENT 3 2 0 0 1 4 0 4 7
(BITS) @ 22|21 20 19{18 17 16§15/14 13 12(11 10 9|8 7 6|5 4 3|2 1 o
BITPATTERN 1 1]0 1 ©0fo 0 of0f0 o 1[1 0 ofo 0 0|1 0 of1 1 1
[l]
—— — _— e — e — e — *_ — — —
WORD | ! !] SPECIAL
TYPE IV op i ADDRESS ' FIELD
FORMAT 1 L L [_ fintdi
MICRO-ORDERS i | [' o : \ |
! | '] [}
AND ADDRESS [, Jmp } Y ! Y : 3 ! 0 ! 1 : NoP
ADDRESS OF WAIT

7115-11 Figure 4-5. Jump Address Decoding
4-9

Formats

4-7. MICRO-ORDER DEFINITIONS

Definitions for each of the micro-orders (binary and microassembler format) appear in table 4-1. Note
that the operation codes (OP field) do not necessarily always dictate the entries in the other fields.
Also, as previously discussed, some word types share the same micro-orders. These definitions are
arranged alphanumerically in the table according to the order of microassembler field occurrence for
word type I through word type IV.

Explanations and examples of the use of many of these micro-orders appear in the sections that follow;
in particular, section 7. You may not want to read all the micro-order definitions before you start
microprogramming. If you have not been involved in microprogramming before and just want to scan

the table and look ahead, refer to sections 6 and 7, and parts III and IV of this manual where you will
find some microprogramming examples.

4-8. SUMMARY

Now you have references for the:

® Binary formats of the four word types.

® Binary patterns of all micro-orders.

® Microassembler formats of the four word types.
® Definitions for all micro-orders.

® Octal to binary conversion technique that you can reverse to convert micro-orders to the binary
format.

Also refer to the binary arrangement summary in appendix C.

4-10

Formats

Table 4-1. Micro-Order Definitions

MICRO-
ORDER DEFINITION
WORD TYPE | OP FIELD
ARS Meaning: Perform a single bit arithmetic shift of the A- and B-registers combined, with the

A-register forming the low-order 16 bits. The direction of the shift is specified in the Special
field: L1 for left, R1 for right.

Required micro-order (field) entries:

oP SPECIAL ALU STORE S-BUS
ARS L1 or R1 PASS B B

If the Special field contains L1, a O is shifted into bit 0 of the A-register; bit 14 of the B-register
is lost, but the sign bit (bit 15) remains unchanged. The Overflow register bit is set if B-register
bits 14 and 15 differ before the shift operation. One left shift multiplies by two, i.e., doubles the
number.

ARITHMETIC LEFT SHIFT: SPECIAL = L1
B-register A-register

1514.00.0000..10 15 14| @ o @ o s o ¢ o o 11 0 Zero

¥ R Kk _s L Rk

Lost

If the Special field contains R1, the sign (bit 15) is copied into bit 14 of the B-register and bit 0
of the A-register is lost. B-register bit 15 remains the same.

ARITHMETIC RIGHT SHIFT: SPECIAL = R1
B-register A-register

15|14 | o o o o o o 0 ¢ ¢ 0! 1| 0 Pl 15| 14| @ o o o o o o s o | 1| 0 Lost

A NA A A A A A\ _A

4-11

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE 1 - OP FIELD (CONT.)
CRS Meaning: Perform a single bit circular rotate/shift on the combined A- and B-registers with the

A-register forming the low order 16 bits. The direction of the rotate is specified in the Special
field: L1 for left, and R1 for right.

Required micro-order (field) entries:
oP SPECIAL ALU STORE S-BUS

CRS L1 or R1 PASS B B

If the Special field contains L1, bit 15 of the B-register is transferred to bit 0 of the A-register.

CIRCULAR LEFT SHIFT: SPECIAL = L1

B-register A-register

15[14 10H1514.-.-.0.010

k_®_ k_k_ k_ ks k_k_

If the Special field contains R1, bit 0 of the A-register is transferred to bit 15 of the B-register.

CIRCULAR RIGHT SHIFT: SPECIAL = R1

B-register A-register

1514]......... 1 0}_.|15 14ol1 0
A AN A A A A A

4-12

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | - OP FIELD (CONT.)
DIv Meaning. Perform a divide step where the divisoris in the L-register and the 32-bit dividend is

in the A- and B-registers (least significant bits in the A-register). This microinstruction is
usually repeated (16 times for a full word divisor) by specifying the Special field micro-order
RPT in the preceding microinstruction. This performs the successive subtractions required in
a divide algorithm. :

Required micro-order (field) entries:
oP SPECIAL ALU STORE S-BUS

DIV L1 SUB B B

The divide step is executed as follows:
a. Subtract the L-register from the B-register (ALU = B-L)

b. If a borrow is required to complete the subtraction, the ALU Carry Out flag is clear (0).
This carry out result means that the divisor (L-register) is too large. The ALU result is not
stored. The A-register and B-register are left shifted one bit and the divide step is
complete.

c. If aborrow is not required to complete the subtraction, the ALU Carry Out flag is set (1).
This means that the divisor is small enough and the result of the subtraction is left shifted
one bit and stored back into the B-register. Bit 15 of the A-register shifts into bit 0 of the
B-register and bit 0 of the A-register is set to 1 (the carry out result). The divide step is
complete.

Usage: The base set divide operation is shown in appendix G under the Extended Arithmetic
Group instruction microroutines at label DIV. This can be used as an example in your
microprogramming. When performing 16 divide steps, the numbers in the A- and B-registers
should have a 32-bit left shift executed before the RPT and the first divide step. This is
accomplished for proper bit alignment before the division. Also, the counter should be set for
the desired number of repeat steps before the 32-bit left shift. Example:

INITIAL CONTENTS:

B-register A-register L-register
Dividend 16 Most Dividend 16 Least &‘,’,'::,'ute
Significant bits Significant bits Value)

{Left Shifted)

AFTER REPEAT 16
TIMES OF DIVIDE

STEP:
B-register A-register L-register
Remainder 16-Bit Quotient Divisor
Doubled of (B,A) /L {Unchanged)

4-13

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER

DEFINITION

WORD TYPE | - OP FIELD (CONT.)

ENV

Meaning: Enable the overflow logic for the current ALU operation. If ADD is coded in the ALU
field, the Overflow register does not set unless requested.

Usage: To detect an overflow (i.e., set the Overflow register bit), ENV or ENVE (see below)
must be specified in the OP field of the microinstruction in which the condition is to be tested.
The Overflow register is set if the S-bus and L-register bits 15 are the same and bit 15 output
from the ALU is different. Caution is advised in the use of DEC (decrement) or INC (increment)
in conjunction with ENV. The L-register is always compared with the S-bus. Section 7 provides
further information on programmatically setting and clearing the Overflow register.

ENVE

Meaning: Enable the overflow and extend logic for the current ALU operation.

Usage: To detect (test for) an overflow {i.e., set the Overflow register bit), ENV (see above)or
ENVE must be specified in the OP field of the microinstruction in which the condition is to be
tested. To set the Extend register as a result of the ALU operation, the ENVE micro-order must
be specified in OP field of the microinstruction. The Extend register bit is set if there is a carry
generated by the ALU (ALU Carry Out flag = 1).

Example:
op SPECIAL ALU STORE S-BUS
[ENV] ADD S3 S3
[ENVE]

See section 7 information on programmatically setting and clearing the Overflow register.

4-14

Formats

Table 4-1. Miecro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | - OP FIELD (CONT.)
LGS Meaning: Perform a single bit logical shift of the A- and B-registers combined, with the

A-register forming the low order 16 bits. The direction of the shift is specified in the Special
field: L1 for left, R1 for right.

Required micro-order (field) entries:

oP SPECIAL ALU STORE S-BUS

LGS L1 or R1 PASS B B

If the Special field contains L1, a 0 is shifted into bit O of the A-register and bit 15 of the
B-register is lost.

LOGICAL LEFT SHIFT: SPECIAL = L1
B-register A-register

Lost<—{15140"------1 0H1514 I I I oJ<—zero

®_ R ®_®_s L2 r_k_/

If the Special field contains R1, a 0 is shifted into bit 15 of the B-register and bit O of the
A-register is lost.

LOGICAL RIGHT SHIFT: SPECIAL = R1

B-register A-register

Zero—’[15]14l'°°--'~'o 1 0H15 14 6 o 6 0 0 o oo 1]1}—”.0“
A A

\AA A A A A

4-15

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | - OP FIELD (CONT.)

LWF Meaning: Perform a one bit rotational shift of a 17-bit operand in the Rotate/Shifter where bit
17 is formed by the CPU flag (link with flag). The data rotates left one bit if L1 is in the Special
field, or right one bit if R1 is in the Special field. If neither L1 or R1 are specified, LWF clears the
CPU flag and no rotate takes place.

ROTATIONAL RIGHT SHIFT: SPECIAL = R1 ROTATIONAL LEFT SHIFT: SPECIAL = L1
ALU Contents ALU Contents

15140.0...-.0[110 15|14 (o o ¢ ¢ o o ¢ ¢ | 1|0
AN A A Y R _ *_/®_/

l |. J E l

L L

CPU Flag CPU Flag
MPY Meaning: Perform a muttiply step where the multiplier is in the L-register and the multiplicand

is in the A-register.

Required micro-order (field) entries:

OoP SPECIAL ALU STORE S-BUS
MPY R1 ADD B B

The multiply step is executed as follows:

a. If bit 0 of the A-register is a one, the L-register is added to the S-bus (B-register value).
The resultis shifted right one bit and stored into the B-register with the ALU Carry Out flag
forming bit 15.

b. If bit 0 of the A-register is a zero, the S-bus (B-register value) is shifted right one bit and
stored back into the B-register with the ALU Carry Out flag forming bit 15.

¢. Ineither case, the A-register is shifted right and ALU bit O fills vacated bit position 15. Bit 0
of the A-register is lost. The multiply step is complete.

Usage: This microinstruction is usually repeated 16 times by specifying the Special field
micro-order RPT in the preceding microinstruction.

Each step of the multiply algorithm effectively multiplies the L-register by the A-register bit that
corresponds to the step; i.e., step one multiplies the L-register by bit O of A-register, step two
multiplies the L-register by bit 1 of the A-register, etc. Thus to multiply the L-register by all 16
bits of the A-register, MPY must be repeated 16 times.

Since the B-register goes through successive right shifts and additions, the initial content of
the B-register is added to the final result of the muitiply algorithm. If the B-register is not zero
before the multiply steps are begun, 16 multiply steps will yield the 32-bit result in the B- and
A-registers (where the least significant bits (LSB's) are in the A-register).

4-16

Table 4-1. Micro-Order Definitions (Continued)

Formats

MICRO-
ORDER DEFINITION
WORD TYPE | - OP FIELD (Cont.)
MPY (B,A) = [(AxL) + B]

(Continued)

This may be useful in some computational procedures. For example: X(2) = X (1) + (YxZ).

Initial Contents:

INITIAL CONTENTS:

B-register A-register L-register
Value to be added - _—
to the final result Multiplicand Multiplier
AFTER REPEATING THE
MULTIPLY STEP 16 TIMES:
B-register A-register L-register
(AxL) + B (AxL) +B Multioli
16 Most 16 Least ultiplier
Significant bits Significant bits (Unchanged)

4-17

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | - OP FIELD (CONT.)
NOP Meaning: No operation is specified for the OP fieid.
Usage: This is the default micro-order when the OP field is left blank.
NRM Meaning: Perform a one bit shift on the 48-bit combined value of the B-register, A-register,

and S-bus data (normalize a 48-bit floating point number) as follows.
Left shift: The left normalizing shift requires that the following micro-orders be used:
oP SPECIAL ALU STORE S-BUS

NRM L1 PASS * *

*Desired Register

This will arithmetically shift the B-register, A-register, and S-bus data left one bit. If B-register
bits 15 and 13 are different before the shift, the Repeat flip-flop is cleared. (Refer to the
explanation of normal Repeat flip-flop operation under RPT in the Special field. This operation
IS an exception.)

B-register A-register S-bus
-t - - ~-—

Lol o el [ol [e[e[e [e] 2o

Right shift: The right normalizing shift requires that the following micro-orders be used:
oP SPECIAL ALU STORE S-BUS

NRM R1 PASS * *

“Desired Register

This will arithmetically shift the B-register, A-register, and S-bus data right one bit with the sign
bit of the B-register preserved. No “special” conditions wili clear the Repeat flip-flop (as
opposed to the left shift usage).

FlT - s Tl s - o] ol s o]

4-18

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | - OP FIELD (Cont.)
NRM A second application of the NRM micro-order is in “denormalization”, or aligning floating point
(Continued) numbers (with different exponents). In this case, one or the other of the numbers is operated

on to adjust the exponent and shift the floating point into the proper position. The number of
alignment shifts is passed into the counter and the microinstruction below is repeated the
appropriate number of times.

OP SPECIAL ALU STORE S$-BUS
NRM R1 PASS S1 S
Usage: The use of NRM in the left shift application is not as ochvious as right shift. For

example, assume a 48-bit two’s complement number in the B-, A-, and S1-registers is to be
quickly normalized. The following demonstrates the process:

ALY/ S-BUS-
LABEL opP SPECIAL COND. STORE ADDRESS
NRM48 IMM LOW CNTR 0
DBLS L B
XOR B
JMP CNDX AL15 “+4
RPT
NRM L1 PASS S1 S1
JMP NRM48+1

Upon exit, the number is normalized and the counter contains the two’s complement of the
number of shifts performed.

NOTE

Floating point numbers are considered normalized when the mantissa sign
bit and adjacent bit are opposite in polarity and the mantissa falls in a range
of a set of numbers between zero and everything up to but not including
one.

4-19

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER

DEFINITION

WORD TYPE | OP FIELD (CONT.)

READ

Meaning: Read data from main memory at the address specified in the M-register and store
into the T-register. The CPU will pause if main memory is busy.

Usage: The M-register must be loaded prior to or during the microinstruction containing the
READ micro-order. The data from main memory must be removed from the T-register within
three microinstructions after the READ. Optimum performance is realized when the maximum
number of microinstructions allowable are used between READ and TAB. Refer to section 7
for READ micro-order use considerations.

RTN

Meaning: Jump to the return address, i.e., branch by “popping” the “top” address in the
Save Stack into the CMAR. Note that there can be three levels of microsubroutines (JSB's).

Usage: For word type |, CNDX is not allowed in the Special field so the “pop"” operation and
branch are unconditionally made.

WRTE

Meaning: Write the data in the T-register into the main memory address specified in the
M-register. The CPU will pause if main memory is busy.

Usage: The T-register must be loaded during the microinstruction containing the WRTE
micro-orders. Refer to section 7 for WRTE micro-order use considerations

4-20

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION

WORD TYPE | AND Il - SPECIAL FIELD

ASG Meaning: Bits 6 and 7 of the Instruction Register (IR) determine which of the following
functions are to be performed:

IR bit Alter/Skip Group

7 6 Instruction

0 1 {(CLE) Clear Extend register

1 0 {(CME) Complement Extend
register

(CCE) Set Extend
register

Also, this micro-order loads the top of the Save Stack into the CMAR if the Alter/Skip Group
conditions are not satisfied. It does not “‘pop” the Save Stack (i.e., the address also remains in
the stack). The operation specified in the ALU field is forced to a PASS if IR bit 2 is a zero.

Usage: This micro-order is used in the base set microprogram to implement the Alter/Skip
Group instructions. It will not normally be used by the microprogrammer. Refer to section 7
use considerations.

CLFL Meaning: Clear the CPU flag.

Ccov Meaning: Clear the Overflow register. Refer to section 7 for information on programmatically
setting and clearing the Overflow register.

DCNT Meaning: Decrement the counter (the lower 8 bits of the IR) by one.

FTCH Meaning: This micro-order (for use only in the base set) adjusts the Save Stack and performs
other operations in relation to Memory Protect. If you are going to perform system emulation
you will find further details on this micro-order in appendix C. Otherwise, it is not to be used for
“normal” microprogramming.

IAK Meaning: Freeze the computer until time period T6 and then load the interrupt address into
the Central Interrupt register (CIR) and generate an IAK signal to the I/O section. Clears the
Indirect Counter in Memory Protect. Also places the dynamic mapping into the system map.
This microorder should not be used in a microinstruction with a READ or WRITE.

Usage: Not normally used by the user microprogrammer. Refer to section 7 for interrupt
handling techniques.

ICNT Meaning: Increment the counter (the lower 8 bits of the IR) by one. Must not be followed by a
word type Ill with a CNT4 or CNT8.

INCI Meaning: Increment the Indirect Counter in Memory Protect (if installed) by one.

Usage: Used by microprograms that implement indirect addressing. !f INCI is executed three
times before the next FTCH or IAK appears in the Special field, the Interrupt Enable flag is set
to allow the CPU to recognize interrupts. Used to prevent multiple indirect addressing levels
from holding off recognition of /O interrupt requests. If the following microinstruction includes
a JTAB in the Special field, the actual branch called by JTAB is made only if the condition
mapped by bits 19 through 14 of that microinstruction are met. Refer to section 7 for interrupt
handling technigues.

4-21

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER

DEFINITION

WORD TYPE | AND 1l - SPECIAL FIELD (CONT.)

IOFF

Meaning: Turn off the Interrupt Enable flag to disable recognition of power fail and /O
interrupts (does not disable Memory Protect or parity interrupts).

Usage: After the occurrence of a JTAB or three occurrences of INC| (if Memory Protect is
installed) interrupts are again recognized.

IOFF should be used with caution since holding off interrupts could cause the loss of input and
output data. Refer to section 7 for interrupt handling techniques.

100G

Meaning: Freeze the CPU urtil time period T2. Then enabie the generation of 1/O timing
signals dependent upon the instruction in the IR.

Usage: Microprogrammed input and output require cooperation between the 1/O section and
microprogram control. Familiarity with the 1/O system is mandatory. Refer to section 7 for
information on forming and executing 1/O microinstructions.

ION

Meaning: Turn on the Interrupt Enable flag and allow the CPU to recognize power fail and /O
interrupts until the micro-order IOFF is executed.

Usage: An interrupt from any /O device can be detected in two ways:

a. IfaJTAB micro-order is executed and an interrupt is pending or the Run flip-flop is clear,
execution is forced to control memory (CM) location 6 (the Halt-Or-interrupt microroutine).

b. A test for interrupt pending or Run flip-flop clear can be performed by the executing
microprogram by having an HOI encoded in the Condition field of a word type I
microinstruction. Or, a test for a pending interrupt can be made by having NINT encoded
in aword type Ill Condition field. The micro-order ION allows interrupts to be recognized.
However, interrupts are not generated by the interrupt system unless an STF 0 /O control
command has been executed. Refer to the discussion of the interrupt system in your
Computer Series Operating and Reference Manual. Refer to section 7 of this manual for
interrupt handling considerations.

JTAB

Meaning: This micro-order (for use only in the base set) maps instructions in the IR to the
proper location in CM. If you are going to perform system emulation, you will find further
details on this micro-order in appendix C. Otherwise, it is not to be used for “normal”
microprogramming.

L1

Meaning: Left shift one bit command to the Rotate/Shifter.

Lost 4—{ 15[14 e o o o s ¢ o o o of 1| 0 |&— Zero

kR k_ kK _k_

Usage: Refer to MPY, DIV, CRS, LGS, ARS, NRM, and LWF. Without one of the previous OP
field micro-orders, L1 performs a one bit logical left shift on data leaving the ALU.

4-22

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION

WORD TYPE | AND Il - SPECIAL FIELD (CONT.)

L4 Meaning: Four bit left rotate command to the Rotate/Shifter.

TOR/S [15|14]13|12l11l10|9!8]7’BI514'3[211 0

I15I14|1‘3I12I1‘1|1019|8|7[6]5’4]3[2]1‘0J

TO T-bus

MESP Meaning: Dynamic Mapping System (DMS) signal generation micro-order used in conjunc-
tion with the MEU micro-order in the Store and S-bus fields. Eight different functions are
performed (designated QO through Q7 for reference) by combinations of MESP and MEU. The
combinations of these signals and their functions are described in section 7.

Usage: The DMS must be installed for the MESP and MEU micro-orders to be used. The DMS
installation includes availability of the “standard” DMS Assembly language instructions which
invoke the HP-written DMS microroutines. The MESP and MEU micro-orders are available for
you to write microprograms using your DMS facility. You should thoroughly understand the
DMS before using these micro-orders.

MPCK Meaning: Reguest a Memory Protect check of the address in the M-register for a Memory
Protect fence or DMS violation.

Usage: This micro-order is used with any instruction that may cause a Memory Protect or
DMS violation by entering or modifying protected memory. It need not be used if Memory
Protect is not installed in the computer. It is subject to the following:

a. Micro-orders IRCM, M, or PNM can not be specified in the Store field.

b. The M-register must have the address to be checked when the microinstruction using
MPCK is executed. (MPCK is usually used with the WRTE micro-order in the OP field.)
Refer to section 7 for reading, writing and 1/O considerations using MPCK.

c. lIfthere is not a READ or WRTE micro-order in the OP field (of the same microinstruction),
the MPCK must follow the microinstruction containing a READ or WRTE by one or two
microinstructions. The MPCK must never be further than two microinstructions away if
Dual-Channel Port Controller (DCPC) is installed in the computer. The microinstruction
below demonstrates a typical use of MPCK.

OoP SPECIAL ALU STORE S-BUS

WRTE MPCK PASS TAB S1

4-23

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER

DEFINITION

WORD TYPE | AND II - SPECIAL FIELD (CONT.)

MPP1

Meaning: Generate a signal PP1SP to the Microprogrammable Processor Port (MPP).

Usage: Refer to the HP 21MX/21MX E-Series Computer /O Interfacing Guide for further
information. Example microprogrammed use can be found in section 13 of this manual.

MPP2

Meaning: Generate a signal PP2SP to the MPP.

Usage: Refer to the HP 21MX/21MX E-Series Computer 1/O Interfacing Guide for further
information. Example microprogrammed use can be found in section 13 of this manual.

NOP

Meaning: No operation in the Special field.

Usage: This is the default operation if no other micro-order is specified in the Special field.

PRST

Meaning: This micro-order will clear the A- and B-Addressable flip-flops (AAF and BAF).

Usage: This may be used by the microprogrammer to gain access to main memory locations
0 and 1. Refer to section 7 for read and write operation considerations.

RJ30

Meaning: When used in a word type | or Il microinstruction (available also in word type V), the
definition of RJ30 is identical to that of a READ micro-order in a word type | OP field (i.e., a
read operation takes place and no address modification action is defined).

RPT

Meaning: Repeat the next microinstruction for the number of times specified by the positive
number in the least significant four bits of the (R counter.

Usage: The next microinstruction must be a word type | and must not contain RTN in the OP
field or RTN or JTAB in the Special field. The Repeat flip-flop is set by this micro-order which
prevents the updating of the Microinstruction Register (MIR) and CMAR at the end of the next
microinstruction. The counter decrements after each execution of the next microinstruction
and, when the lower four bits are all zeros, the Repeat flip-flop is cleared. (Refer to the NRM,
OFP field micro-order for exception.) If the four least significant bits of the counter are zeros, the
next microinstruction will be repeated 16,, (20,) times.

RTN

Meaning: Return from a microsubroutine; i.e., branch to the CM address in the Save Stack.
This address is loaded into the CMAR. If the Save Stack is empty (no microsubroutine
previously executed), a return is made to CM location 0 (zero).

Usage: Three levels of microsubroutines are the maximum allowable. RTN overrides the
effect of a JMP or JSB in the OP field which are not allowable with RTN encoded in the Special
field.

R1

Meaning: Right shift one bit command to the Rotate/Shifter.

Zel’O-—’15‘|4-oc-.¢o.oo1 0 —» Lost

AN A A

Usage: Used in conjunction with the shift and rotate micro-orders. Refer to MPY, DIV, ARS,
NRM, CRS, LGS, and LWF. Without one of the previous micro-orders, a single bit logical right
shift is executed.

4-24

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | AND Il SPECIAL FIELD (CONT.)
SHLT Meaning: Clear the Run flip-flop.
Usage: The Run flip-flop and RUN LED on the Operator Panel is actually cleared at the
completion of the word type | or Il microinstruction following the one specifying SHLT. This
micro-order should be used with caution by the microprogrammer.
SOV Meaning: Set the Overflow register. Refer to section 7 for information on programmatically
clearing and setting the Overflow register.
Meaning: Execute the shift/rotate function specified by bits 6 through 9 of the IR. (Refer to

SRG1

your Computer Series Operating and Reference Manual.) The shift-rotate function is per-
formed on the data that leaves the ALU. If IR bit 5 is set, clear the E-register (Extend register)
after the shift. The function performed in the Rotate/Shifter is determined by IR bits 6 through 9

as follows:
BITS
9876 FUNCTION PERFORMED IN ROTATE/SHIFTER
1000 Arithmetic left shift one bit.
1001 Arithmetic right shift one bit.
1010 Rotational left shift one bit.
1011 Rotational right shift one bit.
1100 Arithmetic left shift one bit, clear sign (bit 15).
1101 Rotational right shift one bit with E-register forming bit 16
17th bit). ’
1110 Rotational left shift one bit with E-register forming bit 16 (the
17th bit).
1111 Rotational left shift four bits.
Oxxx

No shift (bits 8, 7, and 6 can have any setting) except if bits 8, 7, and 6 are
101 or 110 and E-register could be undesirably updated. (Refer to your
Computer Series Operating and Reference Manual Shift/Rotate Group infor-
mation for instructions on how to avoid this situation.)

Usage: Refer to section 7 for considerations when using SRG1.

4-25

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER

DEFINITION

WORD TYPE | AND IISPECIAL FIELD (CONT.)

SRG2

Meaning: Execute the shift/rotate function specified by bits 0, 1, 2, and 4 of the IR. (Refer to
your Computer Series Operating and Reference Manual.) The shift/rotate function is per-
formed on the data that leaves the ALU. The top of the Save Stack is loaded into the CMAR
unless IR bit 3 was set (a logical 1) and bit O of the T-bus was zero during the last word type |
or |l microinstruction executed. The function performed in the Rotate/Shifter is determined by
IR bits 0, 1, 2, and 4 as follows:

BITS
4 210 FUNCTION PERFORMED IN ROTATE/SHIFTER

1000 Arithmetic left shift one bit.

1 001 Arithmetic right shift one bit.

1010 Rotational left shift one bit.

1 011 Rotational right shift one bit.

1 100 Arithmetic left shift one bit, clear sign (bit 15).

1101 Rotational right shift one bit with E-register forming bit 16 (the
17th bit).

1 110 Rotational left shift one bit with E-register forming bit 16 (the
17th bit).

1 111 Rotational left shift four bits.
0 xxx No shift (bits 2, 1, and 0 can have any setting) except if bits 2, 1, and 0 are
101 or 110, the E-register could be undesirably updated. (Refer to your Com-

puter Series Operating and Reference Manual Shift/Rotate Group information
for instructions on how to avoid this situation.)

Usage: Refer to section 7 for considerations when using SRG2.

SRUN

Meaning: Set the Run flip-flop.

Usage: The RUN condition is not actually set until the next word type | or Il is executed.

STFL

Meaning: Set the CPU flag.

4-26

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | ALU FIELD
NOTE
Symbols used in the following ALU field equations are defined here for
reference.
+ means arithmetic function +
- means arithmetic function —
. means logical function “and”.
+ means logical function “or”.
b means logical function “exclusive or”.
SorC means the one’s complement of the S-bus or the one’s comple-
ment of the L-register.
ADD Meaning: Add the data placed on the S-bus to the contents of the L-register.
AND Meaning: Logical "and” the L-register and S-bus: (L S).
CMPL Meaning: Ones Complement the L-register.
CMPS Meaning: Ones complement data on the S-bus.
DBLS Meaning: Perform the foliowing arithmetic function in the ALU with the S-bus: S plus S.
DEC Meaning: Decrement data on the S-bus by one.
INC Meaning: Increment data on the S-bus by one.
IOR Meaning: Logical “inclusive or” the L-register and S-bus: (L+S).
NAND Meaning: Logical “nand” the L-register and S-bus: (LT§).
NOR Meaning: Logical “nor” the L-register and S-bus: (L+S).
NSAL Meaning: Logical “and” the complement of the S-bus and the L-register: (S-L).
NSOL Meaning: Logical “or” the complement of the S-bus and the L-register: (S+1).
ONE Meaning: Set all 16 bits (logical one’s) input to the Rotate/Shift logic.
OP1 Meaning: Perform the following logical function in the ALU with the L-register and S-bus:
(S+L) plus 1.
OoP2 Meaning: Perform the following logical function in the ALU with the L-register and S-bus:
(S+1) plus 1.
OP3 Meaning: Perform the following logical function in the ALU with the L-register and S-bus:
S plus (S+L) plus 1.
OP4 Meaning: Perform the following logical function in the ALU with the L-register and S-bus:

(S+L) plus (S+T) plus 1.

4-27

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | - ALU FIELD (CONT.)

OP5 Meaning: Perform the following logical function in the ALU with the L-register and S-bus:
(SeL). This micro-order has the same effect as the SANL micro-order.

OP6 Meaning: Perform the following logical function in the ALU with the L-register and S-bus:
S plus (SsL).

OP7 Meaﬂing: Perform the following logical function in the ALU with the L-register and S-bus:
(S+L) plus (SeL).

OP8 Meaning: Perform the following logical function in the ALU with the L-register and S-bus:

' (S+L) minus 1.

OP10 Meaning: Perform the following logical function in the ALU with the L-register and S-bus:
(S+L) plus S.

OP11 Meaging: Perform the following logical function in the ALU with the L-register and S-bus:
(S+L) plus S.

OP13 Meaning: Pass all zeros to the Rotate/Shifter. This micro-order has the same effect as the
ZERO micro-order.

PASL Meaning: Pass the L-register's contents to the Rotate/Shifter.

PASS Meaning: Pass the S-bus data to the Rotate/Shifter. PASS is the default micro-order (NOP) in
the ALU field. If no micro-order is encoded in the ALU field in a word type | microinstruction, a
PASS will be inserted during microassembly. Data is not modified when a PASS appears in the
ALU field.

SANL Meaning: Logical “and” the S-bus and the complement of the L-register (S»L): pass the result
to the Rotate/Shifter. This micro-order has the same effect as the OP5 micro-order.

SONL Meaning: Logical “or” the S-bus and the complement of the L-register (S+ L); pass the result
to the Rotate/Shifter.

SUB Meaning: Subtract the L-register from the S-bus and pass the result to the Rotate/Shifter.

XNOR Meaning: Logical “exclusive nor” the L-register and S-bus (L@S); pass result to the Rotate/
Shifter.

XOR Meaning: Logical “exclusive or’ the L-register and S-bus (L@S); pass the result to the
Rotate/Shifter.

ZERO Meaning: Pass all zeros to the Rotate/Shifter. This micro-order has the same effect as the
OP13 micro-order.

4-28

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | AND II- STORE FIELD
A Meaning: Store the data on the T-bus in the A-register.
B Meaning: Store the data on the T-bus in the B-register.
CAB Meaning: Store the data on the T-bus in the A- or B-register according to the value of IR bit 11:
IR bit 11 zero means A-register.
IR bit 11 one means B-register.
CNTR Meaning: Store the lower eight bits of the S-bus (bits 0-7) in the counter (lower 8 bits of the
IR).
Usage: Refer to section 7 use considerations.
DSPI Meaning: Store the one’s complement of the lower eight bits of the S-bus in the Display

Indicator on the Operator Panel. (Note that only the least significant six bits are displayed.)
This display indicates which register (or function) information appears in the Operator Panel
Display Register. Refer to your Computer Series Operating and Reference Manual for details
on the Operator Panel and its operation in the normal and special modes. The six indicators
on the Operator Panel are associated with the S-bus as follows:

Display Indicator
(S- bus) bit

Register Displayed
in Normal Mode

Function Displayed
in Special Mode

NOTE: Bits 7 and 6 not used.

Usage: The Operator Panel Display Indicator or Indicators can be lit by bits 5 through 0 from
the S-bus as follows:

oP SPECIAL MOD. STORE OPERAND

IMM LOW DSPI 373B

~

Lights indicator pointing to M-register.

whereas:
ﬂ’ SPECIAL MOD. STORE OPERAND
IMM LOW DSPI 0108

~— o
- e

Gigrs

Lights all indicators {Special mode) except the function “t" mode (i.e.,
indicates that DMS map content is displayed in the Display Register).

4-29

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | AND Il - STORE FIELD (CONT.)

DSPL Meaning: Store the data on the S-bus in the Operator Panel Display Register. This information
should be coordinated with the Display Indicator.

100 Meaning: Enable the S-bus onto the I/O bus.

Usage: To be used properly, this micro-order must be issued at T4 and T5 after an 10G
(Special field) micro-order for I/O operation. The 100 micro-order is not the same as the 100
backplane signal. Refer to section 7 use considerations.

IRCM Meaning: Store the S-bus in the IR. Record the type of Assembly language instruction stored
in the IR in Memory Protect hardware for use in determining any error conditions that occur
during execution of the instruction. Store the least significant ten bits of the S-bus into the least
significant ten bits of the M-register and clear the upper five bits of the M-register if S-bus bit
10 is zero.

Usage: Refer to section 7 for information on interfacing with Memory Protect.

L Meaning: Store the data at the output of the ALU into the L-register.

Usage: The L-register is used as the second operand in arithmetic functions.

M Meaning: Store the data on the S-bus in the M-register.

Usage: Do not store into the M-register between the READ micro-order and the subsequent
TAB if references to the A- or B-registers are possible. Refer to section 7 for TAB micro-order
use considerations.

MEU Meaning: DMS signal generation micro-order used in conjunction with Special field micro-

order MESP and S-bus field micro-order MEU. Eight different functions are performed (desig-
nated QO through Q7 for reference) by combinations of MESP and MEU. The combinations of
these signals and their functions are described in section 7.
Usage: The DMS must be installed for the MEU and MESP micro-orders to be used. The DMS
installation includes availability of the “'standard” DMS Assembly language instructions which
invoke the HP-written DMS microroutines. The MEU and MESP micro-orders are available for
you to write microprograms using your DMS facility. You should thoroughly understand the
DMS before using these micro-orders.

MPPA Meaning: Generate the signals MPPAST and MPBST to the MPP.

and

MPPB
Usage: Refer to the HP 21MX/21MX E-Series Computer /O Interfacing Guide for further
information. Example microprogram use can be found in section 13 of this manual.

NOP Meaning: No store operation is performed; this is the default micro-order when the Store field
is left blank.

P Meaning: Store the data on the T-bus in the P-register (Program Counter).

4-30

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | AND Il - STORE FIELD (CONT.)
PNM Meaning: Store the data on the T-bus in the P-register (Program Counter), and the data on the
S-bus in the M-register.
Usage: Useful in microprograms which perform multiword READ operations from main mem-
ory, where the P-register points to the address in main memory to be read. In a single
microinstruction, the microprogram can store P into the M-register via the S-bus and then
increment P via the T-bus. An example of such an application is as follows:
2 SPECIAL ALU STORE S$-BUS
READ INC PNM P
Refer to section 7 for the use of PNM in microinstructions with READ and WRTE micro-orders.
If MPCK is used in the Special field, PNM cannot be used in the Store field.
S Meaning: Store the data on the T-bus in the S-register.
SP Meaning: Store the data on the T-bus in the SP-register.
S
thru Meaning: Store the data on the T-bus in the indicated Scratch Register (S1 through S11).
St
TAB Meaning: Store the data on the T-bus in the A-register if the AAF (A-Addressable flip-flop) is
set; store the data on the T-bus in-the B-register if the BAF (B-Addressable flip-flop) is set;
store the data on the S-bus in the T-register (Memory Data Register) if neither AAF nor BAF is
set. Data on the M-bus (as it loads the M-register) determines the setting of AAF or BAF as
follows:
M-bus address FF States Register referenced
when M-register by TAB in store
store is specified AAF | BAF {or S-bus) field.
0 1 0 A
1 0 1 B
Any other value 0 0 T
Note that the PRST micro-order clears the AAF and BAF flip-flops.
Usage: This micro-order must occur concurrently when a WRTE micro-order is used. The
T-register is internal to the Main Memory section. It must not be used as a working register.
TAB may not be in both the Store and S-bus fields. Refer to section 7 for microprogramming
considerations and the use of TAB.
X Meaning: Store the data on the T-bus in the X-register.
Y Meaning: Store the data on the T-bus in the Y-register.

4-31

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | - S-BUS FIELD
A Meaning: Place the contents of the A-register on the S-bus.
B Meaning: Place the contents of the B-register on the S-bus.
CAB Meaning: Place the contents of the A- or B-register on the S-bus according to the value of IR
bit 11:
IR bit 11 zero means A-register.
IR bit 11 one means B-register.
CIR Meaning: Place the contents of the CIR on the S-bus (bits 5 through 0).
CNTR Meaning: Place the contents of the counter (lower 8 bits of the IR) on the lower 8 bits of the
S-bus; the upper 8 bits are ones. See "NOTE" under 101, below, and TAB "Usage", page 4-34.
DES Meaning: Enable the Remote Program Load Configuration Switches onto the S-bus. These
are a set of eight programmable switches that place data on the S-bus as follows:
NOTE
An open switch represents a logical 1 on the S-bus.
Switch No. 8 7 6 5 4 3 2 1
S-Bus bit 15114 |10 9 8 7 6 0
Undriven S-bus bits are logical ones.
Usage: Used in the base set microprogrammed bootstrap routine. Refer to your Computer
Series Operating and Reference Manual operating procedures for additional loader infor-
mation. Also refer to section 7 of this manual. See "NOTE” under 10Il, below, and TAB
“Usage”, page 4-34.
DSPI Meaning: Place the eight bits of the Operator Panel Display Indicator (complemented) on the
S-bus. The upper eight bits of the S-bus are set to ones.
Usage: Refer to the DSPI Store field definition for Display Indicator bit significance.
DSPL Meaning: Place the contents of the Operator Panel Display Register on the S-bus.
101 Meaning: Enable the I/O bus onto the S-bus.

Usage: This is used to transfer data from an /O device to the S-bus. See section 7 for
considerations 1n 1/O microprogramming.

NOTE

When 101 is used in conjunction with select code 01, 02, 03, 04, or 05,
the following microinstruction’s S-bus field must not have CNTR, DES,
or LDR if the unspecified (and assumed to be “1") S-bus bits must be
in a known state; similarly, the microinstruction must not be word type
[(IMM).

4-32

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION

WORD TYPE | - S-BUS FIELD (CONT.)

LDR Meaning: Place four bits from a Loader ROM on the S-bus. The address of these four bits in
the ROM is contained in the counter. Determination of which of the four available Loader
ROM's is specified by bits 15 and 14 in the Instruction Register. Example sequence:

13‘12[11['10[':‘:[8I|N77E6Il SErd] 3 ‘ 2 I 1 J 0

15 |1

n n

o

S— e

|——> Select Loader ROM nn, where nn is between binary 00 and 11

COUNTER ROM nn

7 [6 I 5 , 4 I 3 I 2 l 1 [0 0(1]2]|3 Octal addresses range

from 0 to 377.
LOADED ROM ADDRESS a 4 15|16 | 7] Egach addressed location
10]11 12113 contains a 4-bit-byte
of data.

rrrr was contents of
ROM nn, address a

15114 /13 . 12(11|10| 9 (8] 7|6 |5 4

Usage: Refer to the base set microroutine (appendix G), Initial Binary Loader for an example
of the LDR micro-order use. Guidelines for writing loaders appear in section 7. See “NOTE"
under 101, page 4-32, and TAB “Usage”, page 4-34.

M Meaning: Place the 15-bit contents of the M-register on the S-bus. Bit 15 of the S-bus is zerc.

MEU Meaning: DMS signal gene’ration micro-order used in conjunction with Special field micro-
order MESP and Store field micro-order MEU. Eight different functions are performed (desig-
nated Q, through Q, for reference) by combinations of MESP and MEU. The combinations of
these signals and their functions are described in section 7.

Usage: The DMS must be installed for the MEU and MESP micro-orders to be used. The DMS
installation includes availability of the “standard” DMS Assembly language instructions which
invoke the HP-written DMS microroutines. The MEU and MESP micro-orders are available for
you to write microprograms using your DMS facility. You should thoroughly understand DMS
before using these micro-orders.

4-33

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE | - S-BUS FIELD (CONT.)

MPPA Meaning: Generate signals MPAEN and MPBEN. (MPAEN is not used.)

and

MPPB
Usage: Refer to the HP 21MX M-Series and E-Series Computers 110 Interfacing Guide for
further information. Example microprogram use can be found in section 13 of this manual.

NOP Meaning: All ones are on the S-bus.
Usage: This is the default micro-order when the S-bus field is not specified in a
microinstruction.

P Meaning: Place the content of the P-register on the S-bus.

S Meaning: Place the content of the S-register on the S-bus.

SP Meaning: Place the contents of the SP-register on the S-bus.

S1 Meaning: Place the contents of the indicated Scratch Register (S1 through S11) on

thru the S-bus.

S11

TAB Meaning: Place the contents of the T-register (Memory Data Register) on the S-bus if neither
AAF (A-Addressable flip-flop) nor the BAF (B-Addressable flip-flop) is set; place the contents
of the A-register on the S-bus if the AAF is set: place the contents of the B-register on the
S-bus if the BAF is set. Data on the M-bus (as it loads the M-register) determines the setting of
AAF or BAF. Refer to AAF, BAF flip-flop setting information under the Store field TAB micro-
order.
Usage: TAB may not be used in the S-bus and Store fields simultaneously. Data in the
T-register must be removed within three microinstructions after the READ micro-order is used.
A microinstruction with a TAB micro-order in the S-bus field must not be followed by a
microinstruction with a DES, CNTR, or LDR S-bus field micro-order where the unspecified
(and therefore, assumed to be “1”) S-bus bits are required to be in a known state. The S-bus
field TAB also must not be followed by aword type Il microinstruction where the byte that is not
the Operand is required to be in a known *1” state. Refer to section 7 for considerations when
using TAB.

X Meaning: Place the contents of the X-register on the S-bus.

Y Meaning: Place the contents of the Y-register on the S-bus,

WORD TYPE Il - OP FIELD

IMM Meaning: Place 16 bits on the S-bus consisting of the 8-bit binary Operand and 8 bits of ones.
Determination of which 8 bits of the S-bus receive the Operand and which 8 bits receive all
ones is made by the Modifier field.
Usage: Refer to the word type Il Modifier field micro-orders for Operand examples.

WORD TYPE Il - SPECIAL FIELD

(All Special field micro-orders are the same as for word type 1.)

4-34

Table 4-1. Micro-Order Definitions (Continued)

Formats

MICRO-
ORDER DEFINITION
WORD TYPE Il - MODIFIER FIELD
CMHI Meaning: The 16 bits received by the S-bus consist of the following:
Bits 15 through 8 = Operand. (Refer to the information on word type |l Operand.)
Bits 7 through 0 = all ones.
The S-bus data is then complemented as it passes through the ALU.
Usage: See below.
MICROINSTRUCTION:
oP SPECIAL MODIFIER STORE OPERAND
IMM CMHI L 3678
BIT NO. 1514|1312 |11 |10] 9 | 8 6|5 |4a|3]2[1]o0
S-bus
CONTENT |1 |1 |t | rto 1|1 v |1 [r]|1r]vi1]1|1]n
OPERAND (367B)
BIT NO. 150141312 (11|10| 9| 8 6|s5|a4|3|2]1]0
Result
OPERAND Complemented
CMLO

Meaning: The 16 bits received by the S-bus consist of the following:

Bits 15 through 8 = all ones.

Bits 7 through 0 = Operand. (Refer to the information on word type 1l Operand.)

The S-bus data is then complemented as it passes through the ALU.

Usage: See below.

MICROINSTRUCTION:

oP SPECIAL MODIFIER STORE OPERAND
IMM CMLO s2 0208
BIT NO. 1514|1312 |11]10] 8 6 5 4 3 2 1
S-bus
content |1 |1 fala{r|al1|l1]olo]|o]l1lo|o]o
OPERAND
BITNO. |15{14]13]|12]11|10] 9 | 8 615 al3|2]1
Result
Outof ALU| nrent (0| o0[o0]0|o]o]l oo BEERIEEERE

OPERAND Complemented

4-35

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE Il - MODIFIER FIELD (CONT.)
HIGH Meaning: The 16 bits received by the S-bus consist of the following:
Bits 15 through 8 = Operand. (Refer to the information on word type |l Operand.)
Bits 7 through 0 = all ones.
The S-bus data is then passed through the ALU without modification.
Usage: See below.
MICROINSTRUCTION:
OoP SPECIAL MODIFIER STORE OPERAND
IMM HIGH S5 2328
S-bus and BIT NO. 15114 |13|12f11f10|9]|8|7]6|5|4|3[2]11]0
Result Out
of ALU CONTENT [1| O fof 1 [1]ofr o] v |t] 1] 1] 1t}i1]1]n
OPERAND
LOW Meaning: The 16 bits received by the S-bus consist of the following:

Bits 15 through 8 = all ones.
Bits 7 through 0 = Operand. (Refer to the information on the word type |l Operand.)

The S-bus data is then passed through the ALU without modification.

Usage: See below.

MICROINSTRUCTION:

oP SPECIAL MODIFIER STORE OPERAND

IMM Low S11 1118
S-bus and BIT NO. 151413 (12 (11|10 9 | 8 71615]|4|3]2]|1 0
Result Out
of ALU CONTENT 1 1 1 1 1 1 1 1 [0| 011 ojo0}1

OPERAND

4-36

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION

WORD TYPE Il - STORE FIELD

(All Store field micro-orders are the same as for word type |.)

WORD TYPE Il - OPERAND FIELD

The Operand (eight bits) must be an integer (used as a constant). The integer can be an octal or decimal
number within the following constraints:

a. The decimal number must be in the range 0 to 255.

b. The octal number must be in the range 0 to 377, followed by “B".
Examples:

1178, 117, 198, 5, 10B

WORD TYPE Ill - BRANCH FIELD

JMP Meaning: Branch to the CM address specified in the Address field of word type Il if the
condition in the Condition (and Branch Sense) field is met. If the Branch Sense field is blank
(RJS not specified), make the microbranch if the condition specified in the Condition field is
true. If RJS is specified in the Branch Sense field, make the microbranch if the condition
specified in the Condition field is false.

Usage: Used in conjunction with Special field micro-order CNDX for word type Il to branch in
a microprogram if conditions are met as described in the Condition and Branch Sense fields.
For example:

BRANCH
BRANCH SPECIAL CONDITION SENSE ADDRESS

JMP CNDX AL15 *+2
A microbranch will occur if bit 15 of the ALU output was set during execution of the last word
type | or Hl microinstruction.

BRANCH
BRANCH SPECIAL CONDITION SENSE ADDRESS

JMP CNDX AL15 RJS ADDRESS

Here, a microbranch will occur if bit 15 of the ALU output was not set. If bit 15 was set, the next
sequential microinstruction will be executed (no microbranch takes place).

JSB Meaning: Perform a branch to the CM address specified in the Address field of word type Il if
the condition in the Condition (and Branch Sense) field is met. If RJS is not specified in the
Branch Sense field, the microbranch will be made if the condition specified in the Condition
field is true. If RJS is specified, the microbranch will be made if the condition is false. If the
branch is made, the current microinstruction address plus one is pushed onto the Save Stack
to be used as the return address.

Usage: Three levels of microsubroutine branches can be made.

4-37

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE Ill - BRANCH FIELD (CONT.)

RTN Meaning: Branch to a return address; i.e., branch by “popping” the Save Stack into the
CMAR using the address in the Save Stack. Note that there are three levels of microsubrouting
branches (JSB’s) so there can be three levels of RTN.

Usage: For word type Ill, CNDX is always specified in the Special field and the “pop”

operation is made only if the state in the Condition and Branch Sense fields is met. Otherwise,

the next microinstruction is executed.

Also of interest may be the discussions of JSB for word types | and Ill and special considera-

tions about returns when the word type | Special field mnemonics ASG and SRG2 are used.
WORD TYPE Ill - SPECIAL FIELD

CNDX Meaning: This Special field micro-order specifies word type Il - conditional branches and
returns.

Usage: Used in conjunction with JMP, JSB, or RTN in the Branch field.
WORD TYPE Ill - CONDITION FIELD

ALZ Meaning: The ALU output was equal to zero as a result of the last word type | or |l
microinstruction execution.

ALO Meaning: Bit zero of the last output from the ALU was set by the last word type | or |l
microinstruction execution.

AL15 Meaning: Bit 15 of the last output from the ALU was set by the last word type | or Il
microinstruction execution.

Meaning: The last four bits of the counter are zeros. Previous instruction must not contain an

CNT4 X - ,

ICNT instruction.

CNT8 Meaning: All eight bits of the counter (lower byte of the IR) are zeros. Previous instruction
must not contain an ICNT instruction.

CouTt Meaning: The ALU Carry Out flag bit was set by the last ALU operation in the last word type |
or Il microinstruction execution.

E Meaning: The Extend (E) register bit is set.

FLAG Meaning: The CPU flag bit is set.

HOI Meaning: The Operator Panel RUN/HALT switch is not set to RUN or there is an interrupt
pending (i.e., halt-or-interrupt).

Usage: This micro-order is used to check for interrupts. Use is necessary because micro-
programs cannot be interrupted unless a check for interrupts is made. Refer to section 7 for
considerations in using HOI.

IR8 Meaning: Bit 8 of the IR is set.

IR11 Meaning: Bit 11 of the IR is set.

LO Meaning: Bit zero of the L-register is set.

L15 Meaning: Bit 15 of the L-register is set.

4-38

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE Il - CONDITION FIELD (CONT.)
MPP Meaning: Test for a signal MPP received at the MPP. The L-register must not be changed in
the microinstruction immediately preceeding the microinstruction containing MPP.
Usage: Used in conjunction with the MPP1 and MPP2 Special field micro-orders and with
MPPA and MPPB Store and S-bus field micor-orders of word type | microinstructions. Refer to
the HP 21MX M-Series and E-Series Computers /O Interfacing Guide for further information.
Example microprogram use will be found in section 13 of this manual.
MRG Meaning: A Memory Reference Group instruction is in the IR; i.e., IR bits 14, 13, and 12 are
not all zero.
NDEC Meaning: The Operator Panel DEC M/m pushbutton is not actuated.
NINC Meaning: The Operator Panel INC M/m pushbutton is not actuated.
NINT Meaning: An interrupt is not pending.
NLDR Meaning: The Operator Panel IBL/TEST pushbutton is not actuated.
NLT Meaning: The Operator Pane! Register Select (left) pushbutton is not actuated.
NMDE Meaning: The Operator Panel MODE pushbutton is not actuated.
NMLS Meaning: Memory was not lost as a result of the last power down or power failure.
NRT Meaning: The Operator Panel Register Select (right) pushbutton is not actuated.
NSFP Meaning: A standard Operator Panel is not installed on the computer.
NSNG Meaning: The Operator Panel INSTR STEP pushbutton is not actuated.
NSTB Meaning: None of the following Operator Panel pushbuttons are actuated:
INSTR STEP
Register Select right (—)
Register Select left (<)
MODE
IBUTEST
INC M/m
DEC M/m
STORE
RUN
PRESET
NSTR Meaning: The Operator Panel STORE pushbutton is not actuated.
ONES Meaning: All 16 bits of the last output from the ALU were set (tested before the Rotate/Shifter)
as a result of the last word type | or Il microinstruction execution.
OVFL Meaning: The Overflow register bit is set.
RUN Meaning: The computer's Run flip-flop is set.

4-39

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION
WORD TYPE IlIl - CONDITION FIELD (CONT.)
RUNE Meaning: The LOCK/OPERATE switch is in the OPERATE position.
NOTE
In LOCK position, the RUN and HALT switches are disabled.

SKPF Meaning: The 1/O signal SFS is present (/O time is T3 to T5) and the addressed I/O device
flag is set; or, the I/O signal SFC is present (/O time is T3 to T5) and the addressed I/O device
flag is clear.

Usage: Refer to section 7 for information on /O microprogramming considerations for use of
the SKPF micro-order.
WORD TYPE Ill - BRANCH SENSE FIELD
RJS Meaning: Perform the branch or return specified in the Branch field if the condition specified

in the Condition field is not met. The Condition field micro-order specifies the condition under
which a branch or return can take place; the RJS micro-order in effect reverses the sense of
the condition. For example, if a conditional branch is specified if the Flag bit is set (jump if Flag
bit set), the RJS micro-order will reverse the condition so that the branch occurs if the Flag bit
is not set.

If the Branch Sense field is blank (NOP), the condition sense is not reversed (i.e., is the same
as described in each of the Condition field micro-orders).

4-40

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION

WORD TYPE Hi - ADDRESS FIELD

A branch may be made to any address in the current or next 512,, word control memory block for word type |Il.
The entry for the microassembler format can be an octal, decimal, or a computed address.

A decimal address (d) must be in the range 0 to 511. An octal address (kB) must be in the range OB to 777B,
where the “B" signifies octal. If the word type Il is located in the last address in a 51 2,0 word block (i.e., address
is Xxx777g), the range is defined as the next 512,, word block. A computed address which is within the decimatl or
octal range must be in one of the following forms:

*+d
*—d
LABEL +d
LABEL —d
*+ kB
*—kB
LABEL +kB
LABEL —kB
LABEL
where:
* means “this address”.
d means a decimal number.
k means an octal number (followed by B).

LABEL means a microinstruction or pseudo-instruction label that is defined elsewhere in the microprogram.

Examples:
BRANCH

BRANCH SPECIAL CONDITION SENSE ADDRESS
JMP CNDX NSNG 42
JMP CNDX FLAG —4
JSB CNDX CNT4 RJS FETCH +1
JSB CNDX IR8 TIME — 4
JMP CNDX IR11 RJS *+78B
JMP CNDX LO 2B
JMP CNDX ALZ LOOP
RTN CNDX ALZ RJS

NOTE

When RTN is encoded in the Branch field, no address should be encoded.
The address in the Save Stack is used to load the CMAR.

Except as noted above, the target address of the branch must be within the current 1000 octal (612 decimal)
locations (two modules). The complete absolute address must be specified. For example, if a conditional branch
microinstruction is within CM addresses 03000 and 03777, no target address may be outside the range 03000 to
03777.

Refer to section 6 for additional information on CM addressing. Refer to section 8 for information on using the
RTE Microassembly language.

441

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER

DEFINITION

WORD TYPE 1V - BRANCH FIELD

JMP

Meaning: Branch unconditionally to the address (may be modified by a Modifier/Special field
micro-order) specified in the Address field. The address may be anywhere in the 16K word
CM.

Usage: Refer to the Modifier/Special field micro-orders and the Address field discussions.

JSB

Meaning: Branch unconditionally to the microsubroutine located at the CM address (may be
modified by a Modifier/Special field micro-order) specified in the Address field. The return
address is stored on top of the Save Stack and recalled by the RTN micro-order.

Usage: Refer to information in the word type 11l Branch field JSB description. Also refer to the
RTN micro-order discussion for the word type | Special field for additional information.

WORD TYPE IV - MODIFIER/SPECIAL FIELD

IOFF

Meaning: Turn off the Interrupt Enable flag to disable recognition of normal interrupts. (Does
not disable power fail, Memory Protect, or parity interrupts.)

Usage: No modification is made to the microbranch address when this micro-order is used in
aword type IV microinstruction. After the occurrence of a JTAB or three occurrences of INCI (if
Memory Protect is installed) interrupts are again recognized. IOFF should be used with
caution since holding off interrupts could cause the loss of input or output data. Refer to
section 7 for interrupt handling.

10G

Meaning: Freeze the CPU until time period T2. Then enable the generation of /O timing
signals dependent upon the instruction in the IR. Perform the JMP or JSB in the word type IV
Branch field while modifying the fourth and third bits (bits 8 and 7, figure 4-2) of the Address
field (according to the I/O instruction jump table) for the final address. Bits 8, 7, and 6 of the IR
determine the microbranch address modification as follows:

ASSEMBLY IR ADDRESS FIELD

LANGUAGE BITS BITS 8 AND 7
INSTRUCTION IN IR 87,6 _REPLACED BY:

MIA or MIB 100 00
LIA or LIB 101 01
OTA or OTB 110 10
HLT 000 11
CLO or CLF 001 11
STO or STF 001 11
SFC or SOC 010 11
SFS or SOS 011 11
STC or CLC 111 11

Usage: I0G can also be used in the Special field of word type |, but there is no microbranch
address modification since the JMP or JSB is not present. Familiarity with the /O system is
mandatory to properly use this micro-order. Refer to section 7 for more information about
forming and executing I/O microinstructions.

4-42

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION

WORD TYPE IV - MODIFIER/SPECIAL FIELD (CONT.)

ION Meaning: Turn the Interrupt Enable flag on and allow the CPU to recognize standard device
interrupts until the micro-order IOFF is executed. Modify the first and second bits (bits 6 and 5,
figure 4-2) of the Address field two least significant bits according to bits 1 and 0 of the IR (i.e.,
IR bits 1 and 0 replace bits 6 and 5 in the Address field).

Usage: An interrupt from any I/O device can be detected in two ways:

a. IfaJTABIis executed and an interrupt is pending or the Run flip-flop is clear, execution is
forced to location 6 in CM.

b. A test for interrupt pending or Run flip-flop clear can be performed by the executing
microprogram by having an HOI encloded in the Condition field of a word type Il
microinstruction. Or, a test for interrupt pending can be made by having NINT encoded in
the Condition field. The micro-order ION allows interrupts to be recognized. However,
interrupts are not generated by the interrupt system unless a STF 0 I/O control command
has been executed. Refer to the discussion of the interrupt system in your Computer
Series Operating and Reference Manual. Refer to section 7 for considerations for
interrupt handling.

J74 Meaning: Modify the four least significant bits of the Address field (bits 8, 7, 6 and 5, figure
4-2) with bits 7 through 4 of the IR; i.e., IR bits 7 through 4 replace bits 8 through 5 in the
microbranch Address field to determine the actual JMP or JSB address.

NOP Meaning: No operation. This is the default operation if no other micro-order is specified in the
Special field for word type IV. No modification is made to the JMP or JSB address.

RJ30 Meaning: Modify the four least significant bits of the Address field (bits 8, 7, 6 and 5, figure
4-2) with bits 3 through 0 of the IR and begin a READ operation of main memory; i.e., IR bits 3
through 0 replace bits 8 through 5 in the branch Address field to determine the actual JMP or
JSB address. The READ operation is the same as described for the word type | OP field.

Usage: Refer to the word type | OP field READ micro-order definition for M-register
considerations.

RPT Meaning: Repeat the next microinstruction for the number of times specified by the positive
number in the least significant four bits of the (IR) counter. No modification to the microbranch
Address field is made.

Usage: Same as for the word type | and Il Special field RPT micro-order.

STFL Meaning: Set the CPU flag and then perform the JMP or JSB to the address specified in the
Address field. No modification is made to the address.

4-43

Formats

Table 4-1. Micro-Order Definitions (Continued)

MICRO-
ORDER DEFINITION

WORD TYPE IV - ADDRESS FIELD

A branch may be made to any address in CM. The entry for the microassembler format can be an octal, decimal,
or computed address. Same as requirements for the Address field in word type |Il.

A decimal address (d) must be in the range 0 to 16383. An octal address (kB) must be in the range 0B to

377778, where the “B" signifies octal. A computed address which is within the decimal or octal range must be in
one of the following forms:

*i g
*-d
LABEL +d
LABEL —d
*+kB
*—kB
LABEL +kB
LABEL —kB
LABEL
where:
* means “this address”.
d means a decimal number.
k means an octal number (followed by B).

LABEL means a microinstruction or pseudo-instruction label that is defined elsewhere in the microprogram.

Examples:
MODIFIER/
BRANCH SPECIAL (NO ENTRY) (NO ENTRY) ADDRESS
JSB IOFF “+ 11
JMP

FETCH

(Refer to the word type Ill Address field examples.)

Refer to section 6 for additional information on CM addressing. Refer to section 8 for information on using the
RTE Microassembly language.

4-44

Section 5
TIMING CONSIDERATIONS I

TIMING CONSIDERATIONS

Certain details about computer timing must be considered for microprogramming applications so that
you can:

e Intelligently and effectively make the most use of computer time when you execute your
microprograms.

e Synchronize microinstructions properly for the operations that you wish to perform with your
microprograms.

The information you need about the computer’s timing to effectively microprogram can be categorized
into four areas:

® Basic definitions of the time periods and an idea of the functions involved in timing.

® Conditions that can vary the speed of execution of your microprograms.

e How to estimate execution time for an individual microcycle and for an I/O cycle.

e How to determine the overall effect of combined timing factors on an executing microprogram.
This section will provide you with all the basic computer timing information that you will need for
microprogramming. Section 7 provides additional information on considerations involved in combin-
ing micro-orders and microinstructions for synchronizing various operations. The subject of timing

involves many aspects of computer operation but the discussions in this manual will be limited to
timing only as it relates to your user microprogramming.

5-1. COMPUTER SECTIONS INVOLVED IN TIMING

There are three parts or “functions” of the computer that must be considered when
microprogramming:

e The Control Processor and Arithmetic Logic section.

® The Main Memory section.

¢ The I/O section.

Each of these “functions” essentially operates asynchronously until they are required to communicate

in order to perform a “unit” task such as a main memory read or write operation, or some I/O
operation.

In normal operation, the Control Processor and Arithmetic Logic section can operate at the fastest rate

of any of the functions in the computer. Main memory is the next slowest and the I/O section
(understandably) requires the longest cycle time.

5-1

Timing

Some operations involving main memory take some additional time if certain accessories (DMS or
DCPC) are installed. The timing factor for DMS will be discussed in this section but, for the micro-
programming application, DCPC operation can only be estimated as taking a percentage of overall
microprogram execution time. Section 13 provides some guidelines on calculations when considering
DCPC. There is an internal main memory operation (refresh) that can be calculated by taking a
percentage of overall microprogram execution time; this is also discussed in section 13. In the timing
calculations in this section, these “unpredictable” factors (DCPC and memory refresh) will be consi-
dered transparent for user microprogramming applications.

5-2. ?EEI){;IIESW AND EXPANSION OF TIMING DEFINITIONS AND

Recall from the section 2 timing definitions that the Control Processor executes one microinstruction
during one microcycle. The microcycle (also designated a T-period) is the time required to completely
execute the microinstruction (which is composed of up to five micro-orders). In order to sequentially
execute the micro-orders in the various fields of any particular microinstruction, it can be seen that
another timing interval is needed. In figure 5-1 you will see that each microcycle is partitioned into a
number of intervals designated P1 through P5 and also, for reasons which will be discussed shortly,

ONE COMPLETE /O CYCLE
r " N
ONE T-PERIOD OR MICROCYCLE
_ > /‘—H
T3 T4 T5 T6 T2 T3 T4 T5 T6 T2 T3 ETC.
1 | | | l | | | | |] L
7 T | 1 1 1 | 1 |
ANY ANY
T-PERIOD T-PERIOD
CAN BE CAN BE
COMPOSED OF OR COMPOSED OF
P-INTERVALS P-INTERVALS
AND E-INTERVALS
P1 P2 P3 P4 P5 P1 P2 P3
L l |] L l |] l | l L |
I 1 1 T 1 1 i T T 1 1 1 1 I i
AP |
A P-INTERVAL —
-INT
- |<_ 35NS EACH AN E-INTERVAL
35NS EACH f—
[175NS —
105NS
[N ~ J
A SHORT MICROCYCLE ‘ 260NS o
(USUALLY USED FOR
ARITHMETIC AND LOGIC N s
OPERATIONS) T
A LONG MICROCYCLE
(ALWAYS USED IN 1/O
OPERATIONS FROM T3
THROUGH T5).
7115-13

Figure 5-1. Basic Timing Definitions

5-2

Timing

that intervals designated E1 through E3 also exist. Each E- or P-interval is always 35 nanoseconds
long. One exception, which will be discussed shortly, is when a pause condition exists. A crystal-
controlled (28.5 MHz) oscillator and timing circuits generate the 35-nanosecond intervals which are
the basic “building blocks” for making up the microcycles.

Figure 5-1 also shows that any Input/Output (I/O) timing cycle is composed of five microcycles
(T-periods T2 through T6). An I/O cycle is the time required to generate all the I/O signals necessary to
execute any particular I/O instruction. All I/O signals and their respective generation times are
described in the HP 21MX M-Series and E-Series Computer I/O Interfacing Guide, part no.
02109-90006.

T-periods are initiated at the start of a P1 interval. Note in figure 5-1 that the length of a microcyle can
vary. That is, a T-period can be either 175 nanoseconds long, or E-intervals can be inserted to extend
the T-period to 280 nanoseconds. These variations and some other variable timing factors are dis-
cussed in the next paragraph.

5-3. TIMING VARIABLES

There are essentially three variable factors to consider in computer timing. They are the:

® Short or long microcycle.
® Pause.

® Timing freeze.

Each of these factors is discussed in the following paragraphs.

5-4. SHORT/LONG MICROCYCLES

As seen in figure 5-1, a short microcycle consists of five 35-nanosecond intervals that run in sequence
from P1 through P5. The long microcycle consists of eight 35-nanosecond intervals that always run in
the sequence P1, P2, P3, E1, E2, E3, P4, and P5. The Arithmetic/Logic section in the computer is
designed to operate with a 175-nanosecond microcycle. There are three reasons for the Control
Processor timing circuits to switch to long (eight 35-nanosecond intervals) microcycles:

® Certain I/O interfaces may not be able to accommodate a T-period of less than 196 nanoseconds
during execution of an I/O instruction. Therefore, if an I/O operation is indicated, long microcycles
are always generated from T3 through T5.

® The Memory Expansion Module (MEM), which is part of the DMS, is unable to gate data onto the
S-bus fast enough when a 175-nanosecond microcycle is used. Therefore, if an MEU micro-order is
in the S-bus field of a microinstruction, a long microcycle will be generated.

® The Microinstruction Register (MIR) is clocked at the beginning of each microcycle (P1) and the
Control Memory Address Register (CMAR) is conditionally loaded at P3 of each microcycle. If a
microbranch microinstruction is to be executed, only two P intervals, P4 and P5 (70 nanoseconds),
would be left in a short microcycle to access control memory (CM) and reload the CMAR with the
address of the new microinstruction then carry out the tasks normally associated with P4 and P5.

5-3

Timing

This would not be enough time to correctly reload the CMAR and access CM since CM has a
worst-case access time of approximately 140 nanoseconds.* Therefore, if a microbranch is to be
made, long microcycles are generated and the three extra 35-nanosecond times are added after P3
to allow enough time to complete the microbranch. A conditional microbranch microinstruction
with the branch condition not met, will leave the Control Processor in the short microcycle mode.

Most microcycles will be short but a change to long microcycle timing could occur, based on prevailing
conditions, during P3 of every microcycle. That is, the conditions that determine a switch to long
microcycles are monitored at every P3. So, as could be expected, a great deal of microprogrammed
condition testing, I/O, or DMS activity involving the S-bus will make the computer run slower.

5-5. PAUSE

As mentioned in a general way in paragraph 5-1, main memory and the Control Processor operate
asynchronously until they must communicate (in a “handshaking” manner) to accomplish read or
write operations. The “pause” in microcycle timing is used to interact with an asynchronous memory
interface. This feature permits greater performance with existing systems and compatibility with
various speed memories.

A pause operates in the following way. A read or write operation can be started with the appropriate
micro-order in any microcycle. Memory is then engaged in completing the operation under its own
timing (asynchronously). If the Control Processor, through another microinstruction, requests another
memory operation while memory is completing the first (or another) task, a conflict in timing occurs.
This possible conflict is monitored by the Control Processor at P3 of every microcycle before the
Control Processor actually makes the request for the use of main memory. If a conflict is detected (i.e.,
there is an attempt to use memory while it is busy), the Control Processor will go into the pause state
(suspend all timing clocks) until main memory is no longer busy.

A pause is accomplished by effectively having the timing circuits “latch-back” into P3 so that P3 is
repeated for the appropriate number of times until the pending request can be processed. Pause time,
therefore, will always be an integer multiple of 35 nanoseconds. At the end of the pause, the Control
Processor timing will progress to either P4 or E1 (the long microcycle) depending upon the short/long
microcycle conditions as discussed in paragraph 5-4.

When a memory operation has been started and memory is still busy, the conditions that can cause a
pause in a microcycle are:

© An attempt to begin another read or write operation; that is, having a READ or WRTE in the OP
field, or an RJ30 in the Special field of a microinstruction.

® An attempt to enable the T-register for storage from the S-bus (TAB in the Store field) or for
reading the contents of the T-register onto the S-bus (TAB in the S-bus field; e.g., to obtain the
results of a read operation).

® DCPC cycle in process or memory refresh operations but, as stated in paragraph 5-1, this will be
transparent for microprogramming.

*Base set CM access time is approximately 90 nanoseconds; Writeable Control Store (WCS) CM access
is about 132 nanoseconds; and Firmware Accessory Board (FAB) CM access takes the longest time
(approximately 140 nanoseconds).

5-4

Timing

Figure 5-2 shows four typical examples of microcycles with a pause. Figures 5-2A and 5-2B are both
short microcycles. Figures 5-2C and 5-2D are examples of long microcycles. Given specific state
information (memory cycle time, memory operation being performed, etc.), the length of the extended
P3 interval can be determined. Figure 5-2 shows these typical length pauses under both read and write
conditions. Paragraph 5-8 specifically covers these calculations.

5-6. FREEZE

The Control Processor and I/O section operate asynchronously until an I/O instruction begins execu-
tion and communication is needed. That is, although T-periods run sequentially from T2 through T6,
and each T-period is initiated by P1 of any microcycle, I/O microinstructions must begin at the
appropriate part of an I/O cycle. The freeze condition therefore suspends microinstruction execution
(but continues T-period generation) until the "appropriate” T-period starts.

As far as microprogramming is concerned, a freeze exists to synchronize microinstruction execution
with T2 or T6. Again it should be noted that DCPC activity and some memory operations may also
cause freeze conditions, but these will not be considered here. For microprogramming purposes, the
two factors causing a freeze condition are:

® An /O operation is to be performed (an IOG micro-order in the Special field of a microinstruction).
This will suspend all microinstruction execution until T2 starts. I/O type microinstructions can
then be executed properly in the appropriate T-periods (i.e., during T3 through the end of T5).

® An interrupt acknowledge operation is to be performed (an IAK micro-order in the Special field of
a microinstruction). This will suspend all microinstruction execution until T6 starts. During T6
the CIR is loaded and an IAK is generated.

The timing freeze can begin at the end of any microcycle. When I/O instructions are to be executed,
long microcycles will always exist from T3 through T5 (as mentioned in paragraph 5-4).

In summary, it should be noted that the two freeze conditions mentioned above are mutually exclusive.
Only one freeze can be initiated per microcycle, but a freeze condition may exist for several microcy-
cles. In other words, if the Control Processor is not at the beginning of a T2 when an I0G micro-order is
decoded, there will be a freeze until the start of the next T2; if the Control Processor is not at the

beginning of a T6 when an [AK micro-order is decoded, there will be a freeze until the start of the next
T6.

5-5

Timing

S.BUS SOME OP OR SPECIAL FIELD OPERATION oE S?&TAATI oN
- THAT WILL NOT CAUSE LONG MICROCYCLE STARTS.
ENABLED / OT CAU G MICROCYCL S REGISTER CLOCKED.
— _ - —
AP11P21P31P31P31 1 | 1N ¢ | | | P3 | P4 | PS5
' I [[| | |]] i I 1 | |
L. J
PAUSE TIME
- 560NS >

ATYPICAL SHORT MICROCYCLE WITH A PAUSE DUE TO A READ OPERATION UNDERWAY (E.G., READ ENCODED
IN PREVIOUS MICROINSTRUCTION WITH A TAB IN S-BUS FIELD OF THIS MICROINSTRUCTION).

€ >
L T T R S O N L 2
T T T 1T 1 17 1 T 1 1
- — J
PAUSE TIME
595NS -

ATYPICAL SHORT MICROCYCLE WITH A PAUSE DUE TO A WRITE OPERATION UNDERWAY (E.G., WRTE ENCODED
IN PREVIOUS MICROINSTRUCTION WITH ANOTHER WRITE ATTEMPTED IMMEDIATELY IN THIS MICROINSTRUC-

TION).
AN OPERATION STARTS THAT
WILL CAUSE A LONG MICROCYCLE ~—— 105NS ADDED
~ N)
CP11P2|P31P3[| lﬁ) Sl | -lP31E1|EZlE3|P4|P5
‘ | | | |] | | | | | | | | |
\— J
—_
PAUSE TIME
. 665NS >

ATYPICAL LONG MICROCYCLE WITH A PAUSE DUE TO A READ OPERATION UNDERWAY (E.G., READ ENCODED IN
PREVIOUS MICROINSTRUCTION WITH A TAB IN S-BUS FIELD AND RTN IN SPECIAL FIELD OF THIS MICRO-
INSTRUCTION).

<.

P2 1 P3| P3| { %Wi%]

7

P1

el
w

PAUSE TIME

700NS

ATYPICAL LONG MICROCYCLE WITH A PAUSE DUE TO A WRITE OPERATION UNDERWAY (E.G., WRTE ENCODED
IN PREVIOUS MICROINSTRUCTION WITH READ, RTN ENCODED IN THIS MICROINSTRUCTION).

NOTE: MEMORY READ AND WRITE TIME EXAMPLES ARE FOR ONE TYPE
OF COMPUTER WITH A SPECIFIC MEMORY. FOR ACTUAL MEMORY
CYCLE TIMES REFER TO YOUR COMPUTER DOCUMENTATION.

711514
Figure 5-2. Variable Microcycles with Pause Conditions

5-6

Timing
5-7. OVERALL TIMING

Figure 5-3 shows the sequence of timing events occurring in any given microcycle, which always starts
at P1. The decision of whether or not to freeze is made at the end of the microcycle. The decision to
pause or not to pause and whether or not to go to long microcycles is made in P3. It can be seen that if
all three variable timing conditions are to be considered, the pause comes before the effect of long/short
microcycles and a freeze will occur after the effect of either a pause or long/short microcycle.

ADVANCE T- L —_—
PERIOD: START
T2, T3, T4, T5,
OR T6.
START
P1
INTERVAL.
NO
T20R T6 YES o)
STARTING FREEZE
? ?
4
GO THRU FREEZE
P2 FOR
INTERVAL. ONE
T-PERIOD.
T-PERIODS
GO ON BUT
NO OTHER
4 ACTIVITY.
START
P3
INTERVAL.
COMPLETE
P4 AND P5
INTERVALS.
4
SEE FIGURE
__] 5410
DETERMINE
PAUSE.

e —

———— ey

SEE FIGURE

5-4 TO LONG NO
DETERMINE — MICROCYCLE
SHORT/LONG. ?

——]

COMPLETE
E1, E2 AND
E3 INTERVALS.

7115-15
Figure 5-3. Overall Microcycle Timing Flowchart

Timing

Freeze or pause conditions prevail whenever communication is required between the Control Pro-
cessor and the I/O section or the Main Memory section. That is, a freeze occurs to synchronize the
Control Processor with the /O section (an IOG or IAK Special field micro-order decoded). A pause
occurs to suspend Control Processor operations and wait for main memory if an attempt is made to use
main memory while it is still busy. If you do not attempt to use main memory while it is busy (i.e., use
a READ, WRTE, RJ30, or TAB micro-order in any microinstruction), you may continue Control
Processor operation. In other words, you can continue to execute microinstructions between memory
operations if the above-mentioned micro-orders are not executed.

Long microcycles prevail whenever additional time is required to complete a task in a microcycle,
such as for I/O operations. Also, long microcycles prevail whenever control memory branches are to be
made.

Figure 5-4 may be used in conjunction with figure 5-3 as a quick reference for estimating the time
taken to complete a microcycle. Detailed calculations for typical microinstruction and microprogram
execution times are discussed in paragraph 5-8.

When one or both DCPC channels are busy, the Control Processor is effectively in a freeze condition.
This is why DCPC operations are considered transparent to the microprogrammer. Careful analysis of
the processes you wish to accomplish with microprogramming, with the timing factors kept in mind,
will provide maximum performance gain.

5-8. TIMING CALCULATIONS

The flowchart illustrated in figure 5-5 can be used to calculate the execution time for individual
microcycles and also for estimating overall microprogram execution time. The flowchart is to be read
from left to right once for each microcycle. To estimate the execution time for a microroutine,
repetitive cycles through the flowchart must be made, noting times and remembering conditions
encountered during earlier microcycles.

All conditions that change timing (for user microprograms) during any microcycle are shown in figure
5-5 along with times (in nanoseconds) that should be summed while proceeding through the micro-
cycle. Specific micro-orders determine timing changes. Therefore, all calculations described in this
section are made by comparing micro-orders against the chart. The examples that follow consider
events as they occur through a microcycle with increasing complexity of timing calculations.

5-8

Timing

1S THE SUM (R) OF
ALL MICROCYCLE
TIMES BEFORE
THIS MICRO-
CYCLE, BUT
AFTER THE LAST
MICROCYCLE
CONTAINING A
READ MICRO-
ORDER, PLUS
175NS, GREATER
THAN THE MAIN
MEMORY READ
CYCLE-TIME?
{R+T > M? SEE
NOTE 2))

DOES THIS

MICROINSTRUC-
TION CONTAIN A
READ OR WRTE
MICRO-ORDER?

DOES THIS

MICROINSTRUC-
TION CONTAIN A

TAB MICRO-

ORDER IN THE

S-BUS FIELD?

YES

T=175
PAUSE = 0

YES

SEE NOTE t

IS THE SUM (S) OF
ALL MICROCYCLE
TIMES

BEFORE THIS
MICROCYCLE,
BUT AFTER THE
LAST MICRO-
CYCLE CONTAIN-
ING A READ OR
WRTE MICRO-
ORDER, PLUS
175NS GREATER
THAN THE CYCLE
TIME OF THE
LAST INITIATED
MAIN MEMORY
CYCLE?

(S + T>M?SEE
NOTE 2))

PAUSE EQUALS
MEMORY CYCLE

PAUSE EQUALS
MEMORY CYCLE
TIME MINUS
SUM.

MAKE T =
280

MICRO CYCLE
TIME IS
PAUSE + T

DO ANY OF THE

TIME MINUS
SUM.

PREVIOUSLY EXE-
CUTED MICRO-
INSTRUCTIONS
CONTAIN AN I0G
IN THE SPECIAL
FIELD?

DOES THIS
MICROINSTRUC-
TION HAVE AN
MEU IN THE
SPECIAL FIELD?

WILL THIS
MICROINSTRUC-
TION CAUSE A
BRANCH?

(RTN, JMP, JSB)

NOTES:

1. TIMES ARE IN NANOSECONDS.

2. THIS EXAMPLE iS TYPICAL FOR ONE TYPE OF COMPUTER
WITH A SPECIFIC MEMORY, I.E., 2102B. FOR ACTUAL MEMORY
CYCLE TIMES REFER TO YOUR COMPUTER DOCUMENTATION.
TYPICAL MEMORY CYCLE TIMES USED (M, ABOVE) WITHOUT
DMS ARE:

READ = 560 NS
WRITE = 695 NS

WITH DMS: APPROX. 630 NS FOR READ OR WRITE.

7115-16

Figure 5-4. Consolidated Microcycle Estimating Flowchart

5-9

Timing

5-9. ARITHMETIC/LOGIC SECTION OPERATIONS

The fastest microcycle timing is found when microprogrammed operations deal with the Arithmetic/
Logic section registers. For example, suppose the timing for the following portion of a microroutine is
to be estimated:

ALU/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
FIRST STFL éMPS B B
SECOND CMPS A A
THIRD INC A A
iETC)

Read figure 5-5 from left to right with the first microinstruction in mind. The total time for the first
two intervals (P1 + P2) is 70 nanoseconds. The Special field in the first microinstruction does not
contain an RJ30 and the OP field does not contain a READ or WRTE. Also, the S-bus field does not
contain TAB. Thus, in following the timing line into P3, note that no pause condition exists.

Continuing in P3, since an I/O operation is not being performed, you will not be concerned about the
T-period in existence. The answer here will follow the decision line labeled “unknown” and assume
here no IOG in the Special field within the last three microinstructions. Also, a long microcycle will
not occur since there is no MEU in the S-bus field of this microinstruction and no JSB, JMP, or RTN
micro-orders coded. With conditions as they are, the Control Processor timing circuits will not switch
to a long microcycle. Following the timing line in figure 5-5 through the end of P3, time in this
microcycle thus far is 105 nanoseconds. Intervals P4 through P5 are executed immediately making
the total time for execution of the microinstruction labeled FIRST = 175 nanoseconds. Recall that it
was assumed that no freeze conditions are in effect for this example, thus the timing line can be
followed back to the beginning of P1.

Microinstructions SECOND and THIRD are executed in a similar manner (check the microroutine
using the flowchart). The total time for this microroutine is 525 nanoseconds.

5-10

—— START MICROCYCLE TIMING >t PAUSE DETERMINATION LONG/S
| I |
F——3NS-——»-——-35N§-—— P ———————— ———~ IF NO PAUSE, 35NS ONLY. IF PAUSE, 35NS + PAUSE TIME + ANY DMS TME - —/———F————————— ¥ ——————— —————— IF LONG
| I
BEGIN P1 | |
| | INTERVAL BEGIN P2 | 5 BEGIN P3 NO
ADVANCE — INTERVAL. T INTERVAL. A
T- TER.
COUNTE TAB IN S-BUS
FIELD OF THIS YES
MICROINSTRUC- OR
| TION? UNKNOWN
READ, WRTE IN
ADVANGE TO OPFIELD, RJ30 IN
SPECIAL FIELD OF LAST WAS 10G
Q%ETTSPT%R'T%PT@ ;?:fu"é'%ga”‘: SEE FIGURE 5-6 MEMORY CYCLE \ YES IN SPECIAL IN S-BU:
T5,0RT6.TIMES WRTE MUST HAVE TODETERMINE. COMF’;LETE FIELD”AT T2 FIELD
FORDCPC AND ATABINTHE !) '
MEMORY RE- STORE FIELD.
FRESHACTIVITY NO
ARE IGNORED. IF
ACTIVE, CALCU- AST PAUSE CONDITION |
LATE ASAPER- SEE FIGURE MEMORY STOP MICRO-
CENTAGE OF 5-6 TO — — CYCLE INSTRUCTION
OVERALL MICRO- DETERMINE. COMPLETE EXECUTION AND tOG INSPECIAL
PROGRAM EXE- 2 T-PERIOD FIELD MUST HAVE
CUTIONTIME. GENERATION. BEENWITHIN
NO LAST THREE
SEE FIGURE 5-6 MICROINSTRUC-
p| TOCALCULATE TIONS. I0G
PAUSE LENGTH. CAUSES SYN-
IT WILL BE MULTI- CHRONIZATION
PLES OF 35NS. WITHSTART OF
T2PERIOD. AND
GENERATESLONG
MICROCYCLES
FROMSTART OF
DMS ADD 35NS TO RESUME T3TOENDOF
NO PAUSE INSTALLED WRITE PAUSE TIMING AND - T5.
TERMI;‘IATED AND ENABLED TIME OR 70NS MICROINSTRUC-
! ? TO READ. TIONEXECUTION.

SEE FIGURE 5-6
TO DETERMINE.

Timing

4
P} LONG/SHORT DETERMINATION #{ COMPLETE MICROCYCLE #i FREEZE DETERMINATION >
| I
———————— -D'—————————-——————IF LONG MICROCYCLE, ADD 105NS - — ———————————Pr——— 35NS ———’r——- 35NS —'—’r——————-—— IF FREEZE, ADD 175NS —-———— ———-P
| |
I0G IAK
| BEGIN | BEGIN | IN SPECIAL IN SPECIAL
7\ Y P4 > P5 FIELD FIELD
INTERVAL. INTERVAL. > >
DOES THIS
Ygg MICROINSTRUC- |
TION CONTAIN AN
UNKNOWN UNCONDITIONAL SEE NOTE 2. SEE NOTE 2.
ORSATISFIED |
CONDITIONAL
WAS 10G Rty SUMOF ALL AP-
IN SPECIAL MICROBRANCH —- ORDER?SEE PROPRIATE TIMES
FIELD AT T2 ? NOTE 1. IS TIME FOR ONE
? ' MICROCYCLE.
LONG
l | MICROCYCLE —
INSERT THREE
35NS INTERVALS
IOG INSPECIAL DESIGNATED FREEZE ONE FREEZE ONE
FIELD
LD MUST HAVE EY E2 E3, MICROCYCLE MICROCYCLE
BEEN WITHIN —— (ADD175NS). (ADD 175NS).
b’?glgﬁﬁﬁﬁuc ADVANCE ADVANCE
- T- TER. T-COUNTER.
TIONS. IOG COUNTE
CAUSES SYN- 4"
CHRONIZATION
WITH START OF
T2PERIOD. AND
GENERATES LONG
MICROCYCLES
FROMSTART OF
RESUME T3TOENDOF
TIMING AND | TS,
MICROINSTRUC-
TION EXECUTION.

NOTES:

1. CONDITIONAL MICROBRANCHES NOT MET MAY BE DIFFICULT TO DETERMINE. ASSUME A PERCENTAGE OF
BRANCHES MET BASED ON YOUR APPLICATION.

2. TO DETERMINE WHICH T-PERIOD IS PRESENT WHEN BEGINNING AN {/C CYCLE TREAT THE ESTIMATE AS
RANDOM.

Figure 5-5. Detailed Microcycle Time
Determination Flowchart

5-11/5-12

7116-17

Timing
5-10.. CONTROL MEMORY BRANCHES

The switch to long microcycles is made in P3 when any of the three conditions shown in figure 5-5 can
be answered affirmatively. For example, consider a control memory branch condition shown in the
following portion of a microroutine. In this example the microcycle times are included in the right-
hand column.

ALY/
oP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
. TIME (NS)
. CIF BRANCH MET) CIF NOT MET)
START ADD L 53 175 175
ONE JSB CNDX L1S CLEAR 280 175
TWO INC s3 L 175
THREE RTN CLFL A 53 280
CLEAR IMM RTN CMHI L 3778 280
735 NS 805 NS
(ETC.)

By using figure 5-5 and checking the microroutine, it can be seen that the JSB and RTN micro-orders
in the microinstructions labeled ONE, THREE, and CLEAR can cause long microcycles.

5-11. 1/0 OPERATIONS

Suppose the T-period is T4 and the Control Processor has just placed the first microinstruction of your
microroutine in the MIR. Suppose further that part of the microroutine is as follows (note the time
column):

ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
» TIME (NS)
XXX 106 IRCM S4 T4 175
. { { ' TS 175
* (SUSPENDED EXECUTION UNTIL T2) T6 175
* (NOW EXECUTION CONTINUES) T2 175
NOP T3 280
NOP T4 280
S5 101 TS 280
INC s8 S3 Te 175
T2
(ETC.)

5-13

Timing

The microinstruction at label XXX includes micro-orders in the S-bus and Store fields as well as the
I0G micro-order in the Special field. As P1 and P2 occur, the S-bus and Store field micro-orders will be
executed but the effect of the IOG in the Special field is not felt until the end of the microcycle. Also, (in
following the timing line in figure 5-5) note that the freeze condition is not in effect until the
microinstruction labeled XXX completes execution. At the end of the microcycle, the IOG micro-order
causes all microinstruction execution to be suspended until T2 completes. The total waiting time in the
freeze condition in this case is 525 nanoseconds. Note that with a freeze condition present, T-periods
will be short microcycles until synchronization occurs. Time T3 starts the I/O cycle and each mi-
croinstruction is executed in the appropriate long microcycle (T-period). If T6 is short (as shown in the
example), the total time for the I/O cycle will be 1.120 microseconds. If T6 had been long (e.g., a RTN
coded), the total time for the I/O cycle would be 1.225 microseconds. This example microroutine is used
only to illustrate the freeze until T2 starts. Section 7 provides appropriate microprogramming consid-
erations. An IAK micro-order in the Special field can cause a freeze until the start of T6. That is,
(follow the timing line in figure 5-5) at the end of the microcycle where an IAK Special field
micro-order has been included in the microinstruction just executed, a freeze will occur until the end of
T6. During the T6 period microcycle, the appropriate functions for the IAK micro-order will be
executed.

5-12. MAIN MEMORY OPERATIONS

Typical main memory cycle times for reading and writing differ. Therefore, calculations for read and
write operations are discussed separately. The example read and write times are for an HP 2102B
Memory.

5-13. READING FROM MEMORY. First consider a read from main memory with a TAB
micro-order in the S-bus field two microinstructions after the microinstruction containing the READ
micro-order. In the example microroutine below, assume no memory operation is in progress as the
microroutine begins at label START (assume you do not have the DMS installed). The letters shown in

the timing comments are keyed to the text explanation that follows this microroutine.

ALU/
oP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
. TIME (NS)
START PASS S1 p 175 A
FIRST READ PASS DSPL S11 175 ~N
SECOND INC PNM P 175
THIRD DEC X X 175-NB >560~—C
DATA PASS 52 TAB 210~—D
END RTN IRCM s2 280 ~—E
(ETC.)

5-14

Timing

Using figure 5-5 note that START executes in 175 nanoseconds. In FIRST (using figure 5-5), note that
although there is a READ in the OP field of this microinstruction (which begins a memory operation)
there is not a memory operation already in progress; thus, FIRST also executes in 175 nanoseconds.
Point A shows where the main memory read cycle timing starts (the request for memory is made at the
end of the microcycle). No delays occur for execution of the microinstructions labeled SECOND and
THIRD; they each execute in 175 nanoseconds as shown at point B, while main memory is still busy
executing the read request. (Note that these two microinstructions do not contain micro-orders that
would cause a freeze.)

Now the microinstruction labeled DATA begins to execute. Figure 5-5 shows that if there is a TAB in
the S-bus field while memory is busy, there will be a pause time added to the microcycle. Figure 5-6
can be used to calculate the time as follows. At the first decision point in the flowchart, no READ, or
WRTE, or RJ30 micro-order is encoded in this microinstruction. Entry is made at step I (figure 5-6
because there is a TAB micro-order encoded in the S-bus of the microinstruction under consideration.

In step I add the execution times for microinstructions labeled SECOND and THIRD which = 350
nanoseconds (point B). In step II the result = 525 nanoseconds. Since the last operation (in the
microinstruction labeled FIRST) was a READ, the flowchart in figure 5-6 directs you to step III which
when completed provides pause time = 35 nanoseconds in this case. Returning to figure 5-5, the result
through P3 = 4 x 35 nanoseconds = 140 nanoseconds. Since microinstruction DATA will be short, P4
and P5 are entered immediately with a resulting total time for this microinstruction = 210
nanoseconds (point D). Microinstruction END will be long (point E) because of the CM branch. You
may look at the partial microroutine just illustrated and consider that you can simply subtract the
time for all microinstructions executed (before the microinstruction labeled DATA but after the one
labeled FIRST) from the memory cycle time and in this case obtain 210 nanoseconds; however, this
procedure will not always yield correct results. The next microprogram example illustrates why this is
S0.

5-14, WRITING TO MEMORY. Consider a write operation to main memory using the follow-
ing microroutine. For this example, assume the DMS is installed. Also, consider conditions for the
microbranch (in microinstruction CHECK) not met and no memory operation in progress as entry is
made. Again note that the microroutine in these examples is used only to show timing relationships.
Consult section 7 for microprogramming considerations in write operations.

ALU/
oP/ MOD/ S-BUS/

LABEL BRCH SPCL COND STR ADDRESS COMMENTS

. TIME (NS)

ENTER INC X X 175 <A B

WRITE WRTE MPCK PASS TAB X 1752 : ~

CHECK JMP CNDX ALZ RJS #+2 175 <—C

60 READ RTN INC PNM P 560-—E_>Oj0 (SEE TEXT)
CETC.)

5-15

Timing

DECISION TO
PAUSE OR NOT
STARTS AT P3. AT

THIS POINT
ASSUME PAUSE
TIME = 0.
READ
YES OR WRITE NO
OPERATION
" STARTED
STEPI ¢ ?
CALCULATE TIME
OF ALL MICRO-
CYCLES SINCE READ OR WRTE
THE END OF THE IN OP FIELD OR
LAST MICROIN- RJ30 IN SPECIAL
STRUCTION CON- FIELD OF THIS
TAINING A WRTE, MICROINSTRUC- .
READ, OR RJ30 TION?
MICRO-ORDER.
ICRO-ORDE TAB
YES IN S-BUS
STEP Il l I FIELD
ADD 175 NANO- l]
SECONDS TO 1 NO
TIMESE%NI\ID IN TAB IN S-BUS IN THIS MICRO-
: FIELD IS TO OB- INSTRUCTION.
TAIN DATA FROM
A PREVIOUS
READ. (TAB MUST
NOT BE IN STORE
FIELD WITHOUT
WRTE IN
OP FIELD.
LAST
MEMORY IN gI'IMEEP i YES
OPERATION . 260NS T
READ >
WRTE MICRO-
ORDER IN OP NO NO PAUSE
FIELD MUST HAVE |—
TAB IN STORE
FIELD.
NO NO PAUSE
STEP IV STEP Il
SUBTRACT TIME SUBTRACT TIME
FOUND IN STEP II FOUND IN STEP Ii
FROM 595NS. THIS FROM 560NS. THIS
1S PAUSE TIME. IS PAUSE TIME.
PAUSE TIME FROM
STEPINOR IV.ADD
THIS TIME TO
LONG OR SHORT y
MICROCYCLE
TIME FOUND IN
FIGURE 5-5 NO PAUSE
FLOWCHART.
NOTES:
1. ALL CALCULATIONS TO BE IN NANOSECONDS.
2. THIS EXAMPLE IS TYPICAL FOR ONE TYPE OF COMPUTER
PAUSE WITH A SPECIFIC MEMORY. FOR ACTUAL MEMORY CYCLE

TIMES REFER TO YOUR COMPUTER DOCUMENTATION.
TYPICAL MEMORY CYCLE TIMES FOLLOW (COULD BE FASTER
OR SLOWER DEPENDING ON ACTIVITY):

WITHOUT DMS: READ OR RJ30 = 560 NS

WRTE = 595 NS
WITH DMS: READ OR RJ30 = 630 NS
WRTE = 630 NS

3. DCPC AND MEMORY REFRESH ACTIVITY IGNORED HERE.
CALCULATE THEIR TIMES AS A PERCENT OF TOTAL
MICROPROGRAM EXECUTION TIME.

7115-18

5-16

Figure 5-6. Detailed Pause Time Calculation Flowchart
(Using an HP 2102B Memory as an Example)

Timing

Microinstructions labeled ENTER and WRITE (point A) both execute in 175 nanoseconds each and the
main memory write cycle timing begins at point B. Microinstruction CHECK executes in 175 ns (point
C) since branch conditions are not met, then a read from main memory is next attempted. Using the
flowcharts in figures 5-5 and 5-6 it can be seen that the calculation for the time shown at point E is
made for microinstruction GO as shown below. (The write time at poinf D is 630 nanoseconds because
of the DMS factor.)

105 nanoseconds time for P1,P2,P3 (from figure 5-5)

245 nanoseconds add pause time (calculated in figure 5-6)
35 nanoseconds add for DMS

105 nanoseconds add for E1,E2,E3 (RTN in SPCL field)
70 nanoseconds add for P4,P5

560 nanoseconds total time spent in microinstruction GO.

5-15. SUMMARY

Table 5-1 is a summary of some times used in this section that may be helpful if you are making
execution time estimates. With the information presented in this section you should now be able to
verify that the following microroutine executes in the noted time. Assume no memory cycle in progress
as the microroutine is entered and no DMS activity occurring:

ALY/
opP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
* TIME (NS)
START READ CLFL PASS M S1 175
PASS L s2 175
ENVE ADD S3 TAB 385
READ PASS M S3 175
IMM CMLO L 374B 17S
ADD L S3 175
ENVE ADD S3 TAB 210
RTN CNDX OVFL 2807175
RTN sov 280
(ETC.)D

If no overflow, the total time is 1.750 microseconds. If an overflow, the total time is: 1.925 mic-
roseconds.

5-17

Timing

Table 5-1. Summary of Timing Factors

ITEM TIME
P period 35 nanoseconds
P4 plus P5 70 nanoseconds
E1 through E3 105 nanoseconds
Short microcycle 175 nanoseconds
Long microcycle 280 nanoseconds
Typical main memory read cycle 560 nanoseconds
Typical main memory write cycle 595 nanoseconds
DMS factor (WRTE) | 35 nanoseconds
DMS factor (READ) 70 nanoseconds

5-18

Section 6
MAPPING TO THE USER’S
MICROPROGRAMMING AREA

MAPPING TO THE USER’S
MICROPROGRAMMING AREA [6

In order to have operational flexibility using your Computer Series microprogramming facilities you
must have an understanding of the methods used to branch from main memory to control memory and
then back to your program in main memory when your microprogrammed operation is complete. This
section provides information that will enable you to:

® Understand the control memory mapping scheme.
® Link to the user’s microprogramming area from your Assembly language (or FORTRAN) program.
® Pass parameters to your microprogram.

® Understand control memory branch address modification (using some of the available micro-
orders).

® Return from control memory (making a “normal” exit).

® Pass parameters back to your main memory program.

For this discussion on mapping it will be assumed that your microprograms have already been
prepared (using the microassembler and probably the Microdebug Editor) and placed in some facility
of control memory (e.g., WCS, FAB, FEM, or UCS). Section 8 describes how to assign starting
addresses to your microprograms. Various microassembler pseudo-microinstructions, which also exist
and are capable of modifying control memory addresses while preparing microprograms, are described
in section 8. Section 7 provides information on how to check for and handle interrupts when you are in
your microprograms.

Part III in this manual describes methods used to get microprograms into control memory. The
methods include creating and installing permanent microprograms and using the “dynamic” micro-
programming method (the WCS facility). By using WCS and the WCS related microprogramming
support software (DVR36, WLOAD, and the Microdebug Editor), microprograms can be loaded into
control memory (WCS) and swapped (or overlayed) with other microprograms.

As is obvious from the above discussion, the information related to passing control in your program
from main memory to control memory and back is considerably interrelated. It is important that the
concepts of main memory/control memory links be firmly established first. Then, with an understand-
ing of the mapping, parameter passing, and branching techniques described in this section; the
interrupt handling and control memory address assignment methods described in sections 7 and 8; and
the microprogramming support software used to control WCS; you will have complete microprogram
address manipulation and transfer capability.

6-1

Mapping

6-1. CONTROL MEMORY MAPPING METHOD

As mentioned in section 2, the Control Processor is always in control of the computer and the base set
microroutines cause the read operations to occur for all instructions (and data) from main memory. In
this manner, all 16-bit instructions are placed in the Instruction Register (IR) and decoded. (Data can
be considered as “parameters” which can be loaded into the desired and appropriate registers by your
microprogram to later perform certain operations; parameter passing will be discussed later in this
section). For instructions, the process of decoding the Instruction Register bits determines which
control memory address (which microprogram) is called by the instruction received from main mem-
ory. The decoding process (mapping method) discussion in this paragraph is at the level you will need
for “normal” user microprogramming and the instruction codes you may use to map to particular
control memory entry points are defined. If you are planning an extensive microprogramming effort,
however, you may be interested in the details of the mapping process contained in appendix C.

6-2. SOFTWARE ENTRY POINTS

Recall that the control memory map in figures 2-3 and 2-4 shows all modules of control memory, their
module boundary addresses, and whether or not the module has available “software entry points”.
The software entry points are the bit patterns which, when placed in the Instruction Register (from
your main memory program), will cause the Control Memory Address Register to be finally loaded
(through mapping) with a desired control memory module entry address.

The hardware/firmware combination in the Control Processor is the facility that imposes restrictions
on control memory software entry points. By using the proper instruction codes you may (with
discretion) map to any obtainable location. However, as mentioned in section 2, certain areas of control
memory may be used for HP microprograms and/or microprogrammed computer enhancements. Thus,
the use of descretion in accessing control memory. It is recommended that you restrict your use of the
software entry point instruction codes to those set aside for entrance into the user’s microprogramming
area. The instruction codes for most software entry points (excluding modules 0 and 1 of the base set)
will be defined shortly and the instruction codes for entrance into the user’s area (the primary concern
of this section) will be identified.

Once in a control memory module, you may have microinstructions that branch to any control memory
location. Again, the use of discretion is implied since the areas shown in figure 2-3 reserved for HP
microprograms and/or microprogrammed accessories may be filled with microprograms. But you
could, for example, branch and use a microroutine of the base set then return to your own microprog-
ram if you prepare your microprogram correctly.

6-3. THE USER INSTRUCTION GROUP

For the purposes of mapping to the “user” areas, the Computer base set has a reserved block of binary
codes called the User Instruction Group (UIG). These codes (UIG instructions) permit you to link
Assembly language routines to your microprograms. The key to the UIG is the upper byte (most
significant bits) of the calling code which must have the format:

6-2

Mapping

105xxx (bit 11 of the IR = 1)
or:
101xxx (bit 11 of the IR = 0).
where:
xxx equals values to be defined in the following paragraphs.

Control memory module selection is determined by the value of bits 8 through 4 in the Instruction
Register (still part of the coded UIG instruction). In general, a secondary index (composed of bits 3
through 0) directly determines which address in the first 16 locations of the selected module will be
used for entry.

Bit 11 in the third octal digit (105xxx or 101xxx) of the UIG instruction in the IR can be used as an
indicator (for your microprograms) by micro-orders which test the Instruction Register data. For
example, the Store field and S-bus field micro-order CAB tests IR bit 11 to select either the A- or
B-register.

The value of bits 8 through 4 of the UIG instruction in the IR is not directly translatable into a control
memory module number but these bits help determine the address of branches in the control memory
base set Primary Mapping Table, which in turn direct a branch to the desired module.

6-4. HP RESERVED UIG CODES. As mentioned in paragraph 6-2, modules of control mem-
ory have software entry points assigned, but modules 0 and 1 of the base set must be disregarded in
this discussion since codes for access to those modules do not fall within the UIG. All modules of control
memory that are accessible through the UIG instructions are shown in tables 6-1 and 6-2. These tables
are arranged in UIG instruction (binary code) order. The modules these codes map to are shown along
with the control memory entry addresses.

As can be seen from tables 6-1 and 6-2, all modules below module 46 accessible with UIG instructions
have been reserved for HP use and are not recommended for normal user microprogramming. Also, as
noted in these tables, modules 2, 3, and 32 have a mapping situation that is slightly different than the
one used for modules with a single UIG module selection code (one combination of bits 8 through 4).
This multiple entry point mapping is used only for modules reserved for HP use (base set or HP
accessories) and it will not be discussed in this manual. The module selection codes (bits 8 through 4)
briefly mentioned in paragraph 6-3 are further discussed in appendix C. Refer to the appendix if you
require more information about the module selection codes or the HP reserved area.

To avoid access to the HP reserved area do not use the following UIG instruction (binary codes) for
main memory to control memory linking:
105000 through 105437
or
460 through 477
101 (or 105)
700 through 777

6-3

Mapping

Table 6-1. Control Memory User Instruction Group Software Entry Point Assignments

(E-Series)
CONTROL MEMORY
RANGE OF UIG INSTRUCTION MODULE ENTRY POINTS
(MAIN MEMORY) VALUES MAPPED (RANGE OF ADDRESSES)
USED (OCTAL) TO (OCTAL) (NOTE 2) USE
105000-105137 3 01xxx (NOTE 1) Floating Point
105140-105157 60 36000-36017 User area
105160-105177 62 37000-37017 User area
105200-105217 34 21000-21017 FFP
105220-105237 35 21400-21417 FFP
105240-105257 36 22000-22017 EMA
105260-105277 37 22400-22417 HP Reserved
105300-105317 38 23000-23017 DS/1000
105320-105337 40 24000-24017 HP Reserved
105340-105357 16 10000-10017 HP Reserved
105360-105377 42 25000-25017 HP Reserved
101 (or 105) 400-417 02000-02017 HP Reserved
101 (or 105) 420-437 03000-03017 HP Reserved
101 (or 105) 440-457 46 27000-27017 User area
101 (or 105) 460-477 39 23400-23417 HP Reserved
101 (or 105) 500-517 47 27400-27417 User area
101 (or 105) 520-537 48 30000-30017 User area
101 (or 105) 540-557 49 30400-30417 User area
101 (or 105) 560-577 50 31000-31017 User area
101 (or 105) 600-617 56 34000-34017 User area
101 (or 105) 620-637 57 34400-34417 User area
101 (or 105) 640-657 58 35000-35017 User area
101 (or 105) 660-677 59 35400-35417 User area
101 (or 105) 700-737 32 20xxx (NOTE 1) DMS
101 (or 105) 740-777 2 O1xxx (NOTE 1) EIG
NOTES:
1. xxx signifies last three digits for the entry address. See appendix C for details.
2. Al modules except 2, 3, and 32 have 16 entry points. See appendix C.
6-5. USER AREA UIG CODES. Modules 46 through 62 comprise the primary user’s mi-

croprogramming area. (Modules 4 through 31 for E-Series and 27 through 31 for F-Series are also
addressable once in control memory.) The modules in the user’s area that have UIG module selection
codes assigned are designated as user area modules in tables 6-1 and 6-2. As apparent from the tables,
11 of the 18 modules in the range 46 through 62 are directly accessible. Entry to other control memory

modules will require an extra branch after reaching control memory.

6-4

Mapping

Table 6-1A. Control Memory User Instruction Group Software Entry Point Assignments

1. xxx signifies last three digits for the entry address. See appendix C for details.
2. Al modules except 2, 3, and 32 have 16 entry points. See appendix C.

(F-Series)
CONTROL MEMORY
RANGE OF UIG INSTRUCTION MODULE ENTRY POINTS
(MAIN MEMORY) VALUES MAPPED (RANGE OF ADDRESSES)
USED (OCTAL) TO (OCTAL) (NOTE 3) USE
105000-105137 3 01xxx (NOTE 1) Floating Point
105140-105157 60 36000-36017 User area
105160-105177 62 37000-37017 User area
105200-105217 34 21000-21017 FFP
105220-105237 35 21400-21417 FFP
105240-105257 36 22000-22017 EMA
105260-105277 37 22400-22417 HP Reserved
105300-105317 38 23000-23017 DS/1000
105320-105337 40 24000-24017 SIS
105340-105357 16 10000-10017 HP Reserved
105360-105377 18 11000-11017 HP Reserved
101 (or 105) 400-417 4 02000-02017 HP Reserved
101 (or 105) 420-437 20 12000-12017 HP Reserved
101 (or 105) 440-457 46 27000-27017 User area
101 (or 105) 460-477 12 06000-06017 VIS
101 (or 105) 500-517 47 27400-27417 User area
101 (or 105) 520-537 48 30000-30017 User area
101 (or 105) 540-557 49 30400-30417 User area
101 (or 105) 560-577 50 31000-31017 User area
101 (or 105) 600-617 56 34000-34017 User area
101 (or 105) 620-637 57 34400-34417 User area
101 (or 105) 640-657 58 35000-35017 User area
101 (or 105) 660-677 59 35400-35417 User area
101 (or 105) 700-737 32 20xxx (NOTE 1) DMS
101 (or 105) 740-777 2 01xxx (NOTE 1) EIG
NOTES:

Mapping

As can also be seen in the tables, each module has 16 possible control memory software entry points
provided by the UIG instruction secondary index (UIG instruction bit 3 through 0 combination). The
secondary index directly determines which control memory address (of the first 16 locations in the
selected module) will be loaded into the Control Memory Address Register. The ranges of values for
UIG instructions you should use to access the respective control memory addresses are summarized
below. Since each module may be entered at 16 different locations, 176 direct entry points into the
recommended user’s microprogramming area are available.

Summary of UIG instructions (binary codes) you can use:

105140 through 105177

and

101 or 105 ’440 through 457

500 through 677

6-6. USER’S AREA MAPPING EXAMPLE

A typical example of mapping to the user’s microprogramming area through the base set using a
recommended UIG instruction is discussed below. Information about the proper procedure to use in
main memory and for returning to main memory is also included. The depth of the discussion should
be sufficient for your normal microprogramming needs.

6-7. MAIN MEMORY/CONTROL MEMORY LINKAGE. Suppose that your main memory
program has a UIG instruction 105602 (octal) written into a particular location designated “I”. The
UIG instruction may or may not have address pointers and/or operands in main memory locations I +
1,1+ 2, etc. For example:

MAIN MEMORY

Location Contents
| 105602
I+ 1 .

I+ 2 .

During execution, UIG instruction 105602 maps to control memory location 34002 as follows. The base
set Fetch microroutine completes the read and IR store operation (as described in paragraph 2-186) for
your 105602 UIG instruction and begins the mapping procedure by executing these microinstructions:

CONTROL MEMORY
(Fetch Microinstructions, start at CM location 00000)

ALY/
OP/ MOD/ §-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
FETCH READ FTCH i;ASS IRCM TAB IR=105602,L =0

JTAB INC PNM P M=1+1,P=]+2

6-6

Mapping

The JTAB micro-order indexes the upper eight bits of the 105602 UIG instruction (in the IR) through
the Control Processor Jump Tables to the following microinstruction in the base set’s microroutines:

ALU/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
MAC1 JMP J74 - MACTABL1 BEGIN MAPPING TO USER AREA

As can be seen from this example, this microinstruction branches to the control memory address at
label “MACTABL1” (still in the base set) but the J74 Special field micro-order indexes the branch,
making a branch address modification, by replacing bits in this microinstruction branch address field
with bits from the Instruction Register (refer to table 4-1 for the explanation of J74). This index
actually serves as the UIG module selection code, described in paragraphs 6-3 and 6-4, and causes
entry at a particular address in the base set’s Primary Mapping Table. At the indicated address in the
Primary Mapping Table, another control memory branch is directed. This branch is made to the
desired module (in this case CM address 34000) by the appropriate microinstruction as follows:

ALU/
oP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
MACTABLY JMP) 234208

JMP RJ30 34000B COMPLETE MAPPING TO USER AREA

Note that the branch to control memory address 34000 is modified by an RJ30 Special field micro-
order. The RJ30 implements the secondary index and causes the Control Memory Address Register to
be loaded with the final module entry point address (one of the first 16 locations). In this case, since the
UIG instruction is 105602, the microinstruction’s branch address field bits are replaced with the
Instruction Register bits that will cause entry to be made at control memory address 34002. (Refer to
table 4-1 for the explanation of RJ30). The RJ30 micro-order simultaneously starts a read operation
from main memory location I + 1. (See the Fetch microroutine previously described.)

Upon reaching the user microprogramming area (at address 34002) the following situation exists:

IR = 105602,

L = 0, (FTCH cleared the L-register)

P =1+ 2

M =1+ 1,and a READ of main memory location I + 1 is in progress.

6-7

Mapping

Microinstructions at your control memory entry points should usually have been previously prepared
to cause an additional branch to the control memory address where the desired microroutine begins.
Typically the first 16 locations in a user module are set up with unconditional branches (word type IV)
to the actual microroutines as follows (module 56 used in this example):

ALY/

OP/ MOD/ S-BUS/
LOCATION LABEL BRCH SPCL COND STR ADDRESS COMMENTS
34000 JMP . INSTOOMC ENTRY POINT 1
34001 Jmp INSTO1MC ENTRY POINT 2
34002 JMP INSTO2MC ENTRY POINT 3
34003 JMP INSTO3MC ENTRY POINT 4
34007 JMP . INSTO7MC ENTRY POINT 8
34010 JmpP INSTO8MC ENTRY POINT 9
34017 JMP . INST15MC ENTRY POINT 16
34020 INSTO2MC S3 TAB BEGIN MICROROUTINES

READ RTN iNC PNM P EXIT

In this example the microinstruction at the entry address causes a branch to control memory location
34020 where the actual microroutine begins.

The TAB micro-order (location 34020) is used to obtain the results of the RJ30 initiated main memory
read operation that occurred while in the base set Primary Mapping Table. In this example the data is
stored in S3. This data could be a parameter. address passed from your main memory program. The
data obtained by this RJ30 initiated read operation must be taken from the T-register while at the first
microinstruction in your microroutine, or at the latest, during execution of the next microinstruction
(refer to table 4-1 for the explanation of a READ micro-order). If desired, the results of the RJ30
initiated read operation may be ignored.

6-8. ASSEMBLER PROCEDURE. An Assembly language procedure for invoking a micro-
program and passing parameters is discussed below. Paragraph 6-11 provides some additional infor-
mation. The basic concepts of invoking microprograms and passing parameters should be evident from
the information presented here.

6-8

Mapping

Basically, the microprogram is invoked and parameters are passed using an Assembly language
procedure such as follows:

ASMB,L
NAM TEST,7
ENT TEST,MACRO
EXT ISC,NMBR,IBUF
TEST NOP
MACRO OCT 105603 MICROPROGRAM OP CODE
DEF *+4 RETURN ADDRESS, ALSO FTN COMPATIBILITY
DEF ISC(,I) SELECT CODE
DEF NMBR() DATA COUNT
DEF IBUF(l) DATA BUFFER
JMP TEST,|
END

As can be seen from the above, a UIG instruction (as described in preceding paragraphs) appears in an
OCT statement. This is used at the point in the Assembly language source program where the branch
is to occur. The value to be inserted should be OCT 101xxx (or 105xxx) (where xxx is in the range
shown in tables 6-1 and 6-2) to properly map to the desired control memory module address. If
parameters are to be passed, they are usually defined as constants (via DEF or OCT statements)
immediately following the OCT statement as seen in the example above. The microprogram proce-
dures for accessing parameters are presented in the following paragraph.

6-9. PARAMETER PASSING. The following two examples of microprograms show how to
access parameters in main memory and resolve indirect main memory references. The initialization
portion of each microprogram (microassembler control commands and pseudo-instructions) will be
described in later sections. The primary thing you should observe in these examples is the method used
to handle parameters. Pay particular attention to the P- and M-register adjustments. Remarks and
explanatory notes are included in the microprograms. Note that any line beginning with an asterisk is
a comment. The interrupt handling methods shown in these microprograms will be described in
section 7.

Mapping

EXAMPLE 1: ACCESSING A PARAMETER LIST FROM A MICROPROGRAM

PAGE 0002 RTE MICRO-ASSEMRLER REV.A 760805

0001 MICMXE oL 21MX E~-SERIES
0002 $CODE=MPORJ+REPLACE OBJUECT TO DISC
0003 INDIRECT EQU 34355R USER WRITTEN
0004 # INDIRECT

0005 ® MICROPROGRAM
0006 * (SEE EXAMPLE 2)
naov ORG 34003R 105603 => 34003
0008 34003 327 001407 JMP INSTO3MC SAVE ENTRY

0009 - POINTS

no1o % THIS MICROPROGRAM IS AN EXAMPLE OF HOW TO

0011 # RETRIEVE MAIN MEMORY PARAMETERS AND ADDRESSES

ool2 #

0013 # A USER WRITTEN MICROSUBROUTINE (SEE EXAMPLE 2)

0cl4 # wILL BE USED TO RESOLVE INDIRECT ADDRESSES

0015 4

nols # INITIALIZE THE CNTR

0017 * THE USER WRITTEN TINNDIRECT MICROPROGRAM (EXAMPLE 2)»
no18 - IF INTERRUPTEDs USFS THE CNTR TO ADJUST P (I.E.
0019 ot SET P TO MAIN MEMORY ADDRESS + 1 OF THE

noz2o0 # MICROPROGRAM QP CNONF)

0021 ORG 340308

0022 34030 343 176547 INSTO3MC IMM LOW CNTR 377R CNTR = -]

0023 o

0024 # GET PARAMETERS:

0025 # SELECT CODE+ DATA COUNTs BUFFER ADDRESS

0026 34031 227 174725 READ DCNT INC PNM P GET SELECT CODE
0027 34032 307 N16647 JSR INDIRECT RESOLVE ADDR
0028 34033 010 000507 L TAR L = SELECT CODE
0029 g

0030 34034 227 17472% READ DCNT INC PNM P GET DATA COUNT
0031 34035 307 016647 JSR INDIRECT RESOLVE ADDR
0n32 34036 353 007123 IMM L4 CMLN S3 3038 (SEE NOTE 1)
0033 34037 010 001147 S4 TAB S4 = DATA COUNT
0034 #

0035 34040 227 174725 READ DCNT INC PNM P GET BUFFER ADDR
0036 34041 010 145107 10 S3 S3 (SEE NOTE 1)
0037 34042 307 016647 JSA INDIRECT RESOLVE ADDR
0038 34043 010 033207 $5 M SS = BUFFER ADDR
no39 #

nna&on #* NOTE 1. ONE NON=-FREF7ABLE MICROINSTRUCTION MAY

0041 # PRECEDE AND/0R FOLLOW THE JSB INDIRECT'S
0042 *

0043 34044 227 174700 READ RTN INC PNM P START FETCH FOR
0044 A NEXT MAIN MEMORY
0045 - INSTRUCTION
0046 END

END OF PASS 2: NO ERRORS

6-10

Mapping

EXAMPLE 2: RESOLVING INDIRECT MAIN MEMORY REFERENCES

PAGE 0002 RTE MICRO-ASSEMBLER REV.A 760805

0001
noo2
6003
0004
0005
0006
noor
0008
0009
no10
0011
oolz2
0013
0014
0015
0016
0017
0018
0019
0020
0021
00622
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0033
no3is
0040
0041
0042
0043
0044
0045

END NF PASS

34355
34356

34357
34360

34361
34362
34363
34364

34365
34366

230
367

230
367

230
367
323
336

010
320

2

000647
140002

000647
140002

000643
140007
157042
057042

026507
000307

NO ERRORS

MICMXE «L 21MX E~SERIES

$CODE=INDOBJREPLACE
HOR1 EQU A

*
*

»
*
*
%
*
#*
»
L
$*
#
*
®
#*
*
#
%
*
*
-«
L4
®
+*
*
L
*
I

OBJECT TO DISC
BASE SET HALT-
OR=-INTERRUPT
MICROROUTINE
ORG 34355R

THIS IS AN EXAMPLE NF A USER WRITTEN MICROSURROUTINE
THAT RESOLVES INDIRECT MAIN MEMORY REFERFENCES

EACH INDIRECT LEVEL 9FQUIRES AN ADDITIONAL MEMORY

CYCLE

AT ENTRY,
THE CALLING PROGRAM MUST HAVE INITIALIZED THE CNTR
(SEE EXAMPLE 1) SO THAT THIS MICROSUBROQUTINE, IF
INTERRUPTED, wILL CORRECTLY ADJUST P (I.E SET P TO
MAIN MEMQRY ADDRESS + 1 OF THE MICROPROGRAM QP
CODE) BEFORE UUMPING TO HORI. THE BASE SET
HALT=OR=INTERRUPT MTCROROUTINE

AT EXITs
THE FINAL (DIRECT) MAIN MEMORY ADDRESS WILL HAVE
BEEN DETERMINED. AND A READ OF THE FINAL ADDRESS
wWILL BE IN PROGRESS

FOR THE FIRST THREE INDIRECT LEVELSs INTERRUPTS
ARE NOT CHECKED

AFTER THE THIRDs OR ANY SUCCESSIVEs INDIRECT LEVEL
INTERRUPTS ARE CHECKFD FOR AND SFRVICED

NDIRECT READ M TAB INDIRECT ?
RTN CNDX AL1S RJS NOSRTN

L2
READ M TAB INDIRECT ?
RTN CNDX AL1S RJS NOy RTN

*

NEXT READ TON M TAR ION. INDIRECT ?
RTN CNDX AL1S RJS NOs RTN
JMP CNDX HOT RJS NEXT INTERRUPT OR
JMP CNDX NSNG RJS NEXT INSTR STEP?

@ NOs NEXT ADDR

L CNTR YES, ADJUST P

JMP HORT EXIT TO HORI

END

6-11

Mapping

Parameters may be passed back to your main memory programs by writing the values (loaded into the
T-register) into the desired locations (address loaded into the M-register) since you have direct control
of the registers while you are executing microinstructions in control memory.

6-10. CONTROL MEMORY/MAIN MEMORY LINKAGE. It is the microprogrammers re-
sponsibility to have stored and/or adjusted the values in the P, M, and other applicable registers (using
the appropriate micro-orders) when entering a microprogram so that the respective registers may be
restored with the desired values before returning control to main memory. When preparing to exit a
microprogram and return to the base set Fetch microroutine, the following must be accomplished to
properly interface with the next main memory instruction. Assume that a main memory location
designated “J” contains the next instruction. Upon microprogram completion you must ensure:

J+ 1
J, and a read operation of location J starts within three microinstructions before microp-
rogram exit.

Il

P
M

Note that the last example in paragraph 6-7 and the last part of microprogram EXAMPLE 1, both end
in the manner stated above.

6-11. SOME MAIN MEMORY PROGRAM PROCEDURES

Information on another Assembly language instruction and a FORTRAN procedure that can be used
to invoke microprograms is included in the following paragraphs. Further information on Assembly
language procedures can be found in the RTE Assembler Reference Manual, part no. 92060-90005 or
the RTE IV Assembler Reference Manual, part no. 92067-90003. Examples of FORTRAN procedures
are included in parts III and IV of these manuals. Also refer to the RTE FORTRAN IV Reference
Manual, part no. 92060-90023. For information on other languages, refer to the appropriate manuals
listed in the Table 3-3 in the preface of this manual.

6-12. THE MIC PSEUDO-INSTRUCTION

An Assembly language program can also call a microprogram with a mnemonic code which has been
assigned earlier in the program. That is, with a MIC pseudo-instruction, you can define a source
language instruction which passes control and a series of parameter addresses to a microprogram. In
this use of the MIC instruction, a UIG instruction (binary code) is assigned to a mnemonic so that
whenever the mnemonic appears, the code is written into that location in the assembled program. The
number of parameters is also specified in the following format for the MIC pseudo-instruction:

MIC opcode, feode, pnum comments
where:

opcode = any three-character alphabetic mnemonic

fecode a UIG instruction (octal) from tables 6-1 and 6-2

the number of associated parameter addresses (zero to seven) (may be an expression
which generates an absolute result).

pnum

6-12

Mapping

NOTE

All three operands (opcode, fcode, and pnum) must be supplied in
the MIC pseudo-instruction in order for the specified instruction
to be defined. If pnum is zero, it must be expressly declared as
such (not omitted).

This Assembly language pseudo-instruction provides you with the ability to define your UIG instruc-
tions with mnemonics, but the MIC declaration must appear before the three-character alphabetic
mnemonic is used. When the “newly” assigned user-defined instruction is used later in your Assembly
language source program, the specified number of parameter addresses (pnum) are supplied in the
operand field separated from one another by spaces. These parameter addresses can be any address-
able values, relocatable and/or indirect. If it is desired to pass additional parameters to a micro-
program beyond those pointed to by the user-defined instruction, they must be defined as constants
(via OCT or DEF statements) immediately following each use of the user-defined instruction.

6-13. PARAMETER ASSIGNMENT EXAMPLE. Assume that a total of three parameters are
to be passed to a microprogram. Suppose the values of the first two parameters are in main memory
locations designated ISC and NMBR and that the value for the third parameter is in a memory
location pointed to by IBUF. A UIG instruction for your microprogram could be 105602. In this case the
Assembly language source language statement would be written:

MIC MIO,105602B,3

After this above statement in the source, you may use the MIO statement in your source program
whenever it is necessary to pass control to a particular microprogram with the entry point at control
memory address 34002 by using the following:

MIO ISC NMBR IBUF,I

An example of a short but complete Assembly laﬁguage program illustrating some of the procedures
outlined thus far appears in the next paragraph.

6-14. EXAMPLE MIC PSEUDO-INSTRUCTION USE. The Assembly language use princi-
ples are summarized in the following example. Note that the two MIC instructions are declared first.
One has no parameter addresses to pass, the other has four. SRT could be a sort microroutine and MIO
a microprogrammed I/O operation. In source statement sequence number 0014, designation *+5 is
used to limit the list and make the program FORTRAN callable. ISC is the select code, NMBR the
count, and IBUF a reserved data buffer (5 locations).

6-13

EXAMPLE 3: MIC PSEUDO-INSTRUCTION USE

6-15.

PAGE 0002 # 01

0001
0002
0003+
0004
0005+
0006
0007+
0008
0009+
0010+
0011
0012+
0093+
0014

0015+
0016+
0017
0018
0019
0020
0021
0022+
0023
0024
0025
0026

00000

00000

00001

00002
00003
00004
00005
00006

00007
00010
00011
00012

00013
00014
00015

000000

105600

105602

000007R
000013R
000014R
000015R

016001X
000012R
000012R
000006

000016
000005
000000

#% NO ERRORS#*

ASMB, L

START

SORT

MCIO

RC

1sC
NMBR
IBUF

NAM

MIC

MIC

NOP

SRT

MIO

EXT
JSB
DEF
DEF
DEC

ocT
DEC
BSS
END

MIC PSEUDO INSTRUCTION USAGE
SRT,105600B,0

MID,105602B,4

#+5 [SC NMBR 1BUF

EXEC
EXEC
*+2
RC

16

START

CALLING MICROPROGRAMS FROM FORTRAN

Mapping

Treating a microprogram as an external subroutine is a typical way to invoke a microprogram from
FORTRAN. The process (using the example MIO microprogram) is shown below followed by explana-
tions.

6-14

FTN4,LM

SUBROUTINE FTNMP (ISC, NMBR, IBUF)
DIMENSION IBUF (1)

CALL MIO (ISC, NMBR, IBUF)

END
END$

Mapping

The M in the compiler control statement provides mixed mode operation and expansion to Assembly
language. The CALL MIO statement expands to a JSB MIO followed by a series of parameter
addresses as follows:

JSB MIO
DEF *+4
DEF 00000,I
DEF 00001,I
DEF 00002,

The load time JSB replace routine would appear as follows:

ASMB,L
NAM RPLCE
MIO RPL 105602
END

The MIO RPL 105602 statement above alerts the RTE relocating loader that all external references to
MIO are to be replaced with 105602 and, if loaded with the program shown first in this paragraph,
causes the RTE relocating loader to substitute the required microprogram UIG instruction (105602),
for the JSB MIO. In this way, the FORTRAN program accesses the microprogram directly at execution
time.

6-16. SUMMARY

Equipped with knowledge gained through information in this section, you should have no trouble
planning where you want your microprograms placed in control memory. You should have a good
understanding of linking between main memory and control memory. The concept of control memory
branching has been presented so that, if necessary, you may also use the J74 and RJ30 micro-orders for
CM branch address modification in your microroutines. The concepts of parameter passing should also
be clear.

6-15/6-16

Section 7
MICROPROGRAMMING CONSIDERATIONS 1IN

MICROPROGRAMMING
CONSIDERATIONS || 7

Some key points that you will want to be aware of when writing microprograms are presented in this
section. The assumption is that you will refer to section 4 for complete descriptions of micro-orders, but
the additional considerations in this section include:

® The techniques to use for microprogrammed read, write, and arithmetic operations.

® Microprogramming with the Memory Protect or Dual Channel Port Controller (DCPC) installed.
® Microprogrammed Input/Output operations.

® Microprogramming with the Dynamic Mapping System installed.

Some guidelines for writing IBL loaders are also included.

7-1. READ AND WRITE CONSIDERATIONS

Microprogrammed main memory read and write operations are easily implemented and will be
successful when the guidelines outlined below are followed. Conditionally valid and invalid methods of
using the READ and WRTE micro-orders are also discussed in paragraph 7-5.

7-2. TYPICAL READ OPERATIONS

Load the M-register before or during microinstructions containing READ in the OP field. Do not
modify the M-register until at least two microinstructions after the READ (See the information in this
paragraph on reading the A- and B-registers with a TAB micro-order.). A simple READ with the M > 1
is performed as follows:

ALY/
op/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
READ ’ M 53 175 NS

S4 TAB 560 NS

The T-register contents must be placed on the S-bus no later than two microinstructions after a READ
is specified, because the T-register is disabled by the Main Memory Section after the second micro-
instruction is executed. Microinstructions may be used between READ and TAB. When using one
microinstruction between READ and TAB, the microroutine may appear as follows:

7-1

Considerations

ALY/
OP/ MOD/
LABEL BRCH SPCL COND
READ
INC

STR

S3
S4

S-BUS/

ADDRESS COMMENTS

S3 175 NS

S3 175 NS

TAB 560 - 175 = 385 NS

Note that if a DCPC is active, freezable microinstructions (e.g., IOG) may not be used between READ
and TAB. Also, no more than two microinstructions may be executed between READ and TAB. If there
is no DCPC activity, neither restriction applies. When using two microinstructions, the microroutine

may appear as follows.

ALY/
OP/ MOD/
LABEL BRCH SPCL COND STR
READ M
INC S3
MM LOW L
S4

AND

S-BUS/

ADDRESS COMMENTS

S3 175 NS

S3 175 NS

0 175 NS

TAB 560 - (175 x 2) = 210 NS

For utilizing main memory address 00 as the A-register, use the following microinstructions:

ALU/
OP/ MOD/
LABEL BRCH SPCL COND STR
ZER0 S3
READ M
S4

7-2

S-BUS/

ADDRESS COMMENTS

S3 175 NS,AAF=1, READ INHIBITED
TAB 175 NS, S4 =A-REGISTER

Considerations

For utilizing main memory address 01 as the B-register, use the following microinstructions:

ALU/
OoP/ MOD/
LABEL BRCH SPCL COND STR
IMM éMLU S3
READ M
S4
If reading main memory location 00:
ALU/
oP/ MOD/
LABEL BRCH SPCL COND STR
ZER0 S3
READ PRST M
S4
*
If reading main memory location 01:
ALU/
OP/ MOD/
LABEL BRCH SPCL COND STR
IMM (')MLD S3
READ PRST M
S4

S-BUS/
ADDRESS

376B

TAB

S-BUS/
ADDRESS

S3
TAB

S-BUS/
ADDRESS

376B

TAB

COMMENTS

$3 = 1
175 NS, BAF = 1,READ INHIBITED
175 NS, S4 = B-REGISTER

COMMENTS

175 NS, PRST CLEARS AAF
560 NS, S4 = CONTENTS OF MAIN
MEMORY LOCATION O

COMMENTS

S3=1

175 NS, PRST CLEARS BAF

560 NS, S4 = CONTENTS OF MAIN
MEMORY LOCATION 1

Memory address 00 and 01 may be written into (refer to paragraph 7-3 by using the Special field
micro-order PRST one microinstruction before the TAB micro-order is used. In read or writes the main
rule is that PRST precede the TAB micro-order by one microinstruction. Note that (see the last two
microroutines) main memory locations 00 and 01 may be used for Hewlett-Packard generated
microroutines; therefore, the use of main memory locations 00 and 01 is not recommended.

Considerations

Microprogrammed successive READ’s may appear as follows but note that if two READ’s are coded
without an intervening TAB, the result of the first READ is lost.

ALU/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS

READ M S3 175 NS
READ M TAB 560 NS
M TAB 560 NS

If the M-register is modified between READ and TAB, the decision between the A-register, B-register,
and main memory may be made incorrectly. For example:

ALU/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
IMM CMLO S4 376B S4 =1
ZERO S3
READ M S3 READ A-REGISTER, AAF =1
M S4 M=1, BAF =1, AAF = 0
S5 TAB S5 = B-REGISTER, NOT A-REGISTER

7-3. TYPICAL WRITE OPERATIONS

Load the T-register with data to be written to main memory in the same microinstruction that
contains the WRTE micro-order or the DCPC could alter the T-register before the WRTE is executed.
Do not alter the T-register unless initiating WRTE, since the T-register is internal to the Main
Memory section and is used by both the CPU and the Dual Channel Port Controller (DCPC). The
T-register is not intended to be used as a general purpose register, but to be used only in referencing
main memory. A simple write operation with M > 1 is accomplished as follows:

ALU/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
M S3

WRTE MPCK TAB 5S4 175 NS

7-4

Considerations

For interpreting main memory address 00 as the A-register, use the following microinstructions:

ALY/
OP/ MOD/
LABEL BRCH SPCL COND STR
ZERO S3
M
WRTE MPCK TAB

S-BUS/

ADDRESS COMMENTS

S3 M=0, AAF =1

S4 175 NS, A-REGISTER = S4, MAIN

MEMORY LOCATION 0 UNALTERED

For interpreting main memory address 01 as the B-register, use the following microinstructions:

ALU/
OP/ MOD/
LABEL BRCH SPCL COND STR
IMm cMLD S3
M
WRTE MPCK TAB

S-BUS/

ADDRESS COMMENTS

376B S3 =1

S3

sS4 175 NS, B-REGISTER = 54, MAIN

MEMORY LOCATION 0 UNALTERED

Writing into main memory location 00 is accomplished as follows:

ALU/
OP/ MOD/
LABEL BRCH SPCL COND STR
ZEROD S3
PRST M
WRTE MPCK TAB

S-BUS/

ADDRESS COMMENTS

S3 PRST CLEARS AAF

S4 175 NS, MEMORY LOCATION 0 = 54,

A-REGISTER UNALTERED

7-5

Considerations

Writing into main memory location 01 is accomplished as follows:

ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
MM CMLO S3 376B S3 =1
PRST M S3 PRST CLEARS BAF
WRTE MPCK TAB S4 175 NS, MAIN MEMORY LOCATION 1
* = 54, B-REGISTER UNALTERED

Note that (see the last two microroutines) main memory locations 00 and 01 may be used for Hewlett-
Packard generated microroutines; therefore, using main memory locations zero and one is not
recommended.

Microprogrammed successive WRTE’s may appear as follows:

ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
M S3
WRTE MPCK TAB S4 175 NS
M SS 175 NS

WRTE MPCK TAB S4 §95-175 = 420 NS

In all the WRTE examples above, MPCK checks the M-register, which must be loaded in a mic-
roinstruction preceding (not necessarily immediately) the MPCK. To write into protected main
memory, omit MPCK.

CAUTION

Writing into protected main memory must be done with caution
because of the possibility of crashing the system environment.

After the execution of a microinstruction containing a WRTE, the 595 nanoseconds needed to write
into main memory does not extend succeeding microinstructions unless they attempt to access main
memory before 595 nanoseconds has elapsed.

Considerations

7-4. USE OF MPCK

In an active DCPC environment, the use of the MPCK micro-order in a microinstruction containing a
WRTE micro-order ensures that the Memory Protect check will be made correctly. The Store field of a
microinstruction with READ and MPCK micro-orders must not contain M, PNM, or IRCM because
this will result in an erroneous Memory Protect check. A correct sequence of microinstructions might
appear as follows:

ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
M S3 M = ADDRESS TO BE WRITTEN INTO.
WRTE MPCK TAB S4 MPCK AS USED HERE WILL CORRECTLY
CHECK FOR A MEMORY PROTECT
VIOLATION.
READ M SS MPCK AS USED HERE WILL CORRECTLY
MPCK CHECK FOR A MEMORY PROTECT
* VIOLATION.

7-5. CONDITIONAL AND INVALID OPERATIONS

The READ/WRTE sequence shown below is conditionally valid. That is, if there is no DCPC activity
the sequence will work.

ALY/
oP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
READ) M 53 175 NS

WRTE TAB TAB S95 NS

The following READ is conditionally valid:

ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
READ M S3 175 NS
INC S3 S3 175 NS
IMM LOW L 0 175 NS
ZERD sS4 175 NS

SS TAB 175 NS

7-7

Considerations

Note that both examples will fail frequently in an environment in which there is DCPC activity.
Any number of microinstructions may separate a READ and TAB if there is no DCPC activity.

The microroutine sequences shown below are examples of invalid use of READ and WRTE:

ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
READ . M S3 READ WILL COMPLETE, BUT
WRTE THE WRTE IS INHIBITED
*
READ M S3

WRTE TAB 177777 WRITTEN INTO MEMORY.

When an I/O cycle is in progress, a READ or WRTE must not be initiated before T6 in the cycle under
either of the following conditions:

® An input or output routine is in progress. (Refer to paragraph 7-22 for microprogrammed I/O
considerations.)

® A skip flag test of the I/O system is taking place.

7-6. SOME MICROPROGRAMMING TECHNIQUES

Techniques for using the alter-skip related micro-orders and for performing microprogrammed arith-
metic operations are included in the following paragraphs.

7-7. THE USE OF SRG1 AND SRG2

Micro-order SRG2 is sensitive to the contents of the Instruction Register (IR). In particular, bits 4, 2, 1,
and O control a variety of shift/rotate actions. However, SRG2 causes the top of the Save Stack to be
loaded into the CMAR unless an SRG2 skip condition is met. This pseudo-RTN is usually undesirable
in a user microprogram. The simplest way to prevent the undesired loading of the CMAR is to satisfy
an SRG2 skip condition by setting bit 3 of the IR and having bit 0 of the T-bus be clear. IR bit 3 = 1 is
the equivalent of an Assembler SL*. By ensuring that T-bus bit 0 = 0 as execution of the SRG2 begins,
the SRG2 skip test is satisfied and the CMAR is not loaded from the Save Stack. The lines at labels
SRG2.1, and SRG2.2, and SRG2.3 in the following microroutine illustrate the above technique.

7-8

OP/
LABEL BRCH SPCL
SRG2.1 MM
SRG2.2
SRG2.3 SRG2

ALU/
MOD/
COND STR
LOW CNTR
ZERO

S4

S-BUS/
ADDRESS

37B
S3

Considerations

COMMENTS

IRC4-0) = 11111 = SL+, #LF,
T-BUS (0) = 0.
S4 = CONTENTS OF S3ROTATEDLEFT 4.

As shown in line SRG2.1, the CNTR micro-order may be used in place of IRCM if only IR bits 7 through
0 are significant. Storing into the counter does not alter IR bits 15 through 8. In regard to IRCM, note
that if IR bit 10 = 0, the upper five bits of the M-register will be automatically cleared (zeroed) as bits 9
through O of the IR are stored into the M-register. If IR bit 10 = 1, bits 14 through 10 of the IR are
stored into the M-register (in addition to IR bits 9 through 0) to form an operand address.

Micro-order SRG1 is also sensitive to the contents of the IR, but does not cause loading of the CMAR
from the Save Stack; therefore, the use of SRG1 is straightforward as shown in lines SRG1.1 and

SRG1.2 below.

OP/
LABEL BRCH SPCL
SRG1.1 IMM
SRG1.2 SRG1

ALU/
MOD/
COND STR

HIGH IRCM

S6

S-BUS/
ADDRESS

sS

COMMENTS

IR(9-5) = 11111 = #LF, CLE.

S6 = CONTENTS OF SSROTATEDLEFT 4,
AND E-REGISTER = 0.

7-9

Considerations

7-8. USING THE ASG MICRO-ORDER

Micro-order ASG is sensitive to the contents of the IR. In particular, IR bits 7 and 6 may be used to
clear, complement, or set the E-register. However, ASG causes the top of the Save Stack to be loaded
into the CMAR unless an ASG skip condition is met. This pseudo-RTN is usually undesirable in a user
microprogram. The simplest way to prevent the undesired loading of the CMAR is to satisfy an ASG
skip condition by setting bit O of the IR. For an ASG, IR bit 0 = 1 is the equivalent of an Assembler
RSS, i.e., a satisfied ASG skip condition. ASG is also sensitive to IR bit 2, if IR bit 2 = 0 the micro-order
in the ALU field is ignored and a PASS is executed. To execute anything but a PASS in the ALU field,
set the IR bit 2 to a 1. With the use of the microinstructions shown below, the E-register will be set, S4 .
incremented and stored into S4, and the microinstruction following the ASG will be executed next:

ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
IMM LOW IRCM 305B IRC7,6,2,0) = 1,1,1,1, = CCE,RSS.

ASG INC S4 S4 CCE,S4 = S4+1

7-9. SETTING AND CLEARING OVERFLOW

Some guidelines for programmatically setting and clearing the Overflow register are shown below.
The use of the SOV, COV, ENVE micro-orders are involved.

ALU/
oP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS

EXPLICITLY SETTING & CLEAR. ING OVERFLOW

*

sov EXPLICITLY SETS OVERFLOW
cav EXPLICITLY CLEARS OVERFLOW
*
* SETTINGOVERFLOWWITHSHIFT OPERATION
ARS L1 B B IF B15 NOT = B14 PRIOR TO L1,
* OVERFLOW WILL BE SET AFTER ARS
* EXECUTES
* SETTINGOVERFLOWARITHMETICALLY
IMM cav HIGH L 200B L = 040377 = LARGE + NUMBER
IMM HIGH S3 200B S3 = 040377 = LARGE + NUMBER
ENVE ADD S3 S3 OVERFLOW WILL BE SET
*
IMM cov HIGH L 0 L15 =10
IMM HIGH S3 177B S3 =077777
ENVE INC S3 S3 OVERFLOW WILL BE SET
*
THE FOLLOWINGWILL NOT SET OVERFLOW CORRECTLY
IMM cav HIGH L 200B L = 040377 = LARGE + NUMBER
IMM CMHI S3 200B S3 = 137000 = LARGE - NUMBER

ENVE SUB S3 S3 OVERFLOW WILL NOT BE SET

The rule for setting the Overflow register arithmetically is summarized in figure 7-1.

7-10

Considerations

START

OVERFLOW
REGISTER
SET

OVERFLOW
REGISTER
UNALTERED

END

7115-23

Figure 7-1. Overflow Register Control

7-11

Considerations

7-10. THE USE OF PNM

For time-critical loops, the PNM micro-order can be used as shown in the microroutine below to reduce
loop execution times. The microinstruction at label LOOP uses PNM to initialize M for the current
READ and to update P for the next READ. Since these functions usually require two micro-
instructions, loop execution time reduces by one microinstruction. Saving P and initializing P with the
buffer address (assumed to be in B) uses two control memory locations. Microprogram specifications
determine whether the control memory/execution time tradeoff is worth while. Note that the restora-
tion of P is “buried” in preparing to exit the microprogram, as in line MPEND:

ALY/
OP/ MOD/ S-BUS/

LABEL BRCH SPCL COND STR ADDRESS COMMENTS

S3 P SAVE P

P B P = BUFFER ADDRESS
LOgP READ iNC PNM P READ BUFFER, UPDATE BUFFER
LOGPEND ADDRESS.
MPEND READ RTN INC PNM S3 FIX, P, START FETCH FOR NEXT
* INSTRUCTION.

7-11. THE CNTR MICRO-ORDER

If a loop requires 256 or fewer repetitions, and the IR contents are not required, the CNTR micro-order
can be used as shown in the microroutine below to reduce loop execution time. Incrementing or
decrementing the CNTR is “buried” in line LOOP. Since loop count updating using a scratch register,
(or general purpose register) would require a separate microinstruction, loop execution time is reduced
by one micro-instruction using this method. Initializing the CNTR with the loop count uses one control
memory location. Microprogram specifications determine whether the control memory/execution time
tradeoff is worth while. Note that, INCT or DCNT does not use the ALU; therefore, arithmetic
operations may be performed in the same microinstruction. Note that ICNT cannot immediately
precede a conditional jump which has a CNT4 or CNT8 as the condition.

ALU/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
CNTR A CNTR = LOOP COUNT.
LooOP READ DCNT iNC PNM P READ BUFFER, UPDATE BUFFER
* ADDRESS AND LOOP COUNT.

LOOPEND JMP CNDX CNT8 RJS LOOP COUNT = 0? NDO, CONTINUE.

7-12

Considerations

7-12. MAGNITUDE TESTS

If the magnitude of the difference between two operands is less than 32768, the limited test shown in
the microroutine that follows may be used to determine whether one of the elements to be compared is
arithmetically less than, equal to, or greater than the other element. To understand the limitation of
the test, consider integers of —1 (element 1) and + 32767 (element 2). Subtracting — 1 from + 32767
yields + 32768, which is a number that cannot be correctly represented by a 16-bit signed integer. The
result of the subtraction is ALU bit 15 set, and bits 14 through 0 clear. The AL15 conditional test
selects the C1.GT.C2 microinstruction. Clearly, element 2 (+ 32767) is greater than element 1 (- 1),
and the test has failed.

ALY/
oP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS

* LIMITEDLESS THAN, EQUAL TO, GREATER THAN TEST.

* L S3 L = C1 (FIRST ELEMENT).
SUBTRACT SUB S4 ALU = C2 - C1.
JMP CNDX ALZ EQUAL ALU = 0?7 YES, C1 = C2.
JMP CNDX AL1S C1.GT.C2 AL1S =07 YES, C1 GREATER THAN C2,
Ct.LT.C2 NO, C1 LESS THAN C2.
EQUAL
C1.G6T.C2

The test in the microroutine that follows holds for all 16-bit signed integers. Consider how integers of
—1 and + 32767 are now analyzed. Based on the XOR of the two elements, the ALZ test for equality
fails, the AL15 RJS test for equal signs fails, and the L15 test for element 1 less than element 2
succeeds which causes the C1.LT.C2 microinstruction to be selected correctly.

Note that when the signs of the elements being compared are opposite, subtraction is unnecessary
since the negatively signed element must be smaller. Note also that when the signs of the element
signs are the same, subtraction always yields a result which causes correct microinstruction selection.

ALU/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS

* GENERAL LESS THAN, EQUAL TO, GREATER THANTEST.

L S3 L = C1 (FIRST ELEMENT).
XOR S4 ALU = C2 XOR C1.
JMP CNDX ALZ EQUAL ALU = 0?7 YES, C1 = C2.
JMP CNDX AL1S RJS SUBTRACT SIGNS = ? YES, SUBTRACT.
JMP CNDX L15S C1.LT.C2 L15 =1? YES, C1 LT C2.
JMP C1.G6T.C2 NO, C1 GT C2.
SUBTRACT SUB S4 ALU = C2 - C1.
JMP CNDX AL1S C1.G6T.C2 AL1S5 = 1? YES, C1 GT C2.
C1.LT.C2 . NO,C1 LT Cc2.
EQUAL
C1.6T.Cc2

7-13

Considerations

7-13. MEMORY PROTECT CONSIDERATIONS

If the HP 12892B Memory Protect (MP) accessory is used with the Computer, there is a relationship
between certain micro-orders and Memory Protect that should be understood.

The Main Memory section and I/O section are involved in the Memory Protect functions. You will also
want to refer to the read/write and microprogrammed I/O considerations in this section (in addition to
the discussion of MP related micro-orders presented in the following paragraphs) for a complete
understanding of the microprogramming/Memory Protect relationship.

Memory Protect can only be enabled or disabled through use of the I/O system; there are no micro-
orders that directly perform these operations. When an STC 05 instruction enables MP, main memory
access cannot occur below the value set in a Fence register and no I/O operations (except those
referencing s=lect code 01) can occur. The Memory Protect functions are disabled by any interrupt,
interrupting to a non-I/O type instruction in a trap cell. Refer to the discussion of the Memory Protect
accessory in your Computer Series Operating and Reference Manual and have an understanding of MP
details before microprogramming with this accessory installed. The key points to remember when
studying the following descriptions of MP related micro-orders (also refer to table 4-1) are that MP
effectively does not allow any I/O and that at the microprogramming level you are not necessarily
under the “protective umbrella” of MP when performing main memory operations. These factors
impose upon you the responsibility of being acutely aware of the effect of your microprogram.

Memory Protect must be turned off to generate some MEM signals and execute I/O instructions. The
following example demonstrates how to turn off Memory Protect. To turn off Memory Protect, execute
an I/O instruction to any select code other than 1. This will violate Memory Protect, disabling it and
cause assertion of FLG5, on the Memory-Protect PCA which is the interrupt signal to the CPU for
select code 5. An IAK following the IOG will eliminate the interrupt request from select code 5.
However, the Memory Protect hardware will not allow execution of any 1/0 instructions until a FTCH
micro-order has been executed. FTCH performs special operations on the CM addressing logic,
therefore a RTN micro-order can not be used successfully. This implies that the routine that turns off
Memory Protect is in the zero level of subroutines, and the microinstruction JMP 0B must be used to
return to CM location 0. However if subsequent subroutine calls are required before returning to
FETCH then the CM addressing logic must be initialized, refer to example 2. This function is
performed by the JTAB micro-order in conjunction with the INCI and remaining micro-orders to
prevent the JTAB branch from occurring,.

Example 1
LABEL OPER SPEC ALU STORE S-BUS COMMENTS
) VIOLATE MEMORY PROTECT
106 SELECT CODE # 1
1AK CLEAR MEMORY PROTECT INTERRUPT
FTCH ALLOW 1/0 INSTRUCTIONS
JMP) 0B RETURN TO FETCH

7-14

Considerations

Example 2
LABEL OPER SPEC ALU STORE S-BUS COMMENTS
. VIOLATE MEMORY PROTECT
106 SELECT CODE # 1
1AK CLEAR MEMORY PROTECT INTERRUPT
FTCH ALLOW 1/0 INSTRUCTIONS
INCI ZERD PREVENT JTAB BRANCH
JTAB DBLS INITIALIZE CM LOGIC
JMp . 0B RETURN TO FETCH

7-14. THE FTCH MICRO-ORDER

The FTCH micro-order stores the present contents of the M-register into the MP Violation register,
clears the MP Violation Flag flip-flop, and resets the MP Indirect Counter (indirect address levels).
The FTCH micro-order also performs operations on CM addressing logic and is therefore to be used
only in the base set. Refer to table 4-1.

7-15. IRCM

The IRCM micro-order causes MP hardware to record the type of instruction being stored in the IR and
whether or not IR bits 5 through 0 equal 01. When MP is enabled (by an STC 05 instruction):

¢ Only I/O instructions with a select code of 01 may be executed.

¢ The IR must be loaded prior to initiating an I/O cycle with the IOG to ensure that the signal
decoding logic is enabled.

When MP is not enabled:

® No restriction is placed on select codes that are otherwise valid.

7-16. INCI

The INCI micro-order should be used whenever another level of indirect addressing is to be im-
plemented by a microprogram. After three counts of the MP Indirect Counter, the MP hardware
effectively performs an ION micro-order (i.e., a pseudo ION), thus enabling recognition of I/O inter-
rupts by branch conditional type microinstructions. INCI has special considerations involved if used
Jjust before a microinstruction containing the JTAB micro-order. Refer to table 4-1 and appendix C for
INCI and JTAB use. Also see interrupt handling techniques in this section.

7-15

Considerations

7-17. MPCK

The MPCK micro-order should be used (particularly in main memory write operations) to ensure that
a microprogram will not alter memory below the protective address “fence” set in MP. When this
micro-order is used and a MP violation is detected:

® All subsequent READ microinstructions end with invalid data in the T-register.
¢ No WRTE micro-order will be executed.

® All I/O signals from the computer are inhibited until after the next FTCH or IAK micro-order is
executed.

Refer to the read and write considerations outlined in paragraph 7-4 for using MPCK and to table 4-1
for restrictions when using MPCK.

7-18. THE I0G MICRO-ORDER

If Memory Protect is enabled, the use of the IOG micro-order causes a check of the select code and the
MP Violation Flag flip-flop is set if the select code (IR bits 5 through 0) is not equal to 01. If an MP
violation is detected, the actions described for the MPCK, micro-order (above) take place.

7-19. TAK

When an JAK micro-order is executed, the MP Indirect Counter is cleared. The IAK micro-order also
causes the computer to “freeze” (i.e., stop executing microinstructions) until I/O period T6 occurs and
then issue an IAK signal, acknowledging receipt of an interrupt request, to the requesting device. If
the interrupt device select code is 05, the PARITY indicator on the Operator Panel is cleared and the
MP Violation Flag flip-flop is cleared. Whenever IAK executes, logic in the MP hardware determines
whether or not the MP should be disabled (clear the control bit). This hardware determination is made
six microinstructions after the IAK. MP is disabled if no /O instruction (IOG) micro-instruction is
executed or if a halt is executed. To re-enable Memory Protect, an STC 05 instruction is required. The
execution of IAK causes the MEM hardware to address the system map which will alter the memory
address.

7-20. THE IOFF MICRO-ORDER

The IOFF micro-order turns off recognition of /O interrupts but does not disable Memory Protect. The
Memory Parity function shares the same interrupt location as MP and the Operating and Reference
Manual provides information for determining the source of an interrupt. The DMS accessory also
works in conjunction with MP for certain functions which are also described in the Operating and
Reference Manual.

7-16

Considerations

7-21. DUAL CHANNEL PORT CONTROLLER CONSIDERATIONS

The HP 12897B Dual Channel Port Controller (DCPC) “steals” full I/O cycles to perform direct
transfers between peripheral devices and main memory. The DCPC functions are essentially transpa-
rent to microprogramming. When DCPC takes a sequence of consecutive I/O cycles for input transfers,
any attempted I0G, READ, or WRTE micro-orders will freeze the Control Processor until DCPC is
finished. When using DCPC with MBIO and MPP refer to Section 13 for special considerations.

Both DCPC channels may operate concurrently but Channel 1 has priority over Channel 2 when
simultaneous cycles are requested. A channel stealing consecutive I/O cycle may operate at up to
890,000 words per second during output data transfers,* and 1,000,000 words per second during input
data transfers. Under maximum bandwidth conditions the Control Processor is essentially locked out.
For further information on DCPC refer to the applicable manuals.

7-22. MICROPROGRAMMED 1/0

Microprogramming input and output (I/O) functions requires more care than any other type of
microprogramming because there are strict timing dependencies. To maintain the integrity of the /O
system, each I/O device control signal is generated in a specific time period (T-period). Section 5 in this
manual defines and describes the timing for the computer. Summary information on timing is
presented in subsequent paragraphs but you should be familiar with the concepts presented in section
5 before attempting microprogrammed I/O.

Also provided in subsequent paragraphs are applicable information on signal generation by the I/O
section; I/O control, and data transfer guidelines for microprogramming; and interrupt handling rules.
In addition to the information in paragraph 7-13, Memory Protect in relation to I/O is discussed
briefly. Guidelines for forming and executing microprogrammed I/O instructions are included and
some special I/O techniques are covered. These special techniques are referenced from section 13.

7-23. SYNCHRONIZING WITH THE I/O SECTION

The I/O cycle consists of five T-periods designated T2 through T6. Specific I/O activity is restricted to
certain T-periods in order to synchronize data flag setting, data latching, and resolving multiple
interrupt requests. (Section 14 provides an example of I/O microprogramming that you can reference
while studying the following information.) Microinstructions in T-periods generally execute in 280
nanoseconds for each T-period (see section 5 on timing variations).

A microprogram becomes synchronized with the I/O system when the Control Processor detects an I0G
micro-order. When this occurs, the Control Processor “freezes” (i.e., stops executing microinstructions)
until period T2. Any other micro-orders in the microinstruction containing IOG are executed without
delay but the IOG is not executed until T2. The next microinstruction is executed during period T3, the
next during T4, and so on. IOG may be used in any microinstruction that does not require some other
Special or Modifier micro-order.

*Refer to your Computer Series Operating and Reference Manual specifications for DCPC latency.
7-17

Considerations

As can be realized, the relationship between microinstruction execution and the I/O T-periods places
certain restrictions on the use of some registers and micro-orders. In order for your microprograms to
execute properly, you must observe the following rules:

® Do not start an I/O cycle (using IOG) before data is transferred from the T-register following a
READ operation. The reason is that if the IOG causes a freeze, the data in the T-register will be
invalid. For example, a microinstruction sequence similar to the following must not be

programmed:
ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
READ iNC PNM P

106 PASS S4 TAB

¢ Load the Instruction Register before issuing an IOG. (See paragraph 7-31 on special techniques.)

The following conditions will always cause the Control Processor to freeze in order to synchronize with
the I/O section:

® An IOG is in the Special field and either the cycle period is not T2 or the DCPC is operating.

® An IAK micro-order is in the Special field and either the I/O cycle period is not T6 or the DCPC is
operating.

It should be noted that the Computer main memory read and write operations may cause mi-
croinstruction execution delays that are defined as “pauses”. This is not the same as “freezing” to
synchronize with the I/O section. Refer to section 5 for details.

7-24. 1/0 SECTION SIGNAL GENERATION

When the IOG micro-order is executed, the I/O system sends I/O backplane signals to the I/O devices
starting at period T3 according to the contents of the Instruction Register (IR). These signals are
different and separate from micro-orders. For example, on a data output transfer, the IOG micro-order
causes the I/O section to generate the IOO signal during T3 and T4 (caused by IR bits 8,7, and 6 =
1,0,0). But the micro-order I00O (which only serves to connect the S-bus and I/O bus) must be
microprogrammed to be present during T4 and T5. If the proper microprogramming sequence is not
followed there will be (in this case) a race condition between the backplane I0O signal and the effect of
the 100 micro-order.

7-18

Considerations

Table 7-1. Backplane I/O Signal Generation Determined by IR Bits 11 through 6

BACKPLANE
IR* BACKPLANE /O SIGNAL

11109 8 7 6 /O SIGNAL TIME GENERAL USE

X xy 0 00 none T3 Clear the Run flip-glop on the CPU (HLT).

X x 0 0 0 1 STF T3 Set device flag (STF).

X x 1 x x 1 CLF T4 Clear device flag (CLF).

X x y 010 SFC T3-T5 SKPF condition is true if and only if the
device flag is clear (SFC).

X x y 0 1 1 SFS T3-T5 SKPF condition is true if and only if the

' device flag is set (SFS).

X x y 1 0 x 101 T4 If the corresponding select code is not
between 1 and 7 (during T4 only), transfer
the input data latch on the device onto the
I/0 bus (MIA/B, LIA/B).

5 Transfer the input data latch on the device
onto the I/O-bus.

X xy 110 100 T3-T4 Store the I/O bus into the input data latch
on the device (OTA/B).

0O x y 1 1 1 STC T4 Set device control flag (STC).

T x vy 1 11 CLC T4 Clear device control flag (CLC).

NOTE:

"Bit entries with x are not significant for the I/O signal specified. If bit 9 is set the device flag is cleared; if bit 9 is
clear the device flag is not altered. Bit 9 entries with y indicate the option available to hold or clear the device
flag in these instructions. Bits 5 through 0 (not shown) indicate the select code for the device. (Assembler
instructions STO, CLO, SOC, and SOS all referring to the Overflow register always have bits 5 through 0 = 01
(octal).

In order for your microprogram to perform an I/O operation, IR bits 5 through 0 must contain the select
code (SC) of the device that is to respond to the I/O signals. As shown in table 7-1, IR bits 11 through 6
determine which I/O signals are sent. The IR must be loaded prior to the occurrence of the IOG to
ensure that the correct signals are sent to the desired SC (refer to paragraph 7-23). Do not modify IR or
CNTR for 3 instructions following the IOG. If Memory Protect is enabled, the IR must be loaded prior
to issuing IOG (refer to paragraphs 7-13 and 7-28). With certain exceptions, I/O can not be done with
MP enabled (refer to paragraph 7-31).

Select codes 00,01,02,03,04, and 05 are usually used by the interrupt system, the Operator Panel, Dual
Channel Port Controller (DCPC), power fail, and Main Protect/parity interfaces and accessories. For a
description of the effect of I/O signals on these select codes, refer to your Computer Series Operating
and Reference Manual.

7-19

Considerations

7-25. 1/0 CONTROL

A microprogram can generate I/O control signals for the select code of an I/O device without I/O data
transfer. As previously described, IR bits 5 through 0 must contain the SC of the device and bits 11
through 6 may specify any of the following control signals:

STF CLF SFC SFS STC CLC HLT

Note that CLF can be generated in conjunction with any other signal simply by setting IR bit 9 to 1 as
shown in table 7-1. For example, the Assembly language instruction combination STC,C can be
simulated by setting IR bits 11 through 6 to 0x1111 (where x means “don’t care”). (Refer to table 7-1.)
An TI/O control routine with the IR specifying STC and select code 05 can be used to re-enable Memory
Protect.

For SFS and SFC, the state of the device flag may be tested by a conditional branch microinstruction
(word type III) having micro-order SKPF in the Condition field. Micro-order SKPF is true only when
the SFS I/0 signal is present and the flag is set, or when SFC is present and the flag is clear. The SKPF
test should be microprogrammed to occur during I/O period T4 or T5 (i.e., two or three microinstruc-
tions after the IOG). Any operation desired may be performed as a result of this test; for example,
incrementing the contents of the P-register causes a skip in the main memory program. Refer to
paragraph 7-30 for examples of forming and executing I/0 control microinstructions.

7-26. 1/0 OUTPUT

An /O output routine must use both the IOG and I00 micro-orders. (Special exceptions are discussed
in section 13). The IR must contain the bits that specify the IOO signal and the SC of the OO device.
The I00 micro-order connects the S-bus to the I/O bus. Do not confuse this with the I00 backplane I/O
signal (refer to paragraph 7-24). The microprogram must put the proper data on the S-bus, then direct
it onto the I/O bus. The IOO backplane signal latches the /O bus data into the I/O device interface
card. Detailed timing requirements are: '

® During I/O period T3, the S-bus must be driven by the register containing the output data to
prepare for the transfer to the I/O bus.

¢ During T4 and T5, the S-bus must be driven by the same register and the IOO micro-order must be
in the Store field. This ensures valid data on the I/O bus.

For example, an OTA/B instruction can be simulated by the following sequence of microinstructions:

ALU/
oP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
GO 106 T2
CAB T3
100 CAB T4

RTN 100 CAB T5

7-20

Considerations

7-27. 1/O0 INPUT

An I/O input routine must use both the IOG and IOl micro-orders, and the IR must contain the bits
that specify the 101 signal and the SC of the I/O device. Special exceptions are discussed in section 13.)
The IOI signal transfers data from the 1/0 device interface card to the I/O bus and the I0I micro-order
connects the I/O bus to the S-bus to allow data to be present for latching into a register. The I0I
micro-order is used in the I/O cycle during T5 to input data from the I/O bus onto the S-bus. Do not
confuse this with the IOI backplane I/O signal present during T4 and T5. (Refer to paragraph 7-24.)
For example, an LIA/B instruction can be simulated by the following microinstruction sequence:

ALU/
OoP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
INPUT 106 T2
NOP T3
NOP T4
RTN CAB 101 T5

You can see from the above that parts of some I/O microroutines may have unused microinstruction
periods. Caution is required when using these periods. Until all I/O-related microinstructions have
been executed for an I/O cycle, do not use microinstructions that may cause the CPU to freeze. (Refer to
paragraph 7-23.) In the above I/O input example, if the T3 and T4 NOP’s were replaced by READ and
TAB micro-orders (in T3 and T4 respectively), the CPU would pause in the middle of T4 and IOI would
not be executed until too late to correctly handle the data transfer. On the other hand, during an I/O

control routine that is not generating SFS or SFC signals, many kinds of microinstructions can be used
after the IOG.

7-28. MEMORY PROTECTION IN RELATION TO 1/0

When an instruction is loaded into the Instruction Register, Memory Protect (MP) records information
about the instruction. When an I0G micro-order is detected, MP checks the select code (IR bits 5
through 0). If the SC is not equal to 01, MP inhibits any I/O signals and prevents the Control Processor
from altering main memory or the P- or S- registers, and generates an interrupt request. (A micropro-
gram cannot prevent this if MP is enabled.) Thus, MP protects a portion of memory and maintains
compatibility with HP software operating systems for I/O operations even in the microprogramming
environment. Refer to your Computer Series Operating and Reference Manual and to paragraph 7-13 of
this manual for further details on Memory Protect.

7-29. INTERRUPT HANDLING

Once a microprogram starts executing, it has complete control over the computer until it terminates. It
can not be interrupted, suspended, or terminated unless the microprogram itself checks for interrupts.
It is not desirable to hold off interrupts for very long and you must decide how long your micropro-
grams can be allowed to execute before testing for an interrupt. In making this decision, consider the
impact that a long non-interruptible microprogram can have in the RTE environment.

7-21

Considerations

When a microprogram detects an interrupt, it should execute a JSB to a microroutine that saves
whatever is necessary to allow the microprogram to continue after the interrupt is serviced or to
provide for complete restart of the microprogram. (Refer to microprogram examples in section 14 for
an illustration.) The P-register must be set to point to an address one location beyond the main
memory instruction that invokes the microprogram (the instruction that was interrupted). The
M-register will be adjusted to point to the address of the main memory instruction that will handle the
interrupt. It will be readjusted later so no special conditions are placed on M. For example, suppose
your main memory instruction invoking a microprogram resides in the location designated I. Then, if
your microprogram tests for and detects an interrupt you must:

® Ensure P=1+ 1.

e Execute a RTN (or JMP to control memory location 6 if in a microsubroutine). This is described in
more detail below.

If parameters are saved, the microprogram must be written to begin with a test that determines the
starting point of the microprogram based on whether or not the microprogram was interrupted.

Generally, to initiate interrupt service, your microprograms must branch (JMP) or return (RTN) to
control memory location 6 where the base set microprogram takes the trap cell address from the
Central Interrupt Register and gives control to a main memory routine which services the interrupt.
When the main memory interrupt routine which services the interrupt terminates, the interrupted
microprogram is restarted (assuming the P-register was properly set upon interrupt detection). A
check must be made to see if the interrupt system is turned on.

The presence of a pending interrupt or halt request can be detected by a microprogram in two ways:

e Executing a conditional test microinstruction (JMP CNDX) having HOI or NINT in the Condition
field.

® Executing a JMP or RTN to CM location 0; a pending interrupt or halt will cause control memory
addrss 6 to be loaded into the CMAR to handle the interrupt.

Using a RTN to pass control to control memory location 6, as shown in the microroutine below, line
EXIT1, will not work if the microroutine being exited was entered with a JSB. Using a JMP to location
6, as in line JUMP (in the microroutine below) will always work. NINT may also be used to check for
interrupts. Note that NINT is not sensitive to halts.

7-22

Considerations

ALY/

OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS

JMP CNDX l:il'JI EXITH INTERRUPT? YES, EXIT
EXIT1 RTN DEC P P FIXP, RTN(??).

JMP CNDX 0:101 EXIT2 INTERRUPT? YES, EXIT.
EXIT2 DEC P P FIXP, EXIT TO HALT-0R-
JUMP JMP 6 INTERRUPT MICROROUTINE.

When the Halt-Or-Interrupt microroutine is reached, the P-register is decremented and a test is made
to see if the Operator Panel was used to cause a halt. If not, an IAK micro-order freezes the Control
Processor until /O period T6, then causes the I/O system to send an IAK signal to the interrupting
device. A CIR micro-order causes the interrupting device’s SC (trap cell address) to be placed on the
S-bus, then this is stored into the lower-order 6 bits of the M-register (high order bits = 0). A read from
the address in the M-register obtains the first instruction of the main memory interrupt handling
program.

Suppose a microprogram is to be interruptible, but only by emergency interrupts (i.e., halt, parity
error, DMS, Memory Protect). An HOI conditional test detects emergency interrupts, but also detects
I/O interrupts. However, issuing an IOFF prior to the HOI test prevents detection of I/O interrupts.
Issuing an ION after the HOI test reenables detection of I/O interrupts. The microroutine below
illustrates this process. Note that IOFF and ION control only the detectability of power fail and /O
interrupts, and do not turn off or turn on the interrupt system. Note also that I/O interrupts held off by
an IOFF condition remain pending (i.e., are not lost), and are detectable when the ION condition is
re-established:

ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
I0FF PREVENT DETECTION OF 1/0
* INTERRUPTS
JMP CNDX HOI INTRPT TEST FOR DETECTABLE INTERRUPTS,
* I.E., HALT, PARITY ERROR,
* DMS, MEMORY PROTECT.
. .
10N REENABLE DETECTION OF 1/0
* INTERRUPTS.

7-23

Considerations

7-30. FORMING AND EXECUTING MICROPROGRAMMED I/0
INSTRUCTIONS

The following continuous example microroutines show how to accomplish formation and execution of
some microprogrammed I/O instructions. These examples are offered as models for you to write
microprograms that perform I/O functions. Note that putting the select code (SC) in the L-register is
prerequisite to using the IOR in the STC line. MPP and block I/O transfers require somewhat different
I/O instruction formats. MPP and block I/O transfers are discussed in section 13.

ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS

*

* READCIR (CENTRAL INTERRUPT REGISTER)

CIR L CIR L= SC (SELECT CODE).
*
*» FORMANDEXECUTE STCSC, C.
sTC MM L4 CMLD S8 303B S8 = 001700 = STC O,C.
IR S8 58 FORM STC SC,C.
IRCM S8
106 T2 EXECUTE STC, SC,C.
*
* FORMANDEXECUTELI*SC.
LI MM CMHI S4 376B S4 = 000400 = LI+ 0.
IR sS4 S4 FORM L1+ SC.
IRCM 54
106 T2 EXECUTES LI+ SC.
NOP T3 SEE NOTE 1.
NOP T4 SEE NOTE 1.
ss 101 TS S5 = DATA.
*
* FORMANDEXECUTE OT» SC,
aTe MM L1 CMLO S9 77B S9 = 000600 = 0T+ 0.
IR S9 s9 FORM 0T+ SC.
IRCM S9
106 T2 EXECUTE OT#* SC.
S5 T3 SEE NOTE 4.
100 sS T4 DATA CLOCKED OUT AT,
100 S5 TS T4/TS INTERFACE.
*
» FORMANDEXECUTE SFSSC.
SFS IMM CMLD S10 77B S10 = 000300 = SFS 0,
IOR S10 S10 FORM SFS SC.
IRCM 510
WAIT 106 T2 EXECUTE SFS SC.
NOP T3 SEE NOTES 1, AND 2.
JMP CNDX SKPF RJS WAIT T4 SEE NOTE 3.
*
* LOADCIR, ACKNOWLEDGE INTERRUPT
1AK 1AK T
»
*NOTES:

* 1. ANY NON-FREEZABLE MICROINSTRUCTIONS MAY BE USED IN PLACE OF THE NOP.

2. THE FLAG CAN BE SENSED NO EARLIER THAN T4,

3. EACH ATTEMPT TO SENSE THE FLAG REQUIRES AN 10G: THEREFORE, THE JMP TARGET FOR
UNSUCCESSFUL SENSING OF THE FLAG MUST BE WAIT NOT ““#/*,

4. SEE PARAGRAPH 7-24, SIGNAL GENERATION C(1.E., THE 100 SIGNAL AND 100 MICRO-0ORDER ARE NOT
ONE IN THE SAME).

® & ® % %

7-24

Considerations

7-31. SPECIAL I/O TECHNIQUES

The following microroutine shows how to perform microprogrammed I/O with both the interrupt
system and Memory Protect enabled. This is desirable when writing I/0 data into main memory in a
DMS environment, and/or Memory Protect checks are required. The microroutine shown assumes that
S3 and S5 have previously been initialized with the device select code and current buffer address,
respectively. An input function, LI*, will be performed: “*” indicates that the microroutine selects the
input data register.

Lines FAKESC and REALSC work together to enable execution of an I/O instruction with Memory
Protect enabled. Micro-order IOG, in addition to initiating an I/O operation, checks the I/O operation
select code (i.e., IR bits 5 through 0). If the select code is 01, the I/O operation proceeds. Attempting to
use any other select code inhibits the I/O operation and generates a Memory Protect interrupt.
However, the Memory Protect Hardware checks the select code when the store into the IR occurs in
line FAKESC. The store into the CNTR does not cause a check of the IR by the Memory Protect
Hardware; therefore, the I/O operation proceeds without a Memory Protect interrupt generated.

If the write to main memory generates a DMS or Memory Protect interrupt, the HOI conditional test
detects the interrupt and terminates the microprogram. The IOFF micro-order prevents detection of
I/O interrupts permitting “privileged” I/O as required for the MPP or block I/O transfer. Section 13
contains examples of MPP and block I/O microprograms.

ALY/
oP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDRESS COMMENTS
1MM CMHI L 376B L=LI# 0
IMM cMLD 54 376B S4=1
IOFF IOR 54 54 S4=L1e 1
FAKESC IRCM 5S4 IR=L1Is 1
IOR sS4 53 S4=L1s SC
REALSC CNTR 54 IR=L1Ie SC
106 M S5 START 1/0 OPERAT ION
M=BUFFER ADDRESS
s6 101 S6=DATA
WRTE MPCK TAB S6 WRTE DATA, DO MPCK
-
JMP CNDX HOI INTRPT TEST FOR HALT,
» PARITY ERROR, DMS, OR
. MEMORY PROTECT INTERRUPTS

7-32. 1/0 MICRO-ORDER SUMMARY

All micro-orders that are generally used in I/O microprogramming are summarized in table 7-2 for
your reference.

7-26

Considerations

Table 7-2. I/0 Micro-Order Summary

MICRO- WORD
ORDER TYPE FIELD CONDENSED MEANING
IAK Il Spec. At T6, load the CIR and issue the IAK signal.

IOFF* [, li Spec. Disable normal interrupt recognition.

10G** ol Spec. Freeze action until T2 then do what is in the IR.

ION** i, 1l Spec. Re-enable normal interrupt recognition.

100 (R Store Connect the S-bus to the I/O bus (for output); used after an 10G
micro-order.

Clh I S-bus Put the CIR content on the S-bus.

10l I S-bus Connect the 1/O bus to the S-bus.

HOI 11 Cond. If there is a halt or an interrupt pending, branch to the CM address
in this microinstruction address field.

NINT I Cond. If there is no interrupt pending, branch to the CM address in this
microinstruction address field.

SKPF] Cond. Check to see if /O signal SFS is present (T3 to T5) and the
addressed I/O device's flag is set. If the above conditions are true,
branch to the CM address shown in this microinstructions address
field.

— OR —
Check to see if SFC signal is present (T3 to T5) and the /O
device's flag is clear.
NOTES:
"This micro-order can also be used in the Special field of a word type IV (unconditional branch
microinstruction).
"*This can be used in the Special field of word type [V microinstructions. The branch microaddress is modified
by bits in the IR. See table 4-1 explanations.

7-26

Considerations

7-33. DYNAMIC MAPPING SYSTEM CONSIDERATIONS

If you have the HP 13305A Dynamic Mapping System (DMS) installed there are a number of
Assembly language instructions that may be used to program the accessory. These Assembly language
instructions invoke HP written microroutines in the HP reserved area of CM to operate DMS
according to HP’s design specifications. The micro-orders used in HP’s microinstructions and micro-
routines for controlling DMS are also available for your microprogramming use.

It is beyond the scope of this manual to discuss HP’s method of operating DMS or describing operation
of the DMS hardware. However, a discussion of the three micro-orders (referenced from table 4-1) you
may use and the DMS signals generated is within the scope of user microprogramming. (For more
information on HP 13305A DMS operation and the applicable HP Assembler language instructions
refer to your Computer Series Operating and Reference Manual). A prerequisite to using the DMS
micro-orders described below is that you be thoroughly familiar with the DMS and its operation.

With DMS installed, the Memory Expansion Module (MEM), residing (logically) in front of the main
memory controller, forms a 20-bit address from the 15-bit main memory address received on the
M-bus. DMS always “looks at” the M-bus address and MEM creates the 20-bit address for DMS
according to control signals received from the Control Processor. The control signals, of course, are
generated because of the Control Processor’s decoding of microinstructions from CM. The three
micro-orders; MESP (in the Special field), MEU (in the Store field), and MEU (in the S-bus field) that
can be used in microinstructions involving DMS, must be used in tandem. That is, a signal sent to the
DMS is generated from the “decoding” of a specific combination of the three micro-orders.

There are three signals generated directly from control memory that are used to control the MEM. In
the Special field, “MESP” generates MESP. In the Store field, “MEU” generates the MEST signal. In
the S-bus field “MEU” generates MEEN.Other signals which directly affect the MEM are MPCK,
READ, TEN, IAK (CIREN). Table 7-3 indicates what ‘control line’ signal is generated by each
combination of the micro-orders. The three micro-orders are used in a one-of-eight command structure.
Because a combination of all three micro-orders must be used (Special field, Store field, S-bus field)
only word type I microinstructions are used for DMS. Table 7-4 lists all the functions performed by
each of the control signals referenced by table 7-3. The DMS functions are performed only in the
microcycle during which they are asserted (with the exception of Q,, port 1).

7-27

Considerations

Table 7-3. MEM Signals Invoked by Micro-Orders

MEM RULES
LABEL oP SPEC ALU STORE S-BUS SIGNAL (SEE NOTES)

@ @ MESP @ MEU MEU Qo 1,4

@ @ MESP @ MEU $ Q, 1,4

@ @ MESP @ $ MEU Q, 1,4

@ @ MESP @ $ $ Q, 2, 4

@ @ : @ MEU MEU Q, 4

@ @ * @ MEU $ Qs 34

@ @ . @ $ MEU Qg —

@ @ . @ $ $ Q, —

@ = Any legal code
- Any legal code except MESP
$ Any legal code except MEU

RULES GOVERNING MEM SIGNALS:

1. Must have a READ or RJ30 or WRTE exactly two microinstructions before use of the micro-order, and a
READ, RJ30 or WRITE instruction may not be repeated until execution is complete.

2. Must have a READ, RJ30 or WRTE either 1 or 2 microinstructions before use of the micro-order.

3. Must be a READ or RJ30 or WRTE either 1, 2 or 3 microinstructions before use of the micro-order.

4. Must not occur in the same microinstruction as READ or RJ30 or WRTE.

Q5 control information:

® When issuing a Qs command, further information is needed to indicate the utility register into
which you wish to store information. Since the information has been presented on the S-bus and
none of the registers require more than 11 bits of information themselves, several of the S-bus bits
are reserved for determination of which register is activated.

¢ Bit 14 indicates that the MEM State Registers are to be loaded (i.e., enable/disable MEM; select
system/user map). Bits 9 and 8 contain the status information.

e Bit 13 indicates that the Address Register is to be loaded. Bits 7 through 0 contain the address
information.

e Ifa Q,signal has preceded this step by exactly one microcycle (i.e., Q,, Q; in a row), then bit 14 will
indicate that the Fence Register will be loaded. Bits 10 through 0 contain the fence information.

NOTE

Any modification of the fence register will also effect base page
addressing for DCPC, as DCPC uses logical to physical address
translation rules in the base page similar to those of the user
map.

® Bit 15 is used to override the Protected Mode, thus allowing these registers (specifically the State
Registers) to be altered under microprogram control at any time.

7-28

Considerations

Table 7-4. DMS Micro-Order Control Signals

SIGNAL FUNCTION
Q, 1. Enable SYS/USR map to S-bus per MEAR bit 5:0 = SYS, 1 = USR.
2. Store S-bus into PORTA/PORTB map per MEAR bit 7.0 = PORTA, 1 = PORTB.
3. Relative map address specified by MEAR bits 4 through 0.
4. Increment MEAR.
Q, 1. Store S-bus into maps per MEAR bits 6 and 5:00 = SYS, 01 = USR, 10 = PORTA, 11 =
PORTB.
2. Relative map address specified by MEAR bits 4 through 0.
3. Increment MEAR.
Q, 1. Enable maps to S-bus per MEAR bits 6 and 5:00 = SYS, 01 = USR, 10 = PORTA, 11 =
PORTB.
2. S-bus bits 13 through 10 are always low.
3. Relative map address specified by MEAR bits 4 through 0.
4. Increment MEAR.
Q, 1. Select opposite program map (does not change currently selected map per Qs).
2. Can generate DMAFRZ to CPU.
Q, 1. Set "Status Command” flag through next Control Processor cycle (defines Q¢ operation).
2. Reset to currently selected program map (nullifies Q,).
3. Set "Enable Base Page Fence” Flag through next Control Processor cycle (partly defines
Qs operation).
Qs 1. Store S-bus into MEM (other than maps)
a. MEM State Register (2 bits) = S-bus bits 9,8: If S-bus bit 9 = 0, disable MEM; = 1,
enable MEM. If S-bus bit 8 = 0, select SYS maps; = 1, select USR maps.
b. MEM Base Page Fence Register (11 bits) = S-bus bits 10 through O.
c. MEM address Register (7 bits) = S-bus bits 6 through 0.
2. Register selected by S-bus bits 15 through 13: If S-bus bits 15 through 13 = 000 = Base
Page Fence Register if preceded by Q4; 001 = Address Register; 010 = State Register.
3. If S-bus bit 15 = 1 then Memory Protect is disabled for the current microinstruction.
Qs 1. Enable MEM data (other than maps) onto S-bus.
a. Normally enables MEM Violation Register.
b. If preceded by Q4 signal microinstruction, Status Register enabled.
Q, 1. No MEM (DMS) microinstruction specified (NOP state for MEM).
Notes:
1. MEAR is the MEM Address Register.
2. MAP bits 9-0 are transferred to/from S-bus bits 9-0.
3. MAP bits 11, 10 are transferred to/from S-bus bits 15, 14.
4. USR = User.
5. 8YS = System.

7-29

Considerations

7-34. GUIDELINES FOR WRITING LOADERS

Table 4-1 describes the HP IBL loader microprogram techniques, bit patterns for the Operator Panel
registers, and information on the Remote Program Load Configuration Switches. Normally the HP
supplied IBL microprograms will suffice for all user needs. If, however, you desire to write your own
loader the guidelines outlined below may be of assistance. In addition, refer to the base set listing in
appendix G (the IBL and Operator Panel microroutines) for examples of a workable loader and
information on the use of the DES, LDR, DSPI, and DSPL micro-orders.

If you write your loader, it should be prepared exactly in the way you wish it to execute. The base set
will configure the select code according to the information entered into the Operator Panel. One
method that may work for you is to write the loader first in Assembly language then convert it to
“machine code,” then to a microprogram and finally, fuse the pROM’s. If you have a double select code
(i.e., magnetic tape or disc, SC10 and SC11, for example) the data channel select code should come
first, then the command channel. In addition, follow these guides:

® There should be 64 (main memory) words or less designed to start at x7700, where x = 0, 1,
2,....7.

o All select codes in the loader I/O instructions will be configured at IBL time as follows:

— S-register bits 11 through 6 will be taken as the configuring select code, 10 (octal) will be
subtracted from the configuring select code and the result added to the select code part of all
loader I/O instructions except: if the select code in a loader I/O instruction is less than 10 (octal),
the select code will not be modified.

— Note that loader constants having bit 15 on, bits 14 through 12 off, bit 10 on, and bits 8 through
6 anything but 000 (this prevents halts from being configured), will be interpreted as I/O
instructions and will be configured as per the information just presented above.

o At IBL time:

— Word 64 of the loader will be forced to the starting address of the loader in two’s complement
form.

— Word 63 of the loader will be unconditionally configured as described above (i.e., S-register bits
11 through 6 will be taken as the configuring select code, etc.). The standard HP loaders use
word 63 as DCPC Control Word 1.

7-35. SUMMARY

In using any of the guidelines and microroutine examples presented in this section you must make the
final judgement as to “usability” and “workability” of the microprograms you create because of the
wide range of applications for microprograms. The base set (appendix G) should be referred to as an
example of “correct” microprogramming. Also, section 14 provides examples of microprograms you
may be able to use.

With the completion of your study of this section you are prepared to write microprograms for use in

the HP 1000 E/F-Series Computers. The use of microprogramming support software is also necessary
and the following sections of the manual provide all the rest of the information you need.

7-30

Section 8
PREPRATION WITH THE MICROASSEMBLER IR

PREPARATION WITH
THE MICROASSEMBLER|[g

With the information in this final section of part II you will be able to prepare your microprograms so
that they will be accepted by the RTE Microassembler. If properly prepared, your microprogram will
be processed (using information in section 9) to generate micro-object code which is ready to load into
WCS for execution in the computer. The section provides:

® A suggested method for preparing your microprograms.
® A description of the microassembler character set, fields, and other rules for preparation.
® Miecroassembler control methods.

® Methods of making microprogram starting address assignments and making other modifications
using the pseudo-microinstructions.

The information in this section requires as a prerequisite, a study of the preceding sections (particu-
larly sections 4 and 6).

8-1. PLANNING AND PREPARATION

Using the information on the microassembler (starting in paragraph 8-6) you can prepare your
microprogram for input to the microassembler on punched cards, paper tape, or magnetic tape
cartridges. It is suggested, however, that it may be easier to prepare the microprogram on a disc file.
To prepare a file containing a microprogram, use the RTE system Interactive Editor as outlined below.

8-2. PLANNING

Plan the microprogram essentially the same way as for an Assembly language program but base the
objective on the concepts discussed in section 1. Steps that must be taken to achieve the objective
should be clear and the logical sequence for the microprogram perhaps prepared in flowchart form.

To prepare a microprogram taking full advantage of your system’s RTE Interactive Editor program
(EDITR), all that is needed is pencil, paper, and the system console. The instructions given here are
intended for use at the system console in a single-user environment. If you are operating in a
Multi-Terminal Monitor (MTM) environment, it is assumed that you have taken the HP RTE training
course or have the assistance of a person familiar with the MTM.

The EDITR program provides the tool for generating the source code, and the RTE FMGR program
provides a means for storing microprogram sources as files. The files can be accessed later for editing
and microassembling. Complete instructions for using these RTE system programs are beyond the
scope of this manual which only provides guidelines for use to prepare and edit microprograms.
Complete information on the EDITR and FMGR is provided in other documentation supplied with
your RTE system.

Preparation

8-3. PRELIMINARY INFORMATION. When preparing your microprograms using the
EDITR, the first two lines of your microprogram should be the microassembler control instructions
MICMXE and $CODE; the last line should be the psuedo-microinstruction END. Paragraph 8-6
provides all the details on the microassembler you will need. You should read through these or refer to
them before actually going on-line. After the microprogram is written, press any key on the system
console to get an RTE prompt character (*). Then type RU,FMGR and press the RETURN key. The
system responds by outputting a FMGR prompt character (:). Type LS and press RETURN, the system
outputs another FMGR prompt. Type RU,EDITOR and press RETURN; the system outputs SOURCE
FILE? followed by the EDITR prompt character (/). Enter a space (blank) character and press
RETURN; the system outputs EOF. At this point the system console should show the following:

*RU,FMGR

LS

:RU,EDITR
SOURCE FILE?
/A

EOF

/

where:
A means a space (blank) character.

Typing errors can be corrected by backspacing (or use a CONTROL H) then retyping the correct entry.

After completing the above, make subsequent corrections using the EDITR as described in the EDITR
documentation.

8-4. FIELD TEMPLATE

It should be noted at this point that if desired, you can prepare complete short microprograms using
the Microdebug Editor. The starting column for each field in microinstructions is taken care of for you
by the MDE in this case. Examples in section 14 use this method to illustrate and familiarize you with
the microprogramming support software. Details on the Microdebug Editor are included in section 10.

The method you can use to identify the starting columns for microinstruction fields when preparing
microprograms for input to the microassembler with the RTE Interactive Editor (as described in
paragraph 8-3) is to use the Editor Tab function. So, at this point, to create a “pseudo-coding form” that
will locate the starting point of each field (assuming you have followed the instructions in
paragraph 8-3); enter the following after the EDITR prompt showing on the console:

T;10,15,20,25,30,40
Press RETURN and the system will output another EDITR prompt. You may now enter your
microprogram as described in the next paragraph. Remember to enter a space after each prompt (/) to

reach column one of your “coding form”. Use the semicolon (;) key as a tab key to reach desired
microinstruction fields.

8-2

Preparation

8-5. MICROPROGRAM ENTRY

When you have a template (pseudo-coding form), enter your microprogram (prepared according to the
rules to follow). Enter a space after each prompt (/) to reach column one of your “pseudo-coding form”
(usually the EDITR “Tab” function) and terminate each line by pressing the RETURN key. You can
list any line in your microprogram by entering the number of the desired line. After entering your
complete microprogram, go back to line 1 and list the entire program by entering Lnn (where nn is the
number of lines in the program file) immediately following the EDITR prompt. Check the program for
errors and make any corrections as necessary. Now assign the file a new name by entering ECnew
(where new is a new file name) immediately after the prompt. For example:

/ECJOE1

The system outputs the message END OF EDIT followed by a FMGR prompt. At this point you will
have created a file that contains your first microprogram. If your system console is a teleprinter (TTY),
you have a hard copy of your microprogram; if your console is a CRT terminal, obtain a hard copy on
the system list device by using the FMGR LIst command (LI, JOE1). Check the copy and correct any
errors.

8-6. THE MICROASSEMBLER

The RTE Microassembler translates symbolic microprograms into binary object code. The object code
is produced in either a standard format recognized by the RTE Microdebug Editor and the WLOAD
subroutine or a special format to be used as input to the HP ROM Simulator. The source may be
entered from an input device or a disc file. (Microassembler execution will be described in section 9.)
Object code may be generated to an output device as well as to a disc file. The microassembler can also
produce a symbol table map, listing of source records and generated code, and a cross-reference symbol
table which will all be described in section 9. The rules for preparation with the microassembler are
described in this section. The hardware/software environment for the microassembler is described in
section 3.

8-7. MICROASSEMBLER RULES

The RTE Microassembler accepts 72-character fixed-field source records (from the devices mentioned
in paragraph 8-6). The 72-column format allows sequencing of card decks if you choose to prepare your
source records on that type of medium. Each source record falls into one of the following categories:

¢ (Comment

e (Control command

® Microinstruction

® Psuedo-microinstruction

An asterisk in column one of a source record indicates that the entire microassembler source is a
comment. Control commands are described in paragraph 8-8. The microinstruction source records that
may be used are described in detail in section 4 (in particular see figures 4-3 and 4-4) but general

requirements for microassembler use are discussed in this section. The psuedo-microinstructions are
fully described in this section.

Preparation

Where there are deviations from specifications for a particular type of source record (or field as
described below) the difference will be so noted. Any ASCII character may appear in the comments
source record (i.e., asterisk in column one). Most characters are legal in labels except as noted in
paragraph 8-15. A space may only begin a field if no micro-order is specified in that field.

8-8. CONTROL COMMANDS

Control command source records affect external characteristics of the microassembly (e.g., listing and
object code formats). The control command must start in the first column. Blanks are permitted only
preceding and within comments following the control command. Control commands may be in-
tersperced with other source records to specify control over the microassembly process. Certain control
commands must be used (as mentioned in paragraph 8-3) in specific places in your microprograms. To
wit: the first source record of your microprogram must be a “MIC” control command. There are options
that may be used with some of the control commands and they are so noted in the description of each
command that follows. There should be only one control command per source record. All control
commands except MIC begin with a “$” (Dollar character) in column 1. No intervening spaces are
allowed in any control statement other than as specified.

8-9. MIC ASSEMBLY COMMAND. For the E-Series or F-Series Computer, a MICMXE con-
trol command must be the first line in the source file. This command indicates whether the source is a
M-Series or E/F-Series Computer microprogram, respectively, and specifies certain microassembly
options. The form of the command for this computer is:

MICMXE pl1,p2, . ..
where:
“pl, p2, .. .” indicates a list of parameters. The parameters are optional and may appear in any

order. The microassembly options are:

R = Produce standard format object code.

S = Produce special format object code for the HP ROM Simulator.
L = List source and generated code on list device.

T

I

List a symbol table map on the list device.
C = Generate a cross-reference on the list device.

The “R” and “S” optional parameters are mutually exclusive; if neither is specified, the mi-
croassembler defaults to the format specified for the “R” parameter. The “S” option is a special
32-microinstruction object code format. This special HP ROM Simulator format is reserved for system
maintenance. Appendix E describes the format.

If the “L” option is not specified, only error and pass-completion messages will be written on the list
device. $LIST commands will be ignored. The “T” option provides a listing of label names and the
corresponding octal address used in the microprogram. The “C” option, and all the options for
microassembler output are described in section 9.

8-4

Preparation

An example of the use of the MIC control command (starting in column 1) would appear as shown
below:

MICMXE,L,T

Here, note that the microassembler will default to the standard format object code.

8-10. THE $CODE COMMAND. The $CODE command is no longer used since the output file
name is now specified in the run string.

$CODE=FNAME {:security [:crlabel]] [, REPLACE]

The “FNAME” parameter specifies the name of the file to be created. For the “R” parameter, a type 5
file is created for the object code to permit a checksum of the records. A type 3 file is created for “S”
format object code (to prevent a checksum of the records, which would be invalid due to the different
format) blanks are not permitted between subparameters (as indicated in paragraph 8-8). The “%”
notation for octal values generally accepted in the microassembler is treated as an alphanumeric
character string here (to be consistent with RTE). If a file with the same name already exists and the
REPLACE option is specified, the existing file is purged. Otherwise, object code is generated only to
the punch device. The “security” and “crlabel” parameters indicate the file security code and disc
cartridge label respectively; these sub-parameters are optional.

Object code generated to the $CODE file depends on the “R” or “S” option specified in the MICMXE
command. For the suggested method of preparing your microprogram this control command should
appear immediately after the MIC command.

8-11. $PAGE COMMAND. The $PAGE command causes a page eject and, optionally, replaces
the heading during the listing of the microprogram. The forms of the command are:

$PAGE
SPAGE=title

The first form simply causes a page eject; the current heading is not altered. The second form,
additionally, replaces the heading with the character string following the equal sign. The heading
(title) is truncated after 60 characters. The $PAGE command is ignored when listing is disabled.

8-12. THE $LIST AND $NOLIST COMMANDS. The $LIST and $NOLIST commands have no
parameters. The two commands control the source listing in the second pass of the microassembly. The
$NOLIST command disables the listing of the source records and generated code until a subsequent
$LIST command is encountered. These commands are ignored if the “L” option is omitted in the MIC
assembly command.

8-13. $PUNCH AND $NOPUNCH. The $PUNCH and $NOPUNCH commands have no pa-
rameters. The effect that SNOPUNCH/$PUNCH have on the output depends on the object code format
and the device. For “R” MIC command parameter format, disjoint code groups always cause a new
(DBL) record to be written to the device or a binary file. For “S”, if the “missing” portion of code
(between two disjoint code groups) does not extend beyond the buffer, the space is simply filled with
microwords containing all 1 bits. Otherwise, leader or an end-of-file separates disjoint code groups on a
punch device or binary file respectively (after padding the remainder of the buffer as before).

8-5

Preparation

8-14. HP 1000 E-SERIES AND F-SERIES MICROINSTRUCTIONS

The format of the four microinstruction word types and all the micro-orders that can be used in the
various fields are described in section 4 (in particular, figures 4-3 and 4-4). These source records can
contain up to 72 characters with the legal field entries. To summarize section 4 information, the
general uses for the four word types are defined below:

® Word type I executes:

— Data transfers between main memory, the I/O section, and the Arithmetic/Logic section.

— Logical and arithmetic functions on data.

Word type II specifies data to be transferred to a specific register.

® Word type III executes a conditional branch based on flags or data values. When the OP field
micro-order is “RTN”, the address field (field 6) must be empty: comments must not appear before

column 31. Field numbers are reviewed next.

® Word type IV executes an unconditional branch or microsubroutine branch.

Microinstruction source records and psuedo-microinstruction source records (to be described in para-
graph 8-19) have similar fixed-field formats and are distinguished by the mnemonic in the OP field.
Each microinstruction source record contains seven fields with the starting column of each field as

follows:

FIELD COLUMN

1
10
15
20
25
30
40

<N A O s WON =

MEANING

Label

OP/Branch

Special, or Branch modifier

ALU, Branch Condition, or IMM modifier
Store, or Branch Sense

S-bus, Branch Address or, IMM operands

Comments (see allowable exception below)

A mnemonic in any field must begin in the first column of that field. The seventh, (Comment) field
must be separated from the last field by at least one blank column. For word type I microinstructions,
the Comment field must not appear before column 35.

Preparation

As shown in figure 4-4, the fields are fixed for microassembly language source records. A few things to
remember about the fields are:

e Field 1 can contain a label that is no longer than eight characters.

e Field 2 contains a micro-order no longer than four characters. This field can also contain a
psuedo-microinstruction (refer to paragraph 8-19 for the explanation of psuedo-microinstruction
mnemonics).

® Field 3 contains a micro-order no longer than four characters.
¢ Field 4 contains a micro-order no longer than four characters.
® Field 5 contains a micro-order no longer than four characters.

e Field 6 contains a micro-order no longer than four characters (word type 1,) or an operand (word
type I1,) or an address (word types III and IV).

® Field 7 contains comments only. Field 7 ends in column 72.

Some additional comments on the fields follow.

8-15. THE LABEL FIELD. As mentioned above, a label (field 1) may be comprised of up to
eight characters. The label may contain any ASCII character except a plus (+) or a minus (—). The
first character must not be numeric or an asterisk (*), dollar sign ($), or a percent sign (%). Each label
should be unique within the microprogram and cannot contain spaces within the label. Names which
appear in EQU psuedo-microinstructions (refer to paragraph 8-19) may not be used as source record
labels in the same microprogram.

8-16. MICRO-ORDERS. Fields two through six may contain any of the legal micro-orders used
in word types I through IV. Refer to figure 4-4 for a list of the legal micro-orders. Word type II contains
an operand in field 6 which must conform to the constrains listed in table 4-1.

8-17. ADDRESS FIELDS. Word types III and IV have address expressions in field 6. The
address expressions may have one of the following forms:

number

label

label+ number
label—number
*

*+number
*—number

The asterisk means “current address”. If “number” is preceded by a percent sign (%) or followed by a
“B”, the string represents an octal quantity. For EQU psuedo-microinstructions, any “label” must have
appeared previously in a Label field. Refer to the table 4-1 explanations of the Address fields for
further information.

8-7

Preparation

8-18. COMMENT FIELD. This optional field can be any string of characters up to the limit of
the source record (column 72). If you have comments that are long you may use an asterisk source
record in the next line.

8-19. PSEUDO-MICROINSTRUCTIONS

Psuedo-microinstructions have a direct affect on the object code generated; however, they are not
composed of micro-orders as defined by the Control Processor. The format of pseudo-microinstructions
differs slightly from that of the microinstructions. The fields are as follows:

FIELD COLUMN(S) MEANING
1 1-9 Label
2 10 OoP
3 30-39 Operand

The Operand field may start in any column between 30 and 39 inclusive. A Comment field may start in
any column, separated by at least one blank column from the last field. The pseudo-microinstructions
that can be used include ORG, ALGN, END, EQU, DEF, ONES, and ZERO. The function and
constraints for the use of each pseudo-microinstruction are included below. Note the CM address
assignment and modification pseudo-microinstructions include ORG and ALGN. EQU and DEF are
also used in conjunction with CM addressing.

8-20. THE ORG PSEUDO-MICROINSTRUCTION. The starting address of each micropro-
gram must be assigned by an ORG pseudo-microinstruction. The form of the ORG pseudo-
microinstruction source record is:

LABEL oP OPERAND
— ORG expression

The ORG pseudo-microinstruction specifies the control memory address of the subsequent micro-
instructions. An ORG must precede the first generated microinstruction. Subsequent ORG pseudo-
microinstructions are permitted: however, the specified CM address must not be less than the address
of the next microinstruction. If the first ORG is not included the microassembler will default to set the
CM address of subsequent microinstructions to CM location 27000 (octal). The Operand field may be
any expression. Any label must have appeared previously in a Label field.

Section 6 on mapping and section 2 provide information on CM locations and CM software entry points
of which you should be aware before using the ORG in a microprogram. Since it is unlikely that any of
your microprograms will use an entire module, you should organize (or “map”) each of your modules to
accommodate several microprograms. This is done by placing branch microinstructions in some (or all)
of the module starting addresses that can be accessed by OCT main memory instructions. Each of these
branch microinstructions should point to a microprogram located within the module. For example:

Preparation

ALY/
OP/ MOD/ MOD/ S-BUS/
LOCATION LABEL BRCH SPCL COND STR ADDRESS COMMENTS
ORG 270008
MICPROA EQU 270118
MICPRO2 EQU 270658
MICPRO7 £QU ’ 272708
MICPRO10 EQU 273158
27000 JMP RJ30 MICPRO1 START ADDRESS 1
27001 JMP MICPRO2 START ADDRESS 2
27002 JMP MICPRO3 START ADDRESS 3
27007 - JMP) MICPRO? START ADDRESS 7
27010 JMP MICPRO10 START ADDRESS 10

END

* THE BEGINNING OF THE MICROPROGRAM WITH ENTRY POINT
« LABEL MICPRO1 SHOULD THEN ORG AT LOCATION 27011B.

Each label referenced by a JMP micro-order must be defined in a microprogram that maps the module.
In most cases, the number of required starting addresses will be unknown until the number of
prepared microprograms uses all (or almost all) 256 locations in a module. To allow for these cases,
module addresses can include the RJ30 micro-order to modify the target address by using bits 3
through 0 of the OCT main memory instruction. The microprogram pointed to by using the JMP,RJ30
microinstructions should be simply a table of starting addresses of other microprograms. Examples of
mapping techniques are discussed further in section 6.

Using the information provided and your present and anticipated microprogramming requirements,
you can determine whether or not your module should be mapped. You should also be able to
determine the starting addresses of some of your microprograms. The module mapping microprogram
should consist of a MICMXE control command, an ORG psuedo-microinstruction specifying the first
module location (e.g., 27000), a list of EQU pseudo-microinstructions associating values with labels, a
sequence of branch microinstructions, and an END pseudo-microinstruction. After preparing and
microassembling the mapping microprogram, load it into the desired Writable Control Store (WCS)
board by using the microdebug editor (MDE) or WLOAD subroutine. (Refer to sections 10 and 11 for
information on loading.) Once the module map is loaded into WCS, MDE or WLOAD can be used to
load each microprogram into WCS beginning at the microprogram’s starting address.

Preparation

8-21. ALGN. The form of the ALGN psuedo-microinstruction is:
LABEL oP OPERAND
— ALGN —
ALGN alters the control memory address so that subsequent microwords start on a 16-word boundary
(i.e., the next microword is located at the next address where the lower 4 bits of the address are zero).
This is useful for setting the origin of tables which are indexed by the lower four bits of a branch

microinstruction (i.e., using the RJ30, J74, etc., micro-orders). Examples of the use of ALGN (and some
of the other pseudo-microinstructions) appear in part 4.

8-22.. THE END PSEUDO-MICROINSTRUCTION. The form of the END pseudo-
microinstruction is:

LABEL oP OPERAND

— END —

The END pseudo-microinstruction marks the end of a microprogram. This must be the last source
record in any microprogram.
8-23. EQU. The form of the EQU pseudo-microinstruction is:

LABEL opP OPERAND

label EQU expression
The EQU pseudo-microinstruction associates the value of the expression with the label. This is useful

for symbolically referencing locations external to the microprogram (i.e., branch target addresses).
Examples of EQU might look like:

Character
column:
1 10 30
Fields: Field 1 Field 2 Field 6
HALT EQU 34000B
Content: RELO EQU 360008
START EQU RELO

8-10

Preparation

8-24, DEF. The form of the DEF pseudo-microinstruction is:
LABEL oP OPERAND
label DEF expression
The DEF pseudo-microinstruction generates a 24-bit microword with the contents equal to the

absolute value of the expression address in control memory. The “label” field may be left blank.
Examples of the use of the DEF pseudo-microinstruction might look like:

Character
column:
1 10 30
Fields: Field 1 Field 2 Field 6
DEF SRF+ 150
Content: AD1 DEF ASGNOP
DEF 416B

DEF is not normally used for user microprogramming.

8-25. THE ONES AND ZERO PSEUDO-MICROINSTRUCTIONS. The form of the ONES
and ZERO pseudo-microinstructions are:

LABEL OoP OPERAND
label ONES —
label ZERO —

The ONES and ZERO pseudo-microinstructions each generate a microword with the content equal to
either all ones or zeros, respectively. The “label” field may be blank. An example of the use of ONES is:

Character
column:
1 10
Fields: Field 1 Field 2
Content: NEG 1 ONES

An example of using ZERO would be:

Character
column:
1 10 40
> L
[4 ¢
Fields: Field 1 Field 2 NN Field 7
L C
Content: NULL ZERO NO BITS
? 2

ONES and ZERO are not normally used for user microprogramming.

8-11

Preparation

8-26. SUMMARY

The information presented thus far should bring you to the point where your microprogram is
complete and ready to microassemble then execute using the information in part III. The control
command and pseudo-microinstructions are summarized below.

e Control commands (start in column one):

MICMXE,L,T,C,R(or S)

$PAGE=title | [:[criabelll] [, REPLACE]
$LIST

$NOLIST

$SPUNCH

$NOPUNCH

® Pseudo-microinstructions:

Columns 1-9 10 30-39
LABEL or OPERAND

— ORG expression

— ALGN —

— END —
label EQU expression
label DEF expression
label ONES —
label ZERO —

See figure 4-4 for a summary of all the micro-orders you have available for microinstructions.

8-12

PART Il
Microprogramming Support
Software and Hardware

Section 9
USING THE RTE MICROASSEMBLER N

USING THE RTE MICROASSEMBLER

This section provides instructions for actually microassembling your microprograms. The assumption
here is that you have prepared your microprogram using the information from part II of this manual.
It is also assumed that the RTE Microassembler is present in the RTE operating system. Refer to
section 3 in this manual for guidelines on preparing for microprogramming. Some additional informa-
tion on using the RTE system is provided but, for complete coverage, it is expected that you will refer
to the RTE system manuals.

This section provides information on executing the microassembler and information on output such as:

® Binary object code
® Microassembled listings

e Symbol table output

In addition you will find information on the RTE Microassembler Cross-Reference Generator and
microassembler messages output to the list device and operator’s console.

9-1. USING THE MICROASSEMBLER

As described in section 8, the microassembler accepts fixed-field microprogram source records of up to
72 characters in length. Each source record contains either one microinstruction, one psuedo-
microinstruction, or one microassembler control command. The microassembler processes the input
source records and produces the binary object code of the microprogram. If specified by the initial
microassembler control command (MICMXE), the microassembler also produces a microprogram
listing in both symbolic and octal format, a symbol table, and error messages. Refer to sections 4 and 8
for descriptions of microinstructions acceptable by the microassembler. Section 8 also contains a
description of pseudomicroinstructions and microassembler control commands. The following para-
graphs provide a procedure for microassembling a microprogram. The procedure assumes that you are
using the RTE system console and that the microassembler program, MICRO, is disc resident. If
MICRO is available only on paper tape, load it using the RTE LOADR as described in the RTE
Operating Manual. If the microprogram source is not in a disc file, MICRO can read it from some input
device in the system. Section 3 provides more information on preparing to use microprogramming
support software.

9-2. EXECUTION COMMAND

The microassembler may be scheduled in the RTE system with one of the following commands. All
parameters are optional. (The instructions that follow this definition explain one method of executing
the microassembler.)

*ON
*RU ,MICRO,source input[list output[,binary outputlline countl,options]il]
:RU

source input Name of an FMGR file or a logical unit number of the device containing the Mi-
croassembler source code; this entry must conform to the format required by the
FMGR namr parameter.

9-1

Microassembling

list output

binary output

line count

Choose one of the following:

— (minus symbol)
FMGR file name
logical unit number
null (omitted)

If the minus symbol is specified, and the source file name begins with an ampersand,
the ampersand is replaced with an apostrophe and the remaining source file name
characters are used for the list file name. The list file is forced to reside on the same
cartridge (cartridge reference code) as the source file. For example:

&FIL1 source file name
FIL1 list file name

If an FMGR file name is specified, it must conform to the format required by the FMGR
namr parameter. The list file is created if it does not exist. If the file does exist, the first
character in the file name must be an apostrophe; otherwise, an error results.

If a logical unit number is specified, the listed output is directed to that logical device.

If this parameter is omitted, logical unit number 6 is assumed. Further, if subsequent
parameters are specified, the comma must be used as a parameter placeholder.

Choose one of the following:

— (minus symbol)
FMGR file name
logical unit number
null (omitted)

If the minus symbol is specified, and the source file name begins with an ampersand,
the ampersand is replaced with a percent symbol and the remaining source file name
characters are used for the binary file name. This binary file is forced to reside on the
same cartridge (cartridge reference code) as the source file. For example:

&FIL1 source file name -
%FIL1 binary file name

If an FMGR file name is specified, it must conform to the format required by the FMGR
namr parameter. The binary file is created if it does not exist. If the file exists, it is
necessary that.

a. the first character of the file’s name be a percent sign (%).

b. the existing file be of the type specified in the namr parameter (if the file type is not
declared in namr, the file’s type must be Type 5, relocatable binary).

If the above conditions are not met, a microassembler error will result.

If a logical unit number is specified, the binary output is directed to that logical device.
If this parameter is omitted, no binary object code is generated. Further, if the
subsequent parameter is specified, the comma must be used as a parameter
placeholder.

A decimal number which defines the number of lines per page for the list device.
Specification of this parameter is optional. If it is omitted, 56 lines per page are

assumed. If a number less than 10 is specified, the compiler treats it as effectively
infinite. The line count must be in the range 10 < line count < 999.

Microassembling

options Up to five characters that select control function options. No commas are allowed

within the option string. These characters are: R, S, L, T, and C. If specified, these
options replace (override) the character options declared in the MICMXE control
statement (see MIC Assembly Command).

Characters other than the above are ignored, except that any option specified in this
parameter position negates all character options declared in the MICMXE control
statement.

Examples:

9-3.

*RU,MICRO,&PROGA,-,-

Schedules MICRO to microassemble source file &PROGA. Listed output is directed to list
file 'PROGA and binary object code is directed to binary file % PROGA. The number of lines
per list file page defaults to 56.

:RU,MICRO,&FIL1,’LIST

Schedules MICRO to microassemble source file &FIL1. Listed output is directed to list file
'LIST. No binary object code is generated. The number of lines per list file page defaults to
56.

:RU,MICRO,&ABCD

Schedules MICRO to microassemble source file &ABCD. Listed output defaults to LU 6. No
binary object code is generated. The number of lines per list file page defaults to 56.

:RU,MICRO,&AAAA,-,-,28

Schedules MICRO to microassemble source file &AAAA. Listed output is directed to list file
'AAAA. Binary object code is directed to binary file ZAAAA. The number of lines per list
file page is 28.

:RU,MICRO,&SFIL,-,-,,TSC

Schedules MICRO to microassemble source file &SFIL. Listed output is directed to list file
'SFIL. Binary object code is directed to binary file %SFIL. The number of lines per list file
page defaults to 56. A symbol table will be produced, special format object code will be
produced, and a cross reference table will be produced.

THE MICROASSEMBLER OUTPUT

The following paragraphs describe all forms of output from the RTE Microassembler. The forms are:

® Binary object code.

® Source and octal microprogram listing.

® Symbol table.

® Messages.

9-3

Microassembling

The cross reference generator, which can be an output of the microassembler if the “C” option is
specified in the MICMXE control command, is described in paragraph 9-7.

9-4. BINARY OBJECT CODE

The standard object code output by the microassembler to a disc file or some other output device
consists of one or more microinstruction records. Appendix E shows the format as it appears on paper
tape. One microinstruction record holds up to 27 microinstructions and 5 16-bit words of header
information. Each source microinstruction requires 32 bits (two words) in the object format: an 8-bit
address and 24 bits for the microinstruction. Therefore, the length of the microinstruction record
comprises:

Five words of header plus 2n words for n microinstructions (two words for each microinstruction)
5 + 2n words for one microinstruction record.

The maximum number of microinstructions in one microinstruction record is 27. Consequently, the
maximum record length equals 5+ (2x 27): 59 words. The last object record is a four-word End Record.
When the microprogram consists of more than 27 microinstructions, a series of instruction records are
produced with the last one haveing 27 or less microinstructions. For example, if 57 microinstructions
are assembled, three microinstruction records and an End Record are produced as follows:

® Microinstruction record 1, consisting of 5 words of header and 54 words for 27 microinstructions:
59 words total.

® Microinstruction record 2, consisting of 5 words of header and 54 words for 27 microinstructions:
59 words total.

® Microinstruction record 3, consisting of 5 words of header and 6 words for 3 microinstructions: 11
words total.

® The End Record, consisting of 4 words.

® The total microassembler object code is 133 words for the microprogram.

The standard object format is accepted by all programs that accept standard relocatable format (Type 5
files). Therefore, the object code can be stored from an input device into a disc file as a binary
relocatable by the FMGR STore command. If the microassembler includes a run string output file or
LU as described in section 8, the microassembler automatically stores the object code into the specified
file or LU.

The microassembler outputs non-standard HP ROM Simulator object code to the device if the “S”
parameter is included in the MICMXE microassembler control command as described in section 8.
Appendix E also shows the format of this type of object tape.

9-5. MICROASSEMBLER LISTING OUTPUT

The microassembler prints the microprogram source and the generated octal code on the specified list
device if the “L” parameter is included in the MICMXE microassembler control command (Refer to
section 8 for details on MICMXE.) Appendix G (the base set) is an example of listing output. Section 14

9-4

Microassembling

provides examples of user microprograms. Note that from left to right the listing output contains a line
number (decimal), the CM address (octal), the 24-bit microinstruction content at that address in octal
form, then the seven fields of microinstructions.

9-6. SYMBOL TABLE OUTPUT

The microassembler prints a symbol table on the list device if the“T” parameter is included in the
MICMXE microassembler control command (section 8). An example symbol table output is shown
here. The actual content will, of course, depend upon your microprogram. The left column of the
symbol table lists the symbols or labels used in the microprogram. Absolute octal addresses for the
symbols are also output. If addresses are terminated by the letter “X” it indicates a symbol defined by
an EQU pseudo-microinstruction in the microprogram.

SYMBOL TABLE

MOVE 032412X
GOTO 032421X
RET 032427X
LAST 032717X
ouT 032011
ERRI1 032012

9-7. USING THE CROSS-REFERENCE GENERATOR

Assuming that the RTE Microassembler Cross-Reference Generator program is configured into the
RTE software system, it is run automatically by the microassembler if the microprogram includes the
“C” parameter in its MICMXE microassembler control command. However, you can run the generator
independently by using either an RTE or FMGR command as follows:

ON,MXREF input listlines *°%¢

RU,MXREF,input,list,lines ole

The parameters are optional and correspond to those defined for the microassembler execution
command described in paragraph 9-2. Informative messages and error messages output by the Cross-
Reference Generator (MXREF) are described in paragraphs 9-8 and 9-9. Additional points about the
Cross-Reference Generator follow:

e MXREF does not flag erroneous statements. In fact, MXREF looks at only the label and expression
fields, using field 2 and, in some cases, field 3 to determine the instruction format.

e Statements which contain invalid mnemonics in field 2 are treated as word type IV micro-
instructions, causing field 6 to be cross-referenced as an expression.

e MXREF will cross-reference characters in the label and expression fields of statements which do
not permit labels or expressions.

e Inthe cross-reference output, the first line number is the line on which the symbol was defined (ie.,
appears in the label field); subsequent line numbers are lines on which the symbol was referenced.

9-5

Microassembling

(If the symbol appears in the label field of more than one statement, subsequent “definitions” are
cross-referenced as references to the first occurrence.)

¢ MXREF flags undefined and unreferenced symbols with the messages:

NOT DEFINED
NOT REFERENCED

¢ The output does not exceed 72 characters per line.

¢ MXREF outputs some summary statistics which may be of general interest, viz.:

number of symbols (defined and undefined)
number of references (excluding definitions)
number of source lines (including control commands).

The first four mentioned above allow MXREF to cross-reference programs which may not be correct
micro-programs. The resulting cross-reference listing may be useful in determining the external
symbols which must be defined with an EQU statement, or in finding all references to a misspelled
symbol. An example MXREF output is shown below.

PAGE 0001 RTE MICRO CROSS~-REFERENCE REV.A 760718

SYMBOLS=0012

COMPARE
ENDCHK
EXIT
HORT
INTCHK
INTEXIT
INTRTN
SETY
SORT
STRTPASS
SUBTRACT

SWAP

0071
0133
0143
0030
0105
0l12
0122
0050
0036
0062
0089

0096

REFERENCES=0013 SOURCE LINES=0144

0134
0105
0045 0055
0115
0087 0090

#4NOT REFERENCED®#
0040
0139
0031
0138
0085

0088

Microassembling
9-8. MESSAGES

The microassembler and Cross-Reference Generator output two kinds of messages. Error messages are
output to the specified list device; informative messages are output to either the specified list device or
to the operator’s console (which is not necessarily logical unit 1). Informative messages and error
messages are described in paragraphs 9-9 and 9-10 respectively.

9-9. INFORMATIVE MESSAGES
The applicable one of these two messages are printed on the list device:

END OF PASS n: NO ERRORS

This is the normal pass-completion message where n is the pass number.

END OF PASS n: ¢ ERRORS

This message indicates the number of errors detected during the pass; n is the pass number and e
is the number of error messages.

The messages that can be output to the operator’s console follow:

/MICRO: RE-INPUT SOURCE AND *GO

This message means that the microassembler was unable to get necessary disc tracks when the
microprogram source was input from a device other than the disc. To recover, reposition the
source, and schedule the microassembler with the RTE GO command (GO,MICRO, etc.). This-

message can appear between the two microassembly passes and before the cross-reference
generation.

/MICRO: END

This is the normal conpletion message for the microassembler.

/MICRO: END WITH ERRORS

Error messages appear on the list device.

/MICRO: ABORT

This message means that the microassembler detected an irrecoverable error and aborted.

/MXREF: END

This is the normal completion message for the Cross-Reference Generator.

/MXREF: RE-INPUT SOURCE AND *GO

Same as for the microassembler RE-INPUT message except applicable to the Cross-Reference
Generator when the “C” option’s used with the “MIC” control command.

/MXREF: ABORT

This message indicates that a irrecoverable error was detected in the Cross-Reference Generator.

Microassembling

9-10. ERROR MESSAGES
The microassembler checks each microinstruction for errors during microassembly. If an error is
detected, an error message is written to the list device. Following all error messages for a source
record, the source record itself is printed. The form of the error message is:

**ERROR e IN Inl (See In2) message:
where:

e is an error number defined in table 9-1;

In1 is the line number of the source line containing the error;

In2 is the line number of the previous source line (if any) containing the same error.

message is the error message.

Table 9-1 gives the complete meaning of each error message recovery procedure, and/or the microas-
sembler action taken.

Table 9-1. Microassembler and Cross-Reference Generator Error Messages

ERROR
NUMBER MESSAGE/MEANING/RECOVERY
1 DUPLILCATE LABEL IN FIELD 1. The microinstruction label is the same as a
previously used label or EQU symbol. This occurrence of the symbol is ignored and
its first definition holds.
2 INVALID OP IN FIELD 2. A NOP micro-order is inserted in field 2.
3 INVALID SPECIAL IN FIELD 3. A NOP is inserted in field 3.
4 INVALID CONDITION IN FIELD 4. An ALZ is inserted in field 4.
5 INVALID ALU IN FIELD 4. A PASS micro-order is inserted in field 4.
6 INVALID MODIFIER IN FIELD 4. A HIGH micro-order is inserted in field 4.
7 INVALID STORE IN FIELD 5. A NOP is inserted in field 5.
8 INVALID S-BUS IN FIELD 6. A NOP is inserted in field 6.
9 INVALID SENSE IN FIELD 5. Micro-order in field 5 is not RJS and is ignored.

10 MISSING ORG. Origin is set to 27000B.

11 INVALID CONSTANT IN FIELD 6. The Operand of a word type 1l microinstruction
is out of range. A value of 0 is inserted in field 6.

*12 $CODE IGNORED: NO BUFFER SPACE. Insufficient memory for object code
buffer. Object code is only punched on tape (if B parameter included in MICMXE
microassembler control command).

*13 $CODE IGNORED: CANNOT BUILD FILE. Object code is punched only on tape (if
B parameter included in MICMXE microassembler control command. This
message is followed by the FMGR error code.

Table 9-1. Microassembler and Cross-Reference Generator Error Messages (Continued)

Microassembling

ERROR
NUMBER

MESSAGE/MEANING/RECOVERY

“14

15

16

17

*18

19

90

*21

22

23

24

25

26

27

28

*29

**30

*31

*32

INVALID FILE REFERENCE. Syntax error occurred in filename, security, or crlabel
specification. (Refer to the Batch and Spool Manual.) Object code is only punched
on tape (if B parameter included in MICMXE microassembler control command).

NOT TYPE-3 SPECIAL IN FIELD 3. A NOP is inserted in field 3.
NOT TYPE-1 or 2 SPECIAL IN FIELD 3. A NOP is inserted in field 3.
NOT TYPE-4 SPECIAL IN FIELD 3. A NOP is inserted in field 3.

INVALID CONTROL COMMAND. The microassembler assumes the parameter
defaults of the MICMXE control command.

INVALID EXPRESSION IN FIELD 6. Branch address is out of permitted range, or
target label address is undefined. A value of 0 is inserted into field 6.

NO SOURCE. Microprogram source input device is not ready or the micro-
assembler program (MICRO) was given incorrect input device LU number. Check
input device; and MICRO command. Make necessary correction and micro-
assemble again.

MISSING END. The microprogram has no END statement. Correct and
microassemble again.

SYMBOL TABLE OVERFLOW. The microprogram has too many labels; or
insufficient memory to build symbol table.

ADDRESS OUT OF RANGE IN FIELD 6. Branch address is out of permitted range.
A value of 0 is inserted into field 6. :

LABEL NOT ALLOWED IN FIELD 1. The characters in field 1 are ignored.

FIELDS 4 & 5 MUST BE BLANK. These fields are ignored in word type IV
instructions.

ADDRESS SPACE OVERFLOW. Branch address is greater than 37777B (16383).
A value of O is inserted into field 6.

INVALID OR MISSING MICRO COMMAND. The MICMXE microassembler control
command is incorrect or missing; microassembly aborts. Correct the line and
microassemble again.

DUPLICATE MICRO OPTION IGNORED. A parameter appears more than once in
the MICMXE control command. The first appearance is accepted; the others are
ignored.

FILE I/0O ERROR. This message is followed by a FMGR error code. Object code is
punched only on tape (if B parameter included in MICMXE microassembler control
command).

INVALID MICRO OPTIONS. A microassembler control command has incorrect
parameter(s). The parameter(s) is ignored.

INVALID LABEL IN FIELD 1. The label contains a plus (+) or minus {(—) sign or
begins with a percent (%) character.

SECOND $CODE IGNORED. Only one $CODE control command is allowed;
subsequent ones are ignored.

99

Microassembling

Table 9-1. Microassembler and Cross-Reference Generator Error Messages (Continued)

ERROR
NUMBER MESSAGE/MEANING/RECOVERY
*33 EXPRESSION NOT ALLOWED IN FIELD 6. The characters in field 6 are ignored.
CROSS REFERENCE GENERATOR MESSAGES
1 SYMBOL TABLE OVERFLOW
2 NO SOURCE
NOTES:

1. Messages flagged with a single asterisk (*), have no effect on generated code. Non-recoverable errors
are flagged with a double asterisk (**).

2. Unless the microassembly process is aborted (/MICRO: ABORT message listed on system console),
you can correct any of the above errors by using the Microdebug Editor and execute the microprogram
from WCS. However, the resulting object code is not suitable for burning pROM's. To burn pROM's, you
must correct the microprogram source and reassemble to get an error-free object code direct from the
microassembler.

9-10

Section 10
USING THE RTE MICRODEBUG EDITOR 1N

USING THE RTE
MICRODEBUG EDITOR |[10

The Microdebug Editor (MDE) allows you to load microprogram object code into WCS, debug the code,
and execute the microprogram. Using the debugging features as illustrated in section 14, you may also
write short microprograms using the MDE. In order to use MDE, it is necessary that the WCS boards
be assigned subchannel base addresses or initialized for the transfer of the microcode. Complete
information required to write WCS initialization programs is given in the Driver DVR36 Manual.
Example WCS initialization procedures are included in section 14.

MDE provides its own prompt character ($) and responds to its own set of operator commands. When
you use MDE, you must observe the operator command syntax (described in table 10-1) and the
following conventions:

® A numeric parameter is assumed to be positive unless preceded by a minus sign (~).

¢ A numeric parameter with the letter “B” suffix indicates the parameter is octal. Otherwise the
numeric parameter is assumed to be decimal.

¢ Two adjacent commas (,,) or colons (::) mean a parameter assumes its default value.
® Leading blanks (spaces) and blanks preceding or following a comma or a colon are ignored.
e All inputs must be terminated by a carriage return (CR).

Table 10-1. MDE Operator Command Syntax

ITEM MEANING
UPPER CASE These characters are literals and must be specified as shown.
lower case These characters only indicate the type of information required.
REad This combination means that the RE is literal and must be used as shown; the

remaining characters are for information only and need not be used.

[,item] ltems within brackets are optional. You can default the item by omitting it or by
replacing it with a comma if other items follow it.

ftem1 This indicates that any one of the items listed may be used. You can default the
,item2 selection by omitting it or by replacing it with a comma if other items follow it.
,iterm3

item1 This indicates that one of the items listed must be used.

item?2

item3

namr This indicates one parameter with up to two subparameters separated by colons.

Subparameters are allowed on the first parameter only. Examples:

namr=filename [:security code [.crlabell]
-and-
namr=logical unit number

10-1

MDE

10-1. SCHEDULING MDE

You can schedule the Microdebug Editor program (MDEP) by using either an RTE ON command or an
FMGR RU command. (MDEP can also be called by another program as shown at the end of this
section.) To schedule MDEP use either of the following commands:

ON,MDEPI,le1[,lu2[,lu3[,lud4]]
RUMDEPI,lul[,lu2[,lu3[,lu4]]1]
where:

lul is the logical unit (LU) number of the console you are going to use to communicate with MDE;
lu? is the LU number of the WCS board you will be using;

{u3 is the LU number of an additional WCS board (if required);

lu4 is the LU number of a third WCS board (if required).

Upon initial execution, MDE must determine the computer type you are using by making the
following request:

COMPUTER TYPE: 1=M-SERIES,2=E/F-SERIES
TYPE(1 OR 2)?

You must respond by entering the number “2”. This request will not appear with any subsequent use
of MDE unless the RTE system is re-booted or MDE is rescheduled.

MDE requires the driver DVR36 and WCS I/O Utility routine WLOAD for its operations. MDE locks
all WCS logical units in a WCS LU table (WCSLT); any LU’s added to the WCSLT are also locked. You
can load, read, modify, debug, and dump microprogram object code by using MDE operator commands.
MDE, when used as routine MDES, may also perform these operations in your applications environ-
ment. The MDE operations work with all the WCSLT LU’s and with control memory addresses issued
by the operator commands. Termination of MDEP (or the MDES calling program) unlocks all WCS
logical units.

10-2

MDE

10-2. MDE COMMANDS

Table 10-2 summarizes the commands for using the MDE; more detailed explanations of the com-
mands are given below. MDE will not allow operations in the base set area of control memory. The
valid range of control memory address parameters is 2000 through 37777 octal. MDE outputs a dollar
sign ($) character as a prompt.

Table 10-2. Summary of Microdebug Editor Commands

CONTROL
COMMANDS DESCRIPTION
?7? Explains error code.
EX Terminates MDE.
/0
COMMANDS DESCRIPTION
DU Dumps specified binary object code of current WCS-resident microprogram(s)
to a LU or disc file.
LD Loads microprogram binary object code onto WCS (write verified).
LU Add or delete WCS logical units to or from a WCS LU table (WCSLT).
EDIT
COMMANDS DESCRIPTION
DE Delete microinstruction at specified control memory addresses by replacing
with NOP's.
RE Replace microinstruction at specified address.
SH Show microinstruction at specified address on the operator console.
DEBUG
COMMANDS DESCRIPTION
BR Set breakpoint into microprogram at specified control memory address.
CL Clear breakpoint in microprogram at specified control address.
LC Locate object code in control memory for use with breakpoint.
PR Set up additional parameters for use with next MDE RU command.
RU Execute microprogram by executing the appropriate main memory instruction.
SE Set registers to values desired for next execution of MDE RU command.

10-3

MDE
10-3. ?? COMMAND

This command expands an MDE error code. (MDE error codes are listed and defined in table 10-3.) The
command format is:

??[,number]
where:
number is the error number. If number is omitted, the last error code issued is expanded. If

number is xx, error code xx is expanded. If number is 99, all error codes are expanded. (Refer to
table 10-3)

10-4. . EXIT COMMAND

This command terminates the MDE. (If in MDES, returns to calling program.) The command format
is:

EXit

10-5. DUMP COMMAND

This command transfers the contents of WCS to a file or logical unit. The command format is:
DUmp,namri,xxxxxl,yyyyy]]

where:

namrl is the logical unit number or the name of a file to which the object code is to be transferred.
If namrl is a file, the file is created by this command.

xxxxx and yyyyy are the upper and lower control memory addresses of the object code to be
transferred. The range xxxxx to yyyyy inclusive are transferred for all LU’s in the WCS logical

unit table (WCSLT). If xxxxx and yyyyy are zeros (default values), all logical units in the WCSLT
are transferred.

10-6. LOAD COMMAND

This command loads the binary object code into WCS; the entire load is write verified. The command
format is:

LD,namrl

where:
namrl is the logical unit number or the name of a file from which binary object code is to be
transferred. If namrl is a file, it may have been created by the DU command or by the

microassembler.

Any microprograms residing in WCS that are overlayed by an LD command are lost.

104

MDE

10-7. LU COMMAND

This command adds or deletes WCS logical units to or from the WCSLT and enables or disables WCS
LU’s that are in the WCSLT. The command format is:

LUL Il lu2],... lux]]]

where:
lul, lu2, etc. are WCS LU’s for MDE use. A maximum of 12 LU entries are permitted. A negative
LU number causes the LU to be deleted from the WCSLT. An LU entry prefixed by the letter “E”
logically enables that LU and, prefixed by the letter “D” disables that LU. (The WCS board or
boards must already be physically enabled.) Valid LU numbers must be in the range 0 through
63.

MDE responds to the LU command by outputting a status table as follows:

LU# RANGE STATUS
lul XXXXX-YYYYY
lu2 XXXXX-YYYYY
lux XXXXX-YYYYY z

where:

lul, lu2, etc., are the WCS LU’s currently used by MDE;
xxxxx-yyyyy is the range of control memory set for a particular LU;

z is “1” for an enabled LU, “0” for a disabled LU (disabled includes downed LU’s), or “P” for a
pseudo-disabled (physically-enabled) LU.

The LU command adds LU’s to the WCSLT in the order they are entered. If the LU parameters are

defaulted, the current WCSLT is displayed. All LU’s in the WCSLT are locked by MDE and released
when MDE or the calling program is terminated.

10-8. DELETE COMMAND

This command deletes a microinstruction or range of microinstructions from WCS. The deleted

microinstructions are replaced by NOP micro-orders (PASS in the ALU field). The command format is:
DElete xxxxx[,yyyyy]

where:

xxxxx and yyyyy are the lower and upper control memory addresses of the range of microinstruc-
tions to be deleted. If yyyyy=0 (default), only xxxxx is deleted.

10-5

MDE

10-9. REPLACE COMMAND

This command replaces a microinstruction or range of microinstructions in WCS. The command
format is:

REplacexxxxx[,yyyyyl,0]1]

where:

xxxxx and yyyyy are the lower and upper control memory addresses of the range of microinstruc-
tions to be replaced. If yyyyy=0 (default), only xxxxx is considered. The optional letter “O” causes
the object code as well as the micro-orders of each microinstruction to be displayed as each replace
is made.

MDE responds to the REPLACE command as follows:

xxxxx field2 field3 field4 field5 field6 zzz zzzzzz
83

where:

field2 through field6 are the micro-orders of the microinstruction at control memory address
xxxxx and zzz zzzzzz is the object code of the microinstruction. $$ is a prompt for your response.

You may respond to the $$ prompt as follows:

nfield2,nfield3,nfield4,nfield5,nfield6
WWww wwwwww

/ or nn or A

where:

nfield2 through nfield6 are the desired replacement micro-orders for each field of the new
microinstruction. The field micro-orders must be entered in the order shown. If any field is
defaulted by ,, or omitted, that field remains the same as in the original microinstruction.

www wwwwww is the new microinstruction (in octal) displayed by MDE if the REPLACE
command was used with the optional letter “O”. If www or wwwwww= 0 (default), the old value
remains.

leaves the current microinstruction unchanged and moves to the next one. If control memory
address yyyyy is exceeded, the REPLACE command is terminated.

nn is a positive integer from 1 through 99 and causes the REPLACE command to move its pointer
nn locations in control memory, displaying each microinstruction as it increments. If yyyyy is not
exceeded, the last microinstruction displayed is the one ready to be replaced. If yyyyy is exceeded,
the REPLACE command is terminated.

The letter “A” terminates the REPLACE command; all the remaining microinstructions are un-
changed.

10-6

MDE

Each time a microinstruction is replaced the new microinstruction is microassembled and the RE-
PLACE command pointer moves to the next microinstruction. If yyyyy is exceeded, the REPLACE
command is terminated.

10-10. SHOW COMMAND

This command displays a microinstruction or range of microinstructions residing in WCS. The
command format is:

SHow axxxxx[,yyyyyl,01]

where:
xxxxx and yyyyy are, respectively, the lower and upper control memory addresses of the range of
microinstructions to be displayed. If yyyyy=0 (default), only xxxxx is displayed. The optional
letter “O” causes the object code as well as the microinstruction to be displayed.

MDE responds to the SHOW command as follows:

xxxxx field2 field3 field4 field5 field6 zzz zzzzzz

yyyyy field2 field3 field4 field5 field 6 zzz zzzzzz
where:

field2 through field6 are the micro-orders of the microinstruction at a particular control memory
address and zzz zzzzzz is the object code of the microinstruction.

10-11. BREAKPOINT COMMAND

This command sets a breakpoint or breakpoints at a control memory address or addresses. This
command may also simply display the current set of breakpoints. The command format is:

BReakpoint{,break1[,break2[,break31]]
where:
breakl, break2, and break3 are the control memory addresses of the breakpoints to be set. If

breakl=0 (default), the current set of breakpoints is displayed. The maximum number of break-
points that can be set is three.

10-7

MDE

MD

E responds to the BREAKPOINT command as follows:

BREAK1 xxxxx
BREAK2 xxxxx
BREAKS3 xxxxx

where:

BREAK1, BREAK2,and BREAK3 designate the breakpoints and xxxxx is the control memory
address of a breakpoint.

Before setting a breakpoint, you must locate the desired control memory address by using a LOCATE

(LC

10-8

) command. Also, observe the following rules when using breakpoints:

Whgn a breakpoint executes, all registers (except the counter) that can be displayed by the SET
command (paragraph 10-16) are saved. Note that the IR and the M-register are two of the registers
that are not saved.

A breakpoint cannot be set on a microinstruction that uses any bits in the Instruction Register.
A breakpoint can be set within a microsubroutine but, if this is done, it cannot be reentered.

A breakpoint cannot be set at the control memory address of a microinstruction passing data from
the T-register within two microinstructions following a READ micro-order.

A breakpoint can be set on a conditional branch microinstruction but it cannot be reentered.

A breakpoint may be set on a microinstruction that uses a register which is lost when breaking;
however, the register will not be restored if execution continues.

A breakpoint may be set on a microinstruction that uses any one of a set of Special micro-orders
but continued execution will be unpredictable. This set of Special micro-orders is: INCI, IOFF,
I0G, I0I, ION, and I0O.

Breakpoints cannot be set in the CM area occupied by the MDE breakpoint object code.

If there is no control memory entry point address available for MDE, debug operations using
breakpoints cannot be performed.

If you do not have enough room in control memory for your microprograms and the MDE object
code, either you must overlay some of your object code or debug operations using breakpoints are

not allowed.

The counter cannot be saved on the E-Series or F-Series Computer.

MDE

10-12. CLEAR COMMAND

This command clears breakpoints previously set by a BREAKPOINT command. The command format
is:

CLear[,breakl[,break2[,break3]1]]
where:

breakl, break2, and break3 are the control memory addresses of breakpoints to be cleared. If
breakl=0 (default), then all breakpoints are cleared. The maximum number of breakpoints that
can be cleared is three.

10-13. LOCATE COMMAND

This command locates the breakpoint object code in control memory to enable breakpoints to be set.
Also, this command moves breakpoint object code from a buffer in memory to control memory. The
command format is:

LC xxxxx,yyyyy
where:

xxxxx is the starting control memory address of the sequence of breakpoint object code. The object
code is moved and will occupy up to 114 (162 octal) control memory locations beginning with
xxxxx. Location yyyyy is the breakpoint reentry point in control memory. Location yyyyy must be a
valid control memory entry point address but must not be used by any microprograms.

As an example of LOCATE command usage, suppose a microprogram occupies CM addresses 34020B
to 34153B and the breakpoint object code can be placed into “unused” addresses 34200B to 34362B.
Assuming that entry point 34002B is not used by a microprogram, the example LOCATE command
would be:

LC,34200B,34002B
Every time the LOCATE command is used all breakpoints are cleared; they can be reset with the

BREAKPOINT command for use with the relocated object code. Breakpoint object code can be located
across two WCS LU’s provided that both LU’s are enabled.

10-14. PARAMETERS COMMAND

This command sets up parameters in memory for use with the main memory instruction that calls the
microprogram to be executed. These parameters are in addition to those that may be passed via
registers. The command format is:

PR

10-9

MDE

MDE responds as follows:

P+ 1=contentsl
P+ 2=contents2
P+ 3=contents3
P+ 4=contents4
P+ 5=contents5
P+ 6=contents6
P+ 7=contents7
P+ 8=contents8
P+ 9=contents9
P+ 10=contents10

P+x=
where:

P+ 1,P+2, etc., are the memory locations relative to the instruction that calls the microprogram,;
contentsl, contents2, etc., are the octal contents of each location; x is an integer from 1 through 10;
and P+x= is a prompt for you to enter new contents or leave the old contents unchanged.

Each location in the range P+1 through P+ 10 is displayed one at a time (followed by the prompt
P+x=) to allow you to create the desired calling instruction parameters. You can respond to the
prompt with the following:

/ or R or xxxxx or DEFyy or A

where:

The / character leaves the current location unchanged; the letter “R” designates the current
location as a valid return address for the microprogram; xxxxx is a decimal number from -32767
through 32767 or an octal number from -77777B through 77777B; DEF.yy creates a DEF to
address P+yy; the letter A" terminates the PARAMETERS command and all remaining loca-
tions are left unchanged.

10-15. RUN COMMAND

This command executes a microprogram. If required, program parameters can be preset using the
PARAMETERS or SET commands.

CAUTION

It is strongly recommended that your RTE system be in a non-
critical or a single-user operating mode before you execute a
microprogram. Execution of an unproven microprogram can have
unpredictable and undesirable results, including the destruction
of the system.

10-10

MDE

The command format is:

RUn |,105yyyB
,101zzz B

where:

105yyyB and 101z2zB are OCT instruction values corresponding to control memory entry point
addresses;

yyy and zzz are octal values which you should predetermine by using the information given in
section 6.

If you default the optional RUN command parameters, the RUN command will do one of two things
depending on the last return from microprogram execution. If the last return was from a breakpoint,
the RUN command will resume execution at the most recent breakpoint. If the last return was a
normal return, the RUN command will reexecute the last main memory instruction used to link with
the microprogram. When a RUN command executes, one of the following messages should be output
upon return from microprogram execution:

RETURN P+xx

where:
xx is a decimal number from 1 through 10 and the message indicates a normal return, or

BREAK yyyyy
where:
yyyyy is the address of a breakpoint and the message indicates a return from a breakpoint.
Note that the RUN command cannot enable a disabled WCS LU.
10-16. SET COMMAND
This command sets the saveable registers for the next RUN command. This command also displays the

contents of the saveable registers at the last break in the execution or last return from a RUN
command. The command format is:

SEt[,pl[,p2...[p25]1]]

10-11

MDE

where:

pl, p2, etc., are any of the following:

A (A-register) S1
B (B-register) S2
X (X-register) S3
Y (Y-register) S4
O (O-register) S5
E (E-register) S6
S (S-register) S7
L (L-register) S8
P (P-register) S9
FLAG (CPU Flag) S10
DSPL (Display Register) S11
DSPI (Display Indicators) SP (Stack Pointer)

CNTR (Counter) Always=0

If the SET command is given without any parameters, all register values are shown.

MDE responds to the SET command by displaying any of the requested values as follows:

A=xxxxxx FLAG=x S5=xxxxxx
B=xxxxxx DSPL=xxxxxx S6=xxxxxx
X=xxxxxx DSPI=xx S6=xxxxxx
Y=uxxxxxx CNTR=0 ST7=xxxxxx
O=x Sl=xxxxxx S8=xxxxxx
E=x S2=xxxxxx S9=xxxxxx
S=xxxxxx S3=xxxxx% S10=xxxxxx
L=xxxxxx S4=xxxxxx S1l=xxxxxx
P=xxxxx SP=xxxxxx

Register n=xxxxxx
Register n=
where:

x, xx, xxx, or xxxxxx are the contents or the condition of a particular register or flag in octal or
binary; Register n is the first register in your set of registers and Register n= is a prompt for you
to enter a new value in register n or leave the old unchanged.

The prompt is displayed after each requested register. You can respond to the prompt with the
following:

/ or xxxxx or A

10-12

MDE

where:

/ leaves the current register unchanged and moves to the next requested register; xxxxx is an octal
number from -77777B to 77777B or a decimal number from -32767 to 32767; and the letter "A*
terminates the SET command and all remaining registers are left unchanged. Note that MDE
always outputs octal numbers.

All registers except A, B, X, Y, O, E, and DSPL are set to zero for a normal return from microprogram
execution. The counter cannot be used with breakpoints. All other registers not saved by MDE cannot
be assumed to remain in a given state during debug operations.

NOTE

All numbers output from the MDE are in octal. MDE does not
designate this however. If you are entering numbers and you
desire octal form, so designate by following the number with B.

10-17. MESSAGES
Table 10-3 lists all MDE error messages.

Table 10-3. Microdebug Editor Error Messages

ERROR

CODE MESSAGE/MEANING

MDEOQO MDE BREAK. Break set into program ID segment.

MDEOQO1 WCSLT FULL. WCS logical unit table is full. Use the LU command to display current
entries in table and to delete unwanted LU's.

MDEO002 ILLEGAL PARAMETER. lllegal parameter or subparameter in input.

MDEOQ3 WCSLT LU LOCKED. One or more WCS LU's in the WCSLT are already locked by
another program.

MDEQO4 NO RN AVAILABLE. A resource number to lock WCS LU'S is not available.

MDEQO5 INPUT ERROR. lllegal command or command syntax incorrect.

MDEO06 ILLEGAL LU. LU given to MDE is not driven by driver DVR36.

MDEQO7 ILLEGAL DEVICE. Attempted I/O operation with a device having equipment type
(driver number) of 30 or higher.

MDEO008 ERROR # UNDEFINED. The error number specified does not exist.

MDEOQ09 LU # UNDEFINED. The LU number given to MDE to be removed from the WCSLT
is not in the WCSLT.

MDEO10 CHECKSUM OR REC. FORMAT ERROR. Invalid record format or checksum error.
MDEO11 NO LU'S. WCS can't be loaded or dumped because the WCSLT is empty or has no
LU's set up for the desired control memory address range.

MDEO12 VERIFY ERROR. A write verify error occurred during the last /O operation to WCS.
MDEO13 NO DCPC. The last requested /O operation did not complete due to a non-

responding DCPC channel.

10-13

MDE

Table 10-3. Microdebug Editor Error Messages (Continued)

ERROR
CODE

MESSAGE/MEANING

MDEO14

MDEO15

MDEO16
MDEO17
MDEO018
MDEO19

MDE020

MDEO21

MDEO022

MDEO023

MDEO024

INVALID ADDRESS. Invalid WCS address specified; or last requested /O opera-
tion did not complete; or attempted to set a breakpoint in MDE microcode or on a
reentry address; or attempted to clear non-existent breakpoint; or attempted to set
reentry address in MDE microcode; or locate not completed.

ADDRESS CONFLICT. The address associated with and assign base address,
enable, or write request conflicts with another WCS subchannel. Last requested /O
operation did not complete.

DATA OVERRUN. The loading of data into WCS overran the available WCS.
Loading is partially complete.

LU DISABLED. A WCS LU requested for an I/O operation is psuedo-disabled,
disabled, or down.

FMP ERROR -XXXXX. An FMP call resulted in the error condition described by the
listed error code (-XXXXX). Refer to FMP error codes in the Batch-Spool Monitor
manual.

I/O ERR EOF EQT XX. An end-of-file occurred on EQT entry number XX.
MICRO ERR XX. Microassembler error XX occurred during a REPLACE command.

ILLEGAL REGISTER. The register requested by a SET command is not valid for
MDE.

NO MACRO. The attempted RUN command had no prior main memory instruction
call to a microprogram; or attempted setting a breakpoint without MDE breakpoint
microcode located; or breakpoint reentry address not a valid control memory entry
point address or no WCS LU. contains the reentry address.

USER MICRO ERR. User microprogram returned incorrectly.

BKTBL FULL. Breakpoint table is full. Use CL command to delete some break-
points before trying to set new ones.

10-14

MDE

10-18. RESTRICTIONS ON USING THE MICRODEBUG EDITOR

Microprograms provide you with a very privileged mode of computer operation. In an RTE operating
system, a microprogram executes beyond the control of the RTE system and, if improperly designed,
can destroy the system. This means that it is imperative that you exercise an extra measure of caution
before executing a developmental microprogram.

Subroutine MDES locks all WCS LU’s that it uses, thereby preventing any I/O operations to WCS from
another user in a multi-user RTE environment. This ensures that the object code of your microprog-
ram will remain intact but does not prevent another user’s program from executing an instruction that
enters your object code.

The Load (LD) command uses WCS I/0 Utility routine WLOAD to load into WCS using the LU array
in the WCSLT. Object code from two microprograms having the same control memory addresses
cannot be developed simultaneously (i.e., no two microprograms can occupy the same control memory
locations at the same time).

10-19. CALLING MDE

As previously mentioned, you can prepare a program for the purpose of calling MDE as a subroutine
(MDES) or scheduling MDE as a program (MDEP). Remember that MDEP and MDES are separate
software modules.

Figure 10-1 and figure 10-2 show respectively, the Assembly language and FORTRAN calling sequ-
ences to schedule MDEP and to call MDES. MDES may also be called via a breakpoint in the
microprogram object code; if this is done, some additional rules for using MDES must be observed.

Subroutine MDES is functionally identical to MDEP. The main difference is that an MDES EX
command returns to the calling program rather than terminating the program. The software saveable
registers are set to their values when MDES is called instead of being set to 0 as in MDEP. Neither
MDEP nor MDES will clear breakpoints when exited; you must clear any breakpoints when you finish
debugging your object code. Figure 10-3 outlines a recommended sequence of interactive debugging
operations between you, MDES, and your MDES calling program.

10-15

MDE

Purpose: To programmatically schedule the program MDEP.
Format: EXT EXEC
SCHED JSB EXEC TRANSFER CONTROL TO RTE
DEF RTN RETURN POINT
DEF ICODE REQUEST CODE
DEF MDEP NAME OF PROGRAM TO SCHEDULE
DEF P1
DEF P2 OPTIONAL
DEF P3 PARAMETERS
DEF P4
RTN EQU +
ICODE DEC 23 OR 24 23=SCHEDULE W/WAIT,24=N0 WAIT
MDEP ASC 3,MDEP NAME OF PROGRAM
P1 DEC LU1 OPERATOR CONSOLE LUCDEFAULT=1)
P2 DEC LU2 WCS LU
P3 DEC LU3 WCS LU
P4 DEC LU4 WCS LU
DIMENSION MDE(3)
ICODE=23 OR 24
MDEC1)=2HMD
MDE(2)=2HEP
MDE(3)=2H
CALL EXECCICODE ,MDE, I1,12,13,14)
I1 thru I4 are identical to the Assembly language
schedule request parameters P1 thru P4.
7115-28 Figure 10-1. Scheduling MDE (MDEP)
Purpose: Tocall theutility subroutine MDES.
Format: JSB MDES JUMP SUBROUTINE
DEF RTN RETURN POINT
DEF P1
R OPTIONAL
PARAMETERS
DEF P4 AR
DEF PS
RTN EQU #
P1 D!:ZC Lu1 OPERATOR CONSOLECDEFULT=1)
P2 DEC LU2 WCS LU
P3 DEC LU3 WCS LU
P4 DEC LU4 WCS LU
PS BSS 1 ERROR CODEC0=SUCCESSFUL
COMPLETION,-1=SUBROUTINE
ABORTED)

CALL MDESCI1,12,13,14,15)

11 thru IS are identical toP1 thruPS in the
Assembly language call.

7115-29

10-16

Figure 10-2. Calling MDE (MDES)

MDE

User Program

MDES Operation

START
JSB MDES

MACRO1
PARAMETER
NOP
RETURN

MACRO2
PARAMETER
RETURNA1
RETURN2

JSB MDES

END

{Initialize debug operations. Set
Subroutine) desired breakpoints into microcode,
€———>) load WCS, etc. Exit MDES back to
Call calling program.
{Debug operations. Examine state
Microcode of registers, change registers,
€——> { modify microcode, set new
Breakpoint | breakpoints, etc. Continue in
microprogram.

Microcode
¢€——> < Additional debug operations.
Breakpoint
Subroutine {Complet ion of debug operations.
¢————— §{ Clear breakpoints, dump microcode,

Call etc. Exit back to end of program.

71156-30

Figure 10-3. Interactive Debugging Operations

10-17/10-18

Section 11

WRITABLE CONTROL
STORE (WCS) SUPPORT SOFTWARE I

WRITABLE CONTROL STORE (WCS)
SUPPORT SOFTWARE |11

Section 8 describes a method used to prepare a microprogram and then store it in a system file. The
microprogram source could also have been entered through the system input device. When you prepare
a microprogram and enter it into the system, essentially you have just another file of data; even after
microassembly, you still have just a file of micro-object code in a disc file. In order to make your
microprogram (file) effective (i.e., executable through use of main memory UIG instructions 105xxx
octal codes) the microprogram must be placed in control memory. As emphasized previously (in
sections 1 and 3), your facility for dynamic control memory (CM) is Writable Control Store (WCS),
which is where you want to place your micro-object code.

NOTE

Although you may of course execute microroutines when they
reside in any facility of CM (e.g., FAB and UCS as well as WCS),
WCS is essential for microprogram development and dynamic
microprogramming. (Dynamic microprogramming is defined as
the ability to swap microprograms in and out of WCS as desired.)
More information on this is in paragraph 11-2.

This section outlines the hardware and software necessary to transfer your microprogram (from the
file you created in the RTE system) into WCS then, modify your microprogram as required for proper
execution.

11-1. WCS HARDWARE

Before anything can be done about moving microprograms from main memory to control memory you
have to have a WCS board or boards installed in the I/O section of the computer and properly
configured for CM and the RTE system. Some details on the WCS boards you can use follow but for
complete board configuration and installation information refer to the HP 13197A Writable Control
Store Reference Manual. You should also refer to section 3 to review the steps necessary to prepare for
microprogramming with the RTE system.

You may use the HP 13197A WCS board in the computer for dynamic microprogramming. The
HP 13197A WCS has a capacity of 1024 microwords (1K) which is four CM modules. No hardware
configuring is necessary to use the 13197A WCS. If one WCS board is used, it is advised (in the WCS
manual) that it be installed in SC 10 in the computer. The driver takes care of setting appropriate CM
addresses on the board from addresses assigned in your microprogram (the driver is described in
paragraph 11-2),

For normal use, a maximum of three WCS boards can be connected with the CM cables supplied.
Standard maximum WCS configurations (capacities) are 3K of WCS in the Computer for either an
RTE II or RTE IV system.

111

WCS

11-2. WCS SOFTWARE

Manipulating microwords between main memory and WCS via the I/O section is the task of the WCS
microprogramming support software. Driver DVR36 and the WCS I/O Utility (library) routine
WLOAD comprise this software.

DVR36 drives the WCS boards for data transfers (of micro-object code through the I/O section while
conforming to constraints for the RTE system I/O. The driver ensures that no two enabled WCS boards
have the same CM addresses assigned. Control requests, write requests (writing microroutines to
WCS), and read requests (reading microroutines from WCS) are possible using DVR36. WLOAD
coordinates between the system and WCS. WLOAD uses DVR36 to perform its operations and move
large quantities of micro-object code to WCS. Also, if so configured, DVR36 utilizes DCPC for
transfers.

WCS boards must be initialized (i.e., assigned subchannel base addresses) for the transfer of
microprogram object code to the boards. WCS initialization is required whenever the RTE system is
booted up. Complete information required to write WCS initialization programs is given in the Driver
DVR36 manual. (Section 14 contains an example initialization procedure for the 1K WCS (HP
13197A).) The WCS initialization program can be included in the RTE system during system
generation or loaded on-line. (Refer to the RTE operating manual for information on system genera-
tion and program loading.)

To transfer microprograms between WCS and a main memory buffer or to make control requests to
WCS, you call the driver directly with an RTE system EXEC call. To load WCS with microprograms
from a file or LU, you use WLOAD. The procedures to use for calling the driver or WLOAD in
Assembly language or FORTRAN are detailed in the DVR36 and WLOAD manual (reference section 3
for the manual part number, object software part numbers, and procedures for including the software
(loading) in the RTE system.) Complete configuring information is also contained in the driver manual
where appropriate RTE system manual references are also made. Section 14 in this manual (exam-
ples) provides additional details on using FORTRAN to control WCS operations including initializing,
locking, unlocking, enabling, and disabling your WCS boards, and executing your microprogram in
the system. Note that, with the HP 13197A WCS board, your subchannels should have different LU’s
assigned at configuration time.

The Microdebug Editor also uses DVR36 and WLOAD to perform microprogram editing and execution
tasks with WCS. All the information you need to operate the driver and utility routine with the
Microdebug Editor is included in section 10. All the information required to operate with the WCS
microprogramming support software directly in the RTE system is included in the driver manual and
you will not have to get involved in operating details unless you so desire.

11-2

Section 12
USING pROM GENERATION
SUPPORT SOFTWARE AND HARDWARE N

USING pROM GENERATION SUPPORT
SOFTWARE AND HARDWARE |[12

This section provides instructions for generating pROM mask tapes by using the pROM Tape
Generator program (PTGEN). The mask tapes enable a microprogram to be fused (“burned”) into
programmable read-only memory (pROM) semiconductor integrated circuits (IC’s.). Before generating
pROM tapes, the microprogram should be completely debugged and its source should be corrected and
microassembled again to provide the object code required by PTGEN. PTGEN can provide a variety of
pROM mask formats, including those of a variety of pROM vendors. Note that the program must be in
the system prior to use and see section 3 for preparatory information.

12-1. USING THE pROM TAPE GENERATOR

Run program PTGEN by entering the following command:
RU,PTGEN,userin,list,objectin,ptapein,ptapeout
The command parameters are defined as follows:

userin is the logical unit (LU) that you will use to respond to PTGEN queries. The default is LU 1.

list is the LU on which all PTGEN queries and error messages are written. The default is LU 1.

objectin is the LU from which the microassembler object code is read. If this is LU 2, the disc file
name will be requested. The default is LU 5. Note that the object code must be produced by the
microassembler, not by the Microdebug Editor.

ptapein is the LU from which the punched pROM mask tapes are read for verification. This LU
must accept the output of the ptapeout LU. The default is LU 5.

ptapeout is the LU on which the pROM mask tapes are punched. This should be a paper tape
punch to be accepted by most pPROM vendors. The default is LU 4.

pROM mask tape generation is divided into three phases: Initialize, Punch, and Verify. A temporary
disc file (named ??PTMP) will be created during the Initialize Phase if the objectin parameter specifies
a logical device other than the disc. This temporary file is purged before PTGEN terminates. Each
phase includes a series of queries to which you must respond. In most cases, you can default a response
by entering a “null line”; i.e., a blank (space) character. Also, in making responses, you need only enter
the first letter of the following words: YES, NO, COMMENTS, REPLACE, OCTAL, DECIMAL, and
ALL. PTGEN error messages are described at the end of this section.

Each PTGEN query shown in this section is preceded by a reference number; this number is not part of
the actual query.

121

Generating pROM Tapes

12-2. INITIALIZE PHASE

During the Initialize Phase, you must set up the desired format of the pPROM mask tapes. (Figure 12-1
shows the general format for the mask tapes.) The Initialize Phase queries are listed and described
below.

1.0 NUMBER OF WORDS PER PROM?
Respond with the number of words (locations) to be contained in each pROM.

1.1 NUMBER OF BITS PER PROM WORD?
Respond with the number of bits per microinstruction contained in each pROM. This should be a

divisor of 24, the number of bits per microinstruction. The acceptable values are 1, 2, 3, 4, 6, 8, 12,
and 24.

1.2 UNUSED-LOCATION LEVEL (H/L)?

Respond with H or L to indicate the level used to initialize unused portions of the pROM (due to the
use of the ORG and ALGN psuedo-microinstructions). If you respond with a null line, the default is
H. If H is specified, all ones are generated; otherwise, the buffer is initialized to zeros.

/7 4 Ve
LEADER GRAPHIC LEADER COMMENT COMMENT RUBOUTS
..... - - . e » - ETC - . . . - . . . » - . . LI
TAPE ID LINE 1 LINE N
7 e 7
4 Ve
START-TABLE CHECKSUM PROM START-WORD WORD END-WORD
CHARACTER ADDRESS (*) CHARACTER CHARACTER
' e
£
START-WORD WORD END- WORD END-TABLE RUBOUTS TRAILER
CETCe o o N » s o o » e o e o o s s 6 o s e s s o ® ¢ o o o s s e s s e o s s e
CHARACTER N CHARACTER CHARACTER
pd
NOTE
pROM ADDRESSES PRECEDE EACH LINE (SEQUENCE OF pROM WORDS
TERMINATED BY A CARRIAGE-RETURN/LINE-FEED) AND HAVE ONE OF THE
FOLLOWING FORMS:
ffftf
ff-1
WHERE:
“fffff” AND “Jlii” ARE THE OCTAL OR DECIMAL ADDRESSES OF THE FIRST AND
LAST pROM WORDS ON THE LINE RESPECTIVELY, DEPENDING ON THE FOR-
MAT SELECTED. EACH LINE CONTAINS UP TO 8 pROM WORDS BUT DOES NOT
EXCEED 72 CHARACTERS.

7115-32
Figure 12-1. General Tape Format

12-2

Generating pROM Tapes

1.3 PUNCH TAPE ID (Y/N)?
Respond with Y or N to punch or omit the mask tape ID (identification). The format of the punched
tape ID is :

aaaaa-aaaaa (bb-bb)
where:

aaaaa-aaaaa represents the low and high control memory address and bb-bb represents the left
and right bit number represented in the truth table. Note that “e” is octal and “b” is decimal. The
graphic presentation of the tape ID is such that when you look at the punched tape, the hole
patterns form recognizable characters.

1.4 DEFAULT VENDOR FORMAT (NAME)?

If desired, respond with the name of a pROM vendor and thereby default to that vendor’s format,
bypassing much of the Initialize Phase. The vendors recognized by PTGEN are: HP, INTEL, MMI,
and SIGNETICS. (Refer to table 12-1 for vendor formats.) If you specify one of these vendors, the
dialogue continues at query 3.0; if you enter a null line, the dialogue continues at 2.0.

2.0 NUMBER OF COMMENT LINES?
Enter the number of comment lines. These usually identify the user and the contents of the tape and
are punched preceding the truth table.

2.1 PUNCH RUBOUTS (Y/N)?
If you enter Y, a series of rubout characters are punched on the mask tapes before and after the
truth table; if N, none.

2.2 PUNCH CHECKSUM (Y/N)?

Enter Y or N to punch or omit a checksum. The checksum is a numeric string of four decimal
characters that represents the number of high-level characters in the truth table. If startand
end-table characters delimit the table, the checksum is punched immediately after the start-table
character.

2.3 START-TABLE,END-TABLE CHARACTERS?
If startand end-table characters are required to delimit the truth table, enter the two characters,
separated by a comma (,); enter a null line if the characters are not required.

2.4 START-WORD,END-WORD CHARACTERS?
If startand end-word characters are required to delimit each word in the truth table, enter the two
characters, separated by a comma; enter a null line if the characters are not required.

2.5 HIGH-LEVEL,LOW-LEVEL CHARACTERS?
Enter the required highand low-level characters, separated by a comma. If you enter a null line, the
default characters are H and L for the high and low levels.

2.6 PROM ADDRESS FORMAT (0/D,1/2)?

If desired, the pROM addresses (not the control memory address) can precede each “line” punched
from the truth table. (A “line” refers to a sequence of pROM words, terminated by a carriage return
and line feed.) The response consists of two parts, separated by a comma. The first part of the
response is either of the letters “O” or “D” and indicates whether the addresses are to be punched in
octal or decimal form. The second part of the response indicates whether one or two addresses are to
be punched for the pPROM words in a line; a “1” provides only the first address; a “2” provides both
the first and last addresses. A null response suppresses the punching of any pROM addresses.

12-3

Generating pROM Tapes

Table 12-1. Default Formats by Vendor

ITEM HP INTEL MMI/SIGNETICS

Number of comment lines 3 5 9

Rubouts punched No Yes Yes
Checksum punched Yes No No
Start/end-table characters — — SE
Start/end-word characters — B,F B,F
High/low-level characters H,L P.N H.L
pROM address format D,2 0,1 0,1

Note: The formats generated are as follows:

Intel BPNF format as defined in Intel's 1976 data catalog.

MMI TWX ASCIi BHLF format as defined in MMI's 1973 through 1976 pROM
(Monolithic device data sheets.

Memories,

Inc.)

Signetics Accepts both the Intel and MMI formats given above.

HP This format is recognized by the HP pROM Writer (part no. 12909-16005),

which is supported only in DOS and BCS environments.

Parts that HP has used with PTGEN tapes are:

pROM
PART 21MX 21MX E-SERIES
4K Signetics Signetics
825115 825141
1K MMI MMI
6301 6301
1K
(Using Harris Harris
HP pROM 1024 1024
Writer)

12-4

Generating pROM Tapes

The following queries depend on the type of logical unit specified by the objectin parameter in the
RU,PTGEN command; only one of the queries will be asked.

3.0 OBJECT CODE FILE NAME?

This query is asked if you specified LU 2 as the objectin parameter. Respond by entering the name of
the disc file in which the microassembler was directed to store the microprogram object code. The
file name has the following format:

filename[:security(:crlabel]]

(Refer to the Batch and Spool Monitor Manual for details.) The documentation map in the preface
shows the part no.

3.1 TEMPORARY FILE NAME?

If you did not specify LU 2 as the objectin parameter, PTGEN must store the object code in a
temporary disc file during the Punch Phase for use during the Verify Phase. PTGEN automatically
attempts to create this file (using ??PTMP as the file name); the query is given only if the attempt

fails. You may respond to the query by entering a file name, optionally followed by the word
“REPLACE”, as follows:

filename[:security[:crlabel]l[, REPLACE]

If a name conflict arises and REPLACE is specified, the existing file is purged and a new file is
created. If a name or access conflict arises and REPLACE is not specified or the existing file cannot
be purged, the query is repeated. You may respond with a null line to default the query. In that case,
you will have to re-input the source for the Verify Phase.

12-3. PUNCH PHASE

After the Initialize Phase, the pPROM mask tapes are punched. One mask tape is punched for each
pROM 1.C. containing w locations of b bits each, as specified during the Initialize Phase. The number
of mask tapes punched for w locations of object code equals 24/b. The truth table for the most
significant bits is punched first. A complete truth table is always punched, using the unused-location
character to represent unused portions of the pROM.

The pROM mask tapes are punched according to the specifications you give to PTGEN during the
Initialize Phase. Carriage-return and line-feed sequences are appropriately punched in the truth table
to aid visual verification of mask tapes when listing them off-line. Before punching each mask tape,
PTGEN asks if you want to modify any comment lines; if you do not, it uses the comments from the
previous mask tape.

12-5

Generating pROM Tapes

The queries asked during the Punch Phase are listed and described in the following paragraphs.

4.0 NEXT PUNCH ADDRESS, BIT-NUMBER?
Respond by entering a null line to skip or terminate the Punch Phase and go to the Verify Phase.
Other acceptable responses are:

aaaaa,bb
aaaaa, ALL

ALL

ALL or aaaaa, ALL means that all object code or all bit fields within the specified address range is to
be punched. The aaaaa,bb means that object code for a specific pPROM is to be punched. The “a” is an
octal address and the “b” is a decimal (or octal, if followed by B) bit number in the range to be punched.
These are normalized to the lowest address and the left-most bit number in the truth table. For
example, if the address specified for a 4x256 pROM is 2100,20 the truth table punched will include the
addresses 2000 through 2377 and bits 23 through 20.

4.1 REPLACE COMMENTS FOR TAPE cacaa,bb?
The aaaaa,bb is similar to the specification described for 4.0, above. Respond with Y to modify

comments; with N to leave the comment lines unchanged from the previous mask tape. Comments
are initialized to one blank character each.

4.2 COMMENT LINE n:
Respond with a null line to leave the comment unchanged from the previous mask tape. Otherwise,

enter the new comment line. Comment lines may be up to 72 characters long. This query is repeated
for each comment line, where n is the comment line number.

After the pROM tapes are punched, query 4.0 is repeated (see above).

12-4. VERIFY PHASE

After all of the pPROM mask tapes have been punched, they may be verified by reading them via the
ptapein device. When loading a punched pROM tape, it must be positioned in the reader so that the
graphic ID (if there is one) will not be read. Also, the tape must be positioned before any comment
lines, regardless of whether or not you intend to verify comments. The queries and messages of the
Verify Phase are listed and described in the following paragraphs.

5.0 NEXT VERIFY ADDRESS,BIT-NUMBER?
Respond with a null line to terminate the Verify Phase. Other acceptable responses are:

aaaaa,bb
aaaaa, ALL[,COMMENTS]
ALL[,COMMENTS]

ALL or aaaaa,ALL means that all object code or all bit fields within the specified address range is to
be verified. Also, if either of these two responses is given, then the mask tapes must be loaded in the
same order in which they were punched. The aaaaa,bb means that object code for a specific pROM is to
be verified. The “a” is an octal address and the “b” is a decimal (or octal, if followed by B) bit number in
the range to be verified. These are normalized to the lowest address and the left-most bit number in the

truth table. (Refer to 4.0 in the Punch Phase.) If COMMENTS is specified, the comment lines are
verified.

12-6

Generating pROM Tapes

5.1 RELOAD OBJECT TAPE AND *GO

This message is omitted if the object code can be read from a disc file. If this message is issued,
PTGEN suspends itself to allow you to load the object code tape in the objectin device. After you load
the object tape, enter the RTE GO command to resume the verification operation. Note that if the
object tape is incorrectly positioned in the tape reader, PTGEN is aborted after the GO command is
given.

5.2 LOAD PROM TAPE aacaa,bb AND *GO

After this message is issued, PTGEN suspends itself to allow you to load a pROM mask tape in the
ptapein device. Load the mask tape and enter the GO command. If the verify operation is successful
and comments are not to be verified, the next pROM tape is verified or PTGEN resumes at query
5.0.

If a verify error is detected, the error is reported and the pROM mask tape is repunched. You may
change the comment lines on the new pROM tape to distinguish it from the erroneous mask tape.

If comments are to be verified (COMMENTS specified when specifying address range), the dialogue
continues with the following:

5.3 COMMENTS FOR TAPE aaaaa,bb
This line is followed by a display of all of the comment lines.

5.4 ERRORS IN COMMENTS (Y/N)?
Respond with N or a null line if the comments are valid. The Y response is treated as a verify error.

5.5 REPLACE COMMENTS FOR TAPE caaaa,bb?
Respond with Y to modify comments; respond with N or a null line to leave comments unchanged.

5.6 COMMENT LINE n:

Respond with a null line to leave the comment unchanged or enter a new comment line. The
comment line may include up to 72 characters. This query is repeated for each comment line; n is
the comment line number.

After the new mask tape has been punched, PTGEN resumes at query 5.0 (or 5.1 if you are verifying
all of the mask tapes). If ALL or aaaaa,ALL was specified, repunched mask tapes should not be verified
until after all of the tapes in the original range have been processed.

12-5. pROM TAPE GENERATOR ERROR MESSAGES

The error messages that might be issued by the pROM tape generator (PTGEN) are as follows:

1 INVALID FILE SPECIFICATION OR EXTRA INPUT.
The file designation was not in the proper format or REPLACE was misspelled.

2 INVALID VENDOR NAME.,
The vendor name was misspelled or is not among those recognized by PTGEN. In the latter case,
enter a null line and proceed to specify the details of the pROM tape format.

12-7

Generating pPROM Tapes

3 NO OBJECT CODE.
An END record was encountered as the first record, or a null line was entered in response to query
3.0

4 INVALID RESPONSE OR EXTRA INPUT.
The response was not in the proper format or was not a proper response (e.g., not Y or N).

5 INVALID NUMBER OR EXTRA INPUT.
The response was an improperly formed number or not in the required range.

6 O ERROR READING OBJECT CODE.
Self explanatory.

7 CANNOT CREATE TEMPORARY FILE.
This message is followed by a File Manager error code.

8 CANNOT PURGE TEMPORARY FILE.
This message is followed by a File Manager error code.

9 CANNOT OPEN OBJECT CODE FILE.
This message is followed by a File Manager error code.

10 INVALID OBJECT CODE RECORD.
This could be due to a checksum error, or the record might not have been created by the microas-
sembler.

11 INVALID ADDRESS SPECIFICATION OF EXTRA INPUT.
The response was not in the proper format or COMMENTS was misspelled.

12 ADDRESS NOT FOUND IN OBJECT CODE.
The pROM address range specified is not included in the object code. This might be due to typing the
wrong address.

13 /O ERROR READING RESPONSE.
A transmission error occurred on the input device; PTGEN aborts.

14 INSUFFICIENT MEMORY.
There is insufficient memory for the pROM or comment buffer. In the case of the comment buffer, if
some space can be allocated it is indicated by the following message:

nnnn LINES AVAILABLE

15 VERIFY ERROR — pROM TAPE REPUNCHED.

An error occurred in verifying the punched pROM mask tape. This might be due to an affirmative
response to query 5.4, an I/O error, or a compare error. In these cases, the error message is followed
by one of the following messages, respectively:

TAPE aaaaa,bb
TAPE aaaaa,bb LINE nnnn
TAPE aaaaa,bb LINE nnnn COLUMN cc

If nnnn equals the number of comment lines, an I/0 error occurred while reading one of the comments.

12-8

Generating pROM Tapes

12-6. pROM HARDWARE

When the mask tapes have been generated and pROM’s fused you may mount them on one of the
boards available for installation in the computer. The HP 13304A Firmware Accessory Board can hold
3.5K microwords of control memory. Details on mounting pROM’s, configuring, and installing this
accessory are contained in the HP 1000 M/E/F-Series Firmware Installation and Reference Manual.
The FAB board is installed in the computer under the CPU board. The 2K microword capacity HP
13047A User Control Store board may have pPROM’s mounted and be installed in the I/O section of the
computer. Details for pPROM mounting and installation are contained in the HP 13047A User Control
Store Kit Installation and Service Manual, part no. 13047-90001.

12-9/12-10

Section 13
USING SPECIAL FACILITIES OF THE COMPUTER 1

USING SPECIAL FACILITIES OF
THE COMPUTER|[13

There are two functions of the HP 1000 E-Series and F-Series Computers that can be considered as
special facilities. These include the block I/O data transfer feature and the Microprogrammable
Processor Port (MPP), also available for data transfers. Either of these facilities is controlled by a
microprogram written by you, stored in control memory, and called into execution with a UIG
instruction in the manner described in preceding sections of this manual. In F-Series Computers the
MPP is used to interface the Hardware Floating Point processor (FPP) with the CPU. Therefore, the
MPP is not available for user designed hardware on F-Series Computers.

The block I/O facility is, in essence, a microprogramming technique for executing high-speed data
transfers through the I/O section. It is made possible because of special signal lines on the 1/O
backplane. Although the I/O section is used, the process is not a standard I/O transfer operation.
Paragraph 13-1 explains the block I/O data transfer facility.

The MPP may be used for interfacing special external hardware to the HP 21MX E-Series Computer
(e.g., computer-to-computer linking) under direct microprogram control. Very high data-transfer rates
are possible using the MPP which is, in essence, another microprogramming technique that controls
special signal lines. These signal lines are on a specifically designated connector which is not part of
the I/O section. Paragraph 13-5 explains the MPP facility.

The information on block I/O and the MPP in this section relates specifically to the microprogramming
techniques involved in controlling these facilities. Example microprograms are provided simply to
illustrate the techniques involved. Your actual application design should be based on these examples
and the information contained in the other applicable sections of this manual. WCS and its micro-
programming support software can be used to control microprogram placement in control memory in
the same manner as any other microprogram (refer to section 11). A summary of typical transfer rates
obtainable appears under paragraph 13-8.

Either of these special facilities will require special interfacing hardware that will be controlled by the
applicable microprogram. Information that you will need for the hardware design is contained in the
HP 21MX M-Series and E-Series Computers I/O Interfacing Guide, part no. 02109-90006. The 1/0
Interfacing Guide also contains details you will need on the specific signals (pin numbers, etc.,)
controlled by the micro-orders shown in the microprograms in this section.

13-1

Special

13-1. BLOCK I/O DATA TRANSFERS

Block I/O data transfers into or out of main memory through the I/O section are performed by using the
IOI and 100 S-bus and Store field micro-orders in microprograms without the I0G Special field
micro-order in any of the four previous microinstructions. When used in the manner shown in the
example microprograms (paragraphs 13-2 through 13-4), these two micro-orders cause backplane
signals BIOI and BIOO, respectively, to be generated which may be utilized by specially designed
hardware for non-standard I/O data transfers. A strobe signal (BIOS) is generated at interval P4 (35
nanoseconds) to be used by the hardware/microprogram combination to obtain the high data-transfer
rates. If IOG is used in the microprogram to synchronize the Control Processor and I/O section to T2 for
“standard” I/O operations, the above-mentioned signals are not generated. Table 4-1 explains the
normal use of the IOG, IOI, and 100 micro-orders and the other micro-orders shown in the following
example microprograms. (Specifically, IRCM and SKPF are applicable.)

Transfers for block I/O are made on a full 16-bit word basis with up to 32K words being transferred
(depending upon available memory). The main memory calling sequence for each of the example
microprograms is shown in the microprogram comments. The direction of transfer (in or out) is
designated by whether the IOI (S-bus field, “input”) or IOO (Store field, “output”) micro-order is used
and this depends upon the microprogram called. Input microprograms are described in paragraphs
13-2 and 13-3. An output microprogram is described in paragraph 13-4. When using these micropro-
grams, as well as any microprogram, it is the programmer’s responsibility to be aware of the total
system and times taken for bursts, word counts, etc. Interrupts should not be held off for so long that
data is lost.

The 1/O Interfacing Guide provides some suggestions on variations of the transfer techniques shown
and guidelines on hardware data buffering. Also see the I/O Interfacing Guide for a comparison of
block I/O and DCPC transfer techniques.

13-2. BLOCK I/O BYTE PACKING BURST INPUT MICROPROGRAM

Operation of the block I/O microprogram shown in EXAMPLE 1 is explained by the comments
included in the listing. The microprogram performs its own STC, as shown in lines BURSTIN through
REALSC, for several reasons. (Lines, as mentioned here, refer to labels in the microprogram examples
that follow.) First, having the RTE operating system execute a STC at the Assembler level incurs

13-2

Special

considerable operating system overhead. Second, having the user program execute a STC at the
Assembler level requires turning off Memory Protect. If the microprogram detects a DMS or Memory
Protect violation, it is very complex and time-consuming to correctly indicate these conditions to the
operating system.

The data transfer takes place with the interrupt system on the Memory Protect enabled, so that DMS
and Memory Protect interrupts, as well as any other emergency interrupts, are detectable.

FAKESC and REALSC work together to allow execution of a STC with Memory Protect enabled. Refer
to the coding techniques discussion in section 7 (performing microprogrammed I/O with Memory
Protect and interrupts on), for a complete explanation.

The IOFF micro-order in line SETPM prevents the HOI conditional tests in lines WAIT1 and WAIT2
from detecting I/O interrupts. I/O interrupts so held off remain pending (i.e., are not lost) and may be
serviced at the termination of the microprogram. To operate correctly as block /O micro-orders, the
SKPF RJS tests following lines SKPF1 and SKPF2; and, the IOI's in lines BURST1 and BURST?Z,
require that an I0G rot be executed in any of the three preceeding microinstructions. However, this
does require a hardware modification (see the I/O Interfacing Guide.)

EXAMPLE 1: BLOCK I'/O BYTE PACKING BURST INPUT MICROPROGRAM

MICMXE,L SPECIFIES 1000 E-SERIES OR F-SERIES.
$CODE=BI001 SAVE MICRO-O0BJECT ON DISC.
ORG 34000B 105600 MAPS TO 34000

*+ BLOCK I/0 BYTE PACKING BURST INPUT MICROPROGRAM

+ THIS MICROPROGRAM:
1. INPUTS DATA IN A "BURST' MANNER.
* 2. PACKS THE INPUT DATA AND STORES IT IN MAIN MEMORY.

3. ISINTERRUPTIBLE BY EMERGENCY INTERRUPTS (I.E., PARITY ERROR, DMS, MEMORY PROTECT)
POWER FAIL AND 1/0 INTERRUPTS WILL NOT BE SERVICED DURING THE BURST DATA TRANSFER.

* 4. ASSUMES THAT THE 1/0 CARD PASSING DATA TO THE CPU INDICATES PRESENCE OF A SINGLE
* BYTE BY SETTING THE I/0 CARD’S FLAG AND THAT IN THE EVENT OF AN EMERGENCY
* INTERRUPT INCOMING DATA IS NOT LOST.

5. REQUIRES THE FOLLOWING CALLING SEQUENCE;

* LDA COUNT A NEGATIVE BYTE COUNT

* LDB BUFAD B = BUFFER ADDRESS

* LDX SC X SELECT CODE

* CLE INITIAL ENTRY TO MICROCODE

* OCT 105600 MICROPROGRAM OP CODE,

* 6. HAS A MAXIMUM TRANSFER RATE OF ABOUT 500 KB/S (KILOBYTES/SECOND)Y IN A NON-DCPC
* ENVIRONMENT. INA TYPICAL DCPC ENVIRONMENT , BURST RATES UP TO 250 KB/S ARE

* ATTAINABLE.

JMP BURSTIN SAVE ENTRY POINTS
ALGN
BURSTIN Jmp CNDX E ODDBYTE RETURN FROM INTERRUPT
* AFTER ODD NUMBER BYTES
JSB STCNTRL EXECUTE STC,C

13-3

Special

EXAMPLE 1: BLOCK I/O BYTE PACKING BURST INPUT MICROPROGRAM (Continued)

DEC S3 P SAVE P.
SETPM IOFF INC PNM B M = BUFFER ADDRESS,
. P = NEXT BUFFER ADDRESS,
. HOLD OFF 1/0 INTERRUPTS.
WAIT1 JMP CNDX HOI INT1 EMERGENCY INTERRUPTS?
SKPF1 PASS
JMP CNDX SKPF RJS WAIT1 NO, WAIT FOR DATA READY.
*
BURST1 L4 s4 101 S4(11-4) = BYTE 1.
L4 sS4 S4 S4(15-8) = BYTE 1.
INC A A UPDATE BYTE COUNT
END1 JMP CNDX ALZ WRTE1 COUNT = 07 YES, WRTE BYTE.
*
WAIT2 JMP CNDX HOI INT2 EMERGENCY INTERRUPTS?
SKPF2 PASS ALLOW STATUS UPDATE
JMP CNDX SKPF RJS WAIT2 NO, WAIT FOR DATA READY.
*
BURST2 L 101 L(7-0) = BYTE 2.
IR sS4 S4 $4¢15-8, 7-0) = BYTES 1, 2.
WRTE12 WRTE MPCK TAB S4 WRTE PACKED DATA, DO MPCK.
INC PNM P UPDATE BUFFER ADDRESS.
INC A A UPDATE BYTE COUNT.
END2 JMP CNDX ALZ RJS WAIT1 COUNT = 02 NO, CONTINUE.
JMP DONE YES, EXIT.
*
WRTE1 WRTE MPCK TAB S4 WRTE BYTE 1, DO MPCK.
INC P P UPDATE BUFFER ADDRESS .
*
DONE 10N B P B = LAST BUFFER ADR. + 1.
READ RTN INC PNM §3 FIX P, START FETCH FOR
* NEXT INSTRUCTION IN MAIN
ODDBYTE READ INC PNM B GET PARTIALLY PACKED WORD
MM LOW IRCM 101B FORM AND EXECUTE
ASG s4 TAB CLE INSTRUCTION
JSB STCNTRL EXECUTE STC,C
JMP WAIT2 GET SECOND BYTE
»
INT1 MM LOW IRCM 10SB CLEAR EXTEND REG
JmP INTRPT
INT2 MM LOW IRCM 305B SET EXTEND REG
INTRPT ASG DEC B B EXECUTE CLE OR
. CCE AND SAVE
. BUFFER ADDRESS
ION PASS P s3 FIXP, EXIT TO
JMp 6B TO HORI ROUTINE
*
*
STCNTRL MM L4 cMLO L 303B L=STC 0,C
MM CMLO 54 376B Sd=1
IR sS4 S4 S4=5TC 1,C
FAKESC PASS IRCM S4 IRCM=STC 1,C
IR sS4 X S4=5TC SC,C
REALSC PASS CNTR S4 IRCM=STC SC,C
RTN 106
END

13-4

13-3.

Special

BLOCK I'O ADDRESS/DATA BURST INPUT MICROPROGRAM

Operation of a block I/O microprogram to input an address and data is shown in EXAMPLE 2.
Explanation of the microprogram is provided in the comments included in the listing. As explained for
the previous microprogram, the microprogram performs its own STC, as shown in lines BURSTIN
through REALSC, for the reasons explained in paragraph 13-2. Lines FAKESC and REALSC work
together to allow execution of a STC with Memory Protect enabled. Refer to the coding techniques
discussion in section 7 (performing microprogrammed I/O with Memory Protect and interrupts on) for
a complete explanation.

EXAMPLE 2: BLOCK 'O ADDRESS/DATA BURST INPUT MICROPROGRAM

MICMXE,L SPECIFY 21MX E-SERIES.
$CODE=BI1002 SAVE MICRO-OBJECT ON DISC.
ORG 340008 105600 MAPS TO 34000B
*
+ BLOCK 1/0 ADDRESS/DATA BURST INPUT MICROPROGRAM
L 2
* THIS MICROPROGRAM:
» 1. INPUTS, IN A "BURST" MANNER, AN ADDRESS FOLLOWED BY THE DATA TO BE WRITTEN INTO THAT
. ADDRESS IN MAIN MEMORY .
» 2. 1S INTERRUPTIBLE BY EMERGENCY INTERRUPTS C1.E., PARITY ERROR, DMS, MEMORY PROTECT);
» POWER FAIL AND 1/0 INTERRUPTS WILL NOT BE SERVICED DURING THE BURST TRANSFER.
* 3. ASSUMES THAT THE 1/0 CARD PASSING AN ADDRESS OR DATA TO THE CPU WILL INDICATE
. PRESENCE OF A SINGLE ADDRESS OR DATA ITEM BY SETTING THE 1/0 CARD’S FLAG
. AND THAT DATA IS NOT LOST IN THE EVENT OF AN EMERGENCY INTERRUPT.
* 4. REQUIRES THE FOLLOWING CALL ING SEQUENCE ;
* LDA COUNT A = POSITIVE WORD COUNT
. LDB SC B = SELECT CODE
. CLE INITIAL ENTRY TO MICROCODE
» OCT 105600 MICROPROGRAM OP CODE.
* 5. HAS A MAXIMUM TRANSFER RATE OF ABOUT 500 KP/S (KILO-PAIRS/SECOND, DNE PAIR = 1
. ADDRESS AND 1 DATA) IN A NON-DCPC ENVIRONMENT. IN A TYPICAL DCFC ENVIRONMENT RATES
. UP TO 250 KP/S ARE ATTAINABLE.
*
JMP BRSTIN SAVE ENTRY POINTS.
ALGN ,
BRSTIN DEC s3 P STORE P
STCNTRL MM L4 cMLO L 303B L=STC 0,C
MM CMLO S4 376B S4=1
10R S4 S4 S4=STC 1,C
FAKESC PASS IRCM S4 IRCM=STC 1,C
10R 54 B S4=STC SC,C
REALSC PASS CNTR S4 IRCM=STC SC,C
106
Jmp CNDX E BRSTDTA
BRSTADR JMP CNDX HOI INTADR EMERGENCY INTERRUPTS?
PASS INTERFACE FLAG SET?
Jmp CNDX SKPF RJS BRSTADR NO, GO TO BRSTADR
M 101 M = BUFFER ADDRESS.
»*
BRSTDTA Jmp CNDX HOI INTDTA EMERGENCY INTERRUPTS?
PASS INTERFACE FLAG SET?
JMpP CNDX SKPF RJS BRSTDTA NO, GO TO BRSTDTA
S4 101 S4 = DATA
BRSTEND WRTE MPCK TAB 54 WRITE DATA INTO MEMORY.
DEC A A UPDATE PAIR COUNT.
DONE JMP CNDX ALZ RJS BRSTADR COUNT = 07 NO, CONTINUE.
READ RTN INC PNM S3 =0, FIX P, START FETCH.
INTADR MM LOW IRCM 101B CLEAR EXTEND REGISTER
JMP INTRPT
INTDTA MM LOW IRCM 301B SET EXTEND REGISTER
INTRPT ASG PASS P s3 EXECUTE CLE OR CCE AND FIX P
Jmp 6 EXIT TO HALT OR INTERRUPT
END MICROROUT INE

13-5

Special

13-4. BLOCK I'/O WORD BURST OUTPUT MICROPROGRAM

Operation of the block I/O microprogram shown in EXAMPLE 3 is explained by the comments
included in the listing. Similar considerations for interrupts and IOG as explained for EXAMPLES 1
and 2 also apply for this microprogram.

EXAMPLE 3: BLOCK I/O WORD BURST OUTPUT MICROPROGRAM

MICMXE,L SPECIFIES E-SERIES OR F-SERIES
$CODE=BI003 SAVE MICRO-0BJECT ON DISC.
ORG 34000B 105600 MAPS TO 34000.

*

*BLOCK I/0 BURST OUTPUT MICROPROGRAM
*
THIS MICROPROGRAM:

1. OUTPUTS DATA IN A "BURST' MANNER.
2. ISINTERRUPTIBLE BY EMERGENCY INTERRUPTS (I.E., PARITY ERROR, DMS, MEMORY PROTECT);

POWER FAIL AND I/0 INTERRUPTS WILL NOT BE SERVICED DURING THE BURST DATA TRANSFER.
3. ASSUMES THAT THE 1/0 CARD RECEIVING DATA FROM THE CPU IS READY TO RECE IVE DATA AND
CONTAINS A DATA BUFFER LARGE ENOUGH TO HOLD THE ENTIRE BURST.

REQUIRES THE FOLLOWING CALLING SEQUENCE;

LDA COUNT A = POSITIVE WORD COUNT

LDB BUFAD B = BUFFER ADDRESS

LDX SC X = SELECT CODE

OCT 105600 MICROPROGRAM OP CODE.

5. HAS A MAXIMUM TRANSFER RATE OF ABOUT 1000 KW/S (KILO-WORDS/SECOND) IN A NON-DCPC
ENVIRONMENT. IN A TYPICAL DCPC ENVIRONMENT, RATES UP TO 400 KW/S ARE ATTAINABLE.

x % % % & % %k Kk %k %k k & % *
H

JMP BURSTOUT SAVE ENTRY POINTS.

ALGN
BURSTOUT DEC 53 P SAVE NEXT INSTRUCTION ADDRESS

READ INC PNM B READ DATA, INITIALIZE P,M
SETIR 10FF IRCM X IR(5-0) = SC, IOFF HOLDS
* OFF I1/0 INTERRUPTS.
BURST1 100 TAB BURST DATA OUT OF MEMORY.

INC PNM P UPDATE P,M

JMP CNDX HOI INTRPT EMERGENCY INTERRUPTS?

READ DEC A A READ NEXT DATA, UPDATE COUNT.
END1 JMP CNDX ALZ RJS BURST1 COUNT = 07 NO, CONTINUE.
*
DONE 10N B P B = LAST BUFFER ADDRESS + 1

READ RTN INC PNM S3 START FETCH FOR NEXT INSTRUCTICON
* IN MAIN MEMORY.
INTRPT ION DEC B P B = NEXT BUFFER ADDRESS

P S3 FIXP, EXIT TO HALT-0R-
JMP 6 INTERRUPT MICROROUTINE
END

13-5. MICROPROGRAMMABLE PROCESSOR PORT

The Microprogrammable Processor Port (MPP) permits external hardware to be directly connected to
the E-Series Computer and interfaced under direct microprogrammed control. Applications possible
with the MPP include computer-to-computer communications, adaptation of specialized performance
accelerating hardware, a fast or special I/O channel (similar in function to the DCPC), etc. The MPP
special facility is comprised of a hardware/microprogram combination. The hardware interface is
summarized below. A microprogram which may be used as a basis for your MPP design is discussed in
paragraph 13-8. Note that the MPP facility has nothing to do with the I/O section. The Mi-
croprogrammable Processor Port is used in the F-Series Computer to interconnect the Hardware
Floating Point Processor to the CPU, to enable directly microprogrammed arithmetic floating point
operations and chained calculations.

13-6

Special

13-6. HARDWARE INTERFACE

As illustrated in figure 2-1 and in appendix H, the MPP physical interface consists of a connector on
the computer. This connector is located behind the Operator Panel (Refer to the I/O Interfacing Guide
for the location and designation.) The MPP signal lines are present at this connector and these signals
are ultimately under microprogram control. Table 13-1 summarizes some of the MPP physical inter-
face. The use of every one of these signals is ultimately to be determined by the designer. Where use is
mentioned in the table it is only a suggestion. Micro-orders mentioned are defined in table 4-1 in this
manual. The actual design and use of the MPP must be determined by you (the user) and all
information in this section should be interpreted as guidelines for design. Details on signal levels,
connector pin number assignments, and other interface hardware design information for MPP use will
be found in the HP 21MX M-Series and E-Series Computers I/0 Interfacing Guide, part no. 02109-
90006. The port is available for user designed hardware in the E-Series only. The F-Series Computer
Hardware Floating Point Processor occupies the port.

Table 13-1. MPP Signal Summary

SIGNALS DESCRIPTION
MPPIO 0 thru 15v Two-way MPPIO signal lines that provide the main data link for the MPP to the computer
(CPU) S-bus. Under control of micro-orders affecting the S-bus.
PP5 Output timing line can be used to synchronize with the computer for data transfers.
PLRO Output L-register signal line under control of L-register micro-orders. L-register bit 0 is

used for an address line to enable the device connected to the MPP.

STOV Input signal line. State can be tested by the word type 1l Conditional field OVFL
micro-order. Possible use to designate overflow from a set Overflow register.

PIRST Output signal line. Can be used to sense the IR (IRCM micro-order in Store field).

PP1SP Output signal line activated by a MPP1 micro-order in the word type | Special field.

Could be used to designate “first operand to follow.”

PP2SP Output signal line activated by a MPP2 micro-order in the word type | Special field.
Could be used to designate “second operand to follow.”

MPBST Output signal line activated by a MPPB micro-order in the word type | Store field. Could
be used to generate a store (e.qg., repeated four times to store in a 64-bit group of data,
where data is being output on the S-bus).

MPBEN Output signal line activated by a MPPB micro-order in the word type | S-bus field could
be used to gate data into the computer on the S-bus (e.g., receive back computed data
repeatedly).

MPP Input signal line. State can be tested by the word type Il conditional field MPP

micro-order. Could be used to sense when device transfer is complete.

13-7

Special

13-7. MPP & MBIO CONSIDERATIONS

MPP and MBIO microprograms are used to provide fast alternative I/0 paths. Both require the design
of special purpose hardware to transfer data to and from the computer, and use of specific micro-orders
to provide sequencing and data transfer signals. The major consideration that arises during MPP or
MBIO transfers is a control processor freeze induced by either memory refresh or DCPC. Since MBIO
and DCPC share the I/O bus, MBIO can contaminate DCPC data if MBIO signals BIOI or BIOO
remain enabled during the DCPC transfer. This can be avoided by placing a READ, RJ30 or WRTE
micro-order 1 or 2 microinstructions before the IOI or I00, causing the control processor to freeze.

When a freeze occurs on a WRTE microinstruction the S-Bus to Store operation is performed twice. For
instance, the TAB IOI transfer in the following line of microcode is performed twice, once before the
freeze, and at the end of the freeze.

WRTE PASS TAB I0DICOR MPPB)

If the user designed hardware utilizes the signal as an acknowledge or an “increment the buffer
pointer”, then erroneous information as illustrated below will be transferred. This can be avoided by
transferring the data into a scratchpad and the scratchpad into TAB.

PASS SI 10ICOR MPPB)
WRTE PASS TAB S1

The CPU CNTR represents the lower 8 bits of the IR, of which the lower 6 bits are commonly referred
to as the select code when an I/O instruction is executed. For MBIO transfers executing concurrently
with DCPC, the MBIO select code does not remain stable for the duration of the MBIO cycle because
DCPC takes control of the Select Code bus at P4 (BIOS) and causes unaddressing of the MBIO
interface and loss of MBIO data. A different addressing scheme, such as set control, should be
employed for the MBIO interface. This will free up the CPU CNTR to be used as a word count register
to be incremented or decremented in the special field for MBIO output transfers. The CPU CNTR can
not be used during a MBIO input transfer because the I/O bus is disabled from driving the S-bus
whenever the Select Code (lower 6 bits of the CNTR) is less than seven.

When using MPP and MBIO, the user designed hardware must account for CPU timing restrictions.
The SKF and MPP signals must be stable by P4 of the jump conditional microinstruction to prevent
state changes in the conditional logic on the CPU.

MPPB can be falsely decoded from a jump address of a word type IV microinstruction. Consequently

qualifying the MPPB micro-order with MPP/or MPP2 will enable the hardware to distinguish “real”
from “false” MPBEN signals.

13-8

Special

13-8. MPP MICROPROGRAM (E-SERIES ONLY)

An example microprogram that can be used for the MPP is included below. The actual microprogram
used must be prepared by you, for your application, using the information in applicable sections of this
manual, and in particular, the micro-orders shown in table 13-1. The appropriate CM locations, UIG
instructions (main memory/control memory linkage) and microprogramming support software should
be used in the same manner as for preparation and use of any other microprogram.

Note that with the MPP design, the key is to have a data buffer large enough to hold the entire burst.
The example microprogram operates in a no “hand shaking” manner to transfer data in 256 word
bursts. At label BURST data is written into memory using a four microinstruction loop. Additional
comments appear in the microprogram.

EXAMPLE 4: MPP MAXIMUM DATA RATE BURST INPUT MICROPROGRAM

MICMXE,L SPECIFY 21MX E-SERIES
$CODE=MPPO1 SAVE MICRO-0BJECT ON DISC
ORG 34000B 105600 MAPS TO 34000
*
*+ MPP MAXIMUM DATA RATE BURST INPUT MICROPROGRAM
*
» THIS MICROPROGRAM:
+ 1. INPUTS DATA IN A "BURST" MANNER.
+ 2. IS INTERRUPTIBLE BEFORE THE BURST STARTS, BUT IS NOT INTERRUPT I BLE DURING THE BURST,
*» 3. ASSUMES THAT THE DEVICE UTILIZING THE MPP FACILITY CONTAINS A DATA BUFFER LARGE
» ENOUGH TO HOLD THE ENTIRE BURST,
* 4. ASSUMES A BURST MAXIMUM OF 256 WORDS,
+ 5. REQUIRES THE FOLLOWING CALLING SEQUENCE
» LDA COUNT A = POSITIVE WORD COUNT
+ LDB BUFAD B = BUFFER ADDRESS
+ DOCT 105600 MICROPROGRAM OP CODE
* 6. HAS A MAXIMUM DATA RATE OF ABOUT 1500 KW/S (KILO-WORDS/SECOND) IN A NON-DCPC
*+ ENVIRONMENT. IN A TYPICAL DCPC ENVIRONMENT RATES UP TO 500 KiW/S ARE ATTAINABLE.
*
JHP BURSTIN SAVE ENTRY POINTS
ALGN ,
BURSTIN DEC S3 P SAVE NEXT INSTRUCTION ADDRESS
CNTR A CNTR = + WORD COUNT
*
WAIT JMP CNDX HOI INTRPT ANY INTERRUPTS?
PASS UPDATE STATUS FLAGS
JWP CNDX MPP RJS WAIT NO, WAIT FOR DATA READY
INC PNM B M = BUFFER ADDRESS,
. P = NEXT BUFFER ADDRESS
BURST S4 MPPB
WRTE MPCK TAB S4 WRITE DATA INTO MEMORY
DCNT INC PNM P UPDATE CNTR, P, M
JWP CNDX CNT8 RJS BURST COUNT = 07 NO, CONTINUE
*
DONE B P B = LAST BUFFER ADDRESS + 1
READ INC PNM S3 FIX P, START NEXT FETCH
RTN A CNTR A = 0 = BURST COMPLETE
*
INTRPT P s3 FIX P, EXIT TO HALT-DR-
JMP 6 INTERRUPT MICROROUT INE
END

13-9

Special
13-9. SUMMARY OF MPP TRANSFER RATES

Some typical transfer rates obtainable using the special facilities of the computer are summarized in
table 13-2. Actual figures will depend upon your design.

Table 13-2. Special Facilities Transfer Rate Summary

FUNCTION RATES

BLOCK 1/0 DATA TRANSFERS

Input (256 words or less™): 1.59M words/second (maximum)

Output (256 words or less*): 1.36M words/second (maximum)

MICROPROGRAMMABLE PROCESSOR PORT

Burst (16 words or less*); 5.7M words/second (maximum)

1.59M words/second (maximum)

Continuous:

"Transfer rates for larger numbers of words depend upon the size of the block to be
transferred. Note that DCPC and memory refresh factors have been incorporated in the

figures shown.

13-10

Special

13-10. HARDWARE FLOATING POINT PROCESSOR (F-SERIES ONLY)

The following paragraphs provide information for the user who wishes to directly microprogram the
Floating Point Processor (FPP) to perform arithmetic floating-point operations and chained calcula-
tions. The FPP data formats and operations are described in addition to FPP microprogramming
techniques.

The FPP includes the Arithmetic section and the Control section.

The Arithmetic section includes the hardware required to carry out the FPP commands. It contains the
shift registers and arithmetic logic units necessary to perform arithmetic and logical operations on
data.

The Control section includes the hardware necessary to control the functions of the Arithmetic section.
In addition, the floating point processor’s internal registers may function as an accumulator register.

This allows intermediate results to be stored in the FPP for successive floating point operations which
eliminates the need to store the result in memory and immediately retrieve it.

13-11. CONTROLLABLE FUNCTIONS

Figure 13-1 illustrates a functional block diagram of the CPU, the Microprogrammable Processor Port
(MPP), and the floating point processor.

The MPP provides the link between the floating point processor and the computer.

OPERATOR
PANEL PCA MPPIO (00-15) 16

—_——— - 7= ARITHMETIC

|
I
|
S-BUS |)
CENTRAL < ' P < | ~
PROCESSING <= : MPP
* UNIT
CONTROL SIGNALS | MPPI0(00-07)
|
|
i CONTROL
CONTROL
SIGNALS
7700-220

Figure 13-1. FPP Overall Functional Block Diagram
13-11

Special

13-12, DATA FORMATS

The two floating-point data formats in figure 13-2 are available to the microprogrammer. Further-
more, the user may specify that the 8-bit exponent of the floating-point formats be “expanded” to
10-bits for internal use only, by the FPP.

13-13. FPP INSTRUCTION WORD FORMAT

The FPP instruction word is used to execute a floating-point operation. The exponent format, type of
operation, source of operands, and the operand format are determined by the instruction word.

The FPP instruction word is specified by bits 7-0 of the instruction opcode. The following paragraphs
and figure 13-3 describe the instruction word format.

13-14. EXPONENT FORMAT

Bit 7 of the FPP instruction word allows the user to increase the number of exponent bits used by the
FPP during operations from 8 bits to 10 bits. Thus during FPP accumulator operations, the inter-
mediate result in the FPP accumulator may exceed the standard 8-bit exponent length without losing
accuracy, but the result retrieved from the FPP must be within the underflow or overflow range listed
in table 13-3 for bit 7 clear (standard 8-bit exponent). Remember, this 10-bit exponent is internal to the
FPP only and is not available to the user as a final result.

-~ =->INCREASING MEMORY - - ->

Mantissa sign Exponent sign
SINGLE PRECISION I | [I |]
FLOATING POINT 15 14 0 15 8 7 1 0
<---Mantissa ---> <-->
23 bits \
Binary point : Exponent
7 bits

Mantissa sign Exponent sign

EXTENDED PRECISION LI] C] |- I | .|
FLOATING POINT 15 14 0 15 0 15 8 7 1 0
Crmmm e - Mantissa — - - — — — — > <=-=>
39 bits
Binary point Exponent
7 bits

Mantissa sign Exponent sign

DOUBLE PRECISION - 1 C] L] L I —1
FLOATING POINT 15 14 0 15 0 15 0 15 8 7 1 0
Cmm e i e Mantissam = = w e o —m - m oo — > <-=>
55 bits
N
Binary point -Exponent
7 bits

Figure 13-2. Floating Point Data Format
13-12

Table 13-3. Overflow and Underflow Ranges

Special

BIT7=0
OVERFLOW RANGE UNDERFLOW RANGE
WORD LENGTH (LARGEST NEGATIVE, (SMALLEST NEGATIVE,
LARGEST POSITIVE) SMALLEST POSITIVE)
Two-word -2, —-2718 (1 4+ 27%2)
(1 — 2—23) 2127 2—123
Three-word —2127 —2-129 (1 4 -38)
(1’__ 2—39) 2127 2_129
Four-word -2, —2-129 (1 4 =54,
(1’_. 2—55) 2127 2—129
BIT 7 = 1 (NOTE 3)
Two-word —o5n —07518 (1 4 2-%),
(1 — 273) 251 27513
Three-word —25M, —D2-813 (1 42 -38)
(1 —_ 2—39) 2511 2—513
Four-word —251, —27518 (1 42 -84,
(1 — 2—55) 2511 2—513
NOTE:

1. If a result lies outside the given overflow range, the maximum positive floating point number (all
ones) is returned and the CPU overflow flag is set.
2. If aresult lies inside the given underflow range, zero is returned as the result and the CPU overflow

flag is set.

3. These overflow and underflow ranges pertain only to two, three, and four-word intermediate results

left in the FPP.

7 6 4 1 o
H | | 1
EXPONENT
FORMAT OPERATION OPERAND SOURCE OPERAND LENGTH
0 Standard 000 Add 00 Both operands 00 Two words
1 Expanded 001 Subtract in CPU. 01 Three words
: 01 First operand 10 Four words
010 Muttiply in CPU; second
011 Divide in accumulator. 11 Reserved

110 Reserved
111 Reserved

10 First operand in
accumulator;
second in CPU.

11 Both operands
in accumulator.

100X0 Fix to single integer
100X1 Fix to double integer

101X0 Single integer to floating point
101X1 Double integer to floating point

X= 0, for operand from CPU;
1, for operand from accumulator

Figure 13-3. FPP Instruction Word Format

13-13

Special

13-15. FPP OPERATION

Bits 6-4 of the FPP instruction word specify the arithmetic operation (add, subtract, multiply, or
divide). Each of these arithmetic operations requires two operands, both of which must be the same
precision — i.e., both operands 32 bits, 48 bits, or 64 bits.

Bits 6-2 of the instruction word specify a “fix” or “float” operation with bit 3 indicating whether the
single operand is in the FPP accumulator or will be transferred from the CPU.

13-16. OPERAND SOURCE

When executing an arithmetic operation, bits 3 and 2 of the FPP instruction word specify the “source”
of the first and second operand, respectively. A “1” indicates the operand is in the FPP accumulator; a
“0” indicates the operand will be transferred from the CPU.

For example, if bits 3 and 2 equal “1” and “0”, respectively, the first operand required for an arithmetic
operation is in the FPP accumulator and the second operand will be transferred from the CPU.

When executing a “fix” or “float” operation, only bit 3 of the FPP instruction word specifies the
operand source.

13-17. OPERAND LENGTH

Bits 1 and 0 of the FPP instruction word specify the operand length. Operands consisting of two, three,
or four words may be specified. (Refer to figure 13-2 for the floating-point data format.)

For example, to perform extended precision floating-point operations bits 1 and 0 must be “0” and “1”,
respectively.

For “fix” and “float” operations, bit 2 of the FPP instruction word specifies the integer length. Bit 2
equal to “1” indicates a 32-bit integer, whereas bit 2 equal to “0” indicates a 16-bit integer.

13-18. DATA OPERATIONS

Listed below are the operations performed by the FPP and the operand sequence. Each operation,
except for “fix” and “float”, requires two normalized operands.

OPERATION FIRST OPERAND (A) SECOND OPERAND (B)
Addition (A+B) Augend Addend
Subtraction (A—B) Minuend Subtranhend
Multiplication (A) (B) Multiplicand Multiplier
Division (A/B) Dividend Divisor
Fix to Integer Floating Point Number —
Integer to Float Integer —

13-14

Special

13-19. FIX AND FLOAT OPERATIONS

The “fix” operations are used to convert a floating point number to either single or double integer
format and the “float” operation is used to convert a single or double integer to floating point format.

For “fix to single integer” operations, zero is returned as the result if the magnitude of the exponent of
the floating point number is <0. An overflow condition will result if the magnitude of the exponent of
the floating point number is >=16.

For “fix to double integer” operations, zero is returned as the result if the magnitude of the exponent of
the floating point number is <0. An overflow condition will result if the magnitude of the exponent of
the floating point number is >=32.

13-20. ACCUMULATOR OPERATIONS

The FPP accumulator capabilities allow the microprogrammer to perform chained floating point
operations. This feature eliminates the need to store a result in memory and then immediately fetch it
for the next operation, thus reducing memory overhead time. For example, the result of a floating
point operation may be left in the FPP to serve as either the divisor or dividend in a subsequent divide
operation.

13-21. MPP MICRO-ORDERS

The following paragraphs describe the MPP micro-orders required to microprogram the FPP. Figure
13-4 illustrates the microprogramming sequence used to execute a typical FPP operation.

13-22. FPP INSTRUCTION STORE

The IRCM micro-order causes the lower eight bits of the CPU S-bus to be loaded into the FPP
instruction register if the FPP is not currently executing an instruction. (The FPP instruction register
may be loaded without addressing the FPP.)

The following microinstruction will prepare the FPP to multiply a three-word operand transferred
from the CPU by the three-word operand in the FPP accumulator.

ALU/
oP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDR COMMENT

ImMM LOW - IRCM 045B LOAD FPP INSTRUCTION REGISTER.

13-156

Special

START

Address the FPP.
(L-register, bit 0)

Load FPP instruc-
tion register.
(IRCM)

1. Initiate execution.
(MPP2)

FPP begins exe-
cution when last
data word is sent
{FPP busy flag set).

Send data.
(MPP1 and
MPPB)

CPU operations not
requiring the FPP
may be performed.

START

FPP
busy (MPP)
?

YES

Result
to be used in
accumulator
operation

NO

R

Retrieve result.
(MPP1 and
MPPB)

Execute
another FPP
operation
?

YES

START

7700-221

Figure 13-4. Typical FPP Microprogramming Sequence Flowchart

13-16

Special

13-23. FPP ADDRESSING

The FPP must be addressed before any operation may be initiated and before testing for the FPP ready
condition.

Bit 0 of the CPU L-register equal to “0” is used to address the FPP.

The FPP must be addressed at least one microinstruction before executing micro-orders MPP2, MPPB,
or MPP1, and two microinstructions before executing the MPP micro-order.

NOTE

A microinstruction may be saved since the CPU FETCH routine
clears the L-register and CPU flag.

13-24. INSTRUCTION EXECUTION

The MPP2 micro-order in the Special field causes the FPP to initiate execution of the instruction held
in the FPP instruction register. Execution begins when the last word of the operand(s) is transferred to
the FPP by the user. The FPP busy flag is set until execution is completed.

13-25. OPERAND TO FPP

The MPPB micro-order in the Store field and the MPP1 micro-order in the Special field are used to
transfer 16 bits (the most-significant word first) of an operand from the CPU to the FPP.

Sixteen bits, where bit 15 is the most-significant bit, are transferred each time the micro-orders are
executed. Therefore, MPPB and MPP1 must be executed twice for each two-word operand and three
times for each three-word operand.

The following example is one way to transfer a three-word operand to the FPP beginning at the
address in the P-register.

ALU/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDR COMMENT
READ INC PNM P GET ADDRESS OF
FIRST WORD.

MPP1 PASS MPPB TAB SEND FIRST WORD.
READ INC PNM P

MPP1 PASS MPPB TAB SEND SECOND WORD.
READ INC PNM P

MPP1 PASS MPPB TAB SEND THIRD WORD.

13-17

Special

13-26. RESULT TO CPU

The MPPB micro-order in the S-bus field and the MPP1 micro-order in the Special field are used to
transfer 16 bits (the most-significant word first) of the result from the FPP to the CPU. Sixteen bits,
where bit 15 is the most-significant bit, are transferred each time the micro-orders are executed.

Note that the result transferred from the FPP must not be stored in the T-register in the same
microinstruction since a memory refresh or the Dual Channel Port Controller (DCPC) could alter the
T-register before the WRTE is executed. Instead, store the result in a temporary CPU register andin a
subsequent microinstruction, transfer the result to the T-register.

The user should also be aware that the result is rounded during operation execution and not when it is
retrieved. Thus, any result retrieved at a precision lower than that at which it was generated will
result in an answer that has been truncated.

A three-word result is transferred from the FPP to memory starting at the address in the P-register as
follows:

ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDR COMMENT
INC PNM P GET RESULTANT DESTINATION ADDRESS.
MPP1 S4 MPPB GET FIRST WORD OF RESULT FROMFPP.
WRTE TAB S4 STORE FIRST WORD OF RESULT.
INC PNM P GET ADDRESS FOR SECOND WORD.
MPP1 S4 MPPB GET SECOND WORD.
WRTE TAB S4 STORE SECOND WORD.
INC PNM P
MPP1 S4 MPPB GET LAST WORD.
WRTE TAB S4

13-27. MPP1 MICRO-ORDER CONSIDERATIONS

The MPP1 micro-order resets the FPP control logic if data is not being transferred to and from FPP.
Also, MPP1 must be specified whenever data is sent to or from the FPP.

13-28. FPP COMPLETE TEST

The MPP micro-order is used to determine if the FPP has completed the requested operation. The FPP
must be addressed (using L-register bit 0) at least two microinstructions before MPP is tested.

NOTE

The FPP ready status cannot be made until at least two mi-
croinstructions after MPP2 Special has been specified.

13-18

Special

13-29. OVERFLOW DETECTION

The FPP sets the CPU overflow bit at the trailing edge of the first MPBEN signal (MPPB micro-order).
Therefore, an overflow condition cannot be tested until after two microinstructions following the first
MPPB S-Bus micro-order. If an overflow condition occurs, the user must clear the overflow flag bit.

13-30. MPP MICRO-ORDER SUMMARY

Table 13-4 summarizes the micro-orders required to microprogram the FPP.

13-31. FPP MICROPROGRAMMING CONSIDERATIONS

The following paragraphs describe some key points that the user should be aware of when writing
microprograms which use the FPP.

13-32. FPP OPERATION EXECUTION TIMES

Table 13-5 lists the execution times for chained floating point calculations in which intermediate
results are not transferred to and from the computer.

Table 13-4. Summary of FPP Control Micro-orders

MICRO-
ORDER FIELD MEANING
IRCM STORE Load lower eight bits (FPP instruction) of CPU S-bus into FPP instruction
register.
The FPP busy flag must be clear (FPP ready) before executing this micro-order.
L STORE Bit O clear used to address FPP.
MPP2 SPECIAL Execute instruction held in FPP instruction register and set FPP busy flag.
Address FPP at least one microinstruction before executing MPP2.
MPPB STORE Store 16 bits of operand into FPP.
and
MPP1 SPECIAL Address FPP at least one microinstruction before executing MPPB and MPP1.
MPPB S-BUS Transfer 16 bits of result to CPU.
and
MPP1 SPECIAL Address FPP at least one microinstruction before executing MPPB and MPP1.
Do not store the result in the T-register in the same microinstruction.
MPP1 SPECIAL Reset FPP control logic.
MPP COND Test FPP ready status.
Address FPP at least two microinstructions before executing MPP.

13-19

Special

Table 13-5. FPP Operation Internal Execution Times

COMPUTATION TIME (usec)
INSTRUCTION
MINIMUM TYPICAL MAXIMUM

Single-precision Floating Point

Add/Subtract 0.68 1.36 3.28
Multiply 1.96 2.21 2.46
Divide 212 3.01 3.90
Conversion to single integer 0.67 1.38 1.85
Conversion to double integer 0.67 2.45 3.27
Conversion from single integer 0.63 1.25 1.78
Conversion from double integer 0.63 2.33 2.93
Extended-precision Floating Point

Add/Subtract 0.68 1.36 4.186
Multiply 2.75 3.14 3.52
Divide 2.94 4.78 6.62
Conversion to single integer 0.67 1.38 1.85
Conversion to double integer 0.67 2.45 3.27
Conversion from single integer 0.63 1.25 1.78
Conversion from double integer 0.63 2.33 2.93
Double-precision Floating Point

Add/Subtract 0.68 1.36 5.58
Multiply 3.55 4.08 4.62
Divide 3.68 6.60 9.51
Conversion to single integer 0.68 1.38 1.85
Conversion to double integer 0.67 2.45 3.27
Conversion from single integer 0.63 1.25 1.78
Conversion from double integer 0.63 2.33 2.93

13-33. EXECUTION IN PROCESS

Once the FPP has begun execution of an operation, CPU operations not requiring use of the FPP, or a
timing routine which waits for the FPP to complete execution may be executed.

If non-FPP operations are performed, ensure that upon return the FPP is addressed (L bit 0) at least
two microinstructions prior to testing if the FPP is ready. In addition, the FPP instruction register
must be reloaded with the proper FPP instruction if an IRCM micro-order had been executed and the
result held in the FPP is to be transferred to the CPU.

If a timing routine is used, the time allowed for the FPP to complete an operation and the action
required in the event of an FPP failure must be determined. A simple timing routine is shown below:

ALY/
OP/ MOD/ S-BUS/
LABEL BRCH SPCL COND STR ADDR COMMENT
WAIT Imm caov CMLO S3 337B SET WORD COUNT CONSTANT
AND CLEAR OVERFLOW.
WAIT1 RTN CNDX MPP IF FPP DONE, RETURN,
DEC Ss3 S3 DECREMENT COUNTER
JMP CNDX AL1S RJS WAITY
JMP ERRQUT JMP TD ERROR ROUTINE.

13-20

Special

13-34. INTERRUPT CONSIDERATIONS

If your microprogram is written such that interrupts are detected (which is recommended), it should
execute a JSB to a microroutine that saves whatever is necessary (including intermediate results in
the FPP) to allow the microprogram to continue after the interrupt is serviced, or to provide for
complete restart of the microprogram.

The microroutine should also ensure that the FPP is addressed and the proper FPP instruction is
stored in the FPP after servicing the interrupt.

13-35. MICROPROGRAMMED FPP OPERATION EXAMPLE

This paragraph contains an example on directly microprogramming the Hardware Floating Point
Processor. The microprogram sums the product of two, one-dimensional arrays and stores the floating
point result in the A and B registers. Figure 13-5 is the flowchart for the microprogram. Note that the
program is interruptable. The microprogram assumes the following calling sequence is used:

OCT 105600 INVOKE FPP PROGRAM

NOP USED FOR CURRENT ITERATION IF INTERRUPTED
DEF DIM DIMENSION OF ARRAYS

DEF ADDRA ADDRESS OF ARRAY A

DEF ADDRB ADDRESS OF ARRAY B

13-36. MICROPROGRAMMING THE FLOATING POINT PROCESSOR

The following is a summary of the rules for user microprograms.

1. The FPP must be addressed before asserting any control signals except IRST. Address the FPP by
setting the L-register bit 0 to the address of the FPP at least one microinstruction before asserting
MPP2, MPPB in the store or S-bus field or MPP1. The FPP must be addressed at least two
microinstructions before testing MPP. If an overflow occurs, the FPP does not set the CPU
Overflow Flip-Flop until the trailing edge of the first MPPB in the S-bus field. Therefore overflow
should not be tested until at least two microinstructions following the first S-bus field MPPB of an
operation.

2. Assert MPP1 in the special field when asserting MPPB in the store or S-bus field. The FPP does
not recognize MPPB unless it has been addressed and MPP1 is also asserted.

3. If a microinstruction S-bus field contains MPPB, the store field must not contain TAB. The result
may not be retrieved from the FPP and stored in the memory data register in the same mi-
croinstruction, since memory refresh or DMA freeze may destroy the memory data register
contents. Therefore, store the result in a temporary CPU register, and then transfer the result to
the memory data register in a subsequent microinstruction.

13-21

Special

4. Ensure that bits 1 and 0 of the FPP instruction register are set to the proper operand word length
as described in paragraph 13-15. Also, in the case of FIX, IR bits 6-4 must equal 100, before
retrieving the FIX result. If a result is retrieved from the process at a precision lower than the
operation just performed, the result is truncated, rather than rounded. If the result is retrieved at a
higher precision, the lower mantissa bits are zeros.

5. Floating point operands, except for zero, issued to the FPP must be normalized (sign bit is not the
same sense as the most significant mantissa bit). Note that the FPP normalizes all of its floating
point results, except for zero.

6. When executing chained operations, the FPP instruction register bits 1 and 0 may be changed in
order to retrieve a result of precision that differs from the operation performed. For example after
performing a 48 bit ADD, a 32 bit result may be retrieved from the FPP. However the precision of
the next operation must agree with that of the previous floating point (48 bit ADD) operation.

13.22

Special

READ CURRENT ITERATION 1) INTO S6 (MSB WILL

BE SET IF RETURNING FROM

AN INTERRUPT)

Y
RETURNING FROM INTERRUPT? lr

N

INITIALIZE SUM IN A,B AND CURRENT

ITERATION IN S6

READ ARRAY DIMENSION INTO S5
SAVE RETURN ADDRESS IN S11 IN

CASE OF INTERRUPT

1Y
LDIMENSION <=0 |

N

FORM ADDRESS OF A{l) (S2 = 2*1 + ADDRI(A))
FORM ADDRESS OF B{l) (P =2*i + ADDR(B))
FETCH A(l) INTO 59,510

FETCH B(1) INTO S7,58

FORM FPP MULTIPLY OPCODE

INCREMENT I (S6 = S6 +1) < N

START FPP EXECUTION
SEND A(l) AND B(I) TO FPP

1Y
LAST ITERATION? I

In

FETCH NEXT A(l}) INTO §9,510
FETCH NEXT B(l) INTO §7,S8

WAIT FOR FPP |-

FORM FPP ADD OPCODE
START FPP OPERATION
SEND SUM TO FPP

r INTERRUPT?

3

WAIT FOR FPP

GET SUM FROM FPP AND STORE IN A,B-REG

|

N
LAST ITERATION? |

Y

RESTORE RETURN ADDRESS,

EXIT }

Y

>(or9)

SAVE CURRENT |
IN MEMORY

RETURN TO
PROCESS INTERRUPT

7700-222

Figure 13-5. FPP Microprogramming Example Flowchart

13.23

Special

EXAMPLE 5: FPP SUMS THE PRODUCT OF TWO ONE-DIMENSIONAL ARRAYS

0001

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

0012
0013
0014
0015
0016
0017
0018
0019
0020
0021

0022
0023
0024
0025
0026
0027
o028
0029
0030
0031

0032
0033
0034
003S
0036
0037
0038
0039
0040
0041

0042
0043
0044
0045
0047
0048
0049
0050
0051

0052
0053
00S4
0055
0056
0057
0058
0059
0060
0061

0062
0063
0064
006es
0066
0067
0068
0069
0070
0071

0072
0073
0074
0075

34000

34001

34002
34003
34004

34005
34006
34007
34010

34011
34012

34013
34014
34015
34016
34017
34020
34021

34022
34023
34024
34025
34026
34027
34030
34031

34032
34033

13-24

017

327

006
006
006

227
000
307
010

327
320

227
001
307
003
227
307
003

227
007
230
010
007
230
010
007
230
010

101254

140242

036147
036207
037247

174707
075507
005047
001207

104002
004002

174713
152507
005047
033047
174707
005047
033707

174707
174707
001307
042647
143047
001347
042647
143047
001407
001447

MICMXE,L
$CODE=’SUMAB: : -48,REPLACE

ORG 340008
HORI EQU 00006B
FETCH EQU 00000B

.
.
L Y Yy Yy Yy Yy Yy Yy YTy Iy
READ CURRENT ITERATION CI) INTO S6 =«
e (MSB WILL BE SET IF RETURNING FROM «
+ AN INTERRUPT) .
L Yy Yy Yy Yy Y Y Y N T Ly
.
SUMAB SOV CMPS S6 TAB S6 = CURRENT 1
.
PSRRI NN NBR RN NN IR RNIRRNS
RETURNING FROM INTERRUPT?
F NN NRNNNNONRRNRNLERLIIRRARS
.
JMP CNDX AL15 RJS REENT JUMP IF RE-ENTERING
»
L T Yy Yy Yy Yy Y L LTIy rYY ™
* INITIALIZE SUM IN A,B AND CURRENT ITERATION IN S6 =«
L Yy Yy Y Yy Yy Yy Yy Y Yy
.

ZERO A INITIALIZE SUM
ZERO B
ZERO S6 INITIALIZE CURRENT 1
.
L Ty Yy Y Y Y Y Y Y Y N L Ty
* READ ARRAY DIMENSION INTO SS .
* SAVE ADDRESS IN CASE OF INTERRUPT (S11) »

LA AR AL X R X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y XY
*

REENT READ INC PNM P START READ OF IMAX
DEC Ss11 P SAVE P IN S11
JSB INDIRECT RESOLVE INDIRECTS
PASS SS TAB SS = IMAX

.

*aesncssnssnes

* IMAX <= 07 »

taassnnssnnnne

.
JMP CNDX AL1S DONE FORGET IT IF IMAX<O
JMP CNDX ALZ DONE DITTO IF IMAX=0

L Y Y Y Yy Yy Y Yy N Ty

» FORM ADDRESS OF ARRAY A (S2 = 2«1 + ADDRCA)) »

* FORM ADDRESS OF ARRAY B (P = 2«1 + ADDR(B)) +

¢ NOTE THAT LO = 0 WHEN ADDRESS IS FORMED .

L Y Yy Yy Yy Yy Yy Y Y N R YRR R Ty

.

READ COV INC PNM P START READ ON ADDR(A)

DBLS L S6 SET L = 2 » |

JSB INDIRECT RESOLVE INDIRECTS
ADD S2 M S§2 = ADDRCACI))

READ INC PNM P START READ ON ADDR(B)

JSB INDIRECT RESOLVE INDIRECTS
ADD P M P = ADDR(B(I1))

.
CRRIINRNIBEONNNDNNNINB NGRS
* FETCH BCI) INTO S7,S8 .
« FETCH ACI) INTD S9,510 =«
PRI E RN NNNNENRIIINR RN
-

READ INC PNM P START READ ON BCID)
INC PNM P BUMP ADDR(B(1))

READ PASS S7 TAB SAVE B(I) IN (S7 S8)
PASS M s2
INC S2 s2 BUMP ADDRCACI))

READ PASS S8 TAB
PASS M s2 SET M = ADDRCACI))
INC S2 Ss2 BUMP ADDRCACI))

READ PASS S9 TAB SAVE ACI) IN (S9 S10)

PASS S10 TAB

0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089

0091

0092
0093
0094
009S
0096
0097
0098
0099
0100
0101

0102
0103
0104
0105
0106
0107
0108
0109
0110
0111

0112
0113
0114
0115
0t16
0117
0118
0119
0120
0121

0122
0123
0124
0125
0126
0127
0128
0129
0130
0131

0132
0133
0134
0135
0136

34034
34035
34036
34037
34040
34041

34042
34043
34044
34045

34046
34047
34050
34051

34052
34053
34054
340SS
34056
34057

34060

34061
34062
34063
34064

340
007
010
010
010
010

007
144
006
334

227
00?7
230
010

230
00?7
010
230
007
010

306

340
010
010
010

100607
153251
054432
056432
060432
062432

152507
150762
036507
003002

174707
174707
001307
001347

042647
143047
042647
001407
143047
001447

044402

020607
036751
006432
010432

-
.
(AR XA X2 Z2 222 XXX SRS RS X

« FORM FPP MULTIPLY OPCODE .
+ INCREMENT I (S6 = S6 + 1) .
+ INITIATE FPP EXECUTION *
e SEND ACI) AND B(I) TO FPP »
FERNNRNNNNNINERRRNONRRRLRINNIERES
.

LooP MM LOW IRCM 040B

MPP2 INC S6 S6
MPP1 PASS MPPB S7
MPP1 PASS MPPB S8
MPP1 PASS MPPB S9
MPP1 PASS MPPB S10

.
FRNNGRBBBINORRRRIRRSS
LAST ITERATION? «
SEsNEBRBRNRERNIRRRRES
.

INC L S6
LWF L1 SUB SS
ZERO L
JMP CNDX FLAG LOOP1

.
SRRNNNLINNNNARNNRORNRRONRRNRRRRRS
* FETCH NEXT BCI) INTO S7,58 =«
RPN RN RENENENNNNRRRRRNRIIRNSS
.

READ INC PNM P
INC PNM P
READ PASS S7 TAB

PASS S8 TAB
.
PEERNNNNNNLNIRNNIRINLLERLERE RS
¢ FETCH NEXT ACI) INTD S9,510 «
NN NN RN RN RIS RNRRNRRRNELSS
.

READ PASS M s2
INC Ss2 s2
PASS M s2

READ PASS S9 TAB
INC s2 se2

PASS S10 TAB

.
XYY YY YTy Y
¢ WAIT FOR FPP »
secscrcscsssncnes
.

LOOP1 JSB CNDX MPP RJS WAIT

FPP MPY OPCODE
START FPP, BUMP I
SEND OP1 = B(ID)

SEND OP2 = ACI)

SET L =1 + 1

SET FLAG = 1 IF DONE
RESET L FOR FPP

JUMP IF DONE

BUMP ADDR(B(I1))
GET NEXT B(I)

SET M = ADDR(A)
INC ADDR(CA)

WAIT FOR FPP

LA A A A X A e 2 X2 X A2 A R R X R R RS X R R RS R R R SRS Y R X)

» FORM FPP ADD OPCODE (ACCUMULATOR HAS FIRST OPERAND) «

« INITIATE FPP EXECUTION
« SEND SUM OPERAND TO FPP

SRBBRNREGBRNBRNINCRBENVE BTNV RBBNEGRENRVBRNBINNRNEOES

L]
I LOW IRCM 010B
MPP2
MPP1 PASS MPPB A
MPP1 PASS MPPB B

FPP ADD OPCODE
START FPP
SEND OP1 = SUM

Special

13-25

Special

0138
0139
0140
0141

0142
0143
0144
0145
0146
0147
0148
0149
0150
0151

0152
01583
0154
01SS
0156
0157
0158
0159
0160
0161

0162
0163
0164
0165
0166
0167
0168
0169
0170
0171

0172
0173
0174
017S
0176
0177
0178
0179
0180

0182
0183
0184
0185
0186
0187
0188
0189
0190
0191

0192
0193
0194
0195
0196
0197
0198
0199
0200
0201

0202
0203
0204
0205
0206
0207
0208
0209
0210

34065
34066
34067

34070

34071

34072

34073
34074
34075
34076

34077

34100
34101
34102
34103
34104
34105
34106
34107

34110
34111

34112
34113
34114
34115
34116
34117
34120

13-26

306
010
010

334

323

336

000
010
017
210

320

000
007
006
210
383
003
227
320

340
366
010
366
326
355
010
010
327

044402
020172
020232

004002

141602

041602

065707
074647
153247
052036

000307

065707
174707
037207
050036
170507
075707
174707
000007

100547
002002
036765
000742
144442
165047
042614
036746
004007

(A A X A R R R R R R R R R YT TRR ST Y Y ¥

« WAIT FOR FPP

* GET SUM FROM FPP AND STORE IN A,B-REG

*
L]

LA A AR A A XX R R R R R R 2 X R ST RT YRR SR YRR Y Y XY

L 3
LOOP2 JSB CNDX MPP RJS
MPP1 PASS A
MPP1 PASS B
*
XXX EIXEE YRR Y Y}
*LAST ITERATION? =
(Z XA XX XXX R RN N X X
*
JMP CNDX FLAG
L 4
SRBRNRBBEERNBRANABBEBBNES
¢ TEST FOR INTERRUPT =«
RRRNBRBERNNRREEBRRRNIENES
*
JMP CNDX HOI RJS
L]
HRERBBBUHRNRERBRRRINRABERERY
* TEST FOR SINGLE STEP =«
L AZZ AR XIS EEESRES SRR Y Y 3
-+
JMP CNDX NSNG RJS
L
[Z XXX RIEEEZERE R X)
* SAVE CURRENT I «
+ IN MEMORY L
SRBEERBRBERRBRRNNENS
*
INT DEC P
PASS M
CMPS S6
WRTE MPCK PASS TAB
*
SEBRARARNBIRRERNBIBEREN
* SERVICE INTERRUPT =
RBBEBBRARBERPRRNBRRBRERS
L

JMP

.
SRBRRNRNIIINNENEIENRRIIRES
+ RESET SAVE WORD .
RESTORE RETURN ADDRESS «
* RETURN TO MACRO CODE .
CHRREBRRIIRRIERNIEREIRI RN Y
.
DONE DEC P
INC PNM
ZERO SS
PASS TAB
CMLO L
ADD P
INC PNM

WRTE MPCK
Imm

READ
JMP

.
sscssnsenssans
* WAIT LOOP «
Sarnnscnnennss
.

WAIT
WTLP

Imm
RTN

LOW
CNDX MPP
DCNT
CNDX
CNDX

CNTR

RTN
JMP
MM

MPP

CNT8 RJS

CMHI S2
SOV PASS IRCM
106

JMP

WAIT
MPPB
MPPB

DONE

LOOP

LooP

S11

S6
S6

HORI

S11

SS
374B

FETCH

040B

WTLP
172B
s2

DONE

WAIT FOR FPP

SAVE SUM IN (A B)

JUMP IF ALL DONE

LOOP IF NO INT

LOOP IF SNGL STEP

SET P = SAVE ADDR
SET M = SAVE ADDR
SET S6 = -S6 - 1
SAVE IN MEMORY

HANDLE INTERRUPT

SET P = SAVE ADDRESS
SET M = SAVE ADDRESS
CREATE A ZERQ TO
RESET SAVE WORD

SET L = 3

SET P = RETURN ADDR
START READ

RETURN

SET COUNTER = 32
RETURN IF DONE
DECREMENT COUNTER
RETURN IF DONE
ELSE LOOP 32 TIMES
SET IRCM = MIA 00

CAUSE MP INT
RETURN

0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225

END OF PASS 2: NO ERRORS

34121
34122
34123
34124
34125
34126
34127

230
367
323
230
336
000
320

000647
140002
145042
036747
045042
065707
000307

.
S B SN INNENNNNNNINENRRIRRRRRNS
s RESOLVE INDIRECT ADDRESSING «
BN NI RNINNINNNIRORRERNRRS
»
INDIRECT READ PASS M TAB
RTN CNDX AL1S RJS
JMP CNDX HOI RJS [INDIRECT
READ
JMP CNDX NSNG RJS INDIRECT
DEC P S11
JMP HORI

END

Special

SAVE ADDRESS IN M
RETURN IF RESOLVED
KEEP RESOLVING

BUT IF HOI AND

NO SINGLE STEP
RESTORE P AND
HANDLE INTERRUPT

13-27/13-28

PART IV
Microprogramming Examples

Section 14
MICROPROGRAMS IR

MICROPROGRAMS

The microprogramming examples in this section are arranged in order of advancing complexity and
illustrate (among other things) concepts presented throughout the rest of this manual. Each micropro-
gram is complete in itself and may be used directly in the computer or may be used as an example for
creating your own microprograms. The following assumptions are made for the use of material in this
section.

® The microprogramming support software (the microassembler, Microdebug Editor, driver DVR36,
and WLOAD) must have been loaded into the RTE system. It is also assumed that the system
equipment configuration (HP 1000 E/F-Series Computer, HP 13197A WCS, etc. installation) is
compatible for microprogramming. (Refer to section 3 in this manual for more information on the
steps necessary for preparing to microprogram.)

o RTE system equipment table entries (SC-to-LU relationship) must have been made.

The first examples use the MDE features to prepare and execute the microprograms. If you use the
RTE Interactive Editor, then, the RTE Microassembler to prepare the larger examples, use the RTE
Interactive Editor Tab function for determining the starting columns for micro-order fields. (Refer to
section 8 for more information on preparation with the microassembler.

When you are ready to microassemble from your disc file, the microassembler may be scheduled and
used following the procedures outlined in section 9 of this manual. Control commands, error messages,
etc., are described in section 9. Psuedo-microinstructions, etc., that you will need when preparing your
source are described in section 8. The microassembled object will be placed in an RTE file that you
designate and will be ready to be accessed and loaded into WCS. Information on WCS support software
use (for moving your microprogram into WCS or out of WCS) may be found in section 11 in this
manual.

In addition to the examples included in this section you may be interested in the microprogrammable
algorithms appearing in three other reference manuals:

e Computer Approximations.
e The ACM Manual (Association of Computer Manufacturers).

e Art of Computer Programming, Volume III.

14-1

Microprograms

14-1. WCS INITIALIZATION

WCS boards must be initialized (i.e., be assigned subchannel base addresses) for the transfer of
microprogram object code to the boards. WCS initialization is required whenever the RTE system is
booted up. Complete information required to write WCS initialization programs is given in the Driver
DVR36 manual.
The WCS boards can be initialized and controlled by the FMGR CN command as follows:

CN,lu,n [,ba)
where:

lu = a WCS LU number;

n

= 1 = assign base address to WCS LU;
n = 2 = enable WCS LU;
n = 3 = disable WCS LU;
n = 4 = down WCS LU;

ba = base address to be assigned to WCS LU.

For example, to initialize and enable a 1K WCS board having LU number 11 and 12, the following
sequence of CN commands could be used:

CN,11,1,34000B
CN,11,2
CN,12,1,35000B
CN,12,2

If the above command sequence were going to be used frequently, it could be set up as a TR (transfer)
file and saved for later execution. Refer to the Batch-Spool Monitor Reference Manual for information
on TR files.

14-2

Microprograms

14-2. MICROPROGRAMMING WITH MDE

The following three console run sheets provide examples of interactive sessions that illustrate the
simplicity of using the Microdebug Editor program (MDEP). In the first console run sheet you use
MDEP to prepare and execute a single-statement “microprogram” that simply decrements the
A-register. Next, MDEP is used to prepare and execute a microprogram that performs a logical “and”
on two octal numbers. This example illustrates the use of the READ and WRTE micro-orders. The
MDE commands used in these examples are: LU, REplace, SEt, RUn, SHow, PR, EXit, and Abort.
(Refer to section 10 for details on the MDE commands.) Note that the Abort (A) command only
terminates another MDE command and does not terminate MDEP. Note also that these miniature
“microprograms” are executable by MDEP without apparent microassembly.

If you did not attend the HP RTE microprogramming course, you may find it helpful to use these
examples (following the run sheets step-by-step) as exercises for becoming familiar with MDEP. Make
sure to initialize your WCS board(s) and use LU numbers appropriate for your computer installation.
All operator entries are underlined in all examples.

EXAMPLE 1: DECREMENT A REGISTER, CONSOLE RUN SHEET

*0ON, FMGR
:RU,MDEP

COMPUTER TYPE: 1=M-SERIES,2=E/F-SERIES
TYPEC1 OR 2)?2
SLU, 13

LU# RANGE STATUS

13 034000--0834777 1

SRE, 340800B

34080 LGS STFL NAND SI CNTR
$SREAD, RTN, DEC, A, A

34066 READ RTN DEC A A
$$/

$SE, A

A =0

o
12345B
12345
A

[I]

$END MDEP

$END FMGR

14-3

Microprograms

EXAMPLE 2: READ/WRITE MEMORY, CONSOLE RUN SHEET (Sheet 1 of 2)

*ON, FMGR
tRU,MDEP

COMPUTER TYPE: 1=M-SERIES,2=E/F-SERIES
TYPE(1 OR 2)72
SLU, 13

LU# RANGE STATUS
13 ©34008--0834777 |
SRE, 340080B, 34003B

34800 LGS XOR S3 X
$SREAD, NOP, PASS,L,A

34808 READ PASS L A
$$/

34001 STFL CMPS A CNTR
$SNOP, NOP, AND, S1, TAB

34001 AND SI TAB
$s/

34002 STFL PASS S11 SI

$SWRTE,MPCK,PASS, TAB, S1

34802 WRTE MPCK PASS TAB Sl
$$/

34003 SRG1 CMPS MEU
$SREAD, RTN, INC, PNM, P

34003 READ RTN INC PNM P

$SA
$SH, 34000B, 3406038

34000 READ PASS L A
34001 AND Sl TAB

34002 WRTE MPCK PASS TAB S1
340083 READ RTN INC PNM P

$SE, A

A = 0

A =z @

A = 377B
A = 377
A = A

144

Microprograms
EXAMPLE 2: READ/WRITE MEMORY, CONSOLE RUN SHEET (Sheet 2 of 2)

SPR

P+0@1l= RETURN
P+02= RETURN
P+93= RETURN
P+04= RETURN
P+@5= RETURN
P+06= RETURN
P+@7= RETURN
P+28= RETURN
P+29= RETURN
P+1@= RETURN

P+@1= RETURN
P+@1l= 52525B
P+81= 52525
P+Cl= A

SRU, 1856 8¢B
RETURN= P+@2
$PR

P+01= 125
P+02= RETURN
P+83= RETURN
P+B4= RETURN
P+@5= RETURN
P+86= RETURN
P+@7= RETURN
P+@8= RETURN
P+29= RETURN
P+10= RETURN

P+@1l= 125
P+@81= A
$EX

$END MDEP
tEX

$END FMGR

14-3. SHELL SORT EXAMPLE

This example illustrates a microprogrammed Shell sort technique which performs a sort of numeric
data (assumed to be in a disc file). The theory of the technique is described in the reference material
that is mentioned at the beginning of this section. The example illustrates the benefits of micropro-
gramming a typical program that may be used repeatedly in a particular application. Included here
are a FORTRAN program used to input the numbers to be sorted, list them (if so desired), and call a
sort program. An Assembly language program is called to interface to a microprogram which performs
the actual Shell sort.

Figure 14-1 is a flowchart that explains the microprogram. Annotated console run sheets are included
that can be used to perform this same example in a step-by-step manner. The fully commented
microprogram that performs the sort is included immediately after the console run sheets. Note that
the Microdebug Editor is used to examine the progress of the sort.

14-5

Microprograms

When confidence in the ability of the microprogram to perform the sort is established, an application
FORTRAN program is run (SRTST; which times the difference between the Assembler sort and the
microprogrammed sort). The timing is accomplished in addition to the tasks already performed by the
previously run test program.

The Assembly language program that runs the Shell sort (in competition with the microprogrammed
version) is shown just before the console run sheet. Use the run sheet as an example to perform the
execution and timing of the sort.

EXAMPLE 3: SHELL SORT, FORTRAN TEST PROGRAM

PAGE 0001 FTN4 - RELEASE 24177C = JULY, 1972

0001 FTN4,L

0002 - PROGRAM SRTST

0003 INTEGER P(5)yCONS+PRINTIDCB(144) «NAME (3) s IBUF (128)
0004 INTFGER TABLE(125)

0005 EQUIVALENCE (CONSsP (1)) (NMBR4P(2)) s (PRINTWP(3))
0006 DATA NAME/2HNSs2H00¢2H0 /

0007 C

0008 C GET RUN PARAMETERS

0009 CALL RMPAR(P)

nolo C

0011 C READ UNSORTED ELEMENTS FROM FILE NS000
0012 CALL OPEN (IDCBsIERRsNAME)

0013 DO 10 J=1+NMBR/125

0014 CALL READF (IDCBs IERR,IBUF)

0015 DO 20 I=1,4125%

0016 20 TABLE((U=1)2125 + I) = IRUF(])

0017 10 CONTINUE

0018 C

0019 C LIST UNSORTED ELEMENTS ?

0020 IF (PRINT) 30,40,30

0021 30 WRITE (CONS4100) (TABLE(I)sI=]1+NMBR)
0022 100 FORMAT (/+(1087))

0023 C

0024 C USE MDES TO INITIALIZE WwCS

0025 40 CALL MDES (CONS)

0026 C

0027 C INDICATE START OF SORT

0028 WRITE (CONS,200)

0029 200 FORMAT (/e START OF SORTY)

0030 C

0031 C EXECUTE SORT

0032 CALL SORT (NMRR, TARLE)

0033 C

0034 C INDICATE END OF SORT

0035 WRITE (CONS,+300)

6036 300 FORMAT (/% END OF SORT")

0037 C

0038 C LIST SORTED ELEMENTS 7?

0039 IF (PRINT) 50460450

0040 S0 WRITE (CONS+100) (TABLE(I)e+I=14NMRR)
0041 C

0042 C COMPLETE DEBUG OPERATIONS
0043 C I.,E., CLEAR BREAKPOINTS, ETC,

0044 KO CALL MDES (CONS)

0045 CALL CLOSE (IDCR)

0046 END

#4# NO ERRORS* PROGRAM = 00587 COMMON = 00000

14-6

Microprograms

EXAMPLE 3: SHELL SORT, TEST ASSEMBLER INTERFACE

PAGE 0002 #01

0001
0002
0003%
0004%
0005%
0006
0007
0008
0009
0010
0011
o012
0013#
0014
0015
0016
0017
0018%
0019
0020

00000

00000
00001
00002
00003
00004

00005
00006
00007
00010

00011

0noooo
000000
000000
016001X
000000R

162000R
066001R
000040
105600

126002R

ASMB..L
NAM 120107

SORT INTERFACE PROGRAM

ENT SORT

EXT LENTR
NMBR RASS 1
TABLE BSS 1

SORT NOP
JSHB JENTR GET PARAMETERS
DEF NMBR
LDA NMBRsI A = NUMBER OF ELEMENTS
LDB TABLE B = ADDRESS OF FIRST ELEMENT
CLE E =0 = INITIAL ENTRY
0CT 105600 INVOKE SORT MICROPROGRAM
JMP SORT,1
END

#% NO ERRORS #TOTAL ##RTE ASMB 750420%%

14-7

Microprograms

14-8

4

ISAVE M (NEXT INSTRUCTION ADDRESS) IN S11]

Y
r——RETURNING FROM INTERRUPT ? (E=12?)]

N
Y

[NUMBER OF ELEMENTS < 8 2 (Y=A, Y<BTS'I-—-@

N

EEI Y 10 DISTAN =2Y/c)

A Y
PISTANCE = 8 7 c(v=02)} :@

"

_-
LACE NUMBER OF COMPARES IN S3 (53=A-Y)
ORM ADDRESS OF I IN P (P=B)
ORM ADDRESS OF J IN S4 (S4=B+Y)
INITIALIZE SWAP INDICATOR (0=0)

L;
EAD 1 INTO L, UPDATE ADDRESS OF 1 (P=P+l)
SAVE ADDRESS OF OLD 1 (S5zM)
3

EAD J INTO 56
PDATE ADDRESS OF J (S4=M+1)
N

Y
[coMPARANDS OUT OF SEQUENCE ? (1>J7)}—
Y

ET SWAP INDICATOR (0=1)

A

RITE OLD 1 INTO J IN MEMORY, CHECK FOR MEM. PROT.
S

RITE OLD J INTO I IN MEMORY, CHECK FOR MEM. PROT.

L N
Eﬁq INTERRUPTS ?E

Y
. A _
SAVE P (NEXT I ADDRESS) IN X (X=P) i
SET INTERRUPT RETURN INDICATOR (E=1) 53.53_1|

IX P (P=S11)
MP TO HORI (BASE SET INTERRUPT CODE)

ESTORE ADDRESS OF NEXT I IN P (P=X)

ESTORE ADDRESS OF NEXT J IN S4 (S4=P+Y)
ESTORE NUMBER OF COMPARES IN S3 (S3=(B+A)-S54)

Y
MORE COMPARES ? (S3 NOT = 07) | o
N
Y
|aNY COMPARANDS SWAPPED DURING THIS PASS ? (0=12) e
[N

ISTART NEXT INSTRUCTION FETCH, EXITF——————<:>

Figure 14-1. Example 3, Microprogrammed Shell Sort Flowchart

Microprograms

EXAMPLE 3: SHELL SORT; TEST, CONSOLE RUN SHEET (Sheet 1 of 2)

*ON, FMGR
tRU,EDITR {CREATE MICROPROGRAM SOURCE FILE]
SOURCE FILE?

/A

EOF

/T3106,15,208,25, 30,40 SET TABS FOR MICROINSTRUCTION FORMAT

7 "STODE= M2, TE,REPLACEJJOBJECT T0 DIsC

BODY OF ‘h--"“~{ussn SELECTED MICROPROGRAM OBJECT FILENAME |
1CROPROGRAM

/ELCEM2.1E = {USER SELECTED MICROPROGRAM SOURCE FILENAME|
LS FILE 2 4l
END OF EDIT
tRU,M1CR0,2 <=————JMICROASSEMBLE MICROPROGRAM|
/MICRO: END
$RU, SRTST, 1,5, 1 [CONSOLE LU, NUMBER OF DATA, LIST FLAG (1=L1ST)|

216440 1360875 816336 152742 823501 +——UNSORTED DATA|

COMPUTER TYPE: [=21MX,2=2]MX E-SERIES
TYPE(1 OR 2)72

SLU, 13

LU# RANGE STATUS

13 @34000--034777 |

&LD, 'M2,1E <= —JUSE FILENAME IN $CODE STATEMENT]

SLC, 346B0B, 344118

SER, 346528, 34072B LOCATE MDE BREAKPOINT MICROPROGRAM, AND

BREAK | 34052 PROVIDE AN UNUSED ENTRY POINT FOR MDE USE,
BREAK 2 34872 BEFORE SETTING BREAKPOINTS

BREAK 3 @

SEX SET BREAKPOINT IN SWAP MICROINSTRUCTIONS, AND

SET BREAKPOINT AT END OF ONE COMPLETE PASS

START OF SORT
BREAK 34852 <—————meee{BREAKPOINT IN SWAP MICROINSTRUCTIONS)
$SE,L, S6
L = 16440 S6 = 16336

JELEMENTS BEING SWAPPED]

L = 16440

L = A

SRU

BREAK 34872 _ AFTER BREAKING AT END OF PASS,
$CL, 340872B REMOVE END OF PASS BREAKPOINT
BREAK 1 34@52

BREAK 2 @

BREAK 3 @

SRU

149

Microprograms

EXAMPLE 3: SHELL SORT; TEST, CONSOLE RUN SHEET (Sheet 2 of 2)

BREAK 34052 4——I§EAKPOINT IN SWAP M1 CROINSTRUCTIONSI
$SE,L,S6

L = 16336 S6 = 136075
JELEMENTS BEING SWAPPED]

L = 16336

L =aA

SRU

BREAK 34052 <«—— [BREAKPOINT IN SWAP MICROINSTRUCTIONS]
$SE, L, S6
L~ = 16440 s6 = 152742

¢ 2 I EMENTS BEING SWAPPED]

L = 16448
L =.A

SRU

BREAK 34052 <=—————JBREAKPOINT IN SWAP MICROINSTRUCTIONS]
$SE,L,56
L™ = Te336 S6 = 152742

JELEMENTS BEING SWAPPED]|

L = 16336
L =a4a
$RU

END OF SORT NOTE: THESE ARE NEGATIVE NUMBERS]
136075 152742 816336 816440 023501 <«—JCORRECTLY SORTED DATA|
SCL <
BREAK | @ - ——JBE SURE T0 REMOVE BREAKPOINTS i]
BREAK 2 8
BREAK 3 @
SEX

tEX

SEND FMGR

14-10

Microprograms

EXAMPLE 3: SHELL SORT, MICROPROGRAM (Sheet 1 of 3)

PAGE 0002 RTE MICRO-ASSEMBLER REV.,A 760805

0001
0002
0003
0004
000S
0006
0007
ooo8
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045

34000

34020

34021

34022
34023

327

010

334

010
327

001007

033507

103042

007647
103602

MICMXEsL

ORG 340008
HER BB ER R BB R B IR E SRR IR DR DR TR AR RS DL L BN DR DR BT H GG R DG

LAB 2.1 MICROPROGRAM

THIS MICROPROGRAM SORTS AN INTEGER ARRAY INTO
ASCENDING ORDER USING THE DIMINISHING INCREMENT
TECHNIQUE (I.E. SHELL SORT).

REF: ART OF COMPUTER PROGRAMMING, VOL 3,

*

®

*

v

»

#

“*

CALLING SEQUENCE *
LDA NMBR + NUMBER OF SORT ELEMENTS »
LDB TABLE ADDRESS OF FIRST ELEMENT &
CLE E=(0=INITIAL ENTRY, *
1=RETURN FROM INTERRUPT) *

OCT 105600 INVOKE SORT MICROPROGRAM »
“

AT END *
»

*®

»

»

#

*

-

o

”

CONTENTS OF TABLE SORTED
AsB UNALTERED E+0 MAY BE ALTERED XsY ALTERED

NOTE
IN THE FOLLOWING COMMENTSs I AND J ARE THE TWO
SORT ELEMENTS BEING COMPARED
(I.E. ARE THE COMPARANDS)

LR S B 2 K O 2 K BE N BN R BN BE B NN NN N R

BREBEEG DDA BBER BV BRERBODRGE O RIRDBDDBRTARRER BRI BDD BN
HORI EQU 6B

JMP SORT SAVE ENT POINTS

ALGN
FRRREDEVBRBBBBRDBLBBBBBBRDBRBRBIRDBGRBR RSB
& SAVE M (NEXT INSTRUCTION ADDRESS) IN Sl)
BB RRBBBRRRBBRBBREBRRABBRR SRR ROBDRGRBRR R DN
SORT Sl11 M S11 = NEXT
HRBERRBGGRDEERBERDDRRBERRBTHR RGN D NN INSTR ADDR
RETURNING FROM INTERRUPT ? (E=17) =
BRBEGBRERBBBRBBGER BB B DRIV RDBRGRE G

JMP CNDX E INTRTN YESs USE INTRTN
A2 222222 2222222 LYY YIRS Y Y
* NUMBER OF ELEMENTS < 0 ? (Y=A, Y<0?) &
HEBRBBBRGBBBBDRRRGERRBBRGRBEDERDEERE BN

Y A Y = A
JMP CNDX AL1S EXIT Y<0 ? YES, EXIT

14-11

Microprograms

EXAMPLE 3: SHELL SORT, MICROPROGRAM (Sheet 2 of 3)

PAGE 0003 RTE MICRO-ASSEMBLER REV.A 760805

0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059,
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
n075
0076
0077
0078
0079
0080
0081
0082
0083
0084
00RS
0086
o0oR7
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100

14-12

34024

34025
34026

34027
34030
34031
34032

34033
34034
34035

34036
34037
34040

34041
34042
34043
34044
34045
34046
34047

34050
34051
34052
34053

0lo0

010
320

010
004
010
003

227
010
010

230
007
o010

014
327
012
327
327
004
327

012
210
007
210

073664

072747
003602

072507
107107
011707
011153

174707
033207
000507

046647
133147
001247

152747
142302
136747
102602
002407
152747
142602

137307
054036
150654
052036

Ly T Yy T Y Y Y T R Y Y Yy ¥
SET Y TO DISTANCE BETWEEN COMPARANDS (Y=Y/2)
BB BB BN R R R B DD AR RDBHBORBBEBBRBARBBERARB BB RROONG
SETY R1 Y Y Y = Y/2?
FEROBBOBRBEDDBBORRDRRDR RS
DISTANCE = 0 ? (Y=07?)
BOBRBEBBRBRDBE BB RERBD OGS
Y

JMP CNDX ALZ EXIT Y=0 ? YES. EXIT
HRRBEBRD GBI RBBLND R BB BB G RRORID IR R BERRBRDRDN
* PLACE NUMBER OF COMPARES IN S3 (S3=A~Y) #

* FORM ADDRESS OF I IN P (P=8) #
* FORM ADDRESS OF J IN S4 (S4=B+Y) *
INITIALIZE SWAP INDICATOR (0=0)
(22 R X2 A2 X2 RIS YIS Y SRS RS- 2 Y -2 2 %
STRTPASS L Y
suB S3 S3 = COMPARES

A
P B P = ADDR OF 1
COvV ADD sS4 B S4 = ADDR OF J»
* 0=0

HER B AR RO BB BB R BB BN DORER BB RN DR DB RBECRBRBRHOEG

READ I INTO Le UPDATE ADDRESS OF I (P=P+])

¢ SAVE ADDRESS OF OLD I (S5=M) “

L2 X2 22X 2122222 R RS ERRS RS R R XS L 2% X ¥

COMPARE READ INC PNM P READ I, UPDATE P
S5 M S5 = ADDR OF 1
L TAB L=1

L2222 222222222222 22222 XY X2 % X}

READ J INTO S6 .

UPDATE ADDRESS OF J (S4=M+]l) =
ROBBBERBBDRBERBERORB BRI RRRERRDEN

READ M S4 READ u
INC S4 M S4 = NEXT J ADDR
Sé6 TAB S6 = J

(A2 22 2222222 2122222222222 22222 22222 2

% COMPARANDS OUT OF SEQUENCE ? (I>J?) #
L T Yy Yy Ty Y Y Y Y Y ¥

X0R Sé J SIGN = I SIGN?
JMP CNDX AL1S RJS SUBTRACT YESs SUBTRACT
PASL I SIGN = = 7
JMP CNDX AL1S INTCHK YESs NO SWAP
JMP SWAP NO+» SWAP
SUBTRACT sus Sé J=-1<«<29027?
JMP CNDX AL1S RJS INTCHK NOs NO SWAP

2 I Ry Y Ty T LY T Y Y Y Y Y 2
WRITE OLD I INTO J IN MEMORYs CHECK FOR MEM, PROT,
SET SWAP INDICATOR (0=1) *

* WRITE OLD J INTO I IN MEMORYs CHECK FOR MEM, PROT,., ¢
L L Ty Y R A Y Ty Y Yy Y Y Y Y

SWAP PASL S7 S7T = OLD I
WRTE MPCK TAB S7 J IN MEM = OLD 1
SOV INC M SS M=ADDR OF I, O=]
WRTE MPCK TAB Sé6 I IN MEM = OLD J
bl 0=1

Microprograms

EXAMPLE 3: SHELL SORT, MICROPROGRAM (Sheet 3 of 3)

PAGE U004 RTE MICRO-ASSEMBLER REV.A 760518

0102 KRk A AKX ARKNRR Nk k k&

ulo3 * ANY INTERRUPTS ? *

uloa khkkkkhk kXA AR KKK kX

01US 34U54 323 143502 INTCHK JMP CNDX tOI RJS ENDCHK NO, CHRK PASS
0lue AR AR AR R R R R R R R AR R R R R R A AR RN R IR KRR RR R AR R A®

01lu? * SAVE P (NEXT I ADDRESS) IN X (X=Pp) *

G108 * SET INTERRUPT RETURN INDICATOR (E=1) *

016y * PIX P (P=S1ll) *

v1io * JmP TO HORI (BASE SET INTERRUPT CODE) *

0111 LR R X T R e S R AR A}

0112z 34055 01u 075607 INTEXIT X P X = NEXT 1 ALDR
0113 34056 342 000607 IMM LOw [RCM 20UB IR(Y=-0)=111u=ELA
U114 34057 011 1367061l SRG1 ONu I1.E. SET E
0115 34u6y V10 065707 p s11 FIX P,

V1l6 34061 320 wU0307 Jnp LORI Jip TO BASE SET
0117 * INTERRUPT COCE
Ullg AR kR R R R R R R AR R R R AR kR AR KRR AR R AR R AR AR RRRRARR KRR A

0lly * RESTORE ADDRESS OF NEXT I IN P (F=X) *

0120 * RESTORE ADDRESS OF NExXT J 1IN S4 (S4=p+Y) *

0121 * REsSTORE NUMBER UF COMPARES IN 53 (S3=L+A-S4) *

0122 AAKRR R RN KRR RR RN KR AR AR KRR AR RN RRAR IR AR R AR AR R Ak kK

0123 34062 010 071707 INTKTN P X P = JALXT I ALDR
0124 34u63 0lu 072507 L Y

0125 34064 003 075147 aADD 54 >4 34 = WEXT U ADDF
0126 34065 010 00657 L A

U127 34066 003 0111lu7 ADD 53 i S3 = p+A

0128 34067 010 046507 L 54

0129 34070 004 145107 sUB S84 53 53 = (B+A)-54 =
0130 34071 327 003547 JMp *+2 CUMPAKES

0131 KEKKARK KRR KRR AR R AR AR KRR RN AR R R AR KRR AR kAR ko *

0132 * MORE COMPAKE3 7 (53=83-1, S3 NOT =07?) *

0133 KRR A KRR AR IR ARRRR KA h R NR AR AR R AR AR Kk ok khkk

Ul34 34072 00O V45107 ENDCHK LEC 53 53 GURE COMPARLS 2
0135 34073 320 0al542 JidP CNLX ALZ RJs (OMPARE YRS, 00 HEAY
0136 AR R AR AR R AR R AR AR R AR R R R KRR A AR RN RN AR AR AR RRRRRARRRN AR K
Ul37 * ANY COMPARANDS SWAPPED DURING THIS #ASS ? (O=1?) *
0138 KRR R R AR KRR AR R R R AR AR AR KRR AR RN AR KRN R AR R KAKRRA KRR R AR AR KK
0139 34074 335 lul342 JruiP CNDX GVFL S5TRIPASS YES, EELO PASS
0140 340675 327 601207 Jup SETY NO, iiLal PrSS
0141 LR R R R Ly Y R R R R AR)

0142 * START NEXT INSTRUCTICON FETCH, LXIT *

0143 KANKRKR KRR AR R AR RN A AR KRR AR ARARRRA AR KRR Rk k kX

0144 34070 227 164700 EXIT READ RTN INC PNM S11 START MNE&T

0145 END INSTR FETCH

END OF PASS 2: NO ERRORS

14-13

Microprograms

EXAMPLE 3: SHELL SORT, APPLICATION PROGRAM

PAGE 0001 FTN4 - RELEASE 24177C - JULY. 1972

0001 FTN4,L

0002 PROGRAM SRTST

0003 INTEGER P (5) sCONSyPRINT,IDCB(144)4NAME(3) 4 IBUF (128)
0004 INTEFGER TABLE (12%5)

0005 EQUIVALENCE (CONSsP (1)) s (NMBR4P(2)) ¢ (PRINTWP(3))
0006 DATA NAME/2HNS2H0042HO /

0007 C

0008 C GET RUN PARAMETERS

0009 CALL RMPAR(P)

nolo C

0011 C READ UNSORTED ELEMENTS FROM FILE N5000
0012 CALL OPEN (IDCBsIERR'NAME)

0013 - DO 10 J=14NMBR/125

0014 CALL READF (IDCBs IERRsIBUF)

0015 DO 20 I=1,125

0016 20 TABLE((U=1)#125 + I) = IBUF(I)

0017 10 CONTINUE

0018 C

0019 C LIST UNSORTED ELEMENTS 7?

0020 IF (PRINT) 30+40430

0021 30 WRITE (CONS,100) (TABLE(I)sI=1+NMBR)
0022 100 FORMAT (/+(1087))

0023 C

0024 C USE MDES TO INITIALIZE wCS

0025 40 CALL MDES (CONS)

0026 C

0027 C INDICATE START OF SORT

0028 WRITE (CONS+200)

0029 200 FORMAT (/4" START OF SORT")

0030 C

0031 C EXECUTE SORT

0032 CALL SORT (NMBR, TARLE)

0033 C

0034 C INDICATE END OF SORT

0035 WRITE (CONS,300)

0036 300 FORMAT (/4" END OF SORT")

0037 C

0038 C LIST SORTED ELEMENTS ?

0039 IF (PRINT) S504+60+50

0040 50 WRITE (CONS+100) (TABLE(I)e+I=1+NMRR)
0041 C

0042 C COMPLETE DEBUG OPERATIONS
0043 C I.E., CLEAR BREAKPOINTSs ETC,

0044 60 CALL MDES (CONS)

0045 CALL CLOSE (IDCB)

0046 END

NO ERRORS* PROGRAM = 00587 COMMON = 00000

14-14

EXAMPLE 3: SHELL SORT, ASSEMBLER SORT (Sheet 1 of 2)

PAGE 0002 #01

0001 ASMR, L

0002 00000 NAM ASORT.7

L EREL R T T L L L Ll L T Y Y Y O R g R g
0004 L
0005¢% LAB 2.2 ASSEMBLER SORT #
0006 #
0007# THIS ASSEMBLER PROGRAM SORTS AN INTEGER ARRAY INTOD #
0008#% ASCENDING ORDER USING THE DIMINISHING INCREMENT #
0009% TECHNIQUE (1.E. SHELL SORT). i
0010% REF: ART OF COMPUTER PROGRAMMING, VOL 3. &
0011+ »
0012% CALLING SEQUENCE #
0013» LDA NMBR + NUMBER OF SORT ELEMENTS #
00l4n LDB TABLE ADDRESS OF FIRST ELEMENT &
0015#% CLE NOT REQUIRED FOR THIS PROGRAM, *
0016#% INCLUDED FOR COMPATIRILITY WITH «
0017= THE MICRPOPROGRAM CALL #
0018+ JSB SORT INVOKE SORT ASSEMBLER PROGRAM *
n019+ L
0020% AT END #
0021+ CONTENTS OF TABLE SORTED o
0022+ 0 MAY BE ALTERED AsBeXoYsE ALTERED #
0023% ®
0024% NOTE &
00254+ IN THE FOLLOWING COMMENTSs I AND J ARE THE TWO #*
00276 SORT ELEMENTS BEING COMPARED #*
0027# (I.E. ARE THE COMPARANDS) #*
002R% A
DEC L TR R Y N R R R T R R R g QR R A R A R gy
0030 ENT SORT

0n31 EXT JENTR

Microprograms

14-15

Microprograms

EXAMPLE 3: SHELL SORT, ASSEMBLER SORT (Sheet 2 of 2)

PAGE 0003 #01

0033
0034
0035
0034
0037
0038
0039
0040
004
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
00613
0064
0065
0066
0067
00683
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083

0084
L

14-16

00000
00001
00002
00003
00004
00005
00006
00007
00010
00011
00012
00013
00014
00015
00016
00017
00020
00021
00022
00023
00024
00025
00026
00027
00030
00031
00032
00033
00034
00035
00036
00037
00040
00041
00042
00043
00044
00045
00046
00047
00050
00051
000S2
00053
00054
00055
00056
00057
00060
00061
00062

aooo0o0n
000000
000000
016001X
000000R
162000R
002020
126002R
001100
002003
126002R
072057R
103101
166000R
007004
046057R
0T76060R
066001R
076061R
0460S7R
076062R
162061R
122062R
002021
026035R
162061R
002020
026047R
026042R
162061R
003004
142062R
002021
026047R
102101
1620A1R
166062R
172062R
176061R
036061R
03A0627R
036060R

026025R.

102201
026014R
062057R
026010R
000000
000000
000000
000000

NMBR
TARLE
SORT

SETY

STRTP

COMPR

sSuR

SWAP

ENDCH

DSTNC
CNTR
IPTR
JPTR

BSS 1
BSS 1
NOP
JS8
DEF
LDA
SSA
JMP
ARS
SZA «RSS
JMP SORT,1
STA DSTNC
CcLO

LDB NMBRsI
CMB,y INB
ADB DSTNC
STB CNTR
LDB TABLE
STeE IPTR
ADB DSTNC
STR JPTR
LDA IPTRs!
XO0R JUPTRI
SSA LRSS
JMP SUB
LDA IPTR,.1I
SSA
JMP

<ENTR
NMBR
NMBR I

SORTe I

ENDCH
JMP SWAP
LDA IPTR.I
CMA.INA
ADA JUPTRs1
SSA 4RSS
JMP ENDCH
ST0
L.DA
LOR
STA
STB
1S2
1S2Z
152
JMP
soC
JMP

IPTRe1
JPTR1
JPTR I
IPTRs I
IPTR
JPTR
CNTR
COMPR

STRTP
LDA DSTNC
JMP SETY
BSS 1

BSS 1

BSS 1

BSS 1

END

GET PARAMETERS

"I” § g

A = NUMBER OF ELEMENTS
A<o0?

YESe EXIT
nwyn = wyn/z (SEE SORYT MICROPROGRAM)
nyn = o ?

YESe SORT DONE, EXIT
DSTNC = wyn = DISTANCE BETWEEN
CLEAR SWAP INDICATOR
SET

CNTR

TO NUMBER
OF COMPARES
IPTR = ADDRESS OF 1w
JPTR = ADDRESS OF wym
A - IOI" xop "Jll
SAME SIGNS ?

YESe SUBTRACT
nin ¢ o ?

YESe DON*T SWAP

NO, SWAP
.A = N gn oo nrn

nin 3 gy ?
NO»

DON'T SWAP

SET OVFL TO INDICATE A SWAP

SwaAP

(1] I [1]
AND

UL
UPDATE
l.J..
CNTR,
NO

win ADDRESS.,
ADDRESS »
CNTR =
DO NEXT COMPARE

AND
0 ?

ANY SWAPS THIS PASS ?

YES.

NOs A =

REPEAT PASS

nyn,

START NEW PASS

NO ERRORS #TOTAL ##RTE ASMB 7S0420¢#

Microprograms

EXAMPLE 3: SHELL SORT, APPLICATION/TIMING CONSOLE RUN SHEET

*QN, FMGR
tRU,ASORT, 11,5009 «——fRUN ASSEMBLY LANGUAGE SORT]

START OF SORT CONSOLE LU, NUMEEER OF SORT ELEMENTSJ

END OF SORT

HOURS MINUTES SECONDS

STOP 10 39 34.76
START : 10 39 22.92 <fRUN TIME = 11.84 SECONCS]
:RU,MDEP = 4L.0AD WCS WITH SORT MICROPROGRAM]

COMPUTER TYPE: 1=21MX,2=21MX E-SERIES
TYPEC(1 OR 2)72

SLU, 13

LU# RANGE STATUS

13 034800--234777 1

SLD, 'M2.1E JUSE FILENAME IN $CODE STATEMENT]

$EX

$END MDEP

tRU,MSORT, }, 5000 <mmmmmed RUN M1 CROPROGRAMMED SORT]

START OF SORT CONSOLE LU, NUMBER OF SORT ELEMENTS]

END OF SORT

HOURS MINUTES SECONLDS

STOP 3 10 41 15.87

START : 12 41 14,450l RUN TIME = 1.42 SECONDS!]
tEX

$END FMGR

14-17

Microprograms

14-4. MICROPROGRAMMED |/O OPERATION EXAMPLE

This paragraph contains an example of properly microprogrammed I/O operation in the RTE system
environment. An Assembly language privileged section driver (DVAxx) is shown as it would appear
“normally”, then the microprogram enhanced driver (DVMxx) is shown. The FORTRAN IV program,
shown first is used for executing the privileged I/O operation. The console run sheet and microprogram
are included in the final part of this example.

PAGE 0001 FTN4 - RELEASE 24177C - JULY, 1972

9801 FTN.L

ege2 PROGRAM MPIO

2863 INTEGER IBUFR(S5),P(5),CONS

peoa EQUIVALENCE (P(1),CONS),(P(2),LU)
0005 - DATA 1IBUFL/S/

#0286 C

9807 C GET CONSOLE LU, INPUT DEVICE LU

0088 CALL RMPAR (P)

eeey C

@610 C PERFORM INPUT FROM DEVICE

eell CALL REIO (1,LU,1BUFR, IBUFL)

égl2 C

8013 C DISPLAY INPUT DATA

eot4 WRITE (CONS,180) IBUFR

Pel1s 1o0e FORMAT (/,X,5A2,7/)

oote END

*% NO ERRORSx PROGRAM = 20048 COMMON = 00000

The FORTRAN program used is the same whether the “normal” driver or enhanced version is used.
The driver sections (initiation, privileged, completion) are prepared according to the guidelines in the
Real Time Executive III Software System Programming and Operating Manual, part no. 92060-90004.
Notice that the privileged section of the microprogram enhanced driver (the part that is micropro-
grammed) is much shorter than the complete Assembly language driver, thus, saving main memory
space. The entire “old” privileged section is not needed with the new version. Now, from location PMxx

you proceed immediately to the microprogram. This modified part of the driver saves the environment,
inputs data, and is used when returning from control memory to restore the environment. Comments
on the operation of the driver are included right in the listings.

Figure 14-2 is the flowchart for the microprogram. The console run sheet for microprogram prepara-
tion and the microprogram called from PMxzx in the driver are shown last. Note that the microprogram
saves the DMS status. The microprogram must be sensitive to DMS to operate properly in an RTE III
system. SSM and JRS in the microprogram are DMS instructions. The EQU statements point branch
instructions to these microroutines outside this microprogram. Note that Memory Protect status is
checked and DMS status is properly restored on exit. This is an example of how to properly interface
with the RTE system.

14-18

Microprograms

EXAMPLE 4: UNMODIFIED PRIVILEGED DRIVER (Sheet 1 of 3)

PAGE 0002 #01

2001 ASMB,L
2002

00@83* SAMPLE PRIVILEGED DRIVER
o204 x

P28S* AN *x* IN COLUMN 19 INDICATES A STATEMENT THAT IS NOT
0006* REQUIRED FOR THE MICROPROGRAM ENHANCED VERSION (DVMXX)
P027*x OF THIS SAMPLE PRIVILEGED DRIVER

008 %

2009 0o00e NAM DVAXX,0

0010 ENT [AXX,PAXX,CAXX

eol11 SUP

Po12%

0013x .

@014% INITIATION SECTION

2O15x%

0Gl16 Q0000 00000 1AO7 NOP

8017 0©BGQ21 B72167R STA SCODE SAVE SELECT CODE

0218 0800802 161665 LDA EQT6,1 GET CONWD

9019 Q0PB3 012280R AND =B77 ISOLATE REQUEST CODE
0020 00004 O8522@1R CPA =Bl READ REQUEST ?

021 QPSS B26007R JMP BFCHK YES, CONTINUE

022 0O0VB6 B26015SR JMP REJCT NO, REJECT I/0 REQUEST
2023 Q0087 161665 BFCHK LDA EQT6,1 GET CONWD

0024 Q0010 P12202R AND =B37777 ISOLATE BITS 15,14
025 ©eol1 B852201R CPA =Bl BUFFERED 1/0 ?

0026 Q2012 B26017R JMP RQOK YES, DO 1/0

Pe27 00013 BS2203R CPA =B3 CLASS 1/0 ?

2028 QOB14 B26017R JMP RQOK YES, DO, 1/0

0029 QOR15 0024084 REJCT CLA,INA NO, ERROR

0030 @0016 126080R JMP I1AXX,1 TAKE REJECT RETURN
0031 @0B17 B62167R RQOK LDA SCODE A = SELECT CODE (SC)
0@32 ©0020 ©32176R IOR CLC #*CONF1GURE PRIVILEGED
@033 020021 ©072183R STA PRCLC * SECTION CLC

8034 0©PB22 B62167TR LDAa SCODE CONFIGURE STC*S

@35 09823 B32171R IOR STC IN

gO36 Q@024 B72045R STA INSTC INITIATION SECTION
8937 00025 B872113R STA PRSTC * & PRIVILEGED SECTION
0938 00OB26 P22204R XOR =B1200 *CHANGE TO LIA SC

0239 0OPB27 BT7287SR STA PRLIA *CONFI1GURE PRIVILEGED SECTION LIA
Po4e OOO30 161663 LDA EQTA4,1 CLEAR EQT4

Be4l PB8B31 D12205R AND =B167777 BIT 12 TO ALLOWV

2042 Q032 171663 STA EQT4,1 NORMAL TIMEOUT
PB43 00033 861774 LDA EQTI!S SAVE

OR44 Q0034 OB72160R STA EQI1S5 EQTIS

0045 Q@035 B61663 LDA EQT4 & EQT4

eo46 0OB36 B72161R STA EQ4 ADDRESSES

ge4a7 ©OO37 161667 LDA EQTS8,1 GET DATA COUNT

eo48 ©DOoC4Q 02021 SSA,RSS NEGATIVE ?

0049 POO4) DO30C4 CMA, INA NO, SET NEGATIVE
eS8 0042 BT72157R STA COUNT

PeS51 ©@Pe43 161666 LDA EQT7,1 SAVE

2052 @0044 BT72156R STA BUFAD BUFFER ADDRESS

P53 ©BOG45 103708 INSTC STC 8,C START DEVICE

054 OQ0Q46 BQ@2400 CLA INDICATE OK INITIATION
2055 ©@O0047 126000R JMP IAXX,I RETURN

14-19

Microprograms

EXAMPLE 4: UNMODIFIED PRIVILEGED DRIVER (Sheet 2 of 3)

PAGE 02083 #01

205 7%
2058 %
o599 =
0e60x%x
P86 1
@e62
2063
264
Bo6s
PP66
8067
0068
PB69
2870
2871
va72
2273x%
0874
8875
ea76
o717
2a78
2079
0080
ges1
os82
2083
2084
2085
oe8é6
0087
po8s8
o089
2090
2e91
2992
2093
2294
0095
2096
2917
2098
2099
o100
pl1e1
glo2
@103
gle4
gl1es
2106
gle7
2198
o109
glle
2111
g112

14-20

PRIVILEGED SECTION

C00S0 6000BE PAXX NOP
0oOS1 103100 CLF 0
0BO52 106706 CLC 6
080853 106707 CLC 7
00854 B872164R STA ASV
00B55 @76165R STB BSV
0oR56 VB1520 ERA,ALS
20057 102201 socC
20260 002004 INA
28861 B72166R STA EOSV
00062 185743 STX XSV
PB@64 105753 STY YSV
SSM DMSTS SAVE DMS STATUS
BOB66 61770 LDA MPTFL
88067 ©72171R STA MPTSV
P2070 002404 CLA, INA
00071 871770 STA MPTFL
20872 102100 STF 0
02073 182502 PRLIA LIA @
00e74 172158R STA BUFAD,1
PB875 B36150R 1SZ BUFAD
80076 B36151R 1SZ COUNT
00077 ©261108R JMP CLF@
00100 19310€ CLF @
20101 166700 PRCLC CLC ©
Qo122 PB3400 cCa
86183 172152R STA EQIS5,1
00104 162153R LDA EQ4,1
00185 032200R IOR =Bl1g0o0oe
20106 172153R STA EQ4,1
82187 B26112R JMP EXIT
62110 103100 CLF@ CLF @
62111 183708 PRSTC STC @,C
@€112 ©862171R EXIT LDA MPTSV
68113 v02002 SZA
02114 @26125R JMP EXIT!
22115 865654 LDB INTBA
08116 160601 LDbAa 1,1
82117 002020 SSA
02120 182706 STC 6
@R121 006004 INB
60122 1600061 Lba 1,1
00123 PO2820 SSA
go124 102787 STC 7
©0125 185755 EXIT! LDY YSV
82127 105745 LDX XSV
28131 103101 CLO
02132 80PB36 SLA,ELA
28133 102101 STO
PO134 266165R LDB BSV
60135 B62171R LDA MPTSV
02136 871770 STA MPTFL

TURN OFF INTERRUPTS
TURN OFF
DCPC INTERRUPTS
SAVE A,
B,
E,

0,

X, &

Y REGISTERS
1! OMIT FOR RTE 2 1!
SAVE MEMIRY PROTECT

FLAG
TURN OFF MEMORY

FLAG
TURN ON INTERRUPTS
GET DATA FROM I/0 CARD
STORE DATA IN BUFFER
UPDATE BUFFER ADDRESS
LAST DATA ?

NC, PREPARE FOR NEXT INPUT
TURN OFF INTERRUPTS
TURN OFF DEVICE
SET TIMEQUT FOR

ONE TICK & SET

BIT 12 IN EQT4 SO

RTIOC WILL CALL

CAB7 ON TIMEOUT

TURN OFF INTERRUPTS
ACTIVATE DEVICE FOR NEXT INPUT
WAS MEMORY
PROTECT ON ?
NO, FORGET DCPC'S
TURN
DCPC*S
BACK
ON
IF
THEY
WVERE
ON
RESTORE Y,
X
0.,
E, &

B REGISTERS
RESTORE MEMORY
PROTECT FLAG

Microprograms

EXAMPLE 4: UNMODIFIED PRIVILEGED DRIVER (Sheet 3 of 3)

PAGE

P113
Plia
o115
gl16
117
o118
2119
2120
gl21
gl22«
2123
g124
2125
p126
2127
B128x%
B129=
2130*
@131*»
2132x%
2133x%
2134
2135
2136
2137
0138x%
2139
2140
2l41
2142
2143
@144
2145
2146
Pl4a7
2148 %
B149x
21S0*
G1S1*
o152
2153
g1S4
8155
2156
@157
2158
2159
2160
ook

0004 #0901

gglal 002002 SZA

88142 B261SIR JMP EXIT2
00143 062172R LDA ASV
0144 105715 JRS DMSTS EX!
00147 102100 EXI STF @
201580 126850R JMP PAXX,I
28151 P62172R EXIT2 LDA ASV
g2152 102100 STF ©
PB1S3 105715 JRS

#0156 ©820OBE BUFAD BSS |
09157 P00BGV COUNT BSS 1
00160 P0GORO EQIS BSS 1
20161 00000 EQ4 BSS 1
22162 P2V@G0 DMSTS BSS |

END PRIVILEGED SECTION

COMPLETION SECTION

00163 00PE0O CAXX NOP

00164 002400 CLA

02165 165667 LDB EQTS8,1
P2166 126163R JMP CAXX,I
00167 090000 SCODE NOP

PB1706 166700 CLC CLC ©
PB171 183780 STC STC 0,C
Qo172 200BROO ASV BSS 1
00173 000000 BSV BSS 1
02174 000QBP EOSV BSS |
PO175S POOGROO XSV BSS |
Vo176 0B20RO YSV BSS 1
P2177 000080 MPTSV BSS 1

SYSTEM COMMUNICATION AREA

21650 . EQU 1650B
p1654 INTBA EQU .+4B

P1663 EQT4 EQU .+13B
01665 EQT6 EQU .+1SB
01666 EQT7 EQU .+16B
ol1667 EQT8 EQU .+17B
1774 EQT1S5 EQU .+124B
01770 MPTFL EQU .+12@B

END

*

* % % ¥ ¥ *

NO ERRORS *TOTAL *%RTE ASMB 750420x%x

WAS MEMORY PROTECT ON ?
NO, LEAVE OFF
YES, RESTORE A REGISTER
RESTORE DMS STATUS
TURN ON INTERRUPT SYSTEM
EXIT
RESTORE A REGISTER
TURN ON INTERRUPT SYSTEM

DMSTS PAXX,I RESTORE DMS STATUS & RETURN

SET UP FOR NORMAL RETURN
TRANSMISSION LOG TO B
RETURN

14-21

Microprograms

EXAMPLE 4: ENHANCED DRIVER (Sheet 1 of 2)

PAGE 0002 #01

goo! ASMB,L

0oa2x%

@083% SAMPLE PRIVILEGED DRIVER WITH MICROPROGRAM ENHANCEMENTS
2O04ax

0005 000R0 NAM DVMXX,0

2006 ENT IMXX,PMXX,CMXX

0007 SuUp

2008 »

2009 x

0B10* INITIATION SECTION

PB11x

0812 0POPOC QOVOROE IMO7 NOP

0013 @0ee1 @720861R STA SCODE SAVE SELECT CODE
0014 @0002 161665 LDA EQT6,1 GET CONWD

BB1S Q0983 G12063R AND =B77 ISOLATE REQUEST CODE
0016 00004 B52064R CPA =B] READ REQUEST ?

0217 00P0S ©2600@7R JMP BFCHK YES, CONTINUE

0018 00006 B2601SR JMP REJCT NO, REJECT 1/0 REQUEST
0219 00027 161665 BFCHK LDA EQT6,1 GET CONWD

020 00010 G12065R AND =B37777 ISOLATE BITS 15,14
9221 000811 252064R CPA =B] BUFFERED 1/0 ?

0o22 Q0P12 @26017R JMP RQOK YES, DO 1/0

9023 0BOB13 B@52066R CPA =B3J CLASS 1/0 ?

0024 0QOOG14 G26017R JMP RQOK YES, DO 1/0

0225 Q0P1S 202404 REJCT CLA,INA NO, ERROR

0226 QP16 126800R JMP IMXX,1 TAKE REJECT RETURN
0627 00017 062061JR RQOK LDA SCODE A = SELECT CODE (SC)
ge28 00020 932962R IOR STC CONFIGURE STC IN
0029 00821 @72037R STA INSTC INITIATIOf; SECTION
PO32 @022 161663 LDA EQT4,1 CLEAR EQT4

0831 00023 B120867R AND =B167777 BIT 12 TO ALLOV
0232 Qo024 171663 STA EQT4,1 NORMAL TIMEOUT
0033 20025 61774 LDA EQTI1S SAVE

PA34 ©0B26 B720852R STA EQ1S EQTI1S

@035 00027 961663 LDA EQT4 & EQT4

2036 ©0B30 ©72053R STA EQ4 ADDRESSES

0837 0PB3]1 161667 LDA EQTS8,1 GET DATA COUNT

0038 PoB32 Bo2B21 SSA,LRSS NEGATIVE ?

@239 00033 VO304 CMA, INA NO, SET NEGATIVE
0040 OOB34 OT72046R STA COUNT

P04l QO0B35 161666 LDA EQT7,1 SAVE

2042 0QOB36 B7204S5R STA BUFAD BUFFER ADDRESS
@043 @P037 183700 INSTC STC ©,C START DEVICE

PB44 D0B40 PP2400 CLA INDICATE OK INITIATION
2045 ©0G41 1260@0R JMP IMXX,I RETURN

14-22

Microprograms

EXAMPLE 4: ENHANCED DRIVER (Sheet 2 of 2)

PAGE 0003 #0901

BB4T*
P48 x
049 *
2O5So*
2051
BRs2
2053
2054
P055
2056
2857
0058
8059
po60
go6 1
o062
206 3%
206 4%
P06 5%
2066 *
006 7%
2068 x
2069
2070
0071
2072
2273
ee74
@075
ee76x*
0877*
2278 *
P79 *x
0080
0281
2082
2083
0084
2085
086
oo87
2088

*% NO ERRORS *TOTAL *%RTE ASMB 758420%x*

PRIVILEGED SECTION

poe42

POB43
00044
20045
0oR46

200647

0oRsSP
02051
00052
08053
0054

000e00 PMXX NOP

185600
PoE@B54R
000o00
000000
021770
POOOS4R
100042R
000000
POeeoY
PoCe0o

MIC
MIO
DEF
BUFAD BSS
COUNT BSS
DEF
DEF
DEF
EQIS BSS
EQ4 BSS
DMSTS BSS

END PRIVILEGED SECTION

COMPLETION SECTION

8OOSS
00056
voo57
00060

poerél
ooo62

008000
082400
165667
126 055R

000000
103700

CM@7 NOP
CLA
LDB
JMP
SCODE NOP
STC STC

MI10, 105600B,@ EQUATE MIO & MICROPROGRAM

DMSTS
1
1
MPTFL
DMSTS
PMXX, I
1
1
1

EQTS8,1
cMxXx,I

e,C

SYSTEM COMMUNICATION AREA

81650
01654
21663
21665
21666
01667
01774
01770

. EQU
INTBA EQU
EQT4 EQU
EQT6 EQU
EQT7 EQU
EQT8 EQU
EQTIS EQU
MPTFL EQU

END

1650B
«+4B
«+13B
«+1SB
«+16B
«+17B
«+124B
++120B

INVOKE MICROPROGRAM

ADDRESS OF DMS STATUS SAVE WORD
BUFFER ADDRESS

DATA COUNT

ADDRESS OF MEMORY PROTECT FLAG
THESE 2 DEF'S ARE HERE SO THAT
MI{ MAY INVOKE JRS EFFICIENTLY
ADDRESS OF EQTIS

ADDRESS OF EQT4

DMS STATUS WORD

SET UP FOR NORMAL RETURN
TRANSMISSION LOG TO B
RETURN

14-23

Microprograms

!! OMIT IF OPERATING SYSTEM IS RTE 2 !!
SAVE DMS STATUS (JSB SSM I.E. 20347B)

M
[GET SC_(SELECT CODE) (L=CIR)]
3

FORM LI+ SC IN S1, EXECUTE LI#* SC
FORM STC SC,C IN S1
LINPUT DATA INTO S2

s c
READ BUFFER ADDRESS FROM BUFAD INTOD S4
FORM CLC SC IN S3
PLACE UPDATED BUFFER ADDRESS IN S5 (S5=S4+1)
WRITE UPDATED BUFFER ADDRESS INTO BUFAD

v

[WRITE DATA INTO BUFFER]
3

READ (& UPDATE) DATA COUNT FROM COUNT INTO S4
FORM STC 4 IN S2, FORM STC § IN S2
WRITE UPDATED DATA COUNT INTO COUNT

y

[UPDATED COUNT = 0 7
Y

[TURN OFF DEVICE (EXECUTE CLC SC)]
¥

PLACE ADDRESS EQ15 IN S1
READ ADDRESS OF EQT1S USING S1 & INDIRECT ROUTINE
FORM ADDRESS OF EQ4 IN S1 (S1=S1+1)
FORM -1 IN S3, WRITE -1 INTD EQT1S
[]

READ ADDRESS OF EQT4 USING S1 & INDIRECT ROUTINE
TURN ON BIT 12 IN VALUE READ FROM EQT4
WRITE UPDATED EQT4 VALUE INTO EQT4

lREADY DEVICE FOR NEXT INPUT CEXECUTE STC SC,C)}#————————w

.

y
[WAS MEMORY PROTECT ON ? (MPTFL=07 e

yY
LTURN ON MEMORY PROTECT (EXECUTE STC 5)|

i

y

! OMIT IF OPERATING SYSTEM IS RTE 2 1!

RESTORE DMS STATUS, EXIT (JMP JRS I.E. 20354B)
—

'! DO ONLY FOR RTE 2 It

PERFORM A JMP PMXX, 1

Figure 14-2. Example 4, Microprogrammed Privileged Section Flowchart

14-24

Microprograms
EXAMPLE 4: MICROPROGRAMMED DRIVER, CONSOLE RUN SHEET

*ON, FMGR
:RU,EDITR JCREATE MICROPROGRAM SOURCE FILE}
SOURCE FILE?
/A
EOF

/T:lﬂ;lS;ZG;ZS;SZ,QZ<¢—iSET TABS FOR MICROINSTRUCTION FORMAﬂ

/ MICMXE,L33333521MX E-SERIES ORF-SERIES

BODY OF
ICROPROGRAM

/ELC&M3.1E @ JUSER SELECTED MICROPROGRAM SOURCE FILENAME]
LS FILE 2 33
END OF EDIT
:RU_MICRO,&M3.1E,-6, «——IMI CROASSEMBLE MICROPROGRAM}
/MICRO: END
:RU,MDEP <« 1.0AD MICROPROGRAM INTO WCS]

COMPUTER TYPE: 1=21MX,2=21MX E-SERIES
TYPE(1 OR 2)22

$LU, 13
LU# RANGE STATUS
13 ©834080--034777 |1
SLD,$M3.1E « JF ILENAME SPECIFIED IN SCODE STATEMENT]
$EX
$END MDEP < {INPUT DEVICE LUJ
sRU,MPIO, 1,5
L {CONSOLE LUI
GAHDB
:EX
$END FMGR

14-25

Microprograms

EXAMPLE 4: DRIVER MICROPROGRAMMED PRIVILEGED SECTION (Sheet 1 of 3)

PAGE

3801
e
20083
4404
A5
duoe
aue7
Jovs
2009
A4l
2611
4012
4013
del4
4815
16
2617
4018
22819
4221
A221
a0z
A2 s
2024
3025
4026
2027
yaegs
202y
wode
4031
w32
2233
de34
2039
2036
2437
2438
449
d04v
nual
a042
Na43
ded44
e045
8a46
2047
30a8
ava9
vasSe
051
aa%v2
0053
ves54

14-26

0n¢2 RTE MICRO=ASSEMBLER REV,A 760818

34unae

34029
34e21
34Y22

34923

34024
d4p2bd
J4un26
34n27
34r3e
34y31
34p32

34833
34034
34u 35
34036
34037
34040

34v41
34042

327

23
3ed
buw

nie

357
wie
vilu
2lo
353
el
wiv

ee7
351
R Y]
vle
ne7
el

e1e
21

guionz

n36747
@16247
w75747

wa24dn7

175007
141007
©apboz
R367 46
67023
141007
a13p4a7

174707
167123
145107
wa1147
147207
e5evy7

046647
@az2907

MICMXE,L 21MX E/F=SERIES
3CODE='MDRVK,REPLACE QBJECY 70 DISC
LR e Y R R I
* *
* SAMPLE PRIVILEGED SECTIUN MICHOPROGRAM FOR DVMXX «
* *
WA e R e Y R R R A I
URG 34pzeb 15680 3> 34200
HOR] EQu 68
INDIRECT EQu 2518B
SSM EQU 2063454
JRS EQU 26352
JMP dab2un SAVE ENTRY
ALGN POINTS

LA L Y s s R AR R I
* |1 OMIT IF GPERATING SYSTEM IS RTE 2 }) =
* SAVE DMS STATUS (JSB SSM 1.E, 2¢3478) w
A R N S R R AR It

READ S5M EXPECTS A
JShb S§M READ OF DMSTS
DEC P P S§M INC'S P 1

LA s e R Y S Y S 2R] TOQ MANY FOKR US
* GET SC (SELECT CODE) (LsCIk) =
Yo e Ao e A e e e W ek e o ok ok e

L CIR L = SELECT cODRt
22222 2 R Y R S R R I

* FORM LI® 8C IN S1, EXECUTE LIx SC =

* FORM STC SC.C IN §% *
* INPUT DATA INTQO S2 *
iﬁ*i***tﬁ***ttt*tt**ttttt*ttt**ti****
IMM CMHI S 3768 §1 = 402 & | Ix @
I0r 81 S1 S1 = LI~ SC
v INCM 81 EXECUTE [Ix SC
10G
IMM L4 CMLO S1 3¢3IB S1=1{72vssSTC @,C
IOk 81 §1 81 a STC SC,C
S2 101 §2 3 DATA
t****t**i**i*l*tit*tt*itt*itttt*ﬁ*t**t**it****ii
* READ BUFFER ADORESS FROM BUFAD INTO S4 "
* FORM CLC SC IN S3 *
* PLACE UPDATED BUFFER ADDRESS IN S5 (S52S4+1) =
* WRITE UPDATED BUFFER ADDRESS INTO BUFAD *
it*tt*t*t*tt*iit*tttt*titt#t*ti*tti*t*itﬁt*'kt*tt
READ INC PNM P READ BUF ADOR
IMM L4 CMLO 83 1438 S3=d4700aCLC @
IoR 83 $3 $3 = CLC SC
S4 Tal S4 = BUF ADNR
INC S5 S4 S5 = NEXT ADDR
WRTE TAB 85 UPDATE BUF ADDR

AR L R R Y Y 2220
* WRITE DATA INTO BUFFER #
KA RN RRRRR RN AN NN AN RNk R
M S4 M s BUF ADDR
WRTE TAB S2 WRITE DATA

Microprograms

EXAMPLE 4: DRIVER MICROPROGRAMMED PRIVILEGED SECTION (Sheet 2 of 3)

PAGE Qe®d RTE MICRO=ASSEMBLER REV,A 760818

2056
2057
a058
eas9
2269
4061
2062
2063
p064
2065
0066
V67
Jo68
2069
g874
071
8072
2B73
neza
0475
2476
ea77
@78
aaze
2080
Josl
w82
apv8éd
1084
wees
2886
ewe7z
ao8s
2089
2099
g9l
2092
wo9d
Q094
ne9s
2096
0097
2098
2999
2100
2101
2142
2193

34043
34u44
3404%
34vu46
34047

dd4u50

34651
34052

94053
34054
34055
34656
34057
34060
34061

34062
34063
34p64
34065
34066
34067

34670
34071

227
350
7
we7
21v

320

w1
eiuv

343
wb4
230
IV
pe7
343
210

230
Jee
347
el
210
327

ete
ele

174707
073062
143047
lo1147
va6bps7

0a34i42

badouy7
0367 46

172547
175007
Pepn647
012477
141007
177147
Ra4du7

240647
012477
136507
evioa?
vaeny?
evd3du7

e4nba7
@367 46

RN R R RN Rk AR AN R R I NR AR N R I KRR AR RN RN kh sk b
* READ (& UPDATE) DATA COUNT FROM COUNT INTO S4 =

* FORM STC 4 IN S2, FORM STC 5 IN §2
% WRITE UPDATED DATA COUNT INTO COUNT

]
L]

LAAE R AR R RS 2R L e R TR Y Y T R 22222222}

READ INC PNM P
IMm L1 CMLO 82 358
INC S2 §2
INC S84 Tad
WRTE TaB S4
L A R I R I T
* UPDATED COUNT = 8 7 =
LR e T E 2 Y
JMP CNDX ALZ RJS STC
HRAKRNR AR RN R A RN AN RN ARk R AR K
* TURN OFF DEVICE (EXECUTE CLC SC) =
WRRR RN AN AN TR RN R RN AR R RN R R kAR
IRCM 83
106

READ DATA COUNT
82 = 7p4 = STC 4
$§2 = 705 = STC 5
$4 3 NEW COUNT

WRITE NEW COUNT

NQ, STC SC,C

EXEC CLC SC

AR AR RS Al L Y R 22322222221

* PLACE ADDRESS OF EQ15 IN S1)

*

* READ ADDRESS OF EGT15 USING S$1 & INDIRECT ROUTINE =

* FORM ADDRESS OF EG4 IN S1 (S1Em81+})
* FORM =1 IN S3, WRITE =1 INTO EQT1S

*
-

LA A R L I I R R R R R 22 il

IMM LOwW L 3758
sus St P
READ M 81
JSB IOFF INDIRECT
INC 51§ S1
1Mm LOW 83 3778
WRTE TAB 83

L = 177775 » =3
§1 = EULS ADOR
GET EQTI5 ADOR

81 = ADDR OF EQ4
§3 = 177777 » ={
$3 EQTLIS = =%

HRRR RN R KA R AR AR N AR RN AR RN R AR AR AR R AR Rk ek
* READ ADDRESS OF EGTA4 USING 51 & INDIRECT ROUTINE #
* TURN ON BIT 12 IN VALUE READ FROM EQT4 "

* WRITE UPDATED EWT4 VALUE INT0 EQT4

*

*i‘t**i*i*tit*!*i*tt**t*i*ti*li*ttt**i*titi*tﬁ*tl**.

READ M $1

JSB IOFF INDIRECT

IMM HIGH L 3578
SONL 81 TAB

WRTE TAB 81

JMP MPSTAT

READ EQT4

L = 167777

TURN ON BIT 12
EOT4 BIT 12 = |
CHK MEM, PROT,

A R L s
* READY DEVICE FOR NEXT INPUT (EXECUTE STC SC,C) =
A R L R R e YR R 2R s

STC IRCM S}
106G

EXEC 8TC sC,C

14-27

Microprograms

EXAMPLE 4: DRIVER MICROPROGRAMMED PRIVILEGED SECTION (Sheet 3 of 3)

PAGE P@w4 RTE MICRO~ASSEMBLER REV,A 760818

105
2106
2107
ales
219
u1102
4111
¢l1ie
a113
2114
a119
2116
117
2118
ull9
2120
2121
a122
2123
d1z4
4125
J126
ui27
128
1129
4131
2131
4132
3133

END OF PASS 2% NU ERRORS

14-28

34072
34073
d4u74
34075

34076

34077

34100
34101

227
306
210
J20

a1
ele

27
324

174707
wiz2477
pon743
243742

pazé6a7
©36746

174707
w16547

I R T R Y e T T
* WAS MEMORY PROTECT ON 2?2 (MPTFLs@?) =
LI T R e I R T T Y

MPSTAT READ INC PNM P KREAD MPTFL
JSB IOFF INDIRECTY
ION TAB MPTFL = 0 7
JMP CNDX ALZ RJS we2 NGO, LEAVE
* MEM, PROT, OFF

AR R T T e TR R R
* TURN ON MEMORY PROTECT (EXECUTE STC 5) »
R R e R R R R R Y
IRCM S2 EXEC STC 5
106

AERRR AR RN R AR AR R AR R RN R A AR AR IR R R R AR OAR AR RN
* |l OMIT IF OPERATING SYSTEM IS5 RTE 2 l! *
w RESTORE DMS STATUS, EXIT (JMP JRS 1.E, 203548) w
LR e R L R R R T T T T T L

READ INC PNM P JRS EXPECTS A

JMP JRS READ OF DMSTS
HERNRE AR RANRRI IR AN RN R R
*» |l DO ONLY FOR RTE 2 1l =

» PERKFORM A JMP PMXX,1 *
(AR 2L 222222222 222 RS0 X2
" INC P P P => DEF PMXX,I
* READ INC PNM P READ PMXX ADDR
® JSB IOFF INUIRECTY
* READ MPCK INC P M JMP PMXX,1
* RTN ION
END

APPENDIXES

Appendix A
ABBREVIATIONS AND DEFINITIONS N

ABBREVIATIONS AND DEFINITIONS

An alphabetically arranged listing of abbreviations and definitions used in the manual follows. The
listing does not contain definitions of terms such as X-register, S-register, etc., or definitions for
languages (FORTRAN, etc.) and other commonly used terms such as K, nS., etc. Pseudo-
microinstructions, abbreviations and definitions for micro-orders, and main memory (Assembly lan-
guage) instructions are not included either. Refer to the computer operating and reference manual or
to micro-order lists in this manual for explanations of these mnemonics.

ABBREVIATION DEFINITION
AAF A-Addressable Flip-flop
ACM Association of Computer Manufacturers
ALU Arithmetic/Logic Unit or ALU field (word type I microinstruction)
ASG Alter-Skip Group (machine instruction category)
BAF B-Addressable Flip-flop
BKTBL Breakpoint table (MDE)
BRCH Branch micro-order field, word type III or IV microinstruction
BSM Batch Spool Monitor (RTE subsystem software module)
CIR Central Interrupt Register
CM Control memory
CMAR Control Memory Address Register
CNDX Condition field, word type II microinstruction
CNTL Control
CNTR Counter, either the lower eight bits of the Instruction Register or a
micro-order.
COND Condition field, word type III microinstruction
CPU Central Processor Unit
CRT Cathode ray tube (console device)
DCPC Dual Channel Port Controller (computer accessory)
DMS Dynamic Mapping System (13305A accessory)
DSPI Display indicator register or a micro-order
DSPL Display register or a micro-order
DVR36 Driver 36 for WCS board (12978A and 13197A)
EAG Extended Arithmetic Group (machine instruction category)
EAU Extended Arithmetic Unit (machine category)

Al

Appendix A

ABBREVIATION

EDITR
EIG
EOF
EQT
ESP

EXEC
FAB
FEM

FF

. FFP
FFT

FMGR
FPP

HP
/0
IBL
IC
10G
IR
KB/S
KP/S
KW/S
LED
LG
LOADR
LS
LU

MDE
MDEP
MDES
MEAR

MEM

MICRO

MIR
A-2

DEFINITION

RTE System Interactive Editor software module
Extended Instruction Group (machine instruction category)
End of file

RTE system equipment table

Engineering supplement package

RTE system call to operating system

Firmware Accessory Board (13304A 3.5K CM storage accessory)
Firmware Expansion Module (12791A 8K CM storage accessory)
Flip-flop (single-bit storage element)

Fast FORTRAN Processor (computer accessory)

Fast Fourier Transform

File Manager (RTE system)

Hardware Floating Point Processor

Hewlett-Packard

Input/Output

Initial Binary Loader

Integrated circuit

Input-Output Group (machine instruction category)
Instruction Register

Kilobytes per second

Kilopairs per second

Kilowords per second

Light-Emitting Diode (indicators on the computer)

Loaﬂ and Go (tracks in RTE system)

RTE system loader (program name)

Logical Source (tracks in RTE system)

RTE system Logical Unit designator

M-register

Microdebug Editor (microprogramming support software)
Name for MDE user scheduled (stand-alone) program
Name for MDE callable (subroutine) program

Memory Address Register (DMS)

Memory Expansion Module (part of DMS)

Program name for RTE Microassembler (microprogramming support software)

Microinstruction Register

ABBREVIATION

MJL
MOD
MP
MPP
MRG
MXREF

OP

pROM
PTGEN

R-S
RAM
ROM

RPL
RTE

RU

SC
SRG

STR

SYS
TTY
UcCs

UIG
USR
WCS

WCSLT
WLOAD
XFER

Appendix A

DEFINITION

Microjump Logic

Modifier field, word type II microinstruction

Memory Protect

Multiprogrammable Processor Port

Memory Reference Group (machine instruction category)

Name for RTE Microassembler Cross-Reference Generator (micro-
programming support software)

Operation field, word type I and II microinstructions
P-register
Programmable Read-Only Memory (integrated circuits)

Program name for pPROM Tape Generator (microprogramming support
software)

Rotate/shift (logic)

Random Access Memory

Read-Only Memory (used in control memory, map logic, etc.)
Remote Program Load Configuration switches

Real Time Executive (operating system)

RTE system command designation

Select code

Shift-Rotate Group (machine instruction category)

Store field, word type I and II microinstructions

System

Teleprinter (console device)

User Control Store (13047A 2K CM storage accessory)

User Instruction Group (machine instruction category)

User

Writable Control Store (13197A 1K storage accessory)

WCS logical unit table

WCS I/0 Utility (library) routine (microprogramming support software)

Transfer

A-3/A-4

Appendix B
MICROINSTRUCTION FORMATS I

MICROINSTRUCTION FORMATS

APPENDIX

The four word type formats accepted by the microassembler appear below. The same type information
appears at the top of the microprogramming form contained in appendix D.

Word Type 1 LABEL op SPECIAL ALU STORE S-BUS COMMENTS
Word Type 2 LABEL “IMM"! SPECIAL MODIFIER STORE OPERAND COMMENTS
’ o ' BRANCH
Word Type 3 LABEL BRANCH CNDX CONDITION SENSE ADDRESS COMMENTS
“JMP** MODIFIER/

Word Type 4 ABE

ord Type LABEL OR “JSB" SPECIAL ADDRESS COMMENTS

FIELD 1 FIELD 2 FIELD 3 FIELD 4 FIELD S FIELD 6 FIELD 7
1 10 15 20 25 30 40 72