

SERIES 60 (LEVEL 6)
GCOS 6 MOD 400
) PROGRAMMER'’S GUIDE

SUBJECT

Descriptions of Mod 400 Operating Environments, User Access to the System,
and Selected Examples of the Use of System Software Components

SOFTWARE SUPPORTED

This publication supports Release 0100 of the Series 60 (Level 6) GCOS 6
MOD 400 Operating System; see the Manual Directory of the latest GCOS 6
MOD 400 System Concepts manual (Order No. CB20) for information as to later
releases supported by this manual.

ORDER NUMBER
CB22, Rev. 0 January 1978

Preface

The purpose of this manual is to provide the user with programmer-oriented
information regarding the various operating environments available under the
GCOS 6 Mod 400 Operating System and programmer procedures for terminal
startup and access to the system. Also contained in this manual are examples of
the use of various system software components: the editor, macro preprocessor,
assembler, COBOL and FORTRAN compilers, and the sort program.

This material is presented in 9 sections, as outlined in the Introduction. The
Introduction also presents suggested usages of the Mod 400 manual set for
application programmers, system programmers, and operators.

© 1978, Honeywell Information Systems Inc. File No.: 1823 CB22

MANUAL DIRECTORY

The following publications constitute the GCOS 6 manual set. The Manual
Directory in the latest GCOS 6 MOD 400 System Concepts manual lists the
current revision number and addenda (if any) for each manual in the set.

Order

No. Manual Title

CBo1 GCOS 6 Program Preparation

CB02 GCOS 6 Commands

CBO03 GCOS 6 Communications Processing

CB04 GCOS 6 Sort/Merge

CBO05 GCOS 6 Data File Organizations and Formats
CB06 GCOS 6 System Messages

CB07 GCOS 6 Assembly Language Reference

CB08 GCOS 6 System Service Macro Cells

CB09 GCOS 6 RPG Reference

CB10 GCOS 6 Intermediate COBOL Reference

CB20 GCOS 6 MOD 400 System Concepts

CB21 GCOS 6 MOD 400 Program Execution and Checkout
CB22 GCOS 6 MOD 400 Programmer’s Guide

CB23 GCOS 6 MOD 400 System Building

CB24 GCOS 6 MOD 400 Operator’s Guide

CB25 GCOS 6 MOD 400 FORTRAN Reference

CB26 GCOS 6 MOD 400 Entry-Level COBOL Reference
CB30 Remote Batch Facility User’s Guide

CB31 Data Entry Facility User’s Guide

CB33 Level 6/Level 6 File Transmission

CB34 Level 6/Level 62 File Transmission

CB35 Level 6/Level 64 (Relcase 0300) File Transmission
CB36 Level 6/Level 66 File Transmission

CB37 Level 6/Series 200/2000 File Transmission

CB38 Level 6/BSC 2780 File Transmission

CB39 Level 6/Level 64 (Relcase 0220) File Transmission

In addition, the following documents provide general hardware information:

Order

No. - Manual Title

AS22 Honeywell Level 6 Minicomputer Handbook

ATO04 Level 6 System and Peripherals Cperation Manual

iii CB22

e "\1
y\&n . /

Section 1. Introduction

Guide to Using the Manual Set 1-1
Applications Programmer’s Manual
Guidell 1
System Programmer’s Manual Guide ... 1
Operator’s Manual Guide 1-
RBF and DEF User Manual Guide 1

Section 2. Operating Environments

Operator-Only Environment 2-1
All-Online Environment 2-1
Online/Batch Environment 2-1
Dedicated Application Environment 2-2
Mixed Environment 2-2

Section 3. User Terminal Startup

Startup with the Login Facility 3-1
Task Group-Specific Terminal Startup..... 3-1
Section 4. User Access to the System
Accessby LogginIn...................... 4-1
Direct Login Terminal 4-1
Abbreviated Login Terminal 4-1
Full Login Terminal 4-1
Command Processor as
Lead Task 4-2
Application as Lead Task 4-2
Access through the Operator or
Another User.......................... 4-2
Serial Execution of Application
Tasks........coviiiiiiiniiiiin... 4-2
Concurrent Execution of Application
Taskscoviiiiiiiii.. 4-3
Concurrent Execution from Several
Task Groups 4-3
Execution of an Application from the
Batch Task Group 4-3
Execution from the Data Entry
Facility DEF) 44
Access through the
Operator Terminal 4-4

Section 5. Using the Editor
Editor Directive Description 5-1

Section 6. Using the Assembler and
Macro Preprocessor

Sample Assembly Language Session

(SMPMAQC)ciiiiiiiiiaeneennn, 6-1
Sample Assembly Language Multitask
Program (BRDCST) 6-6

Contents

Section 7. Using the COBOL Compiler

Sample Card-to-Disk Program 7-1
Volume and File Creation.............. 7-2
Source Loading 7-2
Compiling with COBOL 7-2
Linkingoo i it 7-2
Executing..............l 7-3

Sample COBOL Terminal Session

(ACB111) ... iii e 7-3

Calling FORTRAN Routines from an
Entry-Level COBOL Main Program .. 7-7

Section 8. Using the FORTRAN

Compiler
Sample FORTRAN Terminal Session

MATINV) ... 8-1
FORTRAN Chaining 8-1

Section 9. Using the Sort

Figures

1-1 Applications Programmer Guide

toManuals 1-3
1-2 System Programmer Guide to

Manuals 1-4
1-3 Operator Guide to Manuals 1-4
1-4 RBF and DEF User Guide to

Manuals 1-5
5-1 Sample Editor Directives in File

SMPCMDFL 5-1

5-2 Terminal Responses from

Sample Editor Directives of

Figure 5-1................... 5-2
5-3 Sample of Unexpanded Assembly

Language Program with Macro

Calls and Statements

(SMPMAC.P)................ 5-9
5-4 Sample of Unexpanded Macro

Routine (SAMPL1) Contained

in EXEC_LIB Directory 5-10
5-5 Sample of Unexpanded Macro

Routine (SAMPL2) Contained

in EXEC_LIB Directory 5-11
6-1 Sample Terminal Session

(SMPMAC)ccvvnnn. 6-1
6-2 Macro Preprocessor Output

(SMPMAQC)ccvvvunne.. 6-2
6-3 Cross Reference Listing

(SMPMAQC)cccvvvnnn... 6-3

CB22

6-4
6-5
6-6
7-1
7-2
7-3
7-4
7-5

8-1

. Assembler Output Listing

(SMPMAQC)ccvvnnnn
Linker Output Listing
(SMPMAC)ccovvunnnn

~ Sample Terminal Session

(BRDCST)covvieeennnn.
Sample Terminal Session

(AC8111) ...ovvveviiiieenn
Sample Listings for AC8111
COBOL Listing of COBFRT
FORTRAN Listing of FRTRAN
Operator Terminal Session for

COBFRT
Sample Terminal Session

(MATINV) ...t

8-2

84
85
86
8-7

Source and Linker Output

Listing MATINV)
Assembly Listing of Program

CHAINoo...
FORTRAN Programs Calling

the CHAIN Function.........
Linker Output for Chained

Programs
Linker Directives for Chained

Programs
Execution Output from Chained

Programs
Sample Sort Terminal Session

CB22

T

Section 1

Introduction

The GCOS 6 Mod 400 operating system for the Models 6/30 and 6/40 minicomputers provides a
comprehensive set of system services which form a base for executing user-written applications,
Honeywell-supplied applications, and program development tools. It provides an online, inter-
rupt-driven operation for multiple users and a single, low-priority batch operation typically
used for program development and associated activities.

A number of different operating environments are possible, controlled in part by options
exercised at system configuration, and in part by options chosen by the system operator at
startup or at various times during the operating day. These environments are more fully
described in Section 2, “Operating Environments.”

Access to the system by users can be achieved in a variety of ways, again depending in part on
system configuration options selected. These options are concerned mainly with the definition of
local and/or remote terminal devices and how they are connected to the system. These are
described in Section 3, “User Terminal Startup.” Other access options, normally under the
control of the system operator, are concerned with the procedures by which a user identifies
himself (logs in) to the system through a connected terminal. This subject is treated in Section 4,
“User Access to the System.”

The remaining sections comprise descriptions and examples of the use of various system
components: the Editor (Section 5), the Assembler and Macro Preprocessor (Section 6), the
COBOL Compiler (Section 7), the FORTRAN Compiler (Section 8), and the Sort component
(Section 9). Each of these sections presents terminal and/or line printer listings representing the
actions performed. In these listings, heading lines may vary in detail depending on the
component that initiated the listing or, in some cases, may be omitted. However, in actual use,
the user will see heading lines consisting of three major fields of information, as shown below.

1. System Identification: GCOS6 MOD400- i rrr-mm/dd/hhmm
S — SAF
L — LAF

rrr — Release number of the operating system

mm/dd/hhmm — Date/time when operating system was created (month, day,
hour, and minute)

2. Component Identification: xxxxx-rrrr-mm/dd/hhmm

xxxxx — Component name
rrrr — Revision number of component
mm/dd/hhmm — Date/time that specified revision of component was created
(month, day, hour, and minute)

3. Time of program execution: yyyy/mm/dd hhmm:ss.t

Date/time of program execution (year, month, day, hour, minute, second, and tenth of
second)

GUIDE TO USING THE MANUAL SET

This guide to the manuals is arranged according to functions that might be performed by an
applications programmer, a systems programmer, or an operator. As used in this guide, the
applications programmer writes applications programs; the system programmer configures the
system and defines the environment for each application; and the operator operates the system
from the operator terminal. These functions could be performed by three different persons or by
the same person serving in the different capacities.

INTRODUCTION 11 CB22

APPLICATIONS PROGRAMMER’S MANUAL GUIDE

Figure 1-1 illustrates the suggested sequence in using the manuals. If you wish to start using
the system by writing an application program, begin by using the Programmer’s Guide manual.
It illustrates: (1) various ways to gain access to the system, (2) a sample Editor session, and (3)
for application languages, the procedure for performing program preparation and execution.
Working with the small subset of commands used in the examples is a good approach to learning
the system command set. This approach for getting started assumes that a system programmer
has already configured and started up a suitable application environment. While using the
system, you may wish to familiarize yourself with the system facilities described in the System
Concepts manual.

Through examples, the Programmer’s Guide illustrates how to use the system facilities.
Other manuals provide reference material. The Program Preparation manual contains Editor
directives (statements) to create and update an application language source unit. For each of the
languages the appropriate language reference manuals contain the description of the language
statements. Operating system dependencies, if any, that affect how you write the application
are described in the Programmer’s Guide. If the application uses communications, refer to the
Communications Processing manual. Read the Data File Organizations and Formats manual if
you require a better understanding of a language-supported file organization that is to be used
in an application, or if you must calculate the size of a data file. You can use Monitor macro calls,
as described in the System Service Macro Calls manual, in assembly language programs. Before
your program can be entered for execution, it must be linked as described in the Program
Execution and Checkout manual.

For program compilation or assembly and execution, the procedures described in the
Programmer’s Guide might be sufficient. To obtain more control over the execution of your
program or utilize the system facilities more completely or efficiently, use the commands
described in the Commands manual. If you wish to use the operator terminal, read the
Operator’s Guide. In many cases, the description of commands must be supplemented by system
conceptsdescribed in the System Concepts manual. Rather than read all the conceptual material
at one time, you may find it more meaningful to refer to it in conjunction with the appropriate
reference material. The Commands manual also describes the utilities. An assembly language
program, the Patch, Debug, and Dump utilities are described in the Program Execution and
Checkout manual; file transmission from Level 6 to a host system is described in the File
Transmission manual appropriate to the host system. Error messages and return status codes
are listed in the System Messages manual.

SYSTEM PROGRAMMER'’S MANUAL GUIDE

Figure 1-2 illustrates the suggested sequence for using the manuals. The System Building
manual provides you with the configuration directives (statements) and startup procedures to
configure and start up a MOD 400, a Remote Batch Facility (RBF), or a Data Entry Facility
(DEF) system. You must know the conceptual material in the System Concepts manual in order
to successfully use the configuration directives. To tailor an applications environment suitable
for the intended application, use the operator commands described in the Operator’s Guide
manual. Error messages are listed in the System Messages manual. If you are working with an
application that runs under the BES operating system, the System Concepts manual contains
MOD 400 and BES compatibility considerations.

OPERATOR’S MANUAL GUIDE

Figure 1-3 illustrates the suggested sequence for using the manuals. Specific operator job
functions must be determined by each installation; a large system might have a person assigned
as an operator; a small system might have each programmer also act as an operator. The
Operator’s Guide indicates the system procedures performed through the operator terminal and
describes operator commands used in system operation.

The Programmer’s Guide contains examples using commands (described in the Commands
manual) that are similar to operator commands. The System Concepts manual provides an
understanding of the operating system. Note that the Operator’s Guide describes using the

INTRODUCTION 1-2 CB22

APPLICATIONS PROGRAMMER

PROGRAMMER'S GUIDE

GETTING STARTED

SAMPLE EXECUTION ENVIRONMENTS
SAMPLE EDITOR SESSION

SAMPLE PROGRAM PREPARATION AND
EXECUTION SESSIONS

SYSTEM CONCEPTS

ASSEMBLY, COBOL, FORTRAN,
RPG APPLICATION PROGRAMMER

PROGRAM PREPARATION

EDITOR

LANGUAGE REFERENCE

INTRODUCTION TO SOF TWARE
FACILITIES

OVERVIEW OF SOF TWARE
COMPONENTS

COMMUNICATIONS
PROCESSING

COMMUNICATIONS

LANGUAGE

DATA FILE ORGANIZATIONS
AND FORMATS

FILE ORGANIZATION
DESCRIPTION

DESCRIPTION

PROGRAMMER'S GUIDE

OPERATING SYSTEM
DEPENDENCIES

PROGRAM EXECUTION
AND CHECKOUT

LINKER

EXECUTION COMMANDS

FILE AND VOLUME
FORMATS

UTILITIES

PROGRAM EXECUTION
AND CHECKOUT

PATCH, DUMP,

DEBUG

1

SYSTEM SERVICE
MACRO CALLS

MONITOR CALLS
DATA STRUCTURES
DEVICE DRIVERS

OPERATOR'S GUIDE

OPERATOR TERMINAL

COMMANDS ——_,——_—— USAGE

SYSTEM CONCEPTS

DETAILED SYSTEM

CONCEPTS

SYSTEM MESSAGES

ERROR AND STATUS
MESSAGES

FILE TRANSMISSION

LEVEL 6 TO HOST

INTRODUCTION

Figure 1-1. Applications Programmer Guide to Manuals

1-3

CB22

SYSTEM PROGRAMMER

SYSTEM BUILDING A

SYSTEM CONCEPTS

CONFIGURATION AND STARTUP PROCEDURES
FOR MOD 400, REMOTE BATCH FACILITY (RBF),
AND DATA ENTRY FACILITY (DEF) OPERATING SYSTEM
CONCEPTS

OPERATOR'S GUIDE

OPERATING ENVIRONMENT

COMMANDS .
SYSTEM CONCEPTS SYSTEM MESSAGES

MOD 400 AND BES ERROR MESSAGES

COMPATIBILITY

Figure 1-2. System Programmer Guide to Manuals

OPERATOR

OPERATOR'S GUIDE PROGRAMMER'S GUIDE

8:52:;8; zno?nﬁ;?#c?;s COMMANDS USED IN EXAMPLES

SYSTEM CONCEPTS

COMMANDS

UTILITIES

SYSTEM MESSAGES

ERROR MESSAGES

Figure 1-3. Operator Guide to Manuals \'

INTRODUCTION 1-4 CB22

-

operator terminal for operator functions to enter operator commands to the system task group,
or for user functions to enter commands to a user task group. To run the utilities, use the
commands (described in the Commands manual) entered through the operator terminal func-
tioning as a user terminal. Error messages are listed in the System Messages manual.

RBF AND DEF USER MANUAL GUIDE

Figure 1-4 illustrates the suggested sequence for using the manuals. The system programmer
configuration functions have been done and the system is ready to be used for Remote Batch
Facility (RBF) functions or Data Entry Facility (DEF) functions. The Programmer’s Guide
manual provides sample login execution environments typical of ones that might be at your
facility. The Remote Batch Facility User’s Guide is used for RBF operations and the Data Entry
Facility User’s Guide is used for DEF operations.

PROGRAMMER'S GUIDE

EXECUTION ENVIRONMENTS

RBF USER DEF USER
RBF USER’S GUIDE DEF USER’'S GUIDE
REMOTE BATCH DATA ENTRY
DESCRIPTION FACILITY DESCRIPTION

Figure 1-4. RBF and DEF User Guide to Manuals

INTRODUCTION 1-5 CB22

:// N
N

el

Section 2

Operating Environments

The Mod 400 operating system allows a wide variety of operating environments, ranging from
a single operator-controlled configuration to one in which the operator, other users, or a
combination if both can control the configuration at any time during the operating day. This
range of operating environments is described in this section.

OPERATOR-ONLY ENVIRONMENT

This environment is one in which a designated operator and a limited number of users
(typically programmers developing application programs) use the system on a first-come first-
served basis for developing and testing programs. All work is done through the operator
terminal, through either the system task group or a single online task group created by the
system startup procedure. Certain functions can be performed through either of the two task
groups; others can be done only through the system task group or the online task group — refer
to the Operator’s Guide and the Commands manuals for details on which functions can be
performed from each task group.

ALL-ONLINE ENVIRONMENT

An all-online environment is one in which one or more users can concurrently use the
facilities of the operating system to perform interactive tasks of any kind permitted by the
command language described in the Commands manual, plus any user applications that can be
invoked through the command processor. This latter category consists of user programs in the
form of bound units that are called from a task group in which the command processor is
declared as the lead task when the task group is created. A task group can also be created by the
operator or another online user, declaring the application bound unit as the lead task; in this
case the creation of the task group and its activation results directly in the execution of the
declared bound unit, without the need to enter its name as a command.

Anexample of this kind of environment is one in which several task groups have the command
processor as lead task and one or more other task groups have specific application programs such
as the Data Entry Facility and user-created programs as lead tasks. The former task groups can
be used for editing source program files, entering requests for jobs to be run in the batch task
group (see below), requesting printouts of files, etc. Concurrent with these activities can be the
execution of the user application programs constituting the latter set of task groups. From the
user’s point of view, each task group has the appearance of having control of the system.

ONLINE/BATCH ENVIRONMENT

This environment differs from the all-online environment only in that, in addition to the
creation of the online task groups, a batch task group has also been created by the designated
operator from the operator terminal. Once this task group has been created, any online task
group having the command processor as its lead task can enter requests for jobs to be run
through the use of the EBR (ENTER BATCH REQUEST) command. Typical of such batch jobs
would be requests for compilations, links, application program checkout runs, and the like.

Creation and utilization of the batch task group requires the existence of at least the
designated operator terminal, through which the batch task group is created and through which
requests to it can be entered. Jobs run in the batch task group are normally controlled by a
previously created file containing commands directing the execution of the jobs, and not by
interactive dialog from a terminal. Section 4 contains additional information on the use of the
batch task group.

OPERATING ENVIRONMENTS 2-1 CB22

DEDICATED APPLICATION ENVIRONMENT

This is an environment in which system startup or operator action subsequent to startup
results in the creation of one or more task groups in which a user application, and not the
command processor, is the lead task. In such an environment no interactive processing takes
place; rather, whatever processing occurs is dependent on the nature of the application — e.g.,
data entry, an inventory application, etc.

MIXED ENVIRONMENT

The Mod 400 system does not restrict the user to any one of the foregoing environments at any
given time. Given a large enough system, any of these can be combined with any others to
provide concurrent interactive, batch, and dedicated operations on a selected terminal basis.
That is, a selected set of terminals can be associated with interactive tasks, while others can be
related to the dedicated application tasks.

OPERATING ENVIRONMENTS 2-2 CB22

Section 3

User Terminal Startup

Terminal startup procedures vary according to the type of terminal and whether the terminal
is a noncommunications or a communications terminal. A noncommunications terminal is one
that is connected to the system through the multiple device controller (MDC), while a
communications terminal is connected through the multiline communications processor
(MLCP). An MLCP-connected terminal can be connected either through a modem or through a
dial-up telephone line. In the former case, when the modem is made ready, the terminal is
connected and ready for operation. With a dial-up connection, the user must dial the number
which connects the telephone to the system and wait for the signal that indicates the connection
is made. For an MDC-connected terminal, simply turning on the power to the terminal suffices
to connect it to the system. Subsequent actions depend on whether or not the listener/login
processor is activated, and whether the terminal is declared by the operator to be associated with
a specific task group.

STARTUP WITH THE LOGIN FACILITY

If the operator has activated the listener/login processor, and the terminal being started up is
one which is monitored by the login processor, then the user must log in using the procedures
described in the Operator’s Guide manual after performing the actions required for physically
connecting the terminal to the system. When the connection is made to an MLCP-connected
terminal, the system will display a system identification message, a message of the day if one is
defined, and indicate that it is ready to accept a login request. For an MDC-connected terminal,
displays occur only if the terminal is active when the login processor is activated.

TASK GROUP-SPECIFIC TERMINAL STARTUP

If a terminal is declared by the operator to be associated with a specific task group, and is not
monitored by the login processor, then, when the terminal is connected, it is ready to accept
whatever input or output is dictated by the logic of the task’s execution. If the command
processor is the lead task, a ready message will be issued, indicating that the terminal is ready to
accept commands. If a user application is the lead task, it should issue a message to the terminal
indicating that it has recognized the availability of the terminal and is ready for execution.

USER TERMINAL STARTUP 3-1 CB22

Section 4
User Access To The System

Once a terminal has been connected to the system as described in Section 3, a user can gain
access to the system in any of several ways. Which of these ways is used at any given time
depends upon operator actions taken during and after system startup. Examples of various
access procedures are given in this section. Each example states any prerequisite operator
actions which would have been performed.

ACCESS BY LOGGING IN

Configuration and system startup have been done. The operator, through the system task
group, has activated the login function as described in the Operator's Guide manual. The
terminal is one which is connected through the MDC, and was active when the login function
was activated. The system message of the day has been displayed and the login prompter
message hasbeen printed. The user’s login procedure at this point depends on the terminal login
characteristics for this terminal. Procedures are described below.

DIRECT LOGIN TERMINAL

In addition to the message of the day, if the command processor is the lead task, the ready
message will have been displayed, and no further action is required. The user can begin to enter
commands.

If an application is the lead task, further action, if any, depends on the characteristics and
logic of the application.

ABBREVIATED LOGIN TERMINAL

After the login prompter message has been issued, the user enters a one-character abbreviation
such as

A

If the login line corresponding to the abbreviation “A” indicates that the command processor
is the lead task, the system responds with the ready message, and the user can then begin to
enter commands.

If an application is the lead task, further action, if any, depends on the characteristics and
logic of the application. A terminal that accepts an abbreviated login also accepts a full login
command line.

FULL LOGIN TERMINAL

After the login prompter message has been issued, the user must enter a full login line as
described in the Commands manual. If the login line specifies or implies that the command
processor is the lead task, the system responds with the ready message, and the user can begin to

enter commands.
If the lead task is an application, further action, if any, depends on the characteristics and
logic of the application.

USER ACCESS TO THE SYSTEM 4-1 CB22

COMMAND PROCESSOR AS LEAD TASK

For a user named W. Smith to log in to the system, specifying the command processor as the
lead task, a login line such as

L SMITHW -HD ~VOL22>SMITHW

could be used, where, " VOL22>SMITHW is the working directory pathname. As soon as the
ready message is displayed, the user can begin to enter commands for either serial or concurrent

execution. In particular, if the -HD argument was not used, the working directory can be
specified with a CWD (CHANGE WORKING DIRECTORY) command

CWD 7 VOL22>SMITHW

APPLICATION AS LEAD TASK

For the same user to log in specifying a task other than the command processor, his login line
could be

L SMITHW -PO MS_UPDATE -HD #VOL22> SMITHW

where MS_UPDATE is the name of the bound unit which is to be the lead task. The bound unit is
located in the directory " VOL22>SMITHW. If it is located in some other directory, a full
pathname must be used as the argument, such as

L SMITHW -PO ~VOL23>MS_UPDATE -HD /" VOL22>SMITHW

After the login line is processed, control rests with the application. It is strongly advised that
the application issue some kind of message indicating that it has been successfully loaded and is
ready to begin, or has begun, execution. It may be simply an informative message or a message
requesting some action on the part of the terminal user.

ACCESS THROUGH THE OPERATOR OR ANOTHER USER

The system operator or an online user can create and activate an online task group through
the use of the CG (CREATE GROUP) and EGR (ENTER GROUP REQUEST) commands, or
through the SG (SPAWN GROUP) command. The application being run in this task group can
be in the form of a series of commands implying either serial or concurrent execution, as shown
below.

SERIAL EXECUTION OF APPLICATION TASKS

The operator or another user has created and activated a new online task group whose lead
task is the command processor, and whose command-in file is the MDC- or MLCP-connected
terminal being used by the new user.

As soon as the ready message is displayed, the new user can begin to enter commands. After
each command request is terminated, indicated by the display of the ready message, control
returns to command input level and another command can be entered. The following example
shows the entry of commands to initiate a COBOL compilation, the assignment of the user-out
file to a line printer, and the printing of the COBOL compilation listings.

COBOL PROGA ([ctl_arg] Invoke the COBOL compiler

compiler responses

USER ACCESS TO THE SYSTEM 4-2 CB22

£

A

RDY: Indicates end of compilation

FO >SPD>LPTO01 Assign user-out to line printer

RDY: Indicates assignment complete

PR PROGA.L Invoke PRINT command to print compilation output
RDY: Indicates printout complete

CONCURRENT EXECUTION OF APPLICATION TASKS

The operator or another user has created and activated a new online task group whose
lead task is the command processor, and whose command-in file is the MDC- or
MLCP-connected terminal being used by the new user.

As soon as the ready message is displayed, the new user can begin to enter commands.
This example shows the entry of commands to initiate a COBOL compilation, the
assignment of the user-out file to a line printer, and the printing of a file which is
unrelated to the compilation, and thus has no time dependency upon completion of the
compilation.

ST 1 -EFN COBOL [ctl_arg] Invoke COBOL compiler task at relative level 1

RDY: Indicates completion of the ST command;
compilation is in progress

FO >SPD>LPTO01 Assign user-out file to line printer

RDY: Indicates assignment complete

ST 3 -EFN PR -ARG FILE1 Invoke PRINT task to print FILE1, unrelated to
compilation

RDY: Indicates completion of the ST command; printing

is in progress concurrent with compilation

This is an example of multitasking. The responses from the COBOL compiler, indicated
in the previous example, will be interspersed with other input and output lines, depending
on when they occur in relation to these lines. The user should always ensure that a ready
message has occurred in response to his last command entry before making another entry.

CONCURRENT EXECUTION FROM SEVERAL TASK GROUPS

Several task groups have been created and activated, each associated with a different
command-in terminal, and each having the command processor as its lead task.

As soon as the ready message appears at each terminal, the user at that terminal can
begin to enter commands to do serial or concurrent application execution. The task groups
are concurrently active for execution and contend with each other for system resources.
Each user appears to have control of the system.

EXECUTION OF AN APPLICATION FROM THE BATCH TASK GROUP

An application environment has been specified consisting of several online task groups
and the batch task group (whose lead task is the command processor).

A user can enter one or more EBR (ENTER BATCH REQUEST) commands from each of
the online task groups to obtain processing in the batch task group. These requests are

queued and will be satisfied on a first-in first-out basis. The EBR requires a command-in
file containing commands to be executed in the batch task group. The file is normally

disk-resident in the user’s working directory having previously been created. If a terminal
were specified as the command-in device, the user at the terminal must wait to enter a
command, until the command processor processes this EBR command. Otherwise, batch
processing will stall waiting for this batch request to complete.

USER ACCESS TO THE SYSTEM 4-3 CB22

To request is to execute the command file, PAYR_IN, on directory " ZSYSO1>IW. The
application is to compile, link, and execute an application program PAYROLL.

EBR PAYR IN -WD A"ZSYSO1>IW
The file PAYR_IN contains the following commands:

COBOL PAYROLL -LO -COUT >SPD>LPTO01
LINKER PAYROLL -COUT >SPD>LPTO01
LIB "ZSYSO2>ZCRT

LINK PAYROLL

MAP;QT

GET DEPT4 2

GET >SPD>LPT02 3

PAYROLL

BYE

Any time after the file PAYR_IN has been created, it can be invoked through an EBR to
control batch execution. The command file can contain any combination of legitimate
commands, such as compile/link/execute sequences, including any necessary file control
commands (GET, REMOVE); or file print/dump commands. The main constraint is that the
commands be entered into the file in the same manner as if they were being executed from
the online terminal, keeping in mind any time dependencies that might exist among
various tasks. Responses from the invoked commands that would normally be written to
the user terminal in an online environment are written to a file PAYR_IN.AO in the working
directory of the user who issued the EBR command.

EXECUTION FROM THE DATA ENTRY FACILITY (DEF)

One or more task groups whose lead task is the Data Entry Facility (DEF) have been
spawned.

When DEF has indicated at the terminal that it is ready to accept data entry actions, the
user can begin to enter directives. No other preliminary actions are required.

Refer to the Data Entry Facility User’s Guide manual for details on the operation of the
Data Entry Facility.

It should be noted that the presence of the Data Entry Facility in no way restricts the
presence of other online task groups or the batch task group. These functions can be carried
on concurrently as described in the preceding paragraphs.

ACCESS THROUGH THE OPERATOR TERMINAL

A special case of system access is that in which all interactive and/or batch executions
are initiated through the operator terminal. The major difference between this execution
mode and those described previously is that the interface to the system is through the
Operator Interface Manager (OIM), described in detail in the Operator’s Guide manual. The
most user-visible aspect of this mode is the issuance by the OIM of task group id
designations and message numbers, which require, in many cases, task group id and
message number entries from the operator terminal in response.

The operator terminal is the only way in which the system as initially delivered to the
user can be accessed. Initial startup results in the creation of the system task group ($S)
and one online task group ($H). For small system environments in which the operator and
one or more users (e.g., programmers writing and debugging their own programs through
the operator terminal on a first-come, first-served basis) share the operator terminal, this
type of startup, appropriately modified for the physical system configuration, may be
sufficient.

USER ACCESS TO THE SYSTEM 4-4 CB22

«"// » o
N
//

A

Typically, the operator in this kind of configuration could initiate other task groups in
any of the combinations described in Section 2 through the system task group, and also use
the $H task group for any function which is not normally done in the system task group
(e.g., editing files, assembling or compiling, linking, debugging, and the like). In particular,
in the originally-released system, the $H task group is used to construct new CLM_USER
files for system startup, and STARTUP.EC files for use during the startup process. There is
no requirement that the existence of the $H task group be maintained permanently — the
originally-released STARTUP.EC file which results in tne creation of the $H task group
can be modified at any time to delete the function of creating this task group.

Any of the operations described above can be done through the operator terminal from an
online task group such as $H, or any other online task group created as a function of system
startup or at some later time, and specifying the operator terminal as its command-in file.
Most of the examples in Sections 5 through 9 show operations using the online task group
$H. They illustrate the issuance of the task group identification prefix by the OIM in
operator terminal typeouts, and in some cases the changing of the OIM default task group
identification to $H, eliminating the need to enter the prefix explicitly when issuing
commands to this task group. If these same operations were done in a task group associated
with a terminal other than the operator terminal, the prefixes would not be issued nor need
to be specified at that terminal.

USER ACCESS TO THE SYSTEM 4-5 CB22

7

S,

Section 5
Using the Editor

This section illustrates how Editor directives are used to modify the contents of four files,
merge files into one file, and place macro routines in the macro library directory. The Editor
directives are in file SMPCMDFL; the four files to be altered are SMPMO1 (example 1),
SMPMO02 (example 2), SMPMO03 (example 3), and SMPMO04 (example 4). The examples are
shown below. SMPMO01 and SMPMO2 are altered and written to files SMMPL1 and SMMPL2,
respectively, and then combined to form file SMPMAC.P containing macro statements and calls
to be processed by the macro preprocessor. SMPMO03 and SMPMO04 are altered and written as
files SMMPL3 and SMMPL4, respectively; they are again altered and written as macro library
routine files SAMPL1 and SAMPL2, respectively, into the MACRO <EXEC_LIB directory to be
used during macro preprocessing. Editor output directed to the operator’s terminal is shown in
an operator’s terminal typeout.

EDITOR DIRECTIVE DESCRIPTION

The following is a line-by-line explanation of the action taken by the Editor when it processes
the directive file, * SYSMAC>SMPCMDFL, of Figure 5-1, and an explanation of the operator
terminal typeouts displayed in Figure 5-2. Editor directive lines are identified by line number.
Inthe typeout, the response to these directives begins after the line ($H) EDIT-0100-11/21/0827.
The default working directory is " SYSMAC so that either a full pathname of the form

N SYSMAC>SMPMO04 or simple pathname SMPMO01 can be used.

R “SYSMAC>SMPMO1

1

I

3 6,9CLE SETA ' PROGR.START2([,INAME?
4 L4 SETA EQU

5 LS SETA RESV

6 Lb SETA TEXT

T L7 SETA XDEF

8 IF

9 eI LIBM TEXECTLIB')SAMPLY,SAMPL2LF!?
10 =3,=178K(SMMPL1)

11 X

12 1,8%DX

13 R SMPMOZ2

14 1,13VL/#L/,=12313GL/AL/ =97 .8"#L"2L"'P=
15 1,8M(SMMPL2) X

16 R SMPMO3

17 8,178/SETH/SETA/8,17P

18 1,3M(SMMPL3) X

19 R "SYSMAC>»SMPMO4

20 X29A 1IFE ?67,2LC, IFE1
21 FAIL

22 ENDIT IFNL P2y 2LC, ¥

23 IFEL NULLIF

24 /SS,.LE/L/88/LO/""/LD
25 1,8K(SMMPLUY)

26 X1,%0

27 B8(SMMPLL)

28 W “SYSMAC>SMMPL1

29 1,%0x

30 B(SMMPLR)

31 W~ "SYSMAC>SMMPLZ2

32 1,%0

Figure 5-1. Sample Editor Directives in File SMPCMDFL

- USINGTHEEDITOR 5-1 CB22

33 B(SMMPL3)

34 W “SYSMAC>SMMPL3

35 1,%D

36 B(SMMPL4)

37 W "“SYSMAC>SMMPLU4

38 1,3%0X

39 R SMMPLL

40 /INSERT/LOD/ADD L7/LD
41 1SR SMMPLZ

42 XSeLD

43 E FO »SPD>LPTO0O0

44 §,8LN SMPMAC,P

45 1,80

46 R SMMPL3

47 X/L4/3/LE/S/SETB/SETA/
48 1,8LW *Z00B02>LDD>MACRO>EXEC™LIB>SAMPL1

49 1,80

S0 R SMMPLY

St /DLET/D

52 Q

S3 1,8LW “Z0OOBO2>LDD>MACRO>EXEC™LIB>»SAMPLZ
54 X

55 E FO

Se @

Figure 5-1 (cont). Sample Editor Directives in File SMPCMDFL

B GROUPSD

($D)ON=-LINE DEBUG REV. 1976/11/20 1115 04 SYSREV. 4014
C sSH:

RDN

(SHIRDY:

CWD “SYSMAC

(SH)RDY:

WD

(SH) "SYSMAC

(SH)RDY:

-LINE_LN 75 -IN “SYSMAC>SMPCMDFL
(SH)EDIT 0120

($H) 16 => (0) "SYSMAC>SMPMO!

(SH)EDIT MODE

($H) 2

(SH) 18 -> MOD (0) “SYSMAC>SMPMO1

(SH) 18 (SMMPL1)

(SH) 0 -> <0) “SYSMAC>SMPMO1

(SH) 18 (SMMPL1)

(SH) | Y

(SH) 2 * THESE UNPROTECTED COMMENT LINES WILL BE DROPPED
($H) 3 * WHEN MACRO PREPROCESSED.

(SH) 4 *

(S$H) S 7G4 #L4 ?G1 (Gl INITIAL VALUE=S)
($H) 6 #LS ?1X(#LE,?PE)?GB?P}
(S$H) 7 2GS #L6 ?P3?VL(35)?P4A#LZILA
SH) 8 L7 ?G4

(SH) 9 L7 ?P6?P8?GB?AL (?PC)?P7
($H) 10 #L8 ?SS(?P4,7,1)

(SH) 11 fL9 ?2VP(11)

(SH) 12 ?G66 #LB ?G7

(SH) 13 ?GA #L4 ?P9+7G3

(SH) ENDM

(SH) 14

SH) 0 -> (0) “SYSMAC>SMPM02

(SH) 18 (SMMPL1)

($H) 36 (SMMPL2)

(SHOLA SETA ORG

(SHOLS SETA DC

(SHIL6 SETA LDR

(SHIL7 SETA STR

(SHILS SETA CALL

Figure 5-2. Terminal Responses from Sample Editor Directives of Figure 5-1

USING THE EDITOR 5-2

CB22

AN

e

SETA LB
SETA BBT
SETA SLD
SETA ‘me
SETA tz*32°1
-> (0) “SYSMAC>SMPMO3
(SMMPL1)
(SMMPL2)
(SMMPL3)
-> €0) “SYSMAC>SMPM04
(SMMPL1)
(SMMPL2)
(SMMPL3)
?GS ?PZ ?SS(?LEs1,5)
DELTS DC ’DELETE LINE ENDING IN $°S
“DEL DC ’DELETE LINE BEGINNING IN "
-> MOD (0) “SYSMAC>SMPM04
(SMMPL1)
(SMMPL2)
(SMMPL3)
(SMMPLA)
€0) “SYSMAC>SMPM04
-> (SMMPL1) “SYSMAG>SMMPLI
(SMMPL2)
(SMMPL3)
(SMMPLA)
(0> “SYSMAC>SMPM04
(SMMPL1) “SYSMAC>SMMPLI
(SMMPL2) “SYSMAC>SMMPL2
(SMMPL3) “SYSMAC>SMMPL3
-> (SMMPLA) “SYSMAC>SMMPLA4

* INSERT LN 2 LIBM STATEMNT BEFORE THIS LNe..THEN DEL THIS LN

* ADD L7 SETA VALUE W/CHANGE FUNCTION .. THEN DELT THIS LN
(0) "SYSMAC>SMPM04 o
(SMMPL1) “SYSMAC>SMMPL1
(SMMPL2) “SYSMAC>SMMPL2
(SMMPL3) “SYSMAC>SMMPL3
-> MOD (SMMPLA4) "SYSMAC>SMMPL2
USED EDIT READ FUNCT TO ADD “SMPM02" PORTION TO FILE®
(0) "SYSMAC>SMPMO4
(SMMPL1) “SYSMAC>SMMPL!
(SMMPL2) “SYSMAC>SMMPL2
(SMMPL3) " SYSMAC>SMMPL3
-> (SMMPLA) “SYSMAC>SMMPL3

(SH)MODIFIED BUFFERS EXIST», QUIT DEFERRED

(S$H) L9
(SH) LA
($H) LB
(SH) LC
($H) LD
(SH) 8
(SH) 18
(SH) 36
(SH) 45
(SH) 34
($H) 18
(SH) 36
($H) 45
($SH) 28
(SH) 10
($H) 28
(S$H) 36
(SH) 18
(SH) 36
(SH) 45
(SH) 36
($H)]
($H) 0
(SH) 36
(SH) 45
(SH) 36
(SH) 0
($H) 0
(SH) 0
(S$H) 0
($H) 0
(SH) 3
($H) 11
(3H) 0
(SH) 0
(S$H) 0
SH) 0
($H) 52
(S$H) 52
(S H) 0
($H) 0
($H) 0
(SH) 0
(SH) 45
($H) 0
(SH) 0
(SH) 0
(SH) 0
(SH) 35
(SH)RDY:

(0> “SYSMAC>SMPMO4
(SMMPL1) “SYSMAC>SMMPL1
(SMMPL2) “SYSMAC>SMMPL2
(SMMPL3) "SYSMAC>SMMPL3
-> (SMMPLA4) “Z00B02>LDD>MACRO>EXEC_LIB>SAMPL2

Figure 5-2 (cont). Terminal Responses from Sample Editor Directives of Figure 5-1

USING THE EDITOR 5-3

CB22

Line
No.

Terminal
Editor Directive Description Typeout

PG Y

10

1

12

13

14

R " SYSMAC>SMPMO1
Read the 16-line file (example 1) into the current buffer (0). -
X

Display the status of the current buffer (denoted by —). Sixteen 16->(0) ...

lines were read into current buffer (0).

6,9Ctext

Change lines 6 through 9 of the buffer with this text for line 6.

Text for line 7.
Text for line 8.
Text for line 9.

Text, this additional line is inserted after the previous four lines

were changed. Note that the Editor recognizes tab characters.

IF

Terminate input mode and enter edit mode.

2Itext!F!?

Insert text before line 2.

Terminate input mode.

Display current mode. EDIT MODE

=.-1;$K(SMMPL1)
Display current line pointer. 2
Move the current line pointer back one line to a new current line ‘
pointer position. Copy the lines from that position to the last
line in the current buffer into auxiliary buffer, SMMPL1.
X
Display status of current and auxiliary buffers. There are 18 18-> MOD (0) ...
lines in current buffer (0), which has been modified (MOD) since 18 (SMMPL1)
it was read in, and 18 lines in auxiliary buffer SMMPL1.
1,$DSX
Delete the first through last line of the current buffer (0).
Display status of buffers. 0->(0) ...
18 (SMMPL1)
R SMPMO02
Read 36-line file (example 2) into the current buffer (0). .

1,13VL/#L/.-12;13GL/#L/.-9;S #L?L'P=

For lines 1 through 13, display line numbers and all lines that 1*
do not contain the expression #L. 2*THESE ...)

e
Move the current line pointer back 12lines from line 14 toline 2. 5?G4#L4 ...
For lines 2 through 13, display all lines and their line numbers
containing the expression #L.

137GA #14 ... \g\,/

USING THE EDITOR 5-4 C422

E=

Line Terminal
No. Editor Directive Description Typeout
Move the current line pointer back nine lines to line 5 and
substitute ?L for #L.
Print current line. ENDM
Print current line pointer value. 14
15 1,$M(SMMPL2)X
Move line 1 through the last line of the current buffer to
auxiliary buffer SMMPL2. The contents of the current buffer (0)
are erased. Display the status of the buffers. 0->(0) ...
18 (SMMPL1)
36(SMMPL2)
16 R SMPMO03
Read 45-line file (example 3) into current buffer (0).
17 8,17S/SETB/SETA/8,17P
For lines 8 through 17, substitute SETA for SETB.
Print lines 8 through 17 without line numbers. L4 SETA ...
LD SETA ...
18 1,$M(SMMPL3)X
Move line 1 through last line of the current buffer into auxiliary
buffer SMMPL3 and erase buffer (0).
Display buffer status. 0->(0) ...
18 (SMMPL1)
36 (SMMPL2)
45 (SMMPL3)
19 R " SYSMAC>SMP04
Read the 34-line file (example 4) into the current buffer (0).
20 X29A
Display buffer status, 34 lines are currently in buffer (0). 34->(0) ...
18 (SMMPL1)
45 (SMMPL3)
Append, after line 29, four lines of text. Text for line 30.
21 Text for line 31.
22 Text for line 32.
23 text!F
Last line of text (line 33).
Terminate input mode and enter edit mode.
24 /SS..LE/L/$$/LD/ ™ " /LD

Search the current buffer for the first occurrence of the
expression SS..LE, where .. are any two characters.

List the line and its line number. 28?G5 ?PZ ?SS(?LE...

USING THE EDITOR 5-5 CB22

Line
‘No.

Editor Directive Description

Terminal

Typeout

25

26

27

28

29

30

31

32

33

Locate a line that ends with $ as the last character. The first
dollar sign is escaped using a nonprinting C.,i.e.,!C$$. The
second dollar sign retains its special meaning, and indicates:
locate the last character in a line ending in dollar sign.

List the line and its number; then delete the line.

Locate a line beginning with . The second circumflex is
escaped by using the nonprinting !C,i.e., " !IC/".

List, then delete the line and its line number.

1,$K(SMMPL4)

Copy the current buffer contents from first through last line into
auxiliary buffer SMMPLA4.

X1,$D

Display the status of the buffers.

Delete first through last line of current buffer.

B(SMMPL1)

The auxiliary buffer, SMMPL1, is made the current buffer prior
to writing.

W ASYSMAC>SMMPL1

Write the current buffer contents as a file whose pathname is
N SYSMAC>SMMPL1.

1,$DX

Delete the first through last line of the current buffer.

Display the buffer status. The pointer points to current buffer,
SMMPL1.

B(SMMPL2)

The auxiliary buffer, SMMPL2, is made the current buffer prior
to writing.

W ASYSMAC>SMMPL2

Write the current buffer contents as a file whose pathname is
N SYSMAC>SMMPL2.

1,$D

Delete the first through last line of the current buffer.

B(SMMPL3)

The auxiliary buffer, SMMPL3, is made the current buffer prior
to writing.

USING THE EDITOR 5-6

10DELT$ DC...D'$’

28 "DEL DC
‘DELETE ...

36->MOD(0) ...
18 ...

36 (SMMPL4)

0(0) ...
0->(SMMPL1) ...

36(SMMPLA)

CB22

£

b

Line
No.

Terminal
Editor Directive Description Typeout

34

37

38

39

41

42

W ASYSMAC>SMMPL3

Write the current buffer contents as a file whose pathname is
N SYSMAC>SMMPL3.

1,$D

Delete the first through last line of the current buffer.

B(SMMPL4)

The auxiliary buffer, SMMPL4, is made the current buffer prior
to writing.

W ~SYSMAC>SMMPLA4.

Write the current buffer contents as a file whose pathname is
NSYSMAC>SMMPLA4.

1,$DX
Delete the first through last line of the current buffer.

Display the status of the buffers. SMMPL4 is the current buffer. 0 (0) ...
All the buffers have been cleared. 0 (SMMPL1) ..

0->(SMMPL4) ...

R SMMPL1
Read the file SMMPL1 into the current buffer, SMMPLA4.

/INSERT/LD//ADD L7/LD

Locate the first line containing the expression, INSERT, list it 3* INSERT LN ...
and its line number, and then delete it.

Starting at the current line, locate the first line containing the 11* ADDL7SETA ...
expression, ADD L7, list it and its line number, and then delete

it.

15R SMMPL2

Read the file, SMMPL2, into the current buffer after line 15 of

the buffer. Two files are being merged.

X52LD

Display the status of the buffers. Current buffer, SMMPL4, now 0 (0) ...
has 52 lines. .

52->MOD(SMMPLA4)...

List line 52 then delete it. 52* USED EDIT ...

E FO >SPD>LPT00

The Execute directive allows you to execute the ECL command
FO to change the output file from the operator’s terminal to the
line printer. ‘

1,$LW SMPMAC.P

List the first through last line of current buffer on the line
printer (Figure 5-3). Write the current buffer as a file whose
pathname is SMPMAC.P.

USING THE EDITOR 5-7 CB22

Line
No.

Editor Directive Description

Terminal
Typeout

47

49

50

51

52

53

54

55

56

1,$D
Delete the first through last line of the current buffer.

R SMMPL3
Read the file, SMMPLS3, into the current buffer, SMMPLA4.

X/L4/;/LE/S/SETB/SETA/
Display the status of the buffers.

Locate the first line containing the expression, L4. Starting
with the line containing L4 through the line containing the
expression LE, substitute SETA for all occurrences of SETB.

1,$LW ~Z00B02>LDD>MACRO>EXEC_LIB>SAMPL1
List the first through last line of the current buffer on the line
printer (Figure 5-4).

Write the current buffer as a library routine file whose path-
name is * Z00B02>LDD>MACRO>EXEC_<%+>SAMPL1.

1,$D
Delete the first through last line of the current buffer.

R SMMPIL4
Read the file, SMMPL4, into the current buffer.

/DLET/D
Locate and delete the line containing the expression DLET.

Q

Quit. The quit is deferred since a buffer has been modified and
has not been written to a file. You have one more chance to write
the contents of the current buffer as a file.

1,$LW ~Z00B02>LDD>MACRO>EXEC_LIB>SAMPL2
List the first through last line of the current buffer on the line
printer (Figure 5-5).

Write the current buffer contents as a library routine file whose
pathname is " Z00B02>LDD>MACRO>EXEC_LIB>SAMPL2.

X

Display buffer status. Status is always displayed on the
operator’s terminal even though the output file is the printer.

E FO

The Execute directive allows you to execute the ECL comand
FO to change the output file from the line printer back to the
operator’s terminal.

Q
Quit. Exit from the Editor.

USING THE EDITOR 5-8

0(0) ...

45->(SMMPL4) ...

MODIFIED BUFFERS
EXIST ...

0(0) ...

535- >(SMMPL4)

CB22

Ao

1 TITLE SMPMAC, '3/1/77'" EDITUR/MACRO EXAMPLE
2 LIoMm YEXECTLIB',SAMPL1,SAMPLE
3 SMPLM MAC P1=0,P2=2,P3='SAMPLE',P4="'"PRUGRAM' ,PS5=ZERD,P6=(}
" 4 P7=),P8=TA0,P9=8COMM,PA=A,PB=B,PC=T2,PD=SANPLE,PESPROG2
~ S %« SET LOCAL VALUES WITHIN MACRO ROUTINE *
6 LE SETA ' PROGR2.START2[,)NAME!
7 L4 SETA EQU
8 LS SETA RESV
9 L6 SETA TEXT
10 L7 SETA XDEF
11 LB SETA xLocC
12 LS SETA XVAL
13 LA SETA [(z'o1']
14 LB SETA COwmM
15 L2 SETA v, !
16
- 17 « THESE UNPRUTECTED COMMENT LINES WILL BE DROPPEL
18 * WHEN MACKRU PREPWRUCESSED,
19 *
20 1?64 L4 261 (Gl INITIAL VALUE=S)
. el ws PIX(?LE,?PE)76B7P1
22 765 Le TPI?VLI(3S)?P4?LZ?LA
23 7 264
24 7 ?Po?PB2GEZAL(2PC)?PT
25 L8 78S (72P4,7,1)
26 L9 2VP(11)
27 266 HN-] 267
28 ?76A L4 ?PY9+7G3
29 ENUM
50 63 SETN 1
31 G4 SETA VZERQ! (APUSTROPHE''S DKOPPED WHEN SURSTI,)
32 G5 SETA 'NAME !
33 Ge SETA '$COMM!
34 &7 SETN 100
35 GA SETA fcomy!
36 GR SETA !
. 37 »x
= 38 xxxx THE FOLLOWING PURTIUN OF CODE IS AOPLEU FRUM "SMPLM" xkww
ks 39 x
40 SMPLM, (CALL INneLIMNE MACKU ROUTINE)
41 *
42 xxwx THE FOLLOWING PURTION GF CUDE 1S ADDED FROM V"SAMPLIM™ #xww
43 %
44 CALL1 SAMPL 1L Yroreesr+s150,;
45 ,,START,%C
46 =
47 *kxx THE FOLLOWING PORTIUN OF COVE IS ADDED FROM "SAMPL2" #www
48 x
49 CALLe SAMPLZ SFovrrrrres
SO srvrrarvrrvrrenrrerrrrrrpLINK
51 END SMPMAC, START

Figure 5-3. Sample of Unexpanded Assembly Language Program with Macro Calls
. and Statements (SMPMAC.P)

USING THE EDITOR 5-9 CB22

SAMPL1 MAC

n
*

*
*

L4 SETA
LS SETA
Lé SETA
L7 SETA
L8 SETA
L9 SETA
LA SETA
L8 SETA
Lc SETA
LD SETA
LE SETA

e e I e
OONOCUEWNSOOVENOCWVEWN-

*
* SET GLOBAL V
*
*

20
21

22

23

24 GH SETA
25 66 SETA
26 GC SETA
27 6D SETA
28 GE SETA
29 GF SETA
30«

31

32 »

33 L4

34 LS

35 L4

36 7PC L6

37 L7

38 ()

39 7PD L6

40 %)

41 L8

42 L9

43 LA

44 L8

45 ENOCL1 ENDM

P1=6G,P2=2,P3="'SAMPLE"',P4='PROGRAM!' ,PS=ZERQO,P6=(,P7=2);

P8=TWO,P9=28COMM,PA=A,PB=B,PD=SAMPLE,PEZPROGRAM

* SET LOCAL VALUES WITHIN MACRO ROUTINE «

ORG
DC

LDR

STR

CALL

L8

BBT

SLD

1=t

1z'32")
TPROG2.START2 [,] NAME

ALUES WITHIN MACRO ROUTINE =*

'ORG INTU CUMMON!

'ORG INTO INTERNAL LOC!

'EXTERN VAL REFERENCE!'

'COMMON REFERENCE'

"EXTERNAL LOCATION REFERENCE'
'FORWARDS TEMP LABEL REFERENCE'

* UNPROTECTED LINES OMITTED WHEN PRE=PROCESSED

7P9 26H
TVR(?P3,7PD)?GB?SKR(?P4, 7PE)
TGU4TPT2P8 266
$R1,7LC?PB ?6C
8R1,<2GA 260

SR1,<?PA ?GE

PROG2.?8S(?LE,7,6) 7GBNAME

2G42PT?P126B2LL2VL(13)

>?P78F ?6F
$51?2GB?LCZ'7CH(1,=2)?CH(2,=2) 7CH(3,=2)2CH(4,~2)"

Figure 5-4.

USING THE EDITOR

Sample of Unexpanded Macro Routine (SAMPL1) Contained
in EXEC_LIB Directory

5-10

CB22

N

1 SAMPL? MAC P120,Pe=2,P3='SAMPLE' ,PUs"PRUGRAM! ,PS=2EK0,P6=(,PT72);
2 PB8=TW0,P9=8COMM,PA=A,PB=b
3 % SET LNDCAL VALUES WITHIN MACRO ROUTINME *
g 4 L4 SETA >=[2'1300")
5 LA SETA 10LD
6 LD SETA $R1
7 LE SETA "PROG2.START () NAME!
8 LG SETA SOk
9 C SETw =32768
10 LP SETN 32767
11 L SETN 0
12 LI SETA BEZ
13 LY SETA HLT
14 LZ SETA L]
1S « SET GLOBAL VALUES WITHIN MACKRU RDUTINE *
16 67 SETN =32768
. 17 G2 SETA TBACKAARDS TEMP LABEL KEFERENCE'
18 G5 SETA CTRL
19 =
20 % UNPROTECTEL LINES OMITTED whEN PRE=PROCESSEUD
21 x
: 22 7Pt LA 2PPS2LI2L4,=2LD
23 ?P1 LA PS?LZ?L4, =LY
24 7L6 TLO,2VG6(3)
25 N 7LD, =%C 762
] Ly
27 7265 ?PZ ?SS(?LE,145)
28 IFE ?267,?2LC,IFEL
e9 FAIL
30 EnDIT IFNL P2, 2LCyx
31 IFEL NuLL
32 IFNE ?G7,7LP,GTEND
33 FAIL
34 GTEND GOTO ENDIT
35 ENDCLZ ENDM
ﬂ Figure 5-5. Sample of Unexpanded Macro Routine (SAMPL2) Contained
% in EXEC_LIB Directory
Example 1:

File SMPMO1 before Editing

TITLE SMPMAC, '3/1/77"' EDITUR/MACKU EXAMPLE
* INSERT LN 2 LIsM STATEMNT HBEFORE THIS LiveoTHFN DEL THIS LM
SMPL ™ ~MAC P1=0,P2=¢,P8="'SAMPLE"',PU="PR(GRAMN',PS=ZERD,P6=(;

P7=),P&=Tu{,P9=8C0OMM,PASA,PHdS8,PCET2, PUSSAMPLE ,PESPROGR
* SET LUCAL VALUES wITHIN MACRU KUUTINE =
USE CHANGE FUNCTIun TO ADD SETA VALUE FOR THIS LN

[
DO E NI U & W
r
m

L4 USE CHANGE FUNCTION TU ADD SETA VALUE FOR THIS LN
- LS USE CHANGE FUNCTIQOI TO ADD SETA VALUF FOR THIS LN
L6 USE CHANGE FUNCTION TO ADD SETA VALUE FOR THIS LN
* ADD L7 SETA VALUE w/CHANGE FuUNCTION .. THeN DELT THIS LN
11 L8 SETA XLOC
- 12 L9 SETA XVAL
13 LA SETA (2'01']
14 LB SETA COMM
15 LZ SETA !
16 *USED EDIT KEAD FUNCT TO ADO "SMPMOR2" PORTIOMN TO FILE*

USING THE EDITOR 5-11 CB22

Example 2:
File SMPMO02 before Editing

- e bt s b e
CUTELWN~DSDCENTU EWN—-

17

~ % % X %

a4
#LS
EINC]
a7
#L7
»L8
58L9
aLg
sL4
EnDM

SeTn

SETA
SETA
SETA
SETw
SETA
SETA

THESE UNPROTECTED COMMENT LINES wlLL vk ORUFPED
WHEN MACKO PREPKOCESSED.

761 (Gl IMITIAL VALULE=SS)
PIX(BLE,2PE)?617P
2PI2VL(35)7P4BLZHLA

264

PPO2PEIGR?AL(?PC) 2P
?SS(?P4,7.1)

VP (11)

267

?2P9+763

1

VZERO! (aPOSTRUPHE'S DROPPED wHEN SUBSTI.)
"NAME Y

YSCOMMY

100

'comr?

l'l

*kek THE FULLOWING PORTION OF CODE IS APNDEL FROM "SMPLM" wwkx

L]

*

wkwx THE FOULLOWIMG

*

CALL1

» o START , 3C
*

SwiPLK,

SAMPL Y

(CALL In=pliE MACKU ROUTINE)

PORTION OF CUODE IS ADDED FRUM "SAMPLI" wawx

Yoovrne®9150,;

w#wxx THE FOLLUOWING PORTIUN OF COUE IS ANDED FHOM “SAMPLR" awax

*
CALLZ

SAMPL2

SFovvsveoei

l""'ll'l"lllll"""llLINK

USING THE EDITOR

END

SMPMAC, START

5-12

CB22

b W

Example 3:
File SMPMO03 before Editing

SAMPL1 MAC P1=0,P2=2,P3="'SAMPLE"',PU4='"PROGRAM' ,PSSZERD,P6=(,PT73);
PB=TWO,P9=$CUMM,PA=A,PB=B,PD=SAMPLE ,PE=PRUGRAM

*

*

* SET LOCAL VALUES wITHIN MACRO ROUTINE =

8

*

1
e
3
4
S
6
7
8 L4 SETB ORG
9 LS SETB oc
10 L6 SETH LOR
11 L7 SETH STR
12 L8 SETH CALL
13 L9 SETB LB
14 LA SETH BBT
15 L8 SETH SLD
16 LC SETH ‘!
17 LD SETB [2'32"')
18 LE SETB 'PROGR2.START2 [, 1 nAME !
19 &
20
21 « SET GLUBAL VALUES WITHIN MACKO KOUTIME =
22
23 *
24 GH SETA YOG INTO COmMMQM?
25 GG SETA YORG INTO INTERWNAL LOCY
26 GC SETA YEXTERN VAL REFERENCE!
27 GO SETA 'COMMON WEFERENCE!
28 GE SETA YEXTERNAL LOCATION REFEKENCE!
29 GF SETA '"FORWARDS TEMP LAHEL REFERENCF'
30 =
31 % UNPROTECTED LINES OMITTED wHEwW PRE-PRUOCESSED
32
33 L4 P9 2GH
34 LS FVR(?2P3,7PD)?2GR2SR(7P4, 7PE)
35 L4 2G472P72P8 266
36 ?PC L6 $R1,7LC?PB 7GC
37 %) $R1,<72GA 26U
38 [%)
39 ?PD L6 $R1,<7PA 7GE
40 (%)
41 7L8 PROGR2.?28S(?LE,7,6)?260NAME
4e L9 ?GUTP7?2P1?GB?LCIVL(13)
43 LA >7P7SF 2GF
44 7L8 $S17GB2LCZ'?2CH(1,=2)7CH(2,=2)?CH(3,=2)2CH(4,=2)"

45 ENDCL1 ENDM

USING THE EDITOR 5-13 ; CB22

Example 4:

File SMPMO04 before Editing

1 SaAmpLe MAC P120,P2=22,P3='SAMPLE " ,PUSTFROGRAMY ,PS=ZERD,PES(,P72);
e PB=TwWu,PY9=SCOMM,PA=A,PE=H
3 % SET LOCAL VALLES wITHIN MACRU ROUTINKE #
4 L4 SETA >z([(Z2'1300"'])
5 LA SETA 10GLD
6 LD SETA k1
7 LE SETA VPROG2«STAKT [,] Atk !
8 LG SETA SOk
9 LC SETw =32768
10 OVELTS OC "DELETE LINE ENDING INn S'S
11 LP SETN 32767
12 Lu St T O
13 LI SETA REZ
14 LY SETA HLT
15 L2 SETA !
16 * SET GLURAL VALUES wWITHII: mACKO ROULTIiE *
17 G7 SETN =3276k
18 G2 SETA THACK=ARDS TeEMP LABFL wEFEKENCE?
19 65 SETA CTkL
20
21 % UNPKOTECTEU LINES OUMITTED WHE®W PRE=PNUCESSED
e *
2% 1P 7LA 7PS?LZ2L4,=2L0
24 ?P1 LA PSLI2L4A, =LY
e5 LG L6,2V6(3)
26 L1 200,=8C 762
27 LY
28 265 ?PL ?25S(2LEL1,5)
29 “~DeL 0C 'DELETE LINE ZEGIWNING [iv =0
30 1FHE 267 ¢2LP,GTEND
31 FAIL
$2 GTEND GUTO ENDIT
33 OLET OC 'YOELETE LINE HEFORE QUIT!
34 ENDCLR EnNDM
USING THE EDITOR 5-14

CB22

Section 6

(- Using the Assembler and Macro Preprocessor

This section illustrates the use of the assembler to construct programs containing macro calls.
Two assembly language samples are presented. One illustrates the output of different assembly
language program processors. The other illustrates an assembly language program that con-
tains multiple tasks. Both samples provide the operator terminal session listings that contain
the commands to invoke the system software.

SAMPLE ASSEMBLY LANGUAGE SESSION (SMPMAC)

Figure 6-1 contains a sample operator terminal session to preprocess, assemble with cross-
reference, and link the assembly language program SMPMAC. It is assumed that the Honey-
well-supplied startup has been done prior to this session.

The typeout illustrates the following points. The working directory is changed to SYSMAC
where the program’s files are located. The file, SMPMAC, that is processed by the Macro
Preprocessor is in Figure 5-3. The macro routines, SAMPL1 and SAMPLZ2, called by the
program are listed in Figures 5-4 and 5-5. A listing of the output file SMPMAC. A from the macro
preprocessor is shown in Figure 6-2.

CWD +SYSMAC

($H)RDY:
§ +ZSYS51>SYSLIB2>MACROP #SYSMAC>SMPMAC -SZ 10
‘@ ($H)MACROP-0100-11/17/1404

($H)0000 ERR COUNT

($H)RDY:

ASSEM 4SYSMAC>SMPMAC -SZ 10 -SAF -LE -XREF -COUT >SPD>LPTO0
($H)ASSEM-0100-11/17/1346

($H)0000 ERR COUNT

($H)ASSEM: (020105) 1D 1380 0000 0000

($H) >SPD>LPTOO

($H)RDY:

FO >SPD>LPTO00

($H)RDY:

LINKER +SYSMAC>SMPMAC -COUT >SPD>LPTO0 -SZ 10
($H)LINKER-0100-11/23/1258

LDEF A,X'100'

VDEF B,X'2'

LINK SMPMAC

MAP

. QT

($H)SAF OR SLIC PROG2.0 NT FND

($H)SAF OR SLIC PROG2.0 NT FND

($H)ROOT SMPMAC

($H)LINK DONE

($H)RDY:

Figure 6-1. Sample Terminal Session (SMPMAC)

USING THE ASSEMBLER
AND MACRO PREPROCESSOR 6-1 CB22

1 TITLE SMPMAC, '3/1/77" EDITOK/MACKO EXAMPLE

e %

3 kwxk THE FOLLUWNING PORTION UF COLE IS ADDED FROM "SMPLM" skkx
4 *

5 ZERO EQU $ (61 INITIAL VALUE=S)

6 RESV er0

7 NAME TEXT YSAMPLE', 'PROGRAM', Z2'0%!

8 XDEF ZERC

9 XUEF (Tw0,2)

10 xLucC A

11 XVAL -]

12 SCuMM COMM 100

13 Ccoml Euu $COMM+]

14 «*

15 #xwx THE FULLOWING PURTION OF CODE IS ADULED FRONM "SAMPLI" xxxx
16 *

17 ORG $COMM URG INTO COmmOn

18 DC 1,2

19 ORrG ZERO+150 ORKG INTO INTERVAL LOC
20 START LDR $RrR1,=8 EXTERN VAL REFERENCE
2l STR $R1,<COM1 COMMUN KEFERENCE
ge »

23 §C LDR PrR1, <A EXTERMAL LOCATION REFERENCE
24 *

25 CaLL PROG2.STAKRTZ2, VAME

26 LB ZERQ+1,=21'32"

27 BEBT >+ §F FORWARDS TEMP LABEL KEFEREWCE
28 SLD $81,=2'01020304"

29 %

30 xwxx THRE FOLLOWING PORTION OF COUE IS ADDED FRUM "SAMPLZ" *kxx
31 *

32 SF I0LD LERO,>=Z2'1300",=5R1

33 $F I0LD LERDO,>=Z211300"',=8R1

34 SUR $R1,1

35 BEZ 3R1,=8C BACKWARDS TEMP LApEL REFERENCE
36 LT

37 CTRL LINK PROG2

38 EnD SMPMAC, START

Figure 6-2. Macro Preprocessor Qutput (SMPMAC)

Figure 6-3 illustrates a cross-reference listing produced by the Assembler. See the Program
Preparation and Checkout manual for an explanation of cross-reference symbols.

Figure 6-4 illustrates the Assembler listing of the assembled Macro Preprocessor output.
Figure 6-5 illustrates the link map of the previously assembled program SMPMAC.

USING THE ASSEMBLER
AND MACRO PREPROCESSOR 6-2 : CB22

TITLE SMPMAC,"3/1/77" EDITOK/MALRO EXAMPLE?
$ ok R)
$C 23 35
$COMM ie 13 17
N $F 3e
M $F 33 e7
$R1 LET R 20 el e3 32 EX 34 35
$S1 LA 2 28
A 10 e3
B 11 20
COM1L 13 el
NAME 7 25
. U PROGR2 LA 2 A es
START ev 38
U STARTZ #xaw 25
N TwO 9
B ZERO S 8 19 ee 3e 33
] 1] 1] v
11 LABELS
25 REFERENCES
38 RECQRDS
2 U FLAGS
1 M FLAGS
2 N FLAGS
Legend:
| — Optional error flag: {Il — Number of the line in which the symbolic
. name is defined in the module. Asterisks
T (3% ' indicare tht the symiolic name was
ﬁ i.e., the label is multiply defined. not defined in this module.
. . X IV — Number of each line that contains a refer-
U — Designated label is not defined;**** A
is also included in the definition field. ence to the symbolic name.
N - g]eesignac:e:j label is not referenced in 2The contents of the assembly program TITLE
modu’e. statement become the heading for the cross-
Il — ldentifiers (e.g., registers) and an alphabetical reference listing.
list of all labels in the assembly language source
module. ldentifiers do not have to be defined
and are never flagged.
Figure 6-3. Cross-Reference Listing (SMPMAC)
USING THE ASSEMBLER

AND MACRO PREPROCESSOR 6-3 CB22

SMPMAC

3/71/17 GCOS6/MDT 0101 ASSEMBLER ‘EDITUOR/MACRU EXAMPL PAGE 0001 1901/01/01 0026:59,.,4
000001 TITLE SMPMAC,'3/1/77' EDITOR/MACRO EXAMPLE
000002 *

000083 *kwxx THE FOLLOWING PORTION OF CODE IS ADDED FROM "SMPLM" wwww
000004 *
000005 . Quoo ZERO EQU 3 (G1 INITIAL VALUE=S)
000006 0000 0000 00600 RESV 2,0
000007 0002 5341 NAME TEXT 'SAMPLE', 'PROGRAM', 2'03%'

QU033 4050

0004 4C4S

000S 5052

0006 4F47

0007 5241

008 4DOY
000008 XUEF ZERO

[T]
000009 XDEF (Tv0,2)
0002

000010 xLOC A
00v011 XVAL L}
000012 vued $Comm comm 100
Voval3 0001 [3 comy EGU $COMM+1
000u1d *
V0V01S *kwex THE FOLLUAING PORTION OF CUDE IS ADDED FROM "SAMPL1" sxxx
000016 *
000017 0UOv K URG $COMM ORG INTO COMMON
QU001 LOLL YVl uC 1,2

0001 ovoe
000VU19 wuYe kG ZERO+150 ORG INTU INTERNAL LOC
000020 0096 9870 LUOOC X START LOR $R1, =4 EXTERN VAL REFERENCE
000021 0098 9F00 U001 [3 STK $R1,<COH] COMMON REFERENCE
voove2 *
000025 UCYA 9BLU 0000 x sC LDK $R1, <A EXTERNMAL LOCATINON WEFERENCE
0o0vved *
Quoueds Lu9C FBCO 0003 CALL PRUGR2.START2, VAME

VUYE D3by 0LOO

00A0 UFBU T

OGuAl Looe
009026 UuA? 82CO FFYE Le ZERU+] =21 32"

ouAd 3200 .
000027 GVAS 050UV 1 ted >+8F FORNARDS TEMP LAHBEL REFERENCE
000028 OuAe 98FU U1G2 03ue SLD $S1,37'01020304"
u000e29 *
00V030 wxww THE FULLOWING PORTION OF CODE IS ADDED FRNM "SAMPLR" #wwx
000031 *
000032 UVOA9 B1CU FEkbSe BF IoLo ZERU,>=7'1300",=5R1

oAb 1300

GOAC 0051
000033 0CAD HI1COU FF5? $F 1GLD ZER(U,>=2'1300',38R1

VGAF 1300

0oL 0051
000034 0OBL 1041 SOK $R1,1
000Us8S5 0une 1901 FFE? T 4 $R1,=$C RACKWARDS TEMP LAHEL REFERENCE
000086 0OB4 0UO00 hLT
000037 CTrL LINK PRUG2
000038 LOBY 0UYe END SMPMAC, START

0000 ERR COUNT
n I Y v Vi
Legend:
I — Optional error flag(s): I — Record number; a 6-digit decimal represen-

— Operand field format error
Numeric conversion error

Short displacement out of range
IHlegal address expression

Ilegal forward reference
Improper header

Label field format error
Multiply-defined symbol

No matching left parenthesis
lllegal operation code

Assembler control statement error
Address<0 or >32K

Iliegal register reference
Improper statement format
Truncation warning for
constant

Undefined symbol
Expression too complex
Conditional assembly error

|

|

|

|

|

string

|

NXC =»uIO09v0Z2ZrImmoad»
|

There can be up to four error flags per line.
If there are more than four errors, only the
first four are listed and included in the error
count; subsequent errors are ignored.

tation corresponding to the sequential count
of the number of logical records read.

111 — Program counter; 4-digit hexadecimal repre-
sentation of the relative address of the
corresponding source statement on the
right-hand side of the listing.

IV — Machine code; 4-, 8-, or 12digit hexa-
decimal representation of the corresponding
assembly language instruction or Assembler
control statement shown on the right-hand
side of the listing.

V — Type flag; 1-character flag (preferably a

nonhexadecimal digit) that specifies the
label type of the referenced symbol:
K — Common
T — Temporary
X — External
P — P-relative reference to external
or common symbol

VI — Verbatim representation, including com-
ments, of the source statement, as defined
in the Assembly Language manual.

Figure 6-4. Assembler Output Listing (SMPMAC)

USING THE ASSEMBLER
AND MACRO PREPROCESSOR 6-4

CB22

LINKER=0100-11/23/1258 GCO0S6 MOD400-8100-12/01/1413
RU= SMPMAC LINKED ON: 1977/12/08 1420:55,9 =SAF

SMPMAC 3/1/77
1977712708 1420:12.4 ASSFMRLER=-0100-11/17/1346 GCOS6 MOD400=-S100-12/01/1413 P
EDITOR/MACRD EXAMPL

SAF OR SLIC PRNG2.0 NT FND

SAF OR SLIC PROG2,0 NT FND

*x SMPMAC LINK MAP 1977/12/08 1420:55,9
*xSTART 00FA

*%LOW 0000

*xHIGH 0119
*x§COMM 0000
*xCURRENT 0119

**EXT DEFS
P ZHCOMM 0000
P THPEL 0000
A 0100 R 0002

*x ROOT 0000
* SMPMAC 0000
C sCoMm 0000
ZERO 0064 Two 0002

*xIINDEF
* SMPMAC 0000
START2 0103

ARAAKRRKRK
RONT SMPMAC
A KKK Kk kKK
HIGHFST nvLY /NUM OF sSyMs 0
KKK K KKK AR
SAF
EEARK KRR K
ROOT SMPMAC BASE 0000 ST 00FA -..UUI HIGH=0119
AARANAKRAKR
*STZE OF ROOT AND STATIC OVLYS= 0119 HT REL RCD= 4
Ak kAR KA KK
LINK DONF
ARk Ah kKA kK

I I1 111

Legend:

I - Indicates whether there is a protected symbol,
multiply-defined symbol, or symbol that defines
the labeled or unlabeled common; designated by
P, M, and C, respectively.

II - Module and symbol names. (Module names are
preceded by *.)

III - Base address of module, address or value of
symbol.

Figure 6-5. Linker Output Listing (SMPMAC)

USING THE ASSEMBLER ‘ :
AND MACRO PREPROCESSOR 6-5 » ' CB22

SAMPLE ASSEMBLY LANGUAGE MULTITASK PROGRAM (BRDCST)

Figure 6-6 contains a sample terminal session to compile, link, execute, and start debugging
the assembly language, program BRDCST, on that system. A specialized system is configured
with CLM_USER containing the following configuration directives:

DEVICE KSR00,5,0,X’0500’, CONSOLE
MEMPOOL 8,,5000

DEVICE CDR00,26,26,X’1300’
MEMPOOL E,AA,14336,,BB,11264
MEMPOOL B,,8850

SYS 60,16,SSIP,3 -
DEVICE DSKO01,17,17,X’480°

DEVICE DSK02,18,18,X’1200°

DEVICE DSKO03,19,19,X°1280°

DEVICE LPT00,20,20,X’1380°’,LPT00

QUIT

The typeout illustrates the following points. A task group, $H, is spawned. Editor is used to
print the file containing BRDCST source text, a portion of which is shown in Example 1. The
Macro Preprocessor, required for processing of $IORB, $CRTSK, and $RQTSK macro calls, is
not on the directory search path and a full pathname must be used. A task group, BC, in which to
execute BRDCST is created and BRDCST is loaded for execution.

Example 1 is a listing of BRDCST. It is presented to illustrate how tasks are created and
invoked in an assembly language multitask program.

‘\“‘LA, r

USING THE ASSEMBLER
AND MACRO PREPROCESSOR 6-6 CB22

SG $H H.L.A 38 >SPD>CONSOLE -QUT >SPD>CONSOLE -POOL AA -WD ~Z00BO0O
($S)RDY:
C :$H:
RDN
($H)GROUP READY
($S)GROUP $H DID NOT ACCEPT INPUT
RDN
($H)RDY:
CWD ~ETSCOM>MAN_EX
($H)RDY:
FO >SPD>LPTO0
ED
($H)EDIT rrrr-mm/dd/hhmm
R BRDCST.P
1,$P

Q
FO >SPD>CONSOLE
($H)RDY:
~Zrrr02>SYSLIB2>MACROP BRDCST -SZ 20 -IC
($H)MACROP rrry-mm/dd/hhmm
($H)0000 ERR COUNT
($H)RDY:
ASSEM BRDCST -SIZE 1 -COUT >SPD>LPT00
($H)ASSEM rrrr-mm/dd/hhmm
($H)0000 ERR COUNT
($H)RDY:
LINKER BRDCST -C >SPD>LPTOC -S 2
(SH)LINKER vrrr BU=BRDCST LINKED ON: yyyy/mm/dd nnmm:ss.t
IN "ETSCOM>MAN_EX
LN BRDCST
START BRDCST
MP
QT
(SH)ROOT >BRDCST
($H)LINK DONE
($H)RDY:
C :$S:
CG BC 40 -LRN 30 -POOL BB -EFN ~ETSCOM>MAN_EX>BRDCST
($S)RDY:
EGR BC B.E.N >SPD>CONSOLE -WD “ETSCOM -QUT >SPD>CONSOLE
($S)RDY:

Figure 6-6. Sample Terminal Session (BRDCST)

Example 1:
Partial Program Listing of BRDCST

TITLE BRDCST

LIBM >LDD>MACRO>EXEC_LIB'
*
* THIS TEST PROGRAM IS A
* MEDIA TRANSCRIPTION TEST.
* IT CAN EXECUTE AS AN
* ON-LINE OR BATCH
* DRIVER TEST......
DEVTBL RESV 0
DC <CROBLK LRN 26
DC <TTYBLK LRN 13 | POINTERS TO DEVICE 1/0
DC <DSKBLI LRN 17 [REQUEST BLOCKS
DC <PRTBLK LRN 20
USING THE ASSEMBLER
AND MACRO PREPROCESSOR 6-7

CB22

DC <DSKBLO LRN 18
DC <TTYOUT LRN 12
DC <ASRINP LRN 10
DC <ASROUT LRN 11

*

CRDBLK $I10RB 26,WAIT, ,BUFFER,,80

*

TTYBLK $I0RB 13,WAIT,,BUFFER, ,80

*

DSKBLI $I0RB 17,WAIT,,BUFFER,,80

*

DSKBLO $I0RB 18,WAIT,,BUFFER,,80

*

BUFFER RESV 80
RESV 80
RESV 80

TILRN DC 26

TOILRN DC 27

TILVL DC 1

TOILVL DC 2

*

* TASK 1 (INPUT) REQUEST BLOCK LRN 26

*

TASKO1 $TRB 26,WAIT,,INSTRT

*

* TASK 2 (OUTPUT) REQUEST BLOCK LRN 27

*

TASKO2 $TRB 27,WAIT, ,0UTSTR

*

*

* SET USER BIT TO INDICATE DISK

BRDCST LDR $R2,=7'0021'

LDR $R1,<DSKBLI+$AF
STH $R2,=$R1
STR $R1,<DSKBLI+$AF

. .

* CREATE INPUT, OUTPUT TASKS
$CRTSK TILRN,TILVL,INSTRT
$CRTSK TOILRN,TOILVL,OUTSTR

* INPUT TASK REQUEST

*

*

INPUTR $RQTSK TASKO1

*

*

* OUTPUT TASK REQUEST

*
$RQTSK TASK02

*

TASK EXECUTION CODE

*

*

* XDEFS AND XLOCS

*

* XDEF BRDCST
END BRDCST

USING THE ASSEMBLER
AND MACRO PREPROCESSOR 6-8

\

POINTERS TO DEVICE I/0
REQUEST BLOCKS

1/0 REQUEST BLOCK DEFINITIONS
USING $IORB MACRO CALLS

BUFFER, LRN AND LEVEL
DEFINITIONS

TASK REQUEST BLOCK
DEFINITIONS USING
$TRB MACRO CALLS

PROGRAM ENTRY POINT AND
INITIALIZATION CODE

TASK CREATION USING
$CRTSK MACRO CALLS

ENTRY OF TASK REQUESTS
USING $RQTSK MACRO CALLS

XDEFS AND XLOCS FOR
LINKER PROCESSING

CB22

Section 7
Using the COBOL Compiler

This section illustrates the use of the COBOL compiler to construct programs written in the
COBOL language. It shows how to load a source program from a card deck into a mass storage
COBOL source file and how to subsequently invoke the compiler to process the source program
from the mass storage file. Two samples are presented; one shows the procedure for running an
application, and the other is the ouput listing from an actual compilation and link.

SAMPLE CARD-TO-DISK-FILE PROGRAM (CARDIN)

Example 1 is a sample COBOL source program that places data read from cards onto a disk
file. The following paragraphs illustrate a procedure for creating application files, loading
source, compiling, linking, and executing. System startup has created the application task
group $H. After startup, the current working directory is ” Zrrr01>SYSLIB1. The following
summarizes the contents of volumes used in commands:

Volume Device Unit Contents

Zrrr00 DSKO00 Bootstrap, Monitor, Linker
Zrrr01 DSKO1 SYSLIB1, SYSLIB2
Zrrr04 DSKO02 COBOL Compiler
VOL03 DSKO03 Application Files
Example 1:
Program Listing of CARDIN

000010 IDENTIFICATION DIVISION.

000020 PROGRAM-ID. CARDIN.

000030 ENVIRONMENT DIVISION.

00004C COMFIGURATION SECTION.

000050 INPUT-OQUTPUT SECTION.

000060 FILE-CUNTROL.

000070 SELECT CARD ASSIGN TO OA-CARD-READER,
000080 SELECT MASTER ASSIGN TO 0C-MSOD.
000090 OATA DIVISION.

000100 FILE SECTION.

000110 fFC CARD LABEL RECORDS OMITTED.
000113 C1? CARD-REC PIC X(80).

000116 FD MASTER LABEL RECORDS OMITTED.
000120 G1 MASTER-REC PIC X(80).

000130 PROCEDURE DIVISION,

000140 CARDIN,

000150 OPEN INPUT CARD.

000160 OPEN OUTPUT MASTER.

000170 LoOOP.

000180 READ CARD RECORD AT END GO TO EOF,
000190 MOVE CARD-REC TO MASTER-REC.
000200 WRITE MASTER-REC.

000210 G0 TO LOOP,

000220 EOF.

000230 CLOSE CARD.

000240 CLOSE MASTER,

000250 STOP RUN.

000260 END COBOL

USING THE COBOL COMPILER 7-1 CB22

VOLUME AND FILE CREATION

ACA :$H:

RDN

CV >SPD>DSKO03 -FT VOLO03 Format volume VOLO03

CD A VOL03>SOURCE Create directories for

CD A VOL03>OBJECT source, object and user files

CD A VOL03>FILES
CF AVOLO3>FILES>OLD_MASTER -N_REL -RSZ 128 Create user file

FO >SPD>LPT00

LS -PN AVOLO03 List contents of created
LS -PN A VOL03>OBJECT directories
LS -PN A VOLO3>FILES
FO
SOURCE LOADING

The following illustrates loading a source deck using the CP command. Place the source decks
for CARDIN in the card reader in the following sequence:

CARDIN source deck
EOF (11-5-8-9) card

Enter the following command:
CP >SPD>CDR00 A VOL03>SOURCE>CARDIN.C

COMPILING WITH COBOL

In the following ECL commands, the working directory is ” VOL03>OBJECT. The search
path for bound units (executable programs) is current working directory, LIB1, then LIB2,
where their pathname is initially ” Zrrr01>SYSLIB1. The COBOL Compiler is not in any
directories in the search path; its full pathname must be given. However, the command

COBOL <SOURCE>CARDIN...
can be used if you change the pathname for the directory LIB2 by issuing an operator command
to the system task group using:

A$SACSD -LIB2 " Zrrr04
(where A is exactly one space) -

AVOL03>0OBJECT will contain temporary work files required for the compiler and the
created object files used by the Linker. The compiler argument LD will list source, data map, and
errors; LO will, in addition, list the object text.

To compile CARDIN enter the following:

CWD " VOLO03>OBJECT
COBOL <SOURCE>CARDIN -LO -COUT >SPD>LPTO00

LINKING

The working directory is still ~ VOL03>OBJECT. The Linker LIB directive directs the
Linker to search the secondary directory for COBOL run-time routines (ZCRT) required for
linking. To link, enter the following commands: ,

LINKER CARDIN -COUT >SPD>LPTO00 -SIZE 4
LIB " Zrrr04>ZCRT
LINK CARDIN
MAP;QT

USING THE COBOL COMPILER 7-2 c CB22

EXECUTING

The internal file names 0A and 0C translate to logical file numbers 01 and 03, respectively,
and must be associated with the pathnames or the physical devices through a GET or ASSOC
command. To execute the program, enter CARDIN.

Enter the following commands:
GET 01 >SPD>CDRO00
GET 03 " VOL03>FILES>OLD_MASTER
CARDIN

SAMPLE COBOL TERMINAL SESSION (AC8111)

Figure 7-1 illustrates an operator terminal session in which a system is configured, and the
COBOL program AC8111 is compiled, linked, and executed on that system. The Entry Level
COBOL compiler is specified in this session. To secify the Intermediate COBOL compiler,
change the COBOL command and the LINKER LIB directive as follows.

COBOLI ACS8111 -LO -COUT >SPD>LPT00
LIB "ZSYS51>ZCIRT;LINK AC8111;MAP;QT

The LINKER LIB directive directs the Linker to search the secondary directory for COBOL
run-time routines required for linking. To execute the program, enter AC8111.

RDN

($H)RDY:

CWD +STCOB1>SOURCE>ACC208

($H)RDY:

COBOL AC8111 -LO -COUT >SPD>LPTOO
($H)CcOBOL 0200 11/22/1511

($H) 0000 ERRORS

($H)END COMPILATION

($H)RDY:

LINKER AC8111 -COUT >SPD>LPTO0 -SZ 4
($H)LINKER-0100-11/23/1258

LIB +ZSYS51>ZCRT;LINK AC8111;MAP;QT
($H)ROOT AC8111

($H)LINK DONE

($H)RDY:

Ac8lll

($H)Q208NUA011001
($H)Q208NUAO11001 1234
($H; PPPP
($H)RDY:

Figure 7-1. Sample Terminal Session (AC8111)

Figure 7-2 is a listing of the program AC8111, its compiled object text, and the output from the
Linker. The program was compiled using the entry-level compiler.

USING THE COBOL COMPILER 7-3 CB22

SOURCE PRNOGRAM

1 TDFNTIFICATION DTVISTON,

2 *PROGRAM Q20R8A01101,.CNBNL FROM N20BACC.ARCHIVFE,
3 PRNGRAM=ID, ACRI11,

4 FNVIRONMENT DIVISION,

S CONFTIGURATION SELTTON,

6 SOURCE=COMPUTER, LFVFL=6,

7 NBJECT=CNOMPUTER, LFVEL=6 PROGRAM COLLATING SFQUENCF TS ASCTI.
8 DATA DIVISION,

9 WORKTNG=STNRAGF SECTTON,

10 01 QDSPLYPREC,

1 0S NDSPLYFIX,

12 10 FILLFR PIC X(13) VALUE "Q208NUAQ11001"
13 10 NTCASE PIC XX VALUE SPACES.
14 10 FILLER PIC ¥X VALUE SPACES,
15 10 NSTATUS PIC XX VALUE SPACES,
16 10 FILLFR PIC XX VALUE SPACES.
17 0S5 QDSPLYVAL,

18 10 QACTRESLT PIC X(12) VALUE SPACES,
19 10 FILLER PIC XX VALUE SPACES,
20 10 QEXPRESLTY PIC X(12) VAL‘E SPACES.
21 10 FILLFR PIC XX VALUE SPACES,
22 01 SUMMARYS,

23 05 SUM=LINE PIC X(7) VALUE "t 2 3 4",
24 0S5 RESULTS,

’S 10 TESTIR PIC XX,

26 10 TEST2?2R PIC XX.

27 10 TEST3R PIC XX.

’8 10 TEST4R PIC XX.

29 * % * TFST GO TN==FNRWARD AND BACK % * %

20 PROCFDURE NDIVISION,

31 ANFANG,

32 DISPLAY ADSPLYFIX,

33 GO TO0 PARA=3,

34 WRAL,

35 MOVE "GO TN PARA=-3" TO OEXPRESLT,

36 MOVE "FELL THRU" TO. QACTRESLT,

37 MQOVE 01" 70 QTCASE,

38 MOVE nEn T0 TEST1R.

39 DISPLAY NDSPLYREC.

490 PARA=1,

41 MOVE nen 10 TFST3R.

42 GO 70 E0Jt.

43 WRA2,

44 MOVE "GO TN FOJ1" T0 NAEXPRESLT.

us MOVE "FELL THRU" TO ANACTRESLT,

46 MOVE "o4" TN QTCASF,

47 MQVE wEn T0 TEST4R,

48 DISPLAY ADSPLYREC.

49 PARA=2,
S0 MOVE wpn T0 TFST2R.
S1 GO T0 PARA=1.
52 WBAZ,
53 MOVE "GO TN PARA=1" TO QEXPRESLT,

sS4 MOVE "FELL THRU" I0 QACTRESLT,
5S MOVE "03" TO QTCASF,

56 MOVE nEn T0 TEST3R,

s7 DISPLAY QDSPLYREC,

58 PARA=3,
59 MOVE npw T0 TESTIR,
60 50 T0 PARA=2,
61 wBA4,

62 MOVE "GO TO PARA=2" T0O QEXPRESLT,

63 MOVE "FFLL THRU" TN QACTRFSLT.

Figure 7-2. Sample Listings for AC8111

USING THE COBOL COMPILER 7-4 CB22

. 64 MQVE "02% TO _QTCASE
‘ 65 MOVE "F" To TEST2R.
66 NDISPLAY ADSPLYREC,
67 F0J1.
68 MOVE "P" T0 TEST4R.
69 MOVE SPACES TO QTCASF,
70 MOVE SPACFS TO QSTATUS,
71 PISPLAY ADSPLYFIX SUM=LINE.
72 MOVE SPACFS TO ADSPLYFIX,
73 DISPLAY NDSPLYFIX RFSULTS.,
74 STOP RIN.,
75 FND COROL.
DATA ALLOCATION MAP)
0. NAME LHAD Al PICTURE
. WORKING=STORAGE SECTION
| @4 QDSPLYREL - 0000 X(000049) |\
05 QDSPLYFIX 0000 X(000021)
10 FILLER 0000 X(000013)
1!\ chAsg 0006 H y{nnnnn)_)
10 FTLLER 0007 H X(000002)
: 10 QSTATUS 0008 H X(000002)
L 10 FLLLER . .. 0009 H X(000002) _ _ e
05 QDSPLYVBL 000A H X(000028)
10 QACTRESLT 0004 H X(000012)
40 FYLLER 0010 W X(000002)) . .
10 QEXPRFSLT 0011 H X€000012) (DATA ALLOCATION MAP)
10 FILLER 0017 H X(000002)
DY __SIJMMARYS 001 XC00001SY N
05 SUM=LINE 0019 X(000007)
05 RFSULTS 001C H X(000008)
40 TEST4R . 001C H_ X(000002). — I
% ‘ 10 TFST2R 001D H X(00000?)
¢ 10 TEST3R 001E M X(00000?)
e 340 FESTUR ~ - QO01F . _H__ X(000002) . - . . e
NO DIAGNOSTICS -
—— e N\ N— A\ ———
S T prowe) i
—— (HALF-WORD INDICATOR;
DESIGNATED BY H)
— IS SO - e e F e e+ e et e e e
f (STARTING ADDRESS OF DATA)
‘ (DATA NAME)
_ (GROUP AND ELEMENTARY ITEM
LEVEL NUMBERS)
i R (GRGUFLEEVEL‘ N'”MB'E'RS")“ —_—

Figure 7-2 (cont). Sample Listings for AC8111

USING THE COBOL COMPILER 7-5 CB22

| ossecT cone
L

STATEMENT NUMBER 31

i0021 0039 DC

L STATEMENT NUMBER . .32 .

: 0039 9BRCO FFCé LAB

iOO}R 9870 0000 LDR

0030 EB70 0015 LDR
003F D380 0000 LNJ $BS,<ZCRTY!
STATEMENT NUMBER 33

‘0041 . -B3CB FFFS__ JMp

| STATEMENT NUMBER 34 ARTIAL OBJECT LISTING)
i002? 0043 DC
I-STATEMENT NUMBER 35..
1 0043 0F87 B
0044 474F DC
00452054DC e e
0046 4F20 DC
0047 Sou41 DC
0048 5241 oY

(SUBROUTINE CALL)
(INSTRUCTION MNEMONIC)
(INSTRUCTION)

(LOCATION OF INSTRUCTION)

LINKFR=0100=-11/2%/1258 GCNS6 MONUO00=-S100-11/29/0620
RuU= ACAR111 LINKED 0ON: 1901/01/01 0002:84,1 =SAF

ACA111 01/01/01
CNRNL RFV, 0200 DATF 01/01/01 TIMF 0000 .

ZCRTYU 770208
HRS ASSEMBLER 2,49 06/02/77 1340.3 EDT THY
(C) COPYRIGHT 1976 RY HONFYWELL IMFORMATION SYSTEMS INC

7CSTNP 770208
HRS ASSEMBLER 2,49 06/02/77 1336.9 ENT THU
(C) CONPYRIGHT 1976 RY HONFYWELL INFNRMATION SYSTEMS INC

ZCRTFR 770208
HRS ASSEMBLER 2,49 06/02/77 1934.,4 EDT THU
(C) CONPYRTGHT 1976 RY HONFYWELL INFORMATION SYSTEMS INC

*x ACAI1t1 LINK MAP 1901/01/701 0002:44,1
*xSTART 0033
*xLOW 0000
*xHIGH N3R1
**CURRFENT 0381
*xEXT DEFS
P 7HCOMM 0000
P ZHREL 0000
*x ROOT 0000
x ACR111 0000
ACR111 0033 7CMATIN 0031
x ZCRIYU 02B9
7CRTY1 02F1 ZCRTYZ2 0312 ZCRTY3 0334
Figure 7-2 (cont). Sample Listings for AC8111
USING THE COBOL COMPILER 7-6 CB22

P

®* 7CSTOP 033E
2CSTNP 033E
* ZCRTFR 034y
ZCRTER 0353

* x| INDEF
* ACR111 0000
* ZCRTYU 02R9
* ZCSTOP 033E
* TCRTFR o034y

RRRRARKR AR
ROOT ACA111

TRRRRRARRR

HIGHEST nvLY /NUM OF SYMS 1

RARRRRKARE

.SAF

RARRRANRRRR

ROOT ACB111 BASF 0000 ST 0033 ~eesl HIGHZ0381
EARKRRRRRK

*STZE OF ROOT AND STATIC OVLYS= 03AR1 HI REL RCD= 9
ARRRRRRRAR

LINK DONE

RRRRRRRRRR

Figure 7-2 (cont). Sample Listings for AC8111

CALLING FORTRAN ROUTINES FROM AN ENTRY-LEVEL COBOL MAIN PROGRAM

Entry-Level COBOL programs can call FORTRAN subroutines and conversely. This enables
a COBOL application to utilize the features of the FORTRAN language, such as the intrinsic
routines, and FORTRAN run-time libraries.

The COBOL main program must be linked with all the called FORTRAN routines to form one
bound unit. The FORTRAN routines and libraries must either be in the working directory or one
of the libraries searched by the Linker, as specified by the Linker LIB and LIBn directives.

Figure 7-3 is a sample Entry-Level COBOL source program, COBFRT, whose function is to
calculate and print the square roots of three integers. Since the COBOL library does not have a
square root routine, a FORTAN subroutine, FRTRAN in Figure 7-4, is used to convert the
passed COBOL integer argument values to read values and call the FORTRAN square root
routine.

The commands entered from the operator terminal are listed in Figure 7-5. COBFRT.O and
FRTRAN.O are both in the working directory FRTCOB, the COBOL run-time library, ZCRT, is
in the directory specified by the Linker directive LIB, and the FORTRAN run-time library,
ZFRT, is in the directory specified by LIB2. The system volume, ZSYS51, contains the
FORTRAN and COBOL compilers, ZFRT, ZCRT and the operating system software. Volume
FRTCOB contains the source modules (COBFRT.C and FRTRAN.F), the object modules
(COBRFT.O and FRTRAN.O) and the linked bound unit COBFRT.

USING THE COBOL COMPILER 7-7 ' CB22

SOURCE PROGRAM

NV E~NO U & WN -

a9
NO DIAGNOSTICS

TUOFNTIFICATION ODTVISTON,
PROGRAM=TD, CURFRT,

THIS PRNGRAM TS AN FXAMPLF NOF A CNBNL PRUGRAM
CALLING A FORTRAN PRUGRAM TO GET THF SQUARE ROUTS
UF SUME [NTFRGERS AMD KFT!'KRNING [HAT VALUF TO THE
CNeNL PRUGRAM TN RE DTSLPAYFD,

% % % * %

FNVIRUNMENT DIVIS]ION,

CONFTGURATTUON SEFTTOMN,

SOURCE~COMPUTER, HTS=SFRTES=h0 LFVFL=-06.
NBJECT-COMPUTER, HTS~SFRTES=A0 LFEVFL=-6,.
NPATA DTVISTON,

WURPKTNG=STNKAGF SERTTUN,

77 WORK COMP=1 VALUE +0,

77 VAL6P?S PIC 999 VALUF k2%,

77 ANSZS PIC 99,

77 VALIA4 PIC 999 VALUF 144,

77 ANS1? PiC 99,

77 VALS9RQ1 PIC 9999 VvALIIE QRO1,

77 ANS99 PIC 99,

N1 ANSLN,
ne FILLFR P XX VALIIE SPACES.
02 TINTvAL PIC 9999 VALUE ZFK0,
02 FILLFR PIC X(h) VALUE SPACES,
02 SQVAL PIC 9999 VALUE ZFRO,

02 FILLFR PIC XXX VALUE SPACES.
PRNCFDIRE NIVISINN.
PAPAT,
MOVE vAL625 TO WORK.
CALL "FRTRAN" USTNG WORK.
MQVE WORK TO ANS2S.
MOVE VAL144 TO WORK,
CALL "FRTRAN" USTNG WQORK.
MOVE WNRK TO ANS12.
MOVE VAL9801 T0 WORK.,
CALL "FRTRAN" USTNG WORK.
MQVE wONRK TO ANS99,
DISPLAY "INTFGER S, RT.",
MOVE VvAL625 TO INJVAL,
MOVE ANS25 TN SQVAL.
DISPLAY ANSLM,
MOVE VAL144 TO INTVAL,
MOUVE ANS12 T0 SGVAL.
DISPLAY ANSLM.
MOVE VAL98N1 TN TNTVAL,
MOVE ANS99 TN SUVAL,
DISPLAY ANSLN,
STOP RIUN,
FND COROL

Figure 7-3. COBOL Listing of COBFRT

USING THE COBOL COMPILER 7-8

CB22

1 SUBROUTINF FRTRANC(I)
) 4 Jd =1
{ 3 X = FLOAT(J)
A 4 Y = SART(X)
5 I = NINT(Y)
6 RETURN
7 END

0 DTAGNOSTICS

. Figure 7-4. FORTRAN Listing of FRTRAN

RN

(ALIRDY:

cwn ~“FPTC: B

(AAYPDY:

CORNL CORERT =CNIIT >SDN>T PTNAN
CAAYCOROT. 020N 11 /2271511
(AA) 0ONON FDDNODS

CAA)FND COMPTTATT M

(AAYPDY:

FOPTRAN FRTRAN —COIIT >SPN>I.PTON
(AA) FORTRAM ¥4ED 11/2271110
(AA) 0NON FRD CHOUNT FRTDAM

(AA)PDY:
LINKER COBFRT -COUT >SPND>]PTNO

8 (AA)LINKER-0100-11/22/1258
& LIB “75YS51>7CRT

LIB2 “ZSYS51>ZFRT

LINK COBFRT

MAP3QT

(AAMROOT COBFRT

(AA)LINK DONE

(AA)RDY:

COBFRT

(AA)INTEGER SO, RT!
(AA) 0625 0025
(AA) 0144 0012
(AA) 9801 0099
C(AA)RDY?

Figure 7-5. Operator Terminal Session for COBFRT

USING THE COBOL COMPILER 7-9

CB22

Section 8
Using the FORTRAN Compiler

This section illustrates the use of the FORTRAN compiler to construct programs written in
the FORTRAN language, and to perform FORTRAN chaining.

SAMPLE FORTRAN TERMINAL SESSION (MATINV)

Figure 8-1 illustrates an operator terminal session in which the FORTRAN program
MATINYV is compiled, linked, and executed. The FORTRAN compiler is on the search path, and,
therefore, a full pathname is not needed to locate the compiler. The Linker LIB directive directs
the linker to search the secondary directory for FORTRAN runtime routines (ZFRT) required
for linking. Two files, unit number 2 and 3, are associated with device pathnames. To execute
the program, enter MATINV. Figure 8-2 shows the MATINV source listing and the linker
output when the program was linked.

FORTRAN VL782 SUB1 MATINV -COUT >SPD>LPT00
($H) FORTRAN

($H) 0000 ERR COUNT MATINV

($H)BDY:

LINKER VOL2 TEST MATINV -COUT >SPD>LPTOO
($H)

LINKER ces

LIB ZF0400 ZFRT

LINK MATINV;MP;QT

($H)ROOT MATINV

($H)LINK DONE

($H)RDY:

ASSOC 2 >SPD>CDROO

($H)RDY:

ASSOC 3 >SPD>LPTOO

($H)RDY:

MATINV

($H) STOP

($H)RDY :

Figure 8-1. Sample Terminal Session MATINV)

FORTRAN CHAINING

A method of creating and controlling execution of overlays within FORTRAN programs to
conserve memory space, commonly known as CHAINing, can be used wherein an executable
bound unit (overlay) is executed as a chain prior to invoking the next chain.

The source statement for referencing a chain is:
CALL CHAIN(e)

where e is an integer expression resulting in a value greater than or equal to zero, identifying
the chain to be loaded. Proper linking results in a bound unit with overlays that require
minimum memory for execution.

Although there are no rules for defining the best method of segmenting a FORTRAN
application into chains, the following should be considered:

1. Thelargest chain determines the overall memory requirement.
2. Anychain may be called by any other chain as many times asrequired.

USING THE FORTRAN COMPILER 81 CB22

YATIANOD NVUILYOd HHLONIS

2240

MAT TNV

GTUSe MAVAYN=S1N0=11/11/ FORTRAN ™mUED 11/22/1119

1977712702 1312:36,9 SAF

PAGE

001

O

MATR1Y INyFRSINN

DImFENSIAY AF20,20),R(20,20),1IPvNT(20),INDFXx(20,20),PIVOT(20)

APITECS, 7)Y

FORMAT (141 ,13Y, "MATTNY',//,BX, 1AHGIVEN MATRIY

L.YYA

RFAD (2,1) N,M . T
FARMAT(T2,12)
FARMAT(7F10,4)

OE ~NO WU B Wi -

pN 9 T = ¢ N
RFAD (¢, 2Y (ACL,J),I=1,M)
D0 14 J=1,N

14

WRITEC3,2Y (A(T, 1), J=1,M)
DN 11 I=1,M
DN 11 J=1,n

12

1F(T=T)12,1%,12
s0I,JY=n,
GN 1O 11

13
11

BCl,JY=1,.n
CONT INYF
JMITIALTZATTQN

20

on 290 Jd=1,N
IPVATIJY =0
DN SSN T=i,N

SFARCH FQOR PIVQT FLFEMFNT
T=0.0
DO 105 1=1,M

A0

IF(TPVOT(T)=1)60,105,6A0
un 100 v =q,N
IF(TPVQT(K)=1780,100,740

L1}
RS

IF(Tax2=(A(1,K)1%%2)85,100,100
IROW =J
101 =K

1n0
105

T 2 A0,
CONTINUF
CONTIMUF

CIPVATCICOL)=IPVNT(ICOL) +1)
IMTFRCHANGE ROWS TO PUT PYVNT ELEMENT ON NIAGONAL

F(IROW= 140,260,140

Figure 8-2. Source and Linker Output Listing (MATINYV)

YATIANOD NVELIOA HHL ONIS1

€8

ged)

19 1719 pn 200 1 =1 ,N

aQ T=ACIRO%,L)

uj ACIPUW, L) =A(TCOAL,L)

a2 200 ACICOL,L) =T

43 IF(M)260,260,210

44 210 DN 2560 L=z1,M

as T=B(IRUW,I)

a6 BIIROW,1) =R(TCAL,L)

47 250 BCIrQlL,t) =7

48 260 INDFX(I,1) =]RQW

49 IMDFX (T,2) =T7CNL

80 PIVNTCIY =AcICOL,TCOL)

81 C DYVTDF PIVQOT RQW RY PTVYNT ELEMENT

K2 ACICGL,TCOLY =1,0

53 DN 350 L=1,M
e Re 350 A(CTCOL,LY =ACICOL,L)/PYVOT(D)
8% IF(M)%80,280,3%60

_%é 360 D0 %70 L=1,M —

57 370 BCICOL,L) =R(TICOL,LY/PIVOT(T)

58 C RFD!CF NON-PIVQT ROWS

g9 3R0 DN S50 T=1,N

60 IF(LI=1r0L) 4Nn0,550,400

61 400 T = AfLT,TCOL)

62 ACLY,TCNL)Y =0.0

63 DO 450 1 =1 ,N

K 450 ACLT,L)=ACLT,L)=-ACICOL,L)*T

65 IF(M)R5N,550,060

X 4h0 DN S9N =1 ,M

A7 SN0 BILT,1) = BOLT,1)=BCICQOL,L)*T

68 S50 CONTINUF

69 C INTFRCHANGE COLUIMNS

70 600 DN 7101I=1,N

71 LS M=Tae1

T2 IF(TNNEY (L, 1)=INDFX(L,2))A30,T710,63N

73 620 IRQW = TANDEY(L,1)

74 ICOL = TNDEY(L,?)

75 DN TR K=1,M

76 T 38(%,TROW)

77 ACK, [RQW) =A(K,TCOL)

78 ACK,IFO1) = T

79 IP5 CONT]IMUyF

Figure 8-2(cont). Source and Linker Output Listing MATINYV)

80 710 CONTIMUF

Rl WPITE(3,14)

82 16 FOARMAT(//SX,22HINVERSFE OF MATRIX A/)
R3 DR 15 1 = 1N

Ry 15 APITEC3,2)(A(T,0),J21,%)

RS WPITEC3,404Y R

R6 444 FORMAT(1HI)
R7 740 $TOD 19
A8 END

a DTARNPSTICS

MATIMV 771262!\0
FORTRAN M4Fy 1172271119 1977712702 1312:36.9 SAF

YHTIdNOD NVELIOd THLDNISN

-8

(44: 1)

7FYFTU 774111000
HRS ASSEYBIERP 2,0

11/710/77 1035.9 EST THU

(C) rOPYRIAHT 1977 B8Y HUMEYWFLIL TNFORMATTQN QYSTFMS TNF
7FSFY0 77111000
HRS ASSEMBLER 2,50 11/19/77 1030.1 EST THY
(CY FUPYRIRKT 1977 BY HONEYWFL! TNFOPMATTOM SYS[FMS TnF
ZFSKN}
ZFRFT0 77050100
HRS ASSEMBLER 2,80 10/0%/77 0708,3 EDT MNN
(CY CQPYRIAHT 1977 BY HOMEYWF|LL TYNFQRMATTQON SYSTFMS TNE
7FPFTYU 771110N0
HRS ASSEMHILER 2,80 11/17/77 10S4,0 EST THU
(CY COPYRIGHT 1977 BY HONEYWFLL TNFORMATTON SYSTF4S TNC i
ZEEFIQ 77112100 y
HRS ASSEMBlLER 2,80 11/21/77 15%9.8 EST MON
(CY FQPYRINHT 1977 5Y HONEVWFLL TNFQPMATTOM SYSTFMS Taf
ZFEKN]
M
ZFTIOTE 77072900 o
HRS ASSEMBLER 2,50 10/13/77 0937,8 EDT THY -;§
(C) FOPYRIAHT 1977 BY HOMEYWFLL TNFORMATTUN SYSTFMS TNC

ZFUFY0O 7211100¢

Figure 8-2(cont).

Source and Linker Output Listing (MATINV)

YATIANOD NVALEOd HHL INIS1

MRS ASSEMBLER 2,50 11/10/77 1623.8 EST THU :
LCY COPYRIGHT 1977 BY HOMEYWFLL TNFOPMATIQN SYSTEMS TNC

*x MATINyY LINK MAP 1Q77/12/02 13%15:29,1
XASTARY g1y
*ROW 00090
‘#aMIGH 1C65
AKCURRFNT 1065

*%kFEXT DEFS
ZHCQMM NQNQ
7HREL 0000

-]
[-3
ax. ROOT 0900
x MATINY nQngQ
C SZFARK 0Q00
7ZFMATN NB14
x ZFYFYID ONEARD
T : SZFYXR] OESAD :
% ZFS8F0 O0ERS i Ay
7F]AFS NERS 7FSRFS 0ENS 7FSw!!'S AF11 7FSRNUS NF3Y4
* 7FNFTQ NFSS
7ENARK ___NFSS
% IFPFTI0 OF60
i CEIFPAUS OF6S 7FPSTP 0OF60
x _ ZFEFTQ__OFAS L -
TEAN NFAS TFFFTO OFAS 7FFMFI 12RB 7FFMFO 1288
7FFMAL 12Rg 7FFMA0 1288 ZFFLFI 1288 7FFLFO 1288

Y

kx

7FFLAL 1285 7FFLAQ 12RS 2FFCLI 12PE 7FFCLO 12PE

v ZFFCS] 12F1 7FFCR0 12F)1 ZFFCFI 12F4 7FFCFO__12F4
i TFECAT 12n9 7FFCAQ 12Nn9 TFEWFF t14C2 7FFRFF 14C2
i ZFFIFL 136D 7FEIFQ 136D 7FFIAL 1367 7FEIAQ 1367
: ZFFJF1 1350 7FFJFQ 136D ZFEJA] 134A ZFEJAQ 1364

7FFKEL 135F 7FFKFQ 138F 7FFKAI 1344 TFFKAQ 1344
TFFOFL 1502 7FFDED 1502 TFFDAL 14FC TFEDAD 14FC
7EFAL V4FF 7FFRAD__14FF 7FFRF] 1505 JEFRFO 1505

x ZFTQTE 1913
- 7FTQTE 1903 PEFINI 19R2
‘_®_PEUFTY 1ANE

2 e

(4410

Figure 8-2(cont). Source and Linker Qutput Listing (MATINYV)

YATIANOD NVELIOd H.L DNIS1

(44110

7FL 31 1ADD 7FERFY 149D ZFUNNFE 1A0B TFURIIF 1APA
7FAART 1A% 7FRKRFD 144D 7FSyRy 1AS8 7FSURY 1CO1
7FSUR6 1890

*xUNNEF
* MATINv nQ0yp

TEVFTy AERD
7FSFTU NERS
7ENFTy NFSS

7EPFTU NFAO
7EFFT0 NFAS
ZFTOTE 19€3

1% % % ¢ % %

TFUFT) 1ANK

LA A AR A

RONT MATIMy
ERIA Ak kXK K ;
HIGHFEST vl y /MM OF SYMs 0 i

KR I KKK KK F K
SAF

dk kR KK kKK

RONT MATINY BASF npoo ST 0BTy ~...1 HIGHZIC6S
ARk kRS xRK . :
«STZF OF RNQT AND STATTIC OVLYS= 1CAS HY REI. RCh= K§

Je ke de ok Wk d ok Kok
LIMNK DNyF
ok Wk ek kK

Figure 8-2 (cont.). Source and Linker Output Listing (MATINYV)

Wy

s

7.

The first statement executed in a loaded chain is always the first executable statement of
the first main program in the chain. (A chain cannot begin with a subroutine.)

All data passed between chains must be in unlabeled or labeled COMMON blocks that
have been defined within the root. Because of Linker constraints, the first occurrence of a
COMMON block defines its size, therefore care must be exercised when using COMMON
blocks of different sizes.

Within programs in a chain, either labeled or unlabeled COMMON may be freely used as
ameans of data communication.

Data statements (for data not in COMMON) within a program of a chain cause the data to
be initialized each time the chain isloaded.

Files are common to all chains since the run-time work area is defined within the root.

Figure 8-3 shows an assembly-language program, CHAIN, whose function is to load the

- chains specified in the CALL statements of the FORTRAN programs shown in Figure 8-4. These
latter programs call each other at various times and print messages indicating their loading and
execution.

000001 TITLE CHATIN
000002 XLOC ZFIOTE
000003 CTRL LINK ZF10TF
000004 XDFF CHAIN
nNooo

000005 * CALL CHAIN (DV#)
000006 0000 A7S1 CHAIN CL =$PR}
000007 0001 A84F 0001 LDR $R2,x$B7.1
000008 0003 6CFF LDV $Re, =t
000009 0004 0001 MCL
n00010 0005 0700 pC 7'0700°
000011 * ERRQR RETURN
000012 0006 R3R0 0000 X JMP <ZFTOTE
000013 0008 0000 0C 0
000014 ENDCHN RFSV 0
000015 0009 END CHAIN

0000 ERR COUNT

0

0128 WORD SYMBOL TARLE

Figure 8-3. Assembly Listing of Program CHAIN

_C O ®NONIEWN -

-

NO N & W -

PROGRAM PROGOO
COMMQON IC

COMMON ¥, TFLR

DIMENSION ARRY(62)

COMMON /LAB1/DUMMY(50)

COMMON /LAB2/ DUNX(527)
IC = 0

WRITF (3,5)

S FORMAT('1'/' PROGO APPEAKS ON FXECUTF LINE = CALLS CHAIN 0'/)

CALL CHAIN(N)

FND

0 DIAGNCOSTICS

PROGRAM PRNGOL
COMMON TC, X
CAMMON /LAC1/ DATAL(Z5)
COMMQN /LAC?2/ DATA2(378)
CHARACTER Ax20
IC=1C+1
READ(2,215) A

Figure 8-4. FORTRAN Programs Calling the CHAIN Function

USING THE FORTRAN COMPILER 8-7 CB22

8 215 FORMAT(AZ20)

9 WRTTE(3,215) A

10 CALL PROGD

11 WRTTIF (3,5)

12 S FORMAT (/' PROG1 IS CHAIN 0 WHICH CALLS CHAIM 1')
13 CALL CHAIN (1)

14 END

0 OIAGNOSTICS

SURROUTINE PROGD
FOMMON /LACL1/ DATA1(25)
COMMON /LAC2/ DATAP(378)
WRITE(3,305)
305 FORMAT(SX,' SUBROUTINE PROGD L.OADED'/)

RETURN
END

0 DIAGNOSTICS

NOCWVNEWN -

1 PROGRAM PROGO?2
2 COMMON /LAB1/DUMMY(50)
3 DIMENSTON ARRY(62), ARRY1(157)
4 CHARACTER%xBR Al,A3,Ad
S coMMonN IC,7,1Q
6 TF (TC.6T.1) GO TO 10
7 TQ=0
8 Af=' CHAIN 0°'
9 WRTITF(3,5) Al
10 S FORMAT (/' PROGZ2 IS CHAIN 1 - WHTCH CALLS =',A8)
11 CALL CHATIN(O)
12 10 A3Z=' CHAIN P
13 TF (TQ.EQ.4) 6O TO 20
14 WRITF(3,5) A3
15 CALL CHATIN (2)
16 20 Adz' CHAIN 3¢
17 WRTTF(3,5) A4
18 STNP
19 EnD

0 DTAGNASTICS

PROGRAM PRNGN3
CHARACTER Ax20
WRTTF(3%,5)
READ(2,215) A

215 FORMAT(A20)
WRITF(3,”21S) A

CCALL CHAINC3)

s FORMAT(/' PRUR3 IS CHAIN 2 - WHICH CALLS CHAIN 3'/)

FivhD
0 DTARNOSTICS

C XN U & W -

PROGRAM PROGOY
CuMMON IC,F,T
CUMMON /LARL/ DUMMY(S0)
T=T+1
K=d
TF (T,Fu.4) K=?
IF (T.Fu.5) 6OTO 99
WRTITF(3,5) k=1

g FURMAT(/' PROGU 1S CHAIN 3 = CALLS CHATN',T2/)
CALL CHAIN (K=1)

Q9 STOP
EnD

0 DYAGNOSTICS

- - -
NS CXTNO N EWN -

Figure 8-4(cont). FORTRAN Programs Calling the CHAIN Function

USING THE FORTRAN COMPILER 8-8

CB22

Figure 8-5 is the output listing resulting from the linking of the programs constituting the
chain.

LINKER=-0100-11/23/1258 GCOS6 MOD400=-S100~11/29/0620
BU= TSTCHIL LINKED ON: 1977/12/02 1354:06.5 =SAF

PROGOO 77120200
FORTRAN MYFD 11/22/1119 1977/12/02 1352:46.3 SAF

CHAIN
1977/12/702. 1326:22.5 ASSEMBLER=0100-11/17/1346 GCOS6 MOD400~-S100-11/29/0620

ZFSFIO 77111000

HRS ASSEMBLER 2.50 11/10/77 1030.1 EST THU

(C) COPYRIGHT 1977 BY HONEYWFLL INFORMATION SYSTEMS INC
ZFSKO1

IFQFIO 77050100
HRS ASSEMBLER 2,50 10/03/77 0708,.,3 EDT MON
(C) COPYRIGHT 1977 BY HONEYWFLL TNFORMATION SYSTEMS INC

ZFPFIO 77111000
HRS ASSEMBLER 2,50 11/10/77 10S4.0 EST THU
(C) COPYRIGHT 1977 BY HUNEYWELL INFORMATION SYSTEMS INC

ZFEFIO 77112100

HRS ASSEMBLER 2,50 11/21/77 1539.8 EST MON

(C) COPYRIGHT 1977 BY HONEYWELL TINFORMATION SYSTEMS INC
ZFEKO01

ZFIOTE 77072900
HRS ASSEMBLER 2,50 10/13/77 0937.8 EDT THU
(C) COPYRIGHT 1977 BY HONEYWELL INFORMATION SYSTEMS INC

ZFUFIO 77111000
HRS ASSEMBLER 2,50 11/10/77 1623.8 EST THU
(C) COPYRIGHT 1977 BY HONEYWFLL TNFORMATION SYSTEMS INC

*%x TSTCHL LINK MAP 1977712702 1354:06.5
*xSTART 0668
*xLOW 0000
*xHIGH 145¢C

*x$COMM 0164
**CURRENT 145C

*xFEXT DEFS
P ZHCOMM 0000
P 7HREL 0000

*x ROOT 0000
* PROGOO 0000
C SZFWRK 0000
C S$COMM 0164
C LAB1 016A
C LAR2 01CE

PROGOO 0668
CHAIN 06A3
CHAIN 06A3
* ZFSFI0O 06AC
ZFSWFS D6AC ZFSRFS 06CC ZFSWUS 0708 ZFSRUS 0728
* ZFQFIO 074C
ZFOQWRK 074C
* ZFPFI0 07S7
7FPAUS 07SC ZFPSTP 0757
* ZFEF10 079C ‘
ZF AN 079C ZFEFI0 079C ZFEMEI 0AB2 7FEMEQO 0AB82
ZFEMAI OAT7F ZFEMAQ OAT7F ZFELEI 0A82 ZFELEO O0A82
ZFELAI 0A7C ZFELAQ 0A7C ZFECLI O0ADS ZFECLO 0ADS
ZFECSI 0ADS ZFECSO 0ADS8 ZFECE]1 OADB ZFECEO 0ADB

»*

Figure 8-5. Linker Output for Chained Programs

USING THE FORTRAN COMPILER 89 CB22

7FFCAI 0ADO ZFECAD 0ADO IFEWFF OCR9 ZFERFF

7FEIE] 0B64 7FEIE0 0B64 ZFEIAI OBSE ZFEIAO
7FFJEI 0B64 ZFEJEO 0B64 ZFEJAL 0Bé61 ZFEJAD
IFEKEI 0BSé6 7FFKEQ 0BS6 ZFEKAI 0BSB ZFEKAQ
7FEDEI OCF9 ZFFDEO OCF9 ZFEDAI OCF3 ZFEDAQ
ZFERAI 0OCFe ZFERAO OCFe ZFEREI OCFC ZFEREOQ
* 7FIOTE 11RA
ZFTOTE 11RA ZFFINI 11C9
x ZFUFTO 1202
7FLB1 12D4 ZFGF1 1294 ZFUWUF 1202 ZFURUF
ZFAWRT 1231 ZFRRED 1244 ZFSUB1 124F ZFSUBR4Y

ZFSUR6 1387

*xUNDEF

* PROGOO 0000
CHAIN 06A3%
7FESFT0 06AC
7FQFI0 074C
ZFPFTO 0757
ZFEFIO 079cC
7FIOTE 11BRA
ZFUFTO 1202

* % % % * % »

PROGO1 77120200
FORTRAN MUFD 11/22/1119 1977712702 1352:46.3 SAF

PROGD 77120200
FORTRAN MUED 11/22/1119 1977712702 1352:46.3 SAF

*%x TSTCHI LINK MAP 1977/12/02 1354:06.5
*xSTART 1782
*xL QW 145C
*xHIGH 180F
AxSCOMM 164
**CURRFNT 180F

**EXT DEFS
P 7HCOMM 0000
P 7HREL 0000

*%x ROOT 0000
* PROGOO 0000
C SZFWRK 0000
C $Chmm 0164
C LaBi 016A
C LARR 01CE

PROGOO 0668

CHAIN 06A3

CHAIN 06A3

* 7FSFI0O 06AC
7FSWFS 06AC 7ESRFS né6CC ZFSwWlIS 0708 ZFSRUS

» ZFQFI0 07aC
ZFAQWRK 074C

x ZFPFIO 0757 -
ZFPAUS 075C ZFPSTP 0757

* ZFEFID 079C
ZF AN 079C IFEFI0 079C ZFEMEI 0A82 ZFEMEO
ZFEMAI OA7F IFEMAQO O0AT7F ZFELEI 0A82 ZFELEO
ZFELAI 0A7C ZFELAO 0A7C ZFECLI O0ADS ZFECLO
ZFECSI 0ADS ZFECSO 0ADS8 ZFECEI 0ADB ZFECEO
ZFECAI 0ADO ZFECAQO 0ADO ZFEWFF 0CB9 ZFERFF
ZFEIEI 0B64 IFEIFO 0864 ZFEIAI O0BSE ZFEIAO
ZFEJEI 0Bé4 IFEJEQ 0Bé64 ZFEJAI 0Bé61 ZFEJAQ
ZFEKEI 0BSeé 7FEKEQ 0856 ZFEKAI 0BSB ZFEKAD
ZFEDEI OCF9 IFEDEO OCF9 ZFEDAI OCF3 ZFEDAQ
ZFERAI OCFeé IFERAQO OCFe6 ZFEREI OCFC ZFEREO

* ZFIOTE 11RA
ZFIOTE 11BA ZFFINI 11C9

* 7FUFI0O 1202

»*

0CB9
0BSE
0861
0BSB
0CF3
0CFC

1221
13F8

0728

0AB2
0A82
0ADS
0ADB
0CB9
0BSE
0861
0BS8B
OCF3
0CFC

Figure 8-5(cont). Linker Outputfor Chained Programs

USING THE FORTRAN COMPILER 8-10

CB22

ZFLB1t 1204 7FGF1 1294 ZFUWUF 1202 ZFURUF
ZFAWRT 1231 ZFBRED 1244 ZFSUR1 124F ZFSUR4
ZFSUBe 1387

P ENDCHN 14SC

*%x XROGOO 14SC
* PROGO1 14SC
C LAC1H 145C
C LAC? 148E

PROGO1 1782
* PROGD 17DF

PROGD 17DF
*xUNDEF

* PROGOO 0000
CHAIN 06A3
ZFSFI0 06AC
ZFQFI0O 074C
ZFPFIO 0757
ZFEFIO 079C
ZFIOTE 118BA
ZFUFTO 1202
PROGO1 145C
PROGD 170F

* % % % % % N X ¥

PROGOZ2 77120200
FORTRAN M4ED 11/22/1119 1977712702 1352:46.3 SAF

7FBFI0 77091600
HRS ASSEMBLER 2.50 10/15/77 1612.6 EDT SAT
(C) COPYRIGHT 1977 BY HONEYWELL TNFORMATION SYSTEMS INC

*%x TSTCHI1 LINK MAP 1977712/02 1354:06.5
*xSTART 1612
*xLOW 145C
*xHIGH 16F8B

*x$COMM 0164
**CURRENT 16EB

*2EXT DEFS

4 ZHCOMM 0000
P 7HREL 0000
* ROOT 0000
PROGOO 0000
SZFWRK 0000
$COMM 0164
LAB1 016A
LAB? 01CE
PROGOO 0668
CHAIN 06A3
CHAIN 06A3
* 7Z2FSFT0O 06AC
7FSWFS 06AC ZFSRFS 06CC ZFSWUS 0708 ZFSRUS
* 7FQFTQ 074C
7FAWRK 074C
* ZFPFTIO 0757

OO0 » »

»

ZFPAUS 075C 7FPSTP 0757
* ZFEFTO 079C

7F AN 079C 7EEFT0 079C 7FEMEI 0A82 ZFEMEO
ZFEMAT O0AT7F 7FEMAO0 0ATF ZFELFI 0A82 ZFELEQ
ZFELAT 0A7C 7FELAOD O0A7C ZFECLI 0ADS ZFECLO
7ZFECSI 0ADB ZFECSO 0ADS8 ZFECEI 0ADB 2FECEOQ
ZFECAI 0ADO 7FECAO 0ADO ZFEWFF 0CR9 ZFERFF
ZFEIEL 0B64 ZFFIFO0 0B64 ZFFIAI O0BSE ZIFEIAQ
ZFEJFI 0B64 7FEJEO0 0Bé64 ZFEJAT 0B61 IFEJAQ
IFEKEI 08Se6 7FEKFQ 0BS6 ZFEKA] 0BSB ZFEKAQ
7FEDEI OCF9 7FEDEQ OCF9 ZFEDAI OCF3 ZFEDAOC

1221
13F8

072B

0AB2
0A82
0ADS
0ADB
0CR9
0BSE
0861
oBSH
OCF3

Figure 8-5 (cont). Linker Outputfor Chained Programs

USING THE FORTRAN COMPILER 8-11

x

¥ % % % % ¥ N ¥ W

* X

P
P

OO0 *» %

»

IFERA]
ZFIOTE
ZFIQTE
7FUFT0
7FLB1

ZFAWRT
7FSUB6
ENDCHN

XR0OGOO

XROGO2
PROGN2
PROGO2
ZFBFT0
ZFBCMC

*xUNDEF

PROGOO
CHAIN

7FSFI0
ZFQFT10
2FPFIO
ZFEFTO
ZFIO0TE
ZFUFT0
PROGO2
ZFBFIO

TSTCH1Y

*xSTART
LA N1

*xHIGH
A xRCOMM
*xCUPKFNT 14Re

*xFXT DEFS

7HC QMM
7HREL

RuNT
PROGONQ
SLFWPK
FCOMM
L AR1
lLARp
PRNGOO
CHAN
CHATM
7FSFTuU
7FSwFS
7EN0FTO
7FRWRK
7FPFTU
7rPans
7FFFTU
7FAN
7FEmMA]
JEFLAL
7FFCSL
7FFCAL
ZFF1F |
TFFJF]
7FFKF |
7FFDF]
ZFFRA]
7FT0OTE

0CFo6
118RA
11RA
1202
1204
1231
1387
145C

14SC

14SC
14SC
1612
16R3
16R3

0000
N6A3
06AC
074cC
0757
079cC
11BA
1202
145C
1683

PROGO3 77120200
FORTRAN MAED

145¢
145¢
14Re
016y

09000
nooo

000y
000Ny
0yng
01AY
N1bkA
nirt
OCohH
NpA3
Nohs
Neb
O6AC
n74aC
N7 8¢
nysy
nN78C
079(
n79L
ODATF
0ATC
0Cany
- Yali]
L1, Y%
0864
0850
0CF9
NCFe
1184

7FFRAO
ZFFIN]

7FGF 1
7FRRED

1172271119

L INK MAP

7FSRFS

7EPSTP

7FFFTY
7HEMAQ
7HFLAY
7HECSH
7EFCAQ
TEFIFD
7EFJFO
7FFRFQ
7FFOFQ
7EFRB0

0CFe6
11C9

1294
1244

ZFERFI

2FUWUF
ZFSUB1

0CFC

1202
124F

ZFEREO

7FURUF
7FSuB4

1977712702 1352386.3 SAF

1977712702 1354:06,5

neCC

0757

n79C
0ATF
0AT7C
0ana
0ADO
06y
NK6U
osSe
0CF9
ncFe

7FSwiIS

7FFME]
ZFELF1
7FFCL. L
7FECFI
7FEWFF
7FFIA]
7HEJA]
7FFKA]
7FEDAL
7FFRF]

0708

NARe
NARZ
0ADS
0aDpB
0CR9
0OBSE
0Bkt
0KSY
NCF3
NCFC

7FSKIUS

2FFMFQ
7FELFU
7FECLO
ZFELEY
ZFERFF
ZFF1AQ
7FFJAU
7FFKAL
7FFDAG
7FEREQ

O0CFC

1221
13F8

nj2n

NARR
0ARe
nans
NaDb
NCRY
0BSE
okl
NHSH
0CF3
NCFC

Figure 8-5(cont). Linker Output for Chained Programs

USING THE FORTRAN COMPILER

8-12

CB22

7FIOTE 118Ha 7¢FINT 11C9Q
x 7FUFTO 1202

7FLB1 12Py4 7FGEY 1294 7HUWUFE 1202 JFURHF 1221

- JFAwRT 1231 7TERKRFD 1244 7FESUBL 124F ZFSUB4 13F8
“ 7FSURe 1387
~ P FNDCHN 145C

*k XROGOO 145C
*x XRDOGO2 14SC

*%x XROGN3 14SC
x PRNGN3D 145C
PRNOGNJ 145C

=% JNDEF

x PROGOO 0000
CHALN N6A3
IFSFIU 0bAC
7FOFT0 074C
ZFPFI0O 0757
7FEFTQ 079C
ZFTIOTE 11BRA
ZFUFTI0D 1202
PROGO3 145C

» % % % ¥ % % X

PROGO4 77120200

FORTRAN MYFD 11/22/1119 1977712702 1352:46.3 SAF
x%x TSTCH1L LINK MAP 1977/12/02 1354:06.5
~x#xSTART 14SC
*xLOW 145C
*xH]IGH 1482

*xSCOMM 0164
*xCURRENT 14R2

% *xEXT DEFS
' P 7HCOMM 0000
[ZHREL npoo

xx RQONT 0000
x PROGNO 0000
C SZFWRK noono
C scOmMm nimy
C LaBRl 01kA
C LAR? 01CEH

PRNGOO ONobb8
CHAIN nNehs
CHALM N6A3
* 7FSFTY 06AC
7FSWFS NoAC 7FSKRFS 06CC 7FSwliS 0708 ZFSRUS 072721
x 7FOFTU 074C
7FQwWRK 074(C
x 7FPFI0Q 0757

*»

“ ZFPAUS 07SC 76PSTP 0757
x 7FFFT0O 079C
7FBAN n79cC 7FFFETU 079C 7EEMF] DARZ 7FFMFO 0ARZ
TFFMAL 0ATF 7+FMayg OATF ZFFLEL 0AR2 7FELFU 0AR?
- JFELAL 0AT7C 7EFLAY DATC ZFECLL 0aDS ZFFCLO 0aDS
7FFCS]I DADS 7+ECSU 0aDB 7FECF]l o0abg JFFCEQ 0ADH
7FFCAL 0ADO 7EFCAQ 0ADO 7FFWFF OCR9 7FFRFF. OCRY
7FEIFL Onéd ZFEIFO 0864 7FFEIAL OHSE 7FFI1AG 0OBSE
7FFJF]1 DBA4 ZFFJF0 0B64Y 7EFJAal 0H6) 7FFJAU 0B61]
7FFKFI 08S6 7FFKEU 0BS6 ZFFKAl 0BSH 7JFEFKAU NBSH
7FFOFI OCF9 7FFDFU 0OCF9 7EFDAL OCF3 ZFFDAU OCF3
ZFFRAL OCFo 7FFrAQ OCFe JHERFI OCFC JFFRFU OCFC
x ZFTUTE 11Ra
ZETOTE 11RA 7FFINT 1109

x ZFUFTQ 1202

(~~ Figure 8-5 (cont). Linker Output for Chained Programs

USING THE FORTRAN COMPILER 8-13 CB22

7FLB1 12n4 7FGEA 1294 ZFUWUF 1202 ZFURVE 1221

7FAnRT 1231 ZFRBRRED 1244 7FSUR1 124F 7FSURY 13F8

7FSUR6 1387
P FENDCHN 145C N
*x YROGNO 145C N

*x XR0OGOZ2 14SC
*%x XROGO3 145C

* x XROGOU 145C
* PROGN4 145C
PRNGNY 145C

*xUUNDEF

* PRNGOO 0000

* CHAIN N6A3 -
* 7FSFTU 06AC

x 7FQFT0 074C

* ZFPFTQ 07587

* JFFFTO 0/9C .
*x ZFTOTE 11RA

x 7FUFTU 1202

*x PROGO4 145C

kAR A Kk kkhkk
RONT TSTCH1
XAk Akh kKR AKX
HIGHFEST Ovi Yy A/NHM OF SYMS 0
Khkkhkkkkkdk
SAF
Tk Akkkhkkk kX
RONT TSTCH1 BASF 0000 ST 0668 -eeel HIGHz145(
ARAA KA K k&K
gVvLY XROGOO # Ny BASF 145C ST 1782 =eesl HIGH=180F
Kk Kk *hi
OVLY XRNGOZ2 # 01 BASF 145C ST 1612 -eesl HIGH=16FH
kXA hkh AN A kX
OVLY XRNEGN3Z # 02 BRASF 145¢C ST 14S¢ -veel HIGH=14Re6
L E S EERE R &I
ovLyY XROGNY # N3 BASF 145C ST 14d5C ~eeel HIGH=1U4RY
AAkhkRKAkK* kXK
*STZF OF ROOT AND STATTC OVLYS= 180F HT PEL RCP= 62
KAKXAKRAK kAR
LINK DONE
LSS EEREEE S

Figure 8-5(cont). Linker Output for Chained Programs

Figure 8-6 illustrates the linker directives required to create the bound unit TSTCH1,
comprising the programslisted in Figures 8-3 and 8-4.

Figure 8-7 shows the output resulting from the execution of the chained progréms.

USING THE FORTRAN COMPILER 8-14 . CB22

MAP

MAP

MAP

MAP

MAP
QT

BASE ENDCHN
OVLY XR0GO1
LINK PROGO2

OVLY XR0GO2
BASE ENDCHN
LINK PROGO3

OVLY XROGO3
BASE ENDCHN
LINK PROGO4

OVLY XROGOO
LDEF ENDCHN,$
PROT ENDCHN
BASE ENDCHN
LINK PROGO1

LIB ~VL5901>LDD>0BJECT>FRIOR
LINK PROGOO

DEFINES OVERLAY 0 (CHAIN 0)
DEFINES BASE FOR OVERLAYS

DEFINES OVERLAY 1 (CHAIN 1)

DEFIWES OVERLAY 2 (CHAIN 2)

DEFINES OVERLAY 3 (CHAIN 3)

Figure 8-6.

Linker Directives for Chained Programs

PRNG1

PRNG2

PROG?3

PROG4

PROG4

PROGY

PROG4

PROG?

CARD 1
SUBROUTINF PROGD LOADED

CARD 3

1s
Is

18

1s

1s

1s

18

PROGO APPEARS ON

FXFCUTE LINE = CALLS CHAIN 0

PRNG1 IS CHATIN O wHICH CALLS CHAIN 1

PROG2 TS CHAIN 1 = WHICH CALLS = CHAIN 0
CARD 2
SUBROUTTINE PROGD LOADFD

CHATIN O WHICH CALLS CHAIN 1

CHAIN

CHAIN

CHAIN

CHATN

CHATIN

CHAIN

CHAIN

1 = WHICH CALLS = CHATN 2

4

WwHICH CALLS

CALLS CHAIN

CALLS CHAIN

CALLS CHAIN

CALLS CHAIN

WHICH CALLS

CHAIN 3

= CHAIN 3

Figure8-7. Execution Outputfrom Chained Programs

USING THE FORTRAN COMPILER

8-15

CB22

2N

./

P E S

Section 9

Using the Sort

Figure 9-1 contains a sample session at the operator terminal to sort a file using the Sort
utility. Sort descriptors are entered through the operator terminal. Refer to the Sort/Merge

manual for details on the use of the Sort component.

C :$H:

SD "1977/02/15 1428"
($H)RDY:

CWD ~SRTIO02

($H)RDY:

~Zrrr06>SORT

($H)ENTER SORT DESCRIPTION

KEYS: CHAR (6) 78 D, CHAR 4 36
QUIT

($H)MOUNT ~SRTCW2>WDSF02

($H) SORT-rrrr-amm/dd/hhmm

($H)INPUT FILE : ~SRTI02>IDSF06
($H)RECORDS READ 000350

($H)OUTPUT FILE:~SRTI02>0DSF02
($H)RECORDS WRITTEN 000350
($H)RECORDS DELETED 000000
($H)RDY:

FILES: -IF IDSFO6 -OF ODSFO2 -WF ~SRTCW2>WDSF02

Figure9-1. Sample Sort Terminal Session

The Sort utility is on volume Zrrr06 and the application files are on SRTI02. The Sort is
invoked by entering the pathname, » Zrrr06>SORT. The Sort description statements are then
entered. In this example, the work file is not mounted, and a message to mount

A SRTCW2>WDSF02 is issued.

USING THE SORT 9-1

CB22

7™
N

N

L

e

ACCESS
ACCESS BY LOGGING IN, 4-1
ACCESS THROUGH THE OPERATOR OR
ANOTHER USER, 4-2
ACCESS THROUGH THE OPERATOR
TERMINAL, 4-4
USER ACCESS TO THE SYSTEM, 4-1

ASSEMBLER
ASSEMBLER OUTPUT LISTING (SMPMAC)
(FIG), 6-4
USING THE ASSEMBLER AND MACRO
PREPROCESSOR, 6-1

BATCH
EXECUTION OF AN APPLICATION FROM
THE BATCH TASK GROUP, 4-3

CALL
CALL FORTRAN ROUTINES FROM AN
ENTRY-LEVEL COBOL MAIN
PROGRAM, 7-7

CALLING

FORTRAN PROGRAMS CALLING THE CHAIN
FUNCTION (FIG), 8-7

CHAINING
FORTRAN CHAINING, 8-1

COBOL

CALL FORTRAN ROUTINES FROM AN
ENTRY-LEVEL COBOL MAIN

PROGRAM, 7-7

COBOL LISTING OF COBFRT (FIG), 7-8

COMPILING WITH COBOL, 7-2

SAMPLE COBOL TERMINAL SESSION
(AC8111), 7-3

USING THE COBOL COMPILER, 7-1

COMMAND
COMMAND PROCESSOR AS LEAD
TASK, 4-2

COMPILER
USING THE COBOL COMPILER, 7-1
USING THE FORTRAN COMPILER, 8-1

CONCURRENT
CONCURRENT EXECUTION FROM SEVERAL
TASK GROUPS, 4-3
CONCURRENT EXECUTION OF APPLICATION
TASKS, 4-3

DATA
EXECUTION FROM THE DATA ENTRY
FACILITY (DEF), 4-4

DEDICATED
DEDICATED APPLICATION
ENVIRONMENT, 2-2

DEF
RBF AND DEF USER GUIDE TO MANUALS
(FIG), 1-5
RBF AND DEF USER MANUAL GUIDE, 2-1

INDEX

EDITOR
EDITOR DIRECTIVE DESCRIPTION, 5-1
SAMPLE EDITOR DIRECTIVES IN FILE
SMPCMDFL (FIG), 5-1

ENVIRONMENT
ALL-ONLINE ENVIRONMENT, 2-1
DEDICATED APPLICATION
ENVIRONMENT, 2-2
MIXED ENVIRONMENT, 2-2
ONLINE/BATCH ENVIRONMENT, 2-2
OPERATOR-ONLY ENVIRONMENT, 2-1

EXECUTION

CONCURRENT EXECUTION FROM SEVERAL
TASK GROUPS, 4-3

CONCURRENT EXECUTION OF APPLICATION
TASKS, 4-3

EXECUTION FROM THE DATA ENTRY
FACILITY (DEF), 4-4

EXECUTION OF AN APPLICATION FROM
THE BATCH TASK GROUP, 4-3
EXECUTION OUTPUT FROM CHAINED
PROGRAMS (FIG), 8-15

SERIAL EXECUTION OF APPLICATION
TASKS, 4-2

FORTRAN

CALL FORTRAN ROUTINES FROM AN
ENTRY-LEVEL COBOL MAIN
PROGRAM, 7-7

FORTRAN CHAINING, 8-1

FORTRAN LISTING OF FRTRAN
(FIG), 7-9

FORTRAN PROGRAMS CALLING THE CHAIN
FUNCTION (FIG), 8-7

SAMPLE FORTRAN TERMINAI SESSION
(MATINV), 8-1

USING THE FORTRAN COMPILER, 8-1

GUIDE

APPLICATIONS PROGRAMMER's MANUAL
GUIDE, 1-2

APPLICATIONS PROGRAMMER GUIDE TO
MANUALS (FIG), 1-3

GUIDE TO USING THE MANUAL SET, 1-1

OPERATOR'S MANUAL GUIDE, 1-5

OPERATOR GUIDE TO MANUALS
(FIG), 1-4

RBF AND DEF USER GUIDE TO MANUALS
(FIG), 1-5

RBF AND DEF USER MANUAL GUIDE, 2-1

SYSTEM PROGRAMMER'S MANUAL

GUIDE, 1-2

SYSTEM PROGRAMMER GUIDE TO MANUALS
(FIG), 1-4

LEAD TASK
APPLICATION AS LEAD TASK, 4-2
COMMAND PROCESSOR AS LEAD
TASK, 4-2

i-1 CB22

LINKER

LINKER DIRECTIVES FOR CHAINED
PROGRAMS (FIG), 8-15

LINKER OUTPUT FOR CHAINED PROGRAMS
(FIG), 8"‘9

LINKER OUTPUT LISTING (SMPMAC)
(FIG) r 6"5

SOURCE AND LINKER OUTPUT LISTING
(MATINV) (FIG), 8-2

LISTING

ASSEMBLER OUTPUT LISTING (SMPMAC)
(FIG), 6-4

ASSEMBLY LISTING OF PROGRAM CHAIN
(FIG), 8-7

COBOL LISTING OF COBFRT (FIG), 7-8

CROSS REFERENCE LISTING (SMPMAC)
(FIG), 6-3

FORTRAN LISTING OF FRTRAN
(FIG), 7-9

LINKER OUTPUT LISTING (SMPMAC)
(FIG) [2 6—5

SAMPLE LISTINGS FOR AC8111
(FIG), 7-4

SOURCE AND LINKER OUTPUT LISTING
(MATINV) (FIG), 8-2

LOADING
SOURCE LOADING, 7-2

LOGIN
ABBREVIATED LOGIN TERMINAL, 4-1
DIRECT LOGIN TERMINAL, 4-1
FULL LOGIN TERMINAL, 4-1
STARTUP WITH THE LOGIN
FACILITY, 3-1

MACRO

MACRO PREPROCESSOR OUTPUT (SMPMAC)
(FIG), 6-2

SAMPLE OF UNEXPANDED MACRO ROUTINE
(saMPLl) (FIG), 5-10

SAMPLE OF UNEXPANDED MACRO ROUTINE
(SaMPL2) (FIG), 5-11

SAMPLE OF UNEXPANDED PROGRAM WITH
MACRO CALLS (SMPMACP) (FIG), 5-9

USING THE ASSEMBLER AND MACRO
PREPROCESSOR, 6-1

MANUAL
APPLICATIONS PROGRAMMER'S MANUAL
GUIDE, 1-2
GUIDE TO USING THE MANUAL SET, 1-1
OPERATOR'S MANUAL GUIDE, 1-5
RBF AND DEF USER MANUAL GUIDE, 2-1
SYSTEM PROGRAMMER'S MANUAL
GUIDE, 1-2

MANUALS
APPLICATIONS PROGRAMMER GUIDE TO
MANUALS (FIG), 1-3
OPERATOR GUIDE TO MANUALS
(FIG), 1-4
RBF AND DEF USER GUIDE TO MANUALS
(FIG), 1-5

INDEX

MANUALS (CONT)
SYSTEM PROGRAMMER GUIDE TO MANUALS
(FIG), 1-4

MULTITASK

SAMPLE ASSEMBLY LANGUAGE MULTITASK
PROGRAM (BRDCST), 6-6

ONELINE/BATCH
ONLINE/BATCH ENVIRONMENT, 2-2

OPERATING
OPERATING ENVIRONMENT, 2-1

OPERATOR

ACCESS THROUGH THE OPERATOR OR
ANOTHER USER, 4-2

ACCESS THROUGH THE OPERATOR
TERMINAL, 4-4

OPERATOR GUIDE TO MANUALS
(FIG), 1-4

OPERATOR TERMINAL SESSION FOR
COBFRT (FIG), 7-9

OUTPUT

ASSEMBLER OUTPUT LISTING (SMPMAC) 8
(FIG), 6-4

EXECUTION OUTPUT FROM CHAINED
PROGRAMS (FIG), 8-15

LINKER OUTPUT FOR CHAINED PROGRAMS
(FIG), 8-9

LINKER OUTPUT LISTING (SMPMAC)
(FIG), 6-5

MACRO PREPROCESSOR OUTPUT (SMPMAC)
(FIG) ’ 6-2

SOURCE AND LINKER OUTPUT LISTING
(MATINV) (FIG), 8-2

PROGRAM

ASSEMBLY LISTING OF PROGRAM CHAIN
(FIG) 8-7

CALL FORTRAN ROUTINES FROM AN
ENTRY-LEVEL COBOL MAIN
PROGRAM, 7-7

SAMPLE ASSEMBLY LANGUAGE MULTITASK
PROGRAM (BRDCST), 6-6

SAMPLE CARD-TO-DISK PROGRAM, 7-1

SAMPLE OF UNEXPANDED PROGRAM WITH
MACRO CALLS (SMPMACP) (FIG), 5-9

PROGRAMS

EXECUTION OUTPUT FROM CHAINED
PROGRAMS (FIG), 8-15 «

FORTRAN PROGRAMS CALLING THE CHAIN
FUNCTION (FIG), 8-7

LINKER DIRECTIVES FOR CHAINED
PROGRAMS (FIG), 8-15

LINKER OUTPUT FOR CHAINED PROGRAMS
(FIG), 8-9

RBF
RBF AND DEF USER GUIDE TO MANUALS
(FIG) ’ 1‘5
RBF AND DEF USER MANUAL GUIDE, 2-1

CB22

-
/7

e

SAMPLE

SAMPLE ASSEMBLY LANGUAGE MULTITASK
PROGRAM (BRDCST), 6-6

SAMPLE ASSEMBLY LANGUAGE SESSION
(SMPMAC) , 6-1

SAMPLE CARD-TO-DISK PROGRAM, 7-1

SAMPLE COBOL TERMINAL SESSION
(AC8111), 7-3

SAMPLE EDITOR DIRECTIVES IN FILE
SMPCMDFL (FIG), 5-1

SAMPLE FORTRAN TERMINAL SESSION
(MATINV), 8-1

SAMPLE LISTINGS FOR AC8111

(FIG), 7-4

SAMPLE OF UNEXPANDED MACRO ROUTINE
(sAaMPLl) (FIG), 5-10

SAMPLE OF UNEXPANDED MACRO ROUTINE
(saMPL2) (FIG), 5-11

SAMPLE OF UNEXPANDED PROGRAM WITH
MACRO CALLS (SMPMACP) (FIG), 5-9

SAMPLE SORT TERMINAL SESSION

(FIG) ’ 9_1

SAMPLE TERMINAL SESSION (AC8111)
(FIG), 7-3

SAMPLE TERMINAL SESSION (BRDCST)
(FIG), 6-7

SAMPLE TERMINAL SESSION (MATINV)
(FIG) ’ 8"1

SAMPLE TERMINAL SESSION (SMPMAC)
(FIG), 6-1

SERIAL
SERIAL EXECUTION OF APPLICATION
TASKS, 4-2

SORT
SAMPLE SORT TERMINAL SESSION
(FIG), 9-1
USING THE SORT (FIG), 1-4

SOURCE
SOURCE AND LINKER OUTPUT LISTING
(MATINV) (FIG), 8-2
SOURCE LOADING, 7-2

STARTUP
STARTUP WITH THE LOGIN
FACILITY, 3-1
TASK GROUP-SPECIFIC TERMINAL
STARTUP, 3-1
USER TERMINAL STARTUP, 3-1

SYSTEM
SYSTEM PROGRAMMER'S MANUAL
GUIDE, 1-2
SYSTEM PROGRAMMER GUIDE TO MANUALS
(FIG), 1-4
USER ACCESS TO THE SYSTEM, 4-1

TASK
APPLICATION AS LEAD TASK, 4-2
COMMAND PROCESSOR AS LEAD
TASK, 4-2
CONCURRENT EXECUTION FRO! SEVERAL
TASK GROUPS, 4-3

INDEX

TASK (CONT)
EXECUTION OF AN APPLICATION FROM
THE BATCH TASK GROUP, 4-3
TASK GROUP-SPECIFIC TERMINAL
STARTUP, 3-1

TASKS
CONCURRENT EXECUTION OF APPLICATION
TASKS, 4-3

TERMINAL

ABBREVIATED LOGIN TERMINAL, 4-1

ACCESS THROUGH THE OPERATOR
TERMINAL, 4-4

DIRECT LOGIN TERMINAL, 4-1

FULL LOGIN TERMINAL, 4-1

OPERATOR TERMINAIL SESSION FOR
COBFRT (FIG), 7-9

SAMPLE COBOL TERMINAL SESSION
(AC8111), 7-3

SAMPLE FORTRAN TERMINAL SESSION
(MATINV), 8-1

SAMPLE SORT TERMINAL SESSION
(FIG), 9-1

SAMPLE TERMINAL SESSION (AC8111)
(FIG), 703

SAMPLE TERMINAL SESSION (BRDCST)
(FIG), 6-7

SAMPLE TERMINAL SESSION (MATINV)
(FIG), 8-1

SAMPLE TERMINAL SESSION (SMPMAC)
(FIG), 6-1

TASK GROUP-SPECIFIC TERMINAL
STARTUP, 3-1

TERMINAI, RESPONSES FROM DIRECTIVES
OF FIG 5-1 (FIG), 5-2

USER TERMINAL STARTUP, 3-1

VOLUME
VOLUME AND FILE CREATION, 7-2

i-3 CB22

N

N s

4

- —— — —— - — ——— —— — —— o— ——— — —— —— ——— ——— —— — .

—— —————

—— —o——

——————— e e — — —— — = CUT ALONG LINE -

HONEYWELL INFORMATION SYSTEMS

Technical Publications Remarks Form

ntee | SERIES 60 (LEVEL 6) GCOS 6 MOD 400
PROGRAMMER’S GUIDE

ERRORS IN PUBLICATION

ORDER NO.

CB22,REV. 0

DATED

JANUARY 1978

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

as required. If you require a written reply, check here and furnish complete mailing address below.

D Your comments will be promptly investigated by appropriate technical personnel and action will be taken D

FROM: NAME

TITLE

COMPANY

ADDRESS

DATE

PLEASE FOLD AND TAPE —
NOTE: U, S. Postal Service will not deliver stapled forms

FIRST CLASS
PERMIT NO. 39531
WALTHAM, MA
02154

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

Postage Will Be Paid By:
HONEYWELL INFORMATION SYSTEMS

200 SMITH STREET
WALTHAM, MA 02154

ATTENTION: PUBLICATIONS, MS 486

Honeywell

J/

\

{

L4

FOLD ALONG LNE

————————————f-————————- CUT ALONG LINE &

FCLD ALONG LINE

/

N

-———————;f/\:‘*\————'——— ——-—-—-—-——“-A-——-—-——————-——-——-‘/f”“

e

LR “et——

Honeywell

Honeywell Information Systems
Inthe U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
InCanada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1W5
In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

20682, 5578, Printed in U,S.A. CB22, Rev. 0

