

SERIES 60 (LEVEL 6)
GCOS 6 ASSEMBLY LANGUAGE

REFERENCE
SUBJECT
Detailed description of Series 60 (Level 6) GCOS 6 Assembly Language
including:

o Central Processor Unit (CPU) Instructions

o Scientific Instruction Processor (SIP) Instructions
e Commercial Processor Instructions |

e Assembler Control Statements

e Macro Control Statements and Macro Calls

SPECIAL INSTRUCTIONS

This manual supersedes CB07, Rev. 0 dated January 1978. Change bars
indicate new and changed information; asterisks denote deletions.

SOFTWARE SUPPORTED

This publication supports Release 0110 of the Series 60 (Level 6) GCOS 6 MOD
400 Operating Systems; see the Manual Directory of the latest GCOS 6 MOD
400 System Concepts manual (Order No. CB20) for information as to later
releases supported by this manual.

ORDER NUMBER
CBO07, Rev. 1 June 1978

Honeywell

Preface

This manual describes the GCOS 6 assembly language, a machine-oriented
language for writing programs to execute on the Series 60 (Level 6) models. In
this manual, unless stated otherwise, the term GCOS refers to the GCOS 6
software; the term Level 6 refers to the Series 60 (Level 6) on which the
described software is executed.

Where appropriate, the actions performed by the GCOS Assembler as it
processes elements of the assembly language are also discussed. In this manual,
the term assembly language includes both Assembler control statements and
assembly language instructions.

Section 1 describes the data prepresentation and the hardware registers.
Section 2 describes the basic elements of the GCOS assembly language, and
Section 3 describes the considerations the programmer must make when
writing a source program. Sections 4 and 5 describe, in detail, the Assembler
control statements and assembly language instructions, respectively. Section 6
and Section 7 consist of detailed descriptions of the commercial instructions and
the scientific instructions. The macro facility is described in Section 8. Appendix
A provides programmer reference information. Appendix B describes the
hexadecimal numbering system. Appendix C contains a sample assembly
language program. Appendix D describes how to debug an assembly language
program. Appendix E lists the flags that may be issued by the Assembler.
Appendix F lists the error flags that may be issued by the Macro Preprocessor.
Appendix G contains a list of reserved symbolic names. Appendix H provides
reference information for Commercial Processor operation. Appendix J and
Appendix K provide reference information for queue instructions and stack
instructions, respectively.

Descriptions and examples within this manual use the following conventions:

{} Indicates that one of the options enclosed in the braces must be
selected.

[1 Indicatesthat one or none of the enclosed options need be selected; if one
- of the options is underlined, it is selected as the default if you do not
select any of the options enclosed in the brackets.

Indicates either a 'lo;gical sequence (e.g., A,B...) or that the
immediately preceding type of value can be repeated (e.g., a...).

a Indicates that the character must be replaced by any valid ASCII
character.

n Indicates that the character must be replaced by any valid numeric
(decimal) digit.

d Indicates that the character must be replaced with a binary digit.

h Indicates that the character must be replaced with a hexadecimal digit
(0 through 9, A through F; the letters a through f are considered
equivalent to the corresponding uppercase letters).

¢ Indicates that the character must be replaced with a, n, or h, above.

A Indicates that one or more spaces or horizontal tab characters are
required.

© 1978, Honeywell Information Systems Inc. File No.: 1523 CBO7

Uppercase letters, numbers, and any of the following special characters must
be coded exactly as shown (lowercase letters that represent keywords,
however, are considered equivalent to the corresponding uppercase letters):

$
/

*

|+||V/\:

Users of the Writable Control Store feature should refer to the Writable Control
Store User’s Guide for information about the WCS instructions and the WCS

Assembler, and to the GCOS 6 MOD 400 Operator’s Guide for command infor-
mation to invoke the WCS Loader.

iii

CBO07

MANUAL DIRECTORY

The following publications comprise the GCOS 6 manual set. The Manual
Directory in the latest GCOS 6 MOD 400 Systems Concepts manual (Order No.
CB20) lists the current revision number and addenda (if any) for each manual in
the set.

Order
No. Manual Title
—CB01 GCOS 6 Program Preparation

—CB02 GCOS 6 Commands)
—CB03 GCOS 6 Communications Processing
~—CB04 GCOS 6 Sort/Merge
. CB0O5 GCOS 6 Data File Organizations and Formats
—. CBO06 GCOS 6 System Messages
~EB07 GCOS 6 Assembly Language Reference
—CB08 GCOS 6 System Service Macro Calls
CBO09 GCOS 6 RPG Reference
CB10 GCOS 6 Intermediate COBOL Reference
GCOS 6 MOD 400 System Concepts ~
GCOS 6 MOD 400 Program Execution and Checkout
GCOS 6 MOD 400 Programmer’s Guide
GCOS 6 MOD 400 System Building
GCOS 6 MOD 400 Operator’s Guide
GCOS 6 MOD 400 FORTRAN Reference
GCOS 6 MOD 400 Entry-Level COBOL Reference
GCOS 6 MOD 400 Programmer’s Pocket Guide
GCOS 6 MOD 400 Master Index
CB30 Remote Batch Facility User’s Guide
CB31 Data Entry Facility User’s Guide
CB32 Data Entry Facility Operator’s Quick Reference Guide
~—CB33 Level 6/Level 6 File Transmission Facility User’s Guide
CB34 Level 6/Level 62 File Transmission Facility User’s Guide
CB35 Level 6/Level 64 (Native) File Transmission Facility User’'s Guide
CB36 Level 6/Level 66 File Transmission Facility User’s Guide
CB37 Level 6/Series 200/2000 File Transmission Facility User’s Guide
CB38 Level 6/BSC 2780/3780 File Transmission Facility User’s Guide
CB39 Level 6/Level 64 (Emulator) File Transmission Facility User’s Guide
CB40 IBM 2780/3780 Workstation Facility User’s Guide
CB41 HASP Workstation Facility User’'s Guide
CB42 Level 66 Host Resident Facility User’s Guide
CB43 Terminal Concentration Facility User’s Guide

In addition, the following documents provide general hardware information:

Order
No. Manual Title

AS22 Honeywell Level 6 Minicomputer Handbook

ATO04 Level 6 System and Peripherals Operation Manual
AT97 MLCP Programmer’s Reference Manual

FQ41 Writable Control Store User’s Guide

iv CBO07 -

Section 1. Introduction

Assembly Languages 1-1
Level 6 Data Representation.............. 1-1
Signed Integer Data 1-2
Unsigned Data 1-3
Floating-Point Data 1-4
Hardware Registers 14
Address Registers 1-4
Base Address (Bn) Registers 1-4
Program Counter (P-Register)........ 1-4
Remote Descriptor Base Register
®BRDBR) ... 1-4
Stack Register (T) 1-5
General (Rn) Registers................. 1-5
Mode (M) Registers 1-5
System Status (S) Register 1-5
Indicator (I) Register 1-7
Scientific Information Processor (SIP)
Registers......................... 1-7
Scientific Accumulator (Sn)
Registers 1-7
Scientific Indicator (SI) Register 1-8
SIP Mode (M4) Register 1-8
SIP Trap Mask (M5) Register 19
Software Simulation of the Scientific
Instruction Processor 19
Commercial Processor Registers 1-9
Commercial Processor Mode
Register 1-9
Commercial Processor Indicator
Register 1-10
Software Simulation of the Commercial
Processorot 1-10
Initialization and Modification of
M-Registers 1-11
Section 2. Elements of Assembly
Language :
Mnemonic Codes 2-1
Symbolic Names 2-1
Identifiersl 2-2
Labelscoooiiiiii i, 2-2
User-Defined Labels................. 2-2
Reserved Labels 2-3
Constantscciiiiiiiinnnnnnnn.. 2-4
String Constants 2-5
ASCII String Constants 2-5
Hexadecimal String Constants 25
Bit String Constants 2-6
Truncation/Padding of String Constants. 2-6
Arithmetic Constants 2-7
Binary Integer Constants 2-7
Binary Integer Constants in
Decimal Notation 2-7

Contents

Binary Integer Constants in

Hexadecimal Notation 2-7
Decimal Integer Constants 2-7
Unpacked Decimal Integers 2-8
Packed Decimal Integers 2-8
Examples of Decimal Integers 2-9
Fixed-Point Constants 2-9
Floating-Point Constants 2-10
Normalization 2-11
Expressionsc.ooiiiiiiiiia.. 2-11
Evaluating Expressions 2-13
Location and Value Expressions 2-13
Value Expressions 2-13
Internal Value Expressions......... 2-13
External Value Expressions 2-14
Location Expressions 2-15
Internal Location Expressions 2-15
External Location Expressions...... 2-15
Common Location Expressions...... 2-16
Address Expressions 2-17
Referencesccovvuumnninnannn... 2-17
Section 3. Programming
Considerations
Assembly Language Source
Statement Formats.................. 3-1
Order of Statements
in Source Program 3-2
Calling System Services 3-2
Calling External Procedures 3-2

Alternate Method of Handling
Input/Output and

File Manipulation................... 3-2
Assembler 3-2
Cross-Reference Listing 3-3

SAF/LAF Considerations............... 3-3
Reentrancy Considerations 33

Section 4. Assembler Control

Statements
Assembly-Controlling Statements 4-1
List-Controlling Statements 4-1
Data-Defining Statements 4-1
Storage-Allocation Statements 4-2
Symbol-Defining Statements.............. 4-2
Program-Linking Statements 4-2

Conditional Assembly Control Statements . 4-2
Operation Code-Defining Statement . . S 42

Assembler Control Statements 4-2
ARGLST T 4-3
BORG ..o e 4-4
BTEXT .. o i 4-5
CALL ... i e 4-6

CLST .. 4-8
COMM ...t e 4-9
CTRL ... 4-10
DC 4-11
DEFGENc iiiiiiiia... 4-12
EDEF 4-13
END ... 4-14
EQU ... 4-15
FAIL 4-16
IF . 4-17
LCOMMoooiiiiiiiii 4-18
LIST .. 4-19
ALIST ... 4-19
NLST .. i 4-20
NULL ... e 4-21
ORG ... 4-22
PTRAY ... 4-23
RESV ... 4-24
TEXT . 4-25
TITLE ... 4-26
XDEF ..ot 4-27
XLOC .o 4-28
XVAL . 4-29
Section 5. Assembly Language
Instructions
Arithmetic Operations 5-1
Boolean Operations 5-2
Branch Operations 5-2
Compare Operations 5-2
Control Operations....................... 5-2
Input/Output Operations 5-2
Load Operations 5-2
Memory Management Operations 5-3
Modify Operations 5-3
Move Operations..................coouun. 5-3
Queue Operations.............c...ounn.. 5-3
Shift Operations 5-3
Stack Operationsccceeven.. 5-3
Store Operationsoovenn.. 5-3
Swap Operations......................... 5-3
Assembly Language Instruction Types 5-4
Branch-on-Indicator (BI) Instructions ... 5-4
Branch-on-Register (BR) Instructions ... 5-4
Double Operand (DO) Instructions 5-4
Generic (GE) Instructions 5-5
Input/Output (I0) Instructions 5-5
Shift (SHS and SHL) Instructions 5-5
Short-Value-Immediate (SI)
Instructions 5-6
Single Operand (SO) Instructions 5-6
Addressing Techniques 5-7
Register Addressing 5-7

Immediate Memory Addressing (IMA) .. 5-8
Direct Immediate Memory

Addressing 5-8
Indirect Immediate Memory

Addressing 5-9
Indexed Direct Immediate Memory

Addressing 5-9

Indexed Indirect Immediate Memory

Addressing 5-10

vi

Immediate Operand Addressing 5-10
P-Relative Addressing 5-12
Direct P-Relative Addressing 5-12
Indirect P-Relative Addressing 5-13
B-Relative Addressing R 5-13
Direct B-Relative Addressing 5-14
Indirect B-Relative Addressing 5-15
Indexed Direct B-Relative
Addressing 5-15
Indexed Indirect B-Relative
Addressing 5-16
Direct B-Relative Plus Displacement
Addressing 5-16
Indirect B-Relative Plus
Displacement Addressing 5-18

Direct B6-Relative Plus Local
Common Block Plus Displacement
Addressing 5-18
Indirect B6-Relative Plus Local
Common Block Plus Displacement

Addressing 5-19
B-Relative Push Addressing 5-20
B-Relative Pop Addressing........... 5-21
Indexed B-Relative Push

Addressing 5-21
Indexed B-Relative Pop Addressing. .. 5-22

Short Displacement Addressing 5-23

Specialized Address Expression......... 5-24

Interrupt Vector Addressing 5-24

Indexed Addressing Considerations 5-25
Establishing a Multiplication

Factor 5-26
AID, SID, LDI, and SDI

Instructions 5-26
B-Register Instructions in LAF

Configuration 5-26
Scientific Instructions 5-26
Bit/Byte Manipulating Instructions. .. 5-26

Assembly Language Instructions.......... 5-27
ACQ o 5-27
ADD .. 5-28
ADV 5-29
AID 5-30
AND ..o 5-31
ANH ..o 5-32
ASD .. 5-33
B o 5-34
BAG .. 5-35
BAGE ..ot 5-36
BAL ... 5-37
BALE ... 5-38
BBF .. e 5-39
BB .. et 5-40
BCF .o e 5-41
50 5-42
BDEC ... 5-43
BE e 5-44
BEVN .. i 5-45
BEZ .. e 5-46
BG e 5-47
BGE ... 5-48
BGEZ ... 5-49

CBO07

—

BINC ..ottt e 5-51
BIOF ..ttt 5-52
BIOT ... e e e e 5-53
BL o e e 5-54
BLE .. e e 5-55
BLEZ ... e 5-56
BLZ ..o i 5-57
BNE ... e 5-58
BNEZ ... 5-59
BNOV .. i 5-60
BODD ... 5-61
BOV 5-62
BRK 5-63
BSE ..o 5-64
BSU ... 5-65
CAD ... 5-66
CL i 5-67
CLH ... i 5-68
CMB ... e 5-69
CMH ... 5-70
CMN . e 5-71
CMR .. e 5-72
CMYV 5-73
CMZ . e 5-74
CNFG ... e 5-75
CPL ... e 5-76
DAL ... 5-77
DAR ... e 5-78
DCL ... e 5-79
DCR ... 5-80
DEC e 5-81
DIV e 5-82
DOL.......... i, 5-83
DOR ... e 5-84
DQA ... e 5-85
DQH 5-86
ENT 5-87
HLT ... e 5-88
INC . 5-89
IO . 5-90
IOH ... 5-92
IOLD ... 5-93
JMP ... 5-94
LAB ... 5-95
LB 5-96
LBC . e et 5-97
LBF ... 5-98
IBS ... 5-99
IBT ... 5-100
IDB ... e 5-101
IDH ... e 5-102
IDI ... 5-103
IDR ... e 5-104
LDT . e 5-105
LDV e 5-106
LEV . e 5-107
LLH ... 5-109
LN . e 5-110
LRDB ...ttt 5-111
MCL ..o e 5-112
MLV .. e 5-113
MMM ... i e e e 5-114
MTM ... e 5-115

vii

MUL .. e e 5-116
NEG ...t 5-117
NOP ... 5-118
OR .. 5-119
ORH ...ttt 5-120
QOH ... 5-121
QOT .ot 5-122
RLQ ... 5-123
RSTR.......cooii i 5-124
RTCF i 5-125
RTCN ... 5-126
RTT .. 5-127
SAL ..o 5-128
SAR .. e e 5-129
SAVE 5-130
SCL .. e e 5-131
SCR ... it 5-132
SDI .. 5-133
SID . e 5-134
SOL ... e 5-135
SOR ..ot e e 5-136
SRDB 5-137
SRM ... 5-138
STB ... e 5-139
STH ... e 5-140
STM ... 5-141
STR ..o 5-142
SIS e 5-143
STt 5-144
SUBo 5-145
SWB .. 5-146
SWR .. 5-147
VLD ..o 5-148
WDTF ... 5-150
WDTN ... 5-151
XOH ... 5-152
XOR ..o 5-153
Section 6. Commercial Instructions
BasicFeatures....................ount. 6-1
Commercial Processor (CP)
Programming Considerations 6-1
Commercial Instruction Categories........ 6-2
Decimal Arithmetic Instructions. 6-2
Radix and Mode Conversion
Instructions 6-2
Shift Instructions 6-2
Edit Instructions 6-2
Character String Instructions 6-2
Branch Instructions 6-2
Commercial Processor Instruction
Format 6-3
Commercial Processor Data
Descriptorscooovvviiiiii i 6-3
Alphanumeric Data Descriptor 6-3
Packed-Decimal Data Descriptor 6-4
Unpacked-Decimal Data Descriptor 6-4
Binary Data Descriptor 6-5
Addressing Techniques for Commercial
Processor Instructions................. 6-5
P-Relative Addressing 6-5
Direct P-Relative Addressing '6-6
Indexed Direct P-Relative
Addressing 6-7
CB07

Indirect P-Relative Addressing 6-8 CBE ..t 6-28

Commercial Processor B-Relative CBG......oiii 6-29
Addressing 6-9 CBGE ool 6-30
Commercial Processor Direct B-Relative CBL ...t 6-31
Plus Displacement Addressing 6-9 CBLE ...ttt 6-32
Commercial Processor Indirect B-Relative CBNE ... 6-33
Plus Displacement Addressing 6-9 CBNOV ...t 6-34
Commercial Processor Direct B-Relative CBNSF ... 6-35
Plus Displacement With Indexing CBNTR.......ciiiiiiiiiiiiiiiaan, 6-36
Addressingcooiiiiiiiaan 6-10 CBOV .t 6-37
Commercial Processor Indirect B-Relative CBSF ..ottt 6-38
Plus Displacement With Indexing CBTRo b39
Addressing ... 6-10 (0] 1) 6-40
Immediate Operand (IMO) Addressing .. 6-11 CSNCB ..oiiii e i 6-41
Micro Edit Functionsoo..... 6-12 CSYNC ...t i 6-42
Edit Insertion Table 6-13 DAD ... 6-43
EditFlagsccooiiiiiiinnn. 6-14 DCM ...t 6-44
Change Edit Insertion Table (CHT) DDV . 6-45
Micro Operation 6-14 DLS . 6-46
End Floating Suppression (ENF) Micro DMC ... 6-47
Operationccovvvvnnnn. 6-15 DME e 6-48
Ignore Source Character (IGN) Micro DML 6-52
Operationccovvvvnn.. 6-16 DRS .. 6-53
Insert Asterisk on Suppress (INSA) DSB ... 6-54
Micro Operation 6-16 DSH.......oooiiii 6-55
Insert Blank on Suppress (INSB) Micro MAT ... 6-57
Operation 6-16 SRCH 6-58
Insert Multiple Characters (INSM) VREY ot '6-62
Micro Operation 6-16
Insert Character on Negative (INSN) Section 7. Scientific Instructions
Micro Operation 6-16 Scientific Trapsocvvveieerenannn.. 7-1
Insert Character on Positive (INSP) Scientific Instruction Processor (SIP)
Micro Operation 6-17 Programming Considerations 7.2
Move with Float Currency Symbol Detailed Descriptions of Scientific
Insertion (MFLC) Micro Instructionsoilt 7-2
Operation 6-17 SAD ...\ 7-2
Move with Float Sign Insertion (MFLS) SBE ...\ttt 7-4
Micro Operation 6-17 3301 0 AR 7-5
Move Source Character (MVC) Micro SBEZcoiiiii e 7-6
Operation 6-18 SBG ..ttt 7-7
Move with Zero Suppression and SBGE ...\ttt 7-8
Asterisk Replacement (MVZA) 12763 07/ 7-9
Micro Operation 6-18 SBGZ ... 7-10
Move with Zero Suppression and Blank SBL 1-10
Replacement (MVZB) Micro SBLEoiiiiieee i 7-12
Operation 6-18 SBLEZ ...ttt 7-13
Set Edit Flags (SEF) Micro Operation . .. 6-19 SBLZ ..ottt 7-14
Commercial Processor Traps.............. 6-20 SBNE ...ttt 7-15
Trap 23 Unavailable Resource (UR) 6-21 SBNEU .. .otoeeeeaeeeeieae 7-16
Trap 24 Bus or Memory Error (BE) 6-21 SBNEZ ..ot 7-17
Trap 25 Divide by Zero (DZ) 6-21 SBNPE ... 7-18
Trap 26 Illegal Specification (IS) 6-22 SBNSE ..ot 7-19
Trap 27 Illegal Character (IC) 6-22 SBPE ... e 7-20
Trap 28 Truncation (TR) 6-22 SBSE ...ttt 7-21
Trap 29 Overflow (OV) 6-22 SCM e 7-22
Trap 30 Quality Logic Test (QLT) SCZD ...t 7-23
Error QE) ... 6-22 3107/ 8 7-24
Execution Details for Commercial SDV e ... 725
Instructions 6-22 SLD .t e e 7-26
Detailed Descriptions of Commercial SML .o e 7-27
Instructionsccuvuuuinnun.. 6-23 SNGD ... 7-28
ACM .. e 6-24 SNGQ ...t 7-29
ALR ... e 6-25 SOB .. e 7-30
AME 6-26 SO it e e e 7-31
CBD....coiiiii 6-27 SSW............. e s 7-32

viii ¢ CB07

Section 8. Macro Facility

AppendixB. Hexadecimal Numbering

Order of Statements within a Source System
. Program......................oo 8-1 Decimal-to-Hexadecimal Conversion B-2
(Macro Routines 8-1 Hexadecimal-to-Decimal Conversion B-2
Creating a Macro Routine 8-2 Hexadecimal-to-ASCII Conversion B-4
MAC Macro Control Statement, Hexadecimal Addition B-5
without Parameters 8-2 Hexadecimal Subtraction B-5
Contents of Macro Routine........... 8-2 Hexadecimal Multiplication B-6
ENDM Macro Control Statement 8-3 Hexadecimal Division B-6
Specializing a Macro Routine by
Parameter Substitution 8-3 AppendixC. Sample Assembly
MAC Macro Control Statement, Language Program
Including Parameters 8-4
Protection Operators................... 8-5 AppendixD. Debugging Assembly
Situating Macro Routines 8-6 Language Programs
LIBM Macro Control Statement ... 87 Debug D1
INCLUDE Macro Control Statement . 8-9 DumpEdit D-1
MacroCallscovia... 8-11 Reading and Interpreting Memory
Nested Macro Call..................... 8-12 DUMPS . ..ovvveei e D-1
Recursive MacroCalls 8-13
Controlling Expansions 8-13 AppendixE. Notification Flags Issued
Macro Variables....................... 8-13 by Assembler
Macro Substitution.................. 8-14 _
SETA Macro Control Statement . 815 guec e S8
SETN Macro Control Statement. 8-16
Conditional Macro Control Statements .. 8-17 AppendixF. Source Code Error
FAIL Macro Control Statement 8-17 Notification by Macro
GOTO Macro Control Statement 8-18 Preprocessor
IF Macro Control Statement 8-19
NULL Macro Control Statement 8-22 AppendixG. Reserved Symbolic
Macro Functions 8-23 Names
: Format of Macro Functions 8-23
(Length Attribute Macro Function 8-23 AppendixH. Programmer’s Reference
Type Attribute Macro Function 8-24 Information for Commercial
Hexadecimal Conversion Macro Processor Operation
Function B R TR PPRE 8-25 Internal Formats of Commercial
Index Macro Functhn """"""""" 8-26 Processor Instructions H-1
Seil:th-Maﬁ ° Fuxg‘ctlolg' """"""""" 8-27 Internal Format of Data Descriptors H-4
Tu Ting Y Acro fUnCUOn . 8-28 Decimal Data Descriptors H-4
ranslate MacroFunction 8-29 Unpacked Decimals H.4
Vector Orient;tion Macro Function 8-30 Pacpl:a dDecimals H-5
Verify Macro Function 8-31 N PR
Example INlustrating Macro Facility 8-31 A}phanumerlc Dat? Descriptor H-6
Pr . . . Binary Data Descriptor H-6
ogramming Considerations 8-34 Add Syllabl H.7
Initialized Values of Macro Variables 8-34 ressOyllableoovvvvieiiinn
Designating Numeric Values 8-35 Appendixd. Programmer’s Reference
Designating Alphanumeric Values...... 8-35 Information for Queue
Alphanumeric Value Conventions 8-36 Instructions
Balanced Apostrophes............. 8-36
Balanced Parentheses 8-36 AppendixK. Programmer’s Reference
Commas and Semicolons 8-37 Information for Stack
Spaces and Horizontal Tabs 8-37 Instructions
Stack Frame K-1
Appendix A. .Programmer’s Reference Stack Instruction Formats K-2
Information ' Load Stack Address Register (LDT) K-2
Summary of Hardware Registers A-1 Store Stack Address Register (STT) K-2
Assembly Language Internal Formats by Acquire Stack Frame (ACQ) K-2
............................... -4 Relinquish Stack Frame (RLQ)K-2
o Hexadecimal Representation of
(Instructions A-6
Valid Address Expressions A-10

ix CB0O7

6-5

6-6

6-7
6-8

Figures

Assembler Functions
Level6Registers

Direct Immediate Memory

Addressing

Indirect Immediate Memory

Addressing

Indexed Direct Immediate Memory
Addressing
Indexed Indirect Immediate

Memory Addressing

Immediate Operand
Addressing-Scientific
Instruction

Immediate Operand Addressing

Direct P-Relative Addressing

Indirect P-Relative Addressing

Direct B-Relative Addressing
Indirect B-Relative Addressing
Indexed Direct B-Relative
Addressing
Indexed Indirect B-Relative
Addressing
Direct B-Relative Plus
Displacement Addressing
Indirect B-Relative Plus
Displacement Addressing

Direct B6-Relative Plus
Local Common Block Plus
Displacement Addressing
Indirect B6-Relative Plus
Local Common Block Plus
Displacement Addressing

B-Relative Push Addressing

B-Relative Pop Addressing
Indexed B-Relative Push

Addressing
Indexed B-Relative Pop

Addressing
Short Displacement Addressing
Specialized Address Expressions
Interrupt Vector Addressing

VLD Instruction Operations

Commercial Processor Direct

P-relative Addressing

Commercial Processor Indexed

Direct P-relative Addressing ..

Commercial Processor Indirect

P-relative Addressing

Commercial Processor Direct and
Indirect B-Relative Plus

Displacement Addressing

Commercial B-Relative Plus
Displacement With Indexing

Addressing

Commercial Processor IMO

Addressing

Flow Diagram of SEF Micro

Operation
Trap Context

1-1
1-6

5-8

5-9

6-9
8-1

A-2

Shift Instruction Formats 6-55

Sample Unexpanded Source
Module and Assembler Listing of
Resulting Expanded Source

Module...................... 8-32
Level 6 Hardware Registers A-1
Internal Formats of Assembly

Language Instructions A-5
Listing of CHKNML Program -. C-1
Listing of Bubble Sort Program C-3
ASCII/Hexadecimal Memory

Dump..................o.... D-2
Internal Formats of Commercial
Processor Instructions............. H-1
Remote Descriptor Address

Generation H-4

Decimal Data Descriptor Format .. H-
Alphanumeric Data Descriptor

Format...................... H
Binary Data Descriptor Format H-

Commercial Processor Address

Syllable Format H-7
Commercial Processor Hardware

Test Program H-8
Queue Management J-2
Stack Structure K-1

Tables

Defining Symbolic Names.......... 2-3
Rules of Truncation/Padding

StringConstants 2-6
Indexed Addressing Modes 5-25
Micro Operations for Edit

Instructions 6-13
Edit Insertion Table at

Initialization 6-13
Edit Flags for Micro Operations 6-14

Code for Replacing EIT Entries 6-15
Character Insertion by MFLS

Micro Operation 6-18
Commercial Processor Trap Vectors
and Events 6-21
Trap VectorsandEvents 7-1
Internal Representation of
Assembly Language
Instructions A-6
Address Syllables for CPU &
SIP Instructions A-9

CBO7

Summary of Valid Forms of
Address Expressions for CPU
and SIP Instructions

Comparison of Binary, Decimal,

and Hexadecimal Symbols
Storage and Printout of Value 32
Hexadecimal/Decimal

Conversion
Hexadecimal/ASCII Conversion
Hexadecimal Addition Table
Hexadecimal Multiplication

Table
Commercial Instruction

Summary
Commercial Processor Address

Syllables

xi

CBO07

Section 1

Introduction

Computer programs can be written in high-level languages or machine-oriented lower level
languages. High-level languages are generally designed for specific environments (e.g., COBOL
is a business-oriented language, and FORTRAN is a scientifically-oriented language). Low-
level languages (i.e., assembly languages) support a wide range of application environments.

ASSEMBLY LANGUAGES

Computer logic interprets only machine (i.e., object) code. Since object code is composed of
binary digits, it is difficult to understand unless the binary representation is translated into a
more convenient, readable code. As a result, assembly languages have been developed to
simplify the problem of writing programs in object code. These intermediate-level assembly
languages consist of assembler-controlling statements and operational instructions.

Asillustrated in Figure 1-1, an Assembler interprets the assembly language (i.e., source code)
program and translates it into object code, which the computer executes to produce the desired
results.

- ~
4
F — /I

~

\
A
]
1
|
i

OBJECT
CODE

!
|
\
S~
4

ASSEMBLER

SOURCE
CODE
P
\ ’ \‘
\
‘y. ______ 1
- |
I source)
b LISTING] \
| -)
LS

Figure 1-1. Assembler Functions

One of the primary differences between assembly languages and high-level languages is that
each assembly language instruction is equivalent to a single machine-level instruction,
whereas a single high-level language instruction can be translated into any number of
machine-level instructions. The advantage, then, is that the assembly language gives you more
control over the operations to be performed.

LEVEL 6 DATA REPRESENTATION

All data stored in main memory must be in predefined, system-recognizable formats. All data
elements are based on 16-bit memory words. The format of each word is defined from left to
right, with the first bit numbered 0 and the last 15. The leftmost bit (i.e., bit 0) is considered the

INTRODUCTION 1-1 CB07

most significant and the rightmost (i.e., bit 15) is the least significant, with each intervening bit
less significant than the one to its left.

Because of this predefined format, it is possible to access data at any of the following levels:
e Bit—1 bit ‘

o 4 —bit digit

¢ Byte (half-word) — 8 bits

o Word — 16 bits

e Multiword — 32, 64 bits

Regardless of the size of the data item being accessed, addresses generated by the operand(s) in
an instruction point to the most significant bit of the item. For example, to access a multiword
data item in main memory, the address generated by the Assembler (from the operand con-
tained in the instruction) points to the first bit (i.e., bit 0) in the first word of the item.

Each four bits of data are represented by a single hexadecimal value in a listing or printout,
although the bits are stored in memory in binary form. The hexadecimal equivalent of a binary
value is derived by converting each successive four bits to the hexadecimal value as follows:

0000= 0 1000 = 8
0001= 1 1001 = 9
0010= 2 1010= A
0011= 3 1011= B
0100 = 4 1100 = C
0101= 5 1101= D
0110= 6 1110= E
0111= 7 1111 = F

Thus, ifa listing shows that a word at a given address contains the hexadecimal value 8FD3, it
means that the system contains the stored binary vaiue 1000111111010011.

Data stored in memory can be in any of the following forms:

o Signed integer

e Unsigned integer

¢ Floating-point

A signed or unsigned integer byte can also be stored in a hardware general register. A

floating-point constant occupies two (short-precision) or four (long-precision) memory words
and may also be stored in the scientific registers.

SIGNED INTEGER DATA

Signed integers stored in memory contain a sign (0 = +; 1 = —) in bit 0 and the data in the
remaining bits. Negative numbers appear in twos-complement form. Byte, word, and double-
word formats are permitted, as follows:

Bit: 0o 1. 7

{‘ } DATA Byte

Bit: 0 1 15

DATA Word

— e,
o —
-

INTRODUCTION 1-2 , CB07

Bit: 0 1 15 16 31

{ ! } DAT:A Double-word

If the first digit in the hexadecimal representation of a signed integer is 0 through 7, the value
is positive and is stored in memory exactly as it was coded; if the first digit is 8 through F, the
value is negative and is stored in memory as the twus complement of the coded integer. For
example, if the contents of a signed integer word appearing in memory are BDAO, the decimal
equivalent is -16992.

When a signed integer byte is loaded from memory into a hardware general register, the seven
data bits are placed into bits 9 through 15 of the register and the sign into bit 8. The sign is then
extended through bit 0 of the register, as follows:

Bit:

o

O — |0

} DATA

o —
o —
o —
o —
o —

[)

Q=

P
o —

The sign of the integer byte (i.e., the first bit of the 8-bit byte), which is contained in bit 8 of the
register, is extended through the first byte of the register.

If the first byte of the register contains the hexadecimal value FF, the integer in the second
byte is a negative value; if the first byte contains the hexadecimal value 00, the value of the
second byte is positive.

UNSIGNED DATA

Unsigned data appears in memory in three possible formats:

Bit: 0 7
DATA Byte
Bit 0 15
DATA Word
Bit: 0 31
DATA Double-word

When an unsigned data byte is loaded from memory into a hardware general register, the byte
is placed into register bits 8 through 15, and register bits 0 through 7 are set to 0, as follows:

Bit: O 78 15

00000000 DATA

INTRODUCTION 1-3 CBO7

FLOATING-POINT DATA

Floating-point data appears in memory either as a short-precision (32-bit) or long-precision
(64-bit) constant, as follows:

Bit: 0 67 8 31

C S M Short precision
Bit: 0 678 63

C S M \\ : Long precision

Represents the characteristic (excess 64 power-of-16 exponent) of the number. The
characteristic represents exponents with a range from —64 to +63. Since the charac-
teristic has no sign bit, the number 64 (decimal) is effectively added to each exponent,
thus allowing a characteristic range of 0 to 127 to represent exponents with a range of
—64 to +63.

S
Sign bit (0 = +;1 = —) of the mantissa.

M v
Mantissa — a normalized hexadecimal fraction.

A floating-point constant in memory may be loaded into a scientific register or a software-
simulated scientific register, described later in this section.

HARDWARE REGISTERS

Level 6 hardware registers (Figure 1-2) consist of word operand registers, address registers,
control registers, and mode registers.

ADDRESS REGISTERS

The length of the address registers is 16 bits for 6/30 models and 20 bits for 6/40 and 6/50
models. (The 12 leftmost bits of the 32-bit LAF address in memory must be zero.)

BASE (Bn) REGISTERS

The seven base registers are used in the formulation of addresses by pointing to any proce-
dure, data, or location in main memory. Typically, the base registers contain addresses, poin-
ters, or base references for use in generating effective addresses and referring to data through
relative addresses (see “Addressing Techniques” in Section 5).

PROGRAM COUNTER (P-REGISTER)

The program counter (P-register) is used by the central processor to generate the effective
address of data based on various operands in the assembly language instruction set. (See
“Addressing Techniques” in Section 5.) The P-register contains the address of the next
instruction only during execution of the current instruction. The address of the next instruction
is the address of the current instruction plus the length of the current instruction. However,
JMP, ENT, LNJ, and branch instructions modify the contents of the P-register to a jump or
branch address.

REMOTE DESCRIPTOR BASE REGISTER (RDBR)

This register is used with Commercial Processor instructions and is available only on 6/40 and
6/50 models. See Appendix H “Programmer’s Reference Information for Commercial Processor
Operation.”

INTRODUCTION 1-4 CBO07

STACK REGISTER (T)

This register is used with stack instructions and is available only on 6/40 and 6/50 models. See
Appendix K “Programmer’s Reference Information for Stack Instructions.”

GENERAL (Rn) REGISTERS

The seven general registers can be used as accumulators, and the first three (R1, R2, R3) can
be used as index registers (see “Addressing Techniques” in Section 5).

MODE (M) REGISTERS

Register M1 contains the trap enable control bits. Its contents can be altered by the MTM
assembly language instruction, and used by other instructions in the assembly language
instruction set. The bits in the M1 register have the following meanings when set to binary 1:

Bit: 01234567

J

L Overflow trap enabled for R7
—> Overflow trap enabled for R6
L Overflow trap enabled for R5
L Overflow trap enabled for R4
L——— & Overflow trap enabled for R3
L Overflow trap enabled for R2
Overflow trap enabled for R1

——s=Trace trap enabled for JMP and branch instructions

Setting one or more overflow trap bits makes it possible to enter the Trace Trap Handler by a
trap to Trap Vector 6. See the System Services Macro Calls manual for a detailed description of
trap handlers.

Registers M2, M6, and M7 are reserved for future use.

The format of the Commercial Processor control register M3 is the same as that of the
Commercial Processor mode register which is described later in this section.

The formats of registers M4 and M5 are the same as those of the SIP mode register and the SIP
trap mask register respectively. These registers are described later in this section.
SYSTEM STATUS (S) REGISTER

The S-register contuins the status and security bits for the system. The contents, which can be
read by an executing program, have the following meaning, depending on which bits are set to
binary 1:

Bit: 012 56 9 10 15

Level Number

L’Interr‘upt priority level of the
executing program; 63 (all bits
set to 1) is the lowest level;
0 (all bits set to 0) is the
highest

_—Processor identifier; set automatically
during system configuration.

L Indicates that the system is running in
privileged state.

INTRODUCTION 1-5 CBO07

M1
M2
M3
M4
M5
M6
m7

0

WORD OPERAND REGISTERS

15

R1

R2

R3

R4

R5

R6

R7

ADDRESS REGISTERS

0

*

P

B1

B2

B3

B4

B5

B6

B7

RDBR

T

CONTROL REGISTERS

0

15

~<— RESERVED

[CIP CONTROL

€— SIP MODE

*— RESERVED

RESERVED

GENERAL REGISTERS
AND ACCUMULATORS

-
B
-
-
-
-
- —
PROGRAM ADDRESS BASE,
COUNTER POINTER, STACK
-
-t
-+
B
——————
~—
f———
-
-+

<¢— SIP TRAP MASK

~<——SYSTEM AND SECURITY KEYS
~——I|NDICATORS

-«— TRAP ENABLE/MODE CONTROL

*15 FOR 6/30 MODELS, 19 FOR 6/40 AND 6/50 MODELS

INDEX
REGISTERS

-—
-
e

If the hardware configuration includes a Memory Management Unit, the contents of the

Figure 1-2. Level 6 Registers

S-register have the following meaning:

Bit:

INTRODUCTION

0123 56 910

15

LEVEL
NUMBER

l_..Interrupt priority level of the
executing program; 63 (all bits
set to 1) is the lowest level;
0 (all bits set to 0) is the
highest

Processor identifier; set auto-

matically during system con-
figuration.

system is running in.

1-6

Indicates the ring number the

INDICATOR (I) REGISTER

The I-register contains overflow and program status indicators. When set to binary 1, the bits
have the following meaning:

Bit: O 78 9 10111213 14 15

Result of last
compare is:

Unequal signs
——Less than

L————— Greater than

L_e-Indicates that device
accepted I/0 command.

Le=Bit-test indicator (see the
descriptions of the follow-
ing instructions in Section
5 for the setting: LB, LBC,
LBF, LBS, LBT).

——» Carry occurred during
arithmetic operation.

L Overflow occurred during
arithmetic instruction.

SCIENTIFIC INSTRUCTION PROCESSOR (SIP) REGISTERS

The Level 6 Scientific Instruction Processor (SIP) is an optional hardware unit containing

(‘ three identical scientific accumulator registers, one scientific indicator register, one SIP mode
register, and one SIP trap mask register. The SIP performs arithmetic operations on single- and

double-precision floating-point data and also provides a set of scientific branch instructions.

SCIENTIFIC ACCUMULATOR (Sn) REGISTERS

The SIP provides three 64-bit scientific accumulator registers for use in either short- or
long-precision floating-point operations. When these registers are used in short-precision
operations, only the high-order (leftmost) 32 bits participate.

The format of the scientific accumulator registers is shown below.

Bit: 0 678 63

A\

S
I Magnitude of the mantissa.
Sign (0 = positive; 1 = negative) of

the mantissa.

s Characteristic (excess 64 power-of-sixteen
exponent) of the number.

INTRODUCTION 1-7 CBO07

SCIENTIFIC INDICATOR (SI) REGISTER

The 8-bit SI-register contains error and status indicators that can be tested with the scientific
branch instructions. When set to binary 1, the bits have the following meanings:

EU | QE | SE

Result of last
scientific compare:

L = less than

L— = Greater than

Precision error (trap 22)

Y

Significance error (trap 21)
QLT error (trap 31)
Exponent underflow (trap 19)

vy

Traps and trap handlers are discussed in the System Services Macro Calls manual.

SIP MODE (M4) REGISTER

The SIP mode, or M4, register is an 8-bit control register residing in the SIP but with a copy in
the CP. Both versions are set to 0 upon CP initialization and both may be modified with an MTM
instruction (see Section 5). If only the SIP is initialized, the CP copy of the register is not cleared,
and the contents of both versions must be reestablished with an MTM.

The format of the M4-register is as follows:

R/T ALT [ML2| ALZ2| ML3| AL3
——
SA1 SA2 SA3

RT: Round/Truncate Mode
0 — Truncate
1— Round
ML: Memory length (Length of main memory data field to or from which data is
transferred via a scientific accumulator (SA))
0 — Two words
1 — Four words
AL: Accumulator Length (Length of scientific accumulator data field to or from which
data is transferred to/from main memory, a hardware register, or another SIP

register)
0 — Two words
1 — Four words

INTRODUCTION 1-8 CB07

SIP TRAP MASK (M5) REGISTER

The SIP Trap Mask, or M5, register is an 8-bit control register residing in the SIP but with a
copy in the CP. Both versions are set to 0 upon CP initialization and both may be modified with
an MTM instruction (see Section 5). If only the SIP is initialized, the CP copy of the register isnot
cleared, and the contents of both versions must be reestablished with an MTM.

The format of the M5-register is as follows:

0 1 2 3 4 5 6 7
EUM SEM|PEM

== Precision error trap mask

= Significance error trap mask

= Exponent underflow trap mask

SOFTWARE SIMULATION OF THE SCIENTIFIC INSTRUCTION PROCESSOR

For systems on which a Scientific Instruction Processor (SIP) is not available, GCOS provides
the equivalent SIP functions through software simulation. Two simulators are available: the
Single-Precision SIP Simulator (SSIP) and the Double-Precision SIP Simulator (DSIP). If a
configuration is to support scientific instructions when a SIP is not present, SSIP or DSIP must
be specified in the CLM directive SYS. (See System Building manual.)

The DSIP simulates all functions of the SIP. The SSIP is a partial simulator. The simulators
are entered via trap vector 3 (for scientific floating-point instructions) or trap vector 5 (for
scientific branch instructions).

Note the following considerations with respect to the use of the SSIP.

e SSIP usesregisters R4, R5, and R7 to simulate a scientific register (assumed to be SA1). A
task that executes scientific instructions that might be simulated by SSIP should dedicate
these three registers to the use of the simulator.

e SSIP uses the CPU I-register to store the results of a scientific compare instead of
simulating the scientific indicator register. Thus, if scientific compare instructions are to
be simulated by SSIP (as opposed to being simulated by DSIP or executed by the SIP), then:
— CPU branch instructions must be used to test the result of a scientific compare instead

of the normal scientific branch instructions.
— Execution of scientific instructions alter the CPU I-register instead of the SIP’s SI
register.

e On 6/30 systems, the SSIP does not support the MTM or STM instruction.

e SSIP rounds results when appropriate; DSIP truncates results unless otherwise in-
structed. Thus, results produced by the SSIP may not agree exactly with those produced by
the DSIP. '

COMMERCIAL PROCESSOR REGISTERS

The Commercial Processor, an optional hardware unit, contains two registers: the Commer-
cial Processor mode register, and the Commercial Processor indicator register.

COMMERCIAL PROCESSOR MODE REGISTER

The 8-bit Commercial Processor mode register is a copy of the M3 register (in the CPU) which
is provided for use with the Commercial Processor. Both are set to zero at initialization of the
CPU. Both registers may be modified with an MTM instruction. If only the Commercial
Processor is initialized, the M3 register is not cleared, and the contents of both registers must be
established with an MTM instruction. The format of the Commercial Processor mode register
and the M3 register is shown below. When set to binary 1, the bits have the following meanings:

INTRODUCTION 1-9 CBO07

ov | TR

»Trap on truncation
>Trap on overflow

Note that, although the contents of the Commercial Processor mode register is not saved, the
equivalent information in the M3 register is saved or restored as a function of the mask bits in
the interrupt save area. When a restore is done, the restored value is sent to the Commercial
Processor by the CPU.

COMMERCIAL PROCESSOR INDICATOR REGISTER

The 8-bit Commercial Processor indicator register is cleared at initialization. During the
execution of an instruction that affects the register, only the bits pertinent to the instruction are
preset (set or reset). All other bits remain unchanged. During the execution of a branch
instruction, all bits including the one being tested are left unchanged. When set to binary 1, the
bits have the following meaning:

5 6 7
G L | QE

OV | TR | SF

—>» QLT error
Result of

last compare is:

L—— Less than

L > Greater than

L ~Sign fault

(negative operand is stored
in unsigned field)

|~ Alphanumeric result is truncated

> Overflow occurred during
decimal instruction

The contents of the Commercial Processor indicator register will be saved or restored as a
function of the mask bits in the interrupt save area.

SOFTWARE SIMULATION OF THE COMMERCIAL PROCESSOR

For systems on which a Scientific Instruction Processor (SIP) is not available, GCOS provides
the equivalent SIP functions through software simulation. Two simulators are available; the
Single-Precision SIP Simulator (SSIP) and the Double-Precision SIP Simulator. If a configura-
tion is to support scientific instructions when a SIP is not present, SSIP or DSIP must be
specified in the CLM directive SYS. (See System Building manual.)

INTRODUCTION 1-10 CB07

INITIALIZATION AND MODIFICATION OF M-REGISTERS

When each task starts, the operating system establishes the following default values for
registers M1, M3, M4, and M5.

M1 = 00 Trace trap and all R-register overflow traps disabled.

M3 = 00 Commercial Processor overflow trap and truncation trap disabled; Commer-
cial Processor is under direct CPU firmware control (i.e., not in software test
mode).

M4 = 03 Truncation mode is in effect, Scientific accumulators $S1 and $S2 and
associated memory operands are two words long; $S3 and associated memory
operands are four words long.

M5 = 20 Significance error trap enabled; exponent underflow and precision error traps
disabled.

The contents of these registers can be modified by the assembly language instruction MTM.

INTRODUCTION 1-11 CB07

Section 2
Elements of

Assembly Language

The principal elements of Level 6 assembly language are:

¢ Mnemonic codes

¢ Symbolic names

e Constants

o Expressions

These elements are combined to form a source program that consists of:

1. Machine instructions to be assembled, on a one-to-one basis, into their corresponding
object code representations.

2. Assembler control statements, which are interpreted by the Assembler to control the
assembly process, allocate work and storage areas in memory, and define constant data
used by the program.

3. Macro call statements, which are interpreted by the Macro Processor to further define the
source program.

MNEMONIC CODES

Assembler control statements, which direct the Assembler in the preparation of object code,
and assembly language instructions are specified by predefined mnemonic names of one to six
characters in length. These mnemonic (operation) codes are described, in detail, in Sections 4
and 5.

SYMBOLIC NAMES

Locations, values, and other data pertinent to the determination of assembly language
instruction or Assembler control statement operand values can be referred to by the use of
reserved (predefined) and user-defined names."

Character strings can be assigned as names of memory locations, registers, values, or other
objects to be referred to in the development of object code. The manner in which a symbolic name
is defined depends on the attributes of the object referred to by that name.

Regardless of the manner of definition and the type of object being referred to, the symbolic
name must conform to the following rules:
1. It must be from one to six characters long.
It must be composed of alphabetic characters (A,B,...Z), digits (0,1,...9), and/or the special
characters $ and (underscore).
3. The first character must be a $ or alphabetic character.
4. The lowercase alphabetic characters are considered equivalent to the corresponding
uppercase characters.
The following types of symbolic names can be used in Assembler control statements and
assembly language instructions:

e Identifiers — Reserved symbols designating the hardware registers, the scientific
accumulators, and certain address syllables. ’

¢ Labels— User-defined and reserved symbols designating locations in memory and values.

ELEMENTS OF
ASSEMBLY LANGUAGE 2-1 CBo07

IDENTIFIERS

Identifiers are reserved symbolic names that refer to hardware registers or to the software-
simulated registers. In addition, names that are defined to be equivalent to identifiers (through
the EQU Assembler control statement) are treated as identifiers.

The following identifiers refer to hardware registers:

¢ $B1 through $B7 — Base registers

¢ $RI1 through $R7 — General registers

o $RI1 through $R3 — Index registers

o $M1 through $M7 — Mode control registers

o $S1 through $S3 — Scientific accumulator registers

LABELS

Labels are symbolic names that can be used to refer to locations and values. They must be
defined in a manner specific to the attributes of the location or value to which they refer (i.e.,
each label is typed according to the location or value attributes, which also establish the context
in which they can be used). The types of labels and their methods of definition are as follows:

¢ Internal location label — Refers to a location allocated within the assembled program. It is
defined by its occurrence in the label field of an instruction (resulting in the allocation of
memory to the program). The definition of labels appearing in certain Assembler control
statements that do not cause memory to be allocated (e.g., EQU statement) depend on the
statement and its operands.

e External location label — Refers to a location in another independently assembled or
compiled program. It is defined by appearing in the operand list of an XLOC statement.

e Common location label — Refers to a location allocated to FORTRAN-compatible common
blocks. It is possible to specify that the object code resulting from assembly language
instructions is to be allocated to a common block area rather than to the internal area
normally allocated to the program. All labels that appear in instructions that result in the
allocation of common block locations are defined as common location labels. In addition,
labels specified in the COMM and LCOMM statements are defined as common location
labels; these labels can be used to refer to locations in the common block by indicating their
offset from the first word.

¢ Internal value label — Refers to a value defined within the program. It is assigned by its

occurrence in the label field of an EQU statement with an operand expression (see
“Expressions” later in this section) that yields a dimensionless value.

¢ External value label — Refers to a value defined in another, independently assembled
program. It is defined by appearing in the operand list of an XVAL statement.

o Complex label — Refers to the label of an EQU statement that has an address expression
(see “Expressions” in this section), or the label of another EQU statement that has an
address expression, in the operand field.

Table 2-1 summarizes the types of labels and how they are defined.

USER-DEFINED LABELS

User-defined labels can be either permanent or temporary. Permanent labels can be defined
only once in a program; they must conform to the rules listed under “Symbolic Names” in this
section.

The 26 temporary labels ($A, $B, ... $Z) may be defined as often as necessary within a single
program. They may be referred to only in the operand of a hardware instruction or of a define
constant (DC) assembly control statement. You must be careful, during programming, that you
are referring to the desired definition of a temporary label when the label has multiple defini-
tions within a single program.

Temporary labels must be defined as internal location labels.

ELEMENTS OF
ASSEMBLY LANGUAGE 2-2 CBO07

e

TABLE 2-1. DEFINING SYMBOLIC NAMES

Type

How Defined

Internal location label

External location label
Common location label

Internal value label

External value label
Complex label

Same as operand

Appears in label field of an assembly language instruction or
Assembler control statement (except EQU, COMM, or LCOMM
statements) when the location counter type attribute (set by the ORG
statement) is internal. :

Appears in the operand field of an XLOC statement.

Appears in the label field of a COMM or LCOMM statement; or appears
in label field of an assembly language instruction or Assembler control
statement (except EQU, COMM, or LCOMM statements) when the
location counter type attribute (set by the ORG statement) is common.
Appears in label field of an EQU statement that has an expression that
yields a dimensionless arithmetic value in the operand field.
Appears in the operand field of an XVAL statement.

Appears in the label field of an EQU statement that contains an
address expression in the operand field; or appears in the label field of
an EQU statement that contains a label identifying another EQU
statement that .contains an address expression in the operand field.
Appears in the label field of an EQU statement that contains an
operand other than one of those listed above; e.g., an identifier.

RESERVED LABELS

Reserved labels are predefined and cannot be redefined. The following reserved labels are

available:

$ — The Assembler maintains a location counter which contains the address of the next
available object memory location. The symbol $ represents this address and has the
attribute of internal location or common location, depending on whether the program is
currently “origined” in a non-common area or in a common block, respectively. The initial
value of the location counter is location zero.

The Assembler also maintains a byte indicator which indicates whether the next available
byte of object memory is the even (i.e., high order or left) or odd (i.e., low order or right) byte
of the word whose address is contained in the location counter. The only statement that
causes memory to be allocated that is permitted when the byte indicator is set to indicate
the odd byte is the Byte Text (BTEXT) Assembler control statement. The byte indicator is
initially set to indicate the even byte.

Normally, the location counter is incremented by the number of words required to store the
object code resulting from a given statement after the statement has been processed.
Normally, the byte indicator is not altered. Exceptions to this general rule are as follows:

—Assembler control statements, such as Equate and Common, that do not cause any
memory to be allocated have no affect on either the location counter or the byte indicator.

—The Origin Assembler control statement which sets the location counter to a specified
value and sets the byte indicator to indicate the even byte.

—The Byte Origin Assembler control statement which sets the location counter to a
specified value and sets the byte indicator to indicate the odd byte.

—The Define Constants (DC) Assembler control statement which does not affect the byte
indicator, but increments the location counter after each operand is processed. Thus, a $
appearing as a label in an operand of a DC statement will always refer to the firs¢, or
only, word of memory allocated for that operand. Because of this, the DC statement:

DC 1,2,<$-2
will produce the same object code as the following DC statements:
DC 1
DC 2
DC <$-2

—The Byte Text Assembler control statement which increments the location counter and

ELEMENTS OF
ASSEMBLY LANGUAGE 2-3 ‘ CBo07

byte indicator, concatenated to form a byte address, by the number of bytes allocated.
Either, or both, the location counter and byte indicator may be altered.

—The Pointer Array (PTRAY) Assembler control statement which does not affect the byte

~ indicator and increments the location counter after each operand is processed. Thus, a $

appearing as alabel in an operand of a PTRAY statement will always refer to the first, or
only, word of memory allocated for that operand.

—The Argument List (ARGLST) Assembler control statement which does not affect the
byte indicator and increments the location counter as follows:

—First the location counter is incremented by 1 after the control word is allocated, but
before the first operand is processed.

—Then the location counter is incremented after each operand is processed.

Thus a $ appearing as a label in an operand of an ARGLST statement will always refer to
the first, or only, word of memory allocated for that operand.

—The Call (CALL and CALLZ2) Assembler control statéments, which do not affect the byte
indicator, but increment the location counter at various times, as appropriate for the
breakdowns shown for these statements in Section 4.

—The Input/Output statements, which do not affect the byte indicator, but increment the
location counter after each operand is processed. Thus a $ appearing as a label in an
operand of an Input/Output statement will always refer to the word of memory contain-
ing that operand’s address syllable.

—The Commercial Processor nonbranch statements, which do not affect the byte indicator,
but increment the location counter as follows:

—First the location counter is incremented by 1 after the op code word is allocated, but
before the first operand is processed.

—Then the location counter is incremented after each operand is processed.

Thus a $ appearing as a label in an operand of a nonbranch Commercial Processor
instruction will always refer to the first, or only, word of memory allocated for that
operand.

e $AF — This label refers to the address mode requested by the user. $AF is 1 for SAF, and 2

for LAF or SLIC.
e $IV — Refers to the content of the interrupt vector for the priority level at which the

application is currently executing. A description of interrupt vectors and priority levels
can be found in the System Services Macro Calls manual.

e $RZERO — Refers to relocatable location zero of the program. $RZERO is an internal
location label.

o $SW — Refers to the current status of the external switches. The Assembler requests the
value of the external switches from the operating system; $SW is then defined to be this
16-bit value which corresponds to External Switch 0 through External Switch 15. The high
order bit is switch 0. $SW is an internal value label. Use of $SW with conditional
Assembler control statements provides a method of varying the assembly procedure
without altering the assembly language source program. (See the Commands manual for a
discussion of the Modify External Switches Command.)

CONSTANTS

Arithmetic and nonarithmetic values can be expressed in decimal, hexadecimal, character, or
binary form, all of which are converted by the Assembler to the appropriate machine code
format. Depending on the context, such values may be assigned as object code or be used by the
Assembler in the computation of operand locations or values.

The following types of constants are supported:
o String constants
e Arithmetic constants

ELEMENTS OF
ASSEMBLY LANGUAGE 2-4 CB07

STRING CONSTANTS

String constants can be expressed as ASCII, hexadecimal, or bit strings. Regardless of how
they are expressed, string constants have the following format:

A
[@]|3Z ¢] [e...T
B

[(m)]
Specifies an optional decimal integer in the range from 1 to 255, which represents the
replication factor (the string is concatenated to itself n-1 times).

il

Specifies whether the string is expressed in ASCII (A, default if none of these values is
specified) hexadecimal (Z), or bit (B).
Te...T

Identifies the character(s) in the string.

ASCIl STRING CONSTANTS

An ASCII string constant is written as the letter A (optionally) followed by a string of any of
the valid ASCII characters enclosed within apostrophes; to include an apostrophe, a double
apostrophe must be specified (i.e., ”is interpreted as’).

An ASCII string constant denotes the value formed by replacing all double apostrophes by a
single apostrophe and removing the delimiting apostrophes.

The value of an ASCII string constant cannot be more than 255 ASCII characters (each of
which is eight bits long).

The format of an ASCII string constant is as follows:

(] [A] [a...T

The following examples illustrate how to specify ASCII string constants:

1. ‘ASCII SAMPLEY’

2. A ASCII SAMPLE?2

3. (4)A ‘DATAA’

The characters enclosed within the apostrophes can be any character shown in Table B-4. The
examples shown above result in the following values being stored in memory, respectively:

1. ASCII SAMPLE1

2. ASCII SAMPLE2

3. DATAA DATAA DATAA DATAA

HEXADECIMAL STRING CONSTANTS

A hexadecimal string constant is written as the letter Z followed by a string of characters
representing any of the valid hexadecimal digits (i.e., 0 through 9 and A through F) enclosed
within apostrophes.!

A hexadecimal string constant denotes the value formed by replacing the characters
contained within the delimiting apostrophes with their binary values and removing the
delimiting apostrophes.

The value of a hexadecimal string constant cannot be more than 510 hexadecimal digits (each
of which is four bits long).

'The lowercase letters a through f are considered equivalent to the corresponding uppercase letters.

ELEMENTS OF
ASSEMBLY LANGUAGE 2-5 CBO07

The format of a hexadecimal string constant is as follows:
()] Zh...T
The following example illustrates how to specify a hexadecimal string constant:
7'5449544C452053414D504C4531’ ‘
This example translates into TITLEA SAMPLE] (see Appendix B).

BIT STRING CONSTANTS

A bit string constant is written as the letter B followed by a string of characters representing
the binary digits (i.e., 0 and 1) enclosed within apostrophes. A bit string constant denotes the
value formed by converting the 0 and 1 characters contained within the delimiting apostrophes
to 0 and 1 bits. The value of a bit string constant cannot be more than 2040 binary digits (each of
which is one bit long).

The format of a bit string constant is as follows:
[m)] B'[b...T
The following example illustrates how bit string constants are expressed:
B00011010
This bit string provides an 8-bit mask that can be used by an assembly language instruction.

TRUNCATION/PADDING OF STRING CONSTANTS

Various statements require a half-word (8-bit) value, whole-word (16-bit) value, or a value
that is an integral number of words in length. In order to satisfy these requirements, string
constants are automatically truncated or padded.

If truncation is required, low-order (i.e., the rightmost) bits are discarded, and the Assembler
issues a diagnostic message.)

If padding is required, low-order bits are appended to the value (i.e., string constants are
left-justified). ASCII string constants are padded with spaces; hexadecimal and bit strings are
padded with O’s.

Table 2-2 describes how the Assembler handles the various situations that require truncation
or padding. -

TABLE 2-2. RULES OF TRUNCATION/PADDING STRING CONSTANTS

If a string constant appears: It is converted to:

In a nontrivial arithmetic expression A whole-word value.

As the only term of the operand of a A half-word value.

short value immediate (SI) instruction

As the only term of an operand of a A value having a length that is an integral number of

DC Assembler control statement words; such string constants are never truncated.
As the operand of a TEXT Assembler A string having an initial bit offset which is a
control statement multiple of 4 (for hexadecimal string constants)

or a multiple of 8 (for ASCII string constants)
with slack bits inserted between successive
operands. A bit string constant can begin at any
bit position; slack bits never precede a bit string
operand.

In any context not listed above A whole-word value.

Notes:
1. Iftwo or more rules apply to the same string constant, the first takes precedence.
2. Refer to specific statements identified in this table for additional information.
3. Double integer instructions (AID, LDI, SDI, and SID) require string constants or
double precision fixed-point constants to fully define 32 bits (i.e., 2 words).

ELEMENTS OF
ASSEMBLY LANGUAGE 2-6 CBO07

ARITHMETIC CONSTANTS

An arithmetic constant specifies the value of a real number. An arithmetic constant is either _.
binary integer constant, a decimal integer constant, a fixed-point constant, or a floating-point
constant.

BINARY INTEGER CONSTANTS

Binary integer constants can be represented in decimal or hexadecimal notation. They may be
preceded by a plus(+) or minus(—) sign, indicating a positive or negative value respectively, and
must be within the range —32768 to +32767; if unsigned, a binary integer constant is assumed
to be positive.

[+] { n[n...]
— X‘hrh...T

M

Specifies whether the value is positive (+, the default value) or negative (—).
n(n...]

Specify decimal digits.
hlh...]

Specify hexadecimal digits

Binary Integer Constants in Decimal Notation

A binary integer constant expressed in decimal notation is written as a character string
composed of the decimal digits 0 through 9. The following examples illustrate valid binary
integer constants in decimal notation.

1. 31764
2. +4652
3. —6781

Binary Integer Constants in Hexadecimal Notation

A binary integer constant expressed in hexadecimal notation is written as the letter X
followed by a character string composed of the hexadecimal digits 0 through 9 and A through F
(the lowercase letters a through f are considered equivalent to the corresponding uppercase
letters) within apostrophes. The following examples illustrate binary integer constants in
hexadecimal notation.

1. +X2F
2. X7FFF
3. —X'8000

The decimal equivalent of these examples is +47, +32767 and —32768 respectively as can be
determined by reference to Table B-3.

Decimal Integer Constants

Decimal integer constants are represented by a letter from the set L,T,0,N,P,U followed by a
character string enclosed in apostrophes. In general, they may be preceded by a plus (+) or
minus (—) sign indicating a positive or negative value. The letter indicates whether the value is
internally represented as a packed or unpacked number and designates the internal sign
convention. The character string is composed of the digits 0 through 9. Decimal integer
constants begin at a word boundary and occupy an integral number of words, possibly including
trailing digits which may be unused.

ELEMENTS OF
ASSEMBLY LANGUAGE 2-7 CBO07

Unpacked Decimal Integers

The prefix letter designating the internal sign convention and the range of values allowed for
each convention of unpacked decimal integers are as follows:

Sign Convention Letter Range of Values

Leading separate L —-10%<n<+10%

Trailing separate T -10¥<n<+10%

Trailing overpunch 0] -10%<n<+103

Unsigned N O=n<10%

The storage formats for separate signed unpacked decimal integers are as follows:
Leading sign S|dl|d2|...|dp
l—8(p+1) bits—}
Trailing sign [dl| d2 dp| S

| +—8 (p+1) bits—| |
In these formats, dn is the ASCII representation of a decimal digit, S indicates the sign, and p
indicates the precision, which must be greater than zero and less than 32. The plus sign is
represented by the ASCII character +(hexadecimal 2B) the minus sign by the ASCII character
— (hexadecimal 2D).

The format of an unpacked decimal integer with the sign indicated by a trailing overpunch is
as follows:

ya

L4

dl|d2|...|S/ dp
fe——8p bits—]

The rightmost character in storage depends on the least significant digit of the integer and on
whether the integer is positive or negative as shown below.

Least Significant Digit

0 2 3 4 5 6 7 8 9
Positive|ASCII graphic ; B C D E F 6 H I
7

1
A

Hexadecimal code| /B 41 42 43 44 45 46 47 48 49
J

K L M N O P Q R

Negative|ASCII graphic
D 4A 4B 4C 4D 4E 4F 50 51 52

Hexadecimal code

The format of an unsigned unpacked decimal integer is as follows:

7 A
77

d1|d2|...|dp
l«—8p bits—

Packed Decimal Integers

The prefix letter and the range of values for signed and unsigned packed decimal integers are
as follows:

Prefix Letter Type Range
P Signed -10¥<n<+10%
U Unsigned 0<n<10*

The formats of packed decimal integers are as follows:

ELEMENTS OF
ASSEMBLY LANGUAGE 2-8 CBO07

dl| d2

dp

S | Format for packed signed decimal digits

44

k—4 (p+1) bits—s]

7T

dlfd2|.

dp

Format for packed unsigned decimal digits

|<—4 p b1:l.lts

Examples of Decimal Integers

The source language and the associated stored value for the various types of decimal integers
are given in the following examples:

FIXED-POINT CONSTANTS

Source language
P'125
—P'99436’

U125
U99436’

L1125
—199436°

T125
—T'99436’

0125
-0'99436’
020’
-020°

N125

Stored Value
(hexadecimal)
125B

9943 6D00

1250
9943 6000

2B31 3235
2D39 3934 3336

3132 352B
3939 3433 362D

3132 4530

3939 3433 4F30
327B

327D

3132 3530

A fixed-point constant is written as a decimal number with an associated scale factor and an
optional precision field. When the resultant value is stored in memory, a fixed-point constant
appears as a signed integer with negative values in two’s complement form. The scale factor (s)
gives the location of the implied binary point in the stored constant. A positive scale factor
means that the point is situated s bits to the left of the rightmost bit stored in memory. A
negative scale factor means that the point is situated s bits to the right of the rightmost bit
stored in memory. Thus, the true value of a fixed point binary number may be calculated by
multiplying its integer representation by 275,

The two formats for writing fixed-point constants are, as follows:

Format 1

Format 2

E

[+ |i[.[f]]} [+
B
-1 U] f -

+]] {1[[f]]} <
Blir,
- [i].f

-

s SINGLE PRECISION

+
] s\ SINGLE OR DOUBLE
| -1 / PRECISION

Specifies the sign of the constant. The + sign may be omitted.

ELEMENTS OF
ASSEMBLY LANGUAGE

CBO07

Specifies the integer part of the decimal number.

f
Specifies the fractional part of the decimal number.
r
Specifies the precision of the constant,0<r<31.
+|s

Specifies the value and sign of the scale factor.
Format 1 has an implied precision of 15 bits. The value of a fixed-point constant must fall
within the range
9-s<|R| <2~
where R is the value of the decimal number.
Fixed-point constants are stored as aligned signed two’s complement binary numbers; that is
they occupy one word if they are single precision and two words if they are double precision. The

assumed binary point is located s bits to the left of the rightmost bit if the scale factor is positive,
and —s bits to the right of the rightmost bit when the scale factor is negative.

The following examples illustrate how to specify fixed-point constants and show the
hexadecimal representations of the resultant values in memory.

Source Language Stored Value
2.5B4 0028
2.5B8 0280
65536B-15 0002
65536B-7 0200
—2.5B8 FD80
—65536B-15 FFFE
262144B(20,0) 0004 0000
262144B(20,—17) 0000 0800
262144B(15,—-7) 0800
—262144B(20,0) FFFC 0000
—262144B(20,—-7) FFFF F800

FLOATING-POINT CONSTANTS

The assembly language provides a convenient method with which you can write a decimal
number and have the Assembler convert it into floating-point format. (See Section 1 for a
description of floating-point data.)

There are three formats for floating-point constants:
Format 1

C+] (L[f
I } SHORT PRECISION

[i] £
Format 2
r+'{ﬂ{ﬂ]} [+]
t E
R UHE;

Format 3 ‘
F+'{ﬂ{ﬂ], [+
D
L -1 U] f

Specifies the sign of the constant. The + sign may be omitted if desired.

¢ SHORT PRECISION

¢ DOUBLE PRECISION

+

ELEMENTS OF :
ASSEMBLY LANGUAGE 2-10 CBO07

Specifies the integer part of a decimal number.

f

Specifies the fractional part of a decimal number.
E

Indicates that a short-precision floating-point representation is desired.
D

Indicates that a double-precision floating-point representation is desired.
[*]e
Expresses the power of 10 by which the coded decimal number should be multiplied to
produce the value wanted. The + sign may be omitted if desired.
Note:
If the decimal point is omitted, the number is assumed to be an integer.

The absolute value of a floating-point constant must be greater than or equal to 2-%°
(approximately 5.3976 X 10~™) and less than 2-%2 (approximately 7.2370 X 107).

Nomnalization

Floating-point constants are stored as normalized hexadecimal floating-point numbers with a
7-bit excess 64 power-of-16 characteristic and a 25-bit or 57-bit signed magnitude mantissa. A
normalized floating-point number has a nonzero high-order hexadecimal fraction digit. If one or
more high-order fraction digits are zero, the number is said to be unnormalized. Normalization
consists of shifting the fraction left until the high-order hexadecimal digit is nonzero and
reducing the characteristic by the number of hexadecimal digits shifted.

Examples

The following examples illustrate how to specify floating-point constants and show the
hexadecimal representations of the resultant values in memory. You can determine sign,
characteristic, and mantissa of the resulting floating-point numbers by dividing the
hexadecimal representations into parts according to the patterns described in Section 1.

Source Language Stored Value
-5 8080 0000
0.5E12 9474 6A52
0.5D12 9474 6A52 8800 0000
—-0.5D12 9574 6A52 8800 0000
6.665039063E—2 8011 1000
—6.665039063E—2 8111 1000

EXPRESSIONS

Expressions are combinations of symbolic names and constants used as operands within
Assembler control and assembly language (machine) instructions. Expressions can represent
locations (internal, external, or common), values, and addresses. Components of an expression
can be joined by various functions and arithmetic operators, as follows:

Arithmetic Operator ~ Meaning

+ Addition (or Unary +)
- Subtraction (or Unary —)
* Multiplication
/ Division
Boolean Function Meaning
AND Conjunction of argumentl and argument2
OR Inclusive disjunction of argumentl and argument2
XOR Exclusive disjunction of argumentl and argument2
NOT Negation of argumentl
ELEMENTS OF

ASSEMBLY LANGUAGE 2-11 CBO07

Shift Function Meaning

ALS Arithmetic left shift of argumentl
by argument2 bits

ARS Arithmetic right shift of argumentl
by argument2 bits

LLS Logical left shift of argumentl
by argument2 bits

LRS Logical right shift of argumentl

by argument2 bits

Arithmetic Function Meaning
MOD Remainder after division when argumentl
is divided by argument2

General Format of a Function:
function-name (argument 1, argument 2)

NOTE: The Boolean NOT function has only one argument.

When a value is operated upon by an arithmetic operator or function or by an arithmetic shift
function the value is considered to be a 16-bit signed (two’s complement) binary integer. When a
value is operated upon by a Boolean or logical shift function the value is considered to be a 16-bit
bit string. You must ensure that the results of a Boolean or shift operation will be meaningful
when subsequently interpreted as an integer value by the Assembler. The results of each

computation must be within the allowable range of integer dimensionless values. The range is
from -32768 to +32767.

The shift functions must satisfy the conditions specified below or else the function will not be
performed and the operation will be flagged as an error condition.

ALS O<argument2<15
ARS O<argument2 <15
LLS and LRS O<argument2<15

Argument2 in the arithmetic function MOD must not equal 0. If this condition is not satisfied,
an error condition is flagged and the function is performed as if argument?2 is equal 1.

The arguments in all arithmetic operations and functions must be binary integers.

To use a function within an expression you write the function name followed by its operands,
enclosed in parentheses and separated by a comma; e.g., AND (TAG1,TAG2).

Below are examples of functions:

VAL1 EQU X100’

VAL2 EQU X‘10F°

VAL3 EQU 3

LOC1 EQU § (at location 200 hexadecimal)
AND

DC <LOC1+AND(VAL1,VAL2)

resolves to address 300 hexadecimal
OR

DC <LOC1+0OR(VAL1,VAL2)

resolves to address 30F hexadecimal

- XOR

DC <LOC1+XOR(VAL1,VAL2)

resolves to address 20F hexadecimal
NOT

VAL4 EQU NOT(VAL2)

resolves to value FEF0 hexadecimal
ALS

VAL5 EQU ALS(VAL1,VAL3)

resolves to value 800 hexadecimal

ELEMENTS OF
ASSEMBLY LANGUAGE 2-12 CBO07

ARS
VAL6 EQU ARS(VAL1,VAL3)
resolves to value 20 hexadecimal

LLS
VAL7 EQU LLS(VAL2,12)
resolves to value FO00 hexadecimal

LRS
VAL8 EQU LRS(VAL2,VAL3)
resolves to value 21 hexadecimal

MOD

VAL9 EQU MOD(VAL2,VAL1)

resolves to value F hexadecimal
EVALUATING EXPRESSIONS

Within an expression, evaluation proceeds from left to right on a same level of inclusiveness
until a higher level is reached. The levels of hierarchy are:

1. All functions

2. Unary plus and minus

3. Multiplication and division

4. Addition and subtraction

Parentheses can be used to change the evaluation order. Each lesser inclusive set of
parentheses is a higher hierarchy level.

LOCATION AND VALUE EXPRESSIONS

The Assembler permits expressions to be used to specify values and locations. Internal and
external value expressions denote a computation to be performed by the Assembler and produce
integer dimensionless values.

A location expression denotes a computation of an address that can be internal to the
referencing program, in a separately assembled program (i.e., external to the referencing
program), or in a common memory block.

VALUE EXPRESSIONS

Value expressions are used to express computations to be done by the Assembler. There are
two types of value expressions:
o Internal value expressions — Refer only to values that are defined within the referencing
program,
e External value expressions — Refer to one value defined in an external program and may
refer to elements within the referencing program.

Internal Value Expressions

An internal value expression, which produces an integer dimensionless value, may be written
as a single factor or as a sum-of-products algebraic expression. The product portion consists of
two or more factors to be multiplied or divided as indicated by the * or / operators, preceding the
multiplier or divisor factor. In addition, each factor can be preceded by a unary plus (+) or minus

(=) operator.
Each factor of the expression must be one of the following items:

(int-val-expression)

binary integer

string constant

int-val-label

assembler function

Commercial Processor edit function

ELEMENTS OF
ASSEMBLY LANGUAGE 2-13 CB07

The sum portion of the algebraic expression consists of two terms to be added or subtracted as
indicated by the + or — operator preceding the addend or subtrahend term. In addition, each
term can be preceded by a unary plus (+) or minus (—) operator.

Each sum of an internal value expression must take one of the following forms:
binary-integer
string-constant
assembler-function
Commercial-Processor-edit-function
int-val-label
product (or quotient) of these terms
The difference between two internal locations.
The difference between two common locations within the same common block

int-val-exp ‘i

The following examples illustrate internal value expressions. In these examples, labels of the
form VALc are internal value labels, labels of the form LOCc are internal location labels, and
labels of the form COMMc are common location labels.

Example 1:
X'34F0’+(VAL8—(VALB/(X'E4™2)))

In this example, the expression is evaluated as follows:

1. The product of X*E4’*2 is calculated.

2. The value associated with VALB is divided by the product of step 1, above.

3. The quotient of step 2, above, is subtracted from the value associated with VALS.
4. The difference calculated in step 3, above, is added to X‘34F0’

Example 2:
B11110110’+(COMM1-COMM2)/2*(54+ VALF—-(LOCA—-LOCB))

The expression in example 2 is evaluated as follows:

The difference between COMM1 and COMM?2 is calculated.

The result of step 1, above, is divided by 2.

The sum of 54 and value associated with VALF is calculated.

The difference between .LOCA and LOCB is calculated.

The result of step 4, above, is subtracted from the result of step 3.
The quotient calculated in step 2 is multiplied by the result of step 5.

The bit string constant B'11110110’ is padded to occupy a full word and added to the result
of step 6.

Ne ok

External Value Expressions

An external value expression references one value defined in another program (declared by an
XVAL statement in the referencing program) and may reference additional elements defined in
the referencing program. An external value expression must take one of the following forms:

i binary-integer 1
ext-val-label string-constant
[+] ext-val-exp [+ } int-val-label .
(ext-val-exp) assembler-function ' '
Commercial-Processor-edit-function
i (int-val-exp)]

int-val-exp + {

ext-val-label
(ext-val-exp)

ELEMENTS OF
ASSEMBLY LANGUAGE 2-14 CB07

The following example illustrates external value expressions. In this example, VALZ is an
internal value and VALEX is an external value.

Example:
18 + VALEX + VALZ

1. The two internal values are added together, i.e., 18 + VALZ
2. The value 18 + VALZ is the offset associated with the external value, VALEX.

LOCATION EXPRESSIONS

Location expressions are used to express address computations to be done by the Assembler.
There are three types of location expressions:

¢ Internal location expressions — Refer only to locations that are defined within the
referencing program.

o External location expressions — Refer only to locations defined in an external program and
may refer to elements within the referencing program.

o Common location expressions — Refer only to locations within common blocks and may
refer to other elements within the referencing program.

Each of the above types of location expressions produces a memory address.
Internal Location Expressions

Internal location expressions, which produce a memory address based upon a computation
using only internal elements, must take one of the following forms:
binary integer
string constant
assembler function
Commercial-Processor-edit-function
int-val-label
(int-val-exp)

int-loc-label
int-val-exp + | (int-loc-exp)
$

int-loc-exp{+}

In the previous form, the $ is valid only if the Assembler’s location counter type attribute is
internal when the expression is processed.

The following example illustrates internal location expressions. In this example, labels of the
form LOCc are internal location labels.

Example:

(LOC3-LOCD)+X'30F2’+LOCA
The expression in this example is evaluated as follows:

1. The address associated with LOCD is subtracted from the address associated with LOC3
yielding an internal value.

2. X'30F2’ is added to the result of step 1 yielding another internal value.
3. The address associated with LOCA is added to the result of step 2 yielding an internal

location as the final result.
External Location Expressions

External location expressions, which produce a memory address based upon a computation
using external location labels and internal values, must take one of the following forms:

ELEMENTS OF
ASSEMBLY LANGUAGE 2-15 CBO7

binary integer
string constant

ext-loc-exp { = } { agsembler function
Commercial-Processor-edit-function
int-val-label
(int-val-exp)

ext-loc-label

int-val-exp + ‘(ext-loc-exp)

The following example illustrates an external location expression. In the example, labels of
the form XLOCc are external location labels and labels of the form VALc are internal value
labels.

Example:
((VAL1+VALA)+XLOC2)+X2A22’

This sample expression is evaluated as follows:

1. The values associated with VAL1 and VALA are added together.
2. The offset associated with XLOC2 is added to the result of step 1.
3. X2A22’ is added to the result of step 2.

Common Location Expressions

Common location expressions, which produce a memory address based upon a computation
using one or more locations within a common block and internal values, must take one the
following forms:

binary integer

string constant

assembler function
Commercial-Processor-edit-function
int-val-label

(int-val-exp)

common-loc-exp {+}

common-loc-label
int-val-exp + 3} (common-loc-exp)

$

In the previous form the $ is valid only if the Assembler’s location counter type attribute is
common when the expression is processed.

A memory address referring to a common block is represented by the name of the common
block and an optional offset from the beginning of that common block.

The following example illustrates a common location expression. In the example COMMc is a
common location label and labels of the form VALc are internal value labels.

Example:
((COMMA +42)—(COMMA +80))— VAL2)*2+X*1000’+ COMMB

The expression in this example is evaluated as follows:

1. The difference between COMMA +42 and COMMA +80 is calculated.
The value associated with VAL2 is subtracted from the result of step 1.
The result of step 2 is multiplied by 2.

X*1000’ is added to the result of the calculation in step 3.

The offset associated with COMMB is added to the result of step 4. This offset is then
associated with the name of the common block containing COMMB to complete the
evaluation of this expression. ‘

o W

ELEMENTS OF
ASSEMBLY LANGUAGE 216 CB07

ADDRESS EXPRESSIONS

An address expression specifies the addressing form used in an instruction. It contains special
character identifiers that are assembled into corresponding object code to control run-time
address development processes such as indirection and indexing.

The various forms of address expressions permitted by the Assembler are described in detail
in Section 5 (see “Addressing Techniques”).

REFERENCES

References are the use of symbolic names as labels in assembly statements to refer to locations
or values.

The employment of references is dependent upon two conditions:
1. The resolution of labels by the two-pass Assembler.?2
2. The position of the referencing statement within the body of the program.

A simple rule may always be applied to determine the validity of a reference: the reference to a
label is legitimate if during the second assembly pass, at the point in the program where the
referencing statement is positioned, the value of the label being referred to, has been defined.

References may be made either forward or backward. A forward reference is a reference to a
label that is defined after the referencing statement. A backward reference is a reference to a
label defined in a statement before the referencing statement.

Further, forward or backward references may be categorized as either simple or complex. A
simple reference is a forward or backward reference to a label that is directly defined by the
referenced statement. A complex reference is a forward or backward reference to a label defined
by an equate (EQU) statement that in turn makes at least one additional reference.

Example:
References
A DC 13
G DC 7

LDR $R1,A (Valid simple backward reference)
LDB $B1,X (Valid simple forward reference)

WEQU E
B EQU G
LDR $R2)E (Invalid complex forward reference (label E not defined at this

point))

LDR $R3,W (Invalid complex backward reference (label W can never be
defined in a two-pass assembly))

E EQU D

LDR $R4,E (Valid complex backward reference (label E has been
defined at this point))

LDR $R5,C (Valid complex forward reference (label C has been
defined in the first assembly pass))

C EQU B
D RESV 1
X DC 3

Restrictions that apply to references are as follows:
1. All forward references to a label defined by a complex equate statement are invalid.

2. A forward reference in an origin (ORG) common (COMM) or a local common (LCOMM)
statement is invalid.

3. A forward reference in the first operand of a reserve (RESV) or conditional assembly
control IFxx statement is invalid.

4. A complex reference involving one or more intermediary equate statements making a
forward reference is invalid.

®An assembly pass is a complete read of the source program.

ELEMENTS OF
ASSEMBLY LANGUAGE 2-17 CB07

Section 3

Programming
Considerations

Before writing an assembly language source program, you should take into consideration
both features and constraints inherent in the design of the Assembler and the system. This
section describes the considerations that should be made, as well as the various rules that must
be followed, when coding your source program. These include:

¢ Rules of formatting your source language statements

¢ Ordering of statements in an assembly language program

¢ Rules governing the calling of system services and external procedures
o Utility programs that supplement assembly language source programs

ASSEMBLY LANGUAGE SOURCE STATEMENT FORMATS

As mentioned in Section 2, the assembly language consists of Assembler controlling
statements and assembly language (operational) instructions. Assembly language source code
must be submitted to the Assembler in a recognizable format so that it can be interpreted
accurately. Therefore, when coding assembly language source statements, you must conform to
the following formatting conventions:

Column 1
A A A .
labelA opcode] Aoperand { ,operand ,operand[..] [Acomments]
linenumA A ; ;

linenum-labelA

The semicolon (;) indicates to the Assembler that the next operand is contained in the next
sequential source line (i.e., the continuation statement), which has the following format:

Column 1
|

[linenum][AJoperand :operand[f..J) [Acomments]

A

In addition to comments being included on individual assembly language source
statements, comment statements, which have the following format, can be included in the
source language program.

Column 1

£

/
linenum*
linenum/

The asterisk (*) indicates that the comment line is to be included in the listing wherever it is
included in the source language program. The slash (/) indicates that the Assembler is to cause
the printer is to skip to the top of the next page of the listing before printing the comment.
Printing of lines can be overridden by the inclusion of an NLST Assembler control statement in
the source code (see Section 4).

In the above formats, label is any user-specified tag, linenum is any user-specified line
number, linenum-label indicates a line number followed by a label with no intervening spaces,
opcode and operand indicate the required assembly language fields described in Sections 4
through 7, and blank (A) indicates that one or more blanks or horizontal tab characters must be

comments

PROGRAMMING CONSIDERATIONS 3-1 CBo07

coded. Any number of blanks and/or horizontal tab characters can follow a comma (,). A line
number is an unsigned decimal integer of any length. Line numbers are ignored by the
Assembler.

Except for the order in which information must be supplied, the source language format is a
free-form. However, it is suggested that you establish a fixed format for coding source
statements (e.g., always starting op codes in the eleventh position and operands in the twenty-
first) so that you can read your listing more easily.

ORDER OF STATEMENTS IN SOURCE PROGRAM

With the following exceptions, Assembler control statements can be entered in any order:
1. The TITLE statement must be the first statement in the source program..
2. The END statement must be the last sfatement in the source program.

CALLING SYSTEM SERVICES

" System services (e.g., the Task Manager) can be requested through the use of monitor service
calls and macro calls. For information concerning requests for system services see the System
Services Macro Calls manual.

CALLING EXTERNAL PROCEDURES

Procedures that are assembled separately from the invoking procedure are designated
external procedures.

The individual elements of data passed to an external procedure are known as arguments. The
external procedure interprets these arguments as parameters; to the external procedure, the
order of the parameters is the same as the order of the arguments passed from the invoking
procedure.

External procedures can be requested by coding request sequences such as the following:

LAB $B7,arglist
LNJ $B5,<entry

In the above sequence, ‘entry’ is the external label of the appropriate entry point of the called
(external) procedure, and ‘arglist’ is the argument list to be passed to the called (external)
procedure.

Alternatively, you could use a request such as the following:
CALL entry,argl,arg?, . . .

This request is similar to the preceding sequence except that the CALL Assembler control
statement automatically generates the argument list, loads its address into B7, and sets the
return address in B5. As a result, when the external procedure completes its work, control is
returned to the next sequential instruction or statement in the calling program.

ALTERNATE METHOD OF HANDLING
INPUT/OUTPUT AND FILE MANIPULATION

Input/output and file manipulation can be accomplished by writing Assembler routines or by
using monitor service requests. Details concerning monitor service requests are contained in
the System Service Macro Calls manual.

ASSEMBLER

The Assémbler processes source statements written in assembly language, translates the
statements into object code, and produces a listing of the source program together with its
associated assembly information.

The Assembler accepts arguments that allow you to control its operation in various ways.
Detailed information about the Assembler and its arguments can be found in the Program
Preparation manual.

PROGRAMMING CONSIDERATIONS 3-2 CBO07

CROSS-REFERENCE LISTING

When a source program is assembled, the Assembler produces a cross-reference listing, if the
proper option is specified in the command invoking the Assembler. This list itemizes all labels
and symbols in the source module and flags labels that are undefined or defined more than once.

SAF/LAF CONSIDERATIONS

For execution in a Mod 400 systems, assembly language programs may be in either the long
address form (LAF) or the short address form (SAF). In some circumstances it may be desirable
to create an assembly language program that can be executed in both SAF and LAF configura-
tions. For instructions on writing such a program, see Program Preparation manual.

REENTRANCY CONSIDERATIONS

A program is defined as reentrant, if a single copy of the code portion of a bound unit can be
simultaneously executed by several tasks, which may be in the same task group or different task
groups. GCOS 6 software is designed to facilitate the writing of reentrant programs. See
Program Preparation manual.

PROGRAMMING CONSIDERATIONS 3-3 CB07

Section 4

Assembler Control Statements

Every assembly language program must contain, in addition to the assembly language
instructions, a set of instructions that tells the Assembler about the program. These Assembler
control statements, most of which are not assembled into the object text, provide information to
the Assembler for:

¢ Controlling the assembly of the program

¢ Controlling the listing of assembly language instructions and Assembler control state-
ments

e Defining constants to be used by the program

e Defining main memory storage and/or work areas

¢ Defining symbols

e Linking programs

¢ Conditionalizing the assembly of various parts of a program

Assembler control statements must be coded as described in Section 3 (see “Assembly
Language Source Statement Formats™), except that some explicitly prohibit the use of labels.
For that reason, each Assembler control statement described in this section identifies labels

where they are required or permitted; when not shown under “Source Language Format” labels
are not allow

ASSEMBLY-CONTROLLING STATEMENTS

Assembly-controlling statements tell the Assembler where the beginning and end of each
program are; they also set the Assembler’s location counter.

The following statements are the assembly-controlling subset of Assembler control state-
ments:

¢ BORG
« END
e ORG
e TITLE

LIST-CONTROLLING STATEMENTS

List-controlling statements control the listing of an assembly language source program via a
printer, disk, or user’s terminal. The following statements are available to provide this function:
function:

e CLST

e LIST

o NLST
DATA-DEFINING STATEMENTS

Data-defining statements are required to define data used in the program. The Assembler
assigns this data to memory locations at the exact point at which they are defined. The following
statements are the data-defining subset of the Assembler control statements:

ARGLST
BTEXT
DC
PTRAY
TEXT

ASSEMBLER CONTROL STATEMENTS 4-1 CB07

STORAGE-ALLOCATION STATEMENTS

Storage-allocation statements direct the Assembler to make areas of memory available for
use as storage and/or work space. This subset of the Assembler control statements consists of the
following statements:

+ COMM
¢« LCOMM
e RESV

SYMBOL-DEFINING STATEMENTS

Symbol-defining statements assign specific meanings to given symbolic names; they also may
identify symbolic names defined outside the program but used within it. The assembler control
statements provided to support the symbol-defining function are:

« EQU
» XLOC
e XVAL

PROGRAM-LINKING STATEMENTS

Large programs are often written as several separately assembled or compiled smaller
programs. At execution time, it is necessary for these separately assembled or compiled prog-
rams to establish communication links. The linking processes (see the Program Execution and
Checkout manual) use information from the following program-linking statements to assign
final addresses and/or data values to be used by the separately assembled or compiled proce-
dures (i.e., programs) common to a single bound unit:

o CALL
o CALL2
¢ CTRL
¢ EDEF
o XDEF

CONDITIONAL ASSEMBLY-CONTROL STATEMENTS

Conditional assembly-control statements allow a comprehensive source program to be writ-
ten to cover many situations. Then, during assembly, they can direct the Assembler to assemble
or inhibit assembly of particular assembly language instructions (and/or groups of assembly
language instructions) when specific conditions occur. The following statements provide the
Assembler with information for conditional assembly:

o FAIL
o IF
¢ NULL

OPERATION CODE-DEFINING STATEMENT
o DEFGEN

ASSEMBLER CONTROL STATEMENTS

The remainder of this section lists and describes the Assembler control statements in -
alphabetical order. The descriptions include the expanded name of the statement, its source
language format (including the label field, where it is permitted or required), a detailed
description of what the statement does, and a description of each of its operands.

Information about the various symbolic names identified in the statements is contained in

. Section 2.

ASSEMBLER CONTROL STATEMENTS 4-2 CB07

ARGLST

ARGLST

Instruction:
Create argument list

Source Language Format:
[label]AARGLSTAargl [,arg2]...

Description:
Creates a word containing an arbitrary constant whose bits 9 through 15 specify the value
(M*$AF+1), where M is the number of arguments. This arbitrary constant is followed by the
relocatable address of each argument in the statement. The relocatable addresses are the same
as though the following DC statement was coded after the arbitrary constant.

[label]ADCA <argument ,[,<argument ,]...
If the Assembler is invoked with the SLIC argument, this instruction will also identify the
resulting object text as being an argument list. The SLIC (SAF/LAF Independent Code) argu-
ment must be used if compilation units produced by the Assembler is to run in both SAF and
LAF configurations.
The maximum number of arguments that can be specified in an ARGLST instruction is 31. The
ARGLST instruction facilitates the writing of reentrant programs by allowing the arguments to
be separated (i.e., placed in a different segmented address space) from the calling statement.
(See the Program Preparation manual for instructions on writing reentrant programs.)

ASSEMBLER CONTROL STATEMENTS 4-3 CBO07

BORG

BORG

Instruction:

Byte Origin

Source Language Format:

common-location-expression
[label]AORGA { }
internal-location-expression

Description:

Sets the byte indicator to the odd (i.e., right) byte and assigns the attributes and value of the
operand to the location counter (i.e., if the operand is a common location expression, the location
counter type attribute is set to common. If the operand is an internal location expression, the
location counter type attribute is internal). The initial value of the Assembler’s location counter
is internal location 0. The initial value of the Assembler’s byte indicator is the even (i.e., left)
byte.

The label field and operands have the following meanings:

label
If specified, the label will be assigned the value contained in the location counter before the
new value is assigned to the location counter.

common-location-expression
Sets the location counter type attribute to common and sets the location counter value to the
specified offset in the common block. Temporary labels cannot be defined while the location
counter has the common attribute.

internal-location-expression
Sets the location counter type attribute to internal and sets the location counter to the
specified value of the location expression (see Section 2 for a description of common location
and internal location expressions). Regardless of the type attribute of the expression
specified in the operand, it must not contain a forward reference.

ASSEMBLER CONTROL STATEMENTS 4-4 CB07

BTEXT

BTEXT
Instruction:
Allocate space for text

Source Language Format:

[label]A BTEXT A {string-constant } [{,string-constant } [,]]

Commercial-Processor- , Commercial-Processor-

e edit-function edit-function
Description:

Causes the Assembler to allocate the binary representation of the successive string constants,
and/or edit functions concatenated into the fewest number of bytes (i.e., packed). The Assembler
inserts “slack bits” (0’s) between successive operands as necessary. Each ASCII string constant
or edit function begins at a bit position that is a multiple of 8; each hexadecimal string constant
begins at a bit position that is a multiple of 4; bit string constants have no slack bits inserted.

If the last byte occupied by the concatenated string is not exactly full, the remaining bits are
zero-filled. The first byte of the concatenated string is allocated at the object memory byte
location indicated by the Assembler’s location counter and byte indicator. Following processing
of the Byte Text statement, the values of the location counter and byte indicator indicate the
object memory byte location of the first byte following the concatenated string allocated by the
BTEXT statement.

NOTE: When the byte indicator indicates the odd (right) byte, BTEXT is the only memory-
allocating assembly language statement allowed.

ASSEMBLER CONTROL STATEMENTS 4-5 CBO07

CALL

CALL

Instruction:
Call external procedure

Source Language Format:
[labelJACALLA[obj-mod-name.]entry[,argl [,...,arg31]]

Description:

Initiates a transfer of control to a specified external subroutine and causes that subroutine to be
linked with the calling procedure.

The operands have the following meanings:
obj-mod-name.

If specified, it is the object text name of the external procedure; otherwise, it is assumed to
have the same name as the entry point (entry).

entry

Identifies the entry point in the procedure to which control is transferred.
argl,...,arg31

If specified, provides addresses of arguments to be passed. The maximum number of arguments
is 31.

If the argument list is not included, the CALL statement is broken down by the Assembler as
follows:

CTRL LINK obj-mod-name
XLOC entry

LAB $B7,= 1

LNJ $B5,<entry

If the argument list is included, the CALL statement is broken down as follows:

CTRL LINK obj-mod-name
XLOC entry

LAB $B7,$+$AF+3

LNJ $B5,<entry

B >$+n*$AF+1

DC <argl[,<arg?2]...

The entry name in the XLOC statement shown in the breakdowns is not entered into the
Assembler’s symbol table, and ceases to exist after the LNdJ instruction is executed. The term n,
shown in the B-instruction in the second breakdown is a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>