

(

SERIES 60 (LEVEL 6)

GCOS 6 ASSEMBLY LANGUAGE
REFERENCE

SUBJECT

Detailed description of Series 60 (Level 6) GCOS 6 Assembly Language
including:

• Central Processor Unit (CPU) Instructions

• Scientific Instruction Processor (SIP) Instructions

• Commercial Processor Instructions I

• Assembler Control Statements ,
• Macro Control Statements and Macro Calls

SPECIAL INSTRUCTIONS

This manual supersedes CB07, Rev. 0 dated January 1978. Change bars
indicate new and changed information; asterisks denote deletions.

SOFrWARESUPPORTED

This publication supports Release 0110 of the Series 60 (Level 6) GeOS 6 MOD
400 Operating Systems; see the Manual Directory of the latest GCOS 6 MOD
400 System Concepts manual (Order No. CB20) for information as to later
releases supported by this manual.

ORDER NUMBER

CB07, Rev. 1 June 1978

Honeywell

I

Preface

This manual describes the GCOS 6 assembly language, a machine-oriented
language for writing programs to execute on the Series 60 (Level 6) models. In
this manual, unless stated otherwise, the term GCOS refers to the GCOS 6
software; the term. Level 6 refers to the Series 60 (Level 6) on which the
described software is executed.

Where appropriate, the actions performed by the GCOS Assembler as it
processes elements of the assembly language are also discussed. In this manual,
the term assembly language includes both Assembler control statements and
assembly language instructions.

Section 1 describes the data prepresentation and the hardware registers.
Section 2 describes the basic elements of the GCOS assembly language, and
Section 3 describes the considerations the programmer must make when
writing a source program. Sections 4 and 5 describe, in detail, the Assembler
control statements and assembly language instructions, respectively. Section 6
and Section 7 consist of detailed descriptions of the commercial instructions and
the scientific instructions. The macro facility is described in Section 8. Appendix
A provides programmer reference information. Appendix B describes the
hexadecimal numbering system. Appendix C contains a sample assembly
language program. Appendix D describes how to debug an assembly language
program. Appendix E lists the flags that may be issued by the Assembler.
Appendix F lists the error flags that may be issued by the Macro Preprocessor.
Appendix G contains a list of reserved symbolic names. Appendix H provides
reference information for Commercial Processor operation. Appendix J and
Appendix K provide reference information for queue instructions and stack
instructions, respectively.

Descriptions and examples within this manual use the following conventions:

{} Indicates that one of the options enclosed in the braces must be
selected.

[] Indicates that one or none of the enclosed options need be selected; if one
of the options is underlined, it is selected as the default if you do not
select any of the options enclosed in the brackets.

Indicates either a logical sequence (e.g., A,B ...) or that the
immediately preceding type of value can be repeated (e.g., a ...).

a Indicates that the character must be replaced by any valid ASCII
character.

n Indicates that the character must be replaced by any valid numeric
(decimal) digit.

d Indicates that the character must be replaced with a binary digit.

h Indicates that the character must be replaced with a hexadecimal digit
(0 through 9, A throughF; the letters a through f are considered
equivalent to the corresponding uppercase letters).

c Indicates that the character must be replaced with a, n, or h, above.

~ Indicates that one or more spaces or horizontal tab characters are
required.

© 1978, Honeywell Information Systems Inc. File No.: 1S23 CB07

\
\~

f~- \

~

(

Uppercase letters, numbers, and any of the following special characters must
be coded exactly as shown (lowercase letters that represent keywords,
however, are considered equivalent to the corresponding uppercase letters):

() $
<
> /

*
+

Users of the Writable Control Store feature should refer to the Writable Control
Store User's Guide for information about the WCS instructions and the WCS
Assembler, and to the GeOS 6 MOD 400 Operator's Guide for command infor­
mation to invoke the WCS Loader.

iii CB07

MANUAL DIRECTORY

The following publications comprise the GCOS 6 manual set. The Manual
Directory in the latest GCOS 6 MOD 400 Systems Concepts manual (Order No.
CB20) lists the current revision number and addenda (if any) for each manual in
the set.

Order
No.

-CBOI
-CB02
-CB03

"'-CB04
__ ' CB05
_CB06

-GB07
-CB08

CB09
CBI0

-CB20
~~l)

-CB22
-CB23

/i-----"] _QIJ2A,
CB25
CB26

~CB27

CB28
CB30
CB31
CB32

-CB33
CB34
CB35
CB36
CB37
CB38
CB39
CB40
CB41
CB42
CB43

Manual Title

GCOS 6 Program Preparation
GCOS 6 Commands
GCOS 6 Communications Processing
GCOS 6 SortlMerge
GCOS 6 Data File Organizations and Formats
GCOS 6 System Messages
GCOS 6 Assembly Language Reference
GCOS 6 System Service Macro Calls
GCOS 6 RPG Reference
GCOS 6 Intermediate COBOL Reference
GCOS 6 MOD 400 System Concepts ./
GCOS 6 MOD 400 Program Execution and Checkout
GCOS 6 MOD 400 Programmer's Guide
GCOS 6 MOD 400 System Building
GCOS 6 MOD 400 Operator's Guide
GCOS 6 MOD 400 FORTRAN Reference
GCOS 6 MOD 400 Entry-Level COBOL Reference
GCOS 6 MOD 400 Programmer's Pocket Guide
GCOS 6 MOD 400 Master Index
Remote Batch Facility User's Guide
Data Entry Facility User's Guide
Data Entry Facility Operator's Quick Reference Guide
Level 61Level 6 File Transmission Facility User's Guide
Level 61Level62 File Transmission Facility User's Guide
Level 61Level 64 (Native) File Transmission Facility User's Guide
Level61Level66 File Transmission Facility User's Guide
Level61Series 20012000 File Transmission Facility User's Guide
Level61BSC 278013780 File Transmission Facility User's Guide
Level 61Level 64 (Emulator) File TransmissionFacility User's Guide
IBM 278013780 Workstation 'Facility User's Guide
HASP Workstation Facility User's Guide
Level 66 Host Resident Facility User's'Gu£de
Terminal Concentration Facility User's Guide

In addition, the following documents provide general hardware information:

Order
No.

AS22
AT04
AT97
FQ41

Manual Title

Honeywell Level 6 Minicomputer Handbook
Level 6 System and Peripherals Operation Manual
MLCP Programmer's Reference Manual
Writable Control Store User's Guide

iv CB07

Section 1. Introduction
Assembly Languages .. 1-1
Level 6 Data Representation 1-1

Signed Integer Data 1-2
Unsigned Data 1-3
Floating-Point Data '" .. 1-4

Hardware Registers " 1-4
Address Registers 1-4

Base Address (Bn) Registers 1-4
Program Counter (P-Register) 1-4
Remote Descriptor Base Register

(RDBR) 1-4
Stack Register (T) 1-5

General (Rn) Registers. 1-5
Mode (M) Registers 1-5
System Status (S) Register 1-5
Indicator (I) Register 1-7
Scientific Information Processor (SIP)

Registers 1-7
Scientific Accumulator (Sn)

Registers 1-7
Scientific Indicator (SI) Register 1-8
SIP Mode (M4) Register 1-8

SIP Trap Mask (M5) Register 1-9
Software Simulation of the Scientific

Instruction Processor , 1-9
Commercial Processor Registers 1-9

Commercial Processor Mode
Register " 1-9

Commercial Processor Indicator
Register 1-10

Software Simulation of the Commercial
Processor . 1-10

Initialization and Modification of
M -Registers 1-11

Section 2. Elements of Assembly
Language

Mnemonic Codes. .. 2-1
Symbolic Names 2-1

Identifiers 2-2
Labels , .. , 2-2

User-Defined Labels 2-2
Reserved Labels 2-3

Constants 2-4
String Constants 2-5

ASCII String Constants 2-5 .
Hexadecimal String Constants2-5
Bit String Constants 2-6

Truncation/Padding of String Constants. 2-6
Arithmetic Constants 2-7

Binary Integer Constants 2-7
Binary Integer Constants in

Decimal Notation 2-7

v

Contents

Binary Integer Constants in
Hexadecimal Notation 2-7

Decimal Integer Constants 2-7
Unpacked Decimal Integers 2-8
Packed Decimal Integers 2-8
Examples of Decimal Integers 2-9

Fixed-Point Constants , .. , .. 2-9
Floating-Point Constants 2-10

Normalization 2-11
Expressions 2-11

Evaluating Expressions 2-13
Location and Value Expressions 2-13

Value Expressions 2-13
Internal Value Expressions 2-13
External Value Expressions '" .2-14

Location Expressions 2-15
Internal Location Expressions 2-15
External Location Expressions 2-15
Common Location Expressions 2-16

Ap.dress Expressions 2-17
References 2-17

Section 3. Programming
Considerations

Assembly Language Source
Statement Formats. 3-1

Order of Statements
in Source Program 3-2

Calling System Services " .. 3-2
Calling External Procedures 3-2
Alternate Method of Handling

Input/Output and
File Manipulation. 3-2

Assembler .. 3-2
Cross-Reference Listing 3-3

SAFILAF Considerations. 3-3
Reentrancy Considerations 3-3

Section 4. Assembler Control
Statements

Assembly-Controlling Statements 4-1
List-Controlling Statements 4-1
Data-Defining Statements 4-1
Storage-Allocation Statements 4-2
Symbol-Defining Statements 4-2
Program-Linking Statements 4-2
Conditional Assembly Control Statements . 4-2
Operation Code-Defining Statement .. / ... 4-2
Assembler Control Statements 4-2

ARGLST -r • ••••••••••••••••••• 4-3
BORG 4-4
BTEXT : 4-5
CALL 4-6

CB07

CALL2 4-7
CLST 4-8
COMM ., 4-9
CTRL 4-10
DC 4-11
DEFGEN 4-12
EDEF 4-13
END 4-14
EQU 4-15
FAIL 4-16
IF 4-17
LCOMM 4-18
LIST 4-19
.:1LIST 4-19
NLST 4-20
NULL 4-21
ORG 4-22
PrRAY 4-23
RESV 4-24
TEXT 4-25
TITLE 4-26
XDEF 4-27
XLOC :..................... 4-28
XVAL 4-29

Section 5. Assembly Language
Instructions

Arithmetic Operations 5-1
Boolean Operations 5-2
Branch Operations .. 5-2
Compare Operations 5-2
Control Operations 5-2
Input/Output Operations 5-2
Load Operations 5-2
Memory Management Operations 5-3
Modify Operations 5-3
Move Operations. .. 5-3
Queue Operations. .. 5-3
Shift Operations . 5-3
Stack Operations 5-3
Store Operations. .. 5-3
Swap Operations " 5-3
Assembly Language Instruction Types 5-4

Branch-on-Indicator (BI) Instructions ... 5-4
Branch-on-Register (BR) Instructions ... 5-4
Double Operand (DO) Instructions 5-4
Generic (GE) Instructions 5-5
Input/Output (10) Instructions 5-5
Shift (SHS and SHL) Instructions 5-5
Short-Value-Immediate (SI)

Instructions .. 5-6
Single Operand (SO) Instructions 5-6

Addressing Techniques 5-7
Register Addressing 5-7
Immediate Memory Addressing (IMA) .. 5-8

Direct Immediate Memory
Addressing 5-8

Indirect Immediate Memory
Addressing 5-9

Indexed Direct Immediate Memory
Addressing 5-9

Indexed Indirect Immediate Memory
Addressing 5-10

vi

Immediate Operand Addressing 5-10
P-Relative Addressing 5-12

Direct P-Relative Addressing 5-12
Indirect P-Relative Addressing 5-13

B-Relative Addressing ',' 5-13
Direct B-Relative Addressing 5-14)
Indirect B-Relative Addressing '" 5-15
Indexed Direct B-Relative

Addressing 5-15
Indexed Indirect B-Relative

Addressing 5-16 \
Direct B-Relative Plus Displacement

Addressing 5-16
Indirect B-Relative Plus

Displacement Addressing 5-18
Direct B6-Relative Plus Local

Common Block Plus Displacement
Addressing 5-18

Indirect B6-Relative Plus Local
Common Block Plus Displacement
Addressing 5-19

B-Relative Push Addressing 5-20
B-Relative Pop Addressing 5-21
Indexed B-Relative Push

Addressing 5-21
Indexed B-Relative Pop Addressing ... 5-22

Short Displacement Addressing 5-23
Specialized Address Expression 5-24
Interrupt Vector Addressing 5-24
Indexed Addressing Considerations 5-25

Establishing a Multiplication
Factor 5-26

AID, SID, LDI, and SDI
Instructions 5-26

B-Register Instructions in LAF
Configuration 5-26

Scientific Instructions 5-26
Bit/Byte Manipulating Instructions. . . 5-26

Assembly Language Instructions 5-27
ACQ 5-27
ADD 5-28
ADV) 5-29
AID 5-30
AND 5-31
ANH 5-32
ASD 5-33
B 5-34
BAG 5-35
BAGE ; 5-36
BAL 5-37
BALE 5-38
BBF 5-39
BBT 5-40
BCF 5-41
BCT 5-42

, 543 BDEC -
BE 5-44
BEVN 5-45
BEZ 5-46
BG 5-47
BGE 5-48
BGEZ 5-49

CB07

BGZ 5-50
BIN'C 5-51
BIOF 5-52
BlOT 5-53
BL 5-54
BLE 5-55
BLEZ 5-56
BLZ ; 5-57
BNE 5-58
BNEZ 5-59
BNOV 5-60
BODD 5-61
BOV 5-62
BRK 5-63
BSE 5-64
BSU 5-65
CAD 5-66
CL 5-67
CLH 5-68
CMB , 5-69
CMH " 5-70
CMN 5-71
CMR 5-72
CMV 5-73
CMZ 5-74
CNFG 5-75
CPL 5-76
DAL 5-77
DAR 5-78
DCL 5-79
DCR 5-80
DEC 5-81

(
DIY 5-82
DOL 5-83
DOR 5-84
DQA 5-85
DQH 5-86
ENT ·· ··············5-87
HLT··································5-88
INC " ; ... 5-89
10 5-90
10H 5-92
IOLD 5-93
JMP··································5-94
LAB 5-95
LB 5-96
LBC 5-97
LBF 5-98
LBS 5-99
LBT 5-100
LDB 5-101
LDH 5-102
LDI 5-103
LDR 5-104
LDT 5-105
LDV 5-106
LEV 5-107
LLH 5-109
LNJ 5-110
LRDB 5-111
MCL 5-112
MLV 5-113
MMM 5-114
MTM 5-115

vii

MUL 5-116
NEG 5-117
NOP 5-118
OR 5-119
ORH- 5-120
QOH ; 5-121
QOT 5-122
RLQ 5-123
RSTR 5-124
RTCF 5-125
RTCN 5-126
RTT 5-127
SAL 5-128
SAR 5-129
SAVE 5-130
SCL 5-131
SCR 5-132
SDI 5-133
SID 5-134
SOL 5-135
SOR 5-136
8RDB 5-137
SRM 5-138
8TB 5-139
STH 5-140
STM 5-141
STR 5-142
STS 5-143
STT 5-144
SUB 5-145
SWB 5-146
SWR 5-147
VLD 5-148
WDTF 5-150
WDTN 5-151
XOH 5-152
XOR " 5-153

Section 6. Commercial Instructions
Basic Features. .. 6-1
Commercial Processor (CP)

Programming Considerations 6-1
Commercial Instruction Categories 6-2

Decimal Arithmetic Instructions. 6-2
Radix and Mode Conversion

Instructions 6-2
Shift Instructions. .. 6-2
Edit Instructions 6-2
Character String Instructions 6-2
Branch Instructions 6-2

Commercial Processor Instruction
Format 6-3

Commercial Processor Data
Descriptors "6-3

Alphanumeric Data Descriptor 6-3
Packed-Decimal Data Descriptor 6-4
Unpacked-Decimal Data Descriptor 6-4
Binary Data Descriptor 6-5

Addressing Techniques for Commercial
Processor Instructions 6-5

P-Relative Addressing 6-5
Direct P-Relative Addressing " 6-6

Indexed Direct P-Relative
Addressing 6-7

CB07

Indirect P-Relative Addressing 6-8
Commercial Processor B-Relative

Addressing ... -...................... 6-9
Commercial Processor Direct B-Relative

Plus Displacement Addressing 6-9
Commercial Processor Indirect B-Relative

Plus Displacement Addressing 6-9
Commercial Processor Direct B-Relative

Plus Displacement With Indexing
Addressing 6-10

Commercial Processor Indirect B-Relative
Plus Displacement With Indexing
Addressing 6-10

Immediate Operand (IMO) Addressing., 6-11
Micro Edit Functions 6-12

Edit Insertion Table 6-13
Edit Flags 6-14
Change Edit Insertion Table (CHT)

Micro Operation 6-14
End Floating Suppression (ENF) Micro

Operation 6-15
Ignore Source Character (IGN) Micro

Operation 6-16
Insert Asterisk on Suppress (lNSA)

Micro Operation 6-16
Insert Blank on Suppress (INSB) Micro

Operation 6-16
Insert Multiple Characters (lNSM)

Micro Operation 6-16
Insert Character on Negative (lNSN)

Micro Operation 6-16
Insert Character on Positive (lNSP)

Micro Operation 6-17
Move with Float Currency Symbol

Insertion (MFLC) Micro
Operation 6-17

Move with Float Sign Insertion (MFLS)
Micro Operation 6-17

Move Source Character (MVC) Micro
Operation 6-18

Move with Zero Suppression and
Asterisk Replacement (MVZA)
Micro Operation 6-18

Move with Zero Suppression and Blank
Replacement (MVZB) Micro
Operation 6-18

Set Edit Flags (SEF) Micro Operation ... 6-19
Commercial Processor Traps 6-20

Trap 23 Unavailable Resource (UR) 6-21
Trap 24 Bus or Memory Error (BE) 6-21
Trap 25 Divide by Zero (DZ) 6-21
Trap 26 megal Specification (IS) 6-22
Trap 27 megal Character (Ie) 6-22
Trap 28 Truncation (TR) 6-22
Trap 29 Overflow (OV) 6-22
Trap 30 Quality Logic Test (QLT)

Error (QE) 6-22
Execution Details for Commercial

Instructions 6-22
Detailed Descriptions of Commercial

Instructions 6-23
ACM 6~24
ALR 6-25
AME 6-26
CBD 6-27

viii

CBE 6-28
CBG , 6-29
CBGE 6-30
CBL··································6-31
CBLE 6-32
CBNE 6-33
CBNOV 6-34
CBNSF·······························6_35
CBNTR····························· .. 6_36
CBOV 6-37
CBSF 6-38
CBTR 6-39
CDB 6-40
CSNCB 6-41
CSYNC 6-42
DAD 6-43
DCM 6-44
DDV 6-45
DLS 6-46
DMC 6-47
DME 6-48
DML 6-52
DRS 6-53
DSB 6-54
DSH 6-55
MAT 6-57
SRCH 6-58
VRFY '6-62

Section 7. Scientific Instructions
Scientific Traps .. 7-1

Scientific Instruction Processor (SIP)
Programming Considerations 7-2

Detailed Descriptions of Scientific
Instructions 7-2

SAD 7-2
SBE 7-4
SBEU 7-5
SBEZ : 7-6
SBG 7-7
SBGE 7-8
SBGEZ 7-9
SBGZ 7-10
SBL , ... 7-11
SBLE 7-12
SBLEZ 7-13
SBLZ 7-14
SBNE 7-15
SBNEU 7-16
SBNEZ 7-17
SBNPE 7-18
SBNSE 7-19
SBPE 7-20
SBSE 7-21
SCM 7-22
SCZD 7-23
SCZQ 7-24
SDV : ... 7-25
SLD 7-26
SML 7-27
SNGD 7-28
SNGQ 7-29
SSB 7-30
SST 7-31
SSW•.................... 7-32

CB07

(

Section 8. Macro Facility
Order of Statements within a Source

Program. .. 8-1
Macro Routines .. 8-1

Creating a Macro Routine. 8-2
MAC Macro Control Statement,

without Parameters 8-2
Contents of Macro Routine. 8-2
ENDM Macro Control Statement. 8-3

Specializing a Macro Routine by
Parameter Substitution 8-3

MAC Macro Control Statement,
Including Parameters 8-4

Protection Operators. 8-5
Situating Macro Routines 8-6

LIBM Macro Control Statement 8-7
INCLUDE Macro Control Statement . 8-9

Macro Calls 8-11
Nested Macro Call 8-12
Recursive Macro Calls 8-13

Controlling Expansions 8-13
Macro Variables. .. 8-13

Macro Substitution 8-14
SETA Macro Control Statement 8-15
SETN Macro Control Statement 8-16

Conditional Macro Control Statements .. 8-17
FAIL Macro Control Statement 8-17
GOTO Macro Control Statement 8-18
IF Macro Control Statement 8-19
NULL Macro Control Statement 8-22

Macro Functions 8-23
Format of Macro Functions 8-23
Length Attribute Macro Function 8-23

Type Attribute Macro Function ... :....... 8-24
Hexadecimal Conversion Macro

Function 8-25
IndexMacroFunction 8-26
Search Macro Function. 8-27
Substring Macro Function 8-28
Translate Macro Function 8-29
Vector Orientation Macro Function 8-30
Verify Macro Function 8-31

Example Illustrating Macro Facility 8-31
Programming Considerations 8-34

Initialized Values of Macro Variables 8-34
Designating Numeric Values 8-35
Designating Alphanumeric Values 8-35

Alphanumeric Value Conventions 8-36
Balanced Apostrophes. 8-36
Balanced Parentheses 8-36
Commas and Semicolons 8-37
Spaces and Horizontal Tabs 8-37

Appendix A. Programmer's Reference
Information

Sununary of Hardware Registers A-I
Assembly Language Internal Formats by

Type A-4
Hexadecimal Representation of

Instructions A-6
ValidAddressExpressions A-10

ix

Appendix B. Hexadecimal Numbering
System

Decimal-to-Hexadecimal Conversion B-2
Hexadecimal-to-Decimal Conversion B-2
Hexadecimal-to-ASCII Conversion B-4
Hexadecimal Addition B-5
Hexadecimal Subtraction B-5
Hexadecimal Multiplication B-6
Hexadecimal Division B-6

Appendix C. Sample Assembly
Language Program

Appendix D. Debugging Assembly
Language Programs

Debug D-l
D\BllpEdit D-1
Reading and Interpreting Memory

Dumps D-1

Appendix E. Notification Flags Issued
by Assembler

Source Code Error Flags E-1
Statement Reference Flags E-l

Appendix F. Source Code Error
Notification by Macro
Preprocessor

Appendix G. Reserved Symbolic
Names

Appendix H. Programmer's Reference
Information for Commerci8I
Proc~ssor Operation

Internal Formats of Commercial
Processor Instructions H-1

Internal Format of Data Descriptors H-4
Decimal Data Descriptors H-4

Unpacked Decimals H-4
Packed Decimals H-5

Alphanumeric Data Descriptor H-6
Binary Data Descriptor H-6
Address Syllable H-7

Appendix J. Programmer's Reference
Information for Queue
Instructions

Appendix K. Programmer's Reference
Information for Stack
Instructions

Stack Frame K-1
Stack Instruction Formats K-2

Load Stack Address Register (LDT) K-2
Store Stack Address Register (STT) K-2
Acquire Stack Frame (ACQ) K-2
Relinquish Stack Frame (RLQ) K-2

CB07

1-1
1-2
5-1

5-2

5-3

5-4

5-5

5-6
5-7
5-8
5-9
5-10
5-11

5-12

5-13

5-14

5-15

5-16

5-17
5-18
5-19

5-20

5-21
5-22
5-23
5-24
6-1

6-2

6-3

6-4

6-5

6-6

6-7

6-8

Figures

Assembler Functions '" 1-1
Level 6 Registers 1-6
Direct Immediate Memory

Addressing 5-8
Indirect Immediate Memory

Addressing 5-9
Indexed Direct Immediate Memory

Addressing 5-10
Indexed Indirect Immediate

Memory Addressing 5-11
Immediate Operand

Addressing-Scientific
Instruction 5-11

Immediate Operand Addressing 5-12
Direct P-Relative Addressing 5-12
IndirectP-RelativeAddressing 5-13
Direct B-Relative Addressing 5-14
IndirectB-RelativeAddressing 5-15
Indexed Direct B-Relative

Addressing 5-16
Indexed Indirect B-Relati ve

Addressing 5-17
Direct B-Relative Plus

Displacement Addressing 5-17
Indirect B-Relative Plus

DisplacementAddressing 5-18
Direct B6-Relative Plus

Local Common Block Plus
Displacement Addressing 5-19

Indirect B6-Relative Plus
Local Common Block Plus
Displacement Addressing 5-20

B-RelativePushAddressing 5-20
B-RelativePopAddressing 5-21
Indexed B-Relative Push

Addressing 5-22
Indexed B-Relative Pop

Addressing 5-23
Short Displacement Addressing 5-23
Specialized Addres~ Expressions. . .. 5-24
Interrupt Vector Addressing 5-25
VLD Instruction Operations 5-149
Commercial Processor Direct

P-relative Addressing 6-6
Commercial Processor Indexed

Direct P-relative Addressing .. 6-7
Commercial Processor· Indirect

P-relative Addressing 6-8
Commercial Processor Direct and

Indirect B-Relative Plus
Displacement Addressing 6-10

Commercial B-Relative Plus
Displacement With Indexing
Addressing. 6-11

Commercial Processor IMO
Addressing. 6-12

Flow Diagram of SEF Micro
Operation 6-19

Trap Context 6-21

x

6-9
8-1

A-I
A-2

C-l
C-2
D-l

H-l

H-2

H-3
H-4

H-5
H-6

H-7

J-l
K-l

2-1
2-2

5-1
6-1

6-2

6-3
6-4
6-5

6-6

7-1
A-I

A-2

Shift Instruction Formats 6-55
Sample Unexpanded Source

Module and Assembler Listing of
Resulting Expanded Source
Module. .. 8-32

Level 6 Hardware Registers A-I
Internal Formats of Assembly

Language Instructions A-5
Listing ofCHKNML Program -..... C-l
Listing of Bubble Sort Program. . .. C-3
ASCII/Hexadecimal Memory

Dump D-2
Internal Formats of Commercial
Processor Instructions H-l
Remote Descriptor Address

Generation H-4
Decimal Data Descriptor Format .. H-4
Alphanumeric Data Descriptor

Format H-6
Binary Data Descriptor Format H-6
Commercial Processor Address

Syllable Format H-7
Commercial Processor Hardware

Test Program H-8

Queue Management J-2
Stack Structure K-l

Tables

Defining Symbolic Names. 2-3
Rules ofTruncation/Padding

String Constants 2-6
Indexed Addressing Modes 5-25
Micro Operations for Edit

Instructions 6-13
Edit Insertion Table at

Initialization 6-13
Edit Flags for Micro Operations 6-14
Code for Replacing EIT Entries 6-15
Character Insertion by MFLS

Micro Operation 6-18
Commercial Processor Trap Vectors

and Events 6-21
Trap Vectors and Events 7-1
Internal Representation of

Assembly Language
Instructions A-6

Address Syllables for CPU &
SIP Instructions A-9

CB07

(

A-3

B-1

B-2
B-3

B-4
B-5
B-6

H-1

H-2

Summary of Valid Forms of
Address Expressions for CPU
and SIP Instructions A-10

Comparison of Binary , Decimal,
and Hexadecimal Symbols B-1

Storage and Printout of Value 32 B-2
Hexadecimal/Decimal

Conversion B-3
Hexadecimal/ASCII Conversion B-4
Hexadecimal Addition Table B-5
Hexadecimal Multiplication

Table B-6
Commercial Instruction

Summary H-2
Commercial Processor Address

Syllables H-7

xi CB07

?'

(-J

(

Section 1

Introduction

Computer programs can be written in high-level languages or machine-oriented lower level
languages. High-level languages are generally de signed for specific environments (e.g., COBOL
is a business-oriented language, and FORTRAN is a scientifically-oriented language). Low­
level languages (i.e., assembly languages) support a wide range of application environments.

ASSEMBLY LANGUAGES

Computer logic interprets only machine ~i.e., object) code. Since object code is composed of
binary digits, it is difficult to understand unless the binary representation is translated into a
more convenient, readable code. As a result, assembly languages have been developed to
simplify the problem of writing programs in object code. These intermediate-level assembly
languages consist of assembler-controlling statements and operational instructions.

As illustrated in Figure 1-1, an Assembler interprets the assembly language (i.e., source code)
program and translates it into object code, which the computer executes to produce the desired
results.

~
i'--.. ___ ~../

SOURCE
CODE

,.,,---
I '
......... ...~
, ---- I
I OBJECT ,
,CODe I

; - ---;;

r------~/

____ ASSEMBLER

----

''lit. " " -,.- - - -'---, -,',
,- I

, SOURCE I ,
I LISTING J I
I ,-- / , ... ~ ...
L._''; - --

Figure 1-1. Assembler Functions

One of the primary differences between assembly languages and high-level languages is that
each assembly language instruction is equivalent to a single machine-level instruction,
whereas a single high-level language instruction can be translated into any number of
machine-level instructions. The advantage, then, is that the assembly language gives you more
control over the operations to be performed.

LEVEL 6 DATA REPRESENTATION

All data stored in main memory must be in predefined, system-recognizable formats. All data
elements are based on 16-bit memory words. The format of each word is defined from left to
right, with the first bit numbered 0 and the last 15. The leftmost bit (Le., bit 0) is considered the

INTRODUCTION 1-1 CB07

*

most significant and the rightmost (i.e., bit 15) is the least significant, with each intervening bit
less significant than the one to its left.

Because of this predefined format, it is possible to access data at any of the following levels:

• Bit -1 bit

• 4 - bit digit

• Byte (half-word) - 8 bits

• Word - 16 bits

• Multiword - 32, 64 bits

Regardless of the size of the data item being accessed, addresses generated by the operand(s) in
an instruction point to the most significant bit of the item. For example, to access a multiword
data item in main memory, the address generated by the Assembler (from the operand con­
tained in the instruction) points to the first bit (i.e., bit 0) in the first word of the item.

Each four bits of data are represented by a single hexadecimal value in a listing or printout,
although the bits are stored in memory in binary form. The hexadecimal equivalent of a binary
value is derived by converting each successive four bits to the hexadecimal value as follows:

0000 = 0
0001 = 1
0010 = 2
0011 = 3
0100 = 4
0101 = 5
0110 = 6
0111 = 7

1000 = 8
1001 = 9
1010 = A
1011 = B
1100 = C
1101 = D
1110 = E
1111 = F

Thus, ifa listing shows that a word at a given address contains the hexadecimal value 8FD3, it
means that the system contains the stored binary value 1000111111010011.

Data stored in memory can be in any of the following forms:

• Signed integer

• Unsigned integer

• Floating-point

A signed or unsigned integer byte can also be stored in a hardware general register. A
floating-point constant occupies two (short-precision) or four (long-precision) memory words
and may also be stored in the scientific registers.

SIGNED INTEGER DATA

Signed integers stored in memory contain a sign (0 = +; 1 = -) in bit 0 and the data in the
remaining bits. Negative numbers appear in twos-complement form. Byte, word, and double­
word formats are permitted, as follows:

Bit: 0 7

IG} I DATA Byte

Bit: 0 15

In} I DATA Word

INTRODUCTION 1-2 CB07

"
.~-

(

("

Bit: o 15 16 31

Doub 1 e-word

If the frrst digit in the hexadecimal representation of a signed integer is 0 through 7, the value
is positive and is stored in memory exactly as it was coded; if the first digit is 8 through F, the
value is negative and is stored in memory as the twO!;! comp]ement of the coded integer. For
example, if the contents of a signed integer word appearing in memory are BDAO, the decimal
equivalent is -16992.

When a signed integer byte is loaded from memory into a hardware general register, the seven
data bits are placed into bits 9 through 15 of the register and the sign into bit 8. The sign is then
extended through bit 0 of the register, as follows:

Bit:

The sign of the integer byte (i.e., the first bit of the 8-bit byte), which is contained in bit 8 of the
register, is extended through the first byte of the register.

If the frrst byte of the register contains the hexadecimal value FF, the integer in the second
byte is a negative value; if the first byte contains the hexadecimal value 00, the value of the
second byte is positive.

UNSIGNED DATA

Unsigned data appears in memory in three possible formats:

Bit: o 7

DATA Byte

Bit: o 15

DATA Word

Bit: o 31

L--___________ DA_T_A __________ ----JI Double-word

When an unsigned data byte is loaded from memory into a hardware general register, the byte
is placed into register hits 8 through 15, and register bits 0 through 7 are set to 0, as follows:

Bit: 0 7 8 15

rOO 0 0 0 0 01 DATA
1

INTRODUCTION 1-3 CB07

I

I

FLOATING-POINT DATA

Floating-point data appears in memory either as a short-precision (32-bit) or long-precision
(64-bit) constant, as follows:

B;t:rr-----c--~ir:Tla~-------------M--------------~311
Short precision

Bit: 0 6 7 8 63

I..-----c --'---'-1 S 1 --M ---', \'-----,----l Long precision

C
Represents the characteristic (excess 64 power-of-16 exponent) of the number. The
characteristic represents exponents with a range from -64 to +63. Since the charac­
teristic has no sign bit, the number 64 (decimal) is effectively added to each exponent,
thus allowing a characteristic range of 0 to 127 to represent exponents with a range of
-64 to +63.

S
Sign bit (0 = +; 1 = -) of the mantissa.

M
Mantissa - a normalized hexadecimal fraction.

A floating-point constant in memory may be loaded into a scientific register or a software­
simulated scientific register, described later in this section.

HARDWARE REGISTERS

Level 6 hardware registers (Figure 1-2) consist of word operand registers, address registers,
control registers, and mode registers.

ADDRESS REGISTERS

The length of the address registers is 16 bits for 6/30 models and 20 bits for 6/40 and 6/50
models. (The 12 leftmost bits of the 32-bit LAF address in memory must be zero.)

BASE (Bn) REGISTERS

The seven base registers are used in the formulation of addresses by pointing to any proce­
dure, data, or location in main memory. Typically, the base registers contain addresses, poin­
ters, or base references for use in generating effective addresses and referring to data through
relative addresses (see "Addressing Techniques" in Section 5).

PROGRAM COUNTER (P-REGISTER)

The program counter (P-register) is used by the central processor to generate the effective
address of data based on various operands in the assembly language instruction set. (See
"Addressing Techniques" in Section 5.) The P-register contains the address of the next
instruction only during execution of the current instruction. The address of the next instruction
is the address of the current instruction plus the length of the current instruction. However,
JMP, ENT, LNJ, and branch instructions modify the contents of the P-register to a jump or
branch address.

REMOTE DESCRIPTOR BASE REGISTER (RDSR)

This register is used with Commercial Processor instructions and is available only on 6/40 and
6/50 models. See Appendix H "Programmer's Reference Information for Commercial Processor
Operation. "

INTRODUCTION 1-4 CB07

(

STACK REGISTER (T)

This register is used with stack instructions and is available only on 6/40 and 6/50 models. See 'I
Appendix K "Programmer's Reference Information for Stack Instructions." ,

GENERAL (Rn) REGISTERS

The seven general registers can be used as accumulators, and the first three (Rl, R2, R3) can
be used as index registers (see "Addressing Techniques" in Section 5).

MODE (M) REGISTERS

Register Ml contains the trap enable control bits. Its contents can' be altered by the MTM
assembly language instruction, and used by other instructions in the assembly language
instruction set. The bits in the Ml register have the following meanings when set to binary 1:

Bit: 0 1 2 3 4 5 6 7

Overflow trap enabled for R7
Overflow trap enabled for R6

'---'" Overflow trap enabled for R5
'----"'" Overflow trap enabled for R4

'------.Overf1ow trap enabled for R3
'------..... Overflow trap enabled for R2

'-------..... Overflow trap enabled for Rl
L...----i~Trace trap enabled for JMP and branch instructions

Setting one or more overflow trap bits makes it possible to enter the Trace Trap Handler by a
trap to Trap Vector 6. See the System Services Macro Calls manual for a detailed description of
trap handlers.

Registers M2, M6, and M7 are reserved for future use.

The format of the Commercial Processor control register M3 is the same as that of the
Commercial Processor mode register which is described later in this section.

The formats of registers M4 and M5 are the same as those of the SIP mode register and the SIP
trap mask register respectively. These registe:rs are described later in this section.

SYSTEM STATUS (S) REGISTER

The S-register contains the status and security bits for the system. The contents, which can be
read by an executing program, have the following meaning, depending on which bits are set to
binary 1:

Bit: o 1 2 56

ip

INTRODUCTION

9 10 15

ID Level Number NO.

L.Interr
execut
set to
o (all
highes

n. or ide
during system

Indicates that the
privileged state.

upt priority level of the
ing program; 63 (all bits
1) is the lowest level;
bits set to 0) is the

t

ntifier; set automatically
configuration.

system is running in

1-5 CB07

WORD OPERAND REGISTERS GENERAL REGISTERS INDEX
0 15 AND ACCUMULATORS REGISTERS

R1
R2
R3 • ..
R4 ..
R5 •
R6 •
R7 ..

ADDRESS REGISTERS PROGRAM ADDRESS BASE,
0 * COUNTER POINTER, STACK

P • •
B1 •
B2 ...
B3 ..
B4 ...
B5 •
B6 •
B7 •
RDBR ..
T •

CONTROL REGISTERS

0 15

~ I I-SYSTEM AND SECURITY KEYS
-INDICATORS

0 7

M1 ~TRAP ENABLE/MODE CONTROL

M2 ~RESERVED
M3 r+-- CIP CONTROL

M4 i--SIP MODE

M5 I--51 P TRAP MASK

M6 I+-- RESERVED

M7 r-- RESERVED

*15 FOR 6/30 MODELS, 19 FOR 6/40 AND 6/50 MODELS

Figure 1-2. Level 6 Registers

If the hardware configuration includes a Memory Management Unit, the contents of the
S-register have the following meaning:

Bit:

INTRODUCTION

15

Interrupt priority level of the
executing program; 63 (all bits
set to 1) is the lowest level;
o (all bits set to 0) is the
highest

Processor identifier; set auto­
matically during system con­
figuration.

'---------- Indicates the ring number the
system is running in.

1-6 CB07

(

INDICATOR (I) REGISTER

The I-register contains overflow and program status indicatQrs. When set to binary 1, the bits
have the following meaning:

Bit: 0 7 8 9 10 11 12 13 14 15

IIJIEEEEEEJL
Result of last
compare is:

---. Unequa 1 signs
L..-_ ... Less than

o.....---... --~Greater than
~Indicates that device

accepted I/O command.
__._Bit-test indicator (see the

descriptions of the follow­
ing instructions in Section
5 for the setting: LB, LBC,
LBF, LBS, LBT).

'----I_~ Carry occurred during
arithmetic operation.

L...----... Overflow occurred during
arithmetic instruction.

SCIENTIFIC INSTRUCTION PROCESSOR (SIP) REGISTERS

The Level 6 Scientific Instruction Processor (SIP) is an optional hardware unit containing
three identical scientific accumulator registers, one scientific indicator register, one SIP mode
register, and one SIP trap mask register. The SIP performs arithmetic operations on single- and
double-precision floating-point data and also provides a set of scientific branch instructions.

SCIENTIFIC ACCUMULATOR (Sn) REGISTERS

The SIP provides three 64-bit scientific accumulator registers for use in either short- or
long-precision floating-point operations. When these registers are used in short-precision
operations, only the high-order (leftmost) 32 bits participate.

The format of the scientific accumulator registers is shown below.

Bit: 0 6 7 8
r-----~~---------,

INTRODUCTION

C S M

Magnitude of the mantissa.

Sign (0 = positive; 1 = negative) of
the mantissa.

'---... Characteristic (excess 64 power-of-sixteen
exponent) of the number.

1-7 CB07

SCIENTIFIC INDICATOR (SI) REGISTER

The 8-bit SI-register contains error and status indicators that can be tested with the scientific
branch instructions. When set to binary 1, the bits have the following meanings:

o 2 3 4

EU QE SE PE

5 6

SG SL

7

Result of last
scientific compare:
Less than
Greater than

Precision error (trap 22)

Significance error (trap 21)
QL T error (trap 31)
Exponent underflow (trap 19)

Traps and trap handlers are discussed in the System Services Macro Calls manual.

SIP MODE (M4) REGISTER

The SIP mode, or M4, register is an 8-bit control register residing in the SIP but with a copy in
the CPo Both versions are set to 0 upon CP initialization and both may be modified with an MTM
instruction (see Section 5). If only the SIP is initialized, the CP copy of the register is not cleared,
and the contents of both versions must be reestablished with an MTM.

The format of the M4-register is as follows:

R/r:
0-
1-

ML:

0-
1-

AL:

0-
1-

o

RoundlTruncate Mode
Truncate
Round

2 3

SAl

4 5 6 7

SA2 SA3

Memory length (Length of main memory data field to or from which data is
transferred via a scientific accumulator (SA»
Two words
Four words
Accumulator Length (Length of scientific accumulator data field to or from which
data is transferred to/from main memory, a hardware register, or another SIP
register)
Two words
Four words

INTRODUCTION 1-8 CB07

---~-----~

SIP TRAP MASK (M5) REGISTER

The SIP Trap Mask, or M5, register is an 8-bit control register residing in the SIP but with a
copy in the CPo Both versions are set to 0 upon CP initialization and both may be modified with
an MTM instruction (see Section 5). If only the SIP is initialized, the CP copy of the register is not
cleared, and the contents of both versions must be reestablished with an MTM.

The format of the M5-register is as follows:

4 5 6 7

Precision error trap mask

Significance error trap mask

Exponent underflow trap mask

SOFTWARE SIMULATION OF THE SCIENTIFIC INSTRUCTION PROCESSOR

For systems on which a Scientific Instruction Processor (SIP) is not available, GCOS provides
the equivalent SIP functions through software simulation. Two simulators are available: the
Single-Precision SIP Simulator (SSIP) and the Double-Precision SIP Simulator (DSIP). If a
configuration is to support scientific instructions when a SIP is not present, SSIP or DSIP must
be specified in the CLM directive SYS. (See System Building manual.)

The DSIP simulates all functions of the SIP. The SSIP is a partial simulator. The simulators
are entered via trap vector 3 (for scientific floating-point instructions) or trap vector 5 (for
scientific branch instructions).

Note the following considerations with respect to the use of the SSIP.

• SSIP uses registers R4, R5, and R7 to simulate a scientific register (assumed to be SAl). A
task that executes scientific instructions that might be simulated by SSIP should dedicate
these three registers to the use of the simulator.

• SSIP uses the CPU I-register to store the results of a scientific compare instead of
simulating the scientific indicator register. Thus, if scientific compare instructions are to
be simulated by SSIP (as opposed to being simulated by DSIP or executed by the SIP), then:

CPU branch instructions must be used to test the result of a scientific compare instead
of the normal scientific branch instructions.
Execution of scientific instructions alter the CPU I-register instead of the SIP's SI
register.

• On 6/30 systems, the SSIP does not support the MTM or STM instruction.

• SSIP rounds results when appropriate; DSIP truncates results unless otherwise in­
structed. Thus, results produced by the SSIP may not agree exactly with those produced by
the DSIP.

COMMERCIAL PROCESSOR REGISTERS

The Commercial Processor, an optional hardware unit, contains two registers: the Commer­
cial Processor mode register, and the Commercial Processor indicator register.

COMMERCIAL PROCESSOR MODE REGISTER

The 8-bit Commercial Processor mode register is a copy of the M3 register (in the CPU) which
is provided for use with the Commercial Processor. Both are set to zero at initialization of the
CPU. Both registers may be modified with an MTM instruction. If ouly the Commercial
Processor is initialized, the M3 register is not cleared, and the contents of both registers must be
established with an MTM instruction. The format of the Commercial Processor mode register
and the M3 register is shown below. When set to binary 1, the bits have the following meanings:

INTRODUCTION 1-9 CB07

o
OV

2

TR

3 4 5 6 7

L------------Trap on truncati on

L--------------Trap on overflow

Note that, although the contents ofthe Commercial Processor mode register is not saved, the
equivalent information in the M3 register is saved or restored as a function of the mask bits in
the interrupt save area. When a restore is done, the restored value is sent to the Commercial
Processor by the CPU.

COMMERCIAL PROCESSOR INDICATOR REGISTER

The 8-bit Commercial Processor indicator register is cleared at initialization. During the
execution of an instruction that affects the register, only the bits pertinent to the instruction are
preset (set or reset). All other bits remain unchanged. During the execution of a branch
instruction, all bits including the one being tested are left unchanged. When set to binary 1, the
bits have the following meaning:

o 1 2 3 4 5 6

L

7

QE

Result of QLT error

last compare is:

'----~ Less than
'------_ Greater than

'-----Sign fault
(negative operand is stored
in unsigned field)

L-----Alphanumeric result is truncated

'--------- Overflow occurred during
decimal instruction

The contents of the Commercial Processor indicator register will be saved or restored as a
function of the mask bits in the interrupt save area.

SOFTWARE SIMULATION OF THE COMMERCIAL PROCESSOR

For systems on which a Scientific Instruction Processor (SIP) is not available, GCOS provides
the equivalent SIP functions through software simulation. Two simulators are available; the
Single-Precision SIP Simulator (SSIP) and the Double-Precision SIP Simulator. If a configura­
tion is to support scientific instructions when a SIP is not present, SSIP or DSIP must be
specified in the CLM directive SYS. (See System Building manual.)

INTRODUCTION 1-10 CB07

INITIALIZATION AND MODIFICATION OF M-REGISTERS

When each task starts, the operating system establishes the following default values for
registers M1, M3, M4, and M5.

M1 00 Trace trap and all R-register overflow traps disabled.
M3 = 00 Commercial Processor overflow trap and truncation trap disabled; Commer­

cial Processor is under direct CPU firmware control (i.e., not in software test
mode).

M4 03 Truncation mode is in effect, Scientific accumulators $Sl and $S2 and
associated memory operands are two words long; $S3 and associated memory
operands are four words long.

M5 = 20 Significance error trap enabled; exponent underflow and precision error traps
disabled.

The contents ofthese registers can be modified by the assembly language instruction MTM.

INTRODUCTION 1-11 CB07

Section 2

Elements of

Assembly Language

The principal elements of Level 6 assembly language are:

• Mnemonic codes

• Symbolic names

• Constants

• Expressions
These elements are combined to form a source program that consists of:

1. Machine instructions to be assembled, on a one-to-one basis, into their corresponding
object code representations.

2. Assembler control statements, which are interpreted by the Assembler to control the
assembly process, allocate work and storage areas in memory, and define constant data
used by the program.

3. Macro call statements, which are interpreted by the Macro Processor to further define the
source program.

MNEMONIC CODES

Assembler control statements, which direct the Assembler in the preparation of object code,
and assembly language instructions are specified by predefined mnemonic names of one to six
characters in length. These mnemonic (operation) codes are described, in detail, in Sections 4
and 5.

SYMBOLIC NAMES

Locations, values, and other data pertinent to the determination of assembly language
instruction or Assembler control statement operand values can be referred to by the use of
reserved (predefined) and user-defmed names ..

Character strings can be assigned as names of memory locations, registers, values, or other
objects to be referred to in the development of object code. The manner in which a symbolic name
is defined depends on the attributes of the object referred to by that name.

Regardless of the manner of definition and the type of object being referred to, the symbolic
name must conform to the following rules:

1. It must be from one to six characters long.

2. It must be composed of alphabetic characters (A,B, ... Z), digits (0,1, ... 9), and/or the special
characters $ and (underscore).

3. The first character must be a $ or alphabetic character.

4. The lowercase alphabetic characters are considered equivalent to the corresponding
uppercase characters.

The following types of symbolic names can be used in Assembler control statements and
assembly language instructions:

• Identifiers - Reserved symbols designating the hardware registers, the scientific
accumulators, and certain address syllables.

• Labels - User-defined and reserved symbols designating locations in memory and values.

ELEMENTS OF
ASSEMBLY LANGUAGE 2-1 CB07

IDENTIFIERS

Identifiers are reserved symbolic names that refer to hardware registers or to the software­
simulated registers. In addition, names that are defined to be equivalent to identifiers (through
the EQU Assembler control statement) are treated as identifiers.

The following identifiers refer to hardware registers:

• $B1 through $B7 - Base registers

• $R1 through $R7 - General registers

• $R1 through $R3 - Index registers

• $M1 through $M7 - Mode control registers

• $S1 through $S3 - Scientific accumulator registers

LABELS

Labels are symbolic names that can be used to refer to locations and values. They must be
defined in a manner specific to the attributes of the location or value to which they refer (i.e.,
each label is typed according to the location or value attributes, which also establish the context
in which they can be used). The types of labels and their methods of definition are as follows:

• Internal location label- Refers to a location allocated within the assembled program. It is
defined by its occurrence in the label field of an instruction (resulting in the allocation of
memory to the program). The definition oflabels appearing in certain Assembler control
statements that do not cause memory to be allocated (e.g., EQU statement) depend on the
statement and its operands.

• External location label - Refers to a location in another independently assembled or
compiled program. It is defined by appearing in the operand list of an XLOC statement.

• Common location label- Refers to a location allocated to FORTRAN-compatible common
blocks. It is possible to specify that the object code resulting from assembly language
instructions is to be allocated to a common block area rather than to the internal area
normally allocated to the program. All labels that appear in instructions that result in the
allocation of common block locations are defined as common location labels. In addition,
labels specified in the COMM and LCOMM statements are defined as common location
labels; these labels can be used to refer to locations in the common block by indicating their
offset from the first word.

• Internal value label - Refers to a value defined within the program. It is assigned by its
occurrence in the label field of an EQU statement with an operand expression (see
"Expressions" later in this section) that yields a dimensionless value.

• External value label- Refers to a value defined in another, independently assembled
program. It is defined by appearing in the operand list of an XV AL statement.

• Complex label- Refers to the label of an EQU statement that has an address expression
(see "Expressions" in this section), or the label of another EQU statement that has an
address expression, in the operand field.

Table 2-1 summarizes the types of labels and how they are defined.

USER-DEFINED LABELS

User-defined labels can be either permanent or temporary. Permanent labels can be defined
only once in a program; they must conform to the rules listed under "Symbolic Names" in this
section.

The 26 temporary labels ($A, $B, ... $Z) may be defined as often as necessary within a single
program. They may be referred to only in the operand of a hardware instruction or of a define
constant (DC) assembly control statement. You must be careful, during programming, that you
are referring to the desired definition of a temporary label when the label has multiple defini­
tions within a single program.

Temporary labels must be defined as internal iocation labels.

ELEMENTS OF
ASSEMBLY LANGUAGE 2-2 CB07

- _.f"

(

TABLE 2-1. DEFINING SYMBOLIC NAMES

Type How Defined

Internal location label Appears in label field of an assemb~y language instruction or
Assembler control statement (except EQU, COMM, or LCOMM
statements) when the location counter type attribute (set by the ORG
statement) is internal.

External location label
Common location label

Internal value label

External value label
Complex label

Same as operand

RESERVED LABELS

Appears in the operand field of an XLOC statement.
Appears in the label field of a COMM or LCOMM statement; or appears
in label field of an assembly language instruction or Assembler control
statement (except EQU, COMM, or LCOMM statements) when the
location counter type attribute (set by the ORG statement) is common.
Appears in label field of an EQU statement that has an expression that
yields a dimensionless arithmetic value in the operand field.
Appears in the operand field of an XV AL statement.
Appears in the label field of an EQU statement that contains an
address expression in the operand field; or appears in the label field of
an EQU statement that contains a label identifying another EQU
statement that .contains an address expression in the operand field.
Appears in the label field of an EQU statement that contains an
operand other than one of those listed above; e.g., an identifier.

Reserved labels are predefined and cannot be redefined. The following reserved labels are
available:

• $ - The Assembler maintains a location counter which contains the address of the next
available object memory location. The symbol $ represents this address and has the
attribute of internal location or common location, depending on whether the program is
currently "origined" in a non-common area or in a common block, respectively. The initial
value of the location counter is location zero.

The Assembler also maintains a byte indicator which indicates whether the next available
byte of object memory is the even (Le., high order or left) or odd (Le., low order or right) byte
of the word whose address is contained in the location counter. The only statement that
causes memory to be allocated that is permitted when the byte indicator is set to indicate
the odd byte is the Byte Text (BTEXT) Assembler control statement. The byte indicator is
initially set to indicate the even byte.

Normally, the location counter is incremented by the number of words required to store the
object code resulting from a given statement after the statement has been processed.
Normally, the byte indicator is not altered. Exceptions to this general rule are as follows:

-Assembler control statements, such as Equate and Common, that do not cause any
memory to be allocated have no affect on either the location counter or the byte indicator.

-The Origin Assembler control statement which sets the location counter to a specified
value and sets the byte indicator ~o indicate the even byte.

-The Byte Origin Assembler control statement which sets the location counter to a
specified value and sets the byte indicator to indicate the odd byte.

-The Define Constants (DC) Assembler control statement which does not affect the byte
indicator, but increments the locati.on counter after each operand is processed. Thus, a $
appearing as· a label in an operand of a DC statement will always refer to the first, or
only, word of memory allocated for that operand. Because of this, the DC statement:

DC 1,2,<$-2
will produce the same object code as the following DC statements:

DC 1
DC 2
DC <$-2

-The Byte Text Assembler control statement which increments the location counter and

ELEMENTS OF
ASSEMBLY LANGUAGE 2-3 CB07

byte indicator, concatenated to form a byte address, by the number of bytes allocated.
Either, or both, the location counter and byte indicator may be altered.

-The Pointer Array (PTRA Y) Assembler control statement which does not affect the byte
indicator and increments the location counter after each operand is processed. Thus, a $
appearing as a label in an operand of a PTRA Y statement will always refer to the first, or
only, word of memory allocated for that operand. .

-The Argument List (ARGLST) Assembler control statement which does not affect the
byte indicator and increments the location counter as follows:

-First the location counter is incremented by 1 after the control word is allocated, but
before the first operand is processed.

-Then the location counter is incremented after each operand is processed.

Thus a $ appearing as a label in an operand of an ARGLST statement will always refer to
the first, or only, word of memory allocated for that operand.

-The Call (CALL and CALL2) Assembler control statements, which do not affect the byte
indicator, but increment the location counter at various times, as appropriate for the
breakdowns shown for these statements in Section 4.

-The Input/Output statements, which do not affect the byte indicator, but increment the
location counter after each operand is processed. Thus a $ appearing as a label in an
operand of an Input/Output statement will always refer to the word of memory contain­
ing that operand's address syllable.

-The Commercial Processor nonbranch statements, which do not affect the byte indicator,
but increment the location counter as follows:

-First the location counter is incremented by 1 after the op code word is allocated, but
before the first operand is processed.

-Then the location counter is incremented after each operand is processed.

Thus a $ appearing as a label in an operand of a nonbranch Commercial Processor
instruction will always refer to the first, or only, word of memory allocated for that
operand.

• $AF - This label refers to the address mode requested by the user. $AF is 1 for SAF, and 2
for LAF or SLIC.

• $IV - Refers to the content of the interrupt vector for the priority level at which the
application is currently executing. A description of interrupt vectors and priority levels
can be found in the System Services Macro Calls manual.

• $RZERO - Refers to relocatable location zero of the program. $RZERO is an internal
location label.

• $SW - Refers to the current status of the external switches. The Assembler requests the
value of the external switches from the operating system; $SW is then defined to be this
16-bit value which corresponds to External Switch 0 through External Switch 15. The high
order bit is switch O. $SW is an internal value label. Use of $SW with conditional
Assembler control statements provides a method of varying the assembly procedure
without altering the assembly language source program. (See the Commands manual for a
discussion of the Modify External Switches Command.)

CONSTANTS

Arithmetic and nonarithmetic values can be expressed in decimal, hexadecimal, character, or
binary form, all of which are converted by the Assembler to the appropriate machine code
format. Depending on the context, such values may be assigned as object code or be used by the
Assembler in the computation of operand locations or values.

The following types of constants are supported:

• String constants

• Arithmetic constants

ELEMENTS OF
ASSEMBLY LANGUAGE 2-4 CB07

STRING CONSTANTS

String constants can be expressed as ASCII, hexadecimal, or bit strings. Regardless of how
they are expressed, string constants have the following format:

[en)] [{!}] Tc ...]'

[en)]

Specifies an optional decimal integer in the range from 1 to 255, which represents the
replication factor (the string is concatenated to itself n-1 times).

Hi}]
Specifies whether the string is expressed in ASCII (A, default ifnone of these values is
specified) hexadecimal (Z), or bit (B). .

Tc .. .j'
Identifies the character(s) in the string.

ASCII STRING CONSTANTS

An ASCII string constant is written as the letter A (optionally) followed by a string of any of
the valid ASCII characters enclosed within apostrophes; to include an apostrophe, a double
apostrophe must be specified (Le., "is interpreted as').

An ASCII string constant denotes the value formed by replacing all double apostrophes by a
single apostrophe and removing the delimiting apostrophes.

The value of an ASCII string constant cannot be more than 255 ASCII characters (each of
which is eight bits long).

The format of an ASCII string constant is as follows:

[en)] [A] '[a ... J'
The following examples illustrate how to specify ASCII string constants:

1. 'ASCII SAMPLE!'

2. A 'ASCII SAMPLE2'

3. (4)A 'DATM'

The characters enclosed within the apostrophes can be any character shown in Table B-4. The
examples shown above result in the following values being stored in memory, respectively:

1. ASCII SAMPLE1

2.' ASCII SAMPLE2

3. DATM DATAa DATM DATAa

HEXADECIMAL STRING CONSTANTS

A hexadecimal string constant is written as the letter Z followed by a string of characters
representing any of the valid hexadecimal digits (Le., 0 through 9 and A through F) enclosed
within apostrophes. 1

A hexadecimal string constant denotes the value formed by replacing the characters
contained within the delimiting apostrophes with their binary values and removing the
delimiting apostrophes.

The value ofa hexadecimal string constant cannot be more than 510 hexadecimal digits (each
of which is four bits long).

lThe lowercase letters a through f are considered equivalent to the corresponding uppercase letters.

ELEMENTS OF
ASSEMBLY LANGUAGE 2-5 CB07

The format of a hexadecimal string constant is as follows:

[(n)] Z'[h ... 1'
The following example illustrates how to specify a hexadecimal string constant:

Z'5449544C452053414D504C4531'

This example translates into TITLEa SAMPLE1 (see Appendix B).

BIT STRING CONSTANTS

A bit string constant is written as the letter B followed by a string of characters representing
the binary digits (i.e., 0 and 1) enclosed within apostrophes. A bit string constant denotes the
value formed by converting the 0 and 1 characters contained within the delimiting apostrophes
to 0 and 1 bits. The value of a bit string constant cannot be more than 2040 binary digits (each of
which is one bit long).

The format of a bit string constant is as follows:

[(n)] B'[b ...]'

The following example illustrates how bit string constants are expressed:

B'OOOl1010'

This bit string provides an 8-bit mask that can be used by an assembly language instruction.

TRUNCATION/PADDING OF STRING CONSTANTS

Various statements require a half-word (8~bit) value, whole-word (I6-bit) value, or a value
that is an integral number of words in length. In order to satisfy these requirements, string
constants are automatically truncated or padded.

If truncation is required, low-order (i.e., the rightmost) bits are discarded, and the Assembler
issues a diagnostic message. '

If padding is required, low-order bits are appended to the value (Le., string constants are
left-justified). ASCII string constants are padded with spaces; hexadecimal and bit strings are
padded with O's.

Table 2-2 describes how the Assembler handles the various situations that require truncation
or padding. /

TABLE 2-2. RULES OF TRUNCATION/PADDING STRING CONSTANTS

H a string constant appears:

In a nontrivial arithmetic expression
As the only term of the operand of a
short value immediate (SI) instruction

It is converted to:

A whole-word value.
A half-word value.

As the only term of an operand of a
DC Assembler control statement

A value having a length that is an integral number of
words; such string constants are never truncated.

As the operand of a TEXT Assembler
control statement

In any context not listed above

Notes:

A string having an initial bit offset which is a
multiple of 4 (for hexadecimal string constants)
or a multiple of 8 (for ASCII string constants)
with slack bits inserted between successive
operands. A bit string constant can begin at any
bit position; slack bits never precede a bit string
operand.
A. whole-word value.

1. If two or more rules apply to the same string constant, the first takes precedence.
2. Refer to specific statements identified in this table for ,additional information.
3. Double integer instructions (AID, LDI, SDI, and SID) require string constants or

double precision fixed-point constants to fully define 32 bits (Le., 2 words).

ELEMENTS OF
ASSEMBLY LANGUAGE 2-6 CB07

(

(~

ARrrHMETIC CONSTANTS

An arithmetic constant specifies the value of a real number. An arithmetic constant is either _
binary integer constant, a decimal integer constant, a fixed-point constant, or a floating-point
constant.

BINARY INTEGER CONSTANTS

Binary integer constants can be represented in decimal or hexadecimal notation. They may be
preceded by a plus(+) or minus(-) sign, indicating a positive or negative value respectively, and
must be within the range -32768 to +32767; if unsigned, a binary integer constant is assumed
to be positive.

[+J. {n~n ...] ,}
- Xh[h ...]

[~J
Specifies whether the value is positive (+, the default value) or negative (-).

n[n ...]

Specify decimal digits.

h[h ...]

Specify hexadecimal digits

Binary Integer Constants in Decimal Notation

A binary integer constant expressed in decimal notation is written as a character string
composed of the decimal digits 0 through 9. The following examples illustrate valid binary
integer constants in decimal notation.

1. 31764

2. +4652

3. -6781

Binary Integer Constants in Hexadecimal Notation

A'binary integer constant expressed in hexadecimal notation is written as the letter X
followed by a character string composed of the hexadecimal digits 0 through 9 and A through F
(the lowercase letters a through f are considered equivalent to the corresponding uppercase
letters) within apostrophes. The following examples illustrate binary integer constants in
hexadecimal notation.

1. +X'2F'

2. X'7FFF'

3. -X'8000'

The decimal equivalent ofthese examples is +47, +32767 and -32768 respectively as can be
determined by reference to Table B-3.

Decimal Integer Constants

Decimal integer constants are represented by a letter from the set L,T,O,N,P,U followed by a
character string enclosed in apostrophes. In general, they may be preceded by a plus (+) or
minus (-) sign indicating a positive or negative value. The letter indicates whether the value is
internally represented as a packed or unpacked number and designates the internal sign
convention. The character string is composed of the digits 0 through 9. Decimal integer
constants begin at a word boundary and occupy an integral number of words , possibly including
trailing digits which may be unused.

ELEMENTS OF
ASSEMBLY LANGUAGE 2-7 CB07

I

Unpacked Decimal Integers

The prefix letter designating the internal sign convention and the range of values allowed for
each convention of unpacked decimal integers are as follows:

Sign Convention Letter Range of Values
Leading separate L -1030<n<+1030
Trailing separate T -1030<n<+1030
Trailing overpunch 0 -1031<n<+1031
Unsigned N O:s;;n<10 31

The storage formats for separate signed unpacked decimal integers are as follows:

Leading sign I S I dl I d21::W

!--8(p+l) bits-l.

Trailing sign I dll d21 .;;: I dPI sl
~8 {p+l} bits~

In these formats, dn is the ASCII representation of a decimal digit, S indicates the sign, and p
indicates the precision, which must be greater than zero and less than 32. The plus sign is
represented by the ASCII character + (hexadecimal 2B) the minus sign by the ASCII character
- (hexadecimal 2D).

The format of an unpacked decimal integer with the sign indicated by a trailing overpunch is
as follows:

I dl \ d2 I .:~(. \ S/ dp I
I. 8p bits ~I

The rightmost character in storage depends on the least significant digit of the integer and on
whether the integer is positive or negative as shown below.

Least Significant Digit

a 1 2 3 4 5 6 7 8 9
Positi ve ASCII gfaphic ~B A B C D E F G H I

Hexadecimal code 41 42 43 44 45 46 47 48 49

Negative ASCII graphic
JD

J K L M N a P Q R
Hexadecimal code 4A 4B 4C 4D 4E 4F 50 51 52

The format of an unsigned unpacked decimal integer is as follows:

\dll d21.~~
~8p bits .1

Packed Decimal Integers

The prefix letter and the range of values for signed and unsigned packed decimal integers are
as follows:

Prefix Letter
p
U

Type
Signed
Unsigned

Range
-1030 <n < + 1030
O:s;;n<1031

The formats of packed decimal integers are as follows:

ELEMENTS OF
ASSEMBLY LANGUAGE 2-8 CB07

(

(

(~

I dll d21·:;·1 dp I s I Format for packed signed decimal digits

1--4 (p+l) bits--!

I dl I d21 ·Z· I dp I Format for packed unsigned decimal digits

/--4 p bits-i

Examples of Decimal Integers

The source language and the associated stored value for the various types of decimal integers
are given in the following examples:

Source language
P'125'
-P'99436'

U'125'
U'99436'

L'125'
-L'99436'

T'125'
-T'99436'

0'125'
-0'99436'
0'20'
-0'20'

N'125'

FIXED-POINT CONSTANTS

Stored Value
(hexadecimal)
125B
99436DOO

1250
99436000

2B313235
2D39 3934 3336

3132352B
3939 3433 362D

31324530
3939 3433 4F30
327B
327D

31323530

A fixed-point constant is written as a decimal number with an associated scale factor and an
optional precision field. When the resultant value is stored in memory, a fixed-point constant
appears as a signed integer with negative values in two's complement form. The scale factor (s)
gives the location of the implied binary point in the stored constant. A positive scale factor
means that the point is situated s bits to the left of the rightmost bit stored in memory. A
negative scale factor means that the point is situated s bits to the right of the rightmost bit
stored in memory. Thus, the true value of a fixed point binary number may be calculated by
multiplying its integer representation by 2- 8 •

The two formats for writing fixed-point constants are, as follows:

Format 1

[:] {;~;[:ll} B [:], SINGLE PRECISION

Format 2

[±]

SINGLE OR DOUBLE
PRECISION

Specifies the sign of the constant. The + sign may be omitted.

ELEMENTS OF
ASSEMBLY LANGUAGE 2-9 CB07

i
Specifies the integer part of the decimal number.

f
Specifies the fractional part of the decimal number.

r
Specifies the precision of the constant,0<r.;;;31.

[±]s
Specifies the value and sign of the scale factor.

Format 1 has an implied precision of 15 bits. The value of a fixed-point constant must fall
within the range

2-8 .;;; I R I <231- s

where R is the value of the decimal number.

Fixed-point constants are stored as aligned signed two's complement binary numbers; that is
they occupy one word if they are single precision and two words if they are double precision. The
assumed binary point is located s bits to the left of the rightmost bit if the scale factor is positive,
and -s bits to the right of the rightmost bit when the scale factor is negative.

The following examples illustrate how to specify fixed-point constants and show the
hexadecimal representations of the resultant values in memory.

Source Language Stored Value
2.5B4 0028
2.5B8 0280

65536B-15 0002
65536B-7 0200

-2.5B8 FD80
-65536B-15 FFFE
262144B(20,0) 0004
262144B(20,-7) 0000
262I44B(15,-7) 0800

-262144B(20,0) FFFC
-262I44B(20,-7) FFFF

FLOATING-POINT CONSTANTS

0000
0800

0000
F800

The assembly language provides a convenient method with which you can write a decimal
number and have the Assembler convert it into floating-point format. (See Section 1 for a
description of floating-point data.)

There are three fo~ats for floating-point constants:

Format 1

[+] 1 i..[f]} SHORT PRECISION
- [1].f

Format 2

[:] r[~;[;l } E [:]. SHORT PRECffiION

Format 3

[:]{ ~~;[:ll} D[:]. DOUBLE PRECffiION

[±]
Specifies the sign of the constant. The + sign may be omitted if desired.

ELEMENTS OF
ASSEMBLY LANGUAGE 2-10 CB07

(~ •..

(

i
Specifies the integer part of a decimal number.

f
Specifies the fractional part of a decimal number.

E
Indicates that a short-precision floating-point representation is desired.

D
Indicates that a double-precision floating-point representation is desired.

[±]c
Expresses the power of 10 by which the coded decimal number should be multiplied to
produce the value wanted. The + sign may be omitted if desired.

Note:
If the decimal point is omitted, the number is assumed to be an integer.

The absolute value of a floating-point constant must be greater than or equal to 2-200

(approximately 5.3976 X 10-79) and less than 2-252 (approximately 7.2370 X 1075).

Normalization

Floating-point constants are stored as normalized hexadecimal floating-point numbers with a
7-bit excess 64 power-of-16 characteristic and a 25-bit or 57-bit signed magnitude mantissa. A
nonnalized floating-point number has a nonzero high-order hexadecimal fraction digit. If one or
more high-order fraction digits are zero, the number is said to be unnormalized. Normalization
consists of shifting the fraction left until the high-order hexadecimal digit is nonzero and
reducing the characteristic by the number of hexadecimal digits shifted.

Examples

The following examples illustrate how to specify floating-point constants and show the
hexadecimal representations of the resultant values in memory. You can determine sign,
characteristic, and mantissa of the resulting floating-point numbers by dividing the
hexadecimal representations into parts according to the patterns described in Section l.

Source Language Stored Value
-5 8080 0000
0.5E12 9474 6A52
0.5D12 9474 6A52 8800 0000

-0.5DI2 9574 6A52 8800 0000
6.665039063E-2 8011 1000

-6.665039063E-2 8111 1000

EXPRESSIONS

Expressions are combinations of symbolic names and constants used as operands within
Assembler control and assembly language (machine) instructions. Expressions can represent
locations (internal, external, or common), values, and addresses. Components of an expression
can be joined by various functions and arithmetic operators, as follows:

Arithmetic Operator Meaning
+ Addition (or Unary +)

*
/

Boolean Function
AND
OR
XOR
NOT

ELEMENTS OF
ASSEMBLY LANGUAGE

Subtraction (or Unary -)
Multiplication
Division

Meaning
Conjunction of argumentl and argument2
Inclusive disjunction of argument 1 and argument2
Exclusive disjunction of argumentl and argument2
Negation of argumentl

2-11 CB07

I

Shift Function
ALS

ARS

LLS

LRS

Arithmetic Function
MOD

Meaning
Arithmetic left shift of argument1
by argument2 bits
Arithmetic right shift of argument1
by argument2 bits
Logical left shift of argumentl
by argument2 bits
Logical right shift of argumentl
by argument2 bits

Meaning
Remainder after division whenargumentl
is divided by argument2

General Format of a Function:
function-name (argument 1, argument 2)

NOTE: The Boolean NOT function has only one argument.

When a value is operated upon by an arithmetic operator or function or by an arithmetic shift
function the value is considered to be a 16-bit signed (two's complement) binary integer. When a
value is operated upon by a Boolean or logical shift function the value is considered to be a 16-bit
bit string. You must ensure that the results of a Boolean or shift operation will be meaningful
when subsequently interpreted as an integer value by the Assembler. The results of each
computation must be within the allowable range of integer dimensionless values. The range is
from -32768 to +32767.

The shift functions must satisfy the conditions specified below or else the function will not be
performed and the operation will be flagged as an error condition.

ALS 0:::::;argument2<15
ARS 0:::::;argument2<15
LLS and LRS 0:::::;argument2<15

Argument2 in the arithmetic function MOD must not equal O. If this condition is not satisfied,
an error condition is flagged and the function is performed as if argument2 is equal 1.

The arguments in all arithmetic operations and functions must be binary integers.

To use a function within an expression you write the function name followed by its operands,
enclosed in parentheses and separated by a comma; e.g., AND (TAG1,TAG2).

Below are examples of functions:

VALl EQU X'100'
VAL2 EQU X'10F'
VAL3 EQU 3
LOC1 EQU $ (at location 200 hexadecimal)

AND
DC <LOC1+AND(VAL1,VAL2)
resolves to address 300 hexadecimal

OR
DC <LOC1+0R(VAL1,VAL2)
resolves to address 30F hexadecimal

XOR
DC <LOC1+XOR(VAL1,VAL2)
resolves to address 20F hexadecimal

NOT
VAL4 EQU NOT(VAL2)
resolves to value FEFO hexadecimal

ALS
VAL5 EQU ALS(VAL1,VAL3)
resolves to value 800 hexadecimal

ELEMENTS OF
ASSEMBLY LANGUAGE 2-12 CB07

/

("

(

ARB
VAL6 EQU ARS(VALl,VAL3)
resolves to value 20 hexadecimal

ILS
VAL7 EQU LLS(VAL2,12)
resolves to value FOOO hexadecimal

LRS
V ALB EQU LRS(VAL2,VAL3)
resolves to value 21 hexadecimal

MOD
VAL9 EQU MOD(VAL2,VAL1)
resolves to value F hexadecimal

EVALUATING EXPRESSIONS

Within an expression, evaluation proceeds from left to right on a same level of inclusiveness
until a higher level is reached. The levels of hierarchy are:

1. All functions

2. Unary plus and minus

3. Multiplication and division

4. Addition and subtraction

Parentheses can be used to change the evaluation order. Each lesser inclusive set of
parentheses is a higher hierarchy level.

LOCATION AND VALUE EXPRESSIONS

The Assembler permits expressions to be used to specify values and locations. Internal and
external value expressions denote a computation to be performed by the Assembler and produce
integer dimensionless values.

A location expression denotes a computation of an address that can be internal to the
referencing program, in a separately assembled program (Le., external to the referencing
program), or in a common memory block.

VALUE EXPRESSIONS

Value expressions are used to express computations to be done by the Assembler. There are
two types of value expressions:

• Internal value expressions - Refer only to values that are defined within the referencing
program.

• External value expressions - Refer to one value defined in an external program and may
refer to elements within the referencing program.

Internal Value Expressions

An internal value expression, which produces an integer dimensionless value, may be written
as a single factor or as a sum-of-products algebraic expression. The product portion consists of
two or more factors to be multiplied or divided as indicated by the * or / operators, preceding the
multiplier or divisor factor. In addition, each factor can be preceded by a unary plus (+) or minus
(-) operator.

Each factor of the expression must be one of the following items:

(int-val-expression)
binary integer
string constant
int-val-Iabel
assembler function
Commercial Processor edit function

ELEMENTS OF
ASSEMBLY LANGUAGE 2-13 CB07

The sum portion of the algebraic expression consists of two terms to be added or subtracted as
indicated by the + or - operator preceding the addend or subtrahend term. In addition, each
term can be preceded by a unary plus (+) or minus (-) operator.

Each sum of an internal value expression must take one of the following forms:

binary-integer

int-val-exp {:!: }
string-constant
assembler-function
Commercial-Processor-edit-function
int-val-label
product (or quotient) of these terms

The difference between two internal locations.
The difference between two common locations within the same common block

The following examples illustrate internal value expressions. In these examples, labels of the
form VALe are internal value labels, labels of the form LOCc are internal location labels, and
labels of the form COMMc are common location labels.

Example 1:
X'34FO' + (V ALB- (V ALB/(X'E4 '* 2»)

In this example, the expression is evaluated as follows:

1. The product of X'E4'*2 is calculated.

2. The value associated with VALB is divided by the product of step 1, above.

3. The quotient of step 2, above, is subtracted from the value associated with V ALB.

4. The difference calculated in step 3, above, is added to X'34FO'

Example 2:
B'l1110110'+(COMMl- COMM2)/2*(54+ VALF-(LOCA - LOCB»

The expression in example 2 is evaluated as follows:

1. The difference between COMMI and COMM2 is calculated.

2. The result of step 1, above, is divided by 2.

3. The sum of 54 and value associated with V ALF is calculated.

4. The difference between LOCA and LOCB is calculated.

5. The result of step 4, above, is subtracted from the result of step 3.

6. The quotient calculated in step 2 is multiplied by the result of step 5.

7. The bit string constant B'l1110110' is padded to occupy a full word and added to the result
of step 6.

External Value Expressions

An external value expression references one value defined in another program (declared by an
XV AL statement in the referencing program) and may reference additional elements defined in
the referencing program. An external value expression must take one of the following forms:

ext-Val-label}
ext-val-exp
(ext-val-exp)

{±}

{
ext-val-label}

int-val-exp +
(ext-val-exp)

ELEMENTS OF
ASSEMBLY LANGUAGE

binary-integer
string-constant
int-val-Iabel
assembler-function
Commercial-Processor-edit-function
(int-val-exp)

2-14 CB07

\,--

(

The following example illustrates external value expressions. In this example, V ALZ is an
internal value and V ALEX is an external value.

Example:
18 + VALEX + VALZ

1. The two internal values are added together, i.e., 18 + V ALZ

2. The value 18 + V ALZ is the offset associated with the external value, V ALEX.

LOCATION EXPRESSIONS

Location expressions are used to express address computations to be done by the Assembler.
There are three types of location expressions:

• Internal location expressions - Refer only to locations that are defined within the
referencing program.

• External location expressions - Refer only to locations defined in an external program and
may refer to elements within the referencing program.

• Common location expressions - Refer only to locations within common blocks and may
refer to other elements within the referencing program.

Each of the above types of location expressions produces a memory address.

Internal Location Expressions

Internal location expressions, which produce a memory address based upon a computation
using only internal elements, must take one ·of the following forms:

int-Ioc-exp{ ± }

binary integer
string constant
assembler function
Commercial-Processor-edit-function
int-val-Iabel
(int-val-exp)

J int-Ioc-Iabel)
int-val-exp + 1 ~nt-Ioc-exp)

In the previous form, the $ is valid only if the Assembler's location counter type attribute is
internal when the expression is processed.

The following example illustrates internal location expressions. In this example, labels of the
fonn LOCc are internal location labels.

Example:
(LOC3-LOCD)+ X'30F2' + LOCA

The expression in this example is evaluated as follows:

1. The address associated with LOCD is subtracted from the address associated with LOC3
yielding an internal value.

2. X'30F2' is added to the result of step 1 yielding another internal value.

3. The address associated with LOCA is added to the result of step 2 yielding an internal
location as the final result.

External Location Expressions

External location expressions, which produce a memory address based upon a computation
using external location labels and internal values, must take one of the following forms:

ELEMENTS OF
ASSEMBLY LANGUAGE 2-15 CB07

ext-Ioc-exp { ± }. assembler function I~:~:: c~n:::::t I
int-val-exp +

Commercial-Processor-edit-function
int-val-Iabel
(int-val-exp)

{ ext-Ioc-Iabel }
(ext-Ioc-exp)

The following example illustrates an external location expression. In the example, labels of
the form XLOCc are external location labels and labels of the form VALe are internal value
labels.

Example:
«VALl + V ALA)+ XLOC2)+ X'2A22'

This sample expression is evaluated as follows:

1. The values associated with VALl and VALA are added together.

2. The offset associated with XLOC2 is added to the result of step 1.

3. X'2A22' is added to the result of step 2.

Common Location Expressions

Common location expressions, which produce a memory address based upon a computation
using one or more locations within a common block and internal values, must take one the
following forms:

common-Ioc-exp { ± }

binary integer
string constant
assembler function
Commercial-Processor-edit-function
int-val-Iabel
(int-val-exp)

I common-Ioc-Iabel }
int-val-exp + (common-Ioc-exp)

$

In the previous form the $ is valid only if the Assembler's location counter type attribute is
common when the expression is processed.

A memory address referring to a common block is represented by the name of the common
block and an optional offset from the beginning of that common block.

The following example illustrates a common location expression. In the example COMMc is a
common location label and labels of the form V ALe are internal value labels.

Example:
«(COMMA +42)-(COMMA +80))- VAL2)*2+ X'IOOO' +COMMB

The expression in this example is evaluated as follows:

1. The difference between COMMA+42 and COMMA+80 is calculated.

2. The value associated with V AL2 is subtracted from the result of step 1.

3. The result of step 2 is multiplied by 2.

4. X'IOOO' is added to the result of the calculation in step 3.

5. The offset associated with COMMB is added to the result of step 4. This offset is then
associated with the name of the common block containing COMMB to complete the
evaluation of this expression.

ELEMENTS OF
ASSEMBLY LANGUAGE 2-16 CB07

ADDRESS EXPRESSIONS

An address expression specifies the addressing form used in an instruction. It contains special
character identifiers that are assembled into corresponding object code to control run-time
address development processes such as indirection and indexing.

The various forms of address expressions permitted by the Assembler are described in detail
in Section 5 (see "Addressing Techniques").

REFERENCES

References are the use of symbolic names as labels in assembly statements to refer to locations
or values.

The employment of references is dependent upon two conditions:

1. The resolution of labels by the two-pass Assembler. 2

2. The position of the referencing statement within the body of the program.

A simple rule may always be applied to determine the validity of a reference: the reference to a
label is legitimate if during the second assembly pass, at the point in the program where the
referencing statement is positioned, the value ofthe label being referred to, has been defined.

References may be made either forward or backward. A forward reference is a reference to a
label that is defined after the referencing statement. A backward reference is a reference to a
label defined in a statement before the referencing statement.

Further, forward or backward references may be categorized as either simple or complex. A
simple reference is a forward or backward reference to a label that is directly defined by the
referenced statement. A complex reference is a forward or backward reference to a label defined
by an equate (EQU) statement that in turn makes at least one additional reference.

Example:
References

A DC
G DC

LDR
LDB

WEQU
B EQU

LDR

LDR

E EQU
LDR

LDR

C EQU
D RESV
X DC

13
7
$Rl,A (Valid simple backward reference)
$Bl,X (Valid simple forward reference)
E
G
$R2,E (Invalid complex forward reference (label E not defined at this

point»
$R3,W (Invalid complex backward reference (label W can never be

defined in a two-pass assembly»
D
$R4,E

$R5,C

B
1
3

(Valid complex backward reference (label E has been
defined at this point»
(Valid complex forward reference (label C has been
defined in the first assembly pass»

Restrictions that apply to references are as follows:

1. All forward references to a label defined by a complex equate statement are invalid.

2. A forward reference in an origin (ORG) common (COMM) or a local common (LCOMM)
statement is invalid.

3. A forward reference in the first operand of a reserve (RESV) or conditional assembly
control IFxx statement is invalid.

4. A complex reference involving one or more intermediary equate statements making a
forward reference is invalid.

2 An assembly pass is a complete read of the source program.

ELEMENTS OF
ASSEMBLY LANGUAGE 2-17 CB07

/

(

(--

Section 3

Programming
Considerations

Before writing an assembly language source program, you should take into consideration
both features and constraints inherent in tl1e design of the Assembler and the system. This
section describes the considerations that should be made, as well as the various rules that must
be followed, when coding your source program. These include:

• Rules of formatting your source language statements

• Ordering of statements in an assembly language program

• Rules governing the calling of system services and external procedures

• Utility programs that supplement assembly language source programs

ASSEMBLY LANGUAGE SOURCE STATEMENT FORMATS

As mentioned in Section 2, the assembly language consists of Assembler controlling
statements and assembly language (operational) instructions. Assembly language source code
must be submitted to the Assembler in a recognizable format so that it can be interpreted
accurately. Therefore, when coding assembly language source statements, you must conform to
the following formatting conventions:

Columnl-.

{ ~beIA } opcode {Aoperand {~perand {~perand[.J}}}[ACOmment~]
hnenumA A;;
linenum-IabelA

The semicolon (;) indicates to the Assembler that the next operand is contained in the next
sequential source line (Le., the continuation statement), which has the following format:

I
Columnl +

[linenum][A]operand (:perand[o.Jj [Acomments] I
In addition to comments being included on individual assembly language source
statements, comment statements, which have the following format,_ can be included in the
source language program.

cOlumnl+

{:inenum*} comments
linenuml

The asterisk (*) indicates that the comment line is to be included in the listing wherever it is
included in the source language program. The slash (I) indicates that the Assembler is to cause
the printer is to skip to the top of the next page of the listing before printing the comment.
Printing oflines can be overridden by the inclusion of an NLST Assembler control statement in
the source code (see Section 4).

In the above formats, label is any user-specified tag, linenum is any user-specified line
number, linenum-Iabel indicates a line number followed by a label with no intervening spaces,
opcode and operand indicate the required assembly language fields described in Sections 4
through 7, and blank (A) indicates that one or more blanks or horizontal tab characters must be

PROGRAMMING CONSIDERATIONS 3-1 CB07

coded. Any number of blanks and/or horizontal tab characters can follow a comma (,). A line
number. is an unsigned decimal integer of any length. Line numbers are ignored by the
Assembler.

Except for the order in which information must be supplied, the source language format is a
free-form. However, it is suggested that you establish a fixed format for coding source
statements (e.g., always starting op codes in the eleventh position and operands in the twenty­
first) so that you can read your listing more easily.

ORDER OF STATEMENTS IN SOURCE PROGRAM

With the following exceptions, Assembler control statements can be entered in any order:

1. The TITLE statement must be the first statement in the source program.

2. The END statement must be the last statement in the source program.

CALLING SYSTEM SERVICES

. System services (e.g., the Task Manager) can be requested through the use of monitor service
calls and macro calls. For information concerning requests for system services see the System
Services Macro Calls manual.

CALLING EXTERNAL PROCEDURES

Procedures that are assembled separately from the invoking procedure are designated
external procedures.

The individual elements of data passed to an external procedure are known as arguments. The
external procedure interprets these arguments as parameters; to the external procedure, the
order of the parameters is the same as the order of the arguments passed from the invoking
procedure.

External procedures can be requested by coding request sequences such as the following:

LAB $B7,arglist
LNJ $B5, <entry

In the above sequence, 'entry' is the external label of the appropriate entry point of the called
(external) procedure, and 'arglist' is the argument list to be passed to the called (external)
procedure.

Alternatively, you could use a request such as the following:

CALL entry,argl,arg2, ...

This request is similar to the preceding sequence except that the CALL Assembler control
statement automatically generates the argument list, loads its address into B7, and sets the
return address in B5. As a result, when the external procedure completes its work, control is
returned to the next sequential instruction or statement in the calling program.

ALTERNATE METHOD OF HANDLING
INPUT/OUTPUT AND FILE MANIPULATION

InputJoutput and file manipulation can be accomplished by writing Assembler routines or by
using monitor service requests. Details concerning monitor service requests are contained in
the System Service Macro Calls manual.

ASSEMBLER

The Assembler processes source statements written in assembly language, translates the
statements into object code, and produces a listing of the source program together with its
associated assembly information.

The Assembler accepts arguments that allow you to control its operation in various ways.
Detailed information about the Assembler and its arguments can be found in the Program
Preparation manual.

PROGRAMMING CONSIDERATIONS 3-2 CB07

CROSS-REFERENCE LISTING

When a source program is assembled, the Assembler produces a cross-reference listing, if the
proper option is specified in the command invoking the Assembler. This list itemizes all labels
and symbols in the source module and flags labels that are undefined or defined more than once.

SAF/LAF CONSIDERATIONS

For execution in a Mod 400 systems, assembly language programs may be in either the long
address form (LAF) or the short address form (SAF). In some circumstances it may be desirable
to create an assembly language program that can be executed in both SAF and LAF configura­
tions. For instructions on writing such a program, see Program Preparation manual.

REENTRANCY CONSIDERATIONS

A program is defined as reentrant, if a single copy ofthe code portion of a bound unit can be
simultaneously executed by several tasks, which may be in the same task group or different task
groups. GCOS 6 software is designed to facilitate the writing of reentrant programs. See
Program Preparation manual.

PROGRAMMING CONSIDERATIONS 3-3 CB07

.,;

(
'~'

./

Section 4

Assembler Control Statements

Every assembly language program must contain, in addition to the assembly language
instructions, a set of instructions that tells the Assembler about the program. These Assembler
control statements, most of which are not assembled into the object text, provide information to
the Assembler for:

• Controlling the assembly of the program

• Controlling the listing of assembly language instructions and Assembler control state­
ments

• Defining constants to be used by the program ..
• Defining main memory storage and/or work areas

• Defining symbols

• Linking programs

• Conditionalizing the assembly of various parts of a program

Assembler control statements must be coded as described in Section 3 (see "Assembly
Language Source Statement Formats"), except that some explicitly prohibit the use of labels.
For that reason, each Assembler control statement described in this section identifies labels
where they are required or permitted; when not shown under "Source Language Format" labels
are not allow

ASSEMBLY-CONTROLLING STATEMENTS

Assembly-controlling statements tell the Assembler where the beginning and end of each
program are; they also set the Assembler's location counter.

The following statements are the assembly-controlling subset of Assembler control state­
ments:

• BORG
• END
• ORG
• TITLE

LIST -CONTROLLING STATEMENTS
List-controlling statements control the listing of an assembly language source program via a

printer, disk, or user's terminal. The following statements are available to provide this function:
function:

• CLST
• LIST
• NLST

DATA-DEFINING STATEMENTS
Data-defining statements are required to define data used in the program. The Assembler

assigns this data to memory locations at the exact point at which they are defined. The following
statements are the data-defining subset of the Assembler control statements:

• ARGLST
• BTEXT
• DC
• PrRAY
• TEXT

ASSEMBLER CONTROL STATEMENTS 4-1 CB07

I

I

STORAGE-ALLOCATION STATEMENTS

Storage-allocation statements direct the Assembler to make areas of memory available for
use as storage and/or work space. This subset of the Assembler control statements consists of the
following statements:

• COMM

• LCOMM

• RESV

SYMBOL-DEFINING STATEMENTS

Symbol-defining statements assign specific meanings to given symbolic names; they also may
identify symbolic names defined outside the program but used within it. The assembler control
statements provided to support the symbol-defining function are:

• EQU
• XLOC

• XVAL

PROGRAM-LINKING STATEMENTS

Large programs are often written as several separately assembled or compiled smaller
programs. At execution time, it is necessary for these separately assembled or compiled prog­
rams to establish communication links. The linking processes (see the Program Execution and
Checkout manual) use information from the following program-linking statements to assign
final addresses and/or data values to be used by the separately assembled or compiled proce­
dures (i.e., programs) common to a single bound unit:

• CALL

• CALL2

• CTRL

• EDEF

• XDEF

CONDITIONAL ASSEMBLY-CONTROL STATEMENTS

Conditional assembly-control statements allow a comprehensive source program to be writ­
ten to cover many situations. Then, during assembly, they can direct the Assembler to assemble
or inhibit assembly of particular assembly language instructions (and/or groups of assembly
language instructions) when specific conditions occur. The following statements provide the
Assembler with information for conditional assembly:

• FAIL

• IF
• NULL

OPERATION CODE-DEFINING STATEMENT

• DEFGEN

ASSEMBLER CONTROL STATEMENTS

The remainder of this section lists and describes the Assembler control statements in
alphabetical order. The descriptions include the expanded name of the statement, its source
language format (including the label field, where it is permitted or required), a detailed
description of what the statement does, and a description of each of its operands.

Information about the various symbolic names identified in the statements is contained in
Section 2.

ASSEMBLER CONTROL STATEMENTS 4-2 CB07

(

('

ARGLST

Instruction:

Create argument list

Source Language Format:

[label]aARGLSTaargl [,arg2] ...

Description:

ARGLST

Creates a word containing an arbitrary constant whose bits 9 through 15 specify the value
(M*$AF+ 1), where M is the number of arguments. This arbitrary constant is followed by the
relocatable address of each argument in the statement. The relocatable addresses are the same
as though the following DC statement was coded after the arbitrary constant.

[label]aDCa <argument 1[, <argument 2] ...

If the Assembler is invoked with the SLIC argument, this instruction will also identify the
resulting object text as being an argument list. The SLIC (SAF/LAF Independent Code) argu­
ment must be used if compilation units produced by the Assembler is to run in both SAF and
LAF configurations.

The maximum number of arguments that can be specified in an ARGLST instruction is 31. The
ARGLST instruction facilitates the writing of reentrant programs by allowing the arguments to
be separated (i.e., placed in a different segmented address space) from the calling statement.
(See the Program Preparation manual for instructions on writing reentrant programs.)

ASSEMBLER CONTROL STATEMENTS 4-3 CB07

BORG

BORG

Instruction:

Byte Origin

Source Language Format:

I common-location-expression }
[label]aORGa

internal-location-expression

Description:

Sets the byte indicator to the odd (i.e., right) byte and assigns the attributes and value of the
operand to the location counter (Le., if the operand is a common location expression, the location
counter type attribute is set to common. If the operand is an internal location expression, the
location counter type attribute is internal). The initial value ofthe Assembler's location counter
is internal location o. The initial value of the Assembler's byte indicator is the even (i.e., left)
byte.

The label field and operands have the following meanings:

label
If specified, the label will be assigned the value contained in the location counter before the
new value is assigned to the location counter.

common-location-expression
Sets the location counter type attribute to common and sets the location counter value to the
specified offset in the common block. Temporary labels cannot be defined while the location
counter has the common attribute.

internal-location-expression
Sets the location counter type attribute to internal and sets the location counter to the
specified value of the location expression (see Section 2 for a description of common location
and internal location expressions). Regardless of the type attribute of the expression
specified in the operand, it must not contain a forward reference.

ASSEMBLER CONTROL STATEMENTS 4-4 CB07

/'

(/

BTUT
Instruction:

Allocate space for text

Source Language Format:

{string-constant }
[label]d BTEXT d Commercial-Processor-

Description:
edit-function

[{,string-constant }
, Commercial-Processor­

edit-function

BTEXT

[, ... J]

Causes the Assembler to allocate the binary representation of the successive string constants,
and/or edit functions concatenated into the fewest number of bytes (Le., packed). The Assembler
inserts "slack bits" (O's) between successive operands as necessary. Each ASCII string constant
or edit function begins at a bit position that is a multiple of 8; each hexadecimal string constant
begins at a bit position that is a multiple of 4; bit string constants have no slack bits inserted.

If the last byte occupied by the concatenated string is not exactly full, the remaining bits are
zero-filled. The first byte of the concatenated string is allocated at the object memory byte
location indicated by the Assembler's location counter and byte indicator. Following processing
of the Byte Text statement, the values of the location counter and byte indicator indicate the
object memory byte location of the first byte following the concatenated string allocated by the
BTEXT statement.

NOTE: When the byte indicator indicates the odd (right) byte, BTEXT is the only memory­
allocating assembly language statement allowed.

ASSEMBLER CONTROL STATEMENTS 4-5 CB07

CALL

CAll

Instruction:

Call external procedure

Source Language Format:

[label]aCALU[obj-mod-name.]entry[,argl [, ... ,arg3l]]

Description:

Initiates a transfer of control to a specified external subroutine and causes that subroutine to be
linked with the calling procedure.

The operands have the following meanings:

obj-mod-name.

If specified, it is the object text name of the external procedure; otherwise, it is assumed to
have the same name as the entry point (entry).

entry

Identifies the entry point in the procedure to which control is transferred.

argl, ... ,arg3l

If specified, provides addresses of arguments to be passed. The maximum number of arguments
is 3l.

If the argument list is not included, the CALL statement is broken down by the Assembler as
follows:

CTRL
XLOC
LAB
LNJ

LINK obj-mod-name
entry
$B7,= 1
$B5,<entry

If the argument list is included, the CALL statement is broken down as follows:

CTRL LINK obj-mod-name
XLOC entry
LAB $B7,$+$AF+3
LNJ $B5, <entry
B >$+n*$AF+ 1
DC <argl[, <arg2] ...

The entry name in the XLOC statement shown in the breakdowns is not entered into the
Assembler's symbol table, and ceases to exist after the LNJ instruction is executed. The term n,
shown in the B-instruction in the second breakdown is an internally computed constant equal to
the number of arguments specified in the CALL statement; this makes it possible for the
Assembler to branch around the DC statement(s).

If the assembler is invoked with the "SLIC" control argument, it will identify the object unit text
resulting from the branch and DC statements in the second breakdown as being an argument
list. Additional information about calling external procedures may be found in the Program
Preparation manual.

ASSEMBLER CONTROL STATEMENTS 4-6 CB07

',,-

CALL2

Instruction:

Call external procedure.

Source Language Format:

Dabel]aCALL2a[obj-mod-name.]entry,address-expression

Description:

CALL2

Initiates a transfer of control to a specified external subroutine, causes that subroutine to be
linked with the calling procedure, and generates the address of a list of arguments to be made
available to the called subroutine. The argument list is normally generated by the ARGLST
statement which is previously described in this section.

The operands have the following meanings:

obj-mod-name.
Ifspecified, it is the object text name of the external procedure; otherwise, it is assumed to
have the same name as the entry point (entry).

entry
Identifies the entry point in the procedure to which control is transferred.

address-expression
Generates the address of the argument list. The address expression must be one of the forms
valid in a LAB instruction.

The CALL2 statement is broken down as follows:

CTRL LINK obj-mod-name
XLOC entry
LAB $B7,address-expression
LNJ $B5, <entry

The entry name in the XLOC statement shown in the breakdown is not entered into the
Assembler's symbol table and ceases to exist after the LNJ instruction is assembled.

ASSEMBLER CONTROL STATEMENTS 4-7 CB07

CLST

CLST

Instruction:

Conditional Listing

Source Language Fonnat:

[label]aCLSTaint-val-expression

Description:

If the internal value expression is ~ 0, the CLST statement does not appear in the assembly
listing. If the internal value expression is < 0, the CLST statement appears in the assembly
listing with an error flag (Z-conditional assembly error). The comment field may be used to
provide additional information concerning the error. The label of a CLST statement is not
entered into the Assembler's symbol table.

ASSEMBLER CONTROL STATEMENTS 4-8 CB07

' .. /

(

(

COMM

Instruction:

Define common block

Source Language Format:

[label]aCOMMaint-val-exp

Description:

Allows you to define a common block compatible with FORTRAN common areas.
The label field and operands have the following meanings:

label

COMM

If specified, the common area is given that name; otherwise, it is unlabeled (i.e., blank)
common, and is given the symbolic name $COMM (by implication).

NOTE: Temporary label definition is prohibited when ORG has been performed in a common
block.

int-val-exp
Specifies the size (in words) ofthe common area. The Linker (see the Program Execution and
Checkout manual) assigns all common blocks with the same name to the same memory area
regardless of the memory location in the source program at which they are defined (i.e., the
COMM statement does not alter the Assembler's location counter).

int-val-exp is an internal value expression (see Section 2), and must be defined prior to the
occurrence of this COMM statement. It must not contain a forward reference. Elements in a
common block can be referenced by the name of the common block plus the element's
displacement within the block.

ASSEMBLER CONTROL STATEMENTS 4-9 CB07

CTRL

CTRL

Instruction:

Pass control infonnation to Linker

Source Language Fonnat:

aCTRLalinker-directive(s)

Description:

Provides a method of passing Linker directives from the source program to the Linker (see the
Program Execution and Checkout manual for a description of the Linker).

The operand has the following meaning:

linker-directive(s)
Specifies data to be passed verbatim to the Linker as part of the program's object text (i.e., it
i~ not verified by the Assembler).

ASSEMBLER CONTROL STATEMENTS 4-10 CB07

(

c

DC

DC

Instruction:

Defme Constants

Source Language Format:

[label]aDCaoperand l[,operand 2] ...

Description:

Defmes data to be included in the object text. The Assembler interprets the constants, converts
them to the proper binary representation, and assigns them to successive memory locations at
the exact point at which the DC statement appears in the source program.

The operands of the DC statement must conform to one of the following formats:

Format 1:

{ lOcation-expression}
< {±J temporary-label

Causes a 1- or 2-word address pointer, as appropriate to be allocated.
Format 2:

(
lOcation-expression}

{±} temporary-label

Causes a I-word displacement from the ourrent location to the specified location to be
allocated.

Format 3:
(e.g., int-Ioc-expression produces the same results as int-Ioc-expression - $)

[=] {string-constant }
decimal-integer-constant

Constants are padded if necessary to make an integral number of words; the padded value is
allocated to memory. ASCII string co~stants are padded by appending a space.
Hexadecimal and bit string constants and decimal integer constants are padded by a
sufficient number of zero bits.

Format 4:
[=] {int-val-express~on}

ext-val-expressIOn

Causes a I-word binary integer to be allocated.
Format 5:

[=] fixed-point-constant

Causes a 1- or 2-word fixed point value to be allocated. If the precision of the constant is from
1 through 15, one word is allocated; if the precision is from 16 through 31, two words are
allocated.

Format 6:
[=] floating-point-constant

Single precision floating-point constants cause a 2-word value to be allocated.

Double precision floating-point constants cause a 4-word value to be allocated.

Floating-point constants are described in Section 2.
Format 7:

[=] Commercial-Processor-data-descriptor

Causes the allocation of a 2-word data descriptor.

ASSEMBLER CONTROL STATEMENTS 4-11 CB07

DEFGEN

Format 8:
complex-label

Processed as described above for a format 1, 4, or 5 operand, depending on whether the label
has been equated to a direct IMA address expression, an external value IMO address
expression, an internal value IMO address expression, a short fixed point constant IMO
address expression, or a Commercial Processor data descriptor funtion, respectively. A
complex type label equated to any other address expression is illegal.

The number of operands is limited only in that the address space of a single program is restricted
to relative locations 0 through 32767.
DEFGEN

Instruction:

Defme generic operation code

Source Language Format:

label~DEFGEN~int-val-expression

Description:

Allows the user to create operation codes that specify generic instructions
The name (specified by label) is declared to be a one-word generic instruction (specified by
int-val-expression).

The DEFGEN statement is designed for use with the Writeable Control Store. However, the
presence of the Writeable Control Store is not esse~tial for its use.

The DEFGEN statement must precede any instruction that references the label.

A Honeywell mnemonic for an assembly instruction may be specified as a label. (See
example below.) In this case, the user defined instruction is executed whenever it
subsequently occurs (rather than the instruction specified by the Honeywell mnemonic).

Example:

The assembly language instruction NOP is a one-or two-word instruction that requires an
address expression. For a source program that uses one-word NOP's in the same way
throughout, the NOP may be redefined to give the appearance of a generic instruction.
Assume a source program that repeatedly uses the following instruction: NOP~>$+2. This
is a one-word instruction whose assembled value is OF02. NOP can be redefined as follows
by the DEFGEN statement and thereafter used without including an address expression.

NOP DEFGEN Z'OF02'

NOP

ASSEMBLER CONTROL STATEMENTS 4-12 CB07

, /

(

EDEF

EDEF

Instruction:

External label definition - For use with Linker and Loader

Source Language Format:

aEDEFa {1~:~1_2' I int-Ioc-exp I)}
\' int-val-exp .

[... J

Description:

Identifies labels to be made available to external procedures. These labels can than be referred
to through XLOC and XV AL statements in the external procedures. The occurrence of a label in
an EDEF statement does not define that label for use elsewhere within that program. (The label
is not entered into the Assembler's symbol table.)

The operands have the following meanings:

label-l
Identifies a label, defined elsewhere in the source program, as an internal location label or
internal value label (see Section 2), that can be referred to by the same name in a
separately assembled program through an XLOC or XV AL statement.

label-2

~abel-2, I int-Ioc-exp I)
\ int-val-exp

int-Ioc-exp and int-val-exp are internal location or internal value expressions, respectively,
which are evaluated by the Assembler, with the resulting value and type being associated
with the label. The label can be referred to by a separately assembled program through an
XLOC or XVAL statement.

Regardless of which form of the operands is used, the Assembler evaluates the label and
generates a type and value attribute to be associated with the label. The results of this
evaluation are passed to the Linker with the object text for use during the linking process
and subsequently passed to the Loader to be included as part of the bound unit being created
(see Program Execution and Checkout manual).

Notes:
1. It is not necessary for all labels identified through the EDEF statement to be

referred to by an external program.

2. If a label is not identified to an external procedure by an EDEF statement, the
label can be identified in the bound unit at link time by the EDEF directive to
the Linker, provided it has been defined via the XDEF statement.

3. If a label is not identified to the Linker by either the EDEF or XDEF statement, it
may be identified to the Linker via the LDEF or VDEF Linker directive as
appropriate. It then may be subsequently identified to the bound unit with
the EDEF Linker directive.

ASSEMBLER CONTROL STATEMENTS 4-13 CB07

END

END

Instruction:

End of program

Source Language Format:

.:1END.:1program-name[,internal-location-expression]

Description:

Identifies the end of the assembly language program. Statements subsequent to this statement
will be ignored by the Assembler. If this statement is missing, the Assembler will generate an
END statement.

The operands have the following meanings:

program-name
Must be the same program name specified in the source program's TITLE statement.

internal-location-expression
If specified, it identifies the program's normal entry point. (See "Expressions" in Section 2
for a description of internal location expressions.)

ASSEMBLER CONTROL STATEMENTS 4-14 CB07

(

EQU

Instruction:

Equate

Source Language Format:

location-expression
value-expression
address-expression

labelaEQUa

Description:

complex-label
identifier
single precision fixed-point-constant

EQU

Assigns the value identified in the operand field, together with all of its associated attributes, to
the label.

The operands have the following meanings:

single-precision-fixed-point-constant
location-expression
val ue-expression

The label is treated by the Aflsembler as the same type as the operand (see "Expressions" in
Section 2).

address-expression
complex-label

The label is treated as a complex type (see "Expressions" and "Labels" in Section 2).

Note:
Complex labels cannot contain Commercial Processor address expressions.

Complex labels cannot contain direct or indirect B6 relative plus local common block I
plus displacement addressing (see "B-relative addressing" in Section 5).

identifier
The label is treated as an identifier that is equivalent to this one (see "Identifiers" in
Section 2).

ASSEMBLER CONTROL STATEMENTS 4-15 CB07

FAIL

FAIL

Instruction:

Identifies a statement that should never be assembled.

Source Language Format:

[label]..:1F AIL

Description:

If the FAIL statement is assembled, an Assembler error flag CZ-conditional assembly error) is
generated. The FAIL statement is used in conditional assemblies to ensure that the prevailing
conditions are logically consistent.

If the statement is labeled, the label is not entered into the Assembler's symbol table; as a result,
it can be referred to only by a preceding IF statement.

ASSEMBLER CONTROL STATEMENTS 4-16 CB07

IF

IF

Instruction:

Conditional skip

Source Language Format:

[mbclJdIFi: {H14mt-vru~xpreSffiO~ mbel

Description:

If the speciijed condition is met, the Assembler skips subsequent statements until the label is
encountered; otherwise, the next sequential instruction is processed. (0 is neither positive nor
negative.)

The opcode is interpreted as follows:

IFP
Skip to label if int-val-expression is positive (Le. > 0).

IFNP
Skip to label if int-val-expression is not positive (Le. ,;;; 0).

IFN
Skip to label if int-val-expression is negative! (i.e. <;: 0).

IFNN
Skip to label if int-val-expression is not negative (i.e. ~ 0).

IFZ
Skip to label if int-val-expression is zero.

IFNZ
Skip to label if int-val-expression is not zero.

IFOD
Skip to label if int-val-expression is odd.

IFEV
Skip to label if int-val-expression is even.

The operands have the following meanings:

int-val-expression
Internal value expression (see "Expressions" in Section 2); forward references are not
permitted.

label
Label (see "Labels" in Section 2) identifYing the next statement or instruction to be
processed by the Assembler if the condition is met.
If a label is specified, it is not entered in the Assembler's symbol table; as Ii result, it can be
referred to only by a preceding IF statement.

Example:
IFNZ AND($SW,Z'4000'),SKIPIT

External Switch 1 is checked. If it is set the Assembler skips the subsequent statements
until the label SKIPIT is encountered. If External Switch 1 is not set, the Assembler goes to
the next lie of assembly code. This is an example of varying an assembly"procedure without
altering the assembly language source program.

ASSEMBLER CONTROL STATEMENTS 4-17 CB07

LCOMM

LCOMM

Instruction:

Define local common block

Source Language Format:

labeIaLCOMMaint-val-exp

Description:

Provides a way for a block of data local to a program to be allocated not by the Assembler, but by
the Linker using standard linking procedures for allocating common blocks. The data allocated
by use of the LCOMM statement is not shared.

The label field and operands have the following meanings

label
The name of the common area.

NOTE: LCOMM does not allow a temporary label to be specified.

int-val-exp
Specifies the size (in words) of the common area. The Linker (see the Program Execution and
Checkout manual) assigns all common blocks with the same name to the same memory area
regardless of the memory location in the source program at which they are defined (Le., the
LCOMM statement does not alter the Assembler's location counter). In the case of a local
common block, the Linker removes the name of the local common block from its symbol
table after it has linked the program which defined the local common block.

\

int-val-exp is an internal value expression (see Section 1), and must be defined prior to the
occurrence of this LCOMM statement. It must not contain a forward reference. Elements in
a common block can be referenced by the name of the common block plus the element's
displacement within the block.

ASSEMBLER CONTROL STATEMENTS 4-18 CB07

(

(

LIST

Instruction:

List following source statements

Source Language Format:

~T

Description:

LIST

Causes subsequent assembly language instructions and Assembler control statements to be
included on the assembly listing. Listing of the statements continues until the end of the
program or until an NLST Assembler control statement is encountered.

ASSEMBLER CONTROL STATEMENTS 4-19 CB07

NLST

NLST

Instruction:

Inhibit listing of following source statements

Source Language Format:

aNLST

Description:

Prevents subsequent assembly language instructions and Assembler control statements from
being included in the assembly listing. Listing of the statements continues to be inhibited until
the end of the program or until a LIST Assembler control statement is encountered.

This statement overrides the use of * or / comment source statements (see Section 3).

ASSEMBLER CONTROL STATEMENTS 4-20 CB07

(

, NULL

Instruction:

No effect; processing continues

Source Language Format:

[label]ANULL

Description:

Has no effect on the assembly process.

NULL

This Assembler control statement is commonly used to define a label referred to by an IF
statement. Processing continues with the next sequential instruction.

If the statement is labeled, the label is not entered into the Assembler's symbol table; as a result,
it can be referred to only by an IF statement.

ASSEMBLER CONTROL STATEMENTS 4-21 CB07

ORG

ORG

Instruction:

Origin

Source Language Format:

[label]~ORG~

Description:

{ cOmmOn-location-expression}
internal-location-expression

Sets the byte indicator to the even (Le., left) byte and assigns the attributes and value of the
operand to the location counter (Le., if the operand is a common location expression, the location
counter type attribute is set to common. If the operand is an internal location expression, the
location counter type attribute is internal). The initial value of the Assembler's location O. The
initial value of the Assemblers byte indicator is the even (Le., left) byte.

The label field and operands have the following meanings:

label
If specified, the label will be assigned the value contained in the location counter before the
new value is assigned to the location counter.

common-location-expression
Sets the location counter type attribute to common and sets the location counter value to the
specified offset in the common block. Temporary labels cannot be defined while the location
counter has the common attribute.

internal-location-expression
Sets the location counter type attribute to internal and sets the location counter to the
specified value of the location expression (see Section 2 for a description of common location
and internal location expressions). Regardless of the type attribute of the expression
specified in the operand, it must not contain a forward reference.

ASSEMBLER CONTROL STATEMENTS 4-22 CB07

(

(

PTRAY

Instruction:

Create pointer array

Source Language Format:

[label].::lPTRA Yalocation-expl [,location-exp2] ...

Description:

PrRAY

Creates an array of pointers. The address of a memory word is referred to as a pointer. Pointers
may occur at the level of machine language both as direct addresses and as indirect addresses.

The Assembler generates the object unit code as if the statement were transformed into the
following DC statement.

[label]aDCa < location-expl [, <location-exp2] ...

If the Assembler is invoked with the SLIC argument, it will also identify the object unit text
resulting from the PTRA Y statement as being a pointer array. This is necessary so that in
loading a SLIC program, the Loader will compress addresses if executing in SAF mode.

ASSEMBLER CONTROL STATEMENTS 4-23 CB07

RESV

RESV

Instruction:

Reserve main memory space

Source Language Format:

[label]aRESVaint-val-expa[,int-val-expb]

Description:

Reserves space in main memory for use by the bound unit as work or storage space.

The label field and operands have the following meanings:

label
If specified, the first word of the reserved area is given that name.

int-val-expa
This is an internal value expression (see Section 2) that specifies the size (in words) of the
reserved area. It must not contain a forward reference.

int-val-expb
If specified, it is an internal value expression (see Section 2) specifying the initial value to
which each word in the reserved area is initialized when the bound unit is loaded. If this
operand is not specified, the contents of the reserved area are undefined.

ASSEMBLER CONTROL STATEMENTS 4-24 CB07

TEXT
Instruction:

Allocate space for text

Source Language Format:

[1 b l]aTEXTa {String-constant }
a e Commercial Processor-edit-function

[{ ,string-constant }]
,Commercial Processor-edit-function [, ...]

Description:

TEXT

Causes the Assembler to allocate the binary representation of the successive string constants,
and/or edit functions concatenated into the fewest number of words (i.e., packed). The Assembler
inserts "slack bits" (O's) between successive operands as necessary. Each ASCII string constant
or edit function begins at a bit position that is a multiple of 8; each hexadecimal string constant
begins at a bit position that is a multiple of 4; bit string constants have no slack bits inserted. If
the last word occupied by the concatenated string is not exactly full, the remaining bits are
zero-filled.

ASSEMBLER CONTROL STATEMENTS 4-25 CB07

TITLE

TrrLE

Instruction:

Start of program

Source Language Format:

a TITLEaprogram-name[,rev-number] [a page-header]

Description:

Identifies the beginning of the assembly language source program. This statement is required.

The operands have the following meanings:

program-name
Name by which the source program can be referred to. The name must conform to the
following rules:
1. One through six characters (A through Z, 0 through 9, $ or _ (underscore».
2. First character must be one of the· following:

a. $
b. A,B, ... ,Z

3. The lowercase letters are considered to be equivalent to the corresponding uppercase
letters.

rev-number
Optional operand identifying the revision number of the program. It must be an ASCII
string constant of one through eight characters in length.

page-header
Optional comment line that will appear at the top of each page in the assembly listing
(together with the revision number). Up to 20 characters are permitted.

ASSEMBLER CONTROL STATEMENTS 4-26 CB07

•

,

XDEF

XDEF

Instruction:

External label definition - For use with Linker only.

Source Language Format:

~.xDEF.!l {la~bel-l I int-Ioc-exp))}
label-2,

int-val"exp
[... J

Description:

Identifies labels to be made available to external procedures. These labels can then be referred to
through XLOC and XV AL statements in the external procedures. The occurrence of a label in an
XDEF statement does not define that label for use elsewhere within that program (the label is
not entered into the Assembler's symbol table).

The operands have the following meanings:

label-l
Identifies a label, defined elsewhere in the source program, as an internal location label or
internal value label (see Section 2), that can be referred to by the same name in a separately
assembled program through an XLOC or XV AL statement.

habel-2, lint-Ioc-eXp))

\ int-val-exp

int-Ioc-exp and int-val-exp are internal location or internal value expressions, respectively,
which are evaluated by the Assembler, with the resulting value arid type being associated
with the label. The label can be referred to by a separately assembled program through an
XLOC or XVAL statement. '

Regardless of which form of the operands is used, the Assembler evaluates the label and
generates a type and value attribute to be associated with the label. The results of the
evaluation are passed to the Linker with the object text for use during the linking process (see
the Program Execution and Checkout manual). The results ofthe evaluation are not, however,
passed to the Loader.

Notes:

1. It is not necessary for all labels identified through the XDEF statement to be referred
to by an external program.

2. If a label is not identified to an external procedure by an XDEF statement, the label can
be defined at link time by the LDEF or VDEF command to the Linker.

3. If the label definition is to be passed to the Loader, use EDEF in lieu of XDEF.

ASSEMBLER CONTROL STATEMENTS 4-27 CB07

XLOC

XLOC

Instruction:

Defme external locations to be referenced

Source Language Format:

aXLOCalabela[,labelb] ...

Description:

Identifies labels associated with locations in programs assembled separately from this program
(i.e., external procedures), but used in this program. The same external location may be defined
by XLOC statements more than once in an assembly language program.

The external program must identify the labels in an XDEF or EDEF Assembler control
statement or by an equivalent means in other programming languages.

The operands have the following meanings:

label
Identifies the external location label(s) (see Section, 2) used in this program.

ASSEMBLER CONTROL STATEMENTS 4-28 CB07

XVAL

Instruction:

Defme external values to be referenced

Source Language Format:

AXV ALAlabela[,labelb] ...

Description:

XVAL

Identifies labels associated with values in programs assembled separately from this program
(Le., external procedures), but used in this program. The same external value may be defined by
XV AL statements more than once in an assembly language program.

The external program must identify the labels in an XDEF or EDEF Assembler control
statement or by an equivalent means in other programming languages.

The operands have the following meanings:

label
Identifies the external value label(s) (see Section 2) used in this program.

ASSEMBLER CONTROL STATEMENTS 4-29 CB07

~-------------

Section 5

Assembly Language
Instructions

The assembly language instruction set provides the means by which you can write your source
programs. These assembly language instructions, which are assembled into object text, enable
you to perform the following types of operations:

• Arithmetic

• Boolean

• Branching

• Comparison

• Controlling

• Input/Output

• Loading

• Memory Management

• Modification

• Move
• Queue management

• Shifting

• Stack management

• Storing

• Swapping
The following assembly language operations can execute only if the central processor is in the

privileged state:

ASD
CNFG
HLT
10

10H
10LD
LEV
RTCF

RTCN
WDTF
WDTN

The following paragraphs identify which of the assembly language instructions are included
in each of the above operations. However, detailed information about each of the instructions is
contained in the alphabetical list of instructions later in this section.

In addition to identifying the assembly language instructions by operation, they are also
listed by type (e.g., double operand). The various types can be distinguished not only by their op
codes, but by their formats; therefore, the valid format for each type of instruction is included in
the description of each type of instruction. However, the detailed format of each instruction is
not shown, since the format used must conform to that described in Section 3.

ARrrHMETIC OPERATIONS

The following assembly language instructions perform arithmetic operations (Add, Subtract,
Multiply, Divide):

ADD INC
ADV MLV
AID! MUL
CAD NEG
DEC SID!
DIV SUB

lInstruction is executable only on the 6/40 and 6/50 models.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-1 CB07

I
I

I

I

I

I

BOOLEAN OPERATIONS

Boolean operations (Inclusive OR, Exclusive OR, AND, and NOT) are provided through the
following assembly language instructions.

AND OR XOH
ANH ORH XOR
CPL

BRANCH OPERATIONS

The following instructions exist to support branching operations (Branch if ... Branch uncon-
ditionally). This subset comprises following: .

B BEVN BLEZ
BAG BEZ BLZ
BAGE BG BNE
BAL BGE BNEZ
BALE BGEZ BNOV
BBF BGZ BODD
BBT BINC BOV
BCF BIOF BSE
BCT BlOT BSU
BDEC BL NOP
BE BLE

COMPARE OPERATIONS

The following assembly language instructions perform the comparison operation (Compare X
to y):

CMB CMR
CMH CMV
CMN CMZ

CONTROL OPERATIONS

Control instructions affect the flow of an assembly language program. They provide a means
of entering trap handlers, starting and stopping hardware clocks, passing control to system
service routines or external pI:ocedures, and jumping. This subset comprises the following:

BRK
CNFQ2
ENT
HLT
JMP

LEV
LNJ
MCL
RTGF
RTCN

RTT
WDTF
WDTN.

INPUT/OUTPUT OPERATIONS

The following assembly language instructions are provided to support the input/output
operations:

10 10H 10LD

LOAD OPERATIONS

Load operations are provided through the following instructions:

LAB LBT LDR
LB LDB LDV
LBC LDH LLH

I LBS LDI LRDB2
RSTR

I 2Instruction is executable only on the 6/40 and 6/50 models.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-2 CB07

;I

(

MEMORY MANAGEMENT OPERATIONS

The following assembly language instructions are provided to support the memory manage­
ment operations:3

ASD VLD

MODIFY OPERATIONS

Modification (Clear Memory, Increment or Decrement the Contents of a Memory Location)
operations are provided by the following assembly language instructions:

CL CLH MTM

MOVE OPERATION

The following instruction performs a move operation:

MMM4

QUEUE OPERATIONS

Programmer's reference information for queue instructions are in Appendix J.

The following assembly language instructions are provided to support queue operations:5

DQA QOH
DQH QOT

SHIFT OPERATIONS

Shift operations are achieved through the following assembly language instructions:

DAL
DAR
DCL
DCR

DOL
DOR
SAL
SAR

STACK OPERATIONS

SCL
SCR
SOL
SOR

Programmer's reference information for stack instructions are in Appendix K.

The following assembly language instructions are provided to support stack operations:6

ACQ RLQ
LDT STT

STORE OPERATIONS

The following assembly language instructions are available to store the contents of specific
registers in main memory or other registers:

SAVE STB STR
SDI STH STS
SRDB STM
SRM

SWAP OPERATIONS

Swapping (i.e., exchanging) is supported through the following:

SWB SWR

3Memory management operations require a Memory Management Unit which is available only on the 6/40 and 6/50
models.

4Instruction is executable only on the 6/40 and 6/50 models.
S'fhe hardware required for queue operations is available only with the 6/40 models.
lIThe hardware required for stack operations is available only with the 6/40 models.

A~EMBLY LANGUAGE INSTRUCTIONS 5-3 CB07

I

I

I
I

ASSEMBLY LANGUAGE INSTRUCTION TYPES

In addition to identifying assembly language instructions by the operations they perform,
they can be classified by type:

• Branch-on-indicator (BI)·

• Branch-on-register (BR)

• Double operand (DO)

• Generic (GE)

• Input/output (10)

• Shift (SHS and SHL)

• Short-value-immediate (SI)

• Single operand (SO)

BRANCH-ON-INDICATOR (BI) INSTRUCTIONS

Branch-on-indicator (BI) instructions have the following source language format:

[label]~opcode~address-expression

The opcode identifies the I-register bites) to be tested for a specific condition.

The address-expression identifies the address of the next instruction to be executed if the
condition exists. It must specify one of the following addressing forms (see "Addressing
Techniques" in this section):

• Direct Immediate memory address

• Direct P-relative

• Short displacement

The BI instructions are included in the alphabetical list of assembly language instructions
later in this section~

BRANCH-ON-REGISTER (BR) INSTRUCTIONS

Branch-on-register (BR) instructions have the following source language format:

nabel]~opcode~ {R:regiS~er } ,address-expression
bmary-mteger-constant .

The opcode identifies the R-register condition that is to be tested for the existence of a specific
condition.

The first operand identifies the R-register to be tested. If a binary integer constant is specified,
the assembler assumes that the integer is an R-register identifier.

The second operand specifies one of the following addressing forms (see "Addressing
Techniques" in this section):

• Direct immediate memory address

• Direct P-relative

• Short displacement

See the alphabetical list ofinstructions later in this section for detailed descriptions of the BR
instructions.

DOUBLE OPERAND (DO) INSTRUCTIONS

Double operand (DO) instructions have the following source language format:

lR_register I
B-register

[label]~opcode~ M-register ,address-expression [,mask]
S-register
binary-integer-constant

ASSEMBLY LANGUAGE INSTRUCTIONS 5-4 CB07

.J

(

(

(-

The opcode identifies the operation to be performed and the type of register that is required in
the first operand.

The first operand identifies the register that contains one of the data elements to be used in the
operation, as well as the register that is to contain the result. If the Scientific Instruction
Processor is present, the S-registers are hardware registers; otherwise, they may be provided as
software-simulated scientific registers maintained by the Floating-Point Simulator. In the 6/40
and 6/50 models the M-registers are hardware registers. In the 6/30 models only Ml is a
hardware register. In the 6/30 models, M2 through M7 may be provided as software-simulated
mode registers. The Floating-Point Simulator maintains the M4 and M5 registers and the
Commercial Processor simulator maintains the M3 register. There is no Honeywell-supplied
software to maintain the simulated M2, M6, and M7 registers.

The second operand specifies an address expression that gives the location of the other data
element to be used in the operation. If an address expression is not specified, the second operand
must be a complex label equated to an address expression. (See "Labels" in Section 2 for a
description of complex labels, and "Addressing Techniques" in this section for a description of
address expressions.)

The third operand is valid only for the Store Register Masked (SRM) instruction.

The alphabetical list of assembly language instructions later in this section provides detailed
descriptions of each of the DO instructions.

GENERIC (GE) INSTRUCTIONS

Generic (GE) instructions, as defined in assembly language or by the user (with a DEFGEN
statement) have the following format:

[Iabel]aopcode

The alphabetical list of instructions later in this section describes the GE instructions.

INPUT/OUTPUT (10) INSTRUCTIONS

Input/output (10) instructions have the following source language format:

[labeIJaopcodeAaddress-expression,address-expression[,address-expression]

The opcode identifies the instruction as one of the following types:

• Data and command I/O

• Address and range output

The address expression in the first operand identifies the location from which a data word is
transferred to the I/O bus, or the location to which a data word is transferred from the I/O bus.

The second operand address expression identifies the channel number and function code, or
the location where this information can be found.

The third operand address expression is valid only for the input/output load (IOLD)
instruction. It identifies the location of the word that contains the range. When this instruction
is specified, the address expression in the first operand identifies the location of the first byte of a I
buffer of data to be transferred to or from the device addressed by the channel number specified
by the second operand.

Address expressions are described under "Addressing Techniques" in this section. The 10
instructions are described in the alphabetical list later in this section.

SHIFT (SHS AND SHL) INSTRUCTIONS

Shift (SHS and SHL) instructions have the following source language format:

[labelJaopcodea {~-tregister } ,int-val-expression
In eger-constant

The opcode identifies the format, type and direction of the shift. The formats can be:

• SHS - Shift short

• SHL - Shift long

ASSEMBLY LANGUAGE INSTRUCTIONS 5-5 CB07

The valid types are:

• Arithmetic

• Open

• Closed

The direction of the shift can be:

• Right

• Left
The first operand identifies the register (or register pair for long-precision shifts) containing

the data to be shifted. For short-precision shifts, any R-register can be specified; for
long-precision shifts, the R-register specified must be $R3, $R5, or $R7, with the preceding
even-numbered register ($R2, $R4, or $R6, respectively) being implied. Use of an integer
constant .implies that the R-register with that number is specified.

The internal value expression (see Section 1) in the second operand specifies the number of
bits to be shifted. For short-precision shifts, the count must be within the range 1 through 15; if 0
is specified, the system uses the value found in bits 12 through 15 of $Rl. For long-precision
shifts, the count must be within the range 1 through 31; if 0 is specified, the value in bits 11
through 15 of $Rl is used.

Detailed descriptions of the SHS and SHL instructions are included in the alphabetical list of
instructions later in this section.

SHORT-VALUE-IMMEDIATE (SI) INSTRUCTIONS

Short-value-immediate (SI) instructions have the following source language format:

[1 b 1]4 od 4 {R-register } [-]
a e ope e binary-integer-constant ,-

eommercial-Processor- edit-function
Assembler-function
binary-integer-constant
string-constant

The opcode identifies the operation to be performed.

internal-value-label
int-val-expression

The first operand specifies an R-register that contains one of the data elements to be operated
upon and receives the result of the operation. If a binary integer constant is used, the
corresponding R-register is assumed (Le., X'5' implies R-register $R5).

The second operand is a I-byte (8-bit) value. If it is a string constant (see Section 2), it is
treated as a half-word string; if the length of the string is greater than 8 bits, low order (i.e., the
rightmost) bits are truncated; ifless than 8 bits, O's are appended to the low order bit positions. If
the second operand is not a string constant, the value is considered to be numeric within the
range -128 to + 127.

Binary integer constants, string constants, internal value labels, internal value expressions,
and fIXed point constants are described in Section 2. The SI instructions are described in detail in
the alphabetical list later in this section.

SINGLE OPERAND (SO) INSTRUCTIONS

Single operand (SO) instructions have the following source language format:

[labe1]4opeode4addr-expression ,

ASSEMBLY LANGUAGE INSTRUCTIONS

Commercial-Processor- edit-function
Assembler-function
binary-integer-constant
string-constant
internal-value-label
external-value-label
int-val-expression
single-precision-fixed-point-constant

5-6 CB07

The opcode identifies the operation to be performed.

The first operand address expression (see "Addressing Techniques" in this section) identifies
the location of the data element to be operated upon.

The second operand is valid only for the Save (SA VE), Restore (RSTR) and bit handling
instructions. It specifies the value of a one-word mask that indicates which registers are to be
saved and restored or which bits are to be manipulated. Binary integer constants, string
constants, internal value labels, external value labels, internal value expressions, fixed point
constants are described in Section 2.

The SO instructions are described in the alphabetical list of assembly language instructions
later in this section.

ADDRESSING TECHNIQUES

Many of the assembly language instructions require the use of address expressions in their
operand fields. Address expressions can take any of the following forms:

• Register addressing

• Immediate memory addressing

• Immediate operand addressing

• P-relative addressing

• B-relative addressing

• Short displacement addressing

• Special addressing

• Interrupt vector addressing

Any of these addressing forms can be used to specify the location of data to be used in an
operation. Furthermore, the data can be referenced directly, indirectly, via indexing, or by
utilizing the push/pop feature.

REGISTER ADDRESSING

Register addressing is specified when a value or address is contained in a register. This form of
address expression is specified as follows:

=$Rn =$Bn =$Sn

=$Rn, =$Bn, and =$Sn are mutually exclusive; i.e., some instructions permit the use of
=$Rn and others allow =$Bn (the descriptions of the various instructions identify which is valid
for that instruction). The =$Rn form is generally used in those instructions that require some
data to be contained in the register. The =$Bn form is valid for those instructions that expect to
find an address in the register. The =$Sn form addresses the scientific accumulator registers.

The following examples illustrate register addressing. In the examples, assume that $B5
contains the address 3FFF, that $B3 contains the address 12A4, that $R5 contains the value
2012, and that $R7 contains the value OOED.

Example 1:

ADD X'7',=$R5

In this example, the contents of$R5 are added to the contents of$R7, and the result (20FF) is
stored in $R7. Since this instruction requires that the first operand specify an R-register, the
Assembler assumes that the integer constant refers to $R7 and generates code to execute the
instruction accordingly.

Example 2:

LDB $B5,=$B3

In this example, the address stored in $B3 is loaded into $B5.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-7 CB07

IMMEDIATE MEMORY ADDRESSING (IMA)

Immediate memory addressing is specified when an address is contained in a main memory
location. This form of addressing allows you to reference a location directly, indirectly, and /--~.
through indexing (direct or indirect). Depending on how you wish to reference the memory ''-",'
location, you can specifY immediate memory addressing as follows:

< {
l+ocation-expression I

{ } Direct IMA
- temporary-label

{
location-expression I

*< {+} ,
- temporary-label

Indirect IMA

{
location-expression I

< {~} temporary-label .$R

*< {
location-expression I

{ ~} temporary-label
.$R

Indexed Direct IMA

Indexed Indirect IMA

When a source instruction indicating immediate memory addressing is assembled, the actual
address of the operand is assembled into the operand field. Therefore, any internal, external, or
common location expression is a valid operand. In contrast, P-relative addressing (defined later
in this section) creates object code in which the displacement from the current displacement
word to the operand is assembled into the operand field.

DIRECT IMMEDIATE MEMORY ADDRESSING

Direct immediate memory addressing makes it possible for you to specify explicitly the
location of the data or address to be used in an operation.

The following example illustrates the use of this form of immediate memory addressing. In
the example, assume that INTLBI is an internallQcation label atlocation 20F4 and that location
contains the address OFOB, and that $B3 contains the address inA..

Example:

LDB $B3, <INTLBI

In this example, the contents (OFOB) of location 20F4 (specified by the INTLBD are loaded
into $B3, replacing its current contents.

Figure 5-1 illustrates how the instruction in the example is stored in memory and how the
data is found.

MEMORY

Figure 5-1. Direct Immediate Memory Addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-8 CB07

c

(

INDIRECT IMMEDIATE MEMORY ADDRESSING

This fonn of immediate memory addressing is available when you want to refer to a location
whose address is stored in another location.

The following example illustrates the use of this form of immediate memory addressing.
Assume that $C is a temporary label, whose next definition is at location 30A2 and that location
contains the address 100C. Further, assume that location lOOC contains the value OF2C, and
that $R6 contains the value lOD3.

Example:

ADD $R6,*<+$C

In this example, the system goes to the location specified at location 30A2 (identified by +$C,
the + indicating that a forward reference is involved), which is loOC. It then adds the value
found there (Le., OF2C) to the contents of $R6, and stores the result (lFFF) in $R6.

Figure 5-2 illustrates how the instruction appears in memory and how the data used in the
instruction is found.

MEMORY

r------. LOCATION lOOC
(EFFECTIVE ADDRESS)

OF2C

ASSEMBLED INSTRUCTION
(ADD $R6,*<+$C)

Figure 5-2. Indirect Immediate Memory Addressing

INDEXED DIRECT IMMEDIATE MEMORY ADDRESSING

Indexed direct immediate memory addressing is available when you want to refer to data or
an address that has a known displacement beyond a specific location.

The following example illustrates the use of this fonn of immediate memory addressing.
Assume that TABLEl is an internal location label at location 2000, and that word 3 in the table
is the address of an error routine. Also, assume that $R3 contains the value 0003.

Example:

LDB $Bl,<TABLEl,$R3

In this example, for a SAF configuration, the system adds the contents ofthe index register ($R3)
to the address ofTABLEl (Le., 2000). Then the contents of that location (Le., the address of the
error routine) are loaded into $Bl.

For a LAF configuration, the system effectively multiplies the contents of the index register
by 2 because the instruction is a base register instruction, and then adds this product to the
address of TABLEl. (After this instruction is perfonned, the contents of $R3 remain un­
changed.)

ASSEMBLY LANGUAGE INSTRUCTIONS 5-9 CB07

Figure 5-3 illustrates how the instruction appears in memory and how it locates the effective
address.

MEMORY

ASSEMBLED INSTRUCTION
(LDB $B1 ,<TABLE1.$R3)

I
I

~ V-

~-- - --+3POINTERS

LOCATION 2003 (2006 IN LAF)
(EFFECTIVE ADDRESS)

Figure 5-3. Indexed Direct Immediate Memory Addressing

INDEXED INDIRECT IMMEDIATE MEMORY ADDRESSING

This form of immediate memory addressing combines I the feature of indirect immediate
memory, addressing with indexing to generate the location of the data or address to be used in an
operation.

The following example illustrates the use of this form of immediate memory addressing. In
the example, assume that T ABLIA is an internal location label at location 20AA and that that
location contains the address 30FF. Also assume that $Rl contains the value OFOO, that $R2
contains the value 401A, and that location 3FFF contains the value 3D91.

Example:

ADD $R2,* <TABLIA.$Rl

In this example, the contents of$Rl (i.e., OFOO) are added to the contents oflocation 20AA (i.e.,
30FF) to obtain the effective address of the data to be used in the operation. Then, the data
found at location 3FFF (OFOO + 30FF) is added to the contents of$R2 as follows: 3D91 + 401A
= 7DAB. The result is then stored in $R2.

Figure 5-4 illustrates how the instruction appears in memory, and how the system locates the
data to be used in the operation.

IMMEDIATE OPERAND ADDRESSING

Immediate operand addressing makes it possible to specify a literal value or address as the
address expression. Depending on the type of instruction, this form of addressing must be
specified in one of the following forms:

=

location-expression (LDB, STB, SWB, CMB, CMN)

{string-constant }
floating-point~constant

(SAD, SCM, SCZD, SDV, SLD,
SML, SNGD, SSB, SST, SSW)

{
internal-value-expresSiOn}
exte. rnal-value-Iabel (All other CP instructions)
fIxed-point-constant
external-value-expression

ASSEMBLY LANGUAGE INSTRUCTIONS 5-10 CB07

(

MEMORY

ASSEMBLED INSTRUCTION
(ADD $R2,*<TABL1 A.$R1)

~

LOCATION 3FFF
(EFFECTIVE ADDRESS)

gi ?
~ V.J

~- - - - - - - + OFOO WORDS

Figure 5-4. Indexed Indirect Immediate Memory Addressing

The string-constant form must specify a value that provides the following information for the
scientific instructions:

Bit: o 678 31

c M

c Characteristic (excess 64 power-of-16 exponent) of the mantissa.
s Sign (0 = positive; 1 = negative) on the mantissa.
m Magnitude of the mantissa.

The following examples illustrate the use of the immediate operand addressing form of
addressing. Assume that $Sl is the scientific accumulator register and that it contains the value
84130000 (indicating a floating-point number with a value of 19), that $R5 contains the value
300A, and that INTV AL is the label of an internal value expression that is equated to 1FF3.

Example 1:

SAD $Sl,=Z'8280000A'

In this example, the floating-point value specified by the hexadecimal string constant (i.e.,
8.000010), is added to the floating-point value stored in $Sl (i.e., 19), and the result is stored
in $S1.
The following code:

SAD $Sl,= 8.000010

which uses a floating-point constant value, will produce the same object code as example 1,
above.

Figure 5-5 illustrates how the above example is stored in memory and how it determines the
effective address.

ASSEMBLED INSTRUCTION
(SAD $S1,= Z'8280000A')

MEMORY { l\'----Ir:9~9_F-o_-T~_.._~:~8~J~O-OO-Aj"""---.-Ir
EFFECTIVE ADDRESS

Figure 5-5. Immediate Operand Addressing-Scientific Instruction

ASSEMBLY LANGUAGE INSTRUCTIONS 5-11 CB07

Example 2:
ADD $R5,=INTV AL

In this example, the value equated to the internal value label INTV AL (Le., 1FF3) is added to the value
contained in $R5 (i.e., 300A), and the result (4FFD) is stored in $R5.

Figure 5-6 illustrates how the above ADD instruction is stored in memory and how it finds the
effective address.

ASSEMBLED INSTRUCTION
(ADD $R5,=INTVAL)
~

EFFECTIVE ADDRESS

Figure 5-6. Immediate Operand Addressing

P-RELATIVE ADDRESSING

P-relative addressing is available for those situations in which you want to reference data or
an address by indicating its (Assembler-calculated) displacement from the current location (Le.,
the location of the currently executing instruction). This form of addressing allows you to
reference a location directly or indirectly. Depending on which way you want to reference a
location, you can specify P-relative addressing as follows:

{
location-expression .}

{+} Direct P-Relative Addressing
_ temporary-label

{
location-expression } · t} tem~rary-lahel

DIRECT P-RELATIVE ADDRESSING

Indirect P-Relative Addressing

This form of addressing is available when you want to specify a location relative to the
contents of the P-register (Le., the address of the currently executing instruction) directly.

The following example illustrates this form ofP-relative addressing. In the example, assume
that $R5 contains the value 3F10, and that INTLOC is an internal location label at location
1110, which contains the value 1ElO.

Example:

SUB $R5,INTLOC

In this example, the contents of the location identified by INTLOC (lElO) are subtracted from
the contents of $R5, and the result (2100) is stored in $R5.

Figure 5-7 illustrates the above instruction in memory, and shows how it finds the effective
address.

LQCATION 1110
(EFFECTIVE ADDRESS) ---

MEMORY { ~ &.-....... -~c:::::::=~_.J

1110-2000=-EFO WORDS (I.E., F110)

Figure 5·7. Direct P·Relative Addressing·

ASSEMBLY LANGUAGE INSTRUCTIONS 5-12 CB07

(

NDIRECT P-RELATIVE ADDRESSING

Indirect P-relative addressing is similar to indirect immediate memory addressing.

The following example illustrates indirect P-relative addressing. In the example assume that
$E precedes the current instruction, and that location that it identifies contains the address
3000; furthermore, assume that location 3000 contains the value 20AA, and that $Rl contains
the value 4F44.

Example:

ADD $Rl,*-$E

This instruction adds the contents of the location pointed to by location 3000 (Le., 20AA) to the
value contained in $Rl, and stores the result (6FEE) in $Rl.

Figure 5-8 shows how the instruction described above is stored in memory and how it locates
the data to be used in the operation.

MEMORY

LABEL $E
ASSEMBLED INSTRUCTION
(ADD $R1,*-$E)

2000-2051~-51 (I.E., FFAF)

Figure 5-8. Indirect P-Relative Addressing

8-RELATIVE ADDRESSING

In B-relative addressing, a base register (Le., $Bl, $B2, ... $B7) is used to reference a location
that contains data or an address. This form or addressing can be used to reference a location
directly, indirectly, through indexing, as a displacement, or through the push/pop feature.

The push feature causes the hardware to automatically decrement the contents ofthe specified
base or index register before executing the instruction. The pop feature causes the hardware to
automatically increment its contents after execution.

B-relative addressing can take any of the formats given below. The first four forms are similar
to their immediate memory addressing counterparts, except that the location of the data or
address to be used in the operation is contained in a base register rather than being expressed as
a location expression or label. The next two are similar to the P-relative forms of addressing. The
$B6.$LCOMW forms are provided to facilitate the writing of reentrant programs. Guidelines for
writing reentrant programs are given in the Program Preparation manual.

$Bn

*$Bn

$Bn.$R m
*$Bn.$RH}

- Direct B-relative addressing

- Indirect B-relative addressing

- Indexed direct B-relative addressing

- Indexed indirect B-relative addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-13 CB07

{
. int-val-expression.l

$Bn.
external-val-Iabel

- Direct B-relative plus displacement addressing

{
int-val-expression I

*$Bn. - Indirect B-relative plus displacement addressing
external-val-label .

$B6.$LCOMW +int-val-expression - Direct B6 relative plus local common block plus
displacement addressing

*$B6.$LCOMW+int-val-expression - Indirect B6 relative plus local common block
plus displacement addressing

-$Bn

1-$Bn

- B-relative addressing with automatic decrement before
execution (Push)

- B-relative addressing with automatic increment after
execution (Pop)

- Indexed direct B-relative addressing
with automatic decrement of index
register before execution (Push)

- Indexed direct B-relative addressing
with automatic increment of index
register after execution (Pop)

DIRECT 8-RELATIVE ADDRESSING

This form of addressing is available when you want to use data or an address whose location is
contained in a base register.

The following example illustrates direct B-relative addressing. In the example, assume that
$B7 contains the address 20F2, and that $B2 contains the address 4FFF.

Example:

LDB $B2,$B7

In this example, the contents of the location whose address is contained in $B7 are loaded into
and replace the contents of $B2.

Figure 5-9 shows how the instruction in the example is stored in memory and how the effective
address is found.

MEMORY

ASSEMBLED INSTRUCTION
(LDB $B2,$B7)

LOCATION 20F2
t-------, (EFFECTIVE ADDRESS)

Figure 5-9. Direct B-Relative Addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-14 CB07

(

INDIRECT 8-RELATIVE ADDRESSING

Like indirect immediate memory addressing, this form of addressing is used when you want to
use data or an address contained at a location whose address is pointed to by a base register.

The following example illustrates indirect B-relative addressing. In the example, $B3
contains the address 100F, address 100F contains address 302A, and address 302A contains the
address 3FFF; furthermore, $B1 contains the address 1110.

Example:

STB $B1,*$B3

In this example, the address 1110 is stored at location 302A, replacing the address that was
contained there (Le., 3FFF).

Figure 5-10 illustrates how the sample instruction is stored in memory and how it derives the
effective address. '

MEMORY

ASSEMBLED INSTRUCTION
(STB $Bl,*$B3)

B3

LOCATION 100F

LOCATION 302A
(EFFECTIVE ADDRESS)

Figure 5-10. Indirect B-Relative Addressing

INDEXED DIRECT 8-RELATIVE ADDRESSING

This form of addressing, like indexed direct immediate memory addressing, uses an index
register to compute the effective address of the data or address to be used in the operation. The *
contents ofthe index register are effectively multiplied by a factor (the factor is determined by
the instruction) and added to the contents of the base register to derive the location of the data or
address to be included in the operation.

In the following example, which illustrates indexed direct B-relative addressing, $R3
contains the value 1110, $R1 contains the value 0002, $B5 contains the address 3FFD, and
memory location 3FFF contains the value 9999.

Example:

ADD $R3,$B5.$R1

In this example, the system adds the contents of $R1 (effectively multiplied by one) to the
contents of $B5 to compute the address of the data to be used in the operation. The result is
3FFF (Le., 3FFD + 2). The contents oflocation 3FFF are added to the contents of$R3, and the
result (AAA9) is stored in $R3.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-15 CB07

*

Figure 5-11 illustrates how the above example appears in memory.

MEMORY

ASSEMBLED INSTRUCTION
ADD $R3, $B5.$R1

85

LOCATION 3FFF
LOCATION 3FFD (EFFECTIVE ADDRESS)

----­+ 2 WORDS ,
R1 I

I L_-B--_"" --- - J

Figure 5.11. Indexed Direct B-Relative Addressing

INDEXED INDIRECT 8-RELATIVE ADDRESSING

This form of B-relative addressing is similar to indexed indirect immediate memory
addressing. The contents of the index register are effectively multiplied by a factor (the factor is
determined by the instruction) and added to the contents of the location pointed to by the base
register to obtain the effective address of the data to be used in the operation.

The following example illustrates this form of addressing. In the example, assume that $B5
contains the address 2022 and that that address contains the address 1000; also, assume that
$R2 contains the value 40FF, that $Rl contains the value OOlA, and that location lOlA contains
the value 1001.

Example:

ADD $R2,* $B5.$Rl

In this example, the contents of $Rl (OOlA) are added to the contents of the location pointed to
by $B5 (1000). The contents of the resulting location (lOlA) are added to the contents of$R2,
and the result (5100) is stored in $R2.

Figure 5-12 illustrates how the sample instruction is stored in memory and how it derives the
effective address.

DIRECT 8-RELATIVE PLUS DISPLACEMENT ADDRESSING

This form of addressing causes the system to compute the effective address by adding a specific
value to the contents of a base register.·

The following example illustrates this form of addressing. In the example, assume that
XV AL2A is an external value label equated to the value OOOA, that $B5 contains the address
2000, that memory location 200A contains the value 20ED and that $R6 contains the value
6DFE.

Example:

SUB $R6,$B5.XVAL2A

This instruction computes the effective address of the data to be used by adding OOOA to the
contents of $B5 (2000). It then subtracts the contents (20ED) of the effective address (200A)
from the contents of $R6, and stores the result (4D11) in $R6.

Figure 5-13 shows how the above example is stored in memory and how it derives the effective
address of the data.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-16 CB07

, /

MEMORY

ASSEMBLED INSTRUCTION
(ADD $R2, *$B5.$R 1)

..... ----.... LOCATION 2022

LOCATION 1000

+ lA WORDS

Rl • L---B----- -- --___ J

LOCATION lOlA
(EFFECTIVE ADDRESS)

Figure 5-12. Indexed Indirect B-Relative Addressing

..
ASSEMBLED INSTRUCTION
(SUB $R6,$B5.XVAL2A)

B5

MEMORY

I

LOCATION 200A
(EFFECTIVE ADDRESS)

'-.... _ ... --v,.,--.... _"./
1 _______ + A WORDS

Figure 5-13. Direct B-Relative Plus Displacement Addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-17 CB07

INDIRECT B-RELATIVE PLUS DISPLACEMENT ADDRESSING

This form of effectively addressing adds a displacement value to the contents of the specified
base register. Then, the effective address is the contents of the location whose address is derived
through this preceding operation.

In the following example of this form of addressing, EXP10 is an internal value expression
equated to 0010, $B4 contains the address 30FF, location 310F contains the address 10FE,
location 10FE contains the value 400D, and $R7 contains the value 1013.

Example:

ADD $R7,*$B4.EXP10

In this example, the displacement value 0010 is added to the contents of $B4 (Le., 0010 +
30FF), producing the address 310F. Then, applying the indirection operator, the contents of
the location 310F (Le., 10FE) are used as a memory addresS. The value found at location 10FE
(i.e., 400D) is added to the contents of $R7. The result (5020) is stored in $R7.

Figure 5-14 illustrates how this form of addressing generates an effective address when stored
in memory.

MEMORY

I
I
I
I
I
I
I

LOCATION 10FE
(EFFECTIVE ADDRESS)

,_ - ____ + 10 WOR DS

Figure 5-14. Indirect B-Relative Plus Displacement Addressing

DIRECT 86-RELATIVE PLUS LOCAL COMMON BLOCK PLUS DISPLACEMENT ADDRESSING

In this form of addressing, the effective address is computed by adding a specified value to the
contents of base register $B6. This addressing form assumes that $B6 contains the address of the
combined $LCOMW local common blocks. For information on the loading of $B6, see the
Program Execution and Checkout manual. The value that is added to the contents of $B6 is
assumed to be an offset value (before adjustment by the Linker) into the local common block,
$LCOMW.
Example:

TEN
$LCOMW

EQU
LCOMM
ORG
DC

10
300
$LCOMW+lO
100

ASSEMBLY LANGUAGE INSTRUCTIONS 5-18 CB07

(

In this example, suppose that the constant 100 which is contained in the eleventh word of the
local common block, $LCOMW, is to be loaded into data register $Rl. If at execution time, $B6
contains the address of the combined $LCOMW local common blocks, then either of the
following instructions will accomplish the desired result.

LDR $R1,$B6.$LCOMW+TEN

LDR $R1,$B6.$LCOMW + 10
Figure 5-15 illustrates how this form of addressing generates an effective address when stored

in memory.

ASSEMBLED INSTRUCTION NOTE: THIS EXAMPLE ASSUMES THAT THE (LOR $R1, $B6. $LCOMW + 10) COMPILE UNIT CONTAINING THIS
.--"-.. EXAMPLE IS LINKED AS THE FIRST

~ I 9846 I OOOA I ~
COMPILE UNIT IN A GIVEN OVERLAY;
THE LINKER ACTUALLY INCREMENTS
THE DISPLACEMENT (OOOA IN THIS

I EXAMPLE) BY THE SUM OF THE SIZES
I B6 ON THE $LCOMW LOCAL COMMON
I BLOCKS IN THOSE COMPILE UNITS
I POINTER TO THAT ARE LINKED PRIOR TO THE

WORD 0 OF CONCERNED COMPILE UNIT WITHIN
I $LCOMW ANY GIVEN OVERLAY.

MEMORY I
I WORD 0 (i.e., FIRST WORD)
I OF LOCAL COMMON BLOCK

I $LCOMW EFFECTIVE ADDRESS
I -- --I \) I J.III~I I I I I 0064 I I I
I
I

...., _____ ---..I
~

I v
- - - - - - - - - - - - - - - - - -~ + 10 WOR OS

Figure 5-15. Direct B6-Relative Plus Local Common Block Plus Displacement Addressing

INDIRECT B6 -
RELATIVE PLUS LOCAL COMMON BLOCK PLUS DISPLACEMENT ADDRESSING

In this form of addressing, the effective address is specified by the contents of the location
computed by effectively adding a value to the contents of base register $B6. This addressing form
assumes that $B6 contains the address of the combined $LCOMW local common blocks. For
information on the loading of$B6, see the Program Execution and Checkout manuaL The value
that is added to the contents of $B6 is assumed to be an offset value (before adjustment by the
Linker) into the local common block, $LCOMW.
Example:

$LCOMW

CONST

LCOMM
ORG
DC
ORG
DC

300
$LCOMW
<CONST
$LCOMW+20
100

In this example, assume that the constant 100 which is contained in the 21st word of the local
common block, $LCOMW, is to be loaded into data register $R1, and that the address of the
constant is known to be in word zero of the local common block. If at execution time, $B6
contains the address of the local common block, then the following instruction will accomplish
the desired result.

LDR $R1,*$B6.$LCOMW

Figure 5-16 illustrates how this form of addressing generates an effective address when stored
in memory.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-19 CB07

ASSEMBLED INSTRUCTION NOTE: THIS EXAMPLE ASSUMES THAT THE
(LOR $R1, *$B6. $LCOMW) COMPILE UNIT CONTAINING THIS

"- EXAMPLE IS LINKED AS THE FIRST ,.

~ I 984E I 0000 I / COMPILE UNIT IN A GIVEN OVERLAY;
THE LINKER ACTUALLY INCREMENTS
THE DISPLACEMENT (OOOA IN THIS

: EXAMPLE) BY THE SUM OF THE SIZES
B6 ON THE $LCOMW LOCAL COMMON

I
POINTER TO BLOCKS IN THOSE COMPILE UNITS

I THAT ARE LINKED PRIOR TO THE
I WORD 0 OF CONCERNED COMPI LE UNIT WITHIN
I $LCOMW ANY GIVEN OVERLAY.

MEMORY I
I
I WORD 0 (FIRST WORD) EFFECTIVE
I OF $LCOMW ADDRESS
I
I

~
POINTER TO CONST, J5 I

I WHICH IS $LCOMW + 20 0064
I (j.e.,<$ + 20)

I

.. I t I o WORDS ' "INDIRECTION"

Figure 5-16. Indirect B6-Relative Plus Local Common Block Plus Displacement Addressing

8-RELATIVE PUSH ADDRESSING

This form of B-relative addressing causes the contents of the specified base register to be
decremented before the effective address is formed. The new address in the register is the
effective address of the location or data to be used in the operation. The B register is decremented
by:

• One for all instructions accessing one-bit, one-byte, or one-word operands.

• Two for all instructions accessing double-word operands.

• Four for all instructions accessing quadruple-word operands. ,
• One for SAF configurations or two for LAF configurations for the LDB, STB, SWB, CMB,

and CMN instructions.
Note:

LAB is an instruction accessing a one-word operand.

In the following example, $R5 contains the value 30FF,$B5 contains the address 4011, and
memory location 4010 contains the value 0001.

Example:

ADD $R5,-$B5

In this example, the contents of location derived by subtracting one from the address con­
tained in $B5 are added to the contents of$R5, and the result (3100) is stored in $R5. The next
time $B5 is used, it will contain the address 4010.
Figure 5-17 illustrates how the sample instruction described above is stored in memory and

how it derives the effective address of the data to be used in the operation.

MEMORY

ASSEMBLED INSTRUCTIONS
(ADD $R5,-$B5)

BEFORE:

AFTER:

LOCATION 4010
(EFFECTIVE ADDRESS)

Figure 5-17. B-Relative Push Addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-20 CB07

'", -.. ,,/

/'

co.

(

B-RELATIVE POP ADDRESSING

This form of B-relative addressing causes the contents of the specified base register to be
incremented after the effective address is formed. The old address that was in the register is the
effective address of the location or data to be used in the operation. The B register is incremented
by:

• One for all instructions accessing one-bit, one-byte, or one-word operands.

• Two for all instructions accessing double-word operands.

• Four for all instructions accessing quadruple-word operands.

• One for SAF configurations or two for LAF configurations for the LDB, STB, SWB, CMB,
and CMN instructions.

Note:
LAB is an instruction accessing a one-word operand.

In the following example, $R3 contains the value 222A. $B2 contains the address AOOO and
location AOOO contains the value 0005.

Example:

ADD $R3.+$B2

In this example, the contents of location AOOO are added to the contents of $R3, and the
result (222F) is stored in $R3.
The address stored in $B2 is then incremented by one: The next time $B2 is used in an
instruction, it will contain the address AOOl.

Figure 5-18 shows how the instruction above is stored in memory and how it derives an
effective address.

MEMORY

ASSEMBLED INSTRUCTION
(ADD $R3,+$B2) --

B2

BEFORE:

AFTER:

LOCATION AOOO
(EFFECTIVE ADDRESS)

0005

Figure 5-1S. B-Relative Pop Addressing

INDEXED B-RELATIVE PUSH ADDRESSING

This form ofB-relative addressing decrements the contents of the specified index register by 1,
then computes the effective address of the data or address to be used in the operation as
described under "Indexed Direct B-Relative Addressing," above.

In the following example, $Rl contains the value 0003, $R2 contains the value 20FO, $B3
contains the address 20AO, and memory location 20A2 contains the value DFOF.

Example:

ADD $R2,$B3.-$R1

In this example, the effective address of the data to be used in the operation is derived by
subtracting 1 from the contents of the index register, then effectively adding the revised
contents to the address contained in $B3. Then, the contents of the effective address are added
to the contents of $R2 (i.e., 20FO + DFOF), and the result (FFFF) is stored in $R2. The next
time the index register $R1 is used, it will contain the value 0002.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-21 CB07

When indexed B-relative push addressing is used, only base registers $B1, $B2, or $B3 can be
specified in the address expression. Figure 5-19 illustrates how the sample instruction described
above is stored in memory and how it derives the effective address of the data to be used in the
operation.

MEMOHY

ASSEMBLED INSTRUCTION
(ADD $R2,$B3.·$R 1)

I
B3 I

I
I
I
I R1
L_

LOCATION 20A2
LOCATION 20AO (EFFECTIVE ADDRES~

~

+ 2 WORDS

A ,
I

Figure 5-19. Indexed B-Relative Push Addressing

INDEXED 8-RELATIVE POP ADDRESSING

This form ofB-relative addressing computes the effectiv;e address of the location or data to be
used in the operation as described under "Indexed Direct B-Relative Addressing," in this
section. After computing the effective address, the contents of the index register are
incremented by l.

In the following example of this form ofB-relative addressing, $B3 contains the address 1000,
$R2 contains the value 20AO, $R6 contains the value 2FFF, and location 30AO contains the
value 000l.

Example:

ADD $R6,$B3. + $R2

In this example, the effective address of the data to be added to the contents of $R6 is derived
by effectively adding the contents of the index register to the contents of$B3. The value found
at that location (30AO) is then added to the contents of $R6, and the result (3000) is stored in
$R6.

After the effective address is formed, the contents of the index register are incremented by l.
The next time the index register is used, it will contain the value 20Al.

When using B-relative pop addressing, only base registers $B1, $B2 or $B3 can be specified in
the address expression. However, when stored in memory, the instruction will indicate $B5,
$B6, or $B7, respectively, although the contents ofthe specified register are always used in the
computation of the effective address.

Figure 5-20 illustrates how the sample instruction described above is stored in memory and
how it derives the effective address of the data to be used in the operation.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-22 CB07

./

./

(-

MEMORY

ASSEMBLED INSTRUCTION
(ADD $R6,$B3.+$R2)

-- LOCATION 30AO

\ Ij~I--___ l_L_O_C-,w~r7J
I l-B + 20AO WORDS

I R2 f
L_ I

------- ____ 1

AFTER:

Figure 5-20. Indexed B-Relative Pop Addressing

SHORT DISPLACEMENT ADDRESSING

Short displacement addressing is available only for branch instructions. It is specified as
follows:

{
internal-location-expression)

> {~} temporary-label

When this form of addressing is used, the referenced location must be within one of the ranges
- 64 words to -1 word or + 2 words to + 63 words from the location of the instruction specifying it
(i.e., it cannot reference itself or the location following it). .

The following example illustrates the use of short displacement addressing. In the example,
$R3 contains the value 3033 and $F is a temporary label at a location preceding the instruction
by 24 words.

Example:

BOnn 3,>-$F

In this example, 3 is identified with $R3, and since its contents are an odd value, control is
transferred to the instruction located at the memory address identified by $F (i.e., $F
preceding the instruction illustrated in the example).

Figure 5-21 illustrates how the above example is stored in memory and how it derives the
effective address of the location to be branched to.

LABEL $F
ASSEMBLED INSTRUCTION
(BODD 3,>-$F)

MEMORY { \ DJ1 L.....k-----,~~--'
-24 10 WORDS

Figure 5-21. Short Displacement Addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-23 CB07

SPECIALIZED ADDRESS EXPRESSIONS

The following address expression is available for specifying an embedded control word in an
I/O instruction. It can be used only in the second operand, and is specified as follows:

>= {internal-value-expression}
external-value-label

'The following example illustrates the use of this address form. In the example, $B3 contains
the address 2002, which is assumed to be the address of the output control word, and it is to be
output over channel 010. The value for sending the output control word over channel 010 is
0405.

Example:

IOaa$B3,>=Z'0405'

In the example, the output control word is extracted from location 2002, as specified by $B3,
and sent over the desired channel.

Figure 5-22 illustrates how the example above is stored in memory and how it derives the
effective address of the data.

LOCATION 2002
(EFFECTIVE ADDRESS OF DATAl

CONTROL WORD

MEMORY

Figure 5-22. Specialized Address Expressions

INTERRUPT VECTOR ADDRESSING

Interrupt vector addressing' provides a convenient method by which you can examine the
contents of the interrupt save area for the priority level at which your program is currently
executing. (Priority levels and interrupt save areas are described in the GCOS 6 MOD 400
System Concepts manual.) Interrupt vector addressing is specified as follows:

$IV {internal-value-expression}
. external-value-label

In this form of addressing, $IV. points to the second word within the interrupt save area, and the
value provides a displacement from the second word to another word within the interrupt save
area. In the example below, the fifth word of the interrupt save area is loaded into Rl. (Note that
to address the second word of an interrupt save area, you require a displacement of 0, etc.)

Example 1:

LDR $R1,$IV.THREE
THREE EQU 3

ASSEMBLY LANGUAGE INSTRUCTIONS 5-24 CB07

«

(

Figure 5-23 illustrates how example 1 above locates the desired memory word and places it
into Rl.

INTERRUPT -<
VECTORS

r 0080

-
L

HARDWARE­
DEDICATED
MEMORY

LEVEL 0

LEVEL 1

·
·
•

LEVEL63

INSTRUCTION
LDR $R1,$IV.THREE

~

~

ASSEMBLED INSTRUCTION
(LDR $R1,$IV.THREE)

(I 9878 I 0003 ~
I I 3 WORDS

~
I"

,."

INTERRUPT
SAVE
AREA

Figure 5-23. Interrupt Vector Addressing

Example 2:

LDB $B1,$IV.-$AF

WORD
o

, }

... ~

n"

2

EFFECTIVE
ADDRESS

In Example 2, the address of the first trap save area is loaded into address register $Bl.

INDEXED ADDRESSING CONSIDERATIONS

Table 5-1 shows available modes of indexed addressing.

TABLE 5-1. INDEXED ADDRESSING MODES

Mode

Indexed direct IMA
Indexed indirect IMA
Indexed direct B-relative addressing
Indexed indirect B-relative addressing
Indirect B-relative push addressing
Indexed B-relative pop addressing

$Bn is any B-register, Bl through B7
$Bk is a B-register, Bl through B3
$Rx is an R-register, Rl through R3

Format

<label.$Rx
* <label.$Rx
$Bn.$Rx
*$Bn.$Rx
$Bk.-$Rx
$Bk.+$Rx

In simple cases for all indexing modes, the contents of index register $Rx are used unchanged
in computing the effective address. In other cases certain instructions and/or machine operating
modes may cause the value in the index register to be multiplied by 2 or 4 before being used to

ASSEMBLY LANGUAGE INSTRUCTIONS 5-25 CB07

compute the effective address. The contents of the index register is not changed after execution
of the instruction.

The following subsections describe how to establish this multiplication factor and which
instructions and machine modes use a factor other than 1.

All instructions not specifically discussed below have an indexing multiplier of 1.

ESTABLISHING A MULTIPLICATION FACTOR

Not all operands occupy only one word in memory. For example, LAF -configuration addresses
occupy two words; LDI and SDI instructions manipulate 2-word operands; and scientific
instructions may manipulate 2- or 4-word operands.

Assume a table in memory consists of LAF addresses. The first entry in the table (entry 0)
starts at word 0, but the third entry in the table (entry 2) starts at word 4. In general, entry n
starts at word 2n for LAF mode addresses. With 4-word scientific operands, entry n starts at
word4n.

Level 6 hardware accepts the entry number n as an indexing quantity. It multiplies that by
the factor (1,2, or 4) appropriate to the operand being operated on, then uses the result to find the
word in a table where the operand begins. Thus, the general rule is to (1) determine the size of
the operand that the instruction will operate on when it executes (i.e., one, two, or four words in
memory), and (2) use that size as the multiplication factor for the index register's contents for
this instruction in this mode.

AID, SID, LDI, AND SOl INSTRUCTIONS

Regardless of operating modes, the AID, SID, LDI, and SDI instructions operate on 2-word
operands; thus their indexing multiplier is 2.

B-REGISTER INSTRUCTIONS IN LAF CONFIGURATION

On a 6/40 or 6/50 model in LAF configuration, addresses occupy two words in memory. Thus
the indexing multiplier for the following B-register manipulating instructions in LAF config­
uration is 2: LDB, STB, SWB, CMB, and CMN. In SAF configuration the multiplier is 1. (Note
that the LAB instruction is not in this category; its indexing multiplier is always 1.)

SCIENTIFIC INSTRUCTIONS

On a 6/40 or 6/50 model with the SIP hardware option or any model with the SIP double­
precision simulator, the hardware register M4 contains Scientific Instruction mode informa­
tion, for each of the three scientific accumulators, that includes the size of its operands in
memory, i.e., either two or four words. This size is also the indexing multiplier for any Scientific
Instruction that refe~ences memory.

Register M4 defines operand size separately for each accumulator. Thus the same scientific
instruction (e.g., SLD) may have a different operand size and indexing multiplier in different
usages within the same program. For example, the multiplier might be 2 when dealing with
SAl, and 4 when dealing with SA3.

Register M4, together with the operand size and indexing multiplier, can be dynamically
changed.

BIT/BYTE MANIPULATING INSTRUCTIONS

The preceding discussions apply also to bit (e.g., LB) and byte (e.g., LDH) manipulating
instructions. In these cases indexing multipliers of 1116 or 112, complete with possible
remainders, are conceivable. For example an index value of 37 in an LBF instruction would
compute to word 2, bit 5 from the base, and be correct. However, it is more practical to consider
the index value as simply representing the actual number of bits or bytes to be offset from the
base. As a result, an alternative to the general rule given under "Establishing a Multiplication
Factor" above is: In indexed addressing, measure the index value in units of the size of the
operand with which it is operating, whether the operand unit is one bit or four words.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-26 CB07

\
.J

<-

ACQ

ASSEMBLY LANGUAGE INSTRUCTIONS

The remainder of this section lists (alphabetically) and describes the assembly language
instructions for the Central Processing Unit (CPU). Assembly language instructions for the
Commercial Processor and the Scientific Instruction Processor (SIP) are given in Sections 6 and
7 respectively. The description of each instruction includes the name, type, format, and explana­
tion of operands.

When an operand specifies a symbolic name, constant, or expression (other than an address
expression), refer to Section 2 for a detailed description of those elements. Address expressions
are defined in this section under "Addressing Techniques." Before using the following
instructions you should fully understand the assembly language elements described in Section 2
and in this section.

Although not shown in the source language formats, all assembly language instructions can
be labeled.

ACQ

Instruction:

Acquire stack space

Type:

GE

Source Language Format:

J$Bn)
MCQa 1 ;'n' ,$Rn

Descriptipn:

This stack instruction acquires an additional frame, of the size specified by the contents of$Rn,
from the currently available stack space. $Bn is set to point to this newly acquired frame.

If the size specified by Rn is such that the currently available stack space is exceeded, a trap to
trap vector 10 occurs.

Stack instructions are double-word instructions with the following characteristics.

• A common first word.

• Bits 0 through 8 and bit 12 of the second word contain zeros.

Ifbits 0 through 8 and bit 12 of the second word are not zero, the result is a trap to trap vector 16.

Bits 9 through 11 of the ACQ instruction specify the register $Rn bits 13 through 15 specify
register $Bn.

This instruction is executable only on 6/40 and 6/50 models.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-27 CB07

I

ADD

ADD

Instruction:

Add Contents to R-register

Type:

DO

Source Language Format:

t.AIJDA { ~~} , address-expression

Description:

Adds the contents of the location or R-register identified in the address expression to the
contents of the R-register specified in the first operand. The result is saved in the first operand
R-register. .

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

The contents of the I-register are affected as follows:

• Ifthe result is more than 215 -1 (32767) or less than -215 (-32768), the OV-bit is set to 1:
otherwise, it is set to O.

• If, during the summation, a carry occurs, the C-bit is set to 1; otherwise, it is set to o.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-28 CB07

----"-- - ~-- ---- -----

ADV

ADV

Instruction:

Add value to R-register

Type:

SI

Source Language Format:

{
$Rnj

.:1ADV.:1 ;'n' ,[=] { internal-value-expression }
single-precision-fixed-point-constant

Description:

Adds the 8-bit value (with sign extended) specified in the second operand to the contents of the
R-register identified in this operand. The result is saved in R-register.

The contents of the I-register are affected as follows:

• If the result is more than 2iL 1 (32767), or less than _215 (-32768), the OV-bit is set to 1;
otherwise, it is set to o.

• If, during the summation, a carry occurs, the C-bit is set to 1; otherwise, it is set to o.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-29 CB07

AID

AID

Instruction:

Add integer double

Type:

SO

Source Language Format:

aAIDaaddress-expression

Description:

Adds the value of the double-word integer specified by the address expression to the value in the
register pair $R6, $R7. The result is saved in $R6 and $R7, with the most significant part in $R6
and the least significant part in $R7.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

: :::} registers addressing

Short displacement addressing
Specialized addressing

If the address expression specifies memory addressing with indexing, the index register is
aligned to count double-words relative to the word specified.

If Immediate Operand Addressing is specified, the immediate operand may only use a binary
integer constant (which is sign extended to 32 bits by the Assembler), a double precision
fixed-point constant, or a string constant of exactly two words (Le., four bytes or 32 bits).

If=$Rn is used, only =$R3 (adds the contents ofR2 and R3 into R6 and R7 respectively), =$R5
(adds the contents of R4 and R5 into R6 and R7, respectively), or =$R7 (doubles the value
contained in R6 and R7) may be used.

If a carry occurs, the C-bit of the I-register is set to 1, else it is set to o~

Ifoverflow occurs, the OV-bit if the I-register is set to 1, else it is set to O.

I This instruction is executable only on 6/40 and 6/50 models.

~EMBLY LANGUAGE INSTRUCTIONS 5-30 CB07

AND

Instruction:

AND contents with R-register

Type

00

Source Language Format:

MNIl4 {~'!;} ,address-expression

Description:

AND

Logically AND's the contents of the R-register identified in the first operand with the contents of
the location or R-register specified in the address expression. The result is saved in the first
operand R-register.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

The following chart illustrates the result of performing a logical AND operation on bits:

First operand bit: 0 0 1 1

Second operand bit: 1 0 1 0

Resu It: 0 0 1 0

ASSEMBLY LANGUAGE INSTRUCTIONS 5-31 CB07

ANH

ANH

Instruction:

Logically AND half-word (byte) with R-register

Type:

00

Source Language Format:

dANlL1 {~} ~dress-expre8Sion
Description:

A logical AND operation is performed on the contents of the R-register identified in the first
operand with the contents of the byte specified in the address expression.

Prior to the operation, the byte operand is internally expanded to word length by extending the
sign through the eight high-order bit positions. The byte selected to participate in the operation
is determined by the format of the address expression, as follows:

• Register Addressing (= $Rn): The rightmost byte of the register is selected.

• Memory Addressing Without Indexing or Immediate Operand Addressing: The leftmost
byte of the word at the designated memory address is selected.

• Memory Addressing With Indexing: The memory address indicates a starting point. The
index register contains an arithmetic value to be added to the starting point. The value
specifies the number of byte3 before or after the starting point needed to reach the byte
selected for the operation.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

The following chart illustrates the result of performing a logical AND operation on bits:

First operand bit: 0 0 1 1

Second operand bit: 1 0 1 0

Result: 0 0 1 0

ASSEMBLY LANGUAGE INSTRUCTIONS 5-32 CB07

ASD

Instruction:

Activate Segment Descriptor

Type:

GE

Source Language Format:

aASD

Description:

ASD

The MMU segment descriptor whose first and second word, respectively, are contained in $R6
and $R7 is moved into the MMU segment descriptor specified by the Effective Address contained
in $B5.

The ASD instruction is privileged.

Segment descriptors are entries in physical memory allocation tables which relate physical
memory allocations to specific process usages. Segment descriptors are used to specify the
resources available to a particular process under the memory protection subsystem.

This instruction is available only with systems that have a Memory Management Unit. I

ASSEMBLY LANGUAGE INSTRUCTIONS 5-33 CB07

B

B

Instruction:

Branch unconditionally

Type:

BI

Source Language Format:

{
direct-IMA }

.!lB.!l direct-P-relative-address
short-displacement-address

Description:

Branches unconditionally to the location specified in the operand.

If the J-bit in the Ml-register contains a binary 1, the trace procedure is entered via trap vector 2.
Upon completiop., the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J -bit contains a binary 0, the instruction sequences starting at the
location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-34 CB07

BAG

BAG

Instruction:

Branch if algebraically greater than

Type:

BI

Source Language Format:

{
direct-IMA I

aBAGa direct-P-relative-address
short-displacement-address

Description:

Branches to the location specified in the operand if either, but not both, of the G- or U -bits of the
I-register equals 1.

Action if Branch Occurs:

If the J-bit in the Ml-register contains binary 1, the trace procedure is entered via trap vector 2.
Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-35 CB07

I

BAGE

SAGE

Instruction:

Branch if algebraically greater than or equal to
I

Type:

BI

Source Language Format:

(
direct-IMA)

aBAGEa direct-P-relative-address
short-displacement-address

Description:

Branches to the location specified in the operand ifthe U- and L-bits of the I-register are both 0 or
both l.

Action if Branch Occurs:

If the J-bit in the M1-register contains binary 1, the trace procedure is entered via trap vector 2.
Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS CB07

(

BAL

SAL

Instruction:

Branch if algebraically less than

Type:

BI

Source Language Format:

{
direct-IMA I

.:lBAL.:l direct-P-relative-address
short-displacement-address

Description:

Branches to the location specified in the operand if either, but not.both, of the U- or L-bits ofthe
I-register equals l.

Action if Branch Occurs:

If the J-hit in the M1-register contains a binary 1, the trace procedure is entered via trap vector
2. Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-37 CB07

BALE

BALE

Instruction:

Branch if algebraically less than or equal to

Type:

BI

Source Language Format:

I direct-IMA I
ABALEA direct-P-relative-address

short-displacement-address

Description:

Branches to the location specified if the G- and U-bits of the I-register are both 0 or both 1.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via trap vector
2. Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-38 CB07

,,)

/

(

(.. ~

BBF

BBF

Instruction:

Branch if bit-test indicator false

Type:

BI

Source Language Format:

1 direct-IMA I
ABBFA direct-P-relative-address

short-displacement-address

Description:

Branches to the location specified in the operand if the B-bit in the I-register is set to O.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via trap vector
2. Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-39 CB07

BBT

SST

Instruction:

Branch if bit-test indicator true

Type:

BI

Source Language Format:

1 direct-IMA I
aBBTa direct-P-relative-address

short-displacement-address

Description:

Branches to the location specified in the operand if the B-bit in the I-register is set to 1.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via trap vector
2. Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-40 CBQ7

(

(

BeF

BCF

Instruction:

Branch if no carry

Type:

BI

Source Language Format:

I direct-IMA I
aBCFa direct-P-relative-address

short-displacement-address

Branches to the location specified in the operand if the C-bit in the I-register is set to O.

Action if Branch Occurs:

If the J-bit in the Ml-register contains a binary 1, the trace procedure is entered via trap vector
2. Upon completion, the trace procedure automatically branches to the address specified by the
~rand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-41 CB07

BeT

BCT

Instruction:

Branch if carry

Type:

BI

Source Language Format:

{
direct-IMA I

~BCT~ direct-P-relative-address
short-displacement-address

Description:

Branches to the location specified in the operand if the C-bit in the I-register is set to l.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via trap vector
2. Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-42 CB07

-- /

BDEC

BDEC

Instruction:

Branch and decrement

Type:

BR

Source Language Format:

I $Rnlldirect-IMA I aBDECa X'n' , direct-P-relative-address
n . short-displacement-address

Description:

Subtracts 1 from the contents of the R-register identified in the first operand; then, branches to
the location specified in the second operand if the contents of the R-register are not equal to -l.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via trap vector
2. Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-43 CB07

I

BE

BE

Instruction:

Branch if equal

Type:

BI

Source Language Format:

I direct-IMA I
aBEa direct-P-relative-address

short-displacement-address

Description:

Branches to the location specified in the operand if both the G- and L-bits of the I-register are set
to O.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via trap vector
2. Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-44 CB07

\.
'-.

BEVN

Instruction

Branch if R-register even

Type:

BR

Source Language Format:

{
$Rnl {direct-IMA I

ABEVNA X'n' , direct-P-relative-address
n short-displacement-address

Description:

BEVN

Branches to the location specified in the second operand if the R-register identified in the first
operand contains an even value.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via trap vector
2. Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-45 CB07

BEZ

BEZ

Instruction:

Branch if R-register equal to 0

Type:

BR

Source Language Format:

{
$Rnl {direct-IMA I

aBEZa X'n' , direct-P-relative-address
n short-displacement-address

Description:

Branches to the location.specified in the second operand if the R-register identified in the first
operand contains o.
Action if Branch Occurs:

IftheJ-bit in the M1-register contains a binary 1, the trace procedure is entered via trap vector
2. Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

\

ASSEMBLY LANGUAGE INSTRUCTIONS 5-46 CB07

(

BG

Instruction:

Branch if greater than

Type:

BI

Source Language Format:

I direct-IMA I
~BG~ direct-P-relative-address

short-displacement-address

Description:

BG

. \

Branches to the location specified in the operand if the G-bit of the I-register is set to 1. I
Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via trap vector
2. Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is. executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-47 CB07

I

BGE

BGE

Instruction:

Branch if greater than or equal to

Type:

BI

Source Language Format:

{
direct-IMA)

ABG~,A direct-P-relative-address
short-displacement-address

Description:

Branches to the location specified in the operand if the L-bit of the I-register is set to O.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via trap vector
2. Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or ifthe J -bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-48 CB07

,j

'''-.,c/

(

BGEZ

BGEZ

Instruction:

Branch if R-register greater than or equal to 0

Type:

BR

Source Language Format:

{
$Rnjldirect-IMA j

~BGEZ~ X'n' , direct-P-relative-address
n t short-displacement-address

Description:

Branches to the location specified in the second operand if the R-register identified in the first
operand contains a positive value or O.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via trap vector
2. Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-49 CB07

BGZ

BGZ

Instruction:

Branch if R-register greater than 0

Type:

BR

Source Language Format:

{$Rn) {direct-IMA)
aBGZa X'n',' direct-P-relative-address

n short-displacement-address

Description:

Branches to the location specified in the second operand if the R-register identified in the first
operand contains a positive value.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via trap vector
2. Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-50 CB07

(

BINC

SINe

Instruction:

Branch and increment

Type:

BR

Source Language Format:

{
$Rnl {direct-IMA I

ABINCA X'n' , direct-P-relative-address
n short-displacement-address

Description:
Adds 1 to the contents of the R-register identified in the first operand; then, branches to the
location specified in the second operand if the contents of the R-register is not o.
Action if Branch Occurs:

IftheJ-bit in the M1-register contains a binary 1, the trace procedure is entered via trap vector
2. Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-51 CB07

BIOF

B/OF

Instruction:

Branch if I/O indicator false

Type:

BI

Source Language Format:

1 direct-IMA I
aBIOFa direct-P-relative-address

short-displacement-address

Description:

Branches to the location specified in the operand if the I-bit in the I-register is set to o.
Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via trap vector
2. Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J -bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-52 CB07

I ",

/

(

BlOT

Instruction:

Branch if I/O indicator true

Type:

BI

Source Language Format:

{
direct-IMA 1

aBIOTa direct-P-relative-address
short-displacement-address

Description:

BlOT

Branches to the location specified in the operand if the I-bit in the I-register is setto 1.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via trap vector
2. Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-53 CB07

I

BL

BL

Instruction:

Branch if less than

Type:

BI

Source Language Format:

{
direct-IMA)

aBU direct-P-relative-address
short-displacement-address

Description:

Branches to the location specified in the operand if the L-bit of the I-register is set to 1.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via trap vector
2. Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J -bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-54 CB07

(

(

BLE

BLE

Instruction:

Branch if less than or equal to

Type:

BI

Source Language Fonnat:

{
direct-IMA }

aBLEa direct-P-relative-address
short-displacement-address

Description:

Branches to the location specified in the operand if the G-bit of the I-register is set to o. I
Action if Branch Occurs:

IftheJ-bit in the Ml-register contains a binary 1, the trace procedure is entered via trap vector
2. Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-55 CB07

BLEZ

BLEZ

Instruction:

Branch if R-register equal to or less than 0

Type:

BR

Source Language Format:

{
$Rn} {direct-IMA }

aBLEZa X'n' , direct-P-relative-address
n short-displacement-address

Description:

Branches to the location specified in the second operand if-the R-register identified in the first
operand contains a negative value or O.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via trap vector
2. Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-56 CB07

r',\
'-,,--j

.-./

BLZ

BLZ

Instruction:

Branch if R-register less than 0

Type:

BR

Source Language Format:

{$RnJ {direct-IMA J
.:lBLZ.:l X'n' , direct-P-relative-address

n short-displacement-address

Description:

Branches to the location specified in the second operand ifthe R-register identified in the first
operand contains a negative value.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via trap vector
2. Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-57 CB07

I

BNE

SNE

Instruction:

Branch if not equal

Type:

BI

Source Language Format:

{
direct-IMA ·1

ABNEA direct-P-relative-address
short-displacement-address

Description:

Branches to the location specified in the operand if either, but not both, the G-bit or the L-bits of
the I-register are set to l.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via trap vector
2. Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-58 CB07

j

(

.. ~j

BNEZ

BNEZ

Instruction:

Branch if R-register not equal to 0

Type:

BR

Source Language Format:

{
$Rn) {direct-IMA)

aBNEZa· X'n' , direct-P-relative-address
n short-displacement-address

Description:

Branches to the location specified in the second operand if the R-register identified in the first
operand contains a value other than O.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via trap vector
2. Upon completion, the trace.procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-59 CB07

BNOV

BNOV

Instruction:

Branch if no R-register overflow

Type:

HI

Source Language Format:

{
direct-IMA }

.dBNOV.d direct-P-relative-address
short-displacement-address

Description:

Branches to the location specified in the operand if the OV-bit in the I-register is set to O.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via trap vector
2. Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J -bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-60 CB07

Bonn

BODD

Instruction:

Branch if R-register odd

Type:

BR

Source Language Format:

{$RnJ {direct-IMA J
aBODDa X'n' , direct-P-relative-address

n short-displacement-address

Description:

Branches to the location specified in the second operand if the R-register identified in the first
operand contains an odd value.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via trap vector
2. Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-61 CB07

BOV

BOV

Instruction:

Branch if R-register overflow

Type:

BI

Source Language Format:

{
direct-IMA }

.:1BOV.:1 direct-P-relative-address .
short-displacement-address

Description;

Branches to the location specified in the operand if the OV-bit in the I-register is set to 1.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via trap vector
2. Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-62 CB07

'"~----~- ---------

r:<",
\Jl)/

\

c····
...

(

BRK

Instruction:

Break trap

Type:

GE

Source Language Format:

aBRKa
Description:

BRK

Enters the trace procedure by a trap to trap vector 2; this instruction is used for debugging.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-63 CB07

BSE

SSE
Instruction:

Branch if signs equal

Type:

BI

Source Language Format:

{
direct-IMA I

..:1BSE..:1 direct-P-relative-address
short-displacement-address

Description:

Branches to the location specified in the operand if the U-bit in the I-register is equal to o.
Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via trap vector
2. Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-64 CB07

(

BSU

Instruction:

Branch if signs unlike

Type:

BI

Source Language Format:

{
direct-IMA }

aBSUa direct-P-relative-address
short-displacement-address

Description:

BSU

Branches to the location specified in the operand if the U-bit in the I-register is equal to l.

Action if Branch Occurs:

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via trap vector
2. Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-65 CB07

I

CAD

CAD

Instruction:

Add carry bit to contents

Type:

SO

Source Language Format:

!!&CAD!!&address-expression

Description:

Adds the contents of the C-bit in the I-register to the contents of the location specified in the
address expression.
The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

The contents of the I-register are affected as follows:

• If a carry occurs during the operation, the C-bit is set to 1; otherwise, it is set to O.

• If the result is more than 215_1 (32767), or less than -215 (-32768), the OV-bit is set to 1;
otherwise,it is set to O.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-66 CB07

(

CL

Instruction:

Clear

Type:

SO

Source Language Format:

!:J. CUaddress-expression

Description:

Stores zeros in the location or R-register specified in the address expression.

CL

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Bn} register addressing
=$Sn
Short displacement addressing

. Specialized addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-67 CB07

CLH

CLH

Instruction:

Clear half-word

Type:

SO

Source Language Format:

aCLHAaddress-expression

Description:

Stores O's in the half-word (byte) location specified in the address expression.

I The byte to be cleared is determined by the format of the address expression, as follows:

• If the address expression specifies Register Addressing (=$Rn), O's are stored in the
rightmost byte of the register.

• If the operand specifies Memory Addressing without indexing, or Immediate Operand
Addressing O's are stored in the leftmost byte of the word found at the specified location.

• If the operand specifies Memory Addressing with indexing, the index register is aligned to
count bytes relative to the leftmost byte of the word specified. O's are stored in the byte thus
addressed.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Bn register addressing
Short displacement addressing
Specialized addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-68 CB07

(''',
~.,j

C··'
/

CMS

Instruction:

Compare contents to B-register

Type:

00

Source Language Format:

4CMB4 {~~,::} , address-expres,ion

Description:

eMB

Compares the contents of the B-register identified in the first operand to the contents of the
location or B-register specified in the address expression.

'!be address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Rn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

Immediate operand addressing with a value expression.

'!be contents of the I-register are affected as follows:

• If the contents of the B-register are greater than the contents of the location, the G-bit is set
to 1; otherwise, it is set to O.

• If the contents of the B-register are less than the contents of the location, the I-bit is set to 1;
otherwise, it is set to O.

• The setting of the U-bit is undefined.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-69 CB07

CMH

CMH

Instruction:

Compare half-word (byte) to R-register

Type:

00

Source Language Format:

<lCMm {!~} . address-expreSBion

Description:

Compares the contents of the R-register identified in the first operand to the contents of the byte
specified in the address expression.

Prior to the operation, the byte operand is internally expanded to word length by extending the
sign through the eight high-order bit positions. The byte selected to participate in the operation
is determined by the format of the address expression, as follows:

• Register Addressing (= $Rn): The rightmost byte of the register is selected.

• Memory Addressing Without Indexing or Immediate Operand Addressing: The leftmost
byte of the word at the designated memory address is selected.

• Memory Addressing With Indexing: The memory address indicates a starting point. The
index register contains an arithmetic value to be added to the starting point. The value
specifies the number of bytes before or after the starting point needed to reach the byte
selected for the operation.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Bn} register addressing
=$Sn
Short displacement' addressing
Speci~ized addressing

The contents of the I-register are affected as follows:

• If the contents of the R-register are greater than the contents of the created temporary
word, the G-bit is set to 1; otherwise, it is set to o.

• If the contents of the R-register are less than the contents of the created temporary word,
the L-bit is set to 1; otherwise, it is set to O.

• If the contents of the R-register and the contents of the created temporary word do not have
like signs, the U-bit is set to 1; otherwise, it is set to O.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-70 CB07

41
I'

\'\.,.",,--//

--- -_ .. -----~-- -.---~-- ------- - ~~---~-.--------- --------_.- - .. --~---

CMN

Instruction:

Compare address to null

Type:

SO

Source Language Format:

llCMNlladdress-expression

Description:

CMN

Compares the contents of the location or B-register specified by the address expression to a null
address (the address 0).

The contents of the I-register are affected as follows:

• The G-bit is set to 0 if the contents of the specified location or register are equal to null;
otherwise, it is set to 1.

• The L-bit is set to o.
• The U-bit is affected, but its value is undefined.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Rn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

Immediate operand addressing with a value expression.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-71 CB07

CMR

CMR
Instruction:

Compare contents to R-register

Type:

DO
Source Language Format:

<1CMR.& {!~} , addre .. -expression

Description:

Compares the contents of the R-register identified in the first operand to the contents of the
location or R-register specified in the address expression.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

=$Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

The contents of the I-register are affected as follows:

• If the contents of the R-register are greater than the contents of the location, the G-bit is set
to 1; otherwise, it is set to o.

• If the contents of the R-register are less than the contents of the location, the L-bit is set to
1; otherwise, it is set to o.

• If the content of bit 0 of the R-register is not equal to the content of bit 0 of the location, the
U-bit is set to 1; otherwise, it is set to O.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-72 CB07

,~\
" I
,-j

I'f \
I',

(

CMV

CMV

Instruction:

Compare value to R-register

Type:

SI

Source Language Format:

aCMVa X" = In ema -va ue-expreSSlOn {$Rnj {' t I I . }
n n ,[] single-precision-fixed-point-constant

Description:

Compares the 8-bit value (with sign extended) specified in the second operand to the contents of
the R-register identified in the first operand.

The contents of the I-register are affected as follows:

• If the contents of the R-register are greater than the value (with sign extended), the G-bit is
set to 1; otherwise, it is set to O.

• If the contents of the R-register are less than the value (with sign extended), the L-bit is set
to 1; otherwise, it is set to O.

• If the sign of the R-register and the sign of the value are not equal, the U-bit is set to 1;
otherwise, it is set to O.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-73 CB07

CMZ

CMZ

Instruction:

Compare to 0

Type:

SO
Source Language Format:

~CMZ~address-expression

Description:

Compares the contents of the location or R-register specified in the address expression to O.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

Note that, the $Bn.$R1, $Bn.$R2, or $Bn.$R3 form of addressing can be used by this instruction
to cause a trap for the purpose of sizing main memory.

The contents of the I-register are affected as follows:

• If the contents of the specified location do not equal 0, the G-bit is set to 1; otherwise, it is set
to O.

• The L-bit is set to O.

• If the first bit of the specified location equals 1, the U-bit is set to 1; otherwise, it is set to O.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-74 CB07

(

CNFG
Instruction:

Configure

Type:

GE

Description:

Causes the CPU to perform an input/output operation and a scan.

CNFG

The effect of the input/output operation is equivalent to that produced by the execution of the
following instruction:

10 =$R7,=$R6

Register R6 contains the command word (CH,F) that specifies a channel number and a function
code. (See the 10 instruction, for format of the command word.) The function code must
designate an output function. The command word and the word contained in register R7 are sent
to the addressed 10 channel.

A predetermined list of channel numbers is scanned to determine the presence or absence of
optional processors. The results of the scan are used to update internal CPU firmwarelhardware
flags that direct instruction execution; i.e., trap or execute by an optional processor. An identical
scan is performed automatically when the system is powered up or initialized.

This privileged instruction, which is executable only on 6/40 and 6/50 models, is normally used I
to control the configuration of option boards; e.g., the Commercial Processor and the SIP.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-75 CB07

CPL

CPL

Instruction:

Complement

Type:

SO

Source Language Format:

aCPUaddress-expression

Description:

One's complements the contents of the location or R-register specified in the address expression.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

=$Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

The following chart illustrates the result of logically one's complementing bits:

Operand bit: 1 0

Result: 0 1

ASSEMBLY LANGUAGE INSTRUCTIONS 5-76 CB07

~---~~~-~~---

DAL

DAL

Instruction:

Double-shift arithmetic-left

Type:

SHL

Source Language Format:

$RUl
MlAU X· H} , ,intemal-value-expression

m .
Description:

Left shifts the contents of the even-odd R-register pair (i.e., R2 and R3, R4 and R5, R6 and R7)
identified in the first operand the number of bit positions specified by the ·internal value
expression in the second operand. The bit positions vacated by the shift are filled with binary O's.

The internal value exyression must be ;;:,. 0 and :s;; 31.
\

If the internal value expression equals 0, the contents are shifted left the number of bit positions
derived by using the value in bits 11 through 15 of general register R1.

The contents of the I-register are ~ected as follows:

• If the contents of bit 0 in the even-numbered R-register changes at any time during the
operation, the OV-bit is set to 1; otherwise, it is set to O.

The following illustrates the operation of the DAL instruction:

o Rn' 15 0 Rn 15

I(ov).. I I ~,----_---:------,r- 0 ...

L Set to 1 if Rn' (0) changes during the operation.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-77 CB07

DAR

DAR

Instruction:

Double-shift arithmetic-right

Type:

SHL
Source Language Format:

$Rm
X• {537) , ,internal-value-expression

Description:

Shifts the contents of the even-odd R-register pair (i.e., R2 and R3, R4 and R5, R6 and R7)
identified in the first operand right the number of bit positions specified by the internal value
expression in the second operand. The bit positions vacated by the shift are filled with the sign
value originally contained in bit o.
The internal value expression must be ;;::. 0 and :so; 3l.

If the internal value expression equals 0, the contents are shifted left the number of bit positions
derived by using the value in bits 11 through 15 of general register Rl.

The contents of the I-register are affected as follows:

• C-bit contains the last binary digit shifted out of the odd-numbered R-register.

The following illustrates the operation of the DAR instruction:

o Rn' 15 0 Rn 15

Rn' (0) --.j'--____ .~I~I I---.ICC)

Saves last bit shifted out ofRn (15). ~

ASSEMBLY LANGUAGE INSTRUCTIONS 5-78 CB07

\~_._,J

(

(.

. ./

DeL

DeL

Instruction:

Double-shift closed-left

Type:

SHS

Source Language Format:

$RU}
ADCL1 X' H} , ,internal-value-expression

m
Description:

Shifts the contents of the even-odd R-register pair (i.e., R2 and R3, R4 and R5, R6 and R7)
identified in the first operand left the number of bit positions specified by the internal value
expression in the second operand. The bits shifted out of the even-numbered R-register are
placed in the bit positions of the odd-numbered R-register vacated as the bits are shifting left.

The internal value expression must be ~ 0 and ~ 15.

Note that the DCL instruction is short shift.

The following illustrates the operation of the DCL instruction:

tORn' 15,~_·_~o --Rn---l----,5,J y'.-=-------===----------=-='1"· I

ASSEMBLY LANGUAGE INSTRUCTIONS 5-79 CB07

nCR

OCR

Instruction:

Double-shift closed-right

Type:

SHS

Source Language Format:

$RU}
&DCru. X· {n · .internal-val~ssion

HI
Description:

Shifts the contents of the even-odd R-register pair (Le., R2 and R3 R4 and R5, R6 and R7)
identified in the first operand right the number of bit positions specified by the internal value
expression in the second operand. The bits shifted out of the odd-numbered R-register are placed
in the bit positions of the even-numbered R-register vacated as the bits are shifting right.

The internal value expression must be;;;;:: 0 and :s:; 15.

If the internal value expression equals 0, the contents are shifted right the number derived by
using the value in bits 11 through 15 of general register Rl.

Note that the DCR instruction is short shift.

The following illustrates the operation of the DCR instruction:

...

J Rn' 15 0 Rn - 15

I .\ ~,_o _------,

ASSEMBLY LANGUAGE INSTRUCTIONS 5-80 CB07

- ------------- --- ------ -------. -- - --._-------- --_._--- ---

(

(
'0./

..

DEC

DEC

Instruction:

Decrement

Type:

SO

Source Language Format:

aDECaaddress-expression

Description:

Decrements by 1 the contents of the location or R-register specified in the address expression,
then copies bit 0 of the addressed word or register into I(B).

This instruction operates in read modify write (RMW) mode, which prevents any other processor
in a multiprocessor environment from accessing the location being modified until the modifica­
tion is completed.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

The contents of the I-register are affected as follows:

• If the decrementation causes a carry to occur (Le., the value being decremented was not
zero), the C-bit is set to 1; otherwise, it is set to o.

• If the value being decremented was -32768 (-215), I(OV) is set to 1; otherwise, I (OV) is
cleared to O.

• I(B) is set as described above.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-81 CB07

I

DIV

DN

Instruction:

Divide R-register by contents of location

Type:

DO

Source Language Format:

MlN <l. {~~} ,address..,xpression

Description:

Divides the contents of the R-register identified in the first operand by the contents of the
location or R-register specified in the address expression. The quotient is saved in the first
operand R-register. The remainder is ignored.

IfR7 is identified as the first operand R-register, the double integer operand contained in R6 and
R7 is divided by the single integer operand identified by the address expression. The quotient is
saved in R7 and the remainder is saved in R6.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

The contents of the I-register are affected as follows:

1. I(OV) is set to 1 if
a. The divisor = 0
b. The quotient is greater than 215 -1 (32767) or less than _2 15 (-32768).
Otherwise I(OV) is cleared to o.
Divide operations that cause I(OV) to be set will terminate with all operands unchanged.

2. I(C) is set to 1 if the remainder is not 0, or cleared to 0 if the remainder is O. I(C) is
unchanged when the first operand is $R7. If the divisor = 0 or if the dividend is - 215 times
the divisor, I(C) is undefined.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-82 CB07

\
) ,,-_ ... '

(

DOL

Instruction:

Double-shift open-left

Type:

sm..
Source Language Format:

$Rm
aDOLA 15371 X' 1 ',internal-value-expression

Description:

DOL

Shifts the contents of the even-odd R-register pair (i.e., R2 and R3, R4 and R5, R6 and R7)
identified in the first operand left the number of bit positions specified by the internal value
expression in the operand. The bit positions vacated by the shift are filled with binary O's.

The internal value expression must be;;;:. 0 and :0;;; 3l.

If the internal value expression equals 0, the contents are shifted left the number derived by
using the value in bits 11 through 15 of general register Rl.

The contents of the I-register are affected as follows:

• C-bit contains the last binary digit shifted out of the even-numbered R-register.

The following illustrates the operation of the DOL instruction:

o Rn' 15 0 Rn 15

I(c)---i I.. '---1 ------,1.-- 0 ...

i Saves last bit shifted out ofRn' (0).

ASSEMBLY LANGUAGE INSTRUCTIONS 5-83 CB07

DOR

DOR

Instruction:

Double-Shift open-right

Type:

SHL

Source Language Format:

$RnJ
<l.DOru. X· H} , ,internal-value-expression

m
Description:

Shifts the contents of the even-odd R-register pair (i.e., R2 and Ra, R4 and R5, R6 and R7)
identified in the first operand right the number of bit positions specified by the internal value
expression in the operand. The bit positions vacated by the shift are filled with binary O's.

The internal value expression must be;;;. 0 and.:;;; 31.

If the internal value expression equals 0, the contents are shifted right the number derived by
using the value in bits 11 through 15 of general register R1.

The contents of the I-register are affected as follows:

• C-bit contains the last binary digit shifted out of the odd-numbered R-register.

The following illustrates the operation of the DOR instruction:

o Rn' 15 0 Rn 15

o···~'-------I .1 I--.I(C)

Saves last hit shifted out of Rn (15)_ J

ASSEMBLY LANGUAGE INSTRUCTIONS 5-84 CB07

./"'.

(

DQA

Instruction:

Dequeue on address

Type:

GE

Source Language Format:

aDQA

Description:

DQA

This instruction unlinks a frame whose PRIORITY word address exactly matches the address
contained in register Bl. Register B2 points to the LOCK word.

If the instruction is not successfully completed, the carry bit of the indicator register is cleared to
zero; otherwise it is set to one and the G- and L-bits indicate the results as follows:

Indicator Register Bit
G L
o 0
o 1

Result
Frame was unlinked
No match found

Queue instructions can be executed only on model 6/40 and 6/50 systems.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-85 CB07

I

I

DQH

DQH

Instruction:

Dequeue from head

Type:

GE

Source Language Format:

aDQH
Description:

This instruction unlinks the first frame whose priority is equal t9 or numerically greater than
that specified by register R5. Register B2 points to the LOCK word. If the instruction is not
completed, the carry bit of the indicator register is cleared to zero. If the instruction is completed:

• The carry bit of the indicator register is set to one

• The pointer to the PRIORITY word of the unlinked frame, if any, is loaded into register Bl
• The G- and L- bits of the indicator register indicate the results as follows:

Indicator Register Bits
G L
o 0

1 0

o 1

Results
Unlinked frame was first whose priority equalled that
specified by register R5.
Unlinked frame was first whose priority number was
greater than that specified by register R5.
No frame was unlinked; register B 1 is unchanged; no
frame found whose priority number was equal to or'
greater than that specified by register R5.

Queue instructions can be executed only on model 6/40 and 6/50 systems.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-86 CB07

/

(

ENT

Instruction:

Enter

Type:

SO

Source Language Format:

{
immediate-memory-address}

aENTa B-relative-addressing
P-relative-addressing
interrupt-vector-addressing

Description:

ENT

Jumps to the memory location specified by the operand; also, sets the P-bit or the high order bit
of the ring field in the S-register, as appropriate, to 0 (i.e., sets the bit to indicate the un­
privileged state).

IftheJ-bit in the M1-register contains a binary 1, the trace procedure is entered via trap vector
2. Upon completion, or if the J-bit contains a binary 0, execution commences at the specified
location.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-87 CB07

I

HLT

HLT

Instruction:

Halt

Type:

GE

Source Language Fonnat:

AHLT

Description:

Stops program execution. HLT state is indicated on the control panel. All interrupts are
honored.

The P-bit of the S-register must be set to 1, or the ring field of the S-register must be set to lx,
whichever is appropriate; i.e., the central processor must be in the privileged state for this
instruction to be executed. Ifnot, the unprivileged use of a privileged operation results in a trap
to trap vector 13.

A halt instruction on a user level may prevent a lower priority user level from completing a
Monitor service operation. The Monitor may be interrupted in a way that causes a system
interlock. If user level halts are used during program development, the level specified should be
the lowest priority in the system.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-88 CB07

7'

(

INC

Instruction:

Increment

Type:
, SO

Source Language Format:

!!INC!!address-expression

Description:

INC

Copies bit 0 of the contents of the location or R-register specified in the address expression into
I(B), then increments by 1 the contents of the location or register.

This instruction operates in read modify write (RMW) mode, which prevents any other processor
. in a multiprocessor environment from accessing the location being modified until the
modification is completed.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

The contents of the I-register are affected as follows:

• If the incrementation causes a carry to occur (i.e., the value being incremented was -1),
the C-bit is set to 1; otherwise, it is set to o.

• If the value being incremented was 32767, I(OV) is set to 1; otherwise, it is cleared to O.

• I(B) is set on as described above.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-89 CB07

I

10

10

Instruction:

Input/Output (word)

Type:

10

Source Language Format:

4I04address-expression,address-expression

Description:

1. If the function code (F) is odd (indicating output): sends the command word (CH,F)
specified by the second operand and the word specified by the first operand to the
addressed 10 channel.

2. If the function code (F) is even (indicating input): sends the command word (CH,F)
specified by the second operand to the addressed channel. If the channel accepts the
command, receives a word response from the channel and stores it in the word location or
R-register specified by the first operand. If the channel does not accept the command, the
contents of the location or register remain unchanged.

In both cases above, if the 10 channel accepts the command, the I-bit in the indicator register is
set to binary 1.

For the first operand, the address expression can take any of the forms described earlier in this
section under "Addressing Techniques," except for the following:

=$Bn} register addressing
=$Sn .
Short displacement addressing
Specialized addressing

For the second operand, the address expression can take any of the forms described earlier in
this section under "Addressing Techniques," except for the following:

=$Bn} register addressing
=$Sn
Short displacement addressing

The channel number and function code are contained in the R-register or memory word specified
by the second operand. The channel number and function code occupy 16 bits formatted as
follows:

Bit: 0 910 15

CH F

CH is the channel number and F is the function code. The channel number is odd for output
(memory-to-device) transfer and even for input (device-to-memory) transfer. The function code
is controller-specific, subject to these constraints:

1. If F is odd, data (specified by the first operand) is transferred from the CPU to the
controller. .

2. IfF is even, data is transferred from the controller to the CPU, which stores the data in the
R-register or memory word specified by the first operand.

ASSEMBLY ,LANGUAGE INSTRUCTIONS 5-90 CB07

(

10

The following shows how the required channel number and function code are used. Assume that
the status of a read operation on channel 20 16 is to be stored into the word labeled STATUS. Also
assume that the controller uses the standard function code 18 16 for "input status register." The 10
instruction to accomplish this could be coded as shown below:

10 STATUS,>=Z'0818'

or it could be coded as:

10 STATUS,>=X'20'*64+X'18'

For detailed information on the bus, refer to the Honeywell Level 6 Minicomputer Handbook.

The contents of the I-register are affected as follows:

• If the controller accepted the command, the I-bit is set to 1; otherwise, it is cleared to o.
The 10 instruction is privileged.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-91 CB07

I

I

r

IOH

IOH

Instruction:

Input/output half-word

Type:

10

Source Language Format:

aIOH:1address-expression,address-expression

Description:

This instruction is identical to the 10 instruction, except that the first operand specifies a
half-word as follows:

• Ifit specifies =$Rn, the rightmost byte of the specified R-register is sent (i.e., function code
is odd) to the bus.

• If it specifies Memory Addressing without indexing, or an Immediate Operand Addressing
format, the leftmost byte of the word found at the specified location is sent (i.e., function
code is odd) to the bus.

• If it specifies Memory Addressing with indexing, the index register is aligned to count
bytes relative to the leftmost byte of the word· specified. The byte thus addressed is sent
(Le., function code is odd) to the bus.

For each of the above cases, if the function code is even, the first operand specifies the byte in
which the response from the bus is to be stored.

See the description of the 10 instruction for details regarding the coding of the operands.

The 10H instruction is privileged.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-92 CB07

(

IOLD

Instruction:

Input/output load

Type:

10

Source Language Format:

aIOLDaaddress-expression,address-expression,address-expression

Description:

IOLD

Sends the controller the effective address (specified by the first operand), the channel number
and function code (specified in the second operand), and the range (Le., number of bytes to be
transferred) value (specified in the third operand) over the channel specified in the second
operand· to the bus. The address and range value are used to load the controller address and
range registers.

For the first operand, the address expression can take any of the forms described earlier in this
. section under "Addressing Techniques" except for the following:

=$Bnl
= $Rn. register addressing
=$Sn·
Short displacement addressing
Specialized addressing
Immediate operand addressing

For the second operand, the address expression can take any of the forms described earlier in
this section under "Addressing Techniques," except for the following:

=$Bn} register addressing'
=$Sn
Short displacement addressing

. The second operand of this instruction must specify the function code 0916 for most controllers.

For the third operand, the address expression can take any of the forms described earlier in this
section under "Addressing Techniques" except for the following:

::~:} register addressing

Short displacement addressing
SpeciaFzed addressing

The following shows how the required channel number and function code are used. Assume that
128 bytes are to be read from the device on channel 2016 into the buffer labeled BUFFER. The
10LD instruction to output this information to the controller could be coded as shown below:

10LD BUFFER,>=~'0809',= 128

For detailed information about the bus, see the Honeywell Level 6 Minicomputer Handbook.

The contents of the I-register are affected as follows:

• If the channel accepted the command, the I-bit is set to 1; otherwise, it is set to O.

The 10LD instruction is privileged.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-93 CB07

JMP

JMP

Instruction:

Jump

. Type:

SO
Source Language Format:

{
immediate-memory-address}

aJMPa B-relat~ve-address~ng
P-relatIve-addressmg
interrupt-vector-addressing

Description:

Jumps to the location specified in the operand.

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via trap vector
2. Upon completion, or if the J-bit contains a binary 0, execution commences at the specified
location.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-94 CB07

(

LAB

LAB

Instruction:

Load effective address into B-register

Type:

DO

Source Language Format:

aLABa {~~} ,address-expression

Description:

Loads the effective address generated by the address expression into the B-register identified in
the first operand.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

• Register addressing

• Short displacement addressing

• Specialized addressing

NOTE: The Level 6 hardware does not consider LAB to be a base register instruction.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-95 CB07

I

LB

LB

Instruction:

Load bit

Type:

SO

Source Language Format:

4LB4address-expression [, {!::::~~::~::~::~:::~~:)]
single-precision-fixed-point-constant

Description:

1. If the first operand specifies indexing, the index register is alIgned to count bits relative to
bit 0 of the specified word. The bit thus addressed is loaded into the B-bit of the I-register.
The second operand must be omitted when the first operand specifies indexing.

2. If the first operand does not specify indexing, the value (mask) in the second operand
identifies which bit(s) are to be checked (e.g., Z'SOOO' indicates that the first bit ofthe word
found at the specified location is to be checked); then, if (any of) the specified bit(s) contain
a binary 1, the B-bit of the I-register is set to 1; otherwise, it is set to O. If the value of the
second operand is zero, the contents of $R1 are used as a mask. .

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-96

CB07

" ./

(

LBC

Instruction:

Load bit and complement

Type:

SO

Source Language Format:

aLBCaaddress-expression , external-value-expression [{
internal-value-expression I]
single-precision-fixed-point-constant

Description:

LBC

1. If the first operand specifies indexing, the index register is aligned to count bits relative to
bit 0 of the specified word. The bit thus addressed is loaded into the B-bit of the I-register.
Upon completion of the operation, the addressed bit is set to the one's complement of its
value. The second operand must be omitted when the first operand specifies indexing.

2. If the first operand does not specify indexing, the value (mask) in the second operand
identifies which bit(s) are to be checked (e.g., Z'SOOO' indicates that the first bit of the word
found at the specified location ofR-register is to be checked); then, if(any of) the specified
bit(s) contains a binary 1, the B-bit of the I-register is set to 1; otherwise, it is set to O. If the
value of the second operand is zero, the contents of $R1 are used as a mask. Upon
completion of the instruction, each bit of the first operand which was checked is set to the

\

one's complement of is original value.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-97 CB07

I

I

I

I

LBF

LBF

Instruction:

Load bit and set false

Type:

SO

Source Language Format:

[{
internal-value-expression I]

aLBFaaddress-expression ,. external-value-expression
single-precision -fixed-point-constant

Description:

1. If the first operand specifies indexing, the index register is aligned to count bits relative to
bit 0 ofthe specified word. The bit thus addressed is loaded into the B-bit of the I-register.
Upon completion ofthe operation, the addressed bit is set to O. The second operand must
be omitted when the first operand specifies indexing.

2. If the first operand does not specify indexing, the value (mask) in the second operand
identifies which bit(s) are to be checked (e.g., Z'8000' indicates that the first bit of the word
found at the specified location ofR-register is to be checked); then, if(any of) the specified
bit(s) contains a binary 1, the B-bit of the I-register is set to 1; otherwise, it is set to O.lfthe
value of the second operand is zero, the contents of $Rl are used as a mask. Upon
completion of the instruction, each bit of the first operand which was checked is set to O.

This instruction operates in read modify write (RMW) mode, which prevents any other processor
in a multiprocessor environment from accessing the location being modified until the modifica­
tion is completed.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Bn} register addressing
=$Sn .
Short displacement addressing
Specia:lized addressing
Immediate operand addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-98 CB07

(

LBS

Instruction:

Load bit and swap

Type:

SO

Source Language Format:

[1 internal-value-expression I]
ALBSAaddress-expression , external-value-expression

single-precision-fixed-point-constant

Description:

LBS

1. If the first operand specifies indexing, the index register is aligned to count bits relative to
bit 0 of the specified word. The bit thus addressed is interchanged with the B-bit of the
I-register. The second operand must be omitted when the first operand specifies indexing.

2. If the first operand does not specify indexing, the value (mask) in the second operand
identifies which bites) are to be checked (e.g., Z'SOOO' indicates that the first bit of the word
found at the specified location ofR-register is to be checked); then, if(any of) the specified
bites) contains a binary 1, the B-bit of the I-register is set to 1; otherwise, it is set to O. If the
value of the second operand is zero, the contents of $R1 are used as a mask. Upon
completion of the instruction, each bit of the first operand that was checked is set equal to
the original value of the B-bit of the I-register.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

=$Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-99 CB07

I

I

I

I

LBT

LBT

Instruction:

Load bit and set true

Type:

SO
Source Language Format:

[{
internal-value-expression l~

aLBTaaddress-expression , external-value-expression
single-precision-fixed-point-constant

Description:

1. If the first operand specifies indexing, the index register is aligned to count bits relative to
bit 0 of the specified word. The bit thus addressed is loaded into the B-bit of the I-register.
Upon completion of the operation, the addressed bit is set to 1. The second operand must
be omitted when the first operand specifies indexing.

2. If the first operand does not specifY indexing, the value (mask) in the second operand
identifies which bites) are to be checked (e.g., Z'SOOO' indicates that the first bit of the word
found at the specified location ofR-register is to be checked); then, if (any of) the specified
bites) contains a binary 1, the B-bit of the I-register is set to 1; otherwise, it is set to O.
If the value of the second operand is zero, the contents of$R1 are used as a mask. Upon
completion of the operation, the bites) checked in accordance with the mask is (are) set to
1.
Upon completion of the operation, the bites) checked in accordance with thE:) mask is (are)
set to 1.

This instruction operates in read modify write (RMW) mode, which prevents any other processor
in a multiprocessor environment from accessing the location being modified until the
modification is completed.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

ASSEMBLY LANGUAGE INSTRUCTIOl'fS 5-100 CB07

I

)jI

(-

(

LDB

LDB

Instruction:

Load B-register

Type:

DO

Source Language Format:

<lLDBA {~~} ,address-expreBBion

Description:

Loads the contents of the location or B-register specified by the address expression into the
B-register identified in the first operand.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Rn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

Immediate operand addressing with a value expression.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-101 CB07

I

LDH

LDH

Instruction:

Load half-word (byte) into R-register

Type:

DO

Source Language Format:

.1LDH4 {~~} ,addreas-expression

Description:

Loads the contents of the location specified in the address expression, as described below, into
the R-register identified in the first operand:

• If the address expression specifies =$Rn, the rightmost byte (sign extended) of that
R-register is loaded into the R-register specified by the first operand.

• If the address expression specifies Memory Addressing without indexing, or an Immediate
Operand Addressing format, the leftmost byte (sign extended) of the word found at the
specified location is loaded into the R-register.

• If the address expression specifies Memory Addressing with indexing, the index register is
aligned to count bytes relative to the leftmost byte of the word specified. The byte thus
addressed is loaded (sign extended) into the R-register.

In all cases, the selected byte is loaded into the rightmost byte of the R-register, with the sign
extended to the left.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-102 CB07

(

LDI

LDI

Instruction:

Load double-word integer

Type:

SO

Source Language Fonnat:

aLDIaaddress-expression

Description:

Loads the contents of the location specified by the address expression into register R6 and the
contents of the next location into register R7.

The address expression can take any of the fonns described earlier in this section under
"Addressing Techniques," except for the following:

=$Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

If the address expression specifies memory addressing with indexing, the index register is
aligned to count double-words relative to the word specified.

If Immediate Operand Addressing is specified, the immediate operand may only use a binary
integer constant (which is sign extended to 32 bits by the Assembler), a double precision
fixed-point constant, or a string constant of exactly two words (i.e., four bytes or 32 bits).

If=$Rn is used, only =$R3 (loads the contents ofR2 and R3 into R6 and R7, respectively) or
=$R5 (loads the contents ofR4 and R5 into R6 and R7, respectively) and =$R7 may be used.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-103 CB07

LDR

LDR

Instruction:

Load R-register

Type:

DO

Source Language Format:

<\[J)!l.\ {;~} ,addre88~xpreB8ion
Description:

Loads the contents of the location or R-register identified in the address expression into the
R-register identified in the first operand.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-104 CB07

(

,-­
~/

LDT

10T

Instruction:

Load stack address register

Type:

GE

Source Language Format:

=Yr4{~:.1
Description:

Loads the T register with the address contained in $Bn.

Stack instructions are double-word instructions with the following characteristics:

• A common first word.

• Bits 0 through 8 and bit 12 of the second word contain zeros.

Ifbits 0 through 8 and bit 12 of the second word are not zero, the result is a trap to trap vector 16.
Register $Bn is specified in bits 13 through 15 of the second word of the LDT instruction.

Stack instructions can be executed only on model 6/40 and 6/50 systems.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-105 CB07

*

I

LDV

LDV

Instruction:

Load value

Type:

81

Source Language Format:

M.DV d {~} , [~]internal-value-<lxpre8,;on
Description:

Loads the 8-bit value identified in the second operand into the right half-word of the R-register
specified in the first operand. The contents of bit 8 are extended through the left half-word ofthe
R-register.

Except for the string constant form of the second operand, all values are assumed to be numeric.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-106 CB07

,"

(

LEV

Instruction:

Level Change

Type:

SO

Source Language Format:

ALEVAaddress-expression

Description:

LEV

Sets or resets level activity bits according to the contents of the location indicated by the address
expression.

The following bit configurations in the indicated location produce the actions described below.

Bit: a 2 3 4 5 6 7 8 9 10 15

I a I a I 0 I 0 I 0 I a I a I 0 I a I 0 I Level Number I
Schedule Interrupt Level, Scan and Dispatch

The level activity bit for the designated level will be set. The level activity bits will be scanned
and the highest active level ascertained. The context of the current level will be saved (unless
the current level is the highest active level). The context of the highest active level will be
restored (again, unless the current level is the highest active level).

Bit: o 2 3 4 5 6 7 8 9 10 15

I a]1]0] a] a] a I 0] 0 I a I a I Level Number I
Schedule Interrupt Level, Defer Interrupt

The level activity bit for the designated level will be set. Execution will continue at the current
level.

Bit: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[OJ a I a I a I 0 I 0·1 a I a I I 0 I a I a I a I a 11 11 I
Inhibit

The level activity bit for priority level 3 will be set. The interrupt vector for priority level 3 will
be set equal to the interrupt vector for the current level. Execution of the current task continues
at priority level 3. The use of level 3 as the inhibit level is a software convention.

Bit: a 1 2 3 4 5 6 7 8 9 10 15

IT] 0 I 0 I 0 I a I a [0 I 0 I 0 I Leve 1 Number

Schedule Interrupt Level. Suspend, Scan and Dispatch

The level activity bit for the designated level will be set. The level activity bit for the current
level will be reset. The level activity bits will be scanned. and the highest level ascertained. The
context of the current level will be saved. The context of the highest active level will be restored.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-107 CB07

I

LEV

Suspend, Inhibit

The level activity bit for the current level will be reset. The level activity bit for priority level 3
will be set. The interrupt vector for priority level 3 willbe set equal to the interrupt vector for the
current level. Execution ofthe task continues at priority level 3.. The use oflevel3 as the inhibit
level is a software convention.

Enable

Enable is used to end execution at p.riority level 3. The level activity bit for priority level 63 will
be set. The level activity bit for priority level 3 will be reset. The level activity bits will be
scanned and the highest active level ascertained. The context of the current level is saved
(unless the level where the inhibit originated is now the highest active level). The context of the
highest active level will be restored (again, unless the level where the inhibit originated is now
the highest active level).

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

The P-bit in the S-register must be set to 1 or the ring field in the S-register must be lx, as
appropriate, (i.e., the central processor must be in the privileged state) for this instruction to be
executed. The unprivileged use of a privileged operation is signified by a trap to trap vector 13.
(~aps and trap handling are described in the System Service Macro Calls manual.)
The contents of the S-register are affected as follows:

• Bits 10 through 15 of the S-register will be set to indicate the priority level at which
processing continues after execution of the LEV instruction.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-108 CB07

i
\1l I

\l /!
'---~

(
LLH

Instruction:

Load logical half-word (byte) into R-register

Type:

DO

Source Language Fonnat:

aLUIA {~~ I ,address~xpressioD
Description:

LLH

Loads the contents of the location specified in the address expression, as described below, into
the R-register identified in the first operand.

• If the address expression specifies =$Rn, the rightmost byte of that R-register is loaded
into the R-register specified by the first operand.

• If the address expression specifies Memory Addressing without indexing, or an Immediate
Operand Addressing fonnat, the leftmost byte of the word found at the specified location is
ioaded into the R-register.

• If the address expression specifies Memory Addressing with indexing, the index register is
aligned to count bytes relative to the leftmost byte of the word specified. The byte thus
addressed is loaded into the R-register.

In all cases, the selected byte is loaded into the rightmost byte of the R-register, with O's loaded
into the leftmost byte.

The address expression can take any of the fonns described earlier in this section under
"Addressing Techniques," except for the following:

=$Bn} register addressing
=$S
Short displacement addressing
Specialized addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-109 CB07

LNJ

LNJ

Instruction:

Load B-register and jump

Type:

DO
Source Language Format:

{
$B I {p-relative-address }

aLNJa X·; immed~ate-memory-address
, B-relatIve-address

n interrupt-vector-addressing

Description:

Loads the address of the next sequential instruction into the B-register identified in the first
operand, and jumps to the location specified in the second operand.

If the J-bit in the MI-register contains a binary. I, the trace procedure is entered via trap vector
2. Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the second operand is executed. The last instruction in the subroutine
should be:

JMP$Bn

ASSEMBLY LANGUAGE INSTRUCTIONS 5-110 CB07

- -----.---.------------------------------~

/
\~---./j

('

(

LRDB

Instruction:

Load Remote Descriptor Base Register

Type:

GE

Source Language Format:

~LRDB

Description:

Loads the contents of register B3 into the Remote Descriptor Base Register.

This instruction is executable only on 6/40 and 6/50 models.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-111

LRDB

I

CB07

MeL

MeL

Instruction:

Call monitor via trap

Type:

GE

Source Language Format:

aMCL

Description:

Calls monitor by a trap to trap vector 1.

ASSEMBLY LANGUAGE INSTRUCTIONS

--_._--

.. /

5-112 CB07

(

MLV

Instruction:

Multiply by value

Type:

SI

Source Language Format:

dML V d {~~} , [~Jinternal-value-expre,sion
Description:

MLV

Multiplies the contents ofthe R-register identified in the first operand by the 8-bit value (with
sign extended) specified in the second operand. The result is saved in the first operand
R-register.

IfR7 is identified as the first operand R-register, the result (double-precision format) is saved in
R6 and R7, with the m{)st significant part in R6 and the least significant in R7.

The contents of the I-register are affected as follows:

• If the result is more than 215 -1 (32767) or less than - 215(-32768) (except ifR7 is specified),
the OV-bit is set to 1 and the operation is not performed (the first operand R-register is
unchanged); otherwise, it is set to o.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-113 CB07

I
I

MMM

MMM

Instruction:

Memory to Memory Move

Type:

GE

Source. Language Format:

aMMM

Description:

The number of bytes of memory specified in $R6 are moved from one location to another. The
address of the first byte to be moved is identified by $B2 + $R2, where $R2 contains a signed byte
displacement from $B2. The address of the first byte of the receiving field is identified by $B3 +
$R3 where $R3 contains a signed byte displacement from $B3.

If the sending and receiving fields overlap, the operation is only valid ifthe receiving field's
effective address is less than the effective address of the sending field (Le., a left shift ofn bytes is
pennitted, while a right shift of overlapping fields is undefined).

The values in the registers are subject to the following requirements:
$R6;;:a.O
-32768:S;;$R2 + $R6:s;;32767
-32768:s;;$R3 + $R6:s;;32767

Values in the registers which do not meet the requirements specified above are signified by
traps. Trap vector 16 signifies that the value in $R6 is less than zero. Trap vector 15 signifies
that either $R2 + $R6 or $R3 or $R6 is greater than 32767 or less than -32768. The values in the
registers are not altered.

MMM is interruptable.

Successful completion results in the values in registers $B2 and $B3 remaining unchanged,
while the values in registers $R2 and $R3 have each been incremented by the number of bytes
specified in $R6, and $R6 equals zero.

The results of abnormal termination are as follows:

• The values in registers $B2 and $B3 are unchanged.

• The values in registers $R2 and $R3 are incremented by the value in $R6 minus the
number of bytes not moved.

• The value in register $R6 equals the number of bytes not moved. I This instruction is executable only on 6/40 and 6/50 models.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-114 CB07

/'-- "'I

"'~- -,)

(-

MTM

Instruction:

Modify or test M-register

Type:

00

Source Language Format:

dMrM4 {~~} ,address-expression

Description:

Modifies or tests the contents of the M-register identified in the first operand with the contents
(mask) of the location or R-register specified by the address expression.

The mask is treated as two 8-bit fields; then, depending on the content of corresponding bits in
the two fields (i.e., bit 1 in the first field and bit 1 in the second; bit 2 in the first field and bit 2 in
the second; etc.), the corresponding bit in the M-register (i.e., ifbit 1 in the two mask fields, then
bit 1 in the M-register) is altered as described below:

• Ifbit n in the first mask field is 1, the corresponding bit in the M-register is loaded with the
contents of the corresponding bit from the second mask field (i.e., M-register is modified).

• If bit n in the first mask field is 0 and the same bit in the second mask field is 1, the
corresponding bit in the M-register is tested.

• If bit n in the first mask field is 0 and the same bit in the second mask field is 0, the
corresponding bit in the M-register is neither modified nor tested.

At completion ofthe instruction, the B-bit in the I-register is set to 1 if (any of) the tested bit(s) is
set to 1; otherwise (or if no bits were tested) the B-bit in the I-register is set to O.

Note:
The assembly language instructions LEV, SAVE, and STM store the contents of the
M-register in a form suitable for reloading by MTM.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-115 CB07

I

MUL

MUL

Instruction:

Multiply R-register

Type:

DO

Source Language Format:

<\MUU {~~} ,address-expression

Description:

Multiplies the contents of the R-register identified in the first operand by the contents of the
location or R-register specified in the address expression. The result is saved in the first operand
R-register.

IfR7 is identified as the first operand R-register, the result (double-precision format) is saved in
R6 and R7, with the most significant part in R6 and the least significant in R7.

The contents of the I-register are affected as follows:

• If the product is more than 215 -1 (32767) or less than -215 (-32768) (except if R7 is
specified), the OV-bit is set to 1; otherwise, it is set to O.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," e~cept for the following:

= $Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

ASSEMBLY LANGUAGE INSTRUCTIONS

---"----"---

5-116 CB07

(

NEG

Instruction:

Negate

Type:

SO

Source Language Format:

aNEGaaddress-expression

Description:

NEG

Twos complements the contents of the location or R-register specified in the address expression.

The contents of the I-register are affected as follows:

• If a carry occurs during the operation (Le., the number complemented is zero), the C-bit is I
set to 1; otherwise, it is set to o.

• If the value complemented was -32768, the OV-bit is set to 1; otherwise, it is set to o.
The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-117 CB07

NOP

NOP

Instruction:

No operation

Type:

BI

Source Language Format:

{
direct-IMA I

.::\NOP.::\ direct-P-relative-address
short-displacement-address

Description:

Performs no operation.

ASSEMBLY LANGUAGE INSTRUCTIONS 5"118 CB07

(

(

OR

OR

Instruction:

Inclusive OR with R-register

Type:

DO

Source Language Format:

. .10&1 {~~} .addre~xpre.sion
Description:

Performs an inclusive OR operation on the contents of the R-register identified in the first
operand with the contents of the location or R-register specified in the address expression. The
result is saved in the first operand R-register.

The following chart illustrates the result of performing inclusive OR operation on bits:

First operand bit: 0 0 1 1

Second operand bii:: 1 a 1 a
f<esult: 1 0 1 1

The address expression can take any of the forms deScribed earlier in this section under
"Addressing Techniques," except for the following:

=$Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-119 CB07

ORH

ORH

Instruction:

Half-word (byte) inclusive OR with R-register

Type:

DO

Source Language Format:

AORH4 {~~} ,addre8S~xpression
Description:

An inclusive OR operation is performed on the contents of the R-register identified in the first
operand with the contents of the byte specified in the address expression. The result is saved in
the first operand R-register.
Prior to the operation, the byte operand is internally expanded to word length by extending the
sign through the eight high-order bit positions. The byte selected to participate in the operation
is determined by the format of the address expression, as follows:

• Register Addressing (= $Rn): The rightmost byte of the register is selected.

• Memory Addressing Without Indexing or Immediate Operand Addressing: The leftmost
byte of the word at the designated memory address is selected.

• Memory Addressing With Indexing: The memory address indicates a starting point. The
index register contains an arithmetic value to be added to the starting point. The value
specifies the number of bytes before or after the starting point needed to reach the byte
selected for the operation.

The following chart illustrates the result of performing an inclusive OR operation on bits:

First operand bit: 0 0 1 1

Second operand bit: 1 0 1 0

Result: 1 0 1 1

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-120 CB07

(

QOH

Instruction:

Queue on head

Type:

GE
Source Language Format:

aQOH

Description:

QOH

This instruction links a new frame into a list before the first frame that has the same priority
number or the first frame that has a numerically higher priority number. Ifno frames in the list
have an equal or higher priority number, the new frame becomes the last frame in the list.

• Register BI points to the PRIORITY word of the frame to be added.

• Register B2 points to the lock word of the list.

• Register R5 contains the priority to be assigned to the new frame. The PRIORITY word
will be loaded with the contents of R5.

If the instruction is not successfully completed, the carry bit of the indicator register is cleared to
zero; otherwise it is set to one and the G- and L-bits indicate the position at which the frame is
linked as shown below.

Indicator Register Bit Position in List

G L

o 0
1 0

Before frame with same priority
Before frame with higher priority
number, or as last frame

Attempts to multiply enqueue a frame will cause unspecified results.
Queue instructions can be executed only on Model 6/40 and 6/50 systems.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-121 CB07

I

I

QOT

QOT

Instruction:

Queue on tail

Type:

GE

Source Language Format:

QOT

Description:

This instruction links a new frame into a list after the last frame that has the same priority
number or before the first frame that has a numerically higher priority number. If no frames in
the list hav~ an equal or higher priority number, the new frame becomes the last frame in the
list.

• Register Bl points to the PRIORITY word of the frame to be added.

• Register B2 points to the lock word of the list

• Register R5 contains the priority to be assigned to the new frame. The PRIORITY word
will be loaded with the contents of R5.

If the instruction is not successfully completed, the carry bit of the indicator register is cleared to
zero; otherwise it is set to one and the G- and L-bits indicate the position at which the frame is
linked as shown below.

Indicator Register Bit Position in List

G L

o 0
o 1

After frame with same priority
Before frame with higher priority
number, or as last frame

Attempts to multiply enqueue a frame will cause unspecified results.

Queue instructions can be executed only on Model 6/40 and 6/50 systems.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-122 CB07

(

C--:
. ~

RLQ

Instruction:

Relinquish stack space

Type:

GE

Source Language Format:

ARLQA$Bn

Description:

RLQ

This stack instruction releases the most recently acquired stack frame. If the stack is emptied by
this instruction, the result is a trap to trap vector 9. If the stack is not emptied, the current
length of the stack is adjusted and the base register specified, $Bn (bits 13 through 15 of the
second word of the instruction), is set to point to the new top frame.

Stack instructions are double-word instructions with the following characteristics:

• A common first word.

• Bits 0 through 8 and bit 12 of the second word contain zeros.

Ifbits 0 through 8 and bit 12 of the second word are not zero, the result is a trap to trap vector 16.

Stack instructions can be executed only on model 6/40 and 6/50 systems.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-123 CB07

I

RSTR

RSTR

Instruction:

Restore context

Type:

SO
Source Language Format:

{
immediate-memory-address} {external-value-label I

aRSTM B-relat~ve-address , internal-v!ilue-expression
~-relatIve-address . single-precision-fixed-point-constant
mterrupt-vector-addressmg

Description:

Restores the registers specified in the second operand mask starting from the location specified
in the address expression.

The second operand is a mask that specifies which registers are to be restored. If the mask is all
zeros, the contents of R1 are used as the mask.

Depending on which bits in the specified mask are set to 1, the registers that can be restored are
as follows:

Bit: 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I'M IR1 jR21p31 R41R51R61R71 I IB1 IB21B31B41B51 66IB71

This mask should be the same as the one used to save the registers (see the SAVE instruction).

ASSEMBLY LANGUAGE INSTRUCTIONS 5-124 CB07

/ " \

(

(

RTCF

Instruction:

Real-time clock off

Type:

GE

Source Language Format:

aRTCF
Description:

Disables real-time clock interrupts.

RTCF

The P-bit in the S-register must be set to 1 or the ring field In the S-register must be set to lx, as I
appropriate (Le., the central processor must be in the privileged state) for this instruction to be
executed. Ifnot, the unprivileged use ofa privileged operation is signified by a trap to trap vector
13.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-125 CB07

RTCN

RTCN

Instruction:

Real-time clock on

Type:

GE

Source Language Format:

aRTCN
Description:

Enables real-time clock interrupts, which will occur only when the real-time clock interrupt
level is higher than the priority interrupt level specified in the S-register.

The P-bit in the S-register must be set to I or the ring field in the S-register must be set to lx, as
appropriate, (Le., the central processor must be in the privileged state) for this instruction to be
executed. Ifnot, the unprivileged use of a privileged operation is signified by a trap to trap vector
13.

For a detailed description of traps and trap handling procedures (Le., trap handlers), refer to the
System Service Macro Calls manual.

For a detailed description ofinterrupts, refer to theHoneywell Level 6 Minicomputer Handbook.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-126 CB07

/

(

RTf

Instruction:

Return from trap

Type:

GE

Source Language Format:

aR'IT

Description:

RTT

Restores the registers that were saved in the trap save area when the trap was entered; restores
the central processor to the nonprivileged state if entering the trap caused the state to change
from nonprivileged to privileged; returns the trap save area block to the trap save area memory
pool; returns control to the next instruction to be executed (determined by the event that caused
the trap and/or by the trap handler).

ASSEMBLY LANGUAGE INSTRUCTION,S 5-127 CB07

I

SAL

SAL

Instruction:

Single-shift arithmetic-left

Type:

SHS
Source Language Format:

11SAL.l. {!~} ,internal-value-expression

Description:

Shifts the contents of the R-register identified in the first operand left the number of bit
positions specified in the internal value expression. The bit positions vacated by the shift are
fIlled with binary Os. .

The contents of the I-register are affected as follows:

• If the contents of bit 0 in the R-register change at any time during the operation, the OV -bit
is set to 1; otherwise, it is set to O.

The internal value expression must be ;a. 0 and :s;;; 15.

If the internal value expression equals 0, the contents are shifted left the number derived by
using the value in bits 12 through 15 of general register Rl.
The following illustrates the operation of the SAL instruction:

o Rn 15

I(ov) I I.. 0 ...

LSet if Rn(O) changes during the operation.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-128 CB07

(

('--;

-'

SAR

Instruction:

Single-Shift arithmetic-right

Type:

SHS

Source Language Format:

.l.SARA {~~} ,interna1-value-expre,sion

Description:

SAR

Shifts the contents of the R-register identified in the first operand right the number of bit
positions specified in the internal value expression. The bit positions vacated by the shift are
filled with the sign value originally contained in bit o.
The contents of the I-register are affected as follows:

• C-bit contains the last binary digit shifted out of the R-register.

The internal value expression must be ~ 0 and :s;; 15.

If the internal value expression equals 0, the contents are shifted right the number derived by
using the value in bits 12 through 15 of general register Rl. *
The following illustrates the operation of the SAR instruction:

0, Rn 15

Rn(O) ... -1 1-----. I(c)

Saves last hit shifted out of Rn(15). ~

ASSEMBLY LANGUAGE INSTRUCTIONS 5-129 CB07

SAVE

SAVE

Instruction:

Save context

Type:

SO

Source Language Format:

{
immediate-memory-address} {' I I . } B I t · dd mterna -va ue-expresslOn

ASAVEA -re a Ive-a ress I I .
P I t · dd ' externa -va ue-expresslOn -re a Ive-a ress " . .
. t t t dd' smgle-preclslon-fixed-pomt-constant m errup -vec or-a ressmg

Description:

Saves the registers specified in the second operand starting at the location specified in the
address expression.

The second operand is a mask that specifies which registers are to be saved. Each bit in the mask
represents a particular register which can be saved, as shown below:

Bit: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[M11R11R21R31R41R51R61R71 IB11B21B31B41B51B61B71

If a mask bit is set to 1, the corresponding register is saved. If a mask bit is 0, the corresponding
register is not saved. If the mask is 0, the contents of Rl are used as the mask.

The registers are saved in reverse order. For example, if the second operand specified Z'CAOl'
(which, when translated into binary is 1100 1010 0000 0001), indicating that registers M1, Rl,
R4, R6, and B7 are to be saved, the context save area will contain the registers starting with B7
and ending with Ml. If the 8-bit Ml-register is to be saved, the contents are stored in the right
half word of the location, and the left half-word is filled with Is.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-130 CB07

/1'

~j

(

SCL

Instruction:

Single-shift closed-left

Type:

SHS

Source Language Format:

{$Rn) .
ASCLA :'n' ,internal-value-expression

Description:

SCL

Shifts the contents of the R-register identified in the first operand left the pumber of bit
positions specified in the internal value expression. The bits shifted out of the register are placed
in the bit positions vacated by shifted bits as they are shifting.

The internal value expression must be ~ 0 and :os:; 15.

If the internal value expression equals 0, the contents are shifted left the number derived by
using the value in bits 12 through 15 of general register Rl.

The following illustrates the operation of the SCL instruction:

t o ~Rn 15 t
....--... - ,----I __ I~"

ASSEMBLY LANGUAGE INSTRUCTIONS 5-131 CB07

SCR

SCR

Instruction:

Single-shift closed-right

Type:

SHS

Source Language Format:

aSCRA {!~} ,internal, value-expression

Description:

Shifts the contents of the R-register identified in the first operand right the number of bit
positions specified in the internal value expression. The bits shifted out of the register are placed
in the bit positions vacated by shifted bits as they are shifting.

The internal value expression must be ;;;. 0 and :os:; 15.

If the internal value expression equals 0, the contents are shifted right the number derived by
using the value in bits 12 through 15 of general register Rl.

The following illustrates the operation of the SCR instruction:

..
15] G . Rn

I 1-

ASSEMBLY LANGUAGE INSTRUCTIONS 5-132 CB07

"
... ~ /'

(

SDI

Instruction:

Store Double word integer

Type:
SO

Source Language Format:

aSDILladdress-expression

Description:

SDI

Stores the contents of register R6 into the location specified by the address expression and the
contents of register R7 into the next location.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

=$Bn}
= $Rn register addressing
=$Sn

If the address expression specifies memory addressing with indexing, the index register is
aligned to count double-words relative to the word specified.

If Immediate Operand Addressing is specified, the immediate operand may only use a binary
integer constant (which is sign extended to 32 bits by the Assembler), a double precision
fixed-point constant, or a string constant of exactly two words (Le., four bytes or 32 bits).

Note:
=$R3, =$R5, and =$R7 are permitted and refer to register pairs $R2, $R3; $R4, $R5,
and $R6, $R7, respectively.

Short displacement addressing
Specialized addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-133 CB07

*

*

SID

SID

Instruction:

Subtract integer double

Type:

SO

Source Language Format:

ASIDAaddress-expression

Description:

Subtracts the value of the double-word integer specified by the address expression from the
value in the register pair $R6, $R7. The result is saved in $R6 and $R7, with the most significant
part in $R6 and the least significant part in $R7.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

If the address expression specifies memory addressing with indexing, the index register is
aligned to count double-words relative to the word specified.

If Immediate Operand Addressing is specified, the immediate operand may only use a binary
integer constant (which is sign extended to 32 bits by the Assembler), a double precision
fixed-point constant, or a string constant of exactly two words (i.e., four bytes or 32 bits).

If = $Rn is used, only =$R3 (subtracts the contents ofR2 and R3 from R6 and R7 respectively), or
$R5 (subtracts the contents ofR4 and R5 from R6 and R7 respectively), or =$R7 (clears R6 and
R7) may be used ..

If a borrow is required during the subtraction, the C-bit of the I-register is set to 0; otherwise it is
set to 1.

If overflow occurs, the OV-bit of the I-register is set to 1, otherwise it is set to o.
This instruction is executable only on 6/40 and 6/50 models.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-134 CB07

~
\

j

(

SOL

Instruction:

Single-shift open-left

Type:

SHS

Source Language Format:

<lSOU {!~} .internal·vaiue-expression

Description:

SOL

Shifts the contents of the R-register identified in the first operand left the number of bit
positions specified in the internal value expression. The bit positions vacated by the shift are
filled with binary Os.

The contents of the I-register are affected as follows:

• C-bit contains the last binary digit shifted out of the R-register.

The internal value expression must be ;;;. 0 and 0;;; 15.

If the internal value expression equals 0 the contents are shifted right the number derived by
using the value in bits 12 through 15 of general register, Rl.

The following illustrates the operation of the SOL instrucfion:

o Rn 15

ICc) ... 1 I.. 0 ...

L Saves last hit shifted out of RnCO).

ASSEMBLY LANGUAGE INSTRUCTIONS 5-135 CB07

SOR

SOR

Instruction:

Single-shift open-right

Type:

SHS

Source Language Format:

.l.SOIL1 {~~} ,internal-valuEHlxpression

Description:

Shifts the contents of the R-register identified in the first operand right the number of bit
positions specified in the internal value expression. The bit positions vacated by the shift are
filled with binary Os.

The contents of the I-register are affected as follows:

• C-bit contains the last binary digit shifted out of the R-register.

The internal value expression must be ;;:: 0 and,.;;; 15.

If the internal value expression equals 0, the contents are shifted right the number derived by
using the value in bits 12 through 15 of general register $Rl. '

The following illustrates the operation of the SOR instruction:

o Rn 15

0... .1· . I • ICc)

Saves last bit shifted out of Rn(15). ~

ASSEMBLY LANGUAGE INSTRUCTIONS 5-136 CB07

SRDB

Instruction:

Store Remote Descriptor Base Register

Type:

GE

Source Language Format:

aSRDB

Description:

Stores the contents of the Remote Descriptor Base Register in register B3.

This instruction is executable only on 6/40 and 6/50 models.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-137

SRDB

I

CB07

SRM

SRM

Instruction:

Store register masked

Type:

DO

Source Language Format:

aBmU {~~} ,address-expreg,;on,mask

pescription:

Each bit in the mask is individually examined. If the mask bit is 1, the corresponding bit in the
operand identified by the effective address is changed to the same value as the corresponding bit
in the R-register. If the mask bit is 0, the value of the bit in the operand identified by the effective
address is not changed.

If the mask = 0, the contents of $R1 are used in place of the mask.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

=$Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

Example:

Assume that $R1 contains the value Z'F300' and that $R2 contains the value Z'3DA5'. Also
assume that the value of bits 4, 6, and 7 of$R1 (Le., 0,1 and 1, respectively) are to be put into the
corresponding bits of $R2, leaving the value of the other bits of $R2 unchanged. Then the
following SRM would specify this operation:

SRM $R1,=$R2,Z'OBOO'

and the resultant value in $R2 is Z'37 A5'.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-138 CB07

If
'-./

(

(

c-

STB

srs
Instruction:

Store B-register

Type:

DO

Source Language Format:

J$BnJ .1STB.1 1 ~'n' ,address-expression

Description:

Stores the contents of the B-register identified in the first operand in the location or B-register
identified in the address expression.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

=$Rn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

. Immediate operand addressing with a value expression.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-139 CB07

8TH

STH

Instruction:

Store R-register half word (byte)

Type:

00

Source Language Format:

4STHa { ~~} ,address-expression

Description:

Stores the rightmost byte of the R-register identified in the first operand into the location
specified in the address expression as follows:

• If the address expression specifies the = $Rn addressing form, the byte is stored in the
rightmost byte of the specified R-register.

• If the address expression specifies Memory Addressing without indexing or Immediate
Operand Addressing, the byte is stored iIi the leftmost byte of the word found at the
specified location.

• If the address expression specifies Memory Addressing with indexing, the index register is
aligned to count bytes relative to the leftmost byte of the word specified. The R-register
byte is stored in the memory byte thus addressed.

The address expression can take any of the forms described earlier in his section under
"Addressing Techniques," except for the following:

= $Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-140 CB07

\:;;. /

(STM

Instruction:

Store M-register

Type:

00

Source Language Format:

<1STMa {~~ } ,address-expression

Description:

STM

Stores the 8-bit M-register identified in the first operand in the right half-word of the location or
R-register specified in the address expression; the left half-word of the location is filled with Is.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-141 CB07·

STR

STR

Instruction:

Store R-register

Type:

00

Source Language Format:

agrM {~~} ,address-expression

Description:

Stores the contents of the R-register identified in the first operand in the location or R-register
identified in the address expression.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

=$Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-142 CB07

"i' "

'\'''-. ..-/

(~-
5TS

Instructions:

Store S-register

Type:

SO

Source Language Format:

aSTSaaddress-expression

Description:

STS

Stores the contents of the system status (s) register in the location or R-register identified in the
address expression.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Bn} register addressing
=$Sn
Short displacement addressing
Specializeq addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-143 CB07

STT

SIT

Instruction:

Store Stack Address Register

Type:

GE

Source Language Format:

aSTr
Description:

This stack instruction moves the address in the T register to register $B7.

Stack instructions are double-word instructions with the following characteristics:

• A common first word.

• Bits 0 through 8 and bit 12 of the second word contain zeros.

Ifbits 0 through 8 and bit 12 of the second word are not zero, the result is a trap to trap vector 16.

I Stack instructions can be executed only on model 6/40 and 6/50 systems.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-144 CB07

/

(

(

SUB.

SUB

Instruction:

Subtract from R-register

Type:

DO

Source Language Format:

aSUBa I ~~) ,address-expression

Description:

Subtracts the contents of the location or R-register identified in the address expression from the
contents of the R-register specified in the first operand. The result is saved in the first operand
R-register.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

The contents of the I-register are affected as follows:

• If the result is more than 215 -1 (32767) or less than -215 (-32768), the OV-bit is set to 1;
otherwise, it is set to o.

• If a borrow is required during the subtraction, the C-bit is set to 0, otherwise it is set to 1.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-145 CB07

SWB

SWB

Instruction:

Swap B-register

Type:

DO

Source Language Format:

68WB6 {~~:} ,address-expression

Description:

Swaps the contents of the B-register identified in the first operand with the contents of the
location or B-register specified in the address expression.

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Rn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

Immediate operand addressing with a value expression.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-146 CB07

It

(

SWR

Instruction:

Swap R-register

Type:

DO

&::r~ }::~xpreMion
Description:

SWR

Swaps the contents of the R-register identified in the first operand with the contents of the
location or R-register specified in the address expression.

The address -expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

\ ,

ASSEMBLY LANGUAGE INSTRUCTIONS 5-147 CB07

*

VLD

VLD

Instruction:

Validate

Type:

GE

Source Language Format:

VLD

Description:

Determines the access rights to the data whose beginning (virtual) address is contained in $B5
and whose length, in bytes, is contained in $R3. The access rights are determined with respect to
the effective ring value contained in bits 1 and 2 of$R5. VLD indicates the accessability of the
data by storing a value in$R3.

The possible values to be stored in $R3 after execution of a VLD instruction are a!;! follows:

$R3 Value Meaning
-1 Invalid segment

o Read access permitted, write access not permitted
+2 Read/Write access permitted
- 2 No access permitted

Figure 5-24 illustrates the VLD instruction operations.

This instruction is available only with systems that have a Memory Management Unit.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-148 CB07

(

$R3--1

START ADDRESS FROM $B5

SEPARATE SEG. NO. FROM $B5
BEGINNING WORD ADDRESS

RANGE FROM $R3

BUFFER ENDING ADDRESS - BEGINNING WORD ADDRESS + RANGE

NO

$R3- -2

$R3- 0

RING NO. FROM $R5

ACCESS BITS. 1 AND 2
OF$R5

~~------------------~ __ $_R_3_---____ +2 __ ~
Figure 5-24. VLD Instruction Operations

ASSEMBLY LANGUAGE INSTRUCTIONS 5-149

VLD

CB07

I

WDTF

WDTF

Instruction:

Watchdog timer off

Type:

GE

Source Language Format:

dWDTF

Description:

Disables the watchdog timer interrupt (Le., level 1 interrupt).

The P-bit in the S-register must be set to 1 or the ring field in the S-register must be set to lx, as
appropriate, (i.e., the central processor must be in the privileged state) for this instruction to be
executed. Ifnot, the unprivileged use ofa privileged operation is signified by a trap to trap vector
13.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-150 CB07

•

(

(

worN
Instruction:

Watchdog timer on

Type:

GE

Source Language Format:

aWDTN

Description:

Enables watchdog timer interrupt (i.e., level 1 interrupt),

WDTN

The P-bit in the S-register must be set to 1 or the ring field in the S-register must be set to lx, as I
appropriate, (i.e., the central processor must be in the privileged state) for this instruction to be
executed. Ifnot, the unprivileged use of a privileged operation is signified by a trap to trap vector
13.

ASSEMBLY LANGUAGE INSTRUCTIONS 5-151 CB07

XOH

XOH

Instruction:

Half-word (byte) exclusive OR with R-register

Type:

DO

Source Language Format:

t.XOHd {~~} ,addreBB-expression

Description:

An exclusive OR operation is performed on the contents of the R-register identified in the first
operand with the contents of the byte specified in the address expression, and the result is stored
in the register identified in the first operand.

Prior to the operation, the byte operand is internally expanded to word length by extending the
sign through the eight high-order bit positions. The byte selected to participate in the operation
is determined by the format of the address expression, as follows:

• Register Addressing (= $Rn): The rightmost byte of the register is selected.

• Memory Addressing Without Indexing or Immediate Operand Addressing: The leftmost
byte of the word at the designated memory address is selected.

• Memory Addressing' With Indexing: The memory address indicates a starting point. The
index register contains an arithmetic value to be added to the starting point. The value
specifies the number of bytes before or after the starting point needed to reach the byte
selected for the operation.

The following chart illustrates the result of performing an exclusive OR operation on bits:

~irst operand bit: 0 0 1 1

Second operand bit: 1 0 1 0

Result: 1 0 0 1

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5-152 CB07

i~ \

~-j

("

XOR

XOR

Instruction:

Exclusive OR with R-register

Type:

DO

Source Language Format:

&XORb. {~~ I ,address-expre,sion

Description:

An exclusive OR operation is performed on the contents of the R-register identified in the first
operand with the contents of the location or R-register specified in the address expression. The
result is saved in the first operand R-register.

The following chart illustrates the result of performing an exclusive OR operation on bits:

I First operand bit: 0 0 1 1

i Second operand bl t: 1 0 1 0

l Result: 1 0 0 1

The address expression can take any of the forms described earlier in this section under
"Addressing Techniques," except for the following:

= $Bn} register addressing
=$Sn
Short displacement addressing
Specialized addressing

ASSEMBLY LANGUAGE INSTRUCTIONS 5·153 CB07

(

Section 6

Commercial Instructions

The commercial instructions are executed by the Commercial Processor, an optional
hardware item, or by the Commercial Processor simulator, a software item that provides the
same functionality.

The commercial instruction set includes the capabilities for processing bytes, packed decimal
data and unpacked decimal data. Thus the speed with which business-oriented applications are
handled is greatly increased.

BASIC FEATURES

The basic features of the commercial instruction set are as follows:

• Decimal Arithmetic
- Packed decimal and unpacked decimal data types may be intermixed.
- Decimal arithmetic operands may be 1 through 31 digits in length.
- Decimal arithmetic instructions are add, subtract, multiply, and divide.
- All decimal arithmetic instructions provide a hardware rounding option.

• Data Manipulation Capabilities
- There are three data modes - ASCII, packed decimal, and unpacked decimal.

• Data Movement
- Alphanumeric movement from left or right with character-fill.
- Numeric move with fill and/or rounding.
- Radix conversion and transliteration instructions.

• Data Comparison
- Alphanumeric comparison with fill
- Numeric comparisons between fields of the same or different format and character type.
- Scan to determine if one or more strings consisting of one or more characters is

contained in a source string.
- Scan to determine of one or more strings consisting of one or more characters is not

contained in a source string.

• Editing Capabilities
- Editing capabilities with micro operations are provided.
- Micro operations provide alphanumeric and numeric edited move instructions with the

capability of editing character and numeric strings on a character-by-character or
digit-by-digit basis, or in a concatenated series of characters and digits.

- Micro operations are not altered by· their execution; therefore, a sequence of micro
operations can be set to describe a data field and then can be used repeatedly by the edit
instructions.

- A single instruction can perform a complicated edit function with great speed.

The commercial instructions are divided into six categories, as described in the subsequent
text. The internal formats of the commercial instructions are in Appendix H.

COMMERCIAL PROCESSOR PROGRAMMING CONSIDERATIONS.

During the execution of a program that includes two adjacent Commercial Processor instruc­
tions, the CPU must wait for the first to be completed before initiating the second. However, if a
Commercial Processor instruction is followed by a CPU or SIP instruction, execution of the CPU
or SIP instruction begins before the Commercial Processor instruction is completed. Under such
conditions, the CPU or SIP must not access any of the operands specified by the Commercial
Processor instruction. The possibility of such a conflict is eliminated by inserting a commercial

COMMERCIAL INSTRUCTIONS 6-1 CB07

synchronizing (CSYNC) instruction between the Commercial Processor and the CPU or SIP
instruction. CSYNC performs no operation except to make the CPU wait for completion of the
preceding Commercial Processor instruction.

COMMERCIAL INSTRUCTION CATEGORIES

DECIMAL ARITHMETIC INSTRUCTIONS

These instructions perform the basic arithmetic functions (add, subtract, multiply, and
divide) on packed and unpacked decimal data, and allow the comparison of decimal data.

DAD decimal add
DCM decimal compare
DDV decimal divide
DML decimal multiply
DSM decimal subtract

RADIX AND MODE CONVERSION INSTRUCTIONS

These instructions allow

• Decimal and binary data to be converted from one type to the other.

• Decimal data of one type to be moved and converted to decimal data of a different type (e.g.,
packed to unpacked).

CBD convert binary to decimal
CDB convert decimal to binary
DMC decimal move and convert

SHIFT INSTRUCTIONS

Shift instructions allow decimal data to be shifted a specified number of digits to the right or to
the left. The sign character, if any, is not affected by the shift operation (i.e., it does not get
shifted).

DLS
DRS
DSH

decimal left shift
decimal right shift
decimal shift

EDIT INSTRUCTIONS

These instructions provide for a combined move and edit of decimal or alphanumeric data.

AME alphanumeric move and edit
DME decimal move and edit

CHARACTER STRING INSTRUCTIONS

These instructions provide for moving, comparing, and translating alphanumeric strings.

ACM
ALR
MAT
SRCH
VRFY

alphanumeric compare
alphanumeric move left to right
alphanumeric move and translate
search
verify

BRANCH INSTRUCTIONS

The Commercial Processor branch instructions are similar to the CPU branch instructions
described in Section 5. Execution ofthe Commercial Processor branch instructions takes place
mainly in the CPu. The Commercial Processor provides information about the state of the
indicators. The CPU uses this information to decide whether or not a branch is required.

The commercial branch instructions are as follows:

CBE commercial branch on equal

COMMERCIAL INSTRUCTIONS 6-2 CB07

/

CBG
CBGE
CBL
CBLE
CBNE
CBNOV
CBNTR
CBNSF
CBOV
CBSF
CBTR
CSNCB
CSYNC

commercial branch on greater
commercial branch on greater than or equal
commercial branch on less than
commercial branch on less than or equal
commercial branch on not equal
commercial branch on no overflow
commercial branch on no truncation
commercial branch on no sign fault
commercial branch on overflow
commercial branch on sign fault
commercial branch on truncation
commercial synchronize and branch (Le., B)
commercial synchronize (Le., NOP)

COMMERCIAL PROCESSOR INSTRUCTION FORMAT

The basic format of Commercial Processor instructions, other than branch instructions, are as
follows:

A d A {data-deSCriPtor }
~o coe~ . . P mt-val-expresslOn

n{data-descriptor }
~ int-val-expression

r{ data-descriptor .}l
tint-val-expression U

One, two, or three operands are required depending on the Commercial Processor instruction.
All Commercial Processor instructions, except Commercial Processor branch instructions,
require at least one data descriptor. A data descriptor specifies the type of data on which the
instruction is to operate and the location ofthe data. Each data descriptor includes a Commer-
cial Processor address expression. An internal value expression designates a remote descriptor I
aild is used with the remote descriptor base register (RDBR). Address expressions are explained
later in this section.

COMMERCIAL PROCESSOR DATA DESCRIPTORS

Data descriptors can be in line (entered as part of the instruction) or they can be remote
(placed in a remote descriptor array). If remote descriptors are used, the starting address of the
remote descriptor array must be loaded into the remote descriptor base register of the CPU.
(This can be accomplished by use of the CPU instruction LRDB.) The desired remote descriptor
is referenced by an internal value expression in the Commercial Processor instruction. The
internal value expression is effectively multiplied by two to obtain the offset of the desired
remote descriptor from the starting address of the array of descriptors whose starting address is
contained in the remote descriptor base register (RDBR). (For further information on the use of
the RDBR, see Appendix H.) The data descriptor names and the type of data they specify are as
follows:

Name
DESCA
DESCP
DESCU
DESCB

Data Type
Alphanumeric
Packed decimal
Unpacked decimal
Binary

ALPHANUMERIC DATA DESCRIPTOR

An alphanumeric data descriptor describes a field composed of 8-bit (byte) characters,
normally in ASCII format.

Format:

DESCA (Commercial Processor address expression

Gbyte_offset Gbyte_Iength [, { FILL IJ]])
NO_FILL

COMMERCIAL INSTRUCTIONS 6-3 CB07

byte_offset
An internal value expression having a value equal to 0 to 1, that specifies an 8-bit byte offset
within the addressed word.
Default = 0 (See individual instructions for meaning of 0)

byte_length
An internal value expression specifying the length of operand in bytes. Valid range is 0
through 31.
Default = 0 (See individual instructions for meaning of 0)

FILUNO_FILL
Specifies whether the FILL option is to be used in case of unequal length fields.
Default = FILL (shorter field with specified character)

PACKED-DECIMAL DATA DESCRIPTOR

A packed decimal data descriptor describes a number whose sign and each digit is internally
represented by 4 bits.

Format:

DESCP (Commercial Processor address expression I U[NSIGNED] l]~~
[,digiLoffset [,digiLlengt4 [,)

T[RAILING]
digiLoffset

An internal value expression, having a value in the range 0 to 3, that specifies an offset in
4-bit digits within the addressed word.
Default = O.

digiLlength
An internal value expression that specifies the length of the number in digits.
Default = 0 (See individual instruction for meaning of 0)
Valid range is from 0 through 31.

U[NSIGNED]
Specifies the number is unsigned.

T[RAILING]
Specifies the number has a trailing sign.
Default = TRAILING

UNPACKED-DECIMAL DATA DESCRIPTOR

An unpacked-decimal data descriptor describes a number whose sign and each digit are
represented by the corresponding 8-bit (byte) ASCII character.

Format:

DESCU (Commercial Processor address expression

byte_offset

r {U[NSIGNED] ll~~
O[VERPUNCHED] II

[,byte_offset [,byte_length l, L[EADING] JJ II
T[RAILING] ~

An internal value expression equal to 0 or 1 that specifies on 8-bit (byte) offset within the
addressed word.
Default = 0

byte_length
An internal value expression that specifies the length of the number in bytes.
Default = 0
Valid range is from 0 through 31.

COMMERCIAL INSTRUCTIONS 6-4 CB07

(f

~-j

U[NSIGNED]
Specifies an unsigned number.

o [VERPUNCHED]
Specifies a number whose sign is indicated by a trailing overpunch.

L[EADING]
Specifies a number whose sign is indicated by the leading byte.

T[RAILING]
Specifies a number whose sign is indicated by the trailing byte.
Default = OVERPUNCHED

BINARY DATA DESCRIPTOR

A binary data descriptor describes a binary integer internally represented by 16 or 32 bits,
word-aligned, and in two's complement format.

Format:

DE~CB (Commercial Processor address expression[,byte length])

byte_length
An internal value expression, having a value of 0,2, or 4, that specifies the length of the binary
integer in bytes.
Default = 0 (See individual instruction for meaning of 0)

Note that a binary data descriptor is actually an alphanumeric data descriptor specifying no I
fill and a length, after possible escape to Rn(1l-15), of either 2 bytes or 4 bytes.

ADDRESSING TECHNIQUES FOR COMMERCIAL PROCESSOR INSTRUCTIONS

A Commercial Processor address expression defines the addressing technique used to refer-
ence data. It can take any of the following forms:

• P-relative addressing

• B-relative addressing

• Immediate operand addressing

• Use of remote descriptor base register (For details, see "Commercial Processor Data I
Descriptors," above, and Appendix H)

P-RELATIVE ADDRESSING

P-relative addressing designates data by indicating the (Assembler-calculated) displacement
from the current location (Le., the location of the second word of the data descriptor. P-relative
addressing references a location directly (with or without indexing) or indirectly as shown by the
following formats.

{
.location-expreSSion }
J +} Direct P-relative addressing l- temporary-label.

{
location-expression }

{:} temporary-label
·Indexed direct P-relative addressing

{
location-expression I

* J+} Indirect P-relative addressing l temporary-label

COMMERCIAL INSTRUCTIONS 6-5 CB07

DIRECT P-RELATIVE ADDRESSING

This form of addressing allows you to specify a location relative to the P-register (Le., the
address of the data descriptor). The following example illustrates this form of addressing. The
decimal number whose characteristics and address are specified by the first operand is sub­
tracted from the number whose characteristics and address are specified by the second operand.
The result is stored at the address specified by the second operand.

Example:

ONEK DC + P'1024' Packed decimal, 4 digits plus sign

FOURKDC N'4096' Unpacked, unsigned decimal, 4 digits

DSB DESCP(ONEK,0,5,TRAILING);
DESCU(FOURK,0,4,UNSIGNED)

At the completion of the instruction, the unpacked unsigned decimal N'3072' is.stored at
symbolic location FOURK.

Figure 6-1 illustrates the above example. The following assumptions are made in this figure:

• Symbolic location ONEK is at location 3000

• Symbolic location FOURK is at location 3D50

• The decimal subtract (DSB) instruction is assembled at location 1000

ASSEMBLED INSTRUCTION

DSB DESCP(ONEK, 0,5, TRAILING), DESCU(FOURK, 0, 4 UNSIGNED)

loc 1000

loc 100
+ 1FFE words

loc 3000

/
I +P'1024'

loc 3000, 1 st digit
effective address
for first operand

loc 3050

t Result = N'3072'

loc 3050, left byte
effective address
for second operand

Figure 6-1. Commercial Processor Direct P-relative Addressing

COMMERCIAL INSTRUCTIONS 6-6 CB07

(

Indexed Direct P-Relative Addressing

In this type of addressing, the contents of the specified index register, aligned to count digits or
bytes, are added to the displacement to derive the location of the data to be included in the
operation.

Example:

Convert binary number - 300 to unpacked decimal with leading sign; and offset by one byte in
receiving field. Assume that index register R1 contains 4 and index register R2 contains 2.

BININ DC 0
DCO
DC -300 (FED4 in hexadecimal)

RESULT RESV 4,'AA' (2020202020202020 in hexadecimal)

CBD DESCB(BININ.$R1,2);
DESCU(RESULT.$R2,1,4,LEADING)

Since the sending field is symbolic location BININ +2, which contains -300, and receiving
field is symbolic location RESULT+ 1, at completion of the instruction, the RESULT string will
contain:

20 20 20 2D 33 30 30 20
A A A 3 0 0 A

Figure 6-2 illustrates the above example. The following assumptions are made in this figure:

• Symbolic location BININ is at location 3000

• Symbolic location RESULT is at location 3D50

• The convert from binary to decimal (CBD) instruction is assembled at location 1000

ASSEMBLED INSTRUCTION
CBD DESCB(BININ.$R1, 2), DESCU(RESULT.$R2, 1,4, LEADING)

loc 3000

2D4C

,
" "" loc 1004

"" + 2D4C words

loc 3D51, right byte
effective addre~s
of second operand

" loc 3D50 ,

0002

Figure 6-2. Commercial Processor Indexed Direct P-relative Addressing

COMMERCIAL INSTRUCTIONS 6-7 CB07

Indirect P-Relative Addressing

In this type of addressing, a location relative to the contents of the P-register contains the
location of the data to be used by the instruction. In the following example, a binary number is
converted to an unpacked decimal number. The first data descriptor specifies the binary number
by referencing the location (BINLOC) that contains its address. The second data descriptor
references the location (DECLOC) that contains the location (RESULT) of the receiving field.

Example:

Convert binary number - 300 to unpacked decimal with leading sign and offset by one byte in
the receiving field.

BINLOC DC <BININ
DECLOC DC <RESULT
BININ DC-300
RESULT RESV 3,'

(FED4, hexadecimal)
, (202020202020, hexadecimal)

CBD DESCB(*BINLOC,2);
DESCU(*DECLOC,1,4,LEADING)

At completion of the instruction, the receiving field will contain the following data.

202D33303020, hexadecimal
d - 3 0 0 d, decimal

Figure 6-3 illustrates the above example. The following assumptions are made in this figure:

• Symbolic location BINLOC is at location 3000

• Symbolic location DECLOC is at location 3D50

• Symbolic location BININ is at location C08F

• Symbolic location RESULT is at location D317

• The convert binary to decimal (CBD) instruction is assembled at location 1000

ASSEMBLED INSTRUCTION

CBD DESCB(*BINLOC, 2), DESCU(*DECLOC, 1,4, LEADING)

/
/

+ 1 FFE words / q,{)-
/.~

loc 3000 / ~~
/ ~

/

~tIOCC08F
(FE ~4)
\'------------'--------_ ---L-_

effective address
for first operand

I 1
1 1

I ~I
1 :01
I .EI
I l,.
I
1

i)
l

,
loc 1004
+ 2D4Cwords

loc 3D 50

i ,

1 D317 ~
I

offset = 1 byte

loc D317, right byte
effective address
of second operand

Figure 6-3. Commercial Processor Indirect P-relative Addressing

COMMERCIAL INSTRUCTIONS 6-8 CB07

(

COMMERCIAL PROCESSOR S-RELATIVE ADDRESSING

In thisfonn of addressing, a base register (i.e., $Bl, ... , $B7) is used to reference a location that
. contains data or an address. This fonn of Commercial Processor addressing can be used to

reference a location directly or indirectly as a di splacement, or as a displacement with indexing.

B-relative addressing for Commercial Processor instructions can be represented by anyone of
the following expressions:

{
int-val-expression }

$Bn. Direct B-relative plus displacement
ext-val-expression

{
int-val-expression }

*$Bn.
ext-val-expression

Indirect B-relative plus displacement

{
int-val-expreSSiOn}

$Bn. .Rn
ext-val-expression

Direct B-relative plus displacement with indexing

{
int-val-expression }

*$Bn. .Rn Indirect B-relative plus displacement· with indexing.
ext-val-expression

COMMERCIAL PROCESSOR DIRECT B-RELATIVE PLUS DISPLACEMENT ADDRES­
SING

This form of addressing causes the system to compute the 'effective address by adding a specific
value to the contents of a base register. An example of direct B-relative plus displacement
addressing in combination with indirect B-relative plus displacement addressing follows the
explanation of the indirect fonn of addressing.

COMMERCIAL PROCESSOR INDIRECT B-RELATIVE PLUS DISPLACEMENT ADDRES­
SING

This addressing fonn effectively adds a displacement value to the contents of the specified
base register to produce a new address. The contents of this subsequent location are now used as
the effective memory address. An example of indirect B-relative plus displacement addressing
in combination with direct B-relative plus displacement addressing is given in the following
example.

Example of Commercial Processor Direct and Indirect B-Relative Plus Displacement Addres­
sing

ADDRI DC N'1234'
ADDR2 DC + P2092'

•
•
•

Unpacked, unsigned decimal, 4 digits
Packed decimal, 4 digit plus sign

DSB DESCU($B5.3,0,4,U),DESCP(*$Bl. -2,0,5)

At the completion of the instruction, the packed decimal with trailing sign + P'858' is stored at
symbolic location ADDR2.

Figure 6-4 illustrates the above example. The following assumptions are made in this figure:

• Symbolic location ADDRI is at location 3000

• Symbolic location ADDR2 is at location 3D50

• The decimal subtract (DSB) instruction is assembled at location 1000

• $B5 contains 2FFD

COMMERCIAL INSTRUCTIONS 6-9 CB07

• $Bl contains 3FE2

• Location 3FEO contains a pointer to location 3D 50

ASSEMBLED INSTRUCTION

loc 2FFD

DSB DESCU($B5.3, 0, 4, u), DESCP(*$Bl.-2, 0,5)
loc 1000

+
loc 3000, left byte
effective address
for first operand

I
I

/
/

/
I

/

/ disp. = -2 words ,
" ''''

for second operand

Figure 6·4. Commercial Processor Direct and Indirect
B-relative Plus Displacement Addressing

COMMERCIAL PROCESSOR DIRECT B-RELATIVE PLUS DISPLACEMENT WITH IN­
DEXING ADDRESSING

In this form of addressing, the effective address is computed by first determining the
B-relative plus displacement address; the content of an index register is then added to this result
to determine the effective address.

An example of this form of addressing, in com.bination with indirect B-relative plus displace­
ment with indexing addressing follows the explanation of the indirect form of addressing.

COMMERCIAL PROCESSOR INDIRECT B-RELATIVE PLUS DISPLACEMENT WITH IN­
DEXING ADDRESSING

To determine the effective address, the B-relative plus displacement address is first computed.
The contents ofthe index register are then added to the contents of the location pointed to by the
result of the first computation to obtain the effective address.

Example of Commercial Processor Direct and Indirect B-Relative Plus Displacement With
Indexing Addressing:

This example is built upon the preceding example, dealing with direct and indirect B-relative
with displacement addressing. Figure 6-5 illustrates these forms of addressing. The assembled
instruction for this example is assumed to be:

DSB DESCU($B5.3.$R2,0,4,U),DESCP(*$BL - 2.$R3,0,5)

All other assumptions for the preceding example remain unchanged. In addition, $R2 is
assumed to contain +6 and $R3 is assumed to contain +7.

Starting with loc 3000 for the first operand in the preceding example, we find the effective
address with indexing to become loc 3003 (Le., loc 3000 + 0006 bytes).

COMMERCIAL INSTRUCTIONS 6-10 CB07

For the second operand of the previous example, we find the value 3D50 at the location 3FEO,
which is the B-relative plus displacement address. The contents of$R3 are added to this value to
give the effective address for the second operand; i.e., 3D 50 + 0007 = 3D57.

ASSEMBLED INSTRUCTION
. DSB DESCU($B5.3.$r2, 0,4, U), DESCP(*$Bl.·2.$R3, 0, 5)

loc 1000

,

,
, ... f
I OJI
, ~I
I '61
! £1
I
I
I

L __

--------_ loc3FE2

l (J~'7T~' 321331341--r-~:"
lloC2FFD I ~

loc 3003, left byte
effective address
for first operand

Index = 7 digits

Figure 6-5. Commercial Processor Direct and Indirect B-relative Plus
Displacement with Indexing Addressing

IMMEDIATE OPERAND (lMO) ADDRESSING

Immediate operand addressing makes it possible to specify a decimal or string constant as the
address expression. An IMO operand always occupies one word of memory. If the expressed
operand is more than one word long, it is truncated on the right to a single word. If the operand is
less than one word long, it is stored left justified with low order bits zero filled. For numeric
Commercial Processor instructions, the format of the IMO address expression is:

= decimal-integer-constant

For alphanumeric Commercial Processor instructions, the format of the IMO address expression
is:

= string constant

An IMO address expression must not be specified by the second data descriptor of any Commer­
cial Processor instruction, except for the compare instructions ACM and DCM.

An IMO may not be a binary integer constant.

An IMO address expression must not be specified by any Commercial Processor edit instruction.

The following example illustrates Commercial Processor IMO addressing.

Example:

Assume we wish to convert the packed decimal value of - 997 to an unpacked form.

DMC DESCP(=-P'997',0,4),DESCU(RESULT,1,7,LEADING)

RESULT RESV 5,Z'2020'

The following assumptions are made:

COMMERCIAL INSTRUCTIONS 6-11 CB07

• Symbolic location RESULT is at location 9003

• The decimal-move-and-convert CDMC) instruction is assembled at location 7000.

Figure 6-6 illustrates the above example.

ASSEMBLED INSTRUCTION:

DMC DESCP(=-P'997', 0, 4), DESCU(RESULT, 1,7, LEADING)

loc 7000

teffective address of first operand
is bit 0 of location 7002, which contains -P'997'

After this instruction is executed, the string named RESULT at
location 9003 contains -997 in seven digits, in unpacked form,
with a leading sign and an offset of one 8-bit digit.

seven digit result

'---- R ESU L T ~tring of 10 characters
(loc 9003)

Figure 6-6. Commercial Processor IMO Addressing

MICRO EDIT OPERATIONS

The two move and edit instructions - AME and DME - require micro operations. The
sequence of micro operations to be executed must be placed in storage before the edit instruction
is executed. The sequence is referenced by the third data descriptor of the AME or DME
instruction. Some micro operations insert characters in the string of characters being manipu­
lated; for example, the currency symbol or the decimal point. Other micro operations replace
characters in the source string. For example, leading zeros in the source string may be replaced
with asterisks or blanks in the receiving string. The characters used for replacement or
insertion are contained in a table called the Edit Insertion Table CElT) which is described later in
this section.

The third data descriptor of a DME or AME instruction points to an array of micro operations.
Each micro operation is represented by eight bits as shown by the following format.

o

I MOP IF
o 3 0

MOP - Micro operation code field
IF - Information field

7 bit position within byte

3 bit position within field

The format for specifYing a Commercial Processor micro operation is as follows:

Commercial Processor-micro-operationCint-val-expression) ~ ,/
where, Commercial Processor-micro-operation is one of the mnemonics in Table 6-1, and

COMMERCIAL INSTRUCTIONS 6-12 CB07

(

(/'

(int-val-expression) must resolve to an integer in the range 0 to 16. Not all integers in
this range are valid for all micro operations. See description of micro operations for
restrictions.

Examples:

MVZB(4)
SEF(O)

Before an edit instruction is executed, you must set up a string by use of the TEXT assembler
control statement. This string contains the desired micro operations in the sequence in which
they are performed. For example, the statement

MOP TEXT SEF(O),MVZA(8)

sets up a string named MOP that contains the micro operations SEF and MVZA.

The fourteen micro operations that are available for use with the edit instructions are listed in
Table 6-l.

The function of the information field (IF) depends on the micro operation. For example, the IF
field may specify:

• The number (1 through 16) of the source digits to be manipulated. (An IF entry of zero
is used to represent 16 digits.)

• The character in the Edit Insertion Table to be used.

• The state in which edit flags are to be placed.

TABLE 6-1. MICRO OPERATIONS FOR EDIT INSTRUCTIONS

Code
Hexadecimal Bit Mnemonic Function

0 0000 CHT Change Edit Insertion Table
1 0001 ENF End floating suppression
2 0010 IGN Ignore specified source characters
3 0011 INSA Insert asterisk on suppress
4 0100 INSB Insert blank on suppress
5 0101 INSM Insert multiple EIT entry 1 characters
6 0110 INSN Insert on negative
7 0111 INSP Insert on positive
8 1000 MFLC Move with float currency symbol insertion
9 1001 MFLS Move with float sign insertion
A 1010 unassigned
B 1011 unassigned
C 1100 MVC Move source character
D 1101 MVZA Move with zero suppression and asterisk replacement
E 1110 MVZB Move with zero suppression and blank replacement
F 1111 SEF Set edit flags

ED" INSERTION TABLE

During the execution of an edit instruction, a hardware table of eight 8-bit characters holds
insertion information. At the start of each edit instruction, this table is initialized as shown in
Table 6-2. Anyone or all of the table entries can be changed by the Change Table (CHT) micro
operation. .

TABLE 6-2. EDIT INSERTION TABLE AT INITIALIZATION

Entry number

1 2 3 4 5 6 7 8
Character b * + $ 0 ,
Hexadecimal code 20 2A 2B 2D 24 2C 2E 30

COMMERCIAL INSTRUCTIONS 6-13 CB07

ED" FLAGS

Six edit flags are provided for use with the edit micro operations. Some edit flags record
conditions that occur during execution of the edit instruction. Others allow the user to establish
conditions for control of the editing. The editing performed by certain micro operations depends
on the status of specified edit flags. Editing may occurin two stages: (1) while an item is moved to
the receiving field and (2) at the end of the sequence of micro operatjons (called post edit). The
edit flags and their functions are given in Table 6-3.

TABLE 6-3. EDIT FLAGS FOR MICRO OPERATIONS

Name

End Suppression(ES)

Sign (SN)

Zero(Z)

Blank-When-Zero(BZ)·

Asterisk-When-Zero(AZ)·

PlusiMinus(PM)

Function

Initial status is OFF. Set on when a non-zero digit from a numeric
sending field is moved to the receiving field. It ·can be interrogated and
its status changed by certain micro operations.
Initial status is OFF for alphanumeric sending fields, and for numeric
sending fields that are positive, or unsigned, or equal to plus or minus
zero.
Initial status is ON for numeric sending fields that are negative.
It can be interrogated by certain micro operations, but, once initialized,
it cannot be changed by any micro operation.
Initial status is ON. Changed to OFF when a non-zero digit is moved
from a numeric sending field to the receiving field. Once the Z flag is
changed to OFF, it remains OFF for the duration of the edit instruction.
The Z flag can be neither interrogated nor altered by any micro
operation.
At post edit, the Z flag is interrogated and the editing then performed
depends on its status.
Initial status is OFF. It can be set ON by im ENF or a SEF micro
operation. Once it is set to ON, it cannot be changed to OFF by any
micro operation.
At the end of a micro operation sequence, if both the Z and BZ flags are
ON, the entire receiving field will be force-filled with the character in
EIT(l) - normally a space character. Note that this post edit operation
completely blanks out whatever character string has been moved into
the receiving field.
Initial status is OFF. It can be set ON by the SEF micro operation. Once
set ON, it cannot be changed to OFF by any micro operation.
At the end of a micro operation sequence, if the Z flag is ON, the BZ flag
is OFF, and the AZ flag is ON, the following editing is performed. The
entire receiving field, except for any characters corresponding to
EIT(7) - normally a decimal point - will be filled with the character
specified by EIT(2) - normally an asterisk.
Initial status is OFF. It can be set ON by the SEF micro operation. Once
set ON it cannot be changed to OFF by any micro operation. The status
of the PM flag affects the operation of the following micro operations:
MFLS, ENF, INSP, INSN. (See detailed description of micro operations
later in this section.)

"The blank-when-zero and the asterisk-when-zero operations are mutually exclusive. In case of conflict, the blank­
when-zero operation takes precedence; i.e., the BZ flag is interrogated before the AZ flag.

CHANGE ED" INSERTION TABLE (CHT) MICRO OPERATION

This micro operation changes characters in the Edit Insertion Table as specified by the IF
entry in the micro operation. If a single character is to be changed, the replacement character is
specified in the 8-bit byte immediately following the micro operation. If all characters are to be
changed, the replacement characters are specified in the eight 8-bit bytes immediately
following the micro operation. To change a given character, specify its entry number as shown
by Table 6-4. Note that an entry in the range of9 to F will cause an illegal specification (IS) trap.

COMMERCIAL INSTRUCTIONS 6-14 CB07

(' ..

(

(/

TABLE 6-4. CODE FOR REPLACING EIT ENTRIES

IF CODE OPERATION

o
1
2
3
4
5
6
7
8

9-F

Replace all eight EIT entries
Replace EIT Entry 1
Replace EIT Entry 2
Replace EIT Entry 3
Replace EIT Entry 4
Replace EIT Entry 5
Replace EIT Entry 6
Replace EIT Entry 7
Replace EIT Entry 8
Trap 26 Illegal specification

In the following example, the string of eight characters beginning at the address specified by
A8 is moved to the receiving field of eight characters beginning at the address specified by
WK8K. In the move, leading zeros, are replaced by the pound sign (#). Normally, the zeros
would be replaced by asterisks but the CHT micro operation has changed the asterisk (EIT entry
2) to the pound sign. Note that the sending field count and the receiving field count are not
changed by the CHT micro operation.

Example:

MOP
A8
WK8K

TEXT
DC
RESV

CHT(2): #', MVZA(8)
'00$81.05'
4' , ,

AME DESCA(A8,0,8);
DESCA(WK8K,0,8);
DESCA(MOP,0,3)

After the instruction is executed, the contents of the receiving field will be ##$81.05.

END FLOATING SUPPRESSION (ENF) MICRO OPERATION

This micro operation terminates zero suppression or floating insertion and forces the
insertion of the appropriate sign or the appropriate currency symbol, and, optionally, sets the BZ
flag ON. Only bits 0 and 1 of the IF are used; bits 2 and 3 must be zero.

o 1 2 3

I I MBZ

The functions performed for valid arguments (IF entries) are as follows. An invalid argument
will generate trap 26, Illegal Specification.

Argument IF Function
o 0000 Insert appropriate sign; do not change BZ
4 0100 Insert appropriate sign; set BZ ON
8 1000 Insert appropriate currency symbol; do not change BZ

12 1100 Insert appropriate currency symbol; set BZ ON

The sign or currency symbol inserted depends on the status of various edit flags as shown
below. The entry x under an edit flag column indicates that the flag is not interrogated; i.e., its
status makes no difference for the specified insertion. The insertion characters shown are those
normally in the EIT.

Edit Flag Status
Insertion

ES PM SN IFO Character
ON x x x None
OFF OFF OFF 0 EIT(1) b

COMMERCIAL INSTRUCTIONS 6-15 CB07

OFF
OFF
OFF

x
x
ON

ON
x
OFF

o
1
o

EIT(4)
EIT(5) $
EIT(3) +

At completion of the micro operation, the sending field count is not changed; the receiving
field count is decremented by one if an insertion occurred, otherwise it is not changed.

IGNORE SOURCE CHARACTER (IGN) MICRO OPERATION

This micro operation causes a specified number of bytes in the sending field to be skipped. The
sending field count is reduced accordingly and no change is made in the receiving field count.
The number of bytes to be skipped is specified by the IF entry. The Assembler stores zero in the
IF field to represent 16.

INSERT ASTERISK ON SUPPRESS (INSA) MICRO OPERATION

This micro operation causes a character to be inserted in the receiving field. The character
that is inserted depends on the state of the end suppression (ES) flag and the IF entry in the
micro operation. If the ES flag is OFF, the IF entry is ignored and the character specified by
EIT(2) (normally an asterisk) is inserted. If the ES flag is ON, the insertion character is specified
by the IF entry as follows:

IF Entry Character
1 through 8 EIT(1) through EIT(8)

o Character specified in byte that
follows the micro operation.

An IF entry of 9 through 15 causes an invalid specification (IS) trap.

'At completion, the receiving field count is decremented by one; the sending field count is not
changed.

INSERT BLANK ON SUPPRESS (lNSB) MICRO OPERATION

This micro operation causes a character to be inserted in the receiving field. The character
that is inserted depends on the state of the end suppression (ES) flag and the IF entry in the
micro operation. If the ES flag is OFF, the IF entry is ignored and the character specified by
EIT(I) (normally a blank) is inserted. If the ES flag is ON, the character is specified by the IF
entry as follows:

IF Entry
1 through 8

o

Character
EIT(I) through EIT(8)
Character specified in byte that
follows the micro operation.

An IF entry of 9 through 15 causes ali invalid specification (IS) trap.

At completion, the receiving field count is decremented by one; the sending field count is not
changed.

INSERT MULTIPLE CHARACTERS (INSM) MICRO OPERATION

This micro operation causes 1 to 16 EIT(l) characters - normally blanks - to be inserted into
the receiving field. The receiving field count is decremented by the nu.1!lber of characters
inserted; the sending field count is not changed. The number of characters inserted corresponds
to the IF entry. The Assembler stores zero in the IF field to represent 16.

INSERT CHARACTER ON NEGATIVE (INSN) MICRO OPERATION

This micro operation causes a character to be inserted into the receiving field. The receiving
field count is decremented by 1; the sending field count is not changed. The character that is
inserted depends on the state of the SN flag and the IF entry. If the SN flag is OFF, the IF entry is
ignored and the character specified by EIT(I) - normally a blank - is inserted. If the SN flag is
ON, the insertion character is specified by the IF entry as follows: ~cj

COMMERCIAL INSTRUCTIONS 6-16 CB07

(-
10. •••

(

IF Entry
1 through 8

o

Character
EIT(I) through EIT(8)
Character specified in byte that
follows micro operation.

An IF entry of 9 through 15 causes an invalid specification (IS) trap.

At completion, the receiving field count is decremented by one; the sending field count is not
changed.

INSERT CHARACTER ON POSITIVE (INSP) MICRO OPERATION

This micro operation causes a character to be inserted in the receiving field. The receiving
field count is decremented by 1; the sending field count is not changed. The character that is
inserted depends on the state of the PM flag, the state of the SN flag, and the IF entry.

Ifboth the PM and SN flags are OFF, the character is specified by the IF entry. For IF entries 1
through 8, the character is specified by EIT(I) through EIT(8). For an IF entry of 0, the character
is specified by the byte that follows the micro operation. The character inserted for other states
of the flags is shown below.

PM Flag SN Flag
OFF OFF
OFF ON
ON OFF
ON ON

Character
Specified by IF entry
EIT(l) b
EIT(3) +
EIT(4) -

MOVE WITH FLOAT CURRENCY SYMBOL INSERTION (MFLC) MICRO OPERATION

This micro operation floats the appropriate currency symbol over a specified number of
sending field units as a function of the ES flag. (In this context, a sending field unit is 4 bits for
packed decimal data; otherwise it is one byte.) The number of sending field units upon which the
operation is to be performed corresponds to the IF entry. The Assembler stores zero in the IF field
to represent 16.

Let the IF entry specify n sending field units. Then when the micro operation is executed, the
next n units are fetched one at a time and the following actions occur.

• If the ES flag is OFF and the sending field unit is zero, the character specified by EIT(I)
(normally a blank) is moved to the receiving field.

• If the ES flag is OFF and the sending field unit is not zero, the character specified by EIT(5)
(normally a $) is moved to the receiving field and then the non-zero unit is moved to the
receiving field, and the ES flag is turned ON.

• If the ES flag is OFF, and all units in the sending field are zeros, then n EIT(I) characters
are moved to the receiving field. The ES flag remains OFF.

• If the ES flag is ON, the next sending field unit is moved to the receiving field. If the ES flag
is ON at initiation of the micro operation, then n sending field units are moved to the
receiving field.

• If the sending field contains at least one leading zero unit and one non-zero unit, then n + 1
units are moved to the receiving field and the ES flag is set ON.

• At completion of the micro operation, the receiving field count is decremented by either n
or n + 1; the sending field count is decremented by n.

MOVE WITH FLOAT SIGN INSERTION (MFLS) MICRO OPERATION

This micro operation floats the appropriate sign character over the specified number of
sending field units as a function of the ES flag, the SN flag, and the PM flag, and whether the
sending field unit is zero. (In this context, a sending field unit is 4 bits for packed decimal data;
otherwise it is one byte.) The number of sending field units upon which the operation is to be
performed corresponds to the IF entry. The Assembler stores zero in the IF field to represent 16.

COMMERCIAL INSTRUCTIONS 6-17 CB07

Let the IF entry specify n sending field units. Then, when the micro operation is executed, the
next n units are fetched one at a time and the following actions occur.

• If the ES flag is OFF, a character is moved to the receiving field as specified by Table 6-5.
An EIT(l) character replaces a zero digit or zero character. An EIT(l) character or a sign
character is inserted ahead of a nonzero digit or character in the receiving field; the
nonzero unit is then moved to the receiving field, and the ES flag is set ON.

• If the ES flag is OFF, and all units in the sending field are zeros, then n EIT(1) characters
are moved to the receiving field. The ES flag remains OFF.

• If the ES flag is ON, the next sending field unit is moved to the receiving field. If the ES flag
is ON at initiation of the micro operation, then n sending field units are moved to the
receiving field.

• If the sending field contains at least one leading zero unit and one non-zero unit, then n + 1
units are moved to the receiving field and the ES flag is set ON.

• At completion of the micro operation, the receiving field count is decremented by either n
or n + 1; the sending field count is decremented by n.

TABLE 6-5. CHARACTER INSERTION BY MFLS MICRO OPERATION

ES Flag PM Flag SN Flag Sending Field Unit Character

OFF x x =0 EIT(1) b
OFF OFF OFF "" 0 EIT(1) b
OFF x ON ",,0 EIT(4) -
OFF ON OFF ",,0 EIT(3) +

MOVE SOURCE CHARACTER (MVC) MICRO OPERATION
\

This micro operation moves the specified number of sending field units to the receiving field.
(In this context, a unit is 4 bits for packed decimal data; otherwise it is one byte.) The number of
sending field units upon which the operation is to be performed corresponds to the IF entry. The
Assembler stores zero in the IF field to represent 16. At completion of the operation, the sending
field count and the receiving field count are decremented by the specified number of sending
field units.

MOVE wrrH ZERO SUPPRESSION AND ASTERISK REPLACEMENT (MVZA) MICRO OPERATION

This micro operation replaces sending field units that are zeros with asterisks as a function of
the ES flag. (In this context, a unit is 4 bits for packed decimal data; otherwise it is one byte.) The
number of sending field units upon which the operation is performed corresponds to the IF entry.
The Assembler stores zero in the IF field to represent 16. Let the IF entry specify n sending field
units. Then, when the operation is executed, the next n units are fetched one at a time and the
following actions occur.

• If the ES flag is OFF and the sending field unit is zero, the character designated by EIT(2)
(normally an asterisk) is moved to the receiving field.

• If the ES flag is OFF and the sending field unit is not zero, the sending field unit is moved to
the receiving field and the ES flag is set ON.

= If the ES flag is ON, the sending field unit is moved to the receiving field. (IF the ES flag is
on at initiation of the micro operation, n sending field units are moved to the receiving
field.)

• At completion of the micro operation, the sending field count and the receiving field count
are decremented by n.

MOVE wrrH ZERO SUPPRESSION AND BLANK REPLACEMENT (MVZB) MICRO OPERATION

This micro operation replaces sending field units that are zeros with blanks as a function of
the ES flag. (In this context, a unit is 4 bits for packed decimal data; otherwise it is one byte.) The
number of sending field units upon which the operation is performed corresponds to the IF entry.

COMMERCIAL INSTRUCTIONS 6-18 CB07

('

t

The Assembler stores zero in the IF field to represent 16. Let the IF entry specify n sending field
units. Then, when the operation is executed, the next n units are fetched one at a time and the
following actions occur.

• If the ES flag is OFF and the sending field unit is zero, the character designated by EIT(l)
(normally a blank) is moved to the receiving field.

• If the ES flag is OFF and the sending field unit is not zero, the sending field unit is moved to
the receiving field and the ES flag is set ON.

• If the ES flag is ON, the sending field unit is moved to the receiving field. (If the ES flag is
on at initiation of the micro operation, n sending field units are moved to the receiving
field.)

• At completion of the micro operation, the sending field count and the receiving field count
are decremented by n.

SET ED" FLAGS (SEF) MICRO OPERATION

This micro operation is used to control four edit flags. The IF field represents a 4-bit binary
mask. Each bit is associated with an edit flag as shown by the following diagram.

PM
'----AZ

'------BZ
'------ES

The ES flag can be set ON or cleared OFF. The other edit flags can be set ON but cannot be
cleared OFF by this micro operation. The sequence of events that occur during this micro
operation are summarized below and illustrated in; Figure 6-7.

1_ES

o

o ------.ES

=1
l--.BZ

, ----..AZ

Figure 6-7. Flow Diagram of SEF Micro Operation

COMM:ERCIAL INSTRUCTIONS 6-19 CB07

• If IF(O) = 1, the ES flag is set ON.

• If IF(O) = 0, the ES flag is cleared OFF.

• If IF(1) = 1, the BZ flag is set ON, and IF(2) is ignored.

• If IF(1) = 0, the BZ flag is not changed and IF(2) is interrogated.

• IfIF(2) = 1 and IF(1) = 0, the AZ flag is set ON.

• If IF(2) = 0, the AZ flag is not changed.

• If IF(3) = 1, the PM flag is set ON.

• If IF(3) = 0, the PM flag is not changed.

This micro operation has no effect on the sending or receiving field count.

COMMERCIAL PROCESSOR TRAPS

The Commercial Processor trap facility monitors the execution of all Commercial Processor
instructions and sends trap requests to the CPU whenever certain events occur. These traps and
the events that cause them are shown in Table 6-6. The results of a Commercial Processor trap
are as follows:

• The trapped Commercial Processor instruction is aborted.

• The operands of the Commercial Processor instruction usually remain unchanged.

• The bit (if any) of the Commercial Processor indicator that reflects the trap condition is
changed.

• The bits of the Commercial Processor indicator register used by the trapped instruction are
left in an unspecified state.

• All other bits of the Commercial Processor indicator remain unchanged.

• The CPU, upon completion of the current CPU instruction,

-Interrogates the Commercial Processor for the trap vector code.
-Saves CPU trap context in a trap save area.
-Branches to the trap handling procedure specified by the trap vector.

Ifmore than one trap condition exists, the Commercial Processor sends the condition with the
highest priority to the CPU. The other condition(s) are lost. Trap conditions are usually detected
in the order listed in Table 6-6.

Because Commercial Processor instructions are executed in parallel with CPU instructions,
the following information about the Commercial Processor instruction being executed is stored
when a trap occurs.

• At initiation of the Commercial Processor instruction:

-CPU stores the address of the Commercial Processor instruction.
-Commercial Processor stores the effective addressees) of the operand(s).

• At trap time:
-CPU stores the trap context of the machine.

The A-word of the Trap Save Area will contain the address of the Commercial Processor
instruction that caused the trap.
The P-word of the Trap Save Area will contain the address of the next sequential
instruction.

-A T& V routine's trap handler (or the trap handler of any other task having exclusive use
ofthe Commercial Processor) can obtain the effective addressees) of the data descriptors
of the trapped instruction by use of a read IOLD instruction directed to the Commercial
Processor. The format of the trap context is shown in Figure 6-8. The Commercial
Processor always uses 8 words of context regardless of the range information. The
number of valid addresses in the trap context depends on the number of data descriptors
required for the Commercial Processor instruction that trapped.

COMMERCIAL INSTRUCTIONS 6-20 CB07

/'
I

(

TABLE 6-6. COMMERCIAL PROCESSOR TRAP VECTORS AND EVENTS

Trap Vector
Mnemonic
and Number Trap Event

TV (UR) #23 Reference to
Unavailable Resource

TV (BE) #24 NML Bus or Memory
Error

TV (IS) #26 Illegal Specification
TV (DZ) #25 Divide by Zero
TV (IC) #27 Illegal Character
TV (TR) #28 Truncation
TV (OV) #29 Overflow
TV #30 QLT error

ac = conditional Trap
U = unconditional Trap

o 7 8 15

WORD 1: RFU (CI)

2

3

4

5

6

7
8

Task~d

high order bits
. . ""
"6"~J

low order 16 bits

Figure 6-8. '1

Commercial Commercial
C/U a Indicator Mask

U - -

U - -

U - -
U - -
U - -
C CI (TR) CM (TR)
C CI (OV) CM (OV)
U - -

1\ EA of 1st data descriptor

EA of 2nd data descriptor

EA of 3rd data descriptor

ap Context

The following descriptions of Commercial Processor traps include a list of the conditions that
cause each trap. During the execution of some Commercial Processor instructions, traps may be
generated by conditions that are peculiar to the instruction. Where applicable, such conditions
are included in the description of the Commercial Processor instruction.

TRAP 23 UNAVAILABLE RESOURCE (UR)

Condition causing trap:

The Commercial Processor has referenced an unavailable resource.

TRAP 24 BUS OR MEMORY ERROR (BE)

Conditions causing trap:

• The Commercial Processor has detected a bus or memory error.

• The Commercial Processor has detected a bus command that is out of sequence.

• The Commercial Processor has detected a Commercial Processor hardware error.

TRAP 25 DIVIDE BY ZERO (DZ)

This trap is unconditionally generated whenever the divisor of a decimal divide instruction is
equal to zero. .

COMMERCIAL INSTRUCTIONS 6-21 CB07

TRAP 26 ILLEGAL SPECIFICATION (IS)

Conditions causing trap:

• An undefined Commercial Processor operation code is detected

• An operand has a zero length

• A separate signed operand consists of only a sign

• The second data descriptor contains an IMO address expression

TRAP 27 ILLEGAL CHARACTER (IC)

Conditions causing trap:

• An illegal decimal digit is detected (Le., the low order four bits of a digit is not 0 through 9)

• An illegal sign digit is detected (Le., a digit that is not one of the recognized signs)

• An illegal overpunch is detected.

TRAP 28 TRUNCATION (TR)

Conditions causing trap:

• For this trap to be generated, the TR-bit of the Commercial Processor mode register must
be set to 1. (The contents ofthe Commercial Processor mode register can be changed by the
CPU instruction MTM.) The trap is then generated if the receiving field cannot contain all
characters of the result.
If truncation occurs, the TR-bit of the Commercial Processor indicator register is set to 1
and the leftmost part of the result is stored in the receiving field.

TRAP 29 OVERFLOW (OV)

Conditions causing trap:

• For this trap to be generated, the OV-bit of the Commercial Processor mode register must
be set to 1. (The contents of the Commercial Processor mode register can be changed by the
CPU instruction MTM.) The trap is then generated if the receiving field cannot contain all
significant digits of the result (leading zeros are not considered significant).
If a trap occurs, the OV-bit ofthe Commercial Processor indicator register is set to 1, the
instruction is aborted, and the original operands are not changed.

• If overflow occurs but no trap is generated (OV-bit of Commercial Processor mode register
is 0), the receiving field will not contain the most significant digit(s) of the result. The
OV-bit of the Commercial Processor indicator register will be set to 1.

TRAP 30 QUALITY LOGIC TEST (QLT) ERROR (QE)

Conditions causing trap:

• Any malfunction detected during a Commercial Processor QLT (mini or maxi) generates
this trap.
Normally, the operating system will handle this trap. For further information, refer to the
Level 6 Minicomputer Handbook.

EXECUTION DETAILS FOR COMMERCIAL INSTRUCT!ONS

Unless indicated otherwise in the description of the individual instruction, the details given
below apply to all instructions in the following categories:

Decimal arithmetic
Radix and mode conversion
Shift

• Data descriptors may be generated in line as part of the instruction or they may be
referenced by internal value expressions

COMMERCIAL INSTRUCTIONS 6-22 CB07

/

(f',
\{j

(~

• If remote descriptor references are generated, the internal value expression specifies the
offset from the address stored in the remote descriptor base register (in units of double
words) to the desired descriptor. The value of the internal value expression can range from
o through 4095.

• The effective address developed from a descriptor points to the leftmost digit of the
operand.

• The G and L bits of the Commercial Processor indicator register indicate the value of the
result relative to zero.

• Ifthe result is shorter than the receiving field, the receiving field will be zero filled to the
left.

• Plus (+) and minus (-) zero are allowed on input but are assumed to be plus zero during
instruction execution. All zero operands generated by the Commercial Processor are plus
zeros.

• The SF-bit of the Commercial Processor indicator register is set to 1 when a negative
operand is to be stored in an unsigned field.

• Operands having different sign conventions are allowed.

• Unpacked decimal zero is represented by 30 (hexadecimal); packed decimal zero is
represented by 0 (hexadecimal).

• All signed results will have the hardware generated signs, regardless of the sign
convention used by the operands at execution time.

• Zone bits (leftmost four bits of an unpacked decimal number) are ignored on input. The
zone bit of all results is set to 3 (hexadecimal).

• Identical overlapping of operands is allowed. If operands overlap in any other way, the
results are unspecified.

Unless otherwise indicated, the following details apply to all character string instructions.

• Data descriptors may be generated in line as part of the instruction or referenced by
internal value expressions.

• If remote descriptor references are generated, the internal value expression specifies the
offset from the address stored in the remote descriptor base register (in units of double
words) to the desired descriptor. The value ofthe internal value expression can range from
o through 4095.

• Identical overlapping of operands is allowed. If operands overlap in any other way, the
results are unspecified.

• Trap 26, illegal specification, is generated if the second operand specifies an IMO.
(Exception is alphanumeric compare ACM instruction.)

• Trap 26, illegal specification, is generated if the third operand specifies an IMO.

• The truncation bit (TR bit) of the Commercial Processor indicator register is set to 1, if the
receiving field cannot accept all characters of the result.

• Only the leftmost portion of the result will be in the receiving field, if the receiving field
cannot accept all the characters of the result.

DETAILED DESCRIPTIONS OF COMMERCIAL INSTRUCTIONS

The remainder of this section contains detailed descriptions of each commercial instruction.
The descriptions are arranged in alphabetical sequence by instruction mnemonics. Each
description includes the name, type, format, and operands, and a functional explanation.
Commercial Processor data descriptors and Commercial Processor address expressions are
previously described in this section. Symbolic names, constants, and expressions (other than
address expressions) are described in Section 2.

All commercial instructions can be labeled, although labels are not shown in the source
language formats of the descriptions that follow.

A summary of the commercial instructions is given in Table H-I of Appendix H.

COMMERCIAL INSTRUCTIONS 6-23 CB07

ACM

ACM

Instruction:
Alphanumeric compare

Type:
Character string

Source Language Format:

AACMA {DESCA (description) }
int-val-expression

Description:

{ DESCA (description) I
int-val-expression

The character string specified by the first operand is compared with the character string
specified by the second operand. The comparison proceeds character-by-character from left to
right. When a mismatch occurs, the binary value of the two unlike characters determine

_whether the first character string is greater or less than the second, and the G or L bit ofthe
Commercial Processor indicator register is set accordingly.

If the length of the strings are unequal, the shorter string is unconditionally extended to the
right with the fill character specified by the second data descriptor. Note that the extension
takes place internally in the Commercial Processor and not in main memory.

If the length of both strings are zero, the strings are considered to be equal.

Both operands may specify IMO's.

If the value of the byte length specified by the first data descriptor is zero, the length is contained
in the right byte of register R4 and can be from 0 through 255 bytes. If the value of the byte'
length specified in the first data descriptor is not zero, that value, which can be from 1 through
31, is the length.

If the value ofthe byte length specified by the second data descriptor is zero, register R5 contains
the fill character (in the left byte) and the length (in the right byte). When escape to register R5
occurs, the length can be from 1 through 255 characters. If the value of the byte length specified
in the second data descriptor is not zero, that value is the length and the fill character is an
ASCII blank (20 hexadecimal). In this case, the length can be from 1 through 31 bytes.

Applicable Traps

'rrap 23 Reference to unavailable resource
Trap 24 Bus or memory error
Trap 26 Illegal Specification

The contents of the Commercial Processor indicator register are affected as follows:

• Ifthe value of the first operand string is less than the value of the second operand string,
the L-bit is set to 1; otherwise, it is set to o.

• If the value of the first operand string is greater than the value of the second operand
string, the G-bit is set to 1; otherwise, it is set to o.

COMMERCIAL INSTRUCTIONS '6-24 CB07

(

('

ALR

Instruction:
Alphanumeric move

Type:
Character string

Source Language Format:

aALRLl {DESCA(deScriPtiOn)}

int-val-expression

Description:

{
DESCA(deScriPtion}

int-val-expression

ALR

The character string is moved from the address specified by the first operand (sending field) to
the address specified by the second operand. If the length of the receiving field is zero, the TR-bit
(truncation bit) of the Commercial Processor indicator register is set to 1, and the instruction is
aborted. Trap 28, truncation, may then be generated as described previously under "Commer­
cial Processor Traps."

If the length of the sending field is zero, the receiving field is filled or not as specified by the
second data descriptor.

If the value of the byte length specified by the first data descriptor is zero, the length is contained
in the right byte of register R4 and can be from 0 through 255 bytes. If the value of the byte
length specified in the first data descriptor is not zero, that value, which can be from 1 through
31, is the length.

If the value of the byte length specified by the second data descriptor is zero, register R5 contains
the fill character (in the left byte) and the length (in the right byte). When escape to register R5
occurs, the length can be from 1 through 255 characters. If the value ofthe byte length specified
in the second data descriptor is not zero, that value is the length, and the fill character is an
ASCII blank (20 hexadecimal). In this case, the length can be from 1 through 31 bytes.

Applicable Traps:

Trap 23 Reference to unavailable resource

Trap 24 Bus or memory error

Trap 26 Illegal specification

Trap 28 Truncation

The contents of the Commercial Processor indicator register are affected as follows: I
• If the length of the first operand string is greater than the length of the second operand

string, the TR-bit is set to 1; otherwise, it is set to O.

COMMERCIAL INSTRUCTIONS 6-25 CB07

AME
AME

Instruction:

Alphanumeric move and edit

Type:

Edit

Source Language Format:

dAMEd {~ESCA(deScri~tiOn)}, .{~ESCA(deScri~tiOn)} , {~ESCA(deSCri~tiOn)}
mt-val-expressIOn mt-val-expressIOn mt-val-expresslon

Description:

The character string in the sending field specified by the first data descriptor (DD1) is edited in
accordance with the micro operations in the field specified by, the third data descriptor (DD3),
and moved to the receiving field specified by the second data descriptor (DD2).

The number of edited characters stored in the receiving field can be either more or less than
those in the sending field. The receiving field may have more characters when micro operations
specify one or more characters are to be inserted. The receiving field may have less characters
when a micro operation specifies that one or more characters of the sending field are to be
skipped.

The instruction terminates normally when the receiving field is filled. Normal termination
occurs even though the sending field or the string of micro operations have not been exhausted.

An illegal specification trap (Trap 26) is generated if either the sending field or the string of
micro operations are exhausted before the receiving field is filled.

Execution details are as follows:

• The effective address developed from a data descriptor points to the leftmost character of
the operand.

• All operations take place from left to right.

• The valid length of the sending field, the receiving field, and the string of micro operations
ranges from 1 through 255. Lengths from 32 through 255 are specified via escape to an R
register. (See Appendix H.)

• During execution of the instruction, the sending field count indicates the current number
of characters remaining to be processed. The count is decremented every time a character
is moved out'or skipped over.

• During execution of the instruction, the receiving field count indicates the current number
of positions that remain to be filled. The count is decremented every time a character is
moved into the receiving field.

• The Edit Insertion Table (EIT) is always initialized when the edit instruction is initiated.

• The edit flags are always initialized when the edit instruction is initiated.

Applicable Traps:

Trap 23 Reference to unavailable resource

Trap 24 Bus or memory error

Trap 26 Illegal Specification

Conditions causing trap:

• The sending field or the string of micro operations is exhausted before the receiving
field is filled.

• The length of the sending field, or the receiving field, or the string of micro operations
is zero.

COMMERCIAL INSTRUCTIONS 6-26 CB07

i~

(,

caD
Instruction:

Convert binary to decimal

Type:

Radix and mode conversion

Source Language Format:

{
DESCB(deScriPtiOn) 'J

aCBDa . ,
int-val-expression

Description:

eBD

f DESCP(des~ription) I
, DESCU(description)

int-val-expression

The binary value specified by the first operand is converted to the decimal data type specified by
the second operand and stored, right justified, at the address specified by the second operand.

Execution Details:

• If the length of the receiving field is greater than the number of significant digits in the
decimal equivalent of the binary value, the receiving field is zero filled to the left.

• The high order bit of the binary operand is a sign bit (Le., the binary value is stored in two's
complement notation).

• If the first data descriptor specifies and IMO, the results are unspecified.

Applicable Traps:

During execution of this instruction, Traps 23, 24, 26, and 29 may be generated in the same way
as during execution of the decimal add instruction DAD.

Trap 23 Reference to unavailable resource

Trap 24 Bus or memory error

Trap 26 Illegal specification

Trap 29 Overflow

The contents of the Commercial Processor indicator register are affected as follows:

• If the number of significant digits in the converted result is greater than the number of
digit positions available in the receiving field, the OV-bit is set to 1; otherwise, it is set to O.

• If the value to be converted is negative and the receiving field is described as unsigned, the
SF-bit is set to 1; otherwise, it is set to O.

COMMERCIAL INSTRUCTIONS 6-27 CB07

CBE
·CBE

Instruction:

Commercial Branch if equal

Source Language Format:

{
direct-IMA }

~CBE~ direct P-relative
short displacement address

Description:

Branches to the location specified by the operand if the G-bit and the L-bit of the CIP indicator
register are both o.
Action if Branch Occurs:

If the J -bit in the Ml register contains a binary 1, the trace procedure is entered via trap vectoI'2.
Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J~bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

COMMERCIAL INSTRUCTIONS 6-28 CB07

.1.<..)

(

(

(

CBG

Instruction:

Commercial Branch if greater

Source Language Format:

ldirect-IMA }
aCBGa direct P-relative

short displacement address

Description:

CBG

Branches to the location specified by the operand if the G-bit of the Commercial Processor
indicator register is 1.

Action if Branch Occurs:

IftheJ-bit in the M1 register contains a binary 1, the trace procedure is entered via trap vector 2.
Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

COMMERCIAL INSTRUCTIONS '6-29 CB07

CBGE
CBGE

Instruction:

Commercial Branch if greater than or equal

Source Language Format:

Idirect-IMA I
aCBGEa direct P-relative

short displacement address

Description:

Branches to the location specified by the operand if the L-bit of the Commercial Processor
indicator register is o.
Action if Branch Occurs:

IftheJ-bit in the M1 register contains a binary 1, the trace procedure is entered via trap vector 2.
Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

COMMERCIAL INSTRUCTIONS 6-30 CB07

('

(

(\

./

CBL

Instruction:

Commercial Branch if less than

Source Language Format:

{
direct-IMA I

LlCBU direct P-relative
short displacement address

Description:

CBL

Branches to the location specified by the operand if the L-bit of the Commercial Processor
indicator register is 1.

Action if Branch Occurs:

If the J -bit in the Ml register contains a binary 1, the trace procedure is entered via trap vector 2.
Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

COMMERCIAL INSTRUCTIONS 6-31 CB07

CBLE
CSLE

Instruction:

Commercial Branch if less than or equal

Source Language Format:

I direct-IMA I
~CBLE~ direct P-relative

short displacement address

Description:

Branches to the location specified by the operand if the G-bit of the Commercial Processor
indicator register is 0.

Action if Branch Occurs:

If the J-bit in the M1 register contains a binary 1, the trace procedure is entered via trap vector 2.
Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

COMMERCIAL INSTRUCTIONS 6-32 CB07

(~, '\
,i
,./

('

(

CBNE
CBNE

Instruction:

Commercial Branch if not equal

Source Language Format:

{
direct-IMA)

L\CBNEL\ direct P-relative
short displacement address

Description:

Branches to the location specified by the operand if either (but not both) the G-bit or the L-bit of
the Commercial Processor indicator register is 1.

Action if Branch Occurs:

IftheJ-bit in the M1 register contains a binary 1, the trace procedure is entered via trap vector 2.
Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J~bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

COMMERCIAL INSTRUCTIONS 6-33 CB07

CBNOV
CBNOV

Instruction:

Commercial Branch if no overflow

Source Language Format:

jdirect-IMA I
~CBNOV ~ direct P-relative

short displacement address

Description:

Branches to the location specified by the operand if the OV-bit of the Commercial Processor
indicator register is O.

Action if Branch Occurs:

If the J-bit in the Ml register contains a binary 1, the trace procedure is entered via trap vector 2.
Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

COMMERCIAL INSTRUCTIONS 6-34 CB07

(

CBNSF
CBNSF

Instruction:

Commercial Branch if no sign fault

Source Language Format:

jdirect-IMA }
aCBNSFa direct P-relative

short displacement address

Description:

Branches to the location specified by the operand if the SF-bit of the Commercial Processor
indicator register is O.

Action if Branch Occurs:

If the J -bit in the M1 register contains a binary 1, the trace procedure is entered via trap vector 2.
Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

COMMERCIAL INSTRUCTIONS 6-35 CB07

CBNTR
CBNTR

Instruction:

Commercial Branch if no truncation

Source Language Format:

{
direct-IMA }

aCBNTRa direct P-relative
short displacement. address

Description:

Branches to the location specified by the operand if the TR-bit of the Commercial Processor
indicator register is O. •

Action if Branch Occurs:

IftheJ-bit in the M1 register contains a binary 1, the trace procedure is entered via trap vector 2.
Upon completion, the trace procedure automatically branches to the address specified py the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

COMMERCIAL INSTRUCTIONS ,6-36 CB07

(

CBOV

Instruction:

Commercial Branch on overflow

Source Language Format:

I direct-IMA I
aCBOVa direct P-relative

short displacement address

Description:

CBOV

Branches to the location specified by the operand if the OV -bit of the Commercial Processor
indicator register is l.

Action if Branch Occurs:

IftheJ-bit in the M1 register contains a binary 1, the trace procedure.is entered via trap vector 2.
Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

COMMERCIAL INSTRUCTIONS 6-37 CB07

CBSF
CBSF

Instruction:

Commercial Branch on sign fault

Source Language Format:

{
direct-IMA }

aCBSFa direct P-relative
short displacement address

Description:

---~ .~.~.~.~.-.-.-~.-.-- ~.-~.----.~--

Branches to the location specified by the operand if the SF -bit of the Commercial Processor
indicator register is l.

Action if Branch Occurs:

If the J-bit in the M1 register contains a binary 1, the trace procedure is entered via trap vector 2.
Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

COMMERCIAL INSTRUCTIONS 6-38 CB07

(

(

(

carR
Instruction:

Commercial Branch on truncation

Source Language Format:

jdirect-IMA I
aCBTRa direct P-relative

short displacement address

Description:

CBTR

Branches to the location specified by the operand if the TR-bit of the Commercial Processor
indicator register is l.

Action if Branch Occurs:

If the J -bit in the Ml register contains a binary 1, the trace procedure is entered via trap vector 2.
Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

COMMERCIAL INSTRUCTIONS 6-39 CB07

I

CDB
CDS

Instruction:

Convert decimal to binary

Type:

Radix and mode conversion

Source Language Format:

{
DESCP(description) II

aCDBa ~ESCU(descri~tion). ,
mt-val-expresslon

Description:

DESCB(description)
int-val-expression }

The decimal value specified by the first operand is converted to binary and stored in two's
complement notation at the address specified by the second operand.

Applicable Traps:

Trap 23 Reference to unavailable resource

Trap 24 Bus or memory error

Trap 26 Illegal specification

Trap 27 Illegal character

Trap 29 Overflow

The contents of the Commercial Processor indicator register are affected as follows:

• If the number of significant bits in the converted result is greater than the number of bit
positions available in the receiving field (i.e., 15 bits for 2 bytes or 31 bits for 4 bytes), the
OV-bit is set to 1; otherwise it is set to O.

COMMERCIAL INSTRUCTIONS 6-40 CB07

(J '\ ",j

(-

. - --" ~-~--~-.. ~-~" .

CSNCB

Instruction:

Commercial Synchronize and branch

Source Language Format:

{
direct-IMA }

aCSNCBa direct P-relative
short displacement address

Description:

CSNCB

Branches to the location specified by the operand after the previous Commercial Processor
instruction has been completed.

Action if Branch Occu~s:
If the J -bit in the M1 register contains a binary 1, the trace procedure is entered via trap vector 2.
Upon completion, the trace procedure automatically branches to the address specified by the
operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting at the
location specified by the operand is executed.

COMMERCIAL INSTRUCTIONS 6-41 CB07

CSYNC
CSYNC

Instruction:

Commercial Synchronize

Type:

Branch

Source LangUage Format:

{
direct IMA }

ilCSYNCil , direct P-relative
short displacement address

Description:

Prevents the CPU from going to the next instruction until the previous Commercial Processor
instruction has been completed. Performs no operation.

COMMERCIAL INSTRUCTIONS 6-42 CB07

c

(....
/

DAD

Instruction:

Decimal add

Type:

Decimal arithmetic

Source Language Format:

jDESCP(deScriPtiOn) I j
aDADa DESCU(description) ,

int-val-expression

Description:

DESCP(description) I
DESCU(description)
int-val-expression

DAD

Adds the decimal value at the address specified by the first operand to the decimal value at the
address specified by the second operand and stores the result at the address of the second
operand. .

Applicable Traps:

Trap 23 Reference to unavailable resource

Trap 24 Bus or memory error

Trap 26 Illegal Specification

Trap 27 Illegal Character

Trap 29 Overflow

Whenever Trap 23 or Trap 24 occurs, the preservation of the original operands cannot be
guaranteed. If any other trap occurs, the operands remain unchanged.

The contents of the Commercial Processor indicator register are affected as follows:

• If the number of significant digits in the result is greater than the number of digit positions
available in the receiving field, the OV-bit is set to 1; otherwise, it is set to O.

• If the result is negative and the receiving field is described as unsigned, the SF-bit is set to
1; otherwise, it is. set to O.

• If the result is less than zero, the L-bit is set to 1; otherwise, it is set to O.

• If the result is greater than zero, the G-bit is set to 1; otherwise, it is set to O.

COMMERCIAL INSTRUCTIONS 6-43 CB07

*

DCM
DCM

Instruction:

Decimal compare

Type:

Decimal arithmetic

Source Langua~e Format:

{
DESCP(deScriPtiOn) I ('

aDCMa ~ESCU(descri~tion) , .
tnt-val-expresslon .

Description:

DESCP(description) I
DESCU(description)
int-val-expression .

The decimal value specified by the first operand is compared algebraically with the decimal
value specified by the second operand.

Execution Details:

• If the number of digits in the decimal values are not the same, the shorter one is supplied
with leading zeros.

• Plus and minus zero are treated as equal.

• The data descriptors may specify immediate memory operands (lMO's).

Applicable Traps:

Trap 23 Reference to unavailable resource

Trap 24 Bus or memory error

Trap 26 Illegal Specification

Trap 27 Illegal character

The contents of the Commercial Processor indicator register are affected as follows:

• If the value specified by the first operand is less than the value specified by the second
operand, the L-bit is set to 1; otherwise, it is set to O.

• If the value specified by the first operand is greater than the value specified by the second
operand, the G-bit is set to 1; otherwise, it is set to O.

COMMERCIAL INSTRUCTIONS 6-44 CB07

.-. __ .. _----- ----

/,f-'\

,~~j

(

DDV
Instruction:

Decimal divide

Type:

Decimal arithmetic

Source Language Format:

lDESCP(descriPtion) II
.!lDDV.!l ~ESCU(descri~tion) ,

mt-val-expressIOn

Description:

DESCP(deSCriPtiOn») {DESCP(descriPtiOn) I
DESCU(description) , DESCU(description)
int-val-expression int-val-expression

DDV

Divides the decimal value (the dividend) at the address specified by the second operand by the
decimal value (the divisor) at the address specified by the first operand. Places the quotient at
the address specified by the third operand. Places the remainder at the address specified by the
second operand. If the absolute value of the divisor is greater than that of the dividend, the
quotient is zero and the div.idend and the divisor remain unchanged.

• If the sign of DD 1 is the same as that of DD2, the sign of the quotient is '+.
• If the sign of DD1 is not the same as that of DD2, the sign of the quotient is -.

• The sign of the remainder is always the same as that of the dividend (DD2) unless the
remainder is zero.

Applicable Traps:

Trap 23 Reference to unavailable resource

Trap 24 Bus or memory error

Trap 25 Divide by zero

Trap 26 Illegal specification

Trap 27 Illegal character

Trap 29 Overflow

The contents of the Commercial Processor indicator register are affected as follows:

• If the number of significant digits in the quotient is greater than the number of digit
positions available in the receiving field, the OV-bit is set to 1; otherwise, it is set to o.

• If the quotient is negative and the receiving field is described as unsigned, the SF-bit is set
to 1; otherwise, it is set to O.

• If the quotient is less than zero, the L-bit is set to 1; otherwise, it is set to o.
• If the quotient is greater than zero, the G-bit is set to 1; otherwise, it is set to o.

COMMERCIAL INSTRUCTIONS 6-45 CB07

*

DLS
DLS

Instruction:

Decimal left shift

Type:

Shift

Source Language Format:

{
DESCP(deScriPtiOn) I

aDLSa DESCU(description)
int-val-expression

Description:

[,int-val-expression]

The decimal value specified by the first operand is shifted left. The vacated digit positions are
zero filled. The second operand, ifpresent, specifies the distance (number of digits shifted) and it
must be an integer from 0 through 31.

When the second operand is present, the assembler:

• Sets shift control word 1 (SCW1) to 0178 (hexadecimal)

• Clears bit 0 of SCW2 to 0 (i.e., left shift)

• Loads the value specified by the second operand in bits 3 through 7 of SCW2

• Clears bit 8 of SCW2 to 0 (i.e., no rounding)

When the second operand is omitted, the assembler generates the shift control words as it does
for the DSH instruction when the second operand is omitted. The shift direction and the distance
must then be obtained from register R5. For an explanation of shift control words, see Decimal
Shift instruction DSH.

Applicable Traps:

The traps that may be generated during execution of this instruction are the same as those for
the DSH instruction.

Note that only one shift instruction, decimal shift (DSH), is available in the hardware. The
decimal left shift (DLS) and the decimal right shift (DRS) instruction are provided by the
Assembler for the programmer's convenience.

COMMERCIAL INSTRUCTIONS 6-46 CB07

(
~--\

- /

DMC

Instruction:

Decimal move and convert

Type:

Radix and mode conversion

Source Language Format:

{
DESCP(description) I

~DMC~ DESCU(description) ,
int-val-expression

Description:

{
DESCP(deScriPtiOn) I
DESCU(description)
int-val-expression

DMC

The decimal value of the data type specified by the first operand is converted to the data type
specified by the second operand and stored, right justified, at the address specified by the second
operand.

Applicable Traps:

Trap 23 Reference to unavailable resource

Trap 24 Bus or memory error

Trap 26 Illegal specification

Trap 27 Illegal character

Trap 29 Overflow

The contents of the Commercial Processor indicator register are affected as follows:

• If the number of significant digits in the sending field is greater than the number of digit
positions available in the receiving field, the OV-bit is set to 1; otherwise, it is set to O.

• If the value contained in the sending field is negative and the receiving field is described as
unsigned, the SF-bit is set to 1; otherwise, it is set to O.

• If the value being operated on is less than zero, the L-bit is set to 1; otherwise, it is set to O.

• If the value being operated on is greater than zero, the G-bit is set to 1; otherwise, it is set to
O.

COMMERCIAL INSTRUCTIONS 6-47 CB07

DME
DME

mstruction:

Decimal move and edit

Type:

Edit

Source Language Format:

aDMEa DESCU(description) , ~ESCA(descn~tlOn) IDESCP(deScriPtiOn) j I . . l
int-val-expression tnt-val-expressIon,

Description:

{ DESCA(deSCriPtiOn)j
int~val-expression

The decimal digits in the sending field specified by the first data descriptor (DD1) are edited in
accordance with the micro operations in the field specified by the third data descriptor (DD3),
and moved to the receiving field specifIed by the second data descriptor. If the sending field
oontains packed decimals they are converted to unpacked decimals before they are stored in the
receiving field.

The number of edited characters stored in the receiving field can be either more or less than the
number of digits in the sending field. The receiving field may have more characters when micro
operations specify one or more characters are to be inserted. The receiving field may have less
characters when a micro operation specifies that one or more digits are to be skipped.

The instruction terminates normally when the receiving field is filled. Normal termination
occurs even though the sending field or the string of micro operations have not been exhausted.

An illegal specification trap (Trap 26) is generated if either the sending field or the string of
micro operations are exhausted before the receiving field is filled.

Execution details are as follows:

• The effective address developed from a data descriptor points to the leftmost character of
the operand.

• All operations take place from left to right.

• The valid length of the sending field ranges from 1 through 31 digits.

• The valid length of the receiving field and the string of micro operations ranges from 1
through 255 characters. Lengths from 32 through 255 can be specified via escape to an R
register. (See Appendix H.)

• During execution of the instruction, the sending field count indicates the current number
of digits remaining to be processed. The count is decremented every time a digit is moved
out or skipped over.

• During execution of the instruction, the receiving field count indicates the current number
of positions that remain to be filled. The count is decremented every time a character is
moved into the receiving field.

• The Edit Insertion Table (EIT) is always initialized when the edit instruction is initiated.

• The edit flags are aiways initialized when the edit instruction is initiated.

Applicable Traps:

Trap 23 Reference to unavailable resource

Trap 24 Bus or memory error

Trap 26 Illegal Specification

Conditions causing trap:

• The sending field or the string of micro operations is exhausted before the receiving
field is 'filled.

COMMERCIAL INSTRUCTIONS 6-48 CB07

DME

• The length of the sending field, or the receiving field, or the string of micro operations
is zero.

Trap 27 Illegal character

EXAMPLES OF DME (DECIMAL MOVE AND EDIT) INSTRUCTION

Example 1: Full Zero Suppression

Up to six digits are moved with leading zeros suppressed.

MOP1 TEXT MVZB(6)

DME DESCP(NUMBER,0,6,UNSIGNED);
DESCA(OUTPUT,0,6);
DESCA(MOP,O,l)

The results of this instructi.on for various inputs are as follows:

NUMBER
012345
000123
000000

OUTPUT
~ 12345
I) Ib tb 123
tb tb If> 16 If> tb

Example 2: Partial Zero Suppression

The last three digits are moved whether they are leading zeros or not.

MOP2 TEXT MVZA(3),MVC(3)

DME DESCU(NUMBER,0,6,UNSIGNED);
DESCA(OUTPUT,0,6);
DESCA(MOP2,0,2)

The results of this instruction for various inputs are as follows:

NUMBER OUTPUT
012345 *12345
000123 ***123
000000 ***000

Example 3: Floating Sign Insertion

The floating sign (+ or -) is supplied in front of the first nonzero digit. If entire sending field is
zeros, no sign is supplied.

MOP3 TEXT SEF(l),MFLS(6),INSM(l)

DME DESCU(NUMBER,0,7,TRAILING);
DESCA(OUTPUT,0,7);
DESCA(MOP3,0,3)

The results of this instruction for various inputs are as follows:

NUMBER OUTPUT
123456+ + 123456
001234- 16 Ib -1234
000000 + 16 16 16 Ib tb ~ 16

COMMERCIAL INSTRUCTIONS 6-49 CB07

DME

Note that the INSM micro operation is required for an input of all zeros. In this case, no sign is
supplied and, without the INSM, the micro operation field would be exhausted before the
receiving field is filled resulting in a trap 26. The INSM is not executed if NUMBER contains a
nonzero digit.
Example 4: Negative Sign Only Insertion
The negative sign (-) is supplied if the input is negative; a space is supplied if the input is
positive. Same as Example 3, except that a space is inserted if the sending field is positive.

MOP4 TEXT MFLS(6),INSM(1)

DME DESCU(NUMBER,0,7,LEADING);
DESCA(OUTPUT,0,7);
DESCA(MOP4,0,4)

The results of this instruction for various inputs are as follows:

NUMBER
+123456
-000123
+000000

OUTPUT
III 123456
t6 tj Ih -123
ththliithth~th

Example 5: Floating Currency Symbol Insertion

In this example the sending field NUMBER has two assumed decimal places. The currency
symbol is forced to the left of the decimal point. The first micro operation applies to the first five
digits of the data and causes a $ to be placed in front of the first nonzero digit. If the first five
digits are all zero, the ENF(8) micro operation forces the insertion of the $ and turns offfurther
suppression. The third micro operation forces the sixth digit to be moved as is, and the last two
micro operations moves a decimal poilU and two more digits to the receiving field.

MOP5 TEXT MFLC(5),ENF(8),MVC(1),INSB(7),MVC(2)

DME DESCU(NUMBER,0,8,UNSIGNED);
DESCA(OUTPUT,0,10);
DESCA(MOP5,5)

The results of this instruction for various inputs are as follows:

NUMBER OUTPUT
12345678 $123456.78
00012345 til 16 th $123.45
00000123 th ~ th th ~ $1.23
00000012 Ii> th ~ th th $0.12
00000000 Ii> ~ th III th $0.00

Example 6: Separation of Data

1'1 this example, the sending field NlJMBER consists of eight digits. The four leftmost digits
represent quantity. The four rightmost digits represent price, which has two assumed decimal
places. The micro operations specified by MOP6 function as follows:

MVZB(4) Moves four digits and suppresses leading zeros
INSB(1) Inserts one space
INSB(O):@' Inserts at sign
INSB(1) Inserts one space
INSB(5) Inserts dollar sign
SEF(O) Turns ES flag OFF
MVZA(2) Moves next two digits, replacing leading zeros

with asterisks

COMMERCIAL INSTRUCTIONS 6-50 CB07

/~"'\

,~)

I~'\

o

(

(

INSB(7)
MVC(2)

Inserts decimal point
Moves last two digits

MOP6 TEXT MVZB(4),INSB(1),INSB(0), '@',INSB(1),INSB(5);
SEF(O) ,MVZA(2),INSB(7),MVC(2)

DME DESCU(NUMBER,.0,8, UNSIGNED);
DESCA(OUTPUT,0,12);
DESCA(MOP6,0,10)

The results of this instruction for various inputs are as follows:

NUMBER OUTPUT
00340010 34 @ $** .10
09900110 990 @ $*1.10
70810025 7081 @ $** .25
00505000 50 @ $50.00

COMMERCIAL INSTRUCTIONS 6-51

DME

CB07

DML
DML

Instruction:

Decimal multiply

Type:

Numeric

Source Language Format:

1 DESCP(description) I\DEscP(descriPtion) I'
aDMU DESCU(description) , DESCU(description)

int-val-expression int-val-expression

Description:

Multiplies the decimal value (the multiplier) at the address specified by the first operand by the
decimal value (the multiplicand) at the address specified by the second operand and stores the
result (the product) at the address specified by the second operand.

Applicable Traps:

Trap 23 Reference to unavailable resource

Trap 24 Bus or memory error

Trap 26 Illegal specification

Trap 27 Illegal character

Trap 29 Overflow

The contents of the Commercial Processor indicator register are affected as follows:

• If the number of significant digits in the product is greater than the number of digit
positions available in the receiving field, the OV-bit is set to 1; otherwise, it is set to O.

• If the product is negative and the receiving field is described as unsigned, the SF-bit is set
to 1; otherwise, it is set to o.

• Ifthe product is less than zero, the L-bit is set to 1; otherwise, it is set to o.
• If the product is greater than zero, the G-bit is set to 1; otherwise, it is set to o.

COMMERCIAL INSTRUCTIONS 6-52 CB07

(

(..

..

DRS
Instruction:

Decimal right shift

Type:

Shift

Source Language Format:

{
DESCP(deScriPtiOn) I

aDRSa DESCU(description)
int-val-expression

Description:

DRS

[,int-val-expression [,R[OUNDED]]]

The decimal value specified by the first operand is shifted right. The vacated digit positions are
zero filled. The second operand, if present, specifies the distance (number of digits shifted) and
must be an integer from 0 through 3l.

When the second operand is present, the assembler:

• Sets shift control word 1 (SeW1) to 0178 (hexadecimal).

• Sets bit 0 of SCW2 to 1 (i.e., right shift).

• Loads the value specified by the second operand in bits 3 through 7 of SCW2.

• Sets bit 8 of SCW2 to 1, if the third operand is present (i.e., rounding).

• Clears bit 8 of SCW2 to 0, if the third operand is absent (i.e., no rounding).

When the second and third operands are omitted, the assembler generates the shift control
words as it does for the DSH instruction when the second operand is omitted. The shift direction,
the distance, and the rounding control must then be obtained from register R5. For an
explanation of shift control words, see Decimal Shift instruction DSH.

Applicable Traps:

The traps that may be generated during execution of this instruction are the same as those for
the DSH instruction.

Note that only one shift instruction, decimal shift (DSH), is available in the hardware. The
decimal left shift (DLS) and the decimal right shift (DRS) instruction are provided by the
Assembler for the programmer's convenience.

COMMERCIAL INSTRUCTIONS 6-53 CB07

DSB
DSB

Instruction:

Decimal subtract

Type:

Decimal arithmetic

Source Language Format:

{
DESCP(deScriPtiOn) I

aDSBa DESCU(description) ,
int-val-expression

Description:

{.DESCP(deScr~Pt~on) I.
DESCU(descnptlOn) .
int-val-expression

Subtracts the decimal value (the subtrahend) at the address specified by the first operand from
the decimal value (the minuend) at the address specified by the second operand and stores the
result (the difference) at the address specified by the second operand.

Applicable Traps:

Trap 23 Reference to unavailable resource

Trap 24 Bus or memory error

Trap 26 Illegal specification

Trap 27 Illegal Character

Trap 29 Overflow

The contents of the Commercial Processor indicator register are affected as follows:

• If the number of significant digits in the difference is greater than the number of digit
positions available in. the receiving field, the OV-bit is set to 1; otherwise, it is set to O.

• If the difference is ngative and the receiving field is described as unsigned, the SF-bit is set
to 1; otherwise, it is set to O.

• If the difference is less than zero, the L-bit is set to 1; otherwise, it is set to O.

• If the difference is greater than zero, the G-bit is set to 1; otherwise, it is set to O.

COMMERCIAL INSTRUCTIONS 6-54 . CB07

if '\

~-~

(-

(

DSH

Instruction:

Decimal shift

Type:

Shift

Source Language Format:

IDESCP(descriPtion))
aDSHa DESeU(description) ,

int-val-expression

Description:

lint-val-expression)
ext-val-expression

DSH

The decimal value designated by the first operand is shifted the distance (number of digits) and
in the direction specified by the shift control words. The digit positions that are vacated are zero
filled. Rounding may be specified for a right shift. If rounding is specified and the value of the
last digit shifted out is from 5 through 9, the absolute value of the operand is increased by one;
e.g., + 12 becomes + 13; -12 becomes -13.

The decimal shift instructions use two shift control words SeW1 and SeW2 as shown in
Figure 6-9.

The second operand, if present, specifies the value ofSeW2, and the assembler generates 0178
(hexadecimal) as the value of SeWl. The shift control information is taken from SeW2.

If the second operand is omitted, the Assembler generates 0078 (hexadecimal) and 0000
(hexadecimal) as the values ofSeW1 and SeW2, respectively, and the shift control information
is taken from register R5. The sign character, if any, is not affected by the shift operation (i.e., it
does not get shifted).

o
op code word I 0 0 0 0 0 0 0 0 0 0

I DOlor Labe 1
I
I 0 7 8 9

Shift SCW1
Control
Words SCW2

RFU 0 0 0 0 1 0 1 1

L/RI RFU d Rc
0 1 2 3 7 8 9

a. With shift control information in line
0

op code word I 0 0 0 0 0 0 0 0 0 0

I 001
I

or Label
10 2 3 7 8 9

Shift sewli RFU 10 0 0 0 010 11 Control
Words SCW2 RFU

0 1 7 8 9 10
CPU R51 Rc 1 RFU IL/RI RFU I

o 1

1 1 0

RFU

0 1

0

d

15

01
I
I
I

15 1

o 0

15

15

01

I

15 :

= 017816

0 t 007816

15

I
b. With shift control information in CPU register RS

Figure 6-9. Shift Instruction Formats

COMMERCIAL INSTRUCTIONS 6-55 CB07

DSH

Note that the fonnats ofSCW2 and R5 are reversed; Le., the infonnation that is assigned to the
first byte of SCW2 is assigned to the second byte of R5, and that assigned to the second byte of
OC:W2 is assigned to the first byte ofR5. When the infonnation comes from R5, the left and right
bytes must be reversed on the megabus for the Commercial Processor to execute the instruction
successfully.

Shift control infonnation is specified by SCW2. or by register R5 as follows.

• Direction of shift: bit 0 of SCW2; bit 8 Of R5
bit = 0 left shift
bit = 1 right shift

• Distance of shift in digits: bits 3 through 7 of SCW2; bits 11 through 15 of R5
range' = 0 through 31

• Rounding: bit 8 of SCW2; bit 0 of R5
bit = 0 do not round
bit = 1 round after shifting right (ignored for left shift)

Applicable Traps:

Trap 23 Reference to unavailable resource

Trap 24 Bus or memory error

Trap 26 megal specification

During execution of this instruction, this trap is generated by the conditions previously
listed under the heading "Commercial Processor Traps." For this instruction, this trap is
also generated if the first operand is an !MO.

Trap 27 megal character

The conditions that generate this rap are the same as those previously listed under the
heading "Commercial Processor Traps." However, checks for illegal characters are per­
fonned only upon completion of the shift. Thus, any illegal characters shifted out will not be
checked.

Trap 29 Overflow

The OV-bit of the Commercial Processor indicator register is set to 1, if a non-zero digit is
shifted out, Trap 29 may then be generated as previously described under the heading
"Commercial Processor Traps."

The contents of the Commercial Processor indicator register are affected as follows:

• If a left shift specifies a shift distance greater than the number ofleading zeros in the value
to be shifted (Le., one or more significant digits are lost) or a right shift specifies a shift
distance greater than the number of trailing zeros in the value to be shifted, the OV-bit is
set to 1; otherwise, it is set to o.

• If the shifted value is less than zero, the L-bit is set to 1; otherwise, it is set to o.
• If the shifted value is greater than zero, the G-bit is set to 1; otherwise, it is set to O.

COMMERCIAL INSTRUCTIONS 6-56 CB07 .

(

(

MAT
MAT

Instruction:

Alphanumeric move and translate

Type:

Character string

Source Language Format:

1 DESCA(description) J {DESCA(deScriPtiOn)1 {DESCA(deScriPtiOn)!
aMATa , ,

int-val-expression int-val·expression, int-val-expression

Description:

The character string in the sending field (specified by the first data descriptor) is translated and
moved to the receiving field (specified by the second data descriptor). The third data descriptor
specifies a 256-byte translation table. Each character in the sending field is used as a displace­
ment from the base of the table and the corresponding character from the table is stored in the
receiving field.

If the byte length specified by the first data descriptor is zero, the length is contained in the right
byte of register R4 and can be from 0 through 255 bytes. If the byte length specified in the first
data descriptor is not zero, that value, which can be from 1 through 31, is the length. If the length
of the sending field specified by register R4 is zero, the receiving field is filled or not filled as
specified by the second data descriptor. Fill characters, if specified, are ASCII blanks and are not
translated.

Ifthe byte length specified in the second data descriptor is not zero, that value, which can be from
1 through 31, is the length. If the byte length specified by the second data descriptor is zero, the
length is contained in register R5 and can be from 0 through 255 bytes. If the length of the
receiving field specified by register R5 is zero, the instruction is aborted and the truncation bit
(TR bit) of the Commercial Processor indicator register is set to 1. Trap 28 (truncation) may then
be generated as previously described under "Commercial Processor Traps."

The length field of the third data descriptor is ignored by the hardware.

The contents of the Commercial Processor indicator register are affected as follows:

• If the number of characters in the sending field is greater than the number of character
positions in the receiving field, the TR-bit is set to 1; otherwise, it is set to O.

Example:

IN DC
TR DC

OUT RESV

MAT

= Z'00020409'
='abcdefg$.!" ,
4,'

DESCA(IN,O,4,NO_FILL);
DESCA(OUT,O,4,NO_FILL);
DESCA(TR,O,ll,NO_FILL)

After execution of the MAT instruction the receiving field OUT will contain the following
string: ace!

COMMERCIAL INSTRUCTIONS 6-57 CB07

I

SRCH
SRCH

Instruction:

Alphanumeric search

Type:
Character string

Source Language Format:

aSRCIll {?ESCA(deScri~tiOn)}
mt-val-expresslOn

Description:

{ DESCA(deScriPtiOn)} { DESCA(description) }
'int-val-expression 'int-val-expression

The character string or array of character strings defined by the third data descriptor (DD3) is .
searched to see if it contains any of the search arguments (one or more) in the search list defined
by the first data descriptor (DDl). If a match is found, the G and L bits of the Commercial'
Processor indicator register are cleared to zero, and the displacement and search argument
number are loaded into the receiving field defined by the second data descriptor (DD2). The
receiving field must be four bytes long and word aligned, otherwise the results are unspecified.
The displacement is the distance in bytes between the origin of the string (or array) to be
searched and the position at which the first match occurs. The search argument number
designates the one that caused the match. The first argument in the list is identified as 0, the
second as 1, etc. The format of the receiving field is shown below.

o 15 0 15

_I search argument number 1 displacement 1

If a match is not found, the G-bit of the Commercial Processor indicator register is cleared to
zero, the L-bit is set to one, and the receiving field is not changed.
The search argument list can contain one or more search arguments each consisting of one or
more characters. If multiple arguments are specified, each must be the same length.

If the length field ofDDl is not equal to zero, the search argument list contains only one search
argument whose length (1 to 31 bytes) is specified by the length field.

If the length field ofDDl is equal to zero, the search argument list is specified by register R4. The
format of register R4 is shown below.

o 7 8 15
search argument length search list length

If the search argument length is equal to the E\earch list length, the search list consists of only
one argument.

If the ratio of the search list length to the search argument length is an integer, that integer
designates the number of search arguments.

If the ratio of the search list length to the search argument length is not an integer, the ratio is
truncated to the integer value and that integer designates the number of search arguments.

The character string (or array) to be searched is specified by DD3. If the length field ofDD3 is not
equal to zero, the operand is a character string whose length (1 through 31) is specified by the
length field. If the length field is equal to zero, the operand to be searched is specified by register
R6. The format of register R6 is shown below.

o 7 8 15

1 operand element length 1 operand length 1

COMMERCIAL INSTRUCTIONS 6-58 CB07

, /

;('\

~j

(

SRCH

If the operand element length is one, the operand is a character string whose length (specified by
the low order byte ofR6) must be from 1 through 255. In this case the search argument length
must be less than or equal to the operand length, otherwise a not found indication will result.

If the operand element length is not equal to one, it specifies the length of each element of an
array. The length ofthe array is the largest multiple of the operand element length that is less
than or equal to the operand length (specified by the low order byte ofR6). In this case, if the
search argument length is greater than the operand element length, each search will overflow
into the next entry except when the last operand element is searched. Thus the last comparison
will result in a mismatch.

Applicable Traps:

Trap 23 Reference to unavailable resource

Trap 24 Bus or memory error

Trap 26 Illegal character

Conditions causing trap:

" Length of search list is less than length of search argument

• Length of operand is less than length of operand element

• Length of search argument is zero

• Length of operand element is zero

• The length of one or more of the three operands is zero

The contents of the Commercial Processor indicator register are affected as follows:

• The G- and L-bits are set as described above.

• All other bits are unchanged.

Examples of Search Instruction:

The examples given below are divided into four categories as follows:

• Search String Single (Le., search a string to determine if it contains the single search
argument given in the search list)

• Search String Multiple (Le., search a string to determine if it contains anyone of the
multiple search arguments given in the search list)

• Search Array Single (Le., search an array to determine if it contains the single search
argument given in the search list)

• Search Array Multiple (Le., search an array to determine if it contains anyone of the
multiple search arguments given in the search list)

Example 1: Search String - Single Search Argument

The search list defined by DD1 contains one search argument of one or more characters.

If a match is found, the receiving field specified by DD2 is loaded with a zero (the search
argument number) and the displacement. If a match is not found, DD2 is not changed.

Assume that DD3 defines the following string.

Displacement: 0 1 2 3 4 5 6 7 8 9 ABC
String: abcdefghijdek

The results of a search instruction for this string and various search arguments are as follows.
(;or.nr.nercUlIJ>rocessor

SA

d
fg

Indicator Register
L-Bit G-Bit

o 0
o 0

COMMERCIAL INSTRUCTIONS

DD2 Field
SA Nur.nber

o
o

6-59

Displacer.nent
3
5

CB07

I

SRCH

fh 1 0 unchanged
dek 0 0 0 A
1m 1 0 unchanged
a 0 0 0 0

Example 2: Search String - Multiple Search Arguments

The search list defined by DDI contains multiple search arguments. Each search argument can
consist of one or more characters but all search arguments must be the same length. The search
argument length (SAL) and the search list length (SLL) is specified by register R4.

If a match is found, the search argument number and the displacement is loaded into the
receiving field specified by DD2. If a match is not found, DD2 is not changed.

Assume that DD3 defines the following string,

Displacement: 0 1 2 3 4 5 6 7 8
String: abcdefghi

9 ABC
j d e k

The results of a search instruction for this string and various search arguments are as follows.
Commercial Processor

Indicator Register DD2 Field
SALSLL SA L-Bit G-Bit SA Number Displacement

1 3 f,ej 0 0 1 4
1 2 r,s 1 0 unchanged'
2 6 de,hi,er 0 0 0 3
3 6 cdf,hij 0 0 1 7
2 4 cb,ka 1 0 unchanged

As an example of the sequence of comparisons that occur in seeking a match, consider the third
search in the above list. This search specifies three search arguments of two characters; namely,
de,hi,er. The comparisons are as follows:

ab de
ab he
ab er
bc de
bc hi
be er
cd de
cd hi
cd er
de de Match of search argument 0 at displacement of 3

Example 3: Search Array - Single Search Argument

The search list defined by DDI contains one search argument of one or more characters.

If a match is found, the receiving field specified by DD2 is loaded with a zero (the search
argument number) and the displacement. If a match is not found, DD2 is not changed.

Assume that DD3 defines the following array for which R6 specifies the length or each element
(OEL) as 4, and the length of the operand (OL) as 24.

Displacement String
00 abdf
04 acbe
08 cade
OC defg
10 mj 0 p
14 eacb

COMMERCIAL INSTRUCTIONS 6-60 CB07

~~~~- ----- --------

\ 

\ .... J 

'\ 

.- . ~/ 



(-

( 

SRCH 

The results of a search instruction for this array and various search arguments are as follows. 

SA 
ca 
a 

mjo 
mjpo 
acbec 
eacba 
bac 
cade 

C;ontntercUll J>rocessor 
Indicator Register 
L-Bit G-Bit 

o 0 
o 0 
o 0 
1 0 
o 0 
1 0 
1 0 
o 0 

DD2 Field 
SA Nuntber 

o 
Displacentent 

08 
o 
o 

o 

o 

00 
10 

unchanged 
04 

unchanged 
unchanged 

08 

Example 4: Search Array - Multiple Search Arguments 

The search list defined by DD1 contains multiple search arguments. Each search argument can 
consist of one or more characters but all search arguments must be the same length. The search 
argument length (SAL) and the search list length (SLL) is specified by register R4. 

If a match is found, the search argument number and the displacement are stored in the 
receiving field specified by DD2. If a match is not found, DD2 is not changed. 

Assume that DD3 defines the following array for which register R6 specifies the length of each 
element (OEL) as 4 and the operand length (OL) as 24. 

Displacentent String 
00 abdf 
04 acbe 
08 cade 
OC defg 
10 mj 0 p 
14 eacb 

The results of a search instruction for this array and various search arguments are as follows. 

SALSLL 
3 6 
1 3 
4 8 
2 6 
3 9 
5 10 

SA 
acb,acd 

c,a,d 
defg,abcd 
ad,ea,mj 

aab,abb,eac 
abdfb,mjope 

COMMERCIAL INSTRUCTIONS 

C;ontntercUlIJ>rocessor 
Indicator Register 
L-Bit G-Bit 

o 0 
o 0 
o 0 
o 0 
o 0 
o 0 

6-61 

DD2 Field 
SA Nuntber 

o 
1 
o 
2 
2 
1 

Displacentent 
04 
00 
OC 
10 
14 
10 

CB07 



• 

VRFY 
VRFY 

Instruction 

Alphanumeric verify 

Type: 

Character string 

Source Language Format: 

A VRFYA {OESCA(deScriPtiOn)} 
int-val-expression 

Oescription: 

{ OESCA(deScriPtiOn)} { OESCA(deSCriPtiOn)} 
'int-val-expression 'int-val-expression 

The character string or array of character strings defined by the third data descriptor (003) is 
examined. If at least one character of the string (or element of the array) does not match anyone 
of the verify arguments, the G-bit of the Commercial Processor indicator register is cleared to 
zero, the L-bit is set to one, and the receiving field specified by the second data descriptor (002) 
is loaded with the displacement. The displacement is the distance in bytes between the origin of 
the string (or array) and the place where the first mismatch is found. The format of the receiving 
field is shown below. 

o 15 
displacement 

-
Ifeach of the characters of the string (or elements of the array) is equal to anyone of the verify 
arguments, the G- and L-bits of the CIP indicator register are cleared to zero and the receiving 
field is not changed. 

If the length field of 001 is not equal to zero, the verify argument list contains only one search 
argument whose length (1 through 31 bytes) is specified by the length field. 

If the length field of 001 is equal to zero, the verify argument list is specified by register R4. The 
format of register R4 is shown below. 

o 7 8 15 

verify argument length verify list length 

If the verify argument length is equal to the verify list length, the verify list consists of only one 
argument. 

If the ratio of the verify list length to the verify argument length is an integer, that integer 
designates the number of verify arguments . 

If the ratio of the verify list length to the verify argument length is not an integer, the ratio is 
truncated to the integer value and that integer designates the number of verify arguments. 

The character string (or array) to be verified is specified by 003. If the length field of 003 is not 
equal to zero, the operand is a character string whose length (1 through 31) is specified by the 
length field. If the length field is equal to zero, the operand to be searched is specified by register 
R6. The format of register R6 is shown below. 

o 78 15 
operand element length operand length 

COMMERCIAL INSTRUCTIONS 6-62 CB07 



( 

VRFY 

If the operand element length is one, the operand is a character string whose length (specified by 
the low order byte ofR6) must be from 1 through 255. If the operand is a character string, the 
length of the verify argument must be one otherwise the results are unspecified. 

If the operand element length is not equal to one, it specifies the length of each element of an 
array. The length of the array is the largest multiple of the operand element length that is less 
than or equal to the operand length (specified by the low order byte of R6). In this case, if the 
verifY argument length is greater than the operand element length, each verify will overflow 
into the next entry except when the last operand is verified. Thus the last comparison will result 
in a mismatch. 

Applicable Traps: 

Trap 23 Reference to unavailable resource 
Trap 24 Bus or memory error 
Trap 26 Illegal Character 

Conditions causing trap: 

• Length of verify list is less than length of verify argument 

• Length of operand is less than length of operand element 

• Length of verify argument is zero 

• Length of operand element is zero 

• The length of one or more of the three operands is zero 

The contents of the Commercial Processor indicator register are affected as follows: 

• The L- and G-bits are set as described above. 

• All other bits are unchanged. 

Examples of Verify Instruction: 

The examples given below are divided into four categories as follows. 

• Verify String Single (Le., verify a string to determine if its characters are all equal to the 
single verify argument given in the verifY list) 

• Verify String Multiple (i.e., verifY a string to determine if its characters are each equal to 
one of the multiple verify arguments given in the verifY list) 

• Verify Array Single (Le., verifY an array to determine if its elements are all equal to the 
single verifY argument given in the verify list) 

• Verify Array Multiple (i.e., verifY an array to determine if its elements are each equal to 
one of the multiple verify arguments given in the verify list) 

Example 1: Verify String - Single Verify Argument 

The verify list defined by DDl contains one verifY argument consisting of a single character. 

The receiving field specified by DD2 is loaded with the displacement of the first character (in the 
string being verified) that is not the same as that of the verify argument. If all characters are the 
same, the receiving field is not changed. 

Assume that DD3 defines the following strings. The results of verifY instructions for the 
specified verifY arguments are as follows. 

Displacement: 0 1 2 3 4 5 6 
First string: a a a b a a c 

VA CIP Indicator Register 

a 
b 

L-Bit G-Bit 
1 0 
1 0 

COMMERCIAL INSTRUCTIONS 

Displacement 
3 
o 

6-63 CB07 

I 



VRFY 

Displacement: 
Second string: 

b 0 

0123456 
bbbbbbb 

o 
Example 2: Verify String - Multiple Verify Arguments 

unchanged 

The verify list defined by DD1 contains multiple verify arguments of one character each. The 
verify argument length (VAL) and the verify list length (VLL) is specified by register R4. 

The receiving field specified by DD2 is loaded with the displacement of the first character in the 
string being verified that is not the same as any of the verify arguments. Ifthere is no character 
that is different, the receiving field is not changed. 

Assume that DD3 defines the following string. 
Displacement: 0 1 2 3 4 5 6 7 8 9 

String: abc b bad b c c 

The results of the verify instructions with this string and various verify arguments are as 
follows. 

Commercial Processor 
Indicator Register 

VAL-Bit G-Bit Displacement 
a,b 1 0 2 

a,b,c,e 1 0 6 
a,b,c,d 0 0 unchanged 

Example 3: Verify Array - Single Verify Argument 

The verify list defined by DD1 contains one verify argument consisting of one or more 
characters. 

The receiving field defined by DD2 is loaded with the displacement of the first element of the 
array that does not contain the verify argument. If all elements of the array contain the verify 
argument, the receiving field is not changed. 

Assume that DD3 defines the following array for which register R6 specifies the length of each 
element as 3 and the length of the operand as 12. 

Displacement 
o 
3 
6 
9 

String 
aba 
abc 
abd 
acb 

The results of the verify instruction for this array and various search arguments are as follows. 

VA 
ab 
abc 

Commercial Processor' 
Indicator Register 

L-Bit G-Bit 
1 0 
1 0 

Displacement 
9 
o 

a 0 0 unchanged 
abaa 1 0 3 

Example 4. Verify Array - Multiple Search Arguments 

The verify list defined by DD1 contains multiple search arguments. Each verify argument can 
consist of one or more characters, but all search arguments for a given instruction must be the 
same length. The verify argument length and the verify list length are specified by register R4. 

The receiving field specified by DD2 is loaded with the displacement of the first element of the 
array that does not contain any of the verify arguments. If all elements of the array contain at 
least one of the verify arguments, the receiving field is not changed. 

COMMERCIAL INSTRUCTIONS 6-64 CB07 

~----~--~ 



( 

• 

VRFY 

Assume that DD3 defines the following array for which register R6 specifies the length of each 
element as 3 and the length of the operand as 12. 

Displacement String 
o abcd 
4 a c d b 
8 bcad 
C ac b d 

The results of the verify instruction for this array and various verify arguments are as follows. 

VA 
ab,ac 

ab,ac,bc 
abc,acd,acb 
abcd,acbd 

Commercial Processor 
Indicator Register 
L-Bit G-Bit 

·1 0 
o 0 
1 0 
1 0 

COMMERCIAL INSTRUCTIONS 

Displacement 
8 

unchanged 
8 
4 

6-65 CB07 



," \J 



( 

( 

(-

Section 7 

Scientific Instructions 

The scientific instructions are executed by the Scientific Instruction Processor (SIP), an 
optional hardware item, or by the SIP Simulator, a software item that provides the same 
functionality. 

The SIP operates on a powerful set of scientific instructions that are particularly useful for 
FORTRAN applications. The instruction set includes arithmetic operations on single- and 
double-precision floating-point operands, and on single- and double-word integer operands. 

The SIP accepts and processes only one command at a time. However, following the extraction 
of most scientific instructions from memory and the transfer of the instruction to the SIP, the 
CPU can proceed with the extraction of the next instruction while the scientific instruction is 
being executed by the SIP. Note that the execution of scientific instructions may involve the 
reading or writing of main memory. Software that makes use of the SIP should avoid premature 
reading or writing of memory locations specified by an SIP instruction. 

The SIP includes three variable accumulators which may contain floating-point values of two 
or four words. Associated·with each accumulator are control bits that specify the accumulator 
length and the length of the memory operand directed to a given accumulator. (See SIP 
Registers in Section 1.) 

In the SIP, all operands are stored in floating-point format. Operands directed to the SIP from 
main memory are in floating-point format; operands from the CPU are in integer format, but are 
converted to floating-point values before they are entered into scientific calculations. 

SCIENTIFIC TRAPS 

The SIP trap facility monitors the execution of all SIP instructions and sends trap requests to 
the CPU whenever certain conditions occur. These traps and the conditions that cause them are 
shown in Table 7-1. Trap 23, reference to unavailable resource, and Trap 24, bus parity or 
unoorrected main memory error, are functions of the megabus. Trap 20, program error, 
identifies program errors detected by the SIP. Note that program errors detected by the CPU 
activate Trap 16. Ifmore than one trap condition exists, the SIP sends the trap with the highest 
priority to the CPU. The other conditions are lost. The priority of the traps is indicated in Table 
5-1 by their location; the trap at the top (Trap 31) has the highest priority. 

TABLE 7-1. TRAP VECTORS AND EVENTS 

Trap 
Vector Scientific 
Number Trap Event CfU a Indicator 

TV31 QLT Failure (Mini or Maxi) u 
TV23 Reference to Unavail- u 

able Resources 
TV24 MegabuslMemory Error u 
TV20 Program Error (SIP) u 
TV7 Divide by Zero u 
TV8 Exponent Overflow u 
TV21 Significance Error c SI(SE) 
Tv19 Exponent Underflow c SI(EUF) 
TV22 Precision Error c SI(PE) 
TVOO No Trap Event Set 

aC - Conditioned. Trap on Indicator and Mask 
U - Unconditioned Trap 

SCIENTIFIC INSTRUCTIONS 7-1 

Scientific 
Mask 

M5(SE) 
M5(EUF) 

M5(.PE) 

SIP-CPU 
Trap Code 

21 
29 

28 
2C 
39 
38 
2B 
2D 
2A 
00 

CB07 



I 

SAD 

SCIENTIFIC INSTRUCTION PROCESSOR (SIP) 
PROGRAMMING CONSIDERATIONS 

Since the SIP and the Level 6 central processor operate asynchronously, you must ensure that 
they do not come into conflict by attempting to use a main memory operand concurrently. You 
can guarantee proper synchronization by obeying the following rules: 

If the operand of any of the following instructions refers to a main memory location, do not 
modify that location until a scientific branch instruction or another floating-point instruction is 
executed: 

SAD 
SCM 
SCZD 
SCZQ 
SDV 
SLD 

SML 
SNGD 
SNGQ 
SSB 
SST 
SSW 

The instruction: 

SST $S1, = $81 

can be used to force the SIP into synchronization with the CPU. 

DETAILED DESCRIPTIONS OF SCIENTIFIC INSTRUCTIONS 

The remainder of this section contains detailed descriptions of the scientific instructions. The 
descriptions are arranged in alphabetical sequence by instruction mnemonics. Each description 
includes the name, type, format, and operands. Symbolic names, constants and expressions are 
described in Section 2. 

SAD 

Instruction: 

Scientific add 

Type: 

00 

Source Language Format: 

LlSADLl {$sn} 
;'n' ,address-expression 

Description: 

Adds the floating-point or integer value in the location, scientific accumulator, or R-register 
identified in the second operand to the contents of the scientific accumulator specified in the 
first operand. The result is saved in the scientific accumulator. 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

= $Bn register addressing 
Short displacement addressing 
Specialized addressing 

If register addressing is used, the valid forms are: 

If =$R7 is specified, the 32-bit value contained in the register pair 
formed by R6 and R7 becomes the operand. . 

=$Sn 

SCIENTIFIC INSTRUCTIONS 7-2 CB07 

r'f 
\~j 



( 

SAD 

If immediate operand addressing is used, you must provide a floating-point constant or 
hexadecimal string constant in suitable floating-point format. 

If the second operand is =$R4, =$R5, =$R6, or =$R7, the integer value contained in the 
specific R-register is internally converted to floating-point format before it is added to the 
contents of the S-register specified by the first operand. 

Scientific Indicator Settings: 

EU: set to 1 on exponent underflow; otherwise, set to O. 
PE: set to 1 if nonzero bits are lost during right shift; otherwise, set to O. 

If the SIP is not installed, the SIP simulator, ifpresent,is entered via trap vector 3. 

SCIENTIFIC INSTRUCTIONS 7-3 CB07 

I 



SBE 

SSE 

Instruction: 

Scientific branch on equal 

Type: 

BI 

Source Language Format: 

1 direct-IMA } 
aSBEa direct-P-relative-address 

short-displacement-address 

Description: 

Branches to the location specified in the operand if both the SL-and SG-bits of the SI-register 
are set to O. 

Action if Branch Occurs: 

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via trap 
vector 2. Upon completion, the trace procedure automatically branches to the address 
specified by the operand. In this case, or if the J-bit contains a binary 0, the instruction 
sequence starting at the location specified by the operand is executed. 

If the Scientific Information Processor (SIP) is not installed on this system, the Scientific 
Branch Simulator, if present, is entered via trap vector 5. 

SCIENTIFIC INSTRUCTIONS 7-4 CB07 

,/ '\, 
~.,) 



( 

SBEU 

SBEU 

Instruction: 

Scientific branch on exponent underflow 

Type: 

BI 

Source Language Format: 

I direct-IMA I 
aSBEUa direct-P-relative-address 

short-displacement-address 

Description: 

Branches to the location specified in the operand if the EU-bit in the SI-register is set to 1. 

Action if Branch Occurs: 

If the J-bit in the M1-regjster contains a binary 1, the trace procedure is entered via trap 
vector 2. Upon completion, the trace procedure automatically branches to the address 
specified by the operand. In this case, or if the J-bit contains a binary 0, the instruction 
sequence starting at the location specified by the operand is executed. 

If the Scien.tific Information Processor (SIP) is not installed on this system, the Scientific 
Branch Simulator, if present, is entered via trap vector 5. 

SCIENTIFIC INSTRUCTIONS 7-5 CB07 



SBEZ 

SBEZ 

Instruction: 

Branch if scientific 'accumulator equal to 0 

Type: 

BR 
Source Language Format: 

aSBEZa J ~~:'l ' {~!~:~!~~!ative-address I 1 n short-displacement-address 

Description: 

Branches to the location specified in the second oper~nd if the scientific accumulator 
identified in the first operand contains a floating-point value algebraically equal to o. 

Action if Branch Occurs: 

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via trap 
vector 2. Upon completion, the trace procedure automatically branches to the address 
specified by the operand. In this case, or if the J-bit contains a binary 0, the instruction 
sequence starting at the location specified by the operand is executed. 

If the Scientific Information Processor (SIP) is not installed on this system, the Scientific 
Branch Simulator, if present, is entered via trap vector 5. 

SCIENTIFIC INSTRUCTIONS 7-6 . CB07 



c 

(~ .. 

SBG 

SSG 

Instruction: 

Scientific branch on greater than 

Type: 

BI 

Source Language Format: 

1 direct-IMA I 
aSBGa direct-P-relative-address 

short-displacement-address 

Description: 

Branches to the location specified in the operand if the SG-bit in the SI-register is set to l. 

Action if Branch Occurs: 

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via trap 
vector 2. Upon completion, the trace procedure automatically branches to the address speci­
fied by the operand. In this case, or if the J-bit contains a binary 0, the instruction sequence 
starting at the location specified by the operand is executed. 

If the Scientific Information Processor (SIP) is not installed on this system, the Scientific 
Branch Simulator, if present, is entered via trap vector 5. 

SCIENTIFIC INSTRUCTIONS 7-7 CB07 



SBGE 

SBGE 

Instruction: 

Scientific branch on greater than or equal 

Type: 

BI 

Source Language Format: 

I direct-IMA I 
aSBGEa direct-P-relative-address 

short-displacement-address 

Description: 

Branches to the location specified in the operand ifthe SL-bit ofthe SI-register is set to O. 

Action if Branch Occurs: 

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via trap 
vector 2. Upon completion, the trace procedure automatically branches to the address speci­
fied by the operand. In this case, or if the J-bit contains a binary 0, the instruction sequence 
starting at the location specified by the operand is executed. 

If the Scientific Information Processor (SIP) is not installed on this system, the Scientific 
Branch Simulator, if present, is entered via trap vector 5. 

SCIENTIFIC INSTRUCTIONS 7-8 . CB07 



( 

( 

SBGEZ 

SBGEZ 

Instruction: 

Branch if scientific accumulator equal to or greater than O. 

Type: 

BR 
Source Language Format: 

aSBGEZa 
direct-IMA I 
direct-P-relative-address 
short-displacement-address 

Description: 

Branches to the location specified in the second operand if the scientific accumulator identi­
fied in tlie first operand contains a nonnegative floating-point value. 

ACtion if Branch Occurs: 

If the J-hit in the Ml-register contains a binary 1, the trace procedure is entered via trap 
vector 2. Upon completion, the trace procedure automatically branches to the address speci­
fied by the operand. In this case, or if the J-bit contains a binary 0, the instruction sequence 
starting at the location specified by the operand is executed. 

If the Scientific Information Processor (SIP) is not installed on this system, the Scientific 
Branch Simulator, if present, is entered via trap vector 5. 

SCIENTIFIC INSTRUCTIONS 7-9 CB07 



SBGZ 

SBGZ 

Instruction: 

Branch if scientific accumulator greater than 0 

Type: 

BR 
Source Language Format: 

aSBGZa {~~:'l' I ~!;:~:~~~ative-address I 
n 1 short-displacement-address 

Description: 

Branches to the location specified in the second operand if the scientific accumulator identi­
fied in the first operand contains a positive floating-point value. 

Action if Branch Occurs: 

If the J-bit in the M1-register contains binary 1, the trace procedure is entered via trap vector 
2. Upon completion, the trace procedure automatically branches to the address specified by 
the operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting 
at the location specified by the operand is executed. 

If the Scientific Information Processor (SIP) is not installed on this system, the Scientific 
Branch Simulator, if present, is entered via trap vector 5. 

SCIENTIFIC INSTRUCTIONS 7-10 CB07 

,1' " 

\~-.-?j 



( 

SBL 

SSL 

Instruction: 

Scientific branch if less than 

Type: 

BI 

Source Language Format: 

1 direct-IMA I 
aSBLa direct-P-relative-address 

short-displacement-address 

Description: 

Branches to the location specified in the operand ifthe SL-bit of the Sl-register is set to l. 

Action if Branch Occurs: 

If the J-bit in the M1-register contains a binary 1, the trace procedure automatically branches 
to the address specified by the operand. In this case, or if the J-bit contains a binary 0, the 
instructions sequence starting at the location specified by the operand is executed. 

If the Scientific Information Processor (SIP) is not installed on this system, the Scientific 
Branch Simulator, if present, is entered via trap vector 5. 

SCIENTIFIC INSTRUCTIONS 7-11 CB07 



SBLE 

SBLE 

Instruction: 

Scientific branch on less than or equal 

Type: 

BI 

Source Language Format: 

aSBLEa { ::;:~t~ative-address I 
short-displacement-address 

Description: 

Branches to the location specified in the operand if the SG-bit in the SI-register is set to O. 

Action if Branch Occurs: 

If the J-bit in the Ml-register contains a binary 1, the trace procedure is entered via trap 
vector 2. Upon completion, the trace procedure automatically branches to the address speci­
fied by the operand. In this case, or if the J-bit contains a binary 0, the instruction sequence 
starting at the location specified by the operand is executed. 

If the Scientific Information Processor (SIP) is not installed on this system, the Scientific 
Branch Simulator, if present, is entered via trap vector 5. 

SCIENTIFIC INSTRUCTIONS 7-12 CB07 



( 

(/ 

SBLEZ 

SBLEZ 

Instruction: 

Branch if scientific accumulator equal to or less than 0 

Type: 

BR 
Source Language Format: 

aSBLEZa I ~~; I, { ~:;:~~~~ative-address } 
n short-displacement-address 

Description: 

Branches to the location specified in the second operand if the scientific accumulator identi­
fied in the first operand contains a floating-point value algebraically equal to or less than o. 

Action if Branch Occurs: 

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via trap 
vector 2. Upon completion, the trace procedure automatically branches to the address speci­
fied by the operand. In this case, or if the J-bit contains a binary 0, the instruction sequence 
starting at the location specified by the operand is executed. 

If the Scientific Information Processor (SIP) is not installed on this system the Scientific 
Branch Simulator, if present, is entered via trap vector 5. 

SCIENTIFIC INSTRUCTIONS 7-13 CB07 



SBLZ 

SBLZ 

Instruction: 

Branch if scientific accumulator less than 0 

Type: 

BR 
Source Language Fonnat: 

ASBLZA J ~~:') ,{ ~~;:~!:~!ative-address ) 1 n short-displacement-address 

Description: 

Branches to the location specified in the second operand if the scientific accumulator identi­
fied in the first 'operand contains a negative floating-point value. 

Action if Branch Occurs: 

If the J-bit in the Ml-register contains a binary 1 the trace procedure is entered via trap vector 
2. Upon completion, the trace procedure automatically branches to the address specified by 
the operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting 
at the location specified by the operand is executed. 

If the Scientific Information Processor (SIP) is not installed on this system, the Scientific 
Branch Simulator, if present, is entered via trap vector 5. 

SCIENTIFIC INSTRUCTIONS 7-14 CB07 

'\ 
) 



( 

( 

(/ 

SBNE 

SBNE 

Instruction: 

Scientific branch on not equal 

Type: 

BI 

Source Language Format: 

I direct-IMA J 
aSBNEa direct-P-relative-address 

short-displacement-address 

Description: 

Branches to the location specified in the operand if either the SL- or SG-bit of the SI -register is 
set to l. 

Action if Branch Occurs: 

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via trap 
vector 2. Upon completion, the trace procedure automatically branches to the address speci­
fied by the operand. In this case, or if the J-bit contains a binary 0, the instruction sequence 
starting at the location specified by the operand is executed. 

If the Scientific Information Processor (SIP) is not installed on this system, the Scientific 
Branch Simulator, if presenl, is entered via trap vector 5. 

SCIENTIFIC INSTRUCTIONS 7-15 CB07 



SBNEU 

SBNEU 

Instruction: 

Scientific branch on not exponent underflow 

Type: 

BI 

Source Language Format: 

{ 
direct-IMA I 

aSBNEUa direct-P-relative-address 
short-displacement-address 

Description: 

Branches to the location specified in the operand if the EU-bit of the SI-register is set to O. 

Action if Branch Occurs: 

If the J-bit of the M1-register contains a binary 1, the trace procedure is entered via trap 
vector 2. Upon completion, the trace procedure automatically branches to the address speci­
fied by the operand. In this case, or if the J-bit contains a binary 0, the instruction sequence 
starting at the location specified by the operand is executed. 

If the Scientific Information Processor (SIP) is not installed on this system, the Scientific 
Branch Simulator, if present, is entered via trap vector 5. 

SCIENTIFIC INSTRUCTIONS 7-16 CB07 



( 

(~. 

SBNEZ 

SBNEZ 

Instruction: 

Branch if scientific accumulator not equal to 0 

Type: 

BR 

Source Language Format: 

I $sn} I direct-IMA ) 
aSBNEZa X'n', direct-P-relative-address . 

n short-displacement-address 

Description: 

Branches to the location specified in the second operand ifthe scientific accumulator identi­
fied in the first operand contains a floating-point value not algebraically equal to o. 

Action if Branch Occurs: 

If the J-bit in the M1-register contains a binary 1, the trace procedure is entered via trap 
vector 2. Upon completion, the trace procedure automatically branches to the address 
specified by the operand. In this case, or if the J-bit contains a binary 0, the instruction 
sequence starting at the location specified by the operand is executed. 
If the Scientific Information Processor (SIP) is not installed on this system, the Scientific 
Branch Simulator, if present, is entered via trap vector 5. 

SCIENTIFIC INSTRUCTIONS 7-17 CB07 



SBNPE 

SBNPE 

Instruction: 

Scientific branch on not precision error 

Type: 

BI 

Source Language Format: 

{ 
direct-IMA I 

aSBNPEa direct-P-relative-address 
short-displacement-address 

Description: 

Branches to the location specified in the operand if the PE-bit of the SI-register is set to O. 

Action if Branch Occurs: 

If the J-bit of the M1-register contains a binary 1, the trace procedure is entered via trap 
vector 2. Upon completion, the trace procedure automatically branches to the address speci­
fied by the operand. In this case or if the J-bit contains a binary 0, the instruction sequence 
starting at the location specified .by the operand is executed. 

If the Scientific Information Processor (SIP) is not installed on this system, the Scientific 
Branch Simulator, if present, is entered via trap vector 5. 

SCIENTIFIC INSTRUCTIONS 7-18 CB07 

~.----~----



( 

( 

(/ 

SBNSE 

SBNSE 

Instruction: 

Scientific branch on not significance error 

Type: 

BI 

Source Language Format: 

{ 
direct-IMA ) 

aSBNSEa direct-P-relative-address 
short-displacement-address 

Description: 

Branches to the location specified in the operand if the SE-bit of the SI-register is set to O. 

Action if Branch Occurs: 

If the J-bit in the M1-register contains binary 1, the trace procedure is entered via trap vector 
2. Upon completion, the trace procedure automatically branches to the address specified by 
the operand. In this case, or if the J-bit contains a binary 0, the instruction sequence starting 
at the location specified by the operand is executed. 

If the Scientific Information Processor (SIP) is not installed on this system, the Scientific 
Branch Simulator, if present, is entered via trap vector 5. 

SCIENTIFIC INSTRUCTIONS 7-19 CB07 



SBPE 

SBPE 

Instruction: 

Scientific branch on precision error 

Type: 

BI 

Source Language Fonnat: 

1 direct-lMA I 
~SBPE~ direct-P-relative-address 

short-displacement-address 

Description: 

Branches to the location specified in the operand if the PE-bit ofthe SI-register is set to 1. 

Action if Branch Occurs: 

If the J-bit of the I-register contains a binary 1, the trace procedure automatically branches to 
the address specified by the operand. In this case, or if the J-bit contains a binary 0, the 
instruction sequence starting at the location specified by the operand is executed. 

If the Scientific Information Processor (SIP) is not installed on this system, the Scientific 
Branch Simulator, if present, is entered via trap vector 5. 

SCIENTIFIC INSTRUCTIONS 7-20 CB07 

./-" 
I • 

< ... ,-_.) 

If " 
I 

.~ . ./ 



(-

( 

saSE 
Instruction: 

Scientific branch on significance error 

Type: 

BI 

Source Language Format: 

I direct-IMA I 
ASBSEA direct-P-relative-address 

short-displacement-address 

Description: 

SBSE 

Branches to the location specified in the operand if the SE-bit of the SI-register is set to l. 

Action if Branch Occurs: 

If the J-bit of the Ml-register contains a binary 1, the trace procedure is entered via trap 
vector 2. Upon completion, the trace procedure automatically branches to the address 
specified by the operand. In this case, or if the J-bit contains a binary 0, the instruction 
sequence starting at the location specified by the operand is executed. 

If the Scientific Information Processor (SIP) is not installed on this system, the Scientific 
Branch Simulator, if present, is entered via trap vector 5. 

SCIENTIFIC INSTRUCTIONS 7-21 CB07 



I 

SCM 

SCM 

Insstruction: 

Scientific compare 

Type: 

DO 

Source Language Format: 

ASCMLl J$snJ 1 !'n' ,address-expression 

Description: 

Compares the contents of the scientific accumulator identified in the first operand to the 
floating-point or integer value in the location, scientific accumulator, or R-register specified 
in the second operand. 

Scientific Indicator Settings: 

SG: Set to 1 if contents of the scientific accumulator identified by the first operand are 
greater than the value specified by the second operand location; otherwise, set to O. 
SL: Set to 1 if contents of the scientific accumulator identified by the first operand are less 
than the value specified by the second operand location; otherwise, set to o. 
PE: Set to 1 if nonzero bits are lost during right shift for scaling before comparison; 
otherwise, set to o. 

If the Scientific Information Processor (SIP) is not installed on this system, the instruction 
causes the Floating-Point Simulator, if present, to be entered via trap vector 3. 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques" except for the following: 

= $Bn register addressing 
Short displacement addressing 
Specialized addressing 

If register addressing is used, the valid forms are: 

~$R m 
=$Sn 

If =$R7 is specified, the 32-bit value contained in the 
register pair formed by R6 and R7 becomes the operand. 

Ifimmediate operand addressing is used, you must provide a floating-point constant or string 
constant in suitable floating-point format. 

If the second operand is =$R4, =$R5, =$R6, or =$R7, the integer value contained in the 
specified R-register is internally converted to floating-point format before it is compared to 
the S-register specified by the first operand. 

SCIENTIFIC INSTRUCTIONS 7-22 CB07 

(r \" 
\(~ 



( '" 

./ 

SCZD 

Instruction: 

Scientific compare to zero (short-precision) 

Type: 

SO 

Source Language Format: 

aSCZDaaddress-expression 

Description: 

Compares the short-precision floating-point value in the specified location to O. 

Scientific Indicator Settings: 

SCZD 

SG: Set to 1 if the contents of the location are greater than 0; otherwise, set to O. I 
SL: Set to 1 if the contents of the location are less than 0; otherwise, set to O. 
PE: Set to 1 if nonzero bits are lost during right shift for scaling before comparison; 
otherwise, set to O. 

If the Scientific Information Processor (SIP) is not installed on this system, the instruction 
causes the Floating-Point Simulator, if present, to be entered via trap vector 3. 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

=$Bn} 
= $Rn register addressing 
=$Sn 
Short displacement addressing 
Specialized addressing 

SCIENTIFIC INSTRUCTIONS 7-23 CB07 



I 

sczQ 

SCZQ 

Instruction: 

Scientific compare to 0 (long-precision) 

Type: 

SO 

Source Language Format: 

aSNZQaaddress-expression 

Description: 

Compares the floating-point value in the specified location to O. 

Scientific Indicator Settings: 

SG: Set to 1 if the contents of the location are greater than 0; otherwise, set to O. 
SL: Set to 1 if the contents of the location are less than 0; otherwise, set to O. 
PE: Set to 1 if nonzero bits are lost during right shift for scaling before comparison; 
otherwise, set to O. 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

:::: } register addressing 
=$Sn 
Short displacement addressing 
Specialized addressing 

If immediate operand addressing is used, you must provide a string constant in suitable 
floating-point format. 

If the Scientific Information Processor (SIP) is not installed on this system, the Floating-Point 
Simulator, if present, is entered via trap vector 3. 

SCIENTIFIC INSTRUCTIONS 7-24 CB07 

--------- .. _----------

./,,"-,,\ 

",,--j 



SDV 

SDV 

Instruction: 

Scientific divide 

Type: 

DO 

Source Language Format: 

dSDVd{!~} ,address-expression 

Description: 

Divides the contents of the scientific accumulator identified by the first operand by the 
contents of the location, scientific accumulator, or R-register specified in the second operand. 
The result is saved in the scientific accumulator identified by the first operand (except for the 
remainder, which is ignored). . 

If the Scientific Instruction Processor (SIP) is not installed on this system, the Floating-Point 
Simulator, if pre'sent, is entered via trap vector 3. 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

= $Bn register addressing 
Short displacement addressing 
Specialized addressing 

If register addressing is used, the valid forms are: 

_ { !}If =: $R7 is ~pecified, the 32-bit value contained in the . 
-$R 6 regIster paIr formed by R6 and R7 becomes the operand. 

7 

=$Sn 

If the second operand is =$R4, =$R5, =$R6, or =$R7, the integer value contained in the 
specific R-register is internally converted to floating-point format before it is divided into the 
contents of the S-register specified by the first operand. 

Ifimmediate operand addressing is used, you must provide a floating-point constant or string 
constant in suitable floating-point format. 

If the second operand is =$R4, =$R5, =$R6, or =$R7, the integer value contained in the 
specific R-register is internally converted to.floating-point format before it is added to the 
contents of the S-register specified by the first operand. 

Scientific Indicator Settings: 

EU: Set to 1 on exponent underflow; otherwise, set to O. 
PE: Set to 1 if nonzero bits are list during right shift; otherwise, set to O. 

SCIENTIFIC INSTRUCTIONS 7-25 CB07 



SLD 

SLD 

Instruction: 

Scientific load 

Type: 

DO 

Source Language Format: 

.l.SLD.I. {!~} ,address-expression 

Description: 

Loads the contents of the location, scientific accumulator, or R-register identified in the 
second operand into the scientific accumulator identified in the first operand. 

If the Scientific Instruction Processor (SIP) is not installed on this system, the Floating-Point 
Simulator, if present, is entered via trap vector 3. 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

= $Bn register addressing 
Short displacement addressing 
Specialized addressing 

If register addressing is used, the valid forms are: 

=$Sn 

If =$R7 is specified, the 32-bit value contained in the 
register pair formed by R6 and R7 becomes the operand. 

Ifimmediate operand addressing is used, you must provide a floating-point constant or string 
constant in suitable floating-point format. 

If the second operand is =$R4, =$R5, =$R6, or =$R7, the integer value contained in the 
specific R-register is internally converted to floating-point format before it is added to the 
S-register specified by the first operand. 

Scientific Indicator Settings: 

EU: Set to 1 on exponent overflow; otherwise, set to O. 
PE: Set to 1 if nonzero bits are lost during right shift; otherwise, set to O. 

SCIENTIFIC INSTRUCTIONS 7-26 CB07 



{ 

SML 

SML 

Instruction: 

Scientific multiply 

Type: 

DO 

Source Language Format: 

aSMU { ~~} ,addreBB.expression 

Description: 

Multiplies the contents of the scientific accumulator identified by the first operand by the 
contents of the location, scientific accumulator, or R-register specified in the second operand. 
The result is saved in the scientific accumulator identified by the first operand. 

If the Scientific Instruction Processor (SIP) is not installed on this system, the Floating-Point 
Simulator, if present, is entered via trap vector 3.· 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

= $Bn register addressing 
Short displacement addressing 
Specialized addressing 

If register addressing is used, the valid forms are: 

=$R 

=$Sn 

{!} If =$R7 is specified, the 32-bit value contained in the 
6 register pair formed by R6 and R7 becomes the operand. 
7 

Ifimmediate operand addressing is used, you must provide a floating-point constant or string 
constant in suitable floating-point format. 

If the second operand is an R-register the integer value contained in the specific R-register is I 
internally converted to floating-point format before it is multiplied by the contents of the 
S-register specified by the first operand. 

Scientific Indicator Settings: 

EU: Set to 1 on exponent underflow; otherwise, set to o. 
PE: Set to 1 if nonzero bits are lost during right shift; otherwise, set to o. 

SCIENTIFIC INSTRUCTIONS 7-27 CB07 



SNGD 

SNGD 

Instruction: 

Scientific negate (short-precision) 

Type: 

SO 

Source Language Format: 

I1SNGDl1address-expression 

Description: 

Negate the short precision floating-point number at the location or in the scientific ac­
cumulator specified by the operand. 

If the Scientific Instruction Processor (SIP) is not installed on this system, the Floating-Point 
Simulator, if present, is entered via trap·vector 3. 
The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

: ::: } register addressing 

Short displacement addressing 
Specialized addressing 

The only valid form of register addressing is: 

=$Sn 

SCIENTIFIC INSTRUCTIONS 7-28 CB07 

(f-~ 

I 
'''-.-j 



(-

( 

SNGQ 

Instruction: 

Scientific negate (long-precision) 

Type: 

SO 

Source Language Format: 

aSCGQaaddress-expression 

Description: 

SNGQ 

Negate the long-precision floating-point number at the location or in the scientific ac­
cumulator specified by the operand. 

If the SIP is not installed on this system, the Floating-Point Simulator, if present, is entered I 
via trap vector 3. 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques,'; except for the following: 

: ::: } register addressing 

Short displacement addressing 
Specialized addressing 

The only valid form of register addressing is: 
I 

=$Sn 

SCIENTIFIC INSTRUCTIONS 7-29 CB07 



SSB 

SSB 

Instruction: 

Scientific subtract 

Type: 

DO 

Source Language Format: 

<1SSB4 {r-:.} ,address-eXpression 

Description: 

Subtracts the contents of the location, scientific accumulator, or R-register identified by the 
second operand from the contents of the scientific accumulator specified by the first operand. 
The result is saved in the scientific accumulator. 
If the Scientific Instruction Processor (SIP) is not installed on this system, the Floating-Point 
Simulator, if present, is entered via trap vector 3. 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

= $Bn register addressing 
Short displacement addressing 
Specialized addressing 

If register addressing is used, the valid forms are: 

=$R {!}If =$R7 is specified, the 32-bit value contained in the 
6 register pair formed by R6 and R7 becomes the operand. 
7 

=$Sn 

Ifimmediate operand addressing is used, you must provide a floating-point constant or string 
constant is suitable floating-point format. 

If the second operand is an R-register, the integer value contained in the specific R-register is 
internally converted to floating-point format before it is subtracted from the contents of the 
S-register specified by the first operand. 

Scientific Indicator Settings: 

EU: Set to Ion exponent underflow; otherwise, set to O. 
PE: Set to 1 if nonzero bits are lost during right shift; otherwise, set to O. 

SCIENTIFIC INSTRUCTIONS 7-30 CB07 

,( -., 
''\"/ 



{"." . 
/ 

SST 

SST 

Instruction: 

Scientific store 

Type: 

DO 

Source Language Format: 

6SST6 {!~} ,address-expression 

Description: 

Stores the contents of the scientific accumulator identified by the first operand in the location, 
scientific accumulator, or R-register specified by the address expression. 

If the Scientific Instruction Processor (SIP) is not installed on this system, the Floating-Point 
Simulator, if present, is entered via trap vector 3. 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

= $Bn register addressing 
Short displacement addressing 
Specialized addressing 

If register addressing is used, the valid forms are: 

=$R {:}If =$R7 is specified, the 32-bit ~lilue contained in the 
6 register pair formed by R6 and R7 becomes the operand. 
7 

=$Sn 

Ifimmediate operand addressing is used, you must provide a floating-point constant or string, 
constant in suitable floating-point format. 

If the second operand is an R-register, the floating-point value contained in the specific 
scientific accumulator is converted to integer format before it is stored into the specified 
R-register. 

Scientific Indicator Settings: 

EU: Set to 1 on exponent underflow; otherwise, set to O. 
SE: Set to 1 if resultant floating-point value has a zero fraction; otherwise, set to O. 
PE: Set to 1 if nonzero bits are lost during right shift; otherwise, set to o. 

SCIENTIFIC INSTRUCTIONS 7-31 CB07 



I 

ssw 

ssw 
Instruction: 

Scientific swap 

Type: 

DO 

Source Language Format: 

.\ssw.\ {~~} ,address-expression 

Description: 

Swaps the contents of the scientific accumulator identified by the first operand with the 
contents of the location, scientific accumulator, or R-register specified by the address expres­
sion. 

If the Scientific Instruction Processor (SIP) is not installed on this system, the Floating-Point 
Simulator, if present, is entered via trap vector 3. 

The address expression can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

~ $Bn register addressing 
Short displacement addressing 
Specialized addressing 

If register addressing is used, the valid forms are: 

-$R {:}If =$R7 is specified, the 32-bit value ~ontained in the 
- 6 register pair formed by R6 and R7 becomes the operand. 

7 

=$Sn 

If immediate operand addressing is used, you must provide a floating-point constant or string 
constant in suitable floating-point format. 

If an R-register is specified as the second operand, the value specified by the first operand is 
internally converted to integer format, and the value specified by the second operand is 
internally converted to floating-point. These converted values are then interchanged. 

The address expressions can take any of the forms described earlier in this section under 
"Addressing Techniques," except for the following: 

: :~:} register addressing 

Short displacement addressing 
Specialized addressing 

Scientific Indicator Settings: 

EU:. Set to 1 on exponent underflow; otherwise, set to O. 
SE: Set to 1 if resultant floating-point value has a zero fraction; otherWise, set to O. 
PE: Set to 1 if nonzero bits are lost during right shift; otherwise, set to O. 

SCIENTIFIC INSTRUCTIONS 7-32 CB07 



( 

Section 8 

Macro Facility 

The Macro Preprocessor is a program development tool that provides a convenient method for 
including in a source module sequences of statements that are specified in a macro routine. 

A macro routine is a block of source code that is written only once and can be included multiple 
times within a given source program. A single statement, known as a macro call, is specified in 
the source program each time the sequence of statements is to be included. A source program 
containing one or more macro calls is called an unexpanded source program. Macro routines can 
be at the beginning of a source program or in a macro iibrary; those occurring with a source 
program are called inline macro routines. 

The Macro Preprocessor produces an expanded source program which is used as input to the 
Assembler. The expanded source program may contain an error flag for each nonfatal error. 
Each statement that contains a nonfatal error flag appears in the expanded source module as a 
comment statement with the appropriate error. (Nonfatal error flags are described in Appendix 
F.) If a fatal error occurs, processing terminates, an error message is issued to the error-out 
stream, and control returns to the Command Processor. (Error messages issued by the Macro 
Preprocessor are described in the System Messages manual.) 

NOTE: 
Honeywell provides a library of macro routines that support MLCP programming. 
(See the MLCP Programmer's Reference Manual.) 

ORDER OF STATEMENTS WITHIN A SOURCE PROGRAM 

Statements within a source program must be in the order listed below: 
1. TITLE Assembler control statement. 

2. LIBM macro control statements and/or macro routines delimited by MAC and ENDM 
macro control statements. 
(Optional) LIST or NLST Assembler control statement 
(Optional) comment statements 
. Note: 

LIBM statements, macro routines, comment statements, and a LIST or NLST 
statement can be intermixed. 

3. Statements that constitute the body of the source module; includes macro calls. 

4. END Assembler control statement. Identifies the end of the assembly language program. 
Statements subsequent to this statement will be ignored by the Assembler. If this 
statement is missing, both the Assembler and the Macro Preprocessor will generate an 
END statement. 

Macro control statements and macro calls are described in this section. Assembler control 
statements are described in Section 4. 

MACRO ROUTINES 

A macro routine can be either generalized or specialized. A generalized macro routine causes 
a fixed expansion in the source module. A specialized macro routine permits specified values to 
be included in the expanded source module: 

MACRO FACILITY 8-1 CB07 



MAC WITHOUT PARAMETERS / ENDM 

The following information is described below. 

• Creating a macro routine 

• Specializing a macro routine 

• Including protection operators 

• Situating a macro routine 

CREATING A MACRO ROUTINE 

A macro routine must be preceded by a MAC macro control statement and followed by an 
ENDM macro control statement. 

MAC MACRO CONTROL STATEMENT, WITHOUT PARAMETERS 

The MAC statement assigns a name to a macro routine; it must immediately precede every 
macro routine. MAC must be the last entry on the source line, or it must be immediately 
followed by a comma and an optional comment. ' 

Format: 

macro-nameaMAC [, [comment]] 

macro-name 
Name of the macro routine; must be a valid symbolic name. To include the macro routine 
within a source module, specify the macro name in a macro call. 

Note: 
A macro routine can be specialized by including macro parameters in the MAC 
statement. (See "MAC Macro Control Statement, Including Parameters" later in 
this section.) 

CONTENTS OF MACRO ROUTINE 

A macro routine can include: 

• Macro control statements, excluding MAC and ENDM 

• Macro functions 

• Assembler control statements, excluding END 

• Assembly language statements 

Macro control statements and macro functions are described in this section. Assembler control 
statements and assembly language statements are described in Sections 4 and 5 through 7, 
respectively. 

MACRO FACILITY 8-2 CB07 

/ 



( 

( 

ENDM / MAC WITH PARAMETERS 

ENDM MACRO CONTROL STATEMENT 

The ENDM statement designates the end of a macro routine; it must immediately follow each 
macro routine. 

Format: 

[label]aENDM 

label 
Symbolic name that identifies the ENDM statement. 

SPECIALIZING A MACRO ROUTINE BY PARAMETER SUBSTITUTION 

In a given macro routine, up to 85 different macro parameters can be referenced. Parameters 
are named PI to P9 and P A to PZ. (The lowercase letters are considered to be equivalent to the 
corresponding uppercase letters.) Each parameter name must be preceded by a substitution 
operator ,"?", (question mark) to indicate that substitution will occur, i.e., a value will be 
substituted. 

Macro parameters can be assigned values in the MAC statement and/or in macro calls. 

When a macro call is specified, each macro parameter reference in the requested macro 
routine is replaced with the parameter's value. If a parameter was assigned a value in the MAC 
statement and then assigned a different value in the macro call, the value specified in the macro 
call is the value of the parameter. Ifno value was specified in the MAC statement or in the macro 
call, the parameter is equal to a null character string. 

MACRO FACILITY 8-3 CB07 



* 

MAC WITH PARAMETERS 

MAC MACRO CONTROL STATEMENT, INCLUDING PARAMETERS 

The MAC statement assigns a name to a macro routine and optionally assigns default value 
macro parameters. 

Format: 

macro-nameAMACAPj[=v] ,Pk[=v] 

macro-name 

Name of the macro routine being created; must be a valid symbolic name. 

Macro parameter name; can be from the set Pl through P9 or from the set PA through PZ. 
Parameter names can be specified in any order. 

=v 

NOTE: 
It may be impossible to specify all parameters on one source line. Parameters 
can be continued on the next line by replacing the last comma with a semicolon. 
(See "Assembly Language Source Statement Formats" in Section 3.) 

Value of macro parameter; can be any alphanumeric characters. (See "Desig­
nating Alphanumeric Values" at the end of this section.) 

If a value is not specified, the corresponding parameter remains equal to a null character 
string. 

Example: 

This example illustrates an unexpanded source module that includes a MAC statement with 
parameters. The resulting expanded source module includes those parameter values. 

Unexpanded source module: 

SAMPLE 
PB='6: 

FINI 

TITLE EXMPL 

MAC P3=5; 

LDV $R1=?P3 \ 

LOR $R2=?PB f 
ENDM 

SAMPLE 

Expanded source module: 

MACRO FACILITY 

TITLE EXMPL 

LDV $R1,=5 } 

LOR $R2,='6: 

Designates beginning of macro routine and 
assigns values to parameters P3 and PB 

Statements to be included in source module 

Designates end of macro routine 

Macro call requesting macro routine named 
SAMPLE 

Macro call replaced by contents of macro 
routine named SAMPLE 

8-4 CB07 



( 

MAC WITH PARAMETERS 

PROTECTION OPERATORS 

Protection operators are brackets; they enclose one or more characters that are not to be 
interpreted by the Macro Preprocessor. Protection operators can be included in macro routines 
and/or in statements that constitute the body of a source program. 

NOTE: 
Brackets illustrated in each command's Format are not protection operators; they 
enclose optional characters. 

Example: 

This example illustrates an unexpanded source module, which includes protection operators, 
and the resulting expanded source module. 

Unexpanded source module: 

TITLE EXMPL 

SAMPLE MAC P7=3 

NEWA [?)P7 

NEWB ?P7 

ENDM 

[SAMPLE) 

SAMPLE 

Expanded source module: 

TITLE EXMPL 

SAMPLE 

NEWA ?P7 } 

NEWB3 

Designates beginning of macro routine and 
assigns value to parameter P7 

Substitution operator will not be inter­
preted by Macro Preprocessor. so no value 
will be substituted 

Reference to P7 will be replaced with its 
value 

Designates end of macro routine 

Not interpreted as macro call because name 
of macro routine is enclosed within protec­
tion operators 

Macro call; in the expanded source module 
will be replaced by contents of macro rou­
tine named SAMPLE 

Contents of macro routine named SAMPLE 

Protection operators cannot extend over operand or argument delimiters; to protect adjacent 
operands or arguments, enclose each one individually in brackets. 

Example 1: 

FOOa[AB),[CD) 

The above macro call FOO designs that parameter Pi equals [AB) and parameter P2 equals 
[CD]. 

Example 2: 

FOOa[AB,CD] 

The above macro call FOO is not equivalent to the macro call illustrated in example 1. The 
macro call in example 2 specifies that parameter Pi equals [AB and parameter P2 equals CD] 

MACRO FACILITY 8-5 CB07 



MAC WITH PARAMETERS 

If any part of a label or operation code is protected, the entire label or operation code is 
protected. 

Example: 

LAB[EL]ALD[R]A$R1,= 100 

The above statement is considered to have no label and no operation code. 

Protection operators do not appear in expanded source modules unless the operators are 
embedded in other protection operators. 

Example 1: 

NEWA[?]P7 

The above statement appears in the expanded source module as NEWA?P7. 

Example 2: 

DC 'A[BC[DEF]GH]I' 

The above statement appears in the expanded source module as DCA' ABC[DEF]GHI'. Only the 
outermost protection operators are removed, unless the expanded source module is then 
reprocessed by the Macro Preprocessor. 

Protected comment statements appear in the expanded source module with the protection 
operators removed. If protected comment statements appear in a macro routine, they are 
substituted in the expanded source module as described previously. Unprotected comment 
statements which appear in a macro routine are considered to document the macro routine 
itself; thus they are not substituted into, the expanded source module. 

Example: 

ABC MAC 
HLT 

*COMNT1 
[*]COMNT2 

ENDM 
In the above example COMNT2 is considered a macro routine comment and will appear in the 

expanded source module as 

*COMNT2 

COMNT1 is not considered a macro routine comment and will not appear in the expanded source 
module. 

srrUATING MACRO ROUTINES 

Macro routines can be in the source module in which t1:tey are requested by macro call(s) 
and/or in macro libraries on a mass storage volume. A macro library is a directory whose files are 
macro routines. Each file must be a single macro routine that is referenced in a macro call by its 
file name. Its file name must be identical to the label of its MAC statement. 

All macro routines within a source module must be at the beginning of the module. (See 
"Order of Statements Within a Source Module" earlier in this section.) 

MACRO FACILITY 8-6 CB07 

,4'"""", 

't. j 



( ---

; -

LIBM 

LlBM MACRO CONTROL STATEMENT 

The LIBM statement specifies the name of a macro library and indicates whether all or only 
specified macro routines in that library will be made available so that they can be requested in 
subsequent macro calls. If applicable, you must specify LIBM statement(s) at the beginning of 
the source program. 

Format: 

{SymboliC-name} 
ALIBMl [A]'c[c ... ]' [,macro-name] ... 

symbolic-name 

Name of a macro library. A macro library is a directory containing a collection of files. Each file 
in a macro library consists of a single macro routine. The following search rules are used to 
locate the macro library referenced by a symbolic-name. 

1. The C1h~'ent working directory is searched for a subdirectory of the name, symbolic-name. 
If this directory is found, it is the directory used as the macro library. 

2. The directory> UDD>account> MACRO, ifit exists, is searched for a subdirectory of the 
name, symbolic-name. If this directory is found, it is the directory used as the macro 
library. 

3. The directory >LDD>MACRO, if it exists, is searched for a subdirectory of the name, 
symbolic-name. If this directory is found, it is the directory used as the macro library. 
The volume(s) containing the system directories SYSLIBI and SYSLIB2 are searched to 
find the >LDD>MACRO directory. It may require the Change System Directory com­
mand to identify the pathname of SYSLIBI and/or SYSLIB2. 

[A]'c[c ... ]' 
Name of a macro library in the form of an ASCII string constant. If the value ofthe string, 
constant is a simple name, it is processed as a symbolic-name. 
If the value of the string constant is not a simple name, it is ex»anded to an absolute 
pathname, which is assumed to be the name of the desired macro library. 

macro-name 
Name(s) of macro routine(s) in the macro library that may be requested in macro call(s); 
must be a valid symbolic name. The names must be different from the names ofinline macro 
routines else the inline macro routine is used. 
Default: All macro routines in the specified macro library may be included in the expanded 
source module by subsequent macro calls. 

Example of Search Rules for Locating a Macro Library 

This example of the search rules is based on the following assumptions: 

• The current working directory is /\ VOLUSR>CURRENT 

• Directory SYSLIBI is contained on volume VOLI 

• Directory SYSLIB2 is contained on volume VOL2 

• The system root volume is volume ZSYS5l 

• The account of the task group using the macro preprocessor is PROJL6 
Given these assumptions, the statement 

LIBM EXEC_LIB 

initiates a search for the following directories in the order indicated. 

MACRO FACILITY 8-7 CB07 



LIBM 

SearchRule Number 1 

1. Search is for: I\VOLUSR>CURRENT>EXEC_LIB 

Search Rule Number 2 

2. Search is for: I\ZSYS51>UDD>PROJL6>MACRO>EXEC_LIB 

Search Rules Number 3 

3. Search is for: I\VOL1>LDD>MACRO>EXEC_LIB 

4. Search is for: I\VOL2>LDD>MACRO>EXEC_LIB 

MACRO FACILITY 8-8 CB07 

/I' 

~-j 



( 

( 

INCLUDE 

INCLUDE MACRO CONTROL STATEMENT 

The INCLUDE statement specifies that the contents of the named file be processed by the 
Macro Preprocessor as part of the unexpanded source input program. 

The include file may contain any source statements normally appearing within the 
unexpanded source input program, with the following exceptions: 

1. The include file may not contain any %INCLUDE macro control statements. 

2. The include file may contain macro call statements only ifthey are within inline macro 
routines. 

Forma[a: INCLUDEa !symbolic-name} . 
JIO [A]'c[c ... ]" 

symbolic-name 
Name of a file. The following search rules are employed to locate the include file referenced 
by the symbolic-name: . 

1. The current working directory is searched for a file of the name, symbolic-name.IN.A. If 
this file is found, that file is the file referenced in the INCLUDE statement. 

2. The directory >UDD>account>INCLUDE, if it exists, is searched for the file 
symbolic-name.lN.A. If this file is found, this is the file referenced in the INCLUDE 
statement. 

3. The directory >LDD>INCLUDE, if it exists, is searched for the file symbolic­
name.IN.A. If this file is found, this is the file referenced in the INCLUDE statement. 
The volume(s) containing the system directories SYSLIBI and SYSLIB2 are searched to 
find the >LDD>MACRO directory. It may require the Change System Directory com­
mand to identify the pathname of SYSLIBI and/or SYSLIB2. 

[A]'c[c ... ]' 
Name of a file in the form of an ASCII string constant. If the value of the string constant is a 
simple name, then it is processed as a symbolic-name. 
If the value of the string constant is not a simple name,a.IN.A is appended to the string; then 
it is expanded to an absolute pathname, which is assumed to be the name of the desired 
include file. 

The semicolon shown in the above format is part of the INCLUDE statement's syntax, it does not I 
indicate . 

. The %INCLUDE statement is also used to insert macro routines from external files into the 
unexpanded source program as inline macro routines. 

Example of Search Rules for Locating an Include File 

This example of the search rules is based on the following assumptions. 

• The current working directory is J\VOLUSR>CURRENT 

• Directory SYSLIBI is contained on volume VOLI 

• Directory SYSLIB2 is contained on volume VOL2 

• The system root volume is volume ZSYS5l 

• The account of the task group using the macro preprocessor is PROJL6 
Given these assumptions, the statement 

%INCLUDE SOURCES; 

initiates a search for the following files within the file system in the order indicated. 

MACRO FACILITY 8-9 CB07 



INCLUDE 

Search Rule Number 1 

1. Search is for: /\ VOLUSR>CURRENT>SOURCES.IN.A 
Search Rule Number 2 

2. Search is for:" ZSYS51>UDD>PROJL6>INCLUDE>SOURCES.IN.A 

Search Rule Number 3 

3. Search is for: /\ VOLl>LDD>INCLUDE>SOURCES.IN.A 

4. Search is for: /\ VOL2> LDD> INCLUDE>SOURCES.IN.A 

MACRO FACILITY 8-10 CB07 



( 

( 

(-

MACRO CALLS 

A macro call is a statement that causes a specified macro routine to be included in the source 
program and optionally assigns or reassigns values to parameters in that macro routine. The 
macro routine is included in the expanded source program at the location of the macro call. 

IT a parameter is assigned a value only in the macro call or in both the macro call and the MAC 
statement, the value in the macro call is used. If a parameter is not assigned a value in the macro 
call but it was assigned a value in the MAC statement, that value is used. If it was not assigned a 
value in either location, its default value is a null character string. (See "Initialized Values of 
Macro Variables" at the end of this section.) 

If no parameter values are present in a macro call, the macro-name must be the last entry on 
the source line, or it must be immediately followed by a comma and an optional comment. 

Format: 

[label]~macro-name [ ~[p cvalue ][,[P 2-value]] ... ] 

label 

Symbolic name that identifies the macro call. 

macro-name 

Name ofthe macro routine to be included in the expanded source module: this name must 
correspond to a name designated in a MAC macro control statement. 

Pn-value 
Value of macro parameter; can be any alphanumeric characters (see "Designating Al-
phanumeric Values" at the end of this section). * 
In a macro call, parameters are positional; i.e., their values must be specified so that they 
correspond to parameters PI to P9 and PA to PZ. A comma must be specified for each 
parameter whose value is not specified. All parameters beyond the last specified 
parameter's value are considered to be omitted. 

Note: 
It may be impossible to specify all parameter values on one source line. Parameter 
values can be continued on the next line by replacing the last comma with a 
semicolon. (See "Assembly Language Source Statement Formats" in 
Section 3.) 

Example: 

This example illustrates an unexpanded source program in which parameters are assigned 
values only in a MAC :3tatement, only in a ql.acro call, and in both a MAC statement and a macro 
call. The resulting expanded source program illustrates the inclusion of the macro routine and 
the appropriate parameter values. This example also illustrates the use of a parameter whose 
value is a null character string. 

MACRO FACILITY 8-11 CB07 



Unexpanded source module: 

TITLE MCl 

SAMPLE MAC P3=1,P5=8 Designates beginning of macro routine 
and assigns values to parameters P3 
and P5 

DC ?P3,?P2 

* NEWB ?P5 
FIN I ENDM Designates end of macro routine 

NUVAl SAMPLE ,2",5':5 Macro call that assigns value to parameter 

Expanded source module: 

TITLE MCl 

DC 1,2 

* NEWB 5':5 

NESTED MACRO CALL 

P2, and assigns different value to parameter 
P5; i.e., P2 equals 2 and P5 equals 5':5 

First parameter value was assigned in 
MAC statement; second parameter value 
was assigned in macro call 

Since different values were assigned to 
P5 in the MAC statement and in the macro 
call, the value In the macro call is used 

A nested macro call is a macro call that occurs within a macro routine. Whenever a nested 
macro call is encountered, processing of the current macro routine stops; i.e., all of its macro 
parameters are saved, and the nested macro call is processed. The nested macro call has its own 
macro parameters. After the nested macro call and the macro routine named in the nested call 
are processed, processing of the previous macro routine resumes at the point of termination. 

Macro calls may be nested to as many levels as memory permits. Each level consists of one 
macro routine that calls another. For example, ifmacro routine A contains a macro call to macro 
routine B, one level of nesting exists. Ifmacro routine B contains a macro call to macro routine C, 
two levels of nesting exist. 

Example: 

This example illustrates an unexpanded source module that contains a nested macro call and 
the resulting expanded source module. 

MACRO FACILITY 8-12 CB07 



( 

Unexpanded Source Module 

TITLE NSTD 
MACR01 MAC 

NEWA 
NEWB 
ENDM 

MACR02 MAC 
NEWX 
NEWY 
MACR01 
NEWZ 
ENDM 

MACR02 

Nested macro call 

Macro call 

Expanded Source Module 

TITLE NSTD 

NEWX 
NEWY 
NEWA 
NEWB 
NEWZ 

RECURSIVE MACRO CALLS 

Contents of nested macro call 

A recursive macro call is a nested macro call that calls either the ro.utine within which the call 
is located or another routine in the nest that eventually calls the original routine. A recursive 
macro call must be designed to reach its ENDM statement exactly once per call to it. Each time 
an ENDM statement is processed, the innermost level of recursion is terminated. An example of 
a recursive call is the case in which a macro routine processes parameter 1 and then ifparameter 
2 is present, calls itself with ?P2 for parameter 1, -?P3 for parameter 2, etc.; that is, each 
parameter has been shifted one position left. A recursive macro call is processed the same as any 
other nested macro call. The depth of recursion is limited only by the amount of memory 
available to the Macro Preprocessor. 

OONTROLLING EXPANSIONS 

When a macro call requests a given macro routine, it need not always result in the same 
expansion. Values in that routine may vary, and the statements to be included in the source 
program may vary. This flexibility is accomplished by including macro variables and condi-
tional macro control statements in the macro routine. -

MACRO VARIABLES 

There are two types of macro variables: local and global. A local variable can be assigned a 
value only in a macro routine. A global variable can be assigned a value anywherein the source 
module; e.g., in a macro routine in the source module, or in statements that constitute the body 
of the source module. 

Variables have fixed names; only their values can be altered. Global variables are named G 1 
to G9 and GA to GZ. Local variables are named L1 to L9 and LA to LZ. (The lowercase letters are 
considered to be equivalent to the corresponding uppercase letters.) To designate in a macro 
routine that substitution of a macro variable will occur, precede each variable name with a 
substitution operator, "?" (question mark); e.g., ?Gl. When the macro routine is processed, the 
Macro Preprocessor will replace each reference to a variable with its value. 

MACRO FACILITY 8-13 CB07 



SETA 

A variable can be assigned an alphanumeric or numeric value by specifying the SETA or '" ''\ 
SETN macro control statement, respectively. ) 

If a variable is never assigned a value, its initial value is used as the default. (See "Initialized 
Values of Macro Variables" at the end of this section.) 

The values assigned to global variables are available for use by all macro routines. The values 
assigned to local variables are available for use only by the macro routine which assigned them. 
In the case of nested or recursive macro calls, e.ach time a macro routine is called, it has a new set 
oflocal variables to use. When the nested or recursive macro routine is complete, the previous 
values assigned by the outer macro are restored to the local variables. 

MACRO SUBSTITUTION 

Macro substitution allows a character string contained in the macro prototype to be replaced 
by another character string that is derived from the contents of the macro parameters and/or 
macro variables. By this substitution, a generalized macro prototype can be specialized to 
produce different expansions depending on the arguments present in the various calls. 

Substitution of macro parameters and variables, and evaluation and substitution of macro 
functions are the first operations performed upon a macro prototype during a macro expansion. 
Thus, macro control statements can be generalized in the same manner as any other statement 
in the macro prototype. 

The substitution operator, "?", is used in the macro prototype to indicate where substitutions 
are to occur when the macro is expanded. The substitution operator must be followed by the 
name of a macro parameter, the name of a macro variable, or a macro function reference. 

When the macro processor encounters a substitution operator followed by a macro parameter 
name or a macro variable name, the substitution operator and the name following are replaced 
by the value of the referenced parameter or variable. When a substitution operator followed by a 
macro function reference is encountered, the function is evaluated and then the substitution 
operator and function reference following it are replaced by the value returned by the function. 

After substitution is completed, the replacement value is rescanned. 

The occurrence of a function reference may be represented in whole or in part by a "nested" 
substitution operation. In this case the inner substitution operation is performed before the 
outer substitution operation. Substitution operations may be nested to any depth. 

MACRO FACILITY 8-14 CB07 

---------------- .. _-----

\ 



( 

( " 

' .... -' 

SETA/SETN' 

SETA MACRO CONTROL STATEMENT 

The set alphanumeric macro control (SETA) statement assigns an alphanumeric value to a 
local or global macro variable. If you assign a value to a variable and then redefine the variable 
in a subsequent SETA or SETN statement, the last value specified is used. 2 

When assigning a value to aglobal macro variable, you can specify SETA anywhere within 
the source module. When assigning a value to a local macro variable, you must specify SETA in 
the macro routine in which the variable is referenced. 

Fonnat: 

variableaSETMvalue 

variable 

Name of the local or global macro variable that is being assigned a value; must be Ll to L9, 
LA to LZ, G 1 to G9, or GA to GZ (The lowercase letters are considered to be equivalent to the 
corresponding uppercase letters.), 

value 

Must be alphanumeric. (See "Designating Alphanumeric Values" at the end of this section.) 

Example: 

This example illustrates an unexpanded source program in which macro variables are assigned 
values in SETA statements. The resulting expanded source program includes those macro 
variable values. 

Unexpanded source program: 

SETA EXAMPLE 

TITLE VALUE 
EXAMPLE MAC 
L4 SETA DE 
L5 SETA "'X'" 
L4 
G6 

SETA (5+6*2) 
SETA ': 

DC NOT?L4 
TEXT ?L5 
DC 17G62?G63 

ENDM 
SAMPLE 

Designates beginning of macro routine 
Assigns alphanumeric value to L4 
Assigns alphanumeric value to L5 
Assigns different alphanumeric value to L4 
Assigns alphanumeric value to G6 

Designates end of macro routine 
Macro Call 

Expanded Source Module: 

TITLE VALUE 

DC NOT (5+6*2) Least value for L4 is used; note that numeric 

TEXT 'X' 
DC 1~2,3 

expression is not evaluated 
Embedded double apostrophes become single apostrophes 
Comma inside quote strings are datil 

"When a nested macro call is encountered, values of local variables and parameters in the current macro routine are 
saved and are still applicable after the nested macro call is processed. 

MACRO FACILITY 8-15 CB07 



SETN 

SETN MACRO CONTROL STATEMENT 

The set numeric macro control (SETN) statement assigns a numeric value to a local or global 
macro variable. The assigned value is the ASCII representation of the decimal equivalent ofthe 
specified numeric value. If you assign a value to a variable and then redefine the variable in a 
subsequent SETN or SETA statement, the last value specified is used. 3 

When assigning a value to aglobal macro variable, you can specify SETN anywhere within 
the source program. When assigning a value to a local macro variable, you m:ust specify SETN in 
a macro routine. 

Format: 

variableASETNA value 

variable 

Name of the local or global macro variable that is being assigned a numeric value; must be Ll 
to L9, LA to LZ, Gl to G9, or GA to GZ (The lowercase let~rs are considered to be equivalent 
to the corresponding uppercase letters.) 

value 

Must be numeric. (See "Designating Numeric Values" at the end of this section.) 
Corresponds to internal value expression which is defined in Section 2. 

The operand of the SETN statement begins at. the first character after the operation code that 
is neither a blank nor a horizontal tab. The operand terminates at the end of the statement or at 
the fll'st blank or horizontal tab not within apostrophes after the beginning of the operand. For 
example: 

GLASETNA22 + 8 assigns the value 30 in unpacked decimal representation (3330 in 
hexadecimal) to the global variable GL. 

GAASETNA6+ 'AO' 
G6ASETNA-X'F' 

assigns the value A6 (2036 in hexadecimal) to the global variable GA. 
assigns the value -15 (2D3135 in hexadecimal) to the global variable 
G6 

Example: 

This example illustrates an unexpanded source module in which macro variables are assigned 
values in SETN statements .. The resulting expanded source module includes those macro 
variable values. 

Unexpanded source module: 

TITLE EXMPL 

SAMPLE MAC Designates beginning of macro routine 
L5 SETN 3 Assigns numeric value to L5 
L6 SETN 2* (?L5*?G2)+1 Assigns numeric value to L6; expression is evaluated 

DC ?L6 

FINI 
G2 

ENDM 
SETN 2 
SAMPLE 

Expanded source module: 
TITLE EXMPL 

DC 13 

Designates end of macro routine 
Assigns value to G2 
Macro call 

3When a nested macro call is encountered, values oflocal variables and parameters in the current macro routine are 
saved and are still applicable after the nested macro call is processed. 

MACRO FACILITY 8-16 CB07 



(-

( 

FAIL 

CONDrr/ONAL MACRO CONTROL STATEMENTS 

These statements allow the subsequent processing to be varied according to the conditions 
that exist when the statement is executed. 

Conditional macro control statements are listed and described below: 

• FAIL 

• GOTO 

• IF 
• NULL 

FAIL MACRO CONTROL STATEMENT 

The FAIL statement is used to ensure that conditions are logically consistent; it does not affect 
expansions. The Macro Preprocessor issues a Z error flag for each FAIL statement. 

Format: 

[label]~F AIL 

label 

Symbolic name that identifies FAIL statement. 
Note: 

If an assembly control FAIL statement is desired within a macro routine, it must 
be protected. 

MACRO FACILITY 8-17 CB07 



GOTO 

GOTO MACRO CONTROL STATEMENT 

The GOTO statement causes the Macro Preprocessor to stop processing the macro routine or 
to resume processing at a specified statement. TJ}e statement at which processing will resume 
can be in any location within the macro routine; i.e., it need not be subsequent to the GOTO 
statement. 

Format: 

nabel].1GOT0l1 {:kiP-Iabel} 

label 

* 
Symbolic name that identifies the GOTO statement. 

Causes Macro Preprocessor to stop processing the macro routine; i.e., the current line is 
considered an ENDM macro control statement. Processing resumes at the statement that 
follows the current macro call. 

skip-label 

Symbolic name of statement within the macro routine at which Macro Preprocessor should 
resume processing. If a macro routine contains more than one statement whose symbolic 
name is skip-label, processing resumes at the first occurrence of such a statement after the 
MAC statement. 

MACRO FACILITY 8-18 CB07 



( 

( 

IF 

IF MACRO CONTROL STATEMENT 

The IF statement causes the Macro Preprocessor to evaluate characters in either one or two 
operands to determine if a specified condition exists. If the condition exists, the Macro 
Preprocessor stops processing the macro routine or resumes processing at a specified statement 
that is subsequent to the IF statement. If the condition does not exist, the next sequential 
statement is processed. 

Format 1. 

Evaluating characters in one numeric operand: 

Dabel)dIF \ ~~Jfll Aoperand, {:kiP-labelj 

label 

Symbolic name that identifies the IF statement. 

[N]P 

(Not positive (i.e., positive is > 0, not positive is :s::: 0)) 

[N]N 

(Not negative (i.e., negative is > 0, not negative is ~ 0)) 

[N]Z 

(Not) zero. 

OD 

Odd. 

EV 

Even. 

operand 

Character(s) being evaluated; must be numeric. (See "Designating Numeric Values" at the 
end of this section.) Corresponds to internal value expression, which is defined in Section 2. 

* 
If condition in IF statement is true, causes Macro Preprocessor to stop processing macro 
routine; i.e., the current line is considered an ENDM macro control statement. Processing 
resumes at the statement that follows the current macro call. 

skip-label 

If condition in IF statement is true, designates symbolic name of statement at which Macro 
Preprocessor should resume processing. If a macro routine contains more than one statement 
subsequent to the IF statement, whose symbolic name is skip-label, processing resumes at 
the first occurrence of such a statement after the IF statement. 

Format 2. 
Comparing characters in two alphanumeric operands: 

Dabel)dIF [N] {n Aoperand" operand "{~iP-labell 
label 

Symbolic name that identifies the IF statement. 

MACRO FACILITY 8-19 CB07 



IF 

[N]G 

(Not) greater than. 

[N]L 

(Not) less than. 

[N]E 

(Not) equal to. 

operand 1 , operand2 

* 

Character strings being compared; must be alphanumeric. (See "Designating 
Alphanumeric Values" at the end of this section.) 

Starting with the leftmost character, the Macro Preprocessor compares each character in 
operandI to the character in the corresponding position in operand 2' The characters are 
compared until either a pair of unequal characters is encountered, or all of the characters 
have been compared. If the operands are different lengths, the rightmost characters of the 
shorter operand are considered to be ASCII blanks. (Table 2-2 describes the hexadecimal 
values of ASCII characters.) 

The unequal characters are compared according to the ASCII collating sequence to 
determine the algebraic relationship between the two operands. 

If the condition specified in the IF statement is true, causes Macro Preprocessor to stop 
processing macro routine; i.e., the current line is considered an ENDM macro control 
statement. Processing resumes at the statement that follows the current macro call. 

skip-label 

If condition in IF is true, designates symbolic name of statement at which Macro Preproces­
sor should resume processing. 

If a macro routine contains more than one statement subsequent to the IF statement whose 
symbolic name is skip-label, processing resumes at the first occurrence of such a statement 
after the IF statement. 

NOTE: 
If an assembly control IF statement is desired within a macro routine, it must be 
protected. 

Example 1. Evaluating characters in one numeric operand: 

Unexpanded Source Module: 

TITLE CONDl 

G5 SETN 1 
BGN MAC 

I FOD?G5. TAG 1 Conditionalize the macro expansion via value of G5 
[FAil] 

TAG1 DC 1 

IFEV ?G5. TAG2 Conditionalize the macro expansion via value of G5 
[FAil] 

TAG2 DC 1 

FINI ENDM 

BGN Macro call 

MACRO· FACILITY 8-20 CB07 



( 

( 

Expanded Source Module: 

TAG1 

TAG2 

TITLE CONDL 

DC 1 

FAIL 
. DC 1 

FAI L statement is not produced 

FAIL statement for Assembler is produced 

Example 2. Comparing characters in two alphanumeric operands: 

Unexpanded Source Module: 

TITLE TWO 

INCL MAC 

TAG1 

TAG1 

IFE AB,AB,TAG1 
[FAIL) 
DC 1 

IFE AB,CD,TAG1 
[FAIL) 
DC 1 

FINI ENDM 

INCL 

Expanded Source Module: 

TITLE TWO 

TAG1 DC 1 

TAG1 
FAIL 
DC 1 

MACRO FACILITY 

Conditionallze the macro expansion 

FAI L statement is not produced 

FAI L statement for Assembler is produced 

8-21 

IF 

CB07 



NULL 

NULL MACRO CONTROL STATEMENT 

The NULL statement has no effect on the processing of macro routines. Processing continues 
with the next sequential instruction. 

This statement is often used to define a label referenced by an IF or GOTO statement. 

Format: 

[label]..:lNULL 

label 

N arne of the label being defined. 

Note: 
If an assembly control NULL statement is desired within a macro routine, it must 
be protected. 

MACRO FACILITY 8-22 CB07 

r 
f 



( 

( 

• 

MACRO FUNCTIONS 

Macro functions have the following capabilities: 

• Determine number of characters that are in a specified character string (AL function) 

• Convert a numeric value to its hexadecimal equivalent (CH function) 

• Search a character string for an embedded character string (IX function) 

• Determine which character within a character string is the first character that is the first 
character of another character string (SR function) 

• Specify which characters within a character string should be included in the source 
statement (SS function) 

• Permit parameters and variables to be referenced by their ordinal positions (V function) 

• Determine which character within a character string is the first character that is not in 
another character string (VR function) 

• Determine what type of constant makes up a character string (AT) 

• Translate a character string from one code set to another code set (TR) 

Macro functions can be specified in any location(s) of statements in macro routines. Within 
one statement there can be multiple macro functions; these functions can be nested. Nested 
macro functions are processed from the innermost function to the outermost function. 

FORMAT OF MACRO FUNCTIONS 

Macro functions are described alphabetically on the subsequent pages. As indicated in their 
formats, each function is preceded by a substitution operator, "?" (question mark) and its 
arguments are enclosed within one set of parentheses. Functions require that you specify either 
a numeric or an alphanumeric value. Methods of specifying these values are described at the end 
of this section under "Designating Numeric Values" and "Designating Alphanumeric Values." 

Substitution of macro parameters and variables, and evaluation and substitution of macro 
functions are the first operations performed upon a macro prototype during a macro expansion. 
Thus, macro control statements can be generalized in the same manner as any other statement 

AL 

in the macro prototype. * 
Macro functions require one, two, or (optionally) three arguments. 

LENGTH ATTRIBUTE MACRO FUNCTION 

The length attribute (AL) function causes the Macro Preprocessor to designate the number of 
characters that are in a specified character string. If a null character string is specified, the 
AL function evaluates to zero. 

Format: 

?AL(arg) 

arg 

Character string whose length is to be determined; must be alphanumeric. (See "Designat­
ing Alphanumeric Values," at the end of this section.) 

Example: 

?AL(?L5+?P5) 

Ifvariable L5 equals 2AB, and parameter P5 equals 5B, the above function will be replaced with 
6 . 

MACRO FACILITY 8-23 CB07 



AT 

TYPE ATTRIBUTE MACRO FUNCTION 

The type attribute macro function inspects a character string and returns a code letter that 
indicates the type of data that makes up the inspected string. The code letters and the associated 
data types are as follows. 

Code Letter Data Type 

A ASCII string constant 
B Bit string constant 
D Double precision floating point constant 
E Single precision floating point constant 
F Short fixed point constant 
I Binary integer constant iIi decimal notation 
L Long fixed point constant 
N Null string 
P Packed decimal constant 
U Unpacked decimal constant 
X Binary integer constant in hexadecimal notation 
Z Hexadecimal string constant 
o Other than the above 

Format: 

?AT(arg) 

arg 

Character string to be inspected. 

MACRO FACILITY 8-24 CB07 



( 

CH 

HEXADECIMAL CONVERSION MACRO FUNCTION 

The hexadecimal conversion (CH) function converts a numeric argument to its hexadecimal 
equivalent. 

Format: 

?CH(arg l[,arg 2]) 

arg 1 

Value to be converted to hexadecimal; must be numeric. (See "Designating Numeric Val­
ues," at the end of this section.) 

The numeric expression defining the value of arg is allowed to define a 32-bit signed integer; 
i.e., -231 :s;; arg1 < 231 must be satisfied. 1 

arg2 

Value that specifies the format ofthe hexadecimal representation, as described below; must 
be numeric. (See "Designating Numeric Values," at the end of this section.) 

Value of arg 2 Meaning 

Not Specified The value returned is a character string containing the source 
language representation of a binary integer constant in 
hexadecimal notation, with no insignificant zeros, having the 
same value as arg l • 

o Argl is converted to a 32-bit signed twos-complement binary 
integer. This binary integer is then treated as if it were an 
8-digit unsigned hexadecimal integer. The value returned is the 
character string representation of the significant digits of the 
unsigned hexadecimal integer. 

>0 The value returned is a character string containing the source 
language representation of a binary integer constant in 
hexadecimal notation, specifying min(arg2,4) digits, having the 
same value as arg1• When this format is used, the conditions 

-2min(4*arg2-1,15):s;;argi:s;;2min(4*arg2 -1,15) 
must be satisfied. 

<0 The value returned is the same as described for arg2 equal to 
zero, except that it is returned with min( -arg2,8) digits. 

Examples: 

Condition 

arg 2 not specified 
arg 2 =0 
arg 2 >0 

arg 2 <0 

MACRO FACILITY 

Function 
Specified 

?CH(10) 
?CH(10,0) 
?CH(10,1) 
?CH(10,2) 
?CH(10,3) 
?CH(10,4) 
?CH(10,6) 
?CH(10,-1) 
?CH(10,-2) 
?CH(10,-3) 
?CH(10,-4) 
?CH(10,-6) 

Result 

X'A' 
A 
X'A' 
X'OA' 
X'OOA' 
X'OOOA' 
X'OOOA' 
A 
OA 
OA 
OOOA 
OOOOOA 

8-25 CB07 



IX 

INDEX MACRO FUNCTION 

The index (IX) function causes the Macro Preprocessor to search a specified character string 
for the occurrence of an embedded character string. 

Format: 

?IX(arg 1,arg 2) 

arg 1 

Character string being searched, must be alphanumeric. (See "Designating Alphanumeric 
Values" at the end of this section.) 

arg 2 

Embedded character string for which the Macro Preprocessor will search; must be 
alphanumeric. 

The value returned specifies the character position within arg 1 of the first (leftmost) character 
of the embedded character string. If arg 2 is not contained within arg 1 or arg 2 is a null character 
string (e.g.,"), a zero is returned. 

Example: 

?IX(ABCDE,5,CDE5) 

The above function reference causes the Macro Preprocessor to search ABCDE5 for the 
character string CDE5. Since the embedded character string starts in the third character 
position of ABCDE5, the Macro Preprocessor replaces the index function reference with a 3. 

MACRO FACILITY 8-26 CB07 



( 

SEARCH MACRO FUNCTION 

The search (SR) function causes the Macro Preprocessor to determine which character of a 
specified character string is the first (leftmost) character that is also in another specified 
character string. 

Format: 

?SR(arg l,arg 2) 

arg 1 

String of characters from which one character at a time is selected from left to right, and 
compared to every character in arg2, from left to right, until a match is found; must be 
alphanumeric. (See "Designating Alphanumeric Values" at the end of this section.) 

String of characters controlling the search; i.e., this argument specifies those characters 
that, if matched by a character of arg1, satisfy the search; must be alphanumeric. (See 
"Designating Alphanumeric Values" at the end of this section.) 

The search proceeds as follows. The leftmost character in arg 1 is compared with each character 
in arg 2 proceeding from left to right. If a match is found, the value of the function is 1, indicating 
that the leftmost character of arg lis also in arg 2' Ifno match is found, the second character is 
compared, etc. In general, the value of the function is the ordinal position of the leftmost 
character of arg 1 that is also a character within arg2• 

Ifnone of the characters in arg 1 are found in arg 2, or if arg lor arg 2 is a null string, the value of 
the function is O. 

Example 1: 

?SR(CHARSUBSTRING,STRING) 

The above macro function reference causes the Macro Preprocessor to determine the leftmost 
character of CHARSUBSTRING that is also in STRING. Since the character R is the leftmost 
character ofCHARSUBSTRING that is also in STRING and it is in the fourth character position 
of CHARSUBSTRING, the macro function is replaced with 4. 
Example 2: 

?SR(F AB2,'BCA1') 

The above macro function reference causes the Macro Preprocessor to determine the leftmost 
character ofF AB2 that is also in BCA1. Since A is the leftmost character in F AB2 that is also in 
BCA1, and it is in the second character position of F AB2, the macro function reference is 
replaced with 2. 

Example 3: 

?SR(BA3, ?L1) 

The above macro function reference causes the Macro Preprocessor to determine the leftmost 
character ofBA3 that is also in local variable 1. IfL1 equals 23A, A is the first character that is 
also in Ll. Since A is in the second character position of BA3, the macro function reference is 
replaced with 2. 

MACRO FACILITY 8-27 CB07 

SR 



ss 

SUBSTRING MACRO FUNCTION 

The substring (SS) function causes the Macro Preprocessor to include in the source statement 
a specified number of characters of a specified character string, beginning with the character 
that is in a specified character position. 

Format: 

?SS(arg h arg 2 [,arga]) 

arg 1 

Character string that contains the characters to be included in the source statement; must 
be alphanumeric. (See "Designating Alphanumeric Values," at the end of this section.) 

arg2 

Character position of the first character is arg1 that is to be included; must be numeric. (See 
"Designating Alphanumeric Values," at the end of this section.) 

arg 3 

Number of characters to be included; must be numeric. (See "Designating Alphanumeric 
Values," at the end of this section.) 

Default: The character whose character position was specified in arg 2, and all subsequent 
characters of arg l' 

If arg1 is a null character string, or if arg2 is :s;;;O, or if the value specified in arg 2 is greater than 
the length of arg1, a null character string is included in the source statement. 
Example 1: 

?SS(?P2, ?L5,3) 

If P2=ABCDE and L5=2, the above function reference designates that the source statement 
include three characters of ABCDE, starting with the character in the second character position. 
BCD would be iricluded. 
Example 2: 

?SS(?P2,?L5) 

If P2=ABCDE and L5=2, the above function reference designates that the source statement 
include all characters of ABCDE, starting with the character in the second character position. 
BCDE would be included. 
Example 3: 

G6 SETA ?SS'ABaC?5',4 yields 
G6 SETA C?5, which defines G6 to be the character string C?5. 

MACRO FACILITY 8-28 CB07 

/,' '-" 

'" ,,/ 



(-

(' 

TR 

TRANSLATE MACRO FUNCTION 

The translate macro function translates an alphanumeric character string from one code set 
to another. The translation proceeds as follows. The string specified by arg 1 is processed from left 
to right character by character. The arg 1 character is compared with the characters in the string 
specified by args' The first time a match occurs,-the ordinal position in the args string is noted, 
and the character in the same ordinal position in arg2 is moved to the result. Ifno match occurs, 
the arg 1 character is moved to the result; i.e., no translation. Thus, the result is an alphanumeric 
string of the same length as that of arg 1 • 

Format: 

? TR(arg harg 2, [,arg 3]) 

arg 1 

The input string; i.e., the string to be translated. Must be alphanumeric; (See "Designating 
Alphanumeric Values" at the end of this section.) 

arg2 

The string consisting of the code set from which the characters of the result are selected (if a 
translation occurs). Must be alphanumeric; (See "Designating Alphanumeric Values" at the 
end of this section.) If the character string specified by arg2 is shorter than that of the 
character string specified by args' arg2 is padded on the right wIth spaces until it is the same 
length as arga. 

arg 3 

The string consisting of the code set to which the characters of the input string are matched. 
Must be alphanumeric; (See "Designating Alphanumeric Values" at the end ofthis section.) 
If args is omitted, the ASCII code set (See Figure B-4) is used as args' 

Example: 

Lx.aSETM?TR(?Pl,'ABCDEFGHIJKLMNOPQRSTUVWXYZ' ; 
. 'abcdefghijklmnopqrstuvwxyz') 

The macro control statement SETA assigns an alphanumeric value to local macro variable X. 
The value assigned (the result of the Translate function) is an alphanumeric string that is the 
same as the alphanumeric string specified by PI except that each lowercase letter is changed to 
the corresponding uppercase letter. The results of the translation for various strings specified by 
PI are shown below. 

Pi 
axes 
Man2 
3-a12 
New York 

MACRO FACILITY 

AXES 
MAN2 
3-A12 
NEW YORK 

8-29 CB07 



v 

VECTOR ORIENTATION MACRO FUNCTION 

The vector orientation (V) functions pennits macro parameters and macro variables to be 
referenced by their ordinal positions rather than by their names. 

Fonnat: 

?v m (arg) 

P 

Parameter 

L 

Local variable. 

G 

Global variable. 

arg 

Value that identifies a parameter or variable; must be from 1 to 35; 1 identifies the first 
parameter or variable, 2 the second, etc.; must be numeric. (See "Designating Numeric 
Values" at the end of this section.) 

Example: 

?SS(?VP(1O),2,3) 

The above function illustrates usage of the vector orientation function within a substring (SS) 
function. The function reference ?VP(lO) identifies parameter PA. IfPA = ABCDE, the above 
substring function reference is replaced with BCD. 

MACRO FACILITY 8-30 CB07 

------------- ------



( 

VR 

VERIFY MACRO FUNCTION 

The verifY (VR) function causes the Macro Preprocessor to determine which character of a 
specified character string is the first (leftmost) character that is not in another specified 
character string. 

Format: 

?VR(arg harg 2) 

arg 1 

String of characters from which one character at a time is selected, from left to right, and 
compared to every character in arg2 , from left to right, until no match is found; must be 
alphanumeric. (See "Designating Alphanumeric Values" at the end of this section.) 

arg 2 

String of characters controlling the search; i.e., this argument specifies those characters 
that, if unmatched by a character of arg;L.' satisfY the search; must be alphanumeric. (See 
"Designating Alphanumeric Values" at the end of this section.) 

The verification proceeds as follows. The leftmost character in arg 1 is compared with each 
character in arg 2 proceeding from left to right. Ifno match is found, the value of the function is 1, 
indicating that the leftmost character of arg 1 is not also in arg 2' If a match is found, the second 
character is compared, etc. In general, the value of the function is the ordinal position of the 
leftmost character of arg1 that is not a character within arg2• 

If all the characters in arg 1 are found in arg 2, or if arg 1 is a null string, the value of the function 
reference is O. 

Example 1: 

?VR(STRINGSUBSTRING,STRINGCHARSTRING) 

The above macro function causes the Macro Preprocessor to specify the leftmost character in 
STRINGSUBSTRING that is not in STRINGCHARSTRING. Since U is the leftmost character 
in STRINGSUBSTRING that is not in STRINGCHARSTRING and it is in the eighth character 
position of STRING SUBSTRING, the Macro Preprocessor replaces the function reference with 
8. 

Example 2: 

?VR(?P3, ?G5) 

If parameter P3 has a value of ABC3D, and global variable G5 has a value of AD3, the first 
character of P3 that is not in G5 is B, the second character of P3. Therefore, the Macro 
Preprocessor replaces the function reference with a 2. 

EXAMPLE ILLUSTRATING MACRO FACILITY 

Figure 8-1 illustrates a sample unexpanded source module and an Assembler listing of the 
resulting expanded source module. 

MACRO FACILITY 8-31 CB07 



T 1 TLt 

* 
*INCLUDE IN-Ll~E MAC~O ~OUTINE~. 

* POLY MAC 
*THIS ~ACkU GENE~ATES COUE TO CUMPuTE 
*Y=X**N • X**(~-I) + •••• X • I. 
*X I~ DESIGNATED dY ~A~AMtTER I. 
*Y IS DESl'NATED bY PA~A~ETER Z. 
*N IS DESIGNATED ~y PAHA~ETEH 3. 

* I*J 
LO~ ;IIH 1,1 

G2 SUN 1P3 NUMdEk O~ FACru~S. 
Tt::STN !n 1G2,~TUREX COMPLETE? 
I*J 

FACTOR ?~INU ••• iIIESTEU CALL ~UR ANUTHEk FACTUR. 
I*J 
GZ ~ETN 1(;2-1 DECI-IEASE FACTOI-I COur-.TEI-I. 

GOTU TEST,.. 
~TOHr;x S11-1 ~i(1,1P2 ~TOHE POLYNOMIAL VALUE. 

Er-.OM 
* 
* 
FACTOR MAC 

* *THIS MACHU GEr-.EHATES LODE ~HICH MULTIPLIES (iRI) 8' ThE 
*CONTEiIITS OF THE LUCATIO~ uESIGNATED HY PAkA~ETEk I, ANO 
*AODS 1 Tu THE PHOuUCT. 
* MUL iIH,?PI 

AUV if< I, I 
ENOM 

* 
* 
/<lOVER MAC PII=O 
* 
*THIS MACHO GENEHATE~ COUE ~HICH PERFURMS A "/<IEMUkY TO ME~ORY" 
*MOIIE OF DATA. 
*IF PAHA~ETEH II IS NOill-ZERO, THE COot ~lLL MuvE dYTES. 
*IF PARAMETtR II IS lE~u, THE COuE hILL ~uVE ~URuS. (DEFAULT OPTION). 
*PARAMETER 1 S~ECIFIES THE SOUHCE ADDHE~S. 
*PARAMETEH 2 SPECIFIES THE DESTINATION ADDHE~S. 
*PARAMETEH 3 SPECIFIES T~E NUMdER OF UNIT~ (SYTES Ok ~ORDS) TO MOvE. 
* IFiIIZ 8YTES OR ~ORUS? 

* *MOvE ~OHDS ••• 
LL SETA LDR 

STH 
SAME 

USE LOCAL VARIARLES TO DEFINE DESIRED OPCODES. 
LS SETA 

GOTO 

* *MOVE BYTES ••• 
ilYTMOv NULL 
LL SETA LDH 
LS SETA 5TH 

* SAME I~ULL 

1*1 
I*J 
*USE VECTOR FUNCTION TO SUSSTIluTE ~AkA~ETEi($. 

LAd S~I,?vP(I) 
LAb i~~,?VPI~) 
CL =SHl 

*NtXT STATE~ENT ~ILL HAVE A UNIQuE LA~EL. 
NXT1LI ?LL SR3,$bl.$i(1 

?LS SR3,Sb2 •• SRI 
*GET UNIT COUNT AS 4 HEX INTEGEk. 

* 
* 

CMR S~I,=ICH(?~P(l» 

Of.f AUL. T VALuE. 
dE 
S 

FOLLO~ING NULL 
lNULLI 

ENDM 

OF ~LO~AL VARIASLt, ul. 
>1(11+2 
>NxT1LI 
IS FO~ THE ASSEMbLEK. 

*MAKE uSE OF THE IN-LINE MACHO DEFINITIUNS DEFINED ABOVE. 

Figure 8-1. Sample Unexpanded Source Module and Assembler Listing of Resulting 
Expanded Source Module 

MACRO FACILITY 8-32 CB07 



• 
f(~LZRO l.llV SR 1,2 

lirR $R 1, X 
1'0l.Y )I.,y,~ CUMI'UTE Y=x •• ~+)I. •• 4+X··3+X·*2+X+I, FOR X=2. 

( * 
MO~ER A,b'!I'! MIJVE II 8YTES FROM A TO b. 

* 
Hl.T 

)( REliV I 
Y H~SV I 
A Rf.Sv 20 
tI wESv 20 

1::1010 UliEMAC ,RELlRO 
EUF 

.. 
"ASSEI"BLER LISTING OF RESULTING EXPANDEU SOURCE MODULE 

USEMAC ASSEMBLER-0110-05/01/1433 PAGE 0001 

000001 Tl TLE USEMAC 
·000002 * 
000003 *INCLUDE IN-LINE MACRO ROUTI NES. 
000004 * 
000005 * 
OOOOllb Ir 

000007 Ir 

000008 • 
000009 • 
000010 • 
000011 .MAKE uSE OF THE l"-LINE MACRO DEFINITioNS DEFINEll ABOVE. 
000012 • 
000013 0000 IC02 REL£r<O LDV SR 1,2 
000014 UOOI '1F40 OOIF STI'< SRI,X 
000015 • 
OOOOlb 0003 lCOI LDV Sf'( I, I 
000017 • 
00U018 0\1\14 9040 OOIC MUL Sr.I, X 
000019 0000 I I:: 0 I ADV SRI,I 
UOO020 * 
000021 * ooouu 0007 91140 0019 MUL SR I, X 
000023 00U9 ItOI AD~ SR I, I 

( 000u2'1 * 
000025 • 
00002b OOOA 9d40 OOlb ~,UL SR I, X 
000027 OOOC 11::01 ADv SR 1, I 
00002t! • 
000029 • 
000030 0000 9i,j40 00\3 MUL SRI, X 
000031 OOOF IEOI ADII Sr.I, I 
000032 • 
000033 * 
00003'1 0010 9640 0010 MUl. SI< I, X 
00003:' 0012 IEOI AUV SWI,I 
000030 * 
000037 U013 9;-40 0001:: STOI<Ex STI< SHI,Y STORE POLYNuMIAL VALUE. 

00003t! * 
00003'1 * 
0000'10 * 
000041 0015 9dCO 0000 LAb Sbl,A 
000042 0017 AIlCO 00 If' LAb Sti2,B 
0000113 0019 8751 CL =$fjl 
0000114 OOIA tlv91 NXT007 LOH SR3,SBI.SRI 
0000115 0018 I17LlE 5TH SR3,Sb2.+SRI 
000040 ODIC '1970 0008 CI'lI< 51<1,=X'B' 
000047 OOlt:. 0902 B~ >S+2 
0000'18 OOlF OF F~ B >NxT007 
0000119 NULL 
000050 * 
000051 * 
000052 * 
000053 0020 OuOO HU 
00005'1 0021 X Rt::5v 1 
000055 0022 Y RESv 1 
00005b 0023 A RESV 20 
000057 0037 B RESII 20 
00005t! OOllll 0000 ~NU USEMAC,RELZI<O 

0000 I::RR COUNT 

( Figure 8-1 (cont). Sample Expanded Source Module and Assembler Listing of Resulting 
Expanded Source Module 

MACRO FACILrry 8-33 CB07 



PROGRAMMING CONSIDERATIONS 

1. If an expanded source program, each macro control statement and each other type of 
statement that contains error flag(s) can comprise up to 249 characters. Each other line 
can comprise up to 255 characters. Subsequent characters are truncated. 

2. Input to the Macro Preprocessor may be either uppercase or lowercase characters. All 
lowercase characters in ASCII and hexadecimal string constants, and in hexadecimal 
integer constants remain lowercase characters; all other lowercase characters within the 
source module are converted to uppercase. 

3. If insufficient memory exists, memory can be conserved by: 
a. Assigning some or all macro routines to macro libraries. 
b. Limiting the level of nested macro calls. 
c. Limiting the size of macro parameter and variable values. 
d. Specifying in LIBM macro control statements only those macro routines that will 

actually be requested in subsequent macro calls. 

INrrlAUZED VALUES OF MACRO VARIABLES 

Each local macro variable is initialized to be a null ASCII character string, except for the 
following: 

Ll 

L2 

L3 

L4 

Unique 3-character string. Each time there is a macro call, the value ofLl is incremented by 
1; can be from 001 toZZZ (i.e., 001,002, ... ,009,00A, ... ,00Y,00Z,01O,01l, ... ,ZZZ). This variable 
permits a statement in a macro routine to have a unique label each time the routine is 
requested in a macro call; e.g., if the label ofa statement is ?Gl?LISM, the label would be 
$OOISM the first time the routine is requested, and $002SM the second time the routine is 
requested if no other routines were requested in between the two requests and also assuming 
the initial value ofGl has not been altered. 

It is recommended that labels generated by macro routines be of the form ?G 1 ?Llxx where xx 
are any two characters that are unique within a given expansion of a given macro routine. It 
is further assumed that the global macro variable G 1 contains a single character that will 
not be used as the first character of any label, except for those labels generated in a macro 
expansion. 

Numeric value that designates the current level of macro call nesting in the current macro 
call. If the macro call is not a nested macro call, L2 equals o. 

Numeric value that designates the ordinal number ofthe last parameter that was assigned 
a value in the current macro call. If the macro call does not include any parameters, L3 
equals o. 

Label of the current macro call. If no label is specified, L4 equals a null character string. 

Global macro variable G 1 is initialized to equal $. Global macro variable G2 is initialized to a 
16 character string whose value reflects the contents of the External Switch Word at the time 
the macro processor was initiated. The first character of G2 will be the character "0" if external 
switch o was off, or the character 1 if external switch 0 was on; the second character ofG2 will be 
a 0 or 1 depending on whether external switch 1 was off or on respectively; etc. Each other global 
variable is a null character string. These values remain in effect unless they are reassigned in 
SETA or SETN macro control statements. 

Gl 

Global macro variable, initialized to equal $. 

MACRO FACILrry 8-34 CB07 

i , 
1'1.,"; 



( 

( 

G2 

Global macro variable, initialized to a 16-character string. This value reflects the contents of 
the External Switch Word at the time the macro processor was initiated. The first character 
ofG2 will be the character "0" if external switch 0 was of, or the character 1 if external switch 
o was on; the second character ofG2 will be a 0 or 1, depending on whether external switch 1 
was off or on, respectively; etc. 

G3-G9, GA-GZ 

Each of these global variables is a null character string. 

NOTE: The above global variable values remain in effect until they are reassigned in SETA or 
SETN macro control statements. 

DESIGNATING NUMERIC VALUES 

When an operand or argument requires a numeric value, the value must be from -32768 to 
+327671 • (See "Truncation/Padding of String Constants" in Section 2 to determine how charac­
ters are truncated, if necessary.) A numeric value can be specified as follows: 

• Binary integer constant in decimal notation (e.g., 31764, +4652) 

• Binary integer constant in hexadecimal notation (e.g., +X'2F',X'7000') 

• Substitution operator followed by macro variable name whose contents are the source 
language representation of a binary integer constant in decimal or hexadecimal notation 
(e.g., ?G3, ?L4) 

• The hexadecimal conversion function, CH, allows the numeric expression which defines 
the first argument to evaluate a 2-word signed integer value. 

• Substitution operator followed by macro parameter name whose contents are the source 
language representation of a decimal or hexadecimal integer constant (e.g., ?P2) 

• Substitution operator followed by a macro function that returns a numeric value 

• Expression that combines any of the above character strings by including arithmetic 
operators (e.g., 31764+(?G3)) (See "Expressions" in Section 2.) 

• Assembler functions (See "Expressions" in Section 2.) 

DESIGNATING ALPHANUMERIC VALUES 

When an operand or argument requires an alphanumeric value, you can specify any type of 
alphanumeric character string, including the following: 

• A character string that does not contain a space, horizontal tab, comma, semi-colon, 
apostrophe, left or right parenthesis 

• An ASCII string constant (which must not be preceded by the optional letter 'A') 

• Substitution operator followed by macro variable name 

• Substitu~ion operator followed by macro parameter name 

• Substitution operator followed by macro function 

• Expression that combines any of the above character strings by specifying them adjacent 
to each other or encloses an individual or concatenated string within balanced paren­
theses. 

An alphanumeric value is terminated by a space, a horizontal tab, comma, semi-colon, 
unbalanced right parenthesis, or end of line, according to the system rules of the statement or 
function in which it appears. 

Each ASCII string constant in an alphanumeric value is converted to the length delimited 
internal form by first replacing each unprotected substitution operator and following macro 
parameter or variable name by the content of that parameter or variable and replacing each 
unprotected substitution operator and following macro function reference by the value returned 
by that function. After all substitutions have been completed, the delimiting apostrophes are 
removed and any embedded apostrophe representations are reduced to a single character each. 

MACRO FACILITY 8-35 CB07 



Example: 

?SS(' ABC"DEF"GH' ,4,5) 

In this example, the first argument of the substring function evaluates to the character string 
ABC'DEF'GH. The resultant substring (Le., five characters, beginning at the fourth character) 
is'DEF'. 

NOTE: The arguments of a macro call statement and the arguments of a MAC statement do not 
have ASCII string constants converted to their length delimited form at the time the 
macro call statement or the MAC statement is processed. This conversion occurs when 
the parameter values are subsequently used as alphanumeric values within the macro 
routine. 

Any combination of characters may be used as an argument of a macro call or a MAC 
statement provided that the rules described below are obeyed. 

The following conventions have been defined for alphanumeric values. 

ALPHANUMERIC VALUE CONVENTIONS 

Balanced Apostrophes 

An alphanumeric value may contain one or more quoted strings. A quoted string is any 
sequence of characters that begins and ends with an apostrophe. Any apostrophe to be included 
as part of the quoted string must be entered as a pair of apostrophes (Le., two consecutive 
apostrophes). An apostrophe cannot also be paired with a third apostrophe within the quoted 
string. 

The first quoted string starts with the first apostrophe in the argument. A quoted string ends 
with the first "even-numbered" apostrophe that is not immediately followed by another apos­
trophe. Subsequent quoted strings start with the first apostrophe after the apostrophe that ends 
the previous quoted string. 

The first and last apostrophes of a quoted string are called "balanced" apostrophes. 

The following example contains two quoted strings. The first and fourth and the fifth and sixth 
apostrophes are balanced sets of apostrophes (Le., E is not a quoted string). 

'ABC''D'E'F' 

NOTE: Commas, semicolons, parentheses, spaces, and horizontal tabs within a quoted string do 
not terminate an alphanumeric value. 

Balanced Parentheses 

If an alphanumeric value or a macro call argument or a MAC statement argument contains 
parentheses, there must be an equal number of left and right parentheses. The nth right 
parenthesis must appear to the right of the nth left parenthesis. 

A "set" of parentheses is balaced when a right parenthesis follows the left parenthesis. Any 
intervening parentheses must be members of an included set of balanced parentheses. The 
included set must be entirely between the including set. In the following example, the first and 
fourth, the second and third, and the fifth and sixth parentheses are sets of balanced paren­
theses: 

(ABC(D)E)(F) 

A parenthesis that appears between balanced apostrophes (Le., is part of a quoted string) is 
not considered in determining balanced parentheses. In the following example, the middle 
parenthesis is not considered: 

(')') 

NOTE: Commas, semicolons, spaces, and horizontal tabs between balanced parentheses do not 
terminate an argument of a macro call. 

MACRO FACILITY 8-36 CB07 

/( "\. o 



( 

( 

Commas and Semicolons 

A comma or semicolon which is not between balanced apostrophes or balanced parentheses 
indicates the end of an alphanumeric value, the end of an argument of a macro call, or the end of 
an argument of a MAC statement. The following example shows one argument containing the 
two commas: 

(ABC,DE)F'G,H' 

NOTE: The comma or semicolon that terminates an argument of a macro call is not considered to 
be a part of that argument. 

A comma is used to terminate an argument if the next argument begins on the same source 
line. The next argument starts with the first character following the comma that is neither a 
space nor a horizontal tab. . 

A semicolon is used to terminate an argument if the next argument begins on the next source 
line. In this case, the next argument starts with the first character that is neither a space nor a 
horizontal tab (following the line number, if present) on-the next source line. 

Spaces and Horizontal Tabs 

A space or horizontal tab indicates the end of an alpham.tmeric value, the end of the last 
argument of a macro call, or the end of the last argument on a MAC statement unless the space 
or tab appears: 

• Between balanced apostrophes. 

• Following a comma. 

• Following the line number ofa continuation line with no intervening characters, other 
than additional spaces and horizontal tabs. 

MACRO FACILITY 8-37 CB07 





Appendix A 

Programmer's Reference 
Information 

This appendix summarizes information about the internal representation of the assembly 
language instructions, the operations they perform, and other useful data for coding and 
debugging your program. 

SUMMARY OF HARDWARE REGISTERS 

Figure A-I is a list of Level 6 registers and their formats. The length of each register is shown 
in bits. 

Program Counter 
(P-Register) 

Bit: o 

Bit: 0 

19* 

INSTRUCTION ADDRESS 

19* 

Base Register I
'---~-----' 

. INSTRUCTION ADDRESS 

Bit: 0 15 "=----1 --I General Registers 
(R1 through R7) 

Mode Control Registers 
(M1 through M7) 

. ANY DATA 

Bit: 0 7 ,--------. 
MODE 
INFORMATION 

Bit: 0 19 

Stack Address 1 
Register (T) ADDRESS OF CURRENT STACK 

*15 for 6/30 models, 19 for 6/40 and 6/50 models 

Figure A-t. Level 6 Hardware Registers 

PROGRAMMER'S REFERENCE 
INFORMATION A-I CB07 



System Status 
Register 
(S) 

Memory Protection 
Unit - System 
Status Register 
(S) 

Indicator 
Register 
(I) 

Name 

Scientific Accumulator 
Registers 
($S1 through $S3) 

Bit: 

Bit: 

Bit: o 

Bit: o 

C 

15 

Interrupt level of 
current program 

L-____ Processor identifi-
cation (set automatically) 

1 = System in privileged 
state 

15 

Interrupt level of 
current program 

Processor identification 
(set automatically) 

Current ring value, possible 
values: 

~~ } System in privileged state 

g~ } System in user state 

12 13 14 15 

Result of last 
compare 

1 = I/O command 
accepted 

1 = Bit test 
indicator 

'---------- 1 = Carry 

'------------- 1 = Overflow 

Format 

63 

) 
I L Magnitude of the mantissa 

L- Sign (O=positive, 1=negative) 
of the mantissa 

L.. __________ Characteristic (excess 64 
power-of-16 exponent) of 
the number 

Figure A-I (cont). Level 6 Hardware Registers 

PROGRAMMER'S REFERENCE 
INFORMATION A-2 

---_._._--

;ft" ", 
.,' I 

''''-.) 

CB07 



( 

( 

( 

Bit: 

Scientific Indicator 
Register (51) 

Bit: 

SIP Mode Register 
(M4) 

Bit: 

SI P Trap Mask Register 
(M5) 

Commercial processor 
Indicator Register (CII 

Bit: 

0 

o 

2 3 4 5 6 7 

5 7 

Round/Truncate Mode 
0" Truncate 
1" Round 

Result of last 
scientific compare: 

Less than 

Greater than 

Precision error 
(trap 22) 
Scientificance error 
(trap 21) 

OL T failed (trap 31) 

Exponent underflow 
(trap 19) 

IML: Memory Length (Length of main memory data 
field to or from wh ich data is transferred 

AL: 

2 

via a scientific accumulator (SA)) 
0" Two words 
1 " Four words 

Accumulator Length (Length of scientific 
accumulator data field to or from which 
data is transferred to/from main memory, 
a hardware register, or another SIP 
register) 
0" Two words 
1 " Four words 

3 4 5 7 

L-_", Precision Error Trap Mask 

L-____ Significance Error Trap Mask 

L-_______ ... Exponent Underflow Trap Mask 

o 2 3 4 5 6 7 

OLT Error 

Less Than 

Greater Than 

Sign Fault 

Truncation Indicator 

Overflow Indicator 

Figure A-I (cont). Level 6 Hardware Registers 

PROGRAMMER'S REFERENCE 
INFORMATION A-3 CB07 



Commercial Processor 
Mode Register (CM) 

Remote Descriptor 
Base Register 
(RDBR) 

Bit: 

Bit: 

o 

o 

2 3 4 5 6 7 

ADDRESS OF REMOTE 
DESCRIPTOR ARRAY 

19 

Truncation Trap Mask 
o . Do not trap 
1 • Trap 

Overflow Trap Mask 
o . Do not trap 
1 . Trap 

Figure A-I (cont). Level 6 Hardware Registers 

ASSEMBLY LANGUAGE INTERNAL FORMATS BY TYPE 

Each of the seven types (Le., generic, branch-on-register, etc.) of assembly language 
instructions is stored in memory in a predefined format, as shown in Figure A-2. 

PROGRAMMER'S REFERENCE 
INFORMATION 

-------- - -----_._---"----

A-4 CB07 



( 

( 

Generic (GE): 

Branch-on-indicator (BI): 

Shift (SHS and SHL): 

Branch-on-register (BR): 

Short value immediate (SI): 

Input/output (10): 

10 AND 10H 

10LD 

Single operand (SO): 

Double operand (DO): 

Bit: 

I 
I 

0 

0 

0 

0 

0 

0 

1 

0 

1 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 0 0 0 0 o I FUNCTION 

ADDITIONAL WORD(SI.IF NECESSARY 

0 0 0 OPCODE I DISPLACEMENTa 

REGISTER 
01 

TYPE, DIRECTION, 
NUMBER 0 0 0 DISTANCE 

REGISTER OPCODE I DISPLACEMENTa 
NUMBER 
REGISTER 
NUMBER OPCODE I VALUE 

0 0 0 OPCODE I DATA ADDRESS 
SYLLABLE 

ADDITIONAL WORD(S), IF REQUIRED BY ADDRESS 
SYLLABLE AS DEFINED BELOWb 

ADDRESS SYLLABLE " 
EMBEDDED CONTROL WORD } 

o 0 0 0 0 0 0 I ADDRESS SYLLABLE +b } 
ADDITIONAL WORD(S) ) 

o 0 0 I OPCODE I ADDRESS 
ADDRESS SYLLABLE 

ADDITIONAL WORD(S), IF REQ"UIREDb 

o 

EMBEDDED CONTROL WORD } 

I ADDRESS SYLLABLE 
o 0 0 0 0 0 0 ADDRESS SYLLABLE +b } 

ADDITIONAL WORD(S) 

0 0 0 0 0 0 0 01 
RANGE ADDRESS 
SYLLABLE 

ADDITIONALWORD(S), IF NECESSARyb 

0 0 01 OPCODE I ADDRESS SYLLABLE~ 

ADDITIONAL WORD(SI. IF NECESSARyb 

1 I REGISTERI 
NUMBER OPCODE I ADDRESS SYLLABLE 

ADDITIONAL WORD(S), IF NECESSARyb 

alf the displacement value specified is 0, the location to be 
branched to is specified in the next sequential word(s); if it 
is 1, the next sequential word(s) specifies the displacement 
(in words) from the address of this displacement word; other­
wise,the displacement value specified is the displacement, 
in two's complement form, from the current instruction to the 
destination. 

bDepending on the form of the address experssion used in the 
source code, the generated object text may occupy one, two, 
or three words as follows: 

o If the address expression was of the immediate memory, 
immediate operand, or P-relative address forms, the 
hexadecimal address of the location specified, the dis­
placement to it, or the value of the oeprand itself is 
contained in the next sequentIal word or words. 

o I f the address expression was of the B-relative address 
form, the address of the location is derived by per­
forming the operation(s) specified in Table A-3. 

a If the address expression was of the register addressing 
form, the value or address is contained in the specified 
register. 

For those instruction types that show register number in bits 
1 through 3, this is the number of register specified in the 
first operand of the multiple-operand instruction that re­
quires a register in the first operand. 

Figure A-2. Internal Formats of Assembly Language Instructions 

PROGRAMMER'S REFERENCE 
INFORMATION A-5 CB07 



HEXADECIMAL REPRESENTATION OF INSTRUCTIONS 

Table A-I illustrates the hexadecimal representation of the CPU and SIP assembly language 
instructions as they appear in a printout. These representations are derived from the formats of 
the various types described under "Assembly Language Internal Formats by Type" 
(Figure A-2). 

In the table, when O+addsyl or O+x is specified, it indicates that the last byte is a 7-bit byte 
preceded by a binary 0; 8+addsyl or 8+x indicates a 7-bit byte preceded by a binary 1. In either 
case, only the last seven bits are significant. Addsyl is defined in Table A-2; x is the displacement 
in a branch instruction, as defined under "Assembly Language Internal Formats by Type" 
(Figure A-2); d is the shift displacement, in bit!'. See Appendix H for hexadecimal representation 
of Commercial Processor instructions. 

TABLE A-I. INTERNAL REPRESENTATION OF ASSEMBLY LANGUAGE INSTRUCTIONS 

First Second 
Hexadecimal Hexadecimal 
Digit Digit 

0 

0 

, 

2 
" L-

3 
3 
4 
4 
5 

PROGRAMMER'S REFERENCE 
INFORMATION 

~-- --- --_. - ------- -----

Third 
Hexadecimal 
Digit 

0 

0 
0 

0 
0 
0 
1 
6 
6 
6 
6 

o+x 
8+x 
O+x 
8+x 
o+x 
8+x 
o+x 

A-6 

Fourth 
Hexadecimal 
Digit Instruction Type 

0 HLT 
1 MCL 
2 BRK 
3 RTT 
4 RTCN 
5 RTCF 
6 WDTN 
7 WDTF 
8 MMM 
A ASD GE 
B VLD 
C LRDB 
D SRDB 
1 CNFG 
0 DQA 
1 QOT 
2 DQH 
3 QOH 
x BL 
x BGE 
x BG 
x BLE BI 
x BOV 
x BNOV 
x BBT 

CB07 



( 

TABLE A-I (CONT). INTERNAL REPRESENTATION OF ASSEMBLY LANGUAGE INSTRUCTIONS 

First Second 
Hexadecimal Hexadecimal 
Digit Digit 

5 
6 
6 
7 
7 
8 
8 

0 9 
9 
A 
A 
B 
B 
F 
F 

4 

1-3 5 

6 

4 

4 5 

6 

5 4 

6 4 

7 4 

1-7 0 

PROGRAMMER'S REFERENCE 
INFORMATION 

Third 
Hexadecimal 
Digit 

8+x 
O+x 
8+x 
O+x 
8+x 
O+x 
8+x 
O+x 
8+x 
O+x 
8+x 
O+x 
8+x 
O+x 
8+x 

o+x 
8+x 
O+x 
8+x 
O+x 
8+x 

O+x 
8+x 
O+x 
8+x 
O+x 
8+x 

O+x 
8+x 

O+x 
8+x 
O+x 
8+x 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 
F 

A-7 

Fourth 
Hexadecimal 
Digit Instruction Type 

x BBF 
x BCT 
x BCF 
x BlOT 
x BIOF 
x BAL 
x BAGE 
x BE 
x BNE 
x BAG 
x BALE 
x BSU 
x BSE 
x NOP 
x B 

x SBLZ 
x SBGEZ BI 
x SBEZ 
x SBNEZ 
x SBGZ 
x SBLEZ 

x SBL 
x SBGE 
x SBEQ 
x SBNE 
x SBG 
x SBLE 

x SBPE 
x SBNPE 

x SBSE 
x SBNSE 

x SBEU 
x SBNEU 

d SOL 
d SCL 
d SAL 
d DCL 
d SOR 
d SCR 
d SAR 
d DCR 

d DOL SHS 

d DAL SHL 

d DOR 

d DAR 

CB07 



TABLE A-I (CONT). INTERNAL REPRESENTATION OF ASSEMBLY LANGUAGE INSTRUCTIONS 

First Second 
Hexadecimal Hexadecimal 
Digit Digit 

7 
7 
8 
8 
9 
9 

1-7 A 
A 
B 
B 

C 
D 
E 
F 
0 
1 
1 

2 
2 
3 
4 
4 
6 
7 
7 
8 

8 8 
9 
9 
A 
A 
B 
B 
C 
C 
D 
D 
E 
E 
F 
F 

C 
C 8 

D 
9 

0 
0 

9-F 1 
2 
2 

PROGRAMMER'S REFERENCE 
INFORMATION 

Third Fourth 
Hexadecimal Hexadecimal 
Digit Digit 

O+x x 
8+x x 
O+x x 
8+x x 
O+x x 
8+x x 
O+x x 
8+x x 
O+x x 
8+x x 

immedvalue 
immedvalue 
immedvalue 
immedvalue 
O+addsyl 
O+addsyl 
8+addsyl 
O+addsyl 
8+addsyl 
8+addsyl 
0+ ad dsyl 
8+addsyl 
o+addsyl 
O+addsyl 
8+addsyl 
O+addsyl 
8+addsyl 
O+addsyl 
8+addsyl 
O+addsyl 
8+addsyl 
O+addsyl 
8+addsyl 
O+addsyl 
8+addsyl 
O+addsyl 
8+addsyl 
O+addsyl 
8+addsyl 
O+addsyl 
9+addsyl 

O+addsyl 
8+addsyl 
O+addsyl 
8+addsyl 
O+addsyl 
8+addsyl 
8+addsyl 
O+addsyl 
8+addsyl 

A-8 

Instruction Type 

BDEC 
BINC 
BLZ 
BGEZ 
BEZ BR 
BNEZ 
BGZ 
BLEZ 
BEYN 
BODD 
LDV 
CMV 

SI 
ADV 
MLV 
IO 
IOH IO 
IOLD 
NEG 
LB 
JMP 
AID 
SID 
CPL 
CL 
CLH 
LBF 
DEC SO 
LBT 
CMZ 
LBS 
INC 
LBC 
ENT 
STS 
LDI 
SDI 
CMN 
LEV 
CAD 
SAVE 
RSTR 
SCZQ' 
SCZD 
SNGQ 
SNGD 
MTM 
LDH 
CMH DO 
SUB 
LLH 

CB07 

'" 



( 

(
~. 

.' 

TABLE A-1 (CONT). INTERNAL REPRESENTATION OF ASSEMBLY LANGUAGE INSTRUCTIONS 

First Second Third Fourth 
Hexadecimal Hexadecimal Hexadecimal Hexadecimal 
Digit Digit Digit Digit Instruction Type 

3 O+addsyl DIV 
3 8+addsyl LNJ 
4 O+addsyl OR 
4 8+addsyl ORH 

9-F 5 O+addsyl AND 
5 8+addsyl ANH 
6 O+addsyl XOR 
6 8+addsyl XOH 
7 O+addsyl STM 
7 8+addsyl STH 
8 O+addsyl LDR 

9-B 8 8+addsyl SLD 

D-F 8 8+addsyl SCM 

9-F 9 O+addsyl CMR 

9-B 9 8+addsyl SAD 
DO 

D-F 9 8+addsyl SSB 

A O+addsyl ADD 
A 8+addsyl SRM 

9-F B O+addsyl MUL 
B 8+addsyl LAB 

9-B C O+addsyl SML 

D-F C O+addsyl SDV 

C 8+addsyl LDB 
D 8+addsyl eMB 

9-F E O+addsyl SWR 
E 8+addsyl SWB 
F O+addsyl STR 
F 8+addsyl STB 

TABLE A-2. ADDRESS SYLLABLES FOR CPU & SIP INSTRUCTIONS 

mmm rrr = 000 rrr = ddd 

i = a i = I i= a i = I 

000 <location *< location $Bn *$Bn 

001 < location.$RI *< location.$R I $Bn.$RI *$Bn.$RI 

010 < location.$R2 *< location.$R2 $Bn.$R2 *$Bn.$R2 

all < location.$R3 *< location.$R3 $Bn.$R3 *$Bn.$R3 

100 location *Iocation $Bn.value *Bn.value 

101 reserved reserved t$Rn} $Bk.-$RI $Bq.+$Rl =$Bn 
=$Sk 

110 reserved reserved -$Bn $Bk.-$R2 $Bq.+$R2 

III { =Iocation} $IV. value +$Bn $Bk.-$R3 $Bq.+$R3 
=value 

NOTE: An address syllable can be represented as mmmirrr, which are the last seven bits in the word; n can be any number 
between 1 and 7 and is equal to rrr for rrr*O; k is a number within the range 1 through 3 and is equal to rrr for 
rrr = 1,2,3; and q is a number within the range 1 through 3 and is equal to rrr-4 for rrr = 5,6,7. For more in­
formation about these address expressions, see "Addressing Techniques" in Section 5. 

PROGRAMMER'S REFERENCE 
lNFORMATION A-9 CB07 



VALID ADDRESS EXPRESSIONS 

Table A-3lists all ofthe valid address expressions and shows graphically how each derives the 
effective address of the data to be used in the operation. 

The various types of symbolic names, constants, and expressions (other than address 
expressions) are described in detail in Section 2. 

TABLE A-3. SUMMARY OF VALID FORMS OF ADDRESS EXPRESSIONS FOR CPU 
AND SIP INSTRUCTIONS 

Addressing 
Technique 

Register 
Addressing 

Immediate Direct 
Memory 
Addressing 

Indirect 

Indexed 
Direct 

Indexed 
Indirect 

Immediate 
Operand 
Addressing 

P-Register 
Addressing Direct 

Indirect 

B-Register Direct 
Addressing indirect 

Indexed 
Direct 

Indexed 
Indirect 

Direct + 
Displacement 

PROGRAMMER'S REFERENCE 
INFORMATION 

Address 
Expression 
Form 

=$Rn 
=$Bn 
=$Sn 

{ loooxp""ion I 
< t} templabel 

{ loe,",pre"ion I 
*< {+} 

- templabel 

{ loeoxP""iOn} n 
< {+} .$R 2 

- templabel 3 

{ loeoxpre,"on I n 
*< {+} .$R 2 

- templabel 3 

=locexpression 

=stringconstant 

= {intvalexpression} 
extvallabel 

{ intloeoxp""ion I 
t} tempI abel 

{ intlOOOXP"",on} 

* {~} tempI abel 

$Bn 

*$Bn 

SBn.IR m 
'IBn.IRU} 

$B fntvaleXpression} 
n. extvallabel 

A-lO 

Generation of 
Effective Address 

.Bn.=,M. 
]!!,=.EA 
~=,EA, 

location = EA 

,location = EA 

lo"lion • R m = EA 

,Ioe,lion • ~ m , = EA 

Address of current address 
syllable + 1 = EA 

internal location = EA 

,internal location, = EA 

.fu1 = EA 

.!!!1:::: location 
,location, = EA 

U}= Bn + R EA 
"---' 

, , 

~= location 

Joe.tion,' R m = EA 

~ 

,Bn + value = EA 

CB07 



( 

( 

TABLE A-3 (CONT). SUMMARY OF VALID FORMS OF ADDRESS EXPRESSIONS FOR CPU 

Addressing 
Technique 

B-Register 
Addressing 
(Cont.) 

Short 
Displacement 

Special 

Indirect + 
Displacement 

86 direct + 
Displacement 

86 indirect + 
Displacement 

Push 

Pop 

Indexed Push 

Indexed Pop 

Interrupt Vector 

Address 
Expression 
Form 

{ intValeXpression} 
*$8n. extvallabel 

$BB.$LCOMW + 
intvalexpression 

*$BB.$LCOMW + 
intvalexpression 

-$8n 

+$8n 

$> {H+$R m 

{ 
intlocexpreSSion} 

> t} tempi abel 

= {intvalexpresSion} 
> extvallabel 

$ IV {intvalexpression} 
. extvallabel 

NOTE: The symbols used in this table have the following meanings: 

\ooooo-ooJ - Contents of ... 
EA - Effective Address 
~ - Replaces the element pointed at 
locexpression -location expression (any type) 

templabel- temporary label 
stringconstant - string constant 
intvalexpression - internal value expression 

extvallabel - external value label 
intiocexpression - internal location expression 

* -
<­
>-
>= 

Generation of 
Effective Address 

.!!!l + value = location 

.location. = EA 

.!!§ + value = EA 

~ + value = location 
,location, = EA 

.fu!.~ 
8n = 
~ 

am. -1) 
EA 

EA 

<l!!1 + 1) 

location = EA 

Word following the word(s) 
containing op code + first 
operand address syllable = EA 

IV + value = EA 
\...-.J 

Indirect memory addressing 
Immediate memory addressing 
Short displacement addressing 
Specified Addressing 
Component separator 

(indexing and displacement) 

All other notations represent standard usage as defined in the preface of this manual or 
required Assembler-specific symbols. 

PROGRAMMER'S REFERENCE 
INFORMATION A-ll CB07 





( 

f 

( "', 

./ 

AppendixB 

Hexadecimal 
Numbering System 

Level 6 stores all data in memory in the form of binary digits. However, to save space in 
printouts, this data is always shown in its hexadecimal equivalent (unless an ASCII memory 
dump is requested). This appendix explains how to convert from hexadecimal to decimal and 
vice versa, as well as how to perform hexadecimal arithmetic operations. 

Table B-1 shows the comparison between binary (i.e., base 2), decimal (i.e., base 10), and 
hexadecimal (i.e., base 16) symbols. 

TABLE B-1. COMPARISON OF BINARY, DECIMAL, 
AND HEXADECIMAL SYMBOLS 

Binary Decimal Hexadecimal 

0000 0 0 
0001 1 1 
0010 2 2 
0011 3 3 
0100 4 4 
0101 5 5 
0110 6 6 
0111 7 7 
1000 8 8 
1001 9 9 
1010 10 A 
1011 11 B 
1100 12 C 
1101 13 D 
1110 14 E 
1111 15 F 

In the course of coding your assembly language program, it is possible to define data as a 
decimal, hexadecimal, or binary number, or as an ASCII symbol, as illustrated in Table B-4. 
However, in memory, all data is stored in binary. 

Data that is defined as ASCII in the source program is stored as the binary equivalent of the 
ASCII symbol, and shown in the printout as the hexadecimal equivalent of the stored binary 
value. 

Numeric data is stored as binary, and is shown in the printout as the hexadecimal equivalent 
of the stored binary value. 

Table B-2 illustrates how the value 32 is stored in memory depending on how it is defined in 
the source program (i.e., depending on whether it is defined as an ASCII value, binary value, 
decimal value, or hexadecimal value.) In addition, it shows how the stored value would appear in 
an ASCII or hexadecimal printout. 

As you can see in this table, hexadecimal and binary are identical. In addition, it illustrates 
how an ASCII symbol is expanded according to Table B-4. Finally, it shows a decimal value that 
is first converted to its hexadecimal (i.e., binary) equivalent and then stored in memory. 

The following pages explain how to compute the conversions and how to do hexadecimal 
arithmetic . 

HEXADECIMAL 
NUMBERING SYSTEM B-1 CB07 



TABLE B-2. STORAGE AND PRINTOUT OF VALUE 32 

Data Type Stored in Memory Hex Printout ASCII Printout 
A'32' 0011001100110010 3332 32 
X'32' 0000000000110010 0032 .2 
Z'32' 0011001000000000 3200 2. 

32 (Dec) 0000000000100 000 0020 .Space 
B'00110010' 0011001000000000 3200 2. 

DECIMAL-TO-HEXADECIMAL CONVERSION 

The system automatically converts all decimal data to its binary (Le., hexadecimal) equiva­
lent when storing it in memory. It then operates on that binary data. 

You can determine how a decimal number will be stored in memory as follows: 
( 

1. Divide the decimal number by 16. The remainder becomes the low-order (i.e., rightmost) 
hexadecimal digit. 

2. Divide the whole number result of the last division by 16. The remainder becomes the 
next-highest-order hexadecimal digit. ' 

3. Continue this process until the whole number result of a division is o. The remainder 
becomes the highest-order (Le., leftmost) hexadecimal digit. 

For example, to determine the hexadecimal equivalent of the decimal number 27,401, do the 
following: 

1. Divide 27,401 by 16. 
The result is 1712. The remainder is 9. 

2. Divide 1712 by 16. 
Tha- result is 107. The remainder is O. 

3. Divide 107 by 16. 
The result is 6. The remainder is 11. 

4. Divide 6 by 16. 
The result is O. The remainder is 6. 

Using Table B-1, you can see that in hexadecimal 11 is represented by B. Thus, the hexadeci-
mal equivalent of 2740110 is 6B09. \ 

HEXADECIMAL-TO-DECIMAL CONVERSION 

The type of conversion you will most commonly be confronted with will be from hexadeCimal 
to decimal because, unless you specifically request an ASCII memory dump, printouts of 
memory will 'always be in hexadecimal. To identify ASCII data readily, look for repetition of the 
first character in a byte. For example, 

~1~2 ~3~3 Q3~5 Q6Q7 xxxx xx ... 

is a list of ASCII numbers (i.e., 1,2,3,3,3,5,6, 7, in the example). In most other cases, the 
hexadecimal symbols will appear to be quite random. If the stored hexadecimal symbols 
represent numeric data, you can convert it to decimal as follows: 

1. Multiply the decimal equivalent (see Table B-1) of the high-order (i.e., leftmost) 
hexadecimal digit by 16. 

2. Add the decimal equivalent of the next-lowest-order hexadecimal to the result of step 1. 

3. Multiply the result of step 2 by 16. 

4. Repeat steps 2 and 3 until you reach the last hexadecimal digit. 

5. Simply add the decimal equivalent of the last hexadecimal digit to the result of the last 
previous multiplication. 

HEXADECIMAL 
NUMBERING SYSTEM B-2 

--- ._--_. ----

CB07 



( 

For example, to convert the hexadecimal value 1C8A to its decimal equivalent, do the 
following: 

1. Multiply 1 by 16. 
The result is 16. 

2. Add 12 (i.e., C = 1210). 

The result is 28. 

3. Multiply 28 by 16. 
The result is 448. 

4. Add 8. 
The result is 456. 

5. Multiply 456 by 16. 
The result is 7296. 

6. Add 10 (i.e., A = 1010). 

The result is 7306. 

Thus, the decimal equivalent of 1C8A 16 is 7306. 

Alternatively, you may use Table B-3 to convert hexadecimal numeric data to its decimal 
equivalent. 

TABLE B-3. HEXADECIMAL/DECIMAL CONVERSION 

Word 

Byte Byte 

HI Decimal H2 Decimal H3 Decimal 

0 0 0 0 0 0 

1 4096 1 256 1 16 
2 8192 2 512 2 32 
3 12288 3 768 3 48 
4 16384 4 1024 4 64 
5 20480 5 1280 5 80 
6 24576 6 1536 6 96 
7 28672 7 1792 7 112 
8 32768 8 2048 8 128 
9 36864 9 2304 9 144 
A 40960 A 2560 A 160 
B 45056 B 2816 B 176 
C 49152 C 3072 C 192 
'D 53248 D 3328 D 208 
E 57344 E 3584 E 224 
F 61440 F 3840 F 240 

NOTE: HI is the first hexadecimal digit. 
H2 is the second hexadecimal digit. 
H3 is the third hexadecimal digit. 
H4 is the fourth hexadecimal digit. 

H4 Decimal 

0 0 
1 1 
2 2 
3 3 
4 4 
5 5 
6 6 
7 7 
8 8 
9 9 
A 10 
B 11 
C 12 
D 13 
E 14 
F 15 

IfH1 is 0 through 7, the number is positive and you c9mpute the decimal equivalent of the 
given hexadecimal number by summing the decimal equivalent of H1, H2, H3, and H4. 

Note: 
For a signed integer byte, use H3 and H4 only. 

HEXADECIMAL 
NUMBERING SYSTEM B-3 CB07 



If HI is 8 through F, the number is negative, and you must find the twos complement before 
using the table. You can compute the twos complement by subtracting the hexadecimal number 
from 10000 (hexadecimal) or by changing all O's to 1 and then adding a binary 1. The twos 
complement can also be computed by performing the ones complement of all of the bits that are 
to the left ofthe rightmost 1. (e.g., the twos complement of 0011 1000 11000000 is computed by 
"flipping" the leftmost 9 bits giving 11000111 01000000.) This assumes that the twos comple­
ment of zero is zero. You can then find the decimal equivalent directly from the table, appending 
a minus sign to the final result. 

HEXADECIMAL-TO-ASCII CONVERSION 

If the stored data is an ASCII value, it can be translated by converting the hexadecimal value 
in the printout to its ASCII equivalent using Table B-4. 

For example, the locations that contain the start of your program should have the following 
hexadecimal representation: 

5449 544C 4520 hhhh hh ... 

By pairing the digits (e.g., 54) and locating, the character in the table where these two digits 
intersect, you can ascertain the ASCII equivalent of the stored hexadecimal value. 
Remembering that the first hexadecimal digit corresponds to the HI row and that the second 
digit corresponds to the H2 column, the above representation translates to: TITLEA. 

If you wish to ascertain the hexadecimal equivalent of an ASCII character, simply locate the 
character in the table and record the H1H2 values at the top and left of the table. 

TABLE B-4. HEXADECIMAL/ASCII CONVERSION -, 
a1 ---I 

r 
3 \ 4 \ 5 6 7 

\ 2 \ \ 1 
ra2 0 

NUL DLE r--
0 DCl 
1 SoH 

~ DC'2 STX "2 
ETX DC3 

3 
EOT DC4 

'4 
ENQ NAK 

~ 
ACK. SYN 

~ 
-;:;- BEL ETB 

CAN 
"8 BS 

EM HT 
9 SUB 
A LF 
~ ESC 

'D 
7: FF 

CR D 
!--- so 'E NUL 

SOH 
STX 
ETX 
EOT 
ENQ 
ACK 
BEL 
BS 
HT 

Null r-
fH e. F Start 0 

StartofTex 
End of Text 

..-

--r-

\ 

End of Transmission 
Enquiry 
Acknowledge 
Bell 
Backspace 
Horizontal Tab 

HEXADECIMAL 
NUMBERING SYSTEM 

SI 

FS 
GS 
RS 
us 

-+--
SP 0 

~ 1 

.. '2 

# 3 

$ 4 

% 
& 
, 

( 

) 
II< 

+ 
, 

I 
-

FF 
CR 
SO 
SI 
DLE 
DC1 
DC2 
DC3 

B-4 

5 

6 
7 
8 

9 

\ 

@ P 
, P 

A Q a Cl -
R b r 

B 
S c s 

C -
d t 

D T -
E U e 

u _ 

f v 
F V -
G W g w_ 

h x 
H X 

1 Y i y-

Z 1 z 
J -

k \ 
K ~ -, , 

\ 1 I-< L - \ 1 ill 
= M 

n 1'1 1\ > --r-

? , 0 \ \ 0 

vertical Tab 
Form Feed 
Carriage Return 
Shift Out 
Shift In 
Data Link Escape 
Device Control 1 
Device Control 2 
Device Control 3 

...... 
---' 

\ DELl 

CB07 

(f 
I... ) ,_/ 



DC4 
NAK 
SYN 
ETB 
CAN 
EM 
SUB 

Device Control 4 
Negative Acknowledge 
Synchronous Idle 
End of Transmission Block 
Cancel 
End of Medium 
Substitute 

HEXADECIMAL ADDITION 

ESC 
FS 
GS 
RS 
US 
SP 
DEL 

Escape 
File Separator 
Group Separator 
Record Separator 
Unit Separator 
Space 
Delete 

Table B-5 illustrates a hexadecimal addition table. When using this table, whenever there is a 
result that has a 1 preceding a hexadecimal value, that 1 represents a carry. 

TABLE B-S. HEXADECIMAL ADDITION TABLE 

1 2 3 4 5 6 7 8 9 A B C D E F 
1 2 3 4 5 6 7 8 9 A B C D E F 10 
2 3 4 5 6 7 8 9 A B C D E F 10 11 
3 4 5 6 7 8 9 A B C D E F 10 11 12 
4 5 6 7 8 9 A B C D E F 10 11 12 13 
5 6 7 8 9 A B C D E F 10 11 12 13 14 
6 7 8 9 A B C D E F 10 11 12 13 14 15 
7 8 9 A B C D E F 10 11 12 13 14 15 16 
8 9 A B C D E F 10 11 12 13 14 15 16 17 
9 A B C D E F 10 11 12 13 14 15 16 17 18 
A B C D E F 10 11 12 13 14 15 16 17 18 19 
B C D E F 10 11 12 13 14 ' 15 16 17 18 19 lA 
C D E F 10 11 12 13 14 15 16 17 18 19 lA IB 
D 'E F 10 11 12 13 14 15 16 17 18 19 lA IB lC 
E F 10 11 12 13 14 15 16 17 18 19 lA IB lC 1D 

F 10 11 12 13 14 15 16 17 18 19 lA IB lC 1D IE 

The following example illustrates how the table can be used in hexadecimal addition: 

augend 
addend 
sum 

A2B5 
+ 494F --

EC04 
The result of adding F and 5 is 14. Therefore, 4 becomes the low-order digit in the sum; 1 is 

carried. Then, B + 4 + 1 = 10; as before, 0 becomes the next-lowest-order digit, and 1 is carried. 
Then, 9 + 2 + 1 = C; there is no carry. Finally, A + 4 = E, with no carry. The sum of the 
hexadecimal numbers shown above is EC04. 

HEXADECIMAL SUBTRACTION 

Hexadecimal subtraction is the opposite of hexadecimal addition. Instead of carries, it is 
necessary to borrow. When you borrow a 1 from the next-highest-order digit of a minuend, it is 
the equivalent of adding 16 to the minuend of the digit you are subtracting from. The following 
example illustrates this concept: 

minuend 
subtrahend 
difference 

3A 
IB 
IF 

Since B is higher than A, it is necessary to borrow 1 from the 3, and adding 16 to A (Le., 16 + 10 
= 26), and subtracting B (Le., 11) from the result, obtaining 15 (but since this is hexadecimal 

HEXADECIMAL 
NUMBERING SYSTEM B-5 CB07 

* 

* 



arithmetic, you must change the 15 to F); then, you must subtract 1 from 2 (don't forget that 1 
was borrowed from the 3); the result of this operation is IF. 

HEXADECIMAL MULTIPLICATION 

!!'o do hexadecimal multiplication, you can use Table B-6. As when multiplying in any 
numbering system, you must record the low-order digit and add the remainder (i.e., the 

. high-order hexadecimal digit shown in the table) to the result of the multiplication of the 
next-lowest-order hexadecimal digit. 

TABLE 8-6. HEXADECIMAL MULTIPLICATION TABLE 

·1 2 3 4 5 6 7 8 9 A B 
1 2 3 4 5 6 7 8 9 A B 
2 4 6 8 A C E 10 12 14 16 
3 6 9 C F 12 15 18 IB IE 21 
4 8 C 10 14 18 lC 20 24 28 2C 
5 A F 14 19 IE 23 28 2D 32 37 
6 C 12 18 IE 24 2A 30 36 3C 42 
7 E 15 lC 23 2A 31 38 3F 46 4D 
8 10 18 20 28 30 38 40 48 50 58 
9 12 IB 24 2D 36 3F 48 51 SA 63 
A 14 IE 28 32 3C 46 50 SA 64 6E 
B 16 21 2C 37 42 4D 58 63 6E 79 
C 18 24 30 3C 48 54 60 6C 78 84 
D lA 27 34 41 4E 5B 68 75 82 8F 
E lC 2A 38 46 54 62 70 7E 8C 9A 
F IE 2D 3C 4B SA 69 78 87 96 A5 

For example, to multiply the following hexadecimal digits: 

multiplicand 
multiplier 
product 

2A5 
x3 
7EF 

C D 
C D 
18 lA 
24 27 
30 34 
3C 41 
48 4E 
54 5B 
60 68 
6C 75 
78 82 
84 8F 
90 9C 
9C A9 
A8 B6 
B4 C3 

E F 
E F 
lC IE 
2A 2D 
38 3C 
46 4B 
54 SA 
62 69 
70 78 
7E 87 
8C 96 
9A AS 
A8 B4 
B6 C3 
C4 D2 
D2 El 

Using the table, 3 x 5 = F, and there isno remainder. Then, 3 x A = lE,Eisrecorded, and the 
remainder (i.e., 1) is saved to be added to the result of the multiplication of the next digit. So, 3 x 
2 = 6, plus the remainder of 1 = 7. The result of this arithmetic operation is 7EF. 

HEXADECIMAL DIVISION 

Due to the complexity of this type of operation, it is suggested that you convert the 
hexadecimal digits to decimal, perform the division, and then convert the answer to 
hexadecimal. 

HEXADECIMAL 
NUMBERING SYSTEM B-6 CB07 



( 

Appendix C 

Sample Assembly 
Language Program 

The following sample programs illustrate many of the aspects of the assembly language 
described in this manual. For a definition of the fields that appear in the listings, refer to the 
Program Execution and Checkout manual. 

CHKNML -SAF 1977/11/210940: 05.6 ASSEMBLER-Ol00-11/0S/1223 GCOS6 MOD0400-S100-11/17/0634 PAGE 0001 

000001 
000002 
000003 
000004 
OOOOO~ 
OOOOOb 
000007 
000008 
OOOOOq 0100 
000010 
0000 II 0000 A1'u3 Ff'EF 
000012 0002 ~HA3 

000013 0003 BbC3 Fft.C 
00001U 0005 '1MB 
000015 OOOb ID02 
OOOOlb 0(107 OQ81 Ou7C 
000017 oooq '1843 OUU7 
000018 
00001'1 0008 CBCO 007'1 
000020 0000 D380 0000 
000021 OOOF 1'181 OObF 
000022 
000023 0011 ICIE 
000024 0012 2COO 
000025 0013 bReD 0081 
000026 0015 C8CO OObF 
COOO27 0017 D380 000 t, 
000028 001'1 1'181 OObb 
00002'1 0011l 3CFF 
000030 OOIC 3EOI 
000031 0010 BQ70 0000 
000032 OOIF 0301 OOUE 
000033 0021 eCtiO 0000 
00003U 0023 CBCU OOIC 
000035 0025 F830 OOOU 
000036 0027 FqU4 0003 
000037 002'1 0'173 
00003tl 002A EbCO 007. 
000039 002C D830 0000 
00004U 002E F 3C 0 0027 
000041 0030 EfleO 0077 
000042 0032 D804 
000043 0033 F3CD 0022 
000044 0035 C~C.U 0001 
000045 0037 EbCO 0073 
00004b 003'1 [l80l! 
0000U7 Oe3A F 3CO 0011< 
00004B 003C CBt4 0001 
00004'1 003E EBeO OOH 
000050 0040 0804 
000051 Ooui nco 001" 
000052 00~3 CBC4 0001 
000053 0045 EHCO OObB 
000054 00U7 0804 
000055 0048 nco 0000 
00005b 
000057 004A ICI~ 
000058 004B 2COO 
00005'1 OO~C BBCO OU57 
OOOObO 004E eBCQ 003b 

SAMPLE ASSEMBLY 
LANGUAGE PROGRAM 

TITLE CHK~Jr1L 

• pPOGRA~ COMPARES TEST RESULTS 0, TI: S T 
• SllhH,,, IN $C(Jt1M TO THE LXPEC1UJ TEST 

XVAL T!;";'r"'AX 
xLOC TAlll.OC 
XLUC ZIUSOL 
XLOC ZIO~~;" 

HOC noseo 
COMri x I 1 no I 

· GET FILEII!AMt: Arm CI,.IJt.EL NO 
5 I >'11 LI:oIi SR,~,5E;3.-17 

l/Ih ~t;-,,$~j.$R~ 

LA~ ·..,tL),.'~U~.-20 

LOR .• Ill ,+'.~3 
cnv ~H 1,2 
Hr,!:. ERNLST 
Ll.)li ~Rl,~M3.7 · OPE~ LIST FILF. 
LAB :;RII, LSTDCI1 
LNJ ~B5,<ZJOSOL 
Br,l Z $1<1, nl'I)PF I, 

* ~kl H. hEA[)[R ~~5G 

LIlV ~~ 1 • ~ 1 t l' 1 
LOll ~~2,), r a I 
LA~ ;;H3,,,hUFUl 
LAH $H~,L5TOC~ 

LI·IJ $~5,<ZIOS~R 

H~,E / ~i-c! ,fkHOR 
LUV ~R3,-X'l' 

TLOO~ ADV 'nl~:), x 't' 
CIV" 'R3,=TSTMAX 
8(; ENuTST 

~ LOB SilU,<$COMM.$k3 
LAB $H£J,$H<I.x'll' 
LIJR $R'/,<TAf>LCC.:'"3 
u~" $R7,$HU.X'.l' 
81:. >TLOOP 
LAH :D~bl ~,(jtJF"2A 

K LOR $R5, <~C(JM~·. $P3 
L ~JJ ~B7, DIJ'~P':D 
LAb 'llb,"~lJF2H 
LDR ~f15, $~<I 

Lt·,,) ~R7, DUI~P'jD 

LA~ $H4,$U4.X'I' 
LAB $tlh, ,',IJUF 2C 
LUR j)RIj,::)H4 

UI,) Se7, DlI~W"D 
LAH $[14, $flU. X' I' 
Lolb $Hb, ,'tlIJF 2D 
l[lR SR.,,~bU 

LNJ $1l7,DlJMP"O 
LAb Stl4,$B<I.X'I' 
LAb ~H~. \·.IlUF 2E 
LlJfl $1!5,$B~ 

LNJ SA7, lJUMP\',O 

* '11i1T!:. VALUES 
LOV SR1,X'lE ' 
LOV ~~2,)('()' 

LAb $fU,\'IHUr20 
LA~ $~.t~, LSTl>CB 

Figure C-l. Listing of CHKNML Program 

C-l 

MUDULE,S .. HOSE ADDRESS~S ARE 
RESULTS AS DESCRIBED IN TABLOC 

SET 113 TC' LIST FILl:. AT 
SET 83 Tli FILOJAM~ 

Nn LI ST FIL~ ATTACHED 
SU RI TO CHANNEL NO. 

O~E~ ROUTINE 

MSG LENGTH 

MSG ADDRESS 

~RITE ~UUTINI:. 

CHECKEI) ALL TEST RESULTS ? 

CkU 1E: STATUS flLUCK PTR 
GET EXPECTED VALUE 
COMPARE TO ACTUAL STATWD 
TEST DK - CHECK NEXT TEST 

CO'JVERT TEST ADOR TO ASCII 

CQNVEPT SYML VALUI:. TU ASCII 

CONVERT TEST NU~ TO ASCII 

CONVERT SYMV VALUE TO ASCII 

eO"VERT STATUS ~ORD TO ASCII 

MSG LENGT" 

MSG ADURESS 

CB07 



CHKNML-8AF 1977/11/210940: 05.6 ASSEMBLER-0100-11/09/1223 GCOS6 MD04QO-S10Q-11/17/0634 PAGE 0002 

OOOObl 0050 03/lll o ,i O~ U:J ~B~,<'l.ILJS~1-< ",RITE ROUTINE 
0000b2 0052 1'181 002. hNI:.l $I~I. L~VAL 
0000b3 005~ Inco FFC7 JMP TLO(J~ 
OOOOb~ * HOUTIIliE ACCU'T S ,\ V.~LUF. IN R~ AM) PUTS ITS ASe!! HlUlvnENT '" 0000b5 *nJ THf r~ll l'iUIWS 1'0lfIJTEIJ TO ~y ~b 
OOOObb OO~b 40C t)1!MPL'IU L("lV Sf.!IJ,-X1.:J' St.1 C(llJNTER " _I 
0000b7 0057 CF<lO ,UOUO STR ~~4,+~C 
0000b8 0059 7eal' LDv :irl7,X'O' 
OOOOb'1 OO~A ~eoo ~A LDV :bkLl,X'O' 
000070 OO')R ~08" DUL 3k5.<1 
000071 005C <lUO ADV SR",X ' 311' 
000072 005!) Cq40 0000 eMil $R<I.+H 
000073 005F 0380 Rl.f. >+$E 
000074 OObO 4t07 A~V $H:~,X'C7' 
000075 OObl F<l54 M: 0>< $R7,::$~~ 
00007;, 00/1<' IIACO .FFF 5 INC +$L 
000077 00;'4 ObOO HCT >+$[) 
000078 00b5 7088 nrJL ~R7.8 
00007'1 OObb OFF4 8 >-$A 
000080 00b7 EF<lb 0000 $0 ST" $Hb,SHb.)('O' 
000081 OOb'l FF<lb 0001 STR ~k7,:St3h.X '1' 
000082 OObt! 8387 JMP ~H7 RETURN TO CALLER 
000083 OObe 0000 $C DC Z I 0 I 
0000b4 OObO 003'1 $F De l'tlO:I'1' 
000085 * ~'IRlTE E/oiD TEST 
00008b OObE .1 COA ENDTsr LDlJ $f.ll , x I A I ~lSG LENGTH 
0000<>7 OObF 2COO Li)1i .'bk~, X I 0' 
000088 0070 tlBCO 0043 LAtj $H3,.,BUF03 MSG ~DDRESS 
00008'1 0072 (ilCO 0012 LAB $il<l.LSTDCB 
0000'10 0074. ClBO OOtiD L~JJ $tI~.<ZIOS1;k WRITE ROLlT! I~E 
0000'11 0070 1981 UOOH f",E l $k!.EREI,D 
0000'12 * CLlISE LI S T FILE 
0000'13 0078 CHCO OOOC LAH $B~.LsrDCtl 
0000'14 007A D380 0000 L ~l.I :;;i'~. <lIoseo CLOSE ROUT! NE 
0000'15 OOlC 1981 OOOb ~NEZ $RI.ERCLS 
0000'10 007E 0000 Hl T 

0000'17 007F DODO fROPtl, HLT 
0000'18 0080 0000 ER,lOR HLT 
0000'1'1 OOBI 0000 EkVAL HLl 
000100 0082 0000 E;>o:n f1LT 
000101 0083 0000 ERCLS HLl 
000102 0084 0000 EP.NLST HU 
000103 0085 0000 LSTDU, RE3V 1 hi 11 
000104 00'15 412U v.BLJF~ I DC ',I t ! oc tSY"" tnu,.., tva! tswd' 

Ooq/) 74bC 
0097 oFo3 
00'18 2020 
OOq'1 7473 
OO'lA HoD 
0098 2020 ./ 
OD9C 74H 
Oo'lD 7500 
009E 2020 
009F 7470 
OOAO blbC 
OOAI 2020 
oOA2 7473 
00A3 7704 

00010~ OOA<I 4120 .v.tlUF20 OC 'A , 
OOOIOb 00A5 2U20 ,;BlJF 2A DC 

CHKlIoML PAGt:: 0003 

OOAb 2020 
OOAI 2020 

000107 00A8 2020 wuUF21j DC 
OOAq '2020 
OOAA 2020 

000108 OOAB 2020 W8L1F2L DC 
OOAC 2020 
OOAD 202v 

00010'1 OOAE 202') ,,~lJr 21) DC 
OOAF 2020 
GOllO 20Z0 

000110 OO~I 2020 WIlLJF2E DC 
001!2 2020 
0083 20?0 

000111 onf'4 412v .,~uF03 DC 'A f'Mrl test' 
OO~5 b5bE 
OOBb b420 
00B7 7<1b5 
OOb8 7374 

000112 0010'1 f.fiU CliKNML 
0000 ERR COUNT 

Figure C-I (cont). Listing of CHKNML Program Ii 
"1-\ 

~->/ 

SAMPLE ASSEMBLY 
LANGUAGE PROGRAM C-2 CB07 



( 

( 

RUJ\BLE IOl~77 

000001 
000002 
000003 
000004 
000005 
OOOOOb 
nooon7 
n00008 
nooooo 
000010 
nooo 11 
000012 
nooo 13 
000014 
000015 
000016 
000017 
000018 
00001 q 
oooo~o 

oonO?1 
0000~2 

"OOOH 
0000?4 
0000?5 
00002b 
oooon 
000028 
OOOO?q 
0000'0 
000031 

0000 
0002 
0004 
0005 
OOOb 
0007 
0008 
OOOq 
OOOA 
nooe 
0000 
OooE 
OOOF 
0010 

oono 
0000 
0001 
0002 
0003 
0004 
0005 

nOOO~2 000& 
0007 
0006 
OOOq 

0000'3 OOOA 
0000 EOO COUNT 
0015? WOOD SYMROt. 

RU~BIE 101577 

$131 **** 
~R? **** 
'fiCj *"'** 
tR 1 •• ** 
$R' **** 

N RURBtE 1-
DATA 2Q 
HIOATA II 
LINElO 21 
LINE2 l' 
LINE_ 17 
lOOAT. !? 

7 UAEI S 
2' OEFEOENeFS 
33 OECOOD~ 

o U Fl'G' 
o M FL.GS 
1 N Fl.GS 

FlURHLf snHT 

ORCO 
6Beo 
leoo 
R87< 
RQ02 
0385 
1 CO 1 
RE02 
RFI.I2 
'001 
0278 
Mfl 
IqF3 
R385 

OOOA 

1234 
OOld 
'30E 
lIlata 
0440 
FC'B 
0000 
oon 
OF'3 
ROOO 

T ARlf 

0000 
OOOQ 
0000 
onoo 

FFFF 

RURfH.E snRT 

I. 2' 
1')0 17 
n 
lh 20 
17 l' 

1? 11 
14 
Iq 
2h 
2_ 

l' 

• • p 
p 

2' 
1 R 

2h 
21 

30 

SAMPLE ASSEMBLY 
LANGUAGE PROGRAM 

21 

TTTlE. HIIRRlF,'l'tl'i77' 8UBRU' C;ORT 
"THI~ ~UfHo/nLJTINE DnE~ A flIMPl.E: SURRLF !10'n lJF WHATfVFR 
*STNr;Lf PIH'crSTON RJNA~Y PITF'GffiS ARf TN COMMON RLOCIC, DATAe 
*THE:. snRT LEAVFS THE: DII.TA TN pIt: cnr-1MQN ~LnCI< TN A~CFNnPJG 

*NtlMFRTCAL SF'QIIE,IIICF. 

l N.T ,,~~, RIJFlHI f . 
*THI~ PRnGRAM WILL fWECUTE IN ROTH SAF AND LAF AnOREflS Mnors, 
*HENCE ASSFMRLFD IN ~LTC ~nDF. 

lOOA TA 
MInArA 
RURBl E 
LINE? 

Ll"E4 

LINE10 

. 
nATA 

Er.lU nAT A 
E!:IU IJATAtq 
LAB $Rl,HTD~TA 
LAB $R~,LnDATA 

Lnv $Pt,Q 
LOR $R3,+'B? 
C~R $P3,!A2 
BtE >IINE10 
LI"lV $"'1.1 
swp $~3,~P2 

STR $R3,$A2.~1 

C~~ $A2,='Bt 
Bl >l I NE IJ 
CMZ -'B1 
RNEl S~l,>LI~l? 

JMP $R5 

C('lM~ 

OOG 
Dr 

10 
D.TA 
)( '1?31J I ,QQH(lCj, 0) ,Z'A"'mf', 100+' A I ,ANO(Z'2FF' ,X'IJIJIJ'l,-BI)3 

END HIIHALF 

23 

Figure C-2. Listing of Bubble Sort Program 

C-3 

PAGE 0007 

CB07 



"~~ --" 



( 

AppendixD 

Debugging Assembly 
Language Programs 

There are two ways to debug and correct programs written in assembly language. One is by 
using the Debug program (see the Program Execution and Checkout manual); the other is by 
reading and interpreting the contents of memory through a memory dump (which can be 
obtained by using the Dump Edit utility also described in the Program Execution and Checkout 
manual). 

DEBUG 

This program is intended for use during development phases as a tool for program testing and 
error detection. Debug operates in interactive mode, maintaining a dialog with the operator's 
terminal. Debug makes visible all memory locations and addressable registers. Using Debug it 
is possible to modify the contents of either the memory locations or the addressable registers. 
Debug also makes it possible to perform memory searches and to display memory areas in both 
hexadecimal and ASCII notations. 

See the Program Execution and Checkout manual for a detailed description of Debug. 

DUMP EDIT 

Dump Edit produces on the user file a logical and a physical dump of the contents of a dump file 
Dump Edit generates, in an edited format, information such as the location and contents of 
hardware dedicated memory locations, the system control block, the group control blocks, and 
the work space blocks for each group control block. 

See the Program Execution and Checkout manual for a detailed description of the Dump Edit. 

READING AND INTERPRETING MEMORY DUMPS 

The remainder of this appendix describes how to read and interpret the contents of memory as 
they appear in a memory dump (see Figure D-l). 

It is possible to interpret the hexadecimal portion of the dump illustrated in Figure D-l, as 
follows: 

1. Since the ASCII portion of the dump shows no readable data, it is apparent that the 
assembly language program contains no string constants in the locations illustrated. The 
hexadecimal digits could probably represent assembly language instructions. 

2. Break each word down into its binary equivalent. For example, C840 in location 003C 
becomes 1100 1000 0100 0000. 

3. Using Table A-I, we find that C indicates that the instruction is probably a double 
operand (DO) instruction. 

4. Continuing to use Table A-I, we find that the 8 plus a binary 0 in the eighth bit position 
indicates that the instruction is LDR. 

5. By checking the table under "Assembly Language Internal Formats by Type" in 
Appendix A, it is possible to interpret the contents of the binary representation 
illustrated in step 2, above. That is, bits 1-3 identify the first operand register; in this case 
$R4 (the LDR instruction requires that the first operand register be an R-register). 

6. Then, using Table A-2, it is possible to interpret the contents of the address syllable 
portion of the binary data shown in step 2; i.e., 1000000. Using the table, the binary data 
corresponds to the columns as follows: mmmirrr. Thus, mmm = 100, i = 0, and rrr = 000. 
In that block, the second operand is in the form of a location label. 

DEBUGGING ASSEMBLY 
LANGUAGE PROGRAMS D-l CB07 



7. Now you know that the instruction is: LDR $R4,label. Thus, the address expression is the 
P + Displacement form of addressing. 

8. Checking the description of that form of addressing· in Section 5 (see "Addressing 
Techniques"), you see that the displacement between the address of this instruction plus 
1 and the address of the label is loaded into the next consecutive word (i.e., location 003D). 
In this dump, the displacement is 1B4A. 

9. The effective address of the data to be loaded into $R4 is in location 1B86 (i.e., (3C + 1 + 
1B4A». 

003B/ 
0043/ -----t 

23FB C840 1B4A ABCO 1B49 B802 B970 5154 
098383C8 0095 2C02 8804 8804 B2A2 3020 - ~------.... ---------

HEXADECIMAL PORTION 

# •• @ • J ••• I •••• QT 
= .............. ---------ASCII PORTION (DOTS 

(.) INDICATE THAT 

ADDRESS (IN HEXADECIMAL) 
OF THE FIRST HEXADECIMAL 
WORD (4-DIGIT BLOCK) IN 
THE HEXADECIMAL PORTION 
OF THE DUMP 

THE ASCII EQUIVALENT 
OF THE HEXADECIMAL 
DIGIT IS A NONPRINT­
ABLE CHARACTER) 

Figure D-I. ASCII/Hexadecimal Memory Dump 

Following is a complete list, by address, of the instructions shown in Figure D-l. You can 
perfect your ability to read memory dumps by interpreting the dump and comparing your 
results to those listed below. The procedure, until you become proficient, is basically as 
described above. After you have had the opportunity to read and interpret dumps several times, 
many of the steps can be skipped, as you will be able to interpret the data without checking all of 
the tables and descriptions identified above. As you can see by the nine steps described above, it 
il;! imperative that you understand the addressing techniques described in Section 5 (including 
how they are stored in memory), and that you understand how to interpret the address syllable. 

Location 

003B 

003C 
003D 

003E 
003F 

0040 
0041 
0042 
0043 
0044 
0045 

0046 
0047 
0048 
0049 
004A 

Instruction/Meaning 

Has no meaning in the context in which it appears; it is probably an 
address associated with the instruction in location 003A. 
LDR $R4,label 
Displacement between this location and the location containing the label 
identified in the LDR instruction. 
LAB $B2,label 
Displacement between this location and the location containing the label 
identified in the LAB instruction. 
LDR $R3,$B2 
CMR $R3,='QT' 
Value to be compared to the contents of $R3 in the CMR instruction. 
BNE >$+3 
JMP*label 
Displacement between this location containing the effective address (see 
"Indirect P-Relative Addressing" in Section 5). 
LDV $R2, 2 
DEC =$R4 
DEC =$R4 
LLH $R3,*B2.$R2 
CMV $R3,X'20' 

DEBUGGING ASSEMBLY 
LANGUAGE PROGRAMS D-2 CB07 



AppendixE 

Notification Flags Issued 
By Assembler 

SOURCE CODE ERROR FLAGS 

Columns 1 through 4 of the Assembler listing can contain up to four alphabetic characters 
(flags) which indicate possible errors in the source language statement. Columns 5-10 contain a 
six-digit decimal number corresponding to a sequential count of the source statements read. The 
error flags that can be produced by the Assembler are as follows: 

Flag Meaning 

A Operand field format error 

B Byte allocation error 
C 
D 
E 
F 
H 
J 
L 
M 
N 
o 
P 
Q 
R 
S 
T 
U 
X 
Z 

Numeric conversion error 
Out of range short displacement 
Illegal address expression 
Illegal forward reference 
Improper header 
Function Error 
Label field format error 
Multiply-defined symbol 
No matching left parenthesis 
Illegal operation code 
Assembler control statement operand error 
Address <0 or ;:.:32K 
Illegal register reference 
Improper statement format 
Truncation warning constant/string constant 
Undefined symbol 
Expression too complex 
Conditional assembly error 

STATEMENT REFERENCE FLAGS 

Flag 

K 
P 
T 

Meaning 

Statement contains a reference to a common location 
Statement contains a P-relative reference to an external symbol 
Statement contains a reference to a temporary label 

X Statement contains a reference (other than P-relative) to an external 
symbol 

SOURCE CODE ERROR 
NOTIFICATION BY ASSEMBLER E-l CB07 





( 

( 

AppendixF 

Source Code Error Notification 
By Macro Preprocessor 

The Macro Preprocessor issues error flags for nonfatal errors in the source code. Each 
statement that contains a nonfatal error appears in the expanded source module as a comment 
statement with the appropriate error flag(s). 

An error flag is an alphabetic character that denotes the cause of an error. There can be up to 
four error flags per statement; subsequent errors are not designated. In a listing, column 1 
contains an asterisk, columns 2 through 5 contain the error flag(s), column 6 is blank, and 
subsequent columns contain the source statement and other pertinent information. Error flags 
that can be produced by the Macro Preprocessor are listed below. 

Error Flag Meaning 

A Operand field format error 
C 
E 
I 
J 
L 
M 
N 
o 
S 
T 

V 
X 
Y 
Z 

Numeric conversion error 
Illegal expression 
Invalid macro routine, MAC statement, or ENDM statement 
Macro function error 
Label field format error 
Multiple inline macro routines were assigned the same name 
No matching left parenthesis 
Illegal operation code 
Improper statement format 
Truncation warning 
Variable/parameter error in macro call or MAC statement 
Expression too complex 
Directory or file specified cannot be found 
Conditional processing error 

SOURCE CODE ERROR NOTIFICATION 
BY MACRO PREPROCESSOR F-l 

------------ ------_._--- _._- .. _."- .- -- -~ .. -.,-~-------

CB07 





( 

( 

Appendix G 

Reserved Symbolic Names 

The following is an alphabetic list of all symbolic names (labels and identifiers) that have been 
defined within the Assembler and may not be redefined. 

Reserved 
Symbolic 
Name 

$ 
$A. .. $Z 

$AF 
$B1,$B2, ... $B7 
$COMMl 
$IV 

Definition 

Current location 
Temporary labels 
Address format 
Base registers 1 through 7 
Name of unlabelled common 
Interrupt vector for current priority 
level 

$M1,$M2, ... $M7Mode control registers 1 through 7 
$R1,$R2, ... $R7 General registers 1 through 7; index 

registers 1· through 3 
$RZERO Relocatable address zero 
$81,$82,$83 8cientIfic r~gisters 1 through 3 
$8W External switch status 

All reserved symbols added to future versions of Level 6 Assemblers will begin with a dollar sign 
($). It is therefore recommended that user-defined labels not begin with $. 

IThls symbol is only reserved if the program contains an unlabelled COMM statement. 

RESERVED SYMBOLIC NAMES G-l CB07 





( 

AppendixH 

Programmer's Reference Information for 
Commercial Processor Operation 

INTERNAL FORMATS OF COMMERCIAL PROCESSOR INSTRUCTIONS 

The operation code field shown in the Comr,nercial Processor instruction formats, Figure H-1, 
must specify one of the commercial instructions in Table H-l. The data descriptor (DD) specifies 
the type, size, and location of the operand. Not all instructions require three data descriptors. 
The number and type of data descriptor for each instruction is given in Table H-l. In a 
Commercial Processor instruction, a label may occupy the 12 high order bits of a word and is 
capable of addressing any of up to 4K remote data descriptors. The label designates an offset 
from the remote descriptor base address contained in the CPU remote descriptor base register 
(RDBR). This register can be accessed by use of the CPU instructions LRDB and SRDB. Figure 
H-2 shows how the remote descriptor address is generated. 

Format of Alphanumeric, Numeric, and Edit Instructions 

INSTRUCTION 
USING IN-LINE 
DATA DESCRIP­
TORS (10) 

INSTRUCTION 
USING REMOTE 
DATA DESCRIP­
TORS (RO) 

INSTRUCTION 
USING A COM­
BINATION OF 
IN-LINE AND 
REMOTE DATA 
DESCRIPTORS 

o 10 11 15 
o 0 0 0 0 0 0 0 0 0 1 X X X X X } One Word 

op code 
DATA DESCRIPTOR - 001 f Two words 

I DATA DESCRIPTOR - DD2 ~ 

~TA DESCRIPTOR - DD3 -=--=--=--=--=-_--=--=--=.J 
o 10 11 15 
o 0 0 0 0 0 0 0 0 0 1 X X X X X } One Word 

op code 
LABEL 1 I 0 0 0 0 } One word 

I LABEL 2 I 0 0 0 0 I 

r------------~----~ 
I LABEL 3 I 0 0 0 0 I 
~-------------~----~ o 12 15 
o 10 11 15 
0 0 0 0 0 0 0 0 0 0 1 X X X X X 

DATA DESCRIPTOR - DOl 
LABEL 2 10 0 0 0 

~THE~~~LABEL~ _________ ~ 
o 12 15 

} One Word 
op code 

} Two words 
} One word 

Format of Branch Instructions 

o 1 3 4 7 8 9 15 
10 lop CODEI 0 0 1 1 IT/FI DISPLACEMENTa I --- -.-~ L-True/False 

Specifies which commercial indicator is to be tested 

alf the displacement value specified is 0, the location to be 
branched to is specified in the next sequential word; if it 
is 1, the next sequential word specifies the displacement 
(in words) from the address of this displacement word to 
the destination; otherwise,the displacement value specified 
is the displacement, in two's complement form, from the 
current instruction to the destination. 

Figure H-l. Internal Formats of Commercial Processor Instructions 

PROGRAMMER'S REFERENCE INFORMATION 
FOR COMMERCIAL PROCESSOR OPERATION H-l CB07 



TABLE H-l. COMMERCIAL INSTRUCTION SUMMARY 

OP-
CODE NO. OF 

MNEM- BITS OPE-
INDICATORS 

ONIC 

DAD 

DSB 

DML 

DDV 

DCM 

DMC 

CBD 

COB 

DSH 

ALR 

ACM 

MAT 

SRH 

VRF 

DME 

,~ 

NAME 0-15 RANDS TYPE OV TR SF G L 

Decimal Add 002C 2 N X X X X 
(NN)R 

Decimal Subtract 002D 2 N X X X X 
(NN) 

Decimal Multiply 0029 2 N X X X X 

(NN) 
Decimal Divide 002B 3 N X X X X 

(NNN) 

Decimal Compare 002F 2 N X X 

(NN) 

Decimal Move "and 0025 2 N X X X X 
Convert (NN) 

Convert Binary 0027 2 N X X 
to Decimal (BN) 

Convert Decimal 002A 2 N X 
to Binary (NB) 

Decimal Shift 002E 1 N X X X 

(N) 

X X 

Alphanumeric Move 0021 2 A X 
(M) 

Alphanumeric Com- 0022 2 A X X 
pare (M) 

Alphanumeric Move 0023 3 A X 
and Translate (AM) 

Alphanumeric 0028 3 A X X 
Search (AM) 

Alphanumeric 0020 3 A X X 

Verify (AM) 

gecimal Move 0026 3 E 
and Edit (NM) 

A{phanumeric Move 0024 3 E 
, 

and Edit (AM) 
, 

NOTE: In this table, A means alphanumeric operand, 
B means binary operand, and 
N means numeric operand. 

UR 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

PROGRAMMER'S REFERENCE INFORMATION 
FOR COMMERCIAL PROCESSOR OPERATION H-2 

TRAPS 
INSTRUCTION 

BE IS IC DZ TR OV OPERATION 

X X 'X X [DD2] + [DD1] .. 
[DD2] 

X X X X [DD2] - [DD1] .. 
[DD2] 

X X X X [DD2Jx[DD1J .. 
[DD2J 

X X X X X ~~~~l ' [DD3J ,R .. [DD2J 

X X X [DD1J:: [DD2J" 
IND 

X X X X [OOlJ conver-
ted -+ [002J 

X X X [OD1J conver-
ted -+ [002J 

X X X X [OOlJ conver-
ted -+ [002J 

X X X Shift [Doll 
Left "d" 

X X X Shift [DD1J 
Right lid" 

X X X [OOlJ'" [OD2J 

X X [D01J:: [DD2J+ 
nm 

X X X [DD1J Trans-
late-* [DD2] 
DD3 specifies 
256 byte Trans 
late Table 

X X [D03J is 
searched using 
[D01J as SL. 
Result -~G, L 
indicators and 
displacement, SA 
number +[002J 

X X [003] is veri-
fied using [DO 
as VL. Result 
+G, L indica-
tors and dis-
placement+[OD2J 

X X X [OD1J Edited+ 
[D02] 003 speci 
fies Micro-cps 

X X [OOlJ Edited+ 
[002J D03 speci 
~fies Micro-cps 

,/ 

COMMENT 

Is DOl G or L 
than DD2? Zero 
fill to the left 
supplied for 
smaller operand. 

Combinations are 
s +S, S +P, 

p +S, P .,.p 

Binary operand 
is in 2 1 s com-
plement form. 

Binary result is 
a 2 1 s complement 
number 
"d"= shift dis-
tance,OV indica-
tor and Trap, 
valid only for 
shift left. Opt-
ional Rounding 
during a shift 
right. 

Fill or do not 
fill to the right 
defined by 002. 

If 001 (L) I-
D02(L) then ex-
tended shorter 
operand as speci-
fied by D02 

Fill character 
defined by 002 
is used directly 

DDl~Decimal Oe6-
cription 

DD2=Alphanumeric 
. Descriptor 

DD3=Alphanumeric 
Descriptor. 

OD1=OD2-0D3-
Alphanumeric 
Descriptors 

CB07 



TABLE H·I (CONT). COMMERICAL INSTRUCTION SUMMARY 

NO. OF INDICATORS TRAPS 
MNEM- op- OPE- INSTRUCTION 
ONIC NAME CODE RANDS TYPE OV TR SF G L UR BE IS IC DZ TR OV OPERATION COMMENT 

CBOV Branch on Overflow 130+xx 0 B X X Branch to EA if 
CI(O) is set 

CBNOV Branch If No 138+xx 0 B X X Branch to EA if 
Overflow CI (0) is not set 

CBTR Branch on Trunca- 230+xx 0 B X X Branch to EA if 
ticn CI(l) is set 

CBNTR Branch if No 238+xx 0 B X X Branch to EA if 
Truncation CI(l) is set 

CBSF Branch on Sign 330+xx 0 B X X Branch to EA if 
Fault CI (2) is set 

CBNSF Branch If No Sign 33i3+xx 0 B X X Branch to EA if 
Fault CI(2) is not set 

CSYNC Sync 430+xx 0 B X X Wait for comple-
tion of previous 
instruction (if 
necessary) before 
going to the next 
instruction. No 
operation is per-
formed. 

CSNCB Sync and Branch 438+xx 0 B X X W,ai t for comple-
tion of previous 
instruction (if 
necessary) then un-
conditionally 
branch to EA. 

CBE Branch If Equal 53&+xx 0 B X X Branch to EA if 
CI (5) = CI(6) = 0 

CBNE Branch If Not 530+xx 0 B X X Branch to EA if 
Equal either CI (5) or 

CI (6) = 1 

Bral"lch if Greater 630+xx 0 B X X Branch to EA if CBG CI(5) - 1 

CBLE Branch if Less 63b+xx 0 B X X" Branch to EA if 
Than or ~qual CI(5) = 0 

CBL Branch If Less 730+xx 0 B X X Branch to EA H 

Than CI (6) = 1 

CBGE Branch If Greater 738+xx 0 B X X Brancn to EA H 

Than or Equal CI (6) = 0 ( 

PROGRAMMER'S REFERENCE INFORMATION 
FOR COMMERCIAL PROCESSOR OPERATION H-3 CB07 



o 10 11 15 

Defi nes the {I 0 ~AB~L 0 0 0 0 0 0 0 1 I x I ~ ~ ~ ~ I 
location of RD . .. 

I . I I 

~--------------~-~--~ I I I L-______________ L ____ ..J 

CPU Remote} 0 19 
Descri ptor I WORD ~?DRESS I Base 

~ ; 

Register ' V' 
~ 

[RDBR] + ([Label] x 2) , 
v 

L REMOTE DESCRIPTOR ARRAY 
RDO 
RDl } two words 

f-- each 
Maximum 
Number of 

1 ~ 
Entries 
is 4K 

RD n-2 RDs 
RD n-l 
RD n 

Figure H-2. Remote Descriptor Address Generation 

INTERNAL FORMAT OF DATA DESCRIPTORS 

DECIMAL DATA DESCRIPTORS 

Decimal data descriptors can specifY either unpacked decimal or packed decimal data. An 
unpacked decimal digit occupies one byte (8 bits); a packed decimal digit occupies 4 bits. A 
decimal data descriptor consists of two words as shown by Figure H-3. The contents of Word 2 is 
either a displacement or an immediate memory operand (lMO) and is specified by the address 
syllable (AS) or Word 1. 

o 1 2 3 7 8 9 15 

~C..!..l ..1-1 C"::'2..J....IC...=3....l...1 __ L ___ ....l...I_T ...J..I __ --'-_A_S ___ --il WORD 1 

DISPLACEMENT OR IMO .WORD 2 
~------------------------------------------~ 

Figure H-3. Decimal Data Descriptor Format 

UNPACKED DECIMALS 

For unpacked decimals, the meaning of the Word 1 fields is as follows. 

C 1 specifies the byte offset 

• When no indexing is specified, Gl specifies the offset within the addressed word. 

- If Cl is zero, the operand starts in the leftmost byte of the addressed word. 

-If Cl is one, the operand starts in the rightmost byte of the addressed word. 

• When indexing is specified, the contents ofCl are added to the index value and the sum is 
used in calculating the effective address. 

PROGRAMMER'S REFERENCE INFORMATION 
FOR COMMERCIAL PROCESSOR OPERATION H-4 CB07 

.~ / 



( 

( 

C2 and C3 specify the sign convention as shown below. 

C2 C3 SIGN CONVENTI ON 

a a Unsigned (assumed to be pos i t i ve ) 

0 1 Trailing Overpunch 

1 a Leading Separate Sign 

1 1 Trailing Separate Sign 

L specifies the length of the operand in bytes. For unsigned or sign overpunched operands, all 
bytes contain digits. For separate signed operands, one byte contains the sign designation; the 
remaining bytes contain digits. If the contents of the L field is zero, the length is specified by bits 
11 through 15 of an R register. The R register used depends on the data descriptor as follows: 

R4 for DD1 
R5 for DD2 
R6 for DD3 

When the length is specified by an R register, bits 8 through 10 of the register must be zero; 
otherwise; the results are unspecified. The length in bytes can be from 1 through 31. An illegal 
specification (IS) trap is generated: 

• If an operand has a length of zero, or 

• If a separate signed operand has a length of one byte (Le., if the operand consists of only a 
sign). 

T specifies the type of decimal. The T bit must be zero for unpacked decimals. 

AS specifies the address syllable prescribed by the instruction. See Figure H-6 for the address 
syllable format. 

PACKED DECIMALS 

For packed decimals, the meaning of Word 1 fields is as follows. 

Cl and C2 specify the digit (4-bit) offset to the first digit. 

• When no indexing is specified, Cl and C2 specify the offset within the addressed word as 
shown below. 

Cl C2 
o 0 
o 1 
1 0 
1 1 

No. of digits offset 
o 
1 
2 
3 

Bit position within addressed word 
0:3 
4:7 
8:11 

12:15 

• When indexing is specified, the offset value contained in C1 and C2 is added to the index 
value and the sum is used in calculating the effective address. 

C3 specifies the sign convention. 

• If C3 is zero, the operand is unsigned. (It is assumed to be positive.) 

• If C3 is one, the operand has a trailing sign. 

L specifies the length of the operand in 4-bit digits. The length is specified directly in the field, 
or indirectly in an R register in the same way as for string decimals. 

T specifies the type of decimal. The T-bit must be one for packed decimals. 

AS specifies the address syllable prescribed by the instruction. See Figure H-6 for the address 
syllable format. 

PROGRAMMER'S REFERENCE INFORMATION 
FOR COMMERCIAL PROCESSOR OP&RATION H-5 CB07 



ALPHANUMERIC DATA DESCRIPTOR 

The format of an alphanumeric data descriptor is given in Figure H-4. The contents of Word 2 
is either a displacement or an immediate memory operand (IMO) and is specified by the address 
syllable of Word 1. 

o 1 2 3 789 15 

L 10J AS 

DISPLACEMENT OR IMO 

Figure H-4. Alphanumeric Data Descriptor Format 

The meaning of the Word 1 fields is as follows. 

Cl specifies the byte offset. 

WORD 1 

WORD 2 

• When no indexing is specified, Cl specifies the offset within the addressed word. 

- If Cl is zero, the operand starts in the leftmost byte of the addressed word. 

- If C 1 is one, the operand starts in the rightmost byte of the addressed word. 

• When indexing is specified, the contents ofCl are added to the index value and the sum is 
used in calculating the effective address. 

C2 is used for controlling fill operations. C2 is meaningful only when specified by DD2 of two 
instructions: alphanumeric move (ALR) and alphanumeric move and translate (MAT). See 
detailed descriptions of these instructions. 

Bit 2 must be zero. 

L specifies the length of the operand in bytes and the fill character when one is required. Ifthe 
L field is not zero, its contents specify the length and the fill character is an ASCII blank 
(hexadecimal 20). If the L field is zero, the length is specified by bits 11 through 15 of an R 
register. The R register used depends on the data descriptor as follows: 

R4 for DDI 
R5 for DD2 
R6 for DD3 

When specified directly the maximum length is 31 bytes. When specified by an R register, the 
maximum length is 255 bytes. When the L field of a DD2 is zero, the fill character, if required, is 
specified by bits 0 through 7 of register R5. 

Bit 8 must be zero; otherwise an illegal specification (IS) trap occurs. 

AS specifies the address syllable prescribed by the instruction. See Figure H-6 for the address 
syllable format. 

BINARY DATA DESCRIPTOR 

The format of a binary data descriptor is gien in Figure H-5. The contents of Word 2 is either a 
displacement or an immediate memory operand (IMO) and is specified by the address syllable of 
Word 1. 

o 1 2 3 7 8 9 15 

~C--Ld_o_o_IL.-___ L ~----,I_o_I,---__ A_S ----II WORO 1 

. DISPLACEMENT _ WORD 2 

Figure H-5. Binary Data Descriptor Format 

PROGRAMMER'S REFERENCE INFORMATION 
FOR COMMERCIAL PROCESSOR OPERATION H-6 CB07 



The meaning of the Word 1 fields is as follows. 

C 1 specifies the byte offset. 

• When no indexing is specified, C1 specifies the offset within the addressed word. 

- If C 1 is zero, the operand starts in the leftmost byte of the addressed word. 

- If C1 is one, the operand starts in the rightmost byte of the addressed word. 

• When indexing is specified, the contents ofC1 are added to the index value and the sum is 
used in calculating the effective· address. 

Bits 1 and 2 must be zero. 

L specifies the binary precision which must be 16 or 32 bits. 

• IfL is not zero, it must be two (for a precision of16 bits) or four (for a precision of32) bits. 

• IfL is zero, the precision is specified by bits 11 through 15 of register R4 for 001 and R5 for 
002. When these registers are used, bits 11 through 15 must contain two or four. 

Bit 8 must be zero; otherwise, an illegal specification (IS) trap occurs. 

AS specifies the address syllable prescribed by the instruction. Seei'igure H -6 for the address 
syllable format. 

Note that a binary data descriptor is actually an alphanumeric data descriptor specifYing no 
fill with a length, after possible escape to Rn,of either 2 bytes or 4 bytes. 

ADDRESS SYLLABLE 

The Commercial Processor address syllable occupies bits 9 through 15 of a datu descriptor as 
shown by Figure H-6. 

o 9 12 15 

Figure H-6. Commercial Processor Address Syllable Format 

Table H-2 lists the address expressions that can be specified by the Commercial Processor 
address syllable. In this table, n can be any; number from 1 through 7 and is equal to rrr, except 
when rrr = 000. The last four bits of an address syllable cannot be zeros. If the last four bits of the 
word are zeros, the word is a label that designates a remote descriptor. 

Table H-2. COMMERCIAL PROCESSOR ADDRESS SYLLABLES 

mmm rrr = 000 rrr = 001 through 111 

i = 0 i = 1 i = 0 i = 1 

000 Remote location $Bn.value *$Bn.value 
001 description location.$R1 $Bn. value.$R1 * $Bn. value.$R1 
010 usage location.$R2 $Bn. value.$R2 *$Bn.value.$R2 
011 location.$R3 $Bn. value.$R3 * $Bn. value.$R3 
100 * location $Bn. value.$R4 *$Bn.value.$R4 
101 reserved $Bn.value.$R5 *$Bn.value.$R5 
110 reserved $Bn.value.$R6 * $Bn. value.$R6 I = string_constant r 
111 $Bn.value.$R7 *$Bn.value.$R7 

= decimaLconstant 

'Not valid for use in second or third data descriptors 

The Commercial Processor program (Figure H-7) provides a comprehensive example of the 
Commercial Processor instmctions. 

PROGRAMMER'S REFERENCE INFORMATION 
FOR COMMERCIAL PROCESSOR OPERATION H-7 CB07 



CIPPFR 770610 CIP HARDWARE TEST -SAF 1'177/12/07 1022:12.0 ASSEMBLER-0100-I!/17/1346 GCO~6 MOD400-SI00-12/01/141~ PAGE 0001 

"":I"tI 000001 TITLE CIPPER, '770610' CIP HAROwARE TEST 
O::t! 000002 * ::t!0 000003 0000 0043 CIPMSG TEXT Z'OO','rIP HARDWARE TFST STARTI~G' 
0 0 0001 4'150 

~~ 0002 204R 
0003 41<;2 

~~ 0004 4457 

tJ:jtJ:j 000'> 4152 

::t!::t! 0006 4520 
o . 0007 5445 
"""00 0008 53<;4 
>::t! 000'1 2053 t""tJ:j OOOA <;441 
"tI"":I OOOB 52<;4 ::t!tJ:j OOOC 4'1/1E O::t! 0tJ:j 0000 470U 

tJ:jZ 000004 OOOE 00<;4 PASMSG TFXT Z'OO'. 'TEST , 
000 OOOF 45<;3 

~tJ:j 0010 <;420 
000005 0011 3031 PASNn DC 101 I , 

, 
~z 00!2 2020 
0"":1 000006 0013 4641 PASSWD DC 'FASSED' 

~O 0014 5353 

:;..;::t! 0015 4544 

>~ 000007 * 
>-,3> 000008 nO!6 0054 FALMSG TFXT Z' 00 I, 'TFST 

, 
...... >-,3 0017 4553 
0 ...... 0018 5420 
ZO 000009 001'1 30~1 FALNO Dr 101' , , 

Z OOIA 2020 
000010 OOIB 4641 FAILWD DC 'FAILED' 

~ 
OOIC 494C 
OOID 4544 

00 0000 II 001E OO!D FALPTR DC <FAIlwD+2 
000012 001F 2020 "'ATTRl RESV 32, , 
000013 003F ?045 DC ' Ef'I 

, 
0040 4420 

000014 0041 4142 AS DC I ~R' 

000015 0042 2020 MAlE NO RFSV 3. 
, 

000016 0045 0000 III K DC 0,0,0 
0046 ouno 
0047 0000 

000017 0048 0000 PPIK Dr 0,0,0 
0049 0000 
ooaA 0000 

000018 0048 0400 RIK DC 1024 
000019 004C 10;>4 PIK Dr P'1024' 

0040 ROOO 
0000;>0 004E ;>04~ P2K DC P'204R' 

004F 1'000 
OOOO?I 0050 3072 P3K DC P'307?' 

00"1 AOOO 
oooon 00<;2 6144 PbK DC P'b144' 

00<;3' 1'000 
000073 00<;4 3430 N4K DC N'40'lS' 

00'55 39~5 

000074 00<;6 "3831 AS DC 'R I q I ' 

0 00<;7 3931 

ttl 000025 0·0<;8 'O~O N!\K DC ""0000819' , 
0 0'0<;9 303O 
~ 

Figure H-7. Commercial Processor Hardware Test Program 

,,' 



~ 

CIPPFR 770/,10 

6~ OO'5A 
OO'5A 

::00 000026 OOo;C 

8~ 0000?1 000:;0 
OOO:;E 

~~ OO'5F 
OOM 

~~ 0000;>8 0061 

f5~ 
00/,2 
001>3 ....... W nOb4 >:;0 0000?9 OOb'5 t-'~ nOl>6 "'O"2j 00b7 ::o~ 

g~ 
00b8 

000030 006'1 

~Z 000031 0060 
Wo 000032 

~~ 000033 OObE 

::0 ....... 0070 

oZ 000034 

"'O"2j OOOOVS 

~O 000036 0072 

§~ 
000037 
000038 
00003'1 0074 
000040 

0 ....... 000041 ZO 000042 0076 Z 000043 0078 

~ 
000044 0079 

1:0 

o 
~ 
-.1 

CIP HA~OWA~E TfST 

3831 
~q31 

FOOB 
38'1 
3enl 
U?A 
2A2A 
;>A?A 
?AU 
3831 
,q~1 

~8" 
3931 
30~0 

30'0 
2020 

''130 

4806 FFE7 
48n8 FFF~ 

4208 FFE'1 

4808 1'1'1'4 

4808 FFEF 
0000 

0001 

~ 

-SAl' 1'177/12/07 10?2:1?0 ASSEMBLER-0IOO-11/17/134b Gr.OSe Mn0400-S100-12/01/Ial~ 

MOP TfXT 
A81< DC 

4ST61< DC 

A8KO OC 

WK~K RfSV 
N'1 DC 

* IlESTAB DC 

OI'SrArMOP: 
OJ 
2JJ 
OFSCA(WI<81<: 
0: 
811 
OE"SCA(AIIKO; 
0: 
8) 

~ETURN RFSV 

TSTNO DC 

SFFCO),MV7ArS) 
'fQQl****' 

'****~\lql' 

'111'110000' 

II,' 
N'9 1 

OESr.A(A~,0,R),DESCA(W"8K,0,A): 

$AF,O 

Figure H·7 (cont). Commercial Processor Hardware Test Program 

~ 

P4G~ OOO? 



>-%j'"d 
0:;:0 
:;:00 
0 0 
o~ 
S::s:: 

~~ 
:;:0:;:0 o ~ 
...... 00 

~~ 
'"d>-%j 
:;:Otzj 
0:;:0 
Otzj 
tzjz 
000 
fBtzj 
:;:0 ...... 
oZ 
'"d>-%j 
tzjO 

~~ 
0-3> ...... 0-3 
0 ...... 
Z~ 

:;t: 
..... 
0 

o 
~ 
~ 

CIPPfR 770610 CIP HARDWARE TEST -SAF 1971112/01 1022:12.0 AS~EMBLER-OIOO-11/1111346 GeOS" MnD400-SI00-1?/OI/1413 PAr.E 0003 

000045 1 
0000116 001A CBCO FF93 PASS LAB SB4,PASMSG 
0000111 001C 1COO LI)V SR7,0 
0000118 007D I>CIO LOV SR6,11> 
0000119 * SF ROUT 
00000;0 007E 0001 MCl 
0000<;1 007f 0803 DC Z'Oll03' WRITE Tn fRROR OUT fILE 
0000<;2 OOAO OF.1I7 B >FAILI 
00000;3 * 0000<;11 * 0000<;5 00111 CBCO FF911 FAIL LAB SB4,FAlMSG 
0000'56 0083 noo LOV $R7,0 
0000<;7 001111 bCIO LOV SRb,lb 
00000;8 * SFROUT 
000059 001\5 0001 MCL 
00001>0 00116 0803 DC Z'0803' WRITE TO FRROI> nUT FILE 
00001>1 
000062 00117 RRCO FF89 FATL! LAB SR3,PASNO 
0001)63 00119 ABeo FF8F LAB SR2,FALNO 
0000611 oceB IIACO FFErl INC T5TNO 
0000b5 00110 FIIIIO FFEIl LnR $1>7, TSH!O 
000066 OOIlF le02 LOV SRI,2 
OOOOb7 0090 870;b FAIL;> CI ='RI> 
0000/,8 0091 f370 OOOA OIV $1>7,=10 
000069 00'13 bUO Anv SRb,Z'30' 
000070 00'111 nnB 5TH $Rb,Sll3.-JRI 
000071 00'10; F7Q2 5TH SRb,SR2.$RI 
000012 ooob 79FA RNEZ $P7,>FATl? 
000073 * noo074 0097 113R1 FAIl-; JMP $RI 

Figure H-7 (cont). Commercial Processor Hardware Test Program 

~~...'F~ 
\. / \ ~ / 



~ ~. ~ 

CIPPFR 7701t10 CIP HARO~ARE TEST -SAF lq77/12/07 10?2:1?0 AS~EMBlER-0100-11/17/1'~n GCO~b MOD400-5100-12/01/1413 PAr.E 0004 

;:S;8 000075 
00007b * nUTPUT STARTTNr. MESSAGf 

:::00 000077 XVAL ZFGO 

8~ 000078· 0098 0000 X !lTART DC ZFGO 
000079 ooqq OFCO FFOF STB $1l5,RETIJRN 

!~ 
0000/10 009H CBCO FFbll lAB $R4,C[PMSG 
0000111 009D 7COO lOV $R7,0 
0000112 009E nCIR lOV $Rb.27 

:::ot:rJ 0000R3 * SEROUT 
O~ OOOOAlI OOqF 0001 MCl 
..... 00 00001\5 OOAO 0803 DC Z' 080'3' wRITE Tn ERROR nUT FILE 

~g;j OOOO~b * 
0000117 * TEST 01 - AU! "tI"".j 0000118 OOAI 0021 AlR DESCA(='PA'.0,2,FIlL): 

:::Ot:r:l 00A2 1I278 5041 0:::0 0000A9 OOAlI 4208 FFbf DESCA(PASSWO,0.2.FIll) Ot:r:l 
t:r:lZ OOooqo OOAb 4301 0001 CSYNC 5+2 DIJMMY FOR wAIT 

000 Ooooql 00A8 q3CO FFDI LNJ :>BI.PAS!l 

gst:r:l 0000q2 OOAA "CFO 5041 'n53 lOI ='PASS' 
OOOoq3 OOAO 80110 FFb5 8(11 PASswD 

:::OS;: 0000q4 * O"".j 0000q5 * TEST 02 - ACM 
"tI0 OOOOqb OOAF IC03 lOY SRI.3 

~~ 0000q7 OO~O 00;>2 ACM OESCA(PAS~~D.'RI,I,2,NO-FTll); 

OORI 11218 FFbl 

~~ 0000Q8 00R3 02118 FFbA DESCA(*FAlPTR.0,2.NO-FILl) 
ooooQq 00115 5302 CRNf >TST202 

0 ..... 000100 OORb 531111 CRE >TST201 

Z~ 000101 OOR7 Q3CO FFCQ TST202 lNJ S!lI.FAIl 
000102 OORQ OFII3 B >TS13 
000103 OORA 'nco FFBF TST201 lNJ $FlI,PASS 
000104 * 

::z:: 000105 * TE~T 03 - "AT , 
000106 OOBC DRCO FF84 TS13 lAB SB5,AR I-' 

I-' 000107 OOf'E FBCO FFS3 LA!! $Rb."_TENO 
000108 OOCO nCOI LI"lV $1'6.1 
00010'1 OOCI FBCO FF51l lAB $R7,MATTBL 
000110 00C3 7C02 LOY $Q7,2 
000 II I 00r.'! 00?3 M_T DfseArSR5.0,0,2.NO-FILl); 

oor~ 0205 0000 
000112 OOC7 R2n6 UOOI OfSCA(SII6.I.SR6.1.2.Nn-FIlLl; 
000113 00e9 4277 FFFF DFSeA(~B7.-I.$R7,O,2,FILLI 

000114 OOCB 4301 0001 CSYNC $+2 DIIMMY FOR WAIT 
nOOl15 OOCO 1:870 4544 LlW $R6,=tEn t 

non116 OOfF E940 FF74 e"R $Pb.MATEND+? 
000117 ooni 0904 BF >TS1301 
000118 00n2 Q3CO FFAF L~IJ "FlI,FAIl 
000119 oonll OFR3 B >TST4 
000120 00n5 Q3fO F~AlI TS1301 lNJ $BI.PAS~ 

000 t? I * 
000122 * TEST Oll - SRCH 
000123 Oon7 nC03 TST4 LDV $Rb,3 
000124 oooa 0028 SPCH DESCA(SlIb.I.$Rb,I,2.NO-FIll); 

00n9 8266 0001 
000125 001)8 0205 0000 OfSCA(SR5.0.0.2,NO-FILl); 
00012b 0000 4277 FFFF DESCA($R7.-I.~R7.0.?.FIlL) 
000127 OOIlF 1I301 0001 eSYNC $+2 DUMMY FnR wAIT 

0 000128 OOFI FRlIO FF5F LDR $Rb.AR 
t;I:j 000 t?Q 001'3 fQ70 414? C"R $R6,=IAR' 
0 000130 001'5 OQUlI Bf >TST401 
-J 

Figure H-7 (cont). Commercial Processor Hardware Test Program 



CIPPER 7701.10 CIP HARDWARE TF.ST -SAF 1'177/12/07 1022:12.0 ASSEMBLER-0100-11/17/134b GCO~b MOD400-S\00-1?/0\/\1I\3 PAGE 0005 

d~ 
000131 OOF" '13fO FF9A L~IJ Sfll,FAIL 
000132 OOFI.I OFII3 B >TST5 

~O 0001~3 001''1 '13CO FF90 TSTIIOI L"IJ Sfll,PASS 

0 0 0001'4 * 
Or:; 

0001'5 * TEST 05 -CRD, OMC, COB 
00013& 001'8 0027 TST5 CflD DESCB(B1K,211 

~~ OOFC 0208 FF5F 
0001~7 OOH: IIb08 FF5b DESCU(UI~,O,b,LEAOINGl 

t;oj~ ooo13e OOFO 00;>5 OMC DESrU(U1K,0,&,LEADING1; 
~t;oj 001'1 4b08 FF53 
o~ 000139 00F3 Ob08 FF54 DESCU(PPIK,O,&,UNSIGNEDl !>UJ 000140 00F5 OO<'A CDB DESCU(PPIK,O,b,UNSIGNFDll 
t"'~ OOFb Ob08 FF51 
"tIt;oj 000141 00F8 0208 FF52 DESCB(B1K,21 
~"%j 0001112 OOFA 11301 0001 CSYNC $+2 DUMMY FOR wA IT 
ot;oj 000143 OOFC F840 FF41' LOR $R7,BIK 
o~ 00011111 001'1' F'I70 ollon CMR $R7,=I0211 
t;ojz 0001115 0100 0'1011 BI' >TST50I 

~O OOOlllb 0101 '13CO FF7F LNJ $RI,FAIL 
O~ 000\117 0103 OFII3 B >TSTb 
~..., 0001118 01011 'I3CO FF7<; TST501 LNJ $81,PASS 

O~ 00014'1 * 
00010;0 * TEST 01. - DAO 

~O 000151 OIOb 002C TSTb DAD OFSCP(PIK,0,5,Tl; 

r:;~ 0107 ;>5118 FFII4 
0001<;2 010'1 2588 FFII4 OFSCP(P2K,0,5,Tl 

1-3> 0001<;3 OIOB 002F OCM DE5CP(P2K,0,5,Tl; 
...,1-3 OIIlC ;>51'8 FFll1 
0"" 0001<;11 0101' ?51'8 FFlll OESCP(P3K,0,5,Tl 
Z~ 0001<;5 OlIO 13118 CRNOV >TSTbOI 

OOOI<;b 01 I I 73~1I CRL >TSTb02 
0001<;7 01 I 2 1>303 CRG >T5Tb02 

I:I: 0001<;6 0113 1302 CROV >T5Tb02 , 
00010;'1 01111 OF611 B >TST&OI .... 

to:) 0001&0 0115 '13CO FF&R TSTb02 LNJ $13\,FAIL 
00011>1 0117 OFII3 B >TST7 
0001&2 0116 '13r.0 FFbl TST&OI LNJ SB1,PA5S 
0001&3 * 
00011.11 * TE!!T 07 - OSF! 
00011.5 01 tA 0020 TST7 OSB OESCP(P2K,Q,5,T); 

OIIB 25118 FF32 
OOOlbb 0110 ?51'B FF32 DESCP(P3K,0,5,Tl 
0001 ... 7 OIIF OO?F OCM OfSCPC=-'0',0,2,Tl; 

0120 22F8 OROO 
00011.8 0122 ;>588 FF2D OESCP(P3K,0,5,T) 
0001&'1 01211 <;31111 CRE >TST70 I 
000170 01"5 '13CO FF58 LNJ $BI,FAIL 
000171 0127 OF83 B >T5T8 
000172 0128 '13CO FF51 TST70 I LNJ SRI,PASS 
000173 * 
0001711 * TEST Oil - OML 
000175 °IU 002'1 TST8 DML OESCP(=P'?',0,2,T)/ 

012B ?2F8 2!100 
00017b 0120 25118 FF20 OESCPCP?K,O,5,Tl 
000177 OI(>F OO?F DCM DE5CP(P?K,0,5,T11 

01'10 ?5f18 FFID 
000178 0132 25118 FFIF DESCP (P&K, 0,5, T) 

0 00017'1,01'111 53011 CRNf >TST801 

tI:I 000180 01'15 '13CO FFII4 LNJ SFlI,P~SS 

0 000181 01'17 01'83 B >TST'I 
....;J 

Figure H·7 (cont). Commercial Processor Hardware Test Program 

'-

t ~ l~ If '\ 

\c, 



~ ~ .~ 

OPPER 770"10 CIP HAQDWAQE Tf5T -5AF 1'177/12/07 ·10?2:1?0 A5REMBLER-0100-11/17/1346 GCO~b MOD400-SI00-12/01/1413 PAGE OOOb 

;:s;g 0001112 01~8 <l3CO fF411 T5T801 LNJ $I'\I,FAIL 
OOOI~3 * !:CO 000lR4 * TEST 0'1 - f'DV 

0 0 0001115 OnA OO?II T5Tq DDV DESCPCPhK,0,5,Tl; 

O~ ons 25~8 FFII> 

a:: a:: 
OOOI~b OnD ?5R8 FFI4 DESCPCPbK,O,5,Tl; 

a:: a:: 
000lR7 OnF 25~t! FFOC DEsrprPIK,0,5,Tl 
0001118 0141 OO?F DrM DESf':PC:P'1 ',0,2,ll; t'=jt'=j 0142 22F8 IROO !:C!:C OOOIRq 01'14 ?5AM FF07 DE5CPfPIK,0,5,Tl o . 

...... 00 0001<10 0146 1305 CF!OV >TST901 
>!:C 0001'11 01117 0:;304 CR~f >TST'1OI 
t"'t'=j 0001'12 01411 Q3eO FF31 LNJ SAI,PASS ;g"'J 0001<13 014A OFII3 B >TSTIO 
Ot'=j 0001<14 014B '13[0 FF3<; TSHOI LNJ SAI,FAIL 
0!:C 0001'15 * t'=jt'=j 000 I '11> * TEST 10 - aSH 
ooZ 0001'17 0140 oon TSHO DSH DfsrUfN4K,0,4,Ul,1 
00 0 014E 0408 FFO'; Ot'=j 0150 0178 0001 !:C ...... 0001<18 0152 OO;;>E DLS DfSCUfN4K,0.4,Ul,1 
oZ 0153 0408 FFOO 'tj"'J 01<;5 0178 0100 t'=jO 

~~ 
000 I'~q 01<;7 OO?E 01>5 OESCUCN4K,0,4,U),3,R 

01';8 0408 FffR 

:j~ 
OIO:;A 0178 8300 

000200 015C oon DCM Df5CUCN<I,0,I,Ul: 
0 .... 01<;0 0108 FFOF 

Z~ 000201 OIO:;F 0408 FfFa DfSCUCNaK,0,4,Ul 
000202 01bl <;3 11 4 CRE >T5T101 
000203 0lb2 Q3CO FFIF LNJ SRI,FAIL 
000204 0lb4 OFA3 6 >TSTII 

:p 000205 0lb5 <l3CO FFI4 TST! 01 LIIlJ SRI,PASS 
I-' OOO;;>Ob * Co) 000207 * TEST II -DME· 

01)0208 011,7 OO;>b TSTII DME DESCU(N8K,0,I\,Ul; 
0lb8 0808 FI'EF 

000209 OlbA 4808 FEFF DESCA(W K8K,0,81: 
000210 OlbC 4208 FEEF DESC.(MOP,0,2) 
000211 OlbE 00?2 AC,", DESCAfWK8K,O,8): 

OIf.F 4808 FI'F'l 
000212 0171 '1808 FEEF DESCA(ASTRK,0,8) 
000213 0173 2303 CRTR >TSTt 12 
000214 0174 3302 CASF >T5T112 
000215 0175 <;384 CflE >T5TII1 
000211> 0171> Q3CO FFOA TSTI12 LNJ SIlI,FAIl 
000217 0178 OFfl3 B >TSTI;> 
000218 01 Jq <l3CO FFOO TSTIII LNJ S·RI,PASS 
000219 * 
000220 * TEST 12 -AME 
0002;;>1 0178 0024 TSTI? AME DE5CA(A~,0,81: 

O!1C 4808 FED'l 
0002;>2 017E 4808 FEEA DESCA(~K8K,0,81; 

000223 OIAO 4208 FEDR DF5CA(MOP,0,21 
000224 01112 00;>2 ACM DESCA(WK8K,0,8): 

01113 4808 FEE'i 
000225 OlliS 11808 FEDI' DESCA(A8KO,O,R) 

0 0002;>b 01117 53114 CRE >TST!21 

tJ:I 0002<'7 01118 93CO FEFA LNJ SElI,FAIL 
0 000228 OIIlA OF~3 B >TSTt3 
-3 

Figure H-7 (cont). Commercial Processor Hardware Test Program 



;j;g 
!:dO 

O~ 
0;> 

~a= 
~~ 
f5~ 
:;00 
t""~ 
'"d>-%j 
!:d~ 
O!:d 
Ot;tj 
~z 
000 
oo~ 
0 ...... 
!:d z 
O>-%j 
~O 
~~ 
:j~ 
0 ...... 
z~ 

:;t 
I-' 

""" 

@ 
o 
....;J 

~. 
\. / 

CIPPER 770blO CIP HARDWARE TEST -SAF 1'171112/01 1022:12.0 ASSEMBLER-OIOO-11/1111346 GCOSb Mn0400-SI00-12/01/1413 

00022'1 * 
000230 OI~B Q3CO FFEE TST121 LNJ SBI,PAS!I 
000231 * 
0002~2 * TEST I' - REMOTE DESCRIPTORS 
0002'3 OI~D RBCO FEEO TST13 LAB $R3,DESTAR 
000234 OlAF CSCO FFDE LAB $A4,DESHR 
000235 01'11 (looe LRD8 
000236 01'12 00?4 AME 0'\ ,2 

01'13 OonO 
01'14 0010 
01'15 OO?O 

000237 0lQ6 oon ACM 3,4 
01'17 0030 
01'18 0040 

0002311 OIQ'I <;3A5 CRE >TST 131 
0002~9 OIQA Q3CO FFEb L~J SRI,FAIL 
(100240 (lIQe "3C8 FF'DIl JMP ""ETURN 
000241 * 
00024;:> OIQE Q3CO FEDB TSTI31 L~J SRI,PASS 
000243 (lIAO 113C8 FED1 JMP O'RETURN 
000244 * 000245 OlA2 0091' END CIPPER,START 

0001 ERR COUNT 
00~b8 WORD SYMROL TARLE 

Figure H-7 (cont). Commercial Processor Hardware Test Program 

.; 

PAGE 0001 

~.~ 

',,- ~ 



~ ~ 
~ 

CIPPER 710b1O CIP HARDWARE TEST -SAl' 1'177/12/07 10?2!1?O ASSEMBlER-0100-11/17/134b GCOSb MOD400-SI00-1?/OI/141~ PAGE ODOR 

6~ 
, 

**** '10 114 127 142 
SAl' **** 4~ 

~O S8! **** 74 'll 101 103 1111 120 131 133 146 148 1M Ib2 170 172 180 182 19;> 1'14 203 

O~ ;>0'5 216 218 727 230 23'l ;>112 
'B? *1r** 63 71 0> 'B~ **** b7 7~ 23~ 

~~ S811 **** lib 5'5 80 ;>34 

~~ S85 **** 7<l 106 III 125 
~B6 **** 107 112 124 

~~ S87 **** IO'l 113 126 o . 
~RI **** 6,., 70 71 '1b '17 ..... 00 

>~ ~Rb **** 4R 57 67 b'l 70 71 82 lOA II? 115 116 123 1211 1211 12'1 
t"'t.".J 'R7 **** 47 56 6'i 61l r;> III 110 113 126 1113 144 

~>'%j A8 211 33 221 
N A8K 27 0t.".J A81<'0 2'1 40 22'5 O~ A8 14 10'" 1211 

t.".JZ AST8K 2)0. 212 
000 Bli< 18 136 141 143 
~t.".J CIPMSG 3 8~ 

~ ..... OESTA8 33 733 7311 
oZ FAIL 5'5 101 II~ 131 146 160 170 18? 1'111 ;>03 216 227 ;>3'l 
'"d>'%j FATL! 62 57 
t.".JO I'AIL2 67 7? 

~~ 
'" I'ATL3 74 

FATLWD 10 1\ 
FALMSG A 5'5 

0 ..... I'ALNO 'I 6' 
ZO FALPTR II 'III 

Z MATEND 15 107 116 
"'ATTAl P 10'1 

:p "lOP 2,., 34 ;>10 ;>23 

"'II" 2' 1'17 1'111 1'1'1 201 .... N8t< 2'5 ?OR i:n 
"''l 31 ;>00 
PI" 1'1 151 187 18'1 
P2K 20 15? 153 16'5 176 177 
P3" 21 1511 Ibb IbR 
Pbl< 2? 17R 185 186 
PASMSG II III, 
PASNO 'i b;> 
"ASS 116 '11 10' 120 IB lliR Ib? 17<' 180 19? 205 2111 ?30 ?II? 
PASSWI) I, 8'1 '1' 97 
PPIK 17 13'1 tllO 
'lETURN 'n 7'1 240 ;>43 
START 7R ?4'5 
TSTIO 1'17 1'1' 
TSTIOI 20C; 202 
TSTII ;>OR ?04 
TSTlll ?Io, ?15 
TST! 1;> ?16 ;>!3 ?III 
TSTI? <'21 ?17 
TST!?I ?30 221> 
TSTn ?33 ?2A 
T5TI31 ?4? ?3R 
TST201 10' 100 
TST202 101 '1'1 

0 TS13 106 10;> 

\jj TST301 120 117 
0 TST4 123 11'1 
-.;j 

Figure H-7 (cont). Commercial Processor Hardware Test Program 



~~ 
0 0 

O~ 
~~ 
~~ o _ 
...... 00 

~~ 
;g"%j 
Ot>:l 
O~ 
t>:lZ 
000 
00t>:l O. 
~ ...... 
oZ 
'"C"%j 
t>:l0 

~~ 
:j>-3 
0 ...... 
Z~ 

~ ..... 
0) 

o 
I::C o 
....:J 

F" 
) 

CIPPER 7701>10 

TSTQO I 13~ 

TST5 136 
TST501 IIiR 
TST6 151 
TST601 162 
TSTb02 lbO 
TST7 Ib'; 
TSnOI 172 
TST8 175 
TST801 182 
TSH 18'; 
TSTqOI 1'111 
TSTNO 1111 
IJIK 1& 
WKRK 30 
lFGO 77 

&3 LARELS 
2011 REFERENCFS 
211'; RECORDS 

o II FLAGS 
o " FL~G~ 
<' N FLAGS 

ell' HAqDWARE TEST -SAF IQ77/12/07 1022:1?O ASSEMBLER-OIOO-II/17/13111> GCOS& MOOIIOO-SIOO-12/01/11113 

130 
132 
111'1 
1117 
155 
15/) 
1&1 
I&C) 
171 
17'1 
181 
1'10 

&11 
137 

33 
7/\ 

15'1 
157 1511 

I'll 
65 

13R 
37 ?oQ ?1I 22<' ;>24 

Figure H-7 (cont). Commercial Processor Hardware Test Program 

I' 

PAGE 000'1 

I' 
il 

"-



( 

( 

( 

AppendixJ 

Programmer's Reference 
Information For Queue Instructions 

The queue instructions l allow easy maintenance of ordered lists of "frames." A frame contains 
a frame priority number, a next frame pointer, and an associated data structure. Each list is 
identified by a lock frame that contains a lock word and pointers to the head and tail of the list. 
See Figure J-l. 

Four generic instructions are provided to enqueue or dequeue frames from the list: 

• Queue on head (QOH) 

• Queue on tail (QaT) 

• Dequeue from head (DQH) 

• Dequeue by address (DQA) 

The lock word ensures that only one CPU accesses a particular queue at a time. Each queue 
instruction causes a fetch of the lock word with a Read-Modify-Write (RMW) cycle. If the low 
order bit of the lock word is set: 

• The RMW cycle is completed without changing the lock. 

• The carry bit of the indicator register is cleared. 

• The next instruction is fetched. 

If the low order bit of the lock word is cleared: 

• The RMW cycle is completed and ones are written into the lock word. 

• Execution of the queue or dequeue instruction is initiated. 

Each queue or dequeue instruction causes a scan of the frames from the head toward the tail. 
When the conditions specified by the instruction are met, or the last frame is reached, the CPU: 

• Links or unlinks the frame from the list 

• Leaves the G- and L-bits of the indicator register in a known state 

• Initiates another RMW cycle 

• Writes zeros into the lock word 

• Sets the carry bit of the indicator register to one 

• Fetches the next instruction 

If an interrupt occurs during a scan, the CPU: 

• Stops the scan 

• Initiates an RMW cycle 

• Writes zeros into the lock word 

• Clears the carry bit of the indicator register to zero 

• Leaves the G- and L-bits of the indicator register undefined 

• Sets the program counter to point to the queue or dequeue instruction being interrupted 

After performing these actions, the CPU services the interrupt. 

During the scan, the effective ring number is moved outward (i.e., becomes less privileged), if 
the frame being scanned is in a lower privilege ring. If the frame is in a higher privilege ring, 
standard protection procedures are carried out by the Memory Management Unit. 

Software must build the lock frame of each list to be used. A list with no entries is a lock frame 
in which the first and last frame pointers point to LOCK. (See Figure J-l) The CPU will leave 
the lock frame in this condition when a frame is unlinked from a list having a single frame. 

IThese instructions are only available on the 6/40 and 6/50 models. 

PROGRAMMER'S REFERENCE 
INFORMATION FOR QUEUE INSTRUCTIONS J-l CB07 



LOW MEMORY 

:F ~ LOCK PRIORITY 

U-
PRIORITY ....-.. PRIORITY 

FIRST NEXT NEXT LOCK f- FRAME FRAME FRAME - POINTER -
POINTER POINTER POINTER 

LAST ~ FRAME - DATA ~ DATA ~ ~ DATA ~ 
POINTER '\ 

-...- --- --- ---LOCK FRAME ~ 
FIRST FRAME INTERMEDIATE LAST FRAME 
(HEAD) FRAME (TAIL) 

HIGH MEMORY 

NOTES: 1. SCANNING (IF ANY) IS ALWAYS PERFORMED FROM FIRST FRAME (HEAD) 
TO LAST FRAME (TAIL). 

2. PRIORITY IS AN UNSIGNED 16 BIT INTEGER. 

3. FRAME POINTERS ARE TWO WORDS FOR LAF CONFIGURATION, 1 WORD 
FOR SAF CONFIGURATION 

LOCK 

FIRST 
FRAME 
PTA. 

LAST 
FRAME 
PTA. 

LOCK FRAME FOR ZERO ENTRY LIST 

Figure J-l. Queue Management 

The following DC statement will create an empty queue. 

QUEUE DC 0; LOCK WORD 
<QUEUE; FIRST FRAME POINTER 
<QUEUE LAST FRAME POINTER 

PROGRAMMER'S REFERENCE 
INFORMATION FOR QUEUE INSTRUCTIONS J-2 CB07 



( 

Appendix K 

Programmer's Reference 
Information For Stack Instructions 

The Model 6/ 40 and 6/50 systems provide a single stack capability for each interrupt level. The 
stack address register, T, contains the address of the first word of the stack header. The stack 
header is shown in the diagram of the stack structure, Figure K-l. 

Four generic instructions are provided for managing the stacks. These instructions are 
two-word instructions each of which has the same first word. During execution of the instruc­
tions, checks are made for stack overflow and stack underflow. 

STACK FRAME 

The stack header contains four entries, two of which must be null pointers as shown by Figure 
K-l. The number of words allocated to a stack, MW, is written by the software when the header 
is created. It is referenced, but not altered, by the hardware. The number of words currently 
consumed in a stack, CW, is written by the software when the header is created. Thereafter, the 
value of CW is maintained by the hardware. 

t 
LOWER IN 
MEMORY, 
TOP OF STACK 

LENGTH (b) OF FRAME B 

MW 
STACK FRAME B 

CW LENGTH (a) OF FRAME A 

T 
a STACK FRAME A 

STACK CURRENT LENGTH IN WORDS (CW) 

HIGHER IN 
MEMORY, BOTTOM 

OFSTrK 

ADDRESS (T) 
REGISTER 

*MUST BE NULL 

MAXIMUM LENGTH IN WORDS (MW) 

MBN* 

MBN* 

Figure K-l. Stack Structure 

PROGRAMMER'S REFERENCE 
INFORMATION FOR STACK INSTRUCTIONS K-l 

STACK 
HEADER 

CB07 



STACK INSTRUCTION FORMATS 

LOAD STACK ADDRESS REGISTER (LDT) 

WORn 1 WORD 2 . . 
a IOxxxl a 1 --Designates base register (1-7)~ 

The LDT instruction loads the T register with the address contained in the specified base 
register. 

STORE STACK ADDRESS REGISTER (S11) 

WORD 1 . 
o a I 1 

WORD 2 . 
o o I 0 I 0 I 0 I 

The STT instruction loads base register 7 with the address contained in the T register. 

ACQUIRE STACK FRAME (ACQ) 

WORD 1 WORD 2 . 

I 01 a 1 1 0 0 a loxxxloxxxi ----Designates base reg;s'ter (l-7)~ J 
Designates general register (1-7) 

The ACQ instruction loads the leftmost address of the newly acquired frame into the 
designated base register Bn, writes the length of the new frame into the previous location, and 
updates the current stack length accordingly. The designated general register Rn contains the 
number of words of stack space to be acquired. A trap to Trap 10 (stack overflow) occurs if the 
number of words to be acquired exceeds the available stack space. 

REUNQUISH STACK FRAME (RLQ) 

WORD 1 WORD 2 . . ... 

o I a I 1 a o I a I a I a xxx I --Designates base register (1-7)--

The RLQ instruction converts the top (most recently acquired) stack frame into available 
space by updating the current length (CW) in the stack header. A trap to Trap 9 (stack 
underflow) occurs if the stack is emptied; i.e., ifCW becomes zero. If the stack is not emptied, the 
leftmost address of the new top frame is loaded into the designated base register. 

PROGRAMMER'S REFERENCE 
INFORMATION FOR STACK INSTRUCTIONS K-2 CB07 



( 

( 

INDEX 

ACQUIRE 
ACQUIRE STACK FRAME (ACQ), K-2 

ADDITION 
HEXADECIMAL ADDITION, B-5 

ADDRESS 
ADDRESS EXPRESSIONS, 2-17 
ADDRESS REGISTERS, 1-4 
ADDRESS SYLLABLE, H-7 
ADDRESS SYLLABLES FOR CPU & SIP 

INSTRUCTIONS (TBL) , A-9 
COMMERCIAL PROCESSOR ADDRESS 

SYLLABLES (TBL) , H-7 
LOAD STACK ADDRESS REGISTER 

(LDT), K-2 
REMOTE DESCRIPTOR ADDRESS 

GENERATION (FIG), H-4 
SPECIALIZED ADDRESS 

EXPRESSION, 5-24 
STORE STACK ADDRESS REGISTER 

(STT), K-2 
. VALID ADDRESS EXPRESSIONS, A-I0 

ADDRESSING 
ADDRESSING TECHNIQUES, 5-7 
ADDRESSING TECHNIQUES FOR 

COMMERCIAL PROCESSOR INSTRUCTIONS, 
6-5 

B-RELATIVE ADDRESSING, 5-13 
B-RELATIVE POP ADDRESSING, 5-21 
B-RELATIVE PUSH ADDRESSING, 5-20 
COMMERCIAL PROCESSOR B-RELATIVE 

ADDRESSING, 6-9 
DIRECT B-RELATIVE ADDRESSING, 5-14 
DIRECT B-RELATIVE PLUS DISPLACEMENT 

ADDRESSING, 5-16 
DIRECT IMMEDIATE MEMORY ADDRESSING, 

5-8 
DIRECT P-RELATIVE ADDRESSING, 5-12, 

6-6 
IMMEDIATE MEMORY ADDRESSING (IMA), 
5-8 

IMMEDIATE OPERAND ADDRESSING, 5-10 
IMMEDIATE OPERAND (IMO) ADDRESSING, 

6-11 
INDEXED ADDRESSING CONSIDERATIONS, 

5-25 
INDEXED ADDRESSING MODES (TBL), 

5-25 
INDEXED B-RELATIVE POP ADDRESSING, 

5-22 
INDEXED B-RELATIVE PUSH ADDRESSING, 

5-21 
INDEXED DIRECT B-RELATIVE 
ADDRESSING, 5-15 

INDEXED DIRECT IMMEDIATE MEMORY 
ADDRESSING, 5-9 

INDEXED DIRECT P-RELATIVE 
ADDRESSING, 6-7 

INDEXED INDIRECT B-RELATIVE 
ADDRESSING, 5-16 

INDEXED INDIRECT IMMEDIATE MEMORY 
ADDRESSING, 5-10 

INDIRECT B-RELATIVE ADDRESSING, 
5-15 

ADDRESSING (CONT) 
INDIRECT B-RELATIVE PLUS 

DISPLACEMENT ADDRESSING, 5-18 
INDI~ECT IMMEDIATE MEMORY 

ADDRESSING, 5-9 
INDIRECT P-RELATIVE ADDRESSING, 

5-13, 6-8 
INTERRUPT VECTOR ADDRESSING, 5-24 
P-RELATIVE ADDRESSING, 5-12, 6-5 
REGISTER ADDRESSING, 5-7 
SHORT DISPLACEMENT ADDRESSING, 5-23 

ALPHANUMERIC 
ALPHANUMERIC DATA DESCRIPTOR, 6-3, 

H-6 
ALPHANUMERIC VALUE CONVENTIONS, 

8-36 

APOSTROPHES 
BALANCED APOSTROPHES, 8-36 

ARITHMETIC 
ARITHMETIC CONSTANTS, 2-7 
ARITHMETIC OPERATIONS, 5-1 
DECIMAL ARITHMETIC INSTRUCTIONS, 

6-2 

ASCII 
ASCII STRING CONSTANTS, .2-5 

ASCII/HEXADECIMAL 
ASCII/HEXADECIMAL MEMORY DUMP 

(FIG), D-2 

ASSEMBLER 
ASSEMBLER, 3-2 
ASSEMBLER CONTROL STATEMENTS, 4-1, 

4-2 
ASSEMBLER FUNCTIONS (FIG), 1-1 
NOTIFICATION FLAGS ISSUED BY 

ASSEMBLER, E-l 

ASSEMBLER CONTROL STATEMENTS, LIST OF 
ARGLST, 4-3 
BORG, 4-4 
BTEXT, 4-5 
CALL, 4-6 
CALL2, 4-7 
CLST, 4-8 
COMM, 4-9 
CTRL, 4-10 
DC, 4-11 
DEFGEN, 4-12 
EDEF, 4-13 
END, 4-14 
EQU, 4-15 
FAIL, 4-16 
IF, 4-17 
LCOMM, 4-18 
LIST, 4-19 
t.LIST, 4-19 
NLST, 4-20 
NULL, 4-21 
ORG, 4-22 
PTRAY, 4-23 
RESV, 4-24 

i-I CB07 



INDEX 

ASSEMBLER CONTROL STATEMENTS, LIST OF 
(CONT) 

TEXT, 4-25 
TITLE, 4-26 
XDEF, 4-27 
XLOC, 4-28 
XVAL, 4-29 

ASSEMBLY 
ASSEMBLY LANGUAGE INSTRUCTION TYPES, 

5-4 
ASSEMBLY LANGUAGE INSTRUCTIONS, 5-1, 

5-27 
ASSEMBLY LANGUAGE INTERNAL FORMATS, 

A-4 
ASSEMBLY LANGUAGE SOURCE STATEMENT 

FORMATS, 3"'1 
ASSEMBLY LANGUAGES, 1-1 
CONDITIONAL ASSEMBLY CONTROL 

STATEMENTS, 4-2 
DEBUGGING ASSEMBLY LANGUAGE 

PROGRAMS, D-l 
ELEMENTS OF ASSEMBLY LANGUAGE, 2-1 

ASSEMBLY CONTROLLING 
ASSEMBLY CONTROLLING STATEMENTS, 

4-1 

ASSEMBLY LANGUAGE INSTRUCTIONS 
ACQ, 5-27 
ADD, 5-28 
ADV, 5-29 
AID, 5-30 
AND, 5-31 
ANH, 5-32 
ASD, 5-33 
B, 5-34 
BAG, 5-35 
BAGE, 5-36 
BAL, 5-37 
BALE, 5-38 
BBF, 5-39 
BBT, 5-40 
BCF, 5-41 
BCT, 5-42 
BDEC, 5-43 
BE, 5-44 
BEVN, 5-45 
BEZ, 5-46 
BG, 5-47 
BGE, 5-48 
BGEZ, 5-49 
BGZ, 5-50 
BINe, 5-51 
BIOF, 5-52 
BlOT, 5-53 
BL, 5-54 
BLE, 5-55 
BLEZ, 5-56 
BLZ, 5-57 
BNE, 5-58 
BNEZ, 5-59 
BNOV, 5-60 
BODD, 5 ... 61 
BOV, 5-62 
BRK, 5-63 

ASSEMBLY LANGUAGE INSTRUCTIONS (CONT) 
BSE, 5-64 
BSU, 5-65 
CAD, 5-66 
CL, 5-67 
CLH, 5-68 
CMB, 5-69 
CMH, 5-70 
CMN, 5-71 
CMR, 5-72 
CMV, 5-73 
CMZ, 5 ... 74 
CNFG, 5 ... 75 
CPL, 5-76 
DAL, 5-77 
DAR, 5-78 
DCL, 5-79 
DCR, 5-80 
DEC, 5 ... 81 
DIV, 5,..82 
DOL, 5 .... 83 
DOR, 5-84 
DQA, 5-85 
DQH, 5-86 
ENT, 5-87 
HLT, 5-88 
INC, 5-89 
IO, 5-90 
IOH, 5-92 
IOLD, 5-93 
JMP, 5-94 
LAB, 5-95 
LB, 5-96 
LBC, 5-97 
LBF, 5-98 
LBS, 5-99 
LBT, 5-100 
LDB, 5-101 
LDH, 5-102 
LDI, 5-103 
LOR, 5-104 
LDT, 5-105 
LDV, 5-106 
LEV, 5-107 
LLH, 5-109 
LNJ, 5-110 
LRDB, 5-111 
MCL, 5-112 
MLV, 5-113 
MMM, 5-114 
MTM, 5-115 
MUL, 5-116 
NEG, 5-117 
NOP, 5-118 
OR, 5-119 
ORH, 5-120 
QOH, 5-121 
QOT, 5-122 
RLQ, 5-123 
RSTR, 5-124 
RTCF, 5-125 
RTCN, 5-126 
RTT, 5-127 
SAL, 5-128 
SAR, 5-129 
SAVE, 5-130 

i-2 CB07 



( 

( 

INDEX 

ASSEMBLY LANGUAGE INSTRUCTIONS (CONT) 
SCL, 5-131 
SCR, 5-132 
SDI, 5-133 
SID, 5-134 
SOL, 5-135 
SOR, 5-136 
SRDB, 5-137 
SRM, 5-138 
STB, 5-139 
STH, 5-140 
STM, 5-141 
STR, 5-142 
STS, 5-143 
STT, 5-144 
SUB, 5-145 
SWB, 5-146 
SWR, 5-147 
VLD, 5-148 
WDTF, 5-150 
WDTN, 5-151 
XOH, 5-152 
XOR, 5-153 

ATTRIBUTE, LENGTH 
LENGTH ATTRIBUTE MACRO FUNCTION, 

B-23 

BALANCED 

BASE 

BALANCED APOSTROPHES, 8-36 
BALANCED PARENTHESES, 8-36 

BASE ADDRESS (BN) REGISTERS, 1-4 
REMOTE DESCRIPTOR BASE REGISTER 

(RDBR), 1-4 

B-RELATIVE (CONT) 
DIRECT B-RELATIVE PLUS DISPLACEMENT 

ADDRESSING, 5-16 
INDEXED B-RELATIVE POP ADDRESSING, 

5-22 
INDEXED B-RELATIVE PUSH ADDRESSING, 

5-21 
INDEXED DIRECT B-RELATIVE ADDRESSING, 

5-15 
INDEXED INDIRECT B-RELATIVE 

ADDRESSING, 5-16 
INDIRECT B-RELATIVE ADDRESSING, 5-15 
INDIRECT B-RELATIVE PLUS 

DISPLACEMENT ADDRESSING, 5-18 

BLANK 
INSERT BLANK ON SUPPRESS (INSB) 

MICRO OPERATION, 6-16 

BOOLEAN 
BOOLEAN OPERATIONS, 5-1 

BR INSTRUCTIONS 
BRANCH-ON-REGISTER (BR) INSTRUCTIONS, 

5-4 

BRANCH 
BRANCH INSTRUCTIONS, 6-2 
BRANCH OPERATIONS, 5-2 

BRANCH-ON-INDICATOR 
BRANCH-ON-INDICATOR (BI) 

INSTRUCTIONS, 5-4 

BRANCH-ON-REGISTER 
BRANCH-ON-REGISTER (BR) 

BI INSTRUCTIONS 
BRANCH-ON-INDICATOR (BI) 

INSTRUCTIONS, 5-4 

INSTRUCTIONS, 5-4 

I BUBBLE SORT LISTING 
LISTING OF BUBBLE SORT PROGRAM (FIG), 

C-3 
BINARY 

BIT 

BINARY DATA DESCRIPTOR, 6-5, H-6 
BINARY INTEGER CONSTANTS, 2-7 
COMPARISON BINARY, DECIMAL, AND 

HEXADECIMAL SYMBOLS (TBL), B-1 

BIT STRING CONSTANTS, 2-6 

BIT/BYTE 
BIT/BYTE ~1ANIPULATING INSTRUCTIONS, 

5-26 

B-REGISTER 
B-REGISTER INSTRUCTION IN LAF 

CONFIGURATION, 5-26 

B-RELATIVE 
B-RELATIVE ADDRESSING, 5-13 
B-RELATIVE POP ADDRESSI~G, 5-21 
B-RELATIVE PUSH ADDRESS~NG, 5-20 
COMMERCIAL PROCESSOR B-RELATIVE 

ADDRESSING, 6-9 
DIRECT B-RELATIVE ADDRESSING, ·5-14 

i-3 

CALL STATEMENT 
CALL, 4-6 

CALLING 
CALLING EXTERNAL PROCEDURES, 3-2 
CALLING SYSTEM SERVICES, 3-2 

CALLS, MACRO 
MACRO CALLS, 8-11 
RECURSIVE MACRO CALLS, 8-13 

CHARACTER 
CHARACTER INSERTION FOR MFLS MICRO 

OPERATION (TBL), 6-18 
CHARACTER STRING INSTRUCTIONS, 6-2 
IGNORE SOURCE CHARACTER (IGN) MICRO 

OPERATION, 6-16 
INSERT CHARACTER ON NEGATIVE (INSN) 

MICRO OPERATION, 6-16 
INSERT CHARACTER ON POSITIVE (INSP) 

MICRO OPERATION, 6-17 
INSERT MULTIPLE CHARACTERS (INSM) 

MICRO OPERATION, 6-16 

CB07 



INDEX 

CHARACTER (CONT) 

CODE 

MOVE SOURCE CHARACTER (MVC) MICRO 
OPERATION, 6-18 

TRAP 27 ILLEGAL CHARACTER (IC), 
6-22 

CODE FOR REPLACING EDIT ENTRIES 
(TBL), 6-15 

CODES, MNEMONIC 
MNEMONIC CODES, 2-1 

COMMAS 
COMMAS AND SEMI-COLONS, 8-37 

COMMERCIAL 
ADDRESSING FOR COMMERCIAL PROCESSOR 

INSTRUCTIONS, 6-5 
COMMERCIAL INSTRUCTION CATEGORIES, 

, 6-2 
COMMERCIAL INSTRUCTION SUMMARY 

(TBL), H-2 
COMMERCIAL INSTRUCTIONS, 6-1 
COMMERCIAL PROCESSOR ADDRESS 

SYLLABLE FORMAT (FIG), H-7 
COMMERCIAL PROCESSOR B-RELATIVE 

ADDRESSING, 6-9 
COMMERCIAL PROCESSOR DATA 

DESCRIPTORS, 6-3 
COMMERCIAL PROCESSOR HARDWARE TEST 

PROGRAM (FIG), H-8 
COMMERCIAL PROCESSOR IMO ADDRESSING 

(FIG), 6-12 
COMMERCIAL PROCESSOR INDICATOR 

REGISTER, 1-10 
COMMERCIAL PROCESSOR INSTRUCTION 

FORMAT, 6-3 
COMMERCIAL PROCESSOR REGISTER, 1-9 
COMMERCIAL PROCESSOR TRAPS, 6-20 
COMMERCIAL PROCESSOR (CP) 

PROGRAMMING, 6-1 
EXECUTION DETAILS FOR COMMERCIAL 

INSTRUCTIONS, 6-22 
INTERNAL FORMATS OF COMMERCIAL 

PROCESSOR INSTRUCTIONS, H-l 
SOFTWARE SIMULATION COMMERCIAL 

PROCESSOR, 1-10 

COMMERCIAL INSTRUCTIONS 
ACM, 6-24 
ALR, 6-25 
AME, 6-26 
CBD, 6-27 
CBE, 6-28 
CBG, 6-29 
CBGE, 6-30 
CBL, 6-31 
CBLE, 6-32 
CBNE, 6-33 
CBNOV, 6-34 
CBNSF, 6-35 
CBNTR, 6-36 
CBOV, 6-37 
CBSF, 6-38 
CBTR, 6-39 

COMMERCIAL INSTRUCTIONS (CONT) 
CDB, 6-40 
CSNCB, 6-41 
CSYNC, 6-42 
DAD, 6-43 
DCM, 6-44 
DDV, 6-45 
DLS, 6-46 
DMC, 6-47 
DME, 6-48 
DML, 6-52 
DRS, 6-53 
DSB, 6-54 
DSH, 6-55 
MAT, 6-57 
SRCH, 6-58 
VRF, 6-62 

COMMON 
COMMON LOCATION EXPRESSIONS, 2-16 

COMPARE 
COMPARE OPERATIONS, 5-2 

CONDITIONAL STATEMENTS 
CONDITIONAL ASSEMBLY CONTROL 

STATEMENTS, 4-2 
CONDITIONAL MACRO CONTROL 

STATEMENTS, 8-17 

CONSTANTS 
ARITHMETIC CONSTANTS, 2-7 
ASCII STRING CONSTANTS, 2-5 
BINARY INTEGER CONSTANTS, 2-7 
BIT STRING CONSTANTS, 2-6 
CONSTANTS, 2-4 
DECIMAL INTEGER CONSTANTS, .2-8 
FIXED-POINT CONSTANTS, 2-9 
FLOATING-POINT CONSTANTS, 2-10 
HEXADECIMAL STRING CONSTANTS, 2-5 
RULES OF TRUNCATION/PADDING STRING 

CONSTANTS (TBL), 2-6 ' 
STRING CONSTANTS, 2-5 
TRUNCATION/PADDING STRING CONSTANTS, 

2-6, 

CONTROL STATEMENTS 
ASSEMBLER CONTROL STATEMENTS, 

4-1, '4-2 
CONDITIONAL ASSEMBLY CONTROL 

STATEMENTS, 4-2 
CONDITIONAL MACRO CONTROL 

STATEMENTS, 8-17 
CONTROL OPERATIONS, 5-2 
ENDM MACRO CONTROL STATEMENT, 8-3 
FAIL MACRO CONTROL STATEMENT, 8-17 
GOTO MACRO CONTROL STATEMENT, 8-18 
IF MACRO CONTROL STATEMENT, 8-19 
INCLUDE MACRO CONTROL STATEMENT, 
8-9 

LIBM MACRO CONTROL STATEMENT, 8-7 
MAC MACRO CONTROL STATEMENTS, 8-2, 

8-4 
NULL MACRO CONTROL STATEMENT, 8-22 
SETA MACRO CONTROL STATEMENT, 8-15 
SETN MACRO CONTROL STATEMENT, 8-16 

i-4 , CB07 



(--

INDEX 

CONVERSION 
DEClMAL-TO-HEXADEClMAL CONVERSION, 

B-2 
HEXADECIMAL CONVERSION MACRO 

FUNCTION, B-25 
HEXADEClMAL-TO-ASCII CONVERSION, B-4 
HEXADEClMAL-TO-DEClMAL CONVERSION, 

B-2 
RADIX AND MODE CONVERSION 

INSTRUCTIONS, 6-2 

COUNTER, PROGRAM 
PROGRAM COUNTER (P-REGISTER), 1-4 

CROSS-REFERENCE 
CROSS-REFERENCE LISTING, 3-3 

DATA 
ALPHANUMERIC DATA DESCRIPTORS, 6-3, 

H-6 
BINARY DATA DESCRIPTOR, 6-5, H-6 
COMMERCIAL PROCESSOR DATA 

DESCRIPTORS, 6-3 
DECIMAL DATA DESCRIPTORS, H-4 
FLOATING-POINT DATA, 1-4 
INTERNAL FORMAT OF DATA 

DESCRIPTORS, H-4 
LEVEL 6 DATA REPRESENTATION, 1-1 
PACKED-DECIMAL DATA DESCRIPTOR, 6-4 
SIGNED INTEGER DATA, 1-2 
UNPACKED-DECIMAL DATA DESCRIPTOR, 

6-4 
UNSIGNED DATA, 1-3 

DATA-DEFINING STATEMENTS 
DATA-DEFINING STATEMENTS, 4-1 

DC INSTRUCTION 
DC, 4-11 

DEBUGGING 
DEBUGGING ASSEMBLY LANGUAGE PROGRAMS, 
D-l 

DECIMAL 
BINARY INTEGER CONSTANTS IN DECIMAL 

NOTATION, 2-8 
COMPARISON OF BINARY, DECIMAL, AND 

HEXADECIMAL SYMBOLS (TBL), B-1 
DECIMAL ARITHMETIC INSTRUCTIONS, 6-2 
DECIMAL DATA DESCRIPTORS, H-4 
DECIMAL INTEGER CONSTANTS, 2-8 
PACKED DECIMAL INTEGERS, 2-8 
UNPACKED DECIMAL INTEGER, 2-8 

DEClMAL-TO-HEXADEClMAL 
DEClMAL-TO-HEXADEClMAL CONVERSION, 

B-2 

DECIMALS, PACKED AND UNPACKED 
PACKED DECIMALS, H-5 
UNPACKED DECIMALS, H-4 

DEFINED LABELS 
USER-DEFINED LABELS, 2-2 

DISPLACEMENT 
DIRECT B-RELATIVE PLUS DISPLACEMENT 

ADDRESSING, 5-16 
INDIRECT B-RELATIVE PLUS DISPLACEMENT 

ADDRESSING, 5-18 
SHORT DISPLACEMENT ADDRESSING, 5-23 

DIVISION, HEXADECIMAL 
HEXADECIMAL DIVISION, B-6 

DOUBLE OPERAND INSTRUCTIONS 

DUMP 

DOUBLE OPERAND (DO) INSTRUCTIONS, 
5-4 

ASCII/HEXADECIMAL MEMORY DUMP (FIG), 
D-2 

DUMP EDIT, D-l 
READING AND INTERPRETING MEMORY 

DUMPS, D-l 

EDEF STATEMENT 
EDEF, 4-13 

EDIT 

END 

CHANGE EDIT INSERTION TABLE (CHT) 
MICRO OPERATION, 6-14 

CODE FOR REPLACING EDIT ENTRIES 
(TBL), 6-15 

DUMP EDIT, D-l 
EDIT FLAGS, 6-14 
EDIT INSERTION TABLE, 6-13 
EDIT INSTRUCTIONS, 6-2 
MICRO EDIT FUNCTIONS, 6-12 
MICRO OPERATIONS FOR EDIT 

INSTRUCTIONS (TBL), 6-13 
SET EDIT FLAGS (SEF) MICRO 

OPERATION, 6-19 

END FLOATING SUPPRESSION (ENF) MICRO 
OPERATION, 6-15 

ENDM 
ENDM MACRO CONTROL STATEMENT, 8-3 

ERROR 
SOURCE CODE ERROR FLAGS, E-l 
SOURCE CODE ERROR NOTIFICATION BY 

MACRO PREPROCESSOR, 8-1 

EXPRESSIONS 
ADDRESS EXPRESSIONS, 2-17 
COMMON LOCATION EXPRESSIONS, 2-16 
EVALUATING EXPRESSIONS, 2-13 
EXPRESSIONS, 2-11 ' 
EXTERNAL LOCATION EXPRESSIONS, 2-15 
EXTERNAL VALUE EXPRESSIONS, 2-14 
INTERNAL LOCATION EXPRESSIONS, 2-15 
INTERNAL VALUE EXPRESSIONS, 2-13 
LOCATION AND VALUE EXPRESSIONS, 2-1j 
LOCATION EXPRESSIONS, 2-15 
SPECIALIZED ADDRESS EXPRESSIONS 

(FIG), 5-24 
VALID ADDRESS EXPRESSIONS, A-I0 
VALUE EXPRESSIONS, 2-13 

i-5 CB07 



INDEX 

EXTERNAL PROCEDURES 
CALLING EXTERNAL PROCEDURES, 3-2 

FAIL 

FILE 

FAIL MACRO CONTROL STATEMENT, 8-17 

ALTERNATE METHOD OF HANDLING INPUT/ 
OUTPUT + FILE MANIPULATION, 3-2 

FIXED-POINT CONSTANTS 
FIXED-POINT CONSTANTS, 2-9 

FLAGS 
EDIT FLAGS, 6-14 
EDIT FLAGS FOR MICRO OPERATIONS 

(TBL), 6-14 
NOTIFICATION FLAGS ISSUED BY 

ASSEMBLER, E-l 
SET EDIT FLAGS (SEF) MICRO 

OPERATION, 6-19 
SOURCE CODE ERROR FLAGS, E-l 
STATEMENT REFERENCE FLAGS, E-l 

FLOAT 
MOVE WITH FLOAT SIGN INSERTION 

(MFLS) MICRO OPERATION, 6-17 

FLOATING-POINT 
FLOATING-POINT CONSTANTS, 2-10 
FLOATING-POINT DATA, 1-4 

FORMAT' 
ALPHANUMERIC DATA DESCRIPTOR FORMAT 

(FIG), H-6 
BINARY DATA DESCRIPTOR FORMAT (FIG), 

H-6 
COMMERCIAL PROCESSOR ADDRESS 

SYLLABLE FORMAT (FIG), H-7 
COMMERCIAL PROCESSOR INSTRUCTION 

FORMAT, 6-3 
DECIMAL DATA DESCRIPTOR FORMAT 

(FIG), H-4 
FORMAT OF MACRO FUNCTIONS, 8-23 
INTERNAL FORMAT OF DATA 

DESCRIPTORS, H-4 

FORMATS 
ASSEMBLY LANGUAGE INTERNAL FORMATS, 

A-4 
ASSEMBLY LANGUAGE SOURCE STATEMENT 

FORMATS, 3-1 
INTERNAL FORMATS OF COMMERCIAL 

PROCESSOR INSTRUCTIONS, H-l 
SHIFT INSTRUCTION FORMATS (FIG), 

6-51 
STACK INSTRUCTION FORMATS, K-2 

FRAME, STACK 
ACQUIRE STACK FRAME (ACQ), K-2 
RELINQUISH STACK FRAME (RLQ), K-2 
STACK FRAME, K-1 

FUNCTION, MACRO 
HEXADECIMAL CONVERSION MACRO 

FUNCTION, 8-25 

FUNCTION, MACRO (CONT) 
INDEX MACRO FUNCTION, 8-26 
LENGTH ATTRIBUTE MACRO FUNCTION, 
8-23 

SEARCH MACRO FUNCTION, 8-27 
SUBSTRING MACRO FUNCTION, 8~28 
TRANSLATE MACRO FUNCTION, 8-29 
VECTOR ORIENTATION MACRO FUNCTION, 

8-30 
VERIFY MACRO FUNCTION, 8-31 

FUNCTIONS 
ASSEMBLER FUNCTIONS (FIG), 1-1 
MACRO FUNCTIONS, 8-23 
MICRO EDIT FUNCTIONS, 6-12 

GENERAL REGISTERS 
GENERAL (RN) REGISTERS, 1~5 

GENERATION, ADDRESS 
REMOTE DESCRIPTOR ADDRESS 

GENERATION (FIG), H-4 

GENERIC INSTRUCT!ONS 
GENERIC (GE) INSTRUCTIONS, 5-5 

GOTO 
GOTO MACRO CONTROL STATEMENT, 8-18 

HARDWARE 
COMMERCIAL PROCESSOR HARDWARE TEST 

PROGRAM (FIG), H-8 
HARDWARE REGISTERS, 1-4 
SUMMARY OF HARDWARE REGISTERS, A-1 

HEXADECIMAL 
BINARY INTEGER CONSTANTS IN 

HEXADECIMAL NOTATION, 2-8 
COMPARISON OF BINAR~ DECIMAL, AND 

HEXADECIMAL SYMBOLS (TBL), B-1 
HEXADECIMAL ADDITION, B-5 
HEXADECIMAL CONVERSION MACRO 

FUNCTION, B-25 
HEXADECIMAL DIVISION, B-6 
HEXADECIMAL MULTIPLICATION, B-6 
HEXADECIMAL NUMBERING SYSTEM, B-2 
HEXADECIMAL REPRESENTATION OF 

INSTRUCTIONS, A-6 
HEXADECIMAL STRING CONSTANTS, 2-5 
HEXADECIMAL SUBTRACTION, B-5 . 

HEXADEC lMAL-TO-ASC I I 
HEXADEClMAL-TO-ASCII CONVERSION, 

B-4 

HEXADECIMAL-TO-DECIMAL 
HEXADEClMAL-TO-DEClMAL CONVERSION, 

B-2 

HORIZONTAL TABS 
SPACES AND HORIZONTAL TABS, 8-37 

IDENTIFIERS 
IDENTIFIERS, 2-2 

i-6 CB07 



( 

( 

INDEX 

IF 
IF MACRO CONTROL STATEMENT, 8-19 

IGNORE 
IGNORE SOURCE CHARACTER (IGN) MICRO 

OPERATION, 6-16 

IMMEDIATE MEMORY ADDRESSING 
IMMEDIATE MEMORY ADDRESSING lIMA), 

5-8 

IMMEDIATE OPERAND ADDRESSING 
IMMEDIATE OPERAND (IMO) ADDRESSING, 

6-11 

INCLUDE 
INCLUDE MACRO CONTROL STATEMENT, 
8-9 

INDEX MACRO 
INDEX MACRO FUNCTIONS, 8-26 

INDEXED 
INDEXED ADDRESSING, 5-25 
INDEXED ADDRESSING MODES (TBL), 5~25 
INDEXED B-RELATIVE ~OP ADDRESSING, 

5-22 
INDEXED B-RELATIVE PUSH ADDRESSING, 

5-21 
INDEXED DIRECT B-RELATIVE 

ADDRESSING, 5-15 
INDEXED DIRECT IMMEDIATE MEMORY 
ADDRESSING, 5-9 

INDEXED DIRECT P-RELATIVE ADDRESSING, 
6-7 

INDEXED INDIRECT B-RELATIVE 
ADDRESSING, 5-16 

INDEXED INDIRECT IMMEDIATE MEMORY 
ADDRESSING, 5-10 

INDICATOR REGISTERS 
COMMERCIAL PROCESSOR INDICATOR 

REGISTER, 1-10 
INDICATOR (I) REGISTER, 1-7 
SCIENTIFIC INDICATOR (SI) REGISTER, 
1-8 

INDIRECT 
INDIRECT B-RELATIVE ADDRESSING, 5-15 
INDIRECT B-RELATIVE PLUS 

DISPLACEMENT ADDRESSING, 5-18 
INDIRECT IMMEDIATE MEMORY 

ADDRESSING, 5-9 
INDIRECT P-RELATIVE ADDRESSING, 5-13, 

6-8 

INITIALIZATION 
EDIT INSERTION TABLE AT 

INITIALIZATION (TBL), 6-13 
INITIALIZATION AND MODIFICATION OF 
M-REGISTERS, 1-11 

INPUT/OUTPUT 
ALTERNATE METHOD OF HANDLING INPUT/ 

OUTPUT AND FILE MANIPULATION, 3-2 

I 

INPUT/OUTPUT (CONT) 
INPUT/OUTPUT OPERATIONS, 5-2 
INPUT/OUTPUT (10) INSTRUCTIONS, 5-5 

INSERT MICRO OPERATIONS 
INSERT ASTERISK ON SUPPRESS (INSA) 

MICRO OPERATION, 6-16 
INSERT BLANK ON SUPPRESS (INSB) 

MICRO OPERATION, 6-16 
INSERT CHARACTER ON NEGATIVE (INSN) 

MICRO OPERATION, 6-16 
INSERT CHARACTER ON POSITIVE (INSP) 

MICRO OPERATION, 6-17 
INSERT MULTIPLE CHARACTERS (INSM) 

MICRO OPERATION, 6-16 

IINSERTION 
" CHANGE EDIT INSERTION TABLE (CHT) 

MICRO OPERATION 6-14 
CHARACTER INSERTION FOR MFLS MICRO 

OPERATION (TBL), 6-18 
EDIT INSERTION TABLE, 6-13 

INSTRUCTION 
ASSEMBLY LANGUAGE INSTRUCTION TYPES, 

5-4 
COMMERCIAL INSTRUCTION CATEGORIES, 

6-2 
COMMERCIAL INSTRUCTION SUMMARY (TBL), 

H-2 
COMMERCIAL PROCESSOR INSTRUCTION 

FORMAT, 6-3 
IMMEDIATE OPERAND ADDRESSING­

SCIENTIFIC INSTRUCTION (FIG), 5-11 
SHIFT INSTRUCTION FORMATS (FIG), 

6-51 
STACK INSTRUCTION FORMATS, K-2 
VLD INSTRUCTION OPERATIONS (FIG), 

5-149 

INSTRUCTIONS 
ADDRESSING TECHNIQUES FOR COMMERCIAL 

PROCESSOR INSTRUCTIONS, 6-5 
ASSEMBLY LANGUAGE INSTRUCTIONS, 

5-1, 5-27 
BIT/BYTE MANIPULATING INSTRUCTIONS, 
5-26 
B-REGISTER INSTRUCTIONS IN LAF, 5-26 
BRANCH INSTRUCTIONS, .6-2 
BRANCH-ON-INDICATOR (BI) 

INSTRUCTIONS, 5-4 
BRANCH-ON-REGISTER INSTRUCTIONS, 

5-4 
CHARACTER STRING INSTRUCTIONS, 6-2 
COMMERCIAL INSTRUCTIONS, 6-1 
DECIMAL ARITHMETIC INSTRUCTIONS, 

6-2 
DETAILED COMMERCIAL INSTRUCTIONS, 

6-23 
DETAILED SCIENTIFIC INSTRUCTIONS, 

7-2 
DOUBLE OPERAND (DD) INSTRUCTIONS, 

5-4 
EDIT INSTRUCTIONS, 6-2 
GENERIC (GE) INSTRUCTIONS, 5-5 

i-7 CB07 



" UiDEX 

INSTRUCTIONS (CONT) 
INPUT/OUTPUT (10) INSTRUCTIONS, 5-5 
PROGRAMMER'S INFORMATION FOR QUEUE 

INSTRUCTIONS, J-l 
PROGRAMMER'S INFORMATION FOR STACK 

INSTRUCTIONS, K-l 
RADIX AND MODE CONVERSION 

INSTRUCTIONS, 6-2 
SCIENTIFIC INSTRUCTIONS, 7-1 
SCIENTIFIC INSTRUCTIONS (SIP) ON 

6/40 MODEL, 5-26 
SHIFT INSTRUCTIONS, 6~2 
SHIFT (SHS AND SHL) INSTRUCTIONS, 

5-5 
SHORT-VALUE-IMMEDIATE (SI) 

INSTRUCTIONS, 5-6 
SINGLE OPERAND (SO) INSTRUCTIONS, 

5-6 " 

INSTRUCTIONS, ASSEMBLY LANGUAGE 
(SEE "ASSEMBLY LANGUAGE INSTRUC­
TIONS") 

INSTRUCTIONS, COMMERCIAL 
(SEE "COMMERCIAL INSTRUCTIONS") 

INSTRUCTIONS, SCIENTIFIC 
(SEE" SCIENTIFIC INSTRUCTIONS") 

INTEGER 
BINARY INTEGER CONSTANTS, 2-7 
BINARY INTEGER CONSTANTS IN DECIMAL 

NOTATION, 2-8 
BINARY INTEGER CONSTANTS IN 

HEXADECIMAL NOTATION, 2-8 
DECIMAL INTEGER CONSTANTS, 2-8 
PACKED DECIMAL INTEGERS, 2-8 
SIGNED INTEGER DATA, 1-2 
UNPACKED DECIMAL INTEGER, 2-8 

INTERNAL 
ASSEMBLY LANGUAGE INTERNAL FORMATS 

BY TYPE, A-4 
INTERNAL FORMAT OF DATA 

DESCRIPTORS, H-4 
INTERNAL FORMATS OF COMMERCIAL 

PROCESSOR INSTRUCTIONS, H-l 
INTERNAL LOCATION EXPRESSIONS, 2-15 
INTERNAL REPRESENTATION OF ASSEMBLY 

LANGUAGE INSTRUCTIONS (TBL), A-7 
INTERNAL VALUE EXPRESSIONS, 2-13 

INTERRUPT 
INTERRUPT VECTOR ADDRESSING, 5-24 

10 INSTRUCTIONS 
INPUT/OUTPUT (10) INSTRUCTIONS, 5-5 

LABELS 
LABELS, 2-2 
RESERVED LABELS, 2-3 
USER DEFINED LABELS, 2-2 

LANGUAGE, ASSEMBLY 
ASSEMBLY LANGUAGE INSTRUCTION TYPES, 

5-4 

LANGUAGE, ASSEMBLY (CONT) 
ASSEMBLY LANGUAGE INSTRUCTIONS, 

5-1, 5-27 
ASSEMBLY LANGUAGE INTERNAL FORMATS 

BY TYPE, A-4 
ASSEMBLY LANGUAGE SOURCE STATEMENT 

FORMATS, 3-1 

LIBM 

DEBUGGING ASSEMBLY LANGUAGE PROGRAMS, 
D-l 

ELEMENTS OF ASSEMBLY LANGUAGE, 2-1 
INTERNAL FORMATS OF ASSEMBLY 

LANGUAGE INSTRUCTIONS (FIG), A-5 
INTERNAL REPRESENTATION OF ASSEMBLY' 

LANGUAGE INSTRUCTIONS (TBL), A-7 

LIBM MACRO CONTROL STATEMENT, 8-7 

LISTING 
CROSS-REFERENCE LISTING, 3-3 
LISTING OF BUBBLE SORT PROGRAM 

(FIG), C-3 
LISTING OF CHKNML SAMPLE PROGRAM 

(FIG), C-l 

LIST-CONTROLLING STATEHENTS \ 
LIST-CONTROLLING STATEMENTS, 4-1 

LOAD 
LOAD OPERATIONS, 5-2 
LOAD STACK ADDRESS REGISTER (LDT), 

K-2 

LOCATION EXPRESSIONS 
COMMON LOCATION EXPRESSIONS, 2-16 
EXTERNAL LOCATION EXPRESSIONS, 2-15 
INTERNAL LOCATION EXPRESSIONS, 2-15 
LOCATION AND VALUE EXPRESSIONS, 2-13 
LOCATION EXPRESSIONS, 2-15 

LOGIC 
TRAP 30 QUALITY LOGIC TEST (QLT) 

ERROR (QE), 6-22 

MACRO 
CONDITIONAL MACRO CONTROL STATE-

MENTS, B-17 
CONTENTS OF MACRO ROUTINE, 8-2 
CREATING A MACRO ROUTINE, 8-2 
ENDM MACRO CONTROL STATEMENT, 8-3 
FAIL MACRO CONTROL STATEMENT, 8-17 
FORMAT OF MACRO FUNCTIONS, 8-23 
GOTO MACRO CONTROL STATEMENT, 8-18 
HEXADECIMAL CONVERSION MACRO, 8-25 
IF MACRO CONTROL STATEMENT, 8-19 
INCLUDE MACRO CONTROL STATEMENT, 
8-9 

INDEX MACRO, 8-26 
INITIALIZED VALUES OF MACRO 

VARIABLES, 8-34 
LENGTH ATTRIBUTE MACRO, 8-23 
LIBM MACRO CONTROL STATEMENT, 8-7 
MAC MACRO CONTROL STATEMENT WITH 

PARAMETERS, 8-4 
MAC MACRO CONTROL STATEMENT WITHOUT 

PARAMETERS, 8-2 

i-8 CB07 

1(' 
I"" 

I""j 



( 

l 

INDEX 

MACRO (CONT) 
MACRO CALLS, 8-11 
MACRO FACILITY, 8-1 
MACRO FUNCTIONS, 8-23 
MACRO ROUTINES, 8-1 
MACRO SUBSTITUTION, 8-14 
MACRO VARIABLES, 8-13 
NESTED MACRO CALL, 8-12 
NULL MACRO CONTROL STATEMENT, 8-22 
RECURSIVE MACRO CALLS, 8-13 
SEARCH MACRO FUNCTION, 8-27 
SETA MACRO CONTROL STATEMENT, 8-15 
SETN MACRO CONTROL STATEMENT, 8-16 
SITUATING MACRO ROUTINES, 8-6 
SOURCE CODE ERROR NOTIFICATION BY 

MACRO PREPROCESSOR, 8-1 
SPECIALIZING A MACRO ROUTINE BY 

PARAMETER SUBSTITUTION, 8-3 
SUBSTRING MACRO FUNCTION, 8-28 
TRANSLATE MACRO FUNCTION, 8-29 
VECTOR ORIENTATION MACRO FUNCTION, 

8-30 
VERIFY MACRO FUNCTION, 8-31 

MASK REGISTER 
SIP TRAP MASK (M5) REGISTER, 1-9 

MEMORY 
ASCII/HEXADECIMAL MEMORY DUMP 

(FIG), D-2 
DIRECT IMMEDIATE MEMORY ADDRESSING, 

5-8 
IMMEDIATE MEMORY ADDRESSING (IMA), 

5-8 
INDEXED DIRECT IMMEDIATE MEMORY 

ADDRESSING, 5-9 
INDEXED INDIRECT IMMEDIATE MEMORY 

ADDRESSING, 5-10 
INDIRECT IMMEDIATE MEMORY ADDRESSIN 
5-9 

MEMORY MANAGEMENT OPERATIONS, 5-3 
READING AND INTERPRETING MEMORY 

DUMPS, D-1 

MICRO OPERATION 
CHANGE EDIT INSERTION TABLE (CHT) 

MICRO OPERATION, 6-14 
CHARACTER INSERTION FOR MFLS MICRO 

OPERATION (TBL), 6-18 
EDIT FLAGS FOR MICRO OPERATIONS 

(TBL), 6-14 
END FLOATING SUPPRESSION (ENF) 

MICRO OPERATION, 6-15 
FLOW DIAGRAM FOR SEF MICRO 

OPERATION (FIG), 6-19 
IGNORE SOURCE CHARACTER (IGN) MICRO 

OPERATION, 6-16 
INSERT ASTERISK ON SUPPRESS (INSA) 
MICRO OPERATION, 6-16 

INSERT BLANK ON SUPPRESS (INSB) 
MICRO OPERATION, 6-16 

INSERT CHARACTER ON NEGATIVE (INSN) 
MICRO OPERATION, 6-16 

INSERT CHARACTER ON POSITIVE (INSP) 
MICRO OPERATION, 6-17 

MICRO OPERATION (CONT) 
INSERT MULTIPLE CHARACTERS (INSM) 

MICRO OPERATION, 6-16 
MICRO EDIT FUNCTIONS, 6-12 
MICRO OPERATIONS FOR EDIT 

INSTRUCTIONS (TBL), 6-13 
MOVE SOURCE CHARACTER (MVC) MICRO 

OPERATION, 6-18 
MOVE WITH FLOAT SIGN INSERTION 

(MFLS) MICRO OPERATION, 6-16 
SET EDIT FLAGS (SEF) MICRO 

OPERATION, 6-19 

M-REGISTERS 
INITIALIZATION AND MODIFICATION OF 

M-REGISTERS, 1-11 

MNEMONIC 

MODE 

MNEMONIC CODES, 2-1 

COMMERCIAL PROCESSOR MODE REGIS~R, 
1-9 

MODE (M) REGISTER, 1-5 
RADIX AND MODE CONVERSION 

INSTRUCTIONS, 6-2 
SIP MODE (M4) REGISTER, 1-8 

MODIFY 
MODIFY OPERATIONS, 5-3 

MOVE 
MOVE OPERATIONS, 5-3 
MOVE SOURCE CHARACTER (MVC) MICRO 

OPERATION, 6-18 
MOVE WITH FLOAT SIGN INSERTION 

(MFLS) MICRO OPERATION, 6-17 

MULTIPLICATION 
ESTABLISHING MULTIPLICATION FACTOR, 

5-26 
HEXADECIMAL MULTIPLICATION,'B-6 

NAMES, SYMBOLIC 
DEFINING SYMBOLIC NAMES (TBL), 2-3 
RESERVED SYMBOLIC NAMES, G-1 
SYMBOLIC NAMES, 2-1 

NESTED MACRO CALL 
NESTED MACRO CALL, 8-12 

NOP INSTRUCTION 
NOP, 5-118 

NULL 
NULL MACRO CONTROL STATEMENT, 8-22 

OPERAND 

i-9 

DOUBLE OPERAND (DO) INSTRUCTION, 5-4 
IMMEDIATE OPERAND ADDRESSING, 5-10 
IMMEDIATE OPERAND ADDRESSING-

SCIENTIFIC INSTRUCTION (FIG), 5-11 
IMMEDIATE OPERAND (IMO) ADDRESSING, 

6-11 
SINGLE OPERAND (SO) INSTRUCTIONS, 

5-6 

CB07 



OPERATION CODE 
OPERATION CODE DEFINING 

STATEMENT, 4-2 

OPERATIONS 
ARITHMETIC OPERATIONS, 5-1 
BOOLEAN OPERATIONS, 5-1 
BRANCH OPERATIONS, 5-2 
COMPARE OPERATIONS, 5-2 
CONTROL OPERATIONS, 5-2 
INPUT/OUTPUT OPERATIONS, 5-2 
LOAD OPERATIONS, 5-2 
MEMORY MANAGEMENT OPERATIONS, 5-3 
MICRO OPERATIONS FOR EDIT 

INSTRUCTIONS (TBL), 6-13 
MODIFY OPERATIONS, 5-3 
MOVE OPERATIONS, 5-3 
QUEUE OPERATIONS, 5-3 
SHIFT OPERATIONS, 5-3 
STACK OPERATIONS, 5-3 
STORE OPERATIONS, 5-3 
SWAP OPERATIONS, 5-3 
VLD INSTRUCTION OPERATIONS (FIG), 

5-149 

ORDER OF STATEMENTS 
ORDER OF STATEMENTS IN SOURCE 

PROGRAM, 3-2 
ORDER OF STATEMENTS WITHIN A 

SOURCE MODULE PROGRAM, 8-1 

ORG STATEMENT 
.ORG, 4-22 

PACKED 
PACKED DECIMAL DATA DESCRIPTORS, 

6-4 
PACKED DECIMAL INTEGERS, 2-8 
PACKED DECIMALS, H-5 

PARAMETER SUBSTITUTION 
SPECIALIZING A MACRO ROUTINE BY 

PARAMETER SUBSTITUTION, 8-3 

PARENTHESES 
BALANCED PARENTHESES, 8-36 

P-REGISTER 
PROGRAM COUNTER (P-REGISTER), 1-4 

P-RELATIVE ADDRESSING 
DIRECT P-RELATIVE ADDRESSING, 

5-12, 6-6 
INDEXED DIRECT P=RELATIVE 

ADDRESSING, 6-7 
INDIRECT P-RELATIVE ADDRESS~NG, 
5-13, 6-8 

P-RELATIVE ADDRESSING, 5-12, 6-5 

POP ADDRESSING 
B-RELATIVE POP ADDRESSING, 5-21 
INDEXED B-RELATIVE POP 

ADDRESSING, 5-22 

PREPROCESSOR, MACRO 
SOURCE CODE ERROR NOTIFICATION BY 

MACRO PREPROCESSOR, 8-1 

INDEX 

PROCEDURES, EXTERNAL 
CALLING EXTERNAL PROCEDURES, 3-2 

PROCESSOR 
SCIENTIFIC INFORMATION PROCESSOR 

(SIP) REGISTERS, 1-7 
SOFTWARE SIMULATION OF THE 

SCIENTIFIC INFORMATION 
PROCESSOR, 1-9 

'PROCESSOR, COMMERCIAL 
(SEE "COMMERCIAL PROCESSOR") 

PROGRAM 
LISTING OF BUBBLE SORT PROGRAM 

(FIG), C-3 
ORDER OF STATEMENTS IN SOURCE 

PROGRAM, 3-2 
ORDER OF STATEMENTS IN SOURCE 

MODULE PROGRAM, 8-1 
PROGRAM COUNTER (P-REGISTER), 1-4 
PROGRAM-LINKING STATEMENTS, 4-2 

PROGRAMMER'S INFORMATION 
PROGRAMMER'S INFORMATION, A-I 
PROGRAMMER'S INFORMATION FOR QUEUE 

INSTRUCTIONS, J-l 
PROGRAMMER'S INFORMATION FOR STACK 

INSTRUCTIONS, K-l 

PROGRAMMING 
COMMERCIAL PROCESSOR (CP) 

PROGRAMMING, 6-1 
PROGRAMMING CONSIDERATIONS, 3-1, 

8-34 

PROTECTION 
PROTECTION OPERATORS, 8-5 

I PUSH ADDRESSING 
B-RELATIVE PUSH ADDRESSING, 5-20 
INDEXED B-RELATIVE PUSH 

ADDRESSING, 5-21 

QUEUE 
PROGRAMMER'S INFORMATION FOR QUEUE 

INSTRUCTIONS, J-l 
QUEUE MANAGEMENT (FIG), J-2 
QUEUE OPERATIONS, 5-3 

RADIX 
RADIX AND MODE CONVERSION 

INSTRUCTIONS, 6-2 

REENTRANCY 
REENTRANCY, 3-3 

REGISTER 

i-l0 

INDICATOR (I) REGISTER, 1-7 
LOAD STACK ADDRESS REGISTER (LDT), 

K-2 
REGISTER ADDRESSING, 5-7 
REMOTE DESCRIPTOR BASE REGISTER 

(RDPR), 1-4 
SCIENTIFIC INDICATOR (SI) REGISTER, 

1-8 

CB07 

,(, " 

" I"'\.." 



( 

( 

( 

INDEX 

REGISTER (CONT) 
SIP MODE (M4) REGISTER, 1-8 
SIP TRAP MASK (M5) REGISTER, 1-9 
STACK REGISTER (T), 1-5 
STORE STACK ADDRESS REGISTER (STT), 

K-2 
SYSTEM STATUS (S) REGISTER, 1-5 

REGISTERS 
ADDRESS REGISTERS, 1-4 
BASE ADDRESS (BN) REGISTERS, 1-4 
COMMERCIAL PROCESSOR REGISTERS, 
1-9 

GENERAL (RN) REGISTERS, 1-5 
HARDWARE REGISTERS, 1-4 
LEVEL 6 HARDWARE REGISTERS (FIG), 

A-1 
LEVEL 6 REGISTERS (FIG), 1-6 
MODE (M) REGISTERS, 1-5 
SCIENTIFIC ACCUMULATOR (SN) 

REGISTERS, 1-7 
SCIENTIFIC INFORMATION PROCESSOR 

(SIP) REGISTERS, 1-7 
SUMMARY OF HARDWARE REGISTERS, A-1 

RELINQUISH 
RELINQUISH STACK FRAME (RLQ) , K-2 

REMOTE 
REMOTE DESCRIPTOR ADDRESS 

GENERATION (FIG), H-4 
REMOTE DESCRIPTOR BASE REGISTER 

(RDBR), 1-4 

REPRESENTATION 
HEXADECIMAL REPRESENTATION OF 

INSTRUCTIONS, A-6 
INTERNAL REPRESENTATION OF ASSEMBLY 

LANGUAGE INSTRUCTIONS (TBL), A-7 
LEVEL 6 DATA REPRESENTATION, 1-1 

RESERVED 
RESERVED LABELS, 2-3 
RESERVED SYMBOLIC NAMES, G-1 

RESV STATEMENT 
RESV, 4-24 

ROUTINE, MACRO 
CONTENTS OF MACRO ROUTINE, 8-2 
CREATING A MACRO ROUTINE, 8-2 
MACRO ROUTINES, 8-1 
SPECIALIZING A MACRO ROUTINE BY 

PARAMETER SUBSTITUTION, 8-3 

SAF/LAF 
SAF/LAF CONSIDERATIONS, 3-3 

• 
SCIENTIFIC 

DESCRIPTIONS SCIENTIFIC 
INSTRUCTIONS, 7-2 

SCIENTIFIC ACCUMULATOR (SN) 
REGISTERS, 1-7 

SCIENTIFIC INDICATOR (SI) 
REGISTER, 1-8 

SCIENTIFIC (CONT) 
SCIENTIFIC INFORMATION PROCESSOR 

(SIP) REGISTERS, 1-7 
SCIENTIFIC INSTRUCTIONS, 7-1 
SCIENTIFIC INSTRUCTIONS (SIP) ON 

6/40 MODEL, 5-26 
SCIENTIFIC TRAPS, 7-1 
SOFTWARE SIMULATION SCIENTIFIC 

INFORMATION PROCESSOR, 1-9 

SCIENTIFIC INSTRUCTIONS 
SAD, 7-2 
SBE, 7-4 
SBEU, 7-5 
SBEZ, 7-6 
SBG, 7-7 
SBGE, 7-8 
SBGEZ, 7-9 
SBGZ, 7-10 
SBL, 7-11 
SBLE, 7-12 
SBLEZ, 7-13 
SBLZ, 7-14 
SBNE, 7-15 
SBNEU, 7-16 
SBNEZ, 7-17 
SBNPE, 7-18 
SBNSE, 7-19 
SBPE, 7-20 
SBSE, 7-21 
SCM, 7-22 
SCZD, 7-23 
SCZQ, 7-24 
SDV, 7-25 
SLD, 7-26 
SML, 7-27 
SNGD, 7-28 
SNGQ, 7-29 
SSB, 7-30 
SST, 7-31 
SSW, 7-32 

SEARCH 
SEARCH MACRO FUNCTION, 8-27 

SEMI-COLONS 
COMMAS AND SEMI-COLONS, 8-37 

SERVICES, SYSTEM 

SET 

CALLING SYSTEM SERVICES, 3-2 

SET EDIT FLAGS (SEF) MICRO 
OPERATION, 6-19 

SHIFT 
SHIFT INSTRUCTION FORMATS (FIG), 

6-55 
SHIFT INSTRUCTIONS, 6-2 
SHIFT OPERATIONS, 5-3 
SHIFT (SHS AND SHL) INSTRUCTIONS, 

5-5 

SHORT DISPLACEMENT ADDRESSING 
SHORT DISPLACEMENT ADDRESSING, 5-23 

i-11 CB07 



INDEX 

SHORT-VALUE-IMMEDIATE INSTRUCTIONS 
SHORT-VALUE-IMMEDIATE (SI) 

INSTRUCTIONS, 5-6 

SIGNED 
SIGNED INTEGER DATA, 1-2 

SIMULATION 

SIP 

SOFTWARE SIMULATION OF COMMERCIAL 
PROCESSOR, 1-10 

SOFTWARE SIMULATION OF SCIENTIFIC 
INFORMATION PROCESSOR, 1-9 

ADDRESS SYLLABLES FOR C~U & SI~ 
INSTRUCTIONS (TBL) , A-9 

SCIENTIFIC INFORMATION PROCESSOR 
(SIP) REGISTERS, 1-7 

SCIENTIFIC INSTRUCTIONS (S11;1) ON 
6/40 MODEL, 5-26 

SIP MODE (M4) REGISTER, 1-8 
SIP TRAP MASK (M5) REGISTE~, 1~9 

SOFTWARE SIMULATION 
SOFTWARE SIMULATION OF COMMERCIAL 

PROCESSOR, 1-10 
SOFTWARE SIMULATION OF SCIENTIFIC 

INFORMATION PROCESSOR, 1~9 

SORT, BUBBLE 
LISTING OF BUBBLE SORT pROGRAM 

(FIG), C":'3 

SOURCE 
ASSEMBLY LANGUAGE SOURCE STATEMENT 

FORMATS, 3-1 
IGNORE SOURCE CHARACTER (IGN) MICRO 

OPERATION, 6-16 
MOVE SOURCE CHARACTER (MVC) MIC~O 

01;lERATION, 6-18 
ORDER OF STATEMENTS IN SOURCE 

PROGRAM, 3-2 
ORDER OF STATEMENTS IN A SOURCE 

MODULE PROGRAM" 8-1 
SOURCE CODE ERROR FLAGS, E-l 
SOURCE CODE ERROR NOTIFICATION BY 

MACRO PREPROCESSOR, 8 ... 1 

S~ACES 
SPACES AND HORIZONTAL TAB~r 8 ... 37 

SPECIALIZED ADDRESS 
SPEClhLIZED ADDRESS EXrRESSION, 5~24 

SPECIALIZING MACRO ROUTINE 
SPECIALIZING A MACRO ROUTINE BY 

PARAMETER SUBSTITUTION, 8-3 

STACK 
ACQUIRE STACK FRAME (ACQ) , K-2 
LOAD STACK ADDRESS REGISTER (LDT), 

K-2 
PROGRAMMER'S INFORMATION FOR STACK 

INSTRUCTIONS, K-l 
RELINQUISH STACK FRAME (RLQ), K-2 

STACK (CONT) 
STACK FRAME, K-l 
STACK INS~RUCTION FORMATS, K-2 
STACK OPERATIONS, 5-3 
STACK REGISTER (T), 1-5 
STACK STRUCTURE (FIG), K-l 
STORE STACK ADDRESS REGISTER (STT), 

K-2 

STATEMENTS, ORDER OF 
SOURCE PROGRAM STATEMENTS, 3-2 
STATEMENTS IN SOURCE MODULE 

PROGRAM, 8-1 

STATUS, SYSTEM 
SYSTEM STATUS (S) REGISTER, 1-5 

STORAGE-ALLOCATION STATEMENTS 
STORAGE-ALLOCATION STATEMENTS, 4-2 

STORE 
STORE OPERATIONS, 5-3 
STORE STACK ADDRESS REGISTER (STT), 

K-2 

STRING 
BIT STRING CONSTANTS, 2-6 
CHARACTER STRING INSTRUCTIONS, 6-2 
HEXADECIMAL STRING CONSTANTS, 2-5 
STRING CONSTANTS, 2-5 
TRUNCATION/PADDING STRING 

CONSTANTS, 2-6 

SUBSTITUTION, MACRO 
MACRO SUBSTITUTION, 8-14 
SPECIALIZING A MACRO ROUTINE BY 

PARAMETER SUBSTITUTION, 8-3 

SUBSTRING, MACRO 
SUBSTRING MACRO FUNCTION, 8-28 

SUBTRACTION, HEXADECIMAL 
HEXADECIMAL SUBTRACTION, B-5 

SWAP OPERATIONS 
SWAP OPERATIONS 5-3 

I 

SYLLABLE, ADDRESS 
ADDRESS SYLLABLE, H-7 
ADDRESS SYLLABLES FOR CPU & SIP 

INSTRUCTIONS (TBL), A-9 
COMMERCIAL PROCESSOR ADDRESS 

SYLLJI..BLE, H-7 

SYMBOLIC NAMES 
RESERVED SYMBOLIC NAMES, G-l 
SYMBOLIC NAMES, 2-1 

SYMBOL-DEFINING STATEMENTS 
SYMBOL-DEFINING STATEMENTS, 4-2 

SYSTEM 
CALLING SYSTEM SERVICES, 3-2 
HEXADECIMAL NUMBERING SYSTEM, B-2 
SYSTEM STATUS (S) REGISTER, 1-5 

i-12 CB07 

---_._------_. 

\,-... 



( 

( 

INDEX 

TABS 
SPACES AND HORIZONTAL TABS, 8-37 

TEST 
COMMERCIAL PROCESSOR HARDWARE 

TEST PROGRAM (FIG), H-8 
TRAP 30 QUALITY LOGIC TEST (QLT) 

ERROR (QE), 6-22 

TEXT STATEMENT 
TEXT, 4-25 

TITLE STATEMENT 
TITLE, 4-26 

TRANSLATE MACRO 

TRAP 

TRANSLATE MACRO FUNCTION, 8-29 

COMMERCIAL PROCESSOR TRAPS, 6-20 
SCIENTIFIC TRAPS, 7-1 
SIP TRAP MASK (M5) REGISTER, 1-9 
TRAP 23 UNAVlLABLE RESOURCE (UR), 

6-21 
TRAP 24 BUS OR MEMORY ERROR (BE), 

6-21 
TRAP 25 DIVIDE BY ZERO (DZ), 6-21 
TRAP 26 ILLEGAL SPECIFICATION (IS), 

6-22 
TRAP 27 ILLEGAL CHARACTER (IC), 

6-22 
TRAP 28 TRUNCATION (TR), 6-22 
TRAP 29 OVERFLOW (OV), 6-22 
TRAP 30 QUALITY LOGIC TEST (QLT) 

ERROR (QE), 6-22 
TRAP CONTENT (FIG), 6-55 
TRAP VECTORS AND EVENTS (TBL), 7-1 

TRUNCATION/PADDING CONSTANTS 
TRUNCATION/PADDING STRING 

CONSTANTS, 2-6 

UNPACKED DECIMAL 
UNPACKED DECIMAL INTEGER, 2-8 
UNPACKED DECIMALS, H-4 
UNPACKED-DECIMAL DATA 

DESCRIPTOR, 6-4 

UNSIGNED DATA 
UNSIGNED DATA, 1-3 

VALID ADDRESS 
VALID ADDRESS EXPRESSIONS, A-10 

VALUE 
ALPHANUMERIC VALUES, 8-35 
EXTERNAL VALUE EXPRESSIONS, 2-14 
INTERNAL VALUE EXPRESSIONS, 2-13 
LOCATION AND VALUE EXPRESSIONS, 

2-13 
NUMERIC VALUES, 8-35 
VALUE EXPRESSIONS, 2-13 

VARIABLES, MACRO 
INITIALIZED VALUES OF MACRO 

VARIABLES, 8-34 

VARIABLES, MACRO (CONT) 
MACRO VARIABLES, 8-13 

VECTOR 
INTERRUPT VECTOR ADDRESSING, 5-24 
VECTOR ORIENTATION MACRO, 8-30 

VECTORS 
COMMERICAL PROCESSOR TRAP VECTORS 

AND EVENTS (TBL), 6-21 
TRAP VECTORS AND EVENTS (TBL), 7-1 

VERIFY 
VERIFY MACRO FUNCTION, 8-31 

i-13 CB07 





( 

( 

HONEYWELL INFORMATION SYSTEMS 
Technical Publications Remarks Form 

TITLE SERIES 60 (LEVEL 6) GCeS 6 
ASSEMBLY LANGUAGE REFERENCE 

ERRORS IN PUBLICATION 

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION 

ORDER NO., CB07, REV. 1 

DATED I JUNE 1978 

r\ Your comments will be promptly investigated by appropriate technical.personnel and action will be taken 0 II as required. If you require a written reply. check here and furnish complete mailing address below. 

FROM: NAME ________________________________________ __ DATE ______________ __ 

TITLE __________________ ~-----------------------
COMPANV ________________________________________ _ 

ADDRE~ ______________________ ~------------------



PLEASE FOLD AND TAPE -
NOTE: U. S. Postal Service will not deliver stapled forms 

I 
I 
I 
I 
I 
1 
1.,1," 

~ .... 
...J 
t:) 
2 
o 
...J 
« 
f­
::J 
U 

I 
I 
I 
I 
, LU 

I 2 
, ...J 

I ~ 

------------------------------------------------------------------------------------- 1c~ 

ATTENTION: PUBLICATIONS, MS 486 

Business Reply Mail 
Postage Stamp Not Necessary if Mailed in the United States 

Postage Will Be Paid By: 

HONEYWELL INFORMATION SYSTEMS 
200 SMITH STREET 
WALTHAM, MA 02154 

FIRST CLASS 
PERMIT NO. 39531 
WALTHAM,MA 
02154 

I 
I 
1 
I , 
I 
I 

o 
...J 
o 
u. 

, LU 
, 2 

I ...J 

I ~ 
----------------------------------------------------------------------------------------- ~g 

Honeywell 

I « 
,5 
I~ 
I , 
I , , 
J 
I , 
I 
I 
I 
I 
I 
I 
Ir~ 
f'\,­
I 
I 
I 
I 
f 
I 



.". 

c 

( 

c 



Honeywell 
Honeywell Information Systems 

In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154 
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1W5 

In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F. 
20s45, 5778, Printed in U.S.A. 

c 
CB07, Rev. 1 


