
Honeywell SYSTEM CONTROL

SERIES 60 (LEVEL 6) GeOS 6IMOT

SUBJECT:
Detailed Description of System Control for Series 60 (Level 6) GCOS Multi-Dimensional Tasking (GCOS
6/MDT)

SOFTWARE SUPPORTED:

DATE:

This publication supports Release 0101 of Series 60 (Level 6) GCOS Multi-Dimensional Tasking (GCOS
6/MDT) software. When a later release of the system occurs, see the Subject Directory of the latest Series
60 (Level 6) GCOS 6/MDT Overview and User's Guide (Order No. AXIl), to ascertain whether this
revision of this manual supports that release.

March 1977

ORDER NUMBER:
AX07, Rev. 0

PREFACE

This manual describes the system control language for the Series 60
(Level 6) GCOS Multi-Dimensional Tasking (GCOS 6/MDT) operating
system. Unless stated otherwise, the term MDT is used throughout this
manual to refer to the GCOS 6/MDT software; the term Level 6 indicates
the specific models of Series 60 (Level 6) on which the described soft­
ware executes.

The System Control manual comprises five sections, whose subject matter
is briefly described below.

o Section I - An introduction to MDT concepts which are useful from
the point of view of system configuration and control.

o Section 2-Formats and functional descriptions of the directives used
to define the hardware and software components which constitute the
operating system.

o Section 3-Fonnats and functional descriptions of the set of com­
mands which can be used for operator control of the system.

o Section 4-Formats and functional descriptions of the set of
commands which can be used for user control of the system.

o Section 5-A list of the error and status messages which can be issued
by the various system components.

Three appendices supply summary or supplementary information to that
which is contained in the main body of the manual.

o Appendix A-An alphabetical list of all operator control language and
execution control language commands with their parameters.

o Appendix B-A description of the Level 6 to Level 66 file transmission
capability and the commands which enable its use.

o Appendix C-The definition of the standard GeOS 6/MDT character
set and their hexadecimal equivalents.

© 1977, Honeywell Information Systems Inc. File No.: IS13

AX07

GCOS 6/MDT Subject Directory

This subject directory lists topics in alphabetical order. Each topic is
accompanied by the order number of each manual in which the topic is
described. Following the Subject Directory is a list, by order number, of all
GCOS 6/MDT manuals.

Subject Order No.
Address Expressions AXl2
Addressing Techniques AXl2
ASCII

Character Set AX07
AX09
AXl2
AXl3

Collating Sequence. .. AXIS
AXl6

Hexadecimal Conversion AX 12
Assembly Language

Assembling ... AX08
Error Messages .. AX07

AXI0
Instructions .. AX 12
Source Code Error Flags .. AX 12
Source Listing .. AX 11

AX12
User Guide .. AX 11

Batch
Pool .. AXIl
Task Group .. AXIl

Binary Synchronous Communications (BSC) AX 1 0
Clock Manager .. AXIO
COBOL

Communications AX 11
AXI3

Compilation .. AX07
AX08

Diagnostic Messages .. AX 13
Error Messages AX07

AXIO
Source Language AX 13
User Guide .. AX 11

Communications
Assem bly Language Drivers AX 10
COBOL ... AXI3
COBOL Sample Programs AXIl
Concepts .. AX 11
Configuration Directives. .. AX07
Data Formats .. AX09
FORTRAN ... AX14
User Guide .. AX 11

Compare Utility .. AX07
Compatibility, BES 1 /2 .. AX 11
Configuration .. AX07
Console Messages .. AX07

AXlO
Control Panel- AS22

AT04

iii AX07

Copy Utility 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 • 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 • 0 0

Create Volume Utility . 0 0 0 • 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 • 0

Cross-Reference Program o. 0 0 •• 0 •• 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 • 0 0 0 0 0 0 0

Data Files
Access Rights 0 0 • 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Concept o. 0 ••••• 0 ••• 0 •• 000 ••• 0 0 • 0 0 0 0 0 0 000.0000000

File Size Calculations 0 ••• 0 0 0 0 • 0 0 0 •• 0 0 0 0 0 0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 0

Formats 00000. 0 • 00' 0 0 0 •••• 0 0 0 •••• 0 • 0 0 ••• 0 0 0 • 0 0 0 0 0 0 000

Organizations 0 • 0 0 0 0 0 •• 0 0 0 0 0 0 0 0 • 0 0 0 0 • 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Data Structures
Data File .. 0 0 • 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 000000 0 0 0 • 0

Monitor and I/O . 0 0 • 0 •••••• 0 ••••• 0 0 0 0 • 0 0 • 0 • 0 •• 0 0 • 0 0 0 0 0 0

Debugging Programs 0 .00. 000000 0 0 0 0 0000 0 0 • 0 0 • 0 0 ••••• 0000 .0

Directories
Main Description 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 • 0 •• 0 0 0 0 • 0 0 • 0 • 0 0 0 0 0

Summary 00000. 0 0 00000.000000000.0.00000000000.0000. 0

Drivers. 0 0 0 0 0 0 0 0 0 • 00000 0 00 • 0 0 • 000000 • 0 0 0 0 0000000000. 0 0 0

Dump Edit (DPEDIT) Utility 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Dumping Programs 0 • 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0

EBCDIC Character Set 0 • 0 0000 0000000000 000 0 0 0 0 0 0 0 0 0 • 0 0 0 000

ECL/OCL Commands. 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 • 0 0 0 0 • 0 0 0 0 0 0 •

Editor
Directives 0 • 0 0 0 0 0 0 ••••• 0 0 0 •• 0 0 0 0 0 0 0 0 0 •• 0 0 • 0 ••• 0 0 0 0 0 0 ••

Execution 0 00000000 •• 0 • 0 0 0 0 • 0 0 0 • 0 0 0 0 0 .000.0.0 ••• 0 • 0 •• 0

Error, Status, and Informational Messages
Assem bly Error Flags . 0 0 0 0 0 0 0 0 0 0 • • 0 0 0 0 • 0 0 0 0 0 0 • • • • 0 0 • 0 0 0 0

COBOL Diagnostic. 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 •• 0 0 ; • 0 0 0 •• 0 • 0 0 0 0 0 0 0

FORTRAN Diagnostic 0 0 • 0 0 0 0 0 0 0 0 0 0 0 •• 0 0 ••• 0 •• 0 • 0 • 0 0 0 0 0 •

RPG Compiler 0 0 0 • 0 0 0 • 0 0 0 0 • 0 0 0 0 0 • 0 0 0 0 • 0 0 0 •• 0 0 0 0 0 0 0 ••• 0

System 0 • 00000000.00 •• 0 0 0000000. 0 00000.0 •••••••••••••

Examples of Sample Programs ... 0 0 • 0 •••••• 0 0 •• 0 0 •••••••• 0 ••

Execution Control Language (ECL) . 0 • 0 0 • 0 0 • 0 0 • 0 • 0 • 0 0 •• 0 •••••

Export PAM File Utility .. 0 • 0 • 0 •• 0 ••••••••••••••••••••• 0 •••

Extensions (OperatingBystem) .. 0 • 0 0 • 0 0 •••••• 0 •• 0 0 0 ••••• 0 0 •

File, Data (see Data Files)
File Dump Utility .. 0 •• 0 ••••• 0 • 0 •• 0 ••• 0 0 ••••••••••• 0 0 • 0 •• 0

File System Input/Output Macros o. 0 •••••• 0 •••• 0 • 0 0 •••••• 0 ••

File Transmission Utility 0 0 •••••• 0 •• 0 •• 0 ••• 0 • 0 0 • 0 •••••• 0 0 0 •

FORTRAN
Communications 0 •••• 0 ••••••••• 0 • 0 •• 0 •• 0 0 • 0 0 0 0 • 0 ••

Compilation ... 0 • 0 ••• 0 •••• 0 • 0 •• 0 0 •• 0 •• 0 ••• 0 ••••• 0 •••••

Diagnostic Messages 0 0 0 ••• 0 0 •• 0 • 0 0 0 ••• 0 • 0 ••• 0 ••

Error Messages 0" 0 •••• 0 • 0 • 0 0 •• CO • 0 ••••• 0 • 0 • 0 0 0 0 ••••• 0 • 0

iv

AX07
AX07
AX08

AXIO
AXIl
AX09
AX09
AX09
AX09
AXIl

AX09
AXIO
AX08

AXIl
AX07
AX08
AX09
AXIO
AX07
AX08
AX08
AX07
AX09
AXIO
AX07

AX08
AX07
AX08

AXl2
AXl3
AXl4
AXl6
AX07
AXIO
AX08
AXIl
AXI2
AXl4
AX07
AX07
AX07

AX07
AXIO
AX07

AXl4
AX07
AX08
AXl4
AX07
AXIO

AX07

Functions. AX14
Source Language AXI4
User Guide .. . AXIl

Glossary .. . AXIl
Import PAM File Utility AX07
Input/Output Service Functions AXIO
Interrupt Priority Level Concepts AXIl
Interrupt Save Area (lSA) AXIl
Keys, Record .. . AX09
Linker

Directives AX08
Execution AX07

AX08
Logical File Number Concepts (LPN) AXIl
Logical Resource Number (LRN) Concepts AXIl
Macro Calls, System and Input/Output AXIO
Macro Preprocessor

Execution AX07
, AX08

Language Statement Description AXI2
Listing AXI2

MDUMP Utility .. . AX08
Memory Allocation by Task AXIO
Memory Dumps, Interpreting and Using AX08
Memory Layout .. . AXIl
Memory Management Assembly Instructions AXI2
Memory Pool

Batch .. . AXIl
Concepts AXIl
Configuration .. . AX07
Online AXIl
Size Calculation AX07

Monitor and I/O Services Macro Calls AXIO
Multiline Communications Processor Dump Routine (DUMCP) AX08
Operator Control Language (OCL) AX07
Operator Interface (Terminal Dialog) AX07
Overlays

Concepts AXIl
Creating. '.' AX08
System AX07

Patch Utility AX07
AX08

Patching Programs AX08
Pathnames (see Directories)
Physical Input/Output AXIO
Prin t Utility AX07
Priority Level Concepts AXIl
Queue Assembly Instructions AXI2
Real-Time Clock .. . AXIO
Registers, Hard ware AXI2
Root, Creation AX08
RPG

Compilation AX07
AX08

Error Messages " AX07
AXIO

Source Language AXI6

v AX07

Sample Programs

Scientific Instruction Processor

Semaphore
Concepts
Macro Calls .

Software Overview
Sort

Execution

Language Statements
User Guide .. .

Stack Assembly Instructions
Startup, System .. .
Status, Error, and Informational Messages

System
Configuration Directives
Extensions .. .
Files (command, error output, user input, user output)
Memory Layout
Startup
Task Group

Task Manager Functionality
Task

Concepts
Control and Services
Status .. .

Trap Handler .. .
Utilities

Compare Utility
Copy Utility
Create Volume Utility
Dump Edit (DPEDIT) Utility

Export PAM File Utility
File Dump Utility
File Transmission Utility
Import PAM File Utility
MDUMP Utility
Patch Utility

Print Utility
Sort Utility .. .

VIP

AX08
AXIl
AXl4
AXIO
AXl2

AXIl
AXIO
AXIl

AX07
AXIS
AXIS
AXIl
AXI2
AX07
AX07
AXIO

AX07
AX07
AX07
AXIl
AX07
AXIl
AXIO

AXIl
AXIO
AXIl
AXIO

AX07
AX07
AX07
AX07
AX08
AX07
AX07
AX07
AX07
AX08
AX07
AX08
AX07
AX07

Configuration .. AX07
TerminalOperation AXIO

vi AX07

The following publications constitute the GCOS 6/MDT manual set. The
Subject Directory in the latest Series 60 (Level 6) GCOS 6/MDT Software
Overview and User's Guide lists the current revision number and addenda (if
any) for each manual in the set.

Order No.

AX07
AX08

AX09

AXIO
AXIl
AXI2

AXI3
AX14
AXIS
AX16

Manual Title

Series 60 (Level 6) GCOS 6/MDT System Control
Series 60 (Level 6) GCOS 6/MDT Program Preparation and
Checkout
Series 60 (Level 6) GCOS 6/MDT Data File Organization and
Format
Series 60 (Level 6) GCOS 6/MDT Monitor and I/O Service Calls
Series 60 (Level 6) GCOS 6/MDT Overview and User's Guide
Series 60 (Level 6) GCOS 6/MDT Assembly Language Reference
Manual
Series 60 (Level 6) GCOS 6/MDT COBOL Reference Manual
Series 60 (Level 6) GCOS 6/MDT FORTRAN Reference Manual
Series 60 (Level 6) GCOS 6/MDT Sort Manual
Series 60 (Level 6) GCOS 6/MDT RPG Reference Manual

In addition to the GCOS 6/MDT manual set, the following documents
provide GCOS 6/MDT users with a general hardware reference:

Order No.

AS22
AT04
AU22

Document Title

Honeywell Level 6 Minicomputer Handbook
Level 6 System and Peripherals Operation Manual
GCOS/ BES Programmer's Reference Card

The following manual provides detailed information regarding pro­
gramming for the Multiline Communications Processor:

AT97 Series 60 (Level 6) MLCP Programmer's Reference Manual

vii AX07

CONTENTS Page

Specialized System Startup 2-7

Page
System Configuration Directives 2-11
CLM Input Stream Directive/

Section 1. Introduction 1-1 Device Directive 2-1 2
Application Execution 1-1 CLM Input Stream Directive 2-12

Tasks 1-1 Device Directive 2-1 2
Task Groups 1-1 Load Bound Unit Directive 2-18

Task Group Identification 1-1 Memory Pool Directive 2-19
User Identification 1-1 Resident Overlay Directive 2-22
Task Group Resources 1-2 System Definition Directive 2-25

Priority Levels 1-2 Quit Directive 2-28
Task Group Memory 1-2 Communications Configuration
Peripheral Resources 1-2 Directives 2-28

File System Pathnames 1-2 Communications System Directive 2-29
Files 1-2 Modem Definition Directive 2-29
Directories 1-2 Line Protocol Handler Definition
Naming Conventions 1-2 Directive 2-31
Pathname Construction 1-3 Binary Synchronous Communications

Absolute Pathnames 1-3 Directive 2-32
Relative Pathnames and the Line Protocol Handler Directive ~ ... 2-33

Working Directory 1-3 Station Directive 2-35
Operator System Dialog 1-4 Teleprinter Device Directive _ 2-36

Output Messages 1-5 VIP Device Directive 2-37
Input to the OIM 1-5

Input Messages 1-5 Section 3. Operator Control Language 3-1
Message Control 1-5 Commands 3-1
Input Directive Messages 1-6 Command Line Format 3-1
Input Message Length 1-6 Parameters 3-1

Assembly Language Programming Control Arguments 3-1
Considerations 1-6 Spaces in Command Lines 3-1

Sample Console Dialog 1-7 Standard OCL Processor Files 3-2
Command Input File 3-2

Section 2. System Startup and User Input File 3-2
Configuration 2-1 Operator Output File 3-2

System Startup and Configuration 2-1 Error Output File 3-2
Honeywell-Supplied System OCL Command Formats and

Startup 2-2 Descriptions 3-2
Configuration Concepts 2-4 Task Group Creation and Deletion

Configuration Directives 2-4 Commands 3-2
Overlays (RESOLA Task Group Execution Commands 3-3

Configuration Directive) 2-4 File and Directory Control
Operating System Extensions Commands 3-3

(LDBU Configuration System and Status Commands 3-3
Directive) 2-4 Abort Batch 3-3

Memory Allocation Abort Batch Request 3-4
(MEMPOOL Configuration Abort Group 3-4
Directive) 2-4 Abort Group Request 3-5

Peripheral Device (DEVICE Activate Batch 3-5
Configuration Directive) 2-5 Activate Group 3-6

Terminals 2-5 Change System Directory 3-6
Determination of the Change Working Directory 3-7

Operator's Console 2-6 Create Batch 3-8
Line Speeds for a TTY Create Group 3-8

Terminal 2-6 Delete Batch 3-9
Bootstrap Routine Options 2-6 Delete Group 3-10

ix AX07

Page Page
Enter Batch Request 3-10 Dump Edit 4-23
Enter Group Request 3-11 Editor 4-24
Execution Command 3-12 Enter Batch Request 4-25
File Out 3-14 Enter Group Request 4-26
List Search Rules 3-15 Enter Task Request 4-27
List Working Directory 3-16 Execution Command 4-28
Modify External Switches 3-16 Export PAM File 4-31
Modify File 3-1 7 File Dump 4-32
Ready Off 3-18 File Out 4-33
Ready On 3-19 FORTRAN 4-34
Reassign 3-19 Import PAM File 4-36
Set Date 3-20 Linker 4-37
Spawn Group 3-20 List Names 4-37
Status Group 3-22 List Search Rules 4-39
Status System 3-24 List Working Directory 4-39
Suspend Batch 3-26
Suspend Group 3-26

Macro Preprocessor 4-40
Message 4-41

Section 4. Execution Control Language ... 4-1
Commands 4-1

Modify External Switches 4-41
Modify File 4-42
Patch 4-43

Command Line Format 4-1 Print 4-44
Parameters 4-1 Ready Off 4-45
Control Arguments 4-1 Ready On 4-46
Spaces in Command Lines 4-2 Release 4-46

Standard ECL Processor Files 4-2 Rename 4-47
Command Input File 4-2 Reset Map 4-48
User Input File 4-2 RPG 4-48
User Output File 4-2 Sort File 4-50
Error Output File 4-2 Spawn Group 4-50

ECL Command Formats and Spawn Task 4-52
Descriptions 4-2 Status Group 4-54
Task Group Creation and Deletion Time 4-55

Commands 4-2
Task Group Execution Commands 4-3 Section 5. Error, Status, and Informational
File and Directory Control Commands. 4-3 Messages 5-1
Utility Commands 4-3 Message Codes 5-1
Program Preparation Activity Physical I/O Messages (xxOl) 5-2

Commands 4-3 File System Messages (xx02) 5-3
System and Status Commands 4-3 Trap Handler Messages (xx03) 5-8

Abort Group 4-4 Clock Manager Messages (xx04) 5-10
Assembler 4-4 Semaphore Function Messages (xx05) ... 5-10
Associate Path 4-5 Memory Manager Messages (xx06) 5-10
Bye (Terminate Current Group

Req uest) . 4-6
Change Working Directory 4-7
COBOL 4-9
Compare 4-10
Copy 4-11
Create Directory 4-13
Create File 4-14
Create Group 4-16
Create Task 4-17
Create Volume 4-19

Monitor Error Messages (xx08) 5-11
CLM Communications Error Messages

(xx08) 5-11
Assembler Messages (xxl0) 5-15
Linker Messages (xx 11) 5-15
Utility Programs Messages (xx 12) 5-16
Configuration Load Management

Error Messages (xx 13) 5-1 7
FORTRAN Compiler Messages (xxI4) ... 5-21
FORTRAN Runtime Input/Output

Routine Messages (xx 15) 5-21
Cross Reference Program 4-21 Loader Messages (xxI6) 5-23
Delete Group 4-22 EC/ECL/OCL Command Messages
Dissociate Path 4-22 (xxI7) 5-23

x AX07

Page
Cross Reference Program (XREF)

Messages (xx 18) 5-24
Editor Messages (xx 19) 5-24

Editor Initialization Messages 5-24
Editor Addressing Messages 5-25
Edit Directive Messages 5-25
Editor Messages Pertaining to

Auxiliary Buffers ~ 5-26
Patch Messages (xx21) 5-26
Communications File Transmission

Program Messages (xx22) 5-27
Macro Preprocessor Messages (xx23) 5-28
Export/Import PAM File Program

Messages (xx24) 5-28
Dump Edit (DPEDIT) Error Messages

(xx25) 5-29
COBOL Compiler Messages (xx26) 5-29
Messages Issued by COBOL Run-Time

Routines (xx27) 5-30
Sort Error Messages (xx31) 5-31
Multiline Communications Processor

(DUMCP) Error Messages (xx34) 5-33

Appendix A. ECL and OCL Commands .. A-I

Appendix B. File Transmission B-1
Functional Description. B-1

Normal Termination B-1
Abnormal Termination. B-2
TRAN Error Codes B-2

Equipment Requirements. B-2
Level 6 B-2
Level 66 .. B-3

Language Elements. B-3
Programmer Preparation Information. " B-3

TRAN66 ',' " B-3
TRAN6 B-4

Operating Procedures " B-4
Detail Interface to TRAN66 B-5

Transmission Unit (TU) B-5
TU Format. B-5
Data Record Format B-5
End of File (EOF) Indication B-5
Level 6 to Level 66 B-5
Level 66 to Level 6 B-5

Data Compaction B-6
Termination Messages. B-7

TRAN66 B-7
GRTS B-7

Appendix C. File and Data Formats C-l

xi

ILLUSTRATIONS

Figure

1-1.
2-1.

2-2.

2-3.

4-1.

Page

Sample Console Dialog 1-7
System Startup Terminal

Responses 2-2
Generalized Example of Creating

and Building CLM_USER and
START UP.EC Files 2-8

Specific Example of Creating and
Building CLM_USER and
START UP.EC Files 2-10

Typical Directory/File Structure .,. 4-8

TABLES

Table

1-1.

2-1.
2-2.
2-3.
2-4.
2-5.

2-6.
2-7.
2-8.
2-9.
2-10.

5-1.
B-1.
B-2.
C-1.
C-2.

Page

Summary of Console Message
Lengths 1-7

TTY Terminal Line Speeds 2-6
Bootstrap Options 2-7
Available Device-Types 2-13
Implicit I/O Options for a KSR 2-13
Communications Device-Types

for DEVICE Directives 2-15
Implicit I/O Options for a BSC 2-16
Implicit I/O Options for a TTY 2-16
Implicit I/O Options for a VIP 2-17
System Overlays 2-23
ISA Modification Based on Usage
of Scientific Instructions 2-27

Component Codes 5-1
TRAN Parameter Card B-3
Standard Character Set. B-7
ASCII/Hexadecimal Equivalents. .. C-2
EBCDIC/Hexadecimal/Binary

Equivalents. C-2

AX07

SECTION I

INTRO DU CfION

The MDT operating system is a system that supports concurrent multiple interrupt-driven activities.
Control over activities and their accesses to external devices and files is vested in the MDT Monitor and
Input-Output Control system, which utilizes external interrupts and a set of physical priority levels to
determine the sequencing and degree of concurrency of functions performed on behalf of these activities.

The topics presented in this section relate to the definition of the MDT operating system
configuration and its subsequent control by the system operator and its various users. The material
contained herein by no means exhausts the concepts necessary to a complete understanding of the
operating system; rather it centers on system configuration and control, and thus reflects the most visible
interfaces between the operating system and a user at an operator terminal or a remote terminal device.
For a more complete presentation of these topics, refer to the Overview and User's Guide manual.

APPLICATION EXECUTION

The basic element which is executed on behalf of an application is the task. One or more tasks
constitute a task group. Associated with a task group is a group identification by which it is known to
the operating system, and a set of resources consisting of the member task(s), the central processor, and
peripheral devices.

Tasks
A task is defined as a sequence of instructions which has an explicit starting point and an explicit

termination point, and performs some identifiable function. A task has associated with it a unique
priority level and is identified by a logical resource number (LRN). These attributes are defined when the
task and the group of which it is a member are defined.

Task Groups
A task group is a named set of one or more tasks which share the same set of resources. The task

group is the framework within which all user applications, all program development and checkout
activities, and all operating system service functions operate.

Some task group concepts which are useful from the point of view of system configuration and
control are discussed in the following paragraphs.

Task Group Identification
Every task group is known to the operating system by a task group identifier, or, as it is commonly

known, a group id. The system task group and the batch task group each have a fixed group id; the
former's is $S, while that of the latter is $B. The identifier of an online task group can be any two
characters from the sets of alphabetic and numeric characters (e.g., AI, XV, 2Z). A special online task
group, identified as $H, is used during system configuration (refer to Section 2).

The task group identification is used in a number of commands to identify the group upon which
action invoked by the command is to be taken. It is also used for operator and user communication with
specific task groups in response to messages issued by the groups.

User Identification
A user identification, or user id, is meaningful only in the context of a batch or online task group, and

identifies the user on whose behalf the task group is currently active. The user id is supplied when a
request for the task group's services is entered. It is a field of up to 18 characters, comprising two
subfields of the form "user.project". These subfields are used to establish the initial pathname of the
working directory.

INTRODUCTION 1-1 AX07

Task Group Resources
The resources "owned" by a task group, in addition to the tasks described above, fall into three main

categories, central processor priority levels, central processor memory, and peripheral devices.

Priori ty Levels
A task group, when it is created, is assigned to a "physical" or base priority level. Each task that is a

member of this group is assigned to a priority level relative to the group's base level. In this way the tasks
within a group can be made to retain the same priority levels relative to each other, while the base level
can be changed to reflect the relative urgency of the application at any given invocation.

Task Group Memory
When a task group is created, it is assigned a fixed block of memory for execution. This block is

known as a memory pool. From it the task group obtains segments of memory as required for such
things as task code, task control data structures, and input/output buffers.

A detailed description of memory pools and their definition is contained in Section 2.

Peripheral Resources
A task group's peripheral resources consist of those devices assigned to it when they are requested. By

implication, this also includes any data which may be read from or written to these devices, be they
magnetic storage devices, unit record devices, or terminal-type devices.

The mechanism by which peripheral devices are assigned to a task group is the logical resource
number (LRN). An LRN is defined for each peripheral device when the system is configured, beginning
with LRNO for the operator terminal. LRNs I through n are assigned to other devices (including
MDC-connected local devices and MCP-connected remote devices). LRNs from n+l through 255 are
available for assignment to tasks.

When a task group is created a maximum LRN can be specified. If it is, it must be large enough to
include the LRNs of any tasks that are expected to operate within the task troup. If it is not specified,
the default maximum LRN is the highest one defined during system configuration (i.e., the value
attained by n, as described above).

FILE SYSTEM PATHNAMES

The file system is represented by a tree-structured hierarchy. The basic elements of this structure are
known as files. Some of the files are of a special type known as directories; the remainder of the files
comprise aggregates of data.

Files
A file is defined as any unit of storage, external to the central processor, which is capable of supplying

data to or receiving data from a task. A file can be simply a peripheral device such as a printer, card
reader, or terminal device; or it can be an aggregate of data stored within a directory structure on a
magnetic storage device. A source unit, object unit, listing, or bound unit is stored as a source unit file,
object unit file, list file, or bound unit file, respectively.

Directories
A directory is a file that contains information about other files, such as their physical and logical

attributes, and the attributes of the peripheral devices upon which they reside. The files whose attributes
are described in a directory are said to be immediately contained in, or subordinate to, that directory.
They may themselves be directories, or they may be data files.

At the base of each tree structure is a directory known as the root directory, or simply the root. The
root directory name is the same as the identifier or the label of the volume on which it resides.

Naming Conventions
Each directory or file name in the file system can consist of ASCII characters from the following sets:

o Uppercase alphabetic (A through Z)
o Numeric (0 through 9)
o The underscore ()
o The period (.)
o The do lIar sign ($)

INTRODUCTION 1-2 AX07

The first character of any name must be either an alphabetic or the dollar sign ($). The underscore
character can be used to join two or more words which are to be interpreted as a single name (e.g.,
DATE TIME). The use of the period character followed by one or more alphabetic or numeric
characters is normally interpreted as a suffix appended to a file name.

The name of a root directory or a volume iden tifier can consist of from one through six characters.
The names of other directories, and those of files, can comprise from one to twelve characters. The
length of a file name must be such that any potential system-supplied suffix does not result in a name of
more than 12 characters. The total length of a pathname cannot exceed 57 characters.

Pathname Construction
The access path to any file system entry (directory or file) begins with a root directory name and

proceeds through zero or more subdirectory levels to the desired entry. The series of directory names
(and a single file name if a file is the target entry) is known as the entry's pathname.

In constructing pathnames, certain symbols are used to indicate the hierarchical relationship among
the pathname's elements. These symbols and their meanings are shown below.

o The circumflex (t\)-Used exclusively to denote the name of a root directory. It precedes the root
directory name, thus: /\ VOLO 1.

o The greater than (>)-Used to connect two directory names or a directory name and a file name.
Each occurrence of the symbol denotes a change of one directory level; the name to the right of
the symbol is immediately subordinate to the name on the left. Reading a pathname from left to
right thus traverses the tree structure in a direction away from the root. If the root directory
VOLOI contains a directory name DIR1, then the path name of DIRI is

/\VOL01>DIRI

If the directory named DIR 1 in turn contains a file named FILEA, then the pathname of FILEA is

/\ VOLOl> DIRI> FILEA

o The less than «)-Used in certain cases to indicate movement through the tree structure in a
direction toward the root. This symbol represents a change of one level toward the root.
Consecutive symbols can be used to represent a change of more than one level.

The last element in a pathname is the name of the entry upon which action is to be taken. This
element can be either a directory name or a file name, depending on the function to be performed.

Absolute Pathnames
An absolute pathname is one that begins with a directory name preceded by circumflex (/\) or a

greater-than symbol (». When it begins with a circumflex it is called a full pathname. When it begins
with a greater-than symbol, the first element is immediately subordinate to the root directory of the
system volume.

Relative Pathnames and the Working Directory
A relative pathname is one that does not begin with the circumflex or greater-than symbol. The first

(or only) name in a relative pathname identifies a directory or file that is immediately subordinate to a
directory known as the working directory.

A simple name is a special case of the relative pathname. It consists of one and only one element, the
name of the desired entry in the working directory.

The following examples and diagram show some relative pathnames and the full pathnames they
represent when the working directory pathname is

> UDD> PROJ 1> USERA

and the system was initialized from a volume whose volume identification is SYSO 1.

INTRODUCTION 1-3 AX07

Relative Pathname Full Pathname

DELTA I\SYSOI>UDD>PROJI>USERA>DELTA
OLD>DELTA I\SYSOI>UDD>PROJI>USERA>OLD>DELTA
<USERB>ALPHA I\SYSOI>UDD>PROJI>USERB>ALPHA
< <PROJ2>USERA>DELT A 1\ SYSO I >UDD>PROJ2>USERA>DEL T A
< I\SYSO I >UDD>PROJ I

SYSOl

I
UDD

J I
I I

PROJl PROJ2

I I l
USERA USERB USERA

I L-- I I
DELTA ALPHA DELTA

OLD

DELTA

,OPERATOR SYSTEM DIALOG

Communication between system operator and the various active task groups is conducted through a
terminal-type device known as the operator terminal. The system operator, for the purpose of this
discussion, is any person who carries on a dialog with the operating system through this terminal.

The operator terminal is normally (although it need not be) a terminal which is in close proximity to
the central processor, and usually is housed in the same cabinet. A tenninal is defined as an operator
terminal at system configuration by virtue of being attached to the lowest channel number. The system
assigns an LRN of zero to this device.

The operator tenninal is controlled by a system software component known as the Operator Interface
Manager (OIM). This component provides a standard means by which all tasks can communicate with the
operator. The OIM guarantees consistency of input and output spacing to prevent overprinting of
messages; it also manages multiple requests for input from the operator tenninal and insures that critical
messages can be printed promptly. The operator can choose which requests he will respond to and when
he will respond to them.

The OIM recognizes four classes of messages. One of these classes comprises output messages
(messages sent from a task group to the operator tenninal), while the remaining three comprise input
messages (messages sent from the operator tenninal to a task group or to the OIM itself). These classes
are further described in the paragraphs that follow.

INTRODUCTION 1-4 AX07

Output Messages
The OIM identifies the messages written to the operator's console by providing the task group

identification in a prefix to each message. If the operator must respond, a message number is also
provided. The formats for the two kinds of output messages to the operator's console are shown below.

Output Messages

#n(id)message

(id)message

Meaning

A message written to the operator's console that requires operator response.
OIM provides the message number n.
An informational message from the task group "id" to the operator's console
that does not need a response.

Up to ten messages requiring responses can be outstanding at any given time. After the tenth message
(message #9) is issued, if none of the messages have been responded to, no further messages requiring
responses are issued. The task(s) attempting to issue the eleventh (and successive) message(s) are stalled
until one or more of the outstanding messages are answered, making a message number,available.

The Operator Interface Manager provides standard formatting for all output messages. Each output
message is preceded by a line feed and followed by a carriage return and line feed. The first byte of each
output message is a control byte initialized by the OIM. In addition, the OIM provides a pacing feature to
control the rate at which orders for output are displayed on the operator's console device. On a CRT,
pacing controls the rate of rollup on the screen. The operator can change the pacing rate by issuing an
input directive to the OIM (see below).

Output message length is restricted to 140 bytes. If the output 10RB specifies a range of more than
140 bytes, it will be reset to 140 by the OIM, without notice to the caller. If the specified range is greater
than the physical line length of the LRN 0 device, the issuing task is responsible for imbedding the
appropriate carriage returns and line feeds as required to display the message on at least two lines.

Input to the OIM
Input message formats are shown in the paragraphs that follow.

Input Messages
Two message formats are provided for messages sent to a task group, not in response to an input

request. One format requires the task group id; the other assumes the message is intended for the OIM
default task group.

Immediately after system configuration the default task group is the system task group "$S". At this
time OCL commands (i.e., messages through the OIM) need not be preceded by "$S". If a directive to
OIM were to change the default to another task group, all OCL commands would have to be preceded by
"$S" .

Two other input message formats are provided to respond to requests for input. One includes a prefix
for message number, i.e., the number contained in the output message requesting the response; the other
requires no message number and is assumed to respond to message #0.

A message consisting of /:).C/R or C/R is interpreted as a response to message #0; this number then
becomes available for another message. If b.C/R is entered and message #0 does not exist, an error
message is generated.

The four input message formats are shown below.

Input Messages

messageC/R

id messageC/ R
b.messageC/R
b.n messageC/R

Message Control

Meaning

Serial input to the default task group. After configuration the system task
group, $S, is the default.
Serial input to a task group specified by task group id.
Response to output message O.
Response to output message #n where n=O to 9, inclusive.

Output to the console can be halted, to enable the operator to leave the console, by typing a space
and omitting the carriage return. To resume output the space is erased by typing the @ character on the
same line, followed by a carriage return.

INTRODUCTION 1-5 AX07

To delete a message line before it is accepted as input, i.e., before C/R is typed, enter
A (CONTROL-X)C/R.

Message control formats are shown below.

Input Message

A(no C/R)
A@C/R
A (CONTROL-X)C/R

Input Directive Messages

Control Meaning

Halt output.
Resume output.
Delete partial input (prior to carriage return) .

The OIM recognizes three directives to: list outstanding messages, change the default task group, and
change the pacing rate.

All outstanding messages are listed by entering

~Cfl?C/R

To minimize the amount of information that must be entered from the operator's console during the
operator/task group dialog, the OIM recognizes one task group to be the default, i.e., a group identifier is
not required in the prefix of an input message. The default can be changed using the OIM C (change)
directive

b:.Cb:. :group-id:C/R

To change the pacing rate at which output messages are displayed at the console (e.g., one message
per second or one message per tenth of a second) enter

flCflPnnnC /R

where nnn is the pacing interval in tenths of a second.
Input directive formats are shown below.

Input Directive Messages

b:.Cb:. ?C/R

Meaning

OIM lists all outstanding output messages.
b:.Cb:. :id:C/R
ACb:.PnnnC/R

The default task group is changed to the task group whose identifier is"id".
Change the pacing rate to nnn; nnn values are 001 to 999 tenths of seconds.

NOTE: In all message formats:
C/R is Carriage Return
A indicates exactly one space

Input Message Length
The end of an input message is indicated by typing a C/R (carriage return) Table 5-1 lists the

maximum physical line lengths by device type. When the line length limit is reached, the OIM considers
the message finished as if a C/R were entered. To extend the length of a message beyond the physical line
length, the carriage return can be "escaped" with a preceding backslash (\), e.g., \ C/R. Then, up to 140
bytes can be entered.

ASSEMBLY LANGUAGE PROGRAMMING CONSIDERATIONS

Assembly language programming considerations are discussed in the section on the Operator's Console
of the Monitor and I/O Service Calls manual.

INTRODUCTION 1·6 AX07

TABLE 1-1. SUMMARY OF CONSOLE MESSAGE LENGmS

Physical Line Maximum Message Length

Device Length Keyboard Screen/Printer
Type (bytes) Input Outputa

KSR 72 140 140
136(+4)b

CRT 80 140 140
136(+4)

Keyboard
Typewriter 140
Console 132 140 136(+4)

acarriage return and line feed characters must be imbedded in the user program's output
message to continue beyond the physical line length limit.

b A 4-character identifier for the message.

SAMPLE CONSOLE DIALOG

Figure 1-1 provides a sample operator-task group dialog. The boxed entries represent console input;
the other entries are system and user task group output to the console.

Entry

($S)CONSOLE READY
ICG AB 161
#O(AB)KEY IN THE TIME PLEASE
(AIQTI)
(AB)END OF SECTION 1

ICG YZ 211
#O(AB)KEY IN THE TIME AGAIN
#1 (YZ)MOUNT UNLINED PAPER PRINTER 1
6.16.DONEI
(YZ)ENTER LIST W FOLLOWED BY "FINI"
llCll:YZ:

JONES }
SMITH
LAPIERRE
FIN I
6.Cll:$S:
SSPGAB

($S)GROUP AB SUSPENDED
(yZ)ENTER LIST Z FOLLOWED BY "FINI"
II YZllLOWELL }
llYZllHART
6. YZ6.FINI
6.C6.?
#06.(AB)KEY IN THE TIME AGAIN

16.06.11 001

Meaning

Output from the system task group
Input to default task group ($S)
Task group AB requesting a response
Response to message #0
Informational message from task group AB
Input to default task group ($S)
Task group AB requesting a response
Task group YZ requesting a response
Response to message # 1
Informational message indicates input need
Operator defines new default task group

Serial input to default task group YZ

Changes default task group to system task group
OCL input to default task group $S(OCL processor) to
suspend task group AB
Informational message
Informational message

Serial input to task group YZ

Operator requests list of outstanding messages
Redisplay of message #0
Response to message #0

Figure 1-1. Sample Console Dialog

INTRODUCTION 1-7 AX07

SECTION 2

SYSTEM STARTUP
AND CONFIGURATION

Prior to system startup and configuration, it is desirable to have an understanding of the following
MDT concepts described in the following manuals:

Overview and User's Guide
o Allocation of memory: Provides information pertaining to the concept of memory pools used by

task groups.
o Communications capability: Provides information about the full range of communications

capabilities for communications applications.
o Online/batch operation: Provides information about online/batch operation as a result of

assignment at system configuration and program preparation time.
o Priority assignment: Provides information about priority levels assigned to each execution of tasks

within task groups.

System Control
o Operator Control Language (OCL): Provides information about the control language allowing the

operator to control the system.
o Execution Control Language (ECL): Provides information about the control language used to

control application execution within the system.

SYSTEM STARTUP AND CONFIGURATION

System startup consists of either: (I) the Honeywell-supplied system startup or (2) the user
specialized system startup.

The Honeywell-supplied system startup involves bootstrapping a preconfigured system residing on the
system volume in the form of directive files which, when processed, provide the user with a minimum
operating environment in which to build a configuration directive file to configure a system
corresponding to !he actual installation hardware.

Specialized system startup includes existence of the minimum operating environment and invoking
the Editor to build the configuration directive file named CLM_USER. A second file, named
START_UP.EC can also be built through use of the Editor; this file can contain OCL (operator control
language) commands which, when executed, define the installation-specific operating environment
consisting of task groups and directives. After both files are created, the system is again bootstrapped but
configuration directives in the CLM.J}SER file are used to control the configuration and the OCL
commands in the START_UP.EC File are used to define the operating environment.

Configuration directives, used in the directive file, are available to:

o Describe available central processing unit options such as the real-time clock and scientific
processor.

o Describe peripheral and communications devices and their characteristics.
o Specify memory pools, into which memory is partitioned, and memory pool sizes. The system and

each user task group under which applications execute must be associated with a single memory
pool. System and user memory pools are mutually exclusive.

o Indicate system software, which otherwise would execute as an overlay, to be permanently
resident.

o Indicate that an application-specific bound unit should be resident and be part of the operating
system.

The Honeywell-supplied startup, specialized startup and configuration directives are described in
detail in this section.

SYSTEM STARTUP AND CONFIGURATION AX07

Honeywell-Supplied System Startup
The Honeywell-supplied system startup provides the capability of configuring a minimal MDT system

consisting of the following:

o A line printer (LPT)
o A card reader (CDR)
o Either a removable cartridge disk (RCD) or two pairs of diskettes (DSK) depending on the

bootstrap device
o Either a local (MDC-connected) or remote (MCP-connected) terminal
o One online memory pool and an online task group.

Once the initial Honeywell-supplied startup has been completed, the user can either: (1) invoke the
Editor to build his own CLM_USER configuration directive file and START_UP.EC operator control
language (OCL) file and proceed to specialized system startup or (2) execute tasks under the control of
the existing system as configured.

The Honeywell-supplied system startup consists of the following steps:

1. Power-up the hardware by turning on the "Power" switch on the central processing unit (CPU).
2. Mount either the removable cartridge disk or one of the diskette pairs (i.e., for diskette, on either

channels 0400 and 0480 or 1200 and 1280) containing the Honeywell-supplied MDT system.
3. Execute the following standard bootstrap routine by pressing the following keys on the CPU:

\

Stop
CLeaB,
Load
Execute

a. Wait for the "Traffic" light to extinguish; channel 040016 is the bootstrap channel. At this
point, certain bootstrap options are available to the user by setting hexadecimal values in
register D I (see "Bootstrap Routine Options," later in this section).

b. Press the Execute key on the CPU and the appropriately mounted Honeywell-supplied MDT
system fil~is selected. At this point, line speeds for a TTY operator's terminal can be specified
(see "Line Speeds For A TTY Terminal," later in this section).

Upon completion of this phase, a basic system is available.
For specialized system startup, when the user-built eLM USER configuration directive file is

available, only the bootstrap routine (i.e., step 3.) is utilized. Glany case, for the Honeywell-supplied
system startup, Figure 2-1 shows an example of the type of information that will be supplied on the
operator's terminal upon completion of the bootstrap routine.

($S)SYSTEM 0101 STARTUP
($S)(131301) 3E
($S) TYPE "ClMIN ___ " TO REDIRECT INPUT, ELSE "QUIT II

QUIT
($S) ClMST1 770119
($S) ClMST2 770121 A
($S) ClMCOM 770124
($S) ClM 770119 A COMPLETED
($S)SYSTEM GROUP READY
($H)GROUP READY

Figure 2-1. System Startup Terminal Responses

Figure 2-1 provides the following information:

o ($S)SYSTEM 0101 STARTUP
Indicates the revision num ber of system startup being used; in this case, revision number 0101.

SYSTEM STARTUP AND CONFIGURATION 2-2 AX07

o ($S) TYPE"CLMIN-" TO REDIRECT INPUT, ELSE "QUIT"
Indicates that additional configuration directives can optionally be entered, in the form of an
input file, through either the operator's terminal, card reader or diskette in order to alter the
Honeywell-supplied MDT system configuration. However, if any communications configuration
directives are entered, they cannot be referenced until after a QUIT configuration directive has
been entered. Any configuration directives, not previously specified, can be contained within the
input file except for the following conditions:
If more than one SYS configuration directive has been previously specified, the last SYS
configuration directive entered has precedence over any others.
If more than one MEMPOOL configuration directive, having an S (system) pool type, the last
MEMPOOL configuration directive entered has precedence over any others.
The following are examples of the pathnames that might be entered through the operator's
terminal to identify the input file:

CLMIN >SPD>CONSOLE (operator's terminal)
CLMIN >SPD>CDROO (card reader)
CLMIN II ZOOBOO>SID>CONFIGA (system disk)

If a configuration directive in the input file contains an error generated by either an incorrect
configuration directive syntax or an illegal duplication of a configuration directive, the following
error message is generated on the operator's terminal:

($8) (1313zz) hh {line 1
secondary message indicating line in error {line 2

zz-the error code
hh-Ievel of task group containing CLM (Configuration Load Manager)

The user has one chance to enter the directive correctly. Upon correction of the error, the remaining
directives in the original input file will be processed.
The QUIT configuration directive should only be used in the following instances:
If no configuration directives are to be entered from the input file.
If the input file doesn't already contain a QUIT configuration directive.
If a QUIT configuration directive is not present in the input file and an EOF (end-of-file) is reached, the
following "error" message appears on the operator's terminal:

($8) (13130A) hh jline 1
021F line 2

hh-Ievel of the task group containing CLM (Configuration Load Manager)

The operator can either enter: (1) a QUIT configuration directive, (2) a CLMIN configuration
directive to reference another input file, or (3) any other configuration directive which will again
be followed by the EOF "error" message. However, as end-of-file for the original input file has
been reached, no remaining directives in the original input file will be processed. At this point, the
user can continue to enter configuration directives from the operator's terminal by entering
CLMIN >SPD> CONSOLE until either a QUIT or another CLMIN configuration directive is
entered to reference another input file.

o ($S)
($S)
($S)
($S)

CLMSTI 770119
CLMST2 770121 A
CLMCOM 770124
CLM 770119 A COMPLETED

Indicates the names and the dates of the configuration software which change with each release of
the MDT system.

SYSTEM STARTUP AND CONFIGURATION 2-3 AX07

a ($S) SYSTEM GROUP READY

Indicates that the system task group, having the operator control language (OCL) processor as its
lead task, is ready for processing. The Honeywell-supplied START---YP.EC file has configured a
single task group and has caused this typeout to occur.

a ($H) GROUP READY

Indicates that the online task group, requested in the Honeywell-supplied START_UP.EC file,
having the execution control language (ECL) processor as its lead task, has been created and can be
used for either: (I) generation of a specialized system to be used in the specialized system startup
procedure, (2) program development, or (3) execution.

Configuration Concepts
The following configuration concepts must be thoroughly understood when configuring systems.

Configuration Directives
The following configuration concepts are implemented through use of the configuration directives

mentioned within each conceptual description.

Overlays (RESOLA Configuration Directive)
The operating system software includes system functions implemented as overlays. Each overlay

executes in a system overlay area. There is one overlay configured by default. Increasing the number of
overlay areas can speed-up the operation. A total of 10 overlay areas (having a size of 256 words per
overlay area) can be configured through the use of the alan parameter on the SYS configuration
directive. The operating system determines which overlay area should be used.

An alternate capability to control overlays within the system is available. Instead of defining multiple
overlay areas for critical functions, system overlays may be made resident in memory at configuration
time through use of the RESOLA configuration directive. All of the system overlays are shown in Table
2-9, later in this section. Each of the system overlays has been defined as floatable through use of the
FLOVL Y linker directive.

Operating System Extensions (LDBU Configuration Directive)"
Operating system extensions consist of reentrant code in the form of a bound unit. Extensions are

most effective when the bound unit containing reentrant code, is more or less continuously used: (I) by
multiple task groups in situations that do not permit the possible delay of the initial loading of a shared
bound unit (i.e., a bound unit not resident) or (2) as a subroutine accessed by symbolic references in an
applications task group.

Operating system extension bound units may be speCified as resident through use of the LDBU
configuration directive when the operating system is initialized (see "Honeywell-supplied System
Startup," earlier in this section). Such bound units may define system-wide global address symbols that
are included in "the operating system's resident symbol table. Any bound unit loaded subsequently may
contain references to any global address symbols that were unresolved at link time; the operating system
loader resolves references to this code as it loads the bound unit. These global address symbols must be
defined in the operating system extension bound unit and not in a bound unit loaded after initialization.

System extension code not used by multiple applications could be linked into the bound units of the
task requiring such code (rather than being specified as resident when the operating system is initialized)
thereby resolving all address symbols at link time and remaining memory resident only while the task is
not aborted or deleted.

Memory requested by an operating system extension bound unit is supplied from the application task
group memory pool in which the reentrant code executes and not form the operating system memory
pool.

Memory Allocation (MEMPOOL Configuration Directive)
Memory is divided between system, online and batch memory pools.
A task group is a named set of one or more application tasks sharing the same resources. Each task

group is assigned to one and only one memory pool defining an area of memory in which it resides and

SYSTEM STARTUP AND CONFIGURATION 2-4 AX07

from which it may acquire additional memory during execution. More than one task group can be
assigned to the same online memory pool. There are three memory pool classifications, one of which is
divided into two subclassifications:

o System pool
o Online pool

Exclusive pools
Nonexclusive pools

o Batch pool

See the Overview and User's Guide manual for a detailed description of memory pools.

Peripheral Device (DEVICE Configuration Directive)
A device can be accessed through either file management or physical I/O. (However, in a

communications environment, a DEVICE configuration directive is not required for a device accessed
through physical I/O.) Each device accessed through file management, must be described by certain
physical and logical parameters specified in the DEVICE configuration directive described later in this
section.

The physical parameters specified by the DEVICE configuration directive include:

o Unique (i.e., nonduplicate) device-types
o Central processing unit (CPU) priority level number
o Device channel number on the I/O bus

The logical parameters specified by the DEVICE configuration directive include:

o Logical resource number by which the device is requested
o Unique (i.e., nonduplicate) device names
o Maximum expected record size
o Specification of buffered files

At system startup, all files on devices are defined as being shareable. They can be modified later
through use of the MF (Modify File) OCL command described in Section 3 of this manual. A task
executing in an online pool area can reference an inactive file on any device associated with either the
online or batch pool area. However, a task executing in the batch pool area can only reference an inactive
file on a device associated with the online pool area if that inactive file is defined as shareable.

Terminals
All terminals used by the MDT system are controlled either by the multiple device controller (MDC)

or by the multiline communications processor (MCP).
The MDC controls the following:

o Noncommunications terminals (KSRs)
o Diskettes (DSKs)
o Fixed cartridge disks (FCDs)
o Removable cartridge disks (RCDs)
o Card readers (CDRs)
o Magnetic tapes (MT9s)

The MCP controls the following:

o Asynchronous TTY terminals
o Synchronous VIP terminals with or without ROPs
o Binary synchronous communications (BSCs)

SYSTEM STARTUP AND CONFIGURATION 2-5 AX07

Determination Of The Operator's Console
The operator's terminal is either connected through an MDC or an MCP.
In a noncommunications environment with only one MDC-connected KSR, the default channel for

the operator's terminal is 050016 (X'0500') . However, if there is more than one MDC-connected KSR,
the one with the smallest channel number will be the opera tor's terminal.

In a communications environment (with no MDC-connected KSRs) with more than one MCP­
connected KSR, the one with the largest channel number will be the operator's terminal.

Line Speeds For A TTY Terminal
If the operator's terminal is a MCP-connected TTY terminal and neither a user-built configuration

directive file (i.e., CLM USER) exists nor is there a MDC-connected KSR, the line speed for the TTY
terminal, having the highest channel number, is determined by resetting register D 1 after completing step
3b of the "Honeywell-supplied System Startup," (described earlier in this section). After step 3b, a value
of 01101 6 is displayed in register D 1 on the CPU. The user then resets register D I to one of the line
speeds shown in Table 2-1. When register D 1 has been set to the desired speed, the Ex~cute key on the
CPU is pressed. -

TABLE 2-1. TTY TERMINAL LINE SPEEDS

Line Adapter 2108 line Adapters 2110 or 2118
Speed Speed
(Entered in register Dl) (Entered in register Dl)

0050 0050
0075 0075
0110 0110
0134 0134
0150 0150
0300 0200
0600 0300
0900 0600
1200 1050
1800 1200
2400 1800
3600 2000
4800 2400
7200 4800
9600 9600

NOTE: A speed of 0134 represents 134.5 bits/second.

If a user-built configuration directive file (i.e., CLM-'ySER) exists and there is no MDC-connected
KSR, the line speed is determined by the speed parameter of the TTY configuration directive used in
defining the operator's terminal (see "Communications Configuration Directives," later in this section).

Bootstrap Routine Options
During the bootstrap routine, certain system generation options are available by setting register D I to

one of the hexadecimal values shown in Table 2-2. One of the main features of these options is to permit
a Honeywell-supplied system configuration file to be used when an error has occurred on a user-built
system configuration file (i.e., CLM_USER). By using the Honeywell-supplied system configuration file,
the user has the capability of again configuring a minimum MDT system in order to invoke the Editor to
correct or rebuild his own CLM--YSER file.

SYSTEM STARTUP AND CONFIGURATION 2-6 AX07

After completion of step 3a of the bootstrap routine (see "Honeywell-supplied System Startup,"
earlier in this section), the default bootstrap channel 04001 6 is displayed in register D 1 on the CPU.
To set register D 1 to one of the hexadecimal values (in effect, options) shown in Table 2-2, press the
following keys on the CPU:

o Change
o Write
o Enter the appropriate hexadecimal value for register D I by utilizing the numeric register keys on

the CPU.

Example:
Change: Dl=040016 to 040416 (halt after bootstrap)
Press Register Keys: 0 4 04

The value 040416 will beleft-Justified when register D 1 is displayed on the CPU.
o Load
o Execute

TABLE 2-2. BOOTSTRAP OPTIONS

Values
(Hexadecimal) Options

0400 No change from current operation.

0401 Bootstrap the system from the FeD (fixed cartridge disk); use either the eLM_USER or a
Honeywell-supplied file.

0402 Ignore the eLM_USER file and bootstrap the system from diskette; use a Honeywell-supplied file.

0403 Ignore the eLM_USER file and bootstrap the system from the FeD (fixed cartridge disk); use a
Honeywell-supplied file.

0404 Halt after bootstrap.

0405 Bootstrap the system from the FeD and then halt.

0406 Halt after the bootstrap. Ignore the eLM --YSER file and bootstrap the system from diskette; use a
Honeywell-supplied file.

0407 Ignore the eLM_USER file. Bootstrap the system from the FCD and halt; use a Honeywell-supplied
file.

NOTE: When a halt is indicated, press the ..§xecute key on the CPU to continue.

Specialized System Startup
Specialized system startup consists of the following procedures:

o Through use of the Editor creation. of a user file, named CLM---YSER, containing configuration
directives which, when executed, configure the system to correspond to the actual installation
hardware.

o Through use of the Editor, creation of an optional file, named START_UP.EC, containing one or
more operator control language (OCL) commands which are interpreted by the OCL processor.
This file provides a mechanism where by a sequence of routinely performed OCL functions can be
executed without the need for manually entering the functions through an interactive terminal.

After having completed the Honeywell-supplied system startup, a foreground task group (i.e., $H) is
now available to invoke the Editor through the ED execution control language (ECL) command. Once
the Editor is available, the necessary Editor commands in conjunction with the desired configuration
directives and, optionally, OCL commands can be used to build the CLM_USER and START_UP.EC
files, respectively. Figures 2-2 and 2-3 are generalized and specific examples, respectively, of the input
structure involved in creating and building the CLM_ USER configuration directive file and the
START UP. EC OCL file.

SYSTEM STARTUP AND CONFIGURATION 2-7 AX07

/

Operator's Terminal

($H}GROUP READY
~C :$H:

ED
A

lDBU .. .
ClMIN .. .
DEVICE .. .
MEMPOOl .. .
RESOlA .. .
SYS .. .
COMM .. .
MODEM .. .
lPHOEF .. .
BSC .. .
lPHn .. .
STATION
TTY
VIP
! F

1,$P
(optional)

W SID>ClM USER

1,$0

A

ABORT BATCH
ABR .-:.
ABORT GROUP
AGR .-:.
ACTB .. .
ACTG .. .
CSO .. .
CWO .. .
CB
CG .. .
DB .. .
DG .. .
EBR .. .
EGR .. .
EC .. .
FO .. .
lSR
lWO ...

Interpretation

Indicates the foreground task group has been created.
clr Change directive. Enables entry of Editor directives

without each directive being prefaced by ($H).
clr Invokes the Editor.
clr Indicates the append Editor directive is being used

to insert one or more configuration directives into
the current buffer.

clr Indicate one or more of the configuration directives
clr which can be entered to configure a user-specialized
clr system, depending on the available hardware. See
clr "System Configuration Directives," and "Communications
clr Configuration Directives," later in this section.
clr
clr
clr
clr
clr
clr
clr
clr
clr
c/~ Indicates an Editor escape sequence character which

terminates the appended text (in the form of directives
to be written to the ClM USER configuration directive
file). -

clr Indicates use of the Editor print directive to list
each line of the contents of the current buffer. This
may prove useful for verification of the configuration
directives.

clr Indicates a write Editor directive is being used to
write the contents of the current buffer (containing
configuration directives) as the file ClM USER
residing on the system volume. -

NOTE: Issuance of the write Editor directive, in
effect, creates the file ClM_USER.

clr Deletes all of the lines in the current buffer (con­
taining configuration directives).

clr Indicates the append Editor directive is being used to
insert one or mote OCl commands into the current
buffer.

clr Indicate one or more of the DCl commands which can be
clr entered to perform routine operator control language
clr (OCl) functions. See Section III of this manual for
clr a complete description of all OCl commands.
clr
clr
clr
clr
clr
clr
clr
clr
clr
clr
clr
clr
clr
clr

Figure 2-2. Generalized Example of Creating and Building CLM_USER and START_UP. EC Files

SYSTEM STARTUP AND CONFIGURATION 2-8 AX07

Operator's Terminal

MSW .. .
MF .. .
RDF .. .
RDN .. .
RAS .. .
SET DATE
SG -: ..
STS .. .
STG .. .
SSPB
SSPG
! F

1, $p
(optional)

QUIT

lS -PN AZ10100>SID

clr
clr
clr
clr
clr
clr
clr
clr
clr
clr
clr

Interpretation

clr Indicates an Editor escape sequence character which
terminates the appended text (in the form of commands
to be written to the START_UP.EC DCl file).

clr Indicates use of the Editor print directive to list
each line of the contents of the current buffer. This
may prove useful for verification of the DCl commands.

clr Indicates a write Editor directive is being used to
create the contents of the current buffer (containing
OCl commands) as the file START UP.EC residing on the
system volume. -

NOTE: Issuance of the write editor directive, in
effect, creates the file START_UP.EC.

clr Designates the last directive has been entered, and
control returns to the ECl (Execution Control
language) processor.

clr Indicates use of the List Names ECl (Execution Control
language) command to verify the existence of ClM USER
fne on the System Initialization Directory (SIDT on
system volume ZlOlOO.

lS -PN ~ZlOlOO START UP.EC clr Indicates use of the List Names ECl (Execution Control
langua.ge) command to verify the existence of START UP.
EC file on the major directory on system volume -

NOTES: 1.
2.

Zl 01 00.

clr = carriage return key on the operator's terminal.
If the START_UP.EC file is created, it must appear in the volume
major directory of system volume ZrrrOO (where: rrr is the revi-
sion number). However, if the user doesn't create his own
START UP.EC file, the Honeywell-supplied HIS>START UP.EC file
(located on the SID (System Initialization Directory) of system
volume ZrrrOO) is the default.

3. For a description of the Editor and Editor directives see the
Program Preparation and Checkout manual.

Figure 2-2 (cont). Generalized Example of Creating and Building CLM_USER and START_UP. Ee Files

SYSTEM STARTUP AND CONFIGURATION 2-9 AX07

($S)SYSTEM 0101 STARTUP
($S)(131301) 3E
($S) TYPE "CLMIN ____ " TO REDIRECT INPUT ,ELSE "QUIT"
QUIT
($S) CLMST1 770223 A
($S) CLMST2 770223
($8) CLMCOM 760105
($S) C~MCM2 760105
($S) ClM 770223 A COMPLETED
($S)GROU~ READY
($H)G ROUP READY
C : $H:

ED
($H)EDIT 0101
A
DEVICE DSK01,2,7,X'0480'
DEVICE DSK02,3,8,X'1200'
DEVICE OSK03,4t9,X'12BO'
DEVICE lPT01,5,12,X'1380',LPT01
COMM 5
I'IODEM 3,X'20' ,X'20' ,X'?O' ,X'OO' ,X'88'
BSC 29,6,X'FOOO',3,S,E8
DEVICE BTNH01,29,6,X'FOOO',IIOST
DEVICE 8TNL01,29,6,X'FDOO',HOSTA
TTY.22,8,X'FFOO',2,1200
DEVICE T8CH01,22,8,X'FFOO',TTY01,119
I'IEMPOOL S,,9500 '
I'IEMPOOL E,A8,*
!F

1, $P
($H)DEVICE DSK01,2,7,X'0480'
($H)DFVICF DSK02,3,8,X'1200'
($H)OEVICE DSK03,4,9,X'1280'
($H)OEVICF LPT01,5,12,X'13BO',LPT01
($H)C OMM 5
($H)MODEM 3,X'20' ,X'2(l' rX'?O' ,X'OO' ,X'88'
($H)BSC 29,6,X'FDOO',3,S,FB
($H)DEVICE BTNH01,29,6,X'FDOO',HOST
($H)DEVICE BTNL01,?9,6,X'FDOO',HOSTA
($H)TTY 22,8,X'FFOO',2,1200
($ H) 0 F V J C E T B'c H 0 1 , 22 , 8 , X ' F F 00 ' , TTY 0 1 , 1 1 9
($H)MEMPOOl8,,9500
($H)MEMPOOL E,AB,*
W >81 D>CLM_.LJSER
1, $0

A
CB 30 -LRN 10 -LFN 8
CG AA 25 -POOL AB
EBR PROG.DEV)SPO)TTV01
EGR AA COMM.F1LE1)SPD)HOST -OUT)SPD)OSK03
EGR AA COMM.FJLE2)SPO)HOSTA -OUT)SPD)lPT01
&P ONE BATCH AND TWO GROUPS CREATED
! F
1 , $P
($H)CB 30 -lRN 10 -lFN 8
($H)CG AA 25 -POOL AS
($H)EBR PROG.DEV }SPD}lTY01
($H)EGR AA COMM.FILE1 }SPD)HOST -OUT)SPD}DSK03
($H)EGR AA COMM.FILE2 }SPD}HOSTA -OUT }SPD}LPT01

T$H)&PON'f;.13A'CH-AN'D TWO GROUfo-B CRI:.A1ED
W >START_UP.EC
GUIT
LS -PN AZ10100)SID
($H)

Figure 2-3. Specific Example of Creating and Building CLM_USER and START_UP. EC Files

SYSTEM STARTUP AND CONFIGURATION 2-10 AX07

DIRECTORY: "Z10100)S1D
($H) STARTING NUMBER OF RECORD
($H) ENTRY NAME TYPE SECTOR SECTORS LENGTH
($H) **
($H) CLM R2 382 38 100
($H) CLMST1 R2 38A 38 100
($H) ZGGCDS R2 3F2 38 100
($H) DSK_.MDC S 42A 10 100
($H) SJPSJM R2 43A 38 100
($H) SIPSIM_SP R2 472 38 100
(~H) (:1 MCOM h'r' 4AA 38 100
($H) CLMST2 R2 4EC' 38 100
($H) ZGPT1Y R r.~ 51A 38 100
(~-H I ZQPVJP R c.~ 55? 48 100
($H) ? 0 F' r: ~;(. :-.-":,1 :':·S'A 48 100
($H) EMULA10H H? :,[2 38 -100
($H) BUFM R? 6-1A 38 100
($H) ZGE.XFC RO;:' 652 38 100
($H) CLMCM:? R2 68A 38 100
(::nll f::;lAR1. Uf',Fe * bC? 10 100
($H) CLM_ usu~ S 6E.A A 100
($H) ***********I****~*******************************
LS PN ,"..Z-10100 START_UP.EC
($H)

DIRECTORY: "210100
($H) STARTING NUMBER OF RECORD
($H) ENTRY NAMF TYPE SECTOR SECTORS LENGTH
($H) **
(tH) S1AR1_UP,EC S 34A 10 100
($H) **

Figure 2-3 (cont). Specific Example of Creating and Building CLM_USER and START_UP. EC Files

Once the CLM_ USER configuration directive file has been generated, all that remains to be done is to
rebootstrap the system (see entry number 3, "Honeywell-supplied System Startup," earlier in this
section). The user-defined configuration directives residing on the CLM_USER file will now be used to
control the configuration and the user-defined OCL commands residing on the START UP.EC file will
be used to define the operating environment. -

SYSTEM CONFIGURATION DIRECTIVES

The Configuration Load Manager (CLM) accepts configuration directives from either a Honey­
well-supplied input file or a user-generated input file (CLM_ USER). The configuration directives
described on the following pages are meant to be used when creating the file CLM USER to configure a
specialized system. -

In configuration directive parameters, unsigned positive integers can be expressed in decimal or
hexadecimal notation, unless stated otherwise. A decimal integer consists of one or more decimal digits; a
hexadecimal integer consists of one or more hexadecimal digits expressed in the following format:
X'hexadecimal integer' (see the channel parameter in the DEVICE configuration directive for an example
of the usage of the hexadecimal integer).

SYSTEM STARTUP AND CONFIGURATION 2-11 AX07

CLM INPUT STREAM DIRECTIVE / DEVICE DIRECTIVE

CLM INPUT STREAM DIRECTIVE

Directive Name: CLMIN
The CLMIN configuration directive causes the next series of configuration directives to be obtained

from the specified file.

FORMAT:
CLMIN path

PARAMETER DESCRIPTION:
path

Consists of an alphanumeric (ASCII code) character string (i.e., pathname) that identifies the file
from which subsequent configuration directives will be obtained. For a description of pathnames,
see Section I in this manual.

FUNCTION DESCRIPTION:
Before using the CLMIN directive, a DEVICE directive must have been used to define the
peripheral device. As soon as the CLMIN directive is processed, the input file (from which the
configuration directives have been read) is transferred from the current input file to the begin­
ning of the new specified file represented by the pathname; the next configuration directive is read
from this new file.

Example:
CLMIN "ABCVOL>BETAI

In this example, the configuration directive input stream will be transferred to file BETA I residing on
a volume called ABCVOL.

NOTE: An absolute pathname is used in this example.

DEVICE DIRECTIVE

Directive Name: DEVICE

The DEVICE configuration directive defines peripheral·devices available for use by online/batch task
groups.

NOTE: In a communications environment, this directive is not required if the device is to be
accessed by physical I/O.

FORMAT:
DEVICE device-unit,lrn,level,X'channel',[dev-name] ,[record size] [,B]

PARAMETER DESCRIPTION:

device-unit
Consists of an ASCII string of up to six characters which must be unique. The last two characters
of the string identify a particular unit of the device type specified by the preceding three (or
four) characters shown in Table 2-3. Table 2-4 (Implicit I/O Options For A KSR) should be used in
conjunction with Table 2-3.
In a communications environment, Tables 2-6 through 2-8 (Implicit I/O Options) should be used
in conjunction with Table 2-5.

SYSTEM STARTUP AND CONFIGURATION 2-12 AX07

lrn

DEVICE DIRECTIVE

TABLE 2-3. AVAILABLE DEVICE TYPES

Device Typea Operand Value Default Physical Record Size (decimal)

line Printer LPT

Serial Printer SPT

Card Reader CDR

Diskette DSK

Removable Cartridge Disk RCD

Fixed Cartridge Disk FCD

Magnetic Tape (9 track) MT9

KSRc (Input/Output) {KSRd}
KBCL

KSRc(Input/Output) KBNL
KSRc KPL
KSRc KDL

aCommunications device types are shown in table 2-4.

bCannot be altered by a specified record length.

72

133

SO
12Sb

256b

256b

32767

73

72

73

72

cEach KSR device-type is distinguished by a different operand value indicating implicit I/O options. See Table 2-4 to
determine the operand value based on the desired implicit I/O options.

dEither operand value can be used.

TABLE 2-4. IMPLICIT I/O OPTIONS FOR A KSR

Device Types
KSR

{KBCLa}
KSR

KBNL

KPL

KDL

Legend:
CR- -Carriage return option specified
LF-Une feed option specified
CB-Control byte specified
E-Echo mode specified

aEither device type is acceptable.

Input/Output Options
CR LF CB E

X X X X

X X X

X X X

Specifies the logical resource number by which the device is requested. lrn is an integer having a
decimal value of I through 255.

level
Specifies the logical priority level on which the device is to execute. Level is an integer having a
decimal value of 5 through 60.

SYSTEM STARTUP AND CONFIGURATION 2-13 AX07

DEVICE DIRECTIVE

X'channel'
Specifies a hexadecimal number indicating the channel number of the device.

NOTE: To define the operator's terminal (KSR only) at initialization, set the channel number to a
value of 000016 (i.e., X'OOOO'). However, a corresponding decimal value of zero (0) must
also be specified for the logical resource number (i.e., 1m parameter).

[dev-name]
For disk devices and magnetic tape, dev-name must either be omitted or contain an asterisk (*).

NOTE: For a description of the use of the asterisk (*), see the description of dev-name for nondisk
devices which follows.

N ondisk Devices Only:

[dev-name]
Consists of an ASCII string of up to 12 alphanumeric characters, the first of which must be
alphabetic. It is the unique symbolic name by which the device is referenced and, if not specified,
has a default value equal to the value specified in the device-unit parameter.
If an asterisk (*) is used for dev-name, it indicates a nonsharable device to be accessed through
physical I/O. As a result of the use of the asterisk, both disk and nondisk devices cannot be
referenced through file management.

[record size]
Is an integer representing the physical record size of the device. See Table 2-3 (earlier in this
section) and Table 2-5 (later in this section.)

[B]
Indicates that read and write commands to a file are double buffered. If this parameter isn't
specified, read and write commands to a file are single buffered.
The KSR, TTY, LPT and SPT device-types (specified in the device-unit parameter) are always
double buffered to accommodate possible tabulation characters.

NOTE: In a non communications environment, all of the prior DEVICE parameters must be unique
(Le., cannot be duplicated) on multiple DEVICE cards.

Communications Devices Only:
In a communications environment, the following restrictions apply to DEVICE parameters when used
on multiple DEVICE cards:

o The level parameter can be duplicated for all communications devices.
o The level and channel parameters must be duplicated if the same device is to be accessed using two

different device names (i.e., via the dev-name parameter) so that different device characteristics
can be used.

o In a polled VIP environment, the channel parameter can be duplicated provided different lrn and
level parameters are specified.

When using the DEVICE configuration directive in conjunction with communications configuration
directives, the device-types shown in Table 2-5 should be used in the device-unit parameter of the
DEVICE directive (described earlier in this section). To choose the desired device-type, the following
general format must be understood:

SYSTEM STARTUP AND CONFIGURATION 2-14 AX07

DEVICE DIRECTIVE

General Format:

Columns: .t~ ~ ~ ~ ~
Device Type: X X X X y y

XXXX-Indicates the columnar position of alphabetic characters constituting the desired device type.
Interpretation of the following characters, shown in column positions I through 4 of the device types
in Table 2-5, enables choice of the proper device type:
RTY -72 column ROP (columns I to 3)
RTN-120 column ROP (columns I to 3)
B-BSC line protocol handler if in column I; indicates bidirectional device if in column 2.
T - TTY line protocol handler if in column 1; indicates transparent mode (BSC) if in column 2 (except
furRTNH,RTNL,RTYHorRTYU.
V - VIP line protocol handler
C-Control byte option specified
N-No control byte specified
P-Printer emulation
D-Data entry
H-Hang-up phone option specified on disconnect
L-Leave phone connected option specified on disconnect

TABLE 2-5. COMMUNICATIONS DEVICE TYPES FOR DEVICE DIRECTIVES

Default Record
TTY Size

Columns
(1-4)
XXXX
TBCH 73a

TBCL 73a

TBNH 72

TBNL 72

TPHb 73a

TPLb 73a

TDH 72
TDL 72

alncludes control byte

bOutput only device type

Device Types
Default Record Default Record

VIP Size BSC Size

Columns Columns
(l-4) (1-4)
XXXX XXXX
VBCH 81a BBCH 137a

VBCL 81 a BBCL 137a

VBNH 80 BBNH 136

VBNL 80 BBNL 136

VPHb 81 a BTNH 136

VPLb 81 a BTNL 136

RTNHb 119a

RTNL b 73a

RTYHb- 73a

RTYLb 73a

YY -Indicates any pair of alphabetic, numeric or alphanumeric characters used to distinguish a
particular device from another device having the same device type (e.g., TBCHOI and TBCH02 or
TBCHAA and TBCHAB).

Tables 2-6, 2-7 and 2-8 show the implicit input/output options available for the following three line
protocols BSC, TTY and VIP.

SYSTEM STARTUP AND CONFIGURATION 2-15 AX07

DEVICE DIRECTIVE

TABLE 2-6. IMPLICIT I/O OPTIONS FOR A BSC

Device Types Input/Output Options

BSe ETB TB eBa

BBCH X
BBCL X
BBNH X
BBNL X
BTNH X X
BTNL X X

Legend:
ETB-Send ETB
TR-Send transparent mode
CB-Leading control byte option specified
PH-Physical disconnect option specified
QA-Queue abort option specified
EOT -Send EOT bit set

PH

X

X

X

aLeading control bytes allow settings of EOT, ETB/ETX and TR.

NOTES: 1. The two-buffer option cannot be specified as
it is not possible through the file system.

2. The sending of RV 1 is not possible through
the file system.

TABLE 2-7. IMPLICIT I/O OPTIONS FOR A TTY

Device Types Input/Output Options
TTY CR LF E TR CB

TBCH X X X X
TBCL X X X X
TBNH X X X
TBNL X X X
TPH X X X
TPL X X X
TDH X
TDL X

Legend:
CR-Trailing carriage return option specified
LF-Trailing line feed option specified
E-Echo mode specified
TR-Transparent mode specified
CB-Leading control byte specified
PH-Physical disconnect specified
QA-Queue abort specified

PH

X

X

X

X

SYSTEM STARTUP AND CONFIGURATION 2-16

QA

X
X
X
X
X
X

QA

X
X
X
X
X
X
X
X

AX07

TABLE 2-8. IMPLICIT I/O OPTIONS FOR A VIP

Device Types Input/Output Options
VIP CR LF CB

VBCH X X X

VBCL X X X

VBNH X X
VBNL X X
VPH X X

VPL X X

RTYH X X
RTYL X X

RTNH X X
RTNL X X

aAvailable only through physical I/O.

Legend:
CR-Carriage return option specified

LF-Line feed option specified

CB-Leading control byte specified

PH-Physical disconnect specified

QA-Queue abort specified

PO-Page overflow recovery specified

TIM-Timeout on read specified

OSR-One shot read specified

PH

X

X

X

X

X

QA PO TIM

X X X
X X X

X X X

X X X
X
X
X
X
X
X

POLL-Poll interval of one second (ignored if nonpolled line)

FUNCTION DESCRIPTION:

OSRa

DEVICE DIRECTIVE

POLL

X
X
X
X

Each device to be used must be explicitly defined in a DEVICE configuration directive. The
device-type operand is a generic name, and there may be more than one device of the same type (e.g.,
two diskettes); however, the level and channel operands must be unique for each device. The DEVICE
configuration directive also creates a system task for the driver of the specified non communications
device type. The lrn operand specifies the logical resource number and must be unique.
In a communications environment, a DEVICE configuration directive must be used in conjunction
with either a TTY, VIP or BSC communications configuration directive to define either a TTY, VIP
or BSC to file management. The lrn, level and channel parameters must be duplicated on the DEVICE
configuration directive exactly as indicated in either a TTY, VIP, or BSC communications
configuration directive.

Example 1 (Noncommunications Environment):

DEVICE LPTO 1, 12,20,X' 1380'

SYSTEM STARTUP ~D CONFIGURATION 2-17 AX07

DEVICE DIRECTIVE / LOAD BOUND UNIT DIRECTIVE

In this example, the line printer is the device-type having an assigned unit number of 0'1, a logical
resource number of 12 and a priority level of 20. The hexadecimal channel number of 13BO for the
line printer was assigned when the hardware was installed. The,following default assignments will be
defined for the remaining parameters:

o The dev-name (device name) will be the same as the device unit (i.e., LPTO 1).
o The record size will be I 37 1 0 •

o Single buffering will be used.

Example 2 (Communications Environment):

DEVICE TBCHOl, 21,B,X'FFBO',TTYl

In this example, the device-unit parameter TBCH indicates the following:

o T -The device-type is a TTY indicating that this DEVICE configuration directive would be used in
conjunction with a TTY communications configuration directive.

o B-Indicates a bidirectional device.
o C-The control byte option is in effect.
o H-The hang-up phone option is to be allowed on a disconnect.

The remainder of the parameter string shows a logical resource number of 21 and a priority level of B.
The hexadecimal channel number of FFBO is assigned because it is known as the hardware channel
number (i.e., installation-specific) for a bidirectional device. TTY I is the dev-name with a default
physical record size of 73 1 0 (see Table 2-5 earlier in this section).

LOAD BOUND UNIT DIRECTIVE

Directive Name: LDBU
The LDBU configuration directive defines a bound unIt name to be added to the end of the bound
unit list, and specifies that this bound unit is to be made resident.

NOTE: Any bound unit loaded by the LDBU configuration directive must have been linked with a
SYS linker directive.

FORMAT
LDBU path

PARAMETER DESCRIPTION:

path
Is the pathname of the bound unit to be permanently loaded. It consists of an alphanumeric
character (ASCII) string that identifies a file when it is opened. For a description of pathnames,
see Section 1 in this manual.

FUNCTION DESCRIPTION:
Application-specific code (usually in the form of subroutines shared among multiple task groups) that
is referenced symbolically during application execution is brought into memory permanently by an
explicit LDBU configuration directive. The LDBU configuration directive pathname is added to a
temporary bound unit list. If more than one LDBU configuration directive is specified, the order of
the directives determines the order in which the pathnames are added to the end of the bound unit
list. If a pathname is already listed, the duplicate LDBU directive is ignored.

SYSTEM STARTUP AND CONFIGURATION 2-18 AX07

LOAD BOUND UNIT DIRECTIVE / MEMORY POOL DIRECTIVE

Subsequently, after a QUIT configuration directive, the roots of the bound units identified by
pathname are loaded into memory permanently and then symbol tables are added to the resident
system symbol table list. During the loading process, unresolved symbols in subsequent bound units
are resolved if they have been previously defined through use of the EDEF linker directive. If
unresolved symbols have not been defined, an error is generated and the loading process is prevented.

Example:
LDBU !\ABCVOL>ALPHAI

In this example, a bound unit named ALPHA I, residing on a volume called ABCVOL, will be added
to the end of the bound unit list.

Bound units loaded using the LDBU configuration directive may contain an Initialization Subroutine
Table (1ST) if the code associated with the bound units does not:

o Attempt to define system symbols
o Extend the memory area required by the root segment beyond the memory area specified when

the bound unit was loaded
o Memory used by the 1ST code may be returned to the operating system when the 1ST code

completes

For a description of the 1ST, see the Program Preparation and Checkout manual.

MEMORY POOL DIRECTIVE

Directive Name: MEMPOOL

The MEMPOOL configuration directive permits the user to define memory pools (i.e., memory areas)
required by the system. Each MEMPOOL configuration directive defines one pool set.

NOTE: To properly use the MEMPOOL configuration directive, it is necessary to first reference the
description of memory pools in the Overview and User's Guide manual.

FORMAT 1:

MEMPOOL {~}"size

FORMAT 2:

MEMPOO L {n~ll} ,pool name,size f~Ull} [,POOl name ,size f~Ull}] ...
PARAMETER DESCRIPTION:

Represent the pool types for format 1 and are defined as follows:

S - System pool; if not specified, a default system pool size of 3K is created.
A separate MEMPOOL configuration directive must be used for the S pool type being specified.
If previous S pool types have been specified, each on a separate MEMPOOL configuration
directive, the last S pool type specified replaces any of the previous ones.
With the S pool type, it is not necessary to assign a pool name; if one is assigned, it is ignored.

SYSTEM STARTUP AND CONFIGURATION 2-19 AX07

MEMORY POOL DIRECTIVE

NOTE: An execution control language (ECL) reference to the system pool requires $S to be used as
the pool name.

B - Batch pool
The B pool type can only be specified once on a separate MEMPOOL configuration directive; if
a second occurs, an error is generated (see "Configuration Load Management Error Messages,"
Section 5).
With the B pool type, it is not necessary to assign a pool name; if one is assigned, it is ignored.

~ull(no-l
entry

Represent the pool types for format 2 and are defined as follows:

E - One or more exclusive pools

The E pool type is on}.y specified once on a separate MEMPOOL configuration directive.
Multiple definition of only the pool name, size and, optionally, X or null (no entry) parameters
indicates each additional exclusive pool being defined which, in total, constitute a pool set.
If more than one exclusive pool is specified in the same directive, the additional exclusive pools
occupy contiguous physical memory areas.

null - Nonexclusive (i.e., shareable) pools

size -

The null (or no entry) parameter is only specified once per MEMPOOL configuration directive.
However, more than one MEMPOOL configuration directive can be used. Multiple definition of
only the pool name, size and, optionally, X or null parameters indicates each additional
nonexclusive pool which, in total, constitute a pool set.

Multiple nonexclusive pool sets, on multiple MEMPOOL configuration directives, establish
alternative (i.e., overlapping) definitions of the same physical memory area.

Represents the pool size used in both formats I and 2 and is defined as follows:
Is either a positive integer representing the size (in number of 16-bit words) of the pool or an
asterisk (*) character. Pool sizes are rounded up to the next mUltiple of 32.
If an asterisk (*) character is used, the length of the pool is extended either to the beginning of
high memory or the batch pool area (if it has been defined). There can be no additional pools in
the pool set, otherwise an error is generated (see· "Configuration Load Management Error
Messages," Section 5). Furthermore, the asterisk (*) character cannot be used with either the B
(batch) or S (system) pool types.

The following parameters are only used in format 2 and are defined as follows:

pool name-
Is a two-character ASCII pool name indicating a particular memory pool. This name is· the one
used in either a subsequent CG (Create Group) OCL or ECL command. If the pool name begins
with a decimal digit, the pool name parameter must be surrounded by an apostrophe (e.g., '1 A',
not lA).

[I ~:1l n
X indicates the batch pool is to be rolled out of memory, if a task running in the memory pool has
insufficient memory, resulting in a logical extension of the pool to which this parameter is being
applied.

null (no entry) indicates a pool cannot logically extend into the batch pool area.

SYSTEM STARTUP AND CONFIGURATION 2-20 AX07

MEMORY POOL DIRECTIVE

FUNCTION DESCRIPTION:
When the MEMPOOL configuration directive is interpreted, a pool descriptor list is created. Then,
after memory requirements for the operating system and its extensions are known, each pool set is
checked to determine if it is too large to be contained in the remaining available memory pool area. If
the pool sets can be contained in the available pool area, a pool descriptor is created for each member
of the pool set; if the pool sets are too large, an error is generated (see "Configuration Load
Management Error Messages," Section 5).

The following four examples of the MEMPOOL configuration directive show the following:

Example 1:
MEMPOOL S,,4096

In this example, a system memory pool is defined having a pool size containing 4096 1 0 16-bit words.
Because a system pool is being defined, it is not necessary to designate a pool name.

Example 2:
MEMPOOL B" 12736

In this example, a batch pool is defined having a pool size containing 1273610 16-bit words. Because
a batch pool is being defined, it is not necessary to designate a pool name.

Example 3:
MEMPOOL E,AB,2048"CD, I 024,X

In this example, two exclusive pools are being defined in the online pool area. The first exclusive pool
has a pool name AB and a pool size containing 2048 1 0 16-bit words; it cannot extend into the batch
pool area (i.e., parameter 4 is null). The second exclusive pool has a pool name CD' a pool size
containing 102410 16-bit words, and may extend into batch pool area (Le., parameter 7 is X).

Example 4:

MEMPOOL ,XY,512"UV,*

MEMPOOL ,WX,*,X

In this example, two sets of nonexclusive pools (i.e., parameter 1 is null in each directive) are defined.
Because these two sets are nonexclusive, pools XY and UV may be overlapped by pool WX or vice
versa; any contention for space is resolved by the system. Pool XY has a size of 5121 0 16-bit words
and cannot extend into the batch pool area (i.e., parameter 4 in the first MEMPOOL directive is null).
Pool UV has a size that extends from the end of pool XY to either the beginning of the batch pool
area (i.e., the asterisk (*) parameter), if defined, or high memory; it cannot extend into the batch
pool area (i.e., parameter 7 is missing). Pool WX utilizes all the area beginning at the end of pool CD
(i.e., the last exclusive pool defined in example 3) to either the beginning of the batch pool area, if
defined, or high memory; it may extend into the batch pool area (i.e., parameter 4 is X indicating
rollout).
Combining the five pool sets in these examples, the following memory pool layout would occur.

SYSTEM STARTUP AND CONFIGURATION 2-21 AX07

MEMORY POOL DIRECTIVE

High
Memory

I
------~T~----~A~--~Tr--AA---VT--J/~~~------y----~/~~----~T~--~J

System Pool Pool Pool Pool Pool Batch Pool
Area AB CD XY UV Area

Exclusive Pool
Area

RESIDENT OVERLAY DIRECTIVE

Directive Name: RESOLA

A

y

Pool WX

or
Nonexclusive Pool Area

The RESOLA configuration directive can be used to define only monitor and input/output overlays
to be permanently resident in memory for the duration of the configured system.

FORMAT:
RESOLA overlay name [,overlay name] ...

PARAMETER DESCRIPTION:
overlay name-

Consists of up to six alphanumeric characters indicating the name of the system overlay; the first
character must be alpha. Additional overlay names can be specified in the same RESOLA
configuration directive.

NOTE: See Table 2-9 for the names of the system overlays which can be defined as permanently
resident through use of the RESOLA configuration directive.

FUNCTION DESCRIPTION:
When using the RESOLA configuration directive, the system symbol table is searched for the
symbolic overlay name. If the overlay name is not found, an error is generated (see "Configuration
Load Management Error Messages," Section 5).
During the loading phase of the Configuration Load Manager (CLM), the specified system overlay is
loaded; this procedure is repeated for each overlay name in the RESOLA configuration directive line.
Any error causes an overlay name to be ignored; however, other names in the directive line are
processed.

Example:
RESOLA OUERS,OXW ATL,ZYOV 12,ZYOV23

In this example, system overlays OUERS,OXWATL,ZYOV 12 and ZYOV23 will be added to the
resident overlay list and are loaded during the loading phase of the CLM.

SYSTEM STARTUP AND CONFIGURATION 2-22 AX07

MEMORY POOL DIRECTIVE

TABLE 2-9. SYSTEM OVERLA YS

Overlay Name
Executive Services

OXPCL
OXCTSK

OXDTSK

OXCGRP

OXCGCT

OXRQGP

OXGRQS

OXGRQT

OXDLGP

OXCDRV

OUERS

OXC XD

OXC_IT

OXSIOI

OXSI02

OIOIMO

OIOIMI

OIOIM2

OIOIM3

OIOIM4

OXAVRI

OXGSSP

OXGACT

OXTRAP

OXWATL

File Management Services
(Disk and Unit Record)

ZYOVO

ZYOVI

ZYOV2

ZYOV3

ZYOV4

ZYOVS

ZYOV6

ZYOV7

ZYOV8

ZYOV9

ZYOVIO

ZYOVll

ZYOV12

ZYOV13

SYSTEM STARTUP AND CONFIGURATION

Description

Process command line

Create and spawn task

Delete task

Create and spawn group

Create and spawn group

Request and spawn group

Start group request

Terminate group request

Delete and abort group (and abort group request)

Create driver

Error reporter

Convert internal to external date/time

Convert external to internal date/time

Standard I/O (new user, COMMAND_IN)

Standard I/O (new user , USER_OUT)

OIM input processor

OIM command processor (output completion)

OIM output control

OIM diagnostics

Abort group request OIM purge

Automatic volume recognition·

Group suspend (rollout phase 1)

Group activate (rollout phase 2)

Connect user trap handler, enable, disable, user traps

Wait list processing

Associa te-/ dissocia te-me

Close-fue (sequential, relative and indexed)

Close-me (nondisk and nontape)

Crea te-/ release-directory

Create-/release-file

Allocate extent (part 1)

Allocate extent (part 2)

Create-fue (build directory entries)

Create-file (check for me already in existence)

Create-fue (delete directory entries for indexed data fue)

Create-fue (temporary file)

Create-file (calculate extent information for indexed file)

Change-working-directory

Get-me-information

2-23 AX07

MEMORY POOL DIRECTIVE

TABLE 2-9 (CONT). SYSTEM OVERLAYS

Overlay Name
-

ZYOV14

ZYOV15

ZYOV16

ZYOV17

ZYOV18

ZYOV19

ZYOV20

ZYOV21
ZYOV22

ZYOV23

ZYOV24

ZYOV25

ZYOV26

ZYOV27

OYVMNT

ZYOV28

ZYOV29

ZYOV30

Relative Files Data
Management

ZYOV40

ZYOV41

Sequential Files Data Management

ZYOV50

Indexed Files Data
Management

ZYOV60

ZYOV61

ZYOV62

ZYOV63

ZYOV64

ZYOV65

ZYOV66

ZYOV67

ZYOV68

ZYOV69

ZYOV70

ZYOV71

SYSTEM STARTUP AND CONFIGURATION

Description
Get-file

Get/create FCB (file control block)

Get/create FDB (file descriptor block)

Get RXB (remote extent block)

Initialize FDB

Open-file (all files except tape)
Open-fIle (access method open for sequential, relative and indexed)

Open-fIle (Access method open for device ftles)

Deallocate ftle extents

Remove-file (remove FCB)

Remove-fue (remove FCB)

Rename-ftle

Volume level access

Volume mount request (disk/diskette)

Volume mount routine (disk/diskette)

Volume mount message handler

Expand pathname and get working directory

I/O error processing

Fixed-relative (delete, read, rewrite, write)

Unified relative (delete, read, rewrite, write)

Delete-record

Rewrite-record

Position functions

Delete-record

Read-record

Rewri te-reco rd

Write-record (insert)

Write-record (load mode)

Oose-file (build index if load mode)

Describe general overflow (create inventory entries)

Update inventory

Search overflow (insert)

Search index

Indexed fue common subroutines

Update index (load mode)

2-24 AX07

MEMORY POOL DIRECTIVE / SYSTEM DEFINITION DIRECTIVE

TABLE 2-9 (CONT). SYSTEM OVERLAYS

Overlay Name Description

BES Accommodation File and
Data Management

ZYOV80 Establish attributes (get-file)

ZYOV81 Create file

ZYOV82 Temporary fIle creation

ZYOV83 File maintenance

ZYOV84 Open

ZYOV85 Positioning

ZYOV86 Read record

ZYOV87 Rename

ZYOV88 Set fIle status (R7)

ZYOV89 Write record

ZYOV8A MCL interface

Tape Files Storage
Management

ZYOV90 Tape storage management (positioning functions)

ZYOV91 Tape fIle (open)

ZYOV92 Tape fIle (close)

ZYOV93 Read tape

ZYOV94 Write tape

ZYOV95 Input processing mode

ZYOV96 Output processing mode

ZYOV97 Label processing (output)

ZYOV98 Conversion utility routine

ZYOV99 Interface routine and storage manager

ZYOV9A Label processing (input)

Tape Volume Mount

ZYOV9B Volume mount/dismount routine

ZYOV9C Volume mount/dismount request

SYSTEM DEFINITION DIRECTIVE

Directive Name: SYS
The SYS configuration directive defines system variables.

FORMAT:

S VS [Hz],[scan-cycle], [{~~~l~} J ' [alan),(tsa], [irb 1

SYSTEM STARTUP AND CONFIGURATION 2-25 AX07

SYSTEM DEFINITION DIRECTIVE

PARAMETER DESCRIPTION:

[Hz]
Specifies the line frequency used to drive the system clock. Possible values are 60 (for 60 Hz) or 50
(for 50 Hz). The default value is 60 Hz (i.e., the U.S. standard).

[scan-cycle]
Specifies the time, in milliseconds, between periodic real-time clock-generated interrupts. The default
value is milliseconds.
The following lists show the possible values of the scan-cycle for both line frequencies:

5(}Hz Line
(milliseconds)

10
20
50

100

60-Hz Line
(milliseconds)

8
16
25
33
50

100

Since the system clock is activated to service executive timer requests after each scan-cycle, the
scan-cycle should be carefully chosen to minimize the Clock Manager interrupt service overhead
while providing the timer request resolution the application requires.

Note: System clock resolution is accurate to ± one scan cycle.

Specify usage of single- and double-precision scientific instruction in an application. These
instructions are interpreted by either a software or hardware scientific instruction processor which
processes either single-precision (SSIP) or double-precision (DSIP) instructions.
When either (or both) the hardware or software scientific instruction processors are available, the
following occurs:

o If the hardware scientific instruction processor is not available, a software scientific instruction
processor (i.e., simulator) is loaded to process the scientific instructions.

o If the hardware scientific instruction processor is available the scientific instructions trap to the
hardware processor and a software processor (i.e., simulator), is not made available.

SSIP
Indicates single-precision scientific instructions to be processed.

NOTE: Only single-precision is BES2 compatible.

DSIP
Indicates double-precision scientific instructions are to be processed.

NOTE: Usage with MDT only.

SYSTEM STARTUP AND CONFIGURATION 2-26 AX07

SYSTEM DEFINITION DIRECTIVE

null

[olan]

Indicates either no scientific instructions are present or, if present, they will be processed by
the hardware scientific instruction processor if available at the user installation.

The length of the task control block (TCB) is modified by the length of the interrupt save area
(lSA) being modified by usage of either the SSIP, DSIP or null (no entry) parameters as shown
in Table 2-10.

Specifies the number of 256-word overlay areas to be created. olan is an integer from 1 to 10. The
default value is I indicating one overlay area for the system.

[tsa]
Specifies the number of additional Trap Save Areas (TSAs) to be configured. The size of each
additional TSA is the same as those already defined for the operating system. The default number
of TSAs for the operating system is 12.

[irb]
Specifies the desired number of additional intermediate request blocks. The def~lUlt number of
IRBs for the operating system is 20.

TABLE 2-10. ISA MODIFICATION BASED ON USAGE OF SCIENTIFIC INSTRUCTIONS

~ Model 6/30 Model 6/40 Model 6/40
Software (without SIP) (without SIP) (with SIP)

null (no entry) ISA ends inclusive of register ISA ends inclusive of registers ISA ends inclusive of registers
MI. TCB (including ISA) is 64 Ml, M2 through M7, and the Ml, M2 through M7, and the
words. stack register. rCB (including stack register. rCB (including

ISA) is 64 words. ISA) is 64 words.

SSIP ISA ends inclusive of register ISA ends inclusive of registers ISA ends inclusive of registers
Ml. rCB (including ISA) is 64 Ml, M2 thorugh M7, and the Ml, M2 through M7, stack
words. stack register. rCB (including register, and the SIP context.

ISA) is 64 words. TCB (including ISA) is 96
words.

DSIP ISA ends inclusive of registers ISA ends inclusive of registers ISA ends inclusive of registers
Ml, M2 through M7, stack Ml, M2 through M7, stack M 1, M2 through M7, stack
register and the SIP context. register, and the SIP context. register, and SIP context.
TCB (including ISA) is 96 TCB (including ISA) is 96 rCB (including ISA) is 96
words. words. words.

NOTES: 1. The length of the registers shown in this table is:

a. Ml (one word)
b. M2 through M7 (six words)
c. Stack register (one word)
d. SIP context (13 words)

2. The TCB (task control block) has a base length of 50 words. The length of the registers (terminating the
ISA) shown in note 1 is added to the base length of the TCB to produce a total size for the TCB of either
64 words or 96 words; in each case, the total size for the TCB is produced from rounding up the sum
(produced by the previous addition) by increments of 32 (Le., 32 + 32 = 64 + 32 = 96).
Example:
Assumed (from Table 2-10): No SIP, Model 6/30 (without SIP)
Summation: Base = 50 (words)

Register MI = 1 (word)
Rounded: The number 51 (Le., sum) is rounded up to 64

SYSTEM STARTUP AND CONFIGURATION 2-27 AX07

SYSTEM DEFINITION DIRECTIVE / QUIT DIRECTIVE

FUNCTION DESCRIPTION:
The SYS configuration directive is used to define hardware- and/or software-related options to be
included as part of the operating system. If all of the default values are to be chosen, the SYS
configuration directive need not be used. If multiple SYS configuration directives are issued, the last
one is effective. Null parameters in the parameter string indicate default values.

Example:
SYS 50, I O,SSIP

In this example, the following occurs:

o A line frequency of 50 is used.
o A time of 10 milliseconds will elapse between real-time clock-generated interrupts.
o The scientific instruction processor (SSIP) has been specified for single-precision instructions.
o One (i.e., 1) overlay area for the system has been specified by default.
o No additional trap save areas (TSAs) will be obtained.
o No additional intermediate request blocks (lRBs) will be obtained.

QUIT DIRECTIVE

Directive Name: QUIT
The QUIT configuration directive is the last configuration directive in the user input file.

FORMAT
QUIT

PARAMETER DESCRIPTION:
Not applicable

FUNCTION DESCRIPTION:
When this directive is encountered, the CLM stops reading directives from the input file and initiates
the loading phase. As required: any final data structures are created, the communications system is
initialized, bound units are loaded (as defined by LDBU configuration directives), system overlays
become resident (as defined by RESOLA configuration directives), memory pool descriptors are
created (as defined by MEMPOOL configuration directives), and the CLM task terminates.

COMMUNICATIONS CONFIGURATION DIRECTIVES

The communications configuration directives perform the following functions:
.

o Establish data structures (i.e., tables) corresponding to the communications hardware available at
the user's installation

o Load the following bound units into memory:
Communications supervisor and Multiline Communications Processor (MCP) driver
One or more line protocol handlers (i.e., TTY, VIP, BSC, or user-written)

o Load the following into the memories of one or more multiline communications processors:
Data set channel control program
Channel control programs (up to three per MCP) of one or more line protocol handlers
Line control tables

SYSTEM STARTUP AND CONFIGURATION 2-28 AX07

COMMUNICATIONS SYSTEM DIRECTIVE / MODEM DEFINITION DIRECTIVE

COMMUNICATIONS SYSTEM DIRECTIVE

Directive Nalne: COMM
The COMM communications configuration directive is mandatory for systems with communications
and specifies the interrupt priority level for all communications devices. It must precede the following
communications configuration directives: TTY, VIP, BSC, LPHn and STATION.

FORMAT:

COMM interrupt level

PARAMETER DESCRITION:

interruptJevel
Specifies the priority level at which a multiline communications processor (MCP) interrupts the
central processing unit. interrupt level is an integer from 5 to 60; it must be less than the levels
specified for the communications devices in the communications directives which follow the
COMM communications directive.

Example:

COMM 5

In this example, the communications interrupt level is 5.

NOTE: The levels that the communications supervisor uses to process input/output requests to
communications devices are specified in the TTY, VIP, LPHn and BSC communications

directives later in this section.

MODEM DEFINITION DIRECTIVE

Directive Name: MODEM
The MODEM communications configuration directive is used to define a nonstandard modem type.
The information provided in this command is used to test entries in the LCT (line control table) for
the device to verify a connection or disconnection.

FORMAT:
MODEM type-number,connection-AND-mask, connection-XOR-mask,disconnection­
AND-mask,disconnection-XOR-mask,data-set-control

PARAMETER DESCRIPTION:
type-number

An integer from 3 to 15 that is assigned to this modem definition and may then be used in a
communications device directive (i.e., such as, TTY, VIP, BSC, and LPHn directives).

connection-AND-mask
A two-digit hexadecimal number whose value determines which bits (i.e., 0 through 4) of LCT
byte 14 (receive channel data set status) and byte 46 (transmit channel data set status) will be
examined when a connect request is processed.

connection-XOR-mask
A two-digit hexadecimal number whose value specifies which bits (i.e., 0 through 4) of LCT bytes
14 and 46 must be on (i.e., set to 1) for a connection.

SYSTEM STARTUP AND CONFIGURATION 2-29 AX07

MODEM DEFINITION DIRECTIVE

disconnection-AND-mask .
A two-digit hexadecimal number whose value determines which bits (i.e., 0 through 4) of LCT
bytes 14 and 46 will be examined when a disconnect request is processed, or when a4:est for the
occurrence of a disconnect is made. .

disconnection-X 0 R-mask
A two-digit hexadecimal number whose value determines which bits (i.e., 0 through 4) of LCT
bytes 14 and 46 must be on (Le., 12) for a disconnection. (Entries 14 and 46 of the LCT are the
data set status for the receive and transmit channels respectively.)

data-set-control
A two-digit hexadecimal number loaded into byte 20 of the LCT and line register 2'(LR2) of the
communication line adapter (CLA) when a line is to be connected.

NOTES: 1. To test for a successful connection, bytes 14 and 46 of the LCT.are first subjected to a
logical AND operation against the (user-supplied) connection-AND-mask; then a logical
exclusive OR operation is performed on the result of the first operation, against the
(user-supplied) connection-XOR-mask. If the result is zero, a connection has been
established.

2. To test for a disconnection, the same operations are carried out using the analogous
disconnection masks. A zero result indicates a disconnection.

3. The following shows the mask and data set control values for the standard CLM-recognized
modem types:

Modem Type Connection Masks Disconnection Masks Data Set
Type Number AND XOR AND XOR Control

Direct 0 X'80' X'80' X'80' X'OO' X'88'
Connect
Belllxx X'AO' X'AO' X'AO' X'OO' X'80'

Bell 2xx 2 X'80' X'80' X'80' X'OO' X'80'

LTC bytes 14/46 and 20/52 are shown below; see Section 5 of the Series 60 (Level 6) MLCP
Programmer's Reference manual, Order No. AT97 for a detailed description of the bytes.

LCT Byte 14/46:

0 I 1 I 2 I 3 I 4 5 I 6 I 7

DATA SET STATUS COMMUNICATIONS PAC STATUS

~~~&~MfW~OU~ tl~~ONOI.J.S 
DATA SET CLEAR CARRIER RING CHANNEL RECEIVE ERROR 
READY TO SEND DETECTOR INDICATOR RECEIVE RESERVED OVERRUN ------------------

SYNCHRONOUS ~Xt!~I:IRQt!QUS 
TRANSMIT RESERVE!) UNDER RUN 

LCT Byte 20/52: 

0 I 1 I 2 I 3 I 4 5 I 6 I 7 

DATA SET CONTROL COMMUNICATIONS PAC CONTROL 

ASYNC!:IRONOU~ 
ASYNCHRONOUS ASYNCHRONOUS SECONDARY 

DATA CHANNEL TRANSMIT TRANSMit 
LOOP 

TERMINAL REQUEST TRANSMIT SPACE MARK 
BACK RECEIVE TRANSMIT 

READY TO SEND r------- -------- ~------- TEST ON ON 
SYNCHRONOUS ~YNCHRQNQl1~ 

~YNCHRONOUS spEED DIRECT 
NEW SYNC SELECT CONNECT 

SYSTEM STARTUP AND CONFIGURATION 2-30 AX07 



MODEM DEFINITION DIRECTIVE / LINE PROTOCOL HANDLER DEFINITION / 
DIRECTIVE 

Example: 
MODEM 3,X'20' ,X'20' ,X'20' ,X'OO' ,X'88' 

In this example, a modem type requiring only the carrier detector signal for a connection and lack of 
this signal for a disconnection is defined. The actual bit settings (i.e., bits 0 through 4) of LCT bytes 
14/46, resulting from the hexadecimal values of the connection/disconnection AND-mask and 
XOR-mask parameters shown in this example of the MODEM communications directive, are as 
follows: 

Connect-AND-Mask (X'20') 

Bits: 0 1 2 3 4 5 

0 0 1 0 0 0 

Connect-XOR-Mask (X'20') 

Bits: 0 1 2 3 4 5 

I o I o I 1 I o I 0 I 0 I 
Disconnect-AND-Mask (X'20') 

Bits: 0 1 2 3 4 5 

0 0 1 0 0 0 

Disconnect-XO R-Mask (X' 00') 

Bits: 0 1 2 3 4 5 

0 0 0 0 0 0 

LINE PROTOCOL HANDLER DEFINITION DIRECTIVE 

Directive Name: LPHDEF 

6 7 

0 I~ 

6 7 

0 0 J 

6 7 

0 0 

6 7 

0 I 0 ] 

For each (line protocol handler) you write, you can include an LPHDEF communications 
configuration directive to define the sizes of tables used for the channels and stations controlled by 
the line protocol handler. If the LPHDEF directive is not included when you write a line protocol 
handler, then channel table and station table default sizes will be used for channels and stations 
controlled by the line protocol handler (see channel-table-size and station-table-size parameters 
below). 

FORMAT: 
LPHDEF Iph, [channel-table-size] [,station-table-size] 

PARAMETER DESCRIPTION: 

lph 

Consists of a number from 0 to 3 identifying your LPH. An LPH directive (described later in this 
section) may not precede the corresponding LPHDEF directive. 

SYSTEM STARTUP AND CONFIGURATION 2-31 AX07 



LINE PROTOCOL HANDLER DEFINITION DIRECTIVE / BINARY SYNCHRONOUS / 
COMMUNICATIONS DIRECTIVE 

[channel-table-size] 
Specifies the number of words needed for the channel table and the CQBs (communication queue 
blocks). It must have a value of at least 10 words; the default value is 33 words. 

[station-table-size] 
Specifies the number of words needed for this LPH's station table (resource control table). It must 
have a value of at least 10 words; the default value is also 10 words. 

Example: 

LPHDEF 0,X'30' 
LPHO 27,8,X'FD80'",FDX,0 
STATION 28,1 

In this example, line FD80 has two synchrnous full duplex terminals controlled by a user-written line 
protocol handler. Each of the two-channel tables for the line has a size of 30 words as defined by the 
channel-table-size (i.e., X'30') parameter in the LPHDEF communications configuration directive. 

BINARY SYNCHRONOUS COMMUNICATIONS DIRECTIVE 

Directive Name: BSC 
The BSC communications configuration directive identifies each binary synchronous communications 
line included in the system. 

FORMAT: 
BSC Irn,level,X'channel' [,modem] [,primary /secondary] [,character-set] 

PARAMETER DESCRIPTION: 
lrn 

The logical resource number associated with the device. lrn is an integer having a decimal value of 
I through 255. A program may use this number to identify the device when it requests an 
input/output operation to the device. 

level 
The priority level at which the communications supervisor processes requests for an input/output 
operation on the device. level is an integer from 6 to 60; it may be the same as the level specified 
for other communications devices, but it must be greater than the communication interrupt level 
specified in the COMM directive (described earlier in this section). The level specified for one or 
more communications devices may not also be used for noncommunications devices or tasks. 

X'channel' 
Is a four-digit hexadecimal number (from X'0400' to X'FF80') specifying the channel number of 
the device and has the following format: 

Bits 0 through 5-The six-bit number of the MCP on the bus 
Bits 6 through 9-The four-bit even number of the receive channel of one of the eight lines of a 
MCP (multiline communications processor) 
Bits 1 0 through 15 -Are set to zero 

modem 
A number specifying the type of data set. Possible values are: 
0-Direct connect. 

SYSTEM STARTUP AND CONFIGURATION 2-32 AX07 



BINARY SYNCHRONOUS COMMUNICATIONS DIRECTIVE / LINE PROTOCOL / 
HANDLER DIRECTIVE 

I-Bell lxx-type modem (l03A, 113F, etc). Both data-set-ready and carrier-detect signals are 
needed for a connection; lack of both signals is a disconnection . 

. 2-Bell 2xx-type modem (20IA,20IC,208A,etc). The data-set-ready signal is needed for a 
connection; lack of this signal is disconnection. 
3 to 15-User-defined modem type (see MODEM communication configuration directive earlier in 
this section). 

NOTE: The default value is modem type 2. 
primary / secondary 

Values may be specified as P or S; indicates whether this is the primary or secondary endpoint of 
the transmission. A primary endpoint has priority in contention mode. 

character set 
One of the following may be specified: 
AS-ASCII (default) 
EB-EBCDIC 

Example: 
MODEM 3,X'20' ,X'20' ,X'20' ,X'OO' ,X'88' 
BSC 29,6,X'FDOO' ,3,S,EB 
DEVICE BTNH,29,6,X'FDOO',HOST 
DEVICE BTNL,29,6,X'FDOO',HOSTA 

In this example, line FDOO is used for communication with another computer; it uses the modem 
type defined in the MODEM directive. The level 6 computer is the secondary endpoint on the line, 
and two files are defined for the line. 

When the file HOST is closed, the phone can be hung-up. When the file HOSTA is closed, the 
phone is left connected. 

DEVICE configuration directives are used in conjunction with the BSC communications directive 
if the terminal is to be referenced as a file (e.g., in a higher level language). 

LINE PROTOCOL HANDLER DIRECTIVE 

Directive Name: LPHn 

The LPHn directive identifies a communications device driven by a user-written line protocol handler. 

FORMAT: 
LPHn Irn,level,X'channel' [,modeml [,speed] [,FDX/HDXl [,lph-specific-word] 

n-Consists of the integer 0, I, 2, or 3. n matches the first parameter of the LPHDEF communications 
configuration directive used for the line protocol handler which drives the device. 

PARAMETER DESCRIPTION: 
lrn 
The logical resource number associated with the device. lrn is an integer having a value of I 
through 255. A program may use this number to identify the device when it requests an 
input/output operation to the device. 

level 
The priority level at which the communications supervisor processes requests for an input/output 
operation on the device. level is an integer from 6 to 60; it may be the same as the level specified 
for other communications devices, but it must be greater than the communication interrupt level 
specified in the COMM communications configuration directive (described earlier in this section). 

SYSTEM STARTUP AND CONFIGURATION 2-33 AX07 



LINE PROTOCOL HANDLER DIRECTIVE 

The level specified for one or more communications devices may not also be used for 
noncommunications devices or tasks. 

X'channel' 
Is a four-digit hexadecimal number (from X'0400' to X'FF80') specifying the channel number of 
the device and has the following format: 
Bits 0 through 5-The six bit number of the MCP (multiline communications processor) on the 
bus. 
Bits 6 through 9-The four-bit even number of the receive channel of one of the eight lines of a 
MCP. 
Bits 10 through IS-Are set to zero 

[modem] 
A number specifying the type of data set. Possible values are: 
0-Direct connect. 
I-Bell lxx-type modem (l03A,113F,etc). Both data-set-ready and carrier-detect signals are needed 
for a connection; lack of both signals is a disconnection. 
2-Bell 2xx-type modem (20 I A, 201 X, 208A, etc). The data-set-ready signal is needed for a 
connection, lack of this signal is disconnection. 
3 or greater-User-defined modem type (see MODEM communication configuration directive 
earlier in this section). The default value is modem type 2. 

NOTE: If the line is direct connect and asynchronous, modem type 2 must be specified; if the line 
is direct connect and synchronous, specify modem type O. 

[speed] 
The data rate in bits per second. The default value is zero, and signifies a synchronous line. 
For an asynchronous line with a line adaptor whose id has a value of 210816 (i.e., X'21 08'), use 
the following values for speed: 

(default) 

50 
75 

110 
134 
150 

300 
600 
900 

1200 
1800 

2400 
3600 
4800 
7200 
9600 

For an asynchronous line with a line adaptor whose id has a value of 211816 (i.e. X;2II8'), use 
the following values for speed: 

(default) 

50 
75 

110 
134 
150 

200 
300 
600 

1050 
1200 

1800 
2000 
2400 
4800 
9600 

NOTE: If the data rate of the line is 134.5, specify 134. 

[FDX/HDX] 
Specifies whether the line is full- or half-duplex. If it is full-duplex (FDX), two channel tables will 
be assigned. The default value is HDX. 

[I ph-specific-word] 
A word containing user-defined information to be passed to the LPH via the station table at offset 
ZQSSTS. The default is zero. 

SYSTEM STARTUP AND CONFIGURATION 2-34 AX07 



LINE PROTOCOL HANDLER DIRECTIVE / STATION DIRECTIVE 

FUNCTION DESCRIPTION: 
The directive must be included once for each line (i.e., a pair of channels on a multiline 
communications processor (MCP)) on which there are devices driven by the user-written LPH. An 
LDBU directive must be included so that the CLM will load the user-written LPH bound unit and 
execute its initialization code (see "Load Bound Unit Directive", earlier in this section). If the sizes of 
the channel and station tables are different than the default sizes for these tables, then an LPHDEF 
directive must be included before the LPHn directives (see "Line Protocol Handler Definition 
Directive," earlier in this section). 

If there is more than one device on a line which is driven by the user-written LPH, then the additional 
devices on the line may be identified with STATION directives which immediately follow the LPHn 
directive instead of with additional LPHn commands (see "Station Directive," later in this section). 

Example: 

LPHO 27 )8,X'FD80' ",FDX,O 
STATION 28,1 

In this example, line FD80 has two synchronous full duplex terminals controlled by a user-written 
(i.e., through the LPH directive) line protocol handler. 

STATION DIRECTIVE 

Directive Name: STATION 
The STATION communications configuration directive is used to specify additional devices on lines 
controlled by your LPH's (Line Protocol Handlers) that drive multiple devices per line. One device on 
the line must be identified by an LPHn command; additional devices are identified in STATION 
commands, one per device, immediately following their corresponding LPHn commands. For 
additional (polled) VIPs on a line, use additional VIP directives with the same channel number rather 
than STATION directives. 

FORMAT: 

ST A TI ON lrn [,lph-specific-word] 

PARAMETER DESCRIPTION: 

1m 
The logical resource number associated with the device. lrn is an integer having a decimal value of 
o through 255. A program may use this number to identify the device when it requests an 
input/output operation to the device. 

[lph-specific-word] 
Specifies a word containing information you've defined which is to be passed to the LPH via the 
station table at offset ZQSSTS. The default is O. 

NOTE: The priority level, channel number, modem type, line speed, and line procedure (FDX/HDX) 
of devices described in STATION directives, are obtained from the LPHn directive which 
precedes the ST A TI ON directive (see "Line Protocol Handler Directive," earlier in this 
section). 

SYSTEM STARTUP AND CONFIGURATION 2-35 AX07 



TELEPRINTER DEVICE DIRECTIVE 

TELEPRINTER DEVICE DIRECTIVE 

Directive Name: TTY 
The TTY communications configuration directive indentifies each teleprinter device. 

FORMAT: 
TTY lrn,level,X'channel' [,modeml [,speed] 

PARAMETER DESCRIPTION: 
lrn 

The logical resource number associated with the device. lrn is an integer having a decimal value of 
1 through 255. A program may use this number to identify the device when it requests an 
input/output operation to the device. 

level 
The priority level at which the communications supervisor processes requests for an input/output 
operation on the device. level is an integer from 6 to 60; it may be the same as the level specified 
for other communications devices, but it must be greater than the communication interrupt level 
specified in the COMM communications configuration directive (described earlier in this section). 
The level specified for one or more communications devices may not also be used for 
noncommunications devices or tasks. 

X'channel' 
Is a four-digit hexadecimal number (from X'0400' to X'FF80') specifying the channel number of 
the device and has the following format: 
Bits 0 through 5-The six-bit number of the MCP (multiline communications processor) on the 
bus. 
Bits 6 through 9-The four-bit even number of the receive channel of one of the eight lines of a 
MCP 
Bits 10 through IS-Are set to zero. 

[modem] 
A number specifying the type of data set. Possible values are: 
0-Direct connect. 
I-Bell lxx-type modem (103A,113F,etc): Both data-set-ready and carrier-detect signals are needed 
for a connection; lack of both signals is a disconnection. 
2-Bell 2xx-type modem (201A,201X,208A,etc). The data-set-ready signal is needed for a 
connection; lack of this signal is disconnection. 
3 or greater-User-defined modem type (see MODEM communication configuration directive 
earlier in this section). 

NOTE: The default value is modem type 1. 

[speed] 
The data rate in bits per second. For an asynchronous line with a line adapter whose id has a value 
of 210816 (i.e., X'21 08'), use the following values for speed: 

(default) 

50 
75 

110 
134 
150 

300 
600 
900 

1200 
1800 

2400 
3600 
4800 
7200 
9600 

SYSTEM STARTUP AND CONFIGURATION 2-36 AX07 



TELEPRINTER DEVICE DIRECTIVE / VIP DEVICE DIRECTIVE 

For an asynchronous line with a line adapter whose id has a value of either 2110 16 (i.e., X'211 0') 
or 211S 1 6 (i.e., X'211S'), use the following values for speed: 

(default) 

50 
75 

110 
134 
150 

200 
300 
600 

1050 
1200 

IS00 
2000 
2400 
4S00 
9600 

NOTE: If the date rate of the line is 134.5, specify 134. 

Examples: 
A DEVICE configuration directive must be used in conjunction with each TTY communications 
directive if the terminal is to be referenced as a file (e.g., in a higher level language). 

Example 1: 
TTY 21,S,X'FFSO' 
DEVICE TBCH,21 ,S,X'FFSO' ,TTY 1 

In this example, the TTY terminal is connected by a Bell lxx-type modern and operates at 110 bits 
per second. Default values specifying the modem and speed have been chosen. 

Example 2: 
TTY 22,S,X'FFOO',2,1200 
DEVICE TBCH,22,S,X'FFOO',TTY2,119 

In this example, the TTY terminal is connected by a Bell 2xx-type modem and operates at 1200 bits 
per second. Both values specifying the modem and speed have been specifically defined. 

NOTE: Read/write data bytes (including a control byte) to the TTY terminal can have a length of up 
to 119 bytes instead of 72 bytes. 

VIP DEVICE DIRECTIVE 

Directive Name: VIP 
The VIP communications configuration directive identifies each visual information projection (VIP) 
device. 

FORMAT: 

V I P 1rn,1('vPi,X 'channel' \,modem ll,poll_address] [, {~} ] 

I ,ROP _lrn II ,ROP_type Il,ROP _form_feed1 

PARAMETER DESCRIPTION: 
lrn 

The logical resource number associated with the device. lrn is an integer having a value of 1 
through 255. A program may use this number to identify the device when it requests an 
input/output operation to the device. 

SYSTEM STARTUP AND CONFIGURATION 2-37 AX07 



VIP DEVICE DIRECTIVE 

level 
The priority level at which the communications supervisor processes requests for an input/output 
operation on the device. level is an integer from 6 to 60; it may be the same as the level specified 
for other communications devices, but it must be greater than the communication interrupt level 
specified in the COMM communications configuration directive (described earlier in this section). 
The level specified for one or more communications devices may not also be used for 
noncommunications devices or tasks. 

X'channel' 
Is a four-digit hexadecimal number (from X'0400' to X'FFSO') specifying the channel number of 
the device and has the following format: 
Bits 0 through 5-The six-bit number of the MCP (multiline communications processor) on the bus 
Bits 6 through 9-The four-bit even number of the receive channel of one of the eight lines of a 
MCP 
Bits I 0 through 15 - Are set to zero 

[modem] 
A number specifying the type of data set. Possible values are: 
0-Direct connect. 
I-Bell lxx-type when (1 03A, 113F ,etc). Both data-set-ready and carrier-detect signals are needed 
for a connection; lack of both signals is a disconnection. 
2-Bell 2xx-type modem (20IA,20IX,208A,etc). The data-set-ready signal is needed for a 
connection; lack of this signal is disconnection. 
3 or greater-User-defined modem type (see MODEM communication configuration directive 
earlier in this section). The default is c~ded type 2. 

[poll2-ddress] 
Specifies the address of the VIP controller on the line specified by the X'channel' parameter. 
polt,E.ddress is an integer having a value of 0 through 31. If no polling address is specified, no 
polling occurs on the channel; in this case, only one VIP controller can be on the line. 

[{ i l] 
C specifies normal VIP processing. T specifies File Transmission is to be used on this channel. The 
default for either C or T is a value of C. 

[rop-1rn ] 
Specifies the logical resource number of a receive-only printer connected to the VIP controller. lrn 
is an integer having a decimal value of 0 through 255. The default is no receive-only printer is 
connected to the VIP controller; in this case, the rop_type and rop_form feed parameters 
(which follow) must be omitted. 

[rop_type] 
Specifies the following TTY or Terminet model numbers having a receive-only printer. 
Terminets: 
TNI00 
TNl50 
TN300 
TN1200 

TTYS: 
TTY33 
TTY35 

The default assignment is a TN300. 

SYSTEM STARTUP AND CONFIGURATION 2-38 AX07 



VIP DEVICE DIRECTIVE 

[ rap_form _feed] 
Specifies whether or not the receive-only printer has a form feed option. 

{;gRM} 
Indicates receive-only printer will have a form-feed option. 

{~gFORM} 
Indicates receive-only printer will not not a form-feed option. 

The default is Terminets have a form-feed option and TTY's do not have a form-feed option. 

NOTE: For VIP lines that have more than one terminal (i.e., polling is required): (1) a VIP directive 
is required for each terminal on the line, (2) the VIP directives must be grouped together and 
(3) the logical resource numbers (LRNs) for each terminal should be in sequential order. 

In the following three examples, three VIP terminals are connected by Bell 2xx-type modems. Default 
values specifying the modems have been chosen. The DEVICE configuration directive must be used in 
conjunction with the VIP directive if the terminal is to be referenced as a file (e.g., in a higher level 
language). The first two examples show VIP terminal on the same line (i.e., channel FE80). 

Example I; 
VIP 23,8,X'FE80',,0 
DEVICE VBCHOO, 23,8,X'FE80', VIPO 

In this example, the VIP terminal has a poll address of O. 

Example 2: 
VIP 24,8,X'FE80'" I ,,25,TN 1200,FORM 

DEVICE VBCHO I, 24,8,X'FE80', VIP I 
DEVICE RTNH,25 ,8,X'FE80' ,ROP! 

In this example, the VIP terminal has a poll address of 1. In addition to a screen, the VIP terminal has 
a TermiNet 1200 (with form feed) and is attached as a receive-only printer. The VIP screen has a 
logical resource number 24 and the receive-only printer has a logical resource number 25. 

Example 3: 
VIP 26,6,X'FEOO'",T 

In this example, line FEOO is used for file transmission with a Level 66 computer. As the Level 6 
computer is a tributary station on the line, the Level 66 computer sends the first quiescent (Q) frame. 
The VIP line protocol handler does not poll the line. Since the line is used only by the file 
transmission program, and the file transmission program does not access the line as a file, no file is 
defined (i.e., through use of a DEVICE configuration directive) for the line. 

NOTE: For VIP lines that have more than one terminal (i.e., polling is required): (1) a VIP directive 
is required for each terminal on the line, and (2) the VIP directives must be grouped together. 
It is also recommended that the logical resource numbers of VIP terminals on the same line 
be in order. 

SYSTEM STARTUP AND CONFIGURATION 2-39 AX07 





SECTION 3 

OPERATOR CONTROL 
LANGUAGE 

This section describes the elements of the operator control language (OCL), by which the system 
operator exercises control over the MDT operating system. For the purpose of this section the system 
operator is defined as any person who communicates with the operating system through the terminal 
device designated as logical resource number zero (LRN 0) at system configuration. The LRN 0 device is 
known as the operator terminal. 

COMMANDS 

OCL commands are read and interpreted by a system software component known as the OCL 
processor, which executes as the lead task in the system task group. Each command causes a task to be 
spawned within the system task group to perform the requested function (e.g., create an online task 
group, enter a group request, abort a group). When the execution of a command terminates, control is 
returned to the OCL processor, which is then capable of accepting another command. 

Command Line Format 
A command line to the OCL processor is a string of up to 127 ASCII characters whose general form is 

where argl is the simple pathname of the bound unit that performs the command's function. It is the 
character string defined in the "Command Name" entry in each of the command descriptions in this 
section. Each subsequent arg entry is a parameter or control argument. The functions of parameters and 
control arguments are described in the following paragraphs. 

Parameters 
A parameter is an operator-supplied character string which supplies a value for some command 

variable, such as the pathname of a file on which action is to be taken by a command, the identification 
of a task or task group, or the pathname of an input file required by a command. Parameters are 
positional in a command line, that is, their positions in the line indicate which variables the values are 
being supplied to. Some commands require no parameters; others accept one or more as indicated in the 
syntax in the individual command descriptions. In a few commands, a parameter may be optional, as 
indicated by its being enclosed in brackets, thus: [path]. 

Control Argu ents 
A control rgument is used to specify some option applicable to a command, such as the pathname of 

an alternate i put or output file. Control arguments are differentiated from parameters by the presence 
of a keyword, which is a fixed-form character string preceded by a hyphen, thus: -ECL. A keyword may 
be followed b a user-supplied value, as -IN path. 

Control ar uments, when included in a command syntax, are collectively represented by the term 
ctl_arg, and he parameter descriptions define the individual keywords applicable to the command. 
Unless other . se noted, keywords are optional and can appear in any order in the command line. If all 
keywords are:t ptional in a given command, the ctl_arg term is enclosed in brackets in the syntax 
definition; if n argument is required, the requirement is noted in the individual keyword description and 
the ctl_arg te is not enclosed in brackets. 

Spaces in Co mand Lines 
Arguments in command lines are separated from each other by spaces. Unless otherwise indicated, 

wherever a sp ce appears in a command line syntax, it represents one or more space characters, or one or 
more horizo al tab characters, or any combination of these. Spaces can be embedded within an 

OPERATOR CO TROL LANGUAGE 3-1 AX07 



argument by enclosing the argument in apostrophes (') or double quote characters ("). If the enclosing 
character is also required within the argument, it is represented by two successive characters, thus: 
"NAME = " "SMITH" " AREA 203". 

STANDARD OCL PROCESSOR FILES 

Four files are always associated with the OCL processor. These are: 

o Command Input file (COMMAND_IN) 
o User Input file (USER_IN) 
o Operator Output file (OPERATOR_OUT) 
o Error Output file (ERROR_OUT) 

The functions and characteristics of these files are described in the following paragraphs. 

Command Input File 
The command input file for the OCL processor is the file from which OCL command lines are read. 

More specifically, it is the device designated as the operator tenninal (the LRN 0 device established at 
system configuration). It can at times, however, be assigned temporarily to another device or file as 
during the execution of the EC command. At the termination of execution of this command, the 
command input file reverts to the operator terminal. 

User Input File 
The user input file is the file from which a command function, during its execution, reads its own 

input. At the conclusion of OCL processor initialization, and as long as no alternate user input file is 
specified as a command parameter, the user input file remains the same as the command input file. At 
the termination of a command which names an alternate user input file, the user input file reverts to its 
initial assignment. 

Operator Output File 
The operator output file is the file to which a command function writes its output. At the conclusion 

of OCL processor initialization, and as long as no alternate operator output file has been specified, the 
operator output file is the device designated as the operator tenninal at system configuration. 

The operator output file can be directed to another device through the use of the FILE OUT 
command. It remains assigned to this device until another FILE OUT command is processed, at which 
time it can be directed to yet another device, or back to the operator terminal, at the system operator's 
discretion. 

Error Output File 
The error output file is the file to which the OCL processor and any commands invoked by it writes 

information related to error conditions detected by it. The error output file is always the operator 
terminal; it cannot be reassigned by any OCL command or command parameter. 

OCL COMMAND FORMATS AND DESCRIPTIONS 

The remainder of this section comprises complete descriptions of the formats, parameters, control 
arguments, and functions of the operator control language commands. In cases in which the command 
formats are non-trivial, one or more illustrative examples are also given. 

The command descriptions given on the following pages are arranged in alphabetic order to facilitate 
references to specific commands. A summary list of the commands, grouped by functional categories, is 
given below. 

Task Group Creation and Deletion Commands 

Function Name 

Abort Batch Task Group 
Abort Online Task Group 

OPERATOR CONTROL LANGUAGE 3-2 

Command Name 

ABORT_BATCH 
ABORT_GROUP 

AX07 



Function Name 

Create Batch Task Group 
Create Online Task Group 
Delete Batch Task Group 
Delete Online Task Group 
Spawn Online Task Group 

Task Group Execution Commands 

Function Name 

Abort Batch Request 
Abort Group Request 
Activate Batch Task Group 
Activate Online Task Group 
Enter Batch Request 
Enter Group Request 
Execution Command 
Suspend Batch Task Group 
Suspend Online Task Group 

File and Directory Control Commands 

Function Name 

Change System Directory 
Change Working Directory 
File Out 
List Search Rules 
List Working Directory 
Modify File 
Reassign 

System and Status Commands 

Function Name 

Modify External Switches 
Ready Off 
Ready On 
Set Date 
Status Group 
Status System 

Command Name: ABORT_BATCH 

Command Name 

CB 
CG 
DB 
DG 
SG 

Command Name 

ABR 
AGR 
ACTB 
ACTG 
EBR 
EGR 
EC 
SSPB 
SSPG 

Command Name 

CSD 
CWD 
FO 
LSR 
LWD 
MF 
RAS 

Command Name 

MSW 
RDF 
RDN 
SD 
STG 
STS 

Suspend the batch task group and terminate it. 

Format: 
ABORT_BATCH 

Parameter Description: 
No parameters are required or permitted with this command. 

OPERATOR CONTROL LANGUAGE 3-3 

ABORT-.BATCH 

AX07 



ABOR~BATCH / ABORT_BATCH REQUEST / ABORT_GROUP 

Function Description: 
The ABORT BATCH command causes the suspension and termination of the batch task group, 
whether it is active or dormant. It removes all of the data structures which defme and control the 
execution of the task group, and returns all memory used by the group to the batch memory pool. 
Any files that may have been open during the execution of the task group are closed. Any requests 
pending against the batch task group are cancelled. 
The action of the ABORT BATCH command is similar to the DELETE BATCH command, the 
difference being that the latter must wait until the task group becomes dormant, while the former 
takes effect as soon as all outstanding input or output orders are complete. 

ABORT BATCH REQUEST 

Command Name: ABR 
Terminate the execution of the current batch request. 

Format: 
ABR 

Parameter Description: 
No parameters are required or permitted with this command. 

Function Description: 
The ABORT BATCH REQUEST command causes the cessation of execution of the current request in 
the batch task group. It removes all defining and controlling data structures except those associated 
with the execution control language (EeL) processor, and returns all associated memory to the batch 
memory pool. Any files that are open and in use by the batch task group are closed. At the 
conclusion of execution of the ABR command, the ECL processor honors the next request in the 
batch request queue, if any. 

ABORT GROUP 

Command Name: ABORT GROUP 
Suspend the indicated online task group and terminate it. 

Format: 

Parameter Description: 
id 

ABORT_GROUP id 

The group identification of a task group previously created by a CG or SG command specifying 
the same id. 

Function Description: 
The ABORT GROUP command causes the suspension and termination of an existing online task 
group whether it is active or dormant. It removes all of the data structures which define and control 
the execution of the task group, and returns all memory used by the group to the appropriate 
memory pool. Any files that may have been open during the execution of the task group are closed. 
Any requests that may be pending against the group are cancelled. The action of the ABORT GROUP 
command is similar to the DELETE GROUP command, the difference being that the latter must wait 
until the task group becomes dormant, while the former takes effect as soon as all outstanding input 
or output orders are complete. 

OPERATOR CONTROL LANGUAGE 3-4 AX07 



ABORT_GROUP / ABORT_GROUP REQUEST / ACTIVATE BATCH 

Example: 

A task group identified as AX is terminated. 

ABORT GROUP REQUEST 

Command Name: AGR 
Terminate the execution of the current request in the indicated task group. 

Format: 

Parameter Description: 
id 

AGRid 

The group identification of a task group previously created by a CG or SG command specifying 
the same id. 

Function Description: 
The ABORT GROUP REQUEST command causes the cessation of execution of the current request in 
the indicated task group. It removes all defining and controlling data structures except those 
associated with the lead task (as defined by the CG or SG command specifying this id) and returns 
associated memory to the appropriate memory pool. Any files that are open and in use by this task 
group are closed. At the conclusion of execution of the AGR command, the lead task processes the 
next request against this group, if any. 

Example: 
AGRAX 

Execution of a request against a task group identified as AX is terminated. Upon termination of this 
request, the next request in this task group's request queue is executed. 

ACTIVATE BATCH 

Command Name: ACTB 
Resume execution of the batch task group, which was previously suspended. 

Format: 
ACTB 

Parameter Description: 
No parameters are required or permitted with this command. 

Function Description: 
The ACTIVATE BATCH command causes the resumption of execution of any tasks that were active 
at the time a SUSPEND BATCH command was issued. All taskswhich had been active at the time of 
suspension are requeued on their respective level queues. 
Resumption of execution of the task group presupposes that the group has not been rolled out during 
the time it was suspended; if it was, execution resumes when the group is rolled in again; i.e., when 
one or more online task groups return memory to the batch memory pool. 

OPERATOR CONTROL LANGUAGE 3-5 AX07 



ACTIVATE GROUP / CHANGE SYSTEM DIRECTORY 

ACTIV ATE GROUP 

Command Name: ACTG 
Resume execution of a previously suspended online task group. 

Format: 

Parameter Description: 
id 

ACTG id 

The name of ~ task group previously suspended which is to be reactivated. 

Function Description: 
The ACTIVATE GROUP command causes the resumption of execution of any tasks that were active 
at the time aSUSPEND GROUP command with the same group id was issued. All tasks that had been 
active at the time of suspension are requeued on their respective level queues. 

Example: 
ACTGAX 

The task group identified as AX, previously suspended, is to be returned to the active state. 

CHANGE SYSTEM DIRECTORY 

Command Name: CSD 
Define a new pathname for one of the system directories. 

Format: 

Parameter Description: 
[path] 

CSD [path] [ctl_arg] 

The pathname of the new system directory. If this parameter is omitted, the pathname >SYSLIB 1 
is assumed. 

[ctLJug] 
Only one control argument is recognized, and is described below. 

-LIBx 
The name of the system directory that is to be changed to the new pathname. Possible values 
are LIB! and LIB2. If not speciifed, the default is LIBI. 

Function Description: 
The CHANGE SYSTEM DIRECTORY command gives the system operator the ability to change the 
pathname of one of the two directories that the system uses in its search for bound units. The 
pathname given can be either a simple name, a relative pathname, or a full pathname. If it is a simple 
name or relative pathname, elements of the system task group's working directory are used to 
construct a full pathname. The working directory is systemj'olume_name, unless it has been 
modified by a CHANGE WORKING DIRECTORY command. Both system directory pathnames can 
be changed by using two CSD commands. 
The system uses a set of rules, known as search rules, to govern its search of directories for a given 
path. These rules are described in detail in the discussion of the LIST SEARCH RULES command. 

OPERATOR CONTROL LANGUAGE 3-6 AX07 



· CHANGE SYSTEM DIRECTORY / CHANGE WORKING DIRECTORY 

Example: 

CSD NEW_DIR -LIB2 

Assuming that the system task group's working directory has not been modified, the system 
constructs the pathname > NEW_DIR, and uses this pathname whenever LIB2 is referred to. 

CHANGE WORKING DIRECTORY 

Command Name: CWD 
Change the system task group's default working directory to the specified path. 

Format: 

Parameter Description: 
[path] 

CWD [path] 

The pathname of the new working directory. It may be a relative name or a full pathname. If this 
parameter is omitted, the pathname established as the system task group's initial working directory 
is assumed. 

Function Description: 
The CHANGE WORKING DIRECTORY allows the system operator to modify the pathname of the 
system task group's default working directory. At the conclusion of OCL processor startup,. the 
working directory is system....Y0lume_name. However, there can exist directories subordinate to this 
directory, and these subdirectories can contain files used by the system task group. If these files are to 
be referred to by simple pathnames then it is necessary to change the directory point of reference to 
the directory which immediately contains these files. 
Assume for example that there is a series of functions which the system operator routinely performs 
at the beginning of a day's operations, after system initialization is complete. These functions could 
be cataloged in a file contained in a directory subordinate to the working directory, and used as input 
to the execution command processor (see the EC command). 
After issuing a CWO command naming the subdirectory as its path parameter, the EC command could 
be given specifying the simple name of the file containing the functions to be performed. 
If the CWO command is issued without a path parameter, the directory reference point reverts to the 
path name which was in effect at the conclusion of OCL processor startup. 

Example: 
A file containing a series of OCL CREATE GROUP commands exists in a directory EC ROUTINES 
subordinate to the working directory. The name of the file is CR_GRPS, and it is usedeach day to 
create a predetermined set of task groups for the day's operations. The system operator issues a 
command, 

CWO EC_ROUTINES 

to move the directory point of reference to the EC_ROUTINES directory level. He then issues a 
command, 

to initiate the execution of the set of CG commands. 

OPERATOR CONTROL LANGUAGE 3-7 AX07 



CREATE BATCH / CREATE GROUP 

CREATE BATCH 

Command Name: CB 
Perform the initialization functions necessary to the initiation of the batch task group. 

Format: 

Parameter Description: 
phys_Ivl 

The base priority level relative to which all tasks in the batch task group will execute. 

[ctLarg] 
One or more control arguments chosen from the following list. 

-LRNn 
Specifies the highest logical resource number (LRN) which will be referred to by any task in 
the batch task group. The minimum value that can be specified for n is the highest LRN used 
by the system task group; this is also the default if this argument is not specified. 

-LFNn 
Specifies the highest logical file number used by any task in the batch task group. If -LFN is 
not specified, n assumes the value 15. Refer to the ASSOCIATE PATH command, Section 4. 

Function Description: 
The CREATE BATCH command causes the allocation and initialization of all data structures used by 
the system to define and control the execution of the batch task group. It causes the loading of the 
execution control language (ECL) processor, and defines it as the lead task of the task group. It does 
not cause the activation of the ECL processor; this is done by use of the ENTER BATCH REQUEST 
command. 

Example: 
CB 12 -LFN 6 

The batch task group control data structures are created and initialized. No task in the group is 
expected to execute at a priority level lower than 12, nor ~efer to a logical file number greater than 6. 

CREATE GROUP 

Command Name: CG 
Perform the initialization functions necessary to the initiation of an online task group. 

FORMAT: 

PARAMETER DESCRIPTION: 
id 

CG id phy~)vl ctl_arg 

The group identification of the new task group. It is a two-character name that cannot have the $ 
as its first character. 

phys_Ivl 
The base priority level relative to which all tasks in this task group will execute. 

OPERATOR CONTROL LANGUAGE 3-8 AX07, 



CREATE GROUP / DELETE BATCH 

ctLarg 
One or more control arguments chosen from the following list. The -POOL argument is required. 

{
-EFN root } 
-EFN root?entry 

The root segment of a bound unit root is to be loaded as the lead task if it is not already 
loaded. 
The root segment name can be suffixed with ?entry, where entry is a symbolic start address 
within the root segment. If not given, the start address established when the bound unit was 
linked is assumed. 

-ECL 
The root segment of the execution control language (ECL) processor is to be loaded as the lead 
task. 

-LRNn 
Specifies the highest logical resource number (LRN) that will be referred to by any task in the 
task group. The minimum value that can be specified for n is the highest LRN used by the 
system task group; this is also the default if this argument is not specified. 

-LFNn 
Specifies the highest LFN used by any task in the task group. If -LFN is not specified, n 
assumes the value 15. Refer to the ASSOCIATE PATH command, Section 4. 

-POOL id 
id is a two-character ASCII identifier and is the name of the memory pool from which all 
memory required by this task group is to be taken. This argument is required, and must name a 
pool defined at system initialization by a CLM MEMPOOL directive. 

NOTE: In any invocation of the CG command, -EFN or -ECL, but not both, can be specified. If 
neither is specified, -ECL is assumed. 

FUNCTION DESCRIPTION: 
The CREATE GROUP command causes the initialization and allocation of all data structures used by 
the system to define and control the execution of a task group. It causes the loading of the root 
segment of the lead task of the task group. It does not cause the system to activate any task within 
the task group. 

Example: 
CG AX 15 -EFN MAIN PG?ENTRY1 -LRN 18 -POOL A2 

A task group identified as AX is created. The lead task of the group is the program MAINJG, whose 
execution is to be started at the symbolic address ENTRY1. No task in the group will execute, at a 
priority level lower than 15, nor refer to a logical resource number higher than 18. Memory will be 
obtained from the pool identified as A2 at system configuration. 

DELETE BATCH 

Command Name: DB 
Delete the batch task group definition previously created by the CREATE BATCH command. 

FORMAT: 
DB 

OPERATOR CONTROL LANGUAGE 3·9 AX07 



DELETE BATCH / DELETE GROUP / ENTER BATCH REQUEST 

PARAMETER DESCRIPTION: 
No parameters are required or permitted with this command. 

FUNCTION DESCRPTION: 
The DELETE BATCH command removes all of the data structures that were constructed by the CB 
command issued previously. No more ENTER BATCH REQUEST commands can be issued for the 
batch task group after the DB command has been executed. The DB command takes effect 
immediately if the task group is dormant when the command is issued. If it is active (Le., if its code is 
being executed and/or there are still requests in the task group's request queue), the DB command 
takes effect when execution terminates and there are no more requests in the queue. 
When the batch task group is deleted, the memory occupied by the data structures defining the group 
and any memory associated with the execution of the group is returned to the batch memory pool. 

DELETE GROUP 

Command Name: DG 
Delete an online task group definition previously created by a CREATE GROUP command. 

FORMAT: 

PARAMETER DESCRIPTION: 
id 

DGid 

The group identification of a task group previously created by a CG command specifying the same 
id. 

FUNCTION DESCRIPTION: 
The DELETE GROUP command removes all of the data structures that were constructed by the CG 
command issued previously with this id. No more ENTER GROUP REQUEST commands can be 
issued for this task group -after the DG command has been executed. The DG command takes effect 
immediately if the task group is dormant when the command is issued. If it is active (i.e., if its code is 
being executed and/or there are still requests in this task group's request queue), the DG command 
takes effect when execution terminates and there are no more requests in the queue. 
When a task group is deleted, the memory occupied by the data structures defining the group and any 
memory associated with the execution of the group is returned to the appropriate memory pool. 

ENTER BATCH REQUEST 

Command Name: EBR 
Enter a request for execution of the execution command language (ECL) processor in the batch 
request queue. 

FORMAT: 

PARAMETER DESCRIPTION: 
user id 

A field comprising two sub fields in the form person.project, by which this request is identified. 
The user--1d sub fields are also used to establish the working directory for this request. 

OPERATOR CONTROL LANGUAGE 3-10 AX07 



ENTER BATCH REQUEST / ENTER GROUP REQUEST 

iIl.J>atch' 
The name of the file from which the ECL processor is to read its commands. 

[ctl.-arg] 
One or more control arguments chosen from the following list. 

-OUT ouLpath 
Defines the pathname of the file which is to receive output from the batch task group. 
If not specified, one of the following assumptions is made: 
If inJath specifies a mass storage file, out_path = in_path.AO 
If in path specifies an interactive terminal, out path = in path 
If in path specifies an input-only device, ou~path is null:-

-WD path 
Specifies that path is to be used as the working directory pathname instead of the pathname 
established by the user id parameter. 

FUNCTION DESCRIPTION: 
The ENTER BATCH REQUEST command initiates the execution of the ECL processor as the lead 
task in the batch task group previously created by the CREATE BATCH command. If the task group 
is dormant at the time the EBR command is issued, execution begins immediately; otherwise, the 
request is queued for execution when the group becomes dormant (Le., a previous EBR command has 
activated the task group and the ECL processor or a command invoked by it is still executing). The 
ECL processor obtains its commands from the file named in the in path parameter. This means that 
the file must begin with an ECL command, although it may contain 'Olher items which the called ECL 
function may require for its execution (e.g., Editor directives). 

Example: 
EBR BROWN.LIBRARY CMMD IN 

The batch task group is to be activated by a request identified as BROWN.LIBRARY. It will receive 
its input from and direct its output to files identified as CMMD_IN and CMMDJN .AO, respectively. 
The working directory pathname for this request is >UDD>LIBRARY>BROWN. 

ENTER GROUP REQUEST 

Command Name: EGR 
Activate the lead task of an online task group previously created by a CREATE GROUP command. 

FORMAT: 

PARAMETER DESCRIPTION: 
id 

The group identification of a task group previously created by a CG command specifying the same 
id. 

user id 
A field comprising two sub fields in the form person.project, by which this request is identified. 
The useLid sub fields are also used to establish the working directory for this request. 

[in path] 
The name of the file from which the ECL commands or user input are to be read by the task group 
during execution. This argument is set to null if it is not specified. It is required if the CG 
command specified the control argument -ECL. 

OPERATOR CONTROL LANGUAGE 3-11 AX07 



ENTER GROUP REQUEST / EXECUTION COMMAND 

[ ctl-arg] 
One or more control arguments chosen from the following list. 
-OUT ouLPath 

Defines the pathname of the file that is to receive user output from the task group. If not 
specified, one of the following assumptions is made: 
If in path specifies a mass storage file, out path = in path.AO 
If in path specifies an interactive terminal~ out path = in path 
If inpath is not specified, out path is null - -- -
If inyath specifies an input-only device, out_path is null. 

-ARG 
Indicates that additional arguments required by the task group during execution follow. These 
additional arguments are passed to the lead task to be used as necessary. If used, the -ARG 
control argument must appear last. 

-WD path 
Specifies that path is to be used as the working directory pathname instead of the pathname 
established by the user id parameter. 

FUNCTION DESCRIPTION: 
The ENTER GROUP REQUEST command initiates the execution of the lead task of a task group 
previously created by a CREATE GROUP command. If the task group is dormant at the time the 
EGR command is issued, execution begins immediately; otherwise, the request is queued for 
execution when the group becomes dormant (i.e., a previous EGR command has activated this task 
group and it has not yet terminated). Execution begins at the point specified by the -EFN control 
argument of the CG command, if specified. If the -EFN control argument was not used (i.e., the lead 
task is the ECL processor), execution begins by reading the file named by the in path parameter. This 
means that this file must begin with an ECL command, although it may contain other items which the 
called ECL function may require for its execution. 

Example: 
EGR AX SMITH.SERVICES MPG--'pATA -ARG '07/12/76 1100AM' 

The task group identified as AX in a previous CG command is to be activated. This request is 
identified as SMITH.SERVICES. The task group expects its input data to come from a file named 
MPG_DATA, in the working directory >UDD>SERVICES>SMITH, and will write its output to a file 
named MPG_DATA.AO, also in the working directory. The lead task expects one argument, a date 
and time item. The item is enclosed in apostrophes because there is an embedded space, but it is to be 
interpreted as a single argument. 

EXECUTION COMMAND 

Command Name: EC 
Invoke the execution command (EC) processor to read OCL commands from a designated file. 

FORMAT: 

PARAMETER DESCRIPTION: 
path 

EC path 

The name of a file, path.EC, containing OCL commands and EC directives. 

FUNCTION DESCRIPTION: 
The function of the EC processor is to read from a previously created file a series of OCL commands 
and EC directives. It provides a mechanism whereby a sequence of routinely performed functions can 
be executed without the need for manually entering the commands through the operator terminal. 

OPERATOR CONTROL LANGUAGE 3-12 AX07 



EXECUTION COMMAND 

The file path.EC is a file which has been previously created by use of the Editor. It contains one or 
more OCL commnds and Ee directives which are interpreted in sequence by the Ee processor and 
acted upon as described in the following paragraphs. 
When a command is encountered by the Ee processor, it is simply passed to the OeL processor for 
interpretation and execution. This means that the syntax of the command as read from the file 
path.Ee must be identical to that which would have been entered from a terminal device if the 
function were requested manually. All parameters and control arguments must be supplied as 
specified in the individual OeL command descriptions. 
When a command execution terminates, control is returned to the Ee processor, which then reads the 
next line from the file. 
The Ee processor also recognizes several directives which are not passed to the command processor, 
but are interpreted and acted upon by the Ee processor itself. These directive lines are identified by a 
character string beginning with & and followed by a 6 (space or tab character). They provide control 
over certain operational aspects of the EC processor as well as a degree of control over the logic of 
execution of the series of conlmands. Any & directive other than those described below is treated as 
an &Qf). directive, except that an error status code is returned to the task that invoked the EC 
command. This code comprises the last four hexadecimal digits of the error code as defined in 
Section 5. 
The EC control directives are described in detail in the following paragraphs. 

&f). 

This signifies a comment line and is not processed further. It is visible only by obtaining a listing of 
the EC file, and can be used, for example, to describe the function performed by the commands 
con tained in the file. 

&Ff). 
Command line printing is to be turned off; i.e., command lines are not to be written to the 
user out file. This is the default; command lines are not normally written to user_out. 

&Nf). 
Command line printing is to be turned on. Each command line read from the EC file is written to 
the user_out file before being passed to the command processor. The & directive lines, except for 
&Pf). lines, are not written. 

&Pf). 
The entire line, except for the &Pf)., is written to the user out file. Printing of &Pf). lines occurs 
regardless of whether command line printing is on or off. -

&IFf). 
This directive permits the interrogation by the EC processor of an error status code returned by 
the command executed immediately prior to the &IFf). directive. For compatibility across all 
GCOS systems, it has the format: 

&IF6[ EQUALS6&ST A TUS60] 6&!'HEN6&ELSE6&QUIT 

and is interpreted as follows: 
If the error status code returned from the execution of the immediately preceding command line is 
zero, continue with the next command or directive line; otherwise quit. 

The &IFf). directive enables the EC processor to exit from any further processing of the Ee file 
when an error condition resulting from the interpretation or execution of a command would make 
meaningless the execution of any subsequent commands. 

OPERATOR CONTROL LANGUAGE 3·13 AX07 



EXECUTION COMMAND / FILE OUT 

&Q6. 
The execution of the current EC file is terminated, and control is returned to the invoking task. 
Implicit &Q6. directives may be executed as described above, by invalid & directives or because of 
error status codes returned by the interpretation or execution of a command line. To ensure 
proper termination of the EC command, every EC file should have the &Q6. directive as its last 
line. 

Example: 
At the beginning of each day's operations, the system operator is required to create and initiate three 
task groups. One is the batch task group used for program development; the other two are online task 
groups, one using the ECL processor and the other a daily-run production program. The operator has 
created an EC file in the system task group's initial working directory, system.Jolume_name. The 
name of the file is CR GRPS.EC and the following OCL commands are contained in it: 

CB 30 -LRN 10 -LFN 8 
CG EC 25 -LRN 12 -POOL A1 
CG PR 20 -LRN 15 -LFN 6 -EFN PROD A -POOL Pl 
EGR [C GRP. PRIME >SPD>VIPOl -
EBR DEV.PROG >SPD>KSR02 -OUT >SPD>LPT01 
EGR PR ADMIN. PROJ >SPD>CDROl -OUT >SPD>LPT02 
&P~GROUPS CREATED AND ACTIVATED 
&Q~ 

The batch task group, created by the CB command, runs at base priority level 30 with the ECL 
processor as its lead task. Its user_id, established by the EBR command, is DEV.PROG, from which is 
derived its default working directory >UDD>PROG>DEV. Its input (commands and user input) 
comes from an interactive terminal KSR02, and its error and user output is directed to line printer 
LPTOI. 
The first CG command creates an online task group EC, which, because no EFN is specified, uses the 
ECL processor as its lead task. This task group can be used to create other groups in response to the 
day-to-day needs of the installation, using whatever ECL commands are required. Task group EC 
operates at base priority level 25 and utilizes memory from the memory pool defined as A I at system 
configuration. Its input and output are through the interactive terminal VIPO 1. 
The second CG comlnand creates an online task group PR, which uses a bound unit named PROD_A 
as its lead task. It operates at the highest priority level of the three tasks (20) and obtains its memory 
from the memory pool PI. It receives its user input from a card reader CDROI and writes its user and 
error output to a second line printer LPT02. 
At the conclusion of processing of the EC file a message is directed to the system operator stating that 
the task groups have been created and activated. If any errors were encountered in the interpretation 
or execution of the OCL commands, an appropriate error message would be displayed to the system 
operator (refer to Section 5, Error Messages), and the processing of the EC file continues. 
The sequence of commands in the above example are intended to sho~ that, once a set of task groups 
has been created, the order of activation (by the ENTER commands) is immaterial. While group EC 
may begin its execution first by virtue of its request having been processed first, as soon as the request 
for group PR is processed, group PR takes priority over group EC (because its priority level is higher). 

FILE OUT 

Command Name: FO 
Change the destination to which system messages to the operator are sent. 

FORMAT: 
FO [path] 

OPERATOR CONTROL LANGUAGE 3-14 AX07 



FILE OUT / LIST SEARCH RULES 

PARAMETER DESCRIPTION: 
[path] 

The pathname of the new destination for operator output. It can represent any file or device 
capable of being used for output. If the parameter is omitted, the operator output file reverts to 
that established at the conclusion of OCL processor startup. 

FUNCTION DESCRIPTION: 
The FILE OUT command defines a new file or device pathname to which output generated by the 
system task group will be written. When the OCL processor is initially activated, the system output 
file pathname is >SPD>CONSOLE. Error output is also written to the same file. 
The FO command makes it possible for the operator to redirect the message output (but not the error 
output) to a different file or device for reasons, say, of high output message activity, in which case a 
faster output device such as a line printer might be desirable. 
The use of the FO command without the path parameter resets the destination of the operator output 
to the file/device established when the OCL processor was initially activated. 

Example: 
FO >SPD> LPTO 1 

The output generated by the system task group is directed to the line printer LPTOl. 

LIST SEARCH RULES 

Command Name: LSR 
Display the search rules currently defined for the system task group. 

FORMAT: 
LSR 

PARAMETER DESCRIPTION: 
No parameters are required or permitted with this command. 

FUNCTION DESCRIPTION: 
The LIST SEARCH RULES command writes to the operator output file the full pathnames of the 
directories used by the system task group in its search for bound units. 
The search rules define three directory pathnames and the sequence in which they are used during a 
search. The first of these is the system task group's working directory; its pathname is 
A system_ volume.-name at the completion of OCL processor startup, and remains so until modified by 
one or more CHANGE WORKING DIRECTORY commands. The second is the system directory 
LIB 1, whose pathname is >SYSLIB 1. The third is the system directory LIB2, whose pathname is also 
>SYSLIB 1. The pathnames associated with LIB 1 and LIB2 can be changed through the use of the 
CHANGE SYSTEM DIRECTORY command. The pathnames returned by the LSR command always 
reflect the current directory pathnames. 

Example: 
Assume that the system task group's initial working directory is A SYSVOL, and that no CWD or CSD 
commands have been issued. The LSR command returns 

OPERATOR CONTROL LANGUAGE 

"SYSVOL 

" SYSVOL>SYSLIB 1 

" SYSVOL>SYSLIB 1 

3-15 AX07 



LIST SEARCH RULES / LIST WORKING DIRECTORY / MODIFY EXTERNAL 
SWITCHES 

Assume now that a CSD NEW DIR -LIB2 command has been executed at some point prior to the 
issuing of the LSR command. The LSR command now returns 

LIST WORKING DIRECTORY 

Command Name: LWD 

"SYSVOL 

" SYSVOL>SYSLIB I 

"SYSVOL>NEW DIR 

List the full pathname of the working directory of the system task group. 

FORMAT: 
LWD 

PARAMETER DESCRIPTION: 
No parameters are required or permitted with this command. 

FUNCTION DESCRIPTION: 
The LIST WORKING DIRECTORY command can be used to write to the operator output file the 
full pathname of the working directory currently being used by the system task group. It is at times 
useful to be able to establish the identity of the working directory after having made several changes 
of working directories through the use of CHANGE WORKING DIRECTORY commands. The LWD 
command causes the full pathname of the working directory to be written to the operator output file 
in the form 

" system -yolum~name[>dirl] ... 

The ellipsis indicates that one or more subordinate levels may be included in the path name of the 
current working directory, depending on the nature of previously issued CWD commands. 

Example: 
Assume that the system task group's initial working directory pathname was" VOL_O I as established 
at OCL processor startup, and that a CWD EC DIR command has been issued since that time. The 
L WD command returns -

" VOL OI>EC DIR 

If, starting with this working directory, a CWD < command is issued, a subsequent LWD command 
would return 

MODIFY EXTERNAL SWITCHES 

Command Name: MSW 
Modify selected external switches associated with the indicated task group. 

FORMAT: 
MSW id ct Larg 

OPERATOR CONTROL LANGUAGE 3-16 AX07 



MODIFY EXTERNAL SWITCHES / MODIFY FILE 

PARAMETER DESCRIPTION: 
id 

The group identifier of the task group whose switches are to be modified. 

ctLarg 
One or more control arguments chosen from the following list: 

-ON Si[Si) ... 
Set the external switch indicated by Si ON. Each Si is a hexadecimal digit from 0 through F. 

-OFF Si[Sil ... 
Set the external switch indicated by Si OFF. Each Si is a hexadecimal digit from 0 through F. 

-ALL v 

Set all switches to the value v. The value v can be either ON or OFF. 

FUNCTION DESCRIPTION: 
The MODIFY EXTERNAL SWITCHES command enables the system operator to modify the external 
switches by which a user task group can control its execution. An external switch can be thought of 
as a hardware switch on a control panel, which can be set on or off manually by an operator. There is 
a separate switch word associated with each task group created, giving each group the capability of 
addressing 16 switches. A user program can contain instructions or statements which interrogate the 
settings of one or more of these switches, and can use these settings to control the execution logic of 
the program. 

Example: 
MSW AX -ON 25 -OFF 7B 

In the task group identified as AX, external switch numbers 2 and 5 are to be set ON, and external 
switch numbers 7 and B are to be set OFF. 

MODIFY FILE 

Command Name: MF 
Modify the attributes of the specified file. 

FORMAT: 

PARAMETER DESCRIPTION: 
path 

MF path ctUrg 

The pathname file whose attributes are to be changed. 

ct~rg 

One or more control arguments chosen from the following list: 

{
-SHARE I 
-SHR 

Specifies that the named file is to be made accessible to the batch task group. 

{
-NONSHARE) 
-NS 

Specifies that the named file is to be made inaccessible to the batch task group. 

OPERATOR CONTROL LANGUAGE 3-17 AX07 



MODIFY FILE / READY_OFF 

-RD {
-READ} 

Specifies that no users are given pennission to write to the named file; only reading is 
permitted. 

{
-WRITE) 
-WR 

Specifies that users are pennitted access to the named file in the output, update, or extend 
mode. 

NOTE: The arguments within the argument pairs -SHARE and -NONSHARE, and -READ and 
-WRITE, are mutually exclusive. 

FUNCTION DESCRIPTION: 
The MODIFY FILE command allows the accessibility and pennlSSlon attributes of a file to be 
modified. When a file is first created (refer to the CREATE FILE command, Section 4), it is 
accessible to both online and batch task groups. It can also be read from and written to by any task. 
Its initial attributes are thus SHARE/WRITE. 
If a 'file is made inaccessible to the batch task group (through the use of the -NS control argument), 
no access of any kind by the batch task group is permitted. Furthermore, directories can be given the 
-NS attributes; in this case the directory and all subdirectories and files contained within it are 
inaccessible to the batch task group. 
Another kind of protection can be given a file by the use of the -RD control argument. This argument 
makes the file a read-only file, preventing any task groups, online or batch, from writing to the file. It 
can still be read by online tasks and, unless the -NS argument has also been specified, by batch tasks 
as well. Attributes assigned to nondisk files by this command remain in effect only for the current 
initialization of the system. If the system is reinitialized, attributes for these files revert to 
SHARE/WRITE. 

Example: 
MF >UDD>PROJI>USERA>FILEOI -NS 

A file is to be made inaccessible to the batch task group, It remains accessible for writing by online 
tasks. 

Command Name: RDF 
Suppress the ready message printed at the completion of each OCL command. 

FORMAT: 
RDF 

PARAMETER DESCRIPTION: 
No parameters are required or pennitted with this command. 

FUNCTION DESCRIPTION: 
The READY_OFF command suppresses the printing of a message issued by the system at the 
completion of execution of each OCL command. The message informs the operator that the system is 
prepared to accept another command. 
If the RDF command is issued from within an EC file, when execution of the EC file is completed the 
system reverts to the ON/OFF state which was in effect when the Ee command was invoked. 
The initial state of the ready function at the conclusion of OCL processor initialization is OFF. 

OPERATOR CONTROL LANGUAGE 3-18 AX07 



READY-ON / REASSIGN 

READY_ON 

Command Name: RDN 
Activate the printing of the ready message at the completion of each OCL command. 

FORMAT: 
RDN 

PARAMETER DESCRIPTION: 
No parameters are required or permitted with this command. 

FUNCTION DESCRIPTION: 
The READY ON command activates the printing of a message issued by the system at the 
completion Of execution of each OCL command. The message informs the operator that the OCL 
processor is prepared to accept another command. 
If the RDN command is issued from within an EC file, when execution of the EC file is completed the 
system reverts to the ON/OFF state which was in effect when the EC command was invoked. 
The initial state of the ready function at the conclusion of OCL processor initialization is OFF. 

REASSIGN 

Command Name: RAS 
Exchange one device for another of the same type, or cancel a mount request for a device or volume. 

FORMAT: 

PARAMETER DESCRIPTION: 
ctGtrg 

RAS ctL.~.rg 

One control argument chosen from the following list. 

-SWAP dev_namet dev_name2 
The device controlled by the driver associated with dev name2 is to be placed under the control of 
the driver associated with deLnamel . Both devices must be of the same type. dev--Eamel is set to 
the disabled state. 

-CANCEL name 
This control argument is used when a device or volume named in a File Manager mount message is 
unavailable. It instructs the File Manager to continue processing along the "not found" path. The 
form of the name argument is either A vol...ld or dev _name, depending on the mount message. 

FUNCTION DESCRIPTION: 
The REASSIGN command enables the system operator to substitute one device for another of the 
same type. In case of a disk device malfunction, for example, the device can be replaced by another 
through the use of the -SWAP control argument. This argument gives the symbolic device names of 
the replaced and replacing devices as dev name l and dev name2, respectively. The device names are 
those assigned to the devices at system configuration. -
If a task issues a request for a file or volume to the File Manager, and that file or volume is not 
mounted, the File Manager issues a mount message to the system operator. If the operator determines 
that the requested volume, or the device upon which it is to be mounted, is unavailable, he can 
respond to the message with an RAS command specifying the -CANCEL control argument, causing 
the File Manager to respond to the task with a "not found" status code. 

OPERATOR CONTROL LANGUAGE 3-19 AX07 



REASSIGN / SET DATE / SPAWN GROUP 

Example I: 
RAS -SWAP DSK03 DSK05 

The disk device DSK03 is to be placed in the disabled state and replaced by the disk device DSK05. 

Example 2: 
RAS -CANCEL 1\ USER04 

A task has requested the mounting of a volume USER04, and the File Manager has issued a message 
to the operator directing him to mount the volume. The operator has determined that the volume is 
not available. He issues the RAS command to inform the File Manager that the volume is unavailable, 
and that it is to return a "volume not found" status code to the task. 

SET DATE 

Command Name: SD 
Set the system internal clock to the indicated date and time. 

FORMAT: 

PARAMETER DESCRIPTION: 
'yyyy/mm/ddllhh[mm[:ss] ]' 

SD 'yyyy/mm/ddllhh[mm[:ss] ]' 

The date and time to which the clock is to be set. yyyy is the year, mm is the month and dd is the 
day, in decimal. hh is the hour of day, and the optional mm and :ss specify minutes and seconds, 
respectively. The II represents exactly one space. 

FUNCTION DESCRIPTION: 
The SD command permits the system operator to initialize the system's internal clock to a specified 
date and time of day. The date and time, expressed as an ASCII character string, are converted to an 
internal form representing the number of milliseconds elapsed since January I, 1901. The use of this 
command enables the system to respond appropriately to any of the several executive system service 
calls related to task control based on the passage of time. 
The date/time value specified must be enclosed in apo~trophes because of the embedded space 
between the dd and hh portions. 

SPAWN GROUP 

Command Name: SG 
Create, request the execution of, and then delete a task group. 

FORMAT: 
SG id useLJd phys-1vl [inyath] ctl--.!rg 

PARAMETER DESCRIPTION: 
id 

The group identification of the task group to be spawned. It is a two-character name that cannot 
have the $ as its first character. 

OPERATOR CONTROL LANGUAGE 3-20 AX07 



SPAWN GROUP 

useLid 
A field comprising two subfields in the fonn person.project, by which the requested execution of 
this task group is identified. The user_id subfields are also used to establish the working directory 
for this request. 

phy~lvl 

The priority level relative to which all tasks within this task group will execute. 

[it!. path] 
The name of the file from which commands and user input are to be read by the task group during 
its execution. The file name is set to null if the in path parameter is not specified. in path must be 
specified if the control argument -EeL (see below) is used or implied. -

ctl_arg 
One or more control arguments chosen from the following list. The -POOL argument is required. 

-OUT ou!..path 
Defines the pathname of the file which is to receive user output from the task group. If not 
specified, one of the following assumptions is made: 
If in path specifies a mass storage file, out path = in path.AO 
If in path specifies an interactive terminal:-out path = in path. 
If in-path is not specified, out path is null - -
If in path specifies an input-only device, oU.!....,path is null. 

-WD path 
Specifies that path is to be used as the working directory pathname instead of the pathname 
established by the user id parameter. 

{ 
-EFN root } 
-EFN root?entry 

The name of a bound unit root segment to be loaded as the lead task (if not already loaded). 
The root segment name can be suffixed with ?entry, where entry is a symbolic start address 
within the root segment. If no suffix is given, the default start address of the root segment is 
assumed. 

-EeL 
Specifies that the lead task of the spawned task group will be the execution control language 
(EeL) processor. 

-LRNn 
Specifies the highest LRN that will be referred to by any task group. The minimum value that 
can be specified for n is the highest LRN used by the system task group; this is also the default 
if this argument is not specified. 

-LFNn 
Specifies the highest LFN used by any task in the spawned task group. If -LFN is not specified, 
n assumes the value 15. 

-POOL id 
id is a two-character ASCII identifier and is the name of the memory pool from which all 
memory required by the spawned task group is to be taken. This argument is required, and 
must name a pool defined by a eLM MEMPOO L directive. 

-ARG 
Indicates that additional arguments required by the spawned task group for its execution 
follow. These additional arguments are passed to the lead task of the spawned group to be used 
as necessary. If used, the -ARG control argument must appear last. 

OPERATOR CONTROL LANGUAGE 3·21 AX07 



SPAWN GROUP / STATUS GROUP 

NOTE: In any invocation of the SG command, -EFN or -ECL, but not both, can be specified. If 
neither is specified, -ECL is assumed and the i~path parameter is required. 

FUNCTION DESCRIPTION: 
The SPAWN GROUP command combines the functionality of the CREATE GROUP, ENTER 
GROUP REQUEST, and DELETE GROUP commands. It implicitly causes the execution of these 
three functions in sequence; i.e., allocates and creates the data structures required to define and 
control the execution of the task group, places a request against the group, thereby activating it, and, 
when execution terminates, removes all controlling data structures and returns memory used by the 
task group to the appropriate memory pool. 

The operator can use the SG command to create and activate a task group whose life span is 
dependent upon the actions of the task group itself, rather than upon any explicit action on the part 
of the operator. A task group using the ECL processor as its lead task is an example of such a group; it 
is initiated by the SG command, and it is terminated by an ECL BYE command entered by the user 
on whose behalf the task group is running. The duration of any task group may vary widely; the 
significant difference between a spawned task group and a created task group is that, in the former 
case, the operator need have no knowledge of when its execution terminates in order to delete the 
group and return its resources to the system. He does, however, have the ability at any time to 
determine the status of the group in question, through the use of the STATUS GROUP command. 

Example: 
An installation runs an application which is to begin at 10:00 A.M. each day, and lasts for an 
indeterminate period. The application updates a master file, accepting transaction input from a 
remote terminal device. It writes its output to a mass storage file for later conversion to hard copy. At 
the specified time the system operator enters the command 

SG UM SMITH.REMOTE 10 >SPD>VIP06 -EFN UPMAST -OUT MSTRLST -POOL Ml 

The data structures defining and controlling task group UM are allocated and initialized. A request 
identified as SMITH. REMOTE is entered against the task group, establishing the group's working 
directory as >UDD>REMOTE>SMITH. A bound unit, UPMAST, contained in this working 
directory, is defined as the lead task of the group, and obtains its input data from the device whose 
pathname is >SPD>VIP06. It writes its output to a file, MSTRLST, also contained in the working 
directory. The base priority level at which the application runs is 10, and memory is obtained from 
the memory pool identified as MI. 
It is assumed that when the user has completed the entry of transaction items he enters a unique 
termination code which is interpreted by the UPMAST program as a signal to issue a system service 
call to the monitor to terminate the execution of the application. When this occurs, the system 
deletes the task group and returns all of the group's resources to the system for use by other task 
groups. 
When the application has terminated, the output written to the MSTRLST file c~m be transcribed to 
hard copy by entering a request to the batch task group to print the contents of the file. 

STATUS GROUP 

Command Name: STG 
Display the status of the indicated task group. 

FORMAT: 
STG id [ctl_ arg] 

OPERATOR CONTROL LANGUAGE 3-22 AX07 



STATUS GROUP 

PARAMETER DESCRIPTION: 
id 

The identifier of the group whose status is requested. The batch task group identifier is $B. 

[ctl arg] 
One or more control arguments chosen from the following list. 

-TASKS 
Specifies that the statuses of all tasks in the indicated task group are to be listed. This is the 
default if no control arguments are present. 

-FILES 
Requests the names of all files that are currently associated with the indicated task group, their 
types, concurrencies and LFNs. 

FUNCTION DESCRIPTION: 
The STATUS GROUP command writes to the operator output file a summary of the current status of 
a task group. In addition to infonnation pertinent to the group as a whole, two other categories of 
status information are displayed; that relating to tasks within the group and that relating to files 
currently associated with the group. 
The following items provide status infonnation relative to the task group as a whole: 

o Task group identification 
o Current state of the task group: 

B = Batch, not rolled out 
R = Batch, rolled out 
S = Suspended 
D = Dormant 
A = Active 

o Memory pool identification 
o Current user identification 
o Full pathname of the error output file 
o Full pathname of the user output file 

Task-specific status information consists of the following group of items for each task: 

o Task logical resource number (if a created task) or the letters ST (if a spawned task) 
o Task priority level 
o Current state of the task: 

D = Dormant 
S = Suspended 
W = Waiting 
A = Active 

o Task's bound unit name 
o Full pathname of the command input file 
o Full pathname of the user input file 

If there are no tasks currently associated with the task group, a single item, NO TASKS, is returned. 
File-specific information consists of the following group of items for each file: 

OPERATOR CONTROL LANGUAGE 3-23 AX07 



STATUSGROUP/STATUSSYSTEM 

o Full path name of the file 
o Concurrency of the file, represented by a decimal digit in the range I through 5. The significance 

of the digits, for the task group specified by the id parameter, and for other task groups, is as 
follows: 

For Group id 

I = Read Only 
2 = Read only 
3 = Read or Write 
4 = Read or Write 
5 = Read or Write 

o File type 

For Other Groups 

Read Only 
Read or Write 
No Read, No Write 
Read Only 
Read or Write 

o Logical file number, if one is associated with the file, otherwise spaces 
o Open/closed status of the file 

If there are no files currently associated with the task group, a single item, NO FILES, is returned. 
The task group status information is always returned when this command is used. The task-specific 
information is returned if no control arguments are given, or if explicitly requested by the -TASKS 
argument. If the -FILES argument is specified, the file-specific, but not the task-specific, information 
is given. 

STATUS SYSTEM 

Command Name: STS 
Display general system status. 

FORMAT: 

PARAMETER DESCRIPTION: 
[ctL arg] 

One or more control arguments chosen from the following list. 

-BA 
Specifies that the set of devices available to the batch task group is to be listed. An indication 
of the active files on each device is given, as well as the volume identifier of the mounted 
volume on each device. 

-ALL 
Specifies that the same infonnation as described under -BA above is to be listed for all devices. 

-AVAIL 
All devices which have no open files associated with them are to be listed, with the volume 
identifier of the mounted volume. If no control arguments are specified with the command, 
this is the default. 

-SYMPD dev name 
The status of the specific device dev name is to be listed, including the volume identifier of the 
mounted volume. -

-DISABLED 
All devices which are currently in a disabled state are listed . 

. OPERATOR CONTROL LANGUAGE 3-24 AX07 



STATUS SYSTEM 

-GROUP 
All task groups are listed, including their pool identifiers and current request user id's. 

-LBR 
All entries on the batch request queue are listed, including each user id and pathname. 

FUNCTION DESCRIPTION: 
The STATUS command gives the system operator the ability at any time to ascertain the general 
status of the system with regard to task groups, their associated peripheral devices, memory pools, 
and/or entries in the batch request queue. 
When the -GROUP control argument is used, the following status information is returned for each 
group: 

o Task group identification 
o Current state of the task group: 

B = Batch, not rolled out 
R = Batch, rolled out 
S = Suspended 
D = Dormant 
A = Active 

o Memory pool identification 
o Current user identification 

When the -LBR control argument is used, the following information is returned: 

o Batch request's user identification 
o Command/user input file pathname 

This information is repeated for each request currently in the batch task group request queue, and 
reflects the values specified in the useLid and in_path parameters of each EBR command currently 
awaiting execution. 
All of the remaining control arguments are related to the status of peripheral devices. When any of 
these is used, a display of the following form is returned: 

b{DSKxxx } I 'd{D} dev _name vo _1 nn 

The significance of the elements in the above display format is shown below. 

b 
B if the device is accessible to the batch task group; otherwise spaces 

DSKxxx 
Device-unit name of a disk device, as specified in a CLM DEVICE directive 

dev name 
Dev2ame of a non-disk device, as specified in a CLM DEVICE directive 

vol id 
Name of the volume mounted on DSKxxx or dev name 

D 
Device is currently disabled 

OPERATOR CONTROL LANGUAGE 3-25 AX07 



STATUS GROUP / SUSPEND BATCH / SUSPEND GROUP 

nn 
00 if device contains no active files (i.e., device is available); or 
01-9910 , indicating the number of currently active files on the device 

If there are no devices satisfying the requested status, the command returns 

NO DEVICES WITH STATUS REQUESTED 

SUSPEND BATCH 

Command Name: SSPB 
Temporarily terminate the execution of the batch task group. 

FORMAT: 
SSPB 

PARAMETER DESCRIPTION: 
No parameters are required or pennitted with this command. 

FUNCTION DESCRIPTION: 
The SUSPEND BATCH command causes the cessation of execution of any tasks that may be active in 
the batch task group, after completion of any outstanding input/output requests. The task group 
remains in the suspended state until it is reactivated by an ACTIVATE BATCH command. All 
controlling structures remain intact and no memory used by the group is returned to the memory 
pool during the suspended state. The suspended state of the batch task group does not preclude its 
being rolled out in the event that its memory is required by an online task group executing in an 
extendible full memory pool, and requesting additional memory. 

SUSPEND GROUP 

Command Name: SSPG 
Temporarily terminate the execution of the specified online task group. 

FORMAT: 

PARAMETER DESCRIPTION: 
id 

SSPG id 

The name of a task group previously activated which is to be suspended. 

FUNCTION DESCRIPTION: 
The suspend group command causes the cessation of execution of any tasks that may be active within 
the indicated task group, after completion of any outstanding input/output requests. The task group 
remains in the suspended state until reactivated by an ACTIVATE GROUP command specifying the 
same group id. All controlling data structures remain intact and no memory used by the task group is 
returned to the memory pool during the suspended state. 

OPERATOR CONTROL LANGUAGE 3-26 AX07 

( 

1 



SECTION 4 

EXECUTION 
CONTROL LANGUAGE 

This section describes the elements of the Execution Control Language (ECL), by which a user 
exercises control over the MDT operating system. For the purpose of this section, a user is defined as any 
person who communicates with the operating system through a peripheral device capable of accepting 
ECL command lines and delivering them to the MDT operating system, i.e., a card reader or an MDC- or 
MCP-connected terminal. This device is known as a user terminal. 

COMMANDS 

ECL commands are read and interpreted by a system software component known as the ECL 
processor, which executes as the lead task in the batch task group, or can execute as the lead task in an 
online task group. Each command causes a task to be spawned within this task group to perform the 
requested function (e.g., create a task within an existing group, enter a group request, dump a file). When 
the execution of a command terminates, control is returned to the ECL processor, which is then capable 
of accepting another command. 

Command Line Format 
A command line to the ECL processor is a string of up to 127 ASCII characters whose general form is 

arg 1 [argz '" argn ] 

where arg 1 is the simple pathname of the bound unit that performs the command's function. It is the 
character string defined in the "Command Name" entry in each of the command descriptions in this 
section. Each subsequent arg entry is a parameter or control argument. The functions of parameters and 
control arguments are described in the following paragraphs. 

Parameters 
A parameter is a user-supplied character string which supplies a value for some command variable, 

such as the pathname of a file on which action is to be taken by a command, the identification of a task 
or task group, or the pathname of an input file required by a command. Parameters are positional in a 
command line, that is, their positions in the line indicate which variables the values are being supplied to. 
Some commands require no parameters; others accept one or more as indicated in the syntax in the 
individual command descriptions. In a few commands, a parameter may be optional, as indicated by its 
being enclosed in brackets, thus: [path]. 

Control Arguments 
A control argument is used to specify some option applicable to a command, such as the pathname of 

an alternate input or output file. Control arguments are differentiated from parameters by the presence 
of a keyword, which is a fixed-form character string preceded by a hyphen, thus: -ECL. A keyword may 
be followed by a user-supplied value, as -IN path. 

Control arguments, when included in a command syntax, are collectively represented by the term 
'ctl_arg', and the parameter descriptions define the individual keywords applicable to the command. 
Unless otherwise noted, keywords are optional and can appear in any order in the command line. If all 
keywords are optional in a given command, the term ct l_arg is enclosed in brackets in the syntax 
definition; if an argument is required, the requirement is noted- in the individual keyword description and 
the ctLarg term is not enclosed in brackets. 

Spaces in Command Lines 
Arguments in command lines are separated from each other by spaces. Unless otherwise indicated, 

wherever a space appears in a command line syntax, it represents one or more space characters, or one or 
more horizontal tab characters, or any combination of these. Spaces can be embedded within an 

EXECUTION CONTROL LANGUAGE 4-1 AX07 



argument by enclosing the argument in single (') or double (") quote characters. If the enclosing 
character is also required within the argument, it is represented by two successive characters, 
thus: "NAME=""SMITH"" AREA 203". 

STANDARD ECL PROCESSOR FILES 

Four files are always associated with the ECL processor. These are: 

o The Command Input file (COMMAND IN) 
o The User Input file (USER--.lN) -
o The User Output file (USER.....QUT) 
o The Error Output file (ERROR_OUT) 

The functions and characteristics of these files are described in the following paragraphs. 

Command Input File 
The command input file for the EeL processor is the file from which EeL command lines are read. 

More specifically, it is the device or file named by the in yath parameter when a request is entered against 
a task group in which the ECL processor is executing as the lead task. It can at times, however, be assigned 
temporarily to another device or file, as during the execution of the EC command. At the termination of 
execution of such a command, the command input file reverts to the original device or file. 

User Input File 
The user input file is the file from which a command function, during its execution, reads its own 

input. When a task group request has been processed, and as long as no alternate user input file is 
specified as a parameter in a subsequent command, the user input file remains the same as the command 
input file. At the termination of a command which names an alternate user input file, the user input file 
reverts to its initial assignment. 

User Output File 
The user output file is the file to which a task group writes its output. It is established by the -OUT 

control argument of an EBR or EGR command which activates the task group. Certain commands (e.g., 
the COBOL command) can temporarily reassign the user output file to a different device or file; when 
these commands terminate execution, user output reverts to its original destination. 

The user output file can also be directed to another device through the use of the FILE OUT 
command. It remains assigned to this device until another .FILE OUT command is processed, at which 
time it can be directed to yet another device, or back to the original device, at the user's discretion. 

Error Output File 
The error output file is the file to which the ECL pro~essor and any commands invoked by it write 

information related to error conditions detected by them. The error output file is the same as the initial 
user output file; it cannot be reassigned by any ECL command or command parameter. 

ECL COMMAND FORMATS AND DESCRIPTIONS 

The remainder of this section comprises complete descriptions of the formats, parameters, control 
arguments, and functions of the execution control language commands. In cases in which the command 
formats are nontrivial, one or more illustrative examples are also given. 

The command descriptions given on the followmg pages are arranged in alphabetic order to facilitate 
references to specific commands. A summary list of the commands, grouped by functional categories, is 
given below. 

Task Group Creation and Deletion Commands 

Function Name 

Abort Online Task Group 
Create Online Task Group 
Delete Online Task Group 
Spawn Online Task Group 

~XECUTION CONTROL LANGUAGE 

Command Name 

ABORT GROUP 
CG -
DG 
SG 

4-2 AX07 



Task Group Execution Commands 

Function Name Command Name 

Enter Batch Request EBR 
Enter Group Request EGR 
Execution Command EC 
Terminate Group Request BYE 

File and Directory Control Commands 

Function Name Command Name 

Associate Path and LFN ASSOC 
Change Working Directory CWD 
Create Directory CD 
Create File CF 
Dissocia te Path and LFN DISSOC 
Change User Output File FO 
List Names LS 
List Search Rules LSR 
List Working Directory LWD 
Modify File MF 
Release (Delete) F He RL 
Rename File RN 

Utility Commands 

Function Name Command Name 

Compare Files CPA 
Copy File CP 
Create Volume CV 
Edit System Dump DPEDIT 
Export PAM File EX PAM 
File Dump FD 
Import PAM File 1M PAM 
Print File PR 
Reset Bit Map RS 
Sort File SORT 

Program Preparation Activity Commands 

Function Name Command Name 

Assemble Source Unit ASSEM 
COBOL Source Unit Compile COBOL 
Cross-Reference XREF 
Edit Source Unit ED 
FORTRAN Source Unit Compile FORTRAN 
Link Object Unit(s) LINKER 
Macro Preprocessor MACROP 
Patch Object/Bound Unit PATCH 
RPG Source Unit Compile RPG 

System and Status Commands 

Function Name Command Name 
Modify External Switches MSW 
Ready Off RDF 
Ready On RDN 
Status Group STG 
Time Display TIME 

EXECUTION CONTROL LANGUAGE 4-3 AX07 



ABORT GROUP / ASSEMBLER 

ABORT GROUP 

Command Name: ABOR'L.,QROUP 
Suspend the indicated online task group and terminate it. 

FORMAT: 

PARAMETER DESCRIPTION: 
rid] 

ABORT GROUP rid] 

The group identification of a task group previously created by a CG command specifying the same 
id. If this parameter is omitted, the issuing task group is aborted. 

FUNCTION DESCRIPTION: 
The ABORT GROUP command causes the suspension and termination of an existing online task 
group, whether it is active or dormant. It removes all of the data structures which define and control 
the execution of the task group, and returns all memory used by the group to the appropriate 
memory pool. Any files which may have been open during the execution of the task group are closed. 
Any requests which may be pending against the group are cancelled. The action of the ABORT 
GROUP command is thus similar to the DELETE GROUP command, the difference being that the 
latter must wait until the task group becomes dormant, while the former takes effect as soon as all 
outstanding input or output orders are complete. 
This command can be issued only from an online task group. 

Example: 
ABORT GROUP AX 

A task group identified as AX is terminated immediately. 

ASSEMBLER 

Command Name: ASSEM 
Assemble the source program unit represented by the indicated file name, applying the specified 
options. 

FORMAT: 

PARAMETER DESCRIPTION: 
path 

ASSEM path [ctl_arg] 

Specifies the name of the file containing the source unit to be assembled. 

[ctLarg] 
One or more control arguments chosen from the following list. 

{
-NO_OBJ} 
-NO 

Indicates that the generation of the object text unit is to be supressed. If omitted, the object 
text unit is generated. 

{ -NO~ISTl -NL J 
Indicates that the source listing is to be suppressed. If omitted, the source listing is written to 
the file path.L. 

EXECUTION CONTROL LANGUAGE 44 AX07 



ASSEMBLER / ASSOCIATE PATH 

{ -LIST~RRS } 
-LE 

Specifies that the list file contains only statements which have assembly errors associated with 
them. 

{ 
-SAF } 
-LAF 

Indicates the addressing mode in which the program is to be assembled. -SAF indicates short 
(one-word) address form; -LAF indicates long (two-word) address form. If omitted, the 
program is assembled in the same mode as that in which the Assembler is running. 

{
-SIZE nn} 
-SZ nn 

Specifies the number (0 I through 64) of 1024-word memory· blocks that are to be used for the 
assembler's symbol table. If omitted, the available memory in the task group's memory pool 
min us 400 1 0 words is used. 

-COUT out path 
Indicates that listings which would normally be written to the file path.L are to be written to 
out path, in the working directory. 

FUNCTION DESCRIPTION: 
The ASSEMBLER command is used to invoke the GCOS 6 assembler component. Execution of the 
Assembler is normally intended for the batch task group, as is the execution of most of the other 
components used in a program development activity. 
The path parameter can assume any of the acceptable forms of a pathname; a simple name indicates 
that a source program unit residing in the working directory is to be assembled. Wherever it exists, it 
must be suffixed with a .A suffix, indicating that it is an assembly language source unit. The path 
parameter must be given without the .A suffix; the Assembler appends the suffix prior to searching 
the directory for the source unit. 
If the -COUT control argument is not specified, the source listing (if requested) is written to a file 
created by the Assembler in the working directory, having a file name of the form path.L. The path 
portion is the last or only element in the path parameter. The file can be subsequently listed on a line 
printer by using the PRINT utility command. If a -different file is specified by using the -COUT 
argument, out path is the name of the file containing the listing. The Assembler does not append a .L 
suffix to ouLpath. 
The object text unit generated by the assembler is written to a file created by the assembler, whose 
name is of the form path.O and which is contained in the working directory. 
If files of the form path.L and path.O already exist, they are overlaid by the output generated by the 
curren t assembly. 
A full description of the operation and use of the Assembler is contained in the Assembly Language 
manual. 

Example: 
ASSEM MYPROG -SIZE 5 -COUT>SPD>LPTOI 

An assembly language source program, MYPROG.A, residing in the current working directory is to be 
assembled. The source listing and errors are to be written to the printer LPTO I, and the object text 
unit is to be written to the file MYPROG.O in the working directory. If MYPROG.O already exists as 
a result of a previous assembly, it is overlaid with the new object text unit. Five 1024-word blocks of 
memory are to be used for symbol resolution during the assembly. 

ASSOCIATE PATH 

Command Name: ASSOC 
Associate the specified pathname and logical file number. 

EXECUTION CONTROL LANGUAGE 4-5 AX07 



ASSOCIATE PATH / BYE 

FORMAT: 

PARAMETER DESCRIPTION: 
lfn 

ASSOC lfn path 

The logical file number by which a task is to refer to a file. 
path 

The pathname of the file to which the task is to refer. 

FUNCTION DESCRIPTION: 
The ASSOCIATE PATH command permits a task group to refer to files by the use of a standard 
interface known as a logical file number (LFN). The LFN serves as a "bridge" across which an input 
or output statement in a user program can gain access to an external file without the need to know its 
full pathname. 
Conventions by which user files are identified and referred to in source programs are dependent upon 
the language processor by which the source program is compiled or assembled. Each processor relates 
an internal file identification by one means or another to a number (the LFN) which can be used in 
an ASSOC command to equate the internal file identification to an external pathname. In a COBOL 
program, for example, this number is derived from the ifn value in the ASSIGN clause of a SELECT 
statement. 
The task group within which an ASSOC command is to be issued must have been created specifying 
(or defaulting to) an LFN parameter value large enough to include the highest LFN which is expected 
to be given in any ASSOC command issued during the life of the task group. This requires a 
knowledge of what programs are to be executed within the group and the numerical LFN values 
which these programs have generated. 
The path parameter can specify a simple, relative or absolute pathname. If a simple name is specified, 
the file is assumed to reside in the user's working directory. No check is made at the time the ASSOC 
command is issued as to whether a file exists or not; this is only verified at the time the file is opened. 
If a relative pathname is given, the pathname is made absolute when the file is opened. 

Example: 
ASSOC 12 MYFILE 

A file defined in a user program has been assigned a logical file number 12 by the language processor 
that compiled the program (e.g., the COBOL Compiler). A file, MYFILE, exists in the issuing task 
group's working directory. The ASSOC command relates the LPN (12), by which the program's input 
and output statements refer to the user file, to the external file whose pathname is >UDD>project> 
person>MYFILE. 
Note that the symbolic name by which the file is identified and referred to in the program (e.g., 
INPUT-DATA) bears no relationship to the name by which it is referred to by the File System. 

BYE (TERMINATE CURRENT GROUP REQUEST) 

Command Name: BYE 
Terminate the execution of the current request in the issuing task group. 

FORMAT: 
BYE 

PARAMETER DESCRIPTION: 
No parameters are required or permitted with this command. 

FUNCTION DESCRIPTION: 
The BYE command causes the cessation of execution of the issuing task group. It removes all defining 
and controlling data structures except those associated with the lead task and returns all associated 

EXECUTION CONTROL LANGUAGE 4-6 AX07 



BYE / CHANGE WORKING DIRECTORY 

memory to the task group's memory pool. Any files that are open and in use by this task group are 
closed. At the conclusion of execution of the BYE command, the lead task processes the next request 
against this group, if any. 

CHANGE WORKING DIRECTORY 

Command Name: CWD 
Change the default working directory to the specified path. 

FORMAT: 

PARAMETER DESCRIPTION: 
[path] 

CWD [path] 

The path name of the new working directory. If this parameter is omitted, the path name 
> UDD> project> person , established by the task group's user id, is assumed. 

FUNCTION DESCRIPTION: 
The CHANGE WORKING DIRECTORY command enables the user to move his point of reference to 
some other directory level within his own project's directory or to some specified point within an 
entirely different directory. Moving the reference point in a directory enables a task to refer, using 
simple names, to entities in the directory at levels other than the> UDD> project> person level 
established when the task was activated initially, or to entities which exist in some other directory. 
The use of the CWD command without a path name moves the reference point back to the original 
> UDD> project> person level. 
If a simple pathname (one that does not begin with a > sign) is given as a parameter, the effect is to 
change the reference point within the current directory hierarchy. It normally implies that there exist 
one or more directories subordinate to the> UDD> project> person level. That is, if a user issued a 
command CWD MANUALS, there is assumed to exist a directory path name 
> UDD> project> person> MANUALS within the hierarchy being used by this task. After the CWD 
command is executed, files that exist within the MANUALS subdirectory can be referred to by the 
task using simple file names. 
It is also possible to traverse the hierarchy in the opposite direction, that is, in a direction toward the 
root. This is done by specifying as the parameter the single character < (less than sign). Thus it is 
possible to revert to the original directory level after having issued the CWD command described 
above by issuing a second command, CWD <. Each occurrence of the < sign moves the point of 
reference one level up (toward the root). 
If an absolute pathname (one that begins with the> sign) is given as a parameter, the effect is to 
move the point of reference directly to the specified point in the named directory. This directory may 
or may not be the same as the one being used by the issuing task. 

Example: 
Assume the directory structure shown in the figure below. A task group whose user id is 
SMITH.AUTHORS is active and is at the default directory level > UDD> AUTHORS> SMITH, 
established when the task group was initiated. 

EXECUTION CONTROL LANGUAGE 4-7 AX07 



CHANGE WORKING DIRECTORY 

UDD 

AUTHORS 

SMITH JONES 

BOOKS 

NOTE: RECTANGLES DENOTE DIRECTORIES; CIRCLES DENOTE DATA FILES. 

Figure 4-1. Typical Directory/File Structure 

A sequence of CWD commands such as that shown below is issued. A description of the resulting 
action is given opposite each command. 

Command 

CWDBOOKS 

CWD< 

CWD>UDD>AUTHORS>JONES 
or CWD <JONES 

EXECUTION CONTROL LANGUAGE 

Resulting Action 

The point of reference is moved to the BOOKS 
subdirectory level (one level below the default 
SMITH level). Files named A, B, and Q can now be 
referred to by their simple names. The system 
supplies >UDD>AUTHORS> SMITH>BOOKS from 
the working directory in the construction of full 
pathnames for the three files. 
The point of reference is moved up one level, back to 
the original SMITH level (note that the same effect 
could have been obtained with a CWD command 
without the < sign). The files named A and B in the 
SMITH directory (not the same files as A and B at the 
BOOKS subdirectory) can now be referred to by 
simple names. 

The absolute form of the pathname moves the 
point of reference directly to the JONES directory 
level. The second form achieves the same result by 
moving up one level to AUTHORS and then down 
one level to JONES. 

4-8 AX07 



COBOL 

COBOL 

Command Name: COBOL 
Compile the COBOL source program unit represented by the indicated file name, applying the 
specified compiler options. 

FORMAT: 

PARAMETER DESCRIPTION: 
path 

COBOL path ctl_arg 

Specifies the name of the file containing the source unit to be compiled. 

ctl_arg 
One or more control arguments chosen from the following list. 

{
-NO_OBJ I 
-NO 

Indicates that the generation of the object text unit is to be suppressed. If omitted, the object 
text unit is generated. 

{
-LIST_OBJ} 
-LO 

Indicates that a listing of the object text output is to be obtained. Object text is interspersed 
with source text in the listing. If omitted, object text is not listed. 

{
-LIST ERRS} 
-LE --

Specifies that only those source lines containing compilation errors, together with their error 
codes, are to be listed. If omitted, and -NL is not specified, the complete source program is 
listed, followed by a listing of the error lines and codes. 

{
-NO_LIST} 
-NL 

Specifies that all listings are to be suppressed. If omitted, and -LE is not specified, the complete 
source unit is listed, followed by a listing of the error lines and codes. 

{
-SIZE nn} 
-SZ nn 

Designates the number of additional 1024-word blocks of memory to be used for tables by the 
compiler. The value of nn can be between 04 and 53, inclusive. If omitted, at least 3000 words 
of table space must be available. 

-DB 
Indicates that debugging lines are to be compiled as comments, ignoring the WITH 
DEBUGGING MODE clause in the source program. 

-LD 

Specifies that, in addition to the source text, errors, and object code (if specified) listings, a 
data map list is also to be produced. 

-COUT out path 
Indicates that listings which would normally be written to the file path.L are to be written to 
ouLpath. 

FUNCTION DESCRIPTION: 
The COBOL command is used to invoke the GCOS 6 COBOL Compiler component. Execution of the 
compiler is normally intended for the batch task group, as is the execution of most of the other 
components used in a program development activity. 

EXECUTION CONTROL LANGUAGE 4-9 AX07 



COBOL I COMPARE 

The path parameter can assume any of the acceptable forms of a pathname; a simple name indicates 
that a source program unit residing in the working directory is to be compiled. Wherever it exists, it 
must be suffixed with a .C suffix, indicating that it is a COBOL langauge source unit. The path 
parameter must be given without the .C suffix; the compiler appends the suffix prior to searching the 
directory for the source unit. 
If the -COUT control argument is not specified, the requested listings are written to a file created by 
the compiler in the working directory, having a file name of the form path.L. The path portion is the 
last or only element specified in the path parameter. This file can be subsequently listed on a line 
printer by using the PRINT utility command. If a different file is specified by using the -COUT 
argument, the listings are written to a compiler-created file whose pathname is out path. The 
compiler does not append a .L suffix. 
The object text unit generated by the compiler is written to a compiler-created file whose name is of 
the form path.O, and is contained in the working directory. 
If files of the form path.L and path.O already exist in the current working directory, they are overlaid 
by the output generated by the current compilation. 

Example: 
COBOL CBPROG -NO OBJ -LD -rOUT > SPD>LPTO1 

A COBOL source program, CBPROG.C, is to be compiled. The source text file is located in the 
working directory. Listings are to include source statements, error diagnostics and a data map, and are 
to be written to the line printer LPTO 1. No object text unit is to be generated. 

COMPARE 

Command Name: CPA 
Compare the contents of one file or volume with that of another file or volume. 

FORMAT: 

PARAMETER DESCRIPTION: 
path 

CPA path new [ct!...arg] 

Indicates the name of the file or volume to be compared. 

new 
Indicates the name of the file or volume against which that specified by the path parameter is to 
be compared. 

[ctLJtrg] 
One or more control arguments chosen from the following list. 

(-VOLUME I 
-VOL 

Indicates that an entire volume is to be compared, a track at a time, with another. If this 
argument is specified, both the path and new parameters must be of the form >SPD> 
dev name>vol id. 

-CI Indicates that a compare by control interval is to be performed. This argument can be specified 
under any of the following conditions: 
1. The path parameter represents a Series 60-compatible file and the new parameter represents 

either a file of the same type or a magnetic tape. 
2. The path parameter represents a magnetic tape containing control intervals from a type" I" 

COpy (refer to the COpy command description), and the new parameter represents a Series 
60-compatible file of the type copied to the tape. 

3. Both path and new parameters represent magnetic tape files or volumes. 

EXECUTION CONTROL LANGUAGE 4-10 AX07 



I-LIMIT nnl 
-LI nn 

COMPARE / COpy 

Specifies that only nn records or control intervals are to be compared (if end of file is not 
encountered first). 

I-FROM nn I 
-FMnn 

Specifies that the first nn records or control intervals of the file are to be bypassed before 
beginning the compare. 

I-PRINT nn I 
-PRnn 

Specifies that only the first nn miscompared records are to be printed. The compare operation 
terminates when the end of the file or volume is encountered. 

-NWD 
This argument applies only to tape files and specifies that the tapes are not rewound at the end 
of the compare. 

FUNCTION DESCRIPTION: 
The COMPARE command compares two files or volumes, record by record or control interval by 
control interval, and, if specified by the -PR control argument, writes the contents of any 
miscompared records on the user output file. If a user is at an interactive terminal and his user output 
file is the terminal, he can direct the written output to another device, such as a line printer, by 
issuing an appropriate FILE OUT command prior to issuing the COMPARE command. At the 
termination of the CPA command, a message is issued to the user output file, giving the number of 
miscompared records or control intervals, if the number is nonzero. 
If a volume compare is to be performed, then the path and new parameters must represent the 
pathnames of peripheral devices. The deLname portion of the pathname is the symbolic name (e.g., 
DSKOI) given to the device in question at system configuration. The volJd portion of the parameters 
represents the identification of the volumes to be compared. 

Example 1: 
CPA FILEA FILEB 

Compare two files in the working directory. 
The full pathnames of FILEA and FILEB are constructed using elements of the working directory. 
The files are compared record by record and a summary message is issued, giving the number of 
miscompared records, if any. 

Example 2: 
FO>SPD>LPTOI 

CPA FILEA > UDD> BOOKS> JONES> FILEA -PR 20 

FILEA in the working directory is compared to FILEA in the directory >UDD>BOOKS>JONES. 
The first 20 miscompared records are written to the line printer LPTO 1. 

COpy 

Command Name: CP 
Copy a file or volume. 

FORMAT: 

EXECUTION CONTROL LANGUAGE 

CP path new [ctl_ arg] 

4-11 AX07 



COpy 

PARAMETER DESCRIPTION: 
path 

Specifies the name of the file or volume to be copied. 

new 
Specifies the new pathname of the file or volume being copied. 

[ctLarg] 
One or more control arguments chosen from the following list. 

I-VOLUME I 
-VOL 

-CI 

Indicates that an entire volume is to be copied a track at a time. If this argument is specified 
the path parameter must be of the form >SPD>deLname>voLid, and the new parameter 
must be of the form >SPD>dev_name[>vol_id] .. 

IndiCates that a copy by control interval is to be performed. This argument can be specified 
under any of the following conditions: 
1. The input is a Series 60-compatible file and the output is a file of the same type or a 

magnetic tape. 
2. The input is a magnetic tape created by a copy under condition 1 above, and the output is a 

Series 60-compatible file of the same type as that which was copied to the tape. 
3. Both the path and new parameters represent magnetic tape devices. In this case the copy 

will be to end of volume. 
-NWD 

This argument applies only to tape files and secifies that the tapes are not rewound at the end 
of the copy. 

-VRB . {
-VERBATIM .J. 

This argument applies only to card input files and specifies that cards are to be read in verbatim 
mode at the control interval level. 

FUNCTION DESCRIPTION: 
The COpy command permits the creation of backup copies of files or volumes, either on magnetic 
tape or on another mass storage device. It can also be used to create copies of files in the same 
directory or in other directories. 
The path and new parameters may express or imply the same directory portion of the file's pathname. 
If they do, then the file name portions of both must be different, and furthermore the file name 
portion of the new parameter must not already exist within the directory. If the path and new 
parameters represent different directories, then the file name portions of both may be the same, but 
the same requirement exists regarding the uniqueness of the file name in the directory represented by 
the new parameter. 
If a volume copy is to be performed, then the path and new parameters must represent the pathnames 
of peripheral devices. The de~name portion of the pathname is the symbolic name (e.g., DSK01) 
given to the device at system configuration. The volid portion of the path parameter is the volume 
identification of the volume being copied. If the new parameter names a magnetic tape device and the 
pathname includes the voUd portion, the volume label is read and verified. The copied data then 
follows the volume label; i.e., the volume label is preserved. If the vol id portion is omitted, copying 
begins at the current position on the tape (normally beginning of tape ). In this case, the tape volume 
label, if any, is not preserved. 

Example I: 
CP FILEA FILEB 

EXECUTION CONTROL LANGUAGE 4-12 AX07 



COpy / CREATE DIRECTORY 

Copy a file within the working directory. The full pathnames of FILEA and FILEB are constructed 
using elements of the working directory. The result of this copy is the existence of two identical files 
under different names. 

Example 2: 
CP FILEA > UDD> BOOKS> JONES> FILEA 

Copy a file from the working directory to another directory on the same volume. FILEA in the 
working directory is copied to the directory >UDD>BOOKS>JONES, retaining the same name, 
FILEA, assuming that the file name does not already exist in that directory. 

Example 3: 
CP SUB DIRI>FILEA" VOL003>UDD>BOOKS>JONES>FILEB 

Copy a file from a subdirectory in the working directory to a directory on another volume. FILEA, 
one directory level below the working directory, is copied to the directory >UDD>BOOKS>JONES 
on a volume whose volume id is VO L003. It is assigned the name FILEB in the new directory. 

Example 4: 
CP>SPD>DSK03>VOLOOI >SPD>DSK05 -VOL 

Copy the contents of one mass storage volume to another (like) mass storage volume. The contents of 
the volume VOLOOI, mounted on the device represented by symbolic device name DSK03, are copied 
to the volume mounted on the device represented by symbolic device name DSK05. 

CREATE DIRECTORY 

Command Name: CD 
Create a new directory identified by the specified pathname. 

FORMAT: 

PARAMETER DESCRIPTION: 
path 

CD path 

The pathname of the new directory to be created. 

FUNCTION DESCRIPTION: 
The CREATE DIRECTORY command can be used under any circumstances in which the creation of 
a new directory, or a subdirectory within an existing directory, is required. On a newly created 
volume, whose directory consists of only the root entry (volid) it can be used to introduce the UDD 
directory level, as well as any number of project- and user-level entries (see example 4, below). On a 
volume which already contains user directories, it can be used to introduce new user-level entries 
within a project-level directory, or new project-level entries within the UDD-Ievel directory. 
The form of the path entry of this command is the factor which determines the level of the directory 
being created. If it is a simple name, the name is concatenated with the entries constituting the 
working directory, resulting in a new directory one level below that of the working directory. A 
pathname consisting of more than one element results in the creation of the directory named by the 
last pathname element, and requires that all preceding directories named already exist (see examples 3 
and 4, below). 

Example I: 
CD SMITH! 

EXECUTION CONTROL LANGUAGE 4-13 AX07 



CREATE DIRECTORY / CREATE FILE 

Create a directory within the working directory. If the current working directory is 
> UDD> BOOKS>SMITH, the resulting directory is> UDD> BOOKS>SMITH>SMITHI. 

Example 2: 
CD<JONES 

Create a new user-level directory at the same level as the working directory. If the working directory 
is > UDD> BOOKS> SMITH, the resulting new directory is >UDD>BOOKS>JONES. 

Example 3: 
CD<JONES 

CD<JONES>JONESI 

Create a new user-level directory at the same level as the working directory, and one subdirectory. 
If the working directory is > UDD> BOOKS>SMITH, the resulting directory is 
>UDD>BOOKS>JONES>JONESI. Note that two steps are required, since two directory levels are 
being created. 

Example 4: 
CD" USER03> UDD 

Create a new user directory directory on another volume which has only a volume-id, USER03. 
Additional project/user directories can be created on the new volume by issuing pairs of commands of 
the form 

CD" USER03> UD D>project 
CD" USER03> UOD> project> person 

for each new directory desired. Or, if a command 

CWD" USER03> UOD 

is issued first, the additional project/user directories can be created using pairs of commands of the 
form 

CREATE FILE 

Command Name: CF 
Create the specified mass storage file. 

FORMAT: 

PARAMETER DESCRIPTION: 
path 

CO project 
CD project> person 

CF path [ctL arg] 

Specifies the pathname of the file to be created. 

[ctLarg] 
One or more control arguments chosen from the following list. 

-F_REL 
Creates a BES native fixed relative file without deletable records. 

EXECUTION CONTROL LANGUAGE 4-14 AX07 



CREATE FILE 

-N REL 
Creates a BES native fixed relative file with deletable records. 

-SEQ 
Creates a Series 60-compatible variable length record file with spanned records that is processed 
sequentially. 

-REL 
Creates a Series 60-compatible variable length record file that can be processed sequentially or 
relatively. 

j
-INDEX l 
-IX \ 

Creates a Series 60-compatible variable or fixed length record file which can be processed 
sequentially or index sequentially. 

j
-CI_SIZE nl 
-CSZ n \ 

The number of bytes in a control interval for -SEQ and -INDEX type files. The value of n must 
be a multiple of 256 bytes. If not specified, the default is 512 bytes. 

j
-REC_SIZE nl 
-RSZ n \ 

The number of bytes per record for -F SEQ, -F REL, and -N REL type files. For -SEQ, -REL, 
and -INDEX type files it specifies the maximum record size in bytes. If not specified, the 
default is 256 bytes. 

j
-SIZE n l 
-SZ n \ 

The initial size of the file in units of control intervals for -SEQ, -REL, and -INDEX type files, 
or records for -LREL and -N JEL type files. Default is no initial allocation. 

j
-INC_SIZE n! 
-ISZ n 

The number of units by which the file size is to be incremented whenever it must be expanded 
to accommodate more data. If not specified the value of n is the same as that specified for 
-SIZE. If -SIZE is not specified, n is set to 40 physical sectors. 

j -MAX_SIZE n ! 
F-MSZ n 

The maximum size which this file can attain, in units of control intervals for -SEQ, -REL, and 
-INDEX type files, or records for -LREL and -NJEL type files. It must be set equal to the 
initial size, as specified by the -SIZE control argument, if a BES I-readable file is being created. 
If this argument is not specified, the file can expand to the physical limit of the volume. 

j
-KEY_OFFSET n! 
-KO n 

The byte offset of the first byte of the key field within the record. The first byte of a record is 
byte 1. This argument is required for -INDEX type files. 

j-KEY_SIZE n ! 
-KSZN 

The number of bytes constituting the key field. This argument is required for -INDEX type 
files. 

j-FILLYC n! 
-FPCn 

The ratio of data bytes to total bytes to be put into each control interval when creating an 
-INDEX type file, expressed as a percentage. If not specified, the default value is 100. 

EXECUTION CONTROL LANGUAGE 4-15 AX07 



CREATE FILE / CREATE GROUP 

FUNCTION DESCRIPTION: 
The CREATE FILE command reserves space in the file system for the specified file in accordance 
with the control arguments supplied in the command. It establishes a pathname whose form is 
dependent upon the form of the path parameter and the elements of the working directory. 
If a simple name is specified as the path parameter, it is concatenated with the elements of the 
working directory to form the full pathname of the file. If a relative name is given, any directories 
expressed or implied by that relative name must exist, as must any directories expressed if the path 
parameter is an absolute pathname. 
The CF command, in effect, creates an "empty" file, which can be subsequently loaded by output 
statements or macro calls in user programs. 
The initial shareability and permission attributes of the created file are such that the file may be 
referred to from both online and batch tasks, and may be read from and written to by any task. These 
attributes can be modified through the use of the MODIFY FILE command if different attributes 
(e.g., write protection) are desired. 
The control arguments -E-REL, -N_REL, -SEQ, -REL, and -INDEX are mutually exclusive. If none is 
specified a -SEQ type file is created. 

Example 1: 
CF FILEOI -SEQ -C!2IZE 1024 -SIZE 100 

Create a file at the current level in the working directory. If the working directory is 
>UDD>BOOKS>JONES, the full pathname of the created file is>UDD>BOOKS>JONES>FILEOl. 
It is a sequential file whose control interval size is 1024 bytes and whose initial size is 100 control 
intervals. It can be incremented in steps of 100 control intervals up to the physical limit of the 
volume (default values for -ISZ and -MSZ control arguments). 

Example 2: 
CF SUB~IR1>MYFILE -IX -SIZE 50 -KO 9 -KSZ 6 -MSZ 200 

Create a file in an existing directory one level below the current level in the working directory. 
Given the same working directory as in the previous example, the full pathname of the created file is 
>UDD>BOOKS>JONES>SUB DIR1>MYFILE. It is an indexed file whose initial size is 50 control 
intervals of 512 bytes, and whose increment size and maximum size are 50 and 200 control intervals, 
respectively. The first byte of the record key is the ninth byte of the record (the first byte of a record 
is byte 1), and the key is six bytes long. 

CREATE GROUP 

Command Name: CG 
Perform the initialization functions necessary to the initiation of an online task group. 

FORMAT: 

PARAMETER DESCRIPTION: 
id 

CG id phys.Jvl [ctl_arg] 

The group identification of the new task group. It is a two-character name that cannot have the $ 
as its first character. 

phys.Jvl 

EXECUTION CONTROL LANGUAGE 4-16 AX07 



CREATE GROUP / CREATE TASK 

The base priority level relative to which all tasks in this task group will execute. 

[ctL..arg] 
One or more control arguments chosen from the following list. 

(
-EFN root I 
-EFN root?entry 

The name of a bound unit root segment to be loaded as the lead task if it is not already loaded. 
The root segment name can be suffixed with ?entry, where entry is a symbolic start address 
within the root segment. If not given, the start address established when the bound unit was 
linked is assumed. 

-ECL 
The root segment of the execution control language (ECL) processor is to be loaded as the lead 
task. 

-LRN n 
Specifies the highest logical resource number (LRN) which will be referred to by any task in 
the task group. The minimum value which can be specified for n is the highest LRN used by the 
system task group; this is also the default if this argument is not specified. 

-LFN n 
Specifies the highest logical file number used by any task in the task group. If -LFN is not 
specified, n assumes the value 15. 

-POOL id 
id is a two-character ASCII identifier and is the name of the memory pool from which all 
dynamic memory required by this task group is to be taken. If specified, id must have been 
defined by a CLM MEMPOOL directive. If not, the issuing task group's memory pool is used. 

NOTE: In any invocation of the CG command, -EFN or -ECL, but not both, can be specified. If 
neither is specified, -ECL is assumed. 

FUNCTION DESCRIPTION: 
The CREATE GROUP command causes the initialization and allocation of all data structures used by 
the system to define and control the execution of the task group. It causes the loading of the root 
segment of the lead task of the task group. It does not cause the system to activate any task within 
the task group. 
This command can be issued only from an online task group. 

Example: 
CG AX 15 -EFN MAINYG?ENTRY 1 -LRN 8 -POOL A2 

A task group identified as AX is created. The lead task of the group is the program MAIN.J>G, whose 
execution is to be started at the symbolic address ENTRY 1. No task in the group will execute at a 
priority level lower than 15, nor refer to a logical resource number higher than 8. Memory will be 
obtained from a pool identified as A2 at system configuration. 

CREATE TASK 

Command Name: CT 
Perform the initialization functions necessary to the initiation of a task within the issuing task group. 

FORMAT: 
CT lrn reLlvl ctl_arg 

EXECUTION CONTROL LANGUAGE 4-17 AX07 



CREATE TASK 

PARAMETER DESCRIPTION: 
lrn 

The logical resource number (LRN) by which the issuing task group can refer to the created task. 
I t cannot exceed the value specified by the -LRN control argument in the CREATE GROUP 
command which created the group of which this task is a member. 

reLJvl 
The priority level, relative to the task group's base priority level, at which the created task is to 
execute. 

ctlJrg 
One or more control arguments chosen from the following list. 

{ 
-EFN root } 
-EFN root?entry 

The name of the bound unit root segment to be loaded for execution. The root segment name 
can be suffixed with ?entry, where entry is a sym bolic start address within the root segment. If 
no suffix is given, the default start address, established when the bound unit was linked, is 
assumed. 

{
-SHARE lrn [ssa]} 
-SHR 1m [ssa] 

The same bound unit is used as for the task identified by lrn. (This task must have been 
previously defined by a CREATE TASK command specifying this lrn.) ssa is the symbolic start 
address within the root segment of the task lrn. If none is given, the root segment's default start 
address, established when the shared bound unit was linked, is assumed. 

NOTE: In any invocation of the CT command, -EFN or -SHARE, but not both, must be specified. 

FUNCTION DESCRIPTION: 
The CREATE TASK command causes the allocation and initialization of the data structures which 
define and control the execution of a task. It causes the loading of the root segment specified by the 
-EFN control argument. It does not activate the task (the ENTER TASK REQUEST command is 
required to perform activation). 
One or more CT commands can be issued to create one or more tasks within the task group. These 
tasks can be requested for execution concurrently or serially by entering the appropriate control 
argument in the ETR command which is used to activate each task. Refer to the description of the 
ETR command. 
Use of the -SHARE control argument requires that the bound unit represented by the accompanying 
logical resource number (LRN) be declared as sharable at the time the bound unit was linked. A 
sharable bound unit is loaded into the system's memory pool if there is sufficient memory available; 
otherwise it is loaded into the issuing task group's memory pool. In the latter case it effectively 
becomes nonsharable (for the current execution). 

Example: 
CT 1002 -EFN PROGIO 
CT 11 03 -EFN PROGII 

CT 1202 -SHARE 10 ENTRY2 

Three tasks are made known to the issuing task group. Their logical resource numbers (LRNs) are 10, 
11, and 12. Task lOis to execute at priority level 02 relative to the base priority level established 
when the task group was created. Task 11 is to execute at relative level 03, and task 12 is to execute 
at the same relative level as task 10. If the task group's base priority level was specified as 20, then the 
three tasks execute at physical priority levels of 22, 23, and 22, respectively. Task 12 is to share the 
same bound unit as task 10; however, execution of task 12 begins at a different point in the bound 

EXECUTION CONTROL LANGUAGE 4-18 AX07 



CREATE TASK / CREATE VOLUME 

unit, specified by the label ENTRY2 (task 10's entry point is the default entry point established when 
PROG I 0 was linked, and PROG I 0 must have been declared sharable when linked). Subsequent 
ENTER TASK REQUEST commands cause the execution of the above tasks to begin (refer to the 
description of the ETR command). 

CREATE VOLUME 

Command Name: CV 
Create or modify a mass storage volume. 

FORMAT: 

PARAMETER DESCRIPTION: 
path 

CV path ctL..arg 

The pathname of the device upon which the volume to be created is mounted. The form of the 
pathname is 

ctL..arg 
Exactly one control argument from the following list. 

{
-FORMAT volJd [X]} 
-FT voLjd [x] 

Assign volJd as the volume id and major directory name. Preformat the volume by initializing 
all sectors to zeros, checking for bad tracks. The optional x character defines the format of a 
magnetic tape volume. The possible values of x are I, 2, 3, or H, and specify the following 
formats: 

1. American National Standard Institute level I 
2. American National Standard Institute level 2 
3. American National Standard Institute level 3 
H Honeywell derivative of American National Standard Institute level 3. 
If used when formatting a disk volume, the optional x character is ignored. 

{
-BOOT X'hhhh'} 
-BT x'hhhh' 

Create bootstrap records and write them to volume-relative sectors 0 through 6. The existing 
volume id and major directory name are not modified. The x'hhhh' field defines certain 
bootstrap options as described in the function description. 

{
-MDUMP xx} 
-MDxx 

Create a memory dump bootstrap record and write it to volume-relative sector O. The existing 
volume id and major directory name are not modified. xx specifies the number of 4096-word 
modules to be dumped. 

{
-RENAME y} 
-RNy 

Change the volume id and major directory name to that specified by y. y is a one- to 
six-character ASCII string. 

FUNCTION DESCRIPTION: 
The CREATE VOLUME command initializes a mass storage volume in one of several ways. A 
previously unused volume can be assigned a volume identification through the use of the -FORMAT 

EXECUTION CONTROL LANGUAGE 4-19 AX07 



CREATE VOLUME 

control argument. This argument, in addition to initializing all tracks on the volume and verifying 
their integrity, writes a volume label record containing the volume identifier specified by the vol id 
field in this argument. It also establishes this identifier as the volume major (root) directory name. 
Thus, if voUd is given the value USERO I, the volume label contains this value as the volume 
identifier, and the root directory pathname for this volume is " USERO I. 
A volume which has already been assigned a volume identifier as described above can be supplied with 
a bootstrap routine in one of two forms. The -BOOT control argument causes a standard system boot­
strap routine to be written on the volume. The x 'hhhh' field is used to define the channel of the disk 
device containing the directive files and routines used during system initialization, and to define certain 
bootstrap and initalization options. The field consists of four hexadecimal digits whose bit configu­
ration is broken down as follows: 

hI h2 h3 h4 
~ ~ ~ ~ 

XXXX XXXX XXXX XXXX 
\ 

'f' I~ 

CHN RFU OPT 

CHN 
Ten bits (bits 0 through 9) which specify the channel number of the initialization device (e.g., 
0400, 1280). The fourth digit of the channel number is always zero, and the values that can be 
assumed by the third digit are 0, 4, 8, and C (hexadecimal). 

RFU 
These bits (bits 10 through 12) are reserved for future use and must be zero. 

OPT 

These bits (bits 13 through 15) establish the bootstrap/initialization options as follows: 
If bit 13 = 1: Halt at the conclusion of the system bootstrap routine, and before entering the 
operating system initialization code. At this halt the D 1 register can be set to a channel number as 
defined under CHN, above, or bits 14 and 15 can be set to specify other options. 

If bit 14 = 1: Ignore any CLM USER directive file in the system initialization directory (SID) and 
use the Honeywell-supplied directive file on the device specified by CHN. 
If bit 15 = 1: Bootstrap from the fixed cartridge disk device specified by CHN. 

The -MDUMP control argument causes a special record, which bootstraps the memory dump routine, 
to be written on the volume. A file, DUMPFILE, is allocated with a sufficient number of sectors to 
contain the number of memory words specified by the xx field of the -MDUMP argument. 
A volume already having a volume identifier can be given a new identifier through the use of the 
-RENAME control argument. This causes the volume identifier field of the volume header record, and 
the root directory name, to be changed to the identifier specified by the y field of this argument. 
The CV command must specify the pathname of the peripheral device (cartridge disk or diskette) 
upon which the volume to be initialized is mounted. The dev_name portion of the path parameter is 
the symbolic name of this device as defined by a CLM DEVICE directive at system configuration. The 
vol id field of the path parameter, if used, indicates that the volume already has a volume identifier, 
and that this identifier is to be checked for agreement with the specified identifier. If the two 
identifiers do not agree, an error message is issued and the command is terminated. The volJd field of 
the path parameter does not assign an identifier or root directory name to the volume; this can only 
be done by using the -FORMAT control argument. 

Example 1: 
CV >SPD>DSK03 -FT USRDTA 

EXECUTION CONTROL LANGUAGE 4·20 AX07 



CREATE VOLUME / CROSS-REFERENCE PROGRAM 

A volume mounted on the device identified at system configuration as DSK03 is to be formatted and 
assigned the identifier and root directory name USRDTA. If this volume is to contain only user data 
(i.e., it is not to be used for system initialization or dumping of memory), no further initialization is 
required. That is, no bootstrap records need be created for this volume. Other directories can be 
established under the root directory USRDTA by subsequent use of the CREATE DIRECTORY 
command. 

Example 2: 
CV >SPD>DSK02 -FT DMPVOL 

CV >SPD>DSK02>DMPVOL -MD 04 

A volume mounted on the device identified as DSK02 is to be formatted and assigned the identifier 
and root directory name DMPVOL. This volume is to be used for dumping memory, and is therefore 
(by the second CV command) given a memory dump bootstrap record. Dumps are to contain four 
4096-word modules of memory. The second command also specifies that the previously assigned 
volume identifier is to be verified prior to creation of the memory dump bootstrap record. 

CROSS-REFERENCE PROGRAM 

Command Name: XREF 
Create a cross-reference listing for an assembly language or a macro source unit. 

FORMAT: 

XREF path{:~} [ctl_arg] 

PARAMETER DESCRIPTION: 

The pathname of the file containing the source unit to be cross-referenced. The last two characters 
must be a suffix; .A indicates assembly language source unit and .P indicates a macro source unit. 

[ctLarg) 
One or more control arguments chosen from the following list. 

-COUT ouLpath 
Indicates that listings which would normally be written to the file path.L are to be written to 
out4>ath. 

{
-SIZE nn} 
-SZ nn 

Specifies the number of I024-word memory blocks that are to be used for symbol table 
building. If not specified, nn assumes the value 01. 

FUNCTION DESCRIPTION: 
The XREF command is used to invoke the GCOS 6/MDT Cross-Reference component. Execution of 
the Cross-Reference program is normally intended for the batch task group, as is the execution of 
most of the other components used in a program development activity. 
The path parameter can assume any of the acceptable forms of a pathname, although normally it 
would be a simple name, indicating that the source unit resides in the working directory. The path 

EXECUTION CONTROL LANGUAGE 4-21 AX07 



CROSS-REFERENCE PROGRAM / DELETE GROUP / DISSOCIATE PATH 

parameter must be given with either the .A or the .P suffix to indicate which type of source unit is to 
be cross-referenced. 
If the -COUT control argument is not specified, the cross-reference listing is written to a file created 
by the Cross-Reference program, having a file name of the form path.L, the path portion being 
identical to the last (or only) element of the path parameter. If a file with this name already exists as 
a result of having performed an assembly of the same source unit, the listing generated by the 
Cross-Reference program is appended to that file. The file can subsequently be listed on a line printer 
by using the PRINT utility command. If a different file is specified by using the -COUT argument, 
out path is the name of the file containing the listing. The .L suffix is not appended. 
Additional information concerning the Cross-Reference program is contained in the Program 
Preparation and Checkout manual. 

DELETE GROUP 

Command Name: DG 
Delete an online task group definition previously created by a CREATE GROUP command. 

FORMAT: 

PARAMETER DESCRIPTION: 
id 

DGid 

The group identification of a task group previously created by a CG command specifying the same 
id. 

FUNCTION DESCRIPTION: 
The DELETE GROUP command removes all of the data structures which were constructed by the CG 
command issued previously with this id. No more ENTER GROUP REQUEST commands can be 
issued for this task group after the DG command has been executed. The DG command takes effect 
immediately if the task group is dormant when the command is issued. If it is active (Le., if its code is 
being executed and/or there are still requests in this task group's request queue), the DG command 
takes effect when execution terminates and there are no more requests in the queue. 
When a task group is deleted, the memory occupied by the data structures defining the group, and 
any memory associated with the execution of the group, is returned to the appropriate memory pool 
and is available for use by other task groups. 
This command can be issued only from an online task group. 

DISSOCIATE PATH 

Command Name: DIS SOC 
Break the association between the indicated logical file number and the external file name, established 
by a previous ASSOCIATE PATH command. 

FORMAT: 

PARAMETER DESCRIPTION: 
lfn 

DIS SOC lfn 

The logical file number whose association with an external file name is to be broken. 

FUNCTION DESCRIPTION: 
The DISSOCIA TE PATH command is used when a task has no further need for the association 
between the specified logical file number (LFN) and the related external file name. It frees the LFN 
so that another task, which requires the same LFN to be associated with a different external file, can 
have this relation made by the use of another ASSOC command. 

EXECUTION CONTROL LANGUAGE 4-22 AX07 



DISSOCIATE PATH / DUMP EDIT 

The DISSOC command has no effect on a file which is open at the time the command is issued. For 
example, if the DISSOC command follows an ETR command that did not specify the -WAIT control 
argument, and the task is still executing and using the file to be dissociated, the dissociation does not 
occur. 

Example: 
DISSOC 12 

The external file associated with LFN 12 is no longer related to the LFN, and cannot be referred to 
by the task through the LFN. 

DUMP EDIT 

Command Name: DPEDIT 
Transfer to a printer the contents of a previously written memory dump file. 

FORMAT: 

PARAMETER DESCRIPTION: 
path 

DPEDIT path [ctLJug] 

The pathname of the file containing the memory dump to be edited. The last element of the 
pathname must be the name DUMPFILE. 

[ctl_arg] 
One or more control arguments chosen from the following list. 

{
-FROM X4hhhh '} 
-FM X'hhhh' 

Specifies that the physical portion of the dump is to begin with location hhhh16 • If not 
specified, the dump begins at location zero. 

-TO X'hhhh' 
Specifies that the physical portion of the dump is to end at location hhhhl 6 • If not specified, 
the dump terminates when the end of DUMPFILE is reached. 

{
-NO_LOGICAL} 
-NL 

Indicates that the logical dump of the system control structures is to be omitted. 

{
-NO_PHYSICAL} 
-NP 

Indicates that the physical portion of the memory dump is to be omitted. 

{
-MEMORY} 
-MEM 

Specifies that current memory, rather than the memory image contained in DUMPFILE, is to 
be printed. If the -FROM and -TO arguments are not specified with the -MEM argument, the 
dump is from location zero to the physical end of memory . 

FUNCTION DESCRIPTION: 
The DUMP EDIT command causes the transfer to a hard-copy device of the contents of the memory 
dump file. This file, DUMPFILE, is allocated at the time a volume is created with a memory dump 
bootstrap record, and comprises sufficient sectors to contain the number of 4096-word memory 
modules specified when the volume was created. Refer to example 2 in the description of the 
CREATE VOLUME command. 

EXECUTION CONTROL LANGUAGE 4-23 AX07 



DUMP EDIT / EDITOR 

The transfer of data from memory to the memory dump file must have been previously performed by 
a bootstrap operation which specified the channel to which the device containing the memory dump 
volume was attached. 
The pathname specified by the path parameter is normally a full pathname of the form 

" voUd> DUMPFILE 

Thus, in the case of the dump volume created in the example referred to above, the form of the 
pathname would be 

" DMPVOL>DUMPFILE 

The memory dump output produced by the DPEDIT command comprises a logical portion and a 
physical portion. The former consists of an edited printout of system control structures such as task 
control blocks, dedicated memory locations, and group control blocks. The physical portion consists 
of a memory image printout encompassing the memory locations explicitly or implicitly specified by 
the -FROM and -TO arguments or their defaults. This portion of the dump is printed in both 
hexadecimal and ASCII representation, with duplicate line suppression. Any hexadecimal digit pairs 
which have no printable ASCII equivalents are represented by ASCII period (.) characters. 
Additional information concerning the Dump Edit utility program is contained in the Program 
Preparation and Checkout manual. 

Example I: 
DPEDIT "DUMPER> DUMPFILE -FROM X'0400' -NL 

Print the contents of the memory dump file located on the volume DUMPER. Memory locations 
between 040016 and the end of the dump file are printed. The logical portion of the dump is to be 
omitted. The memory dump is printed on whatever device is currently serving as the user output 
device (the user terminal if no FILE OUT commands have been previously issued). 

Example 2: 
FO >SPD>LPTOI 

DPEDIT "DUMPER> DUMPFILE 

Print the contents of the same dump file as in example I above. In this case, because of the FO 
command which precedes the DPEDIT command, the output is printed on a printer designated as 
LPTOI. Both logical and physical portions of the dump are printed, and the dump encompasses 
locations zero through the end of the dump file. 

EDITOR 

Command Name: ED 
Add, delete, or modify selected lines of a source unit file. 

FORMAT: 

PARAMETER DESCRIPTION: 
[ ctl_arg] 

One or more control arguments chosen from the following list. 
-IN path 

Specifies the file from which editor directives are to be read. If not specified, directives are 
obtained from the current user input file. 

EXECUTION CONTROL LANGUAGE 4-24 AX07 



EDITOR / ENTER BATCH REQUEST 

{
-LINE_LEN n I 
-LLn 

Specifies the maximum line length to be acted upon by the Editor. If not specified, n assumes 
the value of 80. 

FUNCTION DESCRIPTION: 
The EDITOR command is used to invoke the GCOS 6 Text Editor component. Execution of the 
Editor is normally intended for the batch task group, as is the execution of most of the other 
components used in a program development activity. 

,A full description of the operation and use of the Editor is contained in the Program Preparation and 
Checkout manual. 

ENTER BATCH REQUEST 

Command Name: EBR 
Enter a request for Execution Command Language (ECL) processor in the batch request queue. 

FORMAT: 

PARAMETER DESCRIPTION: 
user~d 

A field comprising two sub fields in the form person.project, by which this request is identified. 
The user id subfields are also used by the system in the construction of absolute pathnames. 

in-path 
The name of the file from which the ECL processor is to read its commands. 

[ ctl_arg] 
Only one control argument is recognized, and is described below. 
-OUT out-path 

Defines the path name of the file which is to receive user output and error output from the 
batch task group. If not specified, one of the following assumptions is made: 
If in_path specifies a mass storage file, out path = in_path.AO 
If in_path specifies an interactive terminal, out-path = in_path 
If in-path specifies an input-only device, out_path is null. 

-WD path 
Specifies that path is to be used as the working directory pathname instead of the pathname 
established by the userjd parameter. 

FUNCTION DESCRIPTION: 
The ENTER BATCH REQUEST command initiates the execution of the ECL processor as the lead 
task in the batch task troup previously created by an OCL CREATE BATCH command. If the task 
group is dormant at the time the EBR command is issued, execution begins immediately. Otherwise, 
the request is queued for execution when the group becomes dormant; i.e., a previous EBR command 
has activated the task group and its code is still executing. The ECL processor obtains its commands 
from the file named in the in-path parameter. This means that the file must begin with an ECL 
command, although it may contain other items which the called ECL function may require for its 

. execution (e.g., Editor directives). 

EXECUTION CONTROL LANGUAGE 4-25 AX07 



ENTER BATCH REQUEST / ENTER GROUP REQUEST 

Example: 
EBR BROWN.LIBRARY CMND_IN 

The batch task group is to be activated by a request identified as BROWN.LIBRARY. It will receive 
its input from and direct its output to files identified as CMND_IN and CMND_IN .AO, respectively. 

ENTER GROUP REQUEST 

Command Name: EGR 
Activate the lead task of an online task group previously created by a CREATE GROUP command. 

FORMAT: 

PARAMETER DESCRIPTION: 
id 

EGR id user_id[in-IJath] [ctl_arg] 

The group identification of a task group previously created by a CG command specifying the same 
id. 

user_id 
A field comprising two sub fields in the form person.project, by which this request is identified. 
The user id sub fields are also used by the system in the construction of absolute pathnames. 

[iJW)ath] 
The name of the file from which commands and user input are to be read by the task group during 
execution. This argument is set to null if it is not specified. It is required if the CG command 
specified the control argument -ECL. 

[ctl_arg] 
One or more control arguments chosen from the following list. 

-OUT out_path 
Defines the path name of the file which is to receive user output and error output from the task 
group. If not specified, one of the following assumptions is made: 
If in_path specifies a mass storage file, ouLpath = in-path.AO 
If in path specifies an interactive terminal, out_path.= in_path 
If in_path is not specified, out_path is null 
If iLpath specifies an input-only device, out_path is null. 

-WD path 
Specifies that path is to be used as the working directory path name instead of the pathname 
established by the userjd parameter. 

-ARG 
Indicates that additional arguments required by the task group during execution follow. These 
additional arguments are passed to the lead task to be used as necessary. If used, the -ARG control 
argument must appear last. 

FUNCTION DESCRIPTION: 
The ENTER GROUP REQUEST command initiates the execution of the lead task of a task group 
previously created by a CREATE GROUP command. If the task group is dormant at the time the 
EGR command is issued, execution begins immediately. Otherwise, the request is queued for 
execution when the group becomes dormant; i.e., a previous EGR command has activated this task 
group and its code is still executing. Execution begins at the point specified by the -EFN control 
argument of the CG command, if specified. If the -EFN control argument was not used (i.e., the lead 

EXECUTION CONTROL LANGUAGE 4-26 AX07 



ENTER GROUP REQUEST / ENTER TASK REQUEST 

task is the ECL processor), execution begins by reading the file named by the in path parameter. This 
means that this file must begin with an ECL command, although it may contain other items which the 
called ECL function may require for its execution. 

Example: 
EGR AX SMITH. SERVICES MPG.J)ATA -ARG '07/12/76 1100AM' 

The task group identified as AX in a previous CG command is to be activated. This request is 
identified as SMITH.SERVICES. The task group expects its input data to come from a file named 
MPG_DATA, in the working directory, and will write its output to a file named MPG_DATA.AO, 
also in the working directory. The lead task expects one argument, a date and time iteIn. The item is 
enclosed in quotes because there is an embedded space, but it is to be interpreted as a single 
argument. 

ENTER TASK REQUEST 

Command Name: ETR 
Allocate and initialize a task request block and place it on the request queue of the indicated task. 

FORMAT: 

PARAMETER DESCRIPTION: 
lrn 

ETR lrn [ctl_arg] 

A logical resource number specified in a previous CREATE TASK command. 

[ctl_arg] 
One or more control arguments chosen from the following list. 

-WAIT 
Specifies that the EeL processor is to wait upon completion of the requested task before 
resuming execution. 

-ARG 
Indicates that additional arguments required by the requested task follow. These additional 
arguments are passed to the requested task in an extension of the task request block. If this 
control argument is used, it must be the last one specified. 

FUNCTION DESCRIPTION: 
The ENTER TASK REQUEST command is used to activate a task which was previously defined by a 
CREATE TASK command specifying the same logical resource number (LRN) as that named in this 
command. 
The ETR command causes the construction of a GCOS 6 standard task request block (TRB), which 
consists of the elements described in Section 4 of the Monitor and I/O Services Macro Calls manual. 
Additional entries to accommodate task-specific parameters specified by the -ARG control argument 
are appended to the TRB as required. 
Multiple tasks can be made to execute concurrently within a given task group by issuing multiple CT 
and ETR commands. 
Tasks can also be made to execute serially; i.e., one task going to completion before a subsequent task 
begins execution. The -WAIT control argument is the mechanism that controls concurrency of 
execution. Judicious use of this argument can also result in a mixture of concurrent and serial 
execution (see example 3, below). 
When all of the tasks created and requested have terminated, the structures constructed by the CT 
and ETR commands can be removed by issuing a BYE command. This removes all structures except 
those of the lead task (the EeL processor), after which the next group request if any, can be honored. 

EXECUTION CONTROL LANGUAGE 4-27 AX07 



ENTER TASK REQUEST / EXECUTION COMMAND 

In each of the following examples three tasks are assumed to have been previously created by the CT 
commands shown in the example in the description of the CT command, namely: 

CT 1002 -EFN PROGI0 
CT 11 03 -EFN PROGll 

CTI202~HAREI0ENTRY2 

Any other prerequisite commands (e.g., file creation, association of LFNs to pathnames) are also 
assumed to have been issued. 

Example 1: 
The three tasks are such that there are no dependencies among them, so they can be run concurrently. 
The following ETR commands are issued to activate them. 

Example 2: 

ETR 10 
ETR 11 
ETR 12 

The three tasks are required to be executed in a particular sequence, determined by the order in 
which the ETR commands are issued. The following ETR commands are used to activate them. 

ETR 10 -WAIT 
ETR 12 -WAIT 

ETR 11 

In this case, execution of task 12 must await completion of task 10, and task 11 must likewise await 
completion of task 12. Since task 11 does not specify -WAIT, another (unrelated) activity can be 
initiated in parallel with the execution of task 11. Note, however, that if a BYE command follows the 
last ETR command, task 11 will probably not complete, since the BYE command takes effect even if 
a task within the task group is active. 

Example 3: 
Two of the tasks have a dependency between them and the third is independent of the other two. The 
following sequence of ETR commands can be used to activate them. 

ETR 11 
ETR 10 -WAIT 

ETR 12 

In this case, because task 11 does not specify -WAIT, both task II and task 10 are activated to run 
concurrently, but task 12 is dependent upon the completion of task 10. As in the previous example, 
another activity can be initiated concurrently with the execution of the third task. 

EXECUTION COMMAND 

Command Name: EC 
Invoke the Execution Command (EC) processor to read ECL commands from a designated file. 

FORMAT: 
EC path 

EXECUTION CONTROL LANGUAGE 4-28 AX07 



PARAMETER DESCRIPTION: 
path 

The name of a file, path.EC, containing ECL commands and BC directives. 

FUNCTION DESCRIPTION: 

EXECUTION COMMAND 

The function of the Ee processor is to read from a previously created file a series of ECL commands 
and Ee directives. It provides a mechanism whereby a sequence of routinely performed EeL 
functions can be executed without the need for manually entering the functions through an 
in teractive terminal. 
The file path.Ee is a file which has been previously created by use of the Editor. It contains one or 
more ECL commands and EC directives which are interpreted in sequence by the EC processor and 
acted upon as described in the following paragraphs. 
When an ECL command is encountered by the EC processor, it is simply passed to the EeL processor 
for interpretation and execution. This means that the syntax of the command as read from the file 
path.EC must be identical to that which would have been entered from a terminal device if the 
function were requested manually. All parameters and control arguments must be supplied as 
specified in the individual ECL command descriptions. 
When a command execution terminates, control is returned to the Ee processor, which then reads the 
next line from the file. 
The Ee processor also recognizes several directives which are not passed to the ECL command 
processor, but are interpreted and acted upon by the EC processor itself. These directive lines are 
identified by a character string beginning with & and followed by a ~ (space or tab character). They 
provide control over certain operational aspects of the EC processor as well as a degree of control over 
the logic of execution of the series of ECL commands. Any directive other than those described 
below is treated as an &Q~ directive, except that a nonzero error status code is returned to the task 
which invoked the EC command. 

The EC control directives are described in detail in the following paragraphs. 

This signifies a comment line and is not processed further. It is visible only by obtaining a 
listing of the EC file, and can be used, for example, to describe the function performed by the 
commands contained in the file. 

&Ab. This directive signifies that the EC file is to be substituted for the user input stream defined by 
the in path parameter when the EGR or EBR command activating this task group execution 
was issued. This means that whenever the executing task refers to its user input file, the data 
which would normally be read from this file is obtained instead from the file being read by the 
EC processor. 

&D~ This directive restores the task group's user input file to that which was defined at task group 
activation. 

&F~ Command line printing is to be turned off; i.e., command lines are not to be written to the 
user out file. This is the default; command lines are not normally written to user out. 

&N~ Command line printing is to be turned on. Each command line read from the EC file is written 
to the user out file before being passed to the ECL command processor. The & directive lines 
are not written. 

&P~ The entire line, except for the &P~, is written to the user out file. Printing of &P~ lines occurs 
regardless of whether command line printing is on or off. 

EXECUTION CONTROL LANGUAGE 4-29 AX07 



EXECUTION COMMAND 

&IF6 This directive permits the interrogation by the EC processor of an error status code returned by 
the command executed immediately prior to the &IF6 directive. For compatibility across all 
GCOS systems, it has the format: 

&IF 6 [EQUALS6&ST A TUS6 0] 6 &THEN6&ELSE6&QUIT ; 

and is interpreted as follows: 
If the error status code returned from the execution of the immediately preceding command 
line is zero (0) continue with the next command or directive line; otherwise quit. 
The &IF6 directive enables the EC processor to exit from any further processing of the EC file 
when an error condition resulting from the interpretation or execution of a command would 
make meaningless the execution of any subsequent commands. 

&Q6 The execution of the current EC file is terminated, and. control is returned to the invoking task. 
Implicit &Q6 directives may be executed, as described above, by invalid & directives or because 
of error status codes returned by the interpreation or execution of a command line. To ensure 
proper termination of the EC command, every EC file should have the &Q6 directive as its last 
line. 

Example I: 
A user is developing a program named TEST. Several recursions of source unit correction, assembly, 
and link are required before the program is operational. The original source unit TEST.A has already 
been created using the Editor. An EC file PROG_DEV.EC has also been previously created, and 
contains the following commands and EC directives. 

&6EDIT, ASSEMBLE, AND LINK PROGRAM 'TEST' 
&P~BEGIN EDITOR 
ED 
&IF6[EQUALS6&STATUS60]6&THEN6&ELSE6&QUIT; 
&PL\BEGIN ASSEMBLY 
ASSEM TEST -COUT >SPD>LPTOI 
&IF6[EQUALS6&STATUS60] 6&THEN6&ELSE6&QUIT; 
&P6BEGIN LINK 
LINKER TEST -COUT > SPD> LPTO 1 
&IF 6[EQUALS6&ST A TUS60] 6&THEN6&ELSE6&QUIT; 
&P6LINK COMPLETE 
&Q~ 

In order to execute the correction, assembly and link sequence the user has only to enter the ECL 
command 

The EC processor appends the .EC suffix to PROGJ)EV and searches the current working directory 
for the resulting file name PROG_DEV.EC. Each command is preceded by an &P~ directive which 
causes a typeout to the user_out file informing the user of his step-by-step progress through the 
sequence. The &IF6 directives following each command line would cause an exit from the sequence if 
execution of the command resulted in an error reported by a non-zero error status code. No further 
&P~ messages would be written to user_out, indicating to the user that some error condition has been 
detected. 

EXECUTION CONTROL LANGUAGE 4-30 AX07 



EXECUTION COMMAND / EXPORT PAM FILE 

Example 2: 
Execution of the program 'TEST' created in example 1 above requires the creation of a work file for 
use by the program. This file is also to be deleted after the program is finished its execution. The 
following EC file, called EX_TEST.EC has been created to perform this sequence of functions: 

&t6.EXECUTE PROGRAM 'TEST' 
&Pt6.CREATE WORK FILE 'TESTa 1 ' 
CF TESTa 1 -SEQ -SZ 100 
&Pt6.EXECUTE 'TEST' 
TEST -ARG argl ... argn 
FD TESTa} 
RL TESTOI 
&Pt6.EXECUTION OF 'TEST' COMPLETE 
&Qt6. 

In this case, the user enters the ECL command 

which, in the same manner as in example I, invokes the EC processor and turns control over to the 
sequence of commands and directives contained in the EC file. The work file TESTa I is created, the 
program 'TEST' is invoked, supplying any arguments (argl ... argn) which may be necessary to its 
execution, a dump of the work file is requested, and the file is then released (deleted). 

EXPORT PAM FILE 

Command Name: EX_PAM 
Unload one or more MDT sequential files to a BES 1 and BES2 partitioned file. 

FORMAT: 
EX_PAM path pam [mem!] ... [-R] 

PARAMETER DESCRIPTION: 
path 

The pathname of a directory containing one or more files to be exported. 

pam 
The name of the BES 1 and BES2 partitioned file to which the sequential files are to be exported. 

[memil 
The simple names of one or more files, immediately contained within path, to be copied to the 
partitioned file as members. If not specified, all files within path are copied. 

[-R] 

Indicates that if any member named by the memi parameter already exists in the file named by 
pam, it is to be replaced. 

FUNCTION DESCRIPTION: 
The EX_PAM command pennits the transfer of sequential files contained within the MDT file system 
to BES 1 and BES2 partitioned access method (PAM) files. Each sequential GCOS 6 file, when copied 
to the PAM file, becomes a member in the PAM file, and has its name entered into the member index 
portion of the PAM file. 
The path parameter names the GeOS 6 file system directory which immediately contains the files to 
be transferred; i.e., if the named directory contains subdirectories which themselves contain files, 

EXECUTION CONTROL LANGUAGE 4·31 AX07 



EXPORT PAM FILE / FILE DUMP 

these latter files are not affected by the EXY AM command. If no memi parameters are given, each 
file which is immediately subordinate to the directory named in the path parameter is transferred. 
The pam parameter names the BES 1 and BES2 partitioned file which is to contain the transferred 
files. This file must have been previously created as a BES 1/2 offline activity. Three steps are 
involved in the creation of this file. 

1. The volume which is to contain the PAM file must be initialized using the Initialize function of 
Utility Set 1. (If the volume has already been initialized and the file is to be added to the 
volume, this step is omitted.) 

2. The file must be allocated using the Allocate function of Utility Set l. Sufficient sectors must 
be allocated to contain the expected files and the accompanying member index. 

3. The file allocated in step 2 must be initialized as a partitioned file using the Initialize function 
of Utility Set 1. The number of members specified must be large enough to accommodate the 
expected number of transferred files. 

The user can refer to the BES2 Utility Programs manual (Order Number AU47) for full details 
regarding the allocation and initialization of partitioned files. 
Because of the eight-character limit in the length of a BES 1 and BES2 partitioned file member name, 
the first eight characters of each GCOS 6 file to be transferred must be unique. File names longer than 
eight characters are truncated to eight characters. 

Example: 
EX_PAM MYDIR MYPAM FILEA FILEB FILEC 

Three files contained in the directory MYDIR are to be transferred to the partitioned file MYPAM. 
The files, FILEA, FILEB, and FILEC, are GCOS 6 sequential files and are added as members to the 
previously created PAM file as new members. 

FILE DUMP 

Command Name: FD 
Transfer the contents of the specified area of a mass storage volume to the user output file. 

FORMAT: 

PARAMETER DESCRIPTION: 
path 

FD path[ctl_arg] 

The pathname of the file or volume whose contents are to be dumped. 

[ ctl_arg] 
One or more control arguments chosen from the following list: 

(
-FROM xxI 
-FM xx 

The first xx records are to be skipped before beginning the dump. xx can be a decimal number 
or a hexadecimal number in the form X'hhhh', where 'hhhh' represents four hexadecimal digits. 

(
-LIMIT nnl 
-LI nn 

Dump the number of records specified by nn. If end of file is encountered before nn records 
are dumped, the dump terminates at end of file. nn can be a decimal number or a hexadecimal 
number in the form X'hhhh', where 'hhhh' represents four hexadecimal digits. 

EXECUTION CONTROL LANGUAGE 4-32 AX07 



FILE DUMP / FILE OUT 

-CI 
The dump is to be taken at the control interval level. If the path parameter specifies a magnetic 
tape file or volume, the dump is taken at the physical block level. 

·NWD 
A magnetic tape volume is not to be rewound before opening it for the dump. This argument is 
valid only if -CI is also specified. 

·BACK nn 
A nlagnetic tape volume is to be backspaced nn blocks before dumping. This argument is valid 
only if -CI is also specified. 

-HEX 
Print only the hexadecimal representation of the file or volume content. 

-ALPHA 
Print only the ASCII representation of the file or volume content. 

FUNCTION DESCRIPTION: 
The FILE DUMP command permits the user to obtain a printed listing of a mass storage or magnetic 
tape file or volume. Whether a file or a volume is to be dumped is determined by the form of the path 
parameter. A mass storage file dump can be obtained by using any of the acceptable forms of a 
pathname. A mass storage volume dump or a dump of a magnetic tape file or volume is obtained by 
specifying the pathname in the form 

The dev_name portion of the path parameter is the symbolic device name assigned by a CLM 
DEVICE directive at system configuration. The vol_id portion, if used, specifies that the volume 
name is to be verified before initiating the dump. 
The output from the FD command is written to whatever file or device is currently assigned as the 
user output file. 

Example 1: 
FDMYFILE 

A user file named MYFILE is to be dumped in its entirety. The output is written in both hexadecimal 
and ASCII representation. 

Example 2: 
FD >SPD>MTUOI -NWD -BACK 5 -LIMIT 10-CI 

A portion of a magnetic tape volume is to be dumped. The volume is that defined at system 
configuration as MTUO 1. Ten physical blocks are to be dumped after backspacing the tape five 
blocks. The ·NWD argument is used to prevent rewinding of the tape, and, in conjunction with the 
·BACK and -LIMIT arguments, effectively causes a dump of five blocks on either side of the tape's 
current position. 

FILE OUT 

Command Name: FO 
Change the destination to which user output is sent. 

FORMAT: 
FO[path] 

EXECUTION CONTROL LANGUAGE 4-33 AX07 



FILE OUT / FORTRAN 

PARAMETER DESCRIPTION: 
[path] 

The name of the new user output file. If this parameter is omitted, the user output file reverts to 
that established at task group initiation. 

FUNCTION DESCRIPTION: 
The FILE OUT command defines a new device or file to which user output generated by a task is 
written. When a task group is initiated, the file which is to receive this output is established by the 
-OUT control argument of the ENTER GROUP REQUEST command. Error output is also written to 
the same file. The FO command makes it possible for a series of group requests to write their output 
information to separate files or devices. It does not affect the destination of error output; this is 
always written to the originally defined file. The use of the FO command with no argument resets the 
destination of user output to that of error output as defined in the EGR or EBR command. 

Example: 

The output generated by the issuing task is to be redirected to a file named REPORT_OUT, in the 
working directory . 

FORTRAN 

Command Name: FORTRAN 
Compile the FORTRAN source program unit represented by the indicated file name, applying the 
specified c011lpilation options. 

FORMAT: 

PARAMETER DESCRIPTION: 
path 

FORTRAN path [ctl_arg] 

Specifies the name of the file containing the source unit to be compiled. 

[ctl_arg] 
One or more control arguments chosen from the following list: 

(
-NO_OBJI 
-NO 

Indicates that the generation of the object text is to be suppressed. If omitted, the object text 
unit is generated. 

I-LIST_OBJI 
-LO 

Indicates that a listing of the object text output is to be obtained. Object text is interspersed 
with source text in the listing. If omitted, object text is not listed. 

I-LIST_ERRS I 
-LE 

Specifies that only those source lines containing compilation errors, together with their error 
codes, are to be listed. If omitted, and -NL is not specified, the complete source program is 
listed, followed by a listing of the error lines and codes. 

I-NO_LISTI 
-NL 

Specifies that all listings are to be suppressed. If omitted, and -LE is not specified, the complete 
source unit is listed, followed by a listing of the error lines and codes. 

EXECUTION CONTROL LANGUAGE 4-34 AX07 



FORTRAN 

I-SIZE nnl 
-SZ nn 

Designates the number of 1024-word blocks of memory to be used for tables by the compiler. 
The value of nn can be between 02 and '20, inclusive. If omitted, the available memory in the 
task group's memory pool, up to approximately 1700 words, is used. At least 1024 words must 
be available. 

-AS 
Indicates that the output from the compiler is a file of assembly language source statements 
which can be used as input to the Assembler. This file has a pathname of the form path.A, 
where path is the same as that specified in the FORTRAN command. 

-HS 

-SI 

Specifies that the source unit is in Hollerith code created by an 026 keypunch, a Type 
H200j2000, or a Type H7l6 central processor. If omitted, standard MDT code is assumed. 

Indicates that the compiler is to generate short form integers and logical variables, each being 
one word. If not specified, two-word integers and variables are generated. 

-UC 
Specifies that the generation of embedded links to subroutines referred to by CALL statements 
is to be suppressed. If not specified, links are generated. 

-UZ 
Specifies that the generation of embedded links to system subroutines (those beginning with 
the letters ZF) are to be suppressed. If not specified, these links are generated. 

-WRKn 
Designates the size of object time work space for FORTRAN main program. The value of n can 
be from 1 to 999910 inclusive. If not specified, a value of 325 1 0 is assumed. 

-COUT out_path 
Indicates that the listings which would normally be written to the file path.L are to be written 
to out-path. 

FUNCTION DESCRIPTION: 
The FORTRAN command is used to invoke to GCOS 6 FORTRAN Compiler component. Execution 
of the compiler is normally intended for the batch task group, as is the execution of most of the other 
components used in a program development activity. 
The path parameter can assume any of the acceptable forms of a pathname, although normally it 
would be a simple name, indicating that a source program unit which resides in the working directory 
is to be compiled. Wherever it exists, it must be suffixed with a .F suffix, indicating that it is a 
FORTRAN language source unit. The path parameter must be given without the .F suffix; the 
compiler appends the suffix prior to searching the directory for the source unit. 
If the -COUT control argument is not specified, the source and object listings (if specified) are written 
to a file created by the compiler in the working directory, having a file name of the form path. L, the 
path portion being the last (or only) element specified in the path parameter. This file can be 
subsequently listed on a line printer by using the PRINT utility command. If a different file is 
specified by using the -COUT argument, the listings are written to the file whose pathname is 
out path. The compiler does not append a .L suffix. 
The object text unit generated by the compiler is written to a file whose name is of the form path.O, 
and is contained in the working directory. 
If files of the form path.L and path.O already exist in the working directory, they are overlaid by the 
output generated by the current compilation. 

EXECUTION CONTROL LANGUAGE 4-35 AX07 



FORTRAN / IMPORT PAM FILE 

Example: 
FORTRAN FTPROG -LISTJ)BJ -SI -COUT >SPD> LPTOI 

A FORTRAN source program, FTPROG.F, residing in the working directory, is to be compiled. The 
source and error listings are to be written to the printer LPTO 1, and the object text unit is to be 
written to the file FTPROG.O in the working directory. Short-form integer and logical variables are to 
be generated. 

IMPORT PAM FILE 

Command Name: IMJlAM 
Transfer one or more BESI and BES2 partitioned file members to the GCOS 6 file system. 

FORMAT: 

PARAMETER DESCRIPTION: 
pam 

IMJ> AM pam path [memi] ... [-R] 

The name of the BES I and BES2 partitioned file from which members are to be transferred. 

path 
The name of a GCOS 6 directory into which the BESl and BES2 file members are to be 
transferred. 

[memi] 
The names of one or more partitioned file members which are to be transferred to the GCOS 6 file 
system. 

[-R] 

Indicates that if a file named by the memi parameter already exists in the directory named by 
path, it is to be replaced. 

FUNCTION DESCRIPTION: 
The IMJl AM command permits the transfer of one or more BES I and BES2 partitioned access 
(PAM) file members into the GCOS 6 file system. A PAM file member, when transferred, becomes a 
GCOS 6 variable sequential file contained within the directory specified by the path parameter. 
The pam parameter names the PAM file which contains the members to be transferred. This file has 
been previously created using BES 1 and BES2 offline procedures. 
The path parameter names the GCOS 6 file system directory which is to immediately contain the files 
transferred to it. It must have been previously created through the use of the ECL Create Directory 
command. 
Each of the memi parameters, if any are specified, names a member of the PAM file, specified by the 
pam parameter, which is to be transferred to the GCOS 6 file system. If no memi parameters are 
specified, every member contained in the file is transferred and becomes a GCOS 6 sequential file. 
If the -R control argument is not specified, and if a GCOS 6 file whose name is specified by a memi 
parameter already exists in the file system, an error message is issued. 

Example: 
1M_PAM MYPAM MYDIR MEMOI MEM02 MEM03-R 

Three PAM file members, MEMOI, MEM02, and MEM03, contained in the partitioned file MYPAM, 
are to be transferred into the GCOS 6 file system directory MYDIR. If the file system already 
contains any files whose names are the same as those of the specified members, they are to be 
replaced. 

EXECUTION CONTROL LANGUAGE 4-36 AX07 



LINKER / LIST NAMES 

LINKER 

Command Name: LINKER 
Create a bound unit from one or more object text units, applying the specified options. 

FORMAT: 

PARAMETER DESCRIPTION: 
[name] 

LINKER [name] [ctIJrg] 

Pathname of the created bound unit file. The pathname can be a simple, relative or absolute name. 
If the specified file already exists, it is overlaid with the new bound unit. If not specified, no 
bound unit is created, only a list file is created in the current working directory. 

[ctl_arg] 
One or more control arguments chosen from the following list: 
-IN path 

Specifies the pathname of the file containing the linker directives. The file can be read from a 
disk device, a card reader, or a terminal device. If not specified, the file named in the inyath 
parameter of this task group's EGR or EBR command is used. 

-COUT out_path 
Specifies the name of the file to which the map listing will be written. It can be written to a 
disk device, a printer, or a terminal device. If not specified, the listing is written to the file 
name.M in the working directory, overlaying any existing file by that name. 

I-SAF I 
-LAF 

Indicates the addressing mode in which the bound unit is to execute; -SAF indicates short 
(one-word) address form, -LAF indicates long (two-word) address form. If not specified, -SAF 
is assumed. 

i-SIZE nn I 
\-SZ nn 

Designates the number of 1024-word memory modules available for the Linker symbol table. 
The minimum value of nn must be 01. If not specified, the available memory in the task 
group's memory pool is used. 

FUNCTION DESCRIPTION: 
A complete description of the function of the Linker, its controlling directives, and examples of use 
are contained in the Program Preparation and Checkout manual. 

LIST NAMES 

Command Name: LS 
Display the names of one or more elements contained in the specified directory, along with their 
types, attributes, and sizes. 

FORMAT: 

PARAMETER DESCRIPTION: 
[en try_name] 

Specifies the name of the entry to be displayed. If this parameter is omitted, all entries of the 
type(s) specified by control arguments are displayed. 

EXECUTION CONTROL LANGUAGE 4-37 AX07 



LIST NAMES 

[ ctl_arg] 
One or more control arguments chosen from the following list: 

-PN path 
Specifies the directory from which entries are to be listed. If this argument is omitted, entries 
contained in the working directory are listed. 

-FILE 
Indicates that only file entries are to be displayed. If none of the control arguments -FILE, 
-DIR, or -ALL are specified, -FILE is the default. 

-DIR 
Indicates that only directory entries (Le., directories subordinate to the specified directory 
path) are to be displayed. 

-ALL 
Indicates that both file and directory entries subordinate to the specified directory are to be 
displayed. 

I-DETAIL\ 
-DTL 

Specifies that the file type and attributes of each entry are to be displayed. 

FUNCTION DESCRIPTION: 
The LIST NAMES command permits the user to obtain a listing of the file and/or directory entries 
contained within a given directory. It also displays various attributes of file entries: file type, starting 
sector, number of sectors, and record length. 
The following list gives the possible file type designators and their meanings. 

Type 

RI 
R2 
R4 
RS 
D 
S 
R 
ID 
I 
RD 

* 
Example: 

Meaning 

BES fixed relative, static allocation, no deletable records. 
BES fixed relative, dynamic allocation, no deletable records. 
BES fixed relative, static allocation, deletable records. 
BES fixed relative, dynamic alloction, deletable records. 
Directory. 
Variable sequential. 
Relative. 
Indexed (data area). 
Indexed (index area). 
Random. 
Organization not recognized. 

LS -PN 1\ ZOO BOO START_UP.EC 

List the attributes of the file START_UP.EC, contained in the directory ZOOBOO. The following 
display is returned to the user output file. 

DIRECTORY: AZOOBOO 

ENTRY NAME TYPE 
STARTING 
SECTOR 

NUMBER OF RECORD 
SECTORS LENGTH 

************************************************ 
START UP.EC S 35A 10 100 

************************************************ 

EXECUTION CONTROL LANGUAGE 4-38 AX07 



LIST SEARCH RULES / LIST WORKING DIRECTORY 

LIST SEARCH RULES 

Command Name: LSR 
Display the search rules currently defined for the issuing task group. 

FORMAT: 
LSR 

PARAMETER DESCRIPTION: 
No parameters are required or permitted with this command. 

FUNCTION DESCRIPTION: 
The LIST SEARCH RULES command writes to the user output file the full pathnames of the 
directories used by the system task group in its search for bound units. 
The search rules define three directory pathnames and the sequence in which they are used during a 
search. The first of these is the system task group's working directory. The second is the system 
directory LIB1, whose pathname is >SYSLIBI. The third is the system directory LIB2, whose 
pathname is also >SYSLIB 1. The pathnames associated with LIB 1 and LIB2 can be changed through 
the use of the CHANGE SYSTEM DIRECTORY command. The pathnames returned by the LSR 
command always reflect the current directory pathnames. 

Example: 

Assume that the system task group's initial working directory is 1\ SYSVOL and that no CWD or CSD 
commands have been issued. The LSR command returns 

"SYSVOL 
1\ SYSVOL>SYSLIB 1 
1\ SYSVOL>SYSLIB 1 

Assume now that a CSD NEW_DIR -LIB2 command has been executed at some point prior to the 
issuing of the LSR command. The LSR command now returns 

LIST WORKING DIRECTORY 

Command Name: LWD 

I\SYSVOL 
1\ SYSVOL>SYSLIB 1 
I\SYSVOL>NEW DIR 

List the full pathname of the current working directory. 

FORMAT: 
LWD 

PARAMETER DESCRIPTION: 
No parameters are required or permitted with this command. 

FUNCTION DESCRIPTION: 
The LIST WORKING DIRECTORY command is used to obtain the full pathname of the working 
directory currently being used by the issuing task group. It is at times useful to be able to determine 

EXECUTION CONTROL LANGUAGE 4·39 AX07 



LIST WORKING DIRECTORY / MACRO PREPROCESSOR 

the identity of the working directory after having made several changes of working directories 
through the use of CHANGE WORKING DIRECTORY commands. The LWD command causes the 
full pathname of the working directory to be written to the user output file in the form 

,.. vol.-id>dirl ... 

The ellipsis indicates that one or more subordinate levels may be included in the pathname of the 
working directory, depending on the nature of previously-issued CWD commands. Also, again 
depending on previous CWD commands, the person and/or project entries may not be included in the 
path. 

Example: 
Assume that a task group's initial working directory is ,.. SYSVOL>UDD>AI>JOE, as established at 
task group initiation. 
A CWD EC_DIR command has been previously issued. The LWD command returns 

,.. SYSVOL>UDD>AI>JOE>EC_DIR 

If, starting with this working directory, a CWD < command is issued, a subsequent LWD command 
would return 

,.. SYSVOL>UDD>AI>JOE 

MACRO PREPROCESSOR 

Command Name: MACROP 
Expand assembly language macro calls and %INCLUDE statements into assembly language source 
statements, applying the indicated options. 

FORMAT: 

PARAMETER DESCRIPTION: 
path 

MACROP path [ctl_arg] 

The pathname of the file which contains the unexpanded source statements. The file's .P suffix 
must not be included in the path parameter; it is appended by the macro preprocessor prior to 
searching for the source unit. 

[ ctl_arg] 
One or more control arguments chosen from the following list: 

(
-INCLUDE CONTROLSj 
-IC 

Indicates that the Macro Preprocessor is to incorporate as comment statements in the expanded 
source output all macro control statements and inline macro definitions. If this argument is 
omitted, these statements are not included. 

(
-MACRO_CALLSj 
-MC 

Indicates that the Macro Proprocessor is to incorporate as comment statements in the expanded 
source output all macro call statements. If this argument is not specified, these statements are 
omitted. 

EXECUTION CONTROL LANGUAGE 4-40 AX07 



MACRO PREPROCESSOR / MESSAGE / MODIFY EXTERNAL SWITCHES 

I-SIZE nn I 
-SZ nn 

Designates the maximum number of l024-word blocks of memory that the Macro Preprocessor 
is 'to use for work space. If this argument is not specified, seven-eighths of the task group's 
memory pool, or available pool memory minus 4001 0 words, whichever is smaller, is used. 

FUNCTION DESCRIPTION: 
The MACROP command is used to invoke the GCOS 6 Macro Preprocessor component. Execution of 
the Macro Preprocessor is normally intended for the batch task group, as is the execution of most of 
the other components used in a program development activity. 
A full description of the operation and use of the Macro Preprocessor is contained in the Assembly 
Language manual. 

MESSAGE 

Command Name: MSG 
Send a message from a user command device to the operator terminal. 

FORMAT: 

PARAMETER DESCRIPTION: 
message 

MSG message 

The message to be sent. If it contains embedded blanks, it must be enclosed in double quotes (") 
or apostrophes ('). 

FUNCTION DESCRIPTION: 
The MSG command is used whenever it is necessary for a task group to convey some item of 
information or a request for operator action to the system operator. The source of the message is 
whatever file or device is designated as cOlnmand input for the sending task group at the time the 
message is sent; the message is displayed to the operator on the operator terminal. The operator can 
respond to the task group to indicate that a requested action has been taken. 

Example: 
MSG "PLEASE ABORT BATCH REQUEST" 

Send a message to the operator requesting an abort of the current batch request. The operator 
responds by entering an ABR OCL command, and c~m then inform the batch user that his request has 
been honored. 

MODIFY EXTERNAL SWITCHES 

Command Name: MSW 
Modify selected external switches associated with the issuing task group. 

FORMAT: 

PARAMETER DESCRIPTION: 
ctLarg 
One or more control arguments chosen from the following list: 

-ON Si[Sil.,. 
Set the external switch indicated by Si ON. Each Si is a hexadecimal digit from 0 throuth F. 

EXECUTION CONTROL LANGUAGE 441 AX07 



MODIFY EXTERNAL SWITCHES / MODIFY FILE 

-OFF Si[Si] ... 
Set the external switch indicated by Si OFF. Each Si is a hexadecimal digit from 0 through F. 

-ALL v 
Set all switches to the value v. The value v can be either ON or OFF. 

FUNCTION DESCRIPTION: 
The MODIFY EXTERNAL SWITCHES command enables the issuing task group to modify the 
external switches by which it can control its execution. An external switch can be thought of as a 
hardware switch on a control panel, which can be set on or off manually by an operator. There is a 
separate switch word associated with each task group created, giving each group the capability of 
addressing 16 switches. A user program can contain instructions or statements which interrogate the 
settings of one or more of these switches, and can use these settings to control the execution logic of 
the program. 

Example: 
MSW -ON 25 -OFF 7B 

In the issuing task group, external switch numbers 2 and 5 are to be set ON, and external switch 
numbers 7 and B are to be set OFF. 

MODIFY FILE 

Command Name: MF 
Modify the attributes of the specified file. 

FORMAT: 

PARAMETER DESCRIPTION: 
path 

MF path ctl_arg 

The pathname of a file whose attributes are to be changed. 

ctl_arg 
One or more control arguments chosen from the following list. At least one is required as there are 
no defaults. 

I-SHARE\ 
-SHR 

Specifies that the named file is to be made accessible to the batch task group. 

I-NONSHARE\ 
-NS 

Specifies that the named file is to be made inaccessible to the batch task group. 

I-READ\ 
-RD 

Specifies that no users are given permission to write to the named file; only reading is 
permitted. 

I-WRITE \ 
-WR 

Specifies that users are permitted access to the named file in the output, update, or extend mode. 

NOTE: The arguments within the argument pairs -SHARE and -NONSHARE, and -READ and 
-WRITE, are mutually exclusive. 

EXECUTION CONTROL LANGUAGE 4-42 AX07 



MODIFY FILE / PATCH 

The MODIFY FILE command allows the accessibility and permiSSlOn attributes of a file to be 
modified. When a file is first created (refer to the CREATE FILE command in this section), it is 
accessible to both online and batch task groups. It can also be read from and written to by any task. 
Its initial attributes are thus SHARE/WRITE. 
If a file is made inaccessible to the batch task group (through the use of the -NS control argument), 
no access of any kind by the batch task group is permitted. Furthermore, directories can be given the 
-NS attribute; in this case the directory and all subdirectories and files contained within it are 
inaccessible to the batch task group. 
Another kind of protection can be given a file by the use of the -RD control argument. This argument 
makes the file a read-only file, preventi,ng any task groups, online or batch, from writing to the file. It 
can still be read by online tasks and, unless the -NS argument has also been specified, by batch tasks 
as well. 
Attributes assigned to non disk files by this command remain in effect only for the current initializa­
tion of the sytem. If the system is reinitialized, attributes for these files revert to SHARE/WRITE. 
The MF command can be issued only from an online task group. 

Example: 
MF >UDD>PROJI>USERA>FILEOI -NS 

A file is to be made inaccessible to the batch task group. It remains accessible for writing by online 
tasks if it was previously accessible. 

PATCH 

Command Name: PATCH 
Patch an object or image text file. 

FORMAT: 

PARAMETER DESCRIPTION: 
path 

PATCH path [ctl_arg] 

The pathname of the object or image text file to be patched. An object text pathname must end 
with the .0 suffix; no suffix is used for an image text file unless one was assigned when the image 
text unit was linked. 

[ctl_arg] 
Only one control argument is recognized, and is described below. 

-IN path 
The pathname of the file which contains the patch directives. If not specified, the directives are 
read from the current user input file. 

FUNCTION DESCRIPTION: 
The PATCH command permits the selective modification of an object or image (bound unit) text file, 
in accordance with directives submitted to the PATCH processor. A complete description of the 
directives and operation of the PATCH command, as well as several examples of its use, appear in the 
Program Preparation and Checkout manual. 

EXECUTION CONTROL LANGUAGE 4-43 AX07 



PRINT 

PRINT 

Command Name: PR 
Print the contents of the indicated file. 

FORMAT: 

PARAMETER DESCRIPTION: 
path 

PR path [ctI_arg] 

The pathname of the file whose contents are to be printed. 

[ctl arg] 
One or more control arguments chosen from the following list: 

I-LIMIT nnl 
-LI nn 

Specifies the number of records to be printed if end of file is not encountered before the value 
of nn is satisfied. If not specified, all records in the file are printed. 

I-COPIES nl 
-CP n 

Specifies the number of copies to be printed; i.e., the number of times the file is to be printed 
for this invocation. Default is 1. 

I-SPACE nl 
-SP n 

This argument indicates that the file is not a true print file with print control characters in its 
records. Each record is printed on one or more print lines. The value of n specifies the line 
spacing between records, and can be either I or 2. I specifies single spacing (no blank line). 2 
specifies double spacing (one blank line). The default value is 1. 

I-FORTRANI 
-FT 

The print file was created by a FORTRAN object program and has print control characters of 
the FORTRAN type. 

I-FROM nnl 
-FMnn 

Indicates that the first nn records of the file are to be skipped before beginning to print. If not 
specified, printing starts at beginning of file. 

I-LINE LEN nnl 
-LL nn 

Specifies the number of characters to be printed per line. If a longer line is read from the file, it 
is folded at the indicated print position. If not specified, the value of nn is 68. 

-RL 
Specifies that, at the completion of printing, the file is to be released. 

FUNCTION DESCRIPTION: 
The PRINT command is used to write to the current user output file the contents of a file formatted 
according to MDT print file conventions. Such a file contains, for each record to be printed, a printer 
forms control byte. This byte is in the first character position of each record, and serves to control 
the line spacing associated with each print line, as well as head-of-form spacing. 
Print files written by the various language processors are suffixed with a .L unless otherwise directed 

EXECUTION CONTROL LANGUAGE 444 AX07 



PRINT / READY OFF 

by the processor's -COUT control argument. This suffix must be included in the pathname specified 
by the path parameter when the PRINT command is used to print these types of files. These files 
always contain forms control bytes. User programs which write files destined to be printed using this 
command are responsible for supplying the appropriate forms control bytes in their output records. 
Files written by user programs are not required to be terminated with the .L suffix. 
Print files written by FORTRAN object programs utilize a special set of forms control bytes. If the 
PRINT command includes the -FT control argument, these bytes are translated into equivalent 
standard forms control actions before the line is printed. If the -FT control argument is not specified 
for these files, resulting form spacing will probably not reflect that which was intended by the 
programmer. 
Theoretically, any file can be printed by using the PRINT command. However, since the first byte of 
each record is interpreted as a forms control indicator, the line spacing which results from the printing 
of a nonprint file is unspecified. The -SP control argument, in addition to specifying the spacing 
between records, also negates the interpretation of the first byte as a control byte. Each record is 
printed on as many single-spaced lines as are required and the line spacing between records then 
occurs as specified by the -SP argument. 
The user can request the printing of only a part of a file by the appropriate combination of -FM and 
-LI control arguments, which define, respectively, the point in the file at which printing is to begin 
and the number of lines to be printed. 
When the output of the PRINT command is directed to a high-speed printer, the use of the -LL 
control argument specifying the physical line length of the printer is recommended, since the length 
of an output record whose ultimate destination is such a device is likely to be longer than the default 
68 characters. If the argument is not specified, each such line will be folded at the 68th character. 

Example 1: 
PR T ABLIST -CP 2 -FT 

Two copies of the print file written by a FORTRAN program are to be printed. The file contains 
print lines less than 68 characters long; hence, the -LL argument is not required. The printed output is 
written on whatever device is currently associated with the user output file. 

Example 2: 
PR COBPRINT -LL 132 

The print file from a program which writes 1 32-character print records is to be printed. If the current 
user output device is not a line printer, the PR command can be preceded by an FO (FILE OUT) 
command naming a line printer (LPTnn) as the output device. 

READY OFF 

Command Name: RDF 
Suppress the 'ready' message printed at the completion of each EeL command. 

FORMAT: 
RDF 

PARAMETER DESCRIPTION : 
No parameters are required or permitted with this command. 

FUNCTION DESCRIPTION: 
The READY OFF command suppresses the printing of a message issued by the system at the 
completion of execution of each ECL command. The message informs the user that the system is 
prepared to accept another command. 
If the RDF command is issued from within an EC file when execution of the EC file is completed, the 

EXECUTION CONTROL LANGUAGE 4-45 AX07 



READY OFF / READY ON / RELEASE 

system reverts to the ON/OFF state which was in effect when the EC command was invoked. 
The initial state of the ready function at the conclusion of task group initiation is OFF. 

READY ON 

Command Name: RDN 
Activate the printing of the ready message at the completion of each ECL command. 

FORMAT: RDN 

PARAMETER DESCRIPTION: 
No parameters are required or permitted with this command. 

FUNCTION DESCRIPTION: 
The READY ON command activates the printing of a message issued by the system at the completion 
of execution of each ECL command. The message informs the user that the ECL processor is prepared 
to accept another command. 
If the RDN command is issued from within an EC file, when execution of the EC file is completed the 
system reverts to the ON/OFF state which was in effect when the EC command was invoked. 
The initial state of the ready function at the conclusion of task group initiation is OFF. 

RELEASE 

Command Name: RL 
Release the space occupied by the named directory or file to the file system. 

FORMAT: 

PARAMETER DESCRIPTION: 
path 

[ -FILE]{ 1 RL -DIR pathf ... 

Specifies the pathnames of one or more file system entries to be released. 

-FILE 
Indicates that the entries to be released are files. This is the default if neither -FILE nor -DIR is 
specified (see Example 2, below). 

-DIR 
Indicates that the entries to be released are directories. 

FUNCTION DESCRIPTION: 
The RELEASE command, when issued to release a file, removes all of the file's attributes from the 
directory within which it is immediately contained. All of the space which was allocated to the file 
is returned to the file system. If the file is open at the time the RL command is issued, the file is 
not released. If the file is reserved for use by another task group (Le., another task group has issued an 
ASSOC command specifying this pathname) the file is released after that task group has closed the 
file and issued a DISSOC command. 
When used to release a directory, the RL command removes all of the directory's attributes from the 
immediately superior directory. All of the space which was allocated to the directory is returned to 
the file system. The directory to be release must be "empty"; Le., it cannot contain entries 
representing subdirectories or files. If it is not empty, it is not deleted. 

EXECUTION CONTROL LANGUAGE 4-46 AX07 



RELEASE / RENAME 

Example I: 
RL -FILE FILEO I 

The file, FILEO I, in the working directory is released if it is not in use or reserved by another task. 

Example 2: 
RL SUB_DIRI>FILE02 

The file, FILE02, in a directory SUB DIR 1, immediately subordinate to the working directory, is 
released if it is not in use or reserved by-another task. 

Example 3: 
RL -DIR SUB_DIRI 

The directory, SUB~IR 1 immediately subordinate to the working directory, is released, provided it 
is empty. 

RENAME 

Command Name: RENAME 
Assign a new name to an existing file. 

FORMAT: 

PARAMETER DESCRIPTION: 
oldname 

RENAME oldname newname 

The present pathname of the file to be renafl.1ed. 

newname 
A simple name unique within the directory containing oldname. 

FUNCTION DESCRIPTION: 
The RENAME command can be used at any time that it is desired to change the name of an existing 
file. 
The oldname parameter can be a simple, relative, or absolute pathname. The only requirement is that 
the specified file exist in the expressed or implied directory. If a simple name is given, the file must 
exist in the working directory. If a relative or absolute pathname is given, the file must exist in the 
directory derived from the given pathname. 
Whatever directory is established by the oldname parameter is the one in which the file will reside 
under its new name. The new file name must be one which does not already exist in that directory, in 
accordance with the requirement that, within a given directory, all file names must be unique. It is 
not possible to rename a file in one directory, and simultaneously establish its location in another 
directory. 

Example 1: 
Assume a working directory> UDD> BOOKS> SMITH, and that in this directory there is a file AB. 
The command 

RENAMEABCD 

changes the pathname of the affected file from 

> UDD> BOOKS> SMITH> AB to> UDD> BOOKS>SMITH>CD. 

EXECUTION CONTROL LANGUAGE 447 AX07 



RENAME / RESET MAP / RPG 

Example 2: 
Assume that within the working directory in example I is a subdirectory CHANGES, which contains 
a file AB CHANGES. The command 

RENAME CHANGES>AB_CHANGES CD_CHANGES 

implies the directory >UDD>BOOKS> SMITH>CHANGES , since the oldname parameter is in the 
form of a relative pathname. The pathname of the file within this directory is changed to 
> UDD> BOOKS> SMITH> CHANGES> CD_CHANGES . 

RESET MAP 

Command Name: RS 
Reset the bit map representing the available sectors on a volume. 

FORMAT: 

PARAMETER DESCRIPTION: 
path 

RS path 

Specifies the name of the volume whose bit map is to be reset. The form of path is 
>SPD>dev_name [>vol~d] . If vol~d is present, the volume name is verified. 

FUNCTION DESCRIPTION: 
The RESET MAP command constructs a new available-sector map on a volume whose map may have 
become inconsistent with the actual available sectors through a hardware or software failure or an 
abort. 
Under normal conditions the file system maintains a map which represents the locations of available 
blocks of disk storage on a volume. The map for each volume is stored on the volume itself. It reflects 
information contained in directories and subdirectories relating to the locations and extents of the 
files residing on the volume. 
At any given time, the map may also reflect storage used by temporary work files in use by a system 
component such as a compiler. The locations and extents of such files are known to the system, but 
not represented in directories. If one of these temporary files is in use at the time of a system failure 
or an abort, the map will continue to represent the storage used by the file as unavailable, but the 
system, upon reinitialization, will have lost its information about the location and extent of the file. 
The space occupied by the temporary file thus becomes permanently unavailable. The RS command 
restores this space to an available status. 
The RS command interrogates all directories and subdirectories on a volume for file location and 
extent information, and, using this information, constructs a new map. Since the information 
regarding temporary files is not contained in these directories, their allocations are not represented in 
the new map, and the space they occupied at the time of the failure or abort is thus made available 
again. 

RPG 

Command Name: RPG 
Compile the RPG source program unit represented by the indicated file name, applying the specified 
compiler options. 

FORMAT: 
RPG path [ctl_arg] 

EXECUTION CONTROL LANGUAGE 4-48 AX07 



PARAMETER DESCRIPTION: 
path 

Specifies the name of the file containing the source unit to be compiled. 
[ctl_arg] 

One or more control arguments chosen from the following list: 

{
NO_OBJ} 
-NO 

RPG 

Indicates that the generation of the object text unit is to be suppressed. If omitted, the object 
text unit is generated. 

{
-LIST_OBJ) 
-LO 

Indicates that a listing of the object text output is to be obtained. Object text is interspersed 
with source text in the listing. If omitted, object text is not listed. 

{
-NO_LIST} 
-NL 

Specifies that all listings are to be suppressed. If omitted, the complete source unit is listed, 
followed by a listing of the error lines and codes. 

-SZ nn {
-SIZE nn} 

Designates the number of 1024-word blocks of memory to be used for tables by the compiler. 
The value of nn can be between 04 to 28, inclusive. If omitted, the assumed value of nn is 03. 

-COUT out_path 
Indicates that listings which would normally be written to the file path.L are to be written to 
out_path. 

FUNCTION DESCRIPTION: 
The RPG command is used to invoke the GCOS 6 RPG Compiler component. Execution of the 
compiler is normally intended for the batch task group, as is the execution of most of the other 
components used in a program development activity. 
The path parameter can assume any of the acceptable forms of a pathname, although normally it 
would be a simple name, indicating that a source program unit which resides in the current working 
directory is to be compiled. Wherever it exists, it must be suffixed with a .R suffix, indicating that it 
is an RPG language source unit. The path parameter must be given without the .R suffix; the compiler 
appends the suffix prior to searching the directory for the source unit. 
If the -COUT control argument is not specified, the specified listings are written to a file created by 
the compiler in the working directory having a file name of the form path. L. The path portion is the 
last (or only) element specified in the path parameter. This file can be subsequently listed on a line 
printer by using the PRINT utility command. If a different file is specified by using the -COUT 
argument, the listings are written to the file whose pathname is out path. The compiler does not 
append a .L suffix. 
The object text unit generated by the compiler is written to a file whose name is of the form path.O, 
and is con tained in the working directory. 
If files of the form path.L and path.O already exist in the working directory, they are overlaid by the 
output generated by the current compilation. 

Example: 
RPG RGPROG -COUT RGPROG_LST -LIST_OBJ 

An RPG source program, RGPROG.R, located in the working directory, is to be compiled. Listings 
are to include source statements, error diagnostics and object code and are to be written to a file 
named RGPROG_LIST, in the working directory, 

EXECUTION CONTROL LANGUAGE 4-49 AX07 



SORT FILE / SPAWN GROUP 

SORT FILE 

Command Name: SORT 
Sort the records in a mass storage file. 

FORMAT: 

PARAMETER DESCRIPTION: 
[ ctl_arg] 

SORT [ctl_arg] 

One or more control arguments chosen from the following list: 

-IN path 
Specifies the name of the file containing the sort descriptors for this sort. If not specified the 
user input file is used. 

{
-SIZE n) 
-SZ n 

Indicates the number of I024-word memory modules to be available to the sort. The value of n 
can be from 8 to 56 10 , inclusive. If not specified the default value is 8. 

-PD 
Indicates that a listing of the sort description is to be prod uced. 

FUNCTION DESCRIPTION: 
The SORT commandJprovides the capability of sorting a data file according to specifications supplied 
in a sort descriptor file. 
A complete description of the operation and use of the sort component is contained in the Sort manual. 

SPAWN GROUP 

Command Name: SG 
Create, request the execution of, and then delete a task group. 

FORMAT: 

PARAMETER DESCRIPTION: 
id 

The group identification of the task group to be spawned. It is a two-character name that cannot 
have the $ as its first character. 

user_id 

A field comprising two sub fields in the form person. project, by which the requested execution of 
this task group is identified. The uset,jd sub fields are also used to establish the working directory 
for this request. 

phys_Ivl 
The priority level relative to which all tasks within this task group will execute. 

in_path 
The name of the file from which commands and user input are to be read by the task group during 
its execution. The file name is set to null if the iILpath parameter is not specified. iILpath must be 
specified if the control argument -ECL (see below) is used or implied. 

[ctLarg] 

EXECUTION CONTROL LANGUAGE 4-50 AX07 



One or more control arguments chosen from the following list: 

-OUT out_path 

SPAWN GROUP 

Defines the pathname of the file which is to receive user output from the task group. [f not 
specified, one of the following assumptions is made: 
If in_path specifies a mass storage file, ouLpath = in_path.AO 
If in-path specifies an interactive terminal, out_path = in_path 
If in_path is not specified, out_path is null 
If in_path specifies an input-only device, out_path is null. 

-WD path 
Specifies that path is to be used as the working directory pathname instead of the pathname 
established by the user id parameter. 

{
-EFN root I 
-EFN root?entry 

The name of a bound unit root entry which is to be loaded as the lead task. The root segment 
name can be suffixed with ?entry, where entry is a symbolic start address within the root 
segment. If not given, the start address established when the bound unit was linked is assLlmed. 

-ECL 
The root segment of the execution control language (ECL) processor is to be loaded as the lead 
task. 

-LRN n 
Specifies the highest logical resource number (LRN) which will be referred to by any task in 
the task group. The minimum value which can be specified for n is the highest LRN used by the 
system task group; this is also the default if this argument is not specified. 

-LFN n 
Specifies the highest logical file number used by any task in the spawned task group. If -LFN is 
not specified, n assumes the value 15. 

-POOL id 
id is a two-character ASCII identifier and is the name of the memory pool from which all 
memory required by the spawned task group is to be taken. If specified, id must have been 
defined by a CLM MEMPOOL directive. If not, the issuing task group's memory pool is used. 

-ARG 
Indicates that additional arguments required by the spawned task group for its execution 
follow. These additional arguments are passed to the lead task of the spawned group to be used 
as necessary. If used, the -ARG control argument must appear last. 

NOTE: In any invocation of the SG command, -EFN or ECL, but not both, can be specified. If 
neither is specified, -EeL is assumed and the in_path parameter is required. 

FUNCTION DESCRIPTION: 
The SPAWN GROUP command combines the functionality of the CREATE GROUP, ENTER 
GROUP REQUEST, and DELETE GROUP commands. It implicitly causes the execution of these 
three functions in sequence, i.e., allocates and creates the data structures required to define and 
control the execution of the task group, places a request against the group, thereby activating it, and, 
when execution terminates, removes all controlling data structures and returns memory llsed by the 
task group to the appropriate memory pool. 
Because of the sequencing of the functions described above the SG command relieves the user of the 
issuing task group of the need to be aware of when the spawned task group terminates. The user need 
take no explicit action to return the terminating group's resources to the system to make them 
available for use by other task groups. A user may, for example, spawn a task group for another user 

EXECUTION CONTROL LANGUAGE 4-51 AX07 



SPAWN GROUP / SPAWN TASK 

who wishes to use the Editor or perform a file dump. This task group exists only for the length of 
time required to perform its function; when it terminates it is deleted automatically. 
The issuing task group can itself be a spawned task group, spawned either by an OCL command issued 
by the system operator or by an ECL command issued by another online task group. In either case, it 
has the ECL processor as its lead task. 
The SG command can be issued only by an online task group. 

SPAWN TASK 

Command Name: ST 
Create, request the execution of, and then delete a task within the issuing task group. 

FORMAT: 

PARAMETER DESCRIPTION: 
rel_Ivl 

The priority level, relative to the task group's base priority level, at which the spawned task is to 
execute. 

ctl_arg 
One or more control arguments chosen from the following list: 

{
-EFN root I 
-EFN root?entry 

The name of a bound unit root segment which is to be loaded for execution. The root segment 
name can be suffixed with ?entry, where entry is a symbolic start address within the root 
segment. If no suffix is given, the default start address, established when the bound unit was 
linked, is assumed. 

{
-SHARE lrn [ssaJI 
-SHR lrn [ssaJ 

The same bound unit is used as for the task identified by lrn. (This task must have been 
previously defined by a CREATE TASK command specifying this lrn.) ssa is the symbolic start 
address within the root segment of the task lrn. If none is given, the default start address of the 
root segment lrn esta"blished when it was linked, is assumed. 

-WAIT 
Specifies that the task issuing this command is to await completion of the spawned task before 
resuming execution. 

-ARC 
Indicates that additional arguments required by the spawned task follow. These additional 
arguments are passed to the spawned task in an extension of the task request block. If this 
control argument is used, it must be the last one specified. 

NOTE: In any invocation of the ST command, -EFN or -SHARE, but not both, must be specified. 

FUNCTION DESCRIPTION: 
The SPAWN TASK command combines the functions of the CREATE TASK and ENTER TASK 
REQUEST commands in that it constructs all of the requisite structures for the execution of the task, 
and then activates it. It performs one additional function -- when the task becomes inactive, it deletes 
the task. 
A spawned task becomes dormant when it issues a TERMINATE Monitor service call and there are no 
additional requests on the task's request queue. At this time, all controlling data structures associated 

EXECUTION CONTROL LANGUAGE 4-52 AX07 



SPAWN TASK 

with the spawned task are removed, and memory occupied by them is returned to the task group's 
memory pool. 
A spawned task is not assigned a logical resource number. It is therefore "local" to (Le., visible only 
to) the spawning task. It cannot be requested or referred to by any other task, nor can its memory 
space or code be shared. It can, however, share that of another task which was assigned an LRN by 
means of a previously issued CREATE TASK command. The -SHARE control argument indicates that 
this sharing is to occur. 
Multiple tasks can be made to execute concurrently within a given task group by issuing multiple ST 
commands. Tasks can also be made to execute serially~ i.e., one task going to completion before a 
subsequent task begins execution. The -WAIT control argument is the mechanism which controls 
concurrency of execution. Judicious use of this argument can also result in a mixture of concurrent 
and serial execution (see example 3, below). 

Example I: 
Three tasks which have no dependencies among them are to be executed. They can be activated 
concurrently by issuing the following commands: 

ST 02 -EFN PROGA 
ST 03 -EFN PROGB 
ST 04 -SHARE 10 

Each of the first two spawned tasks executes its own bound unit in its own memory space. The third 
shares the code and memory space of a previously created task identified by logical resource number 
10. If the task group's base priority level was specified as 20 when the group was created, the three 
tasks execute at physical priority levels 22, 23, and 24, respectively. 

Example 2: 
The three tasks above have dependencies among them which require them to be executed serially. 
They are activated by the following commands: 

ST 02 -EFN PROGA -WAIT 
ST 03 -EFN PROGB -WAIT 

ST 04 -SHARE 10 

Each task in this case awaits the completion of the preceding task. Since the third task does not 
specify -WAIT, another activity can be initiated to run concurrently with it. 

Example 3: 
The first two of the three tasks are unrelated, but there is a dependency between the second and third 
tasks. The following commands can be used: 

ST 02 -EFN PROGA 
ST 03 -EFN PROGB -WAIT 

ST 04 -SHARE 10 

This sequence causes the first two tasks to be activated to run concurrently. Since the second task 
specifies the -WAIT argument, it must terminate execution before the third task can begin. The first 
task mayor may not still be running at this time. As in the previous example, another activity can be 
initiated to execute concurrently with the third task. 

EXECUTION CONTROL LANGUAGE 4-53 AX07 



STATUS GROUP 

STATUS GROUP 

Command Name: STG 

Display the status of the issuing task group. 

FORMAT: 

PARAMETER DESCRIPTION: 
[ ctl_arg] 

One or more control arguments chosen from the following list: 

-TASKS 
Specifies that the statuses of all tasks in the indicated task group are to be listed. This is the 
default if no control arguments are present. 

-FILES 
Req uests the names of all files that are currently associated with the indicated task group, their 
types, con currencies and LFNs. 

FUNCTION DESCRIPTION: 
The STATUS GROUP commanq writes to the user output file a summary of the current status of the 
issuing task group. In addition to information pertinent to the group as a whole, two other categories 
of status information are displayed: that relating to tasks within the group and that relating to files 
currently associated with the group. 
The foJJowing items provide status information relative to the task group as a whole: 

o Task group identification 
o Current state of the task group: 

B = Batch, not rolled out 
R = Batch, rolled out 
S = Suspended 
D = Dormant 
A = Active 

o Memory pool identification 
o Current user identification 
o Full pathname of the error output file 
o Fu]] pathname of the user output file 

Task-specific status information consists of the following group of items for each task: 

o Task logical resource number (if a created task) or the letters ST (if a spawned task) 
o Task priority level 
o Current state of the task: 

D = Dormant 
S = Suspended 
W = Waiting 
A = Active 

o Task's bound unit name 
o Full pathname of the command input file 
o FuJI pathname of the user input file 

1 f there are no tasks currently associated with the task group, a single item, NO TASKS, is returned. 

EXECUT10N CONTROL LANGUAGE 4-54 AX07 



STATUS GROUP / TIME 

File-specific information consists of the following group of items for each file: 

o Full pathname of the file 
o Concurrency of the file, represented by a decimal digit in the range I through 5. The significance 

of the digits, for the issuing task group and for other task groups, is as follows: 

}i'or Issuing Group 

I = Read Only 
2 ~ead Only 
3 = Read or Write 
4 = Read or Write 
5 = Read or Write 

o File type 

For Other Groups 

Read Only 
Read or Write 
No Read, No Write 
Read Only 
Read or Write 

o Logical file number, if one is associated with the file, otherwise spaces 
o Open/closed status of the file 

If there are no files currently associated with the task group, a single item, NO FILES, is returned. 
The group status information is always returned when this command is used. The task-specific 
information is returned if no control arguments are given, or if explicitly requested by the -TASKS 
argument. If the -FILES argument is specified, the file-specific, but not the task-specific, inf,ormation is 
given. 

TIME 

Command Name: TIME 
Display the current date and time in ASCII format. 

FORMAT: 
TIME 

PARAMETER DESCRIPTION: 
No parameters are required or permitted with this command. 

FUNCTION DESCRIPTION: 
The TIME command returns the current date and time of day in an ASCII character string of the 
form 

yyyy is the current year 
mm is the current month 

yyyy/mm/dd hhmm:ss.mmm 

dd is the current day within the month 
hhmm is the time in hours and minutes 
ss is the current second within the minute 
mmm is the current millisecond 

Use of the TIME command presupposes that at some earlier time (usually at system initialization) the 
system operator has issued an OCL SET DATE (SD) command to establish the current date and time 
within the operating system. The accuracy of the information returned by the TIME command is 
totally dependent upon the accuracy of the data entered in the SD command. 

EXECUTION CONTROL LANGUAGE 4-55 AX07 





SECTION 5 

ERROR~STATUS~AND 
INFORMATIONAL MESSAGES 

The MDT system software issues error and status messages through the operator's terminal, or on th 
ERROR OUT file for a particular task group. In systems that do not have an operator's termina 
configured, CLM error messages appear in the control panel registers. In interactive mode, whe] 
commands are submitted through the operator's terminal (or another terminal) error messages are issue, 
in response to the command that has just been entered. 
MESSAGE CODES 

Error messages are prefixed by a six-digit hexadecimal code. They appear in the following format: 

(xxyyzz) message 

xx 
The code of the component that reports the error 

yy 
The code of the component that detects the error 

zz 
The code of the error type within the "yy" category. 

Depending upon a particular situation, an error detected by one component (yy code) might be reported 
by any of several different components (xx code). (The reporting component is the one that calls the 
Error Handler System.) Consequently the messages in the following lists are in order by the code of the 
detecting component. The component codes are listed in Table 5-1. If the error reported by a component 
was also detected by that component the xx and yy values will be the same. For example, during the 
execution of the Assembler, the value 1 a 1 azz is appropriate for conditions specific to the Assembler 
itself, such as "symbol table overflow." However, a value of 1 aa2zz indicates a "file not found" 
condition detected by the File Manager but reported by the Assembler. 

TABLE 5-1. COMPONENT CODES 

Code Component 

01 Physical I/O 
02 File, Data, and Storage Manager 
03 Trap Manager 
04 Clock Manager 
05 Semaphore Functions 
06 Memory Manager 
08 Monitor 
OB CLM Communications 
10 Assembler 
11 Linker 
12 Utility Programs 
13 Configuration Load Manager 
14 FORTRAN Compiler 
15 FORTRAN Run-time Routines 
16 Loader 
17 System EC/ECL/OCL Commands 
18 Cross-Reference Program (XREF) 

ERROR, STATUS, AND 
INFORMATIONAL MESSAGES 5-1 AX07 



Code 

19 
21 
22 
23 
24 
25 
26 
27 
28 
29 
31 
34 
35-7F 
80-EE 
FO-FF 

TABLE 5-1 (CONT). COMPONENT CODES 

Component 

Editor 
Patch 
Communications File Transmission Program 
~acro Preprocessor 
Export/Import P ~ File Program 
Dump Edit (DPEDIT) Program 
COBOL Compiler 
COBOL Run-time Routines 
RPG Compiler 
RPG Run-time Rou tines 
Sort 
~ultiline Communications Processor (~LCP) Dump Routine 
Reserved for software use 
User defined 
Reserved for software usc 

PHYSICAL I/O MESSAGES (xxOl) 

For assembly language programs that reference Physical I/O through monitor calls, the error code for 
physical I/O error messages is the rightmost byte of the return status for the request for an I/O transfer. 
The return status is contained in register R 1. The address of the input/output request block (lORB) used 

. by the driver when the error was detected must be contained in register B4 when the Error Handler 
System is called. 

The format of the physical I/O error messages is as follows. 

xxO I zz lev cccc sswd dswd 

lev 
Level number of driver (two character positions). 

cccc 
Channel number (four character positions). 

sswd 
Software status word (four character positions). (See Table 5-4 in the Monitor and I/O Calls 
manual.) 

dswd 
Device specific word (four character positions displayed for disk devices only). (See Table 5-12 in 
the Monitor and I/O Calls manual.) 

xxOIOI 

xxOl02 

xxOl03 

ERROR, STATUS, AND 
INFOR~ATIONAL ~ESSAGES 

SPECIFIED IORB IS BUSY 

The in-use bit of the 10RB is set to busy. 

INVALID LOGICAL RESOURCE NUMBER (LRN) 

This message may be due to a configuration error. 
Correct configuration or task code. 

ILLEGAL WAIT 

Program logic error in task code. 

5-2 AX07 



xxOl04 

xxOl05 

xxOl06 

xxOl07 

xxOl08 

xxOl09 

xxOIOA 

xxOIOB 

xxOIOC 

xxOIOD 

INVALID PARAMETER(S) 

Invalid parameter(s) passed by component to driver (internal 
error) or program logic error in task code. 

DEVICE NOT READY 

Prepare device so that it can be used. 

DEVICE TIMEOUT 

Program should retry later. 

HARDWARE ERROR 

Check status bits in software status word (sswd). 

DEVICE DISABLED 

This message may result from a program logic error. 

FILE MARK ENCOUNTERED 

CONTROLLER UNAVAILABLE 

Run controller test and verification. 

DEVICE UNAVAILABLE 

This message indicates interruption of the physical connection to a 
terminal after the connect has been made: e.g., a line drop. 

INCONSISTENT REQUEST 

Examples of inconsistent requests are: 

A request for connect when the connect has already been made. 
A request for disconnect when the connect has not been made. 

MAGNETIC TAPE EOT MARKER DETECTED 

FILE SYSTEM MESSAGES (xx02) 

For assembly language programs that reference the File System through monitor calls the error code 
for the File System messages is the rightmost byte of the return status of the call for File, Data, or 
Storage Management Service. Hardware register R2 must contain the appropriate logical file number 
(LFN) at the time the Error Handler System Service is invoked. 

xx0201 Ifn ILLEGAL PATHNAME 

Illegal pathname for file management function (ASFIL. GTFIL. RMFIL, CRFIL, 
RLFIL, RNFIL, GIFIL, CRDIR, RLDIR, CWDIR, XPATIl). Possible causes: 
causes: 

Illegal characters or level separators 
Length exceeds 57 characters 
Space character is absent 
Invalid file type (rename of directory or temporary file) 
File (pathname) is not a directory on change-working-directory 

ERROR, STATUS, AND 
INFORMATIONAL MESSAGES 5-3 AX07 



xx0203 Ifn 

xx0204 Ifn 

xx0205 Ifn 

ILLEGAL FUNCTION 

Illegal file management function. The subfunction code is illegal for the type of file 
referenced. 

Illegal data management function (RDREC, WRREC, DLREC, RWREC). The 
subfunction code is illegal for the type of file referenced. For example the user 
issues a read-with-primary-key call to a sequential file. Although the read-with-key is 
a legal parameter, the fact that it is a primary key makes it illegal. 

Illegal storage management function (RDBLK, WRBLK). The subfunction code is 
illegal for the type of file referenced. For example write with TM or read with EOT, 
TM, BOT, or SPACE mode to a disk file. 

FILE BUSY 

For file management function TSFIL: If the LFN is bidirectional, a write order is 
queued but not completed. If the LFN is unidirectional, a read or write (depending 
on the direction that characterizes the LFN) order is queued but not completed. 
Note that a read is always queued for input terminal devices anticipatory read). This 
call will not return a busy code if the LFN is bidirectional and is busy because an 
anticipatory read is queued. 

If this is the first time a test-file call is issued following an open-file, this message 
indicates that the connect has not been completed. 

For file management function TIFIL: An input request (read) function is queued 
but not completed. Note that an anticipatory read is always queued for input 
terminal devices. In this case the busy indication means that there is no data ready 
to be moved into the user's record area by a read-record call. A read-record issued 
while the terminal is busy will cause the task to stall until input is received from the 
terminal. 

If this is the first time a test-file call is issued following an open-file, this message 
indicates that the connect has not been completed. 

For file management function TOFIL: An output request (write) is queued but not 
completed. 

If this is the first time a test-file call is issued following an open-file, this message 
indicates that the connect has not been completed. 

ILLEGAL PARAMETER 

For file management functions (ASFIL, DSFIL, GTFIL, RMFIL, CRFIL, RLFIL, 
RNFIL, OPFIL, CLFIL, GIFIL, TSFIL, TIFIL, TOFIL, RLDIR, CWDIR, GWDIR, 
XPATH): 

The file information block (FIB) or parameter structure block (PSB) pointer (loaded 
into register B4) contains a null value. 

A pathname is not specified and the LFN specified is not associated. 

An unknown file type has been specified. 

For data management functions (RDREC, WRREC, DLREC, RWREC). The FIB 
pointer contains a null value. 

For storage management function (RDBLK, WRBLK, WTBLK). The FIB pointer 
contains a null value. 

For file management function CRFIL with the following file types: 

Unified files: 
The control inverval (CI) size is not a multiple of 256. 

Fixed Relative files: 
The CI size is not a multiple of 128. 

ERROR, STATUS, AND 
INFORMATIONAL MESSAGES 5-4 AX07 



xx0206 Ifn 

x0207 Ifn 

xx0208 Ifn 

xx0209 lfn 

xx020A Ifn 

Unified Indexed files: 
The number of key descriptors is not one. 
The key descriptor pointer is null. 
The number of key components is not one. 
The key component data type is not C. 
Creating a temporary file. 
The CI size is not large enough to hold at least two index entries «CI size - 6)/(key 
size + 6) is less than 2). 
The key is not located within the record. 

Unified Relative and Index files: 
The record size plus overhead per CI exceeds CI size. 

All files: 
Initial allocation exceeds maximum specified. 
Initial or incremental allocation exceeds extent limit (8191 physical sectors). 

UNKNOWN OR ILLEGAL LFN 

For file management functions (ASFIL, DSFIL, GTFIL, RMFIL, CRFIL, RLFIL, 
RNFIL, OPFIL, CLFIL, GIFIL, TSFIL, TIFIL, TOFIL): The LFN is not in the 
legal range for this task group or the LRN was not previously associated with a 
pathname by an ASFIL, GTFIL, or CRFIL call. 

For data management function (RDREC, WRREC, RWREC, DLREC). The LFN is 
not valid in all system con trol struct ures. 

For storage management function (RDBLK, WRBLK, WTBLK). The LFN is not in 
the legal range for this task group or there is an inconsistency in LFN values in 
system control structures. 

FILE NOT OPEN 

For file management function (DLFIL, TSFIL). 
For data management function (RDREC, WRREC, RWREC, DLREC). 
For storage management function (RDBLK, WRBLK, WTBLK). 

For all these functions, the LFN in the FIB or PSB indicates a file that is known and 
attached to a task group but one that is not currently opened. The file must be 
opened before the desired function can be performed. 

FILE ALREADY OPEN 

For file management function (GTFIL, RMFIL, CRFIL, RLFIL, OPFIL). The LFN 
in the FIB or PSB designates a file that is known, attached to a task group, and al­
ready open under the specified LFN. 

PATHNAME NOT FOUND 

For file management function (GTFIL, RMFIL, RLFIL, RNFIL, OPFIL, GIFIL, 
CRFIL, RLDIR, CWDIR, CRDIR.) The pathname specified is syntactically correct 
but the file which it describes is not present on any volumes accessible to the re­
questing task. 

For file management function CRFIL, some superior directory is not found. 

ADDRESS OUT OF FILE 

For data management function (RDREC, WRREC, RWREC, DLREC). The supplied 
key (which is either a control interval and line number, or a relative record number) 

ERROR, STATUS, AND 
INFORMATIONAL MESSAGES 5-5 AX07 



xx020C Ifn 

xx020E lfn 

xx0210 Ifn 

xx0211 lfn 

xx0212 lfn 

xx0213 Ifn 

xx0214 Ifn 

xx0215 lfn 

is outside the file boundaries. For example, the file contains 1000 records and the 
user issues a RDREC for record number 2000. 

For storage management function (RDBLK, WRBLK, WTBLK). The supplied key is 
outside the file boundaries. 

VOLUME NOT FOUND 

For file management function (GTFIL, RMFIL, CRFIL, RLFIL, RNFIL, OPFIL, 
GIFIL, CRDIR, RLDIR, CWDIR). A syntactically correct pathname has been 
specified that identifies a volume that is not currently mounted. 

RECORD NOT FOUND 

For data management function (RDREC, WRREC, DLREC). Record specified by 
key is deleted or it never existed. 

LFN ALREADY ASSOCIATED 

For file management function (ASFIL). A request has been made to associate an 
LFN which is already associated with a pathname. The current LFN must be 
disassociated before another association can be performed. 

LFN NOT AVAILABLE 

For file management function (GTFIL, CRFIL). The requested function specifies 
that an LFN is to be established (search for a currently unused LFN) and there are 
no more in the pool available to the task group. An existing LFN must be 
relinquished or the LFN pool must be enlarged. 

FILE ALREADY EXISTS 

For file management function CRFIL. The request to create a file specifies one that 
already exists in the containing directory. 

For file management function RNFIL. The request to rename a file uses a new name 
that already names a file in the containing directory. 

For file management function CRDIR. The request to create a directory specifies 
one that already exists in the containing directory. 

UNABLE TO PROVIDE REQUESTED LEVEL OF CONCURRENCY CONTROL 

For file management functions (GTFIL, OPFIL): The requested level of concur­
rency control conflicts with current active usage of specified file. 

For file management function RNFIL, the file is already open or the file is a 
directory. 

For file managment function RLDIR the directory is currently in use e.g., it is the 
current working directory of the same task. 

BAD PROGRAM VIEW OF FILE 

For file management function OPFIL, the user visibility to the file specified in 
program view (FIB) does not agree with the information stored in the file directory. 

FILE SPACE NOT AVAILABLE 

For file management functions (CRFIL, CRDIR): There is not sufficient file space 
on the specified volume to create the file/directory specified. 

For storage management functionWRBLK. a write has been issued that requires an 
additional extent to be allocated but there is not enough space on the volume for 
another extent. 

ERROR, STATUS, AND 
INFORMATIONAL MESSAGES 5-6 AX07 



xx0217 Ifn 

xx02l9 lfn 

xx02lA lfn 

xx02lB lfn 

xx02lC lfn 

xx02l0 lfn 

xx02lE lfn 

ACCESS VIOLATION 

For data management function (RDREC, WRREC, RWREC, OLREC). 
An attempt to access the file conflicts with: 

Concurrency control established when the file was assigned to the task group (b) 
GET-FILE primitive/ECL) 
Processing rules specified in the FIB 

For example, the user issues WRREC when he has only read access or shared reae 
with no write concurrency control. 

For storage management function (RDBLK, WRBLK,). An attempt to access the fiIt 
conflicts with: 

Concurrency control established when the file was assigned the task group (b} 
GET-FILE primitive/EeL) 
Processing rules specified in the FIB 

For example, the user issues \VRBLK when he has only read access or shared read 
with no write concurrency control. 

NO CURRENT RECORD POINTER 

For data management function (ROREC, WRREC). A possible cause is that a 
previous function left the read/write current pointer at or beyond the end of file. 

For data management function (RWREC, DLREC). A key is not supplied in this 
function call. This means rewrite or delete the "current" record and the previous 
function was not a read i.e., there is no current record. 

RECORD LENGTH ERROR 

For data management function ROREC. For variable length record files, the record 
read is larger than the user record area. For fixed length record files, the record read 
is not the same size as the user record area. 

For data management function WRREC. Record to be written is larger than the 
maximum record size for the relative files. 

For data management fUllction RWREC. For all files, except relative files containing 
variable length records an attempt was made to change the size of a logical record 
during the rewrite function. For relative files having variable length records, the new 
record length exceeds the maximum record length declared for the file. The record is 
not rewritten. 

DUPLICATE KEY 

For data management function WRREC. For an indexed file, a record with the same 
key value already exists in the file. For a relative file, an attempt was made to write 
with a simple key or relative key to an active record. The record is not written. 

KEY OUT OF SEQUENCE 

For data management function WRREC. During loading of an indexed file ("renew" 
mode) a record was not in ascending sequence by key value. 

KEY CHANGE ERROR 

For data management function RWREC. For indexed files nn attempt was made to 
change the record's key value during the rewrite function. The record is not 
rewritten. 

KEY LENGTH ERROR 

For data management function (ROREC, WRREC, RWREC, OLREC). Key size does 
not match the size of the key as defined for the file. 

ERROR, STATUS, AND 
INFORMATIONAL MESSAGES 5-7 AX07 



xx021F lfn 

xx0220 lfn 

xx0222 Ifn 

xx0223 lfn 

xx0231 Ifn 

END OF FILE 

For data management function RDREC. End of file was reached. No record was 
read. 

For storage management function RDBLK. There is not sufficient data remaining in 
the file to fill the specified buffer. What is left in the file is delivered. 

For storage management function WRBLK. There is insufficient space in the file to 
contain the data specified for writing. 

DIRECTORY NOT EMPTY 

For file management function RLDIR, a request was made to delete a directory that 
contains a file of subordinate directory entries. All files and subordinate directory 
entries must be deleted separately before the directory can be deleted. 

NO CURRENT WORKING DIRECTORY 

For file management functions (ASFIL, GTFIL, RMFIL, CRFIL, RLFIL, RNFIL, 
OPFIL, GIFIL, CRDIR, RLDIR, GWDIR, XPATH): A relative pathname was 
specified as input and there is no current working directory for the task. 

FILE SPACE LIMIT REACHED OR FILE NOT EXPANDABLE 

For file management functions (CRFIL, CRDIR) A superior directory may require 
expansion as a result of adding entries to describe the file or directory. If the 
superior directory is not expandable, or is already expanded to the limit an error 
occurs. Note that the root or volume major directory is not expandable. 

END OF TAPE 

For storage management function WRBLK, the physical end of the tape has been 
reached. 

TRAP HANDLER MESSAGES (xx03) 

Each error code in the following messages except codes 1 F through 21, is the number of the trap 
vector. Error codes I F through 21 pertain to improper use of user trap functions. 

xx0301 

xx0302 

xx0303 

, ;(' ~~f-' . ,,,,, 
#'f 

f"J ~ ~ 

; j /-r, ~. 
'f'.·/').~ 

xx0304 

xx030S 

MONITOR CALL 
This trap indicates a system software problem. 

BRK INSTRUCTION 

This trap is normally handled by the De bug program. 

SCIENTIFIC FLOATING-POINT INSTRUCTION NOT IN HARDWARE 

Trap 3 occurs if the instruction is a scientific floating-point instruction. If the SIP Simulator 
is present, it serves as a trap handler for trap 3, and the trap is not visible to the user. If the 
SIP and the SIP Simulator are not present, the user must provide a trap handler or the task 
will be aborted. 

UNRECOGNIZED INSTRUCTION - SIP SIMULATOR PRESENT 

See explanation for message xx030S. 

INSTRUCTIONS (OTHER THAN FLOATING-POINT INSTRUCTIONS) NOT IN 
HARDWARE 

If the instruction is a scientific branch instruction, the SIP Simulator if present, serves as a 
trap handler. If the instruction is a scientific branch instruction and the SIP Simulator is not 
present, the task is aborted unless the user provides a trap handler for it. 

ERROR, STATUS, AND 
INFORMATIONAL MESSAGES 5-8 AX07 



xx0306 

xx0307 

xx0308 

xx030D 

xx030F 

xx0310 

xx0311 

xx0313 

xx0314 

xx03lS 

xxo3i6 

If the SIP Simulator is present, all other unrecognized instructions including double 
precision instructions on a single precision simulator produce a trap to trap 4. If trap 5 
occurs and the SIP Simulator is not present the task will be aborted unless the user provides 
a trap handler. 

INTEGER ARITHMETIC OVERFLOW 

This trap occurs when the overflow bit in the I-register is set to I as a result of an operation 
on an R-register while the M-register "overflow trap enable" bit for this R-register is set 
to 1. 

SCIENTIFIC DIVIDE BY ZERO 

This trap occurs when an SDV (scientific divide) instruction is encountered that has a 
divisor of zero. 

SCIENTIFIC EXPONENT OVERFLOW 

This trap occurs during the execution of a scientific instruction if exponential overflow 
takes place. 

UNPRIVILEGED USE OF PRIVILEGED OPERATION 

This trap occurs when the central processor attempts to execute a privileged instruction 
while running in unprivileged mode. 

REFERENCE TO UNAVAILABLE RESOURCE 

This trap occurs when the central processor attempts to process an instruction and one of 
the following conditions exists. (1) The effective address developed is outside specified 
limits. (2) An input/output instruction contains an improper channel number. (3) A WDTN 
(Watchdog Timer ON) or WDTF (Watchdog Timer OFF) instruction occurs when the 
watchdog timer is not installed. 

CPU DETECTED PROGRAM LOGIC ERROR 

This trap occurs when (1) the central processor attempts to execute an RTT (Return From 
Trap) instruction normally issued by a trap handler and a trap save area to be dequeued 
cannot be found, or (2) the central processor attempts to execute an instruction that 
illegally contains a register address syllable. 

MEMORY OR MEGABUS ERROR 

This trap occurs when an uncorrectable memory error or a megabus parity error is detected. 

SCIENTIFIC EXPONENT UNDERFLOW (IF ENABLED) 

This trap results from an operation that generates a characteristic value of 128 too large 
while the EUM enable bit in the SIP trap mask register (MS) is set to 1. 

SIP DETECTED PROGRAM ERROR 

This trap occurs when program errors are detected by the SIP. Note that program errors 
detected by the CPU activate trap vector 16. 

SCIENTIFIC SIGNIFICANCE ERROR 

This trap results from an operation in which an integer is truncated during a floating-point 
to integer conversion while the SE enable bit in the SIP trap mask register (MS) is set to 1. 

SCIENTIFIC PRECISION ERROR 

This trap results from an operation in which the nonzero portion of a fraction is truncated 
while the PE enable bit in the SIP trap mask register (MS) is set to I. 

ERROR, STATUS, AND 
INFORMATIONAL MESSAGES 5-9 AX07 



xx03IF ILLEGAL TRAP ADDRESS 

Address of trap handling routine is invalid. 

xx0320 ILLEGAL TRAP NUMBER 

Trap requested is not user class trap. 

xx0321 TRAP ADDRESS NOT SET 

Trap handler entry not connected. 

CLOCK MANAGER MESSAGES (xx04) 

xx0401 ILLEGAL DATE, TIME, OR INTERVAL VALUE 

xx0402 INVALID RECEIVING FIELD LENGTH 

Invalid receiving field length in conversion to ex ternal date jtime. 

xx0403 INVALID BASIC TIMER SPECIFIED 

Occurs only on requests for Clock Manager services. 

xx0404 REFERENCED CLOCK REQUEST BLOCK (CRB) NOT CONNECTED TO BASIC TIMER 

Occurs only on cancellation of requests for Clock Manager services. 

xx040S 

xx0406 

xx0407 

xx0408 

INVALID CLOCK REQUEST BLOCK (CRB) FORMAT 

CLOCK REQUEST BLOCK (CRB) DEQUEUED 

CRB dequeued by another task while wait in progress. 

INVALID EXTERNAL DATE 

INVALID EXTERNAL TIME 

SEMAPHORE FUNCTION MESSAGES (xx05) 

xxOSOI 

xxOS02 

xxOS03 

RESOURCE UNAVAILABLE 

UNDEFINED SEMAPHORE OR SEMAPHORE REQUEST BLOCK (SRB) 

DUPUCATESEMAPHORENAME 

MEMORY MANAGER MESSAGES (xx06) 

xx0601 ILLEGAL MEMORY SIZE OR MEMORY POOL 

xx0602 NO SPACE 

Insufficient space in memory pool for memory requested. 

xx0603 BLOCK RETURNED IS OUT OF MEMORY 

Block returned by the batch queue's task group is not within its own memory pool, or block 
returned by any other task group is not within the managed memory. 

xx0607 INVALID WAIT ARGUMENT 

~RROR, STATUS, AND 
NFORMATIONAL MESSAGES 5-10 AX07 



MONITOR ERROR MESSAGES (xx08) 

xx080] 

xx0802 

xx0803 

xx0804 

xx0805 

xx0806 

xx0807 

xx0808 

xx0809 

xx080A 

xx080B 

xx080C 

xx080D 

xx080E 

xx080F 

xx0810 

xx081 I 

xx0812 

xx0813 

xx0814 

xx0815 

xx0816 

REQUEST BLOCK BUSY (CRB, IORB, IRB, RB, or SRB) 

INVALID LRN 

INVALID WAIT 

DUPLICATE GROUP-ID 

UNBALANCED DELIMITERS IN COMMAND LINE 

INVALID GROUP-ID 

INVALID MEMORY POOL-ID 

INVALID LEVEL 

ILLEGAL HIGH LRN 

ILLEGAL HIGH LFN 

ILLEGAL USER-ID 

UNRESOLVED SYMBOLIC START ADDRESS 

GROUP NOT SUSPENDED 

REFERENCED ABSENTEE REQUEST DOES NOT EXIST 

STREAM (COMMAND IN, USER IN, USER OUT, OR ERROR OUT) UNDEFINED 

ILLEGAL MAJOR FUNCTION CODE 

ILLEGAL MINOR FUNCTION CODE 

INVALID LRN (TASK ABORTED OR BEING DELETED) 

DUPLICATE LRN 

NO REQUEST TO BE DEQUEUED 

NO FILE DESCRIPTOR BLOCK (FDB) OR NO DATA DESCRIPTOR BLOCK (DDB) 
DEFINED 

NO WORK AREA DEFINED (SYSTEM SOFTWARE ERROR) 

CLM COMMUNICATIONS ERROR MESSAGES (xxOB) 

The communications extension to the Configuration Load Manager (CLM) checks the user's 
description of the hardware and software and reports any inconsistencies as shown by the following 
messages. The format of these messages is given below. " 

xxOBzz 3E 
[additional information] 
[command] 

ERROR, STATUS, AND 
INFORMATIONAL MESSAGES 5-11 AX07 



First line 

xx indicates the component that reports the message 
OB indicates the message is detected by the communications extension 
zz is the error code 

3E is the level on which the CLM runs 
Second line 

The additional information, if any, depends on the error as shown in the listing below. 

Third line 

Where applicable the directive in which the error occurs is reproduced. If a directive is printed but 
there is no additional information the directive appears on the second line. 

xxOBOI 

directive 

xxOB02 

interrupt level 
directive 

xxOB03 1 

xxOB04 1 

$CRTSK or loader 
error 

xxOBIO 

modem or LPH number 
directive 

xxOBll 

lrn directive 

xxOB12 

level directive 

xxOB13 

channel number 
directive 

xxOB14 

modem number 
directive 

xxOBl5 

speed directive 

1 After this message, the system halts. 

ERROR, STATUS, AND 
INFORMATIONAL MESSAGES 

COMM DIRECTIVE MUST PRECEDE DESIGNATED DIRECTIVE 

TTY, VIP, BSC or LPHn directive is given before a COMM directive. 

COMM DIRECTIVE ALREADY GIVEN 

The interrupt level is that specified in the first COMM directive. 

DIRECTIVE IS MISSING 

COMM directive is given but no TTY, VIP, BSC, or LPHn directive is given. 

LOADING ERROR 

Error in loading communications supervisor/MLCP driver bound unit. 

MODEM NUMBER OR LPH NUMBER OUT OF RANGE 

Modem number in MODEM is not in the range 3 through 15 or LPH number 
in LPHDEF is not in. the range 0 through 3. 

LRN OUT OF RANGE 

LRN in TTY, VIP (screen or ROP), BSC, LPHn or STATION directive is not 
in the range 0 through 255. 

INTERRUPT LEVEL OR REQUEST LEVEL OUT OF RANGE 

Interrupt level in COMM directive is not in the range 0 through 62, or 
request level in TTY, VIP, BSC, or LPHn directive is not in the range 
interrupt level + I through 62. 

INVALID CHANNEL NUMBER 

Low order 6 bits of channel number in TTY, VIP, BSC, or LPHn directive are 
not al zeros. 

MODEM NUMBER UNDEFINED OR OUT OF RANGE 

Modem number in TTY, VIP, BSC, or LPHn directive is not in the range 0 
through 2, or is not defined in a MODEM directive. 

INVALID SPEED VALUE 

Speed in TTY or LPHn directive is not 50, 75, 110, 134, 150, 300, 600, 900, 
1200, 1800,2400,3600, 7200, or 9600. 

5-12 AX07 



xxOB16 

poll address 
directive 

xxOB17 

first character 
directive 

xxOB18 

directive 

xxOB19 

first two characters 
directive 

xxOBIA 

first character 
directive 

xxOBIB 

first two characters 
directive 

xxOBIC 

first two characters 
directive 

xxOB21 

lrn directive 

xxOB22 

level directive 

xxOB23 

channel n urn ber 
directive 

ERROR, STATUS, AND 
INFORMATIONAL MESSAGES 

POLL ADDRESS OUT OF RANGE 

Poll address in VIP directive is not in the range 0 through 31. 

INVALID FIRST CHARACTER OF CONTROL/TRIBUTARY 

First character of control/tributary in VIP directive is not C or T. 

INVALID ROP TYPE 

ROP type in VIP directive is not TTY33, TTY35, TNI 00 TN 150, TN300, or 
TN1200. 

DESIGNATED ROP FORM FEED IS INVALID 

First two characters of ROP form feed in VIP are not FO or NO. 

FIRST CHARACTER OF PRIMARY/SECONDARY INVALID 

First character of primary /secondary in BSC directive is not P or S. 

FIRST TWO CHARACTERS OF CHARACTER SET INVALID 

First two characters of character set in BSC directive are not AS, EB, or TE. 

FIRST TWO CHARACTERS OF FDX/HDX INVALID 

First two characters of FDX/HDX in LPHn directive are not FD or HD. 

DUPLICATE LRN 

LRN in TTY, VIP (screen or ROP), BSC, LPHn or STATION directive is the 
same as the lrn for another device or task. 

INVALID INTERRUPT LEVEL OR REQUEST LEVEL 

Interrupt level in COMM directive or request level in TTY, VIP, BSC, or 
LPHn directive has been specified for a noncommunications device or for a 
task. 

INVALID CHANNEL NUMBER 

Channel number in TTY, VIP, BSC, or LPHn directive is the same as the 
channel number of a noncommunications device, or 
Two communications devices have the same channel number but are 
separated in the CLM file by a communications device with a different 
channel number, or 
The channel number is the same as the channel number of a communications 
device using a different line protocol handler, a different modem type, or a 
different speed, or 
The channel number is the same as the channel number of another TTY or 
BSC device. 

5-13 AX07 



xxOB26 
pon address 
directive 

xxOB27 
directive 

xxOB28 
directive 

xxOB33 
channel number 
directive 

xxOB33 
ID directive 

xxOB40 2 

xxOB4 12 

xxOB48 2 

xxOB492 

xxOB4A 2 

xxOB4C2 

2 After this message the system halts 

ERROR, STATUS, AND 
INFORMATIONAL MESSAGES 

CHANNEL NUMBER INCOMPATIBLE WITH POLL ADDRESS 

Channel number and poll address in a VIP directive are the same as the 
channel number and poll address in another VIP directive, or 
The channel number in a VIP directive in which a pol1 address is specified is 
the same as the channel number in another VIP directive in which no poll 
address is specified. 

CPU CANNOT BE A TRIBUTARY ON A POLLED LINE 

Control/tributary in a VIP directive in which a poll address is specified is T. 
The CPU may not be a tributary station on a polled line. 

INVALID ROP TYPE OR FORM FEED 

ROP type or form feed is specified in a VIP directive in which no LRN is 
specified for an Rap. 

LINE ADAPTOR OR DEVICE ERROR 

No line adaptor or device at channel specified in TTY, VIP, BSC, or LPHn 
directive. 

LINE ADAPTOR OR DEVICE ERROR 

ID of line adaptor or device at channel specified is not x'21 xx' or 
ID of line adaptor at channel specified in a TTY directive or an LPHn 
directive in which a speed is specified is not x'2108', x'2110', or x'21 ]8', or 
ID of line adaptor at channel specified in VIP or BSC directive is not 
x'21S8'. 

FUNCTION NUMBER OUT OF RANGE 

Initialization subroutine called ZGQISB with function number not in the 
range 0 through 4. 

CCP REQUIRES TOO MUCH MEMORY 

LPH initialization tried to load a CCP into MLCP memory and the CCP did 
not fit into the 3072-byte area for CCP's. 

CCP OR LCT CANNOT BE LOADED - MLCP REPEATEDLY BUSY 

LPH initialization tried to load a CCP or LCT into MLCP memory and the 
MLCP was repeatedly busy. 

CCP OR LCT CANNOT BE LOADED - UNCORRECTED MEMORY ERROR 

LPH initialization tried to load a CCP or LCT into MLCP memory and the 
MLCP detected an uncorrected main memory error. 

CCP OR LCT CANNOT BE LOADED - INCORRECT PARITY 

LPH initialization tried to load a CCP or LCT into MLCP memory and the 
MLCP detected incorrect parity for a character on the megabus. 

CCP OR LCT CANNOT BE LOADED - INVALID ADDRESS 

LPH initialization tried to load a CCP or LCT into MLCP memory at an 
invalid main memory address. 

5-14 AX07 



ASSEMBLER MESSAGES (xxtO) 

xx 1 007 INVALID CONTROL ARGUMENT 

xxlOOA 

xxlOOB 

xxlOOC 

xxlOOD 

Reenter ASSEM command using valid control argument. 

INSUFFICIENT STARTING MEMORY 

Rerun in a pool of larger size, or reinitialize increasing the size of the current 
pool. 

INVALID - SIZE ARGUMENT 

Reenter command using a valid - SIZE argument. 

FILE NAME NOT DESIGNATED 

The first (or only) argument of the ASSEM command must designate the file 
name of the source module to be assembled. Reenter the command. 

SYMBOL TABLE OVERFLOW 

Rewrite the source module so that some labels are temporary rather than 
permanent, or 
Rewrite the source module so that it is several smaller modules, or 
If additional memory is available, change the -SIZE argument and reenter the 
command. 

The following messages are uncoded: 

ASS EM vvrr 

mmmm ERR COUNT 

This message appears when the assembler is turned on; where vv is the 
version and rr the revision. 

This message appears when the assembler is finished: mmmm is the number 
of errors. 

LINKER MESSAGES (xxII) 

Text messages from the linker are sent to the ERROR OUT and the LIST file (determined by the 
-COUT argument in the LINKER ECL command). If the Monitor reports a system error that results in 
termination of the Linker, an error message in the form 11 yyzz is sent to ERROR OUT before 
termination. Such errors will usually be data management errors producing messages in the form II 02zz. 
Text messages generated by the Linker appear without numeric identification. 

* * LINK TERMINATED 

Linker execution is terminated. The link was unsuccessful. This message appears after each of the 
following messages that result in termination of the Linker. 

OVERLAY overlay name HAS BEEN MULTIPLY DEFINED 

Each overlay name must be unique. This message indicates that a name has been used twice as an 
overlay name or as both an overlay name and an external value definition. The link is terminated. 
Correct the overlay name and relink. 

1ST ERR 

The name specified in the 1ST directive is not found in the Linker symbol table. This message is for 
information only. 

ERROR, STATUS, AND 
INFORMATIONAL MESSAGES 5-15 AX07 



NO WORK FILE - NO LINK OUTPUT 

Not enough work space is available in the working directory to allow for the initial allocation of 
LNKWRK.W, or an I/O error has occurred on the LNKWRK.W file on the working directory. The link 
is terminated. Relink with more space in the working directory. 

PATHNAME TOO LONG 

The pathname of the input object file including the automatically appended .0 is too long. The link is 
terminated. Check the working directory and filenames and relink. 

CMD ERR 

The linker directive is invalid. Correct the directive. Linking continues. 

TBLOV 

The space allocated to the Linker symbol table is too small. The link is terminated. Relink increasing 
the value of the - SIZE argument in the ECL command. 

RT/OV TOO BIG 

The root or overlay being linked is greater than 64K words or it has an invalid start address. The link 
is terminated. 

DATA SPACE ON OUTPUT FL EXCEEDED 

There is not enough room on the output device to hold the bound unit. The link is terminated. No 
bound unit is created. Relink using another directory or disk for the output file. 

RD ERR - OUTFL 

A read I/O error in the bound unit file has occurred. The link is terminated. Relink using another 
directory or disk for the output file. 

* NO LINK OUTPUT 

The link has not been successfully completed. There is no executable bound unit. 

NO LINKER COMMAND FILE 

The Linker command file as specified in the ECl command (-IN) does not exist. The link is 
terminated. Resubmit the LINKER ECL command with the corrected -IN argument. 

NO LIST FL - NO MAPS 

The file specified in the -COUT argument of the ECL command does not exist. The link will continue 
but no list file output will be created. 

INV SZ PARAMETER 

The specified size of the ECL -SIZE argument was not in the range of I to 32K inclusive. The link is 
terminated. 

UTILITY PROGRAMS MESSAGES (xx12) 

xxl201 

xxl203 

xxl204 

ILLEGAL PATHNAME 

If the directive is COPY/COMPARE, the pathname is a directory and not a file. 
If the directive is LIST NAMES, the pathname is not a directory. 

ILLEGAL NUMBER OF ARGUMENTS 

ILLEGAL ARGUMENT LENGTH 

ERROR, STATUS, AND 
INFORMATIONAL MESSAGES 5-16 AX07 



xx1207 

xx1209 

xx120A 

xxl20F 

xxl211 

xxl212 

xx12lA 

xxl21B 

ARGUMENT NOT RECOGNIZED 

ILLEGAL COMBINATION OF ARGUMENTS 

REQUIRED OUTPUT DOES NOT EXIST 

For COMPARE file directive, output file must exist. 
For COpy directive, output volume must exist i.e., be initialized. 

ALLOCATED SPACE EXCEEDED 

On COpy directive, end of output is reached before end of input. 

REDUNDANT ARGUMENT 

REQUIRED ARGUMENT MISSING 

DEVICE TYPE ILLEGAL FOR REQUESTED FUNCTION 

FILES/VOLUMES DO NOT COMPARE 

CONFIGURATION LOAD MANAGEMENT ERROR MESSAGES (xxI3) 

Error messages generated by the Configuration Load Manager have the format: 

(xx 13zz) hh 
[s] [msg] 

xx is the error number 
hh is the level of the task group in which the ClM is operating 
sand msg are secondary messages. 

If sand msg are missing, the second line of the error notice is omitted. if s is missing (but msg is present) 
spaces are substituted for s. The meaning of sand msg depends on the message as explained in the error 
message listing below. 

For all messages that begin with the word CMD, the faulty directive statement is printed on 
ERROR OUT and the next directive, only is read from COMMAND IN. The operator then has the 
option of correcting the directive or bypassing it (by typing an asterisk followed by a carriage return). 
The next directive after the operator action will be read from USER IN. 

If an error notification occurs in the execution of the CLM and there is no operator's terminal 
configured, the system will halt with the following register contents: 

($R I) = Primary error number (13zz) 
($R2) = Secondary error number, if applicable 
($B3) = Pointer to directive buffer (If zz is a CMD error) 
($B4) = Pointer to secondary text buffer (Null if no secondary text) 

Processing cannot continue after this type of halt. 

xxl301 

xx1302 

s 

xx1303 

s 

CMD DIRECTIVE INVALID 

The directive has been misspelled, or it does not begin in column 1 of the line. 

CMD PARAMETER REQUIRES DECIMAL DIGIT 

Nondecimal digit specified where decimal is required. The parameter number is s. 

CMD PARAMETER REQUIRES SMALLER DECIMAL NUMBER 

The parameter number is s. 

ERROR, STATUS, AND 
INFORMATIONAL MESSAGES 5-17 AX07 



xx1304 
s 

xx1305 
s 

xx1306 
s 

xx1309 
s msg 

xx130A 
s 

xx130F 

xx1310 

xx 1311 

xx1312 
s 

xx1313 

xx1314 
msg 

xx1315 

xx1316 

CMD PARAMETER REQUIRES HEX DIGIT 

Nonhexadecimal digit specified where hexadecimal is required. The parameter number is s. 

CMD PARAMETER REQUIRES SMALLER HEX NUMBER 

The parameter number is s. 

CMD INCLUDES A PARAMETER ERROR 

The parameter number is s. This message is issued if: 

1. A terminal apostrophe has been omitted, 
2. 64 characters have been collected or the end of line has been reached, 

3. A string beginning with an alphabetic character rather than an apostrophe is longer than 
64 characters. 

HALT. CANNOT LOAD CLM COMMAND DIRECTORY 

The load status is s. The name of the directory is msg. To try again to load. press RUN and 
EXECUTE. To continue without a retry, change SRI to 0 and then press RUN and 
EXECUTE. 

CANNOT READ COMMAND FROM USER IN 

Only the next command is read from COMMAND IN. An s of 021 F indicates that no QUIT 
command was encountered before the end of file. 

CMD ERROR DUE TO MISSING OR FAULTY PARAMETER 

A required parameter is missing or the wrong type of parameter is used. The types are 
numeric and alphanumeric. 

CMD (SYS) INCLUDES INVALID SIP PARAMETER 

CMD (SYS) INCLUDES INVALID OLAN PARAMETER 

CMD (DEVICE) ERROR 

Cannot assign operator's terminal: s is the error code. 

CMD (SYS) CONFLICTS WITH PREVIOUS COMMAND 

A preceding MEMPOOL command specified an exlusive type pool requiring all of the pool 
area (SIZE was *). 

MEMORY AREA REQUESTED IS TOO LARGE 

A memory pool set requests total memory area which is too large for the area available: msg 
gives the boundaries of the area (in multiples of 32 words). Processing cannot continue after 
this error. 

CMD (MEMPOOL) INCLUDES AN INVALID POOL NUMBER 

The number may be a duplicate of a previous one. 

CMD (MEMPOOL) A POOL TYPE PREVIOUSLY ASSIGNED 

This directive specifies a B type pool, and a previous directive already has defined one. 

ERROR, STATUS, AND 
INFORMATIONAL MESSAGES 5-18 AX07 



xx1317 

s 

xx1318 

s 

xx1319 

xx131A 

xx131F 

xx1320 

xx1321 

s 

xx1322 

s 

xx1323 

xx1324 

xx1325 

xx1326 

xx1327 

CMD (RESOLA) SPECIFIES INVALID OVERLAY 

The overlay whose name is given in parameter number s, is not floatable. CLM continues 
processing succeeding parameters. (This is a system error.) 

CMD (RESOLA) SPECIFIES OVERLAY NOT IN DIRECTORY 

The overlay, whose name is given in parameter number s, cannot be found in the system 
overlay directory. CLM continues processing the succeeding parameters. 

CMD (SYS) SPECIFIES INVALID HZ PARAMETER 

The hz parameter is not 50 or 60 (or null). 

CMD (SYS) SPECIFIES INVALID SCAN PARAMETER 

The scan parameter must be one of the following millisecond values: 

hz = 60( or null) 

8 
16 

33 
50 (or null) 

100 

hz = 50 

10 
20 
25," 

50 (or null) 
100 

CMD (MEMPOOL) SPECIFIES TOO MANY POOLS 

Only one pool can be specified in an S- or B-type set. 

CMD (MEMPOOL) SPECIFIES INVALID POOL NUMBER 

There is a null pool number but the type is not S or B: or the pool number is not 
alphanumeric. 

CANNOT GET BLOCK REQUESTED 

s = FFFF -Zero size block requested 
s = 06zz-See memory management errors. 
CLM processing cannot continue after this error. 

CMD (CLMIN) SPECIFIES INVALID. PA THNAME 

s = 02zz-See file management errors. 

CMD (MEMPOOL) OMITS POOL SIZE 

Pool size must be specified. 

CMD (DEVICE)SPECIFIES INVALID DEVICE TYPE 

Type must be one of the strings described in Section 2, of the System Control manual. 

CMD SPECIFIES LRN GREATER THAN 255 

CMD SPECIFIES LEVEL GREATER THAN 62 

CMD SPECIFIES LEVEL LESS THAN 5 

ERROR, STATUS, AND 
INFORMATIONAL MESSAGES 5-19 AX07 



xxl328 

xxl329 

xxl32A 

xxl32B 

xxl32C 

s 

xxl32D 

xxl32E 

xxl32F 

xxl330 

xxl331 

xx1332 

s 

xx1333 

xx1334 

xxl336 

s msg 

xxl337 

s msg 

xxl340 

s msg 

xxl345 

xx1346 

xxl347 

CMD SPECIFIES LRN PREVIOUSLY ASSIGNED 

The LRN has already been assigned to another device of a different type. 
CMD SPECIFIES DUPLICATE LEVEL PARAMETER 

CMD (DEVICE) SPECIFIES DUPLICATE CHANNEL 

The channel specified has already been assigned to another device. 

LEVEL ALREADY RESERVED 

CMD (RESOLA) SPECIFIES OVERLAY THAT IS ALREADY PERMANENT 

Overlay whose name is given in parameter number s, is already permanent. 

CMD (DEVICE) PREVIOUSLY REFERENCED 

CMD (DEVICE) SPECIFIES WRONG LRN 

LRN must be 0 with default KSR channel number. 

CMD SPECIFIES ASCII NAME THAT IS TOO LONG 

A file, module, or symbol name contains too many characters. 

CMD (DEVICE) SPECIFIES DUPLICATE FILE NAME 

CMD (DEVICE) SPECIFIES INCORRECT EXTEND PARAMETER 

ROLLOUT FILE CANNOT BE CREATED 

Rollout file for batch area cannot be created. Batch area will be destroyed if rollout occurs. 
s = 02zz-See file management errors. 

CMD (MEMPOOL) MEMORY POOL DEFINITIONS IN ERROR 

Memory pool definitions are specified subsequent to a pool definition with * size. 

CMD (MEMPOOL) SPECIFIES INVALID POOL TYPE 

Pool type must be S, B, E, or null. 

HALT. ERROR IN LOADING CLM OVERLAY 

s is the load status; msg is the name of the CLM root whose overlay cannot be loaded. CLM 
cannot be continued. 

ERROR IN LOADING PERMANENT SYSTEM OVERLAY 

s is the load status; msg is the overlay number (hexadecimal). The overlay is not 
permanently loaded. 

HALT. CANNOT LOAD ROOT OF BOUND UNIT 

Cannot load root of bound unit specified in an LDBU directive. 
s is the load status; msg is the name of the bound unit. To try to load again, press RUN and 
EXECUTE. To bypass the load, set $RI to zero, then press RUN and EXECUTE. 

CMD (DEVICE) SPECIFIES DUPLICATE DEVICE TYPE OR UNIT 

CMD (DEVICE) SPECIFIES INVALID BUFFER PARAMETER 

CMD (DEVICE) SPECIFIES INVALID SPD 

SPD directory cannot be located. This is a system software error. 

ERROR, STATUS, AND 
INFORMATIONAL MESSAGES 5-20 AX07 



xx134B 

s 

xx134F 

INITIALIZATION SUBROUTINE ERROR 

Error detected during load initialization. s is the error code of the initialization subroutine. 
Processing cannot continue. 

CMD (DEVICE) SPECIFIES DRIVER THAT CANNOT BE LOADED 

S is the load status. 

FORTRAN COMPILER MESSAGES (xx14) 

If the Monitor reports a system error that results in termination of the compiler, an error message in 
the form 14yyzz is issued before termination. Such errors will usually be data management errors 
producing messages in the form 1402zz. 

xx1407 

xx1412 

INVALID ARGUMENT 

An invalid argument was specified in the load command line. Control returns to the ECL 
Processor. Reinvoke the FORTRAN Compiler, specifying a correct argument in the load 
command line. 

PROGRAM NAME NOT DESIGNATED 

A program name was not designated in the command line. Control returns to the ECL 
Processor. Enter a new command line specifying a program name. 

The following messages are uncoded: 

FORTRAN vvrr 

This message appears when the compiler is turned on ~ vv denotes the version rr denotes the 
revision. 

mmmm ERR COUNT 

This message appears when the compilation is finished mmmm denotes the number of 
errors. 

FORTRAN RUNTIME INPUT/OUTPUT ROUTINE MESSAGES (xxlS) 

xxi 501 

xxl502 

xxl503 

xx1504 

xxI 505 

xx1506 

xx1508 

RECORD LENGTH EXCESSIVE 

Record length exceeds available buffer space. 

RECORD LENGTHS MISMATCHED 

Record length specified in FORTRAN OPEN statement does not match actual physical 
record length. 

END OF FILE REACHED 

End of file reached, but no end path is specified in FORTRAN program. 

RECORD TYPE CONFLICT 

Type of actual record is not the same as specified type (formatted vs unformatted). 

INVALID COUNT PARAMETER 

Invalid count parameter specified in BACKSPACE statement. 

INPUT/OUTPUT LIST DEMANDS ARE EXCESSIVE 

UNFORMATTED WRITE WITHOUT AN IOLIST ITEM 

ERROR, STATUS, AND 
INFORMATIONAL MESSAGES 5-21 AX07 



xx1509 

xx152l 

xx1522 

xx1523 

xx 1524 

xx1525 

xx1526 

xx1527 

xx1528 

xx1529 

EXCEEDS 16 LFN'S 

Input/output list demands exceed record length. 

ILLEGAL FORMAT CHARACTER 

ILLEGAL FORMAT CHARACTER SEQUENCE 

UNEQUAL NUMBER OF MATCHING PARENTHESES 

INTEGER CONSTANT MISSING 

Integer constant missing from Hollerith type descriptor. 

INPUT OF HOLLERITH TYPE DATA IS ILLEGAL 

INPUT OF APOSTROPHE TYPE DATA IS ILLEGAL 

INV ALID DATA 

INTEGER CONSTANT IN ERROR 

Integer constant in error for X-field descriptor. 

DATA TYPE CONFLICT 

Data type does not correspond with indicated data. 

xx 152A INTEGER WIDTH IS ZERO 

xx 152B LOGICAL FIELD CONTAINS BLANK CHARACTERS 

xx 152C LOGICAL FIELD IS NOT EITHER TRUE OR FALSE 

xx1l52D INTEGER VALUE TOO LARGE 

xx 152E ILLEGAL VALUE FOR EXPONENT 

xx152F FORMAT INTEGER TOO LARGE 

xx1530 TOO MANY EMBEDDED PARENTHESES 

xx1531 ACCESS NOT COMPATIBLE FOR LFN 

xx1541 VALUE OF EXPONENT EXCEEDS MAXIMUM RANGES 

xx1542 ZERO ARGUMENT FOR INTRINSIC FUNCTION ALOG, DALOG 

xx1543 NEGATIVE ARGUMENT FOR INTRINSIC FUNCTION ALOG, DALOG 

xx 1544 ARGUMENT TOO LARGE FOR INTRINSIC FUNCTION SIN, DSIN 

xx 1545 NEGATIVE ARGUMENT FOR INTRINSIC FUNCTION SQRT, DSQRT 

xx1546 ORIGIN CANNOT BE AN ARGUMENT FOR ATAN2, DATAN2 

xx1547 SECOND ARGUMENT FOR MOD FUNCTION CANNOT BE ZERO 

The second argument for the intrinsic function MOD cannot be zero. 

ERROR, STATUS, AND 
INFORMATIONAL MESSAGES 5-22 AX07 



xxlS48 

xxlS49 

xxlS4A 

SECOND ARGUMENT FOR AMOD, DAMOD FUNCTIONS CANNOT BE ZERO 

The second argument for th~ intrinsic functions AMOD, DAMOD cannot be zero. 

SECOND ARGUMENT FOR ISIGN FUNCTION CANNOT BE ZERO 

The second argument for the intrinsic function ISIGN cannot be zero. 

SECOND ARGUMENT FOR SIGN, DSIGN FUNCTIONS CANNOT BE ZERO 

The second argument for the intrinsic functions SIGN, DSIGN cannot be zero. 

LOADER MESSAGES (xx16) 

xxl601 ILLEGAL OVERLAY -id 

xx1602 ILLEGAL PARAMETER 

xx1603 INV ALID LOAD ADDRESS SPECIFICATION 

xx1604 INV ALID START ADDRESS SPECIFICATION 

xx160S RELOCATION ERROR 

xx1607 MEDIA ERROR 

xx1608 SYMBOL RESOLUTION ERROR 

xx1609 BOUND UNIT NOT FOUND 

xx160A INSUFFICIENT MEMORY 

xx160B ILLEGAL OVERLAY NESTING 

xx160C OVERLAY SIZE EXCEEDS AREA SIZE 

xx 1600 BOUND UNIT ENTRY POINT UNDEFINED 

xx 160E BOUND UNIT CANNOT EXECUTE IN USER TASK GROUP 

xxl60F BOUND UNIT CANNOT EXECUTE IN SYSTEM TASK GROUP 

EC/ECL/OCL COMMAND MESSAGES (xx 17) 

xx1701 

xxl702 

xx1703 

xxl704 

xx170S 

xxl706 

xxl707 

ILLEGAL EC DIRECTIVE 

ILLEGAL NUMBER OF ARGUMENTS 

NON-NUMERIC CHARACTER IN NUMERIC ARGUMENT 

ILLEGAL ARGUMENT LENGTH 

ILLEGAL GROUP-ID 

COMMAND NOT DEFINED IN OCL 

ARGUMENT NOT RECOGNIZED 

ERROR, STATUS, AND 
INFORMATIONAL MESSAGES 5-23 AX07 



xx1708 

xx1709 

xx170A 

xx170B 

xx170C 

xx170D 

UNEXPECTED NULL ARGUMENT 

ILLEGAL COMBINATION OF ARGUMENTS 

COMMAND NOT DEFINED IN ECL 

ILLEGAL CHARACTER IN SYMBOLIC START ADDRESS (CT,ST) 

SYMBOLIC START ADDRESS NOT FOUND (CT,ST) 

SYMBOLIC DEVICE NAME NOT DEFINED (RAS,STS) 

xx170E 

xx170F 

NO MOUNT PENDING FOR REQUESTED VOLUME OR DEVICE (RAS (-CANCEL)) 

NONHEX CHARACTER IN A HEX ARGUMENT 

xx1710 COMMAND NOT VALID IN A COMMAND FILE FOR THE BATCH TASK GROUP 

xx1711 

xx1712 

xx1713 

xx1714 

xx1715 

REDUNDANT ARGUMENT 

REQUIRED ARGUMENT MISSING 

ILLEGAL LRN FOR SYMBOLIC DEVICE (RAS (-SWAP)) 

DEVICE NOT OFFLINE (RAS (-SWAP)) 

DEVICES TO BE SWAPPED NOT ALIKE (RAS (-SWAP)) 

CROSS REFERENCE PROGRAM (XREF) MESSAGES (xx t 8) 

xx1807 ARGUMENT NOT RECOGNIZED 

xx180F MEMORY FULL 

No more symbols can be cross-referenced. Current symbols are processed. 

xx1812 REQUIRED ARGUMENT MISSING 

EDITOR MESSAGES (xx19) 

Editor Initialization Messages 

ERROR IN REQUEST PARAMETER 
The ECL ED command recognizes only two load time parameters, -LINE LEN and -IN. The 
allowable line length is from 20 to 255 inclusive. -IN must be followed by a legal pathname. This 
message is issued if there is an error in either of these parameters. Messages generated by the editor are 
typed on the operator's terminal without numeric identification. The number assigned to editor 
messages is 19. 

NO WORKSPACE ALLOCATED 

The space in the current working directory is not sufficient for the temporary work files required by 
the editor. 

CANNOT LOAD OVERLAY 

o The memory available for loading the user's dynamic storage is insufficient, or 
o The overlay cannot be found. 

ERROR, STATUS, AND 
INFORMATIONAL MESSAGES 5-24 AX07 



For memory space, 2K words are requested; IK words will be accepted and used. The editor cannot 
run with less than 1 K words of additonal storage. 

Editor Addressing Messages 
BUFFER EMPTY 

An attempt was made to reference a specified line when the buffer is empty. (Only "$", ".", and "0" 
are legal addresses within an empty buffer and then only with a READ, APPEND, or INSERT 
directive.) 

ADDRESS OUT OF BUFFER 

A reference was made to a line that does not exist: for example, an address of 20 when there are less 
than 20 lines in the buffer, or an address of .+5 'when the current line is less than five lines from the 
last line in the buffer. 

ADDRESSWRA~AROUND 

An attempt was made to address a series of lines in which the line number of the second line 
addressed is less than that of the first (e.g., $, I). 

SEARCH FAILED 

The editor cannot find the expression specified in the directive. 

ERROR IN REGULAR EXPRESSION 

A regular expression used as an address is not properly delimited. 

/ / UNDEFINED 

A null expression is specified but a regular expression was not previously specified. 

SYNTAX ERROR 

Delimiters have been improperly used: request is not recognizable. 

INVALID USE OF * IN REGULAR EXPRESSION 

The asterisk has been used as the first character of a regular expression. To specify an asterisk as a 
data character, precede it with the characters !C: i.e., !C*. In a regular expression, the asterisk means 
"any num ber of the preceding character." 

Edit Directive Messages 
MODIFIED BUFFERS EXIST, QUIT DEFERRED 

The contents of the buffer have been modified but have not been written to a file at the time the 
QUIT directive was entered. If you want to save the contents of the buffer, you must enter a WRITE 
directive. If not enter another QUIT to effect an exit from the editor. 

NO PATHNAME GIVEN 

No pathname was specified in a current READ or WRITE directive or in a previous READ or WRITE 
directive. 

TRUNC AFTER xxxxx CHARS 

The line contains more characters than the number specified in the -LIN LEN argument of the ECL 
ED command or in the default value (80) of that argument. 

OLEN-DEL 

The line length became zero as the result of the specified substitution. 

ERROR, STATUS, AND 
INFORMATIONAL MESSAGES 5-25 AX07 



SUBSTITUTION FAILED 

The editor cannot find the specified string of characters that is to be replaced. 

ERROR IN COMMAND LINE 

An invalid ECL command was entered in the EXECUTE directive. 

Editor Messages Pertaining to Auxiliary Buffers 
TOO MANY BUFFERS 

An attempt was made to open a sixth buffer. The editor allows a maximum of five. 

ERROR IN BUFFER NAME 

A buffer name may consist of a single character or as many as 16 characters. If more than one 
character is used, they must be enclosed in parentheses. This message is issued if there are too many 
characters or if the parentheses are missing. 

COpy TO CURRENT BUFFER REJECTED 

A MOVE or COpy directive has specified a copy from the current buffer to the same buffer. 

PATCH MESSAGES (xx21) 

xx2103 ILLEGAL HEX CHARACTER 

Illegal hexadecimal character specified for address or value. 

xx2107 ILLEGAL INPUT PARAMETER 

Correct parameter and reenter directive. 

xx2112 3 NO SLASH 

A slash (/) must be specified before an address field. 

xx2180 SEGMENT NOT FOUND 

The segment identified in the patch id cannot be found. Control returns to the Monitor. 

xx2181 

xx2182 3 

xx2183 3 

xx21843 

xx2185 

msg 

xx2186 3 

NO PATCH ON FILE 

This message is issued when the directive Eliminate Patch (EP) or List Patches (LP) applies 
to a file that has never been patched. Control returns to the Monitor. 

DUPLICATE PATCH ID 

A patch having the specified id already exists. 

PARAMETER TABLE OVERFLOW 

Additional parameters cannot be accepted. 

NO ROOM TO VERIFY TAB 

ADDRESS OUT OF BOUNDS 

Address specified in msg in not within specified segment. Control returns to the Monitor. 

PATCH NOT FOUND 

Patch specified in Eliminate Patch (EP) directive cannot be found. 

::I Directive that contains error is deleted; preceding directives are executed. 

ERROR, ST ATUS, AND 
INFORMATIONAL MESSAGES 5-26 AX07 



xx2188 3 NO ROOM TO EXTEND SLOW LOAD SECTION 

Control returns to the Monitor. 

xx2189 

xx2190 

xx2191 

NOT ENOUGH MEMORY IN MEMORY POOL 

Control returns to the Monitor. 

PATCH EXCEEDS 256 BYTES 

Control returns to the Monitor. 

WRONG FILE TYPE BEING PATCHED 

Control returns to the Monitor. 

COMMUNICATIONS FILE TRANSMISSION PROGRAM MESSAGES (xx22) 

xx2201 ECL COMMAND OR ARGUMENT ERROR 

xx2202 PARAMETER CARD ERROR DETECTED BY LEVEL 6 

xx2203 WRITE ERROR DETECTED FROM IDENTIFICATION RECORD TRANSMISSION 

xx2204 READ ERROR DETECTED FROM PARAMETER CARD RECEIPT 

xx2205 RECORD SIZE MISCOMPARE BETWEEN PARAMETER CARD AND FILE INFORMA­
TION BLOCK 

xx2210 

xx2211 

xx2221 

xx2280 

xx2281 

xx2282 

xx2283 

xx2284 

xx2285 

xx2286 

xx2287 

xx2288 

xx2289 

xx228A 

xx22Bl 

EOF RECORD NOT SENT BY LEVEL 66 

UNEXPECTED MESSAGE RECEIVED FROM LEVEL 66 

CONNECT FAILED 

PARAMETER CARD ERROR DETECTED BY LEVEL 66 

FILE TRUNCATED DURING RESTART 

RECORD SIZE ERROR 

BLOCK SIZE ERROR 

BLOCK SERIAL NUMBER ERROR 

LEVEL 66 UNRECOVERABLE I/O ERROR 

REMOTE ABORTS TRAN66 

UNEXPECTED ABORT 

BLOCK OVERFLOW ERROR 

LINE DISCONNECT 

TRANSMISSION SEQUENCE NUMBER ERROR DETECTED IN LEVEL 66 

TRANSMISSION SEQUENCE NUMBER ERROR DETECTED IN LEVEL 6 

3 Directive that contains error is deleted; preceding directives are executed. 

ERROR, STATUS, AND 
INFORMATIONAL MESSAGES 5-27 AX07 



xx22B2 

xx22B3 

xx22B4 

INCORRECT MEDIA CODE FROM LEVEL 66 

INCORRECT RECORD SEQUENCE NUMBER DETECTED IN LEVEL 6 

FILE BUFFER OVERFLOW 

MACRO PREPROCESSOR MESSAGES (xx23) 

xx2307 INVALID CONTROL ARGUMENT 

Invalid control argument in MACROP command. 

xx230A INSUFFICIENT STARTING MEMORY 

Rerun in a pool of larger size, or reinitialize increasing the size of the current pool. 

xx230B INVALID -SIZE ARGUMENT 

Reenter command using a valid -SIZE (I through 64) argument. 

xx230C PATHNAME IS MISSING 

Pathname of unexpanded source file is missing from MACROP command. 

xx230D WORK SPACE EXHAUSTED 

All available work space has been exhausted. 

xx230E NO ENDM STATEMENT 

No ENDM statement in a library macro file or in an inline macro definition. 

The following messages are uncoded: 

MACROP vvrr This message appears when the Macro Preoprocessor is turned on; where vv is 
the version and rr the revision. 

mmmm ERR COUNT This message appears when the Macro Preoprocessor is finished; mmmm is the 
number of errors. 

EXPORT/IMPORT PAM FILE PROGRAM MESSAGES (xx24) 

xx2404 

xx2412 

xx2413 

xx2414 

xx2415 

xx2421 

xx2422 

ARGUMENT LENGTH IS ILLEGAL 

REQUIRED ARGUMENT IS MISSING 

IMPORT PATHNAME FILE IS NOT VARIABLE SEQUENTIAL 

UNRECOGNIZED DEVICE TYPE 

FILE TO BE EXPORTED IS NOT VARIABLE SEQUENTIAL 

DCB HAS BEEN DESTROYED 

A device control block (DCB) must be available. 

INVALID MEMBER NAME 

Specified input member cannot be found or specified output member is a duplicate. 

ERROR, STATUS, AND 
INFORMATIONAL MESSAGES 5-28 AX07 



xx2423 DCB STATUS INCORRECT 

The device control block status is incorrect. 

xx2424 END OF DATA SPACE 

xx2426 INVALID RECORD LENGTH 

xx242C FILE IS NOT PARTITIONED 

DUMP EDIT (DPEDIT) ERROR MESSAGES (xx25) 

Dump Edit reports fatal run-time errors to ERROR OUT through the system's Error Handler. Such 
errors terminate the dump procedure and cause an immediate return to the ECL Processor. 

xx2503 

xx2507 

xx2512 

xx2513 

xx2514 

xx2515 

NONNUMERIC CHARACTER IN NUMERIC ARGUMENT 

This message is issued if a nonnumeric character is encountered during processing of the 
positional parameters within the -TO and -FROM arguments. 

ARGUMENT NOT RECOGNIZED 

REQUIRED ARGUMENT MISSING 

This message is issued when the pathname of the dump file is omitted and -MEM has not 
been specified. It may also result from a missing argument during processing of the 
positional parameters within the -TO and -FROM arguments. 

ADDRESS MODE INCOMPATIBILITY 

This message is issued when the address mode (SAF or LAf) of the dump file differs from 
the address mode of DPEDIT. 

DUMPFILE IS INCORRECT FILE TYPE 

This message is issued when the external dump file is not a relative file without deletable 
records. 

DUMPFILE IS INCOMPLETE 

This message is issued when the external dump file does not contain -I. 

COBOL COMPILER MESSAGES (xx26) 

xx2601 

xx2602 

xx2603 

xx2604 

(argument) INVALID ARGUMENT 

The displayed argument is not recognized as valid in the ECL for invoking COBOL. It is 
ignored and processing continues. 

INVALID SIZE SPECIFIED. 

The -SIZE argument is in error and is ignored. This argument must be in the range 04 
through 64. The compiler uses the default size. 

MISSING ARGUMENT 

The required argument following -SIZE or -COUT is missing. Processing continues. 

TOO FEW ARGUMENTS 

Insufficient arguments are supplied in the ECL for invoking COBOL. Compilation 
terminates and the compiler must be reinvoked. 

ERROR, STATUS, AND 
INFORMATIONAL MESSAGES 5-29 AX07 



xx2605 

1616nn 

REQUESTED MEMORY NOT AVAILABLE 

Less than 3K words of memory requested in the -SIZE argument are available. The compiler 
will use the available amount of memory. . 

2612nn LFN{ll}COMPILER FILE PROBLEM 

The value of nn represents an error detected by the File Manager. A typical value of nn is 09 
(pathname not found in the file system). The compiler files are as follows: 

LFN 01 - Source 
LFN 02 - Listing 
LFN 03 - Object 
LFN 05 - Labels work file 
LFN 06 - COBWRK work file 

After this message, the compilation is terminated. 

OVERLA Y xx COMPILER LOADING PROBLEM 

A loader error has occurred during loading of the compiler overlay represented by xx. The 
'.':-llue of nn is one of the error codes produced by the loader. 

The following messages are uncoded: 

COBOL vvrr This message appears when the compiler is turned on; vv is the version, rr the 
revision. 

mmmm ERR COUNT This message appears when the compiler is finished; mmmm is the number of 
errors. 

MESSAGES ISSUED BY COBOL RUN-TIME ROUTINES (xx27) 

xx2701 

xx2702 

xx2703 

xx2705 

xx2707 

CALL ERR IN xxxxxx, or 
CANCEL ERR IN xxxxxx 

Overlay does not exist when COBOL program xxxxxx attempted to call or cancel it. 
Program execution is terminated. 

CALL ERR IN xxxxxx, or 
CANCEL ERR IN xxxxxx 

Overlay has been called but has not exited; attempt by COBOL program xxxxxx to call or 
cancel it is illegal. Program execution is terminated. 

CALL ERR IN xxxxxx 

Overlay conflicts with resident overlay when COBOL program xxx xxx attempted to call it. 
Program execution is terminated. 

CALL ERR IN xxxxxx 

Overlay loader error occurs when COBOL program xxxxxx attempts to call an overlay. 
Program execution is terminated. 

CALL ERR IN xxxxxx 

Memory manager error occurs when COBOL program xxxxxx attempts to call an overlay. 
Program execution is terminated. 

ERROR, STATUS, AND 
INFORMATIONAL MESSAGES 5-30 AX07 



xx270A CONY ERR ON SOURCE LINE nnnnnn 

The result of converting a numeric field to binary is either negative or exceeds 32,767. The 
line number of the source line where the error occurred is represented by nnnnnn. The 
condition can result from an identifier being converted in one of the following cases 

1. PERFORM n TIMES 
2. SET statement 
3. Subscripting 
4. Relative Key in I/O statement 

SORT ERROR MESSAGES (xx31) 

Error messages generated by the Sort program have the format: 

(31 yyzz) 
message 

Certain sort error messages are followed by a secondary message with the format: 

313121 

313122 

313123 

313124 

313125 

(3131 FF) 
secondary message 

PARAMETER SYNTAX ERROR 

Syntax error detected in EeL SORT command line or sort description. This message is 
followed by a secondary message. The text of the secondary message can be a phrase that 
identifies the error (for example, FIELD DESCRIPTION). Alternatively it can be a string of 
characters the first word of which indicates where the error was found: the remaining words 
in the string are those which Sort was unable to scan intelligently. An ellipsis ( ... ) at the end 
of the string indicates that there are too many unintelligible words to be contained on one 
line. 
A separate message is generated for each syntax error. Sort will be terminated once the full 
sort description has been checked. 

REQUIRED PARAMETER MISSING 

Required parameter missing from sort description. This message is followed by a secondary 
message identifying the missing parameter. Sort will be terminated once the full sort 
description has been checked. 

TOO MANY PARAMETERS 

An excessive number of parameters has been specified in the sort description. The message is 
followed by a secondary message identifying the error (for example, KEY FIELDS). Sort 
will be terminated once the full sort description has been checked. 

RECORD TOO SMALL, REC NUMBER nnnnnn 

A variable-length record (identified by record number nnnnnn relative to the beginning of 
the file) has been read that is too short to support the specified key fields. The record is 
bypassed and the sort continues unless the next nine successive records read are also too 
short. 

INSUFFICIENT MEMORY 

Insufficient memory available to support the size of record to be sorted. Sort is terminated. 

ERROR, STATUS, AND 
INFORMATIONAL MESSAGES 5-31 AX07 



313126 

313127 

313128 

313129 

313130 

313131 

VALUE OR LENGTH INCONSISTENCY 

A specified parameter value is inconsistent with another sort characteristic (for example, a 
key field position is outside the record). Sort will be terminated once the full sort 
description has been checked. 

WORKFILE TOO SMALL, WORK REC WRITTEN nnnnnn 

Workfile space available is insufficient to complete the sort. File-relative record number 
nnnnnn represents the number of the last work record written. 

SEQUENCE ERROR 

Sequence error detected during writing of output file. The out-of-sequence record is not 
written to output file. Output file is closed. Sort is terminated. 

DATA GAIN 

Inconsistency detected between number of records read and number being written to 
output file. Excess records are not transferred to output file. Output file is closed. Sort is 
terminated. 

DATA LOSS 

A loss of data is detected: fewer records are written to the output file than were read from 
the input file. Output file is closed. Sort is terminated. 

INCOMPLETE COMMENT 

Incomplete comment detected in sort description: comment delimiters (/) did not occur in 
pairs. Sort is terminated. 

Each of the following error conditions as reported by Sort occurred during an input/output operation 
on the file indicated in the message. For the explanation of the specific error that has occurred see the 
appropriate message listing under the applicable category code (yy) number. In these messages, SD refers 
to the sort description file specified in the c'ontrol argument -IN_PATH in the Eel command SORT. In 
all cases, the sort is terminated. 

(INPUT l 
31yyzz FILE NOT FOUNO,OUTPUT) 

)WORK 
tso 

The file indicated in the message cannot be found. 

{

INPUT ) 
OUTPUT { 

31 yyzz OPEN ERROR WORK ~ 

SO 

An error occurred during the process of opening the indicated file. 

{

INPUTt 
31yyzz READ ERROR ~gRK~ 

An error occurred during the process of reading a record from the indicated file. 

ERROR, STATUS, AND 
INFORMATIONAL MESSAGES 5-32 AX07 



An error occurred during the process of writing a record to the indicated file. 

{INPUT ) 
)WORK ( 

31 yyzz CLOSE ERRORlOUTPUT ~ 
SD 

An error occurred during the process of closing the indicated file. 

31 yyzz SYSTEM ERROR 

Sort-requested system service has not been executed successfully. 

MULTILINE COMMUNICATIONS PROCESSOR (DUMCP) ERROR MESSAGES (xx34) 

xx3401 

xx3402 

INVALID OUTPUT DEVICE SPECIFIED 

A device other than a local terminal or printer was specified as the output device. Respecify 
all of the required Linker directives, including a valid channel number in the VDEF 
DMPOUT directive. 

INVALID CHANNEL NUMBER 

The channel number entered for block mode read is invalid. Respecify all of the required 
Linker directives including a valid channel number in the VDEF RDMLCP directive. 

ERROR, STATUS, AND 
INFORMATIONAL MESSAGES 5-33 AX07 





APPENDIX A 

ECL AND OCL COMMANDS 

The ECL and OCL commands in this appendix are arranged in alphabetic sequence by the command 
code. The information presented includes the command code, the command name, a character (E for 
ECL, 0 for OCL) designating the type of command, and the command format. Separate formats are 
given for variations of a command. 

Command name, positional parameters, keywords, and arguments are separated by one or more 
spaces or horizontal tabs. In the SD command slashes separate year, month, and day; a colon separates 
minutes and seconds. Optional arguments are enclosed in brackets []. The presence of an illegal 
keyword, or the specification of a wrong value for an argument in a command will cause the command to 
be rejected. In addition, some commands require a fixed number of arguments and some allow no 
arguments. If the number of arguments for such commands does not meet the requirements, the 
command is rejected. For example, a BYE command is rejected if it includes any arguments. 

ECL/ 
Name Function OCL Format 

ABORT_BATCH Abort Batch 0 ABORT_BATCH 
ABR Abort Batch Request 0 ABR 
ACTB Activate Batch 0 ACTB 
ACTG Activate Group 0 ACTG id 
AG Abort Group E AG rid] 
AG Abort Group 0 AG id 
AGR Abort Group Request 0 AGRid 
ASSEM Assembler E ASS EM path [-NO_OBJ -NO_LIST 

-LIST ERRS -LAF -SIZE nn 
-COUT ouLpath] 

ASSOC Associate Path E ASSOC Ifn path 
BYE Terminate Current E BYE 

Request 
CB Create Batch 0 CB phys_lvl -LRN n -LFN n 
CD Create Directory E CD path 
CF Create Fixed E CF path -F_REL [-REC~IZE n 

Relative File (without -SIZE n -INC~IZE nnn -MAX_SIZE nnn 
deletable records) -LFN Ifn] 

CF Create Fixed E CF path -N_REEL [-REC3IZE n -SIZE n 
Relative File (with -INC SIZE nnn -MAX SIZE nnn 
deletable records) -LFNlfn] -

CF Create Sequential E CF path [-SEQ] [-CI_SIZE n -SIZE n 
File -REC_SIZE nnn -INC3IZE nnn 

-MA~SIZE nnn -LFN Ifn] 
CF Create Relative E CF path -REL [-CI SIZE n 

File (with variable -SIZE n -REC SIZE nnn-INC SIZE nnn 
records) -MAX_SIZE nnn -LFN Ifn] 

CF Create Index File E CF path -INDEX [-CI_SIZE n 
-SIZE n -REC_SIZE nnn 
-INC SIZE nnn -MAX SIZE nnn -LFN Ifn 
-KEY SIZE nnn -FILL PC nnn] 

CG Create ECL Group E CG id phys.Jvl [-ECL] 
[-LRN n -LFN n -POOL id] 

ECL AND OCL COMMANDS A-I AX07 



ECL/ 
Name Funciton OCL Format 

CG Create ECL Group 0 CG id phys-1vl [-ECL] [-LRN n 
-LFN n 1 -POOL id 

CG Create Group E CG id phys Ivl -EFN root 
[?entry] [-LRN n -LFN n 
-POOL id] 

CG Create Group 0 CG id phys-1vl -EFN root 
[?entry] [-LRN n -LFN n] 
-POOL id 

COBOL COBOLCompiler E COBOL path [-LIST....J)Bl 
-NO_OBl -NO_LIST -LIST_ERRS 
-LAF -SIZE nn -COUT outyath] 

CP Copy File E CP path new [-VOL -CI 
-VERBATIM -NWD] 

CPA Compare Volume E CPA path new -VOLUME [-PRINT x 
-NWD] 

CPA Compare File E CPA path new [-CI -LIMIT nn 
-FROM n -PRINT n -NWD] 

CSD Change System 0 CSD [path] [-LIB x] 
Directory 

CT Create Task E CT Irn rel.Jvl -EFN root 
[?entry] 

CT Create Task E CT Irn reI Ivl -SHARE Irn 
(shared) [ ssa] 

CV Create Volume E CV path -BOOT X'hhhh' 
(bootstrap) 

CV Create Volume E CV path -MDUMP nn 
(Mdump record) 

CV Create Volume E CV path -FORMAT vol-id [x] 
(format) 

CV Rename Volume E CV path -RENAME y 
CWD Change Working E/O CWD [path] 

Directory 
DB Delete Batch 0 DB 
DG Delete Group E DG rid] 
DG Operator Delete Group 0 DG id 
DISSOC Dissociate Path E DISSOC Ifn 
DPEDIT Dump Edit E DPEDIT path [-FROM X'xxxx' 

-TO X'xxxx' -NO_LOGICAL 
-NO_PHYSICAL -MEMORY] 

EBR Enter Batch E EBR iILpath [-OUT ouLpath 
Request -WD path] 

EBR Operator Enter 0 EBR user.--!d inJath [-OUT outyath 
Batch Request -WD path] 

EC Execution Command E/O &llcomment EC statement E/O 
&A attach user in E/O 
&D detach useLin E/O 
&Fll turn off EC printing E/O 
&Nll turn on EC printing E/O 
&Pll message to operator E/O 
&Qll terminate execution of EC file 

ED Editor E ED [-IN path -LINE_LEN n] 
EGR Enter Group E EGR id [-in-path -ARG -WD path 

Request -OUT outJath] 
EGR Enter ECL Group E EGR id in_path [-ARG -WD path 

Request -OUT ouLPath] 

ECL AND OCL COMMANDS A-2 AX07 



ECLI 
Name Function OCL Format 

EGR Operator Enter 0 EGR id user--.J.d [in_path -ARG 
Group Request -WD path -OUT out path] 

EGR Operator Enter ECL 0 EGR id useUd inJath [-ARG 
Group Request -WD path -OUT ouLpath] 

ETR Enter Task E ETR lrn [-WAIT -ARG J 
Request 

EXJAM Export PAM File E EX~AM path pam [memi] ... [-R] 
FD File Dump E FD path [-LIMIT xx -FROM n 

-CI -NWD -BACK n -HEX -ALPHA] 
FO File Out E/O FO [path] 
FORTRAN FORTRAN Compiler E FORTRAN path [-LIST_OBJ -NO_OBJ 

-NO LIST -LIST ERRS -LAF 
-SIZE nn -COUT out path] 

1M PAM Import PAM file E IMJAM pam new [ memil ... [-R] 
LINKER Linker E LINKER path [-IN path -COUT 

ouLpath -SIZE nn -LAF -SLAF] 

LS List Directory Names E LS -DIR [-ALL -DETAIL -PN path] 
[name] 

LS List File Names E LS [-FILE] [-ALL -DETAIL 
-PN path] [name] 

LSR List Search Rules E/O LSR 
LWD List Working Directory E/O LWD 
MACROP Macro Preprocessor E MACROP path [-INCLUDE CONTROLS 

-MACRO_CALLS -SIZE nn] 
MF Modify File E/O MF -SHARE -READ 
MF Modify File E/O MF -SHARE -WRITE 
MF Modify File E/O MF -NONSHARE -READ 
MF Modify File E/O MF -NONSHARE -WRITE 
MSG Send Message to E M SG "m essage " 

Operator 
MSW Modify External E MSW [-ON xx ... -OFF xx ... ] 

Switches 
MSW Turn on all E MSW -ALLON 

External Switches 
MSW Turn off all E MSW -ALL OFF 

External Switches 
MSW Modify External 0 MSW id [-ON xx ... -OFF xx ... J 

Switches 
MSW Turn on All 0 MSW id -ALL ON 

External Switches 
MSW Turn off all 0 MSW id -ALL OFF 

External Switches 
PATCH Patch Object E PATCH name [-IN path] 

File 
PR Print File E PR path [-RELEASE -LIMIT nn 

-COPIES x -SPACE s -FORTRAN 
-FROM n -LINE_LEN nn] 

RAS Reassign 0 RAS [-SWAP dey name! dey name2 
-CANCEL name] -

RDF Ready Off E/O RDF 
RDN Ready On E/O RDN 
RENAME Rename File E RENAME old_path new_name 
RL Release file E RL -FILE path 

ECL AND GCL COMMANDS A-3 AX07 



ECL/ 
Name Funciton OCL Format 

RL Release Directory E RL -DIR path 
RPG RPG Compiler E RPG path [-LIST _OBJ -N0--.9BJ 

-NO_LIST -LIST_ERRS -LAF 
-SIZE nn -COUT ouLpath] 

RS Reset Map E RS path 
SD Set Date 0 SD 'yyyy/mm/dd/ hh[mm[:ss]]' 
SG Spawn ECL Group E SG id phys lvl in path 

[-ECL] fOUTout_path -lrn n 
-LFN n -POOL id -WD path] 

SG Spawn Group E SG id phys..lvl [in_path] 
-EFN root [?entry] [-OUT ouLpath 
-LRN n -LFN n -POOL id -WD path 
ARG] 

SG Operator Spawn 0 SG id user-.Jd phys-.Jyl in yath 
ECL Group [-ECL] [-OUT outyath -LRN n 

-LFN n -WD path] -POOL id 
SG Operator Spawn Group 0 SG id user~d phys_Ivl [inj)ath] 

-EFN rooLentry [-OUT outJath 
-LRN n -LFN n -WD path -ARG] 
-POOL id 

SORT Sort Program E SORT [-IN path -SIZE nn -PD] 
SSPB Suspend Batch 0 SSPB 
SSPG Suspend Group 0 SSPG id 
ST Spawn Task E ST retJvl-EFN root[?entry] 

[-WAIT -ARG] 
ST Spawn Task (shared) E ST reLlvl -SHARE lrn [ssa] 

[-WAIT -ARG] 
STG Task Group Status E STG [-TASKS -FILES] 
STG Operator Task 0 STG id [-TASKS -FILES] 

Group Status 
STS System Status 0 STS [-BA -ALL -A V AIL -SYMPD nnn 

-DISABLED -GROUP -LBR] 
TIME Display Current Time E/O TIME 
XREF List Symbol Usage E XREF path [-COUT ouLpath -SIZE nn] 

ECL AND OCL COMMANDS A4 AX07 



APPENDIX B 

FILE TRANSMISSION 

The file transmission (TRAN) programs provide for the transmission of files between Level 6 GCOS 
6/MDT and Level 66 GCOS systems. Two programs are required: TRAN6, which runs on the Level 6 
system, and TRAN66, which runs on the Level 66 system under GCOS with a 355 FNP under control of 
the Remote Terminal Supervisor (GRTS). The format of the transmitted file is ASCII on the Level 6 
system and BCD system standard format (SSF) on the Level 66 system, with ASCII as the transmitted 
data medium. Files are transferred using a point-to-point (nonpolled) synchronous VIP protocol (refer to 
the Series 60 (Level 66/6000) Remote Terminal Supervisor (GRTS) manual, Order No. DD40). The 
TRAN6 program is invoked from the Level 6 using an ECL command. The TRAN66 program is invoked 
from the Level 66 using a procedure recognized by the GCOS operating system and executes as a 
standard GCOS direct access program. 

FUNCTIONAL DESCRIPTION 

The TRAN programs allow high-speed source data file transmission between the Level 6 and Level 66 
systems. They perform a series of communications functions including: 

o Support of Level 6 and Level 66 disk files 
o Error recovery and file repositioning 
o Extensive interactive analysis: 

Parameter card validity testing 
Data compression during transmission 
Verification of transfer unit sequence number (TUSN) 
Maintaining logical record sequence numbers for recovery 
Operator notification of inconsistencies between stated and actual parameter values 

o Conversion of files to or from Level 6 to Level 66 system standard format 

TRAN6 establishes access connection with Level 66 through a communications procedure, and once the 
connection is complete, the TRAN programs initiate transfer in accordance with the calling parameters 
passed to the system from the Level 6 invocation. 

The TRAN programs are designed to satisfy the following functions for successful data file 
transmission: 

o Conversion and reconversion of data from Level 66 SSF to Level 6 ASCII format 
o Compression of data to variable length record format 
o Validity checking on all parameter card and system required arguments 
o Deletion of duplicate transmission blocks using the TUSN 
o Error indication for abort conditions 
o Transmission activity status indication 

Normal Termination 
The TRAN programs use an end-of-file (EOF) designation to signify transmission of the final record 

of a data file. The normal termination sequence is then initiated. A message buffer indicating the 
successful transfer is formatted and transmitted by the Level 66 system to the Level 6 system. Upon 
receipt of the buffer, the status of the buffer is tested. A successful status is followed by a logical 
disconnect, a release of buffer and temporary file storage space, the closing of all open files, and program 
termination. 

FILE TRANSMISSION B-1 AX07 



Abnormal Termination 
An abnormal termination of the transfer of a file can be caused by inability to connect, inadequate 

file or buffer space, unrecoverable I/O or other transmission errors, or parameter card errors. The TRAN 
programs react to an abort condition by closing all Level 6 and Level 66 files to allow for transmission at 
a later time, and by signaling the operator of the abort status. 

Error codes generated during the transmission activity indicate the type of inconsistency encountered. 
The messages include: 

o Command error - TRAN6 detected an error in a calling argument 
o Parameter card error (TRAN6) - Parameter card error detected by TRAN66 
o Restart end of file error - TRAN66 reached an end of file before the restart record was 

encountered 
o Unrecoverable I/O error - Indicates an unrecoverable hardware error on a Level 66 peripheral 
o Parameter card error (TRAN66) - Parameter card error detected on the Level 66 
o Unrecoverable transmission error - Excessive number of NAKs 

TRAN Error Codes 
The following error codes and their meanings apply to the TRAN programs. 

2201 
2202 
2203 
2204 
2205 
2210 
2211 
2221 
2280 
2281 
2282 
2283 
2284 
2285 
2286 
2287 
2288 
2289 
228A 
22BI 
22B2 
22B3 
22B4 

ECL command or argument error 
Parameter card error detected by Level 6 
Write error detected from identification record transmission 
Read error detected from parameter card receipt 
Record size miscompare between parameter card and file information block 
EOF record not sent by Level 66 
Unexpected message received from Level 66 
Connect failed 
Parameter card error detected by Level 66 
File truncated during restart 
Record size error 
Block size error 
Block serial number error 
Level 66 unrecoverable I/O error 
Remote aborts TRAN 66 
Unexpected abort 
Block overflow error 
Line disconnect 
Transmission sequence number error detected in Level 66 
Transmission sequence number error detected in Level 6 
Incorrect media code from Level 66 
Incorrect record sequence number detected in Level 6 
File buffer overflow 

EQUIPMENT REQUIREMENTS 

Level 6 

o Series 60 Level 6 Central Processor 
o Multiline Communication Processor 
o Synchronous Communication Line Adapter(s) 
o Communication Resource(s) 

Data Set(s) - Bell System 201 A, 201 B or equivalent. Electrical characteristics: EIA standard 
RS232-C; Transmission mode: Synchronous, two-way alternate, nonpolled. 
Code Set - Modified ASCII, 7-bit. 
Configuration Load Manager with Communications Extensions 
Communications Subsystem with VIP softward module (ZQPVIP) 

o GCOS 6/MDT Operating System with File Manager 
o TRAN6 program (requires 2K memory) 

FILE TRANSMISSION B-2 AX07 



Level 66 

o Series 60 Level 66 Central Processor 
o Comprehensive Operating Supervisor (GCOS) 
o TRAN66 program (requires 20K memory including buffers and file I/O) 
o Front-end Network Processor (FNP), applicable to DATANET 305 FNP, the DATANET 355 FNP 

and the DA T ANET 6600 FNP 
o Remote Terminal Supervisor(GRTS) - applicable to GRTS/305, GRTS/355 and GRTS/6600 

LANGUAGE ELEMENTS 

The parameter card is initiated at and received from the TRAN66 program after the logical connect 
between the two systems is complete. The parameter card arguments define the functions to be 
performed during the transmission process. The TRAN6 program assumes the responsibility of checking 
the validity of the arguments and initiates abort action for any illegalities. 

The parameter card fields are defined in Table B-1. The Level 66 system interprets the original TRAN 
statement submitted by the user and the required activity boundaries are defined and transmitted to the 
originating TRAN program via the program card. 

TABLE B-1. TRAN PARAMETER CARD 

Columns Field Name Contents 

1- 3 Direction RIC 
CIR 

4- 6 Type of Copy FBS 

9-12 Number of nnnn 
Characters 
per Record 

15-18 Restart count blank 

nnnn 

NOTE: All undefined columns must be blank. 

PROGRAMMER PREPARATION INFORMATION 

TRAN66 

Definition 

Remote to Center (Level 6 to 66) 
Center to remote (Level 66 to 6) 

Fixed-length records with a four-character 
block serial number to Series 66 Standard 
Format 

Maximum number of characters per logical 
record 

Indicates initial file transfer: not a restart 

Record count for restart file transfer. First 
record to be transferred is number nnnn. 

TRAN66 is activated by submitting the following job deck to GCOS, requesting TRAN66 execution 
and containing the TRAN66 parameter card described above: 

Column 1 8 16 
$ SNUMB vvvv 
$ !DENT requestor, accounting information 
$ USERID smcn$lop 
$ PROGRAM TRAN66 
$ LIMITS ,9K 
$ DAC XX 
$ file RD •••• 
$ DATA CG 

(TRAN parameter card) 
$ ENDJOB 

vvvvv 
Up to five-character job identifier. 

smcn$lop 
System master catalog name and log-on password. 

FILE TRANSMISSION B-3 AX07 



file 
Possible values are FILE and PRMFL. 

Indicates additional user-supplied information. See the Series 60 (Level 66/6000) GCOS Control 
Cards manual, Order No. DD31, for more details. 

The Level 66 must be monitored and the Level 6 operator informed when the job status changes to 
executing or swapped. 

TRAN6 
After the status of the TRAN66 job has changed to executing or swapped, TRAN6 is activated by an 

ECL procedure as described below. 
The TRAN6 program is passed pointers (0 a request block (B4) and a parameter list (B7) at initiation 

of the transmission activity. The command line to be provided to the ECL processor is as follows: 

TRAN LRN, pathname, direction,vvvv,record size 

The command statement arguments are defined below: 

LRN 
Logical resource number for the communications line 

pathname 
External name of the file to be transmitted, as it is known to the Level 6 file system. 

direction 
Direction of the transmission activity as viewed from Level 6, i.e., input (I) or output (0). 

vvvv 
GCOS Job Identifier 

record size 
Standard record transfer sizes. Default value is set to 160 bytes. 

OPERATING PROCEDURES 

The TRAN programs are initiated by the TRAN command line as defined earlier in this appendix 
under "Programmer Preparation Information." Activity initiation continues with the decoding of 
command line arguments, the physical and logical system connects, and the parameter card transfer from 
Level 6. These initiating actions may be traced as follows: 

o Direction (open file) to register 5 
o File name to register B4 
o Set record size, default at 160 characters, register B5 
o Set parse parameter list, register B7 
o LRN, physical connect of Level 6 to Level 66 
o Transmit Level 66 logical connect of Level 6 to TRAN66. Logical connect command line is: 

ID 
GCOS terminal identification 

A$B 

$*$ID A$B,22L, vvvvv 

Default GCOS userid/password entry 

22L 
GRTS terminal type log-on code 

FILE TRANSMISSION B4 AX07 



vvvvv 

GeOS job ID, entered at time of TRAN6 activation (see "Programmer Preparation Information"). 

o Parameter card received from Level 66 
o Parameters validated and transmission activity initiated 

The system operator must mount the disk volumes which include the files to be transmitted by the 
TRAN program. If a switched network is used for the file transfer operation, the switched line 
connection must be completed prior to initiation of the transmission. 

Each complete transmission activity consists of the transfer of one entire file from Level 6 to Level 66 
or the reverse direction. The logical records are transmitted in sequence until the entire file has been 
transferred. 

DETAIL INTERFACE TO TRAN66 

Transmission Unit (TU) 
A TU is the physical block transferred on the communication line. It is 320 characters long; it 

contains one or more logical records or record parts. Each TV is uniquely identified by a TV sequence 
number (TUSN). The TU sequence number increases sequentially from 040 to 137 and then restarts 
sequencing at 040. 

After the connection is established and the parameter card has been verified, each block transferred 
has a TUSN attached. 

TV Format 

TUSN 
Data record(s) 

Data Record Format 

Media Code 
Logical record seq. no. 
Data 
Record Separator 

One character 
n (319) characters 

One character 
Four characters (ASCII) 
n characters 
One character 

A data record may span TUs or several data records may be in one TU. 

End of File (EOF) Indication 
After the EOF record(s) have been transmitted, the Level 66 transmits the termination message. 

Level 6 To Level 66 
The EOF record follows the last record of valid data. A separate EOF record, contained in one TU, 

must be sent to complete the transmission. 

Level 66 To Level 6 
The EOF record follows the last record of valid data. 

EOF Record Format 
Media Code (58 16 - indicates a data record) 
EOF Code (3F 16) 

Record Separator ( 1 E 1 6 ) 

Character Values: 
Media Code (data records) 
Media Code (control records) 
Unit Separator 
Record Separator 
EOF Code 

FILE TRANSMISSION 8-5 

58 16 =1308 
5E16 = 1368 
IF16 = 378 
IE 16 =368 
3F16=778 

AX07 



Logical record sequence numbers are composed of numeric ASCII characters (060 through 071) and 
increase numerically from 0001 to 9999 in ASCII before wrapping around. The sequence numbers are 
transmitted from the host in compressed format; e.g., sequence number 0001 is transmitted as 060, 037, 
063, 061 (see "Data Compaction" below). 

Data Compaction 
Compaction is performed to relieve traffic on the communication line. When one character is repeated 

more than three times, TRAN6 expands data received from the center and compacts the data that it 
sends. 

In TRAN6 operation, when a character is repeated from 3 to 63 (inclusive) times, the following string 
is substituted for the series: 

character to be repeated 
unit separator 
count (string length, encoded) 

The count is encoded in Table B-2. 
The first four characters of the data field can be decoded to determine the messages content and, 

therefore, the termination status as follows: 

Successful Tr~nsmission 
0000 

Parameter card error detected in TRAN 66 
2280 

File truncated during restart 
2281 

Record size error 
2282 

Block size error 
2283 

Block Serial Number error 
2284 

Level 66 unrecoverable I/O error (e.g., disk) 
2285 

Remote Aborts TRAN 66 
2286 

Unexpected abort (e.g., time limit exceeded) 
2287 

Block Overflow error 
2288 

Line Disconnected 
2289 

Transmission sequence number error detected 
228A 

FILE TRANSMISSION 

SUCCESSFUL TERMINATION 

PARAMETER CARD ERROR 

FILE TRUNCATED (EOT) 

RECORD SIZE ERROR 

BLOCK SIZE ERROR 

BLOCK SERIAL NUMBER ERROR 

LEVEL 66 UNRECOVERABLE I/O ERROR 

REMOTE ABORT TRAN66 

UNEXPECTED ABORT 

BLOCK OVERFLOW ERROR 

LINE DISCONNECTS 

TRANSMISSION SEQUENCE NUMBER ERROR 

B-6 AX07 



TABLE B-2. STANDARD CHARACTER SET 

Internal Internal 
Standard Machine Standard Machine 
Character Code BCD ASCII Character Code BCD ASCII 
Set (Binary) (Octal) (Octal) Set (Binary) (Octal) (Octal) 

0 000000 00 060 t 100000 40 136 
000001 01 061 J 100001 41 112 

2 000010 02 062 K 100010 42 113 
3 000011 03 063 L 100011 43 114 
4 000100 04 064 M 100100 44 115 
5 000101 05 065 N 100101 45 116 
6 000110 06 066 0 100110 46 117 
7 000111 07 067 P 100111 47 120 
8 001000 10 070 Q 101000 50 121 
9 001001 11 071 R 101001 51 122 
[ 001010 12 133 101010 52 055 
# 001011 13 043 $ 101011 53 044 
@ 001100 14 100 * 101100 54 052 

001101 15 072 ) 101101 55 051 
> 001110 16 076 101110 56 073 
? 001111 17 077 101111 57 047 
b 010000 20 040 + 110000 60 053 
A 010001 21 101 110001 61 057 
B 010010 22 102 S 110010 62 123 
C 010011 23 103 T 110011 63 124 
D 010100 24 104 U 110100 64 125 
E 010101 25 105 V 110101 65 126 
F 010110 26 106 W 110110 66 127 
G 010111 27 107 X 110111 67 130 
H 011000 30 110 Y 111000 70 131 

011001 31 111 Z 111001 71 132 
& 011010 32 046 ~ 111010 72 137 

011011 33 056 111011 73 054 
) 011100 34 135 % 111100 74 045 
( 0111 01 35 050 = 111101 75 075 
< 011110 36 074 " 111110 76 042 
\ 011111 37 134 111111 77 041 

Termination Messages 
TRAN66 

Termination Messages are identified by a media code of 1368 and have the following format: 

Media code 
Data 
Record Separator 

GRTS 
GRTS termination messages are listed in the Remote Terminal Supervisor (GRTS) manual. 

FILE TRANSMISSION B-7 AX07 





APPENDIX C 

ASCII AND EBCDIC 
CHARAcrER SET 

Tables C-I and C-2 illustrate the ASCII and EBCDIC character sets, respectively. In addition to the 
ASCII characters, Table C-I shows the hexadecimal equivalents; Table C-2 shows the binary and 
hexadecimal equivalents of theEBCDIC character set. 

Following are lists of the control characters and special graphic characters that appear in the two 
tables: 

Control Characters 

ACK Acknow ledge EOT End of Transmission PF Punch Off 
BEL Bell ESC Escape PN Punch On 
BS Backspace ETB End of Transmission Block RES Restore 
BYP Backspace ETX End of Text RLF Reverse Line Feed 
CAN Cancel FF Form Feed RS Reader Stop 
CC Cursor Control FS Field Separator SI Shift In 
CR Carriage Return GE Graphic Escape SM Set Mode 
CUI Customer Use I GS Group Separator SMM Start of Manual Message 
CU2 Customer Use 2 HT Horizontal Tab SO Shift Out 
CU3 CustomerU se 3 IFS Interchange File Separator SOH Start of Heading 
DCI Device Control I IGS Interchange Group Separator SOS Start of Significance 
DC2 Device Control 2 IL Idle SP Space 
DC3 Device Control 3 IRS Interchange Record Separator STX Start of Text 
DC4 Device Control 4 IUS Interchange Unit Separator SUB Substitute 
DEL Delete LC Lower Case SYN Synchronous Idle 
DLE Data Link Escape LF Line Feed TM Tape Mark 
DS Digit Select NAK Negative Acknowledgement UC Upper Case 
EM End of Medium NL New Line US Unit Separator 
ENQ Enquiry NUL Null VT Vertical Tab 
EO Eight Ones 

Special Graphic Characters 

¢ Cent Sign ? Questio n Mark 
Period, Decimal Point Grave Accent 

< Less-than Sign Colon 
( Left Parenthesis # Number Sign 
+ Plus Sign @ At Sign 
I Logical OR Prime, Apostrophe I 

& Ampersand Equal Sign 
! Exclamation Point Quotation Mark 
$ Dollar Sign Tilde 
* Asterisk { Opening Brace 

Right Parenthesis ~ Hook 
Semicolon y Fork ..., Logical NOT } Closing Brace 
Minus Sign \ Reverse Slant 

/ Slash ,.I Chair I Vertical Line I Long Vertical Mark 
, Comma [ Opening Bracket 
% Percent ] Closing Bracket 

Underscore A Circumflex 
> Greater-than Sign 

ASCII AND EBCDIC CHARACTER SETS C-l AX07 



TABLE C-l. ASCII/HEXADECIMAL EQUIVALENTS 

HI 

H2 0 I 2 3 4 S 6 7 

0 NUL DLE SP 0 (a P , 
P 

I SOH DCI ! 1 A Q a q 

2 STX OC2 " :2 B R b r 

3 ETX DC3 # 3 C S c s 
4 EDT DC4 $ 4 D T d t 

5 ENQ NAK % 5 E U e u 

6 ACK SYN & 6 F V f v 

7 BEL ETB , 
7 G W g w 

8 BS CAN ( 8 H X h x 

9 HT EM ) <.) I Y i Y 
A LF SUB * J Z j z 

B VT ESC + K [ k I 
I --< \ I C FF FS L I I 

D CR GS - = M ] m I 
I 

E SO RS > N 1\ n '"'-' 

F SI US I .) 0 0 DEL -

TABLE C-2. EBCDIC/HEXADECIMAL/BINARY EQUIVALENTS 

'" x 

:~ :I: 00 01 10 II I 
~ 

'"0 

8 00 01 10 II 00 01 10 II 00 01 10 II 00 01 10 II f 

Bit Positions 0.1 

Bit Positions 2.3 
as Jl 0 I 2 3 .t 5 <> 7 X <) A 13 (' D E F I - - First Hexadecimal Digit 

0000 0 NUL DLE DS SP & l;' I;' \a 0 

0001 I SOH lX'l SOS / a i ...;' A J I 

0010 2 STX DC! FS SYN h k s B K S 2 

0011 3 ETX TM <.: I t C L T 3 

0100 4 PF RES I3YP PN d III II D M U 4 

0101 5 HT NL LF RS c " v E N V 5 

0110 6 LC BS ETB UC f () w F 0 W 6 

0111 7 DEL IL ESC EOT g P x G P X 7 

1000 8 GEa CAN h q y H Q Y 8 

1001 9 RLF" EM ,a i r z I R Z 9 

1010 A SMM CC SM 4 ! • a la 

1011 B VT CUl a CU2a CU3a $ # 

1100 C FF IFS DC4 < * (Hi «/ Sa ~a 

1101 D CR IGS ENQ NAK ( 
I 

) 

1110 E SO IRS ACK + > = 'fa 

1II1 F SI IUS BEL SUB I .., '! " EOa 

aThis character is not supported in the 2780 chara.:ter set. 

ASCII AND EBCDIC CHARACTER SETS C-2 AX07 



ABORT 
ABORT BATCH, 3-3 
ABORT BATCH REQUEST, 3-4 
ABORT GROUP, 3-4, 4-4 
ABORT GROUP REQUEST, 3-5 

ABSOLUTE 
ABSOLUTE PATHNAMES, 1-3 

ACTIVATE 
ACTIVATE BATCH, 3-5 
ACTIVATE GROUP, 3-6 

ARGUMENTS 
CONTROL ARGUMENTS, 3-1, 4-1 

ASCII/HEXADECIMAL 
ASCII/HEXADECIMAL EQUIVALENTS 

(TBL) , C-2 

ASSEMBLER 
ASSEMBLER, 4-4 
ASSEMBLER MESSAGES (xxl0, 5-15 

ATTRIBUTE 
FILE ATTRIBUTE, 3-17, 4-42 

BATCH 
ABORT BATCH, 3-3 
ABORT BATCH REQUEST, 3-4 
ACTIVATE BATCH, 3-5 
CREATE BATCH, 3-8 
DELETE BATCH, 3-9 
ENTER BATCH REQUEST, 3-10, 4-25 
SUSPEND BATCH, 3-26 

BINARY 
BINARY SYNCHRONOUS COMMUNICATIONS 

DIRECTIVE, 2-32 

BOOTSTRAP 
BOOTSTRAP OPTIONS (TBL) , 2-7 
BOOTSTRAP ROUTINE OPTIONS, 2-6 

BOUND 

BSC 

BYE 

LOAD BOUND UNIT DIRECTIVE, 2-18 

IMPLICIT I/O OPTIONS FOR A BSC 
(TBL), 2-16 

BYE (TERMINATE CURRENT GROUP 
REQUEST), 4-6 

CHARACTER 

CLM 

STANDARD CHARACTER SET (TBL) , B-7 

CLM COMMUNICATIONS ERROR MESSAGES 
(xx08), 5-11 

CLM INPUT STREAM DIRECTIVE, 2-12 
CLM INPUT STREAM DIRECTIVE/DEVICE 

DIRECTIVE, 2-12 

INDEX 

CLM USER 
CREATING AND BUILDING CLM USER AND 

START UP.EC FILES (FIG), 2-8, 2-10 

CLOCK 
CLOCK FREQUENCY, 2-26 
CLOCK MANAGER MESSAGES (xx04), 5-10 
CLOCK SCAN CYCLE, 2-26 

COBOL 
COBOL, 4-9 
COBOL COMPILER MESSAGES (xx26), 5-29 
MESSAGES ISSUED BY COBOL RUN-TIME 

ROUTINES (xx27), 5-30 

CODES 
COMPONENT CODES (TBL) , 5-1 
MESSAGE CODES, 5-1 
TRAN ERROR CODES, B-2 

COMMAND 
COMMAND INPUT FILE, 3-2, 4-2 
COMMAND LINE FORMAT, 3-1, 4-1 
ECL COMMAND FORMATS AND 

DESCRIPTIONS, 4-2 
EC/ECL/OCL COMMAND MESSAGES 

(xxI7), 5-23 
EXECUTION COMMAND, 3-12, 4-28 
OCL COMMAND FORMATS AND 

DESCRIPTIONS, 3-2 
SPACE IN COMMAND LINES, 3-1, 4-2 

COMMANDS 
COMMANDS, 3-1, 4-1 
ECL AND OCL COMMANDS, A-I 
FILE AND DIRECTORY CONTROL COMMANDS, 
,3-3, 4-3 

PROGRAM PREPARATION ACTIVITY 
COMMANDS, 4-3 

SYSTEM AND STATUS COMMANDS, 3-3, 4-3 
TASK GROUP CREATION AND DELETION 

COMMANDS, 3-2, 4-2 
TASK GROUP EXECUTION COMMANDS, 

3-3, 4-3 
UTILITY COMMANDS, 4-3 

COMMUNICATIONS 
BINARY SYNCHRONOUS COMMUNICATIONS 

DIRECTIVE, 2-32 
CLM COMMUNICATIONS ERROR MESSAGES 

(xx08), 5-11 
COMMUNICATIONS CONFIGURATION 

DIRECTIVES, 2-28 
COMMUNICATIONS DEVICE-TYPES FOR 

DEVICE DIRECTIVES (TBL), 2-15 
COMMUNICATIONS FILE TRANSMISSION 

PROGRAM MESSAGES (xx22), 5-27 
COMMUNICATIONS SYSTEM DIRECTIVE, 2-29 

COMMUNICATIONS CONFIGURATION DIRECTIVES 
BSC (BINARY SYNCHRONOUS 

COMMUNICATIONS), 2-32 
COMM (COMMUNICATIONS SYSTEM), 2-29 

i-I AX07 



INDEX 

COMMUNICATIONS CONFIGURATION 
DIRECTIVES (CONT) 

LPHDEF (LINE PROTOCOL HANDLER 
DEFINITION), 2-31 

LPHN (LINE PROTOCOL HANDLER), 2-33 
MODEM (MODEM DEFINITION), 2-29 
STATION (STATION DEVICE), 2-35 
TTY (TELEPRINTER DEVICE), 2-36 
VIP (VIP DEVICE), 2-37 

COMPARE FILE 
COMPARE FILE, 4-10 

COMPILER 
COBOL COMPILER MESSAGES (xx26), 

5-29 
FORTRAN COMPILER MESSAGES (xxI4), 

5-21 

COMPONENT 
COMPONENT CODES (TBL), 5-1 

CONFIGURATION 
COMMUNICATIONS CONFIGURATION 

DIRECTIVES, 2-28 
CONFIGURATION CONCEPTS, 2-4 
CONFIGURATION DIRECTIVES, 2-4 
CONFIGURATION LOAD MANAGEMENT ERROR 

MESSAGES (xxI3), 5-17 
MEMORY ALLOCATION (MEMPOOL 

CONFIGURATION DIRECTIVE), 2-4 
OPERATING SYSTEM EXTENSIONS (LDBU 

CONFIGURATION DIRECTIVE), 2-4 
OVERLAYS (RESOLA CONFIGURATION 

DIRECTIVE), 2-4 
PERIPHERAL DEVICE (DEVICE 

CONFIGURATION DIRECTIVE), 2-5 
SYSTEM CONFIGURATION DIRECTIVES, 

2-11 
SYSTEM STARTUP AND CONFIGURATION, 

2-1 

CONSOLE 
DETERMINATION OF THE OPERATOR'S 

CONSOLE, 2-6 
SAMPLE CONSOLE DIALOG (FIG), 1-7 
SUMMARY OF CONSOLE MESSAGE LENGTHS 

(TBL), 1-7 

CONTROL 
CONTROL ARGUMENTS, 3-1, 4-1 
EXECUTION CONTROL LANGUAGE, 4-1 
FILE AND DIRECTORY CONTROL 

COMMANDS, 3-3, 4-3 
MESSAGE CONTROL, 1-5 
OPERATOR CONTROL LANGUAGE, 3-1 

COPY FILE 
COpy FILE, 4-11 

CREATE 
CREATE BATCH, 3-8 
CREATE DIRECTORY, 4-13 
CREATE FILE, 4-14 
CREATE GROUP, 3-8, 4-16 
CREATE TASK, 4-17 
CREATE VOLUME, 4-19 

CROSS-REFERENCE 
CROSS-REFERENCE PROGRAM, 4-21 
CROSS-REFERENCE PROGRAM (XREF) 

MESSAGES (xxI8), 5-24 

DATE 
SET DATE, 3-20 

DEFINITION 
LINE PROTOCOL HANDLER DEFINITION 

DIRECTIVE, 2-31 
MODEM DEFINITION DIRECTIVE, 2-29 
SYSTEM DEFINITION DIRECTIVE, 2-25 

DELETE 
DELETE BATCH, 3-9 
DELETE GROUP, 3-10, 4-22 

DEVICE 
COMMUNICATIONS DEVICE-TYPES FOR 

DEVICE DIRECTIVES (TBL), 2-15 
DEVICE DIRECTIVE, 2-12 
PERIPHERAL DEVICE (DEVICE 

CONFIGURATION DIRECTIVE), 2-5 
TELEPRINTER DEVICE DIRECTIVE, 2-36 
VIP DEVICE DIRECTIVE, 2-37 

DEVICE-TYPES 
AVAILABLE DEVICE-TYPES (TBL), 2-13 
COMMUNICATIONS DEVICE-TYPES FOR 

DEVICE DIRECTIVES (TBL), 2-15 

DIRECTORY 
CHANGE SYSTEM DIRECTORY, 3-6 
C·HANGE WORKING DIRECTORY, 3-7, 4-7 
LIST WORKING DIRECTORY, 3-16, 4-39 

DISSOCIATE 
DISSOCIATE PATH, 4-22 

DPEDIT 
DUMP EDIT, 4-23 
DUMP EDIT (DPEDIT) ERROR MESSAGES 

(xx25), 5-29 

DUMCP 
MLCP (DUMCP) ERROR MESSAGES (xx34), 

5-33 

DUMP 

i-2 

DUMP EDIT, 4-23 
DUMP EDIT (DPEDIT) ERROR MESSAGES 

(xx25), 5-29 
FILE DUMP, 4-32 

AX07 



INDEX 

EBCDIC/HEXADECIMAL/BINARY 
EBCDIC/HEXADECIMAL/BINARY 

EQUIVALENTS (TBL), C-2 

ECL 
ECL AND OCL COMMANDS, A-I 
ECL COMMAND FORMATS AND 

DESCRIPTIONS, 4-2 
STANDARD ECL PROCESSOR FILES, 4-2 

EC/ECL/OCL 
EC/ECL/OCL COMMAND MESSAGES (xxI7), 

5-23 

EDIT 
DUMP EDIT, 4-23 
DUMP EDIT (DPEDIT) ERROR MESSAGES 

(xx25), 5-29 
EDIT DIRECTIVE MESSAGES, 5-25 

EDITOR 
EDITOR, 4-24 
EDITOR ADDRESSING MESSAGES, 5-25 
EDITOR INITIALIZATION MESSAGES, 

5-24 
EDITOR MESSAGES PERTAINING TO 

AUXILIARY BUFFERS, 5-26 
EDITOR MESSAGES (xxI9), 5-24 

ENTER 
ENTER BATCH REQUEST, 3-10, 4-25 
ENTER GROUP REQUEST, 3-11, 4-26 
ENTER TASK REQUEST, 4-27 

EQUIVALENTS 
ASCII/HEXADECIMAL EQUIVALENTS 

(TBL), C-2 
EBCDIC/HEXADECIMAL/BINARY 

EQUIVALENTS (TBL), C-2 

ERROR MESSAGES 
xxOl - PHYSICAL I/O MESSAGES, 5-2 
xx02 - FILE SYSTEM MESSAGES, 5-3 
xx03 - TRAP HANDLER MESSAGES, 5-8 
xx04 - CLOCK MANAGER MESSAGES, 5-10 
xx05 - SEMAPHORE FUNCTION MESSAGES, 

5-10 
xx06 - MEMORY MANAGER MESSAGES, 

5-10 
xx08 - CLM COMMUNICATIONS ERROR 

MESSAGES, 5-11 
xx08 - MONITOR ERROR MESSAGES, 5-11 
xx10 - ASSEMBLER MESSAGES, 5-15 
xx11 - LINKER MESSAGES, 5-15 
xx12 - UTILITY PROGRAMS MESSAGES, 

5-16 
xx13 - CONFIGURATION LOAD 

MANAGEMENT ERROR MESSAGES, 5-17 
xx14 - FORTRAN COMPILER MESSAGES, 

5-21 
xx15 - FORTRAN RUN-TIME INPUT/ 

OUTPUT ROUTINE MESSAGES, 5-21 
xx16 - LOADER MESSAGES, 5-23 

ERROR MESSAGES (CONT) 
xx17 - EC/ECL/OCL COMMAND MESSAGES, 

5-23 
xx18 - CROSS-REFERENCE PROGRAM (XREF) 

MESSAGES, 5-24 
xx19 - EDITOR MESSAGES, 5-24 
xx21 - PATCH MESSAGES, 5-26 
xx22 - COMMUNICATIONS FILE 

TRANSMISSION PROGRAM MESSAGES, 5-27 
xx23 - MACRO PREPROCESSOR MESSAGES, 

5-28 
xx24 - EXPORT/IMPORT PAM FILE 

PROGRAM MESSAGES, 5-28 
xx25 - DUMP EDIT (DPEDIT) ERROR 

MESSAGES, 5-29 
xx26 - COBOL COMPILER MESSAGES, 5-29 
xx27 - MESSAGES ISSUED BY COBOL RUN­

TIME ROUTINES, 5-30 
xx31 - SORT ERROR MESSAGES, 5-31 
xx34 - MLCP (DUMCP) ERROR MESSAGES, 

5-33 

EXECUTION 
APPLICATION EXECUTION, 1-1 
EXECUTION COMMAND, 3-12, 4-28 
EXECUTION CONTROL LANGUAGE, 4-1 
TASK GROUP EXECUTION COMMANDS, 

3-3, 4-3 

EXPORT 
EXPORT PAM FILE, 4-31 

EXPORT/IMPORT 
EXPORT/IMPORT PAM FILE PROGRAM 

MESSAGES (xx24), 5-28 

EXTENSIONS 
OPERATING SYSTEM EXTENSIONS (LDBU 

CONFIGURATION DIRECTIVE), 2-4 

FILE 

i-3 

COMMAND INPUT FILE, 3-2, 4-2 
COMMUNICATIONS FILE TRANSMISSION 

PROGRAM MESSAGES (xx22), 5-27 
CREATE FILE, 4-16 
ERROR OUTPUT FILE, 3-2, 4-2 
EXPORT PAM FILE, 4-31 
EXPORT/IMPORT PAM FILE PROGRAM 

MESSAGES (xx24), 5-28 
FILE AND DIRECTORY CONTROL 

COMMANDS, 3-3, 4-3 
FILE DUMP, 4-32 
FILE OUT, 3-14, 4-33 
FILE SYSTEM MESSAGES (xx02), 5-3 
FILE SYSTEM PATHNAMES, 1-2 
FILE TRANSMISSION, B-1 
IMPORT PAM FILE, 4-36 
MODIFY FILE, 3-17, 4-42 
OPERATOR OUTPUT FILE, 3-2 
SORT FILE, 4-50 
USER INPUT FILE, 3-2, 4-2 
USER OUTPUT FILE, 4-2 

AX07 



INDEX 

FILES 
CREATING AND BUILDING CLM USER AND 

START UP.EC FILES (FIG),-2-8, 2-10 
FILES,-1-2 
STANDARD ECL PROCESSOR FILES, 4-2 
STANDARD OCL PROCESSOR FILES, 3-2 

FORMAT 
COMMAND LINE FORMAT, 3-1, 4-1 
DATA RECORD FORMAT, B-5 
TU FORMAT, B-5 

FORMATS 
ECL COMMAND FORMATS AND 

DESCRIPTIONS, 4-2 
OCL COMMAND FORMATS AND 

DESCRIPTIONS, 3-2 

FORTRAN 
FORTRAN, 4-34 
FORTRAN COMPILER MESSAGES (xxI4), 

5-21 
FORTRAN RUN-TIME INPUT/OUTPUT 

ROUTINE MESSAGES (xxI5), 5-21 

GROUP 
ABORT GROUP, 3-4, 4-4 
ABORT GROUP REQUEST, 3-5 
ACTIVATE GROUP, 3-6 
BYE (TERMINATE CURRENT GROUP 

REQUEST), 4-6 
CREATE GROUP, 3-8, 4-16 
DELETE GROUP, 3-10, 4-22 
ENTER GROUP REQUEST, 3-11, 4-26 
SPAWN GROUP, 3-20, 4-50 
STATUS GROUP, 3-22, 4-54 
SUSPEND GROUP, 3-26 
TASK GROUP IDENTIFICATION, 1-1 
TASK GROUP MEMORY, 1-2 
TASK GROUP RESOURCES, 1-2 

IDENTIFICATION 
TASK GROUP IDENTIFICATION, 1-1 
USER IDENTIFICATION, 1-1 

IMPLICIT 
IMPLICIT I/O OPTIONS FOR A BSC 

(TBL) , 2-16 
IMPLICIT I/O OPTIONS FOR A KSR 

(TBL) , 2-13 
IMPLICIT I/O OPTIONS FOR A TTY 

(TBL), 2-16 
IMPLICIT I/O OPTIONS FOR A VIP 

(TBL) , 2-17 

IMPORT 
IMPORT PAM FILE, 4-36 

INPUT 
CLM INPUT STREAM DIRECTIVE, 2-12 
CLM INPUT STREAM DIRECTIVE/DEVICE 

DIRECTIVE, 2-12 
INPUT DIRECTIVE MESSAGES, 1-6 
INPUT MESSAGE LENGTH, 1-6 

INPUT (CONT) 
INPUT MESSAGES, 1-5 
INPUT TO THE OIM, 1-5 

INSTRUCTIONS 
ISA MODIFICATION BASED ON USAGE OF 

SCIENTIFIC INSTRUCTIONS (TBL), 2-27 

I/O 
IMPLICIT I/O OPTIONS FOR A BSC 

(TBL) , 2-16 
IMPLICIT I/O OPTIONS FOR A KSR 

(TBL) , 2-13 
IMPLICIT I/O OPTIONS FOR A TTY 

(TBL), 2-16 
IMPLICIT I/O OPTIONS FOR A VIP 

(TBL), 2-17 
PHYSICAL I/O MESSAGES (xxOl) , 5-2 

ISA 
ISA MODIFICATION BASED ON USAGE OF 

SCIENTIFIC INSTRUCTIONS (TBL), 2-27 

KSR 
IMPLICIT I/O OPTIONS FOR A KSR 

(TBL) , 2-13 

LANGUAGE 
EXECUTION CONTROL LANGUAGE, 4-1 
OPERATOR CONTROL LANGUAGE, 3-1 

LDBU 
OPERATING SYSTEM EXTENSIONS (LDBU 

CONFIGURATION DIRECTIVE), 2-4 

LEVELS 
PRIORITY LEVELS, 1-2 

LINE 
LINE PROTOCOL HANDLER DEFINITION 

DIRECTIVE, 2-31 
LINE PROTOCOL HANDLER DIRECTIVE, 2-~3 
LINE SPEEDS FOR A TTY TERMINAL, 2-6 
TTY TERMINAL LINE SPEEDS (TBL) , 2-6 

LINKER 
LINKER, 4-37 
LINKER MESSAGES (xxII), 5-15 

LIST 
LIST NAMES, 4-37 
LIST SEARCH RULES, 3-15, 4-39 
LIST WORKING DIRECTORY, 3-16, 4-39 

LOAD 
LOAD BOUND UNIT DIRECTIVE, 2-18 

LOADER 
LOADER MESSAGES (xxI6), 5-23 

MACRO 
MACRO PREPROCESSOR, 4-40 
MACRO PREPROCESSOR MESSAGES (xx23), 

5-28 

i-4 AX07 



INDEX 

MEMORY 
MEMORY ALLOCATION (MEMPOOL 

CONFIGURATION DIRECTIVE), 2-4 
MEMORY MANAGER MESSAGES (xx06), 

5-10 
MEMORY POOL DIRECTIVE, 2-19 
TASK GROUP MEMORY, 1-2 

MEMPOOL 
MEMORY ALLOCATION (MEMPOOL 

CONFIGURATION DIRECTIVE), 2-4 

MESSAGE 
INPUT MESSAGE LENGTH, 1-6 
MESSAGE, 4-41 
MESSAGE CODES, 5-1 
MESSAGE CONTROL, 1-5 
SUMMARY OF CONSOLE MESSAGE LENGTHS 

(TBL), 1-7 

MESSAGES 
ASSEMBLER MESSAGES (xx10), 5-15 
CLM COMMUNICATIONS ERROR MESSAGES 

(xx08), 5-11 
CLOCK MANAGER MESSAGES (xx04), 5-10 
COBOL COMPILER MESSAGES (xx26), 

5-29 
COMMUNICATIONS FILE TRANSMISSION 

PROGRAM MESSAGES (xx22), 5-27 
CONFIGURATION LOAD MANAGEMENT ERROR 

MESSAGES (xx13), 5-17 
CROSS-REFERENCE PROGRAM (XREF) 

MESSAGES (xx18), 5-24 
DUMP EDIT (DPEDIT) ERROR MESSAGES 

(xx 25), 5 - 2 9 
EC/ECL/OCL COMMAND MESSAGES 

(xx 1 7), 5 - 2 3 
EDIT DIRECTIVE MESSAGES, 5-25 
EDITOR ADDRESSING MESSAGES, 5-25 
EDITOR INITIALIZATION MESSAGES, 

5-24 
EDITOR MESSAGES PERTAINING TO 

AUXILIARY BUFFERS, 5-26 
EDITOR MESSAGES (xx19), 5-24 
ERROR STATUS AND INFORMATIONAL 

MESSAGES, 5-1 
EXPORT/IMPORT PAM FILE PROGRAM 

MESSAGES (xx24), 5-28 
FILE SYSTEM MESSAGES (xx02), 5-3 
FORTRAN COMPILER MESSAGES 

(xx 14), 5- 21 
FORTRAN RUN-TIME INPUT/OUTPUT 

ROUTINE MESSAGES (xx15), 5-21 
INPUT DIRECTIVE MESSAGES, 1-6 
INPUT MESSAGES, 1-5 
LINKER MESSAGES (xx11), 5-15 
LOADER MESSAGES (xx16), 5-23 
MACRO PREPROCESSOR MESSAGES 

(xx23), 5-28 
MEMORY MANAGER MESSAGES (xx06), 

5-10 
MESSAGES ISSUED BY COBOL RUN-TIME 

ROUTINES (xx27), 5-30 
MLCP (DUMCP) ERROR MESSAGES 

(xx34), 5-33 

MESSAGES (CONT) 
MONITOR ERROR MESSAGES (xx08), 5-11 
OUTPUT MESSAGES, 1-5 
PATCH MESSAGES (xx21), 5-26 
PHYSICAL I/O MESSAGES (xx01), 5-2 
SEMAPHORE FUNCTION MESSAGES (xx05), 

5-10 
SORT ERROR MESSAGES (xx31), 5-31 
TERMINATION MESSAGES, B-7 
TRAP HANDLER MESSAGES (xx03), 5-8 
UTILITY PROGRAMS MESSAGES (xx12), 

5-16 

MLCP 
MLCP (DUMCP) ERROR MESSAGES (xx34), 

5-33 

MODEM 
MODEM DEFINITION DIRECTIVE, 2-29 

MODIFY 
MODIFY EXTERNAL SWITCHES, 3-16, 4-41 
MODIFY FILE, 3-17, 4-42 

MONITOR 
MONITOR ERROR MESSAGES (xx08), 5-11 

OCL 
ECL AND OCL COMMANDS, A-1 
OCL COMMAND FORMATS AND 

DESCRIPTIONS, 3-2 
STANDARD OCL PROCESSOR FILES, 3-2 

OIM (OPERATOR INTERFACE MANAGER) 
INPUT TO THE OIM, 1-5 
OPERATOR INTERFACE MANAGER, 1-4 

OPERATOR 
OPERATOR CONTROL LANGUAGE, 3-1 
OPERATOR OUTPUT FILE, 3-2 
OPERATOR SYSTEM DIALOG, 1-4 

OPTIONS 
BOOTSTRAP OPTIONS (TBL), 2-7 
BOOTSTRAP ROUTINE OPTIONS, 2-6 
IMPLICIT I/O OPTIONS FOR A BSC 

(TBL), 2-16 
IMPLICIT I/O OPTIONS FOR A KSR 

(TBL), 2-13 
IMPLICIT I/O OPTIONS FOR A TTY 

(TBL) , 2-16 
IMPLICIT I/O OPTIONS FOR A VIP 

(TBL), 2-17 

OVERLAY 
RESIDENT OVERLAY DIRECTIVE, 2-22 

OVERLAYS 

i-5 

OVERLAYS (RESOLA CONFIGURATION 
DIRECTIVE), 2-4 

SYSTEM OVERLAYS (TBL), 2-23 

AX07 



INDEX 

PAM 
EXPORT PAM FILE, 4-31 
EXPORT/IMPORT PAM FILE PROGRAM 

MESSAGES (xx24), 5-28 
IMPORT PAM FILE, 4-36 

PARAMETERS, ECL/OCL COMMAND 
PARAMETERS, 3-1, 4-1 

PATCH 
PATCH, 4-43 
PATCH MESSAGES (xx21), 5-26 

PATH 
ASSOCIATE PATH, 4-6 
DISSOCIATE PATH, 4-22 

PATHNAME 
PATHNAME CONSTRUCTION, 1-3 

PATHNAMES 
ABSOLUTE PATHNAMES, 1-3 
FILE SYSTEM PATHNAMES, 1-2 
RELATIVE PATHNAMES AND THE WORKING 

DIRECTORY, 1-3 

PERIPHERAL 
PERIPHERAL DEVICE (DEVICE 

CONFIGURATION DIRECTIVE), 2-5 
PERIPHERAL RESOURCES, 1-2 

POOL 
MEMORY POOL DIRECTIVE, 2-19 

PREPROCESSOR 
MACRO PREPROCESSOR, 4-40 
MACRO PREPROCESSOR MESSAGES (xx23), 

5-28 

PRINT 
PRINT, 4-44 

PRIORITY 
PRIORITY LEVELS, 1-2 

PROGRAM 
PROGRAM PREPARATION ACTIVITY 

COMMANDS, 4-3 

PROTOCOL 
LINE PROTOCOL HANDLER DEFINITION 

DIRECTIVE, 2-31 
LINE PROTOCOL HANDLER DIRECTIVE, 

2-33 

QUIT 
CLM QUIT DIRECTIVE, 2-28 

REASSIGN 
REASSIGN, 3-19 

RELEASE 
RELEASE, 4-46 

RENAME 
RENAME, 4-47 

REQUEST 
ABORT BATCH REQUEST, 3-4 
ABORT GROUP REQUEST, 3-5 
BYE (TERMINATE CURRENT GROUP 

REQUEST), 4-6 
ENTER BATCH REQUEST, 3-10, 4-25 
ENTER GROUP REQUEST, 3-11, 4-26 
ENTER TASK REQUEST, 4-27 

RESET 
RESET MAP, 4-48 

RESIDENT 
RESIDENT OVERLAY DIRECTIVE, 2-22 

RESOLA 
OVERLAYS (RESOLA CONFIGURATION 

DIRECTIVE), 2-4 

RESOURCES 
PERIPHERAL RESOURCES, 1-2 
TASK GROUP RESOURCES, 1-2 

RESPONSES 
SYSTEM STARTUP TERMINAL RESPONSES 

(FIG),2-2 

RPG 
RPG, 4-48 

RUN-TIME 
FORTRAN RUN-TIME INPUT/OUTPUT 

ROUTINE MESSAGES (xx15), 5-21 
MESSAGES ISSUED BY COBOL RUN-TIME 

ROUTINES (xx27), 5-30 

SCIENTIFIC 
ISA MODIFICATION BASED ON USAGE OF 

SCIENTIFIC INSTRUCTIONS (TBL) , 2-27 

SEARCH RULES 
LIST SEARCH RULES, 3-15, 4-39 

SEMAPHORE 
SEMAPHORE FUNCTION MESSAGES (xx05), 

5-10 

SET 
SET DATE, 3-20 

SORT 
SORT ERROR MESSAGES (xx31), 5-31 
SORT FILE, 4-50 

SPACES 
SPACES IN COMMAND LINES, 3-1, 4-2 

SPAWN 

i-6 

SPAWN GROUP, 3-20, 4-50 
SPAWN TASK, 4-52 

AX07 



INDEX 

SPECIALIZED SYSTEM 
SPECIALIZED SYSTEM STARTUP, 2-7 

SPEEDS, LINE 
LINE SPEEDS FOR A TTY TERMINAL, 2-6 
TTY TERMINAL LINE SPEEDS (TBL) , 2-6 

START UP.EC 
CREATING AND BUILDING CLM USER AND 

START UP.EC FILES (FIG), 2-8, 2-10 

STARTUP 
HONEYWELL-SUPPLIED SYSTEM STARTUP, 

2-2 
SPECIALIZED SYSTEM STARTUP, 2-7 
SYSTEM STARTUP AND CONFIGURATION, 

2-1 
SYSTEM STARTUP TERMINAL RESPONSES 

(FIG), 2-2 

STATION 
STATION DIRECTIVE, 2-35 

STATUS 
ERROR STATUS AND INFORMATIONAL 

MESSAGES, 5-1 
STATUS GROUP, 3-22, 4-54 
STATUS SYSTEM, 3-24 
SYSTEM AND STATUS COMMANDS, 

3- 3, 4-4 

STREAM, INPUT 
CLM INPUT STREAM DIRECTIVE, 2-12 
CLM INPUT STREAM DIRECTIVE/DEVICE 

DIRECTIVE, 2-12 

STRUCTURE, DIRECTORY/FILE 
TYPICAL DIRECTORY/FILE STRUCTURE 

(FIG), 4-8 

SUSPEND 
SUSPEND BATCH, 3-26 
SUSPEND GROUP, 3-26 

SWITCHES 
MODIFY EXTERNAL SWITCHES, 

3-16, 4-41 

SYNCHRONOUS, BINARY 
BINARY SYNCHRONOUS COMMUNICATIONS 

DIRECTIVE, 2-32 

SYSTEM 
COMMUNICATIONS SYSTEM DIRECTIVE, 

2-29 
HONEYWELL-SUPPLIED SYSTEM 

STARTUP, 2-2 
OPERATING SYSTEM EXTENSIONS (LDBU 

CONFIGURATION DIRECTIVE), 2-4 
SPECIALIZED SYSTEM STARTUP, 2-7 
SYSTEM AND STATUS COMMANDS, 

3-3, 4-3 
SYSTEM CONFIGURATION DIRECTIVES, 

2-11 

SYSTEM (CONT) 
SYSTEM DEFINITION DIRECTIVE, 2-25 
SYSTEM OVERLAYS (TBL) , 2-23 
SYSTEM STARTUP AND CONFIGURATION, 2-1 
SYSTEM STARTUP TERMINAL RESPONSES 

(FIG), 2-2 

SYSTEM CONFIGURATION DIRECTIVES 
CLMIN (CLM INPUT STREAM), 2-12 
DEVICE, 2-12 
LDBU (LOAD BOUND UNIT), 2-18 
MEMPOOL (MEMORY POOL), 2-19 
QUIT, 2-28 
RESOLA (RESIDENT OVERLAY), 2-22 
SYS (SYSTEM DEFINITION), 2-25 

TASK 
CREATE TASK, 4-17 
ENTER TASK REQUEST, 4-27 
SPAWN TASK, 4-52 
TASK GROUP CREATION AND DELETION 

COMMANDS, 3-2, 4-2 
TASK GROUP EXECUTION COMMANDS, 
3-3, 4-3 

TASK GROUP IDENTIFICATION, 1-1 
TASK GROUP MEMORY, 1-2 
TASK GROUP RESOURCES, 1-2 
TASK GROUPS, 1-1 

TASKS 
TASKS, 1-1 

TELEPRINTER 
TELEPRINTER DEVICE DIRECTIVE, 2-36 

TERMINAL 
LINE SPEEDS FOR A TTY TERMINAL, 2-6 
SYSTEM STARTUP TERMINAL RESPONSES 

(FIG), 2-2 
TTY TERMINAL LINE SPEEDS (TBL) , 2-6 

TERMINALS 
TERMINALS, 2-5 

TERMINATE 
BYE (TERMINATE CURRENT GROUP 

REQUEST), 4-6 

TIME 
TIME, 4-55 

TRAN66 
DETAIL INTERFACE TO TRAN66, B-5 
TRAN66 , B-3, B-7 

TRAN6 
TRAN6, B-4 

TRAN 
TRAN ERROR CODES, B-2 
TRAN PARAMETER CARD (TBL) , B-3 

i-7 AX07 



TRANSMISSION 
COMMUNICATIONS FILE TRANSMISSION 

PROGRAM MESSAGES (xx22), 5-27 
FILE TRANSMISSION, B-1 
TRANSMISSION UNIT (TU), B-5 

TRAP 

TTY 

TRAP HANDLER MESSAGES (xx03), 5-8 

IMPLICIT I/O OPTIONS FOR A TTY 
(TBL) , 2-16 

INDEX 

LINE SPEEDS FOR A TTY TERMINAL, 2-6 
TTY TERMINAL LINE SPEEDS (TBL) , 

TU 

2-6 

TRANSMISSION UNIT (TU) , B-5 
TU FORMAT, B-5 

USAGE 
ISA MODIFICATION BASED ON USAGE OF 

SCIENTIFIC INSTRUCTIONS (TBL) , 
2-27 

UTILITY 
UTILITY COMMANDS, 4-3 
UTILITY PROGRAMS MESSAGES (xx12), 

5-16 

VIP 
IMPLICIT I/O OPTIONS FOR A VIP 

(TBL) , 2-17 
VIP DEVICE DIRECTIVE, 2-37 

VOLUME 
CREATE VOLUME, 4-19 

WORKING DIRECTORY 
CHANGE WORKING DIRECTORY, 3-7, 4-7 
LIST WORKING DIRECTORY, 3-16, 4-39 
RELATIVE PATHNAMES AND THE WORKING 

DIRECTORY, 1-3 

XREF 
CROSS-REFERENCE PROGRAM (XREF) 

MESSAGES (xx18), 5-24 

i-8 AX07 



HONEYWELL INFORMATION SYSTEMS 
Technical Publications Remarks Form 

TITLE SERIES 60 (LEVEL 6) 
GCOS 6/MDT SYSTEM CONTROL 

ERRORS IN PUBLICATION 

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION 

ORDER NO., AX07, REV. 0 

DATED I MARCH 1977 

r\. Your comments will be promptly investigated by appropriate technical personnel and action will be taken 0 Ly' as required. If you require a written reply, check here and furnish complete mailing address below. 

FROM: NAME ______________________________________ ~ __ _ DATE ____________ _ 

TITLE ________________________________________ ___ 

COMPANY ________________________________________ __ 

ADDRE~ ________________________________________ __ 



.EASE FOLD AND TAPE -
DTE: U. S. Postal Service will not deliver stapled forms 

ATTENTION: PUBLICATIONS, MS 486 

Business Reply Mail 
Postage Stamp Not Necessary if Mailed in the United States 

Postage Will Be Paid By: 

HONEYWELL INFORMATION SYSTEMS 
200 SMITH STREET 
WALTHAM, MA 02154 

Honeywell 

FIRST CLASS 
PERMIT NO. 39531 
WALTHAM,MA 
02154 





Honeywell 
Honeywell Information Systems 

In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154 
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1W5 

In MexIco: Avenida Nuevo Leon 250, Mexico 11, D.F 

17819,2577, Printed in U.S.A. AX07, Rev. 0 


