H PLANNING AND BUILDING
Oneywe" AN ONLINE APPLICATION

SERIES 60 (LEVEL 6) GCOS/BES2

SOFTWARE

PLANNING AND BUILDING
Honeywe“ ' AN ONLINE APPLICATION

SERIES 60 (LEVEL 6) GCOS/BES2

SUBJECT :

Considerations for Planning and Building an Online Application Using
Series 60 (Level 6) GCOS/Basic Executive System 2 Software.

SOFTWARE SUPPORTED:

This publication supports Release 0200 of the GCOS/Basic Executive
System (BES2). When a later release of the system occurs, see the
Subject Directory of the latest Series 60 (Level 6) GCOS/BES2 Software
Overview and System Conventions manual (Order No. AU50) to ascertain
whether this revision of this manual supports that release.

DATE:
July 1976

ORDER NUMBER:
AU49, Rev, 0

PREFACE

This manual describes some of the considerations involved in planning and
building an online application using GCOS/BES2 software. Unless stated other-
wise, the term BES refers to GCOS/BES2 software; the term Level 6 indicates the
specific models of Series 60 (Level 6) hardware on which the described software
executes. GCOS/BES2 software executes on the 6/30 Models of Series 60 (Level 6).

Section 1 presents the general characteristics of the various categories of

BES software, and their roles in the development of an online application.

Section 2 provides details of the capabilities of BES software, presents
formulas for calculating the sizes of various data structures, and introduces
such concepts as priority levels and logical resource numbers that provide both
flexibility and efficiency in the completed application.

Section 3 describes the use of the Configuration Load Manager. It includes
a summary chart of the building process from the beginning stage where file
space is allocated, through program development, to configuration and execution
of the online application.

Section 4 provides practical advice on debugging an online application.

Appendix A contains complete descriptions of the CLM commands and their

operands.

Appendix B discusses the use of Executive object modules in building an

online application.

Appendix C presents examples of application configuration.

© 1976, Hoheywell Information Systems Inc. File No.: 1813

AU49

GCOS/BES2 SUBJECT DIRECTORY

This subject directory is designed to assist the user in finding information
about specific topics related to GCOS/BES2. Topics are listed alphabetically;
each topic is accompanied by the order number of each manual in which the topic
is described. At the end of the Subject Directory, all GCOS/BES2 manualg are

listed according to the alphabetic/numeric sequence of their order numbers.

Subject Order No.
Allocate Disk File (UEALAity SEt 1) wueneenemenenenenen e aeaannn AU47
Application Development (OVErview)cecceeeceaces ceecceacnnecnens e AU50
ASCII Character Set and Conversion Tables Geesecevsnsanenscenn .- AU50
Assembling PrOgramsS «..eeeeeceseccascanncas ceeesenanes e sesscensannan . AU48
Assembler Diagnostic Flags .e.eeeeen.. e ecteeseetetescerncsaaeenoaeanns AU43
Assembly Source LaNgUAJE ...ceececccaccanscsscaanss Ceeeeeseesaannn e AU43
BASIC vvuvennens e e e e, R AU44
Bootstrap Generator ceceeserenccenas c et ettt ane .- AU47

Bootstrapping and LOAdIiNGg e.ceeeeeeeeeecscsesecssessososososscancasses AU46
Buffer Manager ...c..ciceieeeeececeececanoscasoasssoaneacnases ceeeenenn .~ AU45

Building an Online Applicationiceeeeeeeceeeesenossascsenansnansns AU49

Card LoadeY .esesecesscascsceasnsnsocannns ceceecceeaanaan cecceerssan oo AU46
Clock Manager ..ceeececesesescconsas cees e aaaas chse et AUA4S5
COBOL Compilation ...eeeeeceeseesssceeccceacassassoanes ces s ecnccoans Aﬁ48
COBOL Source Language ...ceseeeccececscs cheececccreeaaannn ceereeeaen .es AU42
COBOL Statements ce.cuceceeeececcececaceoasacannacanas ceecencanas ceeeeee AU42
COBOL Compiler DiagnoStiC MESSAgES +ieeecescesecerssssacossscascsasenes AU42
COBOL Operating ProceduUreS ...seeecececcosesaseseccannnas ceeeeeseeeanan AU46
CommAaNnd PrOCESSOY .« evesesesesescnsosscessssscesosesaasas ceecsececanaas AU48
CommMUNIicCations «.veueeineeeneennnennnnnnnnn. c s et e et c ettt ae e AU45
Compare Disk Volumes/Files/Members (Utility Set 3) ceeena e AU47
Configuration Load Managere.eeee... S et e eretatetetets et AU49
Console Messages (Error and Informational) ceseecacenaa AU46
Control Panel ceceeccsreteceannas ceetectecea e caneaas ceensen AU46

Copy Disk Volume/File/Member (Utility Set 3) .uuevnirennennennnennennns AU47

Cross—Reference PIOQIaM ... eeeteaneennnneenneenneneneneeeensneeenenns AU48
Debugging (Offline) s esserssrssoscsnan cecceecaaans ceeeean AU47
Debugging (Online) ceteecrccestasaonenns ceeeaan e ceeeeees AU49

Delete Disk File/Member (UEility Set 1) tieiirenneenneneenssnesonaenns AU47

iii AU49

Subject Order No.

DiSKk CONVENLIONS tvesersesecsosanesnsoccncnassssescsasanaannsnsnsos cenn AUS50
Disk Loader C e et ececctasessesseenesesttosesenasnssan cesecesacne AU46
DUMPS s eeeeeecococoacaannnnses e cecessestst et cane feeeesesneaaae AU47
DUMP EALIt veveeneereneeennocncennnns et et eeeeee e .. RU47
EQitOr i ieieereeeenesnocsessncscncseacnonnnns P, cereeeaaen AU48
Equipment ReqUIrementsSceeureeeeeoceosnosccoanssasnasasssanssnsaas AU50
Error Reporting by Online ApplicatiOns .cieeeecececeeeeecocenccacacens AU46
Error Reporting by System Software ceeecersannesssen AU46
Executive COmMpoONentsScoeeeecsocceercenccnces ceeteessaeesaaceneasnn AU45
File MAGNager ..cceeeeecencsscccscssonascnoans cheeescccessessesseseseanos AU45
File Naming Conventions ceetcccttsentesaacnanen ceveennaan AU50
Floating-Point Simulator cteeceeteteeecessaanarsan ceeeeeaas AU45
FORTRAN Compilationcceeeeeneccnn cececnn tececssesesnevassatasoennn AU48
FORTRAN Compiler Diagnostic Messages cereeecean cheeeereeaeana. AS32
FORTRAN Intrinsic Functions ceereet e ceeonn AS32
FORTRAN Source LangUageeseececsscscccccasns ceeeeeonn csencccnse .o AS32
FORTRAN Statements and Procedures tetecas et ceeeessoann AS32
Glossary Of System TermS ..c.ceiereetesceceacncensonansonsannss ceeecaenn AU50
Hexadecimal Numbering SYSTeM ...eeeeeeeeesesesecaceccnsosssnaanccenanas AUA43
Initialize Disk Volume/File (Utility Set 1) .+ecuieecieeanncanan ceeecans AU47
Input/Output DIiverscecessseccssocnns et essssecacensenesaanannas AU45
Linker Ceeeeeneeaaes ceeiereaaaen cesaeeteeraanaan ceeenrsecnans AU48
List Disk Volume/File Description (Utility Set 1) ceceeane AU47
LoAdersS .eseecenctecncnananees et e eccsseesassesceressacensaeannoanon s AU46
Macro Facility Usagec.eeee. cheenasaean chececcsnans cetescesaenans AU43
MacrO PreproCeSSOY ..cecesceascases ceceneseseaeaae tesessasananss ceens AU48
Offline ApPPlicationsS tuiuieeeeeneceeseacnseesanncsensesssssananansas .o AU45
Operating ProceduUresc.. ceeceeecassanne cesecsessssecnsaacsonsnn AU46
Operator Interface MAnNaAgereeecteeesroccsscncsccsscssosonsssccnsanas AU45
Overlay LOAdEY ...ucieceeesscancsosssssnsonocnsasas seesereseccoansenas AU45
Paper Tape LOAdeYcceeveecscccscssossssssancnnss e eesssesiaeaaannn AU46
Planning an Online Applicationcieieeeeceecccaas cecesesaereeanan AU49
Print Disk File/Member (Utility Set 2)vevee... ceeeeceean PN AU47
Program Development TOOlS .ceecverceccncnaanenns cecssrsenasneceans oo AUA48
Program Naming CoOnventions ..e.eieeeeeeenceecnecaaannacansas et AUS0
Program PatCh ...eeieeeeeereenneceonancnacnns Cersersesssassnserensanen AU47
Punch Disk File/Member to Paper Tape (Utility Set 2)eeeeven.n ceen AU47
Rename Disk Volume/File/Member (Utility Set 1) ceuvveerreccenocnnnccnnn AU47
Replace Memory Values (Utility Set 1)iieeesnccesecncncansnnn ceeen AU47
Scientific Branch Simulator ...e.ieiieiierecereenesacsnsonnsesescsscsnses AU45
Software Release Materials (CoOntents) ...cccseeecersacccscasscsccsssnas AUS50

System Conventions .s.ieeeeeeeeiateceasseonnennnanans ceeneaeeann ceenanns AU50

iv AU49

Subject Order No.

System Software and Documentation (Overview) e eeceann e AUS50

Task MaNaAgeY ..ceeeeeeeeersosscssosossnsseasossssssacsnosssscnssassancscsss AU45

Trace Trap Handlerceeceecenccanes s et eseranreacsecsorensenoans AU45
Transfer Input to Disk File/Member (Utility Set 2) ..ciieeeenceeecnnnn AU47
Trap Handling (Offline)eecccecescoscocannnncncasnas ceeeaeee ee-... AU46

Trap Handling (Online) ..c..eeeeniceeceeeaeosesosascccasanassascnansesns AU45
Utility ProOgramsS .ceeeeeceeseccecscncnans e et seesceseccascassesssessnen AU47

The following publications constitute the GCOS/BES2 manual set. The subject
Directory in the latest Series 60 (Level 6) GCOS/BES2 Software Overview and

System Conventions manual lists the current revision number and addenda (if any)

for each manual in the set.

Order No. Manual Title
AS32 Series 60 (Level 6) GCOS/BES FORTRAN Reference Manual
AU41 Series 60 (Level 6) GCOS/BES2 COBOL Reference Manual
AU43 Series 60 {Level 6) GCOS/BES2 Assembly Language Reference Manual
AU44 Series 60 {(Level 6) GCOS/BES2 BASIC Reference Manual
AU45 Series 60 (Level 6) GCOS/BES2 Executive and Input/Output
AU46 Series 60 (Level 6) GCOS/BES2 Operator's Guide
AU47 Series 60 (Level 6) GCOS/BES2 Utility Programs
AU48 Series 60 ({Level 6) GCOS/BES2 Program Development Tools
AU49 Series 60 (Level 6) GCOS/BES2 Planning and Building an

Online Application

AU50 Series 60 {Level 6) GCOS/BES2 Software Overview and

System Conventions

In addition to the GCOS/BES2 manual set, the following manual is required

by GCOS/BES users as a general hardware reference:

Order No. Manual Title

AS22 Honeywell Level 6 Minicomputer Handbook

The following manual provides detailed information regarding programming

for the Multiline Communications Processor:

Order No. Manual Title

AT97 Series 60 (Level 6) MLCP Programmer's Reference Manual

v AU49

CONTENTS

Page

Section 1 INtroduCtiOn cececsecsccsscesccsssscsssssonscascs 1-1
Section 2 PlannNing ceeeeecscecsccecsccsccasscssassssacscscs 2-1
Overview of BES Software ServicCes .ceececeecess 2-1

Services Available for Application
EXeCUtiON .ccceeccecascascssccnncncccsoncs 2-1
Services Available for Application
Development ..cceececceeececcccosascccssons 2-1
Defining Application Design Objectives 2-3
Defining Online Environment Characteristics . 2-4
Selecting System Variables ...veeceesseacens 2-4
Information for System Data Structures
From CLM COMMANAS +ceecsecsoscocscccocosns 2-4
Size Calculations for System Data
Structures .eceecececneccsncccoccccncns 2-6
Selecting Executive ModuleSciececcases 2-8
Selecting Input/Output Modules ...ceveecess 2-8
Selecting File and Buffer Management

TeChNiQUEeS teceeecesscncasscanscsasscnses 2-8
File Manager Buffer Handlingceeeiees 2-10
Buffered Read Operations .s.cceeeeeecaccss 2-10
Buffered Write OperationNsS ..ceceeceeeces 2-11
Interactive File Type/LFN Coordination .. 2-12
Printer Space Conventions ...eeeecesesacs 2-12
Designing Programs for an Online Environment. 2-13
Multitasking eceeeecececencececacececonncnnens 2-13
Priority Levels .ccicieeeecocccccccsancccs 2-13
Logical Resource NUMbEerS ...ceesceccecssces 2-15
Attaching LRN'S tO LevelS cevececeroescess 2-16
Requesting TasksS s.ceeeevecsccosennnnsana 2-17
Input and Output Drivers ...ceecescecssasaas 2-18
Memory Usage ConsideratioOns c.eeeeeeecesces 2-19
Hardware Dedicated LOCAtiOns .c.eeeececsss 2-19
Data Structure Areas ...eicecececscsscccscs 2-19
Overlay PlanNinNg ...ceeceeccescocsncsoasses 2-19
Establishing Overlay Areas ...ccececes. 2-21
Overlay Coding Conventionsceeceecee 2=-21
Example of Nonfloatable Overlaysccec.. 2-22
Example of Floatable OVerlaysS ..cececeeeseccss 2=-24
How to Estimate Overlay File Size .eeensess 2-25
Initialization Subroutinesecceecesce 2-25
Communications Planning e.ceceeecesccsscsssse 2-27
Priority Level Requirements for
Communications .se.eeececcscesscaseccsass 2=27
Requesting Communications Functions 2-28
Binary Synchronous Communications
(BSC 2780) cveeecosccocsccssoscnnsanans 2-29
IBM 2780 Remote Terminal Emulation 2-29
Level 6-to-Level 6 File Transmission .. 2-29

vi AU49

CONTENTS (cont)

J
]
Q
(0]

Section 3 BUildinNg ceeececesscesscsscsrsacsacacsccnnnns ceen
Preparing to US€ CLM .e.eecececcccsccscnsanas
Output File Preallocation (Stage 1) .eeee..
Source Module Creation and Editing
(Stages 2 and 3) c.cecvcecccscacccnanncas
Object Module Creation (Stage 4) ..ceeeece.
Load Module Creation (Stage 5) ceeececscees
Linking Order for Code TexXt .eeeeeseccese
Externally Defined Symbols ..cecceeececss
Summary of Load Module Preparation
Using the Configuration Load Manager
(StAge 6) seeceeeececccoecasocaaccscacsnanns
How to Include Optional CLM Extensions
Application Configuration and Loading
Nonstop Application Loading .eeeeceseeeecs
Loading From Disk Using the Command
Processor e¢.e..... ceceeccscsonen cessescen
Load and Halt Procedures for Disk ..oe...
Loading From Disk With an Operator's
CONSOle cievevececcancnnane B
Loading From Disk Without an Operator's
Console ..eeeeeceen cecesscssessscsnans 3-10
Loading From Paper TAPE ecescecccsccsccscs 3-10
Building a CLM Command File .e.eicescecccnan 3-12
CLM Action During LOading seeececesecccccces 3-13
Starting an Online Application .c..ceceecee. e
Assembly Language Start Address Definition. 3-17
FORTRAN Language Start Address Definition .
COBOL Language Start Address Definition ...

WWWWWW Wew
BB BW W

wWwww
1
o 0 O O

w W
t
NejVe}

w
|
o

W
!
[
~J

YT
el
0

Section 4 DEDUGGING ceeeecescascacccacancsannecas ceesee e
Using the Online Debug Program cecsas
Online Debug Program FUNCtiONS .eeeecescscss
Debugging Command LAanNguade cecececeeccscocss
Debugging Command Format and Symbology ..
Debugging COMMANAS eseceeosccovssssccscncnces
Activate Level Command (AL) ecececceccsacas
All Registers Command (AR) .eeececees ceees
Assign Command (AS) ceececsccscssscssscacse
Clear Command (C*) .ceececsncossccscccnsaa
Clear Command (CN) eceeceecsccscccssacccsscnse
Change Memory Command (CH) eceeeceeses cees
Define Command (DN) eeeeceeccoceces cecesescans
Display Memory Command (DH) seeecscsccssns
Dump Memory Command (DP) eeeeececccvssscacs
Define Trace Command (DT) ceeceecasceccces
Execute Command (EN) .cceeccssccccanscace
GO Command (GO) eeeeececonsscccasssansenas
Print Header Line Command (HN) eeceeccecees
List All Breakpoints Command (L*) eeceoee
Line Length Command (LL) eecevee ceecsecss

[L U L |
HEHROWYWOOO~NI~NINIOoOoTULTULTUTUTULTW NN -

nb;bnbh&hhb%&hh?hbb@&%%ﬁhhh%.&

List Breakpoint Command (IN) ceeceecessecss -10
Print Command (P*) ceceeceeccecocccccocans =10
Print Command (Pn) ceessccssccanse ~10
Print Trace Command (PT) ceecececsccscccsa =10
Reset File Command (RF) ceececeeccsccocs cee =10
Set Breakpoint Command (SN) .ceceecccacecss 4-11
Specify File Command (SF) ceescececcccses 4-11

vii AU49

CONTENTS (cont)

Page
Section 4 (cont) Set Level Command (SL) eeecescecsccsscsccas 4-12
Set Temporary Level Command (TL) 4~-12
Print Hexadecimal Value Command (VH) 4-12
Using the Online Debugging Program 4-13
Additional Operating Notes for the Online
Debug PrOgram ...cceeeceveccsssscescocccecs 4-14
Locating Load ModulesS ...c.eeeeceeccccncss 4-15
Debugging During Online Application
DeVElopmENnt ceeceececssaceccsocsocccccasscsnse 4-16
MONitor POIintS ceeeveseessssccoscconcccccacse 4-16
Manual CONtrol ..ceeceeccesvscccossoscssscncasss 4-17
Real-Time ClOCK (RTC) veeevsoccscssncsccsnns 4-17
Data StrUCtUYEeS ceeeesccscessccsccsossscoansae 4-18
Trace HiStOrY eecececcccsccssssccsanccnsosns 4-19
Handling Load EXrOYS .ececessscccssssccssss 4-20
Appendix A Configuration Load Manager CommandsS ..c.coecesees A-1
Command FOYMAt eeeececeessssosccososcscncsccnsnse A-2
Input Devices fOr CLM .ccoveeeccccccccccccnns A-3
ADMOD Command (Add Load MOAUle)eeeeacescsae A-4
ATFILE Command (Attach File) .ecececcccesas A-4
ATLRN COmInand (AttaCh LRN) essssEeasr0OSOSTRISIRS A"'5
BSC 2780 COMMANA ceececcccsorscoscencocsccncse A-6
BUFSPACE Command (Pool Definitions) A-7
CLOCK Command (System ClOock) .ceeeceesccecse A-8
COMM (Communications System Command) A-9
DATE Command (Date and Time€) .eseeescsvseas A~9
DEVFILE Command (File Management Devices) . A-10
DEVICE Command (I/0 Device TasKk) eceececeoss A-11
ELACT Command (End Load ACtiOn) .eceecceeses A-13
ELOC Command (Define Address Symbol) A-14
EQLRN Command (Equate LRN'S) civeececsncees A-14
EVAL Command (Define Value Symbol) A-14
FILMGR Command (File Manager) .ceececccccss A-15
FMDISK Command (File Management Disk) A-15
I0S Command (I/0 Stream) eeeeecescecccoscsss A-15
LACT Command (Load ACtion) ceeeecesescovenss A-16
LTPDEF Command (LTP Definition) .ceecececes A-16
LTPNn COMMANA . eceeosoccscsccscoonsassccssossse A-17
MODEM Definition Command ...cececesnccccccss A-18
OIM Command (Operator Interface Manager
Definition) .ciieeceesccccencnsaanacsanses A-19
QUIT Command (Initiate Loading) ..eeececesss A-19
STATION COMMANA secececssscessscesccscsccncss A-20
SYS Command (SYyStem) e.ceeeecescccccccccccns A-20
TASK Command (Define Task) .ceseeccccacsacs A-21
TRAP Command (Trap VeCtOY) eceeecscesscssscs A-21
TSA Command (Trap Save Area Definition) ... A-22
TTY COMMANA ceeececcsscssscscoscscsssnsccoss A=-22
VIP COMMANA ceesecsccoccssoscascacosssscsnccs A-23
*Command (COMMENtS) ceesesscvsocssccnnconnae A-24
Appendix B Planning and Building With Executive Object
MOAULES tecieesvascssnesansensossonscscescsnscns B-1
Creating Executive Load Modulescceeccceece B-2

viii AU49

Append

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Table
Table
Table
Table
Table

Table
Table

Table

Table
Table
Table
Table
Table
Table
Table

ix C

i [I |
NENMDHOOWNDHEWND

WO WWWWWNNN
]

NNIT)NN
(200 SN VSN (I]

.

CONTENTS (cont)

Application Configuration Example ...ccececsces
Configuration Commands for Sample Input/
Output ApplicCatiOn .cececesccccccscccsoscns
Link Commands for Sample Input/Output
Program ..eeccececceccccccncccccccccscscsccsnce
Sample Input/Output Program .eceeceeecscsccscss
Configuration Commands for Sample
Communications Application .ececeeccescecncan
Link Commands for Sample Communications
PrOJYalll eeeeeasescssescasaneaaacocccscesanss
Sample Communications Program .e..seecessessese

ILLUSTRATIONS

Sample LRN Priority Level Attachments ..c.eceeceece.
Sample Statements Attaching LRN's to Levels
Memory Data StructuUresS ...ecceececescecescscocccccces
Building an Online Application - Process Diagram.
Current Load Module MemOry LAYOUL eeeevcccscoccee
Memory Layout During Configuration ..c.ceeeceecesss
Memory Layout After Loading ...csccsesseccscecscss
Memory Layout During Application Execution
Sample ZXMAP OULPUL ceececescnccscocsssascassanss
Hardware/Executive Data StrUCLUYreS .eeecessesscscs
Initialization ProCeSSiNg .eeeeesscecccccse ceeenn
New Initialization ModuleS ..c.eeeceecscccocccana

TABLES

BES Software for Application Execution ...ceceve..
BES Software for Application Development
Physical and Logical Resource Requirements
Effects of CLM Parameters on Memory USage seeceees
Names and Sizes of Honeywell-Supplied Load
MOAULES .ceveereeosnnsecceosasosasossnssssncnonss
Relative Priority Level Assignments ...cecoceese.
Register Use by System Initialization
SUDTOULINES +veeeeereceeaceccoccencccsoscnonans
CLM Functional Groups, Component Modules and
Related COMMANAS ceeeeeeresccccacsocsasacnnsocns
Bootstrap Record for Nonstop CLM Loading eceeeses
CLM Load Module Order for Paper TAPE .ceeceecceccses
Memory and Work File Space USAge cecesesccscccccss
Summary of Debugging Commands by Function
Symbols Used in Debugging Command Linesecee.
Summary of CLM Commands and Command Functions ...

Executive Object Modules

ix

2-15
2-16
2-20
3-2

3-5

3-14
3-15
3-16
4-16
4-18

B-3

w) o
OB N 00~

AU49

SECTION 1

INTRODUCTION

This manual shows you how to combine BES software modules with your own

programs to achieve the functionality you require in your online application.

The software has a number of features that enable you to concentrate on
the solutions to your specific application problems, rather than to spend time

developing, coding, and testing your own standard service routines.

For example, Executive modules provide routines for task and clock manage-
ment, and for the control of operator dialog with the software. Also included
are routines for time and date recording, as well as trap and error handling.
There is a set of routines that allows you to execute your application as a
series of overlays — the Overlay Loader provides the basic capabilities for

loading and starting overlay code.

The input/output modules provide file management facilities, and reentrant
routines for driving all available devices. Moreover, the software includes
Communications modules that function through the standard physical I/0 inter-

face, and can be configured and used as easily as any other peripheral device.

Furthermore, the modularity of the software allows you to choose only those
services that you require. For example, you may or may not want to include the
Executive buffer management capability as an integral part of your configured

application.

Since the software is supplied in load module form, you do not have to
assemble and link the various routines that you want to include in your applica-
tion. As soon as you have finished developing your programs so that they are

executable load modules, you are ready to configure your application.

The process chart in Section 3 gives you an overview of the operations
involved in building your application. You will be using various functional
groups of software modules in the building process. For example, in setting
up your application environment, you will use the utility programs to prepare

and maintain disk volumes. See the Utility Programs manual for details.

1-1 AUA49

You will use components described in the Program Development Tools manual

to prepare your own application programs.

To make a realistic debugging environment for online application programs,

the software provides an Online Debug Program that operates under the Executive.

When your own load modules are ready for use, you configure your online ap-
plication by using a software component called the Configuration Load Manager
(CLM). The CLM, working in conjunction with a loader, provides a load-and-go
capability for your application. For smaller systems, CLM can be executed as

a series of overlays.

CLM accepts command input in which you have specified the various character-
istics of your application, such as memory size, numbers and types of devices,
and the load modules, both BES modules and your own, to be included in the final
configuration. CLM uses this command information to build the data structures
and to load the necessary modules that the Executive software uses to control
processing. A special facility permits user-written application initialization

during loading.
After all the specified modules are loaded, CLM turns control over to the

highest priority task that has been designated as initially active, and applica-

tion execution begins.

1-2 AU49

SECTION 2
PLANNING

Planning an online application includes the process of systems analysis and
design, taking the fullest advantage of the system services and development tools
supplied by Honeywell, This process includes:

e Acquiring a familiarity with the capabilities of BES software

e Defining application design objectives

e Defining online environment characteristics

e Designing programs to be run in an online environment

OVERVIEW OF BES SOFTWARE SERVICES

BES provides a number of services that you should consider when planning an
online application. There are also a variety of tools for use in the develop-
ment of application programs. These software modules are summarized in
Tables 2-1 and 2-2 below.

Services Available for Application Execution

The BES-provided services for use during online application execution are
summarized in Table 2-1, and described in detail in the Executive and Input/

Output manual or the FORTRAN manual, as appropriate.

Services Available for Application Development

The BES-provided tools for use during application development are sum-
marized in Table 2-2, and described in detail in the Program Development Tools

and Utility Programs manuals, as appropriate.

In addition to the services summarized in Table 2-1, BES provides a
Configuration Load Manager ZCLM) which defines the context of the application,
sets up the required internal data structures, loads the specified modules, and
initiates execution of the application, all in one continuous operation. The
operation of the CLM and the syntax of its commands are described in this

LY

manual.

2-1 AU49

Table 2-1.

BES Software for Application Execution

Service

Description

Task Manager

Clock Manager

Operator Interface Manager

Buffer Manager

File Manager

Overlay Loader

Communications Supervisor

Device Drivers

(Disk, Printer, Card
Reader, KSR/ASR, VIP, BSC,
TTY, MLCP)

Floating-Point Simulator

Scientific Branch
Simulator

Trace Trap Handler

FORTRAN Run-Time I/O
Routines (FRIOR)

Online Debug Program

COBOL Run-Time Routines

Monitors and controls all tasks in the applica-
tion, using data structures defined during
configuration. The Task Manager oversees the
level activity indicators, administers the inter-
rupt structure, and coordinates requests for the
execution of tasks.

Activates priority levels after an elapsed time
interval or at regular time intervals, as speci-
fied during configuration. An expanded Clock
Manager is available, providing date and time
information in ASCII format for external
reporting.

Controls all operator dialog with the software
through a KSR-like device.

Coordinates requests for buffer space, using
control structures and buffer pools defined during
configuration, Use of the Buffer Manager is
optional but recommended.

Opens, reads, positions, writes, and closes files;
reports file status information and error condi-
tions. Use of the File Manager is required for
FORTRAN and COBOL programs.

Controls the loading of planned overlays through
data structures created by CLM.

Provides necessary services to communications
handlers including time-out, request validation,
and Task Manager interface.

Perform all data transfers between the online
application and its respective devices. Drivers
receive requests for service from the Task
Manager and run at the priority level of the
requested device.

Provides double-precision arithmetic and a
scientific instruction set. Operates as a trap
handler under the Executive.

Operates as a trap handler under the Executive to
provide FORTRAN and assembly language programs
with the means to simulate the use of scientific
branch instructions.

Traces the contents of a specified memory loca-
tion and maintains a limited trace history.

Provides for reading and writing of formatted and
unformatted records; edits integer, real, logical,
and character data for formatted input and output,
and produces diagnostic messages for inappropriate
commands. These routines require the use of the
File Manager.

Provides online program testing and patching
facilities for application programs running under
a BES Executive.

Supports the COBOL procedural statements that
involve arithmetic, logical, data manipulation,
and input/output operations.

AU49

Table 2-2.

BES Software for Application Development

Component

Function

Utility Programs
Editor

Macro Preprocessor
Assembler

COBOL Compiler
FORTRAN Compiler

Linker

File maintenance and handling, media transfers,
printing, debugging.

Creates and/or corrects source programs on disk.

Provides for definition and expansion of macro
routines., Macro Preprocessor output is input to
the Assembler,

Produces object modules from source programs
written in BES assembly language.

Produces object programs from source programs
written in COBOL.

Produces object modules from source programs
written in FORTRAN.

Produces load modules from object text output of

all language processors.

DEFINING APPLICATION DESIGN OBJECTIVES

The careful description of the specific design objectives of your applica-
tion is an important part of the overall planning process. You should have a
precise inventory of the numbers and kinds of problems that your application
programs will be designed to solve, the files required, and the types of reports

to be generated.

This inventory will greatly simplify your assessment of the physical and
logical resources required to achieve your design objectives. Your inventory
should contain information about the source language in which your particular
application program is written because high-level languages such as COBOL and
FORTRAN require the File Manager to handle the logical input/output operations
between programs and the physical devices that contain the data read and written
by those programs. Table 2-3 shows one way of relating a design objective to
the physical and logical resources needed to implement that objective.

Table 2-3. Physical and Logical Resource Requirements

Application Program Resources Needed

Source Language

Design Objective Logical Physical

Produce a report COBOL Input task Card Reader

based on daily

card input Disk device

Processing task
Output task

File Manager

Line printer

2-3 AU49

There are other considerations about the use of logical and physical
resources that are discussed throughout the remainder of this section. For
example, the implications of providing certain values in the CLM commands, and
the use of overlays to conserve memory space. There is a description under
"Designing Programs for an Online Environment," later in this section, about the
use of logical resource numbers to coordinate the use of interrupt priority

levels by tasks and devices.

DEFINING ONLINE ENVIRONMENT CHARACTERISTICS

The characteristics of the online environment such as priority level usage,
trap handling routines, time and date functions, as well as the complement of
Executive software and file and buffer specifications, are chosen by supplying
information to the CLM in configuration commands. These commands are described
in detail in Appendix A; some of their more salient features are presented in
this section.

Selecting System Variables

The information provided in the various commands to the CLM affects the
numbers and sizes of control structures used by the Executive software to monitor
processing. Choice of Executive services (and hence the Executive modules) has
a direct bearing on the amount of available memory remaining for the loading of
application programs. Table 2-4 summarizes the relationships between parameter
values of the CLM commands and effects of these values on the sizes of control
structures and memory usage. (See also "Size Calculations for System Data
Structures," below.)

Information for System Data Structures From CLM Commands

Note that the CLM control commands direct the action of the CLM itself; the
load configuration commands provide information to the loader that pertains to
the loading order of the modules, and the identification of references among
them.

The system configuration, task, buffer management, and file management
commands contribute information for the control structures that are used to
regulate processing in an online application, in addition to providing CLM with

data needed to calculate the sizes of these control structures.

2-4 AU49

Table 2-4.

Effects of CLM Parameters on Memory Usage

Default
Default Value Structures
Parameter CILM Command Range of Values Value (Words) Affected
hilrn up to 255 15 16 LRT size
lolevel SYS 6<{value<62 15 270 Number of ISA's
himem up to 64K Loader -
Address
lrn OIM ihilrn - - LRT and ISA
level 5¢value<lolevel -
number of TSA 2<{value<46 2 Number of trap
TSA's save areas
size 8<value 8 16 Size of trap
save areas
trap number TRAP 1 through 46 _ See Table 2-5
handler name ASCII name for sizes
module name ADMOD - - See Table 2-5
for sizes
maxlfn <255 15 32 IORB
224 FDB
concurrent 56 FCB
calls FILMGR >0 4 272 REB
concurrent 328 Diskette buffer
ope
pens >0 8 392 | cartridge disk
buffer
gsize, number| BUFSPACE - - Size of PPT
lrn TASK, ATLRN, | <hilrn _ Number and size
DEVICE, TTY,| - of RCT's
level VIP, BSC 5<valuellolevel

The effect of some of the parameters in Table 2-4 on the amount of memory

space used is small, so that if a default value is taken even when it is higher
than that needed for a particular parameter, not much memory space is wasted.
However, you should be careful about assigning higher than necessary values to
the parametefs for the file management commands, particularly the FILMGR com-
mand. As you can see by inspecting the size calculation formulas that use
information from this command, a careless assignment of values to the "concur-
rent calls" and "concurrent opens" parameters will result in the reservation of
much more space than needed.

Moreover, the lolevel parameter value should be selected with care, The
interrupt save areas (ISA) are set aside on the basis of this parameter, so that
if you supply a value of 30, and actually only use 10 priority levels, 360 words

remain unused.

AU49

SIZE CALCULATIONS FOR SYSTEM DATA STRUCTURES

The system and task commands provide information for the calculation or the
definition of the sizes of the following data structures:

LRT - Logical resource table

ISA - Interrupt save areas

S0Q - Start of queue header table

EOQ - End of queue header table

TSA - Trap save area

RCT - Resource control table

The following formulas are used to calculate the sizes of these areas.

SLRT = (hilrn + 1)
If the default value is taken for hilrn, the size of this table would be 16

words.

= - *
SISA MIN + (lolevel + 1-4) MAX
Where MIN = 6 and MAX = 22, If the default value of 15 is taken for lolevel,
the ISA would be 270 words long.

S =8 = (lolevel + 1)
Using the default value for lolevel, each of these tables would be 16 words long.

STSA = (number of blocks) * (blocksize)
Using the default values for these parameters results in a trap save area 16

words long.

A resource control table for a device is 16 words long; an RCT for a task

is one word long.

In summary, the size of the area devoted to those data structures defined

by the system and task commands is:

= + + *
= Sire * S1sa * Ssop * Srog T Stsa t Mo * Spev * Smrer

where N_ is the number of DEVICE commands, and SR is the sum of RCT sizes.

D CT

The buffer and file management commands provide information for the defini-
tion of the following data structures:

e PPT (pool parameter table)

o Buffer area

e Work area for File Manager

2-6 AU49

IORB (input/output request block)
Diskette buffers

FDB (file descriptor block)
FCB (file control block)
Remote extent block

Device buffers

Wait table

Semaphore table

VDB (volume descriptor block)
LFT (logical file table)

FCB (device)

e FDB (device)

The following formulas are used to calculate the sizes of these structures.

- *
SPPT 4 words + (2*Pp)

where P is the number of size/number pairs indicated in the BUFSPACE command.

= {(gize. * ni ar) . {(si * number
Sbuffer area {size uambcrl, + .. (size numbe n)
= *
SWork area (number of concurrent calls) 40
= *
SIORB (number concurrent calls) 8
= * .
Sdiskette buf fer (pumber concurrent calls) 72 + 64 for cartridge
disk
= *
SrpB (number concurrent opens) 28
- *
SFCB (number concurrent opens) 7
SREB = (2 * number concurrent opens) * 17

Sdevice buffer (number double buffers) * 77

Swait table = lolevel + 1
SST =16 + (2 * (number VDB + number FDB evice)) +
maxlfn + 2 + (2 * number concurren%
opens)
= *
SVDB (number FMDISK commands) 48
SLFT = 1 + maximum 1fn + 1
= *
SFCB (device) (number ATFILE commands) (6+1+N/2)

where N is the pathname length, space-filled to the next highest even number of
bytes.

S (number DEVFILE commands) * 28

FDB (device)

2-7 AUA49

Selecting Executive Modules

BES software provides an Executive (ZXEX03) as a load module. This Execu-
tive supplies capabilities for task and clock management, input/output handling,
overlay loading, initialization processing, operator interaction with the soft-
ware, time and date recording, trace trap and system error handling. Applica-

tions that use the File Manager require this Executive.

To complement the facilities provided by the Executive, you can also include
either the File Manager or the Buffer Manager, or both of these load modules in

your application. All FORTRAN applications require the File Manager.

You may find that the load module version of the Executive does not exactly
fit your application specifications. In that case, you can hand tailor an
Executive load module from Honeywell-supplied object modules. See Appendix B

for a description of this process.

Selecting Input/Output Modules

Input and output operations in your online application are handled by soft-
ware modules called device drivers. You may .select appropriate device drivers
(or line-type processors for Communications devices) from the set provided by
Honeywell (in either load or object module form), or you may write your own
device drivers. See the Executive and Input/Output manual for details of this
process.

Table 2-5 contains the names and sizes of the Honeywell-supplied load
modules.

Selecting File and Buffer Management Techniques

If your online application is programmed in assembly language, application
requirements determine whether the File Manager is required (both FORTRAN and

COBOL programs require the File Manager) for input and output operations.

When your application needs only minimal I/O functions, you can gain a
space advantage by using the device driver alone and save the 3200 words
occupied by the File Manager. However, you then must program whatever I/0 func-
tions your application does need. The advantage of using the File Manager is
that it provides these needed functions, and hence, I/O processing with the

programming simplicity of a higher level language.

The following discussion illustrates the advantage of using the File

Manager over a device driver alone when the I/0O device is a disk.

2-8 AU49

Table 2-5. Names and Sizes of Honeywell-Supplied Load Modules

. Approximate
Load Module Size in Words
Name Description (Decimal)
ZXEX03 Executive . 2600
ZXBMO1 Buffer Manager 100
ZYFMO02 File Manager 3200
ZIDSK Diskette Driver 175
ZICDSK Cartridge Disk Driver 225
ZIKSR Keyboard-Send-Receive Driver 450
ZIASR Automatic-Send-Receive Driver 1200
ZICDR Card Reader Driver 125
ZILPT Printer Driver 125
ZXOVLY Overlay Loader 275
ZDBG Online Debug Program (overlay 1200
version)
ZQEXEC Communications Supervisor 580
ZOMLON MLCP Driver 500
ZQPTTY TTY Line-Type Processor 980
ZQPVIP VIP 7700 Line-Type Processor 1270
ZQPBSC BSC 2780 Line-Type Processor 1200
ZFPSIM Floating-Point Simulator 400
ZFBSIM Scientific Branch Simulator 250
TRPHND Trace Trap Handler 150
NOTE: The names of the object module versions are
listed in Appendix B.

When using a device driver alone to perform input/output operations, the
application program must build its own data structures to interface with the
driver, and initialize those structures with the data that the driver needs in
order to locate the required data on the device. This information consists of
the initial sector to be transferred given by the sector number relative to the

beginning of the volume, and the number of bytes to be transferred.

After the I/0 request is made, the driver will transfer the requested
number of bytes starting at the boundary of the sector specified. The implica-
tion of dealing with sectors it twofold: the application program must know, for
each set of data (logical record) the number of the sector in which the record
resides. Secondly, if there is more than one logical record per sector, the

program must do its own deblocking; i.e., must find the logical record it needs.

By contrast, the File Manager builds the I/0O data structure for the program
and provides the initializing information by which the logical record is
retrieved when provided with a record number relative to the beginning of the
file.

2-9 AU49

On a read operation, the File Manager transfers the requested data record,
not the physical sector, into the program's buffer area, and the program then

does not have to search for and deblock the records itself.

To summarize, the File Manager works at the program's logical level with
files and records; a driver works at the hardware physical level with sectors.
When using nondisk sequential devices, the File Manager provides some measure of

device independence at the application interface.

FILE MANAGER BUFFER HANDLING

The File Manager allows nondisk devices to be buffered. When you configure
your application, you can request the File Manager to reserve internal space for
a data buffer for a particular LFN (see the DEVFILE command in Appendix A). The
purpose of this buffering is to allow application code to execute in parallel
with I/0O transfers.

File Manager achieves parallel processing in two different ways, depending
on whether the LFN is used for obtaining data from a device (reading), or

transferring data to a device (writing).l

Buffered Read Operations

A buffered read results in an anticipatory read in addition to every read
command issued by the application. When the LFN represents a card reader, this
means that a second card will be read immediately after the application reads
(and waits for the data to arrive in its buffer) the first card after the LFN is
opened. The application can now process the data it has while the physical I/0O

transfer for the next card into the File Manager's buffer is in progress.

Nondisk file types recognized by the File Manager may be classified as
interactive or noninteractive. Interactive device names are: KSR, KSI, KSO,
ASR, ASI, ASO, VIP, VIPI, VIPO, TTY, TTYI, TTYO (see DEVFILE command in
Appendix A).

Buffered interactive and noninteractive file types operate exactly the same
after they are opened. A noninteractive file, when opened, does not initiate an
anticipatory read by the File Manager. This means that the application must
wait for the physical I/0 transfer to occur on the first read; thereafter the

parallel operation described above, occurs.

1Bidirectional LFN's cannot be buffered.

2-10 AU49

An OPEN command to an interactive file type does cause an anticipatory read
into the File Manager's buffer to occur. If the application program immediately
followed the OPEN with a READ command, the effect is exactly the same as for a
noninteractive file type; i.e., the application is suspended until the read
operation into the File Manager's buffer completes and data is moved into the
application program's buffer. However, the application program can avoid
suspension on the first or subsequent READ commands by using the Status Read
command, which gives the program immediate information as to whether the File
Manager's buffer now contains the next record. If not, the application program
can continue processing and only perform the read operation when the result of
the Status Read indicates that data is available.

The primary use for buffering an interactive file type is to allow an
application to control input from more than one LFN, each of which represents a
console at which operators enter data. The application program cannot perform a
READ on any particular LFN, and wait until data arrives because the operator at
that terminal may not be present, and the application program is then indefi-
nitely suspended. To avoid this indefinite suspension, the Status Read should
be used, in this way the application program will never perform a READ unless
data is present. (It is because of the indefinite response on an input LFN that
the OPEN command to an interactive file type causes the anticipatory read, thus
the Status Read is meaningful for all read operations, not only for the first

one.)

Buffered Write Operations

A buffered write operation to an LFN works on behalf of the application
program in the same logical manner as the read — the program is permitted to
execute in parallel with the physical I/0 transfer to the device. To achieve
this parallel processing, no special operation occurs on an OPEN command, and no
distinction is made between interactive and noninteractive file types. Each
write command is completed by moving data from the application buffer to the
internal File Manager's buffer, initiating the transfer, and returning control
to the application program. If the program performs a second write operation
while the internal buffer is still in use for a previous transfer, the applica-
tion is suspended until the buffer is available and new data moved into it
again., The application can avoid suspension by using the Status Write command

to see 1f the internal buffer is still in use or not.

Special considerations for buffered write operations arise because, if a
physical I/0 error occurs while data is being transferred from the internal
buffer to the device, the application program is unaware that an error has
occurred unless it checks the file status after each write. Furthermore, if an
error does occur, the application program may need to have saved (or be able to

retrieve) the data record so that it can be repeated.

2-11 AU49

To summarize, a Status Write should be used to test for buffer availability
and no error status before each write operation (not required on the first write

operation) or the close operation of the file.

INTERACTIVE FILE TYPE/LFN COORDINATION

Using the File Manager to provide application programs (including those
written in FORTRAN or COBOL) with read and write capabilities for KSR-like
devices requires two LFN's, used as a pair. Both LFN's represent the same
physical device, one for the keyboard input, and the other for the printer
output. Two LFN's are required because the read LFN must be buffered if more
than one terminal is being controlled, and a bidirectional, buffered file type

is not supported by the File Manager.

Whenever both LFN's are buffered or not depends on the application's needs.
However, when the terminal being controlled is physically attached to a communi-
cations controller (MLCP), great care must be taken to coordinate the closing of
the files involved. If one is closed before the other is finished using the
terminal, the other LFN will be unable to access the device because the close
operation causes the connection to be broken. (A media error is returned to the
application.) For further information, see the discussion of CONNECT (used by
the File Manager OPEN function), and DISCONNECT (used by the File Manager CLOSE

function) in the Executive and Input/Output manual.

PRINTER SPACE CONVENTIONS

In planning an application that uses line printers and terminals {(consoles)
interchangeably, you must consider the differences in format conventions between

these two types of devices.

The line printer driver (and the IORB within the File Manager for the LPT
device-file) assume that a space-before-print convention is appropriate. The

device-specific word and the format control byte allow convenient prespacing.

The teleprinter driver allows prespacing but also supports post-line feed
operations usually associated with console-oriented print-then-space conven-
tions. This convention is designed to allow input to begin on a new line with-

out doing a line feed after a key is struck.

The File Manager's preconfigured IORB associated with any KSR-like device
assumes a post-line feed is desirable.

The application can accommodate either convention, by itself, without
difficulty, but if the devices are interchangeable, care must be taken to avoid
either:

o Double spacing because the format byte specifies prespace one line,
and the teleprinter IORB enforces a post-line feed

2-12 AU49

e Overprinting because the format byte specifies no prespace, and the
line printer does not support post-line feed

The distinction as to device type is made, using the File Manager, by
interrogation of file type status. Physical I/0 can discover the difference by

locating the RCT for the particular LRN and testing the device ID.

DESIGNING PROGRAMS FOR AN ONLINE ENVIRONMENT

As you design your application programs, remember that they will be using
some of the same system resources that are used by the Executive software. For
this reason, your application programs should conform to certain conventions
that make the joint usage of these resources as efficient and error-free as
possible. These conventions concern the use of interrupt priority levels, the
definition of control structures, the use and saving of registers, as well as
the standard ways of defining, identifying, and calling the various Executive

and application modules.

Multitasking

The following paragraphs describe what has to be done to set up your
application for multitasking execution. Appendix C contains a sample program

that illustrates configuration, linking, task control blocks, and tasking.

A task is a sequence of executable code whose execution is initiated and
terminated by calling task management functions described in the Executive
manual. When several tasks can be active simultaneously you have multitasking.
The criterion used by firmware to select a task for execution, from among those
have been initiated and are active, is the task's priority level; the task asso-

ciated with the highest priority level is the one to be scheduled next.

PRIORITY LEVELS

Each task and device (i.e., the device driver task) is associated with a
priority level number, reflecting its relative processing priority in an appli-
cation. In this priority scheme, the lower the level number the higher the
priority. Table 2-6 contains a list of possible relative priorities for tasks.
Level 0 through 4 (the five highest priority levels) and level 63 (the lowest
level) are reserved for system use and do not need to be specified during
configuration. All other levels are available for use by application program
tasks and devices.

Table 2-6 includes all the devices that currently are supported on Level 6
hardware. If fewer devices are used, fewer levels are needed while maintaining

the relative position of the levels. It is suggested that consecutive levels be

used, without skipping a level number, to save data structure space that would

otherwise be reserved for the unused levels.

2-13 AU49

Table 2-6. Relative Priority Level Assignments

Level Use
0 Power failure handler
1 Watchdog timer runout
2 Trap save area overflow
3 Inhibit interrupts
4 System clock

Communications interrupt

Communications Devices (less than or equal to 9600 bps)
Cartridge disks

Communications Devices (less than or equal to 1200 bps)
Diskettes

Printers

Card readers

ASR/KSR

Online Debug Program

Operator Interface Manager interrupt

Input/output - bound application tasks

Central processor - bound application tasks

63 System idle loop (always active)

The table indicates I/0 devices, and not device drivers, to stress that
each (noncommunications) peripheral device must have at least one level assigned
to it; peripherals cannot share a level. If there are two printers, each must
be assigned a unique level. Actually, when a device level is initiated, it is
a reentrant I/0 driver that is initiated of which only one copy need be in

memory.

Communications requires one nonshareable level dedicated to processing com-
munications interrupts, and it must be at a higher level than any communications
devices. Communications devices can share a level. For example, four TTY's and

one VIP can either share one level or be configured to use up to four levels,

The listed priority arrangement is designed to provide maximum throughput
for each device by assigning the high transfer rate devices a higher priority
than the lower transfer rate devices. I/0-bound tasks are run at a higher
priority than central processor-bound tasks since this enables I/0O-bound tasks,
which run in short bursts, to issue I/0 data transfer orders as needed, wait for
1/0 completion, and while in the wait state, relinquish control of the central
processor to the central processor-bound tasks. Otherwise, if the central
processor-bound tasks had a higher priority, the I/0 devices would be idle while
I/0-bound tasks wait to receive central processor time. The criteria used to
specify Table 2-6 might not suit a particular application and the level assign-

ments should be modified to include other priority considerations.

2-14 AU49

LOGICAL RESOURCE NUMBERS

To enable an application program to be independent of level numbers, the
software provides logical resource numbers (LRN's) to associate application

tasks and devices with priority levels.

An LRN (and not level number) is given with each task request to indicate
the level at which the task is to execute. The level at which the task executes
is determined finally by the level that was attached to the LRN at configuration
time. If level changes are to be made, the application only has to be recon-

figured with the new level; the program does not have to be changed.

Although an LRN is attached to a unique level, more than one LRN can be
attached to the same level when LRN's are used synonymously (e.g., two
independently created tasks refer to the same task by different LRN's), or when
tasks or communications devices share the same level.

Figure 2-1 illustrates an association between tasks of an application and
priority levels. The first column describes the task to be initiated. During
task initiation the task is associated with one of the LRN's in the second
column which was attached, at configuration time, to one of the priority levels
listed in the third column. The level assignments follow the priority scheme
listed in Table 2-6.

TASK LRN
ASSOCIATED ATTACHED
INITIATED TASK WITH LRN TO LEVEL
Communications Interrupt 5
Local TTY Driver (Operator's Console) 0
Remote TTY 2 Driver 1 6
VIP 1 Driver 2
Cartridge Disk Driver 3 7

VIP 2 Driver (Input)
VIP 2 Driver (Output)

(S
| W—

Remote TTY 1 Driver 6

Diskette 1 Driver 7 i0

Diskette 2 Driver 8

Line Printer Driver 9 11

Task 1 10 12

Task 2 11]

Task 3 12 : 13

Task 1 13 14
15

Figure 2-1. Sample LRN Priority Level Attachments

2-15 AU49

Starting with the tasks at the top of the figure, the operator's console by
convention uses LRN 0. Following it are two communications device drivers, each
with a separate LRN and sharing one level with LRN 6. VIP 2 has different LRN's
for input and output, but it must have the same level. This allows a different
configuration to use different devices without changing the program. Further
down, two diskettes have unique level assignments, since peripheral devices

cannot share a level, Level 9 is unused. Application tasks can share a level,

and tasks 2 and 3 share level 15. Task 1 can be initiated by using LRN 10 or
LRN 13, both referring to level 14. Although it might appear otherwise, the
order of the task-LRN association is almost arbitrary. Levels 0 through 4 are
dedicated assignments that do not require CLM statements. Level 5 though not
attached to a LRN must be specified using the CLM COMM command.

ATTACHING LRN's TO LEVELS

The CLM ATLRN command is used to attach one LRN to one level. The DEVICE
command does the same for peripheral devices. Each communications device has a
unique command, An example of the commands used to specify the relationship

illustrated in Figure 2-1 is given in Figure 2-2.

OIM 0,13 |

COMM 5 Communication Interrupt Level 5
DEVICE KSR,0,13,X'0500" Operator's Console Level 13

TTY 1,8,X'FD80" Remote TTY Level 8

VIP 2,8,X'FC00" Remote VIP Level 8

DEVICE FCD,3,6,X'1280' Cartridge disk (fixed) Level 6
DEVICE RCD,14,6,X'1280',3 Cartridge disk (removable) Level 6
VIP 4,7,X'FC80' Remote VIP input Level 7

EQLRN 5,7 Remote VIP output Level 7

TTY 6,8,X'FDOO" Remote TTY Level 8

DEVICE DSK,7,10,X'1300" Diskette Level 10

DEVICE DSK,8,11,X'1380' Diskette Level 11

DEVICE LPT,9,12,X'0580" Line printer Level 12

ATLRN 10,14 Task 1 Level 14

ATLRN 11,15 Task 2 Level 15

EQLRN 12,15 Task 3 Level 15

ATLRN 13,14 Task 4 Level 14

Figure 2-2, Sample Statements Attaching LRN's to Levels
The cartridge disk used in the example has a fixed and a removable disk,

and needs two DEVICE commands. The parameter "3" is required to cross reference
the previous disk DEVICE command LRN.

2-16 AU49

The EQLRN command is used when a new LRN has the same level as another LRN.
For example:

ATLRN 11,15
EQLRN 12,15

The ATLRN with an RCT-size parameter enables you to specify another RCT for a
level. This feature could be used to create an RCT for a nonstandard device.
The program would then have to initialize the RCT with data that the CLM normally

enters from the CLM Command parameters; e.g., channel number, modem.

None of the statements in Figure 2-2 will cause execution to start after
loading. To start execution immediately after loading, the TASK command must be
used with the fourth parameter set to YACT. If TESTOl (a task) with LRN 10 were
to be activated after loading, the TASK command would be:

TASK TEST01,10,14,YACT

REQUESTING TASKS

To have task A request task B for initiation, task A calls Task Manage-
ment's "request" routine, and passes it the address of task control block (tcb)
containing task B's start address and LRN. The tcb is built and initialized by
the calling task, task A. If more than one task is to be initiated at the same
priority level, the first task requested is the first one to be executed, with-
out interruption from other tasks at the same level. The LRN used in the call
to the "request" routine can be attached to a level during configuration either
by using the ATLRN or TASK commands. However, if a task is to be executed

immediately after loading, it must be def.1ed in a TASK command.

An alternate means for requesting a task can be used when the task is to
have exclusive use of a level., Instead of obtaining a start address from the
tcb, Task Management uses the B5-register contents of the interrupt save area
(ISA) of the priority level of the requested task. A bit set in the tcb by the
calling task indicates to the Task Manager whether to use a start address in the
tcb or ISA. To initially set the B5-register to a desired task start address,
the TASK command must be used. CLM takes the start address given in the command
and places it in the B5-register of the ISA.

If a task, after it terminates, is to be called again using the address in
the ISA, the terminating task must contain a terminating code sequence that
permits the B5-register in the ISA to be restored to the desired start address.

Such a code sequence of a terminating task is given below.

2-17 AU49

A LDV $R1,=130
A+l LNJ $B5,<ZXTERM
A+2 (first instruction of task being terminated)

The context of the level is saved in the ISA whenever a task terminates at a
level. In the above terminating code sequence, the B5-register contains the

address A+2, which is the desired start address of the task.

Input and Output Drivers

The input/output operations in your application are handled by software
components called drivers (for conventional peripheral devices) or line-type
processors (for communications devices). These components perform the following
general functions:

e Initiate I/O operations on individual devices

e Report errors and status information

e Monitor timing to detect device failure or inactivity

e Perform limited editing of transferred information
See the Executive and Input/Output manual for descriptions of the drivers and

the control structures they use.

Honeywell supplies device drivers in both load and object module form. The
names and sizes of the driver load modules are given in Table 2-4, The procedure
for linking object module device drivers is described in Appendix B of this

manual.

A Honeywell-supplied driver is implicitly loaded when CLM processes a
DEVICE command. The DEVICE command provides the logical resource number and the
priority level for the specified device. Similarly, the line-type processors
are implicitly invoked when the appropriate communications device command (TTY,

VIP, BSC) is processed.

If you write your own device driver, implicit invocation does not occur,
and in order to include the module in CLM's load list, you must include an
explicit ADMOD command in the configuration command file that builds your appli-
cation. Furthermore, if your device driver requires nonstandard commands and
parameters, you must provide the interpretive routines that build the control

structures required by your driver as extensions to the CLM.l

The Honeywell-supplied drivers and line-type processors are reentrant, so

that only one copy of the driver appears in the final configuration.

[

Consult the current Release Bulletin for details about CLM extensions.

2-18 AU49

Memory Usage Considerations

The memory area used by an online application consists of hardware-dedicated
locations, data structure areas, load module residence areas, buffer and loader
areas, and areas occupied by the symbol table and the CIM on a transitional
basis. The total size of these areas determines the memory size requirements of
an application.

NOTE: In the descriptions that follow, all memory locations are
specified in hexadecimal notation, unless otherwise indicated.

HARDWARE DEDICATED LOCATIONS

Low memory, from location 0 through location 00BF, is reserved for BES use.
Among the indicators and pointers stored in this area are the trap save area
pointer (word 0010), clock information (words 0014, 0015, and 0016), the level
activity indicators (words 0020 through 0023), the trap vectors (words 0052
through 007F), and the interrupt vectors (words 0080 through 00BF). A detailed
memory layout and explanation of contents of the hardware-dedicated locations

appears in the Executive and Input/Output manual.

DATA STRUCTURE AREAS

Immediately above the hardware-dedicated locations is the data structure
area. During the configuration process, the CLM builds the data structures
required by the online application in this area of memory. Using the informa-
tion supplied in its commands, the CLM determines the sizes of tables and save
areas, constructs the framework of various tables, and inserts into those tables
the information that is available at the time. The data structure area begins
at location 00CO and extends as far as necessary to accommodate the required

structures.

Figure 2-3 illustrates the layout and contents of memory.

OVERLAY PLANNING

The overlay technique allows you to economize on memory by using a given
portion of it over and over again; it also forces you to think critically about
the nature of the solutions to your application problems, and the order in
which those solutions are achieved.

The Overlay Loader consists of a set of reentrant service routines that
provide the basic capabilities required for loading and starting overlay code.

(See the Executive and Input/Output manual for details.)

The Overlay Loader resides in memory during application execution; it con-
trols overlay processing by using an overlay file and a set of data structures
that were created by CLM as a result of information in the bound unit (root and

overlay segments) produced by the Linker.

2-19 AU49

HIGH MEMORY

~=—- END OF LOADER

HMA LOADER ——— HIGH MEMORY ADDRESS <HMA
HIMEM

LOADER

EXTENSIONS
LOEX START OF LOADER EXTENSIONS
LOCE END OF LAST LOAD MODULE + 1

LOAD
MODULES
AD

LOCS START OF FIRST LOAD MODULE

SYSTEM

DATA

AREA
00C9 ~«——POINTER (RESERVED)
oocs ~«—— HIGH MEMORY ADDRESS (SXHMA) FROM SYS COMMAND
0oc7 ~«——— POINTER TO LAST LOAD MODULE +1
00C6 LOAD —~—— hilrn FROM SYS COMMAND
00C5 | ~omMpLETION | —=——POINTER TO WORD BEFORE CLOCK QUEUES (ZXCMGR)
00C4 | Hata —«——POINTER TO START OF LRT
ooc3 ~=——MA OF LOADER
00C2 ~=——PQOINTER TO START OF QUEUE HEADER
ooc1 ~=——pOINTER TO FIRST LOAD MODULE
0oco

DEDICATED
LOCATION
0000
LOW MEMORY

RESIDUE AREA = HIMEM — LOCE

Figure 2-3. Memory Data Structures

AU49

Establishing Overlay Areas

The items and locations used in the following discussion are shown in

Figure 2-3.

Theoretically, all of memory above the system data area (LOCS) should be
available for use by programs that execute as overlays. There are some limita-

tions, however.

Apart from the fact that the root module of a bound unit must be resident
during execution, thus limiting the actual area that can be used by the overlays,
there is a property of overlay code produced by the higher level language
compilers, and even some types of code written in assembly language that makes
unrestricted use of all available memory impossible. Such code is called

"nonfloatable." (Refer to Program Development Tools manual for details.)

Normally, CLM treats all overlays as if they were nonfloatable; that is, it
loads them into memory in exactly the area from which they will eventually be
executed. The total area required for a set of nonfloatable overlays is the
area required by the largest nonfloatable overlay module. The first example

below shows a bound unit that has two nonfloatable overlays.

If the overlay code is floatable, that is, dynamically relocatable when it
is reloaded for execution, the overlay does not contribute to the overall load
space, and it is possible to use the area above the end of the last load module
(LOCE) in which to position the floatable overlays. This is partiéularly
important when LOCE and LOCX are nearly the same value; then floatable overlays

can be executed in the area reserved by CIM during loading.

Perhaps the simplest way to set aside space for floatable overlays is to
incorporate the Buffer Manager in your configuration and request blocks of

memory equal to the size of overlay code in the BUFSPACE command to CLM.

Alternatively, the CLM residue above LOCE can be used by developing
specific addresses in the root after all loading is complete based on informa-
tion in the CLM-created "Load Completion Data Area" in Figure 2-3. The pointers
to LOCE and the high memory address of the loader are useful for developing load

addresses to position floatable overlays.

Overlay Coding Conventions

The use of overlay processing requires an understanding of the way in which
root and overlay segments are defined for processing by the Linker, and the
relationships between root and overlay segments.

2-21 AU49

Modules to be processed as overlays are identified as such when they are
linked. The following Linker commands identify the root modules and overlays,
and specify the position of overlays in relation to the root module.

NAME - Identifies the root module.

IST - Marks the location of initialization code in the root.

OVLY - Names the overiay module.

BASE - Positions the overlay module.

In response to information placed in the load module by the Linker when it pro-
cesses these commands, the CLM constructs a relative file containing the overlay
modules; the root module remains memory resident. CLM also builds the data
structures that the Overlay Loader uses to manipulate overlays during the execu-
tion of the application. Refer to the Linker portion of the Program Development
Tools manual for details about creation of bound units and symbol definitions.

Example of Nonfloatable Overlays

This example shows a root program, TCTEST, that has some initialization
code labeled ISTTAG, and two overlays: TCTESTOl, and TCTEST02. The diagram
below shows the relationship between the root program and the two overlays; the
letters in the modules indicate symbols that are either defined (D) in a module,
or referred to (R).

When it is loaded, overlay TCTESTO0l is located at ISTTAG; overlay TCTESTO2
is located at ISTTAG+100, as shown below.

XLOC X (R)
XLOC Y (R}
XDEF W (D)

I TRl F
XLOC W (R)
TCTEST TESTO1
TEST02

The Linker commands to create the bound unit are:

NAME TCTEST Name used in the ADMOD command.

LINKN TCTEST Links root.

EDEF W Defines symbol externally referred to from
outside the bound unit (not shown).

IST ISTTAG Defines initialization code and overlay
position.

OVLY TCTESTOL Names first overlay; Linker writes root to
disk.

BASE ISTTAG Indicates position of first overlay.

LINKN TESTOl Links first overlay.

2-22 AU49

EDEF X Defines externally referenced symbol.

OVLY TCTESTO02 Names second overlay; Linker writes first
overlay to disk.

BASE ISTTAG+100 Indicates position of second overlay.

LINKN TESTO02 Links second overlay.
EDEF Y Defines externally referenced symbol.
END Completes definition of bound unit; Linker

writes second overlay to disk.

Notice that only one IST command is used — only root segments may use
initialization code. The Linker can satisfy the reference from the first over-
lay to W in the root because the root is linked first. However, a reference to
Y from TCTESTO01l would cause a CLM error halt — the Linker writes TCTESTO1 to
disk with Y as an unresolved symbol, and CLM will not write an overlay to its

file if it contains an undefined symbol.

A reference from an overlay to W in the root is legitimate because the
Linker retains all symbol definitions not purged by subsequent BASE commands
affecting the same area. References from the root to X and Y defined in the
overlays require EDEF statements in the overlay command group because the CLM
must resolve the references when these modules are loaded. (The Linker was
unable to resolve the references before the root load module was written to
disk.)

The EDEF definition for W in the root module is superfluous for this
example, but illustrates another requirement for symbol definition, namely that
an EDEF statement is needed when a symbol is referred to from outside its own

bound unit.

When the application using the bound unit shown in the example above is
configured, the CLM receives this ADMOD command:

ADMOD filename:TCTEST ...

As a result, the CLM will load the root segment and its initialization code into
memory following any code loaded as a result of previous ADMOD statements. The
initialization code beginning at ISTTAG is executed before loading the first
overlay. Then, using the information specified in the BASE command for the
first overlay, that segment is loaded. If the overlay has no undefined symbols,
it will be written out to a temporary file.

Finally, the second overlay is loaded starting at ISTTAG+100, and written
out to the temporary file. The CLM continues to process command statements.

2-23 AU49

Example of Floatable Overlays

This example illustrates a bound unit whose root has dedicated areas within

it, and whose overlay segments are all floatable (dynamically relocatable).

Al
A2

A3

~
LY

01 02 nn

e = - e e - ——

&
n

The Linker commands to create this bound unit are:

NAME ABC
LINKN A
OVLY ABCOl1
BASE Al
LINKN ABCOl
OVLY ABCO02
BASE Al

LINKN ABCO2

OVLY
BASE

ABCnn
Al

LINKN ABCnn

END

The overlays in this example are all floatable,

Provides name to be used in the ADMOD
command.

Links root segment.

Names the first overlay; Linker writes
root to disk.

Locates overlay.
Links first overlay.

Names second overlay; Linker writes first

overlay to disk.
Locates overlay.

Links second overlay.

so that the code

in the

root and the overlays could include load addresses developed from the CLM-

supplied pointers in low memory as described earlier.

Note that the ADMOD command for ABC must be positioned in the CLM command

sequence in such a way that the largest floatable overlay to be written out by

CILM may be loaded into memory below location LOCX (Figure 2-3).

This

can be

accomplished by having other ADMOD commands, whose modules occupy at least as
much space as the largest ABC overlay, follow the ADMOD for ABC.

After loading is completed, the overlays are brought into memory areas pre-

viously occupied by CLM by calling the Overlay Loader.

AU49

The CLM determines the final size of a bound unit (and thereby the location
where the next load module begins) based on the highest address occupied by
either the root or one of its nonfloatable overlays. This means that the root
alone in the floatable overlay example determines the bound unit size. If the
root does not include overlay areas within it (e.g., by using a RESV assembly

statement), those areas must be obtained in alternate ways.

Care must be taken in source code to produce a floatable overlay. However,
an overlay may inadvertently be coded (or later modified) so that it matches the
definition of a floatable overlay. To prevent a change in CLM operation
resulting from a nonfloatable overlay becoming floatable, the source code of the
nonfloatable overlay could include a global reference to an address tag within
that same source.

How to Estimate Overlay File Size

The CLM assumes that there is enough physically contiguous space in the
relative file it uses for the application overlays. If this is not true, por-
tions of the disk beyond the allocated file space will be destroyed. The CLM
also assumes that the name of the relative file it will use to contain the over-
lays is either OVERLAY, or the filename used in the AT03 command to the Command

Processor.

To estimate how many sectors should be allocated when using the utility
initialize function, take these steps:

1. Produce link maps for all overlay load members.

2. Determine the number of words in the image text of each one.

3. Divide the image text word total by the number of words per
sector (64 for diskette; 128 for cartridge disk) to obtain the
number of sectors for each overlcy.

4. -Add the individual sector requirements together to get the total.

5. Add in the Online Debug Program sector requirement (22 for disk-
ette; 22 for cartridge disk), if needed. (This is always a good
idea, because you may need the ODP later.)

It is important to note that each overlay begins on a sector boundary so
that it may be read into memory (and written out by the CLM) as a single I/O

transfer. This design minimizes overlay load time during execution.

INITIALIZATION SUBROUTINES

Initialization subroutines may or may not be required by every module. As
you write the initialization code for your modules, you may want to use one or
more of the system-provided subroutines summarized in Table 2-~7. These subrou-
tines use the standard register conventions that you will also use when you
write your subroutines.

2-25 AU49

Table 2-7.

Register Use by

System Initialization Subroutines

Register Contents

Module | Function
Name Code Function For Function Call After Function End
ZGFINU 0 Find a symbol in B4 - Pointer to Rl - 0 = Symbol found
symbol list start of symbol nonzero = Not
name
found
ZGDEFU 1 Define a symbol R1 - 0 = Address R1 0 = No error
definition 1F = Symbol
Value = Value already defined
definition 21 = Work area
R2 - Definition overlap
value
B3 - Definition
address
ZGREFU 2 Refer to a symbol| RL - 0 = Address Rl 0 = No error
reference 21 = Work area
Value = Value overlap
reference
Bl - Pointer to
location refer-
red to
NOTES: 1. These registers have the same values for all functions:

R3 - function code; B4 - pointer to the start of the symbol
B5 - return address.

name;

2. Other registers used by these subroutines:

R4, R7, B2, B7,

R6.

Initialization is performed immediately after the loading of a module is

completed.

using register B5 for the return address.

Each initialization subroutine is entered via the LNJ instruction

The address of the parameter list is

loaded into register B4, the parameter list itself is defined in the initializa-

tion subroutine table described below.

Errors
continued.
of Rl to R2

Rl is zero,

occurring during initialization are fatal errors; loading cannot be
Error information is returned in register Rl; CLM moves the contents
and places the 1304 halt code into Rl.

the operation was successful.

If the content of register

The initialization subroutine table identifies the subroutines that are to

be executed when the module has been loaded.

It has the following format:

AU49

label DC 0 next load displacement

RESV $AF,0 RFU

DC <{name first initialization subroutine

be value parameter l} for first subroutine
DC value parameter 2

DC <{name second initialization subroutine
bc value parameter l} for second subroutine
DC value parameter 2

RESV SAF,0 sentinel, end of IST

Entries must be included in the initialization subroutine table for each
subroutine required for a load module. The "label" in the first statement of
the format example must be defined in an IST command to the Linker. The location
at "label" is the point at which the next module will be loaded when the initial-

ization is completed. Norxmally, the value declared at "label" is zero.

During the CIM loading phase, the base address for loading the next load
module is formed by using the address of the first word of the current load
module's initialization subroutine table (IST in the example) plus the displace-
ment value contained in that word. When the displacement is nonzero, the next
module loads below (for a negative displacement) or above (for a positive
displacement) the IST start address.

Communications Planning

The Communications functions of BES software have been designed in such a
way as to make them as easy to use as any other peripheral device. Your inter-
action with the Communications software occurs through the physical I/0 inter-
face. Using the Configuration Load Manager, you assign a logical resource
number to the various Communications devices. Then, in your application program,
using a standard call to the Executive, and providing a standard control struc-
ture (an IORB) in which to pass parameters, you request a transaction with a
particular communications resource. Your request is then handled by the
Communications software, and you need not be concerned with the details of
Communications procedure. See the IORB information in the Executive and Input/
Output manual for details about the standard control structures and function

codes for Communications devices.

PRIORITY LEVEL REQUIREMENTS FOR COMMUNICATIONS

Although both peripheral and Communications devices share a common inter-—
face, they have different priority level regquirements. Peripheral devices such
as card readers, disks, and printers are assigned one device to a level. Com-
munications devices, however, require one dedicated level (specified in the COMM

command) that is reserved for the processing of Communications interrupts, and

2=-27 AU49

must be the highest priority level assigned to a Communications function.
Additionally, any number of priority levels may be shared among Communications
devices (not with any other device types); these priority levels must be lower

(higher level numbers) than the level specified in the COMM command.

REQUESTING COMMUNICATIONS FUNCTIONS

When you request a transaction with a communications resource, you must
specify the logical function in the request block that you provide with each

request.

There are five logical functions: connect, read, write, wait-on-line, and
disconnect. The connect must precede other requests, because Communications
resources are configured in a disconnected state. The sequence that would occur
is as follows:

l. Set up an IORB with the function code for a connect request, and
call the physical I/O interface.

2, Once the connection is made, you supply the appropriate request
blocks for the functions that your application will perform, and
do the reads, writes, and/or wait-on-line operations required by
the program's logic.

3. When the program finishes processing, you supply a request block
with the disconnect function code, and call the physical I/0
interface to perform the function.

The values that you provide for the various function codes are coded in the
last four bits of word three (ZIRCT2) of the IORB that you supply in your

application program.

If your application is such that the program must:

e Temporarily suppress the previously queued data request to or from
a VIP or TTY, or

e Signal a traffic direction change for a device (BSC)
there is a means of disconnecting the resource logically while maintaining the
physical line connection. This logical disconnection is accomplished when bit
15 of the device-specific word of the IORB is set on; when this bit is zero, the

physical line connection is discontinued.

The Communications function codes (CONNECT and DISCONNECT) may be used with
no effect if a program whose IORB's contain such codes were to be executed using
noncommunications peripheral devices, thus the program is independent of the

device types that may be in use.
COBOL application programs can use the Communications facilities of BES

software by the standard input/output verbs OPEN and CLOSE; these verbs evoke
the Communications connect and disconnect functions, respectively.

2-28 AU49

BINARY SYNCHRONOUS COMMUNICATIONS (BSC 2780)

This Communications protocol may be used in conjunction with an appropriate
application program in the following ways:
e IBM 2780 remote terminal emulator

e File transmission for Level 6-to-Level 6 computers

IBM 2780 Remote Terminal Emulation

In this environment an application program would be structured to emulate
the functions of the IBM 2780 remote terminal in a manner which is consistent
with the features available on the host computer responsible for processing the
submitted data.

The features of BES2 BSC 2780 line protocol are described below.

Level 6-to~Level 6 File Transmission

In this environment an application program could be developed to transmit
both binary and ASCII data, in records of any size, between two Level 6

computers.

The support of the character sets (whether ASCII or EBCDIC) is restricted
to the line protocol handler providing the control characters in the appropriate

character set.

The character set of the text portion of the data is totally the responsi-

bility of the application program.

In transparent EBCDIC, the line protocol handler will assume total responsi-
bility for inserting and removing the line protocol escape character (DLE) both

in the header and in the text.

Whether a transmission unit from Level 6 will contain a single record or
two records may be managed by the application program in the following way:

e Creation of single record transmission units requires that each
write order be issued with the wait status specified in the IORB.

e Creation of two-record transmission units requires that each write
order be issued with the do-not-wait status specified in the IORB.

In this situation, the application would do the necessary processing
and issue another write order with the do-not-wait status specified
in the IORB. The process continues, the application program pro-
cesses in a totally independent manner, without regard for the
activity on the Communications line until the application program's
write buffers are filled. At this point, a wait on the first IORB
is issued. When the application program resumes, it again does its
processing, and issues another write order (do-not-wait). Then a
wait on the second IORB is issued, and so on.

2-29 AU49

The packaging of the write requests into a transmission unit is done
independently by the line protocol handler. A second record will be embedded in
the transmission unit as long as the write request is issued before the last
character of the previous write request has been transmitted over the Communica-
tions line. As a practical matter, considering the comparative slowness of the
communications line (maximum 1200 characters/second) with other resources
(computer, peripherals, etc.), there is sufficient time to allow this free-
wheeling process to work.

If an application program is by convention to be prepared to handle the
receipt of data from an application that transmits two records in a single
transmission unit, then it is required that two read requests always be present

at any time during which a transmission unit may be received.

A basic characteristic of the BSC 2780 communications protocol is that it
is nonconversational. That is, once the movement of data has been established
between computers (i.e., from A to B), it is not possible to transmit from B to
A until the entire quantity of data has been transmitted from A to B. Occa-
sionally, there may be a need to send an urgent preemptive message in the direc-
tion contrary to the flow of information. This need is resolved by computer B
issuing a disconnect request with the indicator set to abort all IORB's in the
queue. Upon notification of this action being complete, it is now possible for
the application program in computer B to issue a connect request followed by
the write order for the urgent message.

When computer A received the notification from computer B of the urgent
preemptive need to send a message (signaled in BSC 2780 by the receipt of a
reverse interrupt, RVI) it would so notify the application program via the
attention interface, after dequeuing and posting all currently queued IORB's.
The application program would then issue a receive order for the acceptance of

the preemptive message.

2-30 AU4S

SECTION 3
BUILDING

The Configuration Load Manager (CLM) defines the application variables,
sets up the required internal control structures, prepares a load list of the
specified modules, and initiates the execution of the application, all in one

continuous operation.,

Before executing the CLM, you must have already prepared the programs and
files to be used in the application. This preparation includes compiling (or
assembling) the programs, linking them into one or more load modules, and pre-

allocating space for all output files to be used.

During the configuration phase, CLM accepts the commands that direct its
operation, In addition to specifying system characteristics such as memory size
and processor type, the commands processed by CLM also set priority levels for
tasks, assign logical resource numbers, and direct the construction of a load

module list containing the names of all the modules to be loaded for execution.

Once the configuration phase is completed, the modules named in the load
module list are loaded by the particular loader then in use. Any unresolved
references among the modules are resolved at this time. As each module is

loaded, it is initialized before the next module is loaded.

After the last module is loaded and initialized, control is transferred to

the active task having the highest priority. Execution then begins.

PREPARING TO USE CLM

Since CILM allows an application to be run as a single load-and-go operation,
all files to be used for output by the application should be preallocated, and
all modules, both Executive as well as user~written modules, should be linked
before the CLM is loaded into memory. These preliminary processes are described
in the appropriate manuals, and illustrated in Figure 3-1. The process of
building an online application falls naturally into discrete steps. The fol-
lowing pages describe the process and refer you to the pertinent manuals for
complete details.

3-1 AU49

STAGE 1

STAGE 2

STAGE 3

STAGE 4

STAGE 5

STAGE 6

ALLOCATE FILES
FOR SYSTEM

AND APPLICATION
PROGRAM QUTPUT

o

-3
)

§1o

|
i) |

..~/

CREATE SOURCE

SOURCE
FILES ON MODULE(S)
DISKETTE
B EDIT SOURCE
r | FILES AND SOURCE
I REWRITE ON MODULE(S)
| - DISKETTE
e e e e o e
ASSEMBLE OR ASSEMBLY OR
COMPILE COMPILATION
SOURCE LISTING
PROGRAMS \\\\\~.___,—f”""‘
OBJECT
CORRECT NO MODULE(S)
SOURCE
PROGRAM
YES
ADDITIONAL LINK
LOAD
OBJECT L —] OBJECT MODULE(S)
MODULES MODULES
s/
/
/
ADDITIONAL < p CONFIGURE, g O
USER-WRITTEN | LoADaND] APPLICATION
AND GCOS/BES ZLATJE OouTPUT
LOAD MODULES L
) APPLICATION | —
N
\
GLM COMMANDS APPLICATION
OUTPUT
—— -y \-/—'
(]
1 ; T
] |
[A —— |

Figure 3-1.

3-2

Building an Online Application -~ Process Diagram

AU49

Output File Preallocation (Stage 1)

Figure 3-1 summarizes the file requirements for all the foliowing stages in
the application development process. File space is allocated by Utility Set 1.
(See the Utility Programs manual.) Some of the files your application uses must
be relative files to receive either the output data from the application, or, if

you are using overlays, the overlay file written by CLM.

The file to accommodate any overlays that CLM writes out in the process of
application configuration must be a single extent, relative file large enough to
hold all the application's overlays. If the overlay version of the Online Debug
Program is being used, the overlay file must provide 50 diskette sectors, or 25

digk sectors in addition to the space required for other overlays.,

Files that are intended to receive source, object, or load modules must be
initialized after space is allocated, to organize those files as partitioned

files capable of accommodating individually accessible members.

If you plan to use the Online Debug Program with predefined command lines
stored on disk, you must preallocate a relative file named DEBUG.WORK containing

22 diskette sectors, or cartridge disk sectors for use by this program.
If your application program produces an output file that is intended for
printing by a print utility, either immediately, or at a later time, the first

byte of each record to be printed must contain printer control informatiomn.

Source Module Creation and Editing (Stages 2 and 3)

Partitioned files containing source text members are created on disk from
punched card files using Utility Set 2. «(nce created, these source files are
then usable by the Editor, for correction or addition of text, or they may serve
as input to the Assembler or to the FORTRAN or COBOL Compiler. (See Program

Development Tools manual.)
Stage 2 is mandatory if source programs are punched on cards; it may be
omitted entirely if the source programs are short enough to be entered through

the keyboard as input to the Editor.

Stage 3 is optional. It is possible to go directly from creating a source

file on disk to the Assembler/Compiler phase.

3-3 AU49

Object Module Creation (Stage 4)

The creation of object modules is the function of three system programs:
the Assembler for programs written in assembly language; the FORTRAN Compiler,
and the COBOL Compiler, for programs written in FORTRAN or COBOL source language.
In addition to object modules produced on disk, the Assembler and both compilers
produce source listings with diagnostic messages that refer to the various
syntactical errors encountered in the processing of the source language state-

ments.

Once the source code is free of syntax errors, and has been reassembled or

recompiled, the program is ready to be processed by the Linker in the next phase.

Ioad Module Creation (Stage 5)

The preparation of load modules for use in online applications requires
special attention to the ordering of permanent code and the initialization code

for particular load modules, and to the handling of externally defined symbols.

LINKING ORDER FOR CODE TEXT

One or more object modules may be linked to form a load module. The order
in which modules are linked is significant in the following situations:

e Modules being linked require initialization code.

® Modules being linked will be executed as overlays.
Load modules that require initialization code must have all permanent code
linked before the initialization code for the load module. This is because,
during the loading phase in the operation of CLM, successive modules are loaded
in such a way that once the initialization code for a module is executed, it is
replaced by the permanent code of the next module. Figure 3-2 shows the memory
layout of a module and its initialization routines, and indicates the starting

location for loading the next module once the initialization has been performed.

EXTERNALLY DEFINED SYMBOLS

An application load module may have valid undefined symbols at the time it
is linked, such as a call to an Executive subroutine. The CLM resolves these
references as it loads the Executive Modules specified in the ADMOD, DEVICE, and
Communications line type processor commands, and analyzes the ELOC, EVAL, TRAP
and DEVICE commands.

Any symbol that may be referred to by other load modules or by the CLM, and
not defined by CIM itself, must be identified in an EDEF statement at the time
the module is linked. (See the Program Development Tools manual for Linker

information,)

3-4 AU49

HIGH MEMORY

USER-WRITTEN
INITIALIZATION
SUBROUTINES

SYSTEM
INITIALIZATION
SUBROUTINES

INITIALIZATION

SUBROUTINE

TABLE (IST)
NORMALLY
LOADING OF NEXT
LOAD MODULE
BEGINS HERE

PERMANENT

CODE

TEXT

LOW MEMORY

Figure 3-2. Current Load Module Memory Layout

In assembly language, locations or values that are referred to by modules
other than the one in which they are defined, are identified in an XDEF state-
ment; when the defining module is linked, the label (s) made available for
external reference by these XDEF statements are declared in a Linker EDEF state-

ment if CLM must resolve references to these labels in other modules.

During configuration, the CLM must be able to resolve all references either
from information provided to it in a symbol table from the Linker, or from the
symbol table CLM itself constructs from the command information submitted to it.
The unresolved symbols encountered by CLM during execution cause a load error
(1341 — see the Operator's Guide) followed by a halt; at your discretion, you
can ignore these errors and continue processing. However, there are load errors
that prevent continued execution of CLM: the occurrence of an undefined symbol

in an overlay module (135B — see the Operator's Guide).

There are several CLM command parameters that require Linker EDEF state-
ments: the start address in a TASK command; the ppt-label and space-name in the
BUFSPACE command; the handler-name in a TRAP command; the label parameter of a
DEVICE, TTY, VIP, or BSC command if the label specifies a user-defined routine
and is not the default label, ZIATTN for LRN 0.

3-5 AU49

Summary of Load Module Preparation

These are the steps involved in the preparation of load modules prior to
configuring an online application:

e Collect the object modules that make up the permanent code.

e Collect the system initialization modules to be used.

e Write and assemble the user-written initialization code and the
initialization subroutine table.

e Run the Linker to produce a load module in the format described in
Figure 3-2, Note that the initialization subroutine table is always
linked immediately following the permanent code text. It is at this
point in the process that the Linker EDEF command is used to specify
all externally-referenced symbols.

USING THE CONFIGURATION LOAD MANAGER (STAGE 6)

The CLM and its extensions are the BES software components you use to

configure an online application,

CLM consists of four functional groups of modules that interpret the com-
mands in which you have specified the system variables, devices, and load modules
that constitute the configured application. Of these functional groups, one,
the CLM nucleus is required for configuring all applications; the other three

are optional extensions that interpret particular configuration commands.

Depending on the memory size of your system, the optional modules may be
resident throughout the operation of CLM, or, as with an 8K system, the CLM
extensions must be executed as overlays. Table 3-1 summarizes the functional

groups and indicates the commands that are interpreted by each.

How to Include Optional CLM Extensions

The CLM extensions that interpret the File and Buffer Management, and
Communications commands are included by specifying the appropriate information
in a LACT command for each extension. The LACT command contains a parameter to

indicate that an extension is to be executed as an overlay. (See Appendix A.)

The following example shows the LACT commands for a communications applica-
tion whose devices are accessed through the File Manager, and that will require

device definitions that include the File Manager DEVFILE command.

LACT CLMCOMM:COMM
LACT PROGFILE:CLMFIL

The channel number is the same as that from which CLM was loaded, the work areas

for both sets of modules will not be shared, and both sets of interpretive
modules will be resident rather than overlays.

3-6 AU49

Table 3-~1. CLM Functional Groups, Component Modules and Related Commands

Functional Group .
(filename :membername) Component Modules Commands Processed
PROGFILE:CLM CLM Nucleus
(required) CLM SYs ADMOD TRAP
CLM2 OIM PRMOD LACT
CLMST1 TSA ELOC ELACT
D$SCILMST1 CLOCK EVAL QUIT
CSCLMST1 DATE I0S *
CLMST2 TASK EQLRN
D$SCLMST2 DEVICE ATLRN
PROGFILE:CLMFIL File Manager Extensions
(opticnal) CLMFIL FILMGR DEVFILE
DSCLMFIL ATFILE FMDISK
CSCLMFIL
PROGFILE:CLMBUF Buffer Manager Extensions
(optional) CLMBUF BUFSPACE
DSCLMBUF
CSCLMBUF
CLMCOMM : COMM Communications Extensions
(optional) CoMM COMM BSC
DSCOMM TTY MODEM
CSCOMM VIP LTPDEF
LTPn STATION
qas specified in the LACT command

If the extensions are executed as overlays, it is not necessary, but more
efficient to group the configuration commands in the same order as the exten-
sions were specified. The grouping of commands becomes particularly important
if your application is configured from a serial device. (See "Loading From

Paper Tape," discussed later in this section.)

After the CLM nucleus has been loaded, the only commands that it will pro-
cess are the LACT and I0S commands, until an ELACT command is read. 1In fact,
even if you do not add any of the CLM extensions, an ELACT command must be
issued so that CIM may begin processing the other application configuration
commands.

To summarize; the optional CLM extensions may be executed as resident
modules, or they may be executed as overlays; in an 8K environment the exten-

sions must be executed as overlays; unlike the execution of application program

overlays that require the availability of a disk, CLM extension overlays have no
such requirement, '

3~7 AU49

Application Configuration and Loading

You can load CLM and configure your application from disk or paper tape,
either as a nonstop procedure (disk only), or a load-and-halt operation; you
can use, but do not need, an operator's console. Specific operating procedures
for all methods are described in the Operator's Guide, and discussed briefly in
the following pages.

NONSTOP APPLICATION LOADING

The nonstop loading procedure is based on a preset bootstrap record created
by the Bootstrap Generator utility program. The elements of this record are

described in Table 3-2, (For details, see the Utility Programs manual.)

Table 3-2. Bootstrap Record for Nonstop CLM Loading

Parameter Values Default Values
DFT N None
BTHLT N N
HMA (high memory address) | 1FFF (8K)
3FFF (16K)
7FFF (32K) LFFF
FFFF (64K)
KSR 0 0500
LDCHN (load channel) 0400 (disk) 0
’ (paper tape)
FILE PROGFILE PROGFILE
MEMBER CLM CMDPRC
REL (relocation factor) XXX (8K) l
XXXX (16K) 0
XXXX (32K) |
XXXX (64K)
LDHLT N N
aSee Release Bulletin for exact values

The nonstop loading procedure is usable only when your load modules are on
disk; no operator's console is needed.

The file requirements for nonstop loading from disk are these: the CLM
command input file (CLMCI) must be on disk. If you are running your application
program as overlays, you must preallocate a relative file for CLM to use when it

writes out the overlays.

If you are configuring a communications application, then in addition to
PROGFILE, your disk should contain CLMCOMM,

3-8 AU49

The Bootstrap Generator Utility program is executed to place the preset
bootstrap record on the disk. The parameters for the utility, assuming a 16K

system, are:
N, ,3FFF,0,0400,,CLM, 3480

When this record is on the disk, and all the load modules needed by the
application are available, you are ready to carry out the loading procedure.
You press: Stop, Clear, Load, and Execute; there will be a pause while the QLT
(Quality Logic Test) is performed, then press Execute again, and application

configuration is underway and needs no further intervention.

LOADING FROM DISK USING THE COMMAND PROCESSOR

This method involves minimal operator intervention, but allows the command
input file to the CLM to be reassigned from the KSR to either a disk on a dif-
ferent channel, or with a nondefault member name, or card file. The method also
requires a preset bootstrap record, but this time the default values for the
file and member entries in Table 3-2 can be taken; those entries are PROGFILE

and CMDPRC, respectively.

The parameters for the Bootstrap Generator utility program, again assuming
a 16K system are:

N, ,3FFF,,,,,3480

When you are ready to carry out the loading procedure, press: §top, Clear,
Load, and Execute; after the QLT has executed, again press Execute. The Command
Processor indicates its availability by printing a C? on the console; at this
point you can use the EX command to assign a command input file that loads CLM
with appropriate attachments for configuring your application. No further

operator intervention is needed.

LOAD AND HALT PROCEDURES FOR DISK

These procedures can be carried out using either an operator's console or

the control panel if no console is available, Both methods are described below.

Loading From Disk With an Operator's Console

When the load device is a disk and an operator's console is available, CLM
is loaded using the Command Processor in conjunction with the Disk Loader. The
Command Processor accepts control information through the console to establish
the environment for the execution of the CLM. (See the Program Development

Tools manual for a description of the Command Processor.)

3-9 AU49

The commands entered through the console specify a relocation factor, and
whether a halt should occur after CLM is loaded (e.g., to allow the mounting of
a new disk). In addition, the commands specify the command input file name; the
overlay file name, if necessary; and the device and channel number from which
the CLM commands will be entered.

The last Command Processor command causes the CLM to be loaded. If no halt
was specified, the CLM starts executing as soon as it is loaded. Otherwise, the

system halts, allowing you to perform any necessary actions before continuing.

Loading From Disk Without an Operator's Console

In this method, no Command Processor is usable. If the load parameters
vary from load to load, they can be entered through the control panel, with a
bootstrap record on disk set up to halt as described below.

The bootstrap record parameters BTHLT and LDHLT are, in this case, set to

When the bootstrap record has been written on the disk, you can begin the
loading procedure. Make sure that your disk is on the device that is connected
to the default bootstrap channel (040016)' Press: Stop, Clear, Load, Execute

(QLT pause), Execute,

When the 1601 halt occurs, press Stop, and then you can enter the reloca-
tion factor into register B2, the HMA into B3, and the loading channel number
into R2. Then press Ready and Execute.

When the 1603 halt occurs, you can choose the CLM command input device and
channel number by: pressing Stop, entering the channel number of the command
input device into R6, and the device type into R7. The device types are: 0040
for a card reader, 0080 for a disk. Press Ready and Execute. Control is now

turned over to CLM and configuration of the application proceeds.

LOADING FROM PAPER TAPE

The only procedure available for this medium is a load and halt procedure
because the command file for CLM cannot be entered from paper tape. You can
minimize halting by setting most values in the bootstrap record, but the LDHLT
parameter should be given a value of Y so that you can assign the command file

to the appropriate device.

Since paper tape is a serial medium, all elements must appear in the order
in which they are to be used., The first element on the tape must be the boot-
strap record; when the Bootstrap Generator program is executed to create the

bootstrap record, the utility also places the next required module on the tape,

3-10 AU49

namely, the Paper Tape Loader. Table 3-3 shows the order of CIM modules
required for paper tape loading. See the Operator's Guide for complete details

about all loading procedures.,

Table 3-3., CLM Load Module Order for Paper Tape

Memory Size

HMA=1FFF (8K) HMA>1FFF (8K)
ciM CcLM
CLM2 CLM2
D$CLMST1 D$CLMST1
D$CLMST2 D$CIMST2
pscomm® D$COMM™
DSCLMFTL? psCIMFIL?
D$CLMBUF™ DSCLMBUFZ
cmst1P CLMSTL
CLMST2 C$CLMST1
comm® CLMST2
CIMFIL? comm®
CLMBUF? cLMFIL?
C$CLMST1 cscomm®
cscomm® cscLMFIL?
csciMrIn? CLMBUF?
C$CLMBUF® C$CLMBUF"

% rhese modules are included
only if the appropriate LACT
commands are issued.

Pyodules beginring with this
one are loaded as needed, and
in order of LACT command
submission when memory size
is 8K. The above list
assumes that the LACT com-
mands were issued for COMM,
CLMFIL, and CLMBUF in that
order; consequently, con-
figuration commands should be
issued in the same order.
Also, for 8K systems, the C$
modules will be loaded after
the QUIT command is pro-
cessed.

If HMA is greater than 8K,
all CLM modules will be
loaded before any system con-
figuration commands are
requested, so there is no
necessity to group these com-
mands in this case.

3-11 AUA49

Building a CLM Command File

The order of command submission to the CLM depends on the type of applica-
tion being configured. If, for example, you are including one or more of the
CLM extensions, then the LACT commands are presented first, followed by an ELACT
command. If no extensions are included, the ELACT command must be issued so that

the CIM can begin to accept system configuration commands.

As to the submission order of the system configuration commands themselves,
several factors have an effect upon what the final order should be: memory size
in combination with disk availability, the nature of the loading medium, and the

characteristics of the modules that make up the application.

As mentioned earlier under "How to Include Optional CLM Extensions," running
CLM extensions as overlays is mandatory for 8K systems. Similarly, if memory
size is limited, and you are running your own programs as overlays, then the
order in which the ADMOD commands are submitted could be important if references

are made from one bound unit to another.

The nature of the loading medium can affect the grouping of commands as

described previously, under "Loading From Paper Tape."

Finally, the characteristics of the application modules themselves must be
considered when you are designing your command file. For example, if you are
configuring an application that contains communications software, it is advisable
to issue the Communications commands to the CLM early in the process. The reason
for this is that the line-type processor modules have extensive initialization
code which loads the RAM portion of the MLCP, so that starting the configuration
procedure with the Communications commands allows you to use the area occupied
by this initialization code for permanent modules loaded later in the process.
Whereas, if you wait to bring in the Communications modules until later in the
process, you may either waste space, or worse still, you may have to begin the
configuration process over again because there was not enough space left for the

initialization code to execute.

Similarly, CLM requires space for loading and writing floatable overlays to
disk that is usable by permanent code that is subsequently loaded. You should
consider loading programs that have floatable overlays early in the configura-

tion process.

Apart from the actual order of the commands in the command file, the fol-
lowing facts should be noted.

Any device that will be accessed through the File Manager requires a

DEVFILE command; the DEVFILE command must be issued after the corresponding
DEVICE, TTY, BSC, or VIP command.

3-12 AU49

An error results if the OIM command is omitted from the CLM command file
because some system services may use the TYPR facility even if user programs do
not.

The CLM command file should begin with a SYS command unless all the default

values are taken, and it must end with a QUIT command.

The command set for CLM is described in Table A-1l; the definitions for all

commands and their parameters are also found in Appendix A.

CIM Action During Loading

When the QUIT command is processed, the data structures are created in a
nondedicated area of memory. Figure 3-3 shows how memory looks before the

loading phase begins.

When the loader is given control, it obtains the name of the first load
module to be loaded from the load module list constructed by CLM. The first
module is loaded beginning at a location just above that occupied by the system
data structures. After the loading of each module is complete, control is given

to the initialization subroutines of the module.

At this point, if the module is a root module with overlays, the overlays
are loaded, and written out to the overlay file. Figure 3-4 shows a memory

layout after the loading process is completed.

If the space name parameter of the BUFSPACE command is not given a value,
the buffer area is obtained from the load residue space, which includes the area
from the end of the last lcad module, through the value of the himem parameter
in the SYS command. If the default value of himem is taken, the loader is
included in the load residue area and could be overwritten by information put
into buffers. Figure 3-5 shows how memory looks during application execution

when the value of himem was not changed to protect the loader.

3-13 AU49

HIGH MEMORY

LOADER

LOADER EXTENSIONS

CLM

SYMBOL. LIST
AND LOAD
MODULE LIST

!

SYSTEM
DATA
STRUCTURES

HARDWARE
DEDICATED
LOCATIONS

LOW MEMORY

Figure 3-3. Memory Layout During Configuration

AU49

SIZE DEPENDS ON
TYPE OF LOADER

BUILDS DOWN INTO
RESIDUE AREA

CAN BE USED FOR
BUFFERS

BUILDS UP INTO
RESIDUE AREA

SIZE IS TOTAL OF
TABLE AREAS, SAVE
AREAS

HiGH MEMORY

LOADER

LOADER EXTENSIONS

l

SYMBOL TABLE

LOAD MODULE
AREA

SYSTEM
DATA
STRUCTURES

HARDWARE
DEDICATED
LOCATIONS

LOW MEMORY

FIRST MODULE
TARTS HERE

Figure 3-4.

Memory Layout After Loading

AU49

HIGH MEMORY

BUFFER AREA

LOAD
MODULE
AREA

SYSTEM
DATA
STRUCTURES

HARDWARE
DEDICATED
LOCATIONS

LOW MEMORY

Figure 3-5.

Memory Layout During Application Execution

AU49

STARTING AN ONLINE APPLICATION

It is important to understand how the starting point of an application is
conveyed to the CLM, because you must take specific steps while creating applica-
tion load modules to ensure that the CLM can identify the desired start address.

Specifically, the CLM TASK command allows a task associated with a priority
level to be started at a labeled address when the application is loaded. This
start address label must be declared in a Linker EDEF statement when the load
module containing the task is created. If an application has more than one task
(each on a different priority level) to be started, multiple TASK and EDEF
statements can be used. The EDEF's may be in the same or in different load

modules.

The EDEF command is used on behalf of assembly, FORTRAN, and COBOL language
programs to define start labels to the CLM. Any label may be used in an assembly
language program.

For FORTRAN main programs, the label is either:

The "progname® used in a GRAM source st ment in the main
e TI # g e se PROGRAM tatement th
program, oOr

e The compiler default label ZFMAINl for a main program that does not
contain a PROGRAM source statement.

Note that a PROGRAM statement is required in main programs if multiple start
labels are needed.

The rules for defining the start addresses for load modules written in
assembly, FORTRAN, and COBOL languages are summarized below.

Assembly Language Start Address Definition

e Start labels chosen are declared by XDEF statements to the
Assembler, and EDEF statements to the Linker.

o The label in each TASK command to the CLM matches the XDEF and EDEF
definitions.

FORTRAN Language Start Address Definition

e Start labels explicitly declared in PROGRAM source statements (or a
ZFMAIN label created implicitly by the compiler) are declared in
Linker EDEF statements.

o The label in each TASK command to the CLM matches the EDEF defini-
tion.

lThis label is placed into the FORTRAN object (or source) output by the compiler
using either an effective (or actual) XDEF Assembler control statement.

3-17 AU49

COBOL Language Start Address Definition

e The program name in the PROGRAM-ID clause is declared in a Linker
EDEF statement.

e The label in a TASK statement must match the name in the EDEF
definition.

If the HLT parameter was coded on the QUIT command to the CLM, a halt will

occur after the last load module has been loaded; if not, control will be given

to the highest active priority level, and execution begins.

3-18 AU49

SECTION 4
DEBUGGING

This section provides some practical approaches that may be useful to you

when debugging an online application.

These suggestions are by no means all-

encompassing, nor intended to restrict your ingenuity in uncovering and fixing

a software difficulty in your program.

USING THE ONLINE DEBUG PROGRAM

BES provides an interactive debugging component, the Online Debug Program,

(ODP) that supplies online patching and testing facilities for application pro-

grams running under

the BES Executive.

There are two versions of the ODP, one runs as a series of overlays and re-

quires the BES2 Executive; the other is memory resident and can execute under the

control of either the BES1l or BES2 Executive.

Both versions require an op-

erator's console; an optional, preallocated relative disk file, DEBUG.WORK is

used when delayed execution commands are executed.

memory and work file space for ODP.

Table 4-1. Memory and Work File Space Usage

File Space Used

Memory Needed Diskette Disk

Module Name BES Executive (Words) (Sectors)
ZDBG1 ZXEX02 or ZXEXO03 2700 22 22
ZDBG ZXEX03 only 1100 (overlay) 72 47

NOTES: 1. Sector size for diskette is 128 bytes; for disk is

256 bytes.

2. Sector values for the overlay version include re-
quired space for two different files: OVERLAY and
DEBUG.WORK.

3. Sector values for ZDBGl and ZDBG represent the op-

tional space provided for the DEBUG.WORK file that
is needed only if predefined command lines are to
be stored on disk for later execution. (See SF
command.)

Table 4-1 summarizes the

AU49

Online Debug Program Functions

Online Debug Program performs the following functions:

e Defines, stores, and executes (either immediately or after
a delay, depending on the command) a sequence of commands
from the console,; or when breakpoints or trace trap in-
structions are encountered in the program-being tested.

e Sets, clears, or prints breakpoints in task code to monitor
task status

e Displays, changes, and dumps either memory or registers;
information may be printed on the operator's console, or
a line printer

e Evaluates expressions

Debugging Command Language

Commands are submitted to the Online Debug Program through the operator's
console or any command terminal. A command line may consist of one or more de-
bugging commands separated by a semicolon and terminated by a carriage return.
Some of the commands are executed immediately, and some, by their nature, are
executed on a delayed basis. The "predefined" or "delayed execution" commands

are stored on disk prior to execution.

Within commands, parameters are separated from one another by one or more

spaces. All parameter values are entered using hexadecimal notation.
Any command that produces printed output may direct the output to a device
other than the operator's console by using the LRN (logical resource number) of

the device; when no LRN is specified, the operator's console receives the output.

Table 4-2 summarizes the debugging commands by function. The following

pages present detailed descriptions of the commands and their use.

Table 4-2. Summary of Debugging Commands by Function

Command
Function Mnemonic Meaning
—
Command line Dn Define command line n
definition and .
handling En Execute command line n
p* Print all predefined command lines
Pn Print command line n
Breakpoint Cc* Clear all breakpoints
control Cn Clear breakpoint n
GO Proceed from breakpoint
L* List all breakpoints
Ln List breakpoint n and associated command line
Sn Set breakpoint n

4-2 AU49

Table 4-2

(cont). Summary of Debugging Commands by Function

Command
Function Mnemonic Meaning

Trace trap DT Define trace command line
control PT Print trace command line
Active level SL Set current and active level
control TL Establish temporary level active
Memory and AR Print contents of all active level registers
register
control CH Change memory

DH Display memory in hexadecimal

DP Display memory in hexadecimal and ASCII
Symbol control AS Assign a hexadecimal value to symbol

VH Print value of expression in hexadecimal
General execution AL Activate level (s)

Hn Print header line

LL Line length of console in use

RF Reset file location

SF Specify file location

DEBUGGING COMMAND FORMAT AND SYMBOLOGY

The format of debugging command lines is:

command-mnemonicAparamAparam; command-mnemonicAparam;. . . ;CR

The symbols in Table 4-3 are used in the command descriptions and examples

that appear below.

4-3 AU49

Table 4-3. Symbols Used in Debugging Command Lines

Symbol Type Meaning
IArithmetic Operators
plus sign (+) Performs addition.
minus sign (-) Performs subtraction.
K Multiplies a hexadecimal integer by 1024 decimal (400 in
hexadecimal) when K is the last character of an integer
expression.

Address Operators

period (.) Represents the last start address used in a previous mem-

ory reference command (DH,CH,DP).

ampersand (&) Represents the address of the next location beyond the
last one used by a previous memory reference command
(DH,CH,DP) .

brackets [1] Signifies the contents of the location defined by the ex-

pression within the brackets. Three levels of nesting
may be used.

Reserved Symbols

$Bn Contents of base register n of the active level. The
values 1 through 7 can be used for n.

SRn Contents of the data register n of the active level.
The values 1 through 7 can be used for n.

SP Contents of the program counter of the active level.

SI Contents of the indicator register of the active level.

$S Contents of the system status register (level number
and privilege bit only) of the active level.

$SL Represents the value of the level number of the active
level.

G through 2z Twenty single-character temporary symbols having initial

values of zero. Values may be assigned using the AS
debugging command.

Notational symbols

braces {} Indicate optional parameters.
ellipses . . . Indicates the ability to repeat parameters within braces.
parentheses () Indicate command or header information to be stored for

later use. Unmatched right parenthesis results in an
error. A right parenthesis that is paired with the first
left parenthesis terminates the command definition.

exp Indicates a valid expression formed using expression
elements.
rexp Consists of expl/exp2 where expl is a hexadecimal

number that is a value or a location; exp2 is an option-
al hexadecimal repeat factor whose value must be between
1 and 32,767. 1If exp2 is omitted, the value of 1 is

assumed.

slash (/) Brings Online Debug Program to command level; also used
to indicate reference to specific LRN for the command
use.

Delta (A) Indicates a space.

CR Indicates a carriage return.

H Separation character between commands on the same command
line.

* Signifies "all" in the print and clear commands.

4-4 AU49

AL/AR/AS/C*

Debugging Commands

ACTIVATE LEVEL COMMAND (AL)
Command activates a level corresponding to each expression.
Format:
ALAexp{AexpA. . .} CR

Example:
AL A A+2 CR
This example activates priority levels 10 and 12 (decimal)

ALL REGISTERS COMMAND (AR)

Command causes the printing of all registers for the active level.

Format:
AR{/lrn}CR

Example:
AR/3 CR

This example causes the contents of all the registers for the active

level to be printed on the device referred to as logical resource
number 3. (See Note 6, under "Additional Operating Notes for the
Online Debug Program", below)

ASSIGN COMMAND (AS)

Command assigns the hexadecimal value of the expression to the symbol; used

to alter registers of the active level, and temporary symbols.

Format:
ASAsymAexp{AsymAexp ...} CR

Example:
AS S$R1 -2 X 1408 $B7 X+15
This example causes -2 to be assigned to data register 1 and 141D

to be assigned to base register 7, and 1408 to temporary symbol X.
CLEAR COMMAND (C*)

Command clears all defined breakpoints.

Format:

C* CR

AU49

Cn/CH/Dn

CLEAR COMMAND (Cn)

Command clears specific breakpoint. The value of n may be between 0 and 9.
Format:
CnACR

Example:
C3 CR

The example causes breakpoint number 3 to be cleared.

CHANGE MEMORY COMMAND (CH)

Command allows specific memory locations to be given specific values.
Format:
CHAexpArexp {Arexp. ..} CR

Examples:

CH 100 0/10 CR

In this example, locations 100 to 10F will be zero-filled.
CH 200 A4FFF CR

Execution of this command puts the value 4FFF into location 200.
CH 2000 0/10 1/10 2/10 CR

This example shows how multiple repeat factors can be used:
execution of this command causes locations 2000 to 200F to

be given a value of zero, locations 2010 to 201F to be given

a value of 1, and locations 2020 to 202F to be filled with 2's.

DEFINE COMMAND (Dn)

must

Identifies the command line within the parentheses with the number n; n

be a value between 0 and 9.
Format:

DnA (command line) CR
Examples:

D3 (CH 100 0) CR

This example associates the number 3 with the command within the
parentheses. Hereafter, each time the command E3 (see below) is
executed, the parenthetical command will be executed and location
100 will be zero-filled.

This next example illustrates another use of the Dn command:
D4 ()

namely, command line 4 will be deactivated. When a disk that has
predefined command lines from a previous execution is reused, the
lines may be referred to without redefinition. (See the Sn command.)

4-6 AU49

DH/DP/DT

DISPLAY MEMORY COMMAND (DH)

Command causes specified memory locations to be displayed in hexadecimal
notation either on the operator's console, or on the device specified by the 1lrn

used.
Format:
DH{/lrn}Arexp{Arexp...}CR

Examples:
DH 200 CR

Execution of this command results in the display of the contents of
location 200 on the operator's console.

DH/2 200/100 CR
Execution of this command displays the contents of locations 200 to
2FF on the device associated with LRN 2.
DUMP MEMORY COMMAND (DP)

Command causes the display of (a minimum of one line) an area of memory

starting at a specified location. Display is in hexadecimal and ASCII notations.
Format:
DP{/lrn}Arexp{Arexp...}CR

Examples:
DP 200 CR

Execution of this command displays one line of memory in both hexa-
decimal and ASCII, starting at location 200.

DP/4 80/40 200/240 CR
This command causes the contents of locations 80 to BF, and 200 to
43F to be displayed on the device associated with LRN 4.

DEFINE TRACE COMMAND (DT)

Command associates the command line within the parentheses with the occur-

rence of a trace trap or a BRK instruction not already defined as a breakpoint.
Format:

DTA (command line) CR

4-7 AU49

DT/En/GO/HnNn

Examples:
DT (AR) CR

This command causes all registers to be displayed each time a
trace trap occurs.

This next example illustrates another use of the DT command:

DT ()

namely, the deactivation of the defined trace command line.
When a disk that has predefined command lines from a pre-
vious execution is reused, the lines may be referred to
without redefinition. (See the Sn command.)

EXECUTE COMMAND (En)

Command executes the predefined command line specified by n, a number from
0 to 9. The En command may not be included in predefined Dn command lines; it

is permitted in Sn and trace command lines.
Format:
ENACR

Example:
E3 CR

GO COMMAND (GO)

Command results in the resumption of execution on an active level after a
breakpoint.

Format:

GOACR

PRINT HEADER LINE COMMAND (Hn)

Command causes a header line to be printed; line spacing is controlled by
the value of n, such that when n=0, there is a skip to the head of form before
the header line is printed; otherwise, the number of lines between 1 and 9 are
skipped before printing. A header line may consist of any ASCII characters
and/or expressions; expressions are preceded by a percent (%) sign. If a % sign
is to be printed, two characters must be used (%%). A header line must end with

a space character.
Format:

HnA{/lrn}A (header line) CR

4-8 AU49

Hn/L*/LL

Example:
HO/2 (DUMP OF BREAKPOINT FOR LEVEL %$SA) CR

This header will be printed on LRN 2 at the top of a new page
as soon as the carriage return is typed. The example illustrates
a way to document dumps. The main use of the header command is
to document printed information related to breakpoint or trace
trap debugging.
LIST ALL BREAKPOINTS COMMAND (L*)
Command lists all breakpoints.
Format:
L*A{/lrn}CR

Example:
L* CR

This command will cause all breakpoints to be printed on the
operator's console.
LINE LENGTH COMMAND (LL)

Command specifies the line length of the console in use. The length value

is expressed in decimal notation, and the limits are: 30< value< 126.
Format:
LLAvalue CR

Example:
LL. 72 CR

This command signifies that the console in use has a line length
of 72 characters.

4-9 AU49

Ln/P* Pn/PT/RF

LIST BREAKPOINT COMMAND (Ln)

Command causes the listing of a particular breakpoint that was set by a Sn

command, and lists the command line.
Format:
LnA{/lrn}CR

Example:
L2/4 CR

This command causes the display of the command line of breakpoint 2
on the device associated with LRN 4.

PRINT COMMAND (P*)
Command causes all command lines predefined by Dn commands to be printed.

P*{/1rn{CR

PRINT COMMAND (Pn)

Command causes specified command line predefined by Dn command to be
printed.

Format:
Pn{/lrn}CR

The value of n can be between 0 and 9.

PRINT TRACE COMMAND (PT)
Command causes a trace command line to be printed.
Format:

PT{/lrn}CR

RESET FILE COMMAND (RF)

Command resets the location of DEBUG.WORK, and prohibits commands that use
this file from operation until another SF command is issued.

Format:

4-10 AU49

SNn/SF

SET BREAKPOINT COMMAND (Sn)

Command sets a numbered breakpoint (n) at a particular location. The value
of n can be from 0 to 9. When the breakpoint is encountered, an existing command
line is executed, otherwise a message is displayed on the console and task ex-
ecution ceases. The Online Debug Program now has the highest priority. The
console message indicates the contents of the location counter and the active

priority level.

If there is a preexisting command line associated with a given'breakpoint,
the o0ld command iine must be replaced with a new one, or cleared using empty
parentheses (); otherwise, the 0ld command line will be executed. (See the
Dn command.)

The message format is:

BPn $P=00XXXX $SL=00XX
Format:

SnAexp {(command line)} CR

Example:
S0 100 (DH 200/10;GO) CR

This command will cause the display of locations 200 to 20F when
location 100 is executed.

SPECIFY FILE COMMAND (SF)

Command identifies the location of DEBUG.WORK file. Since the function of
the command is to open the work file, it should be the first command executed;
failure to do this results in the issuing of an error message as soon as a
command which requires the work file is used. LRN is specified in hexadecimal
notation.

Format:

SFALRN CR

Example:
SF B CR

This example indicates the work file to be logical resource number
11 {(decimal).

4-11 AU49

SL/TL/VH

SET LEVEL COMMAND (SL)

Command sets the current and active levels to the value of exp. The current
level remains unchanged until another SL command is issued. The default value

for the current level is 0.
Format:
SLAexp CR

Example:
SL C CR
This command sets the level to 12 (decimal).

SET TEMPORARY LEVEL COMMAND (TL)

Command sets the temporary level to the value of exp until another SL, or

TL command is issued, or until the end of a command line.
Format:
TLAexp CR

Example:
TL A;AR;TL B;AR CR
This command causes all registers on levels 10 and 11 to be displayed.

PRINT HEXADECIMAL VALUE COMMAND (VH)
Command prints the value that is the result of the expressions used.
Format:
VH{/lrn}Aexp{Aexp...}CR

Examples:

VH[100]CR

This command causes the display of the contents of the addres found
at location 100.

VH .+100-M CR

This command causes the display of the result of the computation
defined by the last referenced memory location plus 100 (hexa-
decimal) minus the value assigned to the temporary symbol M.

4-12 AU49

Using the Online Debugging Program

Program testing and error correction is performed as an interactive dialog
between the operator and the Online Debug Program. To achieve control over the
task code being tested, the Online Debug Program is given a priority higher than
that assigned to task code, but lower than that given to the console and printer

used by the operator for the dialog.

The Online Debug Program is included in your application configuration by

using the following CLM commands:

TSA n,m (Required if breakpoints or trace traps used.)
EVAL ZDTLRN,TLRN

EVAL ZDDLRN,DLRN

ADMOD filename:ZDBG

TASK ZDTASK, lrn,level,YACT

TLRN - The LRN cof the command terminal.

DLRN - The LRN of the disk on which DEBUG.WORK file is located.

See Appendix A in this manual for an explanation of the other CLM command

parameters.

When the configuration process is finished, the Online Debug Program lets

you know that it is ready to accept input by sending a message to the console.

The following example contains typical operations that might be performed

in the course of using the Online Debug Program.

Example:

1. Establish header, predefine a command line, initialize a
header variable to zero.

HO (DUMP %M OF AREA 0) CR
DO (HO/3;AR/3;DH/3 20/4 [8A]/1A [8B]/1A Y/100) CR
AS M 0 CR
2. Set breakpoints in code under test.
S0 300 (AS M M+1l) CR
S1 4A6 (AS M M+1l) CR
3. Activate level 8 and wait for breakpoints.
AL, 8 CR

4. When the breakpoint occurs, execute predefined command 0
and then continue.

E0 CR
GO CR

4-13 AU49

NOTE: The predefined command line in the example above (the

DO ...) sets up commands that will display the header,
registers, activity indicators, and the ISA's for
levels 10 and 11.

ADDITIONAL OPERATING NOTES FOR THE ONLINE DEBUG PROGRAM

1.

Online Debug Program can be brought to command level either
when the console is idle, or when the ODP is producing out-
put, by typing the "/" character; ODP indicates that it is

ready by printing D? at the beginning of a line.

If the DP, DH, or VH commands are producing output, and an

! (exclamation mark) is typed, the output will be aborted.

Command lines for the Sn, Dn, and DT commands may not ex-
ceed 126 characters.

A GO command embedded in a breakpoint command line allows
task execution to proceed after the desired operations
have been performed, without further operator intervention.

The following rules should be observed when using breakpoint
instructions:

a. Breakpoints may not be set in code that will be
executed at the Inhibit level.

b. Breakpoints set on the following instructions must
be cleared (Cn command) before continuing execution
(GO command): any I/0, generic (BRK), scientific,
illegal, or LEV instruction, or any instruction with
an illegal address syllable.

Note that the clearing of a breakpoint becomes un-
necessary if a second breakpoint command line used on
a nonrestricted instruction reinstates the first com-
mand line used on a restricted instruction, when both
are executed repeatedly within a program loop.

Note that the display, change, and dump functions apply to registers
on the active level. The active level changes depending on the op-

eration of the Online Debug Program. The active level can be con-

trolled in several ways:

a. It is set to the level defined by the SL command whenever
console input is processed thus allowing the operator to
access registers on the same level each time a command is
entered from the console, regardless of the change in the

active level due to delayed commands since the last command

entered from the console.

b. It is set to the level at which a breakpoint or trace trap

occurs, thus allowing the predefined command line being
executed to display or alter registers on its own level.

c. It may be set temporarily with the TL command so that reg-

isters of a level different from the active or console

levels may be displayed or altered without permanent change

to the active or console level definitions.

d. It is set with the SL command, and this level becomes the
console level.

e. Active level control is designed to assume the value that will
most probably be needed based on the ODP action in progress;
i.e., console, breakpoint, trace trap, or temporary reference

to a different level.

AU49

LOCATING LOAD MODULES

The CLM builds data structures, as defined by its commands, and places the
load modules immediately following the data structures in memory. Once an appli-
cation is fully developed, there is no requirement to know the start address of
load modules each time the system is loaded because it is invariant and of no

concern to the user of the application.

During application development, however, there is a vital need to know
where load modules are in memory. Otherwise, the link maps of load modules
(based at zero relocation factor) are almost useless. The start address of
each load module can be printed on the operator's console by a utility whose
load module name is ZXMAP. This information will be of wvalue when debugging,
and is displayed under the following two circumstances:

1. Load Phase of CLM reaches the normal halt indication and the
Map option of the CLM QUIT command was used to load ZXMAP.
The occurrence of other indicators (e.g., multiply-defined or
undefined symbols) is incidental. If the application's load
modules will fit into available memory on the application de-
velopment hardware configuration, and there is an operator's
console then ZXMAP consists entirely of initialization code.
When loaded, (as the last load module), it uses the operator's
console channel number known to the loader and prints on the
console two sets of information:

a. Names of undefined symbols

b. Names and start addresses of all load modules
currently memory-resident

2. Load Phase of CLM encounters loader halt, indicating insuffi-
cient available memory.

This circumstance means that the data structures plus the load
modules for the specified application will not fit into avail-
able memory. ZXMAP may now be used to print on the console a
list of load modules that are in memory and those that are not.
Although ZXMAP cannot be loaded by CLM since no memory is
available, it may be loaded as a stand-alone offline program.
The standard bootstrap procedure for offline programs should be
used, and the ZXMAP start address (relocation factor) should
be specified in low memory to avoid overlaying the CLM infor-
mation to be printed. The recommended relocation factor for
ZXMAP is DO.

Another possible approach is to load ZXMAP as an ADMOD . . .
after selected ADMOD commands of the application. This will
produce multiple maps and you can get one indicating memory
usage before the CLM attempts to load the module that causes
the error halt. This module will be visible in a dump of
the loader area of memory at HMA-3 to HMA-12.

Figure 4-1 shows a sample console output of ZXMAP. It contains
the hexadecimal start addresses of the application load mod-
ules. FMDEMO is the load module name of the sample user
application. To debug FMDEMO the user needs object listings of
the modules contained in FMDEMO (e.g., FMA, FMB, FMC) and the
link map produced when FMDEMO was created. The link map gives
the zero-relative offsets of tags within FMDEMO.

4-15 AU49

ZXEX02 *0755
ZYFMOL1 *0DF9
FMDEMO *14E0
ZIKSR *16DF
ZILPT *183E
ZICDR *18AC
ZIDSK *¥1922
ZXMAP *19CA

Figure 4-1. Sample ZXMAP Output

Assume that FMA, FMB, and FMC were linked in that order and
start at relative 0, 100, 200 hexadecimal, respectively.

To locate an instruction in memory that is in module FMB,
add 100 plus the instruction offset within FMB to 14E016‘
If a load module has not been brought into memory,
ZXMAP prints

<load name>*0000
For undefined symbols, ZXMAP prints

<symbol name>* (blank)

DEBUGGING DURING ONLINE APPLICATION DEVELOPMENT

Monitor Points

The system may be monitored in several different ways to verify proper se-
quencing of memory and/or register contents within routines, or proper task se-
quencing. Each method requires manual insertion of monitoring code, and implies

that space exists within the system for it.

These are ways of creating space to insert monitor points:
e Leave space temporarily in various application modules.
e Append monitoring points using Program Patch.

e Use ODP

The sophistication of the monitoring performed depends on the stage of the
application development and testing. The monitoring routine could be a simple
halt instruction, a conditional call to the Trace Trap Handler based on current
variable status, or an Online Debug Program breakpoint. 1In each case, you may
construct what is required at the time. Program Patch is described in the

Utility Programs manual.

If space is allocated in application modules, it may be used by invoking

the Online Debug Program.

4-16 AU49

MANUAL CONTROL

When single-word halt instructions are used as monitoring points, the use of
the DO single instruction capability is convenient. The instruction word re-
placed by the halt may be entered into the instruction register (D0) when the
halt occurs, even if the full instruction occupies more than one word in memory.

However, the halt must replace the first word of the instruction.

For example:

Source Line Object Code
LAB $B2,S$B4,TAG loc/ABC4 instruction word
loc+1/0004 tag value

ABC4 may be replaced by a halt (all zeros). When the P-register (E(Q) halts at
loc+1l, the instruction register (D0) may be changed back to ABC4 and execution
continued. Since this does not change the content of loc, the halt will reoccur

the next time the code sequence at loc is executed.

You can use the single word halt effectively in debug phases where only one
priority level is active at a time. If more than one level is active, you may
use the halt at inhibit level option of the Trace Trap Handler to "freeze" the
entire system; i.e., all priority levels including the real time clock. This
option is invoked by a BRK generic instruction followed by a HLT instruction.
Now use the control panel to enter step mode to examine registers. Then execute

a single instruction before restarting program.

Real-Time Clock (RTC)

Some applications require the real-time clock, activated at load time.
While the clock is turned on, the CPU is difficult to use in single instruct
mode because the RTC is continually generating an interrupt at clock level (level
4). 1In the early stages of application debugging it may be useful to turn off

the clock to facilitate "stepping” through a code sequence without interference.

This is easily done using the capability of executing one instruction from

the DO register as described in the following procedure.

To turn off the clock before starting the application, use the capabilities
of executing one instruction from the instruction register (whose selection code
is D0O) to execute an RTCF instruction while in single instruction mode. Then
clear the instruction register (D0Q), set the P-register (E0) back to CLM halt
address and press Ready and Execute. Once the ODP is executing:

a. Press Stop and select DO; change to 0005.

b. Press Execute (this turns off clock)

c. Select DO and change to 0000.

d. Select E0 and change to CLM halt address.

e. Press Ready and Execute.

4-17 AU49

Data Structures

There are several useful hardware data structures that contain valuable in-

formation for system debugging.

Refer to Figure 4-2 to show portions of an actual memory dump which contains

these structures.

0010/
0018/
0020/

0204
0000
0000

0000
0000
0000

0000 0000
0000 0000
0000 0001

0006
0000
0000

0004
0000

0004
0000

0000
001E
0000

0078/ 0000
0080/ 0000
0088/ O01ES

0000
0000
O1FF

ZEROS

0000 0000
0000 0253
0211 0227

ZEROS

0000
018D
0230

0000
01A3
0253

3830
0189
0269

0000
01CF
027F

0180/
0188/
01c0/
01c8/
0100/
01D8/
01E0/
018/

0250/
0258/
0260/
0268/

0290/
0298/
02A0/
02A8/
0280/
0288/
0200/

0000
0000
1925
3064
FFFF
17D5
FFFF
07AB

0000
0325
FFFF
0000

0000
1000
0000
0000
0000
0207
0007
4000

UNUSED {NITIALIZED ISA'S ———

FFOO
033F
803F
0000

0000
0000
0000
0000
0000
0000
0204

0000 1240
FFFF 0000
3180 3EDO
0000 0000
07A5 4003
1799 0018
0000 FFOO
0000 0000

0000 0000
10FD 0682
0050 0000
FFFF 0000

0000 FFOQ [0000 0000 G000 0000

0000 0000

0500
07AB
3ED3
0000
183D
0000
0000
183€

FFFF
02F5
0050
0788

0005
4000
1903
FFOO
0205
0000
0000
0000

0000
062F
1000
4000

0088/ 0000 0000 0000 0000 0000 0000 0000 0187

OBCO 0000 0294 3FFF 02B4 0416 O000F 136A 3FFF

~«— CLM DATA STRUCTURES ——————

0808
0135
0000
0000

~a————— REMAINDER OF ISA'S ———=

FFO0
0000
3DA4
13C7
0c31
13C0
0000
0000

4003
0014
FFOO
0000

0000 0682 0000 0000
0000 0000 0000 0COC 0000 0000
0000 0000 0000 0682 0000 0000
0000 0000 0205 0ZE5 02F5 0305
0000 0000 0000 0000 0000 0000

0000 0000 | 02CC 0000 0000 0000

Figure 4-2.

HARDWARE DEDICATED LOCATIONS

ISA POINTERS USED BY THIS APPLICATION

ISA POINTER FOR LEVEL 63
CLM—SUPPLIED EXECUTIVE INFORMATION

ISA FOR LEVEL 6 (BEGINS AT LOCATION 13916)

ISA FOR LEVEL 13 (BEGINS AT LOCATION 25316)

—————»= SOQ TABLE
———= EOG TABLE

———— LRT

{FOUND BY USING ZXMAP, LINK MAP, AND LISTINGS
AND CLM-SUPPLIED INFORMATION ATCOy5)

Hardware/Executive Data Structures

Location 10 contains the trap save area pointer. If traps have occurred,

the trap save areas can be located using this pointer. Since CLM creates trap

save areas to be contiguous, even unlinked TSA's may be located.

4-18 AU49

Locations 20 through 23 contain the level activity indicators. They may be
examined to discover which level was running or waiting to run. In Figure 4-2,

only level 63 (location 23, bit 15) was active.

Location 80 and above contain the ISA pointers for the system. A minimum of
64 locations are always reserved by CLM. Nonzero ISA pointers indicate the
potentially-active levels in the system. The pointer in location 83 (level 3)
is always either zero or a duplicate of another valid ISA pointer. By matching
its contents against the others, you can discover the last level to execute on

the inhibit level. 1In Figure 4-2, it was level 13 (location 8D).

Within the ISA's for each level, the S-, P-, and B5-register entries are of
interest. When the S-register contains the level number of the level itself,
it was probably interrupted by a higher priority level. If it is zero, the level
has probably not been executed. When the level number is 3, the task has termin-

ated using the Task Manager.

The P- and B5-registers may prove useful to determine the starting address

of a task or Task Manager entry point.

Device driver ISA's indicate whether the device interrupt has ever occurred.
The device places information in the ISA upon interrupt. Figure 4-2 indicates a
13C7 at location iCF. This is decoded as:

13C0 channel number
07 device level assignment

The level number is the last 6 bits of the 16-bit word.

Software data structures used by the Task Manager and/or device drivers
may best be located by finding a reference to them in Honeywell listings, locating
those references in the memory dump, and then examining the structures. The in-
formation supplied by the CLM immediately after the ISA pointers may be used to
find SOQ,E0Q, and LRT (and thereby RCT's) that may be of interest. CLM also
provides a pointer to ZXcccc in the Clock Manager module. This is the location
immediately before the first of four clock queue data structures. Once these
structures are located, enqueued request blocks may be examined and clock timer
blocks of drivers analyzed.

Trace History

When using the Online Debug Program with disk-stored command lines that
execute upon encountering a trap or a breakpoint, a trace history may be main-

tained on a line printer. Otherwise, use the Trace Trap Handler.

4-19 AU49

Handling Load Errors

When the CLM produces a load error (1695) indicating insufficient memory

for 1loading the application, there may be ways to rearrange load modules to

solve the problem.

1.

Be certain that load modules with large load-time initial-
ization requirements are loaded first (e.g., communications
or File Manager) so that maximum advantage is taken of the
possibility of overlaying CLM initialization by permanent
load modules. Clearly, being unable to load a module because
the initialization code is too large can be corrected by
placing I/0 drivers (DEVICE commands) or the Executive

load modules (ADMOD commands) near the end of the load module
commands.

Be certain that ADMOD commands associated with floatable
overlays are also ahead of other modules that do not have
overlays or initialization code. Recall that floatable
overlays need occupy no permanent memory space outside the
CLM residue.

Consider recoding nonfloatable overlays as floatable to make
better use of CLM residue that can't be used during loading.
As an extreme solution for an 8K environment, the bulk of
the application could be coded as floatable and called into
residue space by its root, which is designed to do nothing
more than that.

Double check configuration commands to make sure that the
minimum amount of space required is used for data structures.

AU49

APPENDIX A

CONFIGURATION LOAD MANAGER COMMANDS

Commands entered through the command input stream direct the operation of

the Configuration Load Manager (CLM).

Using these commands, you can define the

environment in which the application is to be run, and specify the modules to

be loaded. The configuration commands identify the load module, specify the

memory requirements, system services, and peripheral complement to be used; set

up internal data structures, and establish trap handling procedures.

Table A-1 summarizes the CLM commands and functions. Individual commands

are described in detail later in the section.

Table A-1.

Summary of CLM Commands and Command Functions

Command Category

Commands

Functions

System Configuration

Load Configuration

Task

Buffer Managementa

File Managementa

SYS, OIM, TSA, TRAP,
CLOCK, DATE

ADMOD, ELOC, EVAL

DEVICE, TASK, ATLRN,
EQLRN

BUFSPACE

FILMGR, DEVFILE, FMDISK,
ATFILE

Set up data structures in main
memory; define application en-
vironment.

Constructs a load module list
consisting of all modules re-
quired by the application; list
consists of file names with sub-
lists of module names; module
names should be unique; the
order of modules in the list is
critical when they are loaded
from a sequential device; per-
mit symbol definition.

Explicitly specify relationships
among tasks, devices, logical
resource numbers, and interrupt
levels; cause data structures

to be built.

Defines buffer pools and re-
lated tables that are used by
the Buffer Manager.

Provide information by which
CLM builds the data structures
used by File Manager to support
a centralized file access capa-
bility.

AU49

Table A-1 (cont). Summary of CLM Commands and Command Functions

Command Category Commands Functions

CLM Control I0S, *(comment), QUIT Direct the general actions of
CLM; provide documentary infor-
mation within the command input

stream.
Communicationsa coMM, TTY, VIP, BSC, Explicitly define each communi-
MODEM, LTPDEF, LTPn, cations device; define attri-
STATION butes of communications appli-

cation; cause data structures

to be built; analogous to DEVICE
command for peripheral devices;
specify relationships among
tasks, devices, logical resource
numbers, and interrupt levels.

CLM Extensions LACT, ELACT, IOS Load the optional extensions to
CLM so that file management,
buffer management and communi-
cations functions can be con-
figured.

aOptional extensions that are added to the basic CLM through the use of the
LACT and ELACT commands interpret the information supplied by commands in
these groups.

COMMAND FORMAT

The CLM accepts commands through the designated command input device.
Each command is a separate line of input, consisting of a string of up to 72
ASCII characters. If the command input stream is entered through an operator

console device, each command is terminated by a carriage return.

A command line contains a CLM command, including its operands and
(optionally) comments. The format of a CLM command is shown below. In this
example, lowercase characters indicate items that are to be replaced by actual
values. Operands shown within brackets are optional; default values are used
if these operands are not specified.

NOTE: The command mnemonic itself need not be specified if all

the operands of the command are optional and if the de-
fault values of those operands are to be used.

Position Position
1 72

mnemonicAoperandl [,...,operandn] [Acomments]

The command mnemonic, consisting of one or more ASCII characters, specifies
the action to be performed. The command mnemonic is separated from its operands
by a single space character (indicated by a delta (A) character). Commas

separate individual operands and a space or carriage return terminates the

A-2 AU49

operand set. Omitted operands are indicated by consecutive commas; trailing
commas are not required. Comments can follow the operand field, separated from
the operands by one or more space characters. The order of operands in the

command line is significant.

The operands associated with the CLM commands can be strings of ASCII
characters, or decimal or hexadecimal integers. An ASCII operand begins with
an alphabetic character or with an apostrophe character and ends with a comma,
space, carriage return, or apostrophe character or when the maximum string
length of 64 characters is reached. For purposes of specifying a numeric
string, as opposed to a decimal number, the string must be bracketed by
apostrophes. ASCII strings are stored in memory in an even number of bytes,

left-justified on a word boundary.

An integer used as a command operand is unsigned and can be a single-word
decimal or hexadecimal number or a double-word hexadecimal number. The follow-
ing conventions are used to represent integers in an operand string:

Single-word decimal; 4 is a digit in the range 0
T

S 9

X'hhhh' - Single~word hexadecimal; h is a digit in the range
0 through F

D'hhhhhhhh' - Double-word hexadecimal; h is a digit in the range
0 through F

In memory, an integer is right-justified on a word boundary, and left-
filled with zeros. An operand that specifies an address must be a double-~
word hexadecimal integer.

NOTE: 1In the following description of CLM commands, the term

"integer" refers to a single-~word integer unless other-
wise noted.

INPUT DEVICES FOR CLM

Command input to CLM can be submitted on cards, on diskette, or through
an operator's console (a KSR device). During the execution of CLM, the command
input device can be changed by the IOS command. (See "IOS Command" later in

this appendix.)
Under the direction of these commands, CLM accepts load modules on diskette
files, loads these modules into memory, and initiates the execution of the

application.

The diskette file and member names of the command input to CLM must be
CLMCI when the Command Processor is not in use.

A-3 AU49

ADMOD/ATFILE

ADMOD Command (Add Load Module)

The ADMOD command adds a new module name to the end of the load module
list, and specifies that this module is to be loaded during the loading phase.

The order of ADMOD commands determines the order in which the load modules are
loaded.

NOTE: The fact that new module names are added to the end of
the load module list can be significant when loading is
to be done from a sequential device, since only one pass
is made over the medium.

The format of the ADMOD command is shown below.
ADMODAfile~name:member-name[,X'channel']

ADMOD - Command mnemonic
file-name -~ The name of the file in which the load module resides.

member-name - The name of the load module. This load module is a
member of the file whose name is specified in the file-name
element.

channel - A hexadecimal integer giving the channel number of the
device from which the specified file/module is to be loaded.
If this operand is omitted, the channel number of the device
from which the Configuration Load Manager was loaded is used.

The ADMOD command with the same file-name/member-name as a previous ADMOD
command causes the channel number to be updated with the new one. This is
useful if a driver module must be loaded from a different channel than the
default channel specified in the implicit ADMOD statement that is issued with
the following commands: DEVICE, COMM, TTY, VIP and BSC.

The explicit ADMOD command to alter parameters present in an implicitly
invoked ADMOD command is issued after the command that caused the implicit

command to be issued.

ATFILE Command (Attach File)

The ATFILE command relates a logical file number to a file. The format

of the command is shown below.

ATFILEAlfn,path-name

ATFILE - Command mnemonic.

1fn - The logical file number used to refer to the file once
that file has been opened. This value must not exceed
the max-1fn specified in the FILMGR command.

A-4 AUA49

ATFILE/ATLRN

path-name - A string of ASCII characters specifying the directory
path required to reach the indicated file. The path for
diskette begins in the directory of mounted volumes.
The path-name has the form: system or user () iden-
tifier volume-name>file-name. The greater than symbol
(>) must be used to separate the volume-name from the
file-name. A volume-name may be up to six characters
in length; a file-name may be up to 12 characters long.

A nondiskette path-name has the same form as a diskette file-name; i.e.,
1 to 12 characters without the greater than (>) sign preceding it. Refer to
the Executive and Input/Output manual, "Glossary of File Manager Terms" for

more detail.

ATLRN Command (Attach LRN)

The ATLRN Command relates a logical resource number (LRN) to a physical
priority level. The ATLRN command assumes that all levels within the specified
range that are not explicitly defined in DEVICE commands are available for use
by nondevice tasks.

LRN's not explicitly assigned a level by a DEVICE, TASK, or ATLRN command,
remain unassigned. Attempts to use an unassigned LRN result in a "request

task" error.

The ATLRN command can also be used to relate additional LRN's to a given

level number.

The format of the ATLRN command is shown below.
ATLRNAlrn, level[,rct-size]

ATLRN

Command mnemonic.

lrn - The logical resource number, no greater than the value of
the hilrn operand of the SYS command.

level - The priority level at which the task requested by the
specified logical resource number will execute. The
value of the level operand cannot be less than 5 nor
greater than the value specified as the lolevel of the
SYS command.

rct-size - An integer that gives the size, in words, of the RCT for
the associated LRN. The default value is one word. If
the rct-size parameter is omitted, the default value will
be assumed, unless the level parameter is the same as
that in a previous DEVICE, TASK, TTY, VIP, BSC, LTP,
STATION, or ATLRN command; in this case, no new RCT is
created, the lrn becomes a synonym for the lrn in the
previous command having the same level parameter value.

A-5 AU49

The following rules apply to an ATLRN command:

e An ATLRN command with an rct-size parameter always produces an
RCT of that size; its LRN is never a synonym.

e The lrn of an ATLRN command that has no rct-size parameter is
synonymous with the lrn of the immediately previous TASK, DEVICE,
TTY, VIP, BSC, LTP, STATION, or ATLRIN command having the same
level parameter value.

e The default value of the rct-size parameter is one word.

The use of the ATLRN command allows you to relate RCT's of different

sizes to the same priority level. Consider the following set of commands:

DEVICE CDR,1,6,X'0580"

ATLRN 2,6

ATLRN 3,6,19

ATLRN 4,6,37

ATLRN 5,6
The RCT constructed as a result of a DEVICE command is 16 words long; LRN 2
is a synonym for LRN 1 and refers to the same RCT. LRN's 3 and 4 are unique,
and refer to RCT's of 19 and 37 words, respectively. LRN 5 is a synonym for
LRN 4, and refers to the same RCT. Priority level 6 then, has three RCT's

associated with it: one of 16, one of 19, and one of 37 words.

BSC

BSC 2780 Command

This command identifies each binary synchronous communications line in-
cluded in the system. The format of the BSC command is:

BSCAlrn,level,channel [, label] [,moden] [,primary/secondary] [,character-set]

BSC - Command mnemonic.

lrn - The logical resource number by which the device is requested.
It must be less than or equal to the hilrn parameter of the
SYS command.

level - The priority level at which the driver for the device will
execute. Must be less than or equal to the lolevel parameter
of the SYS command; it may be the same as other communications
devices, but must be different from the level specified in the
COMM command, and from the levels for noncommunications tasks
and devices.

channel - The channel number of the device.

label - A label, assumed to be a location definition, which must be
defined in a load module. This label is the entry point of
the attention subroutine. The default is null.

modem - A number specifying the type of data set. Possible values
are:

0 - Direct connect.

1 - Bell lxx~-type modem (10324,113F,etc). Both data-set-ready
and carrier-detect signals are needed for a connection;
lack of both signals is a disconnection.

A-6 AU49

2 - Bell 2xx-type modem (2014,201C,208A,etc). The data-set-
ready signal is needed for a connection; lack of this
signal is disconnection.

3 or greater - User-defined modem type (see MODEM command) .
The default value is modem type 2.

primary/secondary - Values may be specified as P or S; indicates
whether this is the primary or secondary endpoint of the
transmission. A primary endpoint has higher priority when
sending data.

character set - One of the following may be specified:
AS - ASCII (default)
EB - EBCDIC
TE - Transparent EBCDIC

When this command is processed, an implicit ADMOD command is issued to

include the BSC line-type processor (ZQPBSC) in the load list.

BUFSPACE

BUFSPACE Command (Pool Definitions)

The BUFSPACE command defines contiguous areas of memory (called "blocks")
to be used as buffer areas. Blocks of uniform size are linked into a pool.
Each pool is controlled by a pool parameter block (PPB), which describes the
location of the first block in the pool and the size of blocks in this pool.

A set of PPB's, 'in order by block size, forms a pool parameter table (PPT).
The information contained in the PPT is required if the Buffer Manager function
of the Executive is used. The BUFSPACE command can be used to:

e Assign a label to the start of the PPT

e Specify the size of each block and the number of blocks in each
pool

e (Optionally) Designate a predefined label in an existing load
module as the start of the memory area containing the buffer
pools. Alternatively, buffers are created in the residual mem-
ory area between the end of the last load module and the high
memory address specified in the SYS command.

The BUFSPACE command defines one PPT and its associated buffer pools. The
CLM arbitrarily creates the PPT in nondedicated memory and defines the value

of the ppt-label parameter as the start of the PPT.

The format of the BUFSPACE command is shown below.

BUFSPACEAppt-label, [space-name] ,size,number[,size,number,...]

A-7 AU49

ppt-label - The label assigned to the first word of the pool parameter
table. .

space-name - The label of the beginning of a contiguous area in main
memory, large enough to contain all the pools defined by the
succeeding operands in this command. If this operand is omitted,
the buffers will be built in residual main memory space, between
the end of the last load module and the high memory address.

size,number - A pair of integers specifying the size (in words) of
each block and the number of blocks in one buffer pool. As many
size, number operand pairs as are needed can be specified.

If the entire BUFSPACE command cannot be included on one line, additional
BUFSPACE commands may be issued having the same ppt-label, a null space-name

operand, and additional size, number operand pairs.

An operand pair with the same size parameter as a previous one (the same
ppt—-label), causes the new number to replace the old one.

The same space-name in an additional BUFSPACE command as in a previous
one results in an error condition.

A BUFSPACE command with a nonnull space-name, and a ppt-label the same as

a previous one, replaces the old space-name with the new one.

CLOCK

CLOCK Command (System Clock)

The CLOCK command specifies the line frequency used to drive the system
clock, and the period between clock-generated interrupts (i.e., the timeout
interval). The format of the CLOCK command is:

CLOCKA [hz] , [scan-cycle]

CLOCK ~ Command mnemonic.

hz - Line frequency. Possible values are 50 to 60.
The default value is 60 (U.S. standard).

scan-cycle - The time, in milliseconds, between periodic real-
time clock-generated interrupts. The default
value is 50 milliseconds. The following lists show
the possible values .of the scan-cycle for both line

frequencies:
50-Hz line 60-Hz line
(milliseconds) (milliseconds)
10 8
20 16
50 25
100 33
50
100

A-8 AU49

COMM

COMM (Communications System Command)

This command specifies the interrupt priority level for all communications
devices. This level should be higher than all other devices and tasks, the
recommended level is 5. The format of the command is:

COMMAlevel

COMM - Command mnemonic.

level - The priority level used as an interrupt level for all
communications devices. Must be greater than or equal
to 5, and less than or equal to the lolevel parameter
of the SYS command, and must be unique. The COMM com-
mand must precede all other CLM communications commands.

When this command is processed, two implicit ADMOD commands are issued:
one for the Communications Supervisor, and one for the MLCP Driver. The de-
fault channel number (from which the CLM was loaded) is assumed. If necessary,
explicit ADMOD commands, issued after the command that caused the implicit
command to be issued, can be used to change the channel number. The implicit
commands are:

ADMOD CLMCOMM:ZQEXEC (For the Communications Supervisor)
ADMOD CLMCOMM:ZQMLON (For the MLCP Driver)

DATE

DATE Command (Date and Time)

The DATE command specifies the current date and time. The format is:

DATEA['yymmdd'] [, "time"']

DATE - Command mnemonic.

yymmdd - An ASCII numeric string providing the current year, month,
and date. If this operand is omitted, the default value
is null.

time - An ASCII numeric string providing the time of day, in the
format hhmm, where hh is the hour of the day (an integer
in the range 00 to 23), and mm is the minute of the hour
(an integer in the range 00 to 59). If this operand is
omitted, the default value is null.

A-9 AU49

DEVFILE

DEVFILE Command (File Management Devices)

The DEVFILE command identifies the nondisk devices that can be used by the
File Manager. For any given device, the DEVFILE command must be issued after
the corresponding DEVICE, TTY, VIP, or BSC command that defines its device
type and logical resource number. The format of the DEVFILE command is shown

pelow.
DEVFILEAdevice-name,lrn,file-name[,double] [,share] [,rec-size]

DEVFILE - Command mnemonic.

device-name - A string of ASCII characters identifying the device.
Possible values for the DEVFILE (column 2, below) are:

DEVFILE DEVICE
Device Type Command Command
KSR - input and output KSR KSR
KSR - input only KSI KSR
KSR - output only KSO KSR
ASR - keyboard input/output ASR ASR
ASR - keyboard input only ASIT ASR
ASR - keyboard output only ASO ASR
ASR - paper tape reader TTR ASR
ASR - paper tape punch TTP ASR
Line printer LPT LPT
Serial printer SPT SPT
Card reader CDR CDR
Diskette (See FMDISK) DSK
Cartridge disk (removable) (see FMDISK) RCD
Cartridge disk (fixed) (See FMDISK) FCD
TTY - input and output TTY
TTY - input only TTYI (See TTY command)
TTY - output only TTYO
VIP - input and output VIP
VIP - input only VIPI (see VIP command)
VIP - output only VIPO
BSC ~ input and output BSC (see BSC command)

Note that the corresponding device-name (column 3, above) must have
appeared in a previous DEVICE, TTY, VIP or BSC command.

lrn - Logical resource number by which the device is requested. The
value of this operand must not exceed the value of the hilrn
operand specified in the SYS command. The operand must have
appeared in a previous DEVICE, TTY, VIP or BSC command.

file-name - A string of up to 12 ASCII characters specifying the
name by which the file (device) is identified within the appli-
cation.

double - If the ASCII character D is specified for this operand, all
reads and writes to this file will be double buffered. If the
operand 1s omitted, file reads and writes are not double buffered.

A-10 AU49

share - If the ASCII character S is specified for this operand, the
device can be shared. If the operand is omitted, the device
cannot be shared.

rec-size -~ The maximum record size in bytes for the device file
described in this command. The default (decimal) values for
individual devices are:

KSR/ASR/TTY 72
ASR (read or punch) 32,767
VIP (input and output) 32,767
VIP (input or output only) 80
BSC (input and output) 32,767
Line printer 137
Serial printer 133
Card reader 80

NOTES: 1. The "double" and "share" parameters are mutually
exclusive, you cannot use double buffering with
a shared file.

2. A file cannot be bidirectional and double buffered.

3. Double buffering should be used in conjunction with
the following device-name parameters: KSI, KSO,
TTYI, TTYO, VIPI and VIPO.

DEVICE

DEVICE Command (I/O Device Task)

Each device to be used in the application must be explicitly defined in
a DEVICE command. In addition, the DEVICE command implicitly defines the load
module for the driver. The device~-type operand is a generic name - there may
be more than one device of the same type in the application; e.g., two diskettes.
The level and channel operands, however, must be unique for each device. De-
vice levels usually occupy a higher priority than task levels. The lrn
operand specifies the logical resource number for the device. The lrn by which
a device is requested need not be unique, but if a device is requested by more
than one lrn, the ATLRN command must be used to relate these additional 1lrn's
to the single level for that device.

Specifying the same device-type and lrn operand values in more than one
DEVICE command causes the previous DEVICE command to be updated with the new
level and channel operand values.

The format of the DEVICE command is shown below.

DEVICEAdevice-type,lrn,level,channel|[,label]

A-11 AU49

DEVICE - Command mnemonic.

device-type - A string of ASCII characters identifying the type of
device. Possible values and associated devices are shown be-
low.

Device Type Operand Value Driver Name
KSR KSR ZIKSR
ASR ASR ZIASR
Line Printer LPT ZILPT
Serial Printer SPT ZILPT
Card Reader CDR ZICDR
Diskette DSK ZIDSK
Cartridge disk FCD (fixed) ZICDSK
Cartridge disk RCD (removable) ZICDSK

lrn -The logical resource number by which the device is requested.

The value of this operand must be an integer that is less than

or equal to the hilrn value specified in the SYS command.

level -~ The priority level at which the driver task for the device
will execute. The value of the level operand cannot be less

than 5 nor greater than the value specified as the lolevel para-

meter of the SYS command.
channel - The channel number of the device.

label - The label parameter may be either an ASCII value (location
definition), or an integer (reference LRN) that is the 1lrn
parameter of a previous DEVICE command. When the label para-
meter is given an ASCII value, the value must be defined in a
load module. The address of the label is stored as the first
entry of the device-specific words in the device resource con-
trol table (see the Executive and Input/Output manual). This
parameter can be used by the drivers as needed, except that

when it appears in a DEVICE command describing a KSR or an ASR,

it must be the entry point of the attention subroutine. The
default label for LRN 0 (operator's console) is ZIATTN, which

is defined in the Executive load module. The default for other

LRN's is null.

When the label parameter is used as a reference LRN (i.e., the
value is identical to the LRN value of a previous DEVICE
command), the location of the RCT for the previously defined
device is stored as the first entry of the device-specific

words in the RCT for the currently defined device. Conversely,

the location of the RCT for the currently defined device is stored
in the corresponding position in the RCT of the previously defined
device. DEVICE commands specifying removable and fixed cartridge

disk devices must cross-reference each other in this manner.
The following pair of DEVICE commands illustrates a valid use
of the label parameter as a reference LRN:

DEVICE FCD,6,10,X'1280"'
DEVICE RCD,9,10,X'1280',6

AU49

LRN:

The following rules apply to the use of the label parameter as a reference

e The first DEVICE command of a related pair may not have a reference
LRN to another DEVICE command; result is an error.

e The level and channel parameters of a DEVICE command that has a
reference LRN must be the same as those in the related DEVICE com-
mand.

¢ Given a related pair of DEVICE commands, the reference LRN must
be the same as the LRN in the related DEVICE command.

An implicit ADMOD command for the driver load module of the form:
ADMOD CLMFILE:<driver-name>

is issued with each DEVICE command. The default channel number is assumed. If

the default channel number cannot be used, an explicit ADMOD command having the

file-name:module-name but a new channel number can be used to change the

channel number. (See the ADMOD command.)

An implicit TASK command of the form:

TASK start-address(of the device),lrn,level

is also issued with each DEVICE command.

ELACT

ELACT Command (End Load Action)

The ELACT command indicates that all interpretive modules have been in-

cluded, and that all commands submitted to the CLM can be processed. The

format of the ELACT command is:

ELACT

ELACT - Command mnemonic.

NOTE: Prior to the processing of the ELACT command, only the IOS,
LACT, and ELACT will be recognized as valid commands, the
submission of any other command will result in an error
condition. Once this command is processed, all other com-
mands will be accepted, and the I0S, LACT, and ELACT commands
will be invalid.

The ELACT command must be issued even if no optional modules are to be

added to CLM.

A-13 AU49

ELOC/EQLRN/EVAL

ELOC Command (Define Address Symbol)

The ELOC command defines a symbolic name as an absolute address. The
definition is stored in the symbol table, and redefinition is not allowed.

The symbolic name may be referred to in the loading process. The format of
the ELOC command is shown below.

ELOCAsymbol,D'absolute-address'

ELOC - Command mnemonic.

symbol - One through six ASCII characters specifying the symbolic
name to be assigned.

absolute-address - The double-word hexadecimal integer specifying
the absolute address that is the definition of the symbol.

EQLRN Command (Equate LRN's)

The EQLRN command provides for the definition of LRN synonyms. The format
is:

EQLRNAnew-1lrn,old-1lrn

EQLRN - Command mnemonic.

new-lrn - A integer, no greater than the value of the hilrn parameter
of the SYS command, that is to be equated to a previous LRN.

0ld-lrn - The value of a previously assigned LRN for which a synonym
is being provided.

EVAL Command (Define Value Symbol)

The EVAL command defines a symbolic name as a value. The definition is
stored in the symbol table, and redefinition is not allowed. The symbolic name

may be referred to during the loading process. The format of the EVAL command
is shown below.

EVALAsymbol,value

EVAL - Command mnemonic.

symbol - One through six ASCII characters specifying the symbolic
name being defined.

value - A single-word integer whose value becomes the definition
of the symbol.

A-14 AU49

FILMGR/FMDISK/IOS

FILMGR Command (File Manager)

The FILMGR command defines the general File Manager variables. This
command must precede any other file management commands. The format of the

FILMGR command is shown below.

FILMGRA [max—~1fn] [,concurrentcalls] [,concurrent opens]

FILMGR - Command mnemonic.

max-1lfn - A value X255 representing the highest logical file number
(LFN) permitted in the application. The LFN is the value used
to refer to a file once that file has been opened. The default
value of this operand is 15.

concurrent calls - The number of concurrent calls to the File Manager.
This number must be an integer greater than zero. The default
value is 4.

NOTE: Each task can have only one call to the File Manager at
a time, but a number of tasks can have one call each at
a given point in time.
concurrent opens - The number of concurrently open files. This number
must be an integer greater than zero. The default value is 8.

FMDISK Command (File Management Disk)

The FMDISK command identifies the disk devices available to the File
Manager. The format of the FMDISK command is shown below.

FMDISKAdisk-type,lrn

FMDISK - Command mnemonic.
disk-type ~ Specifies the disk device.

DSK - Diskette
RCD - Removable cartridge disk
FCD - Fixed cartridge disk

lrn - The logical resource number by which the device is re-
gquested. The value of this operand must not exceed the
value of the hilrn operand specified in the SYS command.

I0S Command (I/0 Stream)

Using the IOS command, you can change the command input stream from one

device to another. The format of the I0S command is shown below.

IOSACIS,device,X"channel' [,member-name]

A-15 AU49

I0S - Command mnemonic.
CI$ - The name of the command input stream.

device - A string of ASCII characters designating the new command
input device. Possible values are: device mnemonics ($CDR or
SKSR) or a disk file-name.

channel - A hexadecimal integer specifying the channel number of the
new command input device.

member-name - The member name of the command input list on a disk
device. The file in which this member resides is the file-name
parameter. If the parameter is omitted, CLMCI is assumed.

LACT

LACT Command (Load Action)

The LACT command identifies a load module to be added to CLM in order to
provide interpretation of one of the supplementary command groups. One LACT
command must be included for each set of command group extentions required in

the configuration. The format of the LACT command is:

LACTAfile-name:module-name |, X'channel'] [,waid] [,overlay]

LACT - Command mnemonic.

file-name - The name of the file in which the interpretive modules
for the particular command group reside.

member-name - The member name of the load module that provides the
interpretive routines for the particular command group.

channel - The channel number (hexadecimal) of the device from which
the load module is to be loaded. The default value is the
channel from which the CLM was loaded.

waid - The identification number of the work area for this module.
If this number is omitted, the work area is not to be shared;
if the number is the same as that supplied in the LACT command
for another interpretive module, the work area can be shared.

overlay - The letter O indicates that the interpretive modules spe-
cified in this command are to be treated as overlays during the
execution of CLM; if the parameter is omitted, all modules are
resident in main memory during CLM operation. The parameter
must be coded when HMA is 1FFF (8K).

LTP

LTPDEF (Command (LTP Definition)

This command specifies the size of the communications tables that the
user-written LTP requires. The command is optional, but if used, must pre-

cede the LTPn command that refers to it. The format is:
LTPDEFAn,channel-table-size,station~table-size

LTPDEF - Command mnemonic.
n - Specifies which LTP is being defined; n is a number from 0 to 3.

A-16 AU49

channel-table-size - Specifies the number of words needed for the
channel table and the CQB's. The default value is 32 words.

station-table-size - Specifies the number of words needed for this
LTP's station table (RCT). The default value is 7 words.

LTPn

LTPn Command

This command specifies the characteristics of a nonstandard communi-
cations device. For each device driven by a user-written LTP, this command

must be issued. The format of the command is:

LTPAlrn,level,channel[,label] [,moden] [,speed] [,FDX/HDR] [,LTP-specific-word]

LTPn - Command mnemonic. There may be up to four user-written LTP's
included in a configuration. The mnemonics could be: LTPO,
LTP1, LTP2, or LTP3, depending on which user-written LTP is
being defined. CLM saves the number in the channel table for
the device for use by the LTP's initialization code.

lrn - Specifies the logical resource number by which the device is
requested; must be less than or equal to the hilrn parameter
of the SYS command.

level - The priority level at which the driver for the device will
execute. Must be less than or equal to the lolevel parameter
of the SYS command; it may be the same as other communications
devices, but must be different from the level parameter in the
COMM command, and from the levels specified for noncommunica-
tions tasks and devices.

channel - The channel number of the device.

label - A label, assumed to be a location definition, which must be
defined in a load module. This label is the entry point of the
attention subroutine. The default label for LRN 0 (operator's
console) is ZIATTN, which is defined in the executive load module.
The default for other LRN's is null.

modem - A number specifying the type of data set. Possible values
are:
0 - direct connect

1 - Bell 1lxx-type modem (103A,113F, etc.) Both data-set-ready
and carrier~-detect signals are needed for a connection;
lack of both signals is a disconnection.

2 - Bell 2xx-type modem (201A,201C,208A, etc.) The data-set-
ready signal is needed for a connection; lack of this signal
is a disconnection.

3 or greater - User-defined modem type. (See MODEM command.)
The default value is modem type 2.
NOTE: If the line is direct connect and asynchronous, modem

type 2 must be specified; if the line is direct connect
and synchronous, specify modem type 0.

speed - The data rate in bits per second. The default value is zero,
and signifies a synchronous line. One of the following values
must be specified for an asynchronous line:

50 300 2400
75 600 3600
110 900 4800

134.5 1200 7200
150 1800 9600

A-17 AU49

FDX/HDX - Specifies whether the procedure is full or half duplex.
If it is full duplex (FDX), two channel tables will be assigned.
The default value is HDX.

LTP-specific-word - A word containing user-defined information to
be passed to the LTP via the station table at offset ZQSSTS.
The default is zero.

NOTES: 1. An LTPDEF command must precede its corresponding LTPn
command unless default values are to be taken for the
channel and station table sizes.

2. Each LTP load module must be added to the load module
list constructed by CLM in the usual way; i.e., by
being identified in an ADMOD command.

MODEM

MODEM Definition Command

This command is used to define an nonstandard modem type. (See the MLCP
Programmer's Reference manual for details about contents of the line control
tables.) The information provided in this command is used to test entries in
the LCT for the device to verify a connection or a disconnection. The format
of the MODEM command is:

MODEMA type-number,connection-AND-mask,connection-XOR-mask,
disconnection-AND-mask,disconnection-XOR-mask,data-set-
control

MODEM - Command mnemonic

type-number - An integer from 3 to 15 that is assigned to this modem
definition and may then be used in a communications device com-
mand.

connection-AND-mask - A 2-digit hexadecimal number whose value deter-
mines which bits of LCT entries 14 (receive channel data set
status) and 46 (transmit channel data set status) will be examined
when a connect request is processed.

connection-XOR-mask - A 2-digit hexadecimal number whose value spe-
cifies which bits of LCT entries 14 and 46 must be on for a
connection

disconnection-AND-mask ~ A 2-digit hexadecimal number whose value de-
termines which bits of LCT entries 14 and 46 will be examined
when a disconnect request is processed, or when a test for the
occurrence of a disconnect is made.

disconnection-XOR-mask - A 2-digit hexadecimal number whose value de-
termines which bits of LCT entires 14 and 46 must be on for a
disconnection. (Entries 14 and 46 of the LCT are the data set
status for the receive and transmit channels, respectively.)

data-set~control - A 2-digit hexadecimal number placed in entry
number 20 of the LCT and line register 2 (LR2) of the communi-
cation line adapter (CLA) when a line is to be connected.

NOTES: 1. To test for a successful connection, entries 14 and 46
of the LCT are first subjected to a logical AND opera-
tion against the (user-supplied) connection-AND-mask;
then a logical exclusive OR operation is performed on
the result of the first operation, against the (user-
supplied) connection-XOR-mask. If the result is zero,
a connection has been established.

A-18 AU49

2. To test for a disconnection, the same operations are
carried out using the analogous disconnection masks.
A zero result indicates a disconnection.

3. The following table shows the mask and data set control
values for the standard, CLM-recognized modem types:

Modem Type Connection Masks Disconnection Masks Data Set
Type Number AND XOR AND XOR Control
Direct 0 X'80' Xx'so' X'80" X'00"' X'88"
Connect
Bell 1xx 1 X'A0' X'AQ' X'AQ' X'o0' X'80"'
Bell 2xx 2 X'80' X'80° X's0" X'oo! X'80'

OIMmM

0OIM Command (Operator Interface Manager Definition)

The OIM command defines the lrn and level required by the Operator Inter-
face Manager. This command must be present, or an initialization error will

occur during the loading of the Executive load module. The format of the 0OIM

command iS:

OIMAlrn,level

OIM - Command mnemonic.

lrn - The logical resource number reserved for use by the Operator
Interface Manager. The vaiue is an integer that is less than

or equal to the value of the hilrn parameter in the SYS com-
mand.

level - The priority level at which the Operator Interface Manager
operates. The value cannot be less than 5 nor greater than
the lolevel parameter of the SYS command.

QUIT

QUIT Command (Initiate Loading)

The QUIT command is the last configuration command in the command input
stream. When this command is encountered, the CLM stops reading commands from
the command input file and initiates the loading phase. As a last step in the
configuration phase, the CLM creates a set of nondedicated data structures

(tables, save areas, pointers, etc.), based upon the information contained in
the previous commands.

If the HLT parameter is present in the QUIT command, the processor will
halt after the configuration loading is completed and before the application
is started. The format of the QUIT command is shown below.

QUITA [HLT] [MAP]

A-19 AU49

QUIT - Command mnemonic.

HLT - Specification of this parameter causes the machine to halt
after loading and before beginning the execution of the
application. The default assumption is not to halt. Do
not execute a control panel master clear operation before
application execution.

MAP - Specifying this parameter causes ZXMAP to be loaded last
(provided an operator console is present) automatically.
ZXMAP must be on the same file as CLM.

This parameter is equivalent to an implicit ADMOD command:

ADMOD PROGFILE:ZXMAP

STATION

STATION Command

This command is used to specify additional devices on lines controlled by
LTP's that have been written to handle multiple devices per line. One device
on the line must be identified by describing it in an LTPn command; additional
devices are specified in STATION commands, one per device, immediately follow-

ing their corresponding LTPn commands. The format of the command is:
STATIONAlrn[,label] [,LTP-specific-word]

STATION - Command mnemonic.

lrn - Specifies the logical resource number by which the device is
requested; must be less than or equal to the hilrn parameter of
the SYS command.

label - A label, assumed to be a location definition, which must be
defined in a load module. This label is the entry point to the
attention subroutine. The default label for LRN 0 (operator's
console) is ZIATTN, which is defined in the executive load
module. The default for other LRN's is null.

LTP-specific-word - A word containing user-~defined information to be
passed to the LTP via the station table at offset ZQSSTS.

NOTE: The priority level, channel number, modem type, line speed,

and line procedure (FDX/HDX) of devices described in STATION
commands, are obtained from the preceding LTPn command.

SYS

SYS Command (System)

The SYS command defines the environment in which the online application
will be run. When specified, the SYS command must be the first CLM command
entered (with the exception of the I0OS or DATE command). The format of the
SYS command is:

SYSA[,hilrn] [,lolevel] [,SAF] [,D'himem"']

SYS - Command mnemonic.

hilrn - The highest logical resource number (LRN) to be used by
the application. The specification of this operand de-
termines the size of the logical resource table (LRT)
for the application. (The size of the LRT equals hilrn+l.)
The default value of hilrn is 15. The maximum value is 255.

A-20 AU49

lolevel - The lowest priority level to be used by the application.
This parameter also establishes the number of interrupt
save areas (ISA's) and affects the total area set aside
for ISA's and for the start-of-queue and end-of-queue
header tables. The value of the lolevel operand must be
between 6 and 62 inclusive. The default value is 15.

SAF - Model designator. The default value is SAF.

D'himem' - The double-word hexadecimal integer specifying a main
memory address. The himem operand permits a main memory
area between the end of the system and the physical end
of memory to be used for nonsystem use (e.g., for storing
an offline dump routine). The default value of the himem
operand is the high-memory address of the loader. It is
the end of the main memory area for buffers.

TASK

TASK Command (Define Task)

The TASK command defines an initial start address for a level. It is
used for a task that requires exclusive use of a level (i.e., is requested by
means of an implicit-start-address request block) or by an initially active

application task. The format of the TASK command is:
TASK start-address,lrn,level[,activity]

TASK - Command mnemonic.

start-address - An ASCII label that is the start address of the first
task code to execute on a particular level after the system is
started. The label is declared in an XDEF statement in an assem-
bly language program, and an EDEF statement to the Linker.

lrn - The logical resource number by which the task is requested.
The value of this operand must be an integer no greater than the
hilrn value specified in the SYS command.

level - The priority level at which the task will execute. The value
of the level operand cannot be less than 5 or greater than the
value specified as the lolevel of the SYS command.

activity - The value of this operand determines the setting of the
level activity indicator. Possible values and their interpreta-
tions are:

YACT - The task is initially active.
NACT - The task is not initially active.

The default value is NACT. It is the task on the highest pri-
ority level that has been declared active (by a YACT in its
TASK command) that is entered when execution starts.

TRAP

TRAP Command (Trap Vector)

The TRAP command establishes a relationship between a trap vector number
and a trap handler name. During execution, trap handling procedures are
activated only if the appropriate TRAP command has been specified. The three
Honeywell-supplied trap handlers are the Trace Trap Handler, associated with
trap vector 2, the Floating-Point Simulator, associated with trap vector 3, and

the Scientific Branch Simulator associated with trap vector 5.

A-21 AU49

If the TRAP command is used, the trap handler must be in a load module to
be loaded. Furthermore, the label of its entry point (i.e., the handler name)
must be declared at link time with the EDEF Linker command. If more than one
TRAP command is issued for the same trap vector number, the last TRAP command
overrides all previous ones for the same trap number. There are no default
values for this command. The command format is:

TRAPAtrap-number,handler-name

TRAP - Command mnemonic.
trap-number - The number of the trap vector between 1 and 46.

handler-name - A string of ASCII characters specifying the name
(label) of the start of the trap handler. This label must be
defined in the load module for this application. The three
Honeywell-supplied trap handlers have the following names:

1. ZXTRAC - Trace Trap Handler
2. ZFPSIM - Floating-Point Simulator
3. ZFBSIM - Scientific Branch Simulator

TSA

TSA Command (Trap Save Area Definition)

The TSA command defines the number and size of the items in the trap save
area (TSA) list. When a trap occurs, certain pertinent information is stored
in a trap save area item in main memory. The TSA command allows the adjust-
ment of the number and size of these items for optimum memory usage. All
items in the TSA list are of the same size. To find the total size of the trap

save area, multiply the number of items by the size of each item. The format
of the TSA command is shown below.

TSAA [, number of items] [,size]

TSA - Command mnemonic.

items - The number of trap save area items required. The default
(and the minimum) value is 2.

size - The size (in words) of one trap save area item. The default
(and the minimum) value is 8.

TTY

TTY Command

This command identifies each teleprinter device in the application. The
format of the TTY command is:
TTYAlrn,level,channel[,label] [,modem] [,speed]

TTY - Command mnemonic.

lrn - The logical resource number by which the device is re-
quested. It must be less than or equal to the hilrn
parameter of the SYS command.

A-22 AU49

level

channel
label -

modem -

speed -

VIP Command

This command identifies each visual information projection (VIP)

The priority level at which the driver for the device
will execute. Must be less than or equal to the lolevel
parameter of the SYS command; it may be the same as
other communications devices, but must be different

from the level for the COMM command, and from the levels
of noncommunications tasks and devices.

The channel number of the device.

A label, assumed to be a location definition, which must

be defined in a load module. This label is the entry point

of the attention subroutine. The default label for LRN 0
(operator's console) is ZIATTN, which is defined in the
executive load module. The default for other LRN's is
null.

A number specifying the type of data set. Possible values
are:

0 - direct connect

1 - Bell 1lxx-type modem (103A,113F,etc). Both the data-
set-ready and carrier-detect signals needed for a con-
nection; the lack of both signals is a disconnection.

- Bell 2xx~-type modem (201A,201C,208A,etc.) The data
set ready signal needed for a connection; lack of this
signal is disconnection.

N

3 or greater - User-defined modem type (see MODEM command)
The default is modem type 1.

The data rate in bits per second. Possible values are:

50 300 2400
75 600 3600
100 (default) 900 4800
134.5 1200 7200
150 1800 9600

When this command is processed, an implicit ADMOD command
is issued to include the teletype line type processor
(ZQPTTY) in the load 1list.

in the application. The format of the VIP command is:

VIP -

lrn -

level -

VIPAlrn,level,channell,label] [,modem]

Command mnemonic.

The logical resource number by which the device is re-
quested. It must be less than or equal to the hilrn
parameter of the SYS command.

The priority level at which the driver for the device
will execute. Must be less than or equal to the lolevel
parameter of the SYS command; it may be the same as other
communications devices, but must be different from the
level parameter in the COMM command, and from the levels
specified for noncommunications tasks and devices.

A-23

VIP

device

AU49

channel - The channel number of the device.

label - A label, assumed to be a location definition, which must
be defined in a load module. This label is the entry
point of the attention subroutine. The default is null.

modem - A number specifying the type of data set. Possible values
are:

0 - Direct connect

1 - Bell lxx-type modem (103A,113F,etc.). Both data-set-
ready and carrier-detect signals needed for a connec-
tion; the lack of both signals is a disconnection.

2 - Bell 2xx-type modem (201A,201C,208A,etc.). The data
set ready signal needed for a connection; lack of this
signal is a disconnection.

3 or greater - User-defined modem type. (See MODEM command.)
The default is modem type 2.

When this command is processed, an implicit ADMOD command is issued to
include the VIP line type processor (ZQPVIP) in the load list.

*

*Command (Comments)

The comments command is used only for documenting the command input listing.
These comments are bypassed by the CLM. The format of the command is shown
below.

* Acomments

* — Command mnemonic.

comments - A string of ASCII characters, up to one line in length,
specifying the comments.

A-24 AU49

APPENDIX B
PLANNING AND BUILDING WITH EXECUTIVE OBJECT MODULES

The Honeywell-supplied diskette contains a map file, CLMMAP. Members of
this file document the Linker command and Linker map output for the load
modules created by Honeywell. This appendix indicates approaches you may use
to create your own Executive and/or driver load modules from Executive object

modules.

CREATING EXECUTIVE LOAD MODULES

The Honeywell Executive, ZXEX03, consists of the object modules shown in
Table B-1l.

Table B-1. Executive Object Modules

Description Object Module Name
Task Manager ZXTSKM.O
Clock Manager (basic) ZXCMGR.O
Clock Manager (time-of-day, ZXCTDA.O
date)
Operator Interface Manager ZIOIM.O
(console)
Operator Interface Manager ZIOIMP.O
(panel)
Trace Trap Handler ZXTRCM.O
I/0 Subroutines ZIOSUB.O
System Error Handler ZUERR.O
Executive Initialization ZXINO03.0
Semaphore Routine ZXSEM.O

If you want to omit one or more of the Executive functions, you must build

your own load module from the Executive object modules.

Listings of the ZXEX03 modules indicate which modules are being initialized.
The general procedure for you to follow when preparing your own executive load
module is to examine the existing load module's initialization code for an

explanation of its functions.

B-1 AU49

The initialization subroutine table (IST) at the start of the initializa-
tion module is composed of at least one subroutine entry per module served.
This means that a module being deleted should have its initialization subrou-
tine(s) deleted. The converse is also true; a user-created module which had
initialization regquirements could be added to the existing IST (assuming the

source was available.)

Figure B-1l shows the general structure of initialization subroutines along
with a detailed sample IST.

ZXXIST DC 0 START OF IST
RESV $AF, 0
DC <ZXO0BJ1 OBJECT 1 INITIALIZE
DC 0 PARAMETERS
DC 0
DC <ZX0BJZ OBJECT 2 INITIALIZE
DC 0 PARAMETERS
bC 0
DC <ZX0BJ3 OBJECT 3 INITIALIZE
DC 0 PARAMETERS
DC 0
RESV $AF, 0 END OF IST
OBJECT 1 IST SUBROUTINE FOR OBJECT 1
OBJECT 2 SUBROUTINE FOR OBJECT 2
OBJECT 3 SUBROUTINE FOR OBJECT 3
OBJECT 4
INITIALIZATION
MODULE

Figure B-1l. Initialization Processing

Subroutines of Honeywell-supplied initialization code are functionally inde-

pendent.

To summarize, there are two areas of concern when creating your own load
module:
e Proper Linker commands, especially EDEF's needed by CLM.

e Proper IST subroutine entries in new initialization for object
modules used by new load module.

Linker commands may be determined by examination of Honeywell-supplied 1link

maps (CLMMAP). IST entries may be constructed by examination of Honeywell

initjalization module listings.

B-2 AU49

As an example of a user-created executive load module, assume that the
application needs the following existing Executive functions: task, both
clock functions, the operator interface for the console, the error subrou-

tines. Furthermore, the Buffer Manager is to be added.

A listing of ZXEX03 must be examined along with the listing for the Buffer
Manager (ZXBM0l) for IST contents. Note that some of the Buffer Ménager
initialization code must be permanently resident, and cannot be overlaid. A
new initialization load module is created containing all the required initial-
ization code for the functions to be included in the new executive load module.
The IST is located to accommodate the buffer initialization requirements.

(See Figure B-2.)

BUFFER

INITIALIZATION

(PERMANENT)

START

IST
SUBROUTINE FOR CLOCK
DURING LOADING

CLOCK

INITIALIZATION SUBROUTINE FOR BUFFERS
DURING LOADING

BUFFER

INITIALIZATION

END NEWINT, START

Figure B-2. New Initialization Modules

The link commands (from CLMMAP) for the new load module are all those
required for the modules to be used. Note that the LINKN for the ZXEX03
initialization (ZXINO3) is not used because the entire Executive module is not
being used. After all the link commands have been collected (including all
necessary EDEF's), the Linker is then executed to produce the new load module

that now contains the required executive functions.

I/0 drivers should remain separate load modules to retain variable selec-
tion during configuration using the CLM device commands (DEVICE, TTY, VIP,
BSC), and to maintain compatibility with CLM embedded file/member and start
address names.

B-3 AU49

APPENDIX C
APPLICATION CONFIGURATION EXAMPLE

This appendix provides two examples of application programs. Each example
contains the Linker, and CLM commands for the application along with a listing

of the application program.

The first example presents an input/output prcgram, BRDCST, whose purpose

is to exercise the various device drivers provided with the BES software.
The second example is a communications test program, COM200.

CONFIGURATION COMMANDS FOR SAMPLE INPUT/OUTPUT APPLICATION

The following configuration commands are used to configure the sample

application, No SYS or TSA command is used since default values are assumed.

CLOCK 60,50

ADIMOD PROGFILE:ZXEX03,X'1200" (Execution LM)

ADMOD USRPGS:BRDCST,X'1200" (Application LM)

TASK BRDCST,1,10,YACT Application LVL 10 (initially active)
DEVICE CDR,2,7,X'0580" Card reader LVL 7

DEVICE LPT,5,9,X'1300' Line printer LVL 9
DEVICE DSK,4,8,X'1200" Disk LVL 8

DEVICE ASR,0,6,X"'1380' Operator's console LVL 6
EQLRN 3,6 Teletype LVL 6

ATLRN 6,11 Input Task LVL 11

ATLRN 7,12 Output Task LVL 12
ATLRN 8,8 Disk out LVL 8

EQLRN 9,6 Teletype out LVL 6

EQLRN 10,6 ASR in LVL 6

EQLRN 11,6 ASR out LVL 6

ATLRN 12,13) Output Task 2 LVL 13
ATLRN 13,14 Output Task 3 LVL 14
QUIT HLT

LINK COMMANDS FOR SAMPLE INPUT/OUTPUT PROGRAM

The following commands are used to produce the load module BRDCST prior to

invoking CLM to configure an application using the program:

NAME BRDCST
LINK BRDCST
EDEF BRDCST
MAP

QUIT

SAMPLE INPUT/OUTPUT PROGRAM

The following pages show a documented listing of the BRDCST program.

c-1 AU49

6¥0Y

000001 TITLE BRDCST

0600002 *

000003 * THIS TEST PROGRAM IS A

000004 * MEDIA TRANSCRIPTION TEST,
000005 * IT CAN EXECUTE AS AN

600006 * ON-LINE OR OFF-LINE

000007 * DRIVER TESTesesee

000008 *

000009 * THE OPERATOR WILL TYPE

000010 * 0x0v0oYOY

000011 *

000012 * X= INPUT DEv NUMBER Y= OQUTPUT DEV NUMBER
000013 * 0= CARD READER

000014 * 1= TELETYPE

000015 * 2= DISKETTE IN

000016 * 3= PRINTER

000017 * = DISKETTE oOuT

000018 * = TELETYPE OUT

000019 * = ASR IN

000020 * 7= ASR OUT

000021 *

000022 *

000023 * LRN 0=0P CONSOLE

000024 * LRN 1=CONTROL TASK

000025 * LRN 2= CARD READER

000026 * LRN 33TELETYPE IN

000027 * LRN 4=DISKETTE IN

000028 * LRN S=PRINTER

000029 * LRN 6= INPUT TASK

000030 * LRN ?7=QUTPUT TASK

000031 * LRN 8=DISKETTE 0UT

000032 * LRN 9=TELETYPE QUT

000033 * LRN 10=ASR IN

000034 * LRN 11=ASR OyT

000035 * LRN 1220UTPUT TASK2

000036 * LRN 13=0UTPUT TASK3

000037 *

000038 *

000039 AR K kK

000040 'k k

000041 PEIx] LRN TABLE

000042 * ko

000043 * %

000044 *

000045 *

000046 0000 2020 BLNK S TEXT °* '

000047 0001 3939 3939 TERM TEXT '9999!¢ TERMINATION CHARACTERS
000048 *

000049 *

000050 0003 DEVTBL RESV O

000051 0003 0008 nC <CROBLK LRN 2
000052 0004 0013 [<TTYBLK LRN 3
000053 0005 O0OO1B (XY <D SKBLI LRN 4
000054 0006 0028 oC <PRTBLK LEN 5
000055 0007 0023 [9 <DSKBLO LRN 8
000056 0008 0033 pC <TTYOUT LRN 9
000057 0009 0038 X4 <ASRINP LRN 10
000058 000A 0043 oC <ASROUT LRN 11
000059 *

6¥NY

coM2NO 76022 Lb ASSEMBLER=NDAN COMM TEST PROGRAM PAGF 6002

0p00NAD 00y R NISCOM EQu %

00N06L 00YR 00NN RESV $AF,0

000N62 N0Y1O N0 ne X'o1! WAIT TILL 1/0 COMPLETE
000063 Q018 Oupk ne XYUOR? DISCONNECT

0000k DDIR Q00D RESV SAF, 0 BUFFER

0aNneS Q10 0001 nec 1 RANGE=1 WOQORD

0000KA OOID 0030 ne X'30¢

NDNO6T7 0OLE 0nGo ne Xin

000NAR O0IF 0000 ne X'o!

000069 * *

noo070 * * *INRR:COMMUNTICATIONS CONSOLE INPUTw

000071 * *

000072 0p2e . comcr EQU)

0noo73 6020 0000 RESV $AF, 0

000074 0N21 0001 nDe X101 WAIT TILL 1/0 COMPLETE
00D0TS 0022 Qu0? ne xtaog! READ

00N076 0023 ND1FR nc <COMRFR BUFFER ADDRESS

000077 0024 (DR ne 72 RANGF=72

00007R 0025 0030 ne X'30° ECHO, L.F. R&C/R
NopOT79 0026 0000 ne X0

0000RN 0N27 0000 ne xto!

0n00n81 * *

000nR2 * * *IORB:1COMMUNICATIONS CONSOLE OUTPUT
000083 * *

NNO00ORY 0028 coMco EQU $

00NOHRS 0028 0000 RESV $AF,0

00ONRG (0029 ONOY ne X'y WATT TILL I/0 COMPLETE
HO0ORT 0028 (44d oc xtauy? WRITE, CONTROL RYTE RIGHTMOST
0NNNRR nO2B N1Ae ne <LPRUF1 BUFFER START ADDRESS
0000R9 002C 0049 oC 73 73=RANGE

000090 Q02D 0030 L De xt3o! ECHO, LINE FEED AND C/R
000091 002 0000 ne X'o! RESIDUAL RANGE

000092 0N02F 0000 nec xto! STATUS WORD

000093 * *

nono9u * * *TNRAICARD READER INPUT

000095 * *

000096 0030 CPRIN ERL $

000097 0030 0000 RESV $AF,0

00009R N031 0004 nc X'of! WAIT

000099 0032 0302 ne X'302°* READ CARDS

000100 0033 01CF nC <CDRALIF BUFFER

000101 0034 0050 ne A0 80=CHARACTER RANGE
000102 0035 0000 DC x'o! ASCI! MODE

000103 0036 0000 nc xto!

000104 0037 0000 nc xto!

000108 * *

000106 * * *JORB:LINE PRINTER QUTPUT

000107 * *

000108 003n LPTYOUT EQU $

000109 0038 0000 RESV $AF,0

00010 0039 0001 nc X'01! WALT

no0t1t 0034 0241 bl Xt2a1! WRITE/CONTROL BYTE RIGHTMOST
000112 Q03R 0146 nc <LPRUF1 BUFFER

n00113 003C 0049 oc 73

000114 0030 0000 nc xto"

000115 ONZE 0000 nc x'o!

000116 003F 0000 nc xto!

000117 * *

000118 * * *BEGIN

000119 * *

6vnv

000120 *

000121 * TASK 1 (INPUT) REQUEST BLOCK LRN 6
000122 *
000123 009Cc 0000 TASKO1 RESV 1,0
000124 0090 0000 DC x*0000°*
000125 009 0600 oC X*0600°*
000126 O009F 013¢ oC <INSTRT
000127 "
000128 * TASK 2 (OUTPUT) REQUEST BLOCK LRN 7
000129 »
000130 00AC 0000 TASKC2 RESV 1,0
000131 00a1 0000 pC X' 0000*
000132 00a2 0700 0C X*0700*
000133 00A3 0150 [19 <QUTSTR
000134 *
000135 whd ok ox
000136 * % OUTPUTZ2 TASK REQUEST BLOCK
000137 LRI R
000138 *
000139 00A4 0000 TASKO3 RESV 1,0
000140 00A5 0000 DC x* 0000
000141 00A6 0¢00 pC X*0c00*
000142 O00A7 0161 (9 <ouTesT
000143 "
000144 LR
000145 LR OUTPUT3 TASK REQUEST 8LOCK
000146 ok ok ok
000147 *
000148 00a8 0000 TASK C4 RESV 1,0
000149 00A9 0000 X9 X* 0000*
000150 00AaA 0000 D¢ Xx*gou0*
000151 00AaB 0171 oC <QUT3ST
000152 *
000153 *
000154 *
000155 *
000156 * START-UP I1/0 REQUEST BLOCK(OQUT)
000157 "
000158 00Aac¢ 0000 MESS-AG RESV 1,0
000159 00Ap 0001 oC x*01*
000160 OOCAE 0001 DC x* C001°* LRN O
000161 00AF 0084 bC <OUTMSG
000162 0080 0065 DC 101
000163 008t 0000 RESV 3,0
000164 00B4 2063 7264 2072 ouTMsG TEXT ' crd rdr=0"*
0087 6472 3030
000165 0089 2074 7479 2069 TEXT ' tty in=1'
00BC 6E30 3100
000166 008 2064 6973 6820 TEXT ' disk in=2*
00c1 696E 3032
000167 00C3 2070 726 7472 TEXT ' prntr=3'
00ce6 3033
000168 00c7? 2064 6973 6820 TEXT * disk out=4'
00cA 6F75 743p 3400
000169 00co O0DOA oC 2'0p0A’
000170 0O0Ce 2074 7479 206F TEXT ° tty out=5"
00p1 7574 3035
000171 0003 2061 7372 2069 TEXT ' asr in=6"'
00p¢ 6E3D 3600
000172 0008 2061 7372 206F TEXT ' asr out=7"'

(3494

000173
000174

000175
000176
000177
000178
000179
000180
000181
000182
000183
000184

000185
000186
000187
000188
000189
000190
000191
000192
000193
000194
000195
000196
000197
000198
000199
000200
000201
000202
000203
000204
000205
000206
000207
000208

000209
000210
000211
000212
000213
000214
000215
000216
000217
000218
000219
000220
000221
000222
000223
000224
000225
000226
000227

0008
00p0
00DE
00€1

00€5
00€e6
00€e7
00€e8
00€e9
00EA
00ED
00F0

00F1
00F2
00F3
00F4

00Fs
00F6
Q0fr7
00f8
00F9
00FA
00FD
00FE
0100
0101
0104
0105

0106
0108
010A
010c
010€

7574
0p0A
2074
306E
3079

0000
0001
0002
00e 0
0008
0000
2020
2020

00AC
00€ES
0000
0000

0000
0001
0041
00FD
0011
0000
0041
6465
0000
2065
3000
0000

0001
0002
0005
0040
00EF
00F 0

cc80
9870
9fF00
9fF00
9¢00

3037

7970 6520
3079 3079

2020 2020

763D

7272 6F72

00F2
2020
00EE
00€F
00FO

*
*
*
INPM SG

INMS ¢

*
*

PARL ST

RRM SG

ERROR

DEVA SN

STATUS
*

*

$LVC T
$LVC T2
$LVCTS
$Lwa T
oUT S k2
QUTSK3

*
*
*
*
*
8

RDC ST

DC 2°'000A°

TEXT * type OnOyOyOy'

STARTUP 1/0 REQUEST BLOCK

RESV 1,0

oC x*01*

[X4 Xx*0002°*

DC <INMSG

D¢ 8

RESV 3,0

TEXT

oC <MESSAG PARAMETER LIST
0C <INPMSG

D¢ 0

DC 0 WORK WORDS(PREVICUS WORD

I1/0 ERROR MESSAGE IORB

RESV 1,0

P18 x*01*
bC X*C041"*
DC <E RROR
pC 17

RESV 3,0

DC X*C0s41°

TEXT ‘dev=’
DC x* 0000°*
TEXT * error=?

DC X*0000°*
EQU 1
EQU 2
EQU 5

EQu X* 40
EQU <INMSG+2
£qu <INMSG+3

TYPE STARTUP MSG,WAIT FOR REPLY

LoB $B4,<PARLST+3LVCTY
LDR $R1,=2'2020"
STR SRI1,<INMSG+]
STR SR1,<INMSG+2
STR $R1,<INMSG*+3

T00)

67OV

0000

000343 0181
0183
000344 0184
000345 0186
000346 0188
000347 0189
000348 0188
000349
000350
000351
000352
000353
000354
000355
000356
000357 018D
018E
000358 018F
000359 0191
000360 0193
000361 0195
000362 0197
000363 0199
000364 0198
000365
000366 019cC
000367
000368
000369
600370
000371
000372
000373
000374 019D
ERR COUNT

8ac4
0020
0580
B84 4
8AD3
BF44
0380

8951
3030
9F00
AFOO
CF80
880
p380
cc80
8384

0oo0

0150
013F
0106

0601

0188
0005

0005
0000

0105
0100
019¢
00F5
0000
019¢

10K

RRO LT

STORB4

* % %

Le

8BF
LDR
INC
STR
LNJ

$B4.SLVCTT,X'0L20"

<NOTOSK
SR3,584 ,3LVCTS
=3 R3
SR3,35843LVCTS
$85,<ZXTERM

D0 BIT TEST

NOT A DISK IF BIT=D

LOAD CURRENT SECTOR INTO R3
BUMP IT BY 1

PUT IT BACK WHERE IT BELONGS.asa
NOW YOU CAN POST + TERMINATE

THE FOLLOWING CODE IS AN ERROR ROUTINE
1T DISPLAYS THE DEVICE NUMBER AND THE
STATUS CCDE ON THE OP CONSOLE THEN IT
RETURNS CONTROL AT THE POINT THE I/0
WAS REQUESTED. IT RUNS AT THE
LEVEL OF THE OFFENDING RQUTINEswesse

ORDER

LBT

STR
STR
sTe
LAB
LNJ
Los
JMP

RESV

XDEFS

XDEF

XLoc
END

=3R1,2'3030"

$R1,<STATUS
SR2,<DEVASN
$B4L,<STORBS
$B4LI<ERRMSO
$85,<Z10REQ
$B4,<STORBY
$B4

1’0

AND XLOCS

MAKE [T TYPEABLE

THROW STATUS IN 8JFFER
THROW DEV ICE NUMBER IN SAME
HOLD RETURN ADDRESS
AND SETUP FOR
THE ERROR TYPEOUT
LOAD RETURN ADD RESS 1IN B4
GO BACK AND RE-ISSUE ORDER

B4 HOLD WORD

OUTSTR, INSTRT,gRpCST

ZITYPRsZXRQST#ZIOREQs ZXTERM

BRDCST

CONFIGURATION COMMANDS FOR SAMPLE COMMUNICATIONS APPLICATION

The following commands are used to configure the sample communications
application. The absence of a TSA command indicates that default values were
taken.

LACT CLMCOMM:COMM

ELACT

SYS 16,22,SAF

OoIM 5,11

COMM 7

TTY 4,10,X'FD00',,0

ADMOD PROGFILE:ZXEX03,X'0400"
ADMOD LINKFILE:COM200,X'0480"
CLOCK ,50

DATE '760622','1200'

DEVICE KSR,0,6,X'0500"

DEVICE LPT,2,8,X'1380"

DEVICE CDR,3,9,X'1300°'

TASK GLUE,6,12,YACT

QUIT HLT,MAP

LINK COMMANDS FOR SAMPLE COMMUNICATIONS PROGRAM

The following commands are used to produce the load module COM200 prior to

invoking CLM to configure an application using this program:

NAME COM200
LINK COM200
MAP

EDEF GLUE
QUIT

SAMPLE COMMUNICATIONS PROGRAM

The following pages show a documented listing of the COM200 pagram.

x%x (200 LTIMNK gk
*k*xSTART

L IR aeon

*kHTGH 02ue

**CURRKENT 0246

xxFXT DEFS
[2ECGMY G000
P LHREL GooQ
* COM200 Q0040
GLVIFE Goun
kA xUNDEF

x COM200 0000
ZINRELG 6191
IXCTeH GUiE
IXCMGR 0127

IMG UNOEF

Cc-7 AU49

670V

campan TA0622 Lb ASSEMRLER=N200 COMM TEST PROGRAM PAGE 0001

000001 TITLE CAMR200,' 760622 COMM TEST PROGRAM
0onooo0e * *
0na003 % *FXTERNALS
goooou * *
000008 xL0C Z10RFQ INPUT=0UTPUT DRIVER
000006 XLNC 2XCTND
0nonnn7 XLOC ZXCMGR CLOCK MANAGER
000008 XLoc
000009 XNEF GLYE

nouon
000010 * *
000011 * * *JORR:L ARELEDN NPISPLACEMENTS
0o0nn1e * *
000013 0p0no Z1RLNK Ent) 0 LINK
000014 noon1 ZIRCT1 EQU ZIRLNK+SAF CONTROL WORD
a0p01s 0002 ZIRCT? EQU ZIRCT1+14 CONTROL WORD 2
000016 noed ZIRRAD Fau 2IRCT2+1 BUFFER ADDRESS
000017 nooy ZIRRMG ENU ZIRRAD+SAF RANGE
000018 0008 ZIRNDVS £QuU ZIRRNG+1 OEVICE SPECIFIC
nooote 0006 Z1RRSR EQy ZIRDVS+1 RESIDUAL RANGE
000020 0007 ZIRSTY ENU 2TRRSR+1 SOFTWARF STATUS WORD
00002t * *
000022 * * *TORAICONSOLE TNPUTx *
000023 * *
000024 0000 KSRIN ENU s
noon2s 0000 0000 RESV $AF, 0
Nn6026 0001 00Nt ne X'toy! WAIT TILL 1/0 COMPLETE
000027 0002 0002 nDe xto2! READ
000028 0003 014R oc <KSRRBUF BUFFER ADDRESS
n00029 0004 0006 nc 6 RANGE IN AYTES
000030 0005 0030 ne x'3n0! C/R, LINE FEED, RECHO
000031 000k 0000 ne xto! RFSIDUAL RANGE
000032 0007 0000 ocC Xto? STATUS
000033 * *
000034 * * *INRR:CNANSOLE OUTPUT
000035 * *
000036 00CR KSROUT EQU $
000037 000R 0000 RESYV SAF, 0
000038 0009 000t : pcC X101 WATT
0900039 nnoA 00ul nec Xtay! WRITF
anona4o0 000R 01AC nec <LPAUF{ RUFFER
o004t 000C 0014 nc 20 RANGE IN RYTES
000042 000D 0030 nc X360 C/R, L.F.y» R ECHOD
Q00043 000E 0000 ne x'o!
0nNoods 00uF 00no nec Xto!
000045 * *
000046 * * *TNRBICONNECT COMMUNICATIONS CONSOLE*
nooouY * *
0No0dR 0010 CONCOM EQuU *
0n00049 00610 0000 RESV $AF,0
0000S0 0011 0001 ne X'01! WAIT TILL I/0 COMPLETE
000051 0012 0404 ne xtyqoa! CONNECT
no00sS2 0ot3 00N RESV RAF, 0
N000S3 o00t4 00Ny ne 1 RANGE=1 WORD
000054 0015 0030 ne X130
000085 0014 0000 pe xX'o!
N0e0Se 0017 0000 ne xto!
n0nos7 * *
0NONSA * *

*TORR:DISCOMNECT COMMUNICATIONS CONSOLE
000059 * *

670V

000060
000061
000062
000063
000064
000065
000066
000067
000068
000069
000070
000071
000072
000073
000074
000075
000076
0goovz?
000078
000079
000080
000081
000082
000083
000084
000085
000086
000087
000088
000089
000090
000091
000092
000093
000094
000095
000096
000097
000098
000099
000100
000101
000102
000103
000104
000105
000106
000107
000108
000109
000110
000111
000112
000113
000114
000115
000116
000117
000118
000119

0008
000¢
0000
000€
000F
0010

0013
0014
0015
0016
0017
00138

0018
001¢
001D
001E
001F
0020

0023
0024
002s
0026
0027
0028

0028
002c¢
ao2o
002€
002F
0030

0033
0034
0035
0036
0037
0038

0038
003¢
0030
003E
003F
0040
0041

0043
0044
0045
0046
0047
0048
0049

0048
004cC

0ao0
0001
0202
004 C
0050
0000

0000
0001
0342
0048
0050
0000

0000
0021
0402
004cC
0050
0000

0000
0021
0801
004
0050
0000

0000
0001
0541
0048
0050
0000

0000
0001
0941
0048
0050
0000

0000
0001
0A02
004¢C
0050
0044
0000

0000
0001
0801
004c¢
0050
0044
0000

0041

CRDBLK

*
1TYBLK

*
0SKBLI

*

DSKBLO

*
PRTBLK

*
TTYOUT

*

ASRINP

*
ASROLT

*

BUFFEP
BUFF ER

RESV
oC
DC
DC
DC
RESV

RESV

pC
e
DC
RESV

RESV
0C
DC
DC
oc
RESV

RESV
ocC
DC
oC
DC
RESV

RESV
0¢
oC
DC
0C
RESV

RESV

DC
0¢
oC
RESV

RESV
DC
bC
bC
DC
0C
RESV

RESV

3c
pC
bC
DC
RESV

nC
RESV

1,0

X' 01
x*02ue*
<BUFFER
80

3,0

1,0
x*01°
X' 0342
<BUFFEP
80

3,0

1,0
x*a021"
Xt 0402¢
<BUFFER
80

3,0

1,0
x'Q021*
x*0801"
<BUFFER
80

3,0

1,0
x*Q1
X* 0561
<BUFFEP
80

3,0

1,0
x*'01°*
X' 0941
<BUFFEP
80

3.0

1,0
x*01!
X*0a02°*
<BUFFER
80

X' 004s"
2,0

1,0
x*01*
x*0801°
<BUFFER
80
X*0064"
2'0

X' 0041°
80

CARD READER
1/70

CONTROL
BLOCK

TTY CINPUT)
/0
CONTROL
BLOCK

DISKETTE INPUT
170

CONTROL

BLOCLK

DISKETTE QUTPUT
/7o

CONTROL

BLOCK

PRINTER
/0
CONTROL
BLOCK

TTY (QUTPUT)
170

CONTROL
BLOCK

ASR (INPUT)
/70

CONTROL
BLOCK

ASR (QUTPUT)
7o

CONTROL
BLOCK

CARRIAGE CONTROL CHARACTER PRINT + SPACE

0T-0

6vav

coM200 760627 Lk ASSEMRLER=0200 COMM TEST PROGRAM PAGE 0003
0np120n 0040 CRAC 0010 GLUE LAB $RU, <CONCOM GFT CONNECT IORB
000121 0042 DIRO0 0000 X LNJ $RS, <ZIORFQ AND CONNFCT COMMUNTCATIONS CONSOLE
000122 0044 F3IB0 00467 LNJ $R7,<CLFARR CLEAR MESSAGE RUFFER
000123 004s HRB20 0236 QUERY LPR $R3, <OUFS,8R? GET MESSAGE TEXT
000124 00u4” RF20 0147 STR $R3, <LPRIIF2,$R2 AND STORE ADDRESS
000125 004A 2E0H ADV $R2,1 ADD { TO COUNTER
000126 004R 2004 cMy $R2,4 B CHARACTERS?
000127 004C 0981 FFFQ RNE QUERY IF NOT, GET MORE
00012R 004E KAOOD 021C LDR $R3, <RELLS GET RELLS
000129 00S0 RF20 0147 STR $R3, <LPRUF2,8R2 AND STORE IN BUFFER
000130 0052 CRRO NQ0A LAB $RU, <KSROUT
000131 0054 4Co9 LDV $R4,9
000132 00SS CF44 0004 STR $RU, SRU,ZTRRNG
000133 0057 03RO 0000 ¥ LNJ $RS,<ZI10REQ PRINT MESSAGE ON KSR
000134 0059 O0F81 0007 B KREAD AND THEN GO TO READ K8
000135 ONSB CBBO 001R DISCON LAR $B4,<PISCOM GET DISCONNECT IORB
000136 00SD D3RO 0000 X LN $85,<7ZT0REQ DISCONNECT COMM CONSOLE
000137 O00SF O0F81 Q1E3] FINTS
n00138 0061 CRBO 0000 KREAD I.AR $RU, <KSRIN LNAD KSR INPUT IORB
000139 0063 D3IAO 0000 X LNJ $BS, <Z10REQ READ COMMAND
000140 0065 OFB1 0050 B GETCH
000141 * *
000142 * * *ERROR ROUTINES
000143 * *
000144 0067 CRBO 0008 CLEARR LAR $BU, <k SROUT GET IORR
000145 0069 ARBO 0146 Lag $R2,<LPRLUIF1 GET CONTROL BYTE
000146 006R AFC4 0003 STR $R2,%$R4 ZTRRAD AND STORE ADDRESS
000147 006D B752 cL =SR2 CLEAR COUNTER
000148 006E BBRO 0147 LAR $R3,<LPRUF? GET LPBUF2
000149 0070 2C2u LoV $R2,36 SET COUNTER TO 36
000150 007%Y D3RO 014E LNJ $85,<SPACIT GO CLEAR BUFFER
000151 0073 8782 cL =$R? CLEAR COUNTER AGAIN
000152 0074 8387 JMp $RY AND GO BACK WHERE YOU CAME FROM
000153 * *
000154 0075 4COF ERRMSG Lov $R4,15
000155 0076 CF44 00Nd STR $RU, SRU,ZIRRNG
000156 0078 BR20 021D LDR $R3,<MSG1,$R2 GET MESSAGE TEXT
000157 0072 BF20 01A7 STR $R3,<LPRUF2,8R2 AND STORE ADDRESS
000158 007C 2E01 ADV $R2,1 ADD 1 TO COUNTER
000159 007D 2D07 cMV %R2,7 14 CHARACTERS?
000160 OO07E 0981 FFFe BNE ERRMSG IF NOT, GET MORE TEXT
000161 00RO D3RO 0000 X LNJ $RS, <ZT10REQ ELSE,GO PRINT IT
000162 0082 F3R0 0067 LNJ $B7,<CLEARR CLEAR BUFFER AGAIN
000163 0084 B7S2 cL =SR2
000164 0085 OFR1 FFCO 8 QUERY
000165 * *
000166 0087 4COB DONMES Lnv SRU, 11
000167 0088 CFu4u 0004 STR $RU,$RU,ZIRRNG
000168 00BA RB20 0224 LDR $R3,<MSG2,8R2 GET MESSAGE TEXT
000169 00BC RF20 0tA7 STR $R3, <LPRUF2,%R2 AND STORE ADDRESS
000170 00BE 2E01 ANV $R2,1 ADD 1 TO COUNTER
000171 008BF 2004 cmy $R2,4 B CHARACTERS?
000172 0090 0981 FFFé BNE DONMF S IF NOT, GET MORE TEXT
000173 0092 ABR0O0 021C LPR $R3,<AELLS
000174 0094 BF20 01A7 STR $R3, <LPRUF2,8R2
000175 0096 D3RO0 0000 X LNJ $R5,<Z7INRER GO PRINT MESSAGE
000176 0098 OF81 FFC? R DISCOM AND THEN GO DISCONNECT COMM CONSOLE
000177 * *
000178 009A 4COD DEVERR LoV $RU,13
000179 009B CF4d 0004 STR $RU, $RU,ZIRRNG

TT-0

67 0Y

com200

NoO1AN
0003ARY
NODYHP
NONLAZ
0ONyAY
600185
cop1Re
0001R7
0001 18R
000189
0n0190
000191
0nn19e
000193
0e0t194
000195
nNnNnige
000197
000198
000199
000200
000201
noon202
00020%
000204
000205
000206
0nn207
00020A
000209
000210
000211
000212
000213
0n0214
000215
000216
000217
oonz21a
000219
000220
000221
000222
000223
n00224
000225
000226
000227
000228
000229
000230
000231
000232
000233
000234
000235
000236
000237
000238
000239

T60K22

0oar:
NO9F
anat
N0AR
nnal
OnasS
00AT7
O0BR

LE-X)
0oac
NOAF
0O0RN
NOR2
aony

NNR&
O0RA
0ORA
0nRC
00RE
00Co
onca
nocy
00Ce
00CeR
o0cA
00CC

00CF
o0ono
oo
n0oDe
aonde
nona
0ong
00DA
aonc
N0DE
0NEO
NOEY
00E3
00ES
00E6
00ER
00EA
00ER
00EC
00EE

00F 0
00F2
00Fd
00F6

L6

HRB20
RF20
fFny
2Dhoe
N9k
NIAN
8752
nFg

F1a0
0FRY
F3an
nFey
E3AN
0FRY

RROO
HG00
nany
rR9OO
0981
B NO
RYNO
09AaY
FRNO
RO
09A}
0FRY

CRRO
NIAO
BROO
Bo70
0901
8752
R754
1901
0FR1
R2A0D
2E01
R1FQ
0981
2ns0
0901
0F 81
case
2nso
0901
0F81

[%:2-Y0}
ARBO
AFC4
4E0}

ASSEMRLEReN200

nePR
0tA7

FFFA
0000

FFan

0067
FFRA
0067
FFCu
00kT
FFES

0142
01F7
FFEF
023D
FFEF
0143
023F
FFEQ
0144
023F
FFE3
0001

no3n
0000
01CF
1020
0090

0003
FFD5
01CF

2000
0006

0009
FEFS

0003
FFEF

0028
0146
0003

cOMM TEST PROGRAM

TWwIG!
Tw1G2

TWIG3

GETCH

*
*
*
CARDRD

CHECK

COUNT

*
coMouT

LPR
STR
ANV
cMy
BNF
LN
cL
R

LNJ
R
LA
B
LnJ
R

*

L.DR
CMR
RE

CMR
RNE
LOR
CMR
AME
LDR
CMR
ANE

LAR
LNJ
LDR
CMR
BE
CL
CcL
REZ

LLH
ADV
CMH
RNE
cMy
BE
A
LDR
cMV
BE

LAB
LAB
8T8
ADV

PAGE 000U

%R3,<MBG3,%Re

$RT, < PRUF2.8R2 STORE ADDRESS OF MESSAGE

sR2,1 ADD 1 TO COUNTER

KR, b 12 CHARACTERS?

PEVERR IF MOT GET MORE TEXT

$RS, <ZTOREQ OTHERWISE, GO PRINT IT
=$R2

QUERY

*

$R7,<CLFARR

NOMME S

SR7,<CLFARR

FRRMSG

§$RAT,«CLEARR

NDEVERR

*

*READ CONSOLE TNPUTw *
*

$R3, <KSRRUF GET 18T TWO CHARACTERS
$R3, <TERM

TWIGH

$R3,<CH? COMPARE TO CA

TwiG? WRONG COMMAND

$R3, <KSRABLUF+1 GET 2ND TWO CHARACTERS
$R3, <CHU COMPARE TO RD

TWIG2 WRONG COMMAND

$R3, <KSPBUF+2 GET NEXT TW0O CHARACTERS
$R3, <CHe COMPARE TO IN

TWwIG? WRONG COMMAND

CARDRD

*
*READ CARDS
*
$RU,<CHRIN GEY I0RB
$85,<ZI0ORFQ READ A CARD
$R3, <CDRBUF LOAD IT 1IN
$R3,=2'1020" COMPARE TO EOF
coMoUy IF EOF, GO TO COMM CONSOLE
=$R2
=3RY
$R1,CHECK IF NO ERROR, GO TO CHECK
TWIG3 OTHERWISE, DEVICE ERROR
$R3,<CDRBUF,8R2
$R2,1
$R3,=Z2'20"
COUNT
$R2,R0
cCoOMOUT
CHECK
$RU,E5R2
$R2,80
comouT
CHECK

*
*SEND CARD INPUT TO COMMUNICATIONS DEVICEw
*

$B4, <COMCO GET IORB
$82,<LPBUF1 GET CONTROL BYTE
$82, 884, ZIRBAD AND STORE ADDRESS
SR4, 1

[ALe]

67NV

COoM200

000240
000241
000242
000243
000244
000245
000246
000247
000248
000249
000250
000251
000252
000253
000254
000255
000256
000257
0002SR
000259

000260

000261
000262
000263
000264
000265
000266

000267

000268
e0e269
000270
000271
000272
000273
000274
000275
060276
000277
000278
000279
Npn280
onoegel
000eRe
000283

0np2Rd
00N2RS
0002R6
0002R7
0002R8
000289

0noaz29o
00291

760622

00F7
00F9
00FA
00FC
O0FE
00FF
0100
0102
0104
0106
0108

0104
o10C
010D
010F
0110
0112
011%
0114
0116
0117
0118
0118
031C
011D
011F
0120
0121
0123
niau
0126

n128
012a
o1ecC

012€
012F
0131
0132

0134
0134
0137
0139
013R
013C
013
n13F
0141
nraz
G144
Ny us
0yu7
C1dRrR
n1da
0y ac

L6

CFau
8752
8820
BF20
2E01
2024
0981

‘D380

1981
F3Cco
0F81

cB8&o
8752
RRBO
2C08
D3RO
BF 84
1F00
AFLO
1F00
1C0U
CRARG
nigon
1003
CRRC
AF8U
{FoC
&F4LO
1F00
CRAD
N3IRC

ChARQ
ARRQ
AFCU

’752
BRAO
2c24
PIRC

Crao
E&#Sy
BeQn
HFCOC
0500
&FUQ
1FaQ
cean
FARY
AFCO
7500
KFan
T7F00
3R G
1901
OF 84

ASSEMBLER=0200
0004
01CF
0147

FFF9
0000 X
FFAD
0003
FFCS

0000 X
022€

014E

0119

022E

0000 X

0000 X

010F

0P31
0000 X

0038
0146
0003
0147
[\R W13
010C

02°E
NoFs

N06A
nyo2
00FF
0067
nono X

000R
FFeS

COMM TEST PROGRAM

comMmMQ

*
*
*

GETIVE

PRTM]

ZAPLT

PRTM2

STR
cL
LDR
STR
ADV
cmv
BNE
LNJ
BNEZ
LNJ
2]

*

LAB
cL
LAR
LoV
LNg
RSTR

SAVE

LDV
LAR
LMJ
Lov
LAR
R3TR

SAVE

LAR
Lng

LAR
LAR
STR

CcL

ILAR
LoV
LNJ

LNR
LOR
LOR
RSTR

SAVF
LDR
LNDR
RSTR
SAVE

LNJ
REZ

PAGE 0005

$R4, $RU,7IRRNG
z§R2
$R3,<CDRBUF,SR2
$R3,<LPBUF2.%R2
$R2,1

$R2,36

coMMN
$BS,<ZIOREQ
SR1,TWIG3
$B7,GETIME
CARDRD

CLEAR R2 COUNTER TO ZERO

GET TWO CHARACTERS FROM CDRBUF
AND STORE IN LPBUF2

ADD 1 TO COUNTER

COMPARE TO 36

IF NOT 36,GET MORE

QOTHERWISE SEND TO COMM DEVICE

*
#GET DATE AND TIME AND PRINT IT»

*
SRU,<ZXCTOD
=%R2

83, <TIMER
%R2,B
$R5,<SPACIT
$R4,=7'1F00!

TIMER,=Z'1F00"

fRY1, =4

$RU, <TIMER
¥RS, €ZXCMGR
fR1,=3

$Rd, <ZXCTOD
$Bu,=Z'"1F0O0"

TIMER+3,=Z2'1F00"

$RU,<TIMFR+3
$RS, <7ZXCMGR

*

§B4, <. PTOUT
$R2,<LPRUF1{
%R2, $RU,7IRRAD
*

=8R?

$R3, <LFRUF2
$R2, =3¢k

SRS, <SPACIT

*

$R4,SLASKH
SR6,=5RU
YRI,<TIMER
TIMER+),=2'0500"

LPHEUF2,=27'1FQ0"
$RU,COLOM
$R&,=SRU
TIMER+3,=71'7500"
LPRUF24+6,27"'7F00"
¥RG,<ZTNKRERQ

SR1,PRINT
TAIGR

GET DATE AND TIME

RESTORE IN R=REGISTERS 3=7
AND SAVE IN TIMER

PUT 4 IN R}

GET ADDR OF DATE
CONVERT DATF TO ASCII
PUT 3 IN R}

GET ADDR OF TIME
CONVERT TIME TO ASCITI

GET TORB
GET CONTROL BYTE
STORE ADDR

SET R2 10 0

GET LPT BUFFER

POT 36 IN R2

CLEAR BUFFER T0O SPACES

GET A SLASH

ONE FOR R& TOO

LOAD YEAR IN R3

LOAD REST OF DATE IN RS AND R7

AND SAVE R3=R7 INTO LPRUF2

PUT A COLON TN R4
AND ALSD TN Ré

GET TIME AND PUT IN OTHER R=REGISTERS
AND SAVE INTO LPBUF?

GO PRINT 17
IF STATUS 0K, GO ON
OTHERWISE, DFVICE ERROR

€T-0

(3404

comao0

nnoe9r
000293
000294
non2os
000296
000297
00029R
000299
060300
000301
ono3ne
000303
000304
000305
00n30e
000307
000308
000309
000310
000311
000312
000313
000314
000315
000316
000317
000318
000319
000320
000321
000322
000323
000324
000325
000326
000327
000328
000329
000330
000331
000332
000333
000334
no0335
000336
000337
000338
000339
000340
000341
000342
000343
000344
000345
000346
000347
000348
000349
000350
000351

Tetee?

C14E
0150
0151
n1s5e

0153
0155
0157
0159
N1SA
018C
015€
N15F
0140
162
01h4
R Y1)

0167
0169
nyeh
016R
0160
0t6F
017
0173
0174
0176
0177
0179
0178
017C
0170
017F
0181
0183
0185
0187
0189
0188
018C
01BE
0190
0192
0193
0195
0197
0198
0199
0198
019C
019E
0tA0

Lé

1Ak
FEQO
FFer
29FF
RIRR

CRED
ARRD
AFCU
LAY
8820
BF20
2F01
enaa
0981
D3RO
1981
8387

RBAN
8752
2c2u
D380
CRRO
ARBO
AFCY
4co7
CFuu
8752
RB20
AF20
2E01
2003
N981
CREO
£380
1901
0F81
8900
09A1
8752
0F 8y
CHBO
D3RD
8752
8820
BF20
2E01
2D01
0901
22y
0981
F3C0
0F8t1

ASSEMPLER-N20N

0240

003R
01A6
0no3

N1CF
01A7

FFFQ
0000 X
FF4n

01A7

014F
0028
0tae
0003

0004

0234
0147

FFF9
0028
0000 X
000
FF2C
01F7
0009

FER9Q
0020
0000 X

01F8
01CF
FFED
FFF6

FF68
FFED

comy

*
SPACIT

£A

PRINT

PRINT]

*
*
*
COMQUY

COMAUE

ENDIT

COMIN

coMMI

TEST PROGRAM

EGQH
LDR
STR
RNEZ
Jup

*

I.AR
LAR
STR
cL
LNR
STR
ADV
cMy
ANE
LNJ
BNEZ
Jmp

L AR
CL

LDV
LNg
LAR
LAR
STR
Lhv
STR
cL

LNDR
STR
ADV
CMV
BNE
LAB
LNJ
REZ

CMR
ANE
cL

LAB
LNJ
cL

LDR
STR
ADV
CcMy
BE

cMy
BNE
LNJ

PAGE 0n06

*

%

FR6, <RLANKS
FRA6,$BT ,=FR2
$R2,>=88
SRS

*

*PRINMT CARD INPUT

*
SRY,<LPTOUT
§R2,<LPRUF1
$R2,5B4,ZIRRAD
=$R2

$R3, <CDRBUF ,$R2
$R3,<l.PBUF2,%R2
3R, 1

$R2, 36

PRINTI1

%85, <710REQ
FR1,TWIG3

$H7

*

GET IORB

GET CONTROL BYTE VALUE

PLACE IT IN RUFFER

GET 2 CHARACS FROM CORRUF
STORE IN LPBUFZ2

ADD 1 TN COUNTER

72 CHARACTERS?

IF NOT, GET MORE

PRINT A LINE

COMMUNICATINONS CONSOLE I/0%

*
SR, <LPRUF2
=$R2?

fR2,36
$R5,<SPACIT
$R4,<cCOMCO

$R2, <LPBUF1
$R2, 8B4 ,71RBAD
$RU, 7
$RU,SR4,ZIRRNG
=$R2

$R3, <NUES2.$R2
$R3,<L.PBUF2,8R2
$R2,1

$R2,3

COMQUE
$B4,<COMCO

®RS5, <ZIORER
$R1,COMIN

TWIGS3

$R3,<TERM

CoMMT

=$R2

QUERY
$84,<COMCI
$RS5,<ZI0RER
=$R2
$R3,<COMRFR,$R2
$R3, <CORBUF, SR2
$R2,1
$R2, 1
ENDIT
$R2,36
coMmY
$87,GETIME
COMIN

*

CLEAR BUFFER TO SPACES
GET IORB

GET CONTROL BYTE

AND STORE ADDRESS

CLEAR COUNTER

STORE MESSAGE IN OUTPUT BUFFER
ADD { TO COUNTER

6 CHARACTERS?

IF NOT, READ SOME MORE

OTHERWISE, SEND MESSAGE
IF STATUS OK, GO TO READ INPUT
ELSE, DEVICE ERROR

GET IORB
READ COMM CONSOLE INPUT

‘CLEAR COUNTER TO ZERO

GET TWO CHARACTERS
AND STORE IN CDRBUF
ADD 1 TO COUNTER

COMPARE T0O 1

GO CHECK IF THEY ARE TC

72 CHARACTERS?

IF NOT, GET MORE

ELSE,GO GET THE TIME

GO READ MORE FROM COMM CONSOLE

¥T1-O

670V

comzoo

000352
000353
nno3s54
000355
000356
000357
000358
000359
000360
000361

000362

000363

000364
000365

000366

000367
000368
000369
000370
000371
annz72
000373
000374
00037%
000376
000377
000378
0000 ERR €

Te60k22

6182
014n
0147
01CF
01F7
01FR
021c
021n
021F
021F
0220
n221
n222
0223
0224
0225
0224
0227
0228
0229
nN2z2Aa
ap2R
022c
o22n
022€
0236
0237
n238
0239
n23A
0238
023¢
023N
023F
023F
0240
0241
n24?

0243

0245

0246
OUNT

L6 ASSEMBLER=0200

2641

Sudl

0707
43uF
apup
414F
au2o
ass2
S24F
5221
atuac
aceon
quuf
4ELS
4uus
5649
43us
2045
5252
4Fs?

43UF
an4gp
414F
a43a
494k
5055
5474
43401
s244
UOUE
2020
°F20
3870

OFC1
oeao

FFFQ

cOMM TEST PRNGRAM

*

*
KSRRUF
LPRUF1
LPBUF?
CNRBUF
TERM
COMBFR
BELLS
MSG1

M§G2

MSG3

TIMER
QUES

AUES2

CH?
CH4
CHé
BLANKS
SLASH
coLon
*

*

*
FIMTS

"

RESV
TEXT
RESV
RESV
TEXT
RESV
TEXY
TEXT

TEXT

TFXT

RESV
TEXT

TEXT

TEXT
TEXT
TEXT
ne

TEXT
TEXT

NOP
HLY
END

PAGF 0007

*NDEFINITIONS AND

36
z2'0707!
‘COMMAND FRRORY?

‘ALL DONME!

'DEVICF ERROR!

R
'COMMAND g ¢

VINPUTS Y

A
RN

ERUATES

ACTION
CLM ACTION DURING LOADING, 3-13
ELACT COMMAND (END LOAD COMMAND),
A-13
LACT COMMAND (LOAD ACTION), A-17

ACTIVATE
ACTIVATE LEVEL COMMAND (AL), 4-5

ADDRESS

ASSEMBLY LANGUAGE START ADDRESS
DEFINITION, 3-17

COBOL LANGUAGE START ADDRESS
DEFINITION, 3-18

ELOC COMMAND (DEFINE ADDRESS
SYMBOL) , A-14

FORTRAN LANGUAGE START ADDRESS
DEFINITION, 3-17

ADMOD
ADMOD COMMAND (ADD LOAD MODULE),
A-4

AL
ACTIVATE LEVEL COMMAND (AL), 4-5

AR
ALL REGISTERS COMMAND (AR), 4-5

AREA (S)
DATA STRUCTURE AREAS, 2-19
ESTABLISHING OVERLAY AREAS, 2-21
TSA COMMAND (TRAP SAVE AREA
DEFINITION), A-23

ASSEMBLY
ASSEMBLY LANGUAGE START ADDRESS
DEFINITION, 3-17

ASSIGN
ASSIGN COMMAND (AS), 4-5

ATFILE
ATFILE COMMAND (ATTACH FILE), A-4

ATLRN
ATLRN COMMAND (ATTACH LRN), A-5

ATTACH
ATFILE COMMAND (ATTACH FILE), A-4
ATLRN COMMAND (ATTACH LRN), A-5

BES
BES SOFTWARE FOR APPLICATION
DEVELOPMENT (TBL), 2-3
BES SOFTWARE FOR APPLICATION
EXECUTION (TBL), 2-2
OVERVIEW OF BES SOFTWARE SERVICES,
2-1

BINARY
BINARY SYNCHRONOUS COMMUNICATIONS
(BSC 2780), 2-29

INDEX

BOOTSTRAP
BOOTSTRAP RECORD FOR NONSTOP CLM
LOADING (TBL), 3-8

BREAKPOINT (S)
LIST ALL BREAKPOINTS COMMAND (L*),
4-9
LIST BREAKPOINT COMMAND (LN), 4-10
SET BREAKPOINT COMMAND (SN), 4-11

BSC
BINARY SYNCHRONOUS COMMUNICATIONS
(BSC 2780), 2-29
BSC 2780 COMMAND, A-6

BUFFER
FILE MANAGER BUFFER HANDLING, 2-10
SELECTING FILE AND BUFFER MANAGEMENT
TECHNIQUES, 2-8

BUFFERED
BUFFERED READ OPERATIONS, 2-10
BUFFERED WRITE OPERATIONS, 2-11

BUFSPACE
BUFSPACE COMMAND (POOL DEFINITIONS),
A-7

BUILDING
BUILDING, 3-1
BUILDING A CLM COMMAND FILE, 3-12
BUILDING AN ONLINE APPLICATION -
PROCESS DIAGRAM (FIG), 3-2
PLANNING AND BUILDING WITH EXECUTIVE
OBJECT MODULES, B-1

CALCULATIONS
SIZE CALCULATIONS FOR SYSTEM DATA
STRUCTURES, 2-6

CH
CHANGE MEMORY COMMAND (CH), 4-6

CLEAR
CLEAR COMMAND (Cn), 4-6
CLEAR COMMAND (C*), 4-5

CLM

BOOTSTRAP RECORD FOR NONSTOP CLM
LOADING (TBL), 3-8

BUILDING A CIM COMMAND FILE, 3-12

CLM ACTION DURING LOADING, 3-13

CLM FUNCTIONAIL GROUPS COMPONENT
MODULES AND RELATED COMMANDS (TBL),
3-7

CLM LOAD MODULE ORDER FOR PAPER TAPE
(TBL), 3-11

EFFECTS OF CLM PARAMETERS ON MEMORY
USAGE (TBL), 2-5

HOW TO INCLUDE OPTIONAL CLM
EXTENSIONS, 3-6

INFORMATION FOR SYSTEM DATA
STRUCTURES FROM CILM COMMANDS, 2-4

i-1 AU49

CLM (CONT)
INPUT DEVICES FOR CLM, A-3
PREPARING TO USE CLM, 3-1

SUMMARY OF CLM COMMANDS AND COMMAND

FUNCTIONS (TBL), A-1
CLOCK
CLOCK COMMAND (SYSTEM CLOCK), A-8
REAL-TIME CLOCK (RTC), 4-17
Cn
CLEAR COMMAND (Cn), 4-6
COBOL
COBOL LANGUAGE START ADDRESS
DEFINITION, 3-18
CODE
LINKING ORDER FOR CODE TEXT, 3-4
CODING
OVERLAY CODING CONVENTIONS, 2-21
COMM
COMM (COMMUNICATIONS SYSTEM
COMMAND), A-9
COMMAND
ACTIVATE LEVEL COMMAND (AL), 4-5

ADMOD COMMAND (ADD LOAD MODULE),
A-4

ALL REGISTERS COMMAND (AR),

ASSIGN COMMAND (AS), 4-5

ATFILE COMMAND (ATTACH FILE), A-4

ATLRN COMMAND (ATTACH LRN), A-5
BSC 2780 COMMAND, A-6
BUFSPACE COMMAND (POOL
DEFINITIONS), A-7

BUILDING A CLM COMMAND FILE,
CHANGE MEMORY COMMAND (CH),
CLEAR COMMAND (Cn), 4-6
CLEAR COMMAND (C*), 4-5
CLOCK COMMAND (SYSTEM CLOCK), A-8
COMM (COMMUNICATIONS SYSTEM
COMMAND) , A-9

COMMAND FORMAT, A-2

DATE COMMAND (DATE AND TIME), A-9

DEBUGGING COMMAND FORMAT AND
SYMBOLOGY, 4-3

DEBUGGING COMMAND LANGUAGE, 4-2
DEFINE COMMAND (Dn), 4-6

DEFINE TRACE COMMAND (DT), 4-7

DEVFILE COMMAND (FILE MANAGEMENT
DEVICES), A-10
DEVICE COMMAND
A-11

DISPLAY MEMORY COMMAND (DH),
DUMP MEMORY COMMAND (DP), 4-7
ELACT COMMAND (END LOAD ACTION),
A-13

ELOC COMMAND (DEFINE ADDRESS
SYMBOL), A-14

EQLRN COMMAND (EQUATE LRN'S), A-14

4-5

3-12
4-6

(I/0 DEVICE TASK),

4-7

INDEX

COMMAND (CONT)

EVAL COMMAND
A-14
EXECUTE COMMAND (EN), 4-8

FILMGR COMMAND (FILE MANAGER), A-15
FMDISK COMMAND (FILE MANAGEMENT
DISK), A-15

GO COMMAND (GO), 4-8

I0S COMMAND (I/O STREAM), A-15

LACT COMMAND (LOAD ACTION), A-17

LINE LENGTH COMMAND (LL), 4-9

LIST ALL BREAKPOINTS COMMAND (L*),
4-9

LIST BREAKPOINT COMMAND (Ln), 4-10
LOADING FROM DISK USING THE COMMAND
PROCESSOR, 3-9

LTP DEFINITION COMMAND, A-17

LTPN COMMAND, A-18

MODEM DEFINITION COMMAND, A-19

OIM COMMAND (OPERATOR INTERFACE
MANAGER DEFINITION), A-20

PRINT COMMAND (Pn), 4-10

PRINT COMMAND (P*), 4-10

PRINT HEADER LINE COMMAND (Hn), 4-8
PRINT HEXADECIMAL VALUE COMMAND (VH),
4-12

PRINT TRACE COMMAND (PT), 4-10

QUIT COMMAND (INITIATE LOADING), A-20

RESET FILE COMMAND (RF), 4-10
*COMMAND (COMMENTS), A-25

SET BREAKPOINT COMMAND (Sn),
SET LEVEL COMMAND (SL), 4-12
SET TEMPORARY LEVEL COMMAND (TL),
4-12

SPECIFY FILE COMMAND (SF),
STATION COMMAND, A-21
SUMMARY OF CLM COMMANDS AND COMMAND
FUNCTIONS (TBL), A-1

SYMBOLS USED IN DEBUGGING COMMAND
LINES (TBL), 4-4

SYS COMMAND (SYSTEM), A-21

TASK COMMAND (DEFINE TASK), A-22

TRAP COMMAND (TRAP VECTOR), A-22

TSA COMMAND (TRAP SAVE AREA
DEFINITION), A-23

TTY COMMAND, A-23

VIP COMMAND, A-24

(DEFINE VALUE SYMBOL),

4-11

4-11

COMMANDS

CLM FUNCTIONAL GROUPS COMPONENT
MODULES AND RELATED COMMANDS (TBL),
3=7

CONFIGURATION COMMANDS FOR SAMPLE
COMMUNICATIONS APPLICATION, C-5

CONFIGURATION COMMANDS FOR SAMPLE
INPUT/OUTPUT APPLICATION, C-1

CONFIGURATION LOAD MANAGER COMMANDS,
A-1

DEBUGGING COMMANDS, 4-5

INFORMATION FOR SYSTEM DATA
STRUCTURES FROM CLM COMMANDS, 2-4

LINK COMMANDS FOR SAMPLE
COMMUNICATIONS PROGRAM, C-6

AU49

COMMANDS (CONT)
LINK COMMANDS FOR SAMPLE INPUT/
OUTPUT PROGRAM, C-1
SUMMARY OF CLM COMMANDS AND COMMAND
FUNCTIONS (TBL), A-1
SUMMARY OF DEBUGGING COMMANDS BY
FUNCTION (TBL), 4-2

COMMENTS
*COMMAND (COMMENTS), A-25
COMMUNICATIONS
BINARY SYNCHRONOUS COMMUNICATIONS
(BSC 2780), 2-29
COoMM (COMMUNICATIONS SYSTEM
COMMAND) , A-9
COMMUNICATIONS PLANNING, 2-27
CONFIGURATION COMMANDS FOR SAMPLE
COMMUNICATIONS APPLICATION, C-5
LINK COMMANDS FOR SAMPLE
COMMUNICATIONS PROGRAM, C-6
PRICRITY LEVEL REQUIREMENTS FOR
COMMUNICATIONS, 2-27
REQUESTING COMMUNICATIONS
FUNCTIONS, 2-28
SAMPLE COMMUNICATIONS PROGRAM, C-6

COMPONENT
CLM FUNCTIONAL GROUPS COMPONENT
MODULES AND RELATED COMMANDS
(TBL), 3-7

CONFIGURATION

APPLICATION CONFIGURATION AND
LOADING, 3-8

APPLICATION CONFIGURATION EXAMPLE,
c-1

CONFIGURATION COMMANDS FOR SAMPLE
COMMUNICATIONS APPLICATION, C-5

CONFIGURATION COMMANDS FOR SAMPLE
INPUT/OUTPUT APPLICATION, C-1

CONFIGURATION LOAD MANAGER
COMMANDS, A-1

MEMORY LAYOQUT DURING CONFIGURATION
(FIG), 3-14

USING THE CONFIGURATION LOAD
MANAGER (STAGE 6), 3-6

CONSOLE
LOADING FROM DISK WITH AN
OPERATOR'S CONSOLE, 3-9
LOADING FROM DISK WITHOUT AN
OPERATOR'S CONSOLE, 3-10

CONVENTIONS
OVERLAY CODING CONVENTIONS, 2-21
PRINTER SPACE CONVENTIONS, 2-12

CREATING
CREATING EXECUTIVE LOAD MODULES,
B-1

INDEX

CREATION
LOAD MODULE CREATION (STAGE 5),
OBJECT MODULE CREATION (STAGE 4),
SOURCE MODULE CREATION AND EDITING
(STAGES 2 AND 3), 3-3

3-4
3-4

C*
CLEAR COMMAND (C*), 4-5

CURRENT
CURRENT LOAD MODULE MEMORY LAYOUT
(FIG), 3-5

DATA

DATA STRUCTURE AREAS,

DATA STRUCTURES, 4-18

HARDWARE/EXECUTIVE DATA STRUCTURES
(FIG), 4-18

INFORMATION FOR SYSTEM DATA
STRUCTURES FROM CLM COMMANDS, 2-4

MEMORY DATA STRUCTURES (FIG), 2-20

SIZE CALCULATIONS FOR SYSTEM DATA
STRUCTURES, 2-6

2-19

DATE

DATE COMMAND (DATE AND TIME), A-9

DEBUG

ADDITTONAL OPERATING NOTES FOR THE
ONLINE DEBUG PROGRAM, 4-14
ONLINE DEBUG PROGRAM FUNCTIONS,

USING THE ONLINE DEBUG PROGRAM,

4-2
4-1

DEBUGGING

DEBUGGING, 4-1

DEBUGGING COMMAND FORMAT AND
SYMBOLOGY, 4-3

DEBUGGING COMMAND LANGUAGE,

DEBUGGING COMMANDS, 4-5
DEBUGGING DURING ONLINE APPLICATION
DEVELOPMENT, 4-16

SUMMARY OF DEBUGGING COMMANDS BY
FUNCTION (TBL), 4-2

SYMBOLS USED IN DEBUGGING COMMAND

4-2

LINES (TBL), 4-4
USING THE ONLINE DEBUGGING PROGRAM,
4-13
DEDICATED
HARDWARE DEDICATED LOCATIONS, 2-19
DEFINE
DEFINE COMMAND (DN), 4-6
DEFINE TRACE COMMAND (DT), 4-7

ELOC COMMAND (DEFINE ADDRESS SYMBOL),
A-14

EVAL COMMAND (DEFINE VALUE SYMBOL),
A-14

TASK COMMAND (DEFINE TASK), A-22

i-3

AU49

DEFINING
DEFINING APPLICATION DESIGN
OBJECTIVES, 2-3
DEFINING ONLINE ENVIRONMENT
CHARACTERISTICS, 2-4

DEFINITION (S)

ASSEMBLY LANGUAGE START ADDRESS
DEFINITION, 3-17

BUFSPACE COMMAND (POOL
DEFINITIONS), A-7

COBOL LANGUAGE START ADDRESS
DEFINITION, 3-18

FORTRAN LANGUAGE START ADDRESS
DEFINITION, 3-17

LTP DEFINITION COMMAND, A-17

MODEM DEFINITION COMMAND, A-19
OIM COMMAND (OPERATOR INTERFACE
MANAGER DEFINITION), A-20

TSA COMMAND (TRAP SAVE AREA
DEFINITION), A-23

DESIGN
DEFINING APPLICATION DESIGN
OBJECTIVES, 2-3
DESIGNING
DESIGNING PROGRAMS FOR AN ONLINE
ENVIRONMENT, 2-13
DEVFILE

DEVFILE COMMAND (FILE MANAGEMENT
DEVICES), A-10

DEVICE
DEVICE COMMAND (I/O DEVICE TASK),
A-11

DEVICES
DEVFILE COMMAND (FILE MANAGEMENT
DEVICES), A-10
INPUT DEVICES FOR CLM, A-3

DH

DISPLAY MEMORY COMMAND (DH), 4-7
DIAGRAM
BUILDING AN ONLINE APPLICATION -

PROCESS DIAGRAM (FIG), 3-2

DISK

FMDISK COMMAND (FILE MANAGEMENT
DISK), A-15

LOAD AND HALT PROCEDURES FOR DISK,
3-9

LOADING FROM DISK USING THE COMMAND
PROCESSOR, 3-9

LOADING FROM DISK WITH AN
OPERATOR'S CONSOLE, 3-9

LOADING FROM DISK WITHOUT AN
OPERATOR'S CONSOLE, 3-10

DISPLAY

DISPLAY MEMORY COMMAND (DH), 4-7

INDEX

Dn

DEFINE COMMAND (Dn), 4-6
DP

DUMP MEMORY COMMAND (DP), 4-7
DRIVERS

INPUT AND OUTPUT DRIVERS, 2-18
DT

DEFINE TRACE COMMAND (DT), 4-7
DUMP

DUMP MEMORY COMMAND (DP), 4-7
EDITING

SOURCE MODULE CREATION AND EDITING

(STAGES 2 AND 3), 3-3

ELACT
ELACT COMMAND (END LOAD ACTION), A-13

ELOC
ELOC COMMAND
A-14

(DEFINE ADDRESS SYMBOL),

EMULATION
IBM 2780 REMOTE TERMINAL EMULATION,
2-29

En
EXECUTE COMMAND (En), 4-8

END
ELACT COMMAND (END LOAD ACTION), A-13
ENVIRONMENT
' DEFINING ONLINE ENVIRONMENT
CHARACTERISTICS, 2-4
DESIGNING PROGRAMS FOR AN ONLINE
ENVIRONMENT, 2-13
EQLRN
EQLRN COMMAND (EQUATE LRN'S), A-14
EQUATE
EQLRN COMMAND (EQUATE LRN'S), A-14
ERRORS
HANDLING LOAD ERRORS, 4-20
EVAL
EVAL COMMAND (DEFINE VALUE SYMBOL),
A-14
EXECUTE

EXECUTE COMMAND (En), 4-8
EXECUTION
BES SOFTWARE FOR APPLICATION
EXECUTION (TBL), 2-2
MEMORY LAYOUT DURING APPLICATION
EXECUTION (FIG), 3-16
SERVICES AVAILABLE FOR APPLICATION
EXECUTION, 2-1

AU49

INDEX

EXECUTIVE
CREATING EXECUTIVE LOAD MODULES, B-1
EXECUTIVE OBJECT MODULES (TBL), B-1
PLANNING AND BUILDING WITH
EXECUTIVE OBJECT MODULES, B-1l
SELECTING EXECUTIVE MODULES, 2-8

EXTENSIONS .
HOW TO INCLUDE OPTIONAL CLM
EXTENSIONS, 3-6

FILE
ATFILE COMMAND (ATTACH FILE), A-4
BUILDING A CLM COMMAND FILE, 3-12
DEVFILE COMMAND (FILE MANAGEMENT
DEVICES), A-10

FILE MANAGER BUFFER HANDLING, 2-10

FILMGR COMMAND (FILE MANAGER), A-15

FMDISK COMMAND (FILE MANAGEMENT
DISK), A-15

HOW TO ESTIMATE OVERLAY FILE SIZE,
2-25

INTERACTIVE FILE TYPE/LFN
COORDINATION, 2-12

LEVEL 6-TO-LEVEL 6
TRANSMISSION, 2-29

MEMORY AND WORK FILE SPACE USAGE
(TBL), 4-1

OUTPUT FILE PREALLOCATION (STAGE 1),
3-3

RESET FILE COMMAND (RF), 4-10

SELECTING FILE AND BUFFER MANAGEMENT
TECHNIQUES, 2-8

SPECIFY FILE COMMAND (SF),

FILE

4-11

FILMGR

FILMGR COMMAND (FILE MANAGER), A-15
FLOATABLE

EXAMPLE OF FLOATABLE OVERLAYS, 2-24
FMDISK

FMDISK COMMAND

DISK), A-15

(FILE MANAGEMENT

FORMAT
COMMAND FORMAT, A-2
DEBUGGING COMMAND FORMAT AND
SYMBOLOGY, 4-3

FORTRAN
FORTRAN LANGUAGE START ADDRESS
DEFINITION, 3-17

FUNCTION (S)
SUMMARY OF DEBUGGING COMMANDS BY
FUNCTION (TBL), 4-2

FUNCTIONAL
CLM FUNCTIONAL GROUPS, COMPONENT
MODULES AND RELATED COMMANDS
(TBL), 3-7

ONLINE DEBUG PROGRAM FUNCTIONS, 4-2

FUNCTIONAL (CONT)
REQUESTING COMMUNICATIONS FUNCTIONS,
2-28
SUMMARY OF CLM COMMANDS AND COMMAND
FUNCTIONS (TBL), A-1

GO
GO COMMAND (GO), 4-8
HALT
LOAD AND HALT PROCEDURES FOR DISK,
3-9
HARDWARE
HARDWARE DEDICATED LOCATIONS, 2-19
HARDWARE/EXECUTIVE
HARDWARE/EXECUTIVE DATA STRUCTURES
(FIG), 4-18
HEADER
PRINT HEADER LINE COMMAND (HN), 4-8
HEXADECIMAL
PRINT HEXADECIMAL VALUE COMMAND (VH),
4-12
Hn

PRINT HEADER LINE COMMAND (Hn), 4-8

HONEYWELL-SUPPLIED
NAMES AND SIZES OF HONEYWELL-SUPPLIED

LOAD MODULES (TBL), 2-9

IBM
IBM 2780 REMOTE TERMINAL EMULATION,
2-29

INITIALIZATION

INITIALIZATION PROCESSING (FIG), B-2
INITIALIZATION SUBROUTINES, 2-25

NEW INITIALIZATION MODULES (FIG), B-3
REGISTER USE BY SYSTEM INITIALIZATION

SUBROUTINES (TBL), 2-26

INITIATE
QUIT COMMAND (INITIATE LOADING), A-20

INPUT
INPUT AND OUTPUT DRIVERS,
INPUT DEVICES FOR CLM, A-3

2-18

INPUT/OUTPUT
CONFIGURATION COMMANDS FOR SAMPLE
INPUT/OUTPUT APPLICATION, C-1
LINK COMMANDS FOR SAMPLE INPUT/OUTPUT
PROGRAM, C-1
SAMPLE INPUT/OUTPUT PROGRAM, C-1
SELECTING INPUT/OUTPUT MODULES, 2-8

INTERACTIVE

INTERACTIVE FILE TYPE/LFN
COORDINATION, 2-12

AU49

INTERFACE
OIM COMMAND (OPERATOR INTERFACE
MANAGER DEFINITION), A-20

I0S
IOS COMMAND (I/O STREAM), A-15

I/0 .
DEVICE COMMAND (I/O DEVICE TASK),
A-11

I0S COMMAND (I/O STREAM), A-15

LACT
LACT COMMAND (LOAD ACTION), A-17
LANGUAGE
ASSEMBLY LANGUAGE START ADDRESS
DEFINITION, 3-17
COBOL LANGUAGE START ADDRESS
DEFINITION, 3-18

DEBUGGING COMMAND LANGUAGE, 4-2
FORTRAN LANGUAGE START ADDRESS
DEFINITION, 3-17

LENGTH
LINE LENGTH COMMAND (LL), 4-9
LEVEL(S)
ACTIVATE LEVEL COMMAND (AL), 4-5
ATTACHING LRN'S TO LEVELS, 2-16

LEVEL 6-TO-LEVEL 6 FILE
TRANSMISSION, 2-29

PRIORITY LEVELS, 2-13

PRIORITY LEVEL REQUIREMENTS FOR

COMMUNICATIONS, 2-27
RELATIVE PRIORITY LEVEL ASSIGNMENTS

SAMPLE LRN PRIORITY LEVEL
ATTACHMENTS (FIG), 2-15

SAMPLE STATEMENTS ATTACHING LRN'S
TO LEVELS (FIG), 2-16

SET LEVEL COMMAND (SL), 4-12

SET TEMPORARY LEVEL COMMAND (TL),
4-12

LINE (S)
LINE LENGTH COMMAND (LL), 4-9
PRINT HEADER LINE COMMAND (HN), 4-8
SYMBOLS USED IN DEBUGGING COMMAND
LINES (TBL), 4-4

LINK
LINK COMMANDS FOR SAMPLE
COMMUNICATIONS PROGRAM, C-6
LINK COMMANDS FOR SAMPLE INPUT/
OUTPUT PROGRAM, C-1

LINKING
LINKING ORDER FOR CODE TEXT, 3-4
LIST
LIST ALL BREAKPOINTS COMMAND (L¥*),
4-9
LIST BREAKPOINT COMMAND (Ln), 4-10

INDEX

LL
LINE LENGTH COMMAND (LL), 4-9
Ln
LIST BREARKPOINT COMMAND (Ln), 4-10
LOAD
ADMOD CCMMAND (ADD LOAD MODULE), A-4
CLM LOAD MODULE ORDER FOR PAPER TAPE
(TBL), 3-11
CONFIGURATION LOAD MANAGER COMMANDS,
A-1
CREATING EXECUTIVE LOAD MODULES, B-1
CURRENT LOAD MODULE MEMORY LAYOUT
(FI1G), 3-5
FLACT COMMAND (END LOAD ACTION), A-13
HANDLING LOAD ERRORS, 4-20
LACT COMMAND (LOAD ACTION), A-17
LOAD AND HALT PROCEDURES FOR DISK,
3-9
LOAD MODULE CREATION (STAGE 5),
LOCATING LOAD MODULES, 4-15
NAMES AND SIZES OF HONEYWELL-
SUPPLIED LOAD MODULES (TBL), 2-9
SUMMARY OF LOAD MODULE PREPARATION,
3-6
USING THE CONFIGURATION LOAD MANAGER
(STAGE 6), 3-6

3-4

LOADING

APPLICATION CONFIGURATION AND
LOADING, 3-8

BOOTSTRAP RECORD FOR NONSTOP CLM
LOADING (TBL), 3-8

CLM ACTION DURING LOADING, 3-13
LOADING FROM DISK USING THE COMMAND
PROCESSOR, 3-9

LOADING FROM DISK WITH AN OPERATOR'S
CONSOLE, 3-9

LOADING FROM DISK WITHOUT AN
OPERATOR'S CONSOLE, 3-10

LOADING FROM PAPER TAPE, 3-10

MEMORY LAYOUT AFTER LOADING (FIG),
3-15

NONSTOP APPLICATION LOADING, 3-8
QUIT COMMAND (INITIATE LOADING), A-20

LOCATING

LOCATING LOAD MODULES, 4-15
LOCATIONS

HARDWARE DEDICATED LOCATIONS, 2-19
LOGICAL

LOGICAL RESOURCE NUMBERS, 2-15

PHYSICAL AND LOGICAL RESOURCE

REQUIREMENTS (TBL), 2-3

LRN'S
ATTACHING LRN'S TO LEVELS, 2-16
EQLRN COMMAND (EQUATE LRN'S), A-14
SAMPLE STATEMENTS ATTACHING LRN'S
TO LEVELS (FIG), 2-16

AU49

INDEX

LRN
ATLRN COMMAND (ATTACH LRN), A-5
SAMPLE LRN PRIORITY LEVEL

ATTACHMENTS (FIG), 2-15

L*
LIST ALL BREAKPOINTS COMMAND (L¥*),
4-9

LTP

LTP DEFINITION COMMAND, A-17

LTPn
LTPn COMMAND, A-18

MANAGEMENT
DEVFILE COMMAND (FILE MANAGEMENT
DEVICES), A-10
FMDISK COMMAND (FILE MANAGEMENT
DISK), A-15
SELECTING FILE AND BUFFER

MANAGEMENT TECHNIQUES, 2-8

MANAGER
CONFIGURATION LOAD MANAGER COMMANDS,
A-1

FILE MANAGER BUFFER HANDLING, 2-10

FILMGR COMMAND (FILE MANAGER), A-15

OIM COMMAND (OPERATOR INTERFACE
MANAGER DEFINITION), A-20

USING THE CONFIGURATION LOAD MANAGER
(STAGE 6), 3-6

MEMORY
CHANGE MEMORY COMMAND (CH), 4-6
CURRENT LOAD MODULE MEMORY LAYQOUT
(FIG), 3-5
DISPLAY MEMORY COMMAND (DH), 4-7
DUMP MEMORY COMMAND (DP), 4-7
EFFECTS OF CLM PARAMETERS ON MEMORY

USAGE (TBL), 2-5
MEMORY AND WORK FILE SPACE USAGE
(TBL), 4-1

MEMORY DATA STRUCTURES (FIG), 2-20

MEMORY LAYOUT AFTER LOADING (FIG),
3-15

MEMORY LAYOUT DURING APPLICATION
EXECUTION (FIG), 3-16

MEMORY LAYOUT DURING CONFIGURATION
(FIG), 3-14

MEMORY USAGE CONSIDERATIONS, 2-19

MODEM
MODEM DEFINITION COMMAND, A-19

MODULE

ADMOD COMMAND (ADD LOAD MODULE), A-4

CLM IOAD MODULE ORDER FOR PAPER
TAPE (TBL), 3-11

CURRENT LOAD MODULE MEMORY LAYOUT
(FIG), 3-5

LOAD MODULE CREATION (STAGE 5), 3-4

OBJECT MODULE CREATION (STAGE 4),
3-4

MODULE (CONT)

SOURCE MODULE CREATION AND EDITING
(STAGES 2 AND 3), 3-3

SUMMARY OF LOAD MODULE PREPARATION,
3-6

MODULES
CLM FUNCTIONAL GROUPS COMPONENT
MODULES AND RELATED COMMANDS (TBL),
3-7
CREATING EXECUTIVE LOAD MODULES, B-1
EXECUTIVE OBJECT MODULES (TBL), B-1
LOCATING LOAD MODULES, 4-15
NAMES AND SIZES OF HONEYWELL-SUPPLIED
LOAD MODULES (TBL), 2-9
NEW INITIALIZATION MODULES (FIG), B-3
PLANNING AND BUILDING WITH EXECUTIVE
OBJECT MODULES, B-1
SELECTING EXECUTIVE MODULES, 2-8
SELECTING INPUT/OUTPUT MODULES, 2-8
MONITOR .
MONITOR POINTS, 4-16
MULTITASKING
MULTITASKING, 2-13
NONFLOATABLE
EXAMPLE OF NONFLOATABLE OVERLAYS,
2-22

NONSTOP
BOOTSTRAP RECORD FOR NONSTOP CLM
LOADING (TBL), 3-8
NONSTOP APPLICATION LOADING, 3-8
OBJECT
EXECUTIVE OBJECT MODULES (TBL), B-1
OBJECT MODULE CREATION (STAGE 4), 3-4
PLANNING AND BUILDING WITH EXECUTIVE
OBJECT MODULES, B-1

OBJECTIVES
DEFINING APPLICATION DESIGN
OBJECTIVES, 2-3

OIM
OIM COMMAND (OPERATOR INTERFACE
MANAGER DEFINITION), A-20

ONLINE

ADDITIONAL OPERATING NOTES FOR THE
ONLINE DEBUG PROGRAM, 4-14
BUILDING AN ONLINE APPLICATION -
PROCESS DIAGRAM (FIG), 3-2

DEBUGGING DURING ONLINE APPLICATION
DEVELOPMENT, 4-16

DEFINING ONLINE ENVIRONMENT
CHARACTERISTICS, 2-4

DESIGNING PROGRAMS FOR AN ONLINE
ENVIRONMENT, 2-13

ONLINE DEBUG PROGRAM FUNCTIONS,
STARTING AN ONLINE APPLICATION,

4-2
3-17

AU49

INDEX

ONLINE (CONT)
USING THE ONLINE DEBUG PROGRAM, 4-1
USING THE ONLINE DEBUGGING PROGRAM,
4~13

OPERATING
ADDITIONAL OPERATING NOTES FOR THE
ONLINE DEBUG PROGRAM, 4-14

OPERATIONS
BUFFERED READ OPERATIONS, 2-10
BUFFERED WRITE OPERATIONS, 2-11

OPERATOR'S
LOADING FROM DISK WITH AN
OPERATOR'S CONSOLE, 3-9
LOADING FROM DISK WITHOUT AN
OPERATOR'S CONSOLE, 3-10

OPERATOR
OIM COMMAND (OPERATOR INTERFACE
MANAGER DEFINITION), A-20

OPTIONAL
HOW TO INCLUDE OPTIONAL CILM
EXTENSIONS, 3-6
ORDER
CLM LOAD MODULE ORDER FOR PAPER
TAPE (TBL), 3-11
LINKING ORDER FOR CODE TEXT, 3-4
OUTPUT
INPUT AND OUTPUT DRIVERS, 2-18

OUTPUT FILE PREALLOCATION (STAGE 1),
3-3

SAMPLE ZXMAP OUTPUT (FIG), 4-16
OVERLAYS
ESTABLISHING OVERLAY AREAS, 2-21

EXAMPLE OF FLOATABLE OVERLAYS, 2-24

EXAMPLE OF NONFLOATABLE OVERLAYS,
2-22

HOW TO ESTIMATE OVERLAY FILE SIZE,
2-25

OVERLAY CODING CONVENTIONS,

OVERLAY PLANNING, 2-19

2-21

OVERVIEW
OVERVIEW OF BES SOFTWARE SERVICES,
2-1

PAPER
CLM LOAD MODULE ORDER FOR PAPER
TAPE (TBL), 3-11
LOADING FROM PAPER TAPE, 3-10
PARAMETERS
EFFECTS OF CLM PARAMETERS ON MEMORY
USAGE (TBL), 2-5

PHYSICAL
PHYSICAL AND LOGICAL RESOURCE
REQUIREMENTS (TBL), 2-3

PLANNING
COMMUNICATIONS PLANNING,
OVERLAY PLANNING, 2-19
PLANNING, 2-1
PLANNING AND BUILDING WITH EXECUTIVE
OBJECT MODULES, B-1

2-27

Pn
PRINT COMMAND (Pn), 4-10

POOL
BUFSPACE COMMAND (POOL DEFINITIONS),
A-=7
PREALLOCATION
OUTPUT FILE PREALLOCATION (STAGE 1),
3-3
PREPARATION
SUMMARY OF LOAD MODULE PREPARATION,
3-6
PREPARING
PREPARING TO USE CLM, 3-1
PRINT
PRINT COMMAND (Pn), 4-10
PRINT COMMAND (P*), 4-10
PRINT HEADER LINE COMMAND (Hn), 4-8
PRINT HEXADECIMAL VALUE COMMAND (VH),
4-12
PRINT TRACE COMMAND (PT), 4-10
PRINTER
PRINTER SPACE CONVENTIONS, 2-12
PRIORITY
PRIORITY LEVEL REQUIREMENTS FOR
COMMUNICATIONS, 2-27
PRIORITY LEVELS, 2-13

RELATIVE PRIORITY LEVEL ASSIGNMENTS
(TBL), 2-14

SAMPLE LRN PRIORITY LEVEL
ATTACHMENTS (FIG), 2-15

PROCESSING
INITIALIZATION PROCESSING (FIG), B-2

PROCESSOR
LOADING FROM DISK USING THE COMMAND
PROCESSOR, 3-9

PROGRAM

ADDITIONAL OPERATING NOTES FOR THE
ONLINE DEBUG PROGRAM, 4-14

LINK COMMANDS FOR SAMPLE
COMMUNICATIONS PROGRAM, C-6

LINE COMMANDS FOR SAMPLE INPUT/OUTPUT
PROGRAM, C-1

ONLINE DEBUG PROGRAM FUNCTIONS, 4-2
SAMPLE COMMUNICATIONS PROGRAM, C-6
SAMPLE INPUT/OUTPUT PROGRAM, C-1

USING THE ONLINE DEBUG PROGRAM, 4-1

USING THE ONLINE DEBUGGING PROGRAM,
4-13

AU49

INDEX

PROGRAMS
DESIGNING PROGRAMS FOR AN ONLINE
ENVIRONMENT, 2-13

p*

PRINT COMMAND (P*), 4-10
PT

PRINT TRACE COMMAND (PT), 4-10
QUIT

QUIT COMMAND (INITIATE LOADING),

A-20
READ

BUFFERED READ OPERATIONS, 2-10
REAL-TIME

REAL-TIME CLOCK (RTC), 4-17
RECORD

BOOTSTRAP RECORD FOR NONSTOP CLM

LOADING (TBL), 3-8

REGISTER(S)

ALL REGISTERS COMMAND (AR), 4-5

REGISTER USE BY SYSTEM
INITIALIZATION SUBROUTINES (TBL),
2-26

RELATIVE
RELATIVE PRIORITY LEVEL ASSIGNMENTS
(TBL), 2-14

REMOTE
IBM 2780 REMOTE TERMINAL EMULATION,
2-29

REQUESTING
REQUESTING COMMUNICATIONS FUNCTIONS,
2-28
REQUESTING TASKS, 2-17
RESET
RESET FILE COMMAND (RF), 4-10

RESOURCE
LOGICAL RESOURCE NUMBERS, 2-15
PHYSICAL AND LOGICAL RESOURCE
REQUIREMENTS (TBL), 2-3

RF

RESET FILE COMMAND (RF), 4-10
RTC

REAL-TIME CLOCK (RTC), 4-17
SAMPLE

CONFIGURATION COMMANDS FOR SAMPLE

COMMUNICATIONS APPLICATION, C-5

CONFIGURATION COMMANDS FOR SAMPLE

INPUT/OUTPUT APPLICATION, C-1

SAMPLE (CONT)
LINK COMMANDS FOR SAMPLE
COMMUNICATIONS PROGRAM, C-6
LINK COMMANDS FOR SAMPLE INPUT/OUTPUT
PROGRAM, C-1
SAMPLE COMMUNICATIONS PROGRAM, C-6
SAMPLE INPUT/OUTPUT PROGRAM, C-1
SAMPLE LRN PRIORITY LEVEL ATTACHMENTS
(FIG), 2-15
SAMPLE STATEMENTS ATTACHING LRN'S TO
LEVELS (FIG), 2-16
SAMPLE ZXMAP OUTPUT (FIG), 4-16
SAVE
TSA COMMAND (TRAP SAVE AREA
DEFINITION), A-23

SELECTING
SELECTING EXECUTIVE MODULES, 2-8
SELECTING FILE AND BUFFER MANAGEMENT
TECHNIQUES, 2-8

SELECTING INPUT/OUTPUT MODULES, 2-8
SELECTING SYSTEM VARIABLES, 2-4
SERVICES
OVERVIEW OF BES SOFTWARE SERVICES,
2-1
SERVICES AVAILABLE FOR APPLICATION
DEVELOPMENT, 2-1
SERVICES AVAILABLE FOR APPLICATION
EXECUTION, 2-1
SET
SET BREAKPOINT COMMAND (Sn), 4-11
‘SET LEVEL COMMAND (SL), 4-12
SET TEMPORARY LEVEL COMMAND (TL),
4-12
SF
SPECIFY FILE COMMAND (SF), 4-11
SIZE
HOW TO ESTIMATE OVERLAY FILE SIZE,
2-25
SIZE CALCULATIONS FOR SYSTEM DATA
STRUCTURES, 2-6
SIZES

NAMES AND SIZES OF HONEYWELL-SUPPLIED
LOAD MODULES (TBL), 2-9

SL
SET LEVEL COMMAND (SL), 4-12
SN
SET BREAKPOINT COMMAND (Sn), 4-11
SOFTWARE
BES SOFTWARE FOR APPLICATION
DEVELOPMENT (TBL), 2-3
BES SOFTWARE FOR APPLICATION
EXECUTION (TBL), 2-2
OVERVIEW OF BES SOFTWARE SERVICES,
2-1

AU49

INDEX

SOURCE
SOURCE MODULE CREATION AND EDITING

(STAGES 2 AND 3), 3-3
SPACE
MEMORY AND WORK FILE SPACE USAGE
(TBL), 4-1
PRINTER SPACE CONVENTIONS, 2-12
SPECIFY
SPECIFY FILE COMMAND (SF), 4-11
START
ASSEMBLY LANGUAGE START ADDRESS
DEFINITION, 3-17
COBOL LANGUAGE START ADDRESS
DEFINITION, 3-18
FORTRAN LANGUAGE START ADDRESS
DEFINITION, 3-17
STARTING

STARTING AN ONLINE APPLICATION, 3-17
STATION
STATION COMMAND, A-21

STREAM
I0S COMMAND (I/O STREAM), A-15
STRUCTURE (S)
DATA STRUCTURE AREAS,
DATA STRUCTURES, 4-18
HARDWARE/EXECUTIVE DATA STRUCTURES
(F1G), 4-18
INFORMATION FOR SYSTEM DATA
STRUCTURES FROM CLM COMMANDS, 2-4
MEMORY DATA STRUCTURES (FIG), 2-20
SIZE CALCULATIONS FOR SYSTEM DATA
STRUCTURES, 2-6

2-19

SUBROUTINES
INITIALIZATION SUBROUTINES,
REGISTER USE BY SYSTEM
INITIALIZATION SUBROUTINES
2-26

2-25

(TBL) ,

SUMMARY
SUMMARY OF CLM COMMANDS AND COMMAND
FUNCTIONS (TBL), A-1
SUMMARY OF DEBUGGING COMMANDS BY

SYMBOLOGY
DEBUGGING COMMAND FORMAT AND
SYMBOLOGY, 4-3

SYNCHRONOUS
BINARY SYNCHRONOUS COMMUNICATIONS
(BSC 2780), 2-29

SYS
SYS COMMAND (SYSTEM), A-21

SYSTEM

CLOCK COMMAND (SYSTEM CLOCK), A-8
COMM (COMMUNICATIONS SYSTEM COMMAND),
A-9

INFORMATION FOR SYSTEM DATA
STRUCTURES FROM CLM COMMANDS, 2-4
REGISTER USE BY SYSTEM INITIALIZATION
SUBROUTINES (TBL), 2-26

SELECTING SYSTEM VARIABLES, 2-4

SIZE CALCULATIONS FOR SYSTEM DATA
STRUCTURES, 2-6

SYS COMMAND (SYSTEM), A-21

TAPE

CLM LOAD MODULE ORDER FOR PAPER TAPE
(TBL), 3-11

LOADING FROM PAPER TAPE, 3-10

TASK (S)

DEVICE COMMAND (I/O DEVICE TASK),
A-11

REQUESTING TASKS, 2-17

TASK COMMAND (DEFINE TASK), A-22

TECHNIQUES
SELECTING FILE AND BUFFER MANAGEMENT
TECHNIQUES, 2-8

TERMINAL
IBM 2780 REMOTE TERMINAL EMULATION,
2-29

TEXT

LINKING ORDER FOR CODE TEXT, 3-4

TIME

DATE COMMAND (DATE AND TIME), A-9

TL

FUNCTION (TBL), 4-2 SET TEMPORARY LEVEL COMMAND (TL),
SUMMARY OF LOAD MODULE PREPARATION, 4-12
3-6
TRACE
SYMBOL(S) DEFINE TRACE COMMAND (DT), 4-7
ELOC COMMAND (DEFINE ADDRESS PRINT TRACE COMMAND (PT), 4-10
SYMBOL), A-14 TRACE HISTORY, 4-19
EVAL COMMAND (DEFINE VALUE SYMBOL),
A-14 TRANSMISSION
EXTERNALLY DEFINED SYMBOLS, 3-4 LEVEL 6-TO~-LEVEL 6 FILE TRANSMISSION,
SYMBOLS USED IN DEBUGGING COMMAND 2-29
LINES (TBL), 4-4
i-10 AU49

INDEX

TRAP
TRAP COMMAND (TRAP VECTOR), A-22
TSA COMMAND (TRAP SAVE AREA
DEFINITION), A-23

TSA
TSA COMMAND (TRAP SAVE AREA
DEFINITION), A-23

TTY
TTY COMMAND, A-23
VALUE
FVAL COMMAND (DEFINE VALUE SYMBOL),
A-14
PRINT HEXADECIMAL VALUE COMMAND
(ve), 4-12
VARIABLES

SELECTING SYSTEM VARIABLES, 2-4

VECTOR

TRAP COMMAND (TRAP VECTOR), A-22
VH

PRINT HEXADECIMAIL VALUE COMMAND

(VH), 4-12

VIP

VIP COMMAND, A-24
WRITE

BUFFERED WRITE OPERATION, 2-11
ZXMAP

SAMPLE ZXMAP OUTPUT (FIG), 4-16

AU49

HONEYWELL INFORMATION SYSTEMS

Technical Publications Remarks Form

SERIES 60 (LEVEL 6) GCOS/BES2 ORDER NO.

AU49, REV.
TITLE [PLANNING AND BUILDING - :

AN ONLINE APPLICATION DATED | JULY 1976

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be promptly investigated by appropriate technical personnel and action will be taken D
as required. If you require a written reply, check here and furnish complete mailing address below.

FROM: NAME DATE

TITLE
COMPANY

ADDRESS

FIRST CLASS
PERMIT NO. 39531
WALTHAM, MA
02154

Business Reply Mail

Postage Stamp Not Necessary if Mailed in the United States

ATTENTION: PUBLICATIONS, MS 486

Postage Will Be Paid By:

HONEYWELL INFORMATION SYSTEMS

200 SMITH STREET
WALTHAM, MA 02154

Honeywell

Honeywell

Honeywell information Systems
Inthe U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
InCanada: 2025 Sheppard Avenue East. Willowdale, Ontario M2J 1W5
In Mexico: -Avenida Nuevo Leon 250, Mexico 11, D.F.

16297, 1876, Printed in U.S.A.

AU49, Rev. 0

