
Honeywell

SERIES 60 (LEVEL 6)

SOFTWARE

PLANNING AND BUILDING
AN ONLINE APPLICA liON

GCOS/BES2

Honeywell PLANNING AND BUILDING
AN ONLINE APPLICATION

SERIES 60 (LEVEL 6) GCOS/BES2

SUBJECT:

Considerations for Planning and Building an Online Application Using
Series 60 (Level 6) GCOS/Basic Executive System 2 Software.

SOFTWARE SUPPORTED:

DATE:

This publication supports Release 0200 of the GCOS/Basic Executive
System (BES2). When a later release of the system occurs, see the
Subject Directory of the latest Series 60 (Level 6) GCOS/BES2 Software
Overview and System Conventions manual (Order No. AU50) to ascertain
whether this revision of this manual supports that release.

July 1976

ORDER NUMBER:

AU49, Rev. 0

PREFACE

This manual describes some of the considerations involved in planning and

building an online application using GCOS/BES2 software. Unless stated other­

wise, the term BES refers to GCOS/BES2 software; the term Level 6 indicates the

specific models of Series 60 (Level 6) hardware on which the described software

executes. GCOS/BES2 software executes on the 6/30 Hodels of Series 60 (Level 6).

Section 1 presents the general characteristics of the various categories of

BES software, and their roles in the development of an online application.

Section 2 provides details of the capabilities of BES software, presents

formulas for calculating the sizes of various data structures, and introduces

such concepts as priority levels and logical resource numbers that provide both

flexibility and efficiency in the completed application.

Section 3 describes the use of the Configuration Load Manager. It includes

a summary chart of the building process from the beginning stage where file

space is allocated, through program development, to configuration and execution

of the online application.

Section 4 provides practical advice on debugging an online application.

Appendix A contains complete descriptions of the CLM commands and their

operands.

Appendix B discusses the use of Executive object modules in building an

online application.

Appendix C presents examples of application configuration.

~ 1976, Honeywell Information Systems Inc. File No.: lS13

AU49

GCOS/BES2 SUBJECT DIRECTORY

This subject directory is designed to assist the user in finding information

about specific topics related to GCOS/BES2. Topics are listed alphabetically;

each topic is accompanied by the order number of each manual in which .the topic

is described. At the end of the Subject Directory, all GCOS/BES2 manuals are

listed according to the alphabetic/numeric sequence of their order numbers.

Subject

Allocate Disk File (Utility Set 1)

Application Development (Overview) •...•...•....••••...••.......•.•...

ASCII Character Set and Conversion Tables •......•.•...•..••.••.......

Assembling Programs

Assembler Diagnostic Flags ••..........•...•.•..•••..•.••....•.•...•..

Assembly Source Language ..••..••.••.•••••.•...•.•.•••....•...........

BAS IC .••.•..•...•....•..•.••..•.•••••...........•...........•.••.....

Bootstrap Generator •••••......•...••••••..•.•.•...•...••.•.....•.•.•.

Bootstrapping and Loading ••..•....•••..•...•.•......•.••..•..........

Buffer Manager ••••..•••.••••.••..•.•••••.•...•.......•..•.....•.•...•.

Building an Online Application •....•••••.•••...••....•.•....•••...•.•

Card Loader ••.••••••.•••..•..•.•.•......•••..•..•......•••.•...•....•

Clock Manager••••.•.•......•••.•.•...•....•.•••.•.•....••........

COBOL Compilation .••..•.•.•......•.•....•.•.•...•.....••...•.•••.•...

COBOL Source Language .•..••..••.•..•.•.•..••..•••.••......•.•.....••.

COBOL Statements••..•...••...•••........•.....•..•.•.••.•...•..

COBOL Compiler Diagnostic Messages •.••.•.••...•.•.•..••....••..•.....

COBOL Operating Procedures ...•.•...•••.•...•.....•........•..........

Command Processor ..•..••••.•.•.•..••••....••..•.••.....•.•.••..•.....

Communications ...
Compare Disk Volumes/Files/Members (Utility Set 3) ..•..•...•....••.••

Configuration Load Manager•••...••...........•.....••...••..

Console Messages (Error and Informational)•...•.••...•...•...•••.

Control Panel ...•........•.........•...•.•.....••••...•..•.....•••.•••

Copy Disk Volume/File/Member (utility Set 3) •.•...•....•.••..••..•..•

Cross-Reference Program •.•••.•.....••.....•.........•.••.••••..••..••

Debugging (Offline) •...•••.•..••.••••••••..••.•.....•..•••.•••••••...

Debugg ing (anI ine) ..•.........••..•....•...•.••.....•..•.........•...

Delete Disk File/Member (Utility Set 1) ••••••••••••••••••••••••••••••

iii

Order No.

AU47

AU50

AU50

AU48

AU43

AU43

AU44

AU47

AU46

AU45

AU49

AU46

AU45

AU48

AU42

AU42

AU42

AU46

AU48

AU45

AU47

AU49

AU46

AU46

AU47

AU48

AU47

AU49

AU47

AU49

Subject

Disk Conventions•.•..•••...•.•.•...••...•••.......•..•..••....

Disk Loader .•••.•.••..•••.•.•.•.•..•...••...••..•••.•.......•.•••.•.•

Dumps•......•...•.......•....••••.••....••..•......•..•....

Dump Edi t•...........••.•.••.•.••..•....••.•..••.•...•.

Edi tor •..•..........•..••......•....•.....••.•••...••..•.......•....•

Equipment Requirements .••....•................•......•.........•..••.

Error Reporting by Online Applications .•••..•......•.••.•.•..•.•...•.

Error Reporting by System Software ••.•..•••....•....••..•••.....•.•••

Execu ti ve Components•...•......•.•..••••••.••...•.•...•.•.....•••

File Manager•......•......•....•..•.•.••.•...•••.•••.

File Naming Conventions ..•.•...........•............•..•.•..•..•.....

F loa ting-Po in t S imula tor .•.........••....••...•..••..•...••••.•.•....

FORTRAN Compilation•.•.......•..•••.•....•.••••.....•....••..

FORTRAN Compiler Diagnostic Messages•...........

FORTRAN Intrinsic Functions

FORTRAN Source Language•..•....•.••..•....•.••....•.•......••.••

FORTRAN Statements and Procedures •..•.•....•....•....••...•.••.••••..

Glossary of System Terms •..........•.......•..•.•....•.•.......•.•...

Hexadecimal Numbering System ..•..•.•..........••...•...••....••••••••

Initialize Disk Volume/File (utility Set 1)••.•.••..••••••..••.

Input/Output Drivers •...........•.•............••.•.•....•.••....••..

Linker•..........•..•...........•..•..•.......•••....••.

List Disk Volume/File Description (utility Set 1)

Loaders .•...•..•••••••.•......••....••.••..•••.•••.•.............•...

Macro Facility Usage ..•..•...•...•••••....••...••.•.•••.•.....•..•.••

Macro Preprocessor ..•....••......•••..•..•...••.....•.•...•.....•.•.•

Offline Applications •...•..••....•..•.....••....•.....•.•...••....•..

Opera ting Procedures •.•....•..•..•..•.•.•....••.•.•....•••••.........

Operator Interface Manager .•..••.•••••..•..•••....••.••.•....••.•..••

Over la y Loader •.....•••••........•.••.•.•.•••..•..•••••.•••..••.••.••

Paper Tape Loader•.•••••..•....•.••.•.••.•.....•..••••.•...•••...

Planning an Online Application •..••.....••...........................

Print Disk File/Member (Utility Set 2) ••...•..•....•••••.•.•..•.....•

Program Development Tools .•..•••.•.•.••••.............•.........•..••

Program Naming Conventions•........•..............

Program Patch •.•....•.••..•..•••....•..............•.....•...•..•••..

Punch Disk File/Member to Paper Tape (utility Set 2)•...•...•

Rename Disk Volume/File/Member (Utility Set 1)

Replace Memory Values (Utility Set 1)

Scientific Branch Simulator ••••..••..•.•...•.•..••.•.••••.••..•..••.•

Software Release Materials (Contents)•..•...•......•......•......

System Conventions ••.•.••....••...••.•.....•......•..•..•..•.•....•.•

iv

Order No.

AU50

AU46

AU47

AU47

AU48

AU50

AU46

AU46

AU45

AU45

AU50

AU45

AU48

AS32

AS32

AS32

AS32

AU50

AU43

AU47

AU45

AU48

AU47

AU46

AU43

AU48

AU45

AU46

AU45

AU45

AU46

AU49

AU47

AU48

AU50

AU47

AU47

AU47

AU47

AU45

AU50

AU50

AU49

Subject

System Software and Documentation (Overview)•.................

Task Manager•...•.............•.........•.•.................

Trace Trap Handler ...•......•...............•........................

Transfer Input to Disk File/Member (utility Set 2),•.....•.....

Trap Han~ling (Offline)•........•...•.....•..•.•....

Trap Handling (Online)•.......................•...

Utili ty Programs•..............................•...

Order No.

AU50

AU45

AU45

AU47

AU46

AU45

AU47

The following publications constitute the GCOS/BES2 manual set. The subject

Directory in the latest Series 60 (Level 6) GCOS/BES2 Software Overview and

System Conventions manual lists the current revision number and addenda (if any)

for each "manual in the set.

Order No. Manual Title

AS32 Series 60 (Level 6) GCOS/BES FORTRAN Reference Manual

AU41 Series 60 (Level 6) GCOS/BES2 COBOL Reference Manual

AU43 Series 60 (Level 6) GCOS/BES2 Assembly Language Reference Manual

AU44 Series 60 (Level 6) GCOS/BES2 BASIC Reference Manual

AU45 Series 60 (Level 6) GCOS/BES2 Executive and InEut/Output

AU46 Series 60 (Level 6) GCOS/BES2 Operator's Guide

AU47 Series 60 (Level 6) GCOS/BES2 Utility Programs

AU48 Series 60 (Level 6) GCOS/BES2 Program Development Tools

AU49 Series 60 (Level 6) GCOS/BES2 Planning and Building an
Online Application

AU50 Series 60 (Level 6) GCOS/BES2 Software Overview and
System Conventions

In addition to the GCOS/BES2 manual set, the following manual is required

by GCOS/BES users as a general hardware reference:

Order No. Manual Title

AS22 Honeywell Level 6 Minicomputer Handbook

The following manual provides detailed information regarding progra~TLing

for the Multiline Communications Processor:

Order No. Manual Title

AT97 Series 60 (Level 6) MLCP Programmer's Reference Manual

v AU49

Section 1

Section 2

CONTENTS

Introduction ••••••••••••••••••••••••••••••••••

Planning ••••••••••••••••••••••••••••••••••••••
Overview of BES Software Services •••••••••••

Services Available for Application
Execution •••••••••••••••••••••••••••••••

Services Available for Application
Developmen t •••••••••••••.•••••••••••••••

Defining Application Design Objectives ••••••
Defining Online Environment Characteristics •

Selectinq System Variables ••••••••••••••••
Information for System Data Structures

From CLM Commands •••••••••••••••••••••••
Size Calculations for System Data

S truc tures ••••••••••••••••••••••••••••
Selecting Executive Modules •••••••••••••••
Selecting Input/Output Hodules ••••••••••••
Selecting File and Buffer Management

Techniques ••••••••••••••••••••••••••••••
File Manager Buffer Handling ••••••••••••

Buffered Read Operations ••••••••••••••
Buffered Write Operations •••••••••••••

Interactive File Type/LFN Coordination ••
Printer Space Conventions •••••••••••••.•

Designing Programs for an Online Environment.
Mul ti tasking ••••••••••••••••••••••••••••••

Priority Levels •••••••••••••••••••••••••
Logical Resource Numbers ••••••••••••••••
Attaching LRN's to Levels ••••••••••••.••
Requesting Tasks ••••••••••••••••••••••••

Input and Output Drivers ••••••••••••••••••
Memory Usage Considerations •••••••••••••••

Hardware Dedicated Locations ••••••••••••
Data Structure Areas ••••••••••••••••••••
Overlay Planning ••••••••••••••••••••••••

Establishing Overlay Areas ••••••••••••
Overlay Coding Conventions ••••.•••••••

Example of Nonfloatable Overlays ••••••••••
Example of Floatable Overlays ••••••••.•.••
How to Estimate Overlay File Size •••••••••

Initialization Subroutines •••••••••••••.
Communications Planning •••••••••••••••••••

Priority Level Requirements for
Communications •••.••••••••••••••••••••

Requesting Communications Functions •.•••
Binary Synchronous Communications

(BSC 2780) •••••••.•••••••••••••••..•••
IBM 2780 Remote Terminal Emulation ••••
Level 6-to-Level 6 File Transmission .•

vi

Page

1-1

2-1
2-1

2-1

2-1
2-3
2-4
2-4

2-4

2-6
2-8
2-8

2-8
2-10
2-10
2-11
2-12
2-12
2-13
2-13
2-13
2-15
2-16
2-17
2-18
2-19
2-19
2-19
2-19
2-21
2-21
2-22
2-24
2-25
2-25
2-27

2-27
2-28

2-29
2-29
2-29

AU49

Section 3

Section 4

CONTENTS (con t)

Building
Preparing to Use CLM ••••••••••••••••••••••••

Output File Preallocation (Stage 1) •••••••
Source ttodule Creation and Editing

(Stages 2 and 3) ••••••••••••••••••••••••
Object Module Creation (Stage 4) ••••••••••
Load Module Creation (Stage 5) ••••••••••••

Linking Order for Code Text •••••••••••••
Externally Defined Symbols ••••••••••••••

Summary of Load Module Preparation ••••••••
Using the Configuration Load Manager

(Stage 6) •••••••••••••••••••••••••••••••••
How to Include Optional CLM Extensions ••••
Application Configuration and Loading •••••

Nonstop Application Loading •••••••••••••
Loading From Disk Using the Command

Processor •••••••••••••••••••••••••••••
Load and Halt Procedures for Disk •••••••

Loading From Disk With an Operator's
Console •••••••••••••••••••••••• .; ••••

Loading From Disk without an Operator's
Console •••••••••••••••••••••••••••••

Loading From Paper Tape •••••••••••••••••
Building a CU4 Command File •••••••••••••••
CLM Action During Loading •••••••••••••••••

Starting an Online Application ••••••••••••••
Assembly Language Start Address Definition.
FORTRAN Language Start Address Definition •
COBOL Language Start Address Definition •••

Debugg ing •••••••••••••••••••••••••••••••••••••
Using the Online Debug Program ••••••••••••••

Online Debug Program Functions ••••••••••••
Debugging Command Language ••••••••••••••••

Debu~ging Command Format and Symbology ..
Debugging Commands ••••••••••••••••••••••••

Activate Level Command (AL) •••••••••••••
All Registers Command (AR) ••••••••••••••
Assign Command (AS) •••••••••••••••••••••
Clear Command (C*) ••••••••••••••••••••••
Clear Command (Cn) ••••••••••••••••••••••
Change Memory Command (CH) ••••••••••••••
Def ine Command (Dn) •••••••••••••••••••••
Display Memory Command (DH) •••••••••••••
Dump Memory Command (DP) ••••••••••••••••
Define Trace Command (DT) •••••••••••••••
Execute Command (En) ••••••••••••••••••••
GO Command (GO) •••••••••••••••••••••••••
Print Header Line Command (Hn) ••••••••••
List All Breakpoints Command (L*) •••••••
Line Length Command (LL) ••••••••••••••••
List Breakpoint Command (Ln) ••••••••••••
Print Command (P*) ••••••••••••••••••••••
Print Command (Pn) ••••••••••••••••••••••
Print Trace Command (PT) ••••••••••••••••
Reset File Command (RF) •••••••••••••••••
Set Breakpoint Command (Sn) •••••••••••••
Specify File Command (SF) •••••••••••••••

vii

Page

3-1
3-1
3-3

3-3
3-4
3-4
3-4
3-4
3-6

3-6
3-6
3-8
3-8

3-9
3-9

3-9

3-10
3-10
3-12
3-13
3-17
3-17
3-17
3-18

4-1
4-1
4-2
4-2
4-3
4-5
4-5
4-5
4-5
4-5
4-6
4-6
4-6
4-7
4-7
4-7
4-8
4-8
4-8
4-9
4-9
4-10
4-10
4-10
4-10
4-10
4-11
4-11

AU49

section 4 (cont)

Appendix A

Appendix B

CONTENTS (cont)

Set Level Command (SL) ••••••••••••••••••
Set Temporary Level Command (TL) ••••••••
Print Hexadecimal Value Command (VH) ••••

Using the Online Debugging Program ••••••••
Additional Operating Notes for the Online

Debug Program •••••••••••••••••••••••••
Locating Load Modules ••.••••••••••••••••

Debugging During Online Application
Developmen t •••••••••••••••••••••••••••••••
Moni tor Points ••••••••••••••••••••••••••••

Manual Control ••••••••••••••••••••••••••••••
Real-Time Clock (RTC) •••••••••••••••••••••
Data Structures •••••••••••••••••••••••••••
Trace History •••••••••••••••••••••••••••••
Handling Load Errors ••••••••••••••••••••••

Configuration Load Manager Commands •••••••••••
Command Forma t ••••••••••••••••••••••••••••••
Input Devices for CLM •••••••••••••••••••••••

ADMOD Command (Add Load Module) ••••••••••••
ATFILE Command (Attach File) ••••••••••••••
ATLRN Command (Attach LRN) ••••••••••••••••
BSC 2780 Command ••••••••••••••••••••••••••
BUFSPACE Command (Pool Definitions) •••••••
CLOCK Command (System Clock) ••••••••••••••
COMM (Communications System Command) ••••••
DATE Command (Date and Time) ••••••••••••••
DEVFILE Command (File Management Devices) •
DEVICE Command (I/O Device Task) ••••••••••
ELACT Command (End Load Action) •••••••••••
ELOC Command (Define Address Symbol) ••••••
EQLRN Command (Equate LRN'S) ••••••••••••••
EVAL Command (Define Value Symbol) ••••••••
FILHGR Command (File Hanager) •••••••••••••
Fr.1DISK Command (File 1'1anagement Disk) •••••
lOS Command (I/O Stream) ••••••••••••••••••
LACT Command (Load Action) ••••••••••••••••
LTPDEF Command (LTP Definition) •••••••••••
LTP11 Command ••••••••••••••••••••••••••••••
MODEM Definition Command ••••••••••••••••••
OIM Command (Operator Interface Manager

Definition) •••••••••••••••••••••••••••••
QUIT Command (Initiate Loading) •••••••••••
STATION Command •••••••••••••••••••••••••••
SYS Command (System) ••••••••••••••••••••••
TASK Command (Define Task) ••••••••••••••••
TRAP Command (Trap Vector) ••••••••••••••••
TSA Command (Trap Save Area Definition) •••
TTY Command •••••••••••••••••••••••••••••••
VIP Command •••••••••••••••••••••••••••••••
*Command (Comments) •••••••••••••••••••••••

Planning and Building With Executive Object
Modules •.•••••••••••••.••.•••••.•.••••.•.•••
Creating Executive Load Modules •••••••••••••

viii

Page

4-12
4-12
4-12
4-13

4-14
4-15

4-16
4-16
4-17
4-17
4-18
4-19
4-20

A-I
A-2
A-3
A-4
A-4
A-S
A-6
A-7
A-8
A-9
A-9
A-lO
A-II
A-13
A-14
A-14
A-14
A-IS
A-IS
A-IS
A-16
A-16
A-17
A-18

A-19
A-19
A-20
A-20
A-2l
A-2l
A-22
A-22
A-23
A-24

B-1
B-2

AU49

Appendix C

Figure 2-1.
Figure 2-2.
Figure 2-3=
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 4-1.
Figure 4-2.
Figure B-1.
Figure B-2.

Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
Table 2-5.

Table 2-6.
Table 2-7.

Table 3-1.

Table 3-2.
Table 3-3.
Table 4-1.
Table 4-2.
Table 4-3.
Table A-I.
Table B-1.

CONTENTS (cont)

Application Configuration Example •••••••••••••
Configuration Commands for Sample Input/

Output Application ••••••••••••••••••••••••
Link Commands for Sample Input/Output

Program •••••••••••••••••••••••••••••••••••
Sample Input/Output Program •••••••••••••••••
Configuration Commands for Sample

Communications Application ••••••••••••••••
Link Commands for Sample Communications

Program •••••••••••••••••••••••••••••••••••
Sample Communications Program •••••••••••••••

ILLUSTRATIONS

Sample LRN Priority Level Attachments •••••••••••
Sample Statements Attaching LRN's to Levels •••••
Memory Data Structures ••••••••••••••••••••••••••
Building an Online Application - Process Diagram.
Current Load Module Memory Layout •••••••••••••••
Memory Layout During Configuration ••••••••••••••
Memory Layout After Loading ••• eeeeeeee~w __ ••••••

Memory Layout During Application Execution ••••••
Sample Zx.MAP Ou tpu t •••.•••••••••••••••••••••••••
Hardware/Executive Data Structures ••••••••••••••
Initialization Processing •••••••••••••••••••••••
New Initialization Modules ••••••••••••••••••••••

TABLES

BES Software for Application Execution ••••••••••
BES Software for Application Development ••••••••
Physical and Logical Resource Requirements ••••••
Effects of CLM Parameters on Memory Usage •••••••
Names and Sizes of Honeywell-Supplied Load

Modules •••••••••••••••••••••••••••••••.•••••••
Relative Priority Level Assignments •••••••••••••
Register Use by System Initialization

Subroutines •••••••••••••••••••••••••••••••••••
CLM Functional Groups, Component Modules and

Related Commands ••••••••••••••••••••••••••••••
Bootstrap Record for Nonstop CLM Loading ••••••••
CLM Load Module Order for Paper Tape ••••••••••••
Memory and Work File Space Usage ••••••••••••••••
Summary of Debugging Commands by Function •••••••
Symbols Used in Debugging Command Lines .••••••••
Summary of CLM Commands and Command Functions •••
Executive Object Modules ••••••••••••••••••••••••

ix

Page

C-l

C-l

C-l
C-l

C-7

C-7
C-7

2-15
2-16
2-20
3-2
3-5
3-14
3-15
3-16
4-16
4-18
B-2
B-3

2-2
2-3
2-3
2-5

2-9
2-14

2-26

3-7
3-8
3-11
4-1
4-2
4-4
A-I
B-1

AU49

SECTION 1

INTRODUCTION

This manual shows you how to combine BES software modules with your own

programs to achieve the functionality you require in your online application.

The software has a number of features that enable you to concentrate on

the solutions to your specific application problems, rather than to spend time

developing, coding, and testing your own standard service routines.

For example, Executive modules provide routines for task and clock manage­

ment, and for the control of operator dialog with the software. Also included

are routines for time and date recording, as well as trap and error handling.

There is a set of routines that allows you to execute your application as a

series of overlays - the Overlay Loader provides the basic capabilities for

loading and starting overlay code.

The input/output modules provide file management facilities, and reentrant

routines for driving all available devices. Moreover, the software includes

Communications modules that function through the standard physical I/O inter­

face, and can be configured and used as easily as any other peripheral device.

Furthermore, the modularity of the software allows you to choose only those

services that you require. For example, you mayor may not want to include the

Executive buffer management capability as an integral part of your configured

application.

Since the software is supplied in load module form, you do not have to

assemble and link the various routines that you want to include in your applica­

tion. As soon as you have finished developing your programs so that they are

executable load modules, you are ready to configure your application.

The process chart in Section 3 gives you an overview of the operations

involved in building your application. You will be using various functional

groups of software modules in the building process. For example, in setting

up your application environment, you will use the utility programs to prepare

and maintain disk volumes. See the Utility Programs manual for details.

1-1 AU49

You will use components described in the Program Development Tools manual

to prepare your own application programs.

To make a realistic debugging environment for online application programs,

the software provides an Online Debug Program that operates under the Executive.

When your own load modules are ready for use, you configure your online ap­

plication by using a software component called the Configuration Load Manager

(CLM). The CLM, working in conjunction with a loader, provides a load-and-go

capability for your application. For smaller systems, CLM can be executed as

a series of overlays.

CLM accepts command input in which you have specified the various character­

istics of your application, such as memory size, numbers and types of devices,

and the load modules, both BES modules and your own, to be included in the final

configuration. CLM uses this command information to build the data structures

and to load the necessary modules that the Executive software uses to control

processing. A special facility permits user-written application initialization

during loading.

After all the specified modules are loaded, CLM turns control over to the

highest priority task that has been designated as initially active, and applica­

tion execution begins.

1-2 AU49

SECTION 2

PLANNING

Planning an online application includes the process of systems analysis and

design, taking the fullest advantage of the system services and development tools

supplied by Honeywell. This process includes:

• Acquiring a familiarity with the capabilities of BES software

• Defining application design objectives

• Defining online environment characteristics

• Designing programs to be run in an online environment

OVERVIEW OF BES SOFTWARE SERVICES

BES provides a number of services that you should consider when planning an

online applicatione There are also a variety of tools for use in the develop­

ment of application programs. These software modules are summarized in

Tables 2-1 and 2-2 below~

Services Available for Application Execution

The BES-provided services for use during o~line application execution are

summarized in Table 2-1, and described in detail in the Executive and Input/

Output manual or the FORTRAN manual, as appropriate.

Services Available for Application Development

The BES-provided tools for use during application development are sum­

marized in Table 2-2, and described in detail in the Program Development Tools

and Utility Programs manu~ls, as appropriate.

In addition to the services summarized in Table 2-1, BES provides a

Configuration Load Manager (CLM) which defines the context of the application,

sets up the required internal data structures, loads the specified modules, and

initiates execution of the application, all in one continuous operation. The

operation of the CLM and the syntax of its commands are described in this

manual.

2-1 AU49

Table 2-1. BES Software for Application Execution

Service Description

Task Manager Monitors and controls all tasks in the applica­
tion, using data s~ructures defined during
configuration. The Task Manager oversees the
level activity indicators, administers the inter­
rupt structure, and coordinates requests for the
execution of tasks.

Clock Manager Activates priority levels after an elapsed time
interval or at regular time intervals, as speci­
fied during configuration. An expanded Clock
Manager is available, providing date and time
information in ASCII format for external
reporting.

Operator Interface Manager

Buffer Manager

File Manager

Overlay Loader

Communications Supervisor

Device Drivers
(Disk, Printer, Card
Reader, KSR/ASR, VIP, BSC,
TTY, MLCP)

Floating-Point Simulator

Scientific Branch
Simulator

Trace Trap Handler

FORTRAN Run-Time I/O
Routines (FRIOR)

Online Debug Program

COBOL Run-Time Routines

Controls all operator dialog with the software
through a KSR-like device.

Coordinates requests for buffer space, using
control structures and buffer pools defined during
configuration. Use of the Buffer Manager is
optional but recommended.

Opens, reads, positions, writes, and closes files;
reports file status information and error condi­
tions. Use of the File Manager is required for
FORTRAN and COBOL programs.

Controls the loading of planned overlays through
data structures created by CLM.

Provides necessary services to communications
handlers including time-out, request validation,
and Task Manager interface.

Perform all data transfers between the online
application and its respective devices. Drivers
receive requests for service from the Task
Manager and run at the priority level of the
requested device.

Provides double-precision arithmetic and a
scientific instruction set. Operates as a trap
handler under the Executive.

Operates as a trap handler under the Executive to
provide FORTRAN and assembly language programs
with the means to simulate the use of scientific
branch instructions.

Traces the contents of a specified memory loca­
tion and maintains a limited trace history.

Provides for reading and writing of formatted and
unformatted records; edits integer, real, logical,
and character data for formatted input and output,
and produces diagnostic messages for inappropriate
commands. These routines require the use of the
File Manager.

Provides online program testing and patching
facilities for application programs running under
a BES Executive.

Supports the COBOL procedural statements that
involve arithmetic, logical, data manipulation,
and input/output operations.

2-2 AU49

Table 2-2. BES Software for Application Development

Component Function

Utility Programs File maintenance and handling, media transfers,
printing, debugging.

Editor Creates and/or corrects source programs on disk.

Macro Preprocessor Provides for definition and expansion of macro
routines. Macro Preprocessor output is input to
the Assembler.

Assembler Produces object modules from source programs
written in BES assembly language.

COBOL Compiler Produces object programs from source programs
written in COBOL.

FORTRAN Compiler Produces object modules from source programs
written in FORTRAN.

Linker Produces load modules from object text output of
all language processors.

DEFINING APPLICATION DESIGN OBJECTIVES

The careful description of the specific design objectives of your applica­

tion is an important part of the overall planning process. You should have a

precise inventory of the numbers and kinds of problems that your application

programs will be designed to solve, the files required, and the types of reports

to be generated.

This inventory will greatly simplify your assessment of the physical and

logical resources required to achieve your design objectives. Your inventory

should contain information about the source language in which your particular

application program is written because high-level languages such as COBOL and

FORTRAN require the File Manager to handle the logical input/output operations

between programs and the physical devices that contain the data read and written

by those programs. Table 2-3 shows one way of relating a design objective to

the physical and logical resources needed to implement that objective.

Table 2-3. Physical and Logical Resource Requirements

Application Program Resources Needed

Design Objective Source Language Logical Physical

Produce a report COBOL Input task Card Reader
based on daily Processing task Disk device card input

Output task Line printer

File Manager

2-3 AU49

There are other considerations about the use of logical and physical

resources that are discussed throughout the remainder of this section. For

example, the implications of providing certain values in the CLM commands, and

the use of overlays to conserve memory space. There is a description under

"Designing Programs for an Online Environment," later in this section, about the

use of logical resource numbers to coordinate the use of interrupt priority

levels by tasks and devices.

DEFINING ONLINE ENVIRONMENT CHARACTERISTICS

The characteristics of the online environment such as priority level usage,

trap handling routines, time and date functions, as well as the complement of

Executive software and file and buffer specifications, are chosen by supplying

information to the CLM in configuration commands. These commands are described

in detail in Appendix Ai some of their more salient features are presented in

this section.

Selecting System Variables

The information provided in the various commands to the CLM affects the

numbers and sizes of control structures used by the Executive software to monitor

processing. Choice of Executive services (and hence the Executive modules) has

a direct bearing on the amount of available memory remaining for the loading of

application programs. Table 2-4 summarizes the relationships between parameter

values of the CLM commands and effects of these values on the sizes of control

structures and memory usage.

Structures," below.)

(See also "Size Calculations for System Data

Information for System Data Structure,s From CLM Commands

Note that the CLM control commands direct the action of the CLM itselfi the

load configuration commands provide information to the loader that pertains to

the loading order of the modules, and the identification of references among

them.

The system configuration, task, buffer management, and file management

commands contribute information for the control structures that are used to

regulate processing in an online application, in addition to providing CLM with

data needed to calculate the sizes of these control structures.

2-4 AU49

Table 2-4. Effects of CLM Parameters on Memory Usage

Default
Default Value Structures

Parameter CLM Command Range of Values Value (Words) Affected

hilrn up to 255 15 16 LRT size

lolevel SYS 6<value<62 15 270 Number of ISA's
- -

himem up to 64K Loader -
Address

lrn OIM <hilrn - - LRT and ISA
-

level 5<value<101evel -
- -

number of TSA 2<value<46 2 Number of trap - -TSA's save areas

size 8<value 8 16 Size of trap
- save areas

trap number TRAP 1 through 46 See Table 2-5 - for sizes
handler name ASCII name

module name ADMOD - - See Table 2-5
for sizes

maxlfn <255 15 32 IORB
-

I I

224

I

FDB

concurrent 56 FCB
calls

FILMGR >0 4 272 REB

concurrent 328 Diskette buffer
opens

>0 8 392 Cartridge disk
buffer

size, number BUFSPACE - - Size of PPT

lrn TASK, ATLRN, <hilrn Number and size
- -

level DEVICE, TTY, 5<value<101evel of RCT's
VIP, BSC - -

The effect of some of the parameters in Table 2-4 on the amount of memory

space used is small, so that if a default value is taken even when it is higher

than that needed for a particular parameter, not much memory space is wasted.

However, you should be careful about assigning higher than necessary values to

the parameters for the file management commands, particularly the FILMGR com­

mand. As you can see by inspecting the size calculation formulas that use

information from this command, a careless assignment of values to the "concur­

rent calls" and "concurrent opens" parameters will result in the reservation of

much more space than needed.

I

I

Moreover, the lolevel parameter value should be selected with care. The

interrupt save areas (ISA) are set aside on the basis of this parameter, so that

if you supply a value of 30, and actually only use 10 priority levels, 360 words

remain unused.

2-5 AU49

SIZE CALCULATIONS FOR SYSTEM DATA STRUCTURES

The system and task commands provide information for the calculation or the

definition of the sizes of the following data structures:

LRT - Logical resource table

ISA - Interrupt save areas

SOQ - Start of queue header table

EOQ - End of queue header table

TSA - Trap save area

RCT - Resource control table

The following formulas are used to calculate the sizes of these areas.

SLRT = (hilrn + 1)

If the default value is taken for hilrn, the size of this table would be 16

words.

SISA = MIN + (lolevel + 1-4) * MAX

Where MIN = 6 and MAX = 22. If the default value of 15 is taken for lolevel,

the ISA would be 270 words long.

SSOQ = SEOQ = (lolevel + 1)

Using the default value for lolevel, each of these tables would be 16 words long.

(number of blocks) * (blocksize)

Using the default values for these parameters results in a trap save area 16

words long.

A resource control table for a device is 16 words long; an RCT for a task

is one word long.

In summary, the size of the area devoted to those data structures defined

by the system and task commands is:

where ND is the number of DEVICE commands, and SRCT is the sum of RCT sizes.

The buffer and file management commands provide information for the defini-

tion of the following data structures:

• PPT (pool parameter table)

• Buffer area

• Work area for File Manager

2-6 AU49

• IORB (input/output request block)

• Diskette buffers

• FDB (file descriptor block)

• FCB (file control block)

• Remote extent block

• Device buffers

• Wait table

• Semaphore table

• VDB (volume descriptor block)

• LFT (logical file table)

• FCB (device)

e FDB (device)

The following formulas are used to calculate the sizes of these structures.

4 words + (2*P)

where P is the number of size/number pairs indicated in the BUFSPACE command.

Sbuffer area

Swork area

SIORB

Sdiskette buffer

SF DB

SFCB

SREB

Sdevice buffer

Swait table

SST

SVDB

SLFT

SFCB (device)

(siz~ * -umb~r \ + (size * nUIT~er) \ c;;l II 1L c;; 1 J • • • n n

(number of concurrent calls) * 40

(number concurrent calls) * 8

(number concurrent calls) * 72 + 64 for cartridge
disk

(number concurrent opens) * 28

(number concurrent opens) * 7

(2 * number concurrent opens) * 17

(number double buffers) * 77

lolevel + 1

16 + (2 * (number VDB + number FDBa . » +
maxlfn + 2 + (2 * number concurrenEevlce
opens)

(number FMDISK commands) * 48

1 + maximum lfn + 1

(number ATFILE commands) * (6+l+N/
2

)

where N is the pathname length, space-filled to the next highest even number of

bytes.

SFDB (device) (number DEVFILE commands) * 28

2-7 AU49

Selecting Executive Modules

BES software provides an Executive (ZXEX03) as a load module. This Execu­

tive supplies capabilities for task and clock management, input/output handling,

overlay loading, initialization processing, operator interaction with the soft­

ware, time and date recording, trace trap and system error handling. Applica­

tions that use the File Manager require this Executive.

To complement the facilities provided by the Executive, you can also include

either the File Manager or the Buffer Manager, or both of these load modules in

your application. All FORTRAN applications require the File Manager.

You may find that the load module version of the Executive does not exactly

fit your application specifications. In that case, you can hand tailor an

Executive load module from Honeywell-supplied object modules. See Appendix B

for a description of this process&

Selecting Input/Output Modules

Input and output operations in your online application are handled by soft­

ware modules called device drivers. You may.select appropriate device drivers

(or line-type processors for Communications devices) from the set provided by

Honeywell (in either load or object module form), or you may write your own

device drivers. See the Executive and Input/Output manual for details of this

process.

Table 2-5 contains the names and sizes of the Honeywell-supplied load

modules.

Selecting File and Buffer Management Techniques

If your online application is programmed in assembly language, application

requirements determine whether the File t1anager is required (both FORTRAN and

COBOL programs require the File Manager) for input and output operations.

When your application needs only minimal I/O functions, you can gain a

space advantage by using the device driver alone and save the 3200 words

occupied by the File Manager. However, you then must program whatever I/O func­

tions your application does need. The advantage of using the File Manager is

that it provides these needed functions, and hence, I/O processing with the

programming simplicity of a higher level language.

The following discussion illustrates the advantage of using the File

Manager over a device driver alone when the I/O device is a disk.

2-8 AU49

Table 2-5. Names and Sizes of Honeywell-Supplied Load Modules

Load Module
Name

ZXEX03

ZXBMOI

ZYFM02

ZIDSK

ZICDSK

ZIKSR

ZIASR

ZICDR

ZILPT

ZXOVLY

ZDBG

ZQEXEC

ZQMLON
m ZQPlTY

ZQPVIP

ZQPBSC

ZFPSIM

ZFBSIM

TRPHND

Description

Executive

Buffer Manager

File Manager

Diskette Driver

Cartridge Disk Driver

Keyboard-Send-Receive Driver

Automatic-Send-Receive Driver

Card Reader Driver

Printer Driver

Overlay Loader

Online Debug Program (overlay
version)

Communications Supervisor

MLCP Driver
nn - - . ..

I
llY Llne-lype Processor

VIP 7700 Line-Type Processor

BSC 2780 Line-Type Processor

Floating-Point Simulator

Scientific Branch Simulator

Trace Trap Handler

Approximate
Size in Words

(Decimal)

2600

100

3200

175

225

450

1200

125

125

275

1200

580

500
,...,...

9~u

1270

1200

400

250

150

NOTE: The names of the object module versions are
listed in Appendix B.

When using a device driver alone to perform input/output operations, the

application program must build its own data structures to interface with the

driver, and initialize those structures with the data that the driver needs in

order to locate the required data on the device. This information consists of

the initial sector to be transferred given by the sector number relative to the

beginning of the volume, and the number of bytes to be transferred.

After the I/O request is made, the driver will transfer the requested

number of bytes starting at the boundary of the sector specified. The implica­

tion of dealing with sectors it twofold: the application program must know, for

each set of data (logical record) the number of the sector in which the record

resides. Secondly, if there is more than one logical record per sector, the

program must do its own deblocking; i.e., must find the logical record it needs.

By contrast, the File Manager builds the I/O data structure for the program

and provides the initializing information by which the logical record is

retrieved when provided with a record number relative to the beginning of the

file.

2-9 AU49

On a read operation, the File Manager transfers the requested data record,

not the physical sector, into the program's buffer area, and the program then

does not have to search for and deblock the records itself.

To summarize, the File Manager works at the program's logical level with

files and records; a driver works at the hardware physical level with sectors.

When using nondisk sequential devices, the File Manager provides some measure of

device independence at the application interface.

FILE MANAGER BUFFER HANDLING

The File Manager allows nondisk devices to be buffered. When you configure

your application, you can request the File Manager to reserve internal space for

a data buffer for a particular LFN (see the DEVFILE command in Appendix A). The

purpose of this buffering is to allow application code to execute in parallel

with I/O transfers.

File Manager achieves parallel processing in two different ways, depending

on whether the LFN is used for obtaining data from a device (reading), or

transferring data to a device (writing).l

Buffered Read Operations

A buffered read results in an anticipatory read in addition to every read

command issued by the application. When the LFN represents a card reader, this

means that a second card will be read immediately after the application reads

(and waits for the data to arrive in its buffer) the first card after the LFN is

opened. The application can now process the data it has while the physical I/O

transfer for the next card into the File Manager's buffer is in progress.

Nondisk file types recognized by the File Manager may be classified as

interactive or noninteractive. Interactive device names are: KSR, KSI, KSO,

ASR, ASI, ASO, VIP, VIPI, VIPO, TTY, TTYI, TTYO (see DEVFILE command in

Appendix A).

Buffered interactive and noninteractive file types operate exactly the same

after they are opened. A noninteractive file, when opened, does not initiate an

anticipatory read by the File Manager. This means that the application must

wait for the physical I/O transfer to occur on the first read; thereafter the

parallel operation described above, occurs.

lBidirectional LFN's cannot be buffered.

2-10 AU49

An OPEN command to an interactive file type does cause an anticipatory read

into the File Manager's buffer to occur. If the application program immediately

followed the OPEN with a READ command, the effect is exactly the same as for a

noninteractive file type; i.e., the application is suspended until the read

operation into the File Manager's buffer completes and data is moved into the

application program's buffer. However, the application program can avoid

suspension on the first or subsequent READ commands by using the Status Read

command, which gives the program immediate information as to whether the File

Manager's buffer now contains the next record. If not, the application program

can continue processing and only perform the read operation when the result of

the Status Read indicates that data is available.

The primary use for buffering an interactive file type is to allow an

application to control input from more than one LFN, each of which represents a

console at which operators enter data. The application program cannot perform a

READ on any particular LFN, and wait until data arrives because the operator at

that terminal may not be present, and the application program is then indefi­

nitely suspended. To avoid this indefinite suspension, the Status Read should

be used, in this way the application program will never perform a READ unless

data is present. (It is because of the indefinite response on an input LFN that

the OPEN corr~and to an interactive file type causes the anticipatory read, thus

the Status Read is meaningful for all read operations, not only for the first

one.)

Buffered Write Operations

A buffered write operation to an LFN works on behalf of the application

program in the same logical manner as the read - the program is permitted to

execute in parallel with the physical I/O transfer to the device. To achieve

this parallel processing, no special operation occurs on an OPEN command, and no

distinction is made between interactive and noninteractive file types. Each

write command is completed by moving data from the application buffer to the

internal File Manager's buffer, initiating the transfer, and returning control

to the application program. If the program performs a second write operation

while the internal buffer is still in use for a previous transfer, the applica­

tion is suspended until the buffer is available and new data moved into it

again. The application can avoid suspension by using the Status Write command

to see if the internal buffer is still in use or not.

Special considerations for buffered write operations arise because, if a

physical I/O error occurs while data is being transferred from the internal

buffer to the device, the application program is unaware that an error has

occurred unless it checks the file status after each write. Furthermore, if an

error does occur, the application program may need to have saved (or be able to

retrieve) the data record so that it can be repeated.

2-11 AU49

To summarize, a Status Write should be used to test for buffer availability

and no error status before each write operation (not required on the first write

operation) or the close operation of the file.

INTERACTIVE FILE TYPE/LFN COORDINATION

using the File Manager to provide application programs (including those

written in FORTRAN or COBOL) with read and write capabilities for KSR-like

devices requires two LFN's, used as a pair. Both LFN's represent the same

physical device, one for the keyboard input, and the other for the printer

output. Two LFN's are required because the read LFN must be buffered if more

than one terminal is being controlled, and a bidirectional, buffered file type

is not supported by the File Manager.

Whenever both LFN's are buffered or not depends on the application's needs.

However, when the terminal being controlled is physically attached to a communi­

cations controller (MLCP), great care must be taken to coordinate the closing of

the files involved. If one is closed before the other is finished using the

terminal, the other LFN will be unable to access the device because the close

operation causes the connection to be broken. (A media error is returned to the

application.) For further information, see the discussion of CONNECT (used by

the File Manager OPEN function), and DISCONNECT (used by the File Manager CLOSE

function) in the Executive and Input/Output manual.

PRINTER SPACE CONVENTIONS

In planning an application that uses line printers and terminals (consoles)

interchangeably, you must consider the differences in format conventions between

these two types of devices.

The line printer driver (and the IORB within the File Manager for the LPT

device-file) assume that a space-before-print convention is appropriate. The

device-specific word and the format control byte allow convenient prespacing.

The teleprinter driver allows prespacing but also supports post-line feed

operations usually associated with console-oriented print-then-space conven­

tions. This convention is designed to allow input to begin on a new line with­

out doing a line feed after a key is struck.

The File Manager's preconfigured IORB associated with any KSR-like device

assumes a post-line feed is desirable.

The application can accommodate either convention, by itself, without

difficulty, but if the devices are interchangeable, care must be taken to avoid

either:

• Double spacing because the format byte specifies prespace one line,
and the teleprinter IORB enforces a post-line feed

2-12 AU49

• Overprinting because the format byte specifies no prespace, and the
line printer does not support post-line feed

The distinction as to device type is made, using the File Manager, by

interrogation of file type status~ Physical I/O can discover the difference by

locating the RCT for the particular LRN and testing the device 10.

DESIGNING PROGRAMS FOR AN ONLINE ENVIRONMENT

As you design your application programs, remember that they will be using

some of the same system resources that are used by the Executive software. For

this reason, your application programs should conform to certain conventions

that make the joint usage of these resources as efficient and error-free as

possible. These conventions concern the use of interrupt priority levels, the

definition of control structures, the use and saving of registers, as well as

the standard ways of defining, identifying, and calling the various Executive

and application modules.

Multitasking

The following paragraphs describe what has to be done to set up your

application for multitasking execution. Appendix C contains a sample program

that illustrates configuration, linking, task control blocks, and tasking.

A task is a sequence of executable code whose execution is initiated and

terminated by calling task management functions described in the Executive

manual. When several tasks can be active simultaneously you have multitasking.

The criterion used by firmware to select a task for execution, from among those

have been initiated and are active, is the task's priority level; the task asso­

ciated with the highest priority level is the one to be scheduled next.

PRIORITY LEVELS

Each task and device (i.e., the device driver task) is associated with a

priority level number, reflecting its relative processing priority in an appli­

cation. In this priority scheme, the lower the level number the higher the

priority. Table 2-6 contains a list of possible relative priorities for tasks.

Level 0 through 4 (the five highest priority levels) and level 63 (the lowest

level) are reserved for system use and do not need to be specified during

configuration. All other levels are available for use by application program

tasks and devices.

Table 2-6 includes all the devices that currently are supported on Level 6

hardware. If fewer devices are used, fewer levels are needed while maintaining

the relative position of the levels. It is suggested that consecutive levels be

used, without skipping a level number, to save data structure space that would

otherwise be reserved for the unused levels.

2-13 AU49

Table 2-6. Relative Priority Level Assignments

Level Use

o Power failure handler

1 Watchdog timer runout

2 Trap save area overflow

3 Inhibit interrupts

4 System clock

Communications interrupt

Communications Devices (less than or equal to 9600 bps)

Cartridge disks

Communications Devices (less than or equal to 1200 bps)

Diskettes

Printers

Card readers

ASR/KSR

Online Debug Program

Operator Interface Manager interrupt

Input/output - bound application tasks

Central processor - bound application tasks

63 System idle loop (always active)

The table indicates I/O devices, and not device drivers, to stress that

each (noncommunications) peripheral device must have at least one level assigned

to it; peripherals cannot share a level. If there are two printers, each must

be assigned a unique level. Actually, when a device level is initiated, it is

a reentrant I/O driver that is initiated of which only one copy need be in

memory.

Communications requires one nonshareable level dedicated to processing com­

munications interrupts, and it must be at a higher level than any communications

devices. Communications devices can share a level. For example, four TTY's and

one VIP can either share one level or be configured to use up to four levels.

The listed priority arrangement is designed to provide maximum throughput

for each device by assigning the high transfer rate devices a higher priority

than the lower transfer rate devices. I/O-bound tasks are run at a higher

priority than central processor-bound tasks since this enables I/O-bound tasks,

which run in short bursts, to issue I/O data transfer orders as needed, wait for

I/O completion, and while in the wait state, relinquish control of the central

processor to the central processor-bound tasks. Otherwise, if the central

processor-bound tasks had a higher priority, the I/O devices would be idle while

I/O-bound tasks wait to receive central processor time. The criteria used to

specify Table 2-6 might not suit a particular application and the level assign­

ments should be modified to include other priority considerations.

2-14 AU49

LOGICAL RESOURCE NUMBERS

To enable an application program to be independent of level numbers, the

software provides logical resource numbers (LRN's) to associate application

tasks and devices with priority levels.

An LRN (and not level number) is given with each task request to indicate

the level at which the task is to execute. The level at which the task executes

is determined finally by the level that was attached to the LRN at configuration

time. If level changes are to be made, the application only has to be recon­

figured with the new level; the program does not have to be changed.

Although an LRN is attached to a unique level, more than one Lfu~ can be

attached to the same level when LRN's are used synonymously (e.g., two

independently created tasks refer to the same task by different LRN's), or when

tasks or communications devices share the same level.

Figure 2-1 illustrates an association between tasks of an application and

priority levels. The first column describes the task to be initiated. During

task initiation the task is associated with one of the LRN's in the second

column which was attached, at configuration time, to one of the priority levels

listed in the third column. The level assignments follow the priority scheme

listed in Table 2-6.

INITIATED TASK

Communications Interrupt

Local TTY Driver (Operator's Console)

Remote TTY 2 Driver

VIP 1 Driver

Cartridge Disk Driver

VIP 2 Driver (Input)

VIP 2 Driver (Output)

Remote TTY 1 Driver

Diskette 1 Driver

Diskette 2 Driver

Line Printer Driver

Task 1

Task 2

Task 3

Task 1

TASK
ASSOCIATED

WITHLRN

LRN
ATTACHED
TO LEVEL

5

6

7

8

9

~~~:: 
l3~14 

15 

Figure 2-1. Sample LRN Priority Level Attachments 

2-15 AU49 



starting with the tasks at the top of the figure, the operator's console by 

convention uses LRN O. Following it are two communications device drivers, each 

with a separate LRN and sharing one level with LRN 6. VIP 2 has different LRN's 

for input and output, but it must have the same level. This allows a different 

configuration to use different devices without changing the program. Further 

down, two diskettes have unique level assignments, since peripheral devices 

cannot share a level. Level 9 is unused. Application tasks can share a level, 

and tasks 2 and 3 share level 15. Task 1 can be initiated by using LRN 10 or 

LRN 13, both referring to level 14. Although it might appear otherwise, the 

order of the task-LRN association is almost arbitrary. Levels 0 through 4 are 

dedicated assignments that do not require CLM statements. Level 5 though not 

attached to a LRN must be specified using the CLM COMM command. 

ATTACHING LRN's TO LEVELS 

The CLM ATLRN command is used to attach one LRN to one level. The DEVICE 

command does the same for peripheral devices. Each communications device has a 

unique command. An example of the commands used to specify the relationship 

illustrated in Figure 2-1 is given in Figure 2-2. 

OIM 0,13 

COMM 5 Communication Interrupt Level 5 

DEVICE KSR,0,13,X'0500' Operator's Console Level 13 

TTY 1,8,X'FD80' Remote TTY Level 8 

VIP 2,8,X'FCOO' Remote VIP Level 8 

DEVICE FCD,3,6,X'1280' Cartridge disk (fixed) Level 6 

DEVICE RCD,14,6,X'1280',3 Cartridge disk (removable) Level 6 

VIP 4,7,X'FC80' Remote VIP input Level 7 

EQLRN 5,7 Remote VIP output Level 7 

TTY 6,8,X'FDOO' Remote TTY Level 8 

DEVICE DSK,7,10,X'1300' Diskette Level 10 

DEVICE DSK,8,11,X'1380' Diskette Level 11 

DEVICE LPT,9,12,X'0580' Line printer Level 12 

ATLRN 10,14 Task 1 Level 14 

ATLRN 11,15 Task 2 Level 15 

EQLRN 12,15 Task 3 Level 15 

ATLRN 13,14 Task 4 Level 14 

Figure 2-2. Sample Statements Attaching LRN's to Levels 

The cartridge disk used in the example has a fixed and a removable disk, 

and needs two DEVICE commands. The parameter "3" is required to cross reference 

the previous disk DEVICE command LRN. 

2-16 AU49 



The EQLRN command is used when a new LRN has the same level as another LRN. 

For example: 

ATLRN 11,15 

EQLRN 12,15 

The ATLRN with an ReT-size parameter enables you to specify another RCT for a 

level. This feature could be used to create an RCT for a nonstandard device. 

The program would then have to initialize the RCT with data that the CLM normally 

enters from the CLM Command parameters; .e •. g., channel number, modern. 

None of the statements in Figure 2-2 will cause execution to start after 

loading. To start execution immediately after loading, the TASK command must be 

used with the fourth parameter set to YACT. If TESTOI (a task) with LRN 10 were 

to be activated after loading, the TASK command would be: 

TASK TESTOl,10,14,YACT 

REQUESTING TASKS 

To have task A request task B for initiation, task A calls Task Manage­

ment's "request" routine, and passes it the address of task control block (tcb) 

containing task B's start address and LRN. The tcb is built and initialized by 

the calling task, task A. If more than one task is to be initiated at the same 

priority level, the first task requested is the first one to be executed, with­

out interruption from other tasks at the same level. The LRN used in the call 

to the "request" routine can be attached to a level during configuration either 

by using the ATLRN or TASK commands. However, if a task is to be executed 

immediately after loading, it must be def~led in a TASK command. 

An alternate means for requesting a task can be used when the task is to 

have exclusive use of a level. Instead of obtaining a start address from the 

tcb, Task Management uses the B5-register contents of the interrupt save area 

(ISA) of the priority level of the requested task. A bit set in the tcb by the 

calling task indicates to the Task Manager whether to use a start address in the 

tcb or ISA. To initially set the B5-register to a desired task start address, 

the TASK command must be used. CLM takes the start address given in the command 

and places it in the B5-register of the ISA. 

If a task, after it terminates, is to be called again using the address in 

the ISA, the terminating task must contain a terminating code sequence that 

permits the B5-register in the ISA to be restored to the desired start address. 

Such a code sequence of a terminating task is given below. 

2-17 AU49 



A LDV $Rl,=130 

A+l LNJ $B5,<ZXTERM 

A+2 (first instruction of task being terminated) 

The context of the level is saved in the ISA whenever a task terminates at a 

level. In the above terminating code sequence, the B5-register contains the 

address A+2, which is the desired start address of the task. 

~nput and Output Drivers 

The input/output operations in your application are handled by software 

components called drivers (for conventional peripheral devices) or line-type 

processors (for communications devices). These components perform the following 

general functions: 

• Initiate I/O operations on individual devices 

• Report errors and status information 

• Monitor timing to detect device failure or inactivity 

• Perform limited editing of transferred information 

See the Executive and Input/Output manual for descriptions of the drivers and 

the control structures they use. 

Honeywell supplies device drivers in both load and object module form. The 

names and sizes of the driver load modules are given in Table 2-4. The procedure 

~or l.inking object module device drivers is described in Appendix B of this 

manual. 

A Honeywell-supplied driver is implicitly loaded when CLM processes a 

DEVICE command. The DEVICE command provides the logical resource number and the 

priority level for the specified device. Similarly, the line-type processors 

are implicitly invoked when the appropriate communications device command (TTY, 

VIP, BSC) is processed. 

If you write your own device driver, implicit invocation does not occur, 

and in order to include the module in CLM's load list, you must include an 

explicit ADMOD command in the configuration command file that builds your appli­

cation. Furthermore, if your device driver requires nonstandard commands and 

parameters, you must provide the interpretive routines that build the control 

structures required by your driver as extensions to the CLM.
l 

The Honeywell-supplied drivers and line-type processors are reentrant, so 

that only one copy of the driver appears in the final configuration. 

1 
~Consult the current Release Bulletin for details about CLM extensions. 

2-18 AU49 



Memory Usage Considerations 

The memory area used by an online application consists of hardware-dedicated 

locations, data structure areas, load module residence areas, buffer and loader 

areas, and areas occupied by the symbol table and the CLM on a transitional 

basis. The total size of these areas determines the memory size requirements of 

an application. 

NOTE: In the descriptions that follow, all memory locations are 
specified in hexadecimal notation, unless otherwise indicated. 

HARDWARE DEDICATED LOCATIONS 

Low memory, from location 0 through location OOBF, is reserved for BES use. 

Among the indicators and pointers stored in this area are the trap save area 

pointer (word 0010), clock information (words 0014, 0015, and 0016), the level 

activity indicators (words 0020 through 0023), the trap vectors (words 0052 

through 007F), and the interrupt vectors (words 0080 through OOBF). A detailed 

memory layout and explanation of contents of the hardware-dedicated locations 

appears in the Executive and Input/OUtput manual. 

DATA STRUCTURE AREAS 

I~uediately above the hardware-dedicated locations is the data structure 

area. During the configuration process, the CLM builds the data structures 

required by the online application in this area of memory. Using the informa­

tion supplied in its commands, the CLM determines the sizes of tables and save 

areas, constructs the framework of various tables, and inserts into those tables 

the information that is available at the time. The data structure area begins 

at location ODCD and extends as far as necessary to accommodate the required 

structures. 

Figure 2-3 illustrates the layout and contents of memory. 

OVERLAY PLANNING 

The overlay technique allows you to economize on memory by using a given 

portion of it over and over again; it also forces you to think critically about 

the nature of the solutions to your application problems, and the order in 

which those solutions are achieved. 

The Overlay Loader consists of a set of reentrant service routines that 

provide the basic capabilities required for loading and starting overlay code. 

(See the Executive and Input/Output manual for details.) 

The Overlay Loader resides in memory during application execution; it con­

trols overlay processing by using an overlay file and a set of data structures 

that were created by CLM as a result of information in the bound unit (root and 

overlay segments) produced by the Linker. 

2-19 AU49 



HMA 
HIMEM 

LOCX 

LOCE 

LOCS 

OOC9 
DOCS 
OOC7 
OOC6 
OOC5 
OOC4 
OOC3 
OOC2 
OOCl 
OOCO 

0000 

HIGH MEMORY 

LOADER 

LOADER 
EXTENSIONS 

LOAD 
MODULES 

SYSTEM 
DATA 
AREA 

LOAD 
COIIIPLETION 
DATA 

DEDICATED 
LOCATION 

LOW MEMORY 

RESIDUE AREA HIMEM - LOCE 

_____ END OF LOADER 
_____ HIGH MEMORY ADDRESS ~HMA 

START OF LOADER EXTENSIONS .. 

END OF LAST LOAD MODULE + 1 .. 

START OF FIRST LOAD MODULE 
• 

__ POINTER (RESERVED) 
__ HIGH MEMORY ADDRESS (~HMA) FROM SYS 

--- POINTER TO LAST LOAD MODULE +1 
____ hilrn FROM SYS COMMAND 

--POINTER TO WORD BEFORE CLOCK QUEUES ( 
--POINTER TO START OF LRT 
--HMA OF LOADER 
---POINTER TO START OF QUEUE HEADER 
--POINTER TO FIRST LOAD MODULE 

Figure 2-3. Memory Data Structures 

2-20 

COMMAND 

ZXCMGR) 

AU49 



Establishing Overlay Areas 

The items and locations used in the following discussion are shown in 

Figure 2-3. 

Theoretically, all of memory above the system data area (LaCS) should be 

available for use by programs that execute as overlays. There are some limita­

tions, however. 

Apart from the fact that the root module of a bound unit must be resident 

during execution, thus limiting the actual area that can be used by the overlays, 

there is a property of overlay code produced by the higher level language 

compilers, and even some types of code written in assembly language that makes 

unrestricted use of all available memory impossible. Such code is called 

"nonfloatable." (Refer to Program Development Tools manual for details.) 

Normally, CLM treats all overlays as if they were nonfloatable; that is, it 

loads them into memory in exactly the area from which they will eventually be 

executed. The total area required for a set of nonfloatable overlays is the 

area required by the largest nonfloatable overlay module. The first example 

below shows a bound unit that has two nonfloatable overlays. 

If the overlay code is floatable, that is, dynamically relocatable when it 

is reloaded for execution, the overlay does not contribute to the overall load 

space, and it is possible to use the area above the end of the last load module 

(LaCE) in which to position the floatable overlays. This is particularly 

important when LaCE and LOCX are nearly the same value; then floatable overlays 

can be executed in the area reserved by CLM during loading. 

Perhaps the simplest way to set aside space for floatable overlays is to 

incorporate the Buffer Manager in your configuration and request blocks of 

memory equal to the size of overlay code in the BUFSPACE command to CLM. 

Alternatively, the CLM residue above LaCE can be used by developing 

specific addresses in the root after all loading is complete based on informa­

tion in the CLM-created "Load Completion Data Area" in Figure 2-3. The pointers 

to LOCE and the high memory address of the loader are useful for developing load 

addresses to position floatable overlays. 

Overlay Coding Conventions 

The use of overlay processing requires an understanding of the way in which 

root and overlay segments are defined for processing by the Linker, and the 

relationships between root and overlay segments. 

2-21 AU49 



Modules to be processed as overlays are identified as such when they are 

linked. The following Linker commands identify the root modules and overlays, 

and specify the position of overlays in relation to the root module. 

NAME - Identifies the root module. 

IST - Marks the location of initialization code in the root. 

OVLY - Names the overlay module. 

BASE - Positions the overlay module. 

In response to information placed in the load module by the Linker when it pro­

cesses these commands, the CLM constructs a relative file containing the overlay 

modules; the root module remains memory resident. CLM also builds the data 

structures that the Overlay Loader uses to manipulate overlays during the execu­

tion of the application. Refer to the Linker portion of the Program Development 

Tools manual for details about creation of bound units and symbol definitions. 

Example of Nonfloatable Overlays 

This example shows a root program, TCTEST, that has some initialization 

code labeled ISTTAG, and two overlays: TCTESTOI, and TCTEST02. The diagram 

below shows the relationship between the root program and the two overlays; the 

letters in the modules indicate symbols that are either defined (D) in a module, 

or referred to (R). 

When it is loaded, overlay TCTESTOI is located at ISTTAG; overlay TCTEST02 

is located at ISTTAG+IOO, as shown below. 

XLOC X (R) 

XLOC Y (R) 

XOEF W (0) 
--------

~ 
ISTTAG 

TCTEST 

100 { XOEF X (0) 
------------

XLOC W (R) 

TEST01 

XLOC X 
XOEF Y 
XLOC W 

TEST02 

(R) 

(0) 
(R) 

The Linker commands to create the bound unit are: 

NAME TCTEST 

LINKN TCTEST 

EDEF W 

IST ISTTAG 

OVLY TCTESTOI 

BASE ISTTAG 

LINKN TESTOI 

Name used in the ADMOD command. 

Links root. 

Defines symbol externally referred to from 
outside the bound unit (not shown). 

Defines initialization code and overlay 
position. 

Names first overlay; Linker writes root to 
disk. 

Indicates position of first overlay. 

Links first overlay. 

2-22 AU49 



EDEF 

OVLY 

X 

TCTEST02 

BASE ISTTAG+IOO 

LINKN TEST02 

EDEF Y 

END 

Defines externally referenced symbol. 

Names second overlay; Linker writes first 
overlay to disk. 

Indicates position of second overlay. 

Links second overlay. 

Defines externally referenced symbol. 

Completes definition of bound unit; Linker 
writes second overlay to disk. 

Notice that only one 1ST command is used - only root segments may use 

initialization code. The Linker can satisfy the reference from the first over­

lay to W in the root because the root is linked first. However, a reference to 

Y from TCTESTOI would cause a CLM error halt - the Linker writes TCTESTOI to 

disk with Y as an unresolved symbol, and CLM will not write an overlay to its 

file if it contains an undefined symbol. 

A reference from an overlay to W in the root is legitimate because the 

Linker retains all symbol definitions not purged by subsequent BASE commands 

affecting the same area. References from the root to X and Y defined in the 

overlays require EDEF statements in the overlay command group because the CLM 

must resolve the references when these modules are loaded. (The Linker was 

unable to resolve the references before the root load module was written to 

disk.) 

The EDEF definition for W in the root module is superfluous for this 

example, but illustrates another requirement for symbol definition, namely that 

an EDEF statement is needed when a symbol is referred to from outside its own 

bound unit. 

When the application using the bound unit shown in the example above is 

configured, the CLM receives this ADMOD command: 

ADMOD filename:TCTEST ••• 

As a result, the CLM will load the root segment and its initialization code into 

memory following any code loaded as a result of previous ADMOD statements. The 

initialization code beginning at ISTTAG is executed before loading the first 

overlay. Then, using the information specified in the BASE command for the 

first overlay, that segment is loaded. If the overlay has no undefined symbols, 

it will be written out to a temporary file. 

Finally, the second overlay is loaded starting at ISTTAG+IOO, and written 

out to the temporary file. The CLM continues to process command statements. 

2-23 AU49 



Example of Floatable Overlays 

This example illustrates a bound unit whose root has dedicated areas within 

it, and whose overlay segments are all floatable (dynamically relocatable). 

ABC 

A1 ROOT 

A2 
~-----------+-----O-1-------~I---O-2-------'I---~~: 

~-----------+----------~------------~~~ 

nn 

A3 
1------------

The Linker commands to create this bound unit are: 

NAME 

LINKN 

OVLY 

BASE 

LINKN 

OVLY 

BASE 

LINKN 

OVLY 

BASE 

LINKN 

END 

ABC 

A 

ABCDI 

Al 

ABCDI 

ABCD2 

Al 

ABCD2 

ABCnn 

Al 

ABCnn 

Provides name to be used in the ADMOD 
command. 

Links root segment. 

Names the first overlay; Linker writes 
root to disk. 

Locates overlay. 

Links first overlay. 

Names second overlay; Linker writes first 
overlay to disk. 

Locates overlay. 

Links second overlay. 

The overlays in this example are all floatable, so that the code in the 

root and the overlays could include load addresses developed from the CLM­

supplied pointers in low memory as described earlier. 

Note that the ADMOD command for ABC must be positioned in the CLM command 

sequence in such a way that the largest floatable overlay to be written out by 

CLM may be loaded into memory below location LOCX (Figure 2-3). This can be 

accomplished by having other ADMOD commands, whose modules occupy at least as 

much space as the largest ABC overlay, follow the ADMOD for ABC. 

After loading is completed, the overlays are brought into memory areas pre­

viously occupied by CLM by calling the Overlay Loader. 

2-24 AU49 



The CLM determines the final size of a bound unit (and thereby the location 

where the next load module begins) based on the highest address occupied by 

either the root or one of its nonfloatable overlays. This means that the root 

alone in the floatable overlay example determines the bound unit size. If the 

root does not include overlay areas within it (e.g., by using a RESV assembly 

statement), those areas must be obtained in alternate ways. 

Care must be taken in source code to produce a floatable overlay. However, 

an overlay may inadvertently be coded (or later modified) so that it matches the 

definition of a floatable overlay.. To prevent a change in CLM operation 

resulting from a nonfloatable overlay becoming floatable, the source code of the 

nonfloatable overlay could include a global reference to an address tag within 

that same source. 

How to Estimate Overlay File Size 

The CLM assumes that there is enough physically contiguous space in the 

relative file it uses for the application overlays. If this is not true, por­

tions of the disk beyond the allocated file space will be destroyed. The CLM 

also assumes that the name of the relative file it will use to contain the over­

lays is either OVERLAY, or the filename used in the AT03 command to the Command 

Processor. 

To estimate how many sectors should be allocated when using the utility 

initialize function, take these steps: 

1. Produce link maps for all overlay load members. 

2. Determine the number of words in the image text of each one. 

3. Divide the image text word total by the number of words per 
sector (64 for diskette; 128 for cartridge disk) to obtain the 
number of sectors for each overl~1. 

4. -Add the individual sector requirements together to get the total. 

5. Add in the Online Debug Program sector requirement (22 for disk­
ette; 22 for cartridge disk), if needed. (This is always a good 
idea, because you may need the ODP later.) 

It is important to note that each overlay begins on a sector boundary so 

that it may be read into memory (and written out by the CU~) as a single I/O 

transfer. This design minimizes overlay load time during execution. 

INITIALIZATION SUBROUTINES 

Initialization subroutines mayor may not be required by every module. As 

you write the initialization code for your modules, you may want to use one or 

more of the system-provided subroutines summarized in Table 2-7. These subrou­

tines use the standard register conventions that you will also use when you 

write your subroutines. 

2-25 AU49 



Table 2-7. Register Use by System Initialization Subroutines 

Module Function Register Contents 

Name Code Function For Function Call After Function End 

ZGFINU 0 Find a symbol in B4 - Pointer to Rl - 0 = Symbol found 
symbol list start of symbol = Not nonzero name found 

ZGDEFU 1 Define a symbol Rl - 0 = Address Rl - 0 = No error 
definition 

lF = Symbol 
Value = Value already defined 
definition 21 = Work area 

R2 - Definition overlap 
value 

B3 - Definition 
address 

ZGREFU 2 Refer to a symbol Rl - 0 = Address Rl - 0 = No error 
reference 21 = Work area 
Value = Value overlap 
reference 

Bl - Pointer to 
location refer-
red to 

NOTES: 1. These registers have the same values for all functions: 
R3 - function code; B4 - pointer to the start of the symbol 
name; B5 - return address. 

2. Other registers used by these subroutines: R4, R7, B2, B7, R6. 

Initialization is performed immediately after the loading of a module is 

completed. Each initialization subroutine is entered via the LNJ instruction 

using register B5 for the return address. The address of the parameter list is 

loaded into register B4, the parameter list itself is defined in the initializa­

tion subroutine table described below. 

Errors occurring during initialization are fatal errors; loading cannot be 

continued. Error information is returned in register Rl; CLM moves the contents 

of Rl to R2 and places the 1304 halt code into Rl. If the content of register 

Rl is zero, the operation was successful. 

The initialization subroutine table identifies the subroutines that are to 

be executed when the module has been loaded. It has the following format: 

2-26 AU49 



label DC a next load displacement 
RESV $AF,O RFU 
DC <name first initialization subroutine 
DC value parameter l} for first subroutine 
DC value parameter 2 
DC <name second initialization subroutine 
DC value parameter ~} tor second subroutine 
DC value parameter 

RESV $AF, a sentinel, end of 1ST 

Entries must be included in the initialization subroutine table for each 

subroutine required for a load module. The "label" in the first statement of 

the format example must be defined in an 1ST command to the Linker. The location 

at "label" is the point at which the next module will be loaded when the initial­

ization is completed. Normally, the value declared at "label" is zero. 

During the CLM loading phase, the base address for loading the next load 

module is formed by using the address of the first word of the current load 

module's initialization subroutine table (1ST in the example) plus the displace­

ment value contained in that word. When the displacement is nonzero, the next 

module loads below (for a negative displacement) or above (for a positive 

displacement) the 1ST start address. 

Communications Planning 

The Communications functions of BES software have been designed in such a 

way as to make them as easy to use as any other peripheral device. Your inter­

action with the Communications software occurs through the physical I/O inter­

face. Using the Configuration Load Manager, you assign a logical resource 

number to the various Corrmunications devices. Then, in your application program, 

using a standard call to the Executive, and providing a standard control struc­

ture (an lORE) in which to pass parameters, you request a transaction with a 

particular communications resource. Your request is then handled by the 

Communications software, and you need not be concerned with the details of 

Communications procedure. See the IORB information in the Executive and Input/ 

Output manual for details about the standard control structures and function 

codes for Communications devices. 

PRIORITY LEVEL REQUIREMENTS FOR COMMUNICATIONS 

Although both peripheral and Communications devices share a common inter­

face, they have different priority level requirements. Peripheral devices such 

as card readers, disks, and printers are assigned one device to a level. Com­

munications devices, however, require one dedicated level (specified in the COMM 

command) that is reserved for the processing of Communications interrupts, and 

2-27 AU49 



must be the highest priority level assigned to a Communications function. 

Additionally, any number of priority levels may be shared among Communications 

devices (not with any other device types); these priority levels must be lower 

(higher level numbers) than the level specified in the co~rn command. 

REQUESTING COMMUNICATIONS FUNCTIONS 

When you request a transaction with a communications resource, you must 

specify the logical function in the request block that you provide with each 

request. 

There are five logical functions: connect, read, write, wait-on-line, and 

disconnect. The connect must precede other requests, because Communications 

resources are configured in a disconnected state. The sequence that would occur 

is as follows: 

1. Set up an IORB with the function code for a connect request, and 
call the physical I/O interface. 

2. Once the connection is made, you supply the appropriate request 
blocks for the functions that your application will perform, and 
do the reads, writes, and/or wait-on-line operations required by 
the program's logic. 

3. When the program finishes processing, you supply a request block 
with the disconnect function code, and call the physical I/O 
interface to perform the function. 

The values that you provide for the various function codes are coded in the 

last four bits of word three (ZIRCT2) of the IORB that you supply in your 

application program. 

If your application is such that the program must: 

• Temporarily suppress the previously queued data request to or from 
a VIP or TTY, or 

• Signal a traffic direction change for a device (BSC) 

there is a means of disconnecting the resource logically while maintaining the 

physical line connection. This logical disconnection is accomplished when bit 

15 of the device-specific word of the IORB is set on; when this bit is zero, the 

physical line connection is discontinued. 

The Communications function codes (CONNECT and DISCONNECT) may be used with 

no effect if a program whose IORB's contain such codes were to be executed using 

noncommunications peripheral devices, thus the program is independent of the 

device types that may be in use. 

COBOL application programs can use the Communications facilities of BES 

software by the standard input/output verbs OPEN and CLOSE; these verbs evoke 

the Communications connect and disconnect functions, respectively. 

2-28 AU49 



BINARY SYNCHRONOUS COMMUNICATIONS (BSC 2780) 

This Communications protocol may be used in conjunction with an appropriate 

application program in the following ways: 

• IBM 2780 remote terminal emulator 

• File transmission for Level 6-to-Level 6 computers 

IBM 2780 Remote Terminal Emulation 

In this environment an application program would be structured to emulate 

the functions of the IBM 2780 remote terminal in a manner which is consistent 

with the features available on the host computer responsible for processing the 

submitted data. 

The features of BES2 BSC 2780 line protocol are described below. 

Level 6-to-Level 6 File Transmission 

In this environment an application program could be developed to transmit 

both binary and ASCII data, in records of any size, between two Level 6 

computers. 

The support of the character sets (whether ASCII or EBCDIC) is restricted 

to the line protocol handler providing the control characters in the appropriate 

character set. 

The character set of the text portion of the data is totally the responsi­

bility of the application program. 

In transparent EBCDIC, the line protocol handler will assume total responsi­

bility for inserting and removing the line protocol escape character (DLE) both 

in the header and in the text. 

Whether a transmission unit from Level 6 will contain a single record or 

two records may be managed by the application program in the following way: 

• Creation of single record transmission units requires that each 
write order be issued with the wait status specified in the IORB5 

• Creation of two-record transmission units requires that each write 
order be issued with the do-not-wait status specified in the IORB. 

In this situation, the application would do the necessary processing 
and issue another write order with the do-not-wait status specified 
in the IORB. The process continues, the application program pro­
cesses in a totally independent manner, without regard for the 
activity on the Communications line until the application program's 
write buffers are filled. At this point, a wait on the first IORB 
is issued. When the application program resumes, it again does its 
processing, and issues another write order (do-not-wait). Then a 
wait on the second IORB is issued, and so on. 

2-29 AU49 



The packaging of the write requests into a transmission unit is done 

independently by the line protocol handler. A second record will be embedded in 

the transmission unit as long as the write request is issued before the last 

character of the previous write request has been transmitted over the Communica­

tions line. As a practical matter, considering the comparative slowness of the 

communications line (maximum 1200 characters/second) with other resources 

(computer, peripherals, etc.), there is sufficient time to allow this free­

wheeling process to work. 

If an application program is by convention to be prepared to handle the 

receipt of data from an application that transmits two records in a single 

transmission unit, then it is required that two read requests always be present 

at any time during which a transmission unit may be received. 

A basic characteristic of the BSC 2780 communications protocol is that it 

is nonconversational. That is, once the movement of data has been established 

between computers (i.e., from A to B), it is not possible to transmit from B to 

A until the entire quantity of data has been transmitted from A to B. Occa­

sionally, there may be a need to send an urgent preemptive message in the direc­

tion contrary to the flow of information. This need is resolved by computer B 

issuing a disconnect request with the indicator set to abort all IORB's in the 

queue. Upon notification of this action being complete, it is now possible for 

the application program in computer B to issue a connect request followed by 

the write order for the urgent message. 

When computer A received the notification from computer B of the urgent 

preemptive need to send a message (signaled in BSC 2780 by the receipt of a 

reverse interrupt, RVI) it would so notify the application program via the 

attention interface, after dequeuing and posting all currently queued IORB's. 

The application program would then issue a receive order for the acceptance of 

the preemptive message. 

2-30 AU49 



SECTION 3 

BUILDING 

The Configuration Load Manager (CLM) defines the application variables, 

sets up the required internal control structures, prepares a load list of the 

specified modules j and initiates the execution of the application, all in one 

continuous operation. 

Before executing the CLM, you must have already prepared the programs and 

files to be used in the application. This preparation includes compiling (or 

assembling) the programs, linking them into one or more load modules, and pre­

allocating space for all output files to be used. 

During the configuration phase, CLM accepts the commands that direct its 

operation. In addition to specifying system characteristics such as memory size 

and processor type, the commands processed by CLM also set priority levels for 

tasks, assign logical resource numbers, and direct the construction of a load 

module list containing the names of all the modules to be loaded for execution. 

Once the configuration phase is completed, the modules named in the load 

module list are loaded by the particular loader then in use. Any unresolved 

references among the modules are resolved at this time. As each module is 

loaded, it is initialized before the next module is loaded. 

After the last module is loaded and initialized, control is transferred to 

the active task having the highest priority. Execution then begins. 

PREPARING TO USE CLM 

Since CLM allows an application to be run as a single load-and-go operation, 

all files to be used for output by the application should be preallocated, and 

all modules, both Executive as well as user-written modules, should be linked 

before the CLM is loaded into memory. These preliminary processes are described 

in the appropriate manuals, and illustrated in Figure 3-1. The process of 

building an online application falls naturally into discrete steps. The fol­

lowing pages describe the process and refer you to the pertinent manuals for 

complete details. 

3-1 AU49 



STAGE 1 

STAGE 2 

STAGE 3 

STAGE 4 

STAGE 5 

STAGE 6 

r-
I .---L.. ______ -' 

CORRECT 
SOURCE 
PROGRAM 

NO 

ADDITIONAL u­
OBJECT 
MODULES 

ADDITIONAL 
USER-WR ITTEN 
AND GCOS/BES 
LOAD MODULES 

(--

I ~------~--~ 

I I '- _______ J 

ALLOCATE FILES 
FOR SYSTEM 
AND APPLICATION 
PROGRAM OUTPUT 

CREATE SOURCE 
FILES ON 
DISKETTE 

EDIT SOURCE 
FILES AND 
REWRITE ON 
DISKETTE 

ASSEMBLE OR 
COMPILE 
SOURCE 

LINK 
OBJECT 
MODULES 

CONFIGURE, 
LOAD AND 
START 
ONLINE 
APPLICATION , , 

SOURCE 
MODULE(S) 

SOURCE 
MODULE(S) 

r-----------, ASSEMBLY OR 
COMPILATION 
LISTING 

OBJECT 
MODULE(S) 

LOAD 
MODULE(S) 

APPLICATION 
OUTPUT 

"-
... ~-------- APPLICATION 

~OUTPUT 

Figure 3-1. Building an Online Application - Process Diagram 

3-2 AU49 



Output File Preallocation (Stage 1) 

Figure 3-1 summarizes the file requirements for all the following stages in 

the application development process. File space is allocated by Utility set 1. 

(See the Utility Programs manual.) Some of the files your application uses must 

be relative files to receive either the output data from the application, or, if 

you are using overlays, the overlay file written by CLM. 

The file to accommodate any overlays that CLM writes out in the process of 

application configuration must be a single extent, relative file large enough to 

hold all the application's overlays. If the overlay version of the Online Debug 

Program is being used, the overlay file must provide 50 diskette sectors, or 25 

disk sectors in addition to the space required for other overlays, 

Files that are intended to receive source, object, or load modules must be 

initialized after space is allocated, to organize those files as partitioned 

files capable of accommodating individually accessible members. 

If you plan to use the Online Debug Program with predefined command lines 

stored on disk, you must preallocate a relative file named DEBUG. WORK containing 

22 diskette sectors, or cartridge disk sectors for use by this program. 

If your application program produces an output file that is intended for 

printing by a print utility, either immediately, or at a later time, the first 

byte of each record to be printed must contain printer control informatiorr. 

Source Module Creation and Editing (Stages 2 and 3) 

Partitioned files containing source text members are created on disk from 

punched card files using Utility Set 2. 0nce created, these source files are 

then usable by the Editor, for correction or addition of text, or they may serve 

as input to the Assembler or to the FORTRAN or COBOL Compiler. (See Program 

Development Tools manual.) 

Stage 2 is mandatory if source programs are punched on cards; it may be 

omitted entirely if the source programs are short enough to be entered through 

the keyboard as input to the Editor. 

Stage 3 is optional. It is possible to go directly from creating a source 

file on disk to the Assembler/Compiler phase. 

3-3 AU49 



Object Module Creation (Stage 4) 

The creation of object modules is the function of three system programs: 

the Assembler for programs written in assembly language; the FORTRAN Compiler, 

and the COBOL Compiler, for programs written in FORTRAN or COBOL source language. 

In addition to object modules produced on disk, the Assembler and both compilers 

produce source listings with diagnostic messages that refer to the various 

syntactical errors encountered in the processing of the source language state­

ments. 

Once the source code is free of syntax errors, and has been reassembled or 

recompiled, the program is ready to be processed by the Linker in the next phase. 

Load Module Creation (Stage 5) 

The preparation of load modules for use in online applications requires 

special attention to the ordering of permanent code and the initialization code 

for particular load modules, and to the handling of externally defined symbols. 

LINKING ORDER FOR CODE TEXT 

One or more object modules may be linked to form a load module. The order 

in which modules are linked is significant in the following situations: 

• Modules being linked require initialization code • 

• Modules being linked will be executed as overlays. 

Load modules that require initialization code must have all permanent code 

linked before the initialization code for the load module. This is because, 

during the loading phase in the operation of CLM, successive modules are loaded 

in such a way that once the initialization code for a module is executed, it is 

replaced by the permanent code of the next module. Figure 3-2 shows the memory 

layout of a module and its initialization routines, and indicates the starting 

location for loading the next module once the initialization has been performed. 

EXTERNALLY DEFINED SYMBOLS 

An application load module may have valid undefined symbols at the time it 

is linked, such as a call to an Executive subroutine. The CLM resolves these 

references as it loads the Executive Modules specified in the ADMOD, DEVICE, and 

Communications line type processor commands, and analyzes the ELOC, EVAL, TRAP 

and DEVICE commands. 

Any symbol that may be referred to by other load modules or by the CLM, and 

not defined by CLM itself, must be identified in an EDEF statement at the time 

the module is linked. (See the Program Development Tools manual for Linker 

information.) 

3-4 AU49 



HIGH MEMORY 

USER-WRITTEN 
INITIALIZATION 
SUBROUTINES 

SYSTEM 
INITIALIZATION 
SUBROUTINES 

INITIALIZATION 
SUBROUTINE 
TABLE (1ST) 

PERMANENT 
CODE 
TEXT 

LOW MEMORY 

,. 
NORMALLY 
LOADING OF NEXT 
LOAD MODULE 
BEGINS HERE 

Figure 3-2. Current Load Module Memory Layout 

In assembly language, locations or values that are referred to by modules 

other than the one in which they are defined, are identified in an XDEF state­

ment; when the defining module is linked, the label(s) made available for 

external reference by these XDEF statements are declared in a Linker EDEF state­

ment if CLM must resolve references to these labels in other modules. 

During configuration, the eLM must be able to resolve all references either 

from information provided to it in a symbol table from the Linker, or from the 

symbol table CLM itself constructs from the command information submitted to it. 

The unresolved symbols encountered by CLM during execution cause a load error 

(1341 - see the Operator's Guide) followed by a halt; at your discretion, you 

can ignore these errors and continue processing. However, there are load errors 

that prevent continued execution of CLM: the occurrence of an undefined symbol 

in an overlay module (135B - see the Operator's Guide). 

There are several CLM command parameters that require Linker EDEF state­

ments: the start address in a TASK command; the ppt-label and space-name in the 

BUFSPACE command; the handler-name in a TRAP command; the label parameter of a 

DEVICE, TTY, VIP, or BSC command if the label specifies a user-defined routine 

and is not the default label, ZIATTN for LRN O. 

3-5 AU49 



Summary of Load Module Preparation 

These are the steps involved in the preparation of load modules prior to 

configuring an online application: 

• collect the object modules that make up the permanent code. 

• Collect the system initialization modules to be used. 

• write and assemble the user-written initialization code and the 
initialization subroutine table. 

• Run the Linker to produce a load module in the format described in 
Figure 3-2. Note that the initialization subroutine table is always 
linked immediately following the permanent code text. It is at this 
point in the process that the Linker EDEF command is used to specify 
all externally-referenced symbols. 

USING THE CONFIGURATION LOAD MANAGER (STAGE 6) 

The CLM and its extensions are the BES software components you use to 

configure an online application. 

CLM consists of four functional groups of modules that interpret the com­

mands in which you have specified the system variables, devices, and load modules 

that constitute the configured application. Of these functional groups, one, 

the CLM nucleus is required for configuring all applications; the other three 

are optional extensions that interpret particular configuration commands. 

Depending on the memory size of your system, the optional modules may be 

resident throughout the operation of CLM, or, as with an 8K system, the CLM 

extensions must be executed as overlays. Table 3-1 summarizes the functional 

groups and indicates the commands that are interpreted by each. 

How to Include Optional CLM Extensions 

The CLM extensions that interpret the File and Buffer Management, and 

Communications commands are included by specifying the appropriate information 

in a LACT command for each extension. The LACT command contains a parameter to 

indicate that an extension is to be executed as an overlay. (See Appendix A.) 

The following example shows the LACT commands for a communications applica­

tion whose devices are accessed through the File Manager, and that will require 

device definitions that include the File Manager DEVFILE command. 

LACT CLMCOMM: COMM 
LACT PROGFILE:CLMFIL 

The channel number is the same as that from which CLM was loaded, the work areas 

for both sets of modules will not be shared, and both sets of interpretive 

modules will be resident rather than overlays. 

3-6 AU49 



Table 3-1. CLM Functional Groups, Component Modules and Related Commands 

Functional Group a 
(filename:membername) Component Modules Commands Processed 

PROGFILE:CLM CLM Nucleus 
(required) CLM SYS ADMOD TRAP 

CLM2 OIM PRMOD LACT 
CLMSTl TSA ELOC ELACT 
D$CLMSTl CLOCK EVAL QUIT 
C$CLMSTl DATE lOS * 
CLMST2 TASK EQLRN 
D$CLMST2 DEVICE ATLRN 

PROGFILE:CLMFIL File Manager Extensions 
(optional) 

CLMFIL FILMGR DEVFILE 
D$CLMFIL ATFILE FMDISK 
C$CLMFIL 

PROGFILE:CLMBUF Buffer Mana9:er Extensions 
(optional) CLMBUF BUFSPACE 

D$CLMBUF 
C$CLMBUF 

CLMCOMM:COMM Communications Extensions 
(optional) 

I 
COMM COMM BSC 

I D$COMM TTY MODEM 
C$COMM VIP LTPDEF 

LTPn STATION 

a AS specified in the LACT command 

If the extensions are executed as overlays, it is not necessary, but more 

efficient to group the configuration commands in the same order as the exten­

sions were specified. The grouping of commands becomes particularly important 

if your application is configured from a serial device. (See "Loading From 

Paper Tape," discussed later in this section.) 

After the CLM nucleus has been loaded, the only commands that it will pro­

cess are the LACT and lOS commands, until an ELACT command is read. In fact, 

even if you do not add any of the CLM extensions, an ELACT command must be 

issued so that CLM may begin processing the other application configuration 

comma:nds. 

To summarizej the optional CLM extensions may be executed as resident 

modules, or they may be executed as overlays; in an 8K environment the exten­

sions must be executed as overlays; unlike the execution of application program 

overlays that require the availability of a disk, CLM extension overlays have no 

such requirement. 

3-7 AU49 



Application Configuration and Loading 

You can load CLM and configure your application from disk or paper tape, 

either as a nonstop procedure (disk only), or a load-and-halt operation; you 

can use, but do not need, an operator's console. Specific operating procedures 

for all methods are described in the Operator's Guide, and discussed briefly in 

the following pages. 

NONSTOP APPLICATION LOADING 

The nonstop loading procedure is based on a preset bootstrap record created 

by the Bootstrap Generator utility program. The elements of this record are 

described in Table 3-2. (For details, see the Utility Programs manual.) 

Table 3-2. Bootstrap Record for Nonstop CLM Loading 

Parameter Values Default Values 

DFT N None 

BTHLT N N 

HMA (high memory address) lFFF (8K) l 
3FFF (16K) lFFF 7FFF (32K) ) 
FFFF (64K) 

KSR 0 0500 

LDCHN (load channel) 0400 (disk) 0 , (paper tape) 

FILE PROGFILE PROGFILE 

MEMBER CLM CMDPRC 

REL (relocation factor) xxxxa (8K) l xxxx (16K) 0 xxxx (32K) ) xxxx ( 64K) 

LDHLT N N 

a See Release Bulletin for exact values 

The nonstop loading procedure is usable only when your load modules are on 

disk; no operator's console is needed. 

The file requirements for nonstop loading from disk are these: the CLM 

command input file (CLMCI) must be on disk. If you are running your application 

program as overlays, you must preallocate a relative file for CLM to use when it 

writes out the overlays. 

If you are configuring a communications application, then in addition to 

PROGFILE, your disk should contain CLMCOMM. 

3-8 AU49 



The Bootstrap Generator Utility program is executed to place the preset 

bootstrap record on the disk. The parameters for the utility, assuming a 16K 

system, are: 

N"3FFF,O,0400,,CLM,3480 

When this record is on the disk, and all the load modules needed by the 

application are available, you are ready to carry out the loading procedure. 

You press: ~top, ~lear, ~oad, and Execute; there will be a pause while the QLT 

(Quality Logic Test) is performed, then press ~xecute again, and application 

configuration is underway and needs no further intervention. 

LOADING FROM DISK USING THE COMMAND PROCESSOR 

This method involves minimal operator intervention, but allows the command 

input file to the CLM to be reassigned from the KSR to either a disk on a dif­

ferent channel, or with a nondefault member name, or card file. The method also 

requires a preset bootstrap record, but this time the default values for the 

file and member entries in Table 3-2 can be taken; those entries are PROGFILE 

and CMDPRC, respectively. 

The parameters for the Bootstrap Generator utility program, again assuming 

a 16K system are: 

N"3FFF",,,3480 

When you are ready to carry out the loading procedure, press: ~top, ~lear, 

~oad, and Execute; after the QLT has executed, again press ~xecute. The Command 

Processor indicates its availability by printing a C? on the console; at this 

point you can use the EX command to assign a command input file that loads CU4 

with appropriate attachments for configuring your application. No further 

operator intervention is needed. 

LOAD AND HALT PROCEDURES FOR DISK 

These procedures can be carried out using either an operator's console or 

the control panel if no console is available. Both methods are described below. 

Loading From Disk with an Operator's Console 

When the load device is a disk and an operator's console is available, CLM 

is loaded using the Command Processor in conjunction with the Disk Loader. The 

Command Processor accepts control information through the console to establish 

the environment for the execution of the CLM. (See the program Development 

Tools manual for a description of the Command Processor.) 

3-9 AU49 



The commands entered through the console specify a relocation factor, and 

whether a halt should occur after CLM is loaded (e.g., to allow the mounting of 

a new disk). In addition, the commands specify the command input file name; the 

overlay file name, if necessary; and the device and channel number from which 

the CLM commands will be entered. 

The last Command Processor command causes the CLM to be loaded. If no halt 

was specified, the CLM starts executing as soon as it is loaded. Otherwise, the 

system halts, allowing you to perform any necessary actions before continuing. 

Loading From Disk Without an Operator's Console 

In this method, no Command Processor is usable. If the load parameters 

vary from load to load, they can be entered through the control panel, with a 

bootstrap record on disk set up to halt as described below. 

The bootstrap record parameters BTHLT and LDHLT are, in this case, set to 

Y. 

When the bootstrap record has been written on the disk, you can begin the 

loading procedure. Make sure that your disk is on the device that is connected 

to the default bootstrap channel (040016 ). Press: ~top, ~lear, ~ad, Execute 

(QLT pause), Execute. 

When the 1601 halt occurs, press ~top, and then you can enter the reloca­

tion factor into register B2, the HMA into B3, and the loading channel number 

into R2. Then press ~eady and Execute. 

When the 1603 halt occurs, you can choose the CLM command input device and 

channel number by: pressing ~top, entering the channel number of the command 

input device into R6, and the device type into R7. The device types are: 0040 

for a card reader, 0080 for a disk. Press ~eady and ~ecute. Control is now 

turned over to CLM and configuration of the application proceeds. 

LOADING FROM PAPER TAPE 

The only procedure available for this medium is a load and halt procedure 

because the command file for CLM cannot be entered from paper tape. You can 

min~mize halting by setting most values in the bootstrap record, but the LDHLT 

parameter should be given a value of Y so that you can assign the command file 

to the appropriate device. 

Since paper tape is a serial medium, all elements must appear in the order 

in which they are to be used. The first element on the tape must be the boot­

strap record; when the Bootstrap Generator program is executed to create the 

bootstrap record, the utility also places the next required module on the tape, 

3-10 AU49 



namely, the Paper Tape Loader. Table 3-3 shows the order of CLM modules 

required for paper tape loading. See the Operator's Guide for complete details 

about all loading procedures. 

Table 3-3. CLM Load Module Order for Paper Tape 

Memory Size 

HMA=lFPP (SK) HMA)lPPP (SK) 

CLM CLM 

CLM2 CIk12' 

D$CLMSTl D$CLMSTl 

D$CLMST2 D$CLMST2 

D$COMM
a D$COMM

a 

D$CLMFIL
a D$CLMPIL

a 

D$CLMBUpa D$CLMBUpa 

CLMSTl
b CLMSTl 

CLMST2 C$CLMSTl 

COMMa CLMST2 

CLY.LFIL a 

I 
CO!-1M

a 

CLMBUpa CLMFIL
a 

C$CLMSTl C$COMMa 

C$COMMa C$CU1PIL
a 

C$CLMFIL
a CLMBUpa 

C$CLMBUpa C$CLMBUp
a 

aThese modules are included 
only if the appropriate LACT 
commands are issued. 

bModules begin~ing with this 
one are loaded as needed, and 
in order of LACT command 
submission when memory size 
is SK. The above list 
assumes that the LACT com­
mands were issued for· COMM, 
CLMPIL, and CLMBUP in that 
order; consequently, con­
figuration commands should be 
issued in the same order. 
Also, for SK systems, the C$ 
modules will be loaded after 
the QUIT command is pro­
cessed. 

If HMA is greater than SK, 
all CLM modules will be 
loaded before any system con­
figuration commands are 
requested, so there is no 
necessity to group these com­
mands in this case. 

3-11 

I 

AU49 



Building a CLM Command File 

The order of command submission to the CLM depends on the type of applica­

tion being configured. If, for example, you are including one or more of the 

CLM extensions, then the LACT commands are presented first, followed by an ELACT 

command. If no extensions are included, the ELACT command must be issued so that 

the CLM can begin to accept system configuration commands. 

As to the submission order of the system configuration commands themselves, 

several factors have an effect upon what the final order should be: memory size 

in combination with disk availability, the nature of the loading medium, and the 

characteristics of the modules that make up the application. 

As mentioned earlier under "How to Include Optional CLM Extensions," running 

CLM extensions as overlays is mandatory for 8K systems. Similarly, if memory 

size is limited, and you are running your own programs as overlays, then the 

order in which the ADMOD commands are submitted could be important if references 

are made from one bound unit to another. 

The nature of the loading medium can affect the grouping of commands as 

described previously, under "Loading From Paper Tape." 

Finally, the characteristics of the application modules themselves must be 

considered when you are designing your command file. For example, if you are 

configuring an application that contains communications software, it is advisable 

to issue the Communications commands to the CLM early in the process. The reason 

for this is that the line-type processor modules have extensive initialization 

code which loads the RAM portion of the MLCP, so that starting the configuration 

procedure with the Communications commands allows you to use the area occupied 

by this initialization code for permanent modules loaded later in the process. 

Whereas, if you wait to bring in the Communications modules until later in the 

process, you may either waste space, or worse still, you may have to begin the 

configuration process over again because there was not enough space left for the 

initialization code to execute. 

Similarly, CLM requires space for loading and writing floatable overlays to 

disk that is usable by permanent code that is subsequently loaded. You should 

consider loading programs that have floatable overlays early in the configura­

tion process. 

Apart from the actual order of the commands in the command file, the fol­

lowing facts should be noted. 

Any device that will be accessed through the File Manager requires a 

DEVFILE command; the DEVFILE command must be issued after the corresponding 

DEVICE, TTY, BSC, or VIP command. 

3-12 AU49 



An error results if the aIM command is omitted from the CLM command file 

because some system services may use the TYPR facility even if user programs do 

not. 

The CLM command file should begin with a SYS command unless all the default 

values are taken, and it must end with a QUIT command. 

The command set for CLM is described in Table A-I; the definitions for all 

commands and their parameters are also found in Appendix A. 

CLM Action During Loading 

When the QUIT command is processed, the data structures are created in a 

nondedicated area of memory. Figure 3-3 shows how memory looks before the 

loading phase begins. 

When the loader is given control, it obtains the name of the first load 

module to be loaded from the load module list constructed by CLM. The first 

module is loaded beginning at a location just above that occupied by the system 

data structures. After the loading of each module is complete, control is given 

to the initialization subroutines of the module. 

At this point, if the module is a root module with overlays, the overlays 

are loaded, and written out to the overlay file. Figure 3-4 shows a memory 

layout ~fter the loading process is completed. 

If the space name parameter of the BUFSPACE command is not given a value, 

the buffer area is obtained from the load residue space, which includes the area 

from the end of the last load module, through the value of the himem parameter 

in the SYS command. If the default value of himem is taken, the loader is 

included in the load residue area and could be overwritten by information put 

into buffers. Figure 3-5 shows how memory looks during application execution 

when the value of himem was not changed to protect the loader. 

3-13 AU49 



HIGH MEMORY 

lOADER 

lOADER EXTENSIONS 

ClM 

SYMBOL LIST 
AND lOAD 
MODULE LIST 

1 
I 

t 
SYSTEM 
DATA 
STRUCTURES 

HARDWARE 
DEDICATED 
lOCATIONS 

lOW MEMORY 

Figure 3-3. Memory Layout During Configuration 

3-14 AU49 



SIZE DEPENDS ON 
TYPE OF LOADER 

BUI LDS DOWN INTO 
RESIDUE AREA 

CAN BE USED FOR 
BUFFERS 

BUILDS UP INTO 
RESIDUE AREA 

SIZE IS TOTAL OF 
TABLE AREAS, SAVE 
AREAS 

HIGH MEMORY 

LOADER 

LOADER EXTENSIONS 

l 
SYMBOL TABLE 

LOAD MODULE 
AREA 

t 

SYSTEM 
DATA 
STRUCTURES 

HARDWARE 
DEDICATED 
LOCATIONS 

LOW MEMORY 

• FIRST MODULE 
STARTS HERE 

Figure 3-4. Memory Layout After Loading 

3-15 AU49 



HIGH MEMORY 

BUFFER AREA 

LOAD 
MODULE 
AREA 

SYSTEM 
DATA 
STRUCTURES 

HARDWARE 
DEDICATED 
LOCATIONS 

LOW MEMORY 

Figure 3-5. Memory Layout During Application Execution 

3-16 AU49 



STARTING AN ONLINE APPLICATION 

It is important to understand how the starting point of an application is 

conveyed to the CLM, because you must take specific steps while creating applica­

tion load modules to ensure that the CLM can identify the desired start address. 

Specifically, the CLM TASK command allows a task associated with a priority 

level to be started at a labeled address when the application is loaded. This 

start address label must be declared in a Linker EDEF statement when the load 

module containing the task is created. If an application has more than one task 

(each on a different priority level) to be started, multiple TASK and EDEF 

statements can be used. The EDEF's may be in the same or in different load 

modules. 

The EDEF command is used on behalf of assembly, FORTRAN, and COBOL language 

programs to define start labels to the CLM. Any label may be used in an assembly 

language program. 

For FORTRAN main programs, the label is either: 

• The !!progname!! used in a PROGRAM source statement in the main 
program, or 

• The compiler default label ZFMAIN
l 

for a main program that does not 
contain a PROGRAM source statement. 

Note that a PROGRAM statement is required in main programs if multiple start 

labels are needed. 

The rules for defining the start addresses for load modules written in 

assembly, FORTRAN, and COBOL languages are summarized below. 

Assembly Language Start Address Definition 

• Start labels chosen are declared by XDEF statements to the 
Assembler, and EDEF statements to the Linker. 

• The label in each TASK command to the C~l matches the XDEF and EDEF 
definitions. 

FORTRAN Language Start Address Definition 

• Start labels explicitly declared in PROGRAM source statements (or a 
ZFMAIN label created implicitly by the compiler) are declared in 
Linker EDEF statements. 

• The label in each TASK command to the CLM matches the EDEF defini­
tion. 

IThis label is placed into the FORTRAN object (or source) output by the compiler 
using either an effective (or actual) XDEF Assembler control statement. 

3-17 AU49 



COBOL Language Start Address Definition 

• The program name in the PROGRAM-ID clause is declared in a Linker 
EDEF statement • 

• The label in a TASK statement must match the name in the EDEF 
definition. 

If the HLT parameter was coded on the QUIT command to the CLM, a halt will 

occur after the last load module has been loaded; if not, control will be given 

to the highest active priority level, and execution begins. 

3-18 AU49 



SECTION 4 

DEBUGGING 

This section provides some practical approaches that may be useful to you 

when debugging an online application. These suggestions are by no means all­

encompassing, nor intended to restrict your ingenuity in uncovering and fixing 

a software difficulty in your program. 

USING THE ONLINE DEBUG PROGRAM 

BES provides an interactive debugging component, the Online Debug Program, 

(ODP) that supplies online patching and testing facilities for application pro­

grams running under the BES Executive. 

There are two versions of the ODP, one runs as a series of overlays and re­

quires the BES2 Executive; the other is memory resident and can execute under the 

control of either the BESI or BES2 Executive. Both versions require an op­

erator's consolei an optional, preallocated relative disk file, DEBUG.WORK is 

used when delayed execution commands are executed. Table 4-1 summarizes the 

memory and work file space for ODP. 

Table 4-1. Memory and Work File Space Usage 

Module Name BES Executive 
Memory Needed 

(Words) . 

File Space Used 

Diskette Disk 
(Sectors) 

ZDBGI 

ZDBG 

ZXEX02 or ZXEX03 

ZXEX03 only 

2700 

1100 (overlay) 

22 

72 

22 

47 

NOTES: 1. Sector size for diskette is 128 bytes; for disk is 
256 bytes. 

2. Sector values for the overlay version include re­
quired space for two different files: OVERLAY and 
DEBUG. WORK. 

3. Sector values for ZDBGI and ZDBG represent the op­
tional space provided for the DEBUG. WORK file that 
is needed only if predefined command lines are to 
be stored on disk for later execution. (See SF 
command. ) 

4-1 AU49 



Online Debug Program Functions 

Online Debug Program performs the following functions: 

• Defines, stores, and executes (either immediately or after 
a delay, depending on the command) a sequence of commands 
from the console, or when breakpoints or trace trap in­
structions are encountered in the program "being tested. 

• Sets, clears, or prints breakpoints in task code to monitor 
task status 

• Displays, changes, and dumps either memory or registers; 
information may be printed on the operator's console, or 
a line printer 

• Evaluates expressions 

Debugging Command Language 

Commands are submitted to the Online Debug Program through the operator's 

console or any command terminal. A command line may consist of one or more de­

bugging commands separated by a semicolon and terminated by a carriage return. 

Some of the commands are executed immediately, and some, by their nature, are 

executed on a delayed basis. The "predefined" or "delayed execution" commands 

are stored on disk prior to execution. 

Within commands, parameters are separated from one another by one or more 

spaces. All parameter values are entered using hexadecimal notation. 

Any command that produces printed output may direct the output to a device 

other than the operator's console by using the LRN (logical resource number) of 

the device; when no LRN is specified, the operator's console receives the output. 

Table 4-2 summarizes the debugging commands by function. The following 

pages present detailed descriptions of the commands and their use. 

Table 4-2. Summary of Debugging Commands by Function 

Function 

Command line 
definition and 
handling 

Breakpoint 
control 

Command 
Mnemonic 

Dn 

En 

Meaning 

Define command line n 

Execute command line n 

p* Print all predefined command lines 

Pn Print command line n 

C* 

Cn 

Clear all breakpoints 

Clear breakpoint n 

GO Proceed from breakpoint 

L* List all breakpoints 

Ln List breakpoint n and associated command line 

Sn Set breakpoint n 

4-2 AU49 



Table 4-2 (cont). Summary of Debugging Commands by Function 

Function 

Trace trap 
control 

Active level 
control 

Command 
Mnemonic 

DT 

PT 

SL 

TL 

Meaning 

Define trace command line 

Print trace command line 

Set current and active level 

Establish temporary level active 

Memory and 
register 
control 

AR 

CH 

DH 

DP 

Print contents of all active level registers 

Change memory 

Display memory in hexadecimal 

Display memory in hexadecimal and ASCII 

Symbol control AS Assign a hexadecimal value to symbol 

VH Print value of expression in hexadecimal 

General execution AL Activate level(s) 

Hn Print header line 

LL Line length of console in use 

RF Reset file location 

SF Specify file location 

DEBUGGING COMMAND FORMAT AND SYMBOLOGY 

The format of debugging command lines is: 

command-mnemonic~param~param;command-mnemonic~param; ... iCR 

The symbols in Table 4-3 are used in the command descriptions and examples 

that appear below. 

4-3 AU49 



Table 4-3. Symbols Used in Debugging Command Lines 

Symbol Type Meaning 

~rithmetic Operators 

plus sign (+) Performs addition. 

minus sign (-) 

K 

Address Operators 

period (.) 

ampersand (&) 

brackets [ ] 

Reserved Symbols 

$Bn 

$Rn 

$P 

$1 

$S 

$SL 

G through Z 

Notational symbols 

braces {} 

ellipses • 

parentheses ( ) 

exp 

rexp 

slash U) 

Delta (ll) 

CR 

* 

Performs subtraction. 

Multiplies a hexadecimal integer by 1024 decimal (400 in 
hexadecimal) when K is the last character of an integer 
expression. 

Represents the last start address used in a previous mem­
ory reference command (DH,CH,DP). 

Represents the address of the next location beyond"the 
last one used by a previous memory reference command 
(DH , CH , DP) . 

Signifies the contents of the location defined by the ex­
pression within the brackets. Three levels of nesting 
may be used. 

Contents of base register n of the active level. The 
values I through 7 can be used for n. 

Contents of the data register n of the active level. 
The values I through 7 can be used for n. 

Contents of the program counter of the active level. 

Contents of the indicator register of the active level. 

Contents of the system status register (level number 
and privilege bit only) of the active level. 

Represents the value of the level number of the active 
level. 

Twenty single-character temporary symbols having initial 
values of zero. Values may be assigned using the AS 
debugging command. 

Indicate optional parameters. 

Indicates the ability to repeat parameters within braces. 

Indicate command or header information to be stored for 
later use. Unmatched right parenthesis results in an 
error. A right parenthesis that is paired with the first 
left parenthesis terminates the command definition. 

Indicates a valid expression formed using expression 
elements. 

Consists of expl/exp2 where expl is a hexadecimal 
number that is a value or a location; exp2 is an option­
al hexadecimal repeat factor whose value must be between 
I and 32,767. If exp2 is omitted, the value of I is 
assumed. 

Brings Online Debug Program to command level; also used 
to indicate reference to specific LRN for the command 
use. 

Indicates a space. 

Indicates a carriage return. 

Separation character between commands on the same command 
line. 

Signifies "all" in the print and clear commands. 

4-4 AU49 



ALI ARI AS/C* 

Debugging Commands 

ACTIVATE LEVEL COMMAND (AL) 

Command activates a level corresponding to each expression. 

Format: 

AL~exp{~exp~ .•. } CR 

Example: 

AL A A+2 CR 

This example activates priority levels 10 and 12 (decimal) 

ALL REGISTERS COMMAND (AR) 

Command causes the printing of all registers for the active level. 

Format: 

AR{/lrn}CR 

Example: 

AR/3 CR 

This example causes the contents of all the registers for the active 
level to be printed on the device referred to as logical resource 
number 3. (See Note 6, under "Additional Operating Notes for the 
Online Debug Program", below) 

ASSIGN COMMAND (AS) 

Command assigns the hexadecimal value of the expression to the symbol; used 

to alter registers of the active level, and temporary symbols. 

Format: 

AS~sym~exp{~sym~exp ... }CR 

Example: 

AS $Rl -2 X 1408 $B7 X+15 

This example causes -2 to be assigned to data register 1 and 141D 
to be assigned to base register 7, and 1408 to temporary symbol X. 

CLEAR COMMAND (C*) 

Command clears all defined breakpoints. 

Format: 

C* CR 

4-5 AU49 



Cn/CH/Dn 

CLEAR COMMAND (Cn) 

Command clears specific breakpoint. The value of n may be between 0 and 9. 

Format: 

Cn6CR 

Example: 

C3 CR 

The example causes breakpoint number 3 to be cleared. 

CHANGE MEMORY COMMAND (CH) 

Command allows specific memory locations to be given specific values. 

Format: 

CH6exp6rexp{6rexp ... }CR 

Examples: 

eH 100 0/10 CR 

In this example, locations 100 to 10F will be zero-filled. 

CH 200 4FFF CR 

Execution of this command puts the value 4FFF into location 200. 

CH 2000 0/10 1/10 2/10 CR 

This example shows how multiple repeat factors can be used: 
execution of this command causes locations 2000 to 200F to 
be given a value of zero, locations 2010 to 20lF to be given 
a value of 1, and locations 2020 to 202F to be filled with 2's. 

DEFINE COMMAND (Dn) 

Identifies the command line within the parentheses with the number ni n 

must be a value between a and 9. 

Format: 

Dn6(command line) CR 

Examples: 

D3 (CH 100 O) CR 

This example associates the number 3 with the command within the 
parentheses. Hereafter, each time the command E3 (see below) is 
executed, the parenthetical command will be executed and location 
100 will be zero-filled. 

This next example illustrates another use of the Dn command: 

D4 ( ) 

namely, command line 4 will be deactivated. When a disk that has 
predefined command lines from a previous execution is reused, the 
lines may be referred to without redefinition. (See the Sn command.) 

4-6 AU49 



DWD~DT 

DISPLAY MEMORY COMMAND (DH) 

Command causes specified memory locations to be displayed in hexadecimal 

notation either on the operator's console, or on the device specified by the lrn 

used. 

Format: 

DH{/lrn}Arexp{Arexp ... }CR 

Examples: 

DH 200 CR 

Execution of this command results in the display of the contents of 
location 200 on the operator's console. 

DH/2 200/100 CR 

Execution of this command displays the contents of locations 200 to 
2FF on the device associated with LRN 2. 

DUMP MEMORY COMMAND (DP) 

Command causes the display of (a minimum of one line) an area of memory 

starting at a specified location. Display is in hexadecimal and ASCII notations. 

Format: 

DP{/lrn}Arexp{Arexp .•. }CR 

Examples: 

DP 200 CR 

Execution of this command displays one line of memory in both hexa­
decimal and ASCII, starting at location 200. 

DP/4 80/40 200/240 CR 

This command causes the contents of locations 80 to BF, and 200 to 
43F to be displayed on the device associated with LRN 4. 

DEFINE TR~CE CO~~D (DT) 

Command associates the command line within the parentheses with the occur­

rence of a trace trap or a BRK instruction not already defined as a breakpoint. 

Format: 

DTA(command line) CR 

4-7 AU49 



DT/En/GO/Hn 

Examples: 

DT (AR) CR 

This command causes all registers to be displayed each time a 
trace trap occurs. 

This next example illustrates another use of the DT command: 

DT ( ) 

namely, the deactivation of the defined trace command line. 
When a disk that has predefined command lines from a pre­
vious execution is reused, the lines may be referred to 
without redefinition. (See the Sn command.) 

EXECUTE COMMAND (En) 

Command executes the predefined command line specified by n, a number from 

o to 9. The En command may not be included in predefined Dn command lines; it 

is permitted in Sn and trace command lines. 

Format: 

ENLlCR 

Example: 

E3 CR 

GO COMMAND (GO) 

Command results in the resumption of execution on an active level after a 

breakpoint. 

Format: 

GOLlCR 

PRINT HEADER LINE COMMAND (Hn) 

Command causes a header line to be printed; line spacing is controlled by 

the value of n, such that when n=O, there is a skip to the head of form before 

the header line is printed; otherwise, the number of lines between I and 9 are 

skipped before printing. A header line may consist of any ASCII characters 

and/or expressions; expressions are preceded by a percent (%) sign. If a % sign 

is to be printed, two characters must be used (%%). A header line must end with 

a space character. 

Format: 

HnLl{/lrn}Ll(header line) CR 

4-8 AU49 



Hn/L*/LL 

Example: 

HO/2 (DUMP OF BREAKPOINT FOR LEVEL %$S~) CR 

This header will be printed on LRN 2 at the top of a newpage 
as soon as the carriage return is typed. The example illustrates 
a way to document dumps. The main use of the header command is 
to document printed information related to breakpoint or trace 
trap debugging. 

LIST ALL BREAKPOINTS COMMAND (L*) 

Command lists all breakpoints. 

Format: 

L*~{/lrn}CR 

Example: 

L* CR 

This co~~and will cause all breakpoints to be printed on the 
operator's console. 

LINE LENGTH COMMAND (LL) 

Command specifies the line length of the console in use. The length value 

is expressed in decimal notation, and the limits are: 30< value< 126. 

Format: 

LLAvalue CR 

Example: 

LL 72 CR 

This command signifies that the console in use has a line length 
of 72 characters. 

4-9 AU49 



Ln/P* Pn/PT/RF 

LIST BREAKPOINT COMMAND (Ln) 

Command causes the listing of a particular breakpoint that was set by a Sn 

command, and lists the command line. 

Format: 

Ln~{/lrn}CR 

Example: 

L2/4 CR 

This command causes the display of the command line of breakpoint 2 
on the device associated with LRN 4. 

PRINT COMMAND (P*) 

Command causes all command lines predefined by On commands to be printed. 

p*{/lrn}CR 

PRINT COMMAND (Pn) 

Command causes specified command line predefined by On command to be 
printed. 

Format: 

Pn{/lrn}CR 

The value of n can be between 0 and 9. 

PRINT TRACE COMMAND (PT) 

Command causes a trace command line to be printed. 

Format: 

PT{/lrn}CR 

RESET FILE COMMAND (RF) 

Command resets the location of DEBUG. WORK , and prohibits commands that use 

this file from operation until another SF command is issued. 

Format: 

RF CR 

4-10 AU49 



Sn/SF 

SET BREAKPOINT COMMAND (Sn) 

Command sets a numbered breakpoint (n) at a particular location. The value 

of n can be from a to 9. When the breakpoint is encountered, an existing command 

line is executed, otherwise a message is displayed on the console and task ex­

ecution ceases. The Online Debug Program now has the highest priority. The 

console message indicates the contents of the location counter and the active 

priority level. 

If there is a preexisting command line associated with a given breakpoint, 

the old command line must be replaced with a new one, or cleared using empty 

parentheses ( ); otherwise, the old command line will be executed. (See the 

Dn command.) 

The message format is: 

BPn $P=OOXXXX $SL=OOXX 

Format: 

Sn~exp{(command line)}CR 

Example: 

SO 100 (DH 200/10iGO) CR 

This command will cause the display of locations 200 to 20F when 
location 100 is executed. 

SPECIFY FILE COMMAND (SF) 

Command identifies the location of DEBUG. WORK file. Since the function of 

the command is to open the work file, it should be the first command executed; 

failure to do this results in the issuing of an error message as soon as a 

command which requires the work file is used. LRN is specified in hexadecimal 

notation. 

Format: 

SF~LRN CR 

Example: 

SF B CR 

This example indicates the work file to be logical resource number 
11 (decimal). 

4-:11 AU49 



SL/TL/VH 

SET LEVEL COMMAND (SL) 

Command sets the current and active levels to the value of expo The current 

level remains unchanged until another SL command is issued. The default value 

for the current level is o. 

Format: 

SL~exp CR 

Example: 

SL C CR 

This command sets the level to 12 (decimal). 

SET TEMPORARY LEVEL COMMAND (TL) 

Command sets the temporary level to the value of exp until another SL, or 

TL command is issued, or until the end of a command line. 

Format: 

TL~exp CR 

Example: 

TL AiARiTL BiAR CR 

This command causes all registers on levels 10 and 11 to be displayed. 

PRINT HEXADECIMAL VALUE COMMAND (VH) 

Command prints the value that is the result of the expressions used. 

Format: 

VH{/lrn}~exp{~exp ... }CR 

Examples: 

VH[lOO]CR 

This command causes the display of the contents of the addres found 
at location 100. 

VH .+lOO-M CR 

This command causes the display of the result of the computation 
defined by the last referenced memory location plus 100 (hexa­
decimal) minus the value assigned to the temporary symbol M. 

4-12 AU49 



Using the Online Debugging Program 

Program testing and error correction is performed as an interactive dialog 

between the operator and the Online Debug Program. To achieve control over the 

task code being tested, the Online Debug Program is given a priority highe~ than 

that assigned to task code, but lower than that given to the console and printer 

used by the operator for the dialog. 

The Online Debug Program is included in your application configuration by 

using the following CLM commands: 

TSA n,m (Required if breakpoints or trace traps used.) 

EVAL Z DTLRN , TLRN 

EVAL ZDDLRN,DLRN 

ADMOD filename:ZDBG 

TASK ZDTASK,lrn,level,YACT 

TLR~ - The LP~ of the co~mand terminal. 

DLRN - The LRN of the disk on which DEBUG. WORK file is located. 

See Appendix A in this manual for an explanation of the other CLM command 

parameters. 

When the configuration process is finished, the Online Debug Program lets 

you know that it is ready to accept input by sending a message to the console. 

The following example contains typical operations that might be performed 

in the course of using the Online Debug Program. 

Example: 

1. Establish header, predefine a command line, initialize a 
header variable to zero. 

HO(DUMP %M OF AREA 0) CR 

DO (HO/3;AR/3;DH/3 20/4 [8A]/lA [8BJ/IA Y/IOO) CR 

AS M 0 CR 

2. Set breakpoints in code under test. 

SO 300 (AS M M+l) CR 

Sl 4A6 (AS M M+l) CR 

3. Activate level 8 and wait for breakpoints. 

AL 8 CR 

4. When the breakpoint occurs, execute predefined command 0 
and then continue. 

EO CR 

GO CR 

4-13 AU49 



NOTE: The predefined command line in the example above (the 
DO ... ) sets up commands that will display the header, 
registers, activity indicators, and the ISA's for 
levels 10 and 11. 

ADDITIONAL OPERATING NOTES FOR THE ONLINE DEBUG PROGRAM 

1. Online Debug Program can be brought to command level either 
when the console is idle, or when the ODP is producing out­
put, by typing the "/11 character; ODP indicates that it is 
ready by printing D? at the beginning of a line. 

2. If the DP, DH, or VH commands are producing output, and an 
! (exclamation mark) is typed, the output will be aborted. 

3. Command lines for the Sn, Dn, and DT commands may not ex­
ceed 126 characters. 

4. A GO command embedded in a breakpoint command line allows 
task execution to proceed after the desired operations 
have been performed, without further operator intervention. 

5. The following rules should be observed when using breakpoint 
instructions: 

a. Breakpoints may not be set in code that will be 
executed at the Inhibit level. 

b. Breakpoints set on the following instructions must 
be cleared (Cn command)' before continuing execution 
(GO command): any I/O, generic (BRK) , scientific, 
illegal, or -LEV instruction, or any instruction with 
an illegal address syllable. 

Note that the clearing of a breakpoint becomes un­
necessary if a second breakpoint command line used on 
a nonrestricted instruction reinstates the first com­
mand line used on a restricted instruction, when both 
are executed repeatedly within a program loop. 

6. Note that the display, change, and dump functions apply to registers 
on the active level. The active level changes depending on the op­
eration of the Online Debug Program. The active level can be con­
trolled in several ways: 

a. It is set to the level defined by the SL command whenever 
console input is processed thus allowing the operator to 
access registers on the same level each time a command is 
entered from the console, regardless of the change in the 
active level due to delayed commands since the last command 
entered from the console. 

b. It is set to the level at which a breakpoint or trace trap 
occurs, thus allowing the predefined command line being 
executed to display or alter registers on its own level. 

c. It may be set temporarily with the TL command so that reg­
isters of a level different from the active or console 
levels may be displayed or altered without permanent change 
to the active or console level definitions. 

d. It is set with the SL command, and this level becomes the 
console level. 

e. Active level control is designed to assume the value that will 
most probably be needed based on the ODP action in progress; 
i.e., console, breakpoint, trace trap, or temporary reference 
to a different level. 

4-14 AU49 



LOCATING LOAD MODULES 

The CLM builds data structures, as defined by its commands, and places the 

load modules immediately following the data structures in memory. Once an appli­

cation is fully developed, there is no requirement to know the start address of 

load modules each time the system is loaded because it is invariant and of no 

concern to the user of the application. 

During application development, however, there is a vital need to know 

where load modules are in memory. Otherwise, the link maps of load modules 

(based at zero relocation factor) are almost useless. The start address of 

each load module can be printed on the operator's console by a utility whose 

load module name is ZXMAP. This information will be of value when debugging, 

and is displayed under the following two circumstances: 

1. Load Phase of CLM reaches the normal halt indication and the 
Map option of the CLM QUIT command was used to load ZXMAP. 
The occurrence of other indicators (e.g., multiply-defined or 
undefined symbols) is incidental. If the application's load 
modules will fit into available memory on the application de­
velopment hardware configuration, and there is an operator's 
console then ZXMAP consists entirely of initialization code. 
When loaded, (as the last load module), it uses the operator's 
console channel number known to the loader and prints on the 
console two sets of information: 

a. Names of undefined symbols 

b. Names and start addresses of all load modules 
currently memory-resident 

2. Load Phase of CLM encounters loader halt, indicating insuffi­
cient available memory. 

This circumstance means that the data structures plus the load 
modules for the specified application will not fit into avail­
able memory. ZXMAP may now be used to print on the console a 
list of load modules that are in memory and those that are not. 
Although ZXMAP cannot be loaded by CLM since no memory is 
available, it may be loaded as a stand-alone offline program. 
The standard bootstrap procedure for offline programs should be 
used, and the ZXMAP start address (relocation factor) should 
be specified in low memory to avoid overlaying the eLM infor­
mation to be printed. The recommended relocation factor for 
ZXMAP is DO. 

Another possible approach is to load ZXMAP as an ADMOD . 
after selected ADMOD commands of the application. This will 
produce mUltiple maps and you can get one indicating memory 
usage before the CLM attempts to load the module that causes 
the error halt. This module will be visible in a dump of 
the loader area of memory at HMA-3 to HMA-12. 

Figure 4-1 shows a sample console output of ZXMAP. It contains 
the hexadecimal start addresses of the application load mod­
ules. FMDEMO is the load module name of the sample user 
application. To debug FMDEMO the user needs object listings of 
the modules contained in FMDEMO (e.g., FMA, FMB, FMC) and the 
link map produced when FMDEMO was created. The link map gives 
the zero-relative offsets of tags within FMDEMO. 

4-15 AU49 



ZXEX02 
ZYFM01 
FMDEMO 
ZIKSR 
ZILPT 
ZICDR 
ZIDSK 
ZXMAP 

*0755 
*ODF9 
*14EO 
*16DF 
*183E 
*18AC 
*1922 
*19CA 

Figure 4-1. Sample ZXMAP Output 

Assume that FMA, FMB, and FMC were linked in that order and 
start at relative 0, 100, 200 hexadecimal, respectively. 
To locate an instruction in memory that is in module FMB, 
add 100 plus the instruction offset within FMB to l4E016 . 
If a load module has not been brought into memory, 
ZXMAP prints 

<load name)*OOOO 

For undefined symbols, ZXMAP prints 

<symbol name)*(blank) 

DEBUGGING DURING ONLINE APPLICATION DEVELOPMENT 

Monitor Points 

The system may be monitored in several different ways to verify proper se­

quencing of memory and/or register contents within routines, or proper task se­

quencing. Each method requires manual insertion of monitoring code, and implies 

that space exists within the system for it. 

These are ways of creating space to insert monitor points: 

• Leave space temporarily in various application modules. 

• Append monitoring points using Program Patch. 

• Use ODP 

The sophistication of the monitoring performed depends on the stage of the 

application development and testing. The monitoring routine could be a simple 

halt instruction, a conditional call to the Trace Trap Handler based on current 

variable status, or an Online Debug Program breakpoint. In each case, you may 

construct what is required at the time. Program Patch is described in the 

Utility Programs manual. 

If space is allocated in application modules, it may be used by invoking 

the Online Debug Program. 

4-16 AU49 



MANUAL CONTROL 

When single-word halt instructions are used as monitoring points, the use of 

the DO single instruction capability is convenient. The instruction word re­

placed by the halt may be entered into the instruction register (DO) when the 

halt occurs, even if the full instruction occupies more than one word in memory. 

However, the halt must replace the first word of the instruction. 

For example: 

Source Line 

LAB $B2,$B4,TAG 

Object Code 

loc/ABC4 
loc+l/0004 

instruction word 
tag value 

ABC4 may be replaced by a halt (all zeros). When the P-register (EO) halts at 

loc+l, the instruction register (DO) may be changed back to ABC4 and execution 

continued. Since this does not change the content of loc, the halt will reoccur 

the next time the code sequence at loc is executed. 

You can use the single word halt effectively in debug phases where only one 

priority level is active at a time. If more than one level is active, you may 

use the halt at inhibit level option of the Trace Trap Handler to "freeze" the 

entire system; i.e., all priority levels including the real time clock. This 

option is invoked by a BRK generic instruction followed by a HLT instruction. 

Now use the control panel to enter step mode to examine registers. Then execute 

a single instruction before restarting program. 

Real-Time Clock (RTC) 

Some applications require the real-time clock, activated at load time. 

While the clock is turned on, the CPU is difficult to use in single instruct 

mode because the RTC is continually generating an interrupt at clock level (level 

4). In the early stages of application debugging it may be useful to turn off 

the clock to facilitate "stepping" through a code sequence without interference. 

This is easily done using the capability of executing one instruction from 

the DO register as described in the following procedure. 

To turn off the clock before starting the application, use the capabilities 

of executing one instruction from the instruction register (whose selection code 

is DO) to execute an RTCF instruction while in single instruction mode. Then 

clear the instruction register (DO), set the P-register (EO) back to CLM halt 

address and press ~eady and Execute. Once the ODP is executing: 

a. Press ~top and select DO; change to 0005. 

b. Press Execute (this turns off clock) 

c. Select DO and change to 0000. 

d. Select EO and change to CLM halt address. 

e. Press ~eady and ~xecute. 

4-17 AU49 



Data Structures 

There are several useful hardware data structures that contain valuable in­

formation for system debugging. 

Refer to Figure 4-2 to show portions of an actual memory dump which contains 

these structures. 

0010/ 0204 0000 0000 0000 0006 0004 0004 0000 
HARDWARE DEDICATED LOCATIONS 

0018/ 0000 0000 0000 0000 0000 0000 0000 DOlE 
0020/ 0000 0000 0000 0001 0000 0000 0000 0000 

ZEROS .. 

0078/ 0000 0000 0000 0000 0000 0000 3830 0000 
0080/ 0000 0000 0000 0253 0180 01A3 01B9 01CF ISA POINTERS USED BY THIS APPLICATION 
0088/ 01 E5 01FF 0211 0227 0230 0253 0269 027F 

ZEROS 

0088/ 0000 0000 0000 0000 0000 0000 0000 0187 ISA POINTER FOR LEVEL 63 

OBCO 0000 0294 3FFF 02B4 0416 OooF 136A 3FFF CLM-SUPPLI ED EXECUTIVE INFORMATION 

____ CLM DATA STRUCTURES .. 

01BO/ 0000 0000 0000 1240 0500 0005 0000 FFOO 
01B8/ 0000 1000 FFFF 0000 07AB 4000 0000 0000 
01CO/ 1925 0000 31BO 3EOO 3ED3 1903 19CF 30M 
01C8/ 3064 0000 0000 0000 0000 FFOO 0000 13C7 

ISA FOR LEVEL 6 (BEGINS AT LOCATION 1B9
16

) 

0100/ FFFF 0000 07A5 4003 1830 0205 1705 OC31 
0108/ 1705 0207 1799 0018 0000 0000 0000 13CO 
01EO/ FFFF 0007 0000 FFOO 0000 0000 FFFF 0000 
01E8/ 07AB 4000 0000 0000 183E 0000 0000 0000 

---- UNUSED INITIALIZED ISA'S -----

0250/ 0000 FFOO 0000 0000 FFFF 0000 080B 4003 
0258/ 0325 033F 10FD 0682 02F5 062F 0135 0014 
0260/ FFFF 803F 0050 0000 0050 1000 0000 FFOO 

ISA FOR LEVEL 13 (BEGINS AT LOCATION 253
16

) 

0268/ 0000 0000 FFFF 0000 07AB 4000 0000 0000 

REMAINDER OF ISA'S .. 

0290/ 0000 0000 0000 FFOO 10000 0000 0000 0000 ----II a_ SOO TABLE 
0298/ 0000 0000 0000 0000 0000 0682 0000 0000 
02AO/ 0000 0000 0000 0000 I 0000 0000 0000 0000 ----Ia_ EOa TAB LE 
02A8/ 0000 0000 0000 0000 0000 0682 0000 0000 
02BO/ 0000 0000 0000 0000 I 0205 02E5 02F5 0305 __ --11_ 

02B8! 0315 0000 0000 0000 0000 0000 0000 0000 
LRT 

0200/ 0000 0204 0000 OQQQJ 02CC 0000 0000 0000 
(FOUND BY USING ZXMAP, LINK MAP, AND LISTINGS 
AND CLM-SUPPLIED INFORMATION ATC016 ) 

Figure 4-2. Hardware/Executive Data Structures 

Location 10 contains the trap save area pointer. 

the trap save areas can be located using this pointer. 

If traps have occurred, 

Since eLM creates trap 

save areas to be contiguous, even unlinked TSA's may be located. 

4-18 AU49 



Locations 20 through 23 contain the level activity indicators. They may be 

examined to discover which level was running or waiting to run. In Figure 4-2, 

only level 63 (location 23, bit 15) was active. 

Location 80 and above contain the ISA pointers for the system. A minimum of 

64 locations are always reserved by CLM. Nonzero ISA pointers indicate the 

potentially-active levels in the system. The pointer in location 83 (level 3) 

is always either zero or a duplicate of another valid ISA pointer. By matching 

its contents against the others, you can discover the last level to execute on 

the inhibit level. In Figure 4-2, it was level 13 (location 80). 

within the ISA's for each level, the S-, P-, and B5-register entries are of 

interest. When the S-register contains the level number of the level itself, 

it was probably interrupted by a higher priority level. If it is zero, the level 

has probably not been executed. When the level number is 3, the task has termin­

ated using the Task Manager. 

The P- and B5-registers may prove useful to determine the starting address 

of a task or Task Manager entry point. 

Device driver ISA's indicate whether the device interrupt has ever occurred. 

The device places information in the ISA upon interrupt. Figure 4-2 indicates a 

l3C7 at location lCF. This is decoded as: 

l3CO channel number 
07 device level assignment 

The level number is the last 6 bits of the 16-bit word. 

Software data structures used by the Task Manager and/or device drivers 

raay best be located by finding a reference to them in Honeywell listings, locating 

those references in the memory dump, and then examining the structures. The in­

formation supplied by the CLM immediately after the ISA pointers may be used to 

find SOQ,EOQ, and LRT (and thereby RCT's) that may be of interest. CLM also 

provides a pointer to ZXcccc in the Clock Manager module. This is the location 

immediately before the first of four clock queue data structures. Once these 

structures are located, enqueued request blocks may be examined and clock timer 

blocks of drivers analyzed. 

Trace History 

When using the Online Debug Program with disk-stored command lines that 

execute upon encountering a trap or a breakpoint, a trace history may be main­

tained on a line printer. Otherwise, use the Trace Trap Handler. 

4-19 AU49 



Handling Load Errors 

When the CLM produces a load error (1695) indicating insufficient memory 

for loading the application, there may be ways to rearrange load modules to 

solve the problem. 

1. Be certain that load modules with large load-time initial­
ization requirements are loaded first (e.g., communications 
or File Manager) so that maximum advantage is taken of the 
possibility of overlaying CLM initialization by permanent 
load modules. Clearly, being unable to load a module because 
the initialization code is too large can be corrected by 
placing I/O drivers (DEVICE commands) or the Executive 
load modules (ADMOD commands) near the end of the load module 
commands. 

2. Be certain that ADMOD commands associated with floatable 
overlays are also ahead of other modules that do not have 
overlays or initialization code. Recall that floatable 
overlays need occupy no permanent memory space outside the 
CLM residue. 

3. Consider recoding nonfloatable overlays as floatable to make 
better use of CLM residue that can't be used during loading. 
As an extreme solution for an 8K environment, the bulk of 
the application could be coded as floatable and called into 
residue space by its root, which is designed to do nothing 
more than that. 

4. Double check configuration commands to make sure that the 
minimum amount of space required is used for data structures. 

4-20 AU49 



APPENDIX A 

CONFIGGP~TION LOAD MANAGER CO¥~DS 

Commands entered through the command input stream direct the operation of 

the Configuration Load Manager (CLM). Using these commands, you can define the 

environment in which the application is to be run, and specify the modules to 

be loaded. The configuration commands identify the load module, specify the 

memory requirements, system services, and peripheral complement to be used; set 

up internal data structures, and establish trap handling procedures. 

Table A-I summarizes the CLM commands and functions. Individual commands 

are described in detail later in the section. 

Table A-I. Summary of CLM Commands and Command Functions 

Command category Commands 

System Configuration SYS, OIM, TSA, TRAP, 
CLOCK, DATE 

Load Configuration ADMOD, ELOC, EVAL 

Task DEVICE, TASK, ATLRN, 
EQLRN 

a Buffer Management BUFSPACE 

. a Flle Management FILMGR, DEVFILE, FMDISK, 
ATFILE 

A-I 

Functions 

Set up data structures in main 
memory; define application en­
vironment. 

Constructs a load module list 
consisting of all modules re­
quired by the application; list 
consists of file names with sub­
lists of module names; module 
names should be unique; the 
order of modules in the list is 
critical when they are loaded 
from a sequential device; per­
mit symbol definition. 

Explicitly specify relationships 
among tasks, devices, logical 
resource numbers, and interrupt 
levels; cause data structures 
to be built. 

Defines buffer pools and re­
lated tables that are used by 
the Buffer Manager. 

Provide information by which 
CLM builds the data structures 
used by File Manager to support 
a centralized file access capa­
bility. 

AU49 



Table A-I (cont). Summary of CLM Commands and Command Functions 

Command Category 

CLM Control 

Communications
a 

CLM Extensions 

Commands 

IOS, * (comment) , QUIT 

COMM, TTY, VIP, BSC, 
MODEM, LTPDEF, LTPn, 
STATION 

LACT, ELACT, IOS 

Functions 

Direct the general actions of 
CLM; provide documentary infor­
mation within the command input 
stream. 

Explicitly define each communi­
cations device; define attri­
butes of communications appli­
cation; cause data structures 
to be built; analogous to DEVICE 
command for peripheral devices; 
specify relationships among 
tasks, devices, logical resource 
numbers, and interrupt levels. 

Load the optional extensions to 
CLM so that file management, 
buffer management and communi­
cations functions can be con­
figured. 

aOptional extensions that are added to the basic CLM through the use of the 
LACT and ELACT commands interpret the information supplied by commands in 
these groups. 

COMMAND FORMAT 

The CLM accepts commands through the designated command input device. 

Each command is a separate line of input, consisting of a string of up to 72 

ASCII characters. If the command input stream is entered through an operator 

console device, each command is terminated by a carriage return. 

A command line contains a CLM command, including its operands and 

(optionally) comments. The format of a CLM command is shown below. In this 

example, lowercase characters indicate items that are to be replaced by actual 

values. Operands shown within brackets are optional; default values are used 

if these operands are not specified. 

NOTE: The command mnemonic itself need not be specified if all 
the operands of the command are optional and if the de­
fault values of those operands are to be used. 

position 
I 

mnemonic~operandl [, ••• ,operandn] [llcomments] 

Position 
72 

The command mnemonic, consisting of one or more ASCII characters, specifies 

the action to be performed. The command mnemonic is separated from its operands 

by a single space character (indicated by a delta (ll) character). Commas 

separate individual operands and a space or carriage return terminates the 

A-2 AU49 



operand set. Omitted operands are indicated by consecutive commas; trailing 

commas are not required. Comments can follow the operand field, separated from 

the operands by one or more space characters. The order of operands in the 

command line is significant. 

The operands associated with the CLM commands can be strings of ASCII 

characters, or decimal or hexadecimal integers. An ASCII operand begins with 

an alphabetic character or with an apostrophe character and ends with a comma, 

space, carriage return, or apostrophe character or when the maximum string 

length of 64 characters is reached. For purposes of specifying a numeric 

string, as opposed to a decimal number, the string must be bracketed by 

apostrophes. ASCII strings are stored in memory in an even nQmber of bytes 1 

left-justified on a word boundary. 

An integer used as a command operand is unsigned and can be a single-word 

decimal or hexadecimal number or a double-word hexadecimal number. The follow­

ing conventions are used to represent integers in an operand string: 

ddddd - Single-word decimal; d is a digit in the range 0 
-I-h"Y"""",,......h 0 
.... U.L. uu.'::f~~ J 

X'hhhh' - Single-word hexadecimal; h is a digit in the range 
" through F v 

D'hhhhhhhh' - Double-word hexadecimal; h is a digit in the range 
0 through F 

In memory, an integer is right-justified on a word boundary, and left­

filled with zeros. An operand that specifies an address must be a double­

word hexadecimal integer. 

NOTE: In the following description of CLM commands, the term 
"integer" refers to a single-word integer unless other­
wise noted. 

INPUT DEVICES FOR CLM 

Command input to CLM can be submitted on cards, on diskette, or through 

an operator's console (a KSR device). During the execution of CLM, the command 

input device can be changed by the lOS command. (See "lOS Command" later in 

this appendix.) 

Under the direction of these commands, CLM accepts load modules on diskette 

files, loads these modules into memory, and initiates the execution of the 

application. 

The diskette file and member names of the command input to CLM must be 

CLMCI when the Command Processor is not in use. 

A-3 AU49 



ADMOD/ ATFILE 

ADMOD Command (Add Load :·1odule) 

The ADMOD command adds a new module name to the end of the load module 

list, and specifies that this module is to be loaded during the loading phase. 

The order of ADMOD commands determines the order in which the load modules are 

loaded. 

NOTE: The fact that new module nanes are added to the end of 
the load module list can be significant when loading is 
to be done from a sequential device, since only one pass 
is made over the medium. 

The format of the ADMOD command is shown below. 

ADMOD~file-name:member-name[,X'channel'] 

ADMOD - Command mnemonic 

file-name - The name of the file in which the load module resides. 

member-name - The name of the load module. This load module is a 
member of the file whose name is specified in the file-name 
element. 

channel - A hexadecimal integer giving the channel number of the 
device from which the specified file/module is to be loaded. 
If this operand is omitted, the channel number of the device 
from which the Configuration Load Manager was loaded is used. 

The ADMOD command with the same file-name/member-name as a previous ADMOD 

command causes the channel number to be updated with the new one. This is 

useful if a driver module must be loaded from a different channel than the 

default channel specified in the implicit ADMOD statement that is issued with 

the following commands: DEVICE, COMM, TTY, VIP and BSC. 

The explicit ADMOD command to alter parameters present in an implicitly 

invoked ADMOD command is issued after the command that caused the implicit 

command to be issued. 

ATFILE Command (Attach File) 

The ATFILE command relates a logical file number to a file. The format 

of the command is shown below. 

ATFILE~lfn,path-name 

ATFILE - Command mnemonic. 

lfn - The logical file number used to refer to the file once 
that file has been opened. This value must not exceed 
the max-lfn specified in the FILHGR command. 

A-4 AU49 



ATFILE/ ATLRN 

path-name - A string of ASCII characters specifying the directory 
path required to reach the indicated file. The path for 
diskette begins in the directory of mounted volumes. 
The path-name has the form: system or user ( ) iden­
tifier volurne-name>file-name. The greater than symbol 
(» must be used to separate the volume-name from the 
file-name. A volume-name may be up to six characters 
in length; a file-name may be up to 12 characters long. 

A nondiskette path-name has the sa~e form as a diskette file-name; i.e., 

1 to 12 characters without the greater than (» sign preceding it. Refer to 

the Executive and Input/Output manual, "Glossary of File Manager Terms" for 

more detail. 

ATLRN Command (Attach LRN) 

The ATLRN Command relates a logical resource number (LRN) to a physical 

priority level. The ATLRN command assumes that all levels within the specified 

range that are not explicitly defined in DEVICE commands are available for use 

by nondevice tasks. 

LRN's not explicitly assigned a level by a DEVICE, TASK, or ATLRN command, 

remain unassigned. Attempts to use an unassigned LRN result in a "request 

task" error. 

The ATLRN command can also be used to relate additional LRN's to a given 

level number. 

The format of the ATLRN command is shown below. 

ATLRN~lrn,level[,rct-size] 

ATLRN - Command mnemonic. 

lrn - The logical resource number, no greater than the value of 
the hilrn operand of the SYS command. 

level - The priority level at which the task requested by the 
specified logical resource number will execute. The 
value of the level operand cannot be less than 5 nor 
greater than the value specified as the lolevel of the 
SYS command. 

rct-size - An integer that gives the size, in words, of the RCT for 
the associated LRN. The default value is one word. If 
the rct-size parameter is omitted, the default value will 
be assumed, unless the level parameter is the same as 
that in a previous DEVICE, TASK, TTY, VIP, BSC, LTP, 
STATION, or ATLRN command; in this case, no new RCT is 
created, the lrn becomes a synonym for the lrn in the 
previous command having the same level parameter value. 

A-5 AU49 



The following rules apply to an ATLRN command: 

• An ATLRN command with an rct-size parameter always produces an 
RCT of that size; its LRN is never a synonym. 

• The lrn of an ATLRN command that has no rct-size parameter is 
synonymous with the lrn of the immediately previous TASK, DEVICE, 
TTY, VIP, BSC, LTP, STATION, or ATLRU command having the same 
level parameter value. 

• The default value of the rct-size parameter is one word. 

The use of the ATLRN command allows you to relate RCT's of different 

sizes to the same priority level. Consider the following set of commands: 

DEVICE CDR,1,6,X'0580' 
ATLRN 2,6 
ATLRN 3,6,19 
ATLRN 4,6,37 
ATLRN 5,6 

The RCT constructed as a result of a DEVICE command is 16 words long; LRN 2 

is a synonym for LRN 1 and refers to the same RCT. 

and refer to RCT's of 19 and 37 words, respectively. 

LRN's 3 and 4 are unique, 

LRN 5 is a synonym for 

LRN 4, and refers to the same RCT. Priority level 6 then, has three RCT's 

associated with it: one of 16, one of 19, and one of 37 words. 

BSC 
BSC 2780 Command 

This command identifies each binary synchronous communications line in­

cluded in the system. The format of the BSC command is: 

BSCnlrn,level,channel[,label] [,modem] [,primary/secondary] [,character-set] 

BSC - Command mnemonic. 

lrn - The logical resource number by which the device is requested. 
It must be less than or equal to the hilrn parameter of the 
SYS command. 

level - The priority level at which the driver for the device will 
execute. Must be less than or equal to the lolevel parameter 
of the SYS command; it may be the same as other corrmunications 
devices, but must be different from the level specified in the 
COMM command, and from the levels for noncommunications tasks 
and devices. 

channel - The channel number of the device. 

label - A label, assumed to be a location definition, which must be 
defined in a load module. This label is the entry point of 
the attention subroutine. The default is null. 

modem - A number specifying the type of data set. possible values 
are: 

o - Direct connect. 

1 - Bell lxx-type modem (103A,113F,etc). Both data-set-ready 
and carrier-detect signals are needed for a connection; 
lack of both signals is a disconnection. 

A-6 AU49 



2 - Bell 2xx-type modem (201A,201C,208A,etc). The data-set­
ready signal is needed for a connection; lack of this 
signal is disconnection. 

3 or greater - User-defined modem type (see MODEM command) . 

The default value is modem type 2. 

primary/secondary - Values may be specified as P or S; indicates 
whether this is the primary or secondary endpoint of the 
transmission. A primary endpoint has higher priority when 
sending data. 

character set - One of the following may be specified: 

AS - ASCII (default) 

EB - EBCDIC 

TE - Transparent EBCDIC 

When this command is processed, an implicit ADMOD command is issued to 

include the BSC line-type processor (ZQPBSC) in the load list. 

BUFSPACE 
BUFSPACE Command (Pool Definitions) 

The BUFSPACE command defines contiguous areas of memory (called IIblocksii) 

to be used as buffer areas. Blocks of uniform size are linked into a pool. 

Each pool is controlled by a pool parameter block (PPB), which describes the 

location of the first block in the pool and the size of blocks in this pool. 

A set of PPB's, 'in order by block size, forms a pool parameter table (PPT). 

The information contained in the PPT is required if the Buffer Manager function 

of the Executive is used. The BUFSPACE command can be used to: 

• Assign a label to the start of the PPT 

• Specify the size of each block and the number of blocks in each 
pool 

• (Optionally) Designate a predefined label in an existing load 
module as the start of the memory area containing the buffer 
pools. Alternatively, buffers are created in the residual mem­
ory area between the end of the last load module and the high 
memory address specified in the SYS command. 

The BUFSPACE command defines one PPT and its associated buffer pools. The 

CLM arbitrarily creates the PPT in nondedicated memory and defines the value 

of the ppt-label parameter as the start of the PPT. 

The format of the BUFSPACE command is shown below. 

BUFSPACE~ppt-label, [space-name] ,size,number[,size,number, ••• ] 

A-7 AU49 



ppt-label - The label assigned to the first word of the pool parameter 
table. 

space-name - The label of the beginning of a contiguous area in main 
memory, large enough to contain all the pools defined by the 
succeeding operands in this command. If this operand is omitted, 
the buffers will be built in residual main memory space, between 
the end of the last load module and the high memory address. 

size,number - A pair of integers specifying the size (in words) of 
each block and the number of blocks in one buffer pool. As many 
size, number operand pairs as are needed can be specified. 

If the entire BUFSPACE command cannot be included on one line, additional 

BUFSPACE commands may be issued having the same ppt-label, a null space-name 

operand, and additional size, number operand pairs. 

An operand pair with the same size parameter as a previous one (the same 

ppt-label), causes the new number to replace the old one. 

The same space-name in an additional BUFSPACE command as in a previous 

one results in an error condition. 

A BUFSPACE command with a nonnull space-name, and a ppt-label the same as 

a previous one, replaces the old space-name with the new one. 

CLOCK 
CLOCK Command (System Cloc~l 

The CLOCK command specifies the line frequency used to drive the system 

clock, and the period between clock-generated interrupts (i.e., the timeout 

interval). The format of the CLOCK command is: 

CLOCK~[hz], [scan-cycle] 

CLOCK - Command mnemonic. 

hz - Line frequency. possible values are 50 to 60. 
The default value is 60 (U.S. standard). 

scan-cycle - The time, in milliseconds, between periodic real­
time clock-generated interrupts. The default 
value is 50 milliseconds. The following lists show 
the possible values of the scan-cycle for both line 
frequencies: 

50-Hz line 60-Hz line 
(milliseconds) (milliseconds) 

10 8 
20 16 
50 25 
100 33 

50 
100 

A-8 AU49 



COMM 

COMM (Communications System Command) 

This command specifies the interrupt priority level for all communications 

devices. This level should be higher than all other devices and tasks, the 

recommended level is 5. The format of the command is: 

COMM~level 

COMM - Command mnemonic. 

level - The priority level used as an interrupt level for all 
communications devices. Must be greater than or equal 
to 5, and less than or equal to the lolevel parameter 
of the SYS command, and must be unique. The COMM com­
mand must precede all other CLM communications commands. 

When this command is processed, two implicit ADMOD commands are issued: 

one for the Communications Supervisor, and one for the MLCP Driver. The de­

fault channel number (from which the CLM was loaded) is assumed. If necessary, 

explicit ADMOD commands, issued after the command that caused the implicit 

command to be issued, can be used to change the channel number. The implicit 

commands are: 

ADMOD CLMCO~~:ZQEXEC (For the Communications Supervisor) 
ADMOD CLMCOMM:ZQMLON (For the MLCP Driver) 

DATE 

DATE Command (Date and Time) 

The DATE command specifies the current date and time. The format is: 

DATE~['yymmdd'] [,'time'] 

DATE - Command mnemonic. 

yymmdd - An ASCII numeric string providing the current year, month, 
and date. If this operand is omitted, the default value 
is null. 

time - An ASCII numeric string providing the time of day, in the 
format hhrnm, where hh is the hour of the day (an integer 
in the range 00 to 23), and mm is the minute of the hour 
(an integer in the range 00 to 59). If this operand is 
omitted, the default value is null. 

A-9 AU49 



DEVFILE 

DEVFILE Command (File Management Devices) 

The DEVFILE command identifies the nondisk devices that can be used by the 

File Manager. For any given device, the DEVFILE command must be issued after 

the corresponding DEVICE, TTY, VIP, or BSC command that defines its device 

type and logical resource number. The format of the DEVFILE command is shown 

below. 

DEVFILE~device-name,lrn,file-name[,double] [,share] [,rec-size] 

DEVFILE - Command mnemonic. 

device-name - A string of ASCII characters identifying the device. 
Possible values for the DEVFILE (column 2, below) are: 

DEVFILE DEVICE 
Device Type Command Command 

KSR - input and output KSR KSR 
KSR - input only KSI KSR 
KSR - output only KSO KSR 
ASR - keyboard input/output ASR ASR 
ASR - keyboard input only ASI ASR 
ASR - keyboard output only ASO ASR 
ASR - paper tape reader TTR ASR 
ASR - paper tape punch TTP ASR 
Line printer LPT LPT 
Serial printer SPT SPT 
Card reader CDR CDR 
Diskette (See FMDISK) DSK 
Cartridge disk (removable) (see FMDISK) RCD 
Cartridge disk (fixed) (See FMDISK) FCD 
TTY - input and output TTY} 
TTY - input only TTYI (See TTY command) 
TTY - ou tpu t only TTYO 
VIP - input and output VIP } 
VIP - input only VIPI (see VIP command) 
VIP - output only VIPO 
BSC - input and output BSC (see BSC command) 

Note that the corresponding device-name (column 3, above) must have 
appeared in a previous DEVICE, TTY, VIP or BSC command. 

lrn - Logical resource number by which the device is requested. The 
value of this operand must not exceed the value of the hilrn 
operand specified in the SYS command. The operand must have 
appeared in a previous DEVICE, TTY, VIP or BSC command. 

file-name - A string of up to 12 ASCII characters specifying the 
name by which the file (device) is identified within the appli­
cation. 

double - If the ASCII character D is specified for this operand, all 
reads and writes to this file will be double buffered. If the 
operand is omitted, file reads and writes are not double buffered. 

A-IO AU49 



share - If the ASCII character S is specified for this operand, the 
device can be shared. If the operand is omitted, the device 
cannot be shared. 

rec-size - The maximum record size in bytes for the device file 
described in this command. The default (decimal) values for 
individual devices are: 

KSR/ASR/TTY 

ASR (read or punch) 

VIP (input and output) 

VIP (input or output only) 

BSC (input and 

Line printer 

Serial printer 

Card reader 

output) 

72 

32,767 

32,767 

80 

32,767 

137 

133 

80 

NOTES: 1. The "double" and "share" parameters are mutually 
exclusive, you cannot use double buffering with 
a shared file. 

2. A file cannot be bidirectional and double buffered. 

3. Double buffering should be used in conjunction with 
the following device-name parameters: KSI, KSO, 
TTYI, TTYO, VIPI and VIPO. 

DEVICE 
DEVICE Command (I/O Device Task) 

Each device to be used in the application must be explicitly defined in 

a DEVICE command. In addition, the DEVICE command implicitly defines the load 

module for the driver. The device-type operand is a generic name - there may 

be more than one device of the same type in the application; e.g., two diskettes. 

The level and channel operands, however, must be unique for each device. De­

vice levels usually occupy a higher priority than task levels. The lrn 

operand specifies the logical resource number for the device. The lrn by which 

a device is requested need not be unique, but if a device is requested by more 

than one lrn, the ATLRN command must be used to relate these additional lrn's 

to the single level for that device. 

Specifying the same device-type and lrn operand values in more than one 

DEVICE command causes the previous DEVICE command to be updated with the new 

level and channel operand values. 

The format of the DEVICE command is shown below. 

DEVICE~device-type,lrn,level,channel[,label] 

A-II AU49 



DEVICE - Command mnemonic. 

device-type - A string of ASCII characters identifying the type of 
device. Possible values and associated devices are shown be­
low. 

Device Type Operand Value Driver Name 

KSR KSR ZIKSR 
ASR ASR ZIASR 
Line Printer LPT ZILPT 
Serial Printer SPT ZILPT 
Card Reader CDR ZICDR 
Diskette DSK ZIDSK 
cartridge disk FCD (fixed) ZICDSK 
Cartridge disk RCD (removable) ZICDSK 

lrn -The logical resource number by which the device is requested. 
The value of this operand must be an integer that is less than 
or equal to the hilrn value specified in the SYS command. 

level - The priority level at which the driver task for the device 
will execute. The value of the level operand cannot be less 
than 5 nor greater than the value specified as the lolevel para­
meter of the SYS command. 

channel - The channel number of the device. 

label - The label parameter may be either an ASCII value (location 
definition), or an integer (reference LRN) that is the lrn 
parameter of a previous DEVICE command. When the label para­
meter is given an ASCII value, the value must be defined in a 
load module. The address of the label is stored as the first 
entry of the device-specific words in the device resource con­
trol table (see the Executive and Input/Output manual). This 
parameter can be used by the drivers as needed, except that 
when it appears in a DEVICE command describing a KSR or an ASR, 
it must be the entry point of the attention subroutine. The 
default label for LRN 0 (operator's console) is ZIATTN, which 
is defined in the Executive load module. The default for other 
LRN's is null. 

When the label parameter is used as a reference LRN (i.e., the 
value is identical to the LRN value of a previous DEVICE 
command), the location of the RCT for the previously defined 
device is stored as the first entry of the device-specific 
words in the RCT for the currently defined device. Conversely, 
the location of the RCT for the currently defined device is stored 
in the corresponding position in the RCT of the previously defined 
device. DEVICE commands specifying removable and fixed cartridge 
disk devices must cross-reference each other in this manner. 

The following pair of DEVICE commands illustrates a valid use 
of the label parameter as a reference LRN: 

DEVICE FCD,6,IO,X'1280' 
DEVICE RCD,9,IO,X'1280',6 

A-12 AU49 



The following rules apply to the use of the label parameter as a reference 

L~: 

• The first DEVICE command of a related pair may not have a reference 
LRN to another DEVICE command; result is an error • 

• The level and channel parameters of a DEVICE command that has a 
reference L~ must be the same as those in the related DEVICE com­
mand. 

, Given a related pair of DEVICE commands, the reference L~ must 
be the same as the L~ in the related DEVICE command. 

An implicit ADMOD command for the driver load module of the form: 

ADMOD CLMFILE:<driver-name) 

is issued with each DEVICE command. The default channel number is assumed. If 

the default channel number cannot be used, an explicit ADMOD command having the 

file-name:module-name but a new channel number can be used to change the 

channel number. (See the ADMOD command.) 

An implicit TASK command of the form: 

TASK start-address(of the device) ,lrn,level 

is also issued with each DEVICE command. 

ELACT 

ELACT Command (End Load Action) 

The ELACT command indicates that all interpretive modules have been in­

cluded, and that all commands submitted to the CLM can be processed. The 

format of the ELACT command is: 

ELACT 

ELACT - Command mnemonic. 

NOTE: Prior to the processing of the ELACT command, only the lOS, 
LACT, and ELACT will be recognized as valid commands, the 
submission of any other command will result in an error 
condition. Once this command is processed, all other com­
mands will be accepted, and the lOS, LACT, and ELACT commands 
will be invalid. 

The ELACT command must be issued even if no optional modules are to be 

added to CLM. 

A-13 AU49 



ELOC/EQLRN/EVAL 

ELOC command (Define Address Symbol) 

The ELOC command defines a symbolic name as an absolute address. The 

definition is stored in the symbol table, and redefinition is not allowed. 

The symbolic name may be referred to in the loading process. The format of 

the ELOC command is shown below. 

ELOC~symbol,D'absolute-address' 

ELOC - Command mnemonic. 

symbol - One through six ASCII characters specifying the symbolic 
name to be assigned. 

absolute-address - The double-word hexadecimal integer specifying 
the absolute address that is the definition of the symbol. 

EQLRN Command (Equate LRN's) 

The EQLRN command provides for the definition of LRN synonyms. The format 

is: 

EQLRN~new-lrn,old-lrn 

EQLRN - Command mnemonic. 

new-lrn - A integer, no greater than the value of the hilrn parameter 
of the SYS command, that is to be equated to a previous LRN. 

old-lrn - The value of a previously assigned LRN for which a synonym 
is being provided. 

EVAL Command (Define Value Symbol) 

The EVAL command defines a symbolic name as a value. The definition is 

stored in the symbol table, and redefinition is not allowed. The symbolic name 

may be referred to during the loading process. The format of the EVAL command 

is shown below. 

EVAL~symbol,value 

EVAL - Command mnemonic. 

symbol - One through six ASCII characters specifying the symbolic 
name being defined. 

value - A single-word integer whose value becomes the definition 
of the symbol. 

A-14 AU49 



FILMGR/FMDISK/IOS 

FILMGR Command (File Manager) 

The FILMGR command defines the general File Manager variables. This 

command must precede any other file management commands. The format of the 

FILMGR command is shown below. 

FILHGRil [max-lfn] [, concurrentcalls] [,concurrent opens] 

FILMGR - Command mnemonic. 

max-lfn - A value <255 representing the highest logical file number 
(LFN) permitted in the application. The LFN is the value used 
to refer to a file once that file has been opened. The default 
value of this operand is 15. 

concurrent calls - The number of concurrent calls to the File Manager. 
This number must be an integer greater than zero. The default 
value is 4. 

NOTE: Each task can have only one call to the File Manager at 
a time, but a number of tasks can have one call each at 
a given point in time. 

concurrent opens - The number of concurrently open files. This number 
must be an integer greater than zero. The default value is 8. 

FMDISK Command (File Management Disk) 

The FMDISK command identifies the disk devices available to the File 

Manager. The format of the FMDISK command is shown below. 

FMDISKildisk-type,lrn 

FMDISK - Command mnemonic. 

disk-type - Specifies the disk device. 

DSK - Diskette 
RCD - Removable cartridge disk 
FCD - Fixed cartridge disk 

lrn - The logical resource number by which the device is re­
quested. The value of this operand must not exceed the 
value of the hilrn operand specified in the SYS command. 

lOS Command (I/O Stream) 

Using the lOS command, you can change the command input stream from one 

device to another. The format of the lOS command is shown below. 

IOSLlCI$,device,X'channel' [,member-name] 

A-IS AU49 



lOS - Command mnemonic. 

CI$ - The name of the command input stream. 

device - A string of ASCII characters designating the new command 
input device. Possible values are: device mnemonics ($CDR or 
$KSR) or a disk file-name. 

channel - A hexadecimal integer specifying the channel number of the 
new command input device. 

member-name - The member name of the command input list on a disk 
device. The file in which this member resides is the file-name 
parameter. If the parameter is omitted, CLMCI is assumed. 

LACT 

LACT Command (Load Action) 

The LACT command identifies a load module to be added to CLM in order to 

provide interpretation of one of the supplementary command groups. One LACT 

command must be included for each set of command group exte.ntions required in 

the configuration. The format of the LACT command is: 

LACT~file-name:module-name[,X'channel'] [,waid] [,overlay] 

LACT - Command mnemonic. 

file-name - The name of the file in which the interpretive modules 
for the particular command group reside. 

member-name - The member name of the load module that provides the 
interpretive routines for the particular command group. 

channel - The channel number (hexadecimal) of the device from which 
the load module is to be loaded. The default value is the 
channel from which the CLM was loaded. 

waid - The identification number of the work area for this module. 
If this number is omitted, the work area is not to be shared; 
if the number is the same as that supplied in the LACT command 
for another interpretive module, the worR area can be shared. 

overlay - The letter 0 indicates that the interpretive modules spe­
cified in this command are to be treated as overlays during the 
execution of CLM; if the parameter is omitted, all modules are 
resident in main memory during CLM operation. The parameter 
must be coded when HMA is IFFF (8K). 

LTP 

LTPDEF (Command (LTP Definition) 

This command specifies the size of the communications tables that the 

user-written LTP requires. The command is optional, but if used, must pre­

cede the LTPn command that refers to it. The format is: 

LTPDEF~n,channel-table-size,station-table-size 

LTPDEF - Command mnemonic. 

n - Specifies which LTP is being defined; n is a number from 0 to 3. 

A-16 AU49 



channel-table-size - Specifies the number of words needed for the 
channel table and the CQB's. The default value is 32 words. 

station-table-size - Specifies the number of words needed for this 
LTP's station table (RCT). The default value is 7 words. 

LTPn 
LTPn Command 

This command specifies the characteristics of a nonstandard communi­

cations device. For each device driven by a user-written LTP, this command 

must be issued. The format of the command is: 

LTP~lrn,level,channel[,label] [,modem] [,speed] [,FDX/HDR] [,LTP-specific-word] 

LTPn - Command mnemonic. There may be up to four user-written LTP's 
included in a configuration. The mnemonics could be: LTPO, 
LTPl, LTP2, or LTP3, depending on which user-written LTP is 
being defined. CLM saves the number in the channel table for 
the device for use by the LTP's initialization code. 

lrn - Specifies the logical resource number by which the device is 
requested; must be less than or equal to the hilrn parameter 
of the SYS command. 

level - The priority level at which the driver for the device will 
execute. Must be less than or equal to the lolevel parameter 
of the SYS command; it may be the same as other communications 
devices; but must be different from the level parameter in the 
COMM command, and from the levels specified for noncommunica­
tions tasks and devices. 

channel - The channel number of the device. 

label - A label, assumed to be a location definition, which must be 
defined in a load module. This label is the entry point of the 
attention subroutine. The default label for LRN 0 (operator's 
console) is ZIATTN, which is defined in the executive load module. 
The default for other LRN's is null. 

modem - A number specifying the type of data set. Possible values 

are: 

o - direct connect 

1 - Bell lxx-type modem (103A,113F, etc.) Both data-set-ready 
and carrier-detect signals are needed for a connection; 
lack of both signals is a disconnection. 

2 - Bell 2xx-type modem (201A,201C,208A, etc.) The data-set­
ready signal is needed fo~ a connection; lack of this signal 
is a disconnection. 

3 or greater - User-defined modem type. 

The default value is modem type 2. 

(See MODEl-1 command.) 

NOTE: If the line is direct connect and asynchronous, modem 
type 2 must be specified; if the line is direct connect 
and synchronous, specify modem type O. 

speed - The data rate in bits per second. The default value is zero, 
and signifies a synchronous line. One of the following values 
must be specified for an asynchronous line: 

50 300 2400 
75 600 3600 

110 900 4800 
134.5 1200 7200 
150 1800 9600 

A-17 AU49 



FDX/HDX - Specifies whether the procedure is full or half duplex. 
If it is full duplex (FDX), two channel tables will be assigned. 
The default value is HDX. 

LTP-specific-word - A word containing user-defined information to 
be passed to the LTP via the station table at offset ZQSSTS. 
The default is zero. 

NOTES: 1. An LTPDEF command must precede its corresponding LTPn 
command unless default values are to be taken for the 
channel and station table sizes. 

MODEM 

2. Each LTP load module must be added to the load module 
list constructed by CLM in the usual way; i.e., by 
being identified in an ADMOD command. 

MODEM Definition Command 

This command is used to define an nonstandard modem type. (See the MLCP 

Programmer's Reference manual for details about contents of the line control 

tables.) The information provided in this command is used to test entries in 

the LCT for the device to verify a connection or a disconnection. The format 

of the MODEM command is: 

MODEM~type-number,connection-AND-mask,connection-XOR-mask, 

disconnection-AND-mask,disconnection-XOR-mask,data-set­
control 

MODEM - Command mnemonic 

type-number - An integer from 3 to 15 that is assigned to this modem 
definition and may then be used in a communications device com­
mand. 

connection-AND-mask - A 2-digit hexadecimal number whose value deter­
mines which bits of LCT entries 14 (receive channel data set 
status) and 46 (transmit channel data set status) will be examined 
when a connect request is processed. 

connection-XOR-mask - A 2-digit hexadecimal number whose value spe­
cifies which bits of LCT entries 14 and 46 must be on for a 
connection 

disconnection-AND-mask - A 2-digit hexadecimal number whose value de­
termines which bits of LCT entries 14 and 46 will be examined 
when a disconnect request is processed, or when a test for the 
occurrence of a disconnect is made. 

disconnection-XOR-mask - A 2-digit hexadecimal number whose value de­
termines which bits of LCT entires 14 and 46 must be on for a 
disconnection. (Entries 14 and 46 of the LCT are the data set 
status for the receive and transmit channels, respectively.) 

data-set-control - A 2-digit hexadecimal number placed in entry 
number 20 of the LCT and line register 2 (LR2) of the communi­
cation line adapter (CLA) when a line is to be connected. 

NOTES: 1. To test for a successful connection, entries 14 and 46 
of the LCT are first subjected to a logical AND opera­
tion against the (user-supplied) connection-AND-mask; 
then a logical exclusive OR operation is performed on 
the result of the first operation, against the (user­
supplied) connection-XOR-mask. If the result is zero, 
a connection has been established. 

A-18 AU49 



2. To test for a disconnection, the same operations are 
carried out using the analogous disconnection masks. 
A zero result indicates a disconnection. 

3. The following table shows the mask and data set control 
values for the standard, CLM-recognized modem types: 

Modem 
Type 

Direct 
Connect 

Bell lxx 

Bell 2xx 

Type 
Number 

o 

1 

2 

connection Masks 
AND XOR 

X·SO· X'SO' 

X'AO' X'AD' 

X'SO' X'SO' 

Disconnection Masks 
AND XOR 

X'SO' 

X'AO' 

X' SO· 

x' 00' 

x' 00' 

X'OO' 

Data Set 
Control 

X'SS' 

x' SO' 

X'SO' 

OIM 
OIM Command (Operator Interface Manager Definition) 

The OIM command defines the lrn and level required by the Operator Inter­

face Manager. This command must be present, or an initialization error will 

occur during the loading of the Executive load module. The format of the OIM 

command is: 

OIM.6.lrn,level 

OIM - Command mnemonic. 

lrn The logical resource number reserved for use by the Operator 
Interface Manager. The value is an integer that is less than 
or equal to the value of the hilrn parameter in the SYS com­
mand. 

level - The priority level at which the Operator Interface Manager 
operates. The value cannot be less than 5 nor greater than 
the lolevel parameter of the SYS command. 

QUIT 

QUIT Command (Initiate Loading) 

The QUIT command is the last configuration command in the command input 

stream. When this command is encountered, the CLM stops reading commands from 

the command input file and initiates the loading phase. As a last step in the 

configuration phase, the CLM creates a set of nondedicated data structures 

(tables, save areas, pointers, etc.), based upon the information contained in 

the previous commands. 

If the HLT parameter is present in the QUIT command, the processor will 

halt after the configuration loading is completed and before the application 

is started. The format of the QUIT command is shown below. 

QUIT.6. [HLT] [MAP] 

A-19 AU49 



QUIT - Command mnemonic. 

HLT - Specification of this parameter causes the machine to halt 
after loading and before beginning the execution of the 
application. The default assumption is not to halt. Do 
not execute a control panel master clear operation before 
application execution. 

MAP - Specifying this parameter causes ZXMAP to be loaded last 
(provided an operator console is present) automatically. 
ZXMAP must be on the same file as CLM. 

This parameter is equivalent to an implicit ADMOD command: 

ADMOD PROGFILE:ZXMAP 

STATION 
STATION Command 

This command is used to specify additional devices on lines controlled by 

LTP's that have been written to handle multiple devices per line. One device 

on the line must be identified by describing it in an LTPn command; additional 

devices are specified in STATION commands, one per device, immediately follow­

ing their corresponding LTPn commands. The format of the command is: 

STATION~lrn[,label] [,LTP-specific-word] 

STATION - Command mnemonic. 

lrn - Specifies the logical resource number by which the device is 
requested; must be less than or equal to the hilrn parameter of 
the SYS command. 

label - A label, assumed to be a location definition, which must be 
defined in a load module. This label is the entry point to the 
attention subroutine. The default label for LRN 0 (operator's 
console) is ZIATTN, which is defined in the executive load 
module. The default for other LRN's is null. 

LTP-specific-word - A word containing user-defined information to be 
passed to the LTP via the station table at offset ZQSSTS. 

NOTE: The priority level, channel number, modem type, line speed, 
and line procedure (FDX/HDX) of devices described in STATION 
commands, are obtained from the preceding LTPn command. 

SVS 
SYS Command (System) 

The SYS command defines the environment in which the online application 

will be run. When specified, the SYS command must be the first CLM command 

entered (with the exception of the lOS or DATE command). The format of the 

SYS command is: 

SYS~ [, hilrn] [, lolevel] [, SAF] [, D' himem' ] 

SYS - Command mnemonic. 

hilrn - The highest logical resource number (LRN) to be used by 
the application. The specification of this operand de­
termines the size of the logical resource table (LRT) 
for the application. (The size of the LRT equals hilrn+l.) 
The default value of hilrn is 15. The maximum value is 255. 

A-20 AU49 



lolevel - The lowest priority level to be used by the application. 
This parameter also establishes the number of interrupt 
save areas (ISA's) and affects the total area set aside 
for ISA's and for the start-of-queue and end-of-queue 
header tables. The value of the lolevel operand must be 
between 6 and 62 inclusive. The default value is 15. 

SAP - Model designator. The default value is SAF. 

The double-word hexadecimal integer specifying a main 
memory address. The himem operand permits a main memory 
area between the end of the system and the physical end 
of memory to be used for nonsystem use (e.g., for storing 
an offline dump routine). The default value of the himem 
operand is the high-memory address of the loader. It is 
the end of the main memory area for buffers. 

TASK 
TASK Command (Define Task) 

The TASK command defines an initial start address for a level. It is 

used for a task that requires exclusive use of a level (i.e., is requested by 

means of an implicit-start-address request block) or by an initially active 

application task. The format of the TASK command is: 

TASK start-address,lrn,level[,activity] 

TASK - Command mnemonic. 

start-address - An ASCII label that is the start address of the first 
task code to execute on a particular level after the system is 
started. The label is declared in an XDEF statement in an assem­
bly language program, and an EDEF statement to the Linker. 

lrn - The logical resource number by which the task is requested. 
The value of this operand must be an integer no greater than the 
hilrn value specified in the SYS command. 

level - The priority level at which the task will execute. The value 
of the level operand cannot be less than 5 or greater than the 
value specified as the lolevel of the SYS command. 

activity - The value of this operand determines the setting of the 
level activity indicator. Possible values and their interpreta­
tions are: 

YACT - The task is initially active. 

NACT - The task is not initially active. 

The default value is NACT. It is the task on the highest pri­
ority level that has been declared active (by a YACT in its 
TASK command) that is entered when execution starts. 

TRAP 
TRAP Command (Trap Vector) 

The TRAP command establishes a relationship between a trap vector number 

and a trap handler name. During execution, trap handling procedures are 

activated only if the appropriate TRAP command has been specified. The three 

Honeywell-supplied trap handlers are the Trace Trap Handler, associated with 

trap vector 2, the Floating-Point Simulator, associated with trap vector 3, and 

the Scientific Branch Simulator associated with trap vector 5. 

A-2l AU49 



If the TRAP command is used, the trap handler must be in a load module to 

be loaded. Furthermore, the label of its entry point (i.e., the handler name) 

must be declared at link time with the EDEF Linker command. If more than one 

TRAP command is issued for the same trap vector number, the last TRAP command 

overrides all previous ones for the same trap number. There are no default 

values for this command. The command format is: 

TRAP~trap-number,handler-name 

TRAP - Command mnemonic. 

trap-nu~ber - The number of the trap vector between 1 and 46. 

handler-name - A string of ASCII characters specifying the name 

TSA 

(label) of the start of the trap handler. This label must be 
defined in the load module for this application. The three 
Honeywell-supplied trap handlers have the following names: 

1. ZXTRAC - Trace Trap Handler 

2. ZFPSIM - Floating-Point Simulator 

3. ZFBSIM - Scientific Branch Simulator 

TSA Command (Trap Save Area Definition) 

The TSA command defines the number and size of the items in the trap save 

area (TSA) list. When a trap occurs, certain pertinent information is stored 

in a trap save area item in main memory. The TSA command allows the adjust­

ment of the number and size of these items for optimum memory usage. All 

items in the TSA list are of the same size. To find the total size of the trap 

save area, mUltiply the number of items by the size of each item. The format 

of the TSA command is shown below. 

TSA~[,number of items] [,size] 

TSA - Command mnemonic. 

items - The number of trap save area items required. The default 
(and the minimum) value is 2. 

TTY 

size - The size (in words) of one trap save area item. The default 
(and the minimum) value is 8. 

TTY Command 

This command identifies each teleprinter device in the application. The 

format of the TTY command is: 

TTY~lrn,level,channel[,label] [,modem] [,speed] 

TTY - Command mnemonic. 

lrn - The logical resource number by which the device is re­
quested. It must be less than or equal to the hilrn 
parameter of the SYS command. 

A-22 AU49 



level - The priority level at which the driver for the device 
will execute. Must be less than or equal to the lolevel 
parameter of the SYS cornnand; it may be the same as 
other communications devices, but must be different 
from the level for the COMM command, and from the levels 
of noncommunications tasks and devices. 

channel - The channel number of the device. 

label - A label, assumed to be a location definition, which must 
be defined in a load module. This label is the entry point 
of the attention subroutine. The default label for LRN 0 
(operator's console) is ZIATTN, which is defined in the 
executive load module. The default for other LRN's is 
null. 

modem - A number specifying the type of data set. Possible values 
are: 

o - direct connect 

1 - Bell lxx-type modem (103A,113F,etc). Both the data­
set-ready and carrier-detect signals needed for a con­
nection; the lack of both signals is a disconnection. 

2 - Bell 2xx-type modem (20lA,20lC,208A,etc.) The data 
set ready signal needed for a connection; lack of this 
signal is disconnection. 

3 or greater - User-defined modem type (see MODEM command) • 

The default is modem type 1. 

speed - The data rate in bits per second. Possible values are: 

50 
75 

100 (default) 
134.5 
150 

300 
600 
900 

1200 
1800 

2400 
3600 
4800 
7200 
9600 

When this command is processed, an implicit ADMOD command 
is issued to include the teletype line type processor 
(ZQPTTY) in the load list. 

VIP 
VIP Command 

This command identifies each visual information projection (VIP) device 

in the application. The format of the VIP command is: 

VIP~lrn,level,channel[,label] [,modem] 

VIP - Command mnemonic. 

lrn - The logical resource number by which the device is re­
quested. It must be less than or equal to the hilrn 
parameter of the SYS command. 

level - The priority level at which the driver for the device 
will execute. Must be less than or equal to the lolevel 
parameter of the SYS comnandi it may be the same as other 
communications devices, but must be different from the 
level parameter in the COMM command, and from the levels 
specified for noncommunications tasks and devices. 

A-23 AU49 



channel - The channel number of the device. 

label - A label, assumed to be a location definition, which must 
be defined in a load module. This label is the entry 
point of the attention subroutine. The default is null. 

modem - A number specifying the type of data set. Possible values 
are: 

o - Direct connect 

I - Bell lxx-type modern (I03A,113F,etc.). Both data-set­
ready and carrier-detect signals needed for a connec­
tion; the lack of both signals is a disconnection. 

2 - Bell 2xx-type modem (20IA,20IC,208A,etc.). The data 
set ready signal needed for a connection; lack of this 
signal is a disconnection. 

3 or greater - User-defined modem type. (See MODEM command.) 

The default is modem type 2. 

When this command is processed, an implicit ADMOD command is issued to 

include the VIP line type processor (ZQPVIP) in the load list. 

* 
*Command (Comments) 

The comments command is used only for documenting the command input listing. 

These comments are bypassed by the CLM. The format of the command is shown 

below. 

*~comments 

* - Command mnemonic. 

comments - A string of ASCII characters, up to one line in length, 
specifying the comments. 

A-24 AU49 



APPENDIX B 

PIJU~NING AND BUILDlilG WITH EXECUTIVE OBJECT MODULES 

Tne Honeywell-supplied diskette contains a map file, CLMMAP. Members of 

this file document the Linker command and Linker map output for the load 

modules created by Honeywell. This appendix indicates approaches you may use 

to create your own Executive and/or driver load modules from Executive object 

modules. 

CREATING EXECUTIVE LOAD MODULES 

The Honeywell Executive, ZXEX03, consists of the object modules shown in 

Table B-1. 

Table B-1. Executive Object Modules 

Description Object Module Name 

Task Manager 

Clock Manager (basic) 

Clock Manager (time-of-day, 
date) 

Operator Interface Manager 
(console) 

Operator Interface Manager 
(panel) 

Trace Trap Handler 

I/O Subroutines 

System Error Handler 

Executive Initialization 

Semaphore Routine 

ZXTSKM.O 

ZXCMGR.O 

ZXCTDA.O 

ZIOIM.O 

ZIOIMP.O 

ZXTRCM.O 

ZIOSUB.O 

ZUERR.O 

ZXIN03.0 

ZXSEM.O 

If you want to omit one or more of the Executive functions, you must build 

your own load module from the Executive object modules. 

Listings of the ZXEX03 modules indicate which modules are being initialized~ 

The general procedure for you to follow when preparing your own executive load 

module is to examine the existing load module's initialization code for an 

explanation of its functions. 

B-1 AU49 



The initialization subroutine table (1ST) at the start of the initializa­

tion module is composed of at least one subroutine entry per module served. 

This means that a module being deleted should have its initialization subrou­

tine(s) deleted. The converse is also true; a user-created module which had 

initialization requirements could be added to the existing 1ST (assuming the 

source was available.) 

Figure B-1 shows the general structure of initialization subroutines along 

with a detailed sample 1ST. 

ZXXIST DC 0 START OF 1ST 
RESV $AF,O 
DC <ZXOBJl OBJECT 1 INITIALIZE 
DC 0 PARAMETERS 
DC 0 
DC <ZXOBJ2 OBJECT 2 INITIALIZE 
DC 0 PARAMETERS 
DC 0 
DC <ZXOBJ3 OBJECT 3 INITIALIZE 
DC 0 PARAMETERS 
DC 0 
RESV $AF,O END OF 1ST 

OBJECT 1 1ST ~ SUBROUTINE FOR OBJECT 1 

OBJECT 2 ~ SUBROUTINE FOR OBJECT 2 

OBJECT 3 V ) SUBROUTINE FOR OBJECT 3 

OBJECT 4 V 
INITI ALIZATION 
MODULE 

Figure B-1. Initialization Processing 

Subroutines of Honeywell-supplied initialization code are functionally inde­

pendent. 

To summarize, there are two areas of concern when creating your own load 

module: 

• Proper Linker commands, especially EDEF's needed by CLM • 

• Proper 1ST subroutine entries in new initialization for object 
modules used by new load module. 

Linker commands may be determined by examination of Honeywell-supplied link 

maps (CLMMAP). 1ST entries may be constructed by examination of Honeywell 

initialization module listings. 

B-2 AU49 



As an example of a user-created executive load module, assume that the 

application needs the following existing Executive functions: task, both 

clock functions, the operator interface for the console, the error subrou­

tines. Furthermore, the Buffer Manager is to be added. 

A listing of ZXEX03 must be examined along with the listing for the Buffer 

Manager (ZXBMOI) for 1ST contents. Note that some of the Buffer Manager 

initialization code must be permanently resident, and cannot be overlaid. A 

new initialization load module is created containing all the required initial­

ization code for the functions to be included in the new executive load module. 

The 1ST is located to accommodate the buffer initialization requirements. 

(See Figure B-2.) 

START 

BUFFER 
INITIALIZATION 
(PERMANENT) 

1ST 

CLOCK 
INITIALIZATION 

BUFFER 
INITIALIZATION 

END NEWINT, START 

SUBROUTINE FOR CLOCK 
DURING LOADING 

SUBROUTINE FOR BUFFERS 
DURING LOADING 

Figure B-2. New Initialization Modules 

The link commands (from CLMMAP) for the new load module are all those 

required for the modules to be used. Note that the LINKN for the ZXEX03 

initialization (ZXIN03) is not used because the entire Executive module is not 

being used. After all the link commands have been collected (including all 

necessary EDEF's), the Linker is then executed to produce the new load module 

that now contains the required executive functions. 

I/O drivers should remain separate load modules to retain variable selec­

tion during configuration using the eLM device co~mands (DEVICE, TTY, VIP, 

BSC), and to maintain compatibility with CLM embedded file/member and start 

address names. 

B-3 AU49 





APPENDIX C 

APPLICATION CONFIGURATION EXAMPLE 

This appendix provides two examples of application programs. Each example 

contains the Linker, and CLM commands for the application along with a listing 

of the application program. 

The first example presents an input/output program, BRDCST, whose purpose 

is to exercise the various device drivers provided with the BES software. 

The second example is a communications test program, COM200. 

CONFIGURATION COMMANDS FOR SAMPLE INPUT/OUTPUT APPLICATION 

The following configuration commands are used to configure the sample 

application, No SYS or TSA command is used since default values are assumed. 

CLOCK 60,50 
ADHOD PROGFILE:ZXEX03,X'1200' 
ADMOD USRPGS:BRDCST,X'1200' 
TASK BRDCST,l,lO,YACT 
DEVICE CDR,2,7,X'0580' 
DEVICE LPT,5,9,X'1300' 
DEVICE DSK,4,8,X'1200' 
DEVICE ASR,0,6,X'1380' 
EQLRN 3,6 
ATLRN 6,11 
ATLRN 7,12 
ATLRN 8,8 
EQLRN 9,6 
EQLRN 10,6 
EQLRN 11,6 
ATLRN 12,13 
ATLRN 13,14 
QUIT HLT 

(Execution LM) 
(Application LM) 
Application LVL 10 (initially active) 
Card reader LVL 7 
Line printer LVL 9 
Disk LVL 8 
Operator's console LVL 6 
Teletype LVL 6 
Input Task LVL 11 
Output Task LVL 12 
Disk out LVL 8 
Teletype out LVL 6 
ASR in LVL 6 
ASR out LVL 6 
Output Task 2 LVL 13 
Output Task 3 LVL 14 

LINK COMMANDS FOR SAMPLE INPUT/OUTPUT PROGRAM 

The following commands are used to produce the load module BRDCST prior to 

invoking CLM to configure an application using the program: 

SAMPLE INPUT/OUTPUT PROGRAM 

NAME BRDCST 
LINK BRDCST 
EDEF BRDCST 
~1AP 

QUIT 

The following pages show a documented listing of the BRDCST program. 

C-l AU49 



000001 TITLE BRDCST 
00000 2 
000003 THIS TEST PROGRAM IS A 
000004 MEDIA TRANSCRIPTION TEST. 
00000 5 IT CAN EXECUTE AS AN 
000006 ON-LINE OR OFF-LINE 
000007 DRIVER TEST •••••• 
000008 
00 0009 THE OPERATOR WI LL TYPE 
000010 OxOYQYOY 
000011 
000012 X= INPUT DEV NUMBER Y= OUTPUT DEV NUMdER 
00 00 13 0= CARD REA 0 E R 
000014 1= TELETYPE 
00 0015 * 2= DISKETTE IN 
000016 3= PRINTER 
000017 4= DISKETTE OU T 
00 00 1 8 5= TELE TyPE OU T 
000019 6= ASR IN 
000020 7= ASR OUT 
000021 
000022 
000023 LRN O=OP CONSOLE 
000024 LRN 1=CONTROL TASK 
000025 lRN 2'" CARD RE ADER 
00 002 6 LRN 3'" TElE TYPE IN 
000027 LRN 4=DISKETTE IN 
000028 lRN 5=PRINTER 
000029 LRN 6= INPUT TASK 

() 000030 LRN 7=OUTPUT TASK I 
000031 LRN 8=DISKETTE OUT I\.) 
000032 LRN 9'" TElE T YP E OUT 
00 003 3 lRN 10 =ASR IN 
000034 lRN 11 =As R OUT 
00 003 5 L RN 12 "'OUTPUT TASK2 
000036 LRN 13"'OUTPUT TASK3 
000037 
000038 
000039 
00 0040 * ** * * 
00 00 41 LRN TABLE 
000042 * ** 
000043 ** 000044 
000045 
000046 0000 2020 BLNK S TEXT 
00 004 7 0001 3939 3939 TERM TEX T • 9999' TERMINATION CHARACTERS 
000048 
00 004 9 
00005 a 0003 DEVT 8l RESV a 
000051 0003 OOOB DC <C RDBLK LRN 2 
000052 0004 0013 DC < T TY6ll( LRN 3 
000053 0005 001 B DC <DSK6LI lRN 4 
000054 0006 0026 DC <P RT6LK LeN 5 
000055 0007 0023 DC <DSK6LO LRN 8 
000056 0008 0033 DC <TTYOUT LRN 9 
000057 0009 003B DC <A SRINP LRN 10 
00 0058 OOOA 0043 DC <ASROUT LRN 11 

~ 000059 
C 
,.c::.. 
\.0 



C(hi~I)O 7f.,l)l:-n l6 AS~E~~LER-n?nn COM~ TERT PRnG~A~ PAGF 0002 

0000,,0 0OI/-l ,., I sen/.-' EQlI $ 

O(J0061 OOIi< nooo RESV ~AF.O 

00006? nl"!ll'l (lOOt I'll: )(' 01' WAIT TILL I/O COMPLETE 
nnOOh3 001A nlJPi-< nc ""1.I0~' DISCONNF.:CT 
OOOO"LI 1)(\1" 1)(10(> RESV 'f.AF.O RUFFER 
(1 (, ('\ 0,,'3 f,() 1 r n001 DC 1 RANGE=l WORD 
(1000"'" 001fl 003') DC )(' 30' 
000(1)7 n01E (I (I (, (. nc )(' 0' 
00(1)10,~ (I r,l F (I l)() (I I)C )(' 0' 
OOOOh Q • 
000070 • .InRA:C"M~UNICATtONS CONSOLE INPUT. 
ono071 .. .. 
OOO(l7? (\ 02(' C()~~CJ EQU $ 

uOO073 no.?o 0(\00 PFSV 1iAF,O 
Ono071.1 (1)?1 0001 DC )(' 01' WAIT TILL I/O COMPLETE 
non0715 0(1;:>") (l1J(l2 I)C )('1.102' READ 
OOO07h on2 .~ I)IF~ I)C <Cn.~AFR BUFFF.R ADDRESS 
000077 00;:>0 (I(JIJ~ ()C 72 RANGF=72 
00OO7P OO?'; 00'30 DC )('30' ECHO, L.F. &C/R 
0OOO7Q 002~ OOOn DC )(' 0' 
OOOO~('\ (Ion 0000 1)( )(' 0' 
nO{\O~l .. .. 
O(\OOA? .. .. .IOPB:COMMUNICATJONS CONSOLE OUTPUT 
OO(lOA3 .. * 
0000A4 002/-l CO,",'CO EtHJ $ 

oonOAS 002~ 0000 RESV $AF.O 
O(l()OBh (l02q 0001 nc )c' n I ' WAIT TILL I/O COMPLETE 

0 OOOOA7 OO?A OLlLlI DC )('1.11.11 ' WRITE, CONTROL RYTE RIGHTMOST 
I 
w o CI()()AA OO.?H 01/16 nc <LPFHJF 1 BUFFER START ADDRESS 

OO(\O~Q 002C OOLlQ DC 73 73=RANGE 
0(1009("1 002f) 003("1 DC )('30' FCHO, LINE FEE'O AND C/R 
OOOOQl 002E 00(10 nt: X' 0' RESIDUAL RANGE 
oooon 002F 0000 I')C )(' 0' STATUS WORD 
0000Q3 .. .. 
oonOQ£l * *TOR8:CARD READER INPUT 
OOOOQ5 .. * 
00009~ 0030 CORIN F.:~U $ 

00OOQ7 0030 onoo RESV ~AF,O 

O(lOOQ8 OO;! 0001 DC )(' 01 ' WAIT 
OOOOQ9 0032 0302 DC X'302' READ CARDS 
(100100 0(133 01eF DC <I: I'lR8t.lF RUFFER 
00010t (1034 0050 DC flO eO-CHARACTER RANGE 
000102 0(13':1 0000 DC )(' 0' ASCII MODE 
000103 (1036 0000 DC )(' 0' 
00010£1 0037 ooon DC )(' 0' 
0001 0 5 .. • 
000106 • *JORB:LJNE PRINTER OUTPUT 
(100107 * • 
00010e 003~ LPTOUT EQU $ 
00010Q (l03.q 000(1 RES V $AF,O 
000110 0039 (1001 I)C X' 01' WAIT 
000111 003A 021.11 DC )('241 1 WRITE/CONTROL BYTE RIGHTMOST 
000112 (l03R OU6 DC <LPAUFl BUFFER 
000113 003C 004Q DC 73 
00011£1 003D 0000 DC )(' 0' 
000115 003E 0000 DC X' 0' 

~ 000116 003F 0000 I')C X' 0' 

01::-
000117 • • 

~ 0001t~ • * .~EGIN 

000119 .. • 



000120 * 
000121 TA SK 1 (INPUT) REQUEST BLOCK LRN 6 
000122 * 
000123 009C 0000 T AS K 01 RESV 1,0 
000124 0090 0000 DC X 10000 I 
000125 009E 0600 DC X 10600' 
000126 009F 013F DC <INSTRT 
000127 
000128 * TA SK 2 (OUTPUT) REQUEST BLOCK LRN 7 
000129 
000130 OOAO 0000 T AS K 02 RES V 1,0 
000131 OOAl 0000 DC X I 0000' 
000132 00A2 0700 DC X 10700 I 
000133 00A3 0150 DC <OUTSTR 
000134 
000135 * ** * * 
000136 ** OUTPUT2 TASK REQUEST BLOCIC 
000137 * ** * * 
000138 * 
000139 00A4 0000 TAS K 03 RES V 1, a 
000140 00A5 0000 DC x' 0000 I 
000141 00A6 oeoo DC X I OCOO' 
000142 00A7 0161 DC <OUT2ST 
000143 
000144 * ** * * 
000145 ** OUTPuT3 lASIC REQUEST dLOCK 
000146 * ** * * 
000147 
000148 00A8 0000 T ASIC C4 RESV 1, a 

() 000149 00A9 0000 DC X 10000 I 
I 000150 OOAA 0000 O~ XI 0000' 
~ 000151 OOAS 0171 OC <OUT3ST 

000152 
000153 
000154 
000155 
000156 S TART - UP 1 lOR E QUE S T S L OC K ( 0 U J) 
000157 
000158 OOAC 0000 "ESSAG RE S V 1,0 
000159 OOAD 0001 OC X 101 I 
000160 OOAE 0001 DC x' 0001 ' LRN 0 
000161 OOAF 00a4 OC <OUTMSG 
000162 OOsO 0065 DC 101 
000163 OOBl 0000 RESV 3,0 
000164 0084 2063 7264 2072 OUTM S6 TEXT I crd rdr=O' 

00s7 6472 3030 
000165 00S9 2074 7479 2069 T EX T . tty i n= 1 • 

OOBC 6E3D 3100 
000166 OOBE 2064 6973 6B20 TEX T 

, di sk in:&2' 
OOCl 696E 3032 

000167 00c3 2070 726E 7472 T EX T , 
prntr=3' 

00C6 3033 
000168 00C7 2064 6973 6820 TEx T 

, disk" ou t=4' 
OOCA 6F75 7430 3400 

000169 OOCD ODOA OC Z'OOOA' 
000170 OOCE 2074 7479 206F T EX T tty out=5' 

0001 7574 3035 
000171 0003 2061 7372 2069 TEx T asr i n=6' 

~ 
0006 6E30 3600 

000172 0008 2061 7372 206F T EX T asr out=7' 
~ 
\0 



0008 7574 3037 
000173 0000 OOOA :DC Z· ODOA' 
000174 OODE 207479706520 rex T • type OnOyOyOy' 

00E1 306E 3079 3079 
3079 

000175 
000176 STARTUP 1/0 REQUEST BLOCK 
000177 
000178 00E5 0000 INPM 5G RESV 1,0 
000179 00E6 0001 DC X' 01' 
000180 00E7 0002 DC X' 0002' 
000181 00e8 ODE D DC < I NMSG 
000182 00E9 0008 DC 8 
000183 OOEA 0000 RE5V 3,0 
000184 ODED 2020 2020 2020 I NMS c:: T ex T 

OOFO 2020 
000185 
000186 
000187 OOFl OOA C PAR L ST DC <MESSAG PAR A ME T E R LI S T 
000188 00F2 ODE 5 DC <INPMSG 
000189 00F3 0000 DC 0 
000190 00F4 0000 DC 0 wORK IJORD5(PREVICU5 WORD TOO) 
000191 
000192 
000193 * 
000194 
000195 
000196 1/0 ERROR MESSAGE 10RB 
000197 * 
000198 * n 000199 00F5 0000 E RRM 5G RESV 1,0 I 

U1 000200 00F6 0001 DC X· 0 l' 
000201 00F7 0041 DC x' C041 • 
000202 00F8 OOf 0 DC <E RROR 
000203 00f9 0011 DC 17 
000204 OOFA 0000 RESV 3,0 
000205 OOFO 0041 E RRO R DC X'0041' 
000206 OOfE 6465 7630 lEX T 'd ev'" 
000207 0100 0000 o EV A ~N DC X· 0000' 
000208 0101 2065 7272 6F72 TEXT . e r ro r"-

0104 3000 
000209 0105 0000 S fA T us DC X, 0000' 
000210 
000211 
000212 0001 $LVC 11 EQU 1 
000213 0002 $LV C J2 EQU 2 
000214 0005 $Lv C T5 EQU 5 
000215 0040 SLWB I EQU x' 40' 
000216 DOH OUT S 1(2 EQU < I NMSG + 2 
000217 OOF 0 OUT S K3 EQU < 1 NMSG + 3 
000218 
000219 
000220 
000221 TYPE STARTUP MSG,WAIT fOR REPLY 
000222 
000223 0106 C C~O 00 f 2 BROC SI LOB $B4,<PARLST+$LvCTl 
000224 0108 9870 2020 LOR $Rl,=Z'2020' 
000225 010A 9fOO OOEE STR $Rl,<lNMSG+l 
000226 010e 9 FOO 00 E f STR $Rl,<lNMSG+Z 

~ 000227 010E 9FOO OOFO STR $R 1,<1NMSG+3 c::: 
II::>-
\.0 



() 
I 

0) 

~ c 
~ 
\D 

000343 

000344 
000345 
000346 
000347 
000348 
000349 
000350 
000351 
000352 
000353 
000354 
000355 
000356 
000357 

000358 
000359 
000360 
000361 
000362 
000363 
000364 
000365 
000366 
000367 
000368 
000369 
000370 
000371 
00 037 2 

000373 

0181 
0183 
0184 
0186 
0188 
0189 
0188 

0180 
018E 
018F 
0191 
0193 
0195 
0197 
0199 
0198 

019C 

000374 0190 
0000 ERR COUNT 

82C4 0001 
002 a 
0580 0188 
B844 0005 
8M3 
BF44 0005 
0380 0000 

8951 
3030 
9FOO 0105 
AFOO 0100 
CF80 019C 
C 88 0 OaF 5 
0380 0000 
CC80 019C 
8384 

0000 

015 a 
013F 
0106 

10K 

NOT 0 SK 

ERRO l.T 

S TO R B4 

• 

LB SB4.$lVCT1,x'UU20· 00 BIT TEST 

BBF 
LOR 
INC 
STR 
LNJ 

<N OTOSI( 
SR 3,$1:34 .SL VCTS 
=S R3 
SR 3,$S4.SLVC T5 
S8 5,<Z X TE RM 

NO TAO I SKI f BI T .. O 
LOAD CURRENT SECTOR INTO R3 
BUMPITBYl 
PUT IT BACK WHE RE I T BELONGS ••• 
NO '" YOU CAN P 0 S T + TE RM I NAT E 

THE FOLLOWING CODE IS AN ERROR ROUTINE 
IT DISPLAYS THE DEVICE NUMBER AND THE 
STATUS ceDE ON THE OP CONSOLE THEN IT 
RETURNS CONTROL AT THE POINT TliE I/O 
ORDER WAS REQUESTED. I T RUNS AT THE 
LEVEL OF THE OffENDING ROUTINE •••••• 

LBT =$R1,Z'3030' 

STR SR1,<STATUS 
STR SR2,<DEVASN 
STB S84,<STOR84 
LAB $B4,<ERRMSG 
LNJ SB5,<ZlOREQ 
LOB SB4,<STORB4 
JMP SB4 

RESV 1,0 

XOEFS AND XLOCS 

MA K E 1 T TV PE ABL E 

THROw STATu SIN BJ fF ER 
THROW DEv ICE NUMBER IN SAME 
HOLD RETURN ADDRESS 
AND SETUP FOR 
THE ERROR TYPEOUT 
LOAD RETURN ADO RESS IN B4 
GO B AC K AND R E - 1 S SU E OR D E R 

B4 HOLD WORD 

XDEF OUTSTR,lNSTRT,SRDCST 

XLOC ZI TYPR,ZXRGST,ZIOREQ,ZXTERM 
END BR OCST 



CON~IGURATION COMMANDS FOR SAMPLE COMMUNICATIONS APPLICATION 

The following commands are used to configure the sample communications 

application. The absence of a TSA command indicates that default values were 

taken. 

LACT CLMCOMM:COMM 
ELACT 
SYS 16,22,SAF 
OIM 5,11 
COMM 7 
TTY 4,10,X'FDOO'"O 
ADMOD PROGFILE:ZXEX03,X'0400' 
ADMOD LINKFILE:COM200,X'0480' 
CLOCK ,50 
DATE '760622','1200' 
DEVICE KSR,O,6,X!0500' 
DEVICE LPT,2,8,x'1380' 
DEVICE CDR,3,9,X'1300' 
TASK GLUE,6,12,YACT 
QUIT HLT,MAP 

LINK COMMANDS FOR SA¥~LE COMMUNICATIONS PROGRAM 

The following commands are used to produce the load module COM200 prior to 

invoking CLM to configure an application using this program: 

SAMPLE COMMUNICATIONS PROGRM1 

NAME COM200 
LINK C0r.1200 
MAP 
EDEF GLUE 
QUIT 

The following pages show a documented listing of the COM200 pagram. 

** C(H/20 0 
**START 
**L.O:J OflOO 

**H!GH 024h 
**CUPf-H:.f\JT O?4t-

**F.XT f'lEFS 
P ZhCOfv1 [.' {'dion 
p n';RFL rlOOO 

* C(,r-..'200 0000 
GLliF OOLIO 

**U~~UEF 
* r: 0 " 2 n 0 () (' !) (: 

Z .T n p f: (~ (. 1 q 1 
ZXCTOIi 011!: 
IxC~GR 0127 

1 f>l'G U~j!iE F 

C-7 AU49 



CClM;?OO 7h062? Lb ~S~EURLE~-n?oo COMM TEST PR0GRAM PAr.r.: onOI 

0(10001 TYTlE r: nM 200,'7t.Ot.22' COMM TEST PROGRAM 
onooo? • • 00000, .FltTERNALS 
OO(\OOLJ * 
00000<; XLOC Ztl"lRFfJ INPUT-OUTPUT DRIVER 
OOOOOfo, Xll1C ZXCT(')() 
1'100007 XLOC l)tCMGP CLOCK MANAGER 
(100008 l(U'IC 
000009 l(f)EF r.LIJE 

OOLJO 
000010 • • 
000011 * • *rnPR:'LARE'U·_f) I"lISPLACEMHITS 
000012 • 
000013 00110 llRL~JK EI"JIJ 0 LINK 
n('OOll1 000] lIRCT1 Enu lTRLNK+'AF CONTROL WORD I 
01'(11'15 001'2 lIRCT2 EQU lIRCTt+1 CONTROL WOR" 2 
000016 1'1003 ZTR8AD F~lJ 7JRCT?+l BIIFFER ADDRESS 
000017 001'1I Z TfHPIr. EQU ZIRRAf)+~AF RANGE 
000018 ono,) llRnvs E'QU 7tRRNG+t DEVICE SPEC IFIC 
0(lOO19 0006 zt RRSR HIt) ZIRDVS+ 1 RESIDUAL RANGE 
01'0020 0007 ZIPST1 Er~u ZIRRSR+t SOFT~ARF STATUS WORD 
000021 * * 
(1)1'022 * • ·IORR:CO~SOLE JIIIPUh * 1'00023 * • 0OO0211 00(1) KSRIN EQU $ 
oOOO2t; 0000 0000 RESV 'AF,O 
1'1000?b (lOl)l 0001 OC X' 0 1 ' WAIT TILL 1/0 COMPLETE 

() 000027 0002 OOr)? OC x' 02' READ 
I 00002~ 0003 01Ai'I DC <KSRfHIF BUFFER AI')I)RESS 

ex:> 000029 0001l 0()1'16 I"lC b RANGE IN AVTES 
000030 0005 0030 F)C X'30' cn~, LINE FEED, &ECHO 
000031 OOO~ 1'00(1 I')C X, 0' RFSIDUAL RANGE 
000032 0007 0000 DC )(' 0' STATUS 
000033 • 
00003LJ * *t('lRR:Cf'l~SOLE OUTPUT 
000035 * • 
01'1003f1 00 c' ~ KSRnUT EQU $ 
000037 0008 1'000 RESV ~AF,O 

00003f1 OOOQ 0001 DC )(' 01' WAIT 
0OO03~ 01'10A O()tJl OC l('1I1 ' WRITE" 
000()1l0 OOI)A ope DC <LPRlIF 1 RUFFER 
000041 OOOC OOILJ I')C 20 RAIIIGE IN BYTES 
OOOOIl? OOOf) 00'0 O( x'Jo' CIR, l.F., I!. ECHO 
00004' (lOOE 0000 DC l(' 0' 
()flOOIl4 on()F Oflno I')C l(' 0' 
OO()OQCj * OOOOLJ6 * • *ynRB:CDNNECT CO~MUNrCATIONS CONSOLE. 
0000117 * • 
OOOOLJI'I 0010 CDNC(lM E~U " I)OOOLJQ DOlO 0000 RESV 'AF,O 
01'10050 0011 0001 DC l(' 01' WAIT TILL 1/0 COMPLETE 
000051 0012 04(1.\ nc X'40A' CONNECT 
000052 0013 0(1)0 RESV ~AF,o 

011 00153 OOILJ 00 0 1 DC t RANGE=1 WORO 
00005LJ 0(,1 r; 0030 I')C X' 30' 
000055 001~ 000'1 DC X, 0' 

~ 
OI'1(lOt;b 0017 00 11 I) DC X' 0' 

c: 000057 • • 
~ 00 (10t;~ * • *JnRA~nISCONNE'CT COM~UNICATIONS CONSOLE. 
\0 0()OOr;9 • * 



000060 0008 0000 C RD l:l LK RESV 1,C CARD READER 
000061 OOOC 0001 DC X' 01' 1/0 
000062 0000 0202 DC x'02U2' CONTROL 
000063 DaDE 004 C DC <BUffER BLO CK 
000064 OOOF 0050 DC 80 
000065 0010 0000 RE S V 3,0 
000066 
000067 0013 0000 1 TV BLK RESV 1,0 TT V (IN PU T ) 
000068 0014 0001 DC X' 01' 110 
000069 0015 0342 DC X' 0342 ' C ONTR OL 
000070 0016 0048 DC <8UFfEP BLOCK 
000071 0017 0050 DC 80 
000072 0018 0000 RESV 3,0 
000073 
000074 0018 0000 DSK 8 Ll RESV 1,0 DISKETTE I NP UT 
000075 OOH 0021 DC x' 0021 ' 110 
000076 0010 0402 DC X • 0402 • CONTROL 
000077 001E 004 C DC <BUFFER !:IL OCK 
000078 001F 0050 DC 80 
000079 0020 0000 RESV 3,0 
000080 
000081 0023 0000 o SKB LO RESV 1, a DISKETTE OUT PUT 
000082 0024 0021 DC X· 0021 • 110 
000083 0025 0801 DC x' 0801 • CONTROL 
000084 0026 004C DC <BUffER BLOCK 
000085 0027 0050 DC 80 
000086 0028 0000 RES V 3,0 
000087 
000088 002B 0000 P RT B lK RESV 1,0 pRINTt:R 
000089 002C 0001 DC X' 01' 1/0 

() 000090 0020 0541 DC X· 0541 ' CON TRO L 

I 000091 002E 004B DC <BUFFEP elO CK 
\0 000092 002F 0050 DC 80 

000093 0030 0000 RESv 3,0 
000094 
000095 0033 0000 TTYO lH RES V 1,0 TTY <OUTPUT> 
000096 0034 0001 DC X' 01' 1/0 
000097 0035 0941 DC X' 0941 ' CONTROL 
000098 0036 004B DC <BUFfEP BLOCK 
000099 0037 0050 DC 80 
000100 0038 0000 RES V 3,0 
000101 
000102 0038 0000 A SR 1 NP RES V 1,0 ASR (INPUT) 
000103 003C 0001 DC x' 01' 1/0 
000104 0030 OA02 DC x' OA02' CON TROL 
000105 003E 004 C DC <BUFFER BLOCK 
000106 003F 0050 DC 80 
000107 0040 0044 DC X • 0044 • 
000108 0041 0000 RES V 2,0 
000109 
000110 0043 0000 A SR OuT RESV 1,0 ASR (OUTPUT) 
000111 0044 0001 DC x' 01' 1/0 
000112 0045 OBO 1 ~C x' 0801 ' CONlfROl 
00011 3 0046 OOH DC <BUFFER 8L OCK 
000114 0047 0050 DC 80 
000115 0048 0044 DC X' 0044 • 
000116 0049 0000 RESV 2,0 
000117 
000.118 0048 0041 8 UF F EP DC X' 0041 • CARRIAGE CONTROL CHARACTER PRINT + SPACE 
000119 004C 8 UF FER RESV 80 

~ 
~ 
\0 



COM2!)O 7hOh2? L~ 'S~EM~LER-n2no cn~M TEST PRnr.RAM PAGE 0003 

000' 2 r, OOIJO CRf'(t ootO GLllf UlS $~IJ, <COtJC('lt-l GFT CONNECT IORB 
0001?\ 00£12 03P.0 0000 LNJ $RC;,<ZIf'1RFQ AND CONNFCT COMMUNICATIONS CONSOLE 
OOOt2? OOIJ4 F380 00,,7 LNJ $R7,<CLFARR CLEAR MESSAGE RUFFER 
000123 OOIJt> B820 023b (JltERY Lf'I~ $R',<(1UFS.$R2 GET MESSAGE TEXT 
OOOt2L1 OO£l~ F.lF?O Otll7 STR $R3,<LPf.\IIF2.$R2 AND STORE ADDRESS 
000125 nOIJA ('EO! AI')V $P?,1 ADD 1 TO COIJNTER 
000126 OOLJR 2(104 CMV $R2,LI ~ CHARACTERS? 
000127 004C Oq.'\l FF"Fq RNE QUERY IF NOT, GET MORE 
n001?8 OOIJE RAOO 02tC LOR $R3,<AELLS GET BELLS 
00Ol?Q 0050 flF20 OtA7 STR $R3, <l.PRlJF2. U~2 AND STORE IN RUFFER 
000130 00S2 ('~P.O 0008 LAB $R4,<I<SROUT 
000131 0054 £ICOQ LDV ~R4,q 

000132 On5':i CFIJIJ 0004 STR $P4,$FltI.ZJRRNG 
000133 0057 D3PO 0000 " L"JJ $RCj,<Zl('lREQ PRINT MESSAGE ON KSR 
00013t1 Oosq OF81 0007 B KPfAI) AND THEN GO TO REAO KS 
0001.3'; on5A C880 0018 DISCOl\! LAR $f.\I.I,<I'IISCOM GET OISCONNECT IORS 
00013h OOS!) D3PO 0000 LNJ $B5,<ZTOREQ DISCONNECT COMM CONSOLE 
000137 OQ5F OFSI 01U H FINIS 
00013~ nObl CRBO 0000 KREAr. LAR 'liRIJ,<KSRIN LOAD KSR INPUT IORB 
QOO13q 0063 03~0 0000 LNJ ~BS,<ZIOREQ READ COMMAND 
000140 00b5 OF81 0050 B r.ETCH 
0001"1 * * 
0001"2 * 1IERPO~ ROllT! NES 
0001t13 11 11 

0OO14IJ 00h7 CF./:to OOOS CLEARR LAR $RLJ,<I<SPOUT GET lORa 
onOlt1C:; OObQ AR~O OIAb LAB $A2, <LPRltF t GET CONTROL RYTE 
0001"" OObR AH4 0003 STA $E\2,'lif'\4.ZJRAAO AND STORE ADDRESS 

n OOOtl.l7 006D 87';2 CL ='liR2 CLEAR COUNTER 
I 00011.18 1l0hE fl8800147 LlIR $A3,<LPE\UF2 GET LP8UF2 

!-oJ OOOltlQ 0070 2C21J LDV $R2,36 SET COUNTER TO 3b 
0 

000151' 0071 D380 011.1E LNJ $A5,<SPACJT GO CLEAR BUFFER 
0001';1 0073 87';2 CL :'liR? CLEAR COUNTER AGAIN 
000152 007L1 8387 JMP $A7 AND GO BACK WHERE YOU CAME FROM 
000153 * * 
000154 0075 IJCOF ERRMSG LDV ~R4,t5 

000155 007b CF41.1 OOOtl STR $RI.I, ~AI.I. ZIRRNG 
000156 0078 BA?O 0210 LOR 'liR3,<t-ISG1.$R2 GET ~ESSAGE TEXT 
000157 007A AF20 OtA7 STR $R3,<LPAUF2.$R2 AND STORE ADDRESS 
000158 007C n01 ADV $R2, I ADD 1 TO COUNTER 
0001SQ 0070 2D07 CMV 'liR2,7 11.1 CHARACTERS? 
0001bO 007E OQ81 FFFb BillE ERR,-,sr; IF NOT, GET MORE TEXT 
000161 onBO D3M 0000 X LNJ $A5, <ZJ OREQ ELSE,GO PRINT IT 
000162 0082 nAO 00b7 LNJ 'liA7,<CLEARP CLEAR 8UFFER AGAIN 
000163 OO~4 8752 CL :$R? 
0001btl 0085 OF81 FFCO B QUERY 
000165 ... * 
0001b6 0087 I.ICOR DONt-AES LDV $RLI,11 
0001b7 0088 CF41.i OOOIJ STR $RIJ,$R4.ZIRRIIIG 
000168 on8A A820 0224 LI)R $R3,<~SG2.$R2 GET MESSAGE TEXT 
00016'1 008C 8F20 01A7 STR $R3,<LPAUF2.$R2 ANO STORE ADDRESS 
000170 OOSE 2EOI AI)V $R2,1 ADD 1 TO COUNTER 
000171 008F (1)0" CMV $R2,tI 8 CHARACTERS? 
000172 00'10 OQf\1 FFF6 R"lE DnNt.AF~ JF NOT, GET ~ORE TEXT 
000173 00Q2 8ROO 021C LOQ $R3,<AELLS 
00017" 00Q4 8F20 01A7 STR $R3,<LPAUF2.$R2 
000175 00Q6 r.'l3AO 0000 )( LNJ SR5, <ZI(lREQ GO PRINT MESSAGE 

i; 00017b 00Q8 OF81 HC? f\ D I sen", AND THEN GO DISCONNECT COMM CONSOLE 
000177 11 11 

,a::.. 000178 OOQA I.ICOI) DEVERR L{')V $RtI,t3 
\0 0001 H OO'1B CF"tI OOOIJ STP $P4,$A il.ZIRRNG 



Cll'''20() 7hOh2i> L6 hSSfMRLE~-()?OO rn~~ TEST PRnGRAM PAGE oooa 

/)n01E10 uoqr:- t~R?O 02?fl. LnR "'R3,<MSl~3.$R? 

000181 O('lQF RF?('I 01A7 STR $R',<LPPUF?$I"2 STORE AODRESS OF MESSAGE 
()(lOP<? OOAI ?flil Anv 'I',R2, t ADD 1 TO COUNTER 
000llQ 0(1/\ 2 ?[H) /- C~V "'(,(2,6 12 CHARACTERS? 
() (1!) 1 ~/J (lOA '3 OQP.l FFFh BNF PEVfPR 1~ NOT GET MORE Tf~T 

O(1011'1C; OOAt:; IY~A() noo~ L'-.!J 'liP.C;,<ZTORFQ OTHERWISE, GO PRI~IT IT 
0001Pl- oOh7 hiS? CL =$1"2 
00011'17 (IOf,f\ OF!'1 FFQ[) R qUERY 
O('l()Ifl.P * * 
0OOl1'1Q (lI'lAA F'~!) 0('167 T\l.IGl LNJ $R7,<ClFARR 
0001QO OOIlC Or~q FFI"IA R nmrMF5 
000191 or) A F' n80 nOh7 THG2 L",I,J 'liR7,<CLFARR 
0()Ot9? OORO OFPt FFCLJ B FRR~SG 

0001Q3 O()8,? ~ V,I" OOh7 TWIG3 L"IJ $R7,<CLEARR 
('I ('I 0 1 '1IJ nOW/J OFfll rFft; R nEVERR 
00019<; * * 
OOOlQh * * *RfA!'l C(lNSOLF H'PlIT* .,. 
(lO('llQ7 * 
0001Q8 OORe. H~O(I 01A2 Gf Tr. H LOR $R3,<KSR8UF GET 1ST TWO CHARACTERS 
000199 001:'1< HqPO OlF7 CI"R $R3, <TE Rt>'1 
OOO?O!) OORA 0901 FFfF BE TWIG1 
000?01 OOrlC P900 0231) CMR $R3,<CH;? COMPARE TO CA 
OOO;?02 (lORE 09RI FFfF FUjI: TwIG? WRONG COMMAND 
000;>0' OOCO '"'POO 01"3 LI'lR ~P3,<KSRAlJF+1 GET 2ND TWO CHARACTERS 
00020IJ OOCi:! R900 0?3F. CMR $R3,<CHli COMPARE TO RO 
000205 OOCIJ (iQRl FFt q A~)E TWTG? WRONG COMMAND 
OOO?Oh. (\OCh A~on 01A/J Lt')R $R3,<KSP~UF+? GET NE~T TWO CHARACTERS 

() 000;?O7 (lOCR t'iQClO 023F Ct>'1R $R3,<CHfl COMPARE TO IN 
I 00020R OOCA OQ/:lt FFD ANI: TWIG? WRONG COMMAND 

I-' OOO;?09 OOCC OF R t 0001 A CA~DRI"J 
I-' 000210 * * 

OOO?!1 * * *Rf:AO CARDS 
000211> * * 000213 OOCF. Ck/o\(l flO'O CARf'RD LA~ $AlI,<Cf)PtN GET IORS 
00021IJ 00(')0 n31'<0 0000 X LNJ $85, <ZIORFQ READ A CARD 
000215 OOD2 8f<OO 01eF If)P $R3, <CDRfHlF LOAD IT IN 
OOO?!h OOOtJ t:lQ70 lD20 CMR $P3,=Z'lD20' COMPARE TO EOF 
OOO?17 0006 0901 OOQO BE COt>'1(lUl IF EOF, GO TO COMM CONSOLE 
00021P OOOp. P752 CL =$R2 
000(119 oone; A7C;tJ CL =$R/J 
000220 OODA 190 I 0003 REZ $Rl,CHE'CK IF NO ERROR, GO TO CHECK 
OOO??t OODC OF P.d FFI"J5 B TWIG3 OTHERWISE, DEVICE ERROR 
OOO?22 OODE R2AO 01CF CHECK LLH $R3,<CDRAlIF.SR2 
000223 OOEO 2EOI ADV $R2,t 
OO022/J OOEl R1FO 2000 C~H $R3,=Z';?O' 
00022Cj (\0F3 OQEll 0006 RNE COUNT 
000226 00E5 2n50 CMV $R2,RO 
000227 00E6 0901 0009 AE COMOUT 
000228 OOE~ OF81 FFF5 A CHECK 
0002211 o oE A CAS2 COUNT LOR $R/J,=SRj? 
000230 OOEP 2[)SO CMV $R2,80 
000231 oo£e 0901 0003 BE COMQUT 
000232 OOEF OF81 FFEF 8 CHECK 
000233 * * 000234 * * *SEND CARO INPUT TO COMMUNICATIONS DEVICE. 
000235 * * 000236 OOFO CA80 0028 COMOUT LAB $B4,<COI-1CO GET 10RS 

~ 000237 00F2 AA80 OlAb LAB $B2,<LPBUFt GET CONTROL BYTE 
~ 000238 OOF/J AFCIJ 0003 STB SB2,SF.\a.ZIRRAD AND STORE ADDRESS 
1.0 00023Q OOF6 /JEOl ADV SR4,1 



COM200 760622 L6 ASSEMBLER-0200 COMM TE~T PROGRAM PAGE 0005 

000240 OOF7 CF44 0004 STR $R4,$A4.ZIRRNG 
000241 OOFQ 8752 CL ::liR2 CLEAR R2 COUNTER TO ZERO 
00021.12 OOFA BA20 OICF COMMO LDR SR3,<CDRAUF.$R2 GET TWO CHARACTERS FROM COR8UF 
000243 OOFC BF20 01A7 STR !rtR3,<LPBUF2.!R2 AND STORE IN LPBUF2 
000244 OOH 2EOI AD\, $R2,1 ADD 1 TO COUNTER 
000245 O(lFF 2D2L1 CMV :liR2,36 COMPARE TO 36 
000246 0100 OQ81 FFFQ BNE co~"'n IF NOT 36,GET MORE 
000247 0102 0380 0000 )( LNJ :liBS,<ZIOREQ OTHERWISf SEND TO COM'" DEVICE 
000248 0104 lQ81 FFAD AIIIEZ !rtRl,TwIG3 
00024Q (l10t:> F3C 0 0003 LNJ ~B7,GETIMf 
000250 0108 OF81 FFC5 H CARDRD 
0(10251 • '" 000252 • '" .GET DATE AND TIME AND PRINT IT* 
000253 '" 000254 (\1(\A CB80 0000 )( GET IMF.. LA8 ~A4,<Z)(CTOD GET DATE AND TIME 
000255 OIOC 8752 CL :!liR2 
000C'56 010D ~880 onE LAR ~A3,<TI"'fR 
000(157 OIOF ?COEl. LDV !liR2,P, 
000258 0110 [)3P,(I OlLIE LNJ ~R5,<SPACIT 

00025Q 0112 8F~" RSTR $R4,=Z'IFOO' RESTORE IN R-REGISTERS 3-7 
0113 tFOO 

000260 (1114 8FI.IO 011 Q SAVE TI"'ER,='Z'lFOO' AND SAVE IN Tllo1ER 
0116 IFOO 

000261 0117 1 ((HI LDV !liRI , =1I PUT u IN Rl 
000?6? [) II" ( RAIl onE LAA !liR4,<TIW,EP GET AOOR OF DATE 
O(lOC'63 o II A In80 0000 )( l~IJ 'r-Rr:;,<Z)(C~~GR CONVERT DATF TO ASCII 
00021'>tl n,l C 1(03 UlV $~1,=3 PUT 3 IN Rl 

() 000265 o t 1 D (~P0 0000 LAA 'r-RlI,<])(CTO[1 
I 0(10266 01 t F I3F@.u ~ST~ 'r-RU,=Z'tFOO' 

I-' 0120 IFOO I'.) 
OO(l?67 11121 f'F40 OlOF SAVF. TIMfP+3,=Z'lFOO' 

n123 1FOO 
0OO2b8 01?a CRPO 0231 LAP. $R4,<TJ~FR+3 GET AnDR OF TIME 
OnOi?6Q (11£16 fj3PO 0000 L~J $R5,<lXC~GP CONVERT TIME TO ASCII 
000270 '" (100;:>71 nl~P Cb~O ninA PRTf'.Il LAP. $Ra,<l.PTOUT GET IORS 
onon? 012A ARl<O OlAf: LAR $R2,<LPRl.IFI GET CONTROL RYTF 
000273 012C AF Cli 0(103 5TR 'f:R2,$R4.7IR8AJ") STORE ADDR 
ooona 1< 

ooons 01?E P7~2 7APP CL =$R2 SET R2 Tn 0 
OOO?71:'> o 12F' RPI-IO 01A7 I,HI $R3,<LPF\UF2 GET LPT BUFFER 
000£177 (\ 131 2C211 L£)V 'bR?,=3t- PIIT 36 IN R2 
0OO27 F1 01V f)3P0 (\\iJE LNJ ~R5,<SPArlT CLEAR 8UFFER TO SPACES 
00027Q 
nOOi?p.{\ n 1 ; lJ r:~/JO OloC PRT~2 Lf)R "Ra,~LAS,", GET A SLASH 
OOO?Pl 01310, Ef<5/j LI')R !l>R6, =~~IJ ONE FOR R6 TOO 
000282 n137 I:'t'O(' O??E LI)R "R3,<TJMEP LOAD YF.: AR IN R3 
OO(\;?e.~ 013Q i'F(<' OOF5 PSTR TP1Er:I+1,=Z'0500' LOAD REST OF nATE IN R5 AND R7 

0138 n'iOO 
(1 (I 02P.lj 013C FFLl(\ nOhA C:;AVF LPfiIJF2,=1'IFOO' AND SAVE R3-P7 INTn LPF\UF2 

01.3F IFno 
0(11121'.5 n t.3F C~Ll(\ nl0? LOR ~RLI,CnL()~1 PIIT A COLON IN R4 
00021'.6 (11 u , f;.\'\Ll ll)R ':~h,:~PiJ AND ALSO tN R6 
0002P.7 ntLl2 8FCO OOFF RST~ T P~ER+~, =7 '750(1' ~ET TIME ANn PUT r "I OTHER R-REGISTERS 

(,!lJtJ 7";110 

00021'.8 nlLlC\ I-iF/j(\ on67 ~ A VF.: LPRI.IFC'+h, =7'7F 00' ANn SAVE INTO LPBUF2 

:t:o' o llJ 7 7FOO 

c::: onO?RQ OlliP 1131"(; 0000 L"'J q:R5,<7.T(Wfr;J GO P~INT IT 
~ on02QO 011Jr. 1 QO I O(lOfl lin ';Rl,F'Rl~T IF STATUS OK, GO ON 
~ flOO?91 (\ I iJC' nFPI FFt-.r:; 8 Tiirr.~ OTHERWISE', OfVICF ERROR 



CO""~OO 7601:>?? L6 ASS~~RLEw-n200 cnM~' TF ST PRnr:;PA~1 PAr-r 0006 

00O;?9? * 
000293 (J11lf: SPACrr f (~I) '!; 

OOO,?QIl C I liE. FI'on O?40 LDR $Rt-,<RLAf\IKS 
nOO,?Q'; 0150 FF~~ u STP $Ph,f~~.-~R2 

000,::>96 ()1<;1 ?9FF RNEZ $R?>-$A 
000?97 111';2 ~3P" .Jr~p '!;Ht; 

000291' * 
000299 * * *P~I~T CARO I~PUT 

000300 * 000301 0153 CF.F«· 0031'1 PRp:r tAR ~R4,<LPT('IliT GET IORS 
000302 0155 Af'lP(l OIAh LAR $R2,<LPAliFI GET CONTROL BYTf VALUE 
000303 0157 AFC/J 0003 STR $R?,$R4.ZIRRAO PLACE IT I N RUFFER 
ooo~OtJ 0159 1'<7<;2 CL :$R? 
000305 015A 81:120 olCF PRINT! L!)R "'R3,<COPRUF.~R2 GET 2 CHARACS FROM CORRUF 
OOO~O6 01"iC HF20 nlA7 STR $P3,<LPBUF?'f.R2 STORE IN LPBUF2 
OOO~O7 015f ?FOI AOV $P?, ! AnD 1 TO COUNTE'R 
000308 OIC;F 2f)?4 CMV $R2,36 72 CHARACTE'RS? 
on0309 01hO (191',1 FFF9 A~JF PRINTI IF NOT, GET MORE 
000310 Ol!:'>';> 1)3P0 0000 )( L r-JJ $AC;,<71(lRfG PRINT A LINE 
000311 01"'4 191',1 FFtJli 8"JEl JR1.HvYG3 
00031? nlbb f\3P7 .J""P $~7 

000313 * 000314 * * * COM M lJ ~I J C A TI 0 til S CON SOL E 1/0* 
0(10315 * 000316 0167 RR",n 01>'17 rOM(JUI LAR ~~3,<LPRUF2 

000317 016 Q 1:1752 CL =$R2 
() 00031f\ nl6A 2Ci?1l Lr)V $R2,3b 
I 00031Q 016R D_-H~() Olllf LNJ $A':>,<SPACJT CLEAR BUFFER TO SPACES 

I-' 000320 o 161~ C81:\0 0028 LA~ $R4,<COfylCO GET IORB w 000321 01hF A8~0 OIAe LAA $R2,<LPBUFl GET CONTROL BVTE 
000322 0171 AFC4 OOO~ STR $A2,$B4.7IRBAO AND STORE ADDRESS 
0003?3 0173 4C07 LnV $R4,7 
000321.1 0174 CFUIl 0004 STR $R4,$~4.ZIRR~JG 

000325 o 17h 8752 CL =$R2 CLEAR COUNTER 
00032h 0177 R~20 023A COMQUE LOR $R3,<QUES2.$R2 
000327 0179 FlF20 OtA7 STR $R3,<LPBUF2.$R? STORE MESSAGE IN OUTPUT BUFFER 
000328 0178 ?EOl ADV $R2,1 ADD 1 TO COUNTER 
00032Q 017C 2D03 CMV $R2,3 6 CHARACTERS? 
000330 017D 0981 FFF9 BNE COMQLJE IF NOT, READ SOME MORE 
000331 017F CRflO 0028 LAB $A4.<C(lMCO 
000332 0181 C38() 0000 LNJ ~A5,<ZIOREQ OTHERWISE, SEND MESSAGE 
000333 0183 lQOI OOOA BEZ $Rl,COMIN IF STATUS OK, GO TO READ INPUT 
000334 0185 0F81 FF2C 13 TWIG3 ELSE, DEVICE ERROR 
000335 0187 1;l900 01F7 END1T CMR $R3, <TERM 
00033b OlP,Q OQ81 0009 ANE COM"'I 
000337 018B 8752 CL =$R2 
000338 01ac OF81 FERQ A QUERY 
000339 018E CA80 0020 COMIN LAB ~A4,<COMCI GET IORB 
000340 0190 D31:1'O 0000 )( LNJ $A5,<ZIOREQ READ COMM CONSOLE INPUT 
000341 0lQ2 8752 CL =$R2 CLEAR COUNTER TO ZERO 
0003112 0193 A820 01FS COMMJ LOR $R3,<COMf\FR.SR2 GET TWO CHARACTERS 
0003113 0195 BF20 OICF STR $R3,<CDRBUF.$R2 AND STORE IN COR8UF 
0003411 01117 2E'01 AOV $R2,1 1100 1 TO COUNTER 
0003115 0198 2001 CMV $R2,1 COMPARE TO 1 
000346 0199 0901 FHO BE ENDJT GO CHECK IF THEY ARE TC 
0003117 0198 202LJ CIo1V SR2,36 12 CHARACTERS? 

~ 0003118 OIQC OQ81 FFF6 BNE COMM! iF NOT, GET MORE 
c:: 0003l1Q 019E nco FF6B LNJ $R7, GE'TI Mf ELSE,GO GET THE TIME 
01::0. 000350 OIAO OF81 FFEO B COMIN GO READ MORE FROM COMM CONSOLE 
\0 000351 * * 



() 
I 

I--' 
~ 

~ 
c::: 
~ 
\0 

COllll200 760""22 

000352 
000353 
000351.1 (lIA? 
000'55 OIAI-) 
OOOV;t'> 0lA7 
000357 OICF 
000358 01F7 
000359 01FP 
000360 021e 
000361 0210 

0211=. 
021F 
0220 
0221 
02?2 
0223 

000362 022LJ 
1"12;?"i 
021'1-, 
o?n 

000'63 022$1 
0229 
O?2A 
022P 
onc 
022C' 

OOO'bLl 0?2E. 
000365 0231:-

01'37 
0238 
023q 

000366 O?3A 
023H 
o23C 

000367 0230 
00036P. 023F 
0003bQ 023F 
000370 0240 
000371 02£11 
oon:.H2 021.1? 
000373 
000371.1 
000375 
000376 O?43 
000377 02 1J '; 
0OO3H 02£Jft 

0000 ERR COUfI;T 

1.6 ASSE""t:1LE.R-02011 

2(1£11 

54£1'3 

0707 
£I3tJF 
IH)LJP 

LlltJF 
IJLJ20 
£I';~2 

524F 
r;2?1 
LlIIJC 
IJC?O 
IJ£lLlF 
4ELl'S 
4L1L15 
5bLlq 
£I3LJ5 
20i.l5 
52';2 
LlF52 

Ll3IJF 
lID 4 1'1 
IJIIJF 
Ll43A 
4QLlE. 
C;O"iS 
5tJ3t. 
Ll31J\ 
';I'LILI 
IJQIJE 
2020 
?F20 
3A?O 

OFOt FFFq 

0000 

CO~"" T~ST pRnG~A~ PAGF OCl07 

* * *DEFINITIONS ANn f~UATER 

KSRRUF Rf.SV u 
LPRUFI TEX T , A' 
LPA.UF2 ~r:SV UO 
C~R8UF RERV UO 
TERM TfXT 'TC' 
r.OMRFR RESV 36 
~FLLS TEXT 1'0707' 
~SGl T E lCT 'cn"'~'A~!D F PRQR I' 

"'SG2 TEXT 'ALL rHl~!f' 

MSr,3 TFXT 'nEVJCF ERROR' 

TIMER RI::SV Po 

r~UtS TEXT 'cn"'MAN!'I:' 

QIIF.S2 TEn ' TNPIIT: ' 

CH2 TEn 'CA' 
CH£I TEXT 'RD' 
CH6 TO T ' I ~I' 
RLAI\!KS nc X'?020' 
SLASH TEXT ' I 

, 
COLON TOT ' : , 
'/I * 
* * 
* * 
FJl-IIS r~ap Cl12 

MLT 
EfIIO cn"'20(l 



ACTION 
CLM ACTION DURING LOADING, 3-13 
ELACT COMMAND (END LOAD COMMAND), 

A-13 
LACT COMMAND (LOAD ACTION), A-17 

ACTIVATE 
ACTIVATE LEVEL COMMAND (AL), 4-5 

ADDRESS 
ASSE~rnLY LANGUAGE START ADDRESS 

DEFINITION, 3-17 
COBOL LANGUAGE START ADDRESS 

DEFINITION, 3-18 
ELOC COMMAND (DEFINE ADDRESS 

SYMBOL), A-14 
FORTRAN LANGUAGE START ADDRESS 

DEFINITION, 3-17 

ADMOD 

AL 

AR 

ADMOD COMMAND (ADD LOAD MODULE), 
A-4 

ACTIVATE LEVEL COMMAND (AL), 4-5 

ALL REGISTERS COMMAND (AR) , 4-5 

AREA (S) 
DATA STRUCTURE AREAS, 2-19 
ESTABLISHING OVERLAY AREAS, 2-21 
TSA COMMAND (TRAP SAVE AREA 

DEFINITION), A-23 

ASSEMBLY 
ASSEMBLY LANGUAGE START ADDRESS 

DEFINITION, 3-17 

ASSIGN 
ASSIGN COMMAND (AS), 4-5 

ATFILE 
ATFILE COMMAND (ATTACH FILE), A-4 

ATLRN 
ATLRN COMMAND (ATTACH LRN), A-5 

ATTACH 

BES 

ATFILE COM¥~ND (ATTACH FILE), A-4 
ATLRN COMMAND (ATTACH LRN), A-5 

BES SOFTWARE FOR APPLICATION 
DEVELOPMENT (TBL) , 2-3 

BES SOFTWARE FOR APPLICATION 
EXECUTION (TBL), 2-2 

OVERVIEW OF BES SOFTWARE SERVICES, 
2-1 

BINARY 
BINARY SYNCHRONOUS COMMUNICATIONS 

(BSC 2780),2-29 

INDEX 

BOOTSTRAP 
BOOTSTRAP RECORD FOR NONSTOP CLM 

LOADING (TBL), 3-8 

BREAKPOINT(S) 

BSC 

LIST ALL BREAKPOINTS COMMAND (L*), 
4-9 

LIST BREAKPOINT COMMAND (LN), 4-10 
SET BREAKPOINT COMMAND (SN), 4-11 

BINARY SYNCHRONOUS COMMUNICATIONS 
(BSC 2780), 2-29 

BSC 2780 COMl~ND, A-6 

BUFFER 
FILE MANAGER BUFFER HANDLING, 2-10 
SELECTING FILE AND BUFFER HANAGEMENT 

TECHNIQUES, 2-8 

BUFFERED 
BUFFERED READ OPERATIONS, 2-10 
BUFFERED WRITE OPERATIONS, 2-11 

I
BUFSPACE 

BUFSPACE COMMAND (POOL DEFINITIONS) , 
A-7 

BUILDING 
BUILDING, 3-1 
BUILDING A CLM COMMAND FILE, 3-12 
BUILDING AN ONLINE APPLICATION -

PROCESS DIAGRAM (FIG), 3-2 
PLANNING AND BUILDING WITH EXECUTIVE 

OBJECT MODULES, B-1 

CALCULATIONS 

CH 

SIZE CALCULATIONS FOR SYSTEM DATA 
STRUCTURES, 2-6 

CHANGE MEMORY COMMAND (CH), 4-6 

CLEAR 
CLEAR COMMAND (Cn), 4-6 
CLEAR COMMAND (C*), 4-5 

CLM 

i-l 

BOOTSTRAP RECORD FOR NONSTOP CLM 
LOADING (TBL), 3-8 

BUILDING A CLM COMMAND FILE, 3-12 
CLM ACTION DURING LOADING, 3-13 
CLM FUNCTIONAL GROUPS COMPONENT 

MODULES AND RELATED COMMANDS (TBL), 
3-7 

CLM LOAD MODULE ORDER FOR PAPER TAPE 
(TBL), 3-11 

EFFECTS OF CLM PARAMETERS ON MEMORY 
USAGE (TBL), 2-5 

HOW TO INCLUDE OPTIONAL CLM 
EXTENSIONS, 3-6 

INFORMATION FOR SYSTEM DATA 
STRUCTURES FROM CLM COMMANDS, 2-4 

AU49 



CLM (CONT) 
INPUT DEVICES FOR CLM, A-3 
PREPARING TO USE CLM, 3-1 
SU!-1MARY OF CLM COIv'JMANDS AND COr·'ll·1AND 

FUNCTIONS (TBL), A-I 

CLOCK 

Cn 

CLOCK COMMAND (SYSTEM CLOCK), A-8 
REAL-TIME CLOCK (RTC), 4-17 

CLEAR COMMAND (Cn), 4-6 

COBOL 
COBOL LANGUAGE START ADDRESS 

DEFINITION, 3-18 

CODE 
LINKING ORDER FOR CODE TEXT, 3-4 

CODING 
OVERLAY CODING CONVENTIONS, 2-21 

COMM 
COMM (COMMUNICATIONS SYSTEM 

COMMAND), A-9 

COMMAND 
ACTIVATE LEVEL COMMAND (AL), 4-5 
ADMOD COMMAND (ADD LOAD MODULE), 

A-4 
ALL REGISTERS COMMAND (AR), 4-5 
ASSIGN COMMAND (AS), 4-5 
ATFILE COMMAND (ATTACH FILE), A-4 
ATLRN COMMAND (ATTACH LRN), A-S 
BSC 2780 COMMAND, A-6 
BUFSPACE COMMAND (POOL 

DEFINITIONS), A-7 
BUILDING A CLM COMMAND FILE, 3-12 
CHANGE l.ffiMORY COMMAND (CH), 4-6 
CLEAR COMMAND (Cn), 4-6 
CLEAR COMMAND (C*), 4-5 
CLOCK COMMAND (SYSTEM CLOCK), A-8 
COMM (COMMUNICATIONS SYSTEM 

COMMAND), A-9 
COMMAND FORMAT, A-2 
DATE COMMAND (DATE AND TIME), A-9 
DEBUGGING COMMAND FORMAT AND 

SYMBOLOGY, 4-3 
DEBUGGING COMMAND LANGUAGE, 4-2 
DEFINE COMMAND (On), 4-6 
DEFINE TRACE COMMAND (DT), 4-7 
DEVFILE COMMAND (FILE MANAGEMENT 

DEVICES), A-I0 
DEVICE COMMAND (I/O DEVICE TASK), 
A-II 

DISPLAY MEMORY COMMAND (DH), 4-7 
DUMP MEMORY COMMAND (DP), 4-7 
ELACT COMMAND (END LOAD ACTION) , 

A-13 
ELOC CO~~ND (DEFINE ADDRESS 

SYMBOL), A-14 
EQLRN COMMAND (EQUATE LRN'S), A-14 

INDEX 

COMMAND (CONT) 
EVAL COHt·1AND (DEFINE VALUE SYMBOL), 

A-14 
EXECUTE COr.1J.\1AND (EN), 4 - 8 
FILIvlGR C01l1HAND (FILE t·1ANAGER), A-IS 
FMDISK COMMAND (FILE MANAGEMENT 

DISK), A-IS 
GO COt·'ll-1AND (GO), 4 - 8 
lOS COt$1AND (I/O STREAM), A-IS 
LACT COr.~1AND (LOAD ACTION), A-17 
LINE LENGTH COMMAND (LL), 4-9 
LIST ALL BREAKPOINTS COMMAND (L*), 

4-9 
LIST BREAKPOINT CO~ll1AND (Ln), 4-10 
LOADING FROM DISK USING THE COMMAND 

PROCESSOR, 3-9 
LTP DEFINITION COHl·1AND, A-17 
LTPN COMMAND, A-18 
1-10DEH DEFINITION Cor·ruAND, A-19 
OIM COMMAND (OPERATOR INTERFACE 

MANAGER DEFINI7ION), A-20 
PRINT COW-1AND (Pn), 4-10 
PRINT COMMAND (P*), 4-10 
PRINT HEADER LINE Cor~1AND (Hn), 4-8 
PRINT HEXADECIHAL VALUE COMMAND (VH), 

4-12 
PRINT TRACE COMMAND (PT), 4-10 
QUIT COMMAND (INITIATE LOADING), A-20 
RESET FILE CO~illAND (RF), 4-10 
*CO~·1MAND (COHMENTS), A-2S 
SET BREAKPOINT COW1AND (Sn), 4-11 
SET LEVEL CO~·1MAND (SL), 4 -12 
SET TEMPORARY LEVEL COHMAND (TL), 

4-12 
SPECIFY FILE COMMAND (SF), 4-11 
STATION CO~1f.1AND, A-21 
SUMMARY OF CL~1 COMr,1ANDS AND COMMAND 

FUNCTIONS (TBL) , A-I 
SYMBOLS USED IN DEBUGGING COMMAND 

LINES (TBL), 4-4 
SYS COMMAND (SYSTEM), A-21 
TASK COHMAND (DEFINE TASK), A-22 
TRAP COr-1MAND (TRAP VECTOR), A-22 
TSA COMr-1AND (TRAP SAVE AREA 

DEFINITION), A-23 
TTY CO~1f.1AND, A-23 
VIP COMMAND, A-24 

COMMANDS 

i-2 

CLM FUNCTIONAL GROUPS COMPONENT 
}.10DULES AND RELATED Cor1r,1ANDS (TBL) , 
3-7 

CONFIGURATION CO~1ANDS FOR SAMPLE 
Cor~1UNICATIONS APPLICATION, C-S 

CONFIGURATION CO}'ll-1ANDS FOR SAMPLE 
INPUT/OUTPUT APPLICATION, C-l 

CONFIGURATION LOAD HANAGER COMMANDS, 
A-I 

DEBUGGING COMMANDS, 4-5 
INFOru1ATION FOR SYSTEM DATA 

STRUCTURES FRO~1 CLM COMMANDS, 2-4 
LINK COMMANDS FOR SAMPLE 

COMMUNICATIONS PROGRAM, C-6 

AU49 



COMMANDS (CONT) 
LINK COMMANDS FOR SAMPLE INPUT/ 

OUTPUT PROGRAM, C-l 
SUl~RY OF CLM COMMANDS AND COMMAND 

FUNCTIONS (TBL), A-I 
SUMMARY OF DEBUGGING COMrVlANDS BY 

FUNCTION (TBL), 4-2 

COMMENTS 
*COMMAND (COMMENTS), A-25 

COMMUNICATIONS 
BINARY SYNCHRONOUS COMIv1UNICP~TIONS 

(BSC 2780), 2-29 
COY~1r (COr~UNICATIONS SYSTEM 

COMLlI.1AND), A- 9 
COV~UNICATIONS PLANNING, 2-27 
CONFIGURATION COMMANDS FOR SAMPLE 

COMMUNICATIONS APPLICATION, C-5 
LINK COMYillNDS FOR SAMPLE 
CO~1UNICATIONS PROGRAM, C-6 

PRIORITY LEVEL REQUIREMENTS FOR 
COMMUNICATIONS, 2-27 

REQUESTING COMMUNICATIONS 
FUNCTIONS, 2-28 

SAMPLE COMMUNICATIONS PROGRAM, C-6 

COMPONENT 
CLM FUNCTIONAL GROUPS COMPONENT 

MODULES AND RELATED COMYillNDS 
(TBL), 3-7 

CONFIGURATION 
APPLICATION CONFIGUR~TION AND 

LOADING, 3-8 
APPLICATION CONFIGURATION EXAMPLE, 

C-l 
CONFIGURATION COMMANDS FOR SAMPLE 

COMMUNICATIONS APPLICATION, C-S 
CONFIGURATION CO~~NDS FOR SAMPLE 

INPUT/OUTPUT APPLICATION, C-l 
CONFIGURATION LOAD MANAGER 

COMMANDS, A-I 
MEMORY LAYOUT DURING CONFIGURATION 

(FIG), 3-14 
USING THE CONFIGURATION LOAD 

MANAGER (STAGE 6), 3-6 

CONSOLE 
LOADING FROM DISK WITH k~ 

OPERATOR'S CONSOLE, 3-9 
LOADING FROM DISK WITHOUT AN 

OPERATOR'S CONSOLE, 3-10 

co!'·rJENT IONS 
OVERLAY CODING CONVENTIONS, 2-21 
PRINTER SPACE CONVENTIONS, 2-12 

CREATING 
CREATING EXECUTIVE LOAD MODULES, 

B-1 

INDEX 

CREATION 

C* 

LOAD MODULE CREATION (STAGE 5), 3-4 
OBJECT MODULE CREATION (STAGE 4), 3-4 
SOURCE MODULE CREATION AND EDITING 

(STAGES 2 AND 3), 3-3 

CLEAR COMMAND (C*), 4-5 

CURRENT 
CURRENT LOAD MODULE MEMORY LAYOUT 

(FIG), 3-5 

DATA 
DATA STRUCTURE AREAS, 2-19 
DATA STRUCTURES, 4-18 
HARDWARE/EXECUTIVE DATA STRUCTURES 

(FIG), 4-18 
INFORMATION FOR SYSTEM DATA 

STRUCTURES FROM CLM CO~~mNDS, 2-4 
MEMORY DATA STRUCTURES (FIG), 2-20 
SIZE CALCULATIONS FOR SYSTEM DATA 

STRUCTURES, 2-6 

DATE I DATE COMMAND (DATE AND TIME), A-9 

DEBUG 
ADDITIONAL OPERATING NOTES FOR THE 

ONLINE DEBUG PROGRAr4, 4-14 
ONLINE DEBUG PROGRAM FUNCTIONS, 4-2 
USING THE ONLINE DEBUG PROGRAM, 4-1 

DEBUGGING 
DEBUGGING, 4-1 
DEBUGGING CO~~D FORMAT AND 

SYMBOLOGY, 4-3 
DEBUGGING CO~mAND LANGUAGE, 4-2 
DEBUGGING COW1ANDS, 4-5 
DEBUGGING DURING ONLINE APPLICATION 

DEVELOPNENT, 4-16 
SUJ:.1MARY OF DEBUGGING COMMANDS BY 

FUNCTION (TBL), 4-2 
SYMBOLS USED IN DEBUGGING COMMAND 

LINES (TBL) , 4-4 
USING THE ONLINE DEBUGGING PROGRAM, 

4-13 

DEDICATED 
HARDWARE DEDICATED LOCATIONS, 2-19 

DEFINE 

i-3 

DEFINE COMt1AND (DN), 4-6 
DEFINE TRACE COMMAND (DT), 4-7 
ELOC COMMAND (DEFINE ADDRESS SYMBOL), 

A-14 
EVAL COMMAND (DEFINE VALUE SYMBOL), 

A-14 
TASK CO~1MAND (DEFINE TASK), A-22 

AU49 



DEFINING 
DEFINING APPLICATION DESIGN 

OBJECTIVES, 2-3 
DEFINING ONLINE ENVIRONMENT 

CHARACTERISTICS, 2-4 

DEFINITION(S) 
ASSEMBLY LANGUAGE START ADDRESS 

DEFINITION, 3-17 
BUFSPACE COMMAND (POOL 

DEFINITIONS), A-7 
COBOL LANGUAGE START ADDRESS 

DEFINITION, 3-18 
FORTRAN LANGUAGE START ADDRESS 

DEFINITION, 3-17 
LTP DEFINITION COMMAND, A-17 
MODill~ DEFINITION COMMAND, A-19 
OIM COMMAND (OPERATOR INTERFACE 

MANAGER DEFINITION), A-20 
TSA COMMAND (TRAP SAVE AREA 

DEFINITION), A-23 

DESIGN 
DEFINING APPLICATION DESIGN 

OBJECTIVES, 2-3 

DESIGNING 
DESIGNING PROGRAMS FOR AN ONLINE 

ENVIRONMENT, 2-13 

DEVFILE 
DEVFILE COMMAND (FILE MANAGEMENT 

DEVICES), A-I0 

DEVICE 
DEVICE COMMAND (I/O DEVICE TASK), 
A-II 

DEVICES 

DH 

DEVFILE COMMAND (FILE MANAGEMENT 
DEVICES), A-I0 

INPUT DEVICES FOR CLM, A-3 

DISPLAY MEMORY COMMAND (DH), 4-7 

DIAGRAM 
BUILDING AN ONLINE APPLICATION -

PROCESS DIAGRAM (FIG), 3-2 

DISK 
FMDISK COMMAND (FILE MANAGEMENT 

DISK), A-IS 
LOAD AND HALT PROCEDURES FOR DISK, 

3-9 
LOADING FROM DISK USING THE COMMAND 

PROCESSOR, 3-9 
LOADING FROM DISK WITH AN 

OPERATOR'S CONSOLE, 3-9 
LOADING FROM DISK WITHOUT AN 

OPERATOR'S CONSOLE, 3-10 

DISPLAY 
DISPLAY MEMORY COMMAND (DH), 4-7 

INDEX 

Dn 
DEFINE COMMAND (Dn), 4-6 

DP 
Dur'ip Hill·l0RY cm·ll·1AND (DP), 4-7 

DRIVERS 
INPUT AND OUTPUT DRIVERS, 2-18 

DT 
DEFINE TRACE COMMAND (DT), 4-7 

DUMP 
DUMP MEMORY COMl·iAND (DP), 4-7 

EDITING 
SOURCE MODULE CREATION AND EDITING 

(STAGES 2 AND 3), 3-3 

ELACT 
ELACT COMMAND (END LOAD ACTION), A-13 

ELOC 
ELOC COMMAND (DEFINE ADDRESS SYMBOL), 

A-14 

EMULATION 

En 

END 

IBM 2780 REMOTE TERMINAL EMULATION, 
2-29 

EXECUTE COMMAND (En), 4-8 

ELACT COMMAND (END LOAD ACTION), A-13 

ENVIRONMENT 
DEFINING ONLINE ENVIRONMENT 

CHARACTERISTICS, 2-4 
DESIGNING PROGRAMS FOR AN ONLINE 

ENVIRONMENT, 2-13 

EQLRN 
EQLRN COMMAND (EQUATE LRN'S), A-14 

EQUATE 
EQLRN COMMAND (EQUATE LRN'S), A-14 

ERRORS 
HANDLING LOAD ERRORS, 4-20 

EVAL 
EVAL COMMAND (DEFINE VALUE SYMBOL), 

A-14 

EXECUTE 
EXECUTE COMMAND (En), 4-8 

EXECUTION 
BES SOFTWARE FOR APPLICATION 

EXECUTION (TBL), 2-2 
MEMORY LAYOUT DURING APPLICATION 

EXECUTION (FIG), 3-16 
SERVICES AVAILABLE FOR APPLICATION 

EXECUTION, 2-1 

i-4 AU49 



INDEX 

EXECUTIVE 
CREATING EXECUTIVE LOAD MODULES, B-1 
EXECUTIVE OBJECT MODULES (TBL), B-1 
PLANNING AND BUILDING WITH 

EXECUTIVE OBJECT MODULES, B-1 
SELECTING EXECUTIVE MODULES, 2-8 

EXTENSIONS 
HOW TO INCLUDE OPTIONAL CLM 

EXTENSIONS, 3-6 

FILE 
ATFILE COMMAND (ATTACH FILE), A-4 
BUILDING A CLM CO~1MAND FILE, 3-12 
DEVFILE COMMAND (FILE MANAGEMENT 

DEVICES), A-I0 
FILE MANAGER BUFFER HANDLING, 2-10 
FILMGR COMMAND (FILE MANAGER), A-IS 
FMDISK COMMAND (FILE MANAGEMENT 

DISK), A-IS 
HOW TO ESTIMATE OVERLAY FILE SIZE, 

2-25 
INTERACTIVE FILE TYPE/LFN 

COORDINATION, 2-12 
LEVEL 6-TO-LEVEL 6 FILE 

TRANSMISSION, 2-29 
MEMORY AND WORK FILE SPACE USAGE 

(TBL), 4-1 
OUTPUT FILE PREALLOCATION (STAGE 1), 

3-3 
RESET FILE COMMAND (RF), 4-10 
SELECTING FILE AND BUFFER MANAGEMENT 

TECHNIQUES, 2-8 
SPECIFY FILE COMMAND (SF), 4-11 

FILMGR 
FILMGR COMMAND (FILE MANAGER), A-IS 

FLOATABLE 
EXAMPLE OF FLOATABLE OVERLAYS, 2-24 

FMDISK 
FMDISK COMMAND (FILE MANAGEMENT 

DISK), A-IS 

FORMAT 
COMMAND FORMAT, A-2 
DEBUGGING COMMAND FORMAT AND 

SYMBOLOGY, 4-3 

FORTRAN 
FORTRAN LANGUAGE START ADDRESS 

DEFINITION, 3-17 

FUNCTION(S) 
SUMMARY OF DEBUGGING COMMANDS BY 

FUNCTION (TBL), 4-2 

FUNCTIONAL 
CLM FUNCTIONAL GROUPS, COMPONENT 

MODULES AND RELATED COMMANDS 
(TBL), 3-7 

ONLINE DEBUG PROGRAM FUNCTIONS, 4-2 

FUNCTIONAL (CONT) 

GO 

REQUESTING COMMUNICATIONS FUNCTIONS, 
2-28 

SUMHARY OF CLM CO~1ANDS AND COMMAND 
FUNCTIONS (TBL), A-I 

GO COMMAND (GO), 4-8 

HALT 
LOAD AND HALT PROCEDURES FOR DISK, 

3-9 

HARDWARE 
HARDWARE DEDICATED LOCATIONS, 2-19 

HARDWARE/EXECUTIVE 
HARDWARE/EXECUTIVE DATA STRUCTURES 

(FIG), 4-18 

HEADER 
PRINT HEADER LINE COH~1AND (HN), 4-8 

HEXADECIMAL 

Hn 

PRINT HEXADECU-1AL VALUE CO~1MAND (VH), 
4-12 

PRINT HEADER LINE COMMAND (Hn), 4-8 

HONEYWELL-SUPPLIED 
NAMES AND SIZES OF HONEYWELL-SUPPLIED 

LOAD MODULES (TBL), 2-9 

IBM 
IBM 2780 REMOTE TEffi1INAL EMULATION, 

2-29 

INITIALIZATION 
INITIALIZATION PROCESSING (FIG), B-2 
INITIALIZATION SUBROUTINES, 2-25 
NEW INITIALIZATION MODULES (FIG), B-3 
REGISTER USE BY SYSTEH INITIALIZATION 

SUBROUTINES (TBL), 2-26 

INITIATE 
QUIT COMl1AND (INITIATE LOADING), A-20 

INPUT 
INPUT AND OUTPUT DRIVERS, 2-18 
INPUT DEVICES FOR CLM, A-3 

INPUT/OUTPUT 
CONFIGURATION COMMANDS FOR SAMPLE 

INPUT/OUTPUT APPLICATION, C-l 
LINK COMMANDS FOR SAMPLE INPUT/OUTPUT 

PROGRAM, C-l 
SAMPLE INPUT/OUTPUT PROGRAM, C-l 
SELECTING INPUT/OUTPUT HODULES, 2-8 

INTERACTIVE 
INTERACTIVE FILE TYPE/LFN 

COORDINATION, 2-12 

i-S AU49 



INTERFACE 

lOS 

I/O 

OIM COMMAND (OPERATOR INTERFACE 
MANAGER DEFINITION), A-20 

lOS COMMAND (I/O STREAM), A-IS 

DEVICE COMMAND (I/O DEVICE TASK), 
A-II 

lOS COlo'lMAND (I/O STREAM), A-IS 

LACT 
LACT COMMAND (LOAD ACTION), A-17 

LANGUAGE 
ASSEMBLY LANGUAGE START ADDRESS 

DEFINITION, 3-17 
COBOL LANGUAGE START ADDRESS 

DEFINITION, 3-18 
DEBUGGING COMMAND LANGUAGE, 4-2 
FORTRAN LANGUAGE START ADDRESS 

DEFINITION, 3-17 

LENGTH 
LINE LENGTH COMMAND (LL), 4-9 

LEVEL(S) 
ACTIVATE LEVEL COMMAND (AL), 4-5 
ATTACHING LRN'S TO LEVELS, 2-16 
LEVEL 6-TO-LEVEL 6 FILE 

TRANSMISSION, 2-29 
PRIORITY LEVELS, 2-13 
PRIORITY LEVEL REQUIREMENTS FOR 

COMMUNICATIONS, 2-27 
RELATIVE PRIORITY LEVEL ASSIGNMENTS 

(TBL), 2-14 
SAMPLE LRN PRIORITY LEVEL 

ATTACHMENTS (FIG), 2-15 
SAMPLE STATEMENTS ATTACHING LRN'S 

TO LEVELS (FIG), 2-16 
SET LEVEL COMMAND (SL), 4-12 
SET TEMPORARY LEVEL COMMAND (TL), 

4-12 

LINE(S) 
LINE LENGTH COMMAND (LL), 4-9 
PRINT HEADER LINE COMMAND (HN), 4-8 
SYMBOLS USED IN DEBUGGING COMMAND 

LINES (TBL), 4-4 

LINK 
LINK COMMANDS FOR SAMPLE 

COMMUNICATIONS PROGRAM, C-6 
LINK COMMANDS FOR SAMPLE INPUT/ 

OUTPUT PROGRAM, C-l 

LINKING 
LINKING ORDER FOR CODE TEXT, 3-4 

LIST 
LIST ALL BREAKPOINTS COMMAND (L*), 

4-9 
LIST BREAKPOINT COMMAND (Ln), 4-10 

INDEX 

LL 
LINE LENGTH CO~~ND (LL), 4-9 

Ln 
LIST BREAKPOINT COHMAND (Ln), 4-10 

LOAD 
ADMOD COMMAND (ADD LOAD MODULE), A-4 
CLM LOAD MODULE ORDER FOR PAPER TAPE 

(TBL), 3-11 
CONFIGURATION LOAD MANAGER COMMANDS, 
A-I 

CREATING EXECUTIVE LOAD MODULES, B-1 
CURRENT LOAD MODULE MEMORY LAYOUT 

(FIG), 3-5 
FLACT COMMAND (END LOAD ACTION), A-13 
HANDLING LOAD ERRORS, 4-20 
LACT COMMAND (LOAD ACTION), A-17 
LOAD AND HALT PROCEDURES FOR DISK, 

3-9 
LOAD MODULE CREATION (STAGE 5), 3-4 
LOCATING LOAD HODULES, 4-15 
NAMES AND SIZES OF HONEYWELL-

SUPPLIED LOAD MODULES (TBL), 2-9 
SUMMARY OF LOAD MODULE PREPARATION, 

3-6 
USING THE CONFIGURATION LOAD MANAGER 

(STAGE 6), 3-6 

LOADING 
APPLICATION CONFIGURATION AND 

LOADING, 3-8 
BOOTSTRAP RECORD FOR NONSTOP CLM 

LOADING (TBL), 3-8 
CLM ACTION DURING LOADING, 3-13 
LOADING FROM DISK USING THE COMMAND 

PROCESSOR, 3-9 
LOADING FROM DISK WITH AN OPERATOR'S 

CONSOLE, 3-9 
LOADING FROM DISK WITHOUT AN 

OPERATOR'S CONSOLE, 3-10 
LOADING FROM PAPER TAPE, 3-10 
MEMORY LAYOUT AFTER LOADING (FIG), 

3-15 
NONSTOP APPLICATION LOADING, 3-8 
QUIT COMMAND (INITIATE LOADING), A-20 

LOCATING 
LOCATING LOAD MODULES, 4-15 

LOCATIONS 
HARDWARE DEDICATED LOCATIONS, 2-19 

LOGICAL 
LOGICAL RESOURCE NUMBERS, 2-15 
PHYSICAL AND LOGICAL RESOURCE 

REQUIREMENTS (TBL), 2-3 

LRN'S 

i-6 

ATTACHING LRN'S TO LEVELS, 2-16 
EQLRN COMMAND (EQUATE LRN'S), A-14 
SAMPLE STATEMENTS ATTACHING LRN'S 

TO LEVELS (FIG), 2-16 

AU49 



INDEX 

LRN 

L* 

LTP 

ATLRN COMMAND (ATTACH LRN), A-S 
SAMPLE LRN PRIORITY LEVEL 

ATTACHMENTS (FIG), 2-1S 

LIST ALL BREAKPOINTS COMMAND (L*), 
4-9 

LTP DEFINITION CO~ll4AND, A-17 

LTPn 
LTPn COMMAND, A-18 

MANAGEMENT 
DEVFILE COMMAND (FILE MANAGEMENT 

DEVICES), A-I0 
FMDISK COMMAND (FILE MANAGEMENT 

DISK), A-IS 
SELECTING FILE AND BUFFER 

MANAGEMENT TECHNIQUES, 2-8 

MANAGER 

MODULE (CONT) 
SOURCE MODULE CREATION AND EDITING 

(STAGES 2 AND 3), 3-3 
SU~~RY OF LOAD MODULE PREPARATION, 

3-6 

MODULES 
CLM FUNCTIONAL GROUPS COMPONENT 

MODULES AND RELATED COMMANDS (TBL), 
3-7 

CREATING EXECUTIVE LOAD MODULES, B-1 
EXECUTIVE OBJECT MODULES (TBL), B-1 
LOCATING LOAD MODULES, 4-1S 
NAMES AND SIZES OF HONEYWELL-SUPPLIED 

LOAD MODULES (TBL), 2-9 
NEW INITIALIZATION MODULES (FIG), B-3 
PLANNING AND BUILDING WITH EXECUTIVE 

OBJECT l·10DULES, B-1 
SELECTING EXECUTIVE MODULES, 2-8 
SELECTING INPUT/OUTPUT MODULES, 2-8 

MONITOR 
MONITOR POINTS, 4-16 

CONFIGURATION LOAD YlliNAGER COMMANDS, IMULTITASKING 
A-I MULTITASKING, 2-13 

FILE MANAGER BUFFER HANDLING, 2-10 
FILMGR COMMAND (FILE MANAGER), A-IS NONFLOATABLE 
OIM COMMAND (OPERATOR INTERFACE EXAMPLE OF NONFLOATABLE OVERLAYS, 

MANAGER DEFINITION), A-20 2-22 
USING THE CONFIGURATION LOAD MANAGER 

(STAGE 6), 3-6 

MEMORY 
CHANGE MEMORY COMMAND (CH), 4-6 
CURRENT LOAD MODULE MEMORY LAYOUT 

(FIG), 3-S 
DISPLAY MEMORY COMMAND (DH), 4-7 
DUMP MEMORY COMMAND (DP), 4-7 
EFFECTS OF CLM PARAMETERS ON MEMORY 

USAGE (TBL), 2-S 
MEMORY AND WORK FILE SPACE USAGE 

(TBL), 4-1 
MEMORY DATA STRUCTURES (FIG), 2-20 
MEMORY LAYOUT AFTER LOADING (FIG), 

3-1S 
MEMORY LAYOUT DURING APPLICATION 

EXECUTION (FIG), 3-16 
MEMORY LAYOUT DURING CONFIGURATION 

(FIG), 3-14 
MEMORY USAGE CONSIDERATIONS, 2-19 

MODEM 
MODEM DEFINITION COMMAND, A-19 

MODULE 
ADMOD COMMAND (ADD LOAD MODULE), A-4 
CLM IOAD MODULE ORDER FOR PAPER 

TAPE (TBL), 3-11 
CURRENT LOAD MODULE MEMORY LAYOUT 

(FIG), 3-S 
LOAD MODULE CREATION (STAGE S), 3-4 
OBJECT MODULE CREATION (STAGE 4), 

3-4 

NONSTOP 
BOOTSTRAP RECORD FOR NONSTOP CLM 

LOADING (TBL), 3-8 
NONSTOP APPLICATION LOADING, 3-8 

OBJECT 
EXECUTIVE OBJECT MODULES (TBL) , B-1 
OBJECT MODULE CREATION (STAGE 4), 3-4 
PLANNING AND BUILDING WITH EXECUTIVE 

OBJECT MODULES, B-1 

OBJECTIVES 

OIM 

DEFINING APPLICATION DESIGN 
OBJECTIVES, 2-3 

OIM CONMAND (OPERATOR INTERFACE 
MANAGER DEFINITION), A-20 

ONLINE 
ADDITIONAL OPERATING NOTES FOR THE 

ONLINE DEBUG PROGRAM, 4-14 
BUILDING AN ONLINE APPLICATION -

PROCESS DIAGRAM (FIG), 3-2 
DEBUGGING DURING ONLINE APPLICATION 

DEVELOPMENT, 4-16 
DEFINING ONLINE ENVIRONt-iENT 

CHARACTERISTICS, 2-4 
DESIGNING PROGRAMS FOR AN ONLINE 

ENVIRONMENT, 2-13 
ONLINE DEBUG PROGRAM FUNCTIONS, 4-2 
STARTING AN ONLINE APPLICATION, 3-17 

i-7 AU49 



INDEX 

ONLINE (CONT) 
USING THE ONLINE DEBUG PROGRAM, 4-1 
USING THE ONLINE DEBUGGING PROGRAM, 

4-13 

OPERATING 
ADDITIONAL OPERATING NOTES FOR THE 

ONLINE DEBUG PROGRAM, 4-14 

OPERATIONS 
BUFFERED READ OPERATIONS, 2-10 
BUFFERED WRITE OPERATIONS, 2-11 

OPERATOR'S 
LOADING FROM DISK WITH AN 

OPERATOR'S CONSOLE, 3-9 
LOADING FROM DISK WITHOUT AN 

OPERATOR'S CONSOLE, 3-10 

OPERATOR 
OIM COMMAND (OPERATOR INTERFACE 

MANAGER DEFINITION), A-20 

OPTIONAL 
HOW TO INCLUDE OPTIONAL CLM 

EXTENSIONS, 3-6 

ORDER 
CLM LOAD MODULE ORDER FOR PAPER 

TAPE (TBL), 3-11 
LINKING ORDER FOR CODE TEXT, 3-4 

OUTPUT 
INPUT AND OUTPUT DRIVERS, 2-18 
OUTPUT FILE PREALLOCATION (STAGE 1), 

3-3 
SAMPLE ZXMAP OUTPUT (FIG), 4-16 

OVERLAYS 
ESTABLISHING OVERLAY AREAS, 2-21 
EXAMPLE OF FLOATABLE OVERLAYS, 2-24 
EXAMPLE OF NONFLOATABLE OVERLAYS, 

2-22 
HOW TO ESTIMATE OVERLAY FILE SIZE, 

2-25 
OVERLAY CODING CONVENTIONS, 2-21 
OVERLAY PLANNING, 2-19 

OVERVIEW 
OVERVIEW OF BES SOFTWARE SERVICES, 

2-1 

PAPER 
CLM LOAD MODULE ORDER FOR PAPER 

TAPE (TBL), 3-11 
LOADING FROM PAPER TAPE, 3-10 

PARAMETERS 
EFFECTS OF CLM PARAMETERS ON MEMORY 

USAGE (TBL), 2-5 

PHYSICAL 
PHYSICAL AND LOGICAL RESOURCE 

REQUIREMENTS (TBL), 2-3 

PLANNING 

Pn 

COMMUNICATIONS PLANNING, 2-27 
OVERLAY PLANNING, 2-19 
PLANNING, 2-1 
PLANNING AND BUILDING WITH EXECUTIVE 

OBJECT I10DULES, B-1 

PRINT COMMAND (Pn), 4-10 

POOL 
BUFSPACE COMMAND (POOL DEFINITIONS), 

A-7 

PREALLOCATION 
OUTPUT FILE PREALLOCATION (STAGE 1), 

3-3 

PREPARATION 
SUMMARY OF LOAD MODULE PREPARATION, 

3-6 

PREPARING 
PREPARING TO USE CU1, 3-1 

PRINT 
PRINT COMMAND (Pn), 4-10 
PRINT COMMAND (P*), 4-10 
PRINT HEADER LINE CO~1AND (Hn), 4-8 
PRINT HEXADECIMAL VALUE COMMAND (VH), 

4-12 
PRINT TRACE CO~rnAND (PT), 4-10 

PRINTER 
PRINTER SPACE CONVENTIONS, 2-12 

PRIORITY 
PRIORITY LEVEL REQUIREMENTS FOR 

COMMUNICATIONS, 2-27 
PRIORITY LEVELS, 2-13 
RELATIVE PRIORITY LEVEL ASSIGNMENTS 

(TBL) , 2-14 
SAMPLE LRN PRIORITY LEVEL 

ATTACHMENTS (FIG), 2-15 

PROCESSING 
INITIALIZATION PROCESSING (FIG), B-2 

PROCESSOR 
LOADING FRO~1 DISK USING THE COMMAND 

PROCESSOR, 3-9 

PROGRAM 
ADDITIONAL OPERATING NOTES FOR THE 

ONLINE DEBUG PROGRM1, 4-14 
LINK COt~NDS FOR SM1PLE 

COMMUNICATIONS PROGRAM, C-6 
LINE COMMANDS FOR SM1PLE INPUT/OUTPUT 

PROGRAM, C-1 
ONLINE DEBUG PROGRAM FUNCTIONS, 4-2 
SAMPLE COMHUNICATIONS PROGRAM, C-6 
SAMPLE INPUT/OUTPUT PROGRAM, C-1 
USING THE ONLINE DEBUG PROGRAM, 4-1 
USING THE ONLINE DEBUGGING PROGRAM, 

4-13 

i-8 AU49 



PROGRAMS 

P* 

PT 

DESIGNING PROGRAMS FOR AN ONLINE 
ENVIRONMENT, 2-13 

PRINT COMMAND (P*), 4-10 

PRINT TRACE COMMAND (PT), 4-10 

QUIT 
QUIT CO~~ND (INITIATE LOADING) , 

A-20 

READ 
BUFFERED READ OPERATIONS, 2-10 

REAL-TIME 
REAL-TIME CLOCK (RTC), 4-17 

RECORD 
BOOTSTRAP RECORD FOR NONSTOP CLM 

LOADING (TBL) , 3-8 

REGISTER(S) 
ALL REGISTERS COMMAND (AR), 4-5 
REGISTER USE BY SYSTEM 

INITIALIZATION SUBROUTINES (TBL) , 
2-26 

RELATIVE 
RELATIVE PRIORITY LEVEL ASSIGNMENTS 

(TBL), 2-14 

REMOTE 
IBM 2780 REMOTE TERMINAL EMULATION, 

2-29 

INDEX 

SAMPLE (CONT) 
LINK COMMANDS FOR SAMPLE 
CO~~UNICATIONS PROGRAM, C-6 

LINK COMMANDS FOR SN4PLE INPUT/OUTPUT 
PROGRM1, C-1 

SAHPLE COMMUNICATIONS PROGRAM, C-6 
SAMPLE INPUT/OUTPUT PROGRAM, C-1 
SAMPLE LRN PRIORITY LEVEL ATTACHMENTS 

(FIG), 2-15 
SAMPLE STATEMENTS ATTACHING LRN'S TO 

LEVELS (FIG), 2-16 
SAMPLE Z~ffiP OUTPUT (FIG), 4-16 

SAVE 
TSA COMMAND (TRAP SAVE AREA 

DEFINITION), A-23 

SELECTING 
SELECTING EXECUTIVE MODULES, 2-8 
SELECTING FILE AND BUFFER MANAGEMENT 

TECHNIQUES, 2-8 
SELECTING INPUT/OUTPUT MODULES, 2-8 
SELECTING SYSTEM VARIABLES, 2-4 

SERVICES 

I 
OVERVIEW OF BES SOFTWARE SERVICES, 

2-1 

SET 

SERVICES AVAILABLE FOR APPLICATION 
DEVELOPMENT, 2-1 

SERVICES AVAILABLE FOR APPLICATION 
EXECUTION, 2-1 

SET BREAKPOINT COMMAND (Sn), 4-11 
SET LEVEL COMMAND (SL), 4-12 
SET TEMPORARY LEVEL COMMAND (TL), 

4-12 

REQUESTING SF 
REQUESTING COMMUNICATIONS FUNCTIONS, SPECIFY FILE COMMAND (SF), 4-11 

2-28 
REQUESTING TASKS, 2-17 

RESET 
RESET FILE COMMAND (RF), 4-10 

RESOURCE 

RF 

RTC 

LOGICAL RESOURCE NUMBERS, 2-15 
PHYSICAL AND LOGICAL RESOURCE 

REQUIREMENTS (TBL), 2-3 

RESET FILE COMMAND (RF), 4-10 

REAL-TIME CLOCK (RTC), 4-17 

SAMPLE 
CONFIGURATION COMMANDS FOR SAMPLE 

COMMUNICATIONS APPLICATION, C-5 
CONFIGURATION COMMANDS FOR SAMPLE 

INPUT/OUTPUT APPLICATION, C-1 

SIZE 
HOW TO ESTIMATE OVERLAY FILE SIZE, 

2-25 
SIZE CALCULATIONS FOR SYSTEM DATA 

STRUCTURES, 2-6 

SIZES 

SL 

SN 

NAMES AND SIZES OF HONEYWELL-SUPPLIED 
LOAD MODULES (TBL), 2-9 

SET LEVEL COMMAND (SL), 4-12 

SET BREAKPOINT COMMAND (Sn), 4-11 

SOFTWARE 

i-9 

BES SOFTWARE FOR APPLICATION 
DEVELOPMENT (TBL), 2-3 

BES SOFTWARE FOR APPLICATION 
EXECUTION (TBL), 2-2 

OVERVIEW OF BES SOFTWARE SERVICES, 
2-1 

AU49 



INDEX 

SOURCE 
SOURCE MODULE CREATION AND EDITING 

(STAGES 2 AND 3), 3-3 

SPACE 
MEMORY AND WORK FILE SPACE USAGE 

(TBL) , 4-1 
PRINTER SPACE CONVENTIONS, 2-12 

SPECIFY 
SPECIFY FILE COMMAND (SF), 4-11 

START 
ASSEMBLY LANGUAGE START ADDRESS 

DEFINITION, 3-17 
COBOL LANGUAGE START ADDRESS 

DEFINITION, 3-18 
FORTRAN LANGUAGE START ADDRESS 

DEFINITION, 3-17 

STARTING 
STARTING AN ONLINE APPLICATION, 3-17 

STATION 
STATION COMMAND, A-21 

STREAM 
lOS COMMAND (I/O STREAM), A-IS 

STRUCTURE (S) 
DATA STRUCTURE AREAS, 2-19 
DATA STRUCTURES, 4-18 
HARDWARE/EXECUTIVE DATA STRUCTURES 

(FIG), 4-18 
INFORMATION FOR SYSTEM DATA 

STRUCTURES FROM CLM COMMANDS, 2-4 
MEMORY DATA STRUCTURES (FIG), 2-20 
SIZE CALCULATIONS FOR SYSTEM DATA 

STRUCTURES, 2-6 

SUBROUTINES 
INITIALIZATION SUBROUTINES, 2-25 
REGISTER USE BY SYSTEM 

INITIALIZATION SUBROUTINES (TBL) , 
2-26 

SUMMARY 
SUMMARY OF CLM COMMANDS AND COMMAND 

FUNCTIONS (TBL) , A-I 
SUMMARY OF DEBUGGING COMMANDS BY 

FUNCTION (TBL), 4-2 
SUMMARY OF LOAD MODULE PREPARATION, 

3-6 

SYMBOL(S) 
ELOC COMMAND (DEFINE ADDRESS 

SYMBOL), A-14 
EVAL CO~illAND (DEFINE VALUE SYMBOL), 

A-14 
EXTERNALLY DEFINED SYMBOLS, 3-4 
SYMBOLS USED IN DEBUGGING COMMAND 

LINES (TBL), 4-4 

SYMBOLOGY 
DEBUGGING COMMAND FORMAT AND 

SYMBOLOGY, 4-3 

SYNCHRONOUS 

SYS 

BINARY SYNCHRONOUS COMMUNICATIONS 
(BSC 2780), 2-29 

SYS CO~~ND (SYSTEM), A-21 

SYSTEM 
CLOCK COMMAND (SYSTEM CLOCK), A-8 
COMM (COMMUNICATIONS SYSTEM COMMAND) , 

A-9 
INFORMATION FOR SYSTEr.1 DATA 

STRUCTURES FROM CLM CO~ffiNDS, 2-4 
REGISTER USE BY SYSTEH INITIALIZATION 

SUBROUTINES (TBL) , 2-26 
SELECTING SYSTEM VARIABLES, 2-4 
SIZE CALCULATIONS FOR SYSTEr.1 DATA 

STRUCTURES, 2-6 
SYS COMMAND (SYSTEM), A-21 

TAPE 
CLM LOAD MODULE ORDER FOR PAPER TAPE 

(TBL) , 3-11 
LOADING FROM PAPER TAPE, 3-10 

TASK(S) 
DEVICE COHUAND (I/O DEVICE TASK), 
A-II 

REQUESTING TASKS, 2-17 
TASK COMMAND (DEFINE TASK), A-22 

TECHNIQUES 
SELECTING FILE AND BUFFER MANAGEMENT 

TECHNIQUES, 2-8 

TERMINAL 
IBM 2780 REMOTE TERMINAL EMULATION, 

2-29 

TEXT 
LINKING ORDER FOR CODE TEXT, 3-4 

TIME 

TL 

DATE COMMAND (DATE AND TIME), A-9 

SET TEMPORARY LEVEL CO~~1AND (TL), 
4-12 

TRACE 
DEFINE TRACE CO~ffiND (DT), 4-7 
PRINT TRACE CO~1AND (PT), 4-10 
TRACE HISTORY, 4-19 

TRANSMISSION 
LEVEL 6-TO-LEVEL 6 FILE TRANSMISSION, 

2-29 

i-l0 AU49 



TRAP 

TSA 

TTY 

TRAP COMMAND (TRAP VECTOR), A-22 
TSA CO~illND (TRAP SAVE AREA 

DEFINITION), A-23 

TSA COP~~ND (TRAP SAVE AREA 
DEFINITION), A-23 

TTY COr~ND, A-23 

VALUE 
FVAL CO~MAND (DEFINE VALUE SYMBOL), 

A-14 
PRINT HEXADECIMAL VALUE COMMAND 

(VH) , 4-12 

VARIABLES 
SELECTING SYSTEM VARIABLES, 2-4 

VECTOR 

VB 

VIP 

TRAP CO~~~ND (TRAP VECTOR), A-22 

PRINT HEXADECIYillL VALUE COMMAND 
(VH), 4-12 

VIP COMM&~D, A-24 

WRITE 
BUFFERED WRITE OPERATION, 2-11 

ZXMAP 
SAMPLE ZXMAP OUTPUT (FIG), 4-16 

INDEX 

i-II AU49 





HONEYWELL INFORMATION SYSTEMS 
Technical Publications Remarks Form 

SERIES 60 (LEVEL 6) GCOS/BES2 
TITLE PLANNING AND BUILDING 

AN ONLINE APPLICATION 

ERRORS IN PUBLICATION 

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION 

ORDER NO·1 AU4 9 , REV. 0 

DATED I JULY 1976 

r\. Your comments will be promptly investigated by appropriate technical personnel and action will be taken D lI' as required. If you require a written reply, check here and furnish complete mailing address below. 

FROM: NAME __________________________________________ __ DATE ________________ _ 

TITLE __________________________________________ ___ 

COMPANY ________________________________________ _ 

ADDRE~ ________________________________________ __ 



ATTENTION: PUBLICATIONS, MS 486 

Business Reply Mail 
Postage Stamp Not Necessary if Mailed in the United States 

Postage Will Be Paid By: 

HONEYWELL INFORMATION SYSTEMS 
200 SMITH STREET 
WALTHAM, MA 02154 

Honeywell 

FIRST CLASS 
PERMIT NO. 39531 
WALTHAM,MA 
02154 



Honeywell 
Honeywell Information Systems 

In the USA.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154 
In Canada: 2025 Sheppard Avenue East. Willowdale, Ontario M2J 1 W5 

In Mexico: Avenida Nuevo Leon 250, Mexico 11, OF 

16297, 1876, Printed in U.S. A. AU49, Rev. 0 




