
Honeywell

SERIES 2000

HARDWARE

MODELS 2040
THROUGH 2070
PROGRAMMERS'
REFERENCE MANUAL

Honeywell

SERIES 2000

SUBJECT:

MODELS 2040
THROUGH 2070
PROGRAMMERS'
REFERENCE MANUAL

The Central Processor Hardware of Series 2000 Models 2040, 2040A, 2050, 2050A,
2060 and 2070; the Easycoder Assembly Language; Summary Information Concerning
the Programming of Serie s 2000 Peripherals.

SPECIAL INSTRUCTIONS:

Peripheral devices used in Series 2000 systems are thoroughly documented in their own
manuals. A complete listing of manuals is contained in the Honeywell Publications
Price Catalog, Order No. AB8I.

DATE:

May 1973

ORDER NUMBER:

AG28, Rev. 0

PREFACE

This manual constitutes a programmer.' S reference source of detailed information con­

cerning the central processor hardware of Series 2000 models. The Easycoder Assembly

Language, used with the Series 2000 Basic Programming System and the Series 2000 operating

system - OS/2000, is also defined. In addition, this volume contains information concerning

the programming of Series 2000 peripheral devices and the Scientific Unit and Scientific Sub­

processor. The hardware information presented herein is equally applicable for the program­

mer using the following operating systems: Extended Mod 1 (MSR), Mod 1, or Mod 4.

It is recommended that the user obtain software publications applicable to his operating system;

refer to the Honeywell Publications Price Catalog, Order No. AB81, for a complete list of

a vailable publications •

. The equipment characteristics reported herein remain subject to change to allow the

introduction of design improvements.

©1973, Honeywell Information Sy stems Inc. File No.: 1803

AG28

Section I

Section II

CONTENTS

Serie s 2000 Components
Central Processor

Console s•.......................
Standard Proce s sing Mode ••• ~ •••••••••••••••••••••••••••
Interrupt Proce ssing Mode •••••••••••••••••••••••••••••

External Interrupts •••••••••••••••••••••••••••••••••
Inte rnal Inte rrupt ••....•••••.•••••••••••••••••••••

Addre s sing Mode s •.••••.••••••••••••••••••••••••.•••••
Item-Mark T rapping Mode •••••••••••••.••••••••••••••••
Processing Power

Per ipheral Interface
Peripheral Control
Peripheral Data Transfer Operation •••••••••••••••••••••

Peripheral Addresses and Unit Loads •••••••
Read/Write Channel • • • • • • • . • . • • • • . • •••••

Peripheral Equipment •••••••••••••.•.•••.•••••••.••.
Punched Card Equipment ••.••••••••.••••••••••••••••••••
High-Speed Printer s •••••.••.•••••••••••••••••

Print Buffer •••••••••••••••••••••••••.•••••••••
Magnetic Tape Units•..............................

1200-BPI Recording Density •••••••••••••••••••••••••
1600-BPI Recording Density •••••••••••••••••••••••••
Dynamic Tape Addressing •••••••••••••••••••••••••
IBM Magnetic Tape Compatibility •••••.••••••••••••••
EBCDIC Code Translation •.•••••••••••••••••

Disk Pack Drives
Write Protect Capability •••••.••••••••••••••.•.•••••
Dynamic Disk Addressing ••••••••••••••••••••••••••••
Central Processor Finished •••••••••••••.••••••••••••
Eight-Bit Transfer '

Random Acce s s Drums •••••.••••••••••••••••••••••••••
High-Speed Disk File •••••••••.•••••••••••••••••••••

Angular Po sition Indicator •••••••••••••••••••••••.
Paper Tape EquipIllent•..........
Data Communication Equipment •••••••••••••••••••••••••
Consoles .. .
Visual Information Projection (VIP) Devices •••••••••••••
Teller Terminal Equipment ••.•••••••••••••••••••••••••••

F ea tur e sand Powe r Module s ••••••••.•.•••••••••••••••••••
Advanced Programming •••••••••••••.••••••••••••••••••
PrograOl lrlterrupt•..............................
Edit In struction
Storage Protection •••••••••••.•.•.••.•••••••••••••••••
Extended Multiprogramming and Eight-Bit Transfer •••••••
Scientific Unit and Scientific Subproce s sor ••••••••••••••••
High-Resolution Clock •••••••••••••••••••••••••••••••••
Expanded Instruction Package ••••••••••••••••••••••••••••

The Central Processor•
Main Memory .. .

iii

Page
1-1
1-1
1-2
1-2
1-3
1-3
1-3
1-4
1-4
1-4
1-5
1-6
1-6
1-7
1-8
1-9
1-9
1-9
1-10
1-10
1-10
1-10
1-11
1-12
1-12
1-12
1-14
1-14
1-14
1-15
1-15
1-15
1-15
1-16
1-16
1-17
,1-18
1-20
1-20
1-20
1.-20
1-20
1-21
1-21
1-21
1-21
1-22

2.:..1
2...;1

AG28

Section II (cont)

CONTENTS (coni)

MeID.ory Cycle •............••.••....•.................
Control MeIIlory ••..•.•..•.•.••.. ' . ..•...•..•..........

Address Registers 0000 000. 0.000000 •• 00.0 .00.

Read/Write Counter so. 0 0 0 0 0 0 00 • 0 0 0 0 • 0 0 00 • 0 •• 0 0 0 0 0

Arithm.etic Unit 0 0 • 0 0 0 • • •••••••••••••••••

Control Unit
Input/Output Traffic Control ••• 0 •• 0 •• 0 • 0 • 0 •• 0 0 0 • 0 • 0 • o. 0 •••

Data Transfer Rate so. o ••••••• 0 ••••• o. • • .0 o ••• 0. 0

Mem.ory Acces s Distribution 0 ••••••••• 0 00 00 ••

Mem.ory Access Distribution of the Type 2041
Processor•...................

Mem.ory Access Distribution of the Type 2041A
Prace S Bar ••

Mem.ory Acce s s Distribution of the Type 2051 C
Processor•

Mem.ory Access Distribution of the Type 2051A
Frace'ssar ... •. _ ..•.......................

Mem.ory Access Distribution of the Type 2061
Processor

Mem.ory Access Distribution of the Type 2071
Processor•...............•

Interlocking Read/Write Channels 0 • 0 • 00 0 •••• 0 0 • 0 • o. 0 ••• 0

Variable -Speed Read/Write Channels 0 0 0 0 0 00 ••• 0 • 0 0 • 0 •• 0 0

Buffered Sector s•.•..•.........
Buffered Sector Operation 0 • 0 • 0 ••• 0 • 0 0 • 0 0 • 0 • 0 0 0 0 0 0 •• 0

Buffered Mode ..••......•..................••
Direct-Access Mode

Buffered Sector Re strictions
Program.m.ing Considerations o. o. 0 • o. 0 0 • 0 • 0 • 0 o.

Extended I/O Indicator 00. 00. 0 • 0 0 • 0 o. 0 • o. 0 • 00 o.
Testing Peripheral Control Unit Busy Status o. o. 0 ••• 0

Escape Code s ••••• 000 • 0 • 00 o. 0 • o. o.
Storage Protection Feature ••• 0 0 0 000 0 • 0 .0 ••

Index Register s•................
Central Processor Modes 0.000000.0 •• 0.00 o. 0 ••• 00.0.0.0

Internal In.terrupt 00 •• 0 ••• 00 • 0 0 0 • 0 • o ••••••• o.
Violations of Storage Protection • 0 • 0 •• 0 • 0 • 0 • 0 0 0 0 • 0 •

Proceed Indicator 0 •• 0 •• 0 •• 0 0 0 •• 0 .0 000 00 o •••
Extended Multiprogram.m.ing and Eight-Bit Transfer 00. 0 ••• 0 • 0

Storage Protection with Base Relocation 0 •• 0 0 • 0 • 0 • o. 0 •• 0 0

External Interrupt Ma sking 0 •• 0 0 • 0 •••• 0 00 0 •••• 0 0 • o ••••• 0

Instruction Tim.eout ••• 0 • 0 0 0 0 o •• 0 0 • 0 • 0 •• 0 o. 0 0 •• o. 00 •• 0 • 0

Eight-Bit Transfer Capability 00 0 • 0 • o. o ••••.• 0 .0 0 0 o. 000 0 0

Privileged SCR Instruction 0 0 • 0 0 • 0 • 0 •• 0 o. 0 0 •••••• o.
Privileged BCT Instruction 0 0 ••• o ••• o. 0 • o ••••• 0 0 o.

High-Re solution· Clock • 0 0 0 0 0 00 • 0 0 • 0 •••••••••• 0 • 0 • o.
Accounting Tim.er Register 0 000 •• 0 ••• o. 0 0 00 o. o.
External Interrupt Mode 0 o ••••• 0 .0 00 0 0 0 0 0 ••• 0 0 • 0 0 o. 0 0 •• 0

SCR and LCR Instructions o ••• 000 • o ••••• o •• 0 •• o. o ••• 0 0 0

High-Re solution Clock Allow o. 0 0 • 0 • 0 • 0 •• 0 0 0 •• 0 0 0 • 0 • 0 0 • 0 •

Interrupt Processing .0 ••• 0. .0 •• 0. 00000. 00.00 •• 00 000.0.000 •

Exte rnal Inte r rupt • 0 •••• 0 0 0 • 0 ••• 0 0 0 •• o •••• 0 • 0 0 0 ••

Inte rnal lrl te r rupt •.......••.•....•.........•...•.•...•
Interrupt Program.m.ing .00 00. 0 0 0 0 •• 0 • o. 0 • o ••• 0 0 ••••• 0 0 0

Peripheral Control Interrupt 0 00 •• 0 0 • 0 • 00 o. 0 • 00 .0 o. 0 ••• 0

iv

Page
2-3
2-4
2-5
2-5
2-8
2-9
2-9
2-9
2-10

2-12

2-13

2-13

2-14

2-16

2-17
2-17
2-17
2-18
2-18
2-18
2-19
2-19
2-19
2-19
2-19
2-20
2-21
2-21
2-21
2-22
2-23
2-25
2-26
2-26
2-27
2-27
2-28
2-29
2-29
2-30
2-30
2-30
2-31
2-31
2-31
2-31
2-32
2-33
2-35

AG28

Section III

Section IV

Section V

)

CONTENTS (cont)

Data Form.at ••..•...•...•...................•..••....••....
Variable Field Length ••••••••••••••••••••••••••••••••••••
Instruction Format •••••••••••••••••••••••••••••••••••••••

Operation Code •. . • • . . . • • . • . . • • . . .•...•...•
A - an d B - A d dr e sse s . . • • . • • • . . . • . •
Variant Character
SUIn.Illary • . • . • . • • • '0' ••••••••••••••••••••••••

Organization of Data in Main Memory •••••••••••••••••••••••
Fields
Items ..
Records
Sum.m.a ry •...........•.......•................

Magnetic Tape Data Format ••••••••••••••••••••
Punched Card Form.at •••••••••••••••••••••••••••••
Disk Format ...

Data Conventions
Track Format

.......................................
Record Format

Address Mark
Header Area

.......................................
......................................

Data Area ..•......•....•.............•.•.•.•
T rack- Linking Record ..•..•.•.•.•....•.....•........•.•

Addre s sing•........••.........•.............•..•..••
Basic Concepts••.•.....•.......•.....•..•..•....•
Registers Used in Addressing •••••••••••••••••••••••••••••

Sequence Register (SR) ••••••••••••••••••••••••••
Change Sequence Register (CSR) ••••••••••••••••••••••••
External Interrupt Register (EIR) •••••••••••••••••••••••
Internal Interrupt Register (IIR) ••••••••••••••••••••••••
A-Address Register (AAR) ••••••••••••••••••••••••••••••
B-Address Register (BAR) •••••••••••••••••••••••••••••
S UIrlm.a ry . • . •

Addre s sing Mode s••....•...•..............•........
Two-Character Addressing Mode ••••••••••••••••••••••••
Three -Character Addre s sing Mode ••••••••••••••••••••••
Four- Character Addre s sing Mode •••••••••••••••••••••••

Addre s s Modification •••••••••••••••••••••••••••••••• 0 ••••

Index Registers•...................•....•..•
Index Register Map •............••.........•....•..•

Three-Character Address ••••••••••••••••••••••••••••••
Indirect Addre s sing
Indexed Addressing

Four-Character Addres s

.................................
...............................

Indirect Addre s sing ••••••••••••••••••••••••••••••••
Indexed Addre s sing ..•...•........•....•...•.•.•...•

Treatment of Addresses Larger Than a Memory's
MaxiIllUIrl Addre s s .••..•.........•...........••..

Potential Addresses Within Address Register Range
Potential Addresses Outside Address Register Range

Explicit Addre s sing, Implicit Addre s sing, and Chaining ••••••

Ea sycoder Programming
Introduction •••••••••
The Symbolic Language

....................................

The As sembler s •••••••••

v

Page
3-1
3-1
3-2
3-2
3-2
3-3
3-3
3-4
3-4
3-5
3-6
3-6
3-7
3-9
3-10
3-10
3-11
3-11
3-11
3-11
3-14
3-15

4-1
4-1
4-3
4-3
4-3
4-3
4-4
4-4
4-4
4-4
4-5
4-5
4-6
4-8
4-8
4-9
4-9
4-10
4-10
4-11
4-12
4-12
4-13

4-15
4-15
4-15
4-16

5-1
5-1
5-3
5-3

AG28

Section V (cont)

Section VI

Section VII

CONTENTS (cont)

Coding Form.•.•..••.••.....•.•.....•...•...•...••••
Card Number (Card Columns 1-5) ••••••••••••••••••••••
Type (Card Column 6)
Ma rk (Card C olUInll 7) •..•••..•..........•.......•....•
Location; (Card Columns 8-14) •••••••••••••••••••••••••
Operation Code (Card Columns 15-20) ••••••••••••••••••
Operands•.......••..•....•.•..•....•.........
Additional Coding Rule s •••••••••••••••••••••••••••••

Addre sse ode s •...............•...•.....................
Absolute
SYnlbolic ••..........•..................•........•...•
Self Reference••..•............................
Relative •..............•.......•....................
Out-af-Sequence•.....•.................•....
Blank•...•...............•....
Literals

Decimal Literals
Binary Literals
Octal Literals
Alphanumeric Literals •••••••••••••••••••••••••••••
Area Defining Literals •••••••••••••••••••••••••••••
Addre s s Literal s ••••.•...•...•....•..•............

Variant Character •••••••••••••••••••••••••••
Input/Output Control Characters •••••••••••••

Addre s s Modification Code s· ••••••••••••••••••••••••••••••
Indexed .•...............•.••.........................
Indirect

Data Formatting Statements •••••••••••••••••••••••••••••••••
Introduction•.....•..................•..........
Define Constant with Word Mark - DCW •••••••••••••••••••

Numeric Constants
Decimal Constants
Binary Constants
Octal Constants

Alphanumeric Constants ••••••••••••••••
Blank Constants •••••••••••••••••••••••••
Floating-Point Constants ••••••••••••••••••••••

Define C on stant - DC ••••••••••••••••••••••••••••
Re serve Area - RESV•............
Define Symbolic Addre s s - DSA ••••••••••••••.•••••••••••
Define Area - DA •...••..•..•.....•...•...........•.....

Easycoder C, D, and OS/2000 Options ••••••••••••••••

Assembly Control Statements ••••••••••••••••••••••••••••••••
Introduction .•.......•..........•...•.•.... . '
Program Header - PROG ••••••••••••••••••••••••••
Segznent Header - SEG •..............•...•.....•.....•.
Execute - EX•..................•.•............
Transfer - XFR •.....•..•..•...•.......................
Origin -. ORG .•.•.•...•...•.••..•...•...•...•.•.....•..•
Modular Origin - MORG ••••••••••••••••••••••••••••••••
Literal Origin - LITORG •••••••.••••••••••••••••••••••••
Set Addre s s Mode - ADMODE ••••••••••••••••••••••••••••
Equals - EQU
Control Equals - CEQU

vi

Page
5-5
5-5
5-6
5-7
5-8
5-12
5-12
5-14
5-14
5-14
5-15
5-15
5-16
5-17
5-17
5-18
5-18
5-19
5-19
5-20
5-21
5-22
5-23
5-23
5-24
5-24
5-25

6-1
6-1
6-2
6-2
6-2
6-2
6-3
6-4
6-4
6-5
6-5
6-6
6-7
6-7
6-10

7-1
7-1
7-2
7-4
7-5
7-6
7-7
7-9
7-10
7-12
7-13
7-14

AG28

Section VII (cont)

Section VIII

CONTENTS (cont)

Memory Dump - HSM
Skip - SKIP
Suffix - SFX

...
Repeat - REP•..........•.•.•............
Generate - GEN•.......•.•...•........
Set Line Number - SET LIN '
Set Out-of-Sequence Base - XBASE ••••••••••••••••••••••
Range - RANGE•••..•.......••.•..•.....•
Clear - CLEAR •....•.....•...•.•.•.....•.....•
End - END

Instructions•..•...................
Introduction•............
Arithmetic Operations ••••••••••••••••••••••••••••••••••

Binary Addition•.................
Binary Subtraction ••••••••••••••••••••••••••••••••••
De c iIIlal Addition ..•....•.••..••...•...••...........

True Add•..•........•.................
Complement Add

Decimal Subtraction
Indicators •........................•.. e. e e e •••••••• e.

Multiplication •........• e ••• e ••••••••••••••••• e •••••

Division•.......• e • e •••••

Arithrn.etic •.•........• e .•••••••••••••••••••••••••

Add - A •••••••••••••••••••••••••••••••••• e ••••••••••••

Subtract - S ...•...........•.....•.• e •••••••••••••••

Binary Add - BA •..............•.. e •••••••••••••••••

Binary Subtract - BS e •••••••••••••••••••• e ••••••••

Zero and Add - ZA •••••••••••••••••••••••••
Zero and Subtract - ZS
Multiply - M
Divide - D

•••••••••••• e e • e ••• e •••••

Logic e e e ••• e •••••••••••••••••••••••••••••••••

Extract - EXT••.••....•....••......
Half Add - HA ~ .
Sub stitute - SST
Compare - C •••••••••••••••••••••••••••••••.••••••••••
Branch - B •...........•..•.•.....•..•..••.•••......•.••
Branch on Condition Te st - BCT •••••••••••••••••••••••••
Branch on Character Condition - BC C ••••••••••••••••••••
Branch if Character Equal - BCE •••••••••••••••••••••
Branch on Bit Equal - BBE •••••••••••••••••••••••••••••

Control •.......•...........•.....•....•....•.......••...
Set Word Mark - SW ••••.•••••.••.••.••.•••••••••••••..•
Set Item Mark - SI
Clear Word Mark - CW
Clear Item Mark - CI
Halt - H
No Ope.ration - NOP.•.•.••.••..•..•.........•
Move Characters to Word Mark - MCW •••••••••••••••••••
Load Character s to A-Field Word Mark - LCA ••••• ' ••••••
Store Control Registers - SCR ••••••••••••••••••••••••••
Load Control Register s - LCR •••••••••••••••••••••••••••
Change Addr e s sing Mode - CAM •••••••••••••••••••••••••
Change Sequencing Mode - CSM ••••••••••••••••••••••••
Extended Move - EXM •...••.........•....•.......•..••

vii

Page
7-15
7-16
7-16
7-17
7-17
7-18
7-19
7-20
7-21
7-22

8-1
8-1
8-3
8-3
8-3
8-6
8-6
8-6
8-7
8-8
8-8
8-10
8-13
8-15
8-16
8-18
8-19
8-20
8-22
8-23
8-25
8-27
8-28
8-29
8-30
8-32
8-34
8-35
8-39
8-42
8-44
8-47
8-48
8-49
8-50
8-51
8-52
8-54
8-55
8-56
8-58
8-60
8-62
8-66
8-67

AG28

Section VIII (cont)

Appendix A

Appendix B

Appendix C

Appendix D

CONTENTS (cont)

Move and Translate - MAT· ' ••••••••••••••••••••••••••••
Move Item and Translate - MIT' •••••••••••••••••••••••••
Load Index/ Barricade Register - LIB ••••••••••••••••••••
Store Index/Barricade Register - SIB - ••••••••••••••••••••
Table Lookup - TLU•......................•......
Move or Scan - MOS ••••••••••••••••••••••••••••••••••••

Interrupt Control
Store Variant and Indicators - SVI •••••••••••••••••••••••
Re store Variant and Indicator s - R VI:
Monitor Call - MC •••••••.••••••••
Resume Normal Mode - RNM

Editing•.............
Move Characters and Edit - MCE

Input/Output ...
Input/Output Control Operations •..••••••••••••••••••••••

Selecting RWC Assignments for Use in PDT
Instructions• • ' .•.•.•.........................

Considerations in Selecting RWC Assignments •••••••
Device Data Transfer Rate
The Proce s sor Being Used
Input/Output Sector to Which Device is

Connected ...•.......•.......................
Upward Compatibility ••••••••••••••••••••••••••

Peripheral Data Transfer - PDT •••••••••••••••••••••••••
Escape Code (CE)

Peripheral Control and Branch - PCB
Types of Test and Control Operations

Octal Notation •••••.•••...••••••••.•..•.•. 0.
Octal-Decimal Conversion Procedure

Miscellaneous Tables

Instruction Summary •••••••••••••••••••.•.•.••.••.•••.••••.
Instructions Formats and Timing •••••••••••••••••••••••••

Scientific Unit and Scientific Subproce s sor •••••••••••••••.•••
Floating-Point Data Format ••••.••••••••••••••••••••••••••
Floating - Point Nume r ical Repre sentation •••••••••••••••••
Floating-Point Registers ••••••••••••••••••••••••••••••••
Indicator s ..•.....•..................................•.
Automatic Formatting in Arithmetic Operations ••••••••••••

Prenormalization ••••••••••••••••••
Equalization•......
Po stno rmaliza tion •••••••••••••••••••••••••••

Instruction Formats •••••••••••••••••••••••••••••
Pr"ogramming Considerations ••••••••••••••••••••••••••••
Symbology for Execution Timing s ••••••••••••••••••••••••
Timing Note s
Data Moving Instructions ••••••••••••••••••••••••••••••••
Floating-Point Arithmetic Instructions ••••••••••••••••••••
Da ta 'C on ve r sion In struction s ••••••••••••••••••••••••••••
Control Instructions ••••••••••••••••••••••••••••••••••••
Binary Integer Arithmetic Instruction

viii

Page
8-70
8-74
8-79
8-83
8-84
8-87
8-93
8-94
8-98
8-100
8-101
8-105
8-106
8-111
8-112

8-112
8-112
8-113
8-115

8-115
8-115
8-116
8-128
8-139
8-140

A-I
A-3

B-1

C-1
C-l

D-l
D-I
D-2
D-4
D-4
D-5
D-5
D-5
D-6
D-6
D-7
D-7
D-8
D-IO
D-13
D-17
D-20
D-25

AG28

Figure I-I.
Figure 1- 2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 1-6.
Figure 1-7.
Figure 1-8.

Figure 1- 9.
Figure 1-10.

Figure 2-I.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 2-9.
Figure 2-10.
Figure 2-1I.
Figure 2-12.

Figure 2-13.

Figure 2-14.

Figure 2-15.

Figure 2-16.

Figure 2-17.

Figure 2-18.
Figure 2-19.
Figure 2-20.
Figure 3-I.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3- 9.
Figure 3-10.
Figure 3-1I.
Figure 3-12.
Figure 3-13.
Figure 3-14.
Figure 3-15.
Figure 3-16.
Figure 3-17.

ILLUSTRA TIONS

Type 220-3 Console ••••••••••••••••••••••••••••.•••••••••••
Type 220-6 Console ••••••••••••••••••••••••••••••••••••••.•
Type 220-8 Console •••••••••••••••••••••••••.••••••••••••••
Main Mem.ory Siz e •••
Main MeII10ry Speed •••••••••••••••••••••••••••••••••••••••
Peripheral Silllultaneity •••••••••••••••••.•••••••••.••••••••••
Basic Input/Output Data Path •.•••.••••••••••••••••••••••••••

. Address Assignlllents and Unit Loads Available in Series
2000 Processors •••••••••••••• II •••••••••••••••••••••••••

Data Path During Card Read Operation •••••••••••••••••••••••
Custolller Inquiry Handling via Typical COllllllunications

Network •••
Logical Division of Serie s 2000 Central Proce s sor •••••••••••••
Main Melllory Function s ••••••••••••••••••••••••••••••••••••
One MeIllory Position ••.••••••••••••••••••••••••••••••••••••
Repre sentation of Character s in Magnetic Core Storage ••••••••
Typical Control Register Function •••••••••••••••••••••••••••
Data Flow Between Main Melllory and Arithllletic Unit ••••••••••
Control Unit Activitie s ••••••••••••.••••••••••••••••••••••••
Input/Output Traffic Control Activities •••••••••••••••••••••••
Data Transfer Inte rvals Dur ing One Peripheral Operation
Logical Decision Perforllled by Input/Output Traffic Control
Melllory Access Distribution in the Type 2041 Processor •••••••
Melllory Access Distribution in the Basic Type 2041A

Frace ssar •••••••••••••••••••••••••••••••••••••.••••.••••
Melllory Acces s Distribution in the Type 2051C Proce s sor and

Type 2041A Proces sor with PM1A40 ••••••••••••••••••••••••
Melllory Acces s Distribution in the Basic Type 2051A

Processor ••• ' ••••••
Melllory Acces s Distribution in the Type 2051A Proce s sor

with PMIA50 •••••••••••••••••••••••••••.••••••••••••••••
Melllory Access Distribution in the Type 2071 Processor and

Type 2051A Processor with PM1A50 and PM1B50 ••••••••• ' •••
Melllory Access Distribution in the Type 2061 Processor and

Type 2041A Processor with PM1A40 and PM1B40 •••••••••••
Sample Coding for External Interrupt Routine •••••••••••••••••
Salllple Coding for Internal Interrupt Routine ••••••••••••••••••
Interrupt Signal Generated by Peripheral Control ••••••••••••••
Conversion of SYlllbolic Tag to Absolute Melllory Addresses •••••
Series 2000 Instruction Formats •••••••••.•••••••••••••••••••
Symbolic Repre sentation of Serie s 2000 Instructions •••••••••••
Consecutive Storage Locations in Main Melllory •••••••••••••••
Data Field Forlllat in Main· Memory ••••••••••••••••••••••••••
Two Itelll Forlllats in Main Memory •••••••••••••••••••.•••••
Record Forlllat in Main Memory ••••••••••••••••••••••••••••
Character Representation on 7 -Track Magnetic Tape •••••.••••
,Data Forlllat on Magnetic Tape •••••••••••••.•.••••••••••••••
Punched Card· Code s •••••••••••••••••••••••••••••••••••••••
Relationship Between Itellls and Records •••••••••••••••••••••
Relation~hip Between Itellls~ Records, and Blocks ••••••••••••••
Data Conventions of Honeywell Mass-Storage Disk Devices ••••••
Flag Charac.ter Forrn..at ••••••••••••••••••••••••••••••••••• o.

Addre s s Field ForIllat •••••••••••••••••••••••••••••••••••••
Data Area ForIllat •••
Track- Linking Record •••••••••••••••••••••••••••••••••••••

ix

Page
1-2
1-2
1-2
1-5
1-5
1-5
1-7

1-8
1-8

1-19
2-1
2-2
2-2
2-2
2-4
2-8
2-9
2-10
2-11
2-12
2-12

2-13

2-14

2-14

2-15

2-16

2-16
2-34
2-35
2-36
3-2
3-3
3-4
3-4
3-5
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-13
3-14
3-15

AG28

Figure 4-I.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4.-6.
Figure 4-7.
Figure 4 ... 8.
Figure 4-9.
Figure 5-1.

Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.

Figure 5-7.

Figure 5-8.

Figure 5-9.

Figure 8-I.
Figure 8-2.
Figure 8-3.
Figure 8-4.
Figure 8-5.
Figure 8-6.
Figure 8-7 •

. Figure 8-8.
Figure 8-9.
Figure 8-10.
Figure 8-1I.
Figure 8-12.
Figure 8-13.
Figure D-l.
Figure D-2.
Figure D-3.

Table 1-1.
Table 1-2.
Table 1-3.
Table 1-4.
Table 1-5.
Table 1-6.
Table 1-7.
Table 1-8.
Table 1-9.
Table 1-10.
Table 1-11.

ILLUSTRATIONS (cont)

Typical Add Instruction •••••••••••••••••••••••••••••••••••••
Extraction of Data Fields in Typical Add Instruction •••••••••••
Serie s 2000 Index Register Map •••••••••••••••••••••••••••••
Extraction of Three-Character Indirect Addre s s ••••••••••••••
Extraction of Indexed Addre ss in Three-Character Mode •••••••
Extraction of Indirect and Indexed Four-Character Addresses •••
Serie s 2000 Instruction Format 1 •••••••••••••••••••••••••••••
Series 2000 Instruction Format 2 •••••••••••••••••••••••••••••
Series 2000 Instruction Format 3 •••••••••••••••••••••••••••••
Relationship of Source Program, Assembler, and Object

Page
4-1
4-2
4-9
4-11
4-12
4-14
4-16
4-17
4-17

Program. •••••••••. e....................................... 5 - 2
Two-Character Addre·ss Assembly ••••••••••••.•••••••••••••• 5-3
Three-Character Address Assembly ••••.•••••••••••••••••••• 5-4
Four-Character Address Assembly ••••••••••••••••••••••••• 5-4
Easycoder Coding Form ••••• ••• •• ••• ••• •••• •• •. •• •• •• •••• •• 5-5
Assembly of Indexed Address in Three-Character

Addre S sing Mode • • • • • • • • • • • • • • • • . . • • • • • • . • • • • • • • • • • • • • • •• 5 - 25
Assembly of Indexed Addre s s in Four-Character

Addr e s sing Mode • . • • • . • • • • • • • • • • • • •• 5 - 25
Assembly of Indirect Address in Three-Character

Addressing Mode •••••••••..•••••••••••••••••••••••••••••• 5-26
Assembly of Indirect Addre ss in Four-Character

Addre s sing Mode • • • • • • • . • • • • . . • • • • • • . . • • • • • • • • • • • • • • • • • •• 5 - 26
T rue Add ExaIllple s •• 8 - 6
Complement Add Example s • . • • • • •• 8 - 7
A - and B -Fields in Multiply Operation ••••••.••.•••••••••••••• 8 - 9
Factor Locations in Divide Operation • • • • • • • • • • • • • • • • • • •. • • •• 8 -11
Changing Addressing Modes via CAM Instruction ••• • •••• •• •••• 8~65

MAT Operation •• 8-73
MIT Operation • • • • • • •• • • • • • • • • • •• • • • • • • • • • • • • •• • •• • • • • • ••• 8-79
Ba sic Storage Protection •••••••••••.••••••••••••••••••••••• 8 - 80
Storage Protection with Base Relocation •• 8-80
LIB Variant Character •• ••• • • •• ••• • •• •• •• •• •• ••• • •• •• •••••• 8-81
TLU Operation •• 8-88
C4 Variant for 9-Track Tape Units •••••••••••••••••••••••••• 8-132
Format of Type 243 PDT C3 Variant •• • • • • • • • • • • • • • •• • •• • • •• 8-136
Floating-Point Data Format in Main Memory •••••••••••••••••• D-l
Floating-Point Accumulator Data Format • ••• •• •. •• •• •••••••• D-2
Decimal Data Format in Main Memory • • • • • • • • • • • • • • • • . • • • • •• D-18

TABLES

P~ched Card Equipment ••.••••••••••••••••••••••••••••••••
High-Speed Printers •••••••••••••••••••••••••••••••••••••••
Magnetic Tape Units ••
Disk Pack Drives and Disk Subsystems •••••••••••••••••••••••
Disk Pack Drive Feature s ••••••••.•••••••••••••••••••••.•••
Random Access Drum Units ••••••••••••••••••••••••••••••••
High-Speed Disk File •••••••••••••••••••••••••••••••• ' •••••••
Paper Tape Equipment •••.•..•.••••••••.••.•••••••••.•••••••
Data Communication Equipment ••••.••••••••••••••••••••••••
C on sole Equi plllent •••••••••••••••••••••• 0 ••••••••••••••••

Visual Information Projection Devices ••••••••••••.••••••••••

x

1-9
1-10
1-11
1-13
1-14
1-15
1-16
1-16
1-17
1-18
1-18

AG28

Table 1-12.
Table 1-13.'
Table 1-14.
Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
Table 2-5.

Table 3-1.
Table 4-1.

Table 4-2.

Table 4-3.

Table 5-1.
Table 5-2.
Table 6-1.
Table 7-1.
Table 8-1.
Table 8-2.
Table 8 -3.
Table 8-4.
Table 8-5.
Table 8-6.
Table 8-7.
Table 8-8.
Table 8-9.
Table 8-10.
Table 8-110
Table 8-12.
Table 8-13.
Table 8-14.
Table 8-15.
Table 8-16.
Table 8-17.
Table 8-18.

Table 8-19.
Table 8-20.
Table 8-21.
Table 8-22.
Table 8-23.

Table 8-24.

Table 8-25.
Table 8-26.

Table 8-27.
Table 8-28.
Table 8-29.
Table 8-30.
Table 8-31.

TABLES (cont)

Teller Terminal Equipment
Model 2040A Power Module s
Model 2050A Power Modules
Size of Control Memory Register s •••••••••••••••.••••••••••••
Control Memory Regi ster s ••.••••••••••••••••••••••••••••••••
Controls / Device s Connectable to Buffered Sector s ••••••••••••••
Clock Characteristic s
Summary of Interrupt/Allow Function Control and Test

Operations .. .
Summary of Internal Data Formats ••••••••.••.•••••.•••••••••
Index Register Addresses in Three-Character Addressing

Mode ••••••••••.••
Index Register Addresses in Four-Character Addressing

Mode •••••••••.•••.•••••••. • ••••••••••••• • •• • ••••••• • •• • .
Active Address Bits in Series 2000 Single-Character

Processors ... : .. .

Set I Punctuation Indicator s •••••••••••••••••••••••••••••••••
Set II Punctuation Indicators (Easycoder C, D, and OS/2000)
Data Formatting Statements ••••••••••••••••••••••••••••••••
Assembly Control Statem.ents ••••••••.••.••••••••••••••••••••
Symbology U sed in Serie s 2000 Instruction De scriptions •••••••
Series 2000 Add and Subtract Operations •••••••••••••••••••••
Binary Addition Table ••.••••.•••••••••••••••.••••••••••••••
Algebraic Signs in Decim.al Addition ••••••• " •••••••••••••••
Decimal Arithmetic Sign Conventions ••••••••••••••••••••••
Multiply Sign Conventions ••••••••••••••••.•••••••••••••••••
Divide Sign Conventions •••••••••••••••••••••••••••.••••••••
SENSE Switch Test CG>nditions for BCT Instruction •••••••••••
Indicator Test Conditions for BCT Instruction
BCT Instruction Variant Characters

Page
1-20
1-22
1-22
2-4
2-6
2-20
2-30

2-37
3-6

4-11

4-13

4-14
5-7
5-8
6-1
7-1
8-2
8-3
8-3
8-6
8-8
8-9
8-11
8-36
8-37
8-38

BCC Test Conditions •••••••••.•••••••••••••••••••••••••••••• 8-41
Control Register Contents Stored by SCR Instruction •••••••••••
Control Registers Stored by SCR Instruction ••••••••••••••••••
Control Register Contents Loaded by LCR Instruction •••••••••••
Modes Specified by Variant Character in CAM Instruction ••••••
Extended Move Condition s ••••••••••••••••••••••••••••••••••
Size of Information Units in MIT Operation ••••••••••• 0 •••••••

Correspondence Between LIB Setting and Barricade

8-58
8-59
8-61
8-63
8-68
8-75

La cation . . . • . • 8 - 81
Move or Scan Conditions •• 8 - 89
Information Stored by SVI Instruction •••••••••• 0 •• "0' ••••• ~ ••• 8-94
Information Restored by RVI Instruction ••••••••••••• 00 ••••••• 8-98
Special Characters in MCE Instruction ••••••••••••••••••••••• 8-107
Minimum R WC Capacity Requirements for Serie s 200/2000

Peripheral Devices •••••• • ••••••••••••••••• • • • •• • • •• • • • ••• 8-113
Description of PDT I/O Control Character Cl (RWC

AssignIIlent) ...•...... ,•...........•... · .. · •.....• 8-117
Escape Codes•.......... 8-129
Description of PDT I/O Control Character C2 (Peripheral

Control Designation) •••••••••••••••••••.•••••.•••••••••••• 8-129
Summary of PDT I/O Control Characters ••••••••••••••••••••• 8-132
C 3 Coding for Type 209 and 209-2 Paper Tape Reader s • • • • • • •• 8-136
C3 Coding for Type 210 Paper Tape Punch •••••••••••• 0 ••••••• 8-137
C3 Coding for Type 222 Printers •••••••••••••••••••••••••••• 8-137
C3 Coding for Type 270A Random Access Drum ••••••••••••••• 8-137

xi AG28

Table 8-32.

Table 8-33.
Table 8-34.
Table 8-35.

Table 8-36.

Table A-I.
Table A-2.
Table B-1.
Table B-2.
Table B-3.
Table B-4.
Table B-5.
Table B-6.
Table B-7.
Table B-8.
Table B-9.
Table C-l.

, Table C-2.
Table C-3.
TableC-4.
Table D-l.
Table D-2.
Table D-3.
Table D-4.

TABLES (cont)

Summary of PDT I/O Control Characters for Type 286
Multiline Communication Controller ••••••••••••••••••••••••

Type 286 -1, - 2, -3 Line Control Instructions •••••••••••••••••
Summary of PCB I/O Cohtrol Character s •••••••••••••••••••••
Summary of PCB I/O Control Characters for Type 286

Multiline Communication C ontrolle r •••••••••••.••••••••••••
PCB Control Characters C5 through C15 for Type 286-4, -5,

-6, -7 Line Control Instructions •••••••••••••••••••••••••••
Binary-Octal Equivalents •••••••••••••••••••••••••••••••••••
Decimal-Octal Conversion Table ••••••••••••••••••••••••••.••
Control Register Designations ••••••••••••••••••••••••. o •••••

Extended Move (EXM) Conditions ••••••••••••••••••••••••••••
Branch on Condition Te st (BCT) SENSE Switch Conditions
Branch on Condition Test (BCT) Indicator Conditions ••••••••••••
Branch on Character Condition (BC C) Conditions •••••••••••••
Series 2000 Character Codes ••••••••••••••••••••••••••••••••
Binary, Octal, and Decimal Equivalents ••••••••••••••••••••••
Powe r s of 2 .•.......................................•.....
Move or Scan Variants •••••••••••••••••••••••••••••••••••••
Instruction Summary - Timing Formulas for Models 2040 ••••••
Instruction Timings for Models 2040A, 2050, and 2060 •••••••••
Instruction Timing s for Models 2050A and 2070 •••••••••••••••
Timings for Decimal Multiply and Divide - Model 2040 ••••••••
Floating-Point Numerical Representation of Mantissas •••••••••
Floating'-Point Numerical Representation of Exponents •••••••••
Exe cution Timing s in Memory Cycle s
Numerical Representation of Decimal Word Data ••••••••••••••

xii

Page

8-138
8-138
8-142

8-152

8-154
A-I
A-2
B-1
B-2
B-3
B-4
B-5
B-7
B-8
B-8
B-9
C-4
C-8
C -11
C -16
D-3
D-3
D-9
D-I9

AG28

SECTION I

SERIES 2000 COMPONENTS

Series 2000 is a family of modularly designed, compatible data processing systems.

Each model within the system consists of two basic elements: a central processor, and an

array of peripheral devices connected to that processor. Most peripheral equipment can be

attached to any processor and the number of connectable devices is limited only by certain

individual power and circuitry restrictions.

The processing power of any of the central processors discussed in this manual can be

increased at any time by the addition of peripheral devices and/or optional hardware features.

The components of a Series 2000 system discussed in this section include: (1) the central

processor; (2) the processor's interface with the peripherals; (3) the peripherals; and (4) the

expansion of processing power through the addition of optional hardware features.

CENTRAL PROCESSOR

The central processor is the computing

and control center of a Series 2000 model;

instructions processed within the central pro­

cessor control the operations of the entire

computer. A Series 2000 proce ssor is func­

tionally divided into three units; storage" con­

trol, and arithmetic. The storage unit provide s

magnetic core storage for both the program

instructions and the data to be proce ssed accord­

ing to these instructions; it is also used to

contain the result)ant data. The control unit

directs the operation of the entire computer by

selecting, interpreting, and controlling the

execution of all program instructions. It con­

trols not only the flow of info rmation within

the central proce ssor but also the flow of data

between the central processor and all peripheral equipment. The arithmetic unit performs

such operations as addition, subtraction, multiplication, division, and comparison, as directed

by the control unit.

1-1 AG28

CONSOLES

The primary 'communication medium between the operator and the central processor is

the Type 220 console, of which three versions are available. In the Type 220-3 Console

(Figure 1-1) and the Type 220-6 Console (Figure 1-2), most control functions, including that

of direct access to the processor, are performed by means of a console typewriter. This type­

writer can also be used as a peripheral device, operating under program control, or as a

logging typewriter by which the operator can make essential notes about the program in prog­

ress. A console control panel contains power switches, SENSE switches, and certain check

condition indicators.

The Type 220-8 Visual Information Control Console (VICC) includes a keyboard and

control panel, a display screen, and a console control (Figure 1-3). The basic console can be

expanded to include a second display screen, a serial printer, a remote display, and a display

switch. The 220-8 performs all of the control functions of the 220-3 and 220-6, and provides

Series 2000 systems with vastly increased operator flexibility.

A Type 220 Console is required on all Series 2000 Systems. The Type 220-3 (or, option­

ally, the Type 220-8) is required on the Type 2041 Central Processor. The Type 220-6 (or,

optionally, the- Type 220-8) is required on the Type 2041A, 2051 and 2061 Central Proce s sor s.

The Type 220-6A (or, optionally, the Type 220-8) is required on the Type 2051A Central

Processor. The Type 220-8 is standard on the Type 2071 Central Processor.

Figure 1-1. Figure 1-2.
Type 220-3 Console Type 220-6 Console

STANDARD PROCESSING MODE

Figure 1-3.
Type 220-8 Console

(VICC)

The central processor performs arithmetic and logical operations as directed by the

instructions of an internally stored program. These instructions are read into memory from

an input medium such as punched cards, magnetic tape, punched paper tape, disk, or drum.

Control circuitry within the processor then selects, interprets, and executes these instructions.

1-2 AG28

Normally, the instructions are executed sequentially. Branch instructions are provided, how­

ever, which make it possible to skip over a group of instructions or otherwise change the

sequence of the program.

INTERRUPT PROCESSING MODE

Sequential instruction execution is changed temporarily whenever the central processor

is interrupted. Anyone of four sources can "demandll access to the central processor by

generating an interrupt signal, which turns on a central processor interrupt indicator. Once

an interrupt indicator is detected as being on, a hardware response is made: information con­

cerning the current status of the processor (including the setting of the sequence register) is

stored, and a branch is made to a stored routine that identifie s and service s the demand. Thus,

programmed te sts need not be made to detect the pre sence of an interrupt condition - the entire

proce s s of detecting and re sponding to an interrupt signal is an automatic hardware function.

After the stored service routine has been executed, control is returned to the interrupted

routine at the point where the interruption occurred and the previous status is restored. Two

kinds of interrupts can occur in the system: external interrupts and an internal interrupt. A

detailed description of interrupt functions and programming for interrupt processing is pre­

sented in Section II.

External Interrupts

The three sources of external interrupts are:

1. Peripheral Control - The control connected to any Series 2000 periph­
eral device can generate an interrupt signal under program control.
For instance, a data communication controller which services one or a
number of communication lines and devices may generate a real-time
demand on central proce ssor time to handle a customer inquiry from a
remote terminal. The current operations of the processor are tempo­
rarily interrupted so that the inquiry may be serviced. A routine to
read the inquiry and to answer the que stion from a stored customer
file is automatically executed, and a re sponse is sent back to the
terminal.

2. Console - The operator can interrupt the central processor by press­
ing the INTERRUPT button on the console. The source of such "on_
site ll interrupts is made available to the program by the execution of a
single instruction at the beginning of the interrupt service routine.

3. Program Instruction - One instruction in the Serie s 2000 repertoire,
the Monitor Call instruction, is used to generate an'interrupt condition.
For programming convenience, the activation (or Ilcallingll) of the
monitor program can be accomplished by means of this instruction.

Internal Inter rupt

When Storage Protection is in effect, an internal interrupt condition, caused by certain

violations of a protected memory area or attempts to addre·ss nonexistent memory locations,

can also occur. Internal interrupts are ~f lower priority than external interrupts, so that a

1-3 AG28

processor executing an external interrupt service routine does not respond to an internal

interruption until the routine is com.pleted. Processing of internal interrupts is described in

Section II.

ADDRESSING MODES

Due to the binary addressing system used in referencing the individual core storage

locations within the central processor, an address portion of a machine-language instruction

can occupy two, three, or four character s of memory. The number of character positions

employed is controlled by two instructions: the assembly control statement ADMODE, and the

Change Addressing Mode (CAM) instruction. Any main memory address can be referenced in

any addressing mode by having the central processor prefix the address expressed in the

instruction with a binary value previously set in an addre ss register. Thus, the programmer

has the ability to set the address registers to some high module, switch to the two-character

addre s sing mode, and still continue to addre s s that module. This utilization of the smalle st

number of character positions to express any main memory address results in a reduction in

the amount of memory required for a particular program.

ITEM-MARK TRAPPING MODE

The item-mark trapping mode, which can be set via the CAM instruction, causes the

proce s sor to treat and execute any instruction containing an item-marked op code as if it were

a Change Sequencing Mode (CSM) instruction, which results in a transfer of control to an

instruction stored at a pre specified location. This processing mode is used extensively in

Liberator systems and can also be used to control program branching.

PROCESSING POWER

The power of any. processor within Series 2000 can be defined as the total effect of its

main memory size, its internal speed, and its degree of peripheral simultaneity.

Main memory size, for the Serie~ 2000 Models 2040 through 2070, ranges from a mini­

mum of 49, 152 character locations to a maximum 1,048,576 locations. Figure 1-4 illustrates

the modular main memory sizes of the various processor types.

The internal speed of a proce s sor is mea sured in terms of a memory cycle (i. e., the

time required to read and restore the contents of a unit location). The unit location used by

the Type 2041 is a single, 6-bit character location. The unit location of the Types 2041A,

2051C, and 2061 is two successive character locations. The unit location of the Types 2051A

and 2071 is four successive character locations. The processors that manipUlate more than

one location at a time are called multicharacter proce ssor s. Memory cycle speeds range

from 1."6 microseconds per single-character fetch to 1 microsecond per four-character fetch

(see Figure 1-5).

1-4 AG28

Peripheral simultaneity is a key feature of Series 2000 processors. Among the processors

described in this manual, from 8 to 16 simultaneous input/output operations can be performed

concurrently with internal computing (see Figure 1-6).

Optional
524

o
r-i

to
o
N

1048 1048

r-i
t­
o
N

Figure 1-4. Main Memory
Size

2071
a

1fJ.s

2061b 11. 14fJ.s

2051Cb
1. 6fJ.s

2041 1. 6fJ.s

2041A b, c IfJ.s 1.5fJ.s 12 • 5 fJ. s

2051A a, c 1fJ.s 1.5fJ.s I 2jJ.s

a per four-character fetch.
b
Per two-character fetch.

c 1 and 2 fJ.s cycle time s optional.

Figure 1-5. Main Memory Speed

2071

2061

2051C

2041

2041A

2051A

Basic
I

Optional

Figure 1- 6. Peripheral Simultaneity

PERIPHERAL INTERFACE

The array of peripheral devices available with Series 2000 processors include: consoles,

punched card equipment, high-speed printers, magnetic tape units, paper tape equipment,

direct-access' devices (disk and drum), MICR reader-sorters, Visual Information Projection

units, and various data communication controllers, a front-end network processor, and remote

terminals. Also included are computer-to-computer adapters, a time-of-day clock, and a

standard interval timer and selector.

1-5 AG28

InforInation is transferred between anyone of these devices and the central processor by

m.eans of a single stored-prograIn instruction - the Peripheral Data Transfer instruction

described in Section VIII. By coding various control characters in this instruction, the pro­

graInIner specifies the direction of data transfer (into or out of the processor), the specific

device involved in the transfer, the data path over which inform.ation is to be transferred, and

any other inforInation necessary to define the input/output operation (e. g., the num.ber of lines

to be spaced during printer operations). The actual cOIn.In.unication with the central processor

is not m.ade. by the particular peripheral device but by the peripheral control connected to that

device.

PERIPHERAL CONTROL

A peripheral control regUlates the transfer of data between a processor and a peripheral

device. The control com.pensates for the difference in the data transfer rates of the processor

and the peripheral device by teInporarily storing each character of transInitted information

until either the processor or the device is ready to receive the character. The control also

converts each character into the code used by the intended recipient (e. g., the card reader

control converts a character froIn Hollerith code to the internal six-bit code of the central

processor). As each character is transferred to the control, it is also checked for accuracy

by the control. One particularly significant feature of the peripheral control is that it operates

independently of the central processor and requires access to the main Inem.ory only when

inforInation transfer s are per £orIned. In particular, all of the previously m.entioned activitie s

of the control - teInporarily storing, converting, and checking the inform.ation - do not involve

the central processor in any way. When each character of inform.ation is transferred, one m.ain

llleInOry cycle is allocated for the transfer.

SOIne peripheral devices require one peripheral control per device (e. g., a card reader).

Other devices can be connected in Inultiple fashion to a single peripheral control (e. g., up to

eight 1/2-inch Inagnetic tape units can be directed by a single control). The nUInber of Series

2000 device s connectable to a peripheral control is shown in Table s 1-1 through 1-13 on the

following pages. The inforInation listed under "Unit Loads" and "Address AssignInents" in

these tables is used in deterrn.ining the nUInber of peripheral controls that can be connected to

a Series 2000 processor. This connection is described below.

PERIPHERAL DATA TRANSFER OPERATION

One of the m.ajor feature s of Serie s 2000 is the degree of peripheral siInultaneity that can

be achieved by the various processors. The Type 2041 processor can perforIn up to eight

peripheral operations siInultaneously; the other processors can perform. as many as sixteen

siInultaneous peripheral operations. While all these operations are being executed, the central

proce s sor continue s its internal proce s sing. The ability to perforIn sim.ultaneous peripheral

1-6 AG28

operations derives from. an internal unit of the central processor - the input/output traffic

control - that guarantees a peripheral control access to m.ain m.em.ory when data is to be

transferred. The m.anner in which the traffic control does this is explained in Section II. The

data path used by the traffic control to transfer data (see Figure 1-7) is de scribed below.

Peripheral Addre s ses and Unit Loads

When installed in a Series 2000 com.puter system., peripheral controls (and their asso­

ciated devices) are perm.anently connected to the system.. Each control is assigned one or two

addresses, depending on the num.ber of directions in which it can transfer data. It is by these

peripheral addresses that the controls are designated in input/output instructions. For exam.ple,

a card reader and its associated control can transfer data in only one direction - into the

central processor. The reader control is therefore assigned one address by which it is always

de signated in an instruction. A com.bination card reader / card punch and control can transfer

data in two directions - into and out of the processor. It is thereby assigned two addresses:

one addre ss is used to specify an input (card read) operation, while the other is used to specify

an output (card punch) operation.

Main
Mem.ory

I/O ""C

Traffic "

Control
, -

P
I

-

-
-

eripher
nterfac

al
e

Peripheral
Control

Figure 1-7. Basic Input/Output Data Path

Peripheral

- Device

The num.ber of peripheral controls which a Serie s 2000 processor can accom.m.odate

depends upon four factors: (1) the num.ber of "unit loads" of power required by the controls to

be connected; (2) the num.ber of unit loads available from. the processor; (3) the num.ber of

peripheral addresses required to operate the controls; and (4) the num.ber of address assign­

m.ents that the processor provides. A peripheral control m.ay require either one or two unit

loads ?! power and either one or two addresses. The num.bers of unit loads and address assign-

-ments available with each Series 2000 processor are shown in Figure 1-8. The num.bers of

unit loads and address assignm.ents required by each peripheral control are shown in the sum..­

m.ary table s of the peripheral equipm.ent (Table s 1-1 through 1-13).

1-7 AG28

Read/Write Channel

Note that the permanent connection established in Figure 1-7 is incomplete: there is no

connection across the peripheral interface. The input/output data path is completed by one or

more "read/write channels, " inserted in the data path when the input/output instruction is

executed. (More than one read/write channel is sometimes necessary in order to accommodate

the high data transfer rate s of some devices.) A read/write channel is not permanently con­

nected to any peripheral control but is assigned by the programmer or operating system to

specify the data path between a control and the processor.

Type

2071

2061

2051

2041

204lA

2051A

Address Assignments/Unit Loads

~ Basic Optional

80

80

Figure 1-8. Address Assignments and Unit Loads Available in Series 2000 Processors

When the programmer code s an input/ output instruction, he spe cifie s among other thing s

the address of the peripheral control that is to send or receive data and the read/write channe1(s)

over which the data transfer is to take place. When the instruction is executed, the specified

read/write channel is automatically inserted in the peripheral interface. For example, Figure

1-9 shows the data path formed during the execution of an input/output instruction in which the

programmer specifies that the card reader control is to transfer data over read/write channel

2 (RWC2). The specified channel remains in the interface only for the duration of the card read

operation. When the data transfer terminates, RWC2 is automatically removed from the inter­

face and is available for reassignment by another instruction.

CENTRAL PROCESSOR

Figure 1-9. Data Path During Card Read Operation

1-8 AG28

Read/write channels are the key to the achievable simultaneity in a Series 2000 model:

the number of read/write channels associated with a particular processor determines the

number of peripheral operations that can be performed simultaneously by the proce ssor (see

Figure 1-6).

PERIPHERAL EQUIPMENT

Series 2000 includes a wide variety of peripheral devices not only of different kinds, but

also on several performance levels for the same kind.

PUNCHED CARD EQUIPMENT
\ ..

Seven different punched card units are offered: five card reader s, a card punch, and a

card reader/punch. Table 1-1 lists the card devices available within Series 2000. Note that

a card device requires either one or two address assignments depending on the number of

functions the device perfor:ms.

Table 1-1. Punched Card Equipment

No. Unit
No. Loads Re-

Device Devices quired by Address
Per Control & Assign-

Type Function Read/Punch Speed Control Device ments

123
a

Card Reader 400 cards /minute 1 1 1

123_2a
Card Reader 600 cards/minute 1 1 1

123_4
a

Card Reader 1050 cards Iminute 1 1 1

223 Card Reader 800 cards/minute 1 1 1

223-2 Card Reader 1050 cards /:minute 1 1 1

214-1 Card Punch 100-400 cards /minute 1 1 1

214-2 Card Reader / Read: 400 cards/minute 1 1 2
Punch Punch: 100 -400 cards /

minute

a Available only on Models 2040, 2040A, and 2050A integrated controls.

HIGH-SPEED PRINTERS

Ten types of printers (see Table 1-2) produce printed reports, listings, etc., at speeds

that vary from 300 to 1,300 lines per minute. Processed information is printed from any

programmer-assigned area in me:mory. A single program instruction - the Move Characters

and Edit instruction - allows the program:mer to punctuate the output data, suppres s zeros,

and insert identifying sy:mbols in the data prior to printing.

1-9 AG28

•

Print Buffer

With the addition of the Print Buffer (Feature 036) to the 222-3, 222-3N, 222-4, 222-6,

or 222-7 printer, the am ount of central proce ssor memory cycle s required for data transfer

to the printer is reduced to less than 1%. Thus, more than 99% of the central processor time

is available for program execution.

Table 1-2. High-Speed Printe r s

No. No.
Printers Unit

Print Speed Per Loads Address
Type

a
(line s I minute) Control Required Assignments

112b 300 1 1 1

112_3
b

650 1 1 1

122_3
b

650 1 1 1

122_4
b

950 1 1 1

122_6
b

1100 1 1 1

222-3 650-1,300 1 1 1

222-3N 650 1 1 1

222-4 950-1, 266 1 1 1

222-6 1100 1 1 1

222-7 300 1 1 1

a All printers can have 120 (standard) or 132 (optional) print positions.

b Available only on Models 2040, 2040A, and 2050A integrated controls.

MAGNETIC TAPE UNITS

Magnetic tape is a com.pact, highly ver satile medium for the storage of program.s and

data files. A com.plete family of units is available with the Series 2000 processors (see Table

1-3). The se tape units transfer data at speeds ranging from. 7,200 to 224,000 characters per

second.

1200-BPI Recording Density

The 1200-bits-per-inch recording density (Feature 054) provides the Type 204B-9 Mag­

netic Tape Unit with the capability of reading and writing data at a density of 1200 bits per inch

(bpi) on high-resolution 1/2-inch magnetic tape. The 1200-bpi recording density enables the

204B-9 to achieve a transfer rate of 144,000 characters per second. Similarly, the 1200-bpi

recording density (Feature 055) allows the 204B-7 to operate at 43, 200 character s per second.

1600-BPI Recording Density

A 1600-bits-per-inch recording density is standard on the Type 204D-l, -3, and -5;

204D-3A and -5A; and 204F-l, -3, and -5 tape units. This density, in conjunction with tape

1-10 AG28

transport speeds of 35, 70, or 105 inches per second, enables tnaxitnutn transfer rates of

74,600, 149, 300, or 224,000 characters per second when the cotnpatibility tnode is specified.

Dynatnic Tape Addressing

Feature 056, Dynatnic Tape Addressing, allows the changing of tape unit addresses while

the processor is in the RUN tnode; i. e., entering the STOP tnode is unnecessary. This feature

is available for use with all 1/2-inch tnagnetic tape controls.

Type

204B-l
204B-2

204B-3
204B-4

204B-5

204B-7

204B-8

204B-9

204D_l
a

204D-3
a

204D_5a, b

204D-3A

204D-5A b

204F-l

204F-3

204F_5
b

Table 1-3. Magnetic Tape Units

Data 'rransfer Rate
(characters/ second)

No.
Device s

Per
Control

No. Unit
Loads Re­
quired by
Control &
Devices

1/2-Inch Magnetic Tape Units (Seven-Track)

} 7,200/19,980

} 16,000/44,500

24,000/66,700

20,000/28,800 (or 7,200/
28,800 or 20,000/43,200
or 28,800/43,200)

44,500/64,000 (or 16,000/
64,000)

66, 700/96, 000 (or 24,000/
96,000 or 66,700/144,000
or 96,000/144,000)

1-8

1-8

1-8

1-8

1-8

1-8

1/2-Inch Magnetic Tape Units (Nine-Track)

37,300/74,600

74,600/149,000

112,000/224,000

74,600/149,300

112,000/224,000

37,300/74,600

74,600/149,300

112,000/224,000

1-8

1-8

1-8

1-8

1-8

1-8

1-8

1-8

2

2

2

2

2

2

2

2

2

2

2

2

2

2

a As-available only.

bRestricted to use on buffered sector. Not available on Model 2040.

1-11

Address
Assign­
tnents

2

2

2

2

2

'2

2

2

2

2

2

2

2

2

AG28

IBM Magnetic Tape Compatibility

IBM Magnetic Tape Compatibility (Features 050 and 051 on the seven-track tape units;

Feature 052 on the nine-track tape units) enables the processing of tapes that have been written

at appropriate densities by IBM tape units or to write tapes to be read by these units. This

capability includes end-of-file mark recognition (tape-mark sensing), and the ability to translate

between IBM even-parity BCD code and the Honeywell Series 200/2000 central processor code.

Feature 052 is applicable to nine-track units in seven-track compatibility mode and seven-track

tape units connected to the 203D tape control.

EBCDIC Code Translation

On Type 203D and 203F Tape Controls with nine-track tape units, Feature 1052, an

EBCDIC Code Translator, enable s hardware conver sion of a sub set of the IBM eight-level

Extended Binary Coded Decimal Interchange Code (EBCDIC) to the Series 200/2000 six-bit

central processor code, and vice versa.

DISK PACK DRIVES

Honeywell disk pack drives combine the unlimited shelf storage of magnetic tape with the

fast direct acce ss of disk storage. With the use of removable disk packs, data can be recorded,

stored indefinitely (like magnetic tape), and rapidly reinserted in an on-line drive. The various

disk pack drive s are Ii sted in Table 1- 4.

Various features are available for use with the disk pack drives. Table 1-5 lists the

features and indicate s whether the feature is standard or optional. When a feature is optional

to a disk pack drive, the appropriate feature number is given.

1-12 AG28

Table 1-4. Disk Pack Drives and Disk Subsystems

Single -Spindle Units

Data Storage Capacity Max. Unit
Per Drive Data Transfer Rate Drives Per Loads Address

Type (characters) (characters/ second) Control Required Assignments

258 4.6 million 208,333 8 1 2
258B 4.6 million 147,500 8 1 2
259 9.2 million 20.8,333 8 1 2
259B 9.2 million 147,500 8 1 2
273 18.4 million 208,333 8 1 2

Multispindle Units

Data Storage Capacity Max. Unit
Per Drive Data Transfer Rate Spindles Loads Address

Type (characters) (character's/ second) Per Control Required As s ignments

274 147.2 million 208,333 9 1 2
278-5 175 million 416, 000 5 1 2
278-6 210 million 416,000 6 1 2
278-7 245 million 416,000 7 1 2
278-8 280 million 416,000 8

1
1 2

278-9 280 million 416,000 8 1 2

Dis k Subsystems

Data Storage Capacity No. Drive,s Unit
Per Subsystem Data Transfer Rate Per Loads Address

Type (characters) (characters/ second) Subsystem Required As s ignments

275-2 36 .8 million 208,333 2 1 2
277-2 128 million 167, 000-500, 000

2
2 1 2

279-2 251.4 million 167, 000-500, 0002 2 1 2

Dis k Subsystem Expansion

Data Storage Capacity No. Drives Unit
Per Additional Data Transfer Rate That Can Be Loads Address

Type Drive (characters) (characters/ second) Added Required Assignments

275 18.4 million 208,333 6 1 2
277 64 million 167, 000-500, 000 2 6 1 2
279 125.7 million 167, 000-500, 000 2 6 1 2

1
The 278-9 has a spare spindle off-line.

2
The 277 and 279 transfer rate is dependent upon central processor R WC allocation.

1-13 AG28

Table 1-5. Disk Pack Drive Features

258 258B 259 259B 273

Feature

Write Protect 074 074 074 074 074
Capability

Dynam.ic Disk 076 076 076 076 076
Addressing ...

Central Processor 079 079 079 079 079
Finished

Standby - - - - -
Eight-Bit Transfer - - - - -

274 275-2 277-2 278-5 279-2
through
278-9

Feature

Write Protect Std 074 074 Std Std
Capability

Dynamic Di sk Std 076 076 Std . 076
Addressing

Central Proce ssor Std 079 - Std -
Finished

a
Standby - - Std - Std
Eight-Bit Transfer - - 077 - 077

aFunctionally Identical to Central Processor Finished.

Write Protect Capability

A Write Protect Capability (Feature 074) allows the operator to protect individual disk

pack drive s from inadvertent writing via an alternate -action push-button switch on each disk

drive. In the permit mode the drive operates as specified; in the protect mode, an attempt to

write results in a protect violation status in the disk control address register. This register

can be interrogated by the programmer.

Dynamic Disk Addressing

Feature 076 (Dynamic Disk Addressing) allows the changing of disk addresses while the

processor is in the RUN mode; i. e., entering the STOP mode is unnecessary.

Central Processor Finished

The Central Processor Finished capability (Feature 079) allows the programmer to issue

a special Peripheral Control and Branch (PCB) instruction to the disk pack drive. Upon receipt

1-14 AG28

of this instruction, power is automatically removed from the drive and a visual indicator is

illuminated. This feature minimizes setup time.

Eight-Bit Transfer

The eight-bit transfer capability allows data to be transferred between a disk control and a

a central processor in an eight-bit transfer mode. Data may also be transferred in the standard

Series 200/2000 six-bit transfer mode.

RANDOM ACCESS DRUMS

The Serie s 2000 drum storage capability feature s a drum control that can direct from

one to eight magnetic drums, each capable of storing 2.6 million characters of information

(see Table 1-6). Thus, a single drum subsystem can have a total capacity of over 20 million

character s. Any record stored on the drum. can be located in 27 milliseconds (average) and

can be transferred at the rate of Ill, 000 character s per second.

Table 1-6. Random Access Drum Units

No. Unit
No. Loads Re-

Drums quired by Address
Data Storage Capacity Per Control & Assign-

Type Per Drum Data Transfer Rate Control Devices ments

270A-I 2.6 million characters 111,000 characters/ 1-8 1 2
through second
270A-8

HIGH-SPEED DISK FILE

The high- speed di sk file is a fixed-head storage device that offer s high speed perform­

ance with fast access time. Up to four devices can be operated with a single control, and thus

a control's capacity may amount to over 16.8 million characters. Any record stored on the

disk files can be located in 8.6 milliseconds (average).

Angular Position Indicator

Feature 072 (Angular Position Indicator) provides for optimum addressing of the

Type 266 High-Speed Disk File. Information is provided at any given time as to the current

position relative to 360 degrees of rotation. Under heavy load conditions with many demands

waiting to be executed, the average access time of the Disk Files may be substantially reduced.

1-15 AG28

Table 1-7. High-Speed Disk File

No. Unit
No. Loads Re-

Devices quired by Address
Data Storage Capacity Per Control & Assign-

Type Per Disk File Data Transfer Rate Control Devices ments

266 4. 2 million character s 300,000 char. / sec. 1-4 1 2

PAPER TAPE EQUIPMENT

Paper tape is an ideal medium for recording data that originate s at locations distant from

a central Serie s 2000 installation and, a s such, become s particularly significant in data commu­

nication networks. A variety of standard commercial codes may be used with this relatively

inexpensive medium. Three paper tape devices are offered in Series 2000 (see Table 1-8).

Table 1-8. Paper Tape Equipment

No. Unit
No. Loads Re-

Devices quired by Address
Device Per Control & Assign-

Type Function Data Transfer Rate Control Devicesa ments

209 Pa per T ape Reader 600 frames / second 1 2 1

209-2 Paper Tape Reader 600 frames / second 1 2 1

210 Paper Tape Punch 120 frames/second 1 2 1

a The total load requirements for the combination of a 209 (or 209- 2) reader and a
210 punch is 2 unit loads.

DATA COMMUNICATION EQUIPMENT

To communicate between a central site (e. g., home office) and remote locations (e. g.,

branch office, warehouse, etc.) the Serie~ 2000 system must have communication equipment.

The two types of communication equipment which allow remote communication with a Series

2000 processor are hardwired communication controllers and a front-end network processor.

Honeywell provide s two type s of hardwired communication controller s:

1. The Type 281 Single-Line Comm.unication Controller

a. Type 281-1 (asynchronous)

b. Type 281-2 (synchronous)

2. The Type 286 Multiline Com.munication Controller

a. Type 286-1, -2, -3 (character mode)

b. Type 286-4, -5, -6, -7 (message mode)

The single-line communication controller interface s with only one communication line

(either leased private, switched network, or direct connect). The multiline communication

controller inter face s with multiple line s simultaneously. Depending on the type, from one to

63 line s can be serviced.

1-16 AG28

The DATANET 2000 Front-End Network Processor can handle from 1 to 120 asynchronous

or synchronous line s simultaneously. Unlike hardwired controller s, the DAT ANET 2000

relieves the Series 2000 processor of the overhead required to support communications. The

DATANET 2000 is responsible for code translation, line discipline, core or disk queuing,

automatic retransmis sion upon detection of error, etc.

The characteristics of both hardwired controllers and the front-end processor are given

in Table 1-9.

Table 1-9. Data Communication Equipment

Maximum Unit

Device
Transmission No. Lines Loads Address

Rate Per Per Assign-
Type Function Per Line Controller Controller ments

Hardwired Communication Controller s

281-1 A synchronous Single - Line 1800 bits / second 1 1 2
Communication Controller

281-2 Synchronous Single - Line 50, 000 bits / second 1 2 2
Communication Controller

286-1, Character Mode Multiline 4800
-2, -3 Communication Controller bits/ second/line 1-63 2 2

286-4, Me ssage Mode Multiline 9600
-5, -6, -7 Communication Controller bit s/ second/line 1-63 2 2

Front-End Network Processor

DATANET Front-End Network 10,800
2000 Processor bit s / second/line 1-120 1 2

A major requirement of many communication networks (e. g., inquiry handling or message

switching applications) is fast access to a stored file. Files may sometimes be stored in main

memory, but for large file s main memory storage is economically unfea sible. File storage

units (i. e., the disk pack drives or drum units) fulfill the requirements of these applications.

A typical data communication network is shown in Figure 1-10. The pertinent components

of this system are: (1) a Series 2000 central processor; (2) a Type 273 Disk Pack Drive; (3) a
1

Type 281 Communication Controller, (4) two data sets ; and (5) the remote terminal.

A VIP Single Display Station is used in this example: a keyboard by which the inquiry is

transmitted to the central processor, and a CRT which displays the answer to the inquiry in

readable form.

CONSOLES

Characteristic s of the Type 220 console s, de scribed previously, are listed in Table 1-10.

1 A data set is required to convert the data signals used by the communication control to signals
acceptable for transmission over communication line s and vice ver sa.

1-17 AG28

Table 1-10. Console Equipment

No. Unit
No. Loads Re-

Device
Devices quired by Address

Per Control & Assign-
Type Function Data Transfer Rate Control Devices ments

220-3, Operator r s Console Typing speed (input); or n/a 1 2
-6 10 char. /sec. (output)

220-8 Visual Information Typing speed (input); n/a 1 2
Control Console 30 char. / sec. (printer

output); 480 char. / sec.
(display output).

VISUAL INFORMATION PROJECTION (VIP) DEVICES

Cathode-ray tube (CRT) display units - for businesses requiring instantaneous visual

access to data stored in computer files - are available to the Series 2000 user. These devices

ate on-line to the computer, either locally via direct physical connection or from remote.

locations via communication facilities. An eight-bit code (seven-bit ASCII plus parity) is used

for synchronous transmission and a 10-bit code (seven-bit ASCII plus parity and start and stop

bits) for asynchronous transmission.

Both single-station and multistation systems are available; both types of systems offer

a wide range of screen sizes. Keyboards include both alphanumeric typewriter layout and

block-numeric keys as standard feature s.

Table 1-11. Visual Information Projection Device s

No. VIP No. Unit
Device s Loads Re-

Device Per Com- quired by Address
munication Control & Assign-

Type Function Data Transfer Rate Controller Devices ments

2323 Single-Display 1200-2400 bps 1 not not
Station applicable applicable

2317 Multi station 1200-2400 bps 2-36 not not
Display System applicable applicable

765 A synchr onou s 2000-2400 bps 1-20 n/a n/a
Single/Dual/
Cluster
Configurations

775 Synchronous 2000-2400 bps 1-20 n/a n/a
Single / Dual/
Cluster
Configurations

785 Synchronous 2000-2400 bps 1-8 n/a n/a
Single Station

1-18 AG28

2

3

4

5

6

7

8

DATA SET

DATA SET

TYPE 281
COMMUNI­
CATION
CONTROLLER

TYPE 257
DISK
CONTROL

TYPE 273
DISK PACK DRIVE

1. Customer inquiry is typed on keyboard in
form of a coded message.

2.

3.

4.

5.

Message signals are converted to a form
acceptable for transmission line.

Me s sage is transmitted over transmis s ion
line.

Message signals are reconverted.

Controller generate s interrupt signal and trans­
fers incoming message to preassigned
memory location a s directed by inter rupt
service routine or communications
program.

6. Stored interrupt servi£e routine or communica­
tions program interprets message and issues
instructions to read and update the customer's
record in a file stored in Type 273 Disk Pack
Drive.

7.

8.

Type 257 control directs the execution of the
instructions is sued by the stored interrupt
program.

Customer's record is read and updated
according to instructions. Record is read
into preassigned location in interrupt
routine (in central processor memory),
from which the answer to the inquiry is
sent back to the display unit.

Figure 1-10. Custome r Inquiry Handling via Typical Communications Network

1-19 AG28

TELLER TERMINAL EQUIPMENT

Honeywell Teller Terminal equipment permits more efficient banking procedures thr-ough

over-the-counter, on-line processing of all teller-assigned transactions. The Type 7330 and

7340 Teller Terminal is used by the teller for all his bank transactions. The teller terminal

transmits transaction information to the computer. Data is transmitted asynchronously via a

modified ASCII-type code, permitting combinations of similarly coded terminal devices to

share comIllon networks. This code consists of a start bit, seven data bits, an even parity bit,

and a stop bit. Specifications of the Type 7330 and 7340 are shown in Table 1-12.

Table 1-12. Teller TerIllinal Equipment

Maximum No. Unit
No. Terminals Loads Re-

Device Per quired by Address
Interface Transceiver Assign-

Type Function Data Transfer Rate Unit & Devices ments

7330 Teller Terminal 120 character s / record 10 not not
& applicable applicable 7340

FEA TURES AND POWER MODULES

The various features that enhance Series 2000 systems are described in the following

paragraphs. These features, which were available as options in Series 200 models, are stan­

dard in most Series 2000 models.

Power Illodules for Model 2040A and 2050A systems are described in Tables 1-13 and 1-14,

re spectively.

ADVANCED PROGRAMMING

Advanced Programming provide s the Serie s 2000 user with additional program instructions,

the ability to modify instruction addresses via indexed or indirect addressing, and a "read

reverse" capability with magnetic and paper tape units.

PROGRAM INTERRUPT

Program Interrupt is standard. A detailed description of program interruption, includi~g

conditions that must be pre sent for an interrupt to occur, proce ssor activitie s that are auto­

matically performed when the interrupt takes place, and the prograIllming of interrupt service

routines, is given in Section II.

EDIT INSTRUCTION

With a comprehensive instruction, Move Characters and Edit, processed information is

edi~ed before being converted to an output medium (e. g., a printed document) by the suppression

1-20 AG28

of unwanted characters and symbols and the insertion of identifying symbols such as the dollar

sign, decimal point, and asterisk.

STORAGE PROTECTION

This feature allows a programmer- specified portion of the main memory (and the con­

tents thereof) to be shielded from accidental alteration by programs running concurrently in

the memory. An attempt to violate the protection of this area results in an "internal" pro­

ce ssor interruption. The program or programs running in the protected memory area have

15 additional index register s at their disposal; these register s can also be used by programs

in the unprotected (or "open") memory area if desired. Storage Protection is described in

Se ction· II.

EXTENDED MULTIPROGRAMMING AND EIGHT-BIT TRANSFER

Proce s sing capabilitie s are greatly increa sed by the Extended Multiprogramming and

Eight-Bit Transfer feature. In addition to the capabilitie s supplied by the Storage Protection

feature, extended multiprogramming provides storage protection with memory address reloca­

tion (or base relocation), interrupt masking, and instruction timeout. The eight-bit transfer

capability gives the various models increased flexibility by allowing either eight-bit or six-

bit information transfers between certain peripheral controls and main memory. The

Extended Multiprogramming and Eight-Bit Transfer capabilitie s are de scribed in Section II.

SCIENTIFIC UNIT AND SCIENTIFICSUBPROCESSOR

The Scientific Subprocessor and Scientific Unit are two functionally-identical units that

add 14 floating-point instructions to the Serie s 2000 repertoire.

The Scientific Subprocessor is standard with Model 2070 processor and is optionally

available, as PM3A50, with Model 2050A systems.

The Scientific Unit, as Feature 1100A, is optionally available with Models 2040, 2050,

and 2060. As PM3A40, it is optional in the Model 2040A.

The Scientific Subprocessor and Scientific Unit are described in Appendix D.

HIGH-RESOLUTION CLOCK

The High-Resolution Clock is standard on the Type 2051C, 2051A, 2061, and 2071 pro­

cessors. A similar feature, the Accounting Timer, is available as PM4A40 with a Type

2041A processor. These features allow elapsed processing tiIne, the time the processor

spends in the RUN mode with access to memory, to be carefully measured and maintained.

1-21 AG28

Under program control, the count can be stored in main memory and printed out on the console.

An automatic interrupt is generated if a given program is still acce ssing memory when the full

range of the clock is reached; this interrupt can be used, also under program control, to store

the time and reset the timer.

Table 1-13. Model 2040A Power Modules

Power
Module De scription

PMIA40

PMIB40

PM2A40

PM2B40

PM3A40

PM4A40

Power
Module

PMIA50

PM1B50

PM2A50

PM2B50

PM3A50

Replaces second I/O sector with a buffered sector

Adds buffered third sector (Power Module PMIA40 must also be
present.)

1. 5 microseconds memory cycle time (per two characters)

1. 0 microsecond memory cycle time (per two characters)

Scientific Unit

Accounting Timer

Table 1-14. Model 2050A Power Modules

De scription

Replaces second I/O sector with two buffered sectors

Adds buffered fourth and fifth sector s (Power Module PMIA50 must
also be pre sent.)

1.5 microseconds memory cycle time (per four character s).

1. 0 microsecond memory cycle time (per four characters).

Scientific Subproce s sor

EXPANDED INSTRUCTION PACKAGE

This capability enhances the instruction repertoire of the processor and affords increased

compatibility with competitive equipment. Thi s feature provide s two additional instructions

Move or Scan (MOS) and Table Lockup (T LU) - and also includes the "S" (Special) mode of

processing. The "S" mode of processing, which is implemented by the variant character of the

Change Addressing Mode (CAM) instruction, enables the processor to manipulate the Add,

Subtract, Zero and Add, Zero and Subtract, and Branch if Character Equal instructions in a

special way. All of the above instructions are described in Section VIII of this manual.

1-22 AG28

SECTION II

THE CENTRAL PROCESSOR

A Series 2000 central proces sor is logically divided into five basic units (see Figure

2-1): a main memory, a control memory, an arithmetic unit, a control unit, and an input/

output traffic control.

MAIN MEMORY

...

CONTROL MEMar(I/O
TRAFFIC
CONTROL

Figure 2-1. Logical Division of Series 2000 Central Processor

MAIN MEMORY

1
The main memory contains from 49, 152 to 1,048,576 character locations of magnetic

core storage that are used to store program instructions and data during a program run (see

Figure 2-2) •. Every character location is identified by a unique numeric address. This means

that an instruction can designate the exact storage locations that contain the data needed for a

particular operation.

1 .
Only access to memory of up to 524,288 characters is described in this manual.

2-1 AG28

MAIN MEMORY

Figure 2-2. Main Memory Functions

Figure 2-3 shows one character position of memory with the name of each core shown to

the right. Each core can be individually magnetized to represent either a 1 or a 0, depending

upon its polarity. Moving from bottOlTI to top in Figure 2-3, the first six cores are used for

data storage, the seventh and eighth cores are used to define the lilTIits of storage areas (these.

two cores are frequently referred to as "punctuation" bits), and the ninth core is used for parity

checking.

0 FMITY BIT (P)

0 ITEM-MARK BIT (N) }
PUNCTUATION BITS

0> WORD-MARK BIT (WM)

0 B BIT} ZONE BITS
o· A BIT

0> am] DATA BITS

Q 4 BIT NJMERIC
BITS

0> 2 BIT

0 I BIT

Figure 2-3. One Memory Position

B
I
T
C o
N
F
I
G
U
R
A
T
I
o
N

P®O~®OO@O
1M 00000000
WMOOOOOOOO
BOOOO~@®O
AOOO®O@~@)
800000000
40000<I)OOO
20000000@
OO~OO®OO

Figure 2-4. Representation of Characters
in Magnetic Core Storage

2-2 AG28

Figure 2-4 shows how typical numeric, alphabetic, and special characters are stored in

the main memory. Shaded circles represent cores containing I-bits. Bits 1, 2, 4,. and 8 in

each character position can be combined to represent the decimal values 0 through 9. This

four-bit representation of decimal numbers is known as binary-coded decimal (BCD). Alpha­

betic and special characters are represented by a combination of the numeric (1, 2, 4, and 8)

and the A- and B-cores. The A- and B-cores correspond to zone punches on cards: the A-bit

represents a 12-punch, the B-bit represents an II-punch, a combination of the A- and B-bits

represents a O-punch. A listing of the main memory formats for all valid Series 2000 charac­

ters appears in Appendix B.

The word-mark bit (WM) is used to define logical storage fields in the memory. In­

formation is rarely stored in the memory as single, independent characters; instead, adjacent

character positions are usually grouped to form storage fields. As described in Section III,

the wordmark bit is instrumental in defining the size of such fields.

Consecutive storage fields are frequently grouped together to form a unit of information

called an item. As its name implies, the item-mark bit (1M) is used to define the size of an

item in the main memory (see Section III).

A unit of information that is to be transferred between the main memory and a peripheral

device is called a record. A record can be of any length, from one character up to virtually

the maximum number of characters in the memory. Both the word-mark and item-mark bits

are used in defining the size of a record (see Section III) •

The parity bit (P) is us ed in conjunction with an automatic error -detection technique

known as parity checking. Every memory position must be represented in the central pro­

cessor by an odd number of I-bits. (Punctuation bits are excluded from this rule except in the

multicharacter proces sors.) Whenever a character is moved from one location to another it

is automatically checked to determine if an odd number of data I-bits have been moved. In

Figure 2-4, the characters 0, 9, B, M, and (are represented by an even number of ones in

the data bit positions • Circuitry within the central processor automatically adds a one in the

parity bit positions of these characters to provide the required odd bit count.

MEMOR Y CYCLE

The time interval required by a processor to read or write the contents of a unit location

is termed memory cycle time. For the processors described in this manual, memory cycle

time ranges from 1.6 microseconds per character (Model 2040) down to 1.0 microsecond per

four contiguous characters (Model 2070).

2-3 AG28

CONTROL MEMORY

The control memory is a high-speed storage unit consisting of up to 64 control registers.

(The number of registers actually available depends on the system configuration.) Normally,

control registers contain the addresses of instructions and data being processed durip.g a pro­

gram run. One such register, called the A-address register, is illustrated in Figure 2-5. In

this example, the A-address register contains an address (206) designating a main memory

location, which in turn contains a unit of information (the decimal digit 7).

ADDRESS ---+l:-;"';~";~OS·~

CONTENTS OF -+...-......... ,
LOCATION 206

CONTENTS OF
A-ADDRESS REGISTER

Figure 2-5. Typical Control Register Function

In single-character Series 2000 processors that do not include the Scientific Unit

(Feature llOOA), each control register is only as large as it need be to contain the largest,

or "highest, II main memory address in the user's processor. When the Scientific Unit is

included in the system, each control register is 18 bits long. Thus, a processor whose main

memory capacity is 49, 152 characters contains control memory registers that are each 16

bits long (16 bits allow 65, 536 addresses), while the control registers of a processor containing

131,072 characters of memory storage are each 17 bits long (see Table 2-1). In a multi­

character proces sor with up to 524,288 memory locations, 19 control register bits are active.

Table 2-1. Size of Control Memory Registers

MAIN MEMORY 49,152 65,536 131,072 262,144 524,288
CAPACITY
(Characters)

SIZE OF CONTROL 16 16 17 18 19
MEMORY REGISTER
(Bits)

2-4 AG28

Control registers can be addressed either by programmed instruction or from the opera­

tor's control panel or console. For instance, an instruction can change the course of a prograITl

by manipulating the contents of the control register that governs program sequence; the operator

can interrogate a control register to determine the exact location at which the prograITl has

halted, etc. When a register is addressed by programmed instruction, it is specified by ITleans

of a variant character in the instruction. A register is addressed from the control panel or

console by using the register's octal addres s. The functional name of each register and the

variant character which specifies the register are listed in Table 2-2.

ADDRESS REGISTERS

The A- and B -address registers, the two sequence registers, and the interrupt registers

are used to address main memory during the loading and execution of instructions. A detailed

description of these registers is presented in Section N, "Addressing."

READ /WRITE COUNTERS

Data is transferred between the main ITlemory and a peripheral device via a read/write

channel (described in Section I). Two location counters are as sociated with a read /write

channel: a starting location counter and a current location counter. When a peripheral transfer

is to be performed, the address at which the transfer is to begin is stored in both counters.

Then, as each successive character is transferred, the contents of the current location counter

are incremented (or decreITlented) by one so that when the transfer is cOITlpleted, this counter

contains the address of the character position iITlmediately following (or preceding) the position

of the last character transferred. In transfers rated at less than 167 KC, the current location

counter is one beyond the record-marked location. For higher transfer rates, consult the

appropriate peripheral reference manual.

The availability of starting and current addresses associated with an input/output area

greatly simplifies the manipulation of variable-length records.

2-5 AG28

Table 2-2. Control Memory Registers

Mnemonic Variant
Designation Function Character

Registers Standard in All Processors

AAR A-Address Register 67

BAR B-Address Register 70

SR Sequence Register 77

CLCI Read /Write Channel 1 - Current Location Counter 01

CLC2 Read /Write Channel 2 - Current Location Counter 02

CLC3 Read /Write Channel 3 - Current Location Counter 03

SLCI Read /Write Channel 1 - Starting Location Counter 11

SLC2 Read /Write Channel 2 - Starting Location Counter 12

SLC3 Read /Write Channel 3 - Starting Location Counter 13

WRI Work Register l
a --

WR2 Work Register 2
a - -

WR3 Work Register 3
a --

CSR Change Sequence Register 64

EIR External Interrupt Register 66

IIR Internal Interrupt Register 76

CLCll Read /Write Channel 11 - Current Location Counter 05

SLCl' Read /W rite Channel I' - Starting Location Counter 15

CLC4 Read /Write Channel 4 - Current Location Counter 21
CLC5 Read /Write Channel 5 - Current Location Counter 22
CLC6 Read /Write Channel 6 - Current Location Counter 23
CLC4' Read /Write Channel 4' - Current Location Counter 25

SLC4 Read/Write Channel 4 - Starting Location Counter 31
SLC5 Read /Write Channel 5 - Starting Location Counter 32
SLC6 Read/Write Channel 6 - Starting Location Counter 33
SLC4' Read /Write Channel 4' - Starting Location Counter 35

CLC5' Read/Write Channel 5' - C:;urrent Location Counter 26
CLC6' Read /W rite Channel 6' - Current Location Counter 27

SLC5' Read /W rite Channel 5' - Starting Location Counter 36
SLC6' Read/Write Channel 6' - Starting Location Counter 37

CLC8 Read /W rite Channel 8 - Current Location Counter 00
CLC9 Read/Write Channel 9 - Current Location Counter 20

SLC8 Read /W rite Channel 8 - Starting Location Counter 10
SLC9 Read /Write Channel 9 - Starting Location Counter 30

CLC8' Read/Write Channel 8' - Current Location Counter 04
CLC9' Read /Write Channel 91 - Current Location Counter 24

SLC8' Read/Write Channel 8' - Starting Location Counter 14
. SLC9' Read /W rite Channel 9' - Starting Location Counter 34

2-6 AG28

Table 2-2 (cont). Control Memory Registers

Mnemonic Variant
Designation Function Character

Registers Standard in All Processors

CLC2' Read/Write Channel 2' - Current Location Counter 06
CLC3' Read /W rite Channel 3' - Current Location Counter 07

SLC2' I{ead/W rite Channel 2' - Starting Location Counter 16
SLC3' Read/Write Channel 3' - Starting Location Counter 17

Scientific Unit/Scientific Subprocessor

ACO Floating -Point Ac'cumulator Ob --
--
--

ACl Floating -Point Accumulator 1 b --
--
--

AC2 Floating-Point Accumulator 2b - -
--
--

AC3 Floating -Point Accumulator 3
b --

Registers on Multicharacter Processors Only

WR4 Work Register 4
a --

WRS Work Register Sa --
WR6 Work Register 6

a --
WR7 Work Register 7

a --
ATR Accounting Timer Register S4

aThese registers are available only to the processor and must not be addressed
by the program.

bThese registers (accumulators) can be addressed only by the instructions included
in the scientific unit or subprocessor (see Appendix D).

2-7 AG28

ARITHMETIC UNIT

Arithmetic and logical operations are performed by a configuration of components com­

monly referred to as the arithmetic unit. Basically, this unit is composed of an adder, capable
1

of performing both binary and decimal arithmetic, and two operand storage registers. In

single-character processors, each component is capable of storing a single six-bit character.

The adder and operand storage registers in the multicharacter processors can store two or

four characters at a time. In general terms, an arithmetic or logic operation is performed

as follows (see Figure 2-6):

1. An ins truction in the stored program specifies the type of operation to
be performed and the main memory storage locations of the data to be
manipulated.

2. The operands are transferred to the operand storage registers a character
or a word at a time, beginning with the rightmost character in each operand.

3. Each pair of characters (or, in the multicharacter processors, each pair of
multicharacters) that enters the storage registers is combined in the adder.
The result is stored in the main memory as specified by the program in­
struction. If a carry is generated, it is stored in the adder and combined
with the next higher-order pair of characters (or multicharacters).

~} OPERAND
STORAGE

~ REGISTERS
Ii } ADDER

Figure 2-6. Data Flow Between Main Memory and Arithmetic Unit

IThe contents of thes e registers are not acces sible to the programmer.

2-8 AG28

CONTROL UNIT

The control unit is the hub of central processor activities (see Figure 2-7). Its major

function is to select .. interpret .. and execute all of the instructions in the stored program. In

carrying out these instructions .. the control unit coordinates the various activities of receiving

data from input devices .. transferring data within the central processor .. and transferring pro­

cessed data to the output units. The main memory addresses used by the control unit in per­

forming these tasks are stored in the registers of the control memory.

MAIN MEMORY CONTROLMEMORY 1/0
TRAFFIC
CONTROL

Figure 2-7. Control Unit Activities

INPUT /OUTPUT TRAFFIC CONTROL

The input/output traffic control is .. as its name implies, the unit which regulates the flow

(or "traffic ") of data transferred during input/output activities. It works in conjunction with

the central processor control unit to allocate central processor time to input/output operations

and to identify·the peripheral controls which are to use that time to transfer data (see Figure

2-8) •

The I/O traffic control enables from 8 to 16 simultaneous input/output operations

(depending on the processor type) to occur concurrently with the internal computations of the

processor. This simultaneity is achieved by the traffic control's allocation of consecutive

memory acces s offerings to either peripheral controls or the central proces sor.

DATA TRANSFER RATES

With single-character processors .. and with the unbuffered sectors of multicharacter

processors .. one character can be transferred to or from main memory with each access to

memory. The data transfer rate of a read/write channel or time slot is therefore totally

dependent upon the number of memory accesses it is granted. For example .. if a read/write

channel or time 'slot is granted access to main memory 83, 000 times per second (once every

12 microseconds) the data transfer rate is 83, 000 characters -per-second.

2-9 AG28

With the buffered sectors of multicharacter processors, however, it is possible to trans­

fer two or four characters to or from memory with each memory access. Buffered sectors

provide temporary storage for characters being transferred between main memory and a periph­

eral control, thus adapting the slower single-character operation of the peripheral control to

the faster multicharacter operation of the processor. Because, with buffered sectors, more

than one character is transferred at a time, a given transfer rate can be sustained with fewer

accesses to memory. The data transfer rate is now dependent on the number of characters

transferred simultaneously, as well as on the number of memory accesses granted. For

example, on the buffered sector of a two-character processor, a data transfer rate of 83,000

characters -per-second can be sustained with only 41,500 memory accesses per second (one

access each 24 microseconds), since two characters are transferred each time.

; .. ~ "'. INPUT DEVICE

CONTROL

~~
i//

............ i .. >iif
BQ<x J6('

I?\r «
.:: ~

.....................

OUTPUT DEVICE

--

Figure 2~8. Input/Output Traffic Control Activities

MEMORY ACCESS DISTRIBUTION

Every peripheral data transfer involves some factor that prevents the device being used

from transferring data at a rate comparable to that of the central processor. Usually this

factor is mechanical - moving a card through the read station or a magnetic tape past the

read /write head - although in data communication it is the bit rate of the communication line.

Therefore, a peripheral device requires access to' the central processor to transfer information

to or from the main memory during only a fraction of the time that the operation is proceeding.

The periods in which the central processor is actually interrupted for data transfer are spaced

over the duration of the peripheral operation (see Figure 2-9).

2-10 AG28

- TIME REQUIRED TO COMPLETE PERIPHERAL OPERATION -- -
I'

,
~ J. I l l •

CENTRAL PROCESSOR TIME REQUIRED FOR DATA TRANSFER

Figure 2-9. Data Transfer Intervals During One Peripheral Operation

When a peripheral operation is in progress but is not using main memory (the gray areas

in Figure 2-9), another peripheral control may gain access to the main memory. This second

memory access can in turn give way to a third access by another control before the original

operation requires access to the memory again, etc. In other words, peripheral operations

can occur simultaneously with one another. The periods of time peripheral controls do not

require main memory access to transfer data are given to the central processor for its in­

ternal activities. It is the function of the I/O traffic control to direct the sharing of main

memory access by the various peripheral devices and the central processor.

As described in Section I, in order for an I/O operation to proceed, the programmer or

operating system must specify a read /write channel in initiating the peripheral instruction.

This read /write channel completes the path between main memory and the control for the

peripheral device being addressed.

The rate at which each peripheral control must transfer data over a programmer-assigned

read /write channel(s) depends on the mechanical characteristics of the device connected to the

control. Thus, the transfer intervals shown in Figure 2-9 are specified according to the device

being used. For instance, the transfer rate for the disk pack drive is considerably faster ~han

that for the card punch; therefore, the disk pack drive will require access to the main memory

more frequently than the card punch. The I/O traffic control monitors and honors the requests

for access to the main memory. The I/O traffic control decides how the memory access

offerings should be used - by a read/write channel or by the processor - as shown in Figure

2-10.

The traffic control offers consecutive memory access offerings to read /write channels,

one memory acces s offering per channel. If there is a demand on a particular channel when

the memory access is offered, the channel is granted one access to the main memory. During

this cycle, one, two, or four characters are transferred to or from memory, depending on the

processor type, sector, and transfer mode. If the channel does not require access to memory

when it is offered, the cycle is given to the central processor for internal data processing.

2-11 AG28

A sector always has six time slots. In single-character processing, each read/write

channel is permanently associated with a particular time slot. With a multicharacter processor,

read/write channels have no permanent time slot assigrunents; when an I/O instruction is

issued, an available time slot is associated with the RWC specified. Memory accesses that

are not offered to the I/O traffic control are given unconditionally to the central processor.

GIVE THE MEMORY
ACCESS OFFERING
TO THE PROCESSOR

PROCEED TO
NEXT MEMORY
ACCESS
OFFERING

GIVE THE MEMORY
YES ACCESS OFFERING TO

THE RWC FOR
DATA TRANSFER

Figure 2-10. Logical Decision Performed by Input/Output Traffic Control

Memory Access Distribution of the Type 2041 Processor

In the Type 2041 processor, access to memory is offered for input/output operations

each 1.5 microseconds. The eight read /write channels (four in sector 1 and four in sector

2) are each offered access to memory once every 12 microseconds as shown in Figure 2-11.

ELAPSED TIME I
INMICROSECONDS~_1 __ ~2 __ ~3 __ ~_4~_5 __ ~6 __ ~7 __ ~8 __ ~9~~1_0~_1_1~_1_2~

SECTOR 1
RWC's

MEMORY ACCESS
OFFERING

SECTOR 2
RWC's

Figure 2-11. Memory Access Distribution in the Type 2041 Processor

2-12 AG28

When a read /write channel is offered access to memory, it nlay transfer a single character

to or from main memory. This establishes the basic transfer rate of a read /write channel at

83,000 characters -per-second because the sequential offering of access to memory is made

83,000 times each second.

Memory Access Distribution of the Type 2041A Processor

In the basic Type 2041A processor (without input/output power modules), access to

memory is alternately offered to sector 1 and sector 2, as shown in Figure 2-12. In a

12-microsecond period read/write channels 2, 3, 5, and 6 are each offered access to memory

twice; thus each of these read/write channels has a transfer rate of 167,000 characters per

second. Read/write channels I, I', 4, and 4' are each offered access to memory once in each

I2-microsecond period; thus each has a transfer rate of 83,000 characters per second.

r----------------------------------.-.. -- .. -.-.--- .. -
ELAPSED TIME I
INMICROSECONDS~ __ ~2 __ ~_3 __ ~4 __ ~_5~ __ 6~~7~~~8~~9~~1~0~~I~I~~1~2~

MEMORY ACCESS
OFFERING

SECTOR 1
TIME SLOTS
(RWC)

SECTOR 2
TIME SLOTS
(RWC)

I 1 I
,

~ 1 I

I 4

2 I
,

2

,

I

3 I 4 I 5 I 6 1
,.

r 3 I 1 '

Ir It

5 I 6 I

7 I 8 I 9 J 10 I 11 I 12 I
r ,r

I 2 I 3 I 1 f

r
"

,
4' I 5 I 6 I

Figure 2-12. Memory Access Distribution in the Basic Type 204IA Processor

The memory access distribution of the Type 204IA processor with PM1A40 is identical

to the Type 205IC, and the memory access distribution of the Type 2041A processor with both

PMIA40 and PMIB40 is identical to the Type 2061.

Memory Access Distribution of the Type 205IC Processor

In the Type 205lC processor (and the Type 204lA processor with PMIA40), sector 1

(unbuffered) is offered alternate memory access offerings as shown in Figure 2-13. In a

12-microsecond period each sector 1 time slot receives one access to memory and may trans­

fer a single character; thus each sector 1 time slot sustains a data transfer rate of 83,000

characters per second.

2-13 AG28

ELAPSED TIME
INMICROSECONDS~~~~~~~~~~~ __ ~~~~~~~~~~~~~~

SECTOR 1
TIME SLOTS

MEMORY ACCESS
OFFERING

SECTOR 2
TIME SLOTS

Figure 2-13. Memory Acces s Distribution in the Type 20S1C Processor
and Type 2041A Proc~ssor with PM1A40.

The time slots of sector 2 (buffered) can each transfer two characters with each access

to memory. Each sector 2 time slot gains access to memory once every 24 microseconds;

thus each is capable of a data transfer rate of 83,000 characters per second.

Memory Access Distribution of the Type 20S1A Processor

In the basic Type 20S1A processor (without PM1ASO and lor PM1BSO), sector L (unbuffered)

is offered alternate memory access offerings as shown in Figure 2-14. In a 12-microsecond

period, each sector 1 time slot gains one memory access offering; thus each sector 1 time

slot sustains a data transfer rate of 83, 000 character s per second.

ELAPSED TIME
INMICROSECONDS~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTOR 1
TIME SLOTS

MEMOR Y ACCESS
OFFERING

SECTOR 2
TIME SLOTS

Figure 2-14. Memory Access Distribution in the Basic Type 20S1A Processor

The time slots of sector 2 (buffered) can each transfer four characters with each access

to lTI.emory. As they gain one access to memory every 48 lTI.icroseconds, each sector 2 time

slot has a data transfer rate of 83,000 characters per second.

2-14 AG28

When PM1A50 is added to the Type 2051A proces sor, memory access distribution is as

shown in Figure 2-15. Note that sector 1 remains the same but sector 2 now consists of two

buffered sectors. The time slots of sectors 2A and 2D gain access to memory once every 48

microseconds and can transfer four characters at a time; thus each sector 2A and 2D time slot

has a data transfer rate of 83,000 characters per second.

ELAPSED TIME
INMICROSECONDS~~~~~~~~~~~~~~~~~~~~~~~~~

SECTOR 1
TIME SLOTS

MEMORY ACCESS
OFFERING

SECTOR 2A
TIME SLOTS

SECTOR 2D
TIME SLOTS

Figure 2-15. Memory Access Distribution in the
Type 2051A Processor with PM1A50

When PM1A50 and PM1B50 are both added to the Type 2051A processor, sector 1 remains

the same but sector 2 now consists of four buffered sectors (see Figure 2-16). The time slots

of sectors 2A, 2B, 2C, and 2D gain access to memory once every 48 microse conds and can

transfer four characters at a time; thus each time slot has a· data transfer rate of 83,000

characters per second.

2-15 AG28

ELAPSED TIME
IN MICROSECONDS

SECTOR 1
TIME SLOTS

MEMORY ACCESS
OFFERING

SECTOR 2A
TIME SLOTS

SECTOR 2B
TIME SLOTS

SECTOR 2C
TIME SLOTS

SECTOR 2D
TIME SLOTS

Figure 2-16. Memory Access Distribution in the Type 2071 Processor
and Type 2051A Processor with PM1A50 and PM1B50

Memory Access Distribution of the Type 2061 Processor

In the Type 2061 processor (and the Type 2041A processor with both PM1A40 and PM1B40),

sector 1 (unbuffered) is offered alternate memory access offerings as shown in Figure 2-17. In

a 12-microsecond period, each sector 1 time slot gains one access to memory; thus each sector

1 time slot sustains a data transfer rate of 83,000 characters per second.

The time slots of sectors 2A and 2D (both buffered) can each transfer two characters with

each access to memory. Each time slot in sectors 2A and 2D gains access to memory once

every 24 microseconds; thus each time slot in sectors 2A and 2D also has a data transfer capa­

bility of 83,000 characters per second.

ELAPSED TIME
IN MICROSECONDS

SECTOR 1
TIME SLOTS

MEMORY ACCESS
OFFERING

SECTOR 2A
TIME SLOTS

SECTOR 2D
TIME SLOTS

Figure 2-17. Memory Access Distribution in the Type 2061 Processor
and Type 2041A Processor with PM1A40 and PM1B40

2-16 AG28

Memory Access Distribution of the Type 2071 Processor

In the Type 2071 proces sor, sector 1 (unbuffered) receives alternate memory acces s as

shown in Figure 2-16. In a 12-microsecond period each sector 1 time slot receives one access

to memory and may transfer a single character; thus each sector 1 time slot has a data tran.s­

fer rate of 83,000 characters per second.

Sectors 2A, 2B, 2C, and 2D (all buffered) divide the remaining accesses to memory. Each

time slot in these sectors is capable of transferring four characters at a time, and each receives

access to memory once each 48 microseconds. Therefore, each time slot has a data transfer

rate of 83,000 characters per second.

INTERLOCKING READ /WRITE CHANNELS

In order to achieve data transfer rates in single-character processors higher than those

attainable with a single read /write channel, it is neces sary to interlock two or mo re read /write

channels. In this manner, data transfer rates from 167,000 to 500,000 characters per second

are attainable. The same instruction that initiates the data transfer operation specifies whether

channels are to be interlocked. When this procedure is used, all of the cycles normally offered

to the interlocked channels are made available to the single data transfer operation. The trans­

fer rate thus provided is equal to the sum of the rates attainable individually with the interlocked

channels. When the operation is completed, memory cycle allocation returns to normal and

channels are again offered cycles at the normal intervals. Programming procedures for channel

interlocking are described in Section VIII.

VARIABLE-SPEED READ/WRITE CHANNELS

In multicharacter processors, transfer rates higher than those attainable with a single

time slot are attained by as sociating two or more time slots with a single read /write channel

("time slots" a~e th~ memory cycles offered to a given sector). 1 An I/O instruction specifies

the read /write. channel that is to be used and the transfer rate requir.ed;· the I/O traffic control

then assigns to the read /write channel the appropriate number of time slots. In this manner, in

a typical I/O sector, transfer rates from 167,000 characters per second (using two time slots)

to 500,000 characters per second (using all six time slots in the sector) can be attained without

affecting the other read /write channels.

lIn certain cases, both a primary channel and a corresponding auxiliary channel are made
busy. However, no more than two RWCs are ever made busy by a single I/O instruction
on a multicharacter processor.

2-17 AG28

The most significant advantage of the variable-speed read /write channel capability is that

the read /write channels not made busy by a high-speed transfer are available for other periph­

eraloperations. In comparison, in a single-character processor, a 250,OOO-character-per­

second transfer would require the interlocking of several channels; on a multicharacter

processor, one primary channel would be used. Other read /write channels would be available

for use in other operations; e. g., three 83, OOO-character-per-second transfers. Note that the

transfer rate of a single sector cannot exceed 500,000 characters per second.

BUFFERED SECTORS

In multicharacter processors replacing a standard second sector with two or four buffered

sectors provides additional computation time and a higher I/O transfer capability. This is

achieved through the use of intermediate storage buffers for I/O transfer operations. Accumu­

lation of characters in these buffers permits multiple-character transfers into and out of main

memory; multiple-character transfers maintain a given transfer rate with decreased frequency

of access to main memory.

Buffered Sector Operation

Data transfer operations on a buffered sector may be executed in either the buffered mode

or the direct-access mode. Both modes may be used simultaneously on the same sector.

BUFFERED MODE

In the buffered mode, a two-character or four-character buffer is associated with each

time slot in the sector. Transfer of data from peripheral control units to these buffers is in

the normal, single -character manner. However, since the buffer associated with the active

. time slot is allowed to accumulate more than one character before access to main memory is

required, data transfer from the ,buffer to main memory is on a multiple-character basis.

As stated previously, this multiple-character transfer capability compensates for the less

frequent memory access of buffered sectors, such that, on multicharacter processors, the

transfer rate of each time slot is the same as that of time slots in unbuffered sectors (83,333

characters per second). Direct-access mode, described below, is an exception.

2-18 AG28

DIRECT-ACCESS MODE

It may be desired to use the time slots in a buffered sector for single-character trans­

fers, just as if the sector were not buffered. This mode of operation is called the direct­

access mode, and is used to accommodate peripheral controls or devices that cannot operate

in the buffered mode. However, this mode of operation results in a lower effective transfer

rate. Since buffered sectors are sharing the memory cycles normally allocated to sector 2,

and hence receiving less frequent access to memory, data transfer rates in direct-access

mode will be slower in relation to the number of buffered sectors. Therefore, each time slot

(and consequently each read /write channel combination) will handle one-half its specified rate

on the 2-character processors and one-quarter its specified rate on the 4-character processors

(see Table 8-24). Furthermore, interlocking more than two time slots is illegal in this lTIode.

In view of the foregoing, serious consideration should be given to connecting a peripheral

control or device to Sector 1 rather than using direct-access mode on a buffered sector.

Buffered Sector Restrictions

The use of multiple-character transfers in the buffered mode prohibits the use of certain

peripheral controls and devices. The lower transfer rate of buffered sector time slots in the

direct-access mode prohibits the use of certain control units and devices in this mode. Table

2- 3 indicates which controls /devices can be operated on a buffered sector in the buffered and

direct-access modes.

Programming Considerations

EXTENDED I/O INDICATOR

The Extended I/O Indicator is loaded and stored by RVI and SVI instructions, respectively

(see Section VIII). This indicator is turned OFF by the INITIALIZE button.

TESTING PERIPHERAL CONTROL UNIT BUSY STATUS

Since buffered-mode operation involves the intermediate storage of data characters be­

tween the peripheral control unit and main memory, it is highly improbable that a data transfer

operation can be completed before the peripheral control becomes "not busy." Therefore, the

testing of the peripheral control alone or the receipt of a peripheral control interrupt is not

sufficient to guarantee cOlTIpletion of data transfer; the specific read/write channel used in the

transfer operation must always be tested. In other words, (1) all PCB instructions used to test

for the completion of a peripheral data transfer operation should include the specific RWC

designation (control character C 1), and (2) all external interrupts should be imlTIediately fol­

lowed by a PCB instruction that includes the specific RWC designation.

2-19 AG28

ESCAPE CODES

When buffered sectors are in use, escape codes must be used to designate any of the

sectors 2A, 2B, 2C, 2D (i. e. I this cannot be accomplished using the sector bits of control

character C2). The escape codes provided for this purpose are listed in Table 8-25. Note that

these escape codes not only designate the sector to which a read /write channel is to be assigned,

but also indicate whether the I/O transfer operation is to be in direct-access or buffered mode.

NOTE: On processors with two or "more buffered sectors, a control character
that references sector 2 will be interpreted as sector 2A, buffered mode.

Table 2-3. Controls /Devices Connectable to Buffered Sectors

Peripheral Control/Device

Type 203B-l Tape Controls
Type 203B-2 Tape Control
Type 203B -4 Tape Control
Type 203B-6 Tape Control
Type 203D-l Tape Control
Type 203D-3 Tape Control
Type 203D-5 Tape Control
Type 203F 1 Tape Control
Type 203F 3 Tape Control
Type 203F5 Tape Control
Type 209 Paper Tape Reader
Type 209-2 Paper Tape Reader
Type 210 Paper Tape Punch
Type 212 On-Line Adapter
Type 212-1 Memory-to-Memory Adapter
Type '212-2 Central Processor Memory-to-Memory Transfer Unit
Type 213-3 Interval Timer with Interval Selector
Type 213-4 Time-of-Day Clock
Type 208-1 Card Reader-Reader /Punch Control
Type 220-6 Console
Type 220-8 Visual Information Control Console
Type 222-3 Printer
Type 223N Printer
Type 222-4 Printer
Type 222-6 Printer (Feature 036 required)
Type 222-7 Printer
Type 223 Card Reader
Type 223-2 Card Reader
Type 232 MICR Reader-Sorter
Type 233-2 MICR Reader-Sorter Control for BI03
Type 236-1 High-Speed Document Reader-Sorter Control
Type 257 Disk Pack Drive Control
Type 257-1 Disk Pack Drive Control
Type 257-3 Disk Pack Drive Control
Type 257B-l Disk Pack Drive Control
Type 260 Disk Pack Drive Control
Type 260-1 Disk File Control
Type 274 Disk Pack Drive
Type 275-2 Disk Storage Subsystem
Type 277-2 Disk Storage Subsystem
Type 279-2 Disk Storage Subsystem
Type 281-1, -2 Single-Line Communication Controllers

2-20

Buffered
Mode

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
No
Yes
No
No
No
Yes
Yes
Yes
No
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
No
No
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
No

Direct
Mode

No
No
No
No
No
No
No
No
No
No
Yes
Yes
Yes
Yes
Yes
Yes
No
No
Yes
Yes
Yes
No
No
No
No
No
No
No
No
Yes
Yes
Yes
Yes
No
Yes
No
No
No
No
No
No
Yes

AG28

STORAGE PROTECTION FEATURE

The Storage Protection feature allows the rnain rnernory to be logically divided into two

distinct areas: a protected area and an unprotected (or "open") area. When storage protection

is in effect, the contents of the protected area are shielded frorn unintentional interference by

any prograrn operating in the standard (noninterrupt) rnode (whether residing in the protected or

unprotected area). The protected area is specified as follows:

1. The prograrnrner sets the lower boundary of the area with a Load Index/
Barricade Register (LIB) instruction specifying the nurnber of a 4,096 -
character rnernory bank. The LIB instruction places this nurnber in the
index/barricade register. The lower bound~ry of the protected area is
the leftrnost (lowest) core storage location within this bank.

2. The upper boundary of the protected area is always the highest location in
rna in rnerno ry •

The loading of the index/barricade register rnerely sets the low-order boundary of the protected

area. In order to put storage protection into effect, the following rnust be present:

1. The prograrnrner rnust have turned the protect indicator on by issuing a
Restore Variant and Indicators (RVI) instruction specifying the protect
indicator.

2. The processor rnust be in the standard (noninterrupt) rnode.

INDEX REGISTERS

The Storage Protect feature provides the user with an additional IS index registers

(Y 1 through Y IS), which are located in the leftrnost 60 locations of the 4, 096-character bank

specified by the current contents of the index/barricade register. Thus, these index registers

are relocated whenever the contents of the index/barricade register are altered by an LIB

instruction. These IS registers are usable whenever the index/barricade register is loaded

with a proper bank nurnber and are not dependent upon whether storage protection is in effect.

Instructions whose address portions are indexed by these registers rnust be assernbled and.

executed in the four-character addressing rnode. The high-order bit of the five-bit address

rnodifier in a four-character address distinguishes index registers Xl through XIS from Yl

through Y IS.

CENTRAL PROCESSOR MODES

The central processor can operate in anyone of three modes:

1. The standard mode,

2. The external interrupt mode, or

3. The internal interrupt mode.

2-21 AG28

Internal Interrupt

When storage protection is in effect(i. e., the protect indicator is on and the processor is

operating in the standard mode), certain operations are defined as violations of that protection.

These violations are discussed below. A violation causes a violation indicator to be set which,

in turn, causes an internal interrupt to occur at the next opportunity. The "next opportunity"

means that moment when all of the following conditions are present:

1. The processor is in the RUN mode (i.e., automatically executing stored-
program instructions under the control of the sequence register),

2. The processor is about to extract an op code,

3. A memory cycle is allocated to the processor,

4. The proces sor is in the standard mode (i. e., not in exter'nal or internal
interrupt mode), and

5. No peripheral or control panel interrupt signal is being received.

When an internal interrupt occurs, the contents of the sequence'register and the internal

interrupt register are interchanged and the central processor enters the internal interrupt mode.

The status of the processor indicators are not stored automatically; therefore, the programmer

must perform this function with a Store Variant and Indicators (SVI) instruction. The SVI in­

struction also clears the violation indicator so that an internal interrupt will not occur when a

return is made to the standard mode. While in the internal interrupt mode, any external

interrupt will cause the processor to switch to the external interrupt mode.

If an external interrupt occurs while the processor is in the internal interrupt mode, the

I-bit of the character stored by V 5 of the SVI instruction indicates the condition. If it is desired

to revert to the standard rather than the internal interrupt mode after servicing the external

interrupt, this bit should be changed to 0 before executing the RVI instruction.

Note that three basic differences exist between the external interrupt mode and the internal

interrupt mode:

1. A unique control memory location, the internal interrupt register (IIR) ,
contains the address of the subroutine which services the inte,rnal interrupt,

2. The processor is subject to being interrupted by an external interrupt while
still in the internal interrupt mode, but the reverse is not true, ,

3. No processor indicators are stored or altered (the address mode is not
changed) upon entering the internal interrupt mode.

2-22 AG28

VIOLATIONS OF STORAGE PROTECTION

The following operations, which constitute violations of storage protection, fall into two

general categories: addres s violations and op code violations •.

1. An attempt to transfer information internally (i. e., not via a PDT instruction)
to memory locations within the protected area. This includes any attempt to
modify index registers Yl through Y15. However, no violation occurs when
information is transferred internally from the protected area (including
index registers Y 1 through Y 15). A,n internal transfer violation is detected
when all of the following conditions are present:

a. The bank and sector bits in the A- or B-address register following
instruction extraction are equal to or greater than the corresponding
bits stored in the index/barricade register.

b. A protected location is addressed as a result location,

c. The protect indicator is on,

d. The program in control is operating in the standard mode, and

e. The instruction is not a PDT.

The above conditions are checked as the instruction is being executed. If
all of these conditions are met, the internal interrupt address violation
indicator is set, and the instruction proceeds to normal completion except
that no information is transferred into memory (i. e., the write cycle is
inhibited). The next opportunity for the internal interrupt to occur is at
the extraction of the next op code. After the internal interrupt mode is
entered, the internal interrupt register contains the address of the op
code following the instruction which caused the violation, and the A- and
B-address registers continue to increment or decrement, as appropriate.

2. An attempt to extract a PDT instruction (input ~ output) whose effective
A-address references a protected memory location. Since the PDT in­
struction is one of the operations normally prohibited when storage pro­
tection is in effect (see 4., below), the proceed indicator must be set in '
order for the instruction to be extracted beyond the op code. Assuming.
that the proceed indicator is set, the starting addres s of the PDT operation,
is examined for address violation. Once it is determined that the effective·
A-address references a protected address, no operation is performed (i. e.,
the specified read /write channel is not tested and the specified peripheral
control is not addressed), the internal interrupt address violation indicator
is set, the sequence register is advanced to the next op code, and an
internal interrupt occurs.

Note that a PDT instruction is checked for possible violation during the'
extraction phase, while a nonperipheral instruction is checked during its'
execution phase (see 1., above). If a PDT instruction passes this test during'
extraction, it is free to be executed and thereby cause data to be trans­
ferred. If the information being transferred extends into the protected area,
no address violation is detected. To insure that this will not occur, the user
must set a record mark immediately prior to the protected area. 1

As mentioned previously, storage protection (and the checking functions
related to it) are in effect only when the processor is operating in the
standard mode. However, violations of the protected area by PDT in­
structions executed in either of the two interrupt modes can be detected
if the proceed indicator is set on.

lIf communication devices are being used, two consecutive locations should contain record marks.

2-23 AG28

3. An attempt to read from a main memory location whose address is greater
than the main memory capacity actually present in the machine but within
the addressing capacity of the memory address register (MAR). 1 Such an
addressing attempt results in a parity error which normally causes the
machine to halt. If storage protection is'in effect and a parity error
occurs, a check is made to determine whether the error occurred above . "-
the lower boundary of the protected area. If so, the storage protection
hardware assumes that out-of-:range addressing has been attempted, 2 no
halt occurs, nor is data transferred; instead, the internal interrupt
address violation indicator is set, instruction execution is prematurely
terminated, and an internal interrupt occurs.

An attempt to reference an address greater than the addressing capacity
of the memory addres s register results in a memory "wraparound." (see
page 4-15).

4. An attempt to execute a privileged op code. A privileged op code is one
that is (a) not defined for the Series 2000; (b) not recognized on the par­
ticular processor; (c) an instruction format violation in any floating-point
instruction; or (d) prohibited when storage protection is in effect. The
privileged op codes in category (d) are:

H (Halt)

LCR (Load Control Registers)

PDT (Peripheral Data Transfer)

PCB (Peripheral Control and Branch)

SVI (Store Variant and Indicators)

RVI (Restore Variant and Indicators)

RNM (Resume Normal Mode)

LIB (Load Index/Barricade Register)

The above op codes are "privileged" in the sense they are allowed to be
executed in either of the interrupt modes but are prohibited in the standard
mode while storage protection is in effect (one exception to this is discussed
under "Proceed Indicator" below). Such op codes are categorized by their
capability of altering the monitor's knowledge of the status of the system
or causing some action that is intolerable under certain conditions (e. g. ,
a halt during transfer of data from a communications device). Since an
undefined op code or one that is not installed on the user's processor would
normally cause a halt due to a program check, such usage has the same
effect as that.of a privileged op code.

NOTE: The Extended Multiprogramming feature provides additional
"privileged" op codes.

lFor example, a MAR with 15 active bits can address up to 32,768 locations; a MAR with 16
active bits can address up to 65,536 locations. A 49, l52-character memory would require
16 active bits, thus making it possible to store an address which is beyond the actual memory
size.

2The final responsibility for determining whether the parity check actually indicates out-of-range
addressing rests with the programmer.

2-24 AG28

NOTE: Op code "00 11 is defined as an Internal Interrupt Call, and falls within
the category of privileged op codes.

If a privileged op code is extracted when storage protection is in effect,
the op code violation indicator is turned on, the sequence register is set
back to the location of the op code, the operation is terminated, and an
internal interrupt occurs. Once the internal interrupt mode is entered,
the programmer has two choices: (1) if he wishes to execute the privileged
instruction, he must set the proceed indicator (see below) and issue a
Resume Normal Mode (RNM) command;l (2) if he wishes to bypass the
privileged instruction, he must set the internal interrupt register to
the location of the next sequential op code and issue a Resume Normal
Mode instruction. 2

PROCEED INDICATOR

The proceed indicator can be turned on by the Restore Variant and Indicators (RVI)

instruction. Turning this indicator on permits the execution of ~ privileged instruction

in the standard mode without op code checking or item-mark trapping being performed. The

indicator is turned off following the extraction of any op code in the standard mode. It can

also be turned off in either of the interrupt modes by a Store Variant and Indicators (SVI) in-

struction.

The proceed indicator can also be used to force the checking of the A-addres s of a PDT

instruction executed in either the internal or external interrupt mode. Thus I turning on this

indicator prior to the extraction of a PDT instruction in a nonstandard (interrupt) mode results

in the same addres s violation check as though it were extracted in the standard mode with

storage protection in effect. If the effective A-address is found to reference a protected area,

the actions described below are performed.

1. When the violation occurs in the internal interrupt mode:

a. The internal interrupt address violation indicator is set.

b. Further extraction of the instruction is not performed and the
sequence register is set to the location of the next sequential
op code.

c. An internal interrupt does not occur since the processor is already
in the internal interrupt mode. Instead, the condition of the internal
interrupt address violation indicator must be tested by the program-
mer after he has stored the status of the indicator via an SVI instruction.
The SVI instruction also clears the indicator so that it will not cause
an internal interrupt to occur when the standard mode is entered later.

2. When the violation occurs in the external interrupt mode:

a. The external interrupt address violation indicator is set.

lThe instruction will still not be executed if it involves an address violation.

2If the internal interrupt register (which is currently set at the location of the privileged op
code) is not advanced to the next op code, the return to normal mode results in the privileged
op code again being extracted, thus causing an endless loop.

2-25 AG28

b. Further extraction of the instruction is not performed and the sequence
register is set to the location of the next sequential op code.

c. An internal interrupt does not occur since this is impossible while in
the external interrupt mode. Instead, the condition of the external.
interrupt address violation indicator must be tested by the programmer
according to the method described in 1. c, on Page 2- 25.

EXTENDED MULTIPROGRAMMING AND EIGHT -BIT TRANSFER

Extended multiprogramming provides a processor with five basic capabilities required in

a multiprogramming environment and one feature required for upward compatibility. These are:

1. Base relocation,

2. Storage protection with base relocation,

3. Interrupt masking,

4. Instruction timeout,

5 .8-bit transfer capability, and

6. Privileged BCT and SCR Instructions.

STORAGE PROTECTION WITH BASE RELOCATION

In a processor equipped with extended multiprogramming, storage protection operates

in either of two ways: with or without base relocation. Storage protection without base relocation

operates as described above.

The storage protection offered by extended multiprogramming is made possible by using

base relocation in conjunction with storage protection. Base relocation is in effect when the

relocation indicator is set (via the SVI and RVI instructions) and the processor is in the stan­

dard (noninterrupt) mode.

Storage protection with base relocation places a barrier above and below the area of

memory where the active program is to operate, to prevent it from altering the contents of the

rest of memory. The lower barrier is specified by the contents of the base relocation register

(BRR), which is loaded and stored ~ia Load Index/Barricade Register (LIB) and Store Index/Bar­

ricade Register (SIB) instructions. When relocation is in effect, the BRR is loaded with the

bank address of the lowest memory bank (4,096 characters) available to standard mode programs.

The address in the BRR is added to each processor memory address transmitted to memory by

a standard mode program. This prevents a standard mode program from writing into a memory

bank below that specified by the BRR. The upper barrier is specified by the contents of the

index barricade register (IBR), as augmented by the base relocation address. (The IBR contains

the number of 4, 096-character memory banks that are available to a program.. Adding the

contents of the BRR to the contents of the IBR gives the effective (llrelocated ") address of the

2-26 AG28

index barricade.) When storage protection is in effect and an attempt is made to write into

memory at an address greater than that stored in the IBR (as augmented), a protection violation

occurs resulting in an internal interrupt.

A monitor program keeps track of the locations of the various programs stored in memory

and, via the settings of the BRR and the IBR, can relocate reference to any number of 4,096-

character banks of memory. Thus, while there may be any number of programs stored in

memory, only one program is active at anyone time and all other programs are protected

from the active program when storage protection is in effect. When, as the result of an in­

terrupt, the monitor program activates a different program, it simply alters the settings of

the BRR and the IBR to make available a different portion of memory.

Since all memory references are relocated via the BRR when relocation is -in effect,

index registers Xl through XIS effectively reside in the 4, 096-character bank of memory

specified by the BRR. The location of index registers Y I through Y 15 also dependent on the

setting of the relocation indicator. When relocation is activated, the Y index registers are

also located in the 4, 096-character bank specified by the BRR, where they become identical to

index registers Xl through XIS. When relocation is in effect, each program stored, including

the monitor program, has its own set of 15 index registers when it is the active program. The

index registers always reside in the memory area occupied by the active program.

EXTERNAL INTERRUPT MASKING

Each input/output (I/O) sector has associated with it a I-bit mask. This mask is stored

and set by Store Variant and Indicator s (SVI) and Re store Variant and Indicator s (R VI) instruc­

tions, respectively. When the mask for a sector is a 0, interrupts from sources in that sector

are accepted and processed in the manner specified in llInterrupt Processing ll
• When the mask

for a sector is a 1, then interrupts are held until the mask is altered or the interrupt function

is reset. Control panel and Monitor Call interrupts are never masked. Depression of the

INITIALIZE button on the console causes all mask bits to be reset.

INSTRUCTION TIMEOUT

It is possible for an instruction in a program to enter an infinite extraction or execution

loop which would prevent a monitor program from servicing an interrupt within a specified

time. To prevent this from occurring, a timeout function is provided which allows a maximum

time limit to be placed on the extraction and the execution of anyone instruction when the pro­

cessor is in the standard mode. This function guarantees that a monitor program will, at

some specified time, regain control of the system.

2-27 AG28

The instruction timer is reset to 0 and begins timing every time the processor starts to

extract or execute a new instruction. If the timeout allow function is on, the protect indicator

is set, and the processor is in the standard mode when the time interval elapses, then the in­

struction being extracted or executed is terminated and an internal interrupt occurs.

The timeout function is enabled by a timeout allow function which is set and reset by the

SVI and RVI instructions. Refer to Section VIII for SVI and RVI instructions.

EIGHT-BIT TRANSFER CAPABILITY

Central processors equipped with this capability can transfer data between peripheral

controls and memory in either six- or eight-bit format, as specified in the Peripheral Data

Transfer (PDT) instruction.

1. The six-bit mode is the standard data transfer mode used in Series 2000
central processors. In this mode, only data is transferred between
memory and peripheral controls. Punctuation is preserved in memory.

2. The eight-bit mode is used in those applications where an eight-bit transfer
is desired between the central processor and a peripheral control. In this
mode of operation, data and punctuation are transferred between the central
processor and peripheral controls. Record marks in memory do not termi­
nate data transfer in this mode.

When in the eight-bit mode, the number of eight-bit character transfers to be performed

is determined by a three-character count field in the PDT instruction or by control characters

associated with the PDT peripheral controls.

The high-order bit of the C 3 control character in a PDT instruction is a multivariant bit

which conditions the peripheral control in its interpretation of the remainder of the instruction.

When this bit is a 0, all additional control characters beyond C3 are ignored by the control.

When the high-order bit of C 3 is a 1, additional control characters are present and will be

accepted by the peripheral control. rn this case, the format of the PDT instruction becomes:

op code/A address/CI, C2, C3, C4, C5, C6, C7.

Control character C4 is always present when the multivariant bit (bit 6 of C3) is a 1.

When the extended bit (bit 5 of C3) is a 1, control characters C5, C6, and C7 are present.

When the extended bit is a 0 control characters C5, C6, and C7 are ignored. The high-order

bit of C4 determines the data transfer mode; 1 specifies eight-bit mode and a 0 specifies six-

bit mode. Because eight-bit mode data transfers are not affected by record marks, data trans­

fer is delimited by the setting of the extended bit in the C3 control character. If this bit is a 0,

all data transfers previously terminated by a record mark are now terminated by transferring

the number of characters specified in the record header area. If it is a 1 all data transfers

previously terminated by a record mark are now terminated by transferring the number of char­

acters specified by the count field (C5, C6, and C7) of the PDT instruction.

2-28 AG28

PRIVILEGED SCR INSTRUCTION

When a processor is in the standard mode with the storage protection indicator ON and the

proceed indicator OFF, the detection o.f an SCR instruction having a variant character of octal

00 through octal 37 will set the op code violation indicator and cause an internal interrupt to

occur at the next opportunity.

The following status is specified at the conclusion of the trapped SCR instruction.

1. The internal interrupt register (IIR) contains the addres s of the privileged
op code.

2. The A-address register (AAR) contains the A-address of the previous instruction.

3. The contents of the main memory locations specified by the A-address are
undisturbed.

4. The variant register contains the variant character of the privileged SCR
instruction.

All SCR instructions are identically executed if the proceed indicator is ON.

PRIVILEGED BCT INSTRUCTION

When a processor is in the standard mode with the storage protection indicator ON, the

proceed indicator OFF, and the BCT privileged indicator ON, the detection of a BCT testing the

status of any SENSE switch (i. e., having an octal variant of 01 through 17 or 21 through 37)

will set the op code violation indicator and cause an internal interrupt to occur at the next

opportunity.

The following status is specified at the conclusion of the trapped BCT instruction.

1. The internal interrupt register (IlR) contains the address of the privileged
op code.

2. The A-addres s register (AAR) contains the A-addres s of the privileged
BCT instruction.

3. The contents of the main memory locations specified by the A -addres s are
undisturbed.

4. The variant register contains the variant ~haracter of the privileged BCT
instruction.

All BCT instructions are identically executed if the proceed indicator is ON.

All BCT privileged indicators can be set or reset under program control only by the RVI

instruction.

2-29 AG28

HIGH-RESOLUTION CLOCK

A high-resolution clock capability is standard on the multicharacter processors except

the Type 2041A. With Honeywell software (OS/2000 or Mod 4) or with individual programming,

the high-resolution clock can be used to provide accurate central proces sor job accounting.

When activated, the high-resolution clock counts elapsed central processor processing

time and generates an interrupt after timing out. Elapsed central processor processing time

is defined as the time elapsed with the processor in the RUN state and having access to memory.

In order to exclude counting I/O time, the clock is inhibited during buffer cycles.

The clock's count of elapsed time is contained in a control memory register known as the

accounting timer register (ATR). The current count can be stored by an SCR instruction. In

addition, the register can be loaded to any value by an LCR instruction. When the full count is

reached (see Table 2-4), an External Interrupt (EI) demand is set. This demand is reset and

its indicator cleared when it is stored by an SVI instruction.

Table 2-4. Clock Characteristics

Resolution
Processor (memory cycles) Timeout (minutes)

2041A 256 5.60

2041A with PM2A40 256 3.36

2041A with PM2B40 256 2.24

2051C 256 3.58

2051A 256 4.48

2051A with PM2A50 256 3.36

2051A with PM2B50 256 2.24

2061 256 2.55

2071 256 2.24

, AG.COUNTING TIMER REGISTER

The accounting timer register is assigned to location (54
8

) in control memory. Its

mnemonic designation is ATR. All bits of the register are used.

EXTERNAL INTERRUPT MODE

When the timer goes beyond its full count, the resulting overflow generates an EI demand.

In EI mode, the timer continues to count elapsed time without pause. The interrupt source can

be identified with the SVI instruction •. The item-mark bit of the sixth character stored indicates

a high-resolution clock interrupt. This indicator is cleared when stored.

2-30 AG28

SCR AND LCR INSTRUCTIONS

SCR and LCR instructions to the ATR execute in the normal manner. Turning the clock on

does not reset the ATR. It is the programmer's responsibility to reset the ATR to zero or any

other desired value via an LCR instruction. The SCR and LCR instructions should be executed

in four -character mode, as all bits of the ATR are used by the clock.

HIGH-RESOLUTION CLOCK ALLOW

An LIB instruction is used to turn the clock on or off. The required format is F /A /B /V .

Bit 2 of the C 3 variant controls the on/off state as follows:

OOOXIO
OOOXOO

Turn on the clock
Turn off the clock

In addition to controlling the on/off state, the LIB instruction in this format executes normally.

The SID instruction is not influenced.

INTERRUPT PROCESSING

The execution of main-program instructions by the processor can be interrupted by an

external interrupt source and/or by an internal interrupt source.

EXTERNAL INTERRUPT

An external interrupt signal can be generated by any or all of three sources:

1. The operator's control panel or console;

2. The Monitor Call instruction; or

3. A peripheral control.

The first two sources interrupt the processor directly: in the case of the control panel

or console, the operator simply presses the INTERRUPT button; the Monitor Call instruction

interrupts the processor when it is executed. However, a peripheral control interrupts pro­

gram sequence as directed by the settings of two programmable storage functions contained

within the control.

The interrupt signal sets indicators to show the source (whether 1., 2., or 3., above)

and the ~ (external) of interruption. These indicators can be stored and then tested by pro­

grammed instruction as described later in this section. The processor acts upon the inter­

rupt signal when the following conditions are present:

1. The processor is in the RUN mode (i. e., the processor is executing,
without manual intervention, stored-program instructions under control
of SR).

2. The processor is not in the external interrupt mode.

2-31 AG28

3. An instruction op code is about to be extracted.

4. A memory cycle is allocated to the processor.

It should be noted that condition 3. above does not cause an extensive delay if a processor

is attempting to extract a Peripheral Data Transfer (PDT) instruction and the specified read /

write channel or peripheral control is "busy." The attempt to issue a PDT instruction to a busy

read/write channel or peripheral control does not "stall" the central processor. Rather, the

instruction is "re-extracted ": SR is set back to the address of the PDT op code, so that con­

dition 3. recurs after the channel or control is found busy.

When the central processor is interrupted, it performs the following functions:

1. Stores the current status of the arithmetic, comparison, address mode,
and trap mode indicators in the auxiliary indicators register (AIR).

2. Clears the arithmetic indicators.

3. Enters the three-character, non-trap mode.

4. Interchanges the contents of SR and EIR and branches to the instruction
whose op code address was previously stored in EIR.

S. Enters the external interrupt mode.

The interrupt signal is maintained until one of the following steps is taken:

1. A PDT instruction is issued to the peripheral control.

2. The Interrupt function for the peripheral control is turned off.

3. The central proces sor is initialized.

INTERNAL INTERRUPT

An internal interrupt signal is caused by a "violation" of storage protection. Processor

indicators are set by the internal interrupt signal to show the cause (e.g., op code violation)
, -----,

and the ~ (internal) of interruption. These indicators can be- stored and then tested' by pro-

grammed instruction as described later in this section.

The processor reacts to the internal interrupt signal when the conditions described on the

preceding page are present (i. e., the processor is in the RUN mode, is not in the external

interrupt mode, is about to extract an op code, and is presently allocated a memory ,cycle)

plus one additional condition: ' the processor must not only not be in the external interrupt mode

but also must not be in the internal interrupt mode. Thus, the following ,levels of interrupt

priority exist in the affected processors.

2-32 AG28

1. If the processor is in the non-interrupt (standard) mode, normal program
sequence can be interrupted by either an external or an internal source.

2. If the processor is in the internal interrupt mode, program sequence can
be interrupted only by an external interrupt source.

3. If the processor is in the external interrupt mode, program sequence
~ not be interrupted. 1

The processor responds to an internal interrupt signal as follows:

1. The contents of SR and IIR are interchanged, and the program branches
to the instruction whose op code address was previously stored in lIR.

2. The processor enters the internal interrupt mode.

Note that the status of the arithmetic, comparison, address mode, and trap mode indicators

are not stored in AIR automatically when the processor responds to an internal interrupt signal.

The storing (and subsequent restoring) of the contents of these indicators is the responsibility

of the internal interrupt program.

INTERRUPT PROGRAMMING

Three of the four interrupt control instructions perform basic functions in an interrupt

routine:

1. The Store Variant and Indicators instruction (SVI) stores two types of
information: (a) information which must be preserved for subsequent
return to the interrupted program (e.g., indicator settings, variant
register contents, etc.); and (b) information required to identify the
interrupt source.

2. The Restore Variant and Indicators instruction (RVI) restores the per­
tinent information stored by the SVI instruction before returning to the
interrupted program.

3. The Resume Normal Mode instruction (RNM) returns the processor to
the interrupted program, unless the sector bits of SR have been modified.

The fourth interrupt control instruction - Monitor Call (MC) - causes an external interruption

and, therefore, is not coded in the interrupt routine itself.

Other instructions are required in the interrupt routine to store and exercise control over

address register contents, as shown in Figures 2-18 and 2-19. The interrupt routine in these

figures are assumed to be executed in the same sector as the interrupted program; if not, or if

interrupt processing modifies the sector bits in SR, the appropriate sector bits must be stored

upon entering the routine and restored when exiting.

lInterrupt signals generated by any or all of the three external sources (peripheral control,
control panel or console, or Monitor Call instruction) may continue to occur while the pro­
cessor is in the external interrupt mode. The priority in which the interrupts are accom­
modated is determined by the program (i. e., according to the programmer -established
sequence of interrupt source tests).

2-33 AG28

For proper re-entry to the interrupted program, the same set of indicators stored by the

SVI instruction should be restored by the RVI. Since the RVI instruction prepares the processor

to re-enter the interrupted program, it should be followed immediately by the RNM instruction.

Note that the A-and B -address register settings at the time of the interrupt should also be

restored before re-entering the interrupted program. The external·interrupt coding shown in

Figure 2-18 exploits the ability to restore the address registers automatically by storing their

contents in the address fields of the RNM instruction. This technique requires that variant bit

V 2 of the RVI instruction be a 0 in order to ensure that the RNM instruction is executed in the

maximum address mode of the machine. In an internal interrupt routine, on the other hand,

the indicators associated with the V 2 must be stored and restored by the SVI/RVI instructions.

Therefore, since the address mode of executing the RNM instruction may not be maximum, the

address fields of this instruction must not be coded. Instead, the address register settings

must be stored in memory and restored by means of LCR instructions, as shown in Figure

2-19.

EASYCODER
COOING FORM

PROBLEM ______________________ PROGRAMMER ______ DATE _____ PAGE_Of_

CARD i'~ LOCATION
OPERATION OPERANDS NUMBER CODE

, 2 3 415 6 7 e 1415 202' ... 62 63

I : AAR ceg.u ~'C67 A-ADDRE~S REG\STER
I

I BA.~ c.EQU *'C7~ B-,I\DORE SS REG-1S1ER
I MAX. CE.Q.U ~'C6¢. ~"'X\MU~ ADD .M.ODE FOR C .P .• IS 4-

I I ALLS CEQU ~1C75 I NIOICAT,ORS STO~Et)

: i ALL R CEQU #\C35 I 'NDICATORS .~ESTO.R.ED
I I AOMODE + , , SE,T MAX,I UM A,l)Df?LSS I NG MODE
: REs;roR RV.l E.Nl'ER +2 •. AlLRRESTORE INDI CATORS .M"~lt"UM
j I E.XI.T R.N. tl\ rA .. fP.

,
.EX \T~\TH AA.R + BAR R£S:TORE.D

I I ENTE.R S.V ~LlS ENTER AN t> S'O.R.E INDICATORS
,0 DeW *5 .REISE.R"E. STORAGE FOR \.l\t>IC.~"tO.~S

CAM MA~ E.N,'£ R MAX,l'h.U.N\ ADDRESS MOOE
,2 S,CR EX, T +4AAR SANE AM.

I I S.CR EX \ T t g .BAR SA.'JE B.AR I ·
,3

,4 I I I ~

I I \ •
I : , EXTERNAL I

'6

I
) \ t\TERRl.lPT · 18 ROUTINE

19 · I ~ IRE.STO,~ BRAt-lCH 1.Q.R.E.S:-rO.R .ANoD EX,\T I
20

Figure 2-18. Sample Coding for External Interrupt Routine

The first example (see Figure 2-18) shows the initial and final coding to be used in an

external interrupt routine. It is as sumed that the addres s of the location tagged ENTER was

previously stored in EIR, so that the presence of an external interrupt signal results in the

automatic branch to the location tagged ENTER. It is assumed that the four-character ad­

dressing mode is the maximum addressing mode of the processor for which this routine is

written.

eo

2-34 AG28

NOTE: If the interrupt routine is not in the maximum addressing mode prior to
branching to the location tagged RESTOR, a Change Addres sing Mode
instruction - GAM /MAX - must precede the RVI instruction so that
the complete contents of any necessary control memory locations may
be restored.

Figure 2-19 shows the initial and final coding written for an internal interrupt routine.

It is assumed that the address of the location tagged START was previously stored in IIR and

that the maximum addressing mode of the processor is the four-character mode.

The initial and concluding instructions in an internal routine are similar to those in an

external interrupt routine, except that the SVI instruction must store the indicators associated

with bit V 2 and must not store the con~ents of the auxiliary indicators register (AIR). All

other pertinent indicators are stored by the SVI instruction and are subsequently restored by

the RVI instruction at the conclusion of the routine.

EASYCODER
CODING FORM

PROBLEM ____________________ PROGRAMMER _____ DATE _____ PAGE _Of_

CARD I~'i LOCATION
OPERATION

OPERANDS NUMBER CODE

I 2' 3 41 ~ 6 7 8 " I~ 2021 62 63

I : IAM~ ICEQU ~\ C67, A- ADD--RESS .RE G \ STE.R
I

I B~R CEQU ~'C'7(b, .B-ADDRE.SS· J~.E,G I S 1"E.R
i I MA."J., c'FOU *F1 C.60 MAX IMUN ADD. MOD £ FOR ,CD \ S. 4
I I INDS CEQU ff1C73 At L 6UT, AI B. I\~H~I CATO&~
I ; IMDR CEQU tf:1C33 A\.l f>u.-r .A.I RAND U..1T. .1 MDI CI>.:rO IRS.
I I ISAV.EA. oew ~4C TF n_ ... b..~y STORA..GE. FOR .AA.R
: I I~~A.V.ER c,ew #:4C .TEMPOAAR.'t SiOR~G£ F()R ,BAR
i I AllAN ';)¥ 4 SET MAXIMUM I\ODRESSING MODE,
I I RESTOR I'-ICR SAVEA .. AAR .RES'ORE. AAR

10 I : LCR SAVE6·~.BAR .RE~SJORE aA~
i I I~v' S1A.RT,+2' 4 \ NDR RE~S"ORE ALL BUT A.1R. A~l,D INT I \\D.

12 I .j 1RJ.-1M
,

EX \T
13 I I START ISVI I.NOS E.N,TER. P\MD. STDRE A,lL 8U:r I\\R \ ~D..

r I DeW *1:5 S~ORf\G.E FOR ALL BUT A\ RIND.
I~ I I tf>..tII MAX E"',\.E.R ~AX.' MUM. ~.oaRESS \ ,t...lG MODE.

I : S,CR 'DAV EAr Aft..R .SAVE. AAR
I I ~iCR SAVEB BAR SA.VE BAR

18 : I I '\
19 i : I

I I I . , tJ.TE.RNA\"
I : I . t "r\"~~RRl1QT, .RO>U.l \ ~E.
2 I I I

20

3 I I)
24 I I le- IRESTOR B.RA~CH TO RESTOR AND E,)(IT

Figure 2-19. Sample Coding for Internal Interrupt Routine

PERIPHERAL CONTROL INTERRUPT

This description pertains to most Series 200/2000 peripheral controls; exceptions are

noted in the various hardware manuals describing individual peripheral devices.

80

2-35 AG28

Generally, a peripheral control's interrupt facility includes two interrelated functions:

the Allow function and the Interrupt function. Certain controls have more than one set of

functions (e.g., two sets for disk controls, but one set for magnetic tape controls). When a

peripheral control becomes ready to accept a PDT instruction (i. e., reaches a "not-busy"

status), it transmits a signal to turn on the Interrupt function, but this signal must be com­

plemented by one from the Allow function (turned on by a PCB instruction) in order to. com­

plete the interrupt signal for transmission to the central processor (see Figure 2-20). When

the Interrupt function is turned on, the interrupt signal is repeated continuously until the

central processor is interrupted or the signal is turned off.

ALLOW
FUNCTION

~~ ON
INTERRUPT INTERRUPT SERIES 2000

- FUNCTION CENTRAL

/~ ON SIGNAL PROCESSOR
CONTROL
STATUS
NOT-BUSY

PERIPHERAL CONTROL

Figure 2-20. Interrupt Signal Generated by Peripheral Control

The interrupt facility for a peripheral control can be activated or deactivated simply by

turning the Allow function on or off, respectively. If the Allow function is off at the time the

peripheral control becomes not busy and all error information is stored, the interrupt signal

can be neither completed nor transmitted. Another method of inhibiting the interrupt facility

is to turn off the Interrupt function; this function will not be turned on again until the control

completes another PDT instruction. Note that if an interrupt has occurred and the Allow

function has then been turned off, the Allow function should not be turned on again until either

the Interrupt function has been turned off or a PDT instruction has been initiated by the con­

trol; otherwise, an interrupt occurs immediately.

There are various methods of turning the Allow or Interrupt function on or off. The

Allow function can be turned on or off by a PCB instruction; similarly, the Interrupt function

can be tested or turned off by a PCB instruction. Also, when the peripheral control receives

a PDT instruction, its Interrupt function is turned off automatically; at completion of the PDT,

a pulse is sent to turn on the Interrupt function. In any situation, both functions are turned

off by initializing the central processor.

2-36 AG28

Specific PCB C3 characters for individual controls are listed in Tables 8-34 through

8-36. The C3 character in a PCB instruction may be used either to control or to test the status

of a peripheral control's interrupt facility. The general formats of the C3 characters relating to

interrupt control and test are:

1110xO - Turn off the Allow function.

lllOxl - Turn on the Allow function.

llllxO - Turn off the Interrupt function.

llllxl - Branch to A if the Interrupt function is on.

The two-bit, shown here as x, is normally 0 if the control being addressed contains only one

set of Interrupt/Allow functions. If two sets of functions are present, this bit is set to identify

the particular set being tested or controlled. All of these C 3 characters result in a branch to

A if the device addressed is not operable. Table 2-5 summarizes Interrupt/Allow control and

test operations for most peripheral controls; exceptions are noted in individual device manuals.

More than one control character can be used to specify multiple control and lor test

operations in a PCB instruction. However, care must be taken in the use of certain combina­

tions of these characters. For example, it is entirely possible for an interrupt to occur be­

tween extractions of control characters. In such a case, if control, characters for "Branch on

Interrupt" and "Turn Off Interrupt" were specified (in that order), the Interrupt function might

be turned off without being acknowledged.

Table 2-5. Summary of Interrupt/Allow Function Control and Test Operations

Resulting Effects

Control/Test Operations Allow Function Interrupt Function

Manual

INITIALIZE Button Turned off Turned off
:

Program - PCB Control Char.
a

70 Turned off None

71 Turned on None

74 None Turned off

75 None Branch to A if on

PeriEheral Control

Upon receipt of :PDT None Turned off

When PDT completed None Turned on if Allow on

a All of these PCB control characters will result in a branch to A if the device
addressed is not operable.

2-37 AG28

SECTION III

DATA FORMAT

VARIABLE FIELD LENGTH

Information is stored in the main memory in fields. A field is, by definition, any group

of characters that is treated as a unit. Series 2000 computers permit fields of any length,

from one character up to the maximum number of characters in the memory. This means

that an instruction or data field occupies only that number of core storage locations actually

needed.

The use of variable-length fields requires that there be a method of indicating the actual

lengths of instruction fields and data fields. This requirement is fulfilled by the word-mark

bit mentioned in Section II. The word-mark bit performs the following functions:

1. It terminate s the retrieval of an instruction.

2. It terminate s the execution of an instruction.

3. It define s the size of a data field.

Throughout this manual, the pre sence of a word mark will be indicated by a circle

around the character with which it is associated. The following points should be noted regard­

ing the use of word marks:

1

1. Word marks can be set and cleared by programmed instructions.

2. Word marks are set by the same routine that loads a program and data into
the main memory. Usually, word-mark assignments remain unchanged
throughout the execution of a program.

3. An instruction is terminated by a word mark in the storage position imme­
diately following its last (rightmost) character.

4. A data field is terminated by a word mark associated with its high-order
(leftmost) character. 1

The footnote on page 3-4 describes an exception.

3-1 AG28

INSTRUCTION FORMA T

An instruction is a coded statement that orders the computer to perform a fundamental

operation. A set of instructions suitably combined to perform a specific task is called a program

or routine.

As will be shown in Section V, the tas k of coding the instructions in a program is greatly

simplified by the use of the Easycoder symbolic programming system. The Easycoder Assembly

Program converts the symbolic coding written by the programmer into a machine language that

is acceptable to the internal logic of the machine.

OPERA TION CODE

Basic to all instructions is an operation code, usually referred to as an op code, that

defines the fundamental operation to be performed. The programmer specifies an op code by

using a predefined mnemonic configuration; e.g., BA is the op code that specifies a "binary add"

oper-ation, MCW is the op code that specifies a "move characters to word mark" operation. The

E-asycoder As sembly Program automatically converts a mnemonic op code into a single -charac_

ter, machine -language op code and sets the word-mark bit in the character position in which it

is stored.

A- AND B-ADDRESSES

Most instructions also have two address portions, designated as the A address and the B

address. The address portions indicate the starting locations of the operand fields in the main

memory. Using the Easycoder language, the programmer can specify memory locations by

means of symbolic addresses or "tags" (see Section V).

The Easycoder Assembly Program automatically assigns absolute memory addresses to

the symbolic addresses appearing in a prograrn (see Figure 3-1). Thus, the programmer can

manipulate operands without regard to their actual storage locations in memory.

SYMBOL Ie ADDR.
(rAG)

ABSOLUTE MEMORY
ADDRESS

Figure 3-1. Conversion of Symbolic Tag to Absolute Memory Addresses

3-2 AG28

Because of the modular design of Series 2000 computers, the programmer has the facility

to specify whether a two-, three-, or four-character absolute address will be assigned to each

symbolic address used in the program. In any case, the absolute addresses assigned by the

assembly program are interpreted as pure binary numbers (see Section IV).

VARIANT CHARACTER

The variant character is used to modify the op code of an instruction. For example, the

op code of a Branch on Condition Test instruction (BCT) specifies the fundamental operation.

"branch if a tested condition is met." The condition or restriction that must be met before the

branch can occur is specified by the variant character. A table of valid variant characters is

presented in Appendix B.

SUMMARY

Figure 3 -2 shows the six ba sic forrn.ats in which rn.achine -language instructions rn.a y

appear. Since the rn.aximum nurn.ber of characters in an instruction depends upon whether

two-, three-, or four-character addressing is being used, shaded boxes in the illustration

indicate the format of an instruction without specifying the nurn.ber of character s in each part.

These forrn.ats are representative of all instructions except those associated with input/output

and translate operations. 1 For the sake of direct comparisons, Figure 3-3 illustrates each of

the formats defined in Figure 3-2 as a symbolic entry on the programrn.er' s coding form.

I A ADDRESS I I B ADDRESS I VARIANT
OP CODE CHARACTER(S)

2 OP CODE I A ADDRESS I I B ADDREssl

3 OPCODE I A ADDRESS I VARIANT
CHARACTER(S)

4 OPCODE I A ADDRESS I
5 OP CODE VARIANT

CHARACTER(S)

6 OPCOOE

Figure 3-2. Series 2000 Instruction Forrn.ats

1 The forrn.at of an input/output instruction is a rn.odification of forrn.at 3 shown in Figure 3 -2.
Specifically, the variant characters of the instruction are replaced by a field of one or rn.ore
control character s which define the input/output operation in terms of data path, direction of
data flow, control unit designation, etc. The forrn.at of a translate instruction is a rn.odifica­
tion of forrn.at 1 shown in Figure 3-2. In Section VIII, Series 2000 instructions are described
in terrn.s of their individual formats.

3-3 AG28

EASYCODER
CODING FORM

PROBLEM ______________________ PROGRAMMER ______ DATE _____ PAGE_OF_

CARD 1~16 LOCATION
OPERATION

OPERANDS NUMBER CODE

1 213 415 -6 7 8 1415 2021 6Z 63 110

I : SeE p, , LA BEL. ,.0." FORMAT 1
I

1

I I IA liTEM lOTAL FORMAT 2
I f .'

: i gCJ~ jSZRQ,¢? FORMAT 3
I I
~ I ISw IWORI(FORMAT 4

1
I

I I ICA.M 60s FORMAT 5
10 I :

I : b I .1.
FORMAT 6 II

12 I i
I I I

13

i ·1
~

I I 15

Figure 3-3. Symbolic Representation of Series 2000 Instructions

ORGANIZATION OF DATA IN MAIN MEMORY

Data may be stored in the main memory in any of the following variable-length formats:

• Field

• Item

• Record

FIELDS

Consider the eight consecutive storage locations shown in Figure 3-4. To indicate to the

machine that the se eight character s are to be treated as a field, their left and right boundarie s

must be defined. The left boundary is normally defined by setting a word mark in position 990.

The right boundary is normally defined by specifying storage address 997 in the instruction

that will manipulate the field. 1 The eight-character group shown in Figure 3 -5 is thus defined

as a field.

STORAGE ADDRESS -- 990··· 99J 992 993 994 995 996 997,'

CONTENTS ~ 7 3 6 6 9 5 2 9

Figure 3-4. Consecutive Storage Locations in Main Memory

1 Although this is the conventional method of defining fields, the Extended Move (EXM) and Move
or Scan (MOS) instructions (see Section VIII) permit a field to be defined by a word mark at
either the left or the right boundary. The opposite boundary is then specified in the instruction.

3-4 AG28

EASYCODER
COOING FORM

PROBLEM PROGRAMMER DATE PAGE OF

CARD 1~la LOCATION
OPERATION OPERANDS

NUMBER CODE

I Z , • $... 141S 2021 00

I·L lA. '~.¢7.'2, .. q.q.7.

T ADDRESS PORTION OF INSTRUCTION

t
STORAGE ADDRESS -+1?~p .. I;.<n~;f.

CONTENTS~ (7) 3 6 6 9 5 2 9

~tRD ~ MARK

DATA FIELD

Figure 3-5. Data Field Format in Main Memory

ITEMS

An item consists of one or Illore consecutive storage locations whose boundaries can be

defined in either of two ways:

1. The leftmost characte r position can be defined in the instruction that will operate
on the item and the rightmost character.position defined by an item mark; or

2. The rightmost character position can be defined in the instruction that will oper­
ate on the item and the leftmost character position defined by an item mark.

NOTE: An item mark is illustrated in this manual by underlining the character with
which it is associated. Fields within an item are defined by word marks.

There are only two instructions that manipulate items - Move Item and Translate, and

Extended Move. In the Move Item and Translate instruction, the leftmost character of an item

is addressed and the rightmost character contains an item mark. In the Extended Move instruc­

tion, several different item boundaries can be specified by the variant character of the instruction.

Two items, each containing three data fields, are shown in Figure 3-6.

STORAGE ADDRESS

CONTE~TS

ADDRESS PORTION
OF INSTR UCTION

STORAGE ADDRESS

CONTENTS

ITEM MARK

ADDRESS PORTION
OF INSTRUCTION

.... ----- ITEM ------~

Figure 3 -6. Two Item Formats in Main Memory

3-5 AG28

RECORDS

A record is any unit of information that is to be transferred between the main memory and

a peripheral device. A record can be of any length, from one character up to the maximwn.

number of character s in the memory. It can contain any number of items and fields. The right­

most limit of a record is defined by a record mark in the character position following the last

character in the record (see Figure 3-7).

NOTE: A record mark is illustrated by combining the word-mark and item-mark
symbols. The address of the leftmost character in a record is specified
in the instruction that operate s on the record.

ADDRESS PORTION OF INSTRUCTION

STORAGEADDRESS~~~~0T~~~5i~7F~~SJ~~Y1~~~~~0]IT····1<2~5~20··n
CONTENTS ~

IIIIII~I----------- RECORD ------~J-.I ~;~:D

Figure 3-7. Record Format in Main Memory

SUMMARY

The foregoing data format conventions are summarized in Table 3-1.

Table 3-1 Summary of Internal Data Formats

BOUNDAR YDEFINITION
INSTRUCTION

DATA FORMAT USED TO SET
LEFTMOST CHARACTER RIGHTMOST CHARACTER MARK (See

Section 8)

FIELD a Word Mark ® Addre s s po rtion of in- Set WordMark
struction

Address portion of in- Item mark X -
ITEM

struction
Set Item Mark

Item Mark X Address portion of in-- struction

RECORD Address portion of in- Record mark ® BOTH Set
Word Mark

struction -- and Set Item
{in character position Mark
following last character
of record} b .

a
The Extended Move (EXM) and Move on Scan (MOS) instructions are exceptions to the field
format shown (see page 3 -4 and note).

b A record can also be moved internally (i.e., from one main memory area to another) by meanf
of the Extended Move instruction (see Section VIII). In this case, the character containing the
record mark is considered as part of the record. This instruction can specify either the right
or left boundary of the record to be moved.

3-6 AG28

MAGNETIC TAPE DATA FORMAT

In many applications, a major input and output medium for a Serie s 2000 computer is

magnetic tape. The standard Series 2000 magnetic tape system uses 1/2-inch tape as the

recording medium.

Information is stored o~. 1/2-inch magnetic tape in variable-length groups of character s

called records. The tape is divided lengthwise into seven or nine recording tracks. A line

of bit positions across the tape, one position for each track, is called a frame. On a 7-track

tape, the seven bits in a frame correspond to the six information bits and one parity bit found

in a character position in the main memory. On 9-track tape, in the standard packing mode,

four main memory characters (27 bits) are written into three tape frames of eight data

channels, and one parity channel. Notice that no tracks are provided for the storage of punctu­

ation bits on tape. Unlike main memory records, which are del.imited by record-mark punctu­

ation, tape records are separated from each other by a band of blank tape, which is called an

interrecord gap. The representation of a memory character position on 7 -track magnetic

tape is shown in Figure 3-8. (The punctuation bits have been moved within the main memory

character position in order to simplify the diagram.)

Main
Memory
Character
Position

Frame

Figure 3-8. Character Representation on 7-Track Magnetic Tape

Characters recorded on magnetic tape are transferred from the main memory without

parity bits. At the time of recording, the magnetic tape control generate s parity bits as

required. The programmer may specify either odd- or even-parity recording:
l

in the odd­

parity mode the bit count in each frame is odd; in the even-parity mode the bit count is even.

IFeature OS2 required on Type 204D-I, -lA, -3, -3A, -S and -SA; and 204F-I, -3, and -S
Magnetic Tape Units.

AG28

DATA AREA

FORWARD TAPE MOTION

DATA AREA

Longitudinal
Check Frame

NOTE: The Longitudinal Check Frame is located four frames
after the last data frame.

7-TRACK TAPE FORMAT (200, 556, 800, AND 1200 BPI)

DATA AREA

NOTE: A Cycle Check Frame is located four frames after the
last data frame; the Longitudinal Check Frame is located
eight frames after the last data frame.

9-TRACK TAPE FORMAT (800 BPI)

Postamble

DATA AREA

NOTE: There are no check frames. A preamble and postamble
(41 frames each) are required before and after each
data block.

9-TRACK TAPE FORMAT (1600 BPI)

Figure 3-9. Data Format on Magnetic Tape

3-8

DATA AREA

Interrecord Gap
0.60"

AG28

In addition to parity bits, which are used for frame checking, the magnetic tape control

also generates a longitudinal check frame which is used for track checking purposes. A check

frame is automatically appended to each record stored on tape.

Recall that a record stored in memory is delimited by a record mark in the character

po sition following the last character in the record. When a record is transferred to tape, the

contents of the character position containing the record ma:t;"k are not included a s part of the

record. On the other hand, if a record mark is sensed in memory when information is being

read in from tape, the record mark will terminate the record and the character position con­

taining the record mark will receive a character from the tape. Although data transfer from

the tape is terminated by the record mark, tape motion continues until an interrecord gap is

sensed. No punctuation marks are altered. in any way as a result of tape read/write operations

initiated by a program. Figure 3-9 illustrate s the data format on 7 - and 9-track tape.

PUNCHED CARD FORMAT

Punched cards provide a convenient means of entering data into the machine. The cards

used for this purpose are either standard I2-row, 80-column cards or I2-row, SI-colutnn

cards. Each card column may contain a decimal digit, an alphabetic character, or a special

symbol such as a slash or an asterisk (see Figure 3-10).

Numeric information is represented using the card punch positions labeled 0 through

nine. Alphabetic information is represented by a combination of numeric punches and zone

punches. There are three zone punch positions: the 12-zone at the top edge of the card, the

II-zone just below the 12-zone position, and the O-zone labeled a s row 0 on the card. The 11-

and 12-zones are not labeled because the top edge of the card is reserved for printed headings.

Notice that row 0 can represent numeric value when it is the only row punched, or a zone

punch if used with another value.

In addition to Hollerith code, cards may be punched or read in the direct transcription

mode as an optional feature. Each punch position on the card is individually significant in this

mode, a punch representing a I-bit and the absence of a punch representing a O-bit.

ZONE hOI Z34"789 IIIIIII~~ JKLMNOPQk STUVWXYZ li;- IV. -a

PUNCHES I (111111111 III

NUMERIC
PUNCHES

11 •• 1.0 '1' 0 0 1.1. 00 0 I 0.0.0. I •• 0 I •• I 0 10 0 0 0.1 0 0 0 0111111110 0 0 0 I I II I. 01 01110.0.0111 ••
I J J .'III ... n"IJ"'I .. u .. tt.:onlJ"'1I.""II.JllljJ~' •• " ••• II'.·""d.""-.'1\JtJ~tI."II".'IIIU "I·WII"llnUN""U.".
1111 II I I III I I I I I I I I I I I I I I 1111 I I I I I I III I I I II I I I I I I I I I I I I I I I II I I I 11 I III I I I 111111 I I

I I I I I I I I I 112 I I I I I I I 2 I I 2 I ~ I II I I I I I I I I III I I I I I I III I 212 I I 2 2 I I I I I I I I 2 I I I I 2 I I I I I I I III

Ulllllll uill UlllllllIlllIIll1l1111l11111llllIlll1l1111111ll11111111111lllU U

6U 4 UU 4 H414u 444 4 4 46H H 4 414 4 4 6 4 46 HI6 446 U 4 414 4 4 44 4 464 444 4 414414 41414444H44

555 5 5 5 55 5 5 5 5 515 5 55 5 5 5 5 5 55 5 5 5 5515 5 5 5 5 5 55 5115 5 5 5 5 51115 5 5 5 5 5 5 55 5 5 55 5 5 5 5 5 51 ~ 5 55 55' 5 5

" " , "" "" 11'.11' , , "" 1IIIIIIili i'" , ill I '1111,11111" 11111111111111111.11111

1I11 III III nlllill J II n 1111 II J lllllllJl JIll J 1111 J J J III III I" II II II Jl JlIIl II II U I

.... 1.1 1.1 1 111.1 •• 11 11111 11 •• 1 11.11.111 11 ••

80·COLUMN ___ ~ ~ ~ ~! ~ ~!:: !~~~!~!~~~H!~!.UB!~~,~!,~!~~, ~~.!~ !~,!!!~!!!~~!!!!~~~!~,!~!!!~!!~! ~~!H~~!!
SCALE

Figure 3-10. Punched Card Codes

3-9 AG28

DISK FORMAT

DATA CONVENTIONS

In disk processing, the basic unit of information is referred to as an item. An item isa

logical unit of data, the smallest logical unit of data operated on by programmed instructions.

For insfance, it may be a single policy in an insurance policy file, or an employee's account in

a master payroll file.

A record is a physical unit of data defined as the data written between two interrecord gaps

on a track. A single record is the smallest physical unit of data that is operated on by pro­

grammed instructions. The number of items contained in a record is determined by the user.

An item can be a portion of a record; equal to a record; or composed of more than one record, in

which case the item is split between records. For example, if the record size is 250 characters,

and the item size is 100 characters, two records contain five items.

RECORD 0 250 Characters RECORD 1 250 Characfers

ITEM 0 ITEM 1 ITEM 2 I ITEM 2 ITEM 3 ITEM 4

lOO char lOO char 50 char
R

50 char lOO char lOO char
G

Figure 3-11. Relationship Between Items and Records

A block is defined as the sum of records that are transferred to or from main memory by a

single data transfer operation. A block is a physical unit of data. It can contain one or more

records. and its size is determined by the user. A block may be contained entirely on one track;

or it may begin on one track and end on another. Since the contents of a block are transferred

to or from memory, a buffer should be' at least as large as a block. A block must contain a

whole number of items.

,/

3-10 AG28

BLOCK 0 BLOCK 1
1080 Characters 1080 Characters

RECORD 0 RECORD 1
I

RECORD 2 RECORD 3
540 Characters 540 Characters

R
540 Characters 540 Characters

I
G

I
ITEM 0 ITEM 1 ITEM 2 R ITEM 3 ITEM 4 ITEM 5 ITEM 6 ITEM 7 ITEM 8 R ITEM 9 ITEM 10 ITEM 11

180 180 180
G

180 180 180 180 180 180
G

180 180 180

Figure 3-12. Relationship Between Items, Records, and' Blocks

A file is a collection of logically related items. A file is the large st unit of information

that can be stored or retrieved by the operating system. For example, on a single volume, a

single disk pack, there m.ay be an inventory file, a payroll file and a customer-records file.

A volume is a physical unit of peripheral storage, as a disk pack, a reel of tape, or a

deck of punched cards.

TRACK FORMAT

Each track is composed of an index mark, which signifies the beginning of the track, and

a variable number of data records, followed by a track-linking record which, if present, is the

last logical record on the track. The track-linking record may be located anywhere on the

track, as long as it logically follows all the data records on that track. The 277/279 disk

drives contain a horne address record that defines the track and cylinder in actual use or

operation. Each one of these areas is separated by an interrecord gap. Refer to Figure 3-13.

RECORD FORMAT

Address Mark

A record consists of three areas: the address mark, the header area, and the data

area.

An eight-character Address Mark is automatically written during file formatting. Sub­

sequent data transfer operations use that address mark to iocate the beginning of each,record.

However, the address mark is never transferred to main memory.

Header Area

The header area of a record is formatted during a special file formatting procedure and

is used later during file processing. The header contains: (l) a flag; (2) the addre ss of the

record; (3) the length of the data area in characte~ s; and (4) the checking code s for the header

area information.

3-11 AG28

TRACK

RECORD n

Record n (277/279 Disk Pack Drives)

:'!,;M_Stotage'.Mdt­
';t':" of this ,Record' -: .

I c I CiT I T I R I R

~~~ 

1...-_____ Length of the data area 

I L---- Record No. 

L.. ------- Track No. 

1M .. Index mark. DefineS the beginning point 
of a track. 

IRG 0& Interrecord gap. 

'------------Cylinder No. 

'----------- Flag character 

TLR '" Track·linking record. Last record 
written on a track. Gives mass storage 
address of next sequential record. 

AM .. Address mark. Defines the beginning 
of each record. 

HA = Home address. Defines the track and 
cylinder being used. It is a record 
containing 5 bytes. 

Record - A track area OCcupied by both data and the identifying fields associated with that data. This is the area originally laid out by the 
formatting program. 

There are two types of information in a file: data information and track.linking information. Thus, the records used to contain this infor· 
mation are referred to as data records and track·linking records, respectively. 

Data Area - Information transferred between the Series 2000 processor and a disk device by means of a data trensfer instruction. 

Address Mark and Header Area - The two identifying fields associated with each record. 

The flag (F) is a 1-character field used for control purposes. 

Cylinder Number (CC) - This 2-character field specifies (in binary) a cylinder number within a device. 

Track Number (TT) - This 2-character field specifies (in binary) the track number within a cylinder on which the record is situated. 

Record Number (RR) - This 2·character field identifies the binary record number within a track. 

EXAMPLE OF LOGICAL RELATION OF 
ITEMS, RECORDS, and BLOCKS: 

BLOCK 0 BLOCK 1 
900 CHARACTERS 900.CHARACTERS 

I 
RECORD 0 

I RECORD 1 R RECORD 2 
I RECORD 3 

450 Char. 450 Char. G 450 Char. 450 Char. 
R 

I 
R 

Item 0 I Item 1 I "om 2 
G 

Item 2,.1 Item 3 Item 4 Item 5 I Item 6 litem 7 
G 

Item 7 .1 Item 8 
180 Char. 180 Char. 90 Char. 90 Char. 18C1Char. 180 Char. 180 Char. 180 Char. 90 Char. 90 Char. 180 Char. 

Figure 3-13. Data Conventions of Honeywell Mass-Storage Disk Devices 

3-12 

I Item9 
180 Char. 

AG28 



The flag is a one-character field. Five bits are significant. The rem.aining bit is not 

applicable here. See Figure 3-14. 

HEADER AREA 

IFf AF DL cc 

~?:~~i~il'irj~¥~:~fc'1~'~2;~~;';;~'E;;;)"$;'?'~"i''''~ 
TLR DATA TRANSFER MODE 

A-FILE 

-----B-FILE 

-------- DEFECTIVE TRACK 

Figure 3-14. Flag Character Format 

• Track-Linking Record (TLR) - The high-order bit of this six-bit character 
contains the value "0" for a data record or the value "1" for a track-linking 
record. 

• Defective Track - This bit position is normally a "0." It is a "1" when the 
associated track has been designated as defective. 

• A-File and B-File - These bits are used for file protection. 

• Data Transfer Mode - This bit position is a "011 for six-bit transfer m.ode. 

The addre s s field consists of six character s. It specifies the cylinder, track, and 

record number of each record. See Figure 3-15. 

HEADER AREA 

I F I AF ,I DL cc 
~,; .;~:~ .. : .',~:<~.~~" ~>' ,'X"<- f'::~':' .. "j~:' <o~, $<" 

~~(: ~<>; >'~'~~' ", '/~~:>~'<"~~,:~~'.: "<":':~.y< 
~,<\",::<, ,'" '\~< :;.~ "/: ,~.,~.\. ,:-:K ;~~ .,,';;") 

X:'ti;IYr{~:§s' FCIE I~D':"'i,<>,> 

I ~'(~"f;'r~'il R'i"'~ I 

Figure 3-15. Address Field Format 

• Cylinder Number (CC) - This two-character field specifies (in binary) a 
cylinder number within a device. 

• Track Number (TT) - This two-character field specifies (in binary) the track 
num.ber within a cylinder on which the record is situated. 

• Record· Number (RR) - This two-character field identifies the binary record 
num.ber within a track. 

3-13 AG28 



The data length field of two characters specifies (in binary) the number of characters 

contained in the data area of the record, not including the checking code within that data area. 

The checking code is a two-character field, which is automatically calculated and inter­

preted by the control for purposes of error detection. The checking code used with the 277/279 

disk drives is a seven-byte field which is automatically calculated and interpreted by the con­

trol for the purpose of error detection and correction. 

Data Area 

The data area contains the information that is transferred to or from the central 

processor. The length of the data area (exclusive of check characters) is determined by the 

user and is specified in the data length of the header area for that record. 

The data area is automatically stored in the following manner. If the total data area is 

less than 256 characters, it is stored in field 1 (see Figure 3-16) and two check characters are 

appended to the field. For example, the data area for 100 characters is 102 characters long: 

data field 1 contains 100 characters and a two-character checking code is appended to this field. 

With the 277/279 disk drives, the first data field can occupy 1 to 4,096 characters. Each of 

the other data fields, if any, must be 4,096 characters long. The check characters EDAC are 

seven byte s long and are appended to each data field by the control (see lower portion of 

Figure 3-17). 

If the data length is greater than 256 characters, the overflow from one or more 256-

character fields is stored in data field 1. Each of the data fields other than data field 1 must 

be 256 characters long. Two check characters are appended to each data field by the control 

unit. For example, the data area for 300 character sis 304 character s long. Data field 1 con­

tains 44 character s, and data field 2 contains 256 characters. Two check character s are 

appended to each field, bringing the total to 304 positions. 

RECORD 

A M HEADER DATA AREA 

DATA FIELD 1 DATA FIELD' 2 DATA FIELD N 
cc cc cc 

(1-256 characters) (256 characters) (256 characters) 

DATA FIELD 1 DATA FIELD 2 DATA FIELD N 
EDAC EDAC EDAC (277/279) 

(1-4096 characters) (4096 character s) (4096 characters) 

Figure 3 -16. Data Area Format 

3-14 AG28 



TRACK-LINKING RECORD 

The basic function of the track-linking record is to allow contiguous processing of a 

serie s of records that extends from one track to another track on the same cylinder. The 

track-linking record can also be used to handle overflow records and for alternate track 

recording. The format of a track-linking record is identical to that of a normal record, except 

for the data area: the track-linking record data area must contain the address of the next 

record to be sought. 

DATA AREA FORMAT 

Figure 3-17. Track-Linking Record 

3-15 AG28 





SECTION IV 

ADDRESSING 

BASIC CONCEPTS 

The main memory storage locations that contain the instructions and data of a program are 

identified to the machine. by their particular main memory addre sses. Every character storage 

location in the main memory is directly addressable. 

An instruction is stored in a field of from 1 to 12 characters, depending on the format of 

the instruction and the mode of address assembly (two-, three-,Qr four-character). Figure 4-1 

illustrates how a typical seven-character Add instruction appears when stored in the main 

memory. (Recall that enclosing a character in a circle indicates that a word mark is associated 

with it. ) 

An instruction is addre ssed by specifying the op code (leftmost) location of the instruction. 

For instance, the address of the Add instruction in Figure 4-1 is 524. The machine reads an 

instruction from left to right until it senses a word mark. For example, the extraction of the 

Add instruction (Figure 4-1) is stopped by the word mark as sociated with the op code of the 

next instruction in sequence. 

STORAGE ADDRESS-...... -.. 524 525 15261527. .52815Z91S30;531 

CONTENTS-"""""....... ® 1776 

ot AAD~ESS 
CODE 

1492 

B ADDtESS 

MACHINE READS INSTRUCTION _ 
~-- FROM LEFT TO RIGHT ----t~ 

Figure 4- 1. Typical Add Instruction 

-
I 

OP CODE OF 
NEXT INSTR. 

As mentioned in Section III, a data field is normally defined in the following manner: the 

leftmost location in the field is indicated by a word mark; the rightmost location is specified in 

the A or B address of an instruction. The machine reads a data field from right to left until it 

4-1 AG28 



senses the word mark associated with the leftmost character in the field. I For example, the A 

and B addresses in the instruction shown in Figure 4-1 could specify the data fields shown in 
. 2 

FIgure 4-2. 

Figure 4-2. Extraction of Data Fields in Typical Add Instruction 

An item is addressed by specifying either its leftmost or its rightmost character location 

in an address portion of an instruction (a variant character in the instruction specifies which 

character is being addressed). If the address of the leftmost character is specified, the 

machine reads the item from left to right; if the address of the rightmost character is speci­

fied, the machine reads the item from right to left. In either case, the operation terminates 

when an item mark is sensed. 

A record is addressed by specifying its leftmost character location in an address portion 

of an instruction. The machine reads a record from left to right until it senses a record mark. 1 

Note that the contents of the character position containing a record mark are ~ considered as 

part of the record, except when the record is moved internally. 

IRecall that the Extended Move (EXM) instruction permits the reading of fields, items, and rec­
ords in either direction. 

2All examples and illustrations in this section are presented in decimal notation, with the 
exception of address modifiers (binary). A table of decimal and octal equivalents appears in 
Appendix A. 

4-2 AG28 



The direction in which the machine reads any of the above-mentioned groups is compatible 

with the manner in which the contents of the group are manipulated. For instance, a field used 

in an arithmetfc pperation is read from right to left because such operations combine fields 

character by character, starting with the low-order or "units" position in each field. Similarly, 

an instruction is read from left to right because the machine must interpret the op code befo·re it 

can manipulate the operand(s). 

REGISTERS USED IN ADDRESSING 

The processing of a stored-program instruction consists of two phases: the retrieval (or 

"extraction") of the instruction from main memory storage, and the execution of the instruction. 

Six control memory registers are used to address the main memory during instruction processing. 

Four registers - SR, CSR, EIR, and IIR - are related to the sequential selection of instructions 

in a program; the other two registers - AAR and BAR - control the transfer of information 

from one storage location to another by containing the address portions of an instruction. 

SEQUENCE REGISTER (SR) 

SR contains the address of the next sequential instruction character to be extracted from 

the memory during a program run. The contents of SR are incremented by one as each instruc­

tion character is extracted, so that SR contains the address of the next instruction's op code 

when one instruction has been completely extracted. 

CHANGE SEQUENCE REGISTER (CSR) 

The address of an op code can be stored in CSR. lA Change Sequencing Mode instruction 

will interchange the contents of SR and CSR and thereby cause the pr ogram to branch to the 

instruction whose op code address was stored in CSR. At this point in the program CSR will 

contain the address of the op code following the Change Sequencing Mode instruction. In 

order to return to this op code (i. e., to the initial sequence of instructions), another Change 

Sequencing Mode instruction can be issued. 

EXTERNAL INTERRUPT REGISTER (EIR) 
1 

EIR, like CSR, can be used to store the address of an op code. This address and the 

contents of SR will be interchanged automatically when an external interrupt signal is received. 

(Recall that an external interrupt signal can be generated by a peripheral control, by the con­

trol panel or console, or by the Monitor Call instruction.) In order to return to the normal 

sequence of instructions that was interrupted, a Re sume Normal mode instruction can be issued. 

1 A Load Control Registers instruction can be used to store the desired op code address. 

4-3 AG28 



INTERNAL INTERRUPT REGISTER (IIR) 

The address of an op code can also be stored in IIR. I When Storage Protection is in 

effect, certain operations are considered as "violations" of storage protection (e. g., the 

attempt to initiate a data transfer from a peripheral control to a starting location in the 

protected memory area). An internal interrupt signal is generated when such a violation occurs, 

and the contents of IIR and SRare automatically interchanged. The Resume Normal Mode 

instruction is used to return to the interrupted program. 

A-ADDRESS REGISTER (AAR) 

AAR normally contains the A-address portion of an instruction (i. e., the storage address 

of the rightmost character of the A-operand data). This address is loaded into AAR during the 

extraction phase of processing. In the execution of instructions whose operands are fields or 

rightmost-addressed fields or items, the contents of AAR are decremented by one as each 

character in the A field is manipulated. 2 The contents of AAR are incremented by one as each 
3 

character in a record or leftmost-addressed field or item is extracted. 

B-ADDRESS REGISTER (BAR) 

Normally the B-address portion of an instruction is loaded into BAR during the extraction 

phase. During the execution of most instructions, the contents of BAR are decremented by one 

as each character in the B field is extracted.
2 

If the B operand is a record or a leftmost­

addressed item, the contents of BAR are incremented by one as each character is extracted. 3 

I 

SUMMARY 

The foregoing information can be summarized as four easily remembered rules: 

1. An instruction is read from left to right. As each character in the instruc­
tion is read, the contents of the sequence register are incremented by one. 

2. A field is read from right to left. 2 As each ·character in a field is read, 
the contents of the corresponding address register are decremented by one. 

3. A record is read from left to right. 3 As each character in a record is 
r·ead, the contents of the corresponding current location counter are 
incremented by one. 

A Load Control Registers instruction can be used to store the desired op code address. 

2 A field can also be moved internally from left to right by means of the Extended Move (EXM) 
or Move or Scan (MOS) instructions (see Section VIII). In this case, the address register is 
incremented. 

3 A record can also be moved internally from right to left by means of the Extended Move or 
Move or Scan instructions. In this case, the address register is decremented. 

4-4 AG28 



4. An item can be read either from left to right or from right to left. As 
each character in an item is read, the contents of the corre sponding 
address register are incremented by one if reading from left to right, 
or decremented by one if reading from right to left. 

Recall that in the Type 2041, a control memory register is only as large as it need be to 

contain the largest main memory address in a user's processor (see Table 2-2), so that the 

size of the user's control registers ranges from 12 to 19 bits in length. The programmer 

should keep this fact in mind while reading the following description of addressing modes. 

ADDRESSING MODES 

As stated at the beginning of this section, an instruction is stored in a field of from 1 to 

12 character s, depending on the instruction's format and the programmed addre ssing mode. 

The op code is stored as a single six-bit character. Varient characters or I/O control charac­

ters, if any, are each stored as single characters. The number of character locations in which 

each address portion is stored depends on the addressing mode selected by the programmer. 

This selection is made by means of a Change Addressing Mode instruction with which the pro­

grammer specifies the two-, three-, or four-character addressing mode. A significant 

feature of the Series 2000 addressing technique is that the entire memory is directly 

addressable. 

TWO-CHARACTER ADDRESSING MODE 

An operand address written in the two-character addressing mode is stored in two con­

secutive character locations in memory. The stored address (a continuous 12-bit binary 

number) represents the address of a main memory location in the range 0 - 4,095'10' 

Two-Character Address-----------__ .~ I X X X X X X X X X X X X 

~-------------------v~--------------------~/ 
12-Bit Address 

During the extraction phase of instruction processing, the two-character address is 

placed in the rightmost 12 bit positions of the addres s register (AAR or BAR). Any bi'ts in the 

register to the left of the two-character address are called "bank bits." Previous values in 

the bank bit positions of the register are not disturbed during instruction extraction. 1 

1The entire contents of an address register (bank bits + two-character address bits) are 
affected during the extraction of an instruction whose extraction path "duplicates A" (described 
in Section IV). Extraction of all other two-character addresses affects only the rightmost 
12 bits. 

4-5 AG28 



Two-Character Address 
(12 Bits) 

Address Register 
(12 - 19 Bits) 

r--------
I X X X XX X X L _______ _ 

~~------~v~----~/ 
Bank Bits 

(not dis turbed 
during 

extrac tion) 

When the instruction is executed, the entire contents of the address register are inter­

preted as the operand address. Previous values in the bank bit positions, not disturbed during 

the extraction phase, are used to form the addref)s of the operand during the execution phase. 

Thus, the bank bit values imply a base address to which the 12-bit address is added to form the 

actual operand ~ddress. If the bank bit values are all a's, the 12-bit address is the actual 

operand address. 'j' 

For example, a two-character A address specifying location 4, 000 10 is extracted and 

placed in AAR. The second bank bit in AAR (bit position 14) contains a residual value of "1", 

representing a base address of 8, 192 1 O~ When the instruction is executed, the entire contents of 

AAR (8, 19210 + 4, 000 10) specify the addre s s of the A operand - location 12, 19210• 

As the contents of the address register are incremented or decremented during "internal" 

execution, bank bits are not disturbed. 1 If the 12-bit address in the rightmost positions of the 

register becomes zero, a borrow from the first bank bit does not occur. Thus, the portion of 

memory which is addressable by a two-character address is the 4, 096-character "bank" speci­

fied by the base address. 

Indexed and indirect addressing (see below) cannot be performed in the two-character. ad­

dressing mode. 

THREE-CHARACTER ADDRESSING MODE 

An operand address written in the three -character addressing mode is stored in three 

consecutive character locations of the memory. The rightmost 15 bits of the stored address 

represent the address of a ma,in memory location in the range 0 - 32, 767 10 . The leftmost three 

1 
"Internal execution" is defined as the incrementing or decrementing of address regist~r con-
tents during memory cycles allocated to the central processor. When peripheral transfer oper­
ations are performed" using memory cycles allocated to read/write channels, incrementing and 
decrementing of address register contents affect all bits of the register. Thus, addressing 
during peripheral transfer operations is continuous throughout the ·memory. 

4-6 AG28 



bits, referred to as the "address m.odifier," specify whether the address is direct, indirect, 

or indexed (see "Address Modification"). 

3-Character Address IX' X XIx X xIx X X X X xix X XX X Xl 
~~\~---------------___________________________________ -J 

------y-- v-
3-Bit IS-Bit Address 
Address 
Modifier 

During the extraction phase, the IS-bit address is placed in the rightrrlOst bit positions of 

the operand address register. Any bits in the register to the left of these bit positions are called· 

"sector bits." Previous values in the sector bit positions of the register are not disturbed 

during instruction extraction. 1 

3-Character Address 
(15 Address Bits) 

Addre s s Register 
(15 - 19 Bits) 

X xIx X X X X xl X XX X X xl 
\ , 

v • X ~Ix XX X···.·X xiX' X X:X X XI [~~~~~~I_X ________ ~ ______________ ~ ______________ ~ 
~ 
Sector Bits 
(not disturbed 
during 
extraction) 

When the instruction is executed, the entire contents of the address register are inter­

preted as the operand address. Previous values in the sector bit positions, not disturbed dur­

ing the extraction phase, are used to form. the address of the operand during the execution 

phase. Thus, the sector bit values im.ply a base address to which the IS-bit address is added 

to form. the actual operand address. If the sector bit values are all a's, the IS-bit address is 

the operand address. 

For example,. a three-character A address specifying location 12,00010 is extracted and 

placed in AAR. The first sector bit in AAR (bit position 16) contains the value "1", representing 

a base addres s of 32, 768 10• When the instruction is executed, the entire contents of AAR 

(32,76810 + 12,00010) specify the address of the A operand - location 44,768 10• 

As the contents of the address registers are incremented or decremented during "internal" 

execution, sector bits are not disturbed. If the IS-bit address in the rightm.ost locations of the 

address register becomes zero, a borrow from the first sector bit does not occur. Thus, the 

lThe entire contents of an address register (sector bits + IS-bit address) are affected during 
the extraction of an instruction who se extraction path "duplicate s A" (described in Section IV). 
Extraction of all other three-character addresses affects only the rightm.ost 15 bits in the 
register. 

4-7 AG28 



largest portion of memory which is addressable by a three-character address is the 32,768-

character "sector" specified by the base address. 

Addressing is continuous throughout the entire mi~mory when a peripheral transfer opera­

tion is performed, as in the two-character mode. 

FOUR-CHARACTER ADDRESSING MODE 

An operand address written in the four-character addressing mode is stored in four con­

secutive character locations. The rightmost 19 bits represent a ma.in memory address in the 

range 0 - 524,287
10

. The leftmost five bits - the "address modifier" - specify whether the 

addres s is direct, indirect, or indexed (see "Addres s Modification, " below). 

Four- Charactei:' Addre s s--.-. 

5- Bit 
Address 
Modifier 

19-Bit Address 

The 19-bit address is placed in the address register during the extraction phase. Thus, 

the entire contents of the address register are affected during the extraction of a four-character 

address. 

Four- Character Address--~ 
(19 Address Bits) 

Address Register 
(Up to 19 Bits) 

The entire contents of the register are interpreted as the operand addre ss when the instruc­

tion is executed. As the contents of the operand address registers (AAR and BAR) are incr~­

mented or decremented during execution, all bits in the register are affected. Thus, addressing 

is continuous throughout the entire range of available memory (up to 524 J 288 locations) in the 

four-character addressing mode. 

ADDRESS MODIFICATION 

Indirect and indexed addressing can be used to modify three- or four-character addresses. 

These addressing forms are represented by the configuration of the "address modifier" as 

described below and are interpreted by the processor during the extraction phase. 

4-8· AG28 



INDEX REGISTERS 

Index registers are used to store values to be used for address modification during 

instruction execution. A Serie s 2000 proce s sor can contain up to 120 index register s. 

Figure 4-3 shows the memory areas utilized by the largest possible complement of index 

registers in a Series 2000 memory. The portion of a processor's index register complement 

usable by a program at any given time varies with the program's location in main memory and 

the addressing mode in use. Thirty index register s are simultaneously available to a program. 

LOCATION a 
Xl-XIS I XI-X6 I XI-X61 XI-X6 J 

Sector a Sector 1 Sector 2 Sector 3 

XI-X6 I XI-X6 J XI-X61 XI-X6 I 
Sector 4 Sector 5 Sector 6 Sector 7 

XI-X6 I XI-X6 j XI-X6 I XI-X6 I 
Sector 8 Sector 9 Sector 10 Sector 11 

XI-X6 j XI-X6 1 XI-X6 I XI-X6 I 
YI_YI5(a) I 

Sector 12 Sector 13 Sector 14 , Sector 15 
I 

LOCATION 524,287 

aRegisters YI- Y 15 can be positioned, under program control, in the first 60 loca-
tions of any 4, 096 -character bank of memory. 1£ these registers are positioned 
in the first bank of a 32, 768-character sector, they replace the group of six index 
registers in that sector. 

Figure 4-3. Series 2000 Index Register Map 

Index Register Map (Figure 4-3) 

Registers XI-X6 are available to instl'uctions executed in the three-character mode. 

These register s are located in the first 25 positions (locations a through 24) of the 32, 768-

character sector in which the instruction is stored. Since there can be as many as sixteen 

32,768-character sector s in a Series 2000 main memory, up to 96 index registers are supplied 

for use in a three-character addressing mode. 

4-9 AG28 



Index Registers Xl-XIS, located in the first 60 character positions of m.em.ory, are 

available to instructions executed in the four-character addressing m.ode. The placem.ent of 

these registers is independent of the location of the instruction whose address(es) is indexed. 

Registers YI-YlS, located in the first 60 positions of a "protected" m.em.ory area, are avail­

able to all program.s operating in the four-character addressing m.ode. 1 The specific baIlk at 

which the protected m.em.ory area begins is specified by use of the Load Index/Barricade 

Register instruction (see Section VIII). 

THREE-CHARACTER ADDRESS 

The address m.odifier of a three-character address. (i. e., the leftm.ost three bits of the 

stored address) specifies whether the address is direct (000), indirect (111), or indexed (001 

through 110). 

Indirect Addre s sing 

In previous exam.ples and illustrations in this section, an address portion of an instruc­

tion always specifies the address of a data field in the m.ain m.em.ory. This m.anner of address­

ing an operand is com.m.only referred to as direct, or "first-level," addressing. In som.e 

instances, instead of specifying the location of a data field directly, it is m.ore useful to be able 

to specify the storage location of another addre s s, which in turn specifie s the location of the 

de sired data field. This m.anner of locating an operand is referred to as indirect, or "second­

level. " 

A three-character indirect address is specified by an address m.odifier of all "1' s" and 

refers to the leftm.ost storage location of another m.ain m.em.ory address. The referenced 

address can itself be direct, indirect, or indexed as specified by its address m.odifier. Thus, 

an indirect addre ss can specify another indirect addre ss, and so on through any num.ber of 

levels, or it can specify an indexed address. The m.ethod of coding an indirect address is 

illustrated in Section V. 

Figure 4-4 shows the extraction of an Add instruction in which indirect addressing is 

specified in ~he A-address and direct addressing is specified in the B-address. Note that the 

A-address (indirect) references the leftm.ost location of another m.ain m.em.ory address. This 

address, in turn, specifies the location of the rightm.ost character in the A-field. Note further 

that if the address m.odifier of location 1027 were not "000", the rem.ainder of the stored 

address would be interpreted as an indexed or indirect address. 

1 Program.s operating in the unprotected portion of m.em.ory can read the contents of Y 1-Y 15 but 
cannot write into these registers. 

4-10 AG28 



I OP 
CODE A ADDRESS 

INSTRUCTION 

indicates 
indirect 
address 

ADDRESS 

CONTENTS 

ADDRESS 

CONTENTS 

ADDRESS 

CONTENTS 

indicates 
direct 

address 

lOZ7 

B FIELD 

indicates 
direc 

address 

B ADDRESS 

Figure 4- 4. Extraction of Three- Character Indirect Addre s s 

Indexed Addr e s sing 

When indexed addres sing is perforrn.ed in the three- character rn.ode, the rightrn.ost 15 -bit 

contents of an index register are autorn.atically added (in binary) to the IS-bit address field in an 

instruction. Three variables rn.ust be defined in any indexing operation: (1) the index register 

to be used, (2) the address to be rn.odified, and (3) the factor (referred to as an augrn.ent) to be 

added to the address. The index register to be used is specified in the address rn.odifier of an 

address field (see Table 4-1). The address to be rn.odified canbe stored in the sarn.e address 

field or it can be stored in the designated index register. If the address to be rn.odified is stored 

in an addre ss field, the a ugrn.ent is stored in the de signated index register and vice ver sa. 

Table 4-1. Index Register Addresses in Three-Character Addressing Mode 

Index Register Address Modifier Storage Field Address 

Xl 001 2 - 4 (+n) 4 (+n) 

X2 010 6 - 8 (+n) 8 (+n) 

X3 all 10 - 12 (+n) 12 (+n) 

X4 100 14 - 16 (+n) 16 (+n) 

X5 101 18 - 20 (+n) 20 (+n) 

X6 110 22 - 24 (+n) 24 (+n) 

n = first location of the 32, 768-character sector in which the instruction is 
stored. -

The rn.odification of an address occurs in its respective address register. For instance 

if the B-address portion of an instruction is indexed, the rn.odification is perforrn.ed in BAR. 

This rn.eans that neither the original instruction stored in the rn.ain rn.ern.ory nor the contents of 

the index register is altered in any way. 

4-11 AG28 



NorInal prograInIning, such as a load or a Inove operation, can be used to store a value 

in an index register. SiIni1arly, the contents of an index register can be changed by using an 

instruction such as Binary Add or Binary Subtract. Note that since the index registers are 

located in the Inain IneInory', they can be used as norInal storage locations when they are not 

being used for indexing operations. 

Figure 4-5 illustrates how the Add instruction would be extracted if indexed addressing 

were specified in the A-address portion of the instruction. The Inethod of coding an indexed 

address is illustrated in Section V. 

CONTENTS 

INSTRUCTION 

index 
re ster 3 

INDEX REGISTER 3 

ADDRESS----1 .. 1!1ft.2 

CONTENTS ---II .. @ 

A ADDRESS 

9 4 

A FIELD 

ADDRESS-~ 

CONTENTS---t .. 

Figure 4-5. Extraction of Indexed Address in Three-Character Mode 

FOUR-CHARACTER ADDRESS 

The address modifier in a four-character address consists of the leftmost five bits of the 

addre SSe The configuration of these bits specifies whether the addre ss' is direct (00000), 

indirect'(lOOOO), or indexed (00001 through 11111, excluding 10000). 

Indirect Addre s sing 

Indirect addressing in the four-character addressing mode is performed siInilarly to that 

in the three character mode, except that: 

1. a five-bit address modifier whose configuration is 10000 specifies indirect 
addressing; and 

2. A four-character address is extracted. 

4-12 AG28 



The method of coding a four-character indirect address in Easycoder assembly language is 

identical to that used for a three-character indirect address (see Section V). 

Indexed Addre ssing 

Four-character indexed addresses to be modified by index registers Xl through XIS are 

specified by an addres s modifier whose configuration is 00001 through 01111, respectively. 

Index registers Yl through YlS, when present, are specified by the configurations 10001 through 

11111 (see Table 4-2). Register locations are shown in Figure 4-3. 

Table 4-2. Index Register Addresses in Four-Character Addressing Mode 

Index Register Address Modifier Storage Field Address 

Xl 00001 1-4 4 
X2 00010 5-8 8 
X3 00011 9-12 12 
X4 00100 13-16 16 
XS 00101 17-20 20 
X6 00110 21-24 24 
X7 00111 25-28 28 
X8 01000 29-32 32 
X9 01001 33-36 36 

XI0 01010 37-40 40 
XII 01011 41-44 44 
X12 01100 45-48 48 
X13 01101 49-S2 52 
X14 01110 53-S6 56 
XIS 01111 57-60 60 

Yl 10001 
Y2 10010 
Y3 10011 
Y4 10100 
Y5 10101 Same as above, only 
Y6 10110 

relative to the 4, 096-
Y7 10111 
Y8 11000 character memory bank 
Y9 11001 

designated by the Load 
YI0 11010 
Yl1 11011 Index/Barricade Register 
Y12 11100 
Y13 11101 instruction 

Y14 1111 0 
Y15 11111 

When indexed addressing is performed in the four-character mode, the contents of the 

specified index register are added (in binary) to the address field of the instruction. However, 

only the number of active address bits of the index register and the address field are combined 

(i. e., only the number of bits which are required to address the entire memory of the user's 

processor). In a single-character processor, the number of active address bits corresponds 

to the size of a control memory register (see Table 4-3); in a multicharacter processor, all 

control register bits are active, regardless of main memory size. 

4-13 AG28 



Table 4-3. Active Address Bits in Series 2000 Single-:-Character Processors 

Main Memory 49, 152 65,536 131,072 
Capacity (Char s. ) 

Number of Active 16 16 17 
Address Bits 

If the main mem.ory capacity of a user's single-character processor lies somewhere 

between any two figures in the top row of Table 4-3, the larger number of active addre ss bits 

is used. For instance, if a processor contains 98,304 characters, there are 17 active address 

bits in an index register (and in a control register). 

The extraction of a Subtract instruction written in the four-character addressing mode is 

shown in Figure 4-6. Indirect addressing is specified in the A-address, and -indexed address­

ing (via index register X13) is specified in the B-address. 

INSTRUC .L.L""~"~"'" 

A ADDRESS 

indicates 
direct 

address 

ADDRESS~~~~~~~~UU 

CONTENTS 

ADDRESS 

CONTENTS 

INDEX REGISTER X13 

B ADDRESS 

B-ADDRESS 
REGISTER 

Figure 4-6. Extraction of Indirect and Indexed Four-Character Addresses 

4-14 AG28 



TREATMENT OF ADDRESSES LARGER THAN A MEMORY'S MAXIMUM ADDRESS 

In all proce s sor s except a multicharacter proce s sor with maximum memory, it is 

pb s sible to specify in instructions direct addre s se s that are large r than the addre s s of the 

proc e s sor' s highe st memory location. 

Likewise, it is possible in any Series 2000 processor, by the use of indexed addressing, 

to specify addre s se sand addre s s modifier s who se sums are potentially greater than the addre s s 

of the memory's highest location. For example, consider the case where, in a machine having 

a 49, 152-character memory, an instruction contains the address 49, 000 and the address is 

indexed using a register which contains the value 1, 000. Obviously, the sum of 49, 000 and 

1, 000 is greater than the memory's highest address, 49, 151. 

Situations such as the ones just cited are handled differently, depending upon the relation­

ship between the potential address and the memory size involved and whether or not the Storage 

Protect feature is in effect. In particular, such situations can be categorized according to 

whether the potential address is larger or smaller than the range of addresses representable 

by active addre ss -register bits. 

Potential Addresses Within Address Register Range 

In a multicharacter processor without storage protection in effect, encountering a simple, 

direct address, or the potential sum of an indexed address and index register contents, which 

lies between the address of the highest actual memory location and the address registers' upper 

limit, causes the processor to stop. Results are unspecified for the other Series 2000 proces­

sors. Any Series 2000 processor with Storage Protection in effect, upon encountering an 

address of the type described above, will perform the following actions: the internal interrupt 

(II) address violation indicator is set, the instruction is terminated prematurely, and an internal 

interrupt is generated. 

Potential Addresses Outside Address Register Range 

In any Series 2000 processor, if a sim.ple direct address, or the potential sum. of an 

indexed address and index register contents, is greater than the largest address representable 

by active address-register bits, the resultant address is form.ed m.odulo the num.ber of locations 

addressable with the active address bits; i. e., a memory "wraparound" occurs. For ~xample, 

in a 49K Model 2040, a total of 65, 536 locations can be add!essed by 16 active address bits. If, 

in such a machine, an address of 48, 000 is indexed by the value 27, 000, the resultant effective 

address will be 48, 000 + 27, 000 - 65,536, or 9464. 

4-15 AG28 



EXPLICIT ADDRESSING, IMPLICIT ADDRESSING, AND CHAINING 

Consider the three instruction formats illustrated below. 

OP CODE A ADDRESS B ADDRESS 

FORMAT I. __ ~~~ __ ~~~~~ __ ~~~~ __ 

FORMAT 2. .. 

--------------------------------
FORMAT 3. .. 

Format 1 corresponds to the instructions used in the preceding illustrations. The signifi­

cant feature of this format is that the addresses of both the A and the B data fields are explicitly 

specified in the instruction. For this reason the data fields are said to be "explicitly addressed. Ii 

In general, whenever the programmer writes the address of a data field on his coding sheet, he 

is explicitly addreSSing that data field (see Figure 4-7). 

EXPLICIT ADDRESS 

1 1 
OPCODE A ADDRESS 8 ADDRESS • - -The addresses of both data fields are 'explicitly specified in 

the instruction. 

Figure 4-7. Series 2000 Instruction Format I 

Format 2 has two pos sible interpretations (see Figure 4-8): 

FORMAT I 

1. Ten Series 2000 instructions coded in format 2 cause the A-address to be 
loaded into both AAR and BAR. 1 Thus, although the B-address portion of 
the instruction is omitted, the B-field is explicitly addressed by the 
A-address portion. The extraction path of these instructions is said to 
"duplicate A" (see Appendix C), since the contents of AAR are duplicated 
in BAR. 

2. The A-address of 19 instructions is loaded into AAR only, leaving BAR 
undisturbed. An omitted B addres.s in any of these instructions im.plies 
that the previous contents of BAR will be used as the addre ss of the B 
field. For this reason the B-field is said to be "impliCitly addre ssed, " 
and the extraction path of these instructions "preserves B" (see Appendix C). 

1 . . 
The entire contents of AAR are loaded into BAR during extraction, so that all bit positions in 
BAR are identical to those in AAR. Recall that this is the only operation that affects bank bits 
and sector bits in two-character mode and sector bits in three-character mode. 

4-16 AG28 



EXPLIClr ADDRESS 

OP CODE • 
1 ~ 

A ADDRESS B ADDRESS __ r---, 
---"" __ ..J 

In ten instructions, the address of both data fields is explicitly 
specified in the instruction. 

IMPLIClr ADDRESS 

EXPLIClr ADDRESS 

OP CODE • 
1 

A ADDRESS -
1 . 

B ADDRESS J pr8viOU$ conlflllls 
r - - -, /)01 BAR 
L __ ~ 

In 19 instructions, the previous contents of BAR are 
implied as the address of the B field. The address 
of the A field is explicitly specified in the instruction. 

Figure 4-8. Series 2000 Instruction Format 2 

FORMAr 20. 

FORMAr 2b. 

In format 3, both data fields are implicitly addressed. The previous contents of AAR are 

used as the address of the A field, and the previous contents of BAR are used as the address of 

the B field (see Figure 4- 9). 

Implicit addressing is extremely useful in situations where it is desired to perform a 

series of operations on data fields that are in consecutive storage locations. The use of implicit 

addressing reduces both the time required to perform the operations and the number of memory 

locations required to store the instructions. 

IMPLlClr ADDRESS 

OP CODE • 
1 

A ADDRESS 
r---, 
L __ -.J 

t 
pr.vious conl.nls 
01 AAR 

l 
B ADDRESS 
r----, 
L __ -.J 

t 
pt"tlvious conf.n16 
of BAR 

The addresses of both data fields are implied in 
the instruction. 

Figure 4-9. Series 2000 Instruction Format 3 

4-17 

FORMAr 3 

AG28 



As an example, assume that three 1 O-character fields stored in sequence are to be added 

to three other sequential fields. First, examine how this operation would be performed ~sing 

explicit addressing. Upon completion of the first instruction, AAR contains 890 and BAR con­

tains 690. These are the same values that appear in the A- and B-address portions of the second 

o o 
0) 

900 

890 

880 

700 

690 

680 

instruction. Similarly, upon completion of the second instruction, AAR and BAR contain 880 and 

680 - the A and B addresses of the third instruction. Since in each case AAR and BAR contain 

the addresses used in the next instruction, it is unnecessary to write these addresses in the in­

struction. In other words, this operation could be performed using implicit addressing in the 

second and third instructions. 

o 
0) 
0) 

900 700 

Connecting instructions together so that the contents of AAR, BAR, and the variant 

register (see below) at the conclusion of one instruction 'satisfy the requirements of the next 

instruction is called "chaining. II Using explicit addressing in the three-character addressing 

mode, 21 storage locations are required to store the instructions above and the operation takes 

187 microseconds to complete on a Type 2041 processor. If the instructions were "chained," 

nine storage locations would be used and 168 microseconds would be required to complete the 

operation. 

Instructions which require a variant character can also be chained by using the previous 

contents of the variant register. (The variant register is a single-character, internal register 

into which the variant character of an instruction is loaded during extraction.) The extent of 

chaining variant characters (i. e., the number of acceptable instruction formats in which the 

previous contents of the variant register can be used) varie s with the processor being used. 

Variant characters can be chained by an instruction coded in any format (i. e., format 1, 

2, or 3). The previous contents of the variant register are not normally distributed by the 

proces sing of an instruction which does not contain a variant character (see the instruction 

Branch, Move Characters and Edit, and Move and Translate for exceptions). 

4-18 AG28 



Chaining is not limited to sequential .operations having the same op code. The only con­

dition that must be met is that an instruction must leave the contents of AAR, BAR, and, if 

required, the variant register such that they satisfy the addre s sing requirements of the next 

instruction in sequence. 

To enable the programmer to chain instructions wherever possible, the description of 

each instruction (see Section VIII) include s a table showing the contents of the addre ss register s 

after the instruction has been executed. Also, Appendix C denotes whether each instruction in 

the machine complement can or cannot be chained. 

4-19 AG28 





SECTION V 

EASYCODER PROGRAMMING 

INTRODUCTION 

The preparation of Series 2000 programs is greatly simplified by the use of Easycoder -

a concise, easy-to-use programming system. Specifically, Easycoder relieves the programmer 

of many time-consuming duties associated with writing a program in actual machine language. 

It makes it unnecessary, for example, to maintain a careful record of the storage address as­

signed to each instruction. In addition, it allows the programmer to employ meaningful sym­

bolic tags (e.g., TAX, FICA, and TOTAL) rather than absolute memory addresses to specify 

data. In situations where a stored program must be relocated or modified, Easycoder can be 

used to perform the required alterations automatically. 

Easycoder includes a number of assembly systems; these systems are: 

• Easycoder A: Part of the Series 200/Basic Programming System. 
Easycoder A operates in a system 'having a minimum 
main memory size of 4,0<;16 characters. (Additional 
memory, however, may be. used to adYantage.) . For 
additional information refer to Easycoder A Assembly 
System (Order No. BC28). 

NOTE: A counterpart of Easycoder A - Easycoder A 
(P) - is available for use in a paper tape en­
vironment. The main memory requirements 
are identical to those of Easycoder A. See 
Easycoder A (P) Assembly System (Order No. 
BD42) for rnore information. 

• Easycoder B: Also part of the Series 200/Basic Programming System • 
. Easycoder B operates in a system having a minimum main 
memory size of 8, 192 characters. (Additional memory 
may be used to advantage, however.) See Easycoder B 
Assembly System (Order No. BA08) for additional in­
formation. 

• Easycoder C: Part of the Series 200/0perating System - Mod 1. 
Easycoder C operates in a system having a minimum 
of 12,288 characters of main memory. (Additional 
memory, however, may be used to advantage.) For 
additional information refer to Easycoder Assemblers 
C and D (Order No. BA26). 

• Easycoder D: Part of the Series 200/0perating System - Mod 1. 
Easycoder D operates in a system having a minimum of 
16,384 characters of main memory. (Additional memory 
however, may be used to advantage.) For additional infor­
mation see Easycoder Assemblers C and D (Order No. BA26). 

5 .. 1 AG28 



• as /2000 Easycoder: Part of Series 200/2000 Operating System/2000. 
as /2000 Easycoder operates in an as /2000 partition 
having a minimum of 32K and a maximum of 256K 
memory. as /2000 Easycoder implements operation 
codes with implied variants in addition to the standard 
instruction set. For additional information refer to 
OS/2000 Easycoder Assembler, (Order No. AH31). 

Each assembly system includes two basic elements: the Easycoder symbolic language 

and an Easycoder Assembler. The Easycoder language is used to write the symbolic program 

(the source program) while the assembler is the programming element that translates the 

source program into the actual machine-language program (the object program). 

To prepare a program in Easycoder symbolic language, the program.mer uses an Easy­

coder Coding Form. (see Figure 5-5) and enters each symbolic instruction or definition on a 

separate line. As a general rule, the instructions are written in the order in which they are 

to be executed. (However, the instructions m.ust be in the proper sequence prior to assembly.) 

After the symbolic program has been written, each line of symbolic coding is punched into a 

separate source-program card. These cards are the input data which will be processed by an 

Easycoder as sembler. 

The assembler accepts the source-program cards and automatically produces a corre­

sponding machine-language object program. It converts mnem.onic operation codes into ma"; 

chine language codes, assigns absolute storage addresses to instructions and symbolic operand 

references, and completely as sembles the final program, storing it on punched cards, disk 

units, or magnetic tape. Another output of the assembler may be a complete printed summary 

of the symbolic source program. and the corresponding machine -language entries. Figure 5-1 

illustrates the relationship of the source program., assembler and object program. 

SOURCE PROGRAM 

EASYCODER 
COOING FORM 

Q 

SYMBOLIC COOING 
PUNCHED 
INTO CARDS 

o 
ASSEMBLER 

( PROGRAM THAT 
TRANSLATES 
SYMBOLIC LANGUAGE 
INTO MACHINE 
LANGUAGE) 

o 

o 

OBJECT PROGRAM 

MACHINE-LANGUAGE PROGRAM 
STORED ON CARDS, DISKS OR TAPE 

LISTING OF 
SYMBOLIC AND 
CORRESPONDING 
MACHINE - LANGUAGE 
PROGRAM 

OR 

CI 
Figure 5-1. Relationship of Source Program, Assembler, and Object Program 

5-2 AG28 



THE SYMBOLIC LANGUAGE 

The Easycoder symbolic language is composed of a set of mnemonic. operation codes and 

a set of rules for defining memory areas, addressing operands, and entering constants. The 

mnemonic operation codes are predefiried abbreviations for machine-language operation codes 

and, in general, provide an easily remembered description of each instruction. For example, 

SI is the Easycoder mnemonic for the Set Item Mark instruction, and BCC is the mnemonic for 

the Branch on Character Condition instruction. The set of rules includes special mnemonics 

for defining work areas in the main memory and for defining programmer-specified constants. 

The statements used in writing an Easycoder program can be classified into three groups: 

1. Data formatting statements make it possible to reserve areas and store 
constants without regard to their actual locations in memory. Data for­
matting statements are described in Section VI. 

2. Assembly control statements are used by the programmer to control the 
assembly of his program. Assembly control statements are described in 
Section VII. 

3. Data processing stateInents are the actual machine instructions to be exe­
cuted in the object prograIn. Section VIII contains a description of the data 
processing statements eInployed by Series 2000 Central Processors. 

THE ASSEMBLERS 

The assembler element of each Easycoder assembly system translates the symbolic 

source prograIn (written on the Easycoder Coding Form and subsequently punched into a 

source-prograIn card deck) into Inachine-language entries, placing the resultant object pro­

gram on either punched cards or magnetic tape. In addition to the object-program output, the 

assembler may also produce a printed listing containing the sYInbolic source program and the 

corresponding object-program entries (see Figures 5-2, 5-3, and 5-4). 

OPERATION 
OPERANDS 

SYMBOLIC 
PROGRAM 
INSTRUCTION 

f 15 CODE 20 21 

OBJECT 
PROGRAM 
INSTRUCnON 

~ A 

,"ARAC_-I 3 ' 6 I 
OP CODE 

(AI_b/~ 
~uf"m~h·c~"y "" IIOrrI 
mtl,llll fill. I«~'/QII) 

AMT, TOTAL 

- ---

'A 4 A1.:s· 0 I 2 • : .1..:: 2 I 

Figure 5-2. Two-Character Address Assembly 

5-3 AG28 



SYMBOLIC 
PROGRAM 
INSTRUCTION 

< 
OPERATION OPERANDS ( 

CODE 15 20 21 

~ A AMT, TOTAL+X4 

- -- --- -. -

~\I 
ASSEMBLER 

CHARACTER -I I I 2 I ~ I " I 5 I 6 4 7 2 I 
r:s=::ON .. , -O-:-C-O-D6_'E~I-0~, ... ! ... · -O-A""! -A-D-D-R-:-S-S_

1 
... i _4 __ 0_-11-4-:,~!,--o_B ... i -A-~-D-R-:-S-S"""----I' 

(A.umbl" . "'INDICATES "'INDICAT'ES 
aulomalically "'1 DIR'ECT INDEX 
;;:~~/::f* in II/i, ADDRESS REGISTER" 

Figure 5-3. Three-Character Address Assembly 

Figure 5-2 illustrates how an assembler assembles an object-program instruction using 

2-character address assembly. Assume that the tag AMT is assigned to memory location 800 

and that the tag TOTAL is assigned to memory location 1250. Figure 5-3 shows how the assem­

bler assembles an object-program instruction using 3-character address assembly. Four­

character addresses are assembled as shown in Figure 5-4. Assume that, in Figures 5-3 and 

5-4, the tags are assigned the same values as in Figure 5-2. 

OPERATION 

15 CODE 20 21 

AMT, (TOTAL) 

CHAIIACTEII I I I 2 :1 I ~ 
7:tI(F~M 3 6 0 ; 0 0 0 ! I 4 
INSTIIUCTION 

OP CODE ~ A ADDRESS 
(A $I.mbl., aulomtrllCfl"y 
ul, word mark In Iltl. INDICATES 
localion) DIRECT 

s 

4 0 

ADDR'ESS 

OPERANDS 

41 0 l 0' 0 ! 2' 3 

\ 

B ADDRESS 

INDICAT'ES 
INDIRECT 

ADDRESSING 

Figure 5-4. Four-Character Address Assembly 

5-4 

9 

4 2 

AG28 



CODING FORM 

Programs are written on the Easycoder Coding Form (Figure 5-5). This form is com­

posed of fixed -format fields for coding such entries as card number, location, and operation 

code, and a variable-format field for operand addresses and comments. The numbers assoc­

iated with each subdivision, or field, on the coding form indicate the card columns into which 

the characters written by the programmer are to be punched. 

EASYCODER 
COOING fORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD I~ LOCATION 
OPERATION OPERANDS NUMBER CODE 

I Z ] 4 ~ e 1 • 141!1 Z021 126] eo 

I 
I 

I 

i 
I 

I I 

I 
I 

I i 
i 
I 
I I 
i ! 
I 

I 

i 
I 

I 

2 I , 
I 

· I 

· I 
1 I I 

· · 0 i 
1141 RlV. 0 

Figure 5-5. Easycoder Coding Form 

CARD NUMBER (Card Columns 1-5) 

This five-character field is divided into three parts: the first two characters are used 

for page numbering, the next two for line numbering, and the last character for insertions. 

The page entry provides the proper sequencing of coding forms. The line number entry is used 

for the sequential numbering of instructions on each coding form. The single-character in­

sertion entry permits one or more lines of coding to be inserted between existing lines. For 

example, to insert a line of coding between lines 16 and 17 of page 8, the following coding 

should be used. 

CARD NUMBER T 
y 

PIAGE
2 

I 3LIN~ II~S ~ 

~ 8 II ~ 61 ) 

III 8 I I 6 I 5 ) 

0 B I I I 7 I 
, 

5-5 AG28 



NOTE: The num.ber 5, which appears in colmnn 5 above, is optional. An 
insertion m.ay be m.ade using any decim.al, alphabetic, or special 
character. Provided that the characters are in ascending order of 
value (beginning with 0), m.ultiple insertions m.ay be m.ade between 
any two instructions. 

TYPE (Card Colum.n 6) 

For all instructions and constants, this colum.n rem.ains blank. However, the program.m.er 

can enter lines of descriptive inform.ation, called rem.arks lines, anywhere in the source pro­

gram.. Such a line, containing only descriptive data within colum.ns 8 through 80, is identified 

by an asterisk (~:~) in colum.n 6. Inform.ation ins erted in this m.anner, while it rem.ains as part 

of the source program., does not appear in the object program.; it does, however, appear in the 

program. listing. 

EASYCODER 
CODING FURM 

PROBLEM _____________________ _ PROGRAMMER _______ DATE _. ____ PAGE _OF_ 

CARD i~ I OPERATION 

I NUMBER LOCATION CODE OPERANDS 

1 213 415 6 7 8 '41
'
5 2021 1 62 163 80 

i : * ,SPEC I FYICONi.ROL CONSTANTS i I 
! 

I i I 
: 

1 1 I ~-'-"""""'" 

Easycoder C, D, and OS /2000 Options 

For Easycoder C or D users, this colum.n m.ay also contain the letter T to designate a 

tem.porary rem.arks card, or the letter D to designate a data card. If the program.m.er wishes 

to enter rem.arks lines anywhere in the source program. but does not want these rem.arks to 

becom.e a perrnanent part of the source program., a T instead of an asterisk (~:~) is placed in 

colum.n 6. Rem.arks lines inserted in this m.anner are used only on the first assem.bly (Le., 

when the program. is being "inserted "), and are subsequently deleted from. the sym.bolic pro­

gram. tape by the assem.bler. A tem.porary (like a perm.anent) rem.arks statem.ent, while it 

appears in the program. listing, does not appear in the object program.. 

A letter D in colum.n 6 indicates a data card. All data cards m.ust be contained in seg­

m.ents consisting only of data cards. In addition, any data card (or group of data cards) m.ust 

be im.m.ediately preceded by a SEG card and im.mediately followed by either an EX, XFR, or 

END card. When a data card is encountered by an assem.bler, colum.ns 8 through 80 are re­

produced, unaltered, on the binary run tape or m.achine-language punched deck. 

5-6 AG28 



The TYPE column is also used by Easycoder C, D, and OS/2000 for macro call state­

ments. The letter C indicates a continued card; L indicates the last (and pos sibly only) card 

of the macro call statement. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ OATE _____ PAGE_OF_ 

CARD II~ LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

I 213 415 6 1 8 1415 2021 6263 80 

I : c SAMPLE A, B, MACRO NAM.E 0 
1 

I C C, D, SAMPLE IS CALL ED 

L I L E, WI T.H. 5 PA,RAM5 
I I 
: : L SAMPLE A/B/c,D/E , EQUIV C,A,LL 
I I 

MARK (Card Column 7) 

This field, used in conjunction with data formatting operations (described in Section VI), 

serves to set up required punctuation. Two sets of punctuation indicators are available; set I 

may be employed with all Easycoder ass embly systems (A, B, C, and D); set II, however, may 

only be used with Easycoder C and D and OS/2000. Both punctuation sets are described below. 

Set I, consisting of a blank (Do), an L, and an R, establishes the position of the item mark 

when defining an item (see Table 5-1). Word marking for this first set depends upon the class of 

instruction, as determined by the contents of the op code field. 

NOTE: When an L is used and the leftmost (high-order) character is automatically 
word marked, a record mark will result. 

Table 5-1. Set I Punctuation Indicators 

Column 
Resultant Item Mark Setting 

7 
Contents Leftm ost (High-order) Character Rightmost (Low-order) Character 

6 Blank Blank 
L Item Mark Blank 

R Blank Item Mark 

Easycoder C, D, and as /2000 Options 

Set II, designed for use with the Easycoder As semblers C, D, and as /2000, can be em­

ployed in situations that warrant unusual punctuation requirements. With this set (listed in 

Table 5-2), anyone punctuation indicator controls the complete punctuation setting for the par­

ticular instruction or constant; there is no implicit word mark as in the first set. In other 

words, this second set of punctuation is not dependent upon the clas s of instructions. 

5-7 AG28 



Table 5 -2. Set II Punctuation Indicators (Easycoder C, D, and OS /2000) 

Column 
7 Resultant Punctuation Setting 

Contents Leftmost (H igh-order) Character Rightm ost (Low-order) Character 

A Word Mark Blank 
B Item Mark Blank 

C Record Mark Blank 

D Blank Word Mark 

E Blank Item Mark 

F Blank Record Mark 

G Item Mark Item Mark 

H Item Mark Word Mark 

I Item Mark Record Mark 

J Word Mark Item Mark 

K Word Mark Word Mark 

M Word Mark Record Mark 
r-

N Blank Blank 

p Record Mark Word Mark 

S Record Mark Item Mark 

T Record Mark Record Mark 

LOCATION (Card Columns 8-14) 

The location field can contain an absolute memory address or a symbolic tag, or it can 

be left blank. An absolute memory address (expressed as a decimal number) specifies that 

the instruction or data will be stored in that location. No leading zeros are necessary when 

writing an absolute decimal numbp.r. Moreover, thiR type of entry does· not affect the allocation 

of any subsequent instructions. 

Symbolic tags provide simple, meaningful symbolic references for storage locations, 

constants, and instructions that are referenced elsewhere in the program. All symbolic tags 

written in the location field are assigned absolute addresses during assembly. When an entry 

is assigned a symbolic tag, the contents of the entry can then be referenced by that tag. This 

means that the programmer can reference data via a symbolic tag and need not be concerned 

with its actuai main memory address. One to six characters make up a symbolic tag (Easy­

coder D, however, can process tags of up to ten characters in length; see "Easycoder D 

Options" below). These characters can be alphabetic (A to Z) or numeric (0 to 9); the first 

character of the tag, however, must be alphabetic. 

5-8 AG28 



If the location field entry is made beginning in column 8, the following rules apply: 

1. An absolute memory addres s as signed to an instruction refers to the leftmost 
character is the instruction. 

EASYCODER 
CODING FORM 

PROBLEM _________ , __ _ __ . ____ ._ PROGRAMMER ______ DATE _____ PAGE _OF_ 

I 

CARD 
NUMBER I!I~I LOCATION 

! OPERATION I 
, CODE OPER'ANDS I 

2,13 4,5 6] 7] B 14 11!>. 20121 62]63 

!FI C A~ ITA \ ~_.L __ ~~-+.J..~~qLL~~O!1 gdd ".~ 1 

1 
i 

; 110 I ~ 1 
: 1 i i 1 -L ___ •.. ...L._ .. __ ~J~e.9Te9Jngb~l~.c:_QLf!~r"""9 I ! I ......... ~ 
I I II ; i I _L ___ ~ __ 1~Q-c,b9r"~~~sI~~?~mb'~ 1 
I J i L ~ ! ~ __ ~..l __ .~,~_.lb~~-'-A.._ic:lr.f.~_J~J~~lut~ ~ gnd 4. 

I 

2. An absolute memory address assigned to a constant or reserved area refers 
to the rightmost character in the field. 

3. 1£ a symbolic tag is assigned to an instruction, the address assigned to the 
tag will be the addres s of the leftmost character in the instruction. 

EASYCODER 
CODING FORM 

4. 1£ a symbolic tag is assigned to a constant or reserved area, the address 
assigned to the tag will be the rightmost character in the field. 

I 

These address assignment conventions can be reserved by leaving column 8 blank and 

entering the first character in column 9. In this case, the following rules apply: 

1. An absolute memory address assigned to an instruction refers to the right­
most character in the instruction. 

80 

PROBLEM--,-, __________________ , PROGRAMMER ______ DATE _____ PAGE _OF_ 

CARD I~ i~ LOCATION I OPERATION OPERANDS I NUMBER t ~ CODE 

I 2 13 415 6 7 B '4i'5 2021 62163 

I : 5 !A FICA IT,A" I~~-Qc~gl "~: ~~ ~~~ '== ~ I I 
I I IQtQb~o~\u+~. f: ~*~ru'~g I±'~g--=~t=~ : : : L 

I I I ~dr,;.sS\"S' ~I I i 
I 

2. An absolute memory address assigned to a constant or reserved area refers 
to the leftmost character in the field. 

5-9 

eo 

I 

AG28 



3. If a syTIlbolic tag is assigned to an instruction, the address assigned to the 
tag will be the address of the rightmost character in the instruction. 

4. If a syTIlbolic tag is assigned to a constant or reserved area, the ad~ress 
assigned to the tag will be the leftmost character in the field. 

EASYCODER 
CODING FORM 

PROBLEM ______________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD ~I~ LOCATION 
OPERATION 

OPERANDS NUMBER COOE 

1 213 415 6 7 8 1415 202' L 6263 80 

I : RElilN Mr.w fJ'cA ... TAX 
I 

I - -~ ~ 
I I B 16EG. N, 
I I -"T--- -,- --- --- ~ 
: : DAT,E DC.W @jaJJ 9/6.~ 

The first instruction shown above moves the contents of the field tagged FICA to the field 

tagged TAX. This instruction can be referred to in the operands field of another synibolic pro­

gram entry via the tag BEGIN. For'instance, the second instruction causes the program to 

branch to the MCW instruction by referring to it via its symbolic tag (BEGIN). In other words, 

the address of the operation code of the MCW instruction is inserted in an object-program in­

struction wherever the tag BEGIN appears as an operand in a symbolic -program entry. The third 

instruction defines an alphanumeric constant which can be referred to in the operand field of 

another symbolic-program entry via the tag DATE. In this case, the tag refers to the address 

of the rightmost character in the constant. 

5-10 AG28 



Easycoder C, D, and OS /2000 Options 

Users of Easycoder C, D, or OS /2000 may also include, in the location field, an apos­

trophe (') 1 followed by a decimal number; this procedure serves to indicate an address relative 

to the out-of-sequence base (OSB). The out-of-sequence base, a value maintained by the assem­

bler can be set by the XBASE instruction. The assembler assigns to the corresponding state­

J;rlent an address equal to the sum of the decimal number and the current value of OSB. (Leading 

zeros may be omitted from the decimal number.) The allocation of any subsequent instructions 

is not affected. 

If the apostrophe and decimal number are written beginning in column 8, the following 

rules apply: 

1. An address relative to the out-of-sequence base assigned to an instruction 
refers to the leftmost character in the instruction. 

2. An address relative to the out-of-sequence base assigned to a constant or 
reserved area refers to the rightmost character of the field. 

These address conventions can be reversed by leaving column 8 blank and entering the 

first character (the apostrophe) in column 9. In this case, the following rules apply: 

1. An addres s relative to the out-of-s eguence bas e as signed to an instruction 
refers to the rightmost character in the instruction. 

2. An address relative to the out-of-seguence base assigned to a constant or 
reserved area refers to the leftmost character of the field. 

Assume, for example, that the OSB has been set to the value 500 by the last XBASE in­

struction. The following DCW statement is now encountered. The constant PRM is as signed, 

by the assembler, to locations 648 through 650. (The value of the OSB remains 500). 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE ______ PAGE_OF_ 

CARD i I~ LOCATION 
OPERATION OPERANDS NUMBER CODE 

I 213 415 6 7 8 1415 2021 6263 80 

I : ' /5,0 Dew @PRM@. 
1 

1 

Easycoder D Options 

Symbolic tags of up to ten characters in length may be employed with Easycoder D. For 

symbolic tags consisting of six characters or less, the standard coding format is used. How­

ever, if tags of from seven to ten characters are used, the location field is modified such that 

1 
Card code 8, 2 (octal 12). 

5-11 AG28 



~.t now occupies card coluInns 8-18. (This alternate forInat also requires that the operation code 

field and operands field be modified to accommodate the increase in tag size.) The saIne pro­

gramming conventions which apply to six-character tags apply also to ten-character tags. 

NOTES: 1. The program header (PROG) card is used to denote that the 
alternate format is to be employed. 

2. Symbolic tags of more than six characters in length may not 
be used if the input is to be in the forIn of paper tape. 

OPERATION CODE (Card Columns 15-20) 

This six-character field can contain a mnemonic operation code for a machine instruction, 

an asseInbly program directive, or a data formatting code (see entries below). These entries 

Inust be left-justified. Machine-language operation codes (in octal notation) may be used instead 

of mneInonic codes. These octal codes are written in columns 19 and 20 of the operation code 

field, and columns 15 to 18 are left blank. 

Easycoder D Options 

OPERATION 
CODE 

If the alternate coding format is used (i. e., the location field contains tags of fro In seven 

to ten characters in length), the operation code field occupies card columns 19-24. The method 

of coding mnemonic operation codes remains the saIne. If octal operation codes are used, they 

are written in columns 23 and 24; columns 19-22 are left blank. 

OPERANDS 

The operands field is a variable-format field which can contain a series of entries sepa­

rated by COInInas and terminated by the first blank following any character other than a comma 

or a blank. In general, the operands field contains such entries as the addresses (either sym­

bolic or absolute) of the data to be operated upon by a command in the operation code field, 

literals, address constants, or input/output informatio:p.. Relative, indexed, and indirect 

addressing can be used in conjunction with absolute or symbolic addresses (see below). 

Easycoder A and B (Operands Field: Card Column 21-62) 

For either of thes e two as sembly systems, column 62 terminates the operands field. Any 

punches appearing in columns 63-80 (of any line other than a remarks line) are ignored and do 

not even appear in the object-program listing. Remarks may be entered following the termi­

nating blank. 

5-12 AG28 



Easycoder C, D, and OS /2000 (Operands Field: Card Columns 21- 80) 

For users of Easycoder C, D, or OS /2000, the operands field extends to column 80. Re­

marks may be entered following the terminating blank. One or both operands can be bypassed 

during assembly by writing one or two leading commas, respectively, in the operands field. 

Such a comma, or commas, must be left-justified in the operands field and must be followed 

immediately (i.e., without intervening blanks) by any remaining entries, other than remarks. 

Easycoder D and OS /2000 Options 

If the alternate coding format is used (i. e. I the location field contains tags of from seven 

to ten characters in length), the operands field occupies card columns 25-80. The method of 

coding entries and remarks remains the same. 

Examples 

The first sample instruc;tion causes the contents of the field whose rightmost character 
'------

is stored in memory location 50 to be added algebraically to the contents of the field designated 

by the tag TOTAL. 

The second instruction tests the indicator specified by variant character 3 and branches 

to the address tagged EQUAL if the indicator is on. 

EASYCODER 
CODING FORM 

PROBLEM _________________________ PROGRAMMER ____ DATE _0 ___ PAGE_OF_ 

CARD I~l~ LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

, Z13 .h 6 7 B 1415 202_ 6Z 63 

I : !A S¢\ TOTAL I' I I I I , 
I 

I I I ~ , , , I L......-L. 

! I iBCT EQUAL .. ~3 
I I ..... ~ , I .L~~ , 

: i IZA TOTAL. .. TMP-t X 3 
I I , I 

T r IMcW TOTAL-7~X~ .. GROS,So .. 
i I , 

~ I ~ 

I I A AMTc'SUM-c,) 
T I I 

The third line of coding above shows an instruction in which the B-address is indexed4 

The instruction causes the contents of field tagged TOTAL to be placed in the field designated 

by the tag TMP as modified by the contents of index register X3. 

80 

The fourth line of coding shows relative addressing and indexing being performed on the 

A-address. The instruction causes the address, -7, (tagged TOTAL) to be modified by the 

contents of index register x6. The resultant address specifies a field whose contents are then 

5-13 AG28 



placed in the field tagged GROSS. Assuming that TOTAL corresponds to memory location 540 

and index register X6 contains a value of 80, the resultant address of this instruction would be 

613. 

The last line of coding above illustrates an instruction with indirect addres sing on the 

B-address. The contents of the field tagged AMT are added algebraically to the contents of the 

field whose address is stored in the field tagged SUM-2. 

ADDITIONAL CODING RULES 

1. Comments and remarks can appear on any line following the last entry on that 
line and separated from it by a blank space. These notes will be printed on 
the program listing but will not be assembled as object-program entries'. As 
mentioned previously, any line of coding containing only comments must be 
designated by an asterisk (~:~) or the letter T in column 6. 

2. Any number of blank spaces may be used between the comma which terminates 
the A-operand and the first character of the B -operand. Similarly, any number 
of spaces may be used between the comma that terminates the B-operand and a 
variant character. 

ADDRESS CODES 

Several types of address codes are valid in the operands field of an Easycoder statement. 

These codes are defined and illustrated below. 

ABSOLUTE 

The actual address of a character position in the main memory can be represented as a 

decimal number; leading 0' s can be omitted. The sample instruction causes the contents of 

the field whose rightmost character location is 32 to be moved to the field whose rightmost 

character location is 4000. 

EASYCODER 
CODING FORM 

PROBLEM ____________ _ _________ .. ___ ... _ PROGRAMMER _____ DATE_. ____ PAGE_OF_ 

CARD ~~ LOCATION 
I OPERATION 

NUMBER I CODE OPERANDS 
----------

1 213 4; 5 6 7 B 141'5 2021 
~~-~-.............. 

I : :MCW ~2~ 4¢,(~.~~_._.l~~ 
1 

I 1 
I I • __ ~ • .......-.l I 

5-14 AG28 



SYMBOLIC 

A symbolic address, or tag, can be used in the operands field only if it appears in the 

location field elsewhere in the symbolic program. In effect, a tag must be defined (by writing 

it in the location field of a symbolic entry) in order for it to be used as an operand address. 

EASYCODER 
CODING FORM 

PROBLEM ___________________ _ _____ PROGRAMMER _ ____ DATE _____ PAGE_OF _ 

CARD i'~ LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

1 213 41 ~ 6 7 e 14 1~ 2021 
=-~±.L 1 "'=' 

6263 

I : ToT, L iA FI CA~TOTAX,~~.--'-.. _~-~~--'-----~ 1 1 ~-1.. 
I 

I I 1 ~-~-.. 1 ~ 1 I 

The instruction shown above can be referred to elsewhere in the program via its tag, 

TOTAL. It should be noted, however, that this instruction is a valid statement only if the 

symbolic addresses FICA and TOTAX have been defined in the location field elsewhere in the 

source program. 

SELF REFERENCE 

It is sometimes convenient for an instruction to refer to itself. A self reference is in-

eo 

dicated by an asterisk in the operands fields of a source-program instruction. The assembler 

automatically replaces the asterisk with the address of the leftmost character of the instruction 

in which it appears. Address modification and relative addressing can be performed on asterisk 

operands. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE ______ PAGE _OF_ 

CARD i~ LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

1 213 41 ~ 6 7 e 1415 2021 6263 eo 
I : Mew f*.+4,.WORt( 
I / 

I ~~~-

I I Mew f*+.9 WORk' 
-~ 1 

In the first sample entry above, the notation, ~:~+4, addresses the rightmost character of 

the instruction in which it appears (assuming that two-character address assembly has been 

specified). Since the function of this instruction is to move the field specified by the A-address 

to that specified by the B-address, the instruction itself will b,~ ~noved to the field tagged 

WORK. 

5-15 AG28 



In the second entry, the notation, >:~+9, refers to the rightmost character of the instruction 

stored immediately to the right of the MeW instruction (assum.ing that two-character address 

as sembly has been specified). The instruction following the MeW instruction will be moved to 

the field tagged WORK when the MeW instruction is executed. 

RELATIVE 

Relative addressing, or address arithmetic as it is frequently called, can be used with 

all absolute addresses, symbolic addresses, and the self-reference symbol (>:~) (these three 

types of addres s codes are referred to as addres sing "elements "). By using relative addres sing, 

the programmer can refer to a source-program entry that is stored a specified number of 

locations away from a particular address. A relative address is specified by appending one or 

more address modifiers, each consisting of a sign and an addressing element, to another ad­

dressing element. The address modifier designates a memory location relative to the location 

specified by the basic addressing element. For example, the instruction below causes the con­

tents of the field 100 characters beyond the field tagged INT to be added algebraically to the 

contents of the field 10 characters before the sum of the addresses defined by the tags AMTPD 

and ERROR. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _____ PAGE _OF_ 

CARD t ~ LOCATION 
OPERATION 

OPERANDS NUMBER .~ ~ CODE 

1 213 415 6 7 8 1415 202' L 6263 80 

I : l4, \NTT1~~._AMTPD+E,RROR-1¢ 

The number of symbolic tags required to write a program can be greatly reduced by the 

use of relative addressing. The programmer decides how many and which fields in a program 

to tag and which to reference by relative addres sing. 

A certain amount of caution is required in the use of relative addressing. First of all, 

relative addresses are not automatically corrected as a result of subsequent insertions or 

deletions in the source program. The programmer must remember to adjust manually the 

address modifiers affected by such changes. Secondly, if relative addressing is used to refer 

to an operand address in another instruction, care must be taken to insure that the address is 

referenced by its rightmost character. For example, the A-address of the instruction shown 

below could be referred to elsewhere in the program as INST+2 or INST+3, depending on 

whether two- or three-character address assembly were specified. 

5-16 AG28 



EASYCODER 
CODING FORM 

PROBLEM ___________________ _ PROGRAMMER ______ DATE _. ___ PAGE _OF_ 

CARD I~ ~ 
LOCATION 

OPERATION OPERANDS NUMBER ~ ~ CODE 

I 211 41 ~ 6 7 e 1415 2021 6263 eo 
I : IN~T IA ~UBT.TOTAL 
I 

I 

OUT-OF-SEQUENCE 

The valid address codes also include the special symbol apostrophe (printer I; keypunch 

8, 2; octal 12). This symbol is an element whose value is equal to the current value of the out­

of-sequence base (OSB). It is followed by an address modifier to speeify the address of the 

desired operand. The OSB is set by means of the XBASE instruction. 

PROBLEM ______________________ PROGRAMMER ______ DATE _. ___ PAGE_OF_ 

CARD I~ I~ LOCATION 
OPERATION OPERANDS NUMBER I~ ~ CODE 

I 213 4, ~ 6 7 e 1415 2021 6263 eo 
I : A IWORK, '+15 

In the sample statement above, assume that the out-of-sequence base (OSB) has been set 

to 600 (by the XBASE instruction). The data in the field tagged WORK will be added to the data 

in the field whose rightmost location is 615 (600 + 15). The result will then be stored in the 

field whose rightmost location is 615. 

BLANK 

There are two conditions for which a blank operand field is valid: 

1. The instruction does not require an operand (e. g., the Halt and No 
Operation instructions). 

2. The operands are implicitly addressed: the A-operand is specified by the 
contents of the A-address register (AAR); the B -operand is specified by the 
contents of the B -addres s register (BAR). 

If either or both operand addresses are to be supplied by other instructions (as illustrated 

below in the description of address literals), the affected operands ·should be represented by 

zeros; they should not be left blank. 

5-17 AG28 



LITERALS 
1 

The purpose of a literal is to allow the program.m.er to write in the operands field of a 

sym.bolic program. statem.ent the actual data (as opposed to the address of the field containing 

the data) to be operated on by an instruction. Easycoder B users can code all literals, ex­

cept binary, with a m.axim.um. length of 40 characters; a binary literal can be coded with a 

m.axim.um. length of six characters. For users of Easycoder C, D, or as /2000, the m.axi­

m.um. length of any literal can be 63 characters. 

The assem.bler autom.atically assigns a storage field for each literal and inserts its ad­

dress (i. e., the address of its rightm.ost character) in the operands field of the instruction in 

which it appears. In effect, for every literal appearing in the source program., the assem.bler 

generates a constant containing the value of the literal, with a word m.ark in the leftm.ost char­

acter position. 

NOTE: If the constant generated from. a literal occupies from. one to five storage 
locations, it is as signed a storage addres s only once in the program., re­
gardles s of the num.ber of tim.es the literal appears in the source program.. 
(For Easycoder C, D, or as /2000 the constant is as signed a storage ad­
dress only once in the program if it occupies from one to six storage loca­
tions.) A constant that exceeds five characters (six for Easycoder C, D, 
or OS/2000) is assigned a storage address each time the corresponding 
literal appears in the source program. The latter condition can be 
avoided by using a DCW statement whenever a long literal is to be used 
more than once in the source program. 

Decimal Literals 

Decimal literals are specified by writing a plus or minus sign followed by the value of 

the literal. When the literal is assigned to a storage field, the assembler places the sign in 

the zone bits of the units position of the resulting constant. Unsigned decimal values can be 

coded as alphanumeric literals. 

EASYCODER 
CODING FORM 

PROBLEM ____________________ _ PROGRAMMER ______ DATE _°
0 
____ PAGE_OF_ 

CARD ~8 LOCATION 
OPERATION OPERANDS NUMBER CODE 

I 213 415 6 7 8 1415 2021 6263 80 

I : S t24-AccUM 
1 

1 .--1-.-1. .. ....1... 

i I 
I I 

INotavailable with Easycoder A. 

5-18 AG28 



The statement above illustrates the use of a decimal literal. The instruction causes the 

value 24 to be subtracted from the contents of the field tagged ACC UM. 

Binary Literals 

A binary literal is represented as a decimal entry in the operands field of a symbolic in­

struction. The assembler automatically converts the decimal entry into a binary value and 

stores it (right-justified) in the storage field. The programmer must specify the number of 

six-bit characters used to store this value. 

A binary literal is coded by writing an = signl followed by a number which specifies how 

many six-bit characters should be used to store the resulting binary value, followed by the 

letter B 1 followed by the decimal representation of the desired binary literal. 

NOTE: If the decimal representation of the binary literal is preceded by a minus 
signl the assembler will store the binary literal in two's-complement 
form. 

The first instruction below causes the binary equivalent of 50 (expressed as a continuous 

12-bit binary value) to be added to the contents of the field tagged BEGIN+2. The second in­

struction has been included to illustrate how a binary literal can be used in addres s modification. 

In effect 1 the first instruction modifies the A-addres s of the second instruction by a value of +50. 

The third instruction causes the binary equivalent of 21 688 (expressed as a 12-bit binary value) 

to be moved to the field tagged IND 7. 

EASYCODER 
COOING FORM 

PROBLEM _______________________ PROGRAMMER ______ OATE ______ PAGE_OF_ 

CARD 

~~ LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

, 213 415 6 7 8 14 IS 2021 6263 80 

I : SA ~2B50~ BE61 Nt2 
I 

1 BE61 t\I Mew I TEMA ~ TOTA,L 
~ , 

I I 
I I 'Mew #2B26 88. I N,D7 
: i 

, , 1 

I , I .......J....... 

Octal Literals 

Octal literals are coded in octal notation (see Appendix A). The programm.er must specify 

the number of six-bit characters required to store an octal literal. 

NOTE: Since every octal digit can be represented as three bits l each six-bit 
character used to store an octal literal contains two octal digits. For 
example, an octal literal composed of eight octal digits can be stored 
in a four -character field. 

5-19 AG28 



An octal literal is coded in the same format as a binary literal except that the letter B 

used in the binary literal is replaced by the letter C. The constant stored by the assembler is 

always left-justified in the storage field. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _. ___ PAGE ~OF_ 

CARD I~I~ LOCATION 
OPERATION OPERANDS NUMBER I~ ~ CODE 

1 213 415 6 7 8 1415 2021 1 6263 

I 1 ~A Hac 7777 MA.SI<: 
I 

I 

The A operand in the above statement is a four-digit octal literal. The assembler will 

'store it left-justified in a three-character field, as 777700. 

Alphanumeric Literals 

80 

An alphanumeric literal is specified by writing the @ symbol before and after the value of 

the literal. This type of literal can contain blanks, decimal, alphabetic, and special charac­

ter s (excluding the @ symbol). 

EASYCODER 
CODING FORM 

PROBLEM ______________________ PROGRAMMER ______ DATE _. ___ PAGE_OF_ 

CARD rr~ 
LOCATION 

OPERATION OPERANDS NUMBER I~ ~ CODE 

I 213 415 6 7 8 1415 2021 6263 80 

I : Mew i@ACCOUNT5 PA-YA8LE.1.0.1i 916,5fi>. PR I NT 

The statement above illustrates the use of an alphanumeric literal. The instruction causes 

the information contained within the @ symbols to be moved to the field tagged PRINT. 

EASYCODER C, D, and OS /2000 OPTIONS 

In addition to the form specified above, users of Easycoder C, D, or OS /2000 have avail­

able to them three other methods of coding alphanumeric literals. 

1. A number sign (#) is followed by a number from I through 63 which 
specifies the number of characters in the literal; this number is, in 
turn, followed by the letter A and the literal. 

5-20 AG28 



• 

EASYCODER 
COOING FORM 

PROBLEM ______________________ PROGRAMMER ______ OATE _. ___ PAGE_OF_ 

CARD ~I~ t ~ LOCATION 
OPERATION OPERANDS NUMBER CODE 

I 213 41 ~ 6 7 e .41!1 2021 I 6263 

I 
I 

: MeW 1#14A6 LBS @ 21 ¢./LB. PRI I'JT 

In the above example there are 14 characters in the literal. The in­
struction causes these 14 characters to be moved to the field tagged 
PRINT. 

2. If it is desired to set an item mark (in addition to a word mark) in the 
leftmost position of the literal constant field, a number sign (#) is fol­
lowed by a number from 1 through 63 which specifies the number of 
characters in the literal; f~llowing this number is the letter L and the 
literal (see the first example below). 

EASYCODER 
COOING FORM 

110 

PROBLEM ______________________ PROGRAMMER ______ DATE _0 ___ PAGE_OF_ 

CARD I~I~ 
I~ ~ LOCATION 

OPERATION 
OPERANDS NUMBER CODE 

I 213 41 ~ 6 7 B ." 15 2021 I 62 63 

I 
I 

i 

i ~c,w 1i16L 19,65./ A. STO.RE 
1 

I IMeW "oR 1.91~SJ A ... S TO~E 

3. If it is desired to set an item mark in the rightmost position of the literal 
constant field, a number sign (#) is followed by a number from 1 through 
63 which specifies the number of characters in the literal; following this 
number is the letter R and the literal (see the second example above). 

NOTE: In form (1), alphanumeric literals of six characters or less are stored 
in a literal table and duplicates are eliminated. The duplicates are 
not, however, eliminated in forms (2) and (3) •. 

Area Defining Literals 

An area defining literal may be used to define and reserve a working area in memory 

without using a separate data formatting statement. The address which defines the area is 

written as a symbolic tag. The size of the area to which the literal addres s refers is spec­

ified as a decimal value following the literal address and separated from it by a # symbol. 

110 

5-21 AG28 



EASYCODER 
CODING FORM 

PROBLEM ___________________ _ PROGRAMMER ______ OATE _. ___ PAGE _OF_ 

CARD I! LOCATION 
OPERATION OPERANDS NUMBER CODE 

1 213 415 6 7 8 1415 2021 62 63 10 

I : Mew IWAG E .. TEM.P' 5 

In the instruction above, the entry TEMP#5 causes the assembler to reserve a blank five­

character area with a word TIlark set in the leftmost character position. The address of the 

rightmost character in this area is assigned to the tag TEMP. Therefore, TEMP can be used 

as a symbolic address elsewhere in the source program, because both the tag and size of the 

area to which it refers are defined. The sample .instruction causes the contents of the field 

tagged WAGE to be moved to the 'field tagged TEMP. 

Addres s Literals 

An address literal enables the programmer to specify a symbolic address in the operands 

field of an instruction such that the assembler will use the address as an operand. A symbolic 

address can be used as an address literal only if it is defined elsewhere in the symbolic pro­

gram. The tag used as an address literal must be preceded by a plus sign. The length of the 

address is determined by the current addressing mode (the defined address can be two, three, 

or four characters long). 

An address literal (+AMT) is used in the first sample entry below. Assume that AMT has 

been defined elsewhere in the program and has been assigned an absolute address of 800. The 

absolute address of AMT, as opposed to the contents of the field tagged AMT, replaces the 

address literal. The first instruction below causes the value 800 (the absolute address assigned 

to AMT) to be moved to an address three greater than the location tagged MODIF. The second 

entry shows how an operand address can be supplied by another instruction. Specifically: the 

absolute address assigned to the tag AMT is supplied as the A-address of the instruction tagged 

MODIF (assume that three-character addressing mode has been specified). This instruction 

causes the contents of the field tagged AMT (i. e., the field whose rightmost character is stored 

in location 800) to be added algebraically to the contents of the field tagged TOTAL. 

5-22 AG28 



EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ____ DATE ______ PAGE_OF'_ 

CARD ~I~ LOCATION 
OPERATION 

OPERANDS NUMBER E ~ CODE 

1 213 41 ~ 6 7 8 14 I~ 2021 62 63 10 

I : :MCW +AMT ~ MODI F +.3 
I 

I IMOQIF A 10 TOTAL 
i I 

VARIANT CHARACTER 

A variant character can be expressed as one alphanumeric character, as two octal digits, 

or as a syxnbolic tag. 1 It is written following the operand entries and separated from the last 

entry by a comma. Octal representation of valid characters are listed in Appendix B. 

EASYCODER 
COOING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE ______ PAGE_OF_ 

CARD ,+ I! LOCATION 
OPERATION 

OPERANDS NUMBER I~ ~ CODE 

1 213 4' ~ 6 7 8 14 I~ 2021 .L 6263 10 

I : aCT OFLOW .. SG?} , 
I Bee NE6."SUM .. ~6 

i 1 
I I 

The first instruction above tests an indicator specified by the variant character. If the 

indicator is on, the instruction causes the program to branch to the address tagged OFLOW. 

As might be expected, the octal digits 50 represent the overflow indicator. The second in­

struction causes the single character at the location tagged SUM to be examined for a par­

ticular bit configuration as specified by the variant. In this case the variant 06 specifies that 

the character should be examined for a negative sign. If the desired bit configuration is pres­

ent, the program branches to the address tagged NEG. 

INPUT /OUTPUT CONTROL CHARACTERS 

Input/output control characters can be used only in conjunction with input/output instruc­

tions (see Section VIII). One or more of these characters may be written following the A­

address entry in an input/output instruction, each preceded by a comma. Input/output control 

characters may be coded as single alphanumeric characters, as pairs of octal digits, or as 

symbolic tags. 

1 A symbolic tag, composed of at least two characters, may be used to represent (1) a variant 
character, or (2) a group of input/output control characters. The number of I/O control 
characters that may be represented varies from one to six (using either Easycoder A or B) 
or from one to four (using Easycoder C, D, or as /2000). The symbolic tag must be defined 
before it is used in the input/output instruction; the Control Equals statement (CEQU) is 
generally used for this purpose. 

5-23 AG28 



ADDRESS MODIFICATION CODES 

Two address modification codes are valid in the operands field of a source-program 

statement: indexed and indirect. These codes allow the modification of operand addresses 

altering the instructions in which the addresses appear. This is in direct contract to the per­

manent alternation of an instruction that res ults from using a binary arithmetic instruction to 

modify either or both operand addresses. 

INDEXED 

Indexed addressing is performed by' appending to the address being modified a code to 

indicate which of the index registers is to be used. The code consists of a plus sign followed 

by an X or Y and a decimal number from 1 to 15. 1 

If an index register is to be specified in the operands field of an instruction for other than 

indexing purposes, it is referred to by its absolute address rather than its symbolic address. 

For instance, absolute address 24 is used instead of the corresponding symbolic address x6. 

However, the programmer may use the symbolic address if he equates it to the absolute ad­

dres s using an EQU statement. 

EASYCODER 
COOING FORM 

PROBLEM ______________________ PROGRAMMER ______ DATE _. ___ PAGE_OF_ 

CARD I~!~ LOCATION 
OPERATION 

OPERANDS NUMBER l~ ~ CODE 

1 213 41 ~ 6 7 8 14 I~ 2021 1 6263 80 

I : C DATA +.~6. poS 
I 

J 

l ! ,fA SToRE. X \2. 
I I 

7 

I : MeW <'-6+)(,1 BUFFt).3 

The first instruction above causes the contents of the field designated by the tag DATA as 

modified by the contents of index register x6 to he compared to the contents of the field tagged 

POSe The second instruction causes the contents of the field tagged STORE to be added (in 

binary) to. the contents of index register X12. The use of the symbolic designation X12 implies 

that an EQU statement was used to equate it to the absolute address (48
10

) of index register 

X12. The third instruction illustrates how an indexed address can be coded to generate an 

effective address which is less than the value stored in the specified index register. The 0 

IFigure 4- 3, pictures the possible locations of Series 2000 index registers. Table 4-1, indi­
cates the number of index registers simultaneously available to a program. Tables 4-2 and 
4-3, indicate the address modifier and absolute locations corresponding to each symbolic 
index-register address. The numoer of index registers which can be referenced symbol­
ically also depends on the assembler being used. 

5-24 AG28 



is used because an operand address cannot be introduced with a plus or a minus sign. Thus, 

the effective A-address of the MCW instruction will be a value six less than that stored in 

index register Xl (i. e., if index register Xl contains 126, the effective A-address is 120). 

Three- or four-character address assembly must be specified (see ADMODE) whenever 

indexed addressing is to be performed. When the assembler translates an indexed address 

into a machine-language entry (see Figures 5-6 and 5-7), the translated index register d,esig­

nator is automatically inserted into the address modifier bit positions of the assembled address. 

Iii 0 PERANDS \ 
\ 

SUB,IAMNT+X3 1 ••••••••••••• 1 . ( 

ASSEMBLER 

INDEX 
REGISTER 
DESIGNATOR 

15-BIT REPRESENTATION 
OF ADDRESS ASSIGNED 
TO THE TAG AMNT 

••••••• ~f,l Ixxxxxxxxxxxxxxxi 
~ , 

BADDRESS OF 
ASSEMBLED INSTRUCTION 

Figure 5-6. Assembly of Indexed Address in Three-Character Addressing Mode 

21 OPERANDS \ 

INDEX 
REGISTER 
DESIGNATOR 

~ 

19- BIT REPRESENTATION 
OF ADDRESS ASSIGNED 
TO THITAG ~ 

.. 

SUB,!AMNT+XI21 
\ 

ASSEMBLER 
J 

\ 
§~ xxxxxxxxxxxxxxxxxxi 

B ADDRESS OF 
ASSEMBLED INSTRUCTION 

Figure 5-7. Assembly of Indexed Address in Four-Character Addressing Mode 

INDIRECT 

An indirect address is specified by enclosing the address (either symbolic or absolute) in 
1 

parentheses. For example, in the sample instruction below, the parentheses around the tag 

lThe left parenthesis corresponds to keypunch symbol % (card code 0, 8, 4), octal 74; the 
right parenthesis to keypunch symbol 0 (card code R, 8, 4), octal 34. 

5-25 AG28 



DATA indicate to the assembler that DATA refers to the leftmost character of a field containing 

another address. This second address may be a direct, an indexed, or another indirect address. 

If it is direct or indexed, it specifies the rightmost character of a data field. If it is indirect, 

it specifies the leftmost character of a field containing another address. 

EASYCODER 
CODING FORM 

PROBLEM ___________________ _ PROGRAMMER ______ DATE _____ PAGE _Of_ 

CARD ~I~ LOCATION 
OPERATION 

OPERANDS NUMBER t ~ CODE 

I 213 415 6 7 8 1415 202_ I 62 63 " 80 

I : Mew fDA TA,) .WDR,K 
I 

I 

Three- or four-character address assembly must be specified (see ADMODE) whenever 

indirect addressing is to be used. When the assembler translates an indirect address into a 

machine-language entry (see Figures 5-8 and 5-9), a binary value of III (three-character mode) 

or 10000 (four-character mode) is automatically inserted into the address modifier bit positions 

of the assembled address. 

I -OPERANDS\ 
ASSEMBLER 

INDICATES 
INDIRECT 
ADDRESS 

IS-BIT REPRESENTATION 
OF ADDRESS ASSIGNED 
TO THE TAG TEMP 

IIIII ixxxxxxxxxxxxxxxi 

B ADDRESS OF 
ASSEMBLED INSTRUCTION 

Figure 5-8. Assembly of Indirect Address in Three-Character Addressing Mode 

I:GE,iiii •• OP.E.RA.N.D.S\rII} ••• ltl ASSEMBLER 

INDICATES 19-BIT REPRESENTATION 
INDIRECT OF ADDRESS ASSIGNED 
ADDRESS TO THE TAG ~ 

,..L . .-_t____..-.. 

B ADDRESS OF 
ASSEMBLED INSTRUCTION 

Figure 5-9. Assembly of Indirect Address in Four-Character Addressing Mode 

5-26 AG28 



SECTION VI 

DATA FORMATTING STATEMENTS 

INTRODUCTION 

A value or quantity which must remain fixed or which must be used repeatedly in a program 

is. called a constant. A work area is an area in memory which is reserved for input data, cu­

mulative processing, or output data. By employing data formatting statements, constants can 

be stored and work areas can be reserved without regard to their actual locations in memory. 

For instance, the programmer can use a data formatting statement to reserve an 80-character 

card input area and assign it a symbo1ic address such as CARDIN, without knowing the actual 

address of the field. Similarly, a data formatting statement makes it possible to store a con­

stant, such as 2000, and to refer to it by a symbolic tag, such as CON3, without regard to the 

addre s s at which the constant is stored. Table 6 -1 li sts the five data formatting statements used 

with Easycoder symbolic language. 

Table 6 -1. Data Formatting Statements 

Mnemonic 
Operation Code Function 

DCW Define Constant with Word Mark 

DC Define Constant without Word Mark 

RESV Reserve Area 

DSA Define Symbol Addre s s 

DA Define Area~:~ 

~:~NOTE: The Define Area statement cannot be employed 
with the Easycoder A Assembly System. 

Although data formatting statements are coded in the same format as most symbolic ma­

chine instructions (data processing statements), they are not treated as instructions by an as­

sembler. Instead they are treated as definitions which cause the assembler to perform certain 

activities but which are not executed during a program run. Since data formatting statements are 

not executed during a program run, they should not be written in the body of the symbolic program. 

6-1 AG28 



Define Constant with Word Mark - DCW 

By use of the DCW statem.ent, a constant can be autom.atically stored in a field reserved 

by the as sem.bler. In storing the constant, the as sem.bler autom.atically sets a word m.ark in 

the leftm.ost character position of the storage field. Item. m.arking m.ay be specified as in 

Table 5 -1. An L in column 7 thus re suits in a record m.ark with a DCW statem.ent. 

NOTE: If Easycoder C, D, or OS/2000 is being used, and if unusual high- and 
low-order punctuation is required, the program.m.er m.ay use a Set II 
punctuation indicator as shown in Table 5-2. 

The constant can be assigned a tag. If the tag is left-justified in the location field, it is 

assigned to the address of the rightmost character of the constant. If the tag is indented one 

colum.n, it is assigned to the address of the leftm.ost character of the constant. 

NUMERIC CONSTANTS 

Num.eric constants m.ay take anyone of three form.s: binary, octal, or decim.al. For 

Easycoder A and B, octal and decimal constants can be coded with a m.axim.um. length"of 40 

characters, while the coding associated with a binary constant is lim.ited to a m.axim.um of sb 

character s. However, the Easycoder C, D, and OS/2000, the m.axim.um. length of the storage 

field which can be occupied by a num.eric constant is 63 characters. 

Decim.al Constants 

Signed decim.al constants are specified by writing a plus or a m.inus sign in the first 

colum.n of the operands field, followed by the value of the constant. When the constant is 

assigned to a storage field, the assem.bler places the sign in the zone bits of the rightm.ost 
1 

character of the constant. Unsigned decim.al constants are written left-justified in the 

operands field. 

EASYCODER 
COOING FORM 

PROBLEM _______________________ PROGRAMMER _----' ____ OATE ___ ____,.--- ~GE_OF_ 

CARD I+I~ LOCATION 
OPERATION 

OPERANDS NUMBER I~ ~ CODE 

I 213 415 6 7 8 14 I~ ~o 21 6263 10 

I : DEC, DeW +22 
1 

The statement above shows the decimal value of +22 defined as a decimal constant. 

Binary Constants 

A binary constant is actually written as a decimal entry (m.axim.um value of 999999) which 

is then autom.atically converted to a binary value by the assem.bler. The binary value is stored 

lSee the description of sign codes. 

6-2 AG28 



(right-justified) in the constant field. The stated maximum value of 999999 for binary constants 

is for Easycoder Assemblers A and B only. 

To code a binary constant the programmer writes the following: (1) a # sign (in the first 

column of the operands field); (2) for Easycoder A or B, a number from 1 to 6 which designates 

the number of six-bit characters needed to store the resulting binary value (for Easycoder C, 

D, or OS/2000, a number from 1 to 63); (3) the letter B; and (4) the decimal representation 

of the desired binary constant. Note that if the decimal representation of the binary constant 

is preceded by a minus sign, the assembler stores the binary constant in twos-complement 

form. 

EASYCODER 
CODING FORM 

PROBLEM ____________________ _ PROGRAMMER ______ DATE _. ____ PAGE _OF_ 

CARD ~I~ LOCATION 
OPERATION OPERANDS ! NUMBER U eOOE 

1 213 4' 5 6 7 8 14 I!» 2021 62163 10 

1 : CO.N.3 oew :rrZB5:¢1 I , I 

The statement above shows the binary equivalent of 50 defined as a binary constant to be 

stored in two consecutive character locations. 

Octal Constants 

Octal constants are coded in octal notation (see Appendix A). To code an octal constant 

the programmer writes the foilowing: (1) a # sign (in the first column of the operands field); 

(2) a number (not to exceed 20 for Easycoder A and B); not to exceed 63 for Easycoder C, D, 

and OS/2000, which specifie s the number of six-bit characters required to store the octal con-
I 

stant; (3) the letter C: (4) the constant value. Note that the value stored by the assembler 

is always left-justified in the storage field. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _. ____ PAGE _OF_ 

CARD il~l LOCATION 
I OPERATION OPERANDS NUMBER eOOE 

1 213 4' 5 61'· ~ 141'5 2021 6263 

1 1 'IOCT7 iDeW fJF2C1177 I I 1 I 1 I 
I II I 

In the statement above, the octal value of 7777 is shown defined as an octal constant to 

be stored in two consecutive character locations. 

lRecall that an octal digit can be represented as three bits; thus each six-bit character used 
to store an octal constant contains two octal digits. For example, an octal constant com­
posed of six octal digits can be stored in a three-character field. 

10 

6-3 AG28 



ALPHANUMERIC CONSTANTS 

Alphanumeric constants may be coded in one of three ways: 

1. Constants (including special symbols and blanks) may be written with the 
constant value enclosed in @symbols (see the first entry below). 

2. If the @ symbol is required in the constant, this constant is enclosed in 
any unused character other than blank, +, -, #,(and F, for Easycoder D 
and OS/2000 or the digits a through 9 (see the second entry below). 

3. A number sign (#) is followed by a number from 1 through 56 which 
specifies the number of alphanumeric character s contained in the 
constant; this number is, in turn, followed by the letter A and the 
alphanumeric constant (see the third entry below). 1 

EASYCODER 
CODING FORM 

PROBLEM ______________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD 
NUMBER 

1 213 415 

I : 
I 

I 
I I 
I I 

: i 
1 I 

~I! 
I~ ~ LOCATION I OPER4TION 

CODE OPERANDS 
6 7 8 1415 2021 52 63 

COS! IDCW 1\$2 ,as. 6.¢,@ 

ITIME D.CW !@3: OOP.M@ 

DATE L~C.V-l ~4.AJq72 

NOTE: The maximum number of alphanumeric characters which 
can be contained in the constant, of cour se, depends on the 
number of card columns available in the operands field. 
Thus it should be remembered that methods 1 and 2, above, 
require two card columns to format the constant, while 
method 3 require seither three or four columns. 

BLANK CONSTANTS 

The DCW statement may be used to re serve a field of blanks with a word mark in the 

leftmost character position of the field. The programmer writes a # symbol (in the first 

column) followed by a decimal value (from 1 to 40 for Easycoder A or B, from 1 to 63 for 

Easycoder C, D, or OS/2000) which indicates the number of blank storage positions desired. 

EASYCODER 
CODING FORM 

10 

PROBLEM ______________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD I~I~ LOCATION 
OPER4T10N OPERANDS 

NUMBER ~ ~ CODE 

1 213 415 6 7 8 •• 15 2021 _l 6263 10 

I 1 BlA tJK loew ~Z.I 
I 

IThis third method of coding alphanumeric constants is applicable only when using Easycoder 
C, D, or OS/2000. 

6-4 AG28 



The DCW statement above defines a 21-character blank field. The address assigned to this 

field by the assembler will be inserted in an object-program instruction wheneve~ the tag BLANK 

appears in another symbolic-program entry. 

FLOATING-POINT CONSTANTS 

A floating-point constant is written as a decimal entry which is then automatically con­

verted by the assembler to a fixed-length floating-point value, viz., a six-character binary 

mantissa followed by a two-character power-of-two exponent. 

To code a floating-point constant the programmer writes the following: 

1. The letter F. 

2. A decimal number, the mantissa,which may be signed or unsigned and 
which may contain a maximum of 11 digits with or without a decimal point. 

3. The letter E. 

4. A decimal number, the exponent, which must be between 0 and 616, in­
clusive, and may be signed or unsigned. 

If an exponent of zero is desired, the letter E and the decimal number which follows it are not 

required. 

NOTE: If the mantissa and/or the exponent is preceded by a minus sign, the 
asse-mbler stores the corresponding-value in twos-complement form. 

EASYCODER 
COOING FORM 

PROBLEM _____________________ , PROGRAMMER ______ DATE _____ I?\GE _OF_ 

CARD I~I~ LOCATION 
OPERATION OPERANDS NUMBER l~ ~ CODE 

I 2 I] 415 6 7 8 1415 2021 62 6] 

I : FCO~I locw F'4. 3SQ E2 
I 

I FCO~Z DeW F+435:CJ E-I 
I I FeO~3 Dew IF/ 
I I FCO~+ Dew F- .d¢,~/ 

: : FeO~5 Dew F.:\e-~4 
I I 

The first two entries above (FCONI and FCON2) result in the same floating-point valu~ 

when converted by the assembler. FCONI uses a decimal point while FCON2 arrives at the 

sam~ result by using a negative exponent. This is also true for FCON4 and FCON5. 

Define Constant - DC 

80 

The DC statement is functionally the same as the DCW statement, the only exception being 

the absence of automatic word marking. This. statement may thus be used in place of the DCW 

6-5 AG28 



statement if a constant is to be stored without a word mark in its leftmost character position. 

The programmer, however, may still specify item marking as shown in Table 5-1. 

NOTE: If Easycoder C, D, or OS/2000 is being used, and if unusual high­
and low-order punctuation is required, the programmer may use 
a Set II punctuation indicator as shown in Table 5-2. 

Reserve Area - RESV 

Use of the RESV statement enables the programmer to reserve an area of memory. 

Unlike the DC and DCW statements (which cause data to be loaded into an area reserved by the 

assembler), the RESV statement does not normally alter the contents of the area defined. 

Rather, it simply sets aside a storage area to which the programmer can refer by a symbolic 

tag. The reserved area can be cleared to 0' s by means of the CLEAR statement. The number 

of characters in the reserved area must be specified in the operands field of the RESV 

statement. 

NOTE: When used with Easycoder A or B, the RESV statement must contain 
a nonzero value in the operands field. 

A symbolic tag may be written in the location field. If the tag is left-justified, it is 

assigned to the rightmost loca:tion of the reserved area. If the tag is indented one column, it 

is assigned to the leftmost location of the res.erved area. 

When used with Easycoder C, D, or OS/2000, the RESV statement cannot only reserve 

a specified area but can also load that area with a particular character. The character to be 

loaded into each location of the reserved area is coded in the op code field immediately follow­

ing a comma and the mnemonic code. If the mnemonic RESV is followed only by a comma, the 

re served area is cleared to blanks. 

NOTE: There is no automatic word marking for the reserved areas, nor may 
column 7 of the RESV statement be used with Easycoder A or B to set 
punctuation. However, if Easycoder C, D, or OS/2000 is being used, 
the programmer may use a Set I or II pun.ctuation indicator. 

EASYCODER 
CODING FORM 

PROBLEM _________________________ PROGRAMMER ______ OATE _. ____ PAGE _01'_ 

CARD ~ ~ LOCATION 
OPERATION OPERANDS NUMBER .~ ~ CODE 

I 213 415 6 7 8 • 4 '5 202 • i 6263 10 

I : STO~E I~ESV ~~ 
I 

I ('ARD I~ESV .. (I 8~ 

The first statement above reserves 30 consecutive character positions that can be 

addressed via the tag STORE. Note that by referring to the reserved area via a symbolic tag, 

the programmer need not know its actual location in memory. The second RESV statement, 

assembled by Easycoder C, D, or OS/2000 reserves 80 consecutive locations and clears the 

re served area to 0 IS. 

6-6 AG28 



I Define Symbolic Address 

The DSA statement can be used to store one or two addresses, or two addresses and a 

variant character, as a constant. Any valid address can be stored .as a constant; the length of 

each address is determined by the current addressing mode (each address will be two, three, 

or four characters long). 

An item mark may be specified as shown in punctuation Set I Table 5-1. In addition, the 

DSA statement automatically places a word mark in the leftmost character position of the con­

stant (thus an L in column 7 results in a record mark in this position). 

NOTE: If Easycoder C, D, or OS/2000 is being used, and if unusual high- and 
low-order punctuation is required, the programmer may use a Set II 
punctuation indicator as shown in Table 5-2. 

EASYCODER 
COOING FORM 

PRO BLE M PROGRAMMER DATE PAGE OF - -
CARD I~ I! LOCATION 

OPERATION OPERANDS NUMBER 1£ ~ CODE 

I 213 415 , 7 8 1415 202. L I 6263 80 

I : CODE IQ5A lTEM-S. 
I 

I 
I I STAR. lcSA ~~G *.A 
I , 

The first statement above permits the address of the field five characters before the field 

tagged ITEM to be referred to in the program by the tag CODE. 

The second statement allows the stored constant consisting of the address assigned to ARG, 

the address assigned to the self-reference indicator ~:~, and the variant character A (i. e., octal 

21) to be referred to by the tag STAR. 

Define Area - DA 1 

A specified area within the main memory can be defined and reserved by using the DA 

statement. In addition to defining an area, the DA statement can also define fields and subfields 

within the reserved area. This statement can also define two or more contiguous areas if these 

areas are identical in format. In other words, the programmer uses a DA statement to provide 

the assembler with the following basic information: 

I. The number (n) and size (s) of the reserved area(s). (Both nand 5 can be 
represented by numbers up to 4,095, depending upon the amount of memory 
available. ) 

2. The index register (Xm or Ym) to be associated with each reference to a 
field or subfield within the reserved area(s) (optional). 

IThe Define Area statement cannot be employed with the Easycoder A Assembly System. 

6-7 AG28 



3. The character R which will place a record mark one position to the 
right of the rightmost re served area (optional). 

NOTE: Additional parameters may be employed with Easycoder 
C, D, and OS/2000. 

A DA statement consists of a heading line which defines an area(s), plus one or more sub­

sequent lines of coding which define the fields and subfields within the area(s). The heading 

line can contain a symbolic tag (but not an absolute address) in the location field. If this tag 

begins in column 8, it refers to the rightmost location of the entire area, exclusive of the 

record mark (if present); if the tag starts in column 9, it r~fers to the leftmost location of the 

entire area. Item marks may be specified in column 7 of the heading line by using Set I punctua­

tion indicator s a s shown in Table S -1. 

NOTE: The list of punctuation indicators specified in Set II, Table S-2, cannot 
be used with DA statements. 

The operands field in the heading line has the following format: 

j 
If a single 80- character area is to be defined, the value of nxs is Ix80. If four identical 80-

character areas are to be defined, the value of nxs is 4x80. 

The DA statement can be indexed by writing an index register de signator (from Xl through 

XIS or from YI through YIS)I following the area definition. All references to the field and sub­

fields defined in the DA statement will be automatically indexed by the specified index register, 

but references to the tag assigned to the entire area will not be indexed. For example, the state­

ment on the next page indicate s that all reference s to the fields and subfields in the 113- charac­

ter area tagged BUFFER will be indexed by the index register X2; referenceA to the tag BUFFER, 

however, will not be indexed. 

Note that the area definition nxs does not include an allowance for the character position 

containing the record mark, although this position (if any) is also reserved. For example 4x80 

will cause 320 character positions to be reserved. If a record mark is placed one position to the 

right of the last area, a total of 321 character positions is reserved. 

The index register applied to a field or subfield can be changed from that specified in the 

DA statement by designating a different register in the operands field of an instruction which 

IIndex registers Xl through X6 are used with Easycoder B, while index registers Xl through 
XIS and YI through YI5 can be used with Easycoder C, D, or OS/2000. 

6-8 AG28 



references the field or subfield. The effect of indexing on a field or subfield can be cancelled by 

writing XO as the index register designator in the references in which indexing is not wanted. 

As stated above, the heading line may be followed by one or more lines of coding which 

define fields and subfields within the reserved area(s). As many of these lines as necessary 

may be used, and these fields and subfields may be defined in any order desired. Positions 

within each reserved area are numbered sequentially from left to right, starting with one. The 

coding line s which define fields and subfields must have blank op code fields; each such line 

may contain a symbolic tag in the location field, if desired. 

Fields and subfields are specified a s follows: 

Fields: The lowest and highest positions of the field are written in that order in 
the operands field, separated by a comma. (If a one-character field is 
de sired, its position number must be written twice in the operands 
field, separated by a comma.) A word mark is automatically placed 
in the leftmost position of the field in memory. Item marks may be 
specified as shown in Table 5-1. 

Subfields: For a subfield, only the rightmost position is specified. Word marks 
are not set; however, item marks may be specified as shown in Table 
5-1. 

NOTE: The list of punctuation indicator s specified in Set II can not be 
used with DA statements. 

The assembler does not normally clear the defin'ed area. However, the programmer has 

the option of clearing the area to a specified character by placing a comma and the desired char­

acter after the mnemonic code DA in the op code field. The presence of only a comma after the 

op code implies that the area will be cleared to blanks. When the defined area is cleared, all 

punctuation is also cleared before setting the ufieldll punctuation. 

The sample coding below illustrates what a DA statement might look like. 

EASYCODER 
COOING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE ______ PAGE _OF'_ 

CARD I~I~ LOCATION 
OPERATION OPERANDS NUMBER I~ ~ COOE 

1 213 41 ~ 6 1 8 1415 2021 6263 eo 

i01 f : BUFFER ,OA ItX28. X 2. R 1 1 

t~ 21 1 NAME" \.2¢ I ~ -'-
I~ 3! 1 DATE 123 28 
1t'41 1 lAGE a ~I 22, 
IG 5: l tVE:AR ~8 
~ 61 1 MO~lH 26 

1 I 

6-9 AG28 



The heading line specifie s the following inform.ation: 

1. Four consecutive, identical areas, each 28 characters long, will be reserved. 

2. The tags NAME, DATE, AGE, YEAR, and MONTH, when referred to in 
symbolic instructions, will be indexed by index register X2. 

3. A record m.ark will be set in the rightmost character position of the 
entire 113 -character re served area. 

4. The entire 113-character area can be referred to via the tag BUFFER. 
(This tag refers to the leftmost position of the area because it is in­
dented. It is not automatically indexed by index register X2. ) 

Lines two, three, and four define fields. Word marks will be set in positions 1, 21, and 23 in 

each of the four identical areas. Lines five and six define subfields: position 28 indicates the 

year within the date, while position 26 indicates the month within the date. 

Easycoder C, D, and OS/2000 Options 

When used with Easycoder C, D, or OS/2000, the DA statement may make use of the 

following parameter s (in addition to the n, s, Xm, and R parameters). 

1. The character P: Coding this character in the heading line of a DA state­
ment causes the special character 728' together with an item mark, to be 
placed at the end of each area as an additional character. 

2. The character G: Coding this character in the heading line causes the 
special character 328' together with a record mark, to be placed one 
po sition to the right of the last area. 

3. The character H: Coding this character in the heading line instructs the 
assembler to associate the index register (Xm or Yt;n) with each reference 
to the tag in the location field of the DA statement, as well as with each 
reference to a field or subfield within the reserved area(s). 

NOTE: If a symbolic tag is used, it is not automatically indexed by 
the specified index register (Xm or Ym.) unless param.eter H 
is em.ployed. This param.eter is m.eaningless if no index 
regi ster is specified. 

The form.at of a DA statement heading line em.ploying all param.eters is illustrated below. 

EASYCODER 
CODING FORM 

PROBLEM ____________________ _ PROGRAMMER ______ OATE _. ____ ~GE _OF_ 

CARD I~ :~ LOCATION 
OPERATION 

OPERANDS NUMBER ~ ~ CODE 

I 2~3415 6 7 a 1415 2021 6263 10 

I : tQq DA n~s Y.m .• R. P G .H. I I I I 
I w , 

" 

6-10 AG28 



SECTION VII 

ASSEMBLY CONTROL STATEMENTS 

INTRODUCTION 

Assembly control statements provide programmer control over the assembly of the source 

program. These statements resemble data formatting statements in that they are treated as def­

initions. They control such functions as the addressing mode to be used in assembling specified 

instructions, the as signment of absolute locations to symbolic tags, etc. Used only during the 

assembly process, assembly control statements are never executed as instructions in the object 

program. The precise function of each assembly control statement depends upon the assembly 

system employed. 

A summary of the assembly control statements available with Easycoder A, B, C, D, and 

OS /2000, together with the page where each statement is defined, may be found in Table 7-1. In 

addition, the heading of each statement in this section includes a table which indicates the assem­

bly systems that may use that particular statement. 

Table 7-1. Assembly Control Statements 

OS/2000 
Easycoder A Easycoder B Easycoder C Easycoder D Easycoder 

Assembly Control As s embly Control As s embly Control Assembly Control Assembly Control 
Statements Statements Statements Statements Statements 

Program Header Program Header Program Header Program Header Program Header 

Segment Header Segment Header Segment Header 

Execute Execute Execute Execute Execute 

Transfer Transfer Transfer 

Origin Origin Origin Origin Origin 

Modular Origin Modular Origin Modular Origin Modular Origin Modular Origin 

Literal Origin Literal Origin Literal Origin Literal Origin 

Admode Admode Admode Admode Admode 

Equals Equals Equals Equals Equals 

Control Equals Control Equals Control Equals Control Equals C.ontrol Equals 

Memory Dump 

Skip Skip Skip 

Suffix Suffix Suffix 

7-1 AG28 



Table 7-1 (cont). Assembly Control Statements 

OS/2000 
Easycoder A Easycoder B Easycoder C Easycoder D Easycoder 

Assembly Control Assembly Control As sembly Control Assembly Control Assembly Control 
Statements Statements Statements Statements Statements 

Repeat Repeat Repeat 

Generate Generate Generate 

Set Line Numher Set Line Number Set Line Number 

Set Out -of- Set Out-of- Set Out-of-
Sequence Base Sequence Base Sequence Base 

Clear Clear Clear . Clear Clear 

Range 

End End End End End 

Program Header 

PROG 

The program header must be the first entry in a symbolic program. This statement is 

coded as follows for the various as sembly systems. 

EASYCODER A 

The letters FROG must be written in the op code field, and the operands field must contain 

a name which identifies the program. (This name will appear in the program listing.) Option­

ally, an "S" can be placed in column 6; this action specifies that a check is to be made on the 

card number sequence of the input deck. 

EASYCODER 
CODING FORM 

PROBLEM ______________________ PROGRAMMER ______ OATE _. ___ PAGE _OF_ 

CARD 1~li LOCATION 
OPERATION OPERANDS NUMBER CODE 

I 213 415 6 7 8 14 IS 202' 6263 110 

I :~ PROG SERIES 
I 

I 

In the sample statement above, SERIES is specified as the program name, while the letter 

S in column 6 designates that a sequence check is desired. 

7-2 AG28 



EASYCODER B 

The letters PROG must be written in the op code field, and the operands field must contain 

a name which identifies the program. (This name will appear in the program listing.) Option­

ally, an "S" can be placed in column 6; this action specifies that a check is to be made on the 

card number sequence of the input deck. 

In addition, the desired object-program format is specified by the entries in columns 61 

and 62. Blanks in these two columns specify that the machine-language output is to appear in 

the condensed-card self-loading format. Placing the letters BR in these columns specifies that 

the machine -language program is to appear on punched cards in BR T format. (See Easycoder 

B Assembly System, Order No. BA08) 

NOTE: When BRT format is specified, a segment number of 01 is generated by 
the assembler for the first segment (memory load) following the pro­
gram header. If Execute statem~nts appear in the symbolic program, 
subsequent segment names are generated by incrementing the previous 
segment number by one. 

EASYCODER 
COOING FORM 

PROBLEM _______________________ PROGRAMMER ______ OATE _. ____ PAGE _OF_ 

CARD ~I! LOCATION 
OPERATION OPERANDS NUMBER ~ ~ COO! 

1 213 41 $ 6 7 • '.,5 202' 626] 80 

I : S PROG SE R I E ~ BR 
I 

1 

The statement above designates SERIES as the program name and specifies that a sequence 

check is to be performed. As columns 61 and 62 contain the letters BR, the output will appear 

on punched cards in BR T format. 

EASYCODER C 

As used in Easycoder C, the program header provides program identification; in addition, 

however, this statement serves as the all-important "action director" statement. For this 

reason, the programmer should refer to the Honeywell publication Easycoder Assemblers C 

and D, Order No. BA26 for a detailed description. 

EASYCODER D 

As used in Easycoder D, the program header provides program identification; in addition, 

however, this statement serves as the all-important "action director" statement. For this 

reason, the programmer should refer to the Honeywell publication Easycoder Assemblers C 

and D, Order No. BA26. 

7-3 AG28 



If the programmer desires to use the alternate card format, which allows room for tags 

consisting of up to ten characters, column 75 of the program header card must contain the 

letter A. The PROG card itself, however, is never coded in the alternate format: the letters 

FROG always appear in the op code field (columns 15 through 18), while the name of the program 

always appears beginning in column 21. 

NOTE: If the alternate format is specified, .@. cards following the program 
header, up to and including the END card, must be coded in the alternate 
format. 

OS /2000 EASYCODER 

As used in OS /2000 Easycoder, the program header provides program identification; in 

addition, however, this serves as an "action director II to supersede default and job control 

language-specified options. For this reason, the programmer should refer to the Honeywell 

publication OS /2000 Easycoder Assembler, Order No. AH31. 

Segment Header 

SEG 

Programs written for Easycoder C, D, or OS /2000 may be divided into two or more seg­

ments, each of which is loaded into memory and executed as a unit. It is the function of the SEG 

statement to define the beginning of each segment (memory load). Use of the SEG statement is 

optional, however. If used, a SEG statement must follow the program header, each Execute 

statement and each Transfer statement. If it is desired to omit this statement, it must be 

omitted from the entire program; in this case the assembler generates segment identifications 
'l 

(starting with 01). 

EASYCODER C, D, and OS /2000 

The letters SEG must be placed in the op code field, while the operands field must contain 

a two-character segment identification. This segment identification becomes appended to the 

program name to form a unique search code. 

EASYCODER 
CODING FORM 

PROBLEM ______________________ PROGRAMMER ______ DATE _. ___ ~GE _OF_ 

CARD 1~le LOCATION 
OPERATION OPERANDS NUMBER CODE 

, z 13 41 ~ 6 ? 8 141!1 ZO Z, 6Z 63 110 

I -: !s,EG A. A. I -----o..~~~_~ , 
I 

I , I ~-----' 
, _~-L.~~ 

7-4 AG28 



In the example above, AA could represent the first segment of a program, in which case 

this entry would follow the program header. 

Execute 

\.; .. \ .•• B I .. c I .• ~.I .. ~~ .. /2.000.1 EX 

The end of a memory load is indicated by an EX statement. When the coding inserted by 

the as sembler for the EX statement is encountered during the loading proces s, a branch to the 

location specified in the operands field results. This operation enables portions of the program 

~o be executed before the entire program has been loaded. The coding to be executed must ap­

pear prior to the EX statement. 

EASYCODER A 

The letters EX must be written in the op code field; the operands field contains a direct 

addres s, either absolute or symbolic. (If an EX statement is written with a blank operands 

field, the machine will halt when it .encounters the corresponding coding during the loading 

operation. ) 

To resume the loading operation, the last instruction in the portion of the program exe­

cuted must be a Branch instruction which provides re-entry to the load routine. In addition, 

the first instruction of the executed routine should be an SCR (Store Control Registers) instruc­

tion which stores the contents of the B-address register in the A-address of the return Branch 

ins tr uction. 

EASYCODER 
COOING FORM 

PROBLEM ______________________ PROGRAMMER ______ OATE _____ MGE_OF_ 

CARD JI~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ eOOE 

I ZI) 41~ 6 1 • 1415 ZO ZI Ill) 10 

I : EX SEeS 
I . I 

i i 

The sample statement above illustrates an EX statement with a symbolic address in the 

operands field. When the corresponding coding is encountered during the loading operation, 

program loading is temporarily halted and the portion of the program beginning at the location 

tagged SEC 3 is executed. 

7-5 AG28 



EASYCODER B 

The letters EX must be written in the op code field; the operands field contains a direct 

addres s, either absolute or symbolic. (If an EX statement is written with a blank operands 

field, the machine will halt when it encounters the corresponding coding during the loading 

operation. ) 

To resume the loading operation, the last instruction in the portion of the program exe­

cuted must be a Branch instruction which provides re -entry to the load 'routine. In addition, the 

first instruction of the executed routine should be an SCR (Store Control Registers) instruction 

which stores the contents of the B-address register in the A-address of the return Branch in­

struction. 

Besides causing a branch to the programmer's coding, use of the EX statement causes 

any literals used in the memory load to be loaded and the literal table to be cleared. If a 

LITORG statement (see below) does not precede the EX statement, literals are allocated im­

mediately following the in-line coding for the memory load. 

NOTES: 1. Following an EX statement, a new segment number is generated 
as explained above in the description of the program header. 

2. With Easycoder B, the total of the numbers of Execute, Literal 
Origin, and End statements must not exceed 31. 

See the sample statement given above for Easycoder A. 

EASYCODER C, D, and OS/2000 

The letters EX must be written in the op code field; the operands field must contain a 

direct address, either absolute or symbolic. When used with these assemblers, the EX state­

ment enables a program to be loaded and executed one segment at a time. Each segment except 

the last must end with either an EX or an XFR statement. When an EX statement is encountered, 

all literals preceding the EX statement which have not been allocated to memory are allocated in 

sequence, and the literal table is cleared. 

o 

Note that it is the responsibility of the programmer to provide re-entry to the load routine. 

The methods of returning to the applicable loader are described in the pertinent Honeywell pub­

lication - e.g., Card Loader-Monitor B (Order No. BA95), Tape Loader-Monitor C (Order No. 

BB 20), or OS /2000 Supervisor Components (Order No. AH23). 

See the sample statement given above for Easycoder A. 

Transfer 

XFR 

7-6 AG28 



For Easycoder C, D, and OS /2000 users, the end of a memory load may be indicated by an 

XFR statement instead of an EX statement. Both statements perform essentially the same func­

tions; the one exception is that use of the XFR statement does not result in the allocation of literals 

or in the clearing of the literal table. 

When the coding inserted by the assembler for the XFR statement is encountered during 

the loading process, a branch to the location specified in the operands field results. This opera­

tion enables portions of the program to be executed before the entire program has been loaded. 

EASYCODER C, D, and OS /2000 

The letters XFR must be written in the op code field; the operands field must contain a 

direct address, either absolute or symbolic. Use of this statement enables a program to be 

loaded and executed one segment at a time. Each segment except the last must end with either 

an XFR or an EX statement. 

NOTE: It is the responsibility of the programmer to provide re-entry to the 
load routine. 

EASYCODER 
CODING FORM 

PROBLEM ____________ --,--_________ PROGRAMMER ______ DATE _____ Pl\GE _OF __ 

CARD ~ ~ LOCATION 
OPERATION 

OPERANDS NUMBER ~ ~ CODE 

, 213 415 6 7 8 14 I~ 2021 626) 80 

I : IX,FR SEC4 
1 

~ 1 , , 1 

The sample statement above illustrates an XFR statement with a symbolic address in the 

operands field. When the corresponding coding is encountered during the loading operation, 

program loading is temporarily halted and the portion of the program beginning at the location 

tagged SEC4 is executed. 

Origin 

ORG 

The ORG statement is used to modify the normal memory allocation process of assembly. 

This statement can be inserted anywhere in the source program to indicate to the assembler 

that all subsequent coding (instructions, constants, work areas, etc.) should be assigned se­

quential memory locations starting with the location whose address is specified in the operands 

field. 

7-7 AG28 



A program is normally allocated memory space beginning at location o. If it is desired to 

as sign memory space starting at some location other than 0, an ORG statement must be inserted 

in the program immediately following the program header. 

EASYCODER A 

The letters ORG are written in the op code field, and an address (either absolute or sym­

bolic) is written in the operands field. (If the address is symbolic, the tag must appear in the 

location field of a previous source -program entry.) The addres s speCified in the operands field 

is as signed the tag (if any) in the location field; if this tag appears, it must not be indented. 

EASYCODER 
COOING FORM 

PROBLEM ___________________ ~ __ PROGRAMMER ______ OATE _. ___ f'l\GE _OF_ 

CARD if!1 LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

1 213 415 II 7 • 1415 202' 62 63 10 

I : :QRG 75.(1 
I 

I ..,..1-. -'-'-

b.RTA·i, I I ORG 
I I I 
1 I 

The first statement above indicates to the assembler that all subsequent entries should be 

assigned sequential addresses beginning with location 750. The second statement directs the 

assembler to assign to all subsequent entries sequential addresses beginning with the address 

that is assigned to the tag ORTAG. (OR TAG must appear in the location field of a previous 

source-program entry. ) 

EASYCODERB 

The letters ORG are written in the op code field, and an address (either absolute or sym­

bolic) is written in the operands field. (If the address is symbolic, the tag must appear in the 

location field of a previous source-program entry.) The address specified in the operands field 

is as signed the tag (if any) in the location field; if this tag appears, it must not be indented. 

NOTE: When the BRT punched-card format is specified, an ORG statement ~ 
be included immediately following the FROG statement with an address of 
1,000 (decimal) or above. 

See the sample statements given above for Easycoder A. 

7-8 AG28 



EASYCODER C, D, and OS /2000 

The letters ORG are written in the op code field, and an address (either absolute or sym­

bolic) is written in the operands field. If the address is symbolic, the tag must appear in the 

location field of another (not necessarily previous) source-program entry. A symbolic tag may 

be written in the location field. If this tag begins in column 8, it is assigned to the address 

written in the operands field. If it begins in column 9, the tag is as signed to the location at 

which the next instruction would have begun had the ORG statement not been present. 

NOTE: Care must be taken so that the address in the operands field is a 
decimal number of 1,000 or above if Card Loader -Monitor B is used 
to load the object program. If Tape Loader-Monitor C or Drum 
Bootstrap-Loader C is used, this decimal number must be 1, 340 or 
above. For OS /2000 the object program must start at 190 or higher. 
The ORG statement has additional functions for relocatable code 
(see OS /2000 Easycoder Assembler, Order No. AH3l). 

EASYCODER 
CODING FORM 

PROBLEM _____________________ PROGRAMMER ______ OATE _. ___ PAGE _OF_ 

CARD I~I~ LOCATION 
OPERATION OPERANDS NUMBER Ir ~ CODE. 

I 2 13 4'-~ 6 7 8 14 I~ 2021 62 63 10 

I : 'DENT IQRG 7800 
1 I ! I 

In the example above, assume that the instruction preceding the ORG statement was 

assigned to locations 5000 through 5007. The next instruction would normally begin at location 

5008. The tag IDENT, since it begins in column 9, is thus assigned to location 5008, and the 

next instruction is stored beginning at location 7800. 

Modular Origin 

MORG 

The modular origin statement is similar to the ORG statement described above. The 

MORG statement indicates to the assembler that all subsequent entries should be assigned 

sequential addresses starting with the next available location whose address is a multiple of 

the number written in the operands field of the MORG statement. The entry in the operands 

field must represent a power of two (e. g., 2, 4, 8, 16, 32, •••••• 4, 096, etc.). 

EASYCODER A and B 

The letters MORG are written in the op code field, and a number (a p~wer of two) is 

placed in the operands field. 

7-9 AG28 



EASYCODER 
CODING FORM 

PROBLEM ______________________ PROGRAMMER ______ OATE _. ___ ~GE _OF_ 

CARD il~ LOCATION 
OPERATION OPERANDS NUMBER CODE 

, 213 41 ~ 6 7 e 14 I~ 2021 62 63 

I : IMORG 212 
1 

I 

The statement above indicates to the assembler that all subsequent entries should be 

assigned sequential addresses beginning with the next available location whose address is a 

multi pIe of 32. 

EASYCODER C, D, and OS/2000 

eo 

The letters MORG are written in the op code field, and a number (a power of two) is 

placed in the operands field. A symbolic tag may be written in the location field. If this tag 

begins in column 8, it is as signed to the addres s written in the operands field. If it begins in 

column 9, the tag is assigned to the location at which the next instruction would have begun had 

the MORG statement not been present (see the sample statement given above for the ORG state­

ment). 

Literal Origin 
ABC D OS/2000 

LITORG 
\ 

The literal origin statement is similar to the ORG and MORG statements described above. 

The LITORG statement specifies to the assembler that all previously defined literals should be 

assigned sequential memory locations starting with the location specified in the operands field. 

Care must be taken to ensure that literals can be referenced by the instructions which use 

them; e.g., a literal stored in one 4K bank may not be addressed in the two-character mode 

from another bank. 

EASYCODER B 

The op code field must contain the letters LITORG, while the operands field contains an 

address (either absolute or symbolic). If a symbolic tag is used, it must have appeared in the 

location field of a previous entry. Like the EX statement, the LITORG statement causes the 

literal table to be cleared. Also, locations below 1,000 (decimal) must not be used when BRT 

punched-card output is specified in the FROG statement. 

7-10 AG28 



A symbolic tag may be written in the location field. If this tag begins in column 8, it is 

assigned to the address written in the operands field. If it begins in column 9, the tag is assigned 

to the location at which the next instruction would have begun had the LITORG statement not been 

present. 

NOTES: 1. In the absence of a LITORG statement, all of the generated coding 
associated with a memory load is allocated immediately following 
the in-line coding. 

2. With Easycoder B, the total of the number of Execute, Literal 
Origin, and End statements must not exceed 31. 

EASYCODER 
COOING FORM 

PROBLEM ______________________ ~RAMMER ______ DATE _. ___ Pl\GE _Of"_ 

CARD '~l~ LOCATION 
OPERATION OPERANDS NUMBER I~ ~ COOE 

I ih 41 ~ 6 7 8 .4 I~ 202' '263 80 

I : LlT IL.l TORG 15S¢ 
I 

I 

In the LITORG statement above, the assembler is directed to assign sequential addresses 

- starting with location 1550 - to all previously encountered literals. This location is also tag­

ged LIT, since the tag begins in column 8. 

EASYCODER C, D, and OS /2000 

The op code field must contain the letters LITORG, while the operands field contains an 

address (either absolute or symbolic). If a symbolic tag is used, it must have appeared in the 

location field of another, not necessarily previous, entry. Like the EX statement, the LITORG 

statement causes the literal table to be cleared. Locations below the loader (Easycoder C and D) 

or the Supervisor Communications Region (OS /2000 Easycoder) must not be used. 

A symbolic tag may be written in the location field. 1£ this tag begins in column 8, it is 

as signed to the addres s written in the operands field. If it begins in column 9, the tag is as­

signed to the location at which the next instruction would have begun had the LITORG statement 

not been present. 

NOTE: In the absence of a LITORG statement, all of the generated coding 
associated with a memory load - except for a memory load termi­
nated by an XFR statement - is allocated immediately following the 
in-line coding. 

EASYCODER 
COOING FORM 

PROBLEM ____ . __________________ PROGRAMMER ______ DATE _. ___ Pl\GE _Of"_ 

CARD '~l~ LOCATION 
OPERATION 

OPERANDS NUMBER I~ ~ CODE 

I 2 13 41 ~ 6 7 8 141!t 202' '263 80 

I : LIT ILl TORG ~ 750 
"1 

1 

I I IDENT 'L I TORe; 2000 
I I I 

-I I I I 1 

7-11 AG28 



In the first LITORG statement above, the assembler is directed to assign sequential ad­

dres ses, starting with location 1750, to all previously encountered literals. Note that the tag 

for this statement, LIT, begins in column 8; LIT is therefore assigned to location 1750. Assume, 

in the second statement above, that the instruction preceding the LITORG statement was assigned 

to locations 450 through 457. The next instruction would normally begin at location 458. The tag 

IDENT, since it begins in column 9, is thus assigned to location 458, and previously encountered 

literals are assigned sequential addresses starting with location 2000. 

Set Addres s Mode ABC D OS/2000 

ADMODE 

This statement specifies the addressing mode into which all subsequent instructions are to 

be assembled (i.e., two-, three-, or four-character). (All machine instructions, as well as 

the DSA data formatting statement, are affected by the address mode.) The mode of address 

assembly specified in this statement remains in effect until another ADMODE statement, spec­

ifying a different mode of as sembly, is encountered. 

Because the ADMODE statement concerns itself only with the source program, it should be 

used in conjunction with the CAM (Change Addressing Mode) instruction. The CAM instruction 

specifies the addressing mode in which the machine is directed to interpret the address portions 

of all subsequent object-program instructions. 

EASYCODER A and B 

The. letters ADMODE are placed in the op code field. The operands field contains either 

a 2 or a 3 to denote whether all subsequent instructions are to be assembled in the two-character 

or the three-character addressing mode. If an ADMODE statement is not included at the begin­

ni~g of the source program, assembly begins in the two-character addressing mode. (It should 

be a general rule, however, to include an ADMODE statement at the outset of every program.) 

EASYCODER 
COOING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD II! LOCATION 
OPERATION OPERANDS NUMBER CODE 

1 213 415 , 7 • 1415 2021 I ~j 62 13 eo 

I : iADMOOE2 
I 

I 
i I iADMODE3 
I 

7-12 AG28 



The assembler upon encountering the first statement above will assemble the address 

portions of all subsequent instructions as two-character addresses. The second statement, if 

encountered later in the same source program, will cause the assembler to change to three­

character address assembly. 

EASYCODER C, D, and OS /2000 

The letters ADMODE are placed in the op code field. The operands field contains either 

the numbers 2, 3, 4, or a symbolic tag to denote whether all subsequent instructions are to be 

assembled in the two-, three-, or four-character addressing mode. If a symbolic tag is used, 

it must have been previously defined to have a value of 2, 3, or 4. If an ADMODE statement is 

not included at the beginning of the source program, three-character addressing is assumed by 

the assembler~ (It should be a general rule, however, to include an ADMODE statement at the 

outset of every program.) See the sample statements given above for Easycoder A and B. 

EQU IY~i.I.,~1 CID.\ ~S.l2000 .. 1 

Equals 

The EQU statement assigns the symbolic tag written in the location field to the address 

(absolute or symbolic) written in the operands field. This statement thus makes it pos sible to 

use different symbolic tags in different parts of the source program to refer to the same memory 

location. 

EASYCODER A and B 

The location field contains a symbolic tag, while the op code field contains the letters EQU. 

The operands field contains the address to which the symbolic tag in the location field is to be 

as signed. (Each symbolic tag written in the operands field must appear in the location field of 

a previous source;..program entry.) 

EASYCODER 
CODING FORM 

PROBLEM ______________________ PROGRAMMER ______ OATE _. ___ PAGE_OF_ 

CARD I~I! LOCATION 
OPERATION OPERANDS NUMBER I~ ~ CODE 

1 2 3 4 ~ 6 7 8 14 I~ 2021 62&3 80 

I : TITLE IE,QU NAME 
I 

I 
I I QU.A.N EQu AMT-2llJ 

7-13 AG2S· 



The first EQU statement above causes the assembler to assign the tag TITLE the same 

location assigned the tag NAME. Thus, the programmer can use either of these two tags to 

refer to the contents of this location. The second statement employs relative addressing .. The 

assembler will assign the tag QUAN to the location specified by address arithmetic as AMT-20. 

EASYCODER C, D, and OS /2000 

The location field contains a symbolic tag, while the op code field contains the letters 

EQU. The operands field contains the address to which the symbolic tag is to be assigned. A 

symbolic tag written in the operands field must appear in the location field of another (not 

necessarily previous) source program entry. 

See the sample statement given above for Easycoder A and B. 

Control Equals 

CEQU 

The CEQU statement assigns the symbolic tag written in the location field to the value 

written in the operands field. It is frequently used to assign a tag (containing a minimum of 

two characters) to a variant character or to a group of input/output control characters. 

EASYCODER A and B 

The location field contains a symbolic tag, while the op code field contains the letters 

CEQU. The operands field contains an octal value; this entry is coded as an octal constant and 

may contain up to 12 octal digits. The symbolic tag in the location field is assigned to this entry. 

NOTE: A description of octal constants may be found under the heading "Define 
Constant with Word Mark - DCW" 

EASYCODER 
CODING FORM 

PROBLEM _____________________ . PROGRAMMER _. _____ OATE _. ___ ~GE _Of_ 

CARD ~I~ LOCATION 
OPERATION OPERANDS NUMBER d CODE 

I z 13 415 6 7 8 1415 2021 6263 80 

I : ·OF.L,OW CEQU f#IC50 
1 

I BeT ~U82. OFLOW 

The sample coding above illustrates how a symbolic tag can be used in place of a variant 

character. The CEQU statement directs the assembler to equate the tag OFLOW to the octal 

value 50. The second line of coding contains a branch instruction which specifies that a program 

should branch to the location tagged SUB2 if the condition spe.cified by the variant character 

tagged OFLOW is present. 

7-14 AG28 



EASYCODER C, D, and as /2000 

The location field contains a symbolic tag, while the op code field contains the letters 

CEQU. The entry in the operands field must be a decimal, binary, octal, or alphanumeric 

constant (the octal format is most commonly used). Regardless of the constant used, however, 

the resultant value must not exceed four characters in length. 

NOTES: 1. Instructions which refer to the tag defined by the CEQU statement 
must not precede the CEQU statement. 

2. A description of constants may be found under the heading "Define 
Constant with Word Mark - DCW" 

See the sample statement given above for Easycoder A and B. 

Memory Dump 

HSM 

The HSM statement may be used with Easycoder A to produce a punched card deck con­

taining the Memory Dump routine. This card deck can be loaded into memory to obtain a printed 

listing of the contents of any portion of main memory. This statement must be coded immedi­

ately preceding the CLEAR and END statements in the source program (see below). The total 

number of HSM, CLEAR, and END statements must not exceed 10. 

EASYCODER A 

If the punched card deck (containing the Memory Dump routine) is to be loaded into a 

specific memory area, the start of this area can be specified by a tag in the location field of 

the HSM statement. A blank location field causes the Memory Dump routine to be lo.aded into 

the area following the location assigned to the last character in the object program. The letters 

HSM must be written in the op code field. The operands field contains the addresses of the first 

(low) and last (high) locations in the memory area whose contents are to be listed by the Memory 

Dump routine. 

EASYCODER 
CODING FORM 

PROBLEM ______________________ PROGRAMMER ______ OATE _. ___ Pl\GE _OF_ 
,-. __ •...•. 

CARD ~ ! LOCATION 
OPERATION 

OPERANDS NUMBER ,~ ~ eOOE 

1 213 41 ~ 6 1 e 1415 2021 62 63 • 10 

I : HS.M. START .S.TOP +3 
I 

I 

The HSM statement above specifies that the area whose contents are to be listed begins at 

the location tagged START and ends three locations beyond the location tagged STOP. As the 

location field is blank, the Memory Dump routine will be stored in the area following the loca~ 

tion assigned to the last character in the object program. 

7-15 AG28 



~ 
~ 

Easycoder assemblers normally single-space an assembly listing and skip to the head of 

the next form when a page becomes filled. The SKIP statement enables the programmer to 

control the vertical spacing of the as s embly listing by causing as many as 15 lines to be skipped. 

EASYCODER C, D, and OS/2000 

The letters SKIP are placed in the op code field. The operands field contains either a 

number from 1 to 15 (to indicate the total number of lines to be skipped) or the letter H (which 

causes the printer to skip to the head of the next form). 

NOTE: The assembler automatically skips to the head of the form for each 
new segment. 

EASYCODER 
CODING FORM 

PROBLEM ______________________ PROGRAMMER ______ DATE _. ___ PAGE _OF_ 

CARD ~I~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

I 213 41 ~ 6 7 a 1415 2021 6263 110 

I : ~,KI p 9 
1 

I 

In the sample coding above, the assembler is directed to skip 9 lines on the program list-

ing. 

Suffix 

SFX 

The SFX statement directs the assembler to append the single-character suffix in the 

operands field to each tag of five characters or less contained in the following coding. This 

technique enables the programmer to assign unique tags for each segment of a program and 

thus guard against double definition of a tag between distinct segments of a program. When 

inter-segment referencing within a program is required, six-character tags may be assigned .. 

This operation continues until the occurrence of another SFX statement with a blank 

operands field, or until the END statement is encountered. 

EASYCODER C, D, and as /2000 

The letters SFX are placed in the op code field. A single-character suffix is written in 

the operands field. 

7-16 AG28 



EASYCODER 
COOING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _. ___ PAGE_~_ 

CARD I~I~ LOCATION 
OPERATION OPERANDS NUMBER I~ ~ CODE 

I Z11 41~ 6 7 a 14 I~ 20 ZI &ZU eo 

I : SFX E 
I I TOTAL IA FltA-tTOTA)(-20 

In the above example, the assembler interprets the Add instruction following the SFX 

statement as: TOTALE A FICAE+TOTAXE-20. 

Repeat 

REP 
I A I B 1~IDt~/20001 

This statement directs the assembler to repeat the following data formatting statement 

the number of times specified in the operands field. The number of times a statement is re­

peated includes the original statement and may not exceed 63. The assembler repeats the 

statement without variation, except that any entry in the location field is not repeated. 

EASYCODER C, D, and OS /2000 

The letters REP are written in the op code field. The operands field designates the num­

ber of times the following statement is to be repeated (including the original statement). 

EASYCODER 
COOING FORM 

PROBLEM ______________________ PROGRAMMER ______ DATE _. ____ PAGE_~_ 

CARD I~ I~ LOCATION 
OPERATION OPERANDS NUMBER I~ ~ COOE 

I zh 41~ 6 7 a 141!1 ZO ZI &Z1l eo 
I : REP 6 
I 

I OCTS6 oew fl2C6 

In the sample statement above, REP is employed to define six identical constants of octal 

value 6000. 

Generate 

GEN 

This statement directs the assembler to generate the instruction which follows a specified 

number of times, incrementing or decrementing the operands of the instruction as specified by 

the operands field of the GEN statement. The GEN statement can apply to machine instructions 

7-17 AG28 



with formats containing a single address, both addresses, a single address and one variant 

character, or both addres ses and one variant character (only one variant character is allowed). 

EASYCODER C, D, and OS/2000 

The letters GEN are written in the op code field. The operands field contains the param­

eter specifying the number of times the statement (which follows) is to be generated, including 

the original statement. This number is followed by a modifier for eacn operand in the model 

statement. These modifiers specify the increment (from 0 to +63) or decrement (from -63 to 

0) to be applied to each of the operands each time the statement is generated. There must be 

a modifier for each operand in the model statement (including the variant character, if any), and 

the modifiers must appear in the same order as the operands. If no modification is desired, 0 

is entered as the modifier. 

EASYCODER 
CODING FORM 

PROBLEM ______________________ PROGRAMMER ______ DATE _. ___ PAGE_OF_ 

CARD ~I~ 
-

LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

, z 13 415 6 1 8 14 I!» 20 Z' 62 63 eo 
I : QEN H6, t4 .. +6.0 
~ I i swc ~ SEt, tABLE 8 
! I I 
I I TABLE IRE"·SV 160 

In the example above, the GEN statement generates a series of 10 instructions that will 

branch to a location SEL, SEL+4, SEL+8, ••••.. or SEL+36, provided that an 8 is present 

in the first character of the corresponding item in a table containing ten 6-character items. 

The tag SWC is assigned to the leftmost character of the first generated instruction. The GEN 

statement itself must not be tagged. 

NOTE: The second BCE instruction generated by the example is BCE /SEL+4, 
TABLE +6, 8; the third instruction generated is BCE /SEL+8, TABLE 
+12,8; and so on. The tenth instruction generated is BCE /SEL+36, 
TABLE+S4, 8. 

Set Line Numbe r 

SETLIN 

This instruction is used to control the generation of .line numbers by the assembler. 

EASYCODER C, D, and as /2000 

The letters SETLIN are written in the op code field, while the first five columns of the 

operand field contain the desired line number. The assembler replaces the contents of the line 

7-18 AG28 



number generation counter with the number in the operands field of the SET LIN statement. This 

statement is effective only when the assembler is generating line numbers. It is important to 

note that all of the first five columns in the operands field must be punched with a decimal num­

ber (i. e., leading 0 I S are required). 

EASYCODER 
CODING FORM 

PROBLEM _______ ~ ______________ PROGRAMMER ______ DATE _____ PAGE _OF_ 

CARD Ie LOCATION 
OP(R.t.TlON OPERANDS NUMBER CODE 

1 213 4 5 & 7 • 14 l~ 2021 &2 &3 10 

¢5101:~ SElLIN 1~¢08~, 
¢.5:02Jci a l~ 

I I 
I 

In the example above, the SETLIN statement causes the instruction which follows it (B /00) 

to be assigned a line number of 00080. 

Set Out-of-Sequence Base 

XBASE 

The XBASE statement establishes the out-of-sequence base (OSB). As its name implies, 

the OSB is a base address for the storage of out-of-sequence coding. Such coding may be al­

located or referred to (1) by means of the address code I (apostrophe) in the location field or 

(2) by means of the address code I (apostrophe) in the operands field. 

EASYCODER C, D, and as /2000 

The letters XBASE are written in the op code field. The operands field contains the value 

(absolute or symbolic) to which the assembler is directed to set the out-of-sequence base (OSB). 

If a symbolic tag appears in the operands field it must have appeared in the location field of a 

previous source-program entry. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ OATE _____ PAGE_OF_ 

CARD i~ LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

1 213 ~5 6 7 8 1415 2021 6263 eo 
I L XBASE 5tJ0 
I 

I '275 OC,W @CON@ 

I I 

7-19 AG28 



In the above example, the out-of-sequence base (OSB) is set to 500 by the XBASE state­

ment. When the second entry is encountered, the assembler assigns the rightmost character 

of the constant CON to location 775 (500 + 275). 

Range 

RANGE 

RANGE statements are used in conjunction with the OS /2000 Supervisor's Call/Cancel 

Controller. A RANGE statement is required in every root program and in every subprogram 

to specify the range of consecutive main memory locations required by the program unit. A 

RANGE statement can appear anywhere within a program unit. 

OS /2000 EASYCODER 

A RANGE statement is coded as shown below. 

RANGE is entered in columns 15 through 19. 

The A-address, which begins in column 21, is the direct address (relative to the 
program) of the lowest main memory location to be used by the program unit. The 
A-address is followed by a comma. 

The B-address is the direct address (relative to the program) of the highest 
main memory location to be used by the program unit. 

The programmer must insure that the RANGE statement delimits a memory area adequate 

for the program unit as well as any data storage areas, tables, buffers, etc. required by the 

pro g ram--unit. 

EASYCODER 
CODING FORM 

PROBLEM _____________________ _ PROGRAMMER ______ DATE _____ PAGE _OF_ 

CARD h~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

I 2T3415 6 7 8 1415 2021 I I 6263 80 

I -T R,AN.G£ ~. FT hl 
I 

I 

I i 

The OS/2000 Supervisor's Call/Cancel Controller uses the difference between the resolved 

values of the RANGE statement's two operands to as certain the size of the memory area required 

by the program unit. At execution time, this size governs whether a program unit can be loaded 

into memory and where the program unit is loaded. 

The macro calls $CALL, /CALL, $CANCL, and $EXIT provide the linkage between the 

Easycoder program units and the Supervisor's Call/Cancel Controller. This subject is de .. -

scribed in detail in the Honeywell publication OS /2000 Supervisory Components, Order No. 

AH23. 

7-20 AG28 



Clear I .. ~ I. :.I~ID.IO:/~OO~I CLEAR 

The CLEAR statement enables the programmer to specify an area of memory which is to 

be cleared of punctuation before the object program is loaded. The data bits are also cleared 

to 0 I S or to a given character. It is not neces sary to clear areas which will be us ed to store 

the object program. 

EASYCODER A 

The op code field contains the letters CLEAR, while the operands field contains the ad­

dresses (either absolute or symbolic) of the first (low) and last (high) locations in an area to be 

cleared. If a comma is written immediately following the second address, the character written 

in the column after the comma is loaded into all locations in the cleared area. If two addresses 

are written in the operands field and are not followed by a comma and a character, the specified 

area is cleared to 0 IS. 

A number of CLEAR statements may be written (in sequence) immediately preceding the 

END statement, provided that the total number of HSM, CLEAR, and END statements does not 

exceed ten. 

NOTE: The 80-character loading area specified in the END statement must 
never be cleared. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ ~OGRAMMER ______ OATE ____ ~. PAGE _OF_ 

CARD ~I~ LOCATION 
OPERATION 

OPERANDS NUMBER E ~ COOE 

I 213 ,15 6 7 8 1415 202, 6263 80 

I : IC.LEA R CAMT }-LEAMT I I I 
I 

1 I I I I 

i I CLEAR 33.4.~ 07.9., J 

The first CLEAR statement above specifies that the area beginning at the location tagged 

CAMT and ending at the location tagged EAMT is to be cleared to zeros. The second CLEAR 

statement clears the area beginning at location 334 and ending at 379 to 46 JI S • 

EASYCODER B 

The op code field contains the letters CLEAR, while the operands field contains the ad­

dresses (either absolute or symbolic) of the first (low) and last (high) locations in an area to 

be cleared. If a comma is written immediately following the second addres s, the character 

written in the column after the comma is loaded into all locations in the cleared area. If two 

7-21 AG28 



addresses are written in the operands field and are not followed by a comma and a character, 

the specified area is cleared to a's. 

A maximum of nine CLEAR statements may be included in a program. In addition, no 

coding may appear between the last symbolic CLEAR statement and the END statement. 

NOTE: The loading area specified in the END statement must never be cleared. 

See the sample statements given above for Easycoder A. 

EASYCODER C, D, and OS /2000 

The op code field contains the letters CLEAR, while the operands field contains the ad­

dresses (either absolute or symbolic) of the first (low) and last (high) locations in an area to 

be cleared. If a comma is written immediately following the second address, the character 

written in the column after the comma is loaded into all locations in the cleared area. If two 

addresses are written in the operands field and are not followed by a comma and a character, 

the specified area is cleared to a's. As many CLEAR statements as necessary can be in­

cluded in a program. 

NOTE: The programmer must exercise caution in the physical placement of 
the CLEAR statement, as the clearing is performed by the Loader at 
the time the CLEAR statement is encountered. 

See the sample statements given above for Easycoder A. 

fEnd! 
~ 

The last source program statement must be the END statement, which indicates to the 

assembler that the end of the source program has been reached. 

EASYCODER A 

The location field may contain an address (either absolute or symbolic) which specifies 

the initial location iIi an 80-character loading area. If the location field is left blank, the as­

sembler automatically reserves an 80-character loading area following the location assigned to 

the last character in the object program. 

The op code field contains the letters END. If it is desired to execute the object program 

immediately after loading, the operands field must contain the address (either absolute or sym.., 

bolic) at which the object program is to begin. 

7-22 AG28 



EASYCODER 
COOING FORM 

PROBLEM ______________________ PROGRAMMER ______ OATE _. ___ P1AGE _OF_ 

CARD 

i'~ LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

I 213 .1 S 6 T e .4 IS 202. _1 62 63 eo 
I : IE,ND OBJECT 

The END statement above specifies that the object program (beginning at the address tag­

ged OBJECT) is to be executed immediately after loading. Since the location field is blank, the 

assembler will reserve an 80-character loading area following the location as signed to the last 

character in the object program. 

EASYCODER B 

The method of coding this statement depends on which output format has been specified in 

the program header statement. 

1. Output in self-loading format: The location field may contain an address 
(either absolute or symbolic) which specifies the initial location in an 80-
character loading area. If the location field is left blank, the as sembler 
automatically assigns an 80-character loading area following the location 
assigned to the last character in the object program. 

The op code field contains the letters END, while the operands field con­
tains the address (either absolute or symbolic) to which the Loader branches 
when loading has been completed. 

NOTES: 1. The programmer should ensure that the loading area 
does not span two 4K memory banks. 

2. During the loading process, the object program must 
not use the loading area. However, the area may be 
used following program loading. 

3. When literals are used, the programmer must specify 
a loading area that does not· coincide with the memory 
area occupied by literals. 

2. Output in BR T format: the op code field contains the letters END, 
while the operands field contains the address (either absolute or 
symbolic) to which the Loader branches when loading has been 
completed. When BRT format is specified, all other fields of the 
END instruction are ignored by the as sembler. 

NOTES: 1. The loading. area is automatically as signed by the Loader. 

2. With Easycoder B, the total of the numbers of Execute, 
Literal Origin, and End statements must not exceed" 31. 

7-23 AG28 



EASYCODER 
COOING FORM 

PROBLEM ______________________ PROGRAMMER ____ DATE _____ ~GE_OF_ 

CARD I~ I~ LOCATION I OPERATION OPERANDS NUMBER I~ a CODE 

I Z I) •• $- . • 7 e '411~ 2021 6213 eo 
I : MAL lENt) ~8JECT 
I 

I i 
-'-

I I lEND OBJEC T 

The first example above illustrates the coding whlch may be used for self-loading format 

output; the coding for BRT-format output is shown in the second example. 

EASYCODER C, D, and OS/2000 

The op code field contains the letters END. An address ~ appear in the operands field; 

the Loader will branch to that address (which should be the starting location of the last segment 

of the program). 

NOTE: The loading area is automatically assigned by the Loader. 

EASYCODER 
COOING FORM 

PROBLEM ______________________ PROGRAMMER __ ~~ __ DATE _____ ~GE_OF_ 

CARD lii~ LOCATION 
OPERATION OPERANDS NUMBER CODE 

I 2 I) 41 ~ 6 7 8 .4 I~ 2021 6263 eo 
I : II;ND STARTL 

The sample END statement above indicates to the assembler that the end of the source 

program has been reached. This statement is replaced by coding which specifies to the Loader 

that the last (or only) segment begins at symbolic address STARTL. 

7-24 AG28 



SECTION VIII 

INSTRUCTIONS 

INTRODUCTION 

A Serie s 2000 computer operate s under the dir ection of instructions in the stored pro­

gram. For de scriptive purpose s, the se instructions are clas sified into six functional cate­

gories: (1) Arithmetic; (2) Logic; (3) Control; (4) Interrupt Control; (5) Editing; and (6) 

Input/Output. 

All instructions are described in the following standard format: 

Title: 

Format: 

Function: 

Word Marks: 

Address 
Registers 
after 
Operation: 

Notes: 

Examples: 

The title de scribe s the instruction. It appear s in the left-hand 
margin of a page, along with the mnemonic operation code used 
in the Easycoder symbolic programming language and the octal 
value of the instruction's rnachine-language code. 

If an instruction is included in an optional feature, that feature 
nurnber accornpanie s the title. 

This is a tabular repre sentation of all formats which may be 
used when coding the instruction. 

The function of the instruction is described in terms of each 
format in which it can be coded. 

The effect of word marks with regard to data fields is specified. 

The contents of theaddre ss register s are indicated for each of 
the in struction I s fo r rna t s • 

This is additional information pertaining to the operation. 

Practical applications of the instruction in its various formats 
are described and illustrated as symbolic program entries. 

Formulas for calculating instruction execution times are presented in Appendix C. 

Table 8-1 lists the abbreviations and symbols used in the description of the instructions. 

These symbols used only with specific instructions are preceded by the title of the instruction 

to which they pertain. 

8-1 AG28 



Table 8-1. Symbology Used in Series 2000 Instruction Descriptions 

SYMBOL MEANING 

A A address of the instruction 

B B addre s s of the instruction 

N· 1 
Number of characters in the instruction 

Na Number of characters in the A field 

Nb Number of characters in the B field 

Nw Number of characters in the A or B field, whichever is smaller 

NXT Address of next sequential instruction 

JI Address of next instruction if a branch occurs 

Ap The previous setting of the A-address register (AAR) 

Bp The previous setting of the B -addre s s register (BAR) 

Divide 

Ndd Number of digits in the dividend 

Move and Translate 

N
ct 

Number of characters translated 

Move Item and Translate 

Nut Number of information units translated 

CSRp Previous contents of the change sequence register (CSR) 

NAu Number of six-bit character locations occupied by each A-item 
information unit (lor 2) 

NBu Number of six-bit character locations occupied by each B-item 
information unit (lor 2) 

Load Control Registers 

(A) Contents of the field spe,cified by the A-address. 

Table Lookup 

L The location in the table immediately to the left of the argument 
ta 

(or short field) that terminated the search. 

8-2 AG28 



ARITHMETIC OPERATIONS 

Series 2000 add operations (binary addition, decimal addition) treat the B-operand as 

the augend and the A-operand as the addend. The subtract operations (binary subtraction, 

decimal subtraction) treat the A-operand as the subtrahend and the B-operand as the minuend. 

The result of each operation is stored in the B-field. These elements are summarized in 

Table 8-2, where a character enclosed in parentheses indicates the contents of that field. 

Table 8-2. Series 2000 Add and Subtract Operations 

Addition Subtraction 

( B ) augend ( B ) minuend 

+ ( A ) addend - ( A ) subtrahend 
--- ---
( B ) sum ( B ) difference 

BINARY ADDITION 

The Binary Add instruction combines the corresponding bits of the augend and addend 

and produces a binary sum which is stored in the B-field. This process can be most readily 

analyzed on a column-by-column basis. For any column in the addition, three variables are 

significant to the sum: the augend digit, the addend digit, and the carry from the next lower­

order column. For any column, the result is fully expressed by a sum digit (1 or 0) and either 

a carry or no-carry to the next higher-order column. Table 8-3 lists all the possible com­

binations of these variables. 

Table 8-3. Binary Addition Table 

Previous Carry 0 0 0 0 1 1 1 1 

Augend 0 1 1 0 0 1 1 0 

Addend 0 1 0 1 0 1 0 1 

Sum 0 0 1 1 1 1 0 0 

Carry 0 1 0 0 0 1 1 1 

BINARY SUBTRACTION 

The Binary Subtract instruction performs, in effect, twos-complement arithmetic. 1 

When this instruction is executed, each six-bit character of the subtrahend is converted to its 

ones complement
2 

and added to the corresponding character in the minuend, adding from right 

to left. 

IThe twos co~plement of a binary number is formed by subtracting the number from a field of 
all one bits and adding one to the low-order digit of the difference. 

2The ones complement of a binary number is formed by subtracting the number from a field 
of all one bits. 

8-3 AG28 



To the addition of the low-order characters of the subtrahend and the m.inuend, a simulated 

carry is added. All subsequent characters are added with or without a carry, depending upon 

the re sult of the previous addition. 

The word mark associated with the B-field terminates the operation. If the length of the 

A-field equals that of the B-field, the binary subtraction process continues until the high-order 

B-field character has been combined with the high-order A-field character. 1£ the length of the 

A-field exceeds that of the B-field, the effect is as if there were a word mark in the A-field 

location corresponding to the high-order B-field location (i. e., the process still terminates at 

the B-field word mark). 1£ the length of the A-field is less than that of the B-field, zeros are 

inserted where the A-field terminates until the last B-field character is processed. Each zero 

is converted to its ones complement as above and then added to the corresponding B-field 

character. 

In the following example, locations 294 and 295 contain the value 73
10 

in 12-bit binary 

form, while locations 299 and 300 contain the binary equivalent of 87
10

• 

NOTE: Locations 294 and 299 contain word marks; the length of the A field 
therefore equals that of theB-field in this example. 

EASYCODER 
COOING FORM 

PROBLEM ______________________ PROGRAMMER ______ OATE _____ PAGE_OF_ 

CARD ~I~ LOCATION NUMBER 

I 213 415 6 7 8 

I : 

LOCATION -. 

CONTENTS-. 
(binary) 

OPERATION OPERANDS CODE 

1415 2021 6263 80 

las 2QS 3.¢¢ 

The six-bit character in location 295 is converted to its ones complement and added to 

the six-bit character in location 300 (see illustration below). Prior to this operation, a simu­

lated carry is generated in the adder. The result of the first addition is the binary equivalent 

of 14
10 

plus a carry. This carry remains in the adder and is added to the sum of the contents 

of locations 294 and 299, resulting in a binary zero plus another carry. This final carry 

remains in the adder and the operation terminates. An overflow condition does not exist since 

the carry remaining at the end of the operation is suppressed; consequently the next memory 

location (location 298) is not disturbed. The result of the entire Binary Subtract instruction is 

therefore 14
10

, the true differenc~ between 87 and 73. 

Table 8-3 indicates that, as with addition, the bits in each column of the ones-complement 

subtrahend and the minuend are combined. 

8-4 AG28 



CONT ENTS ... L-_o_o_O_O_O_l....L._O_O ... l 0_0_1--1_0_0_1_1_0_1--,,_0_1_1 0_11....,j1oo..o0_1_1_1_1_0 ___ 0_0_0_0_0_1 .... _0_10T"'1 ... .1_1-t 

converted to 
ones complement 

ADDER 

RESULT = 

Fir st Addition 

001001 001101 011011 

conve rted to 
ones compiement 

Simulated Carry 
in Adder 

001110--------------------~ 

(plus a carry) 

011110 000001 001110 

ADDER .... __ .,..._..,. ~:~:~ous 

RESULT = oooooo------------------~ 

(plus a carry which 
is suppres sed) 

Second Addition 

The result of the operation (1410) is stored in the B field as shown below. 

7310 

8-5 AG28 



DECIMAL ADDITION 

The Add instruction performs either a true add or a complement add, depending upon the 

algebraic signs of the operands. The sign of an operand is determined by the combination of 

zone bits in the units position of that field. The four possible zone bit configurations and the 

signs they repre sent are shown in Table 8 -4. 

Table 8 -4. Algebraic Signs in Decimal Addition 

ZONE BITS SIGN 
ZONE BITS 

SIGN 
B-Bit A-Bit B-Bit A-Bit 

+ 0 0 

1 1 1 0 

0 1 

True Add 

A true add is performed if the signs of the A and B fields are alike. The result of the 

addition is stored in the B field with the same zone bit configuration that was originally in the B 

field (see Figure 8 - 1). Zone bits in all B -field locations (except for ·the units position) are set to 

zeros. A-field zone bits (except for the units position) are ignored. 

Complement Add 

(+A) + (+B) = +R 

A OPERAND B OPERAND 
+170 

+244 r.;;;;1<:~(::~/;;·;~;;··;···===========.;.;;;··:;=:/:;=;·:::·={~>~ + 244 
+414 = RESULT 

(-A) + (-B) =-R 
A OPERAND B OPERAND 

. -444 
- 077 l):>···:;:::::;:);~ - 077 

-521 = RESULT 

Figure 8-1. True Add Examples 

If the operand signs are not alike, the instruction performs a complement add: the A 

operand is converted to its tens complement l <lnd added to the B operand. The machine automa­

tically initiates a test to determine whether a carry was generated by the high-order addition. 

I The tens complement of a decimal number is formed by subtracting the number from a field of 
all nine s and adding one to the low-order digit of the difference. 

8-6 AG28 



The presence of a carry indicates that the result in the B-field is a true answer, and the 

operation is terminated with the normalized sign of the B-field as the sign of the result (see 

Figure 8_2).1 B-field zone bits (except for the units position) are set to O's. 

The absence of a carry indicates that the A-operand was algebraically larger than the 

B-operand and that the result is stored in its tens-complement form. A recomplement cycle is 

performed automatically to convert the result of its true form. The sign of the re sult is changed 

during thi s recomplement cycle. Figure 8-2 illustrate s complement add operations with and 

without recomplementation. 

(+A) + (-B) = -R 
A OPERAND B OPERAND 

convert to -0090 
+0078::/:::;:: ::}»I tens complement I>::: :<.::::::::::::::<::~ -9922 

carry indicates true sum ~ 
(recomplementing is 
unnecessary) 

(+A) + (-B) = +R 

1 -0012 = RESULT .. 
sign of B operand 

A OPERAND B OPERAND 
convert to -0090 

+0178 k{::' :'::;<:::::{}:I tens complement I/;:::::}}::::::::::::::::::::::::::, -9822 

no carry indicates sum is stored 
in its tens-complement form; 
recomplementing is necessary 

~ 0 -9912 

I 
recornplernent 
and change sign 

~ 
+0088 = TRUE RESULT 

Figure 8-2. Complement Add Example s 

DECIMAL SUBTRACTION 

The Subtract instruction is analogous to the Add instruction with the exception that before 

the operands are combined, the sign of the A-operand is changed. Thus, if the initial sign of 

the A-operand is equal to that of the B-operand, the operands are combined by a complement 

add. If, on the other hand, the initial sign of the A-operand is not equal to that of the B-operand, 

the operands are combined by a true add. 

A summary of decimal arithmetic operations is presented in Table 8-5. 

lNormalized signs are expressed by the following zone bit configurations: plus = 01, minus = 10. 

8-7 AG28 



Table 8-5. Decimal Arithmetic Sign Conventions 

OPERATION A-FIELD B-FIELD TYPE OF ADD SIGN OF RESULT 
SIGN SIGN 

+ True + (Bit configuration of B) 

+ Complement .Normalized sign of the -
ADD 

operand of greater value 

+ Complement 
(- = 10, + = 01) 

- - True -
- True -

+ + Complement Normalized sign of the 

SUBTRACT operand of greater value 

Complement 
(- = 10, + = 01) -

- + True + (Bit configuration of B) 

INDICATORS 

Two indicators are set at the completion of every dec~rnal add and subtract operation: 

the overflow indicator and the zero balance indicator. If a result is greater than the size of the 

B-field, the overflow indicator is turned on; if such a carry is not generated, the indicator is 
. 1 2 

unchanged.' The zero balance indicator signifie s either a zero or a nonzero sum. When a 

decimal operation produces a result equal to 0 (regardless of sign), the zero balance indicator 

is turned on; when the result of the operation does not equal 0, the indicator is turned off (the 

indicator is always turned on at the beginning of execution of a decimal add or subtract instruction). 

The se indicator s are also set by decimal multiply and divide operations. The overflow 

indicator is turned on when a Decimal Divide instruction is performed in which the divisor is 

equal to O. The zero balance indicator is turned on if the product of a decimal multiply opera­

tion is equal to O. 

The settings of these indicators can be tested by a Branch on Condition Test instruction. 

This instruction automatically turns off the overflow indicator. 2 The zero balance indicator is 

not changed by the branch instruction to te st it, but is changed only by the next decimal 

arithm.etic instruction. 

MULTIPLICA TION 

The Multiply instruction causes the signed decimal integer in the A field (the multiplicand) 

to be multiplied by the signed decimal integer (the multiplier) which is stored in the leftmost 

locations of the B field. The signed product is stored, right-justified, in the B field. 

lOnly a "true add" operation can turn the overflow indicator on (see Table 8-5). 

2The overflow indicator is turned off only when tested by the BCT instruction. 

8-8 AG28 



The B field must be large enough to insure an adequate number of locations for the develop­

ment and storage of the product. Its length is therefore defined as the number of locations in the 

multiplier, plus the number of locations in the multiplicand, plus one (see Figure 8-3). 

OPERATION: 

aaaa 
X bbb 

rFI::~~ 
LOCATION -. A .. 3A..,2A-l A 

CONTENTS -. 0 a a a 

MULTIPLICAND 
(4 locations) 

rB FIELD (4+3+1 = 8 locations)~ 

B ADDRESpl 
t_ 

eBb b 

MULTIPLIER 
(3 locations) 

Figure 8-3. A- and B -Fields in Multiply Operation 

Word marks are required in the leftmost locations of the multiplicand and the multiplier. 

All other locations in the B field must be clear of word marks. As shown in Figure 8-3, the 

rightmost location of the multiplier is defined as B - Na - 1, where B is the B address and Na 

is the number of locations in the A field. 

The zone bits in the units positions of the multiplier and the multiplicand indicate the signs 

of the operands. The signs of these factors indicate the sign of the pr oduct according to the 

algebraic sign conventions shown in Table 8-6. The sign of the product is expressed in its 

normalized form (minus = 10, plus = 01). 

Table 8-6. Multiply Sign Conventions 

Sign of Multiplicand + - + -
Sign of Multiplier + - - + 

Sign of Product + + - -

Consider the following Decirn.al Multiply instruction. 

EASYCODER 
COOING FORM 

PROBLEM ______________________ PROGRAMMER ______ OATE _____ PAGE_OF_ 

CARD ii LOCATION 
OPERATION OPERANDS NUMBER eOOE 

1 213 415 6 7 8 1415 2021 6263 

I : At 5Q~ 7.,fA 

Location 500 is the rightrn.ost location of a four-character field. Location 700 is the 

rightrn.ost location of an eight-character field. Location 695 (i. e., 700 - 4 - 1) is the right­

rn.o st location of the rn.ultiplier. 

80 

8-9 AG28 



LOCATION ~ 

CONTENTS .. 

A ADDRESS 
~ 

~ 

MULTIPLIER 

B ADDRESS 
~ 

The data in the A-field is multiplied by the data in the field whose rightmost location is 

695, and the product is stored, right-justified, in the B-field. All B-field zone bits are cleared 

to 0 I S (except in the units position, which contains the sign of the product). At the end of the 

operation, the multiplier is no longer present in the leftmost positions of the B-field, since all 

B-field locations to the left of the most significant digit of the product are set to O's. Thus, 

the multiplier should be pre served in another storage field if it is to be used more than once. 

The result of the multiply operation is shown below. 

LOCATION-.. 

CONTENTS--. 

DIVISION 

A FIELD IS 
NOT DISTURBED 

PRODUCT IS STORED IN B FIELD, RIGHT­
JUSTIFIED. ALL INSIGNIFICANT HIGH­
ORDER CHARACTERS ARE SET TO ZEROS 

-----------------~------------------PRODUCT 

The Divide instruction causes the signed decimal integer in the A-field (the divisor) to be 

divided into the signed decimal ~nteger whose leftmost location is the B-address of the instruc­

tion (the dividend). The quotient is developed and stored in the leftmost locations of the B-field, 

and the remainder is stored in the rightmost locations of the B-field. 1 To insure an adequate 

number of storage locations for the development of the quotient, the length of the B-field is 

determined by adding Ito the sum of the number of character locations in the divisor and 

dividend (see Figure 8-4). 

The leftmost location of the dividend is defined by the B-address of the Divide instruction. 

The rightmost location F. e., the units position) is the first character location to the right of 

the B-address to have one of its zone bits not equal to O. As shown in Figure 8-4, all B-field 

locations to the left of the dividend must contain 0 I S prior to the divide operation. 

A word mark is required in the leftmost location of the divisor. The dividend mayor may 

not contain a word mark. 

I Note that the B "field" in a divide operation does not define the B-operand but is a group of 
storage locations within which the B-operand (the dividend) is contained. 

8-10 AG28 



OPERATION: 

xxx)yyyy 

BEFORE EXECUTION 

~A FIELD~ r B FIELD (3+4+1=8 locationS)1 

A ADDREjS B ADDRESS 

-' LOCATION ... A;"Z A~l A B ... 4 B'-l B·2 B-1 B Btl B+2 B+3 

CONTENTS-.. @ x x 0 0 0 0 y y y y 
. ... 

DIVISOR DIVIDEND 
(3 locations) (4 locations) 

AFTER EXECUTION 
B-Na +N dd-2 

B-Na+Ndd 

• ~- B+Ndd-l 

LOCATION --- A~Z A~l A B"'4 B"l B"'2. BiM:l B B+l BfZ B+3 

CONTENTS ... ® x x q q q q 0 r r r 
, . . 

QUOTIENT REMAINDER 

Figure 8-4. Factor Locations in Divide Operation 

The signs of the operands are indicated by the zone bits in the units positions of the 

divisor and dividend. Algebraic sign control is used to determine the sign of the quotient (see 

Tabl~ 8-7). The sign of the quotient is expressed in its normalized form (minus = 10, plus = 01). 

The sign of the remainder is always the same as that of the dividend (in value if not in bit con­

figuration); its form is normalized if the sign of the dividend is normalized •. 

Table 8-7. Divide Sign Conventions 

Sign of Divisor + + - -
Sign of Dividend + - + -
Sign of Remainder + - + -
Sign of Quotien t + - - + 

Since the pre sence of a signed digit in the dividend specifie sits rightmo st location, the 

units position of the dividend must contain a normalized sign and the zone bits of all other 

dividend characters must be O. 

8-11 AG28 



When division is -completed, the signed decimal quotient is stored in the leftmost locations 

of the B-field; the units position of the quotient is in location B - N + N - 2, where N is the 
. - a dd a 

number of locations in the A-field and Ndd is the number of locations in the dividend. The 

signed decimal remainder appears in locations B+Ndd-l, B+N
dd

-2, etc. through location 

B-Na +Ndd • The character location separating the quotient and the remainder is cleared to 0 

(see Figure 8-4). 

In the following example, the divisor is a two-character field whose rightmost location is 

location 450 and the dividend is a four-character integer whose leftmost location is location 950. 

EASYCODER 
COOING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 
CARD Illi LOCATION 

OPERATION 
OPERANDS NUMBER CODE 

1 213 4 5 6 7 8 1415 2021 1 1 62 63 80 
I : :~ 4S(2$,Q,50 
I 

I 

-l I 

The contents (+23) of the A-field are divided into the contents of the field (+7347) whose 

leftmost location is 950. The rightmost boundary of the dividend is determined by the first 

character location (location 953) to the right of location B whose zone bits are nonzero. This 

units position of the dividend therefore contains the sign of the dividend. 

~FIELD1 

IA ADDR~S I 

----DIVISOR = 
2 CHARACTER 
LOCATIONS 

B FIELD = 1+2+4 = 7 1 
CHARACTER LOCATIONS 

B ADDRESS 

----------DIVIDEND = 4 
CHARACTER LOCATIONS 

The quotient (+319) is stored in the leftmost character locations of the B"field. The units 

position of the quotient (location 950) is equal to B-Na +Ndd -2, or 950-2+4-2. The remainder 

is ·stored in the rightmost locations of the B-field; its leftmost location (location 952) is equal to 

B-Na+Ndd, or 950-2+4; its rightmost location (location 953) is equal to B+Ndd-l, or 950+4-1. 

The result of the operation is shown below. 

FINAL SETTING OF AAR FINAL SETTING OF BAR 

8-12 

~ 

QUOTIENT 

AG28 



ARITHMETIC 'I 

8-15 • ADD 

8-16 • SUBTRACT 

8-18 • BINARY ADD 

8-19 • BINARY SUBTRACT 

8-20 • ZERO AND ADD 

8-22 • ZERO AND SUBTRACT 

8-23 • MULTIPLY 

8-25 • DIVIDE 

8-13 AG28 





FORMAT OP CODE A ADDRESS B ADDRESS 

o. -
b. -
c. -FUNCTION 

Format a: The signed decimal data in the A field is added algebraically to the signed decimal 
data in the B field. The result is stored in the B field. 

Format b: The signed decimal data in the A field is added to itself. The result is stored in the 
A field. 

Format c: The signed decimal data specified by the contents of the A-address register (AAR) is 
added algebraically to the signed decimal data specified by th~ contents of the B-ad­
dress register (BAR). The result is stored in the B field. 

WORD MARKS 

ForInat a: The B operand Inust have a defining word mark. It is this word Inark that terIninates 
the operation. The A operand Inust have a word Inark only if it is shorter than the B 
operand. In this case, transfer of data from the A operand stops after the A-operand 
word mark is sensed. If the A field is longer than the B field, the high-order charac­
ters of the A field that exceed the field length defined by the B-operand word mark are 
not proces sed. 

ForInat b: The A operand Inust have a defining word mark. 

ForInat c: The B operand Inust have a defining word mark. The A operand Inust have a word 
mark only if it is shorter than the B operand. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

ForInat a: NXT A-Nw B-Nb 

ForInat b: NXT A-Na A-Na 

ForInat c: NXT Ap-Nw Bp-Nb 

NOTES 

1. The algebraic sign control for the add operation is shown below. 

A-FIELD SIGN + - + -
B-FIELD SIGN + - - + 
TYPE OF ADD True True Comp Comp 

SIGN OF RESULT 
Normalized sign of A or B 

Sign of B field field, whichever is greater 
(- = 10, + = 01) 

8-15 AG28 



2. All zone bits in the result field are set to 0' s except for the units position 
(i. e., the sign of the re sult). 

3. This instruction treats both operands as signed decimal data. It will pro­
duce ambiguous re suits if used to manipulate nondecimal data. Particularly, 
if the four numeric bits of any character have a binary numeric value of 12 
or more (octal 14, 15, 16, and 17), the character is treated as if it were a 
0, though its zone bits are retained. The two remaining cases (octal 12 
and 13) are unspecified. 

4. The overflow and zero balance indicators are set by an add operation. 

5. When the central processor is in the "S" mode of processing, the zone bits 
are not changed in any character other than the units position of the B-field. 

EXAMPLE 

Add Bond Deductions to Total Deductions. 

Description 

Bond Deductions 

Total Deductions 

~ 
BDED 

TDED 

EASYCODER 
COOING FORM 

PROBLEM ______________________ PROGRAMMER ______ OATE _. ___ PAGE_OF __ 

CARD I~I~ LOCATION 
OPERATION OPERANDS NUMBER I~ ~ CODE 

1 213 415 6 7 8 1415 2021 6263 

I : A BDED TDED 

5 SUBTRACT 378 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. -
b. -
C. -FUNCTION 

Format a: The signed decimal data in the A-field is subtracted algebraically from the signed 
decimal data in the B-field. The result is sto.red in the B-field. 

Format b: The signed decimal data in the A .. field is subtracted from itself. The result is 
stored in the A-field. If the A-field sign is minus, the result is· a minus zero. If 
the A-field sign is plus, the result is a plus zero (with normalized sign). 

Format c: The signed decimal data specified by the contents of the A-address register (AAR) 
is subtracted algebraically from the signed decimal data specified by the contents 
of theB-address register (BAR). The result is stored in the B-field. 

80 

8-16 AG28 



WORD MARKS 

Format a: The B-operand must have a defining word mark. The A-operand must have a word 
mark only if it is shorter than the B-operand. In this case, transmission of data 
from the A-operand stops after the A-operand word mark is sensed. If the A-field 
is longer than the B-field, the high-order characters of the A field that exceed the 
field length defined by the B-operand word mark are not processed. 

Format b: The A-operand must have a defining word mark. 

Format c: The B-operand must have a defining word mark. The A-operand must have a word 
mark only if it is shorter than the B-operand. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-Nw B-Nb 

Format b: NXT A-Na A-Na 

Format c: NXT Ap-Nw B -Nb p 

NOTES 

1. Algebraic sign control for the subtract operation is sumtnarized below. 

A-FIELD SIGN + - + -
B-FIELD SIGN + - - + 
TYPE OF ADD Comp COtnp True True 

Normalized sign of Sign of B field 

SIGN OF RESULT 
A or B field, which-
ever is greater 
(-=10, +=01) 

2. All zone bits in the result field are set to D's except for the units position 
(i. e., the sign of the result). 

3. This instruction treats both operands as signed decim.al data. It will pro­
duce am.biguous results if used to m.anipulate nondecim.al data. Particularly, 
if the four num.eric bits of any character have a binary num.eric value of 12 
or m.ore (octal 14, 15, 16, and 17), the character is treated as if it were a 
0, though its zone bits are retained. The two rem.aining cases (octal 12 and 
13) are unspecified. 

4. The overflow and zero balance indicators are set by a subtract operation. 

5. When the central processor is in the liS" mode of processing, the zone bits are 
not changed in any character other than the units position of the B-field. 

EXAMPLE 

Subtract the contents of the five-character fields starting at location 940, 945, 
950, and 955 from. the contents of the eight-character fields starting at loca­
tions 648, 656, 664, and 672. 

8-17 AG28 



EASYCODER 
COOING FORM 

PROBLEM ______________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD It ~ LOCATION 
OPERATION OPERANDS NUMBER '~ ~ CODE 

1 2-'3 415 41 7 8 1415 2021 1 62 63 

I : S 955 .0.7:2 
I 

I Is. 
j I S 
I I S 

1 BA I BINARY ADD 1348 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. - -
b. -
C. -

FUNCTION 

Format a: The data in the A-field is added in binary fashion, character by character, to the 
data in the B-field. The result is stored in the B field. 

Format b: The data in the A field is a:dded, character bycharacter, to itself. The result is 
stored in the A field. 

80 

Format c: The data specified by 4;he contents of the A-address register (AAR) is added, char­
acter by character, to the data specified by the contents of the B-address register 
(BAR). The result is stored in the B field. 

WORD MARKS 

Format a: The B operand must have a defining word mark. It is this word mark that termi­
nates the operation. The A operand must have a word mark only if it is shorter 
than the B operand. In this case the transmission of data from the A field stops 
after the A-operand word mark i.s sensed. If the A field is longer than the B field, 
the high-order characters of the A field that exceed the field length defined by the 
B-operand word mark are not processed. 

Format b: The A operand must have a defining word mark. 

Format c: The B operand must have a defining word mark. The A operand must have a word 
mark only if it is shorter than the B operand. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-Nw B-Nb 

Format b: NXT A-Na A-Na 

Format c: NXT Ap-Nw B -Nb p 

8-18 AG28 



NOTES 

1. The overflow and zero balance indicator s are not set by a binary add 
operatio~. 

2. Form.at b of the BA instruction has the effect of doubling the value stored 
in the A field; i. e., it shifts the contents of the A-field one bit position 
to the left. 

EXAMPLE 

Modify the B-address of the instruction tagged B7 by the value stored in 
the location tagged TEN (assuming the use of the two-character addressing 

. mode). 

EASYCODER 
CODING FORM 

PROBLEM ______________________ PROGRAMMER ______ DATE _. ___ Pl\GE _OF_ 

CARD I~ I~ LOCATION 
OPERATION OPERANDS NUMBER ~~ CODE 

1 213 41 ~ 6 7 8 141!1 2021 62 63 10 

I : B,A TEN 87+4 

BS BINARY SUBTRACT 1 358 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. -
b. -
c. -

FUNCTION 

Format a: Each six-bit character in the A-field is converted to its ones complement and added, 
in binary fashion, character-by-character, to the data in the B-field. A simulated 
carry is added with the character s in the units po sition. The re suit is stored in the 
B-field. 

Format b: Each six-bit character in the A-field is converted to its ones complement and added, 
character-by-character, to itself. A simulated carry is added with the characters 
in the units position. In effect, this format of the binary subtract instruction 
replaces the contents of the A-field with 0 1 s. 

Format c: Each six-bit character specified by the contents of the A-address register (AAR) is 
converted to its ones complement and added, character-by-character, to the data 
specified by the contents of the B-address register (BAR). A simulated carry is 
added with the character s in the units position. The re suit is stored in the B-field. 

WORD MARKS 

Format a: The word mark associated with the B-operand terminates the operation. The A­
operand must have a word mark only if it is shorter than the B-operand. In this 
case, transmission of data from the A field stops after the A-operand word mark 
is sensed. If the A-operand is longer than the B-operand, the characters of the 
A-operand that exceed the field length defined by the B-operand word mark are not 
processed. 

8-19 AG28 



Format b: The A-operand must have a defining word mark. 

Format c: The B-operand must have a defining word mark. The A-operand must have a word 
mark only if it is shorter than the B-operand. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-N B-Nb w 

Format b: NXT A-Na A-N a 

Format c: NXT A p-Nw Bp-Nb 

NOTES 

1. The overflow and zero balance indicator s are not set by a binary subtract 
operation. 

2. Formats a. and c. can produce negative results. A negative result is stored 
in the B-field in its twos-complement form. In this case, the absolute 
numerical value of the re sult can be obtained by recomplementing the re sult 
stored in the B-field and adding 1. A negative result is detected only if the 
programmer provide s appropriate coding to ascertain whether or not 
operands will produce such a result. 

EXAMPLE 

Zero the field starting at location TOTAL. 

EASYCODER 
COOING FORM 

PROBLEM ______________________ PROGRAMMER ______ OATE _0 ___ PAGE_OF_ 

CARD 1~ 
NUMBER I~ ~ 

1 2T3 4 5 6 7 8 

I : 

LOCATION 
OPERATION OPERANDS CODE 

1415 2021 6263 

~s TOTAL. 

NOTE: Zone bits as well as numeric bits are cleared to. 0 by this 
operation. 

ZA 1 ZERO AND ADD 11681 

FORMAT 

OP CODE A ADDRESS 8 ADDRESS 

o. -
b. -
c. -

8-20 

80 

AG28 



FUNCTION 

Format a: The data in the A-field is transferred, character-by-character, right to left, to the 
B-field. Zone bits in the B-field are set to 0 in all positions except the units posi­
tion. The sign of the result field is based on the sign of the A-field (see note 1). 
If a high-order character of the A-field is transferred before the operation 
terminate s, the remaining B-field character s are cleared to 0' s. 

Format b: The data in the A-field is converted to an all-numeric format; i. e., the zone bits 
of all positions in the field except the units position are set to O. The result remains 
in the A-field. The sign of the A-field is not changed by the operation (see note 1). 

Format c: The data specified by the contents of the A-address register (AAR) is transferred 
to the field specified by the contents of the B-address register (BAR). Zone bits in 
the B-field are set to 0 in all positions except the units position. The sign of the 
result field is based on the sign of the A-field (see note 1). If the high-order charac­
ter of the A-field is transferred before the operation terminates, the remaining 
B -field character s are cleared to 0' s. 

WORD MARKS 

Format a: The B-operand must have a defining word mark. The A-operand must have a word 
mark only if it is shorter than the B-operand. In this case, transfer of data from 
the A-operand stops after the A-operand word mark is sensed. If the A-field is 
longer than the B-field, the high-order characters of the A-field that exceed the 
field length defined by the B-operand word mark are not processed. 

Format b: The A-operand must have a defining word mark. 

Format c: The B-operand must have a defining word mark. The A-operand must have a word 
mark only if it is shorter than the B-operand. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-Nw B-Nb 

Format b: NXT A-N A-N a a 

Format c: NXT A -N 
P w Bp-Nb 

NOTES 

1. A plus sign in the units position of the result field is always expressed in 
its normalized form (01). 

2. B-field punctuation is not changed by this operation. 

3. This instruction does not set the overflow and zero balance indicators. 

4. When the central processor is in the "S" mode of processing and the four 
numeric bits of any character have a value of 148 or more, the character 
is treated as if it were a O. The zero balance indicator is set or reset 
accordingly. 

EXAMPLE 

Transfer the contents of the field tagged ORATE to the field tagged NRATE, setting 
all zone bits in NRATE (except in the units position) to 0' s. 

8-21 AG28 



EASYCODER 
CODING FORM 

PROBLEM -----________ . _________ PROGRAMMER ______ OATE _. ___ PAGE _OF_ 

CARD ~ i~~ LOCATION 
1 OPERATION 

OPERANDS NUMBER n l i CODE 

2., 4. ~ 6 71e t4.1~ 202. 6263 80 

I I ! :Z.A ORATE" NRAT,s.. I 
I Ii! 

.-.J... I 

i I ----'--~ 

I i i : I 
I I I I 

~-~~ I 
: I I I 

zs I ZERO AND SUBTRACT 178 

FORMAT 

OP CODE A ADDRESS BADDRESS 

o. -
b. -
c. -

FUNCTION 

Format a: The data in the A-field is transferred to the B-field and the sign is changed. Zone 
bits in the B-field are set to 0' s in all positions except the units position. If the 
high-order character of the A-field is transferred before the operation terminates, 
the remaining B-field characters are cleared to 0' s. 

Format b: The data in the A-field is converted to an all-numeric format; i. e., the zone bits 
of all po sitions in the field except the units position are set to O. The re suit 
remains in the A-field with its sign reversed. 

Format c: The data specified by the contents of the A-address register (AAR) is transferred 
with the opposite sign to the field specified by the contents of the B-address register 
(BAR). Zone bits in the B-field are set to 0 in all positions except the units position. 
If the high-order character of the A-field is transferred before the operation 
terminate s, the remaining B-field characters are cleared to 0' s. 

WORD MARKS 

Format a: The B-operand must have a defining word mark. The A-operand must have a word 
mark only if it is shorter than the B-operand. In this case, transfer of data from 
the A-operand stops after the A-operand word mark is sensed. If the A-field is 
longer than the B':'field, the high-order characters of the A-field that exceed the 
field length defined by the B-operand word mark are not processed. 

Format b: The A-operand must have a defining word mark. 

Format c: The B-operand must have a defining word mark. The A-operand must have a word 
mark only if it is shorter than the B-operand. 

8-22 AG28 



ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-N w B-Nb 

Format b: NXT A-Na A-Na 

Format c: NXT Ap-Nw Bp-Nb 

NOTES 

1. A plus sign in the units position of the result field is always expressed in its 
normalized form (01) •. 

2. B-field punctuation is not changed by this operation. 

3. This instruction does not set the overflow and zero balance indicators. 

4. When the central proce s sor is in the "S" mode and the four numeric bits of any 
character have a value of 148 or more, the character is treated as if it were a 
O. The zero balance indicator is set or reset accordingly. 

EXAMPLE 

Change the sign of the data in the field tagged PROFIT. 

EASYCODER 
COOING FORM 

PROBLEM ______________________ PROGRAMMER ______ OATE _. ___ PAGE_OF_ 

CARD ~I~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

1 213 41 $ 6 7 8 141$ 2021 62 63 80 

I : ZS PR.OF IT 
I 

I 

i I 
I. I 

M I MULTIPLY 1268 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. _ 

b. _ 

c. _ 

FUNCTION 

Format a: The signed decimal integer in the A-field is multiplied by the signed decimal integer 
in the leftmost locations of the B-field. The product is stored, right-justified, in 
the B-field. 

Format b: The signed decimal integer in the A-field is multiplied by the signed decimal integer 
in the leftmost locations of the field specified by the contents of the B-address 
register (BAR). The product is stored, right-justified, in the B-field. 

8-23 AG28 



Format c: The signed decimal integer in the field specified by the contents of the A-address 
register (AAR) is multiplied by the signed decimal integer in the leftmost locations 
of the field specified by the contents of BAR. The product is stored, right-justified, 
in the B-field. 

WORD MARKS 

Formats a, b, and c: 

Word marks are required in the high-order locations of both the A- and B-fields. 
All other B-field locations must be clear of word marks. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-Na B-Nb 

Format b: NXT A-Na Bp-Nb 

Format c: NXT Ap-Na Bp-Nb 

NOTES 

1. The A-address of a Decimal Multiply in~truction specifies the units position 
of the multiplicand. The B-address specifies a location which is Na +1 
locations to the right of the multiplier, since the B-field must contain the 
multiplier plus enough additional locations (to the right of the multiplier) 
to provide for the development of the product. Thus, the total number of 
character locations in the B-field must be one greater than the sum of the 
numbe r of character s in the multiplicand and the multiplier. For example, 
in a multiplication operation involving a three-character multiplier and a 
five-character multiplicand, nine positions (5+3+1) must be provided in the 
B-field. 

2. Algebraic sign control for the multiply operation is shown below. The sign 
of the product is expressed in its normalized form (-=10, +=01). 

Sign of Multiplicand + - + -
Sign of Multiplier + - - + 
Sign of Product + + - -

3. The product is stored (right-justified) in the entire B-field, with the unused 
high-order positions of the B-field cleared to 0 1 s. As a re suIt of the opera­
tion, the multiplier (initially stored in the B-field) is destroyed. Therefore, 
if the multiplier is to be used more than once, it should be preserved in 
another storage field. 

4. The zero balance indicator is turned on if the product of the multiply 
operation is equal to 0; otherwise, the indicator is turned off by the 
operation. 

5. This instruction treats both operands as signed decimal data. It will produce 
ambiguous results if used to manipulate nondecimal data. Particularly, if 
the four numeric bits of a character have a binary numeric value of 12 or 
more (octal 14, IS, 16, or 17), the character is treated as if it were a O. 
The two remaining case s (octal 12 and 13) are unspecified. 

6. If the A- and B-operands overlap, then the results are unspecified. 

8-24 AG28 



EXAMPLE 

Multiply the five-character field tagged CAND by the three-character field whose 
righttnost character location is six (5+1) less than the location tagged PROD. 
Store the re sult, right-justified, in PROD. 

EASYCODER 
CODING FORM 

PROBLEM _____________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD I~I~ LOCATION 
OPERATION OPERANDS NUMBER I~ ~ CODE 

I 213 "! 5 6 7 8 1415 2021 I _l 6263 10 

I : ~ CAND. PROD 

DI DIVIDE 12781 

FORMAT 

OP CODE A ADDRESS 8 ADDRESS 

o. -
b. -
c. -

FUNCTION 

Fortnat a: The signed decitnal integer whose lefttnost location is B is divided by the signed 
decitnal integer in the A-field. The quotient is stored in the lefttnost locations of 
the B-field; the retnainder is stored in the righttnost locations of the B-field. 

Fortnat b: The signed decitnal integer whose leftm.ost location is specified by the contents of 
the B-address register (BAR) is divided by the signed decim.al integer in the A-field. 
The quotient is stored in the lefttnost locations of the B-field; the retnainder is 
stored in the righttnost locations of the B-field. 

Fortnat c: The signed decitnal integer whose lefttnost location is specified by the contents of 
the B-address register (BAR) is divided by the signed decimal integer in the field 
specified by the contents of the A-address register (AAR). The quotient is stored 
in the leftmost locations of the B-field; the remainder is stored in the rightmost 
locations of the B-field. 

WORD MARKS 

Formats a, b, and c: 

The A-operand (the divisor) must contain a word mark. The B-field may contain 
a word mark. 

ADDRESS REGISTERS AFTER OPERATION (WHEN DIVISOR IS NOT EQUAL TO ZERO) 

When the divisor is equal to 0, the contents of the address registers are 
unspecified (see note 1). 

8-25 AG28 



NOTES 

1. If the divisor is equal to plus or minus zero, the overflow indicator is turned on, 
division is not performed, and no memory locations are changed. 

2. The length of the B-field is determined by adding 1 to the sum of the number of 
character locations in the divisor and the dividend (B-field length = 1 +length of 
divisor + length of dividend). 

3. The A-field (divisor) can be signed or unsigned; if it is unsigned, the divisor is 
assumed to be positive. 

4. The dividend must contain a normalized sign (-=10, +=01) in the units position. 
The zone bits of all other characters in the dividend must be 0' s. The proper 
signing of the dividend is therefore insured if the dividend is moved into the 
B-field by a Zero and Add instruction. 

5. All high-order locations of the B-field which are not occupied by the dividend 
must contain 0' s when division begins. These 0' s can be automatically inserted 
if the Zero and Add instruction is used to move the dividend into the B-field as 
mentioned above. 

6. The sign of the quotient follows algebraic sign rules as shown below. The sign 
of the remainder is the original sign of the dividend. 

Sign of divisor + + - -
Sign of dividend + - + -
Sign of remainder + - + -
Sign of quotient + - - + 

7. This instruction treats both operands as signed decimal data. It will produce 
ambiguous re suIts if used to manipulate nondecimal data. Particularly, if the 
four numeric bits of a character have a binary numeric value of 12 or more 
(octal 14, 15, 16, or 17), the character is treated as if it were a O. The two 
remaining case s (octal 12 and 13) are unspecified. 

8. If the A- and B-operands overlap, then the results are unspecified. 

EXAMPLE 

I 

Divide the four-character integer whose leftmost location is location 1000 by the 
three-character field whose rightmost location is location 500. Store the quotient 
in the leftmost locations of the field at 1000, and store the remainder in the right­
most locations of this field. 

N (number of characters in divisor) = 3 Ndd (number of characters in dividend) = 4 
a 1 

B (B address) = 1000 

Units position of quotient (B-N
a 

+N
dd

-2) = 1000-3+4-2- = location 999 

Units po sition of remainder (B+N dd -1) = 1000+4-1 = location 1003 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ OATE _____ PAGE_OF_ 

CARD Ii a LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

I 213 415 6 7 8 1415 2021 6263 110 

I : 10 500.1000 

Note that the B address is merely the leftmost location of the dividend, which is located in turn 
in a field large enough to contain the quotient and remainder. 

8-26 AG28 



~ .. '.'.' .... '.:.;.' .. ': .. ' .. ::".'.' .. ;.'.i .. '.' .. ~ ... '.~.'.;.' ... '.".".;' .. '.'.'.' ... ".'.' .. ".:'.'.~: .... :.::'.:.; ........ : .... : ...... ~ .. ' ... ; ..... :.:.; ... ' .......... ' .......... : ..... ':: .. ~~ ... ;.: .. . ::::t.OGIC ;:" 
,:::,.;" :.;,":.<.,;,:.::,::"."::::",,:; .. :.::: ........ "'~ ",:., ::: 

8-28 • EXTRACT 

8-29 • HALF ADD 

8-30 • SUBSTITUTE 

8-32 • COMPARE 

8-34 • BRANCH 

8-35 • BRANCH ON CONDITION TEST 

8-39 • BRANCH ON CHARACTER CONDITION 

8-42 • BRANCH IF CHARACTER EQUAL 

8-44 • BRANCH ON BIT EQUAL 

8-27 AG28 



FORMAT 

EXTRACT 
(Logical Product) 

OP CODE 

a. _ 

b. _ 

c. _ 

FUNCTION 

A ADDRESS B ADDRESS 

Format a: The data in the A field is combined bit-by-bit with the data in the B field, according 
to the following rules. The result is stored in the B field. 

BIT IN BIT IN BIT IN 
A FIELD B FIELD RESULT FIELD 

1 1 1 

1 0 0 

0 1 0 

0 0 0 

Format b: The data in the A field is combined bit-by-bit with the data specified by the con­
tents of the B -address register (BAR), according to the rules stated above. The 
re suIt is stored in the B field. 

Format c: The data specified by the contents of the A-address register (AAR) is combined 
bit- by-bit with the data specified by the contents of BAR, according to the rules 
stated above. The result is stored in the B field. 

WORD MARKS 

Formats a, b, and c: 

A word mark is required for the shorter of the two operands. The operation 
terminates when thi"s word mark is sensed. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-Nw B-Nw 

Format b: NXT A-Nw B -N P w 

Format c: NXT A -N p w B -N p w 

8-28 AG28 



EXAMPLE 

PROB EM L 

Remove all zone bits in the field tagged BASE by combining the contents of BASE 
with the contents of the field tagged CON. Each character in CON must have the 
following format: 

Bit position 
Contents 

BA8421 
001111 

EASYCODER 
CODING FORM 

PROGRAMMER DATE --~ PAGE OF 

CARD I~I~ LOCATION 
OPERATION OPERANDS NUMBER I~ ~ CODE 

1 213 41 ~ 6 7 8 14 I~ 2021 62 63 

I 1 EXT CON. BASE 
I I 

I HALF ADD I 30 
HA (Exclusive OR)I 8 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. - -
b. -
C. -

FUNCTION 

Format a: The data in the A field is combined bit-by-bit with the data in the B field, accord­
ing to the following rules. The result is stored in the B field. 

BIT IN BIT IN BIT IN 

A FIELD B FIELD RESULT FIELD 

1 1 0 

1 0 1 

0 1 1 

0 0 0 

Format b: The data in the A field is combined bit-by-bit with the data specified by the con­
tents of the B-address register (BAR), according to the rules stated above. The 
result is stored in the B-field. 

Format c: The data specified by the contents of the A-address register (AAR) is combined 
bit-by-bit with the data specified by the contents of BAR, according to the rules 
stated above. The result is stored in the B-field. 

80 

8-29 AG28 



WORD MARKS 

Formats a, b, and c: 

A word mark is required for the shorter of the two operands. The operation 
terminates when this word mark is sensed. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-Nw B-Nw 

Format b: NXT A-N B -N w P w 

Format c: NXT A -N 
P w 

B -N 
P w 

EXAMPLE 

Clear all the nurn.eric bits in the field tagged SEVEN to 0' s by corn.bining the contents 
of SEVEN with the contents of the field tagged TOO. Do not change the zone bits in 
SEVEN. (The contents of each character in TOO are OOxxxx, where x equals the 
corresponding bit in SEVEN. ) 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD ~ I~ LOCATION 
OPERATION OPERANDS NUMBER n CODE 

1 213 415 6 7 e 1415 2021 6263 eo 
I : Hr~ TOO.5EVEN 

SST I SUBSTITUTE I 328 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT 

o. - -b. _ 

c. _ 

d. _ 

FUNCTION 

Format a: The single character specified by the A address is compared bit-by-bit with the 
variant character and is moved to the location specified by the B address, accord­
ing to the following rules: 

8-30 AG28 



1. The A-character bit is transferred to the B address if the corresponding 
variant bit = 1. 

2. The B -character bit is preserved if the corre sponding variant bit = O. 

Format b: The single character specified by the A address is compared bit-by-bit with the 
variant character specified in a previous instruction and is moved to the lo­
cation specified by the B address, according to the rules stated above. 

Format c: The single character specified by the A address is compared bit-by-bit with the 
variant character specified in a previous instruction and is moved to the location 
specified by the contents of the B -addres s register (BAR), according to the rules 
stated above. 

Format d: The single character specified by the contents of the A-address register (AAR) 
is compared bit-by-bit with the variant character specified in a previous instruc­
tion and is moved to the location specified by the contents of BAR, according to 
the rules stated above. 

WORD MARKS 

Formats a, b, c, and d: 

Word marks are not required in either field. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-I B-1 

Format b: NXT A-I B-1 

Format c: NXT A-I B -1 
P 

Format d: NXT A -1 
P 

B -1 
P 

EXAMPLES 

1. Move the zone bits from the location tagged STET to the location tagged 
STET +20. A variant· character of octal 60 provides the required variant 
bit configuratio~ (i. e., 110 000). 

EASYCODER 
COOING FORM 

PROBLEM _______________________ PAOGRAMMER ______ DATE _. ____ PIlGE_OF_ 

CARD ~I! LOCATION 
OPERATION 

OPERANDS NUMBER E ~ CODE 

1 213 415 6 7 8 1415 2021 L 6263 80 

I : I~ST STET.,STET+2¢ .. 6¢ 

8-31 AG28 



z. Move the numeric portion of the character at location 256 to location 656. 
A variant of octal 17 provides the required variant bit configuration 
(i. e., 001 111). 

EASYCODER 
COOING FORM 

PROBLEM _______________________ PROGRAMMER ______ OATE _. ____ PAGE_OF_ 

CARD Ifl~ LOCATION 
OPERATION . OPERANDS NUMBER I~ ~ CODE 

1 213 415 6 7 B 1415 2021 6263 eo 
I : ,~ST 256.~6S6.11 

c I COMPARE I 338 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. - -
b. -
c. -

FUNCTION 

Format a: The data in the B field is compared bit-by-bit with the data in the A field. The com­
parison turns on indicators that can be interrogated by subsequent Branch instruc­
tions. The indicators are reset by the next Compare instruction. 

Format b: The data specified by the contents of the B-address register (BAR) is compared 
bit-by-bit with the data in the A field. This operation turns on indicators which 
can be tested by subsequent Branch instructions. The indicators are reset by the 
next Compare instruction. 

Format c: The data specified by the contents of BAR is compared bit-by-bit with the data in 
the field specified by the contents of the A-address register (AAR). The com­
parison turns on indicators that can be interrogated by subsequent Branch instruc­
tions. The indicators are reset by the next Compare instruction. 

WORD MARKS 

Formats a, b, and c: 

The word mark associated with the B-operand terminates the operation. The A­
operand must have a word mark only if it is shorter than the B-operand. In this 
case, transm.ission of data from the A-field stops after the A-operand word mark 
is sensed, and the remaining character s of the B-operand are compared with 0' s. 
If the A-operand is longer than the B-operand, the characters of the A-operand 
that exceed the field length defined by the B-operand word mark are not processed. 

8-32 AG28 



ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-Nw B-Nb 

Format b: NXT A-N Bp-Nb w 

Format c: NXT A -N P w Bp-Nb 

NOTES 

1. All characters that can appear in storage can be compared. The ascending 
order of characters is listed in Appendix B. 

2. Both fields must have exactly the same bit configurations to be equal. For 
example, plus zero is not equal to minus zero. 

3. Comparison results and associated branch conditions are listed below. 

COMPARISON RESULT BRANCH CONDITION 

B<A Low Compare 

B=A Equal Compare 

BSA Low or Equal Compare 

B>A High Compare 

B/=A Unequal Compare 

B~A High or Equal COITlpare 

EXAMPLE 

Compare item number with 4000. If item number equals 4000, continue the program 
in sequence; otherwise, branch to location NITEM. 

PROBLEM 

CARD I!I~ LOCATION NUMBER 

I 213 41 ~ 6 7 8 

I : 
1 

1 

Description 

Item Number 

4000 

OPERATION 
COOE 

1415 2021 

C CON4 ITEM 
BCT N I TE.i.\\45 

Tag 

ITEM 

CON4 

EASYCODER 
CODING FORM 

PROGRAMMER 

OPERANDS 

8-33 

DATE PAGE_OF_ 

I 6263 80 

AG28 



B I BRANCH I 658 

FORMAT 
OP CODE A ADDRESS B ADDRESS VARIANT - -

FUNCTION 

The Branch instruction causes the program to branch to the location specified 
by the A address and to store the contents of the sequence register (SR) in the B­
address register (BAR). It is used to interrupt normal program sequence and 
to continue the program at any desired point, without testing for specific con­
ditions. Thus, this instruction is frequently referred to as an "unconditional 
branch." 

WORD MARKS 

Word marks are not affected by this instruction. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

JI (A) A NXT 

NOTES 

1. The A address is placed in AAR during the extraction of this instruction, 
preserving any active high-order bits in AAR. When the instruction is 
executed, the entire contents of AAR specify the address to which the 
program branches. Also, the entire contents of SR are stored in BAR 
during the execution phase. 

2. The contents of the variant register are unspecified following the execution 
of this instruction. Therefore an instruction requiring a variant character 
must not be chained following a B ranch instruction. 

EXAMPLE 

Select the next instruction from the location tagged SUB6. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE 

CARD 

iJ LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

1 213 415 6 7 8 1415 2021 62 63 

I : ~ SUB6 
I 

1 

I I 
I I 

: ! 
I I 
I I 
1 

I 

8-34 

PAGE OF 

AG28 

eo 



I BCT I BRANCH ON CONDITION TEST I 658 

FORMAT 

OP CODE A ADDRESS 8 ADDRESS VARIANT 

o. - - -
b. -

FUNCTION 

Format a: The variant character specifies a condition indicator or a SENSE switch to be 
tested. If the condition being tested is present, the program branches to the lo­
cation specified by the A address and the contents of the sequence register (SR) 
are stored in the B -addre s s registe r (BAR). If the condition s pe cified by the 
variant character is not present, the program continues in sequence. Tables 8-8 
and 8-9 list the valid variant characters and the conditions they test. 

Format b: If the condition specified by the previous va riant character is present, the pro-
g ram branches to the location specified by the contents of the A-addres s registe r 
(AAR) and the contents of SR are stored in BAR. If the conditions being tested is 
not present, the program continues in sequence. Tables 8-8 and 8-9 list the valid 
variant characters and the conditions they test. 

WORD MARKS 

Formats a and b: 

Word marks are not affected by this instruction. 

ADDRESS REGISTER AFTER OPERATION 

SR AAR BAR 

Format a: JI (A) A NXT BRANCH 
.NXT A B NO BRANCH 

p 

Format b: JI (A ) A NXT BRANCH 
NXT P A P B NO BRANCH 

E E 

NOTES 

1. If the overflow indicator is tested and an overflow condition exists, the 
indicator is automatically turned off as a result of being tested. In all 
other cases, the indicator tested is not affected as a result of the test. 

2. The comparison indicators are: 

a. set by the Compare instruction; 

b. set by the Table Lookup instruction; 

c. stored (and cleared) by the Store Variant and Indicators instruction; 

8-35 AG28 



Table 8-8. SENSE Switch Test Conditions for BCT Instruction 

Varian t Ch aracter Branch On 
(Octal) 

00 Unconditional 

01 SENSE Switch 1 On 

02 SENSE Switch 2 On 

03 SENSE Switches 1 and 2 On --
04 SENSE Switch 3 On 

05 SENSE Switches 1 and 3 On --
06 SENSE Switches 2 and 3 On --
07 SENSE Switches 1, 2, and 3 On --
10 SENSE Switch 4 On 

11 SENSE Switches 1 and 4 On --
12 SENSE Switches 2 and 4 On --
13 SENSE Switche s 1, 2, and 4 On --
14 SENSE Switches 3 and 4 On --
15 SENSE Switche s 1, 3, and 4 On --
16 SENSE Switches 2, 3, and 4 On --
17 SENSE Switches 1, 2, 3, and 4 On --
20 U nc ondi ti onal 

21 SENSE Switch 5 On 

22 SENSE Switch 6 On 

-- 23 SENSE Switches 5 and 6 On --
24 SENSE Switch 7 On 

25 SENSE Switches 5 and 7 On --
26 SENSE Switches 6 and 7 On --
27 SENSE Switches' 5, 6, and 7 On --
30 SENSE Switch 8 On 

31 SENSE Switche s 5 and 8 On --
32 SENSE Switches 6 and 8 On --
33 SENSE Switches 5, 6, and 8 On 

34 SENSE Switches 7 and 8 On --
35 SENSE Switches 5, 7, and 8 On --
36 SENSE Switches 6, 7, and 8 On --
37 SENSE Switches 5, 6, 7, and 8 On 

NOTE: When testing for a multiple SENSE switch condition, a branch occurs only 
if all of the specified conditions are met. -

8-36 AG28 



Table 8-9. Indicator Test Conditions for BCT Instruction 

Varian t Character 
(Octal) 

40 

41 

42 

43 

44 

45 

46 

47 

50 

51 

52 

53 

54 

55 

56 

57 

60 

61 

62 

63 

64 

65 

66 

67 

70 

71 

·72 

73 

74 

7S 

76 

77 

Branch On 

Do not branch 

B<A (Low Compare) 

B=A (Equal Compare) 

B~ A (Low or Equal Compare) 

B >A (High Compare) 

B:/;A (Unequal Compare) 

B~A (High or Equal Compare) 

Unconditional 

Overflow v· 
Overflow or B< A 

Overflow or B=A 

Overflow or B~ A 

Overflow or B>A 

Overflow or B:/;A 

Overflow or B~ A 

Unconditional 

Zero Balance 

Zero Balance or B< A 

Zero Balance or B=A 

Zero Balance or BS A 

Zero Balance or B>A 

Zero Balance or B:/;A 

Zero Balance or B~ A 

Unconditional 

Overflow or Zero Balance 

Overflow or Zero Balance or B< A 

Overflow or Zero Balance or B=A 

Overflow or Zero Balance· or B~A 

Overflow or Zero Balance or B >A 

Overflow £!. Zero Balance £!. B:/;A 

Overflow or Zero Balance or B~A 

Unconditional 

NOTE: When testing for a multiple indicator condition, a branch occurs if .any ~ 
of the specified conditions is met. 

8-37 AG28 



d. re stored by the Re store Variant and Indicator s instruction; 

e. re stored by the Re sume Normal Mode instruction if corning 
out of the external interrupt mode (but not out of internal 
interrupt mode); 

£. stored when an external interrupt occurs. 

3. The A-addre ss (if any) is placed in AAR during the extraction of this instruc­
tion, pre serving any active high-order bits in AAR. If the instruction cause s 
a branch (i. e., if the condition being tested is present), the entire contents 
of AAR specify the addre s s to which the program branche s when the instruc­
tion is executed. Also, the entire contents of SR are stored in BAR during 
the execution phase of the instruction. . 

4. Consider the variant character in its six-bit form V h V 5 V 4 V 3 V 2 V 1. The 
following chart may be used to determine the varianf cnaracter to be used 
in a BCT instruction. 

Table 8-10. BCT Instruction Variant Characters 

V6 Vs V4 V3 V2 VI 

00 = Test SENSE SENSE SENSE SENSE SENSE 
Switches 1 Switch 4 Switch 3 Switch 2 Switch 1 
through 4 

01 = Test SENSE SENSE SENSE SENSE SENSE 
Switches 5 Switch 8 Switch 7 Switch 6 . Switch 5 
through 8 

1 = Test 
Zero Zero Overflow High Equal Low 
Balance, Balance Compare Compare Compare 
Overflow, 
or Compare 

5. SENSE switche s 5 through 8 are not available with the Model 2040 proce ssor. 

6. The BCT op code (when testing a SENSE switch) is a "privileged" op code 
that has special significance when Extended Multiprogramming is in effect. 

8-38 AG28 



EXAMPLE 

Subtract CREDIT and TOTAL and te st for a zero balance. If this condition exists 
branch to BZRO; otherwise continue the program in sequence. 

EASYCODER 
CODING FORM 

PROBLEM __________________ _ PROGRAMMER ______ OATE _____ PAGE_OF_ 

CARD If'~ LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

I 213 41 ~ 6 1 B 14 I!. 2021 62 63 80 

I : S ~REDI T. TOTAL_ 1 , 
I 

I laCT BZRO~,6f/; 
~ 1 I 

BCC I BRANCH ON CHARACTER I 548 
_ CONDITION . 

FORMAT 

OP CODE A ADDRESS 8 ADDRESS VARIANT 

o. - - -
b. -
c. - -
d. -

FUNCTION 

Format a: The single character specified by the B address is examined for the condition 
specified by the variant character. If the condition is present, the program branches 
to the location specified by the A address, and the contents of the sequence reg-
ister (SR) are stored in the B-address register (BAR). If the condition is not 
present, the program continues in sequence. The valid variant characters and the 
condition each represents are listed in Table 8-11. 

Format b: The single character specified by the B address is examined for the condition 
specified by the variant character of a previous instruction. If the condition is 
pr.esent, the program branches to the location specified by the A address, and the 
contents of SR are stored in BAR. If the condition is' not present, the program 
continues in sequence. The valid variant characters and the condition each rep­
re sents are listed in Table 8-11. 

8-39 AG28 



Format c: The single character specified by the contents of BAR is examined for a condition 
specified by the variant character of a previous instruction. If the condition is 
present, the program branches to the location specified by the A-address, and 
the contents of SR are stored in BAR. If the condition is not pre sent, the program 
continues in sequence. The valid variant characters and the condition each 
represents are listed in Table 8-11. 

Format d: The single character specified by the contents of BAR· is examined for a condition 
specified by the variant character of a previous instruction. If the condition is 
present, the program branches to the location specified by the contents of the A­
address register (AAR), and th~ contents of SR are stored in BAR. If the condition 
is not present, the program continues in sequence. The valid variant characters 
and the condition each represents are listed in Table 8-11. 

WORD MARKS 

Formats a, b, c, and d: 

Word marks are not affected by this instruction. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: JI (A) A NXT BRANCH 
NXT A B-1 NO BRANCH 

Format b: JI (A) A NXT BRANCH 
NXT A B-1 NO BRANCH 

Format c: JI (A) A NXT BRANCH 
NXT A B -1 

P 
NO BRANCH 

Format d: Jl (Ap) Ap NXT BRANCH 
NXT Ap Bp-1 NO BRANCH 

8-40 AG28 



Table 8-11. Bee Test Conditions 

Varian t Character Character Condition 
(Octal) 

XO 

Xl 

XZ 

X3 

X4 

X5 

X6 

X7 

OX 

IX 

2X 

3X 

4X 

5X 

6X 

7X 

No condition. 

The A bit of the character at B is 1. 

The B bit of the character at B is 1. 

The B and A bits of the character at Bare 11. 

The B and A bits of the character at Bare 00. 

The character at B contains a positive sign (the 
B and A bits are 01). 

The character at B contains a negative sign (the 
B and A bits are 10). 

The B and A bits of the character at Bare 11 
(same as X3 above). 

No condition. 

The word-mark bit of the character at B is 1 
(either a word mark or a record mark is present). 

The item-mark bit of the character at B is 1 
(either an item mark or a record mark is present). 

The character at B contains a record mark. 

The character at B contains no punctuation mark. 

The character at B contains a word mark only, not 
an item mark. 

The character at B contains an item mark only, not 
a word mark. 

This is a special case; see note 2. 

NOTES: 1. An X repre sents any octal digit. If both octal digits specify "no 
condition" (i. e., 00), the branch occurs unconditionally. If only 
one digit is 0, the branch occurs if the condition specified by the 
other digit is met. If both octal digits specify conditions, the branch 
occur s if both conditions are met. The variant character 7X is an 
exception to these rules, as described in note 2. 

2. The 7X variant is interpreted as follows: 

a. If Xis 0, the branch is an unconditional branch. 

b. If X is any digit other than 0, the branch occurs if 
either the condition specified by the rightmost digit is 
met £!. the character at B contains a word mark. 

8-41 AG28 



NOTES 

1. If the octal configuration of the variant character is 00 or 70, the branch 
is unconditional. 

2. The A address (if any) is placed in AAR during the extraction of the BCC 
instruction, preserving any active high-order bits in AAR. If the instruc­
tion causes a branch (i. e., if the condition being tested is present), the 
entire contents of AAR specify the address to which the program branches; 
when the instruction is executed. Also, the entire contents of SR are 
placed in BAR during the execution phase. 

EXAMPLE 

If the location tagged END contains a negative sign, branch to the location taggeq 
NFIELD. Otherwise, continue the program in sequence. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _. ___ A\GE_OF_ 

CARD '~ ~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

1 213 415 6 7 8 1415 2021 1 I 62 63 110 

I : .BCC NF I E L 0 .. ,END ",~6 

BeE I BRANCH IF I 558 CHARACTER EQUAL 

FORMAT 

OP CODE A ADDRESS 8 ADDRESS VARIANT 

o. - - -
b. -
c. - __ I 

d. -
FUNCTION 

Format a: The single character specified by the B address is compared to the variant charac­
ter. If the bit configurations of the two characters are equal, the program branches 
to the location specified by the A address, and the contents of the sequence register 
(SR) are stored in tbe B-address register (BAR). If the bit configurations are 
unequal, the program continues in sequence. 

Format b: The single character specified by the B address is compared to the variant charac­
ter specified in a previous instruction. If the bit configurations of the two charac­
ters are equal, the program branches to the location specified by the A address, 

8-42 AG28 



and the contents. of SR are s.tored in BAR. If the bit configurations are unequal, 
the program continues in sequence. 

Format c: The single character specified by the contents of BAR is compared to the variant 
character specified in a previous instruction. If the bit configurations of the two 
characters are equal, the program branches to the location specified by the A ad­
dress, and the contents of SR are stored in BAR. If the bit configurations are 
unequal, the program continues in sequence. 

Format d: The single character specified by the contents of BAR is compared to the variant 
character specified in a previous instruction. If the bit configurations of the two 
characters are equal, the program branches to the location specified by the con­
tents of the A-address register (AAR), and the contents of SR are stored in BAR. 
If the bit configurations are unequal, the program continues in sequence. 

WORD MARKS 

Formats a, b, c, and d: 

A word mark in the location tested has no effect on the instruction. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: JI (A) A NXT BRANCH 
NXT A B-1 NO BRANCH 

Format b: JI (A) A NXT BRANCH 
NXT A B-1 NO BRANCH 

Format c: JI (A) A NXT BRANCH 
NXT A B -1 

P 
NO BRANCH 

Format d: JI (Ap) Ap NXT BRANCH 
NXT Ap Bp-I NO BRANCH 

NOTES 

1. The A-address (if any) is placed in AAR during the extraction of the BCE 
instruction, preserving any active high-order bits in AAR. If the instruc­
tion causes a branch (i. e., if the condition being tested is present), the 
entire contents of AAR specify the address to which the program branches 
when the instruction is executed. Also, the entire contents of SR are 
placed in BAR during the execution phase. 

2. When the central proce s sor is in the "s" mode, execution of the BCE 
instruction sets the comparison indicators to show whether B>V, B=V, or 
B<V. 

EXAMPLES 

1. Determine if the character stored in the location tagged LABEL+3 is equal 
to 6. If so,. branch to the location tagged P6; otherwise continue the 
program in sequence. 

8-43 AG28 



EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE ______ PAGE_OF_ 

CARD I~I~ LOCATION 
OPERATION 

OPERANDS NUMBER I~ ~ CODE 

I 213 415 6 7 8 1415 2021 6263 

I 1 lseE P6" LI\BEL+3" 6 

2. Determ.ine if any character position in the seven-character field tagged 
PAR T contains the letter Q. If so, branch to the location tagged RETRO; 
otherwise continue the program in sequence. 

EASYCODER 
CODING FORM 

80 

PROBLEM _______________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD Ifl~ LOCATION 
OPERATION 

OPERANDS NUMBER I~ ~ CODE 

I 213 415 6 1 8 1415 2021 6263 

I i 'aCE. ~E.TRO, .. PA..RT,,,.G. 
I '1 IB.CE. 
i I lacE. 
I I lacE 1 

\ l BeE 
I I IBeE 
1 I IBeE 

I BBE I BRANCH ON BIT EQUAL I 568 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT 

o. - - -
b. -
c_ - -
d. -

FUNCTION 

Format a: The single character specified by the B-address is combined bit-by-bit with the 
variant character, according to the rule s shown below. If the re suIt (the logical 
product) is not equal to 0, the program branches to the location specified by 
the A-address, and the contents of the sequence register (SR) are stored in the 
B-address register (BAR). If the result is equal to 0, the program continues in 
sequence. 

8-44 AG28 

80 



Bit in Bit in Bit in 
B Character Variant Character Result Field 

1 1 1 

1 0 0 

0 1 0 

0 0 0 

Format b: The single character specified by the B-address is combined bit-by-bit with the 
variant character specified in a previous instruction, according to the rule s shown 
above. If the result is not equal to 0, the program branches to the location 
specified by the A-address, and the contents of SR are stored in BAR. If the 
result is equal to 0, the program continues in sequence. 

Format c: The single character specified by the contents of BAR is combined bit-by-bit with 
the variant character specified in a previous instruction, according to the rules 
shown above. If the result is not equal to 0, the program branche s to the location 
specified by the A-address, and the contents of SR are stored in BAR. If the 
result is equal to 0, the program continues in sequence. 

Format d: The single character specified by the contents of BAR is combined bit-by-bit with 
the variant character specified in a previous instruction, according to the rule s 
shown above. If the re sult is not equal to 0, the program branche s to the location 
specified by the contents of the A-addre ss register (AAR), and the contents of SR 
are stored in BAR. If the result is equal to 0, the program continues in sequence. 

WORD MARKS 

Formats a, b, c, and d: 

Word marks are not tested by this instruction and have no effect on the operation. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: JI (A) A NXT BRANCH 
NXT A B-1 NO BRANCH 

Format b: JI (A) A NXT BRANCH 
NXT A B-1 NO BRANCH 

Format c: JI (A) A NXT BRANCH 
NXT A Bp-1 NO BRANCH 

Format d: Jl (Ap) 
~ NXT BRANCH 

NXT p Bp-1 NO BRANCH 

8-45 AG28 



NOTES 

1. The logical product formed by this instruction is tested but is not stored. 
Main memory locations are not disturbed by this operation. 

2. The A-address (if present) is placed in AAR during the extraction of the 
instruction, preserving any active high-order bits in AAR. If the instruc­
tion cause s a branch (i. e., if the logical product doe s not equal 0), the 
entire contents of AAR specify the address to which the program branches 
when the instruction is executed. Also, the entire contents of SR are placed 
in BAR during the execution phase. 

3. 

EXAMPLE 

Since this instruction results in a branch. 
0, only one bit at a time should be te sted. 
branching to additional BBE instructions. 

If any bit product is not equal to 
Other bits can be checked by 

Branch to the location tagged BIT 8 only if the character at the location tagged 
MAR contains a 1 in both the B- and the eight-bit positions. Otherwise, con­
tinue in sequence. This example requires two BBE instructions to test the 
two bits in question; location BIT8 is reached only if both tests are met. 

EASYCODER 
CODING FORM 

PROBLEM ____________________ _ PROGRAMMER ______ OATE _____ PAGE _OF_ 

CARD i~ LOCATION 
OPERATION OPERANDS NUMBER CODE 

1 213 415 6 7 8 14 I !:I 2021 62 63 80 

I : IBBE BI TB_MAR .. 4..0 
I 

I ,< '< 1 1 1 I 

i I ,s S 
1 1 BltB _aBE BI T8 .. MAR 1,~ 
: l ( L( <.. 

, 

I I (., ,~ S 
l "I BITS - - - - - - - -
J I 

1 I 

8-46 AG28 



- --. - .:; 

8-48 • SET WORD MARK 

8-49 • SET ITEM MARK 

8-50 • CLEAR WORD MARK 

8-51 • CLEAR ITEM MARK 

8-52 • HALT 

8-54 • NO OPERATION 

8-55 • MOVE CHARACTERS TO WORD MARK 

8-56 • LOAD CHARACTERS TO A-FIELD WORD MARK 

8-58 • STORE CONTROL REGISTERS 

8-60 • LOAD CONTROL REGISTERS 

8-62 • CHANGE ADDRESSING MODE 

8-66 • CHANGE SEQUENCING MODE 

8-67 • EXTENDED MOVE 

8-70 • MOVE AND TRANSLATE 

8-74 • MOVE ITEM AND TRANSLATE 

8-79 • LOAD INDEX/BARRICADE REGISTER 

8-83 • STORE INDEX/BARRICADE REGISTER 

8-84 • TABLE LOOKUP 

8-87 • MOVE OR SCAN 

8-47 AG28 



I sw I SET WORD MARK I 228 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. - -
b. - I 
c. -

FUNCTION 

Format a: A word mark is set at the location specified by each address. The data and item­
mark bits at each location are undisturbed. 

Formatb: A word mark is set at the location specified by the A address. The data and item­
mark bits at this location are undisturbed. 

Format c: Word marks are set at the locations specified by the contents of the A- and B-ad­
dress registers (AAR and BAR). The data and item-mark bits at each location 
are undisturbed. 

WORD MARKS 

Formats a, b, and c: 

Word marks are set as described above. 

ADDRESS REGISTERS AFTER OPERATION 

Format a: 

Format b: 

Format c: 

NOTE 

SR AAR BAR 

NXT A-I B-1 

NXT A-I A-I / 
NXT A -1 

P 
B -1 

P 

The extraction of this instruction when coded in format a. automatically terminates 
when the last character of the B address is loaded into BAR. Therefore, a word 
mark is not required in the location following the B address. 

8-48 AG28 



EXAMPLE 

Set a word mark in location 435. 

EASYCODER 
COOING FORM 

PROBLEM _______________________ PROGRAMMER ______ OATE _ 0 ____ PAGE_OF_ 

CARD I~I~ LOCATION 
OPERATION 

OPERANDS NUMBER it ~ CODE 

1 213 41 ~ 6 7 8 14 I~ 2021 6263 

I : SW 1435 
r 

1 

I S I SET ITEM MARK IZ0 8 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. - -
bo -
Co -

FUNCTION 

For~: An item mark is set at the location specified by each address. The data and 
word-mark bits at each location are undisturbed. 

eo 

Format b: An item mark is set at the location specified by the A address. The data and word­
mark bits at this location are undisturbed. 

Format c: Item marks are set at the locations specified by the contents of the A- and B -ad­
dres s registers (AAR and BAR). The data and word-mark bits at each location 
are undi sturbed. 

WORn MARKS 

Formats a, b, and c: 

Word marks are not affected by this instruction. 

8-49 AGZ8 



ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Form.at a: _N~X~T~ __ ---.:A~-..;;.l ____ ......;;;B~-...;l~_ 

Form.at b: NXT A-I A-I ----------------------------------
Form.at c: NXT 

NOTE 

A -1 p 

The extraction of this instruction when coded in form.at a. autom.atically term.inates 
when the last character of the B address is loaded into BAR. Therefore, a word 
m.ark is not required in the location following the B address. 

EXAMPLE 

Set item. m.arks in the locations tagged ENT and ENT+80 

EASYCODER 
COOING FORM 

PROBLEM ______________________ PROGRAMMER ______ OATE _. ___ PAGE_OF_ 

i~ 
-

CARD 
LOCATION 

OPERATION OPERANDS NUMBER CODE 

1 2-13 415 6 7 e 1415 2021 6263 80 

I : Sl EN1.. ENT t.8.0, 

cw I CLEAR WORD MARK I 23 8 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. - -
b. -
c. -

8-50 AG28 



FUNCTION 

Format a: The locations specified by the A and B addresses are cleared of word marks. The 
data and item-mark bits at these locations are undisturbed. 

Format b: The word tnark at the location specified by the A address is cleared. The data and 
item-mark bits at this location are undisturbed. 

Format c: Word marks are cleared at the locations specified by the contents of the A- and 
B-address registers (AAR and BAR). The data and item-mark bits at these lo­
cations are undisturbed. 

WORD MARKS 

Formats a, b, and c: 

Word marks are cleared as defined above. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-I B-1 

Format b: NXT A-I A-I 

Format c: NXT A -1 B -1 
P P 

EXAMPLE 

Clear the word marks at locations 400 and 435. 

EASYCODER 
COOING FORM 

PROBLEM ___________ . ____________ PROGRAMMER ______ OATE _. ____ PAGE_OF_ 

CARD li'~ LOCAT,ION 
OPERATION OPERANDS, NUMBER CODE 

I 213 415 6.7 8 14 I~ 2021 62 63 80 

I : CW 140¢ 435 
I 

I ...L-.-

I C I ICLEAR ITEM MARK 1 21 8 

FORMAT 

OP CODE A ADDRESS 8 ADDRESS 

o. - -
b. -
c. -

8-51 AG28 



FUNCTION 

Format a: Item marks are cleared from the locations specified in the A and B addresses. 
The data and word-mark bits at these locations are undisturbed. 

Format b: The item mark at the location specified by the A address is cleared. The data 
and word-mark bits at this location are undisturbed. 

Format c: Item marks are cleared at the locations specified by the contents of the A- and 
B -address registers (AAR and BAR). The data and word-mark bits at these lo­
cations are undisturbed. 

WORD MARKS 

Formats a, b, and c: 

Word marks are not affected by this instruction. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-I B-1 
~---------------------------------

Format b: NXT A-I A-I 
-----------------------------------

Format c: NXT 

EXAMPLE 

A -1 
P 

B -1 
P 

Clear the item mark in location REG. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ OATE _. ____ PAGE_OF_ 

CARD. I~I~ LOCATION 
OPERATION 

OPERANDS NUMBER I~ ~ CODE 

1 2 13.41 5 6 7 8 1415 2021 6263 eo 
I : ~.t REC 

IH I HALT 1 4581 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT I 

o. -
b. -
c. - - -
d. - - -

8-52 AG28 



FUNCTION 

Format a: This instruction causes the machine to stop. Pressing the RUN button causes the 
program to resume with the next instruction in sequence. 

Format b: The contents of the sequence register (SR) are stored in the B-address register 
(BAR); the A address of the instruction is transferred to SR; then the machine 
stops. Pressing the RUN button causes the program to resume with the instruc­
tion specified in the A address. This format is usually referrred to as a "halt 
and branch II instruction. 

Format c: This instruction causes the machine to stop. Pressing the RUN button causes the 
program to resume with the next instruction in sequence. The address portions 
can be used to indicate control information such as a halt identification number 
(see note 2). 

Format d: This instruction causes the machine to stop. Pressing the RUN button causes the 
program to resume with the next instruction in sequence. The addres s portions 
and the variant character can be used to indicate control information such as halt 
identification number (see note 2). 

WORD MARKS 

Formats a, b, c, and d: 

Word marks are not affected by this instruction. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A B 
E E 

Format b: JI (A) A NXT 

Format c: NXT A B 

Format d: NXT A B 

NOTES 

1. If 1. Halt instruction (in any format) is executed during a per ipheral 
operation, transfer continues until it is completed. 

2. Formats c. and d. are usefui when a program contains a number of 
halts. By assigning a number or symbol in the A and B addresses to 
each halt, the programmer can late r identify a particular halt by dis­
playing the contents of AAR and/ or BAR. Although the cop-tents of the 
variant register cannot be displayed through the console or control 
panel, iormat d. can be used to store a variant character which can 
subsequently be used by the program. 

3. The H op code is a "privileged" op code that has special significance 
when Sto.rage Protection is in effect. 

8-53 AG28 



EXAMPLES 

1. Stop the machine and specify that when the RUN button is pressed, the 
next instruction will be selected from the location tagged RES. 

EASYCODER 
CODING FORM 

PROBLEM ____________________ "--__ PROGRAMMER ______ DATE ~ _____ PAGE_Of'_ 

CARD ~~ LOCATION 
OPERATION OPERANDS NUMBER CODE 

1 213 415 6 7 8 1415 2021 

I l H IRES 

2. Identify the halt at the end of a job as follows: 

A address =9 
B address =9 

EASYCODER 
CODING FORM 

62 63 110 

PROBLEM ________________________ PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD ~I~ LOCATION 
OPERATION OPERANDS NUMBER CODE 

1 2 r 3 4T 5 6 7 8 1415 2021 62 63 

I : I" 9. ~ 

INopl NO OPERATION 14°8 

FORMAT 

OP CODE A ADDRESS B ADDRESS -FUNCTION 

This instruction performs no operation. This op code can be substituted for the 
op code of any instruction to make that instruction ineffective. 

WORD MARKS 

Program operation resumes at the next op code identified by a word mark. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

NXT 

NOTES 

1. This instruction is commonly used in program modification to cause the 
machine to skip over specific instructions. 

110 

8-54 AG28 



2. Information appearing in an address portion of an instruction for which 

EXAMPLE 

the NOP instruction is substituted is not loaded into the associated operand 
address register. The final character of such information, however, is 
loaded into the variant register. 

Reserve the necessary storage locations for an instruction such as Branch 
(B fA) and substitute the op code NOP in this instruction. When the op code 
B is restored, the NOP instruction will be modified to branch to location SWX. 

EASYCODER 
CODING FORM 

PROBL£M _______________________ PROGRAMMER ______ DATE ______ PAGE_OF_ 

CARD I~I~ LOCATION 
OPERATION OPERANDS NUMBER I~ ~ CODE 

I 213 41 ~ 6 7 8 1415 2021 ·62 63 

I : NO? sw~ I 1 I I I 

1 MeW IMOVE CHARACTERS TO 114 
_ _ WORD MARK _ 8 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. - -
b. -
c. -

FUNCTION 

Format a: The data and item-mark bits in the A field are moved to the B field. 

Format b: The data and item-mark bits in the A field are moved to the field specified by the 
contents of the B-address register (BAR). 

80 

Format c: The data and item-mark bits in the field specified by the contents of the A-address 
register (AAR) are moved to the field specified by the contents of BAR. 

WORD MARKS 

Formats a, b, and c: 

A word mark (or record mark) is required in the shorter of the two fields. The 
operation terminates when this mark is sensed. 

8-55 AG28 



ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Form.at a: NXT A-Nw B-Nw 

Form.at b: NXT A-Nw Bp-Nw 

Form.at c: NXT Ap-Nw Bp-Nw 

NOTE 

Item. rn.arks initially stored in B-field locations will be cleared if the corresponding 
A-field characters do not include item. m.arks. 

EXAMPLE 

Move the following A fields and store them. in sequential B fields as shown. 

Description A field 

Unit Num.ber 150-155 

Rack Num.ber 160-168 

Part Num.ber 173-180 

Pin Num.ber 185-187 

EASYCODER 
CODING FORM 

PROBLEM ____________________ _ PROGRAMMER 

CARD 
NUMBER 

1 213 415 

I : 
1 

I 
I I 
I I 

: : 

I~I~ LOCATION 
OPERATION 

I~ ~ CODE 

6 7 8 1415 2021 

Mew 187 .. 825 
'Mew fa<p 
:Mew \6g 
MeW \55 

LOAD CHARACTERS TO 
A-FIELD WORD MARK 

I 

FORMAT 

OP CODE A ADDRESS 

o. - -
b, -
c. -

OPERANDS 

I I 

I 

B ADDRESS 

8-56 

B field 

800-8'05 

806-814 

815-822 

823-825 

DATE_. ___ PAGE_OF_ 

6263 80 

AG28 



FUNCTION 

Format a: The data and punctuation bits in the A field are transferred to the B field. 

Format b: The data and punctuation bits in the A field are transferred to the field specified by 
the contents of the B-address register (BAR). 

Format c: The data and punctuation bits in the field specified by the contents of the A-address 
register (AAR) are transferred to the field specified by the contents of BAR. 

WORD MARKS 

Formats a, b, and c: 

The A operand must have a defining word mark (or record mark). The operation 
terminates when this mark is transferred to the B field. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-Na B-Na 

Format b: NXT .A-Na Bp-Na 

Format c: NXT Ap-Na Bp-Na 

NOTES 

1. This instruction (in any format) is the only instruction that always moves 
both a field and its defining punctuation mark. 

2. All punctuation (word marks, item marks, and record marks) initially 
stored in B-field locations will be cleared if the corresponding A-field 
characters do not include identical punctuation. 

EXAMPLE 

The B address must never fall within the A field. 
within the B field, however, if de sired. 

The A addre s s may fall 

Move both the data bits and the defining word mark of the .field tagged TWX to the 
field tagged RATE. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE ______ PAGE_OF--,-

CARD I~I~ LOCATION 
OPERATION OPERANDS NUMBER I~ ~ CODE 

1 213 415 6 7 8 1415 2021 6263 80 

I : LeA I'TWX ... R ATE 
I 

I 

8-57 AG28 



I SC R I STORE CONTROL REGISTERS 1 2481 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT 

o. - -
b. -
c. -

FUNCTION 

Format a: The contents of the control memory register specified by the variant character 
are stored in the field whose units position is defined by the A address of this 
instruction. The method of storing these contents depends on the addressing mode 
being used, as shown in Table 8-12. The valid variant characters and the control 
register each character represents are listed in Table 8-13. 

Table 8-12. Control Register Contents Stored by SCR Instruction 

Addre s sing Mode 

Two- Character 

Three-Character 

Four- Character 

Amount of Control Register Stored
a 

Low-order two characters (12 bits). 

Low-order 15 bits; the high-order three bits 
of the field specified by the A-address are 
cleared to 0' s. 

The entire contents of the control register 
plus sufficient high-order 0' s to make up 
18 bits. On multicharacter processors, the 
entire bits of the control register plus five 
high-order O's.b 

a All bit positions not required to address the largest memory address in 
a user's system are set to 0' s in the A-field • 

. b The five high-order bits of the high-order character are reset to 0' s 
only in the multicharacter processors. In other processors, the entire 
six bits of the high-order character remain unchanged. 

8-58 AG28 



Format b: The contents of the control memory register specified by the variant character in 
a previous instruction are stored in the field whose units position is defined by 
the A address of this instruction. The number of bits stored depends on the ad­
dressing mode being used, as shown in Table 8-12. The valid variant characters 
and the control register each character represents are listed in Table 8-13. 

Format c: The contents of the control memory register specified by the variant character in 
a previous instruction are stored in the field whose units position is defined by 
the contents of the A-address register (AAR). The number of bits stored depends 
on the addressing mode being used, as shown in Table 8-12. The valid variant 
characters and the control register each character represents are listed in 
Table 8-13. 

Table 8-13. Control Registers Stored by SCR Instruction 

Variant Control Variant Control Variant Control 
Character Register Character Register Character Register 

(Octal) (Octal) (Octal) 

00 CLC8 20 CLC9 54 ATR 
01 CLCI 21 CLC4 64 CSR 
02 CLC2 22 CLC5 66 EIR 
03 CLC3 23 CLC6 67 AAR 
04 CLC8' 24 CLC9' 70 BAR 
05 CLCl' 25 CLC4' 76 IIR 
06 CLC2' 26 CLC5' 77 SR 
07 CLC3' 27 CLC6' 
10 SLC8 30 SLC9 
11 SLCI 31 SLC4 
12 SLC2 32 SLC5 
13 SLC3 33 SLC6 
14 SLC8' 34 SLC9' 
15 SLCl' 35 SLC4' 
16 SLC2' 36 SLC5' 
17 SLC3' 37 SLC6' 

WORD MARKS 

Formats a, b, and c: 

A-operand punctuation neither affects nor is affected by this instruction. 

ADDRESS REGISTERS AFTER OPERATION 

Formats a, b, and c: 

SR AAR BAR 

NXT 

NOTES 

1. If AAR is specified by the variant character (octal 67), the previous address 
in AAR (not the A address retrieved from this instruction) 1s stored in the 
location specified by the A address. 

2. The control memory register actually designated by the variant character 
678 is a work register (not AAR). During the extraction of an SCR or LCR 

8-59 AG28 



instruction (see below). AAR is used to reference the main memory. 
Prior to this, the previous contents of AAR are stored in the work 
register; at the end of the instruction, the contents of the work register 
are re stored in AAR. 

3. In a proce s sor equipped with the Scientific Unit (or Scientific Subproce s sor), 
this instruction must not be used to store the contents of the floating-point 
accumulator s. 

4. The SCR op code (when storing a read/write counter) is a "privileged" 
op code that has special significance when Extended Multiprogramming 
is in effect. 

EXAMPLE 

Store the contents of BAR in the A-address of the Branch instruction tagged EXIT. 
(The processor is assumed to be in the three-character addressing mode.) 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _____ Pl\GE_OF_ 

CARD ~ ~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

1 2_13 4-'-~ 6 7 8 14 I~ 2021 6263 

I 1 
I 

I SU~ SCR lEX IT.+3 .. 7.rA 
I I I 

I I 
, 

: : . ( 
I I I 
: I EXIT IB i¢ 

I LC R I LOAD CONTROL REGISTERS 1 25 81 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT 

o. - - -
b. - -
c. -FUNCTION 

Format a: The contents of the field whose units position is specified by the A address are 
loaded into the control regis ter specified by the variant character. The contents 
of the A field is another main memory address. The method of loading this 
address into the specified control register depends on the addressing mode being 
us ed, as shown in Table 8 -14. 

110 

8-60 AG28 



Table 8-14. Control Register Contents Loaded by LCR Instruction 

Addressing Mode 

Two- Character 

Three-Character 

Four-Character 

Amount of Memory Address Loaded 

Two-character (12-bit) address is loaded into 
the low-order two character locations of the 
register. All other bits in the register (if any) 
are not disturbed (i. e., the bank bits are 
protected). 

15 -bit address is l~aded into the low-order 
15 -bit locations of the register. All other bits 
in the register (if any) are not disturbed (i. e. , 
the sector bits are protected). 

For processors other than the multicharacter 
proce s sor s, an addre s s up to 18 bits long is . 
loaded into the register; the number of bits 
loaded depends on the size of main memory 
(see Table 2-2). The multicharacter proces­
sor s always load 19 bits. Thus, programs 
written for any other processor, and that are 
to be compatible with the multicharacter 
proce ssor s must correctly set up the bit to the 
left of the stored 18-bit address before execut­
ing a four-character LCR instruction. 

Variant characters and their associated control registers are the same as 1 
those specified for the Store Control Registers instruction (see Table 8-13). 

Format b: The contents of the field whose units position is specified by the A address are 
loaded into the control register specified by the variant character in a previous 
instruction. The method of loading the contents of this field (another main mem­
ory address) depends on the addressing mode being used, as shown in Table 8-14. 
Variant characters and their associated control registers are the same as those 
specified for the Store Control Registers instruction. 

Format c: T.he main memory address whose units position is specified by the contents of the 
A-address register (AAR) is loaded into the control register specified by the vari­
ant characters in a previous instruction. The method of loading this address into 
the specified register depends on the addressing mode being used, as shown in 
Table 8-14. Variant characters and their as sociated control registers are the 
same as those specified for the Store Control Registers instruction. 

WORD MARKS 

Formats a, b, and c: 

1 

A-operand punctuation neither affects nor is afiectedby this instruction. 

If the variant-dependent privileged LC R capability has been allowed by the execution of an 
LIB instruction, and the LCRvariant character is 64, 67, 70, or 77, and the Storage Protec­
tion Indicator is ON in the base mode, and the proceed allow is OFF, the LC R will not cause 
an Op Code violation and no internal interrupt will be generated. 

8-61 AG28 



ADDRESS REGISTERS AFTER OPERATION 

Formats a, b, and c: 

SR AAR BAR 

NXT (A) Bp VARIANT = 678 

NXT A 
P 

(A) VARIANT = 708 

(A) Ap Bp VARIANT = 778 

NXT Ap Bp ALL OTHERS 

NOTES 

1. If SR is specified by the variant character (778), the next instruction is 
selected from the location who se address is stored in the field specified 
by the A-address of the Load Control Registers instruction. In all other 
case s, the program continues in sequence. 

2. The LCR op code is a "privileged" op code that has special significance 
when Storage Protection is in effect. 

3. In a processor equipped with the Scientific Unit (or Subprocessor), this 
instruction must not be used to load the floating-point accumulators. 

EXAMPLE 

Load the address stored in the location tagged SUBI into the change sequence 
register (CSR). 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _" ___ PAGE_OF_ 

CARD '~ ~ LOCATION 
OPERATION 

NUMBER ~ ~ CODE OPERANDS 

I z 13 415 6 7 8 1415 2021 I 1 _1 I 6263 80 

I : LCR sua \ ,,6A 
1 

1 CAM I CHANGE ADDRESSING MODE 14281 

FORMAT 
OP CODE A ADDRESS B ADDRESS VARIANT 

o. - -
b. -FUNCTION 

Format a: The Change Addressing Mode instruction is used to specify the following conditions, 
as designated by the variant character: 

8-62 AG28 



Format b: 

1. The addre s sing mode (two-, three -, or four -character) in which 
the processor is to interpret the address portions of all subsequent 
instructions {see note 1). 

2. The processing mode (standard mode or "trap" mode) in which all 
subsequent instructions are to be processed. (See note 3 for a 
description of the trap mode.) 

3. The "S" mode of processing in which several Series 2000 instructions 
are defined in a special manner (see note 3). 

The variant character s and the mode (s) each character represents are listed 
in Table 8-15. 

Table 8-15. Modes Specified by Variant Character in CAM Instruction 

Variant Character 
(Octal) Mode(s) 

20 Two-character, standard mode 
00 or 40 Three-character, standard mode 

60 Four -character, standard mode 

24 Two-character, trap mode 
04 or 44 Three-character, trap mode 

64 Four-character, trap mode 

30 Two-character, "s" mode 
10 Three -character, "s" mode 
70 Four-character, "S" mode 

34 Two-character, trap, "s" mode 
14 Three-character, trap, "s" mode 
74 Four -character, trap, "s" mode 

~;-"( "2- -~ 
WORD MARKS 

\?i D~~ ~ noL~ 3Z,..Q 

Formats a and b: 

Word marks are not affected by this instruction. 

ADDRESS REGISTERS AFTER OPERATION 

Formats a and b: 

SR AAR BAR 

NXT 

NOTES 

1. The CAM instruction is used in conjunction with the ADMODE assembly 
control statement to specify addressing mode. The ADMODE statement 
directs the Assembly Program to assemble the address portions of all 
subsequent source program instructions as two-, three-, or four-charac­
ter addresses. The CAM instruction directs the processor to interpret 
the address portions of all subsequent object program instructions as 

8;-63 AG28 



two-, three-, or four -character addre s se s. Thus, an addre ss as sembled 
in the three-character addressing mode (via an ADMODE statement) must 
be processed during a program run as a three-character address for proper 
execution; the processor is placed in the three-character addressing mode 
during object program execution by the CAM instructiOn. 

2. The ability to change addressing modes within a program makes it possible 
to save both time and memory space and provides greater programming 
flexibility. Extraction and execution time is saved when a smaller address­
ing mode is used, due to the elimination of the extra memory cycles neces­
sary for a larger address (in characters). Memory space may be conserved 
by storing frequently used subroutines in the two-character addressing mode 
(see example). 

The larger addresses are necessary to address larger continuous portions 
of memory. For instance, a two-character address can specify only 
memory locations within a 4, 096-character bank of main memory. A 
three-character address can refer to any location"in a 32, 768-character 
sector. A four-character address can directly address any location in the 
entire memory (from location 0IOto location 524,287

10
). 

3. When the proces sar is in the trap mode of instruction execution, any instruc­
tion whose op code contains an item mark (or record mark) is both extracted 
and executed as if it were a Change Sequencing Mode instruction, regardless 
of the op code that is actually present. The A-address, B-address, and 
variant character (if any) of the instruction are delivered to AAR, BAR, and 
the variant register, respectively. The "trapped" op code is not executed; 
a Change Sequencing Mode instruction (CSM) is executed in its place. The 
CSM instruction causes a branch to the location stored in the change sequence 
register (CSR); this location is the beginning of a routine to interpret and 
execute the instruction whose op code was trapped. 

The trap mode is used effectively by the Liberator conver sion programs to 
replace the seldom used instructions of competitive systems when converting 
the programs of these systems to Series 2000 language. Such instructions 
are replaced by routines when the trapped op codes are executed as CSM op 
codes. 

4. In addition to specifying the standard or trap modes, the CAM instruction is 
used to specify the "S" mode of processing. When the processor is in the 
"S" mode the A, S, ZA, ZS, and BCE instructions are implemented in a 
special manner. The particular difference s that re suit from the "s" mode 
of proce ssing are indicated in the note s for each instruction. 

8-64 AG28 



EXAMPLE 

Figure 8 - 5 shows the coding which provide s entry to and exit froIn a subroutine to 
be executed in the two-character addressing Inode. Both an ADMODE stateInent 
and a CAM instruction Inust be coded (in either order) at the beginning and end of 
the subroutine. However, only the CAM instructions are stored in the Inain 
IneInory. (Since CAM instructions have no address portions, the Inanner in which 
they are stored is not affected by an ADMODE stateInent.) 

MAl N PROGRAM 
( 4-CHARACTER 
ADDRESSING MODE 

SUBROUTINE 
( 2-CHARACTER 
ADDRESSING MODE) 

)r-

-~ 

I········· ...•. . ........................ . .... 
.' .;: ... : •. ::;......... .. .: ........................... ; .. ,:; .. ; 

............. ... ·.i< ...•..... >.?\ 

••. i •••• ·• .• · •.•• ·••· .. ·.·.;i/. , ; ...•..... ; ... ;;..\ ....... ( .. 

..... .... ; ... ; ..•... : ...•.. ;; .. , ...... ····.· ........ ; .... ii.··.· •.. · .. ···.···/i< ...... : 

LOCATION 

8 

MAIN 

SUBA 

I 

E}(\'J 

OPERATION 
CODE 

1415 2021 .1 

& SU.S4. 
X ~~X'l. • x~xx 

.\ 

J 

~ 
) 
I 
\ 
) 
l 

ClAM 2.¢. 
AOMOOE 2 

l 1 

) 
~ 

AOMoDE 4 
eMil 6.0. 
& ~AIN 

Figure 8-5. Changing Addressing Modes via CAM Instruction 

-1 

NOTE: The branch froIn the Inain prograIn to SUB4 in Figure 8 -5 could have 
been caused by an iteIn-Inarked op code (if the processor were in the 
trap Inode) instead of by the Branch instruction. In this case, the 
IneInory location tagged SUB4 would be stored in CSR, so that when 
the iteIn-Inarked op code was encountered, the contents of SR and CSR 
would be interchanged. The prograIn would autoInatically branch to 
SUB4 in this case. 

8-65 AG28 



I CSM I CHANG~;~~UENCING 43
8 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT 

o. -
b. -
c. - - -
d. - - I -

FUNCTION 

Format a: The contents of the sequence register (SR) and the change sequence register (C SR) 
are interchanged, and the program branches to the address which was previously 
stored in CSR. 

Format b: The contents of SR .and CSR are interchanged, and the program branches to the 
address which was previously stored in CSR. The A address is loaded into the 
A-address register (AAR). 

Format c: The contents of SR and CSR are interchanged, and the program branches to the 
address which was previously stored in CSR. The A and B addresses are loaded 
into AAR and BAR, respectively. 

Format d: The contents of SR and CSR are interchanged, and the program branches to the 
address which was previously stored in CSR. The A and B addresses and the 
variant character are loaded into AAR, BAR, and the variant register, respectively. 

WORD MARKS 

Formats a, b, c, and d: 

Word marks are not affected by this instruction. 

ADDRESS REGISTERS AFTER OPERA TION 

SR CSR AAR BAR 

Format a: JI (contents NXT A B 
of CSR) p P 

Format b: JI (contents NXT A B 
of CSR) 

p 

Format c: JI (contents NXT A B 
of CSR) 

Format d: JI (contents NXT A B 
of CSR) 

8-66 AG28 



NOTES 

1. The Load Control Registers instruction can be used to sefup the contents of 
CSR. 

2. When the "trap" mode of instruction execution is specified by the Change 
Addressing Mode instruction, any subsequent instruction whose op code 
contains an item mark or a record mark is retrieved and executed as if it 
were a Change Sequencing Mode instruction. An instruction which is 
"trapped" in this manner must conform to one of the valid formats of the 
CSM instruction. 

EXAMPLE 

Store the absolute address tagged CHANGE in CSR via a Load Control Registers 
instruction. Later, alter the program sequence by branching to the instruction 
tagged CHANGE. Provide for the ultimate return to normal programming sequence 
by storing the contents of SR in CSR. 

EASYCODER 
COOING FORM 

PROBLEM _______________________ PROGRAMMER ______ OATE _, ___ PAGE_OF_ 

CARD i ~ LOCATION 
OPERATION 

NUMBER CODE 

I 2 3 415 6 7 8 1415 2021 

I : I\..CR CHANGE_64 
I 

I I 

I ~ 
I I ) 
I : ( 
I I \ 
: I I 
I I ( 
I I CSM 

: I 
10 

II I 
12 i 
13 I I 
14 1 I 
15 i I 

I EX M I EXTENDED MOVE 10 
8 

FORMAT 

OP CODE A ADDRESS 

o. - -
b. -
c. -
o. -

OPERANDS 

6263 eo 

I 

B ADDRESS VARIANT -

8-67 AG28 



FUNCTION 

Format a: The contents of the A field are moved to the B field in the manner specified by the 
variant character (see Table 8-16). The programmer specifies how the move 
operation is to be performed by selecting the desired conditions from the table 
and encoding the resulting two octal digits as the variant character of the instruc­
tion. 

Format b: The contents of the A field are moved to the B field in the manner specified by the 
variant character of a previous instruction (see Table 8 -16). 

Format c: The contents of the A field are moved to the field specified by the contents of the 
B-address register (BAR) in the manner specified by the variant character of a 
previous instruction (see Table 8-16). 

Format d: The contents of the field specified by the contents of the A-address register (AAR) 
are moved to the field specified by the contents of BAR in the manner specified by 
the variant character of a previous instruction (see Table 8 -16). 

Variant Character 

(Octal) 

XI 

X2 

X3 

X4 

X5 

X6 

X7 

OX 

IX 

2X 

3X 

Table 8-16. Extended Move Conditions 

Condition 

Move A-field data bits to corresponding bit posi­
tions in B field. 

Move A-field word-mark bits to corresponding bit 
positions in B field. 

Move A-field data and word-mark bits to corre­
sponding bit positions in B field. 

Move A-field item-mark bits to corresponding 
bit positions in B field. 

Move A-field data and item-mark bits to corre­
sponding bit positions in B field. 

Move A-field word-mark and item-mark bits to 
corresponding bit positions in B field. 

Move A-field data, word-mark and item-mark 
bits to corresponding bit positions in B field. 

Move one character from A to B. The· A~ and B­
address registers are decremented by one. 

Move one character from A to B. The A- and B­
address registers are incremented by one. 

Move characters from right to left (A and B ad­
dresses specify rightmost characters in operand 
fields). Terminate the operation when the first 
A-field word mark is sensed •. 

Move characters from left to right (A and B ad­
dresses specify leftmost characters in operand 
fields). Terminate the operation when the first 
A-field word mark is sensed. 

8-68 AG28 



Table 8-16 (cont). Extended Move Conditions 

Varian t Character 
(Octal) Condition 

4X Move characters from right to left. Terminate 
the operation when the first A-field item mark 
is sensed. 

5X Move characters from left to right. Terminate 
the operation when the first A-field item mark 
is sensed. 

6X Move characters from right to left. Terminate 
the operation when the first A-field record mark 
is sensed. 

7X Move character s fr o"m left to right. Terminate 
the operation when the first A-field record mark 
is sensed. 

PUNCTUATION MARKS 

Formats a, b, c, and d: 

The A field must have a defining punctuation mark, except when the variant char­
acter specifies a one-character transfer. 

ADDRESS REGISTERS AFTER OPERATION 

Format a: 

Format b: 

Format c: 

Format d: 

NOTES 

1. 

2. 

3. 

SR AAR BAR 

NXT A-Na B-Na VARIANT = (0, 2, 4, or 6)X 
NXT A+Na B+Na VARIANT = (I, 3, 5, or 7)X 

NXT A-Na B-Na VARIANT = (0, 2, 4, or 6)X 
NXT A+Na B+Na VARIANT = (1, 3, 5, or 7)X 

NXT A-Na Bp-Na VARIANT = (0, 2, 4, or 6)X 
NXT A+Na· Bp+Na VARIANT = (1, 3, 5, or 7)X 

NXT Ap-Na Bp-Na VARIANT = (0, 2, 4, or 6)X 
NXT Ap+Na Bp+Na VARIANT = (1, 3, 5, or 7)X 

Here is an example of a typical variant bit configuration: V = 110011. 
This configuration, encoded in octal notation as 63, specifie s that A -field 
data and word-mark bits are to be moved to the B-field from right to left 
until the fir st record mark is sensed in the A-field. 

Consider the variant character. in its six-bit form, V 6 V 5 V 4 V 3 V 2 VI. If 
V 1 = 0, A-operand data bits are not transferred and data bits in the 
B -field remain unchanged. 

If V 2 = 0, A-operand word-mark bits are not transfer)red and B-operand 
wora-rnark bits remain unchanged. :7 

8-69 AG28 



4. If V 3 = 0, A-operand item-mark bits are not transferred and B-operand 
item-mark bits remain unchanged. 

5. The character containing the terminating punctuation is moved in the same 
manner as the rest of the field. 

EXAMPLES 

1. Move the data bits of the single character in the location 26 beyond that tagged 
-TEMP to the location tagged WORK, and decrement the A- and B-address registero. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _. ____ PAGE _OF_ 

CARD il~ LOCATION 
OPERATION OPERANDS NUMBER CODE 

I iT3 41s 6 7 8 1415 202' 6263 80 

I [ IEXM TEMP+2.6, WORK ;0.1 

2. Move only the data bits in the field tagged RESV to the field tagged WORK. 
Move the data from right to left, and terminate the operation when the 
first item mark in the A field is sensed. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE _. ____ PAGE_OF_ 

CARD i~ LOCATION 
OPERATION OPERANDS NUMBER CODE 

I 213 41s 6 7 8 1415 202, 6263 80 

I : IgXM IRESV.WORK .. ,41 

I MAT I MOVE AND TRANSLATE 1
60 8 I 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT I VARIANT 2 

o. - - - -OP CODE A ADDRESS B ADDRESS C ADDRESS 

b. - - -FUNCTION 

Format a: The MAT instruction translates characters from one six-bit configuration to another 
by means of a stored "translation table." The instruction can be used to translate 
any number of consecutive characters in the memory. 

The A address specifies the location of the rightmost character in the field to be 
translated. The B address specifies the location into which the translated equivalent 
of the rightmost A-field character will be moved. 

The operation normally terminates when an A-field word mark is sensed. The 
operation is also terminated if a character is transfer.red from a word-marked lo­
cation within the translation table. 

The address within the translation table which contains the translated equivalent of 
an A-field character is formed by combining the A-field character with the two 

8-70 AG28 



octal variant characters. The method of combining these three characters depends 
on the addressing mode being used, as described below. 

The leftmost, or base, address of the translation table is formed by combining 
variants 1, 2, and a zero character as shown below. If the processor is in the two­
or three-character addressing mode, the leftmost three bits of variant 1 are 
ignored and the corre sponding bit positions (i. e., the sector bits) in the ba se 
address (bits 16,17,18 and 19) are taken from the contents of the A-address 
register (AAR). If the processor is in the four-character addressing mode (see 
below), the entire six-bit contents of variant 1 form bits'13-18 of the base address, 
while the leftmost (nineteenth) bit, if present, is taken from the contents of AAR. 

Two- or Three-Character Addres~ing Mode 

VARIANT 1 VARIANT 2 

BITS 
16-19 
IN AAR 

o 

Ix X xlix 

I 
X XX x xl 

I 
I X X X X I:){ X ~I XXXXX ~I 0 0 0 0 0 0 I = BASE ADDRESS OF TABLE 

Four- Character Addres sing Mode 

VARIANT 1 VARIANT 2 

XiX XiX ~H)~ 

BIT'19 
IN AAR , , 
o 

A character in the A field is translated wh~n it is appended to the variant characters 
(in place of the zero character) to form a complete, 19-bit address. This complete 
address contains the translated equivalent of the appended A-field character (see 
below). 

A-FIELD CHAR. 

TRANSL. EQUIV. OF A-FIELD CHAR. 

COMPLETE, 19-BIT ADDRESS 

.. CONTENTS 

Note that because of the positions of varL:tnt 1 and variant 2 in the complete address, 
the base address of the table will always be a multiple of 64. This is compatible 
with translation requirements since. each A-field character can have any of 64 bit 
configurations (see note 5). 

8-71 AG28. 



It is a sim.ple task to store the desired equivalent values in a translation table. 
For instance, assum.e that a character set which is to be translated into Honeywell 
code represents the letter A by the bit configuration 110001. Since this bit con­
figuration represents a binary value of 49, the desired Honeywell equivalent (i. e. , 
010001) should be stored 49 locations beyond the base address of the translation 
table. 

Form.at b: This is an alternate and sim.pler form.at for coding the MAT instruction. In this 
form.at, a tIC address" replaces the variant characters used in form.at a. to define 
the base address of the table. Thus, form.at b. relieves the program.m.er of dealing 
with m.odulo-64 addresses and converting to octal notation each tim.e a MAT instruc-
tion is coded. . 

The C address is a syrn.bolic tag that is contained in the location field of another 
source-program. entry (e. g., a RESV statem.ent). Once the absolute base address 
of the table is defined as described for form.at a., the C address is equated to that 
address and used in its stead whenever a MAT instruction using the sam.e table is 
coded again in the program.. 

Exam.ple 2 shows how a C address can be used to define the base address of the 
translation table. 

WORD MARKS 

Form.ats a and b: 

The A field m.ust have a defining word m.ark. It is this word m.ark that norm.ally 
stops the operation. The operation will also be terITlinated if a character is trans­
ferred from. a word-ITlarked location within the translation table. 

ADDRESS REGISTERS AFTER OPERA TION 

Form.ats a and b: 

SR AAR BAR 

NXT 

NOTES 

1. This instruction cannot be chained. 

2. The contents of the variant register following a m.ove and translate oper­
ation are unspecified. Therefore, an instruction requiring a variant 
character m.ust not be chained after an MAT instruction. 

3. Item.-m.ark bits as well as data bits are transferred from. the trans­
lation table to the B field. 

4. Word ITlarks initially stored in the B field rem.ain unchanged. They 
do not affect the execution of this instruction. 

5. The base address of the translation table must always be a multiple of 
64. The Easycoder Assembly Program autom.atically stores the table 
in this manner when directed by a MORG assembly control statement 
containing an operand of 64. 

8-72 AG28 



EXAMPLES 

1. Figure 8-6 shows how A-field data is moved to the B field via a translation 
table. 

Translate the contents of the field tagged EXCODE using the stored trans-
lation table whose base address is 256 (=400

8
), Store the translated 

equivalent in the field tagged EQUIV. 10 

A Addre ss: EXCODE (absolute value = location 630) 

B Address: EQUIV (absolute value = location 900) 

Variant 1: OO} 
04 = base address of table (location 256) 

Variant 2: 

EASYCODER 
COOING FORM 

PROBLEM ______________________ PROGRAMMER ______ DATE _____ PAGE_Of'_ 

CARD 
:1 a LOCATION 

OPERATION OPERANDS NUMBER eOOE 

• Z \3 415 " 1 • 14 I~ 202. I 62 63 

I : it.1Al EXCOOE .E.QU \V .0(/)' tiJ4 

WORD MARK 
STOPS OPERATION 

3 4 6 S U 

Figure 8-6. MAT Operation 

TABLE ADDRESS 

ENTRY 

2. The following coding shows how the preceding MAT instruction can be coded 
using a C address. The translation table is set up with a base address of 
256

10 
by means of an ORG statement and two DC statements. The ORG 

statement directs the Assembly Program to load subsequent coding into 
memory locations beginning at location 256100 The first DC statement 
defines an alphanumeric constant 40 character s long (i 0 eo, the maximum 

J 
101 

I 

8-73 AG28 



size of an alphanumeric constant). These characters are the first 40 charac­
ters of a 64-character translation table. The second DC statement defines 
the renlaining Z4 characters of the table. 

When the MAT instruction is executed, the absolute addres s equated to thp. 
tag MATABI is used as the table's base address as in example 1. 

EASYCODER 
COOING FORM 

P OBLEM PROGRAMMER DATE ___ PAGE OF -
CARD ~I~ LOCATION 

OPERATION 
OPERANDS NUMBER CODE 

1234,$ 61. 14 I~ 202' 6263 

I 
I !QRG 256 .'" " 
, I ~A1A.81 rQCW *A 'Z3 466 7~ 90! i@~Al/STUVWX.YZA \:~z ~-J KLMNOP.iE 

I l! oc @ORo$,itci C\~ ABC DE FGH.l.A.' l.lA@ 
I I! I 

: r ) 

I I ) 
I I 1 
I I IM~1 IEX.CODE.,EOU IV MA.TAB1 

-

110 

MIT I MOVE ITEM AND TRANSLATE 16281 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT I VARIANT 2 VARIANT 3 

o. - - - - - -
OP CODE A ADDRESS B ADDRESS C ADDRESS VARIANT 

b. - - - - -
FUNCTION 

Format a: The Move Item and Translate instruction is used to translate any information uriit 
(up to lZ-bit code) to another information unit of up to lZ bits (e. g., to Series ZOO 
six-bit character code) by the use of a stored translation table. Any number of 
consecutive information units stored in the memory can be translated. 

The A address is the leftmost address of the item to be translated. The B address 
is the leftmost address of the item into which the translated equivalent of the A 
item will be moved. The MIT instruction translates the data contents in the A 
item and moves the translated results, left to right, to the B item. 

The operation normally terminates when an item mark is sensed in the A item. 
The operation will also be terminated if a word-marked character is encountered 
in the translation table. 

An information unit up to six bits in length is stored in one six-bit character lo­
cation in the memory. Any information unit greater than six bits (7 through lZ 
bits) is stored in two successive six-bit character locations. Thus, an information 
unit consisting of up to six bits is considered as a six-bit character, and a unit of 
from 7 to 12 bits is considered as a lZ-bit character. 

The sizes of the information units involved in the operation are specified by variant 
3, as shown in Table 8-17. 

8-74 AG28 



Table 8-17. Size of Information Units in MIT Operation 

Variant 3 
(Octal) Operation 

00 Translate each six-bit character in the A 
item. Move the translated equivalent to a 
six-bit character location in the B item. 

01 Translate each 12 -bit characte r in the A 
item. Move the translated equivalent to 

02 

03 

a six-bit character location in the B item. 

Translate each six-bit character in the A 
item. Move the translated equivalent to 
two character locations (12 bits) in the 
B item. 

Translate each l2-bit character in the A 
item. Move the translated equivalent. to 
two characte r location (12 bits) in the 
B item. 

The desired equivalent of an A-item information unit is taken from the stored 
translation table and moved to the B item. Thus, if the desired equivalent is a six­
bit character, each table entry occupies one six-bit character location in the table. 
If the desired equivalent is a 12-bit character, each table entry occupies two con­
secutive six-bit character locations in the table. Consequently, variant 3 implicitly 
specifies the size of each table entry when it explicitly specifies the size of the B­
item information unit. 

The leftmost, or base, address of the translation table is formed by combining 
octal variants 1, 2, and a zero character as shown below. If the processor is in the 
two- or three -characte r addressing mode, the leftmost three bits of variant 1 are 
ignored and the corresponding bit positions (i. e., the sector bits) in the base ad­
dress of the table are taken from the contents of the A-address register (AAR). If 
the processor is in the four-character addressing mode, the entire six-bit contents 
of variant 1 form bits 13-18 of the base address, and the nineteenth bit, if present, 
is taken from the contents of AAR. 

Two- or Three-Character Addressing Mode 

BITS 16-19 
OF AAR 

VARIANT 1 VARIANT 2 

o 0 0 0 0 0 = BASE (LEFTMOST) ADDRESS OF TABLE 

8-75 AG28 



Four-Character Addressing Mode 

BIT 19 
OFAAR 

VARIANT 1 VARIANT 2 

o 0 0 0 0 0 = BASE (LEFTMOST) ADDRESS OF TABLE 

The address within the translation table which contains the translated equivalent 
of an A-item character (6- or 12-bit) is formed by superimposing the A-item char­
acter over the base address of the table. The method of superposition depends on 
the size of each table entry (whether 6 or 12 bits), as described below. 1 

If each table entry is a six-bit character (variant 3 = 00 or 01), the 6- or 12-bit A­
item character is superimposed over the rightmost bit positions of the base address. 
The illustration below shows a 12-bit A-item character being superimposed over 
the base address, where A = an A-item bit and X = a base address bit. 

= 12-BIT A-ITEM CHARACTER 

o 0 = BASE ADDRESS OF TABLE 

XXXXXX = TABLE ADDRESS WHICH CONTAINS THE 
6-BIT EQUIVALENT OF A-ITEM CHAR.:. 
ACTER 

If each table entry is a 12-bit character (variant 3 = 02 or 03), the 6- or 12-bit 
A -item character is fir st shifted one bit position to the left, forming a 7- or 
13-bit "character." The rightmost bit position of the character is set to O. 
The "character" is then superimposed over the base address to form the table 
address of the translated equivalent of the A-item character. The shift opera­
tion is used to double the referenced table address, since each table entry is 
stored in two, rather than one, six-bit character locations. The resultant 
address is the address of the leftmost of the two successive six-bit charac-
ter locations in the table. 

The illustration below shows how a 6-bit A-item character is shifted one bit 
position to the left and then superimposed over the translation table's base 
address to form the table address of its equivalent; A = an A-item bit, 
and X = a base address bit. 

1 Superposition is performed by placing a 1 bit in every position of the table addr~ss in which a 1 
existed in either the A-item character or the base address or both. This is the "logical in­
clusive OR" function. 

8-76 AG28 



= 6-BIT A-ITEM CHARACTER 

SHIFT LEFT ONE BIT 
POSITION & APPEND 0 

= 7-BIT "CHARACTER" 

I xiX X X X X X I X X X X X X I 0 0 0 0 0 0 = BASE ADDRESS OF TABLE 

• = TABLE ADDRESS WHICH 
CONTAINS THE 12-BIT 
EQUIVALENT OF THE A-ITEM 
CHARACTER 

Format b: This is an alternate format for coding the MIT instruction. As in the MAT instruc­
tion, a symbolic tag replaces the variant characters used to define the base address 
of the table in format a. The tag is contained in the location field of another source­
program entry which equates the tag to the base address of the table. 

The second example of coding an MAT instruction shows the method by which a 
translation table is stored in memory so that the leftmost location of the table can 
be used as a symbolic address. This is identical to the method used for format b. 
of the MIT instruction. 

PUNCTUATION MARKS 

Formats a and b: 

The A item. must contain an item mark. It is this punctuation m.ark that norm.ally 
stops the operation. If the A-item information units are 12-bit characters, the 
terminating item mark may appear in either of the two' six-bit character locations. 

The operation will also be terminated if a character (6 - or 12-bit) is encountered 
in a word-marked location in the translation table. In this case, neither the word­
marked character nor any subsequent characters are m.oved to the B item.; instead, 
a sequence change is performed (see note 5). 

ADDRESS REGISTERS AFTER OPERATION 

Formats a and b: 

SR 

NXT 

JI (contents 
of CSR) 

NOTES 

CSR 

CSR 
P 

NXT 

AAR BAR 

}

ITEM MARK IN A ITEM 
STOPS OPERATION 

A+(NAu)(N
ut

) B+(NBu)(Nut ) 

A+(NA )(N t) B+(NB )(N )-1} WORD MARK IN TABLE 
u u. u ut STOPS OPERATION 

I. This instruction cannot be chained 0 

2. The last six-bit character referenced in the translation table (whether word­
marked or not) is left in the variant register following the move item and 
trans late operation 0 

8-77 AG28 



3. Item.-m.ark bits as well as data bits are transferred from. the translation 
table to the B item.. 

4. Word marks initially stored in the B item remain unchanged. They do not 
affect the execution of this instruction. . 

5. A data control character (e. g., a case-shift character in a teletype code), 
rather than a translated equivalent to be transferred to the B item, can 
be stored in a word-marked location in the table. When this word-marked 
location is sensed, the character in that location is not m.oved; rather, 
the contents of SR and CSR are interchanged, providing entry to the routine 
whose beginning address was previously stored in CSR. Since the word­
marked character is stored in the variant register (see note 2), that charac­
ter can be stored by a Store Variant and Indicator s instruction and subsequently 
tested for identification in the routine. 

6. The base address of the translation table must be a multiple of at least 64, 
due to the positions of variants 1 a~d 2 in the total 19-bit address. This 
requirem.ent is sufficient ·only for the translation of six-bit to six-bit codes. 
If other than six-bit codes are involved in the translation, the base address 
of the table must be a multiple of X (where X is the product of the number of 
codes defined by active bits in the A field entries tim.es the num.ber of charac­
ter s in each table entry). In other words, the ba se addre s s of the table m.ust 
be a multiple of the table size itself. The MORG assem.bly control statem.ent 
can be used to assign m.em.ory locations to the translation table, starting with 
the next available m.em.ory location whose address is a m.ultiple of 64, 128, 
256, etc. ~ as dete.rm.ined by the size of the table. 

EXAMPLE 

Figure 8-7 shows how eight-bit code is translated to Series 2000 six-bit charac­
ter code by m.eans of a stored translation table. Each eight-bit information unit 
is stored in two consecutive six-bit character locations in the A item. tagged 
EIGHT. 

T:ranslate the data contents of the item. tagged EIGHT using the translation 
table whose base address is location 51210 (l0008). Store the translated values 
(six-bit characters) in the item. tagged SIX. 

A Address: EIGHT (absolute value = location 800) 

B Address: SIX (absolute value = location 650) 

Variant 1: 

Variant 2: 

Variant 3: 

OO} = the address of table (location 512) 
10 

01 

EASYCODER 
COOING FORM 

PROBLEM ______________________ PROGRAMMER ______ DATE _____ FAGE_OF_ 

CARD +I~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

I 2 3 4 5 6 7 8 ,415 2021 6263 10 

I : MIT El <HtT, .S.IX ,G0 .. 1.~, .<1.' 

8-78 AG28 



BASE ADDRESS 
(0010008 ) 

" ,Ir 

L--~_~ __ A-A __ • __ J.~ ___ -l_'~ 

- -

" 
., 

" 

ADDRESS 

A ITEM 

ITEM MARK 
STOPS OPERATION 

V, v20 vi v2 I VI V2 2 VI ~u VI v2 V VI ~ W VI v2 X IVI ~E VI V2F VI v
2 
Gf-t-TABLE ADDRESS 

o I 2 D E F G /, V W X ~ENTRIES 

I 

" " f 
650 651 652 653 ~ADDRESS 

F G W ~B ITEM 

Figure 8-7. MI T Operation 

LIB I LOAD INDEX/BARRICADE REGISTER 1 77 8 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT 

o. - -
b. - - -
c. - - -

FUNCTION 

Format a: Basic storage protection is provided by this instruction format; the character(s) 
at the location(s) specified by the A-address is loaded into the index/barricade 
register (IBR), specifying the bank address of the lowest main memory bank that 
is to be protected. The leftmost location of the specified bank is the leftmost 
location of the protected memory area. (The rightmost location of the protected 
area is the rightmo st location of memory.) For proce s sor s other than the mult~­
character processors, the single-character contents of A are loaded into IBR. 
In a multicharacter processor, a seventh bit, the rightmost bit of the contents of 
A-I, is loaded into IBR. The corre spondence between the number loaded into 
IBR and the position of the barricade is shown in Table 8-18. The base relocation 
register (BRR) is automatically cleared to O. 

8-79 AG28 



TYPICAL 4,096-CHARACTER 
MEMORY BANK 

+~~~'7:F"1: 32,767 

'---------~-------r'~~----------------------------~v~------------------------------~ 
ACTIVE PROTECTED 
PROGRAM AREA 

Figure 8-8. Basic Storage Protection 

Format b: Storage protection with base relocation is provided by this instruction format; the 
index/barricade register (IBR) is loaded in the same manner as for basic storage pro­
tection (format a. above), but the barricade is relocated relative to the base reloca­
tion address. Consequently, when storage protection is in effect, data cannot be 
delivered to memory locations above the barricade or below the base relocation 
address unless processing is in the interrupt mode. The character(s) at the loca­
tion(s) specified by the B addres s is loaded into the base relocation register (BRR), 
specifying the bank address of the lowest main memory bank available to a standard 
(noninterrupt) mode program. The number of main memory locations so designated 
augments all memory references made in the standard mode. For processors other 
than the multicharacter processors, the single-character contents of B are loaded 
into BRR. In a multicharacter processor, a seventh bit, the rightmost bit of the 
contents of B-1, is loaded into BRR. The character(s) specified by the A address is 
loaded into the IBR. The barricade is established at the leftmost location in the speci­
fied bank (as augmented by the base relocation address); in other words, standard 
mode programs are prohibited from augmented address equal to or higher than the 
leftmost location in the specified bank (as augmented). For processors other than the 
multicharacter processors, the single -character contents of A are loaded into lBR. 
In a multicharacter processor, a seventh bit, the rightmost bit of the contents of A-I, 
is loaded into IBR. The correspondence between the number loaded into lBR and the· 
position of the barricade is shown in Table 8-18. 

TYPICAL 4,096-CHARACTER 
MEMORY BANK 

+ 32,767 

~ · .... ------.... v,-----" · .... ----------------.v,----------------.--/ 
PROTECTED 
AREA 

ACTIVE 
PROGRAM 

PROTECTED 
AREA 

Figure 8-9. Storage Protection with Base Relocation 

8-80 AG28 



Format c: As explained in format b (above), storage protection with base relocation is provided 
by this instruction format. In addition, the high-re solutions clock is activated and 
the variant-dependent privileged LCR instruction is allowed as specified by the vari­
ant character (see Figure 8-10). 

C3 

~ 0 o o x X 0 I 
['----High resolution clock 

o = Turn-off clock 
1 = Turn-on clock 

'------Variant-dependent privileged LCR 

o Do not allow privileged LC R 
I = Allow privileged LCR 

Figure 8-10. LIB Variant Character 

Table 8-18. Correspondence Between LIB Setting and Barricade Location 

Contents of LIB Number of Meluory Contents of LIB Number of Memory 
Locations to the Locations to the 

Octal Decimal Left of the Barricade Octal Decimal Left of the Barricade 

00 0 0 34 28 114,688 
01 1 4,096 35 29 118,784 
02 2 8,192 36 30 122,880 
03 3 12,288 37 31 126,976 
04 4 16,384 40 32 131,072 
05 5 20,480 41 33 135,168 
06 6 24,576 42 34 139,264 
07 7 28,672 43 35 143,360 
10 8 32,768 44 36 147,456 
11 9 36,864 45 37 151,552 
12 10 40,960 46 38 155,648 
13 11 45,056 47 39 159,744 
14 12 49, 152 50 40 163,640 
15 13 53,248 51 41 167,936 
16 14 57,344 52 42 172,032 
17 15 61,440 ·53 43 176,128 
20 16 65,536 54 44 180,224 
21 17 69,632 55 45 184,320 
22 18 73, 728 56 46 188,416 
23 19 77,824 57 47 192,512 
24 20 81, 920 60 48 196,608 
25 21 86,016 61 49 200,704 
26 22 90, 112 62 50 204,800 
27 23 94,208 63 51 208,896 
30 24 98,304 64 52 212, 992 
31 25 102,400 65 53 217,088 
32 26 106,496 66 54 221,184 
33 27 110,592 67 55 225,280 

8-81 AG28 



Table 8-18 (cont). Correspondence Between LIB Setting and Barricade Location 

Contents of LIB Number of Memory Contents of LIB 
Locations to the 

Octal Decimal Left of the Bar ricade Octal Decimal 

70 56 229,376 1 34 92 
71 57 233,472 1 35 93 
72 _58 237,568 1 36 94 
73 59 241,664 1 37 95 
74 60 245,760 1 40 96 
75 61 249,856 1 41 97 
76 62 253, 952 1 42 98 
77 63 258,048 1 43 99. 

1 00 64 262, 144 1 44 100 
1 01 65 266,240 1 45 101 
1 02 66 270,336 1 46 102 
1 03 67 274,432 1 47 103 
1 04 68 278,528 1 50 104 
1 05 69 282,624 1 51 105 
1 06 70 286,720 1 52 106 
1 07 71 290,816 1 53 107 
1 10 72 294,912 1 54 108 
1 11 73 299,008 1 55 10,9 
1 12 74 303,104 1 56 110 
1 13 75 307,200 1 57 III 

1 14 76 311,296 1 60 112 
1 15 77 315,392 1 61 113 
1 16 78 319,488 1 62 114 
1 17 79 323,584 1 63 115 
1 20 80 327,680 1 64 116 
1 21 81 331,776 1 65 117 
1 22 82 335,872 1 66 118 
1 23 83 339,968 1 67 119 
1 24 84 344,064 1 70 120 
1 25 85 348,160 1 71 121 
1 26 86 352,256 1 72 122 
1 27 87 356,352 1 73 123 
1 30 88 360,448 1 74 124 
1 31 89 364,544 1 75 125 
1 32 90 368,640 1 76 126 
1 33 91 372,736 1 77 127 

WORD MARKS 

Formats a and b: 

Word marks are not affected by this instruction. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR 

Format a: NXT A-2 

Format b: NXT A-2 

BAR 

B 
P 

B-2 

8-82 

Number of Memory 
Locations to the 
Left of the Barricade 

376,832 
380,928 
385,024 
389, 120 
393,216 
397,312 
401,408 
405,504 
409,600 
413,696 
417,792 
421,888 
425, 984 
430,080 
434,176 
438,272 
442,368 
446,464 
450,560 
454,656 
458, 752 
462,848 
466,944 
471,040 
475,136 
479,232 
483,328 
487,424 
491,520 
495,616 
499,712 
503,808 
507,904 
512,000 
516,096 
520,192 

AG28 



NOTES 

1. The 15 additional index registers (Yl through Y15) which are included in the 
Storage Protect and Extended Multiprogramming feature s are located in the 
first 60 character locations to the right of the barricade position specified by 
this instruction. These locations can be used as normal storage locations 
when they are not being used for indexing operations. 

2. The LIB op code is a "privileged" op code that has special significance when 
Storage Protection is in effect. 

3. This instruction is intended for use in the interrupt mode and should not be 
issued in the standard mode. 

4. The LIB instruction is not interpreted by Easycoder Assembler A, B, or C. 

EXAMPLE 

Assuming that there are 131,072 storage locations in the main memory, set up 
the memory in such a way that the "openll memory area consists of locations 0 
through 65, 535 and the protected memory area consists of locations 65,536 
through 131,072. The single octal character "20" is contained in the location 
tagged MP2. 

EASYCODER 
COOING FORM 

PROBLEM _______________________ PROGRAMMER ______ OATE _. ___ PAGE_OF_ 

CARD 
1I1I LOCATION 

OPERATION OPERANDS NUMBfR COOE 

I 2 IS 41!1 I , • 1415 2021 I 6263 10 

I i LlB MP2. 

STORE INDEX/BARRICADE REGISTER 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. - -
b. - -

FUNCTION 

Format a: Basic storage protection is provided by this instruction format; the contents (up to 
seven bits) of the index/barricade register (IBR) are stored in the character loca­
tion(s) specified by the A-address. All high-order bit positions in A which are not 
used to specify the contents of the index/barricade register are cleared to 0 1 s. 
In a multicharacter processor only, the seventh bit in IBR is stored in the right­
most bit position of location A-I and the five remaining bit positions in A-I are 
cleared to 0' s. 

Format b: Storage protection with base relocation is provided by this instruction format; the 
contents of the index/barricade register (IBR) are stored in the same manner as for 
ba sic storage protection (format a, above); in addition, the contents of the ba se 
relocation register (BRR) are also stored. The contents (up to seven bits) of BRR 
are stored in the character location(s) specified by the B-address. All high-order 
bit positions in B which are not used to specify the contents of the base relocation 
register are cleared to O's. In a multicharacter processor only, the seventh bit· in 
BRR is stored in the rightmost bit position of location B-1 and the five remaining 

8-83 AG28 



bit positions in B-1 are cleared to O' s. The contents (up to seven bits) of the 
index/barricade register are stored in the character location(s) specified by the 
A-address. All high-order bit positions in A which are not used to specify the 
contents of the index/barricade register are cleared to O' s. In a multicharacter 
processor only, the seventh bit in IBR is stored in ,the rightmost bit position of 
location A-I and the five remaining bit positions in A-I are cleared to O' s. 

WORD MARKS 

Formats a and b:· 

Word marks are not affected by this instruction. 

ADDRESS REGISTERS AFTER OPERATION 

SR 

Format a: NXT 

Format b: NXT 

NOTES 

AAR 

A-2 

A-2 

BAR 

B 
P 

B-2 

1. The SIB instruction is not interpreted by Easycoder Assembler A, B, or C. 

2. This instruction is intended for use in the interrupt mode and should not be 
issued in the standard mode. 

EXAMPLE 

Store the contents of the index/barricade register in the single character 
location tagged PROT. 

EASYCODER 
COOING FORM 

PROBLEM ______________________ PROGRAMMER ______ DATE _____ FIlGE_rR_ 

CARO !I LOCATION 
OPERATION OPERANDS NUMBER CODE 

1 213 415 6 7 • 1415 2021 6263 10 

I : Sl.~ PR.OT I 

I TlU I TABLE LOOKUP 578 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT 

o. - - -
b. -
c. -
d. -

8-84 AG28 



FUNCTION 

Format a: A table in memory is a series of fields, each of which normally contains an argu­
ment of a function and the corresponding value of the function (see notes 1 and 2). 
The Table Lookup instruction initiates a search in a stored table for an argument 
which bears a specified relationship to a search argument, which is stated in the 
instruction (see illustration below). 

The B address specifies the rightmost location of the stored table, the A address 
specifies the location of the search argument, and the variant character specifies 
a relationship (equal to, higher than, etc.) between the desired argument in the 
table and the search argument. The table is searched from right to left until this 
relationship is found or until a table field is found which is shorter than the search 
argument. Then comparison indicat~re turned on and the search terminates. 

Format b: Search the table whose rightmost location is specified by B for an argument which 
bears to the search argument specified by A a relationship specified by the variant 
character of a previous instruction. When this relationship is found or when a 
table field is found which is shorter than the search argument, turn on comparison 
indicators and terminate the search. 

Format c: Search the table whose rightmost location is specified by the contents of the B-ad­
dress register (BAR) for an argument which bears to the search argument specified 
by A a relationship specified by the variant character of a previous instruction. 
When this relationship is found or when a table field is found which is shorter than 
the search argument, turn on comparison indicators and terminate the search. 

Format d: Search the table whose rightmost location is specified by the contents of BAR for 
an argument which bears to the search argument specified by the contents of the 
A-address register (AAR) a relationship specified by the variant character of a 
previous instruction. When this relationship is found or when a table field is 
found which is shorter than the search argument, turn on comparison indicators 
and terminate the search. 

WORD MARKS 

Formats a, b, c, and d: 

The A operand (the search argument) must have a defining word mark. Each 
table field must also have a defining word mark. 

ADDRESS REGISTERS AFTER OPERATION 

SR AAR BAR 

Format a: NXT A-N L 
a ta 

Format b: NXT A-N L 
a ta 

Format c: NXT A-N L 
a ta 

Format d: NXT A -N L 
P a ta 

NOTES 

1. Each value in the table is normally stored immediately to the left of the 
corresponding argument, and each pair (argument plus value) constitutes 
a field in the table. However, if the values in the table are longer than 

8-85 AG28 



three characters, it is advisable to store theIn in another part of IneInory 
and to store their 2- or 3-character addresses in the table instead. Since 
the tiIning of the TLU instruction depends on the nUInber of character s 
searched in the table, it is de"sirable to IniniInize the length of the table. 

2. The Branch on Condition Te st instruction can be used after Table Lookup 
to branch to a routine which Inoves the located value to a work area. Note 
that at the cOInpletion of the T LU instruction, the B-address register (BAR) 
contains the address of the desired value (or the address of a location con­
taining the address of the desired value, in the case where the values are too 
long for efficient storage in the table). 

3. The variant characters which specify the desired relationships between the 
search arguInent and the arguInent to be located in the table are as follows: 

Variant Character (Octal) Relationship Which Terminates Search 

01 Stor ed Ar gument < Search Argument 

02 Stored ArguInent = Search Argument 

03 Stored Argument ~ Search Argument 

04 Stored Argument > Search Argument 

05 Stored Argument =F= Search Argument 

06 Stored Ar gument ~ Search Argument 

4. The length of each arguInent in the table must be equal to the length of the 
search arguInent. Note that a short table field (e. g., one which contains a 
short arguInent or which contains no value) can be used to terIninate the 
search, which leaves the cOInparison indicators set to the condition "Stored 
ArguInent> Search ArguInent. II 

5. The Table Lookup instruction is not interpreted by Easycoder AsseInbler A, 
B, or C. 

6. Easycoder AsseInbler D: 

a. Only the generic op code (TLU) can be used; i. e., specific op 
code s a s in 9. below cannot be used. 

b. Since forInat b. requires the use of a specific op code, Easycoder 
AsseInbler D does not perInit the use of this format. 

7. The Mod 2 asseInblers: 

a. ForInat a Inust use the generic op code (TLU) along with an 
explicit variant characte r. 

b. ForInat b Inust use a specific op code (e. g., LEH) in order to 
supply the oInitted variant character. 

c. ForInats cand d always use the variant character froIn the previous 
contents of the variant register. Therefore, the op code used should 
agree with the one used previously or be the generic forIn (T LU). 

8-86 AG28 



EXAMPLE 

1. Figure 8-10 shows how a stored table is searched for an argument which 
bears a specified relationship to a search argument. 

Search the table tagged TABLE 1 for the value which corresponds to the argument 
(557) stored in the field tagged ARGMNT. 

A Address: 

B Address: 

Variant 1: 

ARGMNT (absolute value = location 609) 

TABLEI (absolute value = location 149) 

02 = (Stored Argument = Search Argument) 

EASYCODER 
CODING FORM 

PR08L£M ______________________ PROGRAMMER ______ DIlTE _____ AUiE_~_ 

CARD IIII LOCATION OPERATION OPERANDS NUMBER COOlE 

I z Is 41, • 7 • 1415 2021 I IZ t3 10 

I ~ TlU ARGMM.T a T.ABlE 1 .02 
I I 

I I . 

I MOS I MOVE OR SCAN 138 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT 

Q. - - -
b. -
c. - -
d. -

8-87 AG28 



00 
I 
00 
00 

> o 
N 
00 

CD 

®I@ 5 

5 5 5 3 CD 0 

EQUALITY OF A-FIELD 
TO STORED ARGUMENT 
TERMINATES OPERATION 

"SHORT FIELD" WHICH 
~ _______ TERMINATESSEARCHIF 

SPECIFIED RELATIONSHIP 
IS NOT FOUND 

5 6 o CD 5 5 5 9 ® 5 5 5 8 

5 5 2 

B FIELD 

607 608 609 

® 5 7 

AI FIELD 

Figure 8-11. TLU Operation 



FUNCTION 

Format a: The contents of the A-field are moved to the B-field in the manner specified by the 
variant character (see Table 8-19). The programmer specifies how the move 
operation is to be performed by selecting the desired conditions from the table and 
encoding the re sulting two octal digits as the variant character of the instruction. 

Format b: This format is valid in symbolic coding only when a specific op code is used to 
indicate the omitted variant character. The resultant machine-language format and 
functions are the same as those described for format a. 

Format c: The contents of the A-field are moved to the field specified by the contents of the 
B-address register (BAR) in the manner specified by the variant character of a 
previous instruction (see Table 8-19). 

Format d: The contents of the field specified by the contents of the A-address register (AAR) 
are moved to the field specified by the contents of BAR in the manner specified by 
the variant character of a previous instruction (see Table 8-19). 

Table 8-19. Move or Scan Conditions 

Variant Character 
(Octal) Condition 

XO 

Xl 

X2 

X3 

X4 

X5 

X6 

X7 

OX 

IX 

2X 

No information is moved. The A- and B-address registers 
are incremented or decremented in accordance with the 
high-order digit of the variant character. 

Move A-field numeric bits to corresponding bit positions in 
B field. 

Move A-field zone bits to corresponding bit positions in 
B field. 

Move A-field data and item-mark bits to corresponding bit 
po sitions in B field. 

Move A-field word-mark bits to corresponding bit positions 
in B field. 

Move A-field numeric and word-mark bits to corresponding 
bit positions in B field. 

Move A-field zone and word-mark bits to corresponding bit 
po sitions in B field. 

Move A-field data, word-mark, and item-mark bits to cor­
responding bit positions in B field. 

Move one character from A to B. The A- and B-address 
registers are decremented by one. 

Move characters from left to right (A and B addresses 
specify leftmost characters in operand fields). Terminate 
the operation when the first A- or B-field word mark is 
sensed. 

Move characters from right to left (A and B addresses 
specify the rightmost characters in operand fields). Ter­
minate the operation when the first A-field word mark is 
sensed. 

8-89 AG28 



Table 8-19 (cont). Move or Scan Conditions 

Variant Character 
(Octal) Condition 

3X 

4X 

5X 

6X 

7X 

Move characters from left to right. Terminate the opera­
tion when the control character "@-,, (72

8
) is sensed in the 

A field. 

Move characters from right to left. Terminate the opera­
tion when the first B-field word mark is sensed. 

Move character s from left to right. Terminate the opera­
tion when the control character ";" (32

8
) with a word mark 

is sensed in the A field. 

Move characters from right to left. Terminate the opera­
tion when the first A- or B-field word mark is sensed. 

Move characters from left to right. Terminate the opera­
tion when either the control character 11_;" (32

8
) with a 

word mark or control character II@II (72
8

) is sensed in 
the A field. 

WORD MARKS 

Formats a, b, c, and d: 

Word marks and control characters affect the operation of the instruction 
as described in the table above. 

_/ 

ADDRESS REGISTERS AFTER OPERATION 

SR 

Format a: NXT 

NXT 

NXT 

NXT 

NXT 

NXT 

Format b: NXT 

AAR 

A-I 

A+N 
w 

A-N 
a 

A+N 
a 

A-N
b 

A-N 
w 

A-I 

BAR 

B-1 

B+N 
w 

B-N 
a 

B+N 
a 

B-N 
b 

B-N 
w 

B-1 

VARIANT = OX 

VARIANT = IX 

VARIANT = 2X 

VARIANT = (3, 5, or 7)X 

VARIANT = 4X 

VARIANT = 6X 

VARIANT = OX 

A+N B+N NXT VARIANT = 1 X 
w w 

A-N B-N NXT VARIANT = 2X 
a a 

A+N B+N 
a a 

NXT VARIANT = (3, 5, or 7)X 

A-N
b 

B-N
b 

NXT VARIANT = 4X 

A-N B-N NXT VARIANT = 6X 
w w 

8-90 AG28 



Format c: NXT A-I 

NXT A+N 
w 

NXT A-N 
a 

NXT A+N 
a 

NXT A-N 
b 

NXT i\.-N 
w 

Format d: NXT A -1 
P 

NXT A +N 
P w 

NXT A -N 
P a 

NXT A +N 
P a 

NXT A -N 
P b 

NXT A -N 
P w 

NOTES 

B -1 
P 

B +N 
p w 

B -N 
p a 

B +N 
p a 

B -N 
P b 

B -N 
P w 

B -1 

B +N 
P w 

B -N 
P a 

B +N 
P a 

B -N 
p b 

B -N 
P w 

VARIANT = OX 

VARIANT = IX 

VARIANT 2X 

VARIANT = (3, 5, or 7)X 

VARIANT = 4X 

VARIANT = 6X 

VARIANT = OX 

VARIANT = IX 

VARIANT = 2X 

VARIANT = (3, 5, or 7)X 

VARIANT = 4X 

VARIANT = 6X 

1. The character containing the term.inating punctuation and/ or control charac­
ters is m.oved or scanned in the sam.e m.anner as the rest of the field. 

2. The variant characters and the corresponding m.nem.onic op codes which they 
repre sent are contained in Appendix B. 

3. The Move or Scan in.struction is not interpreted by the Easycoder Assem.bler 
A, B, C, or D. 

8-91 AG28 



) 



8-94 • STORE VARIANT AND INDICATORS 

8-98 • RESTORE VARIANT AND INDICATORS 

8 -100 • MONITOR CALL 

8-101 • RESUME NORMAL MODE 

8-93 AG28· 



I 5 V I I STORE VARIANT AND INDICATORS I 46
8 

FUNCTION 

FORMAT 

OP CODE A ADDRESS B ADDRESS VARIANT - -
The SVI instruction is used to store inform.ation regarding the current status 
of the processor when an interrupt condition occurs. The instruction stores 
the designated information in up to six consecutive locations following its 
own variant character. 

Each bit in the six-bit variant character (V 6 V 5 V 4 V 3 V 2 V l) repre sents 
processor control registers or indicators whose contents are to be stored in 
a single character location. The program.m.er specifies the am.ount of inform.a­
tion to be stored by selecting the desired entries from. Table 8-20 and encod­
ing the re sulting bit configuration as two octal digits. 

Table" 8-20. Inform.ation Stored by SVI Instruction 

Variant Character 

XXXXXl 

XXXXlX 

XXXIXX 

XXIXXX 

Inform.ation Stored 

The contents of the variant register. The 
setting of the BeT privileged indicator. 

The settings of the arithm.etic, com.parison, 
address m.ode, and item.-m.ark trap m.ode 
indicator s. This inform.ation is- stored in 
seven bit positions of the character location 
- the six data bit po s ition s and the item.­
m.ark bit position. 

The arithm.etic and com.parison indicators 
are cleared when their contents have been 
stored. 

The contents of the auxiliary indicators 
register (AIR). The contents of the arith­
m.etic, comparison, address m.ode, and 
item. m.ark trap m.ode indicators are stored 
autom.atically in this register upon the 
occurrence of an external interrupt. Upon 
executing an RNM instruction to return to 
either standard or internal interrupt m.ode, 
the specified indicator s are re set automati­
cally using the contents of this register. 
The contents of this register can be changed 
by using the R VI instruction. 

The auxiliary arithm.etic and comparison 
indicators are cleared when their contents 
have been stored.' 

The settings of the indicators associated with 
the scientific unit and subproce s sor, the 
sector interrupt m.asks, and the extended 
I/O capacity. The scientific indicators are 
cleared when their contents have been stored. 

8-94 AG28 



Table 8-20 (cont). Information Stored by SVI Instruction 

Variant Character 

XlXXXX 

lXXXXX 

Information Stored 

The settings of the protect, proceed, float­
ing-point error, instruction timeout allow, 
S-mode, and relocation indicators and (if 
the processor is in the external interrupt 
mode) the setting of the internal interrupt 
(II) mode indicator. 

The protect, proceed, floating-point error, and 
instruction time out allow indicator s are cleared 
when their contents are stored. 

The settings of the interrupt source indicators 
and the instruction timeout indicator. The 
stored settings of the interrupt source indi­
cators can be tested to determine the status 
of the processor as follows: 

1. Whether the processor is in the 
external interrupt mode, the 
internal interrupt mode, or the 
standard processing mode. 

2. The source of the interruption if 
the proce s sor is in the external 
interrupt mode; any of three 
sources can be determined - a 
peripheral control, the console, 
or the Monitor Call instruction. 

3. Whether an external interrupt (EI) 
addre s s violation ha s occurred (if the 
processor is in the external interrupt 
mode). 

4. Whether an op code violation has 
occurred (if the proce s sor is in the 
internal interrupt mode). 

5. Whether an internal interrupt (II) 
address viblation has occurred (if 
the processor is in the internal 
interrupt mode). 

6. Whether the extraction and execution 
of an instruction (in the standard mode) 
has exceeded the maximum time limit 
(if'so, an internal interrupt will have 
occurred). 

7. Whether Scientific Unit or Subproce ssor 
is in error. 

The indicators referred to in 3 through 6, above, 
as well as those which identify the control 
panel (or console) and the Monitor Call instruc­
tion source, are cleared when their contents 
are stored. 

8-95 AG28 



WORD MARKS 

A wo rd mark is required in the location following the variant characte r to 
terminate the extraction of the SVI instruction. Other word marks (if any) 
in the locations in which information is stored are ignored and unaffected. 
Program operation resumes with the next word':"marked location following 
the stored information (the next sequential op code). 

ADDRESS REGISTERS AFTER OPERATION 

~, 

Variant Bit 

VI 

V
2 

V3 

V
4 

Vs 

V6 

SR AAR 

NXT A 
P 

r/M Bit 

Testing (BCT) 
of SENSE 
switches 
privileged: 
1 = yes: 
0= no. 

Trap-mode: 
I = yes: 
0= no. 

Contents of AIR 

Extended 
I/O indicator 
1 = on; 
o = off. 

High-resolu-
tion clock 
interrupt: 
1 = yes; 
0 = no. 

':c 

Floating-
point error 
indicator: 
1 = on; 
o = off. 

)1# 

B Bit 

BAR 

B 
P 

Stored Character 

A Bit 8 Bit 

Location Bits 

4 Bit 2 Bit 

Contents of variant register 

Address mode: / Overflow: Zero A~B: 
01 = .2-character; I = yes: balance: I = yes; 
00 = 3-character; 0= no. I = yes; 0= no. 
11 = 4-character. >~ 0= no. * * 

(identical to information stored by V 2' above) 

>~ * * 
MPO: DVC: EXO: Sector 1 Sector 2 
I = yes; I = yes; 1 = yes; interrupt interrupt 
0= no. 0= no. 0= no. mask: mask: 

):c ):~ ~, 1 = on; 1 = on; 
o = off. o = off. 

Protect Instruction "S" mode Proceed Relocation 
indicator: timeout indicator: indicator: 
1 = on; allow 1 = on; 1 = on; 
0= off. 1 = on; 0= off. o = off. 

* o = off. * * 
Processor is in external interrupt mode 

EI ad- Monitor Control Periph- I-
dress Call: panel or eral 
violation: 1 = yes; console interrupt: 
1 = yes; 0= no. interrupt: 1 = yes; 
0= no. 1 = yes; 0= no. 

):~ ,~ o = no. ':C 

Proces sor is', in internal interrupt mode. 

II Ad- Op code Instruc - O. 0 
dress violation: tion 
violation: 1 = yes; timeout 
1 = yes; 0= no. indicator 
0= no. 1 = yes; 

~( ':.: o = no. * 
= Indicators that are cleared when their contents are stored. 

8-96 

1 Bit 

A = B: 
I = yes; 
0= no. 

* 

* 
Sector 3 
interrupt 
mask: 
1 = on; 
o = off. 

In external 
interrupt 
mode only: 
1 = II indicator 
on; otherwise. 
O. 

II Mode 
indicator: 
1 = 'on; 
o = off. 

.1' 

AG28 



NOTES 

1. Only the numb~r of character s specified by the variant cha'racter are 
stored. They are stored in the order listed in Table 8-20: the contents 
of the variant register (if specified) are stored in the location immediately 
following the SVI instruction, etc., using those locations actually required 
to store the requested information. 

2. Item-mark and data bit positions which are not used to store information 
are cleared to OIS. 

3. The format in which information is stored by the SVI instruction is shown 
in the preceding table. Indicator s which are cleared (i. e., set to 0) when 
their contents are stored are indicated by an asterisk (~:~). 

4. The current status of the arithmetic, comparison, address mode, and trap 
mode indicator s are not stored in the auxiliary indicator s register (AIR) 
when an internal interrupt occurs. The contents of AIR should therefore 
not be stored by an SVI instruction in the internal interrupt mode, for the 
contents cjf AIR would be meaningle s s at the time of internal interruption. 

5. The SVI op code is a "privileged" op code that has special significance 
when Storage Protection is in effect. 

6. This instruction is intended for use in the interrupt mode and should not 
be issued in the standard mode. 

7. The method of coding interrupt service routines is described in Section II 
"Interrupt Processing. " 

8. The contents of the variant register are not altered by the execution of this 
instruction; i. e., the variant character of the SVI instruction is not stored 
therein. 

EXAMPLE 

Store the following information in the three successive memory locations which immedi­
ately follow the variant character of the instruction: 

1. 

2. 

. 3. 

The contents of the variant register; 

The contents of the auxiliary indicator s register (AIR); and 

The settings of the interrupt source indicator s. 

The op code of the SVI instruction is tagged STORE, so that the locations of the stored 
information are STORE+2, STORE+3, and STORE+4. 

EASYCODER 
COOING FORM 

PROBLEM PROGRAMMER DATE ' PAGE OF 

CARD III lOCATION 
OPERATION 

OPERANDS NUMBER CODE 

1 21S 4 5 6 T 8 1415 2021 62 6S 10 

I : STO,RE !S,V J 4,5' 

8-97 AG28 



RVI IRESTORE VARIANT AND INDICATORS 1 678 1 

FORMAT 

FUNCTION 

OP CODE A ADDRESS B ADDRESS VARIANT - -
Up to five cons ecutive characte rs (previous ly stored via an SVI instruction) 
are loaded into the processor control registers and/or indicators specified 
by the variant characte r. Characters are retrieved froIn left to right, be­
ginning with the characte r specified by the A add res s. 

The low-order five bits of the variant character specify the registers and/or 
indicators whose contents are to be restored. The prograInIner specifies 
the aInount of information to be restored by selecting the desired entries 
froIn Table 8-21 and encoding the resulting bit configurations as two octal 
digits. 

Table 8-21. Information Restored by RVI Instruction 

Variant Character Information Restored 

Vq V SV4V 3V 2Vl 

0 XXXX 1 The contents of the variant register, and the setting of 
the BCT privileged indicator. 

0 XXX 1 X The settings of the arithmetic, comparison, address 
mode, and item-mark trap mode indicators. This 
information is stored in the six data bits and the 
item-mark bit of a character location. 

0 XX 1 XX The contents of the auxiliary indicator s register (AIR). 
Upon returning from external interrupt mode to either 
internal interrupt or standard mode, the contents of 
this register are moved automatically to the indicators 

specified above for V 2' 

0 X 1 XXX The setting of the indicators associated with the 
scientific unit or subprocessor and the sector interrupt 
masks. 

0 1 XXXX The settings of the ,protect, proceed, instruction time-

out allow, S mode, and relocation indicator s and (if 
the processor is in the external interrupt mode) the 
setting of the internal interrupt (II) mode indicator. 

8-98 AG28 



WORD MARKS 

Word marks neither affect nor are affected by this instruction. 

ADDRESS REGISTERS AFTER OPERATION 

SR 

NXT 

NOTES 

AAR 

A 
P 

BAR 

B 
P 

1. Each entry in the right-hand column of Table 8-21 is retrieved from a single 
character locf\.tion. Only the number of character s corresponding to the 
selected table entries are retrieved by the RVI instruction. 

2. The R VI op code is a "privileged" op code that has special significance when 
Storage Protection is in effect. 

3. This instruction is intended for use in the interrupt mode and should not be 
issued in the standard mode. 

4. The format in which information is stored by an SVI instruction is shown in 
Table 8-20. Note that the information contained in the la"st character loca­
tion is not restored by the RVI instruction. 

5. The method of coding interrupt service routines is described in Section II, 
"Interrupt ProcesEiing. " 

6. The protect and proceed indicators, when present in the user's system, 
are not turned on automatically by the computer but instead must be turned 
on by programmed instructions, as follows: (1) a one-bit is set in the bit 
po sition which, when re stored by the R VI instruction, indicate s the status 
of the indicator; and (2) an R VI instruction with a V 5 bit of 1 in the vari,.ant 
character is executed, thereby turning on the appropriate indicator. 

7. Unless the contents of the variant register are explicitly restored by this 
instruction, they are not altered by its execution; i. e., the variant charac­
ter of the RVI instruction is not stored in the variant register. 

EXAMPLE 

Restore the contents of the variant register and auxiliary indicators register 
(AIR) that were previously stored by the SVI instruction example. 

EASYCODER 
CODING FORM 

PROBLEM _________ ---------------PROGRAMMER ______ DATE _____ PAGE_OF_ 

CARD ~ ~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

1 213 415 6 7 8 1415 2021 I I I I i 6263 80 

I i RVI STORE+2,¢5 
J 

I \ 

I I 
I I 

1 J 
I I 

i I 
I I 
I I 

J •••••. 1 

8-99 AG28 



Mel MONITOR CALL I 448 

FORMAT 

OP CODE A ADDRESS B ADDRESS -
FUNCTION 

The Monitor Call instruction causes the processor to enter the external interrupt 
lTlode (if the processor is not already in that lTlode). The following activities are 
autolTlaticall y pe rforlTled: 

1. The EI interrupt source indicators are set to show that the Monitor Call 
instruction is the source of interruption, and the processor enters the 
external interrupt mode; 

2. The settings of the arithlTletic, cOlTlparison, address lTlode, and item­
mark trap .mode indicators are stored in the auxiliary indicators reg­
ister (AIR); 

3. The arithmetic indicators are cleared; 

4. The contents of the sequence register (SR) and the external interrupt 
register (EIR) are interchanged, and the program branches to the instruc­
tion whose op code address was previously stored in EIR; 

5. The processor switches to the three-character, non-trap mode. 

WORD MARKS 

Word marks are not affected by this instruction. 

ADDRESS REGISTERS AFTER OPERATION 

SR EIR AAR BAR 

JI (con- NXT 
tents 
of'EIR) 

NOTES 

1. If this instruction is issued in the external interrupt mode, the results are 
unspecified. 

2. The interrupt source indicators can be stored via an SVI instruction 
(see page 8-94). Their stored contents can then be interrogated by 
programmed instruction to determine the interrupt source. 

EXAMPLE 

Interrupt the central processor and branch to MONTOR, the location of the monitor 
program. The address tagged MONTOR, was previously stored in EIR. 

8-100 AG28 



EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER _____ OATE _____ PAGE_OF_ 

CARD I~ 16 LOCATION 
OPERATION OPERANDS NUMBER CODE 

I 213 415 I 7 • 1415 2021 12 6) 

I I LCR MeN TOR .•. 66. 
-r 

I ( 

i i ( 
1 I ~ 
: I iMe 
I I 

I RNM I RESUME NORMAL MODE 41 8 

FORMAT. 

OP CODE A-ADDRESS B-ADDRESS 

o. -
b. -
c. -

FUNCTION 

Format a: The RNM instruction caus es an exit from the program being executed in the 
interrupt mode (exte rnal or inte rnal) to the program which was inte rrupted. 
The activities performed depend on the type of interrupt mode in which the 
instruction is issued. 

When the RNM instruction is issued in the external interrupt mode: 

1. The EI mode indicators are turned off; 

2. The arithmetic, comparison, address mode, and item-mark trap mode 
indicators are restored to the status specified by the auxiliary indicators 
register (AIR): 

3. The A and B addresses of the RNM instruction are stored in the A- and 
B-address registers (AAR and BAR), respectively; and 

4. The contents of the sequence register (SR) and the external interrupt reg­
ister (EIR) are interchanged, and the program branches to the instruc­
tion whose op code address was initially stored in EIR when the external 
interrupt occurred. 

When the RNM instruction is issued in the internal interrupt mode: 

1. The II mode indicator is turned off; 

2. The A and B addresses of the RNM instruction are stored in AAR and 
BAR, respectively; and 

3. The contents of SR and the internal interrupt register (IIR) are inter­
changed, and the program branches to the instruction whose op code ad­
dress was initially stored in IIR when the internal interrupt occurred. 

8-101 

80 

AG28 



Format b: This format operates like format a. except that the B address of the RNM instruc­
tion is not stored in BAR. The previous contents of BAR are not changed. 

Format c ~ This format operates like format a. except that no instruction addresses are stored. 
The previous contents of AAR and BAR are not affected by this format. 

WORD MARKS 

\Formats a, b, and c: 

Word marks are not affected by this instruction. 

ADDRESS REGISTERS AFTER OPERATION 

SR EIR IIR AAR BAR 

Format a: NXT address of op A B RNM ISSUED 
code following n/a IN EXTERNAL 
RNM instruction INTERRUPT 

MODE 

address of op RNM ISSUED 
NXT n/a code following A B IN INTERNAL 

RNM instruction INTERRUPT 
MODE 

Format b: address of op RNM ISSUED 
NXT code followirlg n/a A Bp IN EXTERNAL 

RNM in struction INTERRUPT 
MODE 

addre s s of op RNM ISSUED 
NXT n/a code following A Bp IN INTERNAL 

RNM instruction INTERRUPT 
MODE 

Format c: address of op RNM ISSUED 
NXT code following n/a A B IN EXTERNAL 

RNM instruction 
p p 

INTERRUPT 
MODE 

address of op RNM ISSUED 
NXT n/a code following A B IN INTERNAL 

RNM instruction 
p p 

INTERRUPT 
MODE 

NOTES 

1. The address of the instruction which follows the RNM instruction is 
stored in the appropriate interrupt register (EIR or IlR) when the ltNM 
instruction is executed. This register therefore contains the address 
of the first instruction executed in" the interrl,lpt routine when the next 
interrupt of the same type occurs. This instruction should be an SVI 
instruction, which should be the first instruction executed in any 
interrupt service routine. 

"8-102 AG28 



2. The method of coding interrupt service routines is described in Section II, 
under "Interrupt Processing." 

3. The RNM op code is a "privileged" op code that has special significance when 
Storage Protection is in effect. 

4. This instruction is intended for use in the interrupt mode and should not be 
issued in the standard mode. 

EXAMPLE 

The simplified coding below shows a convenient method of restoring the 
starting address of the external interrupt routine (EXT2) in EIR when the 
normal program sequence is resumed. 

EASYCODER 
CODING FORM 

PROBLEM _______________________ PROGRAMMER ______ DATE ______ PAGE_OF_ 

CARD I~I~ LOCATION 
OPERATION 

OPERANDS NUMBER I~ ~ CODE 

I 213 415 6 7 8 '.,5 2021 1 6263 80 

I l RESUME IR.NM 
I 

I EX12. SVl 145 
i I I 
I I ) IN,ER,RIJPi ,RouT \N.E 
: l } 

I I ) 

1 I Is ~ESUME. 
i I 

8-103 AG28 



.'\ 



r ,EDITING ,I 

8-106 • MOVE CHARACTERS AND EDIT 

8-105 AG28 



I MCE I MOVE CHARACTERS AND EDIT I 748 I 

FORMAT 

OP CODE A ADDRESS B ADDRESS 

o. _ 

b. _ 

c. _ 

FUNCTION 

Format a: The MCE instruction is used to insert identifying symbols and punctuation and to 
suppress unwanted 0' s in a data field. The A-field of an MCE instruction contains 
the information to be edited. The B -field contains an edit control word which pro­
vides a framework for the edit operation. When an MCE instruction is executed, 
the data in the A -field is moved to the B -field where it is punctuated and formatted 
according to the edit control word already stored in that field. 

NOTE: An LCA instruction can be used to load the control word into the field 
where the edited information will eventually go. For instance, if the edited inform­
ation is to be printed, the control word should be loaded into the print image area 
and the address of this area should be used as the B-address of the MCE instruction. 

Editing is performed according to the following rules: 

RULE 1. Any character in the Serie s 2000 character set can be used in the edit 
control word. Those characters having special meanings are listed in Table 8-22. 
Any other character, if included in the edit control word, remains in the edited 
re suIt in the position where written. . 

RULE 2. A word mark in the high-order position of the B-field controls the edit 
operation. 

RULE 3. The number of replaceable characters in the edit control word must be 
at least as large as the number of characters in the A-field. 

RULE 4. Data is transferred from the A-field character.-by-character, from right 
to left. If a zero suppre ssion symbol is not sensed in the edit control word, the 
edit operation terminates when the B-field word mark is sensed. A zero suppres­
sion symbol causes the edited result field to be scanned from left to right. During 
this scan, high-order 0' s and commas are automatically replaced by blanks (unless 
an asterisk appears immediately to the left of the zero suppression symbol - see 
rule 5). Zero suppression is terminated by any of the following: 

a. a decimal digit from 1 through 9, 

b. a decimal point, or 

c. the location that initially contained the zero suppre s sion symbol. 

RULE 5. An asterisk immediately to the left of the zero suppression symbol in the 
control word causes high-order zeros and commas to be replaced by asterisks 
instead of blanks in a zero suppression operation. High-order blanks are also 
replaced by asterisks. 

8-106 AG28 



RULE 6. A dollar sign immediately to the left of the zero suppression 
symbol in the control word is replaced with an A-field character and 
causes the edited result to be rescanned following the zero suppression 
operation. During this scan, the dollar sign is "floated" to the left 
of the high-order significant digit in the edited result. 

RU LE 7. 1£ the sign of the A-field is positive, any location in the 
B-fieldcontaining C, R, CR, or - (octal 23, 51, 75, and 40, respec­
tively) has its contents replaced by a blank. Replacement terminates 
at the first 0 or blank in the B-field, but is resumed after transfer of 
the high-order significant digit of the A-field. 

Table 8-22. Special Characters in MCE Instruction 

CONTROL a 
CHARACTER 

b (blank) 

o (zero) 

(decimal point) 

, (comma) 

C R , CR (credit) 

5 (minus) 

NOTE: 5 is printed 
as a minus symbol. 

::~ (as te ris k) 

$ (dollar sign) 

FUNCTION 

Blanks are replaced with A-field characters such 
that the rightmost character in the· A-field re­
places the rightmost blank in the edit control word 
and all higher-order A-field characters replace 
successively higher-order blanks. 

This symbol specifies zero suppression. Its loca­
tion in the control word is interpreted as the right­
most limit of ze ro s uppres s ion. It is replaced with 
an A-field characte r. 

The decimal point remains in the edited field in the 
position where written. 

Commas remain in the edited field where written 
unless zero suppression is specified (see rule 4). 
Commas in control wo rd pos itions to the left of 
the high-order character transferred from the A­
field are replaced by blanks. 

The credit or minus symbol is undisturbed if the 
sign in the units position of the A-field is negative. 
If the sign is positive, the credit (or minus) sym­
bol is blanked out.· A credit (or minus) symbol 
transferred from the A-field is not subject to 
sign control. 

An octal 37 is replaced by a blank in the edited 
field. 

The asterisk rema·ins in the edited field in the posi­
tion where written unless it appears immediately 
to the left of the zero suppression symbol (see 
rule 5). 

The dollar sign remains in the edited field in the 
pos ition where written unles s it appears immedi­
ately to the left of the zero suppression symbol 
(see rule 6). 

a -
If assembling under Easycoder C with a Type 222 Printer, 0 will assemble as 578 and be 
printed as 1/2. To edit a minus symbol, a dash (-) must be used; it assembles as 408 • 

8-107 AG28 



Format b: The data contents of the A field are edited and stored in the field specified by the 
contents of the B-address register (BAR) according to the rules outlined above. 

Format c: The data field specified by the contents of the A-address register (AAR) are 
edited and stored in the field specified by the contents of BAR according to the 
rules outlined above. 

WORn MARKS 

Formats a, b, and c: 

Both the A field and the B field must have defining word marks. The A-field 
word mark terminates the transfer of data from the A field. The B-field word 
mark terminates the edit operation if no zero suppression symbol is sensed in 
the edit control word or if automatic dollar sign insertion is specified in con­
junction with zero suppression. The B-field word ,mark is erased after termin­
ating the edi~. 

If zero suppression is specified. a word mark is automatically set in the location 
containing the zero suppression symbol. When this word mark is sensed during 
the reverse scan associated with the zero suppression operation, it is e,rased 
and, if automatic dollar sign insertion is not called for, the edit operation 
te rminates . 

Address Registers After Operation 

NOTES 

Unspecified unless floating dollar sign is processed. After processing of the 
terminating location of zero suppression, this location and successive loca­
tion s to the left are examined until one is found that contains a blank. The $ 
character is stored in this location and the operation terminate s, leaving the 
B-address register one location to the left of the $. 

1. The zone bits in the units position of the A-field are cleared to 0 when moved 
to the B-field. Therefore the value of the character in the units position in 
the A-field may change when moved to the B-field. For example, an F in the 
units position of the A-field will appear as a 6 in, the result field. 

2. Floating dollar sign insertion and automatic asterisk insertion cannot be 
performed in the same edit operation. 

3. The contents of the variant register are unspecified following the execution 
of this instruction. Therefore, an instruction requiring a variant character 
cannot be chained following an MCE instruction. 

8-108 AG28 



EXAMPLES 
1 

Data Field (A Field) 

Control Word (B Field) 

Re suIt of Edit 

Example 1. 

Data Field (A Field) 

Control Word (B Field) 

Re suit of Edit 

Example 2. 

Data Field (A Field) 

Control Word (B Field) 

Result of Edit 

Example 3. 

Data Field (A Field) 

Control Word (B Field) 

Result of Edit 

ExaITlple 4. 

Data Field (A Field) 

Control Word (B Field) 

Re suIt of Edit 

ExaITlple 5. 

@000099 

® bb, bbO. bb&&O 

• 99 

@ 5454986 

@bb&bb&bbb 

254 54 986 

@00450 

®b, bbO. bb&CR:!c 

$ 4.50 ~:: 

@0897445 

@bbb, b$O. bb 

$8,974.45 

@)l10450 

~,b:!(O.bb 

***104.50 

IThe character (378) is s.hown as an aITlpersand (&) in these exaITlples. However, the ampersand 
is not the only equivalent of 378 as shown in Table B-6. 

8-109 AG28 





I NPUT/OUTPU.T 

8-116 • PERIPHERAL DATA TRANSFER 

8-139 • PERIPHERAL CONTROL AND BRANCH 

8-111 AG28 



INPUT /OUTPUT CONTROL OPERATIONS 

Effective control over data transfers between the central processor and peripheral units 

and over the peripheral units themselves is maintained by the use of two basic instructions: 

Peripheral Data Transfer (PDT), and Peripheral Control and Branch (PCB). The PDT instruc­

tion is used to initiate data transfer operations and certain other related operations, such as 

backspace magnetic tape and advance the printer form. 

The PCB instruction can perform four distinct functions: (l) it initiates strictly mechan.­

ical (non-data transfer) operations such as magnetic tape rewinds and card rejections; (2) it 

causes a program branch to be performed contingent upon the setting s of peripheral condition 

indicators; (3) it changes the operational mode of a peripheral control; and (4) it allows a 

peripheral control to interrupt (or directs the control not to interrupt) the central processor 

when data transfer is completed. 

Detailed programming and operating information for Series 200/2000 peripheral devices 

is provided in separate publications. The remainder of this section is a summary of the PDT 

and PCB instructions, based on the assumption that the user is familiar with the contents of the 

applicable documents. In all applicable cases, the coding summary for a device is followed by 

a reference to the specific Honeywell manual or information bulletin where additional informa­

tion can be found. 

SELECTING RWC ASSIGNMENTS FOR USE IN PDT INSTRUCTIONS 

As described below, the first control character (Cl) in a PDT instruction is referred to 

as the "read/write channel assignment. II This six-bit character specifies the read/write 

channel(s) selected to complete the data path. When coding a PDT instruction, the programmer 

may refer to Table 8-24 to select an RWC assignment. The following discussion concerns the 

considerations involved in selecting RWC assignments and the correspondence between achiev­

able data transfer rates and RWC assignments. 

Considerations in Selecting R WC Assignments 

At least four factors must be considered when selecting anRWC assignment. These 

factors are: (1) the data transfer rate of the device being addressed; (2) the processor being 

used; (3) the I/O sector to which the device is attached; and (4) the necessity of being upward 

compatible. 

8-112 AG28 



DEVICE DATA TRANSFER RATE 

The first consideration in selecting an RWC assignment is the rated speed at which the 

device being addressed transfers data to or from main memory. The one or more RWC's 

assigned to an operation must receive memory accesses often enough to keep up with the I/O 

data transfer rate of the device. For example, the RWC assignment used in a PDT instruction 

which addresses a Type 258 Disk Pack Drive must designate a data transfer capacity high 

enough to keep pace with the device's 208, OOO-character-per-second transfer rate. 

However, due to mechanical tolerances, some device s may transfer data at instantaneous 

rates higher than their nominal transfer rates. In a few such cases, the devices require an 

RWC assignment having a greater data handling capacity than would be required if the nominal 

data transfer rate were maintained. As an example, a Type 204B-5 tape drive using a density 

of 556 bits per inch requires an RWC assignment having a data handling capacity of 167,000 

characters per second, even though the nominal transfer rate for this device is less than 

83, 300 character s per second. 

Table 8-23 lists the minimum RWC capacity requirements for each Series 2000 peripheral 

device. 

Table 8-23. Minimum RWC Capacity Requirements for Series 200/2000 Peripheral Devices 

112 Printer 
112-3 Printer 
122-3 Printer 
122-4 Printer 
122-6 Printer 

Device 

123 Card Reader 
123 - 2 Card Reader 
123-4 Card Reader 
204B -1, - 2 Magnetic Tape Units 
204B-3, -4 Magnetic Tape Units 
204B-5 Magnetic Tape Unit (200 bpi) 
204B-5 Magnetic Tape Unit (556 bpi) 
204B-7 Magnetic Tape Unit 
204B-8 Magnetic Tape Unit (200/556 bpi) 
204B-8 Magnetic Tape Unit (800 bpi) 
204B-9 Magnetic Tape Unit (200/556 bpi) 
204B-9 Magnetic Tape Unit (800, 1200 bpi) 
204D-1 Magnetic Tape Unit 
204D-3 Magnetic Tape Unit (800 bpi) 
204D-3 Magnetic Tape Unit (1600 bpi) 
204D-5 Magnetic Tape Unit (800 bpi) 
204D-5 Magnetic Tape Unit (1600 bpi) 
204D-3A Magnetic Tape Unit (800 bpi) 
204D-3A Magnetic Tape Unit (1600 bpi) 
204D-5A Magnetic Tape Unit (800 bpi) 

8-113 

Minimum RWC Capacity Required 

167 KC 
167 KC 
167 KC 
167 KC 
167 KC 
83.3 KC 
83.3 KC 
83.3 KC 
83.3 KC 
83.3 KC 
83.3 KC 
167 KC 
83.3 KC 
83.3 KC 
167 KC 

) 83.3 KC 
167 KC 
83.3 KC 
83.3 KC 
167 KC 
167 KC 
250 KC 
83.3 KC 
167 KC 
167 KC 

AG28 



Table 8- 23 (cont). Minimum RWC Capacity Requirements for Series 200/2000 Peripheral Device s 

Device Minimum R WC Capacity Required 

204D-5A Magnetic Tape Unit (1600 bpi) 
204F-1 Magnetic Tape Unit 
204F-3 Magnetic Tape Unit (800 bpi) 
204F-3 Magnetic Tape Unit (1600 bpi) 
204F-5 Magnetic Tape Unit (800 bpi) 
204F-5 Magnetic Tape Unit (1600 bpi) 
209 Paper Tape Reader 
209-2 Paper Tape Reader 
210 Paper Tape Punch 
212 On-Line Adapter 
212-1 Central Proces sor Adapter 
212-2 CP Memory-to-Memory Transfer Unit 
213-3 Interval Timer 
213-4 Time-of-Day Clock 
214-1 Card Punch 
214-2 Card Reader Punch - Read 
214-2 Card Reader Punch - Punch 
220-3, -6 Consoles 
220-8 VICC Console 
222 Printers (all versions)l 
223 Card Reader 
223-2 Card Reader 
232 MICR Reader-Sorter and Control 
233-2 MICR ·Control for BI03 
236 High-Speed MICR Reader":Sorter 
243 Optical Document Reader 
258 Disk Pack Drive 
258B Disk Pack Drive 
259 Disk Pack Drive 
259B Disk Pack Drive 
266 High-Speed Disk File 
270A Drum 
273 Disk Pack Drive 
274 Disk Pack Drive 
275-2 Disk Pack Drive 
277 ... 2 Disk Pack Drive 
278-5 Disk Pack Drive 
278-6 Disk Pack Drive 
278-7 Disk Pack Drive 
278-8 Disk Pack Drive 
278-9 Disk Pack Drive 
279-2 Disk Pack Drive 
281 Single - Line Communication Controller s (all ver sions)2 
286-1, -2, -3 Multiline Communication Controllers 
286-4, -5, -6, -7 Message-Mode Multiline Communication 

Controller s3 
287 -1 USASCII AUTODIN Communication Controller2 

250 KC 
83.3 KC 
83.3 KC 
167 KC 
167 KC 
250 KC 
83.3 KC 
83.3 KC 
83.3 KC 
167 KC 
167 KC 
167 KC 

83.3 KC 
83.3 KC 
83.3 KC 
83.3 KC 
83.3 KC 

167 KC 
83.3 KC 
83.3 KC 
83.3 KC 
83.3 KC 

83.3 KC 
250KC 
167 KC 
250 KC 
167 KC 
333 KC 
167 KC 
250 KC 
250 KC 
250 KC 
167 KC 
500 KC 
500 KC 
500 KC 
500 KC 
500 KC 
167 KC 
83.3 KC 
83.3 KC 
83.3 KC 

83.3 KC 

1When a 222-3, -4, -6, or -7 printer is equipped with the Print Buffer (Feature 036), the 
transfer rate must be either 83.3 KC or 167 KG. 

2The 281-2F and 287-1 controllers require exclusive assignment of two 83.3 KC RWC's when 
operating in the full-duplex mode. 

3The maximum RWC capacity that can be assigned to a 286-4, -5, -6, or -7 is 167 KC. 

8-114 AG28 



THE PROCESSOR BEING USED 

Some Series 2000 processors are available with a basic and an expanded I/O configuration. 

These I/O configurations include different numbers of RWC' s. Therefore, the identity of the 

proce s sor being used and whether it is an expanded configuration must be known in order to 

determ.ine which RWC assignments are available for use. 

The multicharacter processors are equipped with "variable-speed" read/write channels, 

and no more than two R WC' s (a primary and the corre sponding auxiliary) are ever made busy 

by a single R we as signment. R WC' s not made busy by a high- speed transfer are available for 

use in other operations. 

An additional capability of the multicharacter processors makes variable-speed read/ 

write channels even more attractive: in these processors, it is possible to assign RWC's out­

side their "home" sectors. For example, an RWC normally used only in sector 1 can be 

assigned to an I/O transfer operation in sector 2. Such assignments of RWC' s are accomplished 

by means of the "sector bits" of I/O control character C2, or through the use of "escape 

codes." This facility enables the programmer to transfer RWC' s temporarily to a sector per­

forming several low- speed operations from another sector in which one or two operations are 

using the sector's entire data handling capacity, 

INPUT /OUTPUT SECTOR TO WHICH DEVICE IS CONNECTED 

Each input/output sector in a Series 2000 processor has a maximum total data transfer 

capacity of 500, 000 characters per second. 

In general, the RWC assigned to an operation should be associated with the sector to 

which the addressed device is connected. However, as indicated above, this rule can be cir­

cumvented to advantage in multicharacter processors by the proper selection of C2 sector bits 

or escape codes. 

UPWARD COMPATIBILITY 

Because of the manner in which upward compatibility has been consistently implemented 

in Se:des 2000 processors, very little consideration need be given to this factor when selecting 

RWe assignment codes. The one case where such consideration must be given is when assign­

ing a primary R WC for which there is no corre sponding auxiliary channel in the proce s sor 

being programmed to an operation faster than 83, 000 characters per· second. An example of 

such a case is the assignment of the single channel RWC 2 to a drum read operation (102, 000 

characters per second) to be performed in, a basic Type 2040A processor. In the basic pro­

cessor, RWe 2 can handle transfer rates up to 167,000 characters per second. However, in an 

expanded Type 2040A (with PMlA40) RWC's 2 and 2' can handle only 83, 000 characters per 

8-115 AG28 



second apiece unless they are interlocked. Thus, if the attempt were made to run the basic 

2040A program on an expanded 2040A, the RWC 2 alone would not be able to handle the drum's 

transfer rate. 

In order to avoid such problems, the following general rule should be followed: 

The R WC assignment in a PDT instruction addressing a device which operates 
between 83, 300 and 167,000 characters per second should be such that it would 
interlock the primary channel and its auxiliary if the program were run in a 
processor equipped with both channels; i. e., its high-order digit should be 5 or 7. 

Clearly, there is no need to specify the "interlock" assignment if the device runs slower than 

83,300 characters per second. Rather, in the interest of making more RWC's available for use 

in other operations, it is wise in such cases to specify the single-channel assignment. 

I PDT I PERIPHERAL DATA TRANSFERI66 8 I 
FORMAT 

( I/O CONTROL CHARACTERS) 

OP CODE A ADDRESS CI C2 C3 Cn - - - r---- -., r------, 
1 \···1 I L.. _____ J L ______ J 

Q. 

OP CODE A ADDRESS CI CE C2 C3 Cn 

b. - - - - r---'" r----.., 
L ___ J···L ___ J 

FUNCTION 

Format a: The PDT instruction causes data to be transferred between a peripheral device and 
the main memory area whose leftmost l location is designated by the A address. Data 
transfer is terminated according to the data medium employed. Input/output control 
characters specify the data path through which the transfer is to be accomplished, as 
indicated in Tables 8-24 and 8-26. 

Format b: Data is transferred between a peripheral device and the main memory area whose 
leftmostl location is designated by the A address. Data transfer is terminated ac­
cording to the data medium employed. Input/output control characters and an escape 
code specify the data.J)ath through which the transfer is to be accomplished, as indi­
cated in Tables 8-24, 8-25, and 8-26. 

1 Rightmost if Read Reverse is specified. 

8-116 AG28 



Table 8- 24. Description of PDT I/O Control Character C 1 
(RWe Assignment) 

Type 2041 

Data Handling Capacity R we' s Interlocked R we Assignment 
(character s per second) and Made Busy (Note 8) Code 

Sector 1 

83,000 1 - 11 
83,000 1 ' 15 

167,000 1,1' 51 
167,000 2 52 
167,000 3 53 -
250,000 1 ',1 55 
333,000 ~, 3 56 
500,000 1, 1', 2,1 54 

Sector 2 

83,000 4 31 -
83,000 4' - 35 

167,000 .1,4' 71 
167,000 5 72 
167,000 6 73 
250,000 4',~ 75 
333,000 5,~ 76 
500,000 4,4',5,~ 74 

Type 2041A (Basic) 

Sector 1 

167,000 2 52 -
167,000 3 - 53 
333,000 2,1 56 
500,000 1,1',2,1 54 

83,000 1 11 
83,000 1 ' 15 

167,000 1,1' 51 
250,000 l' ,1 55 

Sector 2 

83,000 4 ·31 -
83,000 4' 35 

167,000 .1,4' 71 
167,000 5 72 
167,000 6 73 
250,000 4',~ (note 9) 75 
333,000 5,~ (note 9) .76 
500,000 4, 4', 5,~.(note .9) 74 

8-117 AG28 



Table 8-24 (cont). Description 'of PDT I/O Control Character C 1 
(RWC Assignment) 

Type 2041A 
(with PMIA40) 

Data Handling Capacity Read/Write RWC RWC Time Slot U sed on 
(characters per second) Counter Code Code RWG-Assigned 

Notes Sector 

Sector 1 

83,000 1 11 1 
83,000 (l67,000) 2 12 1 2 (2,2') 
83,000 (167, OOO) 3 13 1 3 (3,3') 
83,000 I' 15 I' 
83,000 2' 16 6 2' 
83,000 3' 17 6 3' 

250,000 2 50 1, 2t 2' 
167,000 1 (l,I') 51 1, I' 
167,000 2 (2, 2') 52 2, 2' 
167,000 3 (3,3') 53 3,3' 
500,000 3 54 2 1,2,3, 1',2',3' 
250,000 3 55 2 1',3 , 3' 
333,000 3 56 2 2,3,2',3' 

Sector 2A 

83,000 4 31 1 
83,000 (167,000) 5 32 1 2 (2,2') 
83,000 (167, OOO) 6 33 1 3 (3,3') 
83,000 4' 35 I' 
83,000 5' . 36 6 2' 
83,000 6' 37 6 3' 

250,000 5 70 2, 6 1, 2, 2' 
167,000 4 (4,4') 71 1, I' 
167,000 5 (5,5') 72 2, 2' 
167,000 6 (6,6') 73 3,3' 
500,000 6 14 2 1, 1', 2, 2', 3, 3' 
250,000 6 75 2 1',3,3' 
333,000 6 76 2 2,·2',3,3' 

8-118 AG28 



Table 8-24 (cant). Description of PDT I/O Control Character C 1 
(RWC Assignment) 

Type 2041A 
(with PMIA40 and PMIB40) 

Data Handling Capacity Read/Write RWC RWC Time Slot U sed on 
(characters per second) Counter Code Code RWG-Assigned 

Notes Sector 

Sector 1 

83,000 1 11 1 
83,000 (167,000) 2 12 1 2 (2,2') 
83,000 (167,000) 3 13 1 3 (3,3') 
83,000 1 ' 15 1 ' 
83,000 2' .16 6 2' 
83,000 3' 17 6 3' 

250,000 2 50 1,2,2' 
167,000 1 (1, 1 ') 51 1, l' 
167,000 2 (2, 2') 52 2,2' 
167,000 3 (3,3') 53 3,3' 
500,000 3 54 2 1,2,3,1',2',3' 
250,000 3 55 2 1"',3,3' 
333,000 3 56 2 2,3,2',3' 

Sector 2A 

83,000 4 31 1 
83,000 (167,000) 5 32 1 2 (2,2') 
83,000 (l67,000) 6 33 1 3 (3,3') 
83,000 4' 35 1 ' 
83,000 5' 36 6 2' 
83,000 6' 37 6 3' 

250,000 5 70 2,6 1,2,2' 
167,000 4 (4,4') 71 1, l' 
167,000 5 (5,5') 72 2,2' 
167,000 6 (6,6') 73 3,3' 
500,000 6 74 2 1, 1', 2, 2', 3, 3' 
250,000 6 75 2 1', 3, 3' 
333,000 6 76 2 2,2',3,3' 

Sector 2D 

83,000 (l67,000) 8 22 1,5 2 (2, 2' ) 
83,000 (167,000) 9 23 1, 5 3 (3,3') 
83,000 8' 26 5 2' 
83,000 9' 27 5 3' 

250,000 8 60 2,5 1, 2, 2' 
167,000 8 (8,8') 62 5 2, 2' 
167,000 9 (9, 9') 63 5 3, 3' 
500,000 9 64 2,5 1,2,3,1',2',3' 
250,000 9 65 2, 5 11, 3, 3' 
333,000 9 66 2,5 2,3,2',3' 
None 00 4 N at applicable 
None 77 3 Not applicable 

8-119 AG28 



Table 8-24 (cont). Description of PDT I/O Control Character Cl 
(RWC Assignment) 

Type 2051C 

Data Handling Capacity Read/Write RWC RWC Time Slot Use d on 
(chara~ters per second) Counter Code Code RWC-Assigned 

Notes Sector 

Sector 1 

83,000 1 11 1 
83,000 (167,000) 2 12 1 2 (2,2') 
83,000 (167,000) 3 13 1 3 (3,3') 
83,000 1 ' 15 1 ' 
83,000 2' 16 6 2' 
83,000 3' 17 6 3' 

250,000 2 50 1,2, 2' 
167,000 1 (1, 1') 51 1, l' 
167,000 2 (2,2') 52 2, 2' 
167,000 3 (3,3') 53 3,3' 
500,000 3 54 2 1,2,3,1',2',3' 
250,000 3 55 2 1', 3 , 3' 
333,000 3 56 2 2,3,2',3' 

Sector 2A 

83,000 4 31 1 
83,000 (167,000) 5 32 1 2 (2,2') 
83,000 (167,000) 6 33 1 3 (3; 3') 
83,000 4' 35 1 ' 
83,000 5' 36 6 2' 
83,000 6' 37 6 3' 

250,000 5 70 2,6 1,2, 2' 
167,000 4 (4,4') 71 1, l' 
167,000 5 (5,5') 72 2,2' 
167,000 6 (6, 6') 73 3,3' 
500,000 6 74 2 1, 1', 2, 2', 3, 3' 
250,000 6 75 2 1 " 3, 3' 
333,000 6 76 2 2,2',3,3' 

8-120 

f-

AG28 



Table 8-24 (cont). Description of PDT I/O Control Character C 1 
(RWC Assignment) 

Type 2051A (Basic) 

Data Handling Capacity Read/Write RWC RWC Time Slot U sed on 
(characters per second) Counter Code Code RWC-Assigned 

Notes Sector 

Sector 1 

83,000 1 11 1 
83, 000 (16-7, 000) 2 12 1 2 (2,2') 
83,000 (167,000) 3 13 1 3 (3,3') 
83,000 I' 15 I' 
83,000 ,2' 16 6 2' 
83,000 3' 17 6 3' 

250,000 2 50 1, 2, 2' 
167,000 1 (1,1') 51 1, I' 
167,000 2 (2, 2') 52 2, 2' 
167,000 3 (3,3') 53 3,3' 
500,000 3 54 2 1, 2, 3, 1', 2' , 3' 
250,000 3 55 2 1', 3 , 3' 
333,000 3 56 2 2,3,2',3' 

Sector 2A 

83,000 4 31 1 
83,000 (167,000) 5 32 1 2 (2,2') 
83,000 (167,000) 6 33 1 3 (3,3') 
83,000 4' 35 I' 
83,000 5' 36 6 2' 
83,000 6' 37 6 3' 

250,000 5 70 2,6 1, 2, 2' 
167,000 4 (4,4') 71 1, I' 
167,000 5 (5,5') 72 2,2' 
167,000 6 (6,6') 73 3,3' 
500,000 6 74 2 1,1',2,2',3,3' 
250,000 6 75 2 1',3, 3' 
333,000 6 76 2 2,2',3,3' 

8-121 AG28 



Table 8-24 (cont). Description of PDT I/O Control Character Cl 
(R WC Assignment) 

Type 2051A 
(with PMlA50) 

Data Handling Capacity Read/Write RWC RWC Time Slot U sed on 
(characters per second) Counter Code Code RWC-Assigned 

Notes Sector 

Sector 1 

83,000 1 11 1 
83, 000 (16-7, 000) 2 12 1 2 (2,2') 
83,000 (167,000) 3 13 1 3 (3,3') 
83,000 I' 15 I' 
83,000 2' 16 6 2' 
83,000 3' 17 6 3' 

250,000 2 50 1, 2, 2' 
167,000 1 (1, I') 51 1, I' 
167,000 2 (2,2') 52 2,2' 
167,000 3 (3,3') 53 3,3' 
500,000 3 54 2 1,2,3, 1',2',3' 
250,000 3 55 2 1', 3 , 3' 
333,000 3 56 2 2,3,2',3' 

Sector 2A 

83,000 4 31 1 
83,000 (167,000) 5 32 1 2 (2,2') 
83,000 (167,000) 6 33 1 3 (3,3') 
83,000 4' 35 I' 
83,000 5' 36 6 2' 
83,000 6' 37 6 3' 

250,000 5 70 2,6 1,2,2' 
167,000 4 (4,4') 71 1, I' 
167,000 5 (5,5') 72 2,2' 
167,000 6 (6,6') 73 3,3' 
500,000 6 74 2 1, 1',2,2',3,3' 
250,000 6 75 2 1',3,3' 
333,000 6 76 2 2,2',3,3' 

Sector 2D 

83,000 (167,000) 8 22 1, 5 2 (2,2') 
83,000 (167,000) 9 23 1, 5 3 (3,3') 
83,000 8' 26 5 2' 
83,000 9' 27 5 3' 

250,000 8 60 2,5 1, 2, 2' 
167,000 8 (8,8') 62 5 2,2' 
167,000 9 (9, 9') 63 5 3,3' 
500,000 9 64 2, 5 1,2,3, 1',2',3' 
250,000 9 65 2, 5 1', 3, 3' 
333,000 9 66 2,5 2,3,2',3' 
None 00 4 Not applicable 
None 77 3 Not applicable 

8-122 AG28 



Table 8-24 (cont). Description of PDT I/O Control Character Cl 
(RWC Assignment) 

Type 2051A 
(with PMIA50 and PMIB50) 

Data Handling Capacity Read/Write RWC RWC Time Slot U sed on 
(characters per second) Counter Code Code RWC-Assigned 

Notes Sector 

Sector 1 

83,000 1 11 1 
83, 000 (16-7, 000) 2 12 1 2 (2,2') 
83,000 (167,000) 3 13 1 3 (3,3') 
83,000 1 ' 15 1 ' 
83,000 2' 16 6 2' 
83,000 3' 17 6 3' 

250,000 2 50 1,2, 2' 
167,000 1 (l,I') 51 1, l' 
167,000 2 (2,2') 52 2, 2' 
167,000 3 (3,3') 53 3,3' 
500,000 3 54' 2 1.,2,3,1',2',3' 
250,000 3 55 2 1', 3 , 3' 
333,000 3 56 2 2,3,2',3' 

Sector 2A 

83,000 4 31 1 
83,000 (167,000) 5 32 1 2 (2,2') 
83,000 (167,000) 6 33 1 3 (3,3') 
83,000 4' 35 I' 
83,000 5' 36 6 2' 
83,000 6' 37 6 3' 

250,000 5 70 2,6 1,2,2' 
167,000 4 (4,4') 71 1, l' 
167,000 5 (5,5') 72 2,2' 
167,000 6 (6,6') 73 3,3' 
500,000 6 74 2 1,1',2,2',3,3' 
250,000 6 75 2 1', 3, 3' 
333,000 6 76 2 2,2',3,3' 

8-123 AG28 



Table 8-24 (cont). Description of PDT I/O Control Character Cl 
(RWC Assignment) 

Type 205lA 
(with PMIA50 and PMIB50)(cont) 

Data Handling Capacity Read/Write RWC RWC Time Slot U sed on 
(character s per second) Counter Code Code RWC-Assigned 

Notes Sector 
Sector 2B 

250,000 2' 40 2, 5 1,2,2' 
167,000 1 ' 41 5 1, l' 
167,000 2' 42 5 2, 2' 
167,000 3' 43 5 3,3' 
500,000 3' 44 2,5 1,2,3,1',2',3' 
250, 000 3' 45 2,5 1',3,3' 
333,000 3' 46 2, 5 2,3,2',3' 

Sector 2C 

167,000 4' 01 5 1, l' 
167, 000 5' (5',9') 02 1,5 2,2' 
167,000 6' (6',4') 03 1, 5 3,3' 
500,000 6' 04 2, 5 1,2,3,1',2',3' 
250,000 6' 05 2, 5 1',3,3' 
333,000 6' 06 2, 5 2,3,2',3' 
250,000 5' 07 2,5 1, 2, 2' 

Sector 2D 

83,000 (167,000) 8 (8,8') 22 l, 5 2 (2,2') 

83,000 (167,000) 9 (9,9') 23 1, 5 3 (3, 3') 

83,000 8' 26 2' 

83,000 9' 27 5 3' 

250,000 8 60 2,5 1,2,2' 

167,000 9' 61 5 1, l' 

167,000 8 (8,8') 62 1, 5 2, 2' 

167,000 "." 9 (9,9') 63 1, 5 3,3' 

500,000 9 64 1,5 1,2,3,1',2',3' 

250,000 9 65 2, 5 1',3~3' 

333,000 9 66 2, 5 2,3,2',3' 

None 77 3,5 Not applicable 

None 00 4, 5 Not applicable 

8-124 AG28 



Table 8-24 (cont). Description of PDT I/O Control Character CI 
(RWC Assignment) 

Type 2061 

Data Handling Capacity Read/Write RWC RWC Time Slot U sed on 
(characters per second) Counter Code Code RWG-Assigned 

Notes Sector 

Sector 1 

83,000 1 11 1 
83, 000 (16-7, 000) 2 12 1 2 (2,2') 
83,000 (167,000) 3 13 1 3 (3,3') 
83,000 I' 15 I' 
83,000 2' 16 6 2' 
83,000 3' 17 6 3' 

250,000 2 50 1, 2, 2' 
167,000 1 (1, I') 51 1, l' 
167,000 2 (2,2') 52 2, 2' 
167,000 3 (3,3') 53 3,3' 
500,000 3 54 2 1,2,3, 1',2',3' 
250,000 3 55 2 1 '., 3 , 3' 
333,000 3 56 2 2,3,2',3' 

Sector 2A 

83,000 4 31 1 
83,000 (167,000) 5 32 1 2 (2,2') 
83,000 (167; 000) 6 33 1 3 (3,3') 
83,000 4' 35 I' 
83,000 5' 36 6 2' 
83,000 6' 37 6 3' 

250,000 5 70 2,6 1,2, 2' 
167,000 4 (4,4') 71 1, I' 
167,000 5 (5,5') 72 2,2' 
167,000 6 (6,6') 73 3,3' 
500,000 6 74 2 1, 1', 2, 2', 3, 3' 
250,000 6 75 2 1',3,3' 
333,000 6 76 2 2,2',3,3' 

Sector 2D 

83,000 (167,000) 8 22 1,5 2 (2, 2') 
83,000 (167,000) 9 23 1, 5 3 (3, 3' ) 
83,000 8' 26 5 2' 
83,000 9' 27 5 3' 

250,000 8 60 2,5 1,2,2' 
167,000 8 (8, 8') 62 5 2, 2' 
167,000 9 (9,9') 63 5 3,3' 
500,000 9 64 2, 5 1,2,3, 1',2',3' 
250,000 9 65 2, 5 1', 3, 3' 
333,000 9 66 2,5 2,3,2',3' 
None 00 4 Not applicable 
None 77 3 Not applicable 

8-125 AG28 



Table 8-24 (cont). Description of PDT I/O Control Character Cl 
(R WC As sign:ment) 

Type 2071 

Data Handling Capacity Read/Write RWC RWC T i:me Slot Use d on 
(characters per second) Counter Code Code RWG-Assigned 

Notes Sector 

Sector 1 

83,000 1 11 1 
83, 000 (16-7, 000) 2 12 1 2 (2,2') 
83,000 (167,000) 3 13 1 3 (3,3') 
83,000 1 ' 15 1 ' 
83,000 2' 16 6 2' 
83,000 3' 17 6 3' 

250,000 2 50 1, 2, 2' 
167,000 1 (1, 1 ') 51 1, l' 
167,000 2 (2,2') 52 2, 2' 
167,000 3 (3,3') 53 3,3' 
500,000 3 54 2 1,2,3,1',2',3' 
250,000 3 55 2 1',3 , 3' 
333,000 3 56 2 2,3,2',3' 

Sector 2A 

83,000 4 31 1 
83,000 (167,000) 5 32 1 2 (2,2') 
83,000 (167,000) 6 33 1 3 (3,3') 
83,000 4' 35 1 ' 
83,000 5 ' 36 6 2' 
83,000 6' 37 6 3' 

250,000 5 70 2,6 1,2, 2' 
167,000 4 (4,4') 71 1, l' 
167,000 5 (5,5') 72 2,2' 
167,000 6 (6,6') 73 3,3' 
500,000 6 74 2 1,1',2,2',3,3' 
250,000 6 75 2 1',3,3' 
333,000 6 76 2 2,2',3,3' 

8-126 AG28 



Table 8-24 (cont). Description of PDT I/O Control Character Cl 
(RWC Assignment) 

Type 2071 (cont) 

Data Handling Capacity Read/Write RWC RWC Time Slot U sed on 
(character s per second) Counter Code Code RWC-Assigned 

Notes Sector 
Sector 2B 

250,000 2' 40 2, 5 1,2, 2' 
167,000 I' 41 5 1, l' 
167,000' 21 42 5 2, 2' 
167,000 3' 43 5 3,3' 
500,000 3' 44 2,5 1,2,3,1',2',3' 
250,000 3' 45 2,5 1',3, 3' 
333,000 3' 46 2, 5 2,3,2',3' 

Sector 2C 

167,000 4' 01 5 1, l' 
167,000 5' (5',9') 02 1, 5 2, 2' 
167,000 6' (6',4') 03 1, 5 3,3' 
500,000 6' 04 2,5 1,2,3,1',2',3' 
250,000 6' 05 2,5 1',3, 3' 
333,000 6' 06 2,5 2,3,2',3' 
250,000 5' 07 2,5 1, 2, 2' 

Sector 2D 

83,000 (167,000) 8 (8,8') 22 1, 5 2 (2,2') 

83,000 (167,000) 9 (9,9') 23 1, 5 3 (3,3') 

83,000 8' 26 2' 

83,000 9' 27 5 3' 

250,000 8 60 2,5 1,2,2' 

167,000 9' 61 5 1, l' 

167,000 8 (8,8') 62 1, 5 2,2' 

167,000 9 (9, 91) 63 1, 5 3,3' 

500,000 9 64 1, 5 1,2,3,1',2',3' 

250,000 9 65 2,5 1',3,3' 

333,000 9 66 l,5 2,3,2',3' 

None 77 3, 5 Not applicable 

None 00 4,5 Not applicable 

8-127 AG28 



NOTES 

Table 8-24 (cont). Description of PDT I/O Control Character Cl 
(RWC Assignment) 

1. If the extended I/O indicator is off, the RWC' s are interlocked for a 167 KC 
. rate; the primary R W C is used for addre s s storage and the primary and 
auxiliary RWC' s are both made busy. 

2. These codes may be used only with peripheral controls requiring data 
transfer rates greater than 167 KC. These codes, therefore, are not 
legal with escape codes of 14, 15, 16, and 17, unless otherwise specified 
in the manual for the peripheral control. 

3. Code used only for PCB (control and unconditional branch) instruction. 

4. Code used only for PCB (peripheral control test) instruction. 

5. Codes associated with sectors 2B, 2C, and 2D must be accompanied by 
a C2 'or CE character specifying a sector. 

6. These codes are legal only when the extended I/O feature is installed. 

7. Data handling capacity of a buffered sector of the 2041A, 2051C, and 
2060 is reduced by 50% when a direct-acce ss escape code (14 or 17) is 
used. Data handling capacity of a buffered sector of the 2051A or 2071 
is reduced by 75% when a direct-access escape code (14, 15, 16, or 17) 
is used. 

8. On the 2041 and basic 2041A processors, underlined numbers identify the 
RWC whose corresponding starting and current location counters are used 
in the operation. 

9. Uses RWC 6 for address storage during data transfer. RWC 2 cannot be 
active while RWC 5 is active, nor can RWC 3 be active while RWC 6 is 
active. 

ESCAPE CODE (CE) 

The escape code is part of format b. of the PDT instruction. When an escape code is 

included in a PDT instruction, the read/write channel( s) de signated by C 1 is as signed to an I/O 

operation in the sector indicated by the escape code (the sector bits of the C2 control character 

are ignored). The addressed device must be connected to the sector designated by the escape 

code. See Table 8-25 for sector designations of escape codes. 

8-128 AG28 



Table 8-25. Escape Codes 

Escape Processor Affected 
Code Sector Designated 2041 2041A 205IC 205IA 2061 2071 

10 Sector 1 X X X X X 
"-

II Test RWC only X X X X X 

12 Sector 21 X X X X X 

14 Sector 2A Direct-Access X X X X X 

15 Sector 2B Direct-Access 5 X 

16 Sector 2C Direct-Access 5 X 

17 Sector 2D Direct-Access 3 4 X X 

54 Sector 2A Buffered Mode 2 X 4 X X 

55 Sector 2B Buffered Mode 5 X 

56 Sector 2C Buffered Mode 5 X 

57 Sector 2D Buffered Mode 3 4 X X 

1 . 
A control character that references Sector 2 will be interpreted as Sector 2A, 
buffered (e scape code 54). 

2 Applicable only when PM1A40is present. 

3 Applicable only when PM1A40 and PM1B40 are present. 

4Applicabl~ only when PM1A50 is present. 

5 Applic~ble only when PM1ASO and PMIB50 are present. 

Control 
Character 

G2 

Table 8-26. Description of PDT I/O Control Character C2 
(Peripheral Control De signation) 

De scription 

This six-bit character specifie s the type of data transfer (input or 
output), the sector (if the:r:e is no escape code), and the logical 
address of the peripheral control to be used in the data transfer. 

C2 

X X X X X X T 1 --.... IL.-----~---Peripheral Control Address Bits 

I ~---------------Sector Bits 

L..------------Input/Output Bit 

Input/Output Bit: This bit specifies the direction of data transfer 
when a peripheral control capable of both reading and writing is 
involved in the transfer. When such a bidirectional control is used, 

o = transfer data from memory to the peripheral 
control (output), 

1 = transfer data to memory from the peripheral control 
(input). 

For buffered operations, the I/O bit must agree with the actual 
direction of data transfer. For direct-access operations, the 
input/output bit is used together with the peripheral control 
address bits to identify the peripheral control involved in the 
operation. 

8-129 AG28 



Control 
Character 

C2 (cont) 

Table 8-26 (cont). Description of PDT I/O Control Character C2 
(Peripheral Control Designation) 

De sc ription 

Sector Bits: If there is no escape code, these bits specify the 
sector in which the peripheral control is connected. They are 
specified as follows: 

Sector 1 = 00
1 

Sector 2 = 10 

Peripheral Control Address Bits: These three bits, in conjunction 
with the input/output bit, identify the address of the peripheral 
control involved in the operation. It is recommended that the 
following octal configurations be used for control character C2 
in order to provide uniformity among Series 200 and Series 2000 
installations: 

Peripheral Control 

Magnetic Tape Control 

3 
Paper Tape Reader or Card Reader 
Paper Tape Punch or Card Punch3 

Printer 
Type 212 On-Line Adapter 
Console 

Disk Control 

2 
Octal Address 

00 (output) 
40 (input) 
41 
01 
02 
42 
07 (output) 
47 (input) 
04 (output) 
44 (input) 

lIn the Types 2041A (equipped with PMIA40 and PMIB40), 2051A (equipped with 
PMIA50 and PMIB50), 2051C, 2061, and 2071, 10 designates sector 2A. 

2These recommended addresses are made up of (1) the input/output bit and (2) 
the peripheral control and address bits. In Series 2000 systems in which 
sector designations apply, the specification of the sector bits may alter these 
addresses. 

3In Serie s 2000 installations containing a card reader /punch unit, the se 
recommended addre s se s apply. However, if the installation contains a second 
card reader, the reader portion of the card reader punch should be assigned the 
address 43 8 and the second card reader assigned the address 418. 

Additional Parameter s (C3 through Cn) 

The specific use of these control characters is dependent upon the type of peripheral 

device addressed. A summary of coding for these characters may be found in Tables 8-27 

through 8-33. 

PUNCTUATION MARKS 

The execution of this instruction neither affects nor is affected by word 
marks or item marks. However, record marks may terminate the data 
transfer, depending upon the device used and the operation performed 
(see the specific Honeywell Publications). 

8-130 AG28 



ADDRESS REGISTERS AFTER OPERATION 

SR 

NXT 

NOTES 

AAR 

A 

BAR 

B 
p 

1. If either the read/write channel or the peripheral control (specified by C1 and 
C2, respectively) is found "busy" during the extraction of a PDT instruction, 
the instruction is re -extracted: the contents of SR are set back to the addre s s 
of the PDT op code, and the extraction process begins again. This process 
allows the processor to respond to interrupt signals that may occur while the 
PDT instruction is awaiting the availability of a" read/write channel or 
peripheral control. 

2. The PDT op code is a "privileged" op code that has special significance when 
Storage Protection is in effect (see Section II). 

3. Format b. of the PDT instruction is applicable only to multicharacter 
proce s sor s. 

4. Unspecified central processor activity can occur when an attempt is made to 
execute a PDT instruction having a read/write channel assignment (Cl) of 
zero. It is therefore imperative that every PDT instruction contain some 
legal R WC as signment. 

5. Control character C1 of a PDT instruction is stored in the variant register. 

6. When buffered sectors are included in a processor, additional programming 
considerations apply to the PDT instruction (see Section II). 

EXAMPLE 

Read a card into the 80 -character image area tagged CREAD. Use R WC 2 and 
assume that the card reader control is assigned to the logical.address of 
octal 41. Note that the datc;l. transfer rate in a card reading operation is less 
than 83, 000 characters per second. 

EASYCODER 
CODING FORM 

PROBLEM ______________________ PROGRAMMER ______ OATE _____ PAGE_OF_ 

CARD ~ I~ LOCATION 
OPERATlqN OPERANDS NUMBER I~ ~ CODE 

1 213 415 6 7 8 1415 ZO 21 I 62 63 80 

I I PD., ~~E.~D. ., <~.A, I 
I 

I 
, , 

8-131 AG28 



C4 

I 6 5 4 3 2 1 1 
0 0 0 0 0 0 Record Mark Termination: 4 x 3 (9-track) or 1 x 1 (7-track). 

0 0 0 0 0 1 Record Mark Termination: 2 x 1 (9-track). 

0 0 0 0 1 0 Record Mark Termination: ASCII Subset (9-track). 

0 0 0 1 0 0 Record Mark Te rmination: EBCDIC Subset (9-track). 

0 0 1 0 0 0 File Mark Search: 9-track 4 x 3 (17
8

); 7-track (17
8

), 

0 0 1 0 0 1 File Mark Search: 9-track 2 x 1 (23
8

), 

0 1 0 0 0 0 Count Field Termination: 4 x 3 (9-track) or I x 1 (7 - t rack) • 

0 1 0 0 0 1 Count Field Termination: 2 x 1 (9-track). 

0 1 0 0 I 0 Count Field Termination: ASCII Subset (9-track). 

0 1 0 0 1 1 Count Field Termination: Load Mode (1 xl) (9-track). 

0 1 0 1 0 0 Count Field Termination: EBCDIC Subset (9-track). 

Figure 8-12. C4 Variant for 9- Track Tape Units 

Table 8 - 27. Summary of PDT I/O Control Character s 

PDT I/O CONTROL CHARACTER 

Cl C2 C3 C4 CS C6 
INPUT /OUTPUT OPERATION READ/WRITE CONTROL UNIT ADDITIONAL ADDITIONAL ADDITIONAL ADDITIONAL 

CHANNEL PARAMETERS PARAMETERS PARAMETERS PARAMETERS 

Q READ xx xx none none none none 
~ 
~ PUNCH XX X X U none none none none 

See: TrEe 223/223-2 Card Reader (Order No. BC39), TrEe 214-1 Card Punch (Order No. BC03), T:lEe 214-2 Card Reader/Punch (Order No. BC04), 

W READ XX XX See Table 8-28 none none none 
p.. 
~ 
E-< 
~ PUNCH XX X X See Table 8-29 none none none 
~ 
p.. 
~ 
p.. 

See: Ti:Ees 209, 209-2, and 210 PaEer TaEe EguiErnent (Order No. BC42) 

PRINT XX X X See Table 8- 30 none none none 
~ 
W 
E-< 
~ 
~ 
p.. 

See: Ti:Ee 222 Printers (Order No. BC7S), Ti:Ee 222-7 Printer (Order No. BJ23) 

READ FORWARD X X XIX 6 D3 ' See Figure none none 
(D=tape drive, 8-12 
o _7)6 

:I: READ REVERSE 
U XIX 2 D4 
~ 

(Feature 010 or 011) XX See Figure none none 
(D=tap,e drive, 8-12 

~ o _ 7)6 ..... 
W X2X 2 D

S 
See Figure none p.. WRITE XX none 

~ (D=tap,e drive, 8-12 E-< o _ 7)6 
8 
E-< 

XIx 4.D See Figure none W SPACE FORWARD XX none 
Z (D=tap,e drive, 8-12 t.:l o _ 7)6 ~ 
~ 

BACKSPACE XX XIX OD See Figure none none 
(D=tape drive 8-12 
o _ 7)6 

ERASE X X X2X OD See Figure none none 
(D=tap,e drive. 
o _ 7)6 

8-12 

See: Ti:Ee 204B Series Magnetic TaEe Unit (Order No. BC38), Ti:Ee 204D-l, -3. -5 Magnetic TaEe Units and Controls (Order No. BK02), 
Ti:Ee 204D-lA, -3A. -SA Magnetic TaEe Units (Order No. AJ22), Ti:Ee 204F-l, -3, -5 Magnetic TaI!e Units' (Order No. 'AJ23). 

8-132 AG28 



Table 8-27 (cont). Summary of PDT I/O Control Characters 

PDT I/O CONTROL CHARACTER 

INPUT /OUTPUT OPERATION CI Cl C3 C4 •• CS C6 
READ/WRITE CONTROL UNIT ADDITIONAL ADDITIONAL ADDITIONAL ADDITIONAL 

CHANNEL PARAMETERS PARAMETERS PARAMETERS PARAMETERS 

SEARCH AND READ XX Xix Se-e Table OT TT SS 
8- 31 v 

9-bit track ad- Sector address 
d res s numbe red numbered 

l o - 777 (octal) o - 47 (octal) 
~ READ XX XiX See Table none none none a: 
Cl 8-31 
til 

13 SEARCH AND WRITE XX Xl X See Table ,0 T TT SS U 
U 8-31 

9-bit tr;ck ad-< Sector address 
l d res s numbe red numbered 
0 o - 777 (octal) 0- 47 (octal) Cl 
Z WRITE XX Xl X See Table none none none < a: 8-31 

READ ADDRESS XX XiX See Table none none none 
REGISTER 8 - 31 

See: TlEe l70A Random Access Drum and Control (Order No. BA06) 

LOAD ADDRESS XX Xl X 04 none none none 
REGISTER 

STORE ADDRESS XX XiX o 4 none none none 
REGISTER 

WRITE INITIAL XX Xl X o 0 or none none none 
I 0'" 

EXTENDED WRITE XX X2 X 2 0 or none none none 
INITIAL 3 0'" 

WRITE XX X2 X 0 I or none none none 
I I'" 

EXTENDED WRITE XX X2 X 2 I or none none none 
3 I'" 

SEARCH AND WRITE XX X2 X 02 or none none none 
I 2 ... 

EXTENDED SEARCH XX X2
X 2 2 or none none none 

AND WRITE 32'" 
00 

X2 X til SEARCH AND WRITE XX o 3 or none none none ~ 
U NEXT I 3'" :;: 
~ 

X2 X 0 EXTENDED SEARCH XX 2 3 or none none none 
::.:: AND WRITE NEXT 3 3 ... 
Ul 
Q 

Xix SEARCH AND READ XX 02 or none none none 
I 2 ... 

EXTENDED SEARCH XX XiX 2 2 or none none none 
AND READ 32'" 

SEARCH AND READ XX XiX o 3 or none none none 
NEXT I 3 ... 

EXTENDED SEARCH XX XiX 2 3 or none none none 
AND READ NEXT 3 3 ... 

READ INITIAL XX XI"X o 0 or none none none 
I 0'" 

EXTENDED READ XX XiX 2 0 or none none none 
INITIAL 3 0 ... 

READ XX XiX o I or none none none 
I I ... 

EXTENDED READ XX XiX 2 I or none none none 
3 I ... 

• Reading/writing is verified . 

*. C4 is used!!. C3 high-order bit is 1. specifying an eight-bit transfer. 

See: Direct-Access Devices and Controls (Order No. BC4SJ 

8-133 AG28 



Table 8-27 (cant). Sum.m.ary of PDT I/O Control Characters 

PDT I/o CONTROL CHARACTER 

Cl C2 C3 C4 C5 C6 
INPUT/OUTPUT OPERATION READ/WRITE CONTROL ADDITIONAL ADDITIONAL ADDITIONAL ADDITIONAL 

CHANNEL UNIT PARAMETERS PARAMETERS PARAMETERS PARAMETERS 

~ READ (NO CARRIAGE xx XIX o 0 none none none 

.W RETURN) 
M....:l 

XIX 6g READ (CARRIAGE XX o 1 none none none 
:;jZ (RETURN) 
~O 
p..U WRITE (NO CARRIAGE XX X2 X 00 none none none 
:>t RETURN) 
f-< 

X2 x WRITE (CARRIAGE XX o 1 none none none 
RETURN) 

See: Control Panels and Consoles (Models 200 throush 4200), (Order No. BC05) 

READ (no cursor/ XX XIX o 0 none none none 
c"arriage return) 

READ (cursor/carriage XX Xl X o 1 none none none 
return) 

WRITE (no cursor / XX X2 X o 0 none none none 
carriage return) 

WRITE (cursor/ carriage XX X2 X o 1 none none none 
return) 

Cursor/carriage return and XX XX 4 1 XX XX XX 
line feed (after 
display) 

Line erase before display XX XX 4 2 XX XX xx 
Line erase before display, XX XX 4 3 XX XX XX 

cursor return and 
line feed after 
display 

Form feed - clear screen XX XX 44 XX XX XX 
and page return 
before display. 
(Printer - carriage 
returns and line 
feed) 

~ Page teturn - position cur- XX XX 70 XX XX XX 
...:I s or to home (line 1, 0 
til character position 1) 
Z before display. 0 
U (Printer - carriage 
U return and line feed) 
U 

> Select printer only XX XX XX Y 2 XX XX 

~ Y = 0: 64 columns 
0 y = 4: 80 columns N 
N 

~ Select interactive display XX XX XX y4 XX XX 
p.. only 
:>t y = 0: 64 columns f-< 

y = 4: 80 columns 

Select status display only XX XX XX Y 5 XX XX 
Y = 0: 64 columns 
y = 4: 80 columns 

Select both interactive XX XX XX yO XX XX 
display and printer 

Select status display and XX XX XX Y 1 XX XX 
printer 

Go to line address given by XX XX XX XX 01-30 XX 
C 5 variant 5 low-
order bits with value 
018-308 (line 1 thru 
line 24) (Printer -
carriage return, line 
feed) 

Blink first word of line XX XX XX XX 40 XX 
containing cursor 

Go to line address given XX XX XX XX 41-77 XX 
by C5 variant 5 low-
order bits and blink 
first word of that linE 

See: T:iEe 220-8 Visual Information Control Console (Order No. AJ77) 

8-134 AG28 



Table 8-27 (cont). Summary of PDT I/O Control Characters 

PDT I/O CONTROL CHARACTER 

Cl C2 C3 C4 C5 C6 
INPUT/OUTPUT OPERATION READ/WRITE CONTROL ADDITIONAL ADDITIONAL ADDITIONAL ADDITIONAL 

CHANNEL UNIT PARAMETERS PARAMETERS PARAMETERS PARAMETERS 

TRANSFER ID character XX XX 4X none none none 
to Series 200 memory. (X=unused) 

ACCEPT the H-800/1800 XX XX o 0 none none none 
instruction defined in the 
ID register. 7 

~ 
ACCEPT the H-800/1800 XX XX 1'1 04 none none none 

E-< instruction defined in the p.. 
< ID register, and cause the 
0 H-800/ 1800 to branch to < U+3 or U+5. 7 
1'1 
Z 

DO NOT ACCEPT the XX XX 1 U none none none ::1 
Z H-800/ 1800 instruction (U = any value 

0 defined in the ID register; from 1-7, octal) 
rather, cause the H-800/ 
1800 program to branch to 
U+6 or U+7 (read or write 
error) • 7 

SET the device busy XX XX 3 X none none none 
indicator. 7 (X=wlUsed) 

See: Model 212 On-Line AdaEter (Order No. BM06) 

co 
N 

XIX 
I'I

U RECEIVE XX none none none none 
p..U 
><&l TRANSMIT XX X2 X none none none none E-< 

'-0 TRANSFER TIME TO XX XX none none none none ~O 
~..:l MEMORY 
I'IU 
~>< 
~~ 
U "", TRANSFER DA TA XX XX none none none none 01'1 
~E-< 
p..p.. 

< 
..:lO 
~< 
E-<~ 
ZO 
W~ 
UI'I 

See: TrEe 212-1 Central Processor AdaEter (Order No. BB3l) 

~Vl 
'g":~I'1~ 

TRANSFER DATA XX XX none none none none "'""UOE-< 
~~~~~ 
N ~Vl

See: T:t:Ee 233-2 MICR Control (Order No. BCll)

::'~..:l
UI'IO

g~~ READ XX XX See Figure none none none
~I'IZ ~O 8-14
UE-<U
~ZO

~~~ 
See: Type 243 Optical Document Reader (Order No. BJl8) 

NOTES: 1. The high-order bit must be 1. 
2. The high-order bit must be O. 
3. Odd parity is assumed. If .even parity is required, the first octal character should be 7. 
4. Odd parity is assumed. If even parity is required, the first octal character should be 3. 
5. Odd parity and short gap are assumed. The first octal character should be 3 for even parity, short gap; 6 for odd parity, long gap; 

7 for even parity, long gap. 
6. D (tape drive) =.0-3 when"the instruction is issued to the Type 203B-5 Tape Control. D = 0 or I when the instruction is issued 

to the Type 203C-7 Tape Control. 
7. This operation issues initiating and concluding device-ready responses. 
8. Swnmary applies to all disk devices except 277/279. For information on these devices see: Direct-Access Devices and 
~(Order No. BC45). 

8-135 



C3 

Ixlxlxlxlxlxl 
T -- -I"" -- 1. ___ _ 

Mark Reading Format a ____ --'_ - Blanks 

o = Format A 

1 = Format B 

o = Do Not T ransfexo 
c 

1 = Transfer Blanks 

Memory Register-----------~ 

o = Decrement 

d 
\....------- Start/Stop Mode 

o = Character Reading 
Not Controlled 

1 = Increment 
1 = Character Reading 

Controlled 

Mark Reading
b 

'-------- Character Reading 

a 

b 

c 

d 

o = Read Marks 

1 = Do Not Read Marks 

o = Read Character 

1 = Do Not Read 
Character 

One of two formats can be chosen under program control, the nature of the two 
formats having already been wired into the control logic through a jumper card; 
two combinations of readable mark locations in twelve row formats are established. 

When Feature 042 is included. 

Refers to character reading~ 

After a jumper card has been wired, anyone of the special characters or the long 
mark can be utilized as a start/ stop character. When this assignment is made and 
the start/stop mode bit is set (bit = 1), the characters within the terminal characters 
as well as the start/ stop characters are transferred. 

Figure 8-13. Format of Type 243 PDT C3 Variant 

Table 8-28. C3 Coding for Type 209 and 209-2 Paper Tape Readers 

VALUE B BIT A BIT 8 BIT 4 BIT 2 BIT 1 BIT 

1 Not used One characte r Sense end Check odd Read Increment 
per frame of record parity Forward CLC 

0 Not used Two charac- Do not Check even Read Re- Decrement 
ters per frame sense end parity verse (Fea- CLC 

of record ture 010 
or 011) 

8-136 AG28 



Table 8-29. C3 Coding for Type 210 Paper Tape Punch 

VALUE B BIT A BIT 8 BIT 4 BIT 2 BIT 1 BIT 

1 Not used One character Not used Compute odd 00 = Do not punch parity 
per frame parity 

01 = Parity bit in chan-
D Not used Two charac- Not used Compute nel six 

ters per frame even parity 
10 = Parity bit in chan-

nel seven 

11 = Parity bit in chan-
nel eight 

Table 8-30. C3 Coding for Type 222 Printers 

Type 222 Printer s 
1 

C3 INT ERPRETA T ION 

OOnnnn Print, then space the nu:mber of line s 
specified by nnnn (0 - 15). 

01nnnn Print, then space to channel one of the 
format tape (HOF) if channel two of the 
format tape (EOF) is sensed; otherwise, 
space the number of lines specified by 
nnnn (0 - 15). 

llnnnn Do not print; space the number of lines 
specified by nnnn (0 - 15). 

1 o o xxx Print, then space to channel xxx. 
101xxx Do not print; space to channel xxx. 

000 Channel 3 
001 Channel 4 
010 ChannelS 
011 Channell (Head of form) 
100 Channel 6 
101 Channel 7 
110 Channel 8 
III Channell (Head of form) 

lControl characters are the same with or without the presence 
of the Print Buffer (Feature 036) in the printer. 

Table 8-31. C3 Coding for Type 270A Random Access Drum 

VALUE B BIT A BIT 8 BIT 4 BIT I 2 BIT I 1 BIT 

1 Override Increment drum This is a Read 
addres s register Address Regis-

ter instruction Drum file designation 

0 Do not Do not increment This is not a Read 
o - 7 (octal) 

override drum address Address Register 
register instruction 

8-137 AG28 



0 
0 
H 
~ 
M 

• 
N 
• 
... 

r-I 

• ...0 
00 
N 

ril 
P-t 
~ 
~ 

£,-0 
.0 
... H 
"r~ 

"'ril 
~t:l 

... 0 
~~ 
...0 • ooril 
Nt} 

Vl<t! 
rilVl 
P-tVl 
~ril 
~~ 

Table 8-32. Summary of PDT I/O Control Characters for Type 286 Multiline 
Communication Controller 

PDT I/O CONTROL CHAR. 
INPUT/OUTPUT OPERATION A ADDRESS 

Cl C2 C3 

FIRST DATA TRANSMISSION PDT LOC 
(specifies "line 0" XX XIX none 
in 286) 

RECEIVE DATA PDT LOC+2 XX XIX none 
(specifies line ad-
dress in ~86) 

TRANSMIT DATA PDT LOC+2 XX X2 X none 
(specifie s line ad-
dress in 286) 

LINE CONTROL PDT LOC XX X2 X none 
(specifies address of 
line to be controlled) 

NOTE: The line con-
trol transmission PDT 
instructions are listed 
in Table 8 - 33, below. 

TRANSMIT (Load/test state Leftmost character of XX X2 X Section addre s s 
only) field from which data or line number, 

is transferred. 008 - 63 8• 

RECEIVE (Load/test state Leftmost character of XX Xl X Section addre s s 
-:>nly) field to which data is or line number, 

transferred • 008 - 638. 

ASSIGN RWC AND LOAD SLC Leftmost character of XX XX none 
(Initialized or off -line state 5-character status 
only) field storing interrupt 

information. 

NOTES: 1. The high-order bit must be 1. 
2. 

CODE t 

(OCTAL) 

10 

60 

The high-order bit must be O. 

Table 8-33. Type 286-1, -2, -3 Line Control Instructions 

INSTRUCTION 

Transmit last 
character 

Receive clear 

DESCRIPTION 

Inform the 286 that the last character has 
been sent from the central processor, and 
place the control unit in the receive mode 
for that line (after transmitting last char-
acter). 

Re set the bits of the logic character in the 
286 memory. (This instruction should be 
given when power is first turned on. ) 

~ 
8-138 AG28 



Table 8-33 (cont). Type 286-1, -2, -3 Line Control Instructions 

CODE 1 

(OCTAL) INSTRUCTION DESCRIPTION 

30 Inhibit 285 (service Turn off the interrupt capability of a line that 
request) is requesting service (either input or output). 

50 Transmit idle Repeat the previously provided character 
character indefinitely, without interrupts. 

40 Transmit Stop the line from repeating character and 
cause an interrupt. 

74 Move Longitudinal Move the LRC character ·from the LRC regi-
Redundancy Check ster to the data buffer register (Feature 087). 
(LRC) Character 

34 Special Strobe Activate the special strobe line to a Type 285 
adapter via the Type 286 control. 

NOTE: The control code is stored in location LOC+1. (The low-order two bits of 
thi s code must be O. ) 

I PCB I PERIPHERAL CONTROL AND BRANCH 1 6481 

FORMAT 
( I/O CONTROL CHARACTERS) 

OP CODE A ADDRESS CI C2 C3 Cn - - - - _ r----, 
O. .... I I I.. ___ ..J 

b. - -
OP CODE A ADDRESS CI CE C2 C3 Cn 

c. - - - - - .---1---, L __ J 

d. - - -

8-139 AG28 



TYPES OF TEST AND CONTROL OPERATIONS 

The Peripheral Control and Branch instruction can initiate four types of operations: 
(1) strictly mechanical peripheral device operations; (2) test and branch operations; 
(3) mode change operations; and (4) peripheral interrupt operations. 

1. A mechanical operation is.a non-data transfer operation such as rewind 
magnetic tape or seek a disk pack drive cylinder. 

2. A test and branch operation tests the status of a peripheral control and/ or a 
read/write channel{s). 1 If the condition being tested (e. g., peripheral con­
trol busy, error in last card punched) is present, a program branch is 
performed. 

3. A mode change operation conditions the addressed peripheral control to 
operate in a specific mode. For instance, the card reader control can be 
conditioned to reject illegally punched cards, to generate a busy signal if 
illegally punched cards are read, or both, depending upon the control char­
acte rs of the PCB instruction. 

4. A peripheral interrupt operation directs a peripheral control to change the 
setting of an interrupt function or an allow interrupt function (see Appendix: D). 

Control character C 1 designate s a read/write channel or combination of channels 
whose busy status is to be tested. If an RWC busy test is not desired, Cl must 
contain 0' s. C2 designates the logical address of the peripheral control to be 
tested or actuated. The coding of this character is the same as its coding for a 
PDT instruction (see Table 8-26). 

Control characters C3 through Cn des ignate the control and test operations. Any 
number of control characters may follow C2, each one designating a different oper­
ation. If control characters within a single instruction designate conflicting 
operations (e. g., punch Hollerith code and punch direct transcription mode), the 
control characte r to the left is cancelled by a conflicting control characte r to the 
right within the same instruction. If mUltiple test operations are specified within 
a single instruction, a branch will occur if any of the conditions tested is present. 
The specific use of characters C3 through Cn is dependent upon ~he type of periph­
eral device addressed. Tables 8-34 through 8-36 summarize the coding of these 
characte rs . 

FUNCTION 

Format a: The read/write channel or channel combination specified by C I is tested for 
busy status. 2 If it is busy, a branch is made to the instruction at A. If the 
RWC is not busy (or if CI is 008), the operation(s) specified by characters 
C3 through Cn is performed on the peripheral control specified by C2. This 
peripheral control must be connected to the input/output sector implied by 
the value of CI (or, in a multicharacter processor, by the sector bits of C2). 

IOn multicharacter processors, time slots are also tested. 

20n multicharacter processors, the sector designated by C2 is also interrogated to determine 
whether it has currently available a sufficient number of unassigned time slots to support the 
transfer rate implied by C 1. 

8-140 AG28 



Format b: The read/write channel or channel combination specified by C 1 is tested for 
busy status. 1 If it is busy, a branch is made to A. If the RWC is not busy, 
the instruction following the PCB is executed. Note that, in a multicharacter 
processor, PCB instruction in this format does not guarantee that an I/O 
transfer can be accomplished: the sector to be used must also be tested (i. e. , 
format a, c, or d must be used). 

Format c: The read/write channel or channel combination specified by C 1 is tested for 
busy status. Also, the sector designated by CE is interrogated to determine 
whether it has currently available a sufficient number of unassigned time slots 
to support the I/O data transfer rate implied by Cl. If the specified RWC is 
not busy and the designated sector can handle the data rate implied by CI, the 
ope ration(s) specified by characte rs C 3 through Cn is pe rformed on the 
peripheral control specified by C2, and the program continues in normal 
sequence. Otherwise, a hranch is made to the instruction at A. The CE char­
acter must designate the I/O sector to which the peripheral control specified 
by C2 is connected. 

Format d: The read/write channel or channel combination specified by C 1 is tested for 
busy status. Also, the sector designated by CE is interrogated to determine 
whether or not it has currently available a sufficient number of unassigned 
time slots to support the I/o data transfer rate implied by Cl (see Table 8-24). 
If the specified RWC(s) is not busy and the designated sector can handle the 
data rate implied by C 1, the program continues in sequence. Othe rwis e, a 
branch is made to the instruction at A. 

PUNCTUATION MARKS 

The execution of this instruction neither affects nor is affected by word marks 
or record Il1arks. 

ADDRESS REGISTERS AFTER OPERATION 

SR 

NXT 

JI (A) 

AAR 

A 

A 

BAR 

B 
P 

NXT 

NO BRANCH 

BRANCH 

NOTES 

1 

1. Formats c. and d. are applicable only to the multicharacter processors. 
In order to produce a meaningful result, when checking for termination 
of transfer, C 1 must specify the proper RWC and test for device busy. 

2. The PCB op code is a "privileged" op code that has special significance when 
Storage Protection is in effect (see Section II). 

3. Control character C 1 of a PCB instruction is stored in the variant register. 

On multicharacter processors, the "home" sector of the read/write channel or channel combina-
tion (see Table 8-24) is interrogated to determine whether it has currently available a sufficient 
number of unas signed time slots to support the transfer rate implied by C 1. 

8-141 AG28 



4. When buffered sectors are involved, additional programming considerations 
apply to the PCB instruction (see Section II). 

EXAMPLE 

In the following example, assume that the logical address of the card reader 
control is octal 41. 

See the card reader control to read Hollerith code (C3 = 27) and to reject 
automatically all cards with hole-count errors (C4 = 21). If the device is 
inoperable, branch to the location tagged STOP. (Note that since an RWC 
is not to be tested, C 1 must contain 0 1 s. ) 

EASYCODER 
COOING FORM 

PROBLEM _____________________ PROGRAMMER ______ DATE _____ PAGE_~_ 

CARD Ir~ LOCATION 
OPERATION OPERANDS NUMBER I~ ~ COOE 

1 213 415 6 7 8 1415 2021 52 63 eo 
I : res STOP ~JJ. +1 27 21 
I 

I 

i I I 

I I 

: : 
I I 
! I 

i I 
1 1 

Table 8-34. Summary of PCB I/O Control Characters 

OPERATION 
PCB I/O CONTROL CHARACTERS 

CI C2 C 3 through Cn 

Branch to A address if device busy X X X X 1 0 

Branch to A address if punch-check error XX X X 4 1 

Branch to A address Punch Hollerith XX X X 2 7 
if device unavailable. code4 

:r: If available, set con-
Punch special code X X 6 u trol unit to: 

X X 2 
Z 
~ Punch direct tran- X X X X 2 5 
p.., scription code 
~ (feature 064) 
~ 
<t: Generate busy XX XX 2 3 u 
...-t signal if punch-

I 
check error ~ 

...-t 
N 

Offset- stack cards 
rz:t 

XX XX 2 1 
p.., with punch-check 
:>-t error 
E-t 

Offset- stack the XX X X 3 1 
card currently at 
the punch station 

8-142 AG28 



Table 8-34 (cont). Summary of PCB I/O Control Characters 

PCB I/O CONTROL CHARACTERS 
OPERATION 

C1 C2 C3 through Cn 

0-4:r: Turn the control allow function OFF X X X X 7 0 Il) 
~Z 
0-4::> Turn the control allow function ON X X X X 7 1 N~ 

ril~ Turn the control interrupt function OFF X X X X 7 4 
~~ 
>-c< Branch to A address if the control interrupt X X X X 7 5 
E-il) 

function is ON 

See: Type 214-1 Card Punch (Order No. BC03) 

Branch to A address if device busy XX X3 X 1 0 

Branch to A address if cycle-check or punch-
X3 X check error X X 4 1 

Branch to A address if illegal punch X X X3 X 4 2 

Branch to A address Terminate punch- X X X~ X 2 7 
if device unavailable. feed read opera-
If available, set con- tions, operate in 
trol unit to: Hollerith mode, 

and accept all 
other cards 4 

:r: 
Read or punch XX X3 X 2 6 

l) special code 
Z 

x3 X ::> Read or punch X X 2 5 
~ direct trans -... 
~ cription code 
~ 
~ (Feature 064) 
~ 

X3 X ~ Generate busy X X 2 4 
~ signal if illegal 
~ 
~ punch 
< X3 X l) Generate busy XX 2 3 
N signal if cycle-I 
~ check or punch-0-4 
N check error 
~ 

X3 X ~ Offset- stack cards XX 2 2 >-c with illegal punche s E-i 

Offset- stack cards XX X3 X 2 1 
with cycle-check 
or punch-check 
error 

Operate in punch- XX X3 X 2 0 
feed read mode 

Offset ... stack the X X X3 X 3 1 
card currently at 
the punch station 

Turn the control allow function OFF X X X3 X 7 0 

Turn the control allow function ON XX X3 X 7 1 

Turn the control interrupt function OFF XX X3 X 7 4 

Branch to A address if the control interrupt XX X3 X 7 5 
function is ON 

See: TYEe 214-2 Card Reader /Punch (Order No. BC04) 

8-143 AG28 



Table 8-34 (cont). Summary of PCB I/O Control Characters 

OPERATION 
PCB I/O CONTROL CHARACTERS 
Cl C2 C 3 through Cn 

Branch to A address if device busy XX X X 1 0 

Branch to A address if cycle-check error X X XX 4 1 

Branch to A address if illegal punch X X- X X 4 2 

Branch to A address Read Hollerith code X X X X 2 7 
if device unavailable. and accept all error 
If available, set con- cards4 

trol unit to: 
Read special code X X X X 2 6 

Read direct tran- X X X 2 5 
scription code 
(Feature 044) 

~ Offset- stack cards X X XX 2 1 
~ with cycle-check 
Q 
« error 
~ 

Offset- stack cards ~ XX XX 2 2 
Q with illegal punche s 
~ 
~ Generate busy signal XX XX 2 3 
l) 

if cycle -check error 
N 

I 
M Generate busy signal X X XX 2 4 
N 
N if illegal punch 

... 
M Offset- stack previ- X X XX 3 1 N 
N ously read card. 
~ Branch to A address Ai 
>-t if instruction issued 
E-t too late (>30 milli-

seconds). 

Turn the control allow function OFF XX X X 7 0 

Turn the control allow function ON XX X X 7 1 

Turn the control interrupt function OFF XX XX 7 4 

Branch to A address if the control interrupt 
function is ON X X XX 7 5 

See: TYEe 223 2 223 -2 Card Reader (Order No. BC39) 

Branch to A addre s s if device busy X X X X 1 0 

Branch to A address if parity error X X X X 4 0 

Branch to A address Rewind the tape X X X X 3 0 
U) 

N~ if device unavailable. (reverse 
I~ If available, set con- direction) O'Q 
o~ trol unit to: Run out the tape X X XX 3 N~ 2 
"g~ (forward 
ro~ direction) O'Ai 
~~ Turn the control allow function OFF X X XX 7 0 
~E-t 
Ai~ Turn the control allow function ON X X XX 7 1 
>-t~ 
E-tAi Turn the control interrupt function OFF X X XX 7 4 
~ 
Ai 

Branch to A address if the control interrupt XX XX 7 5 
function is ON 

See: Types 209, 209-2, and 210 Paper TaEe Equipment (Order No. BC42) 

8-144 AG28 



Table 8-34 (cont). Summary of PCB I/O Control Characters 

PCB I/O CONTROL CHARACTERS 
OPERATION 

Cl C2 C 3 through Cn 

Branch to A address if device busy X X X X I 0 
~ 
~:r: Branch to A address if tape-low condition is X X X X 6 0 
~U 
<:t:Z true 
~::> 
o~ Turn the control allow function OFF X X X X 7 0 
r-i 

N~ Turn the control allow function ON XX X X 7 I 
~~ 
~<:t: Turn the control interrupt function OFF X X X X 7 4 ~E-t 
E-t Branch to A address if the control X X X X 7 5 

interrupt function is ON 

See: Types 209, 209-2, and 210 Paper Tape Equipment (Order No. BC42) 

Branch to A address if device busy X X X X I 0 

Branch to A address if print error X X X X 4 0 

Branch to A address if paper is moving X X X X 2 0 

til Branch to A address if busy or paper is 
~ moving X X X X 3 0 
~ 
E-t 
Z Branch to A address if end of form X X X X 0 1 

~ 
~ Branch to A address if channel eight X X X X 0 2 

N 
Turn the contr9l allow function OFF X X X X 7 0 N 

N 
~ Turn the control allow function ON X X X X 7 1 
~ 
~ Turn the control inte rrupt function OFF X 
E-t 

X XX 7 4 

Branch to A address if the control X X X X 7 5 
interrupt function is ON 

See: TYEe 222-3, -4z -5, -6 Printers (Order No. B C75), or TYEe 222-7 Printer and Control 
(Order No. BJ23). 

NOTE: Control characters are the same with or without the presence of the Print Buffer 
(Feature 036) in the printer. 

Rewind XX X2 X 2 D 
(D=tape drive, 

o _ 7)5 

til Rewind and release XX Xl X 2 D 
E-t (D=tape drive, H 
Z 0 - 7)5 
::> 
~:r: Branch to A address if read busy XX Xl X o D 
~u (D=tape drive, <:t: Z 0 7)5 E-tH -
U I 

X2 X HN Branch to A address if write busy XX o D E-t--
~r-i (D=tape drive, 
Z 0 - 7)5 
t:J 
<:t: Branch to A address if read/write error XX XX 4 D 
~ 

(D=tape drive, 
o - 7)5 

8-145 AG28 



Table 8-34 (cont). Summary of PCB I/O Control Characters 

OPERATION 
PCB I/O CONTROL CHARACTERS 
CI C2 C3 through Cn 

Branch to A address if beginning of tape XX Xl X 6 D 
U) (D=tape drive, 
E-i o - 7)5 H 
Z 

X2 X 0 Branch to A address if end of tape xx 6 D 
~'Z (D=tape drive, 
Pi ~ 
~ 8 o - 7)5 
E-i-

x3 X t)::r: Turn the con:trol allow function OFF X X 7 0 
Ht) 

X3 X E-iZ Turn the control allow function ON X X 7 1 
~H 

Z~ Turn the control interrupt function OFF X X X3 X 7 4 0 ......... 
~~ Branch to A address if the control X X X3 X 7 5 

interrupt function is ON 

See: Type 204B Series Magnetic TaEe Units (Order No. BC38), TYEe 204D-1 2 -3 l -5 
Magnetic TaEe Units (Order No. BK02), TYEe 204D-1A, -3A, -5A Magnetic TaEe Units 
(Order No. AJ22), TYEe 204F-1, -3 2 -5 Magnetic TaEe Units (Order No. AJ23). 

Branch to A addres s if control unit busy 
6 

XX X X o X or 1 X 

~ 
(X= unused) 

0 Branch to A address if error indicator 4X 
o~ is ON XX X X (X=unused) Zo 
~t=r:: 

Turn the control allow function OFF X X X X 7 0 t=r::O 
~U) 

Turn the control allow function ON XX X X 7 1 0u) 

~~ 
~t) Turn the control interrupt function OFF X X X X 7 4 
Pit) 
>t~ Branch to A address if the control X X X X 7 5 
E-i interrupt function is ON 

See: TYEe 270A Random Access Drum and Control (Order No. BA06) 

Branch to A address if device busy X X X2 X 1 0 

'" 
Turn the allow function OFF X X X2 X 7 0 

I 
X2 X 

0 Turn the allow function ON X X 7 1 
ZU) Turn the data termination interrupt X X X2 X 7 4 ~~ 
('t')H function OFF 
'0 

X2 X 0u) Branch to A address if data termination XX 7 5 ~Z 
~O interrupt function is ON 
Pit) 

Turn the interrupt function OFF X X X2 X 7 6 >t 
E-i 

Branch to A address if interrupt X X X2 X 7 7 
function is ON 

See: Control Panels "and Console s {Models 200 through 4200), (Order No. BC05) 

Branch to A address if device busy XX X~ X 1 0 
~ 

X2 X OOH Branch to A address if interactive display X X 1 5 '0 
0u) not a vailal:?Je ~Z 
~O Branch to A address if status display not XX X2 X 1 6 
Pit) 

available >tU 
E-tU H 

> 

8-146 AG28 



Table 8-34 (cont). Summary of PCB I/O Control Characters 

PCB I/O CONTROL CHARACTERS 
OPERATION 

Cl C2 C3 through Cn 

Branch to A address if printer not available X X X2 X 1 7 

Branch to A address if console error X X X2 X 3 0 
detected 

Branch to A address if illegal line X X X2 X 3 1 

~ 
address 

I'lOH Branch to A address if parity error on X X X2 X 3 2 .0 
aU) cursor command NZ 
NO 

Place the console control in a not busy X X X2 X 3 4 ~u 
~u state 
:>tU 

X2 X foil-l Turn the allow function OFF X X 7 0 :> 
Turn the allow function ON X X X2 X 7 1 

Turn the data termination interrupt X X X2 X 7 4 
junction OFF 

Branch to A address if data termination 
interrupt function is ON 

See: TYEe 220-8 Visual Information Control Console (Order No. AJ77) 

Branch to A address if devi,ce busy X X X3 X o X or 1 X 
(X=unused) 

Branch to A address if data transfer is X X X3 X 7 X 
in progress (X=unused) 

,::z:: 
Branch to A address if error or incomplete X X X3 X 4 X 

~ indicator is set 
foi X3 ~ Branch to A address if parity error is X X X 5 X 
-cx: stored (X=unused) Cl 
-cx: Branch to A address if incomplete X X X3 X 6 X 
~ 

error 

Z is stored (X=unused) 
1-1 
H 

Place control character C4 in the ID X X X3 X C3: 2 X • 
Z register if data transfer is not in (X=unused) 0 
N progress 

C4: octal charac-.... 
N ter to be 
~ 
~ placed in 
:>t ID register 
foi 

X3 X Branch to A address unconditionally, and X X 3 X 
clear the ID register (X=unused) 

See: Model 212 On-Line AdaEter: (Order No. BM06) 

Branch to A address Seek out the cylinder X X X2 X C3: 2 D (D=device 
if specified device is (specified 1;>y C5 and address. 

a busy; otherwise, set C6) in the pack o - 7) 
..... 

control unit to: (specified by C4). U) 
C4: 00 ~ 

U 
C5 and C6: 1-1 0000 :> 

~ to 0143 for 
0 the Type 258, 
~ 
U) 0000 to 0312 
H for the Type 0 

259, 0000 to 
0177 for Types 
261 and 262. 

Restore the specifiec X X Xl X 3 D 

device to cylinder (D=device 
zero. - address, 0-7) 

8-147 AG28 



Table 8-34 (cont). Sumrn.ary of PCB I/O Control Character/? 

PCB I/O CONTROL CHARACTERS 
OPERATION 

C1 C2 C3 through Cn 

Branch to A address if control busy. X X X2 X 1 0 

,Branch to A address if device busy. X X X2 X C3: OD C4: 00 
(D=device 

address, 0-7) 

Branch to A address if a general exception XX X2 X 5 0 
condition occurred during the preceding PDT 
in struction. 

-Z Branch to A address if the TLR flag is set. X X X2 X 6 0 r:: 
0 

X2 X u Set control unit to override setting of X X 4 0 0-
...-tu) FORMAT WRITE PERMIT switch. 
~ 
U Turn control allow function OFF. X X X2 X 7 0 > 
~ Turn control allow function ON. X X X2 X 7 1 
~ 

~ Turn drive allow function OFF. X X X2 X 7 2 
u) 1-1 

X2 X ~ Turn drive allow function ON. X X 7 3 

Turn control interrupt function OFF. 8 X X X2 X 7 4 

Branch to A address if control interrupt X X X2 X 7 5 
function is ON. 

Turn drive interrupt function OFF. X X X2 X 7 6 

Branch to A address if device interrupt X X X2 X 7 7 
function is ON. 

See: Direct-Access Devices and Controls (Order No. BC45) 

Branch to A addre s s if device busy X X X3 X 1 0 

~ Branch to A address if parity error X X X3 X 4 0 
~ 
....::I Branch to A address if error other than X X X3 X 5 0 

~....::I 
zO parity error 
I-I~ 

X3 X ....::IE-i Branch to A address if the 281 is in transmit XX 6 0 
'z 
~O mode and requesting data for transmission 
....::I u 

X3 X 0 Branch to A address if the 281 is in receive XX 6 1 ZZ 
1-10 
U)I-I mode and requesting that central processor 
...-tE-i take received data 
co <x: 

X7 X NU 
Turn the allow function OFF X X 7 0 ~I-I 

P-i Z 
X7 X ~~ Turn the allow function ON X X 7 1 

E-i::g 

X7 X ::g Turn the inter rupt function OFF X X 7 4 
0 

X7 X U Branch to A address if allow and interrupt X X 7 5 
functions are ON 

8-148 AG28 



Table 8-34 (cont). Su:mmary of PCB I/O Control Characters 

PCB I/O CONTROL CHARACTERS 
OPERATION 

C1 C2 C 3 through Cn 

Branch to A address if device busy 0 0 X7 X 1 0 
(Feature 071) 

Turn the allow function OFF 0 0 X7 X 7 0 

~ Turn the allow function ON 0 0 X7 X 7 1 
~ 

X7 X ~ Turn the allow function ON (Feature 071) 0 0 7 3 
('t')H 
.E-t (C4 - C6 specify 
~H tim.e interval) 
N~ 

X7 X ~> Turn the interrupt function OFF 0 0 7 4 
Pi~ 

X7 X ~~ Branch to A address if interrupt· function 0 0 7 5 
E-tE-t 

Z is ON 
H 

Turn the inte.rrupt function OFF (Feature 071) 0 0 X7 X 7 6 

Branch to A address if interrupt function is 0 0 X7 X 7 7 
ON (Feature 071) 

See: TYEe 213-3 Interval Tim.er and Feature 071 Interval Selector (Order No. BA49) 

~ 
U 
0 
H 

~U 
• ('t')~ Branch to A address if device busy XX XX 1 0 
r-t~ 
NCl 

~~ 
Pio 
~ 
E-t~ 
~ 
H 

E-t 

Branch to A address if device busy X X X7 X 0 X or 
1 0 

H~ 
Branch to A address if device busy, and XX X7 X C3: 2 0 

~~ reserve C4: 0 0 

E-tPi Branch to A address if reserve action by XX X7 X C3: 2 0 
Z~ 
~Cl this central processor was not successful C4: 0 0 
U~ C5: 6 1 
r-t~ 

X7 X '0 Branch to A address if 212-1 is not set for X X 6 1 
~Ul data tran sfer (initiator) NUl 
~~ 

Branch to A address if 212-1 is set for X X X7 X 6 4 Pi
U 

~o data transfer (responder) 
E-t~ 

X7 X Turn the allow function OFF X X 7 0 

Turn the allow function ON X X X7 X 7 1 

Turn the interrupt function OFF X X X" X 7 4 

Branch to A address if allow and interrupt X X X7 X 7 5 
functions are ON 

See: TYEe 212-1 Central Proce ssor AdaEter (Order No. BB31) 

8-149 AG28 



Table 8-34 (cont). Summary of PCB I/O Control Characters 

PCB I/O CONTROL CHARACTERS 
OPERATION 

CI C2 C3 through Cn 

Branch to A address if control busy X X X X I 0 

Select stacker de signated; Stacker 0 XX X X 2 0 
Branch to A address if: 

Stacker I X X X X 2 I 

1. the reader - sorter is not Stacker 2 X X X X 2 2 
ready; or 

Stacker 3 X X X X 2 3 
2. the IO-millisecond 

Stacker 4 X X X X 2 4 
stacker selection period 
has elapsed; or Stacker 5 X X X X 2 5 

3. The leading edge of the Stacker 6 X X X X 2 6 
document to be sorted has 

Stacker 7 X X X X 2 7 
not pa s sed the reading 
station; or Stacker 8 X X X X 3 0 

4. the leading edge has Stacker 9 X X X X 3 I 
passed the reading 

Stacker X X X X X 3 2 
station and a PDT 
instruction ha s not yet Stacker y X X X X 3 3 

U) been issued; or 
Reject X X X X 3 7 ~ 

r:tt 5. the reader - sorter is Stacker 
E-i 

performing an auto-~ 
0 matic reject on the 
U) 

I document in que stion 
~ 
r:tt Start feed. Branch to A addre ss if feed XX XX 3 4 ~ 
~ cannot be started due to: 
r:tt 
~ 1. the reader- sorter not being 
~ ready; or 
U 
H 

~ 2. proper re start procedure s 
N not followed 

I 
('I) 

Stop feed. Branch to A address if sorter-('I) XX XX 3 5 
N 

reader is not ready 
"0 

$::l 
ro Set pocket-light control. Branch to A XX XX 3 6 

N address if: ('I) 

N 

r:tt 1. the reader- sorter is not ready; or 
Ili 
>-t 2. a pocket-light control PCB is already ,) 

E-i 
in process 

Branch Amount field error X X X X 4 0 
to A 

Process control field error 
address XX X X 4 I 

if: Account field error XX XX 4 2 

Transit field error XX X X 4 3 

Auxiliary on-us field error XX X X 4 4 

Device er ror XX X X 5 0 

Passed document condition X X X X 5 I 

Operate in normal mode X X X X 6 0 

Operate in short-document mode X X X X 6 1 

8-150 AG28 



Table 8-34 (cont). Summary of PCB I/O Control Character s 

peB I/O CONTROL CHARACTERS 
OPERATION 

Cl C2 e3 through en 

Branch to A address if on-us field is XX XX 6 2 
~ complete s:: 
0 
~ Branch to A address if last document was X X XX 6 3 
U) a control document 
~ 

N~ Branch to A address if end-of-file XX X X 6 4 If:-i 
('f')~ 

Advance batch counter one digit. Branch X X X X 6 5 ('f')0 
NU) 

to A address if the sorter-reader is not '"0 I 
s:: ~ stopped or the batch counter is currently 
ctI~ 
N~ being advanced 
('f')..:t: 
N~ Turn allow function OFF X X X X 7 0 
&~ 
>-~ f:-i U 

Turn allow function ON X X X X 7 1 
...... Turn interrupt function OFF X X X X 7 4 ~ 

Branch to A address if interrupt function X X X X 7 5 
is ON 

See: TYEe 233-2 MICR Control (Order No. Bell) 

Device Busy Test X X X X 1 0 

Reject X X X X 2 0 

Accept A X X X X 2 1 

~ 
Accept B X X X X 2 2 

~ Alternate Accept X X X X 2 3 ~ 
..:t: 
~ Feed Stop X X X X 3 0 
~ 

f:-i Feed Start X X X X 3 1 
Z 
~ Feed Ready Test X X X X 3 2 
~H Device Error X X X X 3 3 ~O 
U~ 

One Character Unreadable Of:-i X X· X X 3 4 
~Z 
HO Multicharacter Unreadable X X X X 3 5 
..:t:U 
8~ Blank Document X X X X 3 6 
f:-iZ 
p..,~ Double Feed Test X X X X 3 7 
0 
('f') Start Interrupt Test X X X X 4 0 
~ 
N 

Interrupt # 1 
~ 

XX X X 4 1 
p.., 

Interrupt #2 X X X X 4 2 ~ 
f:-i 

Unfinished Reading Interrupt Te st X X X X 4 3 

Hopper Empty X X X X 4 7 

Interrupt Allow Function Re set X X X X 7 0 

Interrupt Allow Function Set X X X X 7 1 

8-151 AG28 



Table 8-34 (cont). Summary of PCB I/O Control Characters 

PCB I/O CONTROL CHARACTERS 
OPERATION 

Cl C2 C 3 through Cn 

-:p 

....:! ~ g 
Interrupt Function Reset X X X X 7 4 ~~~ 

u°....:! H~O Interrupt Function Set X X X X 7 5 
E-i~~ 
P-i~E-i Unreadable Mark Detect 9 X X X X 4 4 OE-iZ 
rt"lZO Blank Document A 9 X X X X 4 5 ~~u 
N~ 

Blank Document B 9 6 ~::>o X X X X 4 
P-iU Z 
:>-tO~ 
E-iO 

NOTES: 

N"' , 
"' r-i ,u 
~u 
co....:! 
N~ 
~ 
P-irt"l 
:>-t I 

E-i 

1. The high-order bit must be 1. 

2. The high-order bit must be O. 

3. The high-order bit is set to 1 for input operations and to 0 for output operations. 

4. This control character should precede all other control character s that set the 
control to perform a certain action. It is the programmer's responsibility to 
set the control to the de sired mode of operation at the beginning of the run. 

5. D (tape drive) = 0-3 when the instruction is issued to the 203B-5 Tape Control. 
D = 0 or 1 when the instruction is issued to the 203C-7 Tape Control. 

6. As the drum control does not permit reading from one drum while writing on 
another, it is considered busy if either a read or write operation is in progress. 
(The value of the high-order bit in C2 is thus immaterial in this case.) 

7. The high-order bit is ignored. 

8. The interrupt functions of both the control and the disk device are automatically 
turned on when a llnot busyll status is reached by the control or the disk device, 
respectively. 

9. Requires Feature 042. 

10. Summary applies to all disk devices except 277 and 279. For information on these 
devices see Direct Access Devices and Controls (Order No. BC45). 

Table 8-35. Summary of PCB I/O Control Chclracter s for Type 286 
Multiline Communication Controller 

PCB I/O ·CONTROL CHARACTERS 
OPERATION 

Cl C2 C3 C 4 through Cn 

Branch to A address if device busy. If not XX X X 1 0 none 
busy, set the 286 to stop scanning and 
continue the program in sequence 

Turn the allow function OFF X X X X 7 0 none 

Turn the allow function ON X X X X 7 1 none 

Branch to A address if the interrupt was X X X X 7 5 none 
due to the 286 reque sting service 

8-152 AG28 



U 
U 
H 
~ 
~ 
Cl 
0 
~ 

I 

~ 
t:J 
~ 
U) 
U) 

~ 
[' 

I 

-.0 
I 

l.C) 
I 

..; 
I 

-.0 
00 
N 

~ 
Ili 
?-I 
E-i 

Table 8-35 (cont). Sununary of PCB I/O Control Characters for Type 286 
Multiline Communication Controller 

PCB I/O CONTROL CHARACTERS 

OPERATION 
Cl C2 C3 C4 through Cn 

Branch to A addre s s if device bus y XX XX 1 a none 

Branch to A address if parity error XX XX 4 a none 

Branch to A address if the interrupt was due to XX XX 7 5 none 
the 286 requesting service 

Turn the allow function ON XX XX 7 1 none 

Turn the allow function OFF XX XX 7 0 none 

Set the 286 to the load/te st state XX XX 2 5 none 

Provide line orientation for load/test 'operation XX XX 4 1 none 

Turn the load/test state and line orientation OFF XX XX 2 4 none 

Turn the interrupt function OFF XX XX 7 4 none 

Release the RW C(S) as signed to the 286 XX XX 2 7 none 

Set the halt / continue indicator to halt XX XX 2 0 none 

Set the halt / continue indicator to continue XX XX 2 1 none 

Turn the parity error indicator and the parity XX XX 2 6 none 
error interrupt function OFF 

Request the address of the next transfer that is XX XX 3 6 C4: 00 to 77 
to take place from the line designated by C4, and 
branch to the A address 

Abort the present instruction to the line designa- XX XX 3 3 C4: 00 to 77 
ted by C4, generate an interrupt, initiate the 
next instruction to the same line, and branch to 
the A addre s s 

Abort the present instruction to the line designa- XX XX 3 2 C4: 00 to 77 
ted by C4, initiate the next instruction to the 
same line, and branch to the A addre s s 

Reset synchronization for the line designated by XX XX 3 7 C4: 00 to 77 
C4, and branch to the A address 

Activate the spe.cial strobe line:to the 285 adapter XX XX 3 4 C4: 00 to 77 
designated by C4, . and branch to the A address 

Deliver to the 286 the ipformation specified by ~X XX 3 0 C4: 00 to 77 
C 5 et seq. for the next instruction to the line (See Table 8-36 
designated b.y C4, and branch to the A addre s s for C5 et seq.) 

Deliver to the 286 the jniormation specified by XX XX 3 3 C4: 00 to 77 
C5 et seq. for the next instruction to the line (See Table 8-36 
designated by C4; then abort the present in- for C5 et seq. ) 
struction to that line, generate an interrupt, 
initiate the next instruction to the same line, 
and branch to the A addre s s 

Deliver to the 286 the information specified by XX XX 3 2 C4: 00 to 77 
C5 et seq. for the next instruction to the line (See Table 8 -36 
de signated by C4, then abort the pre sent in- for C5 et seq.) 
struction to that line, initiate the next instruc-
tion to the same line, and branch to the A 
address 

8-153 AG28 



Table 8-36. PCB Control Characters C5 through C15 for Type 286-4, -5, -6, -7 
Line C ontr 01 In struction s 

Control 
Character 

C5 
C6 
C7 

C8 
C9 

Configuration (Octal) 

C5 C6 C7 

xx 
'---y----J 

xx 
'---y---J 

xx 
'--v--' 

most significant 
six bits 

middle six bits least significant 

C8 

xx 
Bits 6 and 5 specify 
mode-~f operation of 
the line: 

6 5 - -
0 0 - Inhibit 
0 1 - Receive 
1 0 - Transmit 
1 1 - Transmit 

Repeat 

Bit 4 is the Allow 
Timer bit 

o - Timer is not 
allowed 

1 - Timer is 
allowed 

Bits 3 and 2 specify 
charcU:te r parity 

3 

o 
o 

1 
1 

2 -
0 
1 

0 
1 

no parity 
generation or 
checking is 
performed 

even parity 
odd parity 

Bit 1 is the character 
transfer bit 

o - one six-bit 
character 
transfer per 
line character 

1 - two six-bit 
character 
transfers per 
line character 

six bits 

C9 

xx 
Bit §.. is the re sponse bit 

o - no interrupt is 
allowed at termi­
nation of the in­
struction. 

1 - an interrupt is 
allowed. 

Bits 4 and 5 are not used -
and must be zero. 

Bit ~ is the block parity 
bit 

o - block parity is 
not used 

1 - block parity is 
used 

Bit 2 is the command 
ter~ination bit 

o - character recog­
nized is the last 
one transferred 

1 - one more data 
transfer is made 
to or from the CP 
afte r the charac'­
ter recognized 
and before com­
mand termination. 

8-154 

Description 

Address to be loaded 
into RWC counters (SLC 
and CLC) prior to data 
transfer. 

Control characters 
which specify line 
action; they are loaded 
into the next instruction 
section of memory. 

AG28 



Table 8-36 (cont). PCB Control Characters C5 through CIS for Type 286-4, -5, -6, 
- 7 Line Control Instructions 

Control 
Character Configuration (Octal) Description 

C8 
Bit 1. defines block parity C9 

(cont) check bit 

a - check bit will be 
the half add sum. 
of the parity bit 
of the preceding 
characters in the 
message. 

1 - block parity char-
acter will have 
same parity 
generated or 
checked as the 
data characters. 

CIa CIa CII Eight bits (the low--- --CII XX XX order two bits of CIa 
and all six bits of CII) 
contain the first rec-
ognition character. 

C12 C12 C13 Eight bits (the low--- --CI3 XX XX order two bits of CI2 
and all six bits of CI3) 
contain the second rec-
0gnition character. 

C14 C14 CIS Eight bits (the low---CIS XX XX orde r two bits of C 14 
and all six bits of CIS) 
contain the SIT char-
acter for asynchronous 
lines. 

8-155 AG28 





APPENDIX A 

OCTAL NOTATION 

Octal notation is a convenient shorthand method of writing pure binary numbers. In 

Series 2000 programming it is used to represent such binary values as main memory addresses, 

variant character s, I/O control character s, and constants. 

If a binary value is divided into groups of three bits, proceeding from right to left, each 

group may be replaced by its octal equivalent as indicated in Table A-I. 

Table A-I. Binary-Octal Equivalents 

3-BIT BINARY OCTAL 
GROUP EQUIVALENT 

000 a 

001 1 

010 2 

all 3 

100 4 

101 5 

110 6 

III 7 

Example 1. Example 2. 

The binary value The binary value 

011111000101001110 1010100111010 

when divided into three -bit groups when divided into three-bit groups 

011 111000 101001110 1010 100 111010 

has an octal equivalent of has an octal equivalent of 

37051 6 1 2 4 7 2 

A-I AG28 



Table A-2. Decimal-Octal Conversion Table 

DECIMAL INCREMENT 
o::!;: 0 r-
1UC) a 000 008 all> 024 0)2 040 048 05b Ob4 on 080 088 09b 104 112 IZO 128 136 144 152 160 Ib8 176 184 192 a n 0 
0- I 001 009 017 025 0)) 041 049 057 065 07) 081 089 097 105 II) 121 129 137 145 15) 161 169 177 185 193 I ~ ~ 0:: 0 2 002 010 018 026 014 042 050 OS8 066 074 082 090 098 106 114 122 130 138 146 170 178 186 194 2 > 6 154 162 r-O...J ) 00) all 019 027 035 043 051 059 067 075 08) 091 099 107 115 III 131 1)9 147 155 16) 171 179 187 195 ) '" 'C 0 ~ ... 4 004 012 020 028 036 044 052 060 068 076 084 092 100 108 116 124 132 140 1411 156 164 172 180 188 196 4 c; 0 ou 5 005 013 021 029 on 045 oS) 061 069 077 085 09) 101 109 117 US III 141 149 57 165 173 181 189 197 

~ 
,.., 

...JO 014 022 030 038 046 054 062 150 rT* ~,i66-if'4--ia1--i90-i9~~ ::::j '" 6 006 070 078 086 094 102 110 118 126 134 142 
7 007 015 023 031 0)9 047 OSS 063 071 079 087 095 10) 111 119 127 1)5 143 151 in-':H·-r8Yi~r-r9l 

0000 0 I 2 ) 4 5 6 7 10 II 12 13 14 15 16 17 20 21 22 2) 24 25 26 27 )0 0000 
0200 31 32 33 34 35 36 17 40 41 42 4) 44 45 46 47 50 51 52 5) 54 55 56 57 60 61 0200 
0400 62 6) 64 65 66 67 70 71 72 7) 74 75 76 77 100 101 102 103 104 105 106 107 110 III 112 0400 
0600 113 114 115 116 117 120 121 122 III 124 125 126 127 130 131 132 III 134 135 136 137 140 141 142 143 0600 
0800 144 145 146 147 150 151 152 15) 154 155 156 157 160 161 162 163 164 165 166 167 170 171 172 173 174 0800 

1000 175 176 177 200 201 202 20) 204 205 206 207 210 211 212 213 214 215 216 217 220 221 222 2ll 224 225 1000 
1200 226 ZZ7 llO 231 2)2 2)3 214 2)5 236 237 240 241 242 243 244 245 246 247 250 251 252 253 254 255 256 1200 
1400 257 260 ZEd 262 26) lb4 265 266 267 270 271 272 273 274 275 276 277 )00 )01 )02 30) )04 305 )06 307 1400 
1600 310 311 312 31 ) )14 315 31b 317 320 321 322 323 )24 325 3lb 327 330 ))1 ))2 333 334 335 ))6 _)37 340 1600 
11100 HI 342 H) 144 H5 H6 147 350 )51 )52 )5) )54 lS5 )56 lS7 )60 )61 )b2 )6) 364 )65 )66 )67 370 371 1800 

2000 )72 37) 374 315 376 )71 400 401 402 40) 404 '405 406 407 410 411 412 413 414 415 416 417 420 421 422 2000 
2200 42) 424 425 426 427 4)0 431 432 433 434 435 436 437 440 441 442 443 444 445 446 447 450 451 452 453 2200 
2400 454 455 456 457 4bO 461 462 46) 464 465 466 467 470 471 472 473 474 475 476 477 500 501 502 503 504 2400 
2600 505 506 507 510 511 512 51 ) 514 515 516 517 520 521 522 523 524 525 526 527 5)0 5)1 532 533 534 535 2600 
2800 536 537 540 541 542 543 544 545 546 547 550 551 552 55) 554 555 556 557 560 561 562 563 564 565 566 2800 

3000 567 570 571 572 57 ) 574 575 576 577 600 601 602 60) 604 605 606 607 610 611 612 61) 614 615 616 617 )000 
3200 620 621 6ZZ 623 624 625 626 627 !l30 631 632 633 634 635 636 617 640 641 642 (4) 644 645 646 647 650 3200 
3400 651 652 65) 654 655 656 657 660 661 662 66) 664 665 1>1>6 667 670 671 672 673 674 675 676 677 700 701 3400 
)600 702 70) 70~ 705 706 707 710 711 712 71) 714 715 716 717 720 721 722 723 724 725 726 727 730 731 732 3600 
)1100 73) 734 735 736 717 740 141 742 74) 744 745 746 747 750 751 752 75) 754 755 756 757 760 761 762 763 )800 

4000 764 765 766 767 770 771 772 77) 774 775 776 777 1000..1001 1002 1003 1004 1005 1006 1007 1010 1011 1012 1013 1014 4000 
4200 1015 10Ib 1017 1020 1021 1022 102) 1024 1025 1026 1027 1030 1031 1032 10)) 1C/34 1035 1036 Ion 1040 1041 1042 1043 1044 1045 4200 
4400 1046 1047 1050 1051 1052 105) 1054 1055 1056 1057 1060 1061 1062 1063 1064 1065 1066 1067 1070 1071 1072 1073 1074 1075 1076 4400 
4600 1077 1100 1101 1102 110) 1104 1105 1106 1107 1110 1111 1112 1113 1114 1115 1116 1117 1120 1121 1122 Illl 1124 1125 1126 1127 4600 
4800 11)0 1I11 1132 II )) II )4 1135 11)6 lin 1140 1141 1142 114) 1144 1145 1146 1147 II SO 1151 1152 1153 1154 1155 1156 1157 1160 4800 

5000 1161 1162 116) 1164 1165 1166 1167 IUO 1171 1172 117) 1174 1175 1176 1177 1200 1201 120Z i20) IZ04 1205 1206 1207 1210 IZII 5000 
5200 1212 1213 1214 1215 1216 1217 1220 1221 IZZ2 1223 1224 1225 1226 Ill7 12)0 1231 12)2 12)] 1234 12H 12)6 1237 1240 1241 1242 5200 
5400 124) 1244 1245 1246 1247 1250 1251 1252 125) 1254 1255 1256 1257 1260 1261 1262 126) 1264 1265 1266 1267 1270 1271 1272 1273 5400 
5600 1274 1275 1276 1277 1)00 1301 1302 130) 1304 1)05 1306 1307 1310 1311 1312 1313 1314 11I5 1316 1317 1320 1321 1322 1323 1324 5600 
5800 1325 132b 1327 1))0 1)31 1332 1333 1314 1))5 Ill6 1))7 1340 1141 1342 1343 1144 1145 1)46 1347 1350 1351 1352 135) 1354 1355 5800 

6000 1356 1)57 I )bO 1361 1362 1363 1364 1365 1366 1367 1370 1371 1372 1373 1174 1375 1176 1377 1400 1401 1402 1403 1404 1405 1406 6000 
6200 1407 1410 1411 1412 1413 1414 1415 1416 1417 1420 1421 1422 142) 1424 1425 1426 1427 1430 14)1 1432 14)) 1414 1435 1436 1437 6200 
6400 1440 1441 1442 1443 1444 1445 1446 1447 1450 1451 1452 1453 1454 1455 1456 1457 1460 1461 1462 146) 1464 1465 1466 1467 1470 6400 
6600 1471 1472 1473 1474 1475 1476 1477 1500 1501 1502 1503 1504 1505 1S06 1507 1510 1511 1512 1513 1514 1515 1516 1517 1520 1521 1>1>00 

0 6800 1H2 152) 1524 IS 25 1S26 1527 15)0 1531 1532 15)) 1514 15)5 1536 1537 1540 1541 1542 1543 1544 1545 1546 1547 1550 1551 1552 6800 
0 Z 7000 1553 1554 1555 1556 1557 IS60 1561 1562 156) 1564 1565 1566.. 1567 1570 1571 1572 1573 1574 1575 1576 1577 1600 1601 1602 1603 7000 ,.., 

IU 7200 1604 1605 1606 1601 1610 1611 1612 1613 1614 1615 1616 1617 1620 1621 162Z 1623 1624 1625 1626 1627 1630 1631 1632 1633 1614 7200 n 
en 7400 16)5 1636 1637 1640 1641 1642 1643 1644 1645 1646 1647 1650 1651 1652 1653 1654 1655 1656 1657 1660 1661 1662 1663 Ifo64 1665 7400 i: -< 
CD 7600 1666 11>1>7 1670 167 I 1672 1673 1614 1675 1676 1677 1700 1701 1702 170) 1704 1705 1706 1707 1710 1711 1712 1713 1714 1715 1716 7600 > 

7800 1717 1720 1721 17ll 172) 1724 17Z5 17Z6 17Z7 1730 1731 1732 1733 1734 17lS 17)6 1737 1740 1741 1742 174] 1144 1745 1746 1747 78001 
r-...J 

-< CD 
:E 8000 1750 1751 1752 1753 1754 1755 1156 1757 1760 1761 1762 1763 1764 1765 1766 1767 1770 1771 1772 1773 1774 1775 1776 1777 2000 8000 > 

8200 200 I 2002 200 3 2004 2005 2006 2007 2010 2011 2012 2013 2014 2015 2016 2017 2020 2021 2022 202) 2024 2025 2026 2027 20)0 20)1 8200 en u I?I 
IU 8400 20]2 20)) 2014 2035 20]6 20]7 2040 2041 2042 2043 2044 2045 2046 2047 2050 2051 2052 2053 2054 2055 2056 2057 2060 2061 2062 8400 

Z 0 8600 2063206420652066 2067 2070 20712072 2073 2074 2075 20762077 2100 2101 210Z 210·32104210521062107 2110 21112112 2113 8600 
~ 11800 2114211521162117 2120 2121 21Z2 21Z3 2124 2125.2126 2127 2130 21312132213) 2134 2135 2136 2137 2140 21412142 214) 2144 8800 

9000 2145 2146 2147 2150 2151 2152 2153 2154 2155 2156 2157 2160 2161 2162 2163 2164 2165 2166 2167 2170 2171 2172 2173 2174 2175 9000 
9200 2176 2177 2200 2201 2202 2203 2204 ZZ05 2206 2207 2210 2211 2212 HI3 2Z14 2215 HI6 2Z17 2220 2221 2ZZZ ZH3 2224 H25 Z226 9200 
9400 2Z27 2Z30 2231 2232 Z2)) H14 22)5 22)6 2217 2HO 2241 2H2 224322 ... 2245 H46 2247 2250 2251 Z252 2253 2254 2255 2256 2257 9400 
9600 Z260 2261 2262 2lb3 2264 2265 2266 2267 2270 2271 2272 227) 2214 227S 2276 ZZ77 2300 BOI 2302 2)0) H04 2)05 2306 2307 Z310 9600 
9800 2111 2312 231l Z)14 Z31S 2)16 2)17 2]20 2]21 2322 232) 2)24 2]25 2)26 2327 2))0 2))1 2)3Z 233) 2))4 2))5 2))6 2337 2340 2141 '1800 

10,000 2342 2343 2344 2345 2346 2147 2350 2351 2lS2 235) 2354 2355 2356 2)57 2360 2361 2362 2363 2364 2365 Z366 2367 2370 2~71 2372 10,000 
10, ZOO 237) 2374 2375 2376 2377 2400 2401 2402 2403 2404 2405 2400 2407 2410 2411 2412 2413 2414 2415 2416 2417 2420 2421 24H 242) 10,200 
10,400 2424 2425 2426 2427 24)0 24)1 2432 24)) 2434 2435 H36 24]7 2440 2441 244Z 2443 2444 2445 2446 2447 2450 2451 2452 245) 2454 10,400 
10,600 2455 2456 2457 2460 2461 2462 2463 24642465 '2466 2467 2470 2471 2472 2473 2474 2475 2476 2477 2500 2501 2502.2503 2504 2505 10,600 
10,800 2506 2507 2510 2511 2512 2513 2514 2515 2516'Z517 2520 H21 2522 252) 25H 2525 2526 2527 2530 25)1 25]2 2533 2534 25)5 2536 10,800 
11,000 2537 2540 B41 2542 2543 2544 254S 2546 2541 2550 2551 2552 255) 2554 2555 2556 2557 2560 2561 2562 256) 2564 2565 2566 2567 11,000 
11,200 2570 2571 2572 2573 2574 2575 2576 2577 2600 2601 2602 2603 2604 2605 2606 2607 2610 2611 2612 2613 2614 2615 2616 2617 2620 11,200 
11,400 2621 2622 2623 2624 2625 2626 2627 26)0 2631 2632 26)) 2634 26)5 26362637 2640 2641 2642 264) 2644 2645 2646 2647 2650 2651 II. 400 
11,600 2652 2653 2654 2b55 2656 2657 2660 2661 2662 266) 2664 2665 2666 2667 2670 2671 2672 2613 2614 2675 Zb76 2677 2700 2701 2702 11,600 
11,800 2703 2704 2705 2706 2707 2710 2711 2712 2713 2714 2715 2716 2717 27,20 2721 27Z2 2723 2724 27252726 2727 2730 2711 2732 2733 11.800 
12,000 2734 2735 2736 2737 2140 2741 2742 2143 2144 2145 2146 2147 2750 2751 2752 2753 2754 2755 2756 2757 2760 2761 2762 276) 2764 12,000 
12,200 2765 n66 2767 2770 2771 2772 2773 2774 2775 2776 2777 3000 )001 3002 3003 3004 3005 3006 3007 3010 3011 3012 )013 3014 3015 12,200 
12,400 3016 3017 )020 3021 3022 3023 3024 3025 3026 3027 )030 3031 30]2 3033 3034 3035 3036 3037 )040 )041 3042 3043 )044 3045 3046 12,400 
12,600 3047 3050 3051 3052 )053 3054 3055 3056 )057 3060 )061 3062 3063 3064 3065 3066 )067 3070 )071 3072 3073 )014 3075 3076 3077 12,600 
12,800 3100 )101 3102 )103 3104 3105 )106 3107 3110 3111 3112 3113 3114 3115 3116 3117 )120 ·3121 3122 3123 )124 )125 3126 3127 )130 12,800 
13,000 3131 3132 31)) 3114 3135 31 )6 3137 3140 3141 )142 3143 )144 )145 3146 )147 3150 3151 3152 )15) 'lI54 )155 3156 3157 3160 3161 1).000 
13,200 3162 3163 3164 3165 3166 )167 3170 3171 3172 )173 3114 1I7S )176 )177 3200 3201 )202 3203 )204 3205 3206 )207 3210 )211 3212 I), ZOO 
13,400 )213 3214 ]215 3216 3217 3220 32Z1 )2H 3223 3224 )22 5 3226, 3227 3230 ]231 3232 3233 3234 3215 )236 32 37 3240 3241 3242 3243 13,400 
13,600 3244 )245 )246 3247 3250 3251 3252 )25) 3254 3255 )256 3257 )260 3261 3262 3263 3264 )265 )266 3267 3270 3271 3272 )273 3214 13,600 
13,1100 327S 3276 )277 3300 330 I ))02 3303 3304 ))OS 3 306 3307 3310 )311 3312 3313 3314 3315 )lI6 ))17 3320 "11 3322 3323 ))24 3325 1),800 
14,000 ))26 ))27 ]330 3331 )))2 )))) ))34 )335 3))6 ))37 ))40 )341 ))42 3343 ))44 3345 ))46 3347 JJ)O 335 I 3H2 ))53 33S4 335S 3356 14,000 
14,200 ))57 ))60 3361 3362 3363 3364 ))65 ))66 ))67 3370 3371 3372 3373 3374 3375 3376 ))77 3400 HOI 3402 3403 3404 HOS 3406 3407 14,200 
14,400 3410 3411 3412 341) 3414 3415 3416 3417 3420 3421 3422 3423 1424 34Z5 3426 3427 )430 14)1 3432 3433 3434 3435 34)6 3437 3440 14,400 
14,600 )441 344Z 3443 3444 3445 3446 1441 1450 3451 3452 3453 3454 1455 3456 3457 3460 3461 3462 3463 3464 3465 3466 .3467 3470 3471 14,600 
14,800 )412 3473 3414 3475 347b 3477 3500 3501 )502 lS03 3504 3505 3506 3507 3510 3511 lSI2 )513 3514 3515 3516 3517 3520 H21 )522 14,800 
IS,OOO 3523 3524 lS2S 3S26 lS27 35)0 lS31 3s)2 35)) 3534 35)5 3536 3537 3540 3541 354Z 3S43 3544 3545 )546 3547 3550 3551 3552 3553 15,000 
15,200 3554 )555 3556 H57 3560 3561 3562 356) 3564 3565 )566 3567 lS70 3571 3572 3573 3574 357S 3576 )577 3600 3601 )6(;2 3603 3604 15,200 
15,400 3605 3606 )607 3610 3611 3612 3613 3614 3615 3616 3617 3620 3621 3622 3623 3624 3625 3626 3627 )630 36)1 36)2 36)) 3634 )63S 15,400 
15,600 3636 )637 3640 3641 3642 )643 3644 3645 3646 3647 3650 3651 3652 3653 3654 3655 )656 )657 3660 )661 )662 )663 )664 )665 3666 15,600 
15,800 3667 3670 )671 3672 3673 3614 )675 3676 )677 3700 3701 3702 3703 3704 3705 3706 3707 3710 3711 3712 3713 3714 37IS 3716 )717 15,800 
16,000 3720 372 I )722 3723 3724 3725 3726 37Z7 3730 3731 3732 3733 37)4 )735 37)6 3737 3740 3741 3712 374) 3744 3745 3146 3747 3750 16,000 
16,200 3751 3752 3753 3754 3755 3756 3157 3760 3761 3762 3763 3764 3765 3766 3767 3770 3771 377Z 377) 3774 )775 )776 3777 4000 4001 16,200 
16,400 4002 4003 4004 4005 4006 4007 4010 4011 4012 40 I 3 4014 40 I 5 4016 40 I 7 4020 4021 4022 4023 4024 4025 4026 4027 4030 4031 4032 16,400 

HIGH-ORDER OCTAL DIGITS 

A-2 AG28 



OCTAL-DECIMAL CONVERSION PROCEDURE 

Consider the decimal number to be converted as a base and an increment. Locate the base 

(the next lower number which is evenly divisible by 200) in the margin of the lower chart and the 

increment in the body of the uppe r chart. The intersection of the row and column thus defined 

contains the high-order digits of the octal equivalent. The low-order digit appears in the mar­

gins of the upper chart opposite the increment. For example, to convert 7958 to octal, the base 

is 7800 and the increment is 158. Locate 158 in the upper chart and read down this column to 

the 7800 row below. The high-orde r octal re suit is 1 742. Then read out to the margin of the 

upper chart to obtain the low-order digit of 6. Append (do not add) this digit to 1742 for an octal 

equivalent of 17, 426. 

To convert an octal number to decimal~ locate the high-order digits in the body of the 

lower chart and the low-order digit in the margin of the uJ:»per chart. Then perform the converse 

of the above operation. 

A-3 AG28 





APPENDIX B 

MISCELLANEOUS TABLES 

Table B-l. Control Register Designations 

V ARIANT CHARACTER 
CONTROL REGISTER (LCR & SCR Instructions) 

CLCB 00 

CLCI 01 

CLC2 02 

CLC3 03 

CLCB' 04 

CLCl' 05 

CLC2' 06 

CLC3' 07 

SLCB 10 

SLC1 11 

SLC2 12 

SLC3 13 

SLCB' 14 

SLCl' 15 

SLC2' 16 

SLC3' 17 

CLC9 20 

CLC4 21 

CLC5 22 

CLC6 23 

CLC9' 24 

CLC4' 25 

CLC5' 26 

CLC6' 27 

SLC9 30 

SLC4 31 

SLC5 32 

SLC6 33 

SLC9' 34 

B-1 AG28 



Table B-1 (cont). Control Register Designations 

VARIANT CHARACTER 
CONT ROL REGISTER (LCR & SCR Instructions) 

SLC4' 35 

SLC5' 36 

SLC6' 37 

ACO --
ACI --
AC2 --
AC3 --
ATR 54 

CSR 64 

EIR 66 

AAR 67 

BAR 70 

IIR 76 

SR 77 

Table B-2. Extended Move (EXM) Conditions 

V ARIANT BITS 

CONDITIONS V6 Vs V4 V3 V 2 V l 

Type of Move 

1. A-field data bits _ B X X X X X I 
2. A-field word-mark bits-B X X X X 1 X 
3. A-field item-mark bits""':"B X X X I X X 

Direction of Move 

1. right to left X X 0 X X X 
2. left to right X X I X X X 

Termination of Move 

1. automatic after single-character move 0 0 X X X X 
2. A-field word mark 0 I X X X X 
3. A-field item mark I 0 X X X X 
4. A-field record mark I 1 X X X X 

B-2 AG28 



Table B- 3. Branch on Condition Test (BeT) SENSE Switch Conditions 

VARIANT CHARACTER 

(Octal) 

00 

01 

02 

03 

04 

05 

06 

07 

10 

11 

12 

13 

14 

15 

16 

17 

20 

21 

22 

23 

24 

25 

26 

27 

30 

31 

32 

33 

34 

35 

36 

37 

BRANCH CONDITION 

Unc onditional 

SENSE Switch 1 On 

SENSE Switch 2 On 

SENSE Switche s 1 and 2 On 

SENSE Switch 3 On 

SENSE Switche s 1 and 3 On 

SENSE Switches 2 and 3 On 

SENSE Switches 1, 2, and 3 On 

SENSE Switch 4 On 

·SENSE Switche s 1 and 4 On 

SENSE Switches 2 and 4 On 

SENSE Switches 1, 2, and 4 On 

SENSE Switches 3 and 4 On 

SENSE Switche s 1, 3, and 4 On 

SENSE Switches 2, 3, and 4 On 

SENSE Switches 1, 2, 3, and 4 On 

Unc onditional 

SENSE Switch 5 On 

SENSE Switch 6 On 

SENSE Switches 5 and 6 On 

SENSE Switch 7 On 

SENSE Switche s 5 and 7 On 

SENSE Switche s 6 and 7 On 

SENSE Switches 5, 6, and 7 On 

SENSE Switch 8 On 

SENSE Switche s 5 and 8 On 

SENSE Switche s 6 and 8 On 

SENSE Switches 5, 6, and 8 On 

SENSE Switches 7 and 8 On 

SENSE Switches 5, 7, and 8 On 

SENSE Switches 6, 7, and 8 On 

SENSE Switches 5, 6, 7, and 8 On 

NOTE: When testing for a multiple SENSE switch condition, a branch 
occurs only if all of the specified conditions are met. 

B-3 AG28 



Table B-4. Branch on Condition Test (BCT) Indicator Conditions 

VARIANT CHARACTER 

(Octal) 

40 

41 

42 

43 

44 

45 

46 

47 

50 

51 

52 

53 

54 

55 

56 

57 

60 

61 

62 

63 

64 

65 

66 

67 

70 

71 

72 

73 

74 

75 

76 

77 

BRANCH CONDITION 

Do not branch 

B< A (Low Compare) 

B=A (Equal Compare) 

B.$ A (Low or Equal Compare) 

B > A (High Compare) 

B#A (Unequal Compare) 

B ~A (High or Equal Compare) 

Unconditional 

Overflow 

Overflow or B < A 

Overflow or B=A 

Overflow or B ~ A 

Overflow or B > A 

Overflow £E. B#A 

Overflow or B ~ A 

Unconditional 

Zero Balance 

Zero Balance or B <A 

Zero Balance or B=A 

Zero Balance or B ~A 

Zero Balance or B > A 

Zero Balance ~ B#A 

Zero Balance or B ~A 

Unconditional 

Overflow or Zero Balance 

Overflow or Zero Balance or B < A 

Overflow or Zero Balance or B=A 

Overflow or Zero Balance or B S A 

Overflow or Zero Balance or B> A 

Overflow or Zero Balance £E. B#A 

Overflow or Zero Balance or B ~ A 

Unconditional 

NOTE: When testing for a multiple indicator condition, a branch 
occurs if any ~ of the specified conditions is met. 

B-4 AG28 



Table B-5. Branch on Character Condition (BCC) Conditions 

V ARIANT CHARACTER 
(Octal) 

00 
01 
02 
03 
04 
05 
06 
07 

10 
11 
12 
13 
14 
15 
16 
17 

20 
21 
22 
23 
24 
25 
26 
27 

30 
31 
32 
33 
34 
35 
36 
37 

40 

41 
42 
43 
44 
45 
46 
47 

50 
51 
52 
53 
54 
55 
56 
57 

B-5 

BRANCH CONDITION 

Unc onditional 
A bit is 1 
B bit is 1 
B and A bits are 11 
B and A bits are 00 
B and A bits are 01 (Positive sign) 
B and A bits are 10 (Negative sign) 
B and A bits are 11 (same as 03) 

Word-mark bit is 1 
Word-mark bit is 1, A bit is 1 
Word-mark bit is 1, B bit is 1 
Word-mark bit is 1, B and A bits are 11 
Word-mark bit is 1, B and A bits are 00 
Word-mark bit is 1, Positive sign 
Word-mark bit is 1 , Negative sign 
Word-mark bit is 1, B and A bits are 11 

Item-mark bit is 1 
Item-mark bit is 1, A bit is 1 
Item-mark bit is 1, B bit is 1 
Item-mark bit is 1, B and A bits are 11 
Item-mark bit is 1, B and A bits are 00 
Item-mark bit is 1, Positive Sign 
Item-mark bit is 1, Negative Sign 
Item-mark bit is 1, B and A bits are 

Record mark 
Record mark, A bit is 1 
Record mark, B bit is 1 
Record mark, B and A bits are 11 
Record mark, B and A bits are 00 
Record mark, Positive sign 
Record mark, Negative sign 
Record mark, B and A bits are 11 

No punctuation (Word-mark and Item-
mark bits are 00) 

No punctuation, A bit is 1 
No punctuation, B bit is 1 
No punctuation, B and A bits are 11 
No punctuation, B and A bits are 00 
No punctuation, Positive sign 
No punctuation, Negative sign 
No punctuation, B and A bits are 11 

Word mark only 
Word mark only, A bit is 1 
Word mark only, B bit is 1 
Word mark only, B and A bits are 11 
Word mark only, B and A bits are 00 
Word mark only, Positive sign 
Word mark only, Negative sign 
Word mark only, B and A bits are 11 

11 

AG28 



Table B-5 (cont). Branch on Character Condition (BCC) Conditions 

VARIANT CHARACTER 

(Octal) 

60 
61 
62 
63 
64 
65 
66 
67 

70 
71 
72 
73 
74 
75 
76 
77 

B-6 

BRANCH CONDITION 

Item mark only 
Item mark only, A bit is 1 
Item mark only, B bit is 1 
Item mark only, B and A bits are 11 
Item mark only, B and A bits are 00 
Item mark only, Positive sign 
Item mark only, Negative sign 
Item mark only, B and A bits are 11 

Unc onditional 
Word mark or A bit is 1 
Word mark or B bit is 1 
Word mark -m:- B and A bits are 11 
Word mark -m:- B and A bits are 00 
Word mark or Positive sign 
Word mark or Negative sign 
Word mark -m:- B and A bits are 11 

AG28 



Table B-6. Series 2000 Character Codes 

Card 
Ccn tral High 

Key Card 
Cen tral High 

Key Processor Octal Speed Processor Octal Speed 
Punch Code Punch Code 

Code Prin ter Code Prin ter 

0 0 000000 00 0 o or - X, o or XO) 100000 40 -
1 1 000001 01 1 J X,l 100001 41 J 
2 2 000010 02 2 K X,2 100010 42 K 
3 3 000011 03 3 L X,3 100011 43 L 
4 4 000100 04 4 M X,4 100100 44 M 
5 5 000101 05 5 N X,5 100101 45 N 
6 6 000110 06 6 0 X,6 100110 46 0 
1 1 000 III 01 1 P X,7 100111 41 P 
8 8 001000 10 8 Q X,8 101000 50 Q 

9 9 001001 11 9 R X,9 101001 51 R 
8,2 001010 12 , X, 8, 2 101010 52 #I 

#I 8,3 001011 13 = $ X,8,3 101011 53 $ 
@ 8,4 001100 14 : * X,B,4 101100 54 * 

Space Blank 001101 15 Blank X,8,5 101101 55 " 
8,6 001110 16 > (2) X,8,6 101110 56 1= (2) 

& 8,1 001111 17 & - or 0 X or x,o(1) 101111 57 1/2 or! (2) (3) 
o or & R,O or R(l) 010000 20 + 8,5 110000 60 < (2) 

A R,l 010001 21 A / 0, 1 110001 61 / 
B R,2 010010 22 B 5 0,2 110010 62 5 
C R,3 010011 23 C T 0,3 110011 63 T 
D R,4 010100 24 D U 0,4 110100 64 U 
E R,5 010101 25 E V 0,5 110101 65 V 
F R,6 010110 26 F W 0,6 110110 66 W 
G R,7 010111 21 G X 0,7 110 III 67 X 
H R,B 011000 30 H Y O,B 111000 70 Y 
I R,9 011001 31 I Z 0,9 111001 71 Z 

R,8,2 011010 32 ; 0,8,2 111010 72 @ 

R,8,3 011011 33 , 0,8,3 111011 73 , 
0 R,8,4 011100 34 ) 0/0 0,8,4 111100 74 ( ) 

R,B,5 01110 1 35 0/0 0,8,5 11110 1 75 CR 
R,B,6 011110 36 • 0,8,6 111110 76 0 (2) 

& 
& or a R or R, 0(1) 011111 37 ? (2) 0,B,7 111111 71 ¢ (2) 

(1 )Special Code. The second (alternative) card-code/central processor code equivalency 
is in effect when control character 26 is coded in a card read or punch PCB instruction. 

(2)Indicates symbol which will be printed by a printer which has a 63-character drum (Type 
222 printers). 

(3)The exclamation point replaces the one-half symbol on a type roll containing the Mark II 
character font. 

B-7 AG28 



Table B-7. Binary, Octal, and Decimal Equivalents Table B-8. Powers of 2 

BIN. OCT. DEC. BIN. OCT. DEC. n 2n 

0 1 
0 0 0 100000 40 32 

1 2 
I 1 1 100001 41 33 

- 2 4 
10 2 2 100010 42 34 

3 8 
II 3 3 100011 43 35 

4 16 
100 4 4 100100 44 36 

5 32 
101 5 5 100101 45 37 

6 64 
110 6 6 100110 46 38 

7 128 
III 7 7 100111 47 39 

8 256 
1000 10 8 101000 50 40 

9 512 
1001 11 9 101001 51 41 

10 I 024 
1010 12 10 101010 52 42 

11 2 048 
1011 13 11 101011 53 43 

12 4 096 
1100 14 12 101100 54 44 

13 8 192 
1101 15 13 101101 55 45 

14 16 384 
1110 16 14 101110 56 46 

15 32 768 
1111 17 15 101111 57 47 

16 65 536 
10000 20 16 110000 60 48 

17 131 072 
10001 21 17 110001 61 49 

18 262 144 
10010 22 18 11 00 1 0 62 50 

19 524 288 
10011 23 19 110011 63 51 

20 1 048 576 
10100 24 20 110100 64 52 

21 2 097 152 
10101 25 21 110101 65 53 

22 4 194 304 
10110 26 22 110110 66 54 

23 8 388 608 
10111 27 23 110111 67 55 

24 16 777 216 
11000 30 24 111000 70 56 

11001 31 25 111001 71 57 

11010 32 26 111010 72 58 

11011 33 27 111011 73 59 

11100 34 28 1111 00 74 60 

11101 35 29 11110j 75 61 

11110 36 30 111110 76 62 

11111 37 31 111111 77 63 

B-8 AG28 



Mnemonic 
Op Code 

MLC 

MLN 

MLW 

MLZ 

MLCA 

MLCB 

MLCS 

MLCW 

MLNA 

MLNB 

MLNS 

MLNW 

MLWA 

MLWB 

MLWS 

MLZA 

MLZB 

MLZS 

MLZW 

MLCWA 

MLCWB 

MLCWS 

MLNWA 

MLNWB 

MLNWS 

MLZWA 

MLZWB 

MLZWS 

MRC 

Table B-9. Move or Scan Variants 

MOVE OPERATION CODES 

Statement Name 

Move Left Characters 

Move Left Numeric s 

Move Left Word Marks 

Move Left Zones 

Move Left Characters to A-Field Word Mark 

Move Left Characters to B-Field Word Mark 

Move Left Character Single 

Move Left Characters and WQrd Marks 

Move Left Numerics to A-Field Word Mark 

Move Left Numerics to B-Field Word Mark 

Move Left Numeric Single 

Move Left Numeric s and Word Marks 

Move Left Word Marks to A-Field Word Mark 

Move Left Word Mark to B-Field Word Mark 

Move Left Word Mark Single 

Move Left Zones to A-Field Word Mark 

Move Left Zones to B-Field Word Mark 

Move Left Zone Single 

Move Left Zones and Word Marks 

Move Left Characters and Word Mark to A-Field 
Word Mark 

Move Left Characters and Word Mark to B-Field 
Word Mark 

Move Left Characters and Word Mark Single 

Move Left Numerics and Word Mark to A-Field 
Word Mark 

Move Left Numerics and Word Mark to B-Field 
Word Mark 

Move Left Numeric and Word Mark Single 

Move Left Zones and Word-Mark to A-Field 
Word Mark 

Move Left Zones and Word Mark to B-Field 
Word Mark 

Move Left Zones and Word Mark Single 

Move Right Characters 

B-9 

Corresponding 
Move or Scan 

Variant 

63 

61 

64 

62 

23 

43 

03 

67 

21 

41 

01 

65 

24 

44 

04 

22 

42 

02 

66 

27 

47 

07 

25 

45 

05 

26 

46 

06 

13 

AG28 



Table B-9 (cont). Move or Scan Variants 

MOVE OPERATION CODES 

Mnemonic 
Corresponding 

Op Code Statement Name 
Move or Scan 

Varian ts 

MRN Move Right Numerics II 

MRW Move Right Word Marks 14 

MRZ Move Right Zones 12 

MRCG Move Right Characters to A-Field Group Mark-
Word Mark 53 

MRCM Move Right Characters to A-Field Record Mark or 
Group Mark-Word Mark 73 

MRCR Move Right Characters to A-Field Record Mark 33 

MRCW Move Right Characters and Word Mark to A- or B-
Field Word Mark 17 

MRNG Move Right Numerics toA-FieldGroup Mark-WordMark 51 

MRNM Move Right Numerics to A -Field Record Mark or 
Group Mark-Word Mark 71 

MRNR Move Right Numerics to A -Field Record Mark 31 

MRNW Move Right Numerics and Word Mark to A- or B-
Field Word Mark 15 

MRWG Move Right Word Marks to A-Field Group Mark-
Word Mark 54 

MRWM Move Right Word Marks to A-Field Record Ma:rk or 
Group Mark-Word Mark 74 

MRWR Move Right Word Marks to A-Field Record Mark 34 

MRZG Move Right Zones to A-Field Group Mark-Word 
Mark 52 

MRZM Move Right Zones to A-Field Record Mark or 
Group Mark-Word Mark. 72 

I 

MRZR Move Right Zones to A-Field Record Mark 32 

MRZW Move Right Zones and Word Mark to A- or B-Field 
Word Mark 16 

MRCWG Move Right Characters and Word Marks to A-Field 
Group Mark-Word Mark 57 

MRCWM Move Right Characters and Word Marks to A-Field 
Record Mark-Group Mark-Word Mark 77 

MRCWR Move Right Charac ters and Word Marks to A-Field 
Record Mark 37 

MRNWG Move Right Numerics and Word Marks to A-Field 
Group Mark-Word Mark 55 

MRNWM Move Right Numerics and Word Marks to A-Field 
Record Mark-Group Mark-Word Mark 75 

B-I0 AG28 



Mnemonic 
Op Code 

MRNWR 

MRZWG 

MRZWM 

MRZWR 

SCNL 

SCNR 

SCNLA 

SCNLB 

SCNLS 

SCNRG 

SCNRM 

SCNRR 

Table B-9 (cont). Move or Scan Variants 

MOVE OPERATION CODES 

Statem en t N am c 

Move Right Numerics and Word Marks to A-Field 
Record Ma1\k 

Move Right Zones and Word Marks to A-Field Group 
Mark-Word Mark 

Move Right Zones and Word Marks to A-Field Record 
Mark-Group Mark-Word Mark 

Move Right Zones and Word Marks to A-Field 
Record Mark 

SCAN OPERATION CODES 

Scan Left to A- or B-Field Word Mark 

Scan Right to A- or B-Field Word Mark 

Scan Left to A-Field Word Mark 

Scan Left to B-Field Word Mark 

Scan Left Single Position 

Scan Right to A-Field Group Mark-Word Mark 

Scan Right to A-Field Record Mark or Group 
Mark-Word Mark 

Scan Right to A-Field Record Mark 

Corresponding 
Move or Scan 

Variants 

35 

56 

76 

36 

60 

10 

20 

40 

00 

50 

70 

30 

NOTE: Any move or scan variant with X3 or X7 format moves item marks as well 
as data and/or word marks. 

B-ll AG28 





APPENDIX C 

INSTRUCTION SUMMARY 

INSTRUCTIONS FORMATS AND TIMING 

Each Series 2000 single-character processor instruction is described in terms of its 

operation code, formats, and timing formulas in Table C-l. Table C-2 lists the instruction 

timings in memory cycles for the Models 2040A, 2050, and 2060. Timing formulas for the 

Models 2050A and 2070 are given in Table C-3. 

The formulas given in both tables provide execution time in memory cycles. Equiva­

lent expres sions for symbols used in Tables C -1 and C -4 are as follows: 

SYMBOL 

A 

B 

h 

N 
a 

N 
cn 

Ndd 

N. 
I 

N. 
Ia 

Nib 

N. 
IC 

N. 
J 

MEANING 

Addres s of A-operand field. 

Addres s of B -operand field. 

The sum of the values of the multiplier digits which 
are less than or equal to five, plus the sum of the 
elevens complements of all digits whose values are 
greater than five. 

Number of characters in the A -operand field. 

Number of words in the A-operand field. 

Number of characters in the B -operand field. 

Number of words in the B -operand field. 

Number of words that the A field occupies in the 
B field, whether or not the operands have been 
modified by an arithmetic operation. 

Number of words in the B -operand field excluding Nb 1 • 

Number of control characters in the instruction. 

Number of control characters following control 
character 3 (C3). 

Number of digits in the dividend. 

Number of characters in the instruction. 

Number of words in the item to be translated. 

Number of words in the result item. 

Number of translation units (6-bit or 12-bit characters) 
to be translated. 

Number of character locations bypassed to reach the 
next sequential op code. 

C-1 AG28 



SYMBOL 

N 
m 

N 
mr 

N 
q 

N 
r 

N 
sc 

N
st 

N 
w 

N. 
wJ 

N 
ws 

n 

Q. 
1 

s 

SUM 

v 
w 
w. 

1 

Z 

Zla 

Z 
law 

Z 
taw 

Z 
w 

Z 
z 

MEANING 

Number of 'characters moved. 

Number of digits in the multiplier. 

Number of digits in the quotient (=Ndd -Z Id -Na +Z la +1). 

Number of characters referenced. 

Number of characters scanned. 

Number of characters stored. 

Number of characters in the A- or B -operand field, 
whichever is shorter. 

Number of words bypassed to reach the next sequential 
op code. 

Number of words stored. 

Number of items in the table or the number of times the 
A operand is compared against some portion of the B 
operand. 

The value of the lIithll digit of the quotient. 

Sum of all multiplier digits. 

Sum of the upwards -rounded values of all multiplier 
digits divided by 2. 

Variant character. 

Number of memory words used to store the data involved. 

Number of four-character words used to store one more 
than the total number of characters in the instruction. 

Number of words in the multiplier. 

Zero if no second scan (zero suppression); one if the 
scan is performed • 

Zero if no third scan (dollar-sign insertion); one if the 
scan is performed. 

Number of characters scanned during zero suppression. 

Number of leading zeros in the A-:operand field. 

Number of words containing leading zeros in the A-operand 
field. 

Number of leading zeros in the dividend. 

Number of 0 's in the multiplier. 

Number of trailing O's (i. e., consecutive low-order 
zeros) in the A-operand field. 

Number of words containing trailing zeros in the A­
operand field. 

Number of words scanned during zero suppression. 

ZeroifZ
l 

=O;oneifZ ~O. 
a la 

Number of characters scanned during dollar-sign insertion. 

Number of words scanned during dollar-sign insertion. 

C-2 AG28 



NOTE: The timing formulas presented in Tables C-l, C-2, C-3, and C-4 are 
based on the use of direct addressing. If address modification is used, 
the formulas in Tables C -1 and C -4 for the Model 2040 should be 
modified as follows: 

1. Indirect Addressing - Add one memory cycle for each character 
extracted as a result of indirect addres sing. 

2. Indexed Addressing - Add three memory cycles for each indexed 
address. 

Likewise, the use of address modification requires that the formulas in 
Tables C-2 and C-3 for the Models 2040A, 2050, 2050A, 2060, and 2070 
be modified as follows: 

1. Indirect Addressing - Add 1. 16 memory cycles for each indirect 
addres s formed plus one memory cycle for each word extracted 
as a result of indirect addressing. 

2. Indexed Addressing - Add 3.167 memory cycles if one address is 
indexed, 5.16 memory cycles if both addresses are indexed. 

C-3 AG28 



Table C-l. Instruction Summary - Timing Formulas for Model 2040~:~ 

Op Code 

Mne- Oc- Card 
monic tal Code 

A 36 oR. 8. 6 

37 R or R,OZ 

BA 34 R. 8. 4 

BS 35 R,8,5 

ZA 16 8,6 

ZS 17 8,7 

M Z6 R,6 

D Z7 R,7 

EXT 31 R,9 

HA 30 R,s 

SST 3Z R,s,Z 

C 33 R,s,3 

B 65 0,5 

BCT 65 0,5 

BCC 54 X,8,4 

BCE 5S X,s,5 

BBE 56 X,S,6 

SW ZZ R, Z 

SI ZO R,O or R3 

CW Z3 R,3 

CI Zl R,I 

H 45 X,5 

NOP 40 

MCW 14 8,4 

Key Function 
unch 

Timing 
(Memory 
Cycles) 

Format 

ARITHMETIC INSTRUCTIONS 

Decimal Add N,+2+N +ZNb (no 
r:comp'fement) 3 

~i:::~PI:~gnt) 3 

Decimal Subtract N. +Z+N +ZNb (no 
r~cornp'fernent) 3 

Ni+l+NwHNb 3 
(recornplernent) 

a Binary Add 

Zero and Add 

Zero and Sub­
tract 

N +I+N +ZN 
i w b 

N.+I+N +N 
1 w b 

N.+I+N +N 
1 w b 

F Decimal Multiply See Table C-4. 

G Decimal Divide See Table C.4. 

AlA,B 
b. AlA 

AI 

S/A,B 
b. S/A 

SI 

BA/A,B 
b, BA/A 

BA/ 

a. Bs/A, B 
b. BS/A 

BS 

ZA/A, B 
b, ZA/A 

zA/ 

a. ZS/A,B 
b •. ZS/A 

zsl 

M/A,B 
b. MIA 

MI 

a. D/A,B 
b. D/A 

DI 

LOGIC INSTRUCTIONS 

H 

V 

Half Add 
(Exclusive Or) 

Substitute 

Compare 

Branch 
(Unc onditional) 

N +2+N +N 
I w b 

V Branch on Ni+Z 
C!-?ndition T~.t __ 

Branch on 
Character 
Condition 

Branch if NIH 
Character Equal 

Branch on Bit N/4 
Equal 

C Clear Word 
Mark 

A Clear Item Mark N
i
+3 

N Halt 

No Operation 

Move Characte .. Ni+I+ZN
w 

to Word Mark 

a, EXT/A, B 
b. ,EXT/A 

EXTI 

HA/A,B 
b. HA/A 

HA/ 

a. SST/A, B, V 
b. SSTI A, B 

SST/A 
d. SST I 

B/A 

a. BCT/A, V 

b. BCTI 

a. Bccl A, B, V 
b. Bcc/A,B 

Bcc/A 
d. BCC 

BCE/A, B, V 
b. BCE/A,B 
c. BCE/A 
d. BCEI 

a. BBEI A, B, V 
b. BBE/A,B 

BBE/A 
d. BBEI 

CONTROL INSTRUCTIONS 

C-4 

a, SW/A,B 
b. SW/A 
c, SWI 

SI/A,B 
b. SI/A 

SI/ 

a. CW/A, B 
b. CW/A 

cwl 

CI/A,B 
b. CI/A 

CI/ 

a. HI 
b. H/A 

H/A,B 
d, H/A,B, V 

NOPI 

a. Mcw/A,B 
b. MCW/A 

MCW 

Extrac­
tion 

Path' 

Required 
Word 
Marks 

Can 
Termi- Instruction 
nated Be 
By: Chained? 

Duplicate. B operand. A .B-operand 
, A. operand only I! word mark, 

Imaller than B. 

Duplicate. B operand. A B-operand 
A. operand only if word mark. 

Imaller than B. 

Duplicate. B operand. A B-operand 
A. operand only it word mark. 

Imaller than B. 

Duplicate. B operand. A a-operand 
A. operand only if word mark • 

• maller than B. 

Duplicates ~ operand. A B-operand 
A. operand only it word mark. 

amaller than B. 

Duplicates B operand. A B-operand 
A. operand only if word mark. 

smaller than B. 

Preserves A and B fields. Both word 
B. markle 

Preserves A operand 
B. (divisor). 

A-operand 
word mark. 

Preserves Smaller oper- Word mark 
B. and. of smaller 

operand. 

Preserves Smaller oper- Word mark 
B. and. of smaller 

operand. 

Preserves None. Single-
B. character 

operation. 

preservel B operand. A, B-operand 
B. operand only if word mark. 

smaller than B. 

Bypasses None. 
B. 

Bypasses None. 
B. 

Preserves None. 
B. 

Preserve. None. 
B. 

Preserves None. 
B. 

Duplicates None. 
A. 

Duplic ate II None. 
A. 

Duplicates Word marks 
A. are cleared. 

Duplicates None. 
A. 

Preserves None. 
B. 

Bypa •• e. None. 
A and B. 

Preserve. Smaller 
B. operand. 

n/a 

n/a 

Single_ 
character 
operation. 

Single_ 
character 
operation. 

Single_ 
character 
operation. 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

Word mark 
of .maller 
operand. 

Yel. 

V ... 

Yea. 

Ye., 

Ye •• 

Yeo, 

Ye., 

Yel. 

Yel. 

No. 

Yes. 

Ye., 

Ye •• 

Yes. 

Ye •• 

Ye., 

Yes. 

Yel. 

No. 

No. 

Yeo. 

AG28 



Table C -1 (cont). Instruction Summary - Timing Formulas for Model 2040 ~:~ 

Op Code 

Mne- Oc.l Card I Key Function 
monic tal I Code Punch 

Timing 
(Memory 
Cycles) 

Format 
Extrac­

tion 
Path' 

Required 
Word 

Marks 

Termi­
nated 
By: 

Can 
Instruction 

Be 
Chained? 

LCA 15 Blank 

SCR 24 R,4 

LCR Z5 R,5 

CAM 42 X,Z 

CSM 43 X,3 

EXM 10 

MAT 60 8,5 

MIT 6Z 0,2 

LIB 77 0,8,7 

SIB 76 0,8,6 

TLU 57 R,6 

MOS 13 8,3 

SVI 46 X,6 

RVI 67 0,7 

MC 44 X,4 

RNM 41 X,I 

MCE 740,8,4 

PDT 66 0,6 

CONTROL INSTRUCTIONS (cont) 

a. LCA/A. B 
b. LCAIA 

Space ~o~:ii~~~a~t::: Ni+l+ZNa Preserves A operand. 
B. 

A-operand 
word mark. 

o 

E 

K 

L 

Mark 

Store Control 
Registers 

Load Control 
Registers 

Change Address­
ing Mode 

Extended Move 

Move and 
Translate 

Move Item and 
Translate 

Load Index/ 
Barricade 
Register 

Store Index/ 
Barricade 
ncglater 

N.+N +ZN. 
1 a lC 

c. LCA/ 

a. SCR/A, V 
b. SCR/A 
c. SCR/ 

a. LCR/A, V 
b. LCR/A 
c. LCR/ 

a. CAM/V 
b. CAM/ 

Bypasses 
B. 

Bypasses 
B. 

Bypasse. 
A and B. 

None. 

None. 

None. 

a. CSM/ Preserves None. 
b. CSM/A 
c. CSM/A, B 
d. CSM/A, B, V 

a. EXM/ A, B, V 
b. EXM/A, B 
c. EXM/A 
d. EXM/ 

B. 

Preserves 
B. 

a. MAT/A,B.Vl'V
Z 

See page 
b. MAT/ A, B, C 8-70 

a. MIT/A, B, See page 

VI' VZ' V3 8-74 

b. MIT/A,B,C, VI 

See page 8-6,1 

A operand. 

None. 

a. LIB/A Preserves None. 
b. LIB/A/B B. 

a. JIB/A Prelerves None. 
b. SIB/A/B B. 

a. TLU/ A, B, V Preserve. A operand. 
b. TLU/A, B B. 
c. TLU/A 
d. TLU 

n/a 

n/a 

n/a 

n/a 

See page 8-6 

Word mark 
in A operand 
or in table. 

A-operand 
item mark or 
word mark ir 
table. 

Single­
character 
operation. 

Single­
character 
operation. 

A_operand 
word mark. 

1/ Move or Scan N
i
+l+3(N

m
) (Move) 

Ni +1+3(Nsc)(Scan) 

a. MOS/A, B • .Y Preserves See page 
b. MOS/A. B B 8-87 
c. MOS/A 

See page 
8-87 

o Store Variant 
and Indicators 

X Restore 
Variant and 
Indicators 

M Monitor Call 

J Resume 
Normal Mode 

% Move 

W 

Characters 
and Edit 

Peripheral 
Data 
Transfer 

d. MOS 

INTERRUPT CONTROL INSTRUCTIONS 

a. SVl/V 

a. RVI/A, V 

a. MC/ 

a. RNM/A,B 
b. RNM/A 
c. RNM/ 

EDITING INSTRUCTION 

a. MCE/A,B 
b. MCE/A 
c. MCE/ 

INPUT/OUTPUT INSTRUCTIONS 

(Ni-Nc+ l ) + (Ncn+3) 

+ data transfer time. 

a. POT/A.C1,· Cn 

C-5 

Bypasses 
A and B. 

Restores 
A and 
bypasses 
B. 

Bypasses 
A and B. 

See page 

8-94 

None. 

None. 

Preserves None. 
B. 

See page 
8-94 

Word mark 
or next 
instruction. 

Word mark 
of next 
instruction. 

n/a 

Preserves A operand and See page 
B. B operand 8-106 

(see page 

Bypasses 
B. 

8-106 

None. Record.mark 
in memory or 
unit record 
length. 

Yee. 

Yes. 

Yea. 

Yea. 

Yea. 

No. 

No. 

Ye •• 

Yea. 

Yel. 

Yes. 

No. 

No. 

No. 

No. 

No. 

No. 

AG28 



Table C -1 (cont). Instruction Sum.m.ary - Tim.ing Form.ulas for Model 2040~:~ 

Op Code 
Timing Extrac- Required Termi-

Mne- Oc- Card Key Function (Memory Format tion I Word nated 
monic tal Code unch Cycles) Path Marks By: 

INPUT /OUTPUT INSTRUCTIONS (cont) 

PCB 64 0.4 U Peripheral (N.-N +1) +N a. PCB/A. C I•· ,Cn 
Bypasses None. n/a 

Control and 1 c. C B. 
Branch 

*All information given in this table, other than timing formulas, is appUcable to the multicharacter processors. See Appendix D for 
information concerning Scientific Unit and Subprocessor. 

IThe extraction path of the various instructions is defined as follows: 

Preserves B - The previous contents of BAR are used as the B address when the instruction is coded in the format 
Op Code/A. 

Duplicates A - The contents of AAR are used as the B address when the instruction is coded in the format Op Code/A. 
Bypasses B The contents of BAR are not used in any format. 
Bypasses A and B - The contents of AAR and BAR are not used in any format. 

2The second (alternate) card code is in effect when control character 26 is coded in a Card Read or Punch PCB instruction. 

3Subtract one memory cycle from this formula if the instruction is executed in a Type 2041 processor. 

4Subtract one memory cycle from this formula if the instruction is issued in a Type 2041 processor in the format Op Code/A, B. 

SSubtract one memory cycle from the formula if the instruction is executed in a Type 2041 processor. 

C-6 

Can 
Instruction 

Be 
Chained? 

No. 

AG28 



The following symbols and meanings should be used to interpret Table C-2 only. 

SYMBOL 

N 
a 

Nb 

N 
w 

T 

x 
Y 

n 

N 
ap 

MEANING 

Length of A-operand. 

Length of B -operand. 

Length of shorter of the two operands. 

o if terminating punctuation is sensed in the A-field; 2 if 
terminating punctuation is s ens ed in the B -field and not in 
the A -field. 

Number of characters scanned in Edit, second pas s. 

Number of characters scanned in Edit, third pass. 

Number of times the A-field is scanned. 

Number of characters read out of translation table. 

Number of characters moved. 

Number of characters scanned. 

0.5 if N
w 

is odd and Nb is even. 

0.0 if N
w 

and Nb are even. 

0.1 if N is even and N is odd. 
w b 

1.5 if N
w 

and Nb are odd. 

0.5 if N is odd and Nb is even, or N is even and Nb 
is odd. w w 

1. 0 if N
w 

and Nb are odd. 

0.0 if Nand Nb are even. w . 

1. 5 if N is odd. 
w 

0.0 if N is even. 
w 

0.5 if N is odd and Nb is even, or Na is even and Nb 
is odd. a 

1. 0 if Na and Nb are both odd. 

0.0 if Na and Nb are both even. 

O. 0 if N is even. 
s 

o • 5 if N is odd. 
s 

0.0 if X and Yare even. 

1.0 if X is odd and Y is even, or X is even and Y is odd. 

2.0 if X and Yare odd. 

1 if B -field is odd. 

o if B -field is even. 

Number of character pairs in the A-field (upward 
rounded). 

Number of character pairs in the B -field (upward 
rounded). 

C-7 AG28 



N 
dap 

N 
mp 

SUM 

Z 
mrp 

Z 
tap 

N 
dap 

N
qt 

Z 
a 

Zb 

Z 
ap 

Table C-2. 

Mnemonic 
Op Code 

A 

S 

BA 

BS 

ZA 

ZS 

M 

Multiply 

Number of pairs of multiplicand digits excluding trailing 
zeroes. 

Number of pairs of multiplier digits excluding trailing 
zeroes. 

Number of digit pairs in multiplier excluding trailing 
zeroes (N

b 
-Z ). 

p mrp 
(The s urn of all even multiplier digits plus all other 
multiplier digits individually increased by one) divided 
by two. 

Number of trailing zero pairs in multiplier (downward 
rounded) 

Number of trailing zero pairs in multiplicand (downward 
rounded) • 

Divide 

Number of divisor digit pairs (N -Z ) I upward rounded. 
a a 

Number of characters in the quotient l where N = 
qt N -Z -N +Z +1 

b b a a 
Number of leading divisor zeroes. 

Number of leading dividend zeroes. 

Number of leading zero pairs in the divisor (upward 
rounded) • 

Number of leading zero pairs in the dividend (upward 
rounded) • 

Instruction Timings for Models 2040A 1 2050, and 2060 

Instruction 
Timing (Memory Cycles) 

Name 

Fixed-Point Arithmetic Instructions 

Decimal Add .5N
w

+N
b
+k/D 

Decimal Subt ract .5N
w

+N
b
+k/D 

Binary Add .5N
w

+N
b
+k

l 

Binary Subtract . 5N
w

+N
b 
+k

l 

Zero and Add .5N
w

+5N
b

+k
2 

Zero and Subtract . 5N
w

+' 5N
b
+k

2 

Decimal Multiply If Na or Nb =0: 2+2N +2N
b ap p 

IfN a and Nb =0: 2+2N +2N
b 

+SUM·N 
ap p mp 

+2 [N -Z J N +N ap mrp' mp mp 

C-8 AG28 



Table C -2 (cont). Instruction Timings for Models 2040A, 2050, and 2060 

Mnemonic Instruction 
Timing (Memory Cycles) 

Op Code Name 

D Decimal Divide If divisor=O: 1+2N
d ap 

If Na>N
b 

(indivisible): 4+4l\i 
dap 

If Na-Z?Nb-Zb (indivisible): 5+2N d +2Z +3Z
b ap ap p 

If divisible [A] 0; 3+2N 
dap 

+2Z +3Z +N 
ap bp qt 

(15N
d 

+2)+.6N . Nd 
ap qt ap 

Logic Instructions 

EXT Extract 1.5Nw+k3 

HA Half Add 1. SNw+k3 

SST Substitute 3 

C Compare . 5N
w

+' 5N
b
+k

2
+1 

B or BCT Branch 1 (Includes test of eight SENSE switches) 

BCe B ranch on Character 2 
Condition 

BCE B ranch on Character 2 
Equal 

BBE B ranc h on Bit Equal 2 

Control Instructions 

SW Set Word Mark 2 

SI Set Item Mark 2 

CW Clear Word Mark 2 

CI Clear Item Mark 2 

H Halt 1 

NOP No Ope ration 1 

MCW Move Characters N _<9 
to Word Mark 

w 

LCA Load Characters N® 
to A-field Word Mark 

a 

SCR Sto re. C ont ro 1 3 
Registers 

LCR Load Control 3 
Registers 

C-9 AG28 



Table C-2 (cont). Instruction Timings for Models 2040A, 2050, and 2060 

Mnemonic Instruction 
Timing (Memory Cycles) 

Op Code Name 

CAM Change Add res sing 1 
Mode 

CSM Change Sequencing 1 When item-mark trapping is in effect, any 
Mode item-marked op code is treated as CSM. 

EXM Extended Move N® 
a 

MAT Move and Translate 2N
a
+k

7 

If V=OO: 2N
a
+k

7 
I! V=02: 3N 

ap 
MIT Move Item and If V=OI: 3N If V=03: 3N 

Translate a ap 

TLU Table Lookup n [5Na+.5Nb+k4] 

MOS Move or Scan Move=I.5N+k
3 

Interrupt Control Instructions 

MC Monitor Call 1 (Not including the time used in honoring the 

. . 1) 3 mterrupt sIgna. 

SVI Store Variant and .5 (number of characte rs stored plus number 
Indicators skipped over to reach next op code) +1 

RVI Restore Variant and .5 (number of characters referenced) + 1 
Indicators 

RNM Resume Nonnal Mode 1 

Edit Instruction 

MCE Edit N
a
+k

7
+N

b
+X+Y+k

6 

Input/Output Instructions 

PCB Peripheral Control Timing proceeds normally until the control char-
and Branch acter designating the read/write channel is 

PDT Peripheral Data 
extracted. Subsequent characters must be trans-
ferred to the I/O traffic control of the, sector des-

Transfer ignated by the sector bits of the control character. 
This can occur only during the memory cycle set 
aside for that sector. Therefore timings vary. 

If an external interrupt signal is received during a 
PDT in which the RWC of the peripheral control is 
busy, extraction of the PDT must begin again. 

1 
Add. SN

b 
when the sign of the result differs from the original sign of the B -field. 

2 Add on~ memory cycle if the terminating field has an odd number of characters. 

3 The time used in honoring a peripheral interrupt, control panel interrupt, or monitor 

call signal is three processor-allocated memory cycles. 

C-IO AG28 



The following symbols and meanings should be used to interpret Table C-3 only. 

Mnemonic 
Op Code 

A 

S 

BA 

SYMBOL 

n 

ZS 

$ 

Nddr 

Kl 

K2 

q 

L 
q=l 

Length of A-operand. 

Length of B -ope rand. 

MEANING 

Length of shorter of the two operands. 

Number of times the A -field is scanned. 

2 ( I Nb I) if sign of result differs from original sign; 
4 

otherwise O. 

Number of characters between zero suppression signal 
and B-field word mark. 

Number of characters between zero suppression symbol 
and most significant non-zero digit plus one. 
$ = 0 if "float dollar sign" is not involved. 

Number of characters in a quotient where 

Nq = Ndd - Z 1 b - Na + Z la + 1. 

Number of leading divisor zeros. 

Number of leading dividend zeros. 

Number of dividend digits including leading zeros. 

0.00556 probability of intermediate remainder corre c­
tion due to subtraction. 

The remainder of Ndd - Zlb • 
4 

The remainder of Na • 
-:if" 

The remainder of Nb • 
"4 

o if Nar + Nbr is greater than 4; otherwise Kl = 1. 

(Nar + Nbr) or 4, whichever is smaller. 

Value of sum of quotient digits (e. g., for quotient 

= 578, ~ = 20). 

q=l 

Table C -3. Instruction Timings for Model.s 2050A and 2070 

Instruction Timin g Formula s 
Name (in Memory Cycles) Notes 

Fixed-Point Arithmetic Instructions 

Decimal Add (I~I) +2 d:bj) +k1 
Note 2. 

Decimal Subtract Same as decimal add. Note 2. 

Binary Add (I~WI) +2 (I~j) Note 2. 

C-ll AG28 



MneInonic 
Op Code 

BS 

ZA 

ZS 

M 

D 

Table C-3 (cont). Instruction Thnings for Models 2050A and 2070 

Instruction 
NaIne 

TiIning ForInulas 
(in Memory Cycles) 

Fixed-Point ArithInetic Instructions (cont). 

Binary Subtract 

Zero and Add 

Zero and Subtract 

Decimal Multiply 

Decimal Divide 

Same as binary add. 

Same as zero and add. 

If A and Bare not equal to 0: 

4 + 2 I :a I + 3 I ~b I - K 1 

+ 14 [ I ~ I. (I :b I -1 ) ] 

N 
+ (I :1 -1) ( 2Nbr +6) 

+2Nbr + K2 

If A=O or B=O: 

2+21 :a I +2 1 :b I 

If divisor '# 0 and 

(Ndd - Zlb)~ (Na - Zla): 

T = I ~I + I N~d I +2 (I Na 4: Z la I) 

+,~, + ~ Nq (3)(,Na - Zlal) 
~ q=l 4 

+ [Nq • P (INa ~ Zlal)] 

+(2Nq - 1) +3. 

If divisor = 0: 

T = ~a + 1. 

If Ndd - Zlb < Na - Zla 

(dividend < divisor): 

T=I~'+5 

+ Ndd + 2 (I Ndd - Zlbl) 
4 

+ Nddr 

C-12 

Notes 

Note 2. 

Note 6. 

Notes 7,8. 

AG28 



Mnemonic 
Op Code 

EXT 

HA 

SST 

C 

B 

BCT 

BCC 

BCE 

BBE 

SW 

SI 

CW 

CI 

H 

NOP 

MCW 

LCA 

SCR 

LCR 

CAM 

Table C -3 (cant). Instruction Timings for Models 2050A and 2070 

Instruction 
Name 

Extract 

Half Add 

Substitute 

Compare 

B ranch (unconditional) 

Bran ch on Condition 
Test 

Branch on Charac-
ter Condition 

Branch on Charac-
ter Equal 

B ranch on Bit Equal 

Set Word Mark 

Set Item Mark 

Clear Word Mark 

Clear Item Mark 

Halt 

No Operation 

Move Characters to 
Word Mark 

Load Characters to 
A-Field Word Mark 

Store Control Regi-
sters 

Load Control Regi-
sters 

Change Addressing 
Mode 

Timing Formulas 
(in Memory Cycles) 

Logic Instructions 

3 (I~I) 
Same as extract. 

3 

(I~I) + (I ~I) +1 

1 

1 

2 

2 

2 

Control Instructions 

2 

2 

2 

2 

1 

1 

2 (I~I) 

2 {I; I) 

2 

2 

1 

C-13 

Notes 

Includes test of 
8 sense switches. 
Note 4. 

Includes test of 
8 sense switches. 
Note 4. 

Note 1. 

Note 1. 

Note 1. 

Note 1. 

Note 5. 

Note 4. 

AG28 



MnerrlOnic 
Op Code 

CSM 

EXM 

MAT 

MIT 

MOS 

TLU 

LIB 

SIB 

MC 

RVI 

SVI 

RNM 

PCB 

PDT 

Table C -3 (cont). Instruction TiInings for Models 2050A and 2070 

Instruction 
Name 

Change Sequencing 
Mode 

Extended Move 

Move and Trans­
late 

Move Item and 
Translate 

Move or Scan 

Table Look-up 

Load Index/Barri­
cade Register 

Store Index/Barri­
cade Register 

Timing Formula s 
(in Memory Cycles) 

Control Instructions (cont). 

1 

2 (INa I) 
4 

V=oo: 2(I~al)+Na 

V = 01: (If!) + Na + (I ~a I) 

3 (I ~WI) 

n [ (I ~a I) + (I ~ I) ] 

2 

2 

Interrupt Control Instructions 

Moni tor Call 

Restore Variant 
and Indicators 

Store Variant and 
Indicators 

Resume Normal 
Mode 

Peripheral Control 
and Branch 

Peripheral Data 
Transfer 

1 

3 

3 

1 

In pu t / Ou tpu tIns t ruc tions 

7 

10 

C-14 

Notes 

Note 3. 

Note 4. 

Note 4. 

Not including 
the time used in 
honoring the in­
terrupt signal. 
Note 10. 

Typical (all in­
dicators re­
stored). 
Note 4. 

Typical (all in­
dicators stored). 
Note 4. 

Note 4. 

Notes 4, 9. 

Notes 4, 9. 

AG28 



Mnemonic 
Op Code 

MCE 

Table C -3 (cont). Instruction Timings for Models 2050A and 2070 

Edit 

Instruction 
Name 

Timing Formulas 
(in Memory Cycles) 

Edit Instructions 

(IN;!) + 3 (I:bl) 

Notes 

ISubtract one memory cycle from this formula when the format is op code/A address. 

21£ the format is op code/ A addres s, the formula is 2 (I ~a I). 

3When item mark trapping is in effect, any item-marked op code is treated as CSM. 

4 This is a privileged instruction, used when storage protection is in effect. 

5Instruction terminates prematurely if any table acces s finds a word mark. 

6 As sumes all multiplier digits are 5. 

7 Assumes all quotient digits will be 5. 

8p = 0.00556 (probability of odd back cycles) should be considered to = O. 

9Timing proceeds normally until the control character designating the read/write channel is 
extracted. Subsequent characters must be transferred to the I/O traffic control of the sector 
addressed in the instruction. This can occur only during the memory cycle set aside for 
that sector. Therefore, timings vary. 

If an external interrupt signal is received during a PDT in which the RWC of the peripheral 
control is busy, extraction of the PDT must begin again. 

10The time used in honoring a peripheral interrupt, control panel or console interrupt, or 
monitor call interrupt is three processor-allocated memory cycles. 

C-15 AG28 



Table C -4. Timings for Decimal Multiply and Divide - Model 2040 

Function Timing (Memory Cycles) 

Multiply N.+S+2N +2Z
t 

+SN -Z +s(N -Zt )+2(N -Zt)(N -Z ) 
1 a a mr mr a a a a mr mr 

N.+4+2N if divisor = 0 
1 a 

N. + 17. S+4. SN + IS. SZ 1 + 12. SN
dd 

+ ISN (Ndd -N +Z 1 )if(N -Z )< 
1 a a a a a a la-

Divide 
(N

dd
) and divisor # 0 

N.+7+4N if (N -Z 1 »(N
dd

) 
1 a a a 

C-16 AG28 



APPENDIX D 

SCIENTIFIC UNIT AND SCIENTIFIC SUBPROCESSOR 

The scientific unit is available as Feature 1100A with the T'ype 2041, 2051, and 2061 

processors, and as power module PM3A40 with the Type 204IA processor. The functionally­

identical scientific subprocessor is standard with the Type 2071 processor and is available as 

power module PM3A50 with the Type 2051A proce s sor. Both the scientific unit and the scien­

tific subproce s sor provide the following type s of scientific instructions: 1 

1. Floating-point load and store. 

2. Floating-point arithmetic. 

3. Decimal-to-binary and binary-to-decimal conversion. 

4. Floating-point test and branch. 

5. Binary integer arithmetic. 

6. Mantissa shift. 

FLOATING-POINT DATA FORMAT 

A floating-point number is repre sented by a fixed-length, 48-bit word. The high-order 

36 bits contain a fraction, the mantissa. The low-order 12 bits contain an exponent of base 2. 

The value of a floating-point number is the product of the mantissa and 2 raised to the indicated 

exponent. As explaine d below, a Serie s 2000 floating -point word is capable of expre s sing num-
. -2048 +2047 . ±6I6 

bers In the range ±2 to ±2 , or approxImately ±IO • In main memory, a floating-

point word occupies a field of elght consecutive character positions, as shown in Figure D-l. 

,"AR~mDDDDDD[jD 
8 IT. 8 A 842 I 8 I 8 I 8 I 8 I 8 I 8 I B I 

~------------------_v~-------------------J/ '~----v~----~ MANTISSA EXPONENT 

Figure D-l. Floating -Point Data Format in Main Memory 

Four floating-point accumulators are reserved in control memory to contain operands and 

results of floating-point operations. The accumulators are explicitly addressed in the floating­

point instructions by the octal digits 0, 1, 2, and 3. Each accumulator is composed of three 

specific, 18-bit, control memory registers, as explained below. Only the low-order 12 hits of 

I None of these are interpreted by Easycoder As sembler A, B, or C. 

D-l AG28 



the rightmost register are used to express the exponent. Figure D-2 illustrates the floating­

point accumulator data format (in a multicharacter processor, each accumulator comprises the 

low-order 18-bits in each of three specific control memory registers). 

BIT 18 12 

'L ______________________ ~ ~---------------------J/ - v ~~-----------\/~--------~/ 
MANTISSA EXPONENT 

Figure D-2. Floating-Point Accumulator Data Format 

FLOATING-POINT NUMERICAL REPRESENTATION 

The Series 2000 floating-point word is expressed in twos-complement binary notation. 

That is, the manitssa is a binary fraction, the exponent is a binary integer, and negative man­

tissas and exponents are expressed as the twos complements of the positive values. 

The twos complement of a binary number is formed by: 

1. Subtracting each hit position from 1 (equivalent to changing all 1 's to 0 's and 
vice versa); then 

2. Adding 1 to the low-order (units) bit position. 

For example, to find the two complement of 011, change l's to O's and 0' s to l's, giving 100. 

Then add a binary 1 to give 101. Now, to determine the original number, simply recomplement 

the twos complement number formed above. 

101-------- 0 1 0 
1 

011 

U sing twos -complement notation to repres ent negative numbers facilitates floating -point 

arithmetic operations. In a subtraction operation, the twos complement of the subtrahend is 

added to the minuend. Since multiplication and division are actually successive addition or 

subtraction operations, all twos -complement arithmetic is accomplished by one or more 

additions. 

Table D -1 below specifies the numerical representation of mantissas. In twos -complement 

notation, only the low-order 35 hits are used to represent positive mantissa; the high-order bit 

is always zero. Negative mantissa values are expressed as the twos complement of the corre­

sponding positive values, always forcing the high-order bit to 1. Consequently, the high-order 

bit in twos -complement notation is a sign bit - 0 for positive and 1 for negative. As mentioned 

above, the absolute value of a negative number is found by recomplementation. 

Note that the mantis sa is a fraction. There is an implemented binary point to the right of 

the sign bit. 

D-2 AG28 



1Z-bit, binary integer whose high-order bit is O. A negative exponent is a 1Z-bit, binary, 

twos-complement integer whose high-order bit, by definition, is 1. 

Table D-1. Floating-Point Numerical Repre sentation of Mantis sas 

Sign Bitt 

Bit Position: 36 1 
Bit Value: 

-35 
Z 

Mantissa Value 

o 1 1-------------------1 1 

o 1 0-------------------0 o +1/Z 

o o 1-------------------1 1 +1/Z_Z- 35 

0 0 0-------------------0 1 +Z-35 

0 0 0-------------------0 0 +0 

1 1 1-------------------1 1 -Z 
-35 

1 1 0-------------------0 o -1/Z 

1 o 1-------------------1 1 

o O---~-------~-------O o -1 

Table D-Z. Floating-Point Numerical Representation of Exponents 

Sign Bit, 

Bit Position: lZ 11 10-------------------Z 1 Exponent Value 

Bit Value: Z11 Z10 Z9 Z1 ZO 

0 1 1--------------------1 1 +Z047 
. 
. 

0 0 o-------~------------o 1 +1 

0 0 0--------------------0 0 +0 

1 1 1----~---------------1 1 -1 

1 1 1--------------------1 0 -Z 

1 0 0--------------------0 0 -Z048 

D-3 AGZ8 



Floating-point arithmetic instructions deliver results with normalized mantissas. For 

positive numbers, a nor:m.alized mantissa has a 1 immediately following the implied binary 

point (i. e., the high-order two bits are 01). For negative numbers, a normalized mantissa 

has a 0 immediately following. the implied binary point (i. e., the high-order two bits are 10). 

In Table D-l, normalized mantissas are shaded. A normal 0 is defined as a floating-point word 

whose mantissa and exponent are both +0. An unnormalized zero is one whose mantissa is 0 

but whose exponent is nonzero. 

FLOATING-POINT REGISTERS 

The four addressable floating -point accumulators occupy the following locations in control 

memory: 

Accumulator Control Memory Address (Operator's Control Panel Only) 

Address 
High-Order Mantissa Low-Order Mantissa Exponent 

° 43 42 41 
1 47 46 45 
2 53 52 51 
3 57 56 55 

NOTE: In program instructions, the floating-point accumulators may be addressed 
only via the octal digits 0, 1, 2, and 3 in the floating -point instructions. 
The instructions LCR and SCR must not be used to address these accumu­
lators. At the control panel, the operator may address these locations 
with the addresses in the above table. 

A "pseudo-accumulator" is provided, which always contains a normal 0. The pseudo 

accumulator is addressed by the octal digit 7. Any floating-point number may be normalized 

by adding it to the normal a in accumulator 7. Note that the pseudo-accumulator should not 

be specified as the re sult location in any floating-point instruction, because the re sult data 

would be 10 st. 

The scientific unit and subprocessor also include a low-order result register (LOR). The 

LOR may contain a low-order sum, difference, or product, or the remainder of a division 

operation. In effect, the LOR provides an additional 36 bits of mantissa precision. The LOR 

is not addressed explicitly in the floating-point arithmetic instructions, as are the accumulators. ' 

However, instructions are provided to load and store the contents of the LOR. 

INDICATORS 

Three indicator s are pre sent in the scientific unit and subproces sor: 

D-4 AG28 



Exponent 
Overflow (EXO): 

Divide 
Check (DVC): 

Multiply 
Overflow (MPO): 

Activated when a base-2 exponent exceeds +2047. The correct 
mantissa and an exponent that is 4096 less than the correct 
exponent are delivered to the result accumulator. 

NOTE: If an exponent is less than 1-2048, a normal 0 is 
delivered automatically. 

Activated when a divisor is equal to zero. This indicator cause s 
the division operation to be skipped and there is no accumulator 
alte ration. 

Activated when the product of a Binary Integer Multiply instruction 
exceeds 23 bits in length, 23 and the sign. Other high-order bits 
lost. 

These indicators can be tested by a Floating Test and Branch on Indicator instruction. 

Indicators are re set to zero by this te st or by system initialization. In addition, the se indicator s 

can be cleared and stored by an SVI instruction and restored by an R VI instruction. However, 

they do not initiate interrupts. 

AUTOMATIC FORMATTING IN ARITHMETIC OPERATIONS 

Floating-point arithmetic instructions accept either normalized or unnormalized operands. 

The scientific unit automatically shifts operands in order to perform arithmetic operations, 

and automatically nortnalizes results of arithmetic operations. The three types of automatic 

formatting are described below. 

Prenormalization 

In a floating divide operation, an unnormalized divisor is prenormalized. The mantissa 

is left-shifted until normalized, and the exponent is decreased by one for each bit position 

shifted. In the scientific subprocessor, the dividend is prenormalized. In the scientific unit, 

it is the programmer's responsibility (e. g., by a Floating Point Add to the zero accumulator) 

to normalize the dividend. 

Equalization 

In floating add and subtract operations, the mantissa of the operand with the smaller 

exponent is right- shifted, and the exponent is increased by one for each bit po sition shifted, 

until the exponents of the two operands are equal. Bits are shifted from the low-order man­

tis sa position of the accumulator (bit 13) into the high-order mantis sa position of the LOR 

(bit 47), as shown below. 

I ± I mantissa Texp ~antissa I ± I exp 

48 ACCUMULATOR 12 48 LOR 12 

D-5 AG28 



Postnormalization 

The results of floating add, subtract, multiply, and divide operations are normalized. If 

the tentative result is unnormalized, the mantissa is left-shifted until normalized, and the ex­

ponent is decreased by one for each bit position shifted. For results in which mantissa over­

flow occurred, the mantissa is right-shifted one bit position and the exponent is increased by one. 

Note that postnormalization may restore bits that were shifted into the LOR by equalization. 

INSTRUCTION FORMATS 

Only four operation codes are associated with the 14 scientific instructions. The Binary 

Mantissa Shift instruction has the mnemonic BMS (octal code 04). The Binary Integer Multiply 

instruction has the mnemonic BIM (octal code 05). All the remaining floating -point instructions 

use one or both of the following op codes: 

Name 

Floating Memory to Accumulator 

Floating Accumulator to Accumulator 

Mnemonic 

FMA 

FAA 

The full formats of the floating-point instructions are given below: 

OP CODE A ADDRESS a ADDRESS VARIANT I 

FMA: - - -
FAA: - -

Octal Code 

07 

06 

VARIANT 2 --
The first six-bit instruction variant usually addresses the floating -point accumulators used in an 

operation. ~n subsequent instruction description, this variant is abbreviated 

I X I y 

where octal digits X and Yare the accumulator addresses given on Page D-4. The accumulator 

X addressed in the high-order three variant bits is usually the source of a floating -point operand. 

The accumulator Y addressed in the low-order three variant bits is usually the destination of a 

floating -point result. The second instruction variant is a six-bit octal character which defines 

the particular floating-point instruction (e. g., Floating Multiply). 

The memory-to-ac.cumulator format is used in those instructions that require a main mem­

ory addres s in addition to floating -point accumulator references. In instruction descriptions, the 

A address of an instruction is abbreviated by the letter A. The A address may define the main 

memory location of an 8-character, floating-point operand, or it may specify a branch address. 

The accumulator-to-accumulator format is used in those instructions that require only £loating­

point accumulator references. 

D-6 AG28 



In addition to the full instruction formats described above, each form of a floating -point 

instruction using the FMA or FAA format is assigned a unique assembly-language mnemonic, 

which also generates the 07 or 06 octal op code. When an instruction is coded using its unique 

mnemonic, the second variant is automatically generated and is not written in the operands field 

by the programmer. In summary, the floating-point instructions may be coded in two equivalent 

forms: 

1. The full form, which contains an FMA or FAA mnemonic op code, an A 
address if appropriate, and two variants. 

2. The unique form, which contains a unique mnemonic op code, an A address 
if appropriate, and one variant. 

Both forms are described for each instruction in the following sections. 

PROGRAMMING CONSIDERATIONS 

Fo;r instructions in the FMA format, the A address is processed by the central processor 

in the usual manner, using the A-address register (AAR). The description of each instruction 

gives the address register settings after the operation. During instruction extraction, the 

two variants of FMA and FAA instructions are transmitted directly to the scientific unit or sub­

processor. The variant register is unspecified following these instructions. In the extraction 

or restoration of operands in memory, the scientific unit or subprocessor neither recognizes 

nor alters punctuation bits. 

SYMBOLOGY FOR EXECUTION TIMINGS 

A: 

B: 

X: 

Y: 

(A): 

(X) or (Y): 

LOR: 

(LOR): 

A: 
p 

B: 
p 

D: 

JI: 

NXT: 

N: 
n 

N
1

: 

A address of the instruction. 

B address of the instruction. 

Floating -point accumulator addres sed in the high-order three bits of an 
instruction variant (usually the source of an operand). 

Floating -point accumulator addres sed in the low-order three bits of an 
instruction variant (usually the destination of a result). 

Floating -point word contained in the main memory field from location A 
through location A-7. 

Floating -point word contained in accumulator X or Y. 

Low-order result register. 

Floating -point word contained in LOR. 

Previous setting of A-address register. 

Previous setting of B -addres s register. 

One if there is a two-bit overflow into LOR; otherwise zero. 

Address of next instruction if branch occurs. 

Next sequential instruction. 

Number of bit positions shifted for automatic formatting. 

Number of binary ones in a multiplier. 

D-7 AG28 



N: 
s 

W: 

X-: 

-Y: 

SP: 

DP: 

K: 

M: 

SR: 

N: 

Nadd: 

Number of shifts. 

"Smallest integer greater than". 

Number of memory words used to store the data involved. 

In the first variant of an instruction, only the high-order three bits specify­
ing accumulator X are significant. 

In the first variant of an instruction, only the low-order three bits specifying 
accumulator Yare significant. 

Single -precision. 

Double -pre cision. 

Total number of one bits in the multiplier. 

Number of shifts (Binary Mantissa Shift instruction). 

Sequence register. 

Number of prenormalization, postnormalization, and equalization steps. 

Difference in value s of X and Y exponents. 

N
mult

: Number of shift s needed to postnormalize the re sult. 

N
d

, : 
IV 

Number of shifts needed to normalize the mantissa of the o:e.erand that 
requires the most shifts to normalize. 

Nb : ms 
Number of shifts specified in the instruction. 

TIMING NOTES 

Table D- 3 specifie s execution timing in memory cycle s on the various Series 2000 

central processors. Remember that total instruction time includes extraction as well as execu­

tion. Total timings in memory cycles can be determined by adding the following: 

For the Type 2041: 

For the Types 204lA, 205lC, 
and 2061: 

For the Type s 2051A and 2071: 

where 

the number of characters in the instruction. 

the number of characters in the instruction divided by 
two (minimum), or the number of characters in the in­
struction divided by the two plus one (maximum), de­
pending on the position of the first character of the 
instruction (in an odd or even memory mod ule) • 

+ 1 + the number of indexing operations 
+ the number of indirect operations. 

LI = the number of characters extracted 

Q = 1 if 3 -character mode FA format and A addre ss 
is either indexed or indirect 

Q = 0 in all other case s. 

NOTE: 

4 re suIts in a fraction, it should be 
rounded up to the next larger whole number. 

D-8 AG28 



Table D-3. Execution Timings in Memory Cycles 

2041A, 2051C, 
In struction Mnemonic 2041 2061 2051A, 2071 

Store Floating Accumulator: 

Memory-Accumulator FMA 11 12 3 

A c c umula te - Ac c umula tor FAA 4 5 2 

Load Floating Accumulator: 

Memory-Accumulator FMA 11 12 3 

Accumulate -Accumulator FAA 4 5 2 

Load Low-Orde r Re sult: 

Memory -Ac cumulator FMA 10 10 3 

Accumulate -Accumulator FAA 3 3 2 

Store Low-Order Re sult: 

Memory-Accumulator FMA 10 11 3 

Accumulate -Accumulator FAA 3 4 1 

Floating-Point Arithmetic Instructions 

Floating Add: 
N 

Memory-Accumulator FMA 13 +N 13 +N 3+~ 
6 4 8 

7+N 7+N 
N 

Accumulate -Accumulator FAA 2 + add 
6 4 8 

Floating Subtract: 
N 

Memory-Accumulator FMA 13 +N 13+
N 3 + add 

6 4 8 

Accumulate-Accumulator FAA 7+N 7+N 
Nadd 

2+--
6 4 8 

Floating Multiply: 
N 

Memory-Accumulator FMA 18 +K + N 21 +K +N (8 to 17)+ 
mult 

6 6 4 4 8 

12 +K + N 16+
K

+
N 

N 
mult Accumulate -Accumulator FAA (7 to 16) + 

6 6 4 4 8 

Floating Divide: 
Nd " 

Memory-Accumulator FMA 25 +N 31 +N (10 to 14)+~ 
6 4 8 

18 +N 26 +N 
Nd " 

A c cumulate - Ac cumula tor FAA (8 to 12)+~ 
6 4 8 

D-9 AG28 



Table D-3 (cont). Execution Tim.ings in Memory Cycles 

In struction Mnemonic 2041 

Conver sion Instructions 

Decimal-Binary FMA 20 +D 

Binary-Decimal FMA 21 

Control Instructions 

Floating Test and Branch 
On Accumulator Condition: FMA 

No Branch 

Branch 

Floating Test and Branch 
On Indicator: FMA 

No Branch 

Branch 

Binary Mantissa Shift BMS 

Binary Integer Multiply BIM 

DATA MOVING INSTRUCTIONS 

STORE FLOATING ACCUMULATOR 

FORMAT 

FMA: FMA/A,X-, 00 or TAM/A, X­
FAA: FAA/XY,OO 

FUNCTION 

3 

4 

2 

3 

M 
4+~ 

20+
K 
6 

FMA: (X) is stored in memory locations A through A-7. 
(X) is unaltered. 

FAA: (X) is stored in accumulator Y. 

REGISTERS AFTER OPERATION 

AAR BAR 

A-8 B 
p 

NOTE: 

1. No normalization occurs. 

D-I0 

2041A, 2051C, 
2061 

24 

24 

3 

5 

2 

4 

5+
M 
4 

21 +K. 
4 

2051A, 2071 

5 + (1/4 time s the 
number of lead-
ing zeros) + (1/2 
time s the number 
of nonleading 
zeros) 

13 

1 

2 

I 

2 

Nbms 
2+--

8 

7 to 13 

AG28 



EXAMPLE 

Store the contents of floating accumulator 1 in the main memory field whose rightmost 
character is tagged RESULT. 

CARD il~ NUMBER LOCATION ! OPERATION 
i CODE OPERANDS 

1 2/3 4' ~ 6 1 e- 1411~, 
---

202' . ~ ______ .;,... 'h~_ ............ l~ 
I ; FMA rj(f~ __ '\P~ ~_.Q&.... __ .~_-L 

1 : ;1AM rRE-5U.L, T. 1 Q 1 ~......L~~~_~.L......~~ 

LOAD FLOATING ACCUMULATOR 

FORMAT 

FMA: 
FAA: 

FMA/A, -Y, 02 or TMA/A, -Y 
FAA/XY,02 or TAA/XY 

I 
1 

62!63 , 

:~-~ : 
1 

: 
: 

: ~~-~~ 

FUNCTION 

FMA: The floating -point word in memory locations A through A-7 is loaded 
into accumulator Y. 

FAA: (X) is loaded into accumulator Y. 

REGISTERS AFTER OPERATION 

FMA: 

FAA: 

NOTE 

AAR 

A-8 

A 
p 

BAR 

B 
P 

B 
P 

1. No normalization occurs. 

EXAMPLES 

1. Load the floating -point word stored in memory locations DELTA-7 through 
DELTA into floating accumulator O. 

CARD ~I~i I OPERATION I OPERANDS 1 
NUMBER t ~ 1 LOCATION CODE , 

1 2! 3 4. ~ 61de 1411~, 2012' 1 6263 
1 

Ii :FMA IDELTAOod,2 OR , 

i : I ~MA IJ)EL T A 'a)0 

2. Load the contents of accumulator 3 into accumulator O. 

CARD T ~! I OPERATION OPERANDS NUMBER r ~ I LOCATION ,CODE 

1 213 4 i 5 6 11e 14il~. 2021 6263 

I , 
I IF.AA '30 (/p QI2 , 

, 
i i h":AA 130 

, 

: 

I 
1 '~I 

80 

80 

D-ll AG28 



STORE LOW -ORDER RESULT 

\ 

FORMAT 

FMA: 

FAA: 

FUNCTION 

FMA: 

FAA: 

FMA/A, 00, 07 or TLM/A 

F AA/ -Y, 07 or TLA/-Y 

(LOR) is stored in memory locations A through A-7. 

(LOR) is stored in accumulator Y. 

REGISTERS AFTER OPERATION 

FMA: 

FAA: 

NOTE 

AAR 

A-8 

A 
P 

BAR 

B 
P 

B 
P 

1. No normalization occurs. 

EXAMPLES 

1. Store the contents of the LOR in the main memory field whose rightmost char­
acter is tagged RESULT. 

CARD ~I~: LOCATION i OPERATION J OPERANDS NUMBER t ~! ' CODE 
, zl3 4 5 6 i 7;8 14;15, ZO,2' ~ I I I ~ 

I FMA 1KE5U~T ~ s720 ,~Z , ~ , 
I T,LM ~SU~T' ' I i i , , I ~~ , 

2. Store the contents of the LOR in accumulator 2. 

CARD ~I~I LOCATION 
I OPERATION I 

NUMBER E K. 
CODE 

, zI3 4,5 61718 '4,,5, . zol2' -
: ; I' 'f.AA 1¢2cb7 ,0£ 
; ; i I rr,LA b2 

LOAD LOW -ORDER RESULT 

FORMAT 

FMA: 

FAA: 

FMA/A, 00, 01 or TML/A 

FAA/X-, 01 or TAL/X-

OPERANDS 

i 

~ I 

I 6263 I 

, I 

, I .... 

I 
I 62163 

! 
, I ..0........- I 

I 

FUNCTION 

FMA: The floating -point word in memory locations A through A-7 is loaded into 
the LOR. 

FAA: (X) is loaded into the LOR. 

, 

D-12 AG28 

80 

eo 



REGISTERS AFTER OPERATION 

FMA: 

FAA: 

NOTE 

AAR 

A-8 

A 
P 

BAR 

B 
P 

B 
P 

1. No normalization occurs. 

EXAMPLES 

1. Load the floating -point word stored in memory locations STORE -7 through 
STORE into the LOR. 

CARD ~I~ LOCATION 
! OPERATION OPERANDS NUMBER E K 
! CODE 

, 2~3 4, ~ 6j7 8 14!15. 202' 

I : I 'EMA 5T01~E" Q0, ~~ ,m~ , I 
I : I i :tML 5T012.E. , 

2. Load the contents of accumulator 2 into the LOR. 

CARD il~1 LOCATION 
i OPERATION 

I OPERANDS NUMBER : CODE 

, 213 41 ~ 61 7 18 1411~, 2012' 

1 [I :FAA iZ¢. .~1 ,012 , ~ 
I , I i I ;T.AL 120 , , 

FLOATING-POINT ARITHMETIC INSTRUCTIONS 

FLOATING ADD 

FORMAT 

FMA: 

FAA: 

FMA/A,XY, 10 or AMA/A,XY 

F AA/XY, 10 or AAA/XY 

D-13 

, 
~ , 

I 
i 62163 

, I I 
, I , I , , 

: 
i 

i i 62163 

I I I I 
, I , I , I 

80 

80 

, 

AG28 



FUNCTION 

FMA: 

FAA: 

The floating -point word in memory locations A through A-7 is added to 
(X), and the sum is st~red in accumulator Y. The low-order sum is 
stored in LOR. 

(X) is added to (Y), and the sum is stored in accumulator Y. The low­
order sum is stored in LOR. 

REGISTERS-AFTER OPERATION 

FMA: 

FAA: 

NOTES 

AAR 

A-8 

A 
P 

BAR LOR 

The low- order re sult of the addition. The sign bit of 
LOR = O. The exponent of LOR = the exponent of the 
high- order result minus 35. 

Same as above. 

1. Equalization, and postnormalization occur if required. 

2. X and Y may specify the same accumulator. 

3. An exponent overflow indication may be given. 

4. A result with a zero mantissa is returned as a normal zero. 

EXAMPLE 

Add the three floating -point numbers stored in sequential fields beginning in location 
DATA. Store the sum in the eight-character field whose rightmost character is 
tagged SUM. 

CARD ~~ LOCATION 
OPERATION 

OPERANDS NUMBER t ~ CODE 

1 2\3 4 \ 5 6 7 8 1415 2021 6263 

I : 'FMA ~A T A+ 7 .~~~Z GOdt;r~+ no. 'm+o /"\1"1' I~, la+e r 1 
I 

I iFMA DAiA+15 ~1 -10 .odd ~nd no. 
I I ~MA ~ATA+Z3 J 1 ~ 1~ odd ~hir.d no. 
I I F.MA ~UM i.a) ~rJ / s+orc -z,Utl1 

] 

FLOATING SUBTRACT 

FORMAT 

FMA: 

FAA: 

FUNCTION 

FMA: 

FAA: 

FMA/ A, XY, 11 or SMA/A, XY 

FAA/XY, 11 or SAA/XY 

The floating -point word in memory locations A through A-7 is subtracted 
from (X); 1. e., its twos complement is added to (X). The result is stored 
in accumulator Y. The low-order result is stored in the LOR. 

(Y) is subtracted from (X). The result is stored in accumulator Y, and 
the low-order result is stored in the LOR. 

D-14 AG28 

80 



REGISTERS AFTER OPERATION 

FMA: 

FAA: 

NOTES 

AAR 

A-8 

A 
P 

BAR 

B 
P 

B 
P 

LOR 

Low-order difference. Sign bit = O. Exponent = high­
order exponent minus 35. 

Same as above. 

1. Equalization, and postnormalization occur if required. 

2. X and Y may specify the same accumulator. 

3. An exponent overflow indication may be given. 

4. A result with a zero mantissa is returned as a normal zero. 

EXAMPLE 

1. Subtract the floating -point word in locations DATA-7 through DATA from the 
contents of accumulator 3 and store the result in accumulator 1. 

CARD i~ LOCATION 
OPERATION OPERANDS NUMBER CODE 

1 213 4/5 6 7 8 14 I!> 2021 6263 

I : lEMA bATA 31 ~ i qg 
/ 

I i 5.MA ~ATA ~~ 

FLOATING MULTIPLY 

FORMAT 

FMA: 

FAA: 

FUNCTION 

FMA: 

FAA: 

FMA/A,XY, 13 or MAM/A,XY 

F AA/XY, 13 or MAA/XY 

(X) is multiplied by the floating -point word in memQry locations A through 
A-7. The high-order product is sto"red in accumulator Y. The low-order 
product is stored in LOR. 

(X) is multiplied by (Y). The high-order product is stored in accumulator Y. 
The low- orde r product is stored in LOR. 

REGISTERS AFTER OPERATION 

FMA: 

FAA: 

AAR 

A-8 

A 
P 

BAR 

B 
P 

B 
P 

LOR 

Low-order product. Sign bit = O. Exponent = high­
order exponent minus 35. 

Same as above. 

D-15 AG28 

80 



NOTES 

1. X and Y m.ay specify the sam.e accum.ulator. 

2. Postnorm.alization occurs if required. 

3. An exponent overflow indication m.ay be given. 

4. If either operand is equal to zero, the results in both accum.ulator and LOR are 
norm.al zeros. 

EXAMPLE 

1. Multiply the floating -point word in accum.ulator 2 by the floating -point word in 
accum.ulator 0, and store the product in accum.ulator 0. 

CARD ~~ LOCATION 
OPERATION OPERANDS NUMBER ~ ~ CODE 

I 213 415 6 7 8 1415 2021 I I 1 6263 

I : F.AA 2,0 15 C~ 
I 

I MAA Z0. 

FLOATING DIVIDE 

FORMAT 

FMA: 

FAA: 

FUNCTION 

FMA: 

FAA: 

FMA/A,XY,12 or DMA/A,XY 

FAA/XY,12 or DAA/XY 

The floating-point word in locations A through A-7 is divided by (X). The 
quotient is stored in accum.ulator Y. The rem.ainder is stored in LOR. 

(Y) is divided by (X). The quotient is stored in accum.ulator Y. The re­
m.ainder is stored in LOR. 

REGISTERS AFTER OPERATION 

FMA: 

FAA: 

AAR 

A-8 

A 
p 

BAR 

B 
P 

B 
P 

LOR 

Contains the rem.ainder. The absolute value of the 
rem.ainder m.antissa is less than the absolute value 
of the m.antissa of the norm.alized divisor. The sign 
of the rem.ainder is equal to the sign of the dividend. 
The exponent of the remainder is equal to the ex­
ponent of the dividend minus 35, and plus one if the 
absolute value of the dividend mantissa is greater 
than the absolute value of the mantissa of the nor­
malized divisor. 

Sam.e as above. 

D-16 AG28 

BO 



NOTES 

1. Prenorm.alization of the divisor and postnorm.alization of the quotient occur 
if required. Prenorm.alization of the dividend is perform.ed by the scientific 
subproce s sor; it is the program.m.er IS re sponsibility to norm.alize the dividend 
with the scientific unit. 

2. X and Y m.a y specify the sam.e accum.ulator. 

3. The quotient m.ay cause an exponent overflow indication to be given. 

4. If the divisor is zero, a divide check indication is given. The division is 
not executed, and accum.ulator Y is unaltered. 

5. If the dividend is zero, the quotient and rem.ainder are norm.al zeros. 

EXAMPLES 

1. Divide the floating-point word stored in the memory field whose rightm.ost 
character is tagged DATA by the floating-point word in accum.ulator o. Store 
the quotient in accum.ulator O. 

CARD ~I~i LOCATION 
! OPERATIO N I OPERANDS NUMBER ! CODE 

, 213 4, ~ 6171 B 14.15, 20lZ, 6Z 63 , , 
1 ! !=:MA IbATA ,~~ A 2 ~ 

! ~MA !])1iA,00 

2. Divide the floating -point word in accumulator 2 by the floating -point word in 
accumulator 3 and store the quotient in accum.ulator 2. 

CARD il~! LOCATION 
I OPERATION I OPERANDS I NUMBER . CODE 

, 213 4, ~ 617' B 14d~. 2012' ,. 62163 

i I! F.AA. 132 .12 ,QR. ! 
Iii :b,AA i32 I 

" 

DATA CONVERSION INSTRUCTIONS 

DECIMAL TO BINARY CONVERSION 

FORMAT 

FMA/A, -Y, 03 or DTB/A, -Y 

so 

so 

D-17 AG28 



FUNCTION 

The II-character main memory field whose low-order character position is A (see 
Figure D-3) is treated as a signed decimal integer. That is, each character 
represents a decimal digit (see Table D-4). The sign of the integer is given by the 
zone bits of the units position (character A), as follows: 10 = negative; anything 
else = positive. The decimal integer is converted to a 36-bit binary integer and 
stored in the mantissa portion of (Y); the exponent of (Y) is set to +35. 

REGISTERS AFTER OPERATION 

AAR BAR LOR 

A-II B 
P 

Low-order result of conversion (see note 2 below). Sign 
bit. = O. Exponent = high-order exponent minus 35. 

NOTES 

1. The zone bits of the 10 high-order decimal characters are ignored. If the 
middle two data bits of any character are 11, that character is interpreted 
as a zero. (Octal 12 and 13 are unspecified. ) 

2. Because an II-digit decimal number has a range of ± 99,999.999.999 and a 
36 -bit binary twos -complement number has a range of approximatelv ± 

Character 

A-IO 

34, 359,738.368. mantissa overflow of up to two bits is possible. If man­
tissa overflow occurs, the low-order one or two bits are shifted into LOR. 
Accumulator Y then contains the high-order result of conversion. with an 
exponent of 36 or 37. Note that when a low-order result is shifted into LOR, 
the high-order result is automatically normalized. ~:~ 

A-9 A-8 A-7 A-6 A-5 A-4 A-3 A-2 A-I A 

-------.,,1 L...-1 -JI L.o-I --oJ1 ~I -----II 0.....-1 ----01 ___ I ----01 0.....-1 ----01 __ I ----II L.o-1 -JI 10......1--1 ±I -----I 
BA8421 B 1 B 1 B 1 B 1 B 1 B 1 B 1 B 1 BIB 

Bit 

Figure D-3. Decimal Data Format in Main Memory 

.~:~With two exceptions: 
(-34, 359. 738, 368) will translate to (110 .... 0) with an exponent of 36. 
(-68, 719. 476, 736) will translate to (110 .... 0) with an exponent of 37. 

D-18 AG28 



Table D-4. Numerical Representation of Decimal Word Data 

A 
Decimal Digit A-I0 · ..... A-2 A-I Sign Value 

001001 ...... 001001 001001 01 1001 +99,999,999,999 

· ..... 
..... . . 

Positive ..... . . . 
000000 ...... 000000 000000 01 0010 +2 

000000 ...... 000000 000000 01 0001 +1 

000000 ...... 000000 000000 01 0000 +0 

000000 · ..... 000000 000000 10 0000 -0 
000000 ...... 000000 000000 10 0001 -1 

Negative 000000 ...... 000000 000000 10 0010 -2 

...... . 

...... . 
001001 ...... 001001 001001 10 1001 -99,999,999,999 

EXAMPLE 

Convert 899,473 to a binary integer in the mantis sa portion of accumulator O. 

CARD T:~i : OP~RO~T~O N ! 
NUMBER ~ jR: LOCATION OPERANDS 

E K' 

I 213 4' 5 617: B .4 I~ ZOlZt I 6263 
I : ib~c. :b,CW 1+~O~¢.¢S994 73 

: FMA !lEC- .~o. .0.3 ~-L 

I BINARY TO DECIMAL CONVERSION 

FORMAT 

FMA/A, X-, 06 or BTD/A, X-

FUNCTION 

The mantis sa portion of (X) is converted from a twos -complement binary integer to 
a signed decimal integer. The decimal integer is stored in the II-character main 
memory field whose low-order character is location A. 

REGISTERS AFTER OPERATION 

AAR BAR 

A-II B 
P 

D-19 AG28 

80 



NOTES 

1. '1f the binary integer is negative, the zone bits of the units character (location 
A) are set to 10. If the binary integer is positive, the zone bits of the units 
character are set to 01. The zone bits of the other 10 characters are set to 00. 

2. The exponent is accumulator X is ignored and unaltered. 

EXAMPLE 

1. Convert the mantissa portion of the floating -point word in accumulator 3 to a 
signed decimal integer. Store the decimal integer in the main memory field 
whose rightmost character is tagged DEC. 

CARD ~I~ LOCATION 
OPERATION 

OPERANDS 

+' 
NUMBER E K 

CODE 

I 213 415 6 7 8 1415 

"~~~ ~:;M.~~~~~~0~§~~~~k : • : :':~' :':::::-I ; DEC, fbtW :> I 
I 1&1b 

I 

CONTROL INSTRUCTIONS 

I FLOATING TEST AND BRANCH ON ACCUMULATOR CONDITION 

FORMAT 

FMA/A, XC, 04 or FBA/A, XC 

FUNCTION 

The mantissa portion of (X) is tested for the condition specified by C, the low-order 
octal digit of variant 1: 

C a 
C 

C=2 

C = 3 

C=4 

C = 5 

C=6 

C = 7 

no branch 

(X) = a 
(X) < a 
(X).s a 
(X) > a 

(X)2 a 
(X) 'I- a 
unconditional branch 

If the condition specified by C is satisfied, program control branches to location A. 

, :-~ 

D-20 AG28 



REGISTERS AFTER OPERATION 

NOTE 

AAR 

A 

A 

BAR 

B 
P 

NXT 

SR 

NXT 

JI(A) 

1. (X) must be normalized. 

EXAMPLE 

NO BRANCH 

BRANCH 

Subtract the floating -point word in accumulator 1 from the floating -point word in 
accumulator O. If the difference is less than or equal to zero, branch to location 
LESS. 

CARD il~ LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

1 2 h 4, ~ 6 7 8 1415 2021 I ~ 1 1 6263 

I : 5AA ~i ,+.Ioo+i~a ~lJbtrac+ 
J 

J I F1;A LE55 13 I +g2+ Qci"~ broncll 

FLOATING TEST AND BRANCH ON INDICATOR I 

FORMAT 

FMA/ A, OD, 05 or FBI/A, OD 

FUNCTION 

The indicator (s) specified by D, the low -order octal digit of variant 1, are tested. 
If any of the indicators is set, control branches to location A. 

D=O 

D = ~ 

D = 2 

D = 3 

D=4 

D = 5 

D = 6 

D = 7 

no branch 

multiply overflow 

exponent overflow 

exponent overflow and multiply overflow 

divide check 

divide check and multiply overflow 

Di vide check and exponent overflow 

divide check, exponent overflow, and multiply overflow 

REGISTERS AFTER OPERATION 

AAR 

A 

A 

BAR 

B 
P 

NXT 

SR 

NXT 

JI(A) 

NO BRANCH 

BRANCH 

D-21 

80 

AG28 



NOTE 

1. All indicators tested are reset. 

EXAMPLE 

. '0 

II 

12 

Multiply the floating -point word in accurrmlator 1 by the floating -point word in 
accumulator 2. If exponent overflow occurs, store the contents of the sequence 
register and accumulator 2, replace the contents of accumulator 2 with the largest 
positive floating-point number, and continue. 

CARD ~~! LOCATION 
OPERATION 

-----------...... -.. -----.--------r----
OPERANDS NUMBER COOE ; 

, 213 4,5 617 8 1415 20,2' 
._-_._---.. _----_._-

~_ ....... J ~ .-I....----L-L..J. r 1-+= ... _-='==...d::~~ ........... 
I I '5EQ~EG :b~W IJ.t j<{"" ,,,,-,.. '" ,..;:04L~.~~L.~~~_1__L_.L.~ _ _'___'___'__~1 ~.~~~L..~_+__'_-~ 

Ace, , h~W ~gtc(3,C'6'" """,..;:',"{,,,,","'A.''''AAI~ , 
, _.J............. [ _ ..... _L~--'-~"-._ .... ----L._,J.._~_L..._L.._._~"'_....J.....~ 

i I ! I MAX 'hC\,v ·#at~.7L777777777,5777 , .' " ..', 
I I I t=AA ~2 13 :P/QotitJ9' m~l±ipl¥ ~~ : I .-L~_ 

: 1 TE.ST F:BI. b.vE.R,~2. ,4-~s+. 4>;: 1Zx.p.on~t.it oy~r+lp~. 
I I & c,. ~, , I , I I , I 

~ 

: I 2. > .~. ~........L.o...~ , , , , 
i I ,~ " .~. ! 

I I OVER Set. SEQREC! 77 .'E:.+or.a:., t::.1N"f. ,"'"","d n"Q;';pt~';' 
I : rIMA Ace Zl~ ~.¢. I ~+orlZ, a~l11uIQ+or ~ 
I I' EMA MAX 0,2. rJz. load o"lJmuIQ+ot" wHh tMO%. va \u~ 
I I .'5 ,TEST+,7 ~ I 1'7~+!J~nIOn ~~~-~g~~og~ I 

I BINARY MANTISSA SHIFT I 
FORMAT 

BMS/XM, V 

FUNCTION 

In a single -precision shift, the mantissa portion of (X) is shifted by the number of 
bit positions specified by variant 2 (0 ~ V.::: 63). In a double-precision shift, the 
mantissa portions of (X) and (LOR) are treated as a single register and shifted the 
number of bit positions specified by variant 2. The exponent portions of (X) and 
(LOR) are never shifted. A shift operation may be of either the rotate or the 
arithmetic type, in the left or right direction. In a rotate shift, bits shifted off 
the end of a "register" (mantissa of X or mantissas of X and LOR) are moved end­
around to the opposite end of the register. That is, no bits are lost in a rotate 
shift. In an arithmetic shift, bits shifted off the end of a register are lost. Note, 
that in an arithmetic shift, the sign positions of accumulator X and LOR are pro­
tected; i. e., bits are shifted around these positions. In a right arithmetic shift, 
the sign bit is duplicated in the vacated bit positions. In a left arithmetic shift, 
vacated bit positions are. filled with zeros. 

M, the low-order octal digit of variant l, specifies the mode of shifting, as illus­
trated as follows. 

D-22 

eo 

'-

I I 

AG28 



M =11 : LEFT, ROTATE, SINGLE-PRECISION SHIFT 

ACCUMULATOR X 

MANTISSA EXPONENT 

M =4: LEFT, ARITHMETIC, SINGLE-PRECISION SHIFT 

ACCUMULATOR X 

g~ rn-. ,-: _,,:_;ZE.ROS:<~I 
SIGN , ... co II) __ 

PROTECTED .. •• !!.~ :: ~ 

MANTISSA EXPONENT 

M=2: LEFT, ROTATE, DOUBLE-PRECISION SHIFT 

ACCUMULATOR X 

MANTISSA EXPONENT MANTISSA 

M=6 : LEFT, ARITHMETIC, DOUBLE-PRECISION SHIFT 

BITS 
DISCARDED 

ACCUMULATOR X 

~~!!!~!! ~ 
SIGN MANTISSA EXPONENT 
PROTECTED 

D-23 

SIGN 
PROTECTED 

EXPONENT 

_---ZEROS 

EXPONENT 

AG28 



M=': RIGHT, ROTATE, SINGLE-PRECISION SHIFT 

ACCUMULATOR X 

EXPONENT 

MzS: RIGHT, ARITHMETIC, SINGLE-PRECISION SHIFT 

ACCUMULATOR X 

IL~~ ~~~ .. ~ .... w. __ ~ 
'~'~!!!!~!l! 

MANTISSA EXPONENT 

M=3 .. RIGHT, ROTATE, DOUBLE-PRECISION SHIFT 

ACCUMULATOR X 

MANTISSA EXPONENT MANTISSA EXPONENT 

Mz 7: RIGHT, ARITHMETIC, DOUBLE-PRECISION SHIFT 

SIGN ACCUMULATOR X 
BIT 

D~1 

'~'I !!! :!!!!! 
MANnSSA EXPONENT EXPONENT 

D-24 AG28 



REGISTERS AFTER OPERATION 

NOTES 

AAR 

A 
P 

BAR 

B 
P 

1. At the end of a shift operation, the exponents of (X) and (LOR) are zero. 

2. In a single -precision shift, the mantis sa portion of the previous contents of 
LOR is unaltered. 

EXAMPLE 

Perform a left, arithmetic, single -precision shift on accumulator 1. Shift by 12 bit 
positions. 

CARD ~I~ LOCATION 
OPERATION 

NUMBER CODE 

1 2/3 415 6 7 8 1415 2021 I I 
I : $.MS 1 ~ 12 

BINARY INTEGER ARITHMETIC INSTRUCTION 

BINARY INTEGER MULTIPLY 

FORMAT 

BIM/A, B 

FUNCTION 

OPERANDS 

6263 

The four -character fields in main memory whose low-order characters are A and B 
are treated as 24-bit, twos-complement binary integers. The integers are multiplied 
together, and the product is stored in the field specified by the B address. 

REGISTERS AFTER OPERATION 

AAR BAR LOR 

A-4 B-4 uns pecified 

D-25 AG28 

80 



NOTES 

1. If the product exceeds 23 bits, a multiply overflow indication is given and the 
low-order 23 bits are delivered to the field specified by the B addres s. The 
24th bit delivered is the proper sign bit. Any high-order bits are lost. 

2. The product is not shifted in any way. 

EXAMPLE 

Multiply the binary equivalent of 735
10 

by the binary equivalent of 899
10

, 

CARD ~ I~ LOCATION 
r OPERATION OPERANDS I (\lUMBER CODE I 

I 213 415 6 718 14115 2021 62163 

I ; 'I Nt~ J~C,W ~4};7;5 i I I I 

1 : I INTZ rn~w #4~S~9. I 
I Iii rErlM INT~ INT2 ProducJ is d~'i\le.r-~ ;f-c;, INT2 i 

D-26 AG28 

80 



CQ~PUTER ~ENERATEC INDEX 

Z040 

Z040A 

Z041 

Z041A 

Z050 

Z050A 

Z051A 

Z051C 

Z060 

2061 

Z010 

Z011 

Z09 

210 

222 

Z43 

270A 

266 

286-1 

266-4 

INSTRUCTICN SUMMARY - Tl/l,IM FCRMUlAS FOR MCDElS 2040. 
C-It 
TIMIN~S FCR DECIMAL HUlTIPl'1 A,..C DIVIDE - MCDEl Z040. 
(-16 

INSTRUCTICN TIMINGS FOR /l,CD~LS Z040A, Z050, AND Z060. 
C-8 

MODEL 2C40A POWER MCDULES. l-ZZ 

MEMORY ACCESS DISTRIBUTIOt. CF TrE TYPE 2C41 PROCESSCR. 
2-1Z 

M~MORY ACCESS DISTRIBUTICf\ CF TrE T'1PE 2C41A PROC~SSOR. 
2-13 

INSTRUCTICN TIHINGS FOR /l,CDELS 2040A, Z050, AND Z060. 
C-8 

INSTRUCTICN TIMINGS FOR ~CDELS ,050A AND Z070. C-ll 
MOCEl 2C50A POWER MODULES. l-Z2 

MEMORY ACCESS DISTRIBUTICh CF ThE TYPE 2051A PROCESSOR. 
2-14 

MEMORY ACCESS DISTRIBUTICf\ CF ThE TYPE Z051C PROCESSOR. 
2-13 

INSTRUCTICN TIMINGS FOR MCDELS ~040A, 2050, AND 2U60. 
C-8 

MEMORY ACCESS DISTRIBUTIOf\ CF ThE TYPE ZC61 PROCESSCR. 
2-16 

INSTRUCTICN TIMINGS FvR MCD~LS 2050A AND Z070. C-l1 

MEMORY ACCESS DISTRIBUTICN IN ThE TYPE ZC11 PROCESSCR. 
2-16 

MEMORY ACCESS DISTRIBUTICf\ CF TrE TYPE Z071 PROCESSCR. 
2-11 

C3 CODIt.G FCR TYPE 209 ANe 209-, PAPER TAPE READEkS. 
8-136 

C3 CODlt.G FCR TYPE 209 AN~ 209-2 PAPER TAPE READEkS. 
8-13b 

C3 COOlt.G FCR TYPE 210 PAP~R TAPE PUNCH. 8-131 

C3 CODlt.G FCR TYPE 2Z2 PRINTERS. 8-131 

FORMAT CF TYPE 243 PDT C3 VARIAt.T. 8-136 

C3 COOlt.G FCR TYPE 210A RAN[;C~ ACCESS DRl~. 8-137 

SUMMARY OF PCB I/O CONTRCl ~HARACTERS FOR TYPE 286 
MulTILlt.E COMMUNICATION CCNTRCLLER. 8-152 
SuMMARY OF FDT 1/0 CONTRCl ChARACTERS FOR TYPE Za6 
M~LTILlt.E CCMMUNICATION ceNIRCLLER. 8-138 

TYPE 286-1, -2, ~3 lINE ceNTRCl INSTRUCTICNS. 8-138 

PCB CONTRCL CHARACTERS C5 TrRCl~H C15 TYPE 286-4, -5, -6, 
-7 LINE CCNTROl INSTRUCTICNS. 8-154 

7-TRACK 
CHARACTER REPRESENTATION CN 7-TRACK MAGNETIC TAPE. 3-7 

9-TRACK 
C4 VARIANT FOR 9-TRACK TAPE lNITS. 8-132 

ABSOLUTE 

ACCESS 

ABSOLUTE. 5-14 
CONVERSION CF SYMBOLIC TAG TC AESOLUTE MEMORY ADDRESS. 
3-2 

C3 CODlt.G FCR TYPE 270A RAN[;O~ ACCESS DRl~. 8-137 
MEMORY IlCCESS DlSTRIBUTICt. IN ThE TYPE 2071 PRUCESSCR. 

2-16 
"H:MORY ACCESS DISTRIBUTICf\ CF ThE TYPE 2C41 PROCESSCR. 

2-12 
MEMORY ACCESS DISTRIBUTIC/,; CF ThE TYPE 2C41A PROCESSOR. 

\ 

ACCESS (CONT I 
2-13 

MEMORY ACCESS DISTRIBUTICt. OF THE TYPE Z051A FROCESSCR. 
2-14 

MEMORY ACCESS DISTRIBUTIC~ OF T~E TYPE 2051C FROCESSCR. 
2-13 

MEMORY ACCESS DISTRIBUTIC~ CF T~E TYPE Z061 PROCESSOR. 
2-16 

MEMORY ACCESS DISTRIBUTICN OF T~E TYPE 2071 PROCESSOR. 
2-17 

MEMORY ACCESS DISTRIBUTICt.. 2-10 
RANDuM ACCESS DRU~S. 1-15 

ACCCUNTING 
ACCOuNTI~~ TIMER REuISTER. 2-3C 

ACClMllATOR 
FLOATING-FOINT ACCUMUlATCR CATIl rCR~AT. 0-2 

ACTIVE 
ACTIVE ADCRESS BITS IN SERIES .20DC SINGLE-ChARACTER 
PROCE.!lSORS. 4-14 

ACTIVITIES 

ADC 
INPUT/OUTFUT TRAFFIC CONTROL ACTr~ITIES. 2-10 

ADD. 11-15 
COMPLEMENT ADO EXAMPLES. 8-7 
EXTRACT lOt. OF DATA FIELDS IN TYFICAl ADD INSTRUCTION. 
4-2 

SERIES ZOCO ADO AND SUBTRIlCT CFE~~TIONS. 11-3 
TYPICAL A~U INSTRUCTION. 4~1 

ADDRESS 
ACTIVE ADCRESS BITS IN SERIES 20Ce SINGLE~ChARACTER 
PROCl!lSORS. 4-14 
ADDRESS ASSIGNMENTS AND L~IT LCACS AVAILABLE IN SeRIES 
2000 ~ROCtSSORS. 1-6 
ADDRESS ~tDES. 5.14 
ADDRESS F!ElD FORMAT. 3-13 
ADDRESS LITERALS. 5-22 
ADDRESS ~CDIFICATION CODES. 5-24 
ADDRESS ~eDIFICATION. 4-8 
ADDRESS REGISTERS. 2-5 
ADDRE.SSI~~ MODES. 1-4 4-5 
ADDRE5SIM. 4-1 
ASSEMBLY ,eF INDEXED ADDRESS IN F,eILR.CHARACTER ACCRESS ING 
MODE. 5-25' 
ASSEM8l Y 'C F 1 NDEXED ADORE SS IN TH EE .. CHARACT ER ADCRESS I NG 
MODE. 5-25 
ASSEt-IBL Y 'C F I NO I RECT ADDR ESS I t. Fie UR-CHARACTER ACCRESS ING 
MODE. 5-26 
ASSEMBLY ~F INDIRECT ADDRESS It. t~REE-CHARACTER 
ADDRESSI~~ MODE. 5-26 
CHANGING ADDRESSING MODES VIA CA~ INSTRUCTICN. 8-65 
CONVERSICt. OF SYMBOLIC TA~ TC ABSCLUTE MEMORY ACCRESS. 

3-2 
DEFINE S~~BOlIC ADDRESS. 6.7 
DYNAMIC CISK ADDRESSING. 1-14 
DYNAMIC tAPE ADORESSING. 1-11 
EXPLICIT ,~ODRESSING, IMPL Icn ADCRESSING, MD CHA INI/I~. 

4-16 
EXTRACTICt. Of INDEXED ACCRESS IN THREE-CHARACTER ~ODE. 
4-12 

EXTRACTIC'" of INUIRECT At.C INCEX~C FOlR-CHARACTER 
ADDRESSES. 4-11t 
EXTRACTIC/I OF THREE-CHARACTER INCIRECT ADDRESS. 4-11 
FOUR.CHARACTER ADDRESS ASSE~eLY. 5-4 
FOUR.CHARACTER ADDRESSIN~ MeDE. ~~8 
FOUR-CHARIlCTER ADDRESS. 4-12 
INDEX REGISTER ADDRESSES IN FClR~CHARACTER ADCRESSING 
MODE. 4-13 
INDEX REGISTER ADDRESSES IN ThREE. CHARACTER ACDRESSI~G 
MODE. 4-11 
PERIPHERAL ADDRESSES AND lNIT LeACS. 1-7 
POTENTIAL ADDRESSES OUTSIDE ACCRESS RtGISTER RANGE. 
4-15 

POTEhTIAL ADDRESSES WITHI/I ACDRESS REGISTER RANGE. 4.15 
REGISTERS USED IN AUDRESSING. 4-; 
SET ADDRESS MoDE. 7-12 
THREE-CHARACTER ADDRESS ASSE~BLY. 5-4 
THREE-CHARACTER ADDRESSJt.~ ~CCE. ~-6 
THREE-CHARACTER ADDRESS. 4-10 
TWO-CHARACTER ADDRESS ASSE~eLY.5.3 
TWO-CHARACTER ADDRESSING ~CDE. 4-5 

Aw ANC B-AUDRESSES 
A- AND B~~DDRESSES. 3-2 

A-ADDRESS REGISTER 
A-ADDRESS REGISTER. 4-4 

A-FIELD 
A-FIELD A/ID B~FIELD IN MlLTIPLY ~FERATION. 8~S 
lOAD CHARACTERS TO A-FIELD ~CRC ~PRK. 8-5b 

ALGEBRAIC 
ALGEBRAIC SIGNS IN DECIMAL ACCIT~CN. 8-6 

ALPt-ANUMERIC 

i-I 

ALPHANUMERIC CONSTANTS. 6~4 
ALPHANUMERIC LIT~RAlS. 5~20 

AG28 



COMFUTER GENERA TEe INDEX 

ANGULAR 

AREA 
ANGULAR PCSITION INC)CATtR. 1-15 

DATA AREA FCRMAT. 3-14 
DEFINE AREA. 6-7 
RESERVE AREA. b-6 

AREA DEFINING 
AREA DEFI~ING LITERALS. 5-21 

ARITHMET IC 
ARITHMETIC CPERATIO~S. 8-3 
ARITHMETIC LNIT. 2-& 
ARITHMETIC. &-14 
AUTOMATIC FCR~ATTING iN ARITH~ETIC OPERATIO~S. D-5 
BINARY INTEGER ARITnMETIC I~STRLCTION. 0-25 
DATA FLCW BET~EEN MAIN Mt~CRY A~D ARITHMETIC UNIT. 2-& 
DECIMAL ARITHMETIC SIGN CCNVE~TIONS. 8-6 
FLCATIN'-FOINT ARITHMETIC I~STRLCTIONS. C-13 

ASSEMBLER . 
RELATIO~S~IP OF SOURCE PRCGRA~, ASSEMBLER, AND OBJECT 
FROGRAIJ.. 5-2 

ASSEMBLERS 
THE ASSEMELERS. 5-3 

ASSEMBLY 
ASSEMbLY CO~TROL STATEMENTS. 7-1 
ASSEMBLY CF INDEXED AUDRESS I~ fOUR-CHARACTER ADDRESSING 
MODE. 5-25 
ASSEMBLY CF INDEXED ADDRESS I~ THREE-CHARACTER ADCRESSING 
MODE. 5-25 
ASSEMBLY CF INDIRECT ADDR~SS I~ FOUR-CHARACTER ADDRESSING 
MODE. 5-26 
ASSEMbLY CF INDIRECT ADDRtSS I~ THREE-CHARACTER 
ADDRESSING ~ODE. 5-26 
FOUR-CnARACTER ADDR~SS ASS6~ELY. 5-4 
THREE-t~ARACTER ADDRESS ASSE~tLY. 5-4 
T~O-CHAHACTER ADDRESS ASSEMELV. 5-3 

ASS l(iNMENT 
ADDRESS ASSIGNMENTS AND UNIT LCADS AVAILAELE IN SERIES 
2000 ~ReCESSORS. 1-8 
DESCRIPIION OF PDT I/O CC~TRCL (HARACTER C1 (RwC 
ASSIGNMENTI. 8-117 
SELECTI~G R~C ASSIGNMENTS FCR LSE IN PDT INSTRUCTIONS. 
8-112 

BARRICADE 

BASE 

Bec 

BCT 

CORRESFeNCENCE BETWEEN LIt:: ,SEn ING AND BARRICADE 
LOCAT10~. 8-81 

STORAGE PROTECTION ~ITH BASE RELOCATION. 2-26 8-80 

BCC TEST CONDITIONS. 8-41 
BRANCH ~N C~ARACTER CONDITleN (ECC) CONDITICNS. 6-5 

BCT INSTRLC1ION VARIANT CHARACTERS. 8-38 
BRANCH ON CCNDITION TEST (BtTI INDICATOR CO~DITIONS. 

B .. 4 
BRANCH eN CCNDITION TEST (BCTI 5ENSE SWITCH CONDiTICNS. 

BINARY 

B-3 
INDICATOR TEST CONDITIONS FeR eCT INSTR~CTIeN. 8-37 
PRIVILE~EC eCT INSTRUCTIC~. 2-2~ 
SENSE S~ITC~ TE5T CONDITI~NS FCR BeT INSTRUCTION. 8-36 

BINARY ADCITION. 8-3 
BINARY CONSTANTS. 6-2 
BINARY INTEGER ARITnMETIC l~STRLCTION. C~25 
BINARY LITERALS. 5-19 
BINARY SUETRACTION. 8-3 
BINARY, OCTAL, ANC DECIMAL ECLIvALENTS. e-8 

BINARY ADD 
BINARY ADC. 8-18 

BINARY SUBTRACT 
BINARY ~UeTRACT. 8-19 

BINARY-OCTAL 

BllS 
BINARY-CCTAl EQUIVALENTS. A-I 

ACTIVE ADCRESS BITS IN SERIES 2000 SINGLE-C~ARAeTER 
PROCESSeRS. 4-14 

B-ADDRESS REGISTER 
B-ADDRb5S RbGISTER. 4-4 

a-FIELD 

BLANK 

BLOCKS 

A-FIELD AND B-FIELD IN M~lTIPLY OPERATION. 8-9 

BLANK CeNSTANTS. 6-4 
BL.ANK. 5-17 

RELATIC~S~IP BETWEEN ITEMS, RECCRDS, AND BLeCKS. 3-11 
BRANCH 

BRANCH eN CHARACTER CONDITICN (ECCI CONDITICNS. B-5 
BRANCH c.;N CCNDITION TEST II:IUI INDICATOR COt\DITIOt-iS. 
B-4 

BRANCH CN CCNDITION TEST (BCTI SENSE SWITCH CONDITIONS. 
B-3 

BRANCH. 8-34 
PERIPHERAL CONTROL AND BRANCH. 8-139 

i-2 

BRA~CH IF CHARACTER EQUAL 
BRANCH IF CHARAtTER EOUAL. 8-42 

BRAt\Ch ON BIT ECUAL 
BRANCH ON BIT EQUAL. 8-44 

BRA~Cn ON CHARACTER CONDITION 
BRANCH ON CHARACTER CONDITICN. 8-39 

BRANCH ON CONDITION TEST 
BRANCH ON CONDITION TEST. 8-35 

BUFFER 
PRINT BUFFER. 1-10 

BUFFERED 
BUFFERED .ODE. 2-18 
BUFFERED ,SECTOR OPEkATIO~. 2-18 
BUFFERED ,SECTOR RESTRICTICNS. 2-1<; 
BUFFERED .SECTORS. 2-18 
CONTROLS,CEVICES CONNECTAELE TC ,SLFFERED SECllCRS. 2-20 

BUSY 

CAli 
TESTING PERIPHERAL CONTRCL "'NIT ,EILSY STATUS. 2-19 

CHANGING ADDRESSING MoDES VIA CA~ INSTRUCTICN. 8-65 
MODES SPECIFIED BY VARIA~T CHARACTER IN CAM LNSTR\"CTICN. 

8-63 
CAPABILITY 

EIGHT-BIT TRANSFER CAPABILITY. ~-28 
wRITE PReTECT CAPABILITY. 1-14 

CAPACITY 

CARD 

MINIMUM R~C CAPACITY REGLIRE/lE~lS FOR SERIES 200/2000 
PERIPHERAL DEVICES. 8-113 

DATA PATH DURING CARD REAC OPERATION. 1-8 
PUNCHED CARD EQUIPMENT. 1-9 
PUNCh~D CARD FORMAT. 3-9 

CARC NUMBER 
CARD NUMElf:R. 5-5 

CHAINING 
EXPLICIT ~DDRESSING, IMPLICIT ADCRESSING, AND CHAINI~G. 

4-16 
CHANGE ADDRESSING MODE 

CHANGE ADCRESSING MODE. 8-62 
CHA~GE SEQW~NCE REGISTER 

CHANGE SECUENCE REGISTER. 4-3 
CHA~GE SEaw~NCL~G MODE 

CHANGE SECUENCING MODE. 8-66 
CHANNEL 

INTERLOCKING READ/WRITE C~ANNELS. 2-17 
READ/WRITE CHANNEL. 1-8 
VARIABLE-SPEED READ/WRITE C~AN~E~S. 2-17 

CHARACTER 
BRANCH ON CHARACTER CONDITION (fCCI CONDITIONS. B-5 
CHARACTER REPRESENTATION CN 7-TRACK MAGNETI' TAPE. 3-7 
DESCRIPTICN OF PDT I/o CC~TRCL OhARACTER Cl (RhC 
ASSIGNME~TI. 8-117 
DESC~IPT~CN OF PDT I/o CC~TRCL QhARACTER C2 rFERIPHERAL. 

8-129 
FLAG CHARACTER FORMAT. 3.13 
LIB VARIAt\T CHARACTER. 8-81 
MODES SPECIFIED BY VARIA~T CnARACTER IN CA~ L~STR~CTICN. 

8-63 
SERIES 20CO CHARACTER COCES. 6.7 
VARIANT C~ARACTER. 3-3 5-23 

CHARAC TER I STIeS 
CLOCK CHA~ACTERISTICS. 2~30 

CHARACTERS 

CLEAR 

CL.EAR 

CLEAR 

CLOCK 

CODE 

BCT INSTRLCTION VARIANT C~ARACTE~S. 8-38 
INPUT/OUTFUT CONTROL CHARACTERS. ~-23 
LOAD CHARACTERS TO A-FIELC heRC J~,ARK. 8-56 
MOVE CHARACTERS AND EDIT. 8-106 
MOVE CHARACTERS TO ~ORD IIARK. e-5~ 
REPRlSENTA1l0N OF CHARACTERS I~ 1f;,AGNET IC CORE STORAGE. 

2-2 
SPECIAL G~ARACTERS IN MCE I~STR~CTION. 8-107 
SUMMARY CF PDT I/O 'ONTRCL ChARACTERS. 8-133 

CLEAk. 7-21 
ITEM 
CLEA~ IT6~ MARK. 8-51 
WORD 
CLEAf< WORt MARK. 8-50 

CLOCK CHARACTERISTICS. 2-30 
HIGH-RESCLUTION CLUCK ALLew. Z.31 
HIGH-RESClUTION CL.OCK. 1-21 2~30 

ADDITIONAL CODING RULES. 5-14 
AODRE~S oeDES. 5-14 
ADDRlSS ~CDIFICATION CODES. 5-24 
C3 CODING FOR TYPE 209 A~C 20~-2FAPER TAPE READERS. 

8-136 
C3 CODING FOR TYPE 210 PAFER TAFE PUNCH. 8-131 
C3 COOING FOR TYPE 222 PRINTERS. e-137 
C3 COOING FOR TYPE 270A RANCCM ACCESS DRUM. 8.137 
EASYCODER CODING fORM. 5.5 

AG28 



COMFUTER GENERATEC INDEX 

CODE (cCNT) 
EBCDIC CCDE TRANSLATION. 1-12 
ESCAP~ CODES. 2-20 ij-129 
OPERATICN CCDE. 3-2 5-12 
P~NCHlC CARC CODES. 3-9 
SAMPLE COCING FOR EXTlRNAL INTERRUPT RO~TINE. 2-34 
SAMPLt COCING FOR INTERNAL INTERRUPT RO~TINE. 2-35 
SERIE~ ,000 CHARACTER COD~S. E-7 

COMMuNICATION 
CUSTOMER IN~UIRY HANDLING VIA T~PICAL CO~~UNICATIONS 
NETwORK. 1-19 
DATA CC~MLNICATION ~QUIP~EN1. 1-16 1-17 
S~MMARY OF ~C8 I/O CONTRCL CHARACTERS FCR T~PE 2ij6 
M~LTIlI~E CCMMUNICATION CCN1RCLLER. 8-152 
SuMMARY OF FDT I/O CONTRCL CHARACTERS FOR T~PE 266 
M~LTILI~E COMMUNICATION ceNTRCLLER. 8-138 

COMPARE 
COMPARE. 8-32 

COMPATIBILITY 
IBM MAG~ETIC TAPE cuMPATIbILI1~. 1-12 

COMPLEMENT 
COMPLl~ENT ADD lXAMPLES. ij-7 

COMPLEMENT ADt; 
COMPLEMENT ADD. 8-6 

COMPONENTS 
SERIES ,000 COMPONENTS. 1-1 

CONCEPTS 
BASIC CCNCEFTS. 4-1 

CONSECuTIVE 
CONSEC~TIVE STORAGE LOCATIO~S I~ MAIN ME~OR~. 3-4 

CONSIDERATIONS 
PROGRA~~I~G CONSIDERATIONS. 2-1S 0-7 

CONSOLE 
CONSOLE ECLIPMENT. 1-18 
CONSOLES. 1-17 1-2 

CONSTANT 
ALPHANL~ERIC CONSTANTS. 6-4 
BINARY CO~STANTS. 6-2 
BLANK CCNSTANTS. 6-4 
DECIMAL CONSTANTS. 6-2 
DEFINE CONSTANT WITH wORD MARK. 6-2 
DEFINE CONSTANT. 6-5 
FLOATIN~-FOINT CONSTANTS. 6-5 
NUMERIC CCNSTANTS. 6-2 
OCTAL CCNSTANTS. 6-3 

CONTENTS 
CONTROL REGISTER CONTENTS LeACEC BY LCR INSTRUCTION. 

8-61 
CONTROL REGISTER CONTlNTS STOREC BY SCR INSTRUCTION. 

8-58 
CONTROL 

ASSEM8L~ CONTROL STATEMENT~. 7-1 
CONTROL DESIGNATION). 8-129 
CONTROL ECUALS. 7-14 
CONTROL I~STRLCTIONS. 0-19 
CONTROL MEMeRY REGISTERS. 2-6 
CONTROL REGISTER CONTENTS LeACEL BY LCR INSTRUCTIGN. 

8-61 
CONTROL REGISTER CONTENTS STORED BY SCR INSTRUCTION. 

8-58 
CONTROL REGISTER DESIGNATIO~S. c-1 
CONTROL REGISTERS STORED ey SCR INSTRUCTION. 6-59 
CONTRUL UNIT. 2-9 
CONTROL. 8-47 
DESCRIPTION OF PDT I/O CC~TROL CHARACTER Cl (RWC 
ASSIGNMENT). ij-117 
DESCRIP1ION OF POT I/O CC~TROL CHARACTER C2 (PERIPHERAL. 

8-129 
INPUT/CLTFUT CONTROL CHARACTERS. 5-23 
INPUT/CLTP~T lONTROl OPERATICNS. 8-112 
INPUT/OLTPUT TRAFFIC CONTROL ACTIVITIES. 2-10 
INPUT/CLTFUT TRAFFIC CONTROL. 2-9 
INTERR~FT CONTROL. 8-93 
INTERRLFT SIGNAL GENERATE~ CY PERIPHERAL CONTROL. 2-36 
LOGICAL DECISION PERFORMEC EY I~PUT/OUTPLT TRAFFIC 
CONTROL. 2-12 
PCB CONTReL ChARACTERS C5 T~RC~~H C15 TYPE 266-4, -5, -6, 
-7 LINE CONTROL INSTRUCTICNS. 8-154 
PERIPHERAL CONTROL AND BRANCH. 8-139 
PERIPHERAL CONTROL INTERRLP1. 2-35 
PERIPHERAL CONTROL. 1-6 
SIZE OF CCNTROL MEMCRY RE~ISTERS. 2-4 
SUMMARY OF INTERRUPT/ALLO~ ~LNCTION CONTROL AND TEST 
OPERATICNS. 2-37 
SUMMARY OF FDT I/O CONTRCL ~HARACTERS. 8-133 
TEST AND CONTROL OPERATIeNS. 8-140 
TESTING PERIPHERAL CONTRCL LNIT BUSY STATLS. 2-19 
TYPE 286-1, -2, -3 LINE ceNTRCL INSTRUCTIONS. 8-138 
TYPICAL ceNTROL REGISTER f~~CTIeN. 2-4 

CONTROL CHARACTERS 
PCB CONTROL CHARACTERS C5 T~RCL~H C15 TYPE 286-4, -5, -6, 
-1 LINE CCNTROL INSTRUCTICNS. 8-154 

CONTROL CHARACTlRS (CONT) 
SUMMARY CF PCB I/O CONTRCL CHARACTERS FOR T~PE 286 
MULTILINE COMMUNICATION CCNTRCLLER. 8-152 
SUMMARY CF PCB I/O (ONTRCL CHARACTERS. 8-142 
SUMMARY Cf PDT I/O CONTRCL CHARAlTERS FOR T~PE 286 
MULTILINE COMMUNICA1ION CCNTROLLER. 8-138 

CONTRCLLER 
SUMMARY CF PCB I/O lONTRCL CHARACTERS FOR TYPE 286 
MULTILINE COMMUNICATION CCNTROLLER. 6-152 
SUMMARY ~F PDT I/O CONTRCL CHARACTERS FOR TYPE 286 
MULTILINE COMMUNICATION CONTROLLER. 8-138 

CONTRCL5/DlVIC6S 
CONTROLS/DEVICES CONNE::CTAELE TC ·EILFFERED SECl'CRS. 2-20 

CONVENTIONS 
DATA CONVENTIONS OF HONE~~ELL ~ASS-STORAGE CISK DEV1CES. 

3-12 
DATA CONVENTIONS. 3-10 
DECIMAL AHITHMETIC SIGN CCNVENTIC~S. 8-8 
DIVIDE SL~N CONVENTIONS. 8~12 
M~LTIPLY ·SIGN CONVENTIONS. 8-9 

CONVERSION 

CORt 

CONVERSIe~ OF SYMBOLIC TA~ TO ABSCLUTE MEMORY ADDRESS. 
3-2 

DATA CONVERSION INSTRUCTICNS. ~-17 
DECIMAL-eCTAL CONVERSION TABLE. ~.2 
OCTAL-DECIMAL CONVERSION FROCECLRE. A-3 

REPRESENTATION OF CHARACTERS IN ~AGNETIC CORE STORAGE. 
2-2 

COLt-.TERS 

CYCLE 

DATA 

READ/wRITE COUNTERS. 2-5 

EXECUTIO~ TIMINGS IN MEMCRY CYCL~S. D-9 
MEMORY CYCLE. 2-3 

BASIl INPUT/OUTPUT OATA PATH. 1-7 
DATA AREA FORMAT. 3-14 
DATA COM~LNICATION EaUIP~ENT. 1-1~ 1-17 
DATA CONVENTIONS OF HONE~~ELL ~ASS_STCRAGE CLSK CEVICES. 

3-12 
DATA CONVENTIONS. 3-10 
DATA CONVERSION INSTRUCTICNS. C-17 
DATA FIElD FORMAT IN MAIN ~E~CRY. 3-5 
DATA FLO~ BETWEEN MAIN ME~ORY ANC ARITHMETIC ~NIT. 2-8 
DATA FOR~AT ON MAGNETIC TAPE. 3-8 
DATA FOR~.AT. 3-1 
DATA FOR~ATTING STATEMENTS. 6-1 
DATA MOV1NG INSTRUCTIONS. 0-10 
DATA PATr DURING CARD REAC OPERATION. 1-8 
DATA TRANSFER INTERVALS CLRING ONE PERIPHERAL OPERATIeN. 

2-10 
DATA TRANSFER RATES. 2-9 
DECIMAL CATA FoRMAT IN MAIN ~E~OR~. D-18 
EXTRACTICN of DATA fIELDS IN T~FLCAL ADD INSTRLCTION. 

4-2 
FLOATING-FOINT ACCUMULATCR CATA ~CRMAT. 0-2 
FLOATING_FOINT DATA FORMAT IN ~AL~ ME~ORY. D_l 
MAGNETIC TAPE DATA FORMAT. 3-7 
NUMERICAL REPRESENTATION CF CECII~AL IoICRD DATA. C-19 
ORGANIZATION OF DATA IN ~AIN ~E~CRY. 3-4 
PERIPHERAL DATA TRANSfER CPERATIC~. 1-6 
PERIPHERAL DATA TRANSFER. 8-116 
SUMMARY CF INTERNAL DATA FCR~AT. ·~-6 

DECIMAL 
ALGE5RAIC SIGNS IN DECIMAL ADDIT~CN. 8-6 
BINARY, eCTAL, AND DECIMAL EC~IVALENTS. B-8 
DECIMAL ~~DITION. 8-6 
DECII',AL Afil THMETIC SIGN CCNVENHC~S. 8-8 
DECIMAL ~CNSTANTS. 6~2 
DECIMAL DATA FORMAT IN MAIN ~E~CR'. D-18 
DECIMAL lITERALS. 5-1& 
DECIMAL SLBTRACTION. 8-7 
NUMEkICAL REPRESENTATION CF DECL~AL weRD DATA. D-19 ~ 
TIMINGS FeR DEC.IMAL MULT IFLY AI\C ,CIVIDE - ~CCEL 2040. 
'-16 

DECIMAL-OCTAL 
DECIMAL-GCTAL CONVERSION TAeLE.p..2 

DECISION 
LOGICAL DECISION PERFORMEC BY INPLT/OLTPUT TRAFFIC 
CONTROL. 2-12 

DENS lTY 
1200-BPI RECORDING DENSIT~. 1-10 
1600-6PI RECORDING DENSIT~. 1.1e 

DESCRIPTION 
DESCRIPTICN OF POT I/O CCNTROl G~ARACTER Cl (RwC 
A~SIGNMENT). 8-117 
DESCkIPTICN OF POT I/O CCNTRCL GkARACTER C2 tPERIPHERAL. 

8-129 
SYMBOLOGY USED IN SERIES 2000 I~STRUCTION CESCRIPTIONS. 

8-2 
DESIG~ATION 

CONTROL CESIGNATION). 8-129 

i-3 AG28 



C~MPUTER GENERATE~ INDEX 

DESIGNATION «(O~TI 
CONTROL REGISTER CESIGNATI0~S. 8-1 

DEVICES 
DATA CC~VENTIONS OF HONEY~ELL ~ASS-STORAEE CISK DtVI'tS. 

3-12 
MINIMUM R~C CAPACITY REQLIRt~E~TS FOR SERIES 200/2000 
PERIPHtRAL CEVI'ES. 8-113 
VISUAL lNFORMATION PROJcCTICN DEVICES. 1-18 

DIRECT-ACCESS 
DIRECT-ACCESS MODE. 2-19 

DISK 
DATA 'G~VENTIONS OF HONEY~~LL ~ASS-STORAEE CISK DEVICES. 

3-12 
CISK FCRMAT. 3-10 
DISK PACK CRIVE FEATURES. 1-14 
DISK PACK DRIVES AND DISK SL8SYSTEMS. 
DISK PACK DRIVES. 1-12 
DYNAMIC DISK ADDRESSING. 1-14 
HIGH-~PEEC CISK FILt. 1-15 1-6 

DISTRIBUTION 

DIVIDE 

MEMORY ACCESS DISTRIBUTIC~ IN T~E TYPE 
2-16 

M~MORY ACCESS DISTRIBUTIC~ eF T~E TYPE 
2-12 

MEMORY ACCESS DISTRIBUTIC~ eF ThE TYPE 
2-13 

MEMORY ACCESS DISTRIBUTICh LF ThE TYPE 
2-14 

M~MORY ACCESS DISTRIBUTIOh CF ThE TYPE 
2-13 

ME~URY ACCESS DISTRIBUTICh eF ThE TYPE 
2-16 

MEMORY ACCESS DISTRIBUTICh CF ThE TYPE 
2-11 

M~MURY ACCESS DISTRIBUTICh. 2-1C 

DIVIDE SIEN CONVENTIONS. a-12 
DIVIDE. 8-25 

1-13 

,C7l 

2C41 

2C41A 

2C51A 

2C51C 

2C61 

2C7l 

FACTOk LOCATIONS IN DIVIDE ep~RATION. 8-11 

PRO'EsseR. 

PROCESSCR. 

PROCESSOR. 

PROC~SSOR. 

PROC~SSOR. 

PROCESSCR. 

PROCESSCR. 

TIMINGS FCR DECIMAL MULTIFL~ AhD DIVIDE - MeDEL 2040. 
C-16 

DIVISION 
DIVISIC~. 8-10 
LOGICAL DIVISION CF SERIES ~OOC CENTRAL PROCESSOR. 2-1 

DRIVE 

DRUM 

DUMP 

DISK PA(K DRIVE FEATURES. 1-14 
DISK PACK CRIVES AND DISK SL8SYSTEMS. 1.13 
DISK PACK DRIVES. 1-12 

C3 CODlhG FCR TYPE 270A RANCO~ ACCESS DRL~. 8-137 
RANDOM ACCESS DRUMS. 1-15 

MEMORY CU~P. 7-15 
EASYCODER 

EBCDIC 

EDIT 

END 

EASYCODER CCDING FORM. 5-5 
EASYCuCtR C, D, AND OS/2000 CFTIONS. 6-1C 
EASYCOCER PROGRAMMING. 5-1 
SET II FU~CTUATION INDICA10RS '~ASYCCDER C, 0, AND 
OS/2000). 5-8 

EBCDIC COCE TRANSLATION. 1-12 

EDIT INSTRU'TION. 1-20 
ECITING. 8-105 
MOVE CHARACTERS AND EDIT. 8-1C6 

END. 7-:" 
EQUALIZATION 

ECUALIZATIC~. D-5 
EQUALS 

CONTRuL ECUALS. 7-14 
EGUALS. 7-13 

EQUIPMENT 
CONSOLE ECUIPMENT. 1-18 
DATA CU~MUNICATION EQUIP~tNT. 1-16 1-17 
PAPER TAPE EQUIPMENT. 1-16 
PERIPHt~AL EQuIPMENT. 1-9 
PUNCHED CAR~ EQUIPMENT. 1-9 
TELLER TER~INAL ECUIPMENT. 1-20 

EGUIVALENTS 
~lNARY-CCTAL EOUIVALENTS. A-I 
BINARY, OCTAL, AND GECIMAL ~CLIVALENTS. E-8 

ESCAPE 
ESCAPE (ODES. 2-20 ~-129 

ESCAPE CODE 
ESCAPE (OCE. 8-128 

EXAMPLES 
COMPLE~ENT ADD EXAMPLES. 8-1 

EXECuTION 
EXECUTICN TIMINGS IN MEMCRY CYCLES. D-9 
SYM~OLC~Y FeR eXECUTION TIMINE. 0-7 

i-4 

EXM 
EXTEl'iDED I~OVE (EXMI CONDITIONS. ,&-2 

EXPANDED 
EXPANDED INSTRUCTION PACKAGE. 1-22 

EXPLICIT 
EXPLICIT .ADDRESSING, IMPLICIT ADCI<ES5ING, AND CHAINIhG. 

4-1b 
EXPCNENTS 

FLOATING.FOINT NUMERICAL REPRESEhTATICN OF EXFONENTS. 
D-3 

EXTERhAL 
EXTERNAL INTERRUPT MASKI~~. 2-27 
EXTERNAL INTERRUPT MODE. 2-30 
EXTERNAL INTERRUPT. 2-31 
SAMPLE COCING FOR EXTERNAL INTER~LPT ROUTINE. 2-34 

EXTERNAL Il'iTERRLPT REGISTlR 
EXTERNAL INTERRUPT REGISTER. 4-3 

EXTRACT 
EXTRACT. 8-28 

EXTRACTlON 
EXTRACTICh of DATA FIELDS IN TYFICAL ADD IN5TRUCTION. 
4-2 

EXTRACTICh Of INDEXED ADCRE55 I~ THREE-CHARACTER MODE. 
4-12 

EXTRACTIC~ OF INDIRECT A~C INCEX~C FCUR-CHARACTER 
ADDRESSES. 4-14 
EXTRA(TIC~ OF THREE-CHARACTER IhCIRECT ADDRESS. 4-11 

FACTOR 
FACTOR LCCATIONS IN DIVICE OPERATION. 8-11· 

FEATURE 

FIELD 

FIL~ 

FLAG 

DISK PACK DRIVE FEATURES. 1-14 
FEATURES ~ND POWER MODULES. 1-20 
STORA~E PROTECTION fEATuRE. 2-21 

ADDRESS FIELD FORMAT. 3-13 
DATA FIEW~ FORMAT ll'i MAI~ ME~OI<Y. 3-~ 
EXTRACTICh of DATA FIeLDS IN TYPICAL ADD INSTRuCTION. 
4-2 

FIELDS. 3-4 
VARIA~LE ~1~LD LENGTH. 3-1 

HIGH-SPEEC DISK FILt. 1-15 1-6 

FLAG CHARACTER FORMAT. 3-13 
FLOATING-POINT 

FLC~ 

FOR~AT 

FLOATING-POINT ACCUMULATCR DATA FeRMAT. 0-2 
FLOATING-FOINT ARITHMETIC INSTR~CTIONS. D_13 
FLOATING-FOINT CONSTANTS. 6-5 
FLOATING-FOINT DATA FORMAT IN ~Alh ME~ORY. 0.1 
FLOATING_FOINT NUMEkI(AL REPRESchTATICN Of EXFONENTS. 

D-3 
FLOATING-FOINT NUMeRICAL REPRES6hTATlCN OFI-:AhTlSSAS. 

D .. 3 
FLOATING-FOINT NUMERICAL REPRES6hTATICN. 0.2 
FLOATING.FOINT REGISTERS. 0-4 

DATA FLO~ BETWEEN MAIN ME~ORY ANC ARITHMETIC ~NIT. 2-8 

ADDRESS FIELD FORMAT. 3-13 
DATA AREA FORMAT. 3-14 
DATA FIE~L FORMAT IN MAlh ME~CRY. 3-5 
DATA FOR~AT ON MAGNlTIC TAPE. 3-t 
DATA FOR~AT. 3-1 
DECIMAL CATA FORMAT IN MAIN ~E~CR~. 0-16 
DISK FOR~AT. 3-10 
FLAG CHARACTER FORMAT. 3-13 
FLOATING-FOINT ACCUMULATeR DATA ~CRMAT. 0-2 
FLOATING~FOINT DATA FORMAT IN ~Alh Mt~ORY. D-l 
FORMAT OF TYPE 243 PDT C3 VARIA~T. 8-136 
INSTRUCTICN FORMAT. 3-2 
INSTRUCTICN FuRMATS. D-6 
INSTRUCT leNS FORMATS AND TIMING. ~-1 
MAGN~TIC TAPE DATA fORMAT. 3-7 
PUNCHED C~RD FORMAT. 3-9 
RECOkD FC~MAT IN MAIN ME~CRY.3-~ 
RECORD FCRMAT. 3-11 
SERIES 20CO INSTRUCTION FCRMAT 1. 4-16 
SERIE~ 20CO INSTRUCTION FCRMAT 2. 4-17 
SERIES 20CO INSTRUCTION FCRMAT 3. 4-11 
SERIlS 20CO INSTRUC1ION FeRMATS. 3-3 
SUMMAkY CF INTERNAL DATA FCR~AT. 3-6 
TRACK FO~~AT. 3-11 
TWO IJEM FORMATS IN MAIN ~EMCRY. 3-5 

FOR"'ATTING 
AUTOMATIC FORMATTIN~ IN ARITh~ETIC OP~RATIO~S. D-5 
DATA FORMATTING STATEMENTS. 6-1 

FOR~ULAS 
INSTRUCTICN SUMMARY - TI~ING FCR~LLAS FOR MCCELS 2040. 
C-4 

FOuR-CHARACTER 
ASSEMBLY CF INDEXED ADDRESS IN ~0LR-CHARACTER ADDRESSING 
MODE. 5"25 

AG28 



Cvfoo1FUTlR ~ENERATEC INDEX 

FOUR-CHARACTEh (CCNTI 
ASSEMBL~ Cf INDIRECT ADDRtS~ I~ FOUR-CHARACTER ADDRES~ING 
MCDE. 5-26 
EXTRACTIO~ CF INDIRECT AN~ INCEXED FOUR-C~ARACTlR 
ADDRE5SES. 4-14 
FC~R-ChARACTER ADDRESS AS~~~8L~. 5-4 
FOuR-ChARACTER ADDR~5SING MeDt. 4-8 
FOuR-ChARACTER ADDR~5S. 4-1~ 
INDEX REGISTER ADDR~SSES IN FCLR-CHARACTER ADDRlSSI~u 
MODE. 4-13 

FUNCTION 
MAIN ME~ORY FuNCTIONS. 2-, 
SuMMARY OF INTERRUPT/ALLC~ fu~CTION CONT~CL AND TEST 
OPERATICNS. 2-37 
TYPICAL CCNTROL REuiSTER rU~CTICN. 2-4 

HALF ADD 
HALF ACe. 6-29 

HALT 
HALT. 8-52 

HEADER 
PROGRAM HEADER. 7-2 
SEGMENT HEADER. 7-4 

HIGH-RESCLUTICN 
HIGH-RESOLUTION CLOCK ALL~~. 2-31 
NIGH-RESOLuTICN CLOCK. 1-21 2-3C 

HIGH-SPEED 

IBM 

hIGH-SPEED CISK FILE. 1-1~ 1-6 
HIGH-SPEEC PRINTERS. 1-10 1-9 

IBM MAG~ETIC TAPE CCMPATI~ILIT~. 1-12 
IMPLICI T 

INDEX 

EXPLICIT ADDRESSING, IMPLICIT ACDRESSING, A~D CHAINING. 
4-1b 

ASSEMbL~ CF INDEXED ADDRtSS I~ FOUR-CHARACTER ADDkESSIN~ 
MCDE. 5-25 
ASSEMBL~ CF INDEXED ADDRESS I~ THREl-CHARACTER ADDRESSI~G 
MCDE. 5-25 
EXTRACTICN CF INDEXED ADCRE~S I~ THREE-C~ARACTER MODt. 

4 .. 12 
EXTRACTIO~ CF INDIRECT AND INCEXED FOUR-ChARACTER 
ADDRESSES. 4-14 
INDEX REGISTER ADDRESSES IN FC~R-CHARACTER AODRESSI~u 
MCDE. 4-13 
INDEX REGISTER ADDRESSES IN T~REE-CHARACTER ADDRESSINu 
MCOE. 4-11 
INDEX REGISTERS. 2-21 4-9 
SERIES 2000 INDEX RtGISTEk ~AF. 4-9 

INDEX/BARRICACE 
LCAD INCEx/eARRICADE REGISTlR. 6-79 
STORE I~DEX/BARRICADE REGlS1ER. 6-83 

INDICATCR 
ANGULAR PCSITION INDICATCR. 1-15 
BRANCH CN CCNDITICN TEST (BCTI INDICATOR CO~OITIONS. 

B-4 
EXTENDED I/C INDICATOR. 2-1~ 
INDICATCR TEST CONDITIONS FeR eCT INSTRUCTICN. 8-37 
INDICAT~RS. 6-8 D-4 
PROCEED INDICATOR. 2-25 
RESTORE VARIANT AND INDICATCRS. 6-9S 
SET I P~NCT~ATION INUICAT'R~. 5-7 
SeT II ~U~CTUATION INOICAI0"S (lASYCODER C, 0, AND 
OS/20001. 5-6 
STORE VARIA~T AND INDICATCk~. 6-94 

INDIRECT 
ASS~MUL~ CF INDIRECT ADDRtS! I~ FoUH-CHARACTER AD~RESSI~G 
MODE. 5-26 
ASSEMBL~ CF INDIRECT ADDRcS~ I~ THREE-ChARACTER 
ADDRESSIN~ ~ODE. 5-26 
EXTRACTICN CF INDIRtCT AN~ INCE~ED FOUH-C~ARACTER 
ADDRESSES. 4-14 
EXTRACTIO~ CF THREE~CHARACTER I~DIRECT ADDRESS. 4-11 

INFORMATION 
SIZE OF INFCRMATICN UNITS I~ ~IT OPERATICN. 8-75 
VISUAL INFORMATION PROJECT leN ClVICES. I-Ie 

INPUT/OuTPUT 
BASIC I~P~T/OUTPUT DATA PAT~. 1-7 
INPUT/CLTFUT CONTROL CHARACTERS. 5-23 
INPUT/CLTFUT CONTROL OPERATIC~S. 8-112 
INPUT/OLTFUT TRAFFIC CONTROL ACTIVITIES. 2-10 
INPUT/CLTFUT TRAFFIC CONTROL. 2-9 
INPUT/CLTFUT. 8-111 
LCGICAL DECISION PERFORMlD eY I~PUT/OUTP~T lRAF~IC 
CONTROL. 2-12 

INQUIRY 
CUSTOMER IN~UIRY HANDLING VIA T~PICAL CC~~U~ICATI~NS 
NETWORK. 1-19 

INSTRUCTION 
BCT INSTR~CTION VARIANT ChA~ACTERS. 6-36 
BINARY INTEGER ARIThMeTIC I~STRLCTION. D-25 
CHANGIN~ ADDRESSING MODES VIA CAM INSTRuCTICN. 6-b5 
CONTRUL INSTRuCTIONS. 0-19 

INSTR~CTION (CC~TI 
CONTkOL HEGISTER CONTENTS LOADED EY LCR INSTRLCTICN. 

6-b1 
CONTROL REGISTER CONTENTS STCRED EY SCR INSTRLCTICN. 

8-5& 
CONTkOL REGISTERS STORED EY SC~ l~STR~CTIUN. a-59 
DATA CONVER~ION INSTRUCTICNS. e-11 
DATA MOVI~G INSTRUCTIONS. D-10 
EDIT INSTRUCTION. 1-20 
EXPANUED INSTRUCTION PACKAGE. l.~t 
EXTRACTIC~ OF DATA FIELDS IN T~~lCAL ADD INSTRuCTION. 
4-2 

FLOATING.FOINT ARITHMETIC INSTRLCTIONS. D-13 
INDICATOR TEST CONDITION~ FOR ECI INSTRVCTICN. 6-~7 
INSTRuCT~CN FORMAT. 3-2 
INSTRUCTICN FORMATS. D-b 
INSTRuCTItN SUMMARY - TI~ING FCR~LLAS FOR lCDELS 204C. 
C-4 

INSTkUCTICN SUMMARY. Cool 
INSTRUCTICN TIMEOUT. 2-27 
INSTRUCT~CN TIMINGS FOR ~CCELS 2C~OA. 2050, A~D 2060. 
C-8 

INSTRUCTICN TIMINGS FOR ~CDELS 2C~OA AND 2070. C-11 
INSTRUCTICNS fORMATS AND rI~Ih~.C-1 
INSTkUCTttNS. 8-1 
MODES SPECIFIED BY VARIA~T ChARACTER IN CAM l~STRLCTICN. 

8 .. 63 
PCB CONTRCL CHARACTERS C5 ThRCLGf C15 TYPE 26f-4, -5, -6. 
-7 LINE GCNTROL INSTRUCTICNS. a·l~4 
PRIVILEGEC BCT INSTRUCTIC~. 2-2~ 
PRIVI~EGEC SCR INSTRUCTIC~S. 2~2~ 
SCR AND LCR INSTRUCTIONS. 2-31 
SELECTINu RWe ASSI~NMENT~ FOR LSE IN PDT INSTRUCTIONS. 

6-112 
SENS~ SWITCH TEST C~NDITICNS FCR ·ECT INSTHUCTICN. 6-36 
SERIeS 20CO INSTRUCIION fCR~AT 1. 4-1b 
SERIE5 20CO INSTRUCTION FCR~AT 2. 4-17 
SERIES 20CO INSTRUC1IuN FCR~AT 3. 4-17 
SERIES 20CO INSTRUCTION FCR~ATS. 3-3 
SPECIAL G~ARACTERS IN MCE INSTRLCIION. e-107 
SYMBOLIC ~EPRESENTA1ION CF SERI6~ 2000 INSTRUCTIONS. 

3-4 
SYMBOLOGY USED IN SERIES 2000 Ih~lRuCTION DESCRIPTIO~S. 

8 .. 2 
TYP~ Z6b-1, -2, -3 LINE CCNTRCL t~STR~CTIONS. 6-136 
TYPICAL ACD INSTRUCTION. ~~l 

INTEGER 
BINARY INl~GER ARIThMETIC INSTRLCTION. 0-25 

INTERFACE 
PERIPHERAL INTERFAC~. 1-5 

INTERLOCKING 
INTERLOCKING READ/~RITE C~ANNELS. 2-17 

INTER"AL 
INTERNAL INTERRUPT. 2-22 2-32 
SAMPLE COCING FOR INTERNAL INTER~LPT ROUTIN~. 2-35 
SUMMARY CF INTERNAL DATA FOR~AT. ·3-b 

INTER~AL INrER~LPT REGISTER 
INTERNAL INTERRUPT REGISTER. 4-4 

INTERRUPT 
EXTERNAL INTERRUPT MASKI~~. 2.27 
EXTERNAL INTERRUPT MOUE. 2~30 
EXTERNAL INTERRUPT. 2-31 
INTERNAL INTERRUPT. 2-22 2-32 
INTERRUPT CONTROL. ti-93 
INTERRUPT PROCESSINu MODE. 1-3 
INTERRUPT PROCE5SINu. 2-31 
INTERRUPT PRO~RAMMING. 2-33 
INTERRUPT SIGNAL ~EhERATEC B~ 'FE~IPHlRAL CO~TROL. 2-36 
PERIPHERAL CONTROL INTERRLPT. 2-35 
PROGRAM l~TERRUPT. 1-20 
SAMPLE COCING FOR EXT~RNAL INTER~LPT ROUTIN~. 2-34 
SAMPLE COCING FOR INTERN~L INTERRLPT ROUTINE. 2-35 

INTERRUPT/ALLO~ 
SUMMARY CF INTERRUPT/ALLC~ fLNCTtCN ceNTROL A~D TEST 
OPERATIO~~. 2-37 

INTERVALS 

ITE~ 

DATA TRAN~FER INTERVALS CLRIN~ C~E PERIPHERAL OPERATICN. 
2-10 

MOVE ITE~ AND TRANSLATE. a-74 
TWO ITEM FORMATS IN MAIN ~E~CR~. ;-5 

ITE~-~ARK 

ITE~S 
ITEM-MARK TRAPPING MODE. 1-4 

ITEMS. 3-5 
RELATloNS~IP BETWEEN ITE~S AND RECORDS. 3-1C 
RELATJONS~IP BETWEEN ITE~~. RECCRCS, AND SLeCKS. 3-11 

LAN~UAGE 

LCR 

i-5 

THE SYMBCLIC LANGUAGE. 5 .. 3 

CONTROL REGISTER CO~T~NT~ LCADEC EY LCR INSTRLCTICN. 
8-61 

AG28 



CCMPuTER GENERATEC INDEX 

lCR (CONTI 
SCR AND LCR INSTRUCTIONS. ,-31 

LENGTH 

LIB 

LINE 

VARIABLE FIELD LENGTH. 3-1 

CORRESPCNCENCE BETWEE.N lIB ,SETT ING AND BARRICADE. 
LOCATlO~. 8-81 
lI~ VARIA~T CHARACT~R. 8-b1 

PC8 CeNTRCL CHARACT~RS C5 T~RC~~H C15 TYPE 286-4, -5, -6, 
-7 LINE CCNTROl INSTRUCTICNS. 8-154 
TYPE 286-1, -2, -3 lINE ceNTRCl INSTRUCTIONS. 8-138 

LITERAL 

LOAD 

ADDRESS LITERALS. 5-22 
ALPHANv~ERIC LITERALS. 5-~0 
AREA OEFI~I~G LITERALS. 5-,1 
BINARY LITERALS. 5-19 
DECIMAL LITERALS. 5-18 
lITERAL ORIGIN. 7-1U 
LITERALS. 5-1b 
OCTAL LITERALS. 5-19 

LOAD CHARACTERS TO A-FIEL~ ~CRC MARK. 8-56 
lOAD INCEX/BARRICADE REGI5T~R. 8-79 

LOAD CONT~OL HEGISTE.R~ 

LOADED 
LCAD CC~TROL ~E.GISTERS. 8-6e 

ADDRESS ASSIGNME.NTS AND v~IT LCADS AVAILABL~ IN StRIES 
2000 PRCCESSORS. 1-~ 
CONTROL REGISTE.R CONTENTS LeACEC 8Y LCR INSTRUCTIGN, 

8-61 
PERIPHERAL ADDRESSES AND LNIT L~ADS. 1-7 

LOCATION 

LOGIC 

CCNSEtUTIVE STORAGE. LOCATIO~S I~ MAIN ME~CRY. 3-4 
(CRRE~PCNCE~CE BET~EE.N LIe ,SETTING AND BARRICADE 
LOCATIC~. 8-81 
FACTUR LCCATIUNS IN DIVIDE. ~PERATION. 8-11 
LOCATIC". 5-8 

LOGIC. 8-27 
LOGICAL 

LOGICAL DECISION PERFORME.~ EY I~PUT/CUTPLT TRAFFIc 
CONTROL. 2-12 
lOGICAL DIVISION OF SE.RIES ,OCC CENTRAL PROCESSOR. 2-1 

MAGNETIC 
CHARACTER REPRE.SENTATION eN 1-TRACK MAGNETIC TAPE. 3-7 
DATA ~CAMAT ON MAGNtTIC TAPE. 3-8 
IBM MAG~ETIC TAPE CCMPATI~ILITY. 1-12 
MAGNETIC TAPE DATA FORMAT. 3-7 
MAGNETIC TAPE UNITS. 1-10 1-11 
REPRESE~TATION OF (hARACTtRS 1/\ MAGNETIC CORE STORAGt. 

2-2 
MANTISSAS 

MAP 

MARK 

FLOATING-POINT NUMERICAL REPRESENTATION CF ~ANTISSAS. 
0-3 

SERIES 2000 INDEX REGISTER ~AP. 4-9 

CLEAR ITE~ ~ARK. 8-51 
CLEAR heRD ~ARK. 8-~0 
DEFINE CONSTANT WITh WORD MARK. 6-2 
lCAD CHARACTERS TO A-FIELD ~CHC MARK. 8-56 
MARK. 5-7 
MOVE CHARACTERS TO ~ORD ~ARK. a-55 
SET ITE~ ~ARK. 8-49 
SET wu~c ~ARK. 8-48 

MASKING 
EXTERNAL INTERRUPT ~ASKING. 2-27 

MASS-STORAGE. 
DATA CC/\VENTIONS OF HONEY~E.LL ~ASS-STORAGE CISK DtVICES. 

3-12 
MAT 

MCE 

MEMORY 

MAT OPERATICN. 8-13 

SPECIAL C~ARACTERS IN MCE I~STRLCTION. 8-107 

CONSECvTlvE STORAGE lOCATIO~S I~ MAIN ME~ORY. 3~4 
CONTROL MEMCRY REGISTERS. 2-6 
CONVERSIO~ CF SYMBOLIC TA~ TO AESOLUTE ME~ORY AODkESS. 
3~2 

DATA FIELD FORMAT IN MAIN ME.~CRY. 3-5 
DATA Flew BETWEEN MAIN ME.~O~Y A~D ARITHMETIC UNIT. 2-8 
DECIMAL DATA FO~MAT IN MAIN ME~CRY. 0-18 
EXECUTICN TIMINGS IN MEMCRY CYCLES. 0-9 
FlOATIN~-poINT DATA FO~MAT IN ~AIN MEMORY. D-l 
MAIN ME~ORY FUNCTIONS. 2-2 
MAIN ME~ORY SIZE. 1-5 
MAIN ME~ORY SPEED. 1-5 
MAIN ME~ORY. 2-1 
MEMORY ACCESS DISTRIBUTICN IN T~E TYPE 2Cl1 PROCESSCR. 

2-16 
MEMORY ACCESS DISTRI&UTIC/\ CF T~E TYPE 2C41 PROCESSCR. 

i-6 

ME~CRY (CONTI 
2-1<: 

MIT 

MODE 

/>iODEL 

MODES 

MEMORY ACCESS DISTRIBUTIC~ OF T~E TYPE 2041A 'PROCESSCR. 
2-13 

MtMOF<.Y ACCESS DISTRIBuTlC~ OF HE TYPE: 20!)lA 'PRCCESSCR. 
2-14 

MEMURY ACCESS DISTRI8UTIC~ OF T~,E TYPE 2051C 'PRCCESSCR. 
2-13 

ME.MOkY ACCESS DISTRI8UTIC~ OF T~E: TYPE. 2061 PROCESSOR. 
2-16 

MEMURY ACCESS DISTRIBuTle~ OF T~E TYPE 2011 PROCESSOR. 
2-17 

ME.MURY ACCESS DISTRIBUTIC~. 2-1C 
MEMORY CYCLE. 2-3 
MEMORY DL~P. 7-15 
ONE MEMOR' POSITION. 2-2 
ORGANIZATION of DATA IN ~AIN ME~CRY. 3-4 
RECORD FC~MAT IN MAIN ME~eRY. 3-~ 
SIZE OF ceNTROL MEMORY ~EGISTERS. 2-4 
TWO ITEM FORMATS IN MAIN ~E~ORY. 3-5 

MIT vPERATION. 8-19 
SIZE OF Itd'ORMATION UNIT5 IN ~ IT 'CPERATION. 8.15 

ASSEMblY ~F INDEXED ADDRE5S IN ~CLR-CHARACT~R ADDRESSING 
MODE. 5-25 
ASSEMBLY ~F INDEXED ADDRESS 1/\ ]~REE-CHARACTER ADDRESSING 
MODE. 5-25 
ASSEMtlLY ,CF INDIRECT ADDRESS I~ "'CuR-CHARACTER ADDRESSING 
MODE. 5-2~ 
ASSEMBLY ,CF INDIRECT ADDRESS I~ T,~REE-CHARACTER 
ADDRE.SSI~~ MODE. 5-26 
BUFFt;.kED ,~ODE.. 2-18 
DIRECT-ACCESS MODE. 2-19 
EXTERNAL INTERRuPT MODE. 2-30 
EXTRACTIC~ OF INDEXE.D ADCRES5 IN THREE-CHARACTER ~ODE. 

4-12 
FOUR-CHARACTER ADDRE.SS I NG MCCE. ·4 .. 8 
INDEX RE~lSTER ADDR~SSE5 IN F0LR.CHARACTER ADCRESSINe 
MODE. 4-13 
INDEX RE~ISTER ADDRESSES IN ThREE .. CHARACTER ACDRESSI~G 
MODE. 4-11 
INTERRUPT PROCESSINb MaCE. 1-3 
ITEM-MARK TRAPPING MODE. 1-4 
SET ADDRE5S MODE. 1-12 
STANDARD PROCESSING MUDE. 1-2 
THREE.-CHARACTER ADDRE5SI~G ~CDE. 4-6 
TWO-CHARACTER ADDRESSING ~ODE. ~.5 

INSTRUCT~CN SUMMARY - TI~ING FeR~LLAS FOR MCDELS 204C. 
C-~ 

INSTRUCTICN TIMINGS FOR ~eDELS 2C40A, 2050. A~D 2060. 
c-a 

INSTRUCTICN TIMINGS FOR ~eD~LS 2e50A AND 2070. C-l1 
MODEL 20~CA POWER MuDuLE5. 1-22 
MODEL 205CA POWER MUDULES. 1-22 
TIMINGS FeR DECIMAL MUll IPLY A~C 'CIVl~E - MCDEL 2040. 
C-16 

ADDRESSI~~ MODES. 1-4 4-5 
CENTRAL PROCE~SOR MODES. 2-21 
CHANGING ADDRESSING MODES VIA 'CA~ INSTRuCTICN. 8-65 
MODES SPECIFIED BY VARIA~T ChARACTER IN CAM L~STRvCTICN. 

8-63 
MODIFICATION 

ADDRESS ~CDIFICATION CODE5. 5-24 
ADDRl5S ~CDIFICATION. 4-e 

MODvLAR 
MODULAR CRIGIN. 7-9 

MODLUS 
FEATURES AND POWER MODULES. 1-2C 
MODEL 204CA POWER MUDULES. 1-22 
MODEL Z05CA POWER M0DULES. 1·22 

MONITOR CALL 

MOVE 
MONITOR CAll. 8-100 

DATA MOVL~G INSTRUCTIONS. 0-10 
EXTENDED ,~OVE (EX/-D CONDITICI'iS. ,1:--2 
MOVE AND TRANSLATE. 8-10 
MOVE CHARACTERS AND EDIT. 8~106 
MOVE CHARACTERS TO ~ORD ~ARK. 8-55 
MOVE ITE~ AND TRANSLATE. 8-14 
MOVE DR SCAN CONDITIONS. 8-89 
MOVE OR S(AN VARIANTS. B·9 
MOVE UR StAN. 8-81 

MULTILINE 
SuMMARY Cf PCB I/O CONTRCL ChARACTERS FOR TYPE 286 
MULTILINE COMMUNICATION ceNTROLLER. 8-152 
SUMMARY ~F PDT I/O CONTReL CHARACTERS FOR TYPE 286 
MULTILINE COMMUNICATION ceNTRCLLER. 8-136 

MUL T IPLlCAT ION 
MULTIPLICATION. 8-8 

AG28 



CUMFUTER ~ENERATEC INDEX 

MULTIPLY 
A-FIELD A~D B-FIELD IN MLLTIPLY OPeRATIe~. 8-9 
MuLTI~Ll Sl~N CONVENTIONS. 6-9 
t-',l;LTIPLY. 8-23 
TIMIN~~ FCR D~CIMAL MULTIFL~ ~~C DIVIDE - MeDEL 2040. 
(-16 

MULTIPROGRAH~ING 
EXTENOeC t-'ULTIPROGRAMMING A~C EIGHT-BIT 'RA~SFER. 1-~1 
2-26 

NETWCRK 
CuSTOMER IN'UIRY HANDLING VIA TYPICAL CCt-'~U~ICATICNS 
NETwORK. 1-19 

NO OPERATION 
NO OPtR~TICN. 8-54 

NOTATION 
OCTAL NCTATION. A-1 

NUMERIC 
NLMER1C CCNSTANTS. 6-2 

NUMERICAL 
FlOATIN~-FcINT NU~ERICAl REFRE~ENTATION CF EXPONENTS. 

D-3 
FleATI~~-FOINT NUMERICAL REFRES~NTATION CF 'ANTISSAS. 
0-3 
FLCATIN~-FeINT NUMERICAL REFR~~ENTATION. D-2 
Nu"'ERIC~l REPRESENTATION CF DE~lMAL wORD DATA. 0-19 

OBJECT 

OCTAL 

RELATIC~S~IP OF SCURCE PRCGRAt-', ASSEMBLER, AND OBJECT 
PRCGRAM. 5-2 

BINARY, OCTAL, AND UECIMAl ECLIvAlENTS. E-8 
OCTAL CCNSTANTS. 6-3 
eCTAL LITERALS. 5-19 
OCTAL NCTATION.'A-1 

OCTAL-DECIMAL 
OCTAl-CECIMAl CONVERSION FRCCECLRE. A-3 

OPERANCS 
OPERANCS. 5-1<! 

OPERATICN 
A-FIELD A~D B-FIElD IN MLlTIPLY OPERATIC~. 8-9 
ARITHMETIC CPERATION~. 8-3 
AUTOMATIC FCRMATTIN~ IN ARI1Ht-'ETIC OPERATIO~S. D-5 
6UFFERE~ SE~TCR OPERATION. 2-18 
DATA PAlH DLRIN~ CARD REAl; CFERATION. 1-8 
DATA TR~NSFER INTERVALS CLRIN~ CNE FERIP~ERAl OPERATICN. 

2-10 
FACTOR LCCATIONS IN DIVIDE ~PERATION. 8-11 
INPUT/CLTFLT CONTROL OPERATIC~S. 8-112 
MAT OPEHATICN. &-73 
MIT OPE~ATICN. 8-79 
OPERATICN CCDE. 3-2 ~-12 
PERIPHERAL CATA TRANSFER CPERATION. 1-6 
SERIES ~OOO ADD AND SUBTRACl CFERATICNS. 8-3 
SIZE OF INFCRMATICN UNITS l~ ~Il OPERATICN. 8-7~ 
SuMMARY OF INTERRuPT/AllC~ fl;~~lION CONT~Cl AND T~Sl 
OPERAlICNS. 2-37 
TEST AN~ CCNTROl OPERATIONS. 8-140 
TlU OPEHATICN. &-88 

OPTICNS 
EASYCOCER C, D, AND OS/ZOGO CFTIONS. 6-1C 

ORGANIZATION 

ORIGIN 
ORGANIZ~TICN OF DATA IN MAIN ~~t-'ORY. 3-4 

LITERAL CRI~IN. 7-10 
MOCUlAR ORI~IN. 7-9 
CRI<.iIN. 7-7 

05/2000 
EASYCOCER C, D, AND 05/2000 CFTIONS. 6-10 
SET 11 FU~CTUATION INDICATC~S (EASYCODER C, 0, AND 
05/20001. 5-8 

OUT-OF-5EQUf:.NCE 
OUT-OF-SECLENCE. 5-17 

PACK 
DISK PACK DRIVE FEATURES. 1-14 
DISK PAlK DRIVES AND DISK SLBSYSTEMS. 1-13 
DISK PACK DRIVeS. 1-12 

PACKAGE 
EXPANDEC INSTRUCTION PACKAGE. 1~22 

PAPER 
PAPER TAPE ECUIPMENT. 1-16 

PAPER TAPE 

PATH 

C3 CODING FCR TYPE Z09 AN~ 209-2 PAPER T~PE READf:.RS. 
8-13b 

C3 COCI~G FCR TYPE Z10 PAFER TAFE PUNCH. 8-137 

BASIC I~PLT/OUTPUT DATA PAT~. 1-7 
DATA PATH CLRIN~ CARD REA~ CPERATION. 1~8 

PERIPHERAL 
DATA TRANSFER INTERVALS CLRIN~ CNE PERIP~ERAl OPERATION. 

2-10 
DESCRIPTICN OF PDT 1/0 CeNTROL CHARACTER C2 (PERIPHERAL. 

8-129 
INTERRLFT SIGNAL GENERATEC ~Y FERIPHERAL CONTROL. 2-3~ 

PeRIPHERAL (CONT) 
MINI~UM R~C CAPACITY REtLIRE~EN~S FOR SERIES 200/200e 
PERI~HERAL DEVICES. 8-113 
PERIPHERAL ADDRESSES AND 'LNlT LC~'CS. 1-7 
PERIPHERAL CONTROL AND ~RANC~. 8-139 
PERIPHERAL CONTROL INTERRLPT. 2~35 
PERIPHERAL ~ONTROL. 1-6 
PERI~HERAL DATA TRAhSFER CPERAT~C~. 1-6 
PtRIPHERAL DATA TRANSFER. 8-11t 
PERIPHERAL EQUIPMeNT. 1-9 
PERIPHERAL INTERFACe. 1-5 
PERIPHERAL SIMULTAN~ITY. 1-~ 
TESTING PERIPHERAL ~ONTRCL "'NIT ·t'LSY STATUS. 2 .. 19 

POS IT ION 
ANGULAR FcSITION INDICATCR. 1-15 
ONE MEMORY POSITION. 2-2 

PCSTNCRMALILATICN 

POlt.ER 
POST~uRMALIZATION. D-6 

FEATURES ~ND POWER MODULES. 1-2C 
MODEL 204eA POWER MuDUlES. 1 .. 22 
MODEL 205eA POWER MUDULES. 1-22 
PROCESSIN~ POwER. 1-4 

PC~t;RS OF Z 
POWEkS OF 2. !:i-8 

PRE~ORMAlIlATIC~ 
PRENuRMALllATION. 0-5 

PRI~T 
PRINT BUFFER. 1-10 

PRIHER5 
C3 CODIN~ FOR TYPE 222 PRINTERS. e-137 
HIGH.SPEEC PRINTERS. l-1e 1-9 

PRCC~CURE 
OCTAL-DECIMAL CONVEkSION FRCCECLRE. A-3 

PRCCEED 
PROCEED l~DICATOR. 2-25 

PROCeSSING 
INTEkRUPT PROCESSINu MODE. 1-3 
INTERRUPT PROCESSINu. 2-31 
PROCESSI~~ POwER. 1-4 
STANDARD FROC~SSING MODE. 1-2 

PRCCESSOR 
ACTIVE ADCRESS BITS IN SERIES 20ce SINGlE-CHA"ACTER 
PROCE~SOR~. 4-14 
ADDRE5S ASSIGNMENTS AND L~IT LC~~! AVAILAblE IN S~RIES 
2000 PROCESSORS. l~b 
C~NTRAL FROCESSOR FINISHEC. 1-14 
CENTRAL P~OC~SSOR MODES. 2~21 
CENTRAL FROCESSOR. 1~1 
lOGICAL CIVISION OF S~RIES 200e .C.ENTRAL PROC.6!SCR. 2-1 
MEMORY ACCESS DISTRIBUTIC~ IN T~E TYPE 2071 PROCESSOR. 

2-16 
MEMORY ACCESS DISTRIBUTIC~ CF T~E TYPE 2041 P"OCESSOR. 

2-1£ 
MEMORY ACCESS DISTRIBUTIC~ OF T~~ TYPE 2041AFROCESSCR. 

Z-13 
MEMORY ACCESS DISTRIBUTIC~ CF T~E TYPE 205104 'FRCCESSCR. 

2-14 
MEMORY ACCESS DISTRIBUTIC~ OF T~E TYPE 20~lCFRCCESSCR. 

2-13 
MEMORY ACCESS DISTRIBuTIC~ OF T~t. TYPE 2061 PROCESSOR. 

2-16 
M~MORY ACCESS DISTRIBUTICN OF T~E TYPE 2071 P"OCESSOR. 

2-17 
THE CENTRAL PROCESSOR. 2-1 

PROJECTION 
VISUAL INFORMATION PROJECTION ~E~ICES. 1-18 

PROTECT 
WRITE PRCTECT CAPABILITY. 1-14 

PROTECTION 

PUNCH 

BASIC STCRAGE PROTECTION. 8·80 
STORAGE FROTECTION ~EATLRE. 2-21 
STORAGE FROTECTION WITH EASE RE~CCATICN. Z~26 8-80 
STORAGE P~OT~CTION. 1-21 
VIOLATIONS OF STORAGE PRCIECTIC~. 2-Z3 

C3 CvDIN~ FOR TYPE <!10 P~FER TAFE PLNCH. 8-137 
PUNCH~D C~RD EQUIPMENT. 1-9 
PUNCHED C~RD FORMAT. 3-9 

PUNCHED CARD 
PUNCH~D C~RD CODES. 3-9 

PUNCTI,;ATION 

RAN COl" 

RAN~E 

SET I PUNCTUATION I~DICATCRS. 5-7 
SET II PI,;~CTUATION INUIC~lORS (E~SYCOCER C, 0, ANC 
05/2000). 5-8 

C3 CODIN~ FOR TYPE 270A R~NCC~ ACCESS DRUM. 8~137 
RANDvM ACCESS DRUMS. 1"15 

POTENTIAL ADDRESSES OUTSICE ACCR~!S REGISTER "ANGE. 
4-1~ 

POTENTIAL ADDRESSES WITHI~ ADCR6S! ReGISTER R~NGE. 4-15 

i-7 AG28 



COMPUTER GENERATED INDEX 

RANGE ((ONTI 
RANGE. 7-20 

RATES 

READ 
DATA TRANSFER RATES. 2-9 

DATA PATH cuRINu CARD REAL; ,CPERATION. 1 .. 8 
READERS 

C3 CODI~G FeR TYPE 209 ANC Z09-2 PAPER TAPE READERS. 
a .. 13& 

READ/WR ITt: 

RECORD 

INTERLe(KIN~ READ/WRITE ChA~NELS. 2-17 
HEAD/wHITE CHANNEL. 1-8 
READ/wRITE COUNTERS. 2-5 
VARIA~LE-SPEED READ/wRITE C~ANNELS. 2-17 

1200-bPI RECORDING DENSITY. 1-10 
l&OO-bPI RECORDING UENSITY. 1-10 
RECORD FORMAT IN MAIN MEMGRY. 3-6 
RECORU FORMAT. 3-11 
RECORDS. 3-6 
RELATIC~S~IP BETWEEN ITEMS AND RECORDS. 3-10 
RELATIC~ShIP BETWEEN ITEM~. RECCRDS. AND BLeCKS. 3 .. 11 
TRACK-LINKING RECORD. 3-15 

REGISTER 
ACCOUNTIN~ TIMER REGISTER. 2-30 
CCNTR0L REGISTER CONTENTS LeADED BY LCR INSTRUCTICN. 

8-01 
CONTROL REGISTER CONTENTS STCRED BY SCR INSTRuCTION. 

8-58 
CONTROL REGISTER DESIGNATIO~S. fool 
INDEX REGISTER ADDReSSES IN FeLR-CHARACTER ~DDRESSING 
MeDE. 4-13 
INDEX REGISTER ADDRESSES IN ThREE-CHARACTER ADDRESSIN~ 
MeDE. 4-11 
LeAD INCEX/BARRICADt: REGISTER. ~-79 
POTENTIAL ADDRESSES OUTSIDE ADDRESS REGISTER RANGE. 
4-15 

POTt;;NTIAL ADDRESSES WITHIN ADDRESS REGISTER RANGE. 4-i5 
SERIES 2000 INDEX RE~ISTER ~AP. 4-9 
STORE I~DEX/BARRICACE REGISTER. 8-83 
TYPICAL ceNTRoL REGISTER ~U~CIICN. '-4 

REGISTERS 
ADDRESS REGISTERS. 2-5 
CONTROL MEMeRY REGISTERS. 2-6 
CONTROL REGISTERS STORED BY SCR INSTRUCT leN. 8-59 
FLOATING-POINT REGISTERS. D-4 
INDEX REGISTERS. 2-21 4-9 
REGISTERS uSED IN ADDRESSING. 4-3 
SIZE OF ceNTROL MEMeRY HEGISTERS. 2-4 

RELATIONSHIP 
RELATIe~ShIP BETWEEN ITEMS AND RECORDS. 3-10 
RELATIO~SMIP BETWEEN ITEMS. RECCRDS. AND BLeCKS. 3-11 
RELATIe~ShIP OF seURCE .PRCGRA~, ASSEMBLER. AND OBJECT 
PROGRAM. 5-2 

RELATIVE 
RELATIVE. 5-16 

RELOCATION 
STORAGE PROTECTION ~ITH EAS~ RELOCATION. 2-26 8-80 

REPEAT 
REPEAT. 7-17 

REQUIREMENTS 
MINIMUM RhC CAPACITY REQ~IR~~E~TS FOR SERIES ZOO/2000 
PERIPHE~AL DEVICES. 8-113 

RESERVE 
RESERVE AREA. 6-6 

RESTORE 
RESTORE VARIANT AND INDICATCRS. 8-9a 

RESTR I CTIONS 
avFFERE~ SECTeR RESTRICTICNS. Z-19 

RESUME NORMAL MCDE 
RESUME ~ORMAL MODE. 8-101 

ROUTINE 

RULES 

RWC 

SAMPLE CO~ING FOR EXTERNAL INTERRUPT ROUTIN~. 2-34 
SAMPLE CODING FOR INTERNAL INTERRUPT ROuTINE. 2-35 

ACDITIC~AL CODING R~LES. 5-14 

DESCRIPTIeN OF POT I/O CCNT~eL CHARACTER C1 (RWC 
ASSIGNMENT). 8-111 
MINIMU~ RhC CAPACITY REQLIREMENTS FOR SERIES 200/2000 
PERIPHERAL DEVItES. 6-113 

SCAN 

SELECTI~G RWC ASSIGNMENTS FeR ~SE IN PDT INSTRUCTIONS. 
8 .. 11Z 

MOVE CR SCAN CONDITIONS. 8-69 
MOVE UR SCAN VARIANTS. B-~ 
MOVE OR SCAN. 8-87 

SCIENTIFIC 

SCR 
SCIENTIFIC LNIT AND SCIENTIfIC SUBPROCEsseR. 1-Zl D-l 

CONTROL REGISTER CONTENTS STCREC BY SCR INSTRUCTION. 
8-58 

i-8 

SCR (CONT> 

SECTOR 

CONTROL REGISTERS STORED ey SCR L~STR~CTION. 8-59 
PRIVILEG~~ StR INSTRUCTIe~s. 2-ZS 
SCR AND LCR INSTRUCTIONS. 2-31 

BUFFERED ,SECTOR OPERATIOtl. Z-18 
BUFFERED ,SECTOR RES1RICT leNS. 2-1~ 
BUFFE-.RED ,SECToRS. 2 .. 18 
CONTROLS/(;EVICES CONNECT~eLE Te ,t;ILFFERED SEC'J1CRS. 2-20 

SEG~ENT 
SEGMENT hEADER. 7-4 

SELF REFERENCE 
SELF REFE~ENCE. 5-1~ 

SENSE 
BRANCHO~ CONDITION TEST (BCT) S~tlSE SWITCH ~CNDITIO~S. 

B-3 
SENSE SWllCH TEST CONDITICNS FeR ,ECT INSTRl.JCTION. 8 ... 36 

SEGLENCE REGISTER 
SEQUENCE REGISTER. 4-3 

SERIES 2000 
ACTIVE ADCRESS BITS IN SERIES ZOOC SINGLE-ChARACTER 
PROCESSORS. 4-14 
ADDRE~S ASSIGNMENTS AND L~IT LC~CS AVAILABLE IN SERIES 
2000 PROCE~SORS. 1-& 
LOGICAL CIVISION OF SERIES 2coe ~ENTRAL PROCEsseR. 2-1 
SERIES 20CO ADO AND SUBTRACT CPE~~TIONS. b-~ 
SERIlS 20CO CHARACTER COCES. B-7 
SERIl~ 20CO COMPONENTS. 1-1 
SERIES 20CO INDEX REGISTER MAP. ~-9 
SERIE-.5 20CO INSTRUCTION FeR~AT 1. 4-1& 
SERIE~ 20CO INSTRUCTION FCR~AT 2. 4-17 
SERIE~ 20CO INSTRUCTION FCR~AT 3. 4-17 
SERIl~ ZOCO INSTRUCTION FeR~ATS. 3-3 
SYMBOLIC Rt:PRESENTATION eF SERI6S ZOOO INSTRUCT leNS. 

3-4 
SYMBOLOGY USED IN SERIES 20CO I~SlRUCTION DESCRIPTIONS. 

a-2 
SERIES 20012000 

MINIMuM R~C CAPACITY REQLIRE~E~lS FOR SERIES 200/2000 
PERIPHERAL DEVICES. 8-113 

SET 
SET I PUNCTUATION INDICATCRS. 5-7 

SET II 
SET II P~~CTUATION INDICATORS (E~SYCODER C. D. AND 
OS/2000). 5-8 

SET ITEM 
SET ITEM I~ARK. 8-49 

SET LINE NUMBER 
SET LINE~UMBER. 7-18 

SET O~T-OF-~EQ~fNCE BASE 
SET OUT-OF-SEQUENCE BASE. 7-19 

SET weRD 
SET wORD I~ARK. 8-48 

SEll ING 
CORRESPOhCENCl aETWE-.EN LIE SETTt~~ AND BARRICADE 
LOCATION. 8-81 

SIGN 

SIGI'.AL 

DECIMAL ARITHMETIC SIGN CCNVENT~C~S. 8-8 
DIVIDE S~GN CONVENTIONS. 6-12 
MULTIPLY SIGN CONVENTIONS. 8-9 

INTERRUPT SIGNAL GEhERATEC BY PE~IPHERAL CO~TROL. 2 .. 36 

ALGEbRAIC SI~NS IN DECIMAL ACDIT.CN. 8-& 
SI~LLTANEITY 

PERIPHERAL SIMULTANEITY. 1.5 
SINGLE-CHARACTER 

ACTIVE ADtRESS BITS IN SERIES 200C SINGLE-C~A~ACTER 
PROCE~SOAS. 4-14 

SKIF 
SKIP. 1-1e 

SO~RCE 
RELATIONS~IP OF SOURCE PRCGRA~. ~SSEMeLER, ANt OBJECT 
PROGRAM. 5-2 

SPEED 
MAIN MEMeRY SPEED. 1-5 

STATE~ENTS 
ASSEMBLY ~ONTROL STATEME~lS. 7.1 
DATA FOR~~TTING STATEMENTS. 6-1 

STATUS 
TESTING PERIPHERAL c.ONTReL UNIT ,EiLSY STATUS. 2 .. 19 

STORAGE 

STORE 

BASIC STCRAGE PROTECTION. 8-80 
CONSECUT1~E STORAGE LOCATIONS I~ ,~AJN MEMORY. 3-4 
REPRESEN1~TION OF CHARACTER5 I~ i~.~GNET IC ceRE STORAGE. 

2-2 
STORAGE PROTECTION fEATURE. 2-21 
STORAGE PROTECTION ~ITH B~SE RE~tCATleN. 2-26 8-80 
STORA~E PROTE-.CTION. 1-21 
VIOLArIO~S OF STORAGE PReTECTJe~. 2-23 

STORE INDEX/BARRICADE RE~ISTER. &-83 

AG28 



C~~FUT~R ~ENERATED INDEX 

STORE <CONTI 
STORE VARIANT AND I~DICAT~K~. 8-94 

STORE CONTROL REGISTERS 
STORE tCNTRCL REGISTERS. 0-58 

STORED 
ceNTRal REGISTER CO~TENTS STeRED BY SCR INSTRUCTION. 

8-58 
CONTROL REGISTERS STOkED bY SCR INSTRUCTICN. 8-59 

SUBPROCESSOR 
SCIENTIFIC lNIT AND SCIENTI~IC ~UBPkCCESSCk. 1-21 D-l 

SUBSTl lUTe 
S~BSTITLTE. 8-30 

SUBSYSTE~S 
DISK PACK DRIVES AND DISK SLBSYSTEMS. 1-13 

SUBTRACT 
SERIES 2000 ADD AND SUBTRACT CFERATIONS. 8-3 
S~BTRACT. 8-16 

SUBTRA(. TION 
BINARY SUETRACTION. 8-3 
DECIMAL SLBTRACTIC~. b-1 

SUFFIX 
SUFFIX. 7-16 

SwITCH 
BRANCH eN ceNDITION TEST (BCT) SENSE SWITCH CONDIT leNS. 

B-3 
SENSE S~ITC~ T~ST CONDITI~NS FCR BCT INSTRUCTION. 8.36 

SYMBOLIC 
CCNVEkSIO~ CF SYMBOLIC TA~ TC AcSOlUTE ~E~ORY ADDRESS. 

3-2 
DEFINE SY~BeLIC ADDRESS. 6-7 
SYMBOLIC REFRESENTATION ef SERIES 2000 I~STRUCTIO~S. 

3-4 
SYMBOLIC. 5-1~ 
THE SY~EOlIC lANG~AGE. 5-3 

SYMBOLOGY 

TABLE 

SYMBOLOGY FCR EXECUTION TIMING. 0-7 
SYMBOle~y ~SEC IN SERIES ioeo I~STR~CTIC~ DESCRIPTICNS. 

8-2 

DECIMAL-OCTAL CONVERSION TAElE. A-2 
TABLE lOOKUP 

TABLE LeOK~F. 8-84 
TABLES 

TAG 

TAPE 

TELLER 

MISCEllANEC~S TABLES. B-1 

CONVERSIO~ eF SYMBOLIC TA~ TO AESOLUTE ~E~ORY ADDRESS. 
3-2 

C4 VARIANT FOR 9-TRACK TA~E ~~ITS. 8-132 
CHARACTER REPRESENTATION eN 1-TkACK MAGNETIC TAPE. 3-7 
DATA feRMAT ON MAGNETIC TAPE. 3-8 
DYNAMIC TAPE ADDRESSING. 1-11 
IBM MA~~ElIC TAPE CGMPATI~ILITY. 1-12 
MAGNETIC TAFE DATA FORMAT. 3-7 
MAGNETIC TAFE UNITS. 1-10 1-11 
PAPER TAPE EQUIPMENT. l-1b 

TELLER TERMINAL ECUIPMENT. 1-2C 
TERMINAL 

TEST 
TELLER TERMINAL ECUIPMENT. 1-20 

BCC TEST CONDITIONS. 8-41 
BRANCH eN CCNDITION TlST (BCT) INDICATOR CO~DITIONS. 

B-4 
BRANCh CN CGNDITICN TEST (BCT) SENSE SWITCH CONDITICNS. 

E-3 
INDICATCR TEST CONDITIONS FeR EeT INSTRUCTICN. 8-37 
SENSE S~ITC~ TEST C~NDITICNS FCR BCT INSTRUCTION. 8-3b 
SUMMARY OF INTERRUPr/ALLC~ rL~CTION CONTRCL AND T~ST 
OPERATICNS. 2-31 
TEST AND CoNTROL OPERATIeNS. 8-140 
TESTING PERIPHEkAl CONTHCL ~NIT BUSY STATL~. 2-19 

THREE .. CHARACTER 
ASSEMBLY eF INDEXED ADDR~SS I~ THREE-CHARACTER ADDRESSING 
MCDE. 5-25 
ASSEMBLY eF INDIRECT ADDR~S5 I~ THREE-C~ARACTER 
ADDRESSIN~ ~OCE. 5-26 
EXTRACTION CF INDEX~D ADDR~SS I~ THREE-CrARACTER MODE. 
4-12 

EXTRACTION CF THREE-CHARACTER I~DIRECT ACDRESS. 4-11 
INDEX REGISTER ADDRESSES iN TrREE-CHARACTER ADDRESSING 
MaCE. 4-11 
THREE-CrARACTER ADDRESS ASS~~ElY. 5-4 
THREE .. CrARACT~R ACDRESSIN~ ~CDE. 4-6 
THREE-CrARACT~R ADDRESS. 4-10 

TIMEOUT 
INSTRUCTICN TIMEOUT. 2-21 

TIMER 
INSTRvCTICN SvMMARY - TI~I~~ FCRMULAS FeR MCD~LS 2040, 

TI~ER (CONTI 
C-4 

INSTkUCTICNS FORMATS AND TI~IN~. ~-1 
SYMBOLOGY FOR EXECUl ION T IMI/';~. ,c-.. l 
TIMIN~ NCTES. 0-6 

TJ~IN~S 
EXECUTIO~ TIMINGS IN MEMCRY CYCLbS. D-9 
INSTRUCTICN TIMINGS FOR ~CCELS 2t40A. 2050. A~D 2060. 
C-8 

INSTRUCTICN TIMINGS FOR ~CD~lS 2C~OA AND 2010. C-11 
TIMIN~S rtR DECIMAL MuLTIFLY A~D DIVIDE - ~CDEL 2U40. 
(-16 

TlL 

TRACK 
TLU OPERATION. 8 .. 88 

TRAC~ FOR~AT. 3-11 
TRACK-LINKING 

TRACK-LINKING RECORD. 3-15 
TRAFFIC 

INPUT/OUTFUT TRAFFIC CONTROL ACTI~ITIES. 2-10 
INPUT/OUTFUT TRAFFIC CONTROL. 2-~ 
LOGICAL DECISION PEkFORMED BY I~PLT/OvTPUT lRAFFIC 
CONTI~OL. 2-12 

TRA~SFER 
DATA TRANSFER INTERVALS DLRING C~E PERIPHERAL OPERATICN. 

2-10 
DATA TRANSFER RATES. 2-9 
EIGHT-BIT TRANSFER CAPABILITY. ~-~8 
EIGHT-BIT TRANSFER. 1-15 
EXTENDED ,~ULT IPRUGRAMMIN~ ANC HGt-T-tHT TRANSFER. 1 .. 21 

2-26 
PERIPHERAL DATA TRANSFER CPERAT~C~. 1 .. 6 
PERIPHERAL DATA TRANSFER. 8-116 
TRANSFER. 7-6 

TRANSLATE 
MOVE AND TRANSLATE. 8-70 
MOVE ITE~ AND TRANSLATE. 8-74 

TRA~SlATIU~ 
EBCDIC CCCE TRANSLATION. 1-12 

TRAFPING 
ITEM-MARK TRAPPING MODE. 1-4 

TR~E ADD 
TRUE ADD, 8-6 

TWC-CMARACTER 

UNIT 

TWO-CHARACTER ADDRESS ASSE~eLY. 5-3 
T~O-CHARACTER ADDRESSING ~OCE. 4~5 

ADDRESS ASSIGNMENTS AND L~IT LC~CS AVAILA~LE IN SERIES 
2000 PROCESSORS. l .. b 
ARITHMETiC UNIT. 2-b 
(4 VARIANT FOR 9-TRACK TAFE LNIlS. 8-132 
CONTROL ~NIT. 2-9 
DATA FLO\\ BETWEEN MAIN MEI-'ORY A~'C ARITHMETIC 11.NIT. 2-8 
MAGNETIC TAPE UNITS. l-1C 1-11 
PERIPHERAL ADDRE~5E5 AND LNIT lc~eS. 1-1 
SCIENTIFIC UNIT AND SCIENTIFIC 9I.EPROCESSOR. 1-21 D-l 
SIZE OF IHORMATJON UNITS If'; ~lT 'CPERATlON, 8.75 
TESTING FERIPHERAL CONTRCl ~NIT ~BLSY STATUS. 2-19 

VARIAELf 
VARIA~LE FIELD LENGTH. 3-1 

VARIABLE-SPEED 
VARIA~LE-SPEED READ/WRITE CMANNE~S. 2-17 

VARIANT 
BCT INSTRLCTION VARIANT CrARACTE~S. 8-38 
C4 VARIA~T FUR 9-TRACK TAFE ~NIlS. 8-132 
FORMAl OF TYPE 243 PDT C3 VARIANT. 8-136 
LIB VARIANT CHARACTER. 8-81 
MUDES SPbCIFIED BY VARIA~T CMARACTER IN CAM lNSTRLCTICN. 

8-63 
MOVE OR SCAN VARIANTS. B_~ 
RESTORE VARIANT AND INDICATCRS.&.98 
SToRE VARIANT AND INDICATCRS. e.~4 
VARIANT GrARACTER. 3-3 5-23 

VIOLATIONS 
VIOLATIO~S OF STORA~E PRCTE'TIC~. 2-23 

VIS~AL 

WORe 
VISUAL I~FORMATION PROJECTICN CE~ICES. 1-18 

DEFI~E CCNSTANT WITh WORC MARK. ~-2 
LOAD CHARACTERS TO A-fIELD I'ICRD ,/I,PRK. 8-50 
MOVE CHARACTERS TO haRD ~ARK. B~55 
NUME~lCAl REPRESENTATION CF DECL~AL ~CRD DATA. D~19 

WRITE 
WRITE PReTECT CAPABILITY. 1~14 

ZERC AND ADD 
ZERO AND ~DD. 8-20 

ZERC AND SUbTRACT 
ZERO AND ,SUBTRACT. 6.22 

i-9 AG28 





w 
z. 
:J 
t!) 
z 
9 
<{ 

)~ u 

HONEYWELL INFORMATION SYSTEMS 
Publications Remarks Form* 

SERIES 2000 
TITLE: MODELS 2040 THROUGH 2070 

PROGRAMMERS' REFERENCE MANUAL 

ERRORS IN PUBLICATION: 

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION: 

(Please Prin t) 

FROM: NAME ____________________________________ __ 

COMPANY __________________________ ~-------
TITLE _________________________________ _ 

ORDER NO.:! JANUARY 1973 

DATED: I AG28, REV. 0 

DATE: ______________ __ 

*Your comments will be promptly investigated by appropriate technical personnel, action will be taken as 
required, and you will receive a written reply. If you do not require a written reply, please check here.O 



Business Reply Mail 
Postage Stamp Not Necessary if Mailed in the United States 

POSTAGE WILL BE PAID BY: 

HONEYWELL INFORMATION SYSTEMS 
60 WALNUT STREET 
WELLESLEY HILLS, MASS. 02181 

ATTN: PUBLICATIONS, MS 050 

Honeywell 

FIRST CLASS 
PERMIT NO. 39531 
WELLESLEY HILLS, 
MASS. 02181 

u 
;;: 

-
< 
t 
t 



6764 
3473 
Printed in U .S .A . 

The Other Computer Company: 

Honeywell 

HONEYWELL INFORMATION SYSTEMS 

In th e U .S. A ., 2 00 Smit h St reet, M S 0 6 1, Waltham, Massachusetts 02154 
In Canada , 2 0 25 S heppa rd A v enue East, W ill o wdale, Ontar io AG28, Rev. 0 


