
HONEYWELL EDP

GENERAL SYSTEM:

SUBJECT:

SPECIAL
INSTRUCTIONS:

. --
- SOFTW ARE MANUAL

SERIES 200

SERIES 200/0PERATING SYSTEM

MOD I (MASS STORAGE RESIDENT)

SERIES 200/0PERATING SYSTEM - MOD 1
(MASS STORAGE RESIDENT)

Functional Description of and Program.m.ing
Procedures for the Com.ponents of the Mod 1
Mass Storage Resident Operating System..

This interim. m.anual supersedes the bulletin
entitled Prelim.inary Description of Series 200/
Operating System. - Mod 1 (Mass Storage Resi
dent), Order No. 427, dated June 20, 1966.
More com.plete and definitive inform.ation will
be m.ade available in a forthcom.ing series of
m.anuals fully describing the Mod 1 Mass Storage
Resident Operating System..

SPECIFICA TIONS OF SOFTWARE COMPONENTS DESCRIBED HEREIN REMAIN SUBJECT
TO CHANGE IN ORDER TO ALLOW THE INTRODUCTION OF DESIGN IMPROVEMENTS.

DA TE: Decem.ber I, 1966

9375
41266

Printed in U.S.A.

FILE NO.: 123.0005. l31C. 0-427

>:'Underscoring denotes File Num.ber.

PREFACE

This interim manual contains functional descriptions of system components and program

ming information for the Series 200/0perating System - Mod 1 (Mass Storage Resident). More

complete information is forthcoming in a series of manuals (which will supersede this document)

that fully describe the programming and operating considerations for the Mass Storage Operating

System.

Section I introduces the Mass Storage Operating System and includes descriptions of certain

features which are not yet available. These features are described herein to indicate the scope

of the operating system and to place them in their proper perspective. Subsequent sections con

tain descriptions of system components, as well as programmer's preparation information.

Section II describes the Supervisor, Section III describes the Data Management Subsystem,

Section IV describes the Program Development Subsystem, and, finally, Section V describes the

Utility Routines. A series of appendices provides additional information peculiar to the Mass

Storage Operating System.

Copyright 1966
Honeywell Inc.

Electronic Data Processing Division
Wellesley Hills, Massachusetts 02181

ii

~:

, ...

r

Section I

Section II

TABLE OF CONTENTS

Introduction • • • • • • • • • •
Operating System Objectives
Functional Description • • • • • • • •

Supervisor
Job Control • • • • • • • • • • • • • •

Page

• 1-1
• • • 1-1
• • • 1-4

1-4
• • • 1-5

• 1-5 Program Loading
Multi-Program Control 1-5

Data Management • • • • • • • • • • •
Data Management Concepts

1-6
• • • • 1-6

File Organizations • • •
Sequential Files • •

1-6

Indexed Sequential Files • • • • •
Direct Access Files

• • • 1-6
· • • 1-7
• •• 1-7

Access Modes • • • • • • • • • • 1-7
Sequential Access • • • • • • 1-7
Direct Access • • • • • 1-7

Mass Storage I/O Control Routines • • • • • • 1-7
Control Macro • • • • • •••••• • 1-8

1-8 Communications Macros • • • •
Action Macros ••••

File Support • • • • • • •
Allocate/Deallocate Routine
Load/Unload Routine
Map Routine

Program Development • • • • •
Language Translators •

Easycoder Assembly
COBOL • • • • . • • • • •
Fortran

Library Maintenance Routines
Service Routines • • • •

Volume Preparation • • • • •
Sort
Edi t • • • • • • • • • • • •

Basic Equipment Requirements •
Peripheral Devices • • •

. • 1-8
• 1-9
• 1-9
• 1-9

1-9
• 1-9

• • • 1-10
• • • • •• 1-10

• • • • • • • • • 1-10
• • • • • • . • 1-10

· . . • . . . • • 1-10
. 1-11

· • . . . 1-11
• • • • • • 1-11

. 1-11
1-11

• 1-14

Supervisor 2-1
Job Control • 2-1
Program Loading • • • • • • •••• • • • • • • • 2-1
Functions of the Supervisor • • 2-2

Executing a Job or Program ••••••• 2-2
Loading a Program Segment • • • • • • • ~ 2-2
Exiting From a Program • • •• • • • • • • 2-3

Structure of the Supervisor • • • • • • • • • • • 2-3
Communication Area • • • • • • • • • 2-3
Floating Area • • • • • • • • • 2-3

Executable Program File • • • • • • • • • • • • • • • 2-4
Directory • • • • • • 2-4
Program Segments • • • • • • • • • • • 2-5

Communicating With Supervisor • • • • • 2-5
EXECUTE Statement •• • • • • • • • • • • 2-5
Loading a Program Segment • • • • • • • • • • • 2-6

Detailed Description of Supervisor • • • • • • • 2-6
Searching • . • • • • • •• . • • . . • • • 2-7

Program Name (Locations 68-73) • • 2-13

iii

Section II
(Cont)

Section III

TABLE OF CONTENTS (Cont).

Page

Segment Name (Locations 74-75) • 2-13
Visibility Mask (Locations 113-118) • 2-14

Loading 2-14
Relocation Augment (Locations 107-109) 2-15
Halt Name (Locations 77-84) • • •• 2-15
Exi t to Owncoding • • • • • • • • . • • 2 -15
Owncode Return Points • • • • • • • • • 2-16

Own code Return Before Distribution • • 2-16
Owncode Return After Distribution • • • • • • • 2-16

Starting • • • • • • • . • • • • • • • • • 2-16
Starting Mode (Location 112) • • •• •• • 2-16
Special Start Location (Locations 119-121) • 2-17
Trapping Mode (Location 147) • • •• •• 2-17

Returning to the Supervisor • • • • • • • • • • • • 2-18
Program Return for Segment Loading (Location 130) 2-18
Program Exit Location (Location 139) 2-18
Other Features • . • • • • • • • • • • • 2-19

Fixed Starts • . • • • • • • • • • • • 2-19
Revision Number (Locations 65-67) • 2-19
Current Date (Locations 142-146) • • • •. • 2-19
Upper Limit of Available Memory (Locations 187-

189) ••••• 2-20
Relocation Bank Indicator

Program Calls for Segment Loading
Examples of Segment Loading • • • •

Programmer's Preparation Information.
Equipment Requirements • • • • •

Additional Usable Equipment • • • • • •

• • 2-20
• • 2-20

• • • • • 2-21
• 2-22

2-23
2-23

Data Management • • • • • • • • • • • • • 3-1
Data Management Conventions • • • • • • • • • • • 3-1

Data Conventions • • • • • 3-1
Units of Data • 3-2

Item • ••• • • • • • • • • • 3-2
Record . • • • • . • . 3-2
Block • • • • • • • • • 3-2
File • • • • •• •• 3-2

Relationships Between Units of Data • 3-2
Record-to-Track • • • • • • 3-2
Record-to-Block • • • • • • • • • • 3-2
Item-to-Block • • • • • • 3-3
Block-to-Track • • • •• ••• 3-3

Allocation Conventions • • • • • • • 3~3
Volume Conventions • • • • • • • • • •• 3-6

Formatting and Volume Preparation • 3-6
Bootstrap Records • • • • • • • • • • • 3-8
Volume Label • • • • • • • • • • • • 3-8
Volume Directory • • • • • • • • • • • • • • • • • 3-9

File Organization • • • • • • • • • • • 3-13
Factors Governing Organization of Files 3-13

System Considerations • • • • • • • • • 3-14
Storage Layout Considerations • • • • • • 3-15

Overall Efficiency • • • • • • • • • •• 3-16
Sequential File Organization • • • • • • • 3-16
Direct Access File Organization ••••••••• 3-17

Data Area • • • • • • • • • • • 3-17

iv

..

. ,

Section III
(Cont)

•

TABLE OF CONTENTS (Cont).

Page

Cylinder Overflow Area • •• •••• • 3-18
General Overflow Area • • 3-18
Overflow Options • • • • • • • • • • • • 3-18

Relationships Between Direct Access Organization
and Keys 3-19

Actual Key • • • 3-19
Relative Key. • • • • • • • 3-19
Item Key • • • • • • • • 3-20

Relationship Between Direct Access File Processing
and Keys • 3-20

Null Items • • • • •
Input/Output Control • • •

File Processing Modes • • • •
Input/Output Processing Mode •
Input Only Processing Mode • •
Output Only Processing Mode • • • •

• 3-20
• 3-22

• • 3-22
3-22

• 3-23
• 3-23

General Usage of Processing Modes • • • • • 3-23
3-24 Input/Output Macros • • • • • • • • • • • • •

Mass Storage Input/Output Control Macro - MIOC
MIOC Format • • • • • • • • • • • • • • •
MIOC Description • • • • • • • • • • • • • •

Mass Storage Communication Area Macro - MCA
MCA Format • • •• ••••
MCA Description • • • • • • • • • • •

Action Macros • • • • • • • • • • •

• 3-28
• 3-29

• • • 3-29
• • 3-41

3-41
3-41

• 3-52
Action Macro Functions Related to All Sequential

Files 3-52
Open Function • • • • • • •
Close Function • •
Get Function •
Replace Function •

• 3-52
3-55

• 3-56
• • 3-57
• • 3-58 Put Function • • •

Action Macro Functions Related Only to Partitioned
Sequential Files • 3-59

• • • • • • 3-59 Set Member Function
End Member Function
Alter Member Function

· 3-61
3-62

Release Function • • • • • • • • • • 3-62
Action Macro Functions Related to All Direct

Access Files • • 3-63
3-63
3-64

Open Function • • • •
Close Function •
Get Function •
Replace Function • • • •
Insert Function
Delete Function

• 3-65
3-67

• • • • • • 3-67
• • • •. •• 3-68

MSOPEN • • • • • • • • • • • • • • • • •• 3-69
MCLOS
MSGET • • • •
MSREP

· • • • • . • • • . 3-71
. 3-72

. 3-74
MSPUT • • • • • • • • • 3-75
SETM •
ENDM ••
MALTER ••
MSREL • • • • • • • • •
MSINS • • • •

v

• 3-76
• •• 3-78

• 3-79
• • 3-81

• 3-82

•

Section III
(Cont)

TABLE OF CONTENTS (Cont).

Page

MSDEL • • • • • • • • 3-84
Writing a Macro Call • • • 3-85

Continuation Lines • • • • • •• ••• 3-85
Omission of Parameters • ••••••• • 3-85

Writing a Macro Routine • • • • • • 3-88
Parameter Designators • • •• .-. 3-88
Selective Omission of " Coding • • •• 3-89

Conditional Statements • • • • • • • • 3-89
Tag Prefixes • • • • • • • • • • • • • • • • • • 3-91
Adding a Macro Routine to Library File. •• 3-91

I/O Control Programmer's Preparation Information ••• 3-92
Program Organization • • • • •• •••• • • • • 3-92

MIOC Segmentation • • • • • • • • 3-92
Supervisor Restrictions • 3-95
Card Loading and Segmentation • • 3-95
MIOC - Physical I/O Relationships • • • • • 3-97
MCA - Physical I/O Relationships • • • 3-97
Read/Write Channel Utilization • • • • • • • 3-97
Address Mode • • • • • • • • • • • 3-98
Index Registers • • • • • • • • 3-98
Direct Access Addressing • • • • • 3-98
Direct Access Item Key Specification • 3-99
Exits and Halts • • • • • • • • • • 3-100

File Support • 3-107
Allocate Function • • • • • • • • • • • 3-108

Description • • • • • • 3-108
Allocate Function Job Control Statement • • 3-109

Format • • • • • • • • 3-109
Description • • • • • • • 3-109

Function Statement • •• • • 3-109
File Statement • • • 3-110
Size Statement • • • • • • • • • • • • 3-111
Units Statement • • • • • • • • • 3-113
Member Statement • • • • • • 3-114

Allocate Function Job Control Language Example • 3-114
Deallocate Function • • • • • • • • • • • 3-118

Description • • • • • • • • • • • • • 3-118
Deallocate Function Job Control Statement • 3-118

Format • • • • • . • • • • • • 3-118
Description • • • • • • • • • 3-118

Function Statement • • • • • • 3-118
Volume Statement • • • • • 3-118
File Statement • • • • • 3-119
Day Statement 3-120

Deallocate Function Job Control Language Example 3-120
Load/Unload Function • •••• • • • • • • • • 3-120

Description • • •• •••••••• • 3-120
Load/Unload Function Job Control Statement • • • 3-122

Format • • • • • • • 3-122
Description • • • • • • • • • • 3-122

Function Statement • 3-123
File Statements • • • • 3-123
Member Statement • • • • • • • • 3-126
Exits Statement • • • • • • 3-126

Load/Unload Function Job Control Language
Example • • • • 3-130

vi

Section III
(Cont)

Section IV

TABLE OF CONTENTS (Cont).

Page

Map Function • • • • • • • • • • • • • • • • • 3-130
Description • 3-130

Description of a File • • • • • • • • • 3-131
Expired Files • • • • • • • • • • • 3-131
Unused Areas • • • • • • • • • • •••• • 3-131

Map Function Job Control Statement • • 3-131
Format • • • • • • • • • 3-131
Description • • • • • • • • • • 3-131

Function Statement •••••• 3-132
Volume Statement • •• • • • • • 3-132
File Statement • • • • • • • • 3-133
Day Statement • 3-133

Map Function Job Control Language Examples • • • 3-133
File Support Programmer's Preparation Information • 3-135

Considerations for Direct Access Files • • • 3-135
Loading a Direct Access File • • • • • • • • • • 3-135
Unloading a Direct Access File • • • • • • • • • 3-135

Considerations for Sequential Files • • • • • • • 3-135
Considerations for Partitioned Sequential Files • 3-135

Unloading a Partitioned Sequential File • 3-136
Loading a Partitioned Sequential File 3-136

Loading by File • • • • • • • • • • • 3-136
Loading Selected Members 3-136

Processing by Member Names • • • • • •• ••• 3-136
Own-Coding • • • • • • • 3-137

Structure of Own-Coding • • • • • • • • • • • • 3-137
Own-Code Communication With Load/Unload Function 3-137

Deletion of Items • • • • • • 3-138
Invalid Bucket Addresses • • • • 3-138
Insufficient Space • • • • • •••• 3-139

Program Development Subsystem • • 4-1
Features of the Program Development Subsystem • 4-1

Independent Operation for Each Programmer • • • • • 4-1
Unbatched Operation • • • • • • • • • • • • • • • • 4-1
Automatic Operation • • • • • • • • • • •• •• 4-2

Elements of the Program Development Subsystem • 4-2
Language Translators • • • • • • • 4-2
Program Library File Maintenance • • 4-3

Library of Macro Routines • • • • • • • • • • 4-3
Executable Program File • • • • • • • • • • 4-4

Program Test Facilities • • • • • • • • • • •• 4-4
Easycoder Source Language Analysis • • • • 4-4

Easycoder Assembly • • • • • • • • • • • • • 4-4
General Description • • • • •• • • • 4-4
Easycoder Assembly Functions • • • • • • • 4-5
Easycoder Assembly Language • 4-6
Easycoder Assembly Statements • 4-8
Easycoder Assembly Function Job Control Statements • 4-11

Format • • • • • • • • • • • • 4-11
Description • • • • •• • 4-11

Function Statement • • • • • • • 4-11
MACRO Parameter • • • • • • •• 4-11
LIST Parameter • • • • • • • 4-11
GO Parameter • • • • • 4-12

Date Statement • • • • • • • • • • • • 4-12

vii

Section IV
(Cont)

Section V

TABLE OF CONTENST (Cont).

Page

Easycoder Assembly Function Job Control Language
Examples • • 4-12

Library File Update • • • • • • • • • • • • 4-14
General Description • • • • • • • • • • • • • 4-14
Library File Update Functions • • • • • • • • • 4-14
Library File Input and Output Files • • 4-16
Library File Update Function Job Control Statements 4-17

Format • • • • • • • • • • • 4-17
Description • • • • • • • • • 4-17

Function Statement. • • 4-17
ACTION Parameter. • • •• ••••• • 4-17
New Program Name (NEWPROG) Parameter • 4-18
Program Name (PROG) Parameter • • 4-18
LIST Parameter • • •• •• • . • . 4-18

Date Statement • • • •• •••• • • 4-18
Library File Update Function Job Control Language

Examples • 4-18
Executable Program File Update • • • • • •• ••• 4-21

General Description • • • • • • • • • • •• •• 4-21
Executable Program File Update Functions • • • • • • 4-21
Visibility • 4-25
Executable Program File Update Function Job Control

Statement • 4-26
Format • • • • • • • • • • 4-26
Description • • • • •• ••• 4-27

Function Statement • • • • • • • • • • • • • • • 4-27
ACTION Parameter • •••• • • 4-27
GO Parameter • • • • • • • • • 4-27
Update Unit Key Parameters • • • • • 4-27
New Update Unit Key Parameters • • • 4-28

Executable Program File Update Function Job Control
Language Examples • • 4-28

Program Development Programmer's Preparation
Information • • • • 4-31

Allocation of Files to Use Program Development • • • 4-31
System Residence File • • • • • • • • • • 4-31
GO File • • • • • • • • • • • • • 4-32
Library File • • • • • • • • • • • • • • 4-33
Assembly Work File 1 • • • • • • 4-33
Assembly Work File 2 • • • • • • • 4-34

Service Routines • • • • • • • • • • 5-1
Volume Preparation • • • • • • • • 5-1

Functional Description • • • • • • 5-1
Functions • • • • 5-1
Track Format • • • • • • •• 5-2
Bad Surface Areas • • • 5-2

Volume Preparation Function Job Control Statements • 5-2
Format . 5-2
Description • • • • • • • • 5-3

Volume Statement • 5-3
NAME Parameter • • • • • • • • • 5-3
Maximum Number of Files Parameter • • • • • • 5-3
Device Address Parameter • • • • • • • • • • • 5-3

Day Statement • • • • • • • • • • • • 5-3
Volume Preparation Function Job Control Language

Example • • 5-4

viii

Section V
(Cont)

TABLE OF CONTENTS (Cont).

Page

Mass Storage Sort • • 5-4
Functional Description • • • • •• • 5-4

Glossary of Terms • • • • • • • 5-4
Use of Mass Storage Sort • • • • • • • 5-5
Summary of Capabilities • • • • 5-6
Function by Program • • • • • • • 5-6
Functions by Segment • • • • ••••••••• 5-7

Presort • • • • • • • • • • • • 5-7
Merge One-Cylinder. • • •• 5-7
Merge Multi-Cylinder. • 5-7

The Fetch Macro • 5-8
Fetch Exits • • • • • • • • • • 5-8
Specialization of Fetch • • • • • • • • 5-10
Initiation of Fetch • • • • • • 5-10
Summary of Fetch Exits • • 5-10

Fetch Macro • • • • • • 5-11
Format • • • 5-12
Description • • • • • • • 5-12

Sort Function Job Control Statements • • • • • • • 5-14
Format 5-14
Description • • • • • • • • • • • 5-14

Sort Statement • • • • • • • • • • • • • • • • 5-14
High Memory Address (HMA) Parameter • 5-15
Sequence (SEQ) Parameter • • • • • • 5-15
Item Address (ITADD) Parameter • • • • • • • 5-15

File Statements • • • • • • • • • • • • 5-16
Input File Statement • • •• •••••• 5-16
Work Files Statements • 5-16
Information File Statement. • •• 5-17

Fields Statement • • • • • • • • • 5-18
KEYS Parameter • • • • • • • • • 5-18
Extract (EXTR) Fields Parameter • 5-18
Select (SEL) Parameter • • • • • • • • 5-19
Delete (DEL) Parameter • • • • • • • • • • • 5-20

Exits Statement • • • • • • • • • • • 5-20
Presort Open (PSOPEN) Parameter • • 5-20
Presort Item (PSITEM) Parameter • • • • • • 5-20
MERGE Parameter • • • • • • • . • • • 5-21
Program (PROG) Parameter • • • • • • 5-2L
Visibility (VIS) Parameter • • • • • 5-21

Sort Function Job Control Language Examples • • • 5-21
Sort Function Programmer's Preparation Information. 5-23

Work Files • 5-23
Units of Allocation • • • • • • • • • • • • • • 5-23
Relationships Between Units of Allocation and

Sort Efficiency 5-24
Calculation of Sort-Item Block Size • • • • • • • 5-24

Calculation of Highest Memory Location
Available to Presort

No Own-Coding Present • • • • •
Own-Coding Present • • • • • • • • •

Own-Coding Outside Sort Area • • •
Own-Coding Within Sort Area • • • •

Highest Memory Location Available to Merge •
No Merge Own-Coding Present
Merge Own-Coding Present • • • • •

ix

5-25
• • 5-25

• 5-25
• • 5-25
• • 5-26

5-26
• • 5-26

5-26

•

Section V
(Cont)

TABLE OF CONTENTS (Cont).

Page

Own-Coding Outside Sort Area • • 5-26
Own-Coding Within Sort Area • • •• 5-26

Calculation of Sort-Item Size • • • • 5-27
Calculation of Space Available to Merge • 5-27
Maximum Sort-Item Size Acceptable 5-27
Single and Double Buffering • • • • •• •• 5-27
Calculation of Sort-Item Block Size for Single

Buffer Mode • • • 5-28
Calculation of Sort-Item Block Size for Double

Buffer Mode • 5-29
5-30

• • • 5-32
Calculation of Sort Work Area Required •

Parameters Resident in Memory • • • •
Merge Own-Coding Program
Sort Key Fields
Extract Fields • • • • • •
Select Option

• • • • • 5-32
• • • 5-32

• 5-33

Delete Option • • • • • • • • •
• • 5-33

• 5-33
Summary of Sort Parameters Resident in Main

Own-Coding • • • • • • •
Presort Open • • • • •

Memory • 5-33
• • • • • • • • • • • 5-39

• 5-39
Presort Item-by-Item • • • • • 5-39

5-39 Definition • • • • • • • • •
Processing an Item •
Adding an Item • • •
Deleting an Item • •

Terminating Own-Coding •

• 5-40
• • 5-41

• 5-43
• • 5-43

Merge Own-Code • • •••• • • • • • 5-43
Considerations for Using Fetch •

Examine Sort-Item Only • •
Single Buffering • •
Double Buffering • •

Examine Source-Item Only •

• • 5-45
• • • • 5-45

• • • 5-45
• 5-45

5-45
Single Buffering •
Double Buffering •

Both Source-Item and
Initiation of Fetch
Use of Physical I/O

• • • • • 5-45
• • • • • • • 5-46

Sort-Item Exits Specified • 5-46
• • • 5-46

Mass Storage Edit • • • •
Functional Description •

Functions of Mass Storage Edit •
Features of Mass Storage Edit

Header Line • • • •
Header Line Record •
Data Portion Line
End of Job Line

• • • • • • • • 5-47
• • • • • • 5-47

• • • •• • 5-47
• 5-47

5-47
5-47

• • 5-48
• 5-4R

5-48
Edit Function Job Control Statements • • • 5-49

Format • • • • • •
Description • • • • • • •

Volume Statement • • • •
From and To Parameters
Device Address Parameter •

File Statement • • • • • • •
Form Parameter • • • • • •
Device Address Parameter •

x

• 5-49
5-49

• • • • • 5-49
• • • 5-49

5-50
• • • • • • • 5-50

5-50
• 5-50

Appendix A

Appendix B

TABLE OF CONTENTS (Cont).

Page

File Reassignment • • • • • • • • • •••• • A-1
Introduction • • • • • • • • • •• • • • • • A-1
General Description of File Reassignment Job Control

Language • • A-3
Format . . . • A-3
Description • • • • A-4

File Statement • • • • • • • • • • • • A-4
Other System File Parameter • • A-4
File Name Parameter • A-4
Device Type Parameter • • • •• •• A-4
Device Address Parameter • • • A-4

File Reassignment Job Control Statements • • • A-5
File Statements for Program Development • • A-5

Library Update • • • • • • • • • • • A-5
Format A-S
Description • • • • • • • A-6

Executable Program File Update • • • • • • • • • • A-6
Format • • • • • • • • • • A-7
Description • • • • • • A-7

Easycoder Assembly • • • • • • • • A-7
Format • • • • • A-8
Description • • • • • • A-8

File Statement for Mass Storage Sort • •••••• A-8
Format • •• •••.• . • • •• •• A-9

Form Parameter • • • • • • • • •• A-9
Device Address Parameter • • A-9

Physical Input/Output Control • • • B-1
Introduction • B-1
Mass Storage Physical I/O Control (MPIOC) Macro • B-1

MPIOC Format • • • • • • • B-2
MPIOC Description • • • • • • • • • • • B-2

Type Field • • • • • • • • • • B-2
Location Field • • • • • • • • • • • • • • • B-2
Operation Code Field • • • • B-2
Operands Code • • • • •• • B-2

Mass Storage Physical Communications Area (MPCA) Macro B-4
MPCA Format • • • • • • • • • • B-4
MPCA Description • • • • • • B-4

Type Field • • • • • • • • • B-4
Location Field • • • • • • • • • • • • • B-4
Operation Code Field • • • • B-4
Operands Code • • • • • • ••••••• ,B-4

Mass Storage Physical I/O Action Macros B-6
READ Action Macro • • • • • •• •••••••• B-6

READ Action Macro Format • • • • B-7
READ Action Macro Description • • • • • • • B-7

Type Field • • • • • • • • • B-7
Location Field • • • • • ••••• • • B-7
Operations Code Field • B-7
Operands Field • • • • • • •• •• B-7

WRITE Action Macro • • • • • • B-8
WRITE Action Macro Format • • • • • • B-8
WRITE Action Macro Description • • • • • B-8

WAIT Action Macro • • • • • • • • • • • B-8
WAIT Action Macro Format • • • • B-9

xi

Appendix 8
(Cont)

Appendix C

TABLE OF CONTENTS (Cont).

Page

WAIT Action Macro Format Description • • • 8-9
Type Field • • • • • • ••••• • 8-9
Operation Code Field • • • • • • 8-9
Operands Field • • • • • • • • • • • • • • • • • 8-9

RESTORE Action Macro • • • • • •
RESTORE Action Macro Format
RESTORE Action Macro Description • • • • • •

• 8-9
• • 8-9

• 8-10
• 8-10 VERIFY Action Macro • • • • • • •

VERIFY Action Macro Format • • • •
VERIFY Action Macro Description

Mass Storage Physical I/O Programmer's

• • • • • 8-10
• 8-10

Preparation
Information • • 8-10

General Information • • • • • • • • • • • • 8-10
Address Mode • • • • • • • • • • • • • • • • • • • 8-10
Special Considerations for Specifying Parameters • 8-11

Use of Index Registers • • • • • • • • • • • • • 8-11
Specifying a Variable PCU Number • • • • • • • • 8-11

Considerations for MPIOC Parameter Specification • • 8-12
Suff ix Character • • • • • •• •••• • • 8-12
PCU Assignment • • • • • • • • 8-12
ReadjWrite Channel Definition • • • • 8-13

Considerations for MPCA • • • • • • 8-13
File Prefix • • • • • • • • •• •• 8-14
Suffix of Related MPIOC • • • • •• •• 8-14
8uffer Address (AAD) • • 8-14
User's Uncorrectable Error Routine Entrance (EAD) 8-14
Type of Read or Write (TRW) 8-15
Control Unit Current Address and Status • • • 8-16

Considerations for Action Macros •• 8-17
READ Action Macro • • • • • 8-18
WRITE Action Macro • • • • • • • • • • • 8-18
VERIFY Action Macro • • • • • • • • • 8-18
WAIT Action Macro. • • • • •• • • • • • 8-18
RESTORE Action Macro • • • • • • 8-18

Considerations for User's Uncorrectable Error
Routine

Re-Execution of Correction Procedure • •
• • 8-19

• 8-19
Bypass Error Condition • ••• • • • • • • • • 8-20
Issuing New Macro Call • •

I/O Communications Area Service Macros •
Introduction • • • • • • • •
MLCA Macro • •••••

MLCA Macro Format
MLCA Macro Description

Type Field ••
Location Field
Operation Code Field • •
Operands Field • • • • •

MUCA Macro •
MUCA Macro Format • • • •
MUCA Macro Description • • • • • •

Type Field ••
Location Field • • • •
Operation Code Field • • • • • •
Operands Field • • • • •

xii

• 8-20

• C-l
. C-l

• C-l
C-l

• C-2
• • • C-2

• C-2
• • C-2

• C-2
• • • C-4

• • C-4
• C-4

• • C-4
• • C-4
• • C-5

• C-5

Appendix C
(Cont)

Appendix D

Appendix E

Appendix F

Appendix G

Appendix H

Appendix I

TABLE OF CONTENTS (Cont).

Page

Programmer's Preparation Information. • • • • • C-6
General Description of MLCA and MUCA Macros • • C-6

MLCA Macro • • • • • • • • • • • • • • • • C-6
MUCA Macro • • • • • • • • • • • •• • • C-7

MLCA and MUCA Parameters • • • • • • • • • • • • • • C-7
Error Type Indicator (ERI) Mnemonic Designator •• C-7
Address Register Contents at Time of Error Exit • C-8

Tape and Card Formats Used in File Support Load/Unload

Introduction • • •
One-Half Inch Tape

Header Label •
Data Records • •
Trailer Lables •
Tape Marks ••

Card File Formats
Header Label •
Data Records •
Trailer Labels

Partitioning • •
Introduction
Member Index •

Formats •

Mass Storage File Protection
File Protection • • • • • •
Write Protection • • • • • • • •
Password Protection

Function • • D-1
D-1

• D-1
D-1

. . • • • • . D-2

. D-3
• • • • • • D-4

• • • • • • • D-4
• • D-4

· D-4
D-4

• • E-1
. E-l

• • • • • • • • • E-1

• F-1
· F-l

. F-l
· F-3

Space Allocation for Sequential Files • • G-1

Allocation and Addressing for Direct Access Files
Space Allocation • • • • • • • •

• • • H-1
• • • H-1

• • H-3 Allocation Procedures

Randomizing Techniques •
Randomizing Addressing

Prime Number Division
Square Enfold and Extract
Radix Conversion • • • • •

Example of Compression
Now Numeric Item Keys
Multi-Field Keys •••••
Frequency Analysis • • • • • •

xiii

• I-I
. I-I

. . . . 1-2
1-4

• • 1-4
• 1-6

• • 1-7
1-8
1-10

Figure l-I.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 5-I.
Figure 5-2.

Figure 5-3.

Figure B-I.
Figure E-I.
Figure E-2.

Table l-I.
Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
Table 3-I.
Table 3-2.
Table 3-3.
Table 3-4.
Table 3-5.
Table 3-6.
Table 3-7.
Table 3-8.
Table 3-9.
Table 3-10.
Table 3-1I.
Table 3-12.
Table 3-13.
Table 3-14.
Table 3-15.
Table 3-16.
Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.

Table 5-I.
Table 5-2.
Table A-1.
Table B-1.
Table B-2.
Table C-l.
Table C-2.
Table G-1.
Table H-1.
Table I-1.

LIST OF ILLUSTRATIONS

Page

Components of the Mass Storage Operating System • 1-2
Illustration of Unit of Allocation • • • • • • •• • 3-4
Acceptable Allocation of a File . • • • . • • 3-5
Unacceptable Allocation of a File • • • • • 3-5
Overall Concept of a Cylinder •• 3-7
Data Path for Overflow Options in Direct Access Files • 3-19
Program Segment Loading • • • . • • • • • • •• •• 3-94
Illustrations of Input Item Punctuation • • •• . • 5-40
Contents of Item Address That May be Appended to

Sort-Item • •• 5-42
Punctuation and Format of Sort Item When Made Available

to Merge Own-Code Program . • 5-44
MPCA Ten-Character Field • • • • . • • • . • . • B-16
Member Index for Partitioned Sequential File . • E-2
Sequential File Using Partitioning Option E-2

LIST OF TABLES

Devices for System Files . . •• •••.•.••.• 1-13
Supervisor Communication Area . . • • • . 2-8
Summary of Supervisor Parameters • • • . • • 2-11
Search Mode (Location 111) Designators • • • • • . 2-12
Relocation Banks • • • • • • • • • • 2-20
Volume Label Description • • • • . • • • . • 3-8
Volume Directory Description • • . • • • • • • • • 3-10
Single Cylinder in Direct Access File Organization • • • 3-21
Input/Output Macros • • • • • • • • 3-25
MIOC Parameters • • • • • • • • • 3-34
MCA Parameters • • • •• • • ..• • • • • • • • 3-49
Action Macro Calls • • • • 3-53
MCA Parameter 4~ - Volume Directory Exit • •••• • 3-102
MCA Parameter 41 - Index Exit • • • • • 3-103
MCA Parameter 42 - Every Index Entry Exit • • 3-104
MCA Parameter 42 - Data Exit • • • • • • • . • • • • • • 3-105
MCA Parameter 44 - Device Exit • • • • • • • • • • . . • 3-106
Allocate Function Job Control Statements • • • • • 3-115
Deallocate Function Job Control Statements • • • • 3-121
LoadjUnload Function Job Control Statements • 3-127
Map Function Job Control Statements ••••. 3-134
Easycoder Assembly Statements • • • . • • • • 4-9
Easycoder Assembly Function Job Control Statements . . • 4-13
Library File Update Job Control Statements . • . • • • • 4-20
Executable Program File Update Function Job Control

Statements 4-30
Disk Table . . • . • . • • • • • • • • . • • • 5-28
Sort Parameters Resident in Main Memory . • • • 5-34
Function and Definition of System Files . . • • . . • • A-2
MPIOC Parameters . • • . • • • • • • • • B-3
MPCA Parameters • • • • • • • . • • • • • • . • • . . • B-5
MLCA Mnemonic Designators for MLCA and MUCA • C-3
Additional Mnemonic Designators for MUCA • • • C-5
Optimum Record Size • • • . . • G-2
Overflow Probabilities • • • . • • • H-2
Prime Numbers . • • • • • • • • • . • • • • . I-3

xiv

..

SECTION I

INTRODUCTION

The Series 200 Operating System Mod 1 (Mass Storage Resident) is an

integrated software data processing system. It includes the sophisticated

software necessary for simplified programming and efficient operations, and

brings the advantages of mass storage to users of the Series 200 Computer

Systems. The operating system runs with all Series 200 systems that have at

least 12K characters of main memory and a mass storage device.

In the operating system, data is handled by macro statements used with

the Easycoder assembly language, and by the mass storage language elements

incorporated into the COBOL and FORTRAN Compilers. The user controls the

operating system by instructions to a monitor program. The monitor program

runs the jobs, supervises multi-programming, and calls other system programs

as they are required.

OPERATING SYSTEM OBJECTIVES

The operating system, Whose components are shown in Figure 1-1, is

designed to achieve four major objectives: provide assistance to the ~ser,

increase system throughput, reduce response time, and provide for flexibility

and orderly growth of the computing system.

Assisting the user is accomplished by providing data and program

management facilities, providing easily understood programming languages and

translators that convert these languages into executable programs, providing

standard modes of operation so that the programmer is not normally required

to prepare large amounts of control information, and by providing facilities

for operator communication with the system throu9h specific, clear instruc

tions.

1-1

JOB CONTROL DATA CONTROL

SUPERVISOR FILE SUPPORT
r-------,----------- I------T------r------
I ~ \ ctS(!) I ~ / I
I -rQ \ (l (!) ~ I ~iS' / I
I &~ \ 0 (; 2! I- / f;S ~ / I
I ~~ \ ~ ~ ;= (5 I 1J.3 / ~ I
I, < \." <t 0 I c(j~ I _~ -\.~~I o 0 u -l I -....J / ~- ~
~ ~a~ \ (" 0;i I ,r~ / ~ ~~ : ~
~, ~G' \ j , flu a /..:s ~ ,.,...-1 e:
I '...... \ <t ~/~.::::!I OV ~~ ,., I ~
I...... \ -'I.i. / ~ ~ ,/ I -
I ',...... \ / / ~,o,.,,,, I ?
I '...... CJ ,/' I t-

: M{Jl..""Pb "" USERS' DATA ~~,.,,.,f\C\..!~\\O~--~ ~
I C 1TOG'b ' I, f'\~ S ,{' - - - I - t-------'
I Oly.,. '1"4"~ v:_--- I
I I~Ol.. "'1 FILES AND k\NPUT-OUTPUT

ES
I

l LI BRARY ROUT\N l
OF

PROGRAMS

IJ.I
U
Z
<t
Z
IJ.I
t
Z «
~

UTILITIES
c

PROGRAM PREPARATION-~

FIGURE 1-1. Components of the Mass Storage Operating System

1-2

I

SECTION I. INTRODUC-rION

Throughput, the total a~ount of work performed by the system over a

period of time, is increased in the following ways:

1. The operating system can process a continuous stream of jobs without

delays via the automatic transition from one job to the next. Delays

(due to operator mounting and demounting of input/output volumes) are

reduced because all system programs and libraries of user's programs

can be resident on the same on-line mass storage volume and may use

work areas on the same volume.

2. The operating system uses the direct access abilities inherent in

the mass storage device to locate programs and files without time

consuming searches.

3. The operator system efficiently uses the physical resources of the

computer system. It can overlap central processor operations with

input/output operations.

4. It can control the allocation of central processor time, switching

from one program to another while awaiting the completion of an

input/output operation. (This process is termed multi-programming.)

Response time (turn-around time) is the interval between the time a job

is submitted for processing and the time that a result is available. Response

time is reduced in the following ways:

1. Operations are unbatched~ i.e., initiated, performed, and completed

on a single job at a time. This provides output to the user without

time consuming delays caused by waiting for other jobs to be complet

ed (as in batched operations).

2. In an integrated system, input/output operations can be performed

concurrently with normal processing. This eliminates the delays

caused by the transition from operation to operation and by human

1-3

SECTION I. INTRODUCTION

activity involved in performing such operations on an off-line

peripheral system.

Flexibility and orderly growth of the computing system are provided

for through a variety of programming facilities. The open-end design of the

operating system allows the user's programs and data files to be incorporated

easily into the system. Because the system is made up of independent modules,

the facilities of the system can be combined in a variety of ways.

FUNCTIONAL DESCRIPTION

The operating system provides supervisory, data managing, program

development, and service fu~ctions. 'Each of the four major functions is

performed by a subsystem of the operating system. These subsystems are

named for the function they perform. That is, the subsystem that performs

supervisory functions is the Supervisor, the subsystem that performs data

managing functions is the Data Management subsystem, etc. The basic functions

of the Supervisor are controlling the sequence of jobs and finding and load

ing the programs to perform a job. The primary function of the Data Manage

ment subsystem is the creation, maintenance, and input/output processing of

all files. The Program Development subsystem's primary functions are the

creation and maintenance of libraries of programs, and the source language

translation to machine language. The Service subsystem performs functions

such as sorting and editing generally required in any EDP installation.

All processing done by the operating system is done under the general

control of the Supervisor. The Supervisor controls processing by performing

its functions of Job Control, Program Loading, and Multi-program Control.

1-4

I

SECTION I. INTROD:.JC'rION

JOB CONTROL

Job Control is, simply, the automatic sequencing from one job to the

next. The Supervisor performs this function based on information read from

the Job Control File. The Job Control File is the input stream of control

information identifying a job and defining its requirements. The Supervisor

reads the Job Control File and then activates the appropriate element of the

system to complete the job. When the job is completed, the a~tivated element

informs the Superviso~ which then reads the input from the Job Control File

again. This sequence of events goes on until there is no more input in the

Job Control File.

PROGRAM LOADING

Program Loading consists of locating the appropriate system program or

user program in the machine language program file on the mass storage device,

loading it into core memory, and starting its execution. The Supervisor

~ determines which progr~~ to load by reading the Job Control File. Several

..

options are provided to control the searching, loading, and starting sequence

so that the programmer has complete freedom to set up exactly the sequence of

functions he desires.

MULTI-PROGRAM CONTROL

Multi-program Control consists of controlling the simUltaneous

execution of two programs. The Supervisor controls the sharing of central

processor time between the two programs by automatically switching execution

from one program to the other, and performing the necessary housekeeping

operations. This type of multi-program~ing is called foreground/background

operation. The foreground program user the peripheral interrupt feature and,

to run effectively in the multi-program environment, should be peripheral

bound. An example of a foreground (peripheral) program is one that would

perform a communications job such as on-line inquiry or real-time updating.

The background program does not use the peripheral interrupt feature, such

1-5

SEcrION I. INTRODUCTION

as most of the systems programs of the operating system. The background

progra~ is processed during the data transfer time of the foreground program.

This facility for Multi-program Control is similar to that offered by

Interrupt Control D of the Operating System - Mod I (Tape Resident).

Data Management

The Input/Output routines and the File Support routines ~ake up the

Data Management subsystem. Mass Storage I/O routines of the Data Management

subsystem are a set of macros that enable the progralTl'ller to control the I/O

operations for the mass stora;Je device performed by a given program. The

File Support routines are used to create and reorganize the files stored

on the mass storage device. This includes structuring the data into one of

the Honeywell standard file organizations.

DATA .MANAGEMENT CONCEPTS

The fundamental concept of data management is that all data in a system ~

is organized according to established rules. These rules govern the organiza-

tion of data into files. The type of file organization governs the access

modes that can be used on that file.

File Organizations

The operating system provides individual sets of rules for organizing

three types of files; Sequential, Indexed Sequential, and Direct Access Files.

SEQUENTIAL ~ILES: The operating system accepts files in which data are

organized sequentially. In a sequential file, items are arranged in any

logical succession perscribed by the user and are accessed in logical and

physical order. The user may, optionally, establish several collections of

sequentially arranged items in one sequential file. This option is called

partitioning and, when used, each individual collection of items is known

as a member of the file. Access to the beginning of a sequential file and

1·-6

•

SECTION I. INTRODUCTION

to the beginning of a member of a partitioned sequential file is direct.

INDEXED SEQUENTIAL FILES: The operating system also accepts files in which

the data are organized in sequence and includes indexes of item keys and

addresses. The sequence of items in an indexed sequential file is by item

key fields. The indexes are a series of item keys and addresses that enable

the user to access items either sequentially or directly by item keys. The

user does not process or maintain these indexes. One of the benefits of this

type of file organization is that items can be inserted in sequence and

deleted without copying the entire file.

DIRECT ACCESS FILES: In the direct access type of file organization, the

file is created by the user supplying a mass storage address indicating

where the item is to be loaded.

Access Modes

The types of file organizations available with the operating system

enable two access modes to be used1 Sequential and Direct Access.

SEQUENTIAL ACCESS: Sequential access refers to obtaining or placing items

sequentially (in succession). This method of accessing items can be used

with either the Sequential file organization,with the Direct Access file

organization, or with the Indexed Sequential file organization.

DIRECT ACCESS: Direct Access refers to obtaining or placing items individually

or directly. This method can be used with the Indexed Sequential files and

with the Direct Access files.

~~SS STORAGE I/O CONTROL ROUTINES

The I/O Control routines are a set of macros that enable the programmer

~. to control the I/O operations for a mass storage device. These macros are

1-7

SECTION I. INTRODUCTION

named according to their functions as Control Macros, Communication Macros,

and Action Macros.

Control Macro

'rhe Control Macro is that portion of the I/O that performs the actual

I/O processing. This macro is specialized when assembled to reduce the

amount of coding required in main memory and eliminate or include coding as

directed by the programmer. The elimination of coding from main memory

frees up space for the execution of progra~s and the inclusion of only the

required coding assures the programmer that certain operations will not be

performed inadvertently.

Communications Macros

The Communications Macros enable the user to communicate with the I/O

routines. For instance, when the system is instructed to open a file for

processing and the specified file cannot be found, an exit as specified in

the communications area is made to a user supplied routine that determines

whether or not the search should continue.

Action Macros

The Action Macros perform such functions as opening and closing files

and getting and putting items. This saves the programmer the time and

trouble of coding these subroutines himself, and by judicuous specialization

via the Control macro, saves main memory locations. For instance, the

coding to open a file contains instructions for opening both sequential and

direct access files. If only sequential files are to be processed, the

instructions that apply only to opening a direct access file can be eliminated.

1-8

,¥

SECTION I. INTRODUCTION

FILE SUPPORT

The File Support routines are used for the creation and maintenance of

all files. These routines are named for the functions they perform.

Allocate/Deallocate Routine

The Allocate/Deallocate routine allocates space for a file and automati

cally formats that space to accommodate the file, and deallocates files, thus

making space available for new files.

Load/Unload Routine

The Load/Unload routine loads and unloads files onto and off of a mass

storage device to or from magnetic tape, punched cards, another mass storage

device, or the printer.

Map Routine

The Map routine maps the mass storage volumes to provide a tool for

determining where on a volume a new file can be written.

Program Develop~ent

The Program Development subsystem is an integrated set of routines that

assist the user in the process of program creation, translation, modification,

and testing. The user makes one request for a connected series of operations

on a single program or library routine and the Program Development element

automatically controls the sequencing of the various operations in the job.

For example, one request might perform the following: updating a program

in a source language library, COBOL compilation, storing the output in an

executable program library, and execution of the program for testing. To

accomplish its functions, the Program Development element is made up of

language translators and library maintenance routines.

1-9

SECTION I. INTRODUCrION

LANGUAGE TRANSLATORS

The operating system provides languages that enable the programmer to

express procedures in forms that can be easily learned and readily used, and

translators that convert su,::h programs into a machine-executable format. All

language translators in the operating system produce the sa~e format of

machine-executable code and can store their outputs on a common file. The

Easycoder Assembly, COBOL and FORTRAN language translators are provided for

use with the operating system.

Easycoder Assembly

Easycoder Assembly is a symbolic, machine-oriented assembly language

with facilities for inclusion and specialization of macro routines. The

language level is comparable with Easycoder D of the Operating System - Mod I

(Tape Resident) •

COBOL

COBOL is a business data processing language that is close to normal

English language usage. The language level is comparable to COBOL B of the

Basic Programming System.

FORTRAN

FORTRAN is a scientific language similar to usual mathmetical notation.

The language level is comparable to FORTRAN D of the Operating System - Mod I

(Tape Resident) •

LIBRARY MAINTENANCE ROUTINES

The Program Development element has two library maintenance routines:

one to maintain libraries of source language programs, and one to maintain

libraries of machine-executable programs. The source language library

..

update routine can add, delete, and replace routines and can correct individual ~

1-10

SECTION I. INTRODUCTION

statements in a source language program. The machine-executable program

library update routine can add, delete, or replace routines in this library.

This library is created from the output of the language translators.

Service Routines

The operating system provides service routines to perform comuon data

processing functions. Routines are provided to perform volume preparation,

sort, and mass storage edit functions.

VOLUME PREPARATION

The volume preparation routine prepares the mass storage volume for use

under the Data Management conventions. Volume preparation must be performed

once for every mass storage volume at the time the volume is entered into

the operating system.

SORT

The sort routine involves ordering the sort key and the address of

the associated items. Additional data fields may be extracted, if desired,

or the original source item in the sort ordered sequence may be accessed.

EDIT

The editing and printing of selected areas of a mass storage volume

is accomplished by the edit routine.

BASIC EQUIPMENT REQUIREMENTS

The basic equipment required to use the operating system is listed

below. So~e elements require more than the basic configuration.

1-11

SECTION I. INTRODUCTION

Series 200 Central processor1 (any model) with control panel.

Advanced Programming Instructions (Feature 010, 011, or 1011).

12,288 characters of main memory, of which about 1,500 are required

for the Supervisor.

1 mass storage control unit, (Type 255, 257 or 257A).

1 mass storage device for system residence, (Type 256, 258, 259 or

259A) •

The Honeywell Series 200/0perating System-Mod 1 (Mass Storage Resident)

is designed to operate ultimately with several different mass storage

devices. Each control unit for each device allows as many as eight mass

storage devices to be connected to the Series 200 computer.

The equipment in the preceding list is the minimum equipment require-

ment. The systems files can be contained on this equipment.

The required configuration offers the following capabilities:

1. Supervisor -- Seq.lential job control from card reader, program

segment loading from mass storage, and communication via the

control panel.

2. Input/Output Routines -- All supported file organizations. The

main memory required is assigned to the user's program so that

if more memory is available, additional functions can be performed

in the user's program.

3. File Support Routines -- All file support routines.

4. Program Development Subsystem -- Assembly and executable and

source language program file maintenance.

5. Volume Preparation.

6. Mass Storage Sort.

7. Mass Storage Edit.

1This includes the Type 201-~ and 201-1 Central Processors.

1-12

•

Table 1-1. Devices For System Files

FILE EQUIPMENT

System Residence 1 mass storage device

Job Control

Operation Control

Operator Information

Input

List

GO

Library

Work Files

1 card reader

1 control panel, or
1 console Type 220

1 printer, or
1 console Type 220

1 card reader (may be same as
Job Control)

1 printer (may be same as
Operator Information) or
1 mass storage device (may
be same as System Residence)

1 card punch, or
1 mass storage device (may be
same as System Residence)

1 mass storage device (may be
same as System Residence)

1 mass storage device (may be
same as System Residence)

NOTE: A standard mass storage volume may be used to run all system

programs in the Mass Storage Operating System. This volume is

formatted for all the permanent and work files required for the

system.

The equipment required for major capabilities not included in the

preceding paragraph is listed below.

1. Supervisor Options - Additional main memory is required for use

of each of the following options:

Multi-Program Control.

Communication via console keyboard/typewriter.

Program segment loading above location 32,767.

2. COBOL - 12,288 characters of main memory. Edit Instructions

(Feature 013 or 1013).
1-13

SECTION I. INTRODUCTION

3. FORTRAN - 20,480 chara~ters of main memory. Edit Instructions

(Feature 013 or 1013).

Peripheral Devices

The Mass Storage Operating System supports certain peripheral

devices by providing input/output routines to perform necessary operations

on files stored on or accessed through those devices. These routines may

be requested and used in Easycoder, COBOL, and FORTRAN language programs.

Equip~ent supported includes:

Mass Storage (Types 256, 258, 259, or 259A)

Magnetic Tape (Type 204B)

Card Reader

Card Punch

Printer

1-14

•

".

•

SECTION II

SUPERVISOR

All operations in the Mass Storage Onerating System are performed

under the general control of the Supervisor. The Supervisor performs three

main functions: job control, loading and starting execution of program

segments, and multi-program control. (Multi-program control is not part

of the first release of the Mass Storage Operating System, and is not

described in this edition of the manual.)

JOB CONTROL

Job Control is the automatic sequencing from one job to the next. The

Supervisor performs this function based on information read from the Job

Control File. The Job Control File is the input stream of control infor

mation identifying a job and defining its requirements. The Supervisor

reads a statement from the Job Control File and then activates the appro

priate element of the system to complete the job. When the job is completed,

the activated element informs the Supervisor which then reads from the Job

Control File again. This sequence of events continues until the input in

the Job Control File is exhausted.

PROGRAM LOADING

Program Loading consists of locating the appropriate system program or

user program in the machine language program file on the mass storage

device, loading it into core memory, and starting its execution. The

Supervisor determines which program to load by reading the Job Control File.

Several options are provided to control the searching, loading, and starting

sequence so that the programmer has complete freedom to set up exactly the

sequence of functions he desires.

2-1

SECTION II. SUPERVISOR

FUNCTIONS OF THE SUPERVISOR

The Supervisor is initially bootstrapped into main memory from mass

storage. This operation is performed once~ the Supervisor can then

function continuously without being reloaded.

Once in memory, the Supervisor is ready to perform its functions of

job control and program segment loading. The Supervisor is controlled by

the user in one of two ways: (1) Job and program sequencing are controlled

by job control statements. (2) Segment loading within a program is con-

trolled by programmed calls to the Supervisor.

Executing a Job Or Program

The Supervisor starts by reading the Job Control File, which is

normally on punched cards and is read into memory via the card reader.

The Supervisor searches for an Execute statement. The Execute statement

directs the Supervisor to locate, load, and start a named program segment.

Alternatively, the operator may enter job control statements through

the control panel. (A later extension will provide the ability to enter

job control statements through a Type 220 Console keyboard) •

Loading a Program Segment

When the current segment of the program has completed operation, it

transfers control to the Supervisor to load another segment. To do this,

the program executes a macro call1 to the Supervisor. The Supervisor

then searches the directory for the mass storage address of the specified

segment, loads this program segment into the locations specified by

assembly or compilation, and starts execution of the program segment.

1Macro calls will be defined at a later date.

2-2

,;

•

SECTION II. SUPERVISOR

Exiting From a Program

When a program has completed operation and does not wish to load

and execute another segment, it issues a macro call to the Supervisor. The

Supervisor then reads the job control file for a new Execute statement and

starts the new job or new program.

STRUCTURE OF THE SUPERVISOR

The Supervisor is a segmented program, part of which is permanently

resident in main memory. Other segments are called in from mass storage·

as they are required. The Supervisor occupies two areas in main memory:

the communication area and the floating area.

Communication Area

The communication area is an area fixed in lower memory that includes

location ~ and locations 61 through 189. The index registers, locations

1 through 60, are available to the user. The communication area contains

the necessary information for the Supervisor to perform its searching,

loading, and starting functions. The content of the communication area is

shown in Table 2-1.

Floating Area

The float~ng area is an area in upper memory whose size depends on the

selection of Supervisor features made at system generation time. This

portion of .the Supervisor can be "floated" to the upper memory locations

in two ways: (1) At execution time, when the Supervisor can relocate

itself to the highest bank (unit of 4,096 characters) of memory. (2) At

system generation time, when the Supervisor can be specialized and assembled

to reside permanently in the highest bank of memory.

2-3

SECTION II. SUPERVISOR

The advantage of "floating" the Supervisor is that it is possible to

provide a common origin for all programs that operate within the system.

The highest address used by the communication area is location 189

(decimal). Programs may be assembled above this area. On the other hand,

if the remainder of the Supervisor were to be placed immediately behind

the communication area, the origin of operated programs would vary because

the size of the Supervisor varies.

Although the "floating" portion of the Supervisor does vary in size,

the "high memory address" field in the communication area (locations 187

to 189, see Table 2-1 below), always contains the highest memory location

available to operating programs. Thus, the user always knows the lowest

and highest memory addresses available to operating programs.

Part of the floating area contains resident routines that are always

in memory. A second part is an overlay area where less frequently required

routines of the Supervisor are brought in as they are needed.

EXECUTABLE PROGRAM FILE

Programs to be operated under control of the Supervisor are stored in

the executable program file on mass storage. An executable program file

is a partitioned sequential file, composed of two areas, a directory area,

and a program data area containing the program segments themselves.

Directory

The directory is a table (the member index) giving the name and mass

storage location for every program segment in the file.

directory refers to one program segment.

Each item in the

The capacity of the directory, which determines the number of program

segments that may be contained in the file, is specified by the user when

the executable program file is created through a file support allocation run.

2-4

..

SECTION II. SUPERVISOR

Program Segments

The data area of the executable program file contains the program

segments or "loading units." A loading unit is the portion of code

located and loaded as the result of one programmed call to the Supervisor.

The area allocated to the data portion of the executable program file

determines the total amount of code that can be stored in the file.

COMMUNICATING WITH SUpERVISOR

The following paragraphs discuss the two methods by which the user

communicates with the Supervisor. (1) Job and program sequence control

by means of job control statements, and (2) segment loading within a

program and exiting by means of programmed macro calls to the Supervisor.

EXECUTE Statement

The execution of a job or of a program is requested by an Execute

Statement in the job control file. The Execute statement directs the

Supervisor to locate, load, and start a named program segment. The format

of the Execute Statement is:

EASYCODER
CODING FORM

PROBLEM PROGRAMMER DATE PAGE OF -
CARD H LOCATION

OPERATION
NUMBER t ~ CODE

I iI' <I' • 7 • 1415 2021

I I

I
I t=,y. loV'oas,ea.n.aMe.

i I
,.J oJ

I I

Where: progsegname

haltprogsegname

OPERANDS

6263

lliLt". Y',..<!~ /I n :l.A1~ I.
'" oJ II

--L...~.L.....-i..-"""'_L....L....J.........L--' I, , , ." ~ I

The program and segment name of the program

segment to be executed.

The Supervisor halts after the program and

segment name are loaded. The brackets[]

indicate that this parameter is optional.

2-5

-

eo

!

SECTION II. SUPERVISOR

The program segment name consists of eight (8) characters~ the first

six (6) are the program name and the last two (2) are the segment name.

The characters must be chosen from the letters A through Z and the digits

o through 9~ no other characters may appear.

Program segment names for system programs supplied by Honeywell for

the Mass Storage Or,erating System always begin with an asterisk (*) to

prevent any duplication with user program names.

Loading a Program Segment

When the calling program is ready to load the next segment, it executes

a macro call. This macro sets parameters in the communication area and

branches to the Supervisor. The branch is to the Normal Call entrance

(location 130 of the Communication Area) •

The parameters associated with a Normal Call depend on the current

contents of the communication area. These parameters are discussed below

in detail starting on page 2- 7, under the paragraph headings "Searching,"

"Loading," and "Starting."

Macro routines will eventually be supplied to communicate with the

Supervisor. Until these macros are properly defined, the user may

communicate with the Supervisor by means of coded program calls. Some

examples of such calls are given on page 2-21 under the heading entitled

"Program Calls for Segment Loading."

DETAILED DESCRIPTION OF SUPERVISOR

The following information is needed only if the programmer writes his

own instructions for communicating with the Supervisor, instead of using

the macros that are provided for loading the next segment or returning to

job control.

2-6

SECTION II. SUPERVISOR

The Communication area for Supervisor occupies locations 0 and 61-189

(decimal). The programmer, through the communication area, supplies the

necessary parameters to the Supervisor so that the functions of searching,

loading, and starting execution can be performed. Table 2-1 is a summary

of the communication area with its permissible values and the reset

conditions. Table 2-2 is a summary of Supervisor parameters according

to function. The expression "Initial Values" in Tables 2-1 and 2-2 refers

to the contents of the corresponding field at the time when the Supervisor

is first brought into memory. "Reset" refers to a value entered by the

Supervisor into the field just before control is returned to the program.

Punctuation marks within the communication area must not be altered.

Each field is originally loaded with a word mark at its high-order or left

most end.

Later sections define the Supervisor parameters, their locations, their

initial and permissible values, the conditions under which they are reset,

and the resulting loader actions. A parameter summary is given in Table 2-2.

Searching

Normally, the Supervisor searches the executable program file directory

for the mass storage address of the called program segment. The record at

this address is then read and checked to see if it is a segment header

record. If there is no directory entry for the called program segment, or

if the first record is not a segment header record, the Supervisor halts.

If the Supervisor was directed to load from a specified mass storage

address (i.e., search mode 07, see Table 2-3 for this and other Search

Mode Designations) the directory search routine is not executed.

2-7

SECTION II. SUPERVISOR

Table 2·-1. Supervisor Communications Area

LOCATIONS

Decimal

64

65-67

68-73

74-75

77-84

85

86-89

102-105

107-109

111

Octal

100

101-103

104-111

112-113

115-124

125

126-131

146-151

153·-155

157

FUNCTION AND
POSSIBLE VALUES

Job Control Device

~ - Card Reader
1 - Control Panel

Revision Number of
Unit Last Loaded

Program Name

Se9J.lIent Name

Halt Name

ID Character From
Console Call Card (*)

Fixed Start ~ -
Entrance to Job
Control Function

Exit to Owncode
Routine

Relocation A'lgment

Search Mode -

20 - Search and
Load by pro
gram and
Segment Name

60 - Search and
Loc-d by pro
gram and
Segment Name
by visibi
lity.

22 - Search by
program and
segment name,
do not load;
supply mass
storage address
to calling unit.

62 Search by pro
gram and seg
ment name and
by visibility,
do not load,
supply mass
storage address
to calling
unit.

07 - Do not search;
load by known
mass storage
address.

2-8

INITIAL
VALUE

Branch to
Supervisor

Branch to
Supervisor

AT RETURN
TO JOB
CONrROL

Branch to
Supervisor

~~~ 

2~ 

AFTER 
LOADING 

Branch to 
Supervisor 

¢¢¢ 

.. 



SECTION II. SUPERVISOR 

Table 2-1 (contd). Supervisor Communications Area 

LOCATIONS AT RETURN 
FUNCTION AND INITIAL TO JOB AFTER 

Decimal Octal POSSIBLE VALUES VALUE CONTROL LOADING 

112 160 Start Mode N N 

N - Normal 
R - Return to Calling 

.;, 
Program • 

S - Special 

113-18 161-166 Visibility Mask -¢%¢¢¢ 
(visibi-
lity A) 

119-121 167-171 Special Starting ¢¢¢ 
Location 

122-125 172-175 Owncod'8 Return Branch to 
Before Distri- Supervisor 
bution Distribu-

tion 
Routine 

126-129 176-201 Owncode Return Branch to 
After Distri- Supervisor 
bution Starting 

Routine 

130-138 202-212 Program Return Store Bc 
for Segment Loading Register 
(3-character and Branch 
mode) to Super-

visor 
Search 
Routine 

139-141 213-215 Program Return Fixed 
to Job Control Start % 
Function (3-
character mode) 

142-146 216-222 Current Date 6 
147 223 'rrapping Mode ¢ 

¢4 ON - ¢¢ OFF 

.. 187-189 273-275 Highest Memory 
Location Avail-
able to User 
Programs 

2-9 



SECTION II. SUPERVISOR 

Table 2-1 (contd). Supervisor Corrununications Area 

LO':;ATIONS AT RETURN 
FUNCTION AND INITIAL TO JOB AFTER 

Decimal Octal POSSIBLE VALUES VALUE CONTROL LOADING 

61-63 75-77 Reserved for use of 

76 114 the Operating System. 
These locations are 

90-93 132-135 not available to the 

94-97 136-141 user. 

98-101 142-145 

106 152 

110 156 

148-186 224-272 

2-10 



SECTION II. SUPERVISOR 

Table 2-2. Summary of Supervisor Parameters 

DEC. LOC OCT. LOC. RESET AT RESET 
INITIAL CONSOLE AFTER 

PARAMETER FROM TO FROM TO VALUES N~ CALL LOADING 

SEARCH MODE 111 157 20-Program and 
segment name. 

S 60-Program and E 
A segment name 

R and visibi-

C lity. 

H 22-Program and 2¢ 2¢ 
I segment name; 
N do not load. 
G 62-Program and 

segment name 
and visibi-
lity. Do not 
load. 

07-Load by known 
mass storage 
address. 

PROGRAM NAME 68 73 1¢4 111 

SEGMENT NAME 74 75 112 113. 

VISIBILITY 113 118 161 166 4¢ ¢¢ ¢¢ 
¢¢ ¢¢ ¢¢ 

DEVICE 76 114 ¢ 

~ 
RELOCATION 

1¢7 1¢9 153 155 ¢ ¢ ¢ AUGMENT 

~ HALT NAME 77 84 115 124 

START MODE 112 16¢ N=Normal N N 
S S=Special 
T R=Return 
A 
R SPECIAL START 119 121 167 171 ¢ T LOCATION 
I 
N TRAPPING MODE 147 223 ¢fi1=Off ¢¢ 
H ¢4=On 

.... 

2-11 



CONTENTS 

20 

22 

60 

62 

07 

SECTION II. SUPERVISOR 

Table 2-3. Search Mode (Location 111) Designators 

FUNCTION 

Search for and load the program segment with the specified 

program and segment name. 

Search the executable program file directory for the specified 

program and segment name and supply the calling program with 

the mass storage address of the called program segment. This 

address is conveyed through the Program Name parameter loca

tions 68 to 73 of the communications area in the format CCTTRR 

(cylinder, track, record). 

Search for and load the program segment with the specified 

program name, segment name, and visibility. 

Search the directory for the specified program name, segment 

name, and visibility and supply the calling program with the 

mass storage address of the called program segment (as in 

search mode 22). 

Load a program segment at the mass storage address specified 

in locations 68 to 73 of the communication area. This address 

has the same format shown above under search mode 22. 

The use of search mode 07 implies that search mode 22 or 62 had 

been previously used to supply the calling program with mass 

storage address of the called program segment. 

The initial value of the Search Mode is 2~. It is reset to 2~ when 

return is made to job control. 

NOTE: Three search modes used by the Tape Resident Operating System

Mod 1 (Tape Loader-Monitor C) are not applicable to the Mass 

Storage Supervisor. They are: 

2-12 

.. 

. '" 



00 

40 

01 

SECTION II. SUPERVISOR 

Search for and load the segment with the specified segment 

name within the current program. 

Search for and load the segment with the specified segment 

name and visibility within the current program. 

Search and load the nth segment of specified visibility. 

The Supervisor treats these codes as follows: 

00 Converted to search mode 20. 

40 Converted to search mode 60. 

01 Converted to search mode 20. 

PROGRAM NAME (LOCATIONS 68-73) 

This field contains the program name to be used as a search key in 

search modes 20, 22, 60, and 62. The program name of the called program 

segment is inserted in these locations by the Execute Statement in the job 

control file, or by a programmed call to the Supervisor. When a program 

segment is loaded, its program name is placed in this field by the Super

visor. If the search mode is 22 or 62 (so that no loading occurs) and after 

locating the program segment, the Supervisor places in this field the mass 

storage address of the first record of the requested program segment. 

SEGMENT NAME (LOCATIONS 74-75) 

This field contains the segment name to be used as a search key in 

search modes 20, 22, 60, and 62. The segment name of the called program 

segment is inserted in these locations by an Execute Statement in the job 

control file, or by a macro call to the Supervisor. When a program segment 

is loaded, its segment name is placed in this field by the Supervisor. 

2-13 



SECTION II. SUPERVISOR 

VISIBILITY MASK (LOCATIONS 113-118) 

This field contains the visibility mask to be used in search modes 60 

and 62. A visibility match is obtained if there is at least one bit posi

tion containing a "1" in both the visibility mask and the visibility key 

of the requested program segment. The initial value is visibility A 

(40 00 00 00 00 00 octal). 

Loading 

If the search is successful, the Supervisor proceeds to load the called 

program segment into memory. Loading consists of reading and then distribu

ting and punctuating each successive record of the program segment. Each 

record is read into a buffer. From there, the instructions and constants 

are distributed to specific memory locations and punctuated as specified by 

control characters in the record. 

Between the reading and distributing phases of loading, it is possible 

to execute own-coding routines. After reading a record into the buffer, the 

Supervisor always branches to the own-code location. An own-code routine 

may then do one of two things: (1) return to use the Supervisor's own 

distribution routine (Own-code return before distribution), or (2) it may 

do its own distribution and return to the read routine of the Supervisor 

(Own-code after distribution) • 

A program segment may be loaded into an area higher than that for which 

it was translated (assembled or compiled) by using the relocation augment. 

However, the Supervisor does not perform address adjustment; the program 

segment is loaded into the new area exactly as it was translated. 

At loading time, the program and segment names of the program segment 

loaded are placed in locations 68 through 75. After a program segment has 

been loaded, the Supervisor resets the Relocation Augment to ~ and the 

Owncode Exit to assume no own-coding. 

2-14 



.. 

... 

SECTION II. SUPERVISOR 

RELOCATION AUGUMENT (LOCATIONS 107-109) 

The relocation augment field contains a value to be added to the 

address at which all the code of the called program segment is to be loaded. 

This augment is applied to instructions, constants, the addresses of areas 

to be cleared, and the normal start location of the program segment. Note 

that the code itself is not altered; the program segment is merely loaded 

into a new area. The initial value is~. It is reset to ~ after a program 

segment has been loaded and when a program exits. 

HALT NAME (LOCATIONS 77-84) 

The halt name field provides space for a program name (locations 77-82) 

and segment name (locations 83-84). After the program segment with this 

name has been loaded, the Supervisor halts. When the RUN button is pressed, 

the Supervisor continues as directed by the starting parameters. "Halt 

Name" is checked against the name of the program segment just loaded. If 

it is equal, the Supervisor halts. "Halt Name" is a single field. The 

only word mark is at location 77. 

EXIT TO OWNCODING 

A calling program may execute own-coding during the loading of a 

called program segment by setting up an appropriate branch in the communi

cation area. The starting address of the own-code routine must be placed 

in locations 103-105. This is the A address of a branch instruction. No 

punctuation is present at these locations, and no punctuation may be placed 

there by a calling program. The branch is made immediately after reading 

each record. Before the branch, the monitor sets index register X5 to the 

address in main memory of the first character in the record. This Exit is 

initially set to assume that there is no own-coding. It is reset to this 

same value whenever a program completes execution and exits. 

2-15 



SECTION II. SUPERVISOR 

OWNCODE RETURN POINTS 

The owncode routine must return to the Supervisor with a branch to one 

of the two own-code return points in the communication area (see below) • 

Own code Return Before Distribution 

If the return is made to location 122, the Supervisor performs record 

distribution in the normal way. Under this option the settings of X5 and 

X6 must not be altered by the owncode routine. 

Owncode Return After Distribution 

If the return is made to location 126, the Supervisor bypasses normal 

record distribution and reads the next record. Under this option, the 

owncode routine must recognize the last record of the called program segment 

and must not return to location 126 after obtaining it. Instead, X5 must 

be set to the address of a location containing the character 61, followed 

by the three-character starting address of the program segment just loaded. 

Then return is made to location 122. 

Starting 

After loading a called program segment, the supervisor may return to 

the calling program segment or branch to a normal or a special location in 

the called program segment. The branch is always made in 3-character address 

mode. Before executing the branch, the Supervisor uses the rightmost four 

bits of the Trapping Mode Indicator (location 147 decimal) to set up and 

execute a CAM instruction that sets the trapping mode indicator of the 

central processor. 

STARTING MODE (LOCATION 112) 

The Start Mode parameter specifies which of the three alternative 

locations the Supervisor will transfer control to after loading. It must 

contain one of the three following values: 

2-16 



SECTION II. SUPERVISOR 

N - Branch to the location specified as the normal starting 

location in the called program segment. The relocation augment is 

added before the branch is made. 

S - Branch to the address given by the parameter "special start 

location" (119-121). The relocation augment is not added to this 

address. 

R - Branch to the location immediately following the one from 

which the call to the loader was made. The relocation augment is not 

added to the address. 

The initial value is N. It is reset to N when a program exits. 

SPECIAL START LOCATION (LOCATIONS 119-121) 

This field, which is used only with start mode "S," specifies the 

address to which control is to be transfered by the Supervisor after loading. 

This may be any memory location up to 32,768. The initial value is O. It 

is never reset by the Supervisor. 

TRAPPING MODE (LOCATION 147) 

This field contains a character whose low order four bits are substi

tuted into the variant character of a CAM instruction. This instruction is 

executed immediately before the Supervisor starts the called program, to 

establish the trapping mode that will be in effect when the called program 

segment is started. The field should contain one of the following two 

values: 

00 No Item Mark Trapping 

04 Item Mark Trapping 

The initial value is 00. 

If the trapping mode is specified, the operation code of any instruction 

which contains an item or record mark is both extracted and executed as if 

2-17 



SECTION II. SUPERVISOR 

it were a Change Sequencing Mode (CSM) instruction, regardless of the 

operation code present. The CAM and CSM instructions and the trapping mode 

are described in detail in the Honeywell Series 200 Programmers Reference 

Manual (Models 200/1200/2200/4200), Order No. 139. This facility provides for 

automatic changes in program sequence without executing programmed instruc-

tions to initiate such changes. 

The programmer is urged not to use the trapping mode in his programs 

because the program test facility uses the item mark trapping feature to 

initiate dumps. A program using item mark trapping will not be able to use 

certain dump facilities. 

Returning to the Supervisor 

PROGRAM RETURN FOR SEGMENT LOADING (LOCATION 130) 

The Program Return for Segment Loading is used to load the next segment 

of a program or job automatically without returning to the job control 

routine. The program segment making the call changes the appropriate para-

meter values in the communication area and then branches to location 130. 

When this return is used, the supervisor does not reset any parameter values; 

any changes must be made by the program before it branches to 130. 1 

PROGRAM EXIT LOCATION (LOCATION 139) 

The Program Exit Location is the location to which a program branches 

(indirectly) after having completed its processing. The program, without 

changing values in the communication area, may branch indirectly to location 

139. The Supervisor then resets the Start Mode parameter to N, the Search 

Mode to 20, the Relocation Augment to 0, and Exit to Own-coding to assume 

no own-coding and then reads the next statement in the Job Control File. 

1Note that the Relocation Augment was reset when the calling segment 
was loaded (see Table 2-1). 

2-18 



SECTION II. SUPERVISOR 

Locations 139 through 141 normally contain the address of the control 

routine in the Supervisor. But when a series of programs are to be executed 

as a system, with a user-written control program, the user control program 

may change the contents to the address of some routine within itself. In 

this case, all of the program segments in the series should terminate with 

an indirect branch to location 139. This has the effect of returning control 

to the system's control program, allowing it to determine which program 

segment it wants to be loaded next and to make the appropriate call. After 

a systems run, the control program should restore the contents of locations 

139 through 141 to the initial value. 

OTHER FEATURES 

Fixed Starts 

The communication area contains four branch instructions that are used 

for console starts. The first instruction, Fixed Start 0, (Locations 86-89), 

is a branch to the job control routine of the supervisor. It is equivalent 

to a program exit. Job Control resets the Start Mode parameter to N, 

Search Mode to 20, Relocation Augment to 0, and Exit to Owncoding to assume 

no owncoding~ and then reads the next statement in the job control file. 

Revision Number (Locations 65-67) 

Before starting to load a program segment, the Supervisor moves the 

programs revision number into this field. This is provided for use or 

reference by other programs or by the operator. 

Current Date (Locations 142-146) 

The operator may enter the current date into locations 142 through 

1465, for reference by other programs. Locations 142 and 143 specify the 

year (00 to 99), and locations 144 through 146 specify the day of the year 

(001 to 366). The initial value of this field is 00000. 

2-19 



SECTION II. SUPERVISOR 

Upper Limit of Available Memory (Locations 187-189) 

This field contains the address of the highest memory location that may 

be used by any program. The floating portion of the Supervisor resides 

above this address. Any program computing the amount of memory available 

must take account of this value. 

Relocation Bank Indicator 

The Supervisor preserves the relocation bank indicator in location 76. 

(Table 2-4 shows the acceptable relocation bank indicators.) The indicator 

was used when this version of the Supervisor was first brought into memory 

and shows the bank in which the Supervisor resides. 

Table 2-4. Relocation Banks 

LAST ADDRESS USED 
INDICATOR BANK BY SUPERVISOR (OCTAL) 

~2 12K ~27777 

~3 16K ~37777 

~4 20K ~47777 

~5 24K ~57777 

~6 28K ~67777 

~7 32K ~77777 

Program Calls for Segment Loading 

Once the first segment of a program has been loaded and started, sub-

sequent segments may be loaded and started, using program calls performed 

by instructions in the program segment currently running. The program 

segment making the call first moves the desired parameter values into the 

communication area and then transfers control to the Supervisor. The return 

branch to the supervisor is made to location 130 (Return for Segment Loading) • 

This loads the requested program segment without returning to the job control 

routine: there is no reset of parameter values or reference to statements 

in the job control file. 

2-20 



SECTION II. SUPERVISOR 

EXAMPLES OF SEGMENT LOADING 

Example 1: - Loading a specified Program Segment 

Call the program segment named PROCES AA and start PROCES AA at 

its normal starting location (see coding example below). Note 

that the coding does not include entries for Loading Device, 

Search Mode, or ~tart Mode, since the desired values for these 

parameters are the initial values established by the Supervisor. 

EASYCODER 
COOING FORM 

EXAMPLE" T PROGRAMMER DATE PAGE OF 
PROBLEM - -

CARD n LOCATION 
OPERATION OPERANDS .,1., J NUMBER ~ ~ eOOE 

I 2 3 4 5 • 1 • 1415 2021 

, I I 

I 
I lMew IsG NA ME '(5 , , , , . , I, , , 

i i Mew 
I I IB 13 G!i 

• I i P" N,AM E. DeW @PROCES@ 

~.I ~r.I\!,AMf= he III @AA@ , , ~ 
, I I I, 

Example 2: - Loading a Specified Program Segment by Visibility 

Call the program segment named INITPR NN that also is identified 

by either visibility C or visibility D and start the specified 

segment at its normal starting location (see coding example below) • 

EASYCODER 
COOING FORM 

R P OBLEM EXAMPLE IL PROGRAMMER DATE PAGE_OF_ 

CARD ~I~ LOCATION 
OPERATION OPERANDS 

NUMBER ~ ~ CODE 

I 2 3 4 5 6 " 1415 2021 ... " 80 

, I i , , , I I 
I 

I , 
> i j IMew 5G 75, 

I I M.ew , , , ' . 
I M.(W • i 1~~CI-l 1 1 1 , , , I I 

IMC.W I I V IS18, .. 1.1P. , , , , 
i I A, 113G!i 
i I 

I 

i I 
I , I ~ 

'0 i PR I!)(w @INITPR@ 
, 

I I IsG Irl.(w @NN@. 
i i bReI-! Dew Jtl.1 C 10.0: I I , , , '. I I VI'OIR DeW lti:c,c 14.0P.tJf;¢,¢.¢.0.¢.rj>, . .. -'--'--- I I .... _'--_"--_1 -'_--'- --,-- .. ____ ,,_1 _ • . . 13 

2-21 



I 

'0 

" 
'2 

13 ,. ,. 

SECTION II. SUPERVISOR 

Example 3: - Relocation, Special Start 

Call the program unit named AAAMEM Sl, relocate the program unit 

2500 octal locations higher, and start AAAMEM Sl at octal location 

2510 (see coding example below). (DSA's and the operand addresses 

of instructions are not altered by the Relocation Augment.) 

EASYCODER 
COD'NG fORM 

PROBLEM ~ x A WI P LE III PROGRAMMER DATE PAGE_Of_ 

CARD !I~ LOCATION 
OPERATION 

OPERANDS J NUMBER COOE 

I 2 3 4 5 • 7 • 1415 2021 6263 80 

I j 
, 

r 
, ! , , r r 

I 
, , , I, 

I i 

1 J IMew SN 75 \ 
I I M,(W -'-'- I I I , , I , I I 

i I M.CW lR ELDe 1(/)9 -' I , I 

I I M,(W ISTMOD,( .. 1.1 2 
I 

~ I , 
: I IWw isPSI ,1 21 -'--'--'- I I , 
1 I IB, 113QS 
I I , 
I , 
i \ 1o.N. iD,CW. @AAA.M.EtI@, j 
~ i t>JIJ. b,cW !<;:Is 1@., I 

I I I ~.TM.ODE bcw @>5@ 

: I I(noc D,CW ~3C0"Q),250e5 I 
'---L~L . ~E2L~")£dJ.L. .. Itt.J.C¢¢,2S.1 P , I • • . • J • • • • I • • ~ LL .. '_L .. ~..J 

PROGRAMMER'S PREPARATION INFORMATION 

1. Since the Supervisor resides in high memory and has a variable starting 

location, some care must be taken to ensure that no program overlaps 

the Supervisor. In particular, programs which operate with a variable 

amount of memory must take into account the address stored in locations 

187-189 when computing the memory available. 

2. A Supervisor assembled in address mode 3 can only load programs into the 

first 32K of memory and always starts programs in address mode 3. 

3. The Supervisor uses, and does not restore, index registers X5 and X6. 

These registers have word marks at their high order locations after 

loading, but the user is cautioned that the address mode used by the 

2-22 



SECTION II. SUPERVISOR 

Supervisor does not necessarily correspond to that used by the loaded 

program segment, and the word marks may not be where the loaded program 

segment desires. 

X6 contains the address at which the last character of the called unit 

was loaded. X5 contains the address of the control character in the 

buffer that terminated the loading operation. The three characters at 

the locations immediately following the address specified by X5 will 

contain the normal starting address of the unit just loaded. 

4. Owncode routines must not destroy the contents of index registers X5 

and X6. 

5. The Supervisor does not use nor disturb any locations below 61 10 with 

the exception of index registers X5 and X6 and location O. 

EQUIPMENT REQUIREMENTS 

Series 200 Central Processor with Control Panel 

Advanced Programming Instructions (Feature 010, 011, or 1011) 

The number of storage locations used is dependent upon the system 

generation process. The smallest version (3 character, single buffer, 

without typewriter options) will require 1,350 locations. In addition, 

130 locations are used for the communication area (~ and 61-189). 

1 Mass Storage Control Unit (Type 255, 257, or 257A) 

1 Mass Storage Device (Type 256, 258, 259, or 259A) 

Index registers X5 and X6 

Additional Usable Eguipment 

1 Card Reader 

2-23 



.. 

• 



SECTION III 

DATA MANAGEMENT 

Data Management is the element of the Mass Storage Operating 

System that provides the necessary input/output routines associated 

with data files, and routines for their creation and maintenance. More 

than this, however, the Data Management element provides a specific set of 

rules, or conventions, governing data management concepts and file orqaniza-

tion. All elements of the operating system follow these conventions. 

This section describes in detail these features of the Data Management 

element. 

DATA MANAGEMENT CONVENTIONS 

The Data Management conventions include the general concepts 

relating to data and volume conventions, which lead directly to 

the more specific rules of file organization. The data conventions 

define the basic units of data and the relationships between them. 

These relationships lead directly into the conventions established 

for the allocation of space to store a data file on a volume. The 

volume conventions are concerned with the preparation of volumes 

that includes labeling and establishing directories. 

Data Conventions 

This paragraph defines the units of data and explains the 

relationships between them and between certain units of data and 

the physical capabilities of the storage device • 

• 

3-1 



SECTION III. DATA MANAGEMENT 

UNITS OF DATA 

Item 

An item is the basic unit of logically related information for a 

data processing program. In this sense, an item can possibly be a 

single policy in an insurance policy file, or perhaps, an individual's 

account in a master payroll file. 

Record 

A record is that data physically located between two gaps on 

the track of a mass storage device. 

Block 

A block is the sum of physical records transferred to or from 

main memory by a single data transfer instruction. For convenience, 

the term block can be considered as synonymous with a buffer. 

File 

A file is a collection of logically related items. This is 

the largest single unit of data that can be stored and retrieved by 

the operating system. 

RELATIONSHIPS BETWEEN UNITS OF DATA 

Record-To-Track 

All records on a track must be the same size. 

Record-To-Block • 

A block may be one or more records long. 

3-2 



SECTION III. DATA MANAGEMENT 

Item-To-Block 

There may be any number of items in a block. When the number 

of items per block leaves unused character spaces in the block, these 

are filled with 778 • 

Block-To-Track 

A block may be entirely within one track or it may start on 

one track and end on the next track. 

Allocation Conventions 

The unit of allocation is the basic element in the designation 

of the area of mass storage assigned to a data file. The description 

of a unit of allocation is of the form: 

Where: C1 is the first cylinder of the unit of allocation. 

T1 is the first track used on all cylinders from 

C1 to C2 inclusive. 

C
2 

is the last cylinder of the unit of allocation. 

T2 is the last track used on all cylinders from C
1 

to 

C2 inclusive. 

If a unit of allocation for a file were ~6-~1-11-~5, it could be 

shown graphically as in figure 3-1. 

3-3 



SECTION III. DATA MANAGEMENT 

CYLINDER 

~~ ~1 ~2 ~3 ~4 ~5 ~6 ~7 ~8 ~9 1~ 11 12 13 14 15 16 •.. 

~~ 

~1 ----------

~2 

~3 FILE 

~4 

RACK ~5 ----- --- --

~6 

f)7 

f)8 

f)9 

Figure 3-1. Illustration of Unit of Allocation 

A single data file may have more than one unit of allocation. 

When this is the case, the number of tracks per cylinder in each unit 

of allocation for that file must be the same. An acceptably allocated 

file is shown in figure 3-2 and an unacceptable allocation of a file 

is shown in figure 3-3. 

3-4 



SECTION III. DATA MANAGEMENT 

CYLINDER 

~. 

}l1}l1 }l11 }l12 }l13 }l14 }l15 }l16 }l17 }l18 }l19 1}l1 11 12 13 14 ••• 

}l1}l1 

}l11 

}l12 J.-I 
OJ FILE A 

}l13 'd 
~ 

J.-I OM UNIT 2 OJ ~. TRACK }l14 'd 

" 
~ FILE A u }l18-}l12-13-}l16 OM "-

}l15 r-I III 
:>t .J<:: 
u UNIT 1 ~ '-

}l16 "-III "i J.-I 
.J<:: }l13-}l14 8 
0 

}l17 cO t{) 

J.-I 
}l16-}l18 8 

}l18 t{) 

}l19 

Figure 3-2. Acceptable Allocation Of A File 

CYLINDER 

}l1}l1 }l11 }l12 }l13 }l14 }l15 }l16 }l17 }l18 }l19 1}l1 11 12 13 14 ••• 

}l1}l1 

}l11 
FILE U J.-I 

}l12 .. OJ 
'd 

UNIT 1 ~ 

}l13 
oM J.-I 
r-I OJ 

}l11-}l11-}l15-}l17 > G' 'd FILE U 
~ 

TRACK }l14 "- OM 
III r-I UNIT 2 .J<:: :>t 

}l15 0 u 
cO ';;). J.-I 1}l1-}l13-14-}l18 

}l16 8 .J<:: 
0 

r--- cO 
J.-I 

}l17 8 

I.D 

}l18 
• 

}l19 

Figure 3-3. Unacceptable Allocation Of A File 

3-5 



SECTION III. DATA MANAGEMENT 

The status of the units of allocation for a given mass storage 

device is maintained by the operating system in such a way that it 

will not allocate space for a new file whenever the new file's units 

of allocation are in conflict with those of any other file previously 

stored on the device. 

In the preceding illustrations, a cylinder was shown as if it 

had been rolled out flat. Figure 3-4 shows an overall view of a 

cylinder in an exploded view of a disk. 

The method of determining the required unit of allocation for 

any file is described in the appendices. Space allocation for 

Sequential File Organization is described in Appendix G and for 

Direct Access file organization in Appendix H. In general, it is 

recommended for the disk that l~ tracks per cylinder be allocated 

to each file. 

Volume Conventions 

The volume conventions are concerned with formatting and 

volume preparation, bootstrap records, volume labels, and volume 

directories. Each of these are discussed individually in'the 

following paragraphs. 

FORMATTING AND VOLUME PREPARATION 

All mass storage volumes used in the Series 200 must be 

formatted before data can be stored on them. Formatting establishes 

the size of each record on a track. All records on a given track 

are equal in size. Whenever the size of the records on a track is 

to be changed, the track must be reformatted. The facility for 

automatically reformatting tracks is a feature of the operating 

system. 

3-6 

• 



TRACK ,01 --

TRACK ~3 --

TRACI~ ¢5--

TRACK %7---

TRACK %9--

H-256 = 203 CYLINDERS} 
H-258 = 100 CYLINDERS ~ 

-------
..... ...... 

...... 
" " " , 

r---------'L -- CYLINDER ~~~ 
\ 

Figure 3-4. Overall Concept of a Cylinder 

3-7 

\ , , 



SECTION III. DATA MANAGEMENT 

Initially, however, each volume is formatted with 250 character 

records on all tracks. This size record is used for all Honeywell 

system files (such as machine language, source language, and work 

files). User's data files in which the records are other than 250 

characters requires that the volume be reformatted. This is 

accomplished automatically by the File Support routines. 

BOOTSTRAP RECORDS 

The bootstrap records are recorded on the first track (Track ~) 

of each volume. This track is not available to the user for storage 

of data. 

VOLUME LABEL 

The volume label is the unique identification of the volume. 

This record is 250 characters long and is recorded as the first 

record (Record~) on the second track (Track 1) of each volume. 

The volume label is described in detail in table 3-1. 

Table 3-1. Volume Label Description 

FIELD POSITION NAME AND LENGTH DESCRIPTION 

1 1-5 Identification IVOL.6. 
5 Characters 

2 6-11 Volume Serial This field contains the unique 
Number identification of the volume. 
6 Characters 

3 12 Device Type 118 Disk with 100 cylinders 
1 Character 

138 Disk with 203 cylinders 

4 13-200 Reserved Reserved for use of the 
188 Charac1:ers operating system. 

3-8 



,<. 

SECTION III. DATA MANAGEMENT 

VOLUME DIRECTORY 

The volume directory is a list of all files that are stored in 

whole or in part on the volume. Table 3-2 contains a complete descrip

tion of the volume directory. Three sequential files make up the list: 

1. File Name Index (*VOLNAMES*) 

2. File Description Index (*VOLDESCR*) 

3. File Allocation Index (*VOLALLOC*) 

The first file (*VOLNAMES*) is an index of file names and references 

the other two files for additional information. This index contains the 

names of all files allocated on this maga7ine and the addresses of the 

associated entries in the File Description Index and the File Allocation 

Index. The item si7e of the File Name Index is 30 characters. Its 

format is shown in Table 3-2. 

The second file (*VOLDESCR*) is a complete description of each 

file, including general information, labeling information, and infor

mation pertinent to the particular organi7ation and structure of the 

file. The item si7e of the File Description Index is 100 characters. 

Its format is shown in Table 3-2. 

The third file (*VOLALLOC*) is a list of the mass storage areas 

allocated to each file stored on the volume, i.e., the units of allo

cation. Each unit is one item. Since a data file may consist of many 

units, the allocation item (unit) referenced by the File Name Index 

may itself reference another allocation item, etc. The si7e of an item 

is 20 characters. The format of the File Allocation Index is shown 

in Table 3-2. 

3-9 



SECTION III. DATA MANAGEMENT 

Table 3-2. Volume Directory Description 
.----../. 

FIELD POSITION NAME AND LENGTH DESCRIPTION 

FILE NAME INDEX ( *VOLNAME*) 

1 1-10 FILE NAME 
10 characters The unique name assigned to the 

file. 

2 11-14 RESERVED Reserved for future use. 
4 characters 

3 15-22 FILE DESCRIPTION Address of the entry in the File 
ADDRESS Description Index describing 
8 characters Index the file named in .( 1) • 

In the format CCTTRRII. 

4 23-30 ALLOCATION Address of the first entry in 
ADDRESS the Allocation Index for the 
8 characters file named in (1) • In the 

format CCTTRRII. 

FILE DESCRIPTION INDEX ( *VOLDESCR *) 

1 1 FILE TYPE Identifies the file organization 
1 character 

01 = Sequential 
11 = Partitioned Sequential 
02 -- Di,rect Access 
03 = Indexed Sequential 

2 2-3 ITEM SIZE Number of characters per item, 
2 characters in binary. 

3 4-5 RECORD SIZE Number of characters per record, 
2 characters in binary. 

4 6-7 BLOCKING FACTOR Number of items per block, in 
2 characters binary. 

5 8-9 RECORDS PER BLOCK Number of physical records per 
2 characters block, in binary. 

6 10-11 RECORD PER TRACK Number of physical records per 
2 characters track, in binary (does not 

include TLR). 

7 12 C~INDER OVERFLOW Number of tracks per cylinder 
1 character assigned for overflow. 

8 13 G:EiNlliML OVERFLOW General overflow indicator 
1 character 00 = No general overflow 

77 = The last cylinder of each 
unit of allocation is used 
for general overflow. 

9 14-21 RESERVED Reserved for future use 
8 characters 

3-10 



SECTION III. DATA MANAGEMENT 

Table 3-2 (cont). Volume Directory Description 

FIELD POSITION NAME AND LENGTH DESCRIPTION 

Labeling Information 

10 22-26 CREATION DATE Date file was last created in 
5 characters the form YYDDD 

11 27-29 CREATION NO. The number of times this file 
3 characters has been reorganized in decimal. 

12 30-34 MODIFICATION DATE Date this file was last modified 
5 characters (i.e. opened for O/P or I/O) • 

In the form YYDDD. 

13 35-37 MODIF ICATION NO. Number of times this creation 
3 characters of the file has been modified in 

decimal. 

14 38-42 EXPIRATION DATE The date on which this file may 
5 characters be deleted, in the form YYDDD. 

15 43-50 RESERVED 
(Unavailable to 
User) 
8 characters 

16 51-53 ITEM COUNT Total number of active items in 
3 characters the file, in binary. 

17 54-63 RESERVED Reserved for future use. 
10 characters 

File Definition Information - Sequential Organization 

18 64-65 INDEX LENGTH Number of blocks set aside for 
2 characters the number index, in binary. 

19 66-68 BLOCKS IN FILE Total number of data blocks avail-
3 characters able to this file, in binary. 

20 69-100 RESERVED Reserved for future use. 
32 characters 

File Definition Information - Direct Access Organization 

18 64-65 KEY LENGTH Number of characters in the 
2 characters key, in binary. 

19 66-68 KEY DISPLACEMENT Number of positions from the LHE 
3 characters of the item of LHE character of 

key, in binary. If the key is 
the first fie ld in the item, 
field 19 = ¢¢. 

3-11 



SECTION III. DATA MANAGEMENT 

Table 3-2 (cont). Volume Directory Description 

FIELD POSITION NAME AND LENGTH DESCRIPTION 

20 69-70 BLOCKSLBUCKET Binary number of blocks in a 
2 characters bucket. 

21 71-100 RESERVED Reserved for future use. 
30 characters 

FILE ALLOCATION INDEX ( *VOLALLOC*) 

1 1 STATUS Status indication for this item 
1 character 

778 = unused 

408 = last unit for this file 

608 = more units follow on this 
volume 

208 = more units follow on 
another volume 

2 2-4 RESERVED Reserved for future use. 
3 characters 

3 5-12 ALLOCATION UNIT Boundaries of this unit of 
8 characters allocation, in the binary form 

CCTTCc'rT. 

4 12-20 NEXT UNIT ADDRESS If field 1 = 6~, field 4 = 
8 characters ~~~~~~~~ where the next unit 

of allocation is the next 
physical item in this index. 
Otherwise, field 4 is the 
address of the item in this 
file containing the next unit 
of allocation (in the form 
CCTTRRII) • 

3-12 



SECTION III. DATA MANGEMENT 

File Organization 

A file is a collection of one or more logically related items. 

Files may be organized in different ways to satisfy different requirements. 

An application with a high degree of serial processing requires a file 

organization different from an application that requires direct access 

to any item in the file. Three types of file organizations are offered 

by the operating system: Sequential Organization, Indexed Sequential 

Organization and Direct Access Organization. The Sequential and Di.rect 

Access file organizations are described in succeeding paragraphs. The 

Indexed Sequential Organization will be described in a later publication. 

FACTORS GOVERNING THE ORGANIZATION OF FILES 

Mass Storage processing has great advantages to offer for the storage 

of large volumes of data and for fast accessing of any item of data. But, 

in order to use these advantages, the files must be effectively organized. 

File organization is the systematic arrangement of data records on a 

storage medium in a way that will make the effective use of storage 

capacity and, at the same time, permit easy and efficient retrieval of 

data for processing. 

There are three major systems objectives which will determine 

the best type of file organi?ation for a particular application: 

1. Maximum use of storage space. 

2. Minimize the time required for accessing items. 

3. Minimize processing time required for creating and 

maintaining files. 

3-13 



SECTION III. DATA MANAGEMENT 

System Considerations 

Efficient file organization is based on thorough system planning 

for the particular application and on complete and accurate definition 

of the data to be stored. In particular, this depends on: 

1. The volume of data involved. 

2. The frequency and si7e of the peak volumes. 

3. The frequency of access of data in the file and how this 

varies, both between items and between particular fields 

wi thin items. 

4. The type of processing arid addressing techniques used to 

access the various files. 

5. Whether mass storage is the sole storage medium or whether 

some data will be stored on magnetic tape or on punched cards. 

6. Whether the existing item keys are useable, or, if not, what 

the cost of conversion or modification would be. 

7. How much expansion or modification of the files is forseen. 

8. The inquiry requirements. 

9. The total reporting requirements and the desired sequence 

for reports. 

10. Whether the associated records will be referrenced individually, 

or whether they will be consolidated • 

. 
11. The extent and complexity of file maintenance requirements. 

12. Whether a particular file will be processed in more than one 

processing mode. 

13. Whether total systems approach is envisioned, or whether each 

application will be processed individually. 

3-14 

r 



I 

SECTION III. DATA MANGEMENT 

The overriding consideration of efficient file organization is 

to keep techniques as simple and as standard as possible within the 

limitations imposed by the particular application. 

Storage Layout Considerations 

The specific considerations that must be looked into before 

organizing a file include: 

1. The precise data layout, which in the first inst~nce should 

merely include all data required. From this rough draft should 

be prepared the final layout, which will have fields arranged 

in order of access frequency and degree of essential reference, 

with associative fields grouped together where possible. This 

final re-organization is designed primarily to minimize 

accessing and processing time. 

2. The record length to be employed. This is a factor of the data 

length but also of the storage medium since the ideal record 

length for processing efficiency will be one that fits in con

veniently with track length. Cases that require special 

consideration are those in which records are either under or 

over one track in length. Ideally, the length chosen should 

be sufficient to cover all records, but where there is consi

derable variation, then an optimum size must be chosen to reduce 

unused storage to a reasonable minimum. For records which 

exceed this limit, either by variation in field length or in 

the multiples of fixed length fields, continuation records must 

be linked or chained in the form of trailer records. 

3. The blocking factor to be employed. Ideally, each physical 

record should occupy one track, which may contain several items. 

This makes maximum use of storage by eliminating inter-record gaps, 

3-15 



SECTION III. DATA MANAGEMENT 

which reduce file storage efficiency. But large single track 

records require larger buffers and allow less time for pre

update processing within normal latency time. A multi-record 

track layout makes less efficient use of storage and requires 

a separate access to each record. But, less memory is required 

by the smaller buffers and more latency time is available for 

update processing. 

OVERALL EFFICI~NCY 

Processing efficiency will be a factor, first of the agreed system 

objectives, and secondly, of the system layout considerations previously 

outlined. Since efficinecy depends on so many inter-related factors, 

it will be the result of a compromise. For example, it may be necessary 

to sacrifice some storage utilization to improve the speed of access 

and maintenance, or vice versa. Overall efficiency is the prime objective. 

To achieve this, every factor must be carefully examined both individually 

and in relation to the other factors. 

SOOUENTIAL FILE ORGANIZA'rION 

The Sequential file is organized for items to be accessed in a 

logical sequence. This type of file organization is intended primarily 

for an application in which most of the items are processed each time the 

file is used. The data is one physically continuous stream of items. 

Processing is in logical sequence which conforms to physical sequence~ 

The end of data is signified'by an item starting with ClEOD¢ (76254624778). 

All tracks allocated to the file are used for data. Items are fixed 

length and all characters in an item are data. 

There is an option available to break the file into a number of 

smaller files. This option is called partitioning and is described 

in detail in Appendix E of this manual. 

3-16 

... 



SECTION III. DATA MANAGEMENT 

DIRECT ACCESS FILE ORGANIZATION 

A Direct Access file provides fast access to items that are not to 

be retrieved sequentially. Its organization is flexible and a user may 

tailor it to his specific needs. The organization of a Direct Access 

file is principally in terms of user defined areas called buckets. A 

bucket is defined in terms of blocks. It may be composed of any number 

of blocks ranging from one to a maximum number of blocks per cylinder. 

A bucket cannot cross cylinders. A small bucket may provide faster 

access but it also increases the possibility of overflow. Conversly, 

a large buck~t may increase the access time to a given item but it 

decreases the possibility of overflow. There is no ordering of items 

within a bucket and access to a bucket is made through a user supplied 

address. 

Data Area 

The data area for a cylinder used in a Direct Access file is the 

number of tracks on the cylinder within the unit of all:>cation minus 

those tracks specified for the cylinder overflow. Within the data area, 

a file is divided into buckets. The size of the buckets is used defined 

in terms of blocks. A bucket may be one or more blocks in size but 

cannot exceed the total number of blocks in the cylinder data area. 

Th~ bucket address is the address of the first record in the first 

block of the bucket. When a bucket contains more than one item, there 

need be no logical relationship between the items except through some 

means (randomization or otherwise) the address of that bucket was speci

fied as belonging to that item. 

3-17 



SECTION III. DATA MANAGEMENT 

Because a block may cross tracks, buckets can cross tracks. Buckets 

cannot cross cylinders, however, because a given bucket is processed as 

though it flows from the data area into the cylinder overflow area and 

then into the general overflow area. 

Cylinder Overflow Area 

The cylinder overflow area is a user specified number of tracks set 

aside at the end of the unit of allocation of each cylinder in the file. 

This area is used to store the overflow of data from the bucket or buckets 

that comprise the data area. 

General Overflow Area 

The general overflow area is an optional area set aside to store the 

overflow from the cylinder overflow area. This optional feature is 

included to avoid costly termination in the middle of a run. When the 

operating system is forced to use the general overflow area, suitable 

notice is provIded. Frequent use of the general overflow area not on the 

same cylinder as the bucket would be very costly in terms of time. For 

this reason, the general overflow area is not recommended for normal use. 

The general overflow area, when used, will always be the last cylinder 

of each unit of allocation. 

Overflow Options 

It is not necessary to use all overflow areas. If any are not used 

the path taken to store overflow items would vary as shown in figure 3-5. 

1. If no overflow areas are used, any overflow causes an exit 

to the user. 

2. If only cylinder overflow is specified, overflow qoes first 

to the cylinder overflow area and then to the user. 

3-18 



SECTION III. DA'fA MANAGEMENT 

3. If only general overflow is specified, overflow goes first to 

the general overflow area and then to the user. 

4. If both cylinder and general overflow are specified, overflow 

goes first to the cylinder overflow area, then to the general 

overflow area, then to the user. 

LOG I/O LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4 
PATH TO BUCKET CYLINDER GENERAL USER DATA EXIT 

OVERFLOW OVERFLOW PARAMETER 42 OF 
LOGICAL I/O MCA 

IT~;M YES (1 ) NO NO YES (4) 

ITEM YES (1) YES (2) NO YES (4) 

ITEM YES ( 1) NO YES (3 ) YES (4 ) 

ITEM YES (1) YES (2) YES (3) YES (4) 

Figure 3-5. Data Path For Overflow OPtions In Direct Acces3 Files 

RELATIONSHIPS BETWEEN DIRECT ACCESS ORGANIZATION AND KEYS 

The word "key" can be used in association with other words such as 

"acual key", "relative key" and "item key". Because of this, these terms 

are defined as follows. 

Actual Key 

The actual, physical address of the bucket in terms of cylinder, 

track and record and expressed as CCTTRR. 

Relative Key 

The number of a bucket relative to the beginning of the file. The 

first bucket in a file is numbered ~~~. 

3-19 



SECTION III. D~TA MANAGEMENT 

Item Key 

The identification field of an item. This field must be continguous 

characters but its length and location within the item is specified by the 

user. 

RELATIONSHIP BETWEEN DIRECT ACCESS FILE PROCESSING AND KEYS 

Directly processing an item normally involves the operating system's 

use of a bucket address and an item key field provided by the user. The 

bucket address may be direct, using an actual key or it may be relative, 

using a key relative to the bucket's numeric position within a file. 

Using either an actual or a relative key, the beginning of the bucket is 

located and then the bucket is searched for the item containing the speci

fied item key. When the search of the bucket does not produce the desired 

item, the search continues through the cylinder overf 1m., area and the 

general overflow area if available. 

NULL ITEMS 

Because it is frequently necessary to insert or delete items in a 

Direct Access file, it is important to be able to distinguish between 

an item and an "empty hole". To accomplish this, a status character is 

appended to every item in the file. This character indicates whether 

or not an item is null (inactive), or whether it is active or deleted. 

When a Direct Access file is allocated and before data is recocded in 

the file, all items have their status character set to indicate null 

items. 

NOTE: When allocating a Direct Access file, it should be remembered 

that the status character must be included in the item size 

parameter. 

3-20 

... 



SECTION III. DATA MANAGEMENT 

Table 3-3 shows a single cylinder of a Direct Access file organi'zation. 

The buckets are numbered as though this cylinder were the first cylinder 

used in a particular file, and the numbers representing items in the file 

are in'tended to show that there is no necessary relationship between 

actual key and item key. 

Table 3-3. Single Cylinder In Direct Access File Organization 

BUCKET ¢¢ 

Blocks ,0¢--¢4 

BUCKET 912 

Blocks 1¢--14 

BUCKET ¢4 

Blocks 2¢--24 

BUCKET ¢6 

Blocks 3¢--34 

l¢¢ 

NULL 

NULL 

126 

315 

505 

NULL 

NULL 

312 

NULL 

333 

NULL 

NULL 

117 

NULL 

¢¢2 

2915 

1¢9 

NULL 

NULL 

: 2¢3 
I 
I NULL 
I NULL I 
I 
I 315 
I 411 I 
I 
I NULL 
I NULL 
I 
I 
I NULL 

I 4¢6 
I NULL I 

i ¢12 
I 
I NULL 
I 
I NULL 

I 224 
I 
I 

NULL 

I 414 
I 
I 123 
I 
I 299 
I NULL I 
i NULL 

CYLINDER 

J NULL I 
I NULL 

1¢6 

I 124 
I 

612 I 
I 
I 611 
I NULL 

¢¢6 

I 411 

i NULL 

I ¢57 
I 
I NULL 
I 

3¢2 
I 

I NULL 
I 
I 

NULL 

I 415 
I 
I 518 

NULL 
I NULL 
I 

l NULL 

3-21 

I NULL 
I 
I NULL 

I 5.03 
I 
I 516 
I 214 I 
I 
I NULL 

! NULL 

I 111 
I 
I NULL 
I 
I NULL 

I 664 
I 
I NULL 
I 
I 4¢5 
I 
I 
I 

NULL 

I NULL 

; ¢67 
I 
I 6¢9 

I 
I NULL 
I NULL 
I 

I NULL 

BUCKET ¢l 

Blocks ¢5--¢9 

BUCKET ¢3 

Blocks 15-19 

BUCKET ¢5 

Blocks 25--29 

CYLINDER 

OVERFLOW 

AREA 



SECTION III. DATA MANAGEMENT 

INPUT/OUTPUT CONTROL 

The input/output control (I/O control) facilities provided by the 

operating system reduce to a minimum the amount of coding the programmer 

must write to process his files. Using the I/O macros, a programmer 

can control the entire I/O process, communicate with the system to alter 

the process, and specify the processing modes and actions required by 

the particular application. 

Every macro function available to the user is fully identified and 

the method for writing each macro call is specified in this section of 

the manual. This section also identifies and defines the processing 

modes available to the user and relates them to the applicable file 

organi7ations. Because some of the functions performed by certain action 

macros depend on the processing mode chosen for a particular type of file 

organization, a table is included that identifies each action macro 

available for each type of file processing mode and type of file 

organization. 

File Processing Modes 

There are three distinct processing modes available~ input/output 

processing, input only processing and output only processing. 

INPUT/OUTPUT PROCESSING MODE 

The input/output processing mode can be used with the Sequentia~ 

and Direct Access file organizations. In the input/output processing mode, 

the user can both read data items from the file (input) and write data 

items to the file (output). 

3-22 



I 

SECTION III. DATA MANAGEMENT 

INPUT ONLY PROCESSING MODE 

The input only processing mode also can be used with all the available 

types of file organizations. In this processing mode, the file can only 

supply data items to main memory (input) and cannot receive data items 

from main memory. Because of this, certain action macros normally avail

able for use with a particular type of file organization become 

inapplicable. 

• 
OUTPu'r ONLY PROCESSING MODE 

The output only processing mode can be used only with the Sequential 

file organization. In this type of file processing, the file can only 

accept data items from main memory (output) and cannot supply data items 

to main memory. As in the input only processing mode, the output only 

processing mode renders certain action macros normally available for use 

with a Sequential file inapplicable. 

GENERAL USAGE OF THE PROCESSING MODES 

The processing modes refer to the direction of data flow with respect 

to main memory. In the input/output mode, data is transfered into and 

out of main memory to and from mass storage. In the input only mode, data 

is transfered into main memory from mass storage. In the output only mode, 

data is transfered from main memory to mass storage. Specialization of 

the processing mode by user specified parameters if assembly time allows 

excess coding to be deleted from the program being assembled. For 

example, if a master file was being created on mass storage, the output 

only processing mode could be used. This would enable the transfer of data 

from main memory to mass storage and the coding required for input/output 

or output only processing would not be assembled into the program creating 

3-23 



SECTION III. DATA MANAGEMEN'r 

the file. As another example, the contents of a file can be protected 

from accidental destruction by opening the file in the input only mode. 

This would prohibit an accidental transfer of data from main memory to 

mass storage. Also, in the file processing program, the coding required 

to perform the input/output and output only functions would not be 

required. As a last example, if a file update were being performed, 

the input/output mode could be used and the program would not require 

the coding for output only processing • 

• 

Input/Output Macros 

The input/output macros are summarized in Table 3-4. This table 

contains a comprehensive list of all macro calls and the general 

function performed by each macro. In addition, each macro is identified 

as control, communication or action and the applicable file organi7ation 

and processing modes are shown. 

3-24 



-

w 
I 
I'V 
U1 

c 0; 

MACRO 
TYPE 

CONTROL 

COMMUNICATION 

ACTION 

MACRO 
CALL 

MIOC 

MCA 

MLCA 

MUCA 

MSOPEN 

( ( 

Table 3-4. Input/Output Mac os 

FILE 
TYPE OF PROCESSING GENERAL FUNCTION PERFORMED 

FILE PROCESSED MODE 

INPUT /OU'rpUT 
SEQUENTIAL INPUT ONLY Provides general control of the OUTPUT ONLY 

entire input/output process. 

DIRECT INPUT/OUTPUT 
ACCESS INPUT ONLY 

INPUT/OUTPUT Sets up a communication area in which 
SEQUENTIAL INPUT ONLY all values necessary to describe a 

OUTPUT ONLY file and the procesfing options are 
stored. Pertinent p~rtions of this 

DIRECT INPUT/OUTPUT information are available to the 
ACCESS INPUT ONLY user and can be altered by him. 

SEQUENTIAL 
Used to alter any applicable field of 

DIRECT information in the communication area. 
ACCESS 

SEQUENTIAL 
Used to interrogate any applicable 

DIRECT field of information in the co~uni-
ACCESS cation area. 

INPUT/OUTPUT 
SEQUENTIAL INPUT ONLY 

OUTPUT ONLY 
Opens a file for processing. 

INPUT/OUTPUT 
INPUT ONLY 

Ul 
t:r::l 
() 
t-3 
H 
o 
Z 

H 
H 
H 

t1 
~ 
;J:>< 

~ 
~ 
t<:I 

~ 
~ 



w 
I 
I\) 

0\ 

( 

MACRO 
TYPE 

ACTION 

(continued) 

.. , 

MACRO 
CALL 

MSCLOS 

MSGET 

MSPUT 

MSREP 

SETM 

ENDM 

MALTER 

Table 3-4 (cont). Input/Output Macros 

FILE 
TYPE OF PROCESSING GENERAL FUNCTION PERFORMED 

FILE PROCESSED MODE 

INPUT/OUTPUT 
SEQUENTIAL INPUT ONLY 

OUTPUT ONLY Closes a file after processing. 

DIRECT INPUT/OUTPUT 
ACCESS INPUT ONLY 

SroUENTIAL INPUT/OUTPUT 
INPUT ONLY Retrieves the next sequential 

DIRECT INPUT/OUTPUT i tern in a file. 

ACCESS INPUT ONLY 

SroUENTIAL OUTPUT ONLY Delivers items sequentially from 
main memory to mass storage. 

SroUENTIAL INPUT/OUTPUT 
INPUT ONLY Replaces the last item retrieved. 

DIRECT INPUT/OUTPUT 
ACCESS INPUT ONLY 

PARTITIONED INPUT/OUTPUT Begins processing of a specified INPUT ONLY SEQUENTIAL OUTPUT ONLY member in the desired mode. 

PARTITIONED INPUT/OUTPUT Stops processing of the current INPUT ONLY SEQUENTIAL OUTPUT ONLY member. 

PARTITIONED INPUT/OUTPUT Changes the specified member of a 
SroUENTIAL INPUT ONLY file as directed. 

OUTPUT ONLY 

( 
il <l 

( 

til 
t:'.1 
() 
8 
H 
o 
Z 
H 
H 
H 

t:I 

~ 
~ 

~ 
f) 

~ 
Z 
8 



( 

W 
I 

I\.) 
....,J 

MACRO 
TYPE 

ACTION 

(continued) 

~ 

MACRO 
CALL 

MSINS 

MSDEL 

MSREL 

( ( 

Table 3-4 (cont.:). Input/Output Macros 

TYPE OF FILE 
FILE PROCESSED PROCESSING GENER~ FU~CTION PERFORMED 

MODE 

DIRECT INPUT/OUTPUT Inserts an item into a Direct 
ACCESS Access file. 

DIRECT INPUT/OUTPUT Deletes the last item retrieved from 
ACCESS a Direct Access file. 

PARTITIONED INPUT/OUTPUT Used to free up the area occupied INPUT ONLY SEOUEN'rIAL OUTPU'r ONLY by a Partitioned Sequential file. 

[Jl 
t>j 
o 
1-:3 
H o 
Z 

H 
H 
H 

sz 
~ 

~ 
~ 

! 
z 
1-:3 



SECTION III. DATA MANAGEMENT 

Mass Storage Input/Output Control Macro - MIOC 

The I/O control macro, MIOC, provides general control of the entire 

I/O process. More specifically, MIOC is a segmentable series of sub

routines that are specialized at assembly time. Assembly time speciali

zation causes the inclusion of all mass storage I/O functions required 

by the program and eliminates all those functions not required. The 

coding to perform the functions required by the program is further 

specialized when the macro call that initiates a given function is 

written. The macro call that causes the assembly of the control 

macro functions is MIOC. The specific function of MIOC is the perform

ance of interface functions between the action macros and mass storage. 

One MIOC macro call is required for each user written program 

that uses the mass storage I/O control facilities. The MIOC macro call 

contains the parameters necessary for specifying options or functions 

to be included in the program. 

When more than one MIOC is to be included in a given program, each 

MIOC must originate at the same memory location. Different file 

requirements can thus be handled by various specializations of MIOC. 

Only one MIOC can be in memory at any given time. The method of 

achieving tag uniqueness between the various MIOC routines is explained 

in the description of parameter ~l of MIOC. 

3-28 

.. 



SECTION III. DATA MANAGEMENT 

MIOC FORMAT 

EASYCODER 
CODING FORM 

PROGRAMMER DATE PAGE OF 

MIOC DESCRIPTION 

The Type Field must contain a C in all lines of coding of the MIOC 

call except the last line. The last line of the MIOC call must contain 

an L in the Type Field. Note that it is possible to have a one line 

MIOC call, in which case the Type Field must contain an L. 

The Location Field is considered as parameter ~ of the MIOC call 

and can contain any acceptable assembly tag. 

The Operation Code Field contains the MIOC call. 

The Operands Field contains the parameters required for MIOC. 

Note that the function of most MIOC parameters is to insert into or 

delete from MIOC certain subroutines. Thus, a particular specializa-

tion of MIOC is as small as possible. A list of the MIOC parameters 

and an accompanying description follow. 

PARAMETER I: Unique Character. This parameter specifies a single 

character that will prefix each tag used by MIOC. The single 

character can be anyone of the following: 

Keypunched As Printed As 

+,8,5 

+,8,6 o 
$ $ 

-,8,5 11 (quotation mark) 

/ / 
~,8,5 

3-29 

I 



SECTION III. DATA MANAGEMENT 

NOTE: That the character that prints as % (percent) is not the 

same as the character (0,8,4) which is the keypunch 

percent but which prints as a left parenthesis, (. 

PARAMETER 2: Sequential File Functions. This parameter indicates 

whether or not Sequential Files will be processed by this 

program, and what processing mode (if applicable) will be used. 

NOTE: By specifying the file functions, the user tells MIOC 

what subroutines to include in the program. Only 

coding applicable to the specified file type or 

processing mode is included in MIOC. For example, 

PARAMETER 3: 

when only sequential files are specified, or when the 

input only processing mode is specified for direct 

access files, no coding relevant to the Insert function 

will be included in MIOC. A list of all applicable 

action macros for each file type and processing mode 

is given above in table 3-4. 

Sequential File Options. This parameter specifies 

whether or not the sequential files to be processed by this 

program are partitioned. If parameter 2 specifies that se

quential files will not be processed by this program, para

meter 3 is inapplicable. 

PARAMETER 4: Direct Access Functions. This parameter specifies 

whether or not direct access files will be processed by this 

program, and what processing mode (if applicable) will be 

used. See NOTE 1. 

PARAMETERS 5 THROUGH 9: Parameters 5 through 9 are reserved 

for the use of the operating system. 

3-30 



SECTION III. DATA MANAGEMENT 

PARAMETER 10: Segmentation. This parameter specifies whether 

or not all MIOC coding is to reside in memory concurrently, 

or whether the MIOC coding is to be segmented. Exercising 

the segmentation option enables the user to save main memory 

locations. When specified, infrequently used functions are 

called into a common area of memory when required for execution. 

For example, each file to be processed requires the coding 

necessary to open it and to close it. These actions, however, 

are normally performed only once for a given file during a 

run. Therefore, the coding for these routines can reside 

on mass storage and be brought into mam memory only when 

needed. When the segmentation option is exercised, the 

following coding will reside in main memory: MIOC, which 

includes the coding for the Get, Replace, Delete, and Put 

functions, and the MCA macro. The coding for the MSOPEN, MSCLOS 

ENDM, SETM, and MALTER macros will reside on mass storage 

until required for execution when the segmentation option is 

exercised. If there is no insert coding required when 

processing direct access files, this can be indicated and 

the coding required for this function will not be assembled 

into the program. When this is the case, the MSINS action 

macro call becomes invalid. 

PARAMETER 11: Insert Coding Residence. This parameter is used 

to specify whether or not the Insert function coding is 

required for direct access file processing, and (if applicable) 

whether or not the coding is to be resident in main memory 

or on mass storag~. 

PARAMETER 12: SETM-ENDM Overlay Structure. Parameter 12 is 

used only when parameter 10 specified that the MIOC coding 

is to be segmented. Parameter 12 specifies whether or not 

3-31 



SECTION III. DATA MANAGEMENT 

the coding for the SETM and ENDM functions is to be segmented 

so that each routine is a separate overlay, or whether the 

SETM and ENDM function routines are to be brought into the 

common overlay area together. 

PARAMETER 13. Direct Access Bucket Addressing. Parameter 13 

specifies whether the direct access bucket addresses are 

relative, actual, or both. This parameter can only be used 

when parameter 4 specified that direct access files are to 

be processed by this program. 

PARAMETER 14: Multiple MIOC Indicator. This parameter is used 

to specify whether or not the program contains one or more 

MIOC macros. 

PARAMETERS 15 THROUGH 31: Parameters 15 through 31 are reserved 

for the use of the operating system. 

PARAMETER 32: Buffer Modes. This parameter specifies whether 

the buffering mode to be used with this program is single 

buffering, double buffering, or both modes. 

PARAMETER 33: Item Handling Modes. This parameter specifies 

the methods of delivering items to the user in this program. 

The user has the option of specifying a locate item handling 

mode, a move item handling mode, or both modes. In the 

locate mode, the item is located and its address is supplied 

to the user's coding. In the move mode, the item is located 

and moved to the address specified by the user's coding. 

PARAMETERS 34 THROUGH 49: Parameters 34 through 49 are reserved 

for the use of the operating system. 

3-32 



. -

SECTION III. DATA MANAGEMENT 

PARAMETER 50: Physical I/O Requirements. This parameter is 

used to specify whether or not the user has called the 

Physical I/O control macro (MPIOC). Normally, the MIOC 

will call MPIOC for specialization on the basis of parameters 

51 through 55 of MIOC. The MPIOC macro is described in 

detail in Appendix B of this manual. 

PARAMETER 51: Suffix. This parameter is used to specify a 

single character from the list of characters given in para

meter 1. This character can be the same as was specified 

in paramet er 1. 

PARAMETER 52: Peripheral Control Unit Address. This parameter 

gives the peripheral control unit address to which the Type 

250 control unit is attached. 

PARAMETER 53: Write Verificati on. This parameter is used to 

specify whether or not an automatic write verification will 

be performed for any MCA macro in the program. 

PARAMETER 54: Control of More than One PCU. This parameter 

specifies how the PCU number is to be specialized. 

PARAMETER 55: RWC Definition. This parameter specifies how 

the RWC is to be specialized. 

Table 3-5 contains a summary of the MIOC parameters • 

3-33 



-

( 

w 
I 
w 
oj::> 

PARAMETER 
NUMBER 

~~ 

~l 

~2 

NAME 

BASE 

UNIQUE 
CHARACTER 

SEQUENTIAl 
FILE 
FUNCTIONS 

Table 3-5. MIOC Parameters 

VALUE DESCRIPTION 

ANYTAG The user may specify any assembly tag 
in this field. Wnen MIOC is specia-
lized, this tag will be equated with 
the lowest memory location that MIOC 
occupies. 

(+,8,5) % This is a single character that is to 
(+,8,6) 0 be contained in each tag used by this 
(-,8,3) $ MIOC. Note that the character that 
(-,8,5) " prints as % is not the same as the 
(0,1) / character (0,8,4), which is the key 
(0,8,5) CR punch % but which prints as a left 

parenthesis, ( . 
Sequential files will not be pro-

6- cessed by this program so all coding 
pertaining only to sequential files 
can be eliminated. 

Input/Output, or Input Only and 
1 Input/Output processing of sequen-

tial files will be done by this 
program. 

Output Only processing of sequen-
2 tial files will be done by the 

program. 

Input Only processing of sequen-
3 tial files will be done by this 

program. 

Input/Output and Output Only, or 
4 all three types of processing of 

sequential files will be done by 
this program. 

Input Only and Output Only pro-
5 cessing of sequential files will 

be done by this program. 

( 

REQUIREMENTS 

Optional. 

Must be specified. 

Optional. 

When sequential 
files are to be 
processed, one 
of these five 
options must be 
specified. 

'I 
( 

I 

I 

til 
t:<:I o 
1-'3 
H o 
Z 

H 
H 
H 

~ 
»' 

~ 
~ 
t:<:I 

~ 
Z 
1-'3 



( 

W 
I 
W 
VI 

1. 

P.~TER 

NUMBER 

¢3 

¢4 

¢5 
THROUGH 

¢9 

<, 

NAME 

SEQUENTIAL 
FILE 

OPTIONS 

DIRECT 
ACCESS 

FILE 
FUNCTIONS 

N.A. 

( 
<) 

Table 3·-5 (cont). MIOC Parameters 

VALUE DESCRIPTION 

None of the sequential files to be 

Do processed by this program are 
partitioned. 

At least one of the sequential files PARTITION to be processed by this program is 
partitioned. 

Do 
Direct access files must not be 
processed by this program. 

Input/Output, or Input Only and 
1 Input/Output processing of direct 

access files will be done by 
this program. 

Input Only processing of direct 
2 access files will be done by 

this program. 

Parameters ¢5 through ¢9 are re-
served for the use of the 

N.A. operating system and are not 
available for use by the programmer. 

~ 

( 

REQUIREMENTS 

When parameter ¢2 
contains any digit 
between 1 and 5 and 
at least one of the 
sequential files to 
be processed by this 
program is parti-
tioned PARTITION 
must be specified. 
Otherwise, this para-
meter has no 
significance. 

Optional. 

When direct access 
files are to be pro-
cessed by this 
program one of these 
two options must be 
spec if ied. 

N.A. 

Ul 
t<:I 
() 
8 
H 
o 
Z 

H 
H 
H 

t::1 
~ 
!J:' 

~ 
~ 
! 
~ 
I-j 



( 

w 
I 
w 
0'1 

PARAMETER 
NUMBER 

l~ 

11 

12 

NAME 

SEGMENTATION 

INSERT 
CODING 

RESIDENCE 

SETM-ENDM 
OVERLAY 

STRUCTURE 

'(, 

T;3ble 3-5 (cont). MIOC Parameters 

VALUE DESCRIPTION 

All coding for this speciali?ation of 
MIOC will reside in memory concur-

6 rently. See I/O Control Programmer's 
Preparation Information, Page 3- , 
for a full discussion of segmentation. 

Any letter of the alphabet here 
indicates that this MIOC is to be 

x segmented. This letter is used as the 
first character of each segment genera-
ted by this MIOC. 

The INSERT function is not used by 
6 this program in processing direct 

access files. 

The INSERT function is used in the 
direct access files processed by this 
program and the coding for the INSERT 

RESIDENT function is to be resident. For a 
full discusiion of resident coding 
see I/O Control Programmer's Pre-
paration Information, Page 3-92, of 
this section. 

When parameter l~ is assigned a letter 

L and this parameter is 6, the coding 
for the SETM and ENDM functions is 
segmented so that each function is 
a separate overlay. 

W11en parameter l~ is assigned a letter 
and this parameter is COMBINE, the 

COMBINE coding for the SETM and ENDM functions 
is brought into the common overlay 
area together as a single segment. 

( 
I 

REQUIREMENTS 

Optional. 

Must be specified 
when parameter 
~4 is 6 or 2. 

If the INSERT 
function is to be 
used by this pro-
gram, RESIDENT 
must be specified. 

Optional. Note, 
however, that if 
parameter 3 is 6 
this parameter 
has no significance. 

'I 
( 

til 
I:>j 
o 
8 
H o 
Z 

H 
H 
H 

t:;j 

~ 
:J>' 

~ 
I z 
8 



( 

W 
I 
W 
-..] 

~ 

PARAMETER 
NUMBER 

13 

14 

15 
THROUGH 

31 

32 

NAME 

DIRECT 
ACCESS 
BUCKET 

ADDRESSING 

MULTIPLE 
MIOC 

INDICATOR 

N.A. 

BUFFER 
MODES' 

( 
,', 

Table 3-5 (cont). MIOC Parameters 

VALUE DESCRIPTION 

The direct access bucket addresses 

L 
used in this program are relative 
only, and are supplied in binary. For 

OR a full discussion of direct access 
RELATIVE bucket addressing see I/O Control Pro-

grammer's Preparation Information, 
Page 3- 98 of this section. 

The direct access bucket addresses 
ACTUAL used in this program are actual only, 

and are supplied in binary only. 

The direct access bucket addresses 
used in this program are both re-

BOTH lative and actual, depending on the 
direct access file being processed 
by this program. 

L Only one MIOC is included in this 
program. 

This program uses more than one MULTIMIOCS MIOC. 

Parameters 15 through 31 are re-

N.A. served for the use of the operating 
system and are not available for use 
by the programmer. 

L 
OR This program uses double buffering. 

DOUBLE 

SINGLE This program uses single buffering, 

BOTH This program uses both double and 
single buffering. 

( 

REOU IREMENTS 

Optional. Note, 
however, that if 
parameter .04 is L 
this parameter 
has no significance. 

When more than one 
MIOC is in the 
program, this 
parameter must be 
MULTIMIOCS. 

N.A. 

Optional. 

Ul 
ttl 
o 
8 
H o 
Z 

H 
H 
H 

t:1 

~ 
~ 

~ 
~ 
ttl 

~ 
~ 



( 

W 
I 
W 
00 

PARAMETER 
NUMBER 

33 

34 
THROUGH 

49 

5~ 

NAME 

ITEM 
HANDLING 

MODES 

N.A. 

PHYSICAL 
I/O 
REQUIREMENTS 

Table 3-5 (cont). MIOC Parameters 

VALUE DESCRIPTION 

/:::. The items are to remain in the I/O 
OR buffers and their addresses are to 

LOCATE be supplied to this program. 

The items are to be moved from the 
MOVE I/O buffers to a work area for pro-

cessing by this program. 

This program requires that some items 
BOTH only be located a'nd that some be 

moved into the work area for pro-
cessing. 

Parameters 34 through 49 are reserved 

N.A. for the use of the operating system 
and are not available for use by the 
programmer. 

/:::. This program will use the automatic 

OR Physical I/O Control facilities and 

CALL wants them specialized according to 
parameters 51 through 55. 

This program contains its own MPIOC 
and the specialization of the MPIOC PRESENT 
is as indicated by parameters 51 
through 55. 

( 
f 

REQUIREMENTS 

Optional 

N.A. 

An MPIOC must be 
in the program. 
Whe~ this parameter 
is or CALL it 
will be included 
automatically. 
Otherwise, PRESENT 
must be specified 
and a separate MPIOC 
MPIOC must be 
written for this 
program. 

'I 
( 

CJl 
tzj 
() 
t-3 
H 
o 
Z 
H 
H 
H 

~ 
t-3 
~ 

~ 
~ 

~ 
~ 



( 

w 
I 
w 
1.0 

PARAMETER 
NUMBER 

51* 

52* 

53* 

54* 

NAME 

SUFFIX 

PCU 
ADDRESS 

WRITE 
VERIFICATION 

CONTROL 
OR MORE THAN 

ONE PCU 

VALUE 

x 

~ 

xxS 

~ 

V 

M 

B 

( 
>l 

Table 3-5 (cont). MIOC Parameters 

DESCRIPTION 

This single character, which must be 
the same as parameter ¢l of this 
MPIOC, is appended as a suffix to all 
tags in MPIOC. 

This is the Honeywell recommended 
address for the mass storage control 
unit, ¢4S· 

Tne address of the mass storage 
control unit. 

write verification is not required 
by this program unless otherwise 
specified. 

The automatic write verification 
is to be used by this program. 

The PCU number is to be specialized 
at execution time from the MCA. 

The PCU number is to be specialized 
at assembly time. 

( 

REQUIREMENTS 

Must be ~pecified. 

If ~4S is not 
acceptable, the 
user must specify 
a PCU address. 

Must be specified. 

Must be specified. 
When B is speci-
fied, the PCU 
number cannot be 
changed without 
re-assembly. 

! 

i 

I 
I 

til 
t:EJ 
() 
1-3 
H 
o 
Z 

H 
H 
H 

tJ 

~ 
:J>' 

~ 
~ 
~ 
Z 
1-3 



\ 

w 
I 

01>
o 

PARAMETER 
NUMBER 

55* 

NAME 

RWC 
DEFINITION 

VALUE 

l':. 

xxg 

VAR 

Table 3-5 (cont). MIOC Parameters 

DESCRIPTION 

The RWC will automatically be specia
lized depending on parameter 52. When 
parameter 52 is less than or equal to 
~7, a 56 is generated. When parameter 
52 is greater than ¢7, a 76 is genera
ted. This ensures that channels for 
the appropriate I/O Sector are used. 

Rwe to be used for all data transfers. 
Cannot be changed without re-assembly 
and must correspond to sector of PCU 
assignment. 

The RWC will be specialized from the 
communication area for each action 
macro call. 

REQUIREMENTS 

Must be specified. 

*Parameters 51 through 55 are the Physical I/O parameter set. The user must specify here the 
values of parameters 51 through 55 that he used in his MPIOC call if he specified parameter 
5¢ of this MIOC as PRESENT. If the programmer specified parameter 5¢ of this MIOC as ~ or 
CALL, he must specify in parameters 51 through 55 how he wants the automatic MPIOC specia
lized. Parameters 51 through 55 of MIOC are identical to parameters 1 through 5 of MPIOC. 
A detailed description of MPIOC is contained in Appendix B of this manual. 

fI l .. ~ 
( 

Ul 
t<J 
() 
8 

~ 
Z 

H 
H 
H 

t:l 
~ 
~ 

~ 
~ 

! 
~ 



• 

SECTION III. DATA MANAGEMENT 

Mass Storage Communication Area Macro - MCA 

The general function of the communication area macro is to set up 

a communications area. The MCA macro provides the interface functions 

between the programmer and the Data Management element of the operating 

system. The macro call to set up the communication area is MCA. There 

must be one MCA macro for each file to be processed by a given program. 

The MCA macro sets up a table (the communication area) in which all 

the necessary information to identify the file and all the desired 

processing options are placed. The macros to interrogate and alter 

the communication area are MUCA and MLCA respectively. Neither of these 

macros are required to be included in the program. These macros are 

described in detail in Appendix C of this manual. 

The MCA macro automatically generates a Physical I/O Communications 

Area (MPCA). This area has the same file prefix as specified by the 

user for MCA in parameter~. The Physical I/O Communication Area macro, 

MPCA, is described in Appendix B of this manual. 

MCA FORMAT 

EASYCODER 
COOING FORM 

PROBLEM PROGRAMMER DATE Pf4GE OF -

, 

CARD II~ LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

I 2 3 4 5 6 1 • 1415 2021 62 6, 

I L fAG IKe A. PAl(tlt"\~1 ~K'1 " ••• PA ~AM ETEM4 fr-he \un" ~\e..lt\ ('CJ{). 

I 
I icon+O-If'\ 'Q C 

I I 

MCA DESCRIPTION 

The requirements for the MCA Type field are the same as described 

previously for the MIOC Type field on page 3-29. The Location field is 

considered as parameter ~ of the MCA call. This field establishes the 

1-, 2-, or 3-character prefix to all tags using the communications 

area set up by the MCA. All action macros using this MCA communications 

3-41 

-

eo 



SECTION III. DATA MANAGEMENT 

area incorporate the prefix as parameter 1. The Operation Code field 

contains the MCA call, and the Operands field contains the parameters 

required by MCA. A list of the MCA parameters and an accompanying 

description follow. 

PARAMETER 1: Unique MIOC Character. This parameter is used to 

specify a single character that is identical to the character 

specified in parameter 1 of MIOC. The allowable characters 

are given in the description of MIOC Parameter 1 on page 3-29 

of this section. 

PARAMETER 2: Volume Address. This parameter is used to specify 

the address of a user supplied table containing the device 

address of the volume containing the file to be processed. 

The address specified must be a direct address of the left

most character of the table. The table should contain as 

many entries as there are devices associated with the file. 

Each entry should be three characters long and be word marked 

at its left-most character. There must be a record mark 

one character to the right of the last entry. The format 

of each entry is: PPDDxx (octal), where PP = the peripheral 

control unit number, DD = the device number, and xx ; the 

actual location of the left-most character. 

PARAMETERS 3 THROUGH 9: Parameters 3 through 9 are reserved 

for the use of the operating system. 

PARAMETER l,e5: I/O Buffer Address. This is the direct address 

of the left-most character of the data transfer buffer provid

ed by the user. There must be three record marked characters 

to the right of the buffer, which must be as long as one data 

block. There must be no item marks in the buffer when 

3-42 

.. 



• 

SECTION III. DATA MANAGEMENT 

Logical I/O is entered and a word mark may not be on the right

most data character in the buffer. When processing direct 

access files, word marks cannot be in the item key. The 

key field may, however, be word marked at its left-most 

location • 

PARAMETER 11: Alternate Buffer. This is the actual address of 

the left-most character of the second data transfer buffer 

provided by the user. When this parameter is specified by 

TAG, double buffering will be used. The format of the 

alternate buffer is the same as described for the buffer 

of parameter l~. When this parameter is left blank, single 

buffering is used. 

PARAMETER 12: Item-Delivery Mode. Parameter 12 gives the desired 

item delivery mode. It is used to specify whether an item 

is to be moved from the data transfer buffer to a user 

supplied work area (move mode) or whether the address of an 

item in the data transfer buffer is to be delivered to the 

user (locate mode). 

PARAMETER 13: Item Linkage. This parameter is used to specify 

the right end direct address of a user-supplied address 

storage area (index register or DSA). This is used in the 

move item delivery mode to contain the address of a user 

provided work area to or from which the item is to be moved, 

and in the locate item delivery mode to locate for the user 

the left-most character of the item in the buffer. The 

address storage area must be the length of one item and 

cannot contain item marks at the time the I/O is entered. 

3-43 



SECTION III. DATA MANAGEMENT 

PARAMETER 14: Insert Item Linkage. Parameter 14 specifies 

the right end direct address of a user supplied address 

storage area (index register or DSA) in which is contained 

the address of a user provided work area that contains an 

item to be inserted into a direct access file. The address 

work area must be the length of one item and cannot contain 

item marks when the I/O is entered. The item to be insert

ed must be placed in the work area by the user. In direct 

access file processing, the value of parameter 14 may be 

the same as parameter 13. 

PARAMETERS 15 AND 16: Parameters 15 and 16 are reserved for 

the use of the operating system. 

PARAMETER 17: Units of Allocation. This parameter specifies 

the actual address of a user provided table into which the 

Units of Allocation for the file referenced by this MCA will 

be placed when the file is opened for processing. 

When the file to be processed has more than one unit of 

allocation, the user must provide a table in which all the 

units of allocation for the file will be listed at the time 

the file is opened for processing. The units of allocation 

parameter (parameter 17) is the address of this table. 

When the file has only one unit of allocation, this 

parameter can be left blank and the system will generate 

the table and properly load it when the file is opened. The 

table provided by the user must be large enough to contain 

all the units of allocation applicable to the file. Each 

entry in the table must be 8 characters long to accommodate 

a unit of allocation (CICITITIC2C2T2T2) and must contain 

3-44 

,. 



SECTION III. DATA MANAGEMENT 

a word mark in the left-most location of each entry. 

There must be a record mark in the location immediately 

to the right of the last entry. A units of allocation 

table for a file with four units of allocation would look 

like: 

@C T T C C T T 

@C T T C C T T 

@C T T C C T T 

@C T T C C T T 

0 

PARAMETER 18: Direct-Access Bucket Addressing. This parameter 

is used to specify whether the buckets of a direct access 

file are addressed using relative keys or actual keys. 

PARAMETER 19: Parameter 19 is reserved for the use of the 

operating system. 

PARAMETER 20: File Name. This parameter is used to specify 

the name of the file to be processed. This name must be 

exactly the same as that assigned to the file and stored in 

the volume directory. It cannot be more than l~ characters 

long. 

PARAMETER 21: Password. This parameter is used as a file 

security measure that ensures that only those persons 

who have knowledge of the exact password assigned to the 

file can process (read or write) the file. The password 

parameter specifies the right end address of a user 

supplied field (word mark on the left-most location) in 

which he must place the password for the file. The pass-

word placed in this field must be exactly the same as 

3-45 



SECTION III. DATA MANAGEMENT 

stored in the volume directory. 

PARAMETERS 22 THROUGH 29: Parameters 22 through 29 are reserved 

for the use of the operating system. 

PARAMETER 30: Physical I/O Suffix. This parameter is used 

to specify a suffix to all tags written for the MIOC to which 

this MCA applies. The suffix specified in this parameter 

must be exactly the same as that specified in the parameter 

51 of the MIOC macro call. 

PARAMETER 31: Protection. This parameter is used to specify 

the type of physical protection desired for the file. This 

parameter is written as a two digit octal number. The physical 

protection afforded to a file by this parameter is as follows: 

OCTAL 
NUMBER 
~~ 
~2 
~6 
12 
16 

PROTECTION 
Enables No Writing 
Enables Data Write 
Enables A-File Write 
Enables B-File Write 
Enables A- and B-File Write 

In order for this parameter to be effective, the corres-

ponding switches on the Type 250 Control Unit must be in the 

PERMIT position. For a comprehensive explanation of the 

various types of write permits (enables), refer to 

Appendix F. 

PARAMETER 32: Verification Requirements. This parameter is 

used to specify whether or not data transfers are to be 

verified. When the verify option is exercised, all the 

data transfers from main memory to mass storage automatically 

will be verified. This ensures that each data transfer in 

this direction has been read back without errors. When such 

a read cannot be completed after several automatic correction 

attempts, appropriate notice is given to the user. 

3-46 



-.. 

SECTION III. DATA MANAGEMENT 

PARAMETERS 33 THROUGH 39: Parameters 33 through 39 are reserved 

for the use of the operating system. 

PARAMETERS 40 THROUGH 44: Exits. Parameters 40 through 44 

enable the user to exercise direct control over the operation 

of the I/O. For example, the user may desire to insert 

specific information into certain fields of *VOLDESCR* which 

have been set aside for the user. Another example is, 

when the I/O is unable to locate a file in *VOLNAMES* the 

programmer might want to inform the operator of the situation 

in a manner that is not within the capabilities of the 

I/O (for instance, through a teletypewriter). 

To achieve direct control, the user is provided with several 

exits. Each exit deals with a particular portion of the 

I/O. For example, a single exit exists for all situations 

involving the Volume Directory. 

Exits, therefore, to the user are mUlti-purpose. On the 

basis of an exit code, the user can take some action 

through his own coding. When the exit code is of no inter

est to the user, he: can return control to the I/O, re

questing that the I/O perform a predefined action. When 

more than one option is allowed upon return from the user's 

exit routines, the user sets up another code indicating 

his desired action or solution. For a further explanation 

of the exits, see I/O control Programmer's Preparation 

ILformation, page 3-100 of this section. The exits avail

able are the following: 

VOLUME DIRECTOR EXIT: This exit is taken whenever the 

information to be conveyed is pertinent to the 

3-47 



SECTION III. DATA MANAGEMENT 

Volume Directory. For example, the user wants to 

look at *VOLDESCR*, or the Open macro is unable to 

locate the file in a volume. 

INDEX EXIT: This exit is taken whenever information is 

pertinent to a particular file's member index. For 

example, the user specified SETM input/output and 

the SETM macro is unable to locate the member. 

DATA EXIT: This exit is taken whenever the information to 

be conveyed is pertinent to this file's data. For 

example, when the item is an end of data item on an 

input file, or when there is no more room on an 

output file this exit will be taken. This exit must 

be specified whenever the user expects to process to 

the end of an input file. 

DEVICE EXIT: This exit is taken when the information to 

be conveyed is pertinent to a device currently being 

used for this file. For example, when a READ or a 

WRITE error occurs, or when the device is inoperative 

this exit is taken. 

A summary of the MCA parameter is contained in Table 3-6. 

3-48 



( 

w 
I 

"'" \0 

PARAMETER 
NUMBER 

~~ 

~l 

~2 

~3 
THROUGH 

~9 

l~ 

11 

12 

13 

NAME 

FILE 
PREFIX 

UNIQUE MIOC 
CHARACTER 

VOLUME 
ADDRESS 

N.,... 

INPUT/OUTPUT 
BUFFER 
ADDRESS 

ALTERNATE 
BUFFER 

ITEM 
DELIVERY 

MODE 

ITEM 
.LINI<AGE 

VALUE 

1,2,or 3 
PREFIX 

CHARACTERS 

4 

TAG 

N.A. 

TAG 

TAG 

D. 

MOVE 

-
D. 
OR 

LOCATE 

TAG 

( 

Table 3-6. MCA Parameters 

DESCRIPTION 

These characters prefix all MCA tags. 
Action macros that are to use the 
communications area set up by this 
MCA must include this prefix. 

This character must be the same as 
specified in parameter ~l of MIOC. 

See preceding description of MCA 
parameter ~2. 

Parameters ~3 through ~9 are re-
served for the use of the operating 
system and are not available for use 
to the user. 

See preceding description of MCA 
parameter l~. 

See preceding description of MeA 
parameter 11. 

Thi~ file is single buffered. 

Items are to be moved to or from 
the I/O buffer from or to the 
work area. 

The address of the item in the I/O 
buffer is to be delivered to this 
program. 

See preceding description of MCA 
parameter 13. 

( 

REDUIREMENTS 

Must be specified. 

Must be specified. 

Must be specified. 

N.A. 

Must be specified. 

Optional. 

Optional. 

Optional 

Must be specified. 

CIl 
l'iI 
() 
8 

~ 
Z 
H 
H 
H 

~ 
~ 

~ 
Q ; 



w 
I 

lJ1 
o 

( 

PARAMETER 
NUMBER 

14 

15 
AND 
15 

17 

18 

19 

2~ 

21 

NAME 

INSERT 
ITEM 

LINKAGE 

N.A. 

UNITS 
OF 

ALLOCATION 

DIRECT 
ACCESS 
BUCKET 

ADDRESSING 

N.A. 

FILE 
NAME 

PASSWORD 

Table 3-6.{cont). MCA Parameters 

VALUE DESCRIPTION 

See preceding descriptio.n of MCA 
TAG parameter 14. 

The Direct Access file this program 
6 is processing does not require the 

insert function coding. 

Parameters 15 and 16 are reserved 
N.A. for the use of the operating 

system and are not available for use 
by the programmer. 

TAG See preceding description of MeA 
parameter 17. 

6 
Because this file was only one unit 
of allocation, no tag is necessary. 

6 Buckets are relatively addressed in OR 
RELATIVE binary for this file. 

ACTUAL The actual key, in binary, is given 
for buckets in this field. 

Parameter 19 is reserved for the use 
N.A. of the operating system and is not 

available for use by the programmer. 

This is the name of the file, as it 
l~ is in the volume directory, for which 

CHARACTERS this MCA is building the communica-
tions area. 

TAG 
See preceding description of MCA 
parameter 21. 

The password in the volume directory 
6 is blank, therefore this file is not 

protected by a password. 

( 

REQU IREMENTS 

Optional. 
Note that MIOC para-
meter ~4 must be 
specified as either 
1 or 2. 

N.A. 

Optional. 

Optional. 

N.A. 

Must be specified. 

Must be specified. 
when file is pro-
tected by a password. 

IP 
( 

, 

I 

til 
t:r:J 
() 
t-3 

~ 
Z 

H 
H 
H 

t:l 

~ 
»0 

~ 
i!) 
t:r:J 

~ 
~ 



( 

W 
I 
(]I 
I-' 

PARAMETER 
NUMBER 

22 
THROUGH 

29 

3¢ 

31 

32 

33 
THROUGH 

39 

4~ 

41 

42 

43 

44 

NAME VALUE 

N.A. N.A. 

PHYSICAL 4 I/O 
SUFFIX 

448 

PROTECTION 

6. 

'lERIFICP.'I'ION 6. 
REQUIREMENTS 

VERIFY 

N.A. N.A. 

VOLUME 
DIRECTORY TAG 

EXIT 

INDEX TAG EXIT 

EVERY INDEX 
TAG orL:::. ENTRY EXIT 

DATA 
TAG EXIT 

DEVICE TAG EXIT 

( 

Table 3-6.{cont.) MCA Parameters 

DESCRIPTION 

Parameters 22 through 29 are reserved 
for the use of the operating system 
and are not available for use by the 
programmer. 

This character must be the same as 
specified in parameter 51 as MIOC. 

See preceding description of MCA para-
meter 31 and Appendix F of this 
manual. 

The value for this parameter will be 
¢¢8· Thus, no writing is permitted. 

Data transfers to this file will not 
be verified. 

All data transfers to this file 
(writes) are to automatically be 
verified. 

Parameters 33 through 39 are re~ 
served for the use of the opera-
ting system and are not available 
for use to the programmer. 

See I/O control programmer's pre-
paration information regarding 
exits on page 3-100 of this section. 
Also see preceding description of 
MCA parameters 4¢ through 44. 

( 

REQUIREMENTS 

N.A. 

Must be specified. 

Optional. 

Optional 

N.A. 

Optional. 

Optional. 

Optional. 

Optional. 

Optional. 

I 
I 

til 
t:o::I 
() 
0-:3 
H o 
Z 

H 
H 
H 

t1 
~ 
:t-

~ 
~ 
~ 
~ 



SECTION III. DATA MANAGEMENT 

Action Macros 

The mass storage Action macros are summarized in Table 3-7. The 

following paragraphs describe the functions performed by these macros. 

The function performed by each macro varies according to the type of 

file being processed and the mode in which the processing takes place. 

In the following discussions, the term "Exit" is used as described 

previously in thi~ section. 

ACTION MACRO FUNCTIONS RELATED TO ALL SEQUENTIAL FILES 

Open Function 

The open function is used to open a file for processing. When 

the file is not partitioned, it is opened in the processing mode 

specified in the MIOC macro call. When the file is partitioned, 

however, the processing mode for the member is not specified until 

the set member function is executed. The following sequence of events 

occurs when the open function is executed. 

1. The appropriate file description is located in the volume 

description. If the file name cannot be located in 

*VOLNAMES*, an exit to the user is made. A return to 

the open function after this exit indicates that a new 

volume has been loaded and a new open attempt is to be 

made. 

2. If password checking is specified in the MCA macro, a 

comparison of the password given by the user in the MCA 

macro call and that stored for the file is made. When 

password checking was not specified in the MCA macro, the 

password field for the file is checked to see that it 

contains all blanks, i.e., no password. If either of these 

checks produce a discrepancy, an exit to the user is made. 

3-52 



SEC'rION III. DATA MANAGEMENT 

Table 3-7. Action Macro Calls 

PROCESSING SEQUENTIAL PARTITIONED SEQUENTIAL DIRECT ACCESS 
FILE ORGANIZATION FILE ORGANIZATION FILE ORGANIZATION MODE ACTION MACRO CALLS ACTION MACRO CALLS ACTION MACRO CALLS 

MSOPEN MSOPEN MSOPEN 
MSCLOS MSCLOS MSCLOS 
MSGET MSGET MSGET 

INPUT/OUTPUT MSREP MSREP MSREP 
MODE SETM 

ENDM 
MALTER 
MSREL MSINS 

MSDEL 

MSOPEN MSOPEN MSOPEN 
MSCLOS MSCLOS MSCLOS 

INPUT ONLY MSGET MSGET MSGET 
MODE SETM 

ENDM 

MSOPEN MSOPEN 
MSCLOS MSCLOS 

OUTpu'r ONLY MSPUT MSPUT NOT 
MODE SETM APPLICABLE 

ENDM 
MALTER 
MSREL 

.. 

3-53 



SECTION III. DATA MANAGEMENT 

At this point, processing will halt until the user either 

clears the password field for the file or includes the 

proper password for the file in the MCA macro call. After 

this, the user can again request that the file be opened. 

3. When steps 1 and 2 are successfully completed, exit is made 

to the user's coding so that he can, if he desires, examine 

the file description, *VOLDESCR*. A return form the user's 

coding at this point indicates either that the open 

function is to continue for this file or that, after 

examination of *VOLDESCR*, the user rejected the file and 

a new file is to be opened. (In the latter case, steps 1 

and 2 will be repeated.) If the open function for the 

original file is to continue, and that file is to be 

processed in the input/output or output only mode, 

*VOLDESCR* is written back to mass storage. The same holds 

true in the case in which a new file is to be opened after 

the successful completion of steps 1 and 2 for the new file. 

4. All information included in *VOLDESCR* that is required by 

other I/O functions is moved to the file's communication 

area. Generally, this is information that was not speci

fied when the MCA for the file was specialized. 

5. When the file is being opened in the output only mode and 

the item delivery mode in the MCA macro is specified as 

LOCATE, the address of the left-hand end of the first item 

location in the current buffer is moved to the field 

specified by the user in pararreter 1.0 of the MCA macro. 

Note that this step does not apply if the file is parti

tioned. 

3-54 



.. 

SECTION III. DATA MANAGEMENT 

6. An indicator is ~et in the communication area, showing the 

appropriate processing mode. Note that this indicator is 

not set by the open function when the file is partitioned. 

When this is the case, the SETM function sets this 

indicator because the processing mode for the member is 

not given until the SETM function is executed • 

Close Function 

The close function is used to close a file after processing. 

The following sequence of events occurs when the close function is 

executed. 

1. When the file that was being processed was not partitioned 

and the processing mode used for this file was output only, 

the close function ensures that all buffers have been 

written back to the device and that the item following the 

last item written back is truly an end-of-data item. An 

end-of-data item is signified by o EOD¢ in its first five 

character positions. 

When the file that was processed was partitioned and the 

processing mode used was input/output, the close function 

ensures that the current buffers have been written back to 

the device if a replace function was executed for any item 

in those buffers. 

2. An exit to the user's coding is mad~ at this time so that 

he can, if he wishes, examine *VOLDESCR*. 

3. A normal return to the close function from the user's exit 

routine causes the close function to write back *VOLDESCR* 

to the device, when the processing mode for the file was 

either output only or input/output. 

3-55 



SECTION III. DATA MANAGEMENT 

Get Function 

The get function is used to deliver the next sequential item in 

the file to the user. This function can only be executed in the input/ 

output and input only modes of processing. Note that "buffer priming" 

is accomplished with the first get function that is executed. When 

the get function is executed, the following sequence of events occurs. 

1. When the next sequential item is in the current buffer, it 

is examined to see whether or not it is an end-of-data item. 

When it is an end-of-data item an exit to the user's coding 

is made indicating that the end-of-data has been encountered. 

There should be no return from the exit, a close function 

or an end member processing function if the file is parti

tioned should be the next action issued for the file. 

2. When the next sequential item is not in the current buffer, 

the get function determines whether or not the current buffer 

is to be written back to the device. This determination ~ 

based on whether or not a replace function has been issued 

for any item in the buffer. When this is the case, the 

current buffer is written back to the device. Note that 

this step has no significance when processing is in the input 

only mode. 

3. Depending on the buffering mode being used, the get function 

causes the current buffer to be loaded with the next 

sequential block from the device. 

4. Step 1 is now repeated. If the next item is not an end-of-data 

item, it is delivered to the user established work area when 

move item handling mode was specified. When the locate item 

handling mode was specified, the address of the left-most 

3-56 



I 

SECTION III. DATA MANAGEMENT 

character of the next item in the buffer is delivered to 

the user established address field. 

5. When step 4 is completed, the get function returns to the 

user's main line coding after ensuring that the address of 

the item just retrieved is available to the user in the 

communication area in the following format: 

D M C C T T R R I I where D = the device number, M = the 

magazine number (always zero), CCTTRR = a mass storage 

record address and II = the relative item within the block. 

(When II = ~~ the current item is the first item in the 

block.) 

NOTE: The mass storage address, CCTTRR, can be presented 

to Physical I/O with an extended search and read 

instruction to cause the block containing the item 

to be"re-accessed. (Physical I/O is described in 

Appendix B of this manual.) This record is either 

the first record of the block containing the item, 

a track linking record that points to the first 

record of the block containing the item or it is 

the first record of a partial block, which is the 

last portion of the cylinder previous to the block 

containing the item. A partial block does not 

contain valid data. 

Replace Function 

The replace function is used to replace the item in the file that 

was retrieved by the last get function. This function, replace, can 

only be executed in the input/output processing mode. When a replace 

function is executed the following sequence of events occurs. 

3-57 



SECTION III. DATA MANAGEMENT 

1. The replace function sets an indicator in the communication 

area showing that a replace function has been issued for 

the item to which the last get function referred. This ensures 

that the current buffer is written back to the device after 

it is used but before it is overlaid with a new block. 

2. When processing in the move item handling mode, the item in 

the current buffer is overlaid with the item in the user's 

work area before the buffer is written back to the device. 

Put Function 

The put function is used to deliver items sequentially from main 

memory to the mass storage device. Recall that when processing in the 

locate item handling mode, either the open or the set member processing 

function places an initial item delivery address in the user's address 

field. The put function can only be executed in the output only process-

ing mode and when executed either of the two following actions occurs. 

1. When operation is in the move item handling mode, the put 

function moves the user's item to the current buffer. To 

do this, the put function first must determine if there is 

room in the current buffer for another item or if there is 

not. When no room is available for another item in the 

current buffer, the put function next determines whether 
. 

or not there is room in the file for another block of data. 

When there is no room in the current buffer for another 

item but the file can accept another block, the put function 

writes the current block back to the device, sets an indicator 

pointing to the new current buffer and returns to the user. 

When the file has no room for another block an exit to the 

user's coding is made. There can be no return from this 

exit and the next action issued for the file must be either 

3-58 



SECTION III. DATA MANAGEMENT 

a close function or an end member processing function 

(if the file is partitioned). When either of these is the 

case, the next action issued for the file will overlay with 

an end-of-data item the last item for which the put function 

was issued. This item, howeve4 will remain in the user's 

work area. 

2. When operating in the locate item handling mode, the address 

of the left-most character location of the next available 

item is moved to the user's address field by the put function. 

When this is done, the put function returns to the user's 

coding. 

ACTION MACRO FUNCTIONS RELATED ONLY TO PARTITIONED SEQUENTIAL FILES 

Set Member Function 

The set member function is used to start processing at the 

beginning of the specified member in the specified processing mode. 

The user has the option of requesting an exit after each member index 

entry is located by the set member function that shows an undeleted 

member. If this option is exercized, the name portion of the index 

entry is never interrogated by the set member function. Rather, the 

set member function supplies the user with the address of the left

most character location of the index entry. It is then up to the 

user to interrogate this member index entry and decide whether or not 

this is the member he desires. A return from the user's coding will 

cause either the continuation of the search of the member index or 

it will cause the opening of the member. Opening the member, in this 

case, depends on a valid member status, i.e., that the member is avail

able for processing. 

When the option is not exercized, the set member function execution 

3-59 



SECTION III. DATA MANAGEMENT 

causes the following sequence of events to occur when processing is 

to be in the input only mode. 

1. The member index entry for an undeleted member whose name 

is the same as that specified is located. When the name of 

the desired member cannot be found, an exit to the user is 

made. (This would be a good time to re-issue the set member 

function macro call and exercize the option just discussed.) 

2. When the name of the desired member is located, the address 

of the member's first item is set into the communications 

area for the file. 

3. When this is accomplished, the processing mode indicator is 

set to show input only processing in the communications area. 

A normal execution of the set member function in the input/output 

processing mode is the same as described for the input only mode 

except that the processing mode indicator in the communications area 

is set to show input/output processing. 

A normal execution of the set member function in the output only 

mode of processing will cause the following sequence of events to occur. 

1. A search of the member index is made for an undeleted member 

whose name is the same as that specified. When this member 

is found, a check is made to ensure that the member is avail

able for output only processing. When the member is not 

available for output only processing, an exit to the user's 

coding is made. At this point a new set member or close 

function can be initiated. 

2. When the search of the member index reveals that no member 

exists with the specified name, verification of the fact 

3-60 



I 

SECTION II I. DATA MANAGEMENT 

that there is room in the member index for another entry is 

made. If there is no verification of this, an exit to the 

user's coding is made and a ne,., action must be specified. 

3. When verification of the room is made, an indicator is 

set showing that a new member is being created. 

4. With this accomplished, the address of the first item of the 

unused area is set into the communications area for the file 

and the processing mode indicator in the communications 

area is set to show output only processing. 

End Member Function 

The end member function is used to close a member of a partitioned 

sequential file after processing. When the member is a new member, i.e., 

created by the previous set member function, and was created in the 

output only processing mode, the end member function generates a.member 

index entry for the new member. When the member index entry is generated, 

the end member function also appropriately decreases the length of the 

unused area recorded in the member index. In connection with this, 

it is sometimes necessary for the end member function to create a 

new end-of-index entry for the member index. 

When the processed member is not a new member, and was processed 

in either the input/output or the input only mode, the end member 

function ensures that all the buffers have been written back to the 

device. When the member was processed in the output only mode, the 

end member function also ensures that an end-of-data item has been 

generated for the member. 

The final operation of the end member function is the setting of 

an indicator in the file's communications area showing that no member is 

open. 

3-61 



SECTION III. DATA MANAGEMENT 

Alter Member Function 

The alter member function is used to change the specified member 

according to the values of the various parameters in the macro call. 

The user has the same option with the alter member function described 

for the set member function. In the normal execution of the alter 

member function, the following sequence of events occurs. 

1. The member index entry for the specified member is located 

and one of the following operations is performed: 

a. The member's status is changed to "available for output 

only processing." 

b. The member's status is changed to "unavailable for output 

only processing." 

c. After verifying that the member is available for output 

only processing, the member's status is changed to 

• "deleted." When the member's status is not "available 

for output only processing", exit to the user's coding 

is made. 

d. The member's current name is overlaid with a new name. 

2. When the member index entry for the specified member cannot 

be located, an exit to the user's coding is made. 

Release Function 

The release function is used to release the partitioned sequential 

file specified in the macro call so that no members exist and the complete 

data area is available for re-use. To do this, however, the file must 

be opened first. Note that whenever the release function is issued 

by the programmer, verification of the "availability for processing" 

status of the active member is not made by the release function. When 

executed, the release function moves the end-of-index entry in the 

3-62 

.. 



SECTION III. DATA MANAGEMENT 

member index to the second position in the index and the unused area 

entry (the first entry in the index) is set to point to the first 

data block in the file. 

The release function eliminates the need for deleting all the 

members of a file and re-allocating another partitioned sequential file. 

This can be very beneficial if the members of the file are used for 

the storage of temporary data or as work areas. The major drawback 

to this is that the original file has to be large enough initially to 

accommodate any subsequent member. 

ACTION MACRO FUNCTIONS RELATED TO ALL DIRECT ACCESS FILES 

Open Function 

The open function is used to open the file specified in the macro 

call, in the specified processing mode. Direct access files cannot 

be processed in the output only mode, consequently, either the input/ 

output mode or the input only mode must be specified. When the open 

function is executed, the following sequence of events occurs. 

1. The appropriate file description is located in the volume 

directory. If the file name cannot be located in *VOLNAMES*, 

an exit to the user is made. 

A return to the open function after this exit indicates that 

a new volume has been loaded and a new attempt is to be made. 

2. If password checking is specified in the MCA macro, a 

comparison of the password given by the user in the MCA 

macro call and that stored for the file is made. When 

password checking was not specified in the MCA macro, 

the password field for the file is checked to see that it 

contains all blanks, i.e., no password. If either of these 

3-63 



SECTION III. DATA MANAGEMENT 

checks produces a discrepancy, an exit to the user is made. At 

this point, processing will halt until the user either clears ~ 

the password field for the file or includes the proper pass-

word for the file in the MCA macro call. After this, the 

user can again request that the file be opened. 

3. When steps I and 2 are successfully completed, exit is made 

to the user's coding so that he can, if he desires, examine 

the file description, *VOLDESCR*. A return from the user's 

coding at this point indicates that the open function is to 

continue for the file or that, after examination of *VOLDESCR*, 

the user rejected the file and a new file is to be opened. 

(In the latter case steps I and 2 will be repeated.) 

4. All information included in *VOLDESCR* that is required by 

other I/O functions is moved to the file's communications 

area. Generally, this is information that was not specified 

when the MCA macro was specialized. 

5. After the appropriate information is moved into the communi

cations area, an indicator is set showing that the file has 

been opened. A second indicator is set that shows in which 

processing mode the file was opened. 

6. The actual key of the file's first item is set into the files 

communications area so that the first processing action is 

not required to specify a bucket address. 

Close Function 

The close function is used to close a file when processing has 

been completed. When the close function is executed, the following 

sequence of events occurs. 

3-64 



SECTION III. DATA MANAGEMENT 

1. The close function writes the buffers back to the device 

when a replace function or a delete function was issued for 

an item in the buffers, only 1f the file was processed in 

the input/output mode. 

2. The item count for the file is updated in *VOLDESCR*. 

3. An exit to the user is made so that he can examine *VOLDESCR*, 

only if the processing mode was input/output. A normal return 

from the user at this point causes *VOLDESCR* to be written 

back to the device. 

4. An indicator is set in the file's communications area showing 

that the file is closed. 

Get Function 

The get function is used to get an item as specified in the macro 

call. Because getting an item can be done by specifying an item key, 

a bucket address, both or neither, the operations performed when the 

get function is executed vary. 

When the get function macro call specifies a bucket address and 

an i£em key, the get function begins searching the specified bucket 

for an undeleted item with the specified key. When the item is 

located it is delivered to the user in either the locate or move item 

handling mode, depending on which was specified in the macro call. 

If the desired item is not located in the specified bucket, the 

cylinder overflow area is searched. When this is done an indicator 

in the file's communications area is set to show this. If the item is 

not in the cylinder overflow area, the general overflow area (if any) 

is searched and an indicator is set in the communications area showing 

this. If, at the end of the general overflow area (or at the end of 

3-65 



I 

SECTION III. DATA MANAGEMENT 

the cylinder overflow area when there is no general overflow area), 

the desired item is not located or an inactive item is encountered, 

an exit to the user is made indicating that the item is not in the fila. 

When only the item key is given in the macro call, the current 

bucket is searched for the desired item. This search commences with 

the next sequential item in the current bucket and continues in the 

same sequence of area searching as just described. 

When only the bucket is given in the macro call, the specified 

bucket is sequentially searched from its beginning for an undeleted 

item. No significance is placed on this item's key. When located, 

the item is delivered to the user in either the locate or move item 

handling mode, as specified. When there is not an undeleted item on 

the cylinder (from the beginning of the search), the cylinder overflow 

area is sequentially searched. If there is not an undeleted item in 

this area, the next subsequent cylinder in the unit of allocation for 

the file is sequentially searched, in the manner just described. This 

method of searching continues until either the end of the general 

overflow area (if any) is reached or until an inactive item is 

encountered. In either of these cases, an exit to the user is made 

indicating that there are no undeleted items in the file. 

If neither an item key nor a bucket address is given in the macro 

call, the current bucket, i.e., the bucket to which the last action 

referred, is sequentially searched, starting with the next sequential 

item. The sequence of events here is the same as that described 

for searching when only the bucket address is specified. 

3-66 



SECTION III. DATA MANAGEMENT 

Replace Function 

The replace function is used to replace in the file the item 

retrieved by the last get function when processing the file in the 

input/output mode. This function cannot be used when processing 

in the input only mode. 

When the replace function is executed, an indicator is set in the 

file's communications area indicating that a replace has been issued 

for an item in the current block. Next, the replace function verifies 

that the item to replace the original item is in the current buffer. 

With this done, t~e block is written back to the device before it is 

overlaid. 

Insert Function 

The insert function is used to insert items into the file as speci

fied by the parameters of the macro call when processing the file in 

the input/output mode. Like the replace function, the insert function 

cannot be executed in the input only mode. 

When the insert function is executed and the bucket address is 

given in the macro call parameter, a search for the next available 

item position is made from the beginning of the specified bucket. 

Recall that a previous get for an undeleted item sets an indicator in 

the file's communications area showing the location of available space 

in a bucket. The insert function interrogates the communications 

area to determine if the specified bucket has room for another item. 

If it does have room, the item is placed in the bucket. If, however; 

the communications area shows that the bucket does not have room, the 

cylinder overflow area is searched for space to insert the item. This 

saves a redundant search of the bucket by the insert function. When 

the cylinder overflow area is entered, an indicator is set in the 

3-67 



SECTION III. DATA MANAGEMENT 

file's communications area showing this. When there is no room in this 

area, the general overflow area (if any) is entered. Also, when this 

area is entered, an indicator is set. When room for the item is located, 

the item is moved from the user's item work area, established for 

inserting items, into the current buffer and this is then written back 

to the device. This is done regardless of the item handling mode. 

When there is no room in the file for the item, the item is not moved 

from the item work area and an exit to the user is made indicating 

that there is no room for the item in the file. 

When the bucket address is not given in the macro call and the 

insert function is executed, searching begins at the current position 

in the current buffer. The sequence of events from this point onward 

is the same as just described. 

NOTE: Duplicabeitem key checking is not incorporated into the 

insert function since the programmer may check for duplicates 

simply by issuing a get before each insert. 

Delete Function 

The delete function is used to delete the current item. To do 

this, the delete function sets the item's status character to deleted 

and sets an indicator that ensures that the current block is written 

back to the device. 

3-68 

.. 



SECTION III. DATA MANAGEMENT 

MSOPEN Opens a file for processing. 

FILE ORGANIZATION: Sequential and Direct Access. 

PROCESSING MODES: Sequential Files~ all modes. 

FORMAT 

Direct Access Files~ all modes except the Output 
Only mode. 

EASYCODER 
CODING FORM 

PROBLEM =~;:::::============~PR:O~GR::A:M:,ME~R~=====~OA:T:-E:::=. ___ PAGE _0,_ 

cr.RD il~WI LOCATION I OpeRATION I OPERANDS I' I 
NUMOE~:~I . CODE .:::--_____________________ --,± _________ ~ 

I 21341516"'6 , 14',!). ~ot21 62163 90 

DESCRIPTION: 

Location Field 

This tag references the first instruction in the generated coding. 

It can be any acceptable assembly tag~ but it is not required and can 

be omitted if desired. 

Operands Field 

File-tag: the file-tag is the 1, 2, or 3 character prefix speci-

fied in parameter ~ of the appropriate MCA. 

IN/OUT: This parameter specifies that the processing mode is to 

be Input/Output. 

IN: this parameter specifies that the processing mode is to be 

Input Only. 

OUT: This parameter specifies that the processing mode is to be 

Output Only. This cannot be specified for Direct Access files. 

UPDATE: this must be specified when the file being opened is a 

3-69 



I 

SECTION III. DATA MANAGEMENT 

Partitioned Sequential file that is to be processed in the INPUT/OUTPUT 

or OUTPUT ONLY mode. When the file being opened is a Partitioned 

Sequential file that is to be processed in the INPUT ONLY mode, this 

parameter can be left blank. This parameter cannot be used with Non-

partitioned Sequential or Direct Access files. 

EXAMPLES: 

The following coding will cause File-l (FLl) to be opened for 

processing in the INPUT/OUTPUT mode. 

EASYCODER 
COOING FORM 

The following coding will cause the Partitioned Sequential file 

FLX to be opened for OUTPUT ONLY processing and be tagged MYFILE. 

EASYCODER 
COOING FORM 

PAGE OF PRCB~EM _.:;.:;:===::::;::===;:::=============:..:PR=O:G:RA:M:M~ER~ _=-=-=-=-=-=-=-=-=-=_~OA:;TE 
cAROf~li'~i I' OPE.RA~I i I NUMOER !~'p! LOCATION CODE i OPERANDS L,-----------::::I 

II 213 4i!i,r;:71~ , 14';~, 20121 !! l J ,! 62:63 t ! , ., It! ,~ 

, 'I : i VJ,-"J:11F~/1S() PE.tJ,f.L'iy iJ,pJ)fl.r.E.) .. , I. , . . ,. . Ii 

2 " I:; ~ : I I ' I 

> ~::: 'ii ' b;;;;;! '= ';;;;; :::::::::::.;; ::::.;;;;;; ... , . . . L' . , .:::: .. I •• ;;;;;' • '::;oJ 

The following coding will cause the Partitioned Sequential file 

FLM to be opened for INPUT ONLY processing and be tagged INONLY. 

EASYCODER COOING FORM 
PR08LEM:::;,;;;::===::;::===,:=============:PR~OG~R:AM~M:,E::,R======~0A~TE~=~====:..:PA:G:E=~O:F~ 
'-CARD :TI"'I OPERAT'ON , I I I NUMBER !~,~, LOCATION CODE: OPERAND~ 

:~Ciii'~~:'~c~~~:::;:: ::;:: ~:::::::::::::;:::::: J:::::::::::::::~ 

3-70 



SECTION II I. DATA MANAGEMENT 

MSCLOS Closes a file after processing. 

FILE ORGANIZATION: Sequential and Direct Access Files. 

PROCESSING MODES: The mode in which a file was processed is not signi-

ficant to the MSCLOS macro. 

FORMAT 

EASYCODER 
COOING FORM 

PROBLEM PROGRAMMER DATE 

r:~yl/~1 
NUMBER ~!~I LOCATION I OPtAATION ! 

1 CODE ; OPERANDS 

/ 2 j 3 41!J G '7!e 141i5, 20 ZI 62163 

I 
; 

: ! iII.nv.Taa. IJ1SCl.f)S iPiIe-.t.Q.a. 
I I II ! 

1 1 / / -

DESCRIPTION: 

Operands Field 

File-tag: the File-tag is the 1, 2, or 3 character prefix speci

fied in parameter % of the appropriate MCA. 

EXAMPLE: 

The following coding will cause the payroll file FLP, tagged 

PAYROL, to be closed when processing has been completed. 

EASYCODER 
COOING FORM 

PAGE OF 

eo 

PROGRAMMER ______ DATE _.:.:" ===:..:PA:G:E::::-:..:O:.F==; 

CARD l\li~' I OPtAAnoNl I I 
PRCB~EM 

NUMOER I~!~I LOCATION COOE I OPERANDS . i / ,I, ,:,1,'/71. , "I", ,oj"~ I I I 1 / , I " I' /' II·'!·' /' / '/ I' /801 

:rU r! f~:L ~btP~: ';:::::::::::::::: :::::::::;:::: :,::: I::::::;;:;::: ::J 
NOTE: When the file being processed is a Partitioned Sequential file, 

the MSCLOS macro must be preceded by the ENDM macro. 

3-71 



SECTION III. DATA MANAGEMENT 

Retrieves the next sequential item in a file. 

FILE ORGANIZATION: Sequential and Direct Access files. 

PROCESSING MODES: Sequential Filesj INPUT/OUTPUT and INPUT ONLY modes. 
Direct Access Filesj INPUT/OUTPUT and INPUT ONLY modes. 

FORMAT 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER OATE PAGE OF 

I CARD 1'1"'1 
I NUMIlER I~,~! LOCATION OPERANDS I 

DESCRIPTION: 

Operands Field 

File-tag: the File-tag is the I, 2, or 3 character prefix speci-

fied in parameter ~ of the appropriate MCA. 

Bucket-tag: the Bucket-tag points to a user defined bucket address 

field. This parameter cannot be used with Sequential Files. 

Key-tag: the Key-tag points to a user defined field where the 

Item Key is located. This parameter cannot be used with Sequential 

Files. 

NEXT: this parameter is specified when neither the bucket or key 

is specified for Direct Access Files. This parameter cannot be used 

with Sequential Files. 

EXAMPLES: 

The following coding will cause the retrieval of the next sequential 

3-72 



SECTION III. DATA MANAGEMENT 

item in the sequentially organized accounts receivable file ACC, tagged 

INCOME. 

EASYCODER 
COOING FORM 

PR08LEM PROGRAMMER DATE PAGE OF 

CARD I~ !~i I OPE.RATION I 0 ER ANDS 
NUMllER P~! LOCATION CODE P - . 00 
IZll4:!J1r, 17Ia • 141~, 2021 ! I I II! , I,. !,! ,62 163,1, I. 1" 'I tu ~ r=~e~T r~;:=:::::: ::::::::::::::: :;:::: :.::: I::::: :;;: :;:::: ;: 

The following coding will cause the retrieval of the next item in 

a Direct Access File DAF, tagged INVTRY (inventory). 

EASYCODER 
COOING FORM 

PROGRMlMER DATE PAGE OF 

rcAROTr[~~j ! OP,-RATION I I I I NU:.iSER !t'~: LOCATION __ CODE OPERANDS I 
,,'1"'1"1':' . ,." .. '0;" I I I., I """ 1":"',1' I ,.,001 

:1 :i :iltb~t L r!lE,~rr~:::: ~: :::::: ::::::: :;: :;;; I:::::::: ;::: :;;;: 
The following coding will cause the retrieval of the next item in 

a Direct Access File FL8, tagged MYFILE. The bucket address is contained 

in the field tagged BUCKET and the Item Key is contained in the field 

tagged ITMKEY. 

EASYCODER 
COOING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

I Ct,RO n~1 I OP'-RATION I OPERANDS I 
NUMBER ~:P LOCATION CODE 

3-73 



SECTION III. DATA MANAGEMENT 

MSREP Replaces the last item retrieved. 

FILE ORGANIZATION: Sequential and Direct Access Files. 

PROCESSING MODES: Sequential Files1 INPUT/OUTPUT mode. 
Direct Access Files1 INPUT/OUTPUT mode. 

FORMAT 

EASYCODER 
COOING FORM 

PRCB~EM :;;;:;:;;:===:::::;===::;::==============~PR:O:G:RA:M:M::E:.R ::=-=-=-====:.::DA~T~E= :.::===:..:PA:::GE~~O:.F'=::; 
CARD i~0~1 LOCATiON i O"[RATiON i OPERANDS I' J 

NUMOER /:~) ~-,-_CO_D_E---oc"i~ _________________________ ---::± 
J, 7:3 4i~,r;11il1 . 141~ ~Olll! j $III t 6z&i !to 

I .. ~ ... _' , 

DESCRIPTION: 

Operands Field 

File-tag: the File-tag is the I, 2, or 3 character prefix speci-

field in parameter ~ of the appropriate MCA. 

EXAMPLE: 

The following coding will cause the last item retrieved to be 

replaced in File I, FLI. 

EASYCODER 
COOING FORM 

PROBLEM PROGRAMMER I DATE PAGE OF' 

I CARD ,~!~! LOCATION 
I OPERATION I OPERANDS NUMBER i~I~; I CODE ; , 

, I 2 3 415 6' 7 i B 14,)5. 20121 &2 .. 80 

I I I ILl iMt:;1?EP IFL.l. 
I 

, , 
I I I I , 
, -

3-74 



SECTION III. DATA MANAGEMENT 

MSPUT Delivers items sequentially from main memory to mass storage. 

FILE ORGANIZATION: Sequential Files. 

PROCESSING MODES: OUTPUT ONLY mode. 

FORMAT EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE OF -
CARD ~ ~I LOCATION 

! OPERATION I OPERANOS NUMBER I COOE 

6263 I 2 3 4 !J 6 1 i 6 \415 20 121 

I ! IL I/lnv:tfUJ nSPU.T IFi.le.-,1tUl 
I 

I ! J I I 
oJ 

DESCRIPTION: 

Operands Field 

File-tag: the File-tag is the I, 2, or 3 character prefix spec i-

fied in parameter ~ of the appropriate MCA. 

EXAMPLE: 

The following coding will cause the next sequential item to be 

delivered from main memory to File $ (FL$) at the location indicated 

by the tag ACCREC (accounts receivable). 

EASYCODER 
CODING FORM 

-

80 

PROBLEM PROGRAMMER __ _ DATE PAGE_OF_ 

I CARD ~ ttl I OP(R'TION I OPERANDS I I 

:01[r=t~F!"r.i\= :;::: :~:::: :::::::::::::::: ::;1:;::: :;:::: ~::~ 

3-75 



SECTION III. DATA MANAGEMENT 

Begins processing of a specified member in the desired mode. 

FILE ORGANIZATION: Partitioned Sequential Files. 

PROCESSING MODES: All modes. 

FORMAT 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE_OF_ 

I 

I 
: 
; 
! -

! I I I 
I i l ! I I 

I I ! I ..J.... J • II ~ 
! - -

DESCRIPTION: 

Operands Field 

File-tag: the File-tag is the 1, 2, or 3 character prefix speci

fied in parameter ~ of the appropriate MCA. 

Member-name-tag: the Member-name-tag points to the address of a 

user defined field that contains the name of the member desired. This 

parameter does not have to be specified if parameter 42 of the appro-

priate MCA was specified. 

IN/OUT: this parameter specifies the processing mode as INPUT/OUTPUT. 

IN: this parameter specifies the processing mode as INPUT ONLY. 

OUT: this parameter specifies the processing mode as OUTPUT ONLY. 

EXAMPLES: 

The following coding will cause the beginning of processing of 

Member G (MEMG) of File W (FLW) in the OUTPUT ONLY mode. 

3-76 



SECTION III. DATA MANAGEMENT 

EASYCODER 
CODII'<G FORM 

PR08LEM =;;;;:::===~~~~;===============~~O~~A~~~~=======,:::~=-
______ DATE _, ____ PAGE_OF_ 

IC'!"RO ~~~~i i OPE.RATION I --------~ 
: /iUMS"R it~: LOCATION I CODE I OPER ANDS I Ii 

.1213415'1),718 4'5 ! . \ 1 . 20 21 ! ' , ! 62 63 eo 

: I " i iLll ' ~iih: !pIiJj 11,ii1G, O:U:£: : : : : : :u, : : : : : : : : : : : : : : : : ::. :: i : : : : : :: ::::::::: i 
.l:!=:::::::ii ~;;;;;;. " --- . ":::; ---; ,C •• ,-, I '0:::: ,'" i 

The following coding will cause the beginning of processing of 

ACCREC (accounts receivable) of File 1 (FL1), tagged ElLING (billing) 

in the INPUT/OUTPUT mode. 

EASYCOD~R 
COOING FORM 

PRCB~EM PROGRAMMER DATE ____ PAGE _OF_ 

! CARD 1~'P:!i i OPE.RATION I 
, lilJMO::R !,'!~I LOCATION CODE ,I OPERANDS Ii i 
II -;13 4:5!;~7IG 14-,"---.:0·;;"'----------------------------,- I 

'I ~!18IL~=NG~~~,£~Ti~M~f~' L~.i~}~8~'C~,CtiB~LC~:,~,I~M~!~O~:u~r+I,t~~~~~~~~~~'~.'+;~~' ~~~~'~~~'-~'~9 
2 I I : i I ' I 
J;;:! ~il i !;' ';::: ':0::' "I~ "~~ 

NOTE: The SETM macro must be preceded by a MSOPEN macro. 

3-77 



ENDM 

SECTION III. DATA MANAGEMENT 

Stops processing of the current member of a Partitioned 
Sequential File. 

FILE ORGANIZATION: Partitioned Sequential File. 

PROCESSING MODES: The processing mode is not significant to the ENDM macro. 

FORMAT 

EASYCODER COOING FORM 
p~~~~~======~====~==========================~~:O:G:RA:M:M~ER~==========~~:T;E~ MGE OF __ =08LEM 
! CARD !~11;1 j ! OPE-RATION I i NUMOER i~!5: LOCATION ! CODE 

! 1 2! 3 4! 5 1;.71 e 

OPERANDS 

62163 60 

DESCRIPTION: 

Operands Field 

File-tag: the File-tag is the I, 2, or 3 character prefix speci-

fied in parameter % of the appropriate MCA. 

EXAMPLE: 

The following coding will cause processing of the current member 

of File D WLD), tagged OHBOY, to stop. 

EASYCODER COOING FORM 
PROBLEM :;:;;-;;::======::::;::======:;:::========================:~:O:GR:A:MM:E~R~========:::.:~= 
rcARD I~!~i I OPEeATION ! I NUMBER ,t:~L LOCATION CODE I 
,1 2 ~J 415 '~!7'6----:-"';''':-' ~':"::--::,o±,,::-, ------------------------;;1;-;---------:---;;;;1 

OPERANDS 

,I ~iLi'OHBOY Ie.IJ f}J1. 
! 

NOTE: The ENDM macro must precede an MSCLOS macro to close the file. 

3-78 

.. 



SECTION III. DATA MANAGEMENT 

MALTER Changes the specified member of a file as directed. 

FILE ORGANIZATION: Partitioned Sequential Files. 

PROCESSING MODES: The processing mode is not significant to the MALTER macro. 

FORMAT 

EASYCODER CODING FORM 
~~~::~====~~====~========================~~~O~GR~A~MM~E~R~==========~M~TE __ ~_======~R~AG~E~=-~O~F=~ 

@.l' I

DESCRIPTION:

Operands Field

File-tag: the File-tag is the I, 2, or 3 character prefix speci

fied in parameter ~ of the appropriate MCA.

Member-name-tag: the Member-name-tag points to the address of a

user supplied field that contains the name of the desired member.

AVAIL: this parameter changes the member's status to AVAILABLE

for OUTPUT ONLY processing.

UNAVAIL: this parameter changes the member's status to UNAVAILABLE

for OUTPUT ONLY processing.

DELETE~ this parameter changes the member's status to DELETED if

the member was available for OUTPUT ONLY processing.

New-name-tag: this tag points to the address of a user supplied

field that contains the new name for the member.

NOTE: Either one of the status changing parameters AVAIL, UNAVAIL, or

3-79

80

I,

SECTION III. DATA MANAGEMENT

DELETE or the New-name-tag parameter must be specified. The New-name-tag

parameter along with one of the status changing parameters also may

be specified.

EXAMPLES:

The following coding will cause the member tagged PDQ of File ABC,

tagged FILE1, to become available for output only processing.

EASYCODER
CODING FORM

_
____________ ~==============================~~~O~GR~A~M~ME~R~==========~MTE PROfJeEM

r--zA-Rl:J"lm~1 I OPE"ATION I OPER ANDS I
NUMBER I ~ R I LOCATION , CODE I .2'6'

PAGE

.-
The following coding will cause the member tagged O.K of File DIP,

tagged BEGIN, to have its name changed to RUN.

EASYCODER
CODING FORM

PROBLEM ~OGRAMMER MTE PAGE OF

OPERANDS

I I I IU iB£G.I N 'MYJL TF RD:IP , (),. J< RtJ.lJ
! I I I! I ! I I

The following coding will cause the member tagged XYZ of File 1

(FL1) to become unavailable for output only processing and have its

name changed to HERO.

EASYCODER
CODING FORM

PROBLEM --::;::.;:;:=====;::=================================:~~OG~R:A~MM:E~R~==========~M~TE~= .:..=======-,:PA~G::E-=~OF::,::::; .---=--r. ~ CARD ,-, j " OPEnATION I OPERANDS I NUMBER i~I~1 LOCATION
I CODE I

'~1 -+
1 21 J 415 If. 7 Ie 14115 20 II 62 163 I I ... "=",,,,- I

I I ILl I M,m T FI< FI -I YV Z Il Al.8.V tJ:ILI JI£8fJy I I I I I I , III I I I
I I I I I , I I

3-80

l MSREL

SECTION III. DATA MANAGEMENT

Used to free up the area occupied by a Partitioned
Sequential File.

FILE ORGANIZATION: Partitioned Sequential File.

PROCESSING MODES: The mode in which the file is processed is not
significant to the MSREL macro.

FORMAT

EASYCODER
CODING FORM

PROBLEM:;:;;;;:;::===::::;::===:;==============_~PR::O~GR~A~MM:E~R~=====~';--=
rc;;-ROI~:; \ OPERANDS

DATE

I

PAGE OF

I
I NUMBER jH~ I LOCATION

1 2 3 4 ~,r, 11 A I~ __ • .J..! ___ -J...~_-.-l-.......... ...J-.............. ..J-'-'-...... ..J-' 'I.... +J.-..-'-_.k-'. -'-'-'-1
I ;'.1 119n1/:taa M~;r.IIEui J,-,e~-..J.!tAf1J4.g .;..-' --'-'-~.'-'--'-~'"-'-'~~L~'----'~~~~.L....-i-'-'-'~~....J....,~........L~1

,001 &2:6)
.... t J . ! I • I

I I

~ , i I oJ . jJ I

DESCRIPTION:

Operands Field

File-tag: the File-tag is the I, 2, or 3 character prefix speci-

fied in parameter ~ of the appropriate MCA.

EXAMPLE:

The following coding will cause the release of the Partitioned

Sequential File (FL6) so that no members exist and the complete data

area of this file becomes available for use.

EASYCODER
CODING FORM

PROBLEM PROGRAMMER TE DA

CARD !T i~! ! OPERATION I OPERANDS I NUMBER li!~, LOCATION CODE

I Zl3 41!> 6 118 '411!> 70111 52,63

I I !/.i I IJII.SREL iFLb I

J .LL i i I

3-81

I

I

PAGE OF - -

00

SECTION III. DATA MANAGEMENT

Inserts an item into a Direct Access File.

FILE ORGANIZATION: Direct Access File.

PROCESSING MODES: INPUT/OUTPUT mode.

FORMAT

EASYCODER
COOING FORM

PR06LEM PROGRAMMER DATE PAGE_OF_

I
62163 00

CARD 'Ir~1 I OP["ATION ! OPER ANDS
NUMBER Iti~1 LOCATION CODE I

~. 4-G;T;,-111 a , t4li~ 20~
j ! iLl iII.fI.v;to a "'I1SINS 1Fi.! 11- taa g,U!'. /(('>1-,-1'0 /J ! !
1.111 ./1 j" J

,~ I I -

DESCRIPTION:

Operands Field

File-tag: the File-tag is the 1, 2, or 3 character prefix speci-
•

fied in parameter ~ of the appropriate MCA.

Bucket-tag: the Bucket-tag points to a user defined bucket address

field. This parameter is optional and can be omitted if desired.

3-82

SECTION III. DATA MANAGEMENT

EXAMPLES:

The following coding will cause an item to be inserted into an

inventory file (INV), tagged ATOPRT (automobile parts). The bucket

address for this item is contained in the field tagged WHEELS.

EASYCODER
COOING FORM

PROBLEM PROGRAMMER OATE PAGE_OF_

CAfiol"ffi!: ! OPEilATION 1_ OPERANDS
. I I N!JMBER ti~1 LOCATION ! CODE

I 2 3 41 ~ r. rd II 1411~ 2021 62,63 00

I
I LIJ8]OPRi V1.5INS 'lr/IJV W.HEEL$. I I

I
I II ! ! I I - -...,...

The following coding will cause an item to be inserted into File

X (FLX), tagged ACCREC (accounts receivable).

EASYCODER
COOING FORM

3-83

SECTION III. DATA MANAGEMENT

MSDEL Deletes the last item retrieved from a Direct Access File.

FILE ORGANIZATION: Direct Access File.

PROCESSING MODES: INPUT/OUTPUT mode.

FORMAT

EASYCODER
CODING FORM

PROGRAMMER ______ DATE _.:..:. ===:..:PA:G~E::=-:::OF::. _=-:::;
I CARD l~i~1 OCATION OPERATION OPERANDS

PROBLEM

:tJT~~1~~~i~~:-:!i:::: :;' -;;:;~:;::::::::;' :;[:::::::::::::::]
DESCRIPTION:

Operands Field

File-tag: the File-tag is the 1, 2, or 3 character prefix speci

fied in parameter ~ of the appropriate MCA.

EXAMPLE:

The following coding will cause the last item retrieved to be deleted

from the Direct Access File MON.

EASYCODER
CODING FORM

PROBLEM MOG RAMMER DATE PAGE_

'cAiio'TIJif I OPERATION I
NUMBER !~i~ LOCATION CODE OPERANDS I

1 2 3 415 J:; 7 I a 14"5 2012. 62 '63

I I I! 'M.<;DEL .~ I I

I
I ! i ! I !

3-84

-

10

SECTION III. DATA MANAGEMENT

Writing A Macro Call

The programmer writes a macro call at the point in his program

where a macro routine is to be incorporated. The Type Field contains

a C when all the parameter values for a particular macro routine do

not fit on one line and require continuation lines to follow; otherwise,

the Type Field contains an L. The Location Field may contain a symbolic

tag which, when written, is always interpreted as the value of parameter

¢. The Operation Code Field contains the name of the desired macro

routine (which is also the name on the PROG line of the routine). The

Operands Field contains the parameter values, written in order of

parameter number, starting with the value of parameter 1.

CONTINUATION LINES

A continuation line is used where a macro call cannot contain all

the parameters for a particular macro routine on a single line.

Although the first line of a multiple-line call is not a continuation

line, it indicates, with a C in the Type Field, that a continuation

line follows. The last continuation line contains an L in the Type

Field.

OMISSION OF PARAMETERS

A parameter value may contain any character except the comma.

The comma is used to follow each parameter value, including the last.

The comma also serves as a method of omitting a parameter value from

the macro call. Each missing parameter value is indicated by its

comma. However, any number of values may be omitted without their

terminating commas if no further values are needed. For example, if

a macro routine has 10 parameters (1 - 10) and the programmer wishes

the omit values 3, 5, 6, and 8 - 10, he may code the call as follows:

3-85

SECTION III. DATA MANAGEMENT

EASYCODER
COOING FORM

PROBLEM PROGRAMMER ______ DATE _. _. ___ PAGE _OF_

I OPERATION I
CODE OPERANDS I I

t411!;;

An alternative method of omitting parameter values is convenient

for omitting several consecutive values when more values are to follow.

Write the number of the next parameter not to be omitted in columns

15 and 16 of the next continuation line. Then write the actual value

of this parameter in the Operands Field and continue as usual. To

omit the first n values, do not write any values in the macro call

line, and write the number of the first parameter whose value is not

to be omitted in columns 15 and 16 of the first continuation line. For

example, if a macro routine has parameters 1 - 10 and values 2 and 6 - 9

are to be omitted, the programmer may write the following:

EASYCODER
COOING FORM

To omit values 1 - 4, 6, 7 and 10, the programmer may write the

following:

EASYCODER
CODING FORM

PROS EM L, PROGRAMMER DATE 'PAGE_OF_

r--cARD m
LOCATION ! OPE~ATION I

OPERANDS N'JMBER £I~ I CODE ~
I 2 3 " 5 6 71a 1,,115 .. 0 "t 6263 00

I
I 1'1 TfI.r;, ~I/H.E

~ I 5 VflL5
, I I I I

liC
I I L I,~ V.Il.L.r.', vflUh I
I

I I I , I

i
I I I I I I , I

3-86

SECTION III. DATA MANAGEMENT

The following example summarizes the complete relationship of the •

macro call, the generalized macro routine, and the macro routine after

it has been specialized and incorporated into the main program. The

macro routine is shown first in its generalized form.

EASYCODER
COOING FORM

PRO E 6L M PROGRA ER MM DATE PAGE OF

r--cARD Iq, OPERATION
OPERANDS NUMBER i~:U! LOCATION CODE

1 213 4, ~ j-G' 7 I e 14115 20,21 62,63 80

i , i fROG PROB
I SE.7P @ I

i I ' @¢¢, sCR 'J}f/J5Z£X +3. J,/)
I I I ~¢5;ZlID fJ. ¢¢..i +'i.@¢Z /.@.¢1J
i

, n flJ.,(M) fA(/J:i)Z.IJ1 I

I I I BC-r {M 5Z~/JA5
: I' ~M5.Z.EY 11 rbd , I (p, fP.5.ZC N. J1CW f#J.(j4), ~rJ.3+ 1.5
I I I I

'0 ! I
,

I I

" I : I lt1 vl i lA,
I i , J I I I. . , I I I

i I I !@¢5ZIt1 [XIV' @t){;
'2 ,.
,. I I IF)./D ,. I \ I I .. -

EASYCODER
CODING FORM

PROBLEM
":;;;~;:;;======;:~~~==========~PR~O~G~RA~MM~E~R=====-,==DA~TE~ _=. ___ PAGE_OF_
r C'RD Irr'l I My.. LOCATION I OPERATION OPERAr-;DS

.L ~
NUMBER Itl~i I CODE I

I 2 3 4 !, 611! Po 14'15, 20121
I" I

i ! ill J1r1,IN IP.ROG7ff(lr- : : .
.. I I : : : : ..~ : : : : : : : I

I I /' I ('. I
' I -L........ , : : : I: : : : : : : : : : : : : : : : : :

i , , , I I I I , ,
I

, ! I \ I \
I , ! It' , • ! I ! !

I ,
I I ./..) ! I I

I
I

'0

"

I I LI -rfJG.ER fROB. PUG 4 PR-.IN./,s{)!1. ,11.1 ,+..i.rPr) riacro CaJI.
! I -l- TflGE.R seR HilEX.fBI7IP. - S.J)jOCI.oJi 7f'.)Vf'r.~j ofl ,oJ-~ .f .h,e S/l./I1.e
i I I I1.1.Zl/.D IfI, riUG+'If1.:, (s...U,HJ. ,r'.o .t). illlt" .. T h.i 5. .i ,-<; i n.<I'!/-t ed. rli .t".e;d.J. v.
I I '" '5.U H)" J1J.z:IJ1. aj!ter. +he J1IocrlJ, .r itll.J, .ifl.-:the. fJ.y"fovt:
! I I 'BeT H.1.l.C NJ.J-.~ ,o.r.o.d.u,ced •
i I I }1.il.,EX R. 'dJ.rJ.

'2 J i lJ1.iUX. IJ1CW [(su/1.) , Pf?IJJ.T+15
Il

,. ,.
I I I /. /" I /' > , I (.\ I l

I I I I I I I I

j I . ,1 ,) .. I
,

. I J. j / i

'7 ,. I i I I
I I

I I 'MJ£.LH 'Dew. .fJ.¢¢
I I I

~ ..
20

2'

22

I I I I I
i I J1I1IM [p ROGf?lii/J. LI!..I1.t.l J ,t1.t. Jd. .c all . ~2
I I / /. i

~

: ! I . .r / T { , . . ,

. ~

3-87

SECTION III. DATA MANAGEMENT

~iting A Macro Routine

Some routines are Honeywell supplied (e.g. Input/Output Control

routines) while others may be written by the user. This section

explains how the user should write a generalized macro routine for

inclusion in the Library File.
c

PARAMETER DESIGNATORS

Parameter designators have the form pxy, where p is any alpha-

numeric character chosen by the programmer, and x and y form the decimal

parameter number from ~~ to 63. Although there is no restriction on

the characters that are assigned to p, it is the responsibility of the

programmer to ensure that the resulting parameter designators do not

duplicate the form of any other language element, such as a symbolic

tag. A control instruction, Se~ Parameter Designator (SETP), is used

to assign a value to p. SETP is written in the-Operation Code Field,

and the desired value for p is written in column 21. The value of p

may be changed at any time by writing another SETP instruction. If

the SETP instruction is not used, the value of p is assumed to be

octal 35, which prints as %. The following example illustrates

possible assignment of p.

EASYCODER COOING FORM
PROBL.~EM~;;:;;:;;:===:::;::===============--:: __ =-=PR~OG:R::AM:M~ER:" _=-=-=-=-=-=-=-=-=-=-~OA~T~E ==.:...:' ===:.:A:AG~E:::=-~OF: _=-::;

~I(~i ! OP(tlATION i j I
N~MDER t'~' LOCATION i CODE I OPERANDS ~I
III " ~,~r,t, A , .. ti; ;>O~;O1 • l 6;>16J \ 90

I 1 : i : : 'l i i : : :: : ~iip : @ :::::::::::::::::::::::::::::::,::::::: I : : : : : : : ~: : : : : ;
z I I : i ! i p;e.TP I¥ I I :tLLlII:;:: :G>O;:i:: ::;;::::::::: ~;: ::: ::::::: ::: ::;:: I:;:::::::::::: :J

Parameters are indicated by writing the currently assigned value

of p, followed by a parameter number (xy) which the programmer assigns
..

consecutively. When the routine is specialized, the parameter designator

is replaced by the explicit value supplied in the macro call. For

example, assume that parameter ~3 is an index register number. An

3-88

SECTION III. DATA MANAGEMENT

indexed address using that register with an augment of 1 would appear

within the macro routine as 1+Xp¢3. When the routine is specialized,

the parameter value (e.g. 5) replaces the designator p¢3, creating

the address 1+X5. Parameter ¢¢ is always used to indicate the tag,

if any, written in the Location Field of the macro call.

SELECTIVE OMISSION OF CODING

The programmer may desire that certain lines of coding be omitted

from the macro routine. The zone portion of y in the parameter

designator may be overpunched with R (+) or with X (-). An R (+)

overpunch indicates that if the value for parameter xy is blank or

omitted in the macro call, this line of coding is omitted from the

routine. An X (-) overpunch indicates that if the parameter value is

included in the macro call, this line of coding is omitted from the

routine.

Suppose, for example, that a macro routine computes a hash total

of a particular field on an optional basis. The field to be totaled

is parameter ¢l, and the field to contain the total is parameter ¢2.

The instruction in the routine to update the total would be coded

as follows:

EASYCODER
CODING FORM

PROBLEM PROGRAMMER DATE

CARD 1~I:':i
NUMBER ti~i LOCATION

I OPE~ATION
CODE OPERANDS I

I 2·3 4,5 6,71 e 14115 2021 62:6J

i I i I If/. ,Ml P/!J.11 !

I 1I I I I - -
Note that B is the result of overpunching 2 with R (+).

Conditional Statements

Conditional (COND) control statements may also be used to omit

lines of coding from the macro routine. The conditional statement may

have the following formats:

3-89

PAGE OF

00

SECTION III. DATA MANAGEMENT

EASYCODER
CODING FORM

PROBLEM _____________________ PRoGRAMMER ______ OATE _.:....:. ===:..:P:::AG:E::=-~O:.F=:::;

CARD lyT'I',,'i I OPEilAT ON I I "I LOCATION I CODE' , OPERANDS I
NUMBER ti~" i I

~6J~I::.: ·'e~fU::::::J::::::::::: :~l:: d': ~:~.~
nnnnn

fffffff

- card number of the next statement not to be omitted
when the condition is true.

- the Location Field of the next statement not to be
omitted when the condition is true.

The condition is coded as follows:

C Condition

~ Never true.
I True if value of pxy> v.
2 True if value of pxy = v.
3 True if value of pxy ~ v.
4 True if value of pxy L- V.

5 True if value of pxy ~ v.
6 True if value of pxy ~ v.
7 Always true.

The condition is tested by a binary compare of the value of

parameter xy (A address) against v (B address), followed by a branch

on condition test with a variant character of 4c (where c is interpreted

as shown in the preceding list). If c is true, all statements of the

macro routine (including additional COND and SETP statements, if any)

from this point up to but not including, the designated card number

or Location Field are omitted. All rules of the compare instruction

apply to the condition function. A void parameter produces an equal

result when compared to a field with up to 40 blanks.

EASYCODER
CODING FORM

PROBLEM:;:;;::===~~~=;=============-=PR~~O:GR::AM:M~E~R=====~DA~T:-E=====..:P::AG:E=~O:.F=:::;
I i

I .2'63 I J..c...< 001

OPERANDS

~~----~.............:;'°1dadi4q:p'f)i./:i2RmL:l:::::: :~~:: ::
I I ! , ,

3-90

..

SECTION III. DATA MANAGEMENT

When the conditional control statement in the preceding example

is processed, the value assigned to parameter ~2 is compared with the

literal value KRAM. If the parameter value is greater than KRAM

(since c = 1), the following statements are omitted from the routine,

up to statement ¢¢¢14, which is included in the routine. If the

parameter value is less than or equal to KRAM, no statements are omitted

from the routine at this point.

Had the conditional statement been coded as follows, statements

up to but notincluding the statement whose Location Field is JUMPAA~

are omitted when parameter ~2 is greater than KRAM.

EASYCODER
COOING FORM

PROBLEM PROGRAMMER DATE PAGE OF

CARD ~ ~I LOCATION
OPERATION OPERANDS NUMBER CODE

1 Z 3 415 6 7 • 1415 2021 62 63

I I rOND "3'U.t1.PAAA paZ k.R.II,/'1 i
I

I _.
TAG PREFIXES

Duplication of tags between the calling program and any of the

macro routines called for (or between two of the macro routines

called) must be avoided. To avoid duplication, it is recommended

that each macro routine be assigned a particular prefix and that

each of its tags be preceded by this prefix. The length of the tag

and its prefix must never exceed 6 characters. If the same macro

routine is to be called more than once by a single main program, the

tag prefix should be designated by means of a parameter to avoid

duplication. Thus, the tag prefix will be different for each insertion

of the routine.

ADDING A MACRO ROUTINE TO THE LIBRARY FILE

A generalized macro routine is prepared in the same manner as

any other program, except for the presence of parameter designators

3-91

so

SECTION III. DATA MANAGEMENT

to indicate the massing values. It is submitted to the Library File

Update program complete with its own PROG and END statements, for addition

to the Library File. The Library File Update is described in detail

in Section 4 of this manual.

I/O CONTROL PROGRAMMER'S PREPARATION INFORMATION

Program Organization

The routines making up the I/O Control facilities are designed

to take a minimum amount of memory locations in any given situation.

This is accomplished first by generating only the required coding for

processing a given program's files, and secondly by segmenting the

coding for those functions that are required on an infrequent basis

during program execution. Thus, While the coding to open or close a

file is required in any program, this coding is loaded into memory

only when the programmer issues an action call for one of these functions.

A multi-phase program further reduces the I/O memory requirements by

specializing separate MIOC macros with different processing capabilities

for each phase. In multi-phase programs, tag uniqueness is insured

because a unique character for all tags of each MIOC can be specified

by the user. The unique tag capability allows any other macro in the

operating system to be specialized into the same program. Each MIOC

called into a given program must originate at the same memory location.

This is the only restriction when multi-phase programs are being

executed.

MIOC SEGMENTATION

In certain cases, the user may wish to have MIOC assembled into

his program as a single segment. In most case, however, the user

will take advantage of the option to segment seldom used functions.

This is accomplished by assigning any letter from A to Z as parametec

l¢ of the MIOC macro call.

3-92

•

SECTION III. DATA MANAGEMENT

When segmentation is desired, the program using the I/O Control

facilities must specify segment names to assembly. Then, during

assembly of the segment that contains the MIOC macro call, the I/O takes

control of assembly segmentation until all the coding for the requested

resident and non-resident functions has been generated. The coding

for the resident functions is generated in the same segment of the

program that contains the MIOC macro call. The coding for each non

resident function requested is generated in an individual segment. Of

this non-resident coding, the first segment is xA, where x is equal to

the letter assigned as parameter l~ of the MIOC macro call. The second

segment is xB, the third xC and so forth until all the non-resident

function coding is generated. The last segment generated, always xZ,

consists of any user coding that followed the call for MIOC in the

segment that contained MIOC. Segment xZ will appear regardless of

whether or not user coding followed the MIOC macro call in its

respective segment. This means that if the segment containing the MIOC

macro call contains coding after the MIOC call, this coding will be

assembled in a segment different than the original.

When the call to the Supervisor to load the segment containing

the MIOC macro call is made in the Normal Start mode, loading proceeds

to the end of the resident MIOC coding. At the end of the resident

MIOC coding, MIOC will generate an Execute Statement at assembly time.

This statement causes the Supervisor to load the last MIOC segment,

xZ, without altering any Supervisor Communications Area fields other

than the Segment Name field. When the Supervisor completes this

loading, control is returned to the location specified in the user's

Execute or END Statement in the segment containing the MIOC macro call.

In this case, the user cannot assume that his original segment name

(i.e., the name of the segment containing the MIOC call) will be

preserved in the Supervisor Communications Area.

3-93

SECTION III. DATA MANAGEMENT

When the call to Supervisor to load the segment containing the

MIOC macro call is made in the Return or Special Start mode, coding

following the MIOC call is not loaded. When coding does follow the

MIOC call in the segment containing the MIOC call, it is the users

responsiblity to load that coding. This is accomplished by a request

to load Segment xZ.

For a description of the Supervisor's Normal, Return and Special

Start modes, see Section 2 of this manual.

Figure 3-6 illustrates the principles of program segment loading

by the Supervisor. In the Normal Start mode, Segment ~l would be

loaded, followed by Segment BZ. In the Special or Return Start mode,

only Segment ~l would be loaded. Note that B is assumed to be the

value assigned to parameter l~ of MIOC and that the user supplied

segment containing the MIOC macro call is defined as Segment ~l.

USER DEFINED SEGMENT
(INCL UDING MIOC Parameter 1% of MIOC = B.

RESIDENT CODING)

~l -
OPEN SEGMENT

BA

INSERT SEGMENT

BB
Non-resident segments.

· · ·
CLOSE SEGMENT

Bn
-

REMAINDER OF USER
SEGMENT %1

BZ

Figure 3-6. Program Segment Loading

3-94

SECTION III. DATA MANAGEMENT

SUPERVISOR RESTRICTIONS

To accomplish segment loading, MIOC must utilize certain fields

of the Supervisor Communications Area and make certain assumptions

about other fields.

The following fields of the Superyisor Communications Area are

altered during the loading of non-resident functions. These fields

are restored to their original values, however, as soon as a particular

loading sequence is completed.

1. Locations 74 and 75 (decimal) are altered to contain the

segment name of the currently needed segment.

2. Location 1~6 (decimal) is· altered to ensure that searching

for non-resident functions is in the most efficient direction.

This is done to ensure compatibility with the Series 200

Operating System - Mod 1 (Tape Resident).

3. Location 112 (decimal) is altered to Return Start mode.

4. When the program's search mode includes visibility, the

I/O will always search by program and segment name and

visibility. When visibility is not included, the I/O will

always search program and segment nam~. This is accomplished

by preserving the left-most bit of Location III (decimal)

and altering the five right-hand bits to indicate 2~8.

Any time a non-resident function is requested, it is assumed by

the I/O that Locations 68 through 73 (decimal) of the Supervisor

Communications Area contains the program name that contains the current

MIOC macro call.

CARD LOADING AND SEGMENTATION

When programs are being loaded from cards, those programs utiliz-

3-95

•

SECTION III. DATA MANAGEMENT

ing segmentation must observe certain segmentation limitations. To

facilitate segmented program loading from cards, non-resident functions

are placed on binary run files in the following sequence:

1. MSOPEN (When parameter 15 of MIOC is set to COMBINE, the

MSOPEN coding is one segm¥nt, otherwise, it is as many seg

ments as are necessary to achieve maximum memory usage.)

2. SETM (When parameter 12 of MIOC is set to COMBINE, SETM and

ENDM coding becomes one segment.)

3. MSINS (~en parameter 11 of MIOC is set to SEGMENT.)

4. ENDM (When parameter 12 of MIOC is 6 .)

5. MALTER

6. MSREL

7. MSCLOS

Note that the segment containing MIOC (or segments containing MIOCs

in a multi-phase program) must be loaded by the Card Loader Monitor

in the Return or Special Start mode. This is because, in the Normal

Start mode, MIOC searches through the non-resident coding segments

for segment xZ, the last MIOC segment.

Also note that in the segment containing the MIOC macro call, cod

ing cannot be written after this call.

To summarize, when loading segmented programs from cards, each

non-resident function can be called into the common overlay area only

once. Therefore, all action macros utilizing that function must be

executed before another non-resident segment is requested. Because

of this, functions must be requested in the order listed previously •

•

3-96

..

SECTION III. DATA MANAGEMENT

MIOC - PHYSICAL I/O RELATIONSHIPS

MIOC does not issue PDT or PCB instructions. MIOC does, however,

interface with the mass storage Physical I/O (described in Appendix B

of this manual) which does issue such instructions. Normally, the

user re~ests that MIOC call and utilize Physical I/O Control (MPIOC).

This request is made through parameters 5~ through 55 of the MIOC

macro call. In some cases, however, the user may want to call MPIOC

himself. This is done by assigning the value PRESENT to parameter

5~ of the MIOC macro call.

MCA - PHYSICAL I/O RELATIONSHIPS

The user is required to have one MCA for every file he intends

to process in a given program. Each MCA macro automatically generates

a Physical I/O Communication Area (MPCA). The user may desire to

interrogate some of the fields in the MPCA and does this by writing

a MUCA macro call (described in Appendix C of this manual). Because

the MCA macro uses the MPCA exclusively, the user should never attempt

to alter the contents of any of its fields.

Read/Write Channel Utilization

There are two data transfer rates applicable to the mass storage

devices. Data transfer rates for the Type 258 and 259 Devices can only·

be accomplished by interlocking one and one-half channels (such as 1 A

and 3 or 4A and 6). For the Type 259A Device, any single interlocked

channel is sufficient. When parameter 55 of MIOC is not specified,

channels 2 and 3 or 5 and 6 (depending on the I/O sector of the control

unit specified or implied - in parameter 52 of MIOC) is used for

mass storage operations. Current location counters in control

memory are not referenced.

When the user needs a slower data transfer rate, he must specify

a different read/write channel combination to MIOC, and, when applicable,

3-97

SECTION III. DATA MANAGEMENT

to MPIOC. This is.done through parameter 55 of MIOC and parameter ~5

of MPIOC.

Address Mode

The address mode for all Logical I/O macros must be the same.

Also, each time the user enters the I/O through a macro call or the

I/O returns to the user (normally or through an exit) from a macro

routine, the address mode must be the same as that of the macro call.

Index Registers

MIOC, together with Physical I/O, uses and restores index registers

X3, X4, X5 and X6. These registers are restored to their initial values

whenever a return from the I/O is made to the users coding. It does

not matter whether the coding is in the main line of the program or

in an exit routine. Index registers X3 and X4 are restored at the last

possible moment before the return is made. Hence, they should not be

used as a linkage parameter to MCA. Index registers X5 and X6,

however, may be used as linkage parameters, since they are restored

earlier.

Index resisters are saved and restored with MCW's. The MCW's are

from or to each respective register to or from DSA fields in MIOC. The

length of the DSA fields is consistent with the current addressing mode.

MIOC sets its own index register values with the LCA instructions.

Because of this, the user should always punctuate the registers in the

normal manner. Namely, word marks should be placed in locations l~,

14, 18 and 22 in the three character addressing mode and at locations

9, 13, 17 and 21 in the four character addressing mode. The permanence

of any other punctuation is not guaranteed.

Direct Access Addressing

Direct Access bucket addresses can be relative or actual. A

relative bucket address is one in which the bucket's address is the

3-98

..

..

SECTION III. DATA MANAGEMENT

same as its numeric position from the beginning of the file. In this

case, the first bucket in the file is number ~~~ and each bucket follow

ing increments this number by one. An actual bucket address is one that

is the exact mass storage address of the beginning of the bucket. When

a bucket address is not included in an Action Macro call, the address

of the bucket which the last Action Macro call used is used again.

The user must generate a field in which bucket addresses are stored.

Bucket addresses then are delivered to the I/O from this field, whose

right-most location is specified by parameter ~2 of the Action Macro

call. This field can have either of the following octal formats.

1. Relative Address Field. This field must have four character

positions and the left-most of these must be word marked.

This field will contain the exact sequence number of the

bucket within the file. The sequence number of the bucket

will be in binary.

2. Actual Address Field. This field must have eight character

positions and the left-most of these must be word marked.

This field will contain the address of the first record

in the desired bucket. The record address is in the form

DMCCTTRR~ where D = device number, M = magazine number

(~~8)' CC = cylinder number, TT = track number and RR =
record number.

Direct Access Item Key Specification

For a GET macro to retrieve an item in direct access processing,

the item must contain an identifying key. This key is specified by

the user. The length and location within the item are specified when

the Direct Access file is allocated. This information is placed in

the file description portion, *VOLDESCR*, of the Volume Directory.

When a GET action is issued, the I/O retrieves these fields from

VOLDESCR •

3-99

SECTION III. DATA MANAGEMENT

The address of the right-most location of a field that contains

the desired key value is specified by parameter %3 of the GET Action

Macro. When items are to be retrieved by searching for the correct

item key, parameter %3 of the GET Action Macro must be specified. The

field that contains the key value is set up by the user and must con

tain a word mark in its left-most location. The corresponding field

within the item need not contain a word mark, but, if desired, the

left-most character of the item key field may contain a word mark.

The word mark set up by the user in the key value field terminates

the operation when the key value field and the item key field are

compared.

Exits And Halts

There are five exits associated with MCA. Each exit pertains to

a specific area of I/O processing. These exits are specified in

parameters 4% through 44 of MCA (see Tables 3-8 through 3-12) and

are as follows:

1. Parameter 4% - Volume Directory Exit (see Table 3-8).

2. Parameter 41 - Index Exit (see Table 3-9).

3. Parameter 42 - Every Index Entry Exit (see Table 3-10).

4. Parameter 43 - Data Exit (see Table 3-11).

5. Parameter 44 - Device Exit (see Table 3-12).

The exit codes associated with each type of exit identify the

reason for the I/O taking the exit. These are contained in individual

lists following this description. Whenever any of the MCA parameters

4% through 44 are specified, the user must provide coding by which

he can interrogate the exit code. The coding provided by the user

normally is tagged with the name of the exit type, i.e., if parameter

3-100

..

,;,

SECTION III. DATA MANAGEMENT

43 is specified the coding would be tagged DATEX for Data Exit. This

coding must be preceded by a Dew in the location immediately before

it. The exit code is moved into this Dew whenever an exit for the

specified parameter is taken. Also the return code must be moved

into this Dew When the user has completed the interrogation.

For example, suppose that a user wants to specify a Device Exit

(parameter 44 of MCA) only to re-attempt to correct read and write

errors. The exit code for the read error is ~6 and for the write

error 1¢ (this is an unsuccessful write verify). The user can specify

one of three return codes to the I/O. A 21 return code means that

the I/O is to automatically re-attempt to correct the error. A 52

return code means that the I/O is to ignore the error and continue

processing if possible and a 7~ return code means halt. The following

coding illustrates this example.

EASYCODER
CODING FORM

, i i : ~; r,I1LL rr.O !1.CO! . I
00

•

, , I .. I
,

i I ! , I

"'I~

11 I i i I I ..
i nV8.ET 18 1 I

I I I
! " i I I '(!:?ER I i

20 I I i I ~TER.

.' I i I i

BETURN XO ,I./{), ,

~ 1

Zl I 1 i 1 ,
'4

""---'
3-101

(

w
I
~

o
N

EXIT
CODE

%1

11

¢3

¢4

14

24

¢5

Table 3-8. MCA Parameter 4% - Volume Directory Exit

RETURN
REASON FOR EXIT CODE RE'ruRN CODE MEANING

The Volume Directory description, *VOLDESCR*, for the 1,0 Continue processing.
file has been read into memory and can now be inter-
rogated by the use of a MUCA macro. An ADP points to
the left end of the entry. For a description of ADP 2% Re-open the file.
and the MUCA macro, see Appendix C of this manual.

At the end of file processing - after MSCLOS reads
VOLDESCa in memory and before writing it back to
mass storage, *VOLDESCR* can be interrogated by the 1% Continue processing.
use of a MUCA macro. An ADP points to the end of
the entry. For a description of the MUCA macro and
an ADP, see Appendix C of this manual.

The file name specified in the MSOPEN macro cannot 4% Halt.
be located in *VOLDESCR*.

21 Re-open the file.

The units of allocation table set up by the user is 4¢ Halt.
not large enough to hold all the units of allocation
for this file. 21 Re-open the file.

When this file was allocated, a password was placed 4¢ Halt.
in the Volume Directory. The password in this MCA
is present but not correct. 21 Re-open the file.

When this file was allocated, a password was placed 4¢ Halt.
in the Volume Directory and there is no password
in this MCA. 21 Re-open the file

A discrepancy exists between the units of allocation 4¢ Halt.
specified in the MCA and that recorded in *VOLALLOC*
for this file. 21 Re-open the file.

•
(

" ,', (

,

!

[Jl

tzJ

~
H o
Z

H
H
H

~
~

~
Gl

2
~

(

w
I
I-'
o
W

~

EXIT
CODE

913

13

914

14

24

(

Table 3-9. MCA Parameter 41 - Index Exit

RETURN
REASON FOR EXIT CODE

The SETM macro cannot locate the specified member 4~:1
in the Member Index

6

491
The M~TER macro cannot locate the specified member
in this file. 6

491
The SETM macro has been requested to create a new
member but there is no room in the Member Index for
another entry. 6
The SETM macro has been requested to set the proces- 491
sing mode of an existing member to the Output Only
mode but the status of that member makes it unavail-

6 able for Output Only processing.

The MALTER macro has been requested to delete a member 491
whose status makes it unavailable for Output Only
processing. 6

•

(

RETURN CODE MEANING

Halt.

Issue a new action
to continue processing.

Halt.

Issue a new action
to continue processing.

Halt.

Issue a new action
to continue processing.

Halt.

Issue a new action
to continue processing.

Halt.

Issue a new action
to continue processing •

•

Ul
tzj
()
.-3
H
o
Z
H
H
H

t:I

~
~

~
~

I

w
I

......
o
~

(

EXIT
. CODE

¢l

•

•

Table 3-10. MCA Parameter 42 - Every Index Entry Exit

RETURN
REASON FOR EXIT CODE RETURN CODE MEANING

The SETM macro will
control the inter-

3~ rogation and either

The SETM action is the current function and a member accept or reject

index entry is available for interrogat;ion by using this entry.

a MUCA macro. An ADP points to the left end of the
This member associated entry. For a description of the MUCA macro and an
with this entry should ADP, see Appendix C of this manual.

11 not be processed and
another entry should
be delivered.

The member associated
52 with this entry should

be processed.

(.. (

til
t:<j
(')
t-3
H o
Z
H
H
H

~
~

~
! z
t-3

(

w
I
I-'
o
U1

•

EXIT
CODE

,01

11

34

,03

13

~4

NOTE:

~

(
..

Table 3·-11. MCA Parameter. 42 - Data Exitl

RETURN
REAS ON F OR EXIT CODE

'Nle GET macro has been issued and the end-of -data item 4,0

has been detected.
6.

The PUT macro has been issued and there is no more 4,0

room for more data in the file.
6.

The SETM macro has been requested to create a new 4,0

member and there is no more room in the file for a
new member. 6.

4,0
The GET macro cannot locate the specified direct
access item key. 6.

4,0
The INSERT macro cannot locate an available item
position in the Direct Access file.

6.

An invalid bucket addre~f' has been specified to the
4,0

current direct access function.

6.

1. This exit must be specif ied \V'henever the I/O will never reach
an end-of-data situation.

(

RETURN CODE MEANING

Halt.

Issue a new action to
continue processing.

Halt.

Issue a new action to
continue processing.

Halt.

Issue a new action to
continue processing.

Halt.

Issue a new action to
continue processing.

Halt

Issue a new action to
continue processing.

Halt.

Issue a new action to
continue processing.

Ul
t:z:I
()
1-'3
H
o
Z

H
H
H

tj

~
~

~
~
I.)

~
~

w
I
I-'
o
0\

(

EXIT
CODE

~l

~2

~3

~4

~.5

~6

~7

l~

11

12

Table 3--12. MCA Parameters 44 _ Device Exit 1

RETURN
REASON FOR EXIT CODE RETURN CODE MEANING

Device inoperable

Protection violation.

Device error (after five attempts to position
the device).

Formatting error.

The addressed record cannot be located (after-
five attempts).

Uncorrectable read error. The data, however, h~
been transferred after l~ attempts.

Uncorrectable read error. The data, however, has
not been transferred after l¢ attempts. (The
Header may contain a read ecror.)

Uncorrectable write error. The last write could
not be verified after l~ attempts.

A track linking record has been read into memory.

The attempt to track link to the next track in this
file has not been completed after l~ tries.

21 Re-~ttempt the opera-
tion that caused this
error.

52 Ignore the error and
continue processing
if possible.

7¢ Halt.

NOTE, 1. When one of these exits is taken. a device error exists. Any
Return Codes listed are applicable to all device prror exits.

.. • (•
(

rn
t'iI
()
t-3
H
o
Z
H
H
H

t1

~
»0

~
~
t'iI

I

SECTION III. DATA MANAGEMENT

FILE SUPPORT

File Support consists of a set of routines to perform frequently

desired functions on files stored on mass storage. These functions

are allocate/deallocate, load/unload, and map. The allocate function

is used to assign areas of the volume to files as requested by the

user and to update the Volume Directory accordingly. This routine

also causes formatting and initialization of newly allocated files.

The deallocate function removes from the Volume Directory all entries

for a named file. This makes available for future allocation all areas

used by this file. The load function is used to load files from

cards, tape, or another mass storage volume. The unload function

unloads files from a mass storage volume onto cards, tape, printer,

or another mass storage volume. The map function is used to obtain

a printed listing of the contents of the Volume Directory.

All the File Support routines specialize themselves at execution

time based on parameters supplied by the user in the job control state

ments. It is not necessary to perform an assembly operation to

specialize these routines to perform operations on a particular file.

Because of the structure of the system, a single File Support

run can proceed from file allocation through file loading without

operator intervention. This single run may perform operations on many

files. File support also includes the capability of execution time

inclusion of user's own coding routines for such purposes as randomiz

ing of keys and end-of-file exits. These routines must reside in the

same file as the file support routines1 namely, the System File.

For one or more file support functions to be executed, job

control statements must be input from the card reader for each

desired function. These statements must be punched according to the

general format of the job control statements described later in

3-107

SECTION III. DATA MANAGEMENT

this section. The user may request one function or many functions

within one execution of File Support. Within any function one opera

tion or many operations may be performed. For example, a single

execution of File Support might include the following functions~

Deallocate, Allocate, Load, and Map. Within the Deallocate function

there might be four File Statements indicating four files to be

deleted. Functions will be performed in the order of the requests.

Thus a request for Allocation of a given file should always precede

a request to load that file. Also, a request to load File-A, File-B,

and File-C will load them precisely in that order. There must be one

indication of end of job control statements per execution of File

Support. This indication must be either on or following the last

job control statement of the last File Support function requested.

End of job control statements are indicated by an E in column 7.

Allocate Function

DESCRIPTION

The allocate function is used to assign space to a file on mass

storage. Every file on mass storage must be allocated before it can

be loaded. The allocate function checks the areas specified for the

file, to ensure that no other file occupies any of the are3, and

updates the Volume Directory to reflect the new file.

The user must supply the name of the file, the file organization,

and the units of allocation for the file. A maximum of six units of

allocation per file per volume can be specified.

The allocate function is requested by a Function Statement whose

first parameter is ALLOCATE. This statement may be followed by FILE,

SIZE, UNITS and MEMBER Statements. These can appear in any order after

3-108

..

SECTION III. DATA MANAGEMENT

the Function Statement. More than one file may be allocated by a single

Allocate Function Statement. This Function Statement is followed by

as many sets of File, Size, Units, and Member Statements as there a~

files to be allocated.

ALLOCATE FUNCTION JOB CONTROL STATEMENT

Format

EASYCODER
COOING FORM

PROBLEM PROGRAMMER OATE PAGE OF

CARD -mIl
NUMBER ~i~i LOCATION

I 2 J .. 5 6 7 i 8

I , i'
I I I

! I !.
I I

, :
! I III .
i I f
: I

I I

'0 I

" I I I
.. I I
.. I !
" . i i
" I I '

" I !

17 I i
II I I i
" ; I
20 I I
.. ! i
• 2 I I I I

23 I I I

.. I I

.. I i

21 I I

'7 I I I i I
,. I I

I OPEitATiON I i CODE

141t5 lO 21

~UJ!LT. B.LLOr fiT£.,
iF.I..LE JJ.ftf1E::.,..{}/ 'e.- .nam.t!./,

,(PR. i?r.! "
DIR

PROT: 1t1
J8

Description

OPERANDS

00

() n-:t. itltlll 1, ,

'.fJ:t:f .0.11.0. J.
dO.!. i.(lno. J.
':O:r.i./J.nQ.l . , .. I
I'n.t:i./J.na. I.

fThe. Si.:7.e S:tllr.e
'me.n:t. ,.~ ,1)1J.Tin,nIJ.L I

iQ.J}'f.i A nil j .

FUNCTION STATEMENT: The Function Statement contains the Operation Code

FUNCT and the Operand ALLOCATE which specifies to the system what

function to perform.

3-109

SECTION III. DATA MANAGEMENT

FILE STATEMENT: The file to be allocated is identified by the File

Statement, whose first parameter is NAME. The File Statement is

required.

Name Parameter: The Name Parameter (NAME) gives the name of the

file to be allocated. This is a required parameter and can

be up to l~ characters long. When it is less than l~ char

acters long, trailing spaces are automatically added. File

and member names cannot begin with a character whose octal

value is 2~ (+), 4¢ (-), 6¢ (l) or l), or 77 (l) or ¢).

All numeric values in the parameters, following the key

words, are in decimal format.

Organization Parameter: The Organization Parameter (ORG)

specifies the organization of the file to be allocated

as sequential (SEQ), Partitioned Sequential (PART),

or as Direct Access (DIR). This is a required parameter.

General Overflow Parameter: The General Overflow Parameter

(GENOV) applies only to Direct Access Files. It specifies

whether the file is to contain a gener~overflow area or

not. The assumed condition, when this parameter is not

specified, is that there will be a general overflow area.

Key Parameter: The Key Parameter (KEY) is required for Direct

Access Files and cannot be used with Sequential Files. This

parameter specifies both the position and length of the Key

Field. The position part of the parameter indicates the posi

tion in each item of the high order end of the Key Field.

The first character of the item is character ~~~l. The

length part of the parameter indicates the length in char

acters of the Key Field.

3-110

SECTION III. DATA MANAGEMENT

Password Parameter: The Password Parameter (PW) specifies the

password to be placed in the Volume Directory entry for the

file. The password can be up to 8 characters long. However,

when it is less than 8 characters, trailing spaces auto-

matically are added. When the password parameter is omitted,

(it is not a required parameter) the password field in the

Volume Directory entry is set to spaces and no password

checking is performed.

Expired Parameter: The Expired Parameter (EXP) specifies the

year and day that the file being allocated expires. The yy

portion of the parameter gives the tens and units digits of

the year of expiration. The ddd portion of the parameter

gives the day of expiration. The day of expiration is

determined by counting from January I as day ~~l. When

this parameter is not specified, the assumed value is ~~~~~.

Protection Parameter: The Protection Parameter (PROT) gives

the type of write protection to be assigned to the file.

The significance of the values of the parameter is as

follows:

A The file is to be assigned A-File write protection.
B The file is to be assigned B-file write protection.
AB The file is to be assigned both A- and B-File

write protection.
NO No write protection is to be assigned to the file.

For a discussion of the types of write protection available

in the operating system, refe~ to Appendix F. When this

parameter is not specified no write protection will be

assigned to the file.

SIZE STATEMENT: The Size Sta~ement specifies parameters related to

the size of the various units of the file. When the Size Statement

is omitted (it is not a required statement), all its parameters are

3-111

SECTION III. DATA MANAGEMENT

assigned their standard values. The standard values are as follows:

Item
Record
Block

25~ characters
25~ characters
When item size is greater than the record size, I item/
block.
When item size is less than the record size, X items/
block (where X = as many items as in a record).

Item Parameter: The Item Parameter (ITEM) specifies the number of

characters in each item. When not specified, the standard

size will be 25~ characters. When allocating Direct Access

Files, the status character must be included in this parameter.

Record Parameter: The Record Parameter (REC) specifies the number

of characters in each record. When not specified, the standard

size will be 25~ characters per record.

Block Parameter: The Block Parameter (BLOCK) specifies the number

of items per block. When not specified, the standard number

will be I item per block.

Bucket Parameter: The Bucket Parameter (BUCKET) applies only to

Direct Access Files and specifies the number of blocks per

bucket. When not specified, the assumed value of I block

per bucket is used.

Index Parameter: The Index Parameter (INDEX) specifies the

number of blocks in the Member Index for a Partitioned

Sequential File. When not specified, the assumed value is

I block for the Member Index.

Cylinder Overflow Parameter: The Cylinder Overflow Parameter

(CYLOV) specifies the number of tracks in the cylinder

overflow area for a Direct Access File. When not specified,

the allocate function does not access any cylinder overflow

area.

3-112

SECTION III. DATA MANAGEMENT

UNITS STATEMENT: The Units Statement specifies the units of allocation

for the file. There must be only one Units Statement and this statement

must include at least one pair of From and To parameters.

Name Parameter: The Name Parameter (NAME) specifies the volume

serial number of the volume to be used for this set of units

of allocation. The name is 6 characters long. This parameter

is not required.

Device Address Parameter: The Device Address Parameter (DEVADD)

specifies the peripheral control unit number and the drive

number of the device containing the volume for this Units
•

Statement. The peripheral control unit number is written

as two octal digits and all bits except the I/O bit must be

specified. The drive number is written as one octal digit.

When this parameter is not specified, the assumed values of

~4 for the peripheral control unit and ~ for the drive number

are used.

From Parameter: The From Parameter (FROM) gives the low cylinder

and track address of a single unit of allocation. This must

be followed immediately by a To Parameter which specifies the

high cylinder and track address of the same unit of allocation.

The cylinder address of the From Parameter must be less than

or equal to the cylinder address of the corresponding To

~arameter. The same is true for the track address.

To Parameter: The To Parameter (TO) specifies the high cylinder

and track address of a single unit of allocation. It is

paired with the immediately preceding From Parameter. Note

that if a file consists of more than one unit of allocation,

the number of tracks assigned per cylinder must be constant

for all units of allocation.

3-113

SECTION III. DATA MANAGEMENT

MEMBER STATEMENT: The Member Statement enables the user to reserve space

for members of a Partitioned Sequential File. This statement is required

only when it is desired to reserve space for a specified member by the

allocation process. There must be one Member Statement for each member

which is being reserved. The parameters of the Member Statement are

described in the following paragraphs.

Name Parameter: The Name Parameter (NAME) gives the name of the

member, which can be up to 14 characters long.

Length Parameter: The Length Parameter (LENGTH) specifies the

number of blocks to be reserved for this member. File and member
•

names cannot begin with a character whose octal value is 2~ (+),

4~ (-), 6~ (l1 or l1), 77 (ll. or ¢). All numeric values in

the parameters, following the keywords, are in decimal format.

ALLOCATE FUNCTION JOB CONTROL LANGUAGE EXAMPLE

The following job control statements request the allocation of a

Sequential File named FILE~. This file has an item length of l~~ char-

acters and is to have 5 items per block. Two units of allocation aze

requested, the first from cylinder 5 track ~ to cylinder 9 track 91

and the second from cylinder 2~ track ¢ to cylinder 24 track 9. The

standard assumptions are no password checking, no expiration date checking,

the record size is 25~ characters, the device address is pcu ~4 drive %,

and no write protection.

EASYCODER COOING fORM
PR08LEM.::;:;~===:;:==::::;:============:,:P:RO~GR:A~MM~E:R-===_--=--=--=--=--=--=_~OA~T::E-==: ~===-~PA~GE=~Of~
rcAFlO i~!~1 OPEe.nON I N')MBER :['i~i LOCATION CODE OPERANDS

I 2 3 4 5 6 1: 8 14 15 2021 0<' 63 90

Table 3-13 contains a summary of the allocate function job control

statements.

3-114

....

-

W
I

U1

(
J-

JOB CONTROL
STATEMENT

FUNCTION
STATEMENT

FILE

STATEMENT

4'

PARAMETER

ALLOCATE

NAME

ORG

GENOV

KEY

PW

EXP

(l/ '1,

(

Table 3-13. Allocate Function Job Control Statements

PARAMETER
VALUE DESCRIP'rION REQUIREMENTS

ALLOCATE Specified the file support function Required.
to be performed.

File-name Names the file to be allocated. Required.

Specifies the organization of the
SEQ file to be allocated as sequen-

tial.

Specifies the organization of the
Required. PART file to be allocated as partitioned

sequential.

Specifies the organization of the
DIR file to be allocated as direct

access sequential.

NO The direct access file being allo- Optional. Note
cated does not require a general that this para-
overflow area. meter only applies

to direct access
The direct access file being allo- files.

YES cated requires a general overflow
area.

Indicates the position in the item
Optional. Note Position of the high order end of the key
that this para-field.
meter only applies

Indicates the length in character to direct access
Length of the key field. files.

Specifies the password to be
Password placed in the volume directory Optional

entry for this file.

yyddd Specifies the year and day the Optional file being allocated expires.

""'!

w
I
0'1

(

JOB CONTROL
STATEMENT

FILE

STATEMENT

SIZE

STATEMENT

Table 3-13 (cont.) Allocate Function Job Control Statements

PARAMETER
PARAMl~TER VALUE DESCRIPTION REQUIREMENTS

The file being allocated is to
A be assigned A-file write

protection.

The file being allocated is to
B be assigned B-file write

protection.

PRo'r
The file being allocated is to Optional.

AB be assigned both A- and B-file
write protection.

No Write protection is to be
NO assigned to the file being

allocated.

Specifies the number of charac- The size statement
ITEM Item- ters in each item. When not is optional. Note,

length specified each item will have however, that when
250 characters. allocating direct

access files and
Specifies the number of charac- cylinder overflow

REC Record- ters in each record. When not is desired. The
length specified each record will have size statement

2 5~ characters. with the CYLOV
parameter must be

Items/ Specifies the number of items in included.
BLOCK

Blocks each block. When not specified
each block will contain one item.

Specifie8 the number of blocks set

Blocks/ aside for the member index of,a
INDEX

Index partitioned sequential file. When
not specifies one block will be
allocated to the member index.

Number- Specifies the number of tracks in

CYLOV of- the cylinder overflow area for a

tracks direct access file. When not speci-
fied no eylinder overflow area is
generated.

(
'"

(

w
I
-..]

(

JOB CONTROL
STATEMENT

UNITS

STATEMENT

MEMBER

STATEMENT

(
t.

Table 3-13 (cont.) Allocate Function Job Control Statements

PARAMETER
PARAMETER VALUE DESCRIPTION

NAME Volume- Specifies the volume serial
name number.

PCU Specifies the PCU number in two
octal digits.

DEVADD

Drive Specified the drive number in one
octal digit.

c Specif ies the 10\1/ cylinder address
of the unit of allocation.

FROM

t Specifies the low track address of
the unit of allocation.

c Specifies the high cylinder
address of the unit of allocation.

TO

t Specifies the high track address
of the unit of allocation.

NAME Member- Specifies the name of the member
name for which space is being allocated.

Number- Specifies the number of blocks to
LENGTH of- be reserved for this member.

blocks

(

REQUIREMENTS

Required.

Optional.

Required.

Required.

One per member
being allocated
is required for
partitioned se-
quential files.

SECTION III. DATA MANAGEMENT

Deallocate Function

DESCRIPTION

The Deallocate Function is used to delete files from mass storage.

File deallocation is the only means by which space may be freed for other

files. Before a file is deallocated, checks are made on the file's

expiration date and on its password to ensure that a protected file is

not removed inadvertently.

DEALLOCATE FUNCTION JOB CONTROL STATEMENT

Format EASYCODER
COOING FORM

PROBLEM PROGRAMMER _____ OATE PAGE_OF_

CARD ~ ~l I OPEtlATION J I NU~6ER PI R I LOCATION CODE I
-i E iK j I

OPERANDS

It

t! I I \

,I, , '~
, , ,,' , , , ,I,!Q.J umt! ,sia -te:"',e,n"t , I

1/ g .a f!,:tl OIUJ!. I : ::::::::::::::: I:: : :: := : ::: : : : :: : I
I I! i ! Ir"iP=- (J.JO :\

! I

, VJ(lt.i.o nil I. . . I

: : : : : : : : : : : : : : : : : ~Z ~~~i: : : : : : : : : : I
i . - -Description

The Deallocate Function is requested by a Function Statement whose

first parameter is DEALLOCATE. This statement may be followed by a

Volume Statement and must be followed by at least one File Statement.

The File and Volume Statements can appear in any order.

FUNCTION STATEMENT: The Function Statement contains the Operation Code

FUNCT and the Operand DEALLOCATE, which specifies to the system what·

function to perform.

VOLUME STATEMENT: The Volume Statement specifies parameters pertaining

to the volume containing the file to be deallocated. There may be only

one Volume Statement per Deallocate Function. This statement is not

required and when not specified the parameters assume the standard values.

3-118

SECTION III. DATA MANAGEMENT

The parameters and standard values for the Volume Statement are described

in the following paragraphs.

Name Parameter: The Name Parameter (NAME) specifies the serial

number of the volume containing the file to be deallocated.

Device Address Parameter: The Device Address Parameter (DEVADD)

specifies the physical device address of the mass storage

volume. Specifically, it gives the peripheral control unit

number written as two octal digits in which all bits except

the I/O bit must be specified. Also, it specifies in one

octal digit the drive number. When the parameter is not

specified, the assumed values of ~4 and ~ for the pcu and

drive respectively are used.

FILE STATEMENT: Each file to be deallocated is specified by a File

Statement whose first parameter is NAME. This is a required statement.

To deallocate more than one file with a single Function Statement, there

must be a File Statement for each file. The parameters of the File State

ment are described in the following paragraPhs.

Name Parameter: The Name Parameter (NAME) gives the name of the file

to be deallocated. It must be exactly as the name appears in

the Volume Directory.

Expiration Parameter: The Expiration Parameter (EXP) specifies

whether or not the expiration date of the file to be deallocated

is to be checked. When this parameter is not specified, the

expiration date automatically is checked.

Password Parameter: The Password Parameter (PW) gives the password

of the file to be checked against the Password Field in the

Volume Directory. The Password Parameter may be omitted only

if the file being deallocated is not protected by a password.

3-119

SECTION III. DATA MANAGEMENT

When the Password Field in the Volume Directory is not all spaces

(as it is when no password is assigned) and the password check

is made without this parameter being specified, the result is that

the file is not deallocated.

DAY STATEMENT: The Day Statement specifies the day against which the

expiration date of the file is checked. If no Day Statement is su~tted,

the Supervisor Current Date Field is used.

DEALLOCATE FUNCTION JOB CONTROL LANGUAGE EX»1PLE

The following job control statements cause the deal location of two

files on the volume whose serial number is A¢¢¢¢¢. The first file to be

deallocated is FILE-E and its expiration date is checked (automatically)

and its password is DEPT.I¢¢. The second file to be deallocated is FILE-C.

Its expiration date is not checked and the password is not checked (it

is assumed that this file was not protected bya password).

EASYCODER COOING FORM
PROBLEM _~===:;::::==::;::=============P:ROG~RA~M::M~ER~ _=-=-=-=-=-=-=-=-=-=~DII:T~E:.=====..:P::AG:E=:.:O:F=;
rcARo ir~i I Of"U~4T10N
I NUIA8ER ,"i'" LOCATION I CCDE

I 2!J ",~-S,~·.i-IA----I"II!I 621~ 00

OPERANDS

! i !
: I j

i!

Ta~3-14 contains a summary of the deallocate function job control

statements.

Load/Unload Function

DESCRIPTION

The Mass Storage File Support Subsystem has the facility to load

data from and unload data to one-half inch magnetic tape or punched cards.

All standard fixed length formats are allowed. Appendix D of this manual

summarizes these formats and points out any features that are extensions

of previous Honeywell Series 200 Software.

3-120

-..

..

w
I
10

(

JOB CONTROL
STATEMENT

FUNCTION
STATEMENT

VOLUME

STATEMENT

FILE

STATEMENT

DAY
STATEMENT

((

Table 3-14. Deallocate Function Job Control Statements

PARAMETER
PARAMETER VALUE DESCRIPTION REQUIREMENTS

DEALLOCATE DEALLOCATE Specifies what file support
function to perform. Required.

NAME VOLUME Specifies the serial number of
NAME the volume being allocated.

PCU Specifies the PCU number of the
Optional.

DEVADD device in two octal digits.

Drive Specifies the drive number of
the device in one octal digit.

NAME File Specifies the name of the file
name to be deallocated. Required.

Specifies that the expiration
NO date of the file to be deallo-

EXP cated should not be checked.
Optional •

Specifies that the expiration
YES date of the file to be de-

allocated should be checked.

This is the password to be

PW Password checked against the password
Optional. field in the volume directory

entry for this file.

This is the year and day

yyddd yyddd against which the expiration
date of the file being de- Optional.

allocated is to be checked.

Ul
t'iI
()
1-3
H o
Z
H
H
H

t:1

e3
;J>o

~
~

!
~

SECTION III. DATA MANAGEMENT

LOAD/UNLOAD FUNCTION JOB CONTROL STATEMENT

Format

EASYCODER
COOING FORM

~PR~OB;L~EM~;;======~~;;;======_==================~~~OG~R~~~M~ER~========~M~T~E~=.~====~~~G~E==O~F~
CARD ~ I ~ OPERATION

NUMBER ti~ LOCATION CODE OPERANDS

1213"567 18 20,21 80

I I :' I ! r=.11 j..iCT 101lD "')
I I IJ ~IJ /I (J ()(

i I FILE I IN)

I if)Plltmn;(nr.u rlri.II.e1 nil"t.i" nn

.. I I I

II I : i 1J10M= 7SPEC"\ 100.t.; Ilna.
11 I I
I. I I !
19 I I I I
20 I! I

21 iii

/7,,7,"; /"'Al.I Sr:4:t~MI .. /T
pY·,r~ .s.r~rE/11e,N'r IS

d.",or.- '" "A. I.

to _

Description

A Load or an Unload Function is requested by a Function Statement

whose first parameter is either LOAD or UNLOAD. The File Statements

specify whether the operation is to or from mass storage. The Function

Statement is followed by two File Statements, one for the input file and

one for the output file. Each File Statement may be followed by an

associated Member Statement. The Member Statement associated with the

first File Statement must appear after that File Statement and before

any subsequent File Statment. There may also be one Exits Statement.

3-122

i

..

SECTION III. DATA MANAGEMENT

FUNCTION STATEMENT: The Function Statement contains the Operation Code

FUNCT and the Operand LOAD or the Operand UNLOAD. This specifies to the

system what function to perform.

FILE STATEMENTS: Both the Input and the Output File Statements are described

here since they are essentially equivalent in form. The input file for a

Load/Unload Function is identified by a File Statement whose first para-

meter is IN. The Output file is identified by a File Statement whose first

parameter is OUT.

In/Out Parameter: The In/Out Parameter (IN) or (OUT) specifies

whether the File Statement applies to the input file or to

the output file.

.
Name Parameter: The Name Parameter (NAME) must be specified when

the file is a mass storage file. With other device types (cards

or tape), the Name Parameter may be omitted. When this is the

case, label checking is not done. When specified, the Name
•

Parameter must be identical to that appearing on the data file.

Device Type Parameter: The Device Type Parameter (DEVTYPE) specifies

the storage medium used for the file as well as the type of

peripheral device used to access the file. The type number of

the device used to access the file is given and this number may

be anyone of the following:

227
224-1

223
224-2
214-1
214-2

204B
222
206

Card Reader - Card Punch
Card Reader/Punch
Card Reader
Card Reader/Punch
Card Punch
Card Reader/Punch
One-half Inch Magnetic Tape
Printer
Printer

When this parameter is not specified, the standard assumption is

that the device type is mass storage.

3-123

SECTION III. DATA MANAGEMENT

Device Address Parameter: The Device Address Parameter (DEVADD)

allows changes to be made to the standard assignment of the

peripheral device used to access the file. The peripheral

control unit number is given as two octal digits and all bits

must be specified. The drive number is given as one octal digit.
..

When this parameter is not specified, the standard values used

are as follows:

Punched Card Input pcu 41
Punched Card Output pcu .01
Magnetic Tape Input pcu 4.0 drive 1
Magnetic Tape Output pcu .04 drive 1
Mass Storage Input pcu 44 drive .0
Ma~s Storage Output pcu .04 drive .0
Printer Output pcu .02

Item Parameter: The Item Param~ter (ITEM) gives the length in char-

acters of each item in the file. When the file is on mass

storage this parameter must be omitted as the item length is

obtained from the Volume Directory entry for the file. When

the file is not on mass storage, this parameter may be omitted '---/

and the item length will be equal to the item length in the

mass storage file.

Record Length Parameter: The Record Length Parameter (REC) gives

the number of characters in each record of the file. When the

file is stored on mass storage this parameter must be omitted as the

record length will be obtained from the Volume Directory entry

for the file. When the file is not stored on mass storage, this

parameter may be omitted and the record length will be assumed to

be equal to the block length in the mass storage file.

Banner Character Parameter: The Banner Character Parameter (BAN)

only applies to a magnetic tape file and gives the banner char-

acter of each data record in two octal digits. When omitted the

file is assumed to be unbannered. When the value of the parameter

3-124

SECTION III. DATA MANAGEMENT

equals YES for an output tape, a standard banner character of 418

is used. On an input tape, YES indicates the presence of a

banner but its value is not checked. When the value of the

parameter equals NO, the file is assumed to be unbannered.

Padding Character Parameter: The Padding Character Parameter (PAD)

only applies to a magnetic tape file and gives the padding

character for the file in two octal digits. When omitted, and

the file is using odd parity, the standard value is 778 • When

omitted, and the file is using even parity, the standard value

is 118.

Parity Parameter: The Parity Parameter (PAR) only applies to a

magnetic tape file and gives the parity of the recording as odd

or even. When omitted, the standard value is odd parity.

Mode Parameter: The Mode Parameter (MODE) applies only to a punched

card file and specifies the reading or punching mode as standard

(STAND) or special (SPEC). When not specified, the standard

assumption for this parameter is that the special mode is to be

used.

Password Parameter: The Password Parameter (PW) applies only to a

mass storage file and gives the password to be checked against

the Password Field of the Volume Directory entry for this file.

When the Password Field of the Volume Directory entry for the

file is not all spaces, the password check is made regardless of

whether or not this parameter has been omitted.

Bucket Parameter: The Bucket Parameter (BUCKET) applies only to

a Direct Access File stored on mass storage. It gives the type

of bucket addressing as relative (REL) or as absolute (ABS).

When not specified, the standard assumption for this parameter

3-125

SECTION III. DATA MANAGEMENT

is that the absolute bucket addressing mode is to be used.

Protection Parameter: The Protection Parameter (PROT) indicates the

write protection that was assigned to the file when the file was

allocated. The significanceof the values of this parameter is

as follows:
-..

A The file was allocated with A-File write protection
B The file was allocated with B-File write protection

AB The file was allocated with A- and B-File write
protection

NO The file was allocated with no write protection
assigned.

When this parameter is omitted, the standard assumption is that no

write protection was assigned to the file when it was allocated.

When a file has been allocated with a Protection Parameter other

than NO, the same value that was used during allocation must be

used when describing the file for the Load/Unload Function.

This parameter is specified only for an Output mass storage file.

MEMBER STATEMENT: The File Statement may be followed by one or more Member

Statements. These statements specify that one or more members of a Partitioned

Sequential File are to be processed. When the entire file is to be processed,

these statements are omitted. The Member Statement has only one parameter,

the Name Parameter (NAME). The Name Parameter specifies the name of the

member to be processed. It can be up to 14 characters long, and when it is

less trailing spaces automatically are added.

EXI'l'S STATEMENT: The Exits Statement enables the exit to a user supplied

routine just after accessing an input item and just before writing an

output item. The Exits Statement is required for Direct Access mass storage

output files to compute the bucket address for the output items. The Exits

Statement describes the user supplied routine.

Program Name Parameter: The Program Name Parameter (PROG) gives the

program name of the user's routine. This routine is entered at

3-126

W
I
f-'
I\)

-.1

(

JOB CONTROL
STATEMENT

FUNCTION

STATEMENT

FILE

STATEMENT

..
(

.j

(

Table 3-15. Load/Unload Function Job Control Statements

PARAMETER
PARAMETER VALUE DESCRIPTION REQUIREMENTS

LOAD LOAD Specifies whether the file
support function is load or not.

Required.

UNLOAD UNLOAD Specifies whether or not the
file support function is unload.

IN IN Specifies that this file state- One input and one
ment applies to the input file. output file state-

ment is required

OUT OUT Specifies that this file state- for either
ment applied to the output file. function.

NAME File Specifies the name of the file Optional when file
name being loaded or unloaded. is not a mass

storage file.

Specifies the storage medium

DEVTYPE Device used for the file as well as Optional. type the type of device used to access
the file.

PCU Specifies the PCU number in two
octal digits.

DEVADD Optional.

Drive Specifies the drive number in
one octal digit.

Item Specifies the length of the
ITEM length items in the file in number of Optional.

characters.

Record Specifies the length of the
REC length records in the file in number Optional.

of characters.

(.oJ

I
......
N
00

(

JOB CONTROL
STATEMENT

FILE

STATEMENT

(cont)

Table 3-15 (cont). Load/Unload Job Control Statements

PARAMETER
PARAMETER VALUE DESCRIPTION

YES Specifies the banner character
for an output tape file as 418.

BAN NO Specifies that the tape file is
unbannered.

Banner Specifies the banner for an out-
:put tape file in two octal digits.

Specifies the padding character
PAD Padding for a magnetic tape file in two

octal digits.

Specifies the parity of the re-
ODD cording as odd for magnetic

tape files.
PAR

Specifies the parity of the re-
EVEN cording as even for magnetic

tape files.

SPEC Specifies the reading or punching

MODE
mode for a card file as special.

STAND Specifies the reading or punching
mode for a card file as standard.

This is the password to be

PW Password
checked against the password
field of the volume directory
entry for this file.

Specifies the type of bucket
REL addressing for a direct access

file as relative.
BUCKET

Specifies the type of bucket
ABS addressing for a direct access

file as absolute.

(.,

REQUIREMENTS

Optional.
Applies only
to magnetic
tape files.

Optional.

Optional.

Optional.

Optional.
Applies only to
mass storage
files.

Optional.

I

I

('
(

W
I
I-'
I\)

1.0

(

JOB CONTROL
STATEMENT

FILE

STATEMENT

(cont)

MEMBER
STATEMENTS

EXITS
STATEMENT

<,

((

Table 3-15 (cont). Load/Unload Job Control Statements

PARAMETER VALUE DESCRIPTION REQUIREMENTS

Specifies that this file was
A allocated with A-file write

protection.

Specifies that this file was
B allocated with B-file write

protection.
PROT Optional.

Specifies that this file was
AB allocated,with both A- and B-

file write protection.

Specifies that this file was
NO allocated without write

prote,ction.

NAME Member Specifies the name of the
Optional. name member to be processed.

PROG Program Specifies the name of the
Optional. name user's program.

Low Specifies the lowest memory
LMA memory address used by the user's Must be specified.

address program.

SECTION III. DATA MANAGEMENT

the location specified by the Easycoder END Statement and is the

starting address of the routine. The return to the Load/Unload

Function from the user's routine is made by branching to the

address that was in the B Address Register (BAR) at the time the

routine was entered.

Low Memory Address Parameter: The Low Memory Address Parameter (LMA)

gives the lowest memory address used by the user's routine and

must be specified. This parameter is given in decimal.

LOAD/UNLOAD FUNCTION JOB CONTROL LANGUAGE EXAMPLE

The following job control statements request a magnetic tape file to

be loaded into mass storage. The input magnetic tape file is named FILE~.

Its item length is 125 characters and its record length is 5~1 characters.

This file is bannered. Standard value assumptions are that parity is odd

and padding is 778 • The output mass storage file is named FILE~ also and

has an item length of 125 characters. The record size of this file has the

standard size record, 25~ characters. Also, the output file is not protected

by a password or by write protection.

EASYCODER COOING FORM
~PIR~O~8L~E:M~~======~====~==========================~PR~O:GR:A:MM:E~R~==========~~TE __ . ______ AAGE __ OF __
r- I OPEaATION T-----------,
~~~~~---~.J~-co-oE~~--------------------O-P-E-R-A-ND-S----------------~~ ________________ ~ 
j I Z J 4 5,6!7 i 8 14:15, 20i21 --' sols t J '..... • I ...t62l~~' , :l '___..hazl eo, 

:1~ __ ++~~~ __ ~~~UN~k~T~~~OE~D~,~II~~'~~1~~~~~~~~~~~~~~:_~.~.,~~.~,~~,~.~~, 
.i~~~~~~~I~~II~L~E~·~i~I~N~/~:'~~~~~~.~~~~~~~~~~~~~!~:L:~~. ~, ~~I~'~~.: 

I I. I 

I. ,. I , ! I I ,! " !! , I ! 

Table 3-15 contains a summary of the load/unload function job control 

statements. 

Map Function 

DESCRIPTION 

The Map function produces selected information about a mass storage 

3-130 



SECTION III. DATA MANAGEMENT 

volume from the Volume Directory. This routine has three separate actions: 

production of description of a file, mapping expired files and mapping 

unused areas of the volume. 

Description Of A File 

The description of the structure and other information about mass 

storage files can be listed. One or several files may be listed, or all 

files on the volume may be listed. The information listed is taken from 

the contents of the Volume Directory. 

Expired Files 

A listing of all files that have expired, as indicated by their expira-

tion dates, can be produced. The user can request that all files whose 

expiration date is less than a specified date be listed. 

Unused Areas 

A listing of all unused areas on a mass storage volume can be produced. 

The installation can use this listing to determine units of allocation for 

new files. 

MAP FUNCTION JOB CONTROL STATEMENTS 

Format EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE· OF 

CARD lelil LOCATION 
OPERATION 

OPERANDS NUMBER 
K 

CODE 

I 2 3 .. 5 • 7 8 14115 2021 62: .:;3 ao 

1 I IFJ/JJf.T 'Hnp fD£C:;CR 
I ' PcY P r 1;;:;[ 

i i 11l1l/Jc::'~n 
I I Iv.DJ /lLf ", LAc:.I!/).1 U m.~ -nnm.P.. IT1I,o. V" J Urf7i9 S+'n-rf>-
I I I[)EIIIJf)[)=(of''/' Ari,vl!..) WI PI1.-t'i.::; ,nor' l'I,nn.!. 
I I IJ:.IU WIIJ1£=.J?i I e-,na.me /, 
I I IF.TI1= I}JrU1':-".J:'i Ie -.no WlP ~+'il1nn I. 
i I IJ: IDiN Ivvd rid. 
I I 

10 -- - -
Description 

The Map Function is requested by a Function Statement whose first 

parameter is MAP. The second parameter of the Function Statement gives 

3-131 



SECTION III. DATA MANAGEMENT 

the type of mapping desired. The Function Statement may be followed by 

a Volume Statement, one or more File Statements, and a Day Statement in 

any order. 

FUNCTION STATEMENT: The Function Statement contains the Operation Code 

FUNCT and either the operand MAP,DESCR - MAP,EXPIRED - or MAP, UNUSED. This 

statement specifies to the system what function to perform. 

Map Volume Description Parameter: The Map Volume Description Parameter 

(MAP,DESCR) requests a printed listing of the contents of the 

Volume Directory for the files specified in the File Statements, 

or of the entire Volume Directory when no File Statements whose 

first parameter is NAME is specified. 

Map Expired Parameter: The Map Expired Parameter (MAP, EXPIRED) 

requests a listing of all files whose expiration date is less 

than the date specified. 

Map Unused Parameter: The Map Unused Parameter (MAP, UNUSED) requests 

a listing of all unused space on the mass storage volume. 

VOLUME STATEMENT: The Volume Statement contains parameters that pertain to 

the volume to be mapped. This statement is not required, and when omitted 

its parameters are assigned standard values. 

Name Parameter: The Name Parameter (NAME) gives the serial number 

of the volume to be mapped. 

Device Address Parameter: The Device Address Parameter (DEVADD) gives 

the device address of the volume to be mapped. The peripheral 

control unit number is given in 2 octal digits. All bits except 

the I/O bit must be specified. The device drive number is given 

in 1 octal digit. When this parameter is not specified, the pcu 

address is ~4 and the drive number is ~. 

3-132 

• 



SECTION III. DATA MANAGEMENT 

FILE STATEMENT: When a listing of Volume Directory information for a 

selected file is desired, a File Statement whose first parameter is NAME 

is required. For each file for which a description is desired, a single 

File Statement is required. When the Volume Directory information for all 

files on the volume is desired, the File Statement may be omitted. The 

File Statement is not relevant to the listing of obsolete files or of 

unused areas. The Name Parameter of the File Statement names the file 

whose Volume Directory information is to be listed. 

DAY STATEMENT: The Day Statement contains a date against which file expiration 

dates are to be checked when a listing of expired files is being produced. 

When no Day Statement is given, the Current Date Field of the Supervisor 

is used. The parameter of the Day Statement is yyddd. The year is specified 

by yy and the day of the year by ddd (counting from January 1 as day %%1). 

MAP FUNCTION JOB CONTROL LANGUAGE EXAMPLES 

The following Map Function job control statements requests a listing 

of the.unused areas of a volume mounted on drive 1 of peripheral control 

unit %4. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE AIIGE_OF_ 

CARD ~ ~i LOCATION 
OPERATION 

NUMBER CODE OPERANDS 
I 2 1 4 5 • 7 8 14,15 2021 62 '3 00 

I IFIJNC.T 'Mil P f),}JO.'\ F1J 
I I IV,IJLUHE. iDEvlJDD=.f 1M. 1) .• 
i I -- - -

These Map Function job control statements request a listing of the 

Volume Directory information for files named FILE-F and FILE-G. The 

standard conditions are that the volume containing these files is at device 

address pcu %4, drive %. 
EASYCODER 

CODING FORM 

PROBLEM PROGR R AMME DATE AIIGE OF 

CARO ~ ~I LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

I 2 3 4 5 • 7 • 1415 2021 62 63 00 

I : I IFJ}}/f'..f '1RP ,DES-CR., 
I I I IF.IL.£ NIJJ1F= FILF- F 
l J IS 'FILE N.1JJ1.E:-,FILE -,8.', 

statements. 
Table 3-16 contains a summary of the map function job control 

0: 

3-133 



W 
I ..... 
W 
.po. 

( 

JOB CONTROL 
STATEMENT 

FUNCTION 

STATEMENT 

VOLUME 

STATEMENT 

FILE 
STATEMENTS 

DAY 
STATEMENT 

tI 

PARAMETER 

MAP 

NAME 

DEVADD 

NAME 

yyddd 

• 

Table 3-16. Map Function Job Control Statements 

PARAMETER 
VALUE DESCRIPTION REQUIREMENTS 

I 

Specifies that a printed listing 
I of the contents of the volume DESCR directory for the files specified 

in the file statement be produced. 
I 

Required 
Specifies that a printed listing 

Expired of all files i-lhose expiration 
i date is less than the date speci-

fied be produced. 
I 

Specifies that a printed listing I 

Unused of all unused space in the volume 
be produced. 

I 

Volume Specifies the serial number of i 

name the volume to be mapped. 

PCU Specifies the peu number of the 
volume in two octal digits. 

Optional. 

Drive Specifies the drive number of the 
volume in one octal digit. 

File Specifies the names of the files Required for 

Name whose volume directory contents map, description 
is to be listed. function 

This is the date against which Required for 
yyddd file expiration dates are to be map, expired 

checked • function. 

• 

( 
" 

( 



SECTION III. DATA MANAGEMENT 

FILE SUPPORT PROGRAMMER'S PREPARATION INFORMATION 

Considerations for Direct Access Files 

When specifying a Direct Access file, the item length as contained in 

the Volume Directory is interpreted as including the status character (right-

most character) of the item. The value of this character is set to "inactive" 

for all items of the file during file allocation. For any item loaded, the 

value is set to "active" during the load process. The possible values of 

this character are as follows: 

LAST BLOCK 
OF FILE 

76 

ALL OTHER 
BLOCKS 

77 

LOADING A DIRECT ACCESS FILE 

MEANING 

Inactive item. 

Active item. 

When loading a Direct Accessfile on mass storage, the EXITS statement 

must always be specified since the user must supply the bucket address 

(in binary) for each item in the file via an own code routine. 

UNLOADING A DIRECT ACCESS FILE 

Direct Access files are unloaded in a sequential manner in the physical 

order in which the active items are encountered on the file. Only active 

items are unloaded. The user is never requested to supply a bucket address 

but he may, however, specify an own-code routine to modify, delete or 

examine the items being processed. 

Cpnsiderations For Seguential Files 

A Sequential file is always loaded and unloaded in a sequential manner. 

An own-code routine may be used as described for unloading a Direct Access 

file. 

Considerations For Partitioned Seguential Files 

Each member of this file type is processed individually. Within 

each member, the items are processed in a sequential manner in the physical 

3-135 



SECTION III. DATA MANAGEMENT 

order in which they are encountered. 

UNLOADING A PARTITIONED SEQUENTIAL FILE 

To unload a Partitioned Sequential file, no member names are specified 

in the Job ContrQlFile7 only the file name is specified. All active members 

of the partitioned file are unloaded in the order that their names appear 

in the Member Index for that file. 

To unload selected members of a partitioned sequential file the 

desired member names are specified in the Job Control File. These are 

unloaded in the order in which the names appear in the Job Control File. 

LOADING A PARTITIONED SEQUENTIAL FILE 

Loading By File 

The user may load an entire Partitioned Sequential File by either of 

the following means: 

1. Specify no member names in the Job Control File. In this case 

the member names are taken from the Input File. 

2. Specify in the Job Control File the member names of all members 

which comprise the output mass storage file. 

Loading Selected Members 

The user may load selected members of an output mass storage Partitioned 

Sequential file by specifying the desired member names in the Job Centrol 

File. 

Processing By Member Names 

When loading an output mass storage file the Load function takes the 

output member names from the Job Control File, if specified, or, when not 

specif~d, from the Input File. 

Whether loading by file or member name, if the name under which the 

3-136 

.. 

.. 



SECTION III. DATA MANAGEMENT 

member is to be loaded already exists in the Member Index of the output 

mass storage file, and if the member can be processed in the Output Only 

mode, the input data will replace that members data on the output mass 

storage file. If the member name does not already exist, the input 

member and its data will be added as a new member to the output mass 

storage file. 

When member names are specified, and if the output member names in the 

Job Control File are exhausted before all indicated input members have been 

processed, loading is terminated and control transferred to the next routine. 

Member names are specified only for a file which is on mass storage~ not 

for card or tape files. 

Own Coding 

During a load or unload function the user may execute-an own-coding 

routine for further item processing. In the case of Direct Access files 

which are being loaded onto mass storage, an own-code routine is required. 

In all other cases this own-coding routine is optional. The user may 

examine, modify or delete items at this time. File Support branches to 

own-coding once for each active item. 

STRUCTURE OF OWN-CODING 

The own-coding routine must be written and assembled as a single 

segment program. This program should originate where it occupies the 

memory area immediately below the floating portion of the Supervisor. 

The File Support program will load the own-coding only from the same 

storage medium (and, if stored on mass storage, the same Executable Program 

File) as the File Support program itself. 

OWN-CODE COMMUNICATION WITH THE LOAD/UNLOAD FUNCTION 

In the EXITS Statement of the Load/Unload function the user is 

required to specify the lowest memory address of the own-coding. One 

character should be reserved at that address (LMA) for communication with 

3-137 



SECTION III. DATA MANAGEMENT 

the File Support program. When File Support gives a new item to the user, 

the communication character is set to zero. More detailed use of this 

character is given in subsequent paragraphs. The branch to own-coding 

will occur at the next character location (LMA+l). 

Address communication is made through Index Registers 1 and 5. 

Index Register 1: This register is set by File Support to the left-

most character of the current item. 

Index Register 5: This register is set by the own-code routine to 

the right-most character of a user supplied field into which the 

user will place his bucket address when loading a Direct Access file. 

The field is four characters if relative bucket addressing was 

specified and eight characters (in the form DMCCTTRR) if actual 
• 

bucket addressing was specified. The left-most character of the 

field must contain a word mark. 

Return to File Support is made via the B address register setting, 

stored at the time own-coding was entered. 

Deletion Of Items 

As mentioned previously, the communication character is set to 

zero (~~) when the item is given to the user. If the item is to be written 

out to the output file, the communication character remains zero. If the 

user desired to delete the item, the communication character would be 

set to one (~l) prior to return to File Support. 

Invalid Bucket Addresses 

If the branch to own-coding shows a one in the communication character, 

then the last bucket address supplied to File Support was an invalid 

address. When this is the case, the user may do either of the following: 

1. Return to File Support with a communication character of zero to 

have that item bypassed. 

3-138 



• 

SECTION III. DATA MANAGEMENT 

2. Return to File Support with a communication character of one to 

terminate the loading of this file. In this case, processing 

will proceed to the next File Support function. 

Insufficient Space 

If the branch to own-coding shows two (~2)in the communication character, 

there was no room left in the bucket or overflow area(s) for the last item 

given to the load function. In this case the user may do either of the 

following: 

1. Return to File Support with a communication character of zero to 

have the item bypassed. 

2. Return to File Support with a communication character of one to 

terminate the loading. In this case, processing will proceed 

to the next File Support function. 

NOTE: A complete description of the card and tape files processed by File 

Support is contained in Appendix D of this manual • 

• 

3-139 



• 

.. 

• 



SECTION IV 

PROGRAM DEVELOPMENT SUBSYSTEM 

The Program Development Subsystem enables the user to translate 

source language programs, establish and maintain libraries of programs, 

and test programs. The Program Development Subsystem has several 

features of importance to the user. These features are discussed 

in the following paragraphs. 

FEATURES OF THE PROGRAM DEVELOPMENT SUBSYSTEM 

Some of the more important features of the Program Development 

Subsystem, such as the independent operation for each programmer, 

unbatched operation, and automatic operation, are discussed in the 

following paragraphs. 

Independent Operation For Each Programmer 

The Program Development Subsystem is designed so that the 

programmer makes independent requests for a related series of opera

tions on his one program or library routine. He does this independ

ently of other programmers, who are operating with programs that may 

be completely unrelated to this program. All information necessary 

to the operations for the programmer is submitted by the programmer; 

he is not required to submit any information that is not related to 

his operations and his program. For example, he does not have to 

worry about batching his program with other, unrelated programs; he 

does not concern himself with the names of the system programs to be 

run; he is not concerned with the equipment assignments because the 

system uses the standard values defined for each installation. 

Unbatched Operation 

The operations of the Program Development Subsystem are performed 

on one program or library routine at a time. The programmer submits 

4-1 



SECTION IV. PROGRAM DEVELOPMENT SUBSYSTEM 

a separate request for each routine. This type of operation is called 

"unbatched" and provides a shorter turn-around time because the 

programmer does not have to wait for the completion of operations 

on other unrelated programs that have been batched with his. 

Automatic Operation 

The Program Development Subsystem automatically controls the 

sequencing of the several processing routines required to perform 

the operations requested by the programmer. All the functions of 

the Program Development Subsystem are performed under this control. 

ELEMENTS OF THE PROGRAM DEVELOPMENT SUBSYSTEM 

There are four basic elements to the Program Development Subsystem. 

These are language translators, program library file maintenance, 

program test facilities, and Easycoder source language analysis. 

Program test facilities and Easycoder source language analysis are 

not included in the first software release. Each of these is discussed 

briefly in this paragraph. Fully detailed discussions of the Easycoder 

Assembly, Library File Update, and Executable File Update features 

follow in subsequent ~ragra?hs. 

Language Translators 

The operating system provides languages that enable the programmer 

to express programs in forms that can easily be learned and can read

ily be used. The Program Development Subsystem provides translators 

that convert programs written in these languages into machine 

executable form. All of the language translators in the Program 

Development Subsystem produce the same format of machine-executable 

code. Their outputs may be stored in a common file. The language 

translators of the operation system are: 

4-2 

to 

.. 



SECTION IV. PROGRAM DEVELOPMENT SUBSYSTEM 

1. Easycoder Assembly. Easycoder Assembly is a symbolic machine 

oriented assembly language with facilities for the inclusion 

of macro routines. The language level is compatible with 

Easycoder D of the Operating System - Mod 1 (Tape Resident). 

2. COBOL. COBOL is a business data processing language that 

is close to normal English language usage. The language 

level is comparable to COBOL B of the Basic Programming 

System. A COBOL compiler that operates under the Program 

Development Subsystem is not included in the first soft

ware release. 

3. FORTRAN. FORTRAN is a scientific language similar to 

usual mathematical notation. The language level is 

comparable to FORTRAN Compiler D of the Operation System

Mod 1 (Tape Resident). A FORTRAN compiler that operates 

under the Program Development Subsystem is not included 

in the first software release. 

Program Library File Maintenance 

The Program Development Subsystem provides routines to maintain 

program libraries on mass storage. Two types of program libraries 

can exist in the operating system. These are a Library of Macro 

Routines and an Executable Program File. 

LIBRARY OF MACRO ROUTINES 

A file of macro routines, written in the Easycoder symbolic 

language, can be maintained on mass storage. Routines from this 

library may be specialized and included in an Easycoder Assembly 

language program. This is the macro facility of the Easycoder 

Assembler. Routines may be added to, deleted from, or replaced in a 

4-3 



SECTION IV. PROGRAM DEVELOPMENT SUBSYSTEM 

source language library. Individual statements in a routine also may 

be corrected. 

EXECUTABLE PROGRAM FILE 

A file of executable programs can be maintained on mass storage. 

Such a file is updated with the output of the language translators7 

all translators in the Program Development Subsystem produce the 

same format of machine-executable code. Routines may be added to, 

deleted from, or replaced in an executable program file. 

Program Test Facilities 

A translated program may be executed for testing immediately after 

translation or stored in the executable program file to be executed 

later. 

Facilities will be available for dumping selected areas of main 

memory and mass storage. Program test facilities are not included 

in the first software release. 

Easycoder Source Language Analysis 

An analyzer routine will provide a symbolic cross-reference list

ing for an Easycoder Assembly language program. The analyzer routine 

is not included in the first software release. 

EASYCODER ASSEMBLY 

The following paragraphs provide a general description of the 

Easycoder Assembly and its functions along with the Easycoder Assembly 

language and the Job Control Language for the Easycoder Assembly. 

General Description 

Easycoder Assembly C translates Easycoder source language 

programs into machine-executable code. The source language is 

4-4 

.. 

.. 



SECTION IV. PROGRAM DEVELOPMENT SUBSYSTEM 

compatible with ~asycoder D of the Series 200/0perating System - Mod 

1 (Tape Resident). Only minor differences exist between the languages 

of Mass Storage Assembly C and Easycoder Assembly D of the Mod 1 system. 

However, operating procedures for the two programs are different. The 

term "language", as used in this paragraph, refers to the ordinary state

ments expressing a program. It does not include the PROG Statement, 

the ECD Statement, or any other source of information to control the 

operation of the assembler. 

The two functions of assembly and macro specialization are parts 

of the assembly function in the Program Development Subsystem. 

The library file of macro routines on mass storage consists of 

symbolic card images only, without any machine language information. 

Updating this file is a function of the Program Development Subsystem 

and can be performed before assembly. 

Easycoder Assembly Functions 

Easycoder Assembly performs two distinct functions: assembly and 

macro inclusion and specialization. 

1. Assembly. The Easycoder Assembly functions are the same as 

those of Easycoder Assembly D of the Operating System Mod 1 

(Tape Resident), with the following exceptions: 

a. Correction Listing - The assembler does not print a 

listing of symbolic corrections. 

b. Source Language Library Directory - The assembler does 

not print a directory of the source language library. 

c. Literal Processing - All literals, both pooled and 

non-pooled, appear in the listing and the machine

executable code immediately before the appropriate EX 

or END statement or after the appropriate LITORG state

ment. 

4-5 



2. 

SECTION IV. PROGRAM DEVELOPMENT SUBSYSTEM 

d. Machine Executable Output - The available outputs are: 

Binary Load Deck (BLD) - a card deck suitable for load

ing with the Mod I Card Loader-Monitor B and a Binary 

Run File (BRF) - a work file on mass storage that may 

be used for updating the Executable Program File. 

Macro Inclusion and Specialization. The macro inclusion 

and specialization function of the Easycoder Assembly is the 

same as that of Easycoder Assembly D of the Operating 

System - Mod I (Tape Resident), with the following excep

tions: 

a. Relationship to Assembly - The macro inclusion and 

specialization process (Library Processor) is an 

integral part of the assembler. It cannot be run as 

a separate program to punch source language statements 

from the source language library. 

b. Macro Library File - The source of macro routines is 

a source language library file on mass storage. It 

is organized as a partitioned sequential file and each 

macro is one member. A macro library update function 

is provided as part of the Program Development Sub

system. 

c. Option to leave Macros Unspecialized - The option to 

leave selected macros unspecialized after assembly is 

not available. All macros are specialized, unless the 

user specifies that no macro specialization is to be 

performed for the program. 

Easycoder Assembly Language 

The Easycoder Assembly language is essentially the same as that 

4-6 



SECTION IV. PROGRAM DEVELOPMENT SUBSYSTEM 

of Easycoder Assembly D of the Operating System Mod 1 (Tape Resident), 

with the following exceptions: 

1. Assembly Language. 

a. Line Number Generation - The assembler does not generate 

line numbers. This is a function of the source language 

update. 

b. SETLIN Statement - The assembler does not process 

SETLIN statements. This is a function of the source 

language update. 

c. Temporary Remarks Statement - The assembler does not 

process temporary remarks statements. (T in the type 

field, column 6.) 

d. Data Statements - The assembler does not process data 

statements (D in the type field). A card image data 

file may be placed on a mass storage -volume through the 

standard File Support routines described in Section 3 

of this manual. 

e. Macro Routine Limiters - Macro routine limiters (M and 

N type statements) are not used for the deletion of old 

specialized macro coding for the source language library 

because the assembler does not perform an update. They 

are used, however, to cause temporary suspension of 

line number sequence checking. 

2. Macro Inclusion and Specialization. The assembler does not 

generate line numbers for statements included in a program 

as a result of macro processing. The listing shows the 

same line number as the corresponding unspecialized statement 

in the macro library file. 

4-7 



SECTION IV. PROGRAM DEVELOPMENT SUBSYSTEM 

Easycoder Assembly Statements 

Table 4-1 is a comprehensive list of all source language state

ments acceptable as input for translation to Mass Storage Easycoder 

Assembly C. The function performed by each statement and the method 

for writing each in a source language program are fully described in 

Honeywell Series 200 Programmers' Reference Manual (Models 200/1200/ 

2200), Order Number 139. There are three addendums to this manual, 

numbered #1, #2 and #3 that update or amplify the explanation of 

some of the Easycoder statements. It should be noted, however, that 

a statement not included in Table 4-1 will not be processed by Mass 

Storage Easycoder Assembly C. For example, the HSM statement in the 

reference manual and the SETLIN statement in Addendum #2 are not pro

cessed by the assembler. 

4-8 



SECTION IV. PROGRAM DEVELOPMENT SUBSYSTEM 

TABLE 4-1. Easycoder Assembly Statements 

MNEMONIC 
STATEMENT TYPE OPERATION FUNCTION 

CODE 
A Decl.mal Add 
S Decimal Sub. 
BA Binary Add 

ARITHMETIC BS Binary Sub. 
ZA Zero & Add 
ZS Zero & Sub. 
M Multiply 
D Divide 
EXT Extract 
HA Half Add 
SST Substitute 
C Compare 
B Branch 
BCT Branch On 

LOGIC Condition Test 
BCC Branch On Char-

acter Condition 
BCE Branch If Char-

acter Equal 
BBE Branch On Bit 

Eoual 
SW Set Word Mark 
SI Set Item Mark 
CW Clear Word Mark 
CI Clear Item Mark 
H Halt 
NOP No Operation 
MCW Move Characters 

I NSTRUC- To Word Markd 
TIONS LCA Load Characters 

To A-Field Word 
Mark 

SCR Store Control 
Registers 

LCR Load Control 
CONTROL Registers 

CAM Change Address-
ing Mode 

EXM Extended Move 
MAT Move & Translate 
MIT Move Item & 

Translate 
LIB Load Index/ 

Barricade Ind-
icator 

SIB Store Index/ 
Barricade Ind-
icator 

SVI Store Variant 
& Indicators 

INTERRUPT RVI Restore Variant 
& Indicators 

CONTROL MC Monitor Call 
RNM Resume Normal 

Mode 
EDITING MCE Move Characters 

& Edit 

4-9 



SECTION IV. PROGRAM DEVELOPMENT SUBSYSTEM 

Table 4-1 (cont). Easycoder Assembly Statements 

MNEMONIC 
STATEMENT TYPE OPERATION FUNCTION 

CODE 
PDT Peripheral Data 

INSTRUC- INPUT/OUTPUT Transfer 
TIONS PCB Peripheral Con-

(cont) Trol & Branch 
PROG Program Header 
SEG Segment Header 
EX Execute 
ORG Origin 
MORG Modular Origin 
LITORG Literal Origin 
ADMODE Admode 

ASSEMBLY EQU Equals 
CONTROL CEQU Control Equals 

SKIP Skip 
SFX Suffix 
REP Repeat 
GEN Generate 
CLEAR Clear 
END End 
DCW Define Constant 

With Word Mark 
DC Define Constant 

DATA Wi thout Word 
FORMAT- MARK 

TING RESV Reserve Area 
DSA Define Symbol 

Address 
DA Define Area 

4-10 



SECTION IV. PROGRAM DEVELOPMENT SUBSYSTEM 

Easycoder Assembly Function Job Control Statements 

FORMAT 

EASYCODER 
CODING FORM 

~PR~O~3L~E~M~;=======~==;=~========================~ffi:O~G~RA:M:M~ER~==========~M~T~E~ ______ ~GE __ OF __ 

I CARD I~ ittl ! OPERATION 'I 
NUMaER t:RI LOCATION I CODE OPERANDS 

i ! I I I ! I Ll ':Ir". NO O.D-t.l.o.na.l. 
I : ! iii I I G.O-=- BLDl Ootiona...L 
! : 'i! I Iii <B.RFh I 

Li:'111 

DESCRIPTION 

Easycoder Assembly Function job control language consists of a 

Function Statement and a Date Statement. 

Function Statement 

The Function Statement identifies the function to be performed 

as Easycoder Assembly. If the function is to be performed under 

completely standard conaitions that is, if all the parameter stand-

ard assumptions are acceptable no other job control information 

is required. When there are exceptions to the standard conditions, 

additional parameters must be included with the "Function Statement. 

MACRO PARAMETER: The Macro Parameter (MACRO=-NO) is entered when there 

are no macros or, if there are macros and the programmer wishes to 

leave them unspecialized. Normally, Easycoder Assembly specializes 

all macros appearing in the input file. 

LIST PARAMETER: A listing showing source language and machine language 

coding normally is produced. When the listing is to be omitted, the 

List Parameter (LIST=NO) is entered. 

."-.../ 4-11 



SECTION IV. PROGRAM DEVELOPMENT SUBSYSTEM 

GO PARAMETER: Easycoder Assembly can produce two forms of machine-

executable output: a Binary Load Deck (BLD) on punched cards or a 

Binary Run File (BRF) on mass storage. It is possible to request one 

of these, both of these, or neither of these. When the parameter is 

omitted, the BRF output is produced. When the parameter is written 

GO=NO, no machine-executable output is produced; when written GO=BLD, 

a Binary Load Deck is produced; and when written as GO=BRF, a Binary 

Run File is produced. When both types of output are desired, the 

parameter is entered twice; once as GO=BLD and once as GO=BRF. 

Date Statement 

A date to be printed on the listing is submitted through the 

Date Statement. The date-field consists of 8 characters in any 

form. The date is printed without change on the listing. When a 

Date Statement is used, it must follow the Function Statement. 

Easycoder Assembly Function Job Control Language Examples 

The following job control statements cause the program TEST-A 

to be assembled. Macros are specialized, a listing.is produced, 

and the machine-executable file is on mass storage. 

EASYCODER COOING FORM 
PROBLEM=;:;:;;;:===::;:::=;::::=;::=============-=PR:OG=RA::M:ME~R~_=-=-=-=-=-=-=-::-~=_~OA:;T:E=====~PA~GE~=-O~F~ 
icA~D1JT'fi I' OPERATION i I i NUMBER I~,~I LOCATION CODE! OPERANDS 

I 2 Il 4,5 6 7 i8 6216J 

I' i 'i ~I 'FUN.CT iEA~YCODeR I 

The following job control statements cause the program TEST-A 

to be assembled. Macros are specialized, no listing is produced, and 

the machine-executable output file is on punched cards. 

4-12 



SECTION IV. PROGRAM DEVELOPMENT SUBSYSTEM 

EASYCODER 
CODING FORM 

PRoaLE~M~;;=======;=============-.':PR::O~GR~A~MM~E~R======-DA~TE:..= ___ PAGE _OF_ 
f CARD i~ I~'I I OPERATION I' 

I NUMBER It!~1 LOCATION ! CODE OPERANDS 

20121 62163 80 

I I II I 'FUNCT IEA~VCOOf.R.. GO=Bl,D .. I 
~ ,! lEI . ILlS r :::,NO., ./, ", , "., , , ,I ,',",' . ! 

l! !! i I. : ~~~~{~~~ .•• ::. :.:: .. :: ::: .::::::::::: ·1:::::::::::· :::: ·1 

Table 4-2 contains a summary of Easycoder assembly function job 
control statements. 

Table 4-2. 
Easycoder Assembly Function Job Control Statements 

JOB 
CONTROL PARAMETER VALUE DESCRIPTION REQUIREMENTS 
STATEMENT 

EASYCODER EASYCODER SPECIFIES WHAT PRO- REQUIRED 
GRAM DEVELOPMENT 
FUNCTION IS TO BE 
PERFORMED 

MACRO MACRO=NO SPECIFIES THAT MACROS, 
IF INCLUDED IN PRO-
GRAM, ARE NOT TO BE 
SPECIALIZED 

LIST LIST=NO SPECIFIES THAT A LIST-
ING OF SOURCE AND 
MACHINE LANGUAGE COD-
ING SHOULD NOT BE 

FUNCTION PRODUCED OPTIONAL 
STATEMENT 

GO=BLD SPECIFIES THAT MACHINE 
EXECUTABLE OUTPUT OF 
ASSEMBLY SHOULD BE A 
BINARY LOAD DECK. 

GO GO=BRF SPECIFIES THAT MACHINE 
EXECUTABLE OUTPUT OF 
ASSEMBLY SHOULD BE A 
BINARY RUN FILE ON 
MASS STORAGE. 

GO=NO SPECIFIES THAT NO 
MACHINE EXECUTABLE 
OUTPUT SHOULD BE 
PRODUCED BY ASSEMBLY. 

DATE DATE 8 CHAR- THIS IS THE DATE THAT 
STATEMENT FIELD ACTERS SHOULD BE PRINTED ON 

THE LISTING PRODUCED. OPTIONAL 

4-13 



SECTION IV. PROGRAM DEVELOPMENT SUBSYSTEM 

LIBRARY FILE UPDATE 

The following paragraphs provide a general description of the 

Library File Update, followed by description of the update functions, 

files, and job control language. 

General Description 

The Mass Storage Library File Update creates and maintains a 

library file of Easycoder source language macro routines in unspecial

ized form. These routines may be specialized and included into an 

Easycoder source language program by the Mass Storage Easycoder 

Assembler (see page 4-5). The source language library is maintained 

on Mass Storage. 

The Libaray File Update can add a macro routine to or delete 

one from the library; or it can correct individual statements in a 

macro routine in the library. 

As a part of the Program Development Subsystem, the Library 

File Update operates in an unbatched mode. That is, one macro 

routine at a time is updated; each macro routine is operated upon 

independently of the preceding routine. 

Library File Update Functions 

The Library File Update functions described in the following 

paragraphs can be performed on macros in the Library File. In all 

cases where a macro is marked deleted the space occupied by the 

macro does not become available. To make the space available, the 

Library File must be reorganized. The normal File Support routines 

are used for this purpose. 

1. Add Function. A macro can be added to the Library. The 

source language statements for the macro appear in the Input 

File. The name of the macro to be added must not duplicate 

4-14 



SECTION IV. PROGRAM DEVELCPMENT SUBSYSTEM 

the name of a macro already in the Library. When a duplica

tion is found, the Library File Update produces an error 

message on the Listing File and does not add the macro routine 

to the Library. 

The user has no control over the physical placement of 

a macro to be added to the Library. 

2. Delete Function. A macro can be deleted from the Library. 

The space occupied by the macro is marked, so that the 

macro can no longer be accessed. 

3. Replace Function. A macro can be replaced in the Library. 

The existing macro of the same name is marked as deleted, 

and the new macro is added to the Library. The source 

language statements for the new macro appear in the Input 

File. The new macro may be assigned a name different from 

the macro being replaced. 

4. Correct Function. A macro can be corrected in the Library. 

The corrections appear in the Input File, in correct line 

number sequence. The macro is located in the Library and 

is copied to a new area in the Library File with the 

corrections specified in the Input File. The original 

macro then is marked as deleted. The corrected macro need 

not have the same name as the original macro. 

Corrections are applied by linerumber. They may be 

delections (a single line number or a range of line numbers) 

replacements, or additions. 

5. Creating a New Version Function. A neW version of a macro 

may be created in the Library. Corrections, which are 

applied only to the new version, may appear in the Input 

4-15 



SECTION IV. PROGRAM DEVELOPMENT SUBSYSTEM 

File. The macro is located in the Library and is copied to 

a new area along with the corrections specified in the Input File. 

The new version must be given a name different from that of 

the old version. 

Library File Update Input and Output Files 

The following paragraphs describe the Library File, the Input 

File, and the Output (listing) File. 

1. Library File. The Source Language Library File is a parti

tioned sequential file on mass storage. Each macro is one 

member of the file. The Library is a card image file~ no 

additional information is kept. The standard Honeywell 

physical record format is used. The sequence of routines 

in the Library File is not under control of the user. 

Routines may be accessed, both for updating and for inclus

ion in an Easycoder program, only by their six-character 

program names. It is not possible, therefore, to have 

several macros with the same name in one Library File. 

2. Input File. The control statements and the card image 

input appear in the Input File, which must be a card 

reader. The control statements state the update action 

to be performed and any options the user desires. The 

card image input is either an entire macro routine to be 

added to the Library, an entire macro routine to replace 

an existing macro in the Library, or corrections to an 

existing macro routine in the Library. 

3. Output (Listing) File. The Output (Listing) file is a list

ing of the input statements. Both the control statements 

and the updating input normally are listed. The listing 

always shows control statements and diagnostic messages. 

The user may request that the listing of the updating 

input be omitted. The listing must be on a printer. 

4-16 



SECTION IV. PROGRAM DEVELOPMENT SUBSYSTEM 

Library File Update Function Job Control Statements 

FORMAT 

EASYCODER 
CODING FORM 

PROS EM L PROGRAMMER DATE PAGE OF -
I CARD ~I~i I OPE.RATION I , 

.. ~ 
! NUMBER ~.R I LOCATION CODE , OPERANDS .1 C::K' 

I 2 :3 415 6 t71a 14:;5. 20'21 

I , 
! I iFUNC.T ~OURC E. , 

, 
i , I, I ~~TION: IA.O,D. laa.±. i .o.n.oiIl 

, 

i i Iii I i I ICOR 
i ! I I I REP. l. 

i ' !i' i i I DEL , 

R=++.I I INE'.W , 
! : ill I N.tlN.P.R,O.G.- ne '" Loroor a.m ..,n.a.me !O:Dl::c; .~H\dJ 

I i I ! i IPROG ::,orOQ ~.a.P\-(\.a..Me. J 
bn.~."l'\n .. 1 

i I I' I . U~T:'fNo '1 ./ b;':f:: ONil 
'0 ! iii I ,'\YE.~ 
" i I i lEi hATJ:" Ha+ p - of i ~J d b.n±tuln.a.l 
" L.i.J. Ii I I " 

DESCRIPTION 

Function Statement 

The Function Statement identifies the function to be performed 

as the Library File Update. If the function is to be performed under 

completely standard conditions - that is, if all the parameter 

standard assumptions are acceptable - no other job control informa-

tion is required. When there are exceptions to the standard 

assumptions, additional parameters must be included. 

ACTION PARAMETER: The Action Parameter (ACTION=action-name) specifies 

the update action to be performed. Values for this parameter may be 

any of the following. 

ADD Add the program to the Library File 
COR Correct the program 
REP Replace the program 
DEL Delete the program 
NEW Create a new version of the program. 

When the update action is not specified, the ADD action is assumed. 

4-17 



SECTION IV. PROGRAM DEVELOPMENT SUBSYSTEM 

NEW PROGRAM NAME PARAMETER: The New Program Name Parameter (NEWPROG) 

specifies the name to be applied to the program. It is a 6 char-

acter value. This parameter is required for the NEW action. It is 

optional for the COR and REP actions. 

PROGRAM NAME PARAMETER: The Program Name Parameter (PROG) specifies 

the name of the program to be deleted from the Library File. It is 

required for the DEL action and does not apply to any other update 

action. 

LIST PARAMETER: The List Parameter (LIST) is entered as LIST=NO when 

it is desired to omit the listing. The listing of the input data, 

whether a complete program or corrections to an existing program, may 

be omitted. A listing of the job control statements, including the 

update action, is always provided. It is never necessary to specify 

YES. 

Date Statement 

The Date Statement specifies the date to be printed on the list-

ing. This statement, when used, must follow the Function Statement. 

The date-field is an 8 character field of any form. It is printed 

without change on the listing. 

Library File Update Function Job Control Language Examples 

The following statements cause the program MACRO 1 to be added to 

the Library File. 

EASYCODER 
COOING fORM 

PROGLEM PROGRAMMER OATE ___ PAGE_Of_ 

4-18 



SECTION IV. PROGRAM DEVELOPMENT SUBSYSTEM 

The following statements cause the program TEST-B to be inserted 

into the Library File as a replacement for a program of the same 

name. The date ~6/l5/66 is to be printed on the listing. 

EASYCODER 
CODING FORM 

PROBLEM G PRO RAMME R OATE PAGE OF - -
I CARD IT'~I 

NUMBER ~!~I LOCATION 
! OPE.RATION ! 
I CODE I OPERANDS 

L 2,:3 4 5 6 718 14 :5 202, "G> eo 
, I -I II IPUNCT SOURCE ,ACTION=R EP 

I ~I ~.AT£ ¢.a J j. 5/b b ) 
i ! I I ! ipRO(1 TE~T-B 
I I I II Eo.sly.co de,., 6.ta-t".ehl.e.n t.s. , I . i I lEND j 

, 
...I. ..:. 

The following statements cause the program TEST-C to be deleted 

from the Library File. 

EASYCODER 
CODING FORM 

PROSLEM PROGRAMMER OATE PAGE OF 

I CARD ~I~I ! OPERATION ! OPERANDS I 
NUMBER t ~ i LOCATION I CODE 

62163 I 2! 3 415 617 8 14-15 2021 80 

, I : ~I IFUNC.T '6ovRC E) ACT I O.N.::: D£L PR.oG.:: TEST-C ! 
i 

I ! I ! I 
., 

1 - ----
The following statements cause the program TEST-D, which is 

already in the Library File, to be corrected. The Easycoder 

statements are the corrections to be applied to TEST-D. 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER 
" 

OATE PAGE OF 

CARD I~I~I LOCATION 
1 OPERATION 

i OPERANDS 
NUMBER t!~1 I COOE 

, 2 :3 415 61116 14:15. 20!21 6263 eo 

I I I !f:1 iFu NCT 60 u He E f/CT 10 JJ.:: co R ) , , , 
1 I iT P,RO(7 'rrEST-D , , . I 1 I 1 : I Ect5 !Yeo de,.1 5+Q-t"e",ent~ wi rh line nu",be,.s .. 

I 
, , . , • I I I I 11 !£.ND , 

Table 4-3 contains a summary of the library file update job 

control statements. 

4-19 



SECTION IV. PROGRAM DEVELOPMENT SUBSYSTEM 

Table 4-3. 
Library File Update Job Control Statements 

JOB 
CONTROL PARAMETER VALUE DESCRIPTION REQUIREMENTS 
STATEMENT 

SOURCE SOURCE SPECIFIES THAT THE 
LIBRARY FILE UPDATE 
FUNCTION OF PROGRAM REQUIRED 
DEVELOPMENT IS TO BE 
PERFORMED. 

ACTION= SPECIFIES THAT A 
ADD PROGRAM IS TO BE 

ADDED TO THE LIBRARY . FILE • 

ACTION= SPECIFIES THAT A 
COR PROGRAM NAMED IS TO 

BE CORRECTED. 

ACTION ACTION= SPECIFIES THAT A PRO- OPTIONAL 
REP GRAM IN THE FILE IS 

TO BE REPLACED. 

ACTION= SPECIFIES THAT THE 
DEL NAMED PROGRAM IS TO 

BE DELETED. 

ACTION= SPECIFIES THAT A NEW 
NEW VERSION OF AN EXIST-

ING PROGRAM IN THE 
FUNCTION FILE IS TO BE CREAT-
STATEMENT ED. 

NEW PROG 6 CHAR- GIVES THE NAME OF THE REQUIRED 
ACTERS NEW PROGRAM BEING FOR ACTION= 

CREATED ON THE FILE. NEW 

PROG PROGRAM GIVES THE NAME OF THE REQUIRED FOR 
NAME PROGRAM TO BE DELETED ACTION=DEL. 

FROM THE FILE. DOES NOT APPLY 
TO OTHER UP-
DATE ACTIONS 

LIST=NO SPECIFIES THAT NO 
LISTING OF INPUT 
DATA IS TO BE PRO-
DUCED. 

LIST OPTIONAL 
LIST=YES SPECIFIES THAT A LIST-

ING OF INPUT DATA IS 
TO BE PRODUCED. 

DATE DATE 8 CHAR- THIS IS THE DATE TO BE 
STATEMENT FIELD ACTERS PRINTED ON THE LIST- OPTIONAL 

ING. 

4-20 



SECTION IV. PROGRAM DEVELOPMENT SUBSYSTEM 

EXECUTABLE PROGRAM FILE UPDATE 

The following paragraphs provide a general description of 

the Executable Program File Update, followed by descriptions of 

the functions, the use of visibility, and job control language. 

General Description 

The Executable Program File Update (also called the Binary 

Run File, or BRF, Update) creates and maintains on Mass Storage 

a file of machine-executable programs in the proper format to be 

accessed and loaded by the Operating System Supervisor. A file of 

machine-executable programs is called an Sxecutable Program File. 

The Master Executable Program File is referenced here as the "Master 

File." 

The BRF Update can add a program or segment to the Master File, 

or delete one from the Master File. It can replace a program or 

segment in the Master File. Additions to and replacements for the 

Master File can come either from magnetic tape or Mass Storage. The 

BRF Update can change the name of a program or segment in the Master 

File. 

As apart of the Program Development Subsystem, the BRF Update 

operates in the unbatched mode. That is, one program or segment at 

a time is updated~ each program or segment is operated upon independ

ently of those preceding it. 

Executable Program File Update Functions 

This paragraph provides the necessary definitions of the Input 

and Output files used by the Executable Program File Update, along 

with definitions of Update Units and Keys. Following the definitions 

are descriptions of the Update functions. 

4-21 



1. 

SECTION IV. PROGRAM DEVELOPMENT SUBSYSTEM 

Input and Output Files (Definitions). The following 

paragraphs define the Input and Output files of the BRF 

Update. 

a. Master File - The master file for the update operation, 

also called the "Master BRF", is a partitioned 

sequential file on mass storage. The standard 

Honeywell physical record format is used. Each 

program segment in the file is one member. Normally, 

the master file is the resident file (the file con

taining the Supervisor, the system programs of the 

operating system, and the user's programs). The 

sequence of segments in the Master BRF is not under 

the user's control. Segments are identified by two 

keys: program name (6 characters) and segment name 

(2 characters). Segments may be accessed for updating 

by anyone of several combinations of these keys. 

These key combinations are defined in Paragraph 2. 

It is not possible to have two segments with the same 

two key values in one Master BRF except when visibil

ity is used. Visibility, a third key that may be 

used, is discussed in this section. 

b. Input - The input to the BRF Update consists of control 

statements and transaction input. These are described 

in the following paragraphs: 

(1) Control Statements - The control statements 

specify the update action to be performed and 

any options used. Control Statements must appear 

in the Card Reader. These are more fully 

described in Section 6 of this manual. 

4-22 

" 



SECTION IV. PROGRAM DEVELOPMENT SUBSYSTEM 

(2) Transaction Input - The transaction input to 

the update operation consists of one or more 

segments, in machine-executable format, to be 

inserted into the Master BRF. These can be either 

additions or replacements. Transactions input 

can be either on tape (Transaction BRT) or on 

mass storage (Transaction BRF). When the trans

action input is on tape, the specified programs 

or segments are located by searching from the 

beginning of the tape. When the transaction 

input is on mass storage, the specified pro-

grams are located through the member index of 

the Transaction BRF. The structure of a Trans

action BRF is the same as that of a Master BRF. 

They differ only in file name. The Transaction 

BRF normally is the output of the translators 

of the Program Development Subsystem and is 

called the Go File. 

2. Update Units and Keys (Definitions). The functions of the 

BRF Update are defined in terms of update units. An update 

unit may be either an entire program or a single segment. 

The updating key used to specify an entire program is a 

6 character program name. The updating key used to specify 

a single segment is a 6 character program name and a 2 char

acter segment name. 

3. Update Actions. The updatte functions listed in the follow

ing paragraphs can be performed on update units in the 

Master BRF. In all cases where a segment is marked deleted, 

the space occupied by the segment does not become available. 

4-23 



SECTION IV. PROGRAM DEVELOPMENT SUBSYSTEM 

To make the space available, the Master BRF must be reorgan

ized by using the normal File Support routines described in 

Section III of this manual. 

a. Add - An update unit can be added to the Master BRF. 

The transaction input for this unit appears either in 

a Transaction BRF or in a Transaction BRT. The specified 

keys of a unit to be added must not duplicate the values 

of the same keys for any unit in the Master BRF. For 

example, if a program unit is to be added. the Master 

BRF must not contain any other program of the same name. 

If a program unit is specified, the segment names are 

obtained from the transaction input. The user has no 

control over the physical placement of a unit to be 

added to the Master BRF. The user accesses a unit by 

name, not by relative position 

b. Delete - An update unit can be deleted from the Master 

BRF. The space occupied by a deleted unit is marked 

so that the unit can no longer be accessed. In deter

mining what segments in the Master BRF should be deleted, 

only the specified keys are considered. For example, 

if a program name is specified, all segments of the 

named program will be deleted. 

c. Replace - An update unit can be replaced in the Master 

BRF by a like unit of the same name (key). The trans

action input for this unit appears either in a Trans

action BRT or on a Transaction BRF. The existing unit 

is marked as deleted and the new unit is added to the 

Master BRF. The replacement unit is always assigned 

the same name (keys) as the unit replaced. When a 

different name is desired, the Replace action may be 

4-24 

", 



Visibility 

SECTION IV. PROGRAM DEVELOPMENT SUBSYSTEM 

followed by a Rename action. When a program unit is 

being replaced, the new unit does not have to correspond 

to the old unit in the number and names of its segments. 

d. Rename - An update unit can be renamed. The unit to 

be renamed can be located by any permissible combination 

of keys. When a program unit is renamed, the program 

name may be changed but segment names remain the same. 

When a segment unit is to be renamed, the segment name 

may be changed but the program name remains the same. 

Visibility may be used as a key, in addition to the program name 

and the segment name. Thus, 1, 2, or 3 keys may be specified. The 

visibility key is 6 characters. The following key combinations are 

permitted: 

Key Combinations Update Unit 

Program Name Program 

Program Name, Visibility Program 

Program Name, Segment Name Segment 

Program Name, Segment Name, Visibility Segment 

Any keys not specified in the identification of a unit are assumed 

to be of no significance. For example, when a program is identified 

only by program name, the BRF Update does not check visibility in 

locating the program in the Master BRF. Thus, when a program is deleted 

and visibility is not specified, all segments with the specified program 

name are deleted. 

When visibility is specified and the update unit is a program, 

there may be two or more programs with the same program name in the 

Master BRF, but they must differ in visibility. 

4-25 



SECTION IV. PROGRAM DEVELOPMENT SUBSYSTEM 

When visibility is specified and the update unit is a segment, 

there may be two or more segments of the same program and segment 

names, but they must differ in visibility. 

If visibility is not specified in an Add action, the unit is added 

under a standard visibility. In a replace operation, no part of the 

key (including visibility) may be changed. 

In the Rename action, the unit to be renamed can be located by 

any permissible combination of keys. The visibility may be changed, 

whether the unit is a program or a segment. 

Executable Program File Update Function Job Control Statement 

FORMAT 

EASYCODER 
CODING FORM 

" PROGRA MER M DATE PAGE OF 

CARD Ifl~i LOCATION 
! OPERATIO"N I OPERANDS .1, J NUMBER t;~! I CODE I 

12 i 3 4 ;SS!7!a 14'15, lob 
i I Iii IFIJNf'T i,t:YECUTJ!1.IJLE. 

I 
I 

I i i ! i IIJCT J OJJ.= r.4DD1 hp+., onal . I 
! : I ! I i I I IREP 

! i : i i I. I IIJ£,L : i ' I , 

1 
; , I I I i I Ifi'EA'1 : i I I 

I i ! iii I 170:;; JERi\. \ J b P7. iana I . I I 

r ! iii! ! ! lB.RFf J r-ri7;i I !P/?n(.;:;;,Pro ar,QI1I- n(U""'_ , Ii' I 

'0 

i , i I ! 
, 

~G::2~9-l!J.en,t-na!!lle I I o P.-t ion a I • 
I I i I 

I 

I I II i ~I;: v~~ i ~ i I iTi p,~ lJptional. 

: : 
I ' I 

: : 
I 

i i! ! 
: : ! : : 1) Pt.; nna J • I [E::e8==:= =~IW.- a t'n,()rf) m-,nnmp I 

I : ! NEW &>EQ=n I"'.w,- &;l?a1l1,p.n-r -n.ome '0 "t, ia n a J • 
" '. I I I lEi I WFWvr,c;; neiJ,-v j &; i hi lit. i,qs i,ipt, i.a n a I . 
,. I i ! i I I i - -.. 

4-26 



SECTION IV. PROGRAM DEVELOPMENT SUBSYSTEM 

DESCRIPTION 

Function Statement 

The Function Statement identifies the function to be performed 

as the Executable Program File Update. If the function is to be 

performed under completely standard conditions - that is, if all the 

parameter standard assumptions are acceptable - certain job control 

parameters may be omitted. When there are to be exceptions to the 

standard assumptions, additional parameters must be included. 

ACTION PARAMETER: The Action Parameter (ACTION) specifies the update 

action to be performe"d. When it is omitted the ADD action is performed. 

The acceptable values of this parameter are as follows: 

ADD Add the program to the Executable 
Program File 

REP Replace the program 
DEL Delete the program 
REN Rename the program 

GO PARAMETER: The update can accept two forms of machine-executable 

input: a Binary Run Tape (BRT) on type 2~4B magnetic tape, or a Binary 

Run File (BRF) on mass storage. When this parameter is omitted, a BRF 

input is assumed. 

UPDATE UNIT KEY PARAMETERS: It is necessary to specify the keys by 

which a unit to be added, replaced, deleted, or renamed can be identi-

fied. Each of three possible keys is considered as a single parameter. 

The permissible combinations of keys are listed in this section of the 

manual. The Program Name Parameter must always be specified but the 

Segment Name and Visibilities Parameters need not be stated unless 

they are desired. 

The Program Name Parameter is a 6 character value identifying 

a program. The Segment Name Parameter is a 2 character value identi-

fyinga segment within a program. 

4-27 



SECTION IV. PROGRAM DEVELO:EMENT SUBSYSTEM 

The Visibilities Parameter is a value used to distinguish between 

units otherwise similarly named. As a parameter of the Function State-

ment, it has a variable length of from I to 36 characters. The 

characters can be chosen from the letters (A - Z) and the digits (0 - 9). 

The parameter value may also have one of the two special values: 

6 

* 
All visibility bits will be zero 
All visibility bits will be I 

NEW UPDATE UNIT KEYS PARAMETERS: These parameters apply only to the 

Rename Action and at least the new program name must be specified. 

The new segment name and the new visibilities need not be specified 

unless they are desired. These parameters are exactly the same as 

described for the Undate Unit Key Parameters described previously in 

this paragraph. 

Executable Program File Update Function Job Control Language Examples 

The following statements cause the p~ogram TEST-A to be added to 

the master BRF. The source of TEST-A is the mass storage GO File. 

EASYCODER 
COOING FORM 

PR03LEM PROGRAMMER DATE 

CARD ~Igi I OPEc~6T~O N i OPERANDS i I NUMBER t'~1 LOCATION 

! I 213 4 ~ 617 !s 1 .. 1,') 2021 6Z!63 

! ! I ~ tr'VJJCT. 'EX E.Cl/.T!J.8L£: PRO G:T .£ST:-A. I 
! ~ I I I i I / I --

The following statements cause the program TEST-B on the Master 

BRF to be replaced by a program of the same name, found on the Trans-

action BRT. 

EASYCODER 
COOING FORM 

PAGE OF 

J 

PR08L~E:M=;;=======~====~========================~PR=O~G:RA:M:M~ER~======~==~DA:T~E~~====~PA~GE~~~~~ 
!'CARD 'I~i~i I OPERATION I NuMBER e,R i LOCATION i CODE OPERANDS 

< 'K 
I 2341516 1718 1415, 20,21 61163 10 

I : II I r.IJNCT iEY ECUTllBL£IIICT/ ON=' REP 
: ; I I£! fROG:TE.ST-8 GOrBNT 
i I ! I i I 

- -

4-28 

... 



SECTION IV. PROGRAM DEVELOPMENT SUBSYSTEM 

The following statements cause the program TEST-C whose visibil-

ity is F to be deleted from the Master BRF. 

EASYCODER 
COOING FORM 

, Lc;. . PROGRAMMER DATE 

CARD I[iltl LOCATION i OPERATIO N 1 OPERANDS ~UM5ER ti~i ; CODE 

I 2 3 41516! 7; e '4
1
15 ZO!~I 6,2,63 

I diL If;u NCT !£.X£C.U -r4.B./..EIJC.-r:! O.JJ.= J)£,L p.R.O,G.~TE5.T-C 
I 

I i lEI ! iVI5=F. 
i Ii! 1 ! i 

.-.I.. -- - -

The following statements cause the segment ¢6 of program TEST-B 

on the Master BRF to be replaced by the identically named program 

segment on the Transaction BRT. 

EASYCODER 
COOING FORM 

PROBLEM PROGRAMMER DATE 

l CARO '~i~il I oeERATION I 
NUMBER i~ ~ LOCATION i CODE 1 OPERANDS 

The following statements cause the segment Sl of program TEST-C 

on the Master BRF to be renamed as Segment S¢. 

EASYCODER 
COOING FORM 

PROBLEM o PR GRAMMER TE DA 

CARD 1+ LOCATION 
QPE.RATION 

OPERANDS 
NUMBER .t~ I CODE , 

I 2 3 415 6 7 • 14p5 20·21 6263 

I ' I 'F./IIJC.T lEY ECU.Tfl.B.L£. .fle n.ON "liEN. 
1 I I ! PROG:.TF£7-C !;EG.=5i N.ifWSEG.=-5Ib 

i I I I i 
-

Table 4-4 contains a summary of job control statements for the 

executable program file update function. 

4-29 

PAGE OF 

00 

PAGE OF 

I 
00 

PAGE OF - -

00 



SECTION IV. PROGRAM DEVELOPMENT SUBSYSTEM 

Table 4-4. 
Executable Program File Update Function Job Control Statements 

JOB 
CONTROL PARAMETER VALUE DESCRIPTION REQUIREMENTS 
STATEMENT 

EXECUTABLE EXECUT- SPECIFIES THAT THE 
ABLE EXECUTABLE PROGRAM 

FILE UPDATE FUNCTION REQUIRED. 
OF PROGRAM DEVELOP-
MENT IS TO BE PER-
FORMED. 

ACTION= SPECIFIES THAT THE 
ADD NAMED PROGRAM IS 

TO BE ADDED TO THE 
FILE. 

ACTION OPTIONAL 
ACTION= SPECIFIES THAT THE 

REP NAMED PROGRAM IS TO 
BE REPLACED IN THE 
FILE. 

ACTION= SPECIFIES THAT THE 
DEL NAMED PROGRAM IS 

TO BE DELETED FROM 
THE FILE. 

ACTION= SPECIFIES THAT THE 
REN NAMED PROGRAM IS TO 

BE RENAMED IN THE 
FILE. 

FUNCTION GO=BRT THE INPUT TO THE 
STATEMENT UPDATE FUNCTION IS 

ON A BRT. 
GO OPTIONAL 

GO=BRF THE INPUT TO THE 
UPDATE IS ON THE 
BRF. 

PROG 6 CHAR- NAMES THE PROGRAM THESE ARE THE 
ACTER ON WHICH THE UP- UPDATE UNIT 
PROGRAM DATE ACTION IS TO KEY PARA-
NAME BE PERFORMED. METERS. 

PROG MUST BE 
SEG 2 CHAR- THIS IS THE NAME SPECIFIED BUT 

ACTER OF THE SEGMENT SEG AND VIS 
SEGMENT IN THE PROGRAM TO ARE OPTIONAL 
NAME BE UPDATED. 

VIS A - Z THIS DISTINGUISHES 
OR BETWEEN UNITS WITH 

I:!. OR * SIMILAR NAMES. 

4-30 



JOB 

SECTION IV. PROGRAM DEVELOPMENT SUBSYSTEM 

Table 4-4. 
Executable Program File Update Function Job Control Statements 

(continued) 

CONTROL PARAMETER VALUE DESCRIPTION REQUIREMENTS 
STATEMENT 

FUNCTION NEWPROG 6 CHAR- SEE PROG ABOVE THESE ARE THE 
STATEMENT ACTER NEW UPDATE 
(cont. ) PROGRAM UNIT KEYS 

NAME PARAMETERS 
AND ONLY APPLY 

NEWSEG 2 CHAR- SEE SEG ABOVE TO THE RENAME 
ACTER ACTION. NEW-
SEGMENT PROG IS 
NAME. REQUIRED, 

NEWSEG & NEW-
NEWVYS A - Z SEE VIS ABOVE VIS ARE 

OR OPTIONAL. 
1:':. OR * 

PROGRAM DEVELOPMENT PROGRAMMER'S PREPARATION INFORMATION 

Allocation Of Files To Use Program Development 

To run the entire Program Development Subsystem, the following 

five files must be allocated: System Residence File, Go File, Library 

.File, Assembly Work File I and Assembly Work File 2. Descriptions of 

and the functions of these files are included in the following paragraphs. 

SYSTEM RESIDENCE FILE 

FUNCTION: 

FILE NAME: 

FILE TYPE: 

BLOCK SIZE: 

RECORD SIZE: 

ITEM SIZE: 

This is the file from which the Supervisor loads 
programs, both systems programs and object pro
grams. It is created and updated by the Mass 
Storage Executable Update. 

*DRSIRES 

Partitioned sequential 

I item 

25,0 characters 

25,0 characters 

NO. OF DATA BLOCKS: D = 5T 

where D number of data blocks 

T = number of machine language characters in all programs 
to be placed in this file, expressed in thousands of 
characters. 

4-31 



SECTION IV. PROGRAM DEVELOPMENT SUBSYSTEM 

For example, if the file is to contain 4~ programs, and these 
programs contain an average of 6~~~ machine language characters 
each, then a minimum of 12~~ blocks should be allocated for the 
loading data. 

In practice, the file should be made larger, to allow for updating. 
The Executable Update Program does not make available the space 
occupied by deleted or replaced programs. This space can be made 
available only by reorganizing the file, through the use of the 
appropriate File Support functions. The frequency of reorganiza
tion can be reduced by allocating a larger number of blocks to 
the system residence file. The optimum size for a given installa
tion depends on frequency of updates, as well as the needs of other 
files on the same disk pack. 

The number of blocks required for the software in the first 
release will be specified later. 

NO. OF MEMBER INDEX BLOCKS: 
S+2 

M = --ro 
where M = number of blocks required for the member index 

S = number of segments in the file. 

For example, if the file is to contain 4~ programs and these pro
grams contain 2 segments each, then a minimum of 9 blocks should 
be allocated for the member index. 

GO FILE 

FUNCTION: 

FILE NAME: 

FILE TYPE: 

BLOCK SIZE: 

RECORD SIZE: 

ITEM SIZE: 

This is a work file containing the machine language 
output of Mass Storage Easycoder Assembly. It 
contains only one program at a time. It is a 
transaction input file to the Executable Update. 

*DRSIGO 

Partitioned sequential 

I item 

25~ characters 

25~ characters 

NO. OF DATA BLOCKS: D = 5T, 

where D 
T 

number of data blocks 
= number of machine language characters in the largest 

single program to be assembled. 

NO. OF MEMBER INDEX BLOCKS: 

M = .5+2 
-ro 

where M = number of blocks required for the member index 
S = largest number of segments in any single program to be 

assembled. 

4-32 



SECTION IV. PROGRAM DEVELOPMENT SUBSYSTEM 

LIBRARY FILE 

FUNCTION: 

FILE NAME: 

FILE TYPE: 

BLOCK SIZE: 

RECORD SIZE: 

ITEM SIZE: 

This file contains unspecialized macro routines. 
It is updated by the Mass Storage Library Update. 
It is accessed, as the source of macro routines 
by the library processor portion of Mass Storage 
Easycoder Assembly. 

*DRS1LIB 

Partitioned sequential 

3 items 

25,0 characters 

8,0 characters 
C 

NO. OF DATA ~LOCKS: 

where D = required number of data blocks 
C = total number of card images in all macro routines to be 

placed in the file 

NO. OF MEMBER INDEX BLOCKS: 

R+2 
M = 10 ' 

where M = number of blocks required for the member index 
R total number of macro routines to be placed in the file. 

In order to allow room for updating, more space than the required 
minimum should be allocated. 

ASSEMBLY WORK FILE 1 

FUNCTION: 

FILE NAME: 

FILE TYPE: 

BLOCK SIZE: 

RECORD SIZE: 

ITEM SIZE: 

This file is used whenever the library processor 
function of assembly is exercised. It contains 
the specialized symbolic card images for a single 
program, including the non-macro portion of the 
program. 

*DRS1WORKl 

Partitioned sequential 

3 items 

25,0 characters 

8,0 characters 

4-33 



SECTION IV. PROGRAM DEVELOPMENT SUBSYSTEM 

NO. OF DATA BLOCKS: D = .Q 
3 ' 

where D 
C 

= required number of data blocks 
number of card images/after macro specialization, in the 
largest single program to be assembled. 

NO. OF MEMBER INDEX BLOCKS 

M 
2L+2 

= ~ , 

where M 
L 

number of blocks required for the member index 
= largest number of macro calls in any single program to be 

assembled. Nested macros are counted the same as first 
level macros. 

ASSEMBLY WORK FILE 2 

FUNCTION: 

FILE NAME: 

FILE TYPE: 

BLOCK SIZE: 

RECORD SIZE: 

ITEM SIZE: 

This file contains the intermediate results 
passed from one phase of Easycoder Assembly to 
another. 

*DRSIWORK2 

Sequential 

I item 

25,el characters 

75,el characters 

NO. OF DATA BLOCKS: 

where D 
C 

required number of data blocks 
number of card images, after macro specialization, in the 
largest single program to be assembled. 

4-34 



SECTION V 

SERVICE ROUTINES 

This section of the manual describes several program packages 

which are part of the Mass Storage Operating System. These three 

programs are grouped together in this section for convenience of 

presentation. The three program packages are: 

1. Volume Preparation 

2. Mass Storage Sort 

3. Mass Storage Edit 

VOLUME PREPARATION 

The Volume Preparation program prepares a mass storage volume for 

use under the data management conventions of the operating system. 

Volume preparation must be performed at least once for every mass 

storage volume (at the time the volume is first entered into the Mass 

Storage Operating System) • 

Functional Description 

FUNCTIONS 

The Volume Preparation program performs the following functions: 

1. Formats all tracks of the volume with standard records. 

2. Checks for bad surface areas. 

3. Writes the volume label. 

4. Creates the volume directory. 

5-1 



SECTION V. SERVICE ROUTINES 

TRACK FORMAT 

The standard track format written by the Volume Preparation 

program is Honeywell standard size records plus a track linking 

record. The track linking record links to the next physically 

consecutive track. 

BAD SURFACE AREAS 

After each track is formatted, it is read back in the "verify" 

mode. If a read error occurs that cannot be corrected by refor-

matting, a listing is produced giving the bad. cylinder and track 

address and the preparation operation is terminated. 

Volume Preparation Function Job Control Statements 

FORMAT 

Honeywell 
'Lle'.Ollie 0.'" •• DCI",,'II. EASYCODER 

CODING FORM 

#- / I PROJECT DIsl! PROGRAMMER OATE PO\GE OF 
CARD y 

LOCATION OPERATION 
NUMBER ~ CODE OPERANDS 

1 2: :5 4 S 6 7. '''1$ 2021 
.. 53 

I : 
80 , IVOLID tENAME volume-ser1aL-numoer, , 

I MJl.XF: :maximum number of fLles, O~tional. , i i DEVADD=(ocu drive) Ontional I I PAY vvddd, Th1S Statement · : : iR oOTional • I I 
7 : I 

· i I 

• I I 
I 

5-2 



SECTION V. SERVICE ROUTINES 

DESCRIPTION 

Volume Statement 

The Volume Statement gives parameters pertaining to the volume to 

be prepared. Note that the Volume Preparation Function can also be 

operated in the MOD - 1 Tape Resident Operating System under the Floating 

Tape Loader/Monitor C. In that case, the Execute Statement is replaced 

by the console call card of the tape resident system. 

NAME PARAMETER: The Name Parameter (NAME) gives the volume serial number 

to be written in the Volume Label Record on the mass storage volume. The 

volume serial number is 6 characters long. 

MAXIMUM NUMBER OF FILES PARAMETER: The Maximum Number Of Files Parameter 

(MAXF) gives the maximum number of files expected to be stored on this 

volume. This is specified as a number in decimal in the range from 1 

to 86. When this parameter is omitted, a value of 26
10 

is used. 

Sufficient space is allowed in the Volume Directory to accommodate 

the number of files specified. The user should ensure that this value 

is adequate, since the only means for increasing the number of files 

allowed is to unload all files, run the volume preparation function 

with a larger maximum specified, and reload all files. 

DEVICE ADDRESS PARAMETER: The Device Address Parameter (DEVADD) gives 

the peripheral control unit number in two octal digits. The drive 

number is given in one octal digit. When this parameter is omitted, 

the values of ~4 for the pcu and ~ for the drive are used. 

Day Statement 

The Day Statement specifies the creation date of the Volume Direc

tory. When the Day Statement is omitted, the creation date is taken from 

the Current Date Field of the Supervisor. The yy portion of the value 

gives the year of the creation in decimal digits and the ddd portion the 

day of the creation (counting from January 1 as day ~~1) • 

5-3 



SECTION V. SERVICE ROUTINES 

Volume Preparation Function Job Control Language Example 

The following job control statement will cause the Volume Label 

Record to be written as ~~~~~1. The maximum number of files to be 

stored on this volume is 26 and the device address is the standard 

address, pcu ~4 - drive~. The day of creation of the Volume Label 

is the same as the Current Date Field of the Supervisor. 

Honeywell 
IlIC' ••• 'e •• , ••• 0':' •• '''. EASYCODER 

COOING FORM 

PROJECT 
De '" J2t PROGRAMMER DATE / / ""GE OF 

CARD t LOCATION OPERATtON 
NUMBER ~ coo. OPERANDS 

I 0:: 3 .. ~ 6 , . ''''5 2021 

'''' eo , I : 'rOLUMl NAME:000001 
I 

MASS STORAGE SORT 

The Mass Storage Sort uses and obeys the data management system. 

Only files created and maintained as part .of that system may be input 

to the sort. 

Functional Description 

GLOSSARY OF TERMS 

Before describing this package and giving the language elements, 

a few terms used in the text are defined: 

Sort-Keys. Those fields of an item that determine the order of the 

sort output and are part of the sort output. 

Extract-Fields. Those fields of an item that may be selected to be .. 
part of the sort output. Extract and sort-key fields must be distinct. 

Sort-Item. The internal item of the sort that has been derived from a 

source item. It contains sort-key fields and may contain extract-fields 

and a source item address. 

Residue. That data of an item that is not contained in a sort-key field. 

5-4 



SECTION V. SERVICE ROUTINES 

Fetch. Fetch is an input macro that facilitates the processing of 

the mass storage edit as well as the input file from which the sort 

file was generated. It is described in detail in the following para-

graphs. 

USE OF MASS STORAGE SORT 

The sort is primarily a "key" sort with certain optional 

capabilities. A key1 sort is such that its end result is a file 

which contains only an ordered collection of keys which have appended 

to them the address of the source item. If the desired output of 

the sort is an ordered collection of the original source items, a 

"fetch" may be used to retrieve each source item in the sort 

ordered sequence. The Mass Storage Sort offers such a key-sort, but 

one of the principal extensions it offers to this concept is that it 

allows for an output item that contains data from the source item in 

addition to the keys. This type of sort can be described as an 

"extract" sort. Specifically, a user may select up to 11 non-key 

fields, or the residue of the item where the keys are excluded. 

These non-key fields appear with the ordered keys as the sort 

output with the corollary that if the residue of the item is 

specified, the output item is a source item in its original format. 

Optionally, the address of the source item may be dropped. The use 

of the "extract" sort allows those applications which do not require 

access to the entire item to eliminate those elements of the "fetch" 

which retrieve the source item, thus implying a considerable saving 

in time. 

1Keys in this specific context means the fields of an item which are 
used to obtain the required ordering. 

5-5 



SECTION V. SERVICE ROUTINES 

SUMMARY OF CAPABILITIES 

The Mass Storage Sort performs the following functions: 

1. Sort fixed length items. 

2. Sort according to sort-key fields up to a maximum of 10 

in ascending, descending, or mixed sequence. 

3. Allows up to 11 extract fields or the residue of an item 

to be an element of the sort-item. 

4. Permits the selection of only those items for the sort 

that have a field with a specific content. 

5. Permits deletion from the sort of those items that have 

a field with a specific content. 

6. Allows user's own coding on an input item-by-item basis. 

7. Allows user's own coding on an output sort item-by-item 

basis. 

8. Accepts input from a mass storage device. 

9. Provides output in a work-file area on the mass storage 

device. 

10. Preserves the original input file. 

FUNCTION BY PROGRAM 

The Mass Storage Sort processes a file on the mass storage 

device. The file must be organized according to data management 

conventions. From each item that is a valid entrant to the sort, 

a sort-item is developed which contains as a unit the sort-key fields. 

An address of the source item may be appended to that sort-key 

unit, and the extract or residue may be prefixed to that same unit. 

The sort finally produces one string or file of logically 

sequenced sort-items in a work area. Ordering in the logical 

sequence is a function of the Honeywell Collating Sequence 

5-6 



SECTION V. SERVICE ROUTINES 

(binary ~~~~~~ to 111111) as well as the sort-key fields. A user 

requiring some other collating sequence is able to achieve this through 

own-coding. At the completion of the sort process, the sort-items 

may then be made available to the user through a specialized "fetch" 

which may also execute the retrieval of the associated source item. 

FUNCTIONS BY SEGMENTS 

The sort may be considered as consisting of two logical seg

ments, presort and merge, where the latter is subdivided into two 

phases, ONE CYLINDER (1), and MULTI-CYLINDER. 

Presort 

The presort develops a sort-item from each item that is 

acceptable to the particular sort application. These sort-items 

are arranged into ordered strings which have a length that is 

determined by the memory available to the sort and the requirement 

that an efficient covering is made of the available area of a 

cylinder. 

Own coding can be entered during the presort. It permits the 

inspection, modification, deletion, and addition of items. 

Merge One-Cylinder 

The merge one cylinder segment merges the strings that exist on 

one cylinder until they are reduced to a string of sort-items. Memory 

available to the MERGE-ONE segment is a factor in the determining of 

the way of the merge. 

Merge Multi-Cylinder 

The merge multi-cylinder employs two cylinders merging until the 

final string is produced. It employs a sliding buffer technique that 

ensures optimum activity on a cylinder once it has been accessed. 

5-7 



SECTION V. SERVICE ROUTINES 

This segment utilizes the memory that is available by creating as many 

buffers as it can. 

A cylinder is defined as the number of tracks made available 

to the read/write heads by the execution of a single "seek" instruction. 

When the final string is being created, any reorganization of the 

sort item that might be required is effected. If Merge own-coding is 

requested, it becomes active during this final phase and permits 

access to the sort-item after it has been subjected to any necessary 

reorganization. 

THE FETCH MACRO 

Fetch is an input macro that facilitates the processing of the 

Mass Storage Sort output-file as well as in the input file from 

which the Sort file was generated. It makes available the sort-item 

and its associated source-item in an item-by-item mode. Hence access 

can be made to the items of the input-file in the logical sequence 

promoted by any sort application. The user may exercise options that 

restrict his access to the sort-item only or just to the original 

input items. 

Fetch Exits 

Linkage between the user's program and the specialized version 

of Fetch that is embedded in that program is effected through Fetch 

exits. These exits are addresses in the user's program to which 

Fetch branches when it executes the function associated with a par

ticular exit. (The addresses are specified through the parameters 

of the Fetch macro call card.) The two principal exits are named: 

Examine sort-item 

Examine source-item 

5-8 

.. 



SECTION V. SERVICE ROUTINES 

Examine Sort Item. When Fetch branches to the "sort-item" exit, a 

sort-item has been brought into main memory and the address of the 

left-hand end of that item is available to the user through an 

index register that he has selected. The user may now process that 

sort-item and then return to Fetch for the execution of his next 

request. Two returns are available, normal return and delete return. 

Normal Return. If the user wishes to have access to the source

item that is associated with the current sort-item, he executes a 

"normal return". This is done by branching to a location whose 

address was to be found in the contents of the B-address register 

when the "sort-item" exit was made. Fetch will then return to the 

user's program through the source-item exit with the main memory 

address of the requested item stored in a user-designated index 

register. However, if the source-item exit was not specified in 

the Fetch macro call card, the next exit from Fetch will be 

through the sort-item exit but with the main memory address of the 

next logically sequential sort-item. 

Delete Return. This return has meaning only if a source-item exit 

has been specified. When this return is used, it is assumed that 

the user is not interested in the source-item associated with the 

current sort-item. Therefore, the next exit from Fetch will be 

through the "sort-item" exit with the main memory address of the 

next logically sequential sort-item. 

The address of the "delete return" differs from that of the 

normal by a constant equal to the length of the address mode plus 

one. 

5-9 



I 

SECTION V. SERVICE ROUTINES 

Examine Source-Item. Fetch branches to the source-item exit when 

an input item is available in main memory. The main memory address 

of that item is given through a user-specified index register. 

Input items are at the disposal of the user and are presented in 

the sequential order of a particular sort application. After the 

user has processed an item, the return to Fetch is made by using 

the "normal" return as described in paragraph "Normal Return" above. 

Specialization of Fetch 

The specialization of Fetch is principally achieved through 

ascribing values to the parameters of the Fetch macro call statement. 

However, certain parameters required for the full specialization can 

be ascertained only after the Sort has produced its sort-item file~ 

therefore, the values for these parameters are written by the Sort 

on a mass storage device. The block containing these values is 

accessed by Fetch and the final specialization is achieved. A user 

may modify this final version by requesting an exit before any file 

processing begins. Control is returned to Fetch by using the "normal 

return" • 

Initiation of Fetch 

The user initiates Fetch by branching to the tagged location 

specified in the location fields of the Fetch macro call. Fetch 

exercises control until it can meet the demand associated with a 

specified exit. When that exit is made, control lies with the user's 

program until a Fetch return is made. 

Summary of Fetch Exits 

There are two sets of exits, normal processing and error promoted. 

5-10 



SECTION V. SERVICE ROUTINES 

1. Normal Processing. 

a. File open (optional), normal return. 

b. Examine sort-item (optional) a) normal return, b) delete 

return - inhibits the user's access to the associated 

source-item where the "examine source-item" is active. 

c. Examine source-item (optional), normal return. 

d. Close file (mandatory), no return. 

Although the "examine sort-item" and "examine source-item" exits 

are classified as optional, Fetch requires that at least one of them 

is active. 

2. Error Promoted. 

These two further exits are both optional. 

a. Uncorrectable read error on the sort-item file. 

b. Uncorrectable read error on the source-item file. 

Fetch Macro 

The Fetch Macro has the name MFETCH. One macro call is required 

per program using the Fetch Function (Sorting). 

FORMAT 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER ______ DATE PAGE OF_ 

I CARD 1~1~1 I OPERATION 
NUMBER It~1 LOCATION I CODE OPERANDS 

00' 

5-11 



DESCRIPTION 

Parameter 
Number 

01 

02 

03 

04 

05 

06 

07 

08 

09 

10 

11 

SECTION V. SERVICE ROUTINES 

Value 

Two-character prefix applied to all symbols in the Fetch 
macro. This parameter is required. 

Address for own-code exit when the Fetch has been fully 
specialized~ symbolic tag or decimal address. This para
meter is optional. 

Address for own-code exit for sort-item examination1 a 
symbolic tag or decimal address. This parameter is 
optional. 

Address for own-code exit for source-item examination1 
symbolic tag or decimal address. This parameter is 
optional~ however, at least one of the exits specified by 
parameters 03 and 04 must be specified. If this exit is 
to be utilized, then the sort-item format specified to 
the preceding sort must include the source-item address. 

Address for own-code exit when the end of the sort-item 
file is reac~ed1 symbolic tag or decimal address. This 
parameter is required. 

Address of own-code exit for uncorrectable read error on 
sort-item file1 symbolic tag or decimal address. This 
parameter is optional. 

Address of own-code exit for uncorrectable read error on 
source-item file1 symbolic tag or decimal address. This 
parameter is optional. 

Buffer size required for reading blocks from the sort-item 
file1 up to 4 decimal characters. 

Buffering mode for reading sort-item file: 

SINGLE - Single buffering. 
DOUBLE - Double buffering. 

The default value is DOUBLE. 

Index register used for sort-item file1 one decimal 
character in the range 1 to 4. This index register will 
contain the address of the high-order character of the 
sort-item at the own-code exit for each sort-item. This 
parameter is required because at least one of the two 
examination exits must be specified and this parameter 
is used as a default value if parameter 13 is not written. 

Buffer size required for reading blocks from the item file1 
up to 4 decimal characters. 

5-12 



I 

SECTION V. SERVICE ROUTINES 

Parameter 
Number Value 

12 

13 

14 

15 

16 

Buffering mode for reading source-item file: 

SINGLE - Single buffering. 
DOUBLE - Double buffering. 

The default value is DOUBLE. 

Index register used for source-item file7 one decimal 
character in the range 1 to 4. This index register will 
contain the address of the high order character of the 
source-item at the own-code exit for each source-item. 
The default value is the same index register as that 
specified by parameter 10. 

Device type on which the input files to the Fetch will be 
found. The exact form of this parameter and its default 
value will be specified in a later revision. 

The address of a constant (Dew) in the user's program 
containing the name of the work file which holds the 
sort-item file input to the Fetch7 symbolic tag or 
decimal address. The Dew must be 10 characters long. 
When two work files are specified to the preceding sort, 
the name defined by the Dew must be that of the second 
file. The default value is that the work file name is 
*SORTWORK. 

The address of a constant (Dew) in the user's program 
containing the device address of the device on which 
the work file named in parameter 15 can be found1 symbolic 
tag or decimal address. The Dew must be 2 characters 
long and contain the device address in exactly the form 
it would appear in a PDT instruction. The default value 
is peripheral control unit 04, drive O. 

5-13 



SECTION V. SERVICE ROUTINES 

Sort Function Job Control Statements 

FORMAT EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DAT~ PAGE OF 

I CARD IJI~ll ! OPERATION i 
NUM8ER I~i~: LOCATION , CODE I 

II 2 h 4,!) 16:1 8 , 14·15 20121 62'63 80 

OPERANDS 

i I I SORT ii-iiiii=Ih io11.- a lJ re 5.5\ Pii.fI~ i san 
I 

I I I i I \nnMf) 1n0!'; Ilna.l flO rame"i.er 
i ; I i OoTiot10.J. 
I I I I 

I 
I : 

, 
i I I 00.1", i .0 .n.Q I • .. 

I i II I ! ")YES/ 

• I !, I !F,1LE I'..IOR 1(2 , I " I , I ,I '().pti,Qno,l, State-.-. I • 

7 T I! ~1LE 'rTJJFO 
• I I I I I I VEVlrDD=(Dr..U) ",'pn:t: • 

o I I I ! i :< . '( t1fi,;'; i--:rrlJn ./:"flafJ -Il) ••• "71 I 

•• f I "1 i .0_ 
DESCRIPTION 

Sort Statement 

A Sort Statement is required as the first statement (except for 

the Execute Statement) in the job control file. Even if the standard 

values are usable for all parameters, there must still be a Sort 

Statement to confirm that the parameters are intended for a sort 

operation. 

5-14 

I 



SECTION V. SERVICE ROUTINES 

HIGH MEMORY ADDRESS PARAMETER: The High Memory Address Parameter (HMA) 

defines the highest memory address available to the sort. However, if 

an own-code program is resident during a phase of the sort and the base 

address of that program is lower than that specified by the HMA para

meter but is higher than the base address of the sort itself, then the 

base address of that program less one is taken as being the highest 

memory address available to that phase. 

The high-address value of the parameter is written as a 6 character 

decimal number and represents the highest address available. Optionally, 

the number of 16K memory modules available (nnM) can be written. The 

highest address available then will be computed by the sort, and will 

be one less than nnM times 4~96. 

The standard assumption is that the HMA value is to be taken from 

the Supervisor Communication Area Field that specifies the base address 

of object program memory. When HMA is specified but has a higher value 

than the address in the Supervisor, the Supervisor value is used. 

SEQUENCE PARAMETER: The Sequence Parameter (SEQ) describes the primary 

sorting sequence. When the A value is used, the sorting sequence is 

ascending. When D is used, the sequence is descending. When the 

parameter is omitted, the ascending sequence is used. 

ITEM ADDRESS PARAMETER: The Item Address Parameter (ITADD) indicates 

whether the mass storage address of the item is to be appended to the 

sort item or not. When YES is the specified value of the parameter, 

the address will be included with the sort item. When NO is specified, 

the item address is not appended to the sort item. The standard 

assumption is that the item address will be appended to the sort item. 

The use of NO as the parameter value is only meaningful if the application 

does not require accessing the input file after completion of the sort. 

See the description of the Fetch Macro on pages 12-13 of this section. 

5-15 



SECTION V. SERVICE ROUTINES 

File Statements 

The File Statements specify information about the input and output 

files used by the sort. The I/O function name, which is the first 

parameter of each File Statement, specifies to which file the statement 

refers. 

INPUT FILE STATEMENT: The Input File is the file of input data to the 

sort. The parameter IN identifies the File Statement as refering to the 

input file. The File Statement for the input file must be present7 there 

is no standard assumptions about this file. 

Name Parameter: The Name Parameter (NAME) specifies the file name of 

the input file to the sort. The file name can be up to 1~ characters. 

Trailing spaces automatically are added. 

Device Address Parameter: The Device Address Parameter (DEVADD) speci

fies the physical device address of the volume containing the input file. 

The peripheral control unit number (pcu) is specified in 2 octal digits. 

The I/O bit is not required, but all other bits must be specified. The 

drive number is specified in 1 octal digit. When this parameter is 

omitted, the standard device address is pcu ~4 and drive ~. 

Password Parameter: The Password Parameter (PW) defines the password 

of the sort input file. The password can be up to 8 characters long. 

When the parameter is omitted, no password checking is done. 

WORK FILES STATEMENTS: The sort uses work area on mass storage. The 

work area can be composed of more than one file, but the total number 

of units of allocation of all work files cannot exceed 5. 

5-16 

,. 



~ 

SECTION V. SERVICE ROUTINES 

The parameter WORKn (where n is 1 or 2) specifies that the File 

Statement applies to the sort work files. When the parameter of the 

work File Statement is written as WORKl, the File Statement applies 

to Work File 1. When written as WORK2, the File Statement applies to 

Work File 2. When the File Statements for the Work Files are omitted, 

the standard assumption is that there is only one Work File, named 

*SORTWORK, on pcu ~4, drive~. When only a WORK2 File Statement is 

used, the standard assumption for WORKI is used. 

Name Parameter: The Name Parameter (NAME) specifies the name of the 

sort Work File. It can be up to 1~ characters long. When the Name 

parameter is omitted, the standard name *SORTWORK is used. 

Device Address Parameter: The Device Address Parameter (DEVADD) speci

fies the physical device address of the volume containing the Work 

File. The peripheral control unit number (pcu) is written as 2 octal 

digits. The I/O bit is not required, but all other bits must be speci-

fied. The drive number is written as 1 octal digit. When this parameter 

is not specified, the_standard device address of pcu ~4 drive ~ is used. 

INFORMATION FILE STATEMENT: The Information File is a printed program 

history. The parameter INFO identifies the File Statement as referring 

to the Information File. When the Information File Statement is omitted, 

no program history will be printed. 

Device Address Parameter: The Device Address Parameter (DEVADD) speci

fies the physical device address of the Information File. The Information 

File must be on a Printer, so no drive number is required. The peri

pheral control unit number (pcu) is written as 2 octal digits. All 6 

bits are required. When the Device Address Parameter is omitted, the 

standard pcu number of ~2 is used. 

5-17 



SECTION V. SERVICE ROUTINES 

Fields Statement 

Parameters belonging to the Fields Statement define the functions 

of various fields of the input item in relation to the sort operation. 

KEYS PARAMETER: The Keys Parameter (KEYS) specifies the sort-key data 

and is followed by a list. Up to 1~ sort-key fields may be specified. 

Their order in the list indicates their sort significance. The order 

is in decreasing importance. Keys are assumed to be sorted in the 

order defined by the primary sequence of the sort unless a "reverse" 

key is specified. A "reverse" key will be sorted in the reverse seq

uence from the primary order. 

The Postition Value of the Keys Parameter is written in 4 decimal 

digits and gives the p~sition of the left-most (high order) character 

of the Key Field in the item. The first character in the item is 

c~nsidered to be in position ~~~1. 

The Length Value of the Keys Parameter is written in 2 decimal 

digits and gives the number of characters in the Key Field. 

When the parameter value R is specified, the key with which it 

is associated is a "reverse" key. 

There are no standard assumptions about the Key Parameter. If 

a single key is specified, the keyword parameter KEY is accepted. 

EXTRACT FIELDS PARAMETER: The Extract Field Parameter (EXTR) speci

fies the Extract Field information. Extract Fields are fields of an 

input item that may be included in the sort-item but have no signifi

cance in determining the final sort order. Up to 11 Extract Fields 

may be specified and the order in the list determines their relative 

positions in the sort-item. When the user wishes the Extract Fields 

5-18 



SECTION V. SERVICE ROUTINES 

to be all those fields of the item that have not been specified as keys, 

then the value given to the EXTR Parameter is ITEM. The specification 

of ITEM implies that the output of the sort will be a string of items 

in the same format as the original input item. 

Key Fields and Extract Fields are mutually exclusive. 

The Position Value of the Extract Parameter is written in 4 decimal 

digits and gives the position of the left-most (high order) character 

of the Extract Field in the item. The first character in the item is 

considered to be in position ~~~l. 

The Length Value of the Extract Parameter is written in 2 decimal 

digits and gives the number of characters in the Extract Field. 

When the EXTR Parameter is omitted, no Extract Fields are used. 

SELECT PARAMETER: The Select Parameter (SEL)· indicates that the sort 

application allows only certain items of the input files to be accepted 

as input to the sort. The value of the SEL Parameter is a list consisting 

of 2 parameters. The first defines the position in the item of the 

field on which the selection is based. The second, which is prefixed 

by a keyword, defines the contents of the select field. Only 1 SEL 

parameter may be specified. 

The Position Value of the SEL Parameter is written in 4 decimal 

digits and defines the left-most (high order) character of the field 

on which the selection is based. The first character of the item is 

defined as ~~~1. 

The Value Portion of the SEL Parameter (aaa ••• a) identifies the 

contents of the select field. Blanks are significant. The maximum 

number of characters that the VAL Parameter can define is 3~. 

5-19 



SECTION V. SERVICE ROUTINES 

When this parameter is omitted, the standard assumption is that no 

select function is required. 

DELETE PARAMETER: The Delete Parameter (DEL) defines the field that 

allows an application of the sort to bypass those items that have a 

specified value in one field. An item that meet the DEL specification 

is not deleted from the resident input file. The format of the DEL 

value is the same as that described for the SEL value. Only one DEL 

parameter may be specified. When this parameter is omitted, the 

standard assumption is that the delete function is not required. 

Exits Statement 

The Exits Statement specifies own-coding exits from the sort to 

user procedures. When the Exits Statement is omitted, there are no 

own-coding exits. 

PRESORT OPEN PARAMETER; The Presort Open Parameter (PSOPEN) specifies 

an own-coding exit that permits the user to have access to the input 

file label. The standard assumption when this parameter is omitted is 

that there is not a Presort Open Exit. 

The Address Value of the PSOPEN Parameter is written in 6 decimal 

digits and gives the address to which the sort will branch. 

PRESORT ITEM PARAMETER: The Presort Item Parameter (PSITEM) specifies 

an own-coding exit that occurs for each accepted (selected) input item. 

Also, there is an exit after the presort has been specialized but 

before the first input item is accessed. When the Presort Item Para~ 

meter is omitted, the standard assumption is that there is no Presort 

Item Exit. 

5-20 



SECTION V. SERVICE ROUTINES 

MERGE PARAMETER: The Merge Parameter (MERGE) specifies an own-coding 

exit that occurs for each output item when the final output of the 

sort is being created. The merge own-coding may be linked with the 

sort during the final phase of the merge, by loading it at that time. 

When the Merge Parameter is omitted, the standard assumption is that 

there is no Merge Exit. 

The Address Value of the Merge Parameter is written in 6 decimal 

digits and gives the address to which the sort will branch. 

PROGRAM PARAMETER: The Program Parameter (PROG) specifies that the 

named program is to be loaded for the own-coding merge exit. When the 

Program Parameter is omitted, the standard assumption is that the merge 

own-coding was resident in main memory before the final merge phase. 

The Program segment Name Value of the Program Parameter gives the 

program segment name of the program to be loaded. 

VISIBILITY PARAMETER: The Visibility Parameter (VIS) specifies the 

visibility mask of the merge own-coding. When the Visibility Parameter 

is omitted, the standard assumption is that visibility is not used when 

loading the merge own-code program. 

The Visibility Mask Value of the Visibility Parameter gives the 

visibility mask to be used when loading the merge own-coding program. 

Sort Function Job Control Language Examples 

Example 1. 

The input file to the sort is named TRANSACT and the device address 

is the installation standard address. One work-file is available under 

the name *SORTWORK and its device address is the installation standard 

address. The highest memory address is to be taken from the Supervisor 

5-21 



SECTION V. SERVICE ROUTINES 

Communication Area and the output sequence is to be ascending. The sort 

item will consist of one key with the hardware address of the associated 

input item appended. 

EASYCODER 
CODING FORM 

Example 2. 

A sort is to be executed on the file whose name is TRANSACT and 

whose volume resides on a mass storage device with a peripheral address 

which is (~7)8 for the control unit and ~ for the device. There are two 

work files with names and addresses as given. The high memory address is 

9~45 and the output is to be in descending sequence. The final output 

will be a string of input items that have the characters LOBSTERAPOT 

starting in postion 4~. 

EASYCODER 
COOING FORM 

PR08LEM ~:;:::::===;====;============~PR~O~GR~A~MM~E~R =====~()A~:rE= ___ -_______ -_PA_GE ___ -_OF::.:::; 

! , ,;;;;,'; ,) 

Example 3. 

Sort the file TRANSACT but bypass as input to the sort those items 

that the characters ZZZZ begin in p~sition 1~. Two work files are 

available, the primary work file is named *SORTWORK and the secondary 

5-22 

I :::. 

'. 



SECTION y. SERVICE ROUTINES 

EXWORK. Both are on the installation standard device address. The 

sort-item consists of 2 E.xtract Fields followed by 3 key fields and the 

item address is appended. Merge own-coding is required and the sort is 

to call the own-code program. The highest memory address is 8(4~96)-1 = 

32767. 

EASYCODER 
CODING FORM 

PROGRAMMER ______ OATE PAGE_OF_ 

SORT FUNCTION PROGRAMMER'S PREPARATION INFORMATION 

Work Files 

The sort can utilize two work files. If two work files are provided 

for the sort-work area, they may exist on the same volume or they may each 

be on a different volume. The device addresses associated with the two 

work files must have the same control unit. A work file must have been 

properly allocated through File Support as a sequential file with 25~ 

character records. 

UNITS OF ALLOCATION 

The sort work area may be defined by five or less units of allocation. 

If the total number of units of allocation associated with the work files 

exceeds five, the extra units will be ignored apart from the sort using 

the last record of the last unit of allocation for internal control 

information. This record is also used to store information for Fetch. 

'-/ 5-23 

I 



SECTION V. SERVICE ROUTINES 

When the number of units of allocation is five or less, the last record 

of the last unit of allocation is similarly used. 

RELATIONSHIPS BETWEEN UNITS OF ALLOCATION AND SORT EFFICIENCY 

There are no restrictions on the units of allocation, but, if they 

are to achieve optimum efficiency they should have the following 

characteristics: 

1. The width of a unit of allocation should be a full cylinder 

(10 tracks). 

2. The number of units of allocation should be as small as possible. 

3. If an input file exists on one device and a work file is avail

able on a second device, the work file should be specified as 

WORK1 to the sort. 

4. When the work file and the input file are on the same device, 

the work file should be as physically near the input file as 

possible. The cylinder range of a unit of allocation for a 

work file may overlap the cylinder range of a unit of allocation 

for an input file, provided they do not use common tracks. 

Calculation Of Sort-Item Block Size 

Parameter ~8 of the Fetch macro call specifies the buffer size 

required for reading blocks from the sort-item file. If the value given 

to this parameter is less than that required, the Fetch process cannot 

be executed. If, however, the assigned value of the parameter exceeds 

the requirement some memory locations will be wasted, but the Fetch 

process will be executed. Calculation of the sort-item block size is 

necessary also for an accurate computation of the work area required 

to execute the sort. 

5-24 



SECTION V. SERVICE ROUTINES 

The calculation of the sort-item block size is divided into a number 

of steps~ each with its own heading. Certain other information is 

derived as a result of these calculations, such as the maximum sort-

item size acceptable to the sort. 

CALCULATION OF THE HIGHEST MEMORY LOCATION AVAILABLE TO THE PRESORT (HMPS) 

No Own-Coding Present 

HMPS = HMA where HMA represents the highest memory address avail

able to the sort. Note that HMPS is not always equal to the value 

specified by the user for highest memory location. 

Own-Coding Present 

When own-coding is present, the highest memory address available 

to any logical segment of the sort (i.e. Presort, Merge-One-Cylinder 

or Merge-Multi-Cylinder) may be determined from the base address of 

the own-code program that is resident during the execution of that 

logical segment. 

OWN-CODING OUTSIDE THE SORT AREA: If all own-code values are greater 

than the highest memory address parameter or lie below the base of the 

Sort, then: 

HMPS HMA 

Note that own-coding can only lie below the base of the Sort if the Sort 

has been relocated from its present base value of 2~~1~. 

5-25 



SECTION V. SERVICE ROUTINES 

OWN-CODING WITHIN THE SORT AREA: If there is no merge-own-coding or the 

merge-own-code program is to be called by the Sort, then: 

1. PSOPEN is the value of the presort open exit. 

2. PSITEM is the value of the presort item exit. 

3. HMPS PSOPEN-1 if PSOPEN is less than PSITEM, otherwise 

HMPS = PSITEM-l. 

When merge-own-coding is loaded prior to the execution of the Sort, then: 

1. MERGE is the value of the merge-own-code exit. 

2. HMPS is the least of the three values PSOPEN-1, PSITEM-1 or 

MERGE-1. 

HIGHEST MEMORY LOCATION AVAILABLE TO THE MERGE 

Merge-own-code is only active during the merge-multi-cylinder 

segment and, therefore, the merge-one-cylinder is not affected if the 

merge-own-code is resident at the beginning of Sort execution. Calcu

lation of the HMMC is only significant in terms of the merge-multi

cylinder segment. 

No Merge-awn-Coding Present 

HMMC HMA 

Merge-awn-Coding Present 

OWNCODING OUTSIDE THE SORT AREA: If the merge-own-coding value is 

greater than the highest memory address parameter or lies below the 

base of the Sort, then: 

HMMC = HMA 

OWN-CODING WITHIN THE SORT AREA: HMMC (MERGE-1) 

5-26 

.-



SECTION V. SERVICE ROUTINES 

CALCULATION OF SORT-ITEM SIZE (SIS) 

KL total number of key characters. 

EL total number of extract characters. 

AS = ~ if no item address appended, 11 if item address is appended. 

SIS KL + EL + AS 

If an item sort is requested and IL represents the input item length, then: 

SIS = IL + AS 

In general, for an item sort it is expected that AS ~. 

CALCULATION OF SPACE AVAILABLE TO MERGE (PM) 

PM = HMMC - 55~~ - SUP - 2 (SIS) 

MAXIMUM SORT-ITEM SIZE ACCEPTABLE 

The maximum sort-item size acceptable to the sort is the lesser of 

the two values derived by the following calculations: 

1. PS - INB - 25 where INB is the size of the input block. 
2 

2. PM - 34 
3 

A further restriction on the size of the sort-item block is that it 

cannot exceed 3741 characters in length. 

SINGLE AND DOUBLE BUFFERING 

The determination as to whether or not to use double buffering is 

made at execution time of the presort. This decision is significant in 

determining the sort-item block size. 

5-27 



SECTION V. SERVICE ROUTINES 

Table 5-1. Disk Table 

COLUMN A COLUMN B 

Data Records 
Characters Per 
Per Block Block 

241 1 
741 3 

1241 5 
3741 15 

From Table 5-1, find the least value in column A that is greater than 

SIS. Let that value be represented by PSB (Physical Block Size) • 

1. Calculate NI - ~Bj 
1 - ~IS 

where NIl is a temporary value for the 

sort-item block factor. 

2. Calculate IS
1 

= 4 rI1 (SIS+12] 

storage factor. 

where IS
1 

is a temporary item 

3. Calculate OSl = NIl ~I~ where OSl is a temporary value for 

the block size. 

The presort will operate with double buffering if the two following 

conditions are met. Namely: 

1. PS22 (INB) +IS1+2(OSl) +26 

2. PM23 (OSl) +26 

CALCULATION OF SORT-ITEM BLOCK SIZE FOR SINGLE BUFFER MODE 

1. NI 
2 [

PS-INB-13] 
2 (SIS+6) 

(rounded down to the next lower integer) 

2. Calculate NI3 
[

PM-34] (rounded down to the next lower integer) 
SIS 

5-28 

;,. 



SECTION V. SERVICE ROUTINES 

NI is the least of the three values NI ,NI or NI3 where NI represents 
1 2 

the sort-item blocking factor (NI having been calculated in the previous 
1 

paragraph). The sort-item block size for single buffering, then, is: 

OS = NI(SIS)+9. 

CALCULATION OF THE SORT-ITEM BLOCK SIZE FOR THE DOUBLE BUFFER MODE 

When the presort find it is possible to double buffer, it attempts 

to increase the sort-item block size; provided that a string of items 

can be maintained that holds at least four times the number of items 

that can be contained in a sort-item block. A further factor in the 

computation is that there should be an efficient covering of the work 

file area. 

1. Calculate PMD = PM-2(INB)-26 where PMD is the space available 

to the presort after an allowance has been made for the two 

input buffers and output buffer control. 

2. Calculate ISB = 6(SIS)t48 where ISB is defined as an item 

capacity unit. 

3. Calculate NIl = PMD 
ISB 

(rounded down to the next lowest integer). 

4. Calculate OSl NI (SIS). 
1 

5. Using Table 5-1, find in column A the least value greater than 

OSl. Let that value be PBSh • If there is a member of the table 

below PBSh , represent it as PBS
L

• This rule has two exceptions, 

as follows: 

(a) If PBS
h 

= 241, go to step 8 (c). 

(b) If OSl is greater than 3741, take PBS
h 

as 3741. 

''--"'' 5 - 2 9 



SECTION V. SERVICE ROUTINES 

6. Calculate the following: 

(a) NIl = PBSh (rounded down to the next lowest integer) 
SIS 

(b) W
h 

= PBS
h

-NI
2

(SIS) where W
h 

is the number of physical 

records represented by PBS
h 

that would not be occupied by 

a sort-item block. 

7. Calculate the following: 

8. 

9. 

( a) NI = PBS
L 

(rounded down to the next lowest integer) 
2 SIS 

PBSL-NI 2 (SIS) where W
L 

is the number of characters of 

the group of physical records that would not be occupied 

by the sort-item block 

Calculate the following: 

(a) If W<W 
h L 

then NI = NI 
1 

(b) If Wh~WL then NI NI2 

( c) When PBS
h = 241, NI = 241 (rounded down to the next lowest 

SIS 
integer) 

The sort-item block size = OS = NI(SIS) +9 

CALCULATION OF SORT WORK AREA REQUIRED 

The sort will handle up to five units of allocation that may be 

concentrated within one work file or split across two work files. If 

the total number of units of allocation ascribed to the file(s) is five 

or less, the last record of the last unit of allocation is used as 

storage for sort internal control information. It is also used to pass 

information to the Fetch function. 

5-30 

.. 



SECTION V. SERVICE ROUTINES 

Calculation Of The Number Of Sort-Items That Might Be Contained In A Unit 

Of Allocation • 

If a unit of allocation is defined as C1T1C2T2 the number of 250-

character physical records on a cylinder is given by: 15(T2-T1+l) = NRT 

1. Calculate the number of physical records required to contain 

a sort-item block (SIB) 

SIB = NI(SIS)+9. Using Table 5-1, find in column A the least 

value greater than SIB. Then, the number of physical records 

required to contain a sort-item block is given by the corres-

pondin~ value in column B. Let this value be represented by 

PRC. For example, if SIB = 730 a search of Table 5-1 would 

show the value 741 in column A therefore PRC = 3 (the corres-

ponding value in column B) • 

2. Calculate the number of sort-items contained within a cylinder 

(NC) • NC = [~~2J (NI) 

3. Calculate the number of sort-items that may be contained within 

a unit of allocation. 

(a) When the unit of allocation is not the last unit and the 

total number of units of allocation common to the specified 

work file(s) exceeds five: 

Number of sort-items = NC ~2-Cl +~ 

(b) When the unit of allocation is the last one to be used and 

the total number of units for the 

less: Number of sort-items = 

work file(s) 

NC fTCl+~ 
is five or 

-2-NI 

(c) When the unit of allocation is the last one to be used and 

the total number of units of allocation common to the 

specified work file(s) exceeds five: 

Number of sort-items = NC ~2-Cl +lJ -NI 

5-31 



SECTION V. SERVICE ROUTINES 

Calculation Of The Number Of Cylinders Required For The Input 

• 
If the difference between the highest and lowest tracks (T 2-T1) is 

the same for all units of allocation, the number of cylinders (CR) required 

to handle the input when there are five or less units of allocation is 

given by: 

~NI) PRC 
1. CR = 15{T2-T1+1)NI (rounded up to the next highest integer) 

where I is the total number of input items to the sort. 

If the work files have more than five units of allocation the formula 

becomes the following: 

I (PRC) (I+NI) 
1. CR = 15{T2-T

1
+1) (NI) 

Parameters Resident In Memory 

(rounded up to the next highest integer) 

When the parameters to the Sort are in main memory prior to the Sort 

being called, no default conditions are allowed. The starting location 

of the parameter area is 21~ (decimal). 

MERGE OWN-CODING PROGRAM 

If there is to be merge own-coding and it is not already in memory, 

the Sort will call in the program via the Supervisor according to the 

parameters shown in the summary. 

SORT KEY-FIELDS 

Up to ten key-fields may be specified, in decreasing order of 

importance. Specification of each field requires seven characters. 

Four of these are used to indicate the position of the leftmost (hiah-order) 

character in the field, and two for the number of characters in that 

field (both in decimal with leading zeros). The seventh character is 

defined as the reverse key parameter and its use permits the key with 

5-32 

.. 



SECTION V. SERVICE ROUTINES 

which it is associated to be in the reverse sequence from that speci

fied by the parameter in character 121. If less than ten key fields are 

used, the remaining characters in the key-field parameter area must be 

blank. 

EXTRACT FIELDS 

Extract fields are fields of the item that may be included in the 

sort-item but have no significance in determining the final sort order. 

Up to eleven extract fields may be specified and the order of specification 

determines their position in the sort-item. Specification of each 

extract field requires six characters: four for the p~sition of the 

leftmost (high-order) character of the field, and two for the number of 

characters in that field. If less than eleven extract fields are used, 

the remaining characters in the extract field parameter must be blanks. 

The first character of an item is considered to be p~sition ~~~l. 

When the user wishes the extract field to be all those fields of an 

item which have not been specified as keys, then characters 193 - 196 

are specified as ITEM and the remaining extract parameter area is set 

to blanks. When ITEM is specified, the final output sort-item which is 

input to the Fetch function, is a string of items in the same format 

as the original input item. Key fields and extract fields are mutually 

exclusive. 

SELECT OPTION 

Only one select field may be specified. When such a field is speci

fied, only those input items that have the same value as the specified 

select field will be accepted as input to the Sort. 

DELETE OPTION 

Only one delete field may be specified. Items that have the field 

identified by the delete parameters are bypassed as input to the Sort. 

They are not deleted from the original input file. 

SUMMARY OF SORT PARAMETERS RESIDENT IN MAIN MEMORY 

Table 5-2 lists the sort parameters resident in main memory. 

5-33 



U'1 
I 
w .... 

( 

PARAME'IER 
NAME 

FILE 
INFORl>1ATION 

CHARACTERS 

1 - 1.0 

11 - 18 

19 - 21 

22 - :,0 

51 - 6,0 

61 - 63 

64 - 73 

74 - 76 

77 - 8,0 

81 

TABLE 5-2. SORT PARAMETERS RESIDENT IN MAIN MEMORY 

VALUE DESCRIPTION 

Input 
File Input File Name. 
Name 

Password Password. 

XX Address of primary Input file control unit. 
,0x8 Address of primary input file device. 
,0,08 Address of primary input file magazine number. 

8 

/) Reserved for use of the operating system. Must be set to blanks. 

Name of 
Primary Name of primary work file. 
Work File 

XX Address of primary work file control unit. 
,0x8 Address of primary work file device. 
,0,08 Address of primary work file magazine. 8 

Name of 
Second Name of second work file. Blank if a second work file is not 
Work File used. 

XX8 Address of second work file control unit.:t Blank if a second 
,0X Address of second work file device. work file is not 
,0,08 Address of second work file magazine. used. 8 

fj, Reserved for use of the operating system. Must be set to blanks. 

XX Printer control unit device address. Must be blank if not used. 8 When this parameter is specified the program history is printed 

and the block that has given rise to an uncorrectable read error 
will be printed. 

( 
" 

( 

(J) 
t:Ij 
o 
1-:3 
H o 
Z 

<: 

(J) 
t:Ij 

~ 
H o 
t:Ij 

~ 
~ 
H 
Z 
t:Ij 
(J) 



-
( 

U1 
I 
LV 
U1 

P ARAME'"£ER 
NAME 

HIGHEST 
MEMORY 
ADDRESS 

PRESORT 
OWN-CODING 

PRESORT 
ITEM 
OWN-CODING 
ADDRESS 

MERGE 
OWN-CODING 
PROGRAM 

CHARACTERS 

82 - 87 

88 

89 - 94 

95 - 1~~ 

1~1 - 1~6 

1~7 - 112 

113 - 114 

115 - 12~ 

( 
., 

( 
Table 5-2 (cont). SORT PARAMETERS RESIDENT IN MAIN MEMORY 

VALUE DESCRIPTION 

This is the highest memory address available to the sort and 
may be expressed in any of the following three ways: 
1. In decimal with leading zeros. 
2. As the number of 4K modules, with leading zeros. 
3. As a binary address, right justified in the parameter field 

and with leading spaces. If the value is greater than 32K, 
then 4 characters are required. 

6, Reserved for the use of the operating system. Must be set to 
a blank. 

The address, in decimal, with leading zeros, to which the pre-
sort branches when an input file has been opened. Blank if the 
option is not used. 

The address, in decimal, with leading zeros, to which the presort 
will branch (1) after the presort has been specialized and ( 2) 
just prior to processing each item. Blank if the option is not 
used. Alternatively, the address may be specified as a binary 
value, right justified with leading blanks. If the address lies 
above 32K, 4 characters are required. 

The address, in decimal, with leading zeros, to which the final 
merge phase will branch when an item has been processed. The 
merge is said to be in its final phase when it is producing the 
single string output. Blank if this option is not used. 
Alternatively, the address may be specified as a binary value, 
right justified with leading blanks. If the address lies above 
32K, 4 characters are required. 

Merge own-coding program name. 

Merge own-coding segment name. 

Visibility mask associated with merge own-coding program. 
Blank if not used. 

- - ----------------------

til 
t:r::I o 
1-3 
H 
o 
Z 

c::; . 
til 
t:r::I 

~ 
H o 
t:r::I 

13 
~ 
H 

~ 
til 



~ 

U1 
I 
W 
0) 

( 

PARAMETER 
NAME 

ASCENDING 
OR 

DESCENDING 
OUTPUT 

ITEM 
ADDRESS 
APPENDAGE 

SORT-KEY 
FIELDS 

CHARACTERS 

121 

122 

123 - 126 

127 - 128 

129 

13¢ - 136 

137 - 143 

144 - 15¢ 

151 - 157 

158 - 164 

165 - 171 

172 - 178 

Table 5-2 (cont). SORT PARAMETERS RESIDENT IN MAIN MEMORY 

I 

VALUE DESCRIPTION 
, 

6 Ascending sequence. } 
When a mixed sequence is required, this is 
expressed through the reverse-key parameter. 

D Descending sequence. 

6 Item address is to be appended to the sort-item. 

N Item address is not appended to the sort-item. 

dddd Position of the primary sort-key 

dd Number of characters in primary key. 

6 Key is to be sorted in the sequence defined by character 121. 

R Key is to be sorted in sequence opposite that defined by 
character 121. 

Second key parameters. Same as characters 123 - 129. 

Third key parameters. Same as characters 123 - 129. 

Fourth key parameters. Same as characters 123 - 129. 

Fifth key parameters. Same as characters 123 - 129. 

Sixth key parameters. Same as characters 123 - 129. 
! 

Seventh key parameters. Same as characters 123 - 129. I 

Eighth key parameters. Same as characters 123 - 129. 
- ----

( 
~ 

( 

Ul 
J::EJ 
() 
1-3 
H 
o 
Z 

<: 

Ul 
t:tJ 

~ 
H 
() 
t:tJ 

~ 
~ 
H 

£ij 
Ul 



( 

111 
I 
w 
-..J 

PARAMETER 
NAME 

SORT-KEY 
FIELDS 

EXTRACT 
FIELDS 

CHARACTERS 

179 - 185 

186 - 192 

193 - 196 

197 - 198 

199 - 2~4 

2~5 - 21~ 

211 - 216 

217 - 222 

223 - 228 

229 - 234 

235 - 24~ 

241' - 246 

247 - 252 

( 
.. 

Table 5-2 (cont). SORT PARAMETERS RESIDENT IN MAIN MEMORY 

VALUE DESCRIPTION 

Ninth key parameters. Same as characters 123 - 129. 

-
Tenth key parameters. S~me as characters 123 - 129. 

dddd First extract field position. 

ITEM Extract fields are the residue of the item. 

dd Number of characters in the first extract field. 

Second extract field. Same as characters 193 - 198. 

Third extract field. Same as characters 193 - 198. 

Fourth extract field. Same as characters 193 - 198. 

Fifth extract field. Same as characters 193 - 198. 

Sixth extract field. Same as characters 193 - 198. 

Seventh extract field. Same as characters 193 - 198. 

Eighth extract field. Same as characters 193 - 198. 

Ninth extract field. Same as characters 193 - 198. 

Tenth extract field. Same as characters 193 - 198. 
-

( 

, 

I 

(J) 

t:EJ 
() 
1-3 
H o 
Z 
<: 

(J) 
t:EJ 

~ 
H 
() 
t:EJ 

~ 
S 
H 
Z 
t:EJ 
(J) 



( 

In 
I 
w 
CD 

PARAMETER 
NAME 

EXTRACT 
FIELDS 

SELECT 
OPTION 

DELETE 
OPTION 

CHARACTERS 

253 - 258 

259 - 262 

263 - 293 

294 - 297 

298 - 328 

329 - 4~~ 

Table 5-2 (cant). SORT PARAMETERS RESIDENT IN MAIN MEMORY 

! 

I 

VALUE DESCRIPTION 
I 

Eleventh extract field. Same as characters 193 - 198. 

dddd Position of the leftmost (high-order) character in the item of 
the field on which the sort is to be selected. Expressed in 
decimal with leading zeros. 

6fY::,6 Select option not used. 

These are the characters of the select field. Definition of 
the field must be determined by a comma. Imbedded blanks are 
significant. A comma may not be a character of the select field. 
The maximum size of a select field is 3~ characters. 

dddd The position of the left-most (high-order) character of the 
I delete field of the item. Expressed in decimal with leading 

zeros. 
I 

Delete option not used. , 

These are the characters of the delete field. Definition of the 
delete field must be terminated by a comma. Embedded blanks are 
significant. A comma may not be a character of the delete field 
The maximum size of the delete field is 3~ characters. 

Reserved for the use of the operating system. Must be set to 
blanks. 

- ------

( 
'I ~ 

( 

Ul 

~ 
1-3 
H o 
Z 

<: . 
Ul 
ttl 

~ 
H 
() 
ttl 

~ 
~ 
H 

~ 
Ul 



SECTION V. SERVICE ROUTINES 

PRESORT OPEN 

The presort branches to the location specified by the value of the 

presort open parameter after it has read the file name in *VOLDESCR*. 

Index register 1 (Xl) contains the left-hand (high-order) address of that 

item. When the file is protected by a password, the item is not made 

available until the password check is successfully completed. When the 

item is made available for inspection, it may be moved to the own-code 

program area but no punctuation is present in the sort area it will occupy. 

When the own-code program sets punctuation in the sort area, it is respon

sible for clearing the punctuation before returning control to the Sort. 

The presort is re-entered at the location defined by the contents of the 

B address register when the presort branched to the own-code program. An 

SCR of the B address register should be the first instruction of the pre

sort own-code program. 

PRESORT ITEM-BY-ITEM 

Definition 

1. Normal Return A return of the control to the Sort from an own

code program m~de by branching to the location specified by the 

contents of the B address register when control is given to the 

own-code program. 

2. Branchspace Constant The number of characters required for a 

branch operation code and one address field. If the Sort is 

operating in the 3 character mode, the value of this constant is 

4, in 4 character mode the value of the constant is 5. 

5-39 



SECTION V. SERVICE ROUTINES 

Processing An Item 

The presort will branch to the location specified by the value of the 

item-by-item parameter prior to processing each input item, however, if 

that item is to be deleted it will not be delivered to the user. Index 

register 1 (Xl) contains the address of the left-hand (high-order) character 

of the item as it is in the input buffer. The item may have its contents 

modified, but its length can never be changed. Punctuation will be present 

in the item: a word mark will appear on the high-order character of every 

key field pertinent to the particular sort application. Any change in the 

status of the item's punctuation will give unspecified results. Control 

is returned to the Sort by making a normal return. Figure 5-1 illustrates 

the punctuation of an input item. 

KEY 

I 
KEY KEY 

I I # 2 #1 1 #1 3 • , 1M ~ 
WM 

A. Punctuation in the input item whe.n only key fields have been specified. 

I I I 1 1:11 I II:T 1 I 
KEY EXT KEY EXT 

#2 #2 #3 #1 

+ t ~ • • + 
WM WM WM WM WM WM 

B. Punctuation in the input item when key and extract fields have been 
specified. 

KEY 

#2 

KEY 

#1 .. 
WM 

KEY 

#3 .. 
WM 

C. Punctuation in the input item when an item sort has been specified. 

Figure 5-1. IllUstrations Of Input Item Punctuation 

5-40 

1 



SECTION V. SERVICE ROUTINES 

Adding An Item 

An item, or those fields relevant to the sort application, may be 

added by placing the address of the left-hand (high-order) character of 

the item in index register 1 (Xl). The item must have the same format as 

the specified input, i.e., item length, key fields, etc. Word marks must 

appear in the item in the following locations: 

1. On the first character of each key field. 

2. On the first character of each extract field. 

If an item sort has been specified, every non-key field of the item 

is treated as an extract and so a word mark is required on the first 

character of all such fields. This is illustrated in Figure 5-1. 

When the sort application specified that an item address was to be 

appended to the sort-item, the own-code program must supply this address 

to the Sort. This is done by placing the address of the high-order 

character, of an eleven character field, in index register 2 (X2). The 

contents of this eleven character field may be an item hardware addres~ 

but the presence of a single character (778 ) in the high-order position 

of that field indicates to the Fetch program that the item does not 

exist on the on-line mass storage device. When the address is a valid 

one, the format is as follows: 

1. Device Address --- Character 1: pcu with the high_order bit as zero. 

Character 2: drive number. 

Character 3: magazine number. 

2. Block Address --- Characters 4 and 5: Cylinder number. 

Characters 6 and 7: Track number. 

Characters 8 and 9: Number of the record at the 

beginning of the block 

containing the item. 

5-41 



SECTION V. SERVICE ROUTINES 

Characters 1~ and 11: Relative item number in 

the block. The number 

for the first item in the 

block is ~. 

No punctuation may be present in the eleven character field, except 

for an optional word mark on the high-order character. This field is 

illustrated in Figure 5-2. 

Control is returned to the Sort by branching to a location whose 

address is formed by adding a branchspace constant to the normal return 

address. 

PCU D M C C T T R 

Figure 5-2. Contents Of The Item Address That May Be Appended To The 
Sort-Item 

Where: peu peripheral control unit address 

D drive number 

M magazine 

CC cylinder 

TT track 

RR number of the record at the beginning of the block containing 
the item 

II = relative item number in the block counting the first item 
in the block as ~. 

5-42 

'.,. 



SECTION V. SERVICE ROUTINES 

Deleting An Item 

When an item is to be deleted from the Sort, after inspection of 

that item by own-coding, the presort is re-entered by branching to a 

location with an address formed by adding two branchspace constants to 

the normal return address. 

TERMINATING OWN-CODING 

When all own-code processing is completed, the own-coding routine 

must branch to a location whose address is obtained by adding three 

branchspace constants to the normal return address. Presort own-coding 

may be terminated before or after the presort has processed all its input. 

However, the own-coding routine must be terminated. An item mark set on 

the location specified by the own-coding address indicates that the presort 

has processed all its input. If more items are to be added, the own-code 

program follows the procedure for adding an item. The presort will 

continue to exit to the own-code program until the terminate own-code 

return is made. 

MERGE OWN-CODE 

Only when the merge is creating its final one-string output will it 

branch to the location specified by the merge own-coding parameter. The 

address of the high-order character of the sort-item, as it is in the 

output buffer, will be found in index register 1 (Xl), when the branch 

occurs. The item may be inspected, modified, or moved to the own-code 

area, but when control is returned to the Sort, all punctuation of the 

item must be cleared to its original state. Punctuation and format of 

the sort-item, when the sort-item is made available to the merge own

code, are shown in Figure 5-3. When the merge has processed all the 

5-43 



SECTION V. SERVICE ROUTINES 

sort-items (and just prior to its indication through the Console that the 

sort is completed), an item mark will be set on the merge own-code loca-

tion and the own-code branch is taken. It is not necessary that the program 

return control to the sort after this last exit is taken. Control is 

returned to the Sort by making a normal return. 

KEY #1 KEY 
#2 

KEY 
#3 

: -------------------------, 
I ITEM ADDRESS I 
I 1 
I I 

~-----'----.....L-----.....L--------- _________________ 1 
• + 
WM WM 

A. Keys Only 

EXT #1 EXT EXT KEY KEY 
#2 #3 #1 #2 

.1 
WM 

B. Keys And Extracts 

NON-KEY KEY NON-KEY KEY KEY 
DATA #2 DATA #1 #3 

+ + + • -+ WM WM WM WM WM 

C. Item Sort 

KEY 
#3 

.. 

1 --------- ---1 , 
1 
I , 

ITEM ADDRESS : 
1 
I 

I it---- _______ 1 

I 
NON- I 

KEY I 

DATA I 
I 

-- - - -- ---I 
ITEM I 
ADDRESS 1 

1 
--- ______ 1 

+ WM WM 

NOTE: The Item Address appendage, shown by the broken line, is optional 

Figure 5-3. Punctuation And Format Of The Sort-Item When It Is Made 
Available To A Merge Own-Code Program 

5-44 



I 

SECTION V. SERVICE ROUTINES 

Considerations For Using The Fetch 

The maximum memory requirements for the Fetch, including buffer space 

and the Supervisor, is 55~~ locations. This requirement is reduced if not 

all the options of the Fetch are used~ such as, when no source-item exam

ination exit is specified. The buffer space requirements depend on certain 

parameter values. 

EXAMINE SORT-ITEM ONLY 

If parameter ~4 is blank, only the examine sort-item exit is speci

fied. 

Single Buffering 

Single buffering is specified if parameter ~9 is SINGLE. In this 

case, buffer space = OS + 3. Where OS is the sort-item block size. 

Double Buffering 

Double buffering is specified if parameter ~9 is DOUBLE or if it is 

blank. In this case, buffer space = 2 (OS + 3). 

EXAMINE SOURCE-ITEM ONLY 

If parameter ~3 is blank, only the examine source-item exit is 

specified. 

Single Buffering 

Single buffering is specified if parameter 12 is SINGLE. In this 

case, buffer space = OS + INB + 6 where INB is the source-item block size. 

5-45 



SECTION V. SERVICE ROUTINES 

Double Buffering 

Double buffering is specified if par~eter 12 is DOUBLE or if the 

parameter value is left blank. In this case, buffer space = 2(OS) + 2(INB) 

t 12. 

BOTH SOURCE-ITEM AND SORT-ITEM EXITS SPECIFIED 

When both the source-and sort-item exits are specified, either file 

may be associated with single or double buffering. As a general rule, 

if there is a memory restriction it is more advantageous to use single 

buffering for the sort-item and double buffering for the source-item. 

1. If SINGLE is specified for both source and sort-item files, the 

buffer size required is OS+INB+6. 

2. If DOUBLE is specified for both, the buffer size required is 

2 (OStINBf6) • 

3. If SINGLE, parameter ~9, is specified for the sort-item file 

and DOUBLE, parameter 12, for the source-item file, the buffer 

size required is OS + 2INB + 9. 

4. If DOUBLE, parameter ~9, is specified for the sort-item file and 

SINGLE, parameter 12, for the source-item file, the buffer size 

required is 20S + INB + 9. 

INITIATION OF FETCH 

The Fetch program, MFETCH, is initiated by branching to the tagged 

location specified in the Location Field of the MFETCH macro call. 

5-46 



SECTION V. SERVICE ROUTINES 

USE OF PHYSICAL I/O 

The Fetch macro always calls MPIOC. If the user wishes to have MPIOC 

in his program and he is using the MFETCH macro, he should use that MPIOC 

called by MFETCH. The unique suffix associated with the MPIOC called in 

by MFETCH is % (+,8,5 keypunch). File tables generated by MFETCH utilize 

the value assigned to parameter ~1 of the MFETCH macro call. 

MASS STORAGE EDIT 

The Mass Storage Edit routine requires that the area to be edited 

has been formatted by the Volume Preparation Routine or the File Support 

Allocate function. 

Functional Description 

FUNCTIONS 

The Mass Storage Edit provides a printed representation of the 

physical data stored on any Mass Storage device. Parameters to the edit 

routine specify the area to be edited and the device address. The para

meters are entered through the job control file or through either the 

card reader or a console keyboard. The area edited is bounded below and 

above by the track values of the starting and terminating address 

parameters. 

The edit routine does not respect the data management conventions. 

Therefore, a user wishing to edit a specific file should use the file 

support routine "unload" to printed paper. 

FEATURES OF MASS STORAGE EDIT 

Header Line 

The header line of the Mass Storage Edit contains the following 

information printed at the top of each page: 

5-47 



SECTION V. SERVICE ROUTINES 

1. Device Number (pas. 1-12) 

2. Title MSEDIT (pas. 46-52) 

3. Page Number (Pos. 1~~-11~). This number is automatically 

incremented for each page (right-justified) 

Header Line Record 

This line contains the following information: 

1. Cylinder and track number in decimal (Pos. 1-8) 

2. Header record information in decimal, except for flag 

character (Pos. 21-33) 

Data Portion Line 

This line contains the following information: 

1. Read error information (Pos. 1-3) 

(On first line of record only) 

2. Character Line numbers (Pos. 8-10) 

Indicates position in record of first character in this line. 

3. Data characters of record (Pos. 14-133) 

This line type is repeated as necessary to exhaust the record. 

End-of-Job Line 

This line contains the following information: 

1. END Mass Storage EDIT (Pos. 1-12) 

2. Number of Tracks processed (Pos. 20-23) 

3. Number of Records processed (Pos. 42-53) 

4. Number of Errors (Pos. 60-75) 

5- 48 



SECTION V. SERVICE ROUTINES 

Edit Function Job Control Statements 

FORMAT 

EASYCODER 
PROJ T EC -J2! PROGRAMMER DATE f'j\GE OF 

COOING FORM 

De '" 
/ / 

CARD ~ LOCATION 
OPERATION 

OPERANDS NUMBER R CODE 
K 

123456 , . 1415 2021 62., 80 

, I V'OLUMl FROM=lc tJ TO=lc tJ 
I F ROM.- ( I"" . t:) . TO:- (I"" t- ) Ont:ional 

I I DEVADD: 1 nl""u . dri vel Ont:ional 
I I F.ILE LIST FORM J ALPHA\. FORM is ontion3. 1. , i : OC'l'AIi' . I I IE J~VA. D=(ncu) Ontional , I 

---L 

DESCRIPTION 

Volume Statement 

The Volume Statement gives the parameters of the edit function. 

One Volume Statement may describe several areas to be edited, as long 

as they are all on the same mass storage device. 

FROM AND TO PARAMETERS: One pair of From and To Parameters describes one 

mass storage area to be edited. There must be at least one such pair. 

However, one Volume Statement may contain several From and To pairs; 

describing several areas to be edited. 

The c value of the parameter is the cylinder address in decimal. 

The t value of the parameter is the track address. 

The area edited for a given pair of From and To parameters is all 

tracks from the track stated in the From parameter to the track stated 

in the To parameter (inclusive) on each cylinder from the cylinder stated 

in the From parameter to the cylinder stated in the To parameter 

(inclusive). All records on each track are edited. 

5-49 



SECTION V. SERVICE ROUTINES 

DEVICE ADDRESS PARAMETER: The Device Address Parameter (DEVADD) specifies 

the physical device address of the mass storage device being edited. The 

peripheral control unit number (pcu) of the mass storage control unit is 

written in 2 octal digits. The I/O bit is not required, but all other 

bits must be specified including the sector bits. The drive number is 

written in 1 octal digit. When the Device Address Parameter is omitted, 

the standard assumption is that the device address is pcu %4 and drive %. 

File Statement 

The File Statement has the I/O function name LIST as the first 

parameter of the statement. 

FORM PARAMETER: The Form Parameter specifies the format of the editing 

listing. When written as FORM=OCTAL, an octal listing is produced. 

When written as FO RM= ALPHA , an alphabetic listing is produced. When the 

Form parameter is not specified (omitted), the standard listing is 

alphabetic. 

DEVICE ADDRESS PARAMETER: The Device Address Parameter (DEVADD) specifies 

the physical address of the printer. The peripheral control unit number 

(pcu) is written in 2 octal characters. When this parameter is omitted, 

the standard assumption is that the pcu is %2. 

5-50 

• 



INTRODUCTION 

APPENDIX A 

FILE REASSIGNMENT 

For each system program, every system file is given a functional 

name and a specific assignment. The assignment, consisting of a file 

name, a physical device type, and a peripheral control unit and drive 

number, normally is made by Honeywell when the system program is de

livered to the installation. In certain cases, however, the installation 

may change these assignments. Whether or not the installation changes 

these assignments, the assignments are called "Installation Standard 

Assignments". 

System Files are those files created or used by the system programs 

of .the mass storage operating system. These files are stored on external 

media such as punched cards, mass storage, magnetic tape, console keyboard/ 

typewriters, printers, etc. System Files are referred to either by a 

functional name or by a file name. 

The functional name for a System File is in terms of the function 

the file serves in a given systems program. The functional name of a 

System File is used in a File Statement to define which file of the 

system program is to be reassigned. The System Files, their functional 

names, and their definitions are included in Table A-I. 

A-I 



SYSTEM FILE 

Residence 

Job Control 

Operation 
Control 

Information 

Input 

List 

Go 

Library 

Work N 

APPENDIX A. FILE REASSIGNMENT 

Table A-l. Function and Definition of System Files 

FUNCTIONAL NAME 

RES 

JOB 

OP 

INFO 

IN 

LIST 

GO 

LIB 

WORKN 

A-2 

DEFINITION 

The Executable Program File contain
ing the programs to be run (Super
visor, System Programs, and user 
programs) • 

The control information identifying 
a job and defining its operating 
requirements. Parameters submitted 
at execution time are included in 
this file. 

The operation control information 
either from the system to the 
operator or from the operator to 
the system that affects the opera
tion of the current job. 

Listed information from the system 
to the operator. This information 
may affect the later operation of 
related jobs, but not the operation 
of the current job. This file is 
always produced online (printer, 
console/keyboard, etc.). 

Input card image data to a system 
program, such as a source language 
program to be translated. 

Output line image data from a 
system program for listing. This 
file normally does not affect the 
operation of the current job or of 
later jobs. This file, therefore, 
is normally produced off-line (mass 
storage, magnetic tape, etc.). 

Translated (compiled or assembled) 
programs either for immediate 
execution or for updating a 
permanent executable program library, 
such as the Residence File. 

Easycoder Assembly (source) language 
routines, suitable for specialization 
and inclusion in the assembly language 
programs. 

Temporary file, used by system program 
during its operation. A work file 
is released when the program using 
it has finished. The N represents 
a decimal n~er, written without 
leading zeros, for example, WORKI 
WORKlO, etc. 



APPENDIX A. FILE REASSIGNMENT 

The file name (used in the assignment) is a name that identifies 

a particular file and distinguishes it from other files. The file name 

is stored with the file, in accordance with the data management conventions 

of the medium on which the file is stored. The Volume Directory of a mass 

storage volume, for example, contains a field for the file name for each 

file on the volume. 

File names for system programs consist of 10 characters, the first 

of which is always an asterisk (*). The remaining nine characters are 

letters and numbers. No special characters are used. Spaces can appear 

only as the rightmost characters of a name. 

GENERAL DESCRIPTION OF FILE REASSIGNMENT JOB CONTROL LANGUAGE 

The Job control language for file reassignment consists of a File 

Statement and several parameters. These are described in the following 

paragraphs. 

Format 

EASYCODER 
CODING FORM 

A-3 



APPENDIX A. FILE REASS IGNMENT 

Description 

FILE STATEMENT 

The File Statement gives the functional name of the file being 

reassigned. This identifies for the system program which file is referred 

to by the File Statement. The functional names for the files are listed 

in the preceding paragraph of this appendix. 

OTHER SYSTEM FILE PARAMETER 

This parameter, when used, must appear immediately after the File 

Statement. The other parameter gives the functional name of a file whose 

Installation Standard Assignment is to be used. 

FILE NAME PARAMETER 

This parameter gives the file name to be used in place of the 

Installation Standard Assignment of file name. 

DEVICE TYPE PARAMETER 

This parameter gives the type of device to be used in place of the 

Installation Standard Assignment of device type. 

DEVICE ADDRESS PARAMETER 

The Device Address Parameter specifies in two octal characters the 

peripheral control unit (pcu) number. The input/output bit (bit one of 

the first character) is not used when the control unit requires two 

control unit addresses. Two control unit addresses are required when 

the unit is an input/output unit. 

The Device Address Parameter specifies the drive number in one 

octal character. The drive number may be omitted. When omitted, the 

drive number is 0 if it is relevant to the particular device type. 

A-4 

.. 



APPENDIX A. FILE REASS IGNMENT 

FILE REASSIGNMENT JOB CONTROL STATEMENTS 

The following paragraphs discuss the job control statements for 

those portions of the mass storage operating system whose installation 

assignments can be changed at execution time. Only the job control 

statements available to the user at the time of the initial release of 

the system are discussed here. The Supervisor's Execute statement calls 

in the appropriate portion of the Operating System, for example, Program 

Development. 

FILE STATEMENTS FOR PROGRAM DEVELOPMENT 

Library Update 

None of the files used by the Library Update may be assigned to an 

alternative device type. 

The Library File and the List File may be assigned to alternate 

device addresses. However, it is seldom necessary to do so because the 

standard installation addresses are taken as default assumptions. 

Format 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER ___ PAGE_OF_ 

I CARJ t~Tt: 1 OPERA~ I()r.j I I I 
NUMOER 'Pi"1 LOCATION " CODiC OPERANDS I , 

f--- '~1~~1 ,--__ -:-: ~. 
: 1 o:!~(;i11f! , 14"5., 26,1 21 L~ J ~~ L " • lL I .~ J I 6<'163 601 . - _"__ .... __ '-_". _.;ocod'!::::z!=z--',," !_ '~ 

I! Ii!! I '£11,£ 'r£lLaci;·a/}a/.-na/ll~ , , ' ! , , I , I I I ' Ii 

2' ' I I V.,..r' /') I 
~l r...(&:Jl.I'I,P/2--LI'c.~ dculP .7, I • I I I • ~. I • I I • I 

:cctili : :: :: i:: ::::: : : : : : : :~::: : :: ::: :: ~_~:: : : : : i : : : : : : : ~ : : ~ 4 
)11:'·' ! ~ 

'f---' : i [ I ' , , . I , , I I I : : ' 

'!~;---l-;' I --'~~~~~d~~~::::::::::::::: I 

A-5 



APPENDIX A. FILE REASSIGNMENT 

Description 

Functional-name is the functional name of the file to be reassigned. 

Values for this parameter may be: 

LIST List file 

LIB Library file 

PCU is the non-standard peripheral control unit number, written as 

two octal characters. All bits except the I/O bit (bit one) must be 

specified. 

Drive is the non-standard drive number, written as one octal char

acter. 

EXECUTABLE PROGRAM FILE UPDATE 

If any of the files are to be assigned to non-standard device 

addresses, the additional control statements must follow the function 

statement. 

None of the files used by the Executable Program File Update may 

be assigned to an alternate device type, with the exception of the 

transaction input file. This file is reassigned by means of the GO 

parameter described in the Executable Program File Update section of 

Program Development. 

The Master File and the Transaction Input File may be assigned to. 

non-standard device addresses. However, it is seldom necessary to do so 

because the standard installation addresses are taken as default 

assumptions. 

A-6 



APPENDIX A. FILE REASSIGNMENT 

Format 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER DATE PAGE_OF_ 

CARD ~ ~ OPERATION 
NUMBER H LOCATION CODE OPERANDS 

I 2 3 4 5 • 7 • 14:15 2021 62 .3 00 

I I : 17;" ..i.&.,£, v.4./1c,l,/ 0 /)~/. - fl,o/hA " , , 
I 

I lo£tlJ9'o,o:, roc u dr., 1/t7:} I 
I , 

3 i i 7 "7 

I I 
I , , , 

Description 

Functional-name identifies the file to be reassigned. Values for 

this parameter may be: 

RES Master File (Residence) 

GO Transaction Input File (either BRF or BRT) 

PCU is the peripheral device control unit number, written as two 

octal characters. All bits except the I/O bit (bit one) must be specified. 

Drive is the drive number, written as one octal character. 

EASYCODER ASSEMBLY 

None of the files used by Easycoder Assembly can be assigned to a 

different device type, with the exception of the transaction output (GO) 

file. The method of doing so is described in the Easycoder Assembly 

section of Program Development. 

.. Several of the files may be assigned to non-standard device 

addresses. However, it is seldom necessary to do so because the standard 

installation addresses are taken as default assumptions. 

A-7 



APPENDIX A. FILE REASSIGNMENT 

EASYCODER 
COOING FORM 

Description 

Functional-name identifies the file to be reassigned. Values for 

this parameter may be: 

LIST - List\file. 

LIB Library file, the source of macro routines. 

WORKI - First work file. 

WORK 2 - Second work file. 

GOBRF - Machine-executable output file on mass storage. 

GOBLD - Machine-executable output file on the card punch. 

peu is the non-standard peripheral control unit number, written as 

two octal characters. All bits except the I/O bit (bit one) must be written. 

Drive is the non-standard drive number, written as one octal character. 

FILE STATEMENT FOR MASS STORAGE SORT 

The "FILE" statement has the I/O function name LIST as the first 

parameter of the statement. 
• 

A-B 



APPENDIX A. FILE REASSIGNMENT 

Format 

EASYCODER 
CO<lING FORM 

PROBLEM . ______________________ PROGRAMMER ______ DATE _. ____ PAGE _OF_ 

I CARO~r~! .... 1 OPfflATION 
. NUMOER Ir~l LOCAdON CODe: 

-. '-2~;'~·1~n 62:~ ..J,."... .I~ 

OPERANDS 

.1 :! 1 i I 
2~:~~~: +I+i~j~~~~-*~~~*-~~~~~~~~~~~~--~~~--~~~~~·~~--~~--~~~~~! 

,I i i 1_: I--~~~ i 
• Iii ! : ! I 
~., .. ,.,.+-! ~..L...~-+-,~ . 

FORM PARAMETER 

The form parameter specifies the format of the editing listing. 

Description 

OCTAL An octal listing is produced. 

ALPHA An alphabetic listing is produced. 

Comment 

The default assumption is ALPHA 

DEVICE ADDRESS PARAMETER 

The device address parameter specifies the physical address of the 

printer. 

Description 

pcu The peripheral control unit of the printer, two octal 

characters. 

Comment 

The default assumption is pcu 02 • 

• 

A-9 



APPENDIX B 

PHYSICAL INPUT/OUTPUT CONTROL 

INTRODUCTION 

Physical Input/Output Control functions as the interface between 

a program and the mass storage hardware. This eliminates the need for 

the user to reference the hardware directly. In most cases, a program 

utilizes an I/O routine (as described in section 3 of this manual) which, 

in turn, references Physical Input/Output Control whenever access to 

mass storage hardware is required. However, a program may reference 

the Physical Input/Output Control directly. 

Mass Storage Physical Input/Output Control consists of a set of 

macro routines that provide a simple means of processing data stored on 

mass storage peripheral devices. These routines fall into three categories: 

control, communication, and action. To access an area of the storage 

device, the user issues the appropriate action macro. The action macro 

references the file table set up by the communication macro and links to 

the control macro. The control macro, in turn, initiates the required 

action according to the current contents of the file table. 

MASS STORAGE PHYSICAL INPUT/OUTPUT CONTROL (MPIOC) MACRO 

The MPIOC macro controls the actions on mass storage devices 

associated with a single Type 250 Control Unit. When more than one 

control unit is being used, a separate MPIOC macro must be called for 

each. 

B-1 

• 



APPENDIX B. PHYSICAL INPUT/OUTPUT CONTROL 

MPIOC Format 

EASYCODER 
CODING FORM 

PROBLEM PROGRAMMER OATE PAGE OF - -
CARD H LOCATION 

OPERATION 
OPERANDS NUMBER n eOCE 

I 2 3- 4 ~ 6 7 • 1415 2021 6263 80 

I ANYTAG MPIOC PA RAMfTER1 
I L ()5 PARAMflER5 

. i I 

MPIOC Description 

TYPE FIELD 

The Type Field of the line containing the MPIOC command must have 

a C when more than one line is used for the call. All lines except the 

last must have a C in the Type Field. The last line of a MPIOC macro 

call must have an L in the Type Field. 

LOCATION FIELD 

The Location Field can contain any acceptable assembly tag. This 

tag is equated to the lowest memory location occupied by MPIOC. The 

Location Field entry is parameter ¢ of the MPIOC macro. 

OPERATION CODE FIELD 

The Command Field contains the Operation Code MPIOC, which specifies 

to the system what function to perform. 

OPERANDS FIELD 

The Operands Field contains the parameters required for MPIOC. 

These are described in table B-1. 

B-2 



NUMBER 

1 

2 

3 

4 

5 

APPENDIX B. PHYSICAL INPUT/OUTPUT CONTROL 

Table B-1. MPIOC Parameters 

NAME 

Suffix 

Peripheral 
Control Unit 
Address 

write 
Verification 

Control of 
More Than 
One P.C.U. 

R/W C 
Definition 

VALUE 

x 

XX8 

V 

M 

VAR 

B-3 

DESCRIPTION 

A single alphanumeric character that 
will serve as a unique suffix to all 
tags in MPIOC. This parameter must 
be specified. 

The peripheral control unit address 
to which the Type 250 Control Unit 
applicable to this MPIOC is attached. 

The Honeywell recommended address 
assignment for the Type 250 Control 
Unit (~48). 

The automatic Verify coding will be 
included. 

The automatic Verify coding will not 
be included. 

The peripheral control unit number 
will be specialized from the File 
Table at execution time each time 
the peripheral control unit number 
changes. 

The peripheral control unit number 
will be specialized at assembly 
time and cannot be changed without 
re-assembling. 

Interlocked starting R/W counter to 
be used for all data transfers. 
Cannot be changed without re-assembl
ing and must correspond to sector of 
pcu statement. 

RWC will be specialized from the 
File Table for each action call. 

Automatic specialization at assembly 
time depending on parameter 2: 
568 if P2< 7,768 if P2 > 7. 



APPENDIX B. PHYSICAL INPUT/OUTPUT CONTROL 

MASS STORAGE PHYSICAL COMMUNICATIONS AREA (MPCA) MACRO 

The MPCA macro provides a communications area to contain a series 

of fields. These fields are available to the user. The user may change 

or interrogate the values of these fields as required. To accomplish 

this, the MUCA and MLCA macros are used. These macros are described in 

Appendix D of this manual. 

MPCA Format 

EASYCODER 
COOING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 
• 

CARD ~~ LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

I 2: 13 4 5, • 7 • 14 !5 2021 .<0' 80 

I : A.G MPCA PARA.tv1ETEKI 
I 

I L ~,7 P A.R-AMETF R 7, 
i i L-... _.----L.-_L_l_I. . .l_.l _->. __ 1_._ ._--'-_. __ L __ .. _.l.-~ __ ~--L-..~.l.-L_""---'_.L.._J.._L .... -----'" .-&-,_ l_. , . 

MPCA Description 

TYPE FIELD 

The requirements for the Type Field of the MPCA macro are the same 

as those described for the MPIOC macro. 

LOCATION FIELD 

This field contains a tag that can be up to 3 characters long. This 

tag is used as a prefix to all MPCA entries. The tag in the Location 

Field is considered as parameter ¢ of the MPCA macro. 

OPERATION CODE FIELD 

The Command Field contains the Operation Code MPCA, which specifies 

to the system what function to perform. 

OPERANDS FIELD 

The Operands Field contains the parameters required for MPCA. These 

are described in table B-2. 

B-4 

I 



NUMBER 

1 

2 

3 

4 

5 

APPENDIX B. PHYSICAL INPUT/OUTPUT CONTROL 

NAME 

Suffix 

Buffer 
Address 

Error 
Exit 

C3 
Variant 

Protection 
Bits 

Table B-2. MPCA Parameters 

VALUE 

Address 

Tag 

XXs 

B-5 

DESCRIPTION 

Suffix relating to the MPIOC with 
which this MPCA is to initially 
associate. This parameter must be 
specified. 

Location of the left-most character 
of an area to or from which data 
transfer will begin. Any legal 
address form. This parameter must 
be specified. 

Address of a user provided routine 
to which MPIOC should branch in case 
of an uncorrectable error condition. 
This parameter must be specified. 

An octal value defining the type of 
data transfer to be executed by MPIOC. 
Permissible values are: 
(¢4) = Load/Unload Address Register 
(¢2) = Search and Read/Write 
(22) = Extended Search and Read/Write 
(¢3) = Search and Read/Write Next 
(¢¢) = Read Initial. The high order 

bit of C2 must be 1. 
(2¢) = Extended Read Initial. The 

high order bit of C2 must be 1. 
(¢l) = Read. The high order bit of 

C2 must be 1. 
(21) = Extended Read. The high order 

bit of C2 must be 1. 

The value of C3 is (¢4S). 

An octal value indicating the Pro
tection bits to be loaded into the 
address register. The significance 
of these bits from left to right is 
as follows: 
Bit B ¢ Mus t be ¢ 
Bit A ¢ Must be ¢ 
Bit S 1 Permit B-File Write 
Bit 4 1 Permit A-File Write 
Bit 2 1 Permit Data Write 
Bit 1 1 Permit Format Write 

The initial value will be ¢¢ 



APPENDIX B. PHYSICAL INPur-OurPur CONTROL 

Table B-2 (cont). MPCA Parameters 

NUMBER NAME VALUE DESCRIPTION 

6 Variable XXs A starting RWC number for initial 
RWC data transfers to this file. Stored 

in a single character field. 

6 Specializes field at assembly time 
to fdfds . 

7 Variable 
XXs A peripheral trunk number to be 

PCU Number used for initial data transfers to 
this file. Stored in a single 
character field. 

6 Specializes field at assembly time 
to fd4S. 

MASS STORAGE PHYSICAL I/O ACTION MACROS 

Action macros provide the user with the ability to initiate the 

following actions: Read, Write, Check, Restore, and Verify. Each time 

one of these action macros is entered, the corresponding function will be 

initiated or executed by MPIOC. MPIOC will reference the indicated 

communication area as required for that purpose. Each of these macros 

is described in the following paragraphs. Their Call descriptions are 

at the end of these paragraphs. 

Read Action Macro 

The call for this macro is inserted in the user's program wherever 

a data transfer from the mass storage device to the main memory is 

required. MLCA functions may also be accomplished by this action (see 

Appendix C) • 

B-6 



APPENDIX B. PHYSICAL INPUT/OUTPUT CONTROL 

READ ACTION MACRO FORMAT 

EASYCODER 
COOING FORM 

PROBLEM PROGRAMMER DATE PAGE OF 

CARD I~I~ LOCATION 
OPERATION 

OPERANDS NUMBER CODE 

I 2 3 4 5 • 1 • 1415 2021 6263 

I i IANY,TA.G IR,EAD IPA RAMETE.R.1 ... 
I. I 1.1 P A.£.A.M.ETE.f'.1 .1 
i i 7 

READ ACTION MACRO DESCRIPTION 

Type Field 

The requirements for the Type Field are the same as those described 

for the Type Field of the MPIOC macro. 

Location Field 

The Location Field can contain a tag that will be assembled as the 

tag of the first instruction in the generated coding. The Location ~ield 

does not have to contain a tag if the user does not desire to have one. 

This field is considered as parameter % of the macro. 

Operations Code Field 

The Command Field contains the Operation Code READ, which specifies 

to the system the function to perform. 

Operands Field 

The Operands Field contains the parameters necessary for the READ 

macro. These are described in the following paragraphs. 

PARAMETER 1: - Parameter 1 is a three character MPCA prefix tag which 

must be the same as parameter % of the appropriate MPCA. 

PARAMETERS 2, 4, 6, 8, and 10: These parameters are the same as 

Parameters 2, 4, 6, 8, and 10 of the MLCA macro described in Appendix C 

of this manual. These param~ters contain the address of a user provided 

B-7 

eo 

• 

". 



APPENDIX B. PHYSICAL INPUT/OUTPUT CONTROL 

field which contains the data required to alter the MPCA table. 

PARAMETERS 3, 5, 7, 9, and 11: - These parameters are the same as 

Parameters 3, 5, 7, 9, and 11 of the MLCA macro. These parameters 

contain specific mnemonics indicating the right-hand end of the actual 

area within the appropriate MPCA table which is to be altered. 

WRITE Action Macro 

The call for this macro is inserted in the user's program wherever 

a data transfer from main memory to the mass storage device is required. 

MLCA functions also may be accomplished by this action (see Appendix C) • 

WRITE ACTION MACRO FORMAT 

The WRITE action macro format is the same as described for the 

READ action macro. 

WRITE ACTION MACRO DESCRIPTION 

The WRITE action macro description is the same as described for the 

READ action macro. 

WAIT Action Macro 

The call for this macro is inserted in the user's program wherever 

the user desired to wait for the completion of and check for error on the 

last data function for the file specified. If the normal return to the 

user occurs following entrance to this macro, the user is guaranteed that 

the data transfer was completed successfully. 

B-8 



APPENDIX B. PHYSICAL INPUT/OUTPUT CONTROL 

WAIT ACTION MACRO FORMAT 

EASYCODER 
COOING FORM 

PROBLEM PROGRAMMER ______ OATE ___ PAGE_OF_ 

CARD f I~' OPERATION 
NUMBER ~ '~ LOCATION CODE OPERANDS 

12345678 1415 2021 6263 80 

L l4 N YT AG w'A IT IPARA METER.1 

WAIT ACTION MACRO DESCRIPTION 

Type Field 

The requiremen~s for the Type Field are the same as described for 

the Read action macro. 

Operation Code Field 

The requirements for the Command Field are the same as described for 

the Read action macro. 

Operands Field 

The requirements for the Operands Field are the same as described for 

parameter I of the Read action macro. 

RESTORE Action Macro 

The call for this macro is inserted in the user's program wherever 

the user desires to restore a specific device to its initial state. 

RESTORE ACTION MACRO FORMAT 

The Restore action macro format is the same ·as described fo,r the 

Wait action macro. 

B-9 



.. 

APPENDIX B. PHYSICAL INPUT/OUTPUT CONTROL 

RESTORE ACTION MACRO DESCRIPTION 

The Restore action macro description is the same as that for the 

Wait action macro. 

VERIFY Action Macro 

The call for this macro is inserted inthe user's program wherever 

the user desires to read, without a data transfer (in the verify mode), 

the area last written on the mass storage device. The WRITE macro and 

the VERIFY macro may be separated by user's coding if the mass storage 

device is not referrenced in this interval. 

VERIFY ACTION MACRO FORMAT 

The Verify action macro format is the same as described for the 

Wait action macro. 

VERIFY ACTION MACRO DESCRIPTION 

The Verify action macro description is the same as described for 

the Wait action macro. 

MASS STORAGE PHYSICAL I/O PROGRAMMERS PREPARATION INFORMATION 

General Information 

ADDRESS MODE 

The coding generated as a result of a Physical I/O macro call ·is in 

address mode 3, since this is the only address mode useable with the 

operating system at this time. 

B-10 



APPENDIX B. PHYSICAL INPUT/OUTPUT CONTROL 

SPECIAL CONSIDERATIONS FOR SPECIFYING PARAMETERS 

Use Of Index Registers 

Physical I/O uses index registers X5 and X6 but restores them to 

their original values before returning to the user's program regardless 

of whether the return is in the normal mode or is an uncorrectable error 

exit. These index registers, X5 and X6, therefore, may be employed by the 

user's written program and can be used in conjunction with the MLCA and 

MUCA macro functions. 

Specifying A Variable PCU Number 

Normally, Physical I/O controls a single PCU that, in turn, controls 

a single speed device. This means that the PCU number and the R/W Channel 

assignment can remain constant throughout an execution of a program. More 

than one peu can be controlled by a single specialization of Physical I/O, 

however, which means that more than one device speed is possible. Parameters 

~4 and ~5 of MPIOC and ~6 and ~7 of MPCA are significant here. 

When the user intends to vary the PCU number during execution, he must 

give the value M to parameter ~4 of MPIOC. Then, during execution, the PCU 

number can be altered by using the mnemonic PCU in an MLCA macro call. The 

PCU number specified in parameter ~2 of MPIOC is not affected by assigning 

M as the value of parameter ~4, just as the PCU number specified in para

meter ~7 of MPCA is not affected, and the Honeywell standard value for 

the PCU number may still be used simply by not assigning a value to either 

parameter ~2 of MPIOC or ~7 of MPCA. 

Whenever the PCU Number is variable during the execution of a program, 

the possibility exists that the R/W Channel assignment may also have to be 

variable. When the PCU Number is variable, but all the PCUs controlled by 

a single MPIOC are on the same I/O Sector, a fixed R/W Channel assignment 

B-11 



., 

APPENDIX B. PHYSICAL INPur/OUTPur CONTROL 

is acceptable as long as all the devices to be accessed have the same data 

transfer rate. In this case, parameter ~6 of MPCA must not have a value 

assigned to it, but parameter ~5 of MPIOC can be assigned a two digit 

octal number for the R/W Channel or it can be blank. Parameter ~5 of 

MPIOC must not, however, be assigned the value VAR. 

The value VAR is assigned to parameter ~5 of MPIOC only when a change 

in the PCU Number during execution of a program will result in a change in 

the I/O Sector or will involve accessing a device with a different data 

transfer rate. In this case, parameter ~6 of MPCA may be blank or it may 

be assigned a two digit octal number for R/W Channel. 

When a change in the PCU assignment necessitates a change in the R/W 

Channel assignment, the user must issue a WAIT action macro call before 

changing the PCU number through an MLCA macro. This will ensure that all 

actions are completed before the new PCU, with its R/W Channel, is used. 

The user, however, must ensure that the new R/W Channel assignment is 

consistant with the I/O Sector of the new PCU and with the speed of the 

new device. 

Considerations For MPIOC Parameter Specification 

SUFFIX CHARACTER 

The Suffix Character specified in parameter ~l is used as the last 

character of all tags in MPIOC. For this reason, any tag written in the 

program by the user should not end with this character. When a program 

contains more than one MPIOC, each must be assigned an individual Suffix 

Character. 

PCU ASS IGNMENT 

When the PCU Number is specified by the user, he must express it as 

an output assignment (~~ through ~7 or 2~ through 27). When the user intends 

B-12 



APPENDIX B. PHYSICAL INPUT/OUTPUT CONTROL 

to change the PCU assignment during the execution of the program, parameter 

%4 of MPIOC must be assigned the value M. For considerations related to 

variable PCU assignments, see the preceding paragraph. 

R/W CHANNEL DEFINITION 

Parameter %5 of MPIOC is used to specify the R/W Channel. When no value 

is assigned to parameter %5, MPIOC automatically makes the R/W Channel assign

ment, based on the PCU Number specification of parameter %2 of MPIOC. Para

meter %2 can be blank, in which case, the Honeywell recommended PCU Number 

assignment is used\, or it can be assigned a two digit octal number as the 

address assignment of the PCU. In either of these cases, when parameter %5 

is left blank, MPIOC makes the R/W Channel assignment. This assignment is 

56 for PCU I/O Sector 1 and 76 for Sector 2. The 56 assignment specifies 

that R/W Channels 2 and 3, for Sector 1, are interlocked, while the 76 assign

ment specifies that R/W.Channels 4 and 5, -for Sector 2, are interlocked. 

These are high speed interlocks available on all Series 200 Central Proces

sors except that 201-0 and 201-1. 

When the programmer intends to use some other R/W Channel assignment, 

he must assign a two digit o~tal number as the value of MPIOC parameter %5. 

This number then is used as the variant character in PDT and PCB instructions 

generated by Physical I/O. 

Should the programmer intend to have a variable R/W Channel assignment, 

for reasons given in preceding paragraphs, he must assign the value VAR to 

MPIOC parameter %5. 

Considerations For MPCA 

An area in memory, specialized in a fixed format, is provided by MPCA for 

communications. The area is specialized according to the values assigned 

the MPCA parameters. A separate MPCA macro call must be in the program 

for each set of data, such as a file, for which separate communication 

B-13 

II 

.. 



APPENDIX B. PHYSICAL INPUT/OUTPUT CONTROL 

values are to be established. Each Physical I/O action macro call is 

linked through the file prefix parameter of MCA to a specific MPCA, and 

by the MPIOC suffix character to that MPIOC. The MPIOC performs the action 

requested by the Physical I/O action macro, obtaining the required values 

from the related MPCA. 

FILE PREFIX 

The file prefix is established by assigning 1, 2, or 3 characters to 

parameter ¢¢ of MPCA and is used to identify the tags used by the MPCA from 

all other tags in the program. When the program contains more than one 

MPCA, each file prefix value must be different. Also, each character used 

as a file prefix must be valid in a tag according to the Easycoder Assembly 

rules. 

SUFFIX OF RELATED MPIOC 

Because it is possible for a program to contain more than one MPIOC, 

the value assigned the suffix parameter, MPCA parameter ¢l, must be the 

same character assigned as the value of MPIOC parameter ¢l to which the 

MPCA is linked. This ensures that the Physical I/O action macros will link 

to the appropriately specialized MPIOC. 

BUFFER ADDRESS (AAD) 

An address constant (DSA) is generated by the buffer address parameter, 

MPCA parameter ¢2. Except for indexing with index registers X5 and X6, any 

form of addressing can be used. Also, the value of the DSA may be changed 

prior to any Physical I/O action macro except VERIFY. 

USER'S UNCORRECTABLE ERROR ROUTINE ENTRANCE (EAD) 

Parameter ¢3 of MPCA contains the symbolic address (tag) of the user 

supplied uncorrectable error routine. Any form of addressing can be used, 

except for indexing with index registers X5 and X6. This address can be 

B-14 



,--

APPENDIX B. PHYSICAL INPUT/OUTPUT CONTROL 

changed at any time. 

TYPE OF READ OR WRITE (TRW) 

When a Read or a Write action is initiated, MPIOC interrogates the 

value assigned to parameter ~4 of MPCA to determine the type of Read or 

Write desired. This value is changed frequently during the execution of 

the program through the Read, Write or MLCA macro. Therefore, frequently 

no value is assigned to parameter ~4. This enables the loading and unloading 

of the address register. The values that can be assigned to parameter ~4 

are two digit octal numbers. These are contained in the following list 

along with the type of Read or Write action that will be performed. 

VALUE OF 
PARAMETER 

6 or ~4 

~2 

22 

~3 

23 

~~ 

2~ 

~l 

21 

TYPE OF READ/WRITE PERFORMED 

Load/Unload address register 

Search and Read/Write 

Extended Search and Read/Write 

Search and Read/Write next 

Extended search and Read/Write next 

Read initial 

Extended Read initial 

Read 

Extended Read 

NOTE: In assigning 2~~ 21, 22, or 23 the automatic verify action 
is enabled. To enable the automatic verify action for any 
of the other numbers, the most significant zero should be 
changed to a one. For example, if a Search and Read next 
was desired, it would be enabled by assigning the value ~3 
to parameter ~4. If the successful completion of this action 
was to be verified automatically, the number 13 would be 
assigned to parameter ~4. 

B-15 

,. 



APPENDIX B. PHYSICAL INPUT/OUTPUT CONTROL 

CONTROL UNIT CURRENT ADDRESS AND STATUS 

In each MPCA there is a 10 character field, word marked at its left 

end. This field contains the current control unit address and its status 

for the actions being issued through that MPCA. The field is not an exact 

image of the PCU Address Register, particularly when more than one MPCA is 

included in the program. The field does indicate the status of the one set 

of operations being issued that MPCA. 

The field is shown in Figure B-1 and the three mnemonics shown, CYL, 

CAD, or PRT, can be included in a Read, Write or MLCA macro call to change 

the contents of the applicable portion of the field. The contents of each 

character in the field is in binary form. 

C C T T R R S S 

.4--cYL--•• 

4.------ CAD ------... 

44r-------PRT--------~.~ 

Figure B-1. MPCA Ten Character Field 

The significance of the characters in the field is as follows: 

D = Device number 

M Magazine number, must be zero 

CC Cylinder number 

TT = Tract number 

RR = Record number 

SS = Status 

The right-most two characters of the field contain the status and 

error condition in the most significant character position and the type 

of file protection in the least significant character position. Whenever 

the mnemonic PRT is used in an MLCA macro to load the 10 character field, 
B-16 



APPENDIX B. PHYSICAL INPUT/OUTPUT CONTROL 

the left-most character position of the status portion of the field must 

be zero. The file protection character can be set to any of the following 

binary numbers: 

000001 

000010 

Permit format write 

Permit data write 

000011 = Permit format and data write 

000100 = Permit A-File write 

000101 Permit format and A-File write 

000110 

000111 

Permit data and A-File write 

Permit format, data and A-File write 

001000 = Permit B-File write 

001001 Permit format and B-File write 

001010 = Permit data and B-File write 

001011 

001100 

Permit format, data and B-File write 

Permit A- and B-File write 

001101 = Permit format, A- and B-File write 

001110 = Permit data, A- and B-File write 

001111 Permit all writes 

Notice that the value of a given bit must be zero to protect against 

the corresponding type of write and must be one to permit that type of write. 

A write operation cannot be performed if the corresponding switch is not set 

at the control unit. Also, the data write permit bit must be one to allow 

any type of write. 

Considerations For Action Macros 

Normally, return from an action macro is to the location following the 

generated coding. When an uncorrectable error was caused by the action, 

however, return is made as the address specified by the EAD field of the 

associated MPCA. In the action macro call, parameter ~~, written in the 

location field on the coding form, may be used as a tag referrencing the 

first (high-order) character of the generated coding. Parameter ~l of the 

action macro call, starting in column 21 on the coding form, must be assigned 

the same value as the unique prefix specified as parameter ~~ of the related 

B-17 



I 

APPENDIX B. PHYSICAL INPUT/OUTPUT CONTROL 

MPIOC. 

READ ACTION MACRO 

The Read macro always performs a data transfer from mass storage to 

main memory, and may perform MLCA macro functions. The type of read operation 

performed depends on the TRW field of the associated MPCA (previously described). 

WRITE ACTION MACRO 

The Write macro operates like the read macro except that the data transfer 

is in the opposite direction, i.e., from main memory to mass storage. Note, 

however, that if the verify bit is set in the TRW, no data transfer occurST 

only the readability of the data is checked. 

VERIFY ACTION MACRO 

The Verify macro is used to read the data recorded by the last write 

action. There is no data transfer associated with the verify operation, but 

~. this is not the same as specifying a read action with the TRW bit set to 

verify in the MPCA. When desired, the verify call must be issued after a 

write to be checked and before any other action call is issued. 

.. 

WAIT ACTION MACRO 

Whenever the programmer intends to check the last action initiated by 

MPIOC, via the appropriate MPCA, for error free completion, he issues a WAIT 

action macro call. If the MPCA indicated in the call was not the last MPCA 

to be active, there is no guarantee that any other action initiated by MPIOC 

was completed successfully. If the action was completed successfully, a 

normal return to the user is made. If the action was not completed successfully, 

the error detection and correction action is performed automatically. If the 

error is corrected, a normal return to the user is madeT if not, the user's 

uncorrectable error routine is entered. 

B-18 



APPENDIX B. PHYSICAL INPUT/OUTPUT CONTROL 

RESTORE ACTION MACRO 

Whenever the programmer intends to restore a device to its initial 

state, he issues a restore action macro call, the address register is 

checked for error indications, the restore action is entered, and a normal 

return to the user's coding is made. When this return is made, there is no 

guarantee that the restore operation was completed successfully. 

Considerations For The User's Uncorrectable Error Routine 

When MPIOC returns control to the user at the address specified in EAD 

of the appropriate MPCA, the user's program must direct the actions to be 

taken because of the condition that has occurred. The MPCA involved in the 

condition contains information that enables the user's program to determine 

which path to follow at this point. The user can do one of three things at 

this point: he can re-enter MPIOC and re-initiate the action, he can cause 

the instruction in the action coding that caused the error to be bypassed, or 

he can issue a different action macro call. 

RE-EXECUTION OF THE CORRECTION PROCEDURE 

At the time of the return to the user's coding, the B-address register 

contains the address at which MPIOC may be re-entered to try the instruction 

sequence in error again. This return is especially valuable if the ERI 

contains the value ¢l. ¢2, ¢3, or ¢4, since these types of errors may possibly 

be corrected by manual action. 

Suggested manual operations to be performed in these cases are listed 

below. 

VALUE OF ERI CONDITION SUGGESTED CAUSE AND MANUAL ACTION 

Device inoperable A. Device may not be turned on. 

Protection 
violation 

B-19 

B. Device may be cycled down. 
Stop the device (if necessary) and 
cycle it up. 

Manual protection 
be set correctly. 
correctly. 

switches may not 
Set the switches 

.. 



.. 

APPENDIX B. PHYSICAL INPUT/OUTPUT CONTROL 

VALUE OF ERI 

¢3 

CONDITION 

Device error 

Format 
violation or 
overflow 

SUGGESTED CAUSE AND MANUAL ACTION 

Clear the error condition at the 
device. 

Same as protection violation. 

All other conditions except that represented by an ERI of 11 may possibly 

be corrected by re-execution. Note that MPIOC has already made a number of 

attempts to correct the condition. 

BYPASS THE ERROR CONDITION 

If the programmer intends to accept the last execution of an operation 

as correct, he can re-enter MPIOC to bypass the error condition. This may 

have some value in certain cases such as a read error, but could be a dangerous 

situation if the operation in error was a seek operation. To bypass the error 

condition, the programmer must add one plus the current address mode to the 

value stored in the B-Address Register. For example, if Physical I/O is 

being executed in the three character address mode, then in order to bypass 

the error condition, a four must be added to the B-Address Register value. 

ISSUING A NEW MACRO CALL 

. When the programmer intends to discontinue the current path of processing 

because of an error condition, he can issue a different action macro call. 

Any action call can be issued, but some will not be very effective because 

of the type of error encountered. For example, if the error condition is that 

the device is inoperable, any new action will not be completed successfully 

until the error condition is corrected. 

B-20 



APPENDIX C 

I/O COMMUNICATIONS AREA SERVICE MACROS 

INTRODUCTION 

There are two I/O Communications Area Service Macros. The Mass Storage 

Load the Communication Area (MLCA) macro and the Mass Storage Unload the 

Communications Area (MUCA) are used to store or alter fields in the I/O 

Communications Area (MLCA) and to access the values of certain fields in the 

I/O Communications Area (MUCA). Any address specified as a parameter of 

these macros may be of any type. But, Index Registers 5 and 6 must not be 

referenced. 

MLCA MACRO 

The MLCA macro provides the user with the ability to update the contents 

of fields in the I/O Communications Area. Each of these fields has a specific 

mnemonic designator. To alter the contents of a specific field, the user must 

associate its designator with a main memory address in which the value to be 

placed in the I/O Communications Area is stored. At execution time, the MLCA 

macro will set the indicated area to its proper status in the I/O Communications 

Area. As many of these pairs (value and main memory address) as are required 

may be specified in a single MLCA macro. 

MLCA Macro Format 

EASYCOD:::R 
COOING FOo,M 

C-l 



. ' 

I 

APPENDIX C. I/O COMMUNICATIONS AREA SERVICE MACROS 

MLCA Macro Description 

TYPE FIELD 

The last line of the MLCA call must always contain an L. All other 

lines of the MLCA call must contain a C in the Type Field. 

LOCATION FIELD 

The Location Field is considered as parameter ¢ of the MLCA macro. 

This field can contain any acceptable assembly tag, but does not have to be 

specified. 

OPERATION CODE FIELD 

The Command Field contains the Operation Code MLCA, which informs the 

system of what function to perform. 

OPERANDS FIELD 

The Operands Field contains the parameters for the MLCA macro. 

Parameter 1 

Parameter 1 of the MLCA macro is a tag that can be up to three characters 

long. This tag is used as a prefix to all MPCA macro tags and must be the 

same as parameter ¢ of the MPCA macro. 

NOTE: Subsequent parameters of the MLCA macro are treated as 
pairs. The first parameter of each pair is the main 
memory address containing the value to be placed in the 

Parameter 2 

I/O Communications Area, and the second parameter of each 
pair is the mnemonic designator of the field to be updated. 
The first omitted (blank) main memory address parameter or 
mnemonic designator will terminate the action. The order 
in which the pairs are specified is not significant unless 
one field will overlay another • 

This parameter contains the right-hand end address of a user supplied 

field that contains the data required to alter the I/O Communications Area 

C-2 



APPENDIX C. I/O COMMUNICATIONS AREA SERVICE MACROS 

table. The field must contain a word mark to stop the right to left transfer 

of the value. 

Parameter 3 

This parameter contains a mnemonic indicating the right-hand end of the 

actual area within the appropriate MPCA table which is to be altered. If the 

low-order characters of the designated field are not to be updated, address 

arithmetic may be used in specifying the mnemonic designator (i.e. CAD-I). 

Table C-l lists each acceptable mnemonic designator and provides a des

cription of each. 

Table C-l . MLCA Mnemonic Designators for MLCA and MUCA 

MNEIDNIC DESCRIPTION 

cn This designator refers to a 4 character field containing the 
device, magazine, and cylinder number, in binary, for any 
future action related to the File Table referenced by para-
meter ¢l. The left-most character of this field must contain 
a word mark. 

CAD This designator refers to an 8 character field containing the 
field cn and its high-order characters. The remaining four 
characters are the 2 character track and the 2 character 
record numbers in binary and in that order. Note that CAD 
and cn can overlay each other. The final value of this field 
will be loaded into the address register by MPIOC whenever 
required. The left-most character of this field must contain 
a word mark. 

PRT This designator refers to the right-hand end of a l¢ character 
field whose high-order 8 characters are defined by CAD. The 
character to the right of CAD must be ¢. The tenth character 
corresponds to parameter ¢5 of MPCA. MPIOC will load the 
address register of the control unit with the current value of 
these l¢ characters. Note that the l¢ characters include CAD, 
which, in turn, includes cn. 

TRW This designator refers to a single character corresponding to 
parameter ¢4 of MPCA (C3 variant) • 

AAD This designator corresponds to the buffer address as defined 
for parameter ¢2 of the MPCA macro. 

EAD This designator refers to the entrance address to a user's 
error routine. Refer to parameter ¢3 of the MPCA macro. 

RWC This designator refers to the read/write counter value and is 
significan~ only if parameter ¢5 of the MPIOC is VAR. 

CPU This designator refers to the peripheral trunk and is signifi-
cant only if parameter ¢4 of the MPIOC macro is M. 

C-3 

.. 



APPENDIX C. I/O COMMUNICATIONS AREA MACROS 

Parameters 4, 6, and 8 

These parameters are the same as parameter 2 described proviously. 

Parameters 5, 7, and 9 

These parameters are the same as parameter 3 described previously. 

MUCA MACRO 

This macro provides the user with the ability to access the contents of 

fields of the I/O Communications Area. The use of this macro corresponds to 

that of MLCA except that the transfer of values is in the opposite direction. 

That is, information is transferred from the I/O Communications Area to the 

main memory location indicated. Each such transfer moves from right to left 

(data bits only) as many characters as there are in the designated field. If 

right-most characters of the field are not desired, address arithmetic may be 

used with the mnemonic gesignator. For example, EDF-4. 

MUCA Macro Format 

EASYCODER 
CODING fORM 

?ROBL"~.:;;::====;:===:;==============-=PR:::O:GR~A:M,:ME::R~ _-:::--:::--:::--:::--:::--:::--:::--:::--:::--:::-=-~DA:,:T-=-E =-=. ____ PAGE _0,_ 
~I CAR~~: . I OPERATION I I I ' NUMf,,,n t;!~1 LOCATION I CODE I OPERANDS 

r;.~~~:1'e 14:1:>. 20;2~ • L"'" l .. ....L.. _'""""" L..! ....... \ I ........e. . 6"i63 
! I ~ ! , ,80j 

MUCA Macro Description 

• TYPE FIELD 

The requirements for the Type Field of MUCA are the same as described 

for MLCA. 

LOCATION FIELD 

The requirements for the Location Field are the same as described for 

MLCA. 

C-4 



APPENDIX C. I/O COMMUNICATIONS AREA SERVICE MACROS 

OPERATION CODE FIELD 

The requirements for the Command Field of MUCA are the same as described 

for MLCA except that the Operation Code MUCA must appear in this field. 

OPERANDS FIELD 

The Operands Field contains the parameters required for MUCA. 

Parameter 1 

Parameter 1 of MUCA is the same as described for MLCA. 

Parameter 2 

Parameter 2 of MUCA is the same as described for MLCA. 

Parameter 3 

Parameter 3 of MUCA is the same as described above for MLCA in Table C-l. 

The following mnemonic designators in Table C-2 can also be used with the 

MUCA macro. 

Table C-2. Additional Mnemonic Designators For MUCA 

MNEMONIC DESCRIPTION 

LAD This designator refers to an 8 character field designating the 
address of the last record involved in the previous data 
transfer initiated via the related I/O Communications Area. 
Its format is DMCCTTRR (Device, 
Record numbers). 

Magazine, Cylinder, Track, and 

ECT This designator refers to a 1 character field containing a 
binary count of the number of re-reads or re-writes executed 
by MPIOC in attempting to correct read and write errors 
detected in exectuions for the designated MPCA Table. .. 

ERI This designator refers to a single character field containing 
an indication of the type of uncorrectable error condition 
which was last encountered in executions for the designated 
MPCA Table. 

EDF This designator refers to a 14 character field containing the 
contents of the address register at the time the last error 
condition was detected in executions for the designated MPCA 
File Table. 

LRT This is a fie~d containing the address of the last return, to 
the use~ from the initiation of an action referencing the 
designated MPCA Table. 

C-5 



.. 

APPENDIX C. I/O COMMUNICATIONS AREA SERVICE MACROS 

Parameters 4, 6, and 8 

These parameters are the same as parameter 2 of the MUCA macro. 

Parameter 5, 7, and 9 

These parameters are the same as parameter 3 of the MUCA macro. 

PROGRAMMER'S PREPARATION INFORMATION 

General Description Of MLCA And MUCA Macros 

MLCA MACRO 

The MLCA macro is used at execution time to alter the values of certain 

fields of a specified Physical I/O Communications Area (MPCA). Each MLCA 

macro call, therefore, must identify (via parameter %1 of the macro call) the 

appropriate MPCA, the areas in the user's program where the new values are 

located (via the even numbered parameters %2, %4, %6 etc. of the macro call) 

and the specific fields of the MPCA to be changed (via the odd numbered 

parameters %3, %5, %7 etc. of the macro call). The odd numbered parameters 

%3, %5, %7 etc. are assigned a mnemonic from the listings on pages C 4 and 

C 7. Each set of even and odd parameters, such as the set %2 and %3 or the 

set %4 and %5, are treated as pairs. As many as 31 pairs can therefore effect 

as many as 31 changes to the MPCA in a single MLCA macro call. 

At execution time the change in the values of the specified MPCA fields 

is accomplished by an Extended Move (EXM) instruction in the MLCA coding. 

This instruction moves only the data bits in the user's fields (from right 

to left) from the user's fields to the specified fields of the MPCA. The 

move is terminated by a word mark at the left-hand (high-order) end of the 

user's field. Because of this, the user must ensure that his fields are the 

same length as the fields of the MPCA that are being changed. 

C-6 



APPENDIX C. I/O COMMUNICATIONS AREA SERVICE MACROS 

Any acceptable form of addressing, including referrencing index registers 

X5 and X6, may be specified as values for the user's area addresses (even 

numbered parameters) • 

MUCA MACRO 

The MUCA macro is used at execution time to access the values of certain 

fields within a specified MPCA. This macro operates in the same manner as 

the MLCA macro, so its parameters are specified in the same manner. The 

notable differences between these macros is that while the data bits are 

moved from right to left in the MUCA macro (as in the MLCA macro) the data 

is transferred from the MPCA to the user's fields. This last is just opposite 

to the MLCA macro. Also, the moves are terminated by a word mark in the MPCA 

fields rather than in the user's fields. 

MLCA And MUCA Parameters 

The information following is a supplement to the information in the 

preceding portion of this appendix. 

ERROR TYPE INDICATOR (ERI) MNEMONIC DESIGNATOR 

The designator ERI refers to a single-character field indicating the 

type of the last error encountered while processing with this MPCA. The 

possible values of this field and their meanings are contained in the follow-

ing list. 

OCTAL VALUE 

~~ 
f:11 
f:12 
f:13 
f:14 
f:15 
f:16 
f:17 
If:1 
11 

12 

MEANING 

No errors. 
Device Inoperative. 
Protection violation. 
Device error (after five attempts at positioning) • 
Formatting error (format violation or track overflow) • 
Addressed record not located (after five attempts). 
Uncorrectable read error, data transfer was completed. 
Uncorrectable read error, data transfer was not completed. 
Automatic verification failed (after ten re-verify attempt~. 
Track linking record was read into core memory or re-written 
from core memory. (This is not necessarily an error.) 
Read error in track linking record while attempting to link. 
Contents 0+ cu)rrent CCTTRR are invalid (after ten attempts 
at re-readl.ng • 

C-7 

.. 



" 

" 

APPENDIX C. I/O COMMUNICATIONS AREA SERVICE MACROS 

ADDRESS REGISTER CONTENTS AT TIME OF ERROR EXIT (EDF) 

The designator EDF refers to a 14 character field that reflects the 

contents of the pcu address register at the time the l.ast error condition 

was recognized by MPIOC for this MPCA. The format of this field is as follows. 

=t 
C C T T R R S S T T R R 

Device Number--+ 
Last First 

Magazine Number Record Record Status Field Address of This 
Action 

The format of the status field is as follows. 

14~--Sl--~.14"--- 52--.~1 
o 0 0 0 0 0 NO 0 0 

Device 

1 

Inoperative ~ 
Device Error 

1 1 

Protection Violation ____________ ~ 

Read Error 

1 1 

Instruction Incomplete ________________ ~ 

1 YES 1 1 l ... X ___ X ......... v,.?C __ X.J1 

I 
Protection Bits 

Track Overflow 

~-- Format Violation 

Trank Linking Record --_________ -J 

C-8 



APPENDIX D 

TAPE AND CARD FORMATS USED IN FILE SUPPORT 

LOAD/UNLOAD FUNCTION 

INTRODUCTION 

The Mass Storage File Support Subsystem has the facility to load data 

from and unload data to one-half inch magnetic tape or punched cards. All 

standard fixed length formats are allowed. This appendix summarizes these 

formats and points out any features that are extensions of previous Honeywell 

Series 200 software. 

ONE-HALF INCH TAPE FORMATS 

Header Label 

The Header Label is 8~ chara·=ters in length and must be the first 

record of a file. It consists of the following fields: 

FIELD ---
I. 
2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

II. 
12. 

CHARACTER POSITIONS 

1 - 5 

6 - 10 

11 - 15 

16 

17 - 19 

20 

21 - 30 

31 - 35 

36 

37 - 39 

40 

41 - 80 

CONrENTS 

IHDR6. 

Tape Serial Number 

File Serial Number 

- (minus sign) 

Reel Sequence Number 

Blank 

File Name 

Creation Date 

- (minus sign) 

Retention Cycle 

Blank 

Unused 

The File Support Subsystem uses only fields 1, 2, and 7 with the 

exception of a Partitioned Sequential File. 

D-l 



APPENDIX D. TAPE AND CARD FORMATS USED IN FILE SUPPORT LOAD/UNLOAD FUNC'rrON 

When a Partitioned Sequential File exists on tape, each member is 

treated as one file and a multi-file reel. To identify the member on tape, 

the header includes an additional field in characters 51 through 64 giving 

the member name. The Load/Unload Function ass~~es that tapes are properly 

positioned. No searching for the file name or member name is performed. The 

Load/Unload Function operates according to the following rules. 

When performing LOAD to a Partitioned Sequential File and the member 

name is specified in the job request, the member name field is not required 

in the label. The member name is taken from the job request, and the tape 

file currently positioned will be loaded as that member. 

When performing LOAD to a Partitioned Sequential File and the member is 

not specified in the job request, the member name field in the label is 

required. All files on that reel of tape are loaded as members until a lERI 

record is encountered on that tape. The member name is assumed to be correct 

and is entered into the "mass storage file. 

When performing UNLOAD of a Partitioned Sequential File, the member 

name field in the tape label is always filled in by File Support. 

Data Records 

Data records processed by File Support must be fixed length (blocked or 

unblocked) and must use one of the followino;r combinations of parity and 

bannering: 

PARITY ODD ODD EVEN EVEN 

BANNERl YES NO YES NO 

PADDING 778 778 118 118 

1 It should be remembered that when banner is specified, one additional 
character should be provided in the REC = parameter. 

D-2 



APPENDIX D. TAPE AND CARD FORMATS U SED IN FILE SUPPORT LOAD/UNLOAD FUNCTION 

The four types of data record blocking, bannering, and padding can be 

illustrated as follows: 

l. Unblocked, Unbannered 

1 ITEM 

2. Blocked, Unbannered 

ITEM 1 ITEM 2 ITEM 3 ITEM 4 

3. Unblocked £ Bannered 
0:: 
r.:I 
Z 

~ 
~ 

1 ITEM 

4. Blocked £ Bannered 
0:: 
r.:I 
Z 

~ITEM 1 ITEM 2 ITEM 3 ITEM 4 
I~ 

For those installations trying to decide which type of file to use, the 

odd parity, bannered file is the Honeywell recommended standard. 

Trailer Labels 

The trailer label is 8¢ characters in length and must be the first 

record following the last data record of a file. Only two fields of that 

record are used by File Support. 

FIELD 

1 

2 

CHARACTER POSITIONS 

1 - 5 

6 - 10 

D-3 

CONTENTS 

Must be lEOF6 

Is not checked on 
input 1 on output 
(UNLOAD), the tape 
record count (decimal) 
is entered. 

.. 

~' 

.~ 



.. 

I 

APPENDIX D. TAPE AND CARD FORMATS USED IN FILE SUPPORT LOAD/UNLOAD FUNCTION 

In the normal situation, this record is followed by an 8~ character 

record containing lERI~ (End of Record Information) in the first five 

characters. However, in Partitioned Sequential, each lEOF record is followed 

by the next IHDR record until all members are accounted for. Only the last 

lEOF record is followed by lERI • 

Tape Marks 

Tape marks on an input tape are ignored. On output files, tape marks 

are not created. 

CARD FILE FORMATS 

Header Label 

Each card file must have a label card with the IHDR~ in columns 1 - 5 

and optionally the file name in columns 21 30. Partitioned Sequential 

Files are handled in exactly the same way as in the one-half inch tape files 

described in this appendix. 

Data Records 

Card records are always unblocked. The record consists of the minimum 

number of cards which can handle one item. Any character positions left over 

are ignored. Each item is assumed to start in column 1. 

Trailer Labels 

Trailer labels for cards are the same as for one-half inch tape as 

described in this appendix. 

D-4 



I 

INTRODUCTION 

APPENDIX E 

PARTITIONING 

When the partitioning option is used, there are several additional 

advantages to the sequential file organization. With this option, the 

sequential file is broken into any number of sub-files (called members) • 

Each member of a partitioned sequential file must have identical properties 

such as item size, record size, etc. A member index is maintained to 

enable direct access to the beginning of any member. The number of blocks 

required to store the member index is specified by the user. The member 

index begins with the first block in the file and continues through the 

number of blocks specified. The record size and block size of the member 

index are identical to those of the data area of the file. The item size 

of the member index contains the name of the member, its address, the 

number of blocks in the member, and the status of the member. 

MEMBER INDEX 

The name of the member identifies the member. A member name is 14 

characters in length. The address of the member is the address of the 

first record in the member. The address is of the form 

CCTTRR 

This identifies the cylinder, track, and record of the first item of 

the member. The block count simply records the number of blocks in the 

member. The status of a member may be one of the following: 

1. Deleted 

2. Able to be processed as input or input/output only 

3. Able to be processed as input/output, input only, or output only. 

E-l 

.. 



APPENDIX E. PARTITIONING 

The processing modes are fully described in the paragraphs that 

discuss the input/output control functions. An example of a member index 

for a given partitioned sequential file is shown in Figure E-l. 

Start Start Start Start End 
Unused Member Member Member of Blank 
Area D 3 G Index 

Figure E-l. Member Index for a Partitioned Sequential File 

The first item in the index always contains the address of the first 

record in the file that is available for the addition of a new member. 

When the partitioned sequential file is created, that is, when it is formatted 

and space is allocated and before data is recorded in it, the member index 

contains items indicating the unused area and the end of index. When a 

member is deleted, its data area is not reusable until the file has been 

reorganized. Figure E-2 shows a sequentially organized file using the 

'~ partitioning option. 

Start 
Unused 
Area 

Start 
Member 

D 

Start 
Member 

3 

Start 
Member 

G 

Unused Area 

End 
of 
Index 

Figure E-2. Sequential File Using the Partitioning Option 

NOTE: If N blocks are reserved for a member index, the 

number of members which this index can hold is 

N Block Size - 2. 
25 

E-2 



APPENDIX F 

MASS STORAGE FILE PROTECTION 

FILE PROTECTION 

The introduction of mass storage devices into data processing 

brings additional considerations into the area of data file protection. 

In magnetic tape processing, several methods of protection against 

inadvertent destruction have been in use for some time. With the 

Honeywell 204B tape drives, a user may put any drive in protect by 

using a manual switch on that drive. He may also remove the plastic 

ring on the back of the tape itself. Finally, in common practice, 

each file is contained on a separate reel of tape. These three 

methods of protection are generally adequate. In addition, if a 

particular tape file is confidential, it's owner (for example, a 

payroll department) can keep that reel in its own restricted area 

of storage. This guarantees that no unauthorized persons have access 

to this file. 

On mass storage, however, it is common for more than one file to 

exist on a single volume. When this is true, the old "tape oriented" 

methods of protection are not adequate. To provide the user with maximum 

data protection, the Honeywell Mass Storage Operating System offers two 

types of protection: 1. A hardware/software protection against inad

vertent data destructionr 2. A software protection against unauthorized 

access to a confidential file. 

These two features are explained in detail below. 

WRITE PROTECTION 

There are four classes of write protection offered through a combi

nation of hardware and software features. These classes are: 

1. Format Write Protection 

2. Data Write Protection 

F-1 



CI 

.. 

I 

APPENDIX F. MASS STORAGE FILE PROTECTION 

3. "A-File" Write Protection 

4. "B-File" Write Protection 

Corresponding to these four classes of write protection are four 

hardware switches. 

For example, to do any formatting, the Format Write Switch must be in 

PERMIT. In terms of this operating system, formatting would occur during 

any run of Volume Preparation or a run of File Support which is doing 

allocation. 

Any program which is doing any form of writing (e.g. an update as 

assembly or a sort) requires that the control unit to which the write is 

being done must have the Data Write Switch in PERMIT. In addition, if it 

is a user's program, parameter 31 in MIOC of Logical I/O must be ~2 (i.e., 

permit Data Write) • 

The use of these two switches is not optional. When formatting is in 

progress, the Fermat Write Switch must be in PERMIT. When writing is in 

progress, the Data Write Switch must be in PERMIT. 

The use of "A-File" and "B-File" protection, however, is optional. 

For example, if there is a master file which may only be written on by a 

limited, well-defined number of programs, it may be desirable to give this 

file further protection. To illustrate, let us suppose that FILE-X is a 

payroll master file which may be updated by only one program. In addition 

to the payroll file, however, there may be from time to time one or two 

other files on the same volume. To protect FILE-X from inadvertent destruc

tion, it is decided to give this file "B-File" protection. 

When allocating FILE-S, the parameter PROT = B is used. If the file 

is being loaded by the File Support Load function, the PROT = B parameter 

must be used again. In addition, the "B-File" Write Switch and Data Write 

Switch must both be in PERMIT during this load process. 

F-2 



APPENDIX F. MASS STORAGE FILE PROTECTION 

The program written to update this file must include in parameter 31 of 

Logical I/O's MIOC macro the value 12 (permit "B-File" Write Switch and the 

Data Write Switch must both be in PERMIT. 

The possible combinations of file write protection are: 

Combination of Protection 

NONE 

"A-File" 

"B-File" 

"A-File" and "B-File" 

PASSWORD PROTECTION 

Switches in Permit When Writing 

Data Write 

Data Write & "A-File" 

Data Write & "B-File" 

Data Write, "A-File", & "B-File". 

In addition to guaranteeing that a file will not be improperly 

destroyed, it is often important to guarantee that a file is not read by 

unauthorized personnel. Thus, in the preceding example, it is imp~rtant to 

be able to know that the other users of the volume containing FILE-X, the 

payroll master file, cannot open, read, or write FILE-X. To effect this 

type of protection, this operating system provides the use of a password. 

Thus, in the above example, a password of PAY66164 might be used. 

During Allocation, the parameter PW = PAY66164 is entered. If using the 

Load function, PW = PAY66164 is used again. Any program accessing FILE-X 

must have as parameter 21 of Logical I/O's MCA macro a tag pointing to a 

field in memory which contains PAY66164. 

For example: 

C 

C 

PWORD 

MCA 

21 

DCW 

PWORD 

@PAY66164@ 

F-3 



I 

APPENDIX G 

SPACE ALLOCATION FOR SEQUENTIAL FILES 

The unit of allocation is of the form Cl T l C2T2 • To determine how 

much space is required for a given Sequential File, the- following process 

is used: 

1. The following figures must be known and are represented symbolically 

as follows: 

A. Block (or Buffer) Size = BK 

B. Total number of items in the file I 

C. Tracks per Cylinder = Tl 

D. Items per Block = IB 

2. Using Table G-l, locate the correct values for Number of Records 

per Track (RT) and number of Records per Block (RB). This is 

accomplished by going down the left-hand column to locate the 

Block Size (BK) and then taking the corresponding values for 

Records per Track (RT) and Records per Block (RB). 

3. Compute Blocks per Cylinder (BC) as follows: 

BC = RT x T 
RB 

(Ignore any remainder.) 

4. Compute Items per Cylinder (IC) as follows: 

IC = BC x IB 

5. Compute the number of Cylinders (C) required for this file as 

follows: 

C = .I
IC 

(Round up to the next higher integer.) 

lNormally, Tracks per Cylinder (T) will be l~ for the 258 or 259 Disc. 
The user may, however, use any smaller number of tracks. 

G-l 



APPENDIX G. SPACE ALLOCATION FOR SEQUENTIAL FILES 

EXAMPLE 

Assume the following: 

Block Size ~K) 1218 

Total Items (I) 55~~ 

Tracks per Cylinder (T) = 1~ 
Items per Block (IB) = 6 

There is to be one unit of allocation starting on Cylinder 2~. 

1. From Table G-1, Records per Track (RT) = 1~ and Records per 

Block (RB)..::; 3. 

2. Blocks per Cylinder (BC) = 1~ x 1@ = 33. (The remainder is 
3 

dropped. ) 

3. Items per Cylinder (IC) = 33 x 6 = 198 

4. Cylinders for the file (C) = ~ = 27 (plus a remainder of 154.) 
198 

This is rounded up to 28. 

5. Therefore, the unit of allocation for this file in the form 

C T C T would be: 2~ - ~ - 47 - 9. 
1 1 2 2 

Table G-1. Optimum Record Size 

CHARACTERS RECORD SIZE NUMBER OF 
PER BLOCK (BK) REC/TRACK (RT) 

79 - 82 Same as block 32 

83 - 87 Same as block 31 

88 - 92 Same as block 30 

93 - 97 Same as block 29 

98 - 104 Same as block 28 

105 - 110 Same as block 27 

111 - 116 Same as block 26 

117 - 124 Same as block 25 

G-2 

NUMBER OF 
REC/BLOCK (RB) 

1 

1 

1 

1 

1 

1 

1 

1 



APPENDIX G. SPACE ALLOCATION FOR SEOUENTIAL FILES 

Table G-1 (cant). Optimum Record Size 

CHARACTERS RECORD SIZE NUMBER OF NUMBER OF 
PER BLOCK (BK) RE C/T RACK (RT) REC/BLOCK (RB) 

125 - 132 Same as block 24 1 

133 - 140 Same as block 23 1 

141 - 150 Same as block 22 1 

151 - 160 Same as block 21 1 

161 - 171 Same as block 20 1 

172 - 184 Same as block 19 1 

185 - 197 Same as block 18 1 

198 -213 Same as block 17 1 

214 - 230 Same as block 16 1 

231 - 250 Same as block 15 1 

251 -271 Same as block 14 1 

272 - 297 Same as block 13 1 

298 - 327 Same as block 12 1 

328 - 363 Same as block 11 1 

364 - 406 Same as block 10 1 

407 - 459 Same as block 9 1 

460 - 523 Same as block 8 1 

524 - 608 Same as block 7 1 

609 - 721 Same as block 6 1 

722 - 726 Block/2 11 2 

727 - 877 Same as block 5 1 

878 - 918 Block/2 9 2 

919 - 1112 Same as block 4 1 

1113 - 1216 Block/2 7 2 

1217 - 1218 Block/3 10 3 

1219 - 1506 Same as block 3 1 

1507 - 1569 Block/3 8 3 

G-3 



APPENDIX G. SPACE ALLOCATION FOR SEQUENTIAL FILES 

Table G-l (cont). Optimum Record Size 

CHARACTERS RECORD SIZE NUMBER OF NUMBER OF 
PER BLOCK (BK) REC/TRACK (RT) REC/BLOCK (RB) 

1570 - 1754 Block/2 5 2 

1755 - 1824 Block/3 7 3 

1825 - 1836 Block/4 9 4 

1837 - 2289 Same as block 2 1 

2290 - 2295 Block/4 9 4 

2296 - 2432 Block/3 7 3 

2433 - 2631 Block/3 5 3 

2632 - 3012 Block/2 3 2 

3013 - 3040 Block/5 7 5 

3041 - 3336 Block/3 4 3 

3337 - 3508 Block/4 5 4 

3509 - 3605 Block/5 6 5 

3606 - 3648 Block/6 7 6 

3649 - 3661 Block/7 8 7 

3662 - 3672 Block/8 9 8 

3673 - 4578 Block/2 2 2 

EXAMPLE FOR USING THE TABLE 

To provide for a 36~~ character block, go down the left-hand column 

until 36~~ is bracketed. Reading the appropriate line shows: 

35~9 - 36~5 Block/5 6 5 

Thus, the record size would be ~ = 72~. 
5 

There would be six 72~-character record per track and five records 

per block. This makes 1 1/5 blocks per track. 

G-4 

• 



APPENDIX H 

ALLOCATION AND ADDRESSING FOR DIRECT ACCESS FILES 

To be properly utilized, a direct access file requires careful 

planning. There are two essential inputs the user himself must 

calculate: (1) Proper arrangement and formatting of storage space, 

and (2) Addresses for every item, assigned in such a way that items 

are dispersed as evenly as possible throughout the space allocated 

to the file. The following paragraphs provide some general guide

lines for arranging storage space and assigning addresses in direct 

access files. 

SPACE ALLOCATION 

Any method of calculation used to translate item keys into 

storage addresses generally produces a number of duplicate addresses 

(synonyms). These synonyms are handled by two formatting methods: 

(1) Buckets are made large enough to handle several items, and (2) 

Overflow areas are provided to handle the bucket Jverflow due to 

uneven distribution. If every bucket contained the same number of 

synonyms, there would be no overflow. But since some buckets contain 

more and some less, some will overflow. 

The amount of overflow that occurs is directly related to two 

factors: (1) Bucket Size, and (2) Storage Density. The more items 

there are in a bucket, the lower the probability for any item that 

it will overflow. (But also, since increasing the number of blocks 

in a bucket increases the average time required to access an item, 

the average access time to an item may be much higher.) Storage 

density also affects bucket overflow. A file with space for 1000 

items will have more bucket overflow when it contains 800 items 

H-l 



tIl 
I 
N 

( 

ITEMS 
PER 

BUCKE'l 

Bucket 
Size 

1 
2 
3 
4 
5 
6 

7 
8 
9 

10 
11 
12 

14 
16 
18 
20 

25 
30 
35 
40 

50 
60 
70 
80 
90 

100 

NOTES: 

~ 

0.1 

4.84 
0.60 
0.09 
0.02 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

1. 

2. 

Table H-1. Overflow Probabilities 

Storage Density and Number of Items/Allocated Space 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 

9.37 13.61 17.58 21. 31 24.80 28.08 31.17 34.06 36.79 39.35 41. 77 
2.19 4.49 7.27 10.36 13.65 17.03 20.43 23.79 27.07 30.24 33.30 
0.63 1.80 3.61 5.99 8.82 11.99 15.37 18.87 22.40 25.91 29.33 
0.20 0.79 1.96 3.76 6.15 9.05 12.32 15.86 19.54 23.25 26.93 
0.07 0.37 1.12 2.48 4.49 7.11 10.26 13.78 17.55 21. 42 25.30 
0.02 0.18 0.67 1.69 3.38 5.75 8.75 12.24 16.06 20.06 24.11 

0.01 0.09 0.41 1.18 2.60 4.74 7.60 11.04 14.00 19.00 23.19 
0.00 0.05 0.25 0.84 2.03 3.97 6.68 10.07 13.96 18.15 22.46 
0.00 0.02 0.16 0.61 1.61 3.36 5.94 9.27 13.18 17.44 21.86 
0.00 0.01 0.10 0.44 1. 29 2.88 5.32 8.59 12.51 16.85 21.36 
0.00 0.01 0.07 0.33, 1.04 2.48 4.80 8.01 11.94 16.34 20.94 
0.00 0.00 0.04 0.24 0.85 2.15 4.36 7.51 11.44 15.89 20.58 

0.00 0.00 0.02 0.14 0.57 1.65 3.64 6.67 10.60 15.15 19.99 
0.00 0.00 0.01 O.M 0.39 1. 28 3.09 6.00 9.92 14.56 19.53 
0.00 0.00 0.00 0.05 0.28 1.01 2.65 5.45 9.36 14.07 19.16 
0.00 0.00 0.00 0.03 0.20 0.81 2.30 4.99 8.88 13.66 18.86 

0.00 0.00 0.00 0.01 0.09 0.48 1.65 4.10 7.95 12.87 18.31 
0.00 0.00 0.00 0.00 0.04 0.29 1. 23 3.47 7.26 12.31 17.93 
0.00 0.00 0.00 0.00 0.02 0.18 0.94 2.98 6.73 11.87 17.66 
0.00 0.00 0.00 0.00, 0.01 0.12 0.73 2.60 6.29 11.53 17.47 

0.00 0.00 0.00 0.00 0.00 0.05 0.45 2.01 5.63 11.03 17.20 
0.00 0.00 0.00 0.00 0.00 0.02 0.30 1.65 5.14 10.68 17.03 
0.00 0.00 0.00 0.00 0.00 0.01 0.20 1. 37 4.76 10.41 16.93 
0.00 0.00 0.00 0.00 0.00 0.01 0.13 1.14 4.46 10.21 16.86 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.97 4.20 10.05 16.80 
0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.83 3.00 9.92 16.77 

These probabilities are given as percentages. 

This tabl~ assumes random distribution. In actual practice, perfect 
random distribution is seldom, if ever, obtained. The actual probability 
of overflow, therefore, will usually be higher. 

( .. ( 

i 

~ 
~ 
§ 
~ 
tIl . 
~ 
S 
o 
~ 
H 
o 
Z 

~ 

~ 
t:rJ 
til 
til 
H 

~ 
~ o 
::tl 

tl 
H 

~ o 
1-3 

~ o 
t:rJ 
til 
til 

~ 
H 
t" 
t:rJ 
til 



APPENDIX H. ALLOCATION AND ADDRESSING FOR DIRECT ACCESS FILES 

(storage density = 0.8) than when it contains 500 items (storage 

density = 0.5). In allocating a direct access file, these two 

factors must be weighed against each other to achieve a desirable 

compromise. 

Table H-1 summarizes the overflow probabilities for any item, 

assuming a random distribution. 

ALLOCATION PROCEDURES 

To illustrate the procedure for allocation of a Direct Access 

file we shall use two examples: one to show how to optimize speed~ 

the other to show how to optimize storage density. 

The following figures are fixed for both cases: 

Size of file 

Characters per item 

Characters per block 

Storage Density 

Tracks per cylinder 

Example 1: 

10,000 items 

200 

800 

0.8 

10 

For this example, we shall make the bucket equal to one block. 

Thus, each bucket has a capacity of four items. Using the probabilities 

chart (Table H-1) , we see that the likelihood of anyone item over

flowing its bucket is 12.3%. If we allow one track for cylinder 

overflow, we would have 1/9 or 11.1% of the cylinder set aside for 

overflow. 

H-3 



APPENDIX H. ALLOCATION AND ADDRESSING FOR DIRECT ACCESS FILES 

If the important consideration for this file is average access 

time, then one track per cylinder for overflow would probably be 

sufficient (along with the general overflow). However, if it is 

important that no access exceed a certain time limit, then two 

tracks could be used to gain 2/8 or 25% overflow provision. 

Using the one track for overflow, the cylinders required for 

allocation would be computed as follows: 

10,000 
Item Space required = .80 12,500 

Buckets required 12,500 items 
4 item/bucket 

3125 buckets 

From Table G-1 in Appendix G, we see that we should have 5 blocks per 

track, hence, 5 buckets per track. 

Buckets per cylinder = 

Cylinders per file 

5 buckets 
track x 

3125 buckets 

9 tracks 
cylinder 

45 buckets/cylinder 

45 buckets 
cylinder 

69.4 or 70 

plus one cylinder per unit of allocation for general overflow. 

Assuming that there is one unit of allocation, there would be 71 

cylinders required for this file. 

If we were to use two tracks for overflow, then the following 

calculations change. 

Buckets per cylinder 
5 buckets 

tracks x 8 tracks 
cylinder 

3125 buckets 
Cylinders per file = 40 buckets/cylinder 

40 buckets 
cylinder 

78.1 or 79 

Again, if general overflow is desired, it is added in accordingly. 

H-4 



APPENDIX H. ALLOCATION AND ADDRESSING FOR DIRECT ACCESS FILES 

Example 2: 

In the second example, we shall strive to make more efficient 

use of storage, and_sacrifice a little speed. So we will plan to 

have only two buckets per cylinder. If we set aside one track for 

overflow, we would have: 

9 tracks 

cylinder 
x 

5 blocks 

track 

45 blocks 

cylinder 

45 blocks per cylinder 

2 buckets per cylinder 
22.5 blocks per bucket. 

Since there cannot be partial blocks in a bucket, there are 22 blocks 

per bucket. (With 4 items per block, this gives 88 items per bucket.) 

Looking at the probability chart (Table H-l), we see that the likelihood 

of overflow in this case 1S about 0.1%. This is so small that it would be 

considerably more efficient to have no cylinder overflow, but rather use 

only general overflow. In this case, we use 10 tracks and compute bucket 

size as follows: 

10 tracks 
cylinder 

x' 5 glocks 
track 

50 blocks 
cylinder 

50 :2 = 25 blocks per bucket (100 items per bucket) • 

To compute the cylinders required for this file, we already know that there 

are 2 buckets per cylinder. 

Buckets required 12,500 items 
100 items/bucket = 125 buckets 

Cylinders per file 125 buckets 
2 buckets/cylinders 62.5 or 63 cylinders 

H-5 



APPENDIX H. ALLOCATION AND ADDRESSING FOR DIRECT ACCESS FILES 

One cylinder per unit of allocation must be added for general overflow. 

Assuming that there is one unit of allocation, there would be 51 cylinders 

required for this file. 

Note that in the first case, if we were using relative addressing, we 

would require addresses distributed between ~ and 3124. In the second 

case, we would reguire addresses between ~ and 125. 

H-6 



RANDOMIZING ADDRESSING 

APPENDIX I 

RANDOMIZING TECHNIQUES 

Randomizing is the process of transforming the key of an item into a 

valid storage address. This actually consists of obtaining a relative 

bucket address (e.g., the 204th bucket of the file), which is then con

verted by the I/O into a valid mass-storage bucket address (i.e., cylinder, 

track, record). This enables the user to retain his present item numbering 

system, and yet have full on-line processing capability. 

There are many randomizing methods, each one being somewhat better 

suited to one particular application than another. All have the same 

objective--to produce a valid storage address for each item from its 

control field (key) in such a way that the items are evenly distributed 

throughout the file. Depending on the randomizing technique employed, 

storage utilization can reach between 80 and 90 percent efficiency. But 

a file packed that densely requires an average of 1.2 to 1.S accesses to 

retrieve each item, due to the duplicate storage addresses (synonyms) that 

occur. Generally speaking, a technique that achieves a high storage 

utilization generates more synonyms and So increases access time. So the 

randomizing technique chosen will depend on the relative importance of 

storage utilization and access time. But the structure of the file is 

also important and will affect the choice. For instance, if several items 

were blocked into a large multi-item record, then more synonyms would not 

adversely affect access time. 

Once a randomizing technique has been selected for possible use, the 

technique should be evaluated with a sample selection of actual item keys. 

This evaluation should provide information on the efficiency of storage 

utilization, the frequency and distribution of synonyms, the processing 

time required for the calculation, and how evenly the generated storage 

addresses are distributed. The results will enable the user to select the 

1-1 



APPENDIX I. RANDOMIZING TECHNIQUES 

technique most suited to his particular requirements and data pattern. 

The following paragraphs outline a few of the most commonly used key 

transformation methods. They have the advantage of being economical in 

processing time and core memory requirements. There are many possible 

variations of these, in addition to far more complicated methods not 

covered in this bulletin. 

Prime Number Division 

Division of tpe item key field by a prime number (a number divisible 

only by itself of unity) is a widely accepted method of transforming a 

key into a mass storage address. The prime-number divisor should be 

slightly less than the number of item locations allocated to the data 

area of the file. But it should be as large as possible. The larger 

the prime-number divisor, the smaller the chance of generating synonyms. 

This method consists of dividing the item key by the selected 

prime-number divisor, discarding the quotient, and using the remainder 

as the basis for the mass-storage address. 

EXAMPLE: 

A file of 5,000 items on a Model 259 stores five items per bucket, 

one bucket per track, with item keys ranging from 000,000,000 to 

999,999,999. Space is allocated to this file for 1,000 buckets. The 

file is to start on Cylinder 50, Track O. The prime-number divisor 

chosen is 997, which will leave three buckets unused from the 1,000 

allocated. 

Now suppose that 777,775,925 is the key of the item to be accessed. 

Then 777,775,925 
997 

780,116 with remainder 268 

Thus, this item is to be placed in the 26Sth bucket from the beginning of 

the file. 

1-2 



APPENDIX I. RANDOMIZING TECHNIQUES 

The I/O will then, using this relative bucket address, compute that 

the actual address is 26 cylinders and 8 tracks after the starting 

location of the file (Cylinder 50, Track 0), which in this case would be 

Cylinder 76, Track 8. 

It has been assumed here that a unit of allocation is made up of a 

whole cylinder (10 tracks) and there are no cylinder overflow tracks. 

In cases where purely alphabetic or mixed alphabetic/numeric item 

keys are concerned, the item key can be treated as a binary field to be 

binary divided by the binary form of the prime number. The final calcu-

lations will also be in binary so that the mass-storage address will be 

produced in a usable binary form. 

Table I-1 is a list of prime numbers. It is divided into two 

sections: the first section contains every third prime between 2 and 

2939, the second section contains every fifth prime between 2593 and 8039. 

Table I-1. Prime Numbers 

PRIMES (EVERY THIRD PRIME 2-2939) 

5 137 307 487 677 883 1093 1303 1543 1753 1999 2239 2447 2707 
13 151 317 503 701 911 1109 1321 1559 1783 2017 2267 2473 2719 
23 167 347 523 727 937 1129 1367 1579 1801 2039 2281 2531 2741 
37 181 359 557 733 953 1163 1399 1601 1831 2069 2297 2549 2767 
47 197 379 571 761 977 1187 1427 1613 1867 2087 2333 2579 2791 
61 223 397 593 787 997 1213 1439 1627 1877 2111 2347 2609 2803 
73 233 419 607 811 1019 1229 1453 1663 1901 2131 2371 2633 2837 
89 251 433 619 827 1033 1249 1481 1693 1931 2143 2383 2659 2857 

103 269 449 643 853 1051 1279 1489 1709 1951 2179 2399 2677 2887 
113 281 463 659 863 1069 1291 1511 1733 1987 2213 2423 2689 2909 

1-3 



APPENDIX I. RANDOMIZING TECHNIQUES 

Table I-1 (cont). Prime Numbers 

ADDITIONAL PRIMES (EVERY FIFTH PRIME - 2953-8039) 

2957 3343 3697 4073 4457 4861 5233 5641 6029 6373 6803 7211 7603 
3001 3373 3733 4111 4507 4909 5281 5659 6067 6427 6841 7243 7649 
3041 3433 3779 4153 4547 4943 5333 5701 6101 6481 6883 7307 7691 
3083 3467 3823 4211 4591 4973 5393 5743 6143 6551 6947 7349 7727 
3137 3517 3863 4241 4639 5009 5419 5801 6199 6577 6971 7417 7789 
3187 3541 3911 4271 4663 5051 5449 5839 6229 6637 7001 7477 7841 
3221 3581 3931 4327 4721 5099 5501 5861 6271 6679 7043 7507 7879 
3259 3617 4001 4363 4759 5147 5527 5897 6311 6709 7109 7541 7927 
3313 3659 4021 4421 4799 5189 5573 5953 6343 6763 7159 7573 7963 

Square Enfold And Extract 

The item key field is squared, the result is split in half, and the 

two halves are added together. Then the required number of digits needed 

for a mass-storage address are extracted from the middle of the result. 

Normally the two low-order characters are ignored and the extraction is 

made from the third low-order character and above. 

EXAMPLE 1: 

File of 10,000 items; item keys of 9 digits; 10 items per bucket; 

1 bucket per track. Therefore, there are 1,000 buckets. 

Control number: 493,725,816 

Squared: 243, 765, 181, 384, 865, 856 

Enfolded: 243,765,181 

Extracted Result: 

Logical I/O Computes: 

384,865,856 
628,631,037 

310 Relative bucket address. 

310 = Cylinder 31 Track 0 (Model 259) 
10 

Since the field extracted will range over some power of 10, depending 

on the number of digits extracted, so unless the number of buckets avail-

able is some whole mUltiple of 10, the result of this calculation will not 

be suitable. The extracted number can be compressed by multiplying the 

1-4 



APPENDIX I. RANDOMIZING TECHNIQUES 

result by a percentage. If a 3-digit field is extracted, this gives a 

range of 1,000 numbers, which may be multiplied by 70% if there are only 

700 buckets available. 

EXAMPLE 2: 

If the file consisted of 600 buckets instead of 1,000 buckets with tbe 

same control number range: 

Control number: 569,183,582 

Squared: 323,969,950,018,350,724 

Enfolded: 

Extracted Result: 

6~/o: 123.60 (.60 discarded) 

323,969,950 

018,350,724 
342,320,674 

206 

This gives a relative bucket address of 123. 

Radix Conversion 

When this method is applied to purely numeric item keys, each decimal 

digit is interpreted as if it were a radix-11 digit instead of the actual 

radix-10. When applied to alphabetic or alphanumeric item keys, where 

each character is treated as 2-octal digits which are edited into 2-decimal 

digits (see non-numeric item keys). Now each digit is interpreted as if 

it were a radix-9 digit instead of the actual radix-8. In this case, the 

numbers can only range from 0 to 7, whereas in the numeric case, the numbers 

could range from 0 to 9. 

The normal procedure, then, is to truncate the result by discarding 

high-order digits until a field of the desired length is obtained. Note 

that compression of the resultant number can be done by multiplying it by 

a percentage as in the Square, Enfold, and Extract method. 

I-5 



APPENDIX I. RANDOMIZING TECHNIQUES 

EXAMPLE OF COMPRESSION 

Item key 301,283 

Radix - 11 = (3x11 5) + (Ox11
4

) + (lx11 3 ) + 2x1l2) + (8x11
1

) + (3x11
0

) 

483,153 + 0 + 1,33, + 242 + 88 + 3 

484,817, leaving 817 as the truncated address 

(Cylinder 81, Track 7 on Model 259) 

Radix conversion is a better method than truncation alone since it 

tends to disperse troublesome runs of keys differing in the numeric case 

by some power of 10 (e.g., 02309 and 12309) or in the alphanumeric case 

by some power of 8 (e.g., 02478 and 1247
8
). The main advantage of this 

method is the simplicity of calculation. The conversion from radix-11 

to radix-10 or from radix-9 to radix-8 may be accomplished without 

multiplication. It can be done simply by a series of decimal additions 

and shifts, or binary additions and shifts. Radix conversion does tend, 

however, to produce more synonums than prime number division. 

EXAMPLE 1: 

Item key 301,283 can be reduced to: 

««3x11+0)x11+1)x11+2)x11t8)x11~3) 

3 
+ 30 
+ ~ 

33 

+ 330 

+ _1 
364 

+ 3640 
t __ 2 

4006 
+ 40060 

+ 8 
44074 

+ 440740 
+ 3 

484817 
10 

I-6 



APPENDIX I. RANDOMIZING TECHNIQUES 

EXAMPLE 2: 

Item key 2479 can be reduced to: 

(2x9+4) 9+7 

2 
20 
-± 
26 

260 
_7 
3158 

Non-Numeric Item Keys 

Where item key fields comprise purely alphabetic or special characters, 

or a mixture of alphanumeric, one method is to treat the field as a binary 

number and perform binary arithmetic on it. This has the advantage of 

retaining zone bits and therefore avoiding unnecessary synonyms. 

Another method is to consider each 6-bit character as 2-octal char-

acters which are extracted to form 2-decimal digits in the range 0 to 7 by 

means of binary addition and extraction. The resultant key is then mainpu-

lated by decimal arithmetic according to the particular method employed. 

This method is useful where binary arithmetic is impracticable, but it 

does result in doubling the length of the control fields. 

EXAMPLE: 

Key 

810 
8246Y2-951-7 
8415RST 
84X1l3-177-16 
(13 characters) 

Decimalized octal 

10010000000000000000000000 
10020406700240110501400700 
10040105516263000000000000 
10046701010340010707400106 

(26 characters) 

NOTE: One common misconception is that in converting alphabetic keys, 

the zone bits should be dropped before converting. This, 

however, immediately produces three groups of synonyms: 

G, H, I- P, Q, R X, Y, Z 

I-7 



t 

APPENDIX I. RANDOMIZING TECHNIQUES 

Zone suppression, with the consequent advantages of decimal 

arithmetic, may be an acceptable method, however, for c~ses 

where the item keys are largely numeric with only a few non

numeric characters scattered through them. 

Multi-Field Keys 

Up to this point only item keys with a single field have been con

sidered, where the range of key numbers is broadly sequential no matter 

whether continuous or not. It is, however, fairly common for control 

keys to be divided into definite fields where each field has a range which 

is quite independent of the other fields. To treat such keys as a single 

field may be wasteful unless each field has a maximum value such that the 

entire key forms a continuous series. 

e.g. 00 a 000 00 

to to to to 

77 9 999 99 

Apart from cases like the above example, it is generally desirable 

to manipulate each field independently. Otherwise, an unduly large 

number of synonyms would be generated. Unless a weighting factor is 

applied to the most significant keys, most of the methods previously dis

cussed would generate too many synonymous storage addresses. One such 

technique has been developed by Honeywell for a customer. It has the 

advantage of being readily adaptable to other multi-field key applications, 

and it generates no synonyms. 

Suppose the file contains 30,000 items, each of 100 characters, which 

are to be blocked 6 items to a block, 1 block per bucket on a Model 259. 

I-8 



APPENDIX I. RANDOMIZING TECHNIQUES 

Each item has a 6-digit item key comprising 3 fields: 

Division No. Page No. Line No. 

1 char. 3 chars. 2 chars. 

Range 1 to 5 1 to 120 1 to 50 

The calculation stages are as follows: 

1. Subtract 1 from Division number. 

2. Multiply the resulting Division number by the sum of the maximum 

number of Pages multiplied by the maximum number of lines, i.e., 

120 x 50 6,000, and place the result in Final Result X. 

3. Subtract 1 from Page number. 

4. Multiply the resulting Page number by the maximum number of Lines, 

i.e., 50, and add the result into Final Result X. 

5. Subtract 1 from Line number. 

6. Add the resulting Line number (1) into Final Result X. 

7. Divide Final Result X by the number of items per bucket. The 

quotient will be the relative bucket number. 

This method will convert each 6-digit Key field into an unique number 

in the range 0 to 29,999. If the field numbers ranged from zero instead 

of one, the subtractions in stages 1, 3 and 5 would be omitted since their 

only function is to convert each field to a range commencing with zero. 

EXAMPLE: 

Division 5, Page 120, Line 50 

1. 5-1 = 4 

2. 4x120x50 = 24,000 

3. 120-1 = 119 

4. 119x50 = 5,950+24,000 29,950 

5. 50-1 = 49 

6. 49+29,950 = 29,999 

7. 29,999 = 4999 remainder 5. 
6 

1-9 



APPENDIX I. RANDOMIZING TECHNIQUES 

The remainder is discarded, giving a relative bucket address of 4999. 

Frequency Analysis 

This method consists of analyzing the keys of all the items in the file 

to determine the frequency that any digit appears in anyone position of 

the item key. For each digit position of the item key, go through all the 

items to determine the number of times anyone digit (0 through 9) appears. 

(For instance, if there were 16,045 items in the file, a 0 might occur in 

the fifth key position for 5168 different items, a 1 might occur in the 

fifth key position for 5138 different items, a 2 might occur in that 

position for 4958 items, a 3 might occur for 281 items, and the numbers 

4 through 9 might not occur in this position for any item.) This count 

gives the actual distribution of digits occuring in each key position. 

If the distribution were perfectly even, each of the ten digits would 

occur the same number of times as any other digit--so each digit would 

occur 1/10th of the time. With 16,045 items, each digit should occur 

approximately 1605 times in anyone key position. 

To determine the devience from this ideal distribution, you take 

the difference between the actual number of times a digit occurs in the 

key position and the ideal number of times it should occur--in this case 

1605. (Thus, if 0 actually occurs in the fifth key position of 5168 

different items, the devience would be 5168 minus 1605 = 3563.) You 

do this for each digit that appears in that key position and then sum 

all the results to find the total devience for that key position. This 

then could be expressed as a percentage of the total number of items. 

The lower the sum, the more even is the distribution. The pattern of 

distribution indicates which positions are best to use when truncating 

or extracting storage addresses from the item keys. 

1-10 



APPENDIX I. RANDOMIZING TECHNIQUES 

EXAMPLE 1: 

16,045 Items 

Variance factor 1605, i.e. 10% of number of items. 

Digit KEY POSITION NUMBER 

1 2 3 4 5 6 7 

.,: 0 16045 0 0 1852 5168 1807 1738 

1 0 0 4408 3147 5638 2120 1748 

2 0 2198 3792 1174 4958 1745 1743 

3 0 576 2231 2724 281 1684 1610 

4 0 1195 2459 1194 0 1378 1617 

5 0 12076 3155 1267 0 1647 1688 

6 0 0 0 1243 0 1560 1606 

7 0 0 0 1228 0 1329 1450 

8 0 0 0 1227 0 1415 1411 

9 0 0 0 989 0 1360 1434 

Total 
Variance 28885 22133 16045 5821 21903 1961 1035 

% file 180 138 100 36 137 12 6 

One method of utilizing these results to convert a mass-storage address 

is to express each digit count in an item key field position as a percentage 

of the number of file items. A cumulative total is formed for each digit 

to which is added half of the actual percentage for that digit to give an 

adjusted constant for each digit in every item key position. The constants 

for every digit in an item key are accumulated and the total (excluding 

the whole number carry) multiplied by the number of storage locations 

allocated. The whole number product is then converted to a cylinder and 

Track address in the normal manner. 

1-11 



APPENDIX I. RANDOMIZING TECHNIQUES 

EXAMPLE 2: 

File of 20,000 items. Storage allocated - 25,000 locations. 

Key position 1 illustrated. 

Digit Count Percentage Cumulative Adjusted 
Total Constant 

0 6,400 .32000 .00000 .16000 

1 300 .01500 .32000 .32750 

2 1,300 .06500 .33500 .36750 

3 800 .04000 .40000 .42000 

4 1,200 .06000 .44000 .47000 

5 0 .00000 - -

6 0 .00000 - -
7 4,800 .24000 .50000 .62000 

8 1,200 .06000 .74000 .77000 

9 4,000 .20000 .80000 .90000 

The above process is repeated for every key position and a table of 

adjusted constants is built up as follows, illustrating just the constants 

required for Item 13689. 

I-12 



APPENDIX I. RANDOMIZING TECHNIQUES 

Digit ITEM KEY POSITION 

1 2 3 4 5 

0 

1 .32750 _ -- -r--------2 

3 .39875 r-- --------I---- -r--..32750 4 - - ~.39875 5 

6 .59327 ~.59327 

7 ~.83125 

8 .83125 - -- ~. 96250 

~.1l327 9 .96250 ......... 

25,000 x .11327 = 2831.75000 

02831 = Relative bucket address 

The table of adjusted constants has to be set up initially, but the 

actual key transformation is fairly quick. Such a table would have to be 

recalculated when sufficient changes had occurred to affect materially 

the frequency distribution. The table itself will require 50 locations 

for every item key field position, i.e., 250 locations for a 5-digit 

control key. 

1-13 





-/-- y/----
1 

MUNt. J VYt.LL t.Ut" I t.\lMNI\lAL t"UI:SLI\lA IIUN~ 

USERS' REMARKS FORM 1 
1--------------------------------------------------------------------
1 
1 
1 

~ 
1 

TITLE: SERIES 200/0PERATING SYSTEM -
MOD 1 (MASS STORAGE RESIDENT) 

DATED: 

FILE NO: 

DECEMBER, 1966 

123.0005.131C.O-427 

1----------------------------------------------------------------------
1 
1 
1 

__ - 1 
. - j 
,"",,-- -

CD 
C 
~ 

bO 
c 
o 

C( 

ERRORS NOTED: 

Fold 

~ SUGGESTIONS FOR IMPROVEMENT: 
o 

Fold 

FROM: NAME DATE __________ _ 

COMPANY ____________________________________ _ 

TITLE _____________________________________ __ 

ADDRESS _________________________________ ___ 

1 Please restrict remarks to the publication itself. Comments concerning hardware / 
software difficultie.s and improvement requests should be submitted through the 
channels established for that purpose. 



-----_ .... --------------------------------------------

ATT'N: TECHNICAL COMMUNICATIONS DEPARTMENT 

Honey~ell 
ELECTRONIC DATA PROCESSING 

-.~---- ---~----

FIRST CLASS 
PERMIT NO. 39531 
WELLESLEY HILLS 

MASS. 

" ", 

.-~ 


