
110

SUBJECT:

SPECIAL INSTRUCTIONS:

DATE: May 20, 1966

8953
10566

Printed in U. S. A.

~ ,

i~~~~":;--:-' ~_W~RE BIJUEmlN
;~;~t;,,~ j_-,"~,-~~-:,-<::-:,- " , __ ,-

SERIES 200
INTRODUCTION TO

SERIES 200jOPERATING SYSTEM­
MOD 2

General Description of the Series 200/0perating
System - Mod 2, Third-Generation Operating
System for Models 1200, 2200, and 4200.

This bulletin introduces the functional concepts,
benefits, and components of the Series 200/ Opera­
ting System - Mod 2. This prerequisite publica­
tion is the foundation for studying the Mod 2 Opera­
ting System programming and operating facilities.
Appendix A is a publications guide for further
study.

FILE NO. 122.0005. 002J. 0-393

~'When ordering this publication please specify
Title and Underscored portion of the File Number.

Section I

Section II

Section III

TABLE OF CONTENTS

Introduction•.•..•.................•.•
The Operating System Approach•

Operating System Design•..........•............
Stacked-Job Processing and Program Modularity .•..•..

Benefits of the Mod 2 Operating System•..
Ease of Programming .•.•...•.................••....
Ease of Operating ••...••••..•...•..•..•.•..•.•.•.•••
Ease of Maintenance and Expansion•.......
Over-all Benefits ...•.••.•.••.•....••...•.••••••.•••

Functions of the Mod 2 Operating System•.......•.
Job Control ..••.••••.••.•.•...•.•.•.......•....•..•.•.

Page

1-1
1-1
1-1
1-2
1-3
1-3
1-4
1-5
1-5

2-1
2-1

Communication and Real-Time Control................ 2-1
Multiprogramming Control. • . 2-1
Inte rrupt Control. • . . • • • • • • • . . . • • • • . . . • 2 - 2

Data Control. . • . • • • . . . •• . • . • . . 2-2
File Access. • • . • 2-2
File· Control. . • . 2 - 3

Program Preparation and Maintenance. • •. • • . . • . 2-3
Other Functions. • 2-4
Summary of System Files. • • • • • • . • . . . 2-4

System Operating File (SOF) . 2-4
Go File (MGO) . • . . 2-4
Job File (MJB) ..•..........•...................•... 2-4
Standard Input Unit (SIU) . 2-4
Standard Print Unit (SPR) . • • • • . . • . . . 2-4
Standard Punch Unit (SPU) • • . • • •• • 2-4
Master History File (MHF). . • • •. 2-4

Components of the Mod 2 Operating System•....... 3-1
Supervisory Components. • • • . . • • . • • . • • . 3-1

Resident Monitor J.......... ...•.••.•.......•....••. 3-1
Transitional Monitor J............................... 3-2
Input/Output-File Controller J........................ 3-2

Processing Components........ ..•..•.. ..•..•... 3-3
Language Processors........................•. 3-3

Assembler J............. ...••.•..............•.• 3-3
COBOL Compiler J . • • . • • . . . • • 3-4
Fortran Compiler J. • • . . . • • • . . • • 3-4
Easytran J Transition Program. • . . • • • 3-5

Copyright 1966
Honeywell Inc.

Electronic Data Processing Division
Wellesley Hills, Massachusetts 02181

ii

~ ..

Section III (cont)

Section IV

Appendix A

Figure 1-1.

Figure A-I.

TABLE OF CONTENTS (cont)

Linkage Loader J•.•..•.................•..•
System Maintenance J••....•..............•.•.•.
Tape Sort J .••...•..•....•..•••...••..•..•.••••..•.
Mass Storage Sort J .••••.••••.••••..........•••.•••
Utility Components .•..•.•.......•..•.••..•.•.••••••

Input/Output Editor J ••••••....••••....•.•..•••.••
Storage Print J•............•.••.••
Tape Print J•..•.•.....•.••.•.••.

Minimum Equipment Requirements •.........••...••.•••••.

Operating System - Mod 2 Publications .•......•••......•.••

LIST OF ILLUSTRATIONS

Turnaround Times for Batched-Job and Stacked-Job

Page

3-6
3-6
3-7
3-7
3-8
3-8
3-8
3-8

4-1

A-I

Processing. • •• • . . • . • • . . • . • • • • . • • • . • . • • . . • 1-3

Mod 2 Operating System Publications Plan•....•• A-2

iii

SECTION I

INTRODUCTION

THE OPERATING SYSTEM APPROACH

An operating system is an integrated set of interdependent programs providing the most

efficient means for program development and operation. As the name implies, operating sys­

tems have evolved from the essential need to replace the human computer operator with a stored

program. Human intervention wastes a tremendous amount of processing time due to the dis­

parity in operating speeds between the hardware and its user. The first objective for a pro­

grammed computer operator is to eliminate human operations between successive program ex­

ecutions. Transition between programs involves clerical duties such as collecting the output pro­

duced by the previous program, submitting the next group of input data for proces sing, locating

the next program, and loading it into memory.

Operating System Design

The embryo, and still the basic element, of today's operating systems is a programmed

job scheduler, or monitor, which automates job-to-job transition. This routine resides perma-

nently in core storage and responds to control specifications which determine the sequence of

programs to be executed and the necessary peripheral equipment assignments. Merely by limit­

ing the setup functions of a human operator, even such primitive operating systems can effec­

tively reduce the idle time between program runs.

A second source of wasted processing time is console debugging. Therefore, primitive

operating systems are augmented by standard dynamic dumping routines for use by all object

programs. Entire batches of unrelated programs can then be executed in succession, removing

both programmer and operator from the hardware interface. The logical extension of common

debugging facilities is common input/output routines for all programs. By placing centralized

input/output routines in core storage with the resident monitor, one approxjmation of a modern

operating system is developed.

The effect of a resident monitor plus common input/output control and debugging facilities

is standardization of both programming and operating procedures. The programmer and the

operator are required to communicate with the operating system, rather than with the computer

itself. A common set of operating procedures is superimposed on all programs running under

control of the operating system. Independent programs use common routines and initiate input/

output operations through logical directions issued to the centralized input/output control system.

1-1

-

Stacked-Job Processing and Program Modularity

One result of this standardization is the incorporation of the language processors into the

operating system, which introduces two powerful and fundamental concepts; stacked-job process­

ing and modular program structure.

Stacked-job processing is a refinement of the earlier batched-job approach. A job is a

collection of related programs. Under batched-job processing, a single processing function,

e. g., compilation, is applied to all jobs in the batch. While a group of jobs may be compiled in

succession and then executed in succession, program generation is divorced from the execution

of a batch of pregenerated programs. Under stacked-job processing, any number of processing

functions such as compilation, maintenance, and execution may be successively applied to the

same job. Thus, each job in the input stack is processed to completion before the next job is

accepted. In batched-job processing, the elapsed time between the submission of a job and re­

ceipt of results (turnaround time) is equal to the total processing time for the entire batch which

includes the job. In contrast, stacked-job processing dramatically reduces turnaround time for

a given job by completely processing each job before the next.

As a simple example, consider the two jobs described below. Turnaround times for the

two jobs are illustrated in Figure 1-1 for both a batched-job and a stacked-job situation.

Job 1 Job 2

Compile program A • •• 20 time units Compile program D ••• 25 time units

Update program B. ... 5 time units Compile program E • •• 30 time units

Compile program B • •• 10 time units Execute program D ••• 10 time units

Compile program C • •• 15 time units Execute program E ••• 15 time units

Execute program A ••• 10 time units

Execute program B 5 time units

Execute program C 5 time units

Program development under the operating system achieves unprecedented flexibility with

the introduction of the program module concept. A program module is the basic program unit

in the operating system. Each module is created independently. Modules are relocatable and

can be combined with other modules to fashion a variety of complete programs. These, in turn,

may be built to run anywhere in core storage using any combination of modules. Also, all

language processors in the operating system generate the identical type of relocatable modules.

Hence, a complete program may be subdivided into program modules on the basis of physical

size, functional breakdown, or the nature of the source language best suited for solving a portion

of the total problem.

1-2

I

BATCHED - JOB PROCESS I NG
TIME---..

III <I: III U 0 I.IJ
III

I.IJ I.IJ I.IJ I.IJ COMPILE COMPILE COMPILE COMPILE I.IJ I.IJ
I.IJ -I l- I- l- I- l-
I- n: A C 0 E ::> ::> ::> ::> ::>
<I: u U u u u
0 ::!: I.IJ I.IJ I.IJ I.IJ I.IJ
a. 0 x x x x X
::> u I.IJ I.IJ I.IJ I.IJ I.IJ

I-- TURNAROUND TIME FOR JOB I = TURNAROUND TIME FOR JOB 2 = 150 TIME UNITS ~

STACKED - JOB PROCESSING
TlME--.~·

<I: III III III U 0 I.IJ
I.IJ I.IJ I.IJ I.IJ I.IJ ...

COMPILE I- I.IJ :::! I- COMPILE 5 COMPILE I- COMP ILE I-
::> I- ::> ::> :J

A u <I: a. u C u 0 u E u
I.IJ 0 ::!: I.IJ I.IJ I.IJ I.IJ
X a. 0 X X X X
I.IJ ::> U I.IJ I.IJ I.IJ I.IJ

I.-- TURNAROUND TIME l-.- TURNAROU NO TIME I I - FOR JOB I = 70 TIME UNITS -----...j - FOR JOB 2 = 80 TIME UNITS ------..J

Figure 1-1. Turnaround Times for Batched-Job and Stacked-Job Processing

Honeywell has been intimately associated with this development of operating systems.

Notable Honeywell milestones for the H-800/1800 systems were the Executive System in 1960

and the ADMIRAL Operating System in 1963. The development of Series 200/0perating Sys­

tems draws heavily on this experience in programming research and development. The Mod 2

Operating System encompasses the entire body of computer management tools for program de­

velopment and maintenance, job and data control, and all service functions.

BENEFITS OF THE MOD 2 OPERATING SYSTEM

Ease of Programming

The relocatable program module is the common denominator of the Mod 2 Operating Sys­

tem. Because they are relocatable, all modules are essentially library routines which the Opera­

ting System can freely combine. Free communication between program modules is maintained

through the standard interface of the operating system. All language processors generate the

same basic building blocks (program modules). Thus a programmer is not limited to solving

an entire problem in a single source language.

Responsibility for tedious and complex input/output programming is transferred from the

user to the Operating System. Programmers need not be conversant with the programming char­

acteristics of specific peripheral devices. Instead, they issue input/output macro instructions

to the Operating System. In addition to managing physical device programming, the Mod 2

1-3

!
I •

Operating System automatically frees the user from allocating buffers, checking file labels,

blocking and unblocking records, and error-checking data transfer operations. Also, the Opera­

ting System ensures optimal use of the system facilities by maximizing the simultaneity of data

flow and internal processing, a capability which is inherent in Series 200 hardware.

Managing the flow of data to and from peripheral devices is just part of the device inde­

pendence provided by the data control functions of the Mod 2 Operating System. The Operating

System also manages the logical data files themselves. Programmers designate both data files

and associated peripheral devices by symbolic names. The names and properties of each data

file are indexed in a symbolic catalog within the Operating System. Programmers may request

data files by using only their symbolic names. The mechanics of locating and retrieving data

files are the responsibility of the Operating System. The Operating System also controls space

allocation and formatting on mass storage devices.

Finally, the standardized and automatic debugging facilities of the Mod 2 Operating System,

coupled with the brief turnaround time per job, enhance the ease and efficiency of program check-

out •

., Ease of Operating

-w

A single set of operating procedures is followed for user-written programs and components

of the Operating System. Operators do not have to cope with the peculiarities of every program,

a fact which simplifies operator training and increases the reliability of machine room operation.

In the same fashion, man/machine communication is reduced to a standard dialogue between the

operator and the Operating System. Most functions required for automatic job-to-job transition,

like finding and loading the next program and assigning tapes, have been absorbed by the Mod 2

Operating System. Those manual procedures which could not be programmed into the Operating

System, like mounting tape reels, are performed by the operator according to complete instruc­

tions issued by the Operating System.

In addition to automating job-to-job transition, the Operating System also administers in­

ternal hardware facilities, such as the interrupt system and storage protection. Thus, machine

management is placed under control of the Operating System, minimizing and simplifying the role

of the operator. Standardized operating procedures enhance the total flexibility of operation.

Under the Mod 2 Operating System, the mode of operation is sensitive to the requirements of

each application. Stacked-job processing, batched-job processing, and real-time processing are

handled with equal facility.

1-4

Ease of Maintenance and Expansion

Both user programs and Honeywell-supplied components of the Mod 2 Operating System are

easily modified because of their modular structure. A series of complex, time-consuming pro­

grams is required initially to generate some operating systems. However, the same single-phase

component of the Mod 2 Operating System which is used to update the system files is also used to

create a working version of the Operating System itself. System generation is both selective and

efficient. A personalized operating system is tailored to each installation by incorporating only

those system modules required by the user. System generation is rapid because file-access time

in the Mod 2 Operating System is optimized by efficient blocking and by use of the read-backward

feature of Honeywell magnetic tape units. A typical business-oriented version of the Mod 2

Operating System is generated in less than 15 minutes. System programs and user programs are

easily updated without recompiling. For example, additional modules may be added to user pro­

grams to take advantage of newly acquired hardware. Additional module s may be added to the

Operating System to provide further processing capabilities for growing applications. Also, the

Operating System may be expanded by the inclusion of user-written components.

Over-all Benefits

From the perspective of the data processing manager, the convenience and modularity at

each level of the Mod 2 Operating System are reflected and amplified in the over-all efficiency .t'
and reliability of the hardware/ software complex. Standardized programming and operating pro­

cedures provide the most efficient path from initial formulation of a programming problem to

final utilization of the solution. Use of the Mod 2 Operating System increases throughput as a

result of total hardware utilization and reduced idle time. At the same time, the stacked-job

capability provides complete software service with minimal turnaround time to all users of the

Operating System. The flexible framework of the Mod 2 Operating System supports growth into

applications such as total information and real-time systems. The magnitude and complexity of

the functions performed by the Mod 2 Operating System simplify the jobs of programmer, opera--

tor, and manager. By furthering the independence of these personnel from the computer, the

Mod 2 Operating System allows them to use it more effectively.

- I
~I

I
I

1-5

SECTION II

FUNCTIONS OF THE MOD 2 OPERATING SYSTEM

Mod 2 Operating System functions are described under the headings of job control, data

control, program preparation and maintenance, and other functions.

JOB CONTROL

Before performing other job control functions, the Mod 2 Operating System reads and

analyzes system control cards. A second job control function is loading programs into memory,

including dependent programs and any nonresident portions of the Operating System required to

carry out the control card requests. Peripheral devices are also assigned on the basis of con­

trol card specifications.

After loading each program into memory, the Operating System performs its monitoring

function, which is the crux of job control. Monitoring consists of controlling the internal seq­

uencing of dependent programs, i. e., all programs executed under control of the Mod 2 Opera­

W ting System. At the proper instant in time, control is delegated to a dependent program or re­

trieved from it.

Another job control function is communication with the operator, advising him of the status

of processing and requesting necessary operator actions.

Communication and Real-Time Control

Monitoring in a communication environment involves the control of message flow to and from

the computer and message processing within the computer. The appropriate dependent programs

which process communication data are located, loaded, and entered at the proper point. During

communication processing, the status of communication lines and buffers is constantly monitored,

and control is switched so that supervisory, input/ output, and message processing functions are

performed as required. Communication monitoring also includes the function of preventing

memory violations by inc oming data.

Multipr ogr amming C ontr 01

Monitoring in a multiprogramming environment consists of supervising the concurrent exe­

cution of two programs. One program is normally peripherally limited and is executed in upper

memory. The second program runs in lower memory during the peripheral cycles of the upper­

memory program. Multiprogramming monitoring functions include detecting the beginning and

2-1

end of input/ output operations, switching the assignment of processor cycles, and maintaining

the integrity of each program while the other program is active. Memory protection must often

be enforced, especially when the lower-memory program is undergoing checkout.

Interrupt Control

Monitoring in all operating environments, including communication and multiprogramming,

may entail handling hardware interrupts. In an interrupt situation, registers are stored and re­

stored, control is passed to the proper routine, and area of memory are protected if necessary.

DATA CONTROL

Data control in the Mod 2 Operating System encompasses all functions related to the

creation and maintenance of the data base. The data base of the Mod 2 Operating System is the

entire collection of information which enters or leaves the computer main memory at any time.

System programs, user programs, execution data, and groups of control information are equiva-

lent members of the data base. The facilities available under data control provide efficient

storage, flow, and retrieval of all data in the system. These facilities include two functions:

file access and file control.

File Access

The principal file access function of the Mod 2 Operating System is the physical exchange

of data between main memory and auxiliary storage or terminal equipment. Complete flexibility

is provided for the transfer of data to and from unit record, magnetic tape, mass storage, and

communication equipment. Several different access methods are available.

1. Sequential access. Physical or logical records are stored or retrieved
serially. Data access may be initiated on demand by a dependent program
or on an anticipatory basis by the Operating System.

2.

3.

Direct access. Physical or logical records are stored or retrieved ran­
domly. The programmer specifies an actual physical address, the rela­
tive position of the record in the file, or the address at which a search
for key match is to begin (if the records contain identifying keys). This
access method also automatically controls the allocation of storage space
for mass storage files.

Partitioned access. In the partitioned access method, sequential informa­
tion is interspersed with special records containing keys and other data.
The information contained in these special records is supplied by both the
user and the Operating System. The partitioned access method is well
suited for the efficient storage and retrieval of relatively short strings
of sequential records.

4. Controlled sequential access. This access method uses a multilevel
indexing scheme which optimizes space utilization and data access time.
Physical or logical records are stored or retrieved either in a logical

sequence defined by a key field or randomly by an individual key.

2-2

5. Communication access. The Mod 2 Operating System automatically sends
and receives messages to and from remote terminals. Incoming messages
are automatically placed in an input queue. Outgoing messages are auto­
matically taken from an output queue. Dependent programs treat the
queues like peripheral devices. Physical or logical communication rec­
ords are stored or retrieved from the queues in a sequential fashion similar
to the sequential access method.

The other file access functions are linked with the data transfer function. These other

functions are automatic error detection and correction, automatic data buffering, automatic

data blocking and unblocking, dynamic scheduling of input/ output facilities, and overlapping of

processing with input/ output operations.

File Control

The file control function of the Mod 2 Operating System includes management of logical

data files at a level which is independent of the physical characteristics of the files and their

storage devices. The Operating System automatically allocates and partitions file storage space,

providing efficient use of mass storage equipment. Mass storage data is automatically format­

ted for access by the methods described above. Storage allocation is complemented by auto-

matic file protection.

All files are assigned symbolic names, and the Operating System maintains a symbolic

file catalog. The catalog is constructed with several qualifying levels, so that each file is

categorized by a symbolic description of its functions. Files may be requested by means of

these symbolic descriptions, and the catalog provides the unique location from which the Opera-

ting System retrieves each file.

PROGRAM PREPARATION AND MAINTENANCE

The most familiar program preparation function of the Mod 2 Operating System is language

processing. Programs written in compiler or assembly source language are translated to pro­

gram modules in relocatable machine language. It is worth noting again that all relocatable

program modules are identical, regardless of their original source language. The second

program preparation function consists of building a complete program by selecting specified

program modules, providing linkages between the modules, and assigning absolute memory

addresses to the relocatable machine code.

The program maintenance functions include adding and deleting modules from all system

files and correcting lines within specified modules. Maintenance may be carried out at the

source-language, relocatable-code, or absolute-code level. The same maintenance functions

are applied to both system and user programs. Thus program maintenance includes creating

2-3

and updating both the systeITl prograITl and user prograITl files, as well as incorporating user­

written ITlodules into the Mod 2 Operating SysteITl.

OTHER FUNCTIONS

The Mod 2 Operating SysteITl provides autoITlatic debugging facilities such as dynaITlic core

and tape dUITlps.

The Operating SysteITl data editing and transcription functions include sorting and ITlerging

data in ITlagnetic tape and ITlass storage files, and perforITling ITledia-conversion operations.

SUMMAR Y OF SYSTEM FILES

SysteITl Operating File (SOF)

This file contains ITlodules in absolute forITlat, including all prograITls of the Mod 2 Oper­

ating SysteITl. It ITlay also contain libraries of ITlodules in relocatable ITlachine language and

sYITlbolic source language. The file ITlay exist on tape or ITlass storage.

Go File (MGO)

This file contains the output of the language processors, in the forITl of relocatable ITla­

chine-language ITlodules. It ITlay exist on tape or ITlass storage.

Job File (MJB)

This file contains executable prograITls. The job file is created as a result of linking and

assigning a~solute addresses to relocatable prograITl ITlodules residing on the MGO, standard

input unit (SIU), or relocatable library of the SOF. This file ITlay exist on tape or ITlass storage.

Standard Input Unit (SIU)

A card file, or optionally a ITlagnetic tape file, the SIU is the source of control inforITlation

for the Operating SysteITl. The SIU ITlay also supply the Operating SysteITl with source-language

prograITls, execution data, and prograITl ITlodules in relocatable ITlachine language.

Standard Print Unit (SPR)

This file is a possible destination for output of the Mod 2 Operating SysteITl. It ITlay be

produced on a printer or, optionally, on ITlagnetic tape.

Standard Punch Unit (SPU)

This file is another possible destination for Operating SysteITl output. It ITlay be produced

on a card punch or, optionally, on ITlagnetic tape.

Master History File (MHF)

This is a Honeywell- supplied tape file containing all eleITlents of the Mod 2 Operating

SysteITl in the forITl of source-language ITlodules.

2-4

.
I

I
•

SECTION ITI

COMPONENTS OF THE MOD 2 OPERATING SYSTEM

The Mod 2 Operating System comprises supervisory components and processing com­

ponents. The supervisory components are the Resident Monitor J, Transitional Monitor J, and

Input/Output (I/O) - File Controller J. The processing components include the language pro-

cessors, Linkage Loader J, System Maintenance J, utility programs, and tape and mass storage

sort/merge programs. The supervisory components handle program control, communication,

and data transfer operations which are essential for the execution of all other programs. Hence,

the processing components, like user-written programs, are dependent programs. During Mod

2 operation, the Resident Monitor and part of the I/O-File Controller reside permanently in

core storage and provide the interface through which all dependent programs are loaded and

executed.

As mentioned, user-written processing programs may be integrated into the Mod 2 Opera­

ting System as easily as Honeywell-supplied programs. In addition, Honeywell-supplied com-.
ponents have own-coding provisions for the inclusion of user-written modifications.

SUPERVISOR Y COMPONENTS

Resident Monitor J

Resident Monitor J is the nerve center of the Mod 2 Operating System. It remains in mem­

ory throughout Mod 2 operation. To expedite processing of the job stream, the Resident Monitor

employs a temporary nonresident assistant, Transitional Monitor J. The Resident Monitor reads

system control cards, on which the user schedules all processing under the Mod 2 Operating Sys­

tem. Then the Resident Monitor loads the Transitional Monitor from the SOF. As explained be­

low, one of the functions of the Transitional Monitor is to analyze the control cards and advise

the Resident Monitor of required processing operations. Then the Resident Monitor loads speci­

fied absolute programs into memory form the Job File or the SOF.

After loading, the dependent programs are started and executed under control of Resident

Monitor. In a multiprogramming or communication environment, the Resident Monitor, acting

on interrupt signals and program demands, switches control to the appropriate dependent pro­

gram. At the end of a program execution, the Resident Monitor reclaims control from the de­

pendent program, ascertains whether or not the program terminated normally, performs opera­

tions required in the event of program failure, and recalls the Transitional Monitor to continue

control card analysis.

3-1

The Resident Monitor also maintains a communication region and input/output tables. The

communication region contains data and addresses which provide the information interface for

both user-written programs and components of the Mod 2 Operating System. The input/output

tables contain information describing the peripheral equipment configuration. Using the input/

output tables, the Resident Monitor and the Transitional Monitor work as a team to assign peri­

pheral equipment for each run.

Transitional Monitor J

Transitional Monitor J does not reside permanently in memory: it is loaded periodically

by the Resident Monitor to handle the automatic transitions between programs within a job and

between jobs in the input stack. The Transitional Monitor interprets the system control cards,

indicates to the Resident Monitor the functions specified, locates programs to be loaded, and

returns control to the appropriate portion of the Resident Monitor. Together with the Resident

Monitor, the Transitional Monitor coordinates input/output assignments.

Input/Output-File Controller J

I/O-File Controller J performs the file access and file control functions described in

Section II. Part of the I/O-File Controller remain~ in core storage with the Resident Monitor

to handle file access. The resident routines of the I/O-File Controller execute all input/output

operations for card equipment (card reader, card punch, card reader/punch), high-speed printers,

console typewriter, rnagnetic tape units, rnass rnernory transports, and cornmunication equip­

rnent. These routines direct the dynarnic allocation of read/write channels and control the simul­

taneity of internal cornputing and input/output operations. They also allocate data buffers, block

and unblock tape records, check tape labels, and detect input/output errors. When errors cannot

be autornatically corrected, the I/O-File Controller furnishes the operator with an account of the

error and directions for its correction. Own-code exits are provided for the incorporation of

user's routines into the resident portion of the I/O-File Controller.

File access functions are requested by staternents in the user's syrnbolic source prograrns.

In assernbly-Ianguage prograrns, file-description staternents and rnacro instructions are directed

to the I/O-File Controller. The rnacro language provides instructions for sequential, direct,

partitioned, controlled-sequential, and cornrnunication access rnethods. When processed by

Assernbler J, the rnacro instructions are translated into rnachine-Ianguage links to the approp­

riate resident routine of the I/O-File Controller. In COBOL and Fortran programs, directions

for the I/O-File Controller are irnplernented within the syntax of the cornpiler language itself.

For example, a READ staternent generates a rnachine -language link to the appropriate resident

routine of the I/O-File Controller.

3-2

-,

The part of the I/O-File Controller which ITlanages data file control does not reside in

ITleITlory but i's loaded froITl the SOF when needed. These routines allocate and protect storage

space for ITlass storage files. They also construct the sYITlbolic file catalog. Both the aITlount

and the nature of sYITlbolic classification levels within the catalog are established by each user.

The I/O-File Controller receives sy=bolic file designations frOITl the user, consults the catalog

to deterITline the physical identities and locations of the files, and retrieves the specified files.

PROCESSING COMPONENTS

Language Processors

The language processors in the Mod 2 Operating SysteITl cOITlprise three source-language

translators and a transition prograITl for conversion of 1410/7010 Autocoder prograITls. The

three source-language translators are AsseITlblerJ, COBOL COITlpiler J, and Fortran COITlpiler

J. They provide alternate paths to the solution of a prograITlITling probleITl. An entire probleITl

or each constituent ITlodule of a probleITl ITlay be prograITlITled in the ITlost suitable and efficient

source language. All the source-language translators generate relocatable ITlachine-Ianguage

prograITl ITlodule s in the Go file. The relocatable ITlodule are structurally identical building

blocks; they ITlay be cOITlbined into cOITlplete executable prograITls by the Linkage Loader COITl­

ponent without regard to their original source language. The transition prograITl, Easytran SYrrl-

'. bolic Translator J, resolves hardware differences which are reflected in 1410/7010 Autocoder

and its cOITlpatible superset, Mod 2 asseITlbly language.

ASSEMBLER J

AsseITlbler J translates a sYITlbolic ITlachine-oriented language. In asseITlbly language, the

prograITlITler expresses ITlachine operation codes and ITleITlory addresses using sYITlbolic desig­

nations. In a typical asseITlbly-language stateITlent, the ITlachine operation code is prograITlITled

by a fixed ITlneITlonic abbreviation. References to ITleITlory addresses ITlay be coded as sYITlbolic

naITles called labels. A label ITlay identify the starting ITleITlory location of an instruction, a

storage area, or a field containing data (an operand) to be operated upon by the hardware logic of

the instruction. Labels are created by the prograITlITler; ITlneITlonics are an invariant property of

the AsseITlbler.

Each sYrrlbolic stateITlent which abbreviates a ITlachine function is translated to one equiva­

lent ITlachine instruction by AsseITlbler J. MneITlonic operation code s are translated to octal codes,

and a ITlachine-Ianguage address is assigned to each syITlbolic label. Because the output prograITl

ITlodules are relocatable, the AsseITlbler assigns ITlachine addresses relative to SOITle base loca-

l., tion.
I

3-3

Other types of assem.bly-language statem.ents are not translated to a single m.achine in­

struction. These statem.ents generate form.atted data in m.em.ory, provide relocation inform.a­

tion for Linkage Loader J, control the Assem.bler itself, or generate a block of m.achine-language

instructions.

A statem.ent which is not translated one-for-one but generates a sequence of m.achine in­

structions is called a m.acro instruction. A m.acro instruction contains certain param.eters and

references a routine which exists in a general form. on the SOF. According to the param.eter s

specified by the program.m.er, the Assem.bler adapts the generalized routine on the SOF to the

purposes of the calling program. and replaces the m.acro instruction with the specialized routine.

Macro instructions m.ay be used repeatedly to include a specialized sequence of instructions at

several points in a program.. Macro instructions and their associated routines m.ay be defined

by the user. The Mod 2 Operating System. also provides a set of m.acro instructions and routines

to facilitate the use of system. com.ponents (e. g., the I/O-File Controller J).

On request, the Assem.bler produces a listing showing the sym.bolic source program. and

the corresponding assem.bled m.achine instructions and constants. Errors in the source program.

are flagged. A second optional listing provides a cross-reference of every label and its occur­

ences in the program..

COBOL COMPILER J

COBOL Com.piler J translates source program.s written in the business-oriented COBOL

language. An industry standard, COBOL source language is patterned closely after the English

language. COBOL J program.s are constructed with paragraphs, sentences, and clauses. Verbs

and statem.ents in the COBOL vocabulary are tailored to com.m.ercial application and are inde­

pendent of the hardware considerations for a specific com.puter. COBOL J translates each sym.­

bolic COBOL statem.ent to several m.achine-language instructions. Thus, a business program.m.er

using COBOL solves problem.s in his-own language without regard to program.m.ing a physical

com.puter. COBOL J generates a listing of the source and com.piled program.s. Diagnostic m.ess­

ages are issued for all source-program. errors. Debugging is therefore carried out at the com.­

piler-language level, preserving the m.achine independence of COBOL.

FOR TRAN COMPILER J

Fortran Com.piler J translates source program.s written in Fortran language, which is

designed for the scientific com.m.unity. Scientific program.m.ers code problem.s using a notation

based on algebra. Equations are written to describe the algebraic processing for which the

com.puter is program.m.ed, the variables and constants operated upon, and the solutions to the

com.putations. Program.m.ing to support the actual calculations, such as input/output and program.

3-4

'.

sequence control, is also described by machine-independent Fortran statements. Like the

'~ COBOL Compiler, Fortran J generates several machine-language instructions from each problem-

oriented Fortran statement.

Fortran J language is a full implementation of proposed ASA Fortran, with powerful lan­

guage extensions. Some of the significant extensions to ASA Fortran are the BEGIN TRACE and

END TRACE debugging statements, mixed-mode arithmetic statements, the acceptance of Fortran

II I/O statements, more flexible FORMAT statements, and data typing via IMPLICIT statements.

The program modularity of the Mod 2 Operating System is reflected in its Fortran language.

The language is based upon a subprogram structure, under which relocatable machine-language

subroutines may be incorporated into Fortran programs. The relocatable library on the SOF

may include user-written subroutines as well as the mathematical subroutines supplied with the

Fortran compiler.

A source -program listing with detailed error diagnostics is produced at each compilation.

EASYTRAN J TRANSITION PROGRAM

Included in Honeywell's liberator concept for elevating 1410/7010 users to Series 200 is

compatibility with the Mod 2 Operating System in the areas of hardware, data files, software,

and operating environments. The basic supervisory and processing functions of the Mod 2 Op­

erating System include all those of the 1410/7010 Operating System. A few hardware dissimi­

larities between 1410/7010 and Series 200 are manifest in Mod 2 assembly language and its fully

compatible subset, 1410/7010 Autocoder. At the assembly language level, the automatic transi-

tion program Easytran Symbolic Translator J resolves differences in addressing, indexing, and

internal character codes.

Approximately ninety-five percent of all 1410/7010 Autocoder instructions are translated

directly to Mod 2 assembly language. The remaining five percent are flagged, Easytran J ap-

plies a default translation, and programmer hand-tailoring is sometimes indicated. An average

of only one out of five flagged instructions actually requires hand-tailoring; the others require

only verification of the default translation.

Easytran J produces a listing which shows the correspondence between the original 1410/

7010 Autocoder program and the modified Mod 2 assembly-language program. Converted pro­

grams are full-fledged components of the Mod 2 Operating System. They are translated by the

Assembler, processed by the Linkage Loader, and executed under control of the Resident

Monitor, and they may be updated through the facilities of System Maintenance.

3-5

Linkage Loader J

Linkage Loader J produces absolute machine-language programs for execution by selecting

and combining relocatable program modules generated by the source-language translators. Com­

plete programs may be built from any combination of program modules. In rendering a program

executable, the Linkage Loader J assigns absolute addresses to the relocatable addresses in

program modules and to the system linkage symbols, adjusting the relocatable modules to accom­

modate resident components of the Operating System.

The Linkage Loader resides on the SOF and is loaded and executed under control of the

Resident Monitor. Control cards and programmed calls select the combination of program

modules for relocation. The Linkage Loader processes program modules from any or all of

these system files: the Go file, the relocatable library on the SOF, and the SIU. Each execution

of the Linkage Loader creates the Job file of complete programs in absolute machine language.

Programs on the Job file may be executed under control of the Resident Monitor or processed by

System Maintenance J.

System Maintenance J

System Maintenance J creates, edits, and maintains the Master History file, the System

Operating file, the Go file, and the Job file. For each installation, System Maintenance J initially

generates a version of the Mod 2 Operating System. The modular design of the Mod 2 Operating

System permits each user to select only those Operating System elements required for his ap­

plication and to create custom-tailored MHF's, SOF's, and libraries. In addition to Honeywell-

supplied elements, user-written components may be both introduced into the system files mentioned

above and maintained by System Maintenance J.

System Maintenance J facilities may be applied to programs at the source-language, relo­

catable machine -language, and absolute machine -language levels. In addition, control card decks

and even object data cards can be incorporated into a source library. Based on control card

specifications supplied by the user, System Maintenance J can:

1. Delete a specified module from a source, relocatable, or absolute system
file or library.

2. Add a specified module to a source, relocatable, or absolute system file
or library.

3. Position a system file or library after a specified module.

4. Correct a specified source module by deleting, inserting, or replacing
specified lines.

Combinations of these actions provide three System Maintenance J operating modes:

1. Creating a new system file or library by adding program units in a speci­
fied order.

3-6

2. Selecting a source module from a system file or library, producing a
printed listing, and/or placing it on a stacked card-image tape for later
system input. At the same time, line numbers of the module can be
reassigned.

3. Updating a system file or library by copying an older version while
deleting, replacing, or inserting specified modules.

System Maintenance J also provides directory listings of system files and libraries.

Tape Sort J

Tape Sort J is an efficient source of many individualized sorting and merging programs.

Residing on the SOF, it consists of a group of relocatable modules which perform the actual

sort/merge functions and a separate routine in absolute format called Sort Definition J. The

Sort Definition program is loaded by the Resident Monitor and selects the relocatable sort/merge

modules required to create the user's particular sorting program. Sort Definition J chooses

relocatable modules according to information supplied by the user, such as whether the program

will sort or merge fixed- or variable-length records, the number of pertinent key fields for the

sort or merge, and the presence or absence of user-written modifications.

After the required modules are selected by Sort Definition J, the Linkage Loader is executed

to combine the modules into a complete sort/ merge program in absolute machine-language format.

Complete sort/merge programs may be created once for all future processing, or they may be

generated in each sorting run. If own-coding is included with the sort/merge modules, the user

may employ special linkage symbols which are provided to reference locations within the

Honeywell-supplied modules. Such symbols are also assigned absolute addresses by the Linkage

Loader.

A complete sort/merge program generated by the Linkage Loader is entered into the Job

file, from where it is loaded and executed under control of the Resident Monitor. At execution

time, the complete sort/merge program adjusts itself to accommodate user control card speci­

fications, such as whether to sort in ascending or descending order, whether to us'e the label­

handling facilities of the resident r/O-File Controller J, and whether to write checkpoint records.

Mass Storage Sort J

Mass Storage Sort J performs sorting and merging functions on a file of fixed-length source

items stored on a mass storage transport. In addition to data, the source items may contain up

to 10 sorting keys. Mass Storage Sort J does not sort the actual source file but operates upon a

~ group of sorting items which are created from the original source item. The input file of source

items is preserved. The output of Mass Storage Sort J is an ordered file of these sorting items

, . 3-7

I

which is stored in a work area of the Mass Memory Transport. Each sorting item contains the

key fields of the source item, the address of the source item, and a selected portion of data

extracted from the source item. Because extracted data is included in the output file, access to

the original source items is often not necessary to process the sorted information. Depending

on the number of sorting keys, the output sorting items may even contain all the data from the

source items.

Mass Storage Sort J exists as a library routine in the Assembler macro library on the

SOF. Mass Storage Sort J is specialized at assembly time for the types of files to be sorted

and the equipment available. Parameters are entered at execution time to specify: the number

of relevant sorting key fields; whether to sort in ascending order, descending order, or a mixed

sequence; the selective inclusion or deletion of certain input items; and the presence or absence

of user own-coding.

Utility Components

Utility components provide program testing and media preparation services. The utility

components reside on the SOF and are loaded and executed under control of the Resident Monitor.

INPUT/OUTPUT EDITOR J

Input/Output Editor J performs two functions:

1. Converting input data from punched cards to magnetic tape (for use as the SIU).

2. Printing and/or punching output data from magnetic tape (the SPR or SPU).

In an off-line environment, the Input/Output Editor may perform these functions simultaneously

on any Series 200 processor operating under the Basic Programming System or Mod 1 Operating

System. These functions may also be performed concurrently with the execution of a dependent

program under the Mod 2 Operating System.

STORAGE PRINT J

Storage Print J is executed in response to a user's control cards. According to specifications

on the control cards, the Storage Print program edits and writes on the SPR the contents of any

selected areas of memory. The addresses of system symbols, the contents of index registers,

and special messages also appear on the printed listing.

TAPE PRINT J

Tape Print J dumps the contents of any portion of a magnetic tape reel. According to con­

trol cards, any number of entire files or a specified number of fixed- or variable-length records

within a file are written on the SPR. Record counts, character counts, and special messages

are also printed.

3-8

SECTION IV

MINIMUM EQUIPMENT REQUIREMENTS

The minimum hardware required for the Mod 2 Operating System is:

A Series 200 Model 1200, 2200, or 4200 processor with 49,192
characters of core storage and the Optional Instruction Feature
(0191).

5 Type 204B Magnetic Tape Units and tape control equipped with
the IBM Format Feature (050) and the IBM Code Compatibility
Feature (051).

OR 3 Type 204B Magnetic Tape Units and 1 Mass Storage Transport

1 Type 223 or 214-2 Card Reader and control
OR 1 additional magnetic tape unit

1 Type 222 Printer with 132 print positions and control
OR 1 additional magnetic tape unit

Type 220-3 Console Typewriter

4-1

I

APPENDIX A

OPERATING SYSTEM - MOD 2 PUBLICATIONS

The publication plan for the Series 200 Operating System - Mod 2 is illustrated schema­

tically in Figure A-I. The solid lines connecting the boxes that contain publication titles indi-

cate prerequisite reading, while the broken lines indicate recommended reading. This bulletin,

which is prerequisite to all the others shown, is at the left-hand side of the diagram. In order

to determine what publications contain the information necessary to use a particular operating

system component, follow the solid line from the box denoting this bulletin to the box denoting

the publication which describes the component in question. Thus, Introduction to Operating

System - Mod 2, Study Guide: Operating System Mod 2, and Monitors and Linkage Loader J

are prerequisites for Tape Sort J. Input/ Output - File Controller J and its prerequisite,

Assembler J, are recommended reading relevant to Tape Sort J.

The following paragraphs sUTnmarize the purpose and contents of the Operating System -

Mod 2 publications.

Study Guide: Operating'>ystem - Mod 2 - This manual continues from the overview of Intro­

duction to Operating System - Mod 2 to explain the Operating System in depth. It describes the

functions of the individual operating system components Ll greater detail and provides all of the

introductory "how-to" information necessary to tie the system together from a user's point of

view.

Operating System - Mod 2 Operating Procedures - The operators' manual describing how to run

Operating System - Mod 2. Provides step- by- step operating instructions, describes control

card configurations and deck arrangements, defines operating system console messages, and

indicates the operator actions required to respond to messages.

Liberation Guide - A description of the procedures for processing 1410/7010 programs and files

under the Mod 2 - Operating System.

Monitors and Linkage Loader J - A detailed description of Resident Monitor J, Transitional

Monitor J, and Linkage Loader J, describing the interfaces among these components and the

other operating system elements. Includes descriptions of the linkage coding required to refer­

ence Resident Monitor subroutines, the console messages produced by the Monitor, and the

console typeins accepted.

A-I

COBOL EASYTRAN

~ COMPI LER J ~-I--I-- ----, ,........ SYMBOLIC

I TRANSLATOR J

I I
I

INTRODUCTION I I
I TO OPERATING

~_.J I
SYSTEM- FORTRAN I
MOD2 COMPILER J I

I I
MONITORS 6
LINKAGE ASSEMBLER J ~ r p

LOADER J -
STUDY GUIDE: lliBiRA Ti ON-'

~_J
f--

OPERATING .. I GUIDE (IF CON- I
SYSTEM- - _ VERTING FROM ~ I/O-FILE
MOD2 L~O~~O~_J r--- TAPE SORT J --. CONTROLLER J

I
I ,

OPERATING
SYSTEM - MOD 2 ---~ I --.
OPERATING

,
PROCEDURES UTILITY

~ PROGRAMS , MASS STORAGE SORT J

I
I ~

SYSTEM

L _________ • MAINTENAN CE
J

Figure A-I. Mod 2 Operating System Publications Plan

Input/ Output - File Controller J - A detailed description of the program which provides the file

access and file control functions described in Section II of this bulletin. Describes the file defini­

tion and macro statements used with I/O - File Controller J and tells how to exercise user own-

coding options.

Language Processors

Each of these three manuals describes in detail the preparation of symbolic programs for

input to one of the Operating System - Mod 2 language processors. Each manual includes a

description of the arrangement of source-language card decks.

Assembler J

COBOL Compiler J

Fortran Compiler J

A-2

I

Easytran Symbolic Translator J - Describes the program for automatically translating 1410/

7010 Autocoder programs into Operating System - Mod 2 Assembler J programs. This publica-

tion describes the few translation considerations and provides instructions for using the trans­

lator. In addition, hand-tailoring instructions are explained where required.

System Maintenance J - Contains detailed functional descriptions of System Maintenance J and

the procedures for creating, editing, and maintaining system files. Includes a description of

the control cards used to direct the operation of this program.

Tape Sort J - Contains a detailed functional description of Tape Sort J and instructions for Sort

Definition and the resulting sort/merge programs. Includes information on control cards,

console messages, timing, and the exercise of user own-coding options.

Mass Storage Sort J - Describes the functions of Mass Storage Sort J, the structures of input

and output files, and the macro instructions and parameters for initially specializing the routine.

Includes information on control cards for modifying Mass Storage Sort J at execution time,

console messages, timing, and own-coding.

Utility Pr ograms - Contains detailed functional de sc r iptions of Input/ Output Editor J, Stor age

Print J, and Tape Print J. Includes information about the requisite control cards and the console

messages which are produced.

A-3

F-

I ~

ACCESS
COMPUTER-GENERATED INDEX

MOD (CONT,)
fiLE ACCESS, 2-2

APPROACH
OPERATING SYSTEM APPROACH, 1-1

ASSEMBLER Jo 3-3
BATCH ED-JOB

TURNAROUND TIMES fOR BATCHED-JOB
PROCESSING, 1-3

BENEfITS

AND STACKED-JOB

.. Of THE MOD 2 OPERATING SYSTEM, 1-3
OVER-ALL BENEfITS, 1-5

COBOL COMPILER J. 3-4
COMMUNICATION AND REAL-TIME CONTROL, 2-1
COMPILER

COBOL COMPILER J, 3-4
fORTRAN COMPILER J, 3-4

COMPONENTS
.. Of THE MOD 2 OPERATING SYSTEM, 3-1

PROCESSING COMPONENTS, 3-3
SUPERVISORY COMPONENTS, 3-1
UTILITY COMPONENTS, 3-8

CONTROL
DATA CONTROL, 2-2
fILE CONTROL, 2-3
INTERRUPT CONTROL, 2-2
JOB CONTROL, 2-1
MULTIPROGRAMMING CONTROL, 2-1
REAL-TIME CONTROL,

COMMUNICATION AND REAL-TIME CONTROL, 2-1
CONTROLLER

INPUT/OUTPUT-FILE CONTROLLER J, 3-2
DATA CONTROL, 2-2
DESIGN

OPERATING SYSTEM DESIGN, I-I
EASYTRAN J TRANSITION PROGRAM, 3-5
EDITOR

INPUT/OUTPUT EDITOR J, 3-b
EQUIPMENT REQUIREMENTS

MINIMUM EQUIPMENT REQUIREMENTS, 4-1
EXPANSION

fILE
EASE Of MAINTENANCE AND EXPANSION, 1-5

.. ACCESS, 2-2

.. CONTROL, 2-3
GO FILE (MGO), 2-4
JOB fILE (MJB), 2-4
MASTER HISTORY fILE (MHF), 2-4
SYSTEM fILES,

SUMMARY Of SYSTEM fILES, 2-4
SYSTEM OPERATING FILE (SOf), 2-4

fORTRAN COMPILER J, 3-4
fUNCTIONS

.. Of THE MOD 2 OPERATING SYSTEM, 2-1
OTHER fUNCTIONS, 2-4

GO fILE (MGO), 2-4
HISTORY fILE

MASTER HISTORY FILE (MHf), 2-4
INPUT UNIT

STANDARD INPUT UNIT (SIU), 2-4
INPUT/OUTPUT EDITOR J, 3-8
INPUT/OUTPUT-FILE CONTROLLER J, 3-2
INTERRUPT CONTROL, 2-2
INTRODUCTION. 1-1
JOB

.. CONTROL, 2-1

.. fiLE (MJB), 2-4
LANGUAGE PROCESSORS, 3-3
LINKAGE LOADER J, 3-6
LOADER

LINKAGE LOADER J, 3-6
MA I NTENANCE

EASE OF MAINTENANCE ANn EXPA~SION, 1-5
PROGRAM PREPARATION AND MAINTENANCE, 2-3
SYSTEM MAINTENANCE J, 3-6

MASS STORAGE SORT J, 3-7
MASTER HISTORY fILE (MHf), 2-4
MGO

GO fILE (MGO), 2-4
MHf

MASTER HISTORY fILE (MHF), 2-4
MINIMUM EQUIPMENT REQUIREMENTS, 4-1
MJB

MOD
JOB fILE (MJB). 2-4

BENEfITS Of THE MOD 2 OPERATING SYSTEM, 1-3
COMPONENTS Of THE MOD 2 OPERATING SYSTEM. 3-1
fUNCTIONS Of THE MOD 2 OPERATING SYSTEM, 2-1

(CONT,)

OPERATING SYSTEM - MOD 2 PUBLICATIONS, A-I
.. 2 OPERATING SYSTEM PUBLICATIONS PLAN, A-2

MODULAR I TV
PROGRAM MODULARITY,

STACKED-JOB PROCESSING AND PROGRAM MODULARITY,
1-2

"ONITOR
RESIDENT MONITOR J, 3-1
TRANSITIONAL MONITOR J, 3-2

MuLTIPROGRAMMING CONTROL, 2-1
OPERATING

PLAN

EASE Of OPERATING, 1-4
.. fILE.

SYSTEM OPERATING fILE (SOf), 2-4
.. SYSTEM,

BENEfITS Of THE MOD 2 OPERATING SySTEM. 1-3
COMPONENTS Of THE MOD 2 OPERATING SYSTfM. 3-1
fUNCTIONS Of THE MOD 2 OPERATING SYSTE~. 2-1
OPERATING SYSTEM - MOD 2 PUBLICATIONS. A-\

.. SYSTEM APPROACH, 1-1

.. SYSTEM DESIGN, 1-1

.. SySTEM PUBLICATIONS PLAN.
MoD 2 OPERATING SYSTEM PUBLICATIONS PLAN. A-2

OPERATING SYSTEM PUBLICATIONS PLAN.
MOD 2 OPERATING SYSTEM PUBLICATIONS PLAN. A-2

PREPARATION
PROGRAM PREPARATION AND MAINTENANCE, 2-3

PRINT
STORAGE PRINT J. 3-R
TAPE PRINT J. 3-8

" UNIT.
STANDARD PRINT UNIT (SPR). 2-4

PROCESSING
.. COMPONENTS, 3-3

STACKED-JOB PROCESSING.
TURNAROUND TIMES fOR BATCHED-JOB AND STACKED-JOB

PROCESSING. 1-3
STACKED-JOB PROCESSING AND PROGRAM MODULARITY. 1-2

PROCESSORS
LANGUAGE PROCESSORS. 3-3

PROGRAM
" MODULARITY,

STACKED-JOB PROCESSING AND PROGRAM MODULARITy.
1-2

.. PREPARATION AND MAINTENANCE. 2-3
TRANSITION PROGRAM.

EASYTRAN J TRANSITION PROGRAM. 3-5
PROGRAMMING

EASE Of PROGRAMMING. 1-3
PUBL ICATIONS

OPERATING SYSTEM - ~OD 2 PUBLICATIONS. A-I
" PLAN.

MOD 2 OPERATING SYSTEM PUBLICATIONS PLAN. A-2
PUNCH UNIT

STANDARD PUNCH UNIT (SPU), 2-4
REAL-TIME CONTROL

COMMUNICATION AND REAL-TIME CONTROL, 2-1
REQUIREMENTS

MINIMUM EQUIPMENT REQUIREMENTS, 4-1
RESIDENT MONITOR J. 3-1
SIU

SOf

SORT

SPR

SPU

STANDARD INPUT UNIT (SIU). 2-4

SYSTEM OPERATING fILE (SOf), 2-4

MASS STORAGE SORT J, 3-7
TAPE SORT J, 3-7

STANDARD PRINT UNIT (SPR), 2-4

STANDARD PUNCH UNIT (SPU). 2-4
STACKED-JOB PROCESSING

.. AND PROGRAM MODULARITY. 1-2
TURNAROUND TIMES fOR BATCHED-JOB AND STACKFD-JOR

PROCESSING. 1-3
STANDARD

" INPUT UNIT (SIU), 2-4
.. PRINT UNIT (SPR). 2-4
" PUNCH UN IT (SPU), 2-4

STORAGE
" PRINT J. 3-8
" SORT,

MASS STORAGE SORT J. 3-7
SUMMARY Of SYSTEM fILES, 2-4
SUPERVISORY COMPONENTS, 3-1
SySTEM (cONT.)

SYSTEM
COMPUTER-GENERATED INDEX

TAPE
" APPROACH,

OPERATING SYSTEM APPROACH, 1-1
" OESIGN,

OPERATING SYSTEM DESIGN, 1-1
" FILES,

SUMMARY or SYSTEM FilES, 2-4
" MAINTENANCE J, 3-6
" OPERATING rilE (Sor), 2-4

OPERATING SYSTEM,
BENErlTS or THE MOD 2 OPERATING SYSTEM, 1-3
COMPONENTS or THE MOD 2 OPERATING SYSTEM, 3-1
fUNCTIONS OF THE MOD 2 OPERATING SYSTEM, 2-1

OPERATING SYSTEM - MOD 2 PUBLICATIONS, A-I
" PUBLICATIONS PLAN,

MOD 2 OPERATING SYSTEM PUBLICATIONS PLAN, A-2

" PRINT J, 3-8
" SORT J. 3-7

TIMES
TURNAROUND TIMES rOR BATCHED-JOB AND STACKfO-JOR

PROCESSING, 1-3
TRANSITION PROGRAM

EASYTRAN J TRANSITION PROGRAM. 3-5
TRANSITIONAL MONITOR J. 3-2
TURNAROUND TIMES rOR BATCHED-JOB AND STACKED-JOB

PROCESSING. 1-3
UNIT

STANDARD INPUT UNIT (SIU). 2-4
STANDARD PRINT UNIT (SPR). 2-4
STANDARD PUNCH UNIT (SPU). 2-4

UTiliTY COMPONENTS. 3-8

'-~

.. ~

GI
c:

::::i
Ill)
c:
o
<

SERIES 200

HONEYWELL EDP TECHNICAL PUBLICATIONS

USERS' REMARKS FORM

DATED: MAY, 1966 TITLE: INTRODUCTION TO SERIES
200/0PERATING SYSTEM - MOD 2

FILE NO: 122.0005. 002J. 0-393
SOFTWARE BULLETIN

ERRORS NOTED:.

Fold

~ SUGGESTIONS FOR IMPROVEMENT:
o

Fold

FROM: NAME ____________________________________ ___ DATE __________ _

COMPANY __________________________________ __

TITLE ______________________________________ _

ADDRESS __________________________________ ___

BUSINEsS·REPlY< .• IIIAIII.:~····
Nopost.ge~amp necessary ifm~~J. . •...•......

POSTAGE. WllJ;, .

ATT'N: TECHNICAL COMMUNICATIONS DEPARTMENT

Honey~ell
ELECTRONIC DATA PROCESSING

FIRST CLASS

PERMIT NO. 39531

WELLESLEY HILLS
MASS.

J

0
C
r+

~
0 .,
:::I
DQ

r-s·
CD

