
-

~EY"VELL EDP

GENERAL SYSTEM:

SUBJECT:

DATE: April 22, 1966

8865
8466

Printed in U. S. A.

- - - -~ -- ~

, ~: - -SOEf'W~E -BI1I:.l.S'RN- --=~~:>~ -,::.-
~;~;~":~~~~,=~,,; -- " -·-<~c ~:,~~~=,~-~-,:"-~~,:~'~:~' __ t~i:~t~

SERIES 200 I
TRANSITION TO THE I

I....-...._M_O_D_I_O_P_E_R_A_T_I_N_G_SY_S_T_E_M __ J

SERIES 200/PROGRAMMING SYSTEMS

Transition procedures to convert programs
written for the Basic Programming System
to run in the Mod 1 Operating System.

~:::

FILE NO. 122.0005.0000.0-317

':'When ordering this publication please specify
Title and Underscored portion of File Number.

FOREWORD

Programs operating in the Basic Programming System may have been coded directly in the

Honeywell Easycoder Symbolic Language, or they may have been translated from SPS or Auto

coder programs by Easytran 1401 or Easytran Symbolic Translator B. This bulletin considers

only programs that have been coded directly in Easycoder. Translated programs present other

problems and for them there is a Honeywell-supplied program, Easytran Program Modifier C,

that will make the appropriate modifications. Alternatively, the original SPS or Autocoder pro

gram may be retranslated with Easytran Symbolic Translator C or D. Appropriate procedures

will be found in the manuals for these programs - Easytran Program Modifier C Manual, Order

No. 147; Easytran Symbolic Translator B and C Reference Manual, Order No. 035; or Easytran

Symbolic Translator D Manual, Order No. 220.

The reader of this bulletin is assumed to be familiar with the Honeywell Series 200 Pro

grammers' Reference Manual, Order No. 139 and the Easycoder B Assembly System Manual,

Order No. OIl. Other relevant documents include the Easycoder Assemblers C and D Manual,

Order No. 041; the Tape Loader-Monitor C Manual, Order No. 221; and the Floating Tape Loader

Monitor C Manual, Order No. 005.

Copyright 1966
Honeywell Inc

Electronic Data Processing Division
Wellesley Hills, Massachusetts 02181

ii

Section I

Section II

Figure 2-l.
Figure 2-2.
Figure 2-3.
Figure 2-4.

Table 1-1.
Table 2-1.

T ABLE OF CONTENTS

Introduction ••.••••••••••
General ••••••••••.•
Systems Description

Basic •••••
Mod 1 •••••

Procedures
General ••••••••
Relocation •••••

Addre s s Mode ••••••••••
As sembly Control Statements •••••••••••••••••••••••••••••

Program Header - PROG•••..•....•.....•....••...
Segm.ent Header - SEG•...•..••....•.
Set Address Mode and ADMODE •••••••••••••••••••••••••••
Clear - CLEAR .•..............••..........
Origin - ORG ••••••••••••••••••••••••••
Literal Origin - LITORG •••••••••••
Control Equals - CEQU ••••••
Memory Dump - HSM •••••••••••••••••••
Execute - EX • . • • • • • • • • • • • • . • •• • •••••.
End - END .••••

Machine Instructions •••••

LIST OF ILLUSTRATIONS

Memory Maps Showing Basic Loaders.
Memory Maps Showing Mod 1 Loaders.
Makeup of the Symbolic Decks ••••
PROG Cards for Basic and Mod 1

LIST OF TABLES

Comparison of Systems Programs .••••.
PROG Card Format for Assembler C •••

iii

Page

1-1
1-1
1-1
1-1
1-2

2-1
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-7
2-7
2-7
2-8
2-8
2-9
2-10
2-12

2-1
2-2
2-4
2-5

1-3
2-5

GENERAL

SECTION I

INTRODUCTION

This bulletin will help users of the Series 200/Basic Programming System change over to

the Mod I Operating System to take advantage of more integrated and efficient methods of oper

ation. As computer jobs get larger and more complex, it becomes more economical to inte

grate and automate operation - processing by jobs rather than by individual programs. This

greatly reduces idle system time resulting from operator intervention during operation. By

establishing automatic job control, using a deck of prearranged action directors or an internal

communication scheme between program units, a job or a series of jobs, each consisting of

several programs, can be processed automatically without the delays of manual control. The

operating system increases throughput, makes operation faster, provides for more systematic

and orderly growth, and permits multiprogramming.

In Mod I, control and service programs are provided to perform some of the routine

supervisory functions that would otherwise be performed by the operator. A user may select

from the available system software whatever program preparation and maintenance, data tran

scription and editing, and utility programs his job requires. Then, using monitor and control

programs, he processes the job automatically thereby reducing idle system time as well as

chances for human error. The jobs may be arranged for either stacked job or batched proc

essing, depending on which consideration is more important - fast turnaround time, or optimum

machine utilization.

In moving from the Basic Programming System to Mod I, there are significant changes in

the operating environment. Most differences are resolved automatically by reassembly, but

there are a few changes that must be made to a program written to be run in the Basic Program

ming System before it can be run in the Mod I Operating System.

SYSTEMS DESCRIPTION

Basic

The Basic Programming System is card oriented. It is designed to run on a small com

puter with 4K to 12K characters of memory, so it must make the best use of limited memory,

foregoing resident control functions. Programs are individually assembled and independently

executed. Each program is an independent entity with its OWn facilities for self-loading, data

manipulation and specialization, and diagnostic analysis. Jobs are scheduled and executed on a

demand basis. If tapes are used, they are self-loading still unit-record oriented.

1-1

Mod 1

The Mod 1 Operating System is tape oriented and designed for systems with 12K to 65K

characters of memory, three to six tape units, and perhaps a mass storage file. Programs can

be operated individually as in the Basic Programming System, or in continuous semi -centralized

jobs. The programs that make up the jobs, although for the most part independently generated,

are joined and coordinated in the operating system.

The Mod 1 System comprises a group of related programs which handle language proc

essing, file maintenance, loading, interrupt processing, input/output operations, and program

testing. The language processing and file maintenance programs are used to create executable

files and store and maintain them on binary run tapes (BRT). Programs may be called from

these executable files in any sequence as they are needed in processing a job. In addition to the

executable files, the Mod 1 System also maintains files of source programs and library routines,

in both symbolic and machine-language form, on symbolic program tapes (SPT). Executable

BRT files may be created from these SPT's, without each time going through the assembly

process. To update the SPT's, only the corrections need be supplied for assembly - it is not

necessary to resubmit the entire source program deck as it is in Basic.

The loader-monitor is the only program permanently in memory during a run, and as such

it has a central function in the system. The communication area of the loader -monitor is used

to control the sequencing of successive programs in a job. Using this communication area, a

user can load and execute programs in any order he desires. Operation directors, which may

be in the form of cards, operator entries, or programmed instructions, are used to control the

loader-monitor and other systems programs. These directors designate which programs will

be read into memory and executed and provide the parameters these programs need.

Pre-execution specialized input/output routines provide standardized and coordinated pe

ripheral operation. They read and write files, block and unblock records, label files, and check

for errors.

A subsystem of coordinated program test routines facilitates the checkout of programs by

providing diagnostic information before, during, and after execution. Each of the constituent

routines can be used separately or as an integrated part of the subsystem. The subsystem can

process either individual programs or a job, automatically producing the documentation necessary

to evaluate the programs.

Table 1-1 provides a comparison of representative programs and routines of both systems.

1-2

1--'
~:

r

~
r-

Table 1-1. Comparison of Systems Programs

Basic Mod 1

Language Processing Language Processing

Easycoder Assemblers A and B
Easycoder Assembler A(P)
Library Processor B
COBOL Compiler B

Program Editing and Maintenance

Condense A
Update A

Operation Control

Card Loader-Monitor B
Tape Loader/Search A

Input/Output Control

Tape I/O Translator A
1/2" Tape I/O A
1 /2" Tape I/O B
1/2" Tape and Terminal I/O B
Console I/O B

Program Test

Memory Dump A
Tape Handling Routine s A and B

Easycoder Assemblers C and D
COBOL Compilers D and H
Fortran Compiler D
Library Processors C and D
Analyzer C

Program Editing and Maintenance

Update and Select C and D
SPT Merge C
BRT Punch C
Drum Program Store C

Operation Control

Card Loader-Monitor B
Drum Bootstrap-Loader C
Drum Monitor C
Tape Loader-Monitor C
Floating Tape Loader-Monitor C
Interrupt Control D

Input/Output Control

Standard I/O Calls C
1/2" Tape I/O C
1/2" Tape and Terminal I/O C
Drum I/O C
Console I/O C

Program Te st

1-3

Program Test System C
Initializer C
List Comments C
Test Data Generator C
Memory Dump Control C
Memory Dump C
Octal Correction C
Tape Dump C
Emergency Dump C
End C

r

-

GENERAL

SECTION II

PROCEDURES

Transition from Basic to Mod 1 must be made at the source language level. All programs

must be reassembled with Easycoder Assembler C (or D). If the usual good programming con

ventions had been observed in writing the original programs. so that they can easily be relocated.

most of the differences between the two operating environments are resolved simply by reassem

bly. Only a few changes in some of the assembly control statements need to be made in the

source program.

Mod 1 uses a resident loader-monitor and the most important considerations in the transi

tion concern the location and use of that monitor. Programs obviously may not use memory lo

cations reserved for the monitor. which means that many programs will have to be relocated.

The memory areas reserved for the various loaders are shown in Figures 2-1 and 2-2 •

TAfIE LOAO£RI
.SEARCH.A

202 10

. ;············.·· .•. :···· .. ·.·.···:.·:··· .. ·.··:·1· 1
.... :0tNEcY~ ..

.... : .:~OANOMOM$l:.T

Figure 2-1. Memory Maps Showing Basic Loaders

In Mod 1. memory locations 6410 through 18910 are reserved as a communication area for

the loader-monitor. and any program that uses these locations must be relocated.

Programs that do not use locations below 19010 can be operated under the control of Float

ing Tape Loader-Monitor C without relocation. provided that sufficient space is left in upper

memory for the loader-monitor (1,400 to 2,750 locations, depending on the configuration).

This includes any programs that are presently loaded from a self-loading tape (SLT), which do

not overlay Tape Loader/Search A during execution. The Floating .Tape Loader-Monitor can be

2-1

asseInbled to reside in any portion of IneInory above 8K and can be relocated at execution tiIne

to the end of any 4K Inodule except banks 0 and 1.

If, instead of Floating Tape Loader-Monitor C, one of the other loader-Inonitors is used,

prograIns will have to be relocated higher. For Card Loader-Monitor B, to 1,00010 or above;

for Tape Loader-Monitor C or DruIn Monitor C, to 134010 or above.

o

010 64,0

0 64'0

Figure 2-2.

19010

190,0

190,0

1400 ro 2700 LOCATIONS

1000'0

134010

LAST CHARACTER (FSOME
4K MEMORY BANK ABOVE8K

MeInory Maps Showing Mod 1 Loaders

RELOCATION

When a prograIn is relocated, references to absolute addresses Inust of course change.

This is no probleIn if sytnbolic addressing has been used throughout the source coding - re

asseInbly will Inake the required adjustInents. But absolute addresses Inust be individually

changed. You should check the following areas of the coding for any absolute addressing:

1. Location fields

2. ORG and LITORG stateInents

3. DSA and EQU stateInents

4. CLEAR, EX, and END stateInents

5. Instruction Address fields

6. PrograInIning techniques that aSSUIne fixed locations

To avoid the expense and trouble of hand tailoring when relocating a prograIn, you should

in your coding consistently observe the following conventions:

2-2

.-..

-

1.

2.

3.

Use absolute addressing only in the first ORG Statement and when referring
to permanently reserved areas like the index registers and the loader
monitor communication area. (Even here, it is a good idea to write EQU's
and use symbolic tags.)

Do all other addressing with (or relative to) symbolic tags.

Avoid programming techniques that assume fixed locations or a particular
address mode.

You need, then, only change one ORG statement (and possibly some ADMODE statements} to re-

locate the entire program. Modifying programs to conform to these conventions, if this has not

been done in the past, will make them easily relocatable at any time in the future.

Address Mode

If a program that normally uses two-character addressing is relocated into a higher mem

ory bank, it usually should be reassembled to use three-character addressing. A program may

use two-character addressing only if it is kept entirely within one 4K memory bank.

When the address mode of a program is changed, any programming practices that assume

two-character addressing must also change. For instance, since instruction operand lengths in

crease, any absolute relative addressing on instructions must be modified. Also, since the longer

instructions require more memory, you may have to change some ORG or LITORG statements.

The Mod 1 Loaders all operate in three-character mode. If it is desired to still run the

program in two-character mode, you must insert CAM instructions (and ADMODE statements)

wherever control is transferred between the program and the loader. And when you CAM from

three- to two-character mode, you must be sure that the bank bits in the A- and B-address reg

isters are set to the proper bank. So in each segment of a two-character program, the first

instruction (or if there is an initial SCR, the next instruction after it) must set the bank bits of

the A- and B-address registers and be followed by a CAM to two-character mode. And the last

instruction before the branch to the loader must be a CAM to three-character mode.

EASYCODER
CODING FORM

PROBLEM PROGRAMMER OATE AIIGE OF

CARD y
LOCATION

OPERATION OPERANDS NUMBER ~ CODE

123456 7 • 1415 2021 6263 80

I : l\DMCOE 3
I

I STARTX S,cR I:XI T.. 70.
i I Is,w * SET UP AondB RI:C, I STE.R ,\3A,N1(, E ITS
I I CAM 20
1

I A,oMODE 2
I I (.<..
I I S S
i I IADMC{)E 3
I I ICA~ ¢.0

10 I j EX I T 1& .~
1 ; ; EX START X

2-3

ASSEMBLY CONTROL STATEMENTS

Transition from Basic to Mod I requires that programs written to be assembled by Assem

blers A or B be reassembled by Assembler C. Some of the assembly control statements for

Assembler C differ from their equivalents for Assemblers A and B, and before reassembly, you

must appropriately modify these few statements (see Figure 2-3).

ARST
UNIT

Figure 2-3.

BASIC

,-(-~~-J
r CLEAR I

,.J-- -----,-...J
f HSM :

r-1..----_---1

LAST
UNIT

MOD 1

r-"-----.......,,.... ...J

Makeup of the Symbolic Decks

2-4

1
1

J
1

1
J

-

Program Header - PROG

Punch a new PROG card in the Assembler C format. In Mod 1, the PROG card is used as

a system action director as well as a program header. It requires additional information and is

coded slightly differently (see the Easycoder Assemblers C and D Manual, Order No. 041). For

the example shown in Figure 2-4, both PROG cards name the program to be assembled and ask

for a sequence check of the source deck and an assembly listing.

r:
.Ii , • "."-IOn."f

S

INS

Columns

1 - 3

8 - 10

BASIC

""17 .. " . 21222324 25 21 ~ •••••• " ••••• * ••• *dq __ ••• R.M •• D •• _ ••• ~ nn~_~.n~~ •

PRO~

PRO

(Program
Nome)

(Program
Nome)

MOOf

Figure 2-4. PROG Cards for Basic and Mod 1

Table 2-1. PROG Card Format for Assembler C

Contents Explanation

Action Directive Code See the Assembler C Manual for the
functions of each action director.

COR - Correct
INS - Insert
LST - List
SEL - Select
Cpy - Copy
DEL - Delete
POS - Position
END - End

Program Revision Number If thi s fi eld is blank, assembly will
assign a revision number to the pro-

Three- character field gram. If the field contains a number,
that is blank or contains that number will be used as the re-
a number from 001 to vision number. Revision numbers
99910' are assigned in the order of updating,

beginning with 001.

15 - 18 PROG Specifies card as Program Header.

2-5

)
I"

Colurrms

21 - 26

28 - 33

35 - 70

71 - 80

71

72

73

74

75 - 80

Table 2-1 (cont). PROG Card Format for Assembler C

Contents Explanation

Program Name 1 Six-character program name.

Program Name 2

Visibilities

Options

S

G

H

x

L

x

C

Not used

Six-character program name used
with all action directors except DEL
and END.

Used with all action directors except
DEL and END. May contain blanks,
~', or visibility codes from A-Z, 0-9
in any order.

Sequence check.

Generate line numbers. Can be used
with INS, COR or CPY action direc
tors.

Check hash total. This field will be
used as an aid to field maintenance.

Do not list program. Can be used
with CPY, COR, or INS action
directors.

List program. Can be used with
SEL action director only.

Do not write machine language on the
BR T or on punched cards. Can be
used with CPY, COR or INS action
directors.

Write machine language on punched
cards instead of on the BRT. Can
be used with CPY, COR, INS, or
SEL action directors.

Segment Header - SEG

It is not necessary to insert SEG statements - Assembler C will automatically define seg

ments by assigning ascending numeric designations starting with 01. But if you insert any seg

ment headers, then there must be one for every segment.

2-6

." --...

. \ •

I
1

I
j

I
t
r

. f

Set Address Mode - ADMODE

Include an ADMODE statement at the beginning of the program. If the program occupies

more than one 4K memory bank (programs that didn't before may now after being relocated),

three-character addressing must be used. Remember that when there is no ADMODE statement,

Assemblers A and B assume two-character addressing while Assembler C assumes three-charac

ter addressing •

Clear - CLEAR

Move any CLEAR cards in the symbolic program to the front of the deck, right behind the

ADMODE card (see Figure 2-1). In Assemblers A and B, all CLEAR cards were placed at the

end of the symbolic program and repositioned by assembly to the beginning of the program to be

executed before loading. But this is not the case with Assembler C. Here a CLEAR statement

is executed during loading at exactly the position it appears in the symbolic deck.

Origin - ORG

When using Floating Tape Loader-Monitor C, you must ORG all programs to location 19010

or above; Card Loader-Monitor B, to 1,00010 or above; Tape Loader-Monitor C or Drum Moni

tor C, to 1,34°10 or above. All ORG statements after the first should use relative addressing so

that the program can be relocated by changing only one ORG.

Check the location field of all ORG statements to be sure that there are no indented tags.

Assemblers A and B treat indented tags in the location field of an ORG statement the same as

left-justified tags, and assign them to the address specified in the operands field. Assembler C,

however, assigns such tags to the location at which the next instruction would have begun if the

ORG statement had not been present.

Literal Origin - LITORG

If any executable instructions follow a LITORG statement, you must insert an ORG back to

the location following the instruction that preceded the LITORG. This is necessary because As

sembler C assigns instructions that follow the LITORG differently than Assembler B. Assembler

B assigns these instructions the same as if the LITORG had not been present. But Assembler C

assigns subsequent instructions to locations following the literal table. So with Assembler C it

is necessary to ORG back to the proper location. To do this, write an indented tag in the loca

tion field of the LITORG statement; then, immediately following the LITORG, insert an ORG to

that tag.

2-7

EASYCODER
CODING FORM

PROB EM L PROGRAMMER OATE PAGE OF
CARD ~~ LOCATION

OPERATION
OPERANDS NUMBER CODE

123456 7 • 1415 2021 62 ., 80
I I : (c

I S S
I I lL'ET lITOR<=> l\ TTAB
I I aRc:> RET
: I < <
I I

. ~ ~
[I

, 8 I I
I I

Control Equals - CEQU

Check all CEQU statements to see if any contain more than 4 characters (8 octal digits).

Divide each CEQU statement that contains more than 4 characters into two CEQU statements.

Then throughout the program, change each instruction that references the original CEQU so

it refers also to the second CEQU. This is necessary because, although Assemblers A and B

can handle 6 character (12 octal digit) CEQU's, Assembler C can handle only CEQU's of up to

4 characters (8 octal digits).

EASYCODER
CODING FORM

PROBLEM PROGRAMMER DATE PAGE OF

CARD ~ I~ LOCATION
OPERATION

OPERANDS NUMBER I~ CODE

I 2 3 4 5 6 7 • 1415 2021 6263

I I BASIc..
I -I

i i INTCR. CEQu !#5Ci(b4~272~22
I I (<.
i I S S
I I PCB [f I tJTCR
T I
I I MC>D1
I T

10 T i INTeR il'EGlU #2COOM
I I i I NT,C RA 1c,E.Qu i3C272122

12 i i .c (

" I I .~ (

"
I I PCB :If, I NTCR, 1N.1CRt-.

• i I

"
I I

7 I I
• I
9 i i

I

Memory Dump - HSM

80

Remove all HSM statements. They are not used in Mod 1 and are treated as illegal state

ments. You may use, instead, a call to any of the more powerful and flexible program test rou

tines that are available for Mod 1. Refer to the Program Test System C Manual, Order No. 049.

2-8

•

.t

...

.\:.

-

Execute - EX

Check to be sure that the operands field contains a starting address. This may be left

blank (to load and halt) in Basic, but not in Mod 1. To load and halt in Mod 1, you must enter

the program and segment name into the Halt Name parameter (locations 77 through 84) of the

loader-monitor communication area.

The coding preceding an EX statement must of course provide a return to the loader. A

method of returning to the loader that is compatible with both programming systems (the Special

Call) is to incorporate, as the first instruction of the segment to be executed, an SCR instruction

that moves the contents of the B-address register into the A-address field of a return Branch in

struction at the end of the segment. This sets up a branch back to the instruction in the loader that

follows the loader's starting branch to the segment. The loaders in both programming systems

interpret this as a call for the next segment. (If the program is to run in 2-character mode,

see page 2-3.)

EASYCODER
CODING FORM

PROBLEM PROGRAMMER DATE PAGE OF

CARD il~ LOCATION
OPERATION OPERANDS NUMBER CODE

I 2 3 4 5 6 7 • 1415 2021 62 63 eo

I STA,RTX SCR EX IT, 7~
I I <:: c
i i <; (
I I) (

: EXIT B 0
I I EX :J.T A.R.T,x
I I

I

However, in Basic the return to the loader may have been a branch to a read routine in the

bootstrap area or, with an S LT, to location 11110 of Tape Loader /Search A. For Mod I, you must

change this to a special program call (above) or to a normal program call, which, after entering

the name of the next segment into locations 7410 and 75 10 of the loader-monitor communication

area, branches to location 130 10 •

EASYCODER
CODING FORM

PROBLEM PROGRAMMER DATE PAGE OF

CARD t LOCATION
OPERATION

OPERANDS NUMBER ~ ~ CODE

I 2 3 4 5 6 7 • 1415 2021 6263 00

I 1 ,BASIC
I

I

i i STARTX ~ ~
I I S <.
: : ! ~
I I B IBOOT
: I EX f.:>TART,,)(
I I
I I

2-9

,
10 ! 5TA,RTX. .., """" ~ ,

I I <: " IZ i i ?)
13 I I B III
I. ! I E)(. STA.RT,X. ,.

I I

"
I MOD 1

17 I I I. I ! SEc:. 10X
19 I I ~TA,RTX ~ ~
ZO I i <. .<..

I I I .~ (.
ZZ I i MC'w S6NAME,75

I I B, 13~
Z4 I I S6NAME Dew @0'?@

Z' I D. STA.RTX
Z' i i
Z7 I I
28 I I
Z' I

'0 I i

End - END

- Check to be sure that the operands field contains a starting address. This may be left

blank (to load and halt) in Basic, but not in Mod 1. To load and halt in Mod I, you must enter the

program and segment name into the halt name locations (77 10 through 8410) of the loader-monitor

communication area.

As with the EX statement, the coding preceding an END statement should provide a return

to the loader-monitor. In Basic, the last executable instruction of the program may have been a

halt. To obtain the equivalent in Mod I, you should replace the halt with an indirect branch to

location 13910 of the loader-monitor communication area, which causes a console call halt. (If

the program is to run in 2-character mode, see page 2-3.)

EASYCODER
CODING FORM

PROB EM L PROGRAMMER DATE PAGE OF

CARD t i~ lOCATION
OPERATION OPERANDS NUMBER t CODE

I 2 3 4 5 6 7 • 1415 2021 .. 65 80

I BA'S t c
1 I STARTl ~ ~

: I > ?
I I H IA.S
I I BOOT END STARTL
I I MODi

: : S,EG LL
i i isTA,RTL ~ ~
I I S S.

10 : I .(~
" I I B. (139) (CONSOLE CALL HAL,)
IZ I I t:,NP isTARTl

2-10

i
~

i
I-
I'-'
I
i
I
~-

The Basic program., if loaded from. an SLT, m.ay have used a norm.a1 program. call -

m.oving the nam.e of the next program. into loader locations 101 10 through 106 10 and branching to

location 8610. To obtain the equivalent in Mod 1, you should m.ove the program. and segm.ent

nam.es of the next program. into locations 6810 through 7310 and 7410 and 75 10 of the loader-m.oni

tor com.m.unication area, and then branch to location 13010•

EASYCODER
CODING FORM

PROBLEM PROGRAMMER DATE PAGE OF

N~:~ER I~ Ii LOCATION
OPERATION OPERANDS CODE

I 2 3 4 !S 6 7 • 1415 2021 6263 eo

I 1 gAS\C
I

I

I i STA!<.TL ~ ~
I I ,<" S
i I ~, <
I I lM.ew PI(AJAM~ \~6
T T I~ 1B6
I I IPR~"Mf. Dew ts>P~Oc..E ~@
I I BOOT EklD I5TART L

10 !
I i i MOD i

12 I 1
13 I I SE"6 LL
14 I I STA.RTL ~ ~

• i I <) (, .. I (,'?,
7 I I IMc,W PRIJAM£,73 I. I I I/.\CW ~6NAME. 75
• I i la B¢

20 I i PR~.AM~ Dew @PKOGES@
I I I 1';)6 NAME ~cw ~AA@

22 I ! IEJJO ~,TARTL
23 I I .. I I
25 i I

2. i i
7 I I

28 I I
• I

0 i i

The Basic program. m.ay have called for the next program. on the tape by sim.ply branching

to location 11110. The only way this can be done in Mod 1 is to use the special progr'am. call that

was described for the EX statem.ent. This m.ethod can be used only if the program.s are arranged

on the tape in exactly the order they will always be run.

An entry in the location field of the END statem.ent, which in Basic specifies the bootstrap

area, has no significance in Mod 1.

2-11

MACHINE INSTRUCTIONS

The only rn.achine instructions that could present any problern.s for reassern.bly by Assern.bler 'fIIIIII
Care (1) those containing area-defining literals, and (2) those with both an absolute decirn.al ad-

dress in the location field and an asterisk (,:,) in the operands field.

In Basic, after any LITORG or EX statern.ent, the tag of any area-defining literal rn.ust be

redefined. But Easycoder Assern.bler C keeps the original as signrn.ent throughout the prograrn.,

and redefining the tag will cause a duplicate syrn.bol error. So in any instruction that contains a

redefinition of an area defining literal, you should use a new syrn.bol to define a different area.

In any instruction with an absolute decirn.al address in the location field, an asterisk in the

A- or B-address field should be replaced with the proper decirn.al value. Otherwise, Assern.bler

C, instead of assigning to the asterisk the value in the location field, will assign the location

following the previous instruction.

2-12

1 ~

i "

.i.

ii£--- -

ADDRESS MODE. 2-3
SET ADDRESS MODE AND ADMODE. 2-7

ADMODE
SET ADDRESS MODE AND ADMODE. 2-7

ASSEMBLER
PROG CARD FORMAT FOR ASSEMBLER C. 2-5

ASSEMBLY CONTROL STATEMENTS. 2-3
BASIC. 1-1

" LOADERS.
MEMORY MAPS SHOWING BASIC LOAnERS. 2-1

PROG CARDS fOR BASIC AND MOD 1. 2-5
CARD FORMAT

CARDS

CEQU

CLEAR

PROG CARD FORMAT FOR ASSEMBLER C. 2-5

PROG CARDS FOR BASIC AND MOD 1. 2-5

CONTROL EQUALS - CEQU. 2-8

" - CLEAR. 2-7
COMPARISON OF SYSTEMS PROGRAMS. 1-3
CONTROL

" EQUALS - CEQU. 2-8
" STATEMENTS.

ASSEMBLY CONTROL STATEMENTS. 2-3
DECKS

S YMBOLI C DECK S.
MAKEUP OF THE SYMBOLIC DECKS. 2-4

DESCRIPTION
SYSTEMS DESCRIPTION. 1-1

DUMP
MEMORY DUMP - HSM. 2-8

END
" - END. 2-9

EQUALS
CONTROL EQUALS - CEQU. 2-8

EX
EXECUTE - EX. 2-9

EXECUTE - EX. 2-9
FORMAT

PROG CARD fORMAT FOR ASSEMBLER C. 2-5
GENERAL. 1-1. 2-1
HEADER

HSM

PROGRAM HEADER - PROG. 2-5
SEGMENT HEADER - SEG. 2-6

MEMORY DUMP - HSM. 2-8
INSTRUCTIONS

MACHINE INSTRUCTIONS. 2-12
INTRODUCTION. 1-1
LITERAL ORIGIN - LITORG. 2-7

COMPUTER-GENERATED INDEX

LITORG
LITERAL ORIGIN - LITORG. 2-7

LOADERS
BASIC LOADERS.

MEMORY MAPS SHOWING BASIC LOADERS. 2-1
MEMORY MAPS SHOWING MOD 1 LOADERS. 2-2

MACHINE INSTRUCTIONS. 2-12
MA~EUP OF THE SYMROLIC DEC~S. 2-4
MAPS

MEMORY MAPS SHOWING BASIC LOADERS. 2-1
MEMORY MAPS SHOwING MOD 1 LOADERS. 2-2

MEMORY

MOD

MODE

ORG

" DUMP - HSM. 2-8
" MAPS.

MEMORY MAPS SHOWING BASIC LOADERS. 2-1
MEMORY MAPS SHOWING MOD 1 LOADERS. 2-2

MEMORY MAPS SHOWING MOD 1 LOADERS. 2-2
PROG CARDS FOR BASIC AND MOO 1. 2-5

" 1. 1- 2

ADDRESS MODE. 2-3
SET ADDRESS MODE AND ADMODE. 2-7

ORIGIN - ORG. 2-7
ORIGIN

" - ORG. 2-7
LITERAL ORIGIN - LITORG. 2-7

PROCEDURES. 2-1
PROG

" CARD FORMAT FOR ASSEMBLER C. 2-5
" CA~DS FOR RASIC AND MOD 1. 2-5

PROGRAM HEADER - PROG. 2-5
PROGRAM HEADER - PROG. 2-5
PROGRAMS

SYSTEMS PROGRAMS.
COMPARISON Of SYSTEMS PROGRAMS. 1-3

RELOCATION. 2-2
SEG

SEGMENT HEADER - SEG. 2-6
SEGMENT HEADER - SEG. 2-6
SET ADDRESS MODE AND ADMODE. 2-7
STATEMENTS

ASSEMBLY CONTROL STATEMENTS. 2-3
SYMBOLIC DECKS

MAKEUP OF THE SYMBOLIC DECKS. 2-4
SYSTEMS

" DESCRIPTION. 1-1
" PROGRAMS.

COMPARISON Of SYSTEMS PROGRAMS. 1-3

l

H'

:~

..,
I

I
I
I
I
I

HONEYWELL EDP TECHNICAL PUBLICATIONS
USERS' REMARKS FORM

TITLE: SERIES 200
TRANSITION TO THE MOD 1

DATED: APRIL, 1966

OPERATING SYSTEM
SOFTWARE BULLETIN

FILE NO: 122.0005.0000.0-317

ERRORS NOTED:

Fold

SUGGESTIONS FOR IMPROVEMENT:

Fold

FROM: NAME ____________________________________ _ DATE __________ _

COMPANY __________________________________ _

TITLE ____________________________________ _

ADDRESS __________________________________ _

BUSINESS REPLY MAIL
No postage stamp necessary if maile,d(n tbe tJnited Siiti'$

POSTAG~ . WilL • > •

HONEYWELL
ELECTRONIC DATA PROCESSING DIVISION

60 WALNUT STREET

WELLESLEY HILLS, MASS. 02181

ATT'N: TECHNICAL COMMUNICATIONS DEPARTMENT

Honey~ell
ELECTRONIC DATA PROCESSING

PERMIT NO. 39531

WELLESLEY HILLS
MASS.

/> I
"J i

I ,
~

I

j
I
I

1
j ,

i
t
1

i
0
c:
... >,

~
c:
::I
(I)

