
HONEYWELL EDP

GENERAL SYSTEM:

SUBJECT:

SPECIAL
INSTRUCTIONS:

DATE: August 29, 1966

9067
8766

Printed in U. S. A.

SOFTWARE MANUAL

SERIES 200
INTRODUCTION TO

SERIES 200jOPERATING SYSTEM­
MOD I (TAPE RESIDENT)

SERIES 200/0PERATING SYSTEM - MOD 1

General Description of the Series 200/Operating
System - Mod 1 (Tape Resident).

This software manual completely supersedes the
publication entitled Introduction to Series 200/
Operating System - Mod I, Order Number 258,
dated March 30, 1966.

* FILE NO.: 123. 0005. 001C. 1-258

'~When ordering this publication please specify
Title and Underscored portion of File Number.

Section I

Section II

Section III

Section IV

Copyright 1966
Honeywell Inc.

Electronic Data Processing Division
Wellesley Hills, Massachusetts 02181

TABLE OF CONTENTS

Introduc tion •.••.•.......•....•..•............••••••••••••
The Evolution and Developrrlent of Operating Systerrls ••.•..
Philosophy of an Operating System•.•••.•...

The Series ZOO/Operating System - Mod 1.•...........
Operating Environrrlent .•••........................•.•..
Mod 1 Operating Systerrl Philosophy•............•.

Sirrlplicity ••••.••.•.•.......•.......•....•..........
Efficiency ..•..•.••.•.........••...••....•.•.......•
Flexibility .•....••.•.•.••.•••...•...•.•.....••.•.••

Processing Structure ••••.•..•...•••.••••.••.•.•.••.•••
Components of the Mod 1 Operating System ••••••••••...•.

Prograrrl Preparation and Maintenance .••..••.••••••••...••
Language Processing•.•.........•..•..•..••..••••••

Assembly System ...•..•.••.•.........•..•..•.•.••••
Easycoder Assembly Language•.••.•.....••
Library Processor•....•...•.

Easycoder SYrrlbolic Card Formats•
Easycoder Assembler•............
Analyzer .•......................•...............

COrrlpiler Systems ..•...............................
The COBOL Compiler System

The COBOL Language•.................•..
The COBOL COrrlpilers .••......................

The Fortran Compiler Systerrl .•...................
The Fortran Language•.•...•..•.......
The Fortran Compilers•

Translators•......
Easytran SYrrlbolic Translators
Easytran Program Modifier
Easytran Source Program Generator

Utility Programs•.••.•...............•.
Data Transcription and Editing .•..••....•.•.......•..

Tape Handling .•..•....•.......•.••...........••.
Media Conversion•....•...••.........•

Data Conversion C Routines••.........••...•
Sirrlultaneous Media Conversion C•

Report Generation ..•...•.........................
Sorting and Collating .••..............•.•........•.

Magnetic Tape .•..•..•••..•.......••...•.•.•.. •
Drum Storage ..•.........••.........•.........

Matherrlatical Processing Functions
Program Editing and Maintenance•............

SYrrlbolic Programs ..•......•.......................
Machine-Language Prograrrls .•...............•....•..

Prograrrl Execution and Control•....•..••
Operation Control.••..•.•.••.•

ii

Page

1-1
1-1
1-1

Z-1
Z-1
Z-1
Z-1
Z-1
Z-Z
Z-Z
Z-3

3-1
3-1
3-2
3-2
3-2
3-4
3-4
3-5
3-7
3-8
3-8
3-9
3-1Z
3-1Z
3-1Z
3-15
3-15
3-17
3-18
3-18
3-18
3-19
3-19
3-Z0
3-Z1
3-Z1
3-ZZ
3-ZZ
3-Z3
3-Z3
3-Z5

Section IV (cont)

Section V

Section VI

Appendix A

Appendix B

TABLE OF CONTENTS (cont)

Loading and Monitoring•................•....
Loading from Tape .•......•....•....••.•....•..•.
Loading from Cards•.........•.••..•....
Loading from Drum .•......•...•.....•....•......

Interrupt Capabilities••....•....•....•....••.•..
Interrupt Control D•....

Foreground Programs•...•.•.......•.
Simultaneous Sort and Print•.......•....

List Comments C ...•.........................•....•
Input/Output Control•....•....••..•...•.•...•.

Magnetic Tape Input/Output Control. •...............•.
Magnetic Tape and Terminal Input/Output Control
Drum Input/Output Control•...............•...
Console Input/Output Control.•.....•...
Communications Input/Output Control•.•....•

Program Test Facilities .•..............•..............
Automatic Program Checkout

Initializer C .•..................•......•..•......
List Comments C •....•.....•...............•...•
Test Data Generator C•......••....•.
Memory Dump Control C .•.••...•....•....•....•.
Memory Dump C ••.•••••••••.••••••••••••••••••••
Patch C •••••••••••••••••••••••••••••••.•••••••••
Tape Dump C ••••••.•••••••.•••••••••••••••••••••
Emergency Memory Dump C .••.•..........•...••.

Use of the Program Test C Utility Programs ...••.....

Program Searching and Loading ••••............•.......•..

Sample Operating Applications•....•.......
Application I - Easycoder Program Specialization,

Assembly, and Test .•.......•....•.......••..•••.....
Run Deck Setup••....•..................•.......

Application 2 - Preparing and Combining Easycoder and
COBOL Programs for Testing .•.......•...............

Run Deck Setup•..............•.........•••...•.
Application 3 - Loading by Visibility•....•.

Program Termination•............•....
Tape Sort C Programs ...••.............•...........
Input Run Deck .•...••..•.•.•...............•...••..

Formats
Symbolic Program Tape (SPT)•...............
Binary Run Tape (BRT)
Binary Run Decks•....................

Page

4-1
4-1
4-3
4-3
4-5
4-6
4-6
4-6
4-8
4-8
4-8
4-9
4-10
4-10
4-11
4-12
4-12
4-12
4-12
4-12
4-12
4-13
4-13
4-13
4-13
4-13

5-1

6 -1

6-1
6-1

6-4
6-4
6-8
6-9
6-9
6-13

A-I
A-I
A-I
A-2

Loader-Monitor Communication Area....... A-5
Equipment Configuration Descriptor (ECD) Card Format. . . A-6

ECD Card. • . • A-6
Standard ECD Entries.. A-7

Mod 1 Operating System Publications B-1

iii

Figure 2-1.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.
Figure 3-10.

Figure 4-1.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 6-7.
Figure 6-8.
Figure 6-9.
Figure 6-10.
Figure 6 -11.
Figure A-I.
Figure A-2.
Figure A-3.
Figure A-4.

Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 3-5.
Table 3-6.
Table 3-7.
Table 3-8.
Table 4-1.
Table 4-2.
Table 5-1.
Table 5-2.
Table 5-3.
Table A-I.
Table A-2.

LIST OF ILLUSTRATIONS

Series 200/0perating Syste:m - Mod 1.•.......•...
The Library Processor •.•..•..•..•.•.•.••...•••..••••...•
Operating Modes of Easycoder Asse:mblers C and D •.•••.•..•
Analyzer C Setup ••••..•.•..•.••.•.••.•.•.•..•.•.••..•.•••
Exa:mple of the COBOL Source Language .•.•••.•.••••••..•••
COBOL Compiler System
Exa:mple of a Fortran-Language Arith:metic State:ment •••••...
The Fortran Co:mpiler Syste:m •.••.•••.•..•..••••..•••.••.•
The Easytran Sy:mbolic Translator Syste:m ..•••••••••.•..•..
Easytran Progra:m Modifier C •••..•..••....•.•.•.••••..•••
Mod 1 Operating Syste:m: Progra:m Preparation and

Maintenance ••...••.••••••••••.•.....•.•....•..•••..•..•
Multiprogra:m:ming with Interrupt Control D .••..•••.•..•.••.
Application 1: Run Setup ••..•.•.••••..•.......•••••..•••..
Application 1: Input Run Deck •.•••••.•....•.•••••••.••••..
Application 2: Run Setup ••.•••••.••..••••••.••.•..••••••.•
Application 2: Input Run Deck ••••.•....•..•.•.•••••.•••.••
Application 3: Initializing Progra:m .•••.••.•.••••••••••••••
Application 3: PROGCC Ter:mination Routine ...••..•••••••••
Application 3: PROGDD Initialization Routine ••.•••..••••.••
Appl ication 3: PROGDD Ter:mination Routine ••.....•..••••.
Application 3: PROGEE Ter:mination Routine .•.••.•.•..••.•
Application 3: Run Ter:mination Progra:m ••..••••••.••..•••.
Application 3: Input Run Deck ..••.•..••...••.•••••••••.•.•
Sy:mbolic Progra:m Tape (SPT) For:mat .•..••••.••••..••.•••
Sy:mbolic Progra:m Tape (SPT) For:mat: Data Record Layout ..
Binary Run Tape (BRT) For:mat ••....•..•..•.••.•••••••.•••
Binary Run Deck (BRD) For:mat •••.•.••••..••••.••.••••••••

LIST OF TABLES

Library Processors C and D: Features ••••.•••••.•.••••••••
Easycoder Asse:mblers C and D: Features ••..••••.••.••••••
COBOL Co:mpilers D and H: Features•.•.•••.•••.•.•.•
Fortran Co:mpilers D and H: Features ••••.•••••••.•••••••••
Easytran Sy:mbolic Translators C and D: Features ••.•.•.•••.
Sort and Collate Progra:ms: Features •..•••••••••••••••••••
Mathe:matical Processing Functions ••••••.•.••.•.••.••.•.••
Progra:m Maintenance and Editing Functions •••••.••.••.•.•.•
Operation Control: Loading and Monitoring Functions ••••.•••
Input/Output Control Functions •••••..•....•..•.•.••.•.•••••
Progra:m Searching and Loading Para:meters ••••.•.••.••••••
Loader -Monitor Searching Options ••••.••..••.•.•••••••••••
Methods of Entering Search Para:meters ••••.•••••••••••••••
Loader-Monitor Co:m:munication Area (Basic Fields) •••••••••
Equip:ment Configuration Descriptor (ECD) Card For:mat ••••••

iv

Page

2-5
3-3
3-6
3-7
3-8
3-11
3-12
3-14
3-16
3-18

3-27
4-7
6-2
6-3
6-5
6-6
6-9
6-10
6-11
6-11
6-12
6-13
6-13
A-2
A-3
A-3
A-4

3-4
3-5
3-10
3-14
3-16
3-23
3-24
3-26
4-4
4-11
5-1
5-2
5-2
A-5
A-7

SECTION I

INTRODUC TION

The Series ZOO/Operating System represents the result of 15 years of evolution and develop­

ment. Honeywell's role in this development has been particularly significant, starting with the

operating system on the D-lOOO, continuing through the Executive System and the ADMIRAL

System for the H-800/l800, and culminating in the Series ZOO/Operating System.

THE EVOLUTION AND DEVELOPMENT OF OPERATING SYSTEMS

In the early days of computers, the programmer not only wrote the programs but executed

them as well. He set up the programs, loaded them with his own loading routine, monitored

their execution, and debugged them on the machine. In effect, it was a one-man operation from

beginning to end, with the programmer controlling all aspects of the program's execution via

manual intervention at the console. Following the execution of one program, the next programmer

stepped in and took over with his own unique methods of operation.

It soon became evident that this mode of operation was economically unfeasible. In many

cases, the setup time for a program far exceeded the run time. The lack of uniformity in setup

and operating procedures resulted in costly mistakes and made any communication or standard­

ization betwe.en programs impossible. In addition, each programmer had to write his own load

routines, input/output routines, error routines, etc., instead of being able to incorporate those

already written.

As cemputers developed, the need for a better system of operating also developed. More

comprehensive applications resulted in the technique of assigning a team of programmers to

each application or job. The fact that some sort of communication had to exist between these job­

related programs required standard methods of programming and operation. Users began to

develop routines for such common and repetitive operations as loading, dumping, sequencing

from program to program, and debugging, and to incorporate these standardized routines into

their programs. Although no standards existed among the various users, at least some degree of

standardization was realized within each individual installation. Because these aids were used to

control program execution, they were called supervisory or executive programs. It was from

these that the monitors and operating systems of today evolved.

PHILOSOPHY OF AN OPERATING SYSTEM

The operating system concept is based on one primary goal: the increase of data throughput

1-1

•

SECTION 1. INTRODUCTION

by assisting the user in utilizing to the fullest extent the hardware and software available. To

fulfill this goal, an operating system should:

1. Be simple and convenient to use.

2. Relieve the operator of the necessity for complex procedures and constant
supervision.

3. Eliminate unnecessary idle time spent on job setup and last-minute planning.

4. Be flexible and expandable - adaptable to the operating environment in terms
of hardware configurations, software complements, and operating policies
of the user.

5. Minimize the turnaround time between the submis sion of a job and the return
of the results.

6. Be economical, efficient, and easily maintained.

To the extent that the above goals have been achieved in the design of an operating system,

the operator can communicate with the system rather than with the individual programs, and the

system operating procedures become standardized. Likewise, because of such features as a

comprehensive program test system, the programmer can direct the entire testing procedure

by simply preparing the control deck to be used. Thus, both the operator and the programmer

are removed to an off-line status and are prevented from any wasteful contact with the computer.

In short, an operating system can be thought of as a framework within which the user's

data processing applications can be written, prepared, and executed. To this end, an operating

system consists of many language processing and service routines designed to aid the user in

these activities.

1-2

SECTION II

THE SERIES 200/0PERATING SYSTEM - MOD 1 (TAPE RESIDENT)

The Series 200/Operating System - Mod 1 provides the user with a means of unleashing

the full power of any Series 200 computer system having a minimum of 12K characters of mem­

ory and three tape units. Designed with simplicity, economy, and flexibility in mind, the Mod 1

Operating System offers a long list of significant features molded together into one integrated

operating framework.

OPERATING ENVIRONMENT

The Series 200/0perating System - Mod 1 (Tape Resident) is designed for all Series 200

machine configurations having 12K to 65K characters of core storage and from three to six tape

units. In addition, the versatility of the system enables the efficient use of other peripheral

devices such as punched cards, drum storage, paper tape, communications, and mass memory.

MOD 1 OPERATING SYSTEM PHILOSOPHY

Specifically aimed at the medium-scale, tape-oriented, Series 200 user, the basis of the

Mod 1 Operating System philosophy can be found in the three outstanding characteristics of the

system: simplicity, efficiency, and flexibility.

Simplicity

The Mod 1 Operating System provides a comprehensive collection of precoded and tested

systems functions and programs which relieve the user of a host of complex programming and

operating tasks. For example, tape and drum storage input/output routines are provided ready

for specialization and insertion, via macro calls, into the user's programs. For the operator,

a complete program test package allows for the checkout of an entire series of programs with

no operator intervention from the initial pressing of the RUN button to the end of the job.

Standard, easily learned operating. procedures simplify the operator's job. The same

maintenance programs and standard operating procedures are used to maintain and execute

Honeywell software and the user's own object programs.

Efficiency

One of the most important objectives in the design of the Mod 1 Operating System is the

efficient and economic use of core storage. First, since the system is completely modular in

design, only those functions required for any given operation occupy memory. For example,

2-1

•

SECTION II. THE SERIES 200/0PERATING SYSTEM - MOD 1 (TAPE RESIDENT)

separate loader routines are provided for loading programs stored on punched cards, magnetic

tape, or drum. Each version contains only those functions required for loading from the particu­

lar medium. Secondly, routines (or portions of routines) can be assembled and executed in either

two-, three-, or four-character addressing mode. Whenever possible, the shortest addressing

mode may be used to conserve core requirements. For example, the three-character address

mode version of Floating Tape Loader-Monitor C occupies approximately 520 to 550 fewer core

locations than the four-character version. One proof of core usage efficiency is the fact that

Honeywell's Series 200 COBOL compilers require much less memory than any competitive com­

pilers offering similar features.

Through the use of the Mod 1 Operating System, the user realizes savings not only from

efficient core usage but also from the reduction of setup and idle time and from the elimination

of operations errors. In addition, the assembly, sorting, and compiling functions offer speeds

which far exceed those of similarly priced competitive equipment.

Flexibility

Flexibility is provided both by the number and variety of functions offered any by the

inherent expansibility of the system. For example, the user has a choice of several programming

languages ranging from the assembly-1eve11anguage of Easycoder to the scientific compiler-

1eve11anguage of Fortran. Further, he can choose between card, tape, or drum program stor­

age and loading. He can add his own coded macro routines to the macro library for insertion

into his programs. He can take advantage of any communication devices or console typewriters

included as part of his computer configuration. He can use any core memory size from 12K up

to 262K_and can begin with as few as three tape units.

One of the major benefits derived from this flexible design is that of orderly growth poten­

tial by which the user can add both hardware and software as needed and still maintain an inte­

grated system. Coupled with the modular design of the Series 200 hardware and software, the

Mod 1 Operating System assures the user of upward program compatibility as his system grows.

PROCESSING STRUCTURE

Fundamental to the design of the Mod 1 Operating System is its functional program modu­

larity.

First, although the concept of a program as the basic logical unit is still retained, a pro­

gram is segmented into one or more loading units. Each loading unit consists of a portion of

the code for a particu1a·r program and can be individually searched for and loaded by a single

2-2

SECTION II. THE SERIES 200/0PERATING SYSTEM - MOD 1 (TAPE RESIDENT)

call to the Loader-Monitor. This concept of program segmentation provides increased opera­

tional flexibility plus a great reduction in the amount of memory core required by a program.

Secondly, related programs can be combined into job-oriented groupings. The ability to

store not only several "jobs" but also several versions of each job on a single program tape allows

the user to adopt the building-block approach in the implementation of these jobs. For example,

a program tape might contain all of the current production programs for the application, checked­

out programs to be incorporated in the future, and programs yet to be tested. During any execu­

tion of the job, the desired programs are automatically selected, loaded, and executed in what­

ever sequence the user elects. This is accomplished through the common interface of the Mod I

Operating System using one or both of two methods: internal control via coding within the pro­

grams themselves; external control via a Console Call card control deck.

COMPONENTS OF THE MOD I OPERATING SYSTEM

The Mod 1 Operating System contains many subsystems and routines designed to eliminate

much of the work of both the programmer and the operator. These components can be divided

into three types: those which aid in the preparation of source-language programs and their

translation into machine language; those which perform editing and maintenance on machine­

language programs; and those which control the execution of programs. These three groupings

are shown in Figure 2 - 1.

Program preparation involves both the writing and translation of the user's own programs

and routines and the incorporation of Honeywell-supplied utility programs and routines. The

user has a choice of three methods of writing and translating his own programs: assembly sys­

tems, compiler systems, and translators. These are collectively called language processors.

Honeywell-supplied programs, called utility programs, perform such common data processing

functions as the sorting and collating of data files, the manipulation of tapes, and the solving of

mathematical formulas. Since the machine-language format of all these programs is the same,

regardless -of their source, they can be combined and executed in any order.

The editing and maintenance programs enable the user to select, rearrange, and combine

all types of object programs within the Mod 1 Operating System onto a single program run tape

from which he can load and execute his jobs. Facilities are also provided for modifying and

correcting program s.

2-3

SECTION II. THE SERIES ZOO/OPERATING SYSTEM - MOD 1 (TAPE RESIDENT)

INPUT DATA

PROGRAM PREPARATION

LANGUAGE PROCESSORS

SOURCE­
LANGUAGE
PROGRAMS

UTILITY PROGRAMS

DATA EDITING a MATHEMATICAL
TRANSCRIPTION PROCESSING

PROGRAM EDITING a MAINTENANCE

OPERATION
CONTROL

~---------

\ DRUM \
\ PROGRAM ,
J FILE I

--r-~-'_L _______ I

PROGRAM EXECUTION

INPUT/OUTPUT
CONTROL

PROGRAM
TEST

Figure Z-1. Series ZOO/Operating System. - Mod 1

Z-4

PROCESSED
OUTPUT DATA

SECTION II. THE SERIES 200/0PERATING SYSTEM - MOD I (TAPE RESIDENT)

In the area of program execution, the Mod 1 Operating System offers several important

capabilities: operation control, input/output control, and program test. Operation control is

performed by some version of the loader-monitor which can search for and load any program

called for by either the operator or the current progr-am. It can also execute programs on a

job basis - i. e., automatically search for, load, and execute an entire series of programs

related to one application or job. An associated interrupt control routine can extend these

capabilities to the loading and executing of two programs at the same time by utilizing the

simultaneity and interrupt capabilities of the Series 200 hardware. File input and output op­

erations are controlled by appropriate input/output routines inserted and specialized within

each program at assembly or compilation time via user-specified macro calls. Automatic

program test and checkout procedures are provided within the system for the efficient testing

and debugging of a single program or a whole series of programs immediately following assem­

bly, compilation, modification, or specialization of the programs.

The following sections present these various components in detail.

2-5

•

SECTION III

PROGRAM PREPARATION AND MAINTENANCE

The Mod I Operating System provides the user with a comprehensive language processing

capability in the form of assemblers, compilers, and conversion programs. Utility programs

complement this capability by offering precoded routines which perform common data processing

functions and which can be specialized to the user's individual needs. Editing and maintenance

programs offer a means of creating and maintaining symbolic and machine-language program

files.

LANGUAGE PROCESSING

Language processing programs are provided to translate programs written in several

different source languages into a single machine-language format; thus, the output from the

various language processors can be combined on a single program run tape and executed in any

order. In writing his programs, the user chooses from the following three languages the one

best suited to the application and to his own background and experience.

1. Easycoder - A general-purpose assembly-level language which combines
ease of use with power and flexibility. To express the logic of his pro­
gram, the user employs easily remembered mnemonic op codes and ref­
erences memory locations by either absolute decimal numbers or sym­
bolic tags. The Easycoder system includes an Easycoder assembler
which translates the source language to machine language, a library
processor which enables the user to incorporate precoded routines into
his program, an analyzer program which prints a cross-reference
listing of all symbolic tags used, and a symbolic program maintenance
facility which permits the storage and updating of symbolic programs
on tape.

2. COBOL - A business-oriented compiler-level language which offers .
simplicity of format, shorter training time requirements, and com­
patibility among different models of computers. The user expresses
the logic of his program as a series of English-language statements
conforming to standardized COBOL conventions.

3. Fortran - A science-oriented compiler-level language which allows
the user to express a wide variety of engineering, scientific, and
data processing problems in a familiar format. Library and diag­
nostic facilities are included in the system.

If the user has already written his programs in the language of a competitive system, he

can easily and quickly co~vert these programs to a format compatible with the Series 200 sys­

tems. As a result of the Honeywell Liberator concept, such programs can be translated on both

the symbolic and machine-language levels without the aid of simulators. For example, the Easy­

tran Symbolic Translator routines translate programs written in Autocoder, SPS, or mixed

3-1

I

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

SPS/ Autocoder source language into Easycoder source language. An important facet of this

translation is that all programs are modified to take advantage of the superior throughput power

of the Series 200 hardware and, as a result, usually run in a fraction of their former execution

time.

Assembly System

The Easycoder Assembly System for the Mod 1 Operating System comprises four elements:

1. A symbolic language,

2. A library processor,

3. An assembler, and

4. An analyzer.

EASYCODER ASSEMBLY LANGUAGE

The Easycoder Assembly Language is a general-purpose, easy-to-use language designed

for a.ll types of applications. It provides the user with a comprehensive set of operation codes

with which he can specify the following types of operations:

1. Arithmetic - Offer the user a choice of binary or decimal arithmetic
functions. In addition, Easycoder Assembler D on a Series 200 com­
puter with the Scientific Unit provides the user with floating-point
capabilities.

2. Logic - Provide the user with the functions of extracting, half­
adding, substituting, comparing, conditional and unconditional
branching, etc.

3. Control· - Enable the user to set and clear punctuation, halt the
machine, move data, enter and retrieve data from control memory,
and change addressing and sequencing modes. Easycoder Assembler
D also allows the controlling of memory barricades with the Storage
Protect Feature.

4. Interrupt Control - Enable the user to take advantage of the inter­
rupt functions of the Series 200 hardware.

5. Editing - Permits the use of the extensive power of the Edit Feature
in producing financially edited fields on printed reports.

6. Input/Output - Provides two basic instructions which allow the user
complete control over all data transfers between the central pro­
cessor and all peripheral units and over the peripheral units them­
selves.

Also included in the Easycoder symbolic language are a number of assembly control statements

which permit the user to control the assembly process itself.

LIBRARY PROCESSOR

To relieve the programmer of the burden of the repetitive and complex coding of commonly

used routines (e. g., input/output procedures), the Easycoder Assembly System includes library

3-2

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

facilities. In addition to the basic library of general-purpose routines supplied by Honeywell,

the user can add his own often used programs and routines to this library. These routines are

stored, in source-language format, on a library source-program tape. By writing call state­

ments (macro instructions) within his source coding and processing his program through a

library processor prior to assembly, the user can cause these routines to be selected from the

library source -program tape, specialized according to the parameters he has included in the

call statements, and inserted into his program.

The two versions of the library processor - Library Processors C and D - provided in the

Mod I Operating System perform the following three functions:

1. Specialization - The specialization and insertion of macro routines
from the library symbolic program tape into Easycoder source­
language programs as indicated by the macro calls and associated
parameters.

2. Respecialization - The updating of previously processed programs
on a source-language program tape (which contains a source -language
version and a machine-language version of each program) with new
versions of the macro routines incorporated within them. The library
processor generates the new, respecialized versions of the macro
routines. During the subsequent assembly run, the assembler re­
places the object code of the old macro routines with the respecialized
versions.

3. Reproduction - The punching of symbolic source decks containing com­
plete source programs from the library source-program tape.

The setup for Library Processors C and D is shown in Figure 3-1.

/' - ,
I CARD \
I IMAGES J

~§§\~ /
..... -"'"

/ \
I CARD \

r- - - - - l I IMAGES
I PAPER TAPE I \ ON TAPE J
I /
...... - <::.-

SOURCE- LANGUAGE
PROGRAM (S)

LIBRARY
PROCESSOR

Figure 3-1. The Library Processor

3-3

ROUTINE

TO ASSEMBLY

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

Easycoder Symbolic Card Formats

The need for two versions of the library processor is brought about by the fact that the user

has a choice of two symbolic coding formats. The standard coding card format contains a seven­

character location field which allows the programmer to specify and use symbolic tags up to six

characters in length. The alternate card format contains an II-character location field and allows

the programmer to specify and use symbolic tags up to 10 characters in length. These features

are summarized in Table 3-1.

Table 3-1. Library Processors C and D: Features

Library Processor C Performs the library facility functions of speciali­
zation, respecialization, and reproduction on
Honeywell-supplied or user-created macro routines
stored on a symbolic library tape. Accepts sym­
bolic programs using the standard card format and
produces output to Easycoder Assembler C.

Library Processor D

EASYCODER ASSEMBLER

Performs the same functions as the above version.
Accepts symbolic programs using the alternate card
format and produces output to Easycoder Assembler D.

The Easycoder Assembler translates symbolic coding written in the Easycoder symbolic

language into machine language. It writes the assembled programs (in both their symbolic­

language format and their machine-language format) onto a symbolic program tape (SPT). If a

sufficient number of tape drives are available, it will also write the programs in machine

language onto a binary run tape (BR T), from which the programs can be loaded and executed.

Should a tape drive not be available, the BRT can be created in a separate run. Optionally,

assembled programs can be punched on cards in BRT machine-language format. The cards can

then be loaded and the program executed. Facilities are also provided for maintaining programs

on the symbolic program tape. Programs can be deleted from or added to an SPT, and correc­

tions can be made to the programs during the same assembly run.

During any single assembly run, the user has a choice of four operating modes:

1. Assembly - Translates programs written in Easycoder symbolic language
and places the assembled programs on a symbolic program tape (SPT) in
both symbolic form and machine-language form.

2. Selection - Selects the machine-language formats of specified programs
from an SPT and places these on a binary run tape or on punched cards.
If a sufficient number of tapes is not available during the assembly pass,
this mode is utilized following as sem bly to produce the BR T.

3-4

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

3. Assembly and Updating - Maintains and updates the programs on an SPT
in both their symbolic and machine-language formats through the correc­
tion of individual programs, the addition of new programs, and the
deletion of unwanted program s.

4. Assembly, Updating, and Selection- Performs the same operations
as the assembly and updating mode with the added ability to select
specified programs and place these programs on tape or on cards
in executable form.

The mode chosen by the user depends upon his requirements and upon the number of tape units

available. The setup diagrams for the various modes are shown in Figure 3-2.

The Mod 1 Operating System includes two versions of the Easycoder Assembler:

Easycoder Assembler C and Easycoder Assembler D. The features provided by the two versions

are summarized in Table 3-2.

Table 3-2. Easycoder Assemblers C and D: Features

Easycoder Assembler C Processes the basic repertoire of symbolic
op codes and assembly control instructions.
Accepts the standard coding card format and,
therefore, operates in conjunction with Library
Processor C.

Easycoder Assembler D Provides, in addition to the features of Easy­
coder Assembler C, the ability to process
memory barricade op codes (require the
Storage Protect Feature for execution) and
floating-point op codes (require the Scien­
tific Unit for execution). Accepts the alter­
nate card format and, therefore, operates
in conjunction with Library Processor D.

ANALYZER

Analyzer C is a powerful programming aid which simplifies the task of analyzing any pro­

gram written in the Easycoder symbolic language. Analyzer C extracts all symbolic tags,

references (to tags, index registers, and absolute addresses), and calls to macro routines and

processes them to produce an analysis listing of the program. The listing is arranged in alpha­

numeric order so that all information about a particular tag, absolute location, or library rou­

tine appears together in one place.

3-5

•

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

ASSEMBLY

r- ------1
I PAPER TAPE I
1-- _--...I

/ '"
{ CARD- \

IMAGE

,"-======~TAPE SOURC~S~ /
PROGRA~ SOURCE PROG.::... -

SOURCE PROG.

'------,v,..--...J1

CAN BE OUTPUT
FROM LIBRARY
PROCESSORS COR D.

SELECTION

r-----l
I PAPER TAPE I

/".L '--_ ---.1
I CARD- \

\
IMAGE I
TAPE

~
ACTION DIR.

DIRECTORS ACTION DIR.

ACTION DIR.

ACTION DIR.

EASYCODER
COR D
ASSEMBLY

r";RT--;o-;;~; 1
.J- _ CARDS "'- ___ J

I BINARY \
RUN J

'~APE /

-~-

EASY CODER
COR D
SELECTION

ASSEMBLY, UPDATING
(AND SELECTION)

r- ----l
._ J. PAPER TAPE I

/" "
I CARD- \..- ___ - - -.J
I IMAGE I
\ TAPE /

1/-'
I TAPE \
\ LISTING J

~
ACTION DIR.

DIRECTORS
AND SOURCE ACTION DIR.

//-,

I TAPE \
\ LISTING J PROGRAMS. SOURCE PROG.

ACTION DIR. EASY CODER CaD
ASSEMBLY, UPDAT­
ING (AND SELECTION)

,----- -,
r BRT - FORMAT I

/- CARDS \= ____ ..J
{ BINARY \

RUN
\ TAPE / '_L_

Figure 3-2. Operating Modes of Easycoder Assemblers C and D

3-6

/
~-

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

The general systems diagram for the program is given in Figure 3- 3.

r-------,
I I
I

.- --
/' '"

I \
I }

r------..,
I L
I ,. '" ----7' \

DIRECTOR
DECK

I

Compiler Systems

/

ANALYZER

Figure 3-3. Analyzer C Setup

The Mod I Operating System offers two compiler systems: COBOL (COmmon ~usiness­

Qriented !:anguage) for the business user, and Fortran (Formula Translator) for the scientific

user. The features implemented and the coding format and vocabulary of each source language

are designed to give that particular type of user a familiar and, therefore, easily learned and

understood programming language. In addition, both compiling systems offer the following

advantage s :

1. Inter-system Compatibility - The design and implementation of both
compilers are controlled by centralized committees under the sponsor­
ship of the Federal government and are thus standardized among all
computer manufacturers. As a result, programs written in the source
language of either compiler for one computer system can (with minor
modifications due to hardware differences) be recompiled and run on
another computer system.

2. Standardization - The fact that both compiler systems are standardized
among all computer manufacturers reduces the problems involved in
programmer turnover, since any programmer with experience in either
compiler language can be trained for a new system in a relatively short
time.

3. Intraproject Communication - Intraproject communication is greatly
increased and improved by the fact that both source languages are
easily understood by those familiar with the application but with little
or no experience in programming. Communication is also increased
between programmers working on related programs, since they are

3-7

•

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

all using the same coding conventions, symbolic tags, and other
standardized techniques.

4. Fast Program Compilation and Testing - Both systems offer com­
pilation speeds averaging only a matter of a few minutes per source
program. Both compilers offer comprehensive diagnostic scans for
clerical errors and helpful diagnostic listings of all errors found.
As a result, debugging time has been reduced by 50% or more.

5. Reduction of Programmer Training Time - Programmer training
(or retraining in the case of a changeover to a new computer) is
drastically reduced by the use of these easily learned source lan­
guages. Many companies have found that programmers trained

6.

in a compiler language reach a satisfactory level of productivity
many weeks in advance of those trained in a conventional assembly
language.

Improved Documentation - The clear and comprehensive listings
produced by both compiler systems provide a clear picture of the
program's logic and, via diagnostic messages, aid the programmer
in achieving his goal of a completely checked-out and operable pro­
gram. This documentation is especially valuable when a program­
mer must take over the maintenance of a program written by
another programmer.

A compiler system consists of two elements:

1. A programming language, and

2. A translator, called a compiler, which translates the programmer's
source-language statements or formulas into machine language.

THE COBOL COMPILER SYSTEM

The COBOL Language

The source language of the COBOL compiler system consists of meaningful English-lan­

guage statements conforming to COBOL conventions. An example of the procedure portion of a

COBOL source program is shown in Figure 3-4.

R.£AO - R.ou TINE.

TRANSACTION-CARO AT ENO GO TO '"NO-OF -FIL~-RTE.

C RD -CODE 1$ EQUAL TO.3 GO TO OEBIT-ROt)TlN£.

C RO - CODE IS ,=QUAL TO 5, GO TO CREOIT- ROt/TI/VE, t:Jn-lEI1'W/~£

o CARO-COOE-ERROR.

t/TIN£.

CO,sT- OF-$ALE TO rOT-9L - TO -OAT£ tJlVINQ NEW-TOTAL.

N£W- TOT/IL TO TOTAL -PRINT.

Figure 3-4. Example of the COBOL Source Language

Among the special features included in the COBOL compilers of the Mod 1 Operating System are

the following:

3-8

-"-',-

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

1. Internal and Library COpy Functions - Allow the programmer to incor­
porate within his source -language coding complete file and record
descriptions from either some other portion of the program or a source­
language library tape.

2. Tape File Handling - The programmer can describe and process five
types of tape file formats:

a. Unblocked, fixed-length records,

b. Unblocked, variable -length records,

c. Fixed-blocked, fixed-length records,

d. Fixed-blocked, variable-length records, or

e. Variable - blocked, fixed- or variable -length records.

The compiler can also generate coding to handle tapes recorded in BCD
format and/or containing 120-character labels.

3. Two-level Subscripting - Permits the programmer to set up and use two­
dimensional tables.

4. Editing Features - Allow the user to express a wide range of report
editing, either by means of PICTURE symbols or by means of descrip­
tive edit clauses.

5. PERFORM Verb Options - Four options of the PERFORM verb are
implemented to enable the programmer to direct many variations of
out-of-sequence processing.

6. ADD, SUBTRACT, and MOVE CORRESPONDING - Permit the pro­
grammer to specify in one statement the same action on a series of
related items, rather than having to repeat the statement for each
item.

7. USE Procedures - Allow the programmer to control the processing
of file labels and to specify special procedures to be performed in
the case of input/output errors.

The COBOL Compilers

Within the Mod I Operating System, COBOL has been implemented by two high-perfor­

mance, syntax-directed compilers: COBOL Compiler D and COBOL Compiler H. Both possess

several unique operating features:

1. Operation is in a batch-compile, load-and-go mode. An entire file of
source programs can be compiled under the control of the Mod I Opera­
ting System without operator intervention.

2. Source -language programs can be maintained on a library tape where
they can be easily modified or corrected and recompiled. Portions of
source-language coding, such as record descriptions, can also be
stored on this tape and can be incorporated into any program through
use of the COpy verb.

3. A variety of program testing and debugging aids such as memory
dumping, English-language diagnostics, memory mapping, etc., are
included.

4. The addresses of peripheral devices can be changed at object execution

3-9

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

time to allow the use of a single program with a variety of different
peripheral configurations. For example, if a printer is not avail­
able for the running of a program, the output can be assigned to
tape for subsequent off-line printing.

The maintenance and updating of source programs and library units stored on tape is per­

formed by the Source Program and Library Update Routine. This routine makes it possible to

add, delete, or replace source programs or library units, either in whole or in part, and to

create both an updated master source-program and library tape and a library tape alone.

The COBOL Compiler accepts source programs punched on cards or stored on the master

source-program and library tape. If library copies are contained within the source programs

being compiled, the library tape must be mounted as input. The output of compilation is an ob­

ject BRT and a complete program listing containing the source -language coding, machine-lan­

guage coding, memory maps, and diagnostic messages for each program selected for compila­

tion. The object code listing may optionally be suppressed.

The general setup for both of these processes is illustrated in Figure 3-5.

Both versions of the COBOL compilers within the Mod 1 Operating System offer upward

compatibility; i. e., source programs written for one version are acceptable input to all larger

versions. The features of the two versions are given in Table 3-3.

Table 3-3. COBOL Compilers D and H: Features

COBOL Compiler D Includes the required elements plus many of
the special elective features of the COBOL
language. Generates object programs which
can use and reference up to 32K characters
of memory.

COBOL Compiler H Implemented in phases. The special added
features of each phase are extensions to
the language and translation capability of
COBOL Compiler D. These extensions
include:

PHASE I - Four-character addressing,
which allows the compiled programs
to use and reference up to 262K char­
acters of memory.

Further extensions are currently in the
planning stage.

3-10

SECTION III.

;'

/OLD MASTER \
SOURCE PROG

I SLiBRARY I

\... /
~-

DIRECTORS AND
SOURCE PROGRAMS

PROGRAM PREPARATION AND MAINTENANCE

COBOL SOURCE
PROGRAM AND
LIBRARY UPDATE

r-- ---,
I LISTINGS I

I I ,---'
I ;'
L-_/

r----- ---,
r SELECTED

SOURCE PROGRAMS, PROGRAMS PUNCHED '
AND LIBRARY ON CARDS ,
UNITS --..... ______ J --,

LIBRARY UNITS
ONLY,

'

I
I , ,
I
I

--I

r-----------------------------~

/~

I

, ,
I
I
I
I

.......

I LIBRARY
TAPE

\
\

\ /
,~-

DIRECTORS AND
SOURCE PROGRAMS

COBOL
COMPILATION

Figure 3-5. COBOL COInpiler SysteIn

3-11

TO IMMEDIATE
--.. EXECUTION OR

INTEGRATION
WITH OTHER
OBJECT
PROGRAMS

•

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

THE FOR TRAN COMPILER SYSTEM

The Fortran Language

The Fortran source language allows the user to express a wide variety of engineering,

scientific, and ITlatheITlatic data processing solutions in a faITliliar, easily used language forITlat.

An exaITlple of a ITlatheITlatical stateITlent written in the Fortran language is shown in Figure 3-6.

GO TO /0054

Figure 3-6. ExaITlple of a Fortran-Language ArithITletic StateITlent

As iITlpleITlented in the Mod 1 Operating SysteITl, the language includes eleITlents equal to

those norITlally iITlpleITlented for large-scale cOITlpetitive cOITlpilers. For exaITlple, the prograITl­

ITler has the facility of expressing floating-point values ranging in precision froITl two to twenty

characters. All of the iITlportant Fortran IV standards, established by the AITlerican Standards

Association, are iITlpleITlented in Fortran H. These include such features as logical stateITlents

and testing, data initialization, labelled COMMON areas, and type stateITlent declarations. Gen­

erated object code can use and reference up to 262K characters of ITleITlory. Faster execution

speeds are achieved in Fortran H by utilizing the added features and instructions of the scien­

tific hardware option. Additional tape drives and other types of secondary storage allow input and

output to be transferred directly to and froITl these faster ITledia. Yet the sITlaller version of the

cOITlpiler (Fortran D) requires only 16K characters of ITleITlory, a card reader, fou~ tape drives,

a printer, and the advanced prograITlITling and edit instructions.

The Fortran COITlpilers

Both of the Fortran cOITlpilers offered with the Mod 1 Operating SysteITl, Fortran COITlpiler

D and Fortran COITlpiler H, are designed for high-speed cOITlpilation and generate directly exe­

cutable coding as opposed to the interpretive coding produced by SOITle cOITlpetitive systeITls. Exe­

cution speed is increased by extensive optiITlization of the object code produced. The cOITlpila­

tion process is shown in Figure 3-7.

AITlong SOITle of the outstanding advantages offered by these two versions of the Fortran

COITlpiler are the following:

1. Advanced Operating Features

a. Magnetic Tape Orientation - The ability to use ITlagnetic tapes
during prograITl cOITlpilation and execution perITlits extreITlely
fast reading and writing of prograITl and data files. In addition,
it eliITlinates all of the interITlediate card decks otherwise
required.

3-12

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

b. Subprogram Modularity - A Fortran program can consist of
several subprograms. Once a subprogram is compiled, it
can be punched into cards or added to a stack (library) tape.
Later, the subprogram can be combined with other subpro­
grams to produce an executable program or a series of
executable programs on a binary run tape (BR T). The abil­
ity to construct such programs from a series of already­
compiled subprograms accelerates program completion and
permits more efficient organization and planning of the work
to be aocomplished.

c. Stack (Library) Tape Usage - Permits the storage of a user
subprogram library on magnetic tape. During creation of
an executable program, specific subprograms can be retrieved
from this tape and incorporated into the user's routine.

d. Fortran/Easycoder Integration - Easycoder subprograms are
written according to simple rules and assembled by the Easy­
coder Assembler. A binary deck or tape can be produced as
output during the assembly process and subsequently added to
a Fortran program deck or to the stack tape.

e. Variable Format Feature - Allows the user to execute the
same program with a number of different inputi output formats
without having to recompile the program. Thus, a program
need only be compiled once regardless of the number of data
formats it must handle. This feature allows programs to be
written and compiled independently of formatting considera­
tions and eliminates the necessity of creating and maintaining
a large number of versions of the same logical program for
each different data format.

f. Load-and-Go Operation - Under the direction of the Mod 1
Operating System Loader-Monitor, a stack of separate job
decks (each representing a problem) are processed as
follows:

(l) Job 1 is compiled (with the integration of sub­
programs from the stack (library) tape as
indicated), and a binary run tape is created.
The job is executed and the results listed or
written onto tape.

(2) Control is returned to the monitor, the next
job (Job 2) is brought in, and the cycle is auto­
matically repeated.

(3) This cycle continues until all of the jobs have
been processed.

g. Go-Later Operation - A second mode of operation allows the
user to compile a series of programs, create a BRT, and
dismount it for use at a later date. Another alternative is to
create a program from a series of subprograms stored on a
stack (library) tape and execute this program during the same
run.

h. Chaining - Permits the execution of large programs within a
relatively small amount of memory by dividing such programs
into independent segments (chains) which can be loaded and
executed at different times. Each chain is overlaid in memory

3-13

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

by the subsequent chain, with the COMMON area of memory
providing the necessary communication linkage between them.
Thus, partial results produced by one chain of the program
are stored for further processing by subsequent chains.

i. Debugging and Testing - Several facilities are provided for the
debugging and testing of programs, including a diagnostic pre­
processor (Fortran D), a diagnostic scan during compilation,
a symbolic Easycoder listing of the object coding (Fortran D),
a memory map listing, and dynamic and terminating dumping
procedures.

COMPILATION

--- '" "-
r---~~~~ \

\
LISTINGS I

--_..-'
/

/

..-------,
(I

_____ ..J

r--- ---, ",---,,\
/--

I ~:====71
I , OUTPUT \

RESULTS I
I I

- --.I EXECUTION I- --
-L I I

L _______ ~ "- '-""'---

Figure 3-7. The Fortran Compiler System

Both versions of the Fortran Compiler include upward compatibility. Programs written

for Fortran Compiler D can be compiled by Fortran Compiler H with little or no modifications.

The features offered by each version are summarized in Table 3-4.

Table 3-4. Fortran Compilers D and H: Features

Fortran Compiler D Has the ability to handle a wide range of specifi­
cation, input/output, format, conversion, logical,
assignment, control, and procedure statements,
and features the fullest implementation of Fortran
IV available on any machine of comparable size.
Generates object programs occupying up to 262K

3-14

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

Table 3-4 (cont). Fortran Compilers D and H: Features

Fortran Compiler D
(cont)

Fortran Compiler H

Translators

characters of memory. It provides high-speed
compilation and execution through the utilization
of magnetic tapes and object code optimization.
It offers programming and operating flexibility
by providing subprogram modularity, a stack tape
library, Fortran/Easycoder integration, the vari­
able format feature, and the choice of load-and­
go or go-later modes.

Includes all of the features of the A. S.A. Fortran
IV plus many additional operational features.
Incorporates additional language features such as
BEGIN TRACE and END TRACE statements,
BEGIN FLOW and END FLOW statements, char­
acter strings, T format descriptor, an IMPLICIT
statement, list-directed input/output statements,
and mixed-mode arithmetic expressions.

The Honeywell Liberator concept allows users of a number of older competitive systems

to e"njoy the benefits of the Series 200 without the cost and time of reprogramming. This is done

by providing the user with a means of automatically converting from the language of the competi­

tive system to the language of Series 200 Easycoder.

An example of the effectiveness of this concept can be seen in the Easytran Symbolic

Translator System. Input programs written in SPS/ Autocoder symbolic language for the 1401/

1460 series are completely analyzed and then translated statement by statement. During this

process, most symbolic statements are replaced on a one-for-one basis with equivalent Easy­

coder statements due to the similarities in hardware design and program instruction format

between the two systems. Those statements which have no Easycoder equivalent (such as most

input/ output routines) are replaced either with in-line macro coding or with calls to Easytran

subroutines which perform the desired functions; those whose functions are not required by the

Honeywell hardware are deleted.

The Mod 1 Operating System includes four programs which perform language translation:

Easytran Symbolic Translators C and D, Easytran Program Modifier C, and Easytran Source

Program Generator D.

EASYTRAN SYMBOLIC TRANSLATORS

The two versions of the Easytran Symbolic Translator translate SPS and/or Autocoder pro­

grams into Easycoder symbolic language. The principal output is the translated program; other

output includes a parallel listing of the SPS/Autocoder and Easycoder symbolic programs, a

3-15

· -

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

cross -reference listing of all tags used in the input program, and an English-language diagnos­

tic listing pointing out any areas where modification might be required.

If the source program contains macro calls to the Autocoder IOCS functions, these are

replaced with equivalent calls to the lIZ-Inch Tape Input/Output Package, which are then pro­

cessed by a special preassembly routine (Library Processor C).

Memory requirements for the translated program are only 10% more than those of the

original program, plus additional memory for the Easytran subroutines and for double-buffering

of tape files. Despite this additional memory, the running time of the translated program is

usually improved due to the faster cycle time and extensive peripheral simultaneity of the Series

ZOO processors.

The general systems diagram for the translators is shown in Figure 3- 8.

---~
TRANSLATION
AND/OR
UPDATE

'" ",/

'" ./

LIBRARY ~/0 OBJECT

AND ASSEMBLY EXECUTION - - - - -L __ PR_O_C_E_S_S_OR __ ---'r - BRT - - .. L.._P_R_O_G_R_A_M_---'

Figure 3-8. The Easytran Symbolic Translator System

The unique features of each of the versions are summarized in Table 3-5.

Table 3-5. Easytran Symbolic Translators C and D: Features

Easytran Symbolic Translator C Will accept source programs written
in SPS or Autocoder. The Autocoder
source programs may contain macro
calls. Produces an Easycoder C sym­
bolic source deck, a parallel source­
program listing, an English-language
diagnostic listing, and a cross-refer­
ence tag listing. The symbolic deck
must be processed through Library
Processor C and Easycoder Assembler
C to produce an executable program.

3-16

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

Table 3-5 (cont). Easytran SyITlbolic Translators C and D: Features

Easytran SYITlbolic Translator D Will accept 1401/1460 Autocoder or
ITlixed SPS/ Autocoder source pro­
graITls. Included in the systeITl are
the functions of conversion, file up­
date, Library Processor C, and
Easycoder AsseITlbler C; therefore,
the final output is a directly execut­
able prograITl in Series 200 ITlachine
language. Also added are such fea­
tures as increased cOITlpatibility
with Autocoder, autoITlatic IOCS call
conversion by the substitution of a
pretailored version of the 1401 IOCS
package, floating address assign­
ITlents to allow siITlple address adjust­
ITlent during subsequent updating,
handling of op code overlay (e. g. ,
ITloving a Branch op code over a NOP
op code), and batch processing which
allows the conversion of an entire
batch of ITlixed types of source pro­
graITls in one run.

EASYTRAN PROGRAM MODIFIER

Easytran PrograITl Modifier C is a translator prograITl which ITlodifies Easycoder source­

language prograITls originally created by either 1401 Easytran or Easytran SYITlbolic Translator

B (Basic PrograITlITling SysteITl) so that they will be acceptable input to Easycoder AsseITlbler C

and will be operable with the Mod 1 Operating SysteITl. The ITlodified prograITl is written out on

a card-iITlage tape which can then be input to Library Processor B or C and/or Easycoder

AsseITlbler C.

3-9.

Easytran PrograITl Modifier C incorporates the following functions:

1. ReITlaps and revises the Easytran B subroutines to convert theITl to operate
under Floating Tape Loader-Monitor C. Routines ITlay be relocated to allow
rOOITl for the cOITlITlunication area of the loader -ITlonitor.

2. Pseudo-DA (Define Area) stateITlents in the Easycoder AsseITlbler A gen­
erated coding are changed to Easycoder AsseITlbler C source stateITlents.
Hand-tailoring techniques not acceptable to Easycoder AsseITlbler Care
checked for and flagged.

3. A side-by-side listing containing the originally generated Easycoder
AsseITlbler A source language and the corresponding Easycoder AsseITl­
bIer C source language is produced. Diagnostic ITlessages are included
within the listing.

The general systeITls diagraITl for Easytran PrograITl Modifier C is presented in Figure

3-17

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

FROM EASYTRAN SYMBOLIC
TRANSLATOR B

OR
1401 EASYTRAN

~-----l

(I

EASYTRAN
PROGRAM
MODIFIER

C

LISTING

CONTROL CARD INPUT TO LIBRARY
PROCESSORS B OR
C AND/OR EASYCODER
ASSEMBLER C

Figure 3-9. Easytran Program Modifier C

EASYTRAN SOURCE PROGRAM GENERATOR

Easytran Source Program Generator D translates 1401 machine language programs into

Autocoder symbolic language and is part of the Easytran D system. Following the translation,

Easytran Symbolic Translator D processes this symbolic program output along with other Auto­

coder/SPS symbolic programs and translates them into directly executable Series 200 machine

language. Thus, any intermix of symbolic Autocoder programs and 1401 machine language pro­

grams can be handled by the Easytran D system.

Easytran Source Program Generator D incorporates the following features:

1. Accepts as input SPSl or SPS2 single load card formats, SPS condensed
card format, and Autocoder condensed card format decks.

2. Produces a Card Image Tape (CIT) containing the programs in symbolic
format acceptable to Easytran Symbolic Translator D.

3. Prints an analysis listing showing the Autocoder symbolic language pro­
duced for each input machine -language program along with flags pin­
pointing possible problem areas.

UTILITY PROGRAMS

The utility programs provided in the Mod 1 Operating System perform two types of func­

tions: data transcription and editing, and mathematical processes.

Data Transcription and Editing

Data transcription and editing functions include those of tape handling, media conversion,

report generating, and the sorting and collating of data. They are completely compatible in

3-18

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

operation with all of the programs written for, and processed by, any of the language processors;

therefore, they can be intermixed on a BRT with user-written programs. By incorporating these

functions into his system, the user not only saves the time which would have to be spent in writ­

ing his own routines, but also benefits from a reduction of the memory space and exection time

required.

T APE HANDLING

Tape Handling Routine C includes a set of general tape-handling and correction routines

for use with liZ-inch and 3/4-inch magnetic tapes. Parameters for controlling the various func­

tions provided can be entered from cards, paper tape, or the control panel. Functions which

operate on a record-by-record basis (e. g., copying) can be directed to terminate either upon the

processing of a certain number of records or upon the sensing of a standard label or file identi­

fication record.

The functions of Tape Handling Routine C are as follows:

1. Edit - Records (or portions of records) can be edited from a specified tape
to an on-line printer, in either alphanumeric or octal mode.

Z. Rewind - One or more magnetic tapes can be rewound in a single operation.

3. Copy - A specified number of records can be copied from one tape to
another.

4. Correct and Copy - A designated record is copied from one tape to another
with specified corrections.

5. Forward - A tape can be positioned forward a specifed number of records.

6. Backspace - A tape can be backspaced a specified number of records.

7. Compare and Print - A specified number of records from each of two
tapes are compared record-for-record. Those records which are not
identical are printed in either alphanumeric or octal mode.

8. Locate - A tape is searched for a record containing a specified piece of
information. Upon locating such a record, the tape is backspaced one rec­
ord, thus permitting another operation to be performed on the located
record.

9. Write dummy header label - A dummy header label, containing a phys~
ical tape reel serial number, is written on a new tape.

MEDIA CONVERSION

Media conversion routines transfer data from one medium to another. This might be done

for one of several reasons: to increase the speed of subsequent processing of the data by plac­

ing it on a faster medium (e. g., converting punched cards to card images on magnetic tape), to

permit visual examination of the data (e. g., converting print images on tape to printed output),

or to permit physical manipulation of the data (e. g., converting card images on tape to punched

cards).

3-19

•

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

Data Conversion C Routines

Data Conversion C routines are actually macro routines which can be adapted to process

any file format and to operate in several environments. Three generalized conversion routines

are provided:

1. Card-to-Tape C, which converts a punched-card file to a card-image
file on magnetic tape.

2. Tape-to-Printer C, which converts a print-image file on magnetic tape
to printed output.

3. Tape -to-Punch C, which converts a card-image file on magnetic tape
to a punched-card file.

These three routines can be executed in any of three operating environments:

1. As independent programs,

2. As coroutines operating together under Simultaneous Media Conversion
C, or

3. As foreground programs operating simultaneously with some other pro­
gram under Interrupt Control D.

As independent programs, the routines can be executed apart from any controlling program.

Running under the control of the Simultaneous Media Conversion (SCOPE) monitor, two (or three)

of the routines can be executed simultaneously. As a foreground program, anyone of the rou­

tines can operate in the interrupt mode under Interrupt Control D. Under this last method, the

conversion routine is assigned all of the processor cycles until it initiates a Peripheral Data

Transfer (PDT) instruction. While this instruction is being carried out, all processing cycles

are allocated to a background program which consists of a great amount of internal processing,

such as a sort or an assembly. At the end of the data transfer operation, Interrupt Control D

receives an interrupt signal which directs that control be reas signed to the conversion routine.

All three routines accept as input or generate as output a wide variety of tape file formats

including Honeywell or IBM files containing fixed-length or variable-length records, blocked or

unblocked. Banner and print control characters mayor may not be present.

Among the several processing advantages offered by these conversion routines are the

following:

1. Control cards - The specialization of Data Conversion C routines
(through Library Processor C) establishes the operating mode and
general file type to be handled. However, parameters describing
the file structure can be modified at execution time by parameters
entered via a control card.

2. Own-coding option - All routines provide exits which allow data to
be edited before it is converted to the output mediwn.

3-20

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

3. Card count - Routines handling punched cards count the number of
cards converted.

4. Variable card length - Routines can accept or generate cards or card
images of less than 80 columns in length.

s. Item print bypass - Printing of specified card-image items can be by­
passed during a Tape-to-Printer C run.

6. IBM print compatibility - Tape-to-Printer C may be specialized to
include coding for automatically translating special IBM print charac­
ters to Honeywell print characters. IBM channel skipping can also be
simulated in Honeywell Type 222 Printers.

7. Sequence checking - Card-to- Tape C and Tape -to-Punch C can perform
a sequence check on input items and halt when an item is out of sequence.

Simultaneous Media Conversion C

Simultaneous Media Conversion (SCOPE) C consists of a group of independent coroutines

which can operate simultaneously to perform conversion of data from one medium to another.

Among the operations performed are:

1. Punched cards to magnetic tape,

2. Magnetic tape to punched cards,

3. Magnetic tape to printed output,

4. Paper tape to magnetic tape, and

S. Magnetic tape to paper tape.

Up to three of these routines can be combined and executed simultaneously. In making up his

own version of the package, the user selects the source-language program decks for each of the

operations desired plus the source deck for the monitor (main control routine) and assembles

them together via Easycoder Assembler C. (NOTE: The paper tape conversion routines must

first be specialized by Library Processor C.) During execution, the monitor acts as the con­

trolling routine in determining the allocation of machine cycles to the various input/output con­

version routines in the most efficient manner.

REPOR T GENERATION

Source-language programs which simulate and expand the report preparation functions of

an E. A. M. tabulating machine are generated by a report generating program. Report Generator

C generates programs in Easycoder C source language which, when assembled by Easycoder

Assembler C, produce reports from card or tape input according to the language parameters

entered during generation by the programmer. The output reports can be produced in the form

of printed copy, punched cards, and/or magnetic tape.

To direct the generation of the source-language program, the user punches a series of

language parameter cards. These parameter cards are compatible with those of the 1401 Report

3-21

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

Program Generator. The parameter cards specify to Report Generator C the types of record

formats present in the input file (Input cards), the fields to be processed and any simple cal­

culations to be performed on them (Data cards), any extensive calculations to be made (Calcu­

lation cards), the format of the fields and lines constituting the output (Format cards), the opera­

ting environment of the generated program (Control card), and information to be used in the sim­

ulation of the carriage control paper tape functions on the tabulator (Carriage Control card).

The primary purpose of Report Generator C is to eliminate the need for the user to devel­

op and code a separate program for each of a variety of reports. Instead, he prepare s the speci­

fication cards and merges them with the Report Generator C master deck. Report Generator C

then produces a program which writes the report in accordance with the specifications stated by

the programmer.

SOR TING AND COLLATING

A number of sorting and collating routines are available in the Mod 1 Operating System to

process data stored on magnetic tapes or on drum storage.

Magnetic Tape

All tape sorting routines are based on the Honeywell-developed polyphase merge technique,

which uses as few as three tape drives while minimizing the number of passes required over the

data. Each sort operation is performed in two stages: the presort and the merge. The presort

arranges the input data in ordered strings, the number and length of which depend on the amount

of core storage available and on the degree of preordering which exists in the data. The merge

phase produces longer ordered strings by combining strings produced during the presort. This

continues until there is only a single ordered string on each work tape. At this point, the last

pass of the merge combines the remaining strings to form an ordered file on the output tape.

The collate routines, which may be used independently or in conjunction with the sorts,

combine two or more ordered tape files to form a single ordered tape file. Each file to be

collated, as well as the combined output file, may reside on one or more reels of tape.

Routines are provided for sorting and collating both fixed- and variable-length items,

blocked or unblocked. Parameters, entered from either punched cards or paper tape or set up

by instructions of some program executed prior to the sort or collate routine, specify the item

and record lengths, the number and locations of the key fields within each item, the desired out­

put sequence (ascending or descending), the collating sequence to be used (standard Honeywell.or

other), and other characteristics. Both routines contain provisions for own-coding, which the

user can prepare in Easycoder source language if desired.

3-22

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

Drwn Storage

Drwn Sort C sorts data storp-d on a magnetic drwn unit by using the key sort technique.

During the presort phase, only the key fields of each item (along with the associated drum ad­

dress of the item) are extracted, examined, and ordered into strings which are written back into

the work area reserved on the drwn for the file. The subsequent merge phase reads back these

strings and combines them in longer ordered strings until a single ordered string results. By

incorporating a macro routine into the program which follows Drum Sort C, the user can retrieve

the items in order and perform on them whatever processing he desires.

Table 3-6. Sort and Collate Programs: Features

Tape Sort C Performs tape read backward polyphase merging on fixed­
length items, blocked or unblocked. Utilizes from three to
six tape drive s. Sorts on up to ten key fields. Allows for
deletion of unreadable records during the presort or last
pass of the merge. Automatically sets restart points
throughout the sort to enable restarting immediately or at
some later time.

Tape Sort C (3V) Provides same features as Tape Sort C, except that it has
the ability to sort variable-length items, unblocked or
blocked a variable nwnber per record. Utilizes core stor­
age of up to 262K characters.

Drwn Sort C Performs sorting on files existing on a drwn. Accepts as
input files using multirecord, fixed-length format; single­
record, fixed-length format; multirecord variable-length
format; or single-record, variable-length format. Sorts
on up to ten key fields and includes an automatic sequence
check and item count check. Own-coding exits are provi­
ded in both the sort routine itself and in the subsequent
macro routine which retrieves the items from the drum in
the desired sequence.

Collate C Combines two through five ordered tape files of fixed­
length, blocked or unblocked items into a single ordered
file. Collates on up to ten key fields. Allows the user to
accept or delete unreadable records and allows changes to
label records. Also allows item-by-item own-coding.

Collate C (3V) Provides same functions as Collate C, except that it han­
dles variable-length items blocked a variable number per
record. Utilizes core storage of up to 262K characters.

Mathematical Processing Functions

The Mod I Operating System provides the scientifically oriented Series 200 user with an

extensive library of functions which complement the capabilities of the Fortran compilers. A

nwnber of packages are written in the Fortran language and are thus easily modified by the user.

The library contains basic math functions, Fortran functions, multiply/divide subroutines,

3-23

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

and floating-point arithmetic and conversion routines. All of these functions can be executed

with or without the scientific hardware or multiply/divide options. The mantissae of floating­

point numbers can vary from two to twenty decimal characters; the integer precision is from

three to twelve characters.

A list of mathematical functions is given in Table 3-7.

Table 3-7. Mathematical Processing Functions

Floating - Point Arithmetic / Comparisons C Comparison of two floating-point numbers
for equality, inequality, etc. Does not
utilize multiply/divide hardware.

Floating-Point Arithmetic/Comparisons C (N) Same as above, but utilizes multiply/
divide hardware.

Fortran functions:

Exponential C

Natural Logarithm C

Square Root C

Square Root C (V)

Sine C

Cosine C

Arc Tangent C

Linear Equation Solution C

Floating-Point/Fixed-Point Conversion C

Integer Multiply/Divide:

Integer Multiply/Divide C (2)

Integer Multiply/Divide C (2V)

Integer Multiply/Divide C (3)

Integer Multiply/Divide C (3V)

Statistics Package D:

Chi-Square D

Least Squares Curve Fitting D

3-24

Evaluates in floating decimal eX ~or an
argument of the form: x = M.IO .

Evaluates in floating decimal logex for
an argument of the form: x = M. lOP.

Computes in floating decimal the square
root of a positive floating decimal number.

Evaluates in floating decimal sine x for
an argument of the form: x = M. lOP
radians.

Evaluates in floating decimal cosine x for
an argum.ent of the forIn: x = M. lOP radians.

Evaluates in floa.ting decimal tan-Ix for
an argument of the form x = M. lOP ob­
taining a positive angle in the 1st quadrant
or a negative angle in the 4th quadrant
measured in ra.dians.

Performs the conversion between these
two modes of numerical expression.

A set of five programs which perform var­
ious statistical analyses on numerical data.

Evaluate s Chi Square.

Fits a polynomial of degree n to a set of
m observations by the method of least
squares.

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

Table 3-7 (cont). Mathematical Processing Functions

Mean, Variance and Correlation D

Step- Wise Multiple Regression
Analysis D

Random Number Generator D

Differential Equations D

PROGRAM EDITING AND MAINTENANCE

Compute s the mean, variance, covariance,
standard deviation, and correlation coeffi­
cient of the variables which are stored in
two groups on the tape: the X-group and
the Y -group.

Finds the best fit of an equation of the
following form:

y = BO + Blxl + BZxZ + + Bn_lxn_l
where y is the dependent variable and xl'
xz' are independent variables.

Generates a set of random numbers.

Solves differential equations using the
Clippinger-Dimsdale method.

The functions of storing, modifying, and maintaining source -language and machine-lan­

guage programs come under the heading of program editing and maintenance. These functions

enable programs to be selected and ordered to create master run tapes which contain only those

systems programs and processing programs required in the order best suited to the individual

jobs.

Symbolic Programs

The editing and maintenance of symbolic programs include program updating and program

selection. These functions are performed by routines which are part of the assembly and com­

pilation systems themselves. As mentioned previously, the Easycoder Assemblers C and D

write all assembled programs onto a symbolic program tape (SPT) in both their source- and

machine-language formats. Operating in the update mode, Easycoder Assemblers C and D can

correct (and reassemble) individual programs on, add new programs to, and delete unwanted

programs from, this SPT. Likewise, the Source Program and Library Update Routine of COBOL

Compilers D and H enables the user to add, delete, and replace programs and library units to

create an updated source program and library tape.

The SPT Merge C program increases the facility of handling programs stored on SPT's

by performing the selection and rearrangement of symbolic programs from as many as four

different input SPT's and writing them on a new SPT. Thus, it is possible to consolidate pro­

grams stored on several SPT's onto one master SPT in any desired order. An important aspect

of this process is that the symbolic programs (source- and machine-language formats) can be

selected, copied, and rearranged without reassembly onto the new tape.

3-Z5

.-

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

Machine - Language Program s

Just as in the case of symbolic programs, the editing and maintenance processes for exe­

cutable machine-language programs also include program updating and selection. Update and

Select C and D, which performs these processes, accepts all binary run tapes created within the

Mod I Operating System. Both versions can update a master binary run tape by either correc­

ting, replacing, or deleting programs already on it or by adding new programs to it. They can

also select programs, in any order, from the master BRT and produce a selected BRT contain-

ing these programs.

A second program, BR T Punch C, punches object programs from a BRT onto cards for

loading and executing under Card Loader-Monitor B.

A third program, Drum Program Store C, converts one or more BRT programs for stor­

age on a Type 270 Random Access Drum File. A program file as stored on a drum consists of

Drum Bootstrap- Loader C (optional), Drum Monitor C (optional), the user's object programs

(to be loaded into memory by either Drum Bootstrap-Loader C or Drum Monitor C), and a pro­

gram directory of the program file. Drum Program Store C accepts as input any object pro­

grams in BRT format produced within the Mod I Operating System and converts this input into a

format acceptable to the drum loader-monitor routines.

Table 3-8. Program Maintenance and Editing Functions

SPT Merge C Selects and rearranges symbolic programs from as
many as four input SPT' s onto a new SPT.

Update and Select C Enables the user to maintain a master BRT by allow­
ing him to correct programs on it with octal patching,
delete programs from it, replace programs on it, and
add new programs to it. It can also produce a selected
BR T containing specified programs from the master
BRT as specified by the programmer. Manipulates ob­
ject coding by segment units only. Prints a listing of
the director cards, a directory of the new BRT, and a
directory of the selected BRT.

Update and Select D Same as the version above, except that it can manipu­
late program units as well as segment units.

BRT Punch C Converts binary run tapes to BRT-format punched
cards (binary run decks) which are acceptable to Card
Loader-Monitor B. Programs from up to six input
BRT's can be selected for punching in any order.

Drum Program Store C Converts one or more object programs from BRT for­
mat for storage on a Type 270 Random Access Drum
File. A program file is created on the drum and con­
sists of Drum Bootstrap Loader C (optional), Drum
Monitor C (optional), the user's object programs mod­
ified for drum storage and loading, and a directory of
the program file.

3-26

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

USER'S SOURCE­
LANGUAGE PROGRAMS
AND CORRECTIONS

LANGUAGE PROCESSORS

EASYTRAN SYMBOLIC TRANSLATORSCSD
EASYCODER ASSEMBLERS caD
COBOL COMPILERS D a H
FORTRAN COMPILERS DSH

-- -----
/---..,

/sOURCE \
JOR SYMBOLIC'

..-- \ PROGRAM r--i
-- \ TAPE / , , /'

.... ". I
I
I
I

'- ,
" , ,

, , /---.. I
, ' , I UPDATED "\ I

/---, " '- f SOURCE OR
'-~----71 '-~ SYMBOLIC 1----,

(IHONEYWEL~l UTILITYS _
(-BRr:: FoRMAT; I \PROGRAM / I
L DECK .J.) ,T~E ...-/ I

\ SYSTEMS I
\. BRT /

'- "./'
(ASSEMBLY AND'~< I'
COBOL ONLY) '- I (FROM I

- ---------l

BRT MAINTENANCE

UPDATE AND SELECT C AND D

/' --..

I " f SELECTED \

\ BRT)

\ /
I '--r:::-
I I t. ___________ , ___________ j

,

'-" r - - i ~S~MlBLY) ,

'1 I I
I 'SPT MERGE C' I
I I I I
I L--T--J I
, I I
I' ,....--t-.. I

I " I I I SELECTED \ I
I \ SPT Ir--~
I \, ./
, ------
l , , ,

'-
'- ,

'-

,----------1--,-----------,
'1 ,
I
I ,

, , ,

DRUM PROGRAM STORE C

LOAD AND EXECUTE UNDER DRUM
BOOTSTRAP LOADER OR DRUM MONITOR

LOAD AND EXECUTE UNDER TAPE
LOADER- MONITOR C OR FLOATING TAPE
LOADER-MONITOR C.

BRT PUNCH C ,
I ,
I
I
I ,

Figure 3-10. Mod 1 Operating System: Program Preparation and Maintenance

3-27

•

SECTION IV

PROGRAM EXECUTION AND CONTROL

The program execution and control capabilities of the Mod I Operating System are divided

into three categorie s:

1. Operation control,

2. Input/output control, and

3. Program test.

OPERATION CONTROL

Operation control encompasses all of the functions involved in the searching for, and the

loading and monitoring of, object programs. The Mod I Operating System extends these func­

tions to all programs, whether stored on punched cards, magnetic tape, or drum. Also included

is interrupt software which enables the user to take advantage of the interrupt features and pe­

ripheral simultaneity of the Series 200 computers. Lastly, a utility program reads comments

cards containing instructions to the operator, report headings, etc., and displays them on the

console typewriter or printer.

Loading and Monitoring

The loading and monitoring of object programs are accomplished with essentially the same

efficiency regardlessofthe program storage m.edhun. Most of the same functional characteristics

and convenient operational features are also retained.

LOADING FROM TAPE

Both of the tape loader-monitor routines, Tape Loader-Monitor C and Floating Tape Load­

er-Monitor C, search for and load program.s stored on any binary run tape (BRT) produced within

the Mod 1 Operating System envirorunent.

Object programs, as assembled or compiled and stored on a BRT, are composed of one

or more loading units or segments. Any loading unit can be searched for, loaded, and executed

independently. A call to search for and load a given program segment can originate from sev­

eral sources:

1. Current program - The programmer may include programmed instruc­
tions which set up the required search parameters in the loader communi­
cations area and then branch to the appropriate loader routine to initiate
the searching for and loading of the next segment to be executed.

4-1

2.

3.

SECTION IV. PROGRAM EXECUTION AND CONTROL

Operator - The operator can enter the parameters via the control panel
or console typewriter and manually branch to the loader routine.

Console Call card - Search parameters can be entered through the card
reader via a Console Call card. The reading of the card and the search
and load operation can be initialized either manually by the operator or
automatically by programmed instructions.

Basically, the search parameters specify the search mode to be used and the program name,

segment name, visibilities, etc. The search modes include the following:

1. Search by visibility and relative position - Searching in the specified
direction (forward or backward) on the BR T, load the nth loading unit
having the specified visibility.

2. Search by program name and segment name - Searching in the speci­
fied direction (forward or backward) on the BRT, load the loading unit
having the specified program name and segment name regardless of
visibility.

3. Search by segment name within the current program - Searching in the
specified direction, load the loading unit having the specified segment
name within the current program.

4. Search by program name, segment name, and visibility - Searching in
the specified direction, load the loading unit having the specified pro­
gram name, segment name, and visibility. This mode allows for the
presence of several versions of a program on the same BRT by assign­
ing a different visibility to each of the versions.

5. Search by segment name and visibility within the current program -
Searching in the specified direction, load the loading unit having the
specified segment name and visibility within the current program.
This mode allows for the presence of several versions of a routine
within a program.

Other parameters which may be specified are load parameters (relocation augment, etc.) and

start parameters (branch to normal start location, special start location, etc., in loaded unit,

set trapping mode, etc.).

Two versions of the tape loader-monitor are provided: Tape Loader-Monitor C and Float­

ing Tape Loader-Monitor C. Tape Loader-Monitor C is not relocatable and occupies 1,276 loca­

tions of main memory (locations 64 through I, 339). Floating Tape Loader-Monitor C consists

of two segments. Segment 1 occupies memory locations 2, 150 through 4,096 and is required

only for the purpose of loading Segment 2. Segment 2 is the actual tape -loader-monitor routine

and can be reallocated or "floated" into any memory bank above memory bank 0. Once Segment

2, which occupies a minimum of 1,400 memory locations, is loaded, Segment 1 can be overlaid.

Thus, user programs which have been assembled to reside in memory below location 1339 need

not be modified and reassembled as would be required with the use of Tape Loader-Monitor C.

Floating Tape Loader-Monitor C, which provides all of the functions of Tape Loader-Monitor C

plus several additional features, is a macro program which must be specialized and processed

by Library Processor C and then assembled. By filling in the required parameters in the macro

4-2

I·

SECTION IV. PROGRAM EXECUTION AND CONTROL

instruction, the user can specialize the loader-monitor to load programs in any portion of mem­

ory, load binary run decks, provide own-coding exits, and utilize a console typewriter to display

messages and to receive operator responses. As explained later, Floating Tape Loader-Moni­

tor C must be present in memory in order to use Interrupt Control D.

A further discussion of the loader-monitor routines can be found in Section V.

LOADING FROM CARDS

Object programs punched on binary run decks (such as those produced by Easycoder

Assemblers C and D or BRT Punch C) can be searched for, loaded, and initiated by Card Loader­

Monitor B. The functions and operational characteristics of this routine are compatible with

those of the tape loader-monitors in many ways:

1. The loader-monitor communication areas of both are identical.

2. A call can originate from the same three sources: the current program,
the operator, or a Console Call card.

3. The same search modes are provided. Exceptions: Card Loader-Monitor
B cannot, of course, search in a backward direction and cannot load by
visibilities.

4. The same loading and starting parameter options are applicable.

Card Loader-Monitor B requires 936 memory locations (64 through 999) and has a fixed

allocation. However, if this allocation is not desirable, Floating Tape Loader-Monitor C can

be specialized to load from cards.

LOADING FROM DR UM

The loading and monitoring of object programs which are part of a drum program file

created by Drum Program Store C are performed by two routines: Drum Bootstrap-Loader C

and Drum Monitor C.

Drum Bootstrap-Loader C is the simpler of the two and is designed primarily to bring

Drum Monitor C into main memory from the drum program file; however, it is also capable of

searching for and loading any object program on the drum. Drum Bootstrap- Loader C is the

only program in the drum program file which is stored in condensed card images (to facilitate

bootstrapping) instead of in modified BRT format. The entire routine occupies approximately

750 characters and can exist in one of two forms:

1. As a bootstrap-loader routine which can be manually bootstrapped from
the drum itself into a fixed memory area beginning at location 1,340, or

2. As a loader routine which can be loaded into memory by Drum Monitor
C, or by some other loader-monitor routine (Card Loader-Monitor B,
Tape Loader-Monitor C, etc.) if stored on some other device. In this

4-3

SECTION IV. PROGRAM EXECUTION AND CONTROL

case, the routine can be relocated in memory by simply reassembling it.
This allows lower memory to be used by the object programs.

The bootstrap-loader routine contains a 33-character parameter area into which the programmer

must enter the required values before executing the loader. A program can be searched for and

loaded according to program name, segment name, and visibility. The area is initially set to

search for and load Drum Monitor C and must be modified either manually (when Drum Bootstrap­

Loader C is bootstrapped) or by programmed instructions (when Drum Bootstrap-Loader C is

loaded by some other method) if some other object program is desired. The loading of the pro­

gram can then be initiated by branching to the loader manually through a console fixed start or

automatically through programmed instruction.

Drum Monitor C is designed to be both functionally and operationally compatible with the

card and tape loader-monitor routines in the following areas:

1. The loader-monitor communication area is identical.

2. A call to search for and load an object program can originate from the
same three sources: the current program, the operator, or a Console
Call card.

3. The search modes are the same five modes included in the tape loader­
monitor routine s.

4. The same loading and starting options are available.

Drum Monitor C occupies locations 64 through 1,339 in main memory and can be loaded from a

drum storage unit by Drum Bootstrap-Loader C, or from cards or tape by any other loader­

monitor routine which does not occupy locations 64 through 1,200.

Table 4-1. Operation Control: Loading and Monitoring Functions

Tape Loader-Monitor C

Floating Tape Loader­
Monitor C

Searches for and loads object programs stored on
binary run tapes (BRT's). A call to search and
load a program segment can originate from the
operator, the current program, or a Console Call
card. Five types of searches, operating in either
a forward or backward direction, are provided:
(1) visibility and relative position, (2) program
name and segment name, (3) segment name with­
in current program, (4) program name, segment.
name, and visibility, (5) segment name and visi­
bility within current program. Loading and start­
ing options, as well as user own-code exits are
also provided. Occupies 1,276 locations (64
through 1,339) of core storage and is not relo­
eatable.

Provides all of the functions of Tape Loader­
Monitor C plus the capacity to be relocated or
"floated" to any memory bank above bank 0.
Offered in the form of a macro routine, the user
can specialize it to load programs in any portion

4-4

L
t

SECTION IV. PROGRAM EXECUTION AND CONTROL

Table 4-1 (cont). Operation Control: Loading and Monitoring Functions

Floating Tape Loader­
Monitor C (cont)

Card Loader-Monitor B

Drum Bootstrap-Loader C

Drum Monitor C

Interrupt Capabilities

of memory, load BRT-format program decks,
provide own-coding exits, or utilize a console
typewriter. Occupies a minimum of 1,400
memory locations.

Searches for and loads program segments
stored in BRT-format on cards. Implements
all of the capabilities of Tape Loader-Monitor
C with the exceptions that searching is in a
forward direction only and visibilities are not
taken into account. Occupies 936 memory
locations (64 through 999).

Designed primarily to load Drum Monitor C,
this basic routine can be utilized to load any ob­
ject program which resides on a drum unit as
part of a program file. As a bootstrap-loader
routine, it can be manually bootstrapped into
main memory beginning at location 1, 340; as
a loader routine it can be loaded from drum,
cards, or tape by the appropriate loader-moni­
tor and can be relocated by modifying the origin
and reassembling. Program searching and
loading by program name, segment name, and
visibility can be initiated by the operator or by
programmed instructions. Occupies approxi­
mately 750 memory locations.

Extends all of the functions and operational
characteristics of Tape Loader-Monitor C to
object programs stored on a drum unit. Occu­
pies locations 64 through 1,339 in main memory
and can be loaded from a drum by Drum Boot­
strap-Loader C or from any other storage medium
by the appropriate loader-monitor routine.

Series 200 computer systems provide an interrupt feature whir.h, along with their inherent

peripheral simultaneity, allows two programs to be executed together in much less time than if

they were run serially. One of the programs, termed the foreground program, is normally a

terminal peripheral-type routine such as card-to-tape, communication, tape-to-printer, etc.

The other program, called the background program, usually contains a high percentage of inter­

nal processing, such as a sort, collate, assembly, etc. At the start of execution both programs

are loaded into different areas of memory and control is given to the foreground program. The

foreground program is then executed until a Peripheral Data Transfer instruction (PDT) is

encountered. While the data transfer is actually taking place, an interrupt control routine trans­

fers control to the background program, a portion of which is executed during the machine cycles

allotted to main memory during the data transfer. At the end of the data transfer, the peripheral

control generates an interrupt signal which causes the interrupt routine to return control to the

foreground program. The foreground program continues execution once again until another PDT

4-5

SECTION IV. PROGRAM EXECUTION AND CONTRa-L-

instruction is encountered, at which tiITIe the control is given to the background prograITI which

continues where it left off. This back-and-forth operation continues until both prograITIs reach

their terITIination.

INTERR UPT CONTROL D

Interrupt Control D is a Honeywell-supplied routine designed to aid the user in taking ad­

vantage of these interrupt capabilities. It runs in conjunction with Floating Tape Loader-Moni­

tor C, which ITIust be resident in ITIeITIory iITIITIediately following Interrupt Control D.

Interrupt Control D is a generalized ITIacro prograITI which ITIust be specialized ,by Library

Processor C or D before being asseITIbled by Easycoder AsseITIbler C or D. Six prespecialized

versions are provided to handle three- or four-character ITIode operation, the presence or ab­

sence of an external INTERRUPT button, etc. These versions require 500 to 625 locations

starting at location 200 plus 750 to 1, 150 locations iITIITIediately below the Floating Tape Loader­

Monitor C routine. Interrupt Control D perITIits the independent sequencing of both foreground

and background prograITIs as indicated by the user. Background prograITIs are searched for,

loaded, a:nd started norITIally under control of Floating Tape Loader-Monitor C. Foreground

prograITIs, however, cannot cOITIITIunicate directly with the loader-ITIonitor and ITIust instead

terITIinate with a ITIacro call to Interrupt Control D. If the user has previously set an indicator

in a specified ITIeITIory location, Interrupt Control D loads the next foreground segITIent and con­

tinues execution of the new segITIent and of the background prograITI; if the user has not set the

internal indicator, Interrupt Control D allows the background prograITI to continue processing to

cOITIpletion.

Foreground PrograITIs

Currently, Honeywell offers pre specialized foreground prograITI8 to perforITI tape-to-printer,

tape-to-card, and card-to-tape data conversions. These three routines are known collectively

as Data Conversion C and are described on page 3-20. If the user writes his own foreground

prograITI, he ITIust follow certain prograITIITIing considerations and ITIust include a return ITIacro

call iITIITIediately after each PDT instruction. This causes a return of control to Interrupt Con­

trol D which, in turn, enters the background prograITI. At the end of the foreground pr02;raITI,

the user ITIust include an exit ITIacro call to return control to Interrupt Control D, which will

either cause the next foreground segITIent to be loaded or continue the processing of the back­

ground prograITI to cOITIpletion. Figure 4-1 illustrates these functions.

SIMULTANEOUS SORT AND PRINT

To aid the user in cOITIbining two cOITIITIonly used functions, Honeywell has ITIodified the

Tape Sort C prograITI to allow printing while sorting. The print prograITI to which Tape Sort C

4-6

SECTION IV. PROGRAM EXECUTION AND CONTROL

can be linked is called MONTOR and is a two-segment program which can be used alone or with

the sort process. The first segment is the linkage between the sort routine and the print rou­

tine and performs the function of an interrupt control routine; the second segment is a utility

routine for printing unblocked standard print-image tapes on a 132-position printer. Any utility

routine can be substituted for the second segment provided that the first-segment linkage routine

is retained.

I FOREGROUND PROGRAM I
INTERRUPT MODE

INTERRUPT
CONTROL 0 ,---'"

PDT

RETURN MACRO r---

I r""1-------
I I I

: I 1
I t I
II I
I I I
I . I
I f I
I· I I

----l...-J l

~ BACKGROUND PROGRAM I
NORMAL MODE

......

INSTRUCTIONS
EXECUTED DURING
PERIPHERAL DATA
TRANSFER INTER-
VAL

----/--, :
I t....-1--- __ --

PDT

RETURN MACRO I--

PDT

RETURN MACRO t-..

: ri-------
r I r
II I
I I I
I f I
I I I
r ., I
I I
I I I
I I I
It I
I . t I ___ -1-...J I
I I ----:-., :
!

L=J
r;:~_E_XI_T_M_AC_RO ___ l~L ______ --

INTERRUPT
CONTROL 0
EITHER ASSIGNS
CONTROL TO

I BACKGROUND
I PROGRAM UNTIL
I COMPLETED OR

,'1 LOADS NEXT
I FOREGROUND

I I PROGRAM AND
L. ___ --l CONTINUES.

INSTRUCTIONS
EXECUTED DURING
PERIPHERAL DATA
TRANSFER INTER-
VAL

INSTRUCTIONS
EXECUTED DURING
PERIPHERAL DATA
TRANSFER INTER-
VAL

'--

f--

....

Figure 4-1. Multiprogramming with Interrupt Control D

4-7

DATA TRANSFER
COMPLETED;
PERIPHERAL CONTROL
GENERATES INTER­
RUPT SIGNAL; CONTROL
RETURNS TO INTER­
RUPT ROUTINE,
INTERRUPT MOCf: IS
ENTERED, AND FORE­
GROUND EXECUTION
IS CONTINUED .

SECTION IV. PROGRAM EXECUTION AND CONTROL

List Comments C

List Comments C is a short routine which reads cards containing comments such as opera­

tor instructions, report headings, etc., and displays them on either the printer or the console

typewriter as directed. Spacing and carriage control functions are included. List Comments C

is loaded from a BRT under the control of Tape Loader-Monitor C.

INPUT /OUTPUT CONTROL

Honeywell provides a comprehensive set of input/output control functions in the form of

macro routines which can be specialized and incorporated into the user's programs. These

functions handle all of the standard input/ output devices such as magnetic tape units, card read­

ers and punches, printers, drum units, and consoles; thus, the need for the writing of detailed

and exhaustive input/output coding by the user is eliminated. Moreover, the standardization of

file handling, label creation, read/write error routines, etc., creates a uniformity in both data

format and operating procedures.

Magnetic Tape Input/Output Control

liZ-Inch Tape I/O C is a group of macro routines which handle data files of either fixed­

or variable-length records stored on liZ-inch magnetic tape. These routines are capable of

handling Honeywell-created tapes, or if the proper hardware compatibility options are installed,

IBM-created tapes. The user incorporates these routines into his Easycoder source-language

program by means of file-definition entries and macro calls. The source program is then

specialized by Library Processor C or D before being assembled.

In writing his program, the user must first supply a definition (Define Communications

Area - DCA) for each tape file to be processed. He includes information such as the file type

(input or output), the parity (odd or even), the read/write channel to be used, the blocking fac­

tor, item size, locations of buffers reserved for the file, etc. Then, in writing the logic for the

program, he utilizes the appropriate macro calls (@OPEN, @GET, @PUT, @CLOSE, @FEOR)

to open or close the files, read or write records, and force an end of reel. The checking and

creation of standard labels, the blocking and unblocking of records, and the detection and correc­

tion of read/write errors are all performed automatically by the macro routines. User's own­

coding exits are provided for additional processing of header and trailer labels and for initiating

the programmer's own end-of-file procedure.

The liZ-Inch Tape I/O C routines are written and assembled in three- or four-character

mode and, depending upon the processes called for, occupy between Z, ZOO and 3,500 core mem­

ory locations. In addition, each file processed requires a file table of up to 73 character loca­

tions and the necessary buffer areas.

4-8

I

SECTION IV. PROGRAM EXECUTION AND CONTROL

Magnetic Tape and Terminal Input/Output Control

l/Z-Inch Tape and Terminal I/O C is a more comprehensive input/output control package

'-' consisting of a series of routines which perform the standard input/ output procedures for mag­

netic tape, punched card, and printer operations. Read/write channel tests are also included to

take advantage of the read/write / compute simultaneity of the Series ZOO systems. Honeywell­

format and IBM-format (if required hardware options are present) I /Z-inch magnetic tape files

are acceptable and the routines are functionally compatible with those of the IBM 1401 Input/Out­

put Control System (IOCS).

The programmer must supply to the package three types of descriptive entries:

1. A Descriptive IOCS (DIOCS) entry which describes, in general, all the
files to be processed and the system configuration used,

Z. A Define the File (DTF) entry for each of the files which describes,
in detail, the type, format, etc., of a specific file, and

3. Carriage control entries to specify punches in the printer carriage­
control tape.

In addition to a number of extensions to the macro calls provided in l/Z-Inch Tape I/O C, five

additional macro calls have been added:

1. RDLIN - Allows the label information specified in the DTF entry for the
file to be changed from run to run; e. g., the creation date constant to
be compared.

Z. SPACE - Allows the programmer to control the spacing of printer forms.

3. SKIP - Allows the programmer to control the skipping of printer forms.

4. RELSE - Permits the programmer to skip over the remaining items of a
blocked record and to continue processing with the first item of the next
record.

5. DCLOS - If, in one or more DTF entries, the programmer has specified
that all records containing parity errors are to be written on an error
tape, this macro call causes the deactivation of that tape. Additional
parameters can indicate that a tape mark is to be written after the last
record and that the reel is to be rewound and unloaded.

As in l/Z-Inch TapeI/O C, user's own-coding exits are provided for the processing of nonstand­

ard labels or the additional processing of standard labels, the programmer's own end-of-reel or

end-of-file routines, etc. In addition, the package can optionally check for wrong-length tape

records.

The l/Z-Inch Tape and Terminal I/O C routines can be assembled in either three- or four­

character mode and have the following minimum memory requirements~

1. DIOCS table - 800 locations

Z. Each tape file - 650 to 1, ZOO locations

3. Each card file - Z50 to 400 locations

4. Each printer file - 1.900 locations

Memory space for buffers is not included in the above figures.

4-9

SECTION IV. PROGRAM EXECUTION AND CONTROL

Drum Input/Output Control

Drum I/O C is a set of macro routines which allow the user to handle files stored on drums

with the same ease and simplicity as those stored on cards or tape. These routines read and

write data sectors, block and unblock items, and execute standard error procedures. Items may

be of fixed or variable length. Files can be read only, written only, or read and written. Process­

ing can be on a serial basis (item by item), a random basis (the file is read until a specific item

is found), or a designated basis (a specific segment is read or written).

The programmer defines the files using a series of parameters which state the file format,

item length, the limits of the file, and the locations of several own-coding routines for end of

file, illegal address, file not found, and read error conditions. He directs the processing

through the same type of macro calls (OPEN, GET, PUT, CLOSE, etc.) as are used with the

tape and terminal input/ output control packages.

Console Input/ Output Control

Console I/O C consists of a group of macro routines which control data transfer between

main memory and a Type 220-1, 220-2, or 220-3 console typewriter. Data messages can be up

to 80 characters in length and can be in either alphanumeric (six-bit), octal (three-bit), or deci­

mal (four - bit) format.

To incorporate these routines into his program, the user must include a @CONSL macro

call which specifies the data format{s) selected, the read/write channel to be used, etc., and

causes the inclusion of these common routines into the program. Within the logic of the pro­

gram, he includes a @TYPE macro call at each point where he wishes to display data on, or

accept data from, the console. If he wishes to do both, he can use one @TYPE macro statement

to specify both the location of the message to be typed out (to request the type in) and the location

into which the response is to be placed.

The Console I/O C routines can be assembled in three- or four-character mode and have

the following minimum memory requirements:

Data format{s) selected Minimum memory required

Alphanumeric 540 character locations

Alphanumeric and decimal 730 characte r locations

Al phanum eric and octal 920 character locations plus
(4 x maximum message length)

Alphanumeric, decimal, and octal 1, 110 character locations plus
(4 x maximum message length)

4-10

..

SECTION IV. PROGRAM EXECUTION AND CONTROL

Communications Input/Output Control

Communications I/O C is an input/output package which aids the user in the programming

of communication network applications such as message switching, data collection, information

retrieval, inquiry handling, and management information systems. Its primary functions are the

control and translation of data to and from such communication units as telephones, teletype­

writers, data stations, and other remote terminal equipment. These functions are selected and

controlled by macro calls (OPEN, GET, PUT, etc.) inserted into a source program by the user

and specialized by Library Processors C or D. Such functions as initialization, interrupt pro­

cessing, error detection and handling, monitoring of lines, and updating of line status informa­

tion are all performed automatically.

Communications I/O C is a general-purpose communications package and can be easily

adapted to the user's present systems requirements and readily modified in the future to handle

any changes or additions to the system. The programmer need not have a detailed knowledge of

either the communication network itself or the systems considerations for real-time data flow.

Table 4-2. Input/Output Control Functions

1/2-Inch Tape I/O C

1/2-Inch Tape and
Terminal I/O C

Drum I/O C

Console I/O C

Communications I/O C

A macro routine package which handles data files
of fixed- or variable-length items stored on 1/2-
inch magnetic tape. Macro routines are provided
to open and close files, read and write records,
and force an end-of-reel condition. The checking
and creation of labels, blocking and unblocking of
items, and the detection and correction of read/
write errors are handled automatically.

A series of macro routines which handle all
standard input/ output procedures for 1/2-inch
magnetic tape files, punched card files, and
printer files. RWC-availability tests are made
to take advantage of the inherent simultaneity of
the system. Functions provided are compatible
with those of the IBM 1401 IOCS routines.

A series of macro routines which allow the user
to handle files stored on drum units with the same
ease and in the same manner as files stored on
magnetic tape or punched cards. Items can be of
fixed or variable length and processing can be ,on
a serial, random, or designated segment basis.

A series of macro routines which control data
transfer between main memory and a Type 220-1,
220-2, or 220-3 Console. Data messages can be
up to 80 characters in length and can be in any of
three modes: alphanumeric, octal, or decimal.

A series of macro routines which aid the user in
the programming of communication network appli­
cations by controlling and translating data to and
from corrrnunication units such as telephones,
teletypewriters, data stations, and other remote
terminal equipment.

4-11

SECTION IV. PROGRAM EXECUTION AND CONTROL

PROGRAM TEST FACILITIES

An important part of the program execution and control functions in the Mod 1 Operating

System is the program te st facilitie s.

Automatic Program Checkout

Program Test System C is an automatic, open-ended checkout system which operates

under Tape Loader-Monitor C and provides automatic run-to-run sequencing, test data genera­

tion, program patching, program checkout diagnostics, memory dumping, and tape dumping.

The open-ended design allows the user to write his own program test utility routines and incor­

porate them within the test system. As provided by Honeywell, Program Test System C is com­

posed of nine utility programs stored on a BRT. These are Initializer C, List Comments C,

Test Data Generator C, Memory Dump Control C, Memory Dump C, Patch C, Tape Dump C,

Emergency Dump C, and End C.

INITIALIZER C

Initializer C prepares the Program Test System for automatic reading of Console Call

cards from the test director deck and the loading of the other utility programs from the BRT.

It sets the computer to the nontrapping mode, rewinds the BRT, and suppresses the Tape Loader­

Monitor C console call halt to enable nonstop sequencing and loading of the pro grams.

LIST COMMENTS C

List Comments C reads punched cards containing operator instructions, report heading

lines, etc., and prints or types this information on the printer or the console typewriter. This

utility program has been previously described under Operation Control on page 4-8.

TEST DATA GENERATOR C

Test Data Generator C creates test data on liZ-inch magnetic tape from punched cards

and enables the programmer to test his programs against a wide range of possible input vari­

ables. Tape files can be created with bannered or bannerless records of blocked or unblocked,

fixed- or variable-length items. Header, trailer, and tape mark records are created as direc­

ted by the programmer.

MEMORY DUMP CONTROL C

Memory Dump Control C facilitates the printing out of core storage contents by loading and

initiating Memory Dump C to edit and print these contents. Memory dumping can be called for

by either or both of two methods: programmed instruction, which allows for the taking of mem­

ory dumps by use of symbolic coding within the program; iteTIl-TIlark trapping, which perTIlits

the use of an iteTIl TIlark over the operation code of an instruction to trigger TIleTIlory dUTIlping.

4-lZ

SECTION IV. PROGRAM EXECUTION AND CONTROL

MEMOR Y DUMP C

Memory Dump C is used by both Memory Dump Control C and Emergency Dump C to edit

and print the contents (data and punctuation) of core storage. It must be loaded by one of these

two programs and cannot be used independently within the Program Test System. All printouts

are given in both alphanumeric and octal mode with any punctuation displayed beneath the associ­

ated character positions.

PATCH C

Patch C enables the programmer to make octal patches to his program in main memory

without affecting the program as stored on the BRT. Thus, on-the-spot modifications can be

made to a program during testing to tryout different variations of some routine, check out pro­

posed corrections to the program before making a permanent change, etc.

TAPE DUMP C

Tape Dump C positions 1/2-inch magnetic tape files and edits and prints their contents as

directed by the user. Functions include rewinding, positioning (forward or backward), and edit­

ing and printing. Editing can be in either alphanumeric or octal format. Any number of con­

secutive functions can be performed with a single loading of the routine.

EMERGENCY MEMORY DUMP C

Emergency Memory Dump C can be used to take a printout of core storage if unexpected

difficulty is encountered during execution. Memory Dump C is loaded and utilized to edit and

print the contents. In the three-character addressing mode, Emergency Memory Dump C re­

quires 125 core locations and Memory Dump C requires an additional 625 core locations. The

operator can call in the Emergency Memory Dump C program by entering the three standard call

parameters (program name, segment name, and tape drive number) through either the control

panel (or console) or the card reader.

Use of the Program Test C Utility Programs

Under the Program Test System C, these nine utility programs, along with the user's pro­

grams to be tested, are searched for, loaded, and executed automatically under the direction of

the test director deck. This deck can contain Console Call cards, data cards for test data

generation, octal corrections, etc. A whole series of runs can be checked out with little or no

operator intervention by placing Console Call cards for both the user's object programs and the

Program Test System C utility programs in the proper order, along with other required cards,

in the test director deck.

4-13

SECTION IV. PROGRAM EXECUTION AND CONTROL

With the exception of the separate memory dump and memory dump control programs,

which must be run together as already noted, each utility program making up Program Te st

System C can be run separately as a regular BRT program without executing Initializer C.

4-14

SECTION V

PROGRAM SEARCHING AND LOADING

Basically, all prograITl searching and loading perforITled in the Mod 1 Operating SysteITl is

controlled by the contents of the loader cOITlITlunication area. These contents can be changed by

either the prograITlITler or the operator in anyone or ITlore of three different ways:

1. Manually through the control panel or console (all fields).

2. By prograITlITled instructions (all fields).

3. Bya Console Call card (prograITl naITle, segITlent naITle, BRT tape drive
nUITlber).

The layout of the entire loader cOITlITlunication area is presented in Table A-I, page A- 5 For

the convenience of the reader, that portion of the area concerned with prograITl searching and

loading is repeated in Table 5-1.

Table 5-1. PrograITl Searching and Loading ParaITleters

ParaITleter NaITle

Search Mode

Search Direct.

PrograITl NaITle

SegITlent NaITle

Visibility Msk

Relative POSe

BRT Tape Drive

Locations

DeciITlal Octal

III 157

106

68-73

74-75

113-
118

110

76

152

104-
III

112-
113

161-
166

156

114

Values

20 prog. and seg. naITle
01 vis. and reI. pOSe
00 seg. (within curro

prograITl)
60 prograITl, segITlent,

visibility
40 seg. and vis. (with­

in curro prog.)

22 - forward
23 - backward

Initial value =
40 00 00 00 00 00 (A)

Initial value = 1

Initial value = 0

5-1

Methods of
Altering

......
o
!-I
s::
o
u

x

x

x

x

x

x

x

x

x

x

x

x

x

x

......
ro
U
Q)

......
o
Ul
s::
o
U

x

x

x

AutoITlati -
cally Reset

......
ro
U

Q)
......
o
Ul
s::
o
U

......
ro
o
Q)

P­en

20 01

22 22

1 1

SECTION V. PROGRAM SEARCHING AND LOADING

Thus, the user, by modifying the values in the communication area by any of the three

methods mentioned above, can direct any of the loader-monitor routines in the Mod 1 Operating

System to search for the next program to be loaded and executed.

Table 5-2. Loader-Monitor Searching Options

Card Loading Tape Loading Drum Loading

LOADER -MONITOR Card Loader-Monitor B Tape Loader-Monitor C Drum Monitor C
or Floating Tape or Floating Tape
Loader -Monitor C Loader -Monitor C

DIRECTION OF Forward only Forward or backward Forward or backward
SEARCH

CRITERIA FOR Program name and Program name, seg- Program name, seg-
SEARCHING segment name ment name and/or ment name, and/or

visibility visibility
or or

relative position and relative position and

visibility visibility

SPECIFIED
Within or beyond the boundaries of the current program

LIMITS

DEVICE AND Input binary run deck BR T mounted on tape Drum program file
MEDIA in card reader unit specified in com- located on specified

munications area drum unit
(location 76 10)

The user must indicate to the loader routine the method by which he is entering the pa­

rameters and whether he requires a halt before the search for the next program is initiated.

He does this in two ways:

1. The addre s s by which he returns to the loader, and

2. The value which he has placed in the Method of Console Call Entry field
(location 6410).

This is summarized in Table 5-3.

Table 5-3. Methods of Entering Search Parameters

Method Desired Type of Return Required Setting of Location 6410

Loader is to halt to allow the Either the operator manually Either the current program
operator to enter the values executes Fixed Start 0 (sets or the operator must set the
into the communication area sequence register to 1268 and Method of Console Call
manually through the control presses RUN), or the current Entry field to 01

8
•

panel. program terminates with a
branch to the indirect address
(General Return Address)
stored in location 139 10 :
B/(139).

5-2

SECTION V. PROGRAM SEARCHING AND LOADING

Table 5-3 (cont). Methods of Entering Search Parameters

Method Desired Type of Return Required Setting of Location 6410

Loader is to halt to allow the Either the current program
operator to ins!frt a Console or the operator must set the
Call card in the card reader Method of Console Call Entry
and to make any manual Same as above. field to OOS.
entries to the communication
area through the control
panel.

Loader is to automatically The current program must Setting is ignored.
read the next Console Call terminate with a branch to
card in the reader without the indirect address (Alter-
halting. nate Return Address) stored

in location 14S10: B/(l4S).

The parameter values have The current program must Setting is ignored.
already been entered by the terminate with a branch to
current program. The the Return Address for
loader is to begin searching Normal Call: B/l30.
according to these values
without halting.

5-3

I

SECTION VI

SAMPLE OPERA TING APPLICA TIONS

As a brief sUITunary of the components of the Mod 1 Operating System and as a guide to its

use and capabilities, this section presents several sample operating applications with their sug­

gested solutions. Each solution is a simple one, yet it takes full advantage of the automatic

operating features of the system.

APPLICATION 1 - EASYCODER PROGRAM SPECIALIZATION, ASSEMBLY, AND TEST

The user has three Easycoder source programs (PROGA, PROGB, and PROGC) which he

wishes to specialize via Library Processor C, assemble via Easycoder Assembler C, and test

via Program Test System C. Figure 6-1 illustrates these processes.

Run Deck Setup

Figure 6 -2 illustrate s the run deck setup, which is explained below.

1. AACLIB Console Call card - This Console Call card directs Tape Loader­
Monitor C or Floating Tape Loader-Monitor C (whichever has been boot­
strapped into memory by the operator) to search for, and initiate the
loading of, Library Processor C from the systems BR T.

2. Equipment Configuration Descriptor (ECD) card - This card indicates to
the Library Processor and Easycoder Assembler programs the equipment
configuration available for their use. In this case, standard equipment
configuration #2 (five tapes, card reader, card punch, and printer) is
selected.

3. System Specific Header card (IHDR..::l) - Identifies the director deck.

4. Easycoder source-language program decks - The source-program decks
for PROGA, PROGB, and PROGC.

5. End-of-File card (IEOF..::l) - Signals the end of the input deck to the Library
Processor.

NOTE: Because of the equipment configuration selected, Easycoder Assembler C
will be loaded and executed immediately following the library processing,
of the three programs: no Console Call card is required.

6. AAATST Console Call card - This card directs the loader-monitor to search
for and load Initializer C, which positions the BRT and modifies the loader­
monitor for the Program Test System.

7. AAAGI2 Console Call card - This card directs the loader-monitor to load
and execute Test Data Generator C, which reads the test data cards fol­
lowing and places them in the specified format on magnetic tape as test
data input to PROGA.

8. AAADUM Console Call card - This card directs the loader-monitor to search
for and load Memory Dump Control C, which, in turn, loads Memory Dump
C. Memory Dump C is not executed at this time, but resides in memory

6-1

INPUT
DATA

SECTION VI. SAMPLE OPERATING APPLICATIONS

LIBRARY
PROCESSOR
SPE'CIALIZATION

EASYCODER
ASSEMBLY

PROGRAM
TEST

MACRO
LIBRARY

TAPE LOADER-MONITOR
LIBRARY PROCESSOR
EASYCODER ASSEMBLER
PROGRAM TEST SYSTEM

OUTPUT DATA

I ------,
--- --., I

(I I
I I I
L .-_J

/"

Figure 6 -1. Application 1: Run Setup

6-2

SECTION VI. SAMPLE OPERATING APPLICATIONS

INPUT DECK TO
EASYCODER
LIBRARY
PROCESSOR
AND
ASSEMBLER

INPUT TEST DIRECTOR
DECK FOR PROGA

INPUT TEST ;;
DIRECTOR DECK
FOR PROGB, ETC. AAADUM *

AAATST

PROGB It

Figure 6 -2. Application 1: Input Run Deck

ready to produce any ITleITlory dUITlps requested by the next prograITl to be
loaded and executed (PROGA).

9. PROGA Console Call card - This card directs the loader-ITlonitor to search
for and load the previously specialized and asseITlbled prograITl, PROGA,
froITl the BRT created by the Easycoder AsseITlbler. The user ITlust ITlake
sure that the ITleITlory dUITlp routines are not overlaid during the loading.
PROGA can then, through prograITlITled instruction or iteITl-ITlark trapping,
direct that printouts of the contents of core storage be perforITled at
specified points.

6-3

SEC TION VI. SAMPLE OPERATING APPLICATIONS

10. Input data - Besides the tape file created by Test Data Generator C, punched
card input data is also required input to PROGA.

II. AAATAP Console Call card - This directs the loader-rrlOnitor to search for
and load Tape Dump C from the system BR T. Once loaded and initiated,
Tape Dump C will read the parameter cards following and perform the
specified positioning, editing, and printing functions on the tape files just
created or processed by PROGA.

12. The remainder of the test director deck consists of similar Console Call
cards, test data, input data, etc., for PROGB and PROGC.

APPLICATION 2 - PREPARING AND COMBINING EASYCODER AND COBOL PROGRAMS

FOR TESTING

The user has two Easycoder source programs (PROGB and PROGE) to specialize and

assemble through Library Processor C and Easycoder Assembler C and three COBOL source

programs (PROGA, PROGC, and PROGD) to compile via COBOL Compiler D. Following this,

he wants to combine the five object programs onto one BR T for te sting by means of Program

Test System C. Under the Mod I Operating System, he can direct that the five processes, as

listed below, be executed with almost no operator intervention.

I. Library Processor C - Specializes the macro routines called for and incor­
porates them into PROGB and PROGE in preparation for assembly.

2. Easycoder Assembler C - Assembles PROGB and PROGE and produces an
output BRT containing the object coding for these two programs.

3. COBOL Compiler D - Compiles PROGA, PROGC, and PROGD and produces
an output BRT containing the object coding for these two programs.

4. Update and Select C - Combines the two output BRT's from the assembly
and compilation runs above on a master BR T.

5. Program Test System C - Tests the five programs as directed by the
various Console Call cards, test data, etc.

Figure 6-3 illustrates these processes.

Run Deck Setup

Figure 6-4 illustrates the run deck setup. Each card or card deck is explained below.

1. AACLIB Console Call card - This card directs either the Tape Loader­
Monitor or Floating Tape Loader-Monitor (whichever has been bootstrapped
into memory by the operator) to search for, and initiate the loading of,
Library Processor C from the systems BRT.

2. Equipment Configurator Descriptor (ECD) card - This card serves to indi­
cate the equipment configuration present.

3. Systems Specific Header card (IHDR.6.) - Identifies the Easycoder director
deck.

4. Easycoder source-language program decks - The source -program decks for
PROGB and PROGE.

5. End-of-File card (IEOF.6.) - Signals the end of the input deck to the Library
Processor.

6-4

\

SECTION VI. SAMPLE OPERATING APPLICATIONS

LIBRARY
PROCESSOR
SPECIALIZATION

COBOL
COMPILATION

INPUT
DATA

{

\

RUN DECK
/- ,

/ ',-----¥

\. /
'" " -------

MACRO
LIBRARY

,

PROGRAM TEST
SYSTEM

" " " "

EASYCODER
ASSEMBLY

UPDATE AND
SELECT

PROGB
PROGE

PROGA
PROGB
PROGC
PROGD
PROGE

OUTPUT DATA
.-------,

.!-- I
,/" I / , ___ --J

r---..,
~-~I I I

/ I
\ / _-.I , " /" -..,....-_/

'-_/

Figure 6-3. Application 2: Run Setup

6-5

SEC TION VI. SAMPLE OPERATING APPLICATIONS

INPUT TO
UPDATE AND
SELECT

r-

INPUT TO
PROGRAM
TEST

r ECD
I

(AACLIB *

j_~A~~~:j
/I I

PROGE I
DIRECTOR DECK)

INPUT TO EASYCODER
LIBRARY PROCESSOR
AND ASSEMBLER

Figure 6-4. Application 2: Input Run Deck

6-6

INPUT TO
COBOL
COMPILER

.. -/

SEC TION VI. SAMPLE OPERATING APPLICATIONS

NOTE: If a sufficient number of tape drives has been indicated in the ECD entry,
Easycoder Assembler C will be automatically loaded and executed im­
mediately following the specialization of the two programs; no Console
Call card is required.

6. COBOL D Console Call card - This card directs the loader-monitor to
search for, and initiate the loading of, COBOL Compiler D from the sys­
tems BRT.

7. ECD card - Required to indicate the configuration present for compilation.

S. ABA VPA Console Call card - This card directs the loader-monitor to
search for and load the initialization routine for the COBOL Compiler.

9. COBOL':'INPUT card - This card identifies the beginning of the input deck
to the compilation.

10. OPTION card - This card signals that the next program to be compiled
follows in punched card format.

11. Source program deck for PROGA.

12. OPTION card.

13. Source program deck for PROGC.

14. OPTION card.

15. Source program deck for PROGD.

16. ENDCONV card - This card identifies the end of the input deck to the compiler.

17. AAA UPS Console Call card - This card directs the loader -monitor to search
for and load Update and Select C.

IS. ECD card - Required to indicate the configuration present for Update and
Select C.

19. Systems Specific Header card (lHDR~) - Identifies the Update and Select
director deck.

20. INSERT director card - This card directs the Update and Select program to
insert PROGB after PROGA on the output master BR T.

21. INSERT director card - This card directs the Update and Select program to
insert PROGE after PROGD on the output master BRT.

NOTE: All programs from the COBOL output BRT (designated as the input mas­
ter BRT) are automatically copied on the output master BRT unless
otherwise directed.

22. End-of-File card - This card signals the end of the input deck to Update and
Select C.

23. AAATST Console Call card - This card directs the loader-monitor to
search for and load Initializer C in preparation for program testing.

24. Following this is a Program Test System director deck for each of the five
programs to be tested. Each deck can contain Console Call cards to search
for and load Memory Dump Control C, Tape Dump C, Test Data Generator
C, etc., test data input, parameter cards, etc.

25. AAAEND Console Call card - Terminates the Program Test System operation.

6-7

SECTION VI. SAMPLE OPERATING APPLICATIONS

APPLICA TION 3 - LOADING BY VISIBILITY

The user has a series of prograrrls which he has placed on a BRT in the order shown below.

The Tape Sort C prograrrl is recorded only once (after PROGCC). Each of the prograrrls is run

on the days indicated.

First,

PROGRAM NAME

PROGAA
PROGBB
PROGCC
SORTC
PROGDD
SORTC
PROGEE
COLLATE C
PROGFF

a visibility code

DA YS ON WHICH PROGRAM IS RUN

TUESDAY, FRIDAY
MONDA Y, WEDNESDAY
TUESDAY, FRIDAY
TUESDAY, FRIDAY
FRIDAY
FRIDAY
MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY
WEDNESDA Y, FRIDAY
MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY

rrlust be assigned to represent each day of the week:

DAY CODE VISIBILITY MASK (OCTAL)

MONDAY M 00 00 40 00 00 00
TUESDAY T 00 00 00 20 00 00
WEDNESDAY W 00 00 00 02 00 00
THURSDAY Z 00 00 00 00 20 00
FRIDAY F 01 00 00 00 00 00

The appropriate visibilities rrlust now be assigned to the prograrrls according to the codes assigned

to each day above. This could have been done at asserrlbly tirrle; however, since the prograrrls

are already asserrlbled, this can be accorrlplished through Update and Select C.

PROGRAM NAME VISIBILITY CODES (ACCORDING VISIBILITY (OCTAL) TO BE
TO DAYS OF THE WEEK) ASSIGNED

PROGAA T, F 01 00 00 20 00 00
PROGBB M,W 00 00 40 02 00 00
PROGCC T, F 01 00 00 20 00 00
SORTC T, F 01 00 00 20 00 00
PROGDD F 01 00 00 00 00 00
PRO GEE ALL 01 00 40 22 20 00
COLLATE C W,F 01 00 00 02 00 00
PROGFF ALL 0] 00 40 22 20 00

In addition to the prograrrls listed, the user rrlust write a short initialization prograrrl,

asserrlble it, and place it at the beginning of the BRT directly after the Tape Loader-Monitor.

Called in by a Console Call card, this prograrrl initializes the loader cOrrlrrlunication area in

rrlerrlory to search and load by visibility and places the appropriate day-of-week code in the visi­

bility rrlask area according to the SENSE switch settings. See Table A-I, page A-5, for the

general layout of the loader cOrrlrrlunication area.

The initializing prograrrl (see Figure 6-5) sets the Search Mode field for searching by visi-

-..;I

bilityand, by testing the SENSE switches, rrloves the proper code constant to the Visibility Mask,/

6-8

•

SECTION VI. SAMPLE OPERATING APPLICATIONS

field. It then branches to the return address for a normal call. The loader-monitor searches

forward on the tape and loads the first program having a visibility corresponding to the one indi­

cated by the visibility mask.

EASYCODER
CODING FORM

PROBLEM PROGRAMMER DATE PAGE OF

CARD f Ii LOCATION
OPERATION

OPERANDS
NUMBER ~ K

CODE

I 2 3 4 5 6 7 • 1415 2021 62 ., 00

I P,?09 INI T
I

I ORG 134~ RessrKB,s Ta~ L~ader -Moll/for/trt!tt
i I IIPIHO/)~3
I I STII,RT CIIM ¢,
I I IJ1,CI1I #'LC¢I, III Seflrc6 Mor/~ -Sel1rcn by I(isibi/~fy
I I B.eT MON ,d/ $~NS£: S/lVifcn I ON :: Mon/py,

I 8,CT TU~,. ¢2 ,s~N..s,c. Swift/' 2, O~ ;, rlftls /I1Y
I I B,(!r WEI),. rl4 ,sEN.5'E. .5'wifCA 3. ON = J1(ee/n(!sl.qy
I I IB.CT THOR., I' SCN.5'.E: swire;' 4 ON = Th"I"s/ax

'0 I l1tcw #~ C rI I, tJ"'''~rI rlrli. 118. tV" S'£Ns£ swiTch(!s cW = FrJgtly
,

I I lB. lat! Return To Loqqet:"Molld,or I/" /VI' Console Cd 1/ C,Q r/
IZ I i rett.d;, tV .. !la/f)

" I I NON MCW /f6C d' dD"4IJ(l.IP'P'#"', 1/8. ,Hoye ~tVO~,Y visi,!;/ Idy. rp M,-rl(q!'l1q' ,. I I 1B, 13d
I ! T(j£. f11~W It.'C¢i~itJi2'~rltlii., 118"- ~oye rt/£s/J/lY v/s(bi lib; rol11q,sk drea.
I

'- ~ 13"
,.
'7 I I IWED! . f11CW ~~Cd"~Ddgi.2;rI~l.. 11.8, #,ove W£/)N~$/JAY vi ibi/i/Y. tol!!.lIsk q~q ,. I I 8. 13¢ ,. i L TH.v.R. ~cw 1#. "', i'¢.¢."~2.P. bP' •. I Iff, ,AI,()ftf nIURSp/,y v.~~i hilify to Milsk l1r{l.d
20 I I ~ 13.' , : I W.OP
22 I ENO !sTART.

Figure 6-5. Application 3: Initializing Program

Program Termination

In general, each program must terminate with a branch to the Normal Return Address

(B/130). The loader then searches for the next program according to the parameters entered in

the loader communication area.

Tape Sort C Programs

The Tape Sort C program is called twice, once after PROGCe and the second time after

PROGDD. The parameters (size and location of key fields, record lengths, blocking factors,

work tapes, etc.) required by the sort process must be supplied either by parameter cards in the

input deck or by MCW instructions in the program prior to each sort. Since the Sort program

changes the Search Mode parameter to cause the loader to search by program and segment name,

the parameters supplied to the sort must include the search direction, program name, and seg­

ment name to be used in searching for the next unit to be loaded and executed after the sort.

6-9

SECTION VI. SAMPLE OPERATING APPLICATIONS

PROGCC is the program prior to the first execution of the Sort program and can be used to

load the required parameter values into the sort parameter area (locations 24778 through 27608). '-....-/

These include the parameters which indicate to the loader the search direction ("B" = forward),

program name (PROGDD), and segment name (00), to be used in searching for the next program

to be loaded and executed after the sort. The coding for moving this information into the sort

parameter area is shown in Figure 6 -6.

EASYCODER
CODING FORM

PROBLEM PROGRAMMER DATE PAGE OF

CARD y I~ lOCATION
OPERATION

OPERANDS NUMBER I~ CODE

I 2 3 4 5 6 7 • 1415 2021 62 63 80

1 I : / NST8t14.T!ONS TO
I I t.fJ!JP, P/fR.IIMET£1?

i i VIII-l/?"S INTO
I I >$<?RT ,o,/I(i'1M£TCR

i I w.tcw ~B@ 152~ .sEARCH .oIREc,.TION (,2160 11) /J{?E"A
I I ~cw ~PHO(}.op@ •. /517 /'Ji>OSI?AM NAME (21551/)

I ~cw '(iN~6} " /51.9 S£~MENT N.lM?E (21578)
i I
I I ~ 13.11 ;YORAM,L HETURN TO LOAIJEI?,

10 I WOP
1 i i ~IY.[) $TA,RJ:

12 i i
3 I I

1

Figure 6-6. Application 3: PROGCC Termination Routine

Once the Tape Sort C program is loaded and initialized, it modifies the loader communi­

cation area to direct the loader-monitor to load by program and segment name. When the sorting

is completed, the Sort program moves the program and segment names from the sort parameter

area to the loader communication area and makes a normal return to the loader-monitor. The

loader then searches forward for PROGDDOO.

Although the first sort is executed on both Tuesday and Friday, PROGDD is scheduled for

Friday only. Therefore, PROGDD must begin with a routine which checks whether the program

should be executed. If not, the program and segment name (PROGEEOO) of the next unit to be

loaded should be moved to the loader communication area and a normal return made to the loader.

The Search Mode parameter is still set to search by program and segment name. This initializa­

tion routine is shown in Figure 6-7.

The terminating routine for PROGDD must:

1. Move the required parameter values to the sort parameter area. These
must include the program name (PROGEE), segment name (00), and search
direction (liB" = forward) for the unit to be loaded and executed following
the termination of the sort.

6-10

2.

SECTION VI. SAMPLE OPERATING APPLICATIONS

Set the loader communication area Search Direction, Program Name, and
Segment Name fields to direct the loader to search backwards for the Tape
Sort C program (AADS2AOO).

The coding is shown in Figure 6-8.

EASYCODER
CODING FORM

PROBLEM PROGRAMMER DATE PAGE OF - -

CARD y I! LOCATION
OPERATION OPERANDS NUMBER Ie K

CODE

I 2 3 4 5 6 1 • 14 !5 2021 .. 63 eo
I I ~I?OG PROGDO

I O,RS 134d
I i IA,OMOO1.3
I I ~r-4,RT CAM lit/
Jl iB.CE IFRIOAr •. 1/3. d/ VIS I 9.1 L/TY .M;lJSJ(= FRIO/J)' (F); EXECtl.TE P/fo(J/f/l1lJ
I I
I I ~cw I(O>PRO(J.££(i). 73 Y 1$1 Bt?! TY MASI(I F/?II//J Y • .MOV£ PRo<JRA,A1

i I fucw ~dt/@., .7.5 AND. 6'£<JMENTIV"'Mis OF N. "-.rr UNIT To
I I B£ LO~OEO TO LOA,OE,Q co ~Mt/NleAT/oN /JI?EA

10 I i
I i I

12 I i ~ I~~ ,lVo;?IJ1AL I'?ETtlRN .T() ,sE-'9RC!, A)<lO LO~.o PI'?t;JB£?

" I I

" : I F/?/.b.AY
I I I. I

11 I I > PRO(JL)O ROt/TiNES I. ! I I
19 I I I
20 I I
21 I I

Figure 6 -7. Application 3: PROGDD Initialization Routine

EASYCODER
CODING FORM

PROBLEM PROGRAMMER DATE PAGE OF

CARD ~ LOCATION
OPERATION

OPERANDS NUMBER ~ ~ CODE

I 2 3 4 5 6 1 • 1415 2021 ... 3 eo

I I :
I I

i I IN$T/?tl.C7 IONS To LOll!)
I I
i ! Vw.cw 'rNPRO(J£E@) 151 7~ INDICATES l/NIT TO SORT P';}" AMETER II.A'£A.
I I mew '@D~@. 15/9 >. BE SE/1RCIIEO FOR
I I mew l@B@ /52ti. J ftNO ~ OAo~a FOLLaw/1'/(;
i I SORT .-
I I l INS T/?lJ.CTIOIY.S TD eH;lJN6'E

10 ! mew '#le23.. 14~, SEARCH P/lckW/lR.o l LO"J io£"/?, -MoNI TOR
I I I mew #/C2~,. III SptJ,RCIli{Y PRO(l (SEd N/1ME '> P,/l ~AA1ET,C/?$

12 i i mew l@AAIJS,2LJ@ ,73 l
" I I ~cw 'fil~6@. 75 I
"

I I /

,. i I I. I IB 13P NtJ!{'MA:L R£TVI?N 7:0 LOAOEI? ,LO/lOE.R WILl- 6'EA/i'CI/
11 I I l//JekWAR.IJ F.o/? .l9.APSE"r4 I. I I

Figure 6 -8. Application 3: PROGDD Termination Routine

6-11

I

SECTION VI. SAMPLE OPERA TING APPLICATIONS

When PROGDD makes the normal return to the loader (B/130), the loader searches back-

wards, finds the first segment of the Tape Sort C program, and loads and executes it. At the ~

completion of the sorting, the Sort program moves the search direction, program name, and

segment name values supplied by the PROGDD coding from the sort parameter area to the

loader communication area and makes a normal return to the loader. The loader then searches

forward for PROGEEOO.

The termination routine for PROGEE must:

1. Load the parameter values for Collate C into the collate parameter area in
case the Tape Collate C program is to be executed after PROGEE. These
parameter values must include the search direction, program name, and
segment name to be used in loading the next unit to be executed following the
Collate program.

2. Change the Search Mode field (which has been altered by Sort C) back to 01 8 •

This coding is shown in Figure 6-9.

EASYCODER
CODING FORM

PROBLEM ______________________ PROGRAMMER ______ DATE _____ PAGE_OF_

CARD I~I& LOCATION
OPERATION

OPERANDS NUMBER CODE

1 2 3 4 5 • 7 • 1415 2021 62 ., 80

I
I

I DV.5'TRIICTIONS TO
i I I 0,40 />AR~M.t:TER
I I V.-9L.f/£S INTO eOLJ-,llTE

~. : ~JV fpL:'ROGF£@. 1.4.99 .'f!OV£ ?I?,OC/?A-H NM(£ PI1,/?I1.h(gE~ ARE-1.
I I mew ~tf'@ ~ I sf! 1 .JI1()YE ,s.£(jME/'I,T NAh!~
I I ~ew liPB@ 1511.2 l'lOY£ $~ARCJl OIR£{!T!O/Y.
i I
I I

'0 I
I Iw.cw 1/ Hil,. / / / /?,£STOI?£ $,C,/fRCIi NODE '-;0 tfl ,(.r~AI?('1I8Y-

" I I VI$IQ(Llry)
'2 I J

I I 1&, 13~ I'I.O~IJf/tL., R£.TtlR.N. TO L o~O,E(? ,. I I iN,oP ,.
I I ~,ND lfrAR7:' ,. I I

Figure 6 -9. Application 3: PROGEE Termination Routine

If more programs were to be loaded by visibility following PROGFF, the Search Mode field

would again have to be restored to 018 following Collate C (Collate C, like Sort C, searches by

program name and segment name). In this example, PROGFF should terminate with an indirect

branch to the General Return Address of the loader - B/(l39). This directs the loader-monitor

to halt until the operator manually intervenes. If PROGFF were not always the last program to

be executed ip the series, a dummy program might be written as shown in Figure 6-10.

program would be visible to all visibility codes.

6-12

This

SECTION VI. SAMPLE OPERATING APPLICATIONS

EASYCODER
CODING FORM

PROBLEM PROGRAMMER DATE PAGE OF - -
CARO y

lOCATION
OPERATION

OPERANDS NUMBER CODE

123456 7 • 1415 2021 62 6' 80

I I PIlOr; FINI$,#
I I O,R(J 194,
i I !.9,.oMOl}~J
I I STA.R.T CAM 18~
: : lB 11'/39) (}E.N.E"HA1. JI.£T(l1lA{;. 1.OIIP£1i' /!.AL T,g ~ OR COIV,gO.L.E CAI.L.
I I ~OP
! I ~ND !,sTART.

Figure 6-10. Application 3: Run Term.ination Program. (Visible to All Visibilities)

Input Run Deck

Since in this application the loader is d.irected to load by visibility, or in som.e cases

by a program. and segm.ent nam.e placed in the com.m.unication area via program.m.ed instructions,

the input deck is a very sim.ple one.

/"- -- - ---/'1

" " I "L- ------r' J
(I ~

/~~- ---~-.....v/

/ "
" " I (------i) DATA

(, t- j /
INIT I/l!IJ * r CONSOLE CALL CARD FOR INIT

Figure 6-11. Application 3: Input Run Deck

6-13

I

APPENDIX A

FORMATS

For the convenience of the reader, the following layouts pertinent to the Mod 1 Operating

System are presented:

1. Symbolic program tape (SPT) format

2. Binary run tape (BR T) format

3. Binary run deck (BRD) format

4. Loader-Monitor communication area layout

5. Equipment Configuration Descriptor (ECD) card format

SYMBOLIC PROGRAM TAPE (SPT) (Figure A-I)

Symbolic program tapes (SPT's) are processed and produced within the Easycoder system

and contain the use r' s programs in both source - and machine -language format. They are input

to, and output from, Library Processors C and D, Easycoder Assemblers C and D, and SPT

Merge C. Since both the source-language and machine-language elements of each program are

present on the tape, either version can be selected and either punched into cards or written onto

'-"'*' tape.

A symbolic program tape begins with a beginning-of-file header label. For each program

stored on the tape there is a program header record and one or more segment header records

each followed by one or more data records. These data records (see Figure A-2) contain the

source- and machine-language coding for the segment. At the end of a symbolic program file,

there is an end-of-file record, a file of directory records, another end-of-file record, and two

end-of-information records.

BINARY RUN TAPE (Figure A-3)

A binary run tape (BRT) contains the machine-language coding of one or more object pro­

grams. These programs can be loaded directly from the tape into main memory by either Tape

Loader-Monitor C or Floating Tape Loader-Monitor C (which can reside at the beginning of the

tape) and executed.

At the beginning of each BRT are a beginning-of-file header record, a tape bootstrap rou­

tine (which loads the Tape Loader-Monitor), and one or more versions of the Tape Loader­

Monitor. For each program on the tape, there are one or more loading units (or segments), each

consisting of a segment header record and one or more non-header records. The segment header

A-I

APPENDIX A. FORMATS

record identifies the program and the segment and contains the revision number of the segment.

the visibilities under which the segment is to run. and part of the machine-language coding of the

program. Every non-header record consists of a control field to identify the record and a

portion of the program's machine -language coding. Each loading unit contains as many non­

header records as are required for the storage of the object coding. The program file is termi­

nated by one end-of-file trailer record and two end-of-information records.

BINARY RUN DECKS (Figure A-4)

Binary run decks (BRD's) can be produced by either Easycoder Assemblers C and D or BRT

Punch C and can be loaded for execution by Card Loader-Monitor B. Such program decks are

actually the machine-language coding of the programs converted from a binary run tape into

punched cards. As in the case of a BRT. the deck begins with a beginning-of-file header record.

Each segment or loading unit begins with a segment header record which is followed by one or

more non-header records containing the machine-language coding for the program. The format

of these records is basically identical to that of the corresponding record types on a BRT with

the exception that BRT records have a limit of 250 characters while BRD cards are limited to

80 characters.

BEGINNING OF TAPE

BEGINNING-OF -FILE
HEADER RECORD

FOR EACH PROGRAM

PROGRAM HEADER SEGMENT HEADER DATA RECORDS 111 SEGMENT HEADER II DATA RECORDS~ 10
END OF TAPE

BEGINNING-OF-FILE HEADER RECORD
1-5 IHDR
6-10 Unspecified

11-15 8PT revision number
16-20 Unspecified
21-30 ECDR2SPT
31-80 Unspecified

SEGMENT HEADER RECORD
I Banner character (50 S)

END-OF-FILE
TRAILER RECORD

END-OF-TAPE END-OF-TAPE
TRAILER RECORD TRAILER RECORD

PROGRAM HEADER RECORD
I Banner character (51

8
)

2-4 Number of characters in record (1248)
5-6 Number of characters in item (1208)
7-12 Program name

13-15 Program revision number
16-21 Visibilities
22-29 Date of assembly
30-34 SPT number
35-S4 Unspecified

DATA RECORDS
(See Figure A-2)

END-OF-FILE TRAILER RECORD
1-5 lEaF

2-4 Nu:mber of characters in record (1248) 6-80 Unspecified
5-6 Number of characters in item (1208)
7-12 Program name

13-14 Segment name
15-S4 Unspecified

END-OF-INFORMATION RECORDS (2)
1-5 IERI
6 -so UnspeCified

DIRECTORY RECORD
I

2-4
5-6
7-12

13-15
16-21
22-29

Banner character (43 8)
Number of characters in record (7648 - maximum)
Number of characters in item (318) }
Program. name Repeated for
Program revision number each program
Visibilitie s on the SPT
Date of assembly

Figure A-I. Symbolic Program Tape (8PT) Format

A-2

!

APPENDIX A. FORMATS

rBanner character (41 8)

r-Nurnber of characters in record (max. ::; 12748)

(II CONTROL FIELD INFORMA TION SYMBOLIC CARD FIELD INFORMATION 1,-1 __ ,,-11--,1

CONTROL FIELD INFORMATION (31-70 characters in length) SYMBOLIC CARD FIELD INFORMATION (15-75 characters in

length)

1-2
3-4

5-6

8-12
13
14-19
20-22
23
24
25
26-29
30
31 -

Num.ber of characters in itern
Number of characters in control information
field
Number of characters in symbolic infor­
m.ation field
Item type
Line number of symbolic card
Allocation information
Subfield re served for future use
Error code
Label information
Word mark and item mark information
Not used
Beginning memory address of instruction or constant
Length of machine -language entry (binary)
Machine language

I
2

3-9
10-15
16 -

Type field
Mark field
Location field
Op code field
Operands field (0-60 characters)

NOTE: Literal items, repeated items, and
generated items do not have Symbolic
Card Fields.

Figure A-2. Symbolic Program Tape (SPT) Format: Data Record Layout

BEGINNING OF BINARY RUN TAPE

BEGINNING-OF-FILE TAPE BOOTSTRAP TAPE LOADER- II /I
ULH __ E_A_D_E __ R_R __ E_C_o_R_D ____ ~L__R __ O_U_T_I_N_E __________ "__ __________ ~'--__ -L __ N1_0_NI __ T_O __ R __ P_R_O_G_R __ A_M~'__~ILI ____________ ~

FOR EACH PROGRAM

SEGMENT HEADER
RECORD

NON-HEADER RECORDS SEGMENT HEADER
RECORD

NON -HEADE7i RECORDS II

~--------------------------------~v~----------~ ~--------------~v~--------------
First Loading Unit

END OF BINARY RUN TAPE

END-OF-FILE
TRAILER LABEL

END-OF-INFOR­
MATION RECORD

Second Loading Unit, etc.

END-OF-INFOR­
MA TION RECORD

SEGMENT HEADER RECORD NON-HEADER RECORD
Banner character 1 Banner character

2-4
5-6

8-10
11-16
17-18
19-24
25-250

50S - This is the beginning record of a
rnultirecord loading unit

548 - This is the beginning and only record
of a single-record loading unit

Number of characters in record (binary)
Record sequence num.ber (used in backspacing to
beginning (segrnent header) record of load unit
Length of identification and control field
information (308)
Revision number
Program name
Segment name
Visibilities
Machine language to be loaded interspersed with
control characters

2-4
5-6

7

8-250

418 - This is not the last record of the current
loading unit (segment)

448 - This is the last record of the current
loading unit

Number of characters in record
Record sequence number
Length of identification and control field
information (078)
Machine language to he loaded interspersed with
control characters

Figure A-3. Binary Run Tape (BR T) Format

A-3

APPENDIX A. FORMATS

I Z:5 .. 5.7.9 101I12ISI4I'16'1111'2(IU232421!1Z62728295Cl 13253543&~37S13'404142~44~4.47"49505I52"'4555657N5liI60.I$283M6SI681a6'107In73 74117$77181"180

lHDR~

Col. 1 -

Col. 2-4
Col. 5-6
Col. 7-24

Col. 25-S0

2I/J(i.lPROGTAP

Header Label Record

Segment Header Record

,~ (54S) = Last record of load unit
Q (50S) = Not last record of load unit
Card sequence number
Blanks
Equivalent to characters 7 through 24 of a BRT segment
header record
Machine language to be loaded interspersed with control
info rmation.

I -." .. 5 • 7 •• 10 II 12 13 14 15 '6 17 'I I' 20 21 2223 24 20 21&27212930 ,. 52 53 5435,. 37" n4041 42 454 .. .,484748 49 50 51 52 55 54 55 3C5 a7N 59 80 6112 83 M&see 67a .'70 71 ?2 73 74'" 7$ 7778 79 10

Col. 1 -

Col. 2-4
Col. 5-6
Col. 7
Col. s-so

Non-Header Record

M (44S) = Last record of loading unit
J (41S) = Not last record of loading unit
Card sequence number
Blanks
Number of control field characters (7)
Machine language to be loaded interspersed with control
information.

123 .. !5' .,., 10111213141''''7,6''2(1222l242S2827211nJ(315253S45G3In!l'.40414245444546474149505I525554555151I5lU8606'128384$5,."7071721574117177787910

IEOF~ 2(i.1!6PROGTAF

Trailer Label Record

Figure A-4. Binary Run Deck (BRD) Format

A-4

-

--.;I'

APPENDIX A. FORMATS

LOADER-MONITOR COMMUNICATION AREA (Table A-I)

The loader-monitor communication area, consisting of 92 locations in main memory, is

utilized by all of the loader-monitors in the Mod 1 Operating System as a control link between

one program run and the following program runes) and between the loader-monitor routine and

the operator. Table A-I shows the fields within this area which are most likely to be referenced

by the user.

The communication area contains:

1. Parameters which control the searching, loading, and starting operations
of the loader-monitors.

2. Entry points for transferring control back to the loader-monitors.

3. Exit and return points for own-coding routines to be executed during loading.

4. Parameters provided for use by other programs.

All fields, except for Program Name, Segment Name, and Halt Name, are initially set to

certain standard values. All fields can be modified either by programmed instruction or by con­

trol panel entries. The Program Name, Segment Name, and Tape Unit Address fields can be

modified by a Console Call card. Some fields are automatically reset to their initial value by a

console call, special call, or the loading of a program unit.

Table A-I. Loader-Monitor Communication Area (Basic Fields)

Locations

Field Contents 1 Decimal Octal

METHOD OF CONSOLE CALL ENTRY OOS = Card 64 100
OlS = Manual

PROGRAM NAME2 6S-73 104-111

SEGMENT NAME2 74-75 112-113

TAPE UNIT ADDRESS OF BRT2 OOS 76 114

FIXED START 0 (Manual Return to Loader-Monitor for Next S6-S9 126-131
Console Call)

SEARCH DIRECTION3 22S = Forward 106 152
23S = Backward

RELATIVE POSITION3 (Used With Search Mode 01) OlS 110 156

SEARCH MODE3 20S = Program and Segment Name 111 157
OlS = Visibility and Relative Position
OOS = Segment Name Within Current Program
60S = Program, Segment, and Visibility
40 S = Segment, Visibility Within Current

Program

A-5

APPENDIX A. FORMATS

Table A-I (cont). Loader-Monitor Communication Area (Basic Fields)

Locations

Field Contents 1 Decimal Octal

START MODE3 N = Begin Execution at Address Specified in 112 160
EX Command

S = Begin Execution at Address Stored in
Special Start Location

R = After Loading, Return to Point Immediately
After that Where Exit to Loader Was Made.

VISIBILITY MASK (Initial Value = Visibility "A") 113-118 161-166

SPECIAL START LOCATION (Used With Start Mode "S") 119-121 167-171

RETURN ADDRESS FOR NORMAL CALL (To Load Another Unit 130-138 202-212
Without Halting)

GENERAL RETURN ADDRESS (Halts for Console Call) 139-141 213-215

CURRENT DATE 142-146 216-222

TRAPPING MODE 008 = Off 048 = On 147 223

ALTERNATE RETURN ADDRESS (Reads Next Console Call 148-150 224-226
Card Without Halting)

ECD FIELD JJO# - ECD Entered From Card Reader 151-154 227-232

CONSOLE TYPEWRITER AVAILABILITY
1M = Not Available

155 233
WM = Available

NOTES: 1. Initial or Reset Value is First Value Shown

2. Can be taken from Console Call card

3. Reset by Fixed Start 0 or General Return console call

EQUIPMENT CONFIGURATION DESCRIPTOR (ECD) CARD FORMAT (Table A-2)

Systems programs (Easycoder Assemblers, COBOL Compilers, etc.) require that the user

indicate the equipment configuration available for their execution. This may be done in one of

two ways: either by punching an Equipment Configuration Descriptor (ECD) card and placing it

after the Console Call card in the card reader, or by indicating that one of the ten standard

equipment configuration descriptors automatically loaded into memory with the systems program

is to be used.

ECD Card

The user punches an ECD card (see Table A-2). The specific meaning and content of the

file media fields are discussed in the software manual for the particular systems program. The

ECD field (151-154) of the loader communication area is initially set to cause the ECD informa­

tion to be accepted from the card reader (J JO#).

A-6

L

f:

l

APPENDIX A. FORMATS

Standard ECD Entries

Normally, the user can specify that one of the standard equipment configurations loaded in

cc..njunction with the systems program is to be used. He indicates this choice to the system by

manually entering the following information into the ~CD field (151-154) of the loader communi­

cation area. This field is reset only by another manual entry.

Locations

Decimal Octal Contents

151 227 Blank

152 230 Standard configuration number
(0-9) desired

153-154 231-232 Highest memory bank available
(if blank, will use memory size
indicated in ECD)

Table A-2. Equipment Configuration Descriptor (ECD) Card Format

Column(s) Contents Interpretation

1-5 Blanks

6 E Identifies Equipment Configuration Descriptor (ECD) card

7 Blank

8 11,9 Read/write channel assignment for RWCl

9 8,2 Read/write channel assignment for RWC2

10 8,3 Read/write channel assignment for RWC3

11-15 Blanks

16-17 00 Lowe st memory bank usa.ble

18 Blank

19-20 Highest memory bank available

21-80 File media fields (three columns per file)

First character position: Type of device

Blank File absent
0 Unspecified
1 Type 204B Magnetic Tape Unit
2 Control Panel
3 Type 204A Magnetic Tape Unit
4 Type 270 Drum Storage Unit
5 Type 220 Console
6 Main Memory

- Printer
J Type 227 Card Reader
K Type 227 Card Punch
L Type 209 Paper Tape Reader
M Type 210 Paper Tape Punch
N Type 223, 214-2, or 224 Card Reader with Series 200

Card Reader Control

A-7

APPENDIX A. FORMATS

Table A-2 (cont). Equipment Configuration Descriptor (ECD) Card Format

Colurnn(s) Contents Interpretation

21-80 0 Type 214-1, 214-2, or 224 Card Punch with Series 200
(cont) Card Punch Control

R Type 123 Card Reader (or Type 214-2 or 224 Card
Reader /Punch used as card reader only) with Model
120 Integrated Card Control

S Type 214-1 Card Punch (or Type 214-2 or 224 Card
Reader/Punch used as card punch only) with Model
120 Integrated Card Control

Second character position: Peripheral Address
(Control character C

2
of PDT instruction)

Third character position: Tape drive number (Control
character C

3
of PDT instruction)

A-8

APPENDIX B

MOD 1 OPERATING .SYSTEM PUBLICATIONS

This appendix contains a current listing of the Honeywell publications associated with the

Mod 1 Operating System. The order numbers shown in parentheses should be used in ordering

these publications.

GENERAL INTRODUCTION

Introduction to Series 200/0perating System - Mod 1 (258)

OPERA TING PROCEDURES

Operating System - Mod 1 Operating Procedures Summaries (069)

LANGUAGE PROCESSING

Honeywell Series 200 (Model 120) Programmers' Reference Manual (141)
Honeywell Series 200 (Models 200/1200/2200) Programmers' Reference Manual (139)
Library Processors C and D (051)
Easycoder Assemblers C and D (041)V'
Transition to Easycoder - A Programmer Text (238)
Programming with Easycoder - A Programmed Text (008)
Analyzer C (019)
COBOL Compilers D & H (065)
COBOL Compiler D - Volume 1 - A Programmed Text (083)
COBOL Compiler D - Volume 2 - A Programmed Text (091)
COBOL Compiler D - Volume 3 - A Programmed Text (294)
Study Guide: COBOL Programming (A three-volume set) (259, 260, 261)
Classroom Workbook - COBOL Programming
Fortran Compiler D Reference Handbook (027)
Fortran Compiler D Generated Object Code (003)
Fortran Conversion Techniques (002)
Fortran D Action Session (114)
Easytran Symbolic Translators Band C (035)
Easytran Symbolic Translator D (220)
Easytran Program Modifier C (147)

UTILITY PROGRAMS

Tape Handling Routine B (applicable to Tape Handling Routine C) (017)
Data Conversion A and C (231)
Simultaneous Media Conversion A and C (021)
Report Generator A, B, and C (080)
Tape Sort C and Collate C (017)
Own Coding Routines for Tape Sort C (026)
Sort C (V) and Collate C (V) (207)
Drum Sort C (157)
Simultaneous Sort and Print (201)

B-1

..

APPENDIX B. MOD 1 OPERATING SYSTEM PUBLICATIONS

Statistics Package D (159)
Linear Program.m.ing Package D (276)

PROGRAM EDITING AND MAINTENANCE

SPT Merge C (152)
Update and Select C and D (025)
BRT Punch C (020)
Drum. Program. Store C (DSI-411)

OPERA TION CONTROL

Tape Loader-Monitor C (221)
Floating Tape Loa_der-Monitor C and Interrupt Control D (005)
Card Loader-Monitor B (154)
Drum. Bootstrap-Loader C (DSI-415)
Drum. Monitor C (DSI-408)
List Com.m.ents (DSI-353)

INPUT /OUTPUT CONTROL

1 /2-Inch Tape I/O Band C (010)
1/2-Inch Tape and Term.inal I/O C (167)
Drum. I/O C (DSI-405)
Console I/O C (TYRO 2) (DSI-413)
Com.m.unicatiol)s I/O C (202)

PROGRAM TEST FACILITIES

Program. Test System. C (049)
Mem.ory Dum.p C and Tape Dum.p C (469)

B-2

" -

I.

..
!

COMPUTER-GENERATED INDEX

ANALYZER. 3-5
" C SETUP. 3-7

APPLICATION

AREA

SAMPLE OPERATING APPLICATIONS. 6-1
I - EASYCODER PRUGRAM SPECIALIZATION. ASSEMBLY.AND

TEST. 6-1
11 I NPUT RUN DECK. 6-3
II RUN SETUP. 6-2
2 - PREPARING ANU COMBINING EASYCODER AND COBOL

PROGRAt'lS. 6-"
21 INPUT RUN DECK. 6-6
21 RUN SETUP. 6-'
3 - LOADING BY VISIBILITY. 6-8
31 INITIALIZING PROGRAt'l. 6-9
31 INPUT RUN DECK. 6-13
31 PROGCC TERMINATION ROUTINE. 6-10

" 31 PROGDD INITIALIZATION ROUTINE. 6-11
" 31 PROGDU TER~INATION ROUTINE. 6-11
" 31 PROGEt TERMINATION ROUTINE. 6-12
" 31 RUN TERMINATION PROGRAM. 6-13

LOADER-MONITOR COMMUNICATION AREA. A-5
LOADER-MONITOR COMMUNICATION AREA (BASIC FIELUS).

A-5
ARITHMETIC STATEMENT

EXAMPLE OF A FORTRAN-LANGUAGE ARITHMETIC STATEMENT.
3-12

ASSEMBLER
EASYCODER ASSEMBLER. 3-4
EASYCODER ASSEMBLERS.

OPERATINb MODES OF EASYCODER ASSEMBLERS C AND D.
3-6

EASYCODER ASSEMBLERS C AND DI FEATURES. 3-5
ASSEMBLY

" LANGUAGE.
EASYCODEH ASSEMBLY LANGUAGE. 3-l

" SYSTEM. 3-2
ASSEMBLY.AND TEST

APPLICATION 1 - EASyCODER PROGRAM SPECIALiZATION.
ASSEMBLY.AND TEST. 6-1

AUTOMATIC PROGRAM CHECKOUT. 4-12
BASiC F I[LDS

LOADER-MONITOR COMMUNICATION AREA (BASIC FIELUS).
A-5

BINARY RUN

BRD

eRT

" DECK.
BINARY RUN DECK (BRD) FORMAT. A-4
BINARY RUN DECKS. A-2

" TAPE.
BINARY RUN TAPE (BRT) FORMAT. A-3
BINARY RUN TAPE (BRT). A-I

BINARY RUN DECK (BRD) FORMAT. A-4

BINARY RUN TAPE (bRT). A-I
BINARY RUN TAPE (BRT) FORMAT. A-3

CAPABILITIES

CARD
INTERRUPT CAPABILITIES.

ECD CARD. A-6
" FORMAT.

4-5

EASYCODER SYMBOLIC CARU FORMATS. 3-4
EQUIPMENT CONFIGURATION DESCRIPTION (ECD) CARD

FORMAT. A-7
EQUIPMENT CONFIGURATION DESCRIPTOR (ECD) CARD

FORMAT. A-6
LOADING FROM CARDS. 4-3

CHECKOUT
AUTOMATIC PROGRAM CHECKOUT. 4-12

COBOL
" COMPILER SYSTEM. 3-11. 3-8
" COMPILERS.

COBOL COt'lPILERS. 3-9
COBOL COMPILERS D AND HI FEATURES. 3-10

" LANGUAGE. 3-8
" PROGRAMS.

APPLICATION 2 - PREPARING AND COMBINING
EASYCODER AND COBOL PROGRAMS. 6-4

" SOURCE LANGUAGE.
EXAMPLE OF THE COBOL SOURCE LANGUAGE. 3-8

COLLATE PROGRAM
seRT AND COLLATE PROGRAt'l1 FEATURES. 3-23

COLLATING
SORTING AND COLLATING. 3-22

COMBINING EASYCODER
APPLICATION 2 - PREPARING AND COMBINING EASY CODER

AND CO~OL PRUGRAMS. 6-4
COMMENTS (CONT')

COMMENTS
LIST COMMENTS C. 4-12. 4-8

COMMUNICATION AREA
LOADER-MONITOR COMMUNICATION AREA. A-5
LOADER-MONITOR COMMUNICATION AREA (BASIC FIELDS).

A-5
COMMUNICATIONS INPUT/OUTPUT CONTROL. 4-11
COMPILER SYSTEM

COBOL COMPILER SYSTEM. 3-11. 3-8
COMPILER SYSTEMS. 3-7
FORTRAN COMPILER SYSTEM. 3-12. 3-14

COMPILERS
COBOL COMPILERS. 3-9
COBOL COMPILERS D AND HI FEATURES. 3-10
FORTRAN COMPILERS. 3-12
FORTRAN COMPILERS D AND HI FEATURES. 3-14

COMPONENTS OF THE MOD 1 OPERATING SYSTEM. 2-3
CONfiGURATION

" DESCRIPTION.
EQUIPMENT CONFIGURATION DESCRIPTION (ECD) CARO

FORMAT. A-7
• DESCRIPTOR.

EQUIPMENT CONFIGURATION DESCRIPTOR (ECD) CARD
fORMAT. A-6

CONSOLE INPUT/OUTPUT CONTROL. 4-10
CONTROL

COMMUNICATIONS INPUT/OUTPUT CONTROL. 4-11
CONSOLE INPUT/OUTPUT CONTROL. 4-10
DRUM INPUT/OUTPUT CONTROL. 4-10
FUNCTIONS.

INPUT/OUTPUT CONTROL FUNCTIONS. 4-11
INPUT/OUTPUT CONTROL. 4-6
INTERRUPT CONTROL.

MULTIPROGRAMMING WITH INTERRUPT CONTROL D. 4-7
INTERRUPT CONTROL D. 4-6
MAGNETIC TAPE INPUT/OUTPUT CONTROL. 4-8
MEMORY DUMP CONTROL C. 4-12
OPERATION CONTROL. 4-1
OPERATION CONTROL I LOADING AND MONITORING FUNCTIONS.

4-4
PROGRAM EXECUTION AND CONTROL. 4-1
TERMINAL INPUT/OUTPUT CONTROL.

MAGNETIC TAPE AND TERMINAL INPUT/OUTPUT CONTROL.
4-9

CONVERSION

UATA

DECK

DATA CONVERSION C ROUTINES. 3-20
MEDIA CONVERSION. 3-19
SIMULTANEOUS MEDIA CONVERSION C. 3-21

" CONVERSION C ROUTINES. 3-20
" GENERATOR.

TEST DATA GENERATOR C. 4-12
" RECORD LAYOUT.

SYMBOLIC PROGRAM TAPE (SPT) FORMATI DATA RECORD
LAYOUT. A-3

• TRANSCRIPTION AND EDITING. 3-16

APPLICATION 11 INPUT RUN DECK. 6-3
APPLICATION 21 INPUT RUN DECK. 6-6
APPLICATION 31 INPUT RUN DECK. 6-13
BINARY RUN DECK (BRD) FORMAT. A-4
BINARY RUN DECKS. A-2
INPUT RUN DECK. 0-13

" SETUP.
RUN DECK SETUP. 6-1. 6-4

DESCRIPTION
EQUIPMENT CONFIGURATION DESCRIPTION ([CP) CARD

FORMAT. A-7
DESCRIPTOR

EQUIPMENT CONFIGURATION DESCRIPTOR ([CD) CARD
fORt'lAT. A-6

UEvELOPMENT

DRUM

DUMP

EVOLUTION AND DEVELoPMENT OF OPERATION SYSTEMS. 1-1

" INPUT/OUTPUT CONTROL. 4-10
LOADING FROM DRUM. 4-3

" STORAGE. 3-23

" CONTROL.
MEMORY DUMP CONTROL C. 4-12

EMERGENCY MEMORY DUMP C. 4-13
MEMORy DUMP C. 4-13
TAPE DUMP C. 4-13

EASYCODER
" ASSEMBLER. 3-4

EASYCODER ASSEMBLERS C AND DI FEATURES. 3-5
OpERATING MODES Of EASYCODER ASSEMBLERS C AND D.
(CONT.)

COMPUTER-GENERATED INDEX

EASYCODER (CONT.)
3-6

• ASSEMBLY LANGUAGt. 3-2
COMBINING EASYCODER.

APPLICATION 2 - PREPARING AND COMBINING
EASYCOUER AND COBOL PROGRAMS. 6-4

• PROGRAM SPECIALIZATION.
APPLICATION 1 - EASYCODER PROGRAM

SPECIALIZATION. ASSEMBLY.AND TEST. 6-1
• SYMBOLIC CARD FORMATS. 3-4
• SYMBOLIC TRANSLATOR SYSTEM. 3-16

EASYTRAN
• SOURCE PROGRAM GENERATOR. 3-18
" SYMBOLIC TRANSLATORS. 3-15

EA5YTRAN SYMBOLIC TRANSLATORS C AND 01 FEATURES,
3-16

EASYTRAN PROGRAM

ECD

" MODIFER C, 3-18
• MODIFIER, 3-17

• CARD, A-6
• ENTRIES,

STANDARD ECD ENTRIES. A-7
EQUIPMENT CONFIGURATION DESCRIPTION (ECU) CARD

FORMAT, A-7
EQUiPMENT CONFIGURATION DESCRIPTOR (ECD) CARD

FORMAT, A-6
EDIT ING

DATA TRANSCRIPTION AND EDITING, 3-18
" FUNCTIONS,

PROGRAM MAINTENANCE AND EDITING FUNCTIONS. 3-26
PROGRAM EDITING AND MAINTENANCE, 3-25

EFF ICIENCY, 2-1
EMERGENCY MEMORY DUMP C, 4-13
ENTRIES

STANDARD ECD ENTRIES, A-7
ENVIRONMENT

OPERATING ENVIRONMENT, 2-1
EQUIPMENT CONFIGURATION

• DESCRIPTION (ECC) CARC FORMAT. A-7
• DESCRIPTOR (ECC) CARD fORMAT. A-6

EVOLUTION AND DEVELOPMENT OF OPERATION SYSTEMS. 1-1
EXAMPLE

• OF A FORTRAN-LANGUAGE ARITHMETIC STATEMENT. 3-12
" OF THE COBOL SOURCE LANGUAGE. 3-8

EHeUT ION
PROGRAM EXECUTION AND CONTROL, 4-1

FACILITIES
PROGRAM TEST FACILITIES, 4-12

FEATURES

fiELDS

COBOL COMPILERS D AND HI FEATURES, 3-10
EASYCODER ASSEMBLERS C AND 01 FEATURES. 3-5
EASYTRAN SYMBOLIC TRANSLATORS C AND 01 FEATURES.

3-16
FORTRAN COMPILERS 0 AND HI FEATURES, 3-14
LIBRARY PROCESSORS C AND 01 FEATURES. 3-4
SORT AND COLLATE PROGRAM I FEATURES, 3-23

LOADER-MONITOR COMMUNICATION AREA (BASIC FIELDS),
A-5

fLEXIBILITY, 2-2
fOREGROUND PROGRAMS, 4-6
fORMAT

BINARY RUN CECK (eRC) FORMAT, A-4
BINARY RUN TAPE (BRT) FORMAT. A-3
EASY CODER SYMBOLIC CARD FORMATS, 3-4
EQUIPMENT CONfiGURATION CESCRIPTION (ECU) CARD

FORMAT. A-7
EQUIPMENT CONFIGURATION DESCHIPTOR (ECD) CARD

fORMAT, A-6
fORMATS, A-I
SYMBOLIC PROGRAM TAPE (SPT) FORMAT, A-Z
SYMBOLIC PROGRAM TAPE (SPT) fORMAT I DATA RECURD

LAYOUT, A-3
fORTRAN

• COMPILER SYSTEM, 3-12. 3-14
• COMPILERS, 3-12

fORTRAN COMPILERS D ANu HI fEATURES, 3-14
" LANGUAGE, 3-12

FORTRAN-LANGUAGE ARITHMETIC STATEMENT
EXAMPLE OF A fORTRAN-LANGUAGE ARITHMETIC STATEME~T,

3-12
fUNCTION

EDITING fUNCTIONS,
PROGRAM MAINTENANCE AND EDITING fUNCTIONS. 3-26

INPUT/OUTPUT CONTROL fUNCTIONS, 4-11
MATHEMATICAL PROCESSING fUNCTION. 3-23

(CONT.)

fUNCTION (CONT.)
MATHEMATICAL PROCtSSING FUNCTIONS, 3-24
MONITORING fUNCTIONS,

OPERATION CONTROL I LOADING AND MONITORING
fUNCTIONS, 4-4

GENERATION
REPORT GENERATION, 3-21

GENERATOR
EASYTRAN SOURCE PROGRAM GENERATOR, 3-18
TEST DATA GENERATOR C, 4-12

HANDLING
TAPE HANDLING, 3-19

INITIALIZATION ROUTINE
APPLICATION 31 PROGDD INITIALIZATION ROUTINE, 6-11

INITIALIZER C, 4-12
INITIALIZING PROGRAM

APPLICATION 31 INITIALIZING PROGRAM, 6-9
INPUT RUN DECK, 6-13

APPLICATION 1: INPUT RUN DECK, 6-3
APPLICATION 21 INPUT RUN DECK, 6-6
APPLICATION 31 INPUT RUN DECK, 6-13

INPUT/OUTPUT CONTROL, 4-8
COMMUNICATIONS INPUT/OUTPUT CONTROL, 4-11
CONSOLE INPUT/OUTPUT CONTROL, 4-10
DRUM INPUT/OUTPUT CONTROL. 4-10

" fUNCTIONS, 4-11
MAGNETIC TAPE AND TERMINAL INPUT/OUTPUT CONTROL, 4-9
MAGNETIC TAPE INPUT/OUTPUT CONTROL. 4-8

INTERRUPT
" CAPABILITIES, 4-5
" CONTROL.

INTERRUPT CONTROL D, 4-6
MULTIPROGRAMMING wiTH INTERRUPT CONTROL D, 4-7

INTRODUCTION, 1-1
LANGUAGE

COBOL LANGUAGE, 3-8
COBOL SOURCE LANGUAGE,

EXAMPLE OF THE COBOL SOURCE LANGUAGE, 3-8
EASYCODER ASSEMBLY LANGUAGE, 3-2
FORTRAN LANGUAGE. 3-12

" PROCESSING, 3-1
LAYOUT

SyMBOL IC PROGRAM TAPE (SPT) fORMATI DATA RECORD
LAYOUT. A-3

LIBRARY PROCESSOR, 3-2, 3-3
LIBRARY PROCESSORS C AND DI FEATURES, 3-4

LIST COMMENTS
• C. 4-12. 4-8

LOADER-MONITOR
• COMMUNICATION AREA.

LOADER-MONITOR COMMUNICATION AREA, A-5
LOADER-MONITOR COMMUNICATION AREA (eASIC

FIELDS), A-5
• SEACHING OPTION. 5-2

LOADING
" AND MONITORING, 4-1

APPLICATION 3 - LOADING BY VISIBILITY, 6-8
• FROM CAPOS, 4-3
• FROM DRUM, 4-3
• FROM TAPE, 4-1

OPERATION CONTROL I LOADING AND MONITORING FUNCTIONS.
4-4

• PARAMETERS,
PROGRAM SEACHING AND LOADING PARAMETERS, 5-1

PROGRAM SEARCHI~G AND LOADING, 5-1
MACHINE-LANGUAGE PROGRAMS, 3-26
MAGNETIC TAPE, 3-22

" AND TERMINAL INPUT/OUTPUT CONTROL, 4-9
• INPUT/OUTPUT CONTROL, 4-8

MA I NTENANCE
MOD 1 OPERATING SYSTEMI PROGRAM PREPARATION AND

MAINTENANCE, 3-27
PROGRAM EDITING AND MAINTENANCE, 3-25
PROGRAM MAINTENANCE AND EDITING fUNCTIONS, 3-26
PROGRAM PREPARATION AND MAINTENANCE, 3-1

MATHEMATICAL PROCESSING FUNCTION, 3-23
MATHEMATICAL PROCESSING FUNCTIONS, 3-24

MEDIA CONVERSION, 3-19
SIMULTANEOUS MEDIA CONVERSION C, 3-21

MEMORY DUMP
" C, 4-13
• CONTROL C, 4-12

EMERGENCY MEMORY DUMP C. 4-13
METHODS OF ENTERING SEARCH PARAMETERS, 5-2
MOD

COMPONENTS Of THE MOD 1 OPERATING SYSTEM, 2-3
SERIES 200/0PERATING SYSTEM - MOD I, 2-1, 2-5

(cONT.)

~ ..

~ ~
L·.
J

I

COMPUTER-GENERATED INDEX

MOD (CONT.)
• I OPERATING SYSTEM PHILOSOPHY, 2-1
• 1 OPERATING SYSTEMI PROGRAM PREPARATION AND

MAINTENANCE, 3-27
• 1 OPERATION SYSTEM PUBLICATIONS, B-1

MODES
OPERATING MODES OF EASyCODER ASSEMBLERS C AND D, 3-6

MOD IFER
EASYTRAN PROGRAM MODIFER C, 3-18

MODifiER
EASYTRAN PROGRAM MODIFIER, 3-17

MONITORING
• fUNCTIONS,

OPERATION CONTROLI LOADING AND MONITORING
FUNCTIONS, 4-4

LOADING AND MONITORING, 4-1
MULTIPROGRAMMING WIT~ INTERRUPT CONTROL D, 4-7
OPERATING

• APPLICATIONS,
SAMPLE OPERATING APPLICATIONS, 6-1

• ENVIRONMENT, 2-1
• MODES Of EASyCODER ASSEMBLERS C AND D, 3-6
• SYSTEM,

COMPONENTS OF THE MOD 1 OPERATING SYSTEM, 2-3
MOD 1 OPERATING SYSTEMI PROGRAM PREPARATION AND

MAINTENANCE, 3-27
PHILOSOPHY O~ AN OPERATING SYSTEM, I-I

• SYSTEM PHILOSOPHY,
MOD I OPERATING SYSTEM PHILOSOPHY, Z-1

OPERATION
• CONTROL, 4-1

OPERATION CONTROL I LOADING AND MONITORING
FUNCTIONS, 4-4

" SYSTEM PUBLICATIONS,
MOD 1 OPERATION SYSTEM PUBLICATIONS, B-1

" SYSTEMS,

OPTION

EVOLUTION AND DEVELOPMENT OF OPERATION SYSTEMS,
1-1

LOADER-MONITOR SEACHING OPTION, 5-2
PARAMETERS

LOADING PARAMETERS,
PROGRAM SEACHING AND LOADING PARAMETERS, 5-1

SEARCH PARAMETERS,
METHODS OF ENTERING SEARCH PARAMETERS, 5-2

PATCH C, 4-13
PHILOSOPHY

• OF AN OPERATING SYSTEM, I-I
OPERATING SYSTEM PHILOSOPHy,

MOD I OPERATING SYSTEM PHILOSOPHY, 2-1
PREPARATION

~OD 1 OPERATING SYSTEMI PROGRAM PRE~ARATION AND
MAINTENANCE, 3-27

PROGRAM PREPARATION AND MAINTENANCE, 3-1
PREPARING

PRINT

APPLICATION 2 - PREPARING AND COMBINING EASYCODER
AND CO~OL PRuGRAMS, 6-4

SIMULTANEOUS SORT AND PRINT, 4-6
PROCESSING

• FUNCTION,
MATHEMATICAL PROCESSING FUNCTION, 3-23
MATHEMATICAL PROCESSING FUNCTIONS, 3-24

LANGUAGE PROCESSING, 3-1
" STRUCTURE, 2-Z

PROCESSOR
LIBRARY PROCESSOR, 3-2, 3-3
LIBRARY PROCESSORS C AND DI FEATURES, 3-4

PROGCC TERMINATION ROUTINE
APPLICATION 31 PROGCC TERMINATION ROUTINE, 6-10

PROGDD
• INITIALIZATION ROUTINE,

APPLICATION 31 PROGDD INITIALIZATION ROUTINE,
6-11

• TERMINATION ROUTINE,
APPLICATION 3: PROGDD TERMINATION ROUTINE, 6-11

PROGEE TERMINATION ROUTINE
APPLICATION 3: PROGEE TERMINATION ROUTINE, 6-12

PROGRAM
APPLICATION 31 INITIALIZING PROGRAM, 6-9
APPLICATION 31 RUN TERMINATION PROGRAM, 6-13

• CHECKOUT,
AUTOMATIC PRuGRAM CHECKOUT, 4-12

COBOL PROGRAMS,
APPLICATION 2 - PREPARIN" AND COMBINING

EASYCOUER AND COBOL PROGRAMS, 6-4
COLLATE PROGRAM,

(CONT.)

PROGRAM (CONT.)
SORT AND COLLATE PROGRAM: FEATURES, 3-Z3

• EDITING AND MAINTENANCE, 3-25
• EXECUTION AND CONTROL, 4-1

FOREGROUND PROGRAMS, 4-6
• GENERATOR,

EASYTRAN SOURCE PROGRAM GENERATOR, 3-18
MACHINE-LANGUAGE PROGRAMS, 3-Z6

" MAINTENANCE AND EUITING fUNCTIONS, 3-26
" MODIFER,

EASYTRAN PROGRAM MODlfER C, 3-18
• MODifiER,

EASYTRAN PROGRAM MODIFIER, 3-17
• PREPARATION,

MOD 1 OPERATING SYSTEM I PROGRAM PREPARATION AND
MAINTENANCE, 3-Z1

PROGRAM PREPARATION AND MAINTENANCE, 3-1
• SEACHING AND LOADING PARAMETERS, 5-1
• SEARCHING AND LOADING, 5-1
• SPECIALIZATION,

APPLICATION 1 - EASYCODER PROGRAM
SPECIALIZATION, ASSEMBLY,AND TEST, 6-1

SYMBOLIC PROGRAMS, 3-25
• TAPE,

SYMBOL IC PROGRAM TAPE (SPTl FORMAT' A-2
SYMBOLIC PROGRAM TAPE (SPT) fORMAT: DATA RECORD

LAyOUT, A-3
SYMBOLIC PROGRAM TAPE (SPT), A-I

TAPE SORT C PROGRAMS, 6-9
" TERMINATION, 6-9
" TEST,

USE Of THE PROGRAM TEST C UTILITY PROGRAMS, 4-13
" TEST fACILITIES, 4-1Z

UTILITY PROGRAMS. 3-18
USE OF THE PROGRAM TEST C UTILITY PROGRAMS, 4-13

PUBLICATIONS
OPERATION SYSTEM PUBLICATIONS,

MOD 1 OPERATION SYSTEM PUBLICATIONS, B-1
RECORD LAYOUT

SYMBOLIC PROGRAM TAPE (SPT) fORMAT: DATA RECORD
LAYOUT, A-3

REPORT GENERATION, 3-21
ROUTINE

RUN

APPLICATION 31 PROGCC TERMINATION ROUTINE, 6-10
APPLICATION 31 PROGDD INITIALIZATION ROUTINE, 6-11
APPLICATION 31 PROGDD TERMINATION ROUTINE, 6-11
APPLICATION 3: PROGEE TERMINATION ROUTINE, 6-1Z
DATA CONVERSION C ROUTINES, 3-Z0

" SETUP,
APPLICATION 11 RUN SETUP, 6-2
APPLICATION 21 RUN SETUP, 6-5

• TAPE,
BINARY RUN TAPE (BRT) fORMAT, A-3
BINARY RUN TAPE (BRT), A-l

• TERMINATION PROGRAM,
APPLICATION 3: RUN TERMINATION PROGRAM, 6-13

RUN DECK
APPLICATION 11 INPUT RUN DECK, 6-3
APPLICATION 2: INPUT RUN DECK, 6-6
APPLICATIO~ 31 INPUT RUN DECK, 6-13
BINARY RUN DECK. (BRD) FORMAT, A-4
BINARY RUN DECKS, A-2
INPUT RUN DECK, 6-13

• SETUP, 6-1, 6-4
SAMPLE OPERATING APPLICATIONS, 6-1
SEACHING

• OPTION,
LOADER-MONITOR SEACHING OPTION, 5-2

PROGRAM SEACHING AND LOADING PA~AMETERS, 5-1
SEARCH PARAMETERS

METHODS Of ENTERING SEARCH PARAMETERS, 5-2
SEARCHING

PROGRAM SEARCHING AND LOADING, 5-1
SERIES ZOO/OPERATING SYSTEM

• - MOD 1, Z-I, Z-5
5ETUP

ANALYZER C SETUP, 3-7
APPLICATION I: RUN SETUP, 6-Z
APPLICATION 2: RUN SETUP, 6-5
RUN DECK SETUP, 6-1, 6-4

SIMPLICITY, Z-1
S I MUL TANEOUS

SORT

" MEDIA CONVERSION C, 3-21
" SORT AND PRINT, 4-6

" AND COLLATE PROGRAM: FEATURES, 3-23
(CONT.)

COMPUTER-GENERATED INDEX

SORT (CONT.)
SIMULTANEOUS SORT AND PRINT. 4-6
TAPE SORT C PROGRAMS. 6-9

SORTING AND COLLATING, 3-22
SOURCE

" LANGUAGE,
EXAMPLE Of THE COBOL SOURCE LANGUAGE, 3-8

" PROGRAM GENERATOR,
EA~YTRAN SOURCE PROGRAM GENERATOR, 3-16

SPlCIALIZATION

SPT

APPLICATION 1 - EASYCODER PROGRA~ SPECIALIZATION,
ASSEMBLy,AND TEST, 6-1

SYMBOL IC PROGRAM TAPE (SPT), A-I
SYMBOLIC PROGRAM TAPE (SPT) fORMAT, A-2
SYI'IBOLIC PROGRAM TAPE (SPT) fORMATI DATA RECORD

LAYOUT, A-3
STANDARD ECD ENTRIES, A-7
STATEMENT

fCRTRAN-LANGUAGE ARITHMETIC STATEMENT,
EXAMPLE Of A fORTRAN-LANGUAGE ARITHMETIC

STATEMENT, 3-12
STCRAGE

DRUM STORAGE. 3-~3
STRUCTURE

PROCESSING STRUCIURE, 2-2
SY~tlOLlC

" CARD fORMATS,
EASYCODER SYMBOLIC CARU fORMATS, 3-4

" PROGRAM TAPE,
SYMBOLIC PROGRAM TAPE (SPT) FORMAT, A-Z
SY~IBOL IC PROGRAM TAPE (Sf'T) FORMATI DATA RECORD

LAYOUT, A-)
SYMBOLIC PROGRAM TAPE (SPT), A-I

" PROGRAMS. 3-Z5
• TRANSLATOR SYSTEM,

EASYCODER SYMBOLIC TRANSLATOR SYSTEM, 3-16
n TRANSLATORS,

S Y S TEM

EASYTRAN SyMBOLIC TRANSLATORS. 3-15
EASYTRAN SYMBOLIC TRANSLATORS C AND DI FEATURf.S,

3-16

ASSEMBLY SYSTEM. 3-2
COBOL COMPILER SYSTEM, 3-11, 3-8
COMPILER SYSTEMS, 3-7
EASyCODER SyMtlOLIC TRANSLATOR SYSTEM, 3-16
fORTRAN COMPILER SYSTEM, 3-12, 3-14
OPERATIhG SYSTEM,

COMPONENTS Of THE MOD I OPERATING SYSTEM, 2-3
MOD 1 OPERATING SYSTEMI PROGRAM PREPARATION AND

MAINTENANCE, 3-27
PHILOSOPHY Ot AN OPERATING SYSTEM, I-I

OPERATION SYSTEMS.
EVOLUTION AND DEVELOPMENT Of OPERATION SYSTEMS,

I-I

TAPE

" PHILOSOPHY.
MOD 1 OPERATING SYSTEM PHILOSOPHY, 2-1

• PUBLICATIONS,
MOD 1 OPERATION SYSTEM PUBLICATIONS, B-1

SERIES ZOO/OPERATING SYSTEM - MOD I, 2-1. 2-5

BINARY RUN TAPE (BRT) FORMAT. A-3
BINARY RUN TAPE (BRT), A-I

" DUMP C, 4-13
" HANDLING. 3-19
" INPUT/OUTPUT CONTROL.

MAG~ETIC TAPE INPUT/OUTPUT CONTROL. 4-8
LOADING FROM TAPE. 4-1
MAGNETIC TAPE, 3-22
MAGNETIC TAPE AND TERMINAL INPUT/OUTPUT CONTROL. 4-9

n SORT C PROGRAMS. 6-9
SyMBOLIC PROGRAM TAPE (SPT) fORMAT. A-Z
SyMBOLIC PROGRAM TAPE (SPT) fORMAT: DATA RECORD

LAYOUT. A-3
SYMBOL IC PROGRAM TAPE (SPT). A-I

TERMINAL INPUT/OUTPUT CONTROL
MAGNETIC TAPE AND TERMINAL INPUT/OUTPUT CONTROL. 4-9

TERM I NAT I ON

TEST

" PROGRAM.
APPLICATION 31 RUN TERMINATION PROGRAM. 6-13

PROGRAM TERMINATION. 6-9
" ROUTINE,

APPLICATION 31 PROGCC TERMINATION ROUTINE. 6-10
APPLICATION 31 PROGDD TERMINATION ROUTINE. 6-11
APPLICATION 31 PROGEE TERMlhATION ROUTINE. 6-12

APPLICATION I - EASYCODER PROGRAM SPECIALIZATION.
ASSEMtlLY.AND TEST. 6-1

• DATA GENERATOR C, 4-12
" fACILITIES.

PROGRAM TEST fACILITIES. 4-12
PROGRAM TEST.

USE OF THE PROGRAM TEST C UTILITY PPOGRAMS. 4-13
TESTING

fOR TESTING. 6-4
TRANSCRIPTION

DATA TRANSCRIPTION AND EDITING. 3-18
TRANSLATOR SYSTEM

EASY CODER SYMBOLIC TRANSLATOR SYSTEM. 3-16
TRANSLATORS. 3-15

EASYTRAN SYMBOLIC TRANSLATORS. 3-15
EASYTRAN SYMBOLIC TRANSLATORS C AND 01 fEATURES.

3-16
UTILITY PROGRAMS. 3-18

USE Of THE PROGRAM rEST C UTILITY PROGRAMS. 4-13
VISltllLlTY

APPLICATION 3 - LOADING BY VISIBILITY. 6-B
ZOO/OPERATING SYSTEM

SERIES 200/0PERATING SYSTEM - MOD I, 2-1. 2-5

/

HONEYWELL EDP TECHNICAL PUBLICATIONS
USERS' REMARKS FORM 1

TITLE: SERIES 200 INTRODUCTION TO
SERIES 200/0PERATING SYSTEM -
MOD 1 (TAPE RESIDENT)
SOFTWARE MANUAL

DATED: AUGUST, 1966

FILE NO: 123.0005. 001C. 1-258

ERRORS NOTED:

SUGGESTIONS FOR IMPROVEMENT:

Fold

FROM: NAME DATE _____ __

COMPANY _________________________________ ___

TITLE ___________________ ___

ADDRESS __________________ __

1 Please restrict remarks to the publication itself. Comments concerning hardware /
software difficulties and improvement requests should be submitted through the
channels established for that purpose.

•

············aUSINESSREPl YMAlt<
tto_stan,p necessafY if m.J~tQi~

PQSTAGE

ATT'N: TECHNICAL COMMUNICATIONS DEPARTMENT

Honeywvell
ELECTRONIC DATA PROCESSING

FIRST CLASS

PERMIT NO. 39531

WELLESLEY HILLS
MASS.

