' HONEYWELL EDP

&

GENERAL SYSTEM:

SUBJECT:

SPECIAL
INSTRUCTIONS:

DATE: August 29, 1966

. 9067
6 8766
Printed in U. S, A.

~ SOFTWARE MANUAL

SERIES 200

INTRODUCTION TO
SERIES 200 /OPERATING SYSTEM-
MOD 1 (TAPE RESIDENT)

SERIES 200/OPERATING SYSTEM - MOD 1

General Description of the Series 200/Operating
System - Mod 1 (Tape Resident).

This software manual completely supersedes the
publication entitled Introduction to Series 200/
Operating System - Mod 1, Order Number 258,
dated March 30, 1966.

*
FILE NO.: 123.0005.001C.1-258

%*When ordering this publication please specify
Title and Underscored portion of File Number.

TABLE OF CONTENTS

Page

Section I Introduction. . veeeeeeeoes. s etaesesssesaresannns 1-1
The Evolution and Development of Operating Systems...... 1-1

Philosophy of an Operating System. ceseeseseaes 1-1

Section II The Series 200/Operating System - Mod l............. e 2-1
Operating Environment.........ccciiiiiieniennn.. eeees 2-1

Mod 1 Operating System Philosophyo 2-1

SIMPliCItY e e eeeennseeeecseaoenssensoasacasocnnsonanns 2-1
Efficiency...oeeveecececeecacas Gerseeseisieennneus ees 2-1

Flexibility s oveivennererenesntaerocnsscanronneonoess 2=2

Processing Structireceeeveececcsoecsssosscessens 2-2

Components of the Mod 1 Operating System.......c.0vv0e. 2-3

Section III Program Preparation and Maintenanceccc0eevtverecss
Language Processing..........c.vu...
Assembly System ... vveireeniionionan
Easycoder Assembly Language cheaeaen
Library Processorcc0u.s. Ceeeseanan
Easycoder Symbolic Card Formats0..
Easycoder Assembler......... et
Analyzer «..vciiiiiiiiiiiinnanan et e
Compiler SYStEIMS + vt eerrneeseeeonenssoessonsoassas
The COBOL Compiler Systemc.ceeveenneeneanns
The COBOL Language..... e RN ..
The COBOL Compilers.ceeiereetecsroneraassnas
The Fortran Compiler System «..c.vvviceroenansas
The Fortran Language e eeaen
The Fortran Compilerscicieeeeeiennns
Translators +eeeeeesen C e teceerasses et nes
Easytran Symbolic Translators +«.cceveecececcoa.e.
Easytran Program Modifier Ceeteeee it
Easytran Source Program Generator
Utility Programs «..cccseeseeese cessastescternsranraa
Data Transcription and Editing «ccoeveeeacsen
Tape Handling «eieveeeesesscoss Ceeere e eenen
Media Conversion -...... heteer e
Data Conversion C Routines....ccce.v.n
Simultaneous Media Conversion C «cooevv..
Report Generation......ecce.. et es et
Sorting and Collating.«c+eveoereerenees et ereaan
Magnetic Tape:s:ceceoossrresoonens
Drum Storage «csecocecseressansons et
Mathematical Processing Functions covveveeaes.
Program Editing and Maintenanceccceceecoseceecsns
Symbolic Programs «cevco. .. Chv s cee e
Machine-Language Programs.......... creeee

Section IV Program Execution and Control..... cer s cetee e
Operation Control.ceeereenrneeenennns

Copyright 1966

Honeywell Inc.
Electronic Data Processing Division
Wellesley Hills, Massachusetts 02181

ii

TABLE OF CONTENTS (cont)

Page
Section IV (cont) Loading and Monitoring.....cv..... et et [T |
Toading from Tape....coiineiiierirennnnnnnneness 4-1
Loading from Cards ... viviencnennnnnn ceterenne.. 4-3
Loading from Drumc.00us N ctteeiee e 4-3
Interrupt Capabilities .vovveseieviiiienneennnnnenness 4-5
Interrupt Control D Cerereerneanses 4-6
Foreground Programs B e
Simultaneous Sort and Print......... et B A
List Comments C.vuuriiinnnnnneeoenennennnnan sesee. 4-8
Input/Output Control......... e -
Magnetic Tape Input/Output Control.e.ee.veeennnens. .. 4-8
Magnetic Tape and Terminal Input/Output Control...... 4-9
Drum Input/Output Control e e cee. 4-10
Console Input/OQutput Control.......... B o X0}
Communications Input/Output Control......... cireeees 4-11
Program Test Facilities ceeenn et e e, . 4-12
Automatic Program Checkout .o.ovvvvvv..... B T
Initializer C.............. ceeean T - S A
List Comments C....000.4.. et it ceess 4212
Test Data Generator C P Y)
Memory Dump Control € ..ovvieiietiieneerrrnneenne 4-12
- Memory Dump C..... e e sttt eve. 4-13
n Patch Gttt ittt ittt etteeennnnnsnene. 4-13
‘ Tape Dump C..... 4-13
: Emergency Memory Dump C v ovvvevenvnnnn. R 2 K
Use of the Program Test C Utility Programs 4-13
Section V Program Searching and Loading -« o oot vvennnennennenenerens 5-1
Section VI Sample Operating Applications......ceveeeeen. Y 3
Application 1 - Easycoder Program Specialization,
Assembly, and Test.uoeieeentiertnnseeeonoeossnsnsnnnes 6-1
Run Deck Setup.ceveeeeeseeransnn e et 6-1
Application 2 - Preparing and Combining Easycoder and
COBOL Programs for Testing......... Ceer et 6-4
Run Deck Setup...cveevvinnnennnnns e ceviee.. b6-4
Application 3 - Loading by Visibility,.......0v.... ceesee. 6-8
Program Termination....... e e teeen ce et eeaen 6-9
Tape Sort C Programsooce0 4. N et 6-9
Input Run Deck cee et e v innerennnnrereeeecenen 6-13
Appendix A o T o 0 o - 1) - T A-1
Symbolic Program Tape (SPT).......... e e e A-1
Binary Run Tape (BRT) ¢t v ettt tiie i ittt eonnnnnnnnns A-1
Binary Run Decks «v-veveeeenann. cre e Cereseen e e A-2
Loader-Monitor Communication Area: -cceeeeeeen. e A-5
Equipment Configuration Descriptor (ECD) Card Format... A-6
ECD Card........ e e et A-6
Standard ECD Entries c v v ee e eeereensoneeennnonaeess A-7
' ‘ Appendix B Mod 1 Operating System Publications......... e B-1

iii

o
4l
)
[~
H
o
WWWWWWwWWwWwwwN
1
=0 0~ 0N ULA W

Figure
Figure
Figure A- 1

4-
6-
6-
6-
6-
Figure 6-
6-
6-
6-
6-
6-
6-

Figure A-2.
Figure A-3.
Figure A-4.

Table 3-
Table 3-
Table 3-
Table 3-
Table 3-
Table 3-
Table 3-
Table 3-
Table 4-
Table 4-
Table 5-
Table 5-
Table 5-
Table A-
Table A-2.

1
2
3
4
5
6.
7.
8
1
2
1
2
3
1

1
1
2
3
4
5.
6.
K
8
9.
10
11

LIST OF ILLUSTRATIONS

Page
Series 200/Operating System - Mod l........... ctesiereenas 2-5
The Library Processor cceevereeeeetssessesscsasncnssssnns 3-3
Operating Modes of Easycoder Assemblers Cand D.vevvves.. 3-6
Analyzer C SetuUpP.veeseeoseersosnsenssceseronancsss ceennse 3-7
Example of the COBOL Source Language .veeeseeess ceserasan 3-8
COBOL Compiler SysStemMeessesrocsscsosaosanasssssasssssssnss 3=11
Example of a Fortran-Language Arithmetic Statement........ 3-12
The Fortran Compiler System «ceccttertereeeecetscncsnsonas 3-14
The Easytran Symbolic Translator System ceecnacnans 3-16
Easytran Program Modifier C cvveveertetnertnesnnacsasssense 3-18
Mod 1 Operating System: Program Preparation and
MaintenanCe o e rtecnerasosessocssoescncssnssnaesansassnsans 3-27
Multiprogramming with Interrupt Control D ..o vvvinivenneens 4-7
Application 1: Run SetupP.secteeeroesssssnsceassossssassnnns 6-2
Application 1: Input Run Deck coeveeseenesoscsssssenasosnns 6-3
Application 2: RuUn SetUP.ceseccesossosesssscssesasonsas eee 6-5
Application 2; Input Run Deck seeervenenennnennnasans N 6-6
Application 3: Initializing Program «eeeveeeeeceeesesaasssss 6-9
Application 3: PROGCC Termination Routine....sv.000 veees 6210
Application 3: PROGDD Initialization Routine ...ccecveeeensn 6-11
Application 3: PROGDD Termination Routine ««..vcevuveeenn 6-11
Application 3: PROGEE Termination Routine .e.cevveseceans 6-12
Application 3: Run Termination Program....eceevesvsesenes 6-13
Application 3: Input Run Deck vveeeeerserrioosososscsssenss 6-13
Symbolic Program Tape (SPT) Format «cevceesvsencans ceees A-2
Symbolic Program Tape (SPT) Format: Data Record Layout A-3
Binary Run Tape (BRT) Format.sceeesseeceacssssosasons ess A-3
Binary Run Deck (BRD) Format..seecoesooessoses cesesseanes A-4
LIST OF TABLES
Library Processors C and D: Features......eveeue.. S
Easycoder Assemblers C and D: Features......... sessssnes 3-5
COBOL Compilers Dand H: Features.....eecevesescnascs e 3-10
Fortran Compilers D and H: Features..csesesoeeen cesssernns 3-14
Easytran Symbolic Translators C and D: Features...eoeoeeeos 3-16
Sort and Collate Programs: Features «..cceesevsscessosceasss 3-23
Mathematical Processing Functions .v....... ceteecsseseancess 3-24
Program Maintenance and Editing Functions............ R Y1
Operation Control: Loading and Monitoring Functions.v...e.. 4-4
Input/Output Control Functions. ...eeeeeeeeuerenacens cheeees 4-11
Program Searching and Loading Parameters ceees 5-1
Loader-Monitor Searching Optionsco..... teeeeesasress D=2
Methods of Entering Search Parameters Ceeeesenessess D-2
Loader -Monitor Communication Area (Basic Fields) A-5
Equipment Configuration Descriptor (ECD) Card Format,..... A-7

iv

SECTION 1
INTRODUCTION

The Series 200/Operating System represents the result of 15 years of evolution and develop-
ment. Honeywell's role in this development has been particularly significant, starting with the
operating system on the D-1000, continuing through the Executive System and the ADMIRAL
System for the H-800/1800, and culminating in the Series 200/Operating System.

THE EVOLUTION AND DEVELOPMENT OF OPERATING SYSTEMS

In the early days of computers, the programmer not only wrote the programs but executed
them as well. He set up the programs, loaded them with his own loading routine, monitored
their execution, and debugged them on the machine. In effect, it was a one-man operation from
beginning to end, with the programmer controlling all aspects of the program's execution via
manual intervention at the console. Following the execution of one program, the nextprogrammer

stepped in and took over with his own unique methods of operation.

It soon became evident that this mode of operation was economically unfeasible. In many
cases, the setup time for a program far exceeded the run time. The lack of uniformity in setup
and operating procedures resulted in costly mistakes and made any communication or standard-
ization between programs impossible. In addition, each programmer had to write his own load
routines, input/output routines, error routines, etc., instead of being able to incorporate those

already written.

As cemputers developed, the need for a better system of operating also developed. More

comprehensive applications resulted in the technique of assigning a team of programmers to

each application or job. The fact that some sort of communication had to exist between these job-
related programs required standard methods of programming and operation. Users began to
develop routines for such common and repetitive operations as loading, dumping, sequencing
from program to program, and debugging, and to incorporate these standardized routines into
their programs. Although no standards existed among the various users, at least some degree of
standardization was realized within each individual installation. Because these aids were used to
control program execution, they were called supervisory or executive programs. It was from

these that the monitors and operating systems of today evolved.

PHILOSOPHY OF AN OPERATING SYSTEM

The operating system concept is based on one primary goal: the increase of data throughput

SECTION I. INTRODUCTION

by assisting the user in utilizing to the fullest extent the hardware and software available. To

fulfill this goal, an operating system should:

1. Be simple and convenient to use,

2. Relieve the operator of the necessity for complex procedures and constant
supervision.

3. Eliminate unnecessary idle time spent on job setup and last-minute planning.

4. Be flexible and expandable - adaptable to the operating environment in terms

of hardware configurations, software complements, and operating policies
of the user.

5. Minimize the turnaround time between the submission of a2 job and the return
of the results.

6. Be economical, efficient, and easily maintained.

To the extent that the above goals have been achieved in the design of an operating system,
the operator can communicate with the system rather than with the individual programs, and the
system operating procedures become standardized. Likewise, because of such features as a
comprehensive program test system, the programmer can direct the entire testing procedure
by simply preparing the control deck to be used. Thus, both the operator and the programmer

are removed to an off-line status and are prevented from any wasteful contact with the computer.

In short, an operating system can be thought of as a framework within which the user's
data processing applications can be written, prepared, and executed. To this end, an operating
system consists of many language processing and service routines designed to aid the user in

these activities.

1-2

SECTION II
THE SERIES 200/OPERATING SYSTEM - MOD | (TAPE RESIDENT)

The Series 200/Operating System - Mod 1 provides the user with a means of unleashing
the full power of any Series 200 computer system having a minimum of 12K characters of mem-
ory and three tape units. Designed with simplicity, economy, and flexibility in mind, the Mod 1
Operating System offers a long list of significant features molded together into one integrated

operating framework.

OPERATING ENVIRONMENT

The Series 200/Operating System - Mod 1 (Tape Resident) is designed for all Series 200
machine configurations having 12K to 65K characters of core storage and from three to six tape
units. In addition, the versatility of the system enables the efficient use of other peripheral

devices such as punched cards, drumn storage, paper tape, communications, and mass memory.

MOD 1 OPERATING SYSTEM PHILOSOPHY

Specifically aimed at the medium-scale, tape-oriented, Series 200 user, the basis of the
Mod 1 Operating System philosophy can be found in the three outstanding characteristics of the

system: simplicity, efficiency, and flexibility.

Simplicity

The Mod 1 Operating System provides a comprehensive collection of precoded and tested
systems functions and programs which relieve the user of a host of complex programming and
operating tasks. For example, tape and drum storage input/output routines are provided ready
for specialization and insertion, via macro calls, into the user's programs. For the operator,
a complete program test package allows for the checkout of an entire series of programs with

no operator intervention from the initial pressing of the RUN button to the end of the job.

Standard, easily learned operating procedures simplify the operator's job. The same
maintenance programs and standard operating procedures are used to maintain and execute

Honeywell software and the user's own object programs.

Efficiency
One of the most important objectives in the design of the Mod 1 Operating System is the
efficient and economic use of core storage. First, since the system is completely modular in

design, only those functions required for any given operation occupy memory. For example,

SECTION 1I. THE SERIES 200/OPERATING SYSTEM - MOD 1 (TAPE RESIDENT)

separate loader routines are provided for loading programs stored on punched cards, magnetic
tape, or drum. ZEach version contains only those functions required for loading from the particu~
lar medium. Secondly, routines (or portions of routines) can be assembled and executed in either
two-, three-, or four-character addressing mode. Whenever possible, the shortest addressing
mode may be used to conserve core requirements. For example, the three-character address
mode version of Floating Tape Loader-Monitor C occupies approximately 520 to 550 fewer core
locations than the four-character version. One proof of core usage efficiency is the fact that
Honeywell's Series 200 COBOL compilers require much less memory than any competitive com-

pilers offering similar features.

Through the use of the Mod 1 Operating System, the user realizes savings not only from
efficient core usage but also from the reduction of setup and idle time and from the elimination
of operations errors. In addition, the assembly, sorting, and compiling functions offer speeds

which far exceed those of similarly priced competitive equipment.

Flexibility

Flexibility is provided both by the number and variety of functions offered any by the
inherent expansibility of the system. For example, the user has a choice of several programming
languages ranging from the assembly-level language of Easycoder to the scientific compiler-
level language of Fortran. Further, he can choose between card, tape, or drum program stor-
age and loading. He can add his own coded macro routines to the macro library for insertion
into his programs. He can take advantage of any communication devices or console typewriters
included as part of his computer configuration. He can use any core memory size from 12K up

to 262K and can begin with as few as three tape units.

One of the major benefits derived from this flexible design is that of orderly growth poten-
tial by which the user can add both hardware and software as needed and still maintain an inte-
grated system. Coupled with the modular design of the Series 200 hardware and software, the

Mod 1 Operating System assures the user of upward program compatibility as his system grows.

PROCESSING STRUCTURE

Fundamental to the design of the Mod 1 Operating System is its functional program modu-

larity.

First, although the concept of a program as the basic logical unit is still retained, a pro-
gram is segmented into one or more loading units. Each loading unit consists of 2 portion of

the code for a particular program and can be individually searched for and loaded by a single

SECTION II. THE SERIES 200/OPERATING SYSTEM - MOD 1 (TAPE RESIDENT)

call to the Loader-Monitor. This concept of program segmentation provides increased opera-

tional flexibility plus a great reduction in the amount of memory core required by a program.

Secondly, related programs can be combined into job-oriented groupings. The ability to
store not only several "jobs' but also several versions of each job on a single program tape allows
the user to adopt the building-block approach in the implementation of these jobs. For example,

a program tape might contain all of the current production programs for the application, checked-
out programs to be incorporated in the future, and programs yet to be tested. During any execu-~
tion of the job, the desired programs are automatically selected, loaded, and executed in what-
ever sequence the user elects. This is accomplished through the common interface of the Mod 1
Operating System using one or both of two methods: internal control via coding within the pro-

grams themselves; external control via a Console Call card control deck.

COMPONENTS OF THE MOD 1 OPERATING SYSTEM

The Mod 1 Operating System contains many subsystems and routines designed to eliminate
much of the work of both the programmer and the operator. These components can be divided
into three types: those which aid in the preparation of source-language programs and their
translation into machine language; those which perform editing and maintenance on machine-
language programs; and those which control the execution of programs. These three groupings

are shown in Figure 2-1.

Program preparation involves both the writing and translation of the user's own programs
and routines and the incorporation of Honeywell-supplied utility programs and routines. The
user has a choice of three methods of writing and translating his own programs: assembly sys-
tems, compiler systems, and translators. These are collectively called language processors.
Honeywell-supplied programs, called utility programs, perform such common data processing
functions as the sorting and collating of data files, the manipulation of tapes, and the solving of
mathematical formulas. Since the machine-language format of all these programs is the same,

regardless -of their source, they can be combined and executed in any order.

The editing and maintenance programs enable the user to select, rearrange, and combine
all types of object programs within the Mod 1 Operating System onto a single program run tape

from which he can load and execute his jobs. Facilities are also provided for modifying and

correcting programs.

SECTION II. THE SERIES 200/OPERATING SYSTEM - MOD 1 (TAPE RESIDENT)

SOURCE-
LANGUAGE
PROGRAMS
| PROGRAM PREPARATION |
[LANGUAGE PROCESSORS]
[ASSEMBLERS J [COMPILERS | l TRANSLATORS I

UTILITY PROGRAMS

MACHINE-
LANGUAGE
PROGRAMS

DATA EDITING & | MATHEMATICAL
TRANSCRIPTION | PROCESSING

[PROGRAM EDITING & MAINTENANCE

[ohimianiulnion A
{ BRT-FORMAT ,

CARD DECKS |

MACHINE -
LANGUAGE
PROGRAMS

PROCESSED
OUTPUT DATA

INPUT DATA PROGRAM EXECUTION

OPERATION INPUT/OUTPUT PROGRAM
CONTROL CONTROL TEST

Figure 2-1. Series 200/Operating System - Mod 1

2-4

SECTION II. THE SERIES 200/OPERATING SYSTEM - MOD 1 (TAPE RESIDENT)

In the area of program execution, the Mod 1 Operating System offers several important
capabilities: operation control, input/output control, and program test. Operation control is
performed by some version of the loader-monitor which can search for and load any program
called for by either the operator or the current program. It can also execute programs on a
job basis — i.e., automatically search for, load, and execute an entire series of programs
related to one application or job. An associated interrupt control routine can extend these
capabilities to the loading and executing of two programs at the same time by utilizing the
simultaneity and interrupt capabilities of the Series 200 hardware. File input and output op-
erations are controlled by appropriate input/output routines inserted and specialized within
each program at assembly or compilation time via user-specified macro calls. Automatic
program test and checkout procedures are provided within the system for the efficient testing
and debugging of a single program or a whole series of programs immediately following assem-

bly, compilation, modification, or specialization of the programs.

The following sections present these various components in detail.

2-5

SECTION III
PROGRAM PREPARATION AND MAINTENANCE

The Mod 1 Operating System provides the user with a comprehensive language processing
capability in the form of assemblers, compilers, and conversion programs. Utility programs
complement this capability by offering precoded routines which perform common data processing
functions and which can be specialized to the user's individual needs. Editing and maintenance
programs offer a means of creating and maintaining symbolic and machine-language program

files.

LANGUAGE PROCESSING

Language processing programs are provided to translate programs written in several
different source languages into a single machine-language format; thus, the output from the
various language processors can be combined on a single program run tape and executed in any
order. In writing his programs, the user chooses from the following three languages the one
best suited to the application and to his own background and experience.

1. Easycoder - A general-purpose assembly-level language which combines
ease of use with power and flexibility. To express the logic of his pro-
gram, the user employs easily remembered mnemonic op codes and ref-
erences memory locations by either absolute decimal numbers or sym-
bolic tags. The Easycoder system includes an Easycoder assembler
which translates the source language to machine language, a library
processor which enables the user to incorporate precoded routines into
his program, an analyzer program which prints a cross-reference
listing of all symbolic tags used, and a symbolic program maintenance
facility which permits the storage and updating of symbolic programs
on tape.

2. COBOL - A business-oriented compiler-level language which offers
simplicity of format, shorter training time requirements, and com-
patibility among different models of computers. The user expresses
the logic of his program as a series of English-language statements
conforming to standardized COBOL conventions.

3. Fortran - A science-oriented compiler-level language which allows
the user to express a wide variety of engineering, scientific, and
data processing problems in a familiar format. Library and diag-
nostic facilities are included in the system.

If the user has already written his programs in the language of a competitive system, he
can easily and quickly coavert these programs to a format compatible with the Series 200 sys-
tems. As a result of the Honeywell Liberator concept, such programs can be translated on both
the symbolic and machine-language levels without the aid of simulators. For example, the Easy-

tran Symbolic Translator routines translate programs written in Autocoder, SPS, or mixed

3-1 s

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

SPS/Autocoder source language into Easycoder source language. An important facet of this
translation is that all programs are modified to take advantage of the superior throughput power
of the Series 200 hardware and, as a result, usually run in a fraction of their former execution

time.

Agsembly System

The Easycoder Assembly System for the Mod 1 Operating System comprises four elements:
1. A symbolic language,
2 A library processor,
3. An assembler, and
4

. An analyzer.

EASYCODER ASSEMBLY LANGUAGE

The Easycoder Assembly Language is a general-purpose, easy-to-use language designed
for all types of applications. It provides the user with a comprehensive set of operation codes
with which he can specify the following types of operations:

1. Arithmetic - Offer the user a choice of binary or decimal arithmetic
functions. In addition, Easycoder Assembler D on a Series 200 com-
puter with the Scientific Unit provides the user with floating-point
capabilities.

2. Logic - Provide the user with the functions of extracting, half-
adding, substituting, comparing, conditional and unconditional
branching, etc.

3. Control-- Enable the user to set and clear punctuation, halt the
machine, move data, enter and retrieve data from control memory,
and change addressing and sequencing modes. Easycoder Assembler
D also allows the controlling of memory barricades with the Storage
Protect Feature.

4. Interrupt Control - Enable the user to take advantage of the inter-
rupt functions of the Series 200 hardware.

5. Editing - Permits the use of the extensive power of the Edit Feature
in producing financially edited fields on printed reports.

6. Input/OQutput - Provides two basic instructions which allow the user
complete control over all data transfers between the central pro-
cessor and all peripheral units and over the peripheral units them-
selves.

Also included in the Easycoder symbolic language are a number of assembly control statements

which permit the user to control the assembly process itself.

LIBRARY PROCESSOR
To relieve the programmer of the burden of the repetitive and complex coding of commonly

used routines (e.g., input/output procedures), the Easycoder Assembly System includes library

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

facilities. In addition to the basic library of general-purpose routines supplied by Honeywell,
the user can add his own often used programs and routines to this library. These routines are
stored, in source-language format, on a library source-program tape. By writing call state-
ments (macro instructions) within his source coding and processing his program through a
library processor prior to assembly, the user can cause these routines to be selected from the
library source-program tape, specialized according to the parameters he has included in the

call statements, and inserted into his program.

The two versions of the library processor - Library Processors C and D - provided in the
Mod 1 Operating System perform the following three functions:

1. Specialization - The specialization and insertion of macro routines
from the library symbolic program tape into Easycoder source-
language programs as indicated by the macro calls and associated
parameters.

2. Respecialization - The updating of previously processed programs
on a source-language program tape (which contains a source-language
version and a machine-language version of each program) with new
versions of the macro routines incorporated within them. The library
processor generates the new, respecialized versions of the macro
routines. During the subsequent assembly run, the assembler re-
places the object code of the old macro routines with the respecialized
versions.

3. Reproduction - The punching of symbolic source decks containing com-
plete source programs from the library source-program tape.

The setup for Library Processors C and D is shown in Figure 3-1.

e ‘\\
/ carp
LIBRARY | IMAGES J
SPT \ y;
- TN ’—-'——
/
/ CARD

— \
~—— 3 | IMAGES

| paper Tape | \ ON TAPE //

L_ <L
MACRO CALL l LIBRARY
—————l —_— PROCESSOR Em—
MACRO CALL III

SOURCE- LANGUAGE
PROGRAM (S)

MACRO CALL

]

TO ASSEMBLY

Figure 3-1. The Library Processor

3-3

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

Easycoder Symbolic Card Formats

The need for two versions of the library processor is brought about by the fact that the user
has a choice of two symbolic coding formats. The standard coding card format contains a seven-
character location field which allows the programmer to specify and use symbolic tags up to six
characters in length. The alternate card format contains an 11-character location field and allows
the programmer to specify and use symbolic tags up to 10 characters in length. These features

are summarized in Table 3-1.

Table 3-1. Library Processors C and D: Features

Library Processor C Performs the library facility functions of speciali-
zation, respecialization, and reproduction on
Honeywell-supplied or user-created macro routines
stored on a symbolic library tape. Accepts sym-
bolic programs using the standard card format and
produces output to Easycoder Assembler C.

Library Processor D Performs the same functions as the above version.
Accepts symbolic programs using the alternate card
format and produces output to Easycoder Assembler D.

EASYCODER ASSEMBLER

The Easycoder Assembler translates symbolic coding written in the Easycoder symbolic
language into machine language. It writes the assembled programs (in both their symbolic-
language format and their machine-language format) onto a symbolic program tape (SPT). If a
sufficient number of tape drives are available, it will also write the programs in machine
language onto a binary run tape (BRT), from which the programs can be loaded and executed.
Should a tape drive not be available, the BRT can be created in a separate run. Optionally,
assembled programs can be punched on cards in BRT machine-language format. The cards can
then be loaded and the program executed. Facilities are also provided for maintaining programs
on the symbolic program tape. Programs can be deleted from or added to an SPT, and correc-

tions can be made to the programs during the same assembly run.

During any single assembly run, the user has a choice of four operating modes:

1. Assembly - Translates programs written in Easycoder symbolic language
and places the assembled programs on a symbolic program tape (SPT) in
both symbolic form and machine-language form.

2, Selection - Selects the machine-language formats of specified programs
from an SPT and places these on a binary run tape or on punched cards.
If a sufficient number of tapes is not available during the assembly pass,
this mode is utilized following assembly to produce the BRT.

3-4

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

1 3. Assembly and Updating - Maintains and updates the programs on an SPT

in both their symbolic and machine-language formats through the correc-
. tion of individual programs, the addition of new programs, and the
deletion of unwanted programs.

4. Assembly, Updating, and Selection- Performs the same operations
as the assembly and updating mode with the added ability to select

specified programs and place these programs on tape or on cards
in executable form.

The mode chosen by the user depends upon his requirements and upon the number of tape units

available. The setup diagrams for the various modes are shown in Figure 3-2.

The Mod 1 Operating System includes two versions of the Easycoder Assembler:

Easycoder Assembler C and Easycoder Assembler D. The features provided by the two versions

are summarized in Table 3-2.

Table 3-2. Easycoder Assemblers C and D: Features

Easycoder Assembler C Processes the basic repertoire of symbolic
op codes and assembly control instructions.
Accepts the standard coding card format and,

3 therefore, operates in conjunction with Library
3 Processor C.

Easycoder Assembler D Provides, in addition to the features of Easy-
coder Assembler C, the ability to process
memory barricade op codes (require the
Storage Protect Feature for execution) and
floating-point op codes (require the Scien-
tific Unit for execution)., Accepts the alter-
nate card format and, therefore, operates

in conjunction with Library Processor D.

ANALYZER

Analyzer C is a powerful programming aid which simplifies the task of analyzing any pro-

gram written in the Easycoder symbolic language. Analyzer C extracts all symbolic tags,
[references (to tags, index registers, and absolute addresses), and calls to macro routines and
processes them to produce an analysis listing of the program. The listing is arranged in alpha-

numeric order so that all information about a particular tag, absolute location, or library rou-

tine appears together in one place.

SECTION III, PROGRAM PREPARATION AND MAINTENANCE
ASSEMBLY I
- ~
| PAPER TAPE | l\ Ifspﬁne |
b —~ N /
/CARD- — < ——
[‘wnce EASYCODER ASSEMBLY
> LISTING
SOURCE TAPE gs%z:'fm_ DIRECTOR
Y
PROGRAMS =7 LISTING
[BRT- FORMAT 1
RCE . BRT- FORMAT
SOURCE PROG | BRT FORMAT |
N— —
— WORK { BINARY \
CAN BE OUTPUT TAPE RUN
FROM LIBRARY \ TAPE 7
PROCESSORS C OR D. —_
SELECTION l
e —
| PAPER TAPE |
T~
/ cARD- \
\ MAGE
TAPE
ACTION DIR. \
DIRECTORS
ACTION DIR. EASYCODER
ACTION DIR. CORD S A
SELECTION BRT-FORMAT |
ACTION DIR. CARDS
BINARY \
RUN
TAPE
ASSEMBLY, UPDATING ——
(AND SELECTION) _ L PAPER TAPE |
7 ~
/carD- —— "~
l\ IMAGE |
TAPE
ACTION DIR. |[~X— ;7N
DIRECTORS
AND SOURCE ACTION DIR. [Ifs*:sne \’
PROGRAMS ./ SOURCE PROG, \
EASYCODER C& D e < —
ACTION DIR.
ASSEMBLY, UPDAT- e
ING (AND SELECTION) 2 RECTORY
LISTING
—————
/__f\ BRT—FORMAle
\CARDS
WORK [BINARY
TAPE \ RUN
TAaPE /
N~z
_

Figure 3-2.

Operating Modes of Easycoder Assemblers C and D

3-6

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

The general systems diagram for the program is given in Figure 3-3.

/
DIRECTOR A
DECK

r——— T
| |
| _— e — —
L — —} BRT
I —
SOURCE Y ———"~ s N
PROGRAMS / \
TO BE [
ANALYZED /}
ANALYZER =
ANALYZER LISTING

Figure 3-3. Analyzer C Setup

Compiler Systems

user.

1.

understood programming language.

advantages:

The Mod 1 Operating System offers two compiler systems: COBOL (COmmon Business-

Oriented Language) for the business user, and Fortran (Formula Translator) for the scientific

The features implemented and the coding format and vocabulary of each source language

are designed to give that particular type of user a familiar and, therefore, easily learned and

In addition, both compiling systems offer the following

Inter-system Compatibility - The design and implementation of both
compilers are controlled by centralized committees under the sponsor-~
ship of the Federal government and are thus standardized among all
computer manufacturers. As a result, programs written in the source
language of either compiler for one computer system can (with minor
modifications due to hardware differences) be recompiled and run on
another computer system.

Standardization - The fact that both compiler systems are standardized
among all computer manufacturers reduces the problems involved in
programmer turnover, since any programmer with experience in either
compiler language can be trained for a new system in a relatively short
time.

Intraproject Communication - Intraproject communication is greatly
increased and improved by the fact that both source languages are
easily understood by those familiar with the application but with little
or no experience in programming. Communication is also increased
between programmers working on related programs, since they are

SECTION III, PROGRAM PREPARATION AND MAINTENANCE

all using the same coding conventions, symbolic tags, and other
standardized techniques.

Fast Program Compilation and Testing - Both systems offer com-
pilation speeds averaging only a matter of a few minutes per source
program. Both compilers offer comprehensive diagnostic scans for
clerical errors and helpful diagnostic listings of all errors found.
As a result, debugging time has been reduced by 50% or more.

Reduction of Programmer Training Time - Programmer training
(or retraining in the case of a changeover to a new computer) is
drastically reduced by the use of these easily learned source lan-
guages. Many companies have found that programmers trained

in a compiler language reach a satisfactory level of productivity
many weeks in advance of those trained in a conventional assembly
language.

Improved Documentation - The clear and comprehensive listings
produced by both compiler systems provide a clear picture of the
program's logic and, via diagnostic messages, aid the programmer
in achieving his goal of a completely checked-out and operable pro-
gram. This documentation is especially valuable when a program-
mer must take over the maintenance of a program written by
another programmer.

A compiler system consists of two elements:

1.
2.

A programming language, and

A translator, called a compiler, which translates the programmer's
source-language statements or formulas into machine language.

THE COBOL COMPILER SYSTEM

The COBOL Language

guage statements conforming to COBOL conventions.

The s

ource language of the COBOL compiler system consists of meaningful English-lan-

COBOL source program is shown in Figure 3-4.

10}

- RoU|TINE.

REA, TRANSACT/ON ~ CARLD AT END GO JO END~DF ~FILE ~RTE .,

/. CVRD -~CODE 1S EQUAL 70 3, GO 7O DERI/T -ROUTINE.

/| F, CIRRD - CODE IS FQUAL 7O 5 53 8O TO CREDIT -ROUTIVE, QTHERW/ISE

GO JI0 CARD -CODE -L£RROR.

7 - ROWVTINE.

4+ 4 4

ADD. | COST - OF ~SALE 7O TOTAL-TO-DATE G/VINEG NEW-TOTAL -

MOV E| NEW=-T07AL 7O TO7AL ~PR/INT.

Among the special features included in the COBOL compilers of the Mod 1 Operating System are

Figure 3-4. Example of the COBOL Source Language

the following:

An example of the procedure portion of a

SECTION I11I. PROGRAM PREPARATION AND MAINTENANCE

1.

Internal and Library COPY Functions - Allow the programmer to incor-
porate within his source-language coding complete file and record
descriptions from either some other portion of the program or a source-
language library tape.

Tape File Handling - The programmer can describe and process five
types of tape file formats:

Unblocked, fixed-length records,

Unblocked, variable-length records,

c. Fixed-blocked, fixed-length records,
d. Fixed-blocked, variable-length records, or
e. Variable-blocked, fixed- or variable-length records.

The compiler can also generate coding to handle tapes recorded in BCD
format and/or containing 120-character labels.

Two-level Subscripting - Permits the programmer to set up and use two-
dimensional tables.

Editing Features - Allow the user to express a wide range of report
editing, either by means of PICTURE symbols or by means of descrip-
tive edit clauses.

PERFORM Verb Options - Four options of the PERFORM verb are
implemented to enable the programmer to direct many variations of
out-of-sequence processing.

ADD, SUBTRACT, and MOVE CORRESPONDING - Permit the pro-
grammer to specify in one statement the same action on a series of
related items, rather than having to repeat the statement for each
item.

USE Procedures - Allow the programmer to control the processing
of file labels and to specify special procedures to be performed in
the case of input/output errors.

The COBOL Compilers
Within the Mod 1 Operating System, COBOL has been implemented by two high-perfor=
mance, syntax-directed compilers: COBOL Compiler D and COBOL Compiler H. Both possess

several unique operating features:

Operation is in a batch-compile, load-and-go mode. An entire file of
source programs can be compiled under the control of the Mod 1 Opera-
ting System without operator intervention.

Source-language programs can be maintained on a library tape where
they can be easily modified or corrected and recompiled. Portions of
source-language coding, such as record descriptions, can also be
stored on this tape and can be incorporated into any program through
use of the COPY verb.

A variety of program testing and debugging aids such as memory
dumping, English-language diagnostics, memory mapping, etc., are
included.

The addresses of peripheral devices can be changed at object execution

3-9

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

time to allow the use of a single program with a variety of different
peripheral configurations. For example, if a printer is not avail-
able for the running of a program, the output can be assigned to
tape for subsequent off-line printing.

The maintenance and updating of source programs and library units stored on tape is per-
formed by the Source Program and Library Update Routine. This routine makes it possible to
add, delete, or replace source programs or library units, either in whole or in part, and to

create both an updated master source-program and library tape and a library tape alone.

The COBOL Compiler accepts source programs punched on cards or stored on the master
source-program and library tape. If library copies are contained within the source programs
being compiled, the library tape must be mounted as input. The output of compilation is an ob-
ject BRT and a complete program listing containing the source-language coding, machine-lan-
guage coding, memory maps, and diagnostic messages for each program selected for compila-

tion. The object code listing may optionally be suppressed.

The general setup for both of these processes is illustrated in Figure 3-5.

Both versions of the COBOL compilers within the Mod 1 Operating System offer upward
compatibility; i.e., source programs written for one version are acceptable input to all larger

versions. The features of the two versions are given in Table 3-3.

Table 3-3. COBOL Compilers D and H: Features

COBOL Compiler D Includes the required elements plus many of
the special elective features of the COBOL
language. Generates object programs which
can use and reference up to 32K characters
of memory.

COBOL Compiler H Implemented in phases. The special added
features of each phase are extensions to
the language and translation capability of
COBOL Compiler D. These extensions
include:

PHASE I - Four-character addressing,
which allows the compiled programs
to use and reference up to 262K char-
acters of memory.

Further extensions are currently in the
planning stage.

SECTION III.

PROGRAM PREPARATION AND MAINTENANCE

——

7~ ~
/’ow MASTER\
| SOURCE PROG
\8 LIBRARY /

~ /
———

L

DIRECTORS AND
SOURCE PROGRAMS

WORK

TAPE ~

/ \
{ LIBRARY \
TAPE

4{

\

ya

DIRECTORS AND
SOURCE PROGRAMS

cosoL
COMPILATION

COBOL
SYSTEM
BRT /e m———— - J
{ SELECTED |
SOURCE PROGRAMS, PROGRAMS PUNCHED
AND LIBRARY ON CARDS |
UNITS ~ _]
-/ O — ———— J
SOURCE PROG |- — — —
8 LIBRARY |
|
COBOL SOURCE I
PROGRAM AND |
LIBRARY UPDATE i
LIBRARY UNITS !
ONLY |
~o |
LIBRARY !
TAPE |
|
- == !
| LISTINGS 1 I
I
| ! '
' _ — - } |
P | |
| |
I]
| |
_______________________ 1 |
|
|
|
—— |
/ MASTER L 1
|SOURCE-PROGM®™ — —— — — ———
\ & LIBRARY
/
~ TO IMMEDIATE
—=--» EXECUTION OR
INTEGRATION
WITH OTHER
1 OBJECT
PROGRAMS

PROGRAM
WORK LISTINGS &
TAPE DIAGN.
Figure 3-5. COBOL Compiler System

3-11

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

THE FORTRAN COMPILER SYSTEM

The Fortran Language
The Fortran source language allows the user to express a wide variety of engineering,
scientific, and mathematic data processing solutions in a familiar, easily used language format.

An example of a mathematical statement written in the Fortran language is shown in Figure 3-6.

i L 1] [-"

il X5 (3 ¥XAPW+IQRT(AXK2.)) /4. ¥ (BX¥ABS(K))
Ly L1 1116070/0054

141 T

Figure 3-6. Example of a Fortran-Language Arithmetic Statement

As implemented in the Mod 1 Operating System, the language includes elements equal to
those normally implemented for large-scale competitive compilers. For example, the program-
mer has the facility of expressing floating-point values ranging in precision from two to twenty
characters. All of the important Fortran IV standards, established by the American Standards
Association, are implemented in Fortran H. These include such features as logical statements
and testing, data initialization, labelled COMMON areas, and type statement declarations. Gen-
erated object code can use and reference up to 262K characters of memory. Faster execution
speeds are achieved in Fortran H by utilizing the added features and instructions of the scien-
tifichardware option, Additionaltape drives and other types of secondary storage allow input and
output to be transferred directly to and from these faster media. Yet the smaller version of the
compiler (Fortran D) requires only 16K characters of memory, a card reader, four tape drives,

a printer, and the advanced programming and edit instructions.

The Fortran Compilers

Both of the Fortran compilers offered with the Mod 1 Operating System, Fortran Compiler
D and Fortran Compiler H, are designed for high-speed compilation and generate directly exe=
cutable coding as opposedtothe interpretive coding produced by some competitive systems. Exe-
cution speed is increased by extensive optimization of the object code produced. The compila-

tion process is shown in Figure 3-7.

Among some of the outstanding advantages offered by these two versions of the Fortran
Compiler are the following:
L Advanced Operating Features

a. Magnetic Tape Orientation - The ability to use magnetic tapes
during program compilation and execution permits extremely
fast reading and writing of program and data files. In addition,
it eliminates all of the intermediate card decks otherwise
required.

3-12

SECTION III, PROGRAM PREPARATION AND MAINTENANCE

Subprogram Modularity - A Fortran program can consist of
several subprograms. Once a subprogram is compiled, it
can be punched into cards or added to a stack (library) tape.
Later, the subprogram can be combined with other subpro-
grams to produce an executable program or a series of
executable programs on a binary run tape (BRT). The abil-
ity to construct such programs from a series of already-
compiled subprograms accelerates program completion and
permits more efficient organization and planning of the work
to be accomplished.

Stack (Library) Tape Usage - Permits the storage of a user
subprogram library on magnetic tape. During creation of

an executable program, specific subprograms can be retrieved
from this tape and incorporated into the user's routine.

Fortran/Easycoder Integration - Easycoder subprograms are
written according to simple rules and assembled by the Easy-
coder Assembler. A binary deck or tape can be produced as
output during the assembly process and subsequently added to
a Fortran program deck or to the stack tape.

Variable Format Feature - Allows the user to execute the
same program with a number of different input/output formats
without having to recompile the program. Thus, a program
need only be compiled once regardless of the number of data
formats it must handle. This feature allows programs to be
written and compiled independently of formatting considera-
tions and eliminates the necessity of creating and maintaining
a large number of versions of the same logical program for
each different data format.

Load-and-Go Operation - Under the direction of the Mod 1
Operating System Loader-Monitor, a stack of separate job
decks (each representing a problem) are processed as
follows:

(1) Job 1 is compiled (with the integration of sub-
programs from the stack (library) tape as
indicated), and a binary run tape is created.
The job is executed and the results listed or
written onto tape.

(2) Control is returned to the monitor, the next
job (Job 2) is brought in, and the cycle is auto-
matically repeated.

(3) This cycle continues until all of the jobs have
been processed.

Go-Later Operation - A second mode of operation allows the
user to compile a series of programs, create a BRT, and
dismount it for use at a later date. Another alternative is to
create a program from a series of subprograms stored on a
stack (library) tape and execute this program during the same
run.

Chaining - Permits the execution of large programs within a
relatively small amount of memory by dividing such programs
into independent segments (chains) which can be loaded and
executed at different times. Each chain is overlaid in memory

3-13

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

by the subsequent chain, with the COMMON area of memory
providing the necessary communication linkage between them.
Thus, partial results produced by one chain of the program
are stored for further processing by subsequent chains.

i, Debugging and Testing - Several facilities are provided for the
debugging and testing of programs, including a diagnostic pre-
processor (Fortran D), a diagnostic scan during compilation,
a symbolic Easycoder listing of the object coding (Fortran D),
a memory map listing, and dynamic and terminating dumping
procedures.

FORTRAN
SYSTEMS

BRT

STACK
TAPE
(LIBRARY)

—— COMPILATION

SOURCE
SUBPROGRAMS

. o - //—\\
//"\ I_] N\
l/ l | OUTPUT \l
\ INPUT DATA _.__.l EXECUTION I——— RESULTS /
N { | /
NSl | _j

Figure 3-7. The Fortran Compiler System

Both versions of the Fortran Compiler include upward compatibility. Programs written
for Fortran Compiler D can be compiled by Fortran Compiler H with little or no modifications.

The features offered by each version are summarized in Table 3-4.

Table 3-4. Fortran Compilers D and H: Features

Fortran Compiler D Has the ability to handle a wide range of specifi-
cation, input/output, format, conversion, logical,
assignment, control, and procedure statements,
and features the fullest implementation of Fortran
IV available on any machine of comparable size.
Generates object programs occupying up to 262K

3-14

o
i

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

Table 3-4 (cont). Fortran Compilers D and H: Features

Fortran Compiler D characters of memory. It provides high-speed
{cont) compilation and execution through the utilization
of magnetic tapes and object code optimization.

It offers programming and operating flexibility

by providing subprogram modularity, a stack tape
library, Fortran/Easycoder integration, the vari-
able format feature, and the choice of load-and-
go or go-later modes.

Fortran Compiler H Includes all of the features of the A.S.A. Fortran
IV plus many additional operational features.
Incorporates additional language features such as
BEGIN TRACE and END TRACE statements,
BEGIN FLOW and END FLOW statements, char-
acter strings, T format descriptor, an IMPLICIT
statement, list-directed input/output statements,
and mixed-mode arithmetic expressions.

Translators

The Honeywell Liberator concept allows users of a number of older competitive systems
to enjoy the benefits of the Series 200 without the cost and time of reprogramming. This is done
by providing the user with a means of automatically converting from the language of the competi-

tive system to the language of Series 200 Easycoder.

An example of the effectiveness of this concept can be seen in the Easytran Symbolic
Translator System. Input programs written in SPS/Autocoder symbolic language for the 1401/
1460 series are completely analyzed and then translated statement by statement. During this
process, most symbolic statements are replaced on a one-for-one basis with equivalent Easy-
coder statements due to the similarities in hardware design and program instruction format
between the two systems. Those statements which have no Easycoder equivalent (such as most
input/output routines) are replaced either with in-line macro coding or with calls to Easytran
subroutines which perform the desired functions; those whose functions are not required by the

Honeywell hardware are deleted.

The Mod 1 Operating System includes four programs which perform language translation:
Easytran Symbolic Translators C and D, Easytran Program Modifier C, and Easytran Source

Program Generator D.

EASYTRAN SYMBOLIC TRANSLATORS
The two versions of the Easytran Symbolic Translator translate SPS and/or Autocoder pro-
grams into Easycoder symbolic language. The principal output is the translated program; other

output includes a parallel listing of the SPS/Autocoder and Easycoder symbolic programs, a

3-15 s

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

cross-reference listing of all tags used in the input program, and an English-language diagnos-

tic listing pointing out any areas where modification might be required.

If the source program contains macro calls to the Autocoder IOCS functions, these are
replaced with equivalent calls to the 1/2-Inch Tape Input/Output Package, which are then pro-

cessed by a special preassembly routine (Library Processor C).

Memory requirements for the translated program are only 10% more than those of the
original program, plus additional memory for the Easytran subroutines and for double-buffering
of tape files. Despite this additional memory, the running time of the translated program is

usually improved due to the faster cycle time and extensive peripheral simultaneity of the Series

200 processors.

The general systems diagram for the translators is shown in Figure 3-8.

BATCHED SPS/ TRANSLATION BATCHED
AUTOCODER F—— — — AND/ OR ——— -
SOURCE PROG. UPDATE
~
~
7~
-~
P

LIBRARY OBJECT

PROCESSOR I —— PROGRAM

AND ASSEMBLY EXECUTION

Figure 3-8. The Easytran Symbolic Translator System

The unique features of each of the versions are summarized in Table 3-5.

Table 3-5. Easytran Symbolic Translators C and D: Features

Easytran Symbolic Translator C Will accept source programs written
in SPS or Autocoder. The Autocoder
source programs may contain macro
calls. Produces an Easycoder C sym-
bolic source deck, a parallel source-
program listing, an English-language
diagnostic listing, and a cross-refer-
ence tag listing. The symbolic deck
must be processed through Library
Processor C and Easycoder Assembler
C to produce an executable program.

3-16

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

Table 3-5 (cont). Easytran Symbolic Translators C and D: Features

Easytran Symbolic Translator D Will accept 1401/1460 Autocoder or
mixed SPS/Autocoder source pro-
grams. Included in the system are
the functions of conversion, file up-
date, Library Processor C, and
Easycoder Assembler C; therefore,
the final output is a directly execut-~
able program in Series 200 machine
language. Also added are such fea-
tures as increased compatibility
with Autocoder, automatic IOCS call
conversion by the substitution of a
pretailored version of the 1401 IOCS
package, floating address assign-
ments to allow simple address adjust-
ment during subsequent updating,
handling of op code overlay (e.g.,
moving a Branch op code over a NOP
op code), and batch processing which
allows the conversion of an entire
batch of mixed types of source pro-
grams in one run.

EASYTRAN PROGRAM MODIFIER

Easytran Program Modifier C is a translator program which modifies Easycoder source-
language programs originally created by either 1401 Easytran or Easytran Symbolic Translator
- B {Basic Programming System) so that they will be acceptable input to Easycoder Assembler C
and will be operable with the Mod 1 Operating System. The modified program is written out on
a card-image tape which can then be input to Library Processor B or C and/or Easycoder

Assembler C.

Easytran Program Modifier C incorporates the following functions:

1. Remaps and revises the Easytran B subroutines to convert them to operate
under Floating Tape Loader-Monitor C. Routines may be relocated to allow
room for the communication area of the loader-monitor.

2. Pseudo-DA (Define Area) statements in the Easycoder Assembler A geri—
erated coding are changed to Easycoder Assembler C source statements.
Hand-ailoring techniques not acceptable to Easycoder Assembler C are
checked for and flagged.

3. A side-by-side listing containing the originally generated Easycoder
Assembler A source language and the corresponding Easycoder Assem-
bler C source language is produced. Diagnostic messages are included
within the listing.

The general systems diagram for Easytran Program Modifier C is presented in Figure

SECTION IlI. PROGRAM PREPARATION AND MAINTENANCE

EASYTRAN
SYSTEM
BRT
FROM EASYTRAN SYMBOLIC ————— 1
TRANSLATOR B (l
OR

1401 EASYTRAN

SOURCE
PROGRAMS

EASYTRAN MODIFI

PROGRAM e

MODIFIER PROGRAMS
c

CONTROL CARD INPUT TO LIBRARY
PROCESSORS B OR

C AND/OR EASYCODER
ASSEMBLER C

Figure 3-9. Easytran Program Modifier C

EASYTRAN SOURCE PROGRAM GENERATOR

Easytran Source Program Generator D translates 1401 machine language programs into

Autocoder symbolic language and is part of the Easytran D system. Following the translation,
Easytran Symbolic Translator D processes this symbolic program output along with other Auto-
coder/SPS symbolic programs and translates them into directly executable Series 200 machine
language. Thus, any intermix of symbolic Autocoder programs and 1401 machine language pro-

grams can be handled by the Easytran D system.

Easytran Source Program Generator D incorporates the following features:

1. Accepts as input SPS1 or SPS2 single load card formats, SPS condensed
card format, and Autocoder condensed card format decks.

2. Produces a Card Image Tape (CIT) containing the programs in symbolic
format acceptable to Easytran Symbolic Translator D.

3. Prints an analysis listing showing the Autocoder symbolic language pro-
duced for each input machine-language program along with flags pin-
pointing possible problem areas.

UTILITY PROGRAMS

The utility programs provided in the Mod 1 Operating System perform two types of func-

tions: data transcription and editing, and mathematical processes.

Data Transcription and Editing

Data transcription and editing functions include those of tape handling, media conversion,

report generating, and the sorting and collating of data. They are completely compatible in

3-18

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

operation with all of the programs written for, and processed by, any of the language processors;
therefore, they can be intermixed on a BRT with user-written programs. By incorporating these
functions into his system, the user not only saves the time which would have to be spent in writ-
ing his own routines, but also benefits from a reduction of the memory space and exection time

required.

TAPE HANDLING

Tape Handling Routine C includes a set of general tape-handling and correction routines
for use with 1/2~inch and 3/4-inch magnetic tapes. Parameters for controlling the various func-
tions provided can be entered from cards, paper tape, or the control panel. Functions which
operate on a record-by-record basis (e.g., copying) can be directed to terminate either upon the
processing of a certain number of records or upon the sensing of a standard label or file identi-

fication record.

The functions of Tape Handling Routine C are as follows:

1. Edit - Records {or portions of records) can be edited from a specified tape
to an on-line printer, in either alphanumeric or octal mode.

2. Rewind - One or more magnetic tapes can be rewound in a single operation.

3. Copy - A specified number of records can be copied from one tape to
another.

4. Correct and Copy - A designated record is copied from one tape to another

with specified corrections.

5. Forward - A tape can be positioned forward a specifed number of records.
6. Backspace - A tape can be backspaced a specified number of records.
7. Compare and Print - A specified number of records from each of two

tapes are compared record-for-record. Those records which are not
identical are printed in either alphanumeric or octal mode.

8. Locate - A tape is searched for a record containing a specified piece of
information. Upon locating such a record, the tape is backspaced one rec-
ord, thus permitting another operation to be performed on the located
record.

9. Write dummy header label - A dummy header label, containing a phys-
ical tape reel serial number, is written on a new tape.

MEDIA CONVERSION

Media conversion routines transfer data from one medium to another. This might be done
for one of several reasons: to increase the speed of subsequent processing of the data by plac-
ing it on a faster medium (e.g., converting punched cards to card images on magnetic tape), to
permit visual examination of the data (e.g., converting print images on tape to printed output),
or to permit physical manipulation of the data (e.g., converting card images on tape to punched

cards).

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

Data Conversion C Routines

Data Conversion C routines are actually macro routines which can be adapted to process
any file format and to operate in several environments. Three generalized conversion routines
are provided:

1. Card-to-Tape C, which converts a punched-card file to a card-image
file on magnetic tape. :

2. Tape-to-Printer C, which converts a print-image file on magnetic tape
to printed output.

3. Tape-to-Punch C, which converts a card-image file on magnetic tape
to a punched-card file.

These three routines can be executed in any of three operating environments:

1. As independent programs,

2. As coroutines operating together under Simultaneous Media Conversion
C, or

3. As foreground programs operating simultaneously with some other pro-

gram under Interrupt Control D.

As independent programs, the routines can be executed apart from any controlling program.

Running under the control of the Simultaneous Media Conversion (SCOPE) monitor, two (or three)
of the routines can be executed simultaneously. As a foreground program, any one of the rou-
tines can operate in the interrupt mode under Interrupt Control D. Under this last method, the
conversion routine is assigned all of the processor cycles until it initiates a Peripheral Data
Transfer (PDT) instruction. While this instruction is being carried out, all processing cycles
are allocated to a background program which consists of a great amount of internal processing,
such as a sort or an assembly. At the end of the data transfer operation, Interrupt Control D

receives an interrupt signal which directs that control be reassigned to the conversion routine.

All three routines accept as input or generate as output a wide variety of tape file formats
including Honeywell or IBM files containing fixed-length or variable-length records, blocked or

unblocked. Banner and print control characters may or may not be present.

Among the several processing advantages offered by these conversion routines are the
following:

1. Control cards - The specialization of Data Conversion C routines
{through Library Processor C) establishes the operating mode and
general file type to be handled. However, parameters describing
the file structure can be modified at execution time by parameters
entered via a control card.

2. Own-coding option - All routines provide exits which allow data to
be edited before it is converted to the output medium.

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

3. Card count - Routines handling punched cards count the number of
cards converted.

4. Variable card length - Routines can accept or generate cards or card
images of less than 80 columns in length,

5. Item print bypass - Printing of specified card-image items can be by-
passed during a Tape-to-Printer C run.

6. IBM print compatibility - Tape-to-Printer C may be specialized to
include coding for automatically translating special IBM print charac-
ters to Honeywell print characters. IBM channel skipping can also be
simulated in Honeywell Type 222 Printers.

7. Sequence checking - Card-to-Tape C and Tape-to-Punch C can perform
a sequence check on input items and halt when an item is out of sequence.

Simultaneous Media Conversion C

Simultaneous Media Conversion (SCOPE) C consists of a group of independent coroutines
which can operate simultaneously to perform conversion of data from one medium to another.
Among the operations performed are:

1. Punched cards to magnetic tape,

2. Magnetic tape to punched cards,

3. Magnetic tape to printed output,

4. Paper tape to magnetic tape, and

5. Magnetic tape to paper tape.
Up to three of these routines can be combined and executed simultaneously. In making up his
own version of the package, the user selects the source-language program decks for each of the
operations desired plus the source deck for the monitor (main control routine) and assembles
them together via Easycoder Assembler C. (NOTE: The paper tape conversion routines must
first be specialized by Library Processor C.) During execution, the monitor acts as the con-
trolling routine in determining the allocation of machine cycles to the various input/output con-

version routines in the most efficient manner.

REPORT GENERATION

Source-language programs which simulate and expand the report preparation functions of
an E. A. M. tabulating machine are generated by a report generating program. Report Generator
C generates programs in Easycoder C source language which, when assembled by Easycoder
Assembler C, produce reports from card or tape input according to the language parameters
entered during generation by the programmer. The output reports can be produced in the form

of printed copy, punched cards, and/or magnetic tape.

To direct the generation of the source-language program, the user punches a series of

language parameter cards. These parameter cards are compatible with those of the 1401 Report

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

Program Generator. The parameter cards specify to Report Generator C the types of record
formats present in the input file (Input cards), the fields to be processed and any simple cal-
culations to be performed on them (Data cards), any extensive calculations to be made (Calcu-
lation cards), the format of the fields and lines constituting the output (Format cards), the opera-
ting environment of the generated program (Control card), and information to be used in the sim-

ulation of the carriage control paper tape functions on the tabulator (Carriage Control card).

The primary purpose of Report Generator C is to eliminate the need for the user to devel-
op and code a separate program for each of a variety of reports. Instead, he prepares the speci-
fication cards and merges them with the Report Generator C master deck. Report Generator C
then produces a program which writes the report in accordance with the specifications stated by

the programmer.

SORTING AND COLLATING
A number of sorting and collating routines are available in the Mod 1 Operating System to

process data stored on magnetic tapes or on drum storage.

Magnetic Tape

All tape sorting routines are based on the Honeywell-developed polyphase merge technique,
which uses as few as three tape drives while minimizing the number of passes required over the
data. Each sort operation is performed in two stages: the presort and the merge. The presort
arranges the input data in ordered strings, the number and length of which depend on the amount
of core storage available and on the degree of preordering which exists in the data. The merge
phase produces longer ordered strings by combining strings produced during the presort. This
continues until there is only a single ordered string on each work tape. At this point, the last

pass of the merge combines the remaining strings to form an ordered file on the output tape.

The collate routines, which may be used independently or in conjunction with the sorts,
combine two or more ordered tape files to form a single ordered tape file. Each file to be

collated, as well as the combined output file, may reside on one or more reels of tape.-

Routines are provided for sorting and collating both fixed- and variable-length items,
blocked or unblocked. Parameters, entered from either punched cards or paper tape or set up
by instructions of some program executed prior to the sort or collate routine, specify the item
and record lengths, the number and locations of the key fields within each item, the desired out-
put sequence (ascending or descending), the collating sequence to be used (standard Honeywell or
other), and other characteristics. Both routines contain provisions for own-coding, which the

user can prepare in Easycoder source language if desired.

3222

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

Drum Storage

Drum Sort C sorts data stored on a magnetic drum unit by using the key sort technique.
During the presort phase, only the key fields of each item (along with the associated drum ad-
dress of the item) are extracted, examined, and ordered into strings which are written back into
the work area reserved on the drum for the file. The subsequent merge phase reads back these
strings and combines them in longer ordered strings until a single ordered string results. By
incorporating a macro routine into the program which follows Drum Sort C, the user can retrieve

the items in order and perform on them whatever processing he desires.

Table 3-6. Sort and Collate Programs: Features

Tape Sort C Performs tape read backward polyphase merging on fixed-
length items, blocked or unblocked. Utilizes from three to
six tape drives. Sorts on up to ten key fields. Allows for
deletion of unreadable records during the presort or last
pass of the merge. Automatically sets restart points
throughout the sort to enable restarting immediately or at
some later time.

Tape Sort C (3V) | Provides same features as Tape Sort C, except that it has
the ability to sort variable-length items, unblocked or
blocked a variable number per record. Utilizes core stor-
age of up to 262K characters.

Drum Sort C Performs sorting on files existing on a drum. Accepts as
input files using multirecord, fixed-length format; single-
record, fixed-length format; multirecord variable-length
format; or single-record, variable-length format. Sorts
on up to ten key fields and includes an automatic sequence
check and item count check. Own-coding exits are provi-
ded in both the sort routine itself and in the subsequent
macro routine which retrieves the items from the drum in
the desired sequence.

Collate C Combines two through five ordered tape files of fixed-
length, blocked or unblocked items into a single ordered
file. Collates on up to ten key fields. Allows the user to
accept or delete unreadable records and allows changes to
label records. Also allows item-by-item own-coding.

Collate C (3V) Provides same functions as Collate C, except that it han-~
dles variable-length items blocked a variable number per
record. Utilizes core storage of up to 262K characters.

Mathematical Processing Functions

The Mod 1 Operating System provides the scientifically oriented Series 200 user with an
extensive library of functions which complement the capabilities of the Fortran compilers. A

number of packages are written in the Fortran language and are thus easily modified by the user.

The library contains basic math functions, Fortran functions, multiply/divide subroutines,

3-23

SECTION III.

PROGRAM PREPARATION AND MAINTENANCE

and floating-point arithmetic and conversion routines.

with or without the scientific hardware or multiply/divide options.

All of these functions can be executed

The mantissae of floating-

point numbers can vary from two to twenty decimal characters; the integer precision is from

three to twelve characters.

A list of mathematical functions is given in Table 3-7.

Table 3-7. Mathematical

Processing Functions

Floating-Point Arithmetic/Comparisons C

Comparison of two floating-point numbers

for equality, inequality, etc.

Does not

Floating-Point Arithmetic/Comparisons C (N)

utilize multiply/divide hardware.

Same as above, but utilizes multiply/
divide hardware.

Fortran functions:

Exponential C

Natural Logarithm C

Square Root C

Square Root C (V)
Sine C

Cosine C

Arc Tangent C

Evaluates in floating decimal exgor an
argument of the form: x = M.10" .

Evaluates in floating decimal logx for
an argument of the form: x = M. 10P,

Computes in floating decimal the square
root of a positive floating decimal number.

Evaluates in floating decimal sine x for
an argument of the form: x = M, 10P
radians.

Evaluates in floating decimal cosine x for
an argument of the form: x = M. 10P radians.

Evaluates in floating decimal tan” 1% for
an argument of the form x = M. 10P ob-
taining a positive angle in the 1st quadrant
or a negative angle in the 4th quadrant
measured in radians.

Linear Equation Solution C

Floating-Point/Fixed-Point Conversion C

Performs the conversion between these
two modes of numerical expression.

Integer Multiply/Divide:
Integer Multiply/Divide
Integer Multiply/Divide
Integer Multiply/Divide
Integer Multiply/Divide

C (2)
C (2V)
C (3)

C (3V)

Statistics Package D:

Chi-Square D

Least Squares Curve Fitting D

A set of five programs which perform var-
ious statistical analyses on numerical data.

Evaluates Chi Square.

Fits a polynomial of degree n to a set of
m observations by the method of least
squares.

i
Kl

il

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

Table 3-7 (cont). Mathematical Processing Functions

Mean, Variance and Correlation D Computes the mean, variance, covariance,
standard deviation, and correlation coeffi-
cient of the variables which are stored in
two groups on the tape: the X-group and

the Y-group.
Step-Wise Multiple Regression Finds the best fit of an equation of the
Analysis D following form:
y = Bo +B1X1 +B2X2 e +Bn_1Xn_1
where y is the dependent variable and x,,
XDy ceens are independent variables.
Random Number Generator D Generates a set of random numbers.
Differential Equations D Solves differential equations using the

Clippinger-Dimsdale method.

PROGRAM EDITING AND MAINTENANCE

The functions of storing, modifying, and maintaining source-language and machine-lan-
guage programs come under the heading of program editing and maintenance. These functions
enable programs to be selected and ordered to create master run tapes which contain only those
systems programs and processing programs required in the order best suited to the individual

jobs.

Symbolic Programs

The editing and maintenance of symbolic programs include program updating and program
selection. These functions are performed by routines which are part of the assembly and com-
pilation systems themselves. As mentioned previously, the Easycoder Assemblers C and D
write all assembled programs onto a symbolic program tape (SPT) in both their source- and
machine-language formats. Operating in the update mode, Easycoder Assemblers C and D can
correct (and reassemble) individual programs on, add new programs to, and delete unwanted
programs from, this SPT. Likewise, the Source Program and Library Update Routine of COBOL
Compilers D and H enables the user to add, delete, and replace programs and library units to

create an updated source program and library tape.

The SPT Merge C program increases the facility of handling programs stored on SPT's
by performing the selection and rearrangement of symbolic programs from as many as four
different input SPT's and writing them on a new SPT. Thus, it is possible to consolidate pro-
grams stored on several SPT's onto one master SPT in any desired order. An important aspect
of this process is that the symbolic programs (source- and machine-language formats) can be

selected, copied, and rearranged without reassembly onto the new tape.

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

Machine-Language Programs

Just as in the case of symbolic programs, the editing and maintenance processes for exe-
cutable machine-language programs also include program updating and selection. Update and
Select C and D, which performs these processes, accepts all binary run tapes created within the
Mod 1 Operating System. Both versions can update a master binary run tape by either correc-
ting, replacing, or deleting programs already on it or by adding new programs to it. They can
also select programs, in any order, from the master BRT and produce a selected BRT contain-

ing these programs.

A second program, BRT Punch C, punches object programs from a BRT onto cards for

loading and executing under Card lL.oader-Monitor B.

A third program, Drum Program Store C, converts one or more BRT programs for stor-
age on a Type 270 Random Access Drum File. A program file as stored on a drum consists of
Drum Bootstrap- Loader C (optional), Drum Monitor C (optional), the user's object programs
(to be loaded into memory by either Drum Bootstrap-Loader C or Drum Monitor C), and a pro-
gram directory of the program file. Drum Program Store C accepts as input any object pro-
grams in BRT format produced within the Mod 1 Operating System and converts this input into a

format acceptable to the drum loader-monitor routines.

Table 3-8.

Program Maintenance and Editing Functions

SPT Merge C

Selects and rearranges symbolic programs from as
many as four input SPT's onto a new SPT,.

Update and Select C

Update and Select D

Enables the user to maintain a master BRT by allow-
ing him to correct programs on it with octal patching,
delete programs from it, replace programs on it, and
add new programs to it. It can also produce a selected
BRT containing specified programs from the master
BRT as specified by the programmer. Manipulates ob-
ject coding by segment units only. Prints a listing of
the director cards, a directory of the new BRT, and a
directory of the selected BRT.

Same as the version above, except that it can manipu-
late program units as well as segment units.

BRT Punch C

Converts binary run tapes to BRT-format punched
cards (binary run decks) which are acceptable to Card
Loader-Monitor B. Programs from up to six input
BRT's can be selected for punching in any order.

Drum Program Store C

Converts one or more object programs from BRT for-
mat for storage on a Type 270 Random Access Drum
File. A program file is created on the drum and con-
sists of Drum Bootstrap Loader C (optional), Drum
Monitor C (optional), the user's object programs mod-
ified for drum storage and loading, and a directory of

the program file.

)

SECTION III. PROGRAM PREPARATION AND MAINTENANCE

-
) — TN
USER'S SOURCE— y
LANGUAGE PROGRAMS SOURCE \
AND CORRECTIONS lorsymeoLIc|
__——"1PROGRAM |]
- \ TAPE / |
- — AN - Vd
1 P |
LANGUAGE PROCESSORS |
EASYTRAN SYMBOLIC TRANSLATORS C&D |
EASYCODER ASSEMBLERS C80 |
COBOL COMPILERS D& H - |
FORTRAN COMPILERS D&H ~ '
\\ \\ ~ -~ l
-~
N S // UPDATED N\ |
—_— N _ /[SOURCE OR
~TN —_A——— oy symoLic b-——nf
/HONEYWELL “srr-romiar T 1 PROGRAM
USER BRT- FORMAT et |
UTILITY 8 - PROGRAMS DECK [y NTE |
\ SYSTEMS | BRT I ~
\ BRT / (ASSEMBLY AN§\ |
~ s COBOL ONLY) N | (FROM |
———— ASSEMBLY)
AN ——— B |
__________ 1 1
_] i SPT MERGE C | |
MASTER i | I | | |
BRT R | |
BRT MAINTENANCE | | L— T J |
l | i l
UPDATE AND SELECT C AND D [| ' |
l .
| | 77N ;
UPDATED I ! SELECTED \
MASTER | SPT)
/ | \ %
/ SeLeECTED \ | | S L
BRT]
| {
l \ / | L ~
[N | N
| ~
| | ~o
Yo o o e e e j ~
I B
__________ I [
| |
4 K ¥ |
LOAD AND EXECUTE UNDER TAPE |
DRUM PROGRAM STORE C LOADER~ MONITOR C OR FLOATING TAPE BRT PUNCH C |
LOADER-MONITOR C. I
|
DRUM BRT-FORMAT [
PROGRAM DECK |
|
LOAD AND EXECUTE UNDER DRUM LOAD AND EXECUTE UNDER
BOOTSTRAP LOADER OR DRUM MONITOR CARD LOADER-MONITOR B

Figure 3-10. Mod 1 Operating System: Program Preparation and Maintenance

3-27

SECTION IV
PROGRAM EXECUTION AND CONTROL

The program execution and control capabilities of the Mod 1 Operating System are divided

into three categories:

1. Operation control,
2, Input/output control, and
3. Program test.

OPERATION CONTROL

Operation control encompasses all of the functions involved in the searching for, and the
loading and monitoring of, object programs. The Mod 1 Operating System extends these func-
tions to all programs, whether stored on punched cards, magnetic tape, or drum. Also included
is interrupt software which enables the user to take advantage of the interrupt features and pe-
ripheral simultaneity of the Series 200 computers. Lastly, a utility program reads comments
cards containing instructions to the operator, report headings, etc., and displays them on the

console typewriter or printer.

Loading and Monitoring

The loading and monitoring of object programs are accomplished with essentially the same
efficiency regardlessofthe program storage medium. Most of the same functional characteristics

and convenient operational features are also retained.

LOADING FROM TAPE
Both of the tape loader-monitor routines, Tape Loader-Monitor C and Floating Tape Load-
er-Monitor C, search for andload programs stored on any binary run tape (BRT) produced within

the Mod 1 Operating System environment.

Object programs, as assembled or compiled and stored on a BRT, are composed of one
or more loading units or segments. Any loading unit can be searched for, loaded, andexecuted
independently. A call to search for and load a given program segment can originate from sev-
eral sources:

1. Current program - The programmer may include programmed instruc-
tions which set up the required search parameters in the loader communi-
cations area and then branch to the appropriate loader routine to initiate

the searching for and loading of the next segment to be executed.

SECTION IV, PROGRAM EXECUTION AND CONTROL

2. Operator - The operator can enter the parameters via the control panel
or console typewriter and manually branch to the loader routine.

3. Console Call card - Search parameters can be entered through the card
reader via a Console Call card. The reading of the card and the search
and load operation can be initialized either manually by the operator or
automatically by programmed instructions.

Basically, the search parameters specify the search mode to be used and the program name,
segment name, visibilities, etc. The search modes include the following:

1. Search by visibility and relative position - Searching in the specified
direction (forward or backward) on the BRT, load the nth loading unit
having the specified visibility.

2. Search by program name and segment name - Searching in the speci- -
fied direction (forward or backward) on the BRT, load the loading unit
having the specified program name and segment name regardless of
visibility.

3. Search by segment name within the current program - Searching in the
specified direction, load the loading unit having the specified segment
name within the current program.

4. Search by program name, segment name, and visibility - Searching in
the specified direction, load the loading unit having the specified pro-
gram name, segment name, and visibility. This mode allows for the
presence of several versions of a program on the same BRT by assign-
ing a different visibility to each of the versions.

5. Search by segment name and visibility within the current program -
Searching in the specified direction, load the loading unit having the
specified segment name and visibility within the current program.
This mode allows for the presence of several versions of a routine
within a program.

Other parameters which may be specified are load parameters (relocation augment, etc.) and

start parameters (branch to normal start location, special start location, etc., in loaded unit,

set trapping mode, etc.).

Two versions of the tape loader-monitor are provided: Tape Loader-Monitor C and Float-
ing Tape Loader-Monitor C. Tape Loader-Monitor C is not relocatable and occupies 1, 276 loca-
tions of main memory (locations 64 through 1, 339). Floating Tape Loader-Monitor C consists
of two segments. Segment 1 occupies memory locations 2, 150 through 4, 096 and is required
only for the purpose of loading Segment 2. Segment 2 is the actual tape loader-monitor routine
and can be reallocated or 'floated'" into any memory bank above memory bank §. Once Segment
2, which occupies a minimum of 1,400 memory locations, is loaded, Segment 1 can be overlaid.
Thus, user programs which have been assembled to reside in memory below location 1339 need
not be modified and reassembled as would be required with the use of Tape Loader-Monitor C.
Floating Tape Loader-Monitor C, which provides all of the functions of Tape Loader-Monitor C
plus several additional features, is a macro program which must be specialized and processed

by Library Processor C and then assembled. By filling in the required parameters in the macro

4-2

SECTION IV. PROGRAM EXECUTION AND CONTROL

instruction, the user can specialize the loader-monitor to load programs in any portion of mem-

ory, load binary run decks, provide own-coding exits, and utilize a console typewriter to display

messages and to receive operator responses. As explained later, Floating Tape Loader-Moni-

tor C must be present in memory in order to use Interrupt Control D,

A further discussion of the loader-monitor routines can be found in Section V.

LOADING FROM CARDS

Object programs punched on binary run decks (such as those produced by Easycoder
Assemblers C and D or BRT Punch C) can be searched for, loaded, and initiated by Card Loader-
Monitor B. The functions and operational characteristics of this routine are compatible with
those of the tape loader-monitors in many ways:

1. The loader-monitor communication areas of both are identical.

2. A call can originate from the same three sources: the current program,
the operator, or a Console Call card.

3. The same search modes are provided. Exceptions: Card Loader-Monitor
B cannot, of course, search in a backward direction and cannot load by
visibilities.

4. The same loading and starting parameter options are applicable.

Card Loader-Monitor B requires 936 memory locations (64 through 999) and has a fixed
allocation. However, if this allocation is not desirable, Floating Tape Loader-Monitor C can

be specialized to load from cards.

LOADING FROM DRUM

The loading and monitoring of object programs which are part of a drum program file

created by Drum Program Store C are performed by two routines: Drum Bootstrap-Loader C

and Drum Monitor C.

Drum Bootstrap-Loader C is the simpler of the two and is designed primarily to bring
Drum Monitor C into main memory from the drum program file; however, it is also capable of
searching for and loading any object program on the drum. Drum Bootstrap-Loader C is the
only program in the drum program file which is stored in condensed card images (to facilitate
bootstrapping) instead of in modified BRT format. The entire routine occupies approximately
750 characters and can exist in one of two forms:

1. As a bootstrap-loader routine which can be manually bootstrapped from
the drum itself into a fixed memory area beginning at location 1,340, or

2. As a loader routine which can be loaded into memory by Drum Monitor
C, or by some other loader-monitor routine (Card Loader-Monitor B,

Tape Loader-Monitor C, etc.) if stored on some other device. In this

4-3 .

SECTION IV. PROGRAM EXECUTION AND CONTROL

case, the routine can be relocated in memory by simply reassembling it.
This allows lower memory to be used by the object programs.

The bootstrap-loader routine contains a 33-character parameter area into which the programmer
must enter the required values before executing the loader. A program can be searched for and
loaded according to program name, segment name, and visibility. The area is initially set to
search for and load Drum Monitor C and must be modified either manually (when Drum Bootstrap-
Loader C is bootstrapped) or by programmed instructions (when Drum Bootstrap-Loader C is
loaded by some other method) if some other object program is desired. The loading of the pro-
gram can then be initiated by branching to the loader manually through a console fixed start or

automatically through programmed instruction.

Drum Monitor C is designed to be both functionally and operationally compatible with the

card and tape loader-monitor routines in the following areas:

1. The loader-monitor communication area is identical.

2. A call to search for and load an object program can originate from the
same three sources: the current program, the operator, or a Console
Call card.

3. The search modes are the same five modes included in the tape loader-

monitor routines.
4. The same loading and starting options are available.
Drum Monitor C occupies locations 64 through 1, 339 in main memory and can be loaded from a
drum storage unit by Drum Bootstrap-loader C, or from cards or tape by any other loader-

monitor routine which does not occupy locations 64 through 1, 200.

Table 4-1. Operation Control: Loading and Monitoring Functions

Tape Loader-Monitor C Searches for and loads object programs stored on
binary run tapes (BRT's). A call to search and
load a program segment can originate from the
operator, the current program, or a Console Call
card. Five types of searches, operating in either
a forward or backward direction, are provided:
(1) visibility and relative position, (2) program
name and segment name, (3) segment name with-
in current program, (4) program name, segment .
name, and visibility, (5) segment name and visi-
bility within current program. Loading and start-
ing options, as well as user own-code exits are
also provided. Occupies 1,276 locations (64
through 1, 339) of core storage and is not relo-

catable.
Floating Tape Loader- Provides all of the functions of Tape Loader-
Monitor C Monitor C plus the capacity to be relocated or

"floated' to any memory bank above bank @.
Offered in the form of a macro routine, the user
can specialize it to load programs in any portion

4-4

i
N

SECTION IV. PROGRAM EXECUTION AND CONTROL

Table 4-1 {cont). Operation Control: Loading and Monitoring Functions

Floating Tape Loader- of memory, load BRT-format program decks,

Monitor C (cont) provide own-coding exits, or utilize a console
typewriter. Occupies a minimum of 1, 400
memory locations.

Card Loader-Monitor B Searches for and loads program segments
stored in BRT-format on cards. Implements
all of the capabilities of Tape Loader-Monitor
C with the exceptions that searching is in a
forward direction only and visibilities are not
taken into account. Occupies 936 memory
locations (64 through 999).

Drum Bootstrap-Loader C Designed primarily to load Drum Monitor C,
this basic routine can be utilized to load any ob-
ject program which resides on a drum unit as
part of a program file. As a bootstrap-loader
routine, it can be manually bootstrapped into
main memory beginning at location 1, 340; as

a loader routine it can be loaded from drum,
cards, or tape by the appropriate loader-moni-
tor and can be relocated by modifying the origin
and reassembling. Program searching and
loading by program name, segment name, and
visibility can be initiated by the operator or by
programmed instructions. Occupies approxi-
mately 750 memory locations.

Drum Monitor C Extends all of the functions and operational
characteristics of Tape Loader-Monitor C to
object programs stored on a drum unit. Occu-
pies locations 64 through 1, 339 in main memory
and can be loaded from a drum by Drum Boot-
strap-Loader C or from any other storage medium
by the appropriate loader-monitor routine.

Interrupt Capabilities

Series 200 computer systems provide an interrupt feature which, along with their inherent
peripheral simultaneity, allows two programs to be executed together in much less time than if
they were run serially. One of the programs, termed the foreground program, is normally a
terminal peripheral-type routine such as card-to-tape, communication, tape-to-printer, etc.
The other program, called the background program, usually contains a high percentage of inter-
nal processing, such as a sort, collate, assembly, etc. At the start of execution both programs
are loaded into different areas of memory and control is given to the foreground program. The
foreground program is then executed until a Peripheral Data Transfer instruction (PDT) is
encountered. While the data transfer is actually taking place, an interrupt control routine trans-
fers control to the background program, a portion of which is executed during the machine cycles
allotted to main memory during the data transfer. At the end of the data transfer, the peripheral
control generates an interrupt signal which causes the interrupt routine to return control to the

foreground program. The foreground program continues execution once again until another PDT

4-5

SECTION IV. PROGRAM EXECUTION AND CONTROL

instruction is encountered, at which time the control is given to the background program which
continues where it left off. This back-and-forth operation continues until both programs reach

their termination.

INTERRUPT CONTROL D
Interrupt Control D is a Honeywell-supplied routine designed to aid the user in taking ad-
vantage of these interrupt capabilities. It runs in conjunction with Floating Tape Loader-Moni-

tor C, which must be resident in memory immediately following Interrupt Control D.

Interrupt Control D is a generalized macro program which must be specialized by Library
Processor C or D before being assembled by Easycoder Assembler C or D. Six prespecialized
versions are provided to handle three- or four-character mode operation, the presence or ab-

sence of an external INTERRUPT button, etc. These versions require 500 to 625 locations

starting at location 200 plus 750 to 1, 150 locations immediately below the Floating Tape Loader-

Monitor C routine. Interrupt Control D permits the independent sequencing of both foreground
and background programs as indicated by the user. Background programs are searched for,
loaded, and started normally under control of Floating Tape Loader-Monitor C. Foreground
programs, however, cannot communicate directly with the loader-monitor and must instead
terminate with a macro call to Interrupt Control D. If the user has previously set an indicator
in a specified memory location, Interrupt Control D loads the next foreground segment and con-
tinues execution of the new segment and of the background program; if the user has not set the
internal indicator, Interrupt Control D allows the background program to continue processing to

completion.

Foreground Programs

Currently, Honeywell offers prespecialized foreground programs to perform tape-to-printer,

tape-to-card, and card-to-tape data conversions. These three routines are known collectively
as Data Conversion C and are described on page 3-20. If the user writes his own foreground
program, he must follow certain programming considerations and must include a return macro
call immediately after each PDT instruction. This causes a return of control to Interrupt Con-
trol D which, in turn, enters the background program. At the end of the foreground program,
the user must include an exit macro call to return control to Interrupt Control D, which will
either cause the next foreground segment to be loaded or continue the processing of the back-

ground program to completion. Figure 4-1 illustrates these functions.

SIMULTANEOUS SORT AND PRINT
To aid the user in combining two commonly used functions, Honeywell has modified the

Tape Sort C program to allow printing while sorting. The print program to which Tape Sort C

4-6

]

R

SECTION IV. PROGRAM EXECUTION AND CONTROL

can be linked is called MONTOR and is a two-segment program which can be used alone or with
the sort process. The first segment is the linkage between the sort routine and the print rou-
tine and performs the function of an interrupt control routine; the second segment is a utility
routine for printing unblocked standard print-image tapes on a 132-position printer. Any utility
routine can be substituted for the second segment provided that the first-segment linkage routine

is retained.

FOREGROUND PROGRAM INTERRUPT BACKGROUND PROGRAM
INTERRUPT MODE c'gvzﬁ_gz:_ 2, NORMAL MODE
; e —— — —
| e {
I i |
b INSTRUCTIONS
g EXECUTED DURING
! " PERIPHERAL DATA
Lok oy TRANSFER INTER-
| 1 VAL
[i
g
PDT b i
RETURN MACRO [————-—d=—— 1
-k I
e
! bed e — = <
o e nadiangio
st iy
{ Lo
I i 0 INSTRUCTIONS
by EXECUTED DURING
|] PERIPHERAL DATA
| i I TRANSFER INTER-
[t ; | VAL
b
| 1o _
' P DATA TRANSFER
POT ! L COMPLETED;
i BENERATES NTER- "
RET [~ —— — 1 t
URN MACRO e RUPT SIGNAL; CONTROL
————] RETURNS TO INTER-
A RUPT ROUTINE,
W —— INTERRUPT MOLE IS
—————— ENTERED, AND FORE-
GROUND EXECUTION
| IS CONTINUED.
INSTRUCTIONS
EXECUTED DURING
PERIPHERAL DATA
TRANSFER INTER-
VAL
POT
RETURN MACRO f— — — —
—_———
—]
$———— ——— <
EXIT MACRO
-------- INTERRUPT
CONTROL D
[EITHER ASSIGNS
P | CONTROL TO
i BACKGROUND
. PROGRAM UNTIL
! .| COMPLETED OR
L 1 LOADS NEXT
P . | FOREGROUND ——]
{ .. | PROGRAM AND
L. i1 CONTINUES,

Figure 4-1. Multiprogramming with Interrupt Control D

4-7 N

SECTION 1IV. PROGRAM EXECUTION AND CONTROL

List Comments C

List Comments C is a short routine which reads cards containing comments such as opera-
tor instructions, report headings, etc., and displays them on either the printer or the console
typewriter as directed. Spacing and carriage control functions are included. List Comments C

is loaded from a BRT under the control of Tape Loader-Monitor C.

INPUT/OUTPUT CONTROL

Honeywell provides a comprehensive set of input/output control functions in the form of
macro routines which can be specialized and incorporated into the user's programs. These
functions handle all of the standard input/output devices such as magnetic tape units, card read-
ers and punches, printers, drum units, and consoles; thus, the need for the writing of detailed
and exhaustive input/output coding by the user is eliminated. Moreover, the standardization of
file handling, label creation, read/write error routines, etc., creates a uniformity in both data

format and operating procedures.

Magnetic Tape Input/Output Control

1/2-Inch Tape I/O C is a group of macro routines which handle data files of either fixed-
or variable-length records stored on 1/2-inch magnetic tape. These routines are capable of
handling Honeywell-created tapes, or if the proper hardware compatibility options are installed,
IBM-created tapes. The user incorporates these routines into his Easycoder source-language
program by means of file-definition entries and macro calls. The source program is then

specialized by Library Processor C or D before being assembled.

In writing his program, the user must first supply a definition (Define Communications
Area - DCA) for each tape file to be processed. He includes information such as the file type
(input or output), the parity (odd or even), the read/write channel to be used, the blocking fac-
tor, item size, locations of buffers reserved for the file, etc. Then, in writing the logic for the
program, he utilizes the appropriate macro calls (@OPEN, @GET, @PUT, @CLOSE, @FEOR)
to open or close the files, read or write records, and force an end of reel. The checking and
creation of standard labels, the blocking and unblocking of records, and the detection and correc-
tion of read/write errors are all performed automatically by the macro routines. User's own-
coding exits are provided for additional processing of header and trailer labels and for initiating

the programmer's own end-of-file procedure.

The 1/2-Inch Tape I/O C routines are written and assembled in three- or four-character
mode and, depending upon the processes called for, occupy between 2, 200 and 3,500 core mem-
ory locations. In addition, each file processed requires a file table of up to 73 character loca-

tions and the necessary buffer areas.

~

J\,

~ L

SECTION IV. PROGRAM EXECUTION AND CONTROL

Magnetic Tape and Terminal Input/Output Control

1/2-Inch Tape and Terminal I/O C is a more comprehensive input/output control package
consisting of a series of routines which perform the standard input/output procedures for mag-
netic tape, punched card, and printer operations. Read/write channel tests are also included to
take advantage of the read/write/compute simultaneity of the Series 200 systems. Honeywell-
format and IBM-format (if required hardware options are present) 1/2-inch magnetic tape files
are acceptable and the routines are functionally compatible with those of the IBM 1401 Input/Out-
put Control System (IOCS).

The programmer must supply to the package three types of descriptive entries:

1. A Descriptive IOCS (DIOCS) entry which describes, in general, all the
files to be processed and the system configuration used,

2. A Define the File (DTF) entry for each of the files which describes,
in detail, the type, format, etc., of a specific file, and

3. Carriage control entries to specify punches in the printer carriage-
-control tape.

In addition to a number of extensions to the macro calls provided in 1/2-Inch Tape I/O C, five
additional macro calls have been added:

1. RDLIN - Allows the label information specified in the DTF entry for the
file to be changed from run to run; e.g., the creation date constant to
be compared.

2. SPACE - Allows the programmer to control the spacing of printer forms.

SKIP - Allows the programmer to control the skipping of printer forms.

4. RELSE - Permits the programmer to skip over the remaining items of a
blocked record and to continue processing with the first item of the next
record.

5. DCLOS - If, in one or more DTF entries, the programmer has specified

that all records containing parity errors are to be written on an error
tape, this macro call causes the deactivation of that tape. Additional
parameters can indicate that a tape mark is to be written after the last
record and that the reel is to be rewound and unloaded.

As in 1/2-Inch Tapel/O C, user's own-coding exits are provided for the processing of nonstand-
ard labels or the additional processing of standard labels, the programmer's own end-of-reel or
end-of-file routines, etc. In addition, the package can optionally check for wrong-length tape

records.

The 1/2-Inch Tape and Terminal I/O C routines can be assembled in either three- or four-
character mode and have the following minimum memeory requirements:

1. DIOCS table - 800 locations

2. Each tape file - 650 to 1, 200 locations

3. Each card file - 250 to 400 locations

4. Each printer file - 1,900 locations

Memory space for buffers is not included in the above figures.

4-9

SECTION IV. PROGRAM EXECUTION AND CONTROL

Drum Input/OQutput Control

Drum I/O C is a set of macro routines which allow the user to handle files stored on drums
with the same ease and simplicity as those stored on cards or tape. These routines read and
write data sectors, block and unblock items, and execute standard error procedures. Items may
be of fixedor variable length. Files can be read only, written only, or read and written. Process-
ing can be on a serial basis (item by item), a random basis (the file is read until a specific item

is found), or a designated basis (a specific segment is read or written).

The programmer defines the files using a series of parameters which state the file format,
item length, the limits of the file, and the locations of several own-coding routines for end of
file, illegal address, file not found, and read error conditions. He directs the processing
through the same type of macro calls (OPEN, GET, PUT, CLOSE, etc.) as are used with the

tape and terminal input/output control packages.

Console Input/Qutput Control

Console I/O C consists of a group of macro routines which control data transfer between
main memory and a Type 220-1, 220-2, or 220-3 console typewriter. Data messages can be up
to 80 characters in length and can be in either alphanumeric (six-bit), octal (three-bit), or deci-

mal (four-bit) format.

To incorporate these routines into his program, the user must include a @CONSL macro
call which specifies the data format(s) selected, the read/write channel to be used, etc., and
causes the inclusion of these common routines into the program. Within the logic of the pro-
gram, he includes a @TYPE macro call at each point where he wishes to display data on, or
accept data from, the console. If he wishes to do both, he can use one @TYPE macro statement
to specify both the location of the message to be typed out (to request the typein) and the location

into which the response is to be placed.

The Console I/O C routines can be assembled in three- or four-character mode and have

the following minimum memory requirements:

Data format(s) selected Minimum memory required
Alphanumeric 540 character locations
Alphanumeric and decimal 730 character locations
Alphanumeric and octal 920 character locations plus

(4 x maximum message length)

Alphanumeric, decimal, and octal 1,110 character locations plus
(4 x maximum message length)

N’
-
-

SECTION IV. PROGRAM EXECUTION AND CONTROL

Communications Input/Output Control

Communications I/O C is an input/output package which aids the user in the programming
of communication network applications such as message switching, data collection, information
retrieval, inquiry handling, and management information systems. Its primary functions are the
control and translation of data to and from such communication units as telephones, teletype-
writers, data stations, and other remote terminal equipment. These functions are selected and
controlled by macro calls (OPEN, GET, PUT, etc.) inserted into a source program by the user
and specialized by Library Processors C or D. Such functions as initialization, interrupt pro-
cessing, error detection and handling, monitoring of lines, and updating of line status informa-

tion are all performed automatically.

Communications I/O C is a general-purpose communications package and can be easily
adapted to the user's present systems requirements and readily modified in the future to handle
any changes or additions to the system. The programmer need not have a detailed knowledge of

either the communication network itself or the systems considerations for real-time data flow.

Table 4-2. Input/Output Control Functions

1/2-Inch Tape I/O C A macro routine package which handles data files
of fixed- or variable-tength items stored on 1/2-
inch magnetic tape. Macro routines are provided
to open and close files, read and write records,
and force an end-of-reel condition. The checking
and creation of labels, blocking and unblocking of
items, and the detection and correction of read/
write errors are handled automatically.

1/2-Inch Tape and A series of macro routines which handle all

Terminal I/O C standard input/output procedures for 1/2-inch
magnetic tape files, punched card files, and
printer files. RWC-availability tests are made
to take advantage of the inherent simultaneity of
the system. Functions provided are compatible
with those of the IBM 1401 IOCS routines.

Drum I/O0 C A series of macro routines which allow the user
to handle files stored on drum units with the same
ease and in the same manner as files stored on
magnetic tape or punched cards. Items can be of
fixed or variable length and processing can be on
a serial, random, or designated segment basis.

Console I/O C A series of macro routines which control data
transfer between main memory and a Type 220-1,
220-2, or 220-3 Console. Data messages can be
up to 80 characters in length and can be in any of
three modes: alphanumeric, octal, or decimal.

Communications I/O C A series of macro routines which aid the user in
the programming of communication network appli-
cations by controlling and translating data to and
from communication units such as telephones,
teletypewriters, data stations, and other remote
terminal equipment.

4-11 E

SECTION 1V. PROGRAM EXECUTION AND CONTROL

PROGRAM TEST FACILITIES

An important part of the program execution and control functions in the Mod 1 Operating

System is the program test facilities.

Automatic Program Checkout

Program Test System C is an automatic, open-ended checkout system which operates
under Tape Loader-Monitor C and provides automatic run-to-run sequencing, test data genera-
tion, program patching, program checkout diagnostics, memory dumping, and tape dumping.
The open-ended design allows the user to write his own program test utility routines and incor-
porate them within the test system. As provided by Honeywell, Program Test System C is com-
posed of nine utility programs stored on a BRT. These are Initializer C, List Comments C,
Test Data Generator C, Memory Dump Control C, Memory Dump C, Patch C, Tape Dump C,
Emergency Dump C, and End C.

INITIALIZER C

Initializer C prepares the Program Test System for automatic reading of Console Call
cards from the test director deck and the loading of the other utility programs from the BRT.
It sets the computer to the nontrapping mode, rewinds the BRT, and suppresses the Tape Loader-

Monitor C console call halt to enable nonstop sequencing and loading of the programs.

LIST COMMENTS C
List Comments C reads punched cards containing operator instructions, report heading
lines, etc., and prints or types this information on the printer or the console typewriter. This

utility program has been previously described under Operation Control on page 4-8.

TEST DATA GENERATOR C

Test Data Generator C creates test data on 1/2-inch magnetic tape from punched cards
and enables the programmer to test his programs against a wide range of possible input vari-
ables. Tape files can be created with bannered or bannerless records of blocked or unblocked,
fixed- or variable-length items. Header, trailer, and tape mark records are created as direc-

ted by the programmer.

MEMORY DUMP CONTROL C

Memory Dump Control C facilitates the printing out of core storage contents by loading and
initiating Memory Dump C to edit and print these contents. Memory dumping can be called for
by either or both of two methods: programmed instruction, which allows for the taking of mem-
ory dumps by use of symbolic coding within the program; item-mark trapping, which permits

the use of an item mark over the operation code of an instruction to trigger memory dumping.

4-12

SECTION IV, PROGRAM EXECUTION AND CONTROL

MEMORY DUMP C

Memory Dump C is used by both Memory Dump Control C and Emergency Du£np C to edit
and print the contents (data and punctuation) of core storage. It must be loaded by one of these
two programs and cannot be used independently within the Program Test System. All printouts
are given in both alphanumeric and octal mode with any punctuation displayed beneath the associ-

ated character positions.

PATCH C

Patch C enables the programmer to make octal patches to his program in main memory
without affecting the program as stored on the BRT. Thus, on-the-spot modifications can be
made to a program during testing to try out different variations of some routine, check out pro-

posed corrections to the program before making a permanent change, etc.

TAPE DUMP C

Tape Dump C positions 1/2-inch magnetic tape files and edits and prints their contents as
directed by the user. Functions include rewinding, positioning (forward or backward), and edit-
ing and printing. Editing can be in either alphanumeric or octal format, Any number of con-

secutive functions can be performed with a single loading of the routine.

EMERGENCY MEMORY DUMP C

Emergency Memory Dump C can be used to take a printout of core storage if unexpected
difficulty is encountered during execution. Memory Dump C is loaded and utilized to edit and
print the contents. In the three-character addressing mode, Emergency Memory Dump C re-

quires 125 core locations and Memory Dump C requires an additional 625 core locations. The

operator can call in the Emergency Memory Dump C program by entering the three standard call
parameters (program name, segment name, and tape drive number) through either the control

panel (or console) or the card reader.

Use of the Program Test C Utility Programs

Under the Program Test System C, these nine utility programs, along with the user's pro-
grams to be tested, are searched for, loaded, and executed automatically under the direction of
the test director deck. This deck can contain Console Call cards, data cards for test data .
generation, octal corrections, etc. A whole series of runs can be checked out with little or no
operator intervention by placing Console Call cards for both the user's object programs and the
Program Test System C utility programs in the proper order, along with other required cards,

in the test director deck.

SECTION IV. PROGRAM EXECUTION AND CONTROL

With the exception of the separate memory dump and memory dump control programs,
which must be run together as already noted, each utility program making up Program Test

System C can be run separately as a regular BRT program without executing Initializer C.

SECTION V
v PROGRAM SEARCHING AND LOADING

Basically, all program searching and loading performed in the Mod 1 Operating System is
controlled by the contents of the loader communication area, These contents can be changed by
either the programmer or the operator in any one or more of three different ways:

1. Manually through the control panel or console (all fields).

2. By programmed instructions (all fields).
3. By a Console Call card (program name, segment name, BRT tape drive
_ number).

The layout of the entire loader communication area is presented in Table A-1, page A-5, For
the convenience of the reader, that portion of the area concerned with program searching and

loading is repeated in Table 5-1.

Table 5-1. Program Searching and Loading Parameters

Methods of Automati-
Altering cally Reset
- I
,] g ® =
N Parameter Name Locations b ; o 8 w0
. Values S O | £ |z
Decimal | Octal - g o 51T |
o © ol %o
> _ | 8 .a o] o
= I Ao g ||
Search Mode 111 157 | 20 prog. and seg. name it gl = 9l Ol |8
01 vis. and rel. pos. g8 o8| g Ole |3
00 seg. (within curr. b1 p’: @ 8 g:? iy
program)
60 program, segment,
visibility
40 seg. and vis. (with- x x 20 01
in curr. prog.)
Search Direct. 106 152 | 22 -~ forward X x 22| 22
23 - backward
Program Name 68-73 104- X x | x
111
Segment Name 74-75 112- x X | x
113
Visibility Msk 113- 161- | Initial value = x x
118 166 40 00 00 00 00 00 (A)
Relative Pos. 110 156 Initial value =1 x x 1|1
BRT Tape Drive 76 114 | Initial value = 0 x x | x
5-1

SECTION V., PROGRAM SEARCHING AND LOADING

Thus, the user, by modifying the values in the communication area by any of the three

methods mentioned above, can direct any of the loader-monitor routines in the Mod 1 Operating

System to search for the next program to be loaded and executed.

Table 5-2.

Loader-Monitor Searching Options

Card Loading

Tape Loading

Drum Loading

LOADER-MONITOR | Card Loader-Monitor B
or Floating Tape
L.oader-Monitor C

or Floating Tape
Loader-Monitor C

Tape Loader-Monitor C| Drum Monitor C

DIRECTION OF

Forward only

Forward or backward

Forward or backward

SEARCH
CRITERIA FOR Program name and Program name, seg- Program name, seg-
SEARCHING segment name ment name and/or ment name, and/or

visibility visibility

or or

relative position and relative position and

visibility visibility
SPECIFIED

Withi .

LIMITS ithin or beyond the boundaries of the current program
DEVICE AND Input binary run deck BRT mounted on tape Drum program file
MEDIA in card reader unit specified in com- located on specified

munications area
(location 7610)

drum unit

The user must indicate to the loader routine the method by which he is entering the pa-

rameters and whether he requires a halt before the search for the next program is initiated.

He does this in two ways:

1. The address by which he returns to the loader, and

2. The value which he has placed in the Method of Console Call Entry field

(location 64;,).

This is summarized in Table 5-3.

Table 5-3.

Methods of Entering Search Parameters

Method Desired

Type of Return Required

Setting of Location 64,

Loader is to halt to allow the
operator to enter the values

into the communication area
manually through the control
panel,

Either the operator manually
executes Fixed Start 0 (sets
sequence register to 1268 and
presses RUN), or the current
program terminates with a
branch to the indirect address
{(General Return Address)
stored in location 139)4:
B/(139).

Either the current program
or the operator must set the
Method of Console Call
Entry field to 018.

-,

SECTION V., PROGRAM SEARCHING AND LOADING

Table 5-3 (cont).

Methods of Entering Search Parameters

Method Desired

Type of Return Required

Setting of Location 64,

Loader is to halt to allow the
operator to insert a Console
Call card in the card reader
and to make any manual
entries to the communication
area through the control
panel,

Same as above.

Either the current program
or the operator must set the
Method of Console Call Entry
field to 00g.

Loader is to automatically
read the next Console Call
card in the reader without
halting.

The current program must
terminate with a branch to
the indirect address (Alter-
nate Return Address) stored
in location 148;4: B/(148).

Setting is ignored.

The parameter values have
already been entered by the
current program. The
loader is to begin searching
according to these values
without halting.

The current program must
terminate with a branch to
the Return Address for
Normal Call: B/130.

Setting is ignored.

SECTION VI
o SAMPLE OPERATING APPLICATIONS

As a brief summary of the components of the Mod 1 Operating System and as a guide to its
use and capabilities, this section presents several sample operating applications with their sug-
gested solutions. FEach solution is a simple one, yet it takes full advantage of the automatic

operating features of the system.

APPLICATION 1 - EASYCODER PROGRAM SPECIALIZATION, ASSEMBLY, AND TEST

The user has three Easycoder source programs (PROGA, PROGB, and PROGC) which he
wishes to specialize via Library Processor C, assemble via Easycoder Assembler C, and test

via Program Test System C. Figure 6~1 illustrates these processes.

Run Deck Setup

Figure 6-2 illustrates the run deck setup, which is explained below,

1. AACLIB Console Call card - This Console Call card directs Tape Loader-
Monitor C or Floating Tape Loader-Monitor C (whichever has been boot-
strapped into memory by the operator) to search for, and initiate the
loading of, Library Processor C from the systems BRT,.

2. Equipment Configuration Descriptor (ECD) card - This card indicates to
the Library Processor and Easycoder Assembler programs the equipment
configuration available for their use. In this case, standard equipment
configuration #2 (five tapes, card reader, card punch, and printer) is
selected.

3. System Specific Header card (1IHDRA) - Identifies the director deck.

4. Easycoder source-language program decks - The source-program decks
for PROGA, PROGB, and PROGC.

5. End-of-File card (IEOFA) - Signals the end of the input deck to the Library
Processor.

NOTE: Because of the equipment configuration selected, Easycoder Assembler C
will be loaded and executed immediately following the library processing
of the three programs: no Console Call card is required.

6. AAATST Console Call card - This card directs the loader-monitor to search
for and load Initializer C, which positions the BRT and modifies the loader-
monitor for the Program Test System.

7. AAAGI12 Console Call card - This card directs the loader-monitor to load
and execute Test Data Generator C, which reads the test data cards fol-
lowing and places them in the specified format on magnetic tape as test
data input to PROGA.

1 8. AAADUM Console Call card - This card directs the loader-monitor to search
e for and load Memory Dump Control C, which, in turn, loads Memory Dump
C. Memory Dump C is not executed at this time, but resides in memory

6-1

SECTION VI. SAMPLE OPERATING APPLICATIONS

‘lﬁﬁl‘l e
;",'?rRARY LIBRARY
RUN DECK

LIBRARY
WORK PROCESSOR
TAPE SPECIALIZATION

OUTPUT
CARD
IMAGE
TAPE

WORK EASYCODER SYSTEMS EﬁBRAkeAgggégssé)? ?
ASSEMBLY BRT
TAPE EASYCODER ASSEMBLER
PROGRAM TEST SYSTEM

PROGRAM
TEST
INPUT AAAEND %
DATA g OUTPUT DATA
RUN DECK ' - bl
=== Fatuint
I 1 | | !
—d
pe— [N P

Figure 6-1. Application 1: Run Setup

6-2

SECTION VI, SAMPLE OPERATING APPLICATIONS

INPUT TEST
DIRECTOR DECK

FOR PROGB, ETC.

DUMP
PARAMETERS
AAATAP »
INPUT DATA

AAADUM

INPUT TEST DIRECTOR
DECK FOR PROGA

INPUT DECK TO
EASYCODER
LIBRARY
PROCESSOR
AND
ASSEMBLER

AACLIB *

Figure 6-2. Application 1: Input Run Deck

ready to produce any memory dumps requested by the next program to be
loaded and executed {PROGA).

PROGA Console Call card - This card directs the loader-monitor to search
for and load the previously specialized and assembled program, PROGA,
from the BRT created by the Easycoder Assembler. The user must make
sure that the memory dump routines are not overlaid during the loading.
PROGA can then, through programmed instruction or item-mark trapping,
direct that printouts of the contents of core storage be performed at
specified points,

SECTION ViI. SAMPLE OPERATING APPLICATIONS

10. Input data - Besides the tape file created by Test Data Generator C, punched
card input data is also required input to PROGA.

11. AAATAP Console Call card - This directs the loader-monitor to search for
and load Tape Dump C from the system BRT. Once loaded and initiated,
Tape Dump C will read the parameter cards following and perform the
specified positioning, editing, and printing functions on the tape files just
created or processed by PROGA.

12. The remainder of the test director deck consists of similar Console Call
cards, test data, input data, etc., for PROGB and PROGC.

APPLICATION 2 - PREPARING AND COMBINING EASYCODER AND COBOL PROGRAMS
FOR TESTING
The user has two Easycoder source programs (PROGB and PROGE) to specialize and

assemble through Library Processor C and Easycoder Assembler C and three COBOL source
programs (PROGA, PROGC, and PROGD) to compile via COBOL Compiler D. Following this,
he wants to combine the five object programs onto one BRT for testing by means of Program
Test System C. Under the Mod 1 Operating System, he can direct that the five processes, as
listed below, be executed with almost no operator intervention.

1. Library Processor C - Specializes the macro routines called for and incor-
porates them into PROGB and PROGE in preparation for assembly.

2. Easycoder Assembler C - Assembles PROGB and PROGE and produces an
output BRT containing the object coding for these two programs,

3. COBOL Compiler D - Compiles PROGA, PROGC, and PROGD and produces
an output BRT containing the object coding for these two programs,

4. Update and Select C - Combines the two output BRT's from the assembly
and compilation runs above on a master BRT.

5, Program Test System C - Tests the five programs as directed by the
various Console Call cards, test data, etc.

Figure 6-3 illustrates these processes.

Run Deck Setup

Figure 6-4 illustrates the run deck setup. Each card or card deck is explained below.

1. AACLIB Console Call card - This card directs either the Tape Loader-
Monitor or Floating Tape Loader-Monitor (whichever has been bootstrapped
into memory by the operator) to search for, and initiate the loading of,
Library Processor C from the systems BRT.

2. Equipment Configurator Descriptor (ECD) card - This card serves to indi-
cate the equipment configuration present.

3. Systems Specific Header card (1IHDRA) - Identifies the Easycoder director
deck.

4. Easycoder source-language program decks - The source-program decks for
PROGB and PROGE.

5. End-of-File card (1IEOFA) - Signals the end of the input deck to the Library
Processor.

6-4

Y

SECTION VI, SAMPLE OPERATING APPLICATIONS

LIBRARY MACRO
SPT LIBRARY

RUN DECK
WORK TAPE
. P
LIBRARY ouTPUT EASYCODER
WORK TAPE PROCESSOR CARD IMAGE ass
SPECIALIZATION TAPE EMBLY
~ -,
~o -
~ -~
~ ”~
TRANSACTION
BRT
PROGE
/
€OBOL L/ | \
COMPILATION | N
RUN DECK | N RUN DECK
MASTER | N
BRT | 9
|
|
TAPE I UPDATE AND
WORK] SELECT
|
WORK TAPE |
PROGA :
PROGC I
PROG D I
|
| PROGA
| ey) R
| MASTER PROGD
I BRT PROGE
|
|
|
|

PROGRAM TEST
SYSTEM

OUTPUT DATA

1 ——— e -
L~ I
7 |
/ SN———
| ¥—__}
" |
/ I
\\ / //—l
15:/

Figure 6-3. Application 2: Run Setup

6-5

SECTION VI, SAMPLE OPERATING APPLICATIONS

PROGE
DIRECTOR DECK

PROGD

INPUT TO DIRECTOR DECK

PROGRAM
TEST

INPUT TO
UPDATE AND
SELECT

AAAUPS INPUT TO

CcoBOL
COMPILER

INPUT TO EASYCODER
LIBRARY PROCESSOR
AND ASSEMBLER

ECD

l AACLIB *

=

Figure 6-4, Application 2: Input Run Deck

6-6

SECTION VI. SAMPLE OPERATING APPLICATIONS

NOTE: If a sufficient number of tape drives has been indicated in the ECD entry,

10.

11.
12.
13,
14,
15,
16.
17.

18,

19.

20.

21,

Easycoder Assembler C will be automatically loaded and executed im-
mediately following the specialization of the two programs; no Console
Call card is required.

COBOL D Console Call card - This card directs the loader-monitor to
search for, and initiate the loading of, COBOL Compiler D from the sys-
tems BRT.

ECD card - Required to indicate the configuration present for compilation,

ABAVPA Console Call card - This card directs the loader-monitor to
search for and load the initialization routine for the COBOL Compiler.

COBOL*INPUT card - This card identifies the beginning of the input deck
to the compilation.

OPTION card - This card signals that the next program to be compiled
follows in punched card format.

Source program deck for PROGA,
OPTION card.

Source program deck for PROGC.
OPTION card.

Source program deck for PROGD.

ENDCONYV card - This card identifies the end of the input deck to the compiler.

AAAUPS Console Call card - This card directs the loader-monitor to search
for and load Update and Select C.

ECD card - Required to indicate the configuration present for Update and
Select C.

Systems Specific Header card (1HDRA) - Identifies the Update and Select
director deck,

INSERT director card - This card directs the Update and Select program to
insert PROGB after PROGA on the output master BRT.

INSERT director card - This card directs the Update and Select program to
insert PROGE after PROGD on the output master BRT,

NOTE: All programs from the COBOL output BRT (designated as the input mas-

22.

23.

24,

25.

ter BRT) are automatically copied on the output master BRT unless
otherwise directed.

End~of-File card - This card signals the end of the input deck to Update and
Select C. \

AAATST Console Call card - This card directs the loader-monitor to
search for and load Initializer C in preparation for program testing.

Following this is a Program Test System director deck for each of the five
programs to be tested. Each deck can contain Console Call cards to search
for and load Memory Dump Control C, Tape Dump C, Test Data Generator
C, etc., test data input, parameter cards, etc.

AAAEND Console Call card - Terminates the Program Test System operation.

SECTION VI. SAMPLE OPERATING APPLICATIONS

APPLICATION 3 - LOADING BY VISIBILITY

The user has a series of programs which he has placed on a BRT in the order shown below.
The Tape Sort C program is recorded only once (after PROGCC). Each of the programs is run
on the days indicated.

PROGRAM NAME DAYS ON WHICH PROGRAM IS RUN

PROGAA TUESDAY, FRIDAY

PROGBB MONDAY, WEDNESDAY

PROGCC TUESDAY, FRIDAY

SORTC TUESDAY, FRIDAY

PROGDD FRIDAY

SORTC FRIDAY

PROGEE MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY

COLLATE C WEDNESDAY, FRIDAY

PROGFF MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY
First, a visibility code must be assigned to represent each day of the week:

DAY CODE VISIBILITY MASK (OCTAL)

MONDAY M 00 00 40 00 00 OO

TUESDAY T 00 00 00 20 00 00

WEDNESDAY W 00 00 00 02 00 OO0

THURSDAY Z 00 00 00 00 20 0O

FRIDAY F 01 00 00 00 OO0 00

The appropriate visibilities must now be assigned to the programs according to the codes assigned
to each day above. This could have been done at assembly time; however, since the programs
are already assembled, this can be accomplished through Update and Select C,

PROGRAM NAME VISIBILITY CODES (ACCORDING VISIBILITY (OCTAL) TO BE

TO DAYS OF THE WEEK) ASSIGNED
PROGAA T, F 01 00 00 20 00 OO
PROGBB M, W 00 00 40 02 00 00
PROGCC T, F 01 00 00 20 00 OO
SORTC T, F 01 00 00 20 00 0O
PROGDD F 01 00 00 00 00 00
PROGEE ALL 01 00 40 22 20 00
COLLATE C w, F 01 00 00 02 00 0O
PROGFF ALL 01 00 40 22 20 00

In addition to the programs listed, the user must write a short initialization program,
assemble it, and place it at the beginning of the BRT directly after the Tape Loader-Monitor.
Called in by a Console Call card, this program initializes the loader communication area in
memory to search and load by visibility and places the appropriate day-of-week code in the visi-
bility mask area according to the SENSE switch settings. See Table A-1, page A-5, for the

general layout of the loader communication area.

The initializing program (see Figure 6-5) sets the Search Mode field for searching by visi- ——

bility and, by testing the SENSE switches, moves the proper code constant to the Visibility Mask ~

6-8

SECTION VI. SAMPLE OPERATING APPLICATIONS

field. The loader-monitor searches

It then branches to the return address for a normal call.
forward on the tape and loads the first program having a visibility corresponding to the one indi-

cated by the visibility mask.

EASYCODER

CODING FORM

PROBLEM PROGRAMMER DATE _____ . PAGE ____OF ____

R E" rocation | OPERATON OPERANDS

v 2]3 alsle]7]s | 14115, 2021 (R o . N | | e2e3 R . , ., &
! ! ; i leoa /N/ 7- A 1 i 1 1 " 1 1 1 1 1 1
S . lore 1344 i Reserves Japs Loadsr -MepitorArea | L
s] . ADMODES . e . i 1 l e .
sl L lsrarr cAm . \dd . . A . L et .
I . Mew #icdi, 111, Search Modd - Search by wiSibility,
st ! l BCT . MoN, #i SENSE SWITch L ON = Monday, , L .
! . BCT . \TUE, #2 SENSE Switch 2 0N = Jwesday, ‘ . x
of 11 1 BCT_ . WED, B4 SENSE SW/1ch 3. ON = Wedresday|
of 11 \ BorT THOR, /B | SENSE swilch 4 ON = Thursdar | . . | L .
0 ! i . Mew . \#6cd/ BA8BLITITL, 118 . No SENSE Swilches ONM =\Ffriday. . o o
" ! ! 1 A /Sﬁ i e 1] 1 /?5?‘”/"7 foléoﬂdeffwah’flof (/Vp,C‘on.go/el C,.d// qﬂf‘p/.
2 | l 1 1 1 1 L] 1 L i 'n 1 redld.; Mal#a/f) | ST
s 1 ‘ Mon Mcw _ \recBALS48000088, 178 Mave MONOAY vistb/ ity to Mask areq .
4 i 1 8] /3@ i 1 PR " it 1 i | 1, 1 P | i 14
s 5 TUE, Wew &ffdddgdem’dddd . 118 Move [UESDAY vistbiVity, To Mask area. . . |
18 | L /3 1 A 1 i 1 i] i PR Y 1 n 1 "
" 1 WED! . Mo GCEBFLEL a0 8008, //8 Move WEDNESDAY visibility foMask apeq
'8 Il L 1 ‘8| /3 d i - 1 i1 1 " 1 1. Y P 1 1,
ol | { THUR . MCW RIS SII8SL802808, .1/8, More JTHURSDAY. wisiblity to Mask ared. .
20 | l L {1 /3d 1 1 1 1 1 " 1 | . a1 1 i 4 i
o] L Woe e . . e . . L l
22 | }] EL/VD rlq ﬁrl L 1 - 1 i 1 i i PUIPRIT S i

Figure 6-5. Application 3: Initializing Program

Program Termination

In general, each program must terminate with a branch to the Normal Return Address
(B/130). The loader then searches for the next program according to the parameters entered in

the loader communication area.

Tape Sort C Programs

The Tape Sort C program is called twice, once after PROGCC and the second time after
PROGDD. The parameters (size and location of key fields, record lengths, blocking factors,
work tapes, etc.) required by the sort process must be supplied either by parameter cards in the
input deck or by MCW instructions in the program prior to each sort. Since the Sort program
changes the Search Mode parameter to cause the loader to search by program and segment name,

the parameters supplied to the sort must include the search direction, program name, and seg-

ment name to be used in searching for the next unit to be loaded and executed after the sort.

6-9

SECTION VI. SAMPLE OPERATING APPLICATIONS

PROGCC is the program prior to the first execution of the Sort program and can be used to
load the required parameter values into the sort parameter area (locations 2477g through 2760g).
These include the parameters which indicate to the loader the search direction ("B'' = forward),
program name (PROGDD), and segment name (00), to be used in searching for the next program
to be loaded and executed after the sort. The coding for moving this information into the sort

parameter area is shown in Figure 6-6.

EASYCODER

L

1
1

[| I
1

A 1

i 1. 1 Il

1 Mop 1 L 1 L L i 1 1
1 EI/VQ SrﬁRz " 1 L 1 1 1 Il
1 i 1 i 1 ! 1 Pl i i B S

! 1 L

CODING FORM
PROBLEM PRO R DATE _ _ __ __ PAGE _OF____
NUMBER Wé“ tocamion | GGt OPERANDS
1 213 al5]6]7]8 | 1415, 20[2i | | | . L . | | e2fes R . L 80|
o . . ‘ , . e LN\ _LNSTRYCTIONS 70
o 1o ‘ . , . s e . . LOAD PARAMETER
s | . . . 1 .) e 1 1 VALUES INTO.
¢ i ' i i L i 1 [1 N Ft PR 1 ‘5‘?'?7.-(DAFAM[7-£R
SN . Mew lese, 1524, . SEARCH DIRECTION (27695) || #REA. .,
s 1| MCw PROCODO®@, /517 LROGRAM NAME (27553) l ‘ ,
L t Wew s /519 SECMENT NAME (275738) . . .
e | 4 i 1 i 1 1 " 1 a0 1 1 L P Y) | S S T T 1
of I 1 8 /138 NORMAL RETURN. 70 LIBDER | | \
| lj
10 i { L
L
L]
L]
T 1

Figure 6-6. Application 3: PROGCC Termination Routine

Once the Tape Sort C program is loaded and initialized, it modifies the loader communi-
cation area to direct the loader-monitor to load by program and segment name. When the sorting
is completed, the Sort program moves the program and segment names from the sort parameter
area to the loader communication area and makes a normal return to the loader-monitor. The

loader then searches forward for PROGDDO0O.

Although the first sort is executed on both Tuesday and Friday, PROGDD is scheduled for
Friday only, Therefore, PROGDD must begin with a routine which checks whether the program
should be executed. If not, the program and segment name (PROGEEO00) of the next unit to be
loaded should be moved to the loader communication area and a normal return made to the loader.
The Search Mode parameter is still set to search by program and segment name. This initializa-

tion routine is shown in Figure 6-7.

The terminating routine for PROGDD must:

1. Move the required parameter values to the sort parameter area. These
must include the program name (PROGEE), segment name (00), and search
direction ("B' = forward) for the unit to be loaded and executed following
the termination of the sort.

“\/’7

-~

SEC

TION VI.

SAMPLE OPERATING APPLICATIONS

j Ny

1
2
3
)
s
6
7
8
9
10
"
12
13
14
15
16
7
18
]
20
St
t
2
3
4
£
[
7
[
9
0
i
12
3
It}
15
15
17
1]
et

2.

Set the loader communication area Search Direction, Program Name, and
Segment Name fields to direct the loader to search backwards for the Tape
Sort C program (AADS2A00).

The coding is shown in Figure 6-8.

EASYCODER
PROBLEM PROGR, ER DATE . PAGE __OF ____
R ‘E & Location | OPERiTOM OPERANDS
| 2713 als]e]7]e | 415, 20[e | N L1 N L | | , s2(63 L | 60|
L1 . PROS__|PROGOD , e
L l oR6___ 1344 | ‘ 1 e ‘ . e
1 1 AIDMOD£3 1 1 " L 1 1 n F— P S 1 P a1 1
i : START. _lcAM . Bd . . . e . e N
o . BCE . FRIDAY, 113, &/ V18187 LITY MASK= FRIDAY |(F)i EXECUTE FROGRAM
JL I 1 1 1 1 1 t 1 P 1 1 1 I St i
| } . MCw gf’feo@.é‘f@, 73 . VISIBILITY WASK £ FRIDAY |;, MOVE PROSRAM
.. . MO dé0, 7.5 . ANO SEGMENT NAMES OF NEXT OGN/ TQ s
] 1 . , : . BE LOADED 10 LOADER _COMMUNICATION HREA,
! i i 1 | 1 1 1 1 . 05 1 i 1 1 o " L
! ! t ! i I I 1 n | ¢ L gt e 1 [
L] . 8 /3¢ , l NORMAL RETYRN TP SEARCH AND LOAD PRIGEE
l | 1 1 Il 1 1 1 1 1 1 a1 1 1 1
V1 erroar |, N , 1 . e . . 1 1 .
l ‘i 1 1 1 1 1 1 L 1 i i 1 1 1
l 3 1 1 1 1 1 L 1 1 L 1 i 1
EL) , PROGDD, ROUTINES. . . l . 1 , .
% i 1 1 L 1 1 1 1 i 1 1 1 1 I
| #L [N | i 1 n 1 L L L (. il L i
: : 1 1 L 1 1 1 1 1 | e 1 1 1 L
J‘ } 1 1 1 1 L . 1 I 1 i S 1 1 1
Figure 6-7. Application 3: PROGDD Initialization Routine
EASYCODER
PROBLEM PROGRAMMER DATE . . PAGE ____OF____
iy Erg Locaion | OPERATION OPERANDS
1 2[3 alslef7{e | 14)is, 20[21 K | | | R N . | e2(e3 | | | 80|
; E] 1 1 1 1 1 L 1 I i i 1 |
i ‘ 1 nsTRUCTII OMS_TO. LOAD |
i I 1 1 ' i 1 1 1 2 T Sn 1 1 1 i 1
L . MCW . BPROCEE®, /517 INOICATES unIT 70, | SORT. PARAMETER AREA.
! l 1 MC’W d@’l / 5/ 91 } 8€ S{A,?cx{[la F.—O.R 14 1 ! 1 N L 1
T , Wew 8@ | 1528) D copDED ForLawme | L o
! 1 1 1 1 1 SORTI 1 PR 1 il N 1 al | -t 1 41
! . . A , ‘ . . . 1 INSTRUCTIONS TO CHANGE
P L MCW #lc23, /46 SEARCH BAKWARD L | LOADER-MONITOR
] : MCH, . \kIC2B,y 11/, SEARCH, GV PROG ¢ SE6 NAME. PARBMETERS . .|
I I I MC‘W AAﬂslaa@' 173 1 1 A 1 1 1 1 1 1 1
L | . Mew w75 . . . 1 L) ‘ . .
E ! 1 1 I 1 . i 1 A 1 a1 1 1 1 1 4
I 1 i 1 1 1 1 1 1 1 Y 1 1 1
L .8 /138, NORMAL RETURN T0 LOADER, LOADER WILL SEARCH. .,
ﬂ . 1 . BACKIWARD_FOR AADSS A e i
] 4] 1 1 1 1 1 1 P J ST L P Y 1 J -

Figure 6-8.

Application 3:

6-11

PROGDD Termination Routine

SECTION VI. SAMPLE OPERATING APPLICATIONS

When PROGDD makes the normal return to the loader (B/130), the loader searches back-
wards, finds the first segment of the Tape Sort C program, and loads and executes it, At the
completion of the sorting, the Sort program moves the search direction, program name, and
segment name values supplied by the PROGDD coding from the sort parameter area to the
loader communication area and makes a normal return to the loader. The loader then searches

forward for PROGEEOQO.

The termination routine for PROGEE must:

1. Load the parameter values for Collate C into the collate parameter area in
case the Tape Collate C program is to be executed after PROGEE., These
parameter values must include the search direction, program name, and
segment name to be used in loading the next unit to be executed following the
Collate program.

2. Change the Search Mode field (which has been altered by Sort C) back to Olg.

This coding is shown in Figure 6-9.

EASYCODER

CODING FORM

PROBLEM PROGRAMMER = DATE_ . PAGE___ OF _

R ﬂgrx.ocmon OPERATION OPERANDS

1 213 4alsfe|7]|e " "'5L 20[21 b 1 I i L TN NV i { 62|63 Y N 4o 801
! j!i L i 1 . Jr— 1 P 1 —_ P A i j S S PR S T B SR GE U BS
2 | . . , N . . e . N ZNSTRYCTIONS TO, . . - |
3 P A 1 1 L A PR RSO S SO S SR 1 L Loép &Anklwfrfkg
4 4._i I P S A L . | S 1 . 1 " Y P Bt 1 V ’9%5&/”[0 cg%.r E n
o I . MW, PROGF By 1499, , MOVE_PROCRAM NAMNE. > (PARAMETER AREA
s .| . C IRy 158/ . MOVE SECMENT NAME . n e]
4R L mew B8R 5 1502 . MOYE SEARCH, D/RECT/ON], . e
8 i 1 I P S o S | 1 " PR T S 1 1 l‘ Fou | Loy | S
.: 17# 1 N a1 1 i 1 P PO S T | - P L. |

N . w8/, /1) , RESTORE SEARCH MOOL To | &1 (SEARCH LY. . .
" 4+ il 1 L 1 1_,_L+1V/£/€{UCK)J_;A_LJQ_A,J_L. N P S ‘.
12 I J 1 1 P i i] 1 L " 1 S Y P SRR B PP B
el] . A /38 | . , MORMAL RETURN 70, LOADER| . . 1. b
14 4_; l i P JQ.B S 1. S i RN S i — P A o S B 1 1 P Y PEETE B 1
sl | : L ND_ START, , e e . . e
'€ LJ i 1. a1 1 T S S S N L Ly 1 L .

Figure 6-9. Application 3: PROGEE Termination Routine

If more programs were to be loaded by visibility following PROGFF, the Search Mode field
would again have to be restored to Olg following Collate C (Collate C, like Sort C, searches by
program name and segment name). In this example, PROGFF should terminate with an indirect
branch to the General Return Address of the loader — B/(139). This directs the loader-monitor
to halt until the operator manually intervenes. If PROGFF were not always the last program to
be executed in the series, a dummy program might be written as shown in Figure 6-10. This

program would be visible to all visibility codes.

-~

SECTION Vi. SAMPLE OPERATING APPLICATIONS

EASYCODER

CODING FORM

PROBLEM PROGRAMMER DATE . PAGE __OF ___

e |LIA! LocaTion | OPERATION OPERANDS

1 213 alslel7{e | 1415, 20[21 | | L . | . 62063 . | L 80}
L . PROG__IFINISH. e . T P
o . ORrRG /344 , e e e
3 l i loMoo£3 A L oo . 3 | S 1. A s b g | DY Y L FURNET § — I
L v sraer leAm g . e T
SN . (/.39), L GENERAL RETURM; LOADER HALTS, FIOR CONSOLE CALL
s ! [i MLOP L 1 § Y L 1 — 1 1 —_ L 4 ._ i
R L END | STARK . e Lo o s .

Figure 6-10. Application 3: Run Termination Program (Visible to All Visibilities)

Input Run Deck

Since in this application the loader is directed to load by visibility, or in some cases
by a program and segment name placed in the communication area via programmed instructions,

the input deck is a very simple one.

4
*
I INIT 20 ————— CONSOLE CALL CARD FOR INIT

Figure 6-11., Application 3: Input Run Deck

APPENDIX A
FORMATS

For the convenience of the reader, the following layouts pertinent to the Mod 1 Operating
System are presented:

1. Symbolic program tape (SPT) format

2. Binary run tape (BRT) format

3. Binary run deck (BRD) format

4. Loader-Monitor communication area layout

5

. Equipment Configuration Descriptor (ECD) card format

SYMBOLIC PROGRAM TAPE (SPT) (Figure A-1)

Symbolic program tapes (SPT's) are processed and produced within the Easycoder system
and contain the user's programs in both source- and machine-language format. They are input
to, and output from, Library Processors C and D, Easycoder Assemblers C and D, and SPT
Merge C. Since both the source-language and machine-language elements of each program are
present on the tape, either version can be selected and either punched into cards or written onto

tape.

A symbolic program tape begins with a beginning-of-file header label. For each program
stored on the tape there is a program header record and one or more segment header records
each followed by one or more data records. These data records (see Figure A-2) contain the
source~- and machine-language coding for the segment. At the end of a symbolic program file,
there is an end-of-file record, a file of directory records, another end-of-file record, and two

end-of ~information records.

BINARY RUN TAPE (Figure A-3)

A binary run tape (BRT) contains the machine-language coding of one or more object pro-
grams, These programs can be loaded directly from the tape into main memory by either Tape
Loader-Monitor C or Floating Tape Loader~Monitor C (which can reside at the beginning of the

tape) and executed,

At the beginning of each BRT are a beginning-of-file header record, a tape bootstrap rou-
tine (which loads the Tape Loader-Monitor), and one or more versions of the Tape Loader-
Monitor. For each program on the tape, there are one or more loading units (or segments), each

consisting of a segment header record and one or more non-header records. The segment header

A-1

APPENDIX A, FORMATS

record identifies the program and the segment and contains the revision number of the segment,
the visibilities under which the segment is to run, and part of the machine-language coding of the
program. Every non-header record consists of a control field to identify the record and a
portion of the program's machine-language coding. Each loading unit contains as many non-
header records as are required for the storage of the object coding. The program file is termi-

nated by one end-of-file trailer record and two end-of-information records.

BINARY RUN DECKS (Figure A-4)

Binary run decks (BRD's) can be produced by either Easycoder Assemblers C and D or BRT
Punch C and can be loaded for execution by Card Loader-Monitor B. Such program decks are
actually the machine-language coding of the programs converted from a binary run tape into
punched cards. As in the case of a BRT, the deck begins with a beginning-of-file header record.
Each segment or loading unit begins with a segment header record which is followed by one or
more non-header records containing the machine~language coding for the program. The format
of these records is basically identical to that of the corresponding record types on a BRT with
the exception that BRT records have a limit of 250 characters while BRD cards are limited to

80 characters.

BEGINNING OF TAPE
BEGINNING-OF -FILE
HEADER RECORD
FOR EACH PROGRAM
1 PROGRAM HEADER SEGMENT HEADER DATA RECORDS SEGMENT HEADER DATA RECORDS Ss ;}
END OF TAPE
END-OF-FILE DIRECTORY END-OF -TAPE END-OF -TAPE
TRAILER RECORD RECORD TRAILER RECORD TRAILER RECORD
BEGINNING-OF-FILE HEADER RECORD PROGRAM HEADER RECORD
1-5 1HDR 1 Banner character (518)
6-10 Unspecified 2-4 Number of characters in record (124g)
11-15 SPT revision number 5-6 Number of characters in item (1208)
16-20 Unspecified 7-12 Program name
21-30 ECDR2SPT 13-15 Program revision number
31-80 Unspecified 16-21 Visibilities
22-29 Date of assembly
30-34 SPT number
35-84 Unspecified
SEGMENT HEADER RECORD DATA RECORDS END-OF-FILE TRAILER RECORD
1 Banner character (508) (See Figure A-2) 1-5 1EOF
2-4 Number of characters in record {124g) 6-80 Unspecified
5-6 Number of characters in item (120g)
7-12 Program name DIRECTORY RECORD
13-14 Segment name 1 Banner character (438)
15-84 Unspecified 2-4 Number of characters in record (764g - maximum)
5-6 Number of characters in item (31g)
7-12 Program name Repeated for
END-OF -INFORMATION RECORDS (2) 13-15 Program revision number each program
1-5 1ERI 16-21 Visibilities on the SPT
6-80 Unspecified 22-29 Date of assembly

Figure A-1. Symbolic Program Tape (SPT) Format

A-2

APPENDIX A, FORMATS

Banner character (418)

l——Number of characters in record {max. = 12748)

L

CONTROL FIELD INFORMATION

E—

SYMBOLIC CARD FIELD INFORMATION “

L]

CONTROL FIELD INFORMATION (31-70 characters in length)

SYMBOLIC CARD FIELD INFORMATION (15-75 characters in

length)
1.2 Number of characters in item Type field
3-4 Number of characters in control information Mark field
field Location field
5-6 Number of characters in symbolic infor- 10-15 Op code field
mation field 16 - Operands field (0-60 characters)
7 Item type
12 12 ii?:cZ?ir::ei;fZi::;::ghC card NOTE: Literal ite.ms, repeated items, and
14-19 Subfield reserved for future use generat.ed items do not have Symbolic
20-22 Error code Card Fields.
23 Label information
24 Word mark and item mark information
25 Not used
26-29 Beginning memory address of instruction or constant
30 Length of machine-language entry (binary}
31 - Machine language

Figure A-2.

Symbolic Program Tape (SPT) Format:

Data Record Layout

BEGINNING OF BINARY RUN TAPE

BEGINNING-OF -FILE
HEADER RECORD

TAPE BOOTSTRAP
ROUTINE

{14 Records)JL

TAPE LOADER-
MONITOR PROGRAM

FOR EACH PROGRAM

SEGMENT HEADER
RECORD

NON-HEADER RECORDS

L

SEGMENT HEADER
RECORD

First Loading Unit

END OF BINARY RUN TAPE

Second Loading Unit, etc.

1
NON -HEADERr RECORDS

1

LN

8-10
11-16
17-18
19-24
25-250

END-OF-FILE
TRAILER LABEL

END-OF-INFOR -
MATION RECORD

END-OF -INFOR -
MATION RECORD

SEGMENT HEADER RECORD

Banner character
50g - This is the beginning record of a
multirecord loading unit
54g - This is the beginning and only record
of a single-record loading unit
Number of characters in record (binary)
Record sequence number {used in backspacing to
beginning (segment header) record of load unit
Length of identification and control field
information (308)
Revigion number
Program name
Segment name
Visibilities
Machine language to be loaded interspersed with
control characters

NON-HEADER RECORD
1 Banner character

4lg ~ This is not the last record of the current
loading unit (segment)

44g - This is the last record of the current
loading unit

2-4 Number of characters in record
5-6 Record sequence number
7 Length of identification and control field
information (07g)
8-250 Machine language to be loaded interspersed with

control characters

Figure A-3,

A-3

Binary Run Tape (BRT) Format

APPENDIX A. FORMATS

O K %

1234 5/6 789)1001213i413181718 19 20)

fe3els o|r

LI22232425ZSZTH:S!OLDMH””SU’SDWQI‘Z 434445464748 4330 51 52 53 34 55 56 5758 50 60 81 6263 46566 GTEIEOTO 7t T2 T3 T4 7B I6 7778 19 8O

2@0@PROGTAP

Header Label Record

v 30 mwhy whio 2021 2023 2012 262720 2930 31 32.33 343536 3730 39 4041 42 4344 4546 4748 49 50 % 52 53 54 55 56 57 58 99 60 &1 6263 64 6366 6768 6970 7| 7273 TATS 6 TT T 79 80

A fr pppppBSivuvVYY (loading data)

Segment Header Record

Col. 1 - * (54g) = Last record of load unit

Q (50g) = Not last record of load unit

Col, 2-4 Card sequence number
Col, 5-6 Blanks
Col. 7-24 [Equivalent to characters 7 through 24 of a BRT segment

header record :

Col, 25-80 Machine language to be loaded interspersed with control

information.

a.}"lauc'r

J f'iv A N7

8 9 10 HI2(3 141516 17 18 19 2021 2223 24 25 2627 28 29 30 31 3233 3435 36 37 30 35 4041 42 4344 4346 4748 49 50 1 5253 54 53 36 5758 59 60 61 8263 G4 6566 CTES O TO 7| T2 VI TATE 6 TT 78 79 80

Non-Header Record

Col. 1 - M (44g) = Last record of loading unit

J (4lg) = Not last record of loading unit

Col, 2-4 Card sequence number
Col. 5-6 Blanks
Col, 7 Number of control field characters (7)

Col. 8-80 Machine language to be loaded interspersed with control

information.

12345

1EOFA

€ 789 101I2i3 141518171819 z+|zznz4aanuzunmszuuu:wm”«uuz««csun««ws 5253 54 55 56 5758 59 80 81 6263 646568 GTENEPTO 7I 72 73 74 TS 76 TT T8 79 80

2@BPROGTAP]

Trailer L.abel Record

Figure A-4. Binary Run Deck (BRD) Format

APPENDIX A. FORMATS

LLOADER-MONITOR COMMUNICATION AREA (Table A-1)

The loader-monitor communication area, consisting of 92 locations in main memory, is
utilized by all of the loader-monitors in the Mod 1 Operating System as a control link between
one program run and the following program run(s) and between the loader-monitor routine and
the operator. Table A-1 shows the fields within this area which are most likely to be referenced

by the user.

The communication area contains:

1. Parameters which control the searching, loading, and starting operations
of the loader-monitors.

2. Entry points for transferring control back to the loader-monitors.
3. Exit and return points for own-coding routines to be executed during loading.
4, Parameters provided for use by other programs,

All fields, except for Program Name, Segment Name, and Halt Name, are initially set to
certain standard values, All fields can be modified either by programmed instruction or by con-
trol panel entries. The Program Name, Segment Name, and Tape Unit Address fields can be
modified by a Console Call card. Some fields are automatically reset to their initial value by a

console call, special call, or the loading of a program unit,

Table A~l. ILoader-Monitor Communication Area (Basic Fields)

Locations
Field Contents! Decimal Octal
METHOD OF CONSOLE CALL ENTRY 00g = Card 64 100
0lg = Manual
PROGRAM NAME? 68-73 104-111
SEGMENT NAME? 74-15 112-113
TAPE UNIT ADDRESS OF BRT? 00g 76 114
FIXED START 0 {Manual Return to Loader-Monitor for Next 86 -89 126-131
Console Call) i
SEARCH DIRECTION? 22g = Forward 106 152
23g = Backward
RELATIVE POSITION? (Used With Search Mode 01) 0lg 110 156
SEARCH MODE> 20g = Program and Segment Name 111 157
0lg = Visibility and Relative Position
00g = Segment Name Within Current Program
60g = Program, Segment, and Visibility
40g = Segment, Visibility Within Current
Program

APPENDIX A. FORMATS

Table A-1 (cont). Loader-Monitor Communication Area (Basic Fields)

Locations
Field Contents! Decimal Octal
START MODE3 N = Begin Execution at Address Specified in 112 160
EX Command
S = Begin Execution at Address Stored in
Special Start Location
R = After Loading, Return to Point Immediately
After that Where Exit to Loader Was Made,
VISIBILITY MASK (Initial Value = Visibility "A") 113-118 161-166
SPECIAL START LOCATION (Used With Start Mode ''S'') 119-121 167-171
RETURN ADDRESS FOR NORMAIL, CALL (To Load Another Unit 130-138 202-212
Without Halting)
GENERAL RETURN ADDRESS (Halts for Console Call) 139-141 213-215
CURRENT DATE 142-146 216-222
TRAPPING MODE 00g = Off 048 = On 147 223
ALTERNATE RETURN ADDRESS (Reads Next Console Call 148-~150 | 224-226
‘ Card Without Halting)
ECD FIELLD JJ0O# - ECD Entered From Card Reader 151-154 227-232
CONSOLE TYPEWRITER AVAILABILITY _4 = Not Available 155 233
WM = Available
NOTES: 1. Initial or Reset Value is First Value Shown
2. Can be taken from Console Call card
3. Reset by Fixed Start 0 or General Return console call

EQUIPMENT CONFIGURATION DESCRIPTOR (ECD) CARD FORMAT (Table A-2)

Systems programs (Easycoder Assemblers, COBOL Compilers, etc.) require that the user
indicate the equipment configuration available for their execution. This may be done in one of
two ways: either by punching an Equipment Configuration Descriptor (ECD) card and placing it
after the Console Call card in the card reader, or by indicating that one of the ten standard
equipment configuration descriptors automatically loaded into memory with the systems program

is to be used.

ECD Card

The user punches an ECD card (see Table A-2). The specific meaning and content of the
file media fields are discussed in the software manual for the particular systems program. The
ECD field (151-154) of the loader communication area is initially set to cause the ECD informa-

tion to be accepted from the card reader (JJO#).

A-6

y

APPENDIX A, FORMATS

Standard ECD Entries

Normally, the user can specify that one of the standard equipment configurations loaded in
conjunction with the systems program is to be used. He indicates this choice to the system by
manually entering the following information into the ECD field (151-154) of the loader communi-

cation area. This field is reset only by another manual entry.

Locations
Decimal Octal Contents
151 227 Blank
152 230 Standard configuration number
{0-9) desired
153-154 231-232 Highest memory bank available
(if blank, will use memory size
indicated in ECD)
Table A-2, Equipment Configuration Descriptor (ECD) Card Format
l Column(s) Contents Interpretation
I’ 1-5 Blanks
I 6 E Identifies Equipment Configuration Descriptor (ECD) card
, I 7 Blank
L s I 8 11,9 Read/write channel assignment for RWClI
I 9 8,2 Read/write channel assignment for RWC2
L 10 8,3 Read/write channel assignment for RWC3
| 11-15 Blanks
16-17 00 Lowest memory bank usable
18 Blank
19-20 Highest memory bank available
21-80 File media fields (three columns per file)
| First character position: Type of device
Blank File absent
E 0 Unspecified
1 Type 204B Magnetic Tape Unit
2 Control Panel
| 3 Type 204A Magnetic Tape Unit
4 Type 270 Drum Storage Unit
5 Type 220 Console
6 Main Memozry
" - Printer
' J Type 227 Card Reader
K Type 227 Card Punch
L Type 209 Paper Tape Reader
3 M Type 210 Paper Tape Punch
N N Type 223, 214-2, or 224 Card Reader with Series 200
Card Reader Control

A-7

APPENDIX A. FORMATS

Table A-2 (cont).

Equipment Configuration Descriptor (ECD) Card Format

Column(s) Contents Interpretation
21-80 O Type 214-1, 214-2, or 224 Card Punch with Series 200
(cont) Card Punch Control
R Type 123 Card Reader (or Type 214-2 or 224 Card
Reader/Punch used as card reader only) with Model
120 Integrated Card Control
S Type 214~1 Card Punch (or Type 214-2 or 224 Card

Reader/Punch used as card punch only) with Model
120 Integrated Card Control

Second character position: Peripheral Address
(Control character C2 of PDT instruction)

Third character position: Tape drive number (Control
character C3 of PDT instruction)

APPENDIX B
MOD 1 OPERATING SYSTEM PUBLICATIONS

This appendix contains a current listing of the Honeywell publications associated with the
Mod 1 Operating System. The order numbers shown in parentheses should be used in ordering

these publications.

GENERAL INTRODUCTION
Introduction to Series 200/Operating System - Mod 1 (258)

OPERATING PROCEDURES

Operating System - Mod 1 Operating Procedures Summaries (069)

LANGUAGE PROCESSING

Honeywell Series 200 (Model 120) Programmers' Reference Manual (141)
Honeywell Series 200 (Models 200/1200/2200) Programmers' Reference Manual (139)
Library Processors C and D (051)

Easycoder Assemblers C and D (041)!/

Transition to Easycoder - A Programmer Text (238)

Programming with Easycoder - A Programmed Text (008)

Analyzer C (019)

COBOL Compilers D & H (065)

COBOL Compiler D - Volume 1 - A Programmed Text (083)

COBOL Compiler D - Volume 2 - A Programmed Text (091)

COBOL Compiler D - Volume 3 - A Programmed Text (294)

Study Guide: COBOL Programming (A three-volume set) (259, 260, 261)
Classroom Workbook - COBOL Programming

Fortran Compiler D Reference Handbook (027)

Fortran Compiler D Generated Object Code (003)

Fortran Conversion Techniques (002)

Fortran D Action Session (114)

Easytran Symbolic Translators B and C (035)

E Easytran Symbolic Translator D (220)

- Easytran Program Modifier C (147)

UTILITY PROGRAMS

Tape Handling Routine B (applicable to Tape Handling Routine C) (017)
Data Conversion A and C (231)

Simultaneous Media Conversion A and C (021)

Report Generator A, B, and C (080)

Tape Sort C and Collate C (017)

Own Coding Routines for Tape Sort C (026)

Sort C (V) and Collate C (V) (207)

() Drum Sort C (157)

Simultaneous Sort and Print (201)

~u

APPENDIX B. MOD 1 OPERATING SYSTEM PUBLICATIONS

Statistics Package D (159)
Linear Programming Package D (276)

PROGRAM EDITING AND MAINTENANCE

SPT Merge C (152)

Update and Select C and D (025)
BRT Punch C (020)

Drum Program Store C (DSI-411)

OPERATION CONTROL

Tape Loader-Monitor C (221)

Floating Tape Loader-Monitor C and Interrupt Control D (005)
Card Loader-Monitor B (154)

Drum Bootstrap-Loader C (DSI-415)

Drum Monitor C (DSI-408)

List Comments (DSI-353)

INPUT/OUTPUT CONTROL

1/2-Inch Tape I/O B and C (010)
1/2-Inch Tape and Terminal I/O C (167)
Drum I/O C (DSI-405)

Console I/O C (TYRO 2) (DSI-413)
Communications I/O C (202)

PROGRAM TEST FACILITIES

Program Test System C (049)
Memory Dump C and Tape Dump C (469)

s

COMPUTER=GENERATED INDEX

ANALYZERs 3=5
" C SETUP, 3-7
APPLICATION
SAMPLE OPERATING APPLICATIONS, 6-1
" 1 - EASYCODER PRUGRAM SPECTALIZATION, ASSEMBLY4AND
TESTy 6-1
" 11 INPUT RUN DECK, 6=3
" 1t RUN SETUP, 6=2
2 - PREPARING ANU COMBINING EASYCODER AND COBOL
PROGRAMS, 6+
23 INPUT RUN DECKy 6-6
21 RUN SETUP, 6=%
3 - LOADING BY VISIBILITY, 6~8
3t INITIALIZING PROGRAM, 6=9
31 INPUT RUN DECK, 6-13
31 PROGCC TERMINATION ROUTINEs 6=10
33 PROGOD INITIALIZATION ROUTINE, 6-11
3t PROGDU TERMINATION ROUTINE, 6-11
33 PROGEE TERMINATION ROUTINEs 6=12
31 RUN TERMINATION PROGRAMs 613

2 2 3 2 3 3 2 2 2 E

AREA
LCADER-MONITOR COMMUNICATION AREA, A~5
LOADER~MONITOR COMMUNICATION AREA (BASIC FIELLS),
A5
ARITHMETIC STATEMENT
EXAMPLE OF A FORTRAN~LANGUAGE ARITHMETIC STATEMENT,
3-12
ASSEMBLER
EASYCOGDER ASSEMBLER, 3=4
EASYCQDER ASSEMBLERS,
OPERATING MODES OF EASYCODER ASSEMBLERS C AND Do

3=6
EASYCODER ASSEMBLERS C AND D: FEATURESy 3=5
ASSEMBLY
" LANGUAGE,
EASYCODER ASSEMBLY LANGUAGE, 3-2
" SYSTEM, 3-2
ASSEMBLY AND TEST
APPLICATION | - EASYCODER PROGRAM SPECIALIZATION,
ASSEMBLY+AND TESTy 6-1
AUTOMATIC PROGRAM CHECKOUT, 4-12
Baslc FIELDS
LOADER-MONITOR COMMUNICATION AREA (BASIC FIELDS),
A-5
BINARY RUN
" DECK,
BINARY RUN DECK (BRD) FQORMAT, A=-4
BINARY RUN DECKSs A=2
" TAPE,
BINARY RUN TAPE (BRT) FORMAT, A=3
BINARY RUN TAPE (BRT), A~l
BRD
BINARY RUN DECK (BRD) FORMAT, A-4
BRT
BINARY RUN TAPE (BRT)y A=l
BINARY RUN TAPE (BRT) FORMAT, A-3
CAPABILITIES
INTERRUPT CAPABILITIES, 4~5
CARD
ECD CARD,y A=-6
" FORMAT,
EASYCODER SYMBOLIC CARU FORMATSs 3w4
EQUIPMENT CONFIGURATION DESCRIPTION (ECD) CARD
FORMAT, A-7
EQUIPMENT CONFIGURATION DESCRIPTOR (ECD) CARD
FORMATs A-6
LOABING FROM CARDS, 4-3
CHECKQUT
AUTOMATIC PROGRAM CHECKOUT, 4~12
coeoL
" COMPILER SYSTEM, 3-11, 3-8
" COMPILERS,
COBOL COMPILERSy 3=9
COBOL COMPILERS D AND H: FEATURESs 3-10
" LANGUAGE, 3-8
" PROGRAMS,
APPLICATION 2 - PREPARING AND COMBINING
EASYCOUER AND COBGOL PROGRAMS, 6-4
" SOURCE LANGUAGE,
EXAMPLE OF THE COBOL SOURCE LANGUAGE, 3-8
COLLATE PROGRAM
SCRT AND COLLATE PROGRAM: FEATURESy 3-23
COLLATING
SORTING AND COLLATINGy 3-22
COMBINING EASYCODER
APPLICATION 2 - PREPARING AND COMBINING EASYCODER
AND COBOL PRUGRAMS, 6=4
COMMENTS (CONT.)

COMMENTS
LIST COMMENTS Cy 4=124 4+8
COMMUNICATION AREA
LOADER=MONITOR COMMUNICATIQON AREA, A=5
LOADER~MONITOR COMMUNICATION AREA (BASIC FIELDS),
A=5
COMMUNICATIONS INPUT/OUTPUT CONTROL, 4=11
COMPILER SYSTEM
COBOL COMPILER SYSTEM, 311, 3-8
COMPILER SYSTEMS, 3=7
FORTRAN COMPILER SYSTEM, 3-12, 314
COMPILERS
COBOL COMPILERSs 3=9
COBOL COMPILERS D AND H: FEATURES, 3=10
FORTRAN COMPILERS, 3-12 -
FORTRAN COMPILERS D AND H: FEATURES, 3-14
COMPONENTS OF THE MOD 1 OPERATING SYSTEM, 2-3
CONF IGURATION
“ DESCRIPTION,
EQUIPMENT CONFIGURATION DESCRIPTION (ECD) CARD
FORMATs A=7
" DESCRIPTOR,
EQUIPMENT CONFIGURATION DESCRIPTOR (ECD) CARD
FORMATs A=6
CONSOLE INPUT/OUTPUT CONTROL, 4=10
CONTROL
COMMUNICATIONS INPUT/QUTPUT CONTROL, 4=11
CONSOLE INPUT/OUTPUT CONTROL, 4=10
DRUM INPUT/OUTPUT CONTROLs 4=10
" FUNCTIQNS.,
INPUT/OUTPUT CONTROL FUNCTIONS, 4a11
INPUT/QUTPUT CONTROL, 48
INTERRUPT CONTROL+
MULTIPROGRAMMING WITH INTERRUPT CONTROL D, 4-7
INTERRUPT CONTROL D, 4=6
MAGNETIC TAPE INPUT/OUTPUT CONTROL, 4.8
MEMORY DUMP CONTROL Cy 4=12
OPERATION CONTROLy 4=l
OPERATION CONTROL: LOADING AND MONITORING FUNCTIONS,
4.4
PROGRAM EXECUTION AND CONTROL, 4=l
TERMINAL INPUT/QUTPUT CONTROL,
MAGNETIC TAPE AND TERMINAL INPUT/OUTPUT CONTROL .
4-9
CONVERSTON
DATA CONVERSION C ROUTINES, 3-20
MEDIA CONVERSIONs 3-19
SIMULTANEOUS MEDIA CONVERSION C, 321
DATA
" CONVERSION C ROUTINES, 3~20
" GENERATOR+
TEST DATA GENERATOR Cy 4=12
* RECORD LAYOUT,
SYMBOLIC PROGRAM TAPE (SPT) FORMAT: DATA RECORD
LAYOUT, A=3
" TRANSCRIPTION AND EDITING, 3-18

DECK
APPLICATION 1t INPUT RUN DECKy 63
APPLICATION 23 INPUT RUN DECKy 6-6
APPLICATION 3% INPUT RUN DECK, 6-13
BINARY RUN DECK (BRD) FORMATy A-4
BINARY RUN DECKS»s A2
INPUT RUN DECK, 6-13
" SETUP,
RUN DECK SETUPy 6=1, 6-~4
DESCRIPTION
EQUIPMENT CONFIGURATION DESCRIPTION (ECD) CARD
FORMAT, A-7

DESCRIPTOR
EQUIPMENT CONFIGURATION DESCRIPTOR (ECD) CARD
FORMATs A=6
UEVELOPMENT
EVOLUTION AND DEVELOPMENT OF OPERATION SYSTEMSs 1=}
DRUM
" INPUT/OUTPUT CONTROLy 4-10
LOADING FROM DRUM, 4-3
" STORAGE, 3-23
oump
" CONTROL,
MEMORY DUMP CONTROL Cy 4=}2
EMERGENCY MEMORY DUMP C, 4-13
MEMORY DUMP Cs 4-13
TAPE DUMP Cy 4-13
EASYCODER
" ASSEMBLERs 3-4
EASYCODER ASSEMBLERS C AND D3 FEATURES, 3-5
OPERATING MODES OF EASYCODER ASSEMBLERS C AND D,
(CONT.)

COMPUTER~GENERATED INDEX

EASYCODER (CONT,)
3-6
" ASSEMBLY LANGUAGE, 3-2
COMBINING EASYCODER,
APPLICATION 2 ~ PREPARING AND COMBINING
EASYCOUER AND COBOL PROGRAMS, 6-4
" PROGRAM SPECIALIZATION,
APPLICATION 1 = EASYCODER FROGRAM
SPECIALIZATION, ASSEMBLY,AND TEST, 6-1
" SYMBOLIC CARD FORMATS, 3-4
® SYMBOLIC TRANSLATOR SYSTEM, 3=16
EASYTRAN
» SCURCE PROGRAM GENERATOR, 3-18
" SYMBOLIC TRANSLATORS, 3=15
EASYTRAN SYMBOLIC TRANSLATORS C AND D: FEATURESs
3-16
EASYTRAN PROGRAM
" MODIFER Cy 3-18
® MOBIFIER, 3-17
ECD
" CARDy A=6
" ENTRIES,
STANDARD ECD ENTRIES, A-7
£QUIPMENT CONFIGURATION DESCRIPTION (ECD) CARD
FORMAT, A=7
EQUIPMENT CONFIGURATION DESCRIPTOR (ECD) CARD
FORMATy A=6
EDITING
DATA TRANSCRIPTION AND EDITING, 3-18
» FUNCTIONS,
PROGRAM MATNTENANCE AND EDITING FUNCTIONS, 3-26
PROGRAM EDITING AND MAINTENANCE. 3-25
EFFICIENCY, 2-1
EMERGENCY MEMORY DUMP Cy 4-13
ENTRIES
STANDARD ECD ENTRIES, A=7
ENVIRONMENT
OPERATING ENVIRONMENT, 2-1
EQUIPMENT CONFGURATION
* DESCRIPTION (ECD) CARD FORMAT, A7
" DESCRIPTOR (ECD) CARD FORMAT, A=
EVOLUTION AND DEVELOPMENT OF OPERATION SYSTEMSs 1=l
EXAMPLE
" QF A FORTRAN=LANGUAGE ARITHMETIC STATEMENT, 3-12
» QF THE COBOL SOURCE LANGUAGE, 3-8
EXECUTION
PROGRAM EXECUTION AND CONTROL, 4=1
FACILITIES
PROGRAM TEST FACILITIES, 4=12
FEATYRES
COBOL COMPILERS D AND Wi FEATURES, 3-10
EASYCODER ASSEMBLERS C AND Dt FEATURES, 35
EASYTRAN SYMBOLIC TRANSLATORS C AND Dt FEATURES.,
3-16
FORTRAN COMPILERS D ANL Hi FEATURESy 3-14
LIBRARY PROCESSORS € AND Dt FEATURES, 3-4
SORT AND COLLATE PROGRAM: FEATURES, 3-23
FIELDS
LOADER~MONITOR COMMUNICATION AREA (BASIC FIELDS),
A-5
FLEXIBILITY, 2-2
FOREGROUND PROGRAMSs 4-6
FORMAT
BINARY RUN DECK (BRD) FORMAT, A=g
BINARY RUN TAPE (BRT) FORMAT, A=3
EASYCODER SYMBOLIC CARD FORMATS, 3-4
EQUIPMENT CONFIGURATION DESCRIPTION
FORMAT, A=7
EQUIPMENT CONFIGURATION DESCRIPTOR (ECD) CARD
FORMATy A=6
FORMATS, A=1]
SYMBOLIC PROGRAM TAPE (SPT) FORMAT, A-2
SYMBOLIC PROGRAM TAPE (SPT) FORMAT: DATA RECURD
LAYOUTs A=3

(ECD) CARD

FORTRAN
" COMPILER SYSTEM, 3-12+ 3-14
" COMPILERS, 3-12
FORTRAN COMPILERS D ANU Ht FEATURESs 3-14
" LANGUAGE, 3~-12
FORTRAN=LANGUAGE ARITHMETIC STATEMENT
EXAMPLE OF A FORTRAN-LANGUAGE ARITHMETIC STATEMENT,
3-12
FUNCTION
EDITING FUNCTIONS,
PROGRAM MAINTENANCE AND EDITING FUNCTIONSy 3-26
INPUT/0UTPUT CONTROL FUNCTIONS, 4~11
MATHEMATICAL PROCESSING FUNCYION, 3-23
(CONTW)

FUNCTION (CONT.)

MATHEMATICAL PROCESSING FUNCTIONS, 3-24 L
MONITORING FUNCTIONS, "
OPERATION CONTROL: LOADING AND MONITORING
FUNCTIONS, 4~4
GENERATION
REPORT GENERATION, 3-21
GENERATOR

EASYTRAN SOURCE PROGRAM GENERATOR, 3-18
TEST DATA GENERATOR Cy 4~12
HANDLING
TAPE HANDLING,y 3-19
INITIALIZATION ROUTINE
APPLICATION 3: PROGDD INITIALIZATION ROUTINE, 6-1)
INITIALIZER Cy 4=12
INITIALIZING PROGRAM
APPLICATION 31
INPUT RUN DECK,y 6-13
APPLICATION 1:

INITIALIZING PROGRAM, 6=9

INPUT RUN DECK, =3
APPLICATION 2: INPUT RUN DECK,y 6=6
APPLICATION 31 INPUT RUN DECKy 6-13
INPUT/0UTPUT CONTROL, 4-8
COMMUNICATIONS INPUT/QUTPUT CONTROL, 4=)1
CONSOLE INPUT/QUTPUT CONTROLs 4=]0
DRUM INPUT/OUTPUT CONTROL, 4+]0
" FUNCTIONS, 4-1]
MAGNETIC TAPE AND TERMINAL INPUT/OUTPUT CONTROL, 4-9
MAGNETIC TAPE INPUT/OUTPUT CONTROL+ 4«8
INTERRUPT
" CAPABILITIES, 4-5
" CONTROL»
INTERRUPT CONTROL Dy 4-6
MULTIPROGRAMMING WITH INTERRUPT CONTROL D, 4=-7
INTRODUCTION, 1-1
LANGUAGE
COBOL LANGUAGE, 3-8
COBOL SOURCE LANGUAGE,
EXAMPLE OF THE COBOL SOURCE LANGUAGE+ 3-8
EASYCODER ASSEMBLY LANGUAGE, 3-2
FORTRAN LANGUAGE, 3-l2
* PROCESSINGs 3-1
LAYQUT
SYMBOLIC PROGRAM TAPE (SPT) FORMAT: DATA RECORD
LAYOUTs A-3 v
LIBRARY PROCESSORs 3-24 3-3
LIBRARY PROCESSORS C AND D3 FEATURES, 3=4
LIST COMMENTS
" Cy 4-12, 4-8
LOADER=-MONITOR
" COMMUNICATION AREA,
LOADER~MONITOR COMMUNICATION AREA, A=5
LOADER-MONITOR COMMUNICATION AREA (BASIC
FIELDS) s A5
" SEACHING OPTION, 5-2
LOADING
" AND MONITORING, 4-l

APPLICATION 3 « LOADING BY VISIBILITY, 6=8
" FROM CARDS, 4-3
FROM DRUMs 4=3
" FROM TAPE, 41
OPERATION CONTROL: LOADING AND MONITORING FUNCTIONS,
4-4
" PARAMETERS.,
PROGRAM SEACHING AND LOADING PARAMETERS, S=1
PROGRAM SEARCHING AND LOADING, 51
MACHINE-LANGUAGE PROGRAMS, 3-26
MAGNETIC TAPE, 3-22
* AND TERMINAL INPUT/OUTPUT CONTROL, 4-9
« INPUT/OUTPUT CONTROL, 4=8
MAINTENANCE
MOD 1| OPERATING SYSTEMi PROGRAM PREPARATION AND
MAINTENANCE, 3-27
PROGRAM EDITING AND MAINTENANCE, 325
PROGRAM MAINTENANCE AND EDITING FUNCTIONS, 3=26
PROGRAM PREPARATION AND MAINTENANCE, 3-1
MATHEMATICAL PROCESSING FUNCTION, 3-23
MATHEMATICAL PROCESSING FUNCTIONS, 3-24
MEDIA CONVERSIONs 3-19
SIMULTANEOUS MEDIA CONVERSION C, 3-21
MEMORY DUMP
" Cy 413
" CONTROL Cy 4=12
EMERGENCY MEMORY DUMP C, 413
METHODS OF ENTERING SEARCH PARAMETERS, 5-2
MOD

COMPONENTS OF THE MOD 1 OPERATING SYSTEM, 2-3 -
SERIES 200/0PERATING SYSTEM « MOD 1, 2~1, 2-5
(CONT.)

COMPUTER~GENERATED INDEX

MOD (CONT,)
" 1 OPERATING SYSTEM PHILOSOPHY, 2-1
" 1 OPERATING SYSTEM: PROGRAM PREFARATION AND
MAINTENANCE, 3-27
" 1 OPERATION SYSTEM PUBLICATIONS, B-1
MODES
OPERATING MODES OF EASYCQODER ASSEMBLERS C AND D, 3«6
MODIFER
EASYTRAN PROGRAM MODIFER C, 3~18
MODIFIER
EASYTRAN PROGRAM MODIFIERs 3-17
MONITORING
" FUNCTIONS,
OPERATION CONTROL: LOADING AND MONITORING
FUNCTIONSy 4~4
LOACING AND MONITORING, 34~]
MULTIPROGRAMMING WITH INTERRUPT CONTROL D, 4-7
OPERATING
" APPLICATIQONS,
SAMPLE OPERATING APPLICATIONS, 6-1
" ENVIRONMENT, 2=1
" MCDES OF EASYCODER ASSEMBLERS C AND Dy 3-6
" SYSTEM,
COMPONENTS OF THE MOD 1 OPERATING SYSTEMs 2~3
MOD 1 OPERATING SYSTEM: PROGRAM PREPARATION AND
MAINTENANCEs 3-27
PHILOSOPHY OF AN OPERATING SYSTEM, 1-l
" SYSTEM PHILOSOPHY,
MOD 1 OPERATING SYSTEM PHILOSOPHYs 2-1
OPERATION
* CONTROL,y 4~1
OPERATION CONTROL: LOADING AND MONITORING
FUNCTIONS, 4-4
" SYSTEM PUBLICATIONS,
MOD 1 OPERATION SYSTEM PUBLICATIONSs B-l

" SYSTEMS,
EVOLUTION AND DEVELOPMENT OF OPERATION SYSTEMS,
1=1
QPTION
LOACER=MONITOR SEACHING OPTION, 5«2
PARAMETERS

LOADING PARAMETERS,
PROGRAM SEACHING AND LOADING PARAMETERSs 5-1
SEARCH PARAMETERS,
METHODS OF ENTERING SEARCH PARAMETERS, 5-2
PATCH Cy 4-13
PHILOSOPHY
" OF AN OPERATING SYSTEM, 1-1
OPERATING SYSTEM PHILOSOPHY,
MOD 1 OPERATING SYSTEM PHILOSOPHY, 2=-1
PREPARATION
MOB 1 OPERATING SYSTEM: PROGRAM PREVARATION AND
MAINTENANCE, 3-27
PROGRAM PREPARATION AND MAINTENANCEs 3-1
PREPARING
APPLICATION 2 - PREPARING AND COMBINING EASYCODER
AND COBOL PRUGRAMS, 6-4
PRINT
SIMULTANEOUS SORT AND PRINT, 4=6
PROCESSING .
" FUNCTION,
MATHEMATICAL PROCESSING FUNCTION, 3-23
MATHEMATICAL PROCESSING FUNCTIONS,y 3-24
LANGUAGE PROCESSING, 3-1
" STRUCTUREs 2-2
PROCESSCR
LIBRARY PROCESSORy 3-24 3-3
LIBRARY PROCESSORS C AND D: FEATURES, 3-4
PROGCC TERMINATION ROUTINE
APPLICATION 33 PROGCC TERMINATION ROUTINE, 6-10
PROGDD
* INITIALIZATION ROUTINE,
APPLICATION 3: PROGDD INITIALIZATION ROUTINE,
6-11
" TERMINATION ROUTINE,
APPLICATION 3: PROGDD TERMINATION ROUTINE, 6-11
PROGEE TERMINATION ROUTINE
APPLICATION 33 PROGEE TERMINATION ROUTINE, 6-12
PROGRAM
APPLICATION 3t INITIALIZING PROGRAMy 6+9
APPLICATION 3% RUN TERMINATION PROGRAM,y 6~-13
" CHECKOUT,
AUTOMATIC PRUGRAM CHECKQUT, 4~-12
COBOL PROGRAMS,
APPLICATION 2 - PREPARING AND COMBINING
EASYCQUER AND COBOL PROGRAMS, 6-4
COLLATE PROGRAM,
(CONT.)

PROGRAM (CONT,)
SORT AND COLLATE PROGRAM: FEATURESy 323
" EDITING AND MAINTENANCE, 3=2%
" EXECUTION AND CONTROLs 4-1
FOREGROUND PROGRAMS,y 4-6
" GENERATOR,
EASYTRAN SOURCE PROGRAM GENERATOR, 3-18
MACHINE~-LANGUAGE PROGRAMS. 3-26
" MAINTENANCE AND EUITING FUNCTIONS, 3=26
" MODIFER,
EASYTRAN PROGRAM MODIFER Cy 3-18
" MODIFIER,
EASYTRAN PROGRAM MODIFIER, 3~17
" PREPARATION,
MOD 1 OPERATING SYSTEM: PROGRAM PREPARATION AND
MAINTENANCE,y 3-27
PROGRAM PREPARATION AND MAINTENANCE, 3=}
" SEACHING AND LOADING PARAMETERS, Se-1
" SEARCHING AND LOADING. 5-1
" SPECIALIZATION,
APPLICATION 1 = EASYCODER PROGRAM
SPECIALIZATIONys ASSEMBLY.AND TEST, 6-1
SYMBOLIC PROGRAMS, 3=25
" TAPE,
SYMBOLIC PROGRAM TAPE (SPT) FORMAT, A-2
SYMBOLIC PROGRAM TAPE (SPT) FORMAT: DATA RECORD
LAYOUT, A=3
SYMBOLIC PROGRAM TAPE (SPT), A~]
TAPE SORT C PROGRAMSs 6=-9
" TERMINATION, 6-9
" TEST,
USE OF THE PROGRAM TEST C UTILITY PROGRAMS, 4-13
" TEST FACILITIES, 4=12
UTILITY PROGRAMS, 3~18
USE OF THE PROGRAM TEST C UTILITY PROGRAMS, 4-13
PUBLICATIONS
OPERATION SYSTEM PUBLICATIONS,
MOD 1 OPERATION SYSTEM PUBLICATIONS, Bel
RECORD LAYOUT
SYMBOLIC PROGRAM TAPE (SPT) FORMAT: DATA RECORD
LAYOUTs A=3
REPORT GENERATION, 3-21
ROUTINE
APPLICATION 33 PROGCC TERMINATION ROUTINE, 6-10
APPLICATION 3: PROGDD INITIALIZATION ROUTINE, 6=11
APPLICATION 3t PROGDD TERMINATION ROUTINE, 6-11
APPLICATION 31 PROGEE TERMINATION ROUTINE, 6-12
DATA CONVERSION C ROUTINES, 3-20

RUN
" SETUP,
APPLICATION 11 RUN SETUPs 6-2
APPLICATION 2t RUN SETUP, 6=5
" TAPE,
BINARY RUN TAPE (BRT) FORMAT, A-3
BINARY RUN TAPE (BRT)s A=l
" TERMINATION PROGRAM,
APPLICATION 3% RUN TERMINATION PROGRAM, 6~}13
RUN DECK

APPLICATION 1: INPUT RUN DECK, 6«3
APPLICATION 21 INPUT RUN DECK, 6«6
APPLICATION 31 INPUT RUN DECKy 6-13
BINARY RUN DECK (BRD) FORMAT, A-4
BINARY RUN DECKSs A=2
INPUT RUN DECK, 6-~13
" SETUPy 6=1y 6=4
SAMPLE OPERATING APPLICATIONS, 6~
SEACHING
" OPTION,
LOADER=-MONITOR SEACHING OPTION, 5.2
PROGRAM SEACHING AND LOADING PARAMETERS, Se]
SEARCH PARAMETERS
METHODS OF ENTERING SEARCH PARAMETERS, 5-2
SEARCHING
PROGRAM SEARCHING AND LOADING, 5=l
SERIES 200/0PERATING SYSTEM
* = MOD le 2=1, 2=5
SETUP
ANALYZER C SETUP, 3=7
APPLICATION 1t RUN SETUPy 6-2
APPLICATION 23 RUN SETUPy 6=5
RUN DECK SETUP, 6-ls 6-4
SIMPLICITY, 2-1
SIMULTANEOUS
" MEDIA CONVERSION C, 3=21
" SORT AND PRINT, 4-6
SORT
" AND COLLATE PROGRAMS FEATURES, 3-23
(CONT)

COMPUTER-GENERATED INDEX

SORT (CCONT,)
SIMULTANEQUS SORT AND PRINT, 4-6
TAPE SORT C PROGRAMS, 6-9
SORTING AND COLLATING, 3=-22
SOURCE
" LANGUAGE.,
EXAMPLE OF THE COBOL SOURCE LANGUAGE, 3-8
* PROGRAM GENERATOR,
EASYTRAN SOURCE PROGRAM GENERATORs 3~-18
SPECIALIZATION
APPLICATION 1 -~ EASYCODER PROGRAM SPECIALIZATION,
ASSEMBLY+AND TESTy 6-l
SPT
SYMBOLIC PROGRAM TAPE (SPT), A=l
SYMBOLIC PROGRAM TAPE (SPT) FORMAT, A=2 -
SYMBOLIC PROGRAM TAPE (SPT) FORMAT: DATA RECORD
LAYOUT, A-3
STANDARD ECD ENTRIES, A-7
STATEMENT
FCRTRAN=LANGUAGE ARJTHMETIC STATEMENT,
EXAMPLE OF A FORTRAN=LANGUAGE ARITHMETIC
STATEMENT, 3=-12
STCRAGE
DRUM STORAGEs 3-23
STRUCTURE
PROCESSING STRUCIURE, 2-2
SYrMsoLIC
" CARD FORMATS,
EASYCODER SYMBOLIC CARU FORMATS. 3-4
" PROGRAM TAPE,
SYMBOLIC PROGRAM TAPE (SPT) FORMAT, A=2
SYMBOLIC PROGRAM TAPE (SPT) FORMAT: DATA RECORD
LAYOUTs A-3
SYMBOLIC PROGRAM TAPE (SPT)s A-l
" PROGRAMS, 3-25
* TRANSLATOR SYSTEM,
EASYCODER SYMBOLIC TRANSLATOR SYSTEMs 3-16
" TRANSLATORS,
EASYTRAN SYMBOLIC TRANSLATORS, 3-15
EASYTRAN SYMBOLIC TRANSLATORS C AND D3 FEATURFESs
3-16
SYSTEM
ASSEMBLY SYSTEM, 3-2
COBOL COMPILER SYSTEMy 3-11, 3-8
CCMPILER SYSTEMS, 3=7
EASYCODER SYMBOLIC TRANSLATOR SYSTEM, 3-16
FCRTRAN COMPILER SYSTEM, 3=12y 3-14
OPERATING SYSTEM,
COMPONENTS OF THE MOD 1 OPERATING SYSTEM, 2-3
MOD 1 OPERATING SYSTEM: PROGRAM PREFARATION AND
MAINTENANCE, 3-27
PHILOSOPHY QF AN OPERATING SYSTEMy 1=l
OPERATION SYSTEMS,
EVOLUTION AND DEVELOPMENT OF OPERATION SYSTEMS,
1-1

" PHILOSOPHY,
MOD 1 OPERATING SYSTEM PHILOSOPHY, 21
" PUBLICATIONS,
MOD)] OPERATION SYSTEM PUBLICATIONS, B-)
SERIES 200/0PERATING SYSTEM = MOD 1, 2«14 2+5
TAPE
BINARY RUN TAPE (BRT) FORMAT, A=3
BINARY RUN TAPE (BRT)s A=}
" DUMP Cy 4-13
* HANDLING, 3=-19
" INPUT/OUTPUT CONTROL,
MAGMNETIC TAPE INPUT/OUTPUT CONTROL, 4-8
LOADING FROM TAPEs 4=-]
MAGNETIC TAPE, 3-22
MAGNETIC TAPE AND TERMINAL INPYT/OUTPUT CONTROL, 4-9
" SORT C PROGRAMS, 6-9
SYMBOLIC PROGRAM TAPE (S5PT) FORMAT, A.2
SYMBOLIC PROGRAM TAPE (SPT) FORMAT: DATA RECORD
LAYOUTs A-3
SYMBOLIC PROGRAM TAPE (SPT), A=]
TERMINAL INPUT/OUTPUT CONTROL
MAGNETIC TAPE AND TERMINAL INPUT/OUTPUT CONTROL, 4-9
TERMINATION
" PROGRAM,
APPLICATION 33 RUN TERMINATION PROGRAM, 6-13
PROGRAM TERMINATION, 6+9
" ROUTINE,
APPLICATION 3t PROGCC TERMINATION ROUTINE, 6=10
APPLICATION 33 PROGDD TERMINATION ROUTINE, 6-11
APPLICATION 33 PROGEE TERMINATION ROUTINE, 6-12
TEST
APPLICATION | - EASYCODER PROGRAM SPECIALIZATION,
ASSEMBLYAND TESTs 6-1
" DATA GENERATOR Cy 4-12
* FACILITIES,
PROGRAM TEST FACILITIES, 4-]2
PROGRAM TEST,
USE OF THE PROGRAM TEST C UTILITY PROGRAMS, 4-13
TESTING
FOR TESTING, 6-4
TRANSCRIPTIGN
DATA TRANSCRIPTION AND EDITINGs 3-18
TRANSLATOR SYSTEM
EASYCODER SYMBOLIC TRANSLATOR SYSTEM, 316
TRANSLATORSy 3-15
EASYTRAN SYMBOLIC TRANSLATORS, 3-15
EASYTRAN SYMBOLIC TRANSLATORS C AND Di FEATURES,
3=16
UTILITY PROGRAMS, 3-18
USE OF THE PROGRAM TEST C UTILITY PROGRAMS, 4-13
VISIBILITY
APPLICATION 3 ~ LOADING BY VISIBILITY, 6-8
200/0PERATING SYSTEM
SERIES 200/0PERATING SYSTEM = MOD 1, 2-14 2-5

-y

Cut Along Line

HONEYWELL EDP TECHNICAL PUBLICATIONS
USERS’ REMARKS FORM!

TITLE: SERIES 200 INTRODUCTION TO DATED: AUGUST, 1966
SERIES 200/OPERATING SYSTEM -
MOD 1 (TAPE RESIDENT) FILE NO: 123.0005,001C, 1-258
SOFTWARE MANUAL

ERRORS NOTED:

SUGGESTIONS FOR IMPROVEMENT:

Fold

FROM: NAME DATE

COMPANY

TITLE

ADDRESS

1
Please restrict remarks to the publication itself. Comments concerning hardware/

software difficulties and improvement requests should be submitted through the
channels established for that purpose.

FIRST CLASS
PERMIT NO. 39531
WELLESLEY HILLS

MASS.
g
=
s
& g
c
3

iy bl s b EVE wu*WMWWMWﬁMWW&MM dswiscybiing g L i G

HONEYWELL

ELECTRONIC DATA PROCESSING DIVISION

I
I
I
60 WALNUT STREET]
]
I

WELLESLEY HILLS, MASS. 02181

ATT'N: TECHNICAL COMMUNICATIONS DEPARTMENT

Honeywell

ELECTRONIC DATA PROCESSING

