
HONEYWELL EDP

SUBJECT:

DA TE: March 30, 1966

8787
10366

Printed in U. S. A.

SOFTWARE BULLETIN

SERIES 200
INTRODUCTION TO

SERIES 200/0PERATING
SYSTEM-MOD I

General Description of the Series 200/ Opera­
ting System-Mod 1.

* FILE NO. 122.0005.00 IC. 0-258

*When ordering this publication please specify
Title and Underscored portion of File Number.

FOREWORD

This bulletin introduces the Series 200/ Operating System-Mod 1. Section I sum.marizes

Honeywell's extensive experience in operating system design and describes the major benefits

to be derived from the use of the Mod 1 system. A complete description of the over-all Mod 1

design is presented in Section II, followed by several examples of system operation. Appendix

A contains a list of all Mod 1 publications to date, together with their respective DSI or order

numbers.

Copyright 1966
Honeywell Inc.

Electronic Data Processing Division
Wellesley Hills, Massachusetts 02181

ii

-~

Section I

Section II

Appendix A

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure A-I.

Table 2-1.
Table 2-2.
Table 2-3.

TABLE OF CONTENTS

Page

Introduction. • . • • • . •• 1 -1
Honeywell's Operating System Experience................... 1-1
Major Benefits of the Series 200/0perating System - Mod 1. • . 1-2

Turnaround Time is Minimized. • • • • . • • • • • • • • • •• • • • • • • • • . 1-2
Throughput is Maximized. • • • • •• • • • • • • •• • • •• • • • • • • •• •• • • • 1-2
Flexibility and Orderly Growth Potential are Provided ••••. 1-3
Maximum Use is Made of Memory and Peripheral Units. • • • 1-3
Overhead is Minimized. • . • . 1 -3
Mod 1 Assists all Members of the Data Processing Team... 1-3

The Operator. • • • 1 -3
The Programmer. • • • • • • • • . •. 1 - 3
The Installation Manager. • 1 - 3

The Series 200 /Operating System - Mod 1. • • • • • • • • • • • • • • • • • • • 1-4

Series 200/0perating System - Mod 1 .•..•••••••••••••.••••••• 2-1
Proces sing Structure
System Functions•..................................

Program Preparation and Maintenance .•.••••••••••••••••
Language Proces sing Functions •••••••••••••••••••••••
Program Editing and Maintenance Functions •••.••••••••

Program Control .••••••••••••••••••.••••••••••••.•••••.
Operation Control Functions .•••••.•••••••••••••••••.•
Input/Output Control Functions ..•.••••••••.••••••.••••
Program Test Functions .••••..••••••.••••••••••••••••

Utility
Data Transcription and Editing Functions .••••••••••.••
Mathematical Proce s sing Functions ..••.••••••••••••••.

System Operation .••
Operation With Source Programs on More Than One BRT· ••
Combining Source Programs for Operation from One BRT .•

2-1
2-2
2-2
2-2
2-6
2-8
2-8
2-9
2-11
2-13
2-13
2-14
2-15
2-16
2-16

Mod 1 Publications ..••••••••••••••••••••.••••••••••••••••••• A-I
Program Preparation and Maintenance. • • • • • •• • • • • • •• • • •• • • . A-I
Program Control. A-I
Utility. A-I

LIST OF ILLUSTRATIONS

Mod 1 Functions•.........................•..•....
Operation With Source Programs on More Than One BRT .•••••••
Combining Source Programs for Operation from One BRT ••••••.
Mod 1 Publications•.................................

LIST OF TABLES

2-3
2-18
2-19
A-2

Program Preparation and Maintenance. • • •. 2-7
Program Control Programs. • . . 2 -10
Utility Programs. 2-14

iii

SECTION I

INTRODUCTION

The Series 200/ Operating System-Mod 1 may be viewed as a framework within which all

of the user's data processing jobs can be scheduled and performed. More specifically, this

advanced operating system is a comprehensive set of language processing and service programs,

executed under the supervision and coordination of an integrated group of control routines. De­

signed for implementation in a wide range of environments - in differing stages of growth -

the Series 200/Operating System-Mod 1 brings to the user a powerful tool designed to minimize

turnaround time and maximize throughput for his computer installation.

HONEYWELL'S OPERATING SYSTEM EXPERIENCE

While other computer manufacturers have been announcing the introduction of operating

systems to their product lines, Honeywell has been delivering its third-generation operating

system to customers.

The first Honeywell operating system was created for the D-lOOO computer in 1957. The

D-lOOO system contained a monitor program and extensive program debugging facilities and was

the first system of it's kind to employ file updating techniques for program checkout operations.

An advanced Program Test System was developed for the H-BOO medium scale computer in 1959.

The system included automatic checkout and debugging facilities for production operations -

manual operations were thus limited to standard loading and starting commands for an entire

sequence of programs.

The Executive System released by Honeywell, in 1960, was the first multiprogram oper­

ating system. It was developed to automate further the execution of several sets of programs

in parallel. Since multiprogram execution was performed automatically by the hardware, the

role of the operator was limited to communication with the operating system and peripheral

setup. The Executive System consisted of scheduling and execution phases. Scheduling in­

cluded the performance of all of the tasks which must be accomplished prior to execution, such

as program selection, hardware allocation, program relocation, and preparation of a detailed

schedule summary. Execution included supervised performance of the prepared program

schedule by a small monitor which sequenced programs and informed the operator of the pro­

gress of the run, issuing detailed instructions when manual intervention was required.

The operating system concept was expanded significantly by Honeywell's introduction of

1-1

the more advanced Admiral multiprogram operating system in 1963. The Admiral Operating

System was designed for H-800/l800 computers and incorporated a dynamic scheduling facility

which enabled the user to stack job requests in a queue and obtain automatic processing with

optimal utilization of all system components. The Admiral scheduling function achieved a con­

stant saturation of processing facilities while satisfying the external priority constraints es­

tablished by the user. Because of it's superior dynamic multiprogram scheduling capability,

Admiral is still one of the most advanced operating systems in field use.

The experience which has accumulated from the development of three generations of

operating systems has changed the Honeywell concept of operating systems from a group of

supervisory and utility routines to a computer management system that now encompasses all

control, language processing, and service functions. Many of the functions which were formerly

regarded as the separate domains of programmer, operator, and installation manager have

been combined, and the responsibility for efficient data processing has been given to the oper­

ating system. This evolution has been greatly enhanced by the concurrent development of new

hardware features which can be most effectively managed on a total system basis rather than

on an individual component basis. The hardware and software functions have been designed to

complement one another and operate as a single entity which will maximize throughput, mini­

mize turnaround time, and generally assist in the activities performed by the various members

_ of the data processing team.

MAJOR BENEFITS OF THE SERIES 200/0PERATING SYSTEM-MODI

Turnaround Time is Minimized

One of the best measurements of the value of the Series 200/Operating System-Mod 1 is

its turnaround time (i. e., the interval which exists between the time a job is submitted for

processing and the time at which the results are returned). Here are two of the ways in which

its extremely low turnaround time is achieved:

1. All required operations receive maximum automation; the extent of human
participation is limited and controlled.

2. Delays are eliminated through the automatic processing of jobs from begin­
ning to end on a single system.

Throughput is Maximized

Another measure of the value of Mod 1 is throughput (i. e., the total amount of work which

the system can perform in a given period of time). Here are some of the ways in which the

operating system maximizes throughput:

1. All available system resources can be efficiently allocated.

2. Idle system time and job setup time can be reduced to an absolute minimum.

1-2

I
I
1

I
!
!
i
I
I
i
I

I

3. Facilities are provided for uninterrupted processing of a continuous stream.
of jobs.

Flexibility and Orderly Growth Potential are Provided

1. Use of an open-end design facilitates inclusion of the user's program.s and
data in the system..

2. The m.odular design of the operating system. allows a wide variety of jobs to
be devised using the system.' s facilities.

3. Program. com.patibility is assured as the system. grows.

Maxim.um. Use is Made of Mem.ory and Peripheral Units

Through m.ultiprogram.m.ing (the capability to execute two program.s sim.ultaneously), the

Series 200/Operating System.-Mod I is able to use central processor m.em.ory and peripheral

units to m.axim.um. advantage.

Overhead is Minim.ized

The characteristic fixed overhead - which m.akes m.any operating system.s econom.ically

unfeasible - is elim.inated by the m.odular design of the Series 200/Operating System.-Mod 1.

This operating system. can be im.plem.ented in a wide variety of environm.ents and in differing

stages of growth. It enables the user to choose only those functions and the degree of central­

ized control for these functions which are specifically oriented to his equipm.ent configuration

thus sparing him. the cost of unnecessary functions and features.

Mod I Assists All Mem.bers of the Data Processing Team.

THE OPERA TOR

1. He is relieved of detailed and burdensom.e execution supervision.

2, He uses standardized operating procedures.

3. He is provided with instructions which are precise and to the point.

4. He has facilities which enable him. to c om.m.unicate with and direct the system..

THE PROGRAMMER

1. His own program.s as well as library program.s and system.s program.s m.ay
be run as integral parts of the operating system..

2. He is provided with facilities to enable program.s and data to be easily stored,
easily tested, easily m.odified, and easily referenced.

3. He is supplied with a variety of program.m.ing aids which enable him. to express
the current problem. in an easily understood language.

THE INST ALLA TION MANAGER

1. His system. program.s can be m.aintained sim.ply and econom.ically.

2. He can apportion the program.m.ing effort.

1-3

THE SERIES 200/ OPERATING SYSTEM-MOD I

Honeywell's experience, gained in the development of operating systems for earlier gener-: __ _

ations of computers, has been combined with the latest innovations in EDP in order to provide

a new and powerful operating system for the Series 200. The resulting product is a system

which affords users a full complement of automatic operating functions within truly minimal

equipment requirements. The user may select among several types of program preparation and

maintenance functions, data transcription and editing functions and utility functions. To these

functions, comprehensive control functions are added in order to provide the user with increased

system throughput. The user may make the trade-off decisions which enable him to attain fast

turnaround time or more efficient use of machine facilities, i. e. , he may choose to execute

programs either in the multiprogramming mode or in the serial mode. He may also bridge the

gap between program setup and execution by means of space sharing and/ or time sharing and

thereby eliminate idle system time.

The user is free to increase the quality of service in his installation because he determines

the most efficient type of work load scheduling and operating mode. Non-productive computer

time is reduced to a minimum because the extent of required operator intervention is reduced.

Emergency conditions are indicated by means of standardized messages and handled via

standard emergency procedures, thus reducing the necessity for a highly trained, specialized

operations staff. Maintenance of the system is both simple and economical. Initial system

generation is a flexible, selective process by which the user incorporates into the system only

the functions which are required for his level of processing; maintenance of the system and

user programs thereafter is facilitated by means of simple updating runs.

Both hardware and software are modular in structure, compatible in function, and flexible

in implementation. Both hardware and software consist of integrated modules: hardware

modlues consist of sets of circuitry required for a particular system function, thus simplifying

the expansion of a configuration; software consists of independent modules that accomplish

specific functions under the control of the operating system, thus facilitating a building block

approach to program development. Both hardware and software contain compatible elements:

any model of the Series 200 can utilize all of the wide range of peripheral devices and control

units with any of the central processors in the Series 200 line, and source programs from any

one of the Series 200 computers can generally be processed on all other (larger) models if

there is enough memory capacity and peripheral equipment. Upward compatibility of programs

exists via a single machine language for all models of the Series 200. Hardware and software

are both flexible in implementation: because of the interchangability of devices, control units,

and central processors and because of the selective capability of system functions. The user

has complete freedom in the choice of both hardware and software in order to obtain the exact

combination of facilities which is best suited to his data processing requirements.

1-4

The description of the operating system. is presented in term.s of several groups of

functions which, when taken together, contribute to the total processing capability of the system..

The groups are:

1. Program. Preparation and Maintenance Functions: The user is provided with a
com.prehensive language processing capability by m.eans of the assem.blers,
com.pilers, and conversion program.s. In addition, facilities are included for
the creation and m.aintenance of sym.bolic and m.achine-language program. files.

2. Program. Execution Functions: Includes operation control, input I output control,
and program. test functions which are related to the execution of both system.s
and object program.s.

3. Utility Functions: All functions which are used in support of the above prim.ary
functions are discussed as utility functions or separately described according
to the special purpose(s) which they perform. as part of the operating system..

1-5

SECTION II

SERIES 200/0PERATING SYSTEM - MOD 1

The Series 200/0perating System - Mod 1 provides the user with a wide range of process­

ing functions designed to enhance the throughput capabilities of medium-scale Series 200 com­

puters. Primarily tape-oriented, the Mod 1 functions incorporate a design flexibility that per­

mits both independent and semi-centralized operations to be performed; overhead is thereby re­

duced to a minimum. This flexibility is exemplified in the ability to intermix and process (at

execution time) programs written in different source languages. The maintenance functions of

Mod 1 are equally applicable to both the systems programs furnished by Honeywell and to the

production programs generated by the user; in addition, the programs may be maintained at

both a source -language level and at the machine -language level.

Mod I is designed for Series 200 computers containing a minimum of 12K of core memory

and from three to six magnetic tape units. The flexibility of the system enables efficient use to

be made of a variety of peripheral devices - including mass storage, communication, paper

tape, and punched card.

PROCESSING STRUCTURE

Fundamental to the design of Mod I is functional prograrn modularity. This modularity is

achieved by the segmentation of programs into loading units which accomplish specific functions

under operating system control. (By definition, a "loading unit" is that portion of code which is

found and loaded as the result of a single call to the Loader-Monitor.) Thus, although the basic

logical or processing unit is the program, a program is normally segmented into several load­

ing units to provide operational convenience and flexibility.

Related programs can be combined; this capability provides the freedom of a building­

block approach to the development of production jobs. The sequencing of related programs may

be accomplished automatically (through the common interface of the operating system) by either

(I) internal directors (instructions incorporated in the user's programs) or (2) external direc­

tors (console call cards). The latter method does not require cross referencing between pro­

grams; hence, the user is free of operating considerations at the coding level.

Systems programs exist as independent units which can be called in any sequence as they

" are needed to fulfill the user's requirements. Since the user's programs as well as systems

2-1

programs can be combined into a single executable file, both categories of programs can be

called as they are needed.

An extensive effort has been expended by Honeywell in the design of Mod 1 - thereby

producing an operating system having maximum integration of software with semi -centralized

operations. The user's need for concern about systems functions has thus been eliminated,

allowing him to concentrate on the problem-solving tasks pertinent to his specific application.

This objective of an optimal programming/operations relationship has been attained through

programming flexibility, simplified program testing, and standardized systems procedures.

The Series 200 installation may thus be used with maximum efficiency for a variety of data

processing requirements.

SYSTEM FUNCTIONS

As mentioned in Section I, Mod 1 is composed of several groups of functions: Program

Preparation and Maintenance Functions, Program Control Functions, and Utility Functions.

The relationship between these groups - which together make up the total processing capa­

bility of the system - is illustrated in Figure 2-1.

Program Preparation and Maintenance

In Mod 1, the functions of Program Preparation and Maintenance are distributed among

(l) language processing functions and (2) program editing and maintenance functions. These

functions are described below.

LANGUAGE PROCESSING FUNCTIONS

These functions consist of programs which provide the user with means to translate source

programs into a single machine-language format. (The output from the various language

processors may therefore be combined to fulfill the user's processing requirements.) Four

types of language processors are provided - each with specific versions tailored to the user's

specific requirements. These include:

1.

2.

3.

Assemblers: Translate symbolic source (assembly) language into
machine language;

COBOL Compilers: Translate commercial (COBOL) language into machine
language;

Fortran Compilers: Translate scientific (Fortran) language into machine
language; and

4. Conversion Translators: Translate competitive languages into Honeywell
language on both a source-language and a machine-language level.

The user can select the method (or methods) of language processing best suited to his

2-2

I

1

1
I,

LANGUAGE
PROCESSING

OPERATION
CONTROL

•

•

•
INPUT/OUTPUT
CONTROL

•

PROCESSED DATA

EDITING AND
MAINTENANCE

MACHINE
LANGUAGE
PROGRAMS

PROGRAM
TEST

Figure 2-1. Mod 1 Functions

2-3

Ul'u .. m , ... : .:';-:;

DATA MATHEMATICAL TRANSCRIPTION
AND EDITING PROCESSING

I

requirements in accordance with the nature of his job, experience of his personnel, compati­

bility requirements with other equipment, or personal preference. Each of the language proces­

sing subsystems produces executable programs in standard format; thus, programs produced by

any of the subsystems can be combined for execution in a single sequential operation.

Assemblers

Mod 1 assemblers translate programs written in Easycoder symbolic language into

machine-language object programs - taking full advantage of magnetic tape configurations to

provide flexible handling and fast processing of symbolic source programs. The results are

stored on magnetic tape in either symbolic or binary executable form. An efficient, flexible,

and easy-to-use symbolic language, Easycoder permits the user to code source programs in

convenient, understandable terms using easily remembered mnemonic operation codes. With

Easycoder, memory location addresses may be denoted by absolute decimal numbers or by

symbolic tags, and the value of an operand may be expressed as a literal.

The assemblers provide the programmer with other very useful tools. One of these

tools - symbolic program analysis - enables any Series 200 program that is coded in Easy­

coder symbolic language to be analyzed. In the process of analysis, symbolic tags, references

(to each tag, to index registers, and to absolute addresses), and calls to library routines are

extracted from the symbolic input program to be analyzed. This information is processed to

produce a printed listing which is arranged in alphanumeric order so that all information about

a particular tag, absolute location, or library routine appears grouped in one place on the list­

ing.

Another very useful tool - symbolic library processing - is provided as an extension of

the assembly language. Through the use of "macro" calls written into the user's program, the

library processing element enables the programmer to efficiently incorporate pre coded assembly­

language routines into his program. In addition, the called routine is specialized.to the particu­

lar program employing it in accordance with parameters specified by the programmer. The

library routines may be Honeywell-supplied (e. g., Input/Output routines) and/or they may be

written by the user to meet the special requirements of his installation.

COBOL Compilers

Programs written in COBOL language (a standardized, business-oriented subset of

English) are translated into machine language by the Mod 1 COBOL compilers. Series 200

COBOL language is a convenient, relatively machine -independent method of exp;ressing a data

processing problem to a computer.

2-4

Series 200 COBOL com.pilers possess several im.portant operating features. For exam.ple,

these com.pilers can accept batched source program.s and can operate in a batch-com.pile, load­

and-go m.ode. Source-language program.s can be m.aintained in m.agnetic tape libraries to facil­

itate program. correction during checkout. A variety of testing and debugging aids is provided

with all COBOL com.pilers, such as dynam.ic and static dum.ping capability, English-language

diagnostics, m.em.ory m.apping, and test data distribution. In the interest of operational flexi­

bility, the addresses of peripheral devices can be assigned at object tim.e to allow the use of a

single program. with a variety of different peripheral arrays.

Fortran Com.pilers

The Mod 1 Fortran com.piler features an im.plem.entation of Fortran as proposed by the

Am.erican Standards com.m.ittee on March 10, 1965 with several additional language and debug­

ging features. This com.piler translates, into m.achine language, program.s which have been ex­

pressed in a form.at sim.ilar to algebraic equations. (Program.s are written directly as alge­

braic expressions and arithm.etic statem.ents.) Additional statem.ents, such as transfer, de­

cision, indexing, and input/output statem.ents, control the processing of the algebraic ex­

pressions.

Translated program.s can be com.bined with other previously com.piled and assem.bled

program.s and im.m.ediately executed, thereby obtaining rapid results.

Conversion Translators

The Honeywell Liberator concept enables com.petitive languages to be translated into

Honeywell language on both the sym.bolic-Ianguage and m.achine-Ianguage levels. Users of a

num.ber of older system.s are thus perm.itted to enjoy the benefits of Series 200 processors -

without the cost and effort of reprogram.m.ing. This concept has m.any facets including com.pat­

ibilityof program.m.ing languages, data form.ats, and peripheral input/output devices.

An exam.ple of the effectiveness of the Liberator concept m.ay be seen in Easytran. An

input consisting of sym.bolic source program.s, written in SPS and/or Autocoder language, is

com.pletely analyzed and then translated statem.ent by statem.ent. During this process, m.ost

sym.bolic statem.ents are replaced on a one-for-one basis with equivalent Easycoder statem.ents.

Those statem.ents which have no direct Easycoder equivalent are replaced either with in-line

m.acro-coding or with calls to Easytran subroutines which perform. the desired functions; those

whose functions are not required by Honeywell hardware are deleted.

A list of the language processing program.s, together with a brief description of each

program., m.ay be found in Table 2-1, page 2-7.

2-5

PROGRAM EDITING AND MAINTENANCE FUNC TIONS

Processes such as storing, Inodifying, and Inaintaining asseInbly-language and binary­

executable prograIns COInes under the heading of prograIn editing and Inaintenance functions.

These functions enable prograIns to be selected and ordered - in the sequence best suited to

the specific requireInents of the job - to create processing run tapes which contain only the

required systeIns and processing prograIns. Also worthy of note is that for Inaintenance opera­

tions, asseInbly-language input is handled using a Inethod that requires only new or changed

source -language stateInents as input.

The processes of editing and Inaintaining sYInbolic prograIns include prograIn updating

and prograIn selection. The updating process provides for the Inaintenance of a sYInbolic pro­

graIn tape file through the correction of individual prograIns, the addition of new prograIns,

and the deletion of unwanted prograIns. Likewise, the selection process provides for the se­

lection of specified prograIns froIn a sYInbolic prograIn tape and the recording of these pro­

graIns on a binary run tape. Also included aInong the processes for Inanipulating prograIns in

their sYInbolic forIn is the sYInbolic prograIn tape Inerge process which provides easier and

faster handling of prograIns that are stacked on sYInbolic prograIn tapes (SPT). This process

perforIns the selection and extraction of prograInIner-designated prograIns froIn the input

SPT's (as Inany as four) and writes theIn on a new SPT. Thus, it is possible for the user to

consolidate prograIns stored on several SPT's onto one Inaster tape with the prograIns arranged

in any desired order. However, the Inost iInportant aspect of this process is that the prograIns

Inay be selected, copied, and rearranged onto the Inaster tape without having to reasseInble any

of the prograIns in the proce s s.

SiInilar to the processes for editing and Inaintaining sYInbolic prograIns, the editing and

Inaintenance processes for binary-executable prograIns also include prograIn updating and pro­

graIn selection. These processes accept prograIns in absolute binary forIn as produced by the

Easycoder asseInbly, the COBOL cOInpiler, or the Fortran cOInpiler subsystems and enter

the prograIns into an updatable library. The prograIns in the library Inay be updated using octal

corrections or they Inay be replaced or deleted; new prograIns Inay be added to the library; and

a selected run tape can be produced containing specified prograIns selected froIn the library and

ordered in any fashion.

Also included aInong the prograIn editing and Inaintenance functions are the process for

creating a prograIn file on a drUIn and the process for producing punched-card prograIns froIn

a binary run tape. The prograIn file on a druIn consists of a druIn loader (optional), a druIn

.--. ..

Inonitor (optional), the user's object prograIns to be loaded into IneInory by the druIn loader or ~

2-6

monitor, and a program directory of the file. The process for creating the drum file accepts

object programs produced by any of the language processing subsystems and converts this in­

put into a format acceptable to the drum loader and monitor. This process may thus be used

to produce a self-loading drum file or merely for program storage.

Again, system flexibility is expanded by the editing process for converting programs

written on a binary run tape (BRT) into a BRT punched-card format. By this process, the in­

put programs which are loaded and monitored under the control of the tape loader -monitor are

reformated for loading and monitoring by the card loader-monitor.

A list of the program editing and maintenance programs, together with a brief description

of each program, may be found in Table 2-1, below.

Table 2-1. Program Preparation and Maintenance

Program Name Description

Easycoder Assembler C Translates Easycoder symbolic language into
Series 200 machine language.

Easycoder As sembler D Translates Easycoder symbolic language into
Series 200 machine language.

Analyzer C Prepares cross reference list of symbolic
references in an Easycoder program.

Library Processor C Specializes macro routines.

COBOL Compiler D Translates COBOL source language into machine

0 language.
Z

COBOL Compiler H Contains all the features of COBOL D with the H
Ul
Ul added ability to address up to 256K at object time. ril
U Fortran Compiler D Translates Fortran source language into machine a
~ language. p..
ril Fortran Compiler H Translates Fortran source language into machine
0 language. < ::> Easytran Symbolic Translator C Translates Autocoder or SPS into Easycoder C 0
Z symbolic language. <
...:l Easytran Program Modifier C Produces an Easycoder C symbolic program from an

Easycoder A symbolic program which previously re-
sulted from translation using either Easytran 1401
or Easytran Symbolic Translator B.

Easytran Symbolic Translator D Translates Autocoder or SPS into Easycoder C sym-
bolic language.

2-7

Table 2-1 (Cont). Program Preparation and Maintenance

f:iI Program Name Description
t:l l)
ZZ Update and Select C Update s maste r file of programs in BR T format. 1-1< t: Z Update and Select D Updates master file of programs in BRT format. Q f:iI
f:iI E-i

SPT Merge C Merges and/or reorders symbolic program tapes. ::g ~
< < Drum Program Store C Stores Mod 1 programs on the drum; also enables r:r: ::g
t:l Q direct loading to be performed from the drum.
o Z

BRT Punch C Punches cards in BRT format from a binary run r:r: < P-i tape.

Program Control

The Program Control functions include (I) operation control, (2) input/output control, and

(3) program test. The central function - operation control - includes loading, monitoring,

program sequencing, and other related elements.

OPERATION CONTROL FUNCTIONS

The operation control functions complement the Series 200 hardware and provide a flexi­

bility that permits the user to operate in a variety of environments including those consisting of

all tapes or tapes mixed with mass storage. This hardware/software complement also pro­

vides the necessary interrupt capabilities which enable the user to take full advantage of multi­

programming and communication equipment. It logically follows that peripheral data conver­

sion or real-time operations may be performed concurrent with a major data processing job.

Loading is accomplished with highly efficient usage of core memory. This is possible

since (1) only the loader resides in memory, and (2) the object programs may be segmented into

optimum-size loading units (only the required portion of the program need thus be in memory at

anyone time). The loading process may operate from anyone of several media such as punched

cards, magnetic tape, and mass storage. Regardless of the medium employed, the loading

process retains the same functional characteristics and incorporates features permitting the

most practical and convenient operation according to the size and type of computer installation.

Another important aspect of the operation control function is the ability to process a ~

quence of programs - with little or no operator intervention. This ability enables a series of

logically connected programs or "jobs" to be processed. The programs which comprise the job

are often independently generated and are made compatible for execution through the common

interface of the operating system. Thus, a typical job may be a mixture of programs derived

from the various language processing subsystems, systems routines, and common library rou­

tines. User-written programs, library routines, and systems programs can be combined,

2-8

ordered, and run as an integral part of the operating system - allowing full advantage to be

taken of Mod l's automatic program loading and sequencing provisions.

The interrupt control process increases throughput by effective management of the simul­

taneous operation of programs that share available central processor cycles. More specifically.

all machine cycles are alloted to a foreground program when operating in the interrupt mode

until the foreground program issues a peripheral order. While a peripheral order of the fore­

ground program is in progress, all machine cycles are allowed to a background program. An

interrupt generated by the completion of the peripheral order causes allocation of machine cy­

cles to be returned to the foreground program. The interrupt control process enables back­

ground programs to be sequenced independently of foreground programs, and in the same manner,

foreground programs may be sequenced independently of background programs.

In addition to the processes mentioned above. the operation control function provides the

facility for "floating" the loader-monitor to the end of the upper 4K memory bank. Also, a

process is included for communicating with the operator via printed or typed instructions and

for formatting and writing headings for reports.

A list of the operation control programs, together with a brief description of each program,

.... may be found in Table 2-2, page 2-10.

INPUT /OUTPUT CONTROL FUNCTIONS

The Input/Output control functions consist of a set of macro routines which may be

specialized and incorporated into a user's data processing system. These routines facilitate

such operations as checking labels. checking file identification, and checking for read/write

errors. The I/O control functions include processes which manage the standard input/output

operations for magnetic tape, punched card, printer, drum, and console in such a way that the

need for writing detailed and exhaustive input and output coding is eliminated.

The tape and terminal I/O process reads and writes files, blocks and unblocks records.

labels tape files. checks for errors, and handles all the programming procedures necessary to

complete peripheral operations. This process incorporates channel-test control procedures

which permit the user to take advantage of the Series 200 simultaneity; namely, it automatically

tests for the availability of a read/write channel and. upon finding an available channel. uses it

for data transfer. A distinct advantage of the tape and terminal I/O process is that it allows

the programmer to concentrate on the handling of items (logical groups of sequential fields with-
'.

in a record) rather than on handling whole records. It handles either blocked or unblocked

records which, in turn, may contain either fixed-length or variable-length items. (A blocked

2-9

...:I o
r:r::
E-!
Z
o
u
Z o
1-1
E-1

~
~ o

Table 2-2. Program Control Programs

Program Name Description

Tape Loader-Monitor C

Floating Tape Loader-Monitor C

Drum Bootstrap Loader C

Drum Monitor C

Drum Interrogation, Alteration,
and Loader C

Interrupt Control D

Restarts C

lI2-Inch Tape I/O C

1/2-Inch Tape and Terminal I/O C

Drum I/O C

Console I/O C

Communications I/O C

Program Test Control C

Octal Correction C

Memory Dump C

Tape Dump C

Test Data Generator C

Locates programs on a Binary Run Tape and
loads them into memory.

Locates and loads programs from a Binary
Run Tape.

Used primarily to load Drum Monitor C into
memory; however, it can load any program
from the drum file.

Searches for, loads, and starts Mod 1 pro­
grams previously stored on a drum.

Unloads, restores, edits, corrects, locates,
clears, or compares drum data.

Controls execution of one background and
one foreground (interrupt) program.

Records contents of memory and position
of tapes and later restores them.

Process all Honeywell or IBM 1400 Series tape
files in any parity.

Processes all Autocoder !IOCS files.

Transfers fixed-or variable-length data
between main memory and drums.

Processes messages (any format) which are
input to (or output from) the console typewriter
(operating as a peripheral unit).

Provides communication capability via I/O
macro routines.

Controls program checkout.

Makes octal corrections to a program in memory.

Edits contents of memory according to user's
specifications.

Edits contens of tape(s) according to user's
specifications.

Prepares a data tape (or tapes) according to
user's specifications.

2-10

i

\
;>
i

.;

'.

record contains two or more items grouped together to form the record; an unblocked record

contains only one item per record.) Thus, although all the records in a given file must be of

the same form, the tape and terminal I/O process can process several different type files in

the same program, including magnetic tape, punched card, or printer operations •

The drum I/O process, similar to the tape and terminal I/O process, makes it possible

for the programmer to handle drum input/ output operations with simple action macro statements.

Each action macro statement produces the appropriate machine instructions which cause the

desired input/ output operation to be performed. For example, to access the next item in a

drum file being read, the programmer merely writes a #GET statement in the source program;

to obtain the address of the next available output location for a processed item, he writes a

#PUT statement. Among the attributes of this process are the reduction of programming errors

through the use of tried and proven methods, the standardization of data handling to provide

the most efficient use of the Series 200 system, and the freeing of the programmer l s time and

attention for concentration on processing data, rather than on methods of accessing the data on

the drum.

The console I/O process handles alphanumeric, decimal, and octal typeouts and typeins on

the console typewriter. This process makes it possible for the programmer to communicate

.., special instructions to the operator at the appropriate time during a program run by means of

two types of macro statements which are easily incorporated into his program. The console

I/O process also incorporates the use of standard messages and halts.

.'

The input/ output control processes are specialized as required to the applicable individual

programs at the source-Iangauge level. This eliminates the necessity of having very general

and diversified processes to handle the variety of peripheral devices available for the many

equipment configurations, and also eliminates the requirement for tailoring of programs at

execution time along with subsequent loading and linking of the necessary routines. Thus, these

inefficiencies are avoided by specializing program requirements at the source-language level

so that only those processes required by the object program are included.

A list of input/ output control programs, together with a brief description of each program,

may be found in Table 2-2, page 2-10.

PROGRAM TEST FUNCTIONS

The program test functions include several processes which may be used either separately

or as part of an automatic checkout subsystem. These processes provide the following:

I. Automatic sequencing from one program to the next;

2-11

2. Printouts of messages and operator instructions.

3. Generation of test data;

4. Octal correction (patching) of programs;

5. Dynamic, terminal, and emergency memory dumps; and

6. Tape dumps.

The automatic checkout subsystem performs sequential checkout of several programs as

directed by the test director deck. The ability is provided to process several stacked programs,

with little or no operator intervention, and automatically produce the documentation necessary

to evaluate the programs being tested. The subsystem processes may be performed before,

during, or after object program execution. This action provides automatic testing by (l) read­

ing an input card file of ordered test director decks (that call in each test process and object

program from tape), and (2) executing the test processes and object programs in the specified

sequence.

NOTE: Each of the test processes listed above may be performed separately.
Some of these processes are outlined in more detail below.

Through the octal correction or patching process, the programmer is able to make speci­

fied octal corrections (or changes in the object program) in main memory at program execution

time. The changes occur only in memory and do not affect the object program as stored on the

binary run tape (BRT). This process causes the object program to be loaded and the applicable

octal correction cards to be read. The corrections or changes indicated on these cards are then

made to the specified locations of the object program, and the object program is automatically

started.

The memory dump process edits and prints the contents of core memory (both data and

punctuation bits) within limits specified at the time of execution. This process incorporates

dynamic dumping capabilities as well as conventional static (terminal) dumping provisions.

Dynamic dumping is defined here as the dumping of information while a program operates at

high speed. Since the user can get a picture of how his program performed during execution by

printing the contents of selected high-speed memory areas, the problem of locating errors is

simplified. This process can also be used to provide emergency memory dumps if difficulty

is encountered during the testing of object programs.

The tape dump process positions magnetic tape files and edits and prints the contents of

these files. During a single operation, the tape dump process can handle up to 99,999 records

having any record length up to the maximum size of 1,100 characters per record. The flexi­

bility of this process is greatly enhanced by its ability to use either dynamic or independent

operation, each of which may be specialized to fulfill the precise requirements of the user. For

independent operation, this process is executed under operator control independently of other

2-12

operations; whereas, for dyna:mic operation, the process is executed under control of the

user's object progra:m (or in conjunction with the auto:matic checkout subsyste:m).

A list of the progra:m test progra:ms, together with a brief description of each progra:m,

:may be found in Table 2-2, page 2-10.

Utility

Mod I contains an extensive set of utility functions which provide a variety of transcription,

editing, and :mathe:matical processes.

DATA TRANSCRIPTION AND EDITING FUNCTIONS

Included a:mong the data transcription and editing functions are such diverse processes as

tape handling, :media conversion, report generating, tabulator si:mulating, and sorting and col­

lating of data stored on :magnetic tape.

The Polyphase sorting process, first successfully i:mple:mented for co:mputer processing

by Honeywell, per:mits sorting with as few as three tape drives while :mini:mizing the nu:mber of

passes required over the data. Other processes offer facilities for collating up to five sorted

:magnetic tape files. The sorting process also provides the added advantages of read-backward

Polyphase sorting and the ability to handle variable-length records. In addition, the sort proc-

..., ess can be auto:matically incorporated into a series of related operations by coding the preceding

progra:m to establish the desired sort para:meter values before transferring control to the sort

process. Honeywell's advanced sorting techniques are also applied to the sorting of data in :mass

storage :media.

Auto:matic creation of reports - according to user specifications - is provided by the

report generated process. Fro:m an input consisting of progra:m:mer-specified para:meters

which define control fields and report lines, the report generator process produces a sy:mbolic

progra:m. The asse:mbled version of this progra:m accepts raw data fro:m cards or tape, edits

it, and generates the desired reports.

The si:multaneous :media conversion process controls the transfer of data between pairs of

devices such as :magnetic tape drives, punched card equip:ment, paper tape equip:ment, and

printers. This process increases the efficiency of :media conversion processing by taking full

advantage of si:multaneity of Series 200. The user :may also incorporate own-coding routines

into the :media conversion process for perfor:ming functions such as editing and unblocking of

records.

A list of the data transcription and editing progra:ms, together with a brief description of

each progra:m, :may be found in Table 2-3, below.

2-13

MATHEMATICAL PROCESSING FUNCTIONS

The mathematical processing functions provide the Series 200 scientific users with an

extensive library of scientifically oriented processes which complement the capabilities of the

Fortran compilers. This library includes the usual basic Fortran routines, such as square

root, exponential, trigonometric, and logarithmic functions, as well as matrix, statistical, and

other more comprehensive processes. All the processes in this library can be used with or

without the scientific hardware option.

A list of the mathematical processing programs, together with a brief description of each

program, may be found in Table 2-3, below.

Table 2-3. Utility Programs

Program Name Description

Tape Handling Routine C Performs positioning, copying, and editing
operations on 1/2- or 3/4-inch magnetic tape.

Simultaneous Media Conversion C Performs from one to three conversions (be­
tween magnetic tape and cards, printer, or
paper tape) simultaneously.

Data Conversion C A set of conversion routines for magnetic
tape, cards, and printer.

Tape Sort C Reads backward as well as forward, taking
advantage of Polyphase sorting techniques
developed by Honeywell; can sort on six
tape units in ascending or descending sequence.

Tape Collate C Collates five sorted tape files in ascending
or descending sequence.

Tape Sort C (V) Same as Tape Sort C; handles variable­
length items.

Tape Collate C (V) Same as Tape Collate C; handles variable­
length items.

Drum Sort C Sorts fixed- or variable-length items in
ascending or descending sequence.

Basic Math Functions C Consists of a floating point package.

Basic Math Fortran Functions D Provides math functions for Fortran D systems.

Modular Stitistics Package Written in Fortran; provides such functions as
linear regression and stepwise regression.

Statistics Package D Provides such functions as multiple regression
and exponential regression.

Matrix Package D Provides such functions as matrix inversion and
solution of simultaneous linear equations.

Linear Programming D Employs the revised simplex method for find­
ing solutions to small problems which are con­
tained in the available memory.

2-14

,
f

I

SYSTEM OPERATION

Mod 1 operations are controlled by operating directors. These directors m.ay be speci­

fied either (1) internally using program.m.ed calls or (2) externally through the use of console

call cards or by m.anual entry through the console or control panel. Thus, in addition to the

searching for, loading, and starting of the necessary routines to fulfill norm.al processing re­

quirem.ents, system. control is provided for m.aintaining com.m.unications between the various

com.ponent s.

External directors are read from. a peripheral device such as a card reader, or they m.ay

be entered from. the console (or control panel). The directors specify to the operating system.

those routines necessary to fulfill the designated function; thus, only the required routines are

read into m.em.ory and executed. When execution is com.pleted, control is returned to the

operator who m.ay then specify that another director, to perform. anyone of a variety of functions

in any order desired, is to be read. Autom.atic sequencing of program.s m.ay also be accom.­

plished by directing the operating system. to continue to read directors and execute the specified

routines until the job is com.pleted.

Internal directors are functionally identical to external directors. However, they differ

in that they activate the operating system. through program.m.ed instructions which insert the

proper inform.ation into the system.s com.m.unications areas and then transfer control to the

system.. In this way, a predeterm.ined series of routines m.ay be perform.ed without operator

intervention or system. halts. At the com.pletion of the series, control m.ay again be returned

to the operator who is then free to initiate additional processing using external directors.

Through the use of external and internal directors, the user's object program.s becom.e an

integral part of the operating system.. System.s routines as well as the user's routines are

thereby readily available and can be called and executed as required - assuring total, efficient

processing of data to m.eet the user's requirem.ents.

Several m.ethods of operation m.ay be em.ployed using Mod 1. For exam.ple, it is possible

to as sem.ble a program. and execute it im.m.ediately; likewise, a program. m.ay be com.piled and

executed im.m.ediately; or the newly assem.bled and com.piled program.s m.ay be com.bined and

executed as a single job. A m.aster binary run tape -- from. which program.s m.ay be selected

and executed as required -- can also be created. As was m.entioned above, Mod 1 operations

m.ay be controlled through the use of either external or internal directors (and, in m.any situa­

tions, it m.ay be desirable to use a com.bination of both types of operating directors). Several

m.ethods of operations are described in subsequent paragraphs; in the exam.ples shown, use is

m.ade of external directors.

2-15

Operation with Source Programs on More Than One BRT

Figure 2-2 illustrates several operations (on a job level) which are to be performed;

these operations consist of:

1. Assembling programs A and D;

2. Compiling programs B and C; and

3. Executing the programs in the sequence A, B, C, D.

The Easycoder assembler is loaded from the system. tape (tape 0 in this example);

programs A and D are then assembled and written on tape 2. As part of the same job (or

separately, if desired), the COBOL compiler is loaded from the system tape; programs Band

C are then compiled and written on tape 3. Following this, programs A, B, C, and D may be

executed in the specified sequence. Using the external directors shown in Figure 2-2 for

program execution, the programs are sequenced automatically until the last director is read;

at this point processing of the last program (D) is completed and control is returned to the

operator.

For the job described above, no program file preparation was performed prior to ex­

ecuting the data processing function. However, source programs can be maintained in their

symbolic form (as illustrated), and/or they can be maintained in their machine-language form.

An important feature to note is that programs can be selected for execution directly from the

output tapes of the various language processors.

Combining Source Programs for Operation from One BRT

As previously explained, and illustrated in Figure 2-2, a program can be assembled (or

compiled) and then executed directly from the BRT on which it was placed. In addition to this

familiar capability, the program editing and maintenance function provides facilities which

enable programs produced by the various Mod 1 language processors to be combined on a single

binary run tape.

Figure 2-3 illustrates a job which consists of several parts; these include:

1. SeleCting programs from output tapes produced by two different language
processors;

2. Writing the selected programs in the desired order on a single BRT; and
3. Executing these programs in the designated sequence.

As may be interpreted from the illustration, any number of programs may have been

batched for assembly or compilation. The selection process of the program editing and main­

tenance function provides the facility for selecting programs from various binary run tapes and

subsequently writing them in any order to produce the desired program run tape or program

2-16

1

file. The selection and ordering of programs are specified by the input directors to program

editing and maintenance. In the example shown in Figure 2-3, the directors designate the in­

clusion of the process (AAATST) which provides automatic sequencing of the four programs

A, B, C, and D during their subsequent program execution. The directors, in addition to

designating the required data processing programs (A, B, C, and D in this case), designate the

process (AAAEND) which properly terminates the automatic sequencing of the programs after

the job is completed during subsequent program execution. Thus, the output of program editing

and maintenance is a BRT containing AAATST, programs A. B, C, and D, and AAAEND. The

job now proceeds to the execution of the four selected programs which perform the appropriate

data processing functions that have been selected (from the single binary tape) to run as a job.

2-17

l

a

NOTES:

..

BRT
CONTAINING
ASSEMBLED
PROGRAMS
A AN D

PROGRAM A !7;S5EMBLY
SOURCE
DECK

••
EASYCODER
ASSEMBLY

•

•
PROGRAM
EXECUTION
DIRECTORS
(SEE NOTES)

SOURCE PROGRAMS
........ \ CAN BE ,,. ,
\ .. MAINTAINED " ,
~-_/ ON SYMBOLIC ~-~

LEVEL
,--.....

/ " I \

.",..--
/ ,

I \
t I
I I

t \
\ t

\ I " , ' __ c::. __
\ I

\ I
.... / --.:::..--

EXECUTION
OF PROGRAMS

•

•
COBOL
COMPILATION

•

•

..

BRT
CONTAINING
COMPILED
PROGRAMS
CAN D

G

1. The first director (AAATST) directs the automatic sequencing of
programs without halting until the end of the job is reached.

2. The next four directors cause programs A, B, C, and D (re­
spectively) to be loaded and executed.

3. The last director (AAAEND) designates the end of the job and
causes control to be returned to the operator.

Figure 2-2. Operation with Source Programs on More Than One BRT

2-18

..

>.

NOTES:

BRT e B BRT
CONTAINING CONTAINING
ASSEMBLED COMPILED
PROGRAMS PROGRAMS

- -
e PROGRAM MASTER

EDITING AND • SYSTEMS .. MAINTENANCE TAPE

DIRECTORS
(SEE NOTES) • e BRT CONTAINING

ALL SELECTED
PROGRAMS

•
EXECUTION .. OF PROGRAMS •

PROGRAM
EXECUTION
DIRECTORS •

1. The first director (AAAUPS) directs the loading and execution
of the updating and selection processes.

2. The next six directors specify the progra:ms to be selected fro:m
tapes 2 and 3.

3. The last director (lEaF) designates that the last input director
to the updating and selection process has been reached; control
is then returned to the operator.

4. For execution, the progra:m directors direct loading fro:m tape 4
and auto:matic sequencing of progra:ms A through D; then, when
the end of job has been reached, control is returned to the operator.

Figure 2-3. Co:mbining Source Progra:ms for Operation fro:m One BRT

2-19

/1

I

~

APPENDIX A

MOD 1 PUBLICA TIONS

The set of publications associated with the Series 200/Operating System-Mod 1 is il­

lustrated in Figure A-I. (Where applicable, the file number of each publication is also shown.)

The publications, listed under the headings described in this manual, are summarized below.

PROGRAM PREPARATION AND MAINTENANCE

1. Language Processing Functions: The two programmers' reference manuals
listed in Figure A-I, while describing the over-all operation of Series 200
hardware, provide the programmer with a detailed description of the Easy­
coder language elements. The COBOL and FORTRAN manuals give the pro­
grammer a detailed functional description of the respective programs. The
remaining manuals supply the programmer and operator with detailed infor­
mation for the various assemblers and conversion programs.

2. Program Editing and Maintenance Functions: These manuals provide both
programming and operating information for those processes dealing with
the storing, modifying, and maintenance of assembly-language and binary­
executable programs.

PROGRAM CONTROL

1. Operation Control Functions: These publications supply both the programmer
and operator with information in those elements dealing with loading, monitoring,
and program sequencing.

2. Input/ Output Control Functions: These publications supply programming and
operating information for those processes which may be specialized and in­
corporated into the user's data processing system.

3. Program Test Functions: These publications supply programming and oper­
ating information for those processes which may be used either separately or
as part of an automatic checkout subsystem.

UTILITY

1. Data Transcription and Editing Functions: These publications supply pro­
gramming and operating information for those programs concerned with tape
handling, media conversion, report generating, tabulator simulating, and
data sorting and collating.

2. Mathematical Processing Functions: The manual entitled Statistics Package
D provides programming information for this set of five programs that enables
the user to perform various statistical analyses on numerical data.

A-I

., ..
Ii PROGRAM PREPARATION AND MAINTENANCE I

(LANGUAGE PROCESSING)

Series 200 Progranuners l Reference Manual. Models 200, 1200,2200 (1391} Include Language
Series 200 ProgramDlers' Reference Manual. Model 120 (141) Elements
Easycoder Assemblers C and D (041)
Transition to Easycoder - A Programmed Text (DSI-3191
Programming With Easycoder _ A Programmed Text (238)
Prograrnrning With Easycoder (Level 2 Assignments) (008)
Analyzer C (019)
Library Processor C and D (051)
COBOL Compiler D (Vol. II _ A Programmed Text (083)
COBOL Compiler D (Vol. II) - A Programmed Text (091)
COBOL Compiler D and H (065)
Fortran Compiler D (027)
Fortran Conversion Techniques (002)
Fortran Compiler D Generated Object Code (003)
Easytran Symbolic Translator Band C (035)
Easytran Symbolic Translator D (220)
Easytran Program Modifier C (147)

~ROGRAM EDITING AND MAINTENANCE)

Update and Select C and D (025)
SPT Merge C (152)
BRT Punch C (020)
PLUS Drum Program Store (Drum Program Store C) (DSI_411)

H PROGRAM CONTROL I

I Introduction to I
Series 200/Operating f---.,---------j
System_Mod 1 (258) I

~
Oper.ting System-Mod I I
Operating Procedures
Summaries (069)

(OPERATION CONTROL)

Card Loader-Monitor B (154)
Tape Loader_Monitor C (221)
Floating Tape Loader_Monitor C and Interrupt Control D (005)
Drum Bootstrap-Loader C (DSI-415)
PLUS Drum Monitor (Drum Monitor C) (DSI-408)
DIAL 200 (Drum Interrogation, Alteration, and Loader C) (DSI_404)

(~NPUT/OUTPUT CONTROL)

lIZ-Inch Tape 1/0B and C (010)
II2-Inch Tape and Terminal I/O B and C (167)
TYRO Z (Terminal Console 1/0 for Easycoder C) (DSI.413)
DIPDOP (Drum I/O C) (DSI.405)

(PROGRAM TEST)

Program Test System C (049)
PLUS_Memory and Tape Dump Routines (Memory and Tape Dump C) (DSI-341)

y UTILITY I

NOTE: When ordering these publications please specify
title and nUIllber. The number (enclosed in
parentheses and following the title) is either
an order number (e. g •• 019) or a DS! number
(e. g •• OSI-408). -

~ATA TRANSCRIPTION AND EDITING)

Tape Handling Routine B (applicable to Tape Handling Routine C) (017)
Tape Sort C (V) and Collate C (V) (207)
Tape Sort C and Collate C (018)
Simultaneous Sort and Print (20 1)
Simultaneous Media Conversion A and C (021)
Data Conversion A and C (Z31)
Tape to Printer A and C (006)
Drum Sort C (157)

(MATHEMATICAL PROCESSING)

Statistical Package D (159)

Figure A-I. Mod 1 Publications

A-2

COMPUTER-GENERATED INDEX

ASSEMBLERS. Z-4
ASSISTS

MOD 1 ASSISTS ALL MEMBERS OF THE DATA PROCESSING
TEAM. 1-3

BENEFITS

BRT

MAJOR BENEFITS OF THE SERIES ZOO/OPERATING SYSTEM -
MOD 1. 1-2

COMBINING SOURCE PROGRAMS FOR OPERATION FROM ONE
BRT. Z-16. 2-19

OPERATION WITH SOURCE PROGRAMS ON MORE THAN ONE BRT.
Z-16. Z-18

COBOL COMPILERS. Z-4
COMBINING SOURCE PROGRAMS

• FOR OPERATION FROM ONE BRT. 2-16, 2-19
COMPILERS

COBOL COMPILERS, Z-4
FORTRAN COMPILERS, 2-5

CONTROL
• FUNC ITONS.

INPUT/OUTPUT CONTROL FUNCITONS. Z-9
• FUNCTIONS.

OPERATION CONTROL FUNCTIONS. 2-e
PROGRAM CONTROL. A-I. 2-8

• PROGRAMS.
PROGRAM CONTROL PROGRAMS. Z-10

CONVERSION TRANSLATORS, 2-5
DATA

• PROCESSING TEAM.
MOD 1 ASSISTS ALL MEMBERS OF THE DATA PROCESSING

TEAM. 1-3
• TRANSCRIPTION AND EDITING FUNCTIONS. 2-13

EDITING
• FUNCTIONS.

DATA TRANSCRIPTION AND EDITING FUNCTIONS. 2-13
PROGRAM EDITING AND MAINTENANCE FUNCTIONS. 2-6

EXPERIENC.E
OPERATING SYSTEM EXPERIENCE,

HONEYWELL'S OPERATING SYSTEM EXPERIENCE. I-I
FLEXIBILITY AND ORDERLY GROWTH POTENTIAL ARE PROVIDED. 1-3
FORTRAN COMPILERS. 2-5
FUNC ITONS

INPUT/OUTPUT CONTROL FUNCITONS. 2-9
fUNCTIONS

EDITING FUNCTIONS.
DATA TRANSCRIPTION AND EDITING FUNCTIONS. 2-13

LANGUAGE PROCESSING FUNCTIONS. 2-2
MAINTENANCE FUNCTIONS.

PROGRAM EDITING AND MAINTENANCE FUNCTIONS. 2-6
MATHEMATICAL PROCESSING FUNCTIONS. 2-14
MOD 1 FUNCTIONS. 2-3
OPERATION CONTROL FUNCTIONS. 2-8
PROGRAM TEST FUNCTIONS. 2-11
SYSTEM FUNCTIONS. 2-2

GROWTH POTENTIAL
FLEXIBILITy AND ORDERLY GROWTH POTENTIAL ARE

PROVIDED. 1-3
INPUT/OUTPUT CONTROL FUNCITONS. 2-9
INSTALLATION MANAGER. 1-3
INTRODUCTION. I-I
LANGUAGE PROCESSING FUNCTIONS. 2-2
MAINTENANCE

• FUNCTIONS.
PROGRAM EDITING AND MAINTENANCE FUNCTIONS. 2-6

PROGRAM PREPARATION AND MAINTENANCE. A-I. 2-7
PROGRAM PREPARATIONS AND MAINTENANCE. 2-2

MAJOR BENEFITS OF THE SERIES 200/0PERATING SYSTEM -
MOD 1. 1-2

MANAGER
INSTALLATION MANAGER. 1-3

MATHEMATICAL PROCESSING FUNCTIONS. 2-14
MAXIMIZED

THROUGHPUT IS MAXIMIZED. 1-2
MAXIMUM USE IS MADE OF MEMORY AND PERIPHERAL UNITS. 1-3
MEMBERS

MOD 1 ASSISTS ALL MEMBERS OF THE DATA PROCESSING
TEAM. 1-3

MEMORY
MAXIMUM USE IS MADE OF MEMORY AND PERIPHERAL UNITS.

1-3
MINIMIZED

MOD

OVERHEAD 15 MINIMIZED. 1-3
TURNAROUND TIME IS MINIMIZED. 1-Z

MAJOR BENEFITS OF THE SERIES 200/0PERATING SYSTEM -
MOD 1. 1-2

SERIES ZOO/OPERATING SYSTEM - HOD 1. 1-4. 2-1
• 1 ASSISTS ALL MEMBERS OF THE DATA PROCESSING TEAH.

1-3
• 1 FUNCTIONS. Z-3
• 1 I'UBLICATIONS. A-I. A-2

OPERATING SYSTEM EXPERIENCE
MONEYWELL'S OPERATING SYSTEM EXPERIENCE. I-I

OI'ERATION
COMBINING SOURCE PROGRAMS FOR OPERATION FROM ONE

BRT. Z-16. 2-19
• CONTROL FUNCTIONS. Z-8

SYSTEM OPERATION. 2-15
• WITH SOURCE PROGRAMS ON MORE THAN ONE BRT. Z-16.

2-18
OPERATOR. 1-3
ORDERLY GROWTH POTENTIAL

FLEXIBILITY AND ORDERLY GROWTH POTENTIAL ARE
PROVIDED. 1-3

OVERHEAD IS MINIMIZED. 1-3
PERIPHERAL UNITS

MAXIMUM USE IS MADE OF MEMORY AND PERIPHERAL UNITS.
1-3

POTENTI AL
ORDERLY GROWTH POTENTIAL.

FLEXIBILITY AND ORDERLY GROWTH POTENTIAL ARE
PROVIDED, 1-3

PREPARA T I ON
PROGRAM PREPARATION AND MAINTENANCE. A-I. 2-7
PROGRAM PREPARATIONS AND MAINTENANCE. Z-Z

I'ROCESSING
• FUNCTIONS.

LANGUAGE PROCESSING FUNCTIONS. Z-Z
MATHEMATICAL PROCESSING FUNCTIONS. 2-14

• STRUCTURE. Z-1
• TEAM.

MOD 1 ASSISTS ALL MEMBERS OF THE DATA PROCESSING
TEAM. 1-3

PROGRAM
• EDITING AND MAINTENANCE FUNCTIONS, 2-6
• PREPARATION,

PROGRAM PREPARATION AND MAINTENANCE, A-I. 2-7
PROGRAM PREPARATIONS AND MAINTENANCE. Z-Z

• TEST FUNCTIONS, 2-11
PROGRAM CONTROL. A-I, Z-8

• PROGRAMS, 2-10
PROGRAMMER, 1-3
PROGRAMS

COMBINING SOURCE PROGRAMS FOR OPERATION FROM ONE
BRT, Z-16. 2-19

PROGRAM CONTROL PROGRAMS, 2-10
SOURCE PROGRAMS,

OPERATION WITH SOURCE PROGRAMS ON MORE THAN ONr
BRT, 2-16. 2-18

UTILITY PROGRAMS. 2-14
PUIILICATIONS

MOD 1 PUBLICATIONS, A-I, A-Z
SERIES 200/0PERATING SYSTEM

• - MOD 1, 1-4, 2-1
MAJOR BENEFITS OF THE SERIES ZOO/OPERATING SYSTEH _

MOD 1. l-Z
SOURCE PROGRAMS

COMBINING SOURCE PROGRAMS FOR OPERATION FROM ONE
BRT. Z-16. 2-19

OI'ERATrON WITH SOURCE PROGRAMS ON MORE THAN ONE RRT.
2-16, 2-18

STRUCTURE
PROCESSING STRUCTURE, 2-1

SYSTEM

TEAM

• EXPERIENCE.
HONEYWELL'S OPERATING SYSTEM EXPERIENCE, 1-1

• FUNCT[ONS. 2-Z
• OPERATION, 2-15

SERIES ZOO/OPERATING SYSTEM.
MAJOR BENEFITS OF THE SERIES ZOO/OPERATING

SYSTEM - MOD 1, l-Z
SERIES ZOO/OPERATING SYSTEM. MOD 1. 1-4, Z-1

DATA PROCESSING TEAM,
MOD 1 ASSISTS ALL MEMBERS OF lHE DATA PROCESSING

TEAM. 1-3
TEST FUNCTIONS

PROGRAM TEST FUNCTIONS. 2-11
TMROUGHPUT IS MAXIMIZED, l-Z
TIME

TURNAROUND TIME [S MINIMIZED, 1-Z
TRANSCRIPT 10M

DATA TRANSCRIPTION AND EDITING FUNCTIONS, 2-13
TRANSLATORS

CONVERSION TRANSLATORS. 2-5
TURNAROUND TIME IS MINIMIZED, l-Z
UN ITS

PERIPHERAL UNITS,
MAXIMUM USE rs MADE OF MEMORY AND PERIPHERAL

UNITS, 1-3
UTILITY. A-I, 2-13

• PROGRAMS. Z-14
ZOO/OPERATING SYSTEM

MAJOR BENEFITS OF THE SERIES ZOO/OPERATING SYSTEH _
MOD 1. 1-Z

SERIES ZOO/OPERATING SYSTEM - MOD 1, 1-4, Z-1

CIl c
::J
till c
o
;(

HONEYWELL EDP TECHNICAL PUBLICATIONS
USERS' REMARKS FORM

DATED: MARCH, 1966 TITLE: SERIES 200 INTRODUCTION TO SERIES
200/0PERATING SYSTEM-MOD 1
SOFTWARE BULLETIN FILE NO: 122.0005. ODIC. 0-258

ERRORS NOTED:

Fold

=: SUGGESTIONS FOR IMPROVEMENT:
o

Fold

FROM: NAME __________________ _ DATE _____ _

COMPANY _________________ _

TITLE __________________ _

ADDRESS _________________ _

...

ATT'N: TECHNICAL COMMUNICATIONS DEPARTMENT

Honey~ell
ELECTRONIC DATA PROCESSING

FIRST CLASS

PERMIT NO. 39531

WELLESLEY HILLS
MASS.

I
I
I
I
I
I
I

~

c:
:s
CD

