
HONEYWELL EDP 

SUBJECT: 

SPECIAL 
INSTRUCTIONS: 

DATE: September 17, 1965 

8477 
10965 

Printed in U. S. A. 

HARDWARE BULLETIN 

SERIES 200 
ADDENDUM # 1 TO SERIES 200 

PROGRAMMERS' REFERENCE MANUAL, 
MODELS 200/1200/2200. 

Description of New Language Features 
Available to Users of Easycoder Assembler C. 

This bulletin is an addendum to the Series 
200 Programmers I Reference Manual, 
Models 200/1200/2200 (file number 
113.0005.0000.00.00). The information 
contained herein will be incorporated into 
the manual at the time of the next revision. 

FILE NO. 113.0005.0000.00.00 



• 

Copyright 1965 

Questions and comments regarding this manual should be addressed to: 

Honeywell Electronic Data Processing 
Information Services 
60 Walnut Street 
Wellesley Hills, Massachusetts 02181 



ADDENDUM NO.1 TO SERIES 200 PROGRAMMERS 1 

REFERENCE MANUAL, MODELS 200/1200/2200 

EASYCODER PROGRAMMING 

The following information applies to Section 5 of the reference manual. 

Coding Form 

Several new options in the use of the coding form are available to Easycoder C users. 

These options are as follows. 

1 

1. TYPE (Card Column 6): This column may also contain the letter T to 
designate a temporary remarks card, or the letter D to designate a data 
card. If the programmer wishes to enter remarks lines anywhere in 
the source program but does not want these remarks to become a 
permanent part of the source program, a T instead of an asterisk (,:,) is 
placed in column 6. Remarks lines inserted in this manner are used 
only on the first assembly (i. e., when the program is being "inserted") 
and are subsequently deleted from the symbolic program tape by the 
Assembly Program. A temporary (like a permanent) remarks statement, 
while it appears in the program listing, does not appear in the object 
program. 

A D in column 6 indicates a data card. All data cards must be contained 
in segments consisting only of data cards. In addition, any data card 
(or group of data cards) must be immediately preceded by a SEG card 
and immediately followed by either an EX, XFR, or END card. When 
a data card is encountered by the Assembly Program, the contents of 
columns 8 through 80 are reproduced, unaltered, on the binary run 
tape or machine -language punched deck. 

2. LOCATION (Card Columns 8-14): The location field may also contain an 
apostrophe (1)1 followed by a decimal number to indicate an address 
relative to the out-of-sequence base (OSB). The out-of-sequence base 
is a value, maintained by the Assembly Program, which can be set by 
means of the XBASE instruction (see page 5). The Assembly Program 
assigns to the corresponding statement an address equal to the sum of 
the decimal number and the current value of the OSB. (Leading zeros 
may be omitted from the decimal number.) The allocation of any succeed­
ing instructions is not affected. 

Assume, for example, that the OSB has been set to the value 500 by an 
XBASE instruction when the following DCW statement is encountered. 

EASYCODER 
CODING FORM 

PROJECT DEPT. NO. PROGRAMMER OATE PAGE 

TM 
OPERATION CARD Y A 

LOCATION OPERANDS NUMBER ~ ~ CODE 

1 'i3 4i5 6 7 8 1415 20 21 
_L J 1 

I 62 63 
I 

I : '1S¢ Dew @PRM@ 

I 

Card code 8,2 (octal 12). 

-1 -

OF 

80 



The constant PRM is assigned, by the Assembly Program, to locations 
648 through 650. (The value of the OSB remains 500.) 

NOTE: If the apostrophe appears in column 8, an out-of-sequence 
address refers to the leftmost character of an instruction 
or to the rightmost character of a constant or reserved 
area. If the apostrophe appears in column 9, these con­
ventions are reversed: An out-of-sequence address refers 
to the rightmost character of an instruction or to the left­
most character of a constant or reserved area. 

3. OPERANDS (Card Columns 21-80): For Easycoder C users, the operands 
field extends to column 80. However, the method of coding entries in 
this field remains the same. Remarks may be entered following the 
terminating space. 

Address Codes 

The valid address codes also include the special symbol apostrophe (printer '; keypunch 

8,2; octal 12). This symbol is an element whose value is equal to the current value of the out­

of-sequence base (OSB). It is followed by an address modifier to specify the address of the de­

sired operand. The OSB is set by means of the XBASE instruction (see page 5). 

Literals 

All literals (including binary) can be coded with a maximum of 63 characters. If the con­

stant generated from a literal occupies from one to six storage locations, it is assigned a 

storage address only once in the program, regardless of the number of times the literal appears 

in the program. A constant that exceeds six characters is assigned a storage address each 

time the corresponding literal appears in the source program. The latter condition can be avoided 

by using a DCW statement whenever a long literal is to be used more than once in the source 

program. 

ALPHANUMERIC LITERALS 

Alphanumeric literals may be written in one of four ways. 

1. The special symbol @ is written before and after the literal. The 
alphanumeric literal may contain any valid Series 200 character (in­
cluding blanks) except the @ symbol. 

EASYCODER 
CODING FORM 

PROJECT DEPT. NO. PROGRAMMER DATE 

TM 
CARD YA LOCATION 

OPERATION 
OPERANDS NUMBER ~ R CODE 

I 213 415 6 7 8 1415 20 21 
I I 

62 63 

I : Mew @ACCOUNiSAPA'(.A6LE,'tJ/1 9/ ~58PRINT 
I 

-2-

PAGE OF 

80 



2. 

The statement above illustrates the use of an alphanumeric literal. 
The instruction causes the information contained within the @ 

symbols to be moved to the field tagged PRINT. 

A number sign (#) is followed by a number from 1 through 63 which 
specifies the number of characters in the literal; this number is, in 
turn, followed by the letter A and the literal. 

EASYCODER 
CODING FORM 

P OJ CT R E DEPT. NO. PROGRAMMER OATE PAGE 

CARO 
TM 
VA OPERATION 

NUMBER t R 
LOCATION CODE OPERANDS 

1 '13 41' 6 7 8 1415 2.0 21 
I I 

6Z 63 
I : 
I , 

Mew W14A6L\L BS~@A Z,14/LB,PRI NT 

In the above example there are 14 characters in the literal. The 
instruction causes these 14 characters to be moved to the field tagged 
PRINT. 

3. If it is desired to set an item mark (in addition to a work mark) in the 
leftmost position of the literal constant field, a number sign (#) is fol­
lowed by a number from 1 through 63 which specifies the number of 
characters in the literal; following this number is the letter L and the 
literal (see the first example below). 

EASYCODER 
CODING FORM 

PROJECT DEPT. NO. PROGRAMMER DATE p AGE 

CARD 
TM 
YA OPERATION 

NUMBER t R 
LOCATION CODE OPERANDS 

1 Z 13 41' 6 7 8 1415 20 21 
I I L I 

6Z 63 
I 

I : 
: i 
I I 

Mew #6L 1965/ A, STOltE 

Mew #6R1965/A,5TORE 

4. If it is desired to set an item mark in the rightmost position of the literal 
constant field, a number sign (#) is followed by a number from 1 through 
63 which specifies the number of characters in the literal; following 
this number is the letter R and the literal (see the second example above). 

NOTE: In forms (1) and (2) alphanumeric literals of six characters 
or less are stored in a literal table and duplicates are 
eliminated. The duplicates are not, however, eliminated 
in forms (3) and (4). 

DATA FORMATTING STATEMENTS 

The following information applies to Section 6 of the reference manual. 

Define Area - DA 

OF 

80 

OF 

80 

When used with Easycoder C, the DA statement may make use of the following parameters 

(in addition to the n, s, Xm, and R parameters already specified). 

-3-



1. The character P: Coding this character in the heading line of a DA 
statement causes the special character 728 , together with an item 
mark, to be placed at the end of each area as an additional character. 

2. The character G: Coding this character in the heading line causes 
the special character 328, together with a record mark, to be placed 
one position to the right of the last area. 

3. The character H: Coding this character in the heading line instructs 
the Assembly Program to associate the specified index register (Xm) 
with each reference to the tag in the location field of the DA statement, 
as well as with each reference to a field or subfield within the reserved 
area(s). 

NOTE: If a symbolic tag is used it is not automatically indexed by 
the specified index register (Xm) unless parameter H is 
employed. This parameter is meaningless if no index 
register is specified. 

The format of a DA statement heading line employing all parameters is illustrated below. 

EASYCODER 
CODING FORM 

PROJEC T DEPT. NO. PROGRAMMER DATE PAG E 0 F 

CARD 
TM 

OPERATION YA LOCATION OPERANDS NUMBER ~ ~ CODE 

1 Z1' jS 6 7 8 1415 2.0 2.1 6Z 63 
i 

80 

I : T~~ I>A nXs,Xm,R.,P,G,H 
I I 

ASSEMBLY CONTROL STATEMENTS 

The following information applies to Section 7 of the reference manual. Five statements 

(SEG, EX, ORG, MORG, and LITORG) are modified somewhat; two new statements (XFR and 

XBASE) are also described. 

Segment Header - SEG 

If used, a SEG statement must follow the program header (PROG), each Execute (EX) 

statement, and each Transfer (XFR) statement. 

Execute - EX 

Each segment except the last must end with either an EX or an XFR statement. When an 

EX statement is encountered, all literals preceding the EX statement which have not been 

allocated to memory are allocated in sequence, and the literal table is cleared. 

Origin - ORG 

A symbolic tag may be written in the location field. If this tag begins in column 8, it is 

assigned to the address written in the operands field. If it begins in column 9, the tag is assigned 

to the location at which the next instruction would have begun had the ORG statement not been 

present. 

-4-



EASYCODER 
CODING FORM 

PROJECT DEPT. NO. PROGRAMMER DATE PAGE OF 

TM 
CARD VA 

LOCATION 
OPERATION 

OPERANDS NUMBER ~ ~ CODE 

1 ~3 415 6 7 8 1415 .20 2.1 
I I 

52 63 

I : IDHIT p,R~ 7S¢¢ 
I I 

In the example above, assume that the instruction preceding the ORG statement was as­

signed to locations 5000 through 5007. The next instruction would normally begin at location 

5008. The tag IDENT, since it begins in column 9, is thus assigned to location 5008, and the 

next instruction is stored beginning at location 7800. 

Modular Origin - MORG 

A symbolic tag may be written in the location field. If this tag begins in column 8, it is 

assigned to the address written in the operands field. If it begins in column 9, the tag is as­

signed to the location at which the next instruction would have begun had the MORG statement 

not been present (seethe example given for the ORG statement). 

Literal Origin - LITORG 

In the absence of a LITORG statement, all of the generated coding associated with a 

memory load - except for a memory load terminated by an XFR statement - is allocated im­

mediately following the in-line coding. 

80 

A symbolic tag may be written in the location field. If this tag begins in column 8, it is 

assigned to the address written in the operands field. If it begins in column 9, the tag is as­

signed to the location at which the next instruction would have begun had the LITORG statement 

not been present (see the example given for the ORG statement). 

Transfer - XFR 

This statement performs essentially the same functions as the Ex statement; the one 

exception is that use of the XFR statement does not result in the allocation of literals or in the 

clearing of the literal table. 

Set Out-of-Sequence Base - XBASE 

The XBASE statement establishes the out-of-sequence base (OSB). As its name implies, 

the OSB is a base address for the storage of out-of-sequence coding. Such coding is allocated 

or referred to by means of the address code I (apostrophe) in the location or operands field, 

'-'" respectively (see above). 

-5-



The letters XBASE are written in the op code field. The operands field contains the value 

(absolute or sym.bolic) to which the assembly program is directed to set the out-of-sequence base ~ 

(OSB). If a sym.bolic tag appears in the operands field it must have appeared in the location 

field of a previous source program entry. 

EASYCODER 
CODING FORM 

PROJECT DEPT. NO. PROGRAMMER DATE PAGE OF 

TM 
OPERATION CARD Y LOCA.TION OPERANDS NUMBER P COCE 

, 2'3 ,', 6 7 8 'IS 20 21 
I I I I i 62 63 

i 
80 

I : X6ASE 5¢¢ 

2 i i '275 DeW @CON@ 

In the above example, the out-of-sequence base (OSB) is set to 500 by the XBASE state­

ment. When the second entry is encountered, the Assembly Program assigns the rightmost 

character of the constant CON to location 775 (500 + 275). 

HONEYWELL 
ELECTRONIC 
DATA 
PROCESSING 
WELLESLEY HILLS, 

MASSACHUSETTS 02181 

1 


